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Abstract

Structural  Health  Monitoring  (SHM)  is  a  process  of  implementing  a  damage 
detection strategy in structures to evaluate the condition of existing structures to ensure the 
safety  of  users  in  the  future.  The  changes  in  the  material,  geometric  and/or  structural  
properties affect structural responses, which can be captured and analyzed for condition 
assessment. Various vibration–based damage detection algorithms have been developed in 
the past decades. Among them, the method of the Continuous Wavelet Transform (CWT) 
gained popularity as an efficient method of signal processing to create  a framework to 
identify model properties and detect damage in structures. In this study, the application of 
wavelet transform for identification of modal parameters and damage detection is presented 
and  numerically  verified  through  verification  examples.  The  method  is  developed  in 
MATLAB  and  then,  it  is  used  in  various  cases,  such  as  in  the  Z24  road  bridge  in 
Switzerland. The results are compared with those obtained from other calculation methods 
as the Fast Fourier Transform (FFT), and moreover with the use of the Modal Analysis 
Software “ARTeMIS Modal”. It is shown that the CWT used for output–only identification 
and damage detection yields good agreement with the results from ARTeMIS Modal. The 
incorporation  of  noise  in  the  signals  and  the  methods’ sensitivity  in  modal  parameter 
identification  are  also  investigated.  Furthermore,  an  attempt  is  made  to  reconstruct  the 
signals in non–significant noise situations, through the Hilbert transform and the analytical 
signal.
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Περίληψη

Η Παρακολούθηση της Δομικής Υγείας –  Structural Health Monitoring (SHM)  – 
είναι μία διαδικασία εφαρμογής στρατηγικής ανίχνευσης αστοχιών για την αξιολόγηση της 
κατάστασης υφιστάμενων κατασκευών, ώστε να διασφαλισθεί η ασφάλεια των χρηστών 
στο μέλλον. Οι αλλαγές στο υλικό, στις γεωμετρικές ή/και δομικές ιδιότητες επηρεάζουν 
τις  δομικές  αποκρίσεις,  οι  οποίες  μπορούν να αποτυπωθούν και  να αναλυθούν για την 
εκτίμηση της κατάστασης της κατασκευής. Διάφοροι αλγόριθμοι ανίχνευσης αστοχιών που 
βασίζονται σε κραδασμούς έχουν αναπτυχθεί τις τελευταίες δεκαετίες. Μεταξύ αυτών, η 
μέθοδος  του  Συνεχή  Μετασχηματισμού  Κυματιδίων  –  Continuous  Wavelet  Transform 
Method (CWT) – κέρδισε δημοτικότητα ως μία αποτελεσματική μέθοδος στην επεξεργασία 
σημάτων για την δημιουργία ενός πλαισίου για τον εντοπισμό των ιδιοχαρακτηριστικών 
της  κατασκευής  και  την  ανίχνευση  αστοχιών.  Σε  αυτήν  την  μελέτη  παρουσιάζεται  η 
εφαρμογή της μεθόδου του Συνεχή Μετασχηματισμού Κυματιδίων για την αναγνώριση 
των  ιδιοτιμών  αυτών  και  την  ανίχνευση  αστοχιών  και  επαληθεύεται  αριθμητικά  μέσω 
παραδειγμάτων. Η μέθοδος έχει αναπτυχθεί στο MATLAB και εφαρμόστηκε σε διάφορες 
περιπτώσεις,  όπως  στην  περίπτωση  της  οδικής  γέφυρας  Z24  στην  Ελβετία.  Τα 
αποτελέσματα συγκρίνονται με αυτά που προέκυψαν από άλλες μεθόδους υπολογισμού 
όπως  ο  Fast  Fourier  Transform (FFT)  και  με  την  χρήση του  λογισμικού  ιδιομορφικής 
ανάλυσης  “ARTeMIS Modal”.  Αποδεικνύεται  ότι  ο  CWT  ως  μέθοδος  output–only και 
ανίχνευσης αστοχιών, αποδίδει καλή συμφωνία με τα αποτελέσματα του ARTeMIS Modal. 
Διερευνάται,  επίσης, η  ενσωμάτωση  του  θορύβου  στα  σήματα  και  η  ευαισθησία  των 
μεθόδων στην ταυτοποίηση των παραμέτρων των συστημάτων λόγω του θορύβου αυτού. 
Επιπλέον,  γίνεται  προσπάθεια  ανακατασκευής  των  σημάτων σε  καταστάσεις  μη 
σημαντικού θορύβου, μέσω του μετασχηματισμού Hilbert και του αναλυτικού σήματος.
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Acronyms, Abbreviations and Symbols

SHM Structural Health Monitoring

CWT Continuous Wavelet Transform

ACWT Averaged Continuous Wavelet Transform

WT Wavelet Transform

RDT Random Decrement Technique

SNR Signal–to–Noise Ratio

DOF Degree of Freedom

FFT Fast Fourier Transform

FT Fourier Transform

FRF Frequency Response Function

TF Time Frequency

EMA Experimental Modal Analysis

OMA Operational Modal Analysis

MDOF Multi Degree of Freedom system

SDOF Single Degree of Freedom system

STFT Short Time Fourier Transform

sgn(ω) Sign function of a real number, equal to:

sgn(ω) = {−1 ,     if ω < 0.
0 ,        if ω = 0.
1 ,        if ω > 0.

Θ(ω) Heaviside step function, equal to:

Θ(ω) = {1 ,        if ω ≥ 0.
0 ,        if ω < 0.

ω Angular frequency or Undamped angular frequency [rad/sec]

f Frequency [Hz]

Fs Sampling frequency [Hz]

T Period [sec]

dt Sampling period [sec]
~ω Damped angular natural frequency of the system [rad/sec]

m Mass

c Damping constant

ccr Critical damping coefficient
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u(t ) Displacement vector vector

u̇(t ) Velocity vector

ü(t ) Acceleration vector

M Mass matrix

C Damping matrix

K Stiffness matrix

Φ Mode shape matrix

u(t ) Real valued signal

Zu(t ) Analytic signal

Tψ[u](b , a) Continuous wavelet transform of a signal u(t )

tψ Mother wavelet center time

ωψ Mother wavelet center frequency

Δtψ Duration of the mother wavelet

Δωψ Bandwidth of the mother wavelet

a Scale parameter of the CWT

b Time translation parameter of the CWT

ar(b) Ridge of the CWT

A(t ) Instantaneous amplitude

φ(t ) Instantaneous phase

ω(t ) Instantaneous angular frequency

ψ(t ) Mother wavelet defined in the time domain

ψ̂(ω) Mother wavelet defined in the frequency domain

z̄ Complex conjugate of a complex number z

x  ∗ y Convolution of x and y

ĝ Fourier transform of a function g

⟨x, y⟩ Inner product of x and y

||・|| Norm of a function, vector or matrix

∠ Phase of the function/signal

Re() Real part of a complex number

Im() Imaginary part of a complex number

ℂ The set of all complex numbers

ℝ The set of all real numbers

ℝ+
* The set of all real positive numbers excluding zero

ℤ The set of integers (positive, negative, zero)
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1. Introduction

1.1 Introduction in Structural Health Monitoring

Structural  Health  Monitoring  (SHM) is  defined  as  the  process  of  using  an  on–
structure  sensing system to  monitor  its  performance and evaluate  the  health  state.  The 
changes of material and geometric properties of structures including boundary condition, 
changes in loading conditions, deterioration with age, etc. affect the structure performance 
and can cause damage.  While some damage is  visible,  others may be difficult  to spot. 
Structural damage caused results in observable changes in the vibratory responses of the 
structure, hence the analysis of these outputs can allow the estimation of the decreased 
stiffness matrix. The vibration based SHM process involves the observation of a system 
over time using periodically sampled dynamic response measurements from an array of 
sensors.  In  addition,  SHM  uses  the  extraction  of  damage–sensitive  features,  such  as 
vibration characteristics and the statistical analysis to determine the current state of system 
health. Furthermore, measured vibration data can be employed for validating and updating 
finite–element–models used in the analysis, even in the design phase for some cases of 
complex and large–scale structures where experiments and tests are also performed. [41]

Sensors are placed on the structure to allow communication between sensors as well  
as the location of the damage. As the density of sensors increases on a structure, the quality 
and resolution of damage information also increases. However, sensor installation costs, 
sensor power consumption, and data processing capacity act as limiting factors for sensor 
density. Sensors measure structure quantities such as strain, displacement, and acceleration 
as well as environmental conditions like temperature, wind, and moisture. The output of 
this  process  periodically  updates  information  regarding  the  ability  of  the  structure  to 
perform its intended function and degradation results from operational environments for 
long term serviceability. [41]

This concept is widely used in various types of engineering structures to reduce 
monetary losses and guarantee and ensure the safety of users.

SHM is used to provide rapid, real and reliable information regarding the functions 
of the structure. A complete SHM approach consists of five basic steps which involve:

(1) Detection – Identification of damage occurrence in the structure, if any 
(2) Localization – Identification of single or multiple damage locations 
(3) Assessment – Quantification of the level of damage 
(4) Prognosis – Evaluation of structural performance and its useful remaining life 
(5)  Remediation  –  Determination,  implementation,  and  evaluation  of  effective 

remediation and repair efforts

1.2 Modal Parameter Identification

Dynamic  and  vibration  characteristics  may be  identified  through  the  process  of 
Modal  Analysis.  Modal  parameter  identification  is  a  fundamental  part  of  structural 
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engineering, used in the monitoring or the assessment of existing structures under dynamic 
loading conditions as well as the design phase of new structures.  In existing structures, 
modal parameter identification consists in general of three main steps: excitation and data 
acquisition, signal processing, and modal parameters estimation.

Focusing on the first step, vibration measurements can be obtained by performing 
Experimental Modal Analysis (EMA), where the structure is subjected to a controlled input 
(excitation) and its  output  (response) is  being recorded,  or  Operational  Modal  Analysis 
(OMA), where the modal properties are identified based on vibration data (wind, traffic, 
machine vibration etc.) collected during operating conditions of the under–study structure. 
In  many  cases,  OMA is  used  instead  of  classical  modal  analysis,  as  it  provides  the 
advantages of not requiring special equipment and evacuation of the structure during the 
measurements  and it  can be  applied in  situations  where  it  is  difficult  or  impossible  to 
artificially excite the structure.

The signal processing techniques are used for the estimation of modal parameters. 
The most common classification of these methods is done according to the domain where 
the data are processed: time domain, frequency domain and time–frequency domain. In 
general, time domain models tend to provide the best results when a wide frequency range 
or large number of modes exist  in the data,  whereas frequency domain models tend to 
provide the best results when the frequency range of interest is limited and the number of 
modes  is  relatively  small.  However,  frequency  domain  methods  do  not  provide  any 
information about the time where the components of the frequency content of the under 
signal  are  present.  For  a  long  time,  frequency  domain  identification  and  time  domain 
identification were considered as competing methods to solve the same problem. A main 
conclusion of Ljung and Glover [13]  back in 1979, was that  these two approaches are 
complementary rather than rivalling. Thus, taking it one step further, the need to overcome 
the  inability  of  the  frequency  domain  approach  to  capture  time–varying  features  of  a 
structure  but  retain  the  advantage  of  the  frequency  content  information,  led  to  the 
development of the time–frequency domain methods. These methods study a signal in both 
the time and frequency domains simultaneously. Subsequently, they were widely applied 
and used in system identification and damage detection.

1.3 The wavelet transform (WT)

The wavelet transform (WT) originated in the early 1980s in the works of Morlet 
[15] who used it in seismology and then Grossman and Morlet [16] who developed the 
geometrical  formalism  of  the  continuous  wavelet  transform.  The  Continuous  wavelet 
transform (CWT) is a time–frequency domain output–only modal identification method and 
was  first  proposed  by  Staszewski  and  Cooper [23]  in 1995  to  estimate  structural 
parameters. Since then, the potential of modal parameter identification using the CWT has 
been  receiving  considerable  attention  in  the  literature. Early  works  were  focused  on 
exploring and developing methods and techniques for the estimation of a system’s natural 
frequencies, damping ratios and gradually mode shapes. [25]

The  CWT is  a  linear  transform  by  definition  and  thus,  appropriate  for  multi–
component  signals.  Compared  with  other  identification  techniques,  CWT  has  two 
fundamental advantages in structural parameter identification [24]. The first is the multi–
resolution ability inherent to wavelet analysis. This property enables the separation of the 
close frequency components of a coupled frequency signal, allowing MDOF systems to be 
handled directly. Additionally this ability ensures that CWT can work as a band–pass filter 
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and automatically filter out noise from the signal. Hence, this method can handle very noisy 
measurements.  The  second  advantage  is  that  CWT  can  resolve  multiple  structural 
parameters  from a  single  signal  without  knowledge  of  the  applied  force  acting  on  the 
structure. This advantage makes it a promising output–only identification method that is 
widely utilized in both EMA and OMA. Another important advantage of the CWT is that it  
can be used to analyze time series that contain non–stationary power at many different 
frequencies [4], and therefore it can process non–stationary vibration measurements. Lastly, 
the use of the CWT allows to determine the time variation of instantaneous amplitude and 
phase of each component within the signal [10] a property that facilitates the identification 
procedure of modal parameters through the identification of ridges and the reconstruction 
of the signal.

1.4 Objective

The objective of this thesis is the application of the Continuous Wavelet Transform 
(CWT) on ambient vibration responses, with the aim of the identification of their modal 
parameters and subsequently of the damage detection for SHM.

The implementation of the algorithms, the calculations and the visualizations are 
done with MATLAB ver.R2023a, using the standard features and additionally the Signal 
Processing Toolbox and the Wavelet Toolbox. MATLAB simulations are used to develop 
algorithms and subjected to acquire acceleration data analysis. The advantages of the CWT 
method are identified and compared to the widely used Fourier analysis. The comparison of 
the results is done with the Modal Analysis Software ARTeMIS Modal ver. 7.2. Moreover, 
the methods’ sensitivity in embedding of additional noise is tested, aiming to prove the 
dominance of CWT.

1.5 Thesis outline

The thesis contains 8 main chapters.

Chapter 1 is the Introduction.

In Chapters 2 the definition, the importance and basic steps of structural health monitoring 
are presented.

Chapters 3 and 4 present the essential engineering, physical and mathematical theoretical 
background that is required to comprehend the contents and the methods applied.

Chapter 5 provides an essential background on structural dynamics.

Chapter 6 describes the methods that will be applied for ridge extraction, reconstruction of 
the signals, modal parameters identification and the system dynamic characterization.

Chapter 7 presents three numerical applications, a 4–storey building, an 8–storey building, 
and a real project conducted in Aristotle University of Thessaloniki called EuroProteas.

Chapter 8 presents the modal parameter identification and damage detection of the Z24 
Bridge in Switzerland. The time–frequency representation is generated for different damage 
scenarios took place throughout a period of one month. The eigen–frequencies, damping 
ratios and mode shapes are obtained and compared for each scenario in order to assess the 
integrity of the bridge. The results obtained from ARTeMIS Modal are also compared.
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2. Structural Health Monitoring (SHM)

2.1 Structural Health Monitoring Methods 

2.1.1 Visual Inspection 

The first and foremost basic structural health monitoring system is visual inspection. 
That is, visually inspect the cracks, delaminated areas, deformations of structural members 
in order to clarify the structural healthiness of the structure. Even though this is helpful as  
an  initial  inspection  method,  this  has  several  drawbacks  and  inconsistency  of  results 
depending on the experience of  the inspectors.  Hence,  there is  a  special  need of  using 
consistent reliable methods in order to overcome these drawbacks. [41]

2.1.2 Non–contact Monitoring 

Contacting  sensors  have  to  be  mounted  directly  onto  the  measuring  points  of 
structures  and  be  connected  to  a  neighboring  stationary  reference  point.  For  practical 
infrastructures, it is difficult to find an ideal stationary reference point near the measuring 
point,  and  it  is  also  inconvenient  for  the  connection  between  sensors  and  stationary 
reference points. Therefore contacting sensors troublesome in installation and expensive in 
maintenance too (Malesa et al. 2010). Non–contacting sensors can be located outside the 
infrastructures without being connected to a stationary reference point directly which is 
quite convenient for SHM compared to contact technologies for health monitoring. [41]

The development of innovative non–contact systems for vibration measurement is 
convenient to use compared to contact technologies and has recently drawn the attention of 
several  researchers  for  non–contact  technologies.  Non–contact  sensors  include  Laser 
Doppler  Vibrometer  (Cunha  and  Caetano  1999),  Global  Positioning  Systems 
(Nickitopoulou  et  al.  2006,)  and  vision–based  systems  using  digital  image  processing 
techniques  etc.  In  addition,  the  microwave  interferometry  has  recently  emerged  as  an 
innovative technology, suitable to the non–contact vibration monitoring of large structures. 
[41]

2.1.3 Vibration Based Structural Health Monitoring 

Vibration  Based  Structural  Health  Monitoring  (VBSHM)  has  drawn  significant 
attention in health monitoring techniques. The basic characteristic of this method is that the 
characteristic changes in structures such as mass, stiffness and damping will affect to the  
global  vibration  response  of  the  monitored  structure.  Thus,  unknown properties  of  the 
structure can be identified by studying the changes of the measured vibration behavior. 
When the changes in structural properties inversely affect to the performance of structure, it 
will be defined as damage (Guan and Karbhari 2008). The process of identifying those 
structural changes is referred as vibration based damage identification or vibration based 
damage detection. Compared to other monitoring system, this method has the advantage of 
monitoring the global nature of the vibration characteristics. The capability of identifying 
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the  modal  parameters  such  as  natural  frequencies  and  mode  shapes,  pave  the  path  to 
monitor not only a single individual structural component but the entire structure. Hence, 
large civil engineering structures such as bridges can be effectively monitored with limited 
number of sensors and equipment. [41]

Structural  dynamic response measurements are achieved with an instrumentation 
system which includes sensors, transmission and storage of dynamic response data. Sensor 
type,  sampling  frequencies  need  to  be  customized  according  to  the  application. 
Acceleration,  velocity  and  displacement  are  the  most  common  dynamic  response 
measurements. The instrumentation system must be designed to manage a data collection if 
continuous monitoring of a structure is needed with large amount of data. [41]

Dynamic response of the structure is  utilized in order to find the corresponding 
modal  parameters  which  contain  important  characteristics  of  the  structural  dynamic 
response. Those are easy to use in further analysis and storage compared to actual raw data. 
[41]

2.2 Data Acquisition Methods 

2.2.1 Wired Sensor Networks 

Wired sensor networks are consists  of cables to carry different electrical  signals 
from one end to the other. The speed of operation is high compared to wireless networks 
but  installation  is  cumbersome  and  requires  more  time.  In  wired  sensor  network,  the 
mobility  is  limited  as  it  operates  in  an  area  covered  by  a  connected  system.  Channel 
interference is less as one wired network will not affect the other. [41]

2.2.2 Wireless Sensor Networks 

A wireless  sensor  network  consists  of  bunch  of  multi–functional  sensor  nodes 
having sensing, computational and communication capabilities for responses in structures. 
It  consists  of  four  basic  components  which  are  sensor  unit,  Analog  Digital  Converter 
(ADC), Central Processing Unit (CPU), and a power unit. Sensor nodes sense or capture 
the physical data at the area of interest. The sensed data by sensors is digitized by ADC and  
sent  to  controllers  for  further  processing.  Wireless  sensor  nodes  are  usually  a  small 
electronic device which can only be equipped with limited power. This network can set up 
without any fixed infrastructure and ideal for non–reachable places such as mountains, deep 
forests, sea, and rural area. Implementation is comparatively cheaper than wired sensors. 
[41]

2.3 Wavelet Transform for Structural Health Monitoring 

Wavelet  Transform  (WT)  has  achieved  the  ability  to  overcome  many  of  the 
limitations in Fourier analysis. Hence, WT is widely used not only in civil engineering field 
but in many fields including mechanical systems and aerospace as a signal processing tool 
in structural health monitoring showing its generality. WT is based on dilated scales and 
shifted windows which has the ability to perform a good time frequency resolution of a data 
signal  contributed  to  widespread  applications  in  engineering.  A time  domain  signal  is 

20



converted  into  WT in  terms  of  the  projection  of  the  original  signal  onto  a  family  of 
functions that are normalized dilations and translations of wavelet transform. A function 
ψ (t ) is  defined as the mother wavelet  and it  dilates (scaled) and translates (shifted) as 
daughter wavelets. Scaling in WT means stretching or compressing it in the time domain. 
Smaller  scales  represent  more  compressed  wavelets  while  larger  scales  produce  more 
stretched  wavelets.  Major  applications  in  WT were  focused  on  feature  extraction  and 
pattern recognition. [41]

Wavelet based in depth analysis of the status and estimation of a system’s remaining 
useful life was performed by Farrar et al. (2004). Patsias and Staszewski (2002) presented 
the  possibility  of  damage  detection  using  WT  from  optically  observed  mode  shapes. 
Kumara et al. (1999) and Sohn et al. (2003) showed delamination detection of composite 
structures using CWT. Damage detection is performed by analyzing the structural response 
collected from piezoelectric sensors and observing the dissimilarity in modal parameters of 
the system.
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3. Signal Processing

This  chapter  presents  some fundamental  concepts  and definitions used in  signal 
processing, so that they can be utilized for the wavelet analysis theory and its application on 
the estimation of modal parameters (natural frequencies, damping ratios and mode shapes) 
that will be described in the following chapters.

