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YrieuSuvn dnAwan yia AoyokAomn kat yla kKAor) IVeEUUATIKAG LOLOKTNOIaC:

EXw S1aBACEL KOl KATOVONOEL TOUG KAVOVEG yla T AOYOKAOT Kal TOV TPOTO OWOTKG
avadopag TWV MNYWV TTOU TEPLEXOVTAL 6TOV 08ny0 cuyypadng AtmAwpatikwv Epyaciwv.
AnAwvw OtL, anod oca yvwpilw, To MEPLEXOUEVO TNG apovoag AtmAwpatikig Epyaoiog
glval mpoiov SIKNG Hou epyaociag Kal urntapxouv avadopEG o OAEC TIG TINYEG TMOU
Xpnoonoinoa.

OL anoYPeLg Kol T CUUTIEPACHOTA TIOU TIEPLEXOVTOL OE OUTH T AUTAWHATIKA £pyacio
glval tou ouyypadEa Kol Sgv MPEMEL va EPUNVEVOEL OTL AVTUTPOCWIEVOUV TLG ETICNLEG
0€0£1g TNG ZXOANG MnxavoAoywv Mnxavikwv i tou EBvikou MetooBiou MoAuteyveiou.
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Abstract

Abstract

The thesis presents a comprehensive investigation of the vortex-induced vibration (VIV)
phenomenon in circular cross-section structures, employing both single-single-degree-of-
freedom (1DOF) and two-degree-of-freedom (2DOF) engineering models. The primary
objectives revolve around understanding, analyzing, and predicting VIV behavior across a
range of flow velocities.

To achieve this goal, the study evaluates both single-degree-of-freedom (1DOF) and two-
degree-of-freedom (2DOF) engineering models, assessing their efficacy in predicting VIV
behavior. Through meticulous evaluation against theoretical predictions and experimental
data, a newly proposed 1DOF model from existing literature aligns well with the theoretical
predictions, indicating its accuracy.

Furthermore, the thesis explores optimization techniques for fine-tuning the parameters of
the 2DOF models, with the COBYLA method demonstrating superior accuracy over the
Newton method. The model’s results were tested across different frequency ratio cases,
revealing a subtle leftward shift in maximum amplitude values. Additionally, an automated
method was examined, defining the parameters' optimal values and applying linear
interpolation for predictions in the lock-in region.

The findings emphasize the importance of accurate prediction methodologies for VIV
phenomena and highlight future research, such as exploring additional optimization
methods and engineering models. Moreover, the integration of these results into
computational tools, such as the hGAST tool for offshore wind turbine analysis, offers
practical applications for large-scale engineering structures with complex dynamics.

In summary, this thesis contributes to enhancing the understanding and prediction
capabilities of VIV phenomena, offering valuable insights for structural analysis in various
fields, including offshore structures, wind turbines, and marine engineering.




Abstract (in Greek)

Abstract (in Greek)

H dutAwpoatikn epyacia mapouotdlet pio oAokANpwUEVn Slepelvnon Tou GpalvouEvou Twv
TaAdavtwoewv Tou mpokaAouvtatl and biveg (VIV) og KOTAOKEUEG KUKALKAG SLATOMNG,
XPNOLLOTIOLWVTOC TOCO UNXAVIKA MOVTEAQ £vOg BaBuol eheuBepiag (1DOF) oo kat duo
BaBuwv eleuBepiag (2DOF). OL mpwtapxlkoli otoxoL meplotpédovial yupw amod Tnv
Katavonon, Tnv availuon Kat tnv poBAedn tng cupnepldpopd¢ tou PpolvouEVOU O Eva
€UPOC TOXUTATWV PONG.

Ma tv enitevén autol Tou otoOXoU, N HEAETN afloAoyel 1000 Ta POVTEAX £VOG Babuou
eheuBepiag (1DOF) 600 kat ta poviéda duo Babuwv eAeuBepiag (2DOF), aflohoywvtag tnv
OIMOTEAECUATIKOTNTA TOUC otnv MpOoBAedn tng ouunepipopd¢ tou datvopévou. Méow
ouykplong Evavil BeswpnTtikwv TPoBAEPEWY KAl TIELPAUATIKWY Oebopévwy, Eva
TIPOTELVOEVO povTieAo 1DOF amd tnv untapyouaoa BiBAloypadia euBuypappiletal KaAd pe
TG OewpnTIkEG MPOoPAEYELC, uTOSELKVUOVTAC TNV OKPIBELA TOU.

ErumAéov, n SumAwpaTKA gpyacia Slepeuva TeXVIKEG BeAtioTomoinong yla tn AEmTouepn
pUBULON TWV TAPAUETPWY TOU povtédou 2DOF, pe tn péBodo COBYLA va emidelkviel
ovwtepn okpifela os oxéon pe ™ HEOoSo Newton. Ta QmMOTEAECUATA TOU HOVTIEAOU
Sdokipaotnkayv o€ SLaPOPETIKEC TIEPUTTWOELC OVAAOYLOC GUXVOTATWY, OMOKAAUTITOVTOG KL
ehadpd HETATOMION TPOG TA OPLOTEPA OTNV TLUAR TOU MEYLOTOU TAQTOUC. EmumAéov,
€€eTAOTNKE HlA QUTOMATOTIOMNUEVN UEBOSOC, n omola KaBoplle TIC BEATIOTEG TIHEC TWV
TIOPOUETPWVY Kot epappole ypapptkn mapepBoAn yia mpoBAEeLc otnv eploxn lock-in.

Ta suprpata unoypapuilouv tn onuaocia twv peBodoroyiwv MpoPAedng Le akpifela yla
ta pawvopeva VIV kat evBappUvouv HeANOVTIKI €PEUVa WG TIPOG TN SLEpELUVNON TPOCOETWY
HEBOSwV BeAtiotonolnong Kal TEXVIKWY HOVTEAWV. EMUTAEoV, N EVOWUATWON QUTWV TWV
OTTOTEAECUATWY OE UTIOAOYLOTIKA e€pyaleia, Omwg To epyadeio hGAST yla tnv avaAuon
UTIEPAKTLWYV OVELOYEVVNTPLWY, TIPOOPEPEL TIPAKTIKEG EHAPHOYEG VLA UNXOVIKEG KATOOKEUEG
HEYAANG KAlpaKkag.

JUVOTITIKA, N Toapouca epyacia cUPBAAAEL oTtnv evioxuon TG KAtavonong Kal tng
Suvatotntag npoPAedng twv dawopévwy VIV, mpoodépovtag MOAUTLUEG YVWOELG yLa TN
Sdoupwky avaluon oe Oladopoug TOUELG, OCUMUMEPIAOUPBAVOUEVWYV TWV UTIEPAKTLWV
KOATAOKEU WV, TWV AVELOYEVVNTPLWYV KAl TNG BaAAooLag UNXAVIKNG.
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Introduction

1. Introduction

1.1 Objectives

The primary objectives of this thesis work revolve around a comprehensive study, analysis,
and understanding of the vortex-induced vibration (VIV) phenomenon. Recognizing its
complex nature, the aim is to approach this phenomenon with a quick and accurate method.

While computational fluid dynamics (CFD) presents a way for precise investigation of VIVs,
its excessive computational cost in terms of both time and resources poses significant
constraints. Therefore, a pivotal objective of this study is to explore alternative methods,
particularly the application of engineering models, including both single-degree-of-freedom
(1DOF) and two-degree-of-freedom (2DOF) models, that offer a balance between
computational efficiency and analytical accuracy.

The 1DOF models, consisting of three distinct variations sourced from existing literature, will
undergo a meticulous evaluation to ensure their efficacy in predicting VIVs by comparing
their results with experimental data. The 2DOF model, on the other hand, will also be
subjected to calibration through the process of adjusting and fine-tuning the model
parameters to enhance their accuracy and reliability in predicting the phenomenon.

Furthermore, given the widespread occurrence of VIVs across various engineering
applications, the thesis will focus specifically on cylindrical cross-sections, representing
structures such as wind turbine towers, chimneys, cylindrical towers, and marine structures.
Ultimately, the utilization of these models is anticipated to significantly reduce the
computational cost of subsequent aeroelastic analysis while they are expected to facilitate
a thorough understanding of the VIV phenomenon.

