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Abstract

In chapter 1, we briefly discuss about inverse problems, the differences with direct problems and
how one may approach an inverse problem in order to obtain a desired estimate. They arise in
various real world problems and applications.

In chapter 2, we consider the work of Bellassoued-Choulli-Yamamoto (2009) for finding a sta-
bility estimate for an inverse problem of the wave equation and a multidimentional Borg-Levinson
theorem from their analytical procedure to produce the log-type stability as it follows in theorems
14, 16 and 17. Their work is mostly based on the properties of the solution of the wave equa-
tion and providing a stability estimate for hyperbolic equation for a relatively open subset of the
boundary and using generalized X-ray and Fourier transformations.

In chapter 3, we present a semi analytical-numerical procedure for verifying theorem 17 for the
simplest case where we have the source of the wave equation depending only on the radius, hence
we have radial symmetry, and our domain is the circle with radius 1.1. For the analytic part we
solve a eigenvalue differential equation with radial symmetry considering the solutions arise from
Bessel’s functions. We apply Poincare-Linstedt method to have the perturbed solution familiar
with Bessel coefficients, hence we got a matrix with 2 arbitrary constants. For the numerical pro-
cedure we used Wolfram Mathematica where we had to find in the graph at least 6 eigenvalues for
the two sources ¢q; and ¢o. After finding the eigenvalues we could find the eigenfunctions and we
applied the Sobolev norm to construct the terms that arise in theorem 17 and we concluded to the
verification of the estimate.

In chapter 4, we provide an appendix for the basic definitions that are not covered in the pre-
vious chapters, and provide some calculations that arise in chapters 2 and 3.
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Chapter 1

Introduction to Inverse Problems

In this first chapter, we are going to briefly discuss about Inverse Problems in Partial Differential
Equations. Usually in the branch of science we construct the equations that determine the be-
haviour of a system we want to study and find a solution. This is usually called a direct problem.
In inverse problems, we are given a solution, and we have to find the equation [29] or the properties
of a source that gives us the measurements in our solution. We will give the general mathematical
formulation and give some examples to clarify the difference between direct and inverse problems.

1.1 What is an Inverse Problem

Three essential ingredients define an inverse problem in this book. The central element is the
Measurement Operator (MO), which maps objects of interest, called parameters, to information
collected about these objects, called measurements or data. The main objective of inverse problem
theory is to analyze such a MO, primarily its injectivity and stability properties. Injectivity of
the MO means that acquired data uniquely characterize the parameters. Often, the inversion
of the MO amplifies errors in the measurements, which we refer to as noise. Stability estimates
characterize this amplification [4].

When the amplification is considered “too large” by the user, which is a subjective notion, then
the inverse problem needs to be modified. How this should be done depends on the structure of
noise. The second essential ingredient of an inverse problem is thus a noise model, for instance a
statement about its size in a given metric, or, if available, its statistical properties.

Once a MO and a noise model are available, the “too large” effect of noise on the reconstruction
is mitigated by imposing additional constraints on the parameters that render the inversion well-
posed. These constraints take the form of a prior model, for instance assuming that the parameters
live in a finite dimensional space, or that parameters are sparsely represented in an appropriate
frame.

The definition of an inverse problem (IP) starts with that of a mapping between objects of
interest, which we call parameters, and acquired information about these objects, which we call
data or measurements. The mapping, or forward problem, is called the measurement operator
(MO). We denote it by 2(. Let X be a functional space for the parameters and ) the space of data,
then we write

y=Uz), forzxeXandye). (1.1.1)

The MO maps the parameters to the data. The spaces X and ) are typically Banach or Hilbert
spaces. Solving the inverse problem amounts to finding points € X from knowledge of the data
y € Y such that (1.1.1) or an approximation of (1.1.1) holds.



1.1.1 Properties we seek for the Measurement Operator

Injectivity. We want to uniquely reconstruct the parameters from the data. To do that we need
to know whether the MO is injective. In other words:

A(z1) = A(w2) = 21 =22, V21, T2 €X (1.1.2)

In real problems the MO most of the times wont be injective yet continuous, most of the time we
approximate the practical MO to a MO that is injective. When A is injective then A~! can be
defined which maps the known data ) to the parameters X.

Stability Estimates. The goal of every inverse problem are the Stability Estimates which
give us information on how errors in the available measurements translate into errors in the recon-
structions. A general form of a stability estimate is:

[y — zallx < w (A1) — Al22)ly) (1.1.3)

where w : Ry — Ry is an increasing function such that w(0) = 0. This function gives an estimate
of the reconstruction error ||x; —z2||x based on what we believe is the error in the data acquisition

|A(21) — A(z2) |y

1.1.2 Well-posed and ill-posed inverse problems

When noise is not amplified too drastically so that the error on the reconstructed parameters is
acceptable, then we say that the inverse problem is well-posed. When noise is strongly amplified
and the reconstruction is contaminated by too large a noisy component, then we say that the
inverse problem is ill-posed [4].

In general, Direct Problems, in suitable function spaces and solution concepts, are well-posed;
they satisfy existence, uniqueness, and continuous dependence on data. Inverse Problems are
ill-posed in general because the solution does not depend continuously on data [41].

1.2 Examples of the Measurement Operator

Example 1. Integral operator. Let X =C([0,1]) =Y and define

A(f)() = / " )y,

Statement: The operator A is injective since the equality of data gives us equality of parameters

Proof.
A(f) = Alg)
/Ox f(y)dy = /Ox 9(y)dy
d% Oz fly)dy = diy Oxg(y)dy

fx)=g(x), VeeR= f=g, Vf,ge X



Example 2. Derivative operator. Let X = C}([0,1]) and Y = C([0,1]) define

A(f)(x) = f(x)

We consider from the fundamental theory of calculus [74] that

fa) =10+ [ s = [ rway= [ Ay
where now as in example 1 for A(f) = A(g) = f=g.

Example 3. 2-D Radon Transform. Let X = C.(R?), Y = C(R x (0, 27)). Define I(s,6), where
s € Rand € € (0,27) as the line with direction perpendicular to u = (cosf,sin#) and at a distance
|s| from the origin (0,0). Let ut = (—sin6, cos6) the rotation of u by Z, then

I(s,0) = {x € R? : . = su + tu’, fort € R}.

Define
A(f)(5.6) = /

f(z) dl = / f(su +tut) dt,
1(s,0) R

which maps a function to the value of its integrals along any line and is called two-dimensional
Radon Transform [75, 34, 21] with many applications in Computer Tomography (CT) [16].

Example 4. The Calderon problem. We introduce the following elliptic PDE [66]:

-V -v(@)Vu(z) =0, ze€X (1.2.1)
u(z) = f(x) x € 0X, -
where X C R"™ is smooth, bounded, open with 0X boundary, v(x) is a smooth coeflicient in X
bounded above and below by positive constants and f(x) is the Dirichlet data. We introduce the
outgoing current function [36]

(@) = () o),

with v the outward unit normal. j(z) is a well defined function, and we can define the Dirichlet-
to-Neumann map, DN for short, it is defined as

A, HY?(0X) — H™Y2(9X)

f(@) = Ay [f](2) = j(x) = 7(33)%(1‘)- (1.2.2)

we discuss more about DN map and its applications on section 2.2.
Let X =C?(X) and Y = L(HY?(0X), H"'/?(0X)). We define the measurement operator

Av)=A, €Y, veX (1.2.3)

The measurement operator maps the unknown conductivity v to the DN operator. The Calderon
problem finds important applications in Electrical Impedance Tomography and Optical Tomogra-
phy [77, 40, 25].

1.3 Examples of Inverse Problems

We introduce some examples from [41, 8] where we demonstrate the difference between direct and
inverse problems.



1.3.1 Direct vs Inverse problems

Example 5. One-dimensional heat equation.

Opu(w,t) = 02u(x,t), (z,t) € (0,7) x Ry (1.3.1)
given with boundary and initial conditions
w(0,t) = u(m,t) =0, t >0, u(z,0)=wug(z), 0<z<7 (1.3.2)
From this we have the solution
u(z,t) = Z ane " 'sin (nx) (1.3.3)
n=1
with o /7
an = — / uo(y) sin (ny)dy
T Jo

Direct Problem: Given uy and T > 0, determine (-, T').
Inverse Problem: Measure u(-,T") and determine (-, 7) for given 7 < T

We have
2 [7
u(z,t) = — Z/ u(y, 7) sin (ny)dye_"2(T_T) sin (nx) (1.3.4)
T Jo
n=1
and set v = u(-, 7) from
w(x,T) = / k(z,y)v(y)dy, 0 <z < (1.3.5)
0
where
2 o= _p2
k ==Y eIy i . 1.3.6
(z,v) - nzz:l e sin (nz) sin (ny) ( )

The inverse problem leads to solving a Fredholm integral equation of the first kind [73, 46]

Example 6. Computer Tomography (CT). Consider a fixed plane through a human body
with p(x1,x2) being the change of density at (z1,22) which we would like to determine from
measurements of intensities | = [(L) of X-rays along lines L in the plain.

Parametrization of L = L 5:

TUY (S0 ) Ly T CR2 R (1.3.7)
To sin 6 cos 0
The attenuation of the intensity I is approximately described by dI = —ypldt with some constant
~v. Then we integrate along the ray and we have

Inil;s= —'y/ p(scosd —tsind, ssind + ¢ cosd)dt. (1.3.8)
R

Direct Problem: Given p (with compact support), compute line integrals.
Inverse Problem: Determine p(x1, z2) from Radon transform

(Rp)(s,9) = / p(scosd —tsind, ssind + tcosd)dt, (s,0) € R x [0, ). (1.3.9)
R

Example 7. Impedance Tomography. Let D C R? cross-section through body and v =
~v(x1,x2) conductivity. Apply current distribution f on boundary dD. The potential u satisfies

V(yVu) =0in D, yd,u= f on dD. (1.3.10)

Direct Problem: Given v and f, solve the BVP for u.
Inverse Problem: Measure u on 9D for many fluxes f and determine v in D.



Example 8. Direct Scattering Problem: Given n € L>°(R3) such D = supp(n—1) is bounded,
wave number k > 0, and the incident field u™*¢(x) = €07 with § € S?, find the total field u = u(z)
with Au + k?nu = 0 in R3 such that u® = u — "¢ satisfies a radiation condition for |z| — oo.
Inverse Scattering Problem: Given u for || — oo for all directions 6 € S2. Find n or at least
the shape of D = supp(n — 1).

1.3.2 Stability estimate with numerical example for an inverse problem

In the last example we find the stability estimate on a matrix, which is on of the most simplest
inverse problems and follow up with a numerical example to visualise this.

Example 9. Matrix Inversion. Let u € R"”, f € R" be n—dimensional vectors and K € R"*"
be a symmetric, positive definite matrix where we have the equation

Ku=f. (1.3.11)
From spectral theory [67], K has positive real eigenvalues

AM>X>.. .20, >0

with eigenvalues k; € R, j € {1,...,n}, therefore we can write K in the form:
K= XNkik| (1.3.12)
j=1

and set Kk = i—l the condition number.

Assume that we measure f° instead of f which is a disturbed f, then
If = £2ll2 < S|IK|| = X (1.3.13)

the operator norm of K is equal to its largest eigenvalue because K is symmetric. We denote as
u? the solution to the equation
Kul = f? (1.3.14)

then we have by subtracting the two equations and taking applying K~ from the left, we have
w—u® =Y N kk](f = f°) (1.3.15)
j=1

n 3 9 B
= llu—a’I5 =D A2k 15 K] (F = SO < 22205 = £ (1.3.16)
j=1

The last comes from the orthonormality of eigenvectors, Cauchy-Schwartz inequality and A\, <
o= AT <AL Vi e{l,.. . n)

= JJu—ulla < MU F = Flla < k6. (1.3.17)

Notice that, in worst case scenario an error § from data is amplified by the condition number « of
K € R™". A matrix with large & is called ill-conditioned [57].

Let’s assume a numerical example, where

1 1
K:(l 1001)
1000



which has the eigenvalues

1 1
N=1l+—— 1+ —=
7= 3000 * 30002

then k ~ 4002 > 1 and ||K|| =~ 2. For known f = ! ) the solution of Ku = f is given by the

1

(1 . s 99/100 . .
vector u = ( 0 ) We assume a perturbation f° = ( 101,100 ) The solution to the equation
s PR s —19.01

Ku® = f° is given by the vector u° = 20 . We have

sl =r_ve

| K| 200
and
u—ul| ~ 20v2

then we observe that s

M ~ 4000 =~ K

1.3.3 Inverse problems before it was cool

The effects to discover the causes has concerned scientists for centuries. Yet, that didn’t stop them
from evolving theories by observations and come up with mathematical models that are used up
to this day. A historical example is the calculations of Adams and Le Verrier which led to the
discovery of Neptune from the perturbed trajectory of Uranus via Newton’s laws [59, 37]. However,
a formal study of inverse problems was not initiated until the 20" century.

One of the earliest examples of a solution to an inverse problem was discovered by Hermann Weyl
and published in 1911, describing the asymptotic behavior of eigenvalues of the Laplace—Beltrami
operator [82]. Today known as Weyl’s law, it is perhaps most easily understood as an answer to
the question of whether it is possible to hear the shape of a drum. Weyl conjectured that the
eigenfrequencies of a drum would be related to the area and perimeter of the drum by a particular
equation, a result improved upon by later mathematicians.

1.4 Conclusion of Chapter 1

As we seen from the examples, the inverse problems demand the knowledge of a solution or its
properties via measurements for one can assert their cause. From the solutions, it is possible to
have measurements with error where we have to construct our models in such a way to describe
the reality, even by using approximating methods.

In the next chapter, we introduce the work of Bellassoued-Choulli-Yamamoto on finding a sta-
bility estimate for an inverse problem of the wave equation and a multidimentional Borg-Levinson
theorem and how they come up with the log-type stability.



Chapter 2

Stability estimate for an inverse wave
equation

2.1 Preliminaries

2.1.1 The problem

We consider the stability in an inverse problem of determining the potential ¢ entering the wave
equation in a bounded smooth domain of R? from boundary observations [7]. We want to prove
a log-type stability estimate in determining ¢ from a partial Dirichlet to Neumann map where ¢
is known in a neighbourhood of the boundary of the spatial domain with an additional condition.
Let u = u(t,z) € H*(Q), where Q = (0,T) x Q, T > 0 is fixed, @ C R? a bounded domain with
smooth boundary I'. The function v satisfies

u(0,-) = 9yu(0,-) = 0in Q, u(t,-) =0 on X (2.1.1)

where ¥ = (0,7) x I'. Let v = v(t,z) € H?*(Q) be the solution to the following backward wave
equation
02v — Av+g(x)v =0 in Q,
o(T,) =0, dw(T,)=0 inQ, (2.1.2)
v=~h on X.

We prove the following identity

Lemma 1. Let v = v(t,x) € H?(Q) be the solution of (2.1.2) and v € H?(Q) that satisfy (2.1.1),
then it is true that

/ (02 — A+ q)uv dedt = —/ vO,u dSdt. (2.1.3)
Q )

Proof. To prove (2.1.3) we use integration by parts and Green’s formula with respect to variable
x. We break our original integral to three integrals, that is:

T
/3t2uv dtdacz/da:/ (0Fu)v dt
Q Q 0
T
_ / de ([atuv]OT / Opudy dt>
Q 0
T
Q 0
T
:—/ dx [u@tv]g—&—/ dac/ udiv dt
Q o Jo

:/ ud?v dtdz.
Q

10



The second integral:

/Auv dxdt = / dt/ Auv dz
/ dt/ V - Vu)v dx

T
/ dt [ V- (Vuv) dar—l—/ dt Vu Vv dx
Q

T
:—/ dt —vdS—l—/ dt/ (uVv) —ulv) dx
o) aV

/ dt/ (%v—avu> dS—/ uAv dxdt
o0 Q

= 7/ (vOyu — udyv) dSdt 7/ ulAv dzdt.
) Q

Therefore,
/ (02 — A + q)uv dadt = / O2uv drdt — / Auv dxdt —|—/ quv dxdt
Q Q Q Q

:/ ud?v dtd:c—/ (VoL u — ud,v) det—/ uAwv da:dt—i—/ uqu dxdt
Q z Q Q

= / w (0} — A+ q)v dadt — / (vOpu — ud,v) dSdt.
Q b))
From (2.1.2), we have [, u (97 — A+ q) v dzdt =0 and
—/ (vO,u — ud,v) dSdt = / ud,v dSdt — / vO,u dSdt
) ) )
where, from (2.1.1), [, ud,v dSdt = 0. Finally, we conclude that
/ (02 — A+ q)uv dedt = / uw (0} — A+ q)v dedt — / (vO,u — ud,v) dSdt
Q Q

b
—/ vo,u dSdt.
b

2.1.2 Solution for an inverse problem for the wave equation by Rakesh
and Symes

From now on we consider as C%#(£2) be the usual Holder space with 0 < u < 1 and fix g9 € C%*(Q)
and consider the set

X(M,w) = {g € C*"(Q): llllL=(0) < M, q(x) = qo(2) in w}, (2.1.4)

where w C 2 is an arbitrary neighbourhood of T" and M is a given constant. We refer a result on
the existence of geometric optics solutions which is noted in [61].

