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Abstract 
 
 
The thesis presents a comprehensive investigation of the vortex-induced vibration (VIV) 
phenomenon in circular cross-section structures, employing both single-single-degree-of-
freedom (1DOF) and two-degree-of-freedom (2DOF) engineering models. The primary 
objectives revolve around understanding, analyzing, and predicting VIV behavior across a 
range of flow velocities.  
 
To achieve this goal, the study evaluates both single-degree-of-freedom (1DOF) and two-
degree-of-freedom (2DOF) engineering models, assessing their efficacy in predicting VIV 
behavior. Through meticulous evaluation against theoretical predictions and experimental 
data, a newly proposed 1DOF model from existing literature aligns well with the theoretical 
predictions, indicating its accuracy. 
 
Furthermore, the thesis explores optimization techniques for fine-tuning the parameters of 
the 2DOF models, with the COBYLA method demonstrating superior accuracy over the 
Newton method. The model’s results were tested across different frequency ratio cases, 
revealing a subtle leftward shift in maximum amplitude values. Additionally, an automated 
method was examined, defining the parameters' optimal values and applying linear 
interpolation for predictions in the lock-in region.  
 
The findings emphasize the importance of accurate prediction methodologies for VIV 
phenomena and highlight future research, such as exploring additional optimization 
methods and engineering models. Moreover, the integration of these results into 
computational tools, such as the hGAST tool for offshore wind turbine analysis, offers 
practical applications for large-scale engineering structures with complex dynamics.  
 
In summary, this thesis contributes to enhancing the understanding and prediction 
capabilities of VIV phenomena, offering valuable insights for structural analysis in various 
fields, including offshore structures, wind turbines, and marine engineering.   
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Abstract (in Greek) 
 
 
Η διπλωματική εργασία παρουσιάζει μια ολοκληρωμένη διερεύνηση του φαινομένου των 
ταλαντώσεων που προκαλούνται από δίνες (VIV) σε κατασκευές κυκλικής διατομής, 
χρησιμοποιώντας τόσο μηχανικά μοντέλα ενός βαθμού ελευθερίας (1DOF) όσο και δύο 
βαθμών ελευθερίας (2DOF). Οι πρωταρχικοί στόχοι περιστρέφονται γύρω από την 
κατανόηση, την ανάλυση και την πρόβλεψη της συμπεριφοράς του φαινομένου σε ένα 
εύρος ταχυτήτων ροής.  
 
Για την επίτευξη αυτού του στόχου, η μελέτη αξιολογεί τόσο τα μοντέλα ενός βαθμού 
ελευθερίας (1DOF) όσο και τα μοντέλα δύο βαθμών ελευθερίας (2DOF), αξιολογώντας την 
αποτελεσματικότητά τους στην πρόβλεψη της συμπεριφοράς του φαινομένου. Μέσω 
σύγκρισης έναντι θεωρητικών προβλέψεων και πειραματικών δεδομένων, ένα 
προτεινόμενο μοντέλο 1DOF από την υπάρχουσα βιβλιογραφία ευθυγραμμίζεται καλά με 
τις θεωρητικές προβλέψεις, υποδεικνύοντας την ακρίβειά του. 
 
Επιπλέον, η διπλωματική εργασία διερευνά τεχνικές βελτιστοποίησης για τη λεπτομερή 
ρύθμιση των παραμέτρων του μοντέλου 2DOF, με τη μέθοδο COBYLA να επιδεικνύει 
ανώτερη ακρίβεια σε σχέση με τη μέθοδο Newton. Τα αποτελέσματα του μοντέλου 
δοκιμάστηκαν σε διαφορετικές περιπτώσεις αναλογίας συχνοτήτων, αποκαλύπτοντας μια 
ελαφρά μετατόπιση προς τα αριστερά στην τιμή του μέγιστου πλάτους. Επιπλέον, 
εξετάστηκε μια αυτοματοποιημένη μέθοδος, η οποία καθόριζε τις βέλτιστες τιμές των 
παραμέτρων και εφάρμοζε γραμμική παρεμβολή για προβλέψεις στην περιοχή lock-in.  
 
Τα ευρήματα υπογραμμίζουν τη σημασία των μεθοδολογιών πρόβλεψης με ακρίβεια για 
τα φαινόμενα VIV και ενθαρρύνουν μελλοντική έρευνα ως προς τη διερεύνηση πρόσθετων 
μεθόδων βελτιστοποίησης και τεχνικών μοντέλων. Επιπλέον, η ενσωμάτωση αυτών των 
αποτελεσμάτων σε υπολογιστικά εργαλεία, όπως το εργαλείο hGAST για την ανάλυση 
υπεράκτιων ανεμογεννητριών, προσφέρει πρακτικές εφαρμογές για μηχανικές κατασκευές 
μεγάλης κλίμακας.  
 
Συνοπτικά, η παρούσα εργασία συμβάλλει στην ενίσχυση της κατανόησης και της 
δυνατότητας πρόβλεψης των φαινομένων VIV, προσφέροντας πολύτιμες γνώσεις για τη 
δομική ανάλυση σε διάφορους τομείς, συμπεριλαμβανομένων των υπεράκτιων 
κατασκευών, των ανεμογεννητριών και της θαλάσσιας μηχανικής.   
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1. Introduction 

1.1 Objectives  

 

The primary objectives of this thesis work revolve around a comprehensive study, analysis, 
and understanding of the vortex-induced vibration (VIV) phenomenon. Recognizing its 
complex nature, the aim is to approach this phenomenon with a quick and accurate method.  

 

While computational fluid dynamics (CFD) presents a way for precise investigation of VIVs, 
its excessive computational cost in terms of both time and resources poses significant 
constraints. Therefore, a pivotal objective of this study is to explore alternative methods, 
particularly the application of engineering models, including both single-degree-of-freedom 
(1DOF) and two-degree-of-freedom (2DOF) models, that offer a balance between 
computational efficiency and analytical accuracy.  

 

The 1DOF models, consisting of three distinct variations sourced from existing literature, will 
undergo a meticulous evaluation to ensure their efficacy in predicting VIVs by comparing 
their results with experimental data. The 2DOF model, on the other hand, will also be 
subjected to calibration through the process of adjusting and fine-tuning the model 
parameters to enhance their accuracy and reliability in predicting the phenomenon. 

 

Furthermore, given the widespread occurrence of VIVs across various engineering 
applications, the thesis will focus specifically on cylindrical cross-sections, representing 
structures such as wind turbine towers, chimneys, cylindrical towers, and marine structures. 
Ultimately, the utilization of these models is anticipated to significantly reduce the 
computational cost of subsequent aeroelastic analysis while they are expected to facilitate 
a thorough understanding of the VIV phenomenon. 

 

1.2 Understanding Vortex-Induced Vibrations Phenomenon 

 
Vortex-induced vibrations (VIVs) represent a complex phenomenon that intersects various 
disciplines, including fluid mechanics, structural mechanics, vibrations, computational fluid 
dynamics (CFD), and acoustics. This intricate interaction occurs in numerous engineering 
applications, from bridges and offshore structures to marine cables and industrial chimneys. 
As technological advancements and material science have evolved, there has been a notable 
increase in the height and slenderness of structures. Consequently, these modern structures 
are more susceptible to VIV phenomena. Understanding and predicting VIV is crucial, aiming 
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to mitigate potential structure fatigue and failure. [1] It is more advantageous to predict and 
consequently avoid the VIVs than to attempt to eliminate them. [2] 
 
Wind action plays a significant role in structural dynamics and it can be divided into two 
groups: aerodynamic and aeroelastic. While aerodynamic effects on structures are 
independent of their movement, aeroelastic effects are affected by structural vibration. 
Flutter, galloping and vortex shedding are examples of aeroelastic actions. [3] Vortex-
induced vibrations (VIVs) are structural vibrations that can occur due to the shedding of flow 
vortices when a fluid flow passes around a structure. Due to this fluid-structure interaction 
(FSI) phenomenon, a synchronization (also called lock-in) of the vortex shedding and the 
structural motion can occur for certain flow conditions and structural properties. [4]  
 
Synchronization, also known as lock-in, (or lock-on, vortex capture, or frequency capture), is 
observed not only in the vicinity of the natural frequency of the structure but also across a 
broad spectrum of flow velocities. Beyond the synchronization region, the body will 
encounter forces characterized by both the Strouhal frequency and the frequency of body 
oscillations. [2] The study of VIVs is about bluff bodies, typically circular cylinders. [5]  
 
Analyzing the behavior of an elastically mounted cylinder constrained to move perpendicular 
to the flow and reach the lock-in region, distinct wake patterns can be initiated by the motion 
of the body. [6] Various vortex wake patterns are identified and introduced, across a wide 
range of amplitudes and wavelengths. These periodic wake patterns consist of single vortices 
(𝑆) and vortex pairs (𝑃), resulting in modes such as 2𝑆, 2𝑃, and 𝑃 + 𝑆, which are the 
predominant modes near the lock-in region. [7] 
 

 
Image 1: Visualization of vortex wake modes 
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Studies using flow visualization techniques [8] [9] have revealed that initially, vortices form 
on one side of the cylinder and are shed when the cylinder is near maximum displacement 
on the opposite side. Towards the end of the lock-in range, however, vortices are shed when 
the cylinder is near maximum displacement on the same side. These observations 
underscore the complex dynamics in the VIV phenomenon, where subtle variations in flow 
conditions and cylinder motion lead to distinct modes of vortex shedding.  
 

 
Image 2: Evolution of vortex shedding patterns at varying lock-in ratios. At ratio 𝟎. 𝟗𝟓, a 

new vortex emerges from the upper surface of the cylinder, while at ratio 𝟏. 𝟎 the 
shedding transitions to the lower surface.  

 
Significant progress has been achieved in elucidating the kinematics of VIVs, particularly in 
the low-Reynolds number regime. [10] [11] However, challenges persist due to many factors 
influencing the phenomenon, including lift coefficient, correlation length, the vortex-
shedding frequency, Reynolds number, and the vortex-shedding frequency bandwidth. [12] 
Nonetheless, the Strouhal number emerges as a robust parameter despite these 
complexities. [2] The Strouhal number is influenced by factors such as the structure’s 
geometry, Reynolds number, and air turbulence levels and it measures the geometry of the 
vortex wake as illustrated in Image 3. [13] 
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Image 3: Typical value of Strouhal number for circular cylinders 

 
Furthermore, the correlation between the Strouhal and Reynolds numbers, as depicted in 
Image 4, offers valuable insights into the behavior of the Strouhal number for circular 
cylinders across different flow regimes, from subcritical to supercritical. [14]  
 

 
Image 4: Correlation between Strouhal and Reynolds numbers for circular cylinders 
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Another parameter that provides valuable insights into the phenomenon of vortex-induced 
vibrations, is the mass-damping parameter, also known as the Scruton number.  
 

