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Abstract

In chapter 1, we briefly discuss about inverse problems, the differences with direct problems and
how one may approach an inverse problem in order to obtain a desired estimate. They arise in
various real world problems and applications.

In chapter 2, we consider the work of Bellassoued-Choulli-Yamamoto (2009) for finding a sta-
bility estimate for an inverse problem of the wave equation and a multidimentional Borg-Levinson
theorem from their analytical procedure to produce the log-type stability as it follows in theorems
14, 16 and 17. Their work is mostly based on the properties of the solution of the wave equa-
tion and providing a stability estimate for hyperbolic equation for a relatively open subset of the
boundary and using generalized X-ray and Fourier transformations.

In chapter 3, we present a semi analytical-numerical procedure for verifying theorem 17 for the
simplest case where we have the source of the wave equation depending only on the radius, hence
we have radial symmetry, and our domain is the circle with radius 1.1. For the analytic part we
solve a eigenvalue differential equation with radial symmetry considering the solutions arise from
Bessel’s functions. We apply Poincare-Linstedt method to have the perturbed solution familiar
with Bessel coefficients, hence we got a matrix with 2 arbitrary constants. For the numerical pro-
cedure we used Wolfram Mathematica where we had to find in the graph at least 6 eigenvalues for
the two sources q1 and q2. After finding the eigenvalues we could find the eigenfunctions and we
applied the Sobolev norm to construct the terms that arise in theorem 17 and we concluded to the
verification of the estimate.

In chapter 4, we provide an appendix for the basic definitions that are not covered in the pre-
vious chapters, and provide some calculations that arise in chapters 2 and 3.
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Chapter 1

Introduction to Inverse Problems

In this first chapter, we are going to briefly discuss about Inverse Problems in Partial Differential
Equations. Usually in the branch of science we construct the equations that determine the be-
haviour of a system we want to study and find a solution. This is usually called a direct problem.
In inverse problems, we are given a solution, and we have to find the equation [29] or the properties
of a source that gives us the measurements in our solution. We will give the general mathematical
formulation and give some examples to clarify the difference between direct and inverse problems.

1.1 What is an Inverse Problem

Three essential ingredients define an inverse problem in this book. The central element is the
Measurement Operator (MO), which maps objects of interest, called parameters, to information
collected about these objects, called measurements or data. The main objective of inverse problem
theory is to analyze such a MO, primarily its injectivity and stability properties. Injectivity of
the MO means that acquired data uniquely characterize the parameters. Often, the inversion
of the MO amplifies errors in the measurements, which we refer to as noise. Stability estimates
characterize this amplification [4].

When the amplification is considered “too large” by the user, which is a subjective notion, then
the inverse problem needs to be modified. How this should be done depends on the structure of
noise. The second essential ingredient of an inverse problem is thus a noise model, for instance a
statement about its size in a given metric, or, if available, its statistical properties.

Once a MO and a noise model are available, the “too large” effect of noise on the reconstruction
is mitigated by imposing additional constraints on the parameters that render the inversion well-
posed. These constraints take the form of a prior model, for instance assuming that the parameters
live in a finite dimensional space, or that parameters are sparsely represented in an appropriate
frame.

The definition of an inverse problem (IP) starts with that of a mapping between objects of
interest, which we call parameters, and acquired information about these objects, which we call
data or measurements. The mapping, or forward problem, is called the measurement operator
(MO). We denote it by A. Let X be a functional space for the parameters and Y the space of data,
then we write

y = A(x), for x ∈ X and y ∈ Y. (1.1.1)

The MO maps the parameters to the data. The spaces X and Y are typically Banach or Hilbert
spaces. Solving the inverse problem amounts to finding points x ∈ X from knowledge of the data
y ∈ Y such that (1.1.1) or an approximation of (1.1.1) holds.
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1.1.1 Properties we seek for the Measurement Operator

Injectivity. We want to uniquely reconstruct the parameters from the data. To do that we need
to know whether the MO is injective. In other words:

A(x1) = A(x2) ⇒ x1 = x2, ∀x1, x2 ∈ X (1.1.2)

In real problems the MO most of the times wont be injective yet continuous, most of the time we
approximate the practical MO to a MO that is injective. When A is injective then A−1 can be
defined which maps the known data Y to the parameters X .

Stability Estimates. The goal of every inverse problem are the Stability Estimates which
give us information on how errors in the available measurements translate into errors in the recon-
structions. A general form of a stability estimate is:

∥x1 − x2∥X ≤ ω (∥A(x1)−A(x2)∥Y) , (1.1.3)

where ω : R+ → R+ is an increasing function such that ω(0) = 0. This function gives an estimate
of the reconstruction error ∥x1−x2∥X based on what we believe is the error in the data acquisition
∥A(x1)−A(x2)∥Y .

1.1.2 Well-posed and ill-posed inverse problems

When noise is not amplified too drastically so that the error on the reconstructed parameters is
acceptable, then we say that the inverse problem is well-posed. When noise is strongly amplified
and the reconstruction is contaminated by too large a noisy component, then we say that the
inverse problem is ill-posed [4].

In general, Direct Problems, in suitable function spaces and solution concepts, are well-posed;
they satisfy existence, uniqueness, and continuous dependence on data. Inverse Problems are
ill-posed in general because the solution does not depend continuously on data [41].

1.2 Examples of the Measurement Operator

Example 1. Integral operator. Let X = C([0, 1]) = Y and define

A(f)(x) =

∫ x

0

f(y)dy.

Statement: The operator A is injective since the equality of data gives us equality of parameters

Proof.

A(f) = A(g)∫ x

0

f(y)dy =

∫ x

0

g(y)dy

d

dy

∫ x

0

f(y)dy =
d

dy

∫ x

0

g(y)dy

f(x) = g(x), ∀x ∈ R ⇒ f = g, ∀f, g ∈ X
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Example 2. Derivative operator. Let X = C1
0([0, 1]) and Y = C([0, 1]) define

A(f)(x) = f ′(x)

We consider from the fundamental theory of calculus [74] that

f(x) = f(0) +

∫ x

0

f ′(y)dy =

∫ x

0

f ′(y)dy =

∫ x

0

A(f)(y)dy

where now as in example 1 for A(f) = A(g) ⇒ f = g.

Example 3. 2-D Radon Transform. Let X = Cc(R2), Y = C(R× (0, 2π)). Define l(s, θ), where
s ∈ R and θ ∈ (0, 2π) as the line with direction perpendicular to u = (cos θ, sin θ) and at a distance
|s| from the origin (0, 0). Let u⊥ = (− sin θ, cos θ) the rotation of u by π

2 , then

l(s, θ) = {x ∈ R2 : x = su+ tu⊥, for t ∈ R}.

Define
A(f)(s, θ) =

∫
l(s,θ)

f(x) dl =

∫
R
f(su+ tu⊥) dt,

which maps a function to the value of its integrals along any line and is called two-dimensional
Radon Transform [75, 34, 21] with many applications in Computer Tomography (CT) [16].

Example 4. The Calderon problem. We introduce the following elliptic PDE [66]:

−∇ · γ(x)∇u(x) = 0, x ∈ X
u(x) = f(x) x ∈ ∂X,

(1.2.1)

where X ⊂ Rn is smooth, bounded, open with ∂X boundary, γ(x) is a smooth coefficient in X
bounded above and below by positive constants and f(x) is the Dirichlet data. We introduce the
outgoing current function [36]

j(x) = γ(x)
∂u

∂ν
(x),

with ν the outward unit normal. j(x) is a well defined function, and we can define the Dirichlet-
to-Neumann map, DN for short, it is defined as

Λγ : H1/2(∂X) → H−1/2(∂X)

f(x) 7→ Λγ [f ](x) = j(x) = γ(x)
∂u

∂ν
(x). (1.2.2)

we discuss more about DN map and its applications on section 2.2.
Let X = C2(X) and Y = L(H1/2(∂X), H−1/2(∂X)). We define the measurement operator

A(γ) = Λγ ∈ Y, γ ∈ X (1.2.3)

The measurement operator maps the unknown conductivity γ to the DN operator. The Calderon
problem finds important applications in Electrical Impedance Tomography and Optical Tomogra-
phy [77, 40, 25].

1.3 Examples of Inverse Problems

We introduce some examples from [41, 8] where we demonstrate the difference between direct and
inverse problems.
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1.3.1 Direct vs Inverse problems

Example 5. One-dimensional heat equation.

∂tu(x, t) = ∂2xu(x, t), (x, t) ∈ (0, π)× R+ (1.3.1)

given with boundary and initial conditions

u(0, t) = u(π, t) = 0, t ≥ 0, u(x, 0) = u0(x), 0 ≤ x ≤ π (1.3.2)

From this we have the solution

u(x, t) =

∞∑
n=1

ane
−n2t sin (nx) (1.3.3)

with
an =

2

π

∫ π

0

u0(y) sin (ny)dy

Direct Problem: Given u0 and T > 0, determine u(·, T ).
Inverse Problem: Measure u(·, T ) and determine u(·, τ) for given τ < T .

We have

u(x, t) =
2

π

∞∑
n=1

∫ π

0

u(y, τ) sin (ny)dye−n
2(T−τ) sin (nx) (1.3.4)

and set v = u(·, τ) from

u(x, T ) =

∫ π

0

k(x, y)v(y)dy, 0 ≤ x ≤ π (1.3.5)

where

k(x, y) =
2

π

∞∑
n=1

e−n
2(T−τ) sin (nx) sin (ny). (1.3.6)

The inverse problem leads to solving a Fredholm integral equation of the first kind [73, 46]

Example 6. Computer Tomography (CT). Consider a fixed plane through a human body
with ρ(x1, x2) being the change of density at (x1, x2) which we would like to determine from
measurements of intensities l = l(L) of X-rays along lines L in the plain.

Parametrization of L = Ls,δ:(
x1
x2

)
= s

(
cos δ
sin δ

)
+ t

(
− sin δ
cos δ

)
∈ R2, t ∈ R. (1.3.7)

The attenuation of the intensity I is approximately described by dI = −γρIdt with some constant
γ. Then we integrate along the ray and we have

ln Is,δ = −γ
∫
R
ρ(s cos δ − t sin δ, s sin δ + t cos δ)dt. (1.3.8)

Direct Problem: Given ρ (with compact support), compute line integrals.
Inverse Problem: Determine ρ(x1, x2) from Radon transform

(Rρ)(s, δ) =

∫
R
ρ(s cos δ − t sin δ, s sin δ + t cos δ)dt, (s, δ) ∈ R× [0, π). (1.3.9)

Example 7. Impedance Tomography. Let D ⊂ R2 cross-section through body and γ =
γ(x1, x2) conductivity. Apply current distribution f on boundary ∂D. The potential u satisfies

∇(γ∇u) = 0 in D, γ∂νu = f on ∂D. (1.3.10)

Direct Problem: Given γ and f , solve the BVP for u.
Inverse Problem: Measure u on ∂D for many fluxes f and determine γ in D.
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Example 8. Direct Scattering Problem: Given n ∈ L∞(R3) such D = supp(n−1) is bounded,
wave number k > 0, and the incident field uinc(x) = eikθ̂·x with θ̂ ∈ S2, find the total field u = u(x)
with ∆u+ k2nu = 0 in R3 such that us = u− uinc satisfies a radiation condition for |x| → ∞.
Inverse Scattering Problem: Given u for |x| → ∞ for all directions θ̂ ∈ S2. Find n or at least
the shape of D = supp(n− 1).

1.3.2 Stability estimate with numerical example for an inverse problem

In the last example we find the stability estimate on a matrix, which is on of the most simplest
inverse problems and follow up with a numerical example to visualise this.

Example 9. Matrix Inversion. Let u ∈ Rn, f ∈ Rn be n−dimensional vectors and K ∈ Rn×n
be a symmetric, positive definite matrix where we have the equation

Ku = f. (1.3.11)

From spectral theory [67], K has positive real eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λn > 0

with eigenvalues kj ∈ Rn, j ∈ {1, . . . , n}, therefore we can write K in the form:

K =

n∑
j=1

λjkjk
⊤
j (1.3.12)

and set κ = λ1

λn
the condition number.

Assume that we measure fδ instead of f which is a disturbed f , then

∥f − fδ∥2 ≤ δ∥K∥ = δλ1 (1.3.13)

the operator norm of K is equal to its largest eigenvalue because K is symmetric. We denote as
uδ the solution to the equation

Kuδ = fδ (1.3.14)

then we have by subtracting the two equations and taking applying K−1 from the left, we have

u− uδ =

n∑
j=1

λ−1
j kjk

⊤
j (f − fδ) (1.3.15)

⇒ ∥u− uδ∥22 =

n∑
j=1

λ−2
j ∥kj∥22

∣∣k⊤j (f − fδ)
∣∣2 ≤ λ−2

n ∥f − fδ∥22. (1.3.16)

The last comes from the orthonormality of eigenvectors, Cauchy-Schwartz inequality and λn ≤
λj ⇒ λ−1

j ≤ λ−1
n , ∀j ∈ {1, . . . , n}.

⇒ ∥u− uδ∥2 ≤ λ−1
n ∥f − fδ∥2 ≤ κδ. (1.3.17)

Notice that, in worst case scenario an error δ from data is amplified by the condition number κ of
K ∈ Rn×n. A matrix with large κ is called ill-conditioned [57].

Let’s assume a numerical example, where

K =

(
1 1
1 1001

1000

)
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which has the eigenvalues

λj = 1 +
1

2000
±
√
1 +

1

20002

then κ ≈ 4002 ≫ 1 and ∥K∥ ≈ 2. For known f =

(
1
1

)
the solution of Ku = f is given by the

vector u =

(
1
0

)
. We assume a perturbation fδ =

(
99/100
101/100

)
. The solution to the equation

Kuδ = fδ is given by the vector uδ =
(

−19.01
20

)
. We have

δ =
∥f − fδ∥
∥K∥

≈
√
2

200

and
∥u− uδ∥ ≈ 20

√
2

then we observe that
∥u− uδ∥

δ
≈ 4000 ≈ κ

1.3.3 Inverse problems before it was cool

The effects to discover the causes has concerned scientists for centuries. Yet, that didn’t stop them
from evolving theories by observations and come up with mathematical models that are used up
to this day. A historical example is the calculations of Adams and Le Verrier which led to the
discovery of Neptune from the perturbed trajectory of Uranus via Newton’s laws [59, 37]. However,
a formal study of inverse problems was not initiated until the 20th century.

One of the earliest examples of a solution to an inverse problem was discovered by Hermann Weyl
and published in 1911, describing the asymptotic behavior of eigenvalues of the Laplace–Beltrami
operator [82]. Today known as Weyl’s law, it is perhaps most easily understood as an answer to
the question of whether it is possible to hear the shape of a drum. Weyl conjectured that the
eigenfrequencies of a drum would be related to the area and perimeter of the drum by a particular
equation, a result improved upon by later mathematicians.

1.4 Conclusion of Chapter 1

As we seen from the examples, the inverse problems demand the knowledge of a solution or its
properties via measurements for one can assert their cause. From the solutions, it is possible to
have measurements with error where we have to construct our models in such a way to describe
the reality, even by using approximating methods.

In the next chapter, we introduce the work of Bellassoued-Choulli-Yamamoto on finding a sta-
bility estimate for an inverse problem of the wave equation and a multidimentional Borg-Levinson
theorem and how they come up with the log-type stability.
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Chapter 2

Stability estimate for an inverse wave
equation

2.1 Preliminaries

2.1.1 The problem

We consider the stability in an inverse problem of determining the potential q entering the wave
equation in a bounded smooth domain of Rd from boundary observations [7]. We want to prove
a log-type stability estimate in determining q from a partial Dirichlet to Neumann map where q
is known in a neighbourhood of the boundary of the spatial domain with an additional condition.
Let u = u(t, x) ∈ H2(Q), where Q = (0, T ) × Ω, T > 0 is fixed, Ω ⊂ Rd a bounded domain with
smooth boundary Γ. The function u satisfies

u(0, ·) = ∂tu(0, ·) = 0 in Ω, u(t, ·) = 0 on Σ (2.1.1)

where Σ = (0, T ) × Γ. Let v = v(t, x) ∈ H2(Q) be the solution to the following backward wave
equation  ∂2t v −∆v + q(x)v = 0 in Q,

v(T, ·) = 0, ∂tv(T, ·) = 0 in Ω,
v = h on Σ.

(2.1.2)

We prove the following identity

Lemma 1. Let v = v(t, x) ∈ H2(Q) be the solution of (2.1.2) and u ∈ H2(Q) that satisfy (2.1.1),
then it is true that ∫

Q

(∂2t −∆+ q)uv dxdt = −
∫
Σ

v∂νu dSdt. (2.1.3)

Proof. To prove (2.1.3) we use integration by parts and Green’s formula with respect to variable
x. We break our original integral to three integrals, that is:∫

Q

∂2t uv dtdx =

∫
Ω

dx

∫ T

0

(∂2t u)v dt

=

∫
Ω

dx

(
[∂tuv]

T
0 −

∫ T

0

∂tu∂tv dt

)

= −
∫
Ω

dx

(∫ T

0

∂tu∂tv dt

)

= −
∫
Ω

dx [u∂tv]
T
0 +

∫
Ω

dx

∫ T

0

u∂2t v dt

=

∫
Q

u∂2t v dtdx.
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The second integral:

−
∫
Q

∆uv dxdt = −
∫ T

0

dt

∫
Ω

∆uv dx

= −
∫ T

0

dt

∫
Ω

(∇ · ∇u)v dx

= −
∫ T

0

dt

∫
Ω

∇ · (∇uv) dx+

∫ T

0

dt

∫
Ω

∇u · ∇v dx

= −
∫ T

0

dt

∫
∂Ω

∂u

∂ν
v dS +

∫ T

0

dt

∫
Ω

(∇ · (u∇v)− u∆v) dx

= −
∫ T

0

dt

∫
∂Ω

(
∂u

∂ν
v − ∂v

∂ν
u

)
dS −

∫
Q

u∆v dxdt

= −
∫
Σ

(v∂νu− u∂νv) dSdt−
∫
Q

u∆v dxdt.

Therefore,∫
Q

(∂2t −∆+ q)uv dxdt =

∫
Q

∂2t uv dxdt−
∫
Q

∆uv dxdt+

∫
Q

quv dxdt

=

∫
Q

u∂2t v dtdx−
∫
Σ

(v∂νu− u∂νv) dSdt−
∫
Q

u∆v dxdt+

∫
Q

uqv dxdt

=

∫
Q

u
(
∂2t −∆+ q

)
v dxdt−

∫
Σ

(v∂νu− u∂νv) dSdt.

From (2.1.2), we have
∫
Q
u
(
∂2t −∆+ q

)
v dxdt = 0 and

−
∫
Σ

(v∂νu− u∂νv) dSdt =

∫
Σ

u∂νv dSdt−
∫
Σ

v∂νu dSdt

where, from (2.1.1),
∫
Σ
u∂νv dSdt = 0. Finally, we conclude that∫

Q

(∂2t −∆+ q)uv dxdt =

∫
Q

u
(
∂2t −∆+ q

)
v dxdt−

∫
Σ

(v∂νu− u∂νv) dSdt

= −
∫
Σ

v∂νu dSdt.

2.1.2 Solution for an inverse problem for the wave equation by Rakesh
and Symes

From now on we consider as C0,µ(Ω) be the usual Hölder space with 0 < µ < 1 and fix q0 ∈ C0,µ(Ω)
and consider the set

X(M,ω) = {q ∈ C0,µ(Ω); ∥q∥L∞(Ω) ≤M, q(x) = q0(x) in ω}, (2.1.4)

where ω ⊂ Ω is an arbitrary neighbourhood of Γ and M is a given constant. We refer a result on
the existence of geometric optics solutions which is noted in [61].

