EoNIKO METTYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON YIIOAOTISTON
EPrALTHPIO YYSTHMATON TEXNHTHY NOHMOSYNHY KAI MAGHIHE

Scene Graph Retrieval Using Contrastive Learning in
Graph Neural Networks

DIPLOMA THESIS

by

Boufalis Odyssefs Dimitrios

Emﬁkénwv: Adavdoloc Bourddnpoc
En. Kadnynuic E.M.IL

Adhva, Mdptioc 2024

P2
55

Edvixé Metodfio Ilohuteyvelo

Yyon| Hhextpohdywv Mryavixddv xan Mnyoavixodv Troloylotdv
Touéac ITAnpogopixic

Eeyoaothplo Yuotnudtewy Teywntrig Nonuooivng xow Mddnong

9
=
A€ I
X, T S
NI
v HE

¢
1 $=?
r

Scene Graph Retrieval Using Contrastive Learning in
Graph Neural Networks

DIPLOMA THESIS
by

Boufalis Odyssefs Dimitrios

ETEL@)\E’TE(;)V: Adavdotoc Boulddnuog
En. Kodnyntic E.M.IL

Evxpldnxe and v teiuedr) e€etaotin enitpont) v 26" Maptiou, 2024,

Avdpéac-T'edpyioc Ltogpuhdmatng
Kodnyntic E.M.IT

Adavdoioc Boulddnuog Tempyloc Ltduou

En. Kodnyntic E.M.IL. Kadnyntic E.M.IL

Adhva, Mdptioc 2024

MImor#AAHE OAYEIZEYS AHMHTPIOX
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mnyovixog Trohoyiotov E.M.IIL

Copyright (©) — All rights reserved Boufalis Odyssefs Dimitrios, 2024.
Me em@OIaEn TOVTOS BLXAUDOUATOC.

Arnayopebeton n aviypagt, anodrixeuon xou Slovopr] Tne tapovoag epyactag, €€ oAoxhipou Y TUAUITOS AUTAS, Yid
eunopd oxond. Emtpéneton 1 avatinwot), amodixeuct) xou Siovour| Yol oxomd U xepdooxomuxd, EXTOUEVTIXAC
1) EEELYNTXAC PUOTC, UTO TNY TEoUTOVEST Vo avapépeTal 1) TYY) TPOEAEUOTC %ol VL BLTNEELTOL TO THPOV UAVUUAL.
Epwtiuata mou agopolv 1t yerion tne epyaociog yio xepdooxomxd oxond npénel vo aneudivoviol Teog Tov
CLUYYPAPEA.

Or andielc xon Tol GUUTERIOUOTA TTOU TERLEYOVTOL OE oUTH TO EYYEUPO EXPEALOLY TOV GUYYEAUPEN XalL DEV TRENEL
va epunvevdel 6Tt avuinpoownedouy Ti¢ enionueg Yéocig Tou Edvixod Metodfiou IToduteyvelou.

ITepiindm

To Nevpwvind Aixtua Tedgov (NATY) éyouv avadewyVel we évol pETAoYNUATIOTING TopddeLyUd oe Btdpopoug
Topele MOyw tng adloonuelwtne tavdTNTAC TOUS Vol LOVIEAOTOLOUY TOAUTAOXEC OYEGELC TOU EVUTHPYOUY OE
dedoyuéva ue doun yeapnudtwy. H 8Ovaun avanapdotaone twv NATL enextelveton oe didpopouc topelc 6nng 1
AVIALGT XOLVOVXDY DUTOWY, N BLOTANEOQORIXT|, TOl CUCTAUNTA CUCTAUCEWY X0l Ol HOPLOXES ETUOTHUES UeTald
drhwv. Iopadootaxd, TEOXEWEVOL Vo AVTIETOTLOTEL TO YVWOTO TEOBANUO TNS OHOLOTNTAS YEAPWY, €YOUV
xenowonoindel eupéwe ahydprduol tou mpoceyyilouv v andotaon enclepyacioc yedgpwv (GED) xadoe xau
Tuehvec yYedpwv. Ilpbopata, 1 mpdodog Twv teyvixwy Badide pdinong yiu dounuéva dedouéva oTn Uop@n
yedpwy €dwoe Ty euxouplor vo avamtuydolyv vevpwvixée mpooeyyloelg Pactopéveg oe NAT yia to npdBinua
NS ouoldTNTAS Yedpwy. e autd To mhaiolo, Ta NAT éyouv amodeiydel WBialtepa Loyvpd, amodeixviovtag Thv
OVOTNTA TOUC Vol GUAaBAvoLY Tepimhoxo Souxd LoTiBa xou ONUACLONOYIXES OYECELC UETU OE YEAPOUC.

H nopotoo dimhwpotixt| epyaoia Siepeuvd 0 S0vourn avanapdoTaone TV VEVpeVGY dxtiny Yedewy (NAT)
oL exToudEvOVTAL 6TO TAAioLO TNG AVTLWIETIXAC Uddnong yiot TNY avdxTnom Yedpwy oxnvic, wa epyasio {oTxhAc
oNUASLaC VLol TNV OAOXANEWUEVN XATAVOTOT) OXNVOY OV TEoEEYoVTAL antd eixdves. AELOTOLOVTOC TLC BUVATOTNTES
Twv NAT' oty anotinwon ToAITAOXWY OYECE®Y, 1 LEAETN XeNolponolel xodiepwUéves TEYVIXES U ETBAETS-
pevne avtidetinic udinong yia Ty napaywyh VYNARC TOLOTNTAC OVATUPAC TACEWY TOU BLATNEOVY TIG OO THOELS
peTol TV yYedewy. Emmhéov, eiodyeton wo aodevoe emPlenduevn anoieio avtdetxic wdinong yio v
TepaTéPw BEATIWON TWV UETPWY AvEXTNONG ATV TV Yoviéhwy. H Boacua) ahrideio yio tnv aloldynon tev
povtéhwy xadopileton pe) yerion npoceyyio uxmy aryopiduwy Graph Edit Distance (GED), ye éugaon otov
ahyoépriuo Siwepolc tarptdopatog. To MelpauoTind AmOTEAEGUATO AVADEXVOOUY TNV avKTEEY ENLBOCT TWV TRO-
TEWOUEVWY HOVTEAWY avTlieTixic udinone otny mpooéyyion tng Boaoiniic adfideionc GED oe olyxplon pe toug
VWG TOUE TUPHVES YRUPNUGTWY, ETLXURMVOVTIS TNV ATOTEAECHATIXOTNTA TwV avTideTindy NAL otny xataypogpy
TO00 TWY AETTOV GYECENMY OGO XL TOU GTUACLONOYIXOU TEQIEYOUEVOU TV YRUPNUATKY oxnvic. Aedopévng tng
UTEPOYNC TOUC GTNY TapaywYY) LVYNAAS ToldTnTag avamapas tdoewy, to NAL unopolv otn cuvéyelo va yenot-
porondoly yiol TNV Topoy T EENYHOEWY UE AVTLTURADELY O AELOTIOLOVTIC TNV IXAVOTNHTA TOUS oTNY pyaoio ovix-
™NONG YPUPNUATEVY. AUTE Tar HOVTEAD ETUTEETOUY TNV €€y WYY TOU TLO TOEOUOLOL YPAPOU GXNVAC TOU avrixel
o€ BLapopeTin xhdoT o andvTnoy oe éva Ypdpo oxnvic EpWTARATOS. AUTH 1) IXAVOTNTO TOUS YPNOHIEVEL ¢
Loy LEs epyakeio yioo T ene€Rynon tng dlapopetiniic Tagvdunone Tou ayetixol (ebyoug EoVwWY amd To omolo
éyouv mopoydel ol ypdpol oxnvic. AnoxahOTTOVTAC %ot avadEXVOOVTOC T AeTTEC SOUXES DLUPOREC EVTOS TWV
Yedpwy oxnvAc mou odnyoly oTlC SlopopeTnés TaEVOUNOELS, oL e&Nynoelc e avTinapdderypo nou Poactlovia
oe NAT mpoogépouv molUtipes Thnpogoples yior Tig dadxaoies Mne amopdoewy evdc povtéhou tadivounty ,
TpowddvToag 1 PodUTERT XUTAVONOT TWV ONUACIONOYIXGDY DAPOpHY HETAUED TOV EXOVLY XoL EVIOYVOVTS TNV
EPUNVELCLUOTNTO TV CUCTNUATWY Unyavixic uddnong.

Ag&eic KAedid — Nevpovixd Aixtua I'edgpwy, Avtidetin Méldnon, Ouoidtnta leagpnudtwy, Avdxtnon
Fpagnudtwy, Iedgot oxnvodv, EEnyfoeic e Avtinapdderypa

vii

Abstract

Graph Neural Networks (GNNs) have emerged as a transformative paradigm in various domains due to their
remarkable ability to model complex relationships inherent in graph-structured data. The representation
power of GNNs extends across diverse fields such as social network analysis, bioinformatics, recommendation
systems and molecular sciences among others. Traditionally, in order to tackle the well known graph similarity
problem, algorithms approximating Graph Edit Distance (GED) as well as Graph Kernels have been widely
used. Recently, the advancement of deep learning techniques for graph-structured data has given rise to
graph based neural approaches for the graph similarity problem. In this context, GNNs have been proven
to be particularly potent, demonstrating the capability to capture intricate structural patterns and semantic
relationships within graphs.

This diploma thesis delves into the representation power of Graph Neural Networks (GNNs) trained within
the Contrastive Learning Framework for scene graph retrieval, a task pivotal for comprehensive scene un-
derstanding. Leveraging the capabilities of GNNs in capturing complex relationships, the study employs
well-established unsupervised contrastive learning techniques to produce high quality and distance preserv-
ing graph embeddings. Additionally, a rank aware weak supervised contrastive learning loss is introduced
to further enhance the retrieval metrics of these models. Ground truth for evaluation is established using
approximate Graph Edit Distance (GED) algorithms, with a focus on the bipartite matching algorithm.
The experimental results showcase the superior performance of the proposed contrastive learning models in
approximating the GED ground truth compared to well known Graph Kernels, validating the effectiveness of
Contrastive GNNs in capturing both subtle relationships and the semantic contents of scene graphs. Given
their superiority in producing high-quality embeddings, GNNs can be then used to provide Counterfactual
Explanations by leveraging their adeptness in graph retrieval tasks. These models enable the extraction of
the most similar scene graph from another class in response to a query scene graph. This capability serves as
a powerful tool for semantically explaining the differential classification of the underlying pair of images from
which the scene graphs have been generated. By uncovering and highlighting the subtle structural nuances
within the graphs that contribute to dissimilar classifications, GNN-based counterfactual explanations offer
valuable insights into the decision-making processes of the model, promoting a deeper understanding of the
semantic disparities between images and enhancing interpretability in machine learning systems.

Keywords — Graph Neural Networks, Contrastive Learning, Graph Similarity, Graph Retrieval, Scene
Graphs, Counterfactual Explanations

ix

Euyaplotieg

Oa fdeha va euyoplothow Yepud tov x. Boukdédnuo xo tov x.Xtduou yio Ty guxouplol TOU HOU BOOAVE Vol
eExTOVAow TNV Bimhwpatiny pou epyasia oto AILS Lab xodoe xau yio) onuavtiny| fordela mou pou napeiyay
xoTd TN Sidpxela Twv arthoewy. H oloxhfowon autrg e Simhnuoatixic dev Yo frav e@uety| ywelc Ty ToALTIN
Bordeio tng Ayyehunic, tne Moploag xaw tou Nixou toug omoloug suyaplotd and xapdidg. Télog, Yo Rdeha va
EUYOELOTACE TNV OXOYEVELD UOU Yiat O TNV OTHELEN TOU Uou Tapelye OA AUTE ToL YPOVIAL YLOL VO EXTANEWOW
ToL OVELRAL LoU xS xou ToUC GIAOUC HOU YLl TIC EUYBELOTES OTLYUES Tou mepdoaye woli.

Mrnolgaing Oduocéac, Mdptiog 2024

xi

Contents

Contents
List of Figures

1 Exztetopévn Ilepiindn ota EAANviIxd

1.1 Oewenuxd umdfoatoo
111 Oewpla T'pdpeov . . o o o o oo
1.1.2 Anéotaon Enegepyactac I'odpov . .. o o oo o000
1.1.3 TupAvec Todpov . . oo oo o
1.1.4 Tedpor ZrnvAc . . o o o o o
1.1.5 Neupowvixd Alxtva pdpov . .. 0o oo oo
1.1.6 Avtdetuh Mddnon yio Nevpwvind Aixtua Iedgpov .. . oo oo o000
117 E&nydoeic ge AVIIMOEAOELYUO . « « o v o i
1.2 Tlpotewobueveg Ilpooeyyioelic o oo o o
1.2 BUVEIGQORS L
1.2.2 IIpotewodpeva Movtého oo
1.3 Iewpdpotind Mépog o o o o
1.3.1 30voho AEBOUEVOY i
1.3.2 Metpéq afloROYNONG « « o o
1.3.3 Baowg Adnlelon.00
1.3.4 ThupAvec Todpov . . oo o oo
1.3.5 Nevpwvixd Abxtua Fpdpeov oo oo oo
1.3.6 Iloocotxd AMOTEAEGUATA « . . v v v v v v e b et e e
1.3.7 TIowotid ATOTEREGUATOL . o o v v v v v i it e e
1.4 BUUREEAOUOTO . v v v v o e
141 BulATnNom . . . oo
1.4.2 Mehhovtwréc KateuOOvoeic e

2 Introduction

3 Background

3.1 Machine Learning
3.1.1 Input Data Types
3.1.2 Learning Categories
3.2 Deep Learning
3.2.1 Basic Concepts
3.2.2 Deep Learning Models
4 Contrastive Learning
4.1 Elements of Information Theory
4.1.1 Entropy

4.1.2 Kullback-Leibler (KL) Divergence
4.1.3 Jensen-Shannon Divergence (JSD)

xiii

xiv

S U W NN

Ne)

10
10
11
15
15
19
20
23
24
25
30
33
33
34

35

Contents

4.1.4 Mutual Information e e
4.2 Training Objectives in Contrastive Learning
4.2.1 Contrastive Loss e e e e e
4.2.2 Triplet Margin Loss e e
4.2.3 Mutual Information Maximization Losses
5 Graphs
5.1 Graph Theory e e
5.2 Graph Similarityo
5.2.1 Graph Edit Distance
5.2.2 Graph Kernels e
5.3 Scene Graphs e
5.4 Related Work e

6 Graph Neural Networks (GNN)

6.1

6.2

6.3

6.4

6.5

Machine Learning on Graphs
6.1.1 Motivation L e e
6.1.2 Permutation Invariance and Equivariance L.
Spectral Approaches L
6.2.1 Elements of Graph Spectral Theory
6.2.2 Spectral Variants
Spatial Approaches L
6.3.1 General Framework L
6.3.2 Spatial Variants
How to Use Graph Neural Networks
6.4.1 Exploring Task Types in Graph Neural Networks
6.4.2 Diverse Training Approaches for Graph Neural Networks
Contrastive Learning on Graphs L o o
6.5.1 Contrasting Modes e
6.5.2 Graph Contrastive Learning with Augmentations (GraphCL)
6.5.3 InfoGraph e
6.5.4 Deep Graph InfoMax (DGI)
6.5.5 Deep Graph Contrastive Representation learning (Grace)

7 Counterfactual Explanations

7.1 Introduction L e e e
7.2 Conceptual Edits and Algorithmic Framework
7.3 GNNSs for Semantic Counterfactuals
7.4 Related Work e
8 Proposal
8.1 Contributions e e e e
8.2 Proposed Models e
9 Experiments
9.1 Preliminaries e e e e
9.1.1 Dataset e e e e
9.1.2 Evaluation Metrics e e e
9.1.3 Ground Truth e
9.2 Training Details« . L e
9.2.1 Graph Kernels e
0.2.2 GNNS . . . e
9.3 Results. e e
9.3.1 Quantitative Results
9.3.2 Qualitative Results

61
62
65
65
66
72
73

75
76
76
76
78
78
79
82
82
83
88
88
89
89
89
90
92
93
94

97
98
98
101
102

103
103
104

Contents

10 Conclusion 129
10.1 DISCUSSION . . . v v v o e e e e e e e e e e e e e e e e e 129
10.2 Future Work o e e e e e 130

XV

Contents

xvi

List of Figures

1.1.1 Tapdderypo Enelepyooiog evéc ypopuatog yia Ty YeToTpon Tou o€ éva dhho. 78]
1.1.2 Armewxdvion tng Aettovpyiog TV HEOOBWY TUPHVL, . . . o v v o
1.1.3 "Eva mopdderyuo neptoywyv and wla euxova pall ue toug avtiotiyoug Yedpoug oxnvic and to Visual
Genome Dataset [46].
1.1.4 To mhadowo pddnone GraphCL [90]. o
1.2.1 Awdwaoio exnoidevone twy ovtdetieddy NAT [96]. o oo Lo
1.2.2 Eyediaopde twv mopahhoydv xewdwortonth GAT/GATV2 o
1.2.3 Eyedaoude twv moparhaydy xwdwuonomtoy GCN/GIN .o oo oo 0oL o o
1.3.1 "Eva napdderypo plog ewxédvae poall ye tov avtiotolyo ypdgo oxnvic émou ot TOmoL ox€cemy €Youy
apatEEUEl . L L
1.3.2 Ytatiotixd oTotyelo Yior TO YOUPAUATO OXNVWY GTO TUYOLO GUVORO o v o o o oL
1.3.3 "Eva mopddelyyo piog exovag yoli ye tov avtioTtolyo yedpo oxnvic and To tuyaio chvolo. . . .
1.3.4 Yratiotind otolyelo Yio TO YOUPAUATO OHNVAY GTO TUXVO GOVOAO . . v o v v o o o o oL
1.3.5 Eva mopdderypo puog edvag pall pe tov avtiotolyo yedpo oxnvic and To tuxvé cOVORo.
1.3.6 Mot amhy} avomoapdotaoy Tou Tuiuatog tne tepagyiog ovotaotixwy tou WordNet xdtw and tov
x6pfo pllag tne évvolag "entity". ... Lo Lo oo
1.3.7 Hapouotdlovton dVo emdves amd To muxvd obvoho, xoeuio and T omolec mopoucldlel €va
TavouoLoTUTIO Yedenua oxnvic. O mpoceyyiotxds ahyoprduoc GED anédwoe ye oxplBelar Bord-
pohoyia andotaone 0, avayvwpeilovtag 6Tt polpdlovtal To (8lo ONUACIONOYIXG TEPIEYOUEVO
1.3.8 Eévoa 800 douxd ouowwy exévmy nou Podpohoyinxay Ue ongavTiny ondécTtaoT oand Tov oh-
voprduo Bipartite Matching GED Adyw tou Sapopetinod onuasctohoyxo) ToUC TEPLEYOUEVOU. .
139 Euovo avalATNoNnG « . o o o oo e
1.3.10Con 3 anoteréopata - Movtého GNN00 oo
1.3.1T o 3 amoteréopota - Kohltepog muphivag .« . . . o o o o oo oo
L3 1E0OVO avalATNONG « « v v v v v o e e
1.3.13lon 3 anoteréopata - Movtého GNNo 0oL
1.3.14l'ont 3 amoteréopota - Kohltepog mupivag .« . . . o o o oo oo
13 1FoOvo avalATNONG « « v v v v v o e
1.3.16Ton 3 anoteréopata - Movtého GNNo 0oL
1.3.17Torn 3 amoteréopota - Kohltepog muphivag .« . . . o o o o oo oo
131&Eovo avalATNONG « « v v o oo o e
1.3.19on 3 anoteréopata - Movtého GNNo 0oL
1.3.20Font 3 amoteréopota - Kohbtepog muphvag .« . . . o o oo oo oo

3.1.1 An illustration of the relationship of the fields of AI, ML and DL. Source: StackExchange . .
3.1.2 An illustration of the three most important categories of learning algorithms [64].
3.1.3 Visualization of Embedding points from the 3D space to 2D space using PCA
3.2.1 An illustration of how the chain rule is used during backpropagation to compute the gradients.

Source: Mayank Agarwal L
3.2.2 An illustration of the behavior of the error function according to the model’s complexity

including the locations where underfitting and overfitting are identified [7].
3.2.3 Single Layer Perceptron with one hidden neuron [54].
3.2.4 Multi-layer Perceptron with three hidden layers. Source: Towards Data Science

xvii

12
13
14

15
17
17
18
18

21

22

23
30
30
30
31
31
31
32
32
32
33
33
33

https://ai.stackexchange.com/questions/15859/is-machine-learning-required-for-deep-learning
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199
https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

List of Figures

3.2.5 An Illustration of the diagrams of the Activation functions mentioned before 49
3.2.6 An illustration of the way a kernel (filter) convoles an image 50
3.2.7 An illustration of the architecture of LeNet [92]. 51
3.2.8 An illustration of the architecture of the Trasnformer model as presented in [82]. 52
4.2.1 An illustration of how triplet margin loss works [71] 55
4.2.2 An illustration of the CPC architecture [62] 57
4.2.3 An illustration of how SimCLR pulls closely the embeddings z; and z; of a positive pair[20] . 58
4.2.4 Maximizing mutual information between local features and global features.[39] 59
5.1.1 A Visual Representation of a General Graph 62
5.1.2 A Visual Representation of an Undirected and a Directed Graph 62
5.1.3 A Visual Representation of two graphs along with their adjacency matrices 63
5.1.4 An Undirected Graph along with its adjacency list 64
5.2.1 Graph Edit Distance Between Two Graphs. [78] 66
5.2.2 llustration of Kernel Trick o 68
5.2.3 Illustration of the label refining process [2] Lo oL 69
5.2.4 Tlustration of the construction of the product graph [61] 71
5.2.5 All graphlets of size 4 [61] e 72
5.3.1 An example of regions of an image along with their corresponding scene graphs from the Visual
Genome Dataset [46] e 73

5.3.2 The Complete Visual Genome Scene Graph of the image depicted in Figure 5.3.1. It is evident
that this scene graph contains different objects, attributes and relationships, defining effectively

that semantic content of the corresponding image [46]. 74
6.1.1 View of the convolutional receptive field for images and graphs [11] 76
6.1.2 A typical GNN may contain permutation equivariant layers computing node-wise features and

a permutation invariant global pooling layer [16] 78
6.2.1 Multi-layer Graph Convolutional Network (GCN) with first-order filters 81

6.3.1 Left: The self-attention mechanism employed by GAT. Right: An illustration of multihead
attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and colors
denote different attention heads. The aggregated features from each head are concatenated or
averaged [83]. L e 84

6.3.2 In a complete bipartite graph we can observe that the standard GAT computes static attention
— the ranking of attention coefficients is global for all nodes in the graph, and is unconditioned
on the query node. Specifically in this case, all query nodes attend mostly to the 8th key (k8).

In contrast, GATv2 actually computes dynamic attention, where every query has a different

ranking of attention coefficients of the keys and every node attends the most with itself [14]. . 86
6.3.3 Visual illustration of the GraphSAGE sample and aggregate approach [36]. 87
6.3.4 Visual illustration of how GAE works [88]. o 88

6.5.1 A general GCL framework which, after producing two augmented graph views, it encodes them
using GNN layers. The three different contrastive modes including node-node, graph-graph
and patch(node)-graph interactions, are illustrated using arrows of different colours [96]. . . . 90
6.5.2 The proposed framework for Graph Contrastive Learning where ¢;(|G) and ¢;(|G) are aug-
mentations sampled from an augmentation pool T and applied to input graph G. A shared
GNN-based encoder f(-) and a projection head g(-) are trained to maximize the agreement
between representations z; and z; via a contrastive loss [90]. 000 92
6.5.3 Two graphs are encoded into their corresponding feature maps by graph convolutions and
jumping concatenation. The discriminator takes a (global representation, patch representation)
pair as input and decides whether they are from the same graph. InfoGraph uses a batch-wise

fashion to generate all possible positive and negative samples in the batch. [77]. 93
6.5.4 An illustration of the most important steps of DGI [84]. 94
6.5.5 An illustration of the local-local CL conducted by GRACE [95]. 95
7.2.1 An illustration of the Conceptual Edits as Counterfactual Explanations Framework [31]. . . . 99

xviii

List of Figures

8.2.1 Training pipeline of Contrastive GNNs [96]. 104
8.2.2 Design of GAT/GATV2 encoder variants 105
8.2.3 Design of GCN/GIN encoder variants 106
9.1.1 An example of an image alongside with its corresponding scene graph where the types of

relationships have been removed oL L oL 108
9.1.2 Statistics for scene graphs in the Random Set 110
9.1.3 An example of an image alongside with its corresponding scene graph from the Random Set. 110
9.1.4 Statistics for scene graphs in the Dense Set 0o 111
9.1.5 An example of an image alongside with its corresponding scene graph from the Dense Set. . . 111
9.1.6 A simple representation of the portion of the WordNet noun hierarchy below the concept root

node “entity”.o e e 115

9.1.7 Here are two images from the Dense Set, each featuring an identical scene graph. The approx-
imate GED algorithm accurately assigned a distance score of 0, recognizing that they share

the same semantical contento 116
9.1.8 An illustration of two structurally similar images scored with a significant distance by the

Bipartite Matching GED algorithm due to their distinct semantic content. 117
9.3.1 Query Image e 124
9.3.2Top 3 Results - GNN Model e 124
9.3.3 Top 3 Results - Best Kernel 124
9.3.4 Query Image e 125
9.3.5 Top 3 Results - GNN Model 125
9.3.6 Top 3 Results - Best Kernel e 125
9.3.7Query Image e 126
9.3.8 Top 3 Results - GNN Model e 126
9.3.9 Top 3 Results - Best Kernel 126
9.3.10uery Tmage L e 127
9.3.1Top 3 Results - GNN Model e 127
9.3.12Top 3 Results - Best Kernel0 o 127

Xix

List of Figures

Chapter 1

Extetoapevn Ilepiindn oto EAAN VX

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewentixd urdéBadpo

O mpbogatee e€ehileic oty texvnth vonuooivny (TN) éyouv petoapoppdoet didgpopous Topels, xathotdvtag
avaryxaior TNV €QOpULOYY TRONYHEVLY TEYVXOVY Yiot TNV enclepyaoio moAimhoxwy Soucv dedopévwy 6mwe ot
yedepot. To Nevpwvind Alxtuoa Fpdgwy (NAT') éyouv avoderydel o Paowd epyoheia yio T goviehonoinon
OYECEWY GE DEDOUEVIL YRUPNUATODVY, UE EPUPUOYES TOU XOADTTOUY TA XOLVWVIXY BIXTUA, TOL CUCTAUATA CUOTAGEWY
xan T Blomhneogopixy|. To nopadoctiaxd vevpwvixd dixtua elvan oxatdAAnAia yio Sedouéva Yedpwy, YEYOVOS Tou
aVOBEXVUEL TNV avdyxT) Yl e€etdixeuuéva povtéha omwe tot NAT, eavd vor amoTunedvouy Tig tepapyinés oyéoelg
TIOU EVUTAPY 0LV GE TETOLOU Eldoug dedopéva.

To enixevtpo authc TNg BlATEIBAC EYXELTAL OTNY AVTLUETWTLOY TOU TEOBAAUATOS TN OUOLOTNTOS YRAUPWY, ELBIXY
Yt Yedpous oxnvig, 6mou to {ntoluevo elvor 1 xatdTaln TwV YpdPuV-anavTHACE®Y YE BAon TNV OpoLOTNTA TOUG
ue évay Ypdpo spwthuatoc. Evd ol muprivee ypdgwy eivon dnpogiieic yio To €pyo autd Adyw Tng euxoilag
vhomoinong xau g unohoyioTtixig Toug amodoong, mpotelvouue) xeron NAL, Wuwitepa Avtidetinddyv NATL,
Yiot THY OVTWETOTLOY auTol Tou TeofAfuatog. AZLOTOWMVTAS TG SUVITOTNTES TOLOTIXTG OVATUEACTACNS TWY
Avtdetixav NAT, otoyeboupe otn Bertinon e axpifelag xou g anodouxdTNTAC TV UTOAOYLOUMY YLoL TO
TEOBANUO TNG OUOLOTNTAS YEAPOV.

Emnhéov, n audavépevn Citnon v Epunvedown Teyvnth Nonuoolvn (XAI) éxer yiver xplowr, diwe ot
Topelc 6mwe 1 uyelovouxy) Tepldoddn xou Tar avtévoua oyrfuata, émou Ta cucthpata Teyvntic Nonpoolvng
yenowornowovvto extevie. O EEnyfoec e Avtinoapadeiypota €youv avadetyVel we gt ToAhd urnooyduevn
pédodog ya) Sohelxavon twv cvatnudtey TN yadpou xoutiol. Me v avddelln 1oV eXdyioTwy ahhay)y
TOU OmOUTOUVTOL Yol TN UeTdBaon o éva evolhoxtixd anotéreoya, ol EEfynoeic e Avtimoapodelyuatoa ye Bdon
o NATL evioybouv 1 Bagpdveia xou TNy xatovono Twy dladixaoloy Adne arogdoewy cuotnudtwy TN.