𝑆𝑐 =
𝜁𝑚

𝜌𝐷2
 (1.1) 

 
This parameter hinges on two critical properties: the damping of the structure, 𝜁 and its 
relative mass, 𝑚, compared to the surrounding air. [13] Structures with higher structural 
damping exhibit reduced vibrations compared to those with lower. Similarly, heavier 
structures experience less severe vibrations than lighter structures. However, these 
vibrations tend to exhibit irregular patterns, with occasional bursts of slightly larger 
oscillations. The relationship between the Scruton number and vibration amplitude is 
depicted in Image 5. 
 

 
Image 5: Scruton curve, also known as Griffin plot 
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2. Theoretical Presentation of Basic Engineering Models 

 
VIV poses significant challenges across a spectrum of engineering domains, including 
aerospace, civil, wind, and industrial engineering applications. [15] Understanding and 
predicting these vibrations is crucial for ensuring the structural integrity and operational 
efficiency of such systems. Over the years, various engineering mathematical models have 
been developed to analyze and quantify VIV phenomena. In the following chapter, several 
engineering models will be explored to present their theoretical foundations and 
mathematical formulations. 
 
Two classes of VIV models exist the 1-degree-of-freedom models and the coupled wake 
oscillator models, each offering distinct approaches to modeling VIV phenomena. [16] There 
are various proposals from different authors to model the phenomenon of vortex shedding, 
all originating from the simple case of two-dimensional flow. Analytical, empirical, and semi-
empirical models are among the methods applied. The commonly adopted approach 
involves constructing empirical models and subsequently refining their results to align with 
real-world observations through a selection of parameters. [3]  
 

2.1 Iwan-Blevins Model 

 
The Iwan–Blevins model, proposed by Iwan and Blevins in 1974, offers a mathematical 
framework for understanding vortex-induced vibrations (VIV) in structures. [17] At its core, 
the model introduces a "hidden" fluid variable represented by 𝑧, where the time derivative 
�̇� describes how the sideways or lateral motion of fluid changes over time within a specified 
area. This variable is directly proportional to the momentum within the control volume, as 
illustrated in Image 6.  

 
Image 6: Illustration of the fluid variable 𝒛 and its role in capturing fluid motion within a 

defined control volume 
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By deriving a fluid oscillator from the momentum equation in the transverse direction, the 
model incorporates a �̇�3 term to capture non-linear features inherent in VIV phenomena. 
This non-linearity enables the model to effectively replicate the intricate dynamics of vortex-
induced vibrations. The self-excited fluid oscillator is expressed by the following equation: 
 

�̈� + 𝐾′
𝑢𝑡

𝐷
𝜔𝑣𝑧 = (𝑎1

′ − 𝑎4
′ )

𝑈

𝐷
�̇� − 𝑎2

′
�̇�3

𝑈𝐷
+ 𝑎3

′ �̈� + 𝑎4
′
𝑈

𝐷
�̇� (2.1) 

Where 

𝐾′ =
𝐾

𝑎0 + 𝑎3
  𝑎𝑛𝑑  𝑎𝑖

′ =
𝑎𝑖

𝑎0 + 𝑎3
 (𝑖 = 3; 4)  

 
The cylinder movement equation is given by: 
 

�̈� + 2𝜉𝑇𝜔𝑦�̇� + 𝜔𝑦
2𝑦 = 𝑎3

′′�̈� + 𝑎4
′′�̇�

𝑈

𝐷
 (2.2) 

Where 

𝜔𝑦 =
√𝑘

𝑚

1 +
𝑎3𝜌𝐷2

𝑚

, 𝜉𝑇 =

𝜉
√𝑘

𝑚
𝜔𝑦

+
𝑎4𝜌𝐷𝑈
2𝑚𝜔𝑦

1 +
𝑎3𝜌𝐷2

𝑚

, 𝑎𝑖
′′ =

𝜌𝐷2𝑎𝑖

𝑚 + 𝑎3𝜌𝐷2
 (𝑖 = 3; 4)  

 
Experimental validation of the Iwan–Blevins model against circular cylinder responses, 
highlights its ability to accurately predict maximum response amplitudes as shown in Image 
7. However, a notable discrepancy arises in the timing of peak responses between the model 
predictions and experimental observations. While the model accurately predicts maximum 
response amplitudes at the resonant flow velocity 𝑈𝑅 , experimental data exhibit a delay, 
reaching maximum amplitude at around 1.15𝑈𝑅. This discrepancy, particularly pronounced 
in light-weight and low-damping cylinder cases, constitutes a limitation of the model in 
capturing certain details of VIV behavior. 
 
Despite this limitation, the Iwan–Blevins model successfully reproduces the frequency lock-
in phenomenon observed in VIV. Image 7 illustrates the model's ability to capture this 
characteristic feature, albeit with a narrower lock-in region compared to experimental 
results. Additionally, experimental observations reveal that when the structural damping 
factor 𝜁𝑠 surpasses the fluid damping factor 𝜁𝑓, a common situation in practical applications, 

the model anticipates a widening of the entrainment band. This widening effect is directly 
proportional to the ratio of the displaced fluid mass to the cylinder mass. Notably, when this 
ratio increases, structures oscillating in denser fluids, such as water, would exhibit a broader 
entrainment band compared to those oscillating in less dense fluids, like air. [18] 
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Image 7: Comparison between experimental and model-predicted responses of a circular 

cylinder 

 
Image 8: Amplitude variations for rigid and structurally elastic cylinders according to the 

damping parameter 
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Additionally, Image 8 presents a comparison between theoretical predictions and 
experimental results, specifically focusing on the amplitude variations for different cylinder 
types as influenced by the damping parameter. [19] 
 

2.2 Modified coupled van der Pol Model 

 
The modified coupled van der Pol (VDP) wake oscillator model provides an innovative 
approach that combines elements of the van der Pol oscillator with a spring-mass-damper 
system and applies to two-dimensional scenarios, with a particular emphasis on circular 
cylinders constrained to transverse motion. [20] Represented as a single-degree-of-freedom 
model, its graphical depiction is illustrated in Image 9. 
 

 
Image 9: Single-degree-of-freedom (1DOF) elastically mounted circular cylinder in 

uniform flow 

 

The structural equation governing this model is expressed as follows:  
 

�̈� + (4𝜋𝜁𝑓𝑁 +
2𝜋𝑓𝑢𝑠𝛾

𝑚∗
) �̇� + 4𝜋2𝑓𝑁

2𝑦 =
1

4𝑚
𝐶𝐿𝑜

𝜌𝑈2𝐷𝑞 (2.3) 

Where 

𝛾 =
𝐶𝐷

4𝜋𝑆𝑡
, 𝑚∗ =

4𝑚

𝜋𝜌𝐷2𝐿
      𝑎𝑛𝑑      𝑞 =

2𝐶𝐿

𝐶𝐿𝑜
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Where 𝛾 represents the stall parameter, 𝑓𝑁  denotes the natural frequency, 𝑓𝑢𝑠  the vortex 
shedding frequency, 𝜁 represents the structural damping, 𝑚 is the structural mass, 𝐶𝐿𝑜

 

stands for the root-mean-square (RMS) lift acting on a stationary cylinder, 𝑞 is the wake 
variable, 𝐶𝐿 is the instantaneous lift coefficient, 𝐷 is cylinder’s diameter, 𝑚∗ is the mass ratio.  
 

Furthermore, the dynamically changing wake variable, 𝑞, is calculated according to the 
formula:  
 

�̈� + 2𝜋𝑓𝑢𝑠𝜀(𝑞
2 − 1)�̇� + 4𝜋2𝑓𝑢𝑠

2 𝑞 = βY (2.4) 

 
Where 𝛽𝑌 is a coupling parameter and 𝜀 is the damping parameter. 
 
In its unforced state, the van der Pol oscillator exhibits a periodic response, gradually 
accumulating energy before rapidly discharging it. This phenomenon arises due to the 
influence of a non-linear damping term. The nonlinear damping effect is controlled by the 
damping parameter, 𝜀, empirically determined within the VDP model.  
 

2.3 Semi-Empirical Model by Pinheiro 

 
Pinheiro’s model in contrast with the models presented previously in this chapter, provides 
a framework for a three-dimensional mathematical model and introduces the concept of 
vortex cells to analyze fluid-structure interaction. Image 10 illustrates an example of a tower 
structure analyzed within this model. [3] 

 

Image 10: Illustration outlining Pinheiro’s model for analyzing the phenomenon of VIV in 
thin structures: (a) Depiction of vortex cells within the structure (b) Representation of 

laminar flow around a constant circular section (c) Aeroelastic modal force 𝑭𝒋   
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Each segment of the structure is characterized by its unique diameter 𝐷𝑖 and average wind 
velocity 𝑈𝑖, which is associated with specific shedding frequencies 𝑓𝑖. These parameters are 
linked through the section’s Strouhal number as expressed by Equation (2.5).  
 

𝑆 =
𝑓𝑖𝐷𝑖

𝑈𝑖
 (2.5) 

 
In Pinheiro’s model, the aeroelastic force acting on each section is determined by Scanlan’s 
two-dimensional model, as detailed in Chapter 3.1. The structure is subjected to laminar 
wind speed as depicted in Image 10 (b). The motion equation governing the behavior of the 
tower structure is expressed as follows:  
 

𝑀𝑗(�̈�𝑗 + 2𝜉𝑗𝜔𝑗�̇�𝑗 + 𝜔𝑗
2𝑌𝑗 = 𝐹𝑚𝑗(𝐻1, 𝜀) (2.6) 

 
Where 𝑀𝑗 represents the structure’s mass, 𝑌𝑗  is the amplitude corresponding to the jth 

natural vibration mode, 𝜔𝑗  and 𝜉𝑗  denote the natural frequency and damping at jth mode 

and 𝐹𝑚𝑗 signifies the modal force.  

 
The application of the model extends to cantilevered towers by integrating the modal shape. 
Simplifying the analysis, it is assumed that the vortex shedding occurs in a single 
frequency.  Consequently, the entire tower is treated as a single vortex cell as shown in 
Image 11.  

 
Image 11: Incorporating of modal shape and corresponding discretization 

 
In the subsequent chapters, a deeper analysis of vortex-induced vibrations (VIV) will be 
undertaken, focusing on three single-degree-of-freedom (1DOF) models and one two-
degree-of-freedom model (2DOF) model. Specifically, the R. H. Scanlan model, the Vickery 
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and Basu nonlinear model, the Basu and Vickery linear model, and the Hartlen-Currie model 
will be explored. Each of these models offers a unique insight and approach to understanding 
the VIV phenomenon in engineering structures. There will be a detailed examination of their 
theoretical foundations and mathematical formulations.  
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3. Single-Degree-of-Freedom Models used for VIV Analysis 

 
It’s important to note that the single-degree-of-freedom models that will be presented are 
specifically tailored to calculate amplitudes within the lock-in region. 
 