Lemma 2. Let Φ ∈ C∞
0 (Rd), θ ∈ Sd−1 = {x ∈ Rd; |x| = 1}, σ > 0 be arbitrarily given. Then the

equation
∂2t u−∆u+ q(x)u = 0 in Q
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has a solution u ∈ H2(Q) of the form

u(t, x) = Φ(x+ tθ)eiσ(xθ+t) +Ψq(t, x;σ) (2.1.5)

where Ψq(t, x;σ) satisfies
Ψq(t, x;σ) = 0, (t, x) ∈ Σ,

Ψq(s, x;σ) = ∂tΨq(s, x;σ) = 0, x ∈ Ω, s = 0 or T,

and
σ∥Ψq(·, ·;σ)∥L2(Q) + ∥∇Ψq(·, ·;σ)∥L2(Q) ≤ C∥Φ∥H3(Rd), (2.1.6)

where C = C(T,Ω,M) is a constant and M is the essential boundary from (2.1.4).

Proof. We recall the work that is mentioned in this paper, [61]. Let Ω ⊂ Rn be a bounded domain.
We consider u = u(x, t) is a solution of the problem

∂2t u−∆xu+ q(x)u = 0, in Ω× [0, T ]
u(x, 0) = ϕ(x), ∂tu(x, 0) = ψ(x), if x ∈ Ω

∂νu(x, t) = f(x, t), on ∂Ω× [0, T ]
(2.1.7)

We also consider that the function v = v(x, t) solves

∂2t v −∆xv + q(x)v = 0, in Ω× [0, T ]
v(x, T ) = ∂tv(x, T ) = 0, x ∈ Ω
∂νv(x, t) = g(x, t), on ∂Ω× [0, T ]

(2.1.8)

Le us define the Neumann-to-Dirichlet map:

Λq : C∞(∂Ω× [0, T ]) → D′(∂Ω× [0, T ])

f(x, t) 7→ u|∂Ω×[0,T ]

We can use another notation for u as u = uϕ,ψ that solves (2.1.7). We consider u0,0 that solves
(2.1.7) with ϕ(x) = ψ(x) = 0 and ũϕ,ψ that solves (2.1.7) with f(x, t) = 0. We claim that

Λq,0,0(f) = Λq,ϕ,ψ(f)− Λq,ϕ,ψ(0)

Proof. It is true that

Λq,ϕ,ψ(f) = uϕ,ψ|∂Ω×[0,T ](x, t)

Λq,0,0(f) = u0,0|∂Ω×[0,T ](x, t)

Λq,ϕ,ψ(0) = ũϕ,ψ|∂Ω×[0,T ](x, t)

We notice that
∂νuϕ,ψ − ∂ν ũϕ,ψ = f(x, t)− 0 = f(x, t) = ∂νu0,0

that is
∂ν (Λq,ϕ,ψ(f)− Λq,ϕ,ψ(0)) = ∂νΛq,0,0(f)

which proves our claim.

As in [61], it states that we reformulate our problem determing q(x) knowing the bilinear form
Bq defined by

Bq(f, g) =

∫
∂Ω×[0,T ]

dSx,t (fv + gu) (2.1.9)
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It is ∫
∂Ω×[0,T ]

dS (fv + gu) =

∫
∂Ω×[0,T ]

dS

(
∂u

∂ν
v +

∂v

∂ν
u

)
We apply Green’s identity [32]:∫

∂Ω

dS v
∂u

∂ν
=

∫
Ω

∇u · ∇v dx+

∫
Ω

v∆u dx (2.1.10)

and we obtain∫
∂Ω×[0,T ]

dS

(
∂u

∂ν
v +

∂v

∂ν
u

)
=

∫
Ω×[0,T ]

∇v · ∇u dxdt+
∫
Ω×[0,T ]

u∆v dxdt

+

∫
Ω×[0,T ]

∇v · ∇u dxdt+
∫
Ω×[0,T ]

v∆u dxdt

=

∫
Ω×[0,T ]

(2∇v · ∇u+ u∆v + v∆u) dxdt

From (2.1.7) and (2.1.8) we have

∆u = ∂2t u+ qu and

∆v = ∂2t v + qv

Therefore,

Bq =

∫
ω×[0,T ]

(
2∇u · ∇v + u∂2t v + quv + v∂2t u+ quv

)
= 2

∫ T

0

dt

∫
Ω

(
∇u · ∇v + quv +

1

2

(
u∂2t v + v∂2t u

))
The integral ∫

Ω×[0,T ]

1

2

(
u∂2t v + v∂2t u

)
can be rewritten as

1

2

∫
Ω

dx

∫ T

0

dt u∂2t v +
1

2

∫
Ω

dx

∫ T

0

dt v∂2t u

where we use integration by parts in these terms∫ T

0

dt u∂2t v = [u∂tv]
T
0︸ ︷︷ ︸

=0

−
∫ T

0

dt ∂tu∂tv = −
∫ T

0

dt ∂tu∂tv

Overall
1

2

∫
Ω×[0,T ]

(
u∂2t v + v∂2t u

)
dxdt = −

∫
Ω×[0,T ]

∂tu · ∂tv dxdt

and we obtain the bilinear form

Bq(f, g) = 2

∫
Ω×[0,T ]

(∇u · ∇v + quv − ∂tu · ∂tv) dxdt. (2.1.11)

Given q0 and q1 with Bq0 = Bq1 and define q(x, s) = sq1 + (1 − s)q0, for s ∈ [0, 1] and add an
additional property

∂νu(·, ·, s1) = ∂νu(·, ·, s2) on ∂Ω× [0, T ]
∂νv(·, ·, s1) = ∂νv(·, ·, s2) on ∂Ω× [0, T ]

(2.1.12)
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∀s1, s2 ∈ [0, 1]. According with [61], with the same tools as we used to prove (2.1.11) starting with
Bq0 = Bq1 , that

0 = Bq1

(
∂νu(s = 1)|∂Ω×[0,T ]

, ∂νv(s = 1)|∂Ω×[0,T ]

)
−Bq0

(
∂νu(s = 0)|∂Ω×[0,T ]

, ∂νv(s = 0)|∂Ω×[0,T ]

)
=

∫ 1

0

ds
d

ds
Bq

(
∂νu(s)|∂Ω×[0,T ]

, ∂νv(s)|∂Ω×[0,T ]

)
We apply (2.1.11) and we obtain

0 =

∫ 1

0

ds
d

ds

∫
Ω×[0,T ]

dxdt (∇u · ∇v − ∂tu · ∂tv + quv)

=

∫ 1

0

ds

∫
Ω×[0,T ]

dxdt (∇u̇ · ∇v +∇u · ∇v̇ − ∂tu̇ · ∂tv − ∂tu · ∂tv̇ + q̇uv + qu̇v + quv̇)

where
d

ds
(f) = ḟ

0 =

∫ 1

0

ds

∫
Ω×[0,T ]

q̇uv

+

∫ 1

0

ds

∫
Ω×[0,T ]

dxdt (qu̇v + quv̇ +∇u̇ · ∇v +∇u · ∇v̇ − ∂tu̇ · ∂tv − ∂tu · ∂tv̇)

We note, from [83], that □ = ∂2t −∆ is the d’Alembert operator. We apply to the previous equation
Green’s identity (2.1.10) to the terms that have the operators ∇ and integration by parts to the
terms that have the operator ∂t. We have

•
∫ 1

0

ds

∫
Ω×[0,T ]

dxdt (∇u̇ · ∇v) =
∫ 1

0

ds

∫
∂Ω×[0,T ]

dSΩ (v∂ν u̇)−
∫ 1

0

ds

∫
Ω×[0,T ]

dxdt v∆u̇

•
∫ 1

0

ds

∫
Ω×[0,T ]

dxdt (∇u · ∇v̇) =
∫ 1

0

ds

∫
∂Ω×[0,T ]

dSΩ (u∂ν v̇)−
∫ 1

0

ds

∫
Ω×[0,T ]

dxdt u∆v̇

• −
∫ 1

0

ds

∫
Ω

∫ T

0

dt ∂tu̇ · ∂tv = −
∫ 1

0

ds

∫
Ω

dx [∂tu̇ · v]T0︸ ︷︷ ︸
=0

+

∫ 1

0

ds

∫
Ω×[0,T ]

dxdt v∂2t u̇

=

∫ 1

0

ds

∫
Ω×[0,T ]

dxdt v∂2t u̇

• −
∫ 1

0

ds

∫
Ω

∫ T

0

dt ∂tu · ∂tv̇ =

∫ 1

0

ds

∫
Ω×[0,T ]

dxdt u∂2t v̇.

We combine our four identities with our previous equation and we use d’Alembert operator to have
a more compact result

0 =

∫ 1

0

ds

∫
Ω×[0,T ]

q̇uv +

∫ 1

0

ds

∫
Ω×[0,T ]

dxdt (u(□+ q)v̇ + v(□+ q)u̇)

+

∫ 1

0

ds

∫
∂Ω×[0,T ]

dSΩ (u∂ν v̇ + v∂ν u̇) .

From (2.1.7) and (2.1.8) we have

d

ds
(□+ q)u̇ = 0 ⇒ (□+ q)u̇ = −q̇u

d

ds
(□+ q)v̇ = 0 ⇒ (□+ q)v̇ = −q̇v.
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From (2.1.12) we have that ∂u
∂ν and ∂v

∂ν have the same value for every s ∈ [0, 1], therefore

∂u̇

∂ν
=
∂v̇

∂ν
= 0

Therefore we have acquired the result

0 =

∫ 1

0

ds

∫
Ω×[0,T ]

q̇uv (2.1.13)

where we can also extend q0 and q1 outside Ω as

q̃j =

{
qj x ∈ Ω
0 x ∈ Rn \ Ω

then we can extend the equation (2.1.13) as

0 =

∫ 1

0

ds

∫
Rn×[0,T ]

q̇uv (2.1.14)

with q̇ = 0 outside Ω and q̇ = q1 − q0. In [61] it is proved that q̇ = 0 in Rn and that is done by
considering θ ∈ Rn, |θ| = 1, σ > 0, Φ ∈ C∞

0 and a solution u of the form

u = u(t, x) = Φ(x+ tθ)eiσ(xθ+t) +Ψq(t, x;σ)

where combining it with (2.1.7), also □eiσ(xθ+t) = (i2σ2 − i2σ2|θ|2)eiσ(xθ+t) = 0, we have

(□+ q)Ψq = −(□+ q)
(
Φ(x+ tθ)eiσ(xθ+t)

)
= −eiσ(xθ+t)(□+ q)Φ(x+ tθ)

From the solution u we have that Ψq = 0 on Σ and Ψq = ∂tΨq = 0 for x ∈ Ω and s = 0 or T . Also
we have

∥Ψq∥L2(Ω×[0,T ]) ≤ C/σ (2.1.15)

where C depends on T , ∥Φ∥C3(Rn) and Vol(Ω). Where also one can derive the H2 regularity of Ψq
and obtain

σ∥Ψ∥L2(Q) + ∥∇Ψq∥L2(Q) ≤ C ′∥Φ∥H3(Rn) (2.1.16)

Which concludes the proof of the lemma.

2.1.3 Stability estimate for a hyperbolic equation for a relatively open
subset of Γ

We choose ρ > 0 to be some arbitrary distance, such that

ω(ρ) = {x ∈ Ω; dist(x,Γ) ≤ ρ} ⊂ ω (2.1.17)

and, for τ > 0, we set
ωτ = (0, τ)× ω, ωτ (ρ) = (0, τ)× ω(ρ) (2.1.18)

The following lemma shows a stability estimate in the continuation of the solutions of a hyperbolic
equation from lateral boundary data on an arbitrary non-empty relatively open subset Γ0 of Γ.
I.e. The set Γ0 is a part of the boundary Γ.

Lemma 3. Let q1 ∈ X(M,ω) and T be sufficiently large such that T/3 > Diam(Ω). Let w ∈ H2(Q)
be a solution of the following boundary value problem{

(∂2t −∆+ q1(x))w = F in Q,
w = 0 on Σ.

(2.1.19)
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where F ∈ L2(Q). Then there exists positive constants C, T1 > T/3, µ and γ0 such that the
following estimate holds

∥w∥H1(ωT1
(2ρ)) ≤

C
√
γ
∥w∥H2(Q) + eµγ

(
∥F∥L2(ωT ) + ∥∂νw∥L2(Σ0)

)
(2.1.20)

for any γ > γ0 where Σ0 = (0, T )× Γ0 and C = C(Ω, ω, T,M).

Proof. We do a substitution in T by 2T and shift the time variable by T , we are reduced to the
case Q = (−T, T )× Ω, Σ = (−T, T )× Γ and

ωτ = (−τ, τ)× ω, ωτ (ρ) = (−τ, τ)× ω(ρ).

and assume that w ∈ H2(Q) is a solution to (2.1.9), where F ∈ L2(Q) that:

∂2tw −∆w + q1(x)w = F (t, x) in Q
w(x, t) = 0 on Σ

(2.1.21)

We will prove (2.1.20) for the solutions of (2.1.21). We set

ω(ρ1, ρ2) = {x ∈ Ω; ρ1 ≤ dist(x,Γ) ≤ ρ2} ⊂ Ω, ρ1 < ρ2 < 8ρ,

where the the distance 8ρ is defined in (2.1.17) where instead of ρ we have 8ρ and, for r > 0,

Ωr = (−r, r)× Ω, ωr(ρ, 3ρ) = (−r, r)× ω(ρ, 3ρ)
Γr = (−r, r)× Γ, Σ0,r = (−r, r)× Γ0.

(2.1.22)

Let θ ∈ C∞
0 (R) be a cut-off function defined by

θ(t) =

{
1, |t| ≤ T − 2,
0 |t| ≥ T − 1.

(2.1.23)

We introduce, from [65], the partial Fourier-Bros-Iagolnitzer transformation that it is defined for
u ∈ S(Rn′

) with Rn′
= Rna × Rnb = R× Rn, S is the space of rapidly decreasing functions , by

Tu(za, xb, λ) = K(λ)

∫
e−

λ
2 (za−ya)2u(ya, xb) dya = Tu(t+ is, x, λ) (2.1.24)

where za ∈ Cna , xb ∈ Rnb , λ ≥ 1, K(λ) = 2−
na
2 ( λ

π )
na
2 and z2a =

∑na

j=1 z
2
aj . In our case, it is na = 1

and nb = n with n′ = na+nb = 1+n ≥ 1. Therefore, za ∈ Cna = C, xb = x ∈ Rnb = Rn. Assume
that z = t+ is ∈ C that is reffed to our paper, ya = y and λ = γ. K(γ) = 2−

1
2

(
γ
π

) 1
2 =

√
γ
2π . We

define
Φ(za) =

1

2
(Imza)

2
, za ∈ Cna (2.1.25)

In our case it is Φ(z) = s2

2 . For our case we have an improved version of the estimate, that is

|Da
xTu(t+ is, x, γ)| ≤ CK(γ)⟨x⟩−M ⟨z⟩−NeγΦ(z)− γ

2 [dist(Rez,suppu)]2 · sup
x

∥Da
xu(·, x)∥HN (Rna )

(2.1.26)
where ⟨·⟩ = (1 + | · |2)1/2, a ∈ Nnb . We apply (2.1.24) to the function ũ = θ · u and integrate over
all R over the time variable t→ y and obtain

uγ,t(s, x) = T ũ(z, x) =

√
γ

2π

∫
R
e−

γ
2 (z−y)

2

θ(y)u(y, x)dy (2.1.27)

For our (2.1.26) estimate, we fix M,N = 0 then the HN (Rna) norm becomes L2(R). Therefore we
have

|Da
xT ũ(z, x)| ≤ C

√
γ

2π
eλs

2/2e−
γ
2 (dist(t,supp(θu)))2 sup

x∈Rn

∥Da
xu(·, x)∥L2(R). (2.1.28)
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We assume that T is sufficiently large, s ∈ [−3r, 3r], t ∈ [−T
2 ,

T
2 ] and choose a cut-off function χ

with 0 ≤ χ ≤ 1, χ ∈ C∞(Rn), and

χ(x) =

{
1 if x ∈ ω(6ρ)
0 if x ∈ Ω \ ω(7ρ) (2.1.29)

we assume that w = w(t, x) is a solution to (2.1.21) and we set u(t, x) = χ(x)w(t, x). For (x, t) ∈
Q = (−T, T )× Ω we have

∂2t u−∆u+ q1u = ∂2t χw −∆χw + q1χw

where ∆χw = [∆, χ]w + χ∆w. Hence

∂2t u−∆u+ q1u = χ[∂2t −∆+ q1]w + [∆, χ]w

Applying (2.1.21) for (t, x) ∈ Q, we obtain{
∂2t u−∆u+ q1u = [∆, χ]w + χ(x)F (t, x) in Q = (−T, T )× Ω

u(t, x) = 0 in Σ = (−T, T )× Γ
(2.1.30)

Let us define the elliptic operator by

P (x,Dx,s) = ∂2s +∆x = q1(x) (2.1.31)

from z = t+ is⇒ ∂z
∂s = i, therefore

∂s

∫
R
e−

γ
2 (z−y)

2

θ(y)u(y, x) dy =

∫
R
e−

γ
2 (z−y)

2

(−γ
2
2(z − y)i)θ(y)u(y, x) dy

= −i
∫
R

(
e−

γ
2 (z−y)

2
)
y
θ(y)u(y, x) dy

= i

∫
R
e−

γ
2 (z−y)

2

∂y(θ(y)u(y, x)) dy

We have

∂2suγ,t = −
√

γ

2π

∫
R
e−

γ
2 (z−y)

2

∂2y(θ(y)u(y, x)) dy

where
∂2y(θ(y)u(y, x)) = θ′′(y)u(y, x) + 2θ′(y)∂tu(y, x) + θ(y)∂2yu(y, x)

Therefore,

∂2suγ,t = −
√

γ

2π

∫
R
e−

γ
2 (z−y)

2

(θ′′(y)u(y, x)+2θ′(y)∂tu(y, x)) dy−
√

γ

2π

∫
R
e−

γ
2 (z−y)

2

(θ(y)∂2yu(y, x)) dy

and

(∆− q1)uγ,t =

√
γ

2π

∫
R
e−

γ
2 (z−y)

2

θ(y)(∆− q1)u(y, x) dy

Therefore

Puγ,t = −
√

γ

2π

∫
R
e−

γ
2 (z−y)

2

(θ′′(y)u(y, x) + 2θ′(y)∂tu(y, x)) dy

−
√

γ

2π

∫
R
e−

γ
2 (z−y)

2

θ(y)(∂2t −∆+ q1)u dy

= −
√

γ

2π

∫
R
e−

γ
2 (z−y)

2

(θ′′(y)u(y, x) + 2θ′(y)∂tu(y, x)) dy

−
√

γ

2π

∫
R
e−

γ
2 (z−y)

2

θ(y)([∆, χ]w(y, x) + χ(x)F (y, x)) dy
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We set as

Rγ,t(s, x) = −
√

γ

2π

∫
R
e−

γ
2 (z−y)

2

(θ′′(y)u(y, x) + 2θ′(y)∂tu(y, x)) dy (2.1.32)

and

Gγ,t(s, x) =

√
γ

2π

∫
R
e−

γ
2 (z−y)

2

θ(y)([∆, χ]w(y, x) + χ(x)F (y, x)) dy (2.1.33)

and we obtain
Puγ,t(s, x) = Rγ,t(s, x) +Gγ,t(s, x), (s, x) ∈ Ω3r

uγ,t(s, x) = 0, (s, x) ∈ Σ3r
(2.1.34)

Therefore, there exists η > 0, independent of T, such that

∥Rγ,t∥L2(Ω3r) ≤ Ce−ηγT ∥u∥H1(Q), ∀t ∈
[
−T

2
,
T

2

]
. (2.1.35)

Furthermore, there exists α > 0, independent of T, such that

∥uγ,t∥H1(Ω3r) ≤ Ceαγ∥u∥H1(Q) ∀t ∈
[
−T

2
,
T

2

]
. (2.1.36)

For (s, x) ∈ ω3r(6ρ) we have χ(x) = 1, therefore

Gγ,t =

√
γ

2π

∫
e−

γ
2 (z−t)

2

θ(y)F (y, x) dy = Fγ,t(s, x)

∥Gγ,t∥L2(ω3r(6ρ)) = ∥Fγ,t∥L2(ω3r(6ρ))

applying (2.1.36) we have

∥Gγ,t∥L2(ω3r(6ρ)) = ∥Fγ,t∥L2(ω3r(6ρ)) ≤ Ceαγ∥F∥L2(ωT (7ρ)). (2.1.37)

We consider K a compact subset in (−3r, 3r) × Ω and ψ ∈ C1 with ∇s,xψ(s, x) ̸= 0 on K. We
assume a function ϕ = ϕ(s, x) such that

ϕ(s, x) = e−βψ(s,x), β > 0 is sufficiently large (2.1.38)

We refer to [48] for the proof of the following estimate:

∃τ0 > 0 :
Cτ∥eτϕu∥2H1

τ (Ω3r)
≤ ∥eτϕPu∥2L2(Ω3r)

+ τ∥eτϕ∥2H1
τ

(2.1.39)

where u ∈ C∞
0 and τ > τ0.

