
National Technical University of Athens
Masters in Data Science and Machine Learning

Comparative Evaluation on Human Motion

Generation and Control diffusion-based

methods

Diploma Thesis
of

GEORGIOS PAPOULIAS

Supervisor: Stefanos Kollias

Professor

Co-supervisor: Paraskevi Tzouveli

Dr

Athens, March 2024

2

National Technical University of Athens

Masters in Data Science and Machine Learning

Comparative Evaluation on Human Motion

Generation and Control diffusion-based methods

Diploma Thesis
of

GEORGIOS PAPOULIAS

Supervisor: Stefanos Kollias

Professor

Co-supervisor: Paraskevi Tzouveli

Dr

Approved by the examination committee on 15th March 2024.

(Signature) (Signature) (Signature)

. .

Stefanos Kollias Georgios Stamou Athanasios Voulodimos

Professor Professor Assistant Professor

Athens, March 2024

National Technical University of Athens

Masters in Data Science and Machine Learning

Copyright © – All rights reserved.

Georgios Papoulias, 2024.

The copying, storage and distribution of this diploma thesis, exall or part of it, is prohibited

for commercial purposes. Reprinting, storage and distribution for non - profit, educational

or of a research nature is allowed, provided that the source is indicated and that this

message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work

/ contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference

is included in the bibliographic references section. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

. .

Georgios Papoulias

15th March 2024

Abstract

Human motion generation aims to generate natural human pose sequences and shows

immense potential for computer animation. Substantial progress has been made recently

in motion data collection technologies and motion generation methods, laying the foun-

dation for increasing interest in human motion generation & control, especially for data-

hungry deep architectures which were previously impossible to use in this scope, such as

the diffusion-based models. However, despite the recorded progress, challenges remain

due to the wide range of possible movements, human sensitivity to motion quality, and

limited data availability leading to solutions either low-quality or limited in expressiveness.

In this survey, we present a comparative assessment of newly-emerged diffusion-based

architectures, which seem to be fully promising in the context of human motion synthesis

among other generative approaches. We firstly provide an overview of diffusion models’

operation and discuss techniques for representing human motion, along with commonly

used motion capture datasets. Subsequently, we delve into the specifics of the architec-

tures we interfere with, followed by the quantitative and qualitative comparison of the

methods for two mainstream sub-tasks: text-conditioned human motion generation and

human motion trajectory control. Finally, we offer insights and highlight unresolved is-

sues, aiming to provide a comprehensive understanding of this evolving field and spark

innovative solutions to its challenges.

Keywords

human motion synthesis, diffusion Models, text-to-motion generation, trajectory con-

trol, conditional motion generation

1

Abstract

Περίληψη

Η παραγωγή ανθρώπινης κίνησης αποσκοπεί στη δηµιουργία αληθοφανών ακολουθιών

ανθρώπινων στάσεων και παρουσιάζει τεράστιες δυνατότητες για τον τοµέα του ςοµπυτερ ανι-

µατιον. Σηµαντική πρόοδος έχει σηµειωθεί πρόσφατα στις τεχνολογίες συλλογής δεδοµένων

κίνησης και στις µεθόδους παραγωγής κίνησης, ϑέτοντας τις ϑεµέλια για το αυξανόµενο

ενδιαφέρον για την παραγωγή ανθρώπινης κίνησης & καθώς τον έλεγχο της, ιδίως για τις

ϐαθιές αρχιτεκτονικές που απαιτούν πολλά δεδοµένα και που προηγουµένως ήταν αδύνα-

το να χρησιµοποιηθούν σε αυτό το πεδίο, όπως τα µοντέλα που ϐασίζονται στη διάχυση.

Ωστόσο, παρά την δεδοµένε αυτή πρόοδο, οι προκλήσεις παραµένουν λόγω του µεγάλου ε-

ύρους πιθανών κινήσεων του ανθρώπινου σώµατος, της ευαισθησίας του ανθρώπινου µατιού

στην ποιότητα της κίνησης και της περιορισµένης διαθεσιµότητας δεδοµένων που οδηγούν σε

λύσεις είτε χαµηλής ποιότητας είτε περιορισµένης εκφραστικότητας. Στην παρούσα έρευνα,

παρουσιάζουµε µια συγκριτική αξιολόγηση των πρόσφατα αναδυόµενων αρχιτεκτονικών που

ϐασίζονται στη διάχυση, οι οποίες ϕαίνεται να είναι πλήρως υποσχόµενες στο πλαίσιο της

σύνθεσης ανθρώπινης κίνησης µεταξύ άλλων γενετικών προσεγγίσεων. Αρχικά, παρέχου-

µε µια επισκόπηση της λειτουργίας των µοντέλων διάχυσης και συζητάµε τεχνικές για την

αναπαράσταση της ανθρώπινης κίνησης καθώς και τα πιο ευρύτερα διαδεδοµένα σύνολα

δεδοµένων καταγεγραµµένης κίνησης. Στη συνέχεια, εµβαθύνουµε στις ιδιαιτερότητες των

αρχιτεκτονικών µε τις οποίες εµπλεκόµαστε, ενώ ακολουθεί η ποσοτική και ποιοτική σύγκρι-

ση των µεθόδων για δύο κύριες λειτουργικότητας : παραγωγή ανθρώπινης κίνησης µε ϐάση

το κείµενο και έλεγχος της τροχιάς της ανθρώπινης κίνησης. Τέλος, προσφέρουµε ιδέες

και επισηµαίνουµε άλυτα Ϲητήµατα, µε στόχο να παρέχουµε µια ολοκληρωµένη κατανόηση

αυτού του εξελισσόµενου πεδίου και να δώσουµε το έναυσµα για καινοτόµες λύσεις όσον

αφορά υπάρχοντα προβλήµατα και µελλοντικές προκλήσεις.

2

to Giannis and Mitsos, who left too early and too suddenly

Acknowledgements

I extend my heartfelt gratitude to Dr. Paraskevi Tzouveli, my supervisor, for their

invaluable guidance, encouragement, and unwavering support throughout my research

journey. Their mentorship, especially during challenging times, played a pivotal role in

shaping this thesis. I am deeply thankful to my mother for her endless love, understand-

ing, and patience throughout this endeavor, as well as to my cousin Stratis, whose belief

in my capabilities never faded out, providing constant motivation. I am also grateful to my

friends for their encouragement, understanding, and companionship, which have been a

source of inspiration akin to a second family. Last but certainly not least, special thanks

should go to my friend Mike for his continuous encouragement and technical guidance

when I faced obstacles which seemed insurmountable back then.

Athens, March 2024

Georgios Papoulias

5

Table of Contents

Abstract 1

Περίληψη . 2

Acknowledgements 5

1 Introduction 15

1.1 English . 15

1.2 Ελληνικά . 16

2 Diffusion Models - Theoretical background 19

2.1 Intuition behind Diffusion Models . 19

2.2 The Diffusion Process . 21

2.2.1 Forward Process . 21

2.2.2 Backward Process . 22

2.3 Sampling . 23

2.3.1 DDPM Sampling . 23

2.3.2 DDIM Sampling . 25

2.4 Conditional Generation: Guided Diffusion 28

2.4.1 Classifier Guidance . 29

2.4.2 Classifier-Free Guidance . 30

2.5 Training Diffusion Models . 32

3 Motion Representation in Joint Kinematics 35

3.1 Fundamentals . 35

3.2 Motion representation alternatives . 36

3.2.1 3D Keypoints . 36

3.2.2 Euler Angles Rotation . 37

3.2.3 Rotation Matrices . 37

3.2.4 Axis-Angle Representation . 38

3.2.5 Quaternions Representation . 39

3.2.6 6D Rotation Representation . 40

3.3 Motion Capture Datasets for Training . 41

3.3.1 KIT dataset . 41

3.3.2 HumanML3D dataset . 42

3.4 Skeletal Templates in Motion Generation 43

3.4.1 The SMPL skeleton . 44

7

TABLE OF CONTENTS

3.5 The SMPL model . 45

3.5.1 Overview . 45

3.5.2 Parameterization . 46

3.5.3 Model Optimization . 48

3.5.4 Impact . 50

3.6 The CLIP model . 51

3.6.1 Architecture . 52

3.6.2 Training . 52

3.6.3 Impact . 53

4 Diffusion-based Architectures in Human Motion Synthesis 55

4.1 Motion Diffusion Model (MDM) . 56

4.1.1 Motion Representation &Operational Modes 56

4.1.2 Network Architecture, Sampling &Optimization 57

4.2 PriorMDM . 60

4.2.1 Motion Representation &Operational Modes 60

4.2.2 Network Architecture, Sampling &Optimization 61

4.3 OmniControl . 64

4.3.1 Motion Representation &Operational Modes 65

4.3.2 Network Architecture, Sampling &Optimization 66

4.4 Guided Motion Diffusion (GMD) . 68

4.4.1 Motion Representation &Operational Modes 69

4.4.2 Network Architecture, Sampling &Optimization 69

4.5 MotionDiffuse . 73

4.5.1 Motion Representation &Operational Modes 74

4.5.2 Network Architecture, Sampling &Optimization 74

4.6 Motion Latent Diffusion (MLD) . 76

4.6.1 Motion Representation &Operational Modes 77

4.6.2 Network Architecture, Sampling &Optimization 78

5 Methods’ Comparative Evaluation 81

5.1 Introduction . 81

5.1.1 Quality Metrics . 81

5.2 Text-to-Motion Generation . 82

5.2.1 Quantitative Evaluation . 82

5.2.2 Qualitative Evaluation . 87

5.3 Trajectory Control . 90

5.3.1 Quantitative Evaluation . 90

5.3.2 Qualitative Evaluation . 97

6 Conclusion 101

Bibliography 109

8

TABLE OF CONTENTS

List of Abbreviations 111

9

List of Figures

2.1 Forward Diffusion Process modified by [1] 22

2.2 Reverse Diffusion Process modified by [1] 23

2.3 Noise scheduling in DDPMs. Source [2] . 24

2.4 Training and Sampling algorithms in DDPM models. Source:[1] 25

2.5 Graphical models for diffusion (left) and non-Markovian (right) inference

models. Source [2] . 26

2.6 Non-Markovian reverse and forward process. Source [2] 27

2.7 Algorithm of classifier guided diffusion DDPM sampling. Source [3] 29

2.8 Training a diffusion model for classifier-free guidance. Source [2] 30

2.9 Training a diffusion model for classifier-free guidance. Source [2] 31

3.1 SMPL skeleton topology. Source: [4] . 45

3.2 The SMPL model components. Source: [5] 46

3.3 Shape Blend Shapes: Joint locations (red dots) vary as a function of body

shape and are predicted using the learned regressor J . Source: [5] 50

3.4 Text encoder. Source: CLIP paper [6] . 53

4.1 MDM architecture overview. Source: [7] 58

4.2 MDM sampling. Source: [7] . 59

4.3 Double Take method Overview. Source: [8] 62

4.4 Soft blending Overview. Source: [8] . 63

4.5 Soft blending Overview. Source:[8] . 64

4.6 Architecture Overview of OmniControl’s model. Source:[9] 66

4.7 Detailed overview of the spatial guidance module. Source:[9] 67

4.8 Detailed overview of the realism guidance module. Source:[9] 67

4.9 OmniControl inference method’s pseudo-code. Source:[9] 68

4.10 GMD’s two stage pipeline. DPM stands for diffusion probabilistic model.

Source:[10] . 70

4.11 Emphasis projection module (matrix projection). Source:[10] 71

4.12 Source:[10] . 73

4.13 Source:[10] . 73

4.14 Overall network architecture of MotionDiffuse. Source:[11] 75

4.15 MLD method overview. Source:[12] . 79

5.1 Comparative results on HumanML3D dataset in terms of precision 83

5.2 Comparative results on KIT dataset in terms of precision 84

11

LIST OF FIGURES

5.3 Comparative results on HumanML3D dataset in terms of FID, DIV, MM

Dist, MModality . 85

5.4 Comparative results on KIT dataset in terms of FID, DIV, MM Dist, MModality 86

5.5 Comparative results on HumanML3D dataset in terms of FID, R-Precision,

Foot Skating Ratio . 91

5.6 Comparative results on HumanML3D dataset in terms of Diversity 92

5.7 Comparative results on KIT dataset in terms of FID, R-Precision, Foot Skat-

ing Ratio . 93

5.8 Comparative results on KIT dataset in terms of Diversity 94

5.9 Comparative results on HumanML3D dataset in terms of FID, DIV, MM

Dist, MModality . 95

5.10 Comparative results on HumanML3D dataset in terms of FID, DIV, MM

Dist, MModality . 95

12

List of Tables

5.1 Text-To-Motion generation evaluation on HumanML3D dataset (Precision) . 83

5.2 Text-To-Motion generation evaluation on HumanML3D dataset (Rest of the

metrics) . 84

5.3 Text-To-Motion generation evaluation on KIT dataset (Precision) 85

5.4 Text-To-Motion generation evaluation on KIT dataset (Rest of the metrics) . 86

5.5 Comparison of the inference time costs on text-to-motion. 87

5.6 Root trajectory control evaluation on the HumanML3D dataset (Quality met-

rics) . 91

5.7 Root trajectory control evaluation on the KIT dataset (Quality metrics) . . . 92

5.8 Root trajectory control evaluation on the HumanML3D dataset (Accuracy

metrics) . 93

5.9 Root trajectory control evaluation on the KIT dataset (Accuracy metrics) . . 96

5.10 Comparison of the inference time costs on motion trajectory control. 96

13

Chapter 1

Introduction

1.1 English

Humans plan and execute body motions based on their intention and the environ-

mental stimulus[13]. As an essential goal of artificial intelligence, in general, and ma-

chine learning, in specific, reproducing coherent, natural and diverse human-like mo-

tion patterns has gained increasing interest from various research communities, such as

computer animation[14], computer graphics[15], robotics[16],[17] and human-computer

interaction[18], thus addressing a wide range of applications in domains ranging from

film production, video games and AR/VR to biomechanics and sports analysis.

Human motion generation is a challenging field, due to several reasons, including

the vast span of possible motions (multi-dimensional learning manifold) and the diffi-

culty and cost of acquiring high quality motion data using motion capture techniques.

With the rise of Deep Learning[19] in recent years, a rapid development of various

generative methods has been witnessed such as Autoregressive Models[20], Variational

Autoencoders(VAEs)[21], Normalizing Flows[22], Generative Adversarial Networks(GANs)[23]

and Denoising Diffusion Probabilistic Models(DDPMs)[1]. These methods have demon-

strated great success across different domains,including text[24][25], image processing[26],[27],

video[28],[29] and 3D objects[30],[31]. On the other side, the remarkable progress in hu-

man modeling [5],[32],[33] facilitates the extraction [34],[35] of coherent, artifact-free hu-

man motion from animation videos, which actually comes down to the task of efficiently

estimating human pose from videos as described in [34], [35] and [36], and the construc-

tion of large human motion datasets such as [37],[38],[39] and [40] analyzed in one of

the following chapters. The rapid progress in the domains enumerated above entails the

substantial increase of attention on data-driven human motion generation on behalf of

the scientific community during the past decade - and especially the artificial intelligence

community.

However, apart from the initial obstacles partially overcome over the past few years,

human motion generation - and editing, as a natural aftereffect - is a trivial task impossible

to be diminished to just applying deep generative architectures to human motion datasets.

The inherent nature of human motion is highly non-linear as human motion patterns are

subject to a multitude of physical and bio-mechanical constraints. Another issues is

that it is easily perceivable by the human brain, and consequently the human eye, when

15

Chapter 1. Introduction

unnatural kinematics are introduced in an artificially generated motion. As a result,

demands in the context of smoothness, plausibility and coherence are high. Additionally,

human motion generation needs to integrate context using a conditional signal (more

often than not it is either a textual description or an audio message), yielding the extra

restriction that the generated motion be in accordance with the conditional signal, raising

the degree of difficulty of the task even more.

For the recently emerging text-to-motion or action-to-motion paradigms, where motion

is generated conditioned on natural language, another inherent problem is data labeling.

For instance, the label ”kick” or the text prompt "a man is performing a kick" could

refer to either a soccer kick or a martial arts kick. Inversely, a given kick could be

efficiently described by a plethora of textual descriptions, thus constituting a many-to-

many problem. To this end, diffusion models are the most promising candidates deep

network architectures found in literature for expressing a many-to-many distribution

problem in the human motion generation and editing setting.

This work will begin to unfold by firstly delving into the fundamentals of diffusion

models and justifying their superiority compared to other state-of-the-art deep architec-

tures in the context of human motion generation in Chapter 2. In Chapter 3, the motion

representation (e.g. translation, rotation, skeleton topology) used as input for this type of

architectures, the datasets used for the training of the networks under evaluation as well

as the pivotal role of the SMPL[41] model will be analyzed in depth. After having com-

pleted the part of displaying the theoretical background needed to fully comprehend the

context of the present work, the architectures of the neural networks employed in the hu-

man motion generation and editing settings will be analytically elaborated on in Chapter

4. Finally, in Chapter 5 the experiments conducted aiming at performing a rounded com-

parative evaluation between different diffusion-oriented[42] methods will be displayed,

entailing both qualitative and quantitative assessment. The overall conclusions will be

summed up in Chapter 6 along with suggesting possible future research directions.

1.2 Ελληνικά

Οι άνθρωποι σχεδιάζουν και εκτελούν κινήσεις του σώµατος µε ϐάση την προσωπική

πρόθεσή τους και τα περιβαλλοντικά ερεθίσµατα[13]. Ως ϐασικός στόχος της τεχνητής νοη-

µοσύνης, γενικά, και της µηχανικής µάθησης, ειδικότερα, η αναπαραγωγή συνεκτικών,

ϕυσικών και ποικιλόµορφων ανθρώπινων µοτίβων κίνησης έχει αποκτήσει αυξανόµενο εν-

διαφέρον από µια πληθώρα ερευνητικών πεδίων, όπως τα κινούµενα σχέδια αναπαραγόµενα

από υπολογιστές[14], τα γραφικά υπολογιστών[15], η ϱοµποτική[16],[17] και αλληλεπίδραση

ανθρώπου-υπολογιστή[18], αντιµετωπίζοντας έτσι ένα ευρύ ϕάσµα εφαρµογών σε τοµείς που

κυµαίνονται από την παραγωγή ταινιών, τα ϐιντεοπαιχνίδια και την εικονική και επαυξηµένη

πραγµατικότητα έως τη ϐιοµηχανική και την αθλητική ανάλυση.

Η παραγωγή ανθρώπινης κίνησης αποτελεί ένα απαιτητικό πεδίο, για διάφορους λόγους,

όπως το τεράστιο εύρος των πιθανών κινήσεων (πολυδιάστατη κυρτό περίβληµα µάθησης)

καθώς και η δυσκολία και το κόστος απόκτησης δεδοµένων κίνησης υψηλής ποιότητας

µε τη χρήση τεχνικών καταγραφής κίνησης. Με την άνοδο της ϐαθιάς µάθησης τα τε-

16

1.2 Ελληνικά

λευταία χρόνια, παρατηρήθηκε µια ταχεία ανάπτυξη διαφόρων γεννητικών µεθόδων, όπως

τα αυτοπαλινδροµικά µοντέλα, οι µεταβλητοί αυτοκωδικοποιητές (ἍΕς)[21], οι κανονικο-

ποιητικές ϱοές[22], τα γενετικά ανταγωνιστικά δίκτυα(ΓΑΝς)[23] και τα στοχαστικά µοντέλα

αποθορυβοποίησης/διάχυσης(∆∆ΠΜς)[1]. Αυτές οι µέθοδοι έχουν επιδείξει µεγάλη επιτυ-

χία σε διάφορους τοµείς, όπως επεξεργασία κειµένου[24][25], επεξεργασία εικόνας[26],[27],

ϐίντεο[28],[29] και τρισδιάστατων αντικειµένων[30],[31]. Από την άλλη πλευρά, η αξιοσηµε-

ίωτη πρόοδος στην ανθρώπινη µοντελοποίηση [5],[32],[33] διευκολύνει την εξαγωγή [34],[35]

συνεκτικής, απαλλαγµένης από ασυνέχειες ανθρώπινης κίνησης από ϐίντεο κινουµένων σχε-

δίων, η οποία στην πραγµατικότητα καταλήγει στο έργο της αποτελεσµατικής εκτίµησης της

ανθρώπινης στάσης από ϐίντεο, όπως περιγράφεται στις [34], [35] και [36], και στην κατα-

σκευή µεγάλων συνόλων δεδοµένων ανθρώπινης κίνησης όπως [37],[38],[39] και [40] που

αναλύονται σε ένα από τα επόµενα κεφάλαια. Η ϱαγδαία πρόοδος στους τοµείς που απα-

ϱιθµούνται παραπάνω συνεπάγεται τη σηµαντική αύξηση της προσοχής της επιστηµονικής

κοινότητας στην παραγωγή ανθρώπινης κίνησης οδηγούµενη από δεδοµένα κατά την τελευ-

ταία δεκαετία - και ιδίως της κοινότητας της τεχνητής νοηµοσύνης.

Ωστόσο, πέρα από τα αρχικά εµπόδια που ξεπεράστηκαν εν µέρει τα τελευταία χρόνια,

η παραγωγή ανθρώπινης κίνησης - και η επεξεργασία της, ως ϕυσικό επακόλουθο - δεν

είναι µια αποστολή που µπορεί να περιοριστεί στην απλή εφαρµογή ϐαθιών γενεσιουργών

αρχιτεκτονικών σε σύνολα δεδοµένων ανθρώπινης κίνησης. Η εγγενής ϕύση της ανθρώπινης

κίνησης είναι εξαιρετικά µη γραµµική, καθώς τα µοτίβα που παρατηρούνται στην ανθρώπι-

νη κίνηση υπόκεινται σε πλήθος ϕυσικών και ϐιοκινητικών περιορισµών. ΄Ενα άλλο Ϲήτηµα

είναι ότι γίνεται εύκολα αντιληπτό από τον ανθρώπινο εγκέφαλο, και κατά συνέπεια από το

ανθρώπινο µάτι, όταν εισάγονται αφύσικες κινηµατικές ιδιότητες σε µια τεχνητά παραγόµε-

νη κίνηση. Ως αποτέλεσµα, οι απαιτήσεις όσον αφορά τη συνέχειας, της αληθοφάνειας και

της συνοχής της παραγόµενης κίνησης είναι υψηλές. Επιπλέον, η παραγωγή ανθρώπινης

κίνησης πρέπει να ενσωµατώσει το περιεχόµενο χρησιµοποιώντας ένα υπό συνθήκη σήµα

(τις περισσότερες ϕορές πρόκειται είτε για µια περιγραφή µέσω κειµένου είτε για ένα ηχη-

τικό µήνυµα), γεγονός που συνεπάγεται τον επιπλέον περιορισµό ότι η παραγόµενη κίνηση

πρέπει να είναι σύµφωνη µε το υπό συνθήκη σήµα, αυξάνοντας ακόµη περισσότερο τον

ϐαθµό δυσκολίας του έργου.

Για τα πρόσφατα ανερχόµενα αντικείµενα επιστηµονικής ενασχόλησης όπως η µετατροπή

κειµένου σε κίνηση ή δράσης σε κίνηση, όπου η κίνηση παράγεται µε ϐάση τη ϕυσική

γλώσσα, ένα άλλο εγγενές πρόβληµα είναι η σήµανση των δεδοµένων. Για παράδειγµα,

η δράση ¨κλωτσιά¨ ή το κείµενο-οδηγία ¨ένας άνδρας εκτελεί µια κλωτσιά¨ ϑα µπορούσε

να αναφέρεται είτε σε µια κλωτσιά ποδοσφαίρου είτε σε µια κλωτσιά πολεµικών τεχνών.

Αντίστροφα, ένα δεδοµένο λάκτισµα ϑα µπορούσε να περιγραφεί αποτελεσµατικά από µια

πληθώρα κειµενικών περιγραφών, αποτελώντας έτσι ένα πρόβληµα πολλά-µε-πολλά. Για

το σκοπό αυτό, τα µοντέλα διάχυσης είναι οι πιο υποσχόµενες υποψήφιες αρχιτεκτονικές

ϐαθιών δικτύων που έχουν ϐρεθεί στη ϐιβλιογραφία για την έκφραση ενός προβλήµατος

κατανοµής πολλών προς πολλούς στο πλαίσιο δηµιουργίας και επεξεργασίας ανθρώπινης

κίνησης.

Η εργασία αυτή ϑα αρχίσει να ξεδιπλώνεται αρχικά µε την εµβάθυνση στα ϑεµελιώδη

των µοντέλων διάχυσης και την αιτιολόγηση της υπεροχής τους σε σύγκριση µε άλλες σύγ-

17

Chapter 1. Introduction

χρονες ϐαθιές αρχιτεκτονικές στο πλαίσιο της παραγωγής ανθρώπινης κίνησης στο κεφάλαιο

2. Στο Κεφάλαιο 3, ϑα αναλυθούν σε ϐάθος η αναπαράσταση της κίνησης (π.χ. µεταφορά,

περιστροφή, τοπολογία σκελετού) που χρησιµοποιείται ως είσοδος για αυτού του είδους τις

αρχιτεκτονικές, τα σύνολα δεδοµένων που χρησιµοποιούνται για την εκπαίδευση των υπό α-

ξιολόγηση δικτύων καθώς και ο κοµβικός ϱόλος του µοντέλου ΣΜΠΛ[41]. Αφού ολοκληρωθεί

το κοµµάτι της παρουσίασης του ϑεωρητικού υπόβαθρου που απαιτείται για την πλήρη κα-

τανόηση του πλαισίου της παρούσας εργασίας, ϑα αναπτυχθούν αναλυτικά οι αρχιτεκτονικές

των νευρωνικών δικτύων που χρησιµοποιήθηκαν σε περιβάλλοντα παραγωγής και επεξεργα-

σίας ανθρώπινης κίνησης στο κεφάλαιο 4. Τέλος, στο Κεφάλαιο 5 ϑα παρουσιαστούν τα

πειράµατα που διεξήχθησαν µε στόχο την εκτέλεση µιας στρογγυλής συγκριτικής αξιολόγη-

σης µεταξύ διαφορετικών µεθόδων προσανατολισµένων στη διάχυση [42], διεξάγοντας τόσο

ποιοτική όσο και ποσοτική αξιολόγηση. Τα συνολικά συµπεράσµατα ϑα συνοψιστούν στο

κεφάλαιο 6 µαζί µε την πρόταση πιθανών µελλοντικών ερευνητικών κατευθύνσεων.