3.1 R. H. Scanlan Model 

 
Scanlan’s single-degree-of-freedom (1DOF) empirical nonlinear model stands as a renowned 
engineering model for analyzing the phenomenon of Vortex-Induced Vibrations (VIV). At its 
core, the model is represented by a dynamic equation encapsulating the motion of the 
system under the influence of vortex-induced forces. Specifically, the equation describes the 
dynamics of the system, accounting for mass, m, damping, 𝜁, natural frequency, ω1, and 
various aerodynamic parameters such as 𝐻1, 𝐻2, 𝜀 and 𝐶𝐿. [3] The model gains its 
nonlinearity by incorporating a nonlinear aerodynamic cubic term, resulting in the following 
equation:  
 

𝑚[�̈� + 2𝜁𝜔1�̇� + 𝜔1
2𝑦] =

1

2
𝜌𝑈2𝐷 [H1 (1 − ε

y2

D2
)

ẏ

U
+ H2

y

D
+

1

2
CLsin(ωt + α)] (3.1) 

 
Where 𝐻1 is an experimentally obtained adjustment parameter related to linear 
aerodynamic damping, 𝐻2 is an experimentally obtained adjustment parameter related to 
the aerodynamic stiffness, 𝜀 is an experimentally obtained non-linear aerodynamic damping 
parameter and 𝑎 is an experimentally obtained adjustment parameter that represents the 
phase difference between the vortex shedding and displacement response. [21] 
Additionally, 𝑚 is considered the cylinder’s mass, 𝜔1 denotes the natural frequency, 𝜌 refers 
to air density (𝜌 = 1.225 𝑘𝑔/𝑚3), 𝐷 stands for the cylinder’s diameter, 𝑈 indicates wind 
velocity and 𝜔 signifies the vortex-shedding frequency complying with the Strouhal relation, 
𝑆𝑡 = 𝑓𝐷/𝑈, where 𝑆𝑡 denotes the Strouhal number. [22] 
 
The parameters 𝐻1 and 𝜀 are derived from experimental data, specifically by observing two 
resonance response amplitudes, 𝐴𝑦1

and 𝐴𝑦2
, corresponding to two distinct damping values, 

𝜁1, and 𝜁2. 

 

H1 =
8mπSt(ζ2Αy1

2 − ζ1Αy2
2 )

D2ρ(Ay1
2 − Ay2

2 )
 (3.2) 

𝜀 =
4(𝜁1 − 𝜁2)𝐷

2

𝜁1𝛢𝑦2
2 − 𝜁2𝛢𝑦1

2
 (3.3) 
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The resonance response amplitudes are calculated from the equation: 
 

𝐴𝑦𝑛
= 0.07𝛾

√0.3 +
0.72

(1.9 + 𝛿𝑟) ∙ 𝑆

(1.9 + 𝛿𝑟) ∙ 𝑆2
𝐷 (3.4) 

Where 

𝛿𝑟 =
4𝑚𝜋𝜁𝑛

𝜌𝐷2
 𝑎𝑛𝑑 𝛾: 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (3.5) 

 
The lock-in range is set to span within a 20% range around the area where the critical 
shedding frequency is met. Beyond this range, the cylinder experiences slight displacements 
which are induced by the force described below: 
 

𝐹 =
1

2
𝜌𝑈2𝐷𝐶𝐿 sin(𝜔𝑠𝑡 + 𝑎) (3.6) 

Where 

𝜔𝑠 = 2𝜋𝑓𝑠 = 2𝜋
𝑆𝑈

𝐷
  

 
In lock-in phenomena, the contributions of 𝐶𝐿 and 𝐻2 can be disregarded due to their 
relatively small magnitudes compared to the aerodynamic damping parameter. As a result, 
the Equation (3.1) is modified as follows [3]: 
 

𝑚[�̈� + 2𝜁𝜔1�̇� + 𝜔1
2𝑦] =

1

2
𝜌𝑈2𝐷 [H1 (1 − ε

y2

D2
)

ẏ

U
] (3.7) 

𝑚[�̈� + 2𝜉𝜔1�̇� + 𝜔1
2𝑦] =

𝐹(𝑦, �̇�)
  

 
For the numerical solution of the nonlinear equation, we proceed with its linearization 
through the application of Taylor’s expansion on the nonlinear terms. The derivatives of the 
𝐹(𝑦, �̇�) are evaluated at the reference point 𝑦0, representing the equilibrium state of the 
structure. These derivatives are expressed as: 
 

𝜕𝐹

𝜕𝑦
|
𝑦=𝑦0

�̇�=�̇�0

= −𝜌𝑈𝐻1�̇�0𝜀
𝑦0

𝐷
  

(3.8) 
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𝜕𝐹

𝜕�̇�
|
𝑦=𝑦0

�̇�=�̇�0

=
1

2
𝜌𝑈𝐷𝐻1 (1 − 𝜀

𝑦0
2

𝐷2
)  

(3.9) 

 
The equation is linearized to this final form: 
 

𝑚𝛿�̈� + (𝑐 −
𝜕𝐹

𝜕�̇�
|
𝑦=𝑦0

�̇�=�̇�0

) 𝛿�̇� + (𝑘 −
𝜕𝐹

𝜕𝑦
|
𝑦=𝑦0

�̇�=�̇�0

)𝛿𝑦

= 𝐹(𝑦0, �̇�0) − 𝑚�̈�0 − 𝑐�̇�0 − 𝑘𝑦0 

(3.10) 

 
Furthermore, the complete expressions for the model’s parameters are provided as follows: 
 

 Mass parameter: 𝑀 = 𝑚 

 Damping parameter: 
𝐶 = 𝑐 −

𝜕𝐹

𝜕�̇�
|
𝑦=𝑦0

�̇�=�̇�0

= 2𝑚𝜁𝜔1 −
1

2
𝜌𝑈𝐷𝐻1 (1 − 𝜀

𝑦0
2

𝐷2
) 

 Stiffness parameter: 
𝐾 = 𝑘 −

𝜕𝐹

𝜕𝑦
|
𝑦=𝑦0

�̇�=�̇�0

= 𝑚𝜔1
2 + 𝜌𝑈𝐻1�̇�0𝜀

𝑦0

𝐷
  

 Load parameter: 𝑄 = 𝐹(𝑦0, �̇�0) − 𝑚�̈�0 − 𝑐�̇�0 − 𝑘𝑦0 

 
In this final linearized form, the model can now be solved using Newmark’s method as 
detailed in Chapter 3.4. 
 

3.2 Vickery and Basu Nonlinear Model 

 
In addition to Scanlan’s model discussed earlier, another notable 1DOF nonlinear model, 
proposed by Vickery and Basu, offers an alternative perspective on the system’s response in 
the vortex-induced vibrations (VIV). Unlike, Scanlan’s model, which incorporates 
nonlinearity in the displacement term 𝑦(𝑡), the Vickery and Basu model uniquely introduces 
nonlinearity in the velocity term, �̇�(𝑡).  
The model’s equation is as follows [16]: 
 

�̈�(𝑡) − 2 ∙ 𝜔𝑛

𝜌𝑑2

𝑚𝑒𝑞
[(𝐾𝑎 −

𝑆𝑐

4𝜋
) − 𝐾𝑎 ∙ 𝐺 ∙ �̇�(𝑡)2] �̇�(𝑡) + 𝜔𝑛

2 ∙ 𝑦(𝑡) = 0 (3.11) 



 Single-Degree-of-Freedom Models used for VIV Analysis 

 

 

 23 

Where 𝜔𝑛 signifies the system’s natural frequency, 𝜌 is air density (𝜌 = 1.225 𝑘𝑔/𝑚3), 𝑑 
represents the cylinder’s diameter, 𝐾𝑎 stands for the aerodynamic damping parameter for 
small oscillations (constant), 𝐺 is a positive factor, 𝑆𝑐 refers to the Scruton number and 𝑚𝑒𝑞 

is the equivalent mass per unit length in 𝑘𝑔/𝑚. 
 
The Scruton number denoted as 𝑆𝑐, functions as a single governing parameter that 
encapsulates structural mass and damping. It is calculated according to the following 
formula: 
 

𝑆𝑐 = 4𝜋
𝑚𝑒𝑞𝜁𝑠

𝜌𝑑2
 (3.12) 

 
For the numerical solution of the nonlinear equation, we proceed with its linearization 
through the application of Taylor’s expansion on the nonlinear terms. The Equation (3.11) is 
linearized to this final form: 
 

𝑚𝑒𝑞𝛿�̈� + (𝑐 + 6𝜔𝑛𝜌𝑑2𝐾𝑎𝐺�̇�0
2)𝛿�̇� + 𝑘𝛿𝑦

= −𝑚𝑒𝑞�̈�0 − (𝑐 + 2𝜔𝑛𝜌𝑑2𝐾𝑎𝐺�̇�0
2)�̇�0 − 𝑘𝑦0 (3.13) 

Where 
𝑐 = 2𝜔𝑛𝑚𝑒𝑞𝜁 − 2𝜔𝑛𝜌𝑑2𝐾𝑎   

𝑘 = 𝜔𝑛
2𝑚𝑒𝑞   

 
Furthermore, the complete expressions for the model’s parameters are provided as follows: 
 

 Mass parameter: 𝑀 = 𝑚𝑒𝑞 

 Damping parameter: 𝐶 = 2𝜔𝑛[𝑚𝑒𝑞𝜁 − 𝜌𝑑2𝐾𝑎(1 − 3𝐺�̇�0
2)] 

 Stiffness parameter: 𝐾 = 𝑘 

 Load parameter: 
𝑄 = −𝑚𝑒𝑞�̈�0 − 2𝜔𝑛[𝑚𝑒𝑞𝜁 + 𝜌𝑑2𝐾𝑎(1 + 𝐺�̇�0

2)]�̇�0

− 𝑘𝑦0 

In this final linearized form, the model can now be solved using Newmark’s method as 
detailed in Chapter 3.4. 
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3.3 Basu and Vickery Linear Model 

 

A common characteristic shared by the models proposed by Vickery and Basu, as well as 
Ehsan and Scanlan, is the assumption of the simultaneous existence of vortex-shedding lift 
and motion-induced force, with no correlation between the two forces. [16] However, the 
latter model primarily focuses on scenarios involving oscillations, where the motion-induced 
force dominates and the vortex-shedding load can be disregarded. In the context of self-
excited and self-limited systems, energy transfer arises from negative damping rather than 
from the external forces. As a result, these systems are characterized as nonlinear. 
Presenting an alternative perspective, Vickery and Basu propose a linear model described by 
the following equation:  
 

�̈�(𝑡) − 2 ∙ 𝜔𝑛

𝜌𝑑2

𝑚𝑒𝑞
(
𝑆𝑐

4𝜋
− 𝐾𝑎) �̇�(𝑡) + 𝜔𝑛

2 ∙ 𝑦(𝑡) =
𝐹𝐿(𝑡)

𝑀𝑛
 (3.14) 

 
Where 𝜔𝑛 signifies the system’s natural frequency, 𝜌 is air density (𝜌 = 1.225 𝑘𝑔/𝑚3), 𝑑 
represents the cylinder’s diameter, 𝐾𝑎 stands for the aerodynamic damping parameter, 𝑆𝑐 
refers to the Scruton number, 𝑚𝑒𝑞 is the equivalent mass per unit length in 𝑘𝑔/𝑚, 𝐹𝐿 is the 

vortex shedding force and 𝑀𝑛 is the modal mass in 𝑘𝑔 in the nth mode of vibration. 
 