We set
∥u∥2H1

τ (Ω3r)
= ∥∇s,xu∥2L2(Ω3r)

+ τ2∥u∥2L2(Ω3r)
(2.1.40)

and
∥u∥2H1

τ (Σ3r)
= ∥u∥2H1(Σ3r)

+ τ2∥u∥2L2(Σ3r)
(2.1.41)

Also we introduce the cut-off function X where 0 ≤ X ≤ 1, X ∈ C∞(R), and

X (ρ) =

{
0 if ρ ≤ 1

4 , ρ ≥ 9
1 if ρ ∈ [ 12 , 8]

(2.1.42)

We now give some estimations that were proven in [7] without their proof near the boundary Γ0

and ωr(ρ, 3ρ). These estimations where necessary for proving (2.1.20) and to provide us with some
estimations near the boundary.

18



Estimation near Γ0

Let us estimate uγ,t in a ball B1 = B(x(1), r) = {x ∈ Rn; |x − x(1)| < r} over a small interval
(−r, r) in the given part Σ0,3r = (−3r, 3r)× Γ0 ⊂ Σ3r.

Lemma 4. Let uγ,t be a solution to (2.1.34). Then ∃B∗
1 ≡ (−r, r) × B1 ⊂ Ω3r and ν0 ∈ (0, 1)

such that

∥uγ,t∥H1(B∗
1 )

≤ C
(
∥Rγ,t∥L2(Ω3r

+ ∥Fγ,t∥L2(ω3r(7ρ)) + ∥∂νuλ,t∥L2(Σ0,3r)

)ν0 (∥uλ,t∥H1(Ω3r)

)1−ν0
(2.1.43)

for some C > 0.

Estimation in ωr(ρ, 3ρ)

Extending B∗
1 to ωr(ρ, 3ρ). We assume that x(j) satisfies dist(x(j),Γ) ≥ 4r and B(x(j+1), r) ⊂

B(x(j), 2r). We set
B∗
j = (−r, r)×B(x(j), r), 2 ≤ j ≤ N

Lemma 5. Let uγ,t be a solution to (2.1.34). Then exists constants ν ∈ (0, 1) and C > 0 such
that

∥uγ,t∥H1(B∗
k+1)

≤
(
∥Rγ,t∥L2(Ω3r) + ∥Fγ,t∥2L2(ω3r(7ρ))

+ ∥uγ,t∥H1(B∗
k)

)ν (
∥uγ,t∥H1(Ω3r)

)1−ν (2.1.44)

∀ k ≥ 1.

The estimate (2.1.44) is an improved version of (2.1.43). By applying lemma 4 from [48] we
have for αk ≤ B1−ν(αk−1 +A)ν , ∀µ = (0, νn]

αn ≤ 2
1

1−νB1−µ(α1 +A)ν

where ak = ∥uγ,t∥H1(B∗
k)

, A = ∥Rγ,t∥L2(Ω3r) + ∥χFγ,t∥L2(Ω3r), B = ∥uλ,t∥H1(Ω3r), one can derive
our next lemma

Lemma 6. Let uγ,t be a solution to (2.1.34). There exists a constant C > 0 and µ = νN such
that

∥uγ,t∥H1(ωr(ρ,3ρ)) ≤ C
(
∥Rγ,t∥L2(Ω3r) + ∥χFγ,t∥L2(Ω3r) + ∥uγ,t∥H1(B∗

1 )

)µ (∥uγ,t∥H1(Ω3r)

)1−µ
(2.1.45)

where ν ∈ (0, 1) is the constant given in Lemma 5.

We introduce the Carleman estimate for v ∈ H2

∥v∥H1(Y ) ≤ C∥v∥νH1(X)

[
∥(∂2t +∆)v∥L2(X) + ∥v∥H1(U)

]
By applying that to the function ũγ,t(s, x) = χ0(x)uγ,t(s, x), where χ0 is a cut-off function, with
0 ≤ χ0 ≤ 1, χ0 ∈ C∞(Rn) and

χ0(x) =

{
1 if x ∈ ω(2ρ)
0 if x ∈ Ω \ ω(3ρ)

we have the following estimate

Lemma 7. Let uγ,t be a solution to (2.1.34) and r0 = r/2. Then exist constants C > 0 and
κ ∈ (0, 1) such that

∥uγ,t∥H1(ωr0
(2ρ)) ≤ C

(
∥Rγ,t∥L2(Ωr) + ∥Fγ,t∥L2(ωr(7ρ)) + ∥uγ,t∥H1(ωr(2ρ,3ρ))

)κ (∥uγ,t∥H1(Ω3r)

)1−κ
.

(2.1.46)
∀t ∈ (−T/2, T/2).
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The next lemma can be obtained by applying Young’s inequality [20, 26]

Proposition 8. Let α, b > 0 and ν ∈ [0, 1] then

α1−νbν ≤ (1− ν)α+ νb

where equality holds if and only if a = b.

We apply Young’s inequality to lemma 6 and lemma 7 and applying estimates (2.1.35) and
(2.1.36) we get a better estimation that contains terms ∼ eγ .

Lemma 9. Let uγ,t be a solution to (2.1.34). Then there exists C > 0, α > 0 and sufficiently
large T > 0 such that

C∥uγ,t∥2H1(ωr0 (2ρ))
≤ e−αγ∥u∥2H1(Q) + eCγ

(
∥∂νu∥2L2(Σ0)

+ ∥F∥2L2(ΩT (7ρ))

)
(2.1.47)

∀t ∈ [−T
2 ,

T
2 ].

Finally, we can apply lemma 9 to our solution u ∈ H2(Q) of (2.1.30) and we set uγ(t, x) =
uγ,t(0, x). From (2.1.27) we have

uγ(t, x) =

√
γ

2π

∫
Rn

e−
γ
2 (t−y)

2

θ(y)u(y, x) dy = (Kγ ∗ θu)(t, x)

where

Kγ(t) =

√
γ

2π
e−

γ
2 t

2

.

We introduce the Fourier transform [80, 69]

Definition 10. The Fourier Transform of a function u=u(x) is defined by

û(η) = F [u(x)](η) =

∫
R
u(x)e−2πiηxdx (2.1.48)

We denote by û(η, x) the Fourier transform of u(t, x) with respect to t. By the convolution
theorem [71, 85], we have

θ̂u(η, x)− ûγ(η, x) = θ̂u(η, x)− K̂γ θ̂u = (1− K̂γ)θ̂u(η, x)

where

1− K̂γ(η) = 1−
√

γ

2π

∫
R
e−

γ
2 t

2

e−2πiηt dt

To find K̂γ(η) we use Gauss Error Function [19, 39] (see Appendix section 4.3), hence

K̂γ(η) = e−
2π2η2

γ

From the inequality ex ≥ x+ 1, ∀x ∈ R we set x = −2π2η2/γ we obtain

1− e−2π2η2/γ

2
≤ π2η2/γ

and apply |a− b| ≤ |a|+ |b| we have

|1− e−2π2η2/γ | ≤ |e0|+ |e−2π2η2/γ | = 1− e−2π2η2/γ

Therefore
|1− e−2π2η2/γ | ≤ 1 + π2η2/γ ≤ η2/γ
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since π2/γ ≤ 1. Therefore, we have shown that

|1− K̂γ(η)| ≤
η2

γ

else ∣∣∣∣∣1− ûγ(η, x)

θ̂u(η, x)

∣∣∣∣∣ ≤ η2

γ
⇒
∣∣∣θ̂u(η, x)− ûγ(η, x)

∣∣∣ ≤ η2

γ
|θ̂u(η, x)|

We set T1 = T/2− r0 which is for θ = 1, therefore

∥u− uγ∥L2(ωT1
(2ρ)) ≤

C
√
γ
∥u∥H1(Q)

and similarly

∥u− uγ∥H1(ωT1
(2ρ)) ≤

C
√
γ
∥u∥H2(Q)

Therefore,

∥u∥H1(ωT1
(2ρ)) ≤ C

[
∥u− uγ∥H1(ωT1

(2ρ)) + ∥uγ∥H1(ωT1
(2ρ))

]
≤ C

[
1
√
γ
∥u∥H2(Q) + ∥uγ∥H1(ωT1

(2ρ))

]
By applying Cauchy’s formula, as it has been done in [6], we obtain

∥uγ∥H1(ωT1
(2ρ)) ≤ eµγ∥u∥2H1(Q) + eµ

′γ(∥u∥L2(Σ0) + ∥F∥L2(ωT (7ρ)))

which concludes the proof to lemma 3.

2.2 Dirichlet to Neumann map (DN map)

2.2.1 Initial Boundary Value Problem (IBVP) for the Wave Equation

In this section our aim is to prove that the IBVP (2.1.2) has a unique regular solution in order to
insure that the operator

Λq : H
1,1(Σ) → L2(Σ0)

f 7→ Λq(f) = ∂νuq
(2.2.1)

where H1,1(Σ) = L2(0, T ;H1(Γ)) ∩H1(0, T ;L2(Γ)), is bounded.
This operator is called Dirichlet to Neumann map (DN map) [72] and has many applications.
In Acoustics is used to model the behavior of sound waves in a variety of media, including air,
water, and solids [27, 24]. In Electromagnetism is used to study the propagation of electromagnetic
waves in various materials, such as metals, dielectrics, and plasmas [49, 50, 22]. In Medical imaging
is used to reconstruct images of the interior of the body from measurements made on its surface,
such as in magnetic resonance imaging (MRI) and computed tomography (CT) scans [3, 84].

To prove that (2.2.1) is bounded we consider the following IBVP

∂2t u−∆u = F in Q
u(0, ·) = u0, ∂tu(0, ·) = u1 in Ω

u = f on Σ.
(2.2.2)

IBVP (2.2.2) is just an IBVP of the wave equation having q(x) = 0, f ∈ H1,1(Σ), u0 ∈ H1(Ω) and
u1 ∈ L2(Ω). We recall the theorem that it is stated in [47].
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Theorem 11. Let F ∈ L1(0, T ;L2(Ω)), u0 ∈ H1(Ω), u1 ∈ L2(Ω) and f ∈ H1,1(Σ). We assume
the condition g(0, ·) = u0|Γ. The IBVP (2.2.2) has a unique solution u ∈ C([0, T ];H1(Ω)) such
that ∂tu ∈ C([0, T ];L2(Ω)) and ∂νu ∈ L2(Σ). Furthermore, there exists a constant C = C(T ), such
that

∥u∥C([0,T ];H1(Ω))+∥∂tu∥C([0,T ];L2(Ω))+∥∂νu∥L2(Σ) ≤ C
(
∥F∥L1(0,T ;L2(Ω)) + ∥u0∥H1(Ω) + ∥u1∥L2(Ω) + ∥f∥H1,1(Σ)

)
.

(2.2.3)

Next, we introduce the following IBVP

∂2t u−∆u+ q(x)u = F in Q
u(0, ·) = 0, ∂tu(0, ·) = 0 in Ω
u = 0 on Σ.

(2.2.4)

and have a similar result with the previous IBVP but this time for q ∈ L∞(Ω) and u0 = u1 = 0 = f .

Theorem 12. Let F ∈ L2(Q) and q ∈ L∞(Ω). Then the IBVP (2.2.4) has a unique solution u ∈
C([0, T ];H1(Ω)) such that ∂tu ∈ C([0, T ];L2(Ω)) and ∂νu ∈ L2(Σ). Furthermore, if ∥q∥L∞(Ω) ≤M ,
M>0, there exists a constant C = C(T,M), such that

∥u∥C([0,T ];H1(Ω)) + ∥∂tu∥C([0,T ];L2(Ω)) + ∥∂νu∥L2(Σ) ≤ C∥F∥L1(0,T ;L2(Ω)). (2.2.5)

A combination of the previous theorems will let us deal with the following IBVP and get another
version of theorem 11.

Consider a more general IBVP

∂2t u−∆u+ q(x)u = F in Q
u(0, ·) = u0, ∂tu(0, ·) = u1 in Ω

u = f on Σ.
(2.2.6)

where q ∈ L∞(Ω), f ∈ H1,1(Σ), u0 ∈ H1(Ω) and u1 ∈ L2(Ω).

Theorem 13. Let q ∈ L∞(Ω) and ∥q∥L∞(Ω) ≤ M , M>0. if F ∈ L1(0, T ;L2(Ω)), u0 ∈ H1(Ω),
u1 ∈ L2(Ω), f ∈ H1,1(Σ) and g(0, ·) = u0|Γ then the IBVP (2.2.6) has a unique solution u ∈
C([0, T ];H1(Ω)) such that ∂tu ∈ C([0, T ];L2(Ω)) and ∂νu ∈ L2(Σ). Furthermore, there exists a
constant C = C(T,M) such that

∥u∥C([0,T ];H1(Ω))+∥∂tu∥C([0,T ];L2(Ω))+∥∂νu∥L2(Σ) ≤ C
(
∥F∥L1(0,T ;L2(Ω)) + ∥u0∥H1(Ω) + ∥u1∥L2(Ω) + ∥f∥H1,1(Σ)

)
.

(2.2.7)

Proof. Assume that v is a solution to (2.2.2) then the following estimate holds

∥v∥C([0,T ];H1(Ω))+∥∂tv∥C([0,T ];L2(Ω))+∥∂νv∥L2(Σ) ≤ C
(
∥F∥L1(0,T ;L2(Ω)) + ∥u0∥H1(Ω) + ∥u1∥L2(Ω) + ∥f∥H1,1(Σ)

)
where C = C(T ). Consider the IBVP

∂2tw −∆w + q(x)w = F = −q(x)v in Q
w(0, x) = 0, ∂tw(0, x) = 0 in Ω
w = 0 on Σ.

where from theorem 12 the IBVP has a unique solution w ∈ C([0, T ];H1(Ω)) where the following
estimate holds

∥w∥C([0,T ];H1(Ω)) + ∥∂tw∥C([0,T ];L2(Ω)) + ∥∂νw∥L2(Σ) ≤ C∥F∥L1(0,T ;L2(Ω)) = C∥qv∥L1(0,T ;L2(Ω))
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We recall that ∥q∥L∞(Ω) ≤M hence, by applying Hölder’s inequality we obtain

C∥qv∥L1(0,T ;L2(Ω)) ≤ C∥q∥L∞(0,T ;L2(Ω))∥v∥L1(0,T ;L2(Ω)) = C∥q∥L∞(Ω)

(∫ T

0

dt

)
∥v∥L1(0,T ;L2(Ω))

therefore
C∥qv∥L1(0,T ;L2(Ω)) ≤ C ·M · T · ∥v∥L1(0,T ;L2(Ω))

hence we obtain the estimate

∥w∥C([0,T ];H1(Ω)) + ∥∂tw∥C([0,T ];L2(Ω)) + ∥∂νw∥L2(Σ) ≤ C ·M · T · ∥v∥L1(0,T ;L2(Ω))

≤ C ·M · T ·
(
∥v∥C([0,T ];H1(Ω)) + ∥∂tv∥C([0,T ];L2(Ω)) + ∥∂νv∥L2(Σ)

)
Hence the solution u = v + w ∈ C([0, T ];H1(Ω)) with ∂tu ∈ C([0, T ];L2(Ω)), ∂νu ∈ L2(Σ) is a
unique solution to the IBVP (2.2.6). For the estimate of the solution u = w + v, it is true that

∥u∥C([0,T ];H1(Ω)) + ∥∂tu∥C([0,T ];L2(Ω)) + ∥∂νu∥L2(Σ) ≤ ∥v∥C([0,T ];H1(Ω)) + ∥∂tv∥C([0,T ];L2(Ω)) + ∥∂νv∥L2(Σ)

+ ∥w∥C([0,T ];H1(Ω)) + ∥∂tw∥C([0,T ];L2(Ω)) + ∥∂νw∥L2(Σ)

For simplicity, we set as

Eu(T ) = ∥u∥C([0,T ];H1(Ω)) + ∥∂tu∥C([0,T ];L2(Ω)) + ∥∂νu∥L2(Σ),

EV (T ) = ∥v∥C([0,T ];H1(Ω)) + ∥∂tv∥C([0,T ];L2(Ω)) + ∥∂νv∥L2(Σ),

Ew(T ) = ∥w∥C([0,T ];H1(Ω)) + ∥∂tw∥C([0,T ];L2(Ω)) + ∥∂νw∥L2(Σ) and
∥(F, u0, u1, f)∥ = ∥F∥L1(0,T ;L2(Ω)) + ∥u0∥H1(Ω) + ∥u1∥L2(Ω) + ∥f∥H1,1(Σ)

We combine the following estimates that we obtained

Eu ≤ Ev + Ew,

Ew ≤ C ·M · T · Ev and
Ev ≤ C∥(F, u0, u1, f)∥

We obtain
Eu ≤ (1 + CMT )Ev ≤ C̃∥(F, u0, u1, f)∥

where the constant C̃ is the same as C = C(T,M), thus we conclude our proof.

2.2.2 Partial DN map

Let us consider Γ0 an arbitrary non-empty relatively open subset of Γ and set Σ0 = (0, T ) × Γ0,
the partial DN map is defined as

Λ♯q : H
1,1(Σ) → L2(Σ0)

f 7→ Λ♯q(f) = ∂νuq|Σ0 .
(2.2.8)

where Λ♯q is bounded because Λq is also bounded.

The results in the following section provide a log-type stability for the inverse problem deter-
mining the potential q from the partial DN map Λ♯q.
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2.3 Theorems that provide a log-type stability

In this section we provide three main results from [7], which gives us log-type estimates for the
inverse problem.

Theorem 14. There exists C > 0, δ ∈ (0, 1) and sufficiently large T such that

∥q1 − q2∥H−1/2(Ω) ≤ C
(
∥Λ♯q1 − Λ♯q2∥

δ + | log
(
∥Λ♯q1 − Λ♯q2∥

)
|−δ
)

(2.3.1)

for any q1, q2 ∈ X(M,ω).

If q1, q2 ∈ Hs(Ω) for s > d/2 and ∥qj∥Hs(Ω) ≤M , j = 1, 2, then there exists δ′ ∈ (0, 1) such that

∥q1 − q2∥L∞(Ω) ≤ C
(
∥Λ♯q1 − Λ♯q2∥

δ′ + | log
(
∥Λ♯q1 − Λ♯q2∥

)
|−δ

′
)
. (2.3.2)

The consequence of theorem 14 provide us with the following uniqueness result

Corollary 15. Let d ≥ 2 and gj ∈ C0,µ(Ω), j = 1, 2. Assume q1 = q2 in a neighbourhood of Γ.
Then there exists sufficiently large T such that Λ♯q1 = Λ♯q2 implies q1 = q2 in Ω.