Lemma 2. Let ® € C°(R?), § € S¥! = {x € R%; |z| = 1}, 0 > 0 be arbitrarily given. Then the
equation
O?u— Au+q(x)u=0 in Q

11



has a solution u € H%(Q) of the form
u(t,z) = ®(z + t0)e @0 L U (¢, z;0) (2.1.5)
where W, (¢, x; o) satisfies
U,(t,z;0) =0, (t,z)€X,
U, (s,z;0) =0 Vy(s,z;0) =0, z€Q, s=0orT,

and
ol|We(, 5 0)llL2@) + IV¥q( 5 0)l2 (@) < ClI®l a3 wa), (2.1.6)

where C'= C(T,, M) is a constant and M is the essential boundary from (2.1.4).

Proof. We recall the work that is mentioned in this paper, [61]. Let © C R™ be a bounded domain.
We consider u = u(z,t) is a solution of the problem

O?u — Ayu+ q(x)u = in Q x [0,7]
u(z,0) = o(x), Ou(z,0) = P(z), ifxeQ (2.1.7)
dy u(x t) = f(x,t), on 99 x [0,T]

We also consider that the function v = v(x,t) solves

02v — Ao + q(z)v = 0, in Q% [0,7]
v(x,T) = dww(x,T) =0, LAY (2.1.8)
ov(x,t) = g(x,t), on 09 x [0, T

Le us define the Neumann-to-Dirichlet map:
Ay : C(0Q x [0,T]) — D'(0Q x [0,T7)
f(‘rat) = U sax 0,7

We can use another notation for u as u = ug,y that solves (2.1.7). We consider ug,o that solves
(2.1.7) with ¢(x) = ¥(x) = 0 and a4 4 that solves (2.1.7) with f(x,t) = 0. We claim that

Ag0,0(f) = Ngp,0(f) — Ngp,4:(0)

Proof. 1t is true that

Agp0(f) = ug yloax,r(z:t)
q,o o(f) = wo,0loax,r(z,1)

Ag,,9(0) = tg ploaxo,r)(z,t)

We notice that
vy — Oyligy = fx,t) =0 = f(x,t) = dyuoo
that is
Oy (Ng,0,0(f) = Ng,0(0)) = OuAg0,0(f)

which proves our claim. O

As in [61], it states that we reformulate our problem determing ¢(z) knowing the bilinear form
B, defined by

By(f,9) = / dSz (fv+ gu) (2.1.9)
00x[0,T]

12



It is

ou ov
dS (fv+ gu :/ ds (v+u>
/agx[o,T] (f gv) a0 x[0,T) ov ov

We apply Green’s identity [32]:

/ as v@ = / Vu- Vv dx —|—/ vAu dz (2.1.10)
o0 v Q Q

and we obtain

/ ds (8uv + %u) = / Vo - Vu dadt —|—/ uAv dxdt
20x[0,T] o 0 Qx[0,7] Qx[0,T]

—|—/ Vv - Vu dzxdt —|—/ vAu dxdt
Qx[0,T] Qx[0,T]

= / (2Vv - Vu + uAv + vAu) dzdt
Qx[0,T]

From (2.1.7) and (2.1.8) we have

Au = 0?u+qu and
Av = 0?v + qu

Therefore,

B, - / . (2Vu - Vo + ud?v + quo + v0u + quv)
wx[0,T

T
= 2/ dt/ <Vu - Vv + quv + % (uafv + v8§u)>
0 Q

/QX[O,T]
1 T 1 T
f/dm/ dtu@fv—kf/dx/ dt vO}u
2Ja  Jo 2Ja Jo

where we use integration by parts in these terms

The integral
(ud}v + vofu)

N | =

can be rewritten as

T T T
/ dt ud?v = [u@tv]g —/ dt Opudsv = —/ dt Oyudpv
0 N—— 0 0

=0
Overall )
f/ (u@fv + vafu) dxdt = —/ Owu - Opv dadt
2 Jaxo,1) Qx[0,T1]
and we obtain the bilinear form

B,(f,9) = 2/ (Vu - Vv + quv — dyu - dyv) dadt. (2.1.11)
Qx[0,77]

Given ¢o and ¢; with By, = B,, and define ¢(z,s) = sq1 + (1 — s)qo, for s € [0,1] and add an

additional property
) = dyu( ) on 09 x[0,T]
=0

51 Yty 82
e s1) = 00(-, -, 82) on 99 x[0,T] (2.1.12)
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Vs1, 82 € [0,1]. According with [61], with the same tools as we used to prove (2.1.11) starting with
By, = By, that

0= By, (3VU(S = l)lanx[o,T]’aVv(S = 1)\anx[o,T]> — By, ((%u(s = O)\anx[o,Twal’U(S = O)\anx[o,T])

Lod
:/0 dsng (6l’u(s)|anx[o,ﬂ7al’v(s)lanx[o,ﬂ)

We apply (2.1.11) and we obtain
V' da
0= / ds—/ dzdt (Vu - Vv — du - Opv + quu)
o ds Jaxjomn
1
= / ds/ dzdt (Vu-Vv+ Vu-Vo— 0 - 0w — Ou - 0y + quo + quv + qui)
0 Qx[0,T]
where i(f) =f
ds B
1
0= / ds/ quu
0 Qx[0,T7]
1
+ / ds/ dzdt (quv + qui + Vi - Vo + Vu - Vi — 041 - Oy — Opu - O40)
0 Qx[0,7]

We note, from [83], that (0 = 97 — A is the d’Alembert operator. We apply to the previous equation
Green’s identity (2.1.10) to the terms that have the operators V and integration by parts to the
terms that have the operator 9;. We have

1 1 1
o/ ds/ dxdt (Vi - Vo) :/ ds/ dSq (vO, 1) —/ ds/ dxdt vAG
0 Qx[0,7] 0 89x[0,T) 0 Qx[0,7]

1 1 1
0/ ds/ dzdt (Vu - V) :/ ds/ dSq (ud,?) —/ ds/ dxdt uAv
0 Qx[0,7] 0 89x[0,T) 0 Qx[0,7]

1 T 1 1
o—/ ds// dt@m-@tv:—/ ds/dm[@ﬂlw]g—i—/ ds/ dxdt vOtu
0 aJo 0 Q = Jo Qx[0,T]
=0

1
:/ ds/ dxdt vO}u
0 Qx1[0,7]

1 T 1
° —/ ds/ / dt Oyu - 00 = / ds/ dxdt uﬁff).
0 aJo 0 Qx[0,T]

We combine our four identities with our previous equation and we use d’Alembert operator to have
a more compact result

1 1
0= / ds/ quu + / ds/ dzedt (w(O+q)o+ o0+ ¢)a)
0 Qx[0,7] 0 Qx[0,7]

1
+ / ds/ dSq (ud, 0 + v, 4) .
0 90x[0,T]

From (2.1.7) and (2.1.8) we have

d
(O q)i=0= O+ g)i = —qu

d
%(D—l—q)i} =0= (04 q)v = —qu.
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From (2.1.12) we have that g—;‘ and % have the same value for every s € [0, 1], therefore

9u _ 00 _
o ov
Therefore we have acquired the result
1
0= / ds/ quv (2.1.13)
0 Qx[0,T]
where we can also extend ¢g and ¢, outside (2 as
-] g z el
=V 0 a2eRrR"\Q

then we can extend the equation (2.1.13) as

1
O:/ ds/ quv (2.1.14)
0 R7 x[0,T]

with ¢ = 0 outside Q and ¢ = ¢ — qo. In [61] it is proved that ¢ = 0 in R™ and that is done by
considering § € R™, |6] =1, 0 > 0, ® € C3° and a solution u of the form

u=u(t,r) = &(zx + t0)e @) L U (t,2;0)

where combining it with (2.1.7), also (e’ @0+t = (12462 — i2052|0|?)e’(*0+1) = (0, we have
(O+q) ¥, =—(0+q) (<I>(;z: + to)e“’(“’“)) = — 7T (O + q)®(z + t0)

From the solution u we have that ¥, =0 on ¥ and ¥, = 0,¥, =0 for x € Q and s =0 or T". Also
we have
1Vl 2(@xpo,m) < Cfo (2.1.15)

where C depends on T, || ®||¢csrn) and Vol(£2). Where also one can derive the H? regularity of ¥,
and obtain
o1l ) + 90l 22@) < €1l s (2.1.16)

Which concludes the proof of the lemma. [

2.1.3 Stability estimate for a hyperbolic equation for a relatively open
subset of I

We choose p > 0 to be some arbitrary distance, such that
w(p) = {z € Q; dist(z,T) < p} Cw (2.1.17)
and, for 7 > 0, we set
wr =(0,7) Xw, wr(p)=(0,7) X w(p) (2.1.18)

The following lemma shows a stability estimate in the continuation of the solutions of a hyperbolic
equation from lateral boundary data on an arbitrary non-empty relatively open subset I'g of T'.
L.e. The set I'y is a part of the boundary I'.

Lemma 3. Let ¢; € X(M,w) and T be sufficiently large such that 7/3 > Diam(Q2). Let w € H?(Q)
be a solution of the following boundary value problem

{ (0F —A+qi(z)w=F in Q, (2.1.19)

w=0 on X.
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where F' € L?(Q). Then there exists positive constants C, Ty > T/3, u and 7o such that the
following estimate holds

C
[l 1wy (20)) € —=lwllm2@) + €7 (1F |2 (wr) + 00wl L2(20)) (2.1.20)

val
for any v > 9 where g = (0,T) x I'g and C = C(Q,w, T, M).

Proof. We do a substitution in T by 27" and shift the time variable by T', we are reduced to the
case Q = (=T, T)x Q, X = (-T,T) x I" and

wr = (—7,7) xw, wr(p) = (-7,7) X w(p).
and assume that w € H2(Q) is a solution to (2.1.9), where F' € L?(Q) that:

Pw— Aw+ q1(z)w = F(t,z) inQ
w(z,t) =0 on % (2.1.21)
We will prove (2.1.20) for the solutions of (2.1.21). We set

w(p1,p2) = {z € Y p1 < dist(z,I') < p2} CQ, p1 < p2 <8p,

where the the distance 8p is defined in (2.1.17) where instead of p we have 8p and, for r > 0,

(=r,7) xQ, wr(p,3p) = (=r,7) x w(p,3p) (2.1.22)

0,
r (=r,r) x T, Yo, = (—r,7) xTy.

Let 8 € C§°(R) be a cut-off function defined by

_ 17 |t| S T - 27
o(t) = { 0 [U>T-1 (2.1.23)

We introduce, from [65], the partial Fourier-Bros-Iagolnitzer transformation that it is defined for
u € S(R™) with R = R" x R™ =R x R", § is the space of rapidly decreasing functions , by

Tu(zq, Ty, \) = K()\)/e_%(z“_y“)zu(ya,mb) dyq = Tu(t +is,x,\) (2.1.24)
where z, € C", z, e R™, A > 1, K(\) = 2=% (%) and 2 =05 z5; Inour case, it isng = 1

and n, = n with n’ = ng+n, = 1+n > 1. Therefore, 2z, € C* = C, z;, = z € R"™ = R"™. Assume

that z = t 4+ is € C that is reffed to our paper, y, =y and A =~. K(v) = 2-3 (%)§ = \/g We
define .
®(za) = 5 (Imzg)*, 24 € C™ (2.1.25)

. . 2 . . . .
In our case it is ®(z) = %-. For our case we have an improved version of the estimate, that is

[DITu(t +is,2,7)| < CK (7)) =M (z) =N @@= Resmwpl” . qup | D (- 2) v

(2.1.26)
where () = (1 4+ -|?)"/2, a € N™. We apply (2.1.24) to the function @ = 6 - u and integrate over
all R over the time variable ¢ — y and obtain

Uy 1 (5, x) = T2, ) \/;/ 309 (y)u(y, z)dy (2.1.27)

For our (2.1.26) estimate, we fix M, N = 0 then the H" (R"+) norm becomes L?(R). Therefore we
have

DT iz, 2)| < Cy | 2t /2e= 3 (isttsupp@w)® gupy || DOy, 2)|| 12 (). (2.1.28)
27T xEeR™
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We assume that T is sufficiently large, s € [-3r,3r], t € [fg, %] and choose a cut-off function y
with 0 < x <1, x € C*(R"), and

=15 reatomm (2.1.29)

we assume that w = w(t, z) is a solution to (2.1.21) and we set u(t,z) = x(z)w(t, z). For (z,t) €
Q= (=T,T) x Q we have

02u — Au + qru = 92 xw — Axw + ¢ xw
where Ayw = [A, x]w + xAw. Hence
O — Au+ qru = x[0] — A+ q1]w + [A, x]w

Applying (2.1.21) for (t,x) € @, we obtain

atQu — Au+ qQu = [A7X]w + X(Z‘)F(LLL‘) in Q = (_Tu T) x (2 1 30)
u(t,z) =0 nY=(-7,T)xT o
Let us define the elliptic operator by
P(x,D, ) =02+ A, = q1(x) (2.1.31)

3z

from z =t +is = = i, therefore

0. [ bgute) dy = [ 300 - i) dy
=—q e~ 3(Ev)’ u(y, T
X ), Ow)uty.a) dy
i [ e EE 0, ) uly.2)) dy

We have
O ==\ [5= [ ROl 2) dy
where
85 (0(y)uly, ) = 0" (y)uly, x) + 26’ (y)dpuly, ) + 0(y) Dy u(y, )
Therefore,

uy p = \/;/ FE02(0" (y)uly, 2)+20 (y)euly, x)) dy— \/%/ FE0%(9(y)Duly, ) dy
and
(A—q)uqy s = \/Zﬁ/ FE=0%9(y) (A — q1)u(y, x) dy

Puyy = \/;/ FE0N (9" (y)uly, x) + 26 (y)du(y, ) dy
\/;/ BE00(y)(0F - A+ qu)u dy

\/;/ 2N (y)uly, 2) + 20/ (1) Opu(y, 7)) dy

o [ b (Al ) + )Pl )
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We set as

Ryi(s,2) \/; / (0 (y)uly, ) + 20 (1) Oyuly, 2)) dy (2.1.32)

and

Gralos) =\ [ U (B ulor) X OF ) by (2139

Puyi(s,2) = Ryi(s,2) + Gy e(s,x), (s,x) € Qap

and we obtain

Uy i(s,2) =0, (s,z) € X3, (2.1.34)
Therefore, there exists n > 0, independent of T, such that
_ T T
Rl < Ce™Tlullgy, Vi € [—2, 2} | (2.1.35)
Furthermore, there exists a > 0, independent of T, such that
T T
||u%t||H1(Q3T) < Cea’YHUHHl(Q) Vvt € |:—2, 2:| . (2136)
For (s,x) € ws,(6p) we have x(z) = 1, therefore
“_W/zw/ “3E0%(y) Py, x) dy = F 4(s,)
G, tll 22 (wsn(60)) = 1 Fy ¢l L2 (w30 (6p))
applying (2.1.36) we have
G-, = 151l 22w 6p)) < CENE | L2 (7)) - (2.1.37)

We consider K a compact subset in (—3r,3r) x Q and ¢ € C' with V; ,(s,z) # 0 on K. We
assume a function ¢ = ¢(s, x) such that

B(s,z) = e P8 85 0 is sufficiently large (2.1.38)

We refer to [48] for the proof of the following estimate:

drp > 0:
. . 2.1.39
Crllemullyy @, < N Pullta,, ) + Tl (2139
where u € Cg° and 7 > 9.
We set
HUH?LI}(QM) = HVSJ‘U'HQL'L’(QBT) + TZHU'”%,?(QM) (2.1.40)
and
||u||%{;(z3r) = ||u||§{1(zsr) + T2HU||%2(23T) (2.1.41)
Also we introduce the cut-off function X where 0 < X <1, X € C*°(R), and
_J 0 ifp< < p >9
X(p) = { 1 ifpe [ 3 (2.1.42)

We now give some estimations that were proven in [7] without their proof near the boundary T'g
and w,.(p, 3p). These estimations where necessary for proving (2.1.20) and to provide us with some
estimations near the boundary.
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Estimation near I’y

Let us estimate w.; in a ball B; = B(zM,r) = {z € R";|x — (V)| < r} over a small interval
(—r,7) in the given part 3¢ 3, = (—3r,3r) x Ty C Xg,.

Lemma 4. Let u,; be a solution to (2.1.34). Then 3B} = (—r,r) x By C Q3, and 1y € (0,1)
such that

171/0

(2.1.43)

Iy il 1) < C (1R ll 22 (@, + 1Pyl 22 (wsr (7)) T 100unillL2so )™ (sl (s,))

for some C' > 0.

Estimation in w,(p,3p)

Extending B} to w,(p,3p). We assume that () satisfies dist(x(),T) > 4r and B(zU*Y,r) C
B(2Y9),2r). We set _
Bj = (-rr)x BaW,r), 2<j<N

Lemma 5. Let u,; be a solution to (2.1.34). Then exists constants v € (0,1) and C > 0 such
that

v 1—v
sl o,y < (IR tllzz@an) + 1B el + Nl (el )™ (21.44)

VEk>1.

The estimate (2.1.44) is an improved version of (2.1.43). By applying lemma 4 from [48] we
have for a < B (a1 + A)”, YV = (0, "]

an <277 BV (ay + A)Y

where ay = |[uytllm1(Br), A = Ry ellrz (s + IXFy tll22(0s,), B = [lunellmr(q,,), one can derive
our next lemma
Lemma 6. Let u,, be a solution to (2.1.34). There exists a constant C' > 0 and u = vV such
that
n 1—n
[ty | £t (w0, (0.30)) < C (1Rl L2025, + IXF5 el L2025, + 1.l 11 (B7)) (||uv,t||H1(Qgr))( :
2.1.45

where v € (0,1) is the constant given in Lemma 5.