In lock-in phenomena, the effect of the excitation force is negligible regarding the 
oscillations that occur. 
 
The aerodynamic damping parameter, despite being utilized in a linear model, demonstrates 
instability due to its calculation method: 
 

𝐾𝑎 = 𝐾𝑎0 (1 − (
𝜎𝑦

𝑎𝐿 ∙ 𝑑
)

2

) (3.15) 

 
Where 𝜎𝑦 represents the standard deviation of the oscillation, 𝑎𝐿 is a non-dimensional factor 

typically recommended to be 0.4 and 𝑑 stands for the cylinder’s diameter. 
 

Even though the model proposed is linear, it conceals nonlinearity within the parameter 𝐾𝑎. 
This nonlinearity arises because 𝐾𝑎 is calculated for each time period, resulting in its 
variation over time. The calculation of 𝐾𝑎 involves using the standard deviation value, where 

𝜎𝑦 =
𝛢

√2
, with 𝐴 being the amplitude of oscillation. The graphical representation of Equation 

(3.15), follows a parabolic law with negative curvature as 𝜎𝑦/𝑑  increases.  
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Image 12: Aerodynamic damping parameter 𝑲𝒂 proposed by Vickery and Basu  

(𝑲𝒂 = 𝟐. 𝟒𝟐𝟐) and 𝝈𝒚/𝒅 = 𝟎) 

 

The Equation (3.14) is linearized to this final form:  
 

𝑚𝑒𝑞𝛿�̈� + 𝑐𝛿�̇� + 𝑘𝛿𝑦 = −𝑚𝑒𝑞�̈�0 − 𝑐�̇�0 − 𝑘𝑦0 (3.16) 

Where 
𝑐 = 2𝜔𝑛𝑚𝑒𝑞𝜁 − 2𝜔𝑛𝜌𝑑2𝐾𝑎   

𝑘 = 𝜔𝑛
2𝑚𝑒𝑞   

 
Furthermore, the complete expressions for the model’s parameters are provided as follows: 
 

 Mass parameter: 𝑀 = 𝑚𝑒𝑞 

 Damping parameter: 𝐶 = 𝑐 

 Stiffness parameter: 𝐾 = 𝑘 

 Load parameter: 𝑄 = −𝑚𝑒𝑞�̈�0 − 𝑐�̇�0 − 𝑘𝑦0 

 
In this final linearized form, the model can now be solved using Newmark’s method as 
detailed in Chapter 3.4. 
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The 𝐾𝑎-curve that is proposed underestimates the aeroelastic effect for small oscillations. 
As a result, a new model of the aerodynamic damping 𝐾𝑎 is proposed and it is calculated 
according to the following equation [16]: 
 

𝐾𝑎 = 𝑎
𝑒(−𝑏

𝜎𝑦

𝑑
)

(
𝜎𝑦

𝑑 )
𝑐   𝑤𝑖𝑡ℎ 𝑎, 𝑏, 𝑐 > 0 (3.17) 

 
The curve-fitting process suggests the following values for the coefficients: 
 

𝑎 = 0.3475, 𝑏 = 5.808, 𝑐 = 0.3582  
 
This new model exhibits a distinct behavior characterized by positive curvature as shown in 
Image 13.  
 

 

Image 13: Aerodynamic damping parameter 𝑲𝒂 as a function of standard deviation for 
laminar and turbulent separation conditions (𝑹𝒆 = 𝟐. 𝟔 × 𝟏𝟎𝟒) 

 

Comparing Image 12, which depicts the Vickery and Basu curve, with Image 13, it is evident 
that the new model demonstrates a steep decrease in aerodynamic damping for small 
oscillations, in contrast to the slow decrease observed in Image 12. 
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3.4 Newmark’s Integration Method 

 

Newmark’s integration method offers a numerical basis for integrating the equations of 
motion in structural dynamics. [23] This method suggests that the system's future state, at 
the time 𝑡𝑛+1, is predicted based on the current state, at time 𝑡𝑛. Additionally, it introduces 
the parameters 𝛽 and 𝛾, which are crucial in determining the stability and accuracy of the 
method. The governing equation for the system’s dynamic response can be expressed as: 

 
𝑀𝛿�̈�𝑛 + 𝐶𝛿�̇�𝑛 + 𝐾𝛿𝑥𝑛 = 𝑄 (3.18) 

 

Where 𝛿𝑥 represents the displacement, 𝑀 is the mass, 𝐶 is the damping, 𝐾 is the stiffness 
and 𝑄 represents the external forces. 

 

The Newmark’s integration method, utilized to solve this equation, relies on a modified 
Taylor series expansion to approximate future states of the system. The approach breaks 
down the continuous dynamic response into discrete increments, allowing for the iterative 
calculation of displacements, velocities, and accelerations. After consideration and under 
Newmark’s guidelines, the chosen values for the integration parameters in our 
computations are 𝛽 = 0.25 and 𝛾 = 0.5.  [24] 

 

The system’s acceleration 𝛿�̈� at a new time step based on the known values from the 
previous one, is calculated as follows: 

 

𝑥𝑛 = 𝑥𝑛−1 + 𝛥𝑡 ∙ �̇�𝑛−1 + (
1

2
− 𝛽)𝛥𝑡2 ∙ �̈�𝑛−1 + 𝛽𝛥𝑡2 ∙ �̈�𝑛  

⇒ 𝛿�̈�𝑛 =
1

𝛽𝛥𝑡2
(𝑥0

𝑛 + 𝛿𝑥𝑛 − �̃�𝑛) − �̈�0
𝑛  (3.19) 

Where 

�̃�𝑛 = 𝑥𝑛−1 + 𝛥𝑡 ∙ �̇�𝑛−1 + (
1

2
− 𝛽)𝛥𝑡2 ∙ �̈�𝑛−1  

Similarly, the system’s velocity 𝛿�̇� at a new time step is calculated as: 

 
�̇�𝑛 = �̇�𝑛−1 + (1 − 𝛾)𝛥𝑡 ∙ �̈�𝑛−1 + 𝛾𝛥𝑡 ∙ �̈�𝑛  

⇒ 𝛿�̇�𝑛 = �̃̇�𝑛 +
𝛾

𝛽𝛥𝑡
(𝑥0

𝑛 + 𝛿𝑥𝑛 − �̃�𝑛) − �̇�0
𝑛  (3.20) 
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Where 

�̃̇�𝑛 = �̇�𝑛−1 + (1 − 𝛾)𝛥𝑡 ∙ �̈�𝑛−1  

 

By substituting the calculated increments of displacement and velocity into the equation 
governing the system’s dynamic response, it is possible to update the system’s dynamics 
accurately. Hence, by applying these adjustments to Equation (3.18), we derive the following 
equation: 

 

(
𝑀

𝛽𝛥𝑡2
+

𝛾𝐶

𝛽𝛥𝑡
+ 𝐾)𝛿𝑥𝑛 = 𝑄 + (

𝛭

𝛽𝛥𝑡2
+

𝛾𝐶

𝛽𝛥𝑡
) (�̃�𝑛 − 𝑥0

𝑛) − 𝐶�̃̇�𝑛 + 𝑀�̈�0
𝑛 + 𝐶�̇�0

𝑛 (3.21) 

 

This equation leads to the calculation of the system’s displacement 𝛿𝑥 by a linear algebraic 
system in the form of: 

 
𝐾𝑒𝑓𝑓 ∙ 𝛿𝑥𝑛 = 𝑄𝑒𝑓𝑓  

⇒ 𝛿𝑥𝑛 =
𝑄𝑒𝑓𝑓

𝐾𝑒𝑓𝑓
 (3.22) 

 

Where 𝐾𝑒𝑓𝑓  is the equivalent stiffness and 𝑄𝑒𝑓𝑓  is the equivalent load. 

 

The displacement, velocity, and acceleration values are calculated iteratively until the 
perturbations 𝛿𝑥, 𝛿�̇�, and 𝛿�̈� are zeroed, according to the following formulas: 

 
𝑥 = 𝑥 + 𝛿𝑥  

�̇� = �̇� + 𝛿�̇�  

�̈� = �̈� + 𝛿�̇�  

 

When applying Newmark’s integration method to solve 2DOF models, damping, stiffness, 
and load parameters are treated as matrices, and the variables representing the degrees of 
freedom are transformed into vectors.  

 

 



 Single-Degree-of-Freedom Models used for VIV Analysis 

 

 

 29 

3.5 Comparison of the single-degree-of-freedom models 

 
System parameters were defined based on experimental data obtained from the literature. 
The selected values for these variables are summarized in Table 1. The results obtained from 
applying the models are compared against the theoretical predictions of Iwan Blevins's 
model in Image 8. 

 

Table 1: Selected values for the 1DOF engineering models variables 

Variable Value 

𝜔𝑛 (𝑟𝑎𝑑/𝑠𝑒𝑐) 125.66 

𝑓 (𝐻𝑧) 20 

𝐷 (𝑚) 0.05 

𝜌𝑤𝑖𝑛𝑑  (𝑘𝑔/𝑚3) 1.225 

𝑚 (𝑘𝑔) 0.5958 

𝑈 (𝑚/𝑠)  5.4 

𝑓𝑠  (𝐻𝑧) 21.6 

𝜔𝑠 (𝑟𝑎𝑑/𝑠𝑒𝑐) 135.72 

𝑓𝑠/𝑓 1.08 

 

The first model, R. H. Scanlan’s model, also includes parameters such as the geometrical 
parameter 𝛾, extracted from Image 8 as the value mentioned for a simple support beam. 
Furthermore, the reduced damping parameter, 𝛿𝑟 needs to be defined and it is calculated 
according to Equation (3.5). The value of variable 𝛾 is presented in Table 2. The model was 
tested for two different cases. 

 
Table 2: Selected value for the R. H. Scanlan model variable 

Variable Value 

𝛾 1.155 
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Figure 1: Comparison of R. H. Scanlan model results with Iwan Blevins theoretical 
predictions 

 
Following the plot illustrating the model’s results, there is a presentation of the according 
values in the tables down below. 
 
Table 3: 1st case of R. H. Scanlan model results 

𝜁1 = 0.001 𝑎𝑛𝑑 𝜁2 = 0.005 

𝜁 𝛿𝑟/𝜋
2 𝐴𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 𝐴𝑦/𝐷 

0.00100 0.248 0.0248 0.496 

0.00145 0.359 0.0240 0.480 

0.00200 0.495 0.0220 0.440 

0.00300 0.743 0.0188 0.376 

0.00400 0.991 0.0147 0.294 

0.00500 1.239 0.0090 0.180 

 
Table 4: 2nd  case of R. H. Scanlan model results 

𝜁1 = 0.001 𝑎𝑛𝑑 𝜁2 = 0.002 

𝜁 𝛿𝑟/𝜋
2 𝐴𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 𝐴𝑦/𝐷 

0.00100 0.248 0.0253 0.506 

0.00145 0.359 0.0215 0.430 

0.00200 0.495 0.0156 0.312 

0.0
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1.0

10.0
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It is observed that the results corresponding to a smaller range of damping values (2nd case) 
demonstrate higher accuracy compared to the theoretical prediction. 