1.2 Understanding Vortex-Induced Vibrations Phenomenon

Vortex-induced vibrations (VIVs) represent a complex phenomenon that intersects various
disciplines, including fluid mechanics, structural mechanics, vibrations, computational fluid
dynamics (CFD), and acoustics. This intricate interaction occurs in numerous engineering
applications, from bridges and offshore structures to marine cables and industrial chimneys.
As technological advancements and material science have evolved, there has been a notable
increase in the height and slenderness of structures. Consequently, these modern structures
are more susceptible to VIV phenomena. Understanding and predicting VIV is crucial, aiming
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to mitigate potential structure fatigue and failure. [1] It is more advantageous to predict and
consequently avoid the VIVs than to attempt to eliminate them. [2]

Wind action plays a significant role in structural dynamics and it can be divided into two
groups: aerodynamic and aeroelastic. While aerodynamic effects on structures are
independent of their movement, aeroelastic effects are affected by structural vibration.
Flutter, galloping and vortex shedding are examples of aeroelastic actions. [3] Vortex-
induced vibrations (VIVs) are structural vibrations that can occur due to the shedding of flow
vortices when a fluid flow passes around a structure. Due to this fluid-structure interaction
(FSI) phenomenon, a synchronization (also called lock-in) of the vortex shedding and the
structural motion can occur for certain flow conditions and structural properties. [4]

Synchronization, also known as lock-in, (or lock-on, vortex capture, or frequency capture), is
observed not only in the vicinity of the natural frequency of the structure but also across a
broad spectrum of flow velocities. Beyond the synchronization region, the body will
encounter forces characterized by both the Strouhal frequency and the frequency of body
oscillations. [2] The study of VIVs is about bluff bodies, typically circular cylinders. [5]

Analyzing the behavior of an elastically mounted cylinder constrained to move perpendicular
tothe flow and reach the lock-in region, distinct wake patterns can be initiated by the motion
of the body. [6] Various vortex wake patterns are identified and introduced, across a wide
range of amplitudes and wavelengths. These periodic wake patterns consist of single vortices
(S) and vortex pairs (P), resulting in modes such as 2S5, 2P, and P + S, which are the
predominant modes near the lock-in region. [7]

A/D

Coalescence of
vortices in
near wake

-

Image 1: Visualization of vortex wake modes
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Studies using flow visualization techniques [8] [9] have revealed that initially, vortices form
on one side of the cylinder and are shed when the cylinder is near maximum displacement
on the opposite side. Towards the end of the lock-in range, however, vortices are shed when
the cylinder is near maximum displacement on the same side. These observations
underscore the complex dynamics in the VIV phenomenon, where subtle variations in flow
conditions and cylinder motion lead to distinct modes of vortex shedding.

felfp=1-05
Image 2: Evolution of vortex shedding patterns at varying lock-in ratios. At ratio 0.95, a
new vortex emerges from the upper surface of the cylinder, while at ratio 1. 0 the
shedding transitions to the lower surface.

Significant progress has been achieved in elucidating the kinematics of VIVs, particularly in
the low-Reynolds number regime. [10] [11] However, challenges persist due to many factors
influencing the phenomenon, including lift coefficient, correlation length, the vortex-
shedding frequency, Reynolds number, and the vortex-shedding frequency bandwidth. [12]
Nonetheless, the Strouhal number emerges as a robust parameter despite these
complexities. [2] The Strouhal number is influenced by factors such as the structure’s
geometry, Reynolds number, and air turbulence levels and it measures the geometry of the
vortex wake as illustrated in Image 3. [13]
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Image 3: Typical value of Strouhal number for circular cylinders

Furthermore, the correlation between the Strouhal and Reynolds numbers, as depicted in
Image 4, offers valuable insights into the behavior of the Strouhal number for circular
cylinders across different flow regimes, from subcritical to supercritical. [14]
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Image 4: Correlation between Strouhal and Reynolds numbers for circular cylinders
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Another parameter that provides valuable insights into the phenomenon of vortex-induced
vibrations, is the mass-damping parameter, also known as the Scruton number.

{m
5= pD2 (1.1

This parameter hinges on two critical properties: the damping of the structure, { and its
relative mass, m, compared to the surrounding air. [13] Structures with higher structural
damping exhibit reduced vibrations compared to those with lower. Similarly, heavier
structures experience less severe vibrations than lighter structures. However, these
vibrations tend to exhibit irregular patterns, with occasional bursts of slightly larger
oscillations. The relationship between the Scruton number and vibration amplitude is
depicted in Image 5.

Vibration amplitude

Scruton number

Image 5: Scruton curve, also known as Griffin plot
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2. Theoretical Presentation of Basic Engineering Models

VIV poses significant challenges across a spectrum of engineering domains, including
aerospace, civil, wind, and industrial engineering applications. [15] Understanding and
predicting these vibrations is crucial for ensuring the structural integrity and operational
efficiency of such systems. Over the years, various engineering mathematical models have
been developed to analyze and quantify VIV phenomena. In the following chapter, several
engineering models will be explored to present their theoretical foundations and
mathematical formulations.

Two classes of VIV models exist the 1-degree-of-freedom models and the coupled wake
oscillator models, each offering distinct approaches to modeling VIV phenomena. [16] There
are various proposals from different authors to model the phenomenon of vortex shedding,
all originating from the simple case of two-dimensional flow. Analytical, empirical, and semi-
empirical models are among the methods applied. The commonly adopted approach
involves constructing empirical models and subsequently refining their results to align with
real-world observations through a selection of parameters. [3]

2.1 Iwan-Blevins Model

The Iwan—-Blevins model, proposed by Iwan and Blevins in 1974, offers a mathematical
framework for understanding vortex-induced vibrations (VIV) in structures. [17] At its core,
the model introduces a "hidden" fluid variable represented by z, where the time derivative
Z describes how the sideways or lateral motion of fluid changes over time within a specified
area. This variable is directly proportional to the momentum within the control volume, as
illustrated in Image 6.

Elastically supported rigid cylinder Control volume

Image 6: lllustration of the fluid variable z and its role in capturing fluid motion within a
defined control volume
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By deriving a fluid oscillator from the momentum equation in the transverse direction, the
model incorporates a z3 term to capture non-linear features inherent in VIV phenomena.
This non-linearity enables the model to effectively replicate the intricate dynamics of vortex-
induced vibrations. The self-excited fluid oscillator is expressed by the following equation:

.. , Ut , LU ,.3 ’ e LU .
Z+K vaz=(al—a4)Bz—a2U—D+a3y+a45y (2.1)
Where
K , i .
"= and a; = (i=3;4)
ap + as o tas
The cylinder movement equation is given by:
. . ) we .U
y+26rwyy +wyy =azz+ a4zB (2.2)
Where
[
m w, ' 2mw, . pD?a; _
Oy = pb? TS appt 0 % Ty (T
1 + WP 1+ WP m+ asp
m m

Experimental validation of the Iwan—Blevins model against circular cylinder responses,
highlights its ability to accurately predict maximum response amplitudes as shown in Image
7. However, a notable discrepancy arises in the timing of peak responses between the model
predictions and experimental observations. While the model accurately predicts maximum
response amplitudes at the resonant flow velocity Uy, experimental data exhibit a delay,
reaching maximum amplitude at around 1.15Uj. This discrepancy, particularly pronounced
in light-weight and low-damping cylinder cases, constitutes a limitation of the model in
capturing certain details of VIV behavior.

Despite this limitation, the Iwan—Blevins model successfully reproduces the frequency lock-
in phenomenon observed in VIV. Image 7 illustrates the model's ability to capture this
characteristic feature, albeit with a narrower lock-in region compared to experimental
results. Additionally, experimental observations reveal that when the structural damping
factor {s surpasses the fluid damping factor {r, a common situation in practical applications,
the model anticipates a widening of the entrainment band. This widening effect is directly
proportional to the ratio of the displaced fluid mass to the cylinder mass. Notably, when this
ratio increases, structures oscillating in denser fluids, such as water, would exhibit a broader
entrainment band compared to those oscillating in less dense fluids, like air. [18]
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Image 7: Comparison between experimental and model-predicted responses of a circular
cylinder
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Image 8: Amplitude variations for rigid and structurally elastic cylinders according to the
damping parameter
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Additionally, Image 8 presents a comparison between theoretical predictions and
experimental results, specifically focusing on the amplitude variations for different cylinder
types as influenced by the damping parameter. [19]

The modified coupled van der Pol (VDP) wake oscillator model provides an innovative
approach that combines elements of the van der Pol oscillator with a spring-mass-damper
system and applies to two-dimensional scenarios, with a particular emphasis on circular
cylinders constrained to transverse motion. [20] Represented as a single-degree-of-freedom
model, its graphical depiction is illustrated in Image 9.