3.1 Signal definition

A signal can be defined as a physical quantity that varies with time, space, or any 
other independent variable (or variables) [19]. In signal processing, a signal is a function 
that conveys information about a phenomenon and can be represented in the time domain, 
the frequency domain, and the time–frequency domain.

Typical examples of signals are: human speech, whale song, music, photographs and 
videos, electrocardiograms, encephalograms, etc. Noise is also a signal, but the information 
conveyed by it, is unwanted in general, hence it is considered as undesirable. In structural 
dynamics, the most commonly used signals are those that provide information about the 
acceleration, velocity, and displacement response of structures during an earthquake or any 
other kind of vibration. One example of such a signal is an accelerogram.

A system may be defined as a physical device that performs an operation such as 
analysis, modification, filtering, synthesis, etc. on a signal. “Passing” a signal through a 
system is called Signal Processing.

3.2 Traditional Signal Representation

3.2.1 Time domain representation

A typical representation of a signal  u is as a function of time,  called temporal or 
time–domain representation  u(t ) (Figure 3.2(a)).  The time domain representation,  u(t ), 
provides information about the actual presence of the signal, its start and end time point, it’s 
duration in  time,  its  strength and temporal  evolution,  and it  indicates  how the  signal’s 
energy  (equations  3.21 and  3.22)  is  distributed  along  the  t axis.  The  observation  and 
recording of physical phenomena from instruments is usually performed in relation to time, 
and therefore the signals obtained are in the time domain, for example an accelerogram or 
the displacement response of a structure during an earthquake.

3.2.2 Frequency domain representation

Another typical representation of a signal u is as a function of frequency, called the 
spectral or frequency domain representation  u(ω) (Figure 3.2(b)). The frequency domain 
representation,  u(ω),  provides  information  about  which  frequencies  are  present  in  the 
signal,  their  relative  magnitudes,  minimum  frequency,  maximum  frequency,  and  the 
bandwidth formed by their difference. A signal represented in time domain can be also 
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represented in the frequency domain by applying a pair of mathematical operators called a 
transform. An example is the Fourier Transform (FT) (equation 4.9) which decomposes a 
function into the sum of a (potentially infinite) number of sine wave frequency components. 
The inverse Fourier transform (equation 4.10) converts the frequency domain function back 
to a time function.

3.2.3 Time – frequency representation

Most signals from the nature are intrinsically non−stationary, in the sense that their 
frequencies  vary  along  time.  Using  a  time–frequency  representation,  the  signal  is 
represented on a time–frequency plane, providing both temporal information and spectral 
information  simultaneously.  This  illustration  on  the  time–frequency  plane  allows  the 
determination of the variation of the instantaneous amplitude and phase of each component 
within a signal in time.

Depending  on  the  application,  a  time–frequency  representation  is  more 
advantageous:  the  time–domain  representation  does  not  provide  information  about  the 
frequency content of a signal and the frequency domain representation does not not locate 
in  time the frequency content  of  the signal,  whereas the time–frequency representation 
illustrates information on both variables (Figures 3.1 and 3.2).
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Figure 3.1: Time–frequency domain representation of a non stationary signal. It can be 
observed that it illustrates information on both. time t and frequency f. [25]



Figure 3.2: Three representations of free decay response u of a SDOF system: (a) time 
domain, (b) frequency domain, and (c) joint time–frequency domain. [25]

3.3 Complex Numbers

This  section  provides  a  brief  reference  to  basic  definitions  and  properties  of 
complex numbers. In  mathematics, a complex number is an element of a  number system 
that extends the real numbers with a specific element denoted i, called the imaginary unit 
and satisfies the equation i2 = –1. Every complex number can be expressed in the form z = x 
+ yi,  where Re(z ) =  x and Im(z ) =  y are real numbers  [26].  Fundamental concepts of 
oscillatory motion involve the use of complex numbers. Additionally, the mother wavelets 
used are complex, which results in the CWT also being complex.

➢ Modulus and argument

i. The modulus of a complex number z = x + yi, is defined as:

r = ‖z‖ = √ x2  + y2 (3.1)

ii. The argument of a complex number z = x + yi, denoted φ = arg(z ), is defined as:

φ = arctan( yx ), or φ = atan[Re(z) ,Im (z)] (3.2)

➢ Euler’s formula

Euler’s  formula,  establishes  the  fundamental  relationship  between  the  trigonometric 
functions and the complex exponential function and is expressed as:
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eiφ = cos φ + i sin φ (3.3)

Using Euler’s formula, trigonometric functions can be expressed as:

cos φ = 
e iφ + e−iφ

2
(3.4)

and

sin φ = e
iφ−e−iφ

2 i
(3.5)

➢ Polar form

The polar form of a complex number with modulus r and argument φ denoted as: z = r∠φ, 
is defined:

z = |z|eiφ = |z|(cosφ + i sin φ) (3.6)

➢ Complex conjugate

The complex conjugate of a complex number z = x + yi is defined as:

z̄ = x – yi , or  z̄ = |z|e–iφ (3.7)

3.4 Simple Harmonic Motion

Simple  harmonic  motion  (a  special  class  of  oscillatory  motion)  can  serve  as  a 
mathematical  model  for  a  variety  of  phenomena  as  it  provides  a  basis  for  the 
characterization of more complicated periodic motion. Thus, this section provides some 
basic definitions and concepts which will be used in the following chapters.

3.4.1 Trigonometric Notation for Simple Harmonic Motion

Let the motion of a given point be described by the equation:

u(t ) = Asin (ωt  + φ) or u(t ) = Acos (ωt  + φ) (3.8)

where
u(t ) is the displacement from the equilibrium position in m, cm, etc.,
A the displacement magnitude of the oscillation in m, cm, etc.,
ω the angular frequency in rad/s,
φ the phase angle in rad,
and t the time.
The quantity A is the single–peak amplitude; u(t ) moves between the limits ±A, so the peak 
to peak amplitude (also known as double amplitude) is 2A. The time history of this simple 
harmonic displacement is shown in Figure 3.3.

26



The angular frequency ω is is the rate of change of the phase angle φ with time t:

ω = 
dφ
dt

(3.9)

The angular frequency ω is also related with the frequency f = 1/T (units in hertz) and the 
period T = 1/f (units in seconds) through the following relations:

ω = 2πf (3.10)

and

ω = 
2π
 T

(3.11)

Simple harmonic motion can also be described as the sum of a sine function and a cosine 
function, that is:

u(t ) = acos (ωt ) + bsin (ωt ) (3.12)

As seen in Figure 3.4 the sum of the sine and cosine functions is also a sinusoidal 
that  oscillates  at  angular  frequency,  ω.  The motion described by  equation 3.13 can be 
expressed in the form of equation 3.9, with amplitude A = √a2  + b2 and phase angle φ = 
arctan(a /b).
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Figure 3.3: Time history of simple harmonic displacement.[25]



3.4.2 Complex Notation for Simple Harmonic Motion

Trigonometric descriptions of simple harmonic motion use familiar functions that 
are  easy  to  visualize.  However,  for  many  dynamic  analyses,  the  use  of  trigonometric 
notation complicates considerably many operations, particularly the solution of differential 
equations.  These  analyses  become  much  simpler  when  motions  are  described  using 
complex notation, which can be derived directly from trigonometric notation using Euler’s 
formula (equation 3.4)., by substituting equations 3.5 and 3.6 in equation 3.13:

u(t ) = 
a−ib

2
 eiωt + 

a + ib
2

 e–iωt (3.13)

3.4.3 Displacement, Velocity, Acceleration

Differentiating  with  respect  to  time  the  expression  for  simple  harmonic 
displacement  produces  expression  for  velocity  and  differentiating  again  produces  the 
expression for acceleration, i.e for φ = 0:
In trigonometric notation:

u(t ) = Asin (ωt ) (3.14)

u̇(t ) = ωAcos (ωt ) = ωAsin (ωt + π
2
) (3.15)

ü(t ) = –ω2Αsin (ωt ) = ω2Asin (ωt + π) (3.16)

In complex notation:

u(t ) = Aeiωt (3.17)

u̇(t ) = iωAeiωt (3.18)
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Figure 3.4: Summation of sine and cosine functions of the same frequency produces a 
sinusoid of the same frequency. Amplitude and phase of the sinusoid depends on the 

amplitudes of the sine and cosine functions. [25]



ü(t ) = –ω2Αeiωt (3.19)

3.5 Classification of signals

The methods employed in processing a signal depend heavily on the characteristics 
of  that  particular  signal,  for  example,  there  are  techniques  that  apply  only  to  specific 
families  of  signals.  Consequently,  any  investigation  in  signal  processing  requires 
knowledge of the classification of the signals that are involved in each application.
Signals can be classified according to many criteria into the following categories:

➢ Continuous–time and Discrete–time signals.

This classification’s criteria is based on the characteristics of the time (independent) 
variable and the values they take. Let u(t ) be a function (signal) of the independent variable 
t, defined in the time domain:

If the independent variable t is continuous, t  ∈ ℝ, i.e. between any two points in time there 
is an infinite number of other points in time, then the corresponding signal is a continuous–
time signal, often called an analog signal. Any signal value can be found at any arbitrary 
point in time. Mathematically, these signals can be described by functions of a continuous 
variable  and  they  are  related  to  operations  with  integrals.  A  simple  example  of  a 
continuous–time signal is a sinusoidal function u(t ) = sin (ωt ), where t  ∈ ℝ (Figure 3.5).

If the independent variable t takes on only discrete integer values, t  ∈ ℤ, for example t = ±1, 
±2, ±3,..., then the corresponding signal is a discrete–time signal. A discrete time signal is 
not defined at instants between two successive points in time, therefore mathematically it 
can be represented by a sequence of real or complex numbers. To emphasize the discrete–
time nature of these signals, they can be denoted as u(n) instead of u(t ). A simple example 
of a discrete–time signal is a sinusoidal sequence  u(n) =  sin (ωn), where  n  ∈ ℤ (Figure 
3.6).
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Figure 3.5: Example of a continuous−time signal: Sinusoidal signal  u(t ) = sin (ωt ), t ∈ ℝ, 
with angular frequency ω = π rad/sec. [25]



Generally, discrete–time signals may arise in two ways:

(1) By selecting values of a continuous–time signal at discrete−time instants. This process 
is  called sampling and the values selected samples.  As an example,  Figure 3.6 can be 
acquired by sampling the  continuous−time signal  of  Figure  3.5.  This  is  a  fundamental 
process, as most signals of practical interest in nature (e.g. seismic signals, speech) are 
analog; consequently, they must be converted into a discrete–time  form to be able to be 
processed by digital means (e.g. computers). More will be discussed in detail in section 3.7.

(2)  By accumulating a  variable’s  values over  a  period of  time.  For  example,  the daily 
rainfall data of a specific area or the hourly number of cars passing through a certain street  
result in discrete–time signals.

➢ Deterministic and Random Signals

Mathematical  analysis  and  processing  of  signals  demands  the  availability  of  a 
mathematical expression of the signal itself. This requirement leads to another important 
classification of signals, in relation to the existence or not of this formula: Deterministic 
signals are those whose values are predictable at any time and can be described exactly by a 
mathematical formula, a table of data, or a well–defined rule. It is worth mentioning that 
true  deterministic  signals  are  very  rare  in  nature  because  unknown and  uncontrollable 
factors (e.g. noise) usually influence the signal as well.

Random signals are signals that take on random values at any given time instant, 
therefore they are modeled stochastically, in probabilistic terms. Seismic signals and speech 
signals are examples of random signals.

➢ Stationary and Non–stationary signals

This classification results  from the observation of the signal’s frequency content 
over time:
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Figure 3.6: Example of a discete−time signal: Sinusoidal signal  u(n) = sin (ωn), n ∈ ℤ, 
with angular frequency ω = π rad/sec. [25]



Stationary  signals are  those  whose  frequency  content  remains  unchanged  in  time.  All 
frequency components exist at all times.

Non–stationary signals are those whose frequency content varies in time. These kinds of 
signals are the ones that are found in nature.

➢ Periodic and aperiodic signals

Periodic signals. These signals have waveforms whose pattern repeats at equal increments 
of time; this is  expressed mathematically as:  u(t + T ) =  u(t ),  where  T is  the period of 
continuous–time  signals,  or  u(n + N) =  u(n),  where  N is  the  period  for  discrete–time 
signals.

Non−periodic or aperiodic signals, which are signals that are not periodic.

➢ Energy signals and Power signals.

This classification is based on the signal total energy E and signal average power P, 
definitions which are used to characterize a signal. 

The total energy E of a signal is defined as:

For continuous–time signals u(t ):

E = ∫
−∞

+∞

|u (t )|2 dt (3.20)

For discrete–time signals u(n):

E = ∑
n=−∞

+∞

|u(n)|2 (3.21)

The average power P of a signal is defined as:

For continuous–time signals u(t ):

P = lim
T →∞

1
2T ∫−T

+ T

|u(t )|2 dt (3.22)

For discrete–time signals u(n):

P = lim
N→ ∞

1
2N+1 ∑n=−N

+N

|u(n)|2 (3.23)
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Hence, the classification goes as follows:

Energy signals are those whose total energy is equal to a finite positive value, i.e. 0 < E < 
+∞, and their average power is zero (P = 0). Aperiodic signals are an example of energy 
signals.

Power signals are those whose average power P is finite, i.e. 0 < P < +∞, and their energy 
is infinite (E = +∞). Periodic signals are examples of power signals.

➢ Monocomponent and multicomponent signals

A  monocomponent signal  is  described in  the time–frequency plane by a  single  “ridge” 
corresponding  to  an  elongated  region  of  energy  concentration  [1].  For  example,  the 
displacement response u(t ) of a SDOF system is a monocomponent signal (Figure 3.7).

A multicomponent signal may be described as the sum of two or more monocomponent 
signals.  For  example,  the  displacement  response  u(t ) of  a  MDOF system’s  d.o.f.  is  a 
multicomponent signal (Figure 3.8).
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Figure 3.7: Example of time–frequency analysis of a monocomponent signal: 
Magnitude (Modulus) Scalogram of the CWT. [25]



➢ Noise

The term noise originates from radio engineering, where it describes the unwanted 
signal  that  it  is  heard when the radio is  not  tuned exactly to a  radio station.  In signal 
processing, noise is a general term for unwanted (and, in general, unknown) modifications 
that interfere and degrade the desirable information of a signal. This can happen during 
capture, storage, transmission, processing, or conversion of a signal  [22]. Signals within 
which the presence of noise is insignificant, can be characterized as pure, while signals with 
significant  noise  present  within  them  can  be  characterized  as  noisy.  In  real–life 
applications, signals are not “clean” in general and most often are embedded in noise. Noise 
can be eliminated by filtering of the signal. A filter is a system that removes unwanted 
components or features from a signal.
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Figure 3.8: Example of time–frequency analysis of a multicomponent 
signal: Magnitude (Modulus) Scalogram of the CWT. [25]



3.6 Τhe Time–Frequency Approach

The basic product of a time–frequency analysis is a set of data represented in the 2D 
time–frequency plane as in Figures 3.7, 3.8 and 3.9.

➢ Instantaneous amplitude, phase and frequency

As it was mentioned previously, time–frequency methods have the ability to analyze 
non−stationary signals efficiently. The frequency of a sinusoidal signal is a well defined 
quantity, as it  was  seen in section 3.4.  However, often in practice, signals are not truly 
sinusoidal,  or even aggregates of sinusoidal components.  Non–stationary signals do not 
lend themselves  well  to  decomposition into  sinusoidal.  For  such signals,  the  notion of 
frequency loses its effectiveness, and one needs to use a parameter which accounts for the 
time–varying  nature  of  the  process  [1].  Following  the  thought  process  of  the  simple 
harmonic motion in equation 3.9 and 3.13, such signals can be expressed as:

For monocomponent, frequency modulated (FM) signal:

u(t ) = A(t ) cos φ(t ) (3.24)

For a multicomponent, frequency modulated (FM) signal:

u(t ) = ∑
j=1

N

A(t ) cos φ(t ) (3.25)

where A(t ) is the instantaneous amplitude and φ(t) is the instantaneous phase of the signal.
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Figure 3.9:Time–frequency analysis of a monocomponent signal: Magnitude 
(Modulus) (left) and Phase Plot (right) of the CWT. [25]



Consequently,  the  instantaneous  frequency  (IF)  is  the  temporal  rate  of  the 
instantaneous phase and equation 3.10 becomes:

ω(t) = 
φ(t)
dt

(3.26)

➢ Ridges

The IF of a signal at time t0 indicates the dominant frequency of the signal at that 
specific  time,  therefore  it  describes  the  frequency modulation  law of  the  signal.  For  a 
monocomponent FM signal, the peak of the cross–sections parallel to the frequency axis of 
the time–frequency plane gives the IF law which describes the signal FM law, while for a 
multicomponent  FM  signal,  the  dominant  peaks  of  the  cross−sections  parallel  to  the 
frequency axis of the time–frequency plane reflect the components’ respective FM laws. 
Those peaks in the cross–sections parallel to the frequency axis correspond to elongated 
regions of energy concentration in the time–frequency plot, called ridges. [25]

➢ Positive and negative frequencies

Mathematically,  the frequency  f ranges from −∞ to +∞, yet  in practice only the 
positive frequencies are used, as it can be seen from the plots shown in the previous figures. 
The  intuitive  explanation  is  that  f represents  the  number  of  oscillations  per  second, 
therefore is expected to be positive. Mathematically, this is based on a property of the FT: if 
u(t ) is real, its FT  û(ω) has Hermitian symmetry (section 4.2.2), thus, the information 
contained in the negative frequencies is a duplication of the information contained in the 
positive frequencies. Therefore, in practice, negative frequencies are considered redundant 
and  the  analysis  is  done  with  positive  frequencies.  This  is  achieved  by  introducing  a 
particular complex signal Z(t ) called the “analytic signal,” which contains only positive 
frequencies.