We introduce the Carleman estimate for v € H?

[0l vy < Cllollg xy (107 + A)oll L2 x) + ol )
By applying that to the function @ (s, ) = xo(x)u,(s, x), where xo is a cut-off function, with

0<x0<1, xo0€C®R") and

1 ifzew(2p)
Xo(®) :{ 0 ifxeﬂ\wé)?)p)

we have the following estimate

Lemma 7. Let u,: be a solution to (2.1.34) and ry = /2. Then exist constants C' > 0 and
k € (0,1) such that
1—
[t ll b1 (g 200) < C (IR ll 260,y + 1Ey il 2 (o) + el o 2,300)” (Nl 0s0)
(2.1.46)
VYt e (=T/2,T/2).
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The next lemma can be obtained by applying Young’s inequality [20, 26]
Proposition 8. Let a,b > 0 and v € [0,1] then

a7y < (1 —v)a+vb

where equality holds if and only if a = b.

We apply Young’s inequality to lemma 6 and lemma 7 and applying estimates (2.1.35) and
(2.1.36) we get a better estimation that contains terms ~ e7.

Lemma 9. Let u,; be a solution to (2.1.34). Then there exists C' > 0, a > 0 and sufficiently
large 7" > 0 such that

Ol g 2o < € Nl3r1g) + €77 (10vl22(0) + IF 12 007 ) (2.1.47)

vte[-%, L]

Finally, we can apply lemma 9 to our solution u € H?(Q) of (2.1.30) and we set u.(t,z) =
Uy,(0,z). From (2.1.27) we have

w (t,x) = \/éZru/lleg(ty)20(y)u(y,10 dy = (K, * 0u)(t, )

where

We introduce the Fourier transform [80, 69|

Definition 10. The Fourier Transform of a function u=u(x) is defined by

mm:fMMWﬂ:AMMEWmm (2.1.48)

We denote by u(n,z) the Fourier transform of w(t,z) with respect to ¢. By the convolution
theorem [71, 85], we have

Ou(n,z) — @5 (n,x) = Bu(n,x) — K, 0u = (1 — K,)fu(n, z)

1—ﬁm:uwl/a%ﬂmmt
27T]R

To find f(j,(n) we use Gauss Error Function [19, 39| (see Appendix section 4.3), hence

where

_— 2n2y2

Ky(n)=e¢ "7

From the inequality e® > x + 1, Vo € R we set z = —272n? /v we obtain

1 — 270" /v

5 < /)y

and apply |a — b] < |a| + |b] we have
11— e 200/ < |0 4 |e 2" /1| =1 — e 2™ /2

Therefore -
11— e/ <1470 )y < n?/y
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since 72/ < 1. Therefore, we have shown that
2
= n
1= Km)l = =

else

_Uy(n, )
Ou(n, )

We set Ty = T'/2 — ro which is for § = 1, therefore

"’ | 7 G
1 < o = ‘Gu(n,x) —uy(n,z)| < 7|9U(77750)|

c
lu =y |20, 20)) < =l (@)
1 ﬁ

and similarly

c
lw =yl r, 20)) < —=llull (@)
1 \ﬁ

Therefore,
el a1 ry 20y < C {1t = 03 a1 omy 2+ 173, 20
1
< € | J2 il + sl e |
By applying Cauchy’s formula, as it has been done in [6], we obtain

ur [l (o, 20)) < 6“7”“\@11(@) +e" T(lullz2zo) + L2 e (70)))

which concludes the proof to lemma 3. O

2.2 Dirichlet to Neumann map (DN map)

2.2.1 Initial Boundary Value Problem (IBVP) for the Wave Equation

In this section our aim is to prove that the IBVP (2.1.2) has a unique regular solution in order to
insure that the operator
Ay HYY(E) — L2 (%)
= Ay(f) =0y

where HV1(X) = L?(0,T; HY(T')) " H'(0,T; L*(T)), is bounded.

This operator is called Dirichlet to Neumann map (DN map) [72] and has many applications.
In Acoustics is used to model the behavior of sound waves in a variety of media, including air,
water, and solids [27, 24]. In Electromagnetism is used to study the propagation of electromagnetic
waves in various materials, such as metals, dielectrics, and plasmas [49, 50, 22]. In Medical imaging
is used to reconstruct images of the interior of the body from measurements made on its surface,
such as in magnetic resonance imaging (MRI) and computed tomography (CT) scans [3, 84].

(2.2.1)

To prove that (2.2.1) is bounded we consider the following IBVP

Zu—Au=F in @
u(0,-) =ug, Ou(0,:) =u; inQ (2.2.2)
u=f on 3.

IBVP (2.2.2) is just an IBVP of the wave equation having q(x) = 0, f € HYY(X), ug € HY(2) and
uy € L?(Q). We recall the theorem that it is stated in [47].
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Theorem 11. Let F € LY(0,T;L3(2)), up € HY(Q), u; € L*(Q) and f € H>}(X). We assume
the condition g(0,-) = ug|p. The IBVP (2.2.2) has a unique solution u € C([0,T]; H}(Q2)) such
that d;u € C([0,T]; L*(Q)) and d,u € L?(X). Furthermore, there exists a constant C' = C(T'), such
that

lulleo, ;1 () +10sulleo,17;L2 () FHOvull L2(z) < C (”FHLl(O,T;L?(Q)) + lluollmr ) + luallz) + 1 flara ) -

(2.2.3)
Next, we introduce the following IBVP
2u—Au+q(x)u=F in @
u(0,-) =0, 9u(0,-) =0 inQ (2.2.4)
u=20 on .

and have a similar result with the previous IBVP but this time for ¢ € L*(2) and up = u; =0 = f.

Theorem 12. Let F € L*(Q) and g € L>(Q2). Then the IBVP (2.2.4) has a unique solution u €
C([0,T]; H'(£2)) such that dyu € C([0,T]; L*()) and d,u € L*(¥). Furthermore, if ||g|| (o) < M,
M>0, there exists a constant C' = C (T, M), such that

lulleqo.rymr @) + 19eulleqo.rrz ) + 10vullL2sy < ClIF L1 0,7:220))- (2.2.5)

A combination of the previous theorems will let us deal with the following IBVP and get another
version of theorem 11.

Consider a more general IBVP

Pu— Au+q(z)u=F in Q
U(O, ) = Uo, atu(07 ) = U in Q (226)
u=f on X.

where g € L®(Q), f € HY1(X), up € HY(Q) and u; € L*(Q).

Theorem 13. Let ¢ € L*(Q) and ||q||p~@) < M, M>0. if F € LY(0,T; L*(Q)), uo € H'(Q),
up € L*(Q), f € HY(X) and g(0,-) = ug|r then the IBVP (2.2.6) has a unique solution u €
C([0,T); H*(2)) such that dyu € C([0,T]; L*(Q)) and d,u € L*(X). Furthermore, there exists a
constant C' = C(T, M) such that

ulle (o1 @) FlIOeulleo,rrsz2 ) HOwull L2y < C (IF L o,m522(0)) + luollm @) + HU1HL(2<Q> +) [flleracsy) -
2.2.7

Proof. Assume that v is a solution to (2.2.2) then the following estimate holds
1olleqto.zy:1 @) HIOwlleqory22 @) HIDuvll 2wy < C (1 pro,mizz @) + lwollar@) + luallz@) + 1 i)
where C' = C(T). Consider the IBVP

2w — Aw + g(z)w = F = —q(z)v in @
w(0,z) =0, Ow(0,2) =0 in Q
w =0 on X.

where from theorem 12 the IBVP has a unique solution w € C([0,T7]; H(€2)) where the following
estimate holds

lwlle(o, 1,11 )) + 10wlleo,1);22(0)) + 10wl L2y < CIF L1 0,m5020)) = Cllavll o o,1;02(9))
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We recall that [|q|| <o) < M hence, by applying Hélder’s inequality we obtain

T
Cllavlizro,7522(0)) < Clldallo,mr20)) IvllLro,rir2@) = CllallL= (o) (/ dt) ol 22 0,7522(2))
0

therefore
Cllgllror;z2) < C- M- T - [[v]|Lro,7;22(0)
hence we obtain the estimate
lwlleqo,ry:m @) + 10cwlleo,ryL2(0) + [[Ovwllesy < C - M -T - |[v| L1 (0,7;L2(2))
< C-M-T-(Jolleqorya @) + 10w leoryzz@) + 1050 r2)
Hence the solution v = v +w € C([0,T]; HY(Q)) with d,u € C([0,T]; L3(Q)), d,u € LA(X) is a
unique solution to the IBVP (2.2.6). For the estimate of the solution u = w + v, it is true that

lulleqo, ;a1 (@) + [10culleo,r);L2)) + 10vull 22y < vlleo, 101 @) + 10:vlleo, 11522 @) + 1000l L2(x)
+ [lwlleqo,m;m1 () + 10:wlleqo,m;z2 ) + 10vwl L2(s)

For simplicity, we set as

Ey(T) = |lulleo,r;m1 ) + 19eulleo,mzz) + 10vullL2(s),

Ey(T) = [[lleo, ;51 (92)) + 10:0lleo,r;22 ) + [100v]| L2(s),

Ew(T) = |[wlleo.rym @) + 10:wlleqoriz2 @) + 10wl L2(s) and

[(Fs w0, ur, Il = [|Fl| 0,1 r2(0)) + l[uollze) + luillzz@) + 1 fllm1as)

We combine the following estimates that we obtained

E,< E,+ Ey,
E,<C-M-T-E, and
Ev S CH(F,U(),Uhf)”

We obtain R
E, < (1+CMT)E, < C||(F,uo,u1, f)||

where the constant C' is the same as C' = C(T, M), thus we conclude our proof. O

2.2.2 Partial DN map

Let us consider Iy an arbitrary non-empty relatively open subset of I' and set g = (0,7) x Iy,
the partial DN map is defined as

AL HYL(E) = L2(S)

[ AL(F) = Byugls,. (2.2.8)

where Ag is bounded because A, is also bounded.

The results in the following section provide a log-type stability for the inverse problem deter-
mining the potential ¢ from the partial DN map Ag.
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2.3 Theorems that provide a log-type stability

In this section we provide three main results from [7], which gives us log-type estimates for the
inverse problem.

Theorem 14. There exists C > 0, § € (0,1) and sufficiently large T such that
lgr = aall 1720y < C (I1A5, — AL II° + [og (1AL, — AL IDI7°) (2.3.1)
for any q1, ¢ € X(M,w).

If q1,q0 € H*(Q) for s > d/2 and ||g;|| gy < M, j = 1,2, then there exists ¢’ € (0, 1) such that

a1 — aall ey < C (A, = A%, 1% -+ log (A3, — A%, 1)1™). (23.2)

The consequence of theorem 14 provide us with the following uniqueness result

Corollary 15. Let d > 2 and g; € C%*(f2), j = 1,2. Assume ¢; = ¢2 in a neighbourhood of T'.
Then there exists sufficiently large T such that Agl = Agz implies g1 = g2 in €.

Let us restrict the operator Ag to the subspace
Hy = {h € H¥**40,T; H2(T)); 8/n(0,-) =0, 0 < j < 2d+ 3}.

By Aﬁ we denote the restriction of A which defines a bounded operator from H; into Ho =
L?(0, T H#(Ty)), Vs €1[0,1/2]. We denote as || - ||s the norm in B(Hi; Ha).

Theorem 16. There exists C > 0, § € (0,1) and sufficiently large T" such that
lar = @all 1720y < C (1A%, — A, 12 + 10g (1A%, - A,,)1~°) (2.3.3)

Va1,q2 € X(M,w). If q1,q20 € H*(Q), for a > d/2 and ||g;|| gy < M, j = 1,2, then there exists
0" € (0,1) such that

lar = g2l < © (I1A%, = A&, 13" + og (1A%, — A%, )1~") (2:3.4)

Let D(A,) = H(92) N H%(Q) be the domain of the operator A4, = —A + ¢, g € L>=(£2). Let the
eigenvalues of A, satisfy
OS)\l)qg)\Q,q < ... S)\k)q—>+00

and denote the corresponding sequence of eigenfunctions by (¢, ,) and assume this sequence forms
an orthonormal basis of L*(Q), that is [¢x ¢l|r2(0) = 1. Eigenfunction ¢y 4 is the solution to the
following BVP
(-A+ Q)6 = Agd inQ
¢=0 on I

it follows from theory of Elliptic PDEs [35]

Px.qll 2(0) < CAiglldrgllLz@) = CArg (2.3.5)

and
100Gk, qll 1172y < CArg

From Weyl’s law [33, 28|, there exists a positive constant ' > 1 such that

K721 < \py < KE??, Vg where 0 < g(z) < M and z € Q. (2.3.6)
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As a consequence of the trace theorem [18, 10], we have

100 P g

w1/2(00) < CllOvdrgll ey < CK/7.

We fix ¢ such that d/2+ 1 < ( < d+ 1 and denote the sequence aj = k*QC/dH&,qSk,qHHl/z(FO)
and we consider the the series:

Z |ak| = Z k=20, 61

keN keN

|H1/2(F0) S CZ kz/d . k_2</d
k=1
— Czk%l%)/d
k=1

For the sum to converge, it must satisfy ﬁ >1=(>1+ % >1- g. Thus, the sum converges
and by that we have proved that

(/0 bl 2cry ) € £

Let r = (1) be the sequence rj, = k=¢/¢ Vk > 1. We consider the Banach space

& (HV2To)sm) = {9 = (ge)s g € HY2(To), k=1, (ellgwllmnacry) € €1)

with the natural norm

||g||£1(H1/2(F0;r)) = Z Tk||9k||H1/2(ro)-
keN

Consider = (i) = (Ak,0) the sequence of eigenvalues of Ay, where Ay = —A, therefore, it is

true that
“A¢=ppd  in Q)
¢=0 on I’

where one can obtain
[Akg = bl = lg] < llgll L~ ), k €N

From this result we have that A, = (Ar4) € 0> = 11 + (> equipped with the distance

doo(A1 = A2) = [|(A = 1) = Az = ) e = [|Ar = Azlle, for A; € £, j € {1,2}.

By applying theorem 16 we prove:
Theorem 17. 3C > 0, po € (0,1) :

lgr = g2llzr-1/20) < C (Jlog(| logn|)) =" (2.3.7)

V1,92 € X(M,w), where 1 = doo(Agy s Ags) + 1000y — Ou by, Hzl(Hl/Z(Fo);T) is small and
6y¢qj = (8U¢k7Qj)’ .] € {1a2}

If g1,q0 € H*(RY), s >d/2 and |q;l[ms) <M, j€{1,2}, 3up € (0,1) :

lgr — a2z < C (| 1og(| logn|)) ™" (2.3.8)

In the continuation of the chapter, we provide the proof of these estimates in theorems 15, 16
and 17. Last, we demonstrate an example with specific potential ¢ and solution u and we are going
to show that the estimates on theorem 17 is satisfied.
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2.3.1 Geometric optics solutions and X-ray transform
Geometric optics solutions

In partial differential equations (PDE’s), the term "geometric optics solutions" refers to a particular
type of solution that arises in the study of high-frequency waves. Geometric optics solutions are an
asymptotic approximation of the exact solutions to certain PDE’s, particularly those that describe
wave propagation phenomena.

In optical phenomena, not only is the wavelength short but the wave trains are long. The study
of structures which have short wavelength and are in addition very short, say a short pulse, also
yields a geometric theory. Long wavetrains have a longer time to allow nonlinear interactions which
makes nonlinear effects more important. Long propagation distances also increase the importance
of nonlinear effects. An extreme example is the propagation of light across the ocean in optical
fibers. The nonlinear effects are very weak, but over 5000 kilometers, the cumulative effects can be
large. To control signal degradation in such fibers the signal is treated about every 30 kilometers.
Still, there is free propagation for 30 kilometers which needs to be understood. This poses serious
analytic, computational, and engineering challenges. [63]

X-ray transform

In 1963, A.M. Cormack introduced a powerful diagnostic tool in radiology, computerized tomog-
raphy, which is based on the mathematical properties of the X-ray transform in the Euclidean
plane [14]. For a compactly supported continuous function f, its X-ray transform X f is a function
defined on the family of all straight lines [ in R? as follows: let the unit vector @ represent the
direction of [ and let p be its signed distance to the origin, so that [ is represented by the pair
(6,p), then

Xf()y=Xf(6,p) = /Rf(z+t0) dt

The X-ray transform is a mathematical operation that is used in medical imaging, computed
tomography (CT), and other applications to reconstruct an image or object from its X-ray mea-
surements. It is a fundamental concept in the field of X-ray tomography.

The X-ray transform is based on the principle that X-rays attenuate as they pass through
different materials. When an X-ray beam passes through an object, the intensity of the X-rays is
reduced based on the density and composition of the materials it encounters. The X-ray transform
mathematically models this attenuation process.