Yy mopoloa Slaten, euBadivoupe oty yenowdtnta twv avtidetixav NAL yia napoyr EEnyroewy ye Av-
Tindpaderypota. Atgpguvolue die€odixd tplor mhalota uddnong avtetixwy NAL, 6nwe to GraphCL, Info-
Graph xou Grace, mopdAinia pe didpopes maporhayéc NAT. Xtn cuvéyela, aflohoYOUUE TIC EXPRACTIXES TOUG
BUVATOTNTES YpnotponolnvTag dedouéva yedpwy oxnvrc. H epopuoyn twv Avtidetinddv NAT yio tnv opotdtnta
X0 TNV AVAXTNOTN YRAPLY oxNVAC cuvdEsTal 0TeVd e To Tedio tng Epunvetowne Teyvnthc Nonuoolivne. Xuy-
xexpléva, 1N ovodtnta Twv avtdetxwy NAIL va evtonilouy toug mo Tapduoloug YedPous oxNVAS XL, XoTd
CUVETELY, TIC ALYOTEPO OMUACLONOYIXA UTOUAXQUOUEVES TIEPLTTWOEL HECU OE VAl GUVOAO BEBOUEVRV EXOVKV TTOU
avamaploTavTal we Yedgol oxnvhc, tallel xadopiotnd péro oty dnwoveyio E&nyriocwy ye Avtindpodelyporto
yia TeEvounTég EOVIC.

1.1.1 Ocewpia F'pdpwy

‘Eva and 1o x0ptar avuxelyeva gehétng twv dloxpltedy padnpotixay elvon to yeagpruato. Ou yedgol eivon po-
Ynuatixée dopéc mou yenotwomololvTal yio T Hovielonoinon oyéoewy avd Ledyn petald aviixewévoyv. ‘Evoe
yedpoe, ouvufoiiletan we G = (V,E), 6mov V eivan éva oOvolo avtixeiévev tou ovopdlovton xopugéc (1A
x6uPot) xou E eivon évor 6OVOR0 Slaxpltdv) Tadvounpévey LEuydy Slaxpttdy xopupoy Tou ovopdlovton axuéc
(enione ovopdlovtan cOvdeouot). Ltny npdln, autd onuaiver dTu xdde axuy| "ouvdéel" 500 BlaPopeTIEC XOpUPES.
Ty o) {x,¥}, ot xopupéc x xau y ovoudlovton ta 800 dxpor Tne axuic. H oo Myeton 6T evidver Tic xopupéc
T XL Y xou OTL TPOOTUNTEL OTIC XOPUPES T ot Y. Miol xopugy| Umopel vo UTdpyEL OE €va YEAPNUL XL VO UNY
AVAXEL OE aXUT). 2€ AUTH TNV TEPINTWOT], AVAPEPOUACTE OE AUTH TNV XOPUPT 1S ATOUOVWHUEVO XOUf0.

‘Eva ypdpnuo unopel va taglvoundel oe didpopoug timoug pe Bdorn tig widtntée tou. Ot ypdpol urnogolv va
to€ivoundolyv ye Bdon Ty xatedYuvorn Twv oxuoy Touc. AVUAUTIXOTERA, ULol oXUY) TOU GUVOEEL TOUC XOUPBoug
x xou Yy yopoxtnpileton we un xoatevduvouevn edv xar ta 8o datetaypévo (ebyn (x,y) xou (y,z) anoteholy
#€POC TOU GUVONOU TGV oY, LTOBEWVOOVTOS Wt aupidpoun oOvdeon Yetald = xou y. And tnv dAAn mhevpd,
1 axuy Yewpeiton xorevduvouevn edv undpyet udvo éva and autd ta Ledyn, uodetxviovTag Uiot xaTeLiuvoueYn
ouvdeon. Koatd cuvénela, évag yedpoc yopoxtneiletol we un xateuduvouevoc dtay OAEC oL axpéc Tou elval un
XUTEVDUVOUEVES, eVE Yapax TNnelleTon we xaTeLTUVOUEVOS oV TOUAAYLIoTOV Wia anepun efvon xateuduvopevr. Mia
eyyeviAg xan TOAD onuavTixd WLOTNTA TWV un xateuduvdpevey Ypaenudtony eivan 1 cuupeteio Tou tapouvctdlel
o mivaxog yettviaong Toug.

Ta ypopruata unopoly vo avamapacTadoly Ue SLdPopous TEOTOUS YLol Vo BIEUXOAUYOUY TNV avdhuot xou Thv
avémtuén ahyoplluwv. H mo cuvnbiopévn avanapdotaon eivon o mivaxac yertvinong.

2

1.1. Oewpnuxd vndBadeo

ITivaxag I'evtvioong: ‘Evac ypdpoc té€ne N pnopel va yopaxtnplotel mhipwe omd tov mivoxo yertvioong
A, o onolog elvan évog teTpaywvixdg mivoxag dlaotdoewy N x V. Xe autdy tov mivoxa, Tor Un Undevixd otoiyela
umodNAGVoLY TNV UnaEEn cUVSETUOL PETAEY XopLEGDY. XNy nepintwaon evdg aniol yeapruatog, o A;; maipvel
uovo dvo Tég, 0 xan 1, émou 1 iy 0 dnhdvel anochvdean xou 1 1 SNAWveL GUVOIEST) HETAUED TWY XOPUPWY T XA
J. Ewwdtepa, o pn xateutuvoueva Ypopnuato Tapouctdlouy GUUUETEIXG Tivaxo YELTVIOOTE, XATL TOU ONUolVEL
ot o Ayj elvan {oog ue tov Aj;.

Extég amd tov mivoxa yeirtvioong, évag ypdgog unopel enlone vo dladétel yopaxtneiotind nou oyetilovton ue
Toug x6uPouc A/ xon Tic axuéc Tou. Xe Tétoleg mepnthoele, xdde xéuPoc () oxun) mpoodlopileton amd éva
Bdvuopa YopaxTNELGTIXGY Pe ddotaon D, odnydvtac og vay Tivaxo YapaxTnetoTiedy xouBwy (1 oxuov) Tou
ouuBohileton wg X ye dotdoeig N x D.

1.1.2 Amndotaocrn Enciepyaciog I'edpwyv

H Anéotaon Enelepyaocioc Tpdgpov (GED) eivon yior onuovtin| yetpixh 1 omola YETEE TNV oUotdTNnToL HETAE)
800 YPUPNUATOY UETPMVTAS TIC TEEEELS TOU AMOULTOUVTOL YLOL TY) UETATPOTY EVOS Ypaphuatog o éva dAho. Ou
Alberto Sanfeliu xou King-Sun Fu eiofyoryav tov npdto padnupotind goppalionsd yio Ty anécotao enciepyaciog
yedpov to 1983 [70].

Tumxd, 1 GED petalld tov ypapnudtwy Gi xa Go oupPohileton we GED(G1,G2). H Paocwy évvola tng
GED, 6w ewofiydn oto [70], nepihopPdvel tov oplopd evoc ocuvérou and Aertovpyiec Enelepyacioc Tpdgpwy.
O Aertovpyiec Enegepyaoioc I'pdpov xou o x60t0¢ Toug oupforilovto we e; xou c(e;) > 0 avtiotouya, 6mou
P(G1,G2) cuuPolrilel 1o clvoro Ghwv TV povonatdy enelepyaoiog mou petatpénouy to G oe Ga. Xe autd
to nhadoto, n GED(G1, G3) propel vo oplotel we e&hc:

k
GED(G1,G2) = min(Gl)Gz) Z cle;)

(61,...7€k)€P i—1

To cUvoho TwY oTOLYEWWdOY TEdEewy enelepyaciag YeupNUATOY TUTIXE TeEpLhouBdveL:

o Eicaywy? xopuphg: Ewoaywnyn uiog povo véag emonpaouévng xopugic oe €va ypdpnuo

o Atorypap? x0pLPAS: Agoipeon Wog LEpoveuévng (oUy Ve amoouVIESEUEVNC) xopugrc and éva Ypdenua

o AvtixatdoTact xopLPRC: Alay e etxétog (1 Tou ypduatoc) woc dedouévne xopughc

e Edge insertion: Eicaywyr véag éyypoune axpng peto€d evdg Ledyoug xopuphy

o Araypaph axpic: Agaipeon plog oaxuic uetalld evée Ledyous xopupov

o Avtixatdotacy axpic: ANy e enxétac () Tou Yp®patoc) woe dedopévne oxphic
Or axpBeic pédodot yio Tov unoroyloud tne Andotaone Eneepyaoiog pdpwy petalt 800 ypapnudtwy mepthop-
Bdvouv Yevixd Tov evIoTopd Tou povoratiol encéepyaciog ue To eAdyloto x6cTog. O tpoceyyioelg mou ypnot-
HOTOLOUVTOL YLl TOV LTOAOYIOUS auTéd cuvilwe mepthaufBdvouy elte avalntioelc edpeang HOVOTATIWY ElTe Tpoo-
BLopLod TWV CUYTOPOTEPWY OVOTIOLTLOV, XAVOVTOS Xphion Tou alyoplduou avalitnone A*. Tevixd, 1o ntpdBhnua

Tou unohoytopol e Andotaone Enelepyaciog Ipaghpatoc etvar NP-Hard xou eivon oxéun xow d0oxoho va
npooeyylotel avixovtac oty xatnyopla tohumhoxdtnrac APX-Hard.

3

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

@F.@00. &
1:> @ B @
o]

@ . @. @
’@@

Figure 1.1.1: Topdderyua Enelepyaciog evoc ypapAuatog yio Ty UETOTEOTH ToU O éva dhho. [78]

Eneidt) o axpi3ric utohoyiopée tne GED eivon NP-Hard, €youv avantuydel tohhéc mpooeyyiotxég npooeyyloelg
e andotaone enelepyaoiac yeophuatoc. H ouyxexpipévn topodhay| mou Yo yenotpomoindel eivon o ahydprduoc
Bipartite Matching. IIpbxeitan yio évay mpooeyylotxd alybplduo mou eiofydn and tov (28] o onolog odnyel
oe wa utoPéhtiotn Aon oto npdfBinua Graph Edit Distance (GED). Zuyxexpyéva, unohoyilel opyxd v
axplB1) andotaon enelepyaoiog hapPdvovtag urédn uévo tic Aettovpyieg enelepyasiog xouPwy, dnwe eloaywYE,
Blorypapéc Xol AVTIXATACTACELS, Kol OTY) CUVEYEL cuuTEpaivel Tig Aettoupyies enelepyaoiag oxuy. Autd odnyel
o€ PEYGAT ETLTYLVOT], ahAd elvar eniong 0 Aéyoc yia Ty unoPBEATIoTN Vo,

1.1.3 TITuprveg I'pdypwv

X pnyovix) pdidnor, ol muprveg tatlouv Yeyehddrn pdro oe Sudpopoug akyoplduous oTny avayvahpeLor Teo-
oWy xa Ty €E£6puln dedopévrv, 1Biwe oto mhaioto twv Support Vector Machines (SVM). Evac nuprivoc
elvon Wit suvdptnom nou utoloyilel Ty opodTnTa YeTagd {euydv onuelwy dedopévewy ae Evay YHpo VPNAGY Si-
Ao TAoEWY, Ywpeic vo yetaoynuotiCel pntd to 5eBouéva aTov eV AOYw YWeo. AuTog 0 CLOTNEOS PETACY NUUTIOUOS
TV SeBOUEVLV, ETLTPENEL GTOUC Ypouuxols alyopidpous (dmwe ol ypoupuxol tadivountés) vo avTetwtilouvy
eMBEELOL UN) YEUUUIXE TEOBARUATA, ATOTUTOVOVTAS ATOTEAECUATIXG TNV OUOLOTNTA 1| T SLoPopETIUATNTA UETAED
onpeiwy deBOUEVOV Xl ATOPEDYOVTOS TOV UTOAOYLOTIXG (POPTO TOU OmUTE(TOL Yiol TN YUeTOYEd(PNon Twy Oc-
dopévwyv oe LPnAoTERES oo TAoELS.

H onuavtuxdtepn évvoia oty Yewpla nuprivey ovopdletar Kernel Trick. Ipdxeiton yior o Gegeluddn évvola
TOU EMUTEETEL T AetToupyio oe éval Yo yopoxTneloTxoy VYNAoY dlactdoewy, Ywelc vo unoloyilovtol Toté ot
GUVTETAYUEVEC TOV OEBOUEVLY OTOV €V AdYW YOpo. Edv ¢ elvar 1 cuvdptnoy YeTAoYNUATIONOU, TO TEYVAOUL
rwpfva Boaoileton otov unoloyious e toocétnTas K (x;,x;) H ouvdptnon ¢ ixavorotel:

K(xi,%x;5) = (p(x:), ¢(x;))

67ov (-, -) elvon éva xatdhhnho ecwtepnd yivopevo. H ouvdptnon ¢ : X — V elvou 1 cuvdptnon mou aneixovile
TaL 0Py S BLVOOUOTAL T Xl £ OTOV YWpo LPNAOTEPWY Slactdoewy 6mou V elvon évac ydpoc Hilbert.

4

1.1. Oewpnuxd vndBadeo

Figure 1.1.2: Anewdvion tng hettouvpylag tov uedddwy nuprva,

Ou uprvee ypapnudtwy elvar éva Loyupd epYaAelo Tov Touéd NG Unyavixnie puddnong, ewixd oyedlacuévo ylo
™V avdiuon xou TN cLYXELoT) BESOUEVWY ToL avamaploTavTal W Yeaphuata. Autol ol Tuprve TOCOTIXOTOLOOY
TNV OPOLOTNTA PETOEY YRUPNUATWY UE BAOT TNV OpOLOTNTA TOUS O douixd eminedo ohhd xou pe Bdorn Teyvixég
diddoone unvuudtov (Message Passing). ‘Ohot autol ol mupfveg umopolv vo mepLypopoly 010 TAa{olo Tou
YEVIXOU 0pLoHoy TOU TUphva 0 e€ng:

K(G,G) = (4(G),6(G))

6mou G xou G elvon Bvo yvoagpruata xou K : Gx G = R. Yta nelpdpatd poc ot tupfvee mou Ba yenolonomdoly
elvon oL e€nc:

Weisfeiler-Lehman Kernel (WL Kernel): O nupfvac WL Kernel eivar évag nuphivag yedgoy mou
Booileton 070 TECT LIooPop@iopol Yedpwy Weisfeiler-Lehman (WL). Acttoupyel enavolnmtind enavacTo-
otodotivtag xdde x6uBo Tou YEdpou P Eva TOAUGUYOAO ETIXETHOV AN6 TN YELTOVLE TOU, axohouoluevo
omd Lol TEAEY HATAXEQUATIONOU Yiot TN cupunieon Twv véwv etixetdv. H daduaoio emovohopfdveton yia
otadepd apliud emavorfiPewv. Ov tehxéc eTixéteg Yo xdde xouBo cuyxplvovton GTN CUVEYEL YLld TOV
umohoyioud o Baduoroyiag oyotdtnrog etald TwV Yedpwy.

Shortest Path Kernel: Autéc o muprivac yeted tny ogoldtnta Yetal Yodpnudtwy Ye Bdon to cuv-
TopoTEPa povordtia peToll Twv xouBwy. Kataoxeudlel évo Sidvuopa yopoxtneto Tixdy yio xdve yedyo,
OToU AAdE YAUPAATNELO TIXG AVTITPOCWTEVEL T GUYVOTNTO DIAPOPETIXWY UNXWY CUVTOUOTERMY UOVOTUTLOY
petal Leuymy xOuPov.

Random Walk Kernel: O nuprvoc tuyalou mepindtou xatarypd@el TNV OHOLOTNTO YROUPNUATKDY TEo-
COUOLWVOVTAS TUYOLOUC TIEPLTATOUC OF YRUPHUATA Xl CUYXEIVOVTUC TNV XATAVOUY AUTOV TV TEQLTATMWY.
Anuovpyotvtal tuyaiol tepinatol otadepod uixoug mou Eexvolv and xdie xouBo Tou yedpou.

Graphlet Sampling Kernel: O nuprjvac Graphlet Sampling Kernel Booiletor otn Serypotoindio
wxpdv unoypagpnudtey (Graphlets) and toug apyxols Yedpous elcddov. Troroyiler pior Siavuouatind
avamapdoTtaoy) xdde Yedpou UETPWVTAC TIC eppavioelg dlagopeTixwy TOnwy Graphlets.

Neighborhood Hash Kernel: O nuprjvac Neighborhood Hash Kernel Soukelel ye apxetd nopduoto
tpoémo pe tov Weisfeiler-Lehman Kernel, aAAd avti yia etixéteg ypnowonotel évay didvuopa and duadixoie

aptdpoie yia xdde x6ufo, xou Yol TNy cUUTTUEN TwV ETKETAOVY Yenotponotel Tic duadixéc ouvapthoeic XOR
xor ROT.

1.1.4 Tpdyot Xxnvig

Ytov Topéa TNg HpUoNE UTOAOYLIOTOVY %ok TN XATAVOTONS OTTIXMY DEBOUEVWY, oL YpdpoL oxnvhg avadlinxay wg
Yepehddelc dopée. O ypdpot oxnvic npotdidnuay yio temtn @opd oto [40] ue oxond tn Beltinon tne avdxtnong

5

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

EMOVY Xl EXTOTE €YOUV TEOCEAXVUGEL TNV TPocoy N Ueydhou aptduod epeuvntdy. XTo TAAlCLo NS Tapolog
dlatelPnc, 1 Sour| Yedpou Va yenotponoiniel TEOXEWEVOL Vo oVATUPAGTHOEL T1 OXNVY oL aneovileton oe Yia
exova. Autdg o TUTog avomopdoTaong, Tou ovopdleta Ypdpoc oxnvrc, tepthaufdvel TtohiTiueg TAnpogopieg
OYETIXA PE ToL aVTIXEUEVA TOU UTdEYOLY GE Lol EdVaL Xardde Xt TiC oyéoelg Yetall toug. Ol ypdpol oxnvig
dradpapotilouy Lwtixd pdbho oty Toapoy) evoc dounuévou mhatotou yia TNV XATovénon Twv oyécewy YeTalld
TWV OVTIXEWEVOY Yol TOU TEPIBEANOVTOC Touc. XNy TEdEn, avamoploTavTal (¢ XATEVYUVOUEVOL YEdPoL, OTOL ol
x6ufol avamoapiotoly ovtdtntee (avtixelpeva), 6nwe awtoxivte, avlpdrous, xtipla, petald GARWY, Xou oL axUES
AVATOELGTOVY TIG GYETELS TOUG YENOUOTOLOVTOC TNV oXOA0UDY TELTAY, Bour| <UTOXE(UEVO, OYEDT], AVTIXEUEVO >.

man sitaon | { banch |
J —
nfontol | ver
woman| —{ sitson |

A man and a woman sit on a park
bench along a river.

Park bench is made of gray
weathered wood

Figure 1.1.3: 'Evo napddetypo neptoyov and wio exdva gall pe Toug avtioTiyous Yedpous oxnvhc omd To
Visual Genome Dataset [46].

H o€ionoinomn tov ypagnudtwy oxnvic eVioy Vel TN Xatavonan edvmy, xadie dnoTUTMVEL TO GNHAGLOAOYIXO
TEQIEYOUEVO [LOC ELXOVAC UE TLO AETMTOUERT] TEOTO, XddC Xal TS OYEoEl UETUEY TV OVIOTATWY, XJTL Tou
unepPaivel Tig tapadootaxég teoceyyioelg aviyveuong xal avoryveelong avtixelévoy. To mo onuavtixd abvoro
dedouévev I'pdpwy Yxnvic mou Yo ypnowonoioouye oto mhaioto authc Tne SwtplBric, elvan o Visual Genome
Dataset mou napoustdotnxe otny [46]. Anotedeiton and nepioobdtepes and 100.000 exdves xon anotedel Evar omd
Ta peyoAUTEpa Glvoha dedouévwy yia epyacieg onthc xatavonone. Kdde eixdva oto alvolo dedouévmv eivor
TUXVE oY OALGPEVY), TtapEYoVTaE TANYWMEX TANEOPOPLLY, CUUTERLAAUBAUVOUEVKDY ETIXETWY AVTIXEWWEVLY, OYECEWY
AVTIXELEVOV, TEQLYRUPOY TEPLOY WY ot oxnvov. IInyalvovtog mépa and Ty amh) ovory vidpelon avTIXEWUEVWY, TO
Visual Genome evowpatdvel oYoOMAoUOUS Yiol TIC OYECELC AVTIXEWEVWY, TEQLYPAPOVTAUSC AETTOUEQWS TS To
avTixelpevo péoo oe o oxnv oyetilovtan peta€d toug, BleuxohivovTag TN UAANYY Lepoey ity Bopdy uéoa
OF OTTIXEC OXNVEC.

1.1.5 Nevpwvixd Aixtua I'edpwv

H éunvevon vy to veupwvixd dixtua yeagnudtwy (NATY) uropel vo anodolel otny afloonueintn emtuyio tov
CUVENXTIXODV VEUPWVIXGY BixtOwy (CNN) xar oty xouvotdpo 1déo v giktpwy cuvéNEne tou epopudlouv
oe emdvec. Ou ewdveg pnopolv va Yewpndoldy we po ewdixy) teplntwon dedouévewy Ye dour| Yedpou, 6Tou oL
x6uPol elvon ta pixels o ov axyéc avtinpoownevouy T yeltviaon petadd tous. Ta veupwvixd dixtua yedpwy
Tpoéxuay we puotn| e€EMET, TeoouprolovTac To TAUOLO GUVENXTIXAC AVAALONG OE YRUPHUATA, ETULTEETOVTAC
NV e€aYWYT] OUCLICTIXOY YOPAXTNELOTIXWY Xl GYECEWY antd TohdThoxa dixtua. Xuyxexpyéva, ta NAI opllouv
€VoL BLAVUOUAL YR TNELOTIXWY Yo XGUE €vay and Toug xOpfoug, cUVATWS dEYIXOTONUEVO UE EYYEVELS LBLOTNTES
TV x0UPwv, ol onoleg otn cuvéyela yetaoynuatiCovtar and wia axoroudia ted€ewy. H enéxtoor tou mhociou
e oLVEMENG oe yedpoues PBooiletar oty mopathienon 6Tl unopolue va Yewpooude TN GUVEMEN o Ypdpous
Yo €voy CUYXEXEWEVO xOUP0 1, ¢ GUAAOYY TATEOPOELOY 06 TOUC YELTOVIXOUS XOUBOUC, TEEVMOVTSC UNVOUATA
and Toug yeltoveg oTtov x6uPo i.

O hamhaotovée mivoxac L evée ypdpou propet va ypagtel we L = UAUT émou 1o dodiévuopata U oymuorti-
Couv évav optoxavovixd yokpeo. ‘Etol, o yetaoynuatiopds Fourier ypdgou evée ofuatog x xar o avtiotpopog
petaoynuatiopds Fourier ypdpou, unopodv vo opiotoly [12], [63], [26] we:

t=UVs,z=Ust

6

1.1. Oewpnuxd vndBadeo

OTOV & AVTITPOCWTEVEL TOV UYeTaoynuatiopd Fourier ypdgou tou orjpatoc x. Elvou mpogoavég 6Tt o petaoyn-
poatiopde Fourier yedgpou mpoPdiiel to ofjua Ypd@ou ecddou otov oploxavovixd ykeo mou opiletal and o
Wiodlaviopata TS xavovixomonuevne hamhactavhic. To Yedpnua tng cUVEMENS SNADVEL OTL O UETACYNUATIOUOS
Fourier wac cuvélEne petald dVo onudtwy elval looSOVOUOC UE TOV OMUELNXO TOAAATAAGIUOUS TWV YETUCY Y-
patiopodv Fourier toug. Aedopévou autol, tou yetacynuatiopod Fourier ypdgpou, evée ofuatog ypdpou x xou
evog gihtpou g € R™ 1 mpd&n cuvéhing yedgpou oplleton we elng:

zxg=U(U"g)® (U'x))

YupBollovtac go(A) = diag(U™ g), éyoupe:

rxgyg=UgoU'x

onov gg = diag(f) eivar o Sarydviog mivaxos Tou avToTol el GTOUC CUVTEAESTES TOU PUOUATINOD PINTEOU.
Auté 10 gaocyotind @ikteo €xel peydhn onuacio, xadde ol didpopes exdoyés Luvehxtixdy Awtbwy Ipdpuwy
Blapépouv e Bdon TNy emAoyYT| autol Tou QIATEOU.

O Baowég mapodhayés Luvehxtxdv Nevpwvixov Awxtiwv I'edgponv nou da yenowonoioouye e auth
dimhwpatixd glvan ov e€hg:

e To GCN [44] Arav and ta npdta NAT' 1ou yeplpmoay TG QUoHaTixés xar Ywewxés tpooeyyioec. To
TPOTEWVOUEVO QIATEO CUUTUXVOVEL OUCLAC TG T1) YetTovid 1-Brpatog evog xouBou xou 1) Swoboyixy| epap-
HoYYH QIATEWV aUTAC TNS LOPPHS CUUTLXVEMVEL T YelTovld k-o0oTrg td€ng evie xouPBou. O mpotewvouevog
teheoTi CUVEMENG Exel TNV e€ng popph:

X =xxgy = D 2AD :Xx6©

bmou A= A+1Iy xau D = > Ay elvan o xavovixonoinon étol dote oL Tiée tne xhione vo uny yivovta
TOND peydhec 0OTe TOAD pixpéc pe 1 otolBofn moAGY emnédwy. Enione, X € RV*C @ € ROXF,
Z € RNXF C elva 1 Bidotoon tov dlovuoudtoy tev x6ufev eio6dou xa F elvor 1 Sidotaon twy
BLoVUOUATWY TV xOUPwY oTtny €€060. MeTtd TNV EQUPUOYT TOU GUVERXTIXOU TEAEGTY|, Wil K1) YEOUULXN
ouvdptnon evepyomnoinong (n.x. ReLU) egapudletar cuvidne atov mivaxa e€68ou X. Xuvodilovtag, o
xavovag Sddoorng mou diémel éva Podh vevpwvind dixtuo pe otpdpata GCN elva:

HHY = f(HD, A) = o(D"2 AD" 2 HOW®)

6mou WO eivor oL exmaudetowec nopdpetpol Tou l-ootol otpduatoc, HY eivor o mivaxag mou avanopioté
oL YoEoXTNEIO TG TV xoUPwv dnwe utohoyiloviar uéypt to otpouo 1 xan o ebvon gl pn yeouu
oLVAETNOT EvepYOTOLNONC.

H e&iowon mou diénel to atpwuo GON and v yweix) oxornia elvar 1 e&ng:

" _ T €j,i
z; =0 E ——

JEN(i)Ui djtii

Avuth 1 e€lowon avTimpoownelel 6TL To eviuepwPEvo Bdvucua yio Tov x6pfo i utohoyileton av adpolicouue
TOL XAVOVIXOTIOLNUEVEL BLovOOUATO XOUBWY OGAWY TOV YELTOVIX®Y TOU xOuBwy (GUUTEpLAUUBAVOUEVOU %ot TOL
{Blou Tou AGPPBOV) XA TOMNATAACIECOVUE TO ATOTEAECUA PE Evay Tiivaxa exnoudelotuwy Topauétewy. To
povTéNO autd amodelydnxe ToA) anodoTind oe Yia UeYSAN Toixthio EpYaoLdY Xt anotehel (owg plol and Tig
onpavtixdtepes avoxahielc otov touéo twv GNNs eunvéovtac tolhéc dAhec onpavTixéc mapohhayéc.

e To Graph Isomorphism Network (GIN) [89] npoondinoe va anavthcel oto axdhouvdo epdinuo: ToHTE
Ta Veupwvixd dixtua ypdpwy €xouv Ty (Bl Staxpttixd ixavotnto pe to teot Weisfeiler-Lehman (WL);

7

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Yuyxexpuéva, Véhovue éva NAT va avtiotouy(let dapopetinols Ypdpous oe BLapopeTiXés oVmapo Td-
oelg, €dv 1o teot WL anogacioel 6t dev eivon loopop@uxol. I'ia to Aéyo autd, to GIN yenowonoiel tov
ax6houdo xavova evipéewone Yl Tig evIEoel xOuPwy:

hl = MLP'((1+éHnit+ > nlt
u€N (v)

Ilpoxewwévou va npoxddouy aroterAéouata o€ eRUINESO YEUPAUATOS, Ol cLUYYEapElc TpoTelvouy va ol-
)
pomondoly oL eVvewpaTOoES XOUPwy and dha ta Badn Tou veupwvixod Bixtiou pe Tov axdlovdo TPoTO:

he =1y (READOUT({h*|u € G}|k = 0,1, ..., K)

onou 1 ouvdptnon READOUT emhéyetar vo elvon t0 ddpolopa TV EVOWUATMOOEWY Twv xOuPwy xdide
emnédou Tou SixtVou. Me amhd AoOYLo, TEOXEWEVOU VAL ATOXTCOVUE LA AEXETA EXPEUCTIXY AVITUEACTAUO
Yedpou, adpollouUE TIC EVOWOUATOOELS XOUBWY OAWY TWV ETTEIWY aveEGETNTA X0 TENOG TS GUVEVMVOUUE
vt Vo ABouPE TO TEMXS BIAVUOUA EVOWUATWONS YEAPOU.

e To Graph Attention Network (GAT) [83] npdteive tnv uiodétnon e WBéag Tou unyoviouol g Tpocoyhic
nou mapouctdletan oto [82]. Luyxexpwéva, to [83] mpotelvel Tov cUVBUUOUS UNVUUATEV altd YELTOVIXOUS
x6pPoug pe otadulouévo tpémo. Ta Bden opllovtar k¢ exnoudeloles TUpdUETEOL TOU VELPWVIXOU BixTOOU.
H bialodnon niow and 1o GAT elvar 6T ye 1 oTdHULON TV ELCEPYOUEVKOY UNYUUATOY and Toug Yeltoveg,
umopel vor avTiAngiel 6Tl Tor unvopaTa omd oplodévoug Yeltoveg umopel var elvon mo onpavTixd and To
UNVOUATO GAAGDY YELTOVWV.