Let us restrict the operator Λ♯q to the subspace

H1 = {h ∈ H2d+4(0, T ;H3/2(Γ)); ∂jt h(0, ·) = 0, 0 ≤ j ≤ 2d+ 3}.

By Λ̃♯q we denote the restriction of Λ♯q, which defines a bounded operator from H1 into H2 =
L2(0, T ;Hs(Γ0)), ∀s ∈ [0, 1/2]. We denote as ∥ · ∥s the norm in B(H1;H2).

Theorem 16. There exists C > 0, δ ∈ (0, 1) and sufficiently large T such that

∥q1 − q2∥H−1/2(Ω) ≤ C
(
∥Λ̃♯q1 − Λ̃♯q2∥

δ
s + | log

(
∥Λ̃♯q1 − Λ̃♯q2∥s

)
|−δ
)

(2.3.3)

∀q1, q2 ∈ X (M,ω). If q1, q2 ∈ Hα(Ω), for α > d/2 and ∥qj∥Hα(Ω) ≤ M , j = 1, 2, then there exists
δ′ ∈ (0, 1) such that

∥q1 − q2∥L∞(Ω) ≤ C
(
∥Λ̃♯q1 − Λ̃♯q2∥

δ′

s + | log
(
∥Λ̃♯q1 − Λ̃♯q2∥s

)
|−δ

′
)

(2.3.4)

Let D(Aq) = H1
0 (Ω) ∩H2(Ω) be the domain of the operator Aq = −∆+ q, q ∈ L∞(Ω). Let the

eigenvalues of Aq satisfy
0 ≤ λ1,q ≤ λ2,q ≤ . . . ≤ λk,q → +∞

and denote the corresponding sequence of eigenfunctions by (ϕk,q) and assume this sequence forms
an orthonormal basis of L2(Ω), that is ∥ϕk,q∥L2(Ω) = 1. Eigenfunction ϕk,q is the solution to the
following BVP

(−∆+ q)ϕ = λk,qϕ in Ω,
ϕ = 0 on Γ.

it follows from theory of Elliptic PDEs [35]

∥ϕk,q∥H2(Ω) ≤ Cλk,q∥ϕk,q∥L2(Ω) = Cλk,q (2.3.5)

and
∥∂νϕk,q∥H1/2(Γ) ≤ Cλk,q

From Weyl’s law [33, 28], there exists a positive constant K ≥ 1 such that

K−1k2/d ≤ λk,q ≤ Kk2/d, ∀q where 0 ≤ q(x) ≤M and x ∈ Ω. (2.3.6)
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As a consequence of the trace theorem [18, 10], we have

∥∂νϕk,q∥H1/2(Γ0) ≤ C∥∂νϕk,q∥H1/2(Γ) ≤ Ck2/d.

We fix ζ such that d/2 + 1 < ζ ≤ d + 1 and denote the sequence ak = k−2ζ/d∥∂νϕk,q∥H1/2(Γ0)

and we consider the the series:∑
k∈N

|ak| =
∑
k∈N

k−2ζ/d∥∂νϕk,q∥H1/2(Γ0) ≤ C

∞∑
k=1

k2/d · k−2ζ/d

= C

∞∑
k=1

k2(1−ζ)/d

For the sum to converge, it must satisfy d
2(1−ζ) > 1 ⇒ ζ > 1+ d

2 > 1− d
2 . Thus, the sum converges

and by that we have proved that (
k−2ζ/d∥∂νϕk,q∥H1/2(Γ0)

)
∈ ℓ1.

Let r = (rk) be the sequence rk = k−ζ/d, ∀k ≥ 1. We consider the Banach space

ℓ1
(
H1/2(Γ0); r

)
= {g = (gk); gk ∈ H1/2(Γ0), k ≥ 1,

(
rk∥gk∥H1/2(Γ0)

)
∈ ℓ1}

with the natural norm
∥g∥ℓ1(H1/2(Γ0;r)) =

∑
k∈N

rk∥gk∥H1/2(Γ0).

Consider µ = (µk) = (λk,0) the sequence of eigenvalues of A0, where A0 = −∆, therefore, it is
true that

−∆ϕ = µkϕ in Ω
ϕ = 0 on Γ

where one can obtain
|λk,q − µk| = |q| ≤ ∥q∥L∞(Ω), k ∈ N.

From this result we have that λq = (λk,q) ∈ ℓ̃∞ = µ+ ℓ∞ equipped with the distance

d∞(λ1 − λ2) = ∥(λ1 − µ)− (λ2 − µ)∥ℓ∞ = ∥λ1 − λ2∥ℓ∞ , for λj ∈ ℓ̃∞, j ∈ {1, 2}.

By applying theorem 16 we prove:

Theorem 17. ∃C > 0, µ0 ∈ (0, 1) :

∥q1 − q2∥H−1/2(Ω) ≤ C (| log(| log η|)|)−µ0 (2.3.7)

∀q1, q2 ∈ X(M,ω), where η = d∞(λq1 , λq2) + ∥∂νϕq1 − ∂νϕq2∥ℓ1(H1/2(Γ0);r) is small and
∂νϕqj = (∂νϕk,qj ), j ∈ {1, 2}

If q1, q2 ∈ Hs(Ω), s > d/2 and ∥qj∥Hs(Ω) ≤M, j ∈ {1, 2}, ∃µ′
0 ∈ (0, 1) :

∥q1 − q2∥L∞ ≤ C (| log(| log η|)|)−µ
′
0 (2.3.8)

In the continuation of the chapter, we provide the proof of these estimates in theorems 15, 16
and 17. Last, we demonstrate an example with specific potential q and solution u and we are going
to show that the estimates on theorem 17 is satisfied.
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2.3.1 Geometric optics solutions and X-ray transform

Geometric optics solutions

In partial differential equations (PDE’s), the term "geometric optics solutions" refers to a particular
type of solution that arises in the study of high-frequency waves. Geometric optics solutions are an
asymptotic approximation of the exact solutions to certain PDE’s, particularly those that describe
wave propagation phenomena.

In optical phenomena, not only is the wavelength short but the wave trains are long. The study
of structures which have short wavelength and are in addition very short, say a short pulse, also
yields a geometric theory. Long wavetrains have a longer time to allow nonlinear interactions which
makes nonlinear effects more important. Long propagation distances also increase the importance
of nonlinear effects. An extreme example is the propagation of light across the ocean in optical
fibers. The nonlinear effects are very weak, but over 5000 kilometers, the cumulative effects can be
large. To control signal degradation in such fibers the signal is treated about every 30 kilometers.
Still, there is free propagation for 30 kilometers which needs to be understood. This poses serious
analytic, computational, and engineering challenges. [63]

X-ray transform

In 1963, A.M. Cormack introduced a powerful diagnostic tool in radiology, computerized tomog-
raphy, which is based on the mathematical properties of the X-ray transform in the Euclidean
plane [14]. For a compactly supported continuous function f , its X-ray transform Xf is a function
defined on the family of all straight lines l in R2 as follows: let the unit vector θ represent the
direction of l and let p be its signed distance to the origin, so that l is represented by the pair
(θ, p), then

Xf(l) = Xf(θ, p) =

∫
R
f(x+ tθ) dt

The X-ray transform is a mathematical operation that is used in medical imaging, computed
tomography (CT), and other applications to reconstruct an image or object from its X-ray mea-
surements. It is a fundamental concept in the field of X-ray tomography.

The X-ray transform is based on the principle that X-rays attenuate as they pass through
different materials. When an X-ray beam passes through an object, the intensity of the X-rays is
reduced based on the density and composition of the materials it encounters. The X-ray transform
mathematically models this attenuation process.

Stability estimate of recovering a function from its X-ray transform

For starters, we consider the following assumptions:

• 0 ∈ Ω

• T/3 > Diam(Ω)

• let ϵ > 0, T1 > 0 : T1 >
T

3
and T1 − 2ϵ > Diam(Ω)

• Ωϵ = {x ∈ Rd \ Ω; dist(x,Ω) < ϵ}
• For Φ ∈ C∞

0 (Ωϵ) and θ ∈ Sd−1 we associate Φ̃θ with

Φ̃θ = Φ(x+ tθ), x ∈ Rd, t ∈ R, Φ is extended by 0 outside Ωϵ.
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We will prove the following lemma:

Lemma 18. Let q1, q2 ∈ X(M,ω), q = q1 − q2 extended by 0 outside Ω. ∃T1 > 0, A > 0, C > 0 :
∀θ ∈ Sd−1, Φ ∈ C∞

0 (Ωϵ):∣∣∣∣∣
∫ T1

0

∫
Ω

Φ2(x)q(x− sθ) dxds

∣∣∣∣∣ ≤ C

(
1

γ1/4
+ eAγ∥Λ♯q1 − Λ♯q2∥

)
∥Φ∥2H3(Rd) (2.3.9)

for sufficiently large γ > 0.

Proof. We apply lemma 2 and it follows that the initial value problem

(∂2t −∆+ q2(x))u = 0, in Q = (0, T1)× Ω
u(0, ·) = ∂tu(0, ·) = 0 in Ω

has a solution u2 of the form

u2(t, x) = Φ(x+ tθ)eiσ(xθ+t) +Ψq2(t, x;σ), (2.3.10)

where
Ψq2(0, x;σ) = ∂tΨq2(0, x;σ) = 0, while x ∈ Ω

Ψq2(t, x;σ) = 0, on Σ1 = (0, T1)× Γ
(2.3.11)

and
σ∥Ψq2(·, ·;σ)∥L2(Q1) + ∥∇Ψq2(·, ·;σ)∥L2(Q1) ≤ C∥Φ∥H3(Rd). (2.3.12)

Assume fσ = u2|Σ1
= Φ(x+ tθ)eiσ(xθ+t) and u1 be the solution of the IBVP: (∂2t −∆+ q1)u1 = 0 in Q1,

u1(0, x) = ∂tu1(0, x) = 0 in Ω,
u1 = u2 = fσ on Σ1.

By subtracting by parts the two differential equations with q1 and q2 and assume that w = u1−u2
and q(x) = q2 − q1, one can get (∂2t −∆+ q1)w = qu2 in Q1,

w(0, x) = ∂tw(0, x) = 0 in Ω,
w = 0 on Σ1.

We insert the following cut-off function χ ∈ C∞(Rd), 0 ≤ χ ≤ 1 and

χ(x) =

{
0 in ω(ρ),
1 in Ω \ ω(2ρ),

By multiplying the previous differential equation with the cut-off function and by considering that
[∆, χ]w = ∆w0 − χ∆w, where w0 = χw, we get (∂2t −∆+ q1)w0 = qu2 − [∆, χ]w in Q1,

w0(0, x) = ∂tw0(0, x) = 0 in Ω,
w0 = 0 on Σ1.

Notice that we have written χqu2 = qu2, that is because q = 0 in ω ⊃ ω(2ρ), therefore the term is
not zero for x ∈ Ω \ ω ⊂ Ω \ ω(2ρ) which gives us χ = 1.

We apply again lemma 2 for the wave equation (∂2t −∆+ q1(x))v = 0 in Q1 and have solution
of the form

v(t, x) = Φ(x+ tθ)e−iσ(xθ+t) +Ψq1(t, x;σ) (2.3.13)
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where we now write the solution with the minus sign on the exponential which still works since the
roots of the solution are complex and therefore they satisfy the conjugation property. Ψq1 satisfies
the followings

Ψq1(t, x;σ) = 0 (t, x) ∈ Σ1,
Ψ(T1, x;σ) = ∂tΨq1(T1, x;σ) = 0 x ∈ Ω,

and
σ∥Ψq1(·, ·;σ)∥L2(Q1) + ∥∇Ψq1(·, ·;σ)∥L2(Q1) ≤ C∥Φ∥H3(Rd). (2.3.14)

Due to T1 > diam(Ω) + 2ϵ and Φ ∈ C∞
0 (Ωϵ) we have Φ(x + T1θ) = |∇Φ(x + T1θ)| = 0 in Ω.

Therefore
v(T1, ·) = ∂tv(T1, ·) = 0 in Ω.

We multiply the differential equation of w0 with v and apply Green’s formula∫
Q1

q(x)u2(t, x)v dxdt−
∫
Q1

[∆, χ]wv dxdt =

∫
Q1

((∂2t −∆+ q1(x))w0)v dxdt

=

∫
Q1

w0(∂
2
t −∆+ q1(x))v dxdt = 0 (2.3.15)

From (2.3.10), (2.3.13) and (2.3.15) we have∫
Q1

q(x)Φ2(x+ tθ) dxdt+

∫
Q1

q(x)Φ(x+ tθ)
(
Ψq1e

iσ(xθ+t) +Ψq2e
−iσ(xθ+t)

)
dxdt∫

Q1

q(x)Ψq1Ψq2 dxdt =

∫
Q1

[∆, χ]w(t, x)v(t, x) dxdt (2.3.16)

From (2.3.12) and (2.3.14) we have∣∣∣∣∫
Q1

q(x)Φ(x+ tθ)
(
Ψq1e

iσ(xθ+t)+Ψq2
e−iσ(xθ+t)

)
dxdt

∣∣∣∣ ≤ C

|σ|
∥Φ∥2H3(Rd)

and ∣∣∣∣∫
Q1

q(x)Ψq1Ψq2 dxdt

∣∣∣∣ ≤ C

σ2
∥Φ∥2H3(Rd)

Also ∣∣∣∣∫
Q1

[∆, χ]w(t, x)v(t, x) dxdt

∣∣∣∣ ≤ C∥w∥H1(ωT1
(2ρ))∥v∥L2(Q1)

≤ C∥Φ∥H3(Rd)∥w∥H1(ωT1
(2ρ))

By (2.3.16), we have∣∣∣∣∫
Q1

q(x)Φ2(x+ tθ) dxdt

∣∣∣∣ ≤ C

σ
∥Φ∥2H3(Rd) + C∥w∥H1(ωT1

(2ρ))∥Φ∥H3(Rd)

and apply lemma 3 and we have∣∣∣∣∫
Q1

q(x)Φ2(x+ tθ) dxdt

∣∣∣∣ ≤ C

σ
∥Φ∥2H3(Rd) + C

(∥w∥H2(Q)√
γ

+ eAγ∥∂νw∥L2(Σ0)

)
∥Φ∥H3(Rd),

(2.3.17)
where F = q(x)u2 = 0 in ω. By (2.3.12) in w and fσ, we have the energy estimate

∥w∥H2(Q) ≤ Cσ∥Φ∥H3(Rd) (2.3.18)
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and

∥∂νw∥L2(Σ0) = ∥Λ♯q1(fσ)− Λ♯q2(fσ)∥L2(Σ0) ≤ C∥Λ♯q1 − Λ♯q2∥fσ∥H1,1(Σ)

Cσ2∥Λ♯q1 − Λ♯q2∥∥Φ∥H3(Rd). (2.3.19)

We combine (2.3.17), (2.3.18) and (2.3.19) and get∣∣∣∣∫
Q1

q(x)Φ2(x+ tθ) dxdt

∣∣∣∣ ≤ C

(
1

σ
+

σ
√
γ
+ σ2eAγ∥Λ♯q1 − Λ♯q2∥

)
∥Φ∥2H3(Rd). (2.3.20)

by setting σ = γ1/4 and substituting x→ x+ sθ we obtain our estimate.

Lemma 19. ∃ C > 0, A > 0, δ > 0 and γ0 > 0 :∣∣∣∣∫
R
q(y + sθ) ds

∣∣∣∣ ≤ C

γδ
+ CeAγ∥Λ♯q1 − Λ♯q2∥

y ∈ Rd ∀γ ≥ γ0 ∀θ ∈ Sd−1.

Proof. Let θ ∈ Sd−1 and ϕ ∈ C∞
0 (Rd) with ∥ϕ∥L2(Rd) = 1. We define

Φκ(x) = κ−d/2ϕ

(
x− y

κ

)
where y ∈ Ωϵ and a small positive κ.

If

h(x, θ) =

∫ T1

0

q(x− tθ) dt

then

|h(y, θ)| =
∣∣∣∣∫

Rd

Φ2
κ(x)h(y, θ) dx

∣∣∣∣ ≤ ∣∣∣∣∫
Rd

Φ2
κ(x)h(x, θ) dx

∣∣∣∣+ ∣∣∣∣∫
Rd

Φ2
κ(x)(h(y, θ)− h(x, θ)) dx

∣∣∣∣ .
Since

|h(y, θ)− h(x, θ)| ≤
{

C|x− y|µ, if qj ∈ C0,µ(Rd)
C|x− y|µ′

, if qj ∈ Hs(Rd)

where µ′ = s − d/2 < 1 and 0 ≤ µ′ < 1. If s − d/2 ≥ 1 and κ > 0 is sufficiently small, we apply
lemma 18 and we have

|h(y, θ)| ≤ C

(
1

γ1/4
+ eµγ∥Λ♯q1 − Λ♯q2∥

)
∥Φκ∥2H3(Rd) + C

∫
Rd

(|x− y|µ + |x− y|µ
′
)Φ2

κ(x) dx.

Also we have
∥Φκ∥L2(Rd) = 1, ∥Φκ∥H3(Rd) ≤ Cκ−3

for µ0 = min(µ, µ′) it is ∫
Rd

(|x− y|µ + |x− y|µ
′
)Φ2

κ(x) dx ≤ Cκµ0 .

∀θ ∈ Sd−1 we apply lemma 18∣∣∣∣∣
∫ T1

0

q(y − tθ) dt

∣∣∣∣∣ ≤ C

γ1/4
κ−6 + Cκ−6eµγ∥Λ♯q1 − Λ♯q2∥+ Cκµ0 (2.3.21)

29



we set κ such that
κµ0 =

1

γ1/4
κ−6

From (2.3.21) ∃δ > 0, B > 0:∣∣∣∣∣
∫ T1

−T1

q(y + tθ) dt

∣∣∣∣∣ ≤ C

γδ
+ CeBγ∥Λ♯q1 − Λ♯q2∥.

For T1 > Diam(Ω) and supp(q) ⊂ Ω the integration can be done over R instead of [−T1, T1] ⊂
R.

2.3.2 Proof of theorems 14 and 16

We set
P(q)(θ, x) =

∫
R
q(x+ tθ) dt, x ∈ Rd, θ ∈ Sd−1.

we have from lemma 19 that

|P(q)(θ, x)| ≤ C

(
1

γδ
+ eµγ∥Λ♯q1 − Λ♯q2∥

)
.

We choose R > 0 such that Ω ⊂ B(0, R). Then we have

∥P(q)∥2L2(T ) :=

∫
Sd−1

∫
θ⊥

|P(q)(θ, y)|2 dydθ

=

∫
Sd−1

∫
θ⊥∩B(0,R)

|P(q)(θ, y)|2 dydθ

≤ C

(
1

γδ
+ eµγ∥Λ♯q1 − Λ♯q2∥

)
,

where we set as T = {(θ, y); θ ∈ Sd−1, y ∈ θ⊥} the tangent bundle.

We give a known estimate for the X ray transform [55]:

∥q∥H−1/2(Ω) ≤ C∥P(q)∥2L2(T ).

Combining the two estimates, we get:

∥q∥H−1/2(Ω) ≤ C

(
1

γδ
+ eµγ∥Λ♯q1 − Λ♯q2∥

)
(2.3.22)

which is valid for γ ≥ γ0.