18

Chapter 2

Diffusion Models - Theoretical background

2.1 Intuition behind Diffusion Models

The foundation of diffusion models and their introduction in deep learning as de-

scribed in [43] is based on the idea that diffusion processes can be strategically employed

to decompose the inherent structural components present in the data distribution we

aim to model. To circumscribe this theoretical framework more concretely, consider a

hypothetical scenario where a container filled with water has a small amount of colored

dye introduced. If we consider the concentration of dye molecules as a representation of a

probability distribution, the principal goal of a generative model is to gain a thorough un-

derstanding of this probabilistic structure. At first glance, it is crucial that we recognize

that accomplishing this venture could prove to be quite challenging.

However, even in cases where we are unable to directly create a model to clarify

the inherent structure of our data distribution, there is a feasible alternative approach.

This approach entails the transition from our complicated and, more often than not, high-

dimensional data distribution into a significantly simplified distribution that can be easily

modeled and basically encloses the main intrinsic features of the initial distribution.

In the context of this physical analogy, if the diffusion process is allowed to unfold

over a sufficiently extended period, the dye molecules will eventually disperse uniformly

throughout the container, resulting in a state of equilibrium that can be described by a

distribution as simple as a uniform distribution. Initially, the utility of this transforma-

tion may not be immediately apparent. However, what can actually seem useful is the

consideration of the contingency of reversing this diffusion process over time. Thus, initi-

ating from a uniform distribution and executing the exact reverse process would provide

us with the possibility to recreate the original data distribution. Reversing the process

would, of course, be deemed as impossible by physicists as it would entail the violation

of the second thermodynamic law in real world. However, the outburst observed in the

deep learning domain yielded a potential solution to address these challenges.

Diffusion models in the context of deep learning were first used for image generation[1]

and refer to a specific class of generative models that aim to model the process of gener-

ating realistic images by simulating the process analyzed above. These models, such as

the Denoising Diffusion Probabilistic Models (DDPM) or Noise-Contrastive Estimation[44]

(NCE) models, leverage the diffusion process as conceptualized in nature to generate di-

19

Chapter 2. Diffusion Models - Theoretical background

verse and realistic images. The fundamental idea behind diffusion models is to generate

images by iteratively adding noise to a starting image. Instead of directly specifying pixel

values, these models start with a simple distribution (e.g., Gaussian) and iteratively trans-

form it to generate a realistic image. This process is analogous to the diffusion of heat or

particles in a container over time. Diffusion models perform a series of transformations on

the initial noise distribution to gradually refine it into an image. At each step, a fraction

of the noise is added, leading to a diffusion process that converges towards a complex,

high-dimensional data distribution representing realistic images.

In direct analogy to the image generation domain, the motion generation task operates

in the same philosophy. The motion representation features - which usually differ from

method to method but mostly include joint positions, joint rotations or joint velocities

and combinations of these - are gradually noised more and more. The reverse process,

expectedly, samples noise from a distribution, performs a set of transformations from

space to space finally yielding motion representation feature values that correspond to a

coherent human motion.

To expound upon the noising process, a pivotal catalyst in the functionality of diffusion

models, an exploration of the temperature parameter becomes imperative. Termed as

such due to its role in modulating the intensity of the noising process, akin to how

ambient air temperature dictates the pace of a pill’s diffusion within a liquid receptacle,

the temperature parameter governs the amplitude of noise infusion at each procedural

step. Higher temperatures correspond to more significant noise, and as the process

progresses, the temperature decreases. This temperature scheduling allows for a balance

between exploration and exploitation during the generation process. In deep learning

diffusion models, the process of diffusion is learned from data. The model learns the

dynamics of the diffusion process, capturing the intricate relationships and dependencies

between pixels in image generation or between joint rotation features in human motion

generation. This learned diffusion process enables the generation of diverse and realistic

images.

Diffusion models are effective in handling complex data distributions, including those

found in natural human motions. The learned diffusion process captures the intricate

dependencies between joint features describing human motions, allowing the model to

generate high-quality animations with realistic poses. Diffusion models stand as the

state-of-the-art method in both in human motion synthesis and editing. They enable the

generation of diverse samples from a learned distribution, making them suitable for tasks

such as motion inpainting in both time and space and style transfer.

In summary, diffusion models in deep learning for image generation leverage the prin-

ciples of noise-driven diffusion processes to iteratively refine a noise distribution into

realistic images. The learned dynamics, temperature scheduling, and training objectives

make diffusion models a powerful approach for capturing and generating complex image

data distributions.

20

2.2 The Diffusion Process

2.2 The Diffusion Process

As mentioned above, a Diffusion Model consists of a forward process (or diffusion

process), in which a datum is progressively noised, and a reverse process (or reverse

diffusion process), in which noise is transformed back into a sample from the target dis-

tribution. In other words, diffusion models work by destroying training data through the

successive addition of Gaussian noise, and then learning to recover the data by reversing

this noising process. After training, we can use the Diffusion Model to generate data by

simply passing randomly sampled noise through the learned denoising process. Hence, a

meticulous elucidation of both processes is imperative to later delve into the intricacies of

architectural variations and optimization techniques when it comes to diffusion models.

Commencing our examination with the formerly alluded process, specifically the forward

process, is our starting point.

2.2.1 Forward Process

Diffusion models can be seen as latent variable models similarly to e.g. variational

autoencoders[45]. Latent means that we are referring to a hidden continuous feature

space. In In practice, they are formulated using a Markov chain of T steps.The forward

diffusion process is the Markov chain of diffusion steps in which we slowly and randomly

add noise to the original data. A Markov chain[46] means that each step only depends

on the previous one, which is a mild assumption as the reality is that causality is being

propagated across multiple states in the Markov Chain.

Given a data point x0 sampled from a real data distribution q(x)(x0 ← q(x0)), in the

forward diffusion process, noise is gradually added to a clean datum, until its structure

is destroyed and the datum is transformed into pure noise. In other words, the forward

process is characterised by a Markov chain, which generates a sequence of random vari-

ables xt with distribution q(xt |xt−1). The noise added to the original datum at each Markov

Chain step is sampled from a Gaussian distribution formulated as follows:

q(xt |xt−1) = N(xt ; µt =
√

1 − �txt−1,Σt = �tI) (2.1)

Since we are in the multi-dimensional scenario, I is the identity matrix, indicating

that each dimension has the same standard deviation �t . As long as q(xt |xt−1) is the

normal distribution described above and we have adopted the Markovian assumption for

our chain, the posterior joint distribution on the latent variables can be written in closed

form as can be seen in 2.2:

q(x1:T |x0) =
T∏
i=1

q(xt |xt−1) (2.2)

However, this form entails a heavy burden in terms of computational load if the num-

ber of timesteps in the Markov Chain is large. Thus, to simplify the expression, a repa-

rameterization trick is employed aiming at turning the posterior distribution into a

tractable expression as elaborated in [47]. More specifically, the idea behind this trick

could be verbally summarized as transforming a sample from a fixed, known distribution

21

Chapter 2. Diffusion Models - Theoretical background

Figure 2.1. Forward Diffusion Process modified by [1]

to a sample from q(z). If we consider the Gaussian distribution, we can express z with

respect to a fixed ϸ, where ϸ ∼ N(0,1), as follows:

z = µ + σϸ (2.3)

The epsilon term introduces the necessary stochastic part in equation 2.3. Let αt = 1− �t

and ᾱt =
∏T
s=0

αs where ϸ ∼ N(0, I), the reparameterization trick yields, in a recursive

manner:

xt =
√

1 − �txt−1 +
√
�tϸt−1

=
√
αtxt−2 +

√
1 − �tϸt−2

= ...

=
√
ᾱtx0 +

√
1 − ᾱtϸ0

(2.4)

Consequently, employing this property provides us with the capability to produce one

sample xt using the following distribution:

xt ∼ q(xt | x0) = N(xt ;
√
ᾱtx0, (1 − ᾱt)I) (2.5)

As can be easily deduced, the aforementioned process allows for tractable closed-form

sampling at any timestep accelerating the sampling process analyzed in section 2.3 by

orders of magnitude. This owed to the fact that, as long as �t is a hyperparameter, we

can precompute (namely, before the sampling process begins) the quantities αt and ᾱt for

a number of timesteps equal to the number the sampling process is about to be executed,

which, subsequently means that we sample noise at any timestep t and obtain xt in one

shot. Hence, we can sample our latent variable xt at any arbitrary timestep we might

desire.

2.2.2 Backward Process

It is the process of training a neural network to recover the original data by reversing

the noising process applied in the forward pass described in 2.2.1. As extensively analyzed

in [43], theory validates that if consider that the forward diffusion process is being evolved

for a very big number of timesteps (T → ∞), which is equivalent to assigning �t a value

small enough, the latent variable xT could be nearly considered as an isotropic Gaussian

distribution, namely a Gaussian distribution for which Σ = σ2I. Therefore, if we were

somehow capable of learning the reverse distribution q(xt−1 | xt), we would be able to

22

2.3 Sampling

Figure 2.2. Reverse Diffusion Process modified by [1]

sample xT from N(0, I), simulate the reverse process and acquire a sample from q(x0)
generating a totally novel data point ’belonging’ to the original data distribution.

In practice, though, the calculation of the q(xt−1 | xt) distribution is infeasible as it

would require the whole training dataset to obtain reliable statistical estimates for the

data distribution. What can be practically done to approximate q(xt−1 | xt) is that we use

a parameterized model pθ, e.g. a neural network, which can be assumed as Gaussion

as long as �t is small enough permitting the hypothesis that q(xt−1 | xt) is a Gaussian

distribution. Thus, the model pθ can be implemented by just modelling the mean and

variance parameters as follows:

pθ(xt−1 | xt) = N(xt−1; µθ(xt , t),Σθ(xt , t)) (2.6)

Hence, we end up training the network with our actual objective reduced to predicting

the mean and variance for each timestep, namely the quantities denoted as µθ(xt , t) and

Σθ(xt , t)). This task is accomplished by applying the reverse formula for all timesteps. In

further detail, we can transit from xT to the data distribution as per:

pθ(x0:T) = pθ(xT)
T∏
i=1

pθ(xt−1|xt) (2.7)

By additionally conditioning the model on timestep t (positional encoding), the model is

capable of learning the Gaussian parameters, namely the mean and covariance matrices,

for each individual timestep.

2.3 Sampling

2.3.1 DDPM Sampling

As discussed in the previous chapter, the DDPM is a generative model that belongs to

the family of diffusion models. The basic idea is to model the data generation process as

a diffusion process, where the true data distribution is transformed through a sequence

of noise levels. Denoising autoencoders are used to model the conditional distributions

at each step of the diffusion process. DDPM was practically the parent model of all the

other architectures which normally followed later, comprising the foundation for an entire

family of generational networks.

The goal is to teach a model to reverse the noising process so that we can generate

images -or motions in our own paradigm- given the noise randomly sampled from a

23

Chapter 2. Diffusion Models - Theoretical background

Figure 2.3. Noise scheduling in DDPMs. Source [2]

Gaussian Distribution. To delve into further detail, we should initiate our analysis from

the equations 2.8 and 2.9:

αt = 1 − �t (2.8)

ᾱt =
T∏
s=0

αs (2.9)

and explain what they stand for in practical terms. �t is called a noise scheduler. The

authors of the DDPM paper use a scheduler altering the values of �t in linear fashion

starting from the value of 10
−4

at t = 0 and ending up at 0.02 at t = T. These values func-

tion somewhat akin to percentages, dictating the relative magnitude of noise incorporated

at a given moment in time (in moment t relative to t − 1). As apparent from equations

2.9, the amount of noise at each timestep increases exponentially while the percent of the

original image decreases exponentially. Figure 2.3 shows the values of ᾱt over evolving

timesteps of the diffusion process with the value of T set equal to 1000.

The founders of the DDPMs found out that learning variances during the backward

diffusion process may lead to unstable training and poorer sample quality compared to

fixed variances. As a result of this, they preferred to maintain the value of the covariance

matrix Σθ constant and equal to �t , since �t is the noise variance at each timestep t, to

avoid this undesirable effect. As long as variance is kept constant, we basically need to

only predict the mean of the distribution. Equivalently, the estimation can be reduced

down to predicting the noise ϸ, that was sampled from the normal distribution and added

to the sample through the reparameterization trick 2.3. The authors found that predicting

the noise yielded more stable training. Thus, when it comes to reparemeterizing µθ(xt , t)
of the reverse process distribution, the network can predict the normal noise sample ϸ

(from a unit-variance distribution), which has been added to the sample x0:

x0 =
1
√
ᾱt

(xt −
√

1 − ᾱtϸ) (2.10)

Hence, the final equation for µθ(xt , t) is derived as follows and after combination with

24

2.3.2 DDIM Sampling

Figure 2.4. Training and Sampling algorithms in DDPM models. Source:[1]

equation 2.10:

µ̃θ =

√
ᾱt−1�t

1 − ᾱt
x0 +

√
αt(1 − ᾱt−1)

1 − ᾱt
xt

=

√
ᾱt−1�t

1 − ᾱt
(

1
√
ᾱt

(xt −
√

1 − ᾱtϸ)) +
√
αt(1 − ᾱt−1)

1 − ᾱt
xt

=
1
√
αt

(xt −
�t

√
1 − ᾱt

ϸ)

(2.11)

which is the key equation DDPM used for sampling.

The sampling process practically executes the reverse diffusion process using the

following line of reasoning: the generation process is initiated at t = T by sampling from

the last diffusion step xT ∼ N(0,1) which is modeled by a normal Gaussian, obviously.

This happens repeatedly until t = 0 is reached. The network makes a prediction of noise

in the sample ϸ̃ = pθ(xt , t) and then approximates the mean of the process at t − 1 using

2.12.

µ̃θ =
1
√
αt

(xt −
�t

√
1 − ᾱt

ϸ̃) (2.12)

Hence, the next sample at t − 1 is sampled from the Gaussian distribution as below:

xt−1 ∼ N(µ̃θ, σ2

t I) (2.13)

until x0 is reached, as explicitly described in the sampling algorithm outline in figure 2.4.

For notation purposes, we will define an additional variable called transition variance �̃t :

�̃t = σ
2

t (2.14)

Since we just have to predict the noise added, we can use the MSE loss between the

predicted noise and the actual noise added to the image.

2.3.2 DDIM Sampling

A notable challenge associated with the DDPM process lies in the time required for

image generation, at first place, and sample generation, in general, during inference time.

While DDPM models can yield visually impressive samples, the necessity for 1,000 model

passes to generate a single outcome poses a considerable drawback. Although processing

an image through the model 1,000 times might be accomplished swiftly on a GPU, the

25

Chapter 2. Diffusion Models - Theoretical background

Figure 2.5. Graphical models for diffusion (left) and non-Markovian (right) inference mod-
els. Source [2]

duration substantially extends when executed on a CPU. Consequently, there arises an

imperative to devise strategies to expedite the generation process.

The DDIM paper[48] introduces a way to speed up the generation process with the

least possible tradeoff between sample quality and generation time during the inference.

It achieves this goal by redefining the diffusion process as a non-Markovian process as

explicitly displayed in figure 2.5. The left figure depicts the graphical model describing

the original DDPM paper which requires all past denoising steps from time T to time t −1

to finally obtain the resulting denoised sample at time t. DDPMs are conceptualized as

Markov Chains, implying that the generation of a sample at a given time, t, is contingent

upon the completion of the entire chain preceding t. The DDIM paper proposes a method

to make the process non-Markovian (in the right figure), enabling the bypassing of steps

in the denoising process, eliminating the necessity to visit all preceding states before

reaching the current state. The key feature of DDIMs compared to the DDPMs is they can

be instantly applied after training a model. Consequently, DDPM models can seamlessly

transition into DDIMs without the need for retraining an entirely new model.

The fact that the stage of training may as well be omitted in the context of making

the transition from a DDPM to a DDIM, only the reverse diffusion process needs to be

individually modelled. To this end, we begin our analysis for the revrse diffusion process in

DDIM by highlighting similarities and differences between the new approach and DDPM.

The reverse process in DDPM endeavors to traverse the diffusion chain in the opposite

direction, encompassing T steps in the reverse order. However, as shown in eq. 2.10, the

reverse process involves an approximation of the clean sample x0. Provided we substitute

t − 1 for t in 2.5, we obtain:

q(xt−1 | x0) = N(
√
ᾱt−1x0, (1 − ᾱt−1)I) (2.15)

which subsequently yields:

xt−1 ←
√
ᾱt−1x0 +

√
1 − ᾱt−1ϸt−1 (2.16)

Based on a specific ϸt measured at the previous step t, the equation can be reformulated

as:

xt−1 =
√
ᾱt−1(

xt −
√

1 − ᾱt−1ϸ
(t)
θ (xt)

ᾱt
) +
√

1 − ᾱt−1 − σ2

t ϸ
(t)
θ + σtϸt (2.17)

26

2.3.2 DDIM Sampling

Figure 2.6. Non-Markovian reverse and forward process. Source [2]

Combining 2.15, 2.16 and 2.4 we end up with:

q(xt−1 | x0, xt) = N(xt−1;
√
ᾱt−1x0 +

√
1 − ᾱt−1 − σ2

t
xt −

√
ᾱtx0

√
1 − ᾱt

, σ2

t I) (2.18)

where

σ2

t = �̃t =

√
1 − ᾱt−1

1 − ᾱt
�t (2.19)

In the classical DDPM setting, this configuration is established. To transition to DDIM,

a parameter η is introduced, and the transformation is characterized by the following

equation:

σ2

t = η�̃t (2.20)

The newly introduced parameter is used to control the magnitude of the stochastic com-

ponent. Setting η = 0 appears to be particularly beneficial when fewer steps of the reverse

process are applied and that specific type of process is known as Denoising Diffusion

Implicit Model. The above formulation is still consistent with DDPM when η = 1. We

obtain a DDIM when σ = 0, thus equation 2.17 is transformed into:

xt−1 =
√
ᾱt−1(

xt −
√

1 − ᾱt−1ϸ
(t)
θ

ᾱt
) +
√

1 − ᾱt−1ϸ
(t)
θ (2.21)

Observe the absence of supplementary noise in the data. This exemplifies the essence

of DDIM’s methodology. When σ = 0, the denoising process turns entirely determinis-

tic, with the sole source of noise being the initial noise at x0, as no additional noise is

introduced during the denoising process.

In the absence of noise in the reverse process, determinism prevails, obviating the

need for a Markov Chain. Markov Chains are tailored for probabilistic processes, and in

this scenario, a non-Markovian process proves more suitable, affording the flexibility to

bypass steps in the sequence, as demonstrated in diagram 2.6.

The diagram above presents an exemplary process during which we have the capability

to skip from step x3 to x1 by totally omitting x2. The new diffusion process is modelled as

a subsequence, τ, which is a subset of the original diffusion sequence. For instance, we

could sample every other diffusion step in the diffusion process to get a subsequence of

τ = [0,2,4, . . . , T − 2, T].

27

Chapter 2. Diffusion Models - Theoretical background

Regarding the value of parameter η in 2.20, what is qualified, ultimately, as an ideal

choice to model the variance of the diffusion model as an interpolation between DDIMs

and DDPMs by opting a value between 0 and 1 for the parameter - we need to inject a

degree of stochasticity in the process, but not to an utmost extent. It can generally be

assumed that DDIM:

• Offers better sample quality at fewer steps.

• Allows for deterministic matching between the starting noise and the generated

sample.

• Performs worse than DDPM for large numbers of steps (such as 1000).

A detailed examination of the final point enhances practical understanding when im-

plementing diffusion models. DDIMs exhibit superior performance to DDPMs when the

number of steps taken is below the original T steps. While DDPM excels at the origi-

nal 1,000 steps, DDIM closely parallels this performance when generating samples with

significantly fewer steps. This introduces a discernible tradeoff between image quality

and generation time when using a DDIM, a dynamic not present in the original DDPM.

Consequently, the application of DDIM allows for the generation of high-quality samples

with a substantially reduced number of steps.

2.4 Conditional Generation: Guided Diffusion

A pivotal element in image generation and, in broader terms, motion generation, in-

volves conditioning the sampling process to manipulate the generated samples, a concept

often denoted as guided diffusion. Certain methodologies extend this idea by incorpo-

rating image embeddings (or text/audio embeddings in the context of motion generation)

into the diffusion process to "guide" the generation. In mathematical terms, guidance

entails conditioning a prior data distribution p(x) with a condition y, i.e. the class label

or an image/text embedding, resulting in p(x|y). To transform a diffusion model pθ into a

conditional diffusion model, we can introduce conditioning information y at each diffusion

step. In this setting, equation 2.7 is reformulated as follows:

pθ(x0:T |y) = pθ(xT)
T∏
i=1

pθ(xt−1|xt , y) (2.22)

The incorporation of conditioning at each timestep offers a plausible rationale for the

impressive generation of samples based on a text prompt. In general, guided diffusion

models aim to learn ∇logpθ(xt |y). Hence, using the Bayes rule, we can reformulate to:

∇xt logpθ(xt |y) = ∇xt log
pθ(y|xt)pθ(xt)

pθ(y)
= ∇xt log(pθ(y|xt)) + ∇xt log(pθ(xt)) (2.23)

pθ(y) is removed since the gradient operator ∇xt refers only to xt , thus the gradient for y

is zeroed out. By adding a guidance scalar term s, we obtain:

∇xt logpθ(xt |y) = ∇xt log(pθ(xt)) + s · ∇xt log(pθ(y|xt)) (2.24)

28

2.4.1 Classifier Guidance

Figure 2.7. Algorithm of classifier guided diffusion DDPM sampling. Source [3]

By adopting this formulation, it becomes pertinent to differentiate between classifier-

guided and classifier-free guidance. Subsequently, we will introduce two categories of

methods, each belonging to a distinct family, with the common objective of incorporating

label information. These two categories will be elucidated and thoroughly examined in

the subsequent sections.

2.4.1 Classifier Guidance

Classifier guidance was introduced in [3] and effectively relies on a classifier to di-

rect the diffusion model towards generating samples belonging to a specified class. [3]

demonstrated that we can employ a supplementary model, a classifier fφ(y|xt , t) to guide

the diffusion toward the target class y during training. To achieve that, we can train a

classifier fφ(y|xt , t) on the noisy sample xt to predict its class y. Then we can use the

gradients ∇log(fφ(y|xt)) to guide the diffusion process.

In practical terms, the diffusion models analyzed in the preceding sections are tweaked

accordingly to match this emerging need: a class-conditional diffusion model with mean

µθ(xt |y) and variance Σθ(xt |y). Provided that:

pθ ∼ N(µθ,Σθ) (2.25)

we can utilize the guidance formulation elucidated in the previous section (i.e. eq.2.24) to

demonstrate that the mean is perturbed by the gradients of log(fφ(y|xt)) of class y yielding:

µ̂(xt |y) = µθ(xt |y) + s · Σθ(xt |y)∇xt log(pθ(y|xt, t) (2.26)

In [49], the authors expanded on the idea described by 2.26 and employ CLIP embed-

dings to guide the diffusion. CLIP, as suggested in [6], consists of an image encoder g and

a text encoder h which aim at producing an image and text embeddings g(xt) and h(c),
respectively, wherein c is the text caption. Therefore, we can perturb the gradients with

the two embeddings’ dot product by transforming (2.26) into:

µ̂(xt |c) = µθ(xt |c) + s · Σθ(xt |c)∇xtg(xt)h(c) (2.27)

As a result, they manage to steer the generation process toward a user-defined text

caption. The algorithm implemented the described process is displayed in figure 2.7. It

29

Chapter 2. Diffusion Models - Theoretical background

Figure 2.8. Training a diffusion model for classifier-free guidance. Source [2]

is important to clarify that the authors of [3] suggested different algorithms for classifier

guidance in DDPM and DDIM settings respectively. In figure 2.7, the algorithm for DDPM

only is displayed.

2.4.2 Classifier-Free Guidance

Classifier-Free Guidance refines classifier guidance by dispensing with the classifier

while still furnishing class guidance to the model. Assuming we can integrate class

information into our diffusion model, we can configure the model to generate samples

both with and without class distinctions. Using the same formulation as in 2.24, we can

define a classifier-free guided diffusion model as:

∇logp(xt |y) = s · ∇log(p(xt|y)) + (1 − s) · logp(xt) (2.28)

Guidance can be achieved without a second classifier model as proposed by [50].

Instead of training a separate classifier, a conditional diffusion model ϸθ(xt |y) was trained

jointly with an unconditional model ϸθ(xt |0). In fact, they employ an identical neural

network for this purpose. During the training phase, they stochastically set the class

variable y to 0, thereby exposing the model to both the conditional and unconditional

setups as is obvious in the equation below:

ϸ̂θ(xt |y) = s · ϸθ(xt |y) + (1 − s) · ϸθ(xt |0) = ϸθ(xt |0) + s · ϸθ(xt |y) − s · ϸθ(xt |0) (2.29)

This admittedly paradoxical process has two major advantages:

• It employs a solitary model to direct the diffusion process.

• It facilitates the guidance process, particularly when conditioning on information

that proves challenging to predict using a classifier, such as text embeddings.

As intuitively inferred, instead of a class, y may as well be a text embedding. In other

words, to add classifier-free guidance to our diffusion model, all that needs to be done is

train the model to generate samples with class information and without class information

as visualized in figure 2.8.

30

2.4.2 Classifier-Free Guidance

Figure 2.9. Training a diffusion model for classifier-free guidance. Source [2]

The training loop undergoes a slight modification to effectively train the model in

generating output samples with and without class information. puncond stands for the

probability of replacing a class with a null class to force the model to learn how to generate

’images’ without class information. Further information on the training loop operation

and, more specifically, on loss optimization will be provided in section 2.5. However, to

concisely explain the algorithm exhibited in 2.8, we would like to to delineate the process

explicitly, step by step, while simultaneously clarifying notation:

1. Normal loop over epochs.

2. Sample images x and their respective classes c.

3. With a probability puncond, we turn some of the classes into null classes.

4. Sample timestep λ.

5. Sample noise ϸ from a normal distribution.

6. Create the noisy sample zλ.

7. Train the model ϸθ using normal MSE loss between the predicted noise and real

noise.