Regarding the Vickery and Basu nonlinear model, the aerodynamic damping parameter, 𝐾𝑎, 
and the positive factor, 𝐺 are essential parameters that determine the results. These 
parameters remain constant, and two distinct cases were examined. The resulting plot is 
depicted below: 

 

 

Figure 2: Comparison of Vickery and Basu nonlinear model results with Iwan Blevins 
theoretical predictions 

 
Following the plot illustrating the model’s results, there is a presentation of the according 
values in the tables down below. 
 
Table 5: 1st case of Vickery and Basu nonlinear model results 

𝛫𝛼 = 1.5 𝑎𝑛𝑑 𝐺 = 0.18 

𝜁 𝛿𝑟/𝜋
2 𝐴𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 𝐴𝑦/𝐷 

0.00145 0.359 0.0195 0.3900 

0.00200 0.495 0.0186 0.3720 

0.00300 0.743 0.0169 0.3380 

0.00400 0.991 0.0150 0.3000 

0.00500 1.2386 0.0128 0.2560 
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Table 6: 2nd  case of Vickery and Basu nonlinear model results 

𝛫𝛼 = 1.0 𝑎𝑛𝑑 𝐺 = 0.15 

𝜁 𝛿𝑟/𝜋
2 𝐴𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 𝐴𝑦/𝐷 

0.00100 0.248 0.0213 0.4260 

0.00145 0.359 0.0200 0.4000 

0.00200 0.495 0.0185 0.3700 

0.00300 0.743 0.0153 0.3060 

0.00400 0.991 0.0111 0.2220 

0.00450 1.1147 0.0084 0.1670 

0.00500 1.2386 0.0040 0.0800 

 

The comparison between Vickery and Basu's nonlinear model results and Iwan Blevins's 
theoretical predictions reveals significant insights into the behavior of the system. In the first 
case, where the aerodynamic damping parameter, 𝐾𝑎,  is set to 1.5 and the positive factor 
𝐺 to 0.18, the amplitude of the structural displacement exhibits a gradual decrease with the 
increasing damping ratio, 𝜁. Similarly, in the second case, a similar trend is observed, albeit 
with different magnitudes of 𝐴𝑦. The behavior presented in both cases aligns with the 

anticipated damping effect of the VIV response.  

The Basu and Vickery linear model incorporates the aerodynamic damping parameter, 𝐾𝑎, 
which is determined by the constant parameter, 𝐾𝑎0. Two distinct cases were examined 
based on variations in this constant parameter. 

 
Table 7: 1st  case of Basu and Vickery linear model results 

𝛫𝛼0 = 2.42 

𝜁 𝛿𝑟/𝜋
2 𝐴𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 𝐴𝑦/𝐷 

0.00145 0.359 0.0195 0.3900 

0.00200 0.495 0.0186 0.3720 

0.00300 0.743 0.0169 0.3380 

0.00400 0.991 0.0150 0.3000 

0.00500 1.2386 0.0128 0.2560 
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Table 8: 2nd case of Basu and Vickery linear model results 

𝛫𝛼0 = 1.5 

𝜁 𝛿𝑟/𝜋
2 𝐴𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 𝐴𝑦/𝐷 

0.00100 0.248 0.0264 0.5280 

0.00200 0.495 0.0243 0.4860 

0.00300 0.743 0.0220 0.4400 

0.00500 1.2386 0.0168 0.3360 

0.00700 1.7340 0.0085 0.1700 

 

To enhance the model’s predictive accuracy, a new model of the aerodynamic damping, 𝐾𝑎, 
was tested, as outlined in Equation (3.17). In particular, the coefficient 𝑎 was set to double 
the value proposed from the curve-fitting process, resulting in 𝑎 = 0.695. The 
corresponding results are presented in Table 9.  

 

Table 9: New model results 

New model 

𝜁 𝛿𝑟/𝜋
2 𝐴𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 𝐴𝑦/𝐷 

0.00100 0.248 0.0207 0.4140 

0.00200 0.495 0.0141 0.2820 

0.00300 0.743 0.0105 0.2100 

0.00500 1.2386 0.0064 0.1280 

0.00700 1.7340 0.0042 0.0840 

 
Subsequently, the plot illustrating the model’s results is presented in Figure 3. 
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Figure 3: Comparison of Basu and Vickery linear model results with Iwan Blevins 
theoretical predictions 

 

The comparison reveals that the new model aligns closely with the theoretical curve, 
indicating improved accuracy.  

 

0.0

0.1

1.0

10.0

0.0 0.1 1.0 10.0

A
y/

D

δr/π2

Basu and Vickery linear model

Theory

Ka0 = 2.42

Ka0 = 1.5

New model



 Two-Degrees-of-Freedom Hartlen-Curie Model 

 

 

 35 

4. Two-Degrees-of-Freedom Hartlen-Curie Model 

4.1  Equations and Framework of the Hartlen-Currie Model 

 
This study introduces a comprehensive model by Hartlen and Currie aimed at capturing the 
dynamic behavior of an elastically mounted circular cylinder exposed to incoming wind. To 
focus our investigation on pure crosswind vibration, the circular cylinder is constrained to 
vibrate only in the crosswind direction.  
 
The model comprises two primary components: a structural oscillator and an excitation 
oscillator, each tailored to encapsulate distinct phases of the system’s dynamics. The 
structural oscillator, represented by the first equation of the model, describes the system as 
a second-order linear damped system. The excitation oscillator, characterized by the second 
equation, follows a similar format but with the lift coefficient serving as a secondary degree 
of freedom, offering deeper insights into the aerodynamic effects on the system dynamics. 
 
The integration of the excitation oscillator with the structural oscillator is facilitated by a 
coupling term directly linked to the transverse velocity of the cylinder. This coupling allows 
their dynamic behaviors to interact closely, helping us understand how they both affect the 
overall system response. The model’s equations are presented below [17]: 
 

𝑀(�̈� + 2𝜁𝜔𝑛�̇� + 𝜔𝑛
2𝑌) =

1

2
𝜌𝛼𝑈2𝐿𝐷𝐶𝐿 (4.1) 

𝐶�̈� − 𝐺 [𝐶𝐿0
−

4

3
(
𝐶�̇�

𝜔𝑠
)

2

] 𝐶�̇� + 𝜔𝑠
2𝐶𝐿 = −𝐻�̇� (4.2) 

 
Where 𝑀 is the cylinder’s mass, 𝑌 is the displacement of the circular cylinder in the 
crosswind direction, 𝜁 is the damping ratio, 𝜔𝑛 is the natural frequency of structure 
oscillator, 𝜌𝛼  is air density, 𝑈 is constant incoming wind velocity, 𝐿 is the cylinder’s length, 
𝐷 is the cylinder’s diameter, 𝜔𝑠 is Strouhal frequency (proportional to wind velocity), 𝐶𝐿0

 is 

the amplitude of 𝐶𝐿 in the case there is no dynamic motion, and 𝐺 and 𝐻 are dimensionless 
parameters that play a crucial role in the model’s dynamic response. 
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The Equations (4.1) and (4.2) are linearized as follows: 
 

𝑀𝛿�̈� + 𝑐𝛿�̇� + 𝑘𝛿𝑌 −
1

2
𝜌𝛼𝑈2𝐿𝐷𝛿𝐶𝐿 =

1

2
𝜌𝛼𝑈2𝐿𝐷𝐶𝐿

0 − 𝑀�̈�0 − 𝑐�̇�0 − 𝑘𝑌0 (4.3) 

𝛿�̈�𝐿 − 𝐺 (𝐶𝐿0
−

4

3
∙
�̇�𝐿

02

𝜔𝑠
2
)𝛿�̇�𝐿 + 𝜔𝑠

2𝛿𝐶𝐿 + 𝐻𝛿�̇�  = −𝐻�̇�0 − �̈�𝐿
0  

+𝐺 (𝐶𝐿0
−

4

3
∙
�̇�𝐿

02

𝜔𝑠
2
) �̇�𝐿

0 − 𝜔𝑠
2𝐶𝐿

0 (4.4) 

 
Where  𝑐 = 2𝑀𝜁𝜔𝑛   and  𝑘 = 𝑀𝜔𝑛

2 
 
As a consequence, the matrices that emerge are presented below: 
 

 Mass matrix: 𝑀′ = [
𝑀 0
0 1

] 

 Damping matrix: 𝐶 = [

𝑐 0

𝐻 −𝐺 (𝐶𝐿0
−

4 ∙ �̇�𝐿
02

𝜔𝑠
2

)
] 

 Stiffness matrix: 𝐾 = [
𝑘 −

1

2
𝜌𝛼𝑈2𝐿𝐷

0 𝜔𝑠
2

] 

 Load matrix: 𝑄 =

[
 
 
 
 

1

2
𝜌𝛼𝑈2𝐿𝐷𝐶𝐿

0 − 𝑀�̈�0 − 𝑐�̇�0 − 𝑘𝑌0

−𝐻�̇�0 − �̈�𝐿
0 + 𝐺 (𝐶𝐿0

−
4

3
∙
�̇�𝐿

02

𝜔𝑠
2
) �̇�𝐿

0 − 𝜔𝑠
2𝐶𝐿

0

]
 
 
 
 

 

 
The final equation in the form of matrices is: 
 

𝑀′ {
𝛿�̈�

𝛿�̈�𝐿
} + 𝐶 {

𝛿�̇�

𝛿�̇�𝐿
} + 𝐾 {

𝛿𝑦
𝛿𝐶𝐿

} = 𝑄 (4.5) 

 
Another modified version of the same model utilizes the dimensionless parameters 𝐺′ and 
𝐹. Their formula based on the parameters 𝐺 and 𝐻 is as follows: 
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𝐺 = 𝐺′ ∙ 𝜔𝑠 ⇒ 𝐺′ =
𝐺

𝜔𝑠
 (4.6) 

𝐻 =
𝐹 ∙ 𝜔𝑠

𝐷
⇒ 𝐹 =

𝐻 ∙ 𝐷

𝜔𝑠
 (4.7) 

 
The modified equations of the model become: 
 

𝑀(�̈� + 2𝜁𝜔𝑛�̇� + 𝜔𝑛
2𝑌) =

1

2
𝜌𝛼𝑈2𝐿𝐷𝐶𝐿 (4.8) 

𝐶�̈� −
𝐺′

𝜔𝑠

[𝐶𝐿0
−

4

3
(
𝐶�̇�

𝜔𝑠
)

2

] 𝐶�̇� + 𝜔𝑠
2𝐶𝐿 = −

𝐹 ∙ 𝜔𝑠

𝐷
�̇� (4.9) 

 
The actual difference from the previous version of the model lies in the damping and the 
load matrix, which are transformed as follows: 
 

 Damping 
matrix: 

𝐶 = [

𝑐 0

𝐹 ∙ 𝜔𝑠

𝐷
−𝐺′ ∙ 𝜔𝑠 (𝐶𝐿0

−
4 ∙ �̇�𝐿

02

𝜔𝑠
2

)
] 

 Load matrix: 𝑄 =

[
 
 
 
 

1

2
𝜌𝛼𝑈2𝐿𝐷𝐶𝐿

0 − 𝑀�̈�0 − 𝑐�̇�0 − 𝑘𝑌0

−
𝐹 ∙ 𝜔𝑠

𝐷
�̇�0 − �̈�𝐿

0 + 𝐺′ ∙ 𝜔𝑠 (𝐶𝐿0
−

4

3
∙
�̇�𝐿

02

𝜔𝑠
2
) �̇�𝐿

0 − 𝜔𝑠
2𝐶𝐿

0

]
 
 
 
 

 

 
In this final linearized form, the model can now be solved using Newmark’s method as 
detailed in Chapter 3.4. 
 