∃ ϵ0 > 0 small enough such that if ∥Λ♯q1 − Λ♯q2∥ ≤ ϵ0 and

γ =
1− δ

µ

∣∣log ∥Λ♯q1 − Λ♯q2∥
∣∣

because we guarantee we have γ ≥ γ0. Therefore, we can rewrite (2.3.22) as

∥q∥H−1/2(Ω) ≤ C
(
∥Λ♯q1 − Λ♯q2∥

δ + C ′ ∣∣log ∥Λ♯q1 − Λ♯q2∥
∣∣−δ) (2.3.23)
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for ∥Λ♯q1 − Λ♯q2∥ ≤ ϵ0. On the other hand, for ∥Λ♯q1 − Λ♯q2∥ ≥ ϵ0 we have

∥q∥H−1/2(Ω) ≤ C∥q∥L∞(Ω) ≤
2CM

ϵδ0
ϵδ0 ≤ C ′∥Λ♯q1 − Λ♯q2∥

δ.

Hence, this completes our proof for theorem 14.

To prove the second estimate, it is immediately deduced from Sobolev imbedding theorem [30]
and an interpolation inequality [11].

Assume η > 0 such that s = d/2 + 2η, then

∥q∥L∞(Ω) ≤ C∥q∥Hs−η(Ω)

≤ C∥q∥αH−1/2(Ω)∥q∥
1−α
Hs(Ω)

≤ C∥q∥αH−1/2(Ω),

where α = s−d/2
2s+1 < 1. Then applying (2.3.23) it deduces the second estimate of theorem 14.

For theorem 16 we assume the same notations as in 18, then

∥∂νw∥L2(Σ0) = ∥Λ̃♯q1(fσ)− Λ̃♯q2(fσ)∥L2(Σ0)

≤ C∥Λ̃♯q1(fσ)− Λ̃♯q2(fσ)∥L2(0,T ;H3/2(Γ0))

≤ C∥Λ̃♯q1 − Λ̃♯q2∥s∥fσ∥H2d+4(0,T ;H3/2(Γ)).

where
∥fσ∥H2d+4(0,T ;H3/2(Γ)) ≤ Cσ2d+4∥Φ∥H6+2d(Rd)

We combine the two estimates and we have

∥∂νw∥L2(Σ0) ≤ Cσ2d+4∥Λ̃♯q1 − Λ̃♯q2∥s.

In this case, we have∣∣∣∣∫
Q

q(x)Φ2(x+ tθ) dxdt

∣∣∣∣ ≤ C

(
1

σ
+

σ
√
γ
+ σ2d+4eµγ∥Λ̃♯q1 − Λ̃♯q2∥s

)
∥Φ∥2H6+2d(Rd).

By setting σ = γ1/4 and following the same concepts as theorem 14, we prove theorem 16.

2.3.3 Proof of theorem 17

Let q ∈ L∞(Ω), σ(Aq) = {λk,q} the spectrum of Aq and its resolvent by ρ(Aq) = C \ σ(Aq).

∀λ ∈ ρ(Aq), f ∈ H3/2(Γ) the BVP:{
−∆u+ qu− λu = 0 in Ω

u = f on Γ

∃! uq,f ∈ H2(Ω) and
Π♯q(λ) : f → ∂νuq,f |Γ0

is bounded from H3/2(Γ) into H1/2(Γ0).

We let

R♯
qh =

∑
k≥1

1

λd+2
q,k

(∂νϕq,k)|Γ0

∫ t

0

sin (
√
λq,k(t− s))√
λq,k

⟨−∂2(d+2)
s h(·, s), ∂νϕq,k⟩ ds,
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where ⟨·, ·⟩ is the L2−scalar product. R♯
q defines a bounded operator from H1 into H2, and fix

s ∈ [0, 1/2].

We need the following three lemmas which have been proven in [1, 13]

Lemma 20. Let q ∈ L∞(Ω). ∀m > d/2, f ∈ H3/2(Γ) and λ ∈ ρ(Aq), we have

dm

dλm
Π♯q(λ)f = −m!

∑
k≥1

1

(λk,q − λ)m+1
⟨f, ∂νϕk,q⟩∂νϕk,q|Γ0 .

Lemma 21. Let N ∈ N∗, q1, q2 ∈ L∞(Ω) with 0 ≤ q1, q2 ≤ M for some constant M . ∃ C > 0,
such that ∥∥∥∥ dpdλp [Π♯q1 −Π♯q2 ]

∥∥∥∥
s

≤ C

|λ|p+ 1−2s
4

, λ ≤ 0 and 0 ≤ p ≤ N,

where ∥ · ∥s is the norm in L(H3/2(Γ);Hs(Γ0)).

Lemma 22. ∀h ∈ H1

Λ̃♯qh =

d+1∑
j=0

[
dj

dλj
Π♯q(λ)

]
λ=0

(−∂2t h) +R♯
qh,

where for q ∈ L∞(Ω), Λ̃♯q is bounded from H1 into H2.

We prove the following estimate

Lemma 23. q1, q2 ∈ X(M,ω), ∃C > 0, δ ∈ (0, 1), γ0 > 0:

C∥∂ν(ϕk,q1 − ϕk,q2)∥L2(Γ) ≤ (λk,q1 + λk,q2)γ
−δ + eAγ(∥∂ν(ϕk,q1 − ϕk,q2)∥L2(Γ0) + |λk,q1 − λk,q2 |)

(2.3.24)
∀γ ≥ γ0, ∀k ≥ 1.

Proof. Consider ψk(x) = (ϕk,q1 − ϕk,q2)(x) which satisfies the BVP:{
(−∆+ q1 − λk,q1)ψk = (q2 − q1)ϕk,q2 + (λk,q1 − λk,q2)ϕk,q2 in Ω,

ψk = 0 on Γ.

Let T > 0 large enough and

wk(t, x) = eit
√
λk,q1ψk(x), t ∈ (0, T ).

which solves the IVP: {
(∂2t −∆+ q1 − q1(x))wk = Fk in Q,

wk(t, x) = 0 on Σ.

where
Fk = eit

√
λk,q1

(
(q2 − q1)ϕk,q2+(λk,q1

−λk,q2
)ϕk,q2

)
.

From q1 − q2 = 0 in ω, we have

∥Fk∥L2(ωT ) ≤ C|λk,q1 − λk,q2 |.

We combine this estimate with (2.1.20) and we obtain

∥wk∥H1(ωT1
(2ρ)) ≤

C
√
γ
∥wk∥H2(Q) + eµγ(|λk,q1 − λk,q2 |+ ∥∂νwk∥L2(Σ0)) (2.3.25)

and using the fact that wk(t, x) = eit
√
λk,q1ψk(x) with ψk(x) = (ϕk,q1 − ϕk,q2)(x), we obtain

∥ϕk,q1 − ϕk,q2∥H1(ω(2ρ)) ≤
C
√
γ
(λk,q1 + λk,q2) + eµγ(|λk,q1 − λk,q2 |+ ∥∂ν()∥) (2.3.26)
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We use apply to (2.3.5) an interpolation inequality and we have

∥∂ν(ϕk,q1 − ϕk,q2)∥L2(Γ) ≤ C∥ϕk,q1 − ϕk,q2∥H3/2(ω(2ρ))

≤ C∥ϕk,q1 − ϕk,q2∥
1/2
H1(ω(2ρ)) · ∥ϕk,q1 − ϕk,q2∥

1/2
H2(ω(2ρ))

≤ γ1/4∥ϕk,q1 − ϕk,q2∥H1(ω(2ρ)) + γ−1/4(λk,q1 + λk,q2). (2.3.27)

From (2.3.26) and (2.3.27) we acquire (2.3.24).

Setting Z(λ) = (Π♯q1(λ)−Π♯q2(λ)) and applying Taylor’s formula, then

Z(j)(0) =

d∑
p=j

(−λ)p−j

(p− j)!
Z(p)(λ) +

∫ 0

λ

(−τ)d−j

(d− j)!
Z(d+1)(τ) dτ.

We prove the following lemma

Lemma 24. ∃ C > 0, µ1 ∈ (0, 1) :

∥Z(d+1)(λ)∥s ≤ C| log η|−µ1 , ∀λ ≤ 0 (2.3.28)

where ∥ · ∥s denotes the norm in L(H3/2(Γ);Hs(Γ0)).

Proof. We assume that f ∈ H3/2(Γ) to take advantage of lemma 20, then

Z(d+1)(λ)f =− (d+ 1)!

∞∑
k=1

1

(λk,q1 − λ)d+2
⟨f, ∂νϕk,q1⟩∂νϕk,q1 |Γ0

+ (d+ 1)!

∞∑
k=1

1

(λk,q2 − λ)d+2
⟨f, ∂νϕk,q2⟩∂νϕk,q2 |Γ0

We assume that

I1(λ) = −(d+ 1)!

∞∑
k=1

[
1

(λk,q1 − λ)d+2
− 1

(λk,q2 − λ)d+2

]
⟨f, ∂νϕk,q1⟩∂νϕk,q1 |Γ0

I2(λ) = −(d+ 1)!

∞∑
k=1

1

(λk,q2 − λ)d+2
⟨f, ∂νϕk,q1 − ∂νϕk,q2⟩ϕk,q1 |Γ0

I3(λ) = −(d+ 1)!

∞∑
k=1

1

(λk,q2 − λ)d+2
⟨f, ∂νϕk,q2⟩[∂νϕk,q1 − ∂νϕk,q2 ]|Γ0,

where Z(d+1) = I1 + I2 + I3. We will find the estimates of I1, I2 and I3 in the H1/2 sense in order
to prove our desired estimate.

• For I1:

∥I1(λ)∥H1/2(Γ) ≤ (d+ 1)!∥f∥L2(Γ)

∞∑
k=1

∣∣∣∣ 1

(λk,q1 − λ)d+2
− 1

(λk,q2 − λ)d+2

∣∣∣∣ ∥∂νϕk,q2∥2H1/2(Γ).

For λ ≤ 0, λk,qj ≥ 0, j = 1, 2, we have∣∣∣∣ 1

(λk,q1 − λ)d+2
− 1

(λk,q2 − λ)d+2

∣∣∣∣ ≤ Cmax

(
1

λd+3
k,q1

,
1

λd+3
k,q2

)
|λk,q1 −λk,q2 | ≤

C

k2(d+3)/d
|λk,q1 −λk,q2 |
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Also, we have
∥∂νϕk,q2∥2H1/2(Γ) ≤ Ck4/d,

by combining these two estimates, we have

∥I1(λ)∥H1/2(Γ) ≤ C∥f∥L2(Γ)d∞(λq1 , λq2)

∞∑
k=1

1

k2(d+1)/d

≤ Cη∥f∥L2(Γ) (2.3.29)

• For I2:

∥I2(λ)∥H1/2(Γ) ≤ C∥f∥L2(Γ)

∞∑
k=1

λk,q1
(λk,q2 − λ)d+2

∥∂ν(ϕk,q1 − ϕk,q2)∥L2(Γ).

We apply lemma 23 and obtain
∞∑
k=1

λk,q1
(λk,q2 − λ)d+2

∥∂ν(ϕk,q1 − ϕk,q2)∥L2(Γ) ≤ Cγ−δ
∞∑
k=1

λk,q1(λk,q1 + λk,q2)

(λk,q2 − λ)d+2

+ eAγ
∞∑
k=1

λk,q1
(λk,q2 − λ)d+2

∥∂ν(ϕk,q1 − ϕk,q2)∥L2(Γ0)

+ eAγ
∞∑
k=1

λk,q1
(λk,q2 − λ)d+2

|λk,q1 − λk,q2 |.

This now is
∞∑
k=1

λk,q1
(λk,q2 − λ)d+2

∥∂ν(ϕk,q1 − ϕk,q2)∥L2(Γ) ≤ Cγ−δ + eAγη

and by minimizing with respect to γ, we get

∥I2(λ)∥H1/2(Γ) ≤ C∥f∥L2(Γ)| log η|−µ1 , µ1 ∈ (0, 1). (2.3.30)

• For I3:

∥I3(λ)∥H1/2(Γ) ≤ C∥f∥L2(Γ)

∞∑
k=1

1

λd+1
k,q2

∥∂νϕk,q1 − ∂νϕk,q2∥H1/2(Γ0)

≤ C∥f∥L2(Γ)

∞∑
k=1

1

k2ζ/d
∥∂νϕk,q1 − ∂νϕk,q2∥H1/2(Γ0).

That gives us
∥I3∥H1/2(Γ) ≤ Cη∥f∥L2(Γ). (2.3.31)

From a combination of the equations (2.3.29), (2.3.30) and (2.3.31), we derive (2.3.28)

Using now Taylor’s formula on Z(j)(0) and applying lemma 21, we have

∥Z(j)(0)∥s ≤ C(|λ|−j−
1−2s

4 + |λ|d−j+1| log η|−µ1)

≤ C(|λ|−
1−2s

4 + |λ|d+1| log η|−µ1), |λ| ≥ 1

≤ Cmin
ρ≥1

(ρ−
1−2s

4 + ρd+1| log η|−µ1) = C| log η|−µ2 , µ2 ∈ (0, 1).

We can obtain the following estimate, by proceeding with the same way as in the proof of lemma
24 :

∥R♯
q1 −R♯

q2∥s ≤ C| log η|−µ3 . (2.3.32)
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From the estimate of lemma 22 combined with (2.3.31) and (2.3.32), we obtain

∥Λ̃♯q1 − Λ̃♯q2∥s ≤ C| log η|−µ4 ,

where if we combine it with theorem 16, it provides us with the estimates of theorem 17.

2.4 Conclusion of Chapter 2

As we have seen in this chapter, the whole construction for the logarithmic estimation has also
been based from other estimates and theorems from external papers, where we have mentioned a
few. It requires a lot of work to even just prove only one stability estimate for an inverse problem.
The procedure in this chapter was mostly a theory based scheme, where we provide in the next
chapter a more applied scheme to the same problem.
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Chapter 3

Confirmation of the log-type stability
estimate in a problem of radial
symmetry using Mathematica

In this chapter we want to verify theorem 17 from chapter 2 for the special case of d = 2 having a
radial symmetry on the differential equation. We do this by introducing Bessel’s functions first and
second kind which lie from a specific ordinary differential equation, known as the Bessel equation ,
that has its presence on various topics in mathematical physics with cylinder or spherical symmetry
[42, 76, 38].

In these case, we deal with a perturbed source q ∈ H1, providing us with perturbed solutions of
the Bessel functions. We apply Poincare-Linstedt method to our perturbed differential equation
to achieve getting a solution which consists of the Bessel function J0 and a function that gives us
the perturbation for 0 < ϵ≪ 1. For numerical results we use Mathematica in our favour providing
us a with the eigenvalues and eigenfunctions of the problem.

3.1 Introduction to Bessel’s functions and Poincare-Linstedt
method

3.1.1 Recurrence relation to Bessel’s equation

We start by introducing Bessel’s differential equation:

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0, (3.1.1)

where ν is a parameter. We note that the point x0 = 0 is a regular singular point and by Frobenius
method [12, 31] we know that the power series

y(x) =

∞∑
n=0

cnx
n+r

must be a solution to (3.1.1). The coefficients cn can be found by substituting the power series to
(3.1.1). That is

∞∑
n=0

(r + n)(r + n− 1)cnx
n +

∞∑
n=0

(r + n)cnx
n +

∞∑
n=0

cnx
n+2 − ν2

∞∑
n=0

cnx
n = 0

or
∞∑
n=0

[(r + n)(r + n− 1) + (r + n)− ν2]cnx
n +

∞∑
n=0

cnx
n+2 = 0
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We do a substitution by setting n+ 2 = n′ and then n′ → n and because

(r + n)(r + n− 1) + (r + n)− ν2 = (r + ν + n)(r − ν + n)

we can rewrite the last equation as

∞∑
n=0

(r + ν + n)(r − ν + n)cnx
n +

∞∑
n=2

cn−2x
n = 0

or

(r + ν)(r − ν)c0 + (r + ν + 1)(r − ν + 1)c1x+

∞∑
n=2

[(r + ν + n)(r − ν + n)cn + cn−2]x
n = 0.

From the last equation, we get that all coefficients of all powers of x must be zero. That is

i. (r + ν)(r − ν)c0 = 0 for c0 ̸= 0 ⇒ (r + ν)(r − ν) = 0 (3.1.2)
ii. (r + ν + 1)(r − ν + 1)c1 = 0 (3.1.3)
iii. (r + ν + n)(r − ν + n)cn + cn−2 = 0. (3.1.4)

Equation (3.1.2) is the characteristic equation of Bessel’s equation and its roots are

r1 = ν and r2 = −ν (3.1.5)

Without loss of generality we assume that ν ≥ 0, and we set r = r1 = ν to (3.1.3), we have

(2ν + 1)c1 = 0 ⇒ c1 = 0

and for r = r2 = −ν we have

(−2ν + 1)c1 = 0 ⇒
{

c1 = 0 when ν ̸= 1
2

c1 arbitrary when ν = 1
2

From the recurrence relation (3.1.4) we notice that the term

Rn(r) = (r + ν + n)(r − ν + n), n ≥ 2

is not zero when r = ν but when r = −ν we can rewrite the term as

Rn(−ν) = n(n− 2ν), n ≥ 2

where it is
Rn(r = −ν) ̸= 0 when ν ̸= n

2
=

1

2
, 1,

3

2
, 2,

5

2
, . . .

Therefore, when ν is not an integer or a semi-integer, we have Rn(r) ̸= 0 for r = ±ν. Therefore,
for every ν ≥ 0 it is possible to find a solution to the equation (3.1.1), while the second solution
depends on the parameter ν.

3.1.2 Solutions to Bessel’s equation for ν ̸= 0, 1
2
, 1, 3

2
, 2, 5

2
, . . .

When the parameter ν is not an integer or semi-integer or zero, we can find the two solutions of
(3.1.1) by setting to (3.1.4) r = r1 = ν and r = r2 = −ν, then we have for n = 2k and n = 2k + 1

c2k =
−1

(r + ν + 2k)(r − ν + 2k)
c2k−2, k ≥ 1

c2k+1 =
−1

(r + ν + 2k + 1)(r − ν + 2k + 1)
c2k−1, k ≥ 1
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from knowing that c1 = 0 this lies from the second relation that

c2k+1 = 0, ∀k ≥ 0

From the fist relation one can try for k = 1, 2, . . . , k and then multiply by parts all the relations.
That will give us

c2k =
(−1)kc0

(r + ν + 2)(r + ν + 4) . . . (r + ν + 2k)(r − ν + 2)(r − ν + 4) . . . (r − ν + 2k)

=
(−1)kc0

2k( r+ν2 + 1)k2k(
r−ν
2 + 1)k

=
(−1)kΓ( r+ν2 + 1)Γ( r−ν2 + 1)c0

22kΓ( r+ν2 + 1 + k)Γ( r−ν2 + 1 + k)

For r = r1 = ν and noting that Γ(k + 1) = k! we have

c2k(r = ν) =
(−1)kΓ(ν + 1)

22kΓ(ν + 1 + k)
c0

Therefore, one solution for (3.1.1) is

y1(x) = c0

∞∑
k=0

(−1)kΓ(ν + 1)

22kk!Γ(ν + 1 + k)
x2k+ν

or

y1(x) = c02
νΓ(ν + 1)

∞∑
k=0

(−1)k

k!Γ(ν + 1 + k)

(x
2

)2k+ν
by setting c02νΓ(ν + 1) = 1, we have

y1(x) = Jν(x) =

∞∑
k=0

(−1)k

k!Γ(ν + 1 + k)

(x
2

)2k+ν
(3.1.6)

in the same way, the second solution with r = r2 = −ν is

y2(x) = J−ν(x) =

∞∑
k=0

(−1)k

k!Γ(−ν + 1 + k)

(x
2

)2k−ν
(3.1.7)

Therefore, the general solution to (3.1.1) is

y(x) = AJν(x) +BJ−ν(x)

with A,B arbitrary constants. The function Jν(x) is called Bessel function first kind.