1]

NN N NN

Image 9: Single-degree-of-freedom (1DOF) elastically mounted circular cylinder in
uniform flow

The structural equation governing this model is expressed as follows:

. anusy . 272 1 2
y+ (4ﬂZfN t— ) +Hanfyy = ;—CL,pU"Dq (2.3)
Where
G . 4m 4 26,
"amse ™ Tmepzr M 1T
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Where y represents the stall parameter, fy denotes the natural frequency, f,,s the vortex
shedding frequency, { represents the structural damping, m is the structural mass, C;_
stands for the root-mean-square (RMS) lift acting on a stationary cylinder, q is the wake
variable, C; is the instantaneous lift coefficient, D is cylinder’s diameter, m* is the mass ratio.

Furthermore, the dynamically changing wake variable, g, is calculated according to the
formula:

q + anusg(qz - 1)q + 4‘7T2fu25q = BY (2_4)

Where BY is a coupling parameter and ¢ is the damping parameter.

In its unforced state, the van der Pol oscillator exhibits a periodic response, gradually
accumulating energy before rapidly discharging it. This phenomenon arises due to the
influence of a non-linear damping term. The nonlinear damping effect is controlled by the
damping parameter, &, empirically determined within the VDP model.

Pinheiro’s model in contrast with the models presented previously in this chapter, provides
a framework for a three-dimensional mathematical model and introduces the concept of
vortex cells to analyze fluid-structure interaction. Image 10 illustrates an example of a tower
structure analyzed within this model. [3]

2 S Modal

(> shape j

U‘ ! :: UI D!
Cell i =3
=3

@ (b) | ©

Image 10: lllustration outlining Pinheiro’s model for analyzing the phenomenon of VIV in
thin structures: (a) Depiction of vortex cells within the structure (b) Representation of
laminar flow around a constant circular section (c) Aeroelastic modal force F;
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Each segment of the structure is characterized by its unique diameter D; and average wind
velocity U;, which is associated with specific shedding frequencies f;. These parameters are
linked through the section’s Strouhal number as expressed by Equation (2.5).

_ fiD;

S U, (2.5)

In Pinheiro’s model, the aeroelastic force acting on each section is determined by Scanlan’s
two-dimensional model, as detailed in Chapter 3.1. The structure is subjected to laminar
wind speed as depicted in Image 10 (b). The motion equation governing the behavior of the
tower structure is expressed as follows:

M;(¥; + 2&;0,Y; + w?Y; = Fm;(H,, €) (2.6)

Where M; represents the structure’s mass, Y; is the amplitude corresponding to the jth
natural vibration mode, w; and ¢; denote the natural frequency and damping at jth mode
and Fy,; signifies the modal force.

The application of the model extends to cantilevered towers by integrating the modal shape.
Simplifying the analysis, it is assumed that the vortex shedding occurs in a single
frequency. Consequently, the entire tower is treated as a single vortex cell as shown in
Image 11.

i > '
U *‘: U e
—> fo—e —
L] | : L [ ¢(2)
— : i
|—e | I b
— | | b
W i | —
——» | — .
I e L
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- | [
| || | i
— | L
——a I —
b | —
— I —
e I p——bp y
Ll & »>

(a) (b)

Image 11: Incorporating of modal shape and corresponding discretization

In the subsequent chapters, a deeper analysis of vortex-induced vibrations (VIV) will be
undertaken, focusing on three single-degree-of-freedom (1DOF) models and one two-
degree-of-freedom model (2DOF) model. Specifically, the R. H. Scanlan model, the Vickery
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and Basu nonlinear model, the Basu and Vickery linear model, and the Hartlen-Currie model
will be explored. Each of these models offers a unique insight and approach to understanding
the VIV phenomenon in engineering structures. There will be a detailed examination of their
theoretical foundations and mathematical formulations.
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3. Single-Degree-of-Freedom Models used for VIV Analysis

It's important to note that the single-degree-of-freedom models that will be presented are
specifically tailored to calculate amplitudes within the lock-in region.

3.1 R.H. Scanlan Model

Scanlan’s single-degree-of-freedom (1DOF) empirical nonlinear model stands as a renowned
engineering model for analyzing the phenomenon of Vortex-Induced Vibrations (VIV). At its
core, the model is represented by a dynamic equation encapsulating the motion of the
system under the influence of vortex-induced forces. Specifically, the equation describes the
dynamics of the system, accounting for mass, m, damping, {, natural frequency, w1, and
various aerodynamic parameters such as H,, H,, € and C,. [3] The model gains its
nonlinearity by incorporating a nonlinear aerodynamic cubic term, resulting in the following
equation:

) . 1 y2\ v y 1.
mly + 2{w,y + wiy] = EpUZD [H1 <1 — Sﬁ>ﬁ + HZB + ECLsm(wt + a) (3.1)

Where H; is an experimentally obtained adjustment parameter related to linear
aerodynamic damping, H, is an experimentally obtained adjustment parameter related to
the aerodynamic stiffness, € is an experimentally obtained non-linear aerodynamic damping
parameter and a is an experimentally obtained adjustment parameter that represents the
phase difference between the vortex shedding and displacement response. [21]
Additionally, m is considered the cylinder’s mass, w, denotes the natural frequency, p refers
to air density (p = 1.225 kg/m3), D stands for the cylinder’s diameter, U indicates wind
velocity and w signifies the vortex-shedding frequency complying with the Strouhal relation,
St = fD/U, where St denotes the Strouhal number. [22]

The parameters H; and ¢ are derived from experimental data, specifically by observing two
resonance response amplitudes, A,, and 4,,,, corresponding to two distinct damping values,

Y2/
51, and ¢,.
_ 8mmS, (3,2, — 4 A2)
' D?p(A3, - A3,) (3.2)
e 4(¢y — {;)D?
(143, — A3, (3:3)
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The resonance response amplitudes are calculated from the equation:

0.72
03+ 5"+~ —=
\[ (19+6,)-S
A, =0.07 D (3.4)
= 007V g5y 52
Where
amnd, .
= D2 and y: geometrical parameter (3.5)

The lock-in range is set to span within a 20% range around the area where the critical
shedding frequency is met. Beyond this range, the cylinder experiences slight displacements
which are induced by the force described below:

1
F =§pU2DCL sin(wst + a) (3.6)

Where

wg = 27'1.']‘:q = 271'3

In lock-in phenomena, the contributions of C; and H, can be disregarded due to their
relatively small magnitudes compared to the aerodynamic damping parameter. As a result,
the Equation (3.1) is modified as follows [3]:

. . 1 y2\y
ml[y +2{wy + wiy] = EpUZD [Hl <1 - 8§> ﬁl (3.7)
L . >
s 4
F(v,y)

For the numerical solution of the nonlinear equation, we proceed with its linearization
through the application of Taylor’s expansion on the nonlinear terms. The derivatives of the
F(y,y) are evaluated at the reference point y,, representing the equilibrium state of the
structure. These derivatives are expressed as:

oF = pUH.< Yo
dyly=vo PYHLY0E (3.8)

Y=Yo
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oF _1 UDH,|1 Yo
ayly=ye ~ 2PV T\ " T D2 (3.9)
Y=Yo
The equation is linearized to this final form:
oy + oF oy+| k oF 10)
TN T gl | ayly=o | (3.10)
Y=Yo Y=Yo

= F(%0,Y0) — My — c¥o — k¥

Furthermore, the complete expressions for the model’s parameters are provided as follows:

e Mass parameter: M=m
= oF =2 ! DH |1 yg
e Damping parameter: C=c— Ayly=vo ~ miw, — EPU 1{1-e5;
Y=Yo
JoF Yo
— J— — 2 . 20
o Stiffness parameter: K=k dyly=vo mwy + pUH,yo€ D
Y=Yo
e Load parameter: Q = F(yo,¥0) — myy — cyo — ky,

In this final linearized form, the model can now be solved using Newmark’s method as
detailed in Chapter 3.4.