It is noteworthy that the training loop closely mirrors the DDPM training loop, with the

primary distinction being the inclusion of class information, alongside the introduction of

a probability mechanism to nullify the class information.

After training, the generation process, namely the sampling stage, is also slightly

altered as can be seen in figure 2.9 and summarized in the following bullets:

• Sample noise from a normal distribution.

• Normal sampling loop. Loop from time t = 1 to time t = T .

• Get the noise output from the model given the null class ϸθ(zt) and given the class

ϸθ(zt , c) of the image you want to generate. Interpolate these noise predictions to

obtain the new noise prediction ϸ̃t .

31

Chapter 2. Diffusion Models - Theoretical background

• Calculate the next step sampling from a normal distribution which uses the inter-

polated noise prediction rather than the usual noise prediction.

The sampling loop closely resembles the DDPM sampling loop, with a single modifica-

tion:

ϸ̃θ(zλ, c) = (1 +w) · ϸθ(zλ, c) −w · ϸθ(zλ) (2.30)

As apparent by carefully looking at 2.30, the noise prediction requires two forward

passes of the same image zt . One forward pass calculates the predicted noise not condi-

tioned on a desired class, and the other calculates the predicted noise conditioned on the

desired class information.

When w = 0, the model is a normal DDPM with class information. When w > 0, we

utilize classifier-free guidance. The goal is to produce an image of class c. The idea is that

the class-informed model will generate an output about the class we want to generate,

but the class signal could be stronger. To enhance the signal derived from the class

information, we can diminish the influence of the model without class information, which

would typically generate random samples. As w increases, we progressively eliminate

more "null" samples. Theoretically, by removing additional information associated with

the null class, we augment the information available for the desired class.

This approach proves effective up to a certain threshold. A w value falling within

the range of [5,20] yields satisfactory results according to literature, but this may vary

depending on the context of the generated samples. However, employing a high w value

removes an excessive amount of signal from the sample, essentially resulting in the pro-

duction of random noise due to the significant removal of signal. Here emerges the neces-

sity to highlight a drawback of classifier guidance, which involves a tradeoff between FID

and IS. FID assesses both the quality and mode coverage of the latent space, whereas IS

focuses solely on ’image’ quality.

Observing the trend, as w increases (indicating greater guidance), the FID score de-

creases while the IS score increases. This implies that with higher w values, ’images’

exhibit higher quality but demonstrate reduced variance.

2.5 Training Diffusion Models

The training procedure, in a general scope, is realized using the Algorithm 1 demon-

strated in 2.4 and is implemented by looping over epochs through the steps enumerated

below for each training step.

1. Use forward process to generate a sample xt ∼ q(xt |x0) for a t sampled uniformly at

[1, T].

• Sample timestep t from a uniform distribution t ∼ U(1, T).

• Sample ϸ from a normal Gaussian ϸ ∼ N(0,1).

• Compute noisy input sample xt for training via xt =
√
ᾱtx0 +

√
1 − ᾱtϸ

32

2.5 Training Diffusion Models

2. Compute the approximation of noise ϸ̂t = pθ(xt , t) using the model with parame-

ters θ.

3. Minimize the error between ϸt and ϸ̂t by optimizing parameters θ.

Note that we do not have to model the entire diffusion process as a single process,

but rather we can model each individual timestep individually. Doing this will speed up

training and will likely lead to a more stable training setting. If we sample the value of

t uniformly for each training image, the model should be able to learn how to model all

values of t while learning how to model the real image distribution.

To this point, it is essential to provide a few more details regarding how exactly a

diffusion model is being optimized during training, which loss functions are being uti-

lized etc. During training, a diffusion model is optimized by minimizing a loss function

that captures the discrepancy between the generated images and the target distribution.

Typically, the loss function includes components that encourage the generated images to

resemble the true data distribution while also promoting diversity and realism.

Delving into further technical details, if we take a more careful look at 2.2, we can

notice that the combination of q and p is very similar to a VAE. Thus, we can train it

by optimizing the NLL of the training data, which measures the likelihood of generating

the observed data under the model’s distribution, comprising the most common choice

for training a diffusion model. Minimizing the NLL loss effectively aligns the model’s

distribution with the true data distribution. After a series of calculations, which we do

not need to delve into here, the evidence lower bound (ELBO) can be expressed as follows:

logp(x) >= Eq(x1 |x0)[logpθ(x0|x1)] −DKL(q(xT |x0)∥p(xT))−
T∑
t=2

Eq(xt |x0)[DKL(q(xt−1|xt , x0)∥pθ(xt−1|xt)] = L0 − LT −
T∑
t=2

Lt−1

(2.31)

where:

DKL(P∥Q) =
∫ ∞
−∞

P(x) log
P(x)
Q(x)

(2.32)

and

Lt = DKL(q(xt |xt , x0)∥pθ(xt |xt+1) (2.33)

Certainly, analyzing these terms would provide clarity and deeper understanding.

Let’s break down the components of the evidence lower bound (ELBO) to gain insights

into their roles and contributions to the overall objective.

1. The Eq(x1 |x0)[logpθ(x0|x1)] term can been as a reconstruction term, similar to the one

in the ELBO of a VAE. In [1] this term is learned using a separate decoder.

2. DKL(q(xT |x0)∥p(xT)) shows how close xT is to the standard Gaussian. Note that the

entire term has no trainable parameters so it’s ignored during training.

3. The third term
∑T
t=2

Lt−1 formulates the difference between the desired denoising

steps pθ(xt−1|xt) and approximated steps q(xt−1|xt , x0). q(xt−1|xt , x0) is used for

33

Chapter 2. Diffusion Models - Theoretical background

the approximation instead of q(xt−1|xt) because, as illustrated in [43], the quan-

tity q(xt−1|xt) only becomes tractable when conditioned on x0.

Through the analysis of the evidence lower bound (ELBO), it becomes apparent that

maximizing the likelihood effectively translates into learning the denoising steps Lt . This

insight underscores the fundamental objective of training the diffusion model to accurately

denoise the input data distribution.

Intuitively, a painter (our generative model) needs a reference image x0 to slowly draw,

through the reverse diffusion process q(xt−1|xt , x0), step-by-step a new sample. As long as

x0 is provided as a reference, we are capable of sampling xt at noise level corresponding

to diffusion step t conditioned on x0. Thus, by combining equations 2.10 and 2.11, each

timestep will now yield a mean µ̂t (our target) which only depends on xt . Therefore we

can use a neural network to approximate ϸθ(xt , t) to approximate ϸ and consequently the

mean:

µ̂θ(xt , t) =
1
√
αt

(xt −
�t

√
1 − ᾱt

ϸθ(xt , t)) (2.34)

Thus, the loss function (the denoising term in the ELBO) can be formulated as follows:

Lt = Ex0,t,ϸ[
1

2 · ∥Σθ(xt , t)∥22
· ∥µ̂t − µθ(xt , t)∥22]

= Ex0,t,ϸ[
�2

t

2αt · (1 − ᾱt)∥Σθ∥22
· ∥ϸt − ϸθ(

√
ᾱtx0 +

√
1 − ᾱt · ϸ, t)∥2]

(2.35)

This insight effectively demonstrates that rather than predicting the mean of the dis-

tribution, the model will predict the noise ϸ at each timestep t.

The authors of [1] proceeded to a few simplifications to the actual loss term as they

ignore the weighting term in 2.35. Surprisingly, the simplified version outperforms the

full objective:

Lsimplet = Ex0,t,ϸ∥ϸ − ϸθ(
√
ᾱtx0 +

√
1 − ᾱt · ϸ, t)∥2 (2.36)

Additionally, they decided to keep the variance fixed and have the network learn only

the mean, as also elaborated on in a precedent chapter. This approach was subsequently

enhanced by [51], who opted to allow the network to learn the covariance matrix Σ as

well, leading to improved results.

34

Chapter 3

Motion Representation in Joint Kinematics

3.1 Fundamentals

Motion representation techniques in joint kinematics aim to describe the movement of

joints in the human body. The fields of application for motion representation techniques

in joint kinematics are diverse and encompass various domains. These techniques are es-

sential in various fields from healthcare and sports science to robotics and entertainment,

driving advancements in research, technology, and human performance. To elaborate fur-

ther, let’s examine how joint kinematics is applied in a plethora of domains and explore

its practical uses within each by providing a few characteristic examples across these

domains, ending up with its application in animation, which constitutes the primary field

of focus in the context of the current thesis.

1. Biomechanics:In biomechanics, motion representation techniques are used to an-

alyze human movement patterns, joint kinematics, and muscle dynamics. These

techniques help biomechanists understand the mechanics of human motion, study

gait analysis, assess athletic performance, and design rehabilitation programs using

methods such as Inverse Kinematics, Forward Kinematics[52] and Static Optimiza-

tion [53]. Motion capture systems, such as Vicon or Kinect[54], combined with

sophisticated motion representation methods, enable researchers to quantify and

analyze the complex interactions between different body segments during move-

ment.

2. Robotics: Motion representation techniques play a crucial role in robotics for mod-

eling the motion of robot manipulators, robotic arms, and mobile robots. These

techniques are used to describe the pose (position and orientation) of robot end-

effectors, plan trajectories, and control robot motion. By accurately representing

joint kinematics, robotics engineers can design robots that perform precise tasks in

diverse environments, such as industrial automation, manufacturing, healthcare

(e.g. surgical operations), and space exploration.

3. Sports Science: Motion representation techniques are applied in sports science

to analyze athletic performance, biomechanics of high intensity sports movements,

and injury prevention. Researchers use motion capture technology in collabota-

tion with advanced motion representation methods to optimize training programs,

35

Chapter 3. Motion Representation in Joint Kinematics

and improve athletic performance. By quantifying joint kinematics and movement

patterns, sports scientists can provide valuable insights to coaches, trainers, and

athletes, leading to more efficient training strategies and injury rehabilitation pro-

tocols.

4. Rehabilitation Engineering: Motion representation techniques are utilized in reha-

bilitation engineering to assess movement disorders, monitor rehabilitation progress,

and develop assistive devices. These techniques help rehabilitation specialists ana-

lyze the kinematics and dynamics of impaired joints, track improvements over time,

and customize rehabilitation interventions for individual patients with the contribu-

tion of simulation programs such as OpenSim[55]. By integrating motion capture

systems with biomechanical models and motion representation methods, rehabili-

tation engineers can design personalized therapies and assistive technologies to aid

individuals with mobility impairments.

5. Computer Graphics and Animation: Motion representation techniques are fun-

damental in computer graphics and animation for creating realistic simulations of

movement. These methods are employed to animate characters, simulate physical

interactions, and render lifelike animations in movies, video games and mixed reality

applications. By employing sophisticated motion representation methods, anima-

tors can achieve smooth and natural-looking motion, express emotions through

character animation, and simulate complex physical phenomena with high fidelity.

The motion generation techniques to be examined within this study are primarily

associated, naturally arising, with the aforementioned final area of application. Therefore,

we will proceed by showcasing motion representation methods predominantly utilized in

this context.

3.2 Motion representation alternatives

3.2.1 3D Keypoints

In joint kinematics, 3D positions (also known as 3D keypoints) refer to the spatial co-

ordinates that describe the location of a joint or a point p ∈ R3
in three-dimensional space.

These positions are typically represented using Cartesian coordinates (x, y, z) relative to

a reference frame. While other coordinate systems like polar or spherical coordinates

could theoretically be utilized, they are not commonly employed in the paradigm under

examination. In this context, only the Cartesian coordinate system is utilized. The equa-

tions for calculating 3D positions depend on the chosen coordinate system. In Cartesian

coordinates, the 3D position of a point is represented by its x, y, and z coordinates relative

to a reference frame. 3D positions can be either global or local. Global positions are de-

fined with respect to a fixed reference point or coordinate system, often the origin of the

coordinate system. These positions are absolute and do not change regardless of the

position or orientation of other joints in the skeleton. Global positions are typically used

to represent the overall position of joints within a larger environment. On the other hand,

36

3.2.2 Euler Angles Rotation

local positions, are defined relative to a specific parent joint or coordinate system that

may move or change orientation. These positions are relative and can vary depending on

the context or frame of reference. Local positions are often used to describe the position of

components or features relative to a parent object, such as the position of a limb relative

to the body in a character animation.

In summary, global 3D positions are absolute and defined with respect to a fixed

reference point, while local 3D positions are relative and defined with respect to a specific

object or coordinate system. In deep network architectures utilized for human motion

generation, local positions are often prioritized over global position representation. The

rationale behind this preference will be thoroughly examined in upcoming chapters.

3.2.2 Euler Angles Rotation

Euler angles describe the orientation of a rigid body in 3D space using three angles

that represent rotations about distinct axes (typically X , Y , and Z axes). Euler angles are

typically denoted as α, � and γ, where each angle represents a rotation about a different

axis. The order of rotations can vary, leading to different Euler angle conventions, such

as XYZ , ZYX etc. Euler angles are applied sequentially to rotate a coordinate system. For

instance, in the XYZ convention, a rotation by angles α, � and γ about the x, y and z

axes, respectively, can be represented as:

Rxyz(α, �, γ) = Rz(γ) · Ry(�) · Rx (α) (3.1)

where

Rx (θ) =


1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 (3.2)

The resulting rotation matrix represents the composite rotation about the specified axis

x.

While intuitive, Euler angles suffer from gimbal lock(occurs when two of the rotation

axes align.), where certain orientations can cause ambiguity or loss of one degree of

freedom. These shortcomings of the Euler angles representation prompt the development

of alternative rotation representations like quaternions and axis-angle representations for

specific applications.

3.2.3 Rotation Matrices

Rotation matrices are fundamental in representing three-dimensional rotations. They

describe how coordinates are transformed when an object is rotated about a specific axis.

A rotation matrix is a square 3x3 matrix that represents a rotation in three-dimensional

space. It preserves distances and angles, meaning that points on the surface of an object,

for instance a human skeleton in our own paradigm, remain the same distance apart and

angles between lines are preserved after rotation.

Rotation matrices are orthogonal matrices, meaning that their inverse is equal to

37

Chapter 3. Motion Representation in Joint Kinematics

their transpose: R−1 = RT . Multiplying two rotation matrices results in another rotation

matrix, implying that rotations can be composed or concatenated. Rotations about the

coordinate axes (x, y, z) can be represented by specific rotation matrices as the formula

3.2 dictates.

To rotate a point p = (x, y, z)T in three-dimensional space using a rotation matrix R,

you multiply the rotation matrix by the column vector representing the point: p′ = R · p.

Last but not least, there is a one-to-one correspondence between 3x3 rotation matri-

ces and unit quaternions. Each rotation matrix can be uniquely represented by a unit

quaternion, and vice versa, as will be analyzed in a forthcoming chapter.

Rotation matrices play a crucial role in computer graphics, robotics, physics, and en-

gineering for describing and manipulating three-dimensional orientations and transfor-

mations. They provide a concise and computationally efficient representation of rotations,

enabling precise control and analysis of spatial configurations and motion.

3.2.4 Axis-Angle Representation

The axis-angle representation is a method used to describe rotations in three-dimensional

space by specifying an axis of rotation and the angle of rotation about that axis. It is

intuitive and straightforward to visualize, making it popular for applications where inter-

pretability is important.

To delve into further detail, in axis-angle representation, a rotation in three dimensions

is characterized by a unit vector u = (ux , uy, uz) representing the axis of rotation and an

angle θ representing the magnitude of the rotation about that axis. Together, the vector

u and the angle θ define the rotation uniquely. The axis-angle representation a can be

expressed as a combination of the axis vector u and the angle of rotation θ:

a = θu (3.3)

Given an axis-angle representation a, the corresponding rotation matrix R can be

calculated using Rodrigues’ rotation formula:

R = cos(θ)I + (1 − cos(θ))uuT + sin(θ)[u] (3.4)

where I is the 3x3 identity matrix, [u] is the skew-symmetric matrix associated with

the axis vector u. Conversely, given a rotation matrix R, you can extract the axis-angle

representation using mathematical techniques such as the eigenvalue decomposition[56]

or the axis-angle formula.

To illustrate certain beneficial properties, axis-angle representation is a minimal pa-

rameterization of rotations, as it requires only four numbers (three for the axis direc-

tion and one for the angle) to represent a rotation in three dimensions. It is globally

non-redundant, meaning that each unique axis-angle representation a corresponds to a

unique rotation matrix R. Additionally, axis-angle representation allows for straightfor-

ward interpolation between two rotations. Linear interpolation (lerp) or spherical linear

interpolation (slerp) can be used to smoothly transition from one rotation to another by

38

3.2.5 Quaternions Representation

interpolating their axis-angle representations.

Axis-angle representation provides an intuitive and efficient way to represent rotations

in three dimensions. It is widely used in robotics, computer graphics, biomechanics, and

other fields where precise control and manipulation of orientations are required. Addi-

tionally, it offers advantages such as compactness, uniqueness, and ease of interpolation

compared to other rotation representations like Euler angles.

3.2.5 Quaternions Representation

Quaternions are a mathematical construct used to represent rotations in three-dimensional

space. They offer several advantages over other representations, such as Euler angles and

rotation matrices. Quaternions comprise an extension of complex numbers, comprising

a scalar part (real) and a vector part (imaginary).

A quaternion q is typically represented as q = s + υ where s is the scalar part (real)

and v is the vector part (imaginary), often denoted as υ = xi + yj + zk. In quaternion

representation, a rotation is described by a unit quaternion:

q = cos(
θ

2
) + sin(

θ

2
)u (3.5)

where θ is the angle of rotation and u is the unit axis vector. The unit axis vector u
represents the axis of rotation.

When it comes down to useful mathematical properties, quaternion multiplication is

non-commutative, meaning that q1 · q2 , q2 · q1, which secures that the defined rotations

are unique. In other words, the issue of gimbal lock is no longer present in this form of

representation. Moreover, quaternion multiplication is defined by the distributive prop-

erty and the rules for multiplying imaginary units: i2 = j2 = k2 = i · j · k = −1. Quaternion

addition and subtraction are performed component-wise.

To rotate a point p = (x, y, z) using a quaternion q, the quaternion p′ representing the

rotated point is obtained by quaternion multiplication: p′ = q · p · q∗ where q∗ represents

the conjugate of q, and quaternion multiplication is performed using the rules of quater-

nion algebra. Additionally, quaternions offer a convenient way to interpolate between two

rotations using spherical linear interpolation (slerp). Slerp ensures constant angular ve-

locity throughout the interpolation, making it suitable for smooth animations and camera

movements.

The benefits of using quaternion representation can be succinctly summarized with

the following points:

• Quaternions are compact and require only four parameters to represent a rotation,

compared to the nine parameters of a 3x3 rotation matrix.

• They avoid the issues of gimbal lock associated with Euler angles and the numerical

instability of rotation matrices.

• Quaternions provide a smooth and efficient way to interpolate between rotations,

making them ideal for animations and robotics applications.

39

Chapter 3. Motion Representation in Joint Kinematics

Quaternions are widely used in computer graphics, robotics, aerospace engineering,

and physics for representing and manipulating three-dimensional rotations. Their prop-

erties, such as compactness, numerical stability, and ease of interpolation, make them a

versatile and powerful tool for describing rotations in three-dimensional space.

3.2.6 6D Rotation Representation

The 6D rotation representation, also known as the full 6D pose representation, de-

scribes the orientation and position of an object in three-dimensional space using six

degrees of freedom (DOF). Unlike simpler representations like Euler angles or rotation

matrices, the 6D representation captures both the rotational and translational compo-

nents of the object’s pose. The 6D rotation representation consists of three components

for orientation (rotation) and three components for position (translation). The rotational

component typically uses quaternion or rotation matrix representation to describe the

orientation of the object in 3D space. The translational component represents the posi-

tion of the object’s origin in three-dimensional space using Cartesian coordinates (x, y, z).
These translational coordinates can be either absolute (global) or relative to the parent

joint in the kinematic tree.

In further detail, The orientation component can be represented by a quaternion q or

a 3x3 rotation matrix R, while the position component is represented by a translation

vector t = (x, y, z). The 6D pose representation can be written as a tuple (q, t) or as a

homogeneous transformation matrix:

T =

R t
0 1

 (3.6)

Here, R is the rotation matrix representing the orientation, t is the translation vector

representing the position, and 0 is a 1x3 zero vector.

The 6D rotation representation is a compact and comprehensive way to describe the

pose of an object in three-dimensional space as it captures both rotational and trans-

lational components, allowing for precise positioning and orientation of objects in a 3D

environment. The use of quaternions or rotation matrices ensures numerical stability and

avoids issues such as gimbal lock associated with simpler rotation representations. In-

terpolation between two 6D poses involves interpolating both the orientation and position

components separately.

In terms of fields of application, the 6D rotation representation is widely used in

computer vision, robotics, augmented reality, virtual reality and 3D graphics applications.

In robotics, it is used to represent the pose of robotic manipulators, end-effectors, and

mobile robots for navigation and manipulation tasks. In computer vision, it is used for

object tracking, pose estimation, registration, and 3D reconstruction from images or point

clouds. All in all, it is found extremely useful in these fields owing to its compactness,

numerical stability and versatility, which make it an ideal form of representation for

spatial manipulation, navigation and perception.

40

3.3 Motion Capture Datasets for Training

3.3 Motion Capture Datasets for Training

Motion capture datasets aimed for artificial human motion generation are crucial re-

sources for training and evaluating machine learning models and algorithms in the field

of computer graphics, animation, robotics, and related areas. These datasets typically

contain recorded human motion data captured from sensors or motion capture systems,

also known as mocap systems, along with associated metadata such as skeletal informa-

tion, annotations, and environmental conditions. Motion capture systems (e.g. Vicon[54],

XSens[57]) are specialized hardware setups designed to capture the movements of human

actors or objects. These systems typically use markers placed on the body or clothing of

the subject, which are tracked by multiple cameras positioned around the capture vol-

ume. Cameras can be optical (e.g., infrared cameras) or non-optical (e.g., electromagnetic

sensors), and they capture the movement of markers in three-dimensional space.

There are several motion capture datasets available for artificial human motion gener-

ation, though the number of publicly available datasets may be limited compared to other

domains, posing a strong challenge and, subsequently, an obstacle in order for the field

of human motion generation and editing to flourish further. Thus, despite the availability

of existing datasets in absolute terms, there may be challenges and limitations associated

with them, such as:

• Limited diversity: Some datasets may have a limited variety of motions, which can

affect the generalization ability of models trained on them.

• Data quality: Noise, occlusions, and artifacts in motion capture data can affect the

quality and reliability of training data.

• Scalability: : Generating large-scale datasets with diverse and realistic human mo-

tions can be time-consuming and resource-intensive.

• Privacy concerns: Datasets containing human motion data may raise privacy con-

cerns, particularly if they include identifiable individuals.

These challenges are addressed through various strategies, including data augmen-

tation, transfer learning, synthetic data generation, collaborative efforts, and privacy-

preserving techniques, to advance research in this field - it would be needless to further

elaborate on this, though. On the contrary, it is crucial that we enumerate and furnish

the requisite details regarding the datasets employed for training the models/networks

corresponding to the architectures investigated in the subsequent chapters.

3.3.1 KIT dataset

KIT MotionLanguage Dataset[39] is to date the only available dataset comprising both

3D human motions and their annotated textual descriptions, which consists of 3,911

motion sequences and 6,278 sentences, and is focused on locomotion movements. Fol-

lowing the same philosophy with KIT, there are a number of existing datasets of 3D

motion captured human motions, such as CMU Mocap[58], Human3.6M[59], MoVi[60]

41

Chapter 3. Motion Representation in Joint Kinematics

and BABEL[61], in the form of everyday actions and sports movements. However, none

of them possesses language descriptions of the motions.

A data aggregation from multiple motion capture databases was carried out to include

them all in a dataset using a unified representation that is independent of the capture

system or marker set, making it easy to work with the data regardless of its origin. To

obtain motion annotations in natural language, a crowd-sourcing approach was applied

and a web-based tool specifically built for this purpose, the Motion Annotation Tool, was

employed. The dataset contains 3911 motions with a total duration of 11.23 hours and

6278 annotations in natural language that contain 52903 words. the KIT Whole-Body

Human Motion Database, which was captured using a sampling frequency of 100 Hz.

For human subjects, a standardized marker set that consists of 56 markers is employed.

The dataset is structured as follows: Each entry comprises four files, including the

raw motion data generated by the capture system, the motion data converted using a

reference model, annotations written in natural language, and supplementary metadata.

Each entry is linked to a set of annotations, establishing a one-to-many relationship. This

data is presented in a straightforward JSON-based format: each file corresponding to an

entry contains a simple array of strings, representing all associated annotations.

The KIT dataset employs the Master Motor Map(MMM) representation which pro-

poses joint angle parameters by adopting a uniform skeleton structure with 50 DoFs as

demonstrated in [20]. A preprocess procedure was executed so as to transform joint rota-

tion angles to J = 21 joints XYZ coordinates, yielding pm ∈ R3J
and global trajectory troot

for the root joint. The preprocessed representation can be formulated as:

x i = {pm , troot}

3.3.2 HumanML3D dataset

The motivation behind creating the HumanML3D dataset, as described in [62], stemmed

from the realization that existing endeavors in generating 3D human motions from de-

scriptions were sporadic and fell short of satisfaction, primarily due to the reliance on a

single dataset in existing human motion generation methods—the KIT-ML dataset. Unfor-

tunately, this dataset was limited in size, prompting the need for a more comprehensive

alternative. Consequently, this deficiency was rectified by the development of a dedi-

cated dataset, HumanML3D, which comprises 44970 textual descriptions corresponding

to 14616 3D human motions, thus yielding three textual descriptions coupled with each

motion sequence on average. HumanML3D encompasses a diverse array of action types,

including locomotive actions, among others.