H evnuepwpévn xatdotac tou xépfou i tpoxintel tdpa and Ty axdioudn eglowon:

W =) aWh)

JEN()
omnou f elvon wa pn ypopuxdtnta mov e@oapudletar otn otadulouévn ddpolor TV YELTOVIXOY XOUPwy.

Ta exnoudevdpeva Bden npocoyc vrohoyilovtar we e&ie:

aij = softmazx(LeakyRe LU (T [Wh!| |Wh§]))

6moL 1 cuvdpTnon softmax ypnowonoteiton yia va diacparicel 6Tt Ta Bdpn tpocoytic adpoilouy otn Lovida
xou || elvon m mpd&n ouvévwone. Autéde o unyoviouds autonpocoyfc (self-attention) mou meptypdpetan
Topamdve, pnopel vo emextadel e TNV ELCOYWYT TOAMATAMY XEQUAOY Tpocoyng, onou K aveEdptntol
unyoviopol autonpocoyfc ePapudlovion Yld TOV UTOAOYLOUO TV XPUPMY XATACTICEWY TWV XOUPwy.
O teduég eviéoelg v xOuPwy unopolv oTn CUVEYELL Vo UTOAOYIGTOOUY elte Ye TN ocuvévwon twv K
OLAPOPETIXWY BLAVUOUATWY TIOU THEAYOVTOL UO TOUS SLIPORETIXOUE UNYOVIOUOUE TIEOCOYNE EITE YE TOV
UTOAOYLOUS TOU UECOU GPOV TOUG.

e To GATV2 nou npotdidnxe oto [14] anédeile btL To apyxd poviého GAT [83] unoloyilel static attention
petal TV xouBwyv tou yedgou. To mpofinua mou mopoucidlel to Tumxd eninedo GAT, elvon 6TL 7
ouvdptnom teocoyfc opllel pio otadepn xatdtadn TV xouPwy, ywelc auth va e€aptdton and Tov x6pufo
i Tou epwTRUaTOC Xdde Qopd. XNy mEdln, autd oNualvel 6TL LTdPYEL €vac xOUBOS V OTO YRAPNUA, GTOV
omnoio 6hot oL utérotrot x6uPot anodiBouy To UPNAETEPO GX0p TEOGOYNE X0t AT ATOBEVOETAL AVORUTIXG
oto [14]. H tpononotfuevn exBoyn yio Tov unoloyiopsd tov Bopdyv tpocoyic Tou ANOvel To tpdBinua autd
elvan m e€hc:

eij = o (LeakyRe LU ([WhL|| Whﬂ)

T omolot 6T cLVEYEL Tepvoly amd éva oTpwpa softmax yio va ooy Yoy Ta xavovixonolnuéva Bden
TPOoCOY NG 0.

1.1. Oewpnuxd vndBadeo

1.1.6 Avtudetixy Mddnorn vy Nevpwvixd Aixtua I'odpwy

H avtdetinr| uddnomn éyel avaderydel g plo todlkd utooyduevn uédodog yior TNy exPdingm avamopaoTIcENY oE
gpyooiec pnyoavixic pdidnonc. Apyixd epapudotnne oe Sedopéva ELXOVAC Yol XEWEVOL UE GTOYO TNV expdinon
e0pWOTWY OVATUPUOTACEWY UE TNV avunapaBohy Vetixdv ye apvntixd delypoata. Auth n yedodoloyio €yet
emdeilel alloonuelwtn emtuyio oty cOMNYN nepimhoxwy potifwy xau onuactoloyioc ota dedopéva. H enéxtaon
TOV apY®V NS avtde g udldnong oe dedouéva ye dour| Yedpou €xel yivel evepyde Topéag €peuvag Ta TEAsL Tl
yeovia. e auth TV evoTNTa ToPOoUCIACOUPE TIC ONUAVTIXOTEPESC TROCEYYIOELS Tou yenotponotiinxay oto
miaiolo g mapovoag dateBrc.

‘Eva Baoixd otoyeio yioo Ty avtdetnr) udidinon elvon o xadoplopde e xhipaxac [96] otnv onola Yo yenot-
poronlel. Teewc evpéwe yenotwomololuevol tpdmol avtinopoforric YeTxdy xal dpVNTIXOY Belyudtwy elvon oL
local-local xou global-global CL, ou onofot avtinopafdihouy Tic avonapactdoels ond Biec xhipaxes (xbéufol-
x6uPot, ypdgol-yedpot), xou o global-local CL, ot onofot avtimopaBdAouy Tic avanapao TceLS and BLopopeTINES
xh{poxee (xouPol-ypdgpot) [96]. 'Etor, x6uBor (§ ypdpot) mou amoteholv Jetxd delypata petald toug dpa
"uotdlouv" epICOTERPO ATOXTOUV XOVTIVOTERES AVOTOROC TAGELS EVE) Ol OVOTOQPAUC TACELS APVATIXDY SELYUATWY
AVTLOTOLY 00V GE HAXELVOTERX OTUElN GTOV TOAUSLAG TUTO YWEO.

e To GraphCL [90] #rav pio and Ti¢ tpdtec npooeyyioeic avidetnic wddnone pe enavhoelc yio Ty tpo-
exnodevon NAT. ‘Eva Baoixd otoiyeio tng aviidetixrc uddnone elvan ol enawérioelg dedopévmy, ol onoleg
dev elyav diepeuvniel emapxg yio dedouéva Ypdepwy péypet tote. Baoixéc uédodol enadénong ypdpwy nep-
haBEvouy TNV apalipeom XOUBWY, AXUOY XaL YOEUXTNELE TXWY TV XOUBwv. Alucintixd, n utddeor tou
yiveton elvon 6Tl 1) ENREUYT UEPLXMV YUPAXTNELO TLXY TOL YEdPou Vo TPETEL VoL EYEL ENGYLOTO AVTIXTUTIO OTLC
npoPhédeic Tou yovtéhou. Autég ol texVixég emadENomg SEBOUEVWV YENOWOTOOVVTAL Yo THY TRy WYY
cuoyeTIopévey detypdtwy (Yetind delyparta), ta omola avoryxdlovtar va eivan o "xovid" oto ydpo otov
onolo avamdpLoTOUUE TOUC Ypdpouc Y Toug xouPouc. O otdyog autdg emTLYYAVETOL UE TN Xprion Tou
InfoNCE () mopopoine NT-Xent) loss. Tuyxexpuyéva, éva NAT pe éva MLP yenotonotolvot yio Tov
UTOAOY(OUS TV AVUTUPUC TACEWY TOU YENOLWOTOLOUYTOL GTOV UTOAOYLOUS TNG CUVHRTNONSG CPIAUATOC.

Y

/5] Add & belete Edge f““'* Dropping 2
N AN ; ___ &
[CJoropnoseacsge oy p e A N | g | 55751 o \
Input Graph - @ \o—> /I"""“‘*u Sl i i |
TN ———<J|I _____ N C - O / : i Maximize
/N //I\\ N\ $ Augmentations § f) Agreement
/l#"" h“"‘- y \ e w('lﬂ o~ TrEdge Perturbation — == g;\' ' E
| BN e -
Shared GNN-based Encoder .I';F’ X{* SN =T 1 Head g(- 24 |
I'-\ || Embeddings _/ I P = e 4 J
N M vy /

Figure 1.1.4: To mhaiowo uddnone GraphCL [90].

e To InfoGraph mpotédnxe oto [77] xou oe avtideon pue to GraphCL nov ypnowonotel wio global-global
AVTLTAPABOAT VTNV xou apyNTXeY Setypdtwy, yenotdonolel local-global odiniemdpdoeic. Ipoxeévou
VoL TEOXVPOUV AVATapICTACELS O ETUNESO YpaPUaTos, oL cUYYpageic Tpotelvouy TN YeyloTonoinon e
opolBoiag ThAnpogopluc Yetad oVamopAcTICEWY OE EMINESO YPUPAUAUTOS Xl OVATUPAGTACEWY Ot eNinedo
x6uBwy, axohouvdnvtac to mapdderyuo tou Deep InfoMax [39]. 'Etoi, to NAT nou ypnowonoleiton,
pordobvel var mapdryel xoun vor Eeywpllel moleg avanapaoTdoels xOUBwy aviixouy oe xdie Yedpo Ue TNV yeHo
tou Jensen Shannon Mutual Information Estimator. Yuveng, auth) tpocéyyion dev teplhauBdvel tny
¥eYion eMaLENCEWY Yo TNV THEAY WYY CUCYETIOUEVKDY DELYUATWY.

e H npooéyyion Grace, 6nwe napouctdotnxe oto [95], mepthopPdver 1 yenotponoinon evoc avtdetixod
oToY0L ot eninedo xoufwv, 6Tou druoveYolVTIL 800 GUCYETIOUEVA BElYUOTa YRAPWY YE TNV EXTENEO
dlapopwv enauéioewy oto apyxd dedopéva 6mwe oto GraphCL. H Swbixactia uddnone emxevipdveton
OTY HEYLOTOTONOY TNG CURPWVING TV AVITHPAC TACEWY TWY XOUBWY EVTOC TV CUCYETIOUEVWY VETIXOY

9

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

delyudtwy. Xe avtideon pe) o0YXELON TWV EVOWUATOOEWY O EMMESO XOUPWY UE TIC EVOWUAUTOOELS
oe eninedo ypdgpou, 6mwe oto InfoGraph, xo oe avtideon pe to GraphCL nou cuyxpivel evowuote-
oelg ot eninedo ypapruatog, N éugacn oto GRACE diveton otny avTimapoBodt| eVeUATOoENY EWBXE oE
eninedo xoufowv. Etot, o tpémog aviinapoforric Tou yenollonoleltal, avAXEL TNy XATNYopld TV TOTXMY-
touxwv CL [96]. H pedodoloyio mepthoufdver tn dnuiovpyio 300 enauinuévmy ypopnudtwy Yéow e
tuyatag ahholwong TN TomoAoYlog Xl TV YUPAXTNELO TIXWY TWV XOUBwY Tou 0y X0l YeaPHUaTOS. XN
ouvéyeld, To povtého exnandeveton yenotponowdvtag to InfoNCE / NT-Xent loss yio tyv evioyvon tng
oLUPLViag PETHED TV aVToTOLY WY EVOOUUTWOENOY xOUPwy ot auTtéc Tig oetg. Ou teyvixéc enaddnong
TOU Y PNOWOTOL00VTAL TEQLAOUBAVOLY TNV APAipEST] OXUWY XAl TNV ATOXEUPT YUEAXTNELO TIXWY, UAAS SV
npaypatonoleiton agalpeon xoufwy mpoxewwévou va diatnendel 1 avtiotolyiorn PeTald Tev Blwv xoufuy
oo YeTind ocuoyetiouéva delypora.

1.1.7 E&nyrocic pe AvTinopddelypa

Ou E&nyvioeic pe Avtinopdderypo elvon gior €vvols Tou yenoulornoteiton ouvlene 6Tov Topga TNe EpUnvedoUnG
TeXVNThHC vonpoolvne (XAI) yio va Bondoel Toug ypfotes va xatavocouv T Aoyt Tiow and Tic npoBiédels
evog to€ivopnt. H Baou 1béa etvon 1 mapoy) e€Rynong e tny eZétaom evalhoxtixmy oevoplwy. Luyxexpluéva,
auTé Tor evahhaxTixd oevdipta oyetilovton pe epwthoels dnwe "Tu npénet var ahhdet yio var taéivoundel éva delyuo
we X avtl yio Ti" A "Tu Go énpene va aAAGEel yiar var AdPBet To povtého pla Slopopetiny andgaon". Me autodv tov
TEOTO, UToPOLY V. ToEdoy oLy ToAOTIIES TANEoOopie Yiar T1 Sadixacio Ang arogdoewy Twv Tagivountdyv. O
o6y 0¢ elvan v e€ny el yiotl €yive pla ouYxeEXELEVY TEOBAEYN DIELELVMVTAC TTOLEG OANALYES OTOL YOEAXTNELOTIXG.
€L0680L VYot 00N YoUcAY GE BLUPOPETIXG UMOTENESHA TOELVOUNONC.

Suyxexpuéva, to thaioto tou napovoldletoa npotdinxe oto [31] xou Paciletor oty topaywyh EEnyfocwy ye
Avunapadelypd ye tnv Bordeio Evvololoyindy Enegepyacicv. o vo Aettoupynoet o mpotevouevog olyoprduog
npénet xdde delypa vo cuvodedetan and éva olvoro Evvoidv. "Evvolec ovopdloupe Tic YEVIXES aVamapaoTdoELS
TWV AVTIXEWEVKOY TIOU UTdpyouy oTa dedouéva elcddou xal cuvdEovtal uetadd Toug ota mhaiota Tng tepapylag
WordNet [59]. Xenowonowbvtag v Bdon yvoone WordNet, vrnohoyiletan otov un xateuduvépevo ypdgo
TBox 1 andéctacn evvoldy YETAE) GAwY TV (EUYHOY TRV TUEOVIOY EVVOLOY UE TV Ypriorn Tou akydprduou tou
Dijkstra. H andéotoon evvoudy yevixeleton otr ouvEyeld oe andoTaoT UETUE)D GUVORWY EVVOLDY UE TNV YeHoM
Tou ahyopliuou tou Karp. Eneidn xdde cOvolo evvoldv aviinpoownelel mpoxtixd éva delyuo, o alyoprduog
Topa Unopel vor utohoyicel TNV evvololoyixy| andotoot PeTalld xdde Lelyous SelyHdTwY Xl OTr GUVEYELL Vol
XOTUOXEVAOEL €Vl YPAPO UE XOOTOC OTIG OUXUES OUTEC TIC OMOOTACELS. TN CUVEYELD, UE TNV YENOoT TdAL Tou
aryoprduou tou Dijkstra, umopolv va umoAoyloTolv Tol EAGYIOTO LOVOTATIO GTOV VEO Ypd(po oL £Tol TAéoV
yioe x&de Selypo x; mou tadvoudnxe otny xhdon C; , To Avunapddelypa Yo eivan To delypo Tou €xel TV o
XOVTLVY] EVVOLOROYIXT| AIOGTACT) GTO X; 0AAG Bev Tadlvourinxe oty xAdon C;.

Edxoha pnopel va del xavelg 6TL oe autd Tor Thalola uropolpe vo aglomoicoude T NATL yior va xatatd€oupe
YE8POUE OXNVAC OV AVTIOTOLYOVUY GE EXOVES Xol Vo Beolie TOUG TLO TAPOUOLOUE YLl xGUe évay. 2T cUVEYEL,
unopolue va Bpolue and Toug o tapduoLous excivoy Tou Tadvopeiton omd évay TagVoUnTY EOVKY GE SLopope-
T} xAdom xan vo utohoyicouye, uévo petald autol tou Lebyoug Ypdpwy oxnvdv mou mpoéxule, To Graph
Edit Distance, napéyovtoag étol v avtiotoyn e€fynon pe avunapddelypo mou Yo odnyoloe ot SLapopeTixy
TagvouUno.

1.2 Ilpozewdpueveg llpooceyyioeig

1.2.1 3uveicpopd
IMopaxdte, cuvodilovton ol Baocixéc cuveloPopés Tne Topoloos dlateBhc:

o Xpnowonotoue ddpopes tpooeyyioelc Avtidetindv NAI yia va diepeuviicoupe v Ouotdtnta Ledpev
Yxnvhc. EE dowv yvopllouye, €xel utdpéel neploptouévo axadnuoixd evdiapépov otn yeron Avidetindy
NAT yio tyv avtipetonon outod tou {nthuatoc. ¢ ex ToUToU, 0TOY0C Uoc Elvol Vo TapdCYOUUE Wla
ONOXANPWUEVY) ETLOXOTNGT TOU TROBAAUATOS, TwV UEPOBOAOYIOV TOU YENOWOTOLOVUE VLo TNV ETAVGY) TOU
X0l VO TPOGPEQOLUE ol TEOCVETN OTTIXY UECL TNG XENONS TV avTIeTXDY UeTOBWY, CUUTANEWMYOVTOG
¢ umdpyovoec npooeyyioeic ota [24] xau [25].

10

1.2. Ilpotewépevee Ilpooeyyioeig

o Me 1 ypron avudetindv npooeyyloewy, Unopolue vor exToudeVo0OVYE To WOVTEAD UE Un emBAenduevo
Teomo, e€ahelpovtac Ty avdyxn unohoyiopol g andotoorng Graph Edit Distance peta€d dhov twy
Yedpwy. Etot, peidveta 1o nhidoc detypdrov and O(n?) nou elvon anapaitnto ote poviéha ue eniBredn

oe O(n).

o Mehetdue 61e€odixd Tig eMBOTELS SLopdpwV TapahhaydV cuVeEAXTIxwY NAT' wg dowxd otolyelo oTIC e
Aeyuéveg avteTinéc TpooeYYIoELC Yo TNV avdxTnon Yeaupnudtwy oxnvay. Iapatnpodue 6TL 1 avtidetiny
npoexnoidevor, elte e muxvolg elte o apatols TUYNOUS YRAPOUS, aVTITPOCWTEVOLY EEICOU AVTAUYWVLO-
Txég mpooeyyloeg. Emnhéov, mpotelvouue évo Rank Aware Fine-tuning yio pio emAeyuévn oudda yeapn-
pdtov oxnvic ¢ tepattépn Bedtiotonolnon Ty apyxdy wovtéhwy. Autd, oe cuvduaoud pe T yeron
evog Uixpol mocoaTtol enifBhedmng, evioylel Tic duvatoTnTeg Twv Yoviélwy. Emniéov, afloloyolue Tov
OVTIXTUTTO AUTEOV TWV SLOUPOPETIXADY OPYLTEXTOVIXMY AELONOYOVTAS TOCO TOCOTIXE OGO X0l TOLOTIX Ta
AMOTENECUOTO YOS,

o To povtéha NAT nou npoteivoupe moapdyouy Poduoloyieg ogoidtnrog yio dhoug toug Iedgpoue Xunvic,
EMUTEEMOVTOG TNV EVOWUATWOY Toug oe éva Thalolo mapoyfc eENyNoewy PE YEHOoT AVTLTOEAUDELYUATWY,
TUEOUOLO UE QUTO TIOU TEPLYPAPETOL OTO XEPAANLO 7.

1.2.2 TIlpozewvopeva Movtéla

To yovtéha NAT ye ta onola nelpopatilopacte Basilovta oe npooeyyioelg avidetnne udinong NAIL mou
epapuolovtal oe ddpopa emlnedo xAlyaxas evtde Tou ypdpou. Xuyxexpiuéva, yenotponololue tor GraphCL,
InfoGraph xoa Grace, xadéva and ta onolo unohoyilelt v avtdetixy anodiela ot enineda Graph-Graph,
Graph-Node xou Node-Node, avtiotoiya, 6nwe napoucidletoar oto xe@dhoo 6. Autd xodopilet pntd tov tpdmo
exnaideuone xou aZloAOYNONG TWV UOVTEAWY.

o Exnaidcuon: To Avrdetixd NAL hauBdvouv naptideg ypdpwy we eicodo, ye npwtapyxd otdyo
ONLoLEYid OLCLAGTINDY AVATULUC TACEWY TOU AMOTUTVOLY TNV UTOXELUEVT Dour xou TI¢ oyéoelc evidg
TOU YPPOU. LUYXEXPUEVQL, AUTO ETUTUYYEVETOL ELOTOLOVTOS TNV 1€ OTL TopdpoLoL xOUBoL/ Yedpol Teénel
va €youv avtioTolya mapduoleg avanopaotdoels. Katd cuvénewa, oe autd to mhalolo exnaldevong, xdde
oOvoro dedouévmv and N yedgoug mopéyet N delypota yio exnaidevon. Avtideta, ol mpooeyyloelg ye eniB-
Aem yiot TNV OUOLOTNTA YRUPNUATOVY YeNnolomolody Lebdyn Ypapnudtwy and To apyixd cOVoLo Bedouévwy.
Auth 1 amhA Bidxplom peldver onuavind To ypdvo exnaldeuonc tou NAT ané O(n?) oe O(n), 6mou n elvor
0 oplduoC TV BELYUdTWY.

o A&ioroynom: H dwbixacio aflohdynone twv npotelvouevwy Loviélwy nepthaufdvel tny amhy) SwofiBaon
xdde ypdpou we elcodo otov exnadeupévo xwdixomomth NAI yio va Angdolv ol tTedxée avomopaotd-
oeig KouBwyv. Xt ouvéyela, yenowwonoteiton yio pédodog Global Pooling yio tnv e€aywyn pag eviaiog
Evowpdtwong oe eninédo ypaprpatogc. Auth 1 Sladwocio eivon opxetd ypriyopr, amoutdvtag ehdytot
umohoylo T Loyl (Mydtepo and 1 deutepbhento yia TNy e€oywyr) ouvunepaoudtoy yio 1000 ypagphuata).

Node Graph
Graph : .
: representation representation
view
) —
& p LSO ()
‘dl--{} i, 8

O\\,) ’ I 3 r R - ==+ Local-local contrasting

(&-g ’_{} f{ } | v, T‘{ '} S, * Global-local contrasting
- === Global-global contrasting

N~ S o J

Figure 1.2.1: Awdixaocio exnaideuone twv avtidetndyv NAT [96].

11

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

H Swoduacio exnaideuone axohoude! to meplypappa mov topouotdletar oto Lyhua 8.2.1. H elcodoc anoteheiton
amd OUABES YPAPwY OGXNVAC, Tig ontolec oTn cuvéyeta encéepydletar évog xwdixomonthic NAL. O xwdixonomntic
anoteAeltar and otoBaypéva otpdpata pog toparloyic NAT oe cuvduaoud ye dhhoug TOTOUS TUTOTONUEVLY
OTPWHATWY OTwe evepyonoinar, xavovixonoinon extdc dAwy. To NAI nopdyel avanopactdoelg oe eninedo
x6uPwyv, oL omoleg 6T cuvéyela adpollovTal Yia Vo SNULOVEYHOOUY AVATUPUOTAGELS YRAPWY.

Kotd tn Sudpxeia tng exnaideuong, éva olvoho Ypapnudtwy oxnvig mepvdel amd to poviého, uroloyilovtog
To avTeTind opdhpa pe TN Ypron evog and toug teémous: Local-Local, Global-Local xou Global-Global, xou
OTY CLVEYELN Ol AMOPA(TNTES AVATPOCUPUOYES OTIC TUPUUETEOUS Tou BixTlou yivovtal pe omoPodiddoor Tou
OQAALAUTOG. UYHEXQWEVD, YO TIC TEELS OLPOPETINES TPOCEYYIOEIC TOU YENOWOTOCUUE, ASLOTOLVTIG TNV
avTideTiny amdAelo oe Teelg dlapopeTixéc SwPatulosic Tou Yedgou, yenowwomoolue Toug exTtuntés auoBolag
TAnpogoplac Tov Tpoteivovian and toug ouyypapelc. Luyxexpyéva, oto GraphCL [90], to onolo Aettovpyel und
Tov 1péno Global-Global, xat oto Grace [95], To onolo hettoupyel und Tov tpdéno Local-Local, ypnotpuonotoue
w¢ anmiela Tov extunth apoBaiog TAnpogopiac InfoNCE. T to InfoGraph [77], nou Aettovpyel und Tov tpdno
Aertoupyloc Local-Global, yenowonowolue tov extunty apoBaiog tAnpogopioc Jensen-Shannon. Axoloudav-
Tog To TopddeLypa Tou [20], evowuatdvouue pa xe@ohh npoforfic (t.y. MLP) uetd tov Baocixd xwdixonowmnth
NAT xa urohoyiloupe Ty avtdetnr| andAeld GTOV TOAUBIACTAGTO YWEO TOU TEOXUTTEL ANd oUTY TNV XEQPUAN
npoPorfic. Metd tnv exnoddeuon, ot cuyypageic tou SIMCLR [20] cuvioTolv v un Tepoutépw xpRomn tne xe-
pokric teoPohfic. Mtnv meplntwon pag, xatd 1 didpxela TG ALOAGYNONG TWV HOVTEAWY, TELRUULATIO THXAUE TOCO
e ™ xerion 6o0 xou Ue TN un xeron e xepaiic teoPoltc, emhéyovtac xdlde @opd to povtélo mou mapousciale
TNV xahOTEEY om6d00T.

H vlomnoinon tou xwdixonownt) NAT xatéyelr xoufuxd pdho ot cuvolr] dadixaocio. To oyfuoata 8.2.2 xou
8.2.3 mapéyouv o Aentouepy| edva Tou oyedaopol twv GAT/GATvV2 [83, 14] xau GCN/GIN [44, 89]

avtioTolyo.

Yo otpdpata mou anewxoviCovtar oto 8.2.2, ol ouvedilelg GAT ¥ GATvV2 axohroudolvtar and 0 cuvdptnon
evepyonoinone ReLU. H evowydtwon tou dropout enTeénel 6Toug XproTes Vo ANEVERYOTOLCOLY TOUS VEURMVES
pe mdovétnTa p oyl vo anoteéouy TNV UTEPTPocapUoY ot dedopéva exmaideuone. Ou mopolhayéc NAT
TEOCOYNC AMALTOVY TEOCEXTIXY] €EETACT GTOV 0pLoUS TWV JACTACEWY AOYW TN EPUPUOYNC TOU UNYoViGHo0
TEOGOY NG TOANATAGY XEQUAGDY, OTOU Ol SLooTdoEL; elcddou TohhanmAactdloviol Pe Tov apldud TV XEPUAOY o
x&de eninedo.

‘Ocov agopd to GIN, o oyediacuog evog poviéhov MLP xodiotatan anapaitntog yia v exnaideuon tou yov-
téhov. Emhéope éva yoouuixd TAfeme cLVEESEUEVO aTpmU, TO omolo BladéyeTol Ui GUVEETNOT EVEpYOTOMaNG
ReLU, xou évo dhho TANp0C GUVOEBEUEVO YRUUUXO GTEMUA, OTWS TEoTelveToL TNy apyLxy) dnuocicuon Tou GIN
[89].

A&ilel va onuewwdel 1L ol avanapactdoelc x6uBwv mou napdyovion and xdde otpwua twv NAI' cuvevdvovton
v atpoloToly Yo Vo 8OCoUV éva povadxd dLdvuoua Yedpou. AuTH 1 mpaxTixy| arooxonel ot Satiipnomn
TEPLOGOTERWY TANPOPOPLOY TOL GUAAEYOVTOL XaTd TN BitdpXeto NG UVEMENG, BNULOUPYOVTOS TILO EXPEAUCTIXES
AVATOPAGTACELS YRAPwY. Mio TETol TEOGEYYLOT YENOWOTOLE(TAL XU GTY SNUOGIELGT) TOU ELGNYAYE TO LOVTENO
GIN [89].

ITpénel emlong va oploouye wia ouvdptnorn Global Pooling yia tn cuyx€vtpwon Twv avanapao TAoEwy TwV XOUBuwy
o€ €va Lovadd BLEVUOUIL aVamopdo Taoe Yo xdie yedgo. Metd and doxpéc pe T EVpEWS XPNOULOTOLOVUEVES
OLVOPTACEC mean/max,/min/sum, xatéotn Teogavéc 4Tl 1 ouvdpetnon Sum mopeiye To xahdTeEPA ATOTENED-
parto. Q¢ amotéheoyo, OAA ToL TEAXA UOVTEND EVOWHUATOVOLY T1) GUYXEXPUEVT] CUVEOTNON Yo TNV TRy WY
OVOTIOEOC TAGEWY YRAPOY ON6 TIS AVATIRAC TAOELS TwV xOUPwy toug. H andgaon autr) evduypaupileton enlong
X0l UE TNV TROoEYYLoT Tev dnutoupy®y tou GIN [89)], ot omolol eniorne enéhelav va adpoicouy Tic avanpac Téoels
xOUBWY Yol Vo EVIoYOGOLY TNV EXPEC TIXOTNTA.

INo v afloAdynon TV TEOTEWOUEVWY UOVTEAWY OTo TAdiolo TN epyaoiac avaxtnone yedpny oxnvig, oL
TEMXEC AVOTOPAUO TAGELS YRAPWY cLYXpIvovTal HeETOED TOUG Ue TNV Yenomn Tne opodtntas cuvnuitovou. Hepouo-
TIOTAXOPE ETlong Pe TNV anéo ooy Lo, ahhd UTHEEE onuavTixy TTHor e anddoong oe auth TNy TeplnTwon.