3.7 Sampling and Aliasing – Nyquist’s Theorem

As referred in the previous section, most signals of practical interest in nature are 
continuous–time signals, and therefore they must be converted into a discrete−time form to 
be able to be processed by digital means. This conversion of a continuous time signal to a 
discrete−time signal is done through a procedure called sampling.

The sampling type that is used most often in practice is the periodic (or uniform)  
sampling,  where  the  discrete−time  signal  is  obtained  by  “taking  samples”  of  the 
continuous−time signal every Ts seconds. The time interval Ts between successive samples 
is called the sampling period. Its reciprocal Fs = 1/Ts is called the sampling rate (how many 
samples per second are recorded) or the sampling frequency.

The sampling rate has a significant effect on the reconstruction of the continuous 
real signal in the time domain. Insufficient sampling frequency results to a phenomenon 
called  aliasing.  Aliasing  is  an  effect  that  causes  different  signals  to  become 
indistinguishable  (or  aliases  of  one  another)  when  sampled.  It  also  often  refers  to  the 
distortion or artifact that results when a signal reconstructed from samples is different from 
the original continuous−time signal. Generally, a high Fs is desired, because as Fs increases, 

35



the  effectiveness  of  sampling  increases  too,  but  after  a  certain  value,  no  further 
improvement is achieved, and instead the computational time is increased.

➢ Nyquist–Shannon sampling theorem

To avoid the ambiguities resulting from aliasing, the sampling rate must be selected 
to be sufficiently high; this is solved by following the Nyquist–Shannon sampling theorem. 
Sampling  frequency  Fs must  be  at  least  two  times  greater  than  the  signal’s  highest 
frequency Fmax:

Fs ≥ 2Fmax (3.27)

The  theorem establishes  a  sufficient  condition  for  a  sample  rate  that  permits  a 
discrete sequence of samples to capture all the information from a continuous–time signal 
of finite bandwidth. Usually the general frequency content of the signal is known, thus the 
signal’s highest frequency can be estimated.

➢ Nyquist frequency

The  previous  theorem  leads  to  the  definition  of  the  Nyquist  frequency  as  the 
maximum frequency in the frequency domain of the analysis:

FNyquist = 
F s

2
(3.28)
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4. Continuous Wavelet Transform (CWT)

The Wavelet  Transform (WT) is  one of the most important techniques in signal 
processing to build a framework in the identification of modal properties. It appeared in 
mathematics  more  than  a  century  ago,  starting  with  Haar  who  discovered  in  1909  an 
orthonormal basis consisting of step functions. The Haar basis construction is a precursor of 
what is known today as the multi–resolution analysis [27] which refers to the expansion of 
a signal into components that can reproduce the original signal when added together. The 
principle of multi–resolution spaces is to decompose a signal of finite energy L2(ℝ) to two 
complementary spaces: (i) a space of approximation; and (ii) a detail space that contains the 
approximation error. Multi–resolution analysis can be seen as a way to zoom into, or out of, 
the signal without losing information. From the beginning of 1980s, under the impetus of 
several  French researchers,  especially  Grossmann and Morlet  [28],  wavelet  research in 
mathematics has grown steadily with significant contributions from many authors.

As a time–frequency analysis tool, wavelet transform has the advantages of dealing 
with  non–stationary,  transient,  and  non–linear  signals.  The  other  very  popular  signal 
processing tool, Fourier analysis does not pave the path to study the nature of the time 
series in the time–frequency domain. Under the analysis of Fourier Transform, the time 
information  along  the  time  series  is  lost.  Hence,  it  is  difficult  to  distinguish  transient 
relations and identify when the structural changes have exactly occurred. Further,  these 
techniques are only appropriate for the time series with stable statistical  properties.  i.e. 
stationary time series (Conraria and Soares 2011).

Wavelet analysis allows studying the spectral characteristics of a time series as a 
function of time. It clearly illuminates the changes of different periodic components along 
the time series. One major advantage of wavelet transform is the ability to carry out natural  
local analysis of time series while the wavelet stretches into a long function to measure the 
low frequency movements, and it compresses into a short function in order to measure the 
high  frequency  movements.  The  Continuous  Wavelet  Transform  is  widely  used  as  an 
analysis tool which provides highly redundant information in time–frequency domain. This 
has the ability to recover the original time series from its transform (Conraria and Soares 
2011). 

This  chapter  presents  an overview of the background of the continuous wavelet 
transform. It provides the basic definitions and properties needed to understand the wavelet 
theory and its application to modal parameter identification.

4.1 Function Space

This section provides a  brief  description of  the function spaces used in wavelet 
theory [5].

4.1.1 Normed Spaces

The concept of norm in a vector space is an abstract generalization of the length of a 
vector in the ℝ3 set and is defined axiomatically; i.e. any real–valued function that satisfies 
some particular conditions can be defined as a norm.
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A real–valued function ‖x‖ defined on a vector space X, where x  ∈ X, is called a 
norm on X if the following conditions are satisfied:

i. ‖x‖ = 0 if and only if x = 0,
ii. ‖ax‖ = a ‖x‖ for every a  ∈ ℝ and  x  ∈ X,
iii. ‖x  + y‖ ≤ ‖x‖ + ‖y‖ for all x,y  ∈ X (also known as the triangle inequality).

Combining i, ii, and iii, follows that: 0 = ‖0‖ = ‖x − x‖ ≤ ‖x‖ + ‖−x‖ = 2‖x‖, therefore 
‖x‖ ≥ 0 for every x  ∈ X.

A normed space is a pair (X ,‖・  ‖) where X is a vector space and ||・|| is a norm defined on 
X.
Note: It is possible to define different norms on the same vector space.

i. ℝ is a real normed space with the norm defined by the absolute values: ‖x‖ = |x|.

ii. ℂ is a complex normed space with the norm defined by the modulus: ‖z‖ = |z|.

The sequence space ℓp (1≤ p≤ + ∞) is the set of all sequences [ xn]n=1

+∞
 of real (or complex) 

numbers such that (∑
n=1

+∞

|xn|
p) < ∞ is a normed space with a norm defined as:

||x||p = [∑
n=1

+∞

|xn|
p]

1/ p

(4.1)

For example, ℝN = (x1 , x2 , ... , x N): x1, x2, … , xN  ∈ ℝ  is a vector space with norm defined 
by setting p = 2 at equation 4.1:

||x||2 = √( x1
2 + x2

2 + ... + xN
2 ) (4.2)

where x = (x1 , x2 , ... , x N)  ∈ ℝ. This norm is called the Euclidean Norm.

Lp Spaces If  p ≥ 1 is any real number, the vector space of all complex−valued Lebesgue 
integrable functions f defined on ℝ is denoted by L p (ℝ) with a norm:

 || f ||p = [∫
−∞

+∞

| f ( x)|p dx]
1/ p

(4.3)

where || f ||p is the Lp−norm.

Remarks:

1. The range of p is 1 ≤ p ≤ +∞, as for values 0 < p < 1 the function ||・||p does not satisfy 
the triangle inequality.
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2. Equation 4.1 is the discrete version of equation 4.3.

3. The case p = 2 warrants special attention: it is a Hilbert space, more will be discussed in 
subsection 4.3.

4. Elements of L2 (ℝ) are called square integrable functions.

5. The term “signal of finite energy” in the following, refers to a generic element of L2(ℝ).

6. The equation of the total energy of a function (equations 3.21 and 3.22) can be defined as 
the square of the L2 norm of the function.

4.1.3 The Complex Hardy Space

The Complex Hardy space H 2(ℝ ) −sometimes called the space of analytic signals−, 
is made of signals which do not have negative frequency components, and is defined as:

 ‖H‖2(ℝ) = [f   ∈ L2(ℝ); f̂ (ω)  = 0 for ω ≤ 0] (4.4)

4.1.4 Convolution

Let f and g be functions in L1(ℝ). Then the (continuous time) convolution of f and g is also 
an L1(ℝ) function h  ∈ L1(ℝ) defined by:

 h(x )  = ( f ∗g)( x)  = ∫−∞

+ ∞
f ( x− y) g ( y)dy (4.5)

whenever  the  integral  is  well−defined.  The  convolution’s  properties  are  that  it  is 
commutative, associative and distributive.

If f and g  ∈ L1(ℝ), then the function f ( x − y) g ( y)dy is integrable for almost all x  ∈ ℝ. 
Furthermore, the convolution h is an integrable function and the following equality holds:

∥h∥1  = ∥ f ∗ g∥1 ≤∥ f ∥1∥ g∥1 (4.6)

4.1.5 Inner Product

Let f and g  ∈ L2 (ℝ). The inner product and norm for the space L2 (ℝ) is given by:

⟨ f , g ⟩  =∫
−∞

+ ∞

f (x ) g( x)dx (4.7)
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∥ f ∥2  = ⟨ f , f ⟩1/2 (4.8)

4.2 From Fourier analysis to Wavelet analysis

4.2.1 The Fourier Transform

As mentioned in the previous chapter, the Fourier Transform (FT) converts a signal 
from the  time  domain  to  the  frequency  domain  by  decomposing  it  into  the  sum of  a  
(potentially infinite) number of sine wave frequency components. 

For finite energy signals u(t )  ∈ L1(ℝ)∩L2 (ℝ) the FT is defined as:

û (ω)  =ℱ [u ]  =∫
− ∞

+ ∞

u (t )e−i ω t dt (4.9)

And the inverse FT as:

u(t )  = ℱ − 1[u ]  = 1
2 π ∫−∞

+ ∞

û(ω)e i ω t dω (4.10)

The function û(ω) is complex, and can be expressed in polar form as û(ω) = Aeiφ to 
express  the  amplitude  spectrum  Α(ω) (frequency−amplitude  plot),  and  phase  spectrum 
φ(ω) (frequency−phase angle plot).

It  is  important  to mention that  the Parseval  identity allows the extension of  the 
definition of FT from  L1(ℝ) to  L2 (ℝ) to include finite energy signals. Let  f   ∈ L1(ℝ)∩
L2 (ℝ). Then the FT  f̂  of f  is in L2 (ℝ), and satisfies the following Parseval’s Identity:

∥ f ∥2
2  = 1

2 π
∥ f̂ ∥2

2
(4.11)

which by substituting equation 4.3 of norm, Parseval’s Identity becomes:

∫
−∞

+∞

| f (t )|2 dt  = 1
2 π ∫− ∞

+∞

| f̂ (ω)|2 dω (4.12)

It can be observed that the left hand side part of the equation is the energy of a 
signal (equation 3.21). Consequently, Parseval’s Identity states a conservation of energy 
between the time and the frequency domains.

Then, for all  f and  g  ∈ L1(ℝ)∩L2 (ℝ) (signals of finite energy), the following identity is 
easily obtained from Parseval’s identity using the inner product definition (equation 4.7):
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∫
−∞

+∞

f (t ) g (t )dt  = 1
2π ∫−∞

+ ∞

f̂ (ω) ĝ (ω)dω   or   ⟨ f , g ⟩  = ⟨ f̂ , ĝ ⟩ (4.13)

which emphasizes the fact that the Fourier transform preserves the Hilbert spaces inner 
products.

4.2.2 Properties of the Fourier Transform

Some basic properties of the FT are (mentioned because they will be extended to  
wavelet analysis):

➢ Linearity

ℱ [∑
j=1

N

u j]  = ∑
j=1

N

ℱ [u j] (4.14)

➢ Time scaling

ℱ [u (at )](ω)  = 1
|a|

û (ω
a
),  a ≠ 0 (4.15)

➢ Translation / time shifting

For any real number t0  ∈ ℝ:

ℱ [u (t−t0)](ω)  = e−iωt0 û (ω) (4.16)

➢ Modulation / frequency shifting

For any real number ω0  ∈ ℝ:

ℱ [e−iωt0 u(t)](ω)  = û(ω−ω0) (4.17)

➢ Hermitian symmetry

For a real function u(t )  ∈ ℝ:

û(−ω)  = û(ω) (4.18)

➢ Convolution
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(u1∗ u2)(t )  = ℱ −1[ û1(ω) û2(ω)] (4.19)

4.2.3 The Fast Fourier Transform

FT is  implemented  in  digital  means  by  the  discrete  form  of equation  4.9,  the 
Discrete Fourier Transform (DFT). The DFT of a discrete−time signal u(n) is:

 û (k )  = 1
N∑n=0

N

u (n)e
−i(2 πkn

  N
)

(4.20)

where k = 0, 1, … ,N − 1 is the frequency index.

However,  the  calculation  of  the  DFT  with  equation  4.20 requires  performing 
approximately N2 multiplications, which becomes impractical when large amounts of data 
(large values of N) are required for processing.

As it is implied by its name, the Fast Fourier Transform (FFT) is an algorithm that 
determines the DFT of a signal significantly faster than computing it directly, as it performs 
an N−term DFT in 2N log (N) calculations allowing the analysis of large data sets. FFT can 
be implemented in MATLAB using the fft command.

4.2.4 Spectral leakage

Signals that are used in practice are of finite length. Due to this finite duration, 
signals that are converted from the time domain to the frequency domain are subject to 
spectral leakage. When the DFT is applied to an aperiodic signal of finite length, it assumes 
that any existing frequency components are periodic and infinite, i.e the same finite signal 
is repeated infinite times. So, when a spectral component that is not a harmonic of the  
fundamental  frequency  for  the  observation  window exists,  the  repetition of  that  finite 
component by the transform creates discontinuities at the boundaries of the iterations. Since 
that component is not a harmonic, and no longer a smooth wave due to the discontinuities, 
the  energy  of  that  component  cannot  be  expressed  on  a  single  basis  and  instead  is 
distributed  among  the  other  harmonic  frequency  bases.  This  “smearing”  of  energy 
manifests on the amplitude spectrum as low amplitude frequency components that are not 
actually present. Introducing a proper window function into the transform can reduce the 
degree of spectral leakage in the spectrum [8].

4.2.5 Window function

As it was mentioned, the problem of spectral leakage can be reduced with the use of  
a proper window function. Window functions operate by multiplying the time signal by a 
finite−length window with an amplitude that varies smoothly and gradually toward zero at  
the  edges.  In  signal  processing,  a  window function  is  a  mathematical  function  that  is 
zero−valued outside of some chosen interval, normally symmetric around the middle of the 
interval usually near a maximum in the middle, and usually tapering away from the middle.
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A nontrivial function  ψ  ∈ L2 (ℝ) is called a window function if  xψ (x ) is also in 
L2 (ℝ). The center xψ and radius Δxψ of a window function w are defined respectively by:

 xψ  = ∫
−∞

+ ∞

x
|ψ (x)|2

 ∥ψ ∥2
2

dx (4.21)

and

 Δ xψ  =     1
 ∥ψ ∥2

√∫
−∞

+∞

(x−xψ)
2|ψ ( x)|2dx (4.22)

Note that the radius Δxψ expression is equivalent to standard deviation in statistics. 
The width of the window function is defined as 2Δxψ .

Most  popular  window functions  are  bell−shaped  curves,  for  example  the  Hann 
window or a Gaussian window (Figure 4.1).

4.2.6 Short Time Fourier Transform (or Windowed Fourier Transform)

As it  presented in [25],  the FT converts a signal from the time domain into the 
frequency domain and does not provide any information about the time localization of the 
frequency components. In Chapter 3, was mentioned that the need to overcome the inability 
of the frequency domain approach to capture time−varying features of a structure but retain 
the advantage of the frequency content information, plus the problem of spectral leakage, 
led to the development of the time–frequency domain methods.

Gabor in 1946 developed and introduced the Short Time Fourier Transform (STFT, 
otherwise known as the windowed Fourier transform, or Gabor transform). The STFT is 
nothing  but  a  simple  localization  of  the  FT via  the  introduction  of  a  sliding  window 
function.  The  existence  of  this  window  makes  this  transform  into  a  function  of  two 
parameters:  a  time  parameter  giving  the  location  of  the  center  of  the  window  and  a 
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frequency parameter for the computation of the Fourier transform of the windowed signal 
[2].

Introducing now the  time−frequency window ψ,  with time center  and frequency 
center respectively defined as:

 tψ  = ∫
−∞

+ ∞

t
|ψ (t )|2

 ∥ψ ∥2
2

dt (4.23)

and

 ωψ  = ∫
−∞

+∞

x
|ψ̂ (ω)|2

 ∥ψ̂ ∥2
2

dω (4.24)

And with time radius and frequency radius respectively defined as:

 Δ tψ  =     1
 ∥ψ ∥2

√∫
−∞

+ ∞

(t−tψ)
2|ψ (t )|2dt (4.25)

and

 Δωψ  =     1
 ∥ψ̂ ∥2

√∫
−∞

+∞

(ω−ωψ)
2|ψ̂ (ω)|2 dω (4.26)

The window function now is in the time−frequency plane and has dimensions 2Δt  and 
2Δω.

The Heisenberg uncertainty principle states that:

 μψ  = Δ t Δω ≥ 
 1
 2

(4.27)

Consequently, an improvement of the time localization (i.e.,  a decrease of Δt) is 
accompanied by a deterioration in the frequency localization (i.e., an increase of Δω), thus 
it  is  not  possible  to  achieve  optimal  localization  simultaneously  in  the  time  and  the 
frequency domains. Note that the inequality becomes an equality in the case of Gaussian (or 
modulated Gaussian) functions.

The STFT of a function u(t ), STFTu consists of multiplying u(t ) by a (usually real) 
window function ψ shifted in time. If ψ (t ) is a prototype window, symmetric about t = 0, 
then STFTu is calculated as:

 STFT u  = ∫
−∞

+ ∞

u(t )ψ (t−b)e−iωt dt (4.28)
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where the parameter  b is used to translate the window in order to cover the whole time 
domain, for extracting local information of the Fourier transform of the signal.

Mother function Given a window function g  ∈ L2 (ℝ) the corresponding family [gb,ω; b  ∈ ℝ, 
ω  ∈ ℝ] of Gabor functions is obtained by shifting and modulating copies of g:

 gb ,ω(t )  = g (t−b)eiω(t−b) (4.29)

Let  g  ∈ L2(ℝ) a window function.  The continuous Gabor Transform of a finite–energy 
signal u(t )  ∈ L2(ℝ) is defined by:

 Gu(b ,ω)  = ⟨u , gb , ω⟩  = ∫
−∞

+ ∞

u (t ) ḡ b ,ω(t )dt (4.30)

Consequently, the Gabor transform is essentially a STFT with a Gaussian window. 
As  it  can  be  observed  by  the  previous  definitions,  changing  the  values  of  t simply 
corresponds to translating the window in time while its width is kept fixed. Similarly, as the  
modulation parameter ω varies, the transform translates in frequency, retaining a constant 
width. Thus, the resolution windows in the time–frequency plane have dimensions 2Δt and 
2Δω, which are fixed for all  t and ω, thus, STFT and Gabor transform the fixed duration 
window  function  is  accompanied  by  a  fixed  frequency  resolution.  Consequently,  this 
transform allows only a fixed time–frequency resolution. This is shown in  Figure 4.2 in 
which the mother function is illustrated centered at (t0, ω0) and the sliding time window are 
centered at integral multiples of t0 and the transforms are evaluated at frequencies centered 
at integral multiples of ω0.