The HumanML3D dataset originates from a amalgamation of motion sequences from

the HumanAct12[63] and AMASS[64] datasets, two large-scale datasets of 3D human

motion captures that are publicly accessible. They contains motions from a variety of

human actions, such as daily activities (e.g., ’walking’, ’jumping’), sports (e.g, ’swimming’,

’karate’), acrobatics (e.g, ’cartwheel’) and artistry (e.g, ’dancing’), but, unfortunately, these

two datasets were short of textual descriptions.

Consequently, several processing steps were needed to end up with the final out-

42

3.4 Skeletal Templates in Motion Generation

come. A textual annotation process via the Amazon Mechanical Turk (AMT), where native

English-speaking turkers were hired and asked to describe a motion with at least 5 words.

3 textual descriptions were asked for each motion clip from distinct workers. A manual

post-processing step was undertaken to filter out abnormal textual descriptions.

Additional post-processing was carried out for normalization purposes. Motions were

scaled to 20 FPS, and those longer than 10 seconds were randomly cropped to 10-second

ones - they were then retargeted to a default human skeletal template and properly ro-

tated to face Z+ direction initially. Human skeletal templates will be comprehensively

addressed in an upcoming section.

The HumanML3D dataset comprises the largest and most diverse collection of scripted

human motions, consisting of 14616 motions and 44970 descriptions composed by 5371

distinct words. The total length of motions amounts to 28.59 hours, in which the average

motion length is 7.1 seconds. The minimum and maximum duration are 2s and 10s

respectively. In terms of the textual descriptions, their average and median lengths are

12 and 10 words, respectively.

The HumanML3D Representation Format proposes a motion representation x1:L
in-

spired by motion features in character control suggested in [65]. This redundant rep-

resentation is quite suited to neural models, particularly VAEs. Specifically, the i − th

pose x i is defined by a tuple of root angular velocity ṙa ∈ R along Y-axis, root linear

velocities (ṙx , ṙz ∈ R) on XZ-plane, root height ry ∈ R, local joints positions jp ∈ R3N
,

velocities jυ ∈ R3N
and rotations jr ∈ R3N

in root space and binary foot-ground contact

features cf ∈ R4
by thresholding the heel and toe joint velocities, where N denotes the

joints number, yielding:

x i = {ṙa , ṙx , ṙz, ry, jp, jυ, jr , cf }.

3.4 Skeletal Templates in Motion Generation

In the context of human motion generation, skeletons play a crucial role as they pro-

vide a structured representation of the human body’s underlying anatomy and kinematic

structure. A skeleton is a hierarchical structure composed of interconnected bones or

joints representing the articulated structure of the human body.

In computer graphics, animation, and biomechanics, skeletons are often represented

as hierarchical trees, where each bone or joint is a node in the tree, and the connections

between them represent the articulations between body parts. Skeletons are typically

represented using joint-based models or bone-based models. In joint-based models, each

joint represents a point of articulation between bones, and rotations at these joints de-

termine the pose of the skeleton. In bone-based models, bones are represented as rigid

segments, connecting adjacent joints, and transformations (e.g., rotations and transla-

tions) are applied to these bones to pose the skeleton. The motion generation models

employed in this study are exclusively oriented around joints. As a result, it is imperative

for us to utilize joint-based skeletal templates for our objectives.

Skeletons serve as the underlying structure for generating realistic and natural-

looking human motions. Motion generation algorithms often manipulate the pose of

43

Chapter 3. Motion Representation in Joint Kinematics

the skeleton by applying rotations and translations to its joints or bones. By animating

the skeleton, motions can be synthesized for various applications, including computer

animation, virtual reality, gaming, biomechanics research, and robotics.

Motion capture data, which records the movements of real humans or creatures, is of-

ten applied to skeletons using a process called retargeting. Retargeting involves mapping

the motion capture data onto a target skeleton with a different structure or proportions,

enabling the reuse of captured motions for different characters or creatures. Skeletons

provide a common representation that facilitates retargeting across different characters

or creatures. This circumstance prompted the scientific community to establish baseline

skeletal templates. These templates enable the retargeting of 3D motion capture data,

recorded by diverse devices or sophisticated mocap systems, to a standardized skeleton

acting as a reference. The most common out of these templates is, clearly, the SMPL

skeleton and, secondarily, the KIT dataset skeleton.

3.4.1 The SMPL skeleton

The SMPL skeleton stands out as the most commonly employed in 3D motion capture

datasets published over the last few years. Its topology is depicted in figure 3.1. The SMPL

skeleton was initially introduced in [5] and has been extensively used because it comprises

a simplified skeleton topology that captures the main anatomical features and DOFs of

the human body while maintaining simplicity and efficiency for computational purposes.

The skeleton topology in SMPL follows a hierarchical structure, with each joint repre-

senting a point of articulation between bones. The joints are organized in a hierarchical

manner, typically starting from a root joint (e.g., pelvis) and branching out to other body

parts such as the spine, limbs, and head. The hierarchy reflects the natural anatomical

structure of the human body, with parent-child relationships between joints representing

the kinematic chain of the body.

The SMPL skeleton is consisted of 24 joints as can be seen in 3.1. Depending on the

motion data representation, each joint can be represented via 3D keypoints or some kind

of rotation representation (e.g. quaternions, rotation matrices) or a combination of them.

The SMPL skeleton was qualified over other skeleton topologies to operate as a base-

line topology owing to the fact it avoids excessive complexity that could lead to computa-

tional overhead or numerical instability. Indeed, the straightforwardness of the skeleton

topology enhances the scalability and usability of the SMPL model for various applica-

tions, including artificial animation generation and subsequent animation pipelining in

computer graphics and game engines, such as Unreal Engine. These aspects will be

further elucidated in upcoming chapters. As expected, the widespread consideration of

the SMPL skeleton as the universal standard lead to ensuring consistency and interoper-

ability across different implementations and applications. Standardization facilitates the

exchange of data and models between researchers and practitioners, enabling collabora-

tion and reproducibility in the field of human body modeling and animation.

44

3.5 The SMPL model

Figure 3.1. SMPL skeleton topology. Source: [4]

3.5 The SMPL model

3.5.1 Overview

The SMPL model is a widely used parametric model for representing human body

shape and pose in computer graphics, computer vision and related fields. It was first

introduced in [5] and has played a pivotal role in the context of human motion representa-

tion in diverse settings as it fulfils a two-fold purpose: faithfully representing the motion

performed by a human skeleton while effectively depicting the shape of the subject’s body,

thereby facilitating the customization of human motion.

In further detail, the paper addresses the need for a compact and expressive model

that can accurately represent human body shape and pose variations across different

individuals. It introduces the SMPL model as a solution to this problem, which captures

both body shape and pose using a low-dimensional parameterization. In short, it could

be claimed that the SMPL model represents the human body as a combination of a linear

shape space and a pose-dependent deformable mesh. It defines a linear blend skinning

(LBS) function that maps a set of pose-dependent joint rotations to the vertices of a

mesh. The model consists of a mean body shape and a set of shape parameters that

capture deviations from the mean shape. Pose is represented by a set of joint rotations

parameterized using rotation matrices (3.2.3) or quaternion (3.2.5) representations.

45

Chapter 3. Motion Representation in Joint Kinematics

Figure 3.2. The SMPL model components. Source: [5]

3.5.2 Parameterization

Regarding the parameterization, body shape is parameterized using a low-dimensional

linear subspace defined by principal component analysis (PCA) on a training dataset of

body scans. The resulting principal components comprise body shape blend shapes. The

parameters of the model are learned from data including the rest pose template, blend

weights, pose-dependent blend shapes, identity-dependent blend shapes and a regressor

from vertices to joint locations.

Pose is parameterized by joint rotations, with each joint represented by three degrees

of freedom (DOFs) for rotation in 3D space. The pose-dependent deformations are modeled

using a set of pose-dependent corrective blend shapes. Unlike similar prior models, such

as [66], the pose-dependent blend shapes are a linear function of the elements of the pose

rotation matrices.

The SMPL model operational philosophy is efficiently depicted in figure 3.2. The SMPL

model decomposes body shape into two components: identity-dependent shape and non-

rigid pose-dependent shape. The SMPL model employs a vertex-based skinning approach

that incorporates corrective blend shapes. Each blend shape is represented as a vector

of concatenated vertex offsets. The process commences with an artist-created template

mesh T̄ ∈ R3N
where N = 6890(vertices) and is consisted of 23 joints, leaving the root

joint out of consideration. The mesh has the same topology for men and women. Overall,

the SMPL is defined by:

1. a mean template mesh T̄ in the zero pose θ⃗∗

2. a set of blend weights W ∈ RNxK

3. a blend shape function BS(�⃗) : R|�⃗| → R3N
that takes as input a vector of shape

parameters �⃗ and outputs a blend shape sculpting the subject identity

4. a function J(�⃗) : R|�⃗| → R3K
to predict K joint locations as a function of shape

parameters �⃗

5. a pose-dependent blend shape function BP(θ⃗) : R|θ⃗| → R3N
that takes as input a

vector of pose parameters, �⃗, and accommodates the effect of the pose-dependent

deformations

46

3.5.2 Parameterization

The corrective blend shapes of these functions are added to the rest pose as illustrated

in 3.2(c). Finally, a standard blend skinning function W () (most prevalently linear) is ap-

plied to rotate the vertices around the estimated joint centers with smoothing defined by

the blend weights. The result is a model M(�⃗, θ⃗;Φ) : R|�⃗|x |θ⃗| → R3N
that maps shape and

pose parameters to vertices as shown in 3.2(d). Φ represents the learnt model param-

eters. Given a particular skinning method (e.g. LBS) our goal is to learn Φ to correct

for limitations of the method so as to model training meshes. Using the standard linear

blend skinning function W(T̄, J, θ⃗,W) : R|�⃗|x |θ⃗|x3Nx3K → R3N
, which takes vertices in the

rest pose T̄, joint locations J, a pose θ⃗ and the blend weights W, we obtain the posed

vertices.

Each element of wi,k the learned blend weight matrix W represents how much the

rotation of part k effects the vertex i. Note that for securing compatibility with existing

rendering engines, W is assumed to be sparse, thus allowing at most four parts to

influence a vertex.

Our model M(θ⃗, �⃗;Φ) can be explicitly defined through the following two equations:

M(θ⃗, �⃗) = W (Tp(θ⃗, �⃗), J(�⃗), θ⃗,W) (3.7)

Tp(θ⃗, �⃗) = T̄ + BS(�⃗) + BP(θ⃗) (3.8)

where BS(�⃗) and BP(θ⃗) are vectors of vertices representing offsets from the template

and are also known as shape and pose blend shapes, respectively. Therefore, with a bit

of creative thinking, one can discern that the joint centers are influenced by both body

shape and the template mesh, which undergoes deformation through blend skinning,

accounting for both pose and shape variations.

Up to this juncture, it’s crucial to delve deeper into two pivotal components of the

SMPL model: the shape blend shapes BS(�⃗) and pose blend shapes BP(θ⃗). The body

shapes of different people are represented by a linear function BS such that:

BS(�⃗;S) =
|�⃗|∑
i=1

�nSn (3.9)

where |�⃗| is the number of linear shape coefficients, and the Sn ∈ R3
represent orthonormal

principal components of shape displacements. Notationally, the values to the right of a

semicolon represent learnt parameters, while those on the left are parameters set by an

animator, yielding the immediate conclusion that BS(�⃗;S) is dependent exclusively upon

matrix S, which is learnt from registered training meshes, where S = [S1, ...,S|�⃗|] ∈ R3Nx |�⃗|
.

Figure 3.2(b) illustrates the application of these shape blend shapes to the template T̄ to

produce a new body shape.

Turning to pose blend shapes, we define function R : R|θ⃗| → R9K
which maps a pose

vector θ⃗ to a vector of concatenated part relative rotation matrices. Given that the SMPL

rig is consisted of 23 joints, R is a vector of 23x9 = 207 elements. R is non-linear with

respect to θ as they are related through sine and cosine functions. The effect of the pose

47

Chapter 3. Motion Representation in Joint Kinematics

blend shapes, on the other hand, is supposed to be linear in R∗(θ⃗) = R(θ⃗) − R(θ⃗∗) where

θ⃗∗ denotes the rest pose. Let Rn(θ⃗) be the n-th element of R(θ⃗), then the vertex deviations

from the rest template are expressed as:

BP(θ⃗;P) =
9K∑
i=1

(Rn(θ⃗) − Rn(θ⃗∗))Pn (3.10)

where the blend shapes, Pn ∈ R3N
, are vectors representing the vertex displacements.

Here, P = [P1, ...,P9K] ∈ R3Nx9K
is a matrix of all 207 pose blend shapes. In this way, the

pose blend shape function BP(θ⃗;P) is explicitly defined by the matrix P.

To proceed to joint positions, we have to enumerate some fundamental principals.

Firstly, various body shapes entail different joint locations, with each joint represented

by its 3D location in the rest pose. Ensuring the accuracy of these joint locations is

paramount; otherwise, artifacts may arise when posing the model using the skinning

equation. Hence, we define the joints as a function of the body shape �⃗, to maintain

fidelity and mitigate potential artifacts, as follows:

J(�⃗;J , T̄,S) = J(T̄ + BS(�⃗;S)) (3.11)

where J is a matrix that transforms rest vertices into rest joints. We learn the regression

matrix, J , from examples of different people in many poses. This matrix models which

mesh vertices are important and how to combine them to estimate the joint locations.

In summarizing the parameterization process, one may assert that the complete set of

model parameters for the SMPL model can be defined as Φ = {T̄,W,S,J ,P}. Once this

set of parameters are learnt and kept fixed, new body shapes and poses are created and

animated by varying �⃗ and θ⃗ respectively.

3.5.3 Model Optimization

Given an input image or point cloud of a human subject, the SMPL model is fitted

to the observed data by optimizing the shape and pose parameters to minimize the dif-

ference between the model and the observations. Model fitting can be performed using

optimization techniques such as gradient descent.

Delving into further detail, the goal is to train the parameters Φ = {T̄,W,S,J ,P}

to minimize vertex reconstruction error on two datasets, namely the multi-pose and the

multi-shape datasets. Each dataset contains meshes with the same topology as our

template mesh T̄ that have been aligned to high-resolution 3D scans - these aligned

meshes “registrations.” Since the SMPL model segregates shape and pose, they are trained

independently,thus streamlining the optimization process. {J ,W,P} were trained using

the multi-pose dataset while {T̄,S} were trained with the shape dataset. Separate models

are trained for men and women. Our examination will be confined to a high-level overview

of the optimization process, as providing further detail on this matter falls beyond the

scope of the present work.

48

3.5.3 Model Optimization

Pose parameter training

On the first end, namely the pose parameters training, an objective function consisting

of a data term ED is minimized along with a set of regularization terms {EJ ,EY ,EP ,EW }.
The data term penalizes the squared Euclidean distance between registration vertices

and model vertices. The symmetry regularization term EY penalizes left-right asymmetry

encourages symmetric template meshes and,more importantly, symmetric joint locations,

as, according to literature, enforcing symmetry produces models that are visually more

intuitive for animation purposes. Our model is hand-segmented into 24 parts. This seg-

mentation is used to compute an initial estimate of the joint centers and a regressor JI

from vertices to these centers. This regressor computes the initial joints by taking the

average of the ring of vertices connecting two parts. When estimating the joints for each

subject, they are regularized to be close to this initial prediction through the regulariza-

tion term EJ . To help prevent overfitting of the pose-dependent blend shapes, they are

regularized towards zero through the regularization term EJ . In similar fashion, the blend

weights are regularized towards the initial weights WI , which are computed by simply

diffusing the segmentation. Hence, the overall training loss for {W,P} is formulated as:

E∗ = ED + λYEY + λJEJ + λPEP + EW (3.12)

where λY = 100, λJ = 100 and λP = 25 were set empirically. Optimizing the above yields a

template mesh and joint locations for each subject, but the aim is to predict joint locations

for new subjects with new body shapes. To that end, the regressor matrix J is learnt to

predict the training joints from the training bodies. This approach encourages sparsity of

the vertices used to predict the joints. Making weights positive and add to one discourages

predicting joints outside the surface. These constraints enforce the predictions to be in

the convex hull of surface points.

Shape parameter training

The SMPL shape space is defined by a mean and principal shape directions {T̄,S} It is

computed by running PCA on shape registrations from the aforementioned multi-shape

database after pose normalization. This normalization is critical to ensure that pose and

shape are modeled separately. Pose normalization transforms a raw registration VS
j into

a registration T̂Sj , in the rest pose θ⃗∗. This normalization is critical to ensure that pose

and shape are modeled separately but we will not refrain from delving further into the

pose normalization process to avoid excessive elaboration. Once the pose θ⃗∗j is known, T̂Sj
is obtained through minimizing:

T̂Sj = argmin

T̂
||W (T̂ + BP(θ⃗j;P),JT̂, θ⃗j,W) − VS

j ||
2

(3.13)

This process computes the shape that, when posed, aligns with the training regis-

tration. This resultant shape is termed the pose-normalized shape. PCA is then run on

{T̂Sj }
Ssubj
j=1

to obtain {T̄,S}. This procedure is devised to maximize the explained variance of

49

Chapter 3. Motion Representation in Joint Kinematics

Figure 3.3. Shape Blend Shapes: Joint locations (red dots) vary as a function of body
shape and are predicted using the learned regressor J . Source: [5]

vertex offsets in the rest pose, considering a constrained number of shape directions. It is

crucial to emphasize that optimizing pose is of paramount importance when constructing

a shape basis from vertices. Without this step, pose variations of the subjects in the

shape training dataset would be embedded in the shape blend shapes. Consequently, the

resulting model would not be accurately decomposed into shape and pose components.

Moreover, it is worth noting that this approach differs from methods like SCAPE[67] or

BlendSCAPE[68], where PCA is conducted in the space of per-triangle deformations. Un-

like vertices, triangle deformations do not exist in a Euclidean space. Therefore, PCA on

vertices is more principled and aligns with the registration data term, which comprises

squared vertex disparities.

Figure 3.3 illustrates the first three shape components, demonstrating how the joint

locations change with variations in body shape. The spheres represent the joint positions,

computed from the surface meshes using the learned joint regression function. Addition-

ally, the lines connecting the joints across the standard deviations depict how the joint

positions linearly vary with shape.

Overall Optimization

Owing to the complexity of the SMPL optimization process, it is deemed essential to

offer a concise overview of the entire procedure.

Pose parameters θ⃗j are initialized as per in eq.3.12 by minimizing the difference be-

tween the model and the registration edges, using an average template mesh obtained

by 3.13. {T̂P , ĴP ,W,P,Θ} are estimated in an alternating manner to minimize eq.3.12.

Subsequently, J is estimated from {T̂P , ĴP } and PCA is run on pose normalized subjects

{T̂Sj }
Ssubj
j=1

to obtain {T̄,S}. The final model is is defined by {J ,W,P, T̄,S}. Gradients are

computed with automatic differentiation using the the Chumpy framework introduced in

[69].

3.5.4 Impact

SMPL models can be animated significantly faster than real time on a CPU using

standard rendering engines. Consequently SMPL addresses an open problem in the field;

it makes a realistic learned model accessible to animators, allowing them to realistically

50

3.6 The CLIP model

animate human bodies, which is exactly why we devote so much time and space to it in

the present work.

Additionally, since SMPL relies on standard skinning techniques, it seamlessly in-

tegrates with existing 3D animation software. Specifically, for a given body shape, we

generate the subject-specific rest-pose template mesh and skeleton (including estimated

joint locations). We export SMPL as a rigged model with pose blend shapes in Autodesk’s

Filmbox (FBX) file format, ensuring cross-platform compatibility. The model loads as a

typical rigged mesh and can be animated as usual in standard 3D animation software.

Pose blend weights can be precomputed, baked into the model, and exported as an

animated FBX file. Such files can be directly loaded into animation packages and played.

We have tested the animated FBX files in Maya, Unity, Blender and, lately, in Unreal

Engine. Pose blend weights can also be computed on the fly given the pose given a pose

θ⃗t at time t.

Naturally, the SMPL model also entails certain limitations that need to be acknowl-

edged. Firstly, SMPL exclusively accounts for joint angles and shape parameters, omitting

factors such as breathing, facial motion, muscle tension, or any changes independent of

skeletal joint angles and overall shape. However, these factors could potentially be incor-

porated as additional additive blend shapes. Secondly, although most model parameters

are learned, not all are. The segmentation of the template into parts, the topology of

the mesh, and the zero pose are manually defined. While theoretically these aspects

could also be learned, the expected improvements would likely be marginal relative to the

significant effort required.

Overall, SMPL aims to create a skeletally-driven human body model capable of captur-

ing body shape and pose variation as effectively as, or even better than, previous models.

It achieves this while maintaining compatibility with existing graphics pipelines and soft-

ware. To achieve these goals, SMPL utilizes standard skinning equations and defines

body shape and pose blend shapes that modify the base mesh. The model is trained on

thousands of aligned scans of different people in various poses.

3.6 The CLIP model

CLIP (Contrastive Language-Image Pretraining) is a neural network model devel-

oped by OpenAI and was first introduced in [6]. It is designed to understand images and

text jointly in a single model. One of the remarkable features of CLIP is its ability to gen-

eralize across a wide range of tasks without task-specific training. This means that CLIP

can perform tasks such as image classification, object detection, and image-text retrieval

without needing additional fine-tuning on specific datasets for each task, demonstrat-

ing remarkable versatility in a plethora of different tasks such as image and text search,

content moderation, image generation conditioned on text prompts, and more. Unlike tra-

ditional image recognition models that are trained solely on images, or natural language

processing models that focus only on text, CLIP can comprehend both modalities simul-

taneously. However, in a CLIP model, the only interaction between the image and text

domains is a single dot product in a learned joint embedding space. This pivotal property

51

Chapter 3. Motion Representation in Joint Kinematics

of CLIP is what renders it a valuable asset in the context of human motion generation.

3.6.1 Architecture

CLIP is based on a transformer[70] architecture, similar to models like GPT (Generative

Pre-trained Transformer)[71] and BERT[72] (Bidirectional Encoder Representations from

Transformers). This architecture allows CLIP to effectively process and represent both

images and text. In the human motion paradigm, CLIP proves useful with text encoding,

which involves transforming text tokens into numerical feature vectors that serve as a

factor of supervision.

The transformer architecture, which relies heavily on self-attention mechanisms. Self-

attention allows the model to weigh the importance of different words or image regions

when processing each input token. This mechanism enables CLIP to capture long-range

dependencies and relationships between elements in both images and text. This is the key

characteristic of CLIP that can be critical in the domain of human motion generation - it is

hugely important that long textual descriptions which significantly differ verbally produce

similar text embeddings in terms of cosine distance, so that the generated motions are

similar as should be.

The text encoder in CLIP is based on a Transformer architecture, as described in [70],

with modifications outlined in [73]. As a base size, a 63M-parameter model with 12 lay-

ers, each 512 units wide and comprising 8 attention heads, is utilized. The Transformer

operates on a lower-cased BPE representation of the text, with a vocabulary size of 49,152

as explained in [74]. To ensure computational efficiency, the maximum sequence length

is capped at 76 tokens. The text sequence is enclosed within [SOS] (start of sequence) and

[EOS] (end of sequence) tokens, and the activations of the highest layer of the Transformer

at the [EOS] token are considered as the feature representation of the text. These acti-

vations are layer-normalized and then linearly projected into the multi-modal embedding

space. Masked self-attention is employed in the text encoder to preserve the capability

to initialize with a pre-trained language model or incorporate language modeling as an

auxiliary objective.

3.6.2 Training

CLIP is trained using a contrastive learning approach. Contrastive learning is a

training paradigm where the model learns by contrasting similar pairs of inputs with dis-

similar pairs. In the case of CLIP, during training, the model is presented with pairs of

images and text descriptions. The objective is to maximize the similarity between embed-

dings of matching image-text pairs while minimizing the similarity between embeddings

of mismatched pairs. This training strategy enables CLIP to understand the semantic

relationships between images and text.

More specifically, given a batch of N (image, text) pairs, CLIP is trained to predict

which of the NxN possible (image, text) pairings across a batch actually occurred. To

do this, CLIP learns a with high pointwise mutual information as well as the names of

all Wikipedia articles above a certain search volume. Finally all WordNet synsets not

52

3.6.3 Impact

Figure 3.4. Text encoder. Source: CLIP paper [6]

already in the query list are added. multi-modal embedding space by jointly training

an image encoder and text encoder to maximize the cosine similarity of the image and

text embeddings of the N real pairs in the batch while minimizing the cosine similarity

of the embeddings of the N2 − N incorrect pairings. A symmetric cross entropy loss over

these similarity scores. This loss function practically quantifies the agreement between

embeddings of image-text pairs. It penalizes the model when embeddings of matching

pairs are far apart and when embeddings of mismatched pairs are too close. To conclude

the training specifics, CLIP employs techniques such as batch normalization and scaling

of embeddings to ensure stability and convergence during training,. These techniques

help prevent issues like vanishing or exploding gradients and ensure that the model can

effectively learn meaningful representations of both images and text.

3.6.3 Impact

CLIP is an example of using natural language as a training signal for learning about a

domain other than language, As seen in the diffusion-based architectures to be presented

and analyzed in the following chapters, the text encoder derived from CLIP (see figure

3.4) plays a pivotal role in efficiently channeling the influence of text supervision into our

backbone models. Overall, the mathematical foundations of CLIP involve a combination

of transformer-based architectures, contrastive learning principles, and techniques for

embedding normalization and scaling, all working together to enable the model to un-

derstand and represent both images and text in a unified manner, entailing a significant

advancement in multimodal AI.

53

Chapter 4

Diffusion-based Architectures in Human Motion

Synthesis

In recent years, the field of computer graphics and animation has witnessed remark-

able advancements in the generation and manipulation of human motion. With the

growing demand for realistic character animation in various domains such as virtual

reality, gaming, film production, and human-computer interaction, researchers have de-

voted substantial efforts to develop sophisticated techniques that can accurately model

and animate human movements.

Among other suggested approaches, diffusion-based techniques have emerged as

probably the most promising tools in the context of human motion generation and editing.