3.1.3 Solutions to Bessel’s equation for ν = m+ 1
2
, m ∈ N∗

In this case, the first solution of (3.1.1) if we set ν = m+ 1
2 is given by (3.1.4) as

Jm+ 1
2
(x) =

∞∑
k=0

(−1)k

k!Γ(m+ 3
2 + k)

(x
2

)2k+m+ 1
2

(3.1.8)

For the second solution, we notice that r1 − r2 = 2ν = 2m+ 1 an odd number. In this case we
have

Rn(r = r2 = −m− 1

2
) = n(n− 2m− 1) = 0, for n = 2m+ 1
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but if we set n = 2k and r = r2 = −m − 1
2 , the term Rn(r) vanishes, and we find the second

solution with the same approach as the first solution, and it is

J−m− 1
2
=

∞∑
k=0

(−1)k

k!Γ(−m+ 1
2 + k)

(x
2

)2k−m− 1
2

(3.1.9)

3.1.4 Solutions to Bessel’s equation for ν = m ∈ N

From (3.1.6) we set ν = m ∈ N and is

Jm(x) =

∞∑
k=0

(−1)k

k!Γ(m+ 1 + k)

(x
2

)2k+m
(3.1.10)

The second solution can’t be found by Frobenius method because we have for r = r2 = −ν = −m
that

Rn(r = −m) = n(n− 2m) = 0, for n = 2m

therefore, we can find the second solution by defining the following function

Nν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
(3.1.11)

The function Nν(x) is called Neumann function or Bessel function of second kind, its a linear
combination of the functions Jν(x) and J−ν(x) and it’s a solution to (3.1.1). Due to the fact that
Jm(x) = (−1)mJ−m(x), Nν(x) becomes undetermined for ν = m ∈ N. We apply L’Hospital’s rule,
then

Nm(x) =
∂ν [Jν(x) cos νπ − J−ν(x)]

∂ν sin νπ
|ν=m =

1

π
[∂νJν(x)− (−1)m∂νJ−ν(x)]ν=m (3.1.12)

3.1.5 Solutions to Bessel’s equation for r1 = r2 = 2ν = 0

For the first solution we set ν = 0 to (3.1.6) and we have

y1(x) = c0J0 = c0

∞∑
k=0

(−1)k

22k(k!)2
x2k (3.1.13)

and for the second solution we can follow from Frobenius method that

y2(x) = y1(x) lnx+

∞∑
k=0

∂rc2k(r)|r=0x
2k, c2k+1 = 0.

For n = 2k it is
c2k = − 1

(2k + r)2
c2k−2, k ≥ 1

therefore

c2k(r) =
(−1)k

(2 + r)2(4 + r)2 . . . (2k + r)2
c0 = c0

k∏
p=1

(−1)k

(2p+ r)2

by differentiating with respect to r, we have

∂rc2k|r=0 = −c0
(−1)k

22k(k!)2

k∑
r=1

1

r

therefore, the second solution is given by the expression

y2(x) = c0

[
J0(x) lnx−

∞∑
k=1

(−1)kx2k

22k(k!)2

k∑
r=1

1

r

]
(3.1.14)

39



3.1.6 Useful identities of Bessel’s functions

In the previous subsection, we proved the general form of Bessel’s function and we present some
useful identities which one can verify from the general formula and also by introducing the gener-
ating function of the Bessel functions [79, 45]

w(x, t) = e
x
2 (t−

1
t ) =

∞∑
n=−∞

Jn(x)t
n.

We remind that

Jn(x) =

∞∑
k=0

(−1)k

k!(k + n)!

(x
2

)2k+n
are the Bessel functions of first kind and

Yn(x) =
Jn(x) cosnπ − J−n(x)

sinnπ

are the Bessel functions of second kind. We provide the following table of formulas that one can
prove from the generating function and the Bessel functions:

Figure 3.1: Recurrence Formulas of the Bessel functions

A combination of the above identities from Figure 3.1 gives us

d

dx
J0(x) = −J1(x)

d

dx
Y0(x) = −Y1(x)

which would be pretty useful when dealing with the numerical part using Mathematica.

3.1.7 Poincare-Linstedt method

We were motivated by [51, 56, 53] consider to use this method that arrises in perturbation theory
[54, 86]. We will apply the method for terms up to ϵ1 considering that ϵk ≈ 0, ∀k ≥ 2. By
Poincare-Linstedt method, we consider the solution

ϕ(x) =

∞∑
k=0

C2kx
2k +

∞∑
k=0

C2k+1x
2k+1 = ϕ0(x) + ϵϕ1(x)
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where

ϕ0(x) = J0(x) =

∞∑
k=0

(−1)k

22k(k!)2
x2k = C

(0)
2k x

2k

and

ϕ1(x) =

∞∑
k=0

C
(1)
k xk =

∞∑
k=0

C
(1)
2k x

2k +

∞∑
k=0

C
(1)
2k+1x

2k+1

where we obtain the following recurrence relations{
C2k = C

(0)
2k + ϵC

(1)
2k = (−1)k

22k(k!)2
C0 + ϵC

(1)
2k

C2k+1 = ϵC
(1)
2k+1

The first relation will come in handy to our solution with power series in our differential equation
with source q(r) ̸= 0.

3.2 Case in R2

We consider d = 2, therefore q1, q2 ∈ Hs(Ω) = H1+ϵ(Ω), 0 < ϵ ≪ 1 and ∥qj∥H1+ϵ(Ω) ≤ M . We
want to verify that

∥q1 − q2∥L∞(Ω) ≤ C (| log (| log η|)|)−µ
′
0

where
η = max

k
|λk,q1 − λk,q2 |+

∑
k≥1

k−ζ∥∂νϕk,q1 − ∂νϕk,q2∥H1/2(Γ0), ζ ∈ (2, 3]

µ′
0 ∈ (0, 1) and C > 0 depends from Ω,Γ0, ω and M .

For more simplicity, the eigenvalue problems will be solved in polar coordinates with radial sym-
metry, that means we have the following Laplacian operator

−∆+ q = − ∂2

∂r2
− 1

r

∂

∂r
− 1

r2
∂2

∂θ
+ q(r)

3.2.1 Eigenvalue problem with q(r) = 0 and radial symmetry ϕ = ϕ(r)

We assume that a > 0, Ω = {x ∈ R|x < a} and consider the following eigenvalue problem

−∆ϕ(r) = λϕ(r), r ∈ [0, a]

⇒ −ϕ′′(r)− 1

r
ϕ′(r) = λϕ(r),

∂2ϕ

∂θ2
= 0

⇒ ϕ′′(r) +
1

r
ϕ′(r) + λϕ(r) = 0

⇒ r2ϕ′′(r) + rϕ′(r) + λr2ϕ(r) = 0. (3.2.1)

Equation (3.2.1) reminds us of the Bessel’s differential equation (3.1.1). If we do the following
transformation

g(ξ) = ϕ(r) (3.2.2)

ξ =
√
λr ⇒ ξ2 = λr2 (3.2.3)

41



we obtain

ϕ′(r) =
d

dr
g(ξ) = g′(ξ)

dξ

dr
= g′(ξ)

√
λ

ϕ′′(r) =
d2

dr2
g(ξ) = λg′′(ξ)

equation (3.2.1) takes the following form

ξ2g′′(ξ) + ξg′(ξ) + ξ2g(ξ) = 0 (3.2.4)

where (3.2.4) is a Bessel differential equation with variable ξ and ν = 0. Therefore, from section
3.1, we have the solution

g(ξ) = J0(ξ) =

∞∑
m=0

(−1)m

m!Γ(m+ 1)

(
ξ

2

)2m

and the eigenvalues are

ξk =
√
λk,0a⇒ µk = λk,0 =

ξ2k
a2

(3.2.5)

where a is the radius of the disk Ω. Therefore, we find that the eigenfunctions of the eigenvalue
problem are

ϕk,0 = AkJ0(
ξkr

a
)

with the normalisation

|Ak|2
∥∥∥∥J0(ξkra

)∥∥∥∥2
L2(Ω)

= 1

3.2.2 Eigenvalue problem with q(r) ̸= 0 and radial symmetry ϕ = ϕ(r)

Consider now the problem

(−∆+ q)ϕ(r) = λϕ(r), r ∈ [0, a]

⇒− ϕ′′(r)− 1

r
ϕ′(r) + q(r)ϕ(r) = λϕ(r)

⇒− r2ϕ′′(r) + rϕ′(r) + r2(λ− q(r))ϕ(r) = 0

For our purpose, we choose our source q(r) to be a function of the form

q(r) =

{
ϵ(r4 + αr2 + γ) for 0 ≤ r ≤ r0

0 for r0 < r ≤ a

where ϵ would be a source disturbance parameter, ideally we want this to be small, α, γ are
polynomial parameters and r0 is the radius at which the source becomes identically zero outside,
typically q(x) = 0 iff x ∈ ω = {x ∈ Ω|x ≥ r0}.

A selection of a more simple functions, like for example, q1 = E1 and q2 = E2 = E1 + ϵ would
not fit to our conditions in chapter 2, because q1 and q2 are distinct near the boundary and also q
has to be smooth at least C1 at r = r0. Therefore q(r) at r = r0 satisfies the following conditions

r40 + αr20 + γ = 0

4r30 + 2αr0 = 0

where we find
α = −2r20 and γ = r40
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Then we would have the following source function

q(r) =

{
ϵ(r2 − r20)

2 for 0 ≤ r ≤ r0
0 for r0 < r ≤ a

• For r ∈ (r0, a] we would have the same differential equation just like in section 3.3.1:

r2ϕ′′(r) + rϕ′(r) + λr2ϕ(r) = 0

therefore the solution would be a linear combination of Bessel’s first and second kind functions
with ν = 0:

ϕ(r) = AJ0(
√
λr) +BY0(

√
λr)

• For r ∈ [0, r0] we obtain the following diffential equation

r2ϕ′′(r) + rϕ′(r) + [λr2 − ϵ(r2 − r20)
2r2]ϕ(r) = 0, (3.2.6)

we set g(ξ) = ϕ(r), ξ =
√
λr, ϵ̃ = ϵ

λ3 and ξ0 =
√
λr0. Equation (3.2.6) becomes

ξ2g′′(ξ) + ξg′(ξ) + [ξ2 − ϵ̃(ξ2 − ξ20)
2ξ2]g(ξ) = 0 (3.2.7)

we note that the point ξ = ξ̃ = 0 is a normal irregular point for (3.2.7), thus we will apply Frobenius
method to solve (3.2.7).

We assume that the solution is in the form of a power series

g(ξ) =

∞∑
n=0

cnξ
n+τ , c0 ̸= 0, τ ∈ R

g′(ξ) =

∞∑
n=0

(n+ τ)cnξ
n+τ−1

g′′(ξ) =

∞∑
n=0

(n+ τ)(n+ τ − 1)cnξ
n+τ−2

we substitute g(ξ), g′(ξ) and g′′(ξ) to (3.2.7) and simplifying the terms ξτ , we have

∞∑
n=0

cn(n+ τ)2ξn +

∞∑
n=0

cn(1− ϵ̃ξ40)ξ
n+2 + 2ϵ̃

∞∑
n=0

cnξ
4
0ξ
n+4 − ϵ̃

∞∑
n=0

cnξ
n+6 = 0.

From the last, we get from the indicial polynomial that τ1 = τ2 = 0, c0 ̸= 0 arbitrary and ∀k ∈ N
we have c2k+1 = 0. For the coefficients with even index, we have

c2 · 4 + c0(1− ϵ̃ξ40) = 0 → finding c2
c2(1− ϵ̃ξ40) + 2ϵ̃ξ20c0 + 42 · c4 = 0 → finding c4
cn+6(n+ 6)2 = −cn+4 + ϵ̃[ξ40cn+4 − 2ξ20cn+2 + cn] → finding every other c2k with k ≥ 3 (3.2.8)

We observe that in the recurrence relation (3.2.8), every time we calculate a new term it sums
up to the term with the perturbation ϵ̃ accompanied by the two previous terms to give us the next
coefficient. Moreover, we can generalise (3.2.8), by observing that finding the coefficients c2 and
c4 can be done from (3.2.8) if we add the condition

∀k ∈ N we have c−k = 0.
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We set n+ 6 = 2k to (3.2.8), then

c2k(2k)
2 = −c2k−2 + ϵ̃[ξ40c2k−2 − 2ξ20c2k−4 + c2k−6]

⇒c2k = −c2k−2

(2k)2
+
ϵ̃[ξ40c2k−2 − 2ξ20c2k−4 + c2k−6]

(2k)2
.

The term − c2k−2

(2k)2 reminds us the coefficients (−1)k

22k(k!)2
c0 from Bessel’s function. Therefore by

Poincare-Linstedt method, we set

c2k =
(−1)k

22k(k!)2
c0 + ϵ̃c

(1)
2k = c

(0)
2k + ϵ̃c

(1)
2k

where we substitute that in our recurrence relation and ignoring the O(ϵ̃2) terms, we have

(−1)k

22k(k!)2
c0 + ϵ̃c

(1)
2k =− 1

(2k)2

[
(−1)k−1

22k((k − 1)!)2
c0 + ϵ̃c

(1)
2k−2

]
+

ϵ̃c0
(2k)2

[
ξ40(−1)k−1

22k−2((k − 1)!)2
− 2ξ20

(−1)k−2

22k−4((k − 2)!)2
+

(−1)k−3

22k−6((k − 3)!)2

]
where we obtain a relation for the c(1)2k coefficients

c
(1)
2k = −

c
(1)
2k−2

(2k)2
+

1

(2k)2

[
ξ40c

(0)
2k−2 − 2ξ20c

(0)
2k−4 + c

(0)
2k−6

]
,

where c(0)2k = (−1)k

22k(k!)2
c0. We have the coefficients

c2k =
(−1)k

22k(k!)2
c0 + ϵ̃c

(1)
2k . (3.2.9)

where for k = 0 we have c(1)0 = 0.

The recurrence relation (3.2.9) indicates that the solution to the equation (3.2.6) will be a Bessel
function perturbed by a factor ϵ̃. Hence, the solution will be

g(ξ) = c0J0(ξ) + ϵ̃

∞∑
k=1

c
(1)
2k ξ

2k

= c0

[
J0(ξ) + ϵ̃

∞∑
k=1

c
(1)
2k

c0
ξ2k

]

= c0

[
J0(ξ) + ϵ̃

∞∑
k=1

γ2kξ
2k

]

⇒ ϕ(r) = c0

[
J0(

√
λr) +

ϵ

λ3

∞∑
k=1

γ2kλ
kr2k

]
, r ∈ [0, r0]

where

γ2k =
c
(1)
2k

c0

We found that the solution to the problem we started with is

ϕ(r) =

{
c0

[
J0(

√
λr) + ϵ

λ3

∑∞
k=1 γ2kλ

kr2k
]
, r ∈ [0, r0]

AJ0(
√
λr) +BY0(

√
λr), r ∈ (r0, a]

(3.2.10)
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By the conditions we pointed earlier, our solution (3.2.10) should be at least a C1 function at the
branch point r = r0 and be identically zero when it reaches r = a due to the compact support.
Hence, we have the following conditions

ϕ(r−0 ) = ϕ(r+0 )

ϕ′(r−0 ) = ϕ′(r+0 )

AJ0(
√
λa) +BY0(

√
λa) = 0

and we make the following matrix equation

A ·
−→
C =

−→
0 ⇒ J0(
√
λa) Y0(

√
λa) 0

J0(
√
λr0) Y0(

√
λr0) −J0(

√
λr0)− ϵ

λ3

∑∞
k=1 γ2kλ

kr2k0√
λJ ′

0(
√
λr0)

√
λY ′

0(
√
λr0) −

√
λJ ′

0(
√
λr0)− ϵ

λ3

∑∞
k=1 2kγ2kλ

kr2k−1
0

 ·

 A
B
c0

 =
−→
0

(3.2.11)

where we can find the eigenvalues λi from the equation

F (λ) = detA(λ) = 0 (3.2.12)

3.3 Numerical Procedure using Mathematica in the radial
symmetric eigenvalue problem with q(r) ̸= 0 for the R2

case

In this section we are going to set two different sources q(r) and try to get numerical results using
Mathematica. For simplicity, we set c0 = 1 and r0 = 1, therefore we have

q(r)|r0=1 =

{
ϵ(r2 − 1)2 for 0 ≤ r ≤ 1

0 for 1 < r ≤ a
(3.3.1)

ϕ(r)|c0=1,r0=1 =

{
J0(

√
λr) + ϵ

λ3

∑∞
k=1 γ2kλ

kr2k r ∈ [0, 1]

AJ0(
√
λr) +BY0(

√
λr), r ∈ (1, a]

(3.3.2)

where

γ2k = γ2k(λ)|c0=1 =

[
−
c
(1)
2k−2

(2k)2
+

1

(2k)2

(
λ2c

(0)
2k−2 − 2λc

(0)
2k−4 + c

(0)
2k−6

)]
(3.3.3)

and

c2k(λ)|c0=1 =
(−1)k

22k(k!)2
+

ϵ

λ3
γ2k(λ)|c0=1, (3.3.4)

combining (3.3.3) and (3.3.4) we have

c2k(λ)|c0=1 =
(−1)k

22k(k!)2
+

ϵ

λ3

[
−
c
(1)
2k−2

(2k)2
+

1

(2k)2

(
λ2c

(0)
2k−2 − 2λc

(0)
2k−4 + c

(0)
2k−6

)]
(3.3.5)

with c0 = 1 and c−k = 0 = c2k+1, ∀k ∈ N. From (3.3.5), one may notice that the difference, of the
consecutive terms c2n and c2(n+1), is declining as n→ ∞.
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Figure 3.2: The graph of qn(r) =(
1
n

)
(r2 − 1)2, r ∈ [0, 1] and qn(r) =

0, r ∈ [1, 1.1].

Figure 3.3: The graph of qn(r) = n(r2−
1)2, r ∈ [0, 1] and qn(r) = 0, r ∈
[1, 1.1].

Figure 3.4: The 3D graph of q(r) =
q(x, y) = (r2 − 1)2 = (x2 + y2 − 1),
x, y ∈ [−1, 1].

3.3.1 Numerical procedure for finding eigenvalues λi,j

For this example, we set the radius of the disk Ω as a = 1 + 10−1 = 1.1 ≈ r0 = 1, we see in the
next figures the behaviour of our source q(r) where r ∈ [0, 1.1]

For source q1, we choose ϵ = 10−3 ≪ 1 → q1(r) = 10−3(r2 − 1)2, then

c2k(λ)|c0=1,ϵ=10−3 =
(−1)k

22k(k!)2
+

10−3

λ3

[
−
c
(1)
2k−2

(2k)2
+

1

(2k)2

(
λ2c

(0)
2k−2 − 2λc

(0)
2k−4 + c

(0)
2k−6

)]
.

From the above relation, we wish to find a few γ2k terms to approximate the infinite sum we have
in equation (3.2.11), knowing that the terms c2k decay fast. In the following table, after calculating
the term c

(0)
2k = c

(0)
2k we can always find γ2k = γ2k(λ):

c
(0)
2k γ2k(λ) = c

(1)
2k

k = 1 −0.25 0.25λ2

k = 2 0.015625 −0.125λ− 0.078125λ2

k = 3 −0.000434028 0.0277778 + 0.0347222λ+ 0.0134549λ2

k = 4 6.78168 · 10−6 −0.00737847− 0.00482856λ− 0.00168864λ2

k = 5 −6.78168 · 10−8 0.000894097 + 0.000491536λ+ 0.000168932λ2

k = 6 4.7095 · 10−10 −0.0000775222− 0.0000410556λ− 0.0000140781λ2

k = 7 −2.40281 · 10−12 5.5719 · 10−6 + 2.93323 · 10−6λ+ 1.00558 · 10−6λ2

k = 8 ≈ 0 ≈ 0
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We determine our function of interest

fN (λ) = −J0(
√
λ)− 10−3

λ3

N∑
k=0

γ2k(λ)λ
k

which plays a crucial role of finding the eigenvalues of (3.2.12) as it points out the behaviour of
detA(λ). By the behaviour of our function of interest it is clear that we need enough terms that
are far from N = 1 and N = 2, therefore we choose at most N = 7.