However,  the  STFT  represents  an  inaccurate  and  inefficient  method  of  time–
frequency localization, as it imposes a scale or “response interval” 2Δt into the analysis. 
The inaccuracy arises from the aliasing of high– and low–frequency components that do 
not fall within the frequency range of the window [21].
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Since frequency is directly proportional to the number of cycles per unit time, it 
requires a narrow time–window to locate high frequency phenomena more precisely and a 
wide time–window to analyze low frequency behaviors more spectral information. In other 
words, it is important to have a flexible time–frequency window that automatically narrows 
at  high  center–frequency and widens  at  low  center–frequency.  Hence,  the  STFT is  not 
suitable  for  analyzing  signals  with  both  very  high  and  very  low frequencies [3].  This 
constraint  led  to  the  development  of  the  Wavelet  transform where  a  dilation (or  scale) 
parameter a is introduced to make the time–frequency window flexible. 

Summarizing, the Gabor transform is based upon time and frequency translations, as 
opposed to time translations and scalings as in the case of the wavelet transform which is 
presented in the next section.

4.3 The Continuous Wavelet Transform

This section provides a presentation on the basic theory of the continuous wavelet 
transform. The main idea is that the wavelet transform is based on a set of basis functions 
(wavelet  family)  formed  by  dilation  and  translation  of  a  prototype  mother  function 
(wavelet) ψ (t ) and is used to decompose a function (signal) u(t ) into the time–frequency 
domain.

Definitions in the literature vary slightly and depend on the choice of normalization 
of the wavelets. However, normalization is irrelevant to the basic theory [9], thus, in order 
to present the basic theory, the definition by Carmona et al. [2] is used for the wavelet 
definition;  the  differences  and  the  influence  of  normalization  are described  in  the 
“Normalization” section.

4.3.1 Definitions and basic properties

Mother wavelet Let  ψ  ∈ L1(ℝ)∩L2 (ℝ) be  a  window function.  This  function is 
called the mother (analyzing) wavelet,  and the corresponding family of wavelets is  the 
family [ψb,a; b  ∈ ℝ, a  ∈ ℝ+

* ] of shifted and scaled (dilated) copies of ψ defined as:

ψb , a(t )  = 
1
a

ψ(t−b
  a ), t  ∈ ℝ (4.31)

where a > 0 is a scaling parameter that defines the dilation of the mother wavelet ψ (t ) and 
b is the translation parameter related to time. Scale factor a > 1 corresponds to dilation and 
0 < a < 1 corresponds to compression [25]. The mother wavelet is the member of the family 
where b = 0 and a = 1. Consequently, in terms of a window function, the ψb , a(t ) wavelet 
can be viewed as a copy of the original mother wavelet with center frequency rescaled by a, 
that is, ωψ/a and centered around the time tψ + b. Common mother wavelets are the Morlet 
wavelet, the Meyer wavelet, the Mexican Hat, the Paul wavelet, the Cauchy wavelet, the 
Daubechies  wavelets,  the  Gaussian  Derivative  Family  (DOG),  the  generalized  Morse 
wavelets etc. (Figure 4.3).
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For a window function ψ (t ) to be accepted as a mother wavelet, it must fulfill the 
admissibility condition:

Let ψ  ∈ L1(ℝ)∩L2 (ℝ) be such that the number Cψ defined by:

0 < Cψ < ∫
0

+ ∞

|ψ̂ (aω)|2 da
 a

 < +∞ 
(4.32)

So, the constant Cψ finite, non–zero and independent of ω  ∈ ℝ. The finiteness of this 
constant restricts the class of L2 (ℝ) functions that can be used as “mother wavelets” in the 
definition of the integral wavelet transform. In particular, if  ψ (t ) must also be a window 
function, then is necessarily in L1(ℝ) [3], meaning:

∫
−∞

+ ∞

|ψ (t)|2 dt < +∞ 
(4.33)

and the integral of the mother wavelet  ψ (t ) has to vanish, so that the graph in the time 
domain to be a small wave:

∫
−∞

+ ∞

ψ (t)dt  = 0 (4.34)

A wavelet ψ (t ) is progressive, when ψ (t )  ∈ H 2(ℝ ). That is, its FT  ψ̂ (t ) vanishes for ω ≤ 
0.
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two complex. For the complex wavelets the plots illustrate the real part (solid) 

and imaginary part (dashed) for the wavelets. [25]



Let u(t ) be a signal that is of finite energy and a piece–wise continuous function of t. Given 
a mother wavelet  ψ (t ),  the continuous wavelet transform of this signal is given by the 
integral: 

T ψ [u ](b ,a )  = 1
a ∫−∞

+ ∞

u (t )ψ̄(t−b
  a )dt (4.35)

where a > 0 is a scaling parameter that defines the dilation of the mother wavelet ψ (t ) and 
b is the translation parameter related to time. As it can be observed by the equation 4.35, 
CWT  transforms  a  one–dimensional  (time  domain)  signal  u(t ) to  a  two–dimensional 
representation: the time–scale plane. Scales are directly linked with frequencies: a scale a 
corresponds to a scaled version of the mother wavelet with center frequency  ωψ/a,  thus 
bringing the CWT on the time–frequency plane.

The CWT, as defined by equation 4.35, can be interpreted as:

➢ The convolution of u(t ) with  
1
a

ψ̄(−b−t
  a ), based on equation 4.5.

➢ The inner product of of u(t ) with the shifted and scaled copies of the mother 

wavelet ψb,a = 
1
a

ψ̄(t−b
  a ), based on equation 4.7.

Consequently,  the  CWT can  be  viewed  as  a  tool  that  measures  the  similarity 
between a signal  u(t ) and the shifted and scaled copies  ψb,a of a mother wavelet  ψ (t ). A 
general illustration of how the CWT works can be seen in  Figure 4.4. This concept now 
allows for a more simple definition of the ridges as the region where the frequency of the 
scaled mother wavelet is equal to the instantaneous frequency of the signal. Thus, in the 
ridges’ regions of the TF plane, the CWT coefficients have (locally) relatively larger values,  
as the level of similitude is high, creating peaks in the TF representation as it can be see i n 
Figure 4.5.
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Figure 4.4: General illustration of how the CWT works. Source, class notes from [18].

Figure 4.5: 3D representation of the TF plane to observe the ridges. [25]



Inverse Continuous wavelet  transform When the admissibility condition is  fulfilled,  the 
signal u(t ) can be reconstructed as:

u (t )  = 1
Cψ
∫
−∞

+ ∞

∫
0

+ ∞

Τ ψ [u](b , a )ψ̄(t−b
  a )da

a
db (4.36)

Remark: A simple application of Parseval’s relation gives the wavelet coefficients in terms 
of the Fourier transforms of the signal and the mother wavelet using the definition of the 
inverse Fourier transform:

T ψ [u ](b ,a)  = 1
2 π ∫−∞

+∞

û(ω) ¯̂ψ (aω)eiωb dω (4.37)

4.3.2 CWT Properties

➢ Linearity

T ψ[∑
j=1

N

u j](b , a)  = ∑
j=1

N

T ψ [u j ](b ,a ) (4.38)

Consequently, multicomponent signals can be processed and a particular component 
u j(t) can be extracted by using the localization properties of the mother wavelets, in both 
time and frequency domains.

➢ CWT of u(t ), u̇(t ), ü(t ) relations

Generally,  the  free  responses  that  are  recorded  are  displacement,  velocity  or 
acceleration,  so  the  relation  between  their  CWT can  be  useful.  If  ψ (t ) and  u(t ) are 
continuous and piece–wise differentiable, the integration by parts theorem allows equation 
4.35 to be rewritten as:

T ψ [u̇ ](b ,a)  = 
1
a [u(t )ψ̄(t−b

  a )|−∞
+∞− 1

a ∫−∞

+ ∞

u(t ) ¯̇ψ(t−b
  a )dt ] (4.39)

ψ (t ) is a window function, so:

lim
t →+ ∞
|ψ (t)| = lim

t →−∞
|ψ (t )| = 0 (4.40)

Consequently, it follows that:
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lim
t →+ ∞
|u(t )ψ̄(t−b

  a )| = lim
t →−∞
|u(t )ψ̄(t−b

  a )| = 0 , (4.41)

lim
t →+ ∞

u (t )ψ̄(t−b
  a ) = lim

t →−∞
u (t)ψ̄(t−b

  a ) = 0 (4.42)

Therefore,

lim
t →+ ∞

u(t )ψ̄(t−b
  a )− lim

t →−∞
u(t )ψ̄(t−b

  a )  = u(t )ψ̄(t−b
  a )|−∞

+∞  = 0 (4.43)

So, when ψ̇ (t ) is square and absolutely integrable and u̇(t ) is of finite energy, the CWT of 
u̇(t ) with ψ (t ) is then related to the CWT of u(t ) with ψ̇ (t ):

T ψ [u̇ ](b ,a )  = − 1
a

T ψ̇[u ](b ,a ) (4.44)

This relation can be easily extended to the finite energy signal ü(t ) when ψ̈ (t ) is square and 
absolutely integrable:

T ψ [ü ](b ,a)  = − 1
a

T ψ̇ [u ](b , a)  =  1

a2
T ψ̈ [u](b , a) (4.45)

4.3.3 Resolution

The value T ψ [u ](b ,a) of contains the information of the level of similitude of the 
signal u(t ) with the scaled wavelet at scale a around the time point b. The scaled wavelet at 
scale  a has a duration Δt and frequency bandwidth Δω,  thus the local resolution of the 
CWT in  time  and  in  frequency  depends  on  the  scale  parameter a and  is  determined, 
respectively, by the duration Δtψ and bandwidth Δωψ of the mother wavelet.
The resolution of the time−frequency window can be constructed by considering:

Time localization: Considering the time shifting property, equation 4.16:

ψb(t )  = ψ (t−b)  and  ψ̂b(ω)  = e−iωt ψ̂ (ω) (4.46)

Consequently,  if  the  mother  wavelet  is  localized  around  the  time  t  =  tψ ,  with 
temporal resolution Δtψ, the translation property gives the temporal localization of  ψb(t ) 
around t = b + tψ with the same time resolution Δtψ.

Frequency localization: In the STFT, the frequency localization of the analyzing wavelet 
was changing by translating the value of the frequency in the frequency axis. In CWT, 
where the concept of scale is applied, the frequency localization of the mother wavelet is 
obtained considering the time scaling property, equation 4.15: 
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ψa (∙)  = 
1
a ( ∙a )  and  ψ̂a (ω)  = ψ (aω) (4.47)

Consequently, if the mother wavelet is localized around tψ and  ωψ with time and 
frequency resolution Δtψ and Δωψ respectively, the scaled copy ψb,a is localized around:

t  = b + atψ , ω  = 
ωψ

 a
(4.48)

with time and frequency resolution Δtψ and Δωψ respectively:

Δ t  = a Δ tψ , Δω  = 
Δ ωψ

  a
(4.49)

Thus,  looking  ωψ/a  as  the  frequency  variable  ω,  then  the  t  −  ω plane  can  be 
considered as the time−frequency plane. The localization domain for the CWT at point (b + 
atψ , ωψ/a) is the time−frequency window (Figure 4.6):

[b + atψ− a Δ tψ  , b  + atψ  + a Δ tψ]×[ ωψ

a
−

Δωψ

  a
 , 

ωψ

a
 + 

Δ ωψ

  a ] (4.50)

where

[b + atψ− a Δ tψ  , b  + atψ  + a Δ tψ] (4.51)

is the time−window, which narrows for small values of a and widens for large values of a, 
and

[ ωψ

a
−

Δ ωψ

  a
 , 

ωψ

a
 + 

Δ ωψ

  a ] (4.52)

is the frequency−window, which widens for small values of a and narrows for large values 
of a.

Hence, this window automatically narrows for detecting rapidly changing details, 
i.e.  high frequency phenomena (small  a),  and widens for investigating slowly changing 
details,  i.e.  low−frequency behavior (large a).  This is exactly what is most desirable in 
time−frequency analysis, and makes the use of the CWT appropriate for analyzing non–
stationary signals. This can be observed clearly in Figure 4.6.
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4.3.4 Normalization

To ensure that the wavelet transforms at each scale a are directly comparable to each 
other and to the transforms of other time series, the wavelet function at each scale a is 
normalized. 

Different normalizations can be found in the literature. Attempting now to give a 
general definition in order to explore the choice of normalization, let the mother wavelet 
ψ (t ) and an arbitrary number  q ≥ 0. The corresponding family of wavelets is the family 

[ψb,a; b  ∈ ℝ, a  ∈ ℝ+
* ] of shifted and scaled (dilated) copies of ψ defined as:

ψb , a(t )  = |a|−q ψ(t−b
  a )  ,  t  ∈ ℝ (4.53)

where  a is  the  scaling  parameter  and b is  the  translation  parameter.  This  definition 
associates the normalization choice with the just the value of q. Different values have been 
selected in the literature, for example, Carmona et al. [2], Delprat et al. [6] use q = 1. Chui 
[3] and Daubechies [4] use q = 1/2. When dealing with orthonormal bases of wavelets, the 
choice  q  = 0 is sometimes convenient [9].  Thus, these three values will be explored and 
presented in the next.

Starting with q = 1, equation 4.53 becomes:

ψb , a(t )  = 
1
a

ψ(t−b
  a )  ,  t  ∈ ℝ (4.54)
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Figure 4.6: Time–frequency resolution for the CWT. The mother wavelet is 
illustrated at (tψ , ωψ) , as a = 1 and b = 0 by definition. Scaled wavelets at points 

(b + atψ , ωψ/a) for scales a > 1 and scales 0 < a < 1.



The scaled wavelets ψa ,b(t ) have been normalized in such a way that:

‖ψb , a (t )‖1  = ∫
−∞

+ ∞

|ψb ,a (t )| = ‖ψ (t )‖1  = constant (4.55)

Thus, all the scaled wavelets, ψa ,b(t ), at every scale a enclose the same area.

For q = 1/2, equation 4.53 becomes:

ψb , a(t )  = 
  1

√a
ψ(t−b

  a )  ,  t  ∈ ℝ (4.56)

The scaled wavelets ψa ,b(t ) have been normalized in such a way that:

‖ψb , a (t )‖2  = ∫
−∞

+∞

|ψb , a(t )|
2  = ‖ψ (t)‖2  = constant (4.57)

Thus, all the scaled wavelets, ψa ,b(t ), at every scale a have the same energy.

For q = 0, equation 4.53 becomes:

ψb , a(t )  = ψ(t−b
  a )  ,  t  ∈ ℝ (4.58)

The scaled wavelets ψa ,b(t ) have been normalized in such a way that:

‖ψb , a (t )‖∞  = constant (4.59)

Thus, all the scaled wavelets,  ψa ,b(t ), at every scale,  a, have merely the same maximum 
value.

4.3.5 Choice of mother wavelets

There are a lot of mother wavelets in the literature, some examples are shown in 
Figure 4.3. The choice of the mother wavelet is dictated by the characteristics of the signal 
under study and the nature of the application. It is important to use a wavelet that is the best 
fit for the analysis that will follow. Consequently, there are several factors which should be 
considered in the choice of the mother wavelet [21]:

(1)  Complex or Real. A complex wavelet  function will  return  information about  both 
amplitude and phase and is better adapted for capturing oscillatory behavior. A real mother 
wavelet returns only a single component and can be used to isolate peaks or discontinuities.

(2)  Shape. The wavelet function should reflect the type of features present in the time 
series.  For  example,  in  the  analysis  of  free  responses  of  structures,  wave–like  mother 
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wavelets  with  an increased number  of  oscillations  such as  the  Morlet  wavelet  and the 
Cauchy wavelet are preferred. For time series with sharp jumps or steps, one would choose 
a boxcar–like function such as the Harr, while for smoothly varying time series one would 
choose a smooth function such as a damped cosine. If one is primarily interested in wavelet 
power spectra, then the choice of wavelet function is not critical, and one function will give 
the same qualitative results as another. Conversely, the wavelet function can also be chosen 
to uncover specific signal features that are hypothesized to exist in the signal but may not  
be directly evident upon initial inspection.

(3) Width. The resolution of a wavelet function is determined by the balance between the 
width in real space and the width in Fourier space. A narrow (in time) function will have 
good time resolution but poor frequency resolution, while a broad function will have poor  
time resolution, yet good frequency resolution.

(4) Orthogonal or nonorthogonal. This refers to the DWT. In orthogonal wavelet analysis, 
the number of convolutions at each scale is proportional to the width of the wavelet basis at  
that scale.  This produces a wavelet spectrum that contains discrete “blocks” of wavelet 
power and is useful for signal processing as it gives the most compact representation of the 
signal. Unfortunately for time series analysis, an aperiodic shift in the time series produces 
a different wavelet spectrum. Conversely, a nonorthogonal analysis is highly redundant at 
large  scales,  where  the  wavelet  spectrum  at  adjacent  times  is  highly  correlated.  The 
nonorthogonal  transform  is  useful  for  time  series  analysis,  where  smooth,  continuous 
variations in wavelet amplitude are expected.

The  optimal  mother  wavelet  ψ for  modal  identification  purposes  using  the  free 
responses of a MDOF system should satisfy the following conditions [10]:

(1) ψ is admissible. Obvious, required by definition.

(2) ψ is progressive. Several reasons suggest the use of progressive wavelets instead of real 
ones for the analysis of real signals:

i. It allows the direct connection between a real signal and its associated analytic signal.

ii. The wavelet transform of real signals using real wavelets yields real wavelet coefficients,  
and there is no natural way of making a connection with some “local  spectrum” which one 
would like associate with a given signal.

(3) ψ has good time and frequency localization properties. This condition is very important 
in the context of time–frequency analysis as presented in the section of resolution.

(4) The first and the second derivatives of  ψ satisfy the three previous conditions. This 
condition makes the processing by CWT of displacement, velocity and acceleration easier 
without differential and integral operations

Two important complex mother wavelets are Complex Morlet wavelet and Cauchy 
wavelet of order n and their properties are presented in Τable 4.1.
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where n is the order of Cauchy wavelet, β is a frequency parameter controlling the number 
of oscillations of the wavelet and δ is a parameter that controls the spread of the wavelet 
(see more in [25]).

For the needs of the current thesis, the Cauchy wavelet is used.