Leveraging concepts from statistical physics, diffusion models are able to produce high-

quality samples and can benefit from stable training compared to e.g. GANs. However,

it relies on a long Markov chain of reverse diffusion steps to generate samples, so it can

be computationally expensive and slower than GANs or VAEs - this shortcoming can be

bypassed by using DDIM scheduling as analyzed in section 2.3.

This chapter provides a comprehensive overview of the state-of-the-art diffusion-based

techniques for human motion generation and editing which are being comparatively eval-

uated in the following chapter. We delve into the key components of diffusion-based in

terms of modelling, input/output motion representation, training datasets, computational

complexity, etc. In this way, the latest advancements in the field of diffusion-based motion

synthesis algorithms will be encompassed demonstrating how these methods leverage

large-scale motion databases to learn spatio-temporal patterns and generate plausible

human motions in diverse scenarios.

The application of diffusion-based techniques investigated in this chapter are addi-

tionally concerned with motion editing tasks, such as motion in-betweening (temporal

editing), spatial or joint editing and motion root trajectory control. The ultimate goal of

fulfilling the seamless manipulation of motion sequences is destined to enable users to

modify, blend, and refine animations, securing motion realism and physical plausibility

at the same time.

Throughout this chapter, we highlight exemplary works that have showcased the

greatest efficacy and versatility among diffusion-based techniques in the paradigms of hu-

man motion synthesis and editing. By elucidating the underlying principles and method-

55

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

ologies, we aim to provide readers with a comprehensive understanding of the current

state-of-the-art methods, laying the groundwork for the comparative evaluation displayed

in the following chapter.

4.1 Motion Diffusion Model (MDM)

In the generation paradigm, such as motion generation, a diffusion model endeavors

to learn how to produce additional samples of a given concept, such as motions, with a

degree of diversity compared to the existing dataset. Conceptually, a diffusion model aims

to grasp the essence of a target concept within the generation framework. To achieve this

objective, it systematically introduces noise into input samples, such as motion samples,

until the sample becomes fully "diffused," indicating that the noise is uniformly distributed

across the sample, including joint rotations and positions. Subsequently, the neural

network learns to separate the noise from the "true signal" and generate a novel motion.

Once the neural network is trained under this framework, the trained diffusion model

essentially samples noise from a normal (Gaussian) distribution and generates a new

motion by eliminating the noise. The process of adding noise is iterated for a predefined

number of steps, typically set to 1000 in MDM (Motion Diffusion Models). The magnitude

of noise added at each step increases exponentially, while the percentage of the original

image diminishes exponentially over the course of the noising process, namely while the

number of diffusion steps is being increased.

4.1.1 Motion Representation & Operational Modes

The MDM’s goal, no matter what the employed mode is, is to generate a sequence

of poses x1:N
t given an arbitrary condition c, where N is the number of frames of the

generated motion and t corresponds to the step of the denoising process (from 1 to 1000).

Unconditioned motion generation is also possible, which we denote as the null condition

c = ∅. The generated motion x1:N = {x i}Ni=1
is a sequence of human poses represented by

either joint rotations or positions x i ∈ RJxD where J is the number of joints and D is the

dimension of the joint representation. In MDM, D is a feature vector of size 263 for the

HumanML3D dataset and of size 251 for the KIT dataset for each frame. In further detail,

the feature vector is composed of:

• root height (y-dimension) (1)

• root angular velocity along y-axis (1)

• root linear velocities on xz-plane (2)

• joint positions (3x21) - (3X20 for KIT)

• joint rotations in 6D continuous rotation representation (6x21) - (6x20 for KIT)

• joint velocities (3x22) - (3x21 for KIT)

56

4.1.2 Network Architecture, Sampling & Optimization

• binary features obtained by thresholding the heel and toe joint velocities to empha-

size the foot ground contact (4)

MDM is trained on three different settings, namely, in mere generation mode (text-to-

motion and action-to-motion) and in two editing modes, namely temporal inpainting and

spatial inpainting, especially for the upper body.

In the generation mode, the model accepts as input a text prompt that directs the

generation and, optionally, the motion length (in number of frames requested) of the gen-

erated motion. In the editing modes, the model additionally receives a motion tensor of

dimensions NxD where N is the number of requested frames and D stands for the dimen-

sionality of the motion joint representation, namely the feature vector fully describing the

motion for each frame.

In the in-betweening (temporal inpainting) mode, the model additionally accepts a

temporal mask determining the frames that are destined to be edited (e.g. from frame

60 to frame 100), while in the body part editing mode (e.g. the upper body editing model

which is available in MDM model registry) a spatial mask determining which joints are

about to be edited (across all frames). Spatiotemporal masking is also possible with the

code implementation available but has not been evaluated. An optimization towards this

direction is proposed in one of the following chapters.

In both settings (motion generation and motion editing), context embeddings are used

as supervision factors by the model. More specifically, a time embedding implying the

noise level of the current diffusion step (ranging from 1 to 1000 in the MDM) and a text

embedding, namely a feature vector created by the input text prompt tokenization

4.1.2 Network Architecture, Sampling & Optimization

A notable design-choice is the prediction of the sample, rather than the noise, in each

diffusion step. This facilitates the use of established geometric losses on the locations

and velocities of the motion, such as the foot contact loss. As we demonstrate, MDM is a

generic approach, enabling different modes of conditioning and different generation tasks

which are analyzed in the following paragraph.

In further detail, the model is illustrated in figure 4.1. G is implemented with a

straightforward transformer encoder-only architecture. The transformer architecture is

temporally aware, enabling learning arbitrary length motions, and is well-proven for the

motion domain as shown in [75], [76]. The noise time-step t and the condition code c

are each projected to the transformer dimension by separate feed-forward networks, then

summed to yield the token ztk. Each frame of the noised input xt is linearly projected into

the transformer dimension and summed with a standard positional embedding. ztk and

the projected frames are then fed to the encoder. Excluding the first output token (corre-

sponding to ztk), the encoder result is projected back to the original motion dimensions -

after predicting the motion for each frame with the transformer encoder G - and serves as

the prediction x̂0. Text-to-motion is implemented by encoding the text prompt to c with

CLIP text encoder, which was extensively analyzed in paragraph 3.6.

57

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

Figure 4.1. MDM architecture overview. Source: [7]

Diffusion is modeled as a Markov noising process {x1:N
t }

T
t=0

where x1:N
0

is sampled from

the normal distribution:

q(x1:N
t |x

1:N
t−1

) = N(
√
αtx1:N

t−1
, (1 − αt)I) (4.1)

In our context, conditioned motion synthesis models the distribution p(x0|c) as the

reversed diffusion process of gradually cleaning xT . Instead of predicting ϸt as shown in

2.5, the signal x̂0 = G(x, t, c) is directly derived by minimizing the objective:

L = Ex0∼q(x0 |c),t∼[1,T][∥x0 − G(x, t, c)∥2
2
] (4.2)

In the realm of motion generation, generative networks are typically regulated using

geometric losses, as recommended by [75]. These losses serve to enforce physical princi-

ples and deter artifacts, promoting the emergence of natural and cohesive motion. MDM

employs three prevalent geometric losses for regulation:

• positions (in case rotations are predicted) with the optimization term:

Lpos =
1

N

N∑
i=1

∥FK(x̂ i
0
) − FK(x i

0
)∥2

2
(4.3)

• foot contact with the optimization term:

Lfoot =
1

N − 1

N−1∑
i=1

∥FK(x̂ i+1

0
) − FK(x̂ i

0
) · fi∥22 (4.4)

58

4.1.2 Network Architecture, Sampling & Optimization

Figure 4.2. MDM sampling. Source: [7]

• velocities with the optimization term:

Lvel =
1

N − 1

N−1∑
i=1

∥(x i+1

0
− x i

0
) − (x̂ i+1

0
− x̂ i

0
)∥2

2
(4.5)

FK(∗) denotes the forward kinematic function converting joint rotations into joint

positions (otherwise, it denotes the identity function). fi ∈ {0,1}J is the binary foot contact

mask for each frame i. Specifically relevant to feet, this loss determines their contact with

the ground based on binary ground truth data. Essentially, it addresses the issue of

foot-sliding by nullifying velocities when the feet are in contact with the ground.

The overall training loss is formulated as:

L = Lsimple + λposLpos + λfootLfoot + λvelLvel (4.6)

The models have been trained with T = 1000 noising steps and a cosine noise sched-

ule.

Sampling from p(x0|c) is carried out iteratively as described in [1]. In every time

step t, a clean sample x0 = G(xt , t, c) is predicted and noises back to xt−1 from t = T

until x0 is achieved as demonstrated in figure 4.2. The idea is that higher values of

t construct high-level features of the object and lower levels of t construct more fine-

grained features in the image-motion. The encoder G is trained using classifier-free

guidance as explained in 2.4.2. In practice, G learns both the conditioned and the

unconditioned distributions by randomly setting c = ∅; for 10% of the samples, such

that G(xt , t, ∅) approximates p(x0). The bigger the percentage, the more we boost diversity

against fidelity. Subsequently, when sampling G diversity and fidelity trade-off is adjusted

by interpolating or even extrapolating the two variants using s, namely:

Gs(xt , t, c) = G(xt , t, ∅) + s(G(xt , t, c) − G(xt , t, ∅)) (4.7)

59

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

The MDM models provided have been trained using s = 2.5.

4.2 PriorMDM

PriorMDM was inspired to address challenges such as the scarcity of annotated motion

data, the focus of former methods primarily on single-person motions as well as a lack of

refined control. In this study, three forms of composition based on diffusion priors are in-

troduced: sequential, parallel, and model composition. Through sequential composition,

the challenge of generating long sequences is addressed. A method called DoubleTake

is proposed for inference, enabling the generation of extended animations comprised of

sequences of prompted intervals and their transitions, using a prior trained exclusively

for short clips. With parallel composition, progress is made toward two-person genera-

tion. Initially, using two fixed priors and a few examples of two-person training data, a

communication block termed ComMDM is developed to coordinate interaction between

the resulting motions. In this section, though, we will not focus on this novelty of Pri-

orMDM. When it comes to employing model composition, individual priors are trained to

complete motions that realize a prescribed motion for specific joints. Subsequently, Diffu-

sionBlending, an interpolation mechanism, is introduced to effectively blend several such

models, facilitating flexible and efficient fine-grained joint and trajectory-level control and

editing.

Overall, the contribution of PriorMDM is demonstrating that pretrained diffusion-

based motion generation models can serve as priors for composition, facilitating out-of-

domain motion generation and streamlined control. Despite the perception of diffusion

models requiring extensive data, three approaches are presented here, circumventing

the cost hurdle through the utilization of the aforementioned prior. This enables the

accomplishment of non-trivial tasks even in few-shot or zero-shot scenarios.

4.2.1 Motion Representation & Operational Modes

The types of composition that are located within the scope of the present work are:

• sequential composition, where short sequences are concatenated to create a single

long and coherent motion yielding the Double Take method/mode. Double Take

is capable of composing n generated motions over time, including the transitions

between them, thus enabling the efficient generation of long motion sequences in a

zero-shot manner. Because of the composite manner in which it generates, Double-

Take enables separate manipulation for each motion segment, all the while ensuring

coherence in motion and transitions. Double Take was not included in the com-

parative evaluation as there exists no comparable method to date. However, it was

leveraged to develop a bespoke denoising module, as will be illustrated later.

• model composition, where the motions generated by models with different con-

trol capabilities are blended together for composite control, yielding the finetuned

motion control method/mode. Fine-tuning the prior towards accomplishing end-

effector or root control yields remarkable results while controlling even just a single

60

4.2.2 Network Architecture, Sampling & Optimization

end-effector. Additionally, a DiffusionBlending technique is introduced which gener-

alizes classifier-free guidance to compose together different fine-tuned models and

thus enables cross combinations of keypoints’ control on the generated motion.

This enables precise and flexible control for human motion that comprises a key

capability for animation systems. The finetuned motion control holds significant

importance in our comparative evaluation, particularly concerning root (or pelvis)

trajectory control.

The input representation format is identical to the respective generative and editing

modes of MDM, with DoubleTake corresponding to MDM’s Text-to-Motion generation util-

ity and finetuned motion control to corresponding to the -spatial- editing mode. Hence,

human motion is represented as a sequence of poses X = {x i}Ni=1
where xi ∈ RD represent a

single pose. Specifically, the SMPL representation is used for the experiments conducted

on the BABEL dataset [61], including joint rotations and global positions on top of a single

human identity (� = 0). For all other experiments, HumanML3D representation analyzed

in 4.1.1 is used, which is composed of joint positions, rotations,velocities and foot contact

information.

The sole difference between Double Take and MDM’s text-to-motion generation ex-

posed mode is that Double Take, instead of using a unique text prompt and a unique

duration (framewise) as input, receives a series of text prompts and a series of durations,

respectively. When fed with a single text prompt and duration, Double Take degenerates

into classical MDM. Similarly, finetuned motion control differs from the body part editing

mode in that it, by default, restricts only one joint (e.g.) the pelvis and leaves the rest

joints’ motion free to be diffused out of the sampled noise.

4.2.2 Network Architecture, Sampling & Optimization

The model employed as a generative prior as explained above is a pretrained MDM.

MDM enables both high-quality generation and generic conditioning that together com-

prise a more than decent baseline for new motion generation tasks, which is the reason

behind it being used as a baseline model to build upon, as happens with PriorMDM.

DoubleTake consists of two phases for every diffusion iteration:

• in the first take, the individual motions, or intervals, are generated together in the

same batch, each aware of the context of its neighboring intervals. In the first take,

each interval is generated as an individual sample in the denoised batch, such that

each one is conditioned on its own text prompt and maintains a handshake with

its neighboring intervals through the denoising process. Handshake denoted as τ

is defined as a short (about a second long) prefix or suffix of the motion, such that

the prefix of the current motion is forced to be equal to the suffix of the previous

motion, ensuring transitions are smooth and eye-pleasing. Each interval maintains

two such handshakes as displayed in figure 4.3. The handshake is maintained by

simply overriding τ with the frame-wise average of the relevant suffix and prefix at

each denoising step, allowing PriorMDM to generate arbitrarily long sequences that

61

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

Figure 4.3. Double Take method Overview. Source: [8]

depend on the past and future motions while being aware of the whole sequence

during the generation of each interval. Formally, handshakes are forced to be equal

at the end of each denoising iteration as follows:

τi = (1 − α⃗) ⊙ Si−1[−h :] + α⃗ ⊙ Si[: h] (4.8)

where Si denotes the i − th sequence αj =
j
h ,∀j : j ∈ [0 : h).

• the second take refines the transitions between intervals to better match those gen-

erated in the previous phase. During this phase, the batch is reshaped as demon-

strated in figure 4.3, such that in each sample a transition sandwich (Si , τi ,Si+1) be

obtained. Subsequently, the sandwich is partially noised for T ′ noising steps and

denoised back to t = 0 under the suggested soft-masking feature to refine transi-

tions. In further detail, in a regular inpainting mask, The content is either entirely

drawn from the input or is entirely produced. A soft inpainting scheme is suggested

in which each frame is assigned a soft mask value between 0 and 1 that dictates

the amount of refinement the second take performs on top of the first take’s out-

come. To this end, the masks Msoft and Mhard are defined for the interval S and the

handshake τ respectively with a short, b frames long, linear transition between the

mask values as demonstrated in figure 4.4.

Finally, the long sequence is recreated through unfolding it, namely reshaping each

sequence and transition back to its linear place as also shown in figure 4.4. Figure

4.3 visualizes the steps the Double Take method executes in an enlightening manner.

Published Double Take version for long sequence generation employs a fixed MDM trained

on the HumanML3D dataset. The training parameters mentioned above were set to:

62

4.2.2 Network Architecture, Sampling & Optimization

Figure 4.4. Soft blending Overview. Source: [8]

T ′ = 700, Mhard = 0.85, Msoft = 0.1, b = 10, h = 20 (yielding an one-second long transition

interval).

Regarding the finetuned motion control, it practically comprises a mode aimed to

generate full-body motion controlled by a user-define set of input features. These features

may be root trajectory, a single joint trajectory or any combination of them. The motion

synthesis in this paradigm is destined to produce a self-coherent motion that semantically

adheres to the control signal. For instance, when specifying the root trajectory of a person

to move backward, the output motion is expected to have the legs adjusted to walking

backward. In essence, the method operates by masking out the noise applied to the

ground-truth features about to be controlled during the forward pass of the diffusion

process. This means that during training, the ground-truth control features propagate to

the input of the model, and thus, the model learns to rely on these features when trying

to reconstruct the rest of the features, as illustrated in Algorithm 1 in figure 4.5. On the

sampling end, after the prediction x0 of the model is obtained, the editing features are

injected into it. Then, during the forward pass from x0 to xt−1, the control features are

masked out of the noise in order for them to be cleanly propagated into the model.

To control cross combinations of the joints (i.e. both the root and the left wrist), the

core idea of the classifier-free approach2.4.2 is exploited to introduce DiffusionBlend-

ing. The classifier-free approach suggests interpolating or extrapolating between the

conditioned model G and the unconditioned model G∅. This idea was found capable of

generalizing to any two "aligned" diffusion models Ga and Gb that are conditioned on ca

and cb respectively. Sampling with two conditions simultaneously is implemented as:

Ga,bs (Xt, t, ca , cb) = Gas (Xt, t, ca) + s(Gbs (Xt, t, cb) − Gas (Xt, t, ca)) (4.9)

with the scale parameter s trading-off the significance of the two control signals. All

motion control experiments, and the respective models available for downloading, were

conducted above HumanML3D dataset with text-conditioning and a classifier-free guid-

ance scale of 2.5 and their weights were initialized using the same classical MDM instance.

Batch size was set to 64.

63

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

Figure 4.5. Soft blending Overview. Source:[8]

4.3 OmniControl

OmniControl[9] is a novel approach introduced for integrating flexible spatial control

signals into a text-conditioned human motion generation model based on the diffusion

process. OmniControl is special in the sense that it is capable of integrating flexible spa-

tial control signals over any joint at different times using a single model. It introduces

analytic spatial guidance to ensure the generated motion closely adheres to the input

control signals while also incorporating realism guidance to refine all joints’ motion for

producing more coherent motion with no visually displeasing artifacts. Both spatial and

realism guidance are deemed crucial and mutually complementary for achieving a balance

between control accuracy and motion realism. Through their combination, OmniControl

generates motions that are realistic, coherent, and aligned with spatial constraints. Om-

niControl is rumored to not only significantly improve pelvis control compared to state-

of-the-art methods but also to yield promising results when incorporating constraints on

other joints. The main novelty OmniControl introduces compared to other state-of-the-art

methods is a control module that uses both spatial and realism guidance to effectively

balance the control accuracy and motion realism in the generated motion. Inspired by

classifier guidance (analyzed in 2.4.1) and ControlNet[77], hybrid guidance, consisting

of spatial and realism guidance, is introduced to incorporate spatial control signals into

human motion synthesis.

64

4.3.1 Motion Representation & Operational Modes

4.3.1 Motion Representation & Operational Modes

OmniControl model receives a textual prompt p and an additional spatial control signal

c ∈ RNxJx3
as input aiming at generating a human motion sequence x ∈ RNxD, where N

is the motion sequence length in frames, J is the number of joints and D stands for the

dimension of the human pose feature vector (e.g. D = 263 for the HumanML3D dataset).

The spatial constraints, denoted as c, encompass the xyz positions of each joint across

all frames. Only a subset of joint locations are actually specified as spatial constraints for

human motion generation, with the positions of other joints being assigned zero values.

This approach allows for flexible specification of which joints are controlled, enabling

control over motion generation for any joint at any given time instance (keyframe).

In human motion generation, the redundant data representation suggested in MDM[7],

and additionally adopted by PriorMDM[8], which include pelvis velocity, local joint posi-

tions, velocities and rotations of other joints in the pelvis space as well as the foot contact

binary labels is the most widespread representation technique in literature lately. Such

representations are easier to learn and can produce realistic human motions. However,

they seem to struggle to handle sparse (in time dimension) constraints on the pelvis and

incorporate any spatial control signal on joints other than the pelvis.

To overcome this limitation, the relative representations are transformed into global

ones within the proposed spatial guidance method. This enables flexible control over

any joints at any given time, according to the authors. The model continues to utilize

local human pose representations as its input and output. As a result, the control signal

remains effective for all preceding frames beyond the keyframe of the control signal, as the

gradients can be backpropagated to them. This enables the spatial guidance to densely

perturb the motions, even when the spatial constraints are extremely sparse.

Regarding the operational modes of OmniControl method, they practically constitute a

single mode enabling spatiotemporal editing of all joints at any time as the authors report.

All different ‘modes’ of running can be segregated in sub-cases substantially defined by

the spatial control signal - for the frames and the joints for which the global coordinates

are equal to 0, there is no constraint, while for all the non-zero values the constraint

should be respected to the maximum - but not absolute - extent. The sub-modes we are

referring to are:

1. dense spatial control in pelvis (spatial control for all frames)

2. sparse spatial control in pelvis (spatial control for a specific range of frames)

3. dense spatial control in limbs’ joints

4. dense spatial control onto head

5. sparse spatial control for limbs’ joints (for a specific range of frames)

6. dense spatial control with multiple joints (e.g. two limb joints)

7. motion in-betweeening, namely only first and last frame comprise constraints for

one joint or even a combination of joints (sparse type of spatial control)

65

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

Figure 4.6. Architecture Overview of OmniControl’s model. Source:[9]

4.3.2 Network Architecture, Sampling & Optimization

The model learns the reversed diffusion process of gradually denoising xt starting from

the pure Gaussian noise xT

Pθ(xt−1|xt ,p) = N(µt(θ), (1 − αt)I) (4.10)

where xt ∈ RNxD denotes the motion at the tth noising step and there are T diffusion de-

noising steps in total. Instead of predicting the noise at each diffusion step, OmniControl

directly predicts the final clean motion x0(θ) = M(xt , t,p; θ) where M is the motion gener-

ation model with parameters θ. An overview of the model’s architecture is illustrated in

figure 4.6.

The spatial guidance module applies an analytic function G(µt , c) to approximate a

classifier, enabling multiple efficient perturbations of the generated motion, which assess

how closely the joint of the generated motion aligns with a desired spatial location c. In

spatial guidance, the gradient of the analytic function is employed to guide the generated

motion in the desired direction by perturbing the predicted mean in every denoising step

t using the following formulation:

µt = µt − τ∇µtG(µt , c) (4.11)

where τ controls the strength of the guidance. G measures the Euclidean distance between

the joint locations of the generated motion and the spatial constraints:

G(µ, c) =

∑
n
∑
j σnj∥cnj − µ

g
nj∥2∑

n
∑
j σnj

(4.12)

with µg = R(µ) where σnj is a binary value indicating whether the spatial control signal

c contains a valid value at frame n for joint j. R(·) operator expresses the conversion

from local joint positions to global absolute positions. An overview of the spatial guidance

module is depicted in figure 4.7.

While the spatial guidance effectively enforces the controlled joints to adhere to the

input control signals, it may leave other joints unchanged. This lack of influence on other

joints may result in unrealistic motions, yielding artifacts such as motion incoherence

66

4.3.2 Network Architecture, Sampling & Optimization

Figure 4.7. Detailed overview of the spatial guidance module. Source:[9]

Figure 4.8. Detailed overview of the realism guidance module. Source:[9]

and foot sliding. Realism guidance module steps up to address these challenges by

integrating into the network a trainable copy of the Transformer encoder in the motion

diffusion model[7] to learn to enforce the spatial constraints. each of the Transformer

layers is connected by a linear layer with both weight and bias initialized with zeros,

rendering them ineffective for control at the outset. However, as training progresses,

the realism guidance model learns the spatial constraints and incorporates the learned

feature corrections into the corresponding layers of the motion diffusion model to implicitly

adjust the generated motions as demonstrated in figure 4.8. In short, the residuals with

respect to the features in each attention layer of the motion diffusion model are generated

by the realism guidance. These residuals have the capability to densely and implicitly

perturb the entire-body motion.

In detail, a spatial encoder F is employed to decode the spatial control signals c at each

frame independently (as figure 4.8 implies). To effectively handle the sparse control signals

in time, the features at frames where there are no valid control signals,fn = onF(cn),are

masked out of noise. on is a binary label that is an aggregation of σnj in equation 4.12

such that on is valid when any of {σnj}Jj=1
is equal to 1. Otherwise, it is marked as invalid

by setting it to 0. The features fn of spatial control signals at frame n are injected into the

trainable copy of the Transformer. This aids the subsequent attention layers in identifying

the locations of valid spatial control signals, thereby adjusting the corresponding features

accordingly.

The model was trained using a batch size equal to 64 and a learning rate equal to 1e − 5
while using an AdamW optimizer[78]. CLIP is used for textual prompts conversion into

feature emdeddings. The baseline motion diffusion model is a classical MDM[7]. Both the

motion diffusion model and the realism guidance module, namely an MDM copy, resume

the pretrained weights of MDM and are subsequently fine-tuned jointly. The spatial

guidance is also used in training time. During training the textual prompt p is randomly

masked using classifier-free guidance[79]. HumanML3D and KIT-ML benchmark datasets

67

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

Figure 4.9. OmniControl inference method’s pseudo-code. Source:[9]

were seelcted to perform training on as well as to validate the effectiveness of OmniControl.

Finally, DDPM sampling[1] is employed with T = 1000 denoising steps.

To summarize, OmniControl was introduced as a potent approach for controlling hu-

man joints dynamically during text-driven motion generation using the diffusion process.

By synergizing spatial and realism guidance, OmniControl achieves realistic human mo-

tion generation while adhering to input spatial control signals. The algorithm effectively

dictating the whole inference process is displayed in the code snippet of figure 4.9.

4.4 Guided Motion Diffusion (GMD)

Despite the rapid advancement of diffusion models in the context of generating human

motion based on natural language descriptions, incorporating spatial constraints, such as

prescribed motion trajectories and obstacles, was a challenge yet to be addressed. Guided

Motion Diffusion (GMD)[10] is a novel approach targeting to respond to this challenge by

integrating spatial constraints into the motion generation process. GMD introduces an

effective feature projection scheme, which adjusts the motion representation to enhance

coherence between spatial information and local poses. Alongside a new imputation for-

mulation, this enhancement ensures that the generated motion adheres reliably to spatial

constraints, including global motion trajectories. Furthermore, in scenarios with sparse

spatial constraints (i.e. sparse keyframes), a new dense guidance approach converting a

sparse signal into denser signals is suggested. GMD is method analogous to OmniCon-

trol in terms of operational modes but differs significantly as will be elaborated on in the

forthcoming sections.