In addition to Scanlan’s model discussed earlier, another notable 1DOF nonlinear model,
proposed by Vickery and Basu, offers an alternative perspective on the system’s response in
the vortex-induced vibrations (VIV). Unlike, Scanlan’s model, which incorporates
nonlinearity in the displacement term y(t), the Vickery and Basu model uniquely introduces
nonlinearity in the velocity term, y(t).

The model’s equation is as follows [16]:

d? S
y(t) —2 -wnﬁl—eq [(Ka - é) — K, G -y(t)z] y(t) +wf - y(t) =0 (3.11)
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Where w,, signifies the system’s natural frequency, p is air density (p = 1.225 kg/m3), d
represents the cylinder’s diameter, K, stands for the aerodynamic damping parameter for
small oscillations (constant), G is a positive factor, Sc refers to the Scruton number and m,,,
is the equivalent mass per unit length in kg/m.

The Scruton number denoted as Sc, functions as a single governing parameter that
encapsulates structural mass and damping. It is calculated according to the following
formula:

Meq {s

SC = 47T pdz (3.12)

For the numerical solution of the nonlinear equation, we proceed with its linearization
through the application of Taylor’s expansion on the nonlinear terms. The Equation (3.11) is
linearized to this final form:

Meq 65 + (¢ + 6w, pd*K,Gy§)8y + kSy
= _meqyo - (C + anpdeaGyg)YO - kJ’O (3'13)

Where
¢ = 2w,Meg{ — 20, pd?K,

— 2
k = wyme,

Furthermore, the complete expressions for the model’s parameters are provided as follows:

e Mass parameter: M =mgq
e Damping parameter: (= 2wy [meq¢ — pd?K, (1 —3Gy2)]
e Stiffness parameter: K=k

Q = —MegVo — 2w, [Meg¢ + pd?K, (1 + Gy ]y,

e Load parameter: — ky,

In this final linearized form, the model can now be solved using Newmark’s method as
detailed in Chapter 3.4.
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A common characteristic shared by the models proposed by Vickery and Basu, as well as
Ehsan and Scanlan, is the assumption of the simultaneous existence of vortex-shedding lift
and motion-induced force, with no correlation between the two forces. [16] However, the
latter model primarily focuses on scenarios involving oscillations, where the motion-induced
force dominates and the vortex-shedding load can be disregarded. In the context of self-
excited and self-limited systems, energy transfer arises from negative damping rather than
from the external forces. As a result, these systems are characterized as nonlinear.
Presenting an alternative perspective, Vickery and Basu propose a linear model described by
the following equation:

N pd® (Sc . 2 UAQ)
j(t) _Z'wnm_w(E_Ka)y(t) + g y(t) = ,L\,,n (3.14)

Where w,, signifies the system’s natural frequency, p is air density (p = 1.225 kg/m3), d
represents the cylinder’s diameter, K, stands for the aerodynamic damping parameter, Sc
refers to the Scruton number, m,, is the equivalent mass per unit length in kg/m, F is the
vortex shedding force and M,, is the modal mass in kg in the nth mode of vibration.

In lock-in phenomena, the effect of the excitation force is negligible regarding the
oscillations that occur.

The aerodynamic damping parameter, despite being utilized in a linear model, demonstrates
instability due to its calculation method:

K, = Kqo <1 - (aLa.yd>2> (3.15)

Where g, represents the standard deviation of the oscillation, a,, is a non-dimensional factor
typically recommended to be 0.4 and d stands for the cylinder’s diameter.

Even though the model proposed is linear, it conceals nonlinearity within the parameter K.
This nonlinearity arises because K, is calculated for each time period, resulting in its

variation over time. The calculation of K, involves using the standard deviation value, where

oy = %, with A being the amplitude of oscillation. The graphical representation of Equation

(3.15), follows a parabolic law with negative curvature as g,,/d increases.
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Image 12: Aerodynamic damping parameter K, proposed by Vickery and Basu

(K, = 2.422)and 0,/d = 0)

The Equation (3.14) is linearized to this final form:

Meq6Y + 6y + ky = —meqdo — c¥o — ko (3.16)

Where
€ = 2w,Meg — 20, pd?K,

— 2
k = wzme,

Furthermore, the complete expressions for the model’s parameters are provided as follows:

e Mass parameter: M =me,

e Damping parameter: C=c

e Stiffness parameter: K=k

e Load parameter: Q = —mMeqio = CYo — kYo

In this final linearized form, the model can now be solved using Newmark’s method as

detailed in Chapter 3.4.
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The K,-curve that is proposed underestimates the aeroelastic effect for small oscillations.
As a result, a new model of the aerodynamic damping K, is proposed and it is calculated
according to the following equation [16]:

a
e(_b%) ]
K, = QT witha,b,c > 0 (3.17)

d

The curve-fitting process suggests the following values for the coefficients:
a = 0.3475, b = 5.808, c = 0.3582

This new model exhibits a distinct behavior characterized by positive curvature as shown in
Image 13.

3.0
® Smooth cylinder (laminar separation)
2.5 Rough cylinder (turbulent separation)
—Ka
20 r

15 \‘
o |\

u\
05 \\\‘\
0.0 - - ' :
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o,/d

Image 13: Aerodynamic damping parameter K, as a function of standard deviation for
laminar and turbulent separation conditions (Re = 2.6 x 10%)

Comparing Image 12, which depicts the Vickery and Basu curve, with Image 13, it is evident
that the new model demonstrates a steep decrease in aerodynamic damping for small
oscillations, in contrast to the slow decrease observed in Image 12.
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Newmark’s integration method offers a numerical basis for integrating the equations of
motion in structural dynamics. [23] This method suggests that the system's future state, at
the time t,,,, is predicted based on the current state, at time t,,. Additionally, it introduces
the parameters [ and y, which are crucial in determining the stability and accuracy of the
method. The governing equation for the system’s dynamic response can be expressed as:

Where 6x represents the displacement, M is the mass, C is the damping, K is the stiffness
and Q represents the external forces.

The Newmark’s integration method, utilized to solve this equation, relies on a modified
Taylor series expansion to approximate future states of the system. The approach breaks
down the continuous dynamic response into discrete increments, allowing for the iterative
calculation of displacements, velocities, and accelerations. After consideration and under
Newmark’s guidelines, the chosen values for the integration parameters in our
computations are § = 0.25and y = 0.5. [24]

The system’s acceleration §X at a new time step based on the known values from the
previous one, is calculated as follows:

1
x"=x"t 4+ At X" + (E - ﬁ)AtZ FXMT 4 BAE? - KT

1
= |6X" = ﬁAtZ (JCZ)1 + 6x™ — JNCn) - Xg (3_19)

Where

1
Xt =x"t+ At X" + (E_ )At2 Xt

Similarly, the system’s velocity X at a new time step is calculated as:

X" ="M+ (1= p)At- "+ yAe - &0

. = |4 - .
= |6 =x"+ [ (xf + 6x™ —xX™) — x§ (3.20)




Single-Degree-of-Freedom Models used for VIV Analysis

Where
M=%+ (1 —-p)At- ikt

By substituting the calculated increments of displacement and velocity into the equation
governing the system’s dynamic response, it is possible to update the system’s dynamics
accurately. Hence, by applying these adjustments to Equation (3.18), we derive the following
equation:

( id +£+K>5x” =Q +< i +£)(i”—x")—€5&"+M:‘c‘"+Ca‘c"
pAt? ~ BAt pAt?  BAt 0 0 0 (3.21)

This equation leads to the calculation of the system’s displacement §x by a linear algebraic
system in the form of:

Kegr - 6x™ = Qepy

= |6x™ = Qers
Kerr

(3.22)

Where K, is the equivalent stiffness and Q. is the equivalent load.