We will find at most 6 eigenvalues from each source q, we use mathematica to find the roots of
(3.2.11) with the graphical method, because we can’t solve this analytically. In the following table
we present the eigenvalues of the eigenvalue problem with q = q1 (also check Figure 3.5 ):

First 6 eigenvalues for q = q1
λ1,1 = 4.77983
λ1,2 = 21.3994
λ1,3 = 467.702
λ1,4 = 2494.89
λ1,5 = 6452.08
λ1,6 = 12376.8

For source q2, we choose ϵ = 10−4 ≪ 1 → q2(r) = 10−4(r2 − 1)2, then

c2k(λ)|c0=1,ϵ=10−4 =
(−1)k

22k(k!)2
+

10−4

λ3

[
−
c
(1)
2k−2

(2k)2
+

1

(2k)2

(
λ2c

(0)
2k−2 − 2λc

(0)
2k−4 + c

(0)
2k−6

)]
.

We already proved that the coefficients c(1)2k are independent from ϵ, therefore they remain the
same and we will use the same algorithms as we did for q1.In the following table we present the
eigenvalues of the eigenvalue problem with q = q2 (also check Figure 3.6 ):

First 6 eigenvalues for q = q2
λ2,1 = 4.77953
λ2,2 = 24.320
λ2,3 = 467.702
λ2,4 = 2494.89
λ2,5 = 6452.08
λ2,6 = 12376.8

3.3.2 Analytical and numerical procedure for finding eigenfunctions ϕi,j

In the previous section, we found numerically the eigenvalues of the R2 problem and now we
are going to find every eigenfunction ϕi,j corresponding to a eigenvalue λi,j , with i ∈ {1, 2},
j ∈ {1, 2, 2, 3, 4, 5, 6}. For every eigenfunction ϕ t is true that

ϕ(r) =

{
J0(

√
λr) + ϵ

λ3

∑
k≥1 c

(1)
2k λ

kr2k, r ∈ [0, r0]

AJ0(
√
λr) +BY0(

√
λr), r ∈ (r0, α]

limit condition for r = r0 = 1

It is true that
J0(

√
λ) +

ϵ

λ3

∑
k≥1

c
(1)
2k λ

k = AJ0(
√
λ) +BY0(

√
λ),
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where we set

M(λ) =
∑
k≥1

c
(1)
2k λ

k = c
(1)
2 λ+ c

(1)
4 λ2 + c

(1)
6 λ3 + c

(1)
8 λ4 + c

(1)
10 λ

5 + c
(1)
12 λ

6 + c
(1)
14 λ

7 +O(λ8) (3.3.6)

which we are going to calculate it with the help of mathematica. Therefore, in the first limit case,
we have

J0(
√
λ) +

ϵ

λ3
M(λ) = AJ0(

√
λ) +BY0(

√
λ) (3.3.7)

limit condition for r = α = 1.1

In this limit case, it is true that

AJ0(
√
λ1.1) +BY0(

√
λ1.1) = 0

where we solve for A, and we obtain

A = −BY0(1.1
√
λ)

J0(1.1
√
λ)

(3.3.8)

If we combine (3.3.7) and (3.3.8), we get

B = −
J0(

√
λ) + ϵ

λ3M(λ)

Y0(1.1
√
λ)

J0(1.1
√
λ)

− Y0(
√
λ)

(3.3.9)

For every λ we can find the coefficients A and B from (3.3.8) and (3.3.9) with the use of mathe-
matica.

The following table represents the numerical procedure of finding the function M(λ) from (3.3.6)
using mathematica

for q = q1 λ M(λ)
4.77983 4.60963
21.3994 6.41606 · 105
467.702 1.05194 · 1018
2494.89 3.74935 · 1024
6452.08 1.94523 · 1028
12376.8 6.84706 · 1030

for q = q2
4.77953 4.60886
24.320 2.10219 · 106
467.702 1.05194 · 1018
2494.89 3.74935 · 1024
6452.08 1.94523 · 1028
12376.8 6.84706 · 1030

The following table represents the numerical procedure of finding the coefficients from known
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eigenvalues.
for q = q1 λ B = B1 = Bϵ=10−3 A = A1 = AB1

1 4.77983 0.0000102025 0.118039
2 21.3994 0.0936267 −0.202349
3 467.702 −7.21256 · 106 1.14144 · 107
4 2494.89 −2.34268 · 1011 2.17812 · 1011
5 6452.08 2.12371 · 1014 8.83114 · 1013
6 12376.8 2.75546 · 1015 3.71297 · 1015

for q = q2 λ B = B2 = Bϵ=10−4 A = A2 = AB2

1 4.77953 1.13284 · 10−6 0.118044
2 24.320 0.0172908 −0.179985
3 467.702 −7.21256 · 105 1.14144 · 106
4 2494.89 −2.34268 · 1010 2.17812 · 1010
5 6452.08 2.12371 · 1013 8.83114 · 1012
6 12376.8 2.75546 · 1014 3.71297 · 1014

we notice that for λq1,j = λq2,j , with j ≥ 3, the pairs A1, A2 and B1, B2 differ by a factor of 10.

3.3.3 Analytical and numerical calculation of the ∥ · ∥H1/2(Γ0) norm

Let us have the eigenfunctions

ϕq,i(r) =

{
J0(
√
λq,ir) +

ϵ
λ3
q,i

∑7
k≥1 c

(1)
2k λ

k
q,ir

2k, r ∈ [0, r0]

Aq,iJ0(
√
λq,ir) +Bq,iY0(

√
λq,ir), r ∈ (r0, α]

The normal derivative on the eigenfunction ϕq,i, in our case, is the derivative with respect to r.
Therefore

∂νϕq,i = ∂rϕq,i(r) =

{
−
√
λq,iJ1(

√
λq,ir) +

ϵ
λ3
q,i

∑7
k≥1 2kc

(1)
2k λ

k
q,ir

2k−1, r ∈ [0, r0]

−Aq,i
√
λq,iJ1(

√
λq,ir)−Bq,i

√
λq,iY1(

√
λq,ir), r ∈ (r0, α]

(3.3.10)

We now construct the difference

∂νϕq1,i − ∂νϕq2,i = ∂rϕq1,i(r)− ∂rϕq2,i(r)

=

{ √
λq2,iJ1(

√
λq2,ir)−

√
λq1,iJ1(

√
λq1,ir) + 10−4

∑7
k≥1 2k

[
10λk−3

q1,i
c
(1)
2k (λq1,i)− λk−3

q2,i
c
(1)
2k (λq2,i)

]
r2k−1

Aq2,i
√
λq2,iJ1(

√
λq2,ir) +Bq2,i

√
λq2,iY1(

√
λq2,ir)−Aq1,i

√
λq1,iJ1(

√
λq1,ir)−Bq1,i

√
λq1,iY1(

√
λq1,ir)

We borrow the formulation for calculating fractional norms from [52, 17]. We have thatHs(Γ0) =
W s,2(Γ0), where s = 1/2. For an arbitrarily open subset Ω ⊂ Rn, we have the general formula

∥u∥W s,p(Ω) =

(∫
Ω

|u|pdx+

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

)1/p

. (3.3.11)

In (3.3.11), we set p = 2 for Hilbert space W s,2 = Hs, s = 1/2 for H1/2 and n = 1 for our case
at the boundary. In chapter 2 we mentioned that Γ0 is a relatively open subset of Γ. We have, in
first case, that Γ = {x ∈ R2 : ∥x∥2 = 1}. Therefore Γ0 is a part of the unit circle Γ. If we switch to
polar coordinates we have fixed r = 1, let θ ∈ I = [θ0, θ1] ⊂ [0, 2π] and x = cos θî+sin θĵ, equation
(3.3.11) becomes

∥u∥H1/2(Γ0) =

(∫ θ1

θ0

|u(1, θ)|2dθ +
∫ θ1

θ0

∫ θ1

θ0

|u(1, θ)− u(1, θ′)|2

|(cos θ − cos θ′)2 + (sin θ − sin θ′)2|
dθdθ′

)1/2
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where in our case u(1, θ) = ∂rϕq1(1, θ) − ∂rϕq2(1, θ) = ∂rϕq1(1) − ∂rϕq2(1), where in this case
the second integral from the norm should be zero because we have independence from θ. In the
following table we have calculated with Mathematica the differences of ∂νϕq1−∂νϕq2 for r = r0 = 1
and r = α = 1.1

k ∂νϕq1(1)− ∂νϕq2(1) ∂νϕq1(1.1)− ∂νϕq2(1.1)
1 0.0189663 3.63706 · 10−6

2 1.65627 −0.0595614
3 0.23531 · 105 4.29963 · 107
4 3.5797 · 106 1.54791 · 1012
5 6.19338 · 107 1.41138 · 1015
6 4.37214 · 108 −3.33911 · 1016

Therefore, for fixed r̃ ∈ {r0 = 1, α = 1.1}, the H1/2 norm simplifies to

∥∂rϕq1(r̃)− ∂rϕq2(r̃)∥H1/2(Γ0) =

(∫ θ1

θ0

|∂rϕq1(r̃)− ∂rϕq2(r̃)|2dθ

)1/2

=
(
|∂rϕq1(r̃)− ∂rϕq2(r̃)|2(θ1 − θ2)

)1/2
= |∂rϕq1(r̃)− ∂rϕq2(r̃)| ·

√
θ1 − θ0,

where
√
θ1 − θ0 ∈ (0,

√
2π]. Hence, for ζ ∈ (2, 3], we calculate the sum S using the calculations

from the previous table:

S =

6∑
k=1

k−ζ∥∂rϕq1,k(r̃)− ∂rϕq2,k(r̃)∥H1/2(Γ0)

=
√
θ1 − θ0

6∑
k=1

k−ζ |∂rϕq1,k(r̃)− ∂rϕq2,k(r̃)|

• For r̃ = α = 1.1:

Sα =
√
θ1 − θ0

6∑
k=1

k−ζ |∂rϕq1,k(1.1)− ∂rϕq2,k(1.1)|

=
√
θ1 − θ0(3.63706 · 10−6 + 2−ζ · 0.0595614 + 3−ζ · 4.29963 · 107

+ 4−ζ · 1.54791 · 1012 + 5−ζ · 1.41138 · 1015 + 6−ζ · 3.33911 · 1016) ≥ 1.65904 · 1014 ·
√
θ1 − θ0

• For r̃ = r0 = 1:

Sr0 =
√
θ1 − θ0

6∑
k=1

k−ζ |∂rϕq1,k(1)− ∂rϕq2,k(1)|

=
√
θ1 − θ0(0.0189663 + 2−ζ · 1.65627 + 3−ζ · 0.23531 · 105

+ 4−ζ · 3.5797 · 106 + 5−ζ · 6.19338 · 107 + 6−ζ · 4.37214 · 108) ≥ 2.57641 · 106 ·
√
θ1 − θ0

3.3.4 Verifying theorem 17 from chapter 2

Using the tables where we found the eigenvalues λi,j , it is clear that

∥λq1 − λq2∥ℓ∞ = max
k

|λq1,k − λq2,k| = λq2,2 − λq1,2 = 24.32− 21.3994 = 2.9206.

Also we have that

∥q1 − q2∥L∞(Ω) = inf{C : |q1(r)− q2(r)| ≤ C a.e. in Ω}
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where
|q1(r)− q2(r)| = |10−3(r2 − 1)2 − 10−4(r2 − 1)2| = 9 · 10−4(r2 − 1)2.

We know that q1, q2 are defined at Ω \ ω with the extension of zero for all Ω. Therefore,

r ∈ [0, 1] ⇒ (r2 − 1)2 ∈ [0, 1],

hence
|q1(r)− q2(r)| ≤ 9 · 10−4 ⇒ ∥q1 − q2∥ℓ∞ = 9 · 10−4.

For the term η = ∥λq1 − λq2∥ℓ∞ +
∑6
k=1 k

−ζ∥∂rϕq1,k(r̃)− ∂rϕq2,k(r̃)∥H1/2(Γ0),which is supposed
to be small, we assume that r̃ = α, then we have that

η ≥ 2.9206 + 1.65904 · 1014 ·
√
θ1 − θ0 > 2.9206

where it is approximate 87.2238% smaller than the mean value of λq1,2 and λq2,2 for θ1 = θ0.
Furthermore

2.9206 ≤η ≤ 4.1586 · 1014

⇒ 0.332106 ≤| log(| log(η)|)| ≤ 1.16492

⇒ 0.332106µ
′
0 ≤(| log(| log(η)|)|)µ

′
0 ≤ 1.16492µ

′
0 , µ′

0 ∈ (0, 1)

⇒ 9 · 10−4 < 9 · 10−4 · 0.332106µ
′
0 ≤∥q1 − q2∥L∞(Ω) · (| log(| log(η)|)|)µ

′
0 ≤ 9 · 10−4 · 1.16492µ

′
0 < 0.00104843

Therefore ∥q1 − q2∥L∞(Ω) · (| log(| log(η)|)|)µ
′
0 is bounded for µ′

0 ∈ (0, 1). Hence, we can say that
there exists C > 0 such that

∥q1 − q2∥L∞(Ω) · (| log(| log(η)|)|)µ
′
0 ≤ C

⇒ ∥q1 − q2∥L∞(Ω) ≤ C(| log(| log(η)|)|)−µ
′
0 ,

where the constant C depends from the circle Ω, its boundary Γ0, M = 9 ·10−4 and ω ⊂ Ω near the
boundary. We control θ0 and θ1 and it changes the parameter η. That concludes our verification
for the radial symmetry of the R2 case.

3.4 Conclusion of chapter 3

We have concluded to the result that was discussed in chapter 2 having radial symmetry in our
problem. One can follow the same approach to other types of sources and domains and can obtain
the same result with finding another C > 0 that can be controlled by the geometry of the domain.
In general it is hard to find the eigenvalues of these problems and we only make it work for the
simplest case. Any other case may follow our procedure.
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Figure 3.5: Eigenvalues λ1,1 to λ1,6 with the graph method for source q = q1. A modern Bolzano
method [62].
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Figure 3.6: Eigenvalues λ2,1 to λ2,6 with the graph method for source q = q2. A modern Bolzano
method [62].
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Chapter 4

Appendix

This chapter is devoted to the preliminaries of the main concepts that we followed in [7]. We
give the general definitions and theorems that have not been defined formally. At the end of this
chapter, the reader should be able to understand the concepts and the theorems which will be
presented in the following chapters. For this purpose, we follow the theory that is written in the
books [9, 35, 23, 78, 64], as well as we note some definitions from external notes or papers that are
not mentioned in the books.

4.1 Elements of Functional Analysis and Topology

4.1.1 Euclidean space

Definition 25. Let Rn be n-dimensional Euclidean space. We denote the Euclidean norm of a
vector x = (x1, x2, . . . , xn) ∈ Rn by

|x| =
(
x21 + x22 + . . .+ x2n

)1/2
=

(
n∑
k=1

x2k

)1/2

(4.1.1)

Definition 26. Let x = (x1, x2, . . . , xn) ∈ Rn and y = (y1, y2, . . . , yn) ∈ Rn. We define the inner
product of the vectors x and y by

x · y = x1y1 + x2y2 + . . .+ xnyn =

n∑
k=1

xkyk (4.1.2)

If we compare the two definitions, one can notice that, the square of the Euclidean norm | · |2 is
an inner product of the same vectors. Hence, |x|2 = x · x =

∑n
k=1 x

2
k.

We assume that Ω ⊂ Rn, we denote the complement by Ωc = Rn \ Ω, the closure by Ω, the
interior by Ωo and the boundary by Γ = ∂Ω = Ω \ Ωo.

Definition 27. Assume that χΩ : Rn → R be the characteristic function which is defined by

χΩ(x) =

{
1 if x ∈ Ω
0 if x /∈ Ω

(4.1.3)

We borrow the definition of a compact set from [68]:

Definition 28. Let Ω be a set. A collection C ⊂ 2Ω is a covering of Ω if
⋃
C∈C C = Ω. If each

C ∈ C is an open set, then C is called an open covering of Ω. Ω is called compact if every open
covering has a finite sub covering; that is, if for every open covering C , there exists a finite number
of sets, say C1, . . . , Cn ∈ C for some n ∈ N, such that Ω =

⋃n
k=1 Vk.
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Definition 29. A set Ω′ is compactly contained in an open set Ω, if and only if, Ω′ ⊂ Ω and Ω′

is compact and we write Ω′ ⋐ Ω.

If Ω′ ⋐ Ω, then
dist(Ω′, ∂Ω) = inf{|x− y| : x ∈ Ω′, y ∈ ∂Ω} > 0.

4.1.2 The Spaces Ck, C∞ and C0

We denote by C [a, b] as the set that contains all the continuous functions that defined on the
closed interval [a, b]. Formally, we write

C[a, b] = {u : [a, b] → R : u is continuous}

In general, for an abstract set Ω ⊂ Rn, we write

C(Ω) = C(Ω;R) = {u : Ω → R : u is continuous}.

This space is provided with the norm ∥ · ∥∞, see also [15], where

∀u ∈ C(Ω), ∥u∥∞ = sup{|u(x)| : x ∈ Ω}

C(Ω) is a metric space with the metric ρ∞(u, v) = ∥u− v∥∞.

Let us consider a set that contains all the functions with continuous partial derivatives
in Ω ⊂ Rn of order less than or equal to k ∈ N. We denote this set as Ck(Ω). Also, the space
of functions with continuous derivatives of all orders by C∞(Ω). The space Ck(Ω) is a
Banach space with respect to the norm

∥u∥Ck(Ω) =
∑
|α|≤k

sup
Ω

|∂αu| (4.1.4)

We denote the support of a continuous function u : Ω → Rn by supp u = {x ∈ Ω : u(x) ̸= 0},
where Ω is a bounded open set in Rn.

We denote by Cc(Ω) the space of continuous functions whose support is compactly
contained in Ω, and by C∞

c (Ω) the space of functions with continuous derivatives of all
orders and compact support in Ω. The functions that lie on the space C∞

c (Ω) are referred as
test functions.

4.1.3 Hölder spaces

The spaces we saw in Subsection 2.1.2 do not give us an estimation on how quickly the values of
u(x) of a function approach the values of u(y) as x→ y.

We generalise the definition of continuity by adding a power, say α ∈ (0, 1], to the term |x− y|
and define the following

Definition 30. Let Ω ⊂ Rn and 0 < α ≤ 1. A function u : Ω → R is uniformly Hölder continuous
with exponent α in Ω if

[u]α,Ω = sup
x,y∈Ω

|u(x)− u(y)|
|x− y|α

<∞ (4.1.5)
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The quantity [u]α,Ω is a semi-norm.

We note that, a function u : Ω → R is locally uniformly Hölder continuous with exponent α in
Ω if [u]α,Ω′ is finite for every Ω′ ⋐ Ω.

We denote by C0,α(Ω) the space of locally uniformly Hölder continuous functions with
exponent α in Ω. The space C0,α(Ω), where Ω is bounded, is a Banach space with respect to
the norm

∥u∥C0,α(Ω) = sup
Ω

|u|+ [u]α,Ω. (4.1.6)

If u is Hölder continuous with α = 1, then we say that u is Lipschitz continuous.

We extend the definition of Hölder space to the space with functions with continuous partial
derivatives.