For notational purposes, let y be a partial target value in an input x that are about to be

imputed. The imputation region of y on x is denoted as Mx
y and a projection Pxy that resizes

y to that of x by filling in zeros. This segregation is necessary for the comprehension of

the following sections.

68

4.4.1 Motion Representation & Operational Modes

4.4.1 Motion Representation & Operational Modes

The denoising diffusion models receive the root features as input, namely a motion

tensor with dimensions (L,4) where L is the number of frames of the desired motion.

Additionally, a text prompt is provided.

The opetational modes of GMD are the following:

• trajectory-conditioned generation: This task aims at generating a realistic motion

x that matches a given trajectory z. The objective is to minimize the distance between

the generated motion and the given trajectory. Despite the apparent simplicity

of this task, a traditional DPM faces the challenge of ensuring coherence in the

generated motion. However, our emphasis projection method effectively tackles this

issue.

• keyframe-conditioned generation: The locations of ground positions at specific

times can be used to define locations that we wish the generated motion to reach.

This task is a generalized version of the trajectory-conditioned generation where

only a partial and potentially sparse trajectory y ∈ R2xM
is given with M reflecting

the number of keyframes provided. A mask Mz
y describe the key motion steps by

mapping the sparse trajectory to a dense one is also needed. Generating both

the trajectory and motion simultaneously under a conditioning signal can pose

challenges and potentially lead to poor quality motion. To tackle this issue, a two-

step approach is proposed by generating a trajectory z that satisfies the keyframe

locations, at first, and then generating the motion x given the trajectory z as depicted

in figure 4.10.

• obstacle avoidance motion generation: namely navigating around obstacles while

traveling from point A to B. This problem is dealt with using two goal functions:

one that navigates from A to B called Glocx and a second one that pushes back when

the human model crosses the obstacle’s boundary, called Gobsx , which consumes

a parameter c that expresses the safe distance from the obstacles. Obstacles are

considered as cyclic objects, thus can be explicitly defined by their center in the tra-

jectory plane (e.g. (x, z)) and their radius r. These two goal functions are combined

additively to obtain the final goal function: Gx (x) = Glocx (x) + Gobsx (x)

4.4.2 Network Architecture, Sampling & Optimization

Motion representation in GMD is different compared to the diffusion-based tech-

niques presented in previous sections. GMD authors claim that the HumanML3D 263-

dimensional representation uses just 4 values to represent global orientation and 259

values for local pose in each frame, yielding considerable sparseness in global orienta-

tion representation. This imbalance may lead the model to prioritize local pose details

excessively, causing it to perceive guided global orientation as noise. Consequently, dis-

crepancies such as foot skating can arise. Additionally, sparse spatial control signals,

such as target locations on the ground, are defined only at a few keyframes preventing

69

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

Figure 4.10. GMD’s two stage pipeline. DPM stands for diffusion probabilistic model.
Source:[10]

the model from adhering to such sparse guidance. This difficulty arises because guiding

the motion generation model with sparse control signals is akin to guiding an image

diffusion model with only a few pixels.

GMD introduces two novel modules to overcome these difficulties:

• Emphasis projection: a technique to adjust the relative importance of different

parts of the representation vector. This adjustment fosters coherence between spa-

tial information and local poses, facilitating spatial guidance.

• Dense signal propagation: a conditioning method aimed at addressing the sparse

guidance issue.

The integration of these two submodules into the backbone Unet-based architecture[80]

results in an effective spatially controllable motion generation method that enables the

unexplored synthesizing of motions based on free-text and spatial conditioning. GMD is

a two-stage pipeline visualized in figure 4.10.

The high-level line of reasoning used in both stages of this two-stage pipeline is model-

ing a full-body human motion that satisfies a certain scalar goal function Gx (·) that takes

in a motion representation x and measures the distance of x from the goal aiming to zero

it out at some point, thus, in mathematical terms this means that, let X be a random

variable associated with x, the goal is to model the following conditional probability using

a diffusion-based model: p(x|Gx (X) = 0). This can be extended to p(x|Gx (X) = 0, d) where

d is a conditional signal such as text prompts. Numerous challenging tasks in motion

modelling can be encapsulated into a goal function Gz that only depends on a prescribed

trajectory z and not the entire motion x. Let z ∈ RLxM be the trajectory part of x, where M

is the motion sequence length framewise and L = 2 describing the ground pelvis position

of human body, and z(i)
be the trajectory position in time step i for notation purposes.

On the emphasis projection end, the most straightforward approach for minimizing

70

4.4.2 Network Architecture, Sampling & Optimization

Figure 4.11. Emphasis projection module (matrix projection). Source:[10]

the goal function Gz(·) is analyzing how trajectories that minimize z∗ = argminzGz(z)
look like. For a trajectory conditioning task, a whole trajectory z∗ is already provided,

thus the task is to generate the rest of the motion x. Bearing this in mind, imputation

and inpainting techniques are employed by supplying the diffusion model with a x −
shaped motion, comprising a projection of trajectory z onto the entire motion x, to guide

the generation process. Since the imputing trajectory z∗ is a small subset of the whole

motion x(L ≪ N = 263), it is observed that the diffusion process ’ignores’ the change

from imputation and fails to make appropriate changes on the rest of x. This results

in an incoherent local motion that is not aligned or well coordinated with the imputing

trajectory. This problem is encountered by giving more emphasis on the trajectory part

of motion x through the emphasis projection module. This is achieved by utilizing a

random matrix A = A′B where A ∈ RNxN is a matrix with elements randomly sampled

from N(0,1) and A ∈ RNxN is a diagonal matrix whose trajectory-related diagonal indexes

are c and the rest are 1 for emphasizing those trajectory elements, as illustrated in figure

4.11. Rotation and ground location of the pelvis, (rot, x, z), are emphasized in x by c times

and the projection of z on x is formulated as xproj =
1

N−3+3c2 Ax. The noising process of the

projected motion becomes:

q(xprojt |x
proj
0

) = N(
√
αtxproj0

, (1 − αt)I) (4.13)

There in no variation on how the denoising diffusion model that works on the projected

motion pθ(xprojt−1
|xprojt) operates and treats xprojt - identically to how it would handle xt .

The emphasis projection module completes its operation by imputing on the produced

projected motion xproj.
Dense signal propagation module, on the other hand, leverages another way to min-

imize the goal function Gz(·) is by adjusting the sample of each diffusion step xt−1 toward

a region with lower Gz, namely using classifier guidance. The direction of change cor-

responds to a score function ∇xt logp(Gx (Xt) = 0|xt) which can be approximated as a

direction ∆x0
= ∇x0

Gz(Pzxx0,θ) that reduces the goal function. The generative process by

modifying the diffusion model’s prediction as x0 = x0,θ + ∆x0
. While imputation requires

the minimizer z∗ of Gz, which might not be easy to obtain or may not be unique, this trick

only requires the easier-to-obtain direction of change.

To turn a sparse signal into a dense signal, domain knowledge is necessary. One way

to achieve this is by using a denoising function {(xt) = x0, which is trained on a motion

71

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

dataset to denoise by gathering information from the nearby motion frames. With the

ability to relate a single frame to a plethora of other frames, the denoising function is

capable of expanding a sparse signal into a denser one. Backward propagation through

the denoising function { can be employed to take advantage of this. Therefore, a dense

classifier guidance can be obtained as follows:

∇xt logp(Gx (Xt) = 0|xt) ≈ ∇xtGz(P
z
x f (xt)) (4.14)

with Pzx f (xt) being z-shaped. While an external function can be used as f , it is observed

that the existing denoising diffusion model x0,θ(xt) itself is a motion denoiser, thus can

be used to turn a sparse signal into a dense signal without the need for an additional

model. In practice, this process amounts to computing the gradient of G with respect to

xt through x0,θ(xt) using autodifferentiation.

The next structural component of the dense guidance signal module concerns the

application of classifier guidance together with imputation. Whenever available, it is

desirable that signals from both imputation and classifier guidance techniques to help

guide the generative process be utilized. Imputation is explicit but may encounter sparsity

in time, while classifier guidance is indirect but dense. To use the direct signal from

imputation wherever available (with mask Mx
z) and the rest from classifier guidance (with

mask 1 −Mx
z), imputation-aware classifier guidance can be formulated as:

µt = µ̃t − (1 −Mx
z) ⊙ sΣt∇xtGz(P

z
x f (xt)) (4.15)

where µ̃ is an imputed sampling mean replaced by µ̃proj.

Lastly, a design choice on the backbone diffusion model needs to be addressed. A

crucial priority in this context is to minimize the influence of model’s bias under the

guidance signal. Conceptually, the denoising diffusion models usually make less and

less change near the final outcome. This is in tandem with the guidance signal that

gradually decreases over time due to Σt . Thus an ϸθ model is qualified over a x0,θ model

for the trajectory refinement stage as the former approach forces the model to maximize

its influence on the sampling mean at t = T which is alignment with the guidance signal

which begins at a maximum value and gradually fades out.

The trajectory and motion architectures of GMD are both based on U-NET with Adap-

tive Group Normalization(AdaGN)[3]. However, this model adapted this model for sequen-

tial prediction tasks by using 1D convolutions. The architecture overview is depicted in

figure 4.12 while the Adaptive Group Normalization is depicted in figure 4.13. A simpli-

fied overview of our GMD’s 1D UNET + AdaGN architecture that is designed to process

two input signals: the time step ψ(t) and a text-prompt embedding w. The time step is

encoded using sinusoidal functions, while the text-prompt embedding is generated by the

CLIP3.6 text encoder model. The ResBlock with Adaptive Group normalization component

of the model uses the conditioning signal from the MLP, shared across all ResBlocks, is

projected by first applying a Mish activation and then a resizing linear projection specific

to each ResBlock. All kernel sizes are 5.

72

4.5 MotionDiffuse

Figure 4.12. Source:[10]

Figure 4.13. Source:[10]

Regarding the training procedure, a batch size of 64 for the motion DPM and a batch

size of 512 for the trajectory DPM. No dropout was used in all of the GMD’s models: both

trajectory and motion. AdamW optimizer with a learning rate of 0.0001 and weight decay

of 0.01 was employed. Gradient clipping with a threshold value for the norm set to 1,

as it was found to increase training stability. The trajectory DPM optimized for noise ϸ

prediction, while the motion DPM optimized for motion x0 prediction.

4.5 MotionDiffuse

MotionDiffuse[11] is a flexible and adaptable framework for motion generation, capable

of producing a wide range of motions aligned with detailed textual descriptions. Notably, it

is positioned as a counterpart to the MDM[7] method, with both being released around the

same time. In contrast to traditional DDPM[1] methods, which are limited to generating

fixed-size outputs, a Cross-Modality Linear Transformer is introduced to enable motion

synthesis with variable motion lengths. Rather than establishing a direct mapping be-

tween textual inputs and motion outputs as seen in prior work[81], the method proposed

aims to guide the generation process softly with input texts. To preserve uncertainties

during the denoising process, the noise terms are conditioned on the input texts using

multiple transformer decoder layers for each denoising step, maintaining the influence of

textual conditions on motion generation remains probabilistic and, thus, promoting the

creation of diverse motion sequences based on the provided textual prompts.

It was the first method to incorporate DDPM in motion synthesis paradigm permitting

73

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

the efficient conditioning on text descriptions to generate motions in a probabilistic style.

Moreover, MotionDiffuse stands out as a pioneering method in multi-level manipulation,

offering the capacity to manage fine-grained text descriptions that engage the entire body

(e.g., ’a person is drinking water while walking’) and time-varying signals (e.g., ’a person

is walking and then running’).

4.5.1 Motion Representation & Operational Modes

The motion sequence Θ is an array of (θi), where i ∈ {1,2, .., F } represents the pose

state where θi ∈ RD in the i − th frame and F is the number of frames. The representation

of each pose state θi is distinct in different datasets. It generally contains joint rotation,

joint position, joint velocity, and foot contact conditions. MotionDiffuse is robust to the

various motion representations. The HumanML3D dataset and KIT dataset are employed

to train and evaluate the proposed methods for the text-driven motion generation task,

thus the respective input motion representations can be consumed by the MotionDiffuse

model.

The operational settings upon which the MotionDiffuse architecture was trained on

are:

• Text-conditioned Motion Generation

• Action-conditioned Motion Generation (not examined in the present work)

• Spatially-diverse text-to-motion generation task (T2M-S) . T2M-S requires the gener-

ated motion sequence to contain multiple actions on different body parts (e.g. ’a

person is running and drinking water simultaneously’).

• Temporally-diverse text-to-motion generation task (T2M-T). T2M-T model is expected

to generate a long motion sequence, which includes multiple actions in a specific

order spanning over different time intervals (e.g. ’a person is walking and then

running’).

4.5.2 Network Architecture, Sampling & Optimization

The backbone model of the MotionDiffuse architecture is a denoising diffusion proba-

bilistic model (DDPM), thus, obviously, DDPM sampling is employed. For the denoising

process, we propose a Cross-Modality Linear Transformer to process input sequences

conditioned on the given text prompts. Two types of conditional control signals were

additionally used for experimentation:

• part-aware text controlling, namely assigning different text conditions to different

body parts so that accurate control of the individual parts of the body is achieved.

• time-varied controlling, namely division the whole sequence into several parts and

assigns independent text conditions for each interval. This provides the capability

to synthesize arbitrary-length motion sequences that incorporate several actions.

74

4.5.2 Network Architecture, Sampling & Optimization

Figure 4.14. Overall network architecture of MotionDiffuse. Source:[11]

The overall pipeline of MotionDiffuse architecture is displayed in figure 4.14. Based

on the analysis carried out in chapter and, more specifically, using the equations 2.4 and

2.5, it is easy to sample noise ϸ and then directly generate xt . Instead of predicting xt−1,

the choice to predict the noise term ϸ is qualified. Hence, the constructed network is about

to fit ϸθ(xt , t, c), where c is a textual description. The model parameters are optimized to

decrease a mean squared error as:

L = Et∈[1,T],x0∼q(x0),ϸ∼N(0,I)[∥ϸ − ϸθ(xt , t, c)∥] (4.16)

This is the only loss function optimized during model training. To generate samples

from the given text description, the denoising of sequence p(xT) = N(xT ; 0, I). Therefore,

the motion sequence is denoised step by step and finally a clean motion sequence x0 is

obtained, which is conditioned on the given text.

The backbone diffusion model is a Cross-Modality Linear Transformer, which is

consisted a text encoder and a motion decoder. For the text features’ extraction, a classical

transformer[70] is employed. The input data first passes through an embedding layer to

obtain the embedding feature from raw text and then is further processed by a series

of transformer blocks. Each block contains two components - a multi-head attention

module and a feed-forward network (FFN). To enhance the generalization ability, the

parameter weights of a pre-trained CLIP model3.6 are used to initialize the first several

layers. Overall, we could declare that the text encoder is the same with text encoder

described in the CLIP ViTB/32[6] with four more transformer encoder layers.

The Linear Self-attention module aims at enhancing motion features by modeling

correlations between different frames. The principal advantage of self-attention is to

get an overview of the input sequence and is thus useful to predict the injected noise

ϸ. Due to the increased computational complexity of the attention weights’ estimation,

75

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

especially when the motion sequence length is high, Efficient Attention as introduced

in [82] is preferred in order to accelerate the self-attention module. Efficient attention

in the diffusion model provides an additional advantage by explicitly aggregating global

information. This contrasts with classical self-attention, which tends to focus more on

pair-wise relations. The inclusion of global information in the feature map enhances the

understanding of the semantic meaning of the motion sequence.

Text embeddings are fused into motion sequences as a conditional signal through the

operation of the Linear Cross Attention, which guarantees that the generated motion

is conditioned on the given text. As also mentioned before, in each denoising step, the

output is conditioned on the timestamp t except for the textual provided. The Stylization

Block component is responsible for injecting timestamp t into the generation process.

This block is applied after each Linear Self-attention block, Linear Cross-attention block

and FFN block as shown in 4.14. Overall, the latent dimension of the text encoder and

the motion decoder are 256 and 512,respectively.

A body-part independent control scheme is also introduced. As explained above, Mo-

tionDiffuse predicts the noise ϸ(xt , t, c) dimensioned in RFxD (see section 4.5.1). This noise

term determines the denoising direction of the whole body. Inspired by the application

of the latent code interpolation, noise interpolation is proposed to separately control the

different parts of the human body. Suppose there are n text descriptions {ci} for differ-

ent body parts {si}. The aim is to calculate the noise term ϸ = {ϸjointi }, i ∈ [1, m] where

ϸjointi represents the noise term for the i − th body part and m denotes the number of

partition. ϸjointi = ϸθ(x, t, ci) ∈ RFxD is calculated first and the total ϸpart is calculated as

ϸpart =
∑m
i=1
ϸparti ·Mi where Mi{0,1} ∈ RD is a binary vector to show which body part should

we focus on.

Finally, the number of diffusion steps for the diffusion model’s training procedure is

set to 1000 , and the variances � are linear from 0.0001 to 0.02. An Adam optimizer is

used to train the model with a learning rate of 0.0002, while the total batch size is 1024.

4.6 Motion Latent Diffusion (MLD)

The MLD[12] method focuses exclusively in conditional human motion generation,

crafting believable sequences of human motion based on diverse conditional inputs, such

as action categories or textual descriptions. In general, a robust VAE aimed to extract a

compact and meaningful latent representation for a human motion sequence comprises

the cornerstone of MLD. Instead of directly linking the raw motion data to the conditional

inputs using a diffusion model, a diffusion process within the motion latent space is exe-

cuted. MLD generates lifelike motion sequences that align with the specified conditional

inputs while significantly reducing computational complexity during both training and

inference phases compared to other state-of-the-art methods.

The main issue MLD tried to address is that it is challenging to learn a probabilis-

tic mapping function from the textural descriptors to the motion sequences since the

distributions between the natural language descriptors and motion sequences are quite

different. Modern techniques intend to encounter this problem by either using VAEs for

76

4.6.1 Motion Representation & Operational Modes

motion and text encoding into a joint feature space or using a conditional diffusion model

for human motion synthesis to learn a more powerful probabilistic mapping from the

textual descriptors to human motion sequences and improve the synthesized fidelity and

diversity. In the former case, since the distributions of natural languages and motion

sequences are highly different, forcibly aligning these two simple Gaussian distributions

into a compatible distribution might result in misalignments, while, in the latter case,

the raw motion sequences are partly time-axis redundant and diffusion models in raw se-

quential data introduce computational overhead in both the training and inference stages.

Besides, due to potential noise present in raw motion data captured by motion capture

systems, powerful diffusion models could inadvertently be overfit to probabilistic map-

pings from the conditional inputs to noisy motion sequences, resulting in artifacts in the

generated output. Thus, the hybrid approach suggested in MLD combines the advantages

of the latent space-based and the conditional diffusion-based to overcome shortcomings

of previous methods.

4.6.1 Motion Representation & Operational Modes

For the MLD settings of interest, two motion representations types are employed:

• the classical SMPL-based motion parameters, which is mostly used in motion cap-

ture. This method entails the calculation of motion/pose parameters θ and shape

parameters �. θ ∈ R3X23+3
is rotation vectors for 23 joints and a root, and � are

the weights for linear blended shapes as further elaborated in 3.5.2. This represen-

tation is especially popular in marker-less motion capture. By involving the global

translation r, the representation is formulated as:

x i = {r, θ, �} (4.17)

• the HumanML3D(see more details in paragraph 3.3.2) representation, a redundant

hand-crafted motion feature with a combination of joints features mostly employed

in character animation. This type of representation is prevalently prefered over

others owing to the fact it permits to generation methods to mitigate the foot-sliding

issue through the binary foot contact features it entails.

• the MMM representation format(see further details in paragraph 3.3.1), which is

conceptually attached to the KIT dataset

Operational modes in MLD are pretty straightforward and can be summarized in the

following bullets:

• Unconditional Generation

• Text-To-Motion Generation

• Action-To-Motion Generation

77

Chapter 4. Diffusion-based Architectures in Human Motion Synthesis

4.6.2 Network Architecture, Sampling & Optimization

A crucial component of MLD architecture is concerned with compressing and recon-

structing human motion for the learning of diffusion models. They prefer VAEs over

GANs for this purpose since the latter are more difficult to train. After the model has

learnt a representative and low-dimensional motion latent space for diverse human mo-

tion sequences, a diffusion process acts on this representation and consequently arrives

at a motion latent-based diffusion model for conditional human motion synthesis. The

goal of MLD is to generate a human motion x̂1:L = {x̂ i}Li=1
in a non-deterministic way,

where L denotes the frames’ number. Motion sequence x1:L
is encoded into a latent

z = E(x1:L) and then, z, is decoded into a motion sequence using a motion decoder D, i.e.

x̂1:L = D(z) = D(E(x1:L)).

The motion VAE V, based on a transformer-based architecture, consists of a trans-

former encoder E and a transformer decoder D. The motion VAEV = {E,D} is trained on

the motion x1:L
reconstruction through optimizing the MSE loss and the Kullback-Leibler

(KL) loss. The encoder targets at producing a representative, low-dimensional latent space

with high informative density, and the decoder at reconstructing the latent space feature

vectors into motion sequences.

In further detail, the motion encoder E receives as input learnable distribution tokens

and frame-wise motion features x1:L
of arbitrary length L. The embedded distribution

tokens are employed as Gaussian distribution parameters µ and σ of the motion latent

space Z to reparameterize latent variables z ∈ Rnxd. The motion decoder D relies on the

architecture of the transformer decoder with cross attention mechanism, which takes the

L number of zero motion tokens as queries nad generates a motion sequence x1:L
con-

sisted of L frames. To further enhance the latent representation, long skip-connections

are attached to the transformer-based encoder E and decoder D as visualized in figure

4.15. The impact of the latent’s space dimensions on the quality of the generated motion

sequences is significant and was found to be optimal for n = 7 and d = 256.

Diffusion models in the human motion synthesis paradigm are trained with a transformer-

based denoiser ϸθ(xt , t) by annealing the random noise to motion {x̂1:N
t }

T
t=1

iteratively. The

diffusion on latent space is modeled as a Markov noising process in the traditional way:

q(zt |zt−1) = N(
√
αtzt−1, (1− αt)I). Let {zt}Tt=0

be the noising sequence and zt−1 = ϸθ(zt , t) for

the t − th denoising step. For the most generic case of unconditional generation, the loss

function is formulated as:

LMLD = Eϸ,t[∥ϸ − ϸθ(zt , t)∥22] (4.18)

where ϸ ∼ N(0,1) and z0 = E(x1:L). During the training of ϸθ, the encoder E is frozen to

compress motion into z0. The samples of the diffusion forward process are from the latent

distribution p(z0). During the diffusion reverse stage, ϸθ first predicts ẑ0 with T iterative

denoising steps and then D decodes ẑ0 to motion results with one forward pass.

The MLD model is also capable of conditional motion generation G(c) by applying the

conditional generation p(z|c) with c standing for the textual condition. G(c) is imple-

mented with a conditional denoiser ϸθ(zt , t, c) which can share a common motion VAE

model. The text embedding is provided by a denoiser τθ(c) ∈ Rmxd thus the denoiser

78

4.6.2 Network Architecture, Sampling & Optimization

Figure 4.15. MLD method overview. Source:[12]

ϸθ is expressed as ϸθ(zt , t, τθ). CLIP3.6 text encoder is employed to map text prompts to

embeddings τwθ (w1:N) ∈ R1xd
. The conditional generation loss function is thus formulated

as:

LMLD = Eϸ,t[∥ϸ − ϸθ(zt , t, τθ(c))∥22] (4.19)

The denoiser ϸθ is learned using classifier-free diffusion guidance 2.4.2, practically

reflecting a trade-off to boost sample quality by reducing diversity in conditional diffusion

models. Specifically, it learns both the conditioned and the unconditioned distribution

with 10% dropout of the labeled samples and a linear combination of the two models is

employed to calculate noise:

ϸsθ(zt , t, c) = sϸθ(zt , t, c) + (1 − s)ϸsθ(zt , t, ∅) (4.20)

Following a series of rigorous ablation studies aimed at identifying the optimal value, the

parameter s was ultimately established at 7.5.

Regarding the training hyper-parameters, models are trained with the AdamW opti-

mizer using a fixed learning rate of 10
−4

. The batch size is set to 128 during the VAE

training stage and 64 during the diffusion training stage separately. Each model was

trained for 6000 epochs during VAE stage and 3000 epochs during diffusion stage. The

number of diffusion steps is set to 1000 during training and the variances �t are scaled

linearly from 8.5x10
−4

to 0.012.

The overall training procedure followed is visualized in a delicate manner in figure

4.15. It comprises a two-stage process: V is first learnt for motion representations in

latent space and, then, a conditioned denoiser ϸθ is learnt from the diffusion process

q(zt |zt−1). During inference, the latent diffusion models predict the latent ẑ0 from condi-

tion inputs τθ and motion decoder D decomposes it to coherent human motion.

79

Chapter 5

Methods’ Comparative Evaluation

5.1 Introduction

The exhibition of the results will delve into the foundational aspects encountered in

human motion synthesis methods as documented in existing literature, focusing primar-

ily on Text-to-Motion Generation and (root) Trajectory Control. While Trajectory Control

may encompass adjustments to other joints within the human skeleton or even combi-

nations thereof, as elaborated upon in preceding chapters, the control of the root trajec-

tory—specifically the pelvis joint—emerges as particularly intriguing due to its ability to

facilitate the navigation of a human avatar within a virtual 3D environment according to

our specified requirements.