Ye 6hec ¢ mepintwoelg, ota mhaiota twv GraphCL, InfoGraph xou Grace, pe npooextixy| pdduiorn Twv unep-
TOPOUETEWY X ETULAOYY ToL xohUTeERoL xwdononth NAT oe xdle nepintwon, to povtéha autd €dwoay avtary-
wvioTxd anoteréoyata oe inductive setting oe olyxpion pe toug Huprves I'odpov. T'a tnv nepoutépw evioyuon

12

1.2. Ilpotewépevee Ilpooeyyioeig

|
1
)

—_—

Concatenation —

II
-

Figure 1.2.2: Eyediooudec twv mopalhayody xodwonont GAT/GATv2

TV eTYUUNTOV UETEIXOV, aVTAHooUE EUnveuot xuplwe and to [56] (yla pio To EUNERL TATWUEYY avdAUoT) uTopE
xavelc va xoutdéet oto [19]), énou pio popeh aodevoic enifBhedne and Tic AelAVIES TV EXOVOV TPOCPERETOL
OTA LOVTEAN €TOL (OOTE YRAPTLATO OXNVAE UE TLo Tapouoleg AeCavTeg va avomaplotavTtal To xovtd and ta NAT'.
T Ty enitevdn tov oY Yag oTéXwY, TPOTOTOCOUE TNV CUVEETNOT CPUALITOC €TOL (DOTE VO TOPEYOUUE
par aoVevy eniBredn oo NAL pe Bdon to Graph Edit Distance xou dyt tnv ogoldtnta tewv Aeldvtov ond Tic
apyég eovee. Metd tnv apyiny) mpoexnaideuon evog poviéhou oe éva and to midicia GraphCL, InfoGraph
1 Grace, npoywedue oe fine tuning pe Bdon autd to opdiua. Katd tn didpxeia authc g @dong, To uoviého
extileton oe éva meploployévo nocootd ground truth. EmnAiéov, to mpotewvduyevo o@dhya, to onolo oplleton
oTnV mapaxdte eZlowon, Aettovpyel ye avtideTind Tpomo. Muyxexpuéva, enelepydletal TEITAETES YPOUPNUATODVY
oxnvic. To évo Sedouévo ypdpo A, hauBdvouue opotduopgpa xar Tuyala delyuo 500 dAAWY YRoPNUATWY oXNVAG.
To éva pe to wixpdtepo GED ond tov ypdpo A Jewpeiton wg Yetixd delypa P, evdd to dhho avtipetoniletar we
apvnTixd, N.

L = —PlogP — (1 — P)log(1 — P)

Yy napandve eElowon, ol avanapaoTtdoels Yedpwy twv A, P, N cupfoiiCovton wq fa, fp, fn xou mopdyovton
ond évo NAT'. H mbavétnra P va npoPfhénoviar opoldtnes (1 anootdoelc) ye tn owoth oepd unohoyiletos

5 _ _(fife—fifn ; ; — 1o 1) o -
wcP=o = . Emniéov, n mdovétnto P(day > dap) = P o <as) = P(san < sap) =

dan , , ;o
Taptday FVITEOCKTEVEL TNV emduunTy TWr-otdyo.

Me 1t yeron autol Tou o@diuatog, To omolo "twweel" To uovtého xdde @opd mou To wEVNTIXG Belyua
x0OXOTOLE(TOL O XOVTd oTov Ypdpo A and 6,1 To Vetund, BEATIOVOVTOL TEPULTERL OL UPYIXEC VOO Td-
oelg oL ToRdyovTal Péow TNg avTiieTnnc mpoexnaideuong. Katd cuvéneia, to véo fine tuned NAI' urogel va
yenowormomdel yior TNV avExXTNOT YRUPNUETOY oXNVAG BIVOVTAS oXOUT] IO AVTAYWVIC TIXE ATOTEAEGUATA.

H enduevn evotnta nepthapfdvel AemTOPEREIES OYETIUE UE TIC CUYXEXPUIEVES UTIEPTUPUUETEOUC Xoll GAAES ETLAOYES
(6nwe otpopata, péyedog avamopdoTacels Ypdpou, emoyés, péyedoc maptiduc, Behtictonoumntée, enavinoels
%ATL) vl x8de povtého.

13

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

000/ -
hy ha hy
Y v ¥
Concatenation

Figure 1.2.3: Eyediaopdc tov napohhayov xwdixotomntedv GCN/GIN

14

1.3. Iepdyotind Mépog

1.3 Ileipapotind Meépog
1.3.1 3X0Ovolo Acdouévwv

To clvolo dedopévmv tov Yo yenowonotfooupe eivan to Visual Genome [47], éva 6hOvoho dedouévemv peydhng
XALHOXAG TTOU ETUXEVTROVETOL GTNV OTTLXT] XATAVONGT) PE TN YPNOT TANPOPORLOY BOUNUEVLY GE YRAPOUS, 1Blwg
oTOV Topéa TN Gpaong utohoylotwy. Ilepiéyet mévew and 108k euxdveg oL omoleg elvon Aentopep®s oy ohaCUEVECS,
CUUTEPLAUBAVOUEVLV TWVY AVTIXEWEVWY, TWV CYECEWY XL TWV YORUXTNEICTIXWY EVTIOE TWV EXOVKV, X0 Xal
TEPLYPUPES TEPLOY WY Xot EXOVwY. ‘Oleg autée ol ovtotnteg avtiotoryilovta enlong ye to WordNet. Ta
YEUPAUATO. OXNVWY TOU TOREYOVTOL GTO GUVOAO BEBOUEVGY TpoépyovTal amd ewdveS xupiwe and 1o ohvolo
dedopévwv MS-COCO [52].

Figure 1.3.1: "Eva nopdderypa plag emédvag pall ye Tov avtioTolyo yedpo oxnyvic 6mou oL TUtol oyéoewy
€youv agonpedel

‘Onwe elvon Tpogavéc and To Tapdndve oY AU, OL YE3MOL OCXNVAC ATOTUTMVOUY OTOTEAECUATIXS TO CNUAGLONOYLXO
)

TEQIEYOUEVO WIS ELXOVAC AVATUPLOTMVTAS T AVTIXEUEVE WS XOUPoug Xou Ti¢ OAANAETUSRACELS TOUC WC axéS

GTO YPdQPo.

ITpoeneZepyacio Sedopnevmy

o Xoapaxtneiotixd Koupwv: Ouapyixol ypdpol oxnvic and to Visual Genome dev Siordétouy yopox-
o Txd xoufov. Qotéco, 1o NATD anoutodv évay mivoxo YopaxTneloTixmy Ue optdunTixés Tés g
eloodo. T vo Eemepdooupe autdv Tov meploploud, yenotponoiooue to nedio "objects" omd to apyxd
oOvolo dedopévwy. Evtoc autol tou medlou, yio xdlde ypdpo oxnvic, eryoue to synsets xat to ovopota
nou oyetilovton ue xdde avtixelyevo mou undpyel oty exdva. ['io Tn YeTATEOTY TWV TEPLYPAUPMY TWY av-
TXEWEVWY and cuuBolocelpég ot apriuntixd diaviouata, yenotwonowooue to GloVe Word Embeddings
[65], o xardiepwpévn pédodo otov Topéa e enelepyooiog guoc YAdooas (NLP). Tuyxexpyéva, yio
%dde OVoUd AVTIXEWWEVOU, TEAYHATOTOWoUUE Wit oA avaltnon otov nivaxa GloVe yia vo AdBouue To
avtioTouyo aptduntnd didvuopa. EmhéEayue tny éxdoorn 300 Sootdoewy tou GloVe, xadde Bertivvay oto-
Yepd TNV amddooT TapéyovTag o TAolole TAnpogopies Yo To avtixelpeva. Toautdypova, Slatnerooue to
synsets TV xOUBwV TEOXEWEVOL VAl Ta Tpo@od0THoOUUE dpydTtepa oTov ahyopripo GED nou urohoyilel
7o ground truth ypnowonowdvrac Ty epopyia "is-a" mou mopéyeton and to WordNet [59]. Emniéov,
aponpéoape to nedio "attributes" and xdite avtixelyevo yia vo anoxkelcoupe Tic nepitTég TANEOYORieC amd
Toug Yedpoug pac. o mapdderypa, otnyv tepinTwor Yiog eévae Tou TeplEyel éva autoxivnto, To midovd
YOEAXTNELO TIXE UTOPEl var TepthopfBdvouy To yedpa ¥ T Udexa tou. T'a va Siacpoailoouvue 6Tl To HOVTERA
HOC ETLXEVTRPOVOVTOL 0TV THpousiol TOU AuTOoXVTOU ot Oyl OE TERIMAOXEC AETTOUERELES, ATMOPACIOOUE VoL
oy VONoOLUE QUTEC TIC TPba¥eTeg TANPOQOpieS.

e Edges: I va a€lonolfjooupe 1o nedio oy€oewy mou TUpEYETAL 6TO apyixd GUVONO BeBOUEVLV, ETAEEOUE
VOL VOIS TACOUUE OAEC TIC OYECELS OC XATELVUVOUEVES OXUES TTOU GUVDBEOLY TaL BUO avTixelueva. Tloapd-
HOLOL JE TOL YOPOXTNELO TS TV xOUBLY, oL oyéoelc tapouctdlouy didpopous tiToue. otdoo, emhéEoue

15

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

VoLV EVOWUATOOOVUE aUTH TNV Tedc¥eTtn TAnpopopia, SeBoPEVOL GTL 1) TAELOVOTNTA TWV TUEHVWY YEA(PKY
dev AafBdvel uTddn Ta yopaxTNElo TS axumy. Emmkéov, o akydprduoc [29] tou yenowonoteita yio Tov
umohoyloud tou ground truth AauBdver unogn xuplwg TAnpogopieg xouBwy. Extog avtold, n Pacuxr onuo-
olohoyt| TAnpogopla TwV EOVKY, Yl TNV onola evBLlapepoUas Te xuplwe, Peloxeton ota avtixeiueva Tou
avamaploTavTar ¢ xouBol xal Yo AGYouC amAOTNTUC AmOPAUCIOUUE VAl Ay VONiCOUUE auUTH TNV Tpdodetn
TAneogopla.

Oa meptypdouue T TN BLodixacia TOU YENOUOTOACAUUE VLol VoL 0plooUE xou Vo ETUAEEOUUE YRAPOUS OGNV
and dvo dlapopeTiéc xotnyopieg, Toug TUXVOUC XaL Toug Tuyatous Ypdpous aoxnvedy. O Adyog niow ond autdv
Tov dloywpelopd elvon dittoc.

Aqgevée, napatneooe 6Tl 1) CUVTELTTIXY TAELOVOTNTA TWV YRAPWY OXNVAY 6TO GUVONO Bedopévev ftay TohD
apotol. Autol ol ypdgot Stadétouv mohudprduoue anopovwpévous xouBous, napeurodilovtag TNV omoTeNEC-
potixétnTa Tou oyfuatog wetafBifaong unvuudtoy mou exteAeitan and ta NAT, xadde xou tn Aettovpyio Si-
apdpwv Graph Kernels nou Poacilovton otic ouvdéoec xopPov. ‘Evac apoude (tuyoio emheypévoc ypdypoc
oxnvic) gaiveton oto Lyfua 9.1.3 dmou unopel xaveic va St v apoudtnTa ToU Yedpou.

And v 8NN Thevpd, 1 emhoyY Tou TUYA{oL UTOGUVOROU xoodNYHONXE amd TO YopEUXTNELOTIXG TOU OTL Elvol
éva unoocUvolo ywplc meploptopole, mou dev amawtel e€edixeupévo yelplopd. Emmhéov, to evdlapépov poc
TeocovaToNoTNXE GTNY €EE€TAON NG TEOCUPHOCTIXOTNTOC evog Tpoextoudeuuévou Contrastive GNN oe éva
Tuyaio UTOCoOVOAO YPAPWY o oTNV allohdYNoN PETETELTA TN amdBOCNC TOU OE €val GUVOAO BESOUEVRY UE
TEQLOGHTEPOUS TEQLOPLOUOVS %Ol ELDLXA YAUEAUXTNELOTIXE, OIS elval TO TUXVO.

INo) dnovpyior Tou TUXVOU GUVOAOL, ELCAYEYUUE CUYXEXOUIEVA XELTARLA YLl TNV ETMAOYY) TWV YRUPNUATLY
OXNVOV. DUYXEXPWEVA, ETAEEAUE YpopuaTa e TOUAG LoTOV 3 xOUfoug xal 3 axUéc Xou oL TWES TuXVOTNTAC
Toug ftavy oto evpog (0.1, 1.0]. Ta otatiotind otoiyeior auTo) TOL TUXVOU cuVEIoL ameixoviovtal oTo Lyua
9.1.4.

I to tuyalo oOvolo, amid emié€ope 1000 Tuyodous yedgoug, emPBdihovtac dlo meptoplopols. Ilpdrov, o
apldude Twv xOUPwy énpene va elvon (0og 1) yeyahdTepog and 6 xan o aptduds TV oxudy €npene va lvon (oog 1
peYoAUTEROS 0mo 3. Autol oL TEpLOPLGUOL EPUPUOCTIHAY TEPOXEWEVOU VoL UV EEETAGTOUY YPAPOL UE TIEPLOPLGUEVO
optOpd AVTIXEWEVOY X oYEcEwY (oxuv). Ta Bacnd otatiotnd otouyeio yia to Tuyoio clvolo anewxovilovto
070 Xynfua 9.1.2.

Eivou onpovtind va onuewwdel 6t oe endueva netpdpota, edv elvar anopaitnto (n.y. of mepintdoelc inductive
inference), Yo ypnoiwonoioouue éva Eeywplotd tuyaia emheyuévo olhvolo, To onoio Yo undxettor oTouc (Bloug
Teploplopols, amoxhelotixd i exnofdeuor. H @don tou inference Yo npaypatonoleiton ndvta elte oo apyixnd
muxvé elte oTo apyd Tuyaio chvolro.

16

1.3. Iepdyotind Mépog

Number of Nedes per Graph

120 4

100

40 60 80
Number of Edges per Graph

30 40 50
Density per Graph

0.20

Figure 1.3.2: Ytoatiotixd otolyelo yia To YoapAuato oxnvdy 6to tuyalo chvoho
g XELWLY YPoPNL Ul X

.)

Figure 1.3.3: "Eva nopdderyya plag emdévag pall ye tov avtiotolyo yedpo oxnvig and to tuyoio cOVoAo.

17

Chapter 1. Extetapévn Iepiindmn ota EXAnvixd

Number of Nedes per Graph

1501

100

= J
4 6 8 10 12 14
Number of Edges per Graph

160

140

1204

100 4

5 10 15 20 25

Density per Graph

05 0.6 0.7 0.8

Figure 1.3.4: Y1otioTxd GTOWYE VIO TU YRUPHUATU OXNVWY GTO TUXVO GUVONO

Figure 1.3.5: 'Eva nopdderypa plag emédvag pall e tov avtiotolyo yedpo oxnvic and To muxvo cOvolo.

18

1.3. Iewdpotxd Mépoc

1.3.2 Metpuxég aflohoynong
Mean Reciprocal Rank (MRR@K)

H MRR etvon pior yetpiny) mou oloAoyel TNV amoTEAECUATIXOTNTA EVOC CUOTALITOC CUCTAGEWY AouBdvovTag
umoYPn Ty Véom Tou TEWTOL oYETXOY GToLYElOU TOL EMLCTEEPETHL ond TO YovTélo Woc. H 1déa niow omd v
MRR eivon va emPBpafedel Ta cuothpato Tou Tonodetoly ta oxeTxd oTotyeio LPNAGTEPa 6T Aot GUCTAGEWY.

To MRR@K yio éva ohvoro gpwtnudtny opileta we e€hg:

1Ql

1 1
MRRQK = — —
Q| ; rank;

omou @ elvar 10 6OVOAO TV epwTNUdTLY, rank; elvon 1 Véorn Tou TEMTOL oYETIXOL GToLYElOL OV EMOTEEPETAL
YioL T0 gpOTARA 1, xou | Q] elvon 0 cuvohxdE apLddC TWV EPWTNUATWY.

Mean Average Precision (MAPQK)

H MAP eivou pro petpind| mtou a&lohoyel v noldtnta evoc cuotiuatog cuotdoewy. Ta xdpla cuotatid ototyela
Tou gfvon amapaitnTa Yot Tov utoloyioud tov MAPQK napovcidlovtar mopoxdte.
1. Precision: , , , , ,
Apude oyetindy oToyelwy PeTall TwV xopupalny k
k

Precision@k =

2. Average Precision (AP):

S| Precision@k x rel(k)

APQK = ; . . .
SUVOAXOC aptUdC OYETIDV TEPLTTOCEWY

6mou K eivar 0 ouvohixde aptdpde twv otoiyelwv otn Mota "Predicted" (n.y. ota newpdyatd pac K =
10), xou rel(k) elvon wo cuvdptnon delxtn lon pe 1 edv to otoiyelo oty xotdrain k elvan oyetnd xa 0
OLOPOPETIXAL.

3. Mean Average Precision (MAP): MAP eivar 0 péooc poc twv tipdv AP nou vnoloyiotnxay oto
nponyolpevo Brie oo toAomAd epwthyarta. Opileton we e&hc:

Q
MAPGL = Zz‘-lép@K

6mouv Q elvar 0 cLYORXOS aELIUOC TWV ELHOTNUATWY.

Normalized Discounted Cumulative Gain (NDCGQ@K)

1. Cumulative Gain (CG): To adpoiotxd xépdog elvon éva pétpo mouv adpoilel tic Padporoyies cuvdgpetag
TV xopugaiwy K (ota newpduatd poc K=10) otoiyeiwv oty "mpofrendpevn” Aoto xatdtolng mou emoteégel
éva govtého cuotdoeny. H Baduoloyia cuvdpelag elvon éva ebpog Bardudy cuvdgelag émou to 0 elvon To Aydtepo
cLUVIPES XaL xdmolo LPNAGTERY Ty avamaplotd to o cuvagés. Ilpoxeiévou va xadoploouvye Tic Potpohoyieg
CUVAPELIC OTA TELRPAUATS Hag, Yenotdonotolue To avtiotpopo Tou Graph Edit Distance Ground Truth, xode 1
évvola TNne ouvdgelag elvar avtiotpogr authc Tou Edit Distance. Xtn cuvéyeia, yenoiwonowdvtag éva Min-Max
Scaler yetatpénouue auTég TIC TWEG o wa xhlpoxa and to 1 éwg to 10 mpoxewévou va amo@lyouue oxpaleg
Tiwée. O timog yia 1o adpolotind xépdog ot Véon K éyel wq e€nc:

K
CGAK = Z rel;

i=1

2. Discounted Cumulative Gain (DCG): To DCG elvor pia enéxtaon tou CG mou glodryetl évoy mopdyovTo
yia v ddoel hydtepr onuocio ota otoryela tou eygaviCovtar younhotepa otov xatdhoyo cuotdoeny. O tinog

19

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

v o DCGQK elvon:
us l

rel;
DCGAK = ; s 1D

Me autév tov TpéTo, uPnhédtepee Padporoyiec amodidovtar oe otolyela mou elvar oyeTd xou epavilovTon
eniong LPNAOTERO GTOV XUTAAOYO CUGTICEWY.

3. Ideal Discounted Cumulative Gain (IDCG): To IDCG avtinpocwnedet to péytoto epuetdé DCG yia
éva 0edouévo obvoro otolyelwy. O tinog vy 1o IDCGQAK eivan napduotog ye to DCGAK, ahhd AouPdvet
unogdm TNV Wavixr TaElvounon:

K
relideal i
IDCGAQK = —
i:ZI logy (i + 1)

OOV T€lideal ; EIVOL 1) GUVAPELXL TOU 1WBVIXOL oTolyelov ot Véon i Tou Tadivounuévou xatohdyou.

4. Normalized Discounted Cumulative Gain (NDCG): To NDCG eivaw 1 xavovixonownuévn exdoyn
tou DCG, nou vrnoroy(letar Stonpwvtac 1o DCGAK pe to IDCGQK. Auty| n xavovixonoinor e€acpaiilel 6t
7 petpud eunintel oto evpog [0, 1], ye to 1 va unodnhdver téheta xatdtaly. O tinoc v to NDCGQAK eivou:

DCGQK

NDCGOK = th-0ak

H NDCG elvan aitepa yprown xatd) cUYxplon anoTeheoudteov HETOEY SLUPOPETINDY GUVOAWY BEBOUEVLV
1 CUCTNUATWY, XIDC TaPEYEL Eva TLTOTIOLNUEVO PETEO YLl TOCOTIXY olYXelon. Xuvontixd, n NDCGQK eivou
Lo ONOXANEWUEVT UETEWXT TOU Aof3dvel uToYn TOG0 TN cuVdela 6o xaL T Vo Twv aTolyelwy ot pla Alota
CUCTAOEWY. XLTNY TEQINTWOY Hog, OTOU €YOUUE TOAITAL epwThaTa, UTOAOYILOUUE AmAMS TN WEoN T TOU
NDCG vy dhot Tot pTHUOTA.

1.3.3 Boaowr AAnOeia

Eivat mpogavéc and v umoevétnta "Metpixée alloAdynone" 6t yio var a€lohoyniel 1 anoteleopatixdTnT TWV
HOVTEA®Y, ElVOL amapolTNTO Vo TEOGBLOELGTOVY To TpaypaTixd arnotehéopata Yl xdde epdtnua. ‘Onwe €youye
N0 avopépet, 1 Poaoinr odfdeia yetagd 80o yedpwv unohoyileton and tov ahyoprduo Graph Edit Distance. YXtnv
neplntwoy Yog, meénel va utohoyicoupe évav mivaxo Boaoixhc ahfdeiag émou Ya amodnxebovtal oL anoctdoels
ene€epyaoiog yedpwy petal onoloudrinote Lebyous Yedpwy. 201600, TO UTOAOYLOTNG XOGTOS TOL axplBoUg
Graph Edit Distance elvon amoyopeutind, xodedg 8ev LUTdEy el TOALWYLULIXES oAy OELHUOC Yiol AUTOY TOV oXOoTd.

Iot v dnovpynet o mivaag Boaoixie ahridetog yior tar Tuyoador xon Tuxvd cOvoha, xadéva and ta onola anotehel-
ot a6 1000 ypagprota, o alyodprduoc GED npénet va extelestel nepinou 500.000 @opéc yia xdde cbvoro. T
VoL UELWCOVUE TOV UTONOYLO TIXO PORTO Tou cuVBEETAL Ue Tov unohoyloud tou GED, yenowwonoimooue Tov npoc-
eyyioTd olyderdpo Bipartite Matching. Ilpoxeiévou va tov uhomoooupe, yenoiwonotoope T BiBAodxn
Deep Graph Learning oe Python, yvwot wg DGL.

Qo1600, Yo mpENEL TEMTO VoL SOCOUUE GTOV kYO0 TO XOGTOC TNE ELCAYWYNS, TNS BlayeaPrg Xou TNS otv-
Totdotaone v xouPov. Ta to oxond autd ofonoodue to WordNet [59] Thox graph npoxewwévou va
utoloYiooupe Ty andoTaon YeTall x&le B0 avixelwéveny ov ypetaldpaoTte Onwe npoteiveton oty [31].

To WordNet eivor par hAe€hoyixnr) Bdon dedouévmv e ayYAXAS YAOOoS TOL 0pYoVOVEL Tig AéEELS o GUVoAa
ouveVOPKY (synsets), ta onolo avinpoowrebouy évvolee N onuaciec. M onpovuxy ntuyr tou WordNet eivan
1 Lepapy i Tou dour, Wialtepa 1) tepapyia is-a, 1) omolo ATOTUTWVEL TIC OYETELS UTERWVUUOU-UTOWYOUOL. MTNV
tepapyla auTy, éva hypernym elvon évac Yevxotepog 6poc 1 évvola, eved éva hyponym elvon évag edixdtepog
6po¢ 1 évvola. H oyéon is-a Snhdvel 6Tt €val uToKVLUO elval LTOTUTOC 1) TERiTTWOY Tou UTEpWVLUOL Tou. T
TOPADELY oL

e Hypernym: Zoo
— Hyponym: Onhactuxd, Ilouhi, Wt

20

1.3. Iewdpotxd Mépoc

7

Ye autéd to moapdderyua, ta "Onhactxd", "TIovi" xou "Wée" elvar hyponyms tou hypernym "Zo".

ENTITY
LOCATION SUBSTANCE
ARTIFACT ORGANISM /\
FOOD
INSTRUMENT ANIMAL

CLOTHING

CHEMICAL
VEHICLE VERTEBRATE PLANT

FACILITY
INVERTEBRATE
SPACECRAFT TREE
BIRD FISH

AIRCRAFT VESSEL MAMMAL FLOWER

Figure 1.3.6: Mo amhn} avanapdoTtaoy tou Tuiuatog tng tepapyloc ovotaotxdyv tou WordNet xdtw ond tov
x6pPo pilac tne évvolac "entity".

Kadwe 1o olvoro dedopéverv Visual Genome nopéyer €va avtiotoryo Synset yia xdde ovtixelpevo oe évo
YEdPNUo OXNVAC, Xl EPOCOV EYOUUE AVATAPACTHOEL xdde avTIXelUevo K¢ xOUPo o €val Yedgpnua, 1 XeHon Tou
WordNet yia tn yétenon tne andéotaong evvolndy yivetow amh. Luyxexpiuéva, yenotuonololue to naxéto NLTK
Python [53] to onolo poc mapéyel npdofoon ot Bdon dedopyévwv WordNet xou oty iepopyio ouolaoTidY.

Ipoxewévou va unoloyicoupe v amdécotacn Uetol dVo evvolwy oty "is-a" epapyia yenotwomoolue
ocuvdptnon path_similarity mou nepthaufdvel to nmaxéto NLTK. H ocuvdptnorn auty unoloyilel éva oxop
mou xupaivetar and 0 éwe 1 xon Snhdvel Ty opotdThTa HETOED U0 AEXTIXWY EVVOLKOY We Bdom To cuvTtoudTepo
povomdtt otny toévopla is-a.

‘Etol, mnpoxeiévou va UTOAOYICOUPE TO XO0TOC TWV AVTIXUTACTACEWY XOUBwY YpNoWOoToo0UE TNy
path_similarity yia vo e€dyoupye to0 oxop opoldtntac yio Oha tor midoavd Levyn x6uPwv yetoll tou yed-
pou G; xou Tou yedgpou G . XN cUVEYELY, 1) EVVOLOAOY XY andoTao ueTadd xdde Lebyoug xouBwy utohoy(leton
¢ 1 — similarity _score. I'ia To x60Tt0¢ eloorywyng xan Sorypapric x6ufwy axoroudeiton 1 (Bior dradixacio, aAAd
avtl va yenowonowolue T ouvdptnon path_similarity yia Lebyn evvoldv, 0 YpNOYLOTOOVUE YLt TOV UT-
oloyloud e opoldtnTag PeTagd xdde xouBou xan tou xépPou entity mou elvon o xdpPoc-pila tne epapyiog
is-a.

Avut 7 Sradixacio emavohauBdvetan yior xdde miavd Lebyog ypapnudtwy oxnvic TOC0 Yl Ta TUXVE GO XoL YL
To Tuyaka GOvoAa xaL TEoXUTTOLY ol TeAwol mivaxes Paoxic akfdetas. O ypdvoc extéreone yia to "Tuyaio"
oUVOAO Bedopévwy ftay mepinou ~ 8 dpeeg xou Yo To "ITuxvd" clvolo dedouévwyv ftav tepinov ~ 1 Gpa.

Eb¢6), mapoucidloupe éva 6UVORO AVTITPOCWTEUTIXGY EXOVWY %ol ovolloude Tic Bardpoloyies opoldtntde toug
yenowonowdvtoc ™ petewr) Graph Edit Distance nou oplooye.

Yy exova 9.1.7, napoucidlovtar 800 SopopeTinés emdvee, N xadeuion Ue TUVOUOLOTUTIOL YROPHUOTA CXNVOV.
H anoteleopotixotnta tou aryopiduou Bipartite Matching elvan epgoaviic, xadde mpoodiopiler pe axplBela
wa andotoon enegepyaciog yeapiuatog 0, umodeixviovtag TV odoldTnto YeTald TWV EOVLY Ue Bdon Tic
avTloTOLYEC AVATUPACTACELS YRUPNUATOS OUNVAC.

Yy tedevtala exdva, 9.1.8, nopoucidlovton B0 exdveg -1 piot and €vor Umdvio xou 1 G amd Evay aydva
TéVIC- Ue doyixd Tohl dpotoug yedgoug axnvric. Tlopd to yeyovog autd, o ahydprdpoc GED toug amodidet udmin
TUY IO TGS XAl 1) ELXOVAL TOU YNTEDOU TéVLE Bev epaviletal xav otn Mota pe tig 20 npdteg ouotdoels. Auti
7 mopatienon vnoypouuilel Tov xplowo pdAo TN ONUUCLONOYINS TWV AVTIXEWEVWY, XS 0 TEOCEYYLOTIXOC
aryéprduoc GED amodidel onpavtix Bdpoc oe auth T onuactohoylo. Io topddelyua, n évvola tou "mthaxidioun"”
anéyel onuavuxd otny lepopyion tou WordNet and tnv évvoia tou "naixtn". ‘Okec autéc ol moapatnerioelg
TEXUNELOVOUV TNV amoTEAECUATIXOTNTA ToL alyopiduou Bipartite Matching we e€aupetinod yétpou opodtnrag,
emPBeBaLdvovTag TNV amdPAcT| LS VO TOV YENOWOTOCOVUE w¢ Baoixn ohfdeia.