𝐺′ and 𝐹 are non-dimensional with respect to 𝜔𝑠 and 𝐷. That means that constant 𝐺′ and 𝐹 
values provide the same 𝐴/𝐷 for the same 𝜔𝑠/𝜔𝑛. 
 
The results derived from the Hartlen-Curie two-degrees-of-freedom model (2DOF Model) 
are compared against the experimental observations reported by Feng, as illustrated in 
Image 14. [25] 
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Image 14: Vortex-induced vibration of a damped circular cylinder 

 
Notably, this plot highlights a sudden increase in oscillation amplitude occurring within the 

range 𝑈 𝑓𝐷⁄ = 5 ÷ 7, coinciding with the equality of shedding and natural frequency. This 

phenomenon signifies the lock-in phenomenon, where the cylinder’s oscillation frequency 
becomes synchronized with the shedding frequency of vortices. [17] The comparison is 
further elucidated by observing the diagonal line in the plot, which represents a stationary 
cylinder shedding frequency, thereby indicating a constant Strouhal number (𝑆𝑡 = 0.2) 
across varying flow velocities. [26] This constant Strouhal number is a critical reference for 
understanding the relationship between shedding frequency and flow velocity. The inclusion 
of this comparative analysis not only tests the validity of the Hartlen-Curie model but also 
contributes to the broader understanding of the VIV phenomenon. 
 

4.2 Optimization Procedure for Model Parameter Determination 

 
To determine the parameters 𝐺 and 𝐻 of the engineering model, two distinct optimization 
methods are applied. The aim is to iteratively define the values of these parameters to 
achieve a desired targeted outcome. Consequently, an objective function 𝐹𝑎𝑖𝑚 was 
formulated following the subsequent procedure. 
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Initially, a natural frequency value, 𝜔𝑛, was selected. Subsequently, a diameter value was 
chosen, enabling the determination of mass using the equation from Image 14: 
 

𝜌𝐷2

𝑚
= 0.00514 ⇒ 𝑚 =

𝜌𝐷2

0.00514
 (4.10) 

Where 𝜌 ≡ 𝜌𝑤𝑖𝑛𝑑  
 
Following this, the cylinder’s length and damping value were determined. A wind velocity 
value was then selected to calculate the corresponding Reynolds number: 
 

𝑅𝑒 =
𝑈𝑑

𝑛𝑢
 (4.11) 

 
Utilizing data from the flow simulations around a circular cylinder (Image 15), the amplitude 
of 𝐶𝐿, denoted as 𝐶𝐿0

, was established. [27] 

 

 
Image 15: Data from flow simulations around a circular cylinder, depicting the 

relationship between Reynolds number (𝑹𝒆) and the lift coefficient (𝑪𝑳)  

 
Additionally, by selecting Strouhal’s number value to be the one for a rigid cylinder, the 
shedding frequency was calculated using the following equations: 
 

𝑆𝑡 =
𝑓𝑠 ∙ 𝐷

𝑈
⇒ 𝑓𝑠 =

𝑆𝑡 ∙ 𝑈

𝐷
⇒ 𝜔𝑠 = 2𝜋𝑓𝑠  (4.12) 

 
Subsequently, referring again to Image 14, the value of the anticipated maximum 
displacement 𝐴 is defined from the value of the y-axis,  𝐴𝑦/𝑑.  
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As a result, the targeted equation can be formulated as: 
 

𝑦𝑡𝑎𝑟𝑔 = 𝐴𝑐𝑜𝑠(𝜔𝑛𝑡) (4.13) 

Where 𝐴 ≡ 𝐴𝑦 ≡ 𝐴𝑡𝑎𝑟𝑔𝑒𝑡  

 
 The objective function is then given by Equation (4.14). 
 

𝐹𝑎𝑖𝑚 = (𝐴 − 𝐴𝑡𝑎𝑟𝑔𝑒𝑡)
2
 (4.14) 

 
The same objective function (𝐹𝑎𝑖𝑚 ≡ 𝐹) is used for the optimization methods analyzed in 
the following chapters. 
 
The specific values selected for the various variables involved in the engineering model are 
included in Table 10: 
 
Table 10: Selected values for the Hartlen-Currie model variables 

Variable Value 

𝜔𝑛 (𝑟𝑎𝑑/𝑠𝑒𝑐) 20 

𝑓 (𝐻𝑧) 3.18 

𝐷 (𝑚) 0.15 

𝜌𝑤𝑖𝑛𝑑  (𝑘𝑔/𝑚3) 1.225 

𝑚 (𝑘𝑔) 5.36 

𝐿 (𝑚) 1.8 

𝜁 0.00181 

𝑈 (𝑚/𝑠)  2.6 

𝑛𝑢 (𝑚2/𝑠) 1.5×10-5 

𝑅𝑒 26000 

𝐶𝐿0
 0.3 

𝑆𝑡 0.2 

𝑓𝑠  (𝐻𝑧) 3.47 

𝜔𝑠 (𝑟𝑎𝑑/𝑠𝑒𝑐) 21.78 

𝑓𝑠/𝑓 1.09 

𝐴𝑦/𝐷 0.15 

𝐴𝑡𝑎𝑟𝑔𝑒𝑡  (𝑚) 0.0225 
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4.2.1 COBYLA Optimization Method 

 
COBYLA, an acronym for Constrained Optimization by Linear Approximation, offers a reliable 
method for constrained optimization. This method relies on linear approximations of both 
the objective function and each constraint, offering a practical guide for solving optimization 
problems. Implemented in Fortran, COBYLA is based on a nonlinear derivative-free 
constrained optimization, utilizing a linear approximation. [28] 
 
At each iteration, COBYLA maintains a set of points, an approximate solution, and a radius 
parameter. This set of points represents potential solutions. The algorithm constructs linear 
approximations to the objective function and constraint functions based on these points, 
ensuring that their values agree with the linear approximation. These linear approximations 
are then used to formulate a linear program, where the objective is to minimize the function 
subject to the constraints. The solution must remain within a specified radius from the 
current point. Throughout the optimization process, the radius parameter gradually 
decreases, facilitating convergence towards the optimal solution.  
 
In applying the COBYLA optimization method to the problem, Python’s ‘fmin_cobyla’ 
function from the ‘scipy.optimize’ module in the SciPy library was utilized. By incorporating 
this function into the workflow, optimal values for the parameters 𝐺 and 𝐻 were 
determined, effectively minimizing the objective function and enhancing the performance 
of the engineering model. 
 
The function call follows the syntax [29]: 
 

𝑠𝑐𝑖𝑝𝑦. 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒. 𝑓𝑚𝑖𝑛_𝑐𝑜𝑏𝑦𝑙𝑎(𝑓𝑢𝑛𝑐, 𝑥0, [𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠], 𝑟ℎ𝑜𝑒𝑛𝑑)  

 
Where 𝑓𝑢𝑛𝑐 is the objective function to minimize, 𝑥0 denotes the initial guess for the 
parameter values, [constraints] encompasses any constraints imposed on the optimization 
problem (in this case, none) and 𝑟ℎ𝑜𝑒𝑛𝑑 specifies the final accuracy desired in the 
optimization process, although precise guarantee of this accuracy is not ensured (in this 
case, 𝑟ℎ𝑜𝑒𝑛𝑑 = 10−5). 
 
 

4.2.2 Newton Optimization Method 

 
Newton’s Method is a widely used optimization technique that aims to find the minimum of 
a given objective function by iteratively updating the parameters based on the function’s 
gradients and second derivatives. The method is characterized by its rapid convergence, 
especially when the initial guess is close to the optimal solution. [30] 
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The method involves computing the first and second derivatives of the objective function 
and utilizing them to update the parameters in a way that minimizes the function. The 
equation used for the iterations consists of the Hessian matrix, which is often denoted as 𝐻 
or ∇2𝑓 and is a square matrix of second-order partial derivatives. Its size is 𝑛 × 𝑛, where 𝑛 
is the number of variables. The iterations are made according to the following update 
formula:  
 

{
𝐺
𝐻

}
𝑘+1

= {
𝐺
𝐻

}
𝑘

− 𝜂

[
 
 
 

𝜕2𝐹

𝜕𝐺2

𝜕2𝐹

𝜕𝐺𝜕𝐻
𝜕2𝐹

𝜕𝐺𝜕𝐻

𝜕2𝐹

𝜕𝐻2 ]
 
 
 
−1

{

𝜕𝐹

𝜕𝐺
𝜕𝐹

𝜕𝐻

} (4.15) 

{
𝐺
𝐻

}
𝑘+1

= {
𝐺
𝐻

}
𝑘

− 𝜂
𝐻𝑒𝑠𝑠𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑥

{

𝜕𝐹

𝜕𝐺
𝜕𝐹

𝜕𝐻

}  

 
Where 𝜂 denotes a single, numerical value without any additional directional information 
(in this case, 𝜂 = 1), 𝐹 is the objective function, and 𝐺 and 𝐻 are the parameters being 
optimized. [31]  
 
First-order derivatives are calculated as follows: 
 

𝜕𝐹

𝜕𝐺
=

𝐹(𝐺𝑘 + 𝛿𝐺, 𝐻𝑘) − 𝐹(𝐺𝑘 − 𝛿𝐺, 𝐻𝑘)

2𝛿𝐺
 (4.16) 

𝜕𝐹

𝜕𝐻
=

𝐹(𝐺𝑘, 𝐻𝑘 + 𝛿𝐻) − 𝐹(𝐺𝑘, 𝐻𝑘 − 𝛿𝐻)

2𝛿𝐻
 (4.17) 

 
Second-order derivatives are calculated as follows: 
 

𝜕2𝐹

𝜕𝐺𝜕𝐻
=

𝐹(𝐺𝑘 + 𝛿𝐺,𝐻𝑘 + 𝛿𝐻) − 𝐹(𝐺𝑘 + 𝛿𝐺,𝐻𝑘 − 𝛿𝐻)

4𝛿𝐺𝛿𝐻
  

                      +
𝐹(𝐺𝑘 − 𝛿𝐺,𝐻𝑘 − 𝛿𝐻) − 𝐹(𝐺𝑘 − 𝛿𝐺,𝐻𝑘 + 𝛿𝐻)

4𝛿𝐺𝛿𝐻
 (4.18) 

𝜕2𝐹

𝜕𝐺2
=

𝐹(𝐺𝑘 + 𝛿𝐺,𝐻𝑘) − 2𝐹(𝐺𝑘, 𝐻𝑘) + 𝐹(𝐺𝑘 − 𝛿𝐺, 𝐻𝑘)

𝛿𝐺2
 (4.19) 

𝜕2𝐹

𝜕𝐻2
=

𝐹(𝐺𝑘, 𝐻𝑘 + 𝛿𝐻) − 2𝐹(𝐺𝑘, 𝐻𝑘) + 𝐹(𝐺𝑘, 𝐻𝑘 − 𝛿𝐻)

𝛿𝐻2
 (4.20) 
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4.2.3 Comparison of Optimization Methods 

 
Following Table 10, the expected 𝐴𝑡𝑎𝑟𝑔𝑒𝑡  value is 0.225 𝑚. Utilizing both optimization 

methods, the following plots were obtained illustrating the results for each method. To begin 
with, the outcomes obtained using the Newton Method: 
 

 
Figure 4: Optimization results using the Newton method  

 
The optimization process involved applying the Newton method to different sets of original 
values 𝐺 and 𝐻. It was observed that multiple sets of parameters met the criteria of 
approaching or achieving the exact 𝐴𝑡𝑎𝑟𝑔𝑒𝑡, with minimum or no divergence from the 

convergence criteria (𝐹𝑎𝑖𝑚 = 0). The resulting values, also depicted in the plot above, are 
summarized in Table 11. It is worth mentioning that the values of 𝐺 and 𝐻 are of the same 
order. 
 