Stability estimate of recovering a function from its X-ray transform

For starters, we consider the following assumptions:

e0c()

¢ T/3 > Diam(f2)

elet e >0, 77 >0: T > % and T — 2e > Diam(2)

Q. = {z e R\ Q; dist(z,Q) < ¢}

e For & € C5°(Q,) and 6 € S we associate @y with

g = d(z +1h), z € R, t € R, ® is extended by 0 outside €2,.
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We will prove the following lemma:

Lemma 18. Let ¢1,¢2 € X(M,w), ¢ = q1 — g2 extended by 0 outside Q. 377 >0, A >0, C > 0:
VO € ST @ € C5R(9):

/OTI /Q ®*(z)q(x — s0) dads

for sufficiently large v > 0.

1
<0 (i + MG — AL 1) 190 (239)

Proof. We apply lemma 2 and it follows that the initial value problem

(02 — A+ qa(z))u=0, inQ=(0,T1)xQ
u(0,) = Opu(0,-) =0 in

has a solution uy of the form

up(t, z) = ®(x + t0)e @I L v, (t,2;0), (2.3.10)
where
U, (0,z;0) =0, (0,2;0) =0, while z € Q (2.3.11)
U, (t,x0)=0, on ¥ =(0,T1)xT e
and
ol[Wa, (53 0)L2(Qu) + IV¥q, (5 5 0) I 2(@1) < Cl®Nar (ro)- (2.3.12)

Assume fo = uz), = ®(x + t0)e?” @0+t and u; be the solution of the IBVP:

(07 —A+q)ur=0  inQ,
u1(0,2) = Opu1(0,2) =0  in Q,
u1:u2:fo' on .

By subtracting by parts the two differential equations with ¢; and ¢ and assume that w = u; —ug
and ¢(z) = g2 — ¢1, one can get

(0F = A+ q)w=quy inQ,
w(0,z) = dw(0,2) =0 in Q,
w =20 on Xj.

We insert the following cut-off function x € C*°(R%), 0 < x < 1 and

_ [0 inw(p),
x(z) = { 1 in Q\w(2p),
By multiplying the previous differential equation with the cut-off function and by considering that

[A, x]w = Awg — xAw, where wy = xw, we get

(a’? - A + ql)wo = qu2 — [Aa X]U} in Q17
wo (0, ) = Gywo(0,2) =0 in Q,
wo =0 on Y.

Notice that we have written yqus = qug, that is because ¢ = 0 in w D w(2p), therefore the term is
not zero for x € 0\ w C @\ w(2p) which gives us y = 1.

We apply again lemma 2 for the wave equation (97 — A + ¢1(x))v = 0 in @; and have solution
of the form _
o(t,x) = ®(x 4 t0)e @0 L W, (t,2;0) (2.3.13)
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where we now write the solution with the minus sign on the exponential which still works since the
roots of the solution are complex and therefore they satisfy the conjugation property. ¥,, satisfies
the followings
U, (t,z;0) =0 (t,x) € ¥4,
U(Ty,z;0) = 0¥y, (T1,2;0) =0 x € Q,

and
o[ Wq, (502 + IV, (5 0)2(Q1) < Cll®l| ms(ra)- (2.3.14)

Due to T} > diam(Q)) 4+ 2¢ and ® € C§°(f2.) we have ®(z + T16) = |VP(z + T160)] = 0 in Q.
Therefore
(T, ) =0w(Th,-) =0 in Q.

We multiply the differential equation of wy with v and apply Green’s formula

/ q(x)us(t, x)v dedt —/ [A, x]wv dzdt = / (07 — A+ q1(x))wo)v dxdt

1 1 1

_ / wo(@ — A+ qi(@))v dedt =0 (2.3.15)

1
From (2.3.10), (2.3.13) and (2.3.15) we have

/ q(z)®%(z + t0) dadt + / q(z)®(x + t0) (\Ilqleia(zt9+t) + \I/q267ia(zt9+t)> dadt

1 1

/ ()T, ¥y dwdt:/ A, x]w(t, x)v(t, z) dedt (2.3.16)

1 1

From (2.3.12) and (2.3.14) we have

<

‘/ a(2)@(x + 10) (W, 7Pz ) dxdt‘ < ppl®lies
1

and
Caiz
q(x)\Ilql\Ilqz dadt| < §||(I)”H3(Rd)
1

Also

‘/ [A, x]w(t, x)v(t, z) dmdt‘ < C’||wHH1(wT1(2p))||v||L2(Q1)

1

< Ol gs@ay vl a1 (wr, (20))

By (2.3.16), we have

C
‘/ q(2)®*(z + t6) dﬂ?dt‘ < ;H‘I’H%{smd) + Cllwll 1t (wr, (20)) |1l 113 (e
1
and apply lemma 3 and we have

c ]
\ | @) dwdt\ <||<1>||%13<Rd>+0(W+ef”||ayw||mo> []15 e
1 o Vi
(2.3.17)

where F' = g(z)uz = 0 in w. By (2.3.12) in w and f,, we have the energy estimate

lwllz2(Q) < Col|®|| g3 (ray (2.3.18)
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and

10wl r2(sg) = 1AL, (fo) = AL (fo)llz2(sg) < CIAL, — AL | follrias)
Co?|| AL, — AL P s (ay- (2.3.19)

We combine (2.3.17), (2.3.18) and (2.3.19) and get

1
[ ataw o) de] <€ (24 T PN, <AL 1) 90 2320

1

by setting o = v'/* and substituting  — & + s we obtain our estimate. O

Lemma 19. 3C >0, A>0, 6 >0and vy >0:

/Rq(y + s6) ds

C
< =
v

A
=+ Ce VAR — ALl

y € Ry >~y VO € S41.

Proof. Let 6 € S%! and ¢ € C§°(R?) with [[¢]|f2(ra) = 1. We define

‘I),i($> _ Ii_d/Qd) (l' — y)
K
where y € 2. and a small positive k.

If .
h(z,0) = / q(xz —t0) dt
0

then

<

0 = | [ @2 @nt0) ao

/ 2 (x)h(x,0) dx
Rd

2 — x X .
+| [ #2@00.0) - 1w,0))

Since | | o ()
Clz —yl*, ifgq; € CP*(R
— < /
‘h(y?e) h($,0)| = { C|J? _ y|y ; if qj c HS(Rd)
where ) =s—d/2<land 0<p' <1. If s—d/2 > 1 and k > 0 is sufficiently small, we apply

lemma 18 and we have

1 /
00001 < € (i + IS = A4 1) 19l guey + € [l =y 4o = )02 (0) do

Also we have
[®ullrz@ey =1, |®xllgsmey < Cr™3

for po = min(p, p') it is

[ =+ o = )22 ) de < O
Rd

VO € S we apply lemma 18

T
1 C
/0 qly —t0) dt| < ——k "5+ Cr 0" ||AZ — AL || + CrH (2.3.21)

F1/4
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we set k such that
Mo _
KrHO 1/45

From (2.3.21) 36 > 0, B > 0:

|/ q(y +t0) dt

For 77 > Diam(f2) and supp(q) C Q the integration can be done over R instead of [-T3,7T1] C
R. O

< g +CePYAE — AL ).

2.3.2 Proof of theorems 14 and 16

We set
P(q)(0,2) = / q(x +t0) dt, x € RY 9 € ST
R

we have from lemma 19 that
1
P@O.) < C (5 + o), - A3l ).

We choose R > 0 such that Q@ C B(0, R). Then we have

IP@I2s —/ / (0,92 dydo
sd—1 JpL

/ / 0)(0,9) dydo
si-1 JgLnB(o, R)
<c <75 AL, - A52||) ,

where we set as T = {(6,y); 6 € S¥~!, y € 6+} the tangent bundle.

We give a known estimate for the X ray transform [55]:

lgll 21720y < CIIP@)I72 7

Combining the two estimates, we get:

1
IMmlmmSC(w+@mm;—MJ> (23.22)

which is valid for v > ~p.

3 €9 > 0 small enough such that if HA?I1 - AEH || < e and
1- Y.
y=— \logIIA — AL

because we guarantee we have v > 7. Therefore, we can rewrite (2.3.22) as

-9
lallsr-1/20 < € (1185, = AL [17 + C” flog |A%, — A%, I ) (2.3.23)
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for ||Aﬁ - Ati .|| < €. On the other hand, for ||Aﬁ - Aﬁ .|| > €0 we have

20M
lallz-1/200) < CllgllL=() < . € < C|AE — AL |0

Hence, this completes our proof for theorem 14.

To prove the second estimate, it is immediately deduced from Sobolev imbedding theorem [30]
and an interpolation inequality [11].

Assume 7 > 0 such that s = d/2 + 27, then

gl (@) < Cllgllze—ne)
< Clglgy-1/2 ey lall5
< C”qHH*l/?(Q)V

s—d/2

where o = Tt 1

< 1. Then applying (2.3.23) it deduces the second estimate of theorem 14.

For theorem 16 we assume the same notations as in 18, then

10v w2 () = 1A%, (o) = Al (Fo)ll2(50)
< CIAY (fo) = A2, (Fo)ll 20 mor2 (o))
< CIIAE, = A& sl fo | rzasaco s prsre ry) -
where
| foll rzasaco rmsrzry) < Co? @ provaagay
We combine the two estimates and we have

weancs
10wl L2 (2y) < Co*THHIAL, = A |-

In this case, we have

i L
TSR, — &, ||s> |21 Fro+2ama).

By setting o = v'/* and following the same concepts as theorem 14, we prove theorem 16.

'/Qq(x)qﬂ(:c + t6) dscdt‘ <C <i +

2.3.3 Proof of theorem 17

Let ¢ € L™(R), 0(Aq) = {Ak,q} the spectrum of A, and its resolvent by p(A4,) = C\ oc(4,).

Y\ € p(A,), f € H¥?(T) the BVP:

—Aut+qu— Au=0 in
u=f onT

3 ug r € H*(Q) and
Hg()\) o f = Ovug |,

is bounded from H3/2(T") into H/2(Ty).

We let

tsin (v/Agu(t — s
mﬁh Z >\d+2 ”¢q7 )‘Fo/ ( q7k( )) <_8§(d+2)h('a8)7au¢q,k> ds

k>1 )‘q,k
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where (-,-) is the L%?—scalar product. 9%3 defines a bounded operator from #H; into Hs, and fix
s €0,1/2].

We need the following three lemmas which have been proven in [1, 13]

Lemma 20. Let ¢ € L™(Q). Ym > d/2, f € HS/Q(F) and A € p(A,), we have

dm
d)\m = —m! Z )\k . m+1 <f7 V¢k,q> V¢k q‘l“g

k>1

Lemma 21. Let N € N*, q1,¢q2 € L>®(Q) with 0 < ¢1,¢92 < M for some constant M. 3 C > 0,

such that o
W, )\SO&DdOSpSN,
p 1

o]
where || - ||s is the norm in E(H3/2(I‘) H#(Ty)).
Lemma 22. Vh € H;

5 d+1 d']
Ath=>" {ngu)} (—07h) + Rih,

j= dN A=0

where for ¢ € L>(Q), Mq is bounded from #; into Hs.

We prove the following estimate

Lemma 23. ¢1,¢q € X(M,w), 3C >0, € (0,1), v9 > 0:

Cl10w (Pr,qr — Prigo) lL2@) < Mg + Aeigo) V™0 + €100 (Drigy — Prga)l22(m0) + Mesgr — Mugs )

(2.3.24)
Proof. Consider ¢y (x) = (¢r,qy — Pk,q,)(x) which satisfies the BVP:
(A +q1 — MgV = (@2 — 01)Phie + Mkgn — M) Phge 0 82,
k= on T
Y =0 r
Let T > 0 large enough and
wi(t, ) = e"Viayy (), te(0,T).
which solves the IVP: )
(0 = A+ g —qi(2)wy, = F, inQ,
wi(t,z) =0 on X.
where ,
Fk = elt \ >\k.q1 ((QQ - Q1)¢k,q2+(/\k,q1 _)\k,qg)¢k,q2) .
From ¢; — ¢2 = 0 in w, we have
[Fxll22(@r) < ClAkgr = Akigs -
We combine this estimate with (2.1.20) and we obtain
¢ Hy
1wkl 1t (o, (20)) < \fﬁ\\wkﬂm(@) + (| kg — Mg | + 100wkl 2(5)) (2.3.25)
and using the fact that wy(t,z) = "V a4y () with () = (Pr.q, — Pr.go) (), we obtain
C
1Pk.a0 = Drsga |1 o 20)) = W(Ak,ql + Akgn) + €T (Akgr = Megol + 10501) (2.3.26)
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We use apply to (2.3.5) an interpolation inequality and we have

100 (k.00 — Do) o) < Clldk,gr — Prsgoll 372 (w(20))
1/2 1 2
< Oll(bk,!h _qbk Q2||H/1(w(2p ' ||¢k,¢h (bk qu { w(2p))
< ’71/4||¢/€>Q1 ¢k’¢I2 HHl (2p)) +7 1/4()‘/0 ot )‘k,lh)' (2'3'27)

From (2.3.26) and (2.3.27) we acquire (2.3.24). O

Setting Z(\) = (Hﬁq1 (A — ng()\)) and applying Taylor’s formula, then

d ()P 0 (_r\d—j
Z0)(0) = Z_: ((J\_)J)Z(p)(/\) + /A ((d—)j)!Z(dH)(T) dr.

We prove the following lemma

Lemma 24. 3C >0, puy € (0,1) :
| 2DV, < Cllogn|™™, VYA<0 (2.3.28)

where || - ||s denotes the norm in L(H?/?(T'); H*(Ty)).

Proof. We assume that f € H3/?(T") to take advantage of lemma 20, then

Z(d+1) (}\) d + 1 ! Z )\k d+2 <fa V¢k§ Q1> u¢k Q1 ‘Fo
k=1 "D
d+1 |; )\k - d+2 <f, D¢k q2> V¢k q2‘Fo

We assume that

1 1

Li(A) =—(d+1)! [()\k,ql — )2 - ()\k7q2 — A>d+2 (f, av¢k,q1>8V¢k-,fh|Fo

NE

ES
Il

1

1

L(A) =—(d+1)! ng Oy Pr,q1 — OvPh,qz) Ph.a I
42

NE

k=1

1

W<Jc7 8V¢k;Q2>[8V¢k,Q1 - 8V¢k,q2]|FOa
»q2

M8

Is(\) = —(d+1)!

=~
Il

1

where Z(d+D) = [, + I, + I3. We will find the estimates of 11, I and I3 in the H'/2 sense in order
to prove our desired estimate.

e For I;:

1 1

IO /ey < (d+ DULFe 5y ey | 1okl ey

»d1

For A <0, Agq; 20, 7 =1,2, we have

1 1 1 1 C
()\k o= )\)d+2 o (/\k - )\)d+2 < C'max (/\ZH-:;? ZH) ‘)‘km - )‘k742‘ < Wp‘k,ql - Ak,qz|
’ ’ »q1 »q2
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Also, we have
100 B2 1 11/2 () < CRH,
by combining these two estimates, we have
— 1
[ (M 2y < Cllfll2@ydoc(Agrs Aq )Z T2 n/d
k=1

< Onllfllz2r (2.3.29)

e For Is:

= Akygr
[ T2 (M 2y < Cllf ez Z‘(Aiq)\)dﬁl\a (Pr,1 — Prsga) L2 (1)
k=1 ’

q2

We apply lemma 23 and obtain

- )‘k,fh -6 )‘k,lh Ak 1 T )‘k,qz)
1; W||au(¢k,ql Prgo) 2y < Cy Z ey — V272

Ak
+6Av2 o g 0@ = ) lear)

:

A~y Ak AL
+e Z )\k d+2 |)‘k7(h /\k7Q2|'

»q2

This now is
o0

Ak, B
> ot 10— Gra) sy < O e

k=1 542

and by minimizing with respect to v, we get

|l /2y < ClLF Loz ognl ™, € (0,1), (2.3.30)
e For I3:
=1
L3Nz ey < Cllfllzeey Y Wﬂau@c,ql — OuBk,qz | 172 (1)
k=1 "k,q2

=1
< Clflle2 Z Wﬂauéﬁk,ql — OBk o |l H1/2(ry)-
k=1

That gives us
1 Zsll gr/2ry < Cnllfllp2ry- (2.3.31)
From a combination of the equations (2.3.29), (2.3.30) and (2.3.31), we derive (2.3.28) O

Using now Taylor’s formula on Z4)(0) and applying lemma 21, we have

T A log T
), IAI=>1

< C'min (0T + p™ | logn| ™) = Cllogn| ™2, s € (0,1).

1Z9 )]s < C(A
< C(IA

We can obtain the following estimate, by proceeding with the same way as in the proof of lemma

24:
9%, — RE ||, < C|logn| =+ (2.3.32)
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From the estimate of lemma 22 combined with (2.3.31) and (2.3.32), we obtain

1A%, — A%, 1l < Cllogn| ™,

where if we combine it with theorem 16, it provides us with the estimates of theorem 17.

2.4 Conclusion of Chapter 2

As we have seen in this chapter, the whole construction for the logarithmic estimation has also
been based from other estimates and theorems from external papers, where we have mentioned a
few. It requires a lot of work to even just prove only one stability estimate for an inverse problem.
The procedure in this chapter was mostly a theory based scheme, where we provide in the next
chapter a more applied scheme to the same problem.
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Chapter 3

Confirmation of the log-type stability
estimate in a problem of radial
symmetry using Mathematica

In this chapter we want to verify theorem 17 from chapter 2 for the special case of d = 2 having a
radial symmetry on the differential equation. We do this by introducing Bessel’s functions first and
second kind which lie from a specific ordinary differential equation, known as the Bessel equation ,
that has its presence on various topics in mathematical physics with cylinder or spherical symmetry
[42, 76, 38].