The displacement, velocity, and acceleration values are calculated iteratively until the
perturbations 8x, §x, and X are zeroed, according to the following formulas:

x=x+ 6x
X =x+0x
X=X+ 0x

When applying Newmark'’s integration method to solve 2DOF models, damping, stiffness,
and load parameters are treated as matrices, and the variables representing the degrees of
freedom are transformed into vectors.
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System parameters were defined based on experimental data obtained from the literature.
The selected values for these variables are summarized in Table 1. The results obtained from

applying the models are compared against the theoretical predictions of lwan Blevins's
model in Image 8.

Table 1: Selected values for the 1DOF engineering models variables

Variable Value
wy, (rad/sec) 125.66
f (Hz) 20
D (m) 0.05
Pwind (kg/ms) 1.225
m (kg) 0.5958
U (m/s) 5.4
f; (Hz) 21.6
ws (rad/sec) 135.72
fs/f 1.08

The first model, R. H. Scanlan’s model, also includes parameters such as the geometrical
parameter y, extracted from Image 8 as the value mentioned for a simple support beam.
Furthermore, the reduced damping parameter, &, needs to be defined and it is calculated
according to Equation (3.5). The value of variable y is presented in Table 2. The model was
tested for two different cases.

Table 2: Selected value for the R. H. Scanlan model variable

Variable

Value

14

1.155
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R. H. Scanlan model
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Figure 1: Comparison of R. H. Scanlan model results with lwan Blevins theoretical
predictions

Following the plot illustrating the model’s results, there is a presentation of the according
values in the tables down below.

Table 3: 15t case of R. H. Scanlan model results
¢; = 0.001 and ¢, = 0.005

¢ 6r/772 Ay(predicted) Ay/D
0.00100 0.248 0.0248 0.496
0.00145 0.359 0.0240 0.480
0.00200 0.495 0.0220 0.440
0.00300 0.743 0.0188 0.376
0.00400 0.991 0.0147 0.294
0.00500 1.239 0.0090 0.180

Table 4: 2" case of R. H. Scanlan model results
¢{; = 0.001 and ¢, = 0.002

¢ 61‘/772 Ay(predicted) Ay/D
0.00100 0.248 0.0253 0.506
0.00145 0.359 0.0215 0.430
0.00200 0.495 0.0156 0.312
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It is observed that the results corresponding to a smaller range of damping values (2" case)
demonstrate higher accuracy compared to the theoretical prediction.

Regarding the Vickery and Basu nonlinear model, the aerodynamic damping parameter, K,
and the positive factor, G are essential parameters that determine the results. These
parameters remain constant, and two distinct cases were examined. The resulting plot is
depicted below:

Vickery and Basu nonlinear model

10.0
Theory
® Ka=15,G=0.18
Ka=1.0,G=0.15
1.0
Q @ 0o o PS
< o
0.1
0.0
0.0 0.1 1.0 10.0

6,/n?

Figure 2: Comparison of Vickery and Basu nonlinear model results with Iwan Blevins
theoretical predictions

Following the plot illustrating the model’s results, there is a presentation of the according
values in the tables down below.

Table 5: 1 case of Vickery and Basu nonlinear model results

K,=15and G = 0.18
¢ 61‘/772 Ay(predicted) Ay/D
0.00145 0.359 0.0195 0.3900
0.00200 0.495 0.0186 0.3720
0.00300 0.743 0.0169 0.3380
0.00400 0.991 0.0150 0.3000
0.00500 1.2386 0.0128 0.2560
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Table 6: 2" case of Vickery and Basu nonlinear model results

K, =1.0and G = 0.15

{ S5, /m? Ay preaicted) 4y/D
0.00100 0.248 0.0213 0.4260
0.00145 0.359 0.0200 0.4000
0.00200 0.495 0.0185 0.3700
0.00300 0.743 0.0153 0.3060
0.00400 0.991 0.0111 0.2220
0.00450 1.1147 0.0084 0.1670
0.00500 1.2386 0.0040 0.0800

The comparison between Vickery and Basu's nonlinear model results and Iwan Blevins's
theoretical predictions reveals significant insights into the behavior of the system. In the first
case, where the aerodynamic damping parameter, K,, is set to 1.5 and the positive factor
G to 0.18, the amplitude of the structural displacement exhibits a gradual decrease with the
increasing damping ratio, . Similarly, in the second case, a similar trend is observed, albeit
with different magnitudes of A,. The behavior presented in both cases aligns with the
anticipated damping effect of the VIV response.

The Basu and Vickery linear model incorporates the aerodynamic damping parameter, K,
which is determined by the constant parameter, K,,. Two distinct cases were examined
based on variations in this constant parameter.

Table 7: 1t case of Basu and Vickery linear model results

K, = 2.42
¢ 67‘/7'[2 Ay(predicted) Ay/D
0.00145 0.359 0.0195 0.3900
0.00200 0.495 0.0186 0.3720
0.00300 0.743 0.0169 0.3380
0.00400 0.991 0.0150 0.3000
0.00500 1.2386 0.0128 0.2560
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Table 8: 2" case of Basu and Vickery linear model results

Ku = 1.5
{ 5, /m? Ay (predicted) Ay /D
0.00100 0.248 0.0264 0.5280
0.00200 0.495 0.0243 0.4860
0.00300 0.743 0.0220 0.4400
0.00500 1.2386 0.0168 0.3360
0.00700 1.7340 0.0085 0.1700

To enhance the model’s predictive accuracy, a new model of the aerodynamic damping, K,
was tested, as outlined in Equation (3.17). In particular, the coefficient a was set to double
the value proposed from the curve-fitting process, resulting in a = 0.695. The
corresponding results are presented in Table 9.

Table 9: New model results

New model
¢ 67*/772 Ay(predicted) Ay/D
0.00100 0.248 0.0207 0.4140
0.00200 0.495 0.0141 0.2820
0.00300 0.743 0.0105 0.2100
0.00500 1.2386 0.0064 0.1280
0.00700 1.7340 0.0042 0.0840

Subsequently, the plot illustrating the model’s results is presented in Figure 3.
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Basu and Vickery linear model
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Figure 3: Comparison of Basu and Vickery linear model results with Iwan Blevins
theoretical predictions

The comparison reveals that the new model aligns closely with the theoretical curve,
indicating improved accuracy.
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4. Two-Degrees-of-Freedom Hartlen-Curie Model

4.1 Equations and Framework of the Hartlen-Currie Model

This study introduces a comprehensive model by Hartlen and Currie aimed at capturing the
dynamic behavior of an elastically mounted circular cylinder exposed to incoming wind. To
focus our investigation on pure crosswind vibration, the circular cylinder is constrained to
vibrate only in the crosswind direction.

The model comprises two primary components: a structural oscillator and an excitation
oscillator, each tailored to encapsulate distinct phases of the system’s dynamics. The
structural oscillator, represented by the first equation of the model, describes the system as
a second-order linear damped system. The excitation oscillator, characterized by the second
equation, follows a similar format but with the lift coefficient serving as a secondary degree
of freedom, offering deeper insights into the aerodynamic effects on the system dynamics.

The integration of the excitation oscillator with the structural oscillator is facilitated by a
coupling term directly linked to the transverse velocity of the cylinder. This coupling allows
their dynamic behaviors to interact closely, helping us understand how they both affect the
overall system response. The model’s equations are presented below [17]:

. o 1
M(Y + 2¢w,Y + w2Y) = 7PaU?LDC, (4.1)

4(C,
CLO_§ w_s

Where M is the cylinder’s mass, Y is the displacement of the circular cylinder in the
crosswind direction, ¢ is the damping ratio, w, is the natural frequency of structure
oscillator, p, is air density, U is constant incoming wind velocity, L is the cylinder’s length,
D is the cylinder’s diameter, wj is Strouhal frequency (proportional to wind velocity), C, is
the amplitude of C; in the case there is no dynamic motion, and G and H are dimensionless
parameters that play a crucial role in the model’s dynamic response.

2

¢, -G




Two-Degrees-of-Freedom Hartlen-Curie Model

The Equations (4.1) and (4.2) are linearized as follows:

. . 1 1 . .
M&Y + c6Y + kéY — EanzLD6CL = EanZLDCLO — MY, — cYy — kY, (4.3)

.02
5C —G(C —f-CL)ac + w28C, + HSY = —HY, — (P
L Lo 3 wsz L s 0L 0 L

2
4 0%\
+G (CLO —§- wz)C,? —(A)SZCI(,) (4_4)

N

Where ¢ = 2M{w,, and k = Mw?