4.3.6 Scales and Converting scale to frequency

By definition the CWT decomposes signals based on time and scale parameters.  
However in many applications, including the modal parameter identification, the results are 
preferred  to  be  on  the  time–frequency  plane.  Therefore,  it  is  important  to  define  a 
relationship between scale and frequency. As it was presented in the Resolution section a 

scaled wavelet’s frequency is ω = 
ωψ

α
, thus scale and frequency are inversely proportional 

and related through the center frequency ωψ, and can be theoretically computed as:

f  = 
f ψ

 a
(4.60)

where fψ is the center frequency of the mother wavelet, and a the scale.
In  a  more  intuitive  sense,  the  center  frequency  of  a  wavelet  is  a  simplified 

approximation of the dominant frequency component contained in the function. The center 
frequency can be determined and visualized by superimposing a sine wave onto the wavelet 
and determining the frequency value for which the sinusoid best parallels the wavelet’s 
main oscillation. MATLAB, in the built in cwt command, determines the center frequency 
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Table 4.1: Definition and main properties of the Complex Morlet 
wavelet and the Cauchy wavelet of order n.



by this approximation and makes a slight variation of the theoretical equation, adding the 
sampling period dt:

f  = 
f ψ

 a
 1
dt

(4.61)

As the frequency variable is identified as a constant multiple of 1/a, then the mother 
wavelet ψ can be considered as an adaptive bandpass filter, with pass–band given by 4.52. 
Thus, the series of the scaled copies of  ψ can be viewed as a bandpass filterbank. The 
number of scales used in an analysis defines the number of scaled copies of the mother  
wavelet that will be generated; the finer the scales, the finer the frequency resolution.

Octave is a notion from acoustics and refers to a duplication of frequency, e.g. a 
frequency range [10 20] Hz is one octave, as log2( f max / f min) = log2(20 /10) = 1. Number of 
Voices per Octave is a term commonly used to designate the number of scaled wavelets per 
octave,  i.e.  the  number  of  scales  per  octave.  Therefore,  number  of  voices  per  octave 
determines the number of scales between a frequency duplication.

Summarizing,  the  number  of  octaves  determines  the  span  of  frequencies  being 
analyzed,  while  the number of  voices per  octave determines the number of  scales (i.e.  
samples)  across this  span.  The appropriate  range of  octaves and scales depends on the 
spectral content of the data, and the highest requested frequency in the CWT [12].

4.3.7 Edge effect–Cone of influence

The CWT works as described in Figure 4.4, i.e, the mother wavelet is scaled, then 
translated in time and covers the whole signal. Inevitably, when the wavelets are near the 
beginning  or  end  of  the  data  “catch”  data  outside  the  observation  interval,  thus  the 
computed wavelet coefficients near the beginning and end of the data are affected by the 
fact that there are wavelets extending outside the boundary. This is called the  edge effect 
problem, which arises due to the finite length and to the discretization of measured data 
record  and  to  the  nature  of  the  CWT  [10].  Furthermore,  the  extent  of  the  wavelet 
coefficients  affected  by  data  outside  the  observation  interval  depends  on  the  scale 
(frequency).  Low  frequencies  correspond  to  wavelets  of  larger  scale,  while  higher 
frequencies correspond to wavelets of smaller scale. The edge effect persists longer in time 
with large scaled wavelets, that is why the affected area takes the shape of a cone [14].  
Various techniques have been developed to remedy the edge effect, however it cannot be 
removed and the interpretation of wavelet coefficients near the boundaries must be handled 
with great caution. Thus, a domain D in the TF plane, must be determined, where the edge 
effect can be neglected. The cone of influence (COI) is the region of the wavelet spectrum 
in which edge effects become important.

However, there is no closed mathematical formula to determine the extent of the 
cone of influence at each scale. Nobach et al. [17] define the extent of the cone of influence 
at each scale as the point where the wavelet transform magnitude decays to 2% of its peak 
value.  Because  many  of  the  wavelets  used  in  continuous  wavelet  analysis  decay 
exponentially in time, Torrence and Compo [21] use the time constant 1/e to delineate the 
borders of the cone of influence at each scale. For Morse wavelets, Lilly  [11]  uses the 
concept  of  the  “wavelet  footprint”,  which  is  the  time  interval  that  encompasses 
approximately 95% of the wavelet’s energy. Lilly delineates the COI by adding 1/2 the 
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wavelet  footprint  to  the  beginning  of  the  observation  interval  and  subtracting  1/2  the 
footprint from the end of the interval at each scale.

Le and Argoul [10] introduced two real coefficients ct ≥ 1 and cf ≥ 1 that have the 
property that:
when t is outside the interval Ict = [tψ − ctΔtψ , tψ + ctΔtψ]
and when ω is outside the interval Icf = [ωψ − cfΔωψ , ωψ + cfΔωψ],

ψ (t ) and ψ̂ (t ) have good decreasing properties, i.e. have null or very “small” values.

They explored the effect of the different values of ct and cf and concluded that the 
choice of ct = 5 and cf = 5 seem to yield good results. Consequently, they proposed to define 
the  domain  D as  an  “extended”  time–frequency  localization  domain  for  the  CWT as 
expressed in equation 4.50 around the point bj , ωj = ωψ/aj : Using the coefficients ct and cf 

and the progressive property of the mother wavelet, D becomes:

[b j +
ωψ

ω j

tψ−
ωψ

ω j

c t Δ tψ  , b j +
ωψ

ω j

 + 
ωψ

ω j

c t Δ tψ]×
[max(0  , ω j(1−c f

Δ ωψ

  ωψ
))  , ω j(1  + c f

Δ ωψ

  ωψ
)] (4.62)

The domain  D must be included into [0,  L]×[2πfNyquist], this leads to the following 
system of inequalities:

{ 
ωψ

ω j

c t Δ tψ −
ωψ

ω j

tψ  ≤  b j  ≤  L −
ωψ

ω j

ct Δ tψ−
ωψ

ω j

tψ

 0  < ω j  ≤  
 2 πf Nyquist

1 + c f

Δ ωψ

  ωψ

(4.63)

where L is the signal’s duration.

As mentioned in Table 4.1,  tψ = 0 for both the complex Morlet and the Cauchy 
wavelets, thus the domain D becomes:

{ 
ωψ

ω j

c t Δ tψ  ≤  b j  ≤  L −
ωψ

ω j

ct Δ tψ

 0  < ω j  ≤  
 2 πf Nyquist

1 + c f

Δ ωψ

  ωψ

(4.64)

Solving for ω, four equations are obtained, which delimit the useful domain D:
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{
 ω1  = 

ωψ

 b
c t Δ tψ

 ω2  = 
  ωψ

L−b
c t Δ tψ

 
 ω3  = 0

 ω4  = 
 2 πf Nyquist

1 + c f

Δ ωψ

  ωψ

(4.65)

ω1 and ω2 are two hyperbolae and ω3 and ω4 are two horizontal lines (Figure 4.7). Due to 
the introduction of the two parameters c t ≥ 1 and cf ≥ 1, the useful time interval is smaller 
than L and the maximum usefull frequency is smaller than fNyquist.

Figure 4.7 illustrates the modulus scalogram of a SDOF system with natural period T = 0.5 
sec. The white lines are the ω1 and ω2 hyperbolae limits. Notice the cone of influence on the 
region where the data begins that manifests as a spread of energy along the frequency axis.  
Observe that the white line follows that shape.

4.3.8 Q factor and its influence

In Figure 4.6, a parameter Q is presented and stated that it remains constant. As it 
was mentioned in the previous, the center frequency  ωψ is assumed to be positive. This 
enables the consideration on the frequency window of 4.52 as a frequency band (or octave) 
with center–frequency ωψ/a and bandwidth 2Δωψ/a. The importance of this identification is 
that it allows the introduction of the following ratio (Q factor):
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Figure 4.7: CWT modulus Scalogram. Illustration of edge effects, ct = 3 and cf = 3. [25]



Q  = 
   

ωψ

 a

2
Δωψ

  a

 = 
   ωψ

2Δ ωψ

(4.66)

Q is independent of the scaling a. Hence, if the frequency variable is identified as a 
constant multiple of 1/a, then an adaptive band–pass filter, with pass–band given by 4.52, 
has the property that the center–frequency to bandwidth ratio is independent of the location 
of the center–frequency, thus it remains constant. This is called constant–Q filtering, where 
Q, once set in the beginning of the analysis, remains the same for all scaled and shifted 
wavelets. Q depends only at the mother wavelet choice. [25]

Gram–Hansen and Dorize [7]  associate this  Q value to the filterbank of a (1/N)th 
octave as:

Q  =          1

21 /2 Ν−2−1 /2 Ν (4.67)

where an (1/N)th of center frequency ωψ is a band [ω1, ω2] with ω1 = 2−1/(2N) and ω2 = 21/(2N).

As it  follows by it’s  definition in  4.66,  the  Q factor  can be associated with the 
mother wavelet parameters and define their tuning. Higher  Q produce narrower wavelets, 
with more oscillations within their waveform. Consequently applying the CWT with a high 
Q factor allows a multi–scale analysis with high frequency resolution (at the expense of a 
lower time resolution), making it appropriate for analyzing oscillatory signals such as the 
displacement response of a structure. Therefore, the choice of  Q depends on the spectral 
components contained in the signal as well as the sampling frequency Fs and the duration of 
the signal. [25]

The Q factor value has also another significant property, it can be used to correctly 
extract two close ridges corresponding to two coupled modes, which is of great importance 
in  the  modal  parameter  identification  of  MDOF systems.  Continuing  with  the  method 
proposed by Le and Argoul [10], the problem is set as: ωj the angular eigen−frequency and 
dωj the  frequency  discrepancy  from  which  the  effect  of  the  modal  coupling  must  be 
avoided. In order to solve this problem, the frequency localization domain of the CWT 
along a ridge, as modified to take into account the edge effects in relation 4.62 is assumed 
to be included into a bandwidth [ωj − dωj , ωj + dωj ]. This leads to bounding the Q as:

Q ≥  c f

  ω j

2 dω j

(4.68)

Let dωj = min[(ω j−ω j−1), (ω j + 1−ω j)] for 1 ≤ j ≤ N with ω0 = 0, ωN+1 = 2πfNyquist.

Consequently, the edge effect delimiting inequality

0  ≤  ω j  ≤  
 2 πf Nyquist

1+ c f
  1
2Q

(4.69)
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is immediately checked, since dωj < πfNyquist. Then, the edge effect delimiting inequality

 1
ω j

2c t Q μψ  ≤  b j  ≤  L −  1
ω j

2 ct Q μψ (4.70)

combined with the Heisenberg’s inequality gives:

Q  ≤  
Lω j

2 c t

(4.71)

Concluding, the parameter Q can be bounded as:

c f

  ω j

2 dω j

 ≤  Q  ≤  
L ω j

2 ct

(4.72)

where L is the signal’s length and the contained ωjs in a signal can be obtained by applying 
FFT,  then classified in  an increasing order.  Finally,  ct and cf must  fulfill  the  following 
inequality:

c t c f  ≤  Ldω j (4.73)

Le and Argoul propose to start with ct = cf = 5. When the  inequality  4.73 is not 
satisfied,  ct and cf should be reduced until it becomes true. Then the value of  Q can be 
chosen between the limits posed in 4.72.
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5. Structural Dynamics

This  Chapter  provides  a  basic  theoretical  background on structural  dynamics.  It 
presents  the  well−known  differential  equations  of  motion  in  structural  dynamics  and 
describes the procedure of the extraction of the displacement,  velocity and acceleration 
responses  for  MDOF  and  SDOF.  The  systems  considered  are  linear,  with  viscous 
proportional damping.

5.1 Single Degree of Freedom (SDOF) systems

5.1.1 Equation of motion

Let  u(t ),  u̇(t ),  ü(t ) denote respectively the displacement, velocity, and acceleration of a 
SDOF. system. The equation of motion then is given by:

m ü(t )  + c u̇(t)  + k u(t)  = p(t ) (5.1)

where m is the system’s mass, c is the damping constant, k is the stiffness and p(t ) is the 
externally applied dynamic force.

5.1.2 Viscoulsy damped free vibration of SDOF systems

Free  vibration  is  initiated  by  displacing  the  system  from  its  static  equilibrium 
position via imparting the mass an initial displacement u(0) and velocity u̇(0) at time zero t 
= 0. If there is no externally applied dynamic force, then the free motion depends only on 
these  initial  conditions  u(0) and  u̇(0).  Setting  p(t ) =  0  in  equation  5.1 gives  the 
differential equation governing free vibration of SDOF systems with damping:

m ü(t )  + c u̇(t)  + k u(t)  = 0 (5.2a)

Dividing by the mass m gives:

ü (t )  + 2 ξωu̇ (t)  + ω2 u (t )  = 0 (5.2b)

where, ω is the undamped angular natural frequency of the system, given by:

ω  = √ k
m

 (5.3)

and ξ is the damping ratio or fraction of critical damping of the system, defined as:
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ξ  =    c
2 mω

 =  c
ccr

 (5.4)

where,  c, the damping constant, is a measure of the energy dissipated in a cycle of free 
vibration  or  in  a  cycle  of  forced  harmonic  vibration.  ccr refers  to  the  critical  damping 
coefficient; it is the smallest value of  c  that inhibits oscillation completely, i.e. it is the 
dividing  line  between  oscillatory  and  non−oscillatory  motion  and  vise−versa. 
Consequently, ccr defines the type of the system as: 

i.  Under−damped  systems,  where  c <  ccr or  ξ <  1  :  the  system  oscillates  about  its 
equilibrium position with a progressively decreasing amplitude.

ii. Critically damped systems, where c = ccr or ξ = 1 : the system returns to its equilibrium 
position without oscillating.

iii. Over−damped systems, where c > ccr or ξ > 1 : the system does not oscillate and returns 
to its equilibrium position, as in the ξ = 1 case, but at a slower rate.

As mentioned, for the associated analytic signal to be approximated as Z u(t )  ≈ Au(t)e
iφu(t ), 

the assumption of weak damping ξ  1/≪ √2 is made, therefore the solution of the equation 
5.2 that is presented in the following is for underdamped systems.

5.1.3 Free response of under−damped SDOF system

For under−damped systems where c < ccr or ξ < 1 the solution to the equation 5.2 
subject to the initial conditions u(0) and u̇(0) is:

u(t )  = e−ξωt[u(0)cos (~ωt )  + 
u̇(0)  + u(0)ξω
          ~ω

sin (~ωt )] (5.5)

where ~ω is the damped angular natural frequency of the system, given by:

~ω  = ω√1−ξ 2 (5.6)

Setting

ρ  = √[u(0)]2  + [u̇ (0)  + u (0)ξω
          ~ω ]

2

 (5.7)

and

φ  = arctan(u̇(0)  + u(0)ξω
       u(0)~ω ) (5.8)

the equation 5.5 of displacement becomes:
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u(t )  = ρe−ξωt cos (~ωt−φ) (5.9)

The velocity and the acceleration are obtained by successively deriving the displacement 
u(t ):

The velocity is calculated as:

u̇(t )  = ρωe−ξωt [−ξ cos (~ωt−φ)−√1−ξ 2 sin (~ωt−φ)]

 = −ρωe−ξωt cos( ~ωt−φ−δ)
(5.10)

where

δ  = arctan(√1−ξ 2

    ξ ) (5.11)

and the acceleration is calculated as:

u̇(t )  = ρωe−ξωt (−ξω)[−ξ cos(~ωt−φ)−√1−ξ 2sin(~ωt−φ)]

 + ρωe−ξωt [ξ~ω sin(~ωt−φ)−√1−ξ 2~ωcos (~ωt−φ)]

 = ρω2e−ξωt (−ξω)[(ξ 2−(1−ξ 2))cos(~ωt−φ)  + 2 ξ √1−ξ 2 sin (~ωt−φ)]

 = −ρω2 e−ξωt cos( ~ωt−φ  + θ )

(5.12)

where

θ  = arctan(2 ξ √1−ξ 2

   1−2ξ 2 ) (5.13)

It can be noted that the phase of the velocity and the phase of the acceleration are 
differentiated from the phase of the displacement by a quantity depending on the damping 
ratio ξ.

5.2 Multi Degree of Freedom (MDOF) systems

5.2.1 Equation of motion

Let  u(t),  u̇(t),  ü(t)  denote  respectively  the  displacement,  velocity,  and  acceleration 
vectors of a MDOF system with N degrees of freedom. The equation of motion then is 
given by:
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M ü(t )  + C u̇(t )  + K u(t )  = P(t) (5.14)

where M is the system’s mass matrix, C is the damping matrix, K is the stiffness matrix and 
P(t) is the externally applied dynamic force vector.

5.2.2 Modal superposition

Let  Φ be the modal matrix made of eigen−vectors  Φj = [Φ1j ,Φ2j ,  ...,ΦNj ]T. By 
definition, the mode shape vector Φj describes the shape of the jth mode corresponding to 
the  natural  frequency ωj.  Then,  the  vector  of  displacements  can  be  described 
mathematically by:

u(t)  = ∑
j  = 1

N

Φ j y j(t)  = Φ Y(t ) (5.15)

The  coupled  equation  of  motion  of  equation  5.14 can  be  uncoupled  after 
substituting u(t) using equation 5.15 and left multiplying it with ΦT . This is achieved with 
the aid of the orthogonality condition, which makes M,  K and C diagonal, and is defined 
as:

Φ j M Φi  = {M j       , if  j  = i
0          , if  j  ≠ i

 (5.16)

Φ j C Φi  = {C j       , if  j  = i
0          , if  j  ≠ i

 (5.17)

Φ j K Φi  = {K j       , if  j  = i
0          , if  j  ≠ i

 (5.18)

5.2.3 Viscoulsy damped free vibration of MDOF systems

Considering again damped free vibration with initial conditions  u(0),  u̇(0) at  t = 0, then 
P (t) = 0, the equation of motion becomes:

M ü(t )  + C u̇(t )  + K u(t )  = 0 (5.19)

Procedures to obtain the desired solution differ depending on the form of damping. 
The  damping  matrix  C generally  is  not  easy  to  calculate  in  practice.  However,  with 
condition 5.17, the transformation that diagonalizes both M and K will also diagonalize C. 
So, by applying equation 5.15, equation 5.19 becomes:
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MΦ Ÿ  + C ΦẎ  + K ΦY  = 0 (5.20)

Left multiplying by ΦT gives:

ΦT M Φ Ÿ  + ΦT CΦ Ẏ  + ΦT K ΦY  = 0 (5.21)

Thus,  the  equations  of  motion  can  then  be  expressed  as  a  N set  of  uncoupled  SDOF.  
equations:

M j ÿ j  + C j ẏ j  + K j y j  = 0          ,  j  = 1 ,2 , ... N (5.22)

Considering C j  = 2 ξ j M j ω j  and K j  = M j ω j
2, and dividing by Mj , the equations can be 

further simplified to:

ÿ j  + 2 ξ j ω j ẏ j  + ω j
2 y j  = 0          ,  j  = 1 ,2 , ... N (5.23)

5.2.4 Free response of under−damped MDOF system

Consequently, the equations 5.23 are of the same form as equation 5.2b governing 
the free vibration of a SDOF system with viscous proportional damping. Adapting this 
result, the solution for equations 5.23 becomes:

ÿ j(t )  = ρ j e
−2 ξ j ω jt cos(~ω j t − φ j) (5.24)

ẏ j(t )  = −ρ j ω j e
−2 ξ jω j t cos(~ω j t − φ j−δ j) (5.25)

y j(t )  = −ρ j ω j
2 e−2 ξ jω j t cos(~ω j t − φ j  + θ j) (5.26)

where

ω j
2  = 

k j

m j

 (5.27)

~ω j  = ω j√1−ξ j
2 (5.28)

Therefore, for any degree of freedom k = 1, 2, ...,N, the MDOF system’s responses can be 
expressed as:

u k(t )  = ∑
j  = 1

N

ukj(t )  = Φkj ρ j e
−2 ξ j ω j t cos(~ω j t − φ j) (5.29)
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u̇ k(t )  = ∑
j  = 1

N

u̇ kj(t )  = −∑
j  = 1

N

Φkj ρ j ω j e
−2 ξ j ω jt cos(~ω j t − φ j−δ j) (5.30)

ü k(t )  = ∑
j  = 1

N

ü kj(t )  = −∑
j  = 1

N

Φkj ρ j ω j
2 e−2 ξ j ω jt cos(~ω j t − φ j  + θ j) (5.31)
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6. Modal Parameters Identification

As referred in Chapter  4,  if  the  Fourier  transform of  a  mother  wavelet  ψ (t ) is 
sharply  concentrated  near  a  fixed  value  ω =  ωj of  frequency,  the  continuous  wavelet 
transform tends to “concentrate” near a series of curves in the time–frequency domain, 
called the ridges of the transform. The ridge, let it be referred to as ar (b), has an interesting 
property: it  describes the frequency modulation law of the signal. This property can be 
utilized to extract important features of the original signal which can be associated with the 
modal parameters of the under study system.