In these case, we deal with a perturbed source ¢ € H', providing us with perturbed solutions of
the Bessel functions. We apply Poincare-Linstedt method to our perturbed differential equation
to achieve getting a solution which consists of the Bessel function Jy and a function that gives us
the perturbation for 0 < € <« 1. For numerical results we use Mathematica in our favour providing
us a with the eigenvalues and eigenfunctions of the problem.

3.1 Introduction to Bessel’s functions and Poincare-Linstedt
method

3.1.1 Recurrence relation to Bessel’s equation

We start by introducing Bessel’s differential equation:
2y (x) + xy () + (z° = v*)y(z) = 0, (3.1.1)

where v is a parameter. We note that the point o = 0 is a regular singular point and by Frobenius
method [12, 31] we know that the power series

o0
y(a:) — Z cnxn-&-r
n=0

must be a solution to (3.1.1). The coefficients ¢,, can be found by substituting the power series to
(3.1.1). That is

oo oo oo oo
Z(r +n)(r+n—1)c,a" + Z(T +n)epa” + Z cpx" T — 12 Z cnx” =0
n=0 n=0 n=0 n=0
or
[ee] oo
Z[(r +n)(r4+n—1)+(r+n)—vc,z" + Z "2 =0
n=0 n=0
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We do a substitution by setting n + 2 = n’ and then n’ — n and because
(r+n)r+n—1)+(r+n) - =@F+v+n)(r—v+n)

we can rewrite the last equation as

o0 (o)
Z(r +rv+n)(r—v+n)ez" + Z Chox™ =0
n=0 n=2

or

(r+v)ir—v)co+(r+v+1)(r—v+1l)az+ Z[(r +v+n)(r—v+n)e, +cpoz” =0.

n=2

From the last equation, we get that all coefficients of all powers of  must be zero. That is

i (r+v)(r—v)co=0 forcg#0=(r+v)(r—v)=0 (3.1.2)
ii. r+v+10)(r—-—v+1)ec =0 (3.1.3)
ifi. (r+v+4+n)(r—v+n)e, + cp—2 =0. (3.1.4)

Equation (3.1.2) is the characteristic equation of Bessel’s equation and its roots are
ri=v and ro=—v (3.1.5)
Without loss of generality we assume that v > 0, and we set r = r; = v to (3.1.3), we have
2v+1)e=0=¢1=0
and for r = r = —v we have

c1 =0 when v #

(“2v+ e =0= { c1 arbitrary when v =

D00 =

From the recurrence relation (3.1.4) we notice that the term
R,(r)y=(r+v+n)(r—v+n), n>2
is not zero when r = v but when » = —v we can rewrite the term as
R.(—v)=n(n—-2v), n>2

where it is .
§a
Therefore, when v is not an integer or a semi-integer, we have R, (r
for every v > 0 it is possible to find a solution to the equation (3.1.
depends on the parameter v.

3
R, (r=-v)#0 when 1/7&%: 1,5,2,

PI

N | Ot

# 0 for r = +v. Therefore,
), while the second solution

—_—

3.1.2 Solutions to Bessel’s equation for v # 0, %, 1, %, 2, %, e

When the parameter v is not an integer or semi-integer or zero, we can find the two solutions of
(3.1.1) by setting to (3.1.4) r =r; = v and r = 75 = —v, then we have for n = 2k and n = 2k + 1

-1
R v k) (r— v+ 2k) T T
-1
= -1, k>1
R Ukt D —v 2k 1) T =
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from knowing that ¢; = 0 this lies from the second relation that

cok41 =0, Yk >0

From the fist relation one can try for k = 1,2, ...,k and then multiply by parts all the relations.
That will give us

—1)Feq
(r+1/+2)(r+1/+4)...(r+u+(2k))(r—u+2)(r—u+4)...(r—y—|—2k)
(=1)*eo
= 2k (TEL 1 1), 2K (5L + 1),
(DD 4+ DS + D
22PD(EL + 1+ k(552 + 1+ k)

Cop =

For » = 1y = v and noting that I'(k + 1) = k! we have

(-DFT(v +1)

ar(r=v) = r 15 )

Therefore, one solution for (3.1.1) is

kF V+ 1) 2k+v
COZ 22kk;'r vltk)

or

. 1)k 2k+v
y(x) = c2"T(v +1) Zk'Fl(/Jr)lJrk)( )

by setting ¢o2"T'(v 4+ 1) = 1, we have

I ( 1)k 2k+v 316
niw) = mf:TIa() (3.1.6)
in the same way, the second solution with r = ry = —v is
(71)]9 2k—v
_ —_ 1.
ya(a) = J_, A V+1+k)() (3.1.7)

Therefore, the general solution to (3.1.1) is
y(@) = AJ, () + BJ_, ()

with A, B arbitrary constants. The function J,(z) is called Bessel function first kind.

3.1.3 Solutions to Bessel’s equation for v =m + %, m € N*

In this case, the first solution of (3.1.1) if we set v =m + 3 is given by (3.1.4) as

Re (=" x
@ =2 KIT(m + 2 + k) (3

)2k+m+% (3.1.8)

For the second solution, we notice that r; — ro = 2v = 2m + 1 an odd number. In this case we
have

1
Rn(rzrgz—m—a):n(n—Qm—l)zo, forn=2m+1
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but if we set n = 2k and r = ry = —m — %, the term R, (r) vanishes, and we find the second
solution with the same approach as the first solution, and it is

_ ()" 2k
J o= ,;)k'r e +k)() (3.1.9)

3.1.4 Solutions to Bessel’s equation for v =m € N

From (3.1.6) we set ¥ =m € N and is

on (=1)" o 3.1.10
m (3) (3.1-10)
The second solution can’t be found by Frobenius method because we have for r = ry = —v = —m
that
R,(r=—m)=n(n—2m) =0, forn=2m

therefore, we can find the second solution by defining the following function

Ny (z) = Jy(x)cosvm — J_,,(x) (3.1.11)

sin vm

The function N,(z) is called Neumann function or Bessel function of second kind, its a linear
combination of the functions J,(x) and J_,(x) and it’s a solution to (3.1.1). Due to the fact that
Im(z) = (=1)™J_p(z), Ny(x) becomes undetermined for v = m € N. We apply L’Hospital’s rule,
then

Oy [Ju () cosvm — J_,(x)]

0, sin v

Nop(z) = o = % 0, () — ()"0, T (@), (3.1.12)

3.1.5 Solutions to Bessel’s equation for ry =1, =2v =0

For the first solution we set v =0 to (3.1.6) and we have
o (DR
yl(x) = 60J0 = Cy Z W(IJ (3113)
k=0

and for the second solution we can follow from Frobenius method that

o0
yo(z) = y1(z) Inx + Z@,.C%(r)|,.:0x2k, cop+1 = 0.

k=0
For n = 2k it is 1
= ————5C2k— k>1
Cok 2k 1) Cok—2, K 2
therefore i
ca(r) = 2+7r)2(4+7r)2...2k+1r)? I;I 2p+r
by differentiating with respect to r, we have
k
ar62k|7‘20 = 22]? k' 2 Z
7—1
therefore, the second solution is given by the expression
)k g2k k1
ya2(z) = ¢ z)Inz — Z 2% I Z - (3.1.14)
k=1 r=1
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3.1.6 Useful identities of Bessel’s functions

In the previous subsection, we proved the general form of Bessel’s function and we present some
useful identities which one can verify from the general formula and also by introducing the gener-
ating function of the Bessel functions |79, 45]

We remind that i
B = (-1) N\ 2k+n
LOEDYD Kk + n)! (5)

are the Bessel functions of first kind and

Yo (2) = Jn(x) cosnm — J_p,(x)

sinnmw

are the Bessel functions of second kind. We provide the following table of formulas that one can
prove from the generating function and the Bessel functions:

ria@) = (@) — dya () Yoa@) = 2% () ~ Yoa(e)
1 1
Jo(=) = E[Jufl(m)_‘]lﬂrl(m)] Y (=) = E[Yufl(m)_YH»l(m)]
T@) = Joa(@) = 1) V(@) = Yiale) - -Y.(@)
Ji(x) = EJ,,(.:E)—J.,_H(:E) Y/(z) = gYu(m)—YUH(m)
d d
E[m J.(x)] = «¥d,_1(=x) a[m Y.(z)] = =Y, i(x)
d d
E[mf".}y(m)} = —x¥Joii(x) E[mf" w(@)] = —xYopa(x)

Figure 3.1: Recurrence Formulas of the Bessel functions

A combination of the above identities from Figure 3.1 gives us

d

%Jo(l’) = —Jl(aﬁ)
¥olw) = ~¥i(a)

which would be pretty useful when dealing with the numerical part using Mathematica.

3.1.7 Poincare-Linstedt method

We were motivated by [51, 56, 53| consider to use this method that arrises in perturbation theory
[54, 86]. We will apply the method for terms up to €' considering that ¢¥ ~ 0, Vk > 2. By
Poincare-Linstedt method, we consider the solution

d(x) =Y Copr®™ + ) Cop12” ! = o () + € ()
k=0 k=0
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where

— (=DF o 0
Po(x) = Jo(z) = Z 22Kk (k1)2 a?t = Cék)a:%
k=0
and - - -
PR SN I Yo
k=0 k=0 k=0

where we obtain the following recurrence relations
1k
f on -t oo e n
Cot1 = Ecz(llc)ﬂ

The first relation will come in handy to our solution with power series in our differential equation
with source ¢(r) # 0.

3.2 Case in R?

We consider d = 2, therefore ¢1,q2 € H5(Q) = H'T9(Q), 0 < e < 1 and ||g; || gr+e) < M. We
want to verify that

llar — a2l L) < C (|1og (|logn|)[) "

where

1= max|{Akg, — Ak | + > k0 brgy — Ovbrgall gy, €€ (2,3]
E>1

w6 € (0,1) and C > 0 depends from , Ty, w and M.
For more simplicity, the eigenvalue problems will be solved in polar coordinates with radial sym-
metry, that means we have the following Laplacian operator

02 10 102

Ata=gE o e A0

3.2.1 Eigenvalue problem with ¢(r) = 0 and radial symmetry ¢ = ¢(r)

We assume that a > 0, Q = {z € Rz < a} and consider the following eigenvalue problem
_A¢(T) = )‘d)(r)a re [Oa a’]

1 0?
> —¢"() — 1 60) = M), 55 =0

= /(1) + /() + Ao(r) =0

= 129" (r) + 14/ (r) + \rPo(r) = 0. (8.2.1)

Equation (3.2.1) reminds us of the Bessel’s differential equation (3.1.1). If we do the following
transformation

9(&) = o(r) (32.2)
E=Vhr=£=x? (3.2.3)
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we obtain

§r) = S g(6) = o ()% = g (VA
2

d
" _ % — )\
¢"(r) = 539(&) = Ag"(€)
equation (3.2.1) takes the following form

£9"(6) +£9'(§) +9(§) =0 (3.2.4)

where (3.2.4) is a Bessel differential equation with variable £ and v = 0. Therefore, from section
3.1, we have the solution

IR SO L A
9(8) = Jo(§) = EZ:O mIT(m + 1) <2>

and the eigenvalues are
52
§k =V Ak0a = k= Ao = a%
where a is the radius of the disk ). Therefore, we find that the eigenfunctions of the eigenvalue
problem are

(3.2.5)

Pr0 = AkJo(gﬂ)
a
()
a

3.2.2 Eigenvalue problem with ¢(r) # 0 and radial symmetry ¢ = ¢(r)

with the normalisation )

=1
L2(Q)

| Axl?

Consider now the problem
(~A+a)plr) = 2p(r), 7 € [0,d]
=~ () — ¢ (r) + a(r)o(r) = A9(0)
= =26/ (r) 1 (1) + 12— (1)) = 0

For our purpose, we choose our source ¢(r) to be a function of the form

(r) = e(r* +ar?+v) for0<r<rg
ar) = 0 forrg<r<a

where € would be a source disturbance parameter, ideally we want this to be small, «, v are
polynomial parameters and rg is the radius at which the source becomes identically zero outside,
typically ¢(z) =0 iff z € w = {z € Qlz > 1o}

A selection of a more simple functions, like for example, ¢ = E7 and ¢o = E5 = E1 + € would
not fit to our conditions in chapter 2, because ¢; and ¢ are distinct near the boundary and also ¢
has to be smooth at least C! at r = 1. Therefore q(r) at r = r satisfies the following conditions

ré‘—&—ar%—t—’yzo
4r8 +2arg =0

where we find

_ 2 _ 4
a=—2ry and 7 =1

42



Then we would have the following source function
e(r? —r@)? for0<r<rng
0 forrg<r<a

e For r € (g, a] we would have the same differential equation just like in section 3.3.1:
26" (r) + ¢/ (r) + Ar*e(r) = 0
therefore the solution would be a linear combination of Bessel’s first and second kind functions

with v = 0:
o(r) = AJo(VAr) + BYy(VAr)

e For 7 € [0, 7] we obtain the following diffential equation
r?¢"(r) + ¢/ (r) 4+ [Ar? — e(r® — r§)*r?¢(r) = 0, (3.2.6)
we set g(€) = (1), € = VAr, €= 55 and & = VArp. Equation (3.2.6) becomes
£29"(€) +&9'(6) + €2 — &€ — €5)*¢?]g() = 0 (3.2.7)

we note that the point £ = é = 0 is a normal irregular point for (3.2.7), thus we will apply Frobenius
method to solve (3.2.7).

We assume that the solution is in the form of a power series

9(&) =D ent™", @ #0, TER

n=0
§(E) =Y (n+ )t
n=0
g'(€) = (n+7)(n+71—1)c ™3
n=0

we substitute g(£), ¢'(§) and ¢”(§) to (3.2.7) and simplifying the terms 7, we have

S enln+ 72+ 3 a1 — &2 4263 cafhem =S e, =0
n=0

n=0 n=0 n=0
From the last, we get from the indicial polynomial that 7, = 75 = 0, ¢y # 0 arbitrary and Vk € N
we have cgi11 = 0. For the coefficients with even index, we have
co -4+ co(1 — é) = 0 — finding ¢y
co(1 — €€65) + 28€2co + 42 - ¢4 = 0 — finding cy
Cnye(n + 6)2 = —Cpya + €[§§cn+4 — 2§gcn+2 + ¢,] — finding every other co with £ >3 (3.2.8)

We observe that in the recurrence relation (3.2.8), every time we calculate a new term it sums
up to the term with the perturbation € accompanied by the two previous terms to give us the next
coefficient. Moreover, we can generalise (3.2.8), by observing that finding the coefficients ¢ and
¢4 can be done from (3.2.8) if we add the condition

Vk € N we have c_ = 0.
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We set n + 6 = 2k to (3.2.8), then

cor(2k)? = —cop_2 + E[€gcon—2 — 265 can—a + C2r—6)
_ Cop—2 | €l€gcan—2 — 283 Cokn—u + Cok—)
=>Co = — .
(2k)? (2k)?

The term — (3’;)2 reminds us the coeflicients W(JO from Bessel’s function. Therefore by

Poincare-Linstedt method, we set

k

(=D 1 _ (0
2k = ek (12

1
co + €Czk =Cy, T ec( )

where we substitute that in our recurrence relation and ignoring the O(€?) terms, we have
(—D* - (1) 1 (=Dt - (1)
I A Ol P (I
o [_GHD L, (DR (D
(2k)2 | 22k=2((k — 1)1)2 092k—4((k —2))2  22k—6((k — 3)!)2

where we obtain a relation for the cg? coefficients
(1) Sc) (0) (0)
2
Cop = — {50 Copg — 2§0Cop_y T Cop 6}

@ @2 )

k
where cg,? = %Co. We have the coefficients

(=1)* (1)
Cok = WCO + 662]{: (329)

where for k = 0 we have c(()l) = 0.