As a consequence, the matrices that emerge are presented below:

, M 0
e Mass matrix: M = [0 1]
[ C 0
4-C0°
e Damping matrix: C=ly _g¢ C, — L
i ° w?
_k 1 U2LD
e Stiffness matrix: K= 2 Pa
0 w?

1 L
5PaUPLDCY = MY, — c¥y — k¥,
202

L 4 ¢\
_HYO_CB+G<CLO_§'F)CB_0)SZCL?
S

e Load matrix: Q=

—

The final equation in the form of matrices is:

el o) -

5C, 5C, 5C, (4.5)

Another modified version of the same model utilizes the dimensionless parameters G’ and
F. Their formula based on the parameters G and H is as follows:
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G
G=G'a)5$G=w—s (4.6)
= F - ws P H-D
B e (4.7)
The modified equations of the model become:
.. ) 1
M(Y + 2¢w,Y + w2Y) = EanZLDCL (4.8)
. 2

. G’ 4/(C, . . Frog.

CL_w_S CLO_§ w_s CL+0‘)SCL__ D Y (49)

The actual difference from the previous version of the model lies in the damping and the
load matrix, which are transformed as follows:

c 0

e Damping Cc=|F-w . 4'CL02
matrix: D —G"ws | G —

wg

1 L
5PaUPLDCY = MYy — ¥y — k¥,

e Lload matrix: (@ = F -

S —— |

)
Wy . N , 4 7\ .
5 Yo —C+G -ws<cLo—§-w—g>C£—wgcf

In this final linearized form, the model can now be solved using Newmark’s method as
detailed in Chapter 3.4.

G' and F are non-dimensional with respect to w, and D. That means that constant G' and F
values provide the same A/D for the same w/w,,.

The results derived from the Hartlen-Curie two-degrees-of-freedom model (2DOF Model)
are compared against the experimental observations reported by Feng, as illustrated in
Image 14. [25]
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Image 14: Vortex-induced vibration of a damped circular cylinder

Notably, this plot highlights a sudden increase in oscillation amplitude occurring within the
range U/fD = 5 =+ 7, coinciding with the equality of shedding and natural frequency. This

phenomenon signifies the lock-in phenomenon, where the cylinder’s oscillation frequency
becomes synchronized with the shedding frequency of vortices. [17] The comparison is
further elucidated by observing the diagonal line in the plot, which represents a stationary
cylinder shedding frequency, thereby indicating a constant Strouhal number (St = 0.2)
across varying flow velocities. [26] This constant Strouhal number is a critical reference for
understanding the relationship between shedding frequency and flow velocity. The inclusion
of this comparative analysis not only tests the validity of the Hartlen-Curie model but also
contributes to the broader understanding of the VIV phenomenon.

To determine the parameters G and H of the engineering model, two distinct optimization
methods are applied. The aim is to iteratively define the values of these parameters to
achieve a desired targeted outcome. Consequently, an objective function F,;,, was
formulated following the subsequent procedure.
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Initially, a natural frequency value, w,, was selected. Subsequently, a diameter value was
chosen, enabling the determination of mass using the equation from Image 14:

PP _ 000514 pb*
—=0. >m=———
m ™= 0.00514 (4.10)

Where P = Pwind

Following this, the cylinder’s length and damping value were determined. A wind velocity
value was then selected to calculate the corresponding Reynolds number:

_ud

Re =
e=_— (4.11)

Utilizing data from the flow simulations around a circular cylinder (Image 15), the amplitude
of €y, denoted as C;, was established. [27]
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Image 15: Data from flow simulations around a circular cylinder, depicting the
relationship between Reynolds number (Re) and the lift coefficient (C;)

Additionally, by selecting Strouhal’s number value to be the one for a rigid cylinder, the

shedding frequency was calculated using the following equations:

fs'D St-U
St = U =>f;=T=>a)S=27Tf; (4.12)

Subsequently, referring again to Image 14, the value of the anticipated maximum
displacement A is defined from the value of the y-axis, A, /d.
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As a result, the targeted equation can be formulated as:

Ytarg = Acos(wnt) (4.13)
Where A = Ay, = A¢arget

The objective function is then given by Equation (4.14).
2
Foim = (A - Atarget) (4.14)

The same objective function (Fy;,,, = F) is used for the optimization methods analyzed in
the following chapters.

The specific values selected for the various variables involved in the engineering model are
included in Table 10:

Table 10: Selected values for the Hartlen-Currie model variables

Variable Value
wy, (rad/sec) 20
f (Hz) 3.18
D (m) 0.15
Pwina (kg/m?) 1.225
m (kg) 5.36
L (m) 1.8
¢ 0.00181
U (m/s) 2.6
nu (m?/s) 1.5x10°
Re 26000
Cy, 0.3
St 0.2
f. (Hz) 3.47
ws (rad/sec) 21.78
fs/f 1.09
A,/D 0.15
Atarger (M) 0.0225
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COBYLA, an acronym for Constrained Optimization by Linear Approximation, offers a reliable
method for constrained optimization. This method relies on linear approximations of both
the objective function and each constraint, offering a practical guide for solving optimization
problems. Implemented in Fortran, COBYLA is based on a nonlinear derivative-free
constrained optimization, utilizing a linear approximation. [28]

At each iteration, COBYLA maintains a set of points, an approximate solution, and a radius
parameter. This set of points represents potential solutions. The algorithm constructs linear
approximations to the objective function and constraint functions based on these points,
ensuring that their values agree with the linear approximation. These linear approximations
are then used to formulate a linear program, where the objective is to minimize the function
subject to the constraints. The solution must remain within a specified radius from the
current point. Throughout the optimization process, the radius parameter gradually
decreases, facilitating convergence towards the optimal solution.

In applying the COBYLA optimization method to the problem, Python’s ‘fmin_cobyla’
function from the ‘scipy.optimize’ module in the SciPy library was utilized. By incorporating
this function into the workflow, optimal values for the parameters G and H were
determined, effectively minimizing the objective function and enhancing the performance
of the engineering model.

The function call follows the syntax [29]:

scipy.optimize. fmin_cobyla(func, x0, [constraints],rhoend)

Where func is the objective function to minimize, x0 denotes the initial guess for the
parameter values, [constraints] encompasses any constraints imposed on the optimization
problem (in this case, none) and rhoend specifies the final accuracy desired in the
optimization process, although precise guarantee of this accuracy is not ensured (in this
case, rhoend = 107>).

Newton’s Method is a widely used optimization technique that aims to find the minimum of
a given objective function by iteratively updating the parameters based on the function’s
gradients and second derivatives. The method is characterized by its rapid convergence,
especially when the initial guess is close to the optimal solution. [30]
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The method involves computing the first and second derivatives of the objective function
and utilizing them to update the parameters in a way that minimizes the function. The
equation used for the iterations consists of the Hessian matrix, which is often denoted as H
or V2f and is a square matrix of second-order partial derivatives. Its size is n X n, where n
is the number of variables. The iterations are made according to the following update

formula:
[ 02F  @%F ]‘1 oF
{G}"“ _ {G}k_ | 062 aGoH| )oc
H HS T a2Fr  a2F oF

|
laGaH a?J oH

——

Hessian matrix

(4.15)

Where 1 denotes a single, numerical value without any additional directional information
(in this case, n = 1), F is the objective function, and G and H are the parameters being

optimized. [31]
First-order derivatives are calculated as follows:

oF F(G* + 6G,H*) — F(G* — 6G, H*)

G 268G
OF _ F(G* H* + 6H) — F(G*, H* — 6H)
0H 26H

Second-order derivatives are calculated as follows:

0*F _ F(G* + 6G,H* + 6H) — F(G* + 6G,H* — 6H)

0GOH 46GSH
N F(G* — 6G,H* — 6H) — F(G* — 6G,H* + 6H)
46GSH
0?F _F(G* +6G,H*) — 2F(G*, H*) + F(G* — 6G, H*)
9G? 5G?2
0?F _ F(G*,H* + 6H) — 2F(G*,H*) + F(G*,H* — 6H)
OH? SH?