Moreover, the assessment will extend beyond the mere demonstration of metrics show-

casing the superiority of one method over another in quantitative terms. It will encompass

a qualitative evaluation of crucial elements within the generated motion. This evaluation

will explore how faithfully a specific method translates the input text prompt into the re-

sulting motion, shedding light on which types of text prompts are most rigorously adhered

to. Furthermore, the assessment will address the visual appeal of the generated motion,

considering factors such as fluidity, naturalness, and overall aesthetic quality, as well the

computational efficiency, especially during inference. By adopting a holistic approach

that incorporates both quantitative metrics and qualitative analysis, this examination

aims to provide a comprehensive understanding of the strengths and limitations of each

method, thus guiding future research and development efforts in the field of human mo-

tion synthesis as well as underlining the impact of diffusion models on the human motion

synthesis paradigm, the power of which continues to be harnessed paving the way for

transformative discoveries and breakthroughs.

Before delving into the comparison of results, it is imperative to provide a compre-

hensive explanation of the motion quality metrics outlined in the subsequent sections.

This involves elucidating their mathematical formulations as well as their intuitive inter-

pretations, offering readers a clear understanding of their significance and relevance in

evaluating motion quality.

5.1.1 Quality Metrics

The quality metrics can be summarized in 4 different categories:

81

Chapter 5. Methods’ Comparative Evaluation

1. Motion Quality: Frechet Inception Distance (FID) is the principal metric to eval-

uate the distribution similarity between generated and real motions’ distribution,

calculated with the suitable feature extractor for each dataset as described in [40],

[83].

2. Generation Diversity: Diversity (DIV) and MultiModality (MM) are employed to

measure the motion variance across the whole set and the generated motion diver-

sity within each text input separately. To evaluate Diversity, all generated motions

are randomly sampled to two subsets of the same size Xd with motion feature vec-

tors {x1, x2, ..., xXd } and {x
′

1
, x
′

2
, ..., x

′

Xd
} respectively. In this case, diversity metric is

formulated as:

DIV =
1

Xd

Xd∑
i=1

∥xi − x
′
i ∥ (5.1)

To evaluate MultiModality, a set of text descriptions with size Jm is randomly sam-

pled from all descriptions. Then two subsets of the same size Xm are randomly

sampled from all motions generated by j − th text descriptions, with motion feature

vectors {xj,1, xj,2, ..., xj,Xm } and {x
′

j,1, x
′

j,2, ..., x
′

j,Xm
} respectively. The multimodality is

calculated as:

MM =
1

Jm × Xm

Jm∑
j=1

Xm∑
i=1

∥xj,i − x
′

j,i∥ (5.2)

3. Condition Matching: For the text-to-motion task, [14] provides motion/text feature

extractors to produce geometrically closed features for matched text-motion pairs,

and vice versa. Under this feature space, motion-retrieval precision (R-Precision)

first mixes generated motion with 31 mismatched motions and then calculates the

text-motion top-1/2/3 matching accuracy, and Multi-modal Distance (MM Dist)

that calculates the distance between generated motions and text.

4. Time costs: To evaluate the computing efficiency of diffusion models, especially

the inference efficiency, Average Inference Time per Sentence (AITS) measured in

seconds is qualified over other approaches. In our case, we calculate AITS on the

test set of HumanML3D dataset, set the batch size to one, and ignore the time cost

for model and dataset loading parts.

5.2 Text-to-Motion Generation

5.2.1 Quantitative Evaluation

The precision metric serves as a vital tool in evaluating the efficacy of human motion

generation models. It goes beyond mere accuracy, capturing the model’s capacity to

produce not only correct but also plausible and contextually relevant motions, even when

the top prediction doesn’t align perfectly. It’s evident that MotionDiffuse excels over

the other two methods in terms of precision across all three paradigms (Top1, Top2,

Top3) - surpassing MDM by a considerable margin and MLD by a narrower one, yet

82

5.2.1 Quantitative Evaluation

Table 5.1. Text-To-Motion generation evaluation on HumanML3D dataset (Precision)

Methods R-precision (increasing)

Top 1 Top 2 Top 3

Real Motions 0.511(0.03) 0.703(0.03) 0.797(0.02)
Motion Diffuse 0.491(0.01) 0.681(0.01) 0.782(0.01)
MDM 0.32(0.05) 0.498(0.04) 0.611(0.07)
MLD 0.481(0.03) 0.673(0.03) 0.772(0.02)

Figure 5.1. Comparative results on HumanML3D dataset in terms of precision

still demonstrating superiority. This significant outcome holds true for both datasets, as

vividly illustrated in figures 5.1 and 5.2. Furthermore, tables 5.1 and 5.3, corresponding

to the HumanML3D and KIT datasets respectively, provide additional insights, showing

that MotionDiffuse and MLD achieve precision metrics closely resembling those observed

in actual recorded motions, which is impressive at the least. These results underscore

their ability to generate motion sequences aligned with the envisioned actions described

in the text prompts provided as supervision to the models.

In the context of Condition Matching as defined in the former paragraph (5.1.1), we

also need to address MMDist metric, most clearly reflecting the extent to which the gen-

eration process obeys to the textual description provided as input. As depicted in Figures

5.3 and 5.4, MotionDiffuse exhibits a slight edge over MLD, with both methods competing

closely. Notably, both MotionDiffuse and MLD outperform MDM by a significant margin,

albeit with a narrower gap in the HumanML3D dataset compared to the KIT dataset.

Remarkably, these two superior methods, MotionDiffuse and MLD, trend towards values

aligning more closely with real motions for the specific metric under consideration. As a

83

Chapter 5. Methods’ Comparative Evaluation

Table 5.2. Text-To-Motion generation evaluation on HumanML3D dataset (Rest of the
metrics)

Methods FID MM Dist Diversity MModality

Real 0.002(0.00) 2.974(0.08) 9.503(0.65) −

Motion Diffuse 0.630(0.01) 3.113(0.01) 9.410(0.49) 1.553(0.42)
MDM 0.544(0.44) 5.566(0.27) 9.559(0.86) 2.799(0.72)
MLD 0.473(0.13) 3.196(0.10) 9.724(0.82) 2.413(0.79)

Figure 5.2. Comparative results on KIT dataset in terms of precision

result, MDM appears to significantly fall short in faithfully reflecting the text prompt onto

the generated motion when compared to the other methods.

The Fréchet Inception Distance (FID) emerges as an equally vital metric in the evalu-

ation of human motion synthesis, exhibiting a strong correlation with human judgment

regarding motion quality. In practical terms, FID offers a more nuanced evaluation of

generated samples, transcending simple visual inspection. It qualitatively ascends in a

descending manner - lower values signify a closer alignment of generated motion distri-

butions with the desired outcome. It is widely regarded as the metric that most aptly

reflects the coherence and quality of motion synthesis.

In the HumanML3D dataset, MLD asserts its dominance over the other two methods

in terms of FID, albeit by a narrow margin. However, in the KIT dataset, it significantly

outperforms MotionDiffuse, with MDM closely trailing behind. These distinctions are

vividly depicted in Figures 5.3 and 5.4. Upon examination of Tables 5.2 and 5.4, it be-

comes apparent that despite the advancements represented by state-of-the-art methods,

there still exists a shortfall in approaching real motions in terms of FID. This observation

84

5.2.1 Quantitative Evaluation

Table 5.3. Text-To-Motion generation evaluation on KIT dataset (Precision)

Methods R-precision (increasing)

Top 1 Top 2 Top 3

Real Motions 0.424(0.05) 0.649(0.06) 0.779(0.06)
Motion Diffuse 0.417(0.04) 0.621(0.04) 0.739(0.04)
MDM 0.164(0.04) 0.291(0.04) 0.396(0.04)
MLD 0.390(0.08) 0.609(0.08) 0.734(0.07)

Figure 5.3. Comparative results on HumanML3D dataset in terms of FID, DIV, MM Dist,
MModality

aligns with the inherent nature of the metric, which demands a level of fidelity that is

challenging to achieve.

Diversity serves as a fundamental metric in the assessment of human motion synthe-

sis, offering insights into the extent to which generated motions span the input feature

space. Unlike some metrics, Diversity does not follow a linear trend; rather, the superi-

ority of a method is determined by its ability to achieve diversity values closer to those

of real motions. For a comprehensive understanding of the results, it is recommended

to focus on Tables 5.2 and 5.3. In the HumanML3D dataset, MDM closely approaches

the diversity value of real motions, with MotionDiffuse following closely behind and MLD

trailing in last place. However, in the KIT dataset, MotionDiffuse outperforms MDM, while

MLD consistently falls short.

The MultiModality metric measures the extent to which a generative model is capable

of producing a wide range of plausible motions, capturing different styles, variations,

and nuances in human movement. It evaluates whether the generated motions exhibit

85

Chapter 5. Methods’ Comparative Evaluation

Table 5.4. Text-To-Motion generation evaluation on KIT dataset (Rest of the metrics)

Methods FID MM Dist Diversity MModality

Real 0.031(0.04) 2.788(0.12) 11.08(0.97) −

Motion Diffuse 1.954(0.62) 2.958(0.05) 11.10(0.143) 0.730(0.13)
MDM 0.497(0.21) 9.191(0.22) 10.85(0.109) 1.907(0.214)
MLD 0.404(0.27) 3.204(0.27) 10.80(0.117) 2.192(0.71)

Figure 5.4. Comparative results on KIT dataset in terms of FID, DIV, MM Dist, MModality

multiple modes or styles, indicating diversity and richness in the generated dataset. A

high MultiModality score suggests that the generative model is successful in capturing

the variability and richness of human motion, producing diverse and realistic samples

across different styles and variations.

Upon examining Figures 5.3 and 5.4, distinct trends emerge regarding MModality

performance across datasets. In the KIT dataset, MLD emerges as the top performer in

MModality, whereas MDM asserts its dominance in the HumanML3D dataset. These two

methods exhibit superior performance in terms of MModality. Conversely, MotionDiffuse

encounters challenges with MModality in both datasets, particularly evident in the KIT

dataset where its performance appears comparatively weaker. This observation under-

scores the nuanced differences in performance across different evaluation criteria and

datasets, highlighting the need for comprehensive analysis in human motion synthesis

evaluation.

Finally, it’s essential to address the crucial aspect of execution time, particularly

regarding the computational resources required by each method. For a comprehensive

overview, refer to Table 5.5, which outlines the computational efficiency of each method.

86

5.2.2 Qualitative Evaluation

Notably, the evaluation was conducted on the HumanML3D dataset test set. A notable

limitation becomes evident for classical diffusion models, namely MDM and MotionDiffuse,

as MLD demonstrates a remarkable advantage in terms of speed. In fact, MLD achieves

a speed that is two orders of magnitude faster than its counterparts, underscoring its

efficiency and practical feasibility for real-world applications. This advantage can be

attributed in part to the utilization of DDIM sampling in MLD’s best model version. By

leveraging this approach, MLD maintains a high level of motion generation quality while

simultaneously minimizing inference time costs to an extremely low level. Conversely,

MDM and MotionDiffuse offer flexibility in employing DDIM, allowing for a reduction in the

number of noise steps taken during inference and, consequently, computational inference

time. However, this trade-off comes at the expense of generation quality, as evidenced in

Table 5.5. All evaluation experiments were executed on a NVIDIA GeForce GTX 1660Ti.

Table 5.5. Comparison of the inference time costs on text-to-motion.

Methods Inference time per Prompt (in secs)

Motion Diffuse (DDPM) 29.4
Motion Diffuse (DDIM-100) 0.307

MDM (DDPM) 49.5
MDM (DDIM-100) 0.497

MLD 0.422

Before drawing conclusions from the quantitative evaluation within the text-to-motion

generation paradigm, it’s crucial to clarify the significance of the numbers in parentheses

in Tables 5.1, 5.3, 5.2, and 5.4. These numbers represent the range of the 95% confidence

interval, obtained by iteratively running the evaluation scripts 50 times. This approach

ensures robustness and reliability in the assessment of model performance, accounting

for potential variability in results due to stochastic factors or dataset characteristics.

5.2.2 Qualitative Evaluation

Before delving into the specifics of our qualitative evaluation, it is important to make

certain clarifications. The textual prompts employed to perform a qualitative assessment

and, consequently, a comparison were chosen using the following criteria:

• Prompts suggested in the papers for all three methods were utilized to highlight the

advantages of the methods compared to the other methods, employing the same

number of text prompts from each paper to guarantee equity. This approach was

chosen for an additional reason: to observe how the other methods respond to text

prompts where another method has excelled, thus evaluating their generalization

capability.

• Prompts of our own imagination were employed to assess aspects such as orienta-

tion perception, style transfer, or the number of repetitions of an action needed to

be executed during a generated motion.

87

Chapter 5. Methods’ Comparative Evaluation

• the evaluation will mostly revolve around the inconsistencies of the models as it is

evident and undoubtable that all suggested methods comprise impressive scientific

achievements. By building upon existing research and addressing the identified in-

consistencies, we can further elevate the state-of-the-art in animation and enhance

the overall quality of motion synthesis in various applications.

We have divided our evaluation into two distinct sections to provide a clear and orga-

nized structure: one focusing on single-action textual prompts and the other on textual

descriptions implying multiple actions. For the complete results showcasing of our as-

sessment, please refer to the following link.

Single-action setting

To begin with, the effectiveness of the methods under examination in responding

to specific gestures and actions has been a subject of scrutiny. Among these methods,

MDM displays limitations in recognizing certain upper limb gestures, such as waving (e.g.

’someone is waving to a person’) while MotionDiffuse and MLD perform more satisfactorily

in this regard. Notably, MDM stands out as the sole method adept at accurately distin-

guishing between left and right hands, a capability where MLD and MotionDiffuse falter,

leading to erroneous identifications. However, when it comes to distinguishing left from

right lower limbs, all methods demonstrate proficiency, with MDM maintaining superior

performance by avoiding awkward movements often exhibited by MLD and MotionDiffuse,

as shown in the output of text prompt ’a person kicks with their left/right leg’.

An additional observation to note is the varying responsiveness of motion modeling

techniques to directional shifts. While MotionDiffuse exhibits satisfactory performance

in this regard, both MDM and MLD appear less receptive. For instance, when prompted

with actions involving directional changes, such as "a person paces from left to right",

MotionDiffuse demonstrates a more accurate interpretation and execution of the intended

movement.

Furthermore, discrepancies emerge in the ability of these methods to interpret the

intended trajectory of motion. While MLD struggles with consistent responsiveness, often

misinterpreting instructions such as walking in a specific direction (e.g. is asked to walk

in counter-clockwise fashion but does so in clockwise fashion), MDM and Motion reliably

perceive and execute the requested movement direction. Notably, MotionDiffuse excels

in adjusting to varying gaiting speeds (see the outcome of prompt ’the person is walking

out a medium speed’), providing a more nuanced response compared to its counterparts,

which exhibit shortcomings in this aspect. Similarly, MotionDiffuse demonstrates supe-

rior adaptability to queries containing the number of steps required during gaiting, as

evident in the produced motion of ’a person walking moves forward taking 5 confident

strides’, whereas MLD and MDM tend to produce repetitive motions lacking in specificity.

In scenarios involving ground contact, such as crawling (’a person is crawling on

the floor’), MLD exhibits noticeable deficiencies, manifesting in undesirable foot sliding

issues, while MDM and MotionDiffuse exhibit more favorable responses. Interestingly, all

methods showcase proficiency in generating realistic boxing or fighting sequences (e.g.

88

https://drive.google.com/drive/folders/1IIERfJ62_N5gDbZjgfi39Tw_pWmL5zVt

5.2.2 Qualitative Evaluation

’the person is exchanging punches with his opponent’), indicating a shared competence in

capturing dynamic movements within this context.

Furthermore, MLD’s output occasionally resembles awkward or unclear dance move-

ments, which can be deemed unsatisfactory for certain applications. In contrast, MDM

performs more reliably in this aspect, demonstrating superior proficiency in interpreting

and replicating dance-related actions. Finally, MLD tends to exhibit noticeable foot slid-

ing artifacts when the text prompt suggests an increase in the speed of movement, such

as motions entailing running.

Despite these comparative analyses of individual actions, the examination transitions

to evaluating the models’ efficacy in comprehending and seamlessly transitioning between

sequences of actions as described in textual prompts. This shift prompts a deeper ex-

ploration into how each method conceptualizes sequential actions and executes smooth

transitions, an essential aspect for deriving conclusive insights into their overall perfor-

mance and applicability. Moving forward, it is crucial to transition from analyzing single-

action prompts to evaluating how well the models handle textual descriptions implying

a sequence of actions. Assessing their ability to conceptualize and implement smooth

transitions between actions is paramount in determining their effectiveness in generating

cohesive motion sequences.

Multi-action setting

In evaluating the performance of motion generation methods across in the multi-action

setting, several key observations emerge. MLD and MotionDiffuse exhibit commendable

responsiveness when actions involve sitting on objects, or even standing back up, whereas

MDM appears limited to understanding sitting on the ground, as evidenced by its response

to complex prompts such as ’a person walks up to a backwards chair and sits down

on it with legs outstreched, then stands back up’. Moreover, MotionDiffuse stands out

as the sole method capable of executing motions involving object manipulation without

introducing disruptive artifacts.

MLD demonstrates notable proficiency in faithfully reproducing sequences of actions

with abrupt transitions or complex combinations, as proven by the outcome of the (’person

jumps forward and turns left in mid air’) prompt, a task where MDM and MotionDiffuse

falter not even forcing the avatar to turn after or during jumping. Furthermore, MLD

excels in accurately rendering sequences comprising multiple short actions, a feat often

marred by MDM’s occasional total omission of actions, such as standing, and MotionDif-

fuse’s loss of orientation, as illustrated by textual descriptions involving walking, sitting

and returning to the starting point such as ’a person walks forward, turns, then sits, then

stands and walks back’.

While MotionDiffuse and MDM showcase superior orientation perception during mo-

tions involving shifts, especially when multi-directional shifts are queried(’a man runs to

the right, then runs to the left, then back to the middle’), they occasionally deviate from

the exact sequence outlined in the prompts. Similarly, all methods exhibit occasional in-

consistencies in adhering to textual descriptions, with instances of actions being omitted

89

Chapter 5. Methods’ Comparative Evaluation

or incorrectly executed, as happens in e.g. ’Looking around and then calling on a phone

with right hand’. MotionDiffuse presents serious shortcomings in differentiating between

limbs, often executing actions with the wrong limb or both limbs simultaneously.

Additionally, in some instances, certain motion modeling techniques fail to accurately

adhere to textual descriptions, raising concerns about their reliability in certain scenarios.

Characteristic examples detected were the generated actions prompted as ’A person is

pushed hard to the left and then recovers into a standing position’ and ’a person is running,

then stops and bows’ which were not faithfully replicated by both MDM and MotionDiffuse,

in the former case and MotionDiffuse and MLD in the latter. Moreover, there are cases

where the focus of a method seems to prioritize one action over another, leading to the

omission of certain implied actions. For instance, in the scenario where a person is

described as crawling on the floor and then getting up on their feet, both MotionDiffuse

and MDM may overlook one of the actions entirely, potentially compromising the overall

fidelity of the animation.

Turning positive, MDM excels in capturing sports-related activities like golf or bas-

ketball, making it particularly relevant for animation systems. Conversely, MLD demon-

strates superiority in handling sequences of multiple actions, especially those character-

ized by intricate textual prompts, showcasing its robustness in capturing nuanced action

sequences.

It is worth acknowledging that the challenges faced by these motion modeling meth-

ods may not solely be attributed to their inherent limitations. Indeed, the duration of the

animation clip provided could significantly impact the ability of the model to generate a

coherent motion sequence aligned with the specific prompt. In many cases, the complex-

ity of the action described in the prompt may exceed the constraints of the given time

interval, making it difficult for the model to produce a seamless and accurate represen-

tation within those parameters. In such situations, the human in-the-loop may need to

exercise intuition and make adjustments to ensure the final animation aligns more closely

with the intended action.

In summary, while each motion synthesis technique exhibits strengths and weak-

nesses across different action scenarios, their performance nuances highlight the impor-

tance of considering specific task requirements and textual prompts when selecting the

appropriate method for animation applications.

5.3 Trajectory Control

5.3.1 Quantitative Evaluation

As discussed in the corresponding chapter on text-to-motion generation assessment,

the precision metric is crucial for evaluating the effectiveness of human motion generation

models, as it considers not only accuracy but also the capacity to produce believable

and contextually relevant motions, even when the top prediction isn’t a perfect match.

OmniControl demonstrates superior performance over the other two methods in Top-3

R-Precision, surpassing GMD by a narrow margin and PriorMDM by a wider one on the

90

5.3.1 Quantitative Evaluation

Table 5.6. Root trajectory control evaluation on the HumanML3D dataset (Quality metrics)

FID R-Precision (Top-3) Diversity Foot skating ratio

Real Motions 0.002 0.797 9.503 0.000

PriorMDM 0.475 0.583 9.156 0.0897

GMD 0.576 0.665 9.206 0.1009

OmniControl 0.218 0.687 9.422 0.0547

Figure 5.5. Comparative results on HumanML3D dataset in terms of FID, R-Precision, Foot
Skating Ratio

HumanML3D dataset, as shown in figure 5.5. The situation differs slightly on the KIT

dataset, where R-Precision values appear almost equal at first glance in figure 5.7, but a

closer examination of table 5.7 reveals that the difference between OmniControl and the

others is negligible, with GMD closely following. It’s noteworthy that precision values for

all methods are nearly halved on the KIT dataset, which is surprising, considering that in

the former case, the values are comparable to those calculated on real motion, while in

the latter, the difference is significant. Additionally, tables 5.1 and 5.3, corresponding to

the HumanML3D and KIT datasets respectively, provide further insights, indicating that

PriorMDM & OmniControl achieve precision metrics closely resembling those observed

in real recorded motions, which is quite impressive. These results highlight their ability

to generate motion sequences consistent with the intended actions described in the text

prompts provided as guidance to the models. Particularly, the results from models trained

on the HumanML3D dataset hold significant value as they demonstrate the models’ ability

to generate motion sequences aligned with textual descriptions while closely adhering to

the prescribed trajectory.

91

Chapter 5. Methods’ Comparative Evaluation

Figure 5.6. Comparative results on HumanML3D dataset in terms of Diversity

The Fréchet Inception Distance (FID) serves as a crucial metric in motion trajectory

control, demonstrating a strong correlation with human perception of motion quality,

namely on how human eye perceives the naturalness of the motion. FID provides a

more nuanced assessment of generated samples beyond mere visual inspection. In the

HumanML3D dataset, OmniControl outperforms the other methods significantly in terms

of FID, with GMD showing a considerable gap and PriorMDM trailing slightly behind,

as depicted in Figure 5.5. This trend persists in the KIT dataset, although in this case,

PriorMDM follows closely behind, while GMD consistently falls short, as illustrated in

Figure 5.7. Analysis of Tables 5.2 and 5.4 reveals that despite advancements in state-of-

the-art methods, there remains a deficiency in replicating real motions in terms of FID.

This observation aligns with the inherent demand of the FID metric for a level of fidelity

that is challenging to achieve.

Table 5.7. Root trajectory control evaluation on the KIT dataset (Quality metrics)

FID R-Precision (Top-3) Diversity

Real Motions 0.031 0.779 11.08

PriorMDM 0.851 0.397 10.518

GMD 1.565 0.382 9.664

OmniControl 0.702 0.397 10.927

For a comprehensive understanding of result diversity, it’s advisable to focus on Tables

5.6 and 5.7, as supported by the diagrams in Figures 5.6 and 5.8, which indicate com-

parable performance among the methods in this aspect. On the HumanML3D dataset,

92

5.3.1 Quantitative Evaluation

Figure 5.7. Comparative results on KIT dataset in terms of FID, R-Precision, Foot Skating
Ratio

OmniControl emerges as superior, closely approximating the diversity of real motions,

while GMD and PriorMDM lag significantly behind in their respective rankings. How-

ever, on the KIT dataset, PriorMDM secures second place, with GMD trailing in third.

Nevertheless, all methods demonstrate convincing results overall.

In concluding our quantitative analysis regarding the quality of the generated move-

ments, we focus on assessing the foot skating ratio, which serves as a metric for gauging

the occurrence of foot sliding—an issue widely recognized as a significant challenge in hu-

man motion synthesis techniques. The evaluation of the foot skating ratio is exclusively

conducted on the HumanML3D dataset due to the distinct feature structure present in

the KIT dataset, which hinders the assessment of this particular aspect. To be succinct, it

appears that OmniControl refrains from presenting the foot skating ratio metric, whereas

PriorMDM exhibits a slightly inferior performance, with GMD demonstrating a marginally

worse performance compared to PriorMDM, as illustrated in Figure 5.5.

Table 5.8. Root trajectory control evaluation on the HumanML3D dataset (Accuracy metrics)

Trajectory Error Location error Average Error

Real Motions 0.00 0.00 0.00

PriorMDM 0.851 0.397 10.518

GMD 0.0931 0.0321 0.1439

OmniControl 0.0387 0.0096 0.0338

Moving forward, it is imperative to assess the methods based on their adherence to

93

Chapter 5. Methods’ Comparative Evaluation

Figure 5.8. Comparative results on KIT dataset in terms of Diversity

the prescribed trajectory, a crucial factor for motion trajectory control. To this end, it is

important to highlight what each of the three displayed metrics (Trajectory error, Location

error and Average error) actually stand for:

• Trajectory error refers to the proportion of unsuccessful trajectories, which are

characterized by any keyframe location error surpassing a predetermined threshold.

• Location error, on the other hand, represents the ratio of keyframe locations that

fail to be reached within a specified distance threshold.

• Average error quantifies the average distance between the generated motion loca-

tions and the keyframe locations assessed at the keyframe motion steps.

The predefined threshold value is set to 50cm. The error between real motions and

the prescribed trajectory would be zero, as intuition suggests.

As illustrated in Figures 5.9 and 5.10, OmniControl exhibits remarkable superiority

over the other two methods across all error metrics defining the performance of pelvis

trajectory control, also known as root trajectory control, on both the HumanML3D and

KIT datasets. However, it is noteworthy that despite OmniControl’s consistent superi-

ority, PriorMDM and GMD assume varying roles across datasets. Specifically, on the

HumanML3D dataset, GMD demonstrates a noteworthy performance, approaching the

level of OmniControl, while PriorMDM significantly lags behind the other two methods.

Conversely, on the KIT dataset, PriorMDM attempts to mirror the performance of Omni-

Control, albeit not as closely, while GMD falls notably short of expectations.