Table 11: Summary of Newton optimization results 

 𝐺 𝐻 𝐹𝑎𝑖𝑚 Convergence Time (sec) 𝐴 (𝑚) 
1 86.3 82.0 4×10-6 108.2 0.0206 

2 86.5 80.0 3×10-6 110.0 0.0209 

3 86.9 90.0 2×10-6 110.0 0.0212 

4 86.2 70.0 3×10-6 110.9 0.0207 

5 86.9 74.0 9×10-7 114.8 0.0216 

6 86.6 65.0 1×10-6 115.6 0.0214 

7 86.1 52.4 2×10-6 116.1 0.0210 

8 86.1 45.8 2×10-6 118.8 0.0212 

9 86.0 40.0 2×10-6 120.5 0.0213 

10 86.9 50.0 4×10-10 124.9 0.0225 
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Additionally, despite small deviations of the order of 10−4, as 𝐹𝑎𝑖𝑚 is supposed to converge 
to a value of 10−10, the convergence appears sufficiently rapid. Notably, the target 
frequency was expected to be 3.18 𝐻𝑧, reflecting the structural natural frequency of the 
system and indicating the presence of a single dominant frequency in the lock-in range. 
However, it is observed that the actual dominant frequency value is approximately 3.21 𝐻𝑧, 
indicating a slight deviation from the expected value.  
 
The optimization process utilizing the COBYLA method began with the same initialization 
values for 𝐺 and 𝐻 as those used for the corresponding sets in the Newton method. Despite 
this shared starting point, the outcomes differ as shown in the plot below: 
 

 
Figure 5: Optimization results using COBYLA method 

Following the plot illustrating the optimization results, there is a presentation of the 
according values in Table 12.  
 
Table 12: Summary of COBYLA optimization results 

 𝐺 𝐻 𝐹𝑎𝑖𝑚 Convergence Time (sec) 𝐴 (𝑚) 
1 88.0 89.9 1×10-10 117.0 0.02251 

2 87.8 82.0 1×10-10 118.3 0.02249 

3 87.7 79.9 1×10-10 118.8 0.02249 

4 87.6 75.1 4×10-10 119.5 0.02252 

5 87.5 70.0 1×10-10 120.6 0.02249 

6 87.4 66.0 0 121.3 0.02250 

7 87.0 53.5 0 123.9 0.02250 

8 86.9 50.0 0 124.9 0.02250 

9 86.8 46.8 0 125.7 0.02250 

10 86.6 41.0 0 127.4 0.02250 
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Notably, similar to the results obtained with the Newton method, the values of 𝐺 and 𝐻 in 
the COBYLA optimization are of the same order showcasing a parallel behavior across the 
optimization techniques. Although several sets achieved near-perfect convergence with 
Faim, the dominant frequency value hovered around 3.21 𝐻𝑧, slightly deviating from the 
anticipated 3.18 𝐻𝑧.  By presenting the results of both methods in the same plot, as shown 
in Figure 6, it becomes evident that while the Newton method tends to converge faster, the 
COBYLA method appears to offer greater precision in achieving the target amplitude, 
𝐴𝑡𝑎𝑟𝑔𝑒𝑡. This observation prompts the decision to proceed with further analysis utilizing the 

COBYLA optimization method, ensuring more accurate estimations for the parameters 𝐺 and 
𝐻.  
 

 
Figure 6: Comparison of optimization results between Newton and COBYLA methods 

 

4.3 Exploring model behavior through iterative frequency ratio analysis 

 
To examine the model’s behavior, multiple cases of varying frequency ratios will be 
conducted, adjusting the dimensionless parameters accordingly. Table 13 outlines the values 
of the variables utilized in the Hartlen-Currie model for each case.  
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Table 13: Variables values for the Hartlen-Currie model  

Variable Value 

𝐷 (𝑚) 0.15 

𝜌𝑤𝑖𝑛𝑑  (𝑘𝑔/𝑚3) 1.225 

𝑚 (𝑘𝑔) 5.4 

𝐿 (𝑚) 1.8 

𝜁 0.00181 

𝑛𝑢 (𝑚2/𝑠) 1.5×10-5 

𝑅𝑒 26000 

𝐶𝐿0
 0.3 

𝑆𝑡 0.2 

 
The procedural steps in each case involve identifying optimal values for the dimensionless 
parameters, 𝐺′ and 𝐹, through the COBYLA optimization method. Subsequently, iterations 
are conducted using these parameters to determine the amplitude values across a range of 
flow velocities.  The aim is to generate results that closely resemble the experimental Feng 
data depicted in Image 14. 
 

4.3.1 Initiating frequency ratio analysis: Case fs/f = 1.0 
 

In the initial case, the natural frequency of the system is selected to match the shedding 
frequency. The anticipated maximum amplitude value of the oscillation was determined by 
identifying the maximum value from Image 14. Subsequently, this maximum value was set 
to be anticipated at a smaller value of 𝑈/𝑓𝐷 than the actual 𝑈/𝑓𝐷 value indicated in the 
image. This information is represented in Table 14, with the highlighted values indicating 
those specifically referenced.  
 
Table 14: Selected values for the 1st case scenario 

Variable Value 

𝜔𝑛 (𝑟𝑎𝑑/𝑠𝑒𝑐) 20.0 

𝑓 (𝐻𝑧) 3.18 

𝜔𝑠 (𝑟𝑎𝑑/𝑠𝑒𝑐) 20.0 

𝑓𝑠  (𝐻𝑧) 3.18 

𝑓𝑠/𝑓 1.0 

𝑈/𝑓𝐷 5.0 

𝑈 (𝑚/𝑠)  2.39 

𝐴𝑦/𝐷 0.2 

𝐴𝑡𝑎𝑟𝑔𝑒𝑡  (𝑚) 0.03 
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Following the application of the COBYLA optimization method, the dimensionless parameter 
values are presented in Table 15. 
 
Table 15: Dimensionless parameters values (1st case scenario) 

𝐺 𝐺′ 𝐻 𝐹 

45.43268 2.271634 100.192644 0.75144483 

 
The optimal values result in the following depiction of the Hartlen-Currie model results. For 
these optimal values, the model produces the displacement shown below. It is observed that 
after approximately 110 seconds, the displacement fully converges to the targeted 
amplitude value. A zoomed-in plot of the same diagram reveals a minor divergence in the 
phase of the two curves.   
 

 
Figure 7: Displacement convergence over time according to the optimal dimensionless 

parameters values 
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The same pattern occurs in the other cases as well, ensuring that the optimal values are 
correctly calculated. To avoid repetition, these plots are not presented for the other cases. 
 
The resultant plots are depicted in Figures 8 and 9. 
 

 
Figure 8: 1st case scenario oscillation amplitude diagram 

 
It is observed that although the anticipated maximum 𝐴/𝐷 is 0.2 for 𝑈/𝑓𝐷 = 5.0, the 
maximum value is 𝐴/𝐷 = 0.285 and occurs for  𝑈/𝑓𝐷 = 4.6. Consequently, the 
maximum 𝐴/𝐷 is shifted slightly to the left and is not predicted as expected. 
 
 

 
Figure 9: 1st case scenario frequency ratio diagram 
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The lock-in region is correctly predicted as the natural frequency is locked with the shedding 
frequency in the range of flow velocities where the maximum amplitudes are produced. 
However, there is a slight shift of the frequency ratio values to the left in this region. 

 

4.3.2 Continuing frequency ratio analysis: Case fs/f = 1.16 

 
In this case, the goal is to predict the exact result from Image 14. To achieve this, the 
maximum amplitude value is determined according to the maximum 𝐴/𝐷 depicted in the 
image, and then the corresponding value for the 𝑈/𝑓𝐷 is set. The natural frequency of the 
system remains the same as the one in the previous case, and the shedding frequency is 
determined from the Strouhal number equation (Equation 4.12) which is proportional to the 
flow velocity. This information is presented in Table 16. 
 
Table 16: Selected values for the 2nd case scenario 

Variable Value 

𝜔𝑛 (𝑟𝑎𝑑/𝑠𝑒𝑐) 20.0 

𝑓 (𝐻𝑧) 3.18 

𝜔𝑠 (𝑟𝑎𝑑/𝑠𝑒𝑐) 23.2 

𝑓𝑠  (𝐻𝑧) 3.69 

𝑓𝑠/𝑓 1.16 

𝑈/𝑓𝐷 5.8 

𝑈 (𝑚/𝑠)  2.77 

𝐴𝑦/𝐷 0.2 

𝐴𝑡𝑎𝑟𝑔𝑒𝑡  (𝑚) 0.03 

 
Following the application of the COBYLA optimization method, the dimensionless parameter 
values are presented in Table 17.  
 
Table 17: Dimensionless parameters values (2nd case scenario) 

𝐺 𝐺′ 𝐻 𝐹 

132.275528 5.701531379 79.855139 0.516304778 

 
As the slight shift in the maximum amplitude values is observed again, another correction 
procedure is implemented. Within the lock-in region, the maximum amplitude values are 
determined through separate optimization procedures. Specifically, each value is obtained 
by conducting an optimization procedure with the COBYLA method to identify the 
appropriate parameters that will align with the actual anticipated values. The parameters 
that occurred for three separate points in the lock-in region are presented in Table 18. 
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Table 18: Dimensionless parameters values (2nd case scenario) 

𝑈/𝑓𝐷 𝐺 𝐺′ 𝐻 𝐹 

5.45 94.074227 4.315331514 79.873155 0.549585929 

5.7 121.014418 5.307649912 79.87445 0.525489803 

5.78 127.992689 5.53601596 81.125149 0.526330984 

 

The corrected values of 𝐺′ and 𝐹 are presented in Figure 10. 