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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Following Table 10, the expected Ay ger Value is 0.225 m. Utilizing both optimization
methods, the following plots were obtained illustrating the results for each method. To begin
with, the outcomes obtained using the Newton Method:
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Figure 4: Optimization results using the Newton method
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The optimization process involved applying the Newton method to different sets of original
values G and H. It was observed that multiple sets of parameters met the criteria of
approaching or achieving the exact Aigrger, With minimum or no divergence from the
convergence criteria (F,;,, = 0). The resulting values, also depicted in the plot above, are
summarized in Table 11. It is worth mentioning that the values of G and H are of the same

order.

Table 11: Summary of Newton optimization results

G H Foim Convergence Time (sec) | A (m)
1 86.3 82.0 4x10°® 108.2 0.0206
2 86.5 80.0 3x10°® 110.0 0.0209
3 86.9 90.0 2x10°® 110.0 0.0212
4 86.2 70.0 3x10°® 110.9 0.0207
5 86.9 74.0 9%10”’ 114.8 0.0216
6 86.6 65.0 1x10® 115.6 0.0214
7 86.1 52.4 2x10°® 116.1 0.0210
8 86.1 45.8 2x10°® 118.8 0.0212
9 86.0 40.0 2x10°® 120.5 0.0213
10 86.9 50.0 4x10710 124.9 0.0225




Two-Degrees-of-Freedom Hartlen-Curie Model

Additionally, despite small deviations of the order of 1074, as F,;,, is supposed to converge
to a value of 10719, the convergence appears sufficiently rapid. Notably, the target
frequency was expected to be 3.18 Hz, reflecting the structural natural frequency of the
system and indicating the presence of a single dominant frequency in the lock-in range.
However, it is observed that the actual dominant frequency value is approximately 3.21 Hz,
indicating a slight deviation from the expected value.

The optimization process utilizing the COBYLA method began with the same initialization

values for G and H as those used for the corresponding sets in the Newton method. Despite
this shared starting point, the outcomes differ as shown in the plot below:
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Figure 5: Optimization results using COBYLA method

Following the plot illustrating the optimization results, there is a presentation of the
according values in Table 12.

Table 12: Summary of COBYLA optimization results

G H Foim Convergence Time (sec) | A (m)
1 88.0 89.9 1x1010 117.0 0.02251
2 87.8 82.0 1x1010 118.3 0.02249
3 87.7 79.9 1x1010 118.8 0.02249
4 87.6 75.1 4x10710 119.5 0.02252
5 87.5 70.0 1x1010 120.6 0.02249
6 87.4 66.0 0 121.3 0.02250
7 87.0 53.5 0 123.9 0.02250
8 86.9 50.0 0 124.9 0.02250
9 86.8 46.8 0 125.7 0.02250
10 86.6 41.0 0 127.4 0.02250
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Notably, similar to the results obtained with the Newton method, the values of G and H in
the COBYLA optimization are of the same order showcasing a parallel behavior across the
optimization techniques. Although several sets achieved near-perfect convergence with
Faim, the dominant frequency value hovered around 3.21 Hz, slightly deviating from the
anticipated 3.18 Hz. By presenting the results of both methods in the same plot, as shown
in Figure 6, it becomes evident that while the Newton method tends to converge faster, the

COBYLA method appears to offer greater precision in achieving the target amplitude,

Atarget- This observation prompts the decision to proceed with further analysis utilizing the
COBYLA optimization method, ensuring more accurate estimations for the parameters G and

H.
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To examine the model’s behavior, multiple cases of varying frequency ratios will be
conducted, adjusting the dimensionless parameters accordingly. Table 13 outlines the values
of the variables utilized in the Hartlen-Currie model for each case.
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Table 13: Variables values for the Hartlen-Currie model

Variable Value
D (m) 0.15
Pwind (kg/m3) 1.225
m (kg) 5.4
L (m) 1.8
¢ 0.00181
nu (m?/s) 1.5x10°
Re 26000
Cy, 0.3
St 0.2

The procedural steps in each case involve identifying optimal values for the dimensionless
parameters, G’ and F, through the COBYLA optimization method. Subsequently, iterations
are conducted using these parameters to determine the amplitude values across a range of
flow velocities. The aim is to generate results that closely resemble the experimental Feng
data depicted in Image 14.

In the initial case, the natural frequency of the system is selected to match the shedding
frequency. The anticipated maximum amplitude value of the oscillation was determined by
identifying the maximum value from Image 14. Subsequently, this maximum value was set
to be anticipated at a smaller value of U/fD than the actual U/fD value indicated in the
image. This information is represented in Table 14, with the highlighted values indicating
those specifically referenced.

Table 14: Selected values for the 1% case scenario

Variable Value
wy, (rad/sec) 20.0
f (Hz) 3.18

ws (rad/sec) 20.0
f. (Hz) 3.18
fi/f 1.0
U/fD 5.0

U (m/s) 2.39
A,/D 0.2
Atarget (m) 0.03
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Following the application of the COBYLA optimization method, the dimensionless parameter
values are presented in Table 15.

Table 15: Dimensionless parameters values (1% case scenario)

G

Gl

H

F

45.43268

2.271634

100.192644

0.75144483

The optimal values result in the following depiction of the Hartlen-Currie model results. For
these optimal values, the model produces the displacement shown below. It is observed that
after approximately 110 seconds, the displacement fully converges to the targeted
amplitude value. A zoomed-in plot of the same diagram reveals a minor divergence in the

phase of the two curves.
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The same pattern occurs in the other cases as well, ensuring that the optimal values are
correctly calculated. To avoid repetition, these plots are not presented for the other cases.

The resultant plots are depicted in Figures 8 and 9.
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Figure 8: 1% case scenario oscillation amplitude diagram

It is observed that although the anticipated maximum A/D is 0.2 for U/fD = 5.0, the

maximum value is A/D = 0.285 and occurs for

U/fD = 4.6. Consequently, the

maximum A/D is shifted slightly to the left and is not predicted as expected.

f/f(-)

14
13
1.2
11
1.0
0.9
0.8
0.7
0.6
0.5
0.4

Frequency ratio diagram

°
)
)
)
°
°
®
e o o ©
°
°
°
0
®
°
°

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

U/fD (-)

Figure 9: 1%t case scenario frequency ratio diagram
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The lock-in region is correctly predicted as the natural frequency is locked with the shedding
frequency in the range of flow velocities where the maximum amplitudes are produced.
However, there is a slight shift of the frequency ratio values to the left in this region.

In this case, the goal is to predict the exact result from Image 14. To achieve this, the
maximum amplitude value is determined according to the maximum A/D depicted in the
image, and then the corresponding value for the U/fD is set. The natural frequency of the
system remains the same as the one in the previous case, and the shedding frequency is
determined from the Strouhal number equation (Equation 4.12) which is proportional to the
flow velocity. This information is presented in Table 16.

Table 16: Selected values for the 2" case scenario

Variable Value
wy,, (rad/sec) 20.0
f (Hz) 3.18
ws (rad/sec) 23.2
f. (Hz) 3.69
fs/f 1.16
U/fD 5.8
U (m/s) 2.77
A, /D 0.2
Atarget (m) 0.03

Following the application of the COBYLA optimization method, the dimensionless parameter
values are presented in Table 17.

Table 17: Dimensionless parameters values (2" case scenario)
G G’ H F
132.275528 5.701531379 79.855139 0.516304778

As the slight shift in the maximum amplitude values is observed again, another correction
procedure is implemented. Within the lock-in region, the maximum amplitude values are
determined through separate optimization procedures. Specifically, each value is obtained
by conducting an optimization procedure with the COBYLA method to identify the
appropriate parameters that will align with the actual anticipated values. The parameters
that occurred for three separate points in the lock-in region are presented in Table 18.
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Table 18: Dimensionless parameters values (2" case scenario)

U/fD G o H F

5.45 94.074227 4.315331514 79.873155 0.549585929
5.7 121.014418 5.307649912 79.87445 0.525489803
5.78 127.992689 5.53601596 81.125149 0.526330984

The corrected values of G’ and F are presented in Figure 10.