21

Chapter 1. Extetopévn Iepihndn ota EAAnvid

su rd

Figure 1.3.7: Iapovoidlovtar 800 exdveg amd to nuxvd clvoro, xadepia and tic onolec mapouotdlel Eva
TOVOUOLOTUTIO Yedgpnua oxnvic. O mpooeyylotnds olyoprduoc GED anédwoe pe oxpiBeio Barduoroyio
anéotaong 0, avayvepilovtag dti yolpdlovia To (510 GNUAGLOAOYIXO TEPIEYOUEVO

22

1.3. Iepdyotind Mépog

Pl

Figure 1.3.8: Ewdva 600 Sopxd ouousy eixovewy mou Baduoroyiinxay e onuovtixs anéctaoy and tov
ahyopduo Bipartite Matching GED Aéyw tou Biaopetixol onuaclohoyxod TouC TEPLEYOUEVOU.

1.3.4 TITuprvec I'pdypwv

H xvplopyn mpocéyyion yia v alohOYNoT TS OUOLOTNTAS YEAPWY TEQLAMPBAVEL TN YENON TUPHVLY YEAPWY.
Katd ouvénewr, didpopotr muphvee, dnwe ov Weisfeiler-Lehman (WL), Shortest Path, Neighborhood Hash,
Random Walk xow Graphlet Sampling Kernel, agiohoyridnxay 670 unochvoro TV Yedpwy UaC YeNCHLOTOLOVTAS
 PBModrxn GraKeL Python [75].

O Aettoupylec TwV TEoavapepBEVTWY TURTHVKY TEPLYPAPOVTAL AETTOUERMS OTO LTOXEPEAO 5.2.2. ‘'Onwg xou 1
Baowh ahfdeta, autol oL Tupriveg dnuioupyoLy Tivaxeg opotdtnTog Yo xdie Levyog yeagpnudtony. AZilel va onuet-
el 611, oe avtieon pe Toug mupriveg Ypapnudtwy, o GED yenoweliel we YETpo avopoldTnTag, TROoCcpEpovToC
Bardporoyieg mou unodnAdvouy tov Badud avouoldtnTag HeTal (EuymY YRUPNUATWY.

H piphodfen GraKeL [75] npoogépet pia gulxy| Tpog To YehoTh DIENAQT| Yol TOV TEOGOLOPIOHS TOV THIOY TGV
BLaPOPWY TUPAUETEWY TIOU YENOWOTOLOUVTAL OE SLAPORES THRAUANAYES T®V TUPHVLY Yedpwy. O tapdustpol Tou
YENOUWOTOoAUE Yiot xdde évay amd Toug Tévte muprves Ypdpwy elvon ol e€rg:

Weisfeiler-Lehman Kernel: O nuprvac Weisfeiler-Lehman Aopfdvel 800 xOpieg nopapétpous. H mpddtn elvon
0 Booixdg muprivag k mou yenoiwonoleiton petadl 00 Ypdpny xou 1 debtepn elvon 0 aptdpog Twv emavoldeny
h mou yenotpomototdvtan. Opilouye tov aprdud twv enavoriPewy oe 20 xou YENOLUOTOLOVUE TOV TEOETLAEYUEVO
Baowxd mupnval YeopHuatog, o onoiog elval 0 TUETVIC LOTOYRAUHATOS XORUPOV.

Random Walk Kernel: I'ta tov nupriva tuyaiou nepindtou, yenowlonoiiooue Ty napahhayr mueriva Ran-
domWalkLabeled, n orola hauBdvel enlong vnddn tic euxétes twv x6ufwv. Xpnotponoidnxay o npoemihey-

23

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

pévog tonog muprver xan oL apduetpol lambda, Snhadn yewuetpixde e Ty lambda (A) 0.1. O yewyetpixde
Tpoodlopilel amhidS Tov TedTo Ue Tov onolo Va mpaypatonomiel 1 ecwtepixny| ddpolon.

Shorest Path Kernel: T tov muprva cUVTOUOTERWY HOVOTATIOYV, TEENEL Vo xodoplotoly dUo x0pleg
nopdueteot. Ilpdrtov, N mo xplown topduetpog ovopdletar algorithm_type, n onola xadopilel Tov unoxeipevo
ahybpLdo Tou YENOLLOTOLETAL YId TOV UTOAOYIOUO TWV GUVTOUOTEPWY Yovoratudy. Mnropel xavels vo emAéel
petagd Twv ahyoplduwy Dijkstra v Floyd-Warshall 1} va emiAégel tnv autépaty emhoyy, 1 onolo emAEYeL auTo-
potar TV TayOTERY eThoY T pe Bdon toug Yedypoug eloddou. H dhhn napduetpoc ouuBoiileton w¢ with_labels,
xadopilovtac av ot xouPol €yxouv etixétec B Oyt Kou yior Tic 800 Topaétpous, YeNoHLOTOCOUE TNV TPOETUAEY-
uévn pOduion tou aiyoplduouv Auto xou True yio To with_labels.

Neighborhood Hash Kernel: T tov muprvae Neighborhood Hash, mpénel va xadopiotodv 80o onuav-
TixéC TOPdUETEOL, oL omolec ovoudlovtal R xou bytes xou avTimpoownebouy Tov PéYLoTto aptdud emavolfdeny
xou to uéyedoc byte twv hash twv xo6uPowv, avtiotoiya. EmiéEoue tic mpoemheyuéves Tiéc xou o Tig 8o
TopopETEOUS, VETOVTAS TEC OTIC TWES 3 Xou 2.

Graphlet Sampling Kernel: H xOpia nopduetpoc yia autév tov muphva elvar o péyloto péyedoc twv
graphlets nou da ypnowonomndoiv, xou to Yoaue oty npoemAeyuévn Tiun, N onola elvan 5.

1.3.5 Nevpwvixd Aixtua I'edpwyv

ITpoxeyévou var VAOTIOLACOUUE Xol Vo AELOAOYHOOUUE Ta TEOTELVOUEVA HOVTEND, Ypnotponotiooue T BBA007xN
expdinone ypdpwv Pytorch Geometric [30] xou ypnowonotfioae enione optopéva epyoaheio and T BBAodfxn
PyGCL [96].

Inductive Learning: To inductive learning etvon évag tonog pdinone 6mou to chotnue npootodel vor pde
Ta umoxetpeva potifo 1§ xovoveg and ta dedopéva extaldeuon TEOXEWEVOU Vo xdvel TeoBAEPelg Yiot EAROVTIXG
dedoyuéva Tou deV €yel Bel xatd TNV exnaldevon. MTdyoc o auth TNV mepinTtwon elvon 1 yevixeuorn and cuy-
EXPWEVEC TEPLTTAOOELS OE YEVIXOUC XAVOVEC) tpdTuta. MOMC To povtého exmoudeutel, unopel va yenolpononidel
yia vou xével teofréelc oe véo dedouéva.

Transductive Learning: To transductive learning elvan évac tomog pdidnong émou to clotnua mpoomodel
vo. TpoPBAEPEL Tig ETIXETES 1) TG IDLOTNTEC CUYXEXPWEVOY, UN] ETUOTLAOUEVDY TEPITTOOEWY Pe Bdon to diadéotua
emonuoopévo dedopéva. Xe avtiVeon ye to inductive learning, to transductive learning dev otoyelel otnv
expdinon evioc yevxol govtéhou tne umoxelpevng xatovopnc dedogévev. Avt’ autol, ETMXEVIPOVETAUL GTNY
Tparyuatonoinoy mpoBAEPEWY Yiol TIC CUYXEXPUIEVES U] EMICTUELWUEVES TEQITTMOCELS TOU TUEEYOVTAL.

Yta mewpdpota mou mpaypatonoufinxay éyway téco oc inductive éco xau oe transductive settings. Muy-
EXPEVAL, TOL 0pY XS TIELpdUaTaL IOV Ttopouctdlovtal euninTovy oty teplntwor tou inductive learning, 6mou ex-
TaudedOUPE To LOVTERA Lo o€ €va Tuyalal ETLAEYUEVO GUVOAO YRAUPNUETWY OXNVOY. LTN CUVEYELY, 1) AELOAGYNO
TEOYUATOTIOLE(TOL T6G0 OTO dpyd Tuyaio cOVOAO 6GO xou GTO aEYixd TUXVS GOVOAO Yia TNV o&lOAGYNOY NG
YEVIXEUOTC TGOV HOVTENWY OE YRUPHUAUTO OXNVMY UE BLOUPOPETING YoRUXTNELO TLXAL.

Emniéov, To npotevépevo fine tuning emxevipdveton otny evicyuon g andédoong TV LOVTEAWY Yid £VOL CUY-
XEXQWEVO 1) ETIONUACHEVO GOVOLO Ypapnudtwy nou moapéyetan (t.y. To urtocivolo Dense) ypnoipomoudvtog
HOVO €Val PO TOCOOTO ETXETWY, EUTINTOVTOS €T0L 0TV xatnyopia Tou transductive learning. Auth n npocéy-
YIOT) ETUTEETEL TNV TEOCUQUOYT) TWYV UEY UV TEO-EXTUOEUHEVWY HOVTEAWY O CUYXEXPLIEVA GOVONAL YROPNUATLDY
OXNVAG HE LBLOUTEPA YopAXTNELOTLXAL.

Do ta opyxd inductive nelpdporta, doxpdoaue EexwploTd xa Ti¢ Téooeplg ToparlayEg Tou Tapouctdoope: GCN,
GAT, GATv2 xou GIN, pe xdde plo and tic tpeic contrastive npooeyyioeic: GraphCL, InfoGraph xou Grace.
X1 ouvéyela, yio T dladxacia tou fine tuning, TELPAUATIGTAXOUE PUE TOUE TLO EMUTUYNUEVOUS GUVBLACUOUGE.

INo g unepnapapétooue Twv povtéhwy GNN, do anaprduroouue apyixd exciveg mouv Htav xowvéc oe dheg
T mopohhayég. Xenowonojooye tov Bedtiotomoint Adam yio Ty exnaideucn OV TWV UOVIEAWV XL
TEOYUOTOTOACOUE ENONG TELRGUATA UE TIC TPUUETEOUS Tou BeATioTonomnTy, Wiwe e Tov pudud uddnong xou
™V anoclvieon twv Bopdy. Metd and npocextixd nelpopationd, oploope tov puiud pdinong e€icou oto le—4
Yo OAAL TAL HOVTEAL.

[ewpopatiotixaye enlong Ue ToV aptipd TWV YPNOLLOTOLOUUEVOY CTROUITWY Xal XATUANEUUE GTO CUUTECAUCUA

24

1.3. Iewdpotxd Mépoc

OTL T UOVTEAQ UE 2 OTPWUATO X0l CUVEVKOT] TV UTOTEAECUATOV TOU TMEMTOU Xol TOU BelTEPOU GTPMUATOSC
UTEPTEPOLY €VOVTL GAAWY cUVBLAoU®Y. Mot dAAN onuoavTixy TapdueTeog elval 1) SLUCTATIXOTATO TWY TEALXWY
OVAUTOPACTACEWY TKV Yedpwy. Alomotwoope 6Tt 1 BEATiotn Abon Ytav va elvan 512.

Emmhéov, ol GUVEAIXTIXEC TUPUAANYES TOU XENOWOTIOLOUY TNV TPOCOY T TOMAUTAGY XEQPUAWDY OTAtTOOV LBLOUTERT
pépwuva. IHporyyatonominxay mewpduota ye 1, 2 xou 4 xearéc, uetald TV onolwy 1 Slude@won ue 4 xeparéc
€dwoe otadepd tor xohltepa anotehéoUoTa.

Téhog, oL UTEPTOPAUETEOL TWV ETOY WY, TOU UeYEVOUS TNg TopTidag xat Tev etauhoewy elvor WBialtepa oNuavTIXéS
yioe tor Avtrdetined Nevpwvixd Abetva edguwy. Tevind, n avurdetnr pdinon Baciletoar oo va pépvel xovtd Yetind
derypdto (Toapduot 1 onuactohoyixd cuvagr SelyUata) oTo XOpo AvVATUpdoTIoNG, EVE To eV Tixd delypota
(avépoua delyporta) amopaxplvovion Teptoodtepo. Autd ta Yetind o apvntnd delypota todlouv xadopiotixd
eoho oTNY evidpEUVOY) TOU HOVTEAOU Vo HAJEL OUCLHOTIXES AVATUPAOTAOELS, oV oLV dwe Aauldvovtal and To
gowTepd xde maptidoc. §2g ex TouTou, To péyedog tne mopTidag elvan Wi Lwtixig onuociog UTEpTARdUETEOS
oe oUT6 To mMhalolo. Xe yevég ypaupés, N avtidetin) uddnon teiver vo enwpelelton and peyolitepa ueyédn
TopTidwy, av xou elvon onuovtid vo emteuydel pio toopponio. Eva yéyedog noptidoc mou dev elivor 0dte moAd
xpo6 00te Tohd Yeydho elvor To BEATIOTO Yiot TNV EMUTELEY IXAVOTIONTIXDY ATOTEAECUATOY Pddnonc.

‘Ocov agopd Tig texVég emadEnomng Sedouévwy, Eow TELRUUUTIONOU eldaue 0Tl 1 agalpeon xOuBwy xou ox-
pav, poll e ™ ouyxdiudn yapaxnelo Tixwy, €dwoay to xahldtepa anoteréopata. Ior tnv mopodhayr) Tou
GraphCL, emhé€ape tehind tny agaipeon xOufwyv xar axucdv. 2otédoo, yia tnv napaiiayr Grace, anogacicoue
TNV AQAPETT) AUV XAk TN CUYXGALYN YopaxXTNEO TIXOY YIo VoL SLUTNEHOOUUE TNV omopaitnTn avTlo Tolylon Tev
x6uPBwy mou elvon amapaltntn yia To Local-Local avtidetind opdipo. e yevinée ypaupéc, napatnerioope Ot
N YENoN HXEWY TOGOGTMY YLl TNV ENAVENCT] YUPUXTNELO TIXMY HTAV TLO WQEAUN Yo THY XATAGKELY) YETIXOVY
delyudtwy, oe avtideon ye to HEYAAA TOCOGTE TOL €TELVaY Vo 08N YOUV OE oNavTiXf oAholwor Tou apyixol
Yedpou.

Iapoxdtey cuvoliloupe oToV TUPEYOUEVO Tivaxo Toug XahOTEEOUE GUVBUNGUOUE TTOU Yenotwonoidnxay yia xdie
éva and ToL HOVTENAL:

Table 1.1: Béhtiotec Tiwéc Yrepnopouétpny

Model GNN Epochs Batch Size Augmentations Attention Heads
GCN 50 64 Node/Edge Dropout p = 0.05 -
GIN 40 128 Node/Edge Dropout p = 0.05 -
GraphCL GAT 20 128 Node/Edge Dropout p = 0.05 4
GATv2 20 128 Node/Edge Dropout p = 0.05 4
InfoGraph GIN 40 128 - -
GCN 50 128 Node Dropout /Feature Masking p = 0.15 -
Grace GIN 80 128 Node Dropout/Feature Masking p = 0.15 -
GAT 20 16 Node Dropout/Feature Masking p = 0.15 4
GATv2 40 16 Node Dropout/Feature Masking p = 0.15 4

1.3.6 ITocotuxd Anoteréocpata

Apyxd, o mopovoidoouye i tehéc tipée MAP, MRR xaw NDCG nou nétuyav t6c0 o Graph Kernels 60
o ta povtéda NAT' oto apyixd tuyoio cbvoho. Kdde cuyxexpévo poviého NAT avtiotoiyel oto Béltioto
HOVTEAO UE UTEPTUPUUETEOUC TIOU TEPLYPdpovTaL ovoluTixd otov mivoxa 9.1. ‘Ohat ta NAT™ exnoudettnnoy oe
éva Eeywplotd Tuyalo unocVvoro 1000 ypoapnudtwy oxnvric. Ov Metpixéc A&lohdéynorng eugpaviCovtar otoug
ITivoxeg 9.2 xou 9.3. LToV Mp®d10, TARATNEOVUE TIC EMBOCELC TV TUPTIVOY YEAPWY XoL TWV U1 ETBAETOUEVLV
NAT mou exnoudevovtar avtdetind, eved 0Tov BelTERO, TOPATNEOVKE TIS EMOOOELS TWV XOAUTERKY HOVTENWY
NAT petd to rank aware fine tuning mou exdétel ta poviéha oe éva wxpd T0000Td TN Paoxric ahfdetog.

H mpotn nopathipnon mou xAVOoUUe yio TOUC TUPNVES YRdpwy elval 1 UTEEOYY TOU TUPHVOL CUVTOUOTEPWYV
povormatiy otie wetpixéc MAP@10 xou MRR@10, poli ye tov nuprva Neighborhood Hash, o onolog €xet av-
TAYWVIO TWES ETUBOOELC O OAeg TIC UETELXES xou uTepTeEPEl OhwY Twv Tuphvey oty NDCGQ10. O dihol teelg

25

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Table 1.2: Teluxéc TéC HETPXADVY Yiol TOUS TUENHVES YRy xat Ta povtéha NAT ywelc fine tuning, oto
apywd tuyato vnochvolo oe inductive setting. H exnaidevon éyel npayuoatonomldel oe éva dhho Tuyaio
unocUvoro. Ta évtova yeduuoTo UTOBNAWMYOUY TO XUAUTEPO AMOTEAECUA Yid XAVE CPYLTEXTOVIXT.

MAP@10 MRR@10 NDCG@10

Shortest Path Kernel 0.1148 0.4862 0.6851
Random Walk Kernel 0.0508 0.2509 0.5971
Weisfeiler-Lehman Kernel 0.0995 0.4315 0.6560
Graphlet Sampling Kernel 0.1030 0.3810 0.6296
Neighborhood Hash Kernel 0.1035 0.4733 0.7112
GraphCL

GCN 0.1123 0.4213 0.6737

GIN 0.1157 0.4614 0.6882

GAT 0.0919 0.4157 0.6788

GATv2 0.0933 0.4068 0.6805
InfoGraph

GIN 0.1229 0.4649 0.6982
Grace

GCN 0.1016 0.4291 0.6819

GIN 0.1122 0.4550 0.6872

GAT 0.1243 0.4769 0.7479

GATv2 0.1223 0.4892 0.7504

Table 1.3: Telxéc Tiwég petpixmy yio to xaAbtepo wovtéha NATI pe fine tuning, oto apywd tuyaio
unocGvolo Ue emonteln amd €va Uixpd unochvolo tng Paowrc odrdeloc. To évtova ypduuoto UTOdNAGYOUY TO
XUAUTERO amoTENEOUA Yiot X&de YETEIXY.

MAP@10 MRR@10 NDCG@10
10 epochs 30 epochs 10 epochs 30 epochs 10 epochs 30 epochs

GraphCL

GIN 0.1431 0.1881 0.5271 0.5624 0.7436 0.8009
InfoGraph

GIN 0.1738 0.2164 0.5311 0.5717 0.7747 0.8120
Grace

GAT 0.1957 0.2177 0.5864 0.5840 0.8117 0.8176

GATv2 0.1935 0.2350 0.5616 0.6005 0.8075 0.8227

26

1.3. Iewdpotxd Mépoc

nuprivec Eenepviovton and autols Toug d0o xou oTic Teels petpés. H xax anddoor tou nupriva Random Walk
unopel vo e&nyndel av tov cuoyeticoupe Ye TNy uToXElUEVY AELTOUEYIXOTNTA TOU. JUYXEXEWEVA, AUTOG O TUPTVOC
Baoiletor oe Geuehddelc douixéc WBLOTNTES EVOC Ypoapnuatog, Wilng oe Tuyalous teptndtouvs. 2oT600, oL Ypdpol
oxnvrc etvar cuvidwe pwxpol yedgol xou emimhéoyv, to Tuyalo utocbvoro elval apxetd apond. Kotd cuvénela, o
Tuyaiol mepinatol dev elvor TG00 XUTATOTO TLXOL VLol TOUG Yedpoug oxnvay. Ouoing, o tuprvag graphlet sampling
Booileton xou autds o€ FOUKES IBIOTATES TOU YRAPOU, CUYXEXPWEVE OTNY EUPAVIoN TpwToTuwy (graphlets), xou
Yiot T0 AOY0 autod Bev amodidel ixavonoimnTixd. Amo v dhkn mheupd, ol mupriveq Weisfeiler-Lehman xou Neigh-
borhood Hash Bacilovton otig eTinéteg v yeapnudtemy xo VAOTOLOUY iol Blodixacior ETOVIETIXETOTONONG TwWY
*OUBWV %L EVNUEPWONS TWYV ETIXETOV TOUC Ue BAom TIC ETIXETES TWV YELTOVWY. Auty| 1 Stodixaocio wotdlet mohd
pe to oyfuo wetoBiBaong unvupdtony mou yenoiwonolelton and Ty mAslovotnta twv NAT. Aut n tpocéyyion
patvetan va elvon apxetd emtuyfc. O muprivac Neighborhood Hash €yel mpdypott tig xahbtepe embddoec doov
agopd to NDCGQ10 pe diagopd 3% oe obyxplon e tov muprver Shortest Path Kernel xou éyel tig debtepeg
xahOtepeg Badporoyieg MRR@10 xouw MAP@10. Qotd00, o tuprivag Weisfeiler-Lehman etvan tpitog 6cov agopd
to MRR@10 xoar NDCG@10 xou pévo tétaptoc otov MAP@10, odNd Beloxeton xovtd oTic Tpelc mpwteg VéoelS.
Iepiuévope va €yel xohltepeg emBOOELS, AAAG EIVOL YEVIXE ETOEXWE AVTAYWVICTIXOS OE OYEON UE TOUS GANOUSC
TUPTVES.

‘Ocov agopd ta povtéha NAT, 0 apywr] napatrienoy eivon dti GAo ToUg Elvol ETUEXME AVTAYWVIOTIXG EVOVTL
OPXETAOY TUPHVKVY Ypdpwy. (2oTt6c0, Suoxohebovtal va Eemepdoouy Tig xalbtepes Paduohoyies twv Bacixdv
TUEAVLV Yedpwv, Wiwe doov agopd 11 ueteix) NDCG, xadog xou Tig dAAeg 800 yetpwée. otdoo, oto mhaiclo
avtetng pdinong Grace, napatneolye 6ti 1 yerion Twv naparlayey npocoyhc GAT xaw GATV2 unopel va
Eenepdoel TOUG XOADTEPOUC TIUPHVEC OE OAEC TG UETEIXEG. LUYXEXQPUUEVA, OTay cUVOLALeToL PE TNV ToROANAYT
GATv2, uneptepel tou Neighborhood Hash Kernel pe nepidipio 4% otn petpuey NDCGQ10.

Ipoywedvtag oe mo cLVieTeC dpylTeEXTOVIXESG, unopolue vo dolue 6Tt to Rank Aware Fine Tuning, yenot-
poTolOVTOC éva Wxpd Tocoatd Trg Baoixiic akfdelag Tou apyxod Random Set, mopéyel onuoavtiny Beitiwon
X0l OTIC TPELC PETEWXES, Omwe (ofveton amd Tov Iivoxa 9.3. Ac mpoodlopicouye mpwta To toc00Td TNe Booixrc
andelog mou avtiotouyel oe 10 xou 30 emoyée, oto yewdtepo cevdplo. Xe xdde emoyn, yio xdde éva and to
1000 ypapruarta, hauBdvovton 2 yeapruata wg Yetixd xan opvntixd delypota. Xuvenwg, plo emoyr exdétel to
povtého oe 2000 tpéc Baowrc ahfdetag. O ouvoluxde aprdude Levydyv Baoxic aiidetag yior 1000 ypophuorto
ebvar 500.000. Q¢ anotéleopa, 10 enoyéc avuotoryoly otn yeforn tov 4% tne Poaouhc alfdeloc xou 30 emoyée
avuototyolv ot yehon tou 12% e Paowrc aifdewnc. Etot, yenowonowbdviag évo uixpd 1ococtd pbvo e
Baowhc odfletag, elpacte oe Yéon va emtiyoupe tiwée MAP@10, MRR@10 xou NDCG@10 mou eivor mves and
10% vdmidtepes oe olyYxELoN HE TO XAADTEPO ATMOTEAECUATA A6 TOUG TUPTVES YEdpnwy. Autd To anoteéopata
EMTEVYINXOY UE TN XPNOY TWV TUO UTOCYOUEVWY GUVOUUCUMY, Wiwe Tou mAaciov Grace ye Ti¢ mapohhoyég
NAT GAT/GATv2 xou fine tuning yix 30 enoyéc. Emnhéov, 10 enoyée eivan enione opxetéc ntpoxeuévou vo et
xavelg yioe onuovtixy Bektiworn otig yetpLxée.

IMpoxewévou vo bolue TS ToL LOVTEAA Hog AmodlBouY o€ €vol GANO GUVOAD YEAPWY CHNVOV UE CUYXEXPULEVOL XOL
TILO TIEPLOPLOUEVOL YAUPUXTNELOTIXG, anopaciooue va doxiddoouue ta xohotepa wovtéha NAT extoudeupéva ywplc
eniBhedn oto apyxd HMuxvd Bivoro. Ou tehxée Baduoroyiec MAP, MRR xow NDCG mou métuyav té6c0 ol
TUPHVES Yedpwy 600 xou o povieha NAL 6to apyind muxvd cbvolo eugavilovton otoug mivaxeg 9.2. Xtov
nlvaxar 9.3 mapatneole T emdooel Twv XahiTtepwy wovtédwv NAT petd) Swadooia tou fine tuning,
omnola tar exéTel oe €val uixpd TocooTo tne Baotxic ahdetag tou Iuxvold Xuvdlou auty| T Qopd.

Yto nuxvd clvohro, o tuprvac Weisfeiler-Lehman emituyydver tic udmhdtepee Tipée otic petpixéc MAPQI0 xou
NDCG@10, axoroudoluevog and touc nuprvec Shortest Path xaw Neighborhood Hash, ot onolol eniong €youv
avTaywvioTxég emdooelg. Lo AN wo popd, ol muprivee Graphlet Sampling xou Random Walk Kernel €youv
apXeTd youniéc emdboeic. Eivow mpogavée yiot SANN pio @opd 6Tt tor Avudetind NAT, mou exnawdedovion oe
éva Tuyalo oOVORO, UTOPOUY VO YEVIXEDGOUY UEXETA KOS OTO TUXVE GUYOAO oL EYOUY UEXETA AVTOYWVLOTIXES
emBO0ELS, EEMEPVOVTUC AXOUY] Kol TOUG XUAITEPOUC TVPHVES UE [iat ixpt| dapopd 1% oto NDCGQ@10, 3% oo
MRR@10 xou 1% oto MAP@10.

Emniéov, unopolue va dolue 61l to Rank Aware Fine Tuning nopéyet ndht onuavtixr ddnon xo oTig Teelg
HETPWES, OTwe palveTal amd Tov mivaxa 9.7. XenotwomoldvTag éva uixpd nococtd g Bacixic alfdelag, elyacte
oe Yéon vo emtOyovue Twés Twv MAPQ@10, MRR@10 xou NDCG@10 nou eivon tepimou 9-10% umhdtepes oe
oUYXELOT UE TA XOADTEPA AMOTEAECUATO OO TOUS TUPHVES YPAPWV.

27

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Table 1.4: Telxéc TWéG HETPXADY YIOL TOUC TUPHVES YRAPWY ot Ta XahOTepa Tpo-exnandeuuévo wovtéio NAT
ywelc fine tuning, oto opyxé Tuxvé urtocivoro oe inductive setting. H exnolSeuon mpayuyoatonowinxe oe éva
tuyato uToolVoro Yedpwy. Ta €vtovo yedupato LTOBNAGYOUY TO XAOTERO ATOTEAECHA VLol XAVE
APYLTEXTOVLXN,.

MAP@10 MRR@10 NDCG@10

Shortest Path Kernel 0.1237 0.4618 0.6171
Random Walk Kernel 0.0928 0.3913 0.5964
Weisfeiler-Lehman Kernel 0.1253 0.4570 0.6279
Graphlet Sampling Kernel 0.0389 0.0965 0.5317
Neighborhood Hash Kernel 0.1034 0.3868 0.6132
GraphCL

GCN 0.1281 0.4724 0.6230

GIN 0.1339 0.4914 0.6302
InfoGraph

GIN 0.1354 0.4882 0.6282
Grace

GAT 0.1152 0.4715 0.6285

GATv2 0.1280 0.4902 0.6394

Table 1.5: Tehxéc tpéc yetpdy yior to xoahbtepo povtéhor NATL yetd and fine tuning, oto apyxd nuxvé
unocGvolo Ue emontela amd €va uixpd unochvolo Trg Pacwuenc aifdeloc. To évtova Ypduuato UTOdNAOYOLY TO
XUAOTEPO amOoTENEOUA Yiot xQde UETEIXH.