The recurrence relation (3.2.9) indicates that the solution to the equation (3.2.6) will be a Bessel
function perturbed by a factor €. Hence, the solution will be

9(&) = codo(€) + &Y e
k=1

oo (1)
~ c
=co |Jo(§) +¢€ E CQ(I; f%]
L k=1

=co |Jo(§) + 62’72;@52’“]

= ¢(r) = co | Jo(VAr) + )\3 Z’ygk/\k Qk] r € [0,70)

k=1

where
RO
Cok

Co

Y2k =

We found that the solution to the problem we started with is

o(r) = { o [Jo(ﬁr) + 55 D pet vgk-/\kr%} , 1 €l0,7) (3.2.10)
AJo(ﬁr) + BYO(ﬁT), r € (ro,al

44



By the conditions we pointed earlier, our solution (3.2.10) should be at least a C'* function at the
branch point » = rg and be identically zero when it reaches r = a due to the compact support.
Hence, we have the following conditions

o(ry) = o(ry)
¢'(rg) = ¢'(ry)
AJo(VAa) + BYy(VAa) = 0

and we make the following matrix equation

A- 8 = 6> =
Jo(v/Aa) Yo(VAa) 0 A .
Jo(V/Aro) Yo(VAro) —Jo(VAro) = 55 Yopy vauAFrgt | B |=0
VAV Are)  VAYS(VAre)  —VATH(VAr0) — 55 S 2kyarAfrg ! co
(3.2.11)
where we can find the eigenvalues \; from the equation
F(A) = det A(A) =0 (3.2.12)

3.3 Numerical Procedure using Mathematica in the radial
symmetric eigenvalue problem with ¢(r) # 0 for the R?
case

In this section we are going to set two different sources ¢(r) and try to get numerical results using
Mathematica. For simplicity, we set ¢cg = 1 and rg = 1, therefore we have

[ e(r*=1)2 for0<r<1
q(1)lro=1 = { 0 forl<r<a (3.3.1)
Jo(VAr) + 55 3ol v e e [0,1]
=1l.ro=1 — - . 2
P leo=1.70=1 { AJy(VN) + BYs(VAr), 1€ (L (3:32)
where W
Cop_ 1
Yok = Yor(A)|eg=1 = l— (;’;)5 + 252 ()\ch,?_Q — 2/\05(,?_4 + cg(,)c)_(;)} (3.3.3)
and
(=% e
2k (N)|eo=1 = PR 33726 (N)leo=1, (3.3.4)
combining (3.3.3) and (3.3.4) we have
(1)
(=DF e Cra 1 (150 © 0
CQk()\)|c0:1 = m + F - (2]{)2 + (2k)2 ()\ C2k:72 — 2A02k74 + 62k76> (335)

with ¢g = 1 and c_x = 0 = cop41, Yk € N. From (3.3.5), one may notice that the difference, of the
consecutive terms cz, and cz(,41), is declining as n — oo.
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Figure 3.2: The graph of g¢,(r) Figure 3.3: The graph of g, (1) = n(r?—
() (r? = 1%, r € [0,1] and gy (r) 12 r € [0,1] and g,(r) = 0, r €

0, 7€ [1,1.1]. [1,1.1].

Figure 3.4: The 3D graph of ¢(r) =
dg) = (7 - D? = (@2 + 47 - 1),

3.3.1 Numerical procedure for finding eigenvalues ), ;

For this example, we set the radius of the disk Q as a = 1+ 107! = 1.1 = ry = 1, we see in the
next figures the behaviour of our source ¢(r) where r € [0,1.1]

For source ¢, we choose € = 1072 < 1 — ¢1(r) = 1073(r2 — 1)%, then

1
L U R P Q%@
(2k)2 ~ (2k)?

0 0
2k (N)]cp=1,e=10-3 = 22k (];1)2 \3 + 2k—2 2)‘Cgk)—4 + Cgk)—e)l .

From the above relation, we wish to find a few 95 terms to approximate the infinite sum we have

in equation (3.2.11), knowing that the terms cof, decay fast. In the following table, after calculating

the term cg(,? = cg?c) we can always find ya = yor(N):

ey ar(A) =
k=1 —0.25 0.25)\2
k=2 0.015625 —0.125) — 0.078125)\2
k=3 —0.000434028 0.0277778 + 0.0347222)\ + 0.0134549)\2
k= 6.78168 - 10~ 6 —0.00737847 — 0.00482856) — 0.00168864 )2

k=5| —6.78168 - 1073 0.000894097 + 0.000491536\ + 0.000168932\2
E=6]| 4.7095-10"10 —0.0000775222 — 0.0000410556\ — 0.0000140781 )2
k=7]—-240281-10"12 | 55719-107% +2.93323 - 1075\ + 1.00558 - 10~%)2
k=28 ~0 ~0
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We determine our function of interest

1073 &
YR ’Y2k(>\))‘k
k=0

N = =Jo(VA) =

which plays a crucial role of finding the eigenvalues of (3.2.12) as it points out the behaviour of
det A(X). By the behaviour of our function of interest it is clear that we need enough terms that
are far from NV =1 and N = 2, therefore we choose at most N = 7.

We will find at most 6 eigenvalues from each source ¢, we use mathematica to find the roots of
(3.2.11) with the graphical method, because we can’t solve this analytically. In the following table
we present the eigenvalues of the eigenvalue problem with ¢ = ¢; (also check Figure 3.5):

First 6 eigenvalues for ¢ = ¢;
A1 = 4.77983
A12 = 21.3994
A1,3 = 467.702
A1q = 2494.89
A5 = 6452.08
A16 = 12376.8

For source gz, we choose ¢ = 1074 < 1 — ¢o(r) = 1074(r? — 1), then

_ (1)
(—1)F 107 | cops 1 0) ) ©0)
A Wleomtemi0 = g T | Tk T e (AQC%—Q Pk “%—6) '

We already proved that the coefficients cgc) are independent from e, therefore they remain the

same and we will use the same algorithms as we did for ¢;.In the following table we present the
eigenvalues of the eigenvalue problem with ¢ = ¢o (also check Figure 3.6):

First 6 eigenvalues for ¢ = ¢o
A2 = 4.77953
A2,2 = 24.320
Az,3 = 467.702
A2,4 = 2494.89
A25 = 6452.08
A26 = 12376.8

3.3.2 Analytical and numerical procedure for finding eigenfunctions ¢; ;

In the previous section, we found numerically the eigenvalues of the R? problem and now we
are going to find every eigenfunction ¢;; corresponding to a eigenvalue \;;, with i € {1,2},
j€{1,2,2,3,4,5,6}. For every eigenfunction ¢ t is true that

() = Jo(VA) + 55 > k1 CSC)A’W%, r € [0,ro]
AJo(VAr) + BYy(Vr), r € (ro, o

limit condition for r =r¢g =1
It is true that ¢ .
Jo(VX) + 55 Y e X = ATo(V) + BYy (VA),

k>1
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where we set

M) = 37 DAk = efDA + VA2 4 X + oINS 4 DA% 4 (X0 4 DN+ O(N) (3.3.6)
k>1

which we are going to calculate it with the help of mathematica. Therefore, in the first limit case,
we have

Jo(V) + %M()\) = AJo(VX) + BYy(VA) (3.3.7)

limit condition for r=a=1.1

In this limit case, it is true that
AJo(VAL.1) 4+ BY(VAL1) =0

where we solve for A, and we obtain

IS (IE BN
A= B7J0(1~1ﬁ) (3.3.8)
If we combine (3.3.7) and (3.3.8), we get
_ SN+ MW (33.9)

C Yo(L1vh)
JZ(1.1\5) Yo(ﬁ)

For every A we can find the coefficients A and B from (3.3.8) and (3.3.9) with the use of mathe-
matica.

The following table represents the numerical procedure of finding the function M(X) from (3.3.6)
using mathematica

for ¢ = q1 A M(N)

4.77983 4.60963

21.3994 | 6.41606 - 10°
467.702 | 1.05194 - 108
2494.89 | 3.74935 - 10%*
6452.08 | 1.94523 - 10%8
12376.8 | 6.84706 - 1030

for g = qo

4.77953 4.60886

24.320 | 2.10219-10°
467.702 | 1.05194 - 108
2494.89 | 3.74935 - 10%*
6452.08 | 1.94523 - 1078
12376.8 | 6.84706 - 1037

The following table represents the numerical procedure of finding the coefficients from known
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eigenvalues.

forg=q A B=B1=B._q9-3 | A=A, =Ap,
1 4.77983 0.0000102025 0.118039
2 21.3994 0.0936267 —0.202349
3 467.702 —7.21256 - 10° 1.14144 - 107
4 2494.89 —2.34268 - 101! 2.17812 - 101!
5 6452.08 2.12371 - 10 8.83114 - 103
6 12376.8 2.75546 - 10%° 3.71297 - 107°
for ¢ = ¢ A B=By;=B._q9-4 | A=Ay = Ap,
1 4.77953 1.13284-107° 0.118044
2 24.320 0.0172908 —0.179985
3 467.702 |  —7.21256 - 10° 1.14144 - 10°
4 2494.89 —2.34268 - 1010 2.17812 - 1010
5 6452.08 2.12371 - 10" 8.83114 - 10"
6 12376.8 2.75546 - 101 3.71297 - 10™
we notice that for Ag, ; = Ay, 4, with j > 3, the pairs Ay, Ay and By, By differ by a factor of 10.
3.3.3 Analytical and numerical calculation of the || - || g1/

Let us have the eigenfunctions

baalr) = { nl

Therefore

B = Ordga(r) = { -

We now construct the difference

0y 9qy,i — Opgy,i = 8r¢q1,i<r) - ar(qu,i(r)

(VAgir) + 5
(VAgir) =

q'L

1)k
,\ Zk>1 Cok )‘q i

Aq,iJO \/)\QJ —|—Bq 1Y0 \/)\q,ﬂ”),

The normal derivative on the eigenfunction ¢, ;, in our case, is the derivative with respect to r.

(U)\k:

2k qz ’

qu\/ qul vV qzr

7
Zk>1 2ke

r2k 1 €0, 7]
r € (ro, q]

k-1

re [Oa 7'10]

r € (ro,a]

k—3 (1) 2k—1
)‘qzzc2k 21 r

:{ VAi 1 (V Ag2iT) =V Aqri1(V Agrar) +107 4Zk>1 2k [10)‘k 2 Naui) =
BCJ1, AV} tn, Yl \/ )‘ q1, Zr

A%J\/E‘]l(\/ Q2’ir +BQ2J\/ 1127ZY1 V lI2ﬂr Ath,%\/ Q1,1J1 V q1,lr

We borrow the formulation for calculating fractional norms from [52, 17]. We have that H*(T'g) =
W#2(Ty), where s = 1/2. For an arbitrarily open subset  C R", we have the general formula

|u 1/p

In (3.3.11), we set p = 2 for Hilbert space W*2 = H*, s = 1/2 for H'/?2 and n = 1 for our case
at the boundary. In chapter 2 we mentioned that 'y is a relatively open subset of I". We have, in
first case, that I' = {z € R? : ||z||2 = 1}. Therefore I'y is a part of the unit circle I'. If we switch to
polar coordinates we have fixed r = 1, let § € I = [6,6:] C [0, 27] and = = cos #i +sin 8], equation
(3.3.11) becomes

(3.3.11)

01 ) 01 01 |u(]_ 9) — ’LL(]. 0/)|2 i
1 = 1,0)|°do ! ! dédo’
llwll g/ (To) </00 lu(1,0)] Jr/eo /90 |(cos @ — cos 0")2 + (sin @ — sin /)2 )
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where in our case u(1,8) = 0,¢q, (1,0) — 0rdq,(1,0) = 0r0q, (1) — Or¢g, (1), where in this case
the second integral from the norm should be zero because we have independence from 6. In the
following table we have calculated with Mathematica the differences of 0, ¢4, — 0, ¢4, forr =1y =1
andr=a=1.1

k[ 0000 (1) — Ougs (1) | Duogs (11) — Dy, (1.1)
1 0.0189663 3.63706 - 106

2 1.65627 —0.0595614

3 0.23531 - 10° 4.29963 - 107

4 3.5797 - 10° 1.54791 - 1012

5 6.19338 - 107 1.41138 - 107

6 4.37214 - 108 —3.33911 - 1079

Therefore, for fixed 7 € {rg = 1, = 1.1}, the H'/? norm simplifies to

01

1/2
[0r g, (F) = Orgo (F)l| mr1/2(rg) = </9 |07, (F) — Orbg, (f>|2d9>

1/2

= (|ar¢q1 (F) - ar¢q2 (7:)‘2(91 - 92))
= [0r¢q, (T) — Or g, (T)| - /01 — bo,
where /0 — 0y € (0,v2r]. Hence, for ¢ € (2,3], we calculate the sum S using the calculations

from the previous table:

6
S=> k0rdg, k(F) = Ordgok (Pl mr1/2(ry)

k=1
6
V0= 80 > k10600 k() — Oy b (7)]
k=1
ekForr=a=1.1:

6
So = 01— 00> k10, ¢g, 5(1.1) = Org (1.1)]

k=1
= /01 — 60(3.63706 - 1076 4275 - 0.0595614 + 37 - 4.29963 - 107
+47¢-1.54791 - 10" +57¢ - 1.41138 - 10™® 4 67¢ - 3.33911 - 10'6) > 1.65904 - 10** - \/0; — 6,

e For 7 =rg = 1:

6
Sro =V 91 - 90 Z k_<|ar¢q1,k(1) - 6r¢q2,k(1)|

k=1
= /01 — 05(0.0189663 + 27¢ - 1.65627 + 37 - 0.23531 - 10°
+47¢-3.5797-10% + 57¢ - 6.19338 - 107 4+ 67 - 4.37214 - 10%) > 2.57641 - 10° - \/6; — 6,

3.3.4 Veriftying theorem 17 from chapter 2

Using the tables where we found the eigenvalues ); ;, it is clear that
gy = Agalles = max [Agy & = Agu.i| = Aga.2 = Agy 2 = 24.32 — 21.3004 = 2.9206.
Also we have that

a1 — q2llL~ (@) = inf{C : |q1(r) — q2(r)] < C a.e. in Q}
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where
(1) = ()] = 10720 = 1)* =102 — 1) =010~ (r% — 1)

We know that g1, g2 are defined at 2\ w with the extension of zero for all 2. Therefore,
rel0,1] = (r* —1)2 €0,1],

hence
lq1(r) — q2(r)] <9-107* = |1 — galle= = 9- 107"

For the term 1) = [[Ag, — Agy |l + oy k¢ 0 gy 1(F) — Or gy k(F) || r1/2(r,),Which is supposed
to be small, we assume that 7 = «, then we have that

n > 2.9206 + 1.65904 - 10 - /0, — 6y > 2.9206

where it is approximate 87.2238% smaller than the mean value of A\j, 2 and Ay, o for 6, = 6.
Furthermore

2.9206 <n < 4.1586 - 101
= 0.332106 <|log(|log(n)|)| < 1.16492

= 0.332106"0 <(|log(|log(n)|)|)* < 1.16492%0, uf) € (0,1)
=9-107* < 9-107* - 0.332106"0 <|lg1 — go| o= (q) - (| log(|log(m)])])*0 < 9107 - 1.16492"0 < 0.00104843

Therefore |g1 — g2 £ () - (| log(] log(n)])|)#o is bounded for pf, € (0,1). Hence, we can say that
there exists C' > 0 such that

la = a2l e - (| og(| log(m) )] < C
= |lg1 — @2l (@) < C(|log(] 10g(n)|)|)‘“5,

where the constant C' depends from the circle €2, its boundary I'g, M = 9-10~% and w C € near the
boundary. We control 0y and #; and it changes the parameter 7. That concludes our verification
for the radial symmetry of the R? case.

3.4 Conclusion of chapter 3

We have concluded to the result that was discussed in chapter 2 having radial symmetry in our
problem. One can follow the same approach to other types of sources and domains and can obtain
the same result with finding another C' > 0 that can be controlled by the geometry of the domain.
In general it is hard to find the eigenvalues of these problems and we only make it work for the
simplest case. Any other case may follow our procedure.
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Plot[eigenqll, {x, 4.77982, 4.77983}, PlotRange - {-0.0000000001, ©.0000000001} ]
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Plot[eigenqll, {x, 467.702, 467.703}, PlotRange - {-0.0000000001, ©.0000000001} ]
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Figure 3.5: Eigenvalues A1 to A1 ¢ with the graph method for source ¢ = ¢;. A modern Bolzano
method [62].
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Plot[eigenqll, {x, 4.77952, 4.77953}, PlotRange - {-0.0000000001, 0.0000000001} ]
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Figure 3.6: Eigenvalues A2 1 to A2 ¢ with the graph method for source ¢ = ¢. A modern Bolzano
method [62].
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Chapter 4

Appendix

This chapter is devoted to the preliminaries of the main concepts that we followed in [7]. We
give the general definitions and theorems that have not been defined formally. At the end of this
chapter, the reader should be able to understand the concepts and the theorems which will be
presented in the following chapters. For this purpose, we follow the theory that is written in the
books [9, 35, 23, 78, 64], as well as we note some definitions from external notes or papers that are
not mentioned in the books.

4.1 Elements of Functional Analysis and Topology

4.1.1 FEuclidean space

Definition 25. Let R™ be n-dimensional Euclidean space. We denote the Euclidean norm of a
vector x = (x1,xa,...,%,) € R™ by

n 1/2
k=1

Definition 26. Let x = (z1,22,...,2,) € R" and y = (y1,¥2,...,Yn) € R™. We define the inner
product of the vectors = and y by

n
Ty =T+ TaYa o Tl = Y Thlk (4.1.2)
k=1

If we compare the two definitions, one can notice that, the square of the Euclidean norm | - |2 is

. n
an inner product of the same vectors. Hence, |z]* =z -z =Y, _, 3.

We assume that 2 C R", we denote the complement by Q¢ = R" \ 2, the closure by Q, the
interior by Q° and the boundary by I' = 9Q = Q \ Q°.

Definition 27. Assume that xo : R™ — R be the characteristic function which is defined by

XQ(w)={(1) ﬁ i;g (4.1.3)

We borrow the definition of a compact set from [68]:

Definition 28. Let Q be a set. A collection ¥ C 2% is a covering of  if Ucee € = Q. If each
C € ¥ is an open set, then % is called an open covering of 2. € is called compact if every open
covering has a finite sub covering; that is, if for every open covering %, there exists a finite number
of sets, say C1,...,C, € € for some n € N, such that Q = J;_, V;.
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Definition 29. A set Q’is compactly contained in an open set €, if and only if, Q' C Q and &/
is compact and we write )/ € ().