Parameters values

The resultant plots are depicted below in Figures 11 and 12.
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Figure 10: Corrected parameters values (2" case)
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Oscillation amplitude diagram
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Figure 11: 2" case scenario oscillation amplitude diagram

It is observed that the maximum A/D is 0.2 for U/fD = 5.8 with the corrected values,
aligning with the anticipated result. Consequently, the prediction is now accurate.
Additionally, the frequency ratio values are also shifted to the right, aligning with their
expected positions.
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Figure 12: 2" case scenario frequency ratio diagram
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In this case, the anticipated maximum amplitude value of the oscillation was determined to
be different than the actual value indicated in Image 14. Additionally, this maximum value
was set to be anticipated at a higher value of U/f D than the actual U/fD value indicated in
the image. This information is represented in Table 19, with the highlighted values indicating
those specifically referenced.

Table 19: Selected values for the 3 case scenario

Variable Value
wy, (rad/sec) 20.0
f (Hz) 3.18

w, (rad/sec) 24.8
f; (Hz) 3.95
f:/f 1.24
U/fD 6.2

U (m/s) 2.96
A, /D 0.16

Atarger (M) 0.024

Following the application of the COBYLA optimization method, the dimensionless parameter
values are as follows:

Table 20: Dimensionless parameters values (3" case scenario)
G G’ H F
172.792271 6.967430282 81.125075 0.490675857

As the slight shift in the maximum amplitude values is observed again, the same correction
procedure as in the previous case was applied. The parameters that occurred with COBYLA
optimization method for three separate points in the lock-in region are as follows:

Table 21: Dimensionless parameters values (3™ case scenario)

U/fD G G’ H F
5.7 116.843755 5.124726096 81.001297 0.53290327
5.9 140.080771 5.93562589 89.992397 0.571985574
6.1 161.199216 6.606525246 99.998881 0.614747219

The corrected values of G’ and F are presented in Figure 13.
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Optimal parameters values
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Figure 13: Corrected parameters values (3" case)

The resultant plots are depicted below in Figures 14 and 15.
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Figure 14: 3™ case scenario oscillation amplitude diagram

With the corrected version, it is now evident that the maximum A/D is 0.16 for U/fD = 6.2
as was anticipated. Consequently, the prediction is accurate.




Two-Degrees-of-Freedom Hartlen-Curie Model

Frequency diagram
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Figure 15: 3™ case scenario frequency ratio diagram

When comparing the three cases, it becomes evident that specific maximum values are
targeted in each case scenario. These values are expected to be achieved at certain U/fD
ratios. However, upon examination, it is apparent that while the targeted values are
approximately attained in the results, they do not represent the maximum values of A/D.
Instead, another maximum value (actual maximum value) is observed at a different U/fD.
This actual value is notably higher than the targeted one and is shifted to the left as the
U/fD value decreases. This information is depicted in Table 22.

The difference between the obtained value and the actual maximum value for every case
shows a significant increase at the value of A/D and a decrease at the value of U/fD.
Specifically, as the frequency ratio increases, the A/D values are getting higher,
corresponding to U/ f D values that are lower than the ones at which the targeted maximum
A/D occurs. The deviation of increase for the A/D and the deviation of decrease for the
U/fD are shown in Table 23.
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Table 22: Actual values for every case

Case % /% Atarget (m)
Target max. value: 0.2 5.0 0.03
A(f;/f = 1.0) | Obtained value: 0.191 5.0 0.029
Actual max. value: 0.285 4.6 0.043
Target max. value: 0.2 5.8 0.03
B(f;/f = 1.16) | Obtained value: 0.216 5.8 0.032
Actual max. value: 0.359 5.4 0.054
Target max. value: 0.16 6.2 0.024
C(fs/f = 1.24) | Obtained value: 0.160 6.2 0.024
Actual max. value: 0.430 5.7 0.064
Table 23: Deviation of obtained values from actual maximum values
A/D U/fD
Case Absolute Relative Absolute Relative
deviation deviation deviation deviation
A 0.093 48.7% 0.419 8.3%
B 0.142 65.7% 0.335 5.8%
C 0.270 168.9% 0.545 8.8%

The resultant plots for every case are depicted in the same diagram, in Figures 16 and 17.
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Figure 16: Oscillation amplitude diagram for all cases plotted together
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Frequency diagram
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Figure 17: Frequency diagram for all cases plotted together

In the subsequent procedure, a more automated approach was explored to predict the
model’s results and the behavior of each system. One straightforward method considered
was to employ linear interpolation between certain optimal values of the parameters G and
H. Subsequently, the model would be applied across a range of flow velocities, with the
corresponding optimal values of G and H determined based on the desired velocity. To
initiate this investigation, a flow velocity of U = 2.6 m/s was selected, and several cases
with different natural frequencies were examined. For each natural frequency, a specific
U/fD ratio was determined, and based on Image 14, the corresponding A/D value was
derived. Using the COBYLA optimization method, a set of optimal values for the parameters
G and H was obtained from this data.

Interestingly, it was observed that employing the model in a form utilizing the parameters
G' and F, rather than G and H, leads to more accurate results. Therefore, after determining
the optimal values of G and H, they were transformed into G’ and F according to Equations
(4.6) and (4.7) to facilitate linear interpolation. The resulting diagram depicting the G' and F
parameters versus the U/fD values is presented in Figure 18.
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Figure 18: G’ and F parameters versus U/fD values for the lock-in region

The model produced the blue spots depicted in Figure 19 by applying the linear interpolation
procedure for the lock-in region. For the range of flow velocities before entering the lock-in
region, the spots were determined by keeping the first values of the G’ and F parameters
constant, which were calculated from the linear interpolation. Consequently, the spots
before this region were determined and colored dark pink in the same figure. Similarly, after
the lock-in region, the last calculated values for the sets of parameters were kept constant,
and then the region after the lock-in was calculated and colored green.
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Figure 19: Displacement Prediction Using linear interpolation for the lock-in region
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A yellow vertical line marks the actual maximum predicted value, which is accurately
predicted by the model.




Conclusions

5. Conclusions

The thesis delved into understanding, analyzing, and predicting the Vortex-Induced
Vibration (VIV) phenomenon in circular cross-section structures using both single-degree-of-
freedom (1DOF) and two-degree-of-freedom (2DOF) engineering models. These models
aimed to provide accurate predictions of VIV behavior across various velocity ranges.

Through rigorous examination, the 1DOF models were evaluated against the theoretical
predictions of the lwan Blevins model. While all 1DOF models demonstrated promising
accuracy, a newly proposed model from the literature exhibited the closest alignment with
theoretical predictions, showcasing its efficacy in capturing VIV behavior.

To fine-tune the 2DOF model, a meticulous optimization procedure was essential. Two
optimization methods, Newton and COBYLA, were examined. Despite being slightly slower,
the COBYLA method outperformed Newton's method in accuracy, establishing it as the
preferred optimization technique for parameter refinement.

Exploring alternative prediction methodologies, two distinct approaches were pursued.
Initially, the model’s results were obtained by testing the optimal parameters produced by
COBYLA in different frequency ratio case scenarios, revealing a phenomenon where the
maximum amplitude value shifted slightly to the left.

Subsequently, an automated method was explored to predict the phenomenon more
rapidly. This involved defining the values of dimensionless parameters for varying natural
frequencies via individual COBYLA optimization runs. Then, linear interpolation was
employed between the obtained parameter values for a range of velocities in the lock-in
region. This method demonstrated sufficient accuracy.

In conclusion, the thesis emphasizes the importance of accurate prediction methodologies
for VIV phenomena. Future research may focus on exploring other optimization methods
and alternative engineering models and addressing discrepancies to improve predictive
capabilities.

Furthermore, beyond future research directions, a more immediate and practical application
lies in integrating the thesis findings into computational tools, such as the hGAST (Hydro-
Servo-Aero-Elastic Simulation Tool), developed for comprehensive offshore wind turbine
analysis. By incorporating optimization and linear interpolation techniques, the data
obtained from predicting VIV phenomena can be integrated into the hGAST framework.
Ultimately, this integration offers a more holistic understanding and prediction of the VIV
phenomenon, applicable to large-scale engineering structures with complex dynamics.
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