Definition 31. Let Ω ⊂ Rn, k ∈ N and 0 < α ≤ 1, then we define the space Ck,α(Ω) which
consists of all functions u : Ω → R with continuous partial derivatives in Ω of order less than or
equal to k whose kth derivatives are locally uniformly Hölder continuous with exponent α in Ω. If
the set Ω is bounded, then the space Ck,α(Ω) is a Banach space with respect to the norm

∥u∥Ck,α(Ω) =
∑
|β|≤k

sup
Ω

|∂βu|+
∑
|β|=k

[∂βu]α,Ω (4.1.7)

4.1.4 Lp spaces

We introduce a more general function spaces, where we consider that Ω is a Lebesgue-measurable
set in Rn. A Lebesgue-measurable set is a set that can be divided into small pieces that can be
measured, and the sum of these measures gives the measure of the whole set. Lebesgue-measurable
sets are important because they allow us to define integrals and other mathematical operations
that can be used to study the behavior of functions on these sets. A function u : X → Y , where
X and Y are measurable spaces, is said to be Lebesgue-measurable if and only if for every Borel
set B ⊂ Y , the set {x ∈ X : u(x) ∈ B} is Lebesgue-measurable in X [5].

Definition 32. For 1 ≤ p < ∞, the space Lp(Ω) consists of the Lebesgue-measurable functions
u : Ω → R such that ∫

Ω

|u|pdx <∞ (4.1.8)

and L∞(Ω) consists of the essentially bounded functions. Intuitively, a function u ∈ L∞(Ω) may
exceed a certain bound on a set of points with zero measure. In this case, u is considered bounded.

Lp spaces are Banach spaces with respect to the norm

∥u∥Lp(Ω) =

(∫
Ω

|u|pdx
)1/p

(4.1.9)

and for L∞

∥u∥L∞(Ω) = sup
Ω

|u| = inf {M ∈ R : u ≤M a.e. in Ω}. (4.1.10)

4.1.5 Sobolev spaces

Sobolev spaces are a class of function spaces used in the field of functional analysis and partial
differential equations. They were introduced by the Russian mathematician Sergei Sobolev in
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the early 1930s. Sobolev spaces provide a framework for studying the regularity of functions,
particularly those involved in solutions to partial differential equations.

The idea behind Sobolev spaces is to introduce a notion of "weak" derivatives for functions
that may not have classical derivatives. In classical calculus, the derivative of a function measures
how it changes at a given point. However, for functions that are not sufficiently smooth, classical
derivatives may not exist. Sobolev spaces address this issue by considering weak derivatives, which
are defined in a distributional sense.

Weak derivatives

Definition 33. Let Ω be an open subset of Rn and f ∈ L1
loc(Ω). We say that f is weakly

differentiable with respect to xi if there exists g ∈ L1
loc(Ω) such that∫

Ω

f∂iϕdx = −
∫
Ω

giϕdx, ∀ϕ ∈ C∞
c (Ω),

where gi is considered to be the weak ith derivative of f .

We can generalise the definition of the weak derivative by introducing the multi-index α ∈ Nn0 ,
then by applying integration by parts α times, we have∫

Ω

(∂αf)ϕdx = (−1)|a|
∫
Ω

f(∂αϕ)dx, ∀ϕ ∈ C∞
c (Ω).

The idea is to "move the derivatives from f to ϕ".

Example 10. Let us consider the function f ∈ C(R) with

f(x) =

{
x, x > 0
0, x ≤ 0

We consider the following integral for ϕ ∈ C∞
c (R)∫

R
f(x)ϕ′dx =

∫ ∞

0

x · ϕ′dx+

∫ 0

−∞
0 · ϕ′dx

= −
∫ ∞

0

1 · ϕdx−
∫ 0

−∞
0 · ϕdx

= −
∫
R
χ(x)ϕdx⇔ f ′(x) = χ(x)

where χ(x) is the step function

χ(x) =

{
1, x ≥ 0
0, x < 0

Distributions

In Sobolev spaces, distributions refer to generalized functions or functionals that act on a space of
test functions.

Definition 34. A sequence {ϕn ∈ C∞
c (Ω) : n ∈ N} converges to ϕ ∈ C∞

c (Ω) in the sence of thest
functions if:
a) ∃Ω′ ⋐ Ω : suppϕn ⊂ Ω′,∀n ∈ N,
b) ∂αϕn → ∂αϕ as n→ ∞ uniformly on Ω for every α ∈ Nn0
The topological vector space D(Ω) consists of C∞

c (Ω) equipped with the topology that corresponds
to convergence in the sense of test functions.
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Definition 35. A distribution on Ω is a continuous linear functional

T : D(Ω) → R.

A sequence {Tn : n ∈ N} of distributions weakly converges to a distribution T , if ⟨Tn, ϕ⟩ →
⟨T, ϕ⟩, ∀ϕ ∈ D(Ω). The topological vector space D′(Ω) consists of the distributions on Ω equipped
with the topology corresponding to this notion of convergence.

Corollary 36. The space of distributions is the topological dual of the space of test functions.

Example 11. The delta-function supported at α ∈ Ω is the distribution

δα : D(Ω) → R

defined by evaluation of a test function at α:

⟨δα, ϕ⟩ = ϕ(α)

Example 12. Any function f ∈ L1
loc(Ω) defines a Tf ∈ D′(Ω) by

⟨Tf , ϕ⟩ =
∫
Ω

fϕdx.

The spaces W k,p and W s,p

Sobolev spaces consist of functions whose weak derivatives belong to Lp.

Definition 37. Let Ω be an open subset of Rn, k ∈ N and 1 ≤ p ≤ ∞. The Sobolev space W k,p(Ω)
consists of all locally integrable functions f : Ω → R such that ∂αf ∈ Lp(Ω). The sobolev space
W k,p(Ω) is a Banach space with the norm

∥f∥Wk,p(Ω) =

∑
|α|≤k

∫
Ω

|∂αf |pdx

1/p

, 1 ≤ p <∞

∥f∥Wk,∞(Ω) = max
|α|≤k

sup
Ω

|∂αf |, p = ∞

The space Hk(Ω) =W k,2(Ω) is a Hilbert space with the inner product

⟨f, g⟩ =
∑
|α|≤k

∫
Ω

(∂αf)(∂αg)dx

Generalization for k → s ∈ R:

∥f∥W s,p(Ω) =

∥f∥p
Wk,p(Ω)

+
∑
|α|=k

∫
Ω

∫
Ω

|∂αf(x)− ∂αf(y)|p

|x− y|n+pµ
dxdy

1/p

,

where s = k + µ, k ∈ N and µ ∈ (0, 1).

4.2 Borg-Levinson theorem

This section deals with the elements of multidimensional Borg-Levinson inverse theory. Its main
purpose is to establish that the Dirichlet eigenvalues and Neumann boundary data of the operator
−∆+q, acting in a bounded domain of Rd with d ≥ 2, uniquely determine the real-valued bounded
potential q [70].

Borg (1946) and Levinson (1949) have provided us with the following result
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Theorem 38. For λ ∈ R and for qj ∈ L∞(0, 1;R), j = 1, 2, let uj(·, λ) be the H2(0, 1)−solution
to the initial values problem

(−∆+ qj(x))uj(x, λ) = λuj(x, λ) x ∈ (0, 1)
uj(0, λ) = 0, u′j(0, λ) = 1.

(4.2.1)

Denote by {λj,n, n ∈ N} the non-decreasing sequence of the Dirichlet eigenvalues associated with
Aq = −∆+ q, obtained by imposing uj(1, λj,n) = 0, n ∈ N.Then, we have the implication:(

λ1,n = λ2,n and ∥u1(·, λ1,n)∥L2(0,1) = ∥u2(·, λ2,n)∥L2(0,1), n ∈ N
)
=⇒ (q1 = q2 in (0, 1)).

where the uniqueness can also be achieved if we replace ∥uj(·, λj,n)∥L2(0,1), j = 1, 2 with u′j(1, λ)
(I. M. Gel’fand and B. M. Levitan).

Theorem 39. Suppose that conditions of Theorem 24 are satisfied, then(
λ1,n = λ2,n and u′j(1, λ1,n) = u′j(1, λ2,n), n ∈ N

)
=⇒ (q1 = q2 in (0, 1)).

4.3 Application of Gauss Error Function on K̂γ(η)

In section 2.1.3 we had to calculate the Fourier transform of

K̂γ(η) =

√
γ

2π

∫
R
e−

γ
2 t

2

e−2πiηt dt

where we will apply Gauss error function over R [58]. To do this first let us focus on the integral

I =

∫
e−γt

2/2−2iπηt dt

by completing the square, one can obtain

I =

∫
e

(√
−γt√
2

−−2iπη√
−γ

)2
− 2π2η2

γ dt

and make the substitution u = −γt−2iπη√
2γ

→ du = −
√

γ
2dt, we have

I = −
√

π

2γ
e−

2π2η2

γ

∫
2e−u

2

√
π

du

We can see that the indefinite integral

I1 =

∫
2e−u

2

√
π

du

is the Gauss error function erf(u). Therefore. Therefore,

I = −
√

π

2γ
e−

2π2η2

γ erf(u)

or
I = −

√
π

2γ
e−

2π2η2

γ erf
(
−γt− 2iπη√

2γ

)
Hence,

K̂γ(η) = −1

2
e−

2π2η2

γ

[
erf
(
−γt− 2iπη√

2γ

)]
R
= e−

2π2η2

γ
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4.4 Bolzano’s theorem with an example for finding numeri-
cally a root for a continuous function - bisection method

If a continuous function defined on an interval is sometimes positive and sometimes negative, it
must be 0 at some point [81].

Bolzano (1817) proved the theorem, which effectively proves the general case of intermediate
value theorem [2], using techniques which were considered especially rigorous for his time, but
which are regarded as nonrigorous in modern times (Grabiner 1983).

If f is continuous on a closed interval [a, b], and c is any number between f(a) and f(b) inclusive,
then there is at least one number x in the closed interval such that f(x) = c. The theorem is proven
by observing that f([a, b]) is connected because the image of a connected set under a continuous
function is connected, where f([a, b]) denotes the image of the interval [a, b] under the function f .
Since c is between f(a) and f(b), it must be in this connected set.

Suppose now that we have guaranteed that there exists a root x0 for a function f = f(x) on the
interval I such that f(x0) = 0. Where exactly is x0 ∈ I? We cannot always find precise the root x0
for every function f , but we can use an approximation method by applying consecutive Bolzano’s
method on smaller intervals that are contained in I such that Ik ⊂ Ik−1 ⊂ . . . ⊂ I1 ⊂ I, where k
is the kth bolzano theorem application on a smaller interval than the previous application. Then
by having smaller and smaller intervals we can approximate the value x0 ∈ Ik ⊂ I.

This method, also called bisection method, is used in chapter 3 for finding the eigenvalues to our
differential equation for a continuous function, however it has a slow convergence to x0. In every
step the error ϵ = |x0 − xn| to this method is cut in half of the previous step [60]:

ϵn+1 =
ϵn
2

=
ϵn−1

22
= . . . =

ϵ0
2n

where xn is the approximation of x0 in the nth step. Suppose that we want to achieve a specific
accuracy, say E, of x0, then the number of steps n that we need is given by the formula:

n = log2
ϵ0
E

The slow convergence didn’t bother us where we had to find the eigenvalues in chapter 3, because
we didn’t applied the method exactly as it it stated, but we borrowed the idea to use it for the
graph that we plotted from mathematica. We found the eigenvalues by zooming in the interval
I of our interest and we continued to zoom in until mathematica didn’t allow us to zoom even
further due to the lack of memory.

Let us give an example where we apply bisection method exactly as it is stated

Example 13. Let us consider the function f(x) = x3−x−1, we are going to use bisection method
to find a root for the function.

1st iteration:

Take I1 = [1, 2], then f(1) = −1 < 0 and f(2) = 5 > 0. By Bolzano’s theorem the root lies
between 1 and 2 and we consider

x1 =
1 + 2

2
= 1.5

then
f(x1) = 0.875 > 0

2nd iteration:
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Take I2 = [1, 1.5], then f(1) = −1 < 0 and f(1.5) = 0.875 > 0. By Bolzano’s theorem the root
lies between 1 and 1.5 and we consider

x2 =
1 + 1.5

2
= 1.25

then
f(x2) = −0.29688 < 0

3rd iteration:

Take I3 = [1.25, 1.5], then f(1.25) = −0.29688 < 0 and f(1.5) = 0.875 > 0. By Bolzano’s
theorem the root lies between 1.25 and 1.5 and we consider

x3 =
1.25 + 1.5

2
= 1.375

then
f(x3) = 0.22461 > 0

4th iteration:

Take I4 = [1.25, 1.375], then f(1.25) = −0.29688 < 0 and f(1.375) = 0.22461 > 0. By Bolzano’s
theorem the root lies between 1.25 and 1.375 and we consider

x4 =
1.25 + 1.375

2
= 1.3125

then
f(x4) = −0.05151 < 0

5th iteration:

Take I5 = [1.3125, 1.375], then f(1.3125) = −0.05151 < 0 and f(1.375) = 0.22461 > 0. By
Bolzano’s theorem the root lies between 1.3125 and 1.375 and we consider

x5 =
1.3125 + 1.375

2
= 1.34375

then
f(x5) = 0.08261 > 0

6th iteration:

Take I6 = [1.3125, 1.34375], then f(1.3125) = −0.05151 < 0 and f(1.34375) = 0.08261 > 0. By
Bolzano’s theorem the root lies between 1.3125 and 1.34375 and we consider

x6 =
1.3125 + 1.34375

2
= 1.32812

then
f(x6) = 0.01458 > 0

7th iteration:

Take I7 = [1.3125, 1.32812], then f(1.3125) = −0.05151 < 0 and f(1.32812) = 0.01458 > 0. By
Bolzano’s theorem the root lies between 1.3125 and 1.32812 and we consider

x7 =
1.3125 + 1.32812

2
= 1.32031
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then
f(x7) = −0.01871 < 0

8th iteration:

Take I8 = [1.32031, 1.32812], then f(1.32031) = −0.01871 < 0 and f(1.32812) = 0.01458 > 0.
By Bolzano’s theorem the root lies between 1.32031 and 1.32812 and we consider

x8 =
1.32031 + 1.32812

2
= 1.32422

then
f(x8) = −0.00213 < 0

9th iteration:

Take I9 = [1.32422, 1.32812], then f(1.32422) = −0.00213 < 0 and f(1.32812) = 0.01458 > 0.
By Bolzano’s theorem the root lies between 1.32422 and 1.32812 and we consider

x9 =
1.32422 + 1.32812

2
= 1.32617

then
f(x9) = 0.00621 > 0

10th iteration:

Take I10 = [1.32422, 1.32617], then f(1.32422) = −0.00213 < 0 and f(1.32617) = 0.00621 > 0.
By Bolzano’s theorem the root lies between 1.32422 and 1.32617 and we consider

x10 =
1.32422 + 1.32617

2
= 1.3252

then
f(x10) = 0.00204 > 0

11th iteration:

Take I11 = [1.32422, 1.3252], then f(1.32422) = −0.00213 < 0 and f(1.3252) = 0.00204 > 0. By
Bolzano’s theorem the root lies between 1.32422 and 1.3252 and we consider

x11 =
1.32422 + 1.3252

2
= 1.32471

then
f(x11) = −0.00005 < 0

Approximate root of the equation x3 − x− 1 = 0 using Bisection method is x11 = 1.32471 with
an accuracy of 4 decimals.
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4.5 An example on the Poincare-Linstedt method

In perturbation theory, the Poincare-Linstedt method is mostly used to find periodic solutions to
a differential equation or in system of equations. The method is based on the assumption that the
solution for the equation

∂tx = f(x, t; ϵ), 0 ≤ |ϵ| ≪ 1

is expressed as

x(t) =

∞∑
k=0

ϵkxk(t) = x0(t) + ϵx1(t) + . . .+ ϵnxn(t) + . . .

where the first term x0 is the solution to the known problem without ϵ.

Example 14. Let us consider a problem from classical mechanics, the equation of the non-
harmonic oscillator, also known as the Duffing equation [43]

m∂2t x+ k(x− αx3) = 0, x ∈ R

where k is the spring constant, m is the mass of the oscillator and α is a coefficient that determines
the non-linearity of the spring, with |a| ≪ 1. By setting as ω2

0 = k/m and ϵ = ω2
0α≪ 1 we obtain

∂2t x+ ω2
0x = ϵx3 (4.5.1)

We assume that the solution to the equation (4.5.1) is given by

x(t) = x0(t) + ϵx1(t) + ϵ2x2(t) + . . .

and by substituting the terms ϵk, we obtain the following system of equations

ϵ0 : ∂2t x0 + ω2
0x0 = 0

ϵ1 : ∂2t x1 + ω2
0x1 = x30

ϵ2 : ∂2t x2 + ω2
0x2 = 3x20x1

ϵ3 : ∂2t x3 + ω2
0x3 = 3x20x2 + 3x0x

2
1

. . .

By solving the first equation we have

x0(t) = A0 cosω0t+B0 sinω0t
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where for our oscillator, without loss of generality, we may consider the initial conditions x(0) =
x0(0) = A and ∂tx(0) = ∂tx0(0) = 0, therefore

x0(t) = A cosω0t

We apply a Fourier transformation on x0(t) and substituting it to the next equation we have

∂2t x1 + ω2
0x1 =

A3

4
(3 cosω0t+ cos 3ω0t)

and we obtain the solution

x1(t) = A1 cosω0t+B1 sinω0t+
3A3

8ω0
t sinω0t−

A3

32ω2
0

cos 3ω0t

where we have to address the fact we have the term t sinω0t that breaks our periodicity. These
terms are called secular terms [44] and are the terms that gives us different results than what we
expected to obtain. The presence of secular terms tells us that if the series converges, it will be
only for a finite period of time

0 ≤ t≪ 1/ϵ

To obtain convergence for every t ∈ R, one must to eliminate terms that are proportional to
cosω0t or sinω0t. Poincare and Linstedt proposed that we have to assume that the frequency ω is
a unknown parameter and expand it to a series of powers of ϵ.

Let us consider
ω = ω0 + ϵω1 + ϵ2ω2 + . . .

Therefore we write (4.5.1) as
∂2t x+ ω2x = (ω2 − ω2

0)x+ ϵx3

Then we obtain the following system of equations

∂2t x0 + ω2
0x0 = 0

∂2t x1 + ω2
0x1 = (2ω0ω1)x0 + x30

∂2t x2 + ω2
0x2 = (2ω0ω2 + ω2

1)x0 + 2ω0ω1x1 + 2x20x1

. . .

By solving every differential equation we obtain the solution

x(t) = A cosωt+ ϵ
A3

32ω2
(cosωt− cos 3ωt) + . . .

where

ω = ω0 −
3A2

8ω0
ϵ+ . . .

where the secular terms were cancelled out and we have provided periodicity of the solution x(t)
with frequency ω that depends on the initial values.
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4.6 Mathematica codes

Figure 4.1: Numerical investigation for the difference of consecutive terms c2n and c2(n+1) using
Mathematica.

Figure 4.2: Plot of function of interest for different intervals of λ. We observe that there are two
functions that behave differently than the other functions and these are the functions of interest
with N = 1 and N = 2, because the term 1/λ3 outweighs the polynomial terms which are at most
degree 2.
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Figure 4.3: Numerical determination of c(0)2k and γ2k(λ) = c
(1)
2k , k ∈ {1, 2, 3, 4, 5, 6}

Figure 4.4: Numerical calculation for the function M(λ) using Mathematica.
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Figure 4.5: Numerical calculation for the coefficient B using Mathematica.
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Figure 4.6: Numerical calculation for the coefficient A using Mathematica.
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Figure 4.7: Numerical evaluation of the differences ∂νϕq1 − ∂νϕq2 , for r ∈ [0, 1] and r ∈ [1, 1.1].
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