6.1 Canonical representation of a real signal

Physical signals  u(t ) obtained from vibration measurement are real valued and in 
the time domain. Following the concepts presented in Chapter 3 and since by definition the 
instantaneous angular frequency is the derivative of phase with respect to time [25], there is 
a  need  for  the  signal  to  be  expressed  by  canonical  representation.  An  arbitrary  real 
monocomponent signal u(t ) can always be represented in terms of instantaneous modulus 
Au(t ) and instantaneous phase φu(t ), in the form:

u(t )  = Au(t )cos [φu(t )] (6.1)

where Au(t ) ≥ 0, and φu(t )  ∈ [0,2 π )

Multicomponent signals then may be expressed canonically as the sum of two or 
more monocomponent signals:

u(t )  = ∑
j = 1

N

Au(t)cos[φu(t )] (6.2)

As referred in section 4.3.8, choosing an appropriate value of  Q allows to isolate 
coupled modes, therefore it can be assumed that multicomponent signals have components 
which do not interact. Consequently, the analysis can be restricted to a domain where the 
wavelet  coefficients  of  all  but  one  component  are  negligible,  allowing  to  treat  each 
component as a monocomponent signal (which is one of the advantages of employing a 
time–frequency  analysis).  That  being  the  case,  the  following  theory  focuses  on 
monocomponent signals.

Continuing with  equation 6.1, differentiating the phase  φu(t ) with respect to time 
gives the instantaneous angular frequency:

ωu(t )  = 
dφu(t )
   dt

 = φ̇u(t ) (6.3)
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However, there is a problem with this representation: the pair of [Au(t ), φu(t )] is far 
from unique since there are infinite such pairs that can be associated with the real signal  
u(t ). This obstacle can be overcome with the use of the Hilbert Transform, which can be 
utilized as described in the following sub–chapter.

6.2 Hilbert Transform

The Hilbert transform of u can be considered as the convolution of the function (or 

signal)  u(t ) with the function  h(t ) =  
1
πt

, known as the Cauchy kernel. Because  
1
t

 is not 

integrable across  t = 0, the integral defining the convolution does not always converge. 
Therefore, the Hilbert transform is given by:

H u(t )  = u(t) ∗ 1
π

 = 1
π

p .v .∫
−∞

+∞ u(τ )
t−τ

dτ ,     t  ∈ ℝ (6.4)

where p.v.[・] denotes the Cauchy principal value of the improper integral (i.e., to account 
for the t = τ situation).

In the frequency domain, the Hilbert transform has a very useful form:

Ĥ u (ω)  = −isgn(ω) û(ω),     ω  ∈ ℝ (6.5)

where sgn (ω) is the sign function of a real number.

6.3 Analytic Signals and Instantaneous Frequency

An analytic signal is defined as a complex–valued function that has no negative 
frequency components, therefore, the analytic signal  Z u(t ) associated with a real–valued 
signal of finite energy u(t ) is obtained by a linear filtering of  u(t ) canceling its negative 
frequencies. By using the Hilbert transform, Z u(t ) can be defined (up to a factor 2) as u(t ) 
signal’s orthogonal projection onto the subspace Η2(ℝ) of L2(ℝ):

Z u(t )  = u(t )  + iH u(t ) (6.6)

Note that Re[Z u(t )] = u(t ). It should be mentioned also that, although an analytic 
signal  contains  no  negative  frequencies,  it  may  have  a  spectral  component  at  zero 
frequency. Considering the previous sub–chapter’s observation, the Fourier Transform of an 
analytic signal is given by:

Ẑ u(ω)  = û(ω)  + i Ĥ u(ω)  = 

 = û (ω)−i2 sgn (ω)û (ω) û (ω)  = 
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 = û(ω)  + sgn(ω)  = 

 = {2 û(ω) ,       if ω ≥ 0
0 ,                if ω  = 0

 = 2 û(ω)Θ(ω) (6.7)

where Θ(ω) denotes the Heaviside step function.

By definition, Z u(t ) is an analytic function in the upper half complex plane (hence 
the term analytic). If one assumes a pair [Au(t ), φu(t )], where Au(t ) = |Z u(t )| ≥ 0 and φu(t ) 
=  [∠ Z u(t )]  ∈ [0,2 π ), the function Z u(t ) has a unique polar coordinate representation:

Z u(t )  = Au(t )e
iφu (t ) (6.8)

where

Au (t )  = |Z u (t )| = √ [Re(Z u(t ))]
2
 + [ Im(Z u (t))]

2
(6.9)

and

φu(t )  = ∠(Z u(t ))  = arctan(Im (Z u(t ))
Re(Z u(t )) ) (6.10)

Applying this canonical pair [Au(t ), φu(t )] to equation 6.1, a unique representation 
of the form can be determined and it is defined as the canonical representation of a real 
signal.  The  instantaneous  angular  frequency  then  can  be  defined  by  setting 
φu(t )  = ∠[Z u(t)] in equation 6.3 as:

ωu(t )  = 
dφu(t )
   dt

 = 
d∠(Z u(t ))
      dt

(6.11)

This is the most direct method for determination of instantaneous frequency, and is 
easy to implement.  However it  is  important to note that  although this definition of the 
instantaneous  frequency  is  always  valid  mathematically,  its  physical  meaning  can  be 
doubtful in some particular situations, especially when the signal  u(t ) is not oscillating 
enough, i.e. when  φu(t ) varies slowly compared to  Au(t ),  or when the frequency  ωu(t ) 
itself has fast variations [2],[20].
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6.4 Ridge definition and extraction

6.4.1 One component signal

As it has been shown the CWT of an asymptotic signal will tend to “concentrate” in 
the neighborhood of a curve ar (t ) called “ridge” that consists of an aggregation of points 
called ridge points. The ridge points are commonly obtained either from the CWT modulus 
of the signal,  or from its  phase,  and are called amplitude ridge points and phase ridge 
points, respectively [33].
In the time–scale map, a ridge can be defined (reference [32])  from its canonical phase 
φu(t ) by:

ar (t )  = 
2 πf ψ

*

 φ̇u(t)
(6.12)

where f ψ
*  appears in the chosen mapping between scale and frequency (see more in [40]).

The restriction of the CWT to the ridge ar (t ), is called the “skeleton” of the wavelet 
transform.

From the skeleton, it is possible to reproduce the signal, or more precisely, what is 
associated with the analytical signal Z u(b), while it behaves like the product of Z u(b) by a 
multiplicative factor entirely characterized by the mother wavelet and the ridge ar (b):

T ψ [u ](ar (b) ,b)  = 1
2
¯̂ψ (ar (b)φ̇u(b))Z u(b)  = 1

2
¯̂ψ (2 πf ψ

* )Z u(b) (6.13)

The process of estimating the ridge from the absolute value and/or from the phase 
information of the CWT of the signal is called “ridge extraction”. Different techniques for 
extracting ridges exist [2] and can be classified into two categories: the “differential” and 
the “global” methods [31].

Differential methods rely on local properties of the CWT of the signal u(t ), they are 
verified  theoretically  on  the  ridge  curve  and  they  are  based  on  the  partial  differential  
equations  of  the  CWT.  The  differential  method used here  is  based  on the  modulus  of 
T ψ [u ](a ,b), which is maximum at  b in the vicinity of the ridge, and therefore verifies a 
cancellation  of  its  partial  derivative  at  a.  This  definition  is  given  in  [33]  and  its 
implementation has the advantage that it is particularly simple and stable since it is a simple 
search for maxima. 

The global methods, introduced in reference [34], are based on the search for curves 
that maximize the energy of the CWT while maintaining a certain regularity of the solution.  
When the considered frequency and amplitude modulated signal is embedded in noise and 
near the ridges, the contribution of the signal is much larger than that of the noise, while the  
wavelet  transform  of  the  noise  spreads  in  the  whole  time–frequency  plane.  Several 
algorithms for global ridge extraction are detailed in the book by Carmona et al. [2] and are 
discussed with reference to their robustness to noise.
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Once  the  ridge  extraction  method  has  been  chosen  and  the  ridge  has  been 
determined, the analytical signal  Z u(b) can be obtained. Its real and imaginary parts give 
the signal and its Hilbert transform, respectively. The final goal of ridge extraction is to get  
an estimate of  φ̇u(t ) from equation 6.12 and then of  Z u(b) feeding it back into  equation 
6.13.

6.4.2 Multicomponent signals

The analytical  expression  of  the  structural  responses  of  linear  systems  is  well–
known,  even in  the  case  of  non–proportionally  damped systems [35].  The  aim of  this 
section is to characterize the behavior of structures from multi–channel  dynamic signals 
obtained from measurements made by a set of N sensors, typically accelerometers. The set 
of displacement measurements at these sensor points is grouped into the vector: u = [u1, u2,
… ,  uN]T.  Note that this notation is generic and can also be used when the signal is an 
acceleration. The modal decomposition expresses the state equation as a linear combination 
of the various modes of the system. Thanks to the modal decomposition approach for linear 
systems, every signal can be expanded as a linear combination of the different modes of the 
system, e.g. M components, each corresponding to a different eigen−mode of the structure 
[35]. The CWT of each component of u is also grouped in the vector T ψ [u ], as follows:

T ψ [u ](a , t )  = [T ψ [u1](a , t ) , T ψ [u2](a , t ) ,  . . . ,T ψ [uN](a , t )]T (6.14)

Therefore, the displacement u k(t ), taking into account the M modes, can be obtained as:

u k(t )  = ℜ∑
l =1

M

{Al
uk(t )eiθ l

uk(t )Φk
(l )} (6.15)

where  Al
u k(t )e iθ l

uk(t ) is the analytical modal participation factor of the  l–th complex mode 
being its k–th component) to the structural response u k(t ), while its real part are assumed to 

be asymptotic. The real part of uk is Al
u k(t )cos(θ l

u k(t)).

The vector  φ is the complex  l–th mode, which we have chosen to normalize as 
(φ(l ))T φ(l )  = 1,  based  on  the  generalisation  of  a  criterion  usually  used  for  real  modal 
deformations: ∥φ(l)∥2 = 1 (cf. Carpine [30]).  In the case of free responses, the dynamic 
signals  contain  the  vibrations  of  each  mode  of  the  structure,  associated  with  an 
exponentially damped sinusoidal component. Thus, equation 6.15 becomes:

u k(t )  = ℜ∑
l =1

M

{Al
uk(t )eiθ l

uk(t )Φk
(l )} = ℜ∑

l = 1

M

{Z l
uk eiλl t Φk

(l )} (6.16)

where Z l
uk is a complex constant, λl = 2 π i f l√1−ξ l

2 – ξ l 2 π f l is the l–th pole and fl, ξl are 
the eigen–frequency and the modal damping ratio associated with mode l, respectively.
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With  the  aid  of  the  above  form,  which  is  a  sum of  asymptotic  amplitude  and 
frequency  modulated  components,  in  the  case  of  a  single  asymptotic  amplitude  and 
frequency modulated signal, the absolute value of its CWT tends to concentrate near the 
“ridges” of  the transform [2].  In the time–frequency plane,  the ridge is  a  well–defined 
region,  but  most  importantly,  the  wavelet  transform acts  as  a  “regularizing”  filter  that 
concentrates  the  information  that  is  carried  within  the  signal  and  hence  allows  to 
characterize the instantaneous frequencies.

Based on the discussion above, the linearity of the CWT and a good choice of the 
mother wavelet ψ can allow to separate these different components and extract the ridge for 
each of them. There are several approaches for detecting multiple ridges, the final choice 
depends on their interaction, or their independence. When these ridges do not interact and 
are located at distinct regions of the time–frequency plane, a frequently encountered case in 
the analysis  of  dynamic signals  for  which each instantaneous frequency remains in the 
vicinity of a horizontal straight line, the methods previously mentioned can be implemented 
as in [31], [36].

As previously discussed, the ridges can then be deduced using  equation 6.12.  A 
common problem is when there are two close eigen–frequencies, fj and fk. The possibility of 
extracting the ridges is guaranteed if the following condition is satisfied:

ξ j  ≤ √2
 c f

| f j− f k|
    f j

(6.17)

,where cf is a constant related to edge effects [37], ξj is the modal damping ratio of the j–th 
mode and the j and k indexes correspond to two neighboring modes j and k, respectively. If 
the condition of equation 6.17 is not met, the extraction of accurate ridges is not guaranteed 
and may even not be possible since the modes are too close and they cannot be separated in 
the case that they are heavily damped. This tells us that two close modes cannot be well 
separated from each other if they are damped too much.  Figure 6.1 plots the ξj values as 
function of fj and Δf = ∣fj − fk  for ∣ cf = 3.
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As already discussed, at each measurement point uk, k  [1, N], a set of ridges ∈ ak
(l)(t ) 

can be extracted from the time–frequency plot, for the  l–th mode excited by the shock, 
where  l = 1 , 2,…, M. For the extraction of ridges, differential methods based on a local  
analysis of the extrema of the CWT modulus are here preferred. Thus the ridges, or the 
instantaneous frequencies  a l

(k )(t),  are  extracted by the  computation of  local  maxima of 
|T ψ [uk ](a , t )| as function of time t and for the l–th mode excited by the shock:

a l
(k )(t)  = arg a max|T ψ [u k](a , t )| (6.18)

So, for a mode l, a set of k = 1, 2, … ,M , ridges a l
(k )(t) is obtained, and a procedure 

to retain only one ridge for the instantaneous frequency must be then made,  in [31],  for 
example assuming the average of the k signals:

a l
mean(t )  = 

1
N∑k =1

N

a l
k (t) (6.19)

An alternative way of obtaining a single ridge a for mode l instead of several ridges 
(one for each measurement point) was recently been proposed by the authors in [29]. This 
new procedure is based on the computation of the Averaged Continuous Wavelet Transform 
(ACWT)  ~T ψ [u ](a , b),  which  combines  the  CWTs  of  each  measurement  point 
u k(k∈[1 , N]), as follows:

~T ψ [u ](a , b)  = ∑
k = 1

N

[T ψ [u k](a ,b)]2 (6.20)

Equation  6.20 is  suitable  for  ridge  extraction  in  the  case  of  free  responses  of 
systems whose eigen−vectors are real or with a negligible imaginary part, which is the case 
of weakly damped systems [35] and practically refers to all civil engineering structures. In 
fact, the use of the squares of the transforms makes it possible to orient the contributions of 
the useful signal in each measurement channel according to the same orientation in the 
complex  plane,  while  those  of  noise  remain  a  priori  randomly  distributed.  Therefore, 
equation 6.20 allows to obtain a single ridge a for mode l as follows:

aΣ
(l)(t )  = arga max|[ ~T ψ [u ](a ,b)]|

 1
 2  = arg a max|∑

k = 1

N

[T ψ [uk ](a ,b)]2|
 1
 2 (6.21)

Finally,  for  both  definitions  of  the  ridges,  i.e.,  a l
mean(t ) equation  6.18,  or  aΣ

(l)(t ) 
equation 6.21 a procedure has been proposed in  [29] to smooth the result of the maxima 
obtained for each time t; for two neighboring points in frequency of a maximum to the right 
and to the left make it possible to perform a parabolic interpolation from which we obtain 
the coordinates of a new ridge in the time scale plane for the mode l under consideration 
(t , ăk

(l)(t )), or (t , ăΣ
(l)(t )). A procedure for chaining the discrete points of the time–frequency 

plane to transform them into ridges is finally performed [2].  The set of maxima of the 
absolute value of the CWT along the ridges present in the signal forms the skeleton of the  
CWT of the signal. According to the definition chosen for a ridge l in equation 6.18 or in 
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equation 6.21,  the absolute value of  the CWT along each ridge  T ψ [u ](ăk
(l)(t ) , t ) or  the 

ACWT along the single ridge ~T ψ [u ](ăΣ
(l )(t ) , t ) is preferred.

6.5 System Dynamic Characterization

The modal parameters of a system under transient vibrations can be identified by 
extracting the ridges and the skeleton of the CWT time–frequency representation. Once the 
ridges of the CWT have been extracted, the instantaneous frequencies, the modal damping 
ratio and the modal shapes can be estimated. If the system is purely linear, the shape of the 
ridges associated with the eigen–frequencies will be a straight horizontal line. Furthermore, 
the damping ratio of the modes of interest can be estimated from the exponential decrease  
in amplitude associated with these ridges, and finally the modal shapes can be obtained 
from the relative amplitudes and phase shifts between the channels corresponding to the 
different sensors.

Therefore,  the  extraction  of  the  “ridges”  is  a  critical  aspect  for  the  successful 
application  of  the  CWT  for  modal  identification  in  the  case  of  transient  structural 
responses.  Among the  authors  who have  used  the  CWT for  modal  identification  from 
transient structural responses, we can cite two references published in 1997: Staszewski 
[49] and Ruzzene  et al.  [38]. Staszewski [49] proposed several CWT–based methods for 
estimating damping ratios and applied them to simulated multi Degree–of–freedom (DOF) 
systems. Ruzzene et al. [38] showed that the CWT analysis of the free response of a system 
allows  the  estimation  of  its  natural  frequencies  and  viscous  damping  ratios.  A more 
complete procedure, which also gives access to frequencies and modal shapes, can be found 
in Lardies & Gouttebroze  [39]. In Le & Argoul [31], the authors propose a more precise 
and complete method where the choice of the mother wavelet, its quality factor and the 
management of the edge effects of the TOC are studied in depth. The subsequent article by 
Erlicher & Argoul [36] discusses the use of this procedure in the case of systems with non–
proportional damping, and therefore in the presence of complex deformations.

For amplitude and phase modulated signals of the form: u(t )  = A(t)cos(φ(t )), the 
restriction of the wavelet transform to its ridge behaves mainly as the associated complex 
signal of  u(t ):  A(t )exp [iφ(t )]. This representation also allows the reconstruction of such 
original signals in non–significant noise situations [2]. If the system behavior is close to be 
linear, from the CWT (or the ACWT) of its transient responses, the extracted ridges are 
similar to horizontal lines and the associated skeleton has an exponential decrease [31]. The 
logarithm log|T ψ[u ](ă k

(l )(t) , t )| for the CWT, or log|~T ψ[u ](ăΣ
(l )(t ) , t)| for the ACWT can be 

then deduced and the calculation of the slope of the “straight lines” for each mode l can be 
performed in order to estimate the corresponding modal damping ratio of the  l–th mode. 
The  slope  allows  to  get  an  estimate  to  the  near  sign  of  the  product  2πflξl that  is  the 
reciprocal of the time constant characterizing the exponential decay of the l–th mode.