If Q' € Q, then
dist(Q,00Q) = inf{|z —y| : x € @',y € 9N} > 0.

4.1.2 The Spaces C*, C* and C,

We denote by C [a, b] as the set that contains all the continuous functions that defined on the
closed interval [a, b]. Formally, we write

Cla,b] = {u : [a,b] — R : u is continuous}
In general, for an abstract set 2 C R", we write
C(Q) =C(R) ={u:Q— R: uis continuous}.
This space is provided with the norm || - ||, see also [15], where
Vu € C(Q), [lufloc = sup{lu(z)| : z € 2}
C(£) is a metric space with the metric poo(u,v) = ||t — V|-

Let us consider a set that contains all the functions with continuous partial derivatives
in Q C R™ of order less than or equal to k € N. We denote this set as C*(£2). Also, the space
of functions with continuous derivatives of all orders by C>(Q2). The space C*() is a
Banach space with respect to the norm

lullcr@y = Y, sup|0ul (4.1.4)
jal<k

We denote the support of a continuous function u : Q@ — R™ by supp v = {x € Q : u(x) # 0},
where () is a bounded open set in R"™.

We denote by C.(2) the space of continuous functions whose support is compactly
contained in Q, and by C°() the space of functions with continuous derivatives of all
orders and compact support in . The functions that lie on the space C°(Q2) are referred as
test functions.

4.1.3 Holder spaces

The spaces we saw in Subsection 2.1.2 do not give us an estimation on how quickly the values of
u(z) of a function approach the values of u(y) as z — y.

We generalise the definition of continuity by adding a power, say « € (0, 1], to the term |z — y|
and define the following

Definition 30. Let Q C R” and 0 < a < 1. A function u : 2 — R is uniformly Holder continuous
with exponent « in Q if
[U]a,0 = sup Ju(z) = uly)| < 00 (4.1.5)
z,yeN ‘33 - y|0(
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The quantity [u]q o is a semi-norm.

We note that, a function v : Q@ — R is locally uniformly Ho6lder continuous with exponent « in
Qif [u]q,0 is finite for every ' € Q.

We denote by C%(2) the space of locally uniformly Hélder continuous functions with
exponent « in Q. The space C%%(Q), where 2 is bounded, is a Banach space with respect to
the norm

||u||co,a(§) = Slép lul + [u]a,0- (4.1.6)

If w is Holder continuous with o = 1, then we say that u is Lipschitz continuous.

We extend the definition of Hélder space to the space with functions with continuous partial
derivatives.

Definition 31. Let 2 C R", k € N and 0 < a < 1, then we define the space C*(£) which
consists of all functions u : 2 — R with continuous partial derivatives in ) of order less than or
equal to k whose k" derivatives are locally uniformly Hélder continuous with exponent « in Q. If
the set  is bounded, then the space C**%(Q) is a Banach space with respect to the norm

[ull ctoey = Y, sup|0%ul + > [0%ulao (4.1.7)
1<k © |BI=k

4.1.4 L? spaces

We introduce a more general function spaces, where we consider that €2 is a Lebesgue-measurable
set in R™. A Lebesgue-measurable set is a set that can be divided into small pieces that can be
measured, and the sum of these measures gives the measure of the whole set. Lebesgue-measurable
sets are important because they allow us to define integrals and other mathematical operations
that can be used to study the behavior of functions on these sets. A function u : X — Y, where
X and Y are measurable spaces, is said to be Lebesgue-measurable if and only if for every Borel
set B C Y, the set {z € X : u(z) € B} is Lebesgue-measurable in X [5].

Definition 32. For 1 < p < oo, the space LP(f) consists of the Lebesgue-measurable functions
u :  — R such that

/ |ulPdx < 0o (4.1.8)
Q

and L*°(§2) consists of the essentially bounded functions. Intuitively, a function u € L™ () may
exceed a certain bound on a set of points with zero measure. In this case, u is considered bounded.

LP spaces are Banach spaces with respect to the norm

1/p
lull ze(o) = (/ IU|pdm) (4.1.9)
0

lull Lo (@) = sup |u| = inf {M € R:u < M a.e. in Q}. (4.1.10)
Q

and for L™

4.1.5 Sobolev spaces

Sobolev spaces are a class of function spaces used in the field of functional analysis and partial
differential equations. They were introduced by the Russian mathematician Sergei Sobolev in
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the early 1930s. Sobolev spaces provide a framework for studying the regularity of functions,
particularly those involved in solutions to partial differential equations.

The idea behind Sobolev spaces is to introduce a notion of "weak" derivatives for functions
that may not have classical derivatives. In classical calculus, the derivative of a function measures
how it changes at a given point. However, for functions that are not sufficiently smooth, classical
derivatives may not exist. Sobolev spaces address this issue by considering weak derivatives, which
are defined in a distributional sense.

Weak derivatives

Definition 33. Let Q be an open subset of R® and f € Li (). We say that f is weakly

loc

differentiable with respect to z; if there exists g € L} () such that

loc
[ sosois =~ [ gioda, vo e c=@)
Q Q
where g; is considered to be the weak i*" derivative of f.

We can generalise the definition of the weak derivative by introducing the multi-index a € Ny,
then by applying integration by parts a times, we have

/ (0° )da = (~1)l! / F(0°9)dz, Vo € C(9).
Q Q

The idea is to "move the derivatives from f to ¢".

Example 10. Let us consider the function f € C'(R) with
w={5 1%
We consider the following integral for ¢ € C°(R)
/Rf(a:)cb’dm = /Ooox - ¢ dx + /0 0-¢'de

——/0001~¢dx—/0000~¢dx

- / x(@)édz & f'(z) = x(2)

where x(x) is the step function

Distributions

In Sobolev spaces, distributions refer to generalized functions or functionals that act on a space of
test functions.

Definition 34. A sequence {¢,, € C°(Q) : n € N} converges to ¢ € C2°(Q) in the sence of thest
functions if:

a) 3QY € Q : suppp,, C ', Vn € N,

b) 0%¢, — 0%¢p as n — oo uniformly on Q for every o € Nj

The topological vector space D(2) consists of C2°(£2) equipped with the topology that corresponds
to convergence in the sense of test functions.
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Definition 35. A distribution on €2 is a continuous linear functional
T:D(Q) >R

A sequence {T,, : n € N} of distributions weakly converges to a distribution T, if (T,,¢) —
(T, ¢y, Vo € D(R2). The topological vector space D’(§2) consists of the distributions on  equipped
with the topology corresponding to this notion of convergence.

Corollary 36. The space of distributions is the topological dual of the space of test functions.
Example 11. The delta-function supported at « € €2 is the distribution

do : D(Q) = R
defined by evaluation of a test function at «:

(0o, 9) = d(a)

Example 12. Any function f € L}, () defines a Ty € D'(Q) by

loc

(Ty, ) = /Q fode.

The spaces W*? and W*P

Sobolev spaces consist of functions whose weak derivatives belong to LP.

Definition 37. Let 2 be an open subset of R”, k € Nand 1 < p < co. The Sobolev space W*?(Q)
consists of all locally integrable functions f : Q — R such that 9%f € LP(2). The sobolev space
W*P(Q) is a Banach space with the norm

1/p

[ fllwer @) = Z/Iaaf\pdx , 1<p< o

|| <k

oo(q) = max sup |[0%f|, p= oo
£ llvwe (Q) |a|§>]<§ QP\ flip

The space H*(Q) = W*2(Q) is a Hilbert space with the inner product

Z/a“ )(0%g)

la|<k
Generalization for k — s € R:
1/p
0% f(z) — 0% f(y)I?
Hf”W*“’vNQ) = HfHWk P(Q) + Z / / |l‘ _ y|n+p# ddy ’
la|=k

where s =k +pu, k€ Nand p € (0,1).

4.2 Borg-Levinson theorem

This section deals with the elements of multidimensional Borg-Levinson inverse theory. Its main
purpose is to establish that the Dirichlet eigenvalues and Neumann boundary data of the operator
—A+gq, acting in a bounded domain of R? with d > 2, uniquely determine the real-valued bounded
potential q [70].

Borg (1946) and Levinson (1949) have provided us with the following result
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Theorem 38. For A € R and for ¢; € L>(0,1;R), j = 1,2, let u;(-,\) be the H?(0,1)—solution
to the initial values problem

(—A+gj(x))uj(z, ) = Auj(z,A) € (0,1)

uj(O, /\) =0, u;(o7 A)=1. (421)

Denote by {\;,,, n € N} the non-decreasing sequence of the Dirichlet eigenvalues associated with

A, = —A + g, obtained by imposing u;(1, ;) =0, n € N.Then, we have the implication:

(At = A2 and flus (-, M)l 22¢0,1) = [Juz (s A2n)ll2(0,1), 7 € N) = (¢1 = g2 in (0, 1)).

where the uniqueness can also be achieved if we replace [u; (-, Ajn)ll22(0,1), 7 = 1,2 with u}(1, )
(I. M. Gel’fand and B. M. Levitan).

Theorem 39. Suppose that conditions of Theorem 2/ are satisfied, then

(Al,n = )\277,, and U;(l, /\1,n) = u;(l, )\Q,H), n e N) — (q1 = Q2 in (0, 1))

4.3 Application of Gauss Error Function on l/(;(n)

In section 2.1.3 we had to calculate the Fourier transform of

R =g [ 3= ar

where we will apply Gauss error function over R [58]. To do this first let us focus on the integral
I = /e—'yt2/2—2i7rnt dt

by completing the square, one can obtain

( V=t —2irn\2_ 27242
I = e\ V2 V= v dt

and make the substitution v = L\/Q%“m — du = —/Zdt, we have

R
722 —u

I =— 16_2 Bl /2e du
2 T

We can see that the indefinite integral

2¢—v

Nz

is the Gauss error function erf(u). Therefore. Therefore,

om2n2
I=—, [ e 5" erf(u)
2y

Il = du

or
I s 27r27)2 (—"yt — 2Z7rn>
=—,/—e T
2y V2y
Hence,




4.4 Bolzano’s theorem with an example for finding numeri-
cally a root for a continuous function - bisection method

If a continuous function defined on an interval is sometimes positive and sometimes negative, it
must be 0 at some point [81].

Bolzano (1817) proved the theorem, which effectively proves the general case of intermediate
value theorem [2]|, using techniques which were considered especially rigorous for his time, but
which are regarded as nonrigorous in modern times (Grabiner 1983).

If f is continuous on a closed interval [a, b], and ¢ is any number between f(a) and f(b) inclusive,
then there is at least one number z in the closed interval such that f(x) = ¢. The theorem is proven
by observing that f([a,b]) is connected because the image of a connected set under a continuous
function is connected, where f([a,b]) denotes the image of the interval [a, b] under the function f.
Since c¢ is between f(a) and f(b), it must be in this connected set.

Suppose now that we have guaranteed that there exists a root x¢ for a function f = f(x) on the
interval I such that f(xo) = 0. Where exactly is 2y € I? We cannot always find precise the root g
for every function f, but we can use an approximation method by applying consecutive Bolzano’s
method on smaller intervals that are contained in I such that I C Iy C ... C Iy C I, where k
is the k' bolzano theorem application on a smaller interval than the previous application. Then
by having smaller and smaller intervals we can approximate the value z¢ € I}, C I.

This method, also called bisection method, is used in chapter 3 for finding the eigenvalues to our
differential equation for a continuous function, however it has a slow convergence to xzgy. In every
step the error € = |xg — x,| to this method is cut in half of the previous step [60]:

€n €n—1 €0

En—&-l:?: 2 :"':211

th

where x,, is the approximation of zy in the n*" step. Suppose that we want to achieve a specific
accuracy, say E, of zq, then the number of steps n that we need is given by the formula:

log, 2
n = log, —
E

The slow convergence didn’t bother us where we had to find the eigenvalues in chapter 3, because
we didn’t applied the method exactly as it it stated, but we borrowed the idea to use it for the
graph that we plotted from mathematica. We found the eigenvalues by zooming in the interval
I of our interest and we continued to zoom in until mathematica didn’t allow us to zoom even
further due to the lack of memory.

Let us give an example where we apply bisection method exactly as it is stated

Example 13. Let us consider the function f(z) = 23

to find a root for the function.

—x —1, we are going to use bisection method

1%t iteration:

Take Iy = [1,2], then f(1) = —1 < 0 and f(2) = 5 > 0. By Bolzano’s theorem the root lies
between 1 and 2 and we consider

1+2
T = 5 =15
then
f(z1) =0.875 >0
274 jteration:
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Take I = [1,1.5], then f(1) = —1 < 0 and f(1.5) = 0.875 > 0. By Bolzano’s theorem the root

lies between 1 and 1.5 and we consider
1+1.
150

To =

then
f(z2) = —0.29688 < 0

374 iteration:
[1.25,1.5], then f(1.25) = —0.29688 < 0 and f(1.5) = 0.875 > 0. By Bolzano’s

Take I3 =
theorem the root lies between 1.25 and 1.5 and we consider

1.25+ 1.5
T3 = % =1.375

then
f(zs) =0.22461 > 0

4t iteration:
Take Iy = [1.25,1.375], then f(1.25) = —0.29688 < 0 and f(1.375) = 0.22461 > 0. By Bolzano’s

theorem the root lies between 1.25 and 1.375 and we consider

1.25 4+ 1.375
T4 = % =1.3125

then
f(zq) = —0.05151 < 0

5t iteration:
Take Iy = [1.3125,1.375], then f(1.3125) = —0.05151 < 0 and f(1.375) = 0.22461 > 0. By

Bolzano’s theorem the root lies between 1.3125 and 1.375 and we consider

1.3125 + 1.
s — M — 1.34375

then
f(z5) =0.08261 > 0

6t" iteration:
Take Iy = [1.3125,1.34375], then f(1.3125) = —0.05151 < 0 and f(1.34375) = 0.08261 > 0. By

Bolzano’s theorem the root lies between 1.3125 and 1.34375 and we consider

1.3125 + 1.34
g = 22 5+2 3375 _ 1 30812

then
f(zg) =0.01458 > 0

Tt iteration:
Take I; = [1.3125,1.32812], then f(1.3125) = —0.05151 < 0 and f(1.32812) = 0.01458 > 0. By

Bolzano’s theorem the root lies between 1.3125 and 1.32812 and we consider

1.3125 + 1.32812
T = 3 5“; 32812 _ | 39031
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then
f(z7) = —0.01871 < 0

8th jteration:

Take Iy = [1.32031,1.32812], then f(1.32031) = —0.01871 < 0 and f(1.32812) = 0.01458 > 0.
By Bolzano’s theorem the root lies between 1.32031 and 1.32812 and we consider

~ 1.32031 + 1.32812
o 2

s = 1.32422

then
f(zg) = —0.00213 < 0

9th jteration:

Take Iy = [1.32422,1.32812], then f(1.32422) = —0.00213 < 0 and f(1.32812) = 0.01458 > 0.
By Bolzano’s theorem the root lies between 1.32422 and 1.32812 and we consider

~1.32422 + 1.32812

= 1.32617
2

L9

then
f(zg) = 0.00621 > 0

10" iteration:

Take I19 = [1.32422,1.32617], then f(1.32422) = —0.00213 < 0 and f(1.32617) = 0.00621 > 0.
By Bolzano’s theorem the root lies between 1.32422 and 1.32617 and we consider
1.32422 + 1.32617

T10 = 5 = 1.3252

then
f(z10) = 0.00204 > 0

11" iteration:

Take 117 = [1.32422,1.3252], then f(1.32422) = —0.00213 < 0 and f(1.3252) = 0.00204 > 0. By
Bolzano’s theorem the root lies between 1.32422 and 1.3252 and we consider

- 1.324222+ 1.3252 132471

then
f(z11) = —0.00005 < 0

Approximate root of the equation z3

an accuracy of 4 decimals.

— x — 1 = 0 using Bisection method is x1; = 1.32471 with
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n a fia) b fib) e=t : b fi©) Update
1 1 1 2 5 15 0.875 b=c
2 1 1 15 0.875 125 -0.29688 a=c
3 125 -0.29688 15 0.875 1.375 0.22461 b=c
4 125 -0.29688 1.375 0.22461 13125 -0.05151 a=c
5 | 13125 -0.05151 1.375 0.22461 1.34375 0.08261 b=c
6 | 13125 -0.05151 134375  0.08261 132812 0.01458 b=c
7 | 13125 -0.05151 132812 0.01458 1.32031 -0.01871 a=c
8 | 1.32031 -0.01871 132812 0.01458 132422 -0.00213 a=c
9 | 132422 -0.00213 132812 0.01458 132617 0.00621 b=c
10 | 1.32422 -0.00213 132617  0.00621 13252 0.00204 b=c
11| 132422 -0.00213 1.3252 0.00204 1.32471 -0.00005 a=c

4.5 An example on the Poincare-Linstedt method

In perturbation theory, the Poincare-Linstedt method is mostly used to find periodic solutions to
a differential equation or in system of equations. The method is based on the assumption that the
solution for the equation

Orx = f(z,t;e), 0< e <1

is expressed as

x(t) = Zek$k(t) =xo(t) +ex1(t) + ...+ "z, () + ...
k=0

where the first term zq is the solution to the known problem without e.