MAP@10 MRR@10 NDCG@10
10 epochs 30 epochs 10 epochs 30 epochs 10 epochs 30 epochs

GraphCL

GIN 0.1670 0.1990 0.5292 0.5784 0.6713 0.7006
InfoGraph

GIN 0.1605 0.2003 0.5322 0.5657 0.6735 0.7001
Grace

GAT 0.1723 0.2111 0.5247 0.5688 0.6834 0.7073

GATv2 0.1732 0.2207 0.5537 0.5915 0.6876 0.7140

28

1.3. Iewdpotxd Mépoc

ITpoxewévou va SixatohoyHooude Ty emhoyy pac vo mpo-exmoudedoovpe npdta oo NAD avtidetind oe éva
Tuylo GUVONO Xou GTY) GUVEYELX Vo TIpOYweHoouue oto fine tuning oto emdeyuévo nuxvd clvoho, Topéyouue
tov Iivaxa 9.6, 6mou unopel xovelc va nopatnerioet Ty andédoon twv NAT ubvo pe 1 ypron fine tuning xou
ywelc mpoexnaidevorn. Avutd to NATD exnawdedtnray poévo yio 30 enoyéc yenoULOTOLOVTIS TO TROTELVOUEVO
Rank Aware ogdhua, ywels avtidetnr] npoexnaidevon. BAénoupe 6Tl auTd Tal LOVTENX UTERTEQOUY EMITUY WS
OV TUEAVLY Yedpwy. 2oT600, UTOAEITOVTAL UE ONUAVTIXY DLopopd TV AVTIOTOLY®Y LOVTEAWY TOU €Y0UV TRO-
exnoudeutel ovtdeTind o 6T cuvEyELa Exouv xdvel fine-tuning yia tov (Blo aprdud enoydv (t.y. 30 enoyés),
AVIBEVOOVTOC €TOL TOL TASOVEXTHUATA TG TROCEYYLIONS UaC.

Table 1.6: Tehuxéc tyéc petpixdyv yia ta xahbtepa povtéha NAT mou exrtoudevtnyay yia 30 enoyéc pévo ue
to loss tou fine tuning. H e€oywyr ouunepaoudtev mpoyyotonoleiton 0To apyixd muxvd UToGUVOIO.

MAP@10 MRR@10 NDCG@10
30 epochs 30 epochs 30 epochs

GIN

GIN 0.1704 0.5318 0.6773
GAT

GAT 0.1624 0.5208 0.6739
GATv2

GATv2 0.1651 0.5293 0.6732

Yupmepaopotind, to avtidetind NAL anodewviovton o e€anpetixd anoteAeouotiny) Moo yiot To TpoBAnua g
ouoldnTaC Yedpwy oxnvic. Emmiéov, elvar onuavtixd va onueiwdel 1L 10 YeyohliTepo TASOVEXTNUA QUTWV
twv NAT évavtl tov Hupivev Tedewy eivon T nogéyouv avanapaoTdoele YEVIXNS XeHoNne Tou Umopoly va
yenowonoindobv yua didpopes epyacies dnwe Talivounon xOUPwv xon Yedpwy.

Téhog, magoucidloupe Toug Ypovoug exnaideuong yior TNV avTeTiXr TpoexTaldeuoT 6To Tuyaio GVolo xaL TNV

avteTtnr) npoexmaldeuon axoloudoluevn and fine tuning oto nuxvéd civoro.

Table 1.7: Telwxol ypdvol exnaideuong yia ta xohbtepa wovtéra NAL ye fine tuning, oto apyixd muxvd
unocOvolo ye en{BAedn and €va uixpd unochvolo g Baowxrc ahfdelog.

Xeovog Avtidetixnc Ilpoexnaldevone Xpedvog Ipoexnaldevone + Fine Tuning

10 epochs 30 epochs

GraphCL

GIN 32sec 44sec 1min 05sec
InfoGraph

GIN 50sec 1min O4sec 1min 46sec
Grace

GAT 2min 12sec 2min 50sec 4min 02sec

GATv2 4min 28sec 5min 36sec 6min 39sec

Ou udmrdtepol ypdvol exmaldevone yio ti¢ noparioyéc GAT efvon xdtt mou meppévaye, xodode 1 exnaldeuvon
TOAATADY XEPAUAWY TpocoyN¢ anantel emmiéov ypdévo. Emmhéov, to mhaicio Grace eivon unohoylotnd Aiyo
o Popld oe oyéon pe ta uéhoima xadode extelel TRV avtrdetind andieta v xdde x6pPo péoa oto batch (o
oyt v xdde ypdpo oto batch). Emmiéov, hopPdvovtac unddmn 6t yenowonotoue 4 % 1 12 % tne Baowrhc
arfdetoe, To unohoyiotixd trade-off elvan olyoupa unép pac, xadog yeeialduacte pévo tepimov 4 % % 12 % tou
¥eOvou Tou amoutelton Yyl ToV cUVOALXG UTohoylopd tng Baoxc ohfdeloc Yo var EVIoYUCOUUE ONUOVTIXE TG
METPWXES UaC GV emAEEOUUE VoL TEAELOTIOLCOUKE To WoVTéAa Ue yperor fine tuning.

29

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

1.3.7 TIlotoTtixd Anotéecpata

oty molotiny) a€loAdYNoTN TV TEOTEWVOUEVWY UOVTEAWY, TUPEYOLUE TIC EXOVEC TOU AVTIGTOLYOUV GTOUC
YedPoug oXNVOY ToU CUGTAVOLY K¢ TLo Guoloug téco to NAIL 6oo xan ot ITuprvec I'odpwv we andxpiorn ot
CUYXEXQPUIEV EPOTAUATO. LUYXEXPUIEVA, TOEOUCLALOUUE UEPKES EIXOVES EPWTNUETLY Yall PE Tig TPATES EXdVES
ToU avaX THUMXOY 6TO TUXVG GOVONO amtd To XxahUTEPO HovTENo Wog, To Grace ye xwduonont GATvV2 nou éxel
npoexnoudeutel oe éva Tuyato cUvolo 1000 yedpwy xou oty cuvéyela €xel yivel fine tuned oto muxvéd clvoro
yia 30 emoyéc.

Figure 1.3.9: Exéva avalitnone

Figure 1.3.10: Ton 3 anoteréopata - Movtého GNN

30

1.3. Iepdyotind Mépog

Figure 1.3.12: Ewéva
avalhTnone

Figure 1.3.13: Ton 3 anoteréoparta - Movtého GNN

31

Chapter 1. Extetapévn Iepiindmn ota EXAnvixd

Figure 1.3.15: Ewéva
avalhTnone

Figure 1.3.16: Ton 3 anoteréopata - Movtého GNN

32

1.4. Xuyurepdoporo

Figure 1.3.18: Ewéva
avolhTnone

Figure 1.3.19: Torn 3 anoteréopota - Movtého GNN

Avutd ta moloTixd anoteAéopota eMPBEBAUBVOUY TNV UTEPOYT TOU TEOTELVOUEVOU UOVTENOU WOC, 1 omola el
anodetyVel xou tocotxd. Patvetar 6Tl T0 HOVTENO Yoc UTOpPEL VoL AVOXTATEL ELXOVES UE TLO XOVTIVO GNUIGLONOYLXO
TEPLEYOUEVO ATO TOUS XUADTEPOUC TUPHVES YRAPWY G TOMAESC Xol DIAPOPETIXES TEPLTTWOELS.

1.4 >vunepdopata
1.4.1 XulAtnmon

Ye aut) SateBy, avtigetonicoye To TEOBANUA TNG OPOLOTNTAC YeaupNUdTwy péoa and To mployo TNS ovTi-
Vet wdimone. Ta melpduotd pog anooxomolooy oty oloAGYNOT TNG ATOTEAECUATIXOTNTOS TWV TEOTEWVO-
pevewy povtédwyv Avtidetnodv NAL oe oUyxplon pe Baowoie Huphvee I'edgpwy, oto civoho dedopévwy Visual
Genome. Méow wog cuotnuatixic Siepedvnong dSapopetixdy apyttextovixwdy NAI xou mhoucionv avtidetinrc
pdinong, cuvodeuduevng and evdeleyy| aglOAOYNON UE TN XpNom UeTedy 6mwe 1 Mean Average Precision -
MAP, n Mean Reciprocal Rank - MRR o n Normalized Discounted Cumulative Gain - NDCG, onpoavtixd
oupnepdopota e€fydnoay.

Apywd, ftav eugpavic 1 utepoy”) oplopévwy TUENveY Yedpwy, 6w ol Shortest Path, Neighborhood Hash xou
o Weisfeiler-Lehman Kernel. Qot600, nopatneridnxay neglopiopol oe tuprveg nou Bacilovton o yeydho Badud
o€ dopuxéc WLoTNTee, 6mwe o Random Walk Kernel xou o Graphlet Sampling Kernel, yeyovég nou unodnidvel
TNV QAVETHPXELE TOUC GTNY OMOTONWOT TWV TEQLTAOXDY TWV YRAPNUATWY oxNVAS.

To avtdetund NAL enédeillov Waitepn avtaywviouxdnta Evavtt dlopdpwy mupivey yYedewy, Wing ol mop-
ahhayéc mpocoyhc, 6nwe to GAT xou to GATV2, Wlweg dtav yenowonofdnxoay ota mhaiote e avtidetixic

33

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

wddnone Grace. Avtideta, n napodhayy) Generalized-Isomorphism Network (GIN) enédeile afioonueiontn av-
TUYWVIOTIXOTNTA GToy 0Ty avTIETINY AmMAEL EPTAEXOVTOY avamopao Tdoels Yedpwy (mhcioto GraphCL xau
InfoGraph). O rnewopatiopds poc tepthduBave téooepic dragopetixéc napahhayéc NAT yio xadepio and tic
npooeyyloeic avtdetxic pddnone GraphCL, InfoGraph xo Grace, o&lohoy®OdvToc TNV AMOTEAECUATIXOTNTA,
TNV TOANUTAOXOTNTA X0 TG EXPEACTIXES TOUG IXAVOTNTES. Duyxexpéva, yenotwonojoaue to GCN, GIN, GAT
xar GATvV2. Avutéc o mapodhayéc NATL Sieuxdhuvay Ty ovanapdotooy Yedpwy e €vol YWeo xovd Vo omo-
TUTKVEL TOGO TIC SOUIXEC OO Xl TIC ONUACLONOYIXES OHOLOTNTES UETAUED TWY YPdPwY. 3TN GUVEYELH, AUTES Ol
OVATOEAUC TAGELS Y ENOWOTOINXOY VLol T GUYXELON YEAUPNUATKDVY, BIEUXOADVOVTAS TOV EVIOTUGHUO TOU TILO OUOLOU
yedpou Yo xdde yedpo-gpdtnuo. ot dnpovpyia ploag Booixhc adfdetoc, yenollonomooue évay TeoceYYio-
6 ahyoprduo Graph Edit Distance mou €yel tig pllec Tou 0Ny avTioTolylon BUERHOY YRAUPNUATWY.

Emniéov, 1 eloarywyh tou Rank Aware Fine Tuning, nou yenotponotel éva pixpd m1ocootd dedopévmy Bactxic
oalfetag, evioyuoe onpovtind Ti¢ emdooel o dheg g ueTpég. O ouyxploelc YeTAE) TV avTideTnd npoex-
noudeupévey povtéAwv NAT xou exelvov ywelc avtrdetinr tpoexnalSeuor unoyeduuLoay TNV OTOTEAECUOTIXOTN T
NG TPOTEWOUEVNC TROGEYYIONG, HE TNV avTide Ty tpoexmaldeuct) axohovdoluevn and to fine tuning va anodide
HONOTEPA AMOTENEGHATOL.

Yuvodilovtag, To TEWRSUATO TEXUNELOVOLY OTOUERE TNV ATOTEAECUATIXOTNTO TWY TEYVIXOV avTWETXNC Hddnong
oTnV epyacia ouoloTNTAC YRdpwY, Eenepvivtag otalepd Tig topadoataxés uedddoug mou Bacilovtal ot mupriveq.

Téhog, autd to exnoudevpéva poviéha NAI' yropolv va yenoipornomndouy yio v napoyy) EEnyroewy ye Av-
TITOEEBELYUO. DUYXEXQUWEVA, O EVIOTUOUOC TOU T Opotou LEUYOUS EXOVMV YOS ETULTEETEL VO UTONOYLOOUUE
oploléveS HOVO amootdoels enelepyaoiog, avtl Tou utoloylopol anooctdoewy enelepyaoioc yia xdde {ebdyoc
Tou GUVOAOL dedBouévwy. (¢ anotéheoua, 1 TpoTevouevn uédodog, N onola yenowonolel Tov avticTolyo Ypdypo
OXNVAC WLOG EXOVOS YL TNV OVEXTNOT TOU OTNUACIOAOYIXE THO XOVTWVOU YEd(pOoU oxnvic, ELOGYEL CNUAVTIXT
EMLTEYUVON OE AUTH TN dLodixacia.

1.4.2 Melhovtixéc KateuOOvoelc

I pehhovtixég epyaoieg, Ya yropotoay va e€eTactoly SLdpopes TPOoeYYIoELS VLo TNV TEPATEPW EVIOYUON NG
XOTAVONONG XA TNG EQAPUOYNS TV AVTIIETIXMV VEURPLVIX®Y SXTUWY Yedpwv NAI otov topéa Tne ogoldtnTag
Yedpwv oxnvic ohAd xou TEEOY AUTOU. LUYXEXPUIEUAL.

1. ITetpapatiomds Re dAAeg mpooeyyiosig avtidetixic wddnong: Auth n Swrpfr) emxev-
tewvetar ot avtetnd NAT vy epyooieg opoldtntag ypapnudtwy oxnvrig. e autéd to mhalolo, 7
BLEEELYNOY EVOANOXTIXDY TEXVIXGOY avTideTixig pdinone o unopoloe va mTpoc@épel TOADTIUES YVOOELS.
Tapodayéc 6nwe autée mov Baocilovia oty anmiewr Barlow Twins Loss [10] § Bootstrapped Graph La-
tents [79], petall dAAwy, €xouv emdeifel TOAG UTOoYSUEVL amoTEAECUATA OE BEBOUEVA YPAPWY, YEYOVOS
Tou BotohoYel TNV TEPALTEPL BIEPEUVNOT TN AMOBOCTC TOUC YLol TO €PY0 TNG AVEXTNONS YRAPNUATODY
oxnvig.

2. Evooupdtnon Tov xopaxtneloTixdy axphoy oto NAT: Extéc and tig depeuvnieloee mpoo-
eYYIOEW, 1) EVOWUATWOT YOQUXTNEIO TIXOY UXUWY GTa dedouéva Ypd@pwy Yo umopoloe va eUTAouTioel
nepatTéPw TNV exPpacTixY) dlvoun Twv Avtidetindv NAT. Ta yopoxtnelo Tixd oy TEpLEyouv TOAITYIES
TANPOPORIEC GYETXE UE TIC OYETELC UETAED TwV XOUBwY o évay Ypdpo, oL omoleg Unopolv Vo EVIoY GOV
ONUAVTIXE TNV IXOVOTNTA TOU LOVTEAOU VAL XATHYPAPEL ONUACLONOYIXEC Xl DOULXEC OUOLOTNTES.

3. Awagopetixég Utpatnyixég Fine Tuning: H nepoutépw diepebivnorn dhhwy otpatnywxdy fine tun-
ing Yo umopovice vo ano@épel onuUovTXd 0QERT. Autd nepthopfdvel Tov TELpaoTIoNS UE Bidpopa TOGOCTA
Boaowhc odfdetag 1 T BlepebvnoT eVOAAOXTIXGY c@aludtey Tou Yo npocépepay ata povtéha NATL enlyv-
WON TNG OWO TN XATATAENG OPOLOTNTOC TV Yedpwy. Emniéov, Yo npénel va Sieloydolv nelpduora ue
yerion elte Twv By elte dlapopeTin®y rank-aware cQUAIATWY PE OTOYO VAL XATACTOUV TOL HOVTENN LXAVAL
vo anodidouv e€loou xahd 1) axdun xahbtepa xou ot inductive settings.

34

Chapter 2

Introduction

Recent developments in artificial intelligence (AI) have transformed various domains, necessitating advanced
techniques for complex data structures like graphs. Graph Neural Networks (GNNs) have emerged as pivotal
tools for modeling relationships within graph data, with applications spanning social networks, recommen-
dation systems, and bioinformatics. Traditional neural networks are ill-suited for graph data, emphasizing
the need for specialized models like GNNs capable of capturing hierarchical relationships inherent in inter-
connected data points.

The focus of this thesis lies in addressing the Graph Similarity problem, especially for scene graphs, wherein
the task is to rank answer graphs based on their similarity to a query graph. While Graph Kernels have
been popular for this task due to their ease of implementation and computational efficiency, we propose
employing GNNs, particularly Contrastive Graph Neural Networks, to tackle this problem. By leveraging
the representation power of Contrastive GNNs, we aim to enhance the accuracy and efficiency of graph
similarity computations.

Moreover, the increasing demand for Explainable Al (XAI) has become critical, especially in sectors like
healthcare and autonomous vehicles where Al systems are extensively utilized. Counterfactual Explanations
have emerged as a promising method for elucidating black-box Al systems. By highlighting the minimal alter-
ations needed to shift to an alternate outcome, GNN-based counterfactual explanations enhance transparency
and comprehension of Al decision-making processes.

In this thesis, we delve into the utility of Contrastive GNNs in providing Counterfactual Explanations. We
thoroughly investigate Contrastive Graph Neural Network frameworks, such as GraphCL, InfoGraph, and
Grace, alongside various GNN variants. We then evaluate their expressive capabilities using scene graph data.
The application of Contrastive GNNs for scene graph similarity and retrieval is closely linked to the realm of
XALI Specifically, the ability of Contrastive GNNs to pinpoint the most similar instances, and consequently,
the least semantically distant ones within a dataset of images represented as scene graphs, plays a pivotal
role in generating counterfactual explanations for visual classifiers.

The outline of this thesis is as follows:

e We will begin by furnishing all the necessary foundational knowledge in Machine Learning algorithms
and concepts, encompassing Graph Theory, Deep Learning theory, various Graph Kernel variants,
multiple Graph Neural Network architectures, and approximations of Graph Edit Distance.

e Next, we will provide a more comprehensive and precise explanation of Counterfactual Explanations,
focusing particularly on Conceptual Edits that offer Black-Box Explainability of deep learning models.

e Lastly, we will present various combinations of Contrastive Graph Neural Network (GNN) models for
scene graph similarity and highlight their performance. Additionally, we will experiment with a rank
aware fine-tuning process in order to further boost desired metrics. We will compare these results with
conventional graph kernel methods and draw conclusions based on their expressiveness, as well as their
evaluation using both quantitative and qualitative measures.

35

Chapter 2. Introduction

36

Chapter 3

Background

This chapter introduces a brief overview of theoretical concepts that are essential to understand the building
blocks that will be used in the present work. Artificial Intelligence (Al) is a broad field of computer science
that aims to create machines capable of intelligent behavior. Today, as a result of the rapid development
of the field through the last years, the terms Artificial Intelligence (AI), Machine Learning (ML) and Deep
Learning (DL) are usually confused.

Machine Learning (ML) is a subset of AI that focuses on developing statistical algorithms that enable com-
puters to learn from data and improve their performance over time without explicit programming. Machine
Learning and Statistics are closely related fields. In particular, machine learning techniques find generalizable
predictive patterns from samples by leveraging huge amounts of data.

The evolution of Deep Learning (DL), which is a subset of machine learning, stands as a crucial turning
point in the trajectory of artificial intelligence, marking a transformative and indispensable moment. Deep
Learning is a specialized form of ML that involves neural networks with multiple layers, enabling the model to
automatically extract intricate features and patterns from data. Neural Networks are computational models
which were originally inspired by mechanisms of learning and information processing on the human brain.

Machine Learning and Deep Learning models are currently used, successfully, in various domains handling
different data modalities. For example, RNNs are more suitable for sequential data, CNNs excel in processing
grid-like data, such as images and video, Transformers excel in handling sequential data with long range
dependencies and more recently GNNs were developed to handle graph structured data.

Deep Learning models have achieved remarkable results in multiple domains such as Computer Vision, Nat-
ural Language Processing, Speech Recognition, Recommendation Systems, Geometric Deep Learning, with
applications spanning from medicine and finance to autonomous vehicles and language translation. The re-
markable advancements in deep learning owe their existence to the rapid development of Graphics Processing
Units (GPUs), essential for the complext computations required by deep learning models, and the availability
of vast datasets.

Contents
3.1 Machine Learning 0 0 i i i i i i e et e e e e e e e e e e e e e 38
3.1.1 Input Data Types e 38
3.1.2 Learning Categories e 39
3.2 Deep Learning 0 0 i i i i e e e e e e e e e e e e e e e e e e 41
3.2.1 Basic Concepts e e e 42
3.2.2 Deep Learning Models e 47

37

Chapter 3. Background

3.1 Machine Learning

Machine learning encompasses various data modalities, each tailored to handle different types of information.
The most common data modalities fed as input to ML models are presented below.

3.1.1 Input Data Types
Structured Data

e Definition: Structured data is organized and formatted in a way that is easily recognizable, typically
in tabular form. It includes data stored in databases, spreadsheets, or CSV files, where each record
consists of rows and columns.

e Examples: Customer information, financial transactions and demographic data.

e Machine Learning Techniques: Commonly used techniques for structured data include linear re-
gression, decision trees, support vector machines, and ensemble methods.

Unstructured Data

e Definition: Unstructured data lacks a predefined data model and is more challenging to analyze due
to its non-tabular and unpredictable nature. This type includes text, images, audio, and video data.

e Examples: Text documents, images, audio recordings, video clips and MRIs.

e Machine Learning Techniques: For unstructured data, techniques such as natural language pro-
cessing (NLP), computer vision, and audio signal processing are employed. Deep learning methods like
convolutional neural networks (CNNs), recurrent neural networks (RNNs) and Transformers are often
used for these data types.

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

Figure 3.1.1: An illustration of the relationship of the fields of AI, ML and DL. Source: StackExchange

Sequential Data

e Definition: Sequential data represents information that occurs in a specific order or sequence, where
the order of the elements is meaningful. Time series data is a common subtype of sequential data.

e Examples: Stock prices, weather patterns, speech signals and DNA/RNA sequences.

¢ Machine Learning Techniques: Recurrent Neural Networks (RNNs), Long Short-Term Memory
(LSTM) and Transformers networks are popular for handling sequential data. These architectures are
designed to capture dependencies and patterns over time.

38

https://ai.stackexchange.com/questions/15859/is-machine-learning-required-for-deep-learning

3.1. Machine Learning

Spatial Data

e Definition: Spatial data involves information related to the physical location or spatial distribution
of objects. It is common in applications such as geographic information systems (GIS) and satellite
imagery.

o Examples: Maps, satellite images and sensor data with spatial coordinates.

e Machine Learning Techniques: Convolutional Neural Networks (CNNs) are well-suited for spatial
data as they can effectively capture spatial hierarchies and patterns.

Graph Data

e Definition: Graph data represents relationships between entities in a network. Nodes and edges in
the graph correspond to entities and connections, respectively.

e Examples: Social networks, citation networks, knowledge graphs, scene graphs and molecules.

e Machine Learning Techniques: Graph neural networks (GNNs) are specifically designed for ana-
lyzing graph-structured data, allowing models to learn from the relationships and connections within
the graph.

3.1.2 Learning Categories

Machine Learning algorithms are traditionally categorized according to the nature of the signal available
to the learning system during training. Generally, there are three main categories of machine learning
algorithms, namely supervised, unsupervised and reinforcement learning. More specialized techniques also
include semi-supervised and self-supervised learning. In this thesis, we will mainly focus on self supervised
and semi supervised algorithms for graph structured data.

Supervised Learning

In supervised learning, the algorithm is trained on a labeled dataset, where the input data, consisted of
the feature vector z, is paired with the corresponding output label y. The goal is to learn a mapping
y = f(x) from the input to output so that the algorithm can make accurate predictions or classifications
on new, unseen data. Examples include regression (predicting a continuous value), such as predicting stock
prices, and classification (predicting a categorical label), such as classifying a tumor as benign or malicious.
In practice, the algorithm tries to approximate the probability density function p(y|z) in order to make
accurate predictions. Learning Algorithms such as Linear Regression, Naive Bayes, Support Vector Machines
and Decision Trees lie into this category.

Unsupervised Learning

Unsupervised learning deals with unlabeled data. Instead of responding to the supervision signal, these
algorithms are designed to find patterns, structures, or relationships within the data. In this case, there are
no specific output labels to guide the learning process. Instead, these algorithms identify inherent structures or
groups in the data. The most important families of this type of learning include clustering and dimensionality
reduction. Clustering is the process of dividing data points into clusters (groups) based on their similarities
or differences. Algorithms in this subcategory include k-means and hierarchical clustering. Dimensionality
reduction is the transformation of the initial data points into another space, where the number of samples
remains the same, but the dimensionality of each sample is reduced. The most well known algorithm in this
category is called Principal Component Analysis (PCA).

Semi-supervised Learning

Semi-supervised learning combines elements of both supervised and unsupervised learning. The model is
trained on a dataset that contains both labeled and unlabeled data. This approach leverages the available
labeled data along with the structure present in the unlabeled data to improve the model’s performance.
Examples include using a small labeled dataset along with a larger unlabeled dataset for training.

39

Chapter 3. Background

Self-supervised Learning

Self-supervised learning is a type of unsupervised learning where the algorithm generates its own labels from
the input data. The model is trained to predict a part of the input from other parts of the same input,
effectively creating a supervisory signal without external annotations. Examples include predicting missing
parts of an image or predicting the next word in a sentence.

Reinforcement Learning

Reinforcement learning involves training a virtual agent to make sequential decisions in an environment to
maximize a cumulative reward signal. The agent learns through trial and error, receiving feedback in the
form of rewards or penalties based on its actions. Examples include training a robot to navigate a room, a
game-playing Al, or optimizing resource allocation in a complex system.

Machine
Learning

Reinforcement

Supervised Unsupervised
Learning Learning

Learning

Model tlainin_g with labelled data Madel training with unlabelled data Meodel take actions in the environment then
) B recelved state updates and feedbacks

.

Classification Regression Clusteri ng

g/ - -
A % e 4 ® o)
s, LY ’ # Environment
/ A i \ Y e @ L I
/ \ e b ;
] = A 1 * ° v
| & 1 # --..._‘.“ e ¢
i a ! hd ~— []
1 b N e e L] P
_.--..l.‘ A ’l' Pl L] s . L tradoack
L] b | achon | ylale
. Nk ry ® e - N L] L] L
t.l' . .)'. " - o e ® 0 L] ®
LT & by
{ o e e ! - S - .. \ °
\ e g 1 e e . ® Y L
N ® v 4 . e s Model
i ™ . LY Agent

Figure 3.1.2: An illustration of the three most important categories of learning algorithms [64].

Embeddings

A key concept that we will use a lot in the context of this thesis is embeddings. Embeddings play a crucial
role in machine learning, particularly in the realm of natural language processing (NLP) and other domains.
In general, embeddings are representations of data in a lower-dimensional space. In the context of machine
learning, they are often used to represent high-dimensional data, such as words, sentences, or even entire
documents, in a more compact and meaningful form.

Specifically, in this thesis we will make use of Word Embeddings. Word embeddings are widely used in NLP.
They represent words as real valued vectors in a continuous vector space, capturing semantic relationships
between words. Popular word embedding techniques include Word2Vec [58] and GloVe [65] which we will
later use. The goal of good word embeddings is to map words with similar meaning closer together.

Except of word embeddings there also other ways to generate embeddings for various types of data. These
methods include Neural Networks as well as Dimensionality Reduction approaches such as Principal Com-
ponent Analysis (PCA).

40

3.2. Deep Learning

A 0©
o)
208

¢ ¢ e®0 ©
€. © © e®0 o9

P © o0 o

N PCA o %o

—_— .

Ceree

¢ ¢

Figure 3.1.3: Visualization of Embedding points from the 3D space to 2D space using PCA

Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique widely used in statistics and
machine learning. Its primary goal is to transform a high-dimensional dataset into a lower-dimensional space
while retaining as much of the original variability as possible. PCA identifies the directions, called principal
components, along which the data varies the most. The first principal component captures the maximum
variance, and each subsequent component captures the maximum remaining variance, with the constraint
that the components are orthogonal to each other. Principal components are orthogonal to each other,
meaning they are uncorrelated. This is a crucial property as it ensures that the information captured by each
component is distinct. PCA involves the computation of the eigenvalues and eigenvectors of the covariance
matrix of the original data. Eigenvectors represent the directions of maximum variance, and eigenvalues
indicate the magnitude of variance along those directions. After identifying the principal components, one
can project the original data onto a subspace spanned by a selected number of these components, effectively
reducing the dimensionality of the data.

However, PCA assumes that the data is linear and that the principal components capture the most sig-
nificant directions of variance. This assumption may be problematic in the case where the data exhibits
non-linearities.

3.2 Deep Learning

The main motivation behind the development of Deep Learning can be partially attributed to the failure of
traditional Machine Learning Algorithms to generalize well to new examples. The failure of traditional ML
on tasks such as speech and object recognition happened mainly due to the fact that generalizing to new
examples becomes exponentially more difficult when working with high-dimensional data. Deep Learning
was invented in order to overcome this and other important limitations.

41

Chapter 3. Background

3.2.1 Basic Concepts

Data serves as the foundation upon which deep learning models are built. The quality, quantity, and diversity
of the data directly influence a model’s ability to generalize and make accurate predictions. The process of
preparing and organizing data for training is known as data preprocessing, which may involve tasks such
as normalization, augmentation, and balancing to enhance model performance. In a supervised setting, a
dataset consisted of n samples is usually denoted as D = {(x1,41), (X2,92),- -, (Tn, Yn) }-

Additionally, the choice of a suitable dataset is crucial. Datasets should be representative of the problem
domain and diverse enough to encompass various scenarios the model might encounter in real-world applica-
tions. Imbalances in the dataset, where certain classes or patterns are underrepresented, can lead to biased
models. Addressing these imbalances is essential for achieving fair and accurate predictions.