The calculation of the eigen–shapes requires a set of measurements grouped in the 
vector:  u = [u1,  u2,…,  uN]T. The CWT of each component of  u along the smoothed ridge 
ăΣ
(l)(t ) mode l are also grouped in the vector Tψ[u], as follows:

T ψ [u ](ăΣ
(l)(t ) , t )  = [Tψ [u1]( ăΣ

( l)( t ) , t ) , Tψ [u2](ăΣ
(l)(t ) , t ) , ... ,T ψ [u N]( ăΣ

( l)(t ) , t )]T (6.22)
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Depending on the choice made for the definition of the ridge, i.e. either  equation 
6.18, or equation 6.21, the instantaneous complex modal shapes φ(l)(t ) can be derived from 
the relative amplitude and phase of the CWT calculated along each ridge. There are several 
ways to  normalise  the  modal  vector.  One way is  to  choose  the  unit  amplitude for  the 
measurement point umax, where the max index corresponds to the measurement point where 
the modal amplitude is greatest [31]. The  k–th component  φk

(l)(t ) of the “instantaneous” 
complex mode can be expressed as follows:

φk
(l)(t )  = 

 T ψ [u k](ăk
(l )(t ) , t)

T ψ [u max](ă l
(l )(t ) , t)

(6.23)

As already discussed above, in this work we prefer the following scaling condition: 
(φ(l )(t ))T φ(l )(t)  = 1 for instantaneous mode shape φ(l)(t ) [29], [30]. This definition results 
to:

φk
(l)(t )  = ±

                T ψ[uk ](ă Σ
(l )(t ) , t )

[T ψ [u ](ă Σ
(l)(t ) , t )T T ψ [u](ăΣ

(l )(t) , t )]
 1
 2

(6.24)

where the sign follows the continuity of φk
(l)(t ) over time. The amplitude of mode l is then 

equal to:

Al (t)  = |[T ψ [u ](ă Σ
(l )(t ) , t )T T ψ[u ](ăΣ

(l )(t ) , t)]
 1
 2| (6.25)

To obtain a “constant” mode, especially in the case of linear behavior, the mean value over 
time, denoted φ̄, can be calculated for each component k of the l–th mode:

φ̄k
(l)(t )  = 

   1
t f−t i
∫

t i

t f

φk
(l )(t)dt (6.26)

The ACWT method is chosen for the numerical applications of the following chapters.
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7. Applications of CWT

In this chapter the CWT method is tested on three structures. Α 4–storey 2–d frame, 
an  8–storey  2–d  frame  and  EuroProteas,  a  real–scale  model  structure.  Also,  the  RDT 
Method  is  presented  in  order  to  calculate  the  damping  ratios  using  ambient  vibration 
measurements. Furthermore the function signal–to–noise ratio (SNR) and its influence are 
presented.  The  analyzed  signals  are  imported  into  modal  analysis  software  “ARTeMIS 
Modal” and the results are compared with the ones from the CWT.

7.1 Random Decrement Technique 

The  Random  Decrement  Technique  (RDT)  is  a  method  used  to  estimate  the 
damping ratio of a structure. This method is using the ambient vibration measurement of 
the structure and is extracting a RDT signature which represents the response equivalent to 
the damped free vibration response. This method is based on that the response of a dynamic 
system is composed of three response components. That is initial displacement, velocity 
and the force vibration response. 

The intention of using the sampling technique is that averaging time segments of the 
ambient vibration measurement of a structure with a common triggering condition is to 
reduce the initial velocity response and the forced vibration response to zero. As number of 
segments increases the ensemble average of the forced vibration response tends to zero. If 
all segments in the average begin at the same threshold level and alternating positive and 
negative slope, then the response due to initial velocity is averaged out while the response 
due  to  initial  displacement  remains.  Based  on  this  explanation,  the  RDT signature  is 
equivalent to a damped free vibration response of a structure to an initial  displacement 
equivalent to the selection amplitude. The RDT signature δ is expressed by:

δt  = 
1
N∑i = 1

N

( x i ,(t i +r )) (7.1)

7.2 Signal–to–Noise Ratio

Signal–to–Noise Ratio (SNR or S/N) is a measure used in science and engineering 
that compares the level of a desired signal to the level of background noise. SNR is defined 
as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 
1:1 (greater than 0 dB) indicates more signal than noise. [43]

SNR is an important parameter that affects the performance and quality of systems 
that  process  or  transmit  signals,  such  as  communication  systems,  audio  systems,  radar 
systems, imaging systems, and data acquisition systems. A high SNR means that the signal 
is clear and easy to detect or interpret, while a low SNR means that the signal is corrupted 
or obscured by noise and may be difficult to distinguish or recover. SNR can be improved 
by  various  methods,  such  as  increasing  the  signal  strength,  reducing  the  noise  level, 
filtering out unwanted noise, or using error correction techniques. [43]
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SNR also determines the maximum possible amount of data that can be transmitted 
reliably over a given channel, which depends on its bandwidth and SNR. This relationship 
is described by the Shannon–Hartley theorem, which is a fundamental law of information 
theory. [43]

SNR can be calculated using different formulas depending on how the signal and 
noise are measured and defined. The most common way to express SNR is in decibels, 
which is a logarithmic scale that makes it easier to compare large or small values. Other 
definitions of SNR may use different factors or bases for the logarithm, depending on the 
context and application. [43]

In this thesis, the SNR is applied in order to investigate how adding noise influences 
the modal parameter identification. This was made possible by using the Matlab toolbox.

7.3 4–storey 2d frame

The present system was modeled with 4 springs in series. Each spring represents 
one storey. Its stiffness was given directly. This means that there is no columns, beams, 
cross sections defined. The height of each storey can be assumed to be 3 meters high. The 
acting load,  a  white  noise produced by Matlab’s  randn command, is  performed on the 
structure’s base. The load is applied with a time step of TQ = 0.001 sec (sampling frequency 
𝑓8 = 1000 Hz) for a total duration of of 100 sec. The ambient vibration responses for each 
storey were extracted from OpenSees and then they were analyzed with CWT.
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(a)                                                                           (b)

Figure 7.1: Accelerograms (a) Ambient vibrations, (b) Normalized accelerations –free 
decay responses– after the application of RDT Method.



➢ Ridges estimation with ACWT

(a) (b)

(c) (d)
Figure 7.3: Time–frequency domain using ambient vibrations. Ridge extraction for each 

mode.
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Figure 7.2: Fast Fourier Transform – FFT.



(a) (b)

(c) (d)
Figure 7.4: Time–frequency domain using free–decay responses. Ridge extraction for each 

mode.

➢ Eigen–modes estimation

(a) 1st Eigen–mode (b) 2nd Eigen–mode
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(c) 3rd Eigen–mode (d) 4th Eigen–mode
Figure 7.5: Eigen–modes estimation from ARTeMIS Modal.

➢ Signal Reconstruction
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Figure 7.6: Eigen–modes estimation from ACWT.



Figure 7.7: Reconstructed signals compared to the normalized signals

➢ Eigen–frequencies

Mode OpenSees ACWT FFT
SSI–COV 

(ARTeMIS Modal– 
Automatic estimation)

1 1.69 1.62 1.625 (–)

2 4.17 4.15 4.125 4.172

3 6.78 6.85 6.875 6.79

4 8.40 8.42 8.5 8.39

➢ Damping ratios

Mode OpenSees
ACWT
(linFit)

expoFit
SSI–COV 

(ARTeMIS Modal– 
Automatic estimation)

1 0.0500 0.02626 0.0262 (–)

2 0.0497 0.012482 0.0118 0.02345

3 0.0663 0.005584 0.005835 0.00782

4 0.0783 0.004128 0.004832 0.00708
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Addition of noise and comparison of the eigen−values using the signal–to–noise ratio.

➢ Eigen–frequencies

SNR = ∞
(no additional noise)

SNR = 49.7

Mode ACWT FFT ACWT
SSI–COV 

(ARTeMIS Modal)

1 1.62 1.625 1.623 (–)

2 4.15 4.125 4.147 4.093

3 6.85 6.875 6.85 6.783

4 8.42 8.5 8.42 8.41

SNR = 23.86 SNR = 2.16

Mode FFT ACWT
SSI–COV 
(ARTeMIS 

Modal)
FFT ACWT

SSI–COV 
(ARTeMIS 

Modal)

1 1.625 1.623 (–) 1.625 1.627 (–)

2 4.125 4.148 4.071 4.125 4.14 4.063

3 6.875 6.85 6.778 6.875 6.84 6.834

4 8.5 8.42 8.442 8.5 8.43 8.414

SNR = 0.4 SNR ≈ 0

Mode FFT ACWT
SSI–COV 
(ARTeMIS 

Modal)
FFT ACWT

SSI–COV 
(ARTeMIS 

Modal)

1 (–) 1.64 (–) (–) (–) (–)

2 4.25 4.17 (–) (–) (–) (–)

3 (–) 6.72 6.809 (–) (–) (–)

4 (–) 8.427 8.41 (–) (–) (–)
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➢ Damping ratios

SNR = ∞
(no additional noise)

SNR = 49.7 SNR = 23.86

Mode ACWT ACWT
SSI–COV 
(ARTeMIS 

Modal)
ACWT

SSI–COV 
(ARTeMIS 

Modal)

1 0.02626 0.0262 (–) 0.0262 (–)

2 0.012482 0.01255 0.03421 0.01294 0.04013

3 0.005584 0.00554 0.01801 0.005409 0.01736

4 0.004128 0.0041 0.00856 0.00412 0.00883

SNR = 2.16 SNR = 0.4 SNR ≈ 0

Mode ACWT
SSI–COV 
(ARTeMIS 

Modal)
ACWT

SSI–COV 
(ARTeMIS 

Modal)
ACWT

SSI–COV 
(ARTeMIS 

Modal)

1 0.033 (–) 0.0354 (–) (–) (–)

2 0.011 0.03381 0.00137 (–) (–) (–)

3 0.01158 0.01941 0.02537 0.01678 (–) (–)

4 0.00277 0.00792 0.0008 0.0087 (–) (–)
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7.4 8–storey 2d frame

The present system was modelled with 8 springs in series,  similarily with the previous 
model.  The white  noise  load is  applied with  a  time step of  TQ =  0.001 sec  (sampling 
frequency f8 = 1000 Hz) for a total duration of of 100 sec.
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(a)                                                                         (b)

Figure 7.8: Accelerograms (a) Ambient vibrations, (b) Normalized accelerations –free 
decay responses– after the application of RDT Method.



➢ Ridges estimation with ACWT

(a) (b)

(c) (d)
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Figure 7.9: Fast Fourier Transform – FFT.



(e) (f)

(g) (h)
Figure 7.10: Time–frequency domain using ambient vibrations. Ridge extraction for each 

mode.

(a) (b)
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(c) (d)

(e) (f)

(g) (h)
Figure 7.11: Time–frequency domain using free–decay responses. Ridge extraction for each 

mode.
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➢ Eigen–modes estimation

(a) 1st Eigen–mode (b) 2nd Eigen–mode

(c) 3rd Eigen–mode (d) 4th Eigen–mode

(e) 5th Eigen–mode (f) 6th Eigen–mode
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(g) 7th Eigen–mode

(–)

Figure 7.12: Eigen–modes estimation from ARTeMIS Modal.
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Figure 7.13: Eigen–modes estimation from ACWT.



➢ Signal Reconstruction
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Figure 7.14: Reconstructed signals compared to the normalized signals

➢ Eigen–frequencies

Mode OpenSees ACWT FFT
SSI–COV 

(ARTeMIS Modal– 
Automatic estimation)

1 0.81 0.817 1.625 0.78

2 2.29 2.29 2.25 2.93

3 3.39 3.38 3.375 3.45

4 4.74 4.72 4.875 4.883

5 5.88 5.856 5.875 5.31

6 6.97 6.886 6.875 6.42

7 7.19 7.2 7.25 7.095

8 8.59 (–) 8 (–)

➢ Damping ratios

Mode OpenSees
ACWT
(linFit)

expoFit
SSI–COV 

(ARTeMIS Modal– 
Automatic estimation)

1 0.0500 0.0307 0.0072 0.415

2 0.0497 0.0052 0.00363 0.1873

3 0.0630 0.0035 0.00364 0.04556

4 0.0821 0.0044 0.0035 (–)

5 0.0993 0.0051 0.00253 0.01921

6 0.1159 0.0021 0.0022 (–)

7 0.1192 0.00054 0.00333 0.01109

94



Addition of noise and comparison of the eigen−values using the signal–to–noise ratio.

➢ Eigen–frequencies

SNR = ∞
(no additional noise)

SNR = 49.7

Mode ACWT FFT ACWT
SSI–COV 

(ARTeMIS Modal)

1 0.817 0.75 0.817 0.977

2 2.29 2.25 2.29 2.441

3 3.38 3.375 3.38 3.441

4 4.72 4.875 4.72 4.883

5 5.856 5.875 5.856 (–)

6 6.886 6.875 6.886 6.836

7 7.2 7.25 7.2 7.135

SNR = 23.86 SNR = 2.16

Mode FFT ACWT SSI–COV 
(ARTeMIS 

Modal)

FFT ACWT SSI–COV 
(ARTeMIS 

Modal)

1 0.75 0.817 0.98 0.875 0.817 (–)

2 2.25 2.29 2.441 2.25 2.29 2.219

3 3.375 3.38 3.418 3.375 3.38 (–)

4 4.875 4.716 4.883 4.75 4.715 (–)

5 (–) 5.856 (–) (–) 5.91 (–)

6 6.875 6.885 6.905 (–) 6.89 (–)

7 7.25 7.2 7.132 7.25 7.2 (–)

SNR = 0.4 SNR ≈ 0

Mode FFT ACWT
SSI–COV 
(ARTeMIS 

Modal)
FFT ACWT

SSI–COV 
(ARTeMIS 

Modal)

1 (–) 0.827 (–) (–) (–) (–)

2 (–) 2.29 (–) (–) (–) (–)
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3 (–) 3.386 (–) (–) (–) (–)

4 (–) 4.73 (–) (–) (–) (–)

5 (–) 5.853 (–) (–) (–) (–)

6 (–) 6.89 (–) (–) (–) (–)

7 (–) 7.22 (–) (–) (–) (–)

➢ Damping ratios

SNR = ∞
(no additional noise)

SNR = 49.7 SNR = 23.86

Mode ACWT ACWT
SSI–COV 
(ARTeMIS 

Modal)
ACWT

SSI–COV 
(ARTeMIS 

Modal)

1 0.0307 0.0306 (–) 0.0305 (–)

2 0.0052 0.0058 0.05872 0.0051 0.05553

3 0.0035 0.0035 0.0265 0.00338 0.02144

4 0.0044 0.00439 (–) 0.0045 (–)

5 0.0051 0.00512 (–) 0.0049 (–)

6 0.0021 0.00207 0.0041 0.00202 0.0088

7 0.00054 0.00225 0.00373 0.001 0.0086

SNR = 2.16 SNR = 0.4 SNR ≈ 0

Mode ACWT
SSI–COV 
(ARTeMIS 

Modal)
ACWT

SSI–COV 
(ARTeMIS 

Modal)
ACWT

SSI–COV 
(ARTeMIS 

Modal)

1 0.0323 (–) 0.029 (–) (–) (–)

2 0.0078 0.05516 0.012 (–) (–) (–)

3 0.00556 (–) 0.0034 (–) (–) (–)

4 0.00406 (–) 0.002 (–) (–) (–)

5 0.0032 (–) 0.00224 (–) (–) (–)

6 0.00272 (–) 0.00028 (–) (–) (–)

7 0.00126 (–) 0.00042 (–) (–) (–)
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7.5 EuroProteas

EuroProteas is a real–scale simplified model structure built in Euroseistest site in the 
framework  of  the  European  project  “Seismic  Engineering  Research  Infrastructures  for 
European  Synergies,  SERIES”.  It  is  a  project  ([42]),  conducted  by  Dimitris  Pitilakis, 
Despina  Lamprou,  Maria  Manakou,  Emmanuil  Rovithis  and  Anastasios  Anastasiadis, 
aiming to  identify  the  soil–foundation  system of  a  structure  founded on soft  soil.  The 
structure consists of a steel frame on a reinforced concrete (RC) of 0.40 m thickness. Two 
similar  RC  slabs  of  9  Mg  mass  are  placed  on  top  of  the  frame.  EuroProteas  was 
instrumented with a large amount (> 70). Its response to ambient noise, forced–vibration 
tests and free–vibration tests was recorded for multiple long hour sessions in different days 
and seasons. The paper results are based on total of 277 sec recordings on 6 accelerometers 
of the instrumentation form shown in Figure 7.15. The sampling rate is 0.005 sec (f8 = 200 
Hz).
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Figure 7.15: The structure and the 6 accelerometers configuration 
used in this example. [42]
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(a)                                                                           (b)

Figure 7.16: Accelerograms (a) Ambient vibrations, (b) Normalized accelerations –free 
decay responses– after the application of RDT Method.

Figure 7.17:  Fast Fourier Transform – FFT.



(a) (b)

(c) (d)

(e) (f)
Figure 7.18: Time–frequency domain using ambient vibrations. Ridge extraction for each 

mode.
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(a) (b)

(c) (d)

(e) (f)
Figure 7.19: Time–frequency domain using free–decay responses. Ridge extraction for each 

mode.
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➢ Eigen–modes estimation

(a) 1st Eigen–mode (b) 2nd Eigen–mode

(c) 3rd Eigen–mode (d) 4th Eigen–mode

(e) 5th Eigen–mode (f) 6th Eigen–mode

Figure 7.20: Eigen–modes estimation from ARTeMIS Modal.
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➢ Signal Reconstruction

Figure 7.21: Reconstructed signals compared to the normalized signals
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➢ Eigen–frequencies

Mode MACEC Shape ACWT FFT
SSI–COV 

(ARTeMIS Modal)

1 4.102 Trans 4.087 4.12 4.34

2 4.199 Trans 4.37 4.353 4.36

3 9.668 Tors 9.769 9.647 9.726

4 21.191 Coupled 21.135 (–) 21.504

5 22.363 Coupled 22.496 (–) 22.652

6 (–) Coupled 25.03 25 25

➢ Damping ratios

Mode MACEC
ACWT
(linFit)

expoFit
SSI–COV 

(ARTeMIS Modal)

1 0.0304 0.00424 0.014 0.03154

2 0.0342 0.00752 0.0136 0.01772

3 0.008 0.002 0.00605 0.00814

4 0.0135 0.001446 0.0028 0.01474

5 0.0075 0.00165 0.0026 0.02413

6 (–) 0.00062 0.0023 0.00279

Addition of noise and comparison of the eigen–values using the signal–to–noise ratio.

➢ Eigen–frequencies

SNR = ∞
(no additional noise)

SNR = 28.7

Mode ACWT FFT ACWT
SSI–COV 

(ARTeMIS Modal)

1 4.087 4.118 4.085 4.297

2 4.37 4.353 4.37 4.395

3 9.769 9.647 9.766 9.744

4 21.135 (–) 21.13 (–)

5 22.496 (–) 22.394 (–)

6 25.03 25 25.03 25.024

103



SNR = 4.55 SNR ≈ 0

Mode FFT ACWT
SSI–COV 
(ARTeMIS 

Modal)
FFT ACWT

SSI–COV 
(ARTeMIS 

Modal)

1 4.18 4.085 4.342 (–) (–) (–)

2 4.353 4.372 4.363 (–) (–) (–)

3 9.647 9.79 9.732 (–) (–) (–)

4 (–) 21.09 (–) (–) (–) (–)

5 (–) 22.366 (–) (–) (–) (–)

6 25 25.032 24.974 (–) (–) (–)

.