Example 14. Let us consider a problem from classical mechanics, the equation of the non-
harmonic oscillator, also known as the Duffing equation [43]

mofx +k(r —az®) =0, 2 € R

where k is the spring constant, m is the mass of the oscillator and « is a coefficient that determines
the non-linearity of the spring, with |a| < 1. By setting as w2 = k/m and € = wia < 1 we obtain

OXr + wiz = ex® (4.5.1)

We assume that the solution to the equation (4.5.1) is given by

z(t) = 2o(t) + ex1(t) + aa(t) + ...

k

and by substituting the terms €, we obtain the following system of equations

v : 0270+ wire =0

el 02wy + wizy = 23

€ 0?39 + wire = 32314

€ 02x3 +wiws = 3xdws + 3w}

By solving the first equation we have

o (t) = A() COS th + BO sin th
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where for our oscillator, without loss of generality, we may consider the initial conditions z(0) =
z0(0) = A and 9;x(0) = 9rx0(0) = 0, therefore

xo(t) = Acoswpt

We apply a Fourier transformation on zg(t) and substituting it to the next equation we have

43
02xy + wizy = T(?) cos wot + cos 3wot)

and we obtain the solution

3 A3
x1(t) = Aj coswpt + B sinwot + %t sin wot — m cos 3wot

where we have to address the fact we have the term tsinwgt that breaks our periodicity. These
terms are called secular terms [44] and are the terms that gives us different results than what we
expected to obtain. The presence of secular terms tells us that if the series converges, it will be
only for a finite period of time

0<t<1/e

To obtain convergence for every ¢ € R, one must to eliminate terms that are proportional to
cos wopt or sinwpt. Poincare and Linstedt proposed that we have to assume that the frequency w is
a unknown parameter and expand it to a series of powers of e.

Let us consider
w:w0+ew1+62w2—|—...

Therefore we write (4.5.1) as

2

x4+ w’r = (W? — wi)x + ex

Then we obtain the following system of equations
8,?300 + ngo =0
3t2;v1 + wgzl = (2wow1)xo + xg

2w + wize = (2wows + w?)Tg + 2wewi 1 + 2T37,

By solving every differential equation we obtain the solution

A3
z(t) = Acoswt + EW(COS wt —cos3wt) + ...
where
3A?
Ww=wy— —€+...
8&)0

where the secular terms were cancelled out and we have provided periodicity of the solution ()
with frequency w that depends on the initial values.
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4.6 Mathematica codes

X=(-1)~n/ (2~(2n) (n1)~2) + (18~ (-3) /A) (A"2A-22AB+C)/ (2n)"2;
Y=(-1)~(n+1) /(2" (2 (n+1)) ((n+1) 1)~2) + (18" (=3) /) (A"2X-2AA+B) /(2 (n+1))"2;

Y-X
3 .32 [c2BaA2 | \

c-o2Ba-anz BUZAMN (ML T ) (cnn2in (qytng2e

4000 n’ 2 4000 (1-n)2 2 (n1)? ((L+n)1)?
_ 2 (c2Basni? | (-1)72720
C_2Ba+AR2 B-2Ax+X ( PE T )2 ) (-1)" 2727 (~1ytn g2 (e
Limit[ + - + s N Infinity]
4000 n? 2 4000 (1+n)% 2 (n1)? ((L+n)1)?
]

Figure 4.1: Numerical investigation for the difference of consecutive terms ca;, and cy(,41) using
Mathematica.

1= -BesselJ[0, Sart(x]] - 107 (-3) /x*3 (xd1);

£2 = -BesselJ [0, Sqrt[x]] - 107 (-3) / x~3 (xd1+x"2d2);

£3 = -Bessel) [0, SArt[x]] - 107 (-3) /X3 (xdl+x*2d2 +x*3d3);

£4 = -BesselJ [0, Sqrt[x]] - 107 (-3) /x~3 (xd1+x"2d2 + x~3d3 + x74d4);

5 = -BesselJ [0, SArt[x]] - 107 (-3) /x*3 (xd1+x~2d2 + x*3d3 + X*4d4 + X5 d5) 3

6 = -BesselJ [0, SQrt[x]] - 104 (-3) /X~3 (xd1+X~2d2 + XA3d3 + X74dd + XA5 d5 + X6 d6) ;
Plot[(f1, f2, 3, f4, £5, 6}, (x, 0, 100}]

1= -Besseld [0, Sart[x]] - 107 (-3) /x*3 (xd1);

essel[6, Sart[x]] - 107 (-3) /x3 (xd1+x"2d2);

esseld [0, SArt[x]] - 107 (-3) /X3 (xdl+Xx"2d2+x*3d3);

essel [0, Sart[x]] - 107 (-3) /x*3 (xd1+x"2d2+x"3d3 + x4 da) ;

esseld [0, SArt[x]] - 107 (-3) /X3 (xd1+X"2d2+ XA3d3 + x4 dd + X 5 d5) ;

6 = -Bessell [0, Sart [x]] - 107 (-3) /x*3 (xd1+x"2d2+x"3d3 + x~4dd + X*5d5 + X6 d6) ;
Plot[(f1, £2, f3, f4, f5, 6}, (x, 0, 100}, PlotRange - (0.5, 0.5} ]

1= -Bessel1[0, Sqrt[x]] - 16~ (-3) /x*3 (xd1);
2= -Bessell [0, Sqrt(x]] - 16" (-3) /x"3 (xd1+x"2d2);

3= -Bessel1[0, Sqrt(x]] - 16" (-3) /x3 (xd1+x2d2 +x"3d3);

4= -Bessell [0, Sqrt(x]] - 16" (-3) /x"3 (xdl+x"2d2+ x"3d3 + x~4d4);

#5 = -Bessel1[0, Sqrt(x]] - 10" (~3) /X3 (xd1+xA2d2 + x"3d3 + X~4dd + XA5d5) ;

6 = -Bessell [0, Sqrt(x]] - 16" (-3) /x"3 (xd1+x"2d2+ x"3d3 + x4 dd + X*5d5 + X6 d6) 3
Plot[(f1, £2, £3, f4, £5, f6), (x, 0, 10000}, PlotRange » {-1, 1}]

Figure 4.2: Plot of function of interest for different intervals of A. We observe that there are two
functions that behave differently than the other functions and these are the functions of interest
with N =1 and N = 2, because the term 1/\3 outweighs the polynomial terms which are at most
degree 2.
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cl=(-1)71/ (27 (2%1) (11)22) //N
€2= (-1)72/ (27 (2%2) (21)22) //N
€3=(-1)"3/ (27 (2%3) (31)72) //N
cd= (-1)"4/ (27 (2%4) (41)72) //N
€5= (-1)"5/ (27 (2%5) (5!)*2) //N
€6= (-1)"6/ (27 (2%6) (6!)72) //N

-8.25
9.015625
-0.000434028
6.78168 x 18 °
-6.78168 x18°°

4.7095 x 1971°

d2=0.25x"2//N

d4 = Expand[-d2/ (2%2) +1/ (2%2)*2 (x"2c2-2x) //N]

d6 = Expand[-d4 / (2%3) +1/ (2%3)~2 (x"2c4-2xc2+1) //N]

d8 = Expand[-d6/ (2%4) +1/ (2%4)~2 (x"2c6-2xcd+c2) //N]
d10 = Expand[-d8/ (2%5) +1/ (2%5)~2 (x"2c8-2xc6+c4) //N]
d12 = Expand[-d10/ (2%6) +1/ (2%6) 2 (x*2c1@-2xc8+c6) //N]|
d14 = Expand[-d12/ (2%7) +1/ (2%7) "2 (x"2c12-2xcl@+c8) //N]

8.25x”

~0.125x - ©.078125 x*

©.0277778 + 0.0347222 X + ©.0134549 x°
-6.00737847 - ©.00482856 x - 0.00168864 X’
©.000894097 + 6.600491536 x + 0.000168932 X
-©.0000775222 - ©.0000410556 X - 0.6000140781 X°

5.5719x10 ° + 2.93323x 18 ° x + 1.80558 x 18 ° x*

Plot[{d2, d4, d6, d8, die, d12}, {x, @, 1}]

-0.10

Figure 4.3: Numerical determination of cé?c) and Yo (A) = CSC), ke{l1,2,3,4,56}

functionM[x_] := (B.ZS Xz) X+ (»0.125‘ x -0.078125° XZ) X024 (9.927777777777777776‘ +0.034722222222222224° x +@.01345486111111111° Xz) X34
(»0.997378472222222222‘ - ©.004828559027777778" x - 8.0016886393229166665" XZ) x"4 4 (B.BBBSBAB97ZZZZZZZZZZ‘ +0.8004915364583333333" x + 0.00016893174913194445" XZ) X"5 4

(»O.BBBQ775221835415753‘ - ©.00084105556158371913" x - ©.000014078116711275077" xz) X6+ (5.57189925‘0282315‘ *10" (-6) +2.933232121697858" » 10" (-6) x + 1.8855821678986265" » 10" (-6) xz) x"7;

functionM[4.77983] // N
functionM[21.3994] // N
functionM[467.702] // N
functionM[2494.89] // N
functionM[6452.08] // N
functionM[12376.8] // N
functionM[4.77953] // N
functionM[24.320] // N

functionM[467.702] // N
functionM[2494.89] // N
functionM[6452.08] // N
functionM[12376.8] // N

4.60963
641606.
1.05194x 10'°

.74935 x 107

w

.94523 x 107

.

.84706 x 10%°

o

IS

.60886

.18219 « 10°

~

.05194x10*%

-

74935 x 10%*

w

.94523x 10%°

s

.84706 x 10°°

o

Figure 4.4: Numerical calculation for the function M(\) using Mathematica.
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Bl[x_ ] := - (Bessell[@, Sqrt[x]] + 1@~ (-3) / x "3« functionM[x]) / ((BesselY[@, 1.15qrt[x]]) / (Bessell[@, 1.1Sqrt[x]]) - BesselY[@, Sqrt[x]])
B1[4.77983] // N
B1[21.3994] // N
B1[467.702] // N
B1[2494.89] // N
B1[6452.@8] // N
B1[12376.8] // N

0.0000102025

0.0936267
7.21256 < 10°
2.34268 < 10™

2.12371 < 18"

2.75546 < 10"

B2[x_] := - (Bessell[@, Sqrt[x]] +10~ (-4) / x*3 » functionM[x]) / ((BesselY[@, 1.15qrt[x]]) / (Bessell[@, 1.15qrt[x]]) - BesselY[@, Sqrt[x]])
B2[4.77953] // N

B2[24.320] // N

B2[467.702] // N

B2[2494.89] // N

B2[6452.08] // N

B2[12376.8] // N

1.13284x10 °

9.0172908
721256.
2.34268 < 10"

2.12371 x 18"

Figure 4.5: Numerical calculation for the coefficient B using Mathematica.
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Al[x ] :=-Bl[x] (Bessely[@, 1.1Sqrt[x]]) / (Bessell[e, 1.15qrt[x]])
A1[4.77983] // N

A1[21.3994] // N

Al[467.702] // N

Al[2494.89] // N

Al[6452.08] // N

A1[12376.8] // N

A2[x_] := -B2[x] (BesselY[®@, 1.15qrt[x]]) / (Bessell[@, 1.15qrt[x]])
A2[4.77953] // N

A2[24.320] // N

A2[467.702] // N

A2[2494.89] // N

A2[6452.08] // N

A2[12376.8] // N

0.118039
9.202349
1.14144 < 10’
2.17812 x 10
8.83114 x 10"
3.71297 < 10"
0.118044
9.179985
1.14144 < 10°
2.17812 < 10"
8.83114 x 10"

3.71297 < 16

Figure 4.6: Numerical calculation for the coefficient A using Mathematica.
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difphii[x_, v ] :=Sqrt[v] Bessell[4, Sqrt[v] r] - Sqrt[x] Bessell[1, Sart[x] r] +10"(-4) (2 (104 x (0.25 ") - v (0.25 7)) r™1
+4 (104 x (-0.125 x - 0.078125 x‘] - v (-9.125" y - 0.078125 y‘]] ra3
+6 (104 x (0.027777777777777776" + 0.034722222222222224” x + 0.01345486111111111° %) - y (0.027777777777777776" + 0.034722222222222324" y + 0.01345486111111111° 1)) r”5
+8 (lﬁtx (-6.667373472222222222' - 8.884828559027777778" x - 8.8016886393229166665" Xl) -y (-9.997378472222222222' - 8.804828559@27777778" y - ©.0016886393229166665" ylll ro7
+18 (latx (9.99989499?2222222222‘ +8.8884915364583333333" x + 0.00016893174913194445" Xl) -y (9.9998959972222222222‘ +0.0004915364583333333" v + 0.80016893174913194445" ylll r~9
+12 (latx (—6.6666775221336419753' - 8.800041085556158371913" x - 0.0000140781167112750877" xl] -y (—B.BBBBT.’SIIlS}BﬂlE?ST - 0.00004105556158371913" y - 0.880014078116711275877" yl]] r11

+14 (10 # x (5.571899260282816" +*-6 + 2.933232121697058 +~-6 x + 1.0055821678986265 +*-6 »°) - » (5.571899260282816™ +"-6 + 2.933232121697058" «*-6 v + 1,0055821678986265™ +*-6 1) | r~13)

difii[r | := Expand [difphil[4.77983, 4.77953] // N]
difi2[r | := Expand [difphil[21.3994, 24.320] // N]
difi3[r_] := Expand [difphil[467.702, 467.702] // N]
dif14[r_] := Expand[difphil[2494.89, 2494.89] // N]
difi5[r | := Expand[difphi1[6452.08, 6452.08] // N]
dif16[r_] := Expand [difphil[12376.8, 12376.8] // N]
dif11[r_]

difi2[r_]

dif13[r_]

difia[r_]

dif15[r_]

dif16[r_]

8.8491427 - - ©.8489954 r' | @.@129353 r° - B.88237597 r’ + 8.88@38557 r~ - ©.8888387364 r'' | 2.56365 .18 ° r'’ | 2.18621 Bessel)|1., 2.18621 r| - 2.18528 Bessel)[1., 2.18628
4.18054 r - 2.81223r° + @.761225r - ©.129475r + @.0162543 r° - ©.80162661 r'' + ©.000135564 r"’ - 4.62595 Bessell (1., 4.62595r + 4.93153 Bessell (1., 4.93153 1

4 1.30439 p12

8. 1 46838.4r - 28872.4r" + 7474.37 r* - 1251.51r + 156.518 r° - 15.6526 "
8. .+ 6.98822x108° r - 4.37044x18° ' | 1.12947 x168° r° - 1890826. r’ + 23638.2 " - 2363.91r™ | 196.993 r*?
8. +1.20868 10" r - 7.55613x18" r' + 1.9523x18" r° - 3.26789x16° r’ + 488553. r° - 48856.8 r'' + 3404.74 "’

@, +8.53174x10% r - 5.33383x10° r* + 1.37781x10° r° - 2.30566x 18" r’ + 2.88324 «168° r° - 288334, r'' + 24@27.8r"

difphi2[x , y ,al , bl , a2 ,b? ] :=a2Sqrt[y] Besseld[1, Sqrt[y] r] + b2 Sqrt [y] BesselY[1, Sqrt[y] r] - al Sqrt [x] Besseld[1, Sqrt[x] r] - b Sqrt[x] Bessel¥[1, Sqrt [x] r]
dif21[r | := Expand[difphi2[4.77983, 4.77953, ©.118039, 0.0000102025, 0.118044, 1.13284 10~ (6)] // N]

dif22[r_] := Expand[difphi2[21.3994, 24.320, -0.202349, 0.0936267, -0.179985, 0.0172908] // N]

dif23[r_] := Expand[difphi2 [467.702, 467.702, 1.14144 +10"7, -7.21256 4106, 1.14144 +18"6, -7.21256 +18~5] // N]
dif24[r | := Expand[difphi2[2494.89, 2494.89, 2.17812 +10~11, -2.34268+10~11, 2.17812 +10~10, -2.34268 +108~10] // N]
dif25[r_] := Expand[difphi2 [6452.08, 6452.08, 8.83114+10°13, 2.12371+10~14, 8.83114 10~12, 2.12371+10~13] // N]
dif26[r_] := Expand[difphi2[12376.8, 12376.8, 3.71297 « 16~15, 2.75546 +10"15, 3.71297 «18~14, 2.75546 4 18~14] // N]
dif21[r_]

dif22[r_]

dif23[r_]

dif24[r_]

dif25[r_]

dif26[r_]

8.258869 Bessell (1., 2.18621 r| - 8.258067 Bessel) (1., 2.18628 r| + 2.47663 10 © Bessel¥[1., 2.18621r| - 6.0888223055 Bessel¥|1., 2.18628
8.936856 Bessell 1., 4.62595 | - 8.887682 Bessell (1., 4.93153 r| ~ B.433112 Bessel¥|1., 4.62595 | + 8.8852781 BesselY(1., 4.93153 r
2.22167 «18° Bessell 1., 21.6264r| + 1.48384 x 16° BesselY (1., 21.6264 r
9.79152 « 18** Besseld (1., 49.9489 r| + 1.85313 » 18" BesselY|1., 49.9489 r
6.38424 « 18°° Besseld (1., 88.3248 | - 1.53528 » 18'° BesselY|1., 88.3248

3.71765x 18" BesselJ[1., 111.251 r| - 2.75893 » 18" Bessel¥(1., 111.251r

Figure 4.7: Numerical evaluation of the differences 9, ¢4, — 0,¢q,, for r € [0,1] and r € [1,1.1].
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