 

 

Figure 10: Corrected parameters values (2nd case) 

 
The resultant plots are depicted below in Figures 11 and 12. 
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Figure 11: 2nd case scenario oscillation amplitude diagram 

 

It is observed that the maximum 𝐴/𝐷 is 0.2 for 𝑈/𝑓𝐷 = 5.8 with the corrected values, 
aligning with the anticipated result. Consequently, the prediction is now accurate. 
Additionally, the frequency ratio values are also shifted to the right, aligning with their 
expected positions. 

 

 
Figure 12: 2nd case scenario frequency ratio diagram 
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4.3.3 Concluding frequency ratio analysis: Case fs/f = 1.24 

 
In this case, the anticipated maximum amplitude value of the oscillation was determined to 
be different than the actual value indicated in Image 14. Additionally, this maximum value 
was set to be anticipated at a higher value of 𝑈/𝑓𝐷 than the actual 𝑈/𝑓𝐷 value indicated in 
the image. This information is represented in Table 19, with the highlighted values indicating 
those specifically referenced. 
 
Table 19: Selected values for the 3rd case scenario 

Variable Value 

𝜔𝑛 (𝑟𝑎𝑑/𝑠𝑒𝑐) 20.0 

𝑓 (𝐻𝑧) 3.18 

𝜔𝑠 (𝑟𝑎𝑑/𝑠𝑒𝑐) 24.8 

𝑓𝑠  (𝐻𝑧) 3.95 

𝑓𝑠/𝑓 1.24 

𝑈/𝑓𝐷 6.2 

𝑈 (𝑚/𝑠)  2.96 

𝐴𝑦/𝐷 0.16 

𝐴𝑡𝑎𝑟𝑔𝑒𝑡  (𝑚) 0.024 

 
Following the application of the COBYLA optimization method, the dimensionless parameter 
values are as follows:  
 
Table 20: Dimensionless parameters values (3rd case scenario) 

𝐺 𝐺′ 𝐻 𝐹 

172.792271 6.967430282 81.125075 0.490675857 

 
As the slight shift in the maximum amplitude values is observed again, the same correction 
procedure as in the previous case was applied. The parameters that occurred with COBYLA 
optimization method for three separate points in the lock-in region are as follows: 
 
Table 21: Dimensionless parameters values (3rd case scenario) 

𝑈/𝑓𝐷 𝐺 𝐺′ 𝐻 𝐹 

5.7 116.843755 5.124726096 81.001297 0.53290327 

5.9 140.080771 5.93562589 89.992397 0.571985574 

6.1 161.199216 6.606525246 99.998881 0.614747219 

 

The corrected values of 𝐺′ and 𝐹 are presented in Figure 13. 
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Figure 13: Corrected parameters values (3rd case) 

 
The resultant plots are depicted below in Figures 14 and 15. 
 

 
Figure 14: 3rd case scenario oscillation amplitude diagram 

 

With the corrected version, it is now evident that the maximum 𝐴/𝐷 is 0.16 for 𝑈/𝑓𝐷 = 6.2 
as was anticipated. Consequently, the prediction is accurate. 
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Figure 15: 3rd case scenario frequency ratio diagram 

 

4.3.4 Comparison of the Cases 

 

When comparing the three cases, it becomes evident that specific maximum values are 
targeted in each case scenario. These values are expected to be achieved at certain 𝑈/𝑓𝐷 
ratios. However, upon examination, it is apparent that while the targeted values are 
approximately attained in the results, they do not represent the maximum values of 𝐴/𝐷. 
Instead, another maximum value (actual maximum value) is observed at a different  𝑈/𝑓𝐷. 
This actual value is notably higher than the targeted one and is shifted to the left as the 
𝑈/𝑓𝐷 value decreases. This information is depicted in Table 22. 

The difference between the obtained value and the actual maximum value for every case 
shows a significant increase at the value of 𝑨/𝑫 and a decrease at the value of 𝑼/𝒇𝑫. 
Specifically, as the frequency ratio increases, the 𝑨/𝑫 values are getting higher, 
corresponding to 𝑼/𝒇𝑫 values that are lower than the ones at which the targeted maximum 
𝑨/𝑫 occurs. The deviation of increase for the 𝑨/𝑫 and the deviation of decrease for the 
𝑼/𝒇𝑫 are shown in Table 23. 
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Table 22: Actual values for every case 

Case 
𝐴

𝐷
 

𝑈

𝑓𝐷
 𝐴𝑡𝑎𝑟𝑔𝑒𝑡  (𝑚) 

A (𝑓𝑠/𝑓 = 1.0) 

Target max. value: 0.2 5.0 0.03 

Obtained value: 0.191 5.0 0.029 

Actual max. value: 0.285 4.6 0.043 

B (𝑓𝑠/𝑓 = 1.16) 

Target max. value: 0.2 5.8 0.03 

Obtained value: 0.216 5.8 0.032 

Actual max. value: 0.359 5.4 0.054 

C (𝑓𝑠/𝑓 = 1.24) 

Target max. value: 0.16 6.2 0.024 

Obtained value: 0.160 6.2 0.024 

Actual max. value: 0.430 5.7 0.064 

 
 
Table 23: Deviation of obtained values from actual maximum values 

Case 
𝐴/𝐷 𝑈/𝑓𝐷 

Absolute 
deviation 

Relative 
deviation 

Absolute 
deviation 

Relative 
deviation 

A 0.093 48.7% 0.419 8.3% 

B 0.142 65.7% 0.335 5.8% 

C 0.270 168.9% 0.545 8.8% 

 

The resultant plots for every case are depicted in the same diagram, in Figures 16 and 17. 
 

 

Figure 16: Oscillation amplitude diagram for all cases plotted together 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

A
/D

 (
-)

U/fD (-)

Oscillation amplitude diagram

A

B

C



 Two-Degrees-of-Freedom Hartlen-Curie Model 

 

 

 56 

 

Figure 17: Frequency diagram for all cases plotted together 

 

4.4 Automated Prediction using Linear Interpolation 

 
In the subsequent procedure, a more automated approach was explored to predict the 
model’s results and the behavior of each system. One straightforward method considered 
was to employ linear interpolation between certain optimal values of the parameters 𝐺 and 
𝐻. Subsequently, the model would be applied across a range of flow velocities, with the 
corresponding optimal values of 𝐺 and 𝐻 determined based on the desired velocity. To 
initiate this investigation, a flow velocity of 𝑈 = 2.6 𝑚/𝑠 was selected, and several cases 
with different natural frequencies were examined. For each natural frequency, a specific 
𝑈/𝑓𝐷 ratio was determined, and based on Image 14, the corresponding 𝐴/𝐷 value was 
derived. Using the COBYLA optimization method, a set of optimal values for the parameters 
𝐺 and 𝐻 was obtained from this data. 
 
Interestingly, it was observed that employing the model in a form utilizing the parameters 
𝐺′ and 𝐹, rather than 𝐺 and 𝐻, leads to more accurate results. Therefore, after determining 
the optimal values of 𝐺 and 𝐻, they were transformed into 𝐺′ and 𝐹 according to Equations 
(4.6) and (4.7) to facilitate linear interpolation. The resulting diagram depicting the 𝐺′ and 𝐹 
parameters versus the 𝑈/𝑓𝐷 values is presented in Figure 18. 
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Figure 18: G’ and F parameters versus U/fD values for the lock-in region 

 
The model produced the blue spots depicted in Figure 19 by applying the linear interpolation 
procedure for the lock-in region. For the range of flow velocities before entering the lock-in 
region, the spots were determined by keeping the first values of the 𝐺′ and 𝐹 parameters 
constant, which were calculated from the linear interpolation. Consequently, the spots 
before this region were determined and colored dark pink in the same figure. Similarly, after 
the lock-in region, the last calculated values for the sets of parameters were kept constant, 
and then the region after the lock-in was calculated and colored green. 
 

 
Figure 19: Displacement Prediction Using linear interpolation for the lock-in region 

y = 2.5401x - 13.419

y = 5.0064x - 23.171

0

1

2

3

4

5

6

7

5.43 5.53 5.63 5.73 5.83

P
ar

am
et

er
s 

va
lu

es

U/fD (-)

Lock-in range diagram

F
G'

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

4.39 4.89 5.39 5.89 6.39 6.89

A
/D

 (
-)

U/fD (-)

Oscillation amplitude diagram



 Two-Degrees-of-Freedom Hartlen-Curie Model 

 

 

 58 

A yellow vertical line marks the actual maximum predicted value, which is accurately 
predicted by the model.  

  



 Conclusions 
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5. Conclusions 

 
The thesis delved into understanding, analyzing, and predicting the Vortex-Induced 
Vibration (VIV) phenomenon in circular cross-section structures using both single-degree-of-
freedom (1DOF) and two-degree-of-freedom (2DOF) engineering models. These models 
aimed to provide accurate predictions of VIV behavior across various velocity ranges.  
 
Through rigorous examination, the 1DOF models were evaluated against the theoretical 
predictions of the Iwan Blevins model. While all 1DOF models demonstrated promising 
accuracy, a newly proposed model from the literature exhibited the closest alignment with 
theoretical predictions, showcasing its efficacy in capturing VIV behavior. 
 
To fine-tune the 2DOF model, a meticulous optimization procedure was essential. Two 
optimization methods, Newton and COBYLA, were examined. Despite being slightly slower, 
the COBYLA method outperformed Newton's method in accuracy, establishing it as the 
preferred optimization technique for parameter refinement.  
 
Exploring alternative prediction methodologies, two distinct approaches were pursued. 
Initially, the model’s results were obtained by testing the optimal parameters produced by 
COBYLA in different frequency ratio case scenarios, revealing a phenomenon where the 
maximum amplitude value shifted slightly to the left.  
 
Subsequently, an automated method was explored to predict the phenomenon more 
rapidly. This involved defining the values of dimensionless parameters for varying natural 
frequencies via individual COBYLA optimization runs. Then, linear interpolation was 
employed between the obtained parameter values for a range of velocities in the lock-in 
region. This method demonstrated sufficient accuracy. 
 
In conclusion, the thesis emphasizes the importance of accurate prediction methodologies 
for VIV phenomena. Future research may focus on exploring other optimization methods 
and alternative engineering models and addressing discrepancies to improve predictive 
capabilities.  
 
Furthermore, beyond future research directions, a more immediate and practical application 
lies in integrating the thesis findings into computational tools, such as the hGAST (Hydro-
Servo-Aero-Elastic Simulation Tool), developed for comprehensive offshore wind turbine 
analysis. By incorporating optimization and linear interpolation techniques, the data 
obtained from predicting VIV phenomena can be integrated into the hGAST framework. 
Ultimately, this integration offers a more holistic understanding and prediction of the VIV 
phenomenon, applicable to large-scale engineering structures with complex dynamics. 
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