➢ Damping ratios

SNR = ∞
(no 

additional 
noise)

SNR = 26.82 SNR = 3.42 SNR ≈ 0

Mode ACWT ACWT
SSI–COV 
(ARTeMIS 

Modal)
ACWT

SSI–COV 
(ARTeMIS 

Modal)
ACWT

SSI–COV 
(ARTeMIS 

Modal)

1 0.00424 0.0044 0.0228 0.00786 0.02101 (–) (–)

2 0.00752 0.00717 0.03518 0.0063 0.05085 (–) (–)

3 0.002 0.00197 0.01626 0.00265 0.01364 (–) (–)

4 0.001446 0.00152 (–) 0.00176 (–) (–) (–)

5 0.00165 0.00135 (–) 0.00141 (–) (–) (–)

6 0.00062 0.00062 0.00737 0.00042 0.00791 (–) (–)
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8. Application to Z24 Bridge

8.1 Description of the Z24−bridge

The Z24 bridge was located in the canton Bern near Solothurn, Switzerland. It was 
part of the road connection between the villages of Koppigen and Utzenstorf, over−passing 
the  A1  highway  between  Bern  and  Zürich.  It  was  a  classical  post−tensioned  concrete 
two−cell box−girder bridge with a main span of 30 m and two side spans of 14 meters 
(Figure 8.2). The bridge was built as a freestanding frame with the approaches backfilled 
later. Both abutments consisted of triple concrete columns connected with concrete hinges 
to the girder. Both intermediate supports were concrete piers clamped into the girder. An 
extension of the bridge girder at the approaches provided a sliding slab. All supports were 
rotated with respect  to the longitudinal  axis,  which yielded a skew bridge.  The bridge, 
which dated from 1963, was demolished at the end of 1998, because a new railway adjacent 
to the highway required a new bridge with a larger side span. More information about the 
Z24 bridge can also be found in [44][45].
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Figure 8.1: Geographical location of the Z24 Bridge [48].



8.2 Brite−EuRam Project SIMCES

The Z24 Bridge’s tests,  have been performed in the framework of the European 
Brite  EuRam  research  project  BE−3157,  “System  Identification  to  Monitor  Civil 
Engineering Structures” (SIMCES) [46].

The  project  was  coordinated  by  KU Leuven  (Department  of  Civil  Engineering, 
Structural Mechanics Section). The other partners in the project were: Aalborg University 
(Institut for Bybninbsteknik); EMPA (Swiss Federal Laboratories for Materials Testing and 
Research,  Concrete  Structures  Section);  LMS  (Leuven  Measurement  and  Systems 
International N.V.; Engineering and Modeling); WS Atkins Consultants Ltd (Science and 
Technology); Sineco Spa (Ufficio Promozione e Sviluppo); Technische Universität Graz 
(Structural Concrete Institute). [47]

The SIMCES project programme refers to a monitoring system. One of the main 
objectives of the SIMCES project was to deliver a proof of feasibility for vibration–based 
structural health monitoring of civil engineering structures by full−scale, long−term tests 
and progressive failure tests  of  a  representative structure,  the Z24 Bridge.  Ideas of  the 
purpose of this monitoring system ranged from ‘prototype damage monitoring system’ to 
‘getting an idea of the environmental behavior of the test bridge’. [48]
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Figure 8.2: Plans of the Z24 Bridge [48].



8.3 Bridge instrumentation

One  big  issue  was  the  type  of  instrumentation  to  be  used  for  the  dynamic 
measurements. Considerations centered to the kind of dynamic characteristics which later 
might be useful for damage detection. More or less directly measurable characteristics such 
as  frequencies  and  amplitude  ratios  could  have  been  supplemented  by  derivable 
characteristics such as curvature etc. If curvature would have been considered interesting, 
sensors  would  have  to  be  allocated  in  concentrated  or  array  manner.  However,  the 
conclusion was to distribute the instruments over the bridge, at locations where they could 
pick a maximum number of modes. [48]

8.4 Importing model into ARTeMIS Modal

For simplification purposes and minimization of computational cost, the deck of the 
three–span bridge was assumed a plane, as well as its pillars. Firstly, the coordinates of total 
nodes are introduced. Then, the lines and the surfaces are defined, dividing the bridge into 
smaller  rectangles.  Subsequently,  the  acceleration  signals  are  imported  into  the 
corresponding degrees of freedom. Due to the big computational cost, the 110 out of 246 
signals are imported in order to obtain a good estimation of the eigen−modes. The channels 
were chosen for the ACWT estimation are 12, 13, 42, 43, 44 and 45.
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Fugure 8.3: Importing bridge geometry (nodes, lines and surfaces).



8.5 Long−term continuous monitoring test

A  long−term  continuous  monitoring  test  took  place  during  the  year  before 
demolition. Since the aim of this test was to quantify the environmental variability of the 
bridge  dynamics,  all  environmental  variables  that  were  considered  to  be  of  possible 
importance  for  the  bridge  dynamics  have  been  monitored.  Sensors  to  measure  air 
temperature, air humidity, rain true or false, wind speed, and wind direction were installed 
at the bridge, resulting in five sensors for the atmospheric conditions. A sensor consisting of 
two inductive loops was installed to detect the presence of vehicles on the bridge. [47]

To monitor the bridge dynamics, 16 accelerations have been measured on the bridge 
at different points and in different directions. Every hour, 10 scans of environmental data, 
sampled at 48 sensors, and 8 averages of 8192 acceleration samples, taken at 16 sensors,  
were collected and stored to a hard disk after compression. The construction works at the 
new bridge that replaced the Z24, caused the loss of six temperature sensors and damage to  
one accelerometer. Although the type of accelerometers that had been used was specially 
designed for long−term use, some showed a considerable drift and a few of them failed 
during operation. [47]

The chosen dates for the analysis are 10th Nov and 10th Dec of 1997, 9th Jan, 10th 

Feb, 10th Mar, 10th Apr, 28th May, 18th Jun, 10th Jul, 4th Aug and 9th Sept of 1998  and the 
hourly recording of the 11 p.m. for each date.
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Fugure 8.4: Importing signal channels into the corresponding degree of freedom.



➢ Analysis History in ARTeMIS Modal
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Figure 8.5: Location and orientation of accelerometers [48].

Fugure 8.6: Modal Parameter History, Long−term continuous monitoring test.



8.6 Short−term progressive damage test

Progressive  damage  tests  took  place  over  a  month,  shortly  before  complete 
demolition of the bridge. The practical significance of these tests was ensured by checking 
that they were relevant for the safety of the bridge and that the simulated damage occurred 
frequently. Table 8.1 gives a complete overview of all progressive damage tests that were 
performed. Before and after each applied damage scenario, the bridge was subjected to a  
forced and an ambient operational vibration test. With a measurement grid consisting of a 
regular 3 × 45 grid on top of the bridge deck and a 2 × 8 grid on each of the two pillars, 291 
degrees  of  freedom have  been  measured:  all  displacements  on  the  pillars,  and  mainly 
vertical and lateral displacements on the bridge deck. Because the number of degrees of 
freedom to be measured exceeded the number of available accelerometers and acquisition 
channels, the data were collected in nine setups using five reference channels. The forced 
excitation was applied by two vertical shakers, placed on the bridge deck. An 1 kN shaker 
was placed on the middle span and a 0.5 kN shaker was placed at the Koppigen side span.  
The shaker input  signals  were generated using an inverse fast  Fourier  transform (FFT) 
algorithm, resulting in a fairly flat force spectrum between 3 and 30 Hz. After scenario 8, a 
drop weight test was also performed, using a device that allowed to drop a mass of up to 
120 kg from a height of up to 1 m in a controlled way. The applied shaker and drop weight  
forces  were  periodic  with  eight  periods.  A total  of  65536  samples  was  collected  at  a 
sampling rate of 100 Hz, using an anti−aliasing filter with a 30 Hz cutoff frequency. [47]
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Figure 8.7: Damage Indicator, Long−term continuous monitoring test.



Table 8.1: Chronological overview of applied damage scenarios, indicating on which date 
a specific scenario was fully realized [47].

Date (1998) Scenario

4 August Undamaged condition

9 August Installation of pier settlement system

10 August Lowering of pier, 20 mm

12 August Lowering of pier, 40 mm

17 August Lowering of pier, 80 mm
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Figure 8.8: Location of accelerometers in short−term progressive 
damage test [48].



18 August Lowering of pier, 95 mm

19 August Lifting of pier, tilt of foundation

20 August New reference condition

25 August Spalling of concrete at soffit, 12 m2

26 August Spalling of concrete at soffit, 24 m2

27 August Landslide of 1 m at abutment

31 August Failure of concrete hinge

2 September Failure of 2 anchor heads

3 September Failure of 4 anchor heads

7 September Rupture of 2 out of 16 tendons

8 September Rupture of 4 out of 16 tendons

9 September Rupture of 6 out of 16 tendons

➢ Analysis History in ARTeMIS Modal
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Fugure 8.9: Modal Parameter History, Short−term progressive damage test.



To minimize the computational cost, the undamaged scenarios 2−7 were not counted.
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Fugure 8.10: Damage Indicator, Short−term progressive damage test.



8.7 Results

➢ Eigen–modes estimation

KU LEUVEN ARTeMIS Modal (FDD)
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Figure 8.11: Eigen–modes estimation from (a) KU Leuven [47] and (b) ARTeMIS Modal 
(Scenario 8).
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(a)                                                                       (b)

Figure 8.12:  Accelerograms (a) Ambient vibrations, (b) Normalized accelerations –free 
decay responses– after the application of RDT Method (Scenario 8).



➢ Ridges estimation with ACWT

(a) (b)

(c) (d)
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Figure 8.13: Fast Fourier Transform – FFT (Scenario 8).



(e) (f)
Figure 8.14: Time–frequency domain using ambient vibrations. Ridge extraction for each 

mode (Scenario 8).

(a) (b)

(c) (d)
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(e) (f)
Figure 8.15: Time–frequency domain using free–decay responses. Ridge extraction for each 

mode (Scenario 8).

➢ Scenario 8 – 20th August 1998
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Figure 8.16:  Stabilization Diagram of Estimated State Space Models – SSI UPCX 
(Scenario 8)



Eigen–frequencies

Mode
KU 

LEUVEN
Shape

(KU LEUVEN)
ACWT FFT

SSI–COV 
(ARTeMIS Modal)

1 3.86 Trans 3.88 (–) 3.863

2 4.90 Coupled 4.87 4.92 4.883

3 9.76 Tors 9.67 9.89 9.802

4 10.30 Tors 10.218 10.05 (–)

5 12.42 Trans 12.475 (–) 12.826

6 13.22 Trans 13.34 13.81 13.18

Damping ratios

Mode KU LEUVEN
ACWT
(linFit)

expoFit
SSI–COV 

(ARTeMIS Modal)

1 0.008 0.0037 0.0026 0.00684

2 0.014 0.001 0.0021 0.03466

3 0.014 0.000034 0.001 0.01429

4 0.013 0.00061 0.001 (–)

5 0.028 0.000474 0.0008 0.04077

6 0.034 0.00062 0.000765 0.01345

➢ Scenario 14 – 3rd September 1998
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Figure 8.17: Stabilization Diagram of Estimated State Space Models – SSI UPCX 
(Scenario 14)



1st Mode 2nd Mode 3rd Mode

Trans Coupled to Coupled*

(–)

4th Mode 5th Mode 6th Mode

Tors to Coupled Trans to Trans* Trans to Coupled

Figure 8.18: Eigen–Modes derived from ARTeMIS Modal (Scenario 14)

Eigen–frequencies

Mode ACWT FFT
SSI–COV 

(ARTeMIS Modal)

1 3.858 3.86 3.867

2 4.787 4.67 4.532

3 9.834 (–) (–)

4 10.166 (–) 10.048

5 12.364 12.11 11.983

6 13.339 13.7 13.413

Damping ratios

Mode
ACWT
(linFit)

expoFit
SSI–COV 

(ARTeMIS Modal)

1 0.002 0.0016 0.01041

2 0.0004 0.00129 0.01611

3 0.0014 0.00062 (–)

4 0.0020 0.0006 0.03255

5 0.00066 0.0005 0.04133

6 0.00017 0.00046 0.06103

120



➢ Scenario 16 – 8th September 1998

1st Mode 2nd Mode 3rd Mode

Trans Coupled to Coupled* Tors to Coupled

4th Mode 5th Mode 6th Mode

Coupled to Coupled* Trans Coupled

Figure 8.20: Eigen–Modes derived from ARTeMIS Modal (Scenario 16)
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Figure 8.19: Stabilization Diagram of Estimated State Space Models – SSI UPCX 
(Scenario 16)



Eigen–frequencies

Mode ACWT FFT
SSI–COV 

(ARTeMIS Modal)

1 3.83 3.84 3.847

2 4.97 4.73 4.654

3 9.796 9.81 9.79

4 10.172 10.35 10

5 12.576 12.22 12.28

6 13.22 13.27 12.914

Damping ratios

Mode
ACWT
(linFit)

expoFit
SSI–COV 

(ARTeMIS Modal)

1 0.000746 0.000064 0.010

2 0.0015 0.00005 0.0293

3 0.0001 0.000025 0.00865

4 0.00062 0.0000238 0.030

5 0.0012 0.00002 0.035

6 0.000075 0.000018 0.0088

➢ Scenario 17 – 9th September 1998
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Figure 8.21: Stabilization Diagram of Estimated State Space Models – SSI UPCX 
(Scenario 17)



1st Mode 2nd Mode 3rd Mode

Trans Coupled Coupled to Coupled*

4th Mode 5th Mode 6th Mode

Coupled to Coupled* Trans Trans

Figure 8.22: Eigen–Modes derived from ARTeMIS Modal (Scenario 17)

Eigen–frequencies

Mode ACWT FFT
SSI–COV 

(ARTeMIS Modal)

1 3.81 (–) 3.832

2 4.78 4.73 4.707

3 9.675 (–) 9.893

4 10.324 10.13 11.657

5 12.587 12.32 12.328

6 13.25 13.32 13.023

Damping ratios

Mode
ACWT
(linFit)

expoFit
SSI–COV 

(ARTeMIS Modal)

1 0.00176 0.0016 0.0075

2 0.00143 0.00124 0.03139

3 0.0019 0.00062 0.03226

4 0.0000014 0.00058 0.03366

5 0.00062 0.00049 0.02579

6 0.00004 0.00046 0.01219
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(a) (b)

(c) (d)

(e) (f)
Figure 8.23: Components φi of each mode derived from ACWT 

and comparison throughout the damage scenarios 1, 2, 8, 14, 16, and 17.
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9. Conclusions

The  current  postgraduate  thesis  has  aimed  to  present  the  application  of  the 
Continuous  Wavelet  Transform  (CWT)  in  Structural  Health  Monitoring  (SHM).  Four 
systems were presented in total. The CWT was applied in evaluating the modal parameters 
(eigen–frequencies, damping ratios and eigen–modes) for a 4–storey, an 8–storey and the 
EuroProteas Project,  and subsequently for the Z24 Bridge where the SHM process was 
applied as well. This road bridge suffered man–made damages before its demolition and the 
replacement  by  a  railway bridge.  The  bridge  was  tested  using  an  on–structure  sensing 
system to monitor its performance through different damage stages. Consequently, damages 
of a system can be detected comparing the natural frequencies, damping ratios and mode 
shapes of the different scenarios.

First  of  all,  the  background of  the CWT, the importance of  the mother  wavelet 
choice and the Q factor choice were described (edge effect etc.). Afterwards, the sensitivity 
of the methods in embedded noise effects was presented in Chapter 7 using the signal–to–
noise ratio (SNR). The CWT showed more efficient  use in high noise phenomena (as the 
SNR tends to zero), compared to the FFT and ARTeMIS Modal results, maintaining the 
ability to locate the eigen–frequencies, under very noisy conditions.

Subsequently,  the  method  was  applied  in  order  to  detect  differences  in  modal 
parameters  through the recordings of  the progressive damage scenarios  of  Z24 Bridge. 
Initially,  the time–frequency domains of the new reference condition (Scenario 8) were 
presented.  The  results  compared  with  those  derived  from the  research  of  KU Leuven 
(Department of Civil Engineering, Structural Mechanics Section) and they showed good 
agreement. Furthermore, the eigen–shapes obtained from ARTeMIS Modal were illustrated 
and compared (Figure 8.11).

Thereafter,  the  components  φi
l of the  “instantaneous”  complex  mode  l of  each 

scenario were compared and demonstrated in the same figures (Figure 8.23), in order to 
reveal the differences of the graphs from the undamaged state (Scenario 1) to the final  
damaged state (Scenario 17). At the final Scenario the components have bigger values in 
modes 2 and 5, while in modes 3, 4 and 6 the values of components have been significantly 

reduced. The only eigen–mode, where the components φi
l seem to remain invariant, is the 

first one.
Concurrently, damage detection was performed in ARTeMIS Modal using the tool 

“SHM  Configuration”  and  “Analysis  History”.  The  monthly  recordings  of  long−term 
continuous monitoring test and the recordings of short−term progressive damage test were 
imported into the modal analysis software. The Modal Parameter History aimed to calculate 
the reference modes and then the Damage Indicator showed the expected time period of the 
failures  (Figures  8.6−8.7 and  Figures  8.9−8.10)  using  statistical  analysis  and showing 
dynamic changes of the structure through X2 value.

The damage state and the dynamic changes of the bridge can also be obtained from 
the eigen−shapes of the model. As we can see, the only mode without changes is the first 
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transition mode.  During the  Scenario  14,  after  lowering of  pier,  landslide  at  abutment, 
spalling  of  concrete  and  failure  anchor  heads,  the  shapes  of  2nd  and  4th  mode  have 
significantly changed their  form to coupled modes,  especially the 2nd mode,  while  the 
middle span and the pillars have been activated in the 5th and 6th mode. Eventually, in the 
ultimate damage scenarios (Scenarios 16 and 17), after tendons rupture, the 2nd, 3rd, 4th, 
5th and 6th mode have changed their behavior anew. A remarkable change can be noticed in 
the 4th mode, where the middle span has been deactivated in comparison to the initial  
Scenario 8.

Finally, the changes in the system’s dynamics can be observed from the decrease in 
the values of the eigen–frequencies resulting from the automatic estimation with the OMA 
SSI CPUX method in ARTeMIS Modal. At the same time, there is an increase in the values 
of the damping ratios in comparison to the undamaged condition. These changes can also 
be observed in the ACWT results, where the complex modes have given much lower values 
for the damping ratios which indicates the dissimilar state of the system’s dynamics.

Summarizing, the CWT is a reliable method of calculating the modal parameters of 
a system. In comparison with other methods, it showed better performance in the presence 
of significant noise. Another ascendancy is the potentiality of the signal presentation in the 
time domain and the frequency domain at the same time, which is not possible in FFT. In 
addition, it is an important tool in the application of SHM, giving satisfactory information 
for the system dynamic characterization, reflecting the condition and functionality of the 
structure.  Therefore,  the  necessary  decisions  can  be  made  either  for  possible  required 
interventions or, in general, for the structure's future, and importantly to ensure the safety of 
the users.
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