94

5.3.1 Quantitative Evaluation

Figure 5.9. Comparative results on HumanML3D dataset in terms of FID, DIV, MM Dist,
MModality

Figure 5.10. Comparative results on HumanML3D dataset in terms of FID, DIV, MM Dist,
MModality

95

Chapter 5. Methods’ Comparative Evaluation

In our perspective, the metric that warrants the most consideration for conducting an

effective assessment is the average error. This metric essentially quantifies the average

deviation from the prescribed trajectory. While the other two metrics primarily focus on

identifying instances of particularly poor outcomes, which may not fully characterize the

model’s overall performance, they are not to be underestimated in their importance as

they aid us gain a comprehensive understanding of each model’s performance and their

ability to maintain trajectory fidelity consistently. Taking into account all metrics, with

particular emphasis on the Average error, OmniControl emerges as the leading contender.

Table 5.9. Root trajectory control evaluation on the KIT dataset (Accuracy metrics)

Trajectory Error Location error Average Error

Real Motions 0.00 0.00 0.00

PriorMDM 0.851 0.397 10.518

GMD 0.5443 0.3003 0.407

OmniControl 0.1105 0.0337 0.0759

To conclude our quantitative analysis thoroughly, it’s essential to delve into the intri-

cate interplay between computational resources and performance, a dynamic that greatly

influences the holistic evaluation of each method. In this context, it’s imperative to con-

sider not only the efficacy of the methods but also the computational burden they impose.

This allows for a nuanced understanding of the trade-off between performance and re-

source consumption, which is pivotal for making informed decisions.

A standout performer in this regard is PriorMDM, which exhibits a remarkable effi-

ciency by requiring significantly less computational time compared to its counterparts. In

fact, it outperforms both GMD and OmniControl by a substantial margin, demanding only

a fraction of the computational resources needed by the other methods - GMD needs 3

times the computational of PriorMDM while OmniControl lasts even more. This disparity

in computational load can be attributed to the foundational architecture of PriorMDM,

which serves as the backbone for the subsequent methods. By leveraging this established

framework and integrating additional modules judiciously, OmniControl and GMD extend

the capabilities of PriorMDM. Predictably, this augmentation inevitably comes at the cost

of increased computational overhead.

Table 5.10. Comparison of the inference time costs on motion trajectory control.

Methods Inference time per trajectory session (in secs)

PriorMDM 76.7
OmniControl 231.3
GMD 211.6

This observation underscores the importance of considering not just raw performance

metrics but also the computational efficiency of each method. Striking the right balance

between performance and resource utilization is paramount, ensuring that the chosen

method meets the requirements of the task at hand while maximizing efficiency and

minimizing computational overhead.

96

5.3.2 Qualitative Evaluation

5.3.2 Qualitative Evaluation

The qualitative analysis conducted to assess the effectiveness of three distinct meth-

ods—PriorMDM, GMD, and OmniControl—seeks to capture the nuanced visual experience

of users when employing these methods. This evaluation particularly emphasizes the uti-

lization of hand-crafted trajectories, contrasting with trajectories drawn from our available

datasets, which were utilized in the quantitative evaluation showcased in the preceding

section. Our approach was guided by the belief that a diverse range of prescribed motions

should be explored, encompassing extreme scenarios such as sharp turns, in addition to

conventional trajectories characterized by smooth curves. The evaluation revolves around

two primary dimensions:

• Accuracy of Generated Motion:This dimension investigates whether the motion

derived solely from a pelvis trajectory aligns with the prescribed signal and to what

degree.

• Aesthetic Coherence and Naturalness:This aspect examines how cohesive and

visually appealing the generated motion appears, with a focus on its naturalness

while attempting to stay faithful to the input control signal.

Consequently, we have structured our evaluation into two distinct sections: one ded-

icated to assessing the fidelity to the input signal and the other to evaluating the human-

like quality of the produced motion through visual inspection. For the complete results

showcasing of our assessment, please refer to the following link.

In addressing the first evaluation element, it becomes apparent that the outputs

from PriorMDM exhibit a remarkable alignment with the prescribed trajectories com-

pared to the other two methods, despite quantitative metrics from trajectory error analy-

sis—especially the average error, which, as previously elucidated, holds significant repre-

sentational value in this context—placing it third on the HumanML3D dataset and second

to OmniControl on the KIT dataset. However, this outcome does not come as a surprise

to us, as the evaluation metrics are computed across all joints due to the fact evaluation

motions were sampled from the datasets, whereas we provide just the pelviS (x, y, z) co-

ordinates for our experiments. Upon delving into the operational structure of PriorMDM,

it becomes evident that in root trajectory control mode, PriorMDM entirely leaves out of

the noising process the input features related to the root (equivalently to the pelvis), en-

suring their integrity in the output regardless of external influences. This characteristic

is consistent across all generated motions. Conversely, OmniControl and GMD employ

mechanisms such as spatial guidance and realism guidance, which partially influence the

prescribed motion to varying degrees based on the given trajectory. Diverse trajectories

allow for differing levels of conformity to the control signal while still yielding a coher-

ent output motion. This inherent flexibility occasionally leads GMD and OmniControl

to diverge significantly from the given trajectories, as observed with GMD in the oval

trajectory and OmniControl in the T trajectory. Nevertheless, it’s worth noting that

motions involving sharp turns, such as the small-sized T trajectory used for evaluation,

97

https://drive.google.com/drive/folders/1vjTryaPiswVOxkIjPsCk46g_LPdMtykU

Chapter 5. Methods’ Comparative Evaluation

were expected to pose challenges due to their inherent nature. In summary, if we were

to establish a ranking based on adherence to the input signal, PriorMDM emerges as the

frontrunner, followed by OmniControl at a relatively close distance, and GMD at a greater

distance.

Transitioning to the second and final element of our evaluation, it’s essential to un-

derscore that the conclusions drawn here naturally follow from the preceding evaluation

element. This assertion is underpinned by the inherent constraints observed in human

motion joint kinematics. Essentially, the more rigorously we enforce the generated motion

to adhere to the input trajectory, the greater the likelihood of introducing artifacts and

inconsistencies, especially when faced with challenging prescribed trajectories—such as

the T trajectory mentioned earlier. It becomes evident from the outcomes that all methods

encounter such issues on certain occasions. PriorMDM, which, as dissected previously,

prioritizes adherence to the motion path dictated by the trajectory to the utmost de-

gree, raises concerns regarding the coherence of the motion while striving to faithfully

follow the control signal. In scenarios like the T trajectory and the zig-zag trajectory, it

exhibits motion inconsistencies during abrupt directional shifts, resulting in unnatural

movements that may perturb the observer’s eye. Similarly, OmniControl is compelled to

execute a jarring 180-degree turn in the outcome of the right turn trajectory due to the

excessively sharp prescribed directional shift, along with significant foot sliding observed

in the T trajectory outcome. OmniControl, structurally oriented towards producing natu-

ral movements while allowing for more leniency in conforming to the prescribed trajectory

compared to PriorMDM—as corroborated by fidelity metrics reported earlier—achieves a

balance between producing natural motion in the zig-zag trajectory while loosely adhering

to the sharp turns dictated by the prescribed trajectory. Regarding GMD, it demonstrates

remarkable proficiency in generating natural motions. For instance, in the outcome of

the right turn, it delivers the most visually appealing shift compared to other methods.

However, it occasionally exhibits notable inconsistencies in appropriately adjusting the

velocities included in the feature vector, appearing to struggle with following large-scale

trajectories such as the oval curve. This deficiency manifests in significant foot sliding is-

sues, as confirmed by the reported foot skating ratio metric. Additionally, it is noteworthy

that GMD brings a novel approach as it performs denoising to the latent space encoded

features, rather than the input features themselves, which seems to be a promising ap-

proach.

In summary, all three methods exhibit significant potential in the realm of human mo-

tion trajectory control. The choice between them ultimately hinges on the specific needs

of the user. For scenarios where strict adherence to the input trajectory is paramount,

particularly in computer animation systems aiming for efficiency, PriorMDM stands out as

the preferred option. On the other hand, if the priority is to generate natural motions with

a high level of fidelity, users may opt for OmniControl. Although GMD may fall slightly

short compared to its counterparts, it shines in certain specialized scenarios. Thus, we

find ourselves faced with a nuanced trade-off encompassing three key factors: adherence

to the prescribed trajectory, the naturalness of the output motion, and the computa-

tional resources required. This complexity contrasts with the binary trade-off typically

98

5.3.2 Qualitative Evaluation

discussed in text-to-motion generation. Looking towards future endeavors, it is evident

that novel methods should aim for a hybrid approach. These methods should strike a

balance between respecting the trajectory and enhancing fidelity, taking into account the

inherent flexibility of each individual trajectory. This approach would effectively mitigate

trajectory-related errors and eliminate visually displeasing motion artifacts, paving the

way for more sophisticated and refined motion control techniques.

99

Chapter 6

Conclusion

Diffusion models have become the leading type of generative models for human motion

synthesis addressing a plethora of application, especially in fields like computer anima-

tion. Recent research has focused on refining the quality of motion generated samples

through the iterative sampling procedure which is the cornerstone of their operational

philosophy. This study investigates the performance of cutting-edge methods in two pri-

mary tasks: text-to-motion generation & motion trajectory control, particularly focusing

on the pelvis joint. After providing a thorough explanation of diffusion models and sup-

plemental material such as discussing motion representation techniques and available

datasets, we delve into the core issues of these tasks. We offer a detailed overview of

the top-performing methods and discuss their contributions to recent advancements in

the field. Furthermore, we conduct comparative analyses of the evaluation settings to

highlight the strengths and weaknesses of each method. Despite the impressive results

achieved by all methods, there are still significant challenges that require further investi-

gation. Through our comparative evaluation, we emphasize the importance of considering

individual needs and weighing the pros and cons of each method, especially in terms of

performance versus computational costs trade-off. We hope this survey sets the stage for

future research directions in human motion synthesis, inspiring new breakthroughs in

the field.

101

Bibliography

[1] Jonathan Ho, Ajay Jain και Pieter Abbeel. Denoising Diffusion Probabilistic Models,

2020.

[2] Gabriel Mongaras. Diffusion models, DDPMs, DDIMs and classifier-Free Guidance.

Available online, 2023.

[3] Prafulla Dhariwal και Alex Nichol. Diffusion Models Beat GANs on Image Synthesis,

2021.

[4] researchers at the Perceiving Systems Department MPI for Intelligent Systems. SMPL

made simple FAQs. Available online, -.

[5] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll και Michael J.

Black. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graph., 34(6), 2015.

[6] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-

hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger και Ilya Sutskever. Learning Transferable Visual Models From Natural Lan-

guage Supervision, 2021.

[7] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or και Amit H.

Bermano. Human Motion Diffusion Model, 2022.

[8] Yonatan Shafir, Guy Tevet, Roy Kapon και Amit H. Bermano. Human Motion Diffusion

as a Generative Prior, 2023.

[9] Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun και Huaizu Jiang. Omnicon-

trol: Control any joint at any time for human motion generation. arXiv preprint

arXiv:2310.08580, 2023.

[10] Korrawe Karunratanakul, Konpat Preechakul, Supasorn Suwajanakorn και Siyu

Tang. Guided Motion Diffusion for Controllable Human Motion Synthesis, 2023.

[11] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang

και Ziwei Liu. MotionDiffuse: Text-Driven Human Motion Generation with Diffusion

Model, 2022.

[12] Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, Jingyi Yu και Gang

Yu. Executing your Commands via Motion Diffusion in Latent Space, 2023.

103

BIBLIOGRAPHY

[13] Sarah Jayne Blakemore και Jean Decety. From the perception of action to the under-

standing of intention. Nature Reviews Neuroscience, 2001.

[14] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li και Li Cheng.

Generating Diverse and Natural 3D Human Motions From Text. Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), σελίδες

5152–5161, 2022.

[15] Simon Alexanderson, Rajmund Nagy, Jonas Beskow και Gustav Eje Henter. Listen,

Denoise, Action! Audio-Driven Motion Synthesis with Diffusion Models. ACM Transac-

tions on Graphics, 42(4):1–20, 2023.

[16] Yusuke Nishimura, Yutaka Nakamura και Hiroshi Ishiguro. Long-Term Motion Gen-

eration for Interactive Humanoid Robots Using GAN with Convolutional Network. Com-

panion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction,

HRI ’20, σελίδα 375–377, New York, NY, USA, 2020. Association for Computing Ma-

chinery.

[17] Gianpaolo Gulletta, Wolfram Erlhagen και Estela Bicho. Human-Like Arm Motion

Generation: A Review. Robotics, 9(4), 2020.

[18] Taras Kucherenko, Dai Hasegawa, Gustav Eje Henter, Naoshi Kaneko και Hedvig

Kjellström. Analyzing Input and Output Representations for Speech-Driven Gesture

Generation. Proceedings of the 19th ACM International Conference on Intelligent Virtual

Agents. ACM, 2019.

[19] Yann LeCun, Yoshua Bengio και Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[20] Y. Bengio, Réjean Ducharme και Pascal Vincent. A Neural Probabilistic Language

Model. τόµος 3, σελίδες 932–938, 2000.

[21] Diederik P Kingma και Max Welling. Auto-Encoding Variational Bayes, 2022.

[22] Danilo Jimenez Rezende και Shakir Mohamed. Variational Inference with Normalizing

Flows, 2016.

[23] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville και Yoshua Bengio. Generative Adversarial Networks,

2014.

[24] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher

Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack

Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever και Dario

Amodei. Language Models are Few-Shot Learners, 2020.

104

BIBLIOGRAPHY

[25] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-

man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter

Welinder, Paul Christiano, Jan Leike και Ryan Lowe. Training language models to

follow instructions with human feedback, 2022.

[26] Tero Karras, Samuli Laine και Timo Aila. A Style-Based Generator Architecture for

Generative Adversarial Networks, 2019.

[27] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko

Lehtinen και Timo Aila. Alias-Free Generative Adversarial Networks, 2021.

[28] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi

και David J. Fleet. Video Diffusion Models, 2022.

[29] Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho Kim, Jung Woo Ha και

Jinwoo Shin. Generating Videos with Dynamics-aware Implicit Generative Adversarial

Networks, 2022.

[30] Ben Poole, Ajay Jain, Jonathan T. Barron και Ben Mildenhall. DreamFusion: Text-

to-3D using 2D Diffusion, 2022.

[31] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li,

Or Litany, Zan Gojcic και Sanja Fidler. GET3D: A Generative Model of High Quality

3D Textured Shapes Learned from Images, 2022.

[32] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A.

Osman, Dimitrios Tzionas και Michael J. Black. Expressive Body Capture: 3D Hands,

Face, and Body from a Single Image, 2019.

[33] Javier Romero, Dimitrios Tzionas και Michael J. Black. Embodied hands. ACM

Transactions on Graphics, 36(6):1–17, 2017.

[34] Muhammed Kocabas, Nikos Athanasiou και Michael J. Black. VIBE: Video Inference

for Human Body Pose and Shape Estimation, 2020.

[35] Dario Pavllo, Christoph Feichtenhofer, David Grangier και Michael Auli. 3D human

pose estimation in video with temporal convolutions and semi-supervised training,

2019.

[36] Julieta Martinez, Rayat Hossain, Javier Romero και James J. Little. A simple yet

effective baseline for 3d human pose estimation, 2017.

[37] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll και Michael

J. Black. AMASS: Archive of Motion Capture as Surface Shapes, 2019.

[38] Zhixuan Yu, Jae Shin Yoon, In Kyu Lee, Prashanth Venkatesh, Jaesik Park, Jihun Yu

και Hyun Soo Park. HUMBI: A Large Multiview Dataset of Human Body Expressions,

2020.

105

BIBLIOGRAPHY

[39] Matthias Plappert, Christian Mandery και Tamim Asfour. The KIT motion-language

dataset. Big data, 4(4):236–252, 2016.

[40] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun

Gong και Li Cheng. Action2Motion: Conditioned Generation of 3D Human Motions.

Proceedings of the 28th ACM International Conference on Multimedia, MM ’20. ACM,

2020.

[41] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll και Michael

J. Black. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graphics (Proc.

SIGGRAPH Asia), 34(6):248:1–248:16, 2015.

[42] Diederik Kingma, Tim Salimans, Ben Poole και Jonathan Ho. Variational diffusion

models. Advances in neural information processing systems, 34:21696–21707, 2021.

[43] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan και Surya Ganguli.

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, 2015.

[44] Michael Gutmann και Aapo Hyvärinen. Noise-contrastive estimation: A new estima-

tion principle for unnormalized statistical models. Proceedings of the thirteenth in-

ternational conference on artificial intelligence and statistics, σελίδες 297–304. JMLR

Workshop and Conference Proceedings, 2010.

[45] Diederik P Kingma, Max Welling και others. An introduction to variational autoen-

coders. Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

[46] Kai Lai Chung. Markov chains. Springer-Verlag, New York, 1967.

[47] Adaloglou Nikolaos Karagiannakos, Sergios. Diffusion models: toward state-of-the-art

image generation. https://theaisummer.com/, 2022.

[48] Jiaming Song, Chenlin Meng και Stefano Ermon. Denoising Diffusion Implicit Models,

2022.

[49] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin,

Bob McGrew, Ilya Sutskever και Mark Chen. GLIDE: Towards Photorealistic Image

Generation and Editing with Text-Guided Diffusion Models, 2022.

[50] Jonathan Ho και Tim Salimans. Classifier-Free Diffusion Guidance. NeurIPS 2021

Workshop on Deep Generative Models and Downstream Applications, 2021.

[51] Alex Nichol και Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models,

2021.

[52] Claudio Pizzolato, Monica Reggiani, Luca Modenese και David G Lloyd. Real-time

inverse kinematics and inverse dynamics for lower limb applications using OpenSim.

Computer methods in biomechanics and biomedical engineering, 20(4):436–445, 2017.

[53] Jeffrey A Reinbolt, Ajay Seth και Scott L Delp. Simulation of human movement:

applications using OpenSim. Procedia Iutam, 2:186–198, 2011.

106

BIBLIOGRAPHY

[54] Alexandra Pfister, Alexandre M West, Shaw Bronner και Jack Adam Noah. Compara-

tive abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. Journal

of medical engineering & technology, 38(5):274–280, 2014.

[55] Scott L Delp, Frank C Anderson, Allison S Arnold, Peter Loan, Ayman Habib, Chand

T John, Eran Guendelman και Darryl G Thelen. OpenSim: open-source software to

create and analyze dynamic simulations of movement. IEEE transactions on biomedi-

cal engineering, 54(11):1940–1950, 2007.

[56] Hervé Abdi. The eigen-decomposition: Eigenvalues and eigenvectors. Encyclopedia of

measurement and statistics, σελίδες 304–308, 2007.

[57] Daniel Roetenberg, Henk Luinge, Per Slycke και others. Xsens MVN: Full 6DOF

human motion tracking using miniature inertial sensors. Xsens Motion Technologies

BV, Tech. Rep, 1:1–7, 2009.

[58] Ralph Gross και Jianbo Shi. The CMU motion of body (MoBo) database. 27, 2001.

[59] Catalin Ionescu, Dragos Papava, Vlad Olaru και Cristian Sminchisescu. Human3.6M:

Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural

Environments. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(7):1325–1339, 2014.

[60] Saeed Ghorbani, Kimia Mahdaviani, Anne Thaler, Konrad Kording, Douglas James

Cook, Gunnar Blohm και Nikolaus F. Troje. MoVi: A large multi-purpose human

motion and video dataset. PLOS ONE, 16(6):e0253157, 2021.

[61] Abhinanda R. Punnakkal, Arjun Chandrasekaran, Nikos Athanasiou, Alejandra

Quiros-Ramirez και Michael J. Black. BABEL: Bodies, Action and Behavior with

English Labels. Proceedings IEEE/CVF Conf. on Computer Vision and Pattern Recog-

nition (CVPR), σελίδες 722–731, 2021.

[62] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li και Li Cheng. Gen-

erating Diverse and Natural 3D Human Motions from Text. 2022 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), σελίδες 5142–5151, 2022.

[63] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun

Gong και Li Cheng. Action2Motion: Conditioned Generation of 3D Human Motions.

Proceedings of the 28th ACM International Conference on Multimedia, MM ’20. ACM,

2020.

[64] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll και Michael

J. Black. AMASS: Archive of Motion Capture as Surface Shapes, 2019.

[65] Sebastian Starke, He Zhang, Taku Komura και Jun Saito. Neural State Machine for

Character-Scene Interactions. ACM Transactions on Graphics, 38, 2019.

107

BIBLIOGRAPHY

[66] D. Hirshberg, M. Loper, E. Rachlin και M.J. Black. Coregistration: Simultaneous

alignment and modeling of articulated 3D shape. European Conf. on Computer Vision

(ECCV), LNCS 7577, Part IV, σελίδες 242–255. Springer-Verlag, 2012.

[67] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Joseph

Rodgers και James Davis. SCAPE: shape completion and animation of people. ACM

Transactions on Graphics (TOG), τόµος 24, σελίδες 408–416. ACM, 2005.

[68] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Joseph

Rodgers και James Davis. BlendSCAPE: Blending shape, color, and texture for realistic

human facial animation. ACM Transactions on Graphics (TOG), 27(3):Article 53, 2008.

[69] Matthew M. Loper και Michael J. Black. OpenDR: An Approximate Differentiable

Renderer. Computer Vision – ECCV 2014David Fleet, Tomas Pajdla, Bernt Schiele και

Tinne Tuytelaars, επιµελητές, σελίδες 154–169, Cham, 2014. Springer International

Publishing.

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N. Gomez, Lukasz Kaiser και Illia Polosukhin. Attention Is All You Need, 2023.

[71] Alec Radford και Karthik Narasimhan. Improving Language Understanding by Gen-

erative Pre-Training. 2018.

[72] Jacob Devlin, Ming Wei Chang, Kenton Lee και Kristina Toutanova. BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding, 2019.

[73] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei και Ilya Sutskever.

Language Models are Unsupervised Multitask Learners. 2019.

[74] Rico Sennrich, Barry Haddow και Alexandra Birch. Neural Machine Translation of

Rare Words with Subword Units, 2016.

[75] Mathis Petrovich, Michael J. Black και Gül Varol. TEMOS: Generating diverse human

motions from textual descriptions, 2022.

[76] Yinglin Duan, Tianyang Shi, Zhengxia Zou, Yenan Lin, Zhehui Qian, Bohan Zhang

και Yi Yuan. Single-Shot Motion Completion with Transformer, 2021.

[77] Lvmin Zhang, Anyi Rao και Maneesh Agrawala. Adding Conditional Control to Text-

to-Image Diffusion Models, 2023.

[78] Ilya Loshchilov και Frank Hutter. Decoupled Weight Decay Regularization, 2019.

[79] Jonathan Ho και Tim Salimans. Classifier-Free Diffusion Guidance, 2022.

[80] Olaf Ronneberger, Philipp Fischer και Thomas Brox. U-Net: Convolutional Networks

for Biomedical Image Segmentation, 2015.

[81] Guy Tevet, Brian Gordon, Amir Hertz, Amit H. Bermano και Daniel Cohen-Or. Mo-

tionCLIP: Exposing Human Motion Generation to CLIP Space, 2022.

108

BIBLIOGRAPHY

[82] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi και Hongsheng Li. Efficient

Attention: Attention with Linear Complexities, 2024.

[83] Mathis Petrovich, Michael J. Black και Gül Varol. Action-Conditioned 3D Human

Motion Synthesis with Transformer VAE, 2021.

109

List of Abbreviations

AR Augmented Reality

VR Virtual Reality

VAE Variational Autoencoders

GAN Generative Adversarial Network

DDPM Denoising Diffusion Probabilistic Models

SMPL Skinned Multi-Person Linear

DDIM Denoising Diffusion Implicit Model

FID Frechet Inception Distance

IS Inception Score

NLL Negative Log-Likelihood

ELBO Evidence Lower Bound

DOF Degree of Freedom

LBS Linear Blend Skinning

PCA Principal Component Analysis

BPE Byte-Pair Encoding

MDM Motion Diffusion Model

GMD Guided Motion Diffusion

MLD Motion Latent Diffusion

MLP Multi-Layer Perceptron

MSE Mean Squared Error

111

	Abstract
	Περίληψη

	Acknowledgements
	Introduction
	English
	Ελληνικά

	Diffusion Models - Theoretical background
	Intuition behind Diffusion Models
	The Diffusion Process
	Forward Process
	Backward Process

	Sampling
	DDPM Sampling
	DDIM Sampling

	Conditional Generation: Guided Diffusion
	Classifier Guidance
	Classifier-Free Guidance

	Training Diffusion Models

	Motion Representation in Joint Kinematics
	Fundamentals
	Motion representation alternatives
	3D Keypoints
	Euler Angles Rotation
	Rotation Matrices
	Axis-Angle Representation
	Quaternions Representation
	6D Rotation Representation

	Motion Capture Datasets for Training
	KIT dataset
	HumanML3D dataset

	Skeletal Templates in Motion Generation
	The SMPL skeleton

	The SMPL model
	Overview
	Parameterization
	Model Optimization
	Impact

	The CLIP model
	Architecture
	Training
	Impact

	Diffusion-based Architectures in Human Motion Synthesis
	Motion Diffusion Model (MDM)
	Motion Representation & Operational Modes
	Network Architecture, Sampling & Optimization

	PriorMDM
	Motion Representation & Operational Modes
	Network Architecture, Sampling & Optimization

	OmniControl
	Motion Representation & Operational Modes
	Network Architecture, Sampling & Optimization

	Guided Motion Diffusion (GMD)
	Motion Representation & Operational Modes
	Network Architecture, Sampling & Optimization

	MotionDiffuse
	Motion Representation & Operational Modes
	Network Architecture, Sampling & Optimization

	Motion Latent Diffusion (MLD)
	Motion Representation & Operational Modes
	Network Architecture, Sampling & Optimization

	Methods' Comparative Evaluation
	Introduction
	Quality Metrics

	Text-to-Motion Generation
	Quantitative Evaluation
	Qualitative Evaluation

	Trajectory Control
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusion
	Bibliography
	List of Abbreviations