Features are the distinctive characteristics or attributes of the input data that the model uses to make
predictions. In traditional machine learning, feature engineering involves selecting and crafting relevant
features manually. However, one of the strengths of deep learning lies in its ability to automatically learn
hierarchical and abstract features from raw data. In the above dataset D, every element x; is a multi-
dimensional vector consisted of different attributes.

Loss Function

The goal of any Deep Learning algorithm is to learn a parameterized function f(-) that either accurately
matches input samples to their corresponding labels in the case of supervised learning or accurately learns
the distribution of data p(x) in a generative setting. Therefore, it is necessary to define a way to measure the
error (loss) of such a model. For instance, in the case of supervised learning, the loss function can measure
the distance between the true label y and the estimated label § by the model. This could be done using a
loss function L(§,y) whose output is a real number. The goal of deep learning algorithms during the training
phase is to try to minimize the loss function used, as it is evident that the lower the error value, the better
the prediction.

Given the aforementioned dataset D in a supervised setting, a cost function L calculated per sample and
a parameterized model f(z;0) (a classifier) the total loss is defined as the average loss across all training
samples:

N

ZL(f(xi;g)vyi)

i=1

L) = %

During the training process as it was already mentioned, the goal is to minimize the loss function with respect
to the model’s parameters. Introducing some mathematical formalism the goal is written as:

0 = argmingL(0)

Depending on the task, a different loss function should be selected, since classification models (binary or
multi-label) and regression ones should use a different method to calculate the loss. The most popular and
widely used Loss Functions,are the following:

e Mean Squared Error Loss (MSE) is one of the simplest and most widely used loss functions for
regression tasks where the goal of the model is to predict a simple numerical value and not a class. The
MSE is defined as followed:

e Mean Absolute Error Loss or L1 loss, is also used when the task to be performed is regression.
However, MAE is preferred to Mean Squared Error Loss when there are many outliers in the training
data. In particular, MAE is defined as the average of the absolute differences between the predicted and

42

3.2. Deep Learning

actual values. Since MAE uses the absolute differences, large errors (outliers) contribute proportionally
to the overall error, but they don’t get squared as they do in MSE. Thus, this loss function is more
robust to outliers and is defined as followed:

L= 3 lui— S
i=1

Huber Loss is a robust loss also used for regression purposes. In particular, Huber Loss is a combi-
nation of Mean Squared Error and Mean Absolute Error providing a controllable threshold paremeter
6. It is defined, per sample, as followed:

Loy f(2)) = {;@ —f@) iy f@) <8

§(ly — f(x)| — 36) otherwise
Cross Entropy Loss or Negative Log Likelihood is a loss function widely used in classification
tasks. In particular, given a classification model whose output is a probability value between 0 and 1 for
each class, Cross Entropy Loss penalizes the model more when it makes predictions that are confidently
wrong and less when the predictions are close to the actual labels. The generalized Cross Entropy Loss
for M different classes is defined, per sample, as followed:

M
L=-Y pilog(ar)
k=1

where, p and q are the true and the predicted probability distributions for each class, respectively. A
special case of Cross Entropy Loss, is the Binary Cross Entropy Loss where only two classes exist
for classification. In this case, the Binary Cross Entropy Loss is defined, across a dataset of n samples

as followed: .

L= - Z(yi log(f(z:)) + (1 —yi) - log(1 — f(x4)))
i=1

Hinge Loss is usually used in the context of support vector machines (SVMs) and other models for
classification tasks. It is designed to quantify the accuracy of a classification model by penalizing
misclassifications. The primary goal of hinge loss is to encourage correct classification by penalizing
the model for predictions that fall within the "margin" between the decision boundary and the true
class. In a binary classification setting, where y (the true class label) takes only the values +1 or —1
the Hinge Loss is defined, per sample, as followed:

L(y, f(z)) = max(0,1 —y - f(x))

Kullback-Leibler (KL) Divergence Loss is used in probabilistic models, when dealing with
probability distributions. It is a measure of how dissimilar two probability distributions are and is also
used in Variational Autoencoders. It is defined as followed:

L= 3t (’;8)

where p and g are probability distributions.

Gradient Descent

After the most important Loss Functions have been introduced, the next step is to determine an algorithm
that could lead to the minimization of the chosen cost function. Gradient descent is an optimization algorithm
commonly used in machine learning and deep learning for minimizing the cost function during the training
of a model. This family of algorithms, make use of the gradients’ property to point to the direction of the
steepest increase of the given cost function.

43

Chapter 3. Background

In particular, starting with the initial values for the model parameters, by repeatedly computing an estimate
of the cost function, the gradients of this function are calculated with respect to each parameter. Then,
the parameteres are adjusted in the opposite direction of the gradient in order to reduce the cost. The
mathematical equation representing this updating rule can be found below:

0 =0 — eVoL(0)

where U represents the model’s parameters and e corresponds to the learning rate. The learning rate is
a hyperparameter that controls how much the parameters are updated in each iteration of the algorithm.
Usually, it is set equal to a small positive constant, often by trying several values during the stage of hy-
perparameter tuning and keeping the value that yields the best results. Its choice can prove crucial to the
model’s performance.

In general, there are many variations of the gradient descent algorithm, where each offers trade-offs in terms
of convergence speed, stability, and sensitivity to hyperparameters.

One of the most popular variations is called Stochastic Gradient Descent (SGD). The difference with SGD is
that the parameters are updated using the gradient computed from only a single training example (z;, y;) at
each iteration instead of using the whole training dataset to calculate the gradients. In this way, SGD is much
faster than simple Gradient Descent since the latter performs many more computations of the gradients, even
for similar samples of the training dataset, in order to update the parameters of the model. Instead, SGD
performs only one update at a time. However, SGD may lead to oscillations around the minimum.

Another variations, include Mini-Batch Gradient Descent which strikes a balance between SGD and Gradi-
ent Descent by updating the parameters using a small random subset (mini-batch) of the training data at
each iteration. In this case, tuning of the mini-batch size is important. Other important gradient descent
algorithms include AdaGrad, RMSProp, and Adam. In particular, AdaGrad adapts the learning rate for
each parameter based on the historical gradient information, RMSprop addresses the diminishing learning
rate issue of Adagrad by using a moving average of squared gradients and Adam, which is maybe the most
widely used optimizer, combines the ideas of momentum and RMSprop, incorporating both moving averages
of gradients and squared gradients.

Backpropagation

Backpropagation has played a pivotal role in the success of artificial neural networks and deep learning. As
we have already seen, in order to minimize the cost function, the computation of gradients with respect to
the model parameters is essential. However, especially in deep neural networks with many layers and even
millions and billions of parameteres, the numerical evaluation of the gradients is quite expensive. For this
purpose, [69] suggested computing the gradients through the back-propagation algorithm. The algorithm
works backward through the layers of the network to compute the gradient of the loss with respect to the
parameters. Specifically, the partial derivatives of the loss with respect to the parameters are calculated using
the chain rule of calculus. The overall process is highly efficient, making use of computational graphs and
storing already computed values. In this way, it is easier to fine tune the parameters and to further minimize
the model’s loss and improve the overall performance.

Hyperparameter Tuning and Evaluation

Hyperparameter tuning is a crucial aspect of training deep learning models as it significantly influences the
performance and generalization of the network. Hyperparameters are external configurations set before the
training process begins, unlike model parameters that are learned during training. Finding the optimal
combination of hyperparameters is essential for achieving the best possible model performance. Examples of
hyperparameters include learning rate, batch size, number of layers, number of neurons in each layer, dropout
rate, activation functions, the number of attention heads and many others. There are many Hyperparameter
Search Strategies. The most important ones use techniques such as Grid Search, Random Search and Bayesian
Optimization in order to explore different combinations of hyperparameters in a more systematical and
effective way. In this way, the optimal set of hyperparameters that balance model complexity, training
efficiency, and generalization can be identified.

44

3.2. Deep Learning

Forwardpass Backwardpass

T dL __ dL dz

da - dz dx

dL _ dL d=
Y dy dz dy

Figure 3.2.1: An illustration of how the chain rule is used during backpropagation to compute the
gradients. Source: Mayank Agarwal

Evaluating and testing a deep learning model is crucial to ensure its performance and reliability in making
predictions or classifications. Several metrics play a key role in assessing the model’s effectiveness, and these
metrics help in understanding different aspects of its performance. After the model has completed the training
phase, its performance should be evaluated on a separate dataset, typically called the validation set or test
set. For instance, in classification tasks the most important metrics are the following:

e Accuracy calculates the ratio of correctly predicted instances to the total number of instances and is
defined as followed:
TP+TN

A =
CUraY = TP Y TN + FP+ FN

e Precision measures the ability of a model to correctly identify positive instances out of all instances
predicted as positive and is defined as followed:

prosiaior TP
recision — TP i PP

e Recall evaluates the ability of a model to capture all the positive instances and is defined as followed:

TP

Recall = m

e F1 score is the harmonic mean of precision and recall. It provides a balanced measure that considers

both false positives and false negatives. F1 score is useful when there is an uneven class distribution

and is defined as followed:

Pl 2 x Precision x Recall

Precision + Recall

where TP represents True Positives, TN represents True Negatives, FP represents False Positives, and FN
represents False Negatives. These metrics collectively provide a comprehensive view of the model’s perfor-
mance, helping you make informed decisions about its suitability for specific tasks.

Generalization and Overfitting

A deep learning model should not only perform well on data seen during the training process but it should be
able to perform well on unseen or new data, beyond the examples it was trained on. Generalization is a key
concept in the context of deep learning models and it is referred to the model’s ability to perform well on new,
unseen data drawn from the same distribution with the training dataset. This concept is very important due
to the fact that the training dataset is only a sample of all the possible inputs, probably containing noisy and
incomplete inputs. The ultimate goal in machine and deep learning is to build models that generalize well
to new, unseen data, ensuring robust performance in real-world scenarios. Consequently, this goal demands

45

https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

Chapter 3. Background

that both the training and the test error should be small enough. The gap between these two types of errors
leads us to define two very important concepts, namely Underfitting and Overfitting.

Underfitting happens when a model is too simple to capture the underlying patterns in the training data,
resulting in poor performance on both the training and new data. High train error is usually a common sign
that a model underfits the data and the main causes for this is that the model may have too few parameters
or inadequate complexity.

On the other hand, Overfitting occurs when a model learns the training data too well, capturing even
the existing noise and details that are specific to the training dataset but do not generalize well to new
data. Common signs of overfitting include high performance on the training set and poor performance on
the validation or test set. The main causes of overfitting are usually the use of overly complex models or
insufficient regularization.

In order to tackle overfitting regularization techniques are used imposing constraints on the model parameters
during training. Specifically, regularization forces the model to choose the smallest in order of parameters
solution. This is done by implying a term AR(#) in the loss function penalizing the size of the model. The
term A is a hyperparameter and R(#) is the regularization function of the parameters which often takes the
form of the norm of the parameters.

-

Underfitting Overfitting

Predictive
Error

Error on Test Data

Error on Training Data

Model Complexity

Ideal Range
for Model Complexity

Figure 3.2.2: An illustration of the behavior of the error function according to the model’s complexity
including the locations where underfitting and overfitting are identified [7].

The two most common regularization techniques are the L; and Ly regularization which are defined as
followed:

e [; Regularization (Lasso) adds the absolute values of the parameters (weights) as a penalty term
to the loss function. It encourages sparse weight matrices by pushing some weights to exactly zero and
is defined as followed:

n

R, (W) =) |w]

i=1

e L, Regularization (Ridge) adds the squared values of the parameters as a penalty term to the loss
function. It discourages large weight values and helps in preventing overfitting. It is also often referred
to as weight decay and is defined as followed:

n

Ry, (W)=Y w}

i=1

where in the above equations w; represent the weights (parameters) of the model.

Moreover, another way of preventing overfitting is by using dropout. Dropout during training randomly
"drops out" (sets to zero) a proportion of neurons in the network, preventing reliance on specific neurons
and promoting a more robust network.

46

3.2. Deep Learning

3.2.2 Deep Learning Models

In order to dive into the details of deep learning models, something essential in order to after proceed in
presenting Graph Neural Networks (GNNs), we should first introduce the cornerstones of modern deep neural
networks.

Firstly, we will introduce the basic functioning of shallow neural networks. An essential building block of
shallow neural networks is the perceptron. The perceptron is a shallow neural network consisted of only
one layer of neurons where the output is determined as shown in Figure 3.2.3. In particular, each neuron
in perceptron takes inputs, weighs them separately, sums them up and then passes this sum through a so
called "activation function" to produce the output. Shallow neural networks refer to neural networks with
only a small number of hidden layers between the input and output layers. These networks are considered
"shallow" because they lack the depth of more complex architectures like deep neural networks and are more
suitable for tasks where the relationships between input and output can be effectively captured with fewer
layers.

Weights
Constant | 1 \ —
Wo
X Activation
1 \ - \ . function Output
Inputs : Wp.; /
- T /
T Wp
Xn

Figure 3.2.3: Single Layer Perceptron with one hidden neuron [54].

In order to overcome the limitations of shallow neural networks, Multi-Layer Perceptrons (MLPs) or differ-
ently Feed Forward Neural Networks (FFNNs) were introduced. MLPs are a type of artificial neural network
that consists of multiple layers of nodes (neurons) arranged in a feedforward fashion which typically means
that the information is only processed in one direction from the input nodes, through the hidden nodes to the
output nodes. The layers typically include an input layer, one or more hidden layers, and an output layer.
Each node in the network is connected to every node in the adjacent layers. The connections have associated
weights that are adjusted during training to learn the mapping between inputs and outputs.

The output of each neuron of a MLP is calculated as it was presented in the case of perceptron in Figure 3.2.3,
followed by a non-linear activation function. By stacking multiple layers together and using the non-linearity
produced by the activation functions, MLPs have the ability to distinguish data that is not linearly separable.

input layer hidden layer 1 hidden layer 2 hidden layer 3

R
&R
SN\ ®
\

Z N
e\

Figure 3.2.4: Multi-layer Perceptron with three hidden layers. Source: Towards Data Science

47

https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

Chapter 3. Background

It is evident that Activation Functions play a crucial role in deep neural networks by introducing non-linearity
to the model. They enable neural networks to learn complex patterns and relationships in data. Without
non-linear activation functions, a neural network would essentially be a linear model, and stacking linear
layers would not increase the model’s capacity to learn intricate patterns. Here we will introduce the most
imporant non-linear activation functions oftenly used in deep neural networks including also for completeness
the Linear Activation Function.

e Linear Activation Function is a function where the output is proportional to the input. However,
it suffers from several limitations with the most important being that its derivative is constant making
backpropagation impossible. This is the reason why non-linear activation functions are usually used.
It is defined as followed:

f@)=ar+c

e Sigmoid Activation Function is a function that squashes the input values between 0 and 1. The
derivative of the sigmoid can be expressed in terms of the function itself as o (z) = o(x)-(1—o(z)). The
Sigmoid function is prone to vanishing gradients which can hinder learning in deep neural networks.
It is often used in the output layer for binary classification problems when the output has to be a
probability and is defined as followed:

1
ofz) = l1+e®
e Hyperbolic Tangent (tanh) Activation Function is a function similar to the sigmoid, but it
squashes the input values between -1 and 1. It is zero-centered, which helps mitigate issues with
vanishing gradients. However, it still suffers from vanishing gradients like the sigmoid. Moreover, it
is mostly used in hidden layers rather than in the output layer. Similar to the sigmoid, the derivative
of tanh can be expressed in terms of the function itself as tanh (z) = 1 — tanh?(x) and is defined as
followed:

et —e "

tanh(z) = ———
et + e~ "

¢ Rectified Linear Unit (ReLU) Activation Function sets negative values to zero and leaves positive
values unchanged. It is one of the most widely used activation functions in hidden layers due to its
simplicity and efficiency in training. However, it suffers from the "dying ReLU" problem in which
neurons using this function die during training and stop learning entirely. The issue arises when the
input to a ReLLU neuron is consistently negative, causing the neuron to output zero and thus the gradient
to be also zero leading to no updates to the corresponding weights during training. It is defined as
followed:

J(2) = max(0,)

e Leaky ReLU Activation Function introduces a small, non-zero slope for negative inputs. In this way,
it mitigates the "dying ReLU" problem where neurons could become inactive during training. Leaky
ReLU sets negative inputs to a small value, proportional to the input and as a result the gradient of
these units will be equal to a and not zero. It is defined as followed:

f(z) =max(a-z,z),a >0

e Exponential Linear Unit (ELU) Activation Function is similar to ReLU for positive values, but
smooth for negative ones, effectively combining the advantages of ReLLU and Leaky ReLU. It addresses
the "dying ReLLU" problem and improves model robustness by producing smooth gradients. It is defined
as followed:

48

3.2. Deep Learning

f(x)—{x ifx>0

a-(e—1) ifzx<0

e Scaled Exponential Linear Unit (SELU) Activation Function is well known for its self-
normalizing property. In a network using SELU activations, the activations tend to converge towards
a mean of 0 and a standard deviation of 1 during training. This helps in maintaining stable gradients
and facilitates better convergence. Moreover, SELU is designed to address the vanishing and explod-
ing gradient problems commonly encountered in deep neural networks. The self-normalizing property
allows for the gradients to neither vanish nor explode, promoting stable and efficient learning. It is
defined as followed:

f(x):{Ax) ?fx>0

Aa- (e —1) ifz<0

In summary, activation functions are critical components in deep neural networks, influencing the model’s
capacity to learn and generalize from data. The choice of activation function should be made based on the
specific characteristics of the problem at hand and the architecture of the neural network. An illustration of
the diagrams of the aforementioned activation functions can be seen in Figure 3.2.5.

Rectified Linear Unit (RelLU)
Exponential Linear Unit (ELU)

6
5 5
4 4
3 3
2
2
1
. 1
-1 0
(a) ELU activation (b) ReLU activation
Scaled Exponential Linear Unit (SELU) Leaky RelU
6 6
5
¢ 4
) 3
2
0
1
-2 0
(c) SELU activation (d) Leaky ReLU activation

. Tanh Function
Sigmoid Function
1o 1.0

0.8 0.5

0.6 0.0

0.4

0.2
-1.0

0.0 -6 -4 -2 0 2 4

=l

(e) Sigmoid activation (f) Tanh activation

Figure 3.2.5: An Illustration of the diagrams of the Activation functions mentioned before

49

Chapter 3. Background

Convolutional Neural Networks (CNN)

Convolutional Neural Networks are a specialized type of deep neural network architecture inspired by the
visual processing in the human brain introduced in [49]. The model introduced in [49] is well known as LeNet
and its components can be seen in Figure 3.2.7 . CNNs are particularly well-suited for tasks involving grid-like
data, such as images. Common tasks include image recognition, object detection, and image segmentation.
CNNs were developed primarily for handwritten digit recognition, however the advances in hardware and the
development of large datasets led to their widespread use during recent years. By extending the fundamental
notion of convolution to graphs, the field of GNNs also emerged.

In general, the input data of CNNs is usually a tensor of shape (number of inputs) x (input height) x
(input width) x (input channels). Each element of this tensor typically represents the value of the corre-
sponding pixel.

The basic architecture of a CNN comprises three main types of layers:

e Convolutional Layers: These layers apply convolutional operations to the input data, highlighting
spatial hierarchies of patterns. The convolution operation is a fundamental building block of CNNs. It
involves sliding, usually small filters (kernels) over the input data, capturing local patterns and learning
hierarchical representations, exploiting in the same time the locality of pixels. A convolutional layer
typically consists of several filters, each with its own set of parameters. These filters are learnable
during training and are initialized usually with random values. The application of convolutional kernel
to an input image can be seen in Figure 3.2.6 . After passing through a convolutional layer, the image
becomes abstracted to a feature map with dimensions (number of inputs) x (feature map height) x
(feature map width) x (feature map channels). After the application of the convolution operator, non-
linear activation functions, such as ReLU, are used to introduce non-linearity to the network, aiding in
capturing complex relationships within the data.

Moreover, some important parameters used along with the convolutional operator are called Stride and
Padding.

Stride refers to the step size that the convolutional filter takes when sliding over the input data. A
larger stride reduces the spatial dimensions of the output feature map, while a smaller stride preserves
more spatial information.

Padding involves adding extra border pixels around the input data before applying convolution. These
additional pixels are usually set to zero. Padding helps maintain the spatial dimensions of the input,
preventing the reduction in size that would occur without padding.

Input Kernel Qutput

[e Al e’
050707050
e vt 0|3|8(4
10j0|1]2})0!
fnan ~~— 0|1 9 |19]125(10
y013]14|5}0: * —
b~) 213 21|37 |43 |16
0167|810
e~ a 6|7 |18]|0

0¢04%0 '

P
o
|
rew
=
'

L
L
ada

[

Figure 3.2.6: An illustration of the way a kernel (filter) convoles an image

e Pooling Layers: Pooling layers downsample the spatial dimensions of the input volume, retaining
important features. There are two main types of pooling layers: max pooling and average pooling.
In max pooling, the output of each region is the maximum value within that region. It helps retain
the most significant features in a given region while discarding less important information. In average

50

3.2. Deep Learning

pooling, the output of each region is the average (mean) value within that region. It computes the
average of the values in each region, which can be less prone to outliers than max pooling.

e Fully Connected Layers: These layers connect every neuron in one layer to every neuron in the next,
enabling high-level feature combination. Fully connected layers are typically found towards the end of
the network. Typically, the flattened feature matrix goes through a fully connected layer to classify the
images.

CNNs are trained using backpropagation and gradient descent. Weights of the filters are adjusted during
training to minimize the difference between predicted and actual output. A crucial aspect of CNNs is weight
sharing. In weight sharing, the same set of weights (parameters) of the filters is applied to different regions of
the input data. As the filter slides or convolves across the input, the same weights are used at every position.

f convolution pooling dense
convolution

dense

pooling

[1= 'f‘L'J II

120 - F5 full

L B8@14x14 :::D
“1 52 feature map |_ 16@55
28x28 image 6@28x28 16@10x10 x

C1 feature map C3 feature map SRS ED

Figure 3.2.7: An illustration of the architecture of LeNet [92].

Transformers

The Transformers model, introduced by Vaswani et al. in 2017 [82], has revolutionized natural language pro-
cessing (NLP) and various other fields. Its self-attention mechanism enables capturing complex dependencies
in sequential data, making it a versatile choice for tasks like language translation, summarization, and image
processing. Moreover as we will see later on, the attention mechanism inspired the Graph Attention Network
introduced in [83].

Architecture Overview

The Transformers model architecture is built on self-attention mechanisms, enabling parallelization and
capturing long-range dependencies efficiently. It consists of an encoder-decoder structure, with each layer
containing self-attention and feedforward sub-layers.

e Self-Attention Mechanism: The self-attention mechanism allows the model to weigh different parts
of the input sequence differently. Given an input sequence X, the self-attention mechanism computes a
set of attention scores, which are used to create a weighted sum of the input embeddings. This process
is governed by the following equation also known as scaled dot-product attention:

Attention(Q K,V) = softmax () %
’ i
vV dk

Here, @, K, and V denote query, key, and value matrices, respectively, and dj is the dimension of
the key vectors. In order to obtain the query, key and value matrices usually a set of trainable weight
matrices are used as followed:

Q=X Wy, K=X-Wg, V=X-Wy

The softmax function is applied to obtain the attention weights and ensure that they sum up to 1.

o1

Chapter 3. Background

Multi-Head Attention: Multi-head attention involves computing the attention mechanism for a
sequence, not only one time, but multiple times, using multiple attention heads. Each attention head
is processed separately, and then the results of all attention heads are concatenated. This allows the
model to attend to different parts of the input simultaneously, enhancing its capacity to capture diverse
patterns.

Positional Encoding: Since Transformers lack inherent sequential information, positional encoding is
added to the input embeddings to convey the position of tokens. Various positional encoding methods
exist, such as sine and cosine functions, providing the model with crucial information about token order.

Feedforward Neural Networks: Each transformer layer contains a feedforward neural network,
typically composed of two linear transformations with a ReLLU activation function in between. This
allows the model to capture complex non-linear relationships in the data.

Layer Normalization and Residual Connections: Layer normalization and residual connections
are employed to stabilize training. Layer normalization normalizes the inputs to each layer, preventing
internal covariate shift, while residual connections facilitate the flow of gradients through the network.

Training Transformers involves optimizing model parameters using gradient-based optimization algorithms.
The Transformers model has been successfully applied to various NLP tasks, achieving state-of-the-art results.
Its flexibility has led to adoption in diverse domains, including computer vision with the model of Vision
Transformer. Despite its success, Transformers face challenges such as scalability for very long sequences and
interpretability of attention mechanisms.

Quiput
Probabilities

Add & Norm

Feed
Forward
| Add & Norm |4_:
—{Add & Noim } Multi-Head
Feed Attention
Forward 7 7 Nx
—
Nx Add & Norm
~{ Add & Norm | TR,
Multi-Head Multi-Head
Attention Attention
At _t
L J —
Positional @—O Positional
e & @ :
Encoding Encoding
Input Qutput
Embedding Embedding

I I

Inputs Outputs
(shifted right)

Figure 3.2.8: An illustration of the architecture of the Trasnformer model as presented in [82].

52

Chapter 4

Contrastive Learning

Contrastive learning aims at learning representations of data by contrasting between similar and dissimilar
samples. In this way, similar entities stay close to each other while dissimilar ones are pushed farther apart
in the embedding space. Similarity of samples can be defined using different metrics and the most commonly
employed ones are cosine similarity which gauges the angle between two vectors in R? and the Euclidean
distance that calculates the straight line distance between points in R%. Contrastive learning can be applied
to both supervised and unsupervised settings. When working with unsupervised data, contrastive learning
is one of the most powerful approaches in self-supervised learning and several contrastive learning strategies
have achieved comparable or superior performance to fully-supervised state-of-the-art models on various
tasks and different data modalities such as images, text and graph data among others. The ability of these
approaches in capturing and learning meaningful representations requiring less labeled data compared to
supervised learning, makes them versatile and effective across a wide range of machine learning tasks. In this
chapter we will review the main ingredients of these methods.

Contents

4.1 Elements of Information Theory 000, 54
4.1.1 Entropy 54
4.1.2 Kullback-Leibler (KL) Divergence 54
4.1.3 Jensen-Shannon Divergence (JSD) 54
4.1.4 Mutual Information L Lo 54

4.2 Training Objectives in Contrastive Learning 55
4.2.1 Contrastive Loss oL 55
4.2.2 Triplet Margin Loss L 55
4.2.3 Mutual Information Maximization Losses 56
InfoNCE Loss 56
Normalized Temperature-Scaled Cross Entropy Loss (NT-Xent) 57

Deep InfoMax L 58

53

Chapter 4. Contrastive Learning

4.1 Elements of Information Theory

Before we continue to the presentation of the most important approaches in contrastive learning it is essential
that we first introduce some basic concepts of Information Theory which are strongly related with the
optimization goals of different variants of contrastive losses. Information theory is a branch of applied
mathematics and electrical engineering involving the quantification of information. Developed by Claude
Shannon in the 1940s, it was first developed to provide a framework for understanding the fundamental limits
and capabilities of communication systems. The principles of information theory have broad implications,
spanning fields such as telecommunications, data science, and artificial intelligence.

4.1.1 Entropy

Entropy is a key concept in information theory introduced in [72], representing the average amount of un-
certainty associated with a random variable. It is often measured in bits and higher entropy implies greater
unpredictability. Entropy for a random variable X is defined as:

H(X) = E[-log p(X)]

4.1.2 Kullback-Leibler (KL) Divergence

KL Divergence denoted as D (P || Q) [48] is a type of statistical distance which measures how one prob-
ability distribution P diverges from a second probability distribution Q. It is often used to quantify the
difference between two probability distributions, providing a measure of information lost when one is used to
approximate the other. The Dk, (P || Q) is always non-negative and is defined as:

q(X)

4.1.3 Jensen-Shannon Divergence (JSD)

Jensen-Shannon Divergence [51] is a symmetric and smoothed version of KL Divergence. It measures the
similarity between two probability distributions. JSD is commonly used to compare the dissimilarity between
two probability distributions, and it is particularly useful when dealing with sparse data. It is defined as:

1 1
JSD(P | @) = 3 Dyt (P || M) + 3 De(@ || M)
where M = 1(P + Q) is a mixture distribution of P and Q.

4.1.4 Mutual Information

Mutual information (MI) measures the amount of information obtained about one random variable by observ-
ing the other random variable. It quantifies the degree of dependence between the variables and is expressed
as the reduction in uncertainty about one variable due to knowledge of the other. Mutual information deter-
mines how different the joint distribution of two random variables XY is from the product of the marginal
distributions of X and Y. The difference of the joint distribution from the marginals is calculated using
Kullback-Leibler Divergence and thus mutual information is defined as:

I(X:Y) = Dgr(P(z,y) | P(@)P(Y)) = E@y)~pa.y) {log Im}

54

4.2. Training Objectives in Contrastive Learning

4.2 Training Objectives in Contrastive Learning

During the years, various loss functions have been developed to facilitate effective contrastive learning, each
catering to specific nuances of the learning task. These losses play a crucial role in shaping the embedding
space, where similar instances are drawn closer, while dissimilar ones are pushed apart. In this section we
present the most foundational as well as the most commonly used ones which we used in this thesis.

4.2.1 Contrastive Loss

One of the earliest training objectives used to predict relative distances between inputs (Metric Learning)
in a contrastive manner is the Contrastive Loss [21]. Given a set of input samples {z;} along with their
corresponding label y; € {1,..., K} among K classes our goal is to learn a parameterized function e.g a neural
network, fy : X — R? that maps {x;} into an embedding vector such that samples from the same class have
similar embeddings and samples from different classes have sufficient different ones. Thus, contrastive loss
takes a pair of inputs (x;, ;) and minimizes their distance in the embedding space when they are from the
same class but pushes their distance over than some margin value m otherwise. The lower bound distance
between samples of different classes is controlled by the hyperparameter m in which we usually refer to as
the margin.

L(wi, xj,0) = 1y = y;)d(fo(xi), fo(z;)) + Ly # yj)maz(0,m — d(fo(:), fo(x;)))

where d can be any distance metric but usually the Euclidean distance is employed.

4.2.2 Triplet Margin Loss

Triplet Margin Loss was first introduced in FaceNet [71] in 2015 and since then it has been one of the most
popular loss functions for supervised metric learning. Here, instead of pairs, triplets are used. Given an
anchor sample z, these triplets are formed by sampling a positive sample + that belongs to the same class
with the anchor and then sampling a negative sample ~ that belongs to a different class.

=
T

Negative f— b
Anchor g L EARNING 9

*—_ *~— l_\legative
e Anchor _ @
Positive Positive

Figure 4.2.1: An illustration of how triplet margin loss works [71]

Triplet marging loss forces dissimilar pairs to be distant from any similar pairs by at least a certain margin
value m.

L(xaerwai’e) - Z ma’X(Oad(fb(x)a f@(er)) - d(fG(x)afG(xi)) +m)

reX

A nice property of the Triplet Margin Loss is that it can tolerate some intra-class variance in such a way as
to include outliers while still ensuring a margin between samples from different clusters, e.g., negative pairs,
unlike Contrastive Loss which forces the distance between an anchor and any positive sample essentially to
zero even if there is no interference from negative samples.

55

Chapter 4. Contrastive Learning

4.2.3 Mutual Information Maximization Losses

This family of approaches seeks to maximize the Mutual Information between samples drawn from the joint
distribution p(x, y) (positive-related pairs) and those drawn from the product of marginals p(z)p(y) (negative-
unrelated pairs). This technique forces the model to encode more similar samples closer in the embedding
space and push farther apart dissimilar ones.. MI is a fundamental quantity for measuring the amount of
information obtained from a random variable X by observing some other random variable Y. As Mutual
Information is notoriously difficult to compute, especially in continuous and high dimensional spaces, lower
bounds of Mutual Information called Mutual Information Estimators, such as InfoNCE and Jensen Shannon,
are used. Particularly, we seek to maximize these lower bounds using deep neural networks, supposing that
these bounds are tight enough. Bounding Mutual Information in high dimensions remains a challenging topic.

The following approaches that will be presented, can be unified under a shared mathematical formalism. In
particular, these approaches follow MINE [8] that uses a lower-bound to the Mutual Information (MI) based
on the Donsker-Varadhan (DV) representation [27] of the Kullback-Leibler divergence given by:

I(X) Y) = DKL(‘] || M) > IA&,(UDV) (X’ Y) = Ep(a:,y) [Tw(l‘, y)] - log]Ep(m’)p(y’) |:6Tu(z Y)i|

where T, : X XY — R is a discriminator function modeled by a neural network with parameters w, J is
the joint distribution, M is the product of marginals and I is a mutual information estimator. As we will
see later on, T, (x,y) usually takes as inputs the embeddings of x and y produced by an encoder and then
calculates a similarity measure (usually cosine similariy) between these embeddings. In practice, given an
encoder By : X — Y with parameters ¢ (e.g., a neural network), where X and Y are the domain and range
of a continuous and (almost everywhere) differentiable parametric function, these methods optimize E, by
simultaneously estimating and maximizing I(X, E, (X)) using a selected MI estimator I.

The InfoNCE mutual information estimator can be written as:

IInfoNCE(X; Y) — Ep(z,y)]’(q}7 y) — log Z eT(m’,y) = Ep(x,y) l:lOg

@’ ~p(x)

ewy) fz,y)
T(z’ y):| = Ep(x,y) |:10g / :|
Zz/ € ’ Zg)/ f(x)y)

where, due to distinct motivations, InfoNCE adopts a different resampling process than the DV approach.
Specifically, DV resamples all 2’ and ¢y’ from their marginal distributions in the negative log term while
InfoNCE only resamples z’.

As we are primarily interested in maximizing mutual information, not its precise value, [39] suggest to replace
the KL divergence with the Jensen-Shannon Divergence(JSD), resulting in the JSD mutual information
estimator:

IJSD(X; Y)=Djys(J || M) >2log2 +Ep, [—sp(=T(x,y))] = Ep@)py) [sp(T(z',y))]

where sp(z) = log(1 + €”) is the softplus function.

InfoNCE Loss

The InfoNCE loss was first introduced in Contrastive Predictive Coding [62] where given a context vector ¢

(e.g an anchor sample) it learns to optimize the negative log probability of identifying the positive sample

drawn from the conditional distribution p(z|c) amongst a set of negative unrelated samples drawn from the

marginal distribution p(z). It belongs to a family of approaches which seek to estimate and maximize the

mutual information between 2 variables using neural networks [8], [39]. A simple neural network fy(z,c) is
p(z|c)

used to estimate the density 2@ because the probability of identifying the positive sample among a set

X = {x;}¥; of N samples is proved to be equal to:

P(Tpos|c)
- P(Zpos) o fo (xpma c)

- N p(z; - N
>i—1 % 2 j=1 Jo(j,¢)

56

4.2. Training Objectives in Contrastive Learning

Specifically, this method is based on the fact that the anchor and the positive sample should be encoded in a
way that maximally preserve mutual information of the original ¢ (anchor) and x (positive sample) signals.
The mutual information between positive sample x and context vector c is equal to:

B . MogPEle)
—;p(,¢)log (@)

where the term ngﬂj), is estimated by the neural network. Thus, by maximizing fy(zpes,c) for a given

anchor sample ¢, the mutual information between the positive sample and the anchor is proved to be also
maximized. The InfoNCE loss that optimizes the negative log probability of identifying the positive sample
correctly given an anchor sample is given by the following equation:

f9(37p08a c)

Z f@(.’t,c)

zeX

Lintonce = —E |log

It is proved that minimizing L, foncE, maximizes a lower bound of the true MI between positive pairs [66],
[62]. The Contrastive Predictive Coding specific setup is related to sequence prediction tasks. It employs
in first place an encoder that maps the input x to a latent space z and then, by using an autoregressive
model the context vector ¢ is calculated up to a timestep t. Then, a simple log bilinear model fi(zir,ct) =
exp(zf, , Wict) is used to estimate the density %ﬂj)
matrix. By optimizing the InfoNCE loss, the encoder, the autoregressive model and the log bilinear model
are all together trained in order to produce embeddings c¢; and z;j that maximally preserve the mutual
information between x;,x and ¢;.

where z;4 1 is the encoded input and Wy, is a trainable

Pf Predictions
B OB B EeIIIEEEIIICL
i i f s s e

(s)
&
_‘;\
o

£)

)/l f ¥ ‘\hr b \\ \‘ \'\

&

|+ Iﬁ \‘:F “ 7 l‘h“‘B . “t+4
i TR

/rf..;\ f,rfn. \ /-’I:.\ /rfm /rf....\ /ri.].\ /«.'n.\ /r,':..c\

L3 2 Tp—1 Li42 Tit3

e e

Figure 4.2.2: An illustration of the CPC architecture [62]

Normalized Temperature-Scaled Cross Entropy Loss (NT-Xent)

The NT-Xent and the InfoNCE losses are essentially the same. The name NT-Xent Loss was introduced in
the SimCLR paper [20] and it is possibly the most widely used contrastive loss.

The SimCLR framework consists of four major components. Firstly, a Data Augmentation Module is used,
which transforms a given sample randomly in two ways, yielding two correlated views of the same example.
Secondly, a Base Encoder followed by an MLP is employed to extract representation vectors from augmented
data examples. Finaly, a Contrastive Loss Function is at the core of the model. Specifically, in this approach
positive samples are obtained by employing augmentation techniques to each sample in a batch of size N,
resulting to 2V data points. Furthermore, given a specific sample from the batch and its augmented view,

o7

Chapter 4. Contrastive Learning

Maximize agreement

gm['9()

h; +— Representation — h;

f(;| e
N :

NN

Figure 4.2.3: An illustration of how SimCLR pulls closely the embeddings z; and z; of a positive pair[20]

which is considered as a positive pair, all the other 2N — 2 samples are treated as negative samples for the
contrastive loss. Thus, the loss function for a specific positive pair of samples (3, j) is defined as:

l

oy = —log — exp(sim(fo(xi), fo(x;))/7)
k§1 Lk exp(sim(fo(wi), fo(wr))/T)

where f is a neural network, 7 is a hyperparameter called temperature and sim is a similarity metric, usually
the cosine similarity. It is evident that this expression resembles a softmax classifier that classifies positive
and negative samples correctly. This should encourage the score function to assign large values to positive
examples and small values to negative examples, where the score function is exp(sim(fg(x;), fo(x;))/7). This
is exactly the same formula used in the InfoNCE loss. The total loss for each batch is then computed by
taking the average of the terms [; ; for all positive pairs in the batch expressed by the following equation:

N
1
L=gy ;[1(21@ —1,2k) +1(2k, 2k — 1)]

Minimizing this loss with respect to the neural network parameters, forces the model to encode more similar
examples closer in the embedding space and push farther apart dissimilar ones. The augmentations used to
obtain the positive samples can vary a lot and they depend heavily on the modality of the data. For images,
these augmentations could include transformations like rotations, flips, cropping, changes in brightness, and
more while in graphs these transformations include node dropping, edge dropping, and feature masking
among others.

Deep InfoMax

Deep InfoMax [39] originally developed for images, defines as the contrastive task the problem of whether
a pair of global features and local features are from the same image. Specifically, Local Deep InfoMax
maximizes mutual information between a global flat summary feature vector of an image, and a collection
of local feature vectors (a M x M feature map) of the same image, pulled from an intermediate layer of the
convolutional encoder. Deep InfoMax can work with various Mutual Information Estimators such as Jensen
Shannon and InfoNCE. According to [39] the InfoNCE MI estimator outperforms JSD on downstream tasks.
Given f(x) as the global summary representation, f(z™) as the local feature map from the same image
(positive samples), and f(z7) as the local feature maps from different images (negative samples), the loss
function using the InfoNCE estimator, is exactly the aforementioned InfoNCE loss. In a batch training

58

4.2. Training Objectives in Contrastive Learning

setting, for every positive example, negative examples are considered all combinations of local patches from
all images across the batch with the relevant global summary vector.

M x M features

<]
I Local feature (+)

M x M Scores

“Real”

il g N % M
48 5 \\&\- H‘_"""-b
""‘M___\E---- - H: \\\\ -‘-_-‘_____.-" M
h&l\‘]% Global feature
\ “Fake"
T A2 —=q
_ - N .
- Lacal feature {-) M

M
M x M features drawn from another image

Figure 4.2.4: Maximizing mutual information between local features and global features.|39]

59

Chapter 4. Contrastive Learning

60

Chapter 5

Graphs

Contents
5.1 Graph Theory @ @ @ i i i i i i i i i i e ittt ettt et e e e e 62
5.2 Graph Similarity e e e e e e e e e e e e e 65
5.2.1 Graph Edit Distance 65
5.2.2 Graph Kernels 66
5.3 Scene Graphs L e e e e e e e e e e e e e e e e 72
5.4 Related Work o 0 i i i e e e e e e e e e e e e e e e 73

61

Chapter 5. Graphs

5.1 Graph Theory

One of the principal study objects of discrete mathematics are graphs. Graphs are mathematical structures
used to model pairwise relations between objects. A graph, is denoted as G = (V, E), where V is a set of
objects called vertices (also called nodes or points) and E is a set of distinct unordered pairs of distinct
vertices called edges (also called links). In practice, this means that every edge "connects" two distinct
vertices. In the edge {x,y}, the vertices x and y are called the endpoints of the edge. The edge is said to join
z and y and to be incident on x and on y. A vertex may exist in a graph and not belong to an edge. In this
case, we refer to this vertex as an isolated node.

In any simple graph there is at most one edge joining a given pair of vertices. However, many results that
hold for simple graphs can be extended to more general objects in which two vertices may have several edges
joining them. In addition, we may remove the restriction that an edge joins two distinct vertices, and allow
self-loops which are edges joining a vertex to itself. The resulting object, in which loops and multiple edges
are allowed, is called a general graph or, simply, a graph which serves as a generalization. Thus every simple
graph is a graph, but not every graph is a simple graph. In literature, the term "graph" is usually used as a
synonym for a simple graph, i.e. a graph without any self-loops and no more than one edge connecting any

pair of vertices.
u z
/

/! \

Figure 5.1.1: A Visual Representation of a General Graph

A graph can be classified into different types based on its properties. Graphs can be classified based on the
directionality of the edges between their nodes. To elaborate, an edge connecting nodes x and y is termed
as undirected if both ordered pairs (z,y) and (y,z) are part of the set of edges, indicating a bidirectional
connection between x and y. On the other hand, the edge is considered directed if only one of these pairs is
present, indicating a directional connection. Consequently, a graph is categorized as undirected when all its
edges are undirected, and it is termed directed (or digraph) if at least one edge is directed. An inherent and
very important property of undirected graphs is the symmetry exhibited by their adjacency matrix.

Figure 5.1.2: A Visual Representation of an Undirected and a Directed Graph

62

5.1. Graph Theory

In order to proceed in the definition of the adjacency matrix of a graph we will first introduce some important
definitions:

Order: The order of a graph is defined by the number of its vertices, denoted as | V|
Size: The size of a graph is defined by the number of its edges, denoted as |E|
Adjacency: Two vertices u and v are adjacent in G if there exists an edge {u, v} connecting them.

Neighborhood: The neighborhood N(u) of a vertex w in a graph is defined as the set of nodes adjacent to
it

Degree: The degree of a vertex v in an undirected graph is the number of edges incident to v. In a directed

graph, it is divided into in-degree (number of edges coming into the vertex) and out-degree (number of edges

going out from the vertex). In a simple graph of order n, the maximum degree of any vertex is upper bounded
. . n(n—1)

by the quantity n — 1. Moreover, the number of edges are upper bounded by the quantity ———=.

Graphs can be represented in various ways to facilitate analysis and algorithmic development. The most

common representations are the Adjacency Matrix and the Adjacency List.

Adjacency Matrix: A graph of order N may be fully characterized by its adjacency matrix A which is
a square matrix of dimensions N x N. In this matrix, non-zero elements indicate the existence of a link
between vertices. In the case of a simple graph, A;; takes only two values, 0 and 1, where the value 0 denotes
disconnection and 1 indicates connection between vertices ¢ and j. Notably, undirected graphs demonstrate
a symmetric adjacency matrix, indicating that A;; is equal to Aj;.

Ending Points

A B C D A B C D
Afo 1 o 1 2 afo 1 0 o
1 0 1 1 & Blo 0 1 1
clo 1 0 o0 %' clo o o o
pl1 1 0 o 2 ol1 0o o o
Undirected Directed

Figure 5.1.3: A Visual Representation of two graphs along with their adjacency matrices

Besides the adjacency matrix, a graph can also possess attributes associated with its nodes and/or edges. In
such instances, each node (or edge) is identified by a feature vector with a dimension of D, leading to a node
(or edge) feature matrix denoted as X with dimensions N x D.

Furthermore, in some cases A;; take on positive integer values bigger than 1. This lead us to another important
distinction which is the classification of a graph as a weighted or unweighted graph. The distinction arises
from whether the edges connecting nodes have assigned values. In a weighted graph, each edge is linked
to a numerical weight or cost, typically representing factors like distance, time, or cost, quantifying the
connection between nodes. These weights introduce more information and intricacy, allowing for a more

63

Chapter 5. Graphs

accurate representation of real-world scenarios. In this case, the weight value for the corresponding edge
would be present for each node pair in the adjacency matrix. Conversely, in an unweighted graph, all edges
are treated equally, lacking assigned numerical values. This makes it suitable for representing relationships
where only connectivity matters.

Adjacency List: In this representation, each vertex of the graph is associated with a list that contains its
neighboring vertices, forming an efficient and compact way to express the graph’s connectivity.

For an undirected graph, the adjacency list captures edges in a symmetrical manner. Each vertex’s list
includes the vertices to which it is directly connected. In the case of a directed graph, the adjacency list
distinguishes between incoming and outgoing edges for each vertex.

12| 3+{5]/]
] S {3 F+4]/]

2] T4 ll
3]/]

> 2 _..[?_
G—@ S ne'neEng

Figure 5.1.4: An Undirected Graph along with its adjacency list

®

e

L% I - X I N

The advantages of using an adjacency list include its space efficiency, especially for sparse graphs where the
number of edges is significantly less than the maximum possible. Traversing the neighbors of a vertex is
straightforward, and adding or removing edges can be done efficiently. However, determining the presence
of an edge between two vertices may require scanning through the adjacency list, potentially resulting in a
higher time complexity.

Moreover, some fundamental concepts of graph theory include concepts such as paths, walks, cycles, connected
graphs, and subgraphs. All of them can be used to derive valuable graph metrics, which will prove particularly
beneficial at defining several important Graph Kernels later on.

Path: A path in a graph G is a sequence of vertices vy, va, ..., v such that each adjacent pair of vertices v;
and v;41 is connected by an edge. The length of a path is the number of edges it contains. A path with only
one vertex and no edges is considered to have a length of 0. A simple path is a path in which no vertex is
repeated (revisited).

Walk: A walk is a generalization of a path. Unlike a path, a walk can revisit vertices and edges. It is a more
general concept and includes repeated vertices and edges.

Cycle: A cycle is a path in which the first and last vertices are the same.
Subgraph: A graph H = (V' E’) is called a subgraph of G = (V,E) if V' CV and E' C E.

Connected Graph: A connected graph is a graph in which there is a path (a sequence of edges) between
every pair of vertices. In other words, for any two vertices in a connected graph, there exists at least one
path that connects them. If a graph is not connected, it may consist of multiple isolated components, each of
which is a connected subgraph. In the context of directed graphs, connectedness can be categorized into two
distinct forms: weak and strong. Weak connectivity in a directed graph implies that for any pair of vertices
uw and v, there is a path either from u to v or from v to u. Conversely, strong connectivity in a directed graph
requires the existence of paths in both directions for any pair of vertices.

64

5.2. Graph Similarity

5.2 Graph Similarity

The problem of Graph Similarity revolves around determining the degree of similarity between two graphs,
essentially establishing a mapping m : G X G — R that characterizes their likeness or dissimilarity. The
Graph Similarity problem, essential in applications like biological network analysis and social network com-
parison, draws on a rich history rooted in graph theory and computational mathematics. Over time, various
algorithms, including graph kernels and graph edit distance algorithms, have been developed to measure the
similarity of a pair of graphs.

Graph Edit Distance (GED) is a pivotal metric within this context, which gauges the similarity between
two graphs by counting operations needed to transform one graph into another, whereas Graph Kernels
is a polynomial alternative to GED. This thesis explores GED and Graph Kernels, comparing them with
the concept of utilizing Contrastive Graph Neural Networks to map graphs to feature vectors for similarity
assessment. In the following section we will introduce the basic concepts of the aforementioned methods.

5.2.1 Graph Edit Distance

As we have already mentioned, Graph Edit Distance (GED) is a measure of similarity (or dissimilarity)
between two graphs G; and Gs. Alberto Sanfeliu and King-Sun Fu introduced the first mathematical for-
malization of graph edit distance in 1983 [70]. GED can be regarded as a broader form of alternative
distances, like string edit distance, tree edit distance [94], or Hamming distance [37], provided that graphs
are constructed with appropriate constraints.

Formally, the Graph Edit Distance between the graphs G; and G is denoted as GED(G1,Gs). The core
concept of GED, as it was introduced in [70], involves defining a set of Graph Edit Operations. The Graph
Edit Operations and their costs are denoted as e; and ¢(e;) > 0 correspondingly where P(G1,G3) denotes
the set of all edit paths transforming G into G. In this context, GED(G1,G2) can be defined as:

k
GED(G1,G2) = min(Gl)Gz) Z cle;)

yeees P °
(61 ek)e =1

The set of elementary Graph Edit Operations typically includes:

e Vertex insertion: Introduce a single new labeled vertex to a graph

Vertex deletion: Remove a single (often disconnected) vertex from a graph
e Vertex substitution: Change the label (or color) of a given vertex

e Edge insertion: Introduce a new colored edge between a pair of vertices

Edge deletion: Remove a single edge between a pair of vertices
e Edge substitution: Change the label (or color) of a given edge

Precise methods for calculating the Graph Edit Distance between two graphs generally involve converting
the task into one focused on identifying the edit path with the minimum cost. The approaches employed for
this computation typically involve either pathfinding searches or determining the shortest paths, making use
of the A* search algorithm. In general, the problem of computing Graph Edit Distance is NP-hard and is
even hard to approximate belonging in the APX-hard complexity class.

65

Chapter 5. Graphs

@ﬂ#
0\9
i
Se
OO0,

@
1096

Figure 5.2.1: Graph Edit Distance Between Two Graphs. [7§]

Because the exact computation of GED is NP-Hard, many graph edit distance approximation approaches
have been developed.

Bipartite Heuristic, introduced by [68], enhances the A* algorithm’s search for the target path by intro-
ducing a new heuristic function. While this method accelerates the search, it still ensures an optimal solution.
However, it cannot deterministically solve the Graph Similarity problem in polynomial time. This heuristic
is seldom employed unless the exactness of the similarity measure between two graphs is crucial.

A* Beamsearch proposed in [60], is one of the first approximate Graph Edit Distance method that speeds up
the process by modifying the standard A* algorithm. It limits the number of expanded nodes in the search
tree, exploring only the most promising partial matches. While this optimization reduces computational
complexity, making it faster, it may not find the optimal solution, providing a suboptimal solution.

Bipartite Matching, is an approximate algorithm introduced by [28] which leads to a suboptimal solution
to the Graph Edit Distance (GED) problem. In particular, it firstly computes the exact edit distance
considering only node edit operations such as insertions, deletions and substitutions and then infers the edge
edit operations. This results in a great speed-up, but is also the reason for the suboptimality of the solution.
The node edit distance problem is treated as a Linear Sum Assignment Problem (LSAP), which can be solved
in polynomial time using the Volgenant-Jonker (VJ) algorithm [41]. The complexity of the VJ algorithm is
O(n?), but in practice it is much faster. In particular, for the LSAP problem, we want to assign the nodes of
the two graphs represented by the two vertices sets, where each assignment has a precomputed cost ¢;;. The
VJ algorithm computes the minimum cost node assignment and the implied edit operations of the edges are
then inferred. In this thesis, we will use this method to obtain the ground truth for the Graph Edit Distance
problem as it is widely used due to its efficient balance between the accuracy of the approximate solution
and computational cost.

Hausdorff Matching, introduced in [32], operates similarly to Bipartite Matching but employs a quadratic-
time approximation algorithm based on Hausdorff Matching as a heuristic function to approximate the graph
edit distance.

5.2.2 Graph Kernels

Despite the ability of Graph Edit Distance algorithms to accurately calculate graph similarity, they suffer
from a lack of computational efficiency. The GED problem is known to be NP-hard, and the task of selecting
suitable costs for the edit operations is complex and quite challenging. In contrast, Graph Kernels present a
polynomial time approach for gauging graph similarity, offering an efficient, expressive, and widely applicable
alternative to the complexities associated with Graph Edit Distance (GED) algorithms. Before delving
into various graph kernels that will be used in this thesis, we will initially introduce the more general and
fundamental concept of kernels in the field of machine learning.

66

5.2. Graph Similarity

Kernels

In machine learning, kernels play a fundamental role in various algorithms for pattern recognition and data
mining, particularly in the context of support vector machines (SVMs) and kernelized methods. A kernel is a
function that computes the similarity between pairs of data points in a high-dimensional space, without ex-
plicitly transforming the data into that space. This implicit transformation of data, enables linear algorithms
(such as linear classifiers) to adeptly address nonlinear problems by effectively capturing the similarity or
dissimilarity between data points and avoiding the computational burden required to map the data to higher
dimensions. As a result, kernel methods have proved to be essential for capturing complex relationships and
enabling algorithms to operate efficiently in non-linear domains.

The most important concept in Kernel Theory is called the Kernel Trick. The Kernel Trick is a fundamental
concept enabling to operate in a high-dimensional, implicit feature space without ever computing the coordi-
nates of the data in that space, but rather by simply computing the inner products between the projections
of all pairs of data in the feature space. Breaking down this concept into details we have:

e Linear Separation in Higher Dimensions: In many machine learning real-world scenarios, the
data may not be linearly separable in the original feature space. However, it might be separable in a
higher-dimensional space. This is very important as linear classifiers such as SVMs excel when data is
linearly separable, but they struggle otherwise.

e Kernel Functions: A Kernel Function is a function that computes the similarity or in other words
the inner product between pairs of data points in a feature space without explicitly calculating the
coordinates of that space. Common kernel functions for two vectors (data points) z; and z; include:

1. Linear Kernel: K(x;,%;) =X; - X;

2. Polynomial Kernel: K(x;,%x;) = (x; - x; + ¢)¢

3. Radial Basis Function (RBF) Kernel: K(x;,x;) = exp (—%) where the quantity 517 is a

parameter often denoted as -y

e Feature Mapping: The kernel trick is based on the fact that the dot product of the transformed
feature vectors can be expressed as a function of the dot product of the original feature vectors without
explicitly calculating the transformation. In other words, if ¢ is the transformation function, the kernel
trick relies on computing the quantity K(x;,x;) without computing ¢(x;) and ¢(x;) separately. The
function ¢ satisfies:

K(xi,x;5) = (p(x:), ¢(x;))

where (-,) is a proper inner product. The function ¢ : X — V is the function that maps the original
vectors x; and x; into the higher dimensional space where V' is a Hilbert Space.

e SVM and Decision Boundary: Within SVMs, the kernel trick emerges as a potent tool. By applying
a kernel function, the decision boundary undergoes a transformation into a more intricate shape in a
higher-dimensional space. This transformation facilitates SVMs in effectively distinguishing data that
lacks linear separability in its original space.

67

Chapter 5. Graphs

Figure 5.2.2: Illustration of Kernel Trick

Graph kernels are a powerful tool in the field of machine learning, specifically designed to analyze and compare
structured data represented as graphs. These kernels quantify the similarity between graphs by measuring
the similarity of their respective substructures, capturing both local and global patterns. These substructures
include counting of graphlets, random walks and shortest paths as well as message propagation techniques.
All of them can be described in the context of the general kernel definition as:

K(G,G) = (4(G),6(G))

where G and G are two graphs and K : G x G — R. They play a crucial role in tasks such as graph
classification, clustering, and regression. Graph kernels enable the application of traditional machine learning
techniques to graph-structured data, making it possible to leverage the rich relationships and dependencies
present in complex systems.

In the context of this thesis, we will explore five graph kernel methods which will be compared to Contrastive
Graph Neural Network models. The subsequent sections will provide insights into the functioning of these
graph kernels.

Weisfeiler-Lehman Kernel
The Weisfeiler-Lehman (WL) kernel is a powerful graph kernel based on the Weisfeiler-Lehman Isomorphism

test proposed in [87], which is a technique for distinguishing non-isomorphic graphs by iteratively refining
their vertex labels. This framework was first introduced in [74] and consists of the following steps:

1. In the first step, the algorithm assigns an initial label to each vertex in the graph

2. In each iteration, for each vertex, the algorithm concatenates its current label with the sorted list of
labels of its neighbors forming a multiset of labels. This process captures the structural information
around each vertex

3. For each vertex now, the aggregated multiset of labels is compressed via a hash function to form a new
label

4. Then the steps 2 and 3 are repeated for a fixed number of iterations or until convergence

68

5.2. Graph Similarity

(1.) Input Labels

2 /@

(4.) Relabeling

Figure 5.2.3: Illustration of the label refining process [2]

(2.) Multiset Determination

A 4

\ 4

Y

A 4

The number of iterations used are usually denoted as h, which means that for two graphs G and G’ the
Weisfeiler-Lehman is performed at heights from 0 to h. We define as Gy = G the graph with the original
labels and as G; the graph after applying i iterations of label refining. As a result, the algorithm computes
the graphs {Go, G1, ..., G} until height h.

In this context, the WL kernel for h iterations, which operates on top of a base kernel denoted as k, is defined
as:

]i){/VL(G7 G/) = k(Go, GO/) + k(Gl, Gl/) + ...+ k‘(Gh, Gh/)

A common selection for the kernel k is the Vertex Histogram kernel and it is based on the vertex histogram of
a graph G. The vertex histogram is defined as a vector f = (f1, fa,..., f4), such that f; = v € V : 1(v) = i
for each i € L where L is the set of all labels. The node labels involved in this computation are the final
hashed labels calculated by the Weisfeiler-Lehman iterative process. Practically, the vector f at point ¢ is
equal to the number of vertices possessing the label i. Then, the vertex histogram kernel is defined as:

RG.G)=(1.1)
In this way, the WL kernel computes the similarity of two graphs.

Shortest Path Kernel

One of the very first, and most influential, graph kernels is the shortest-path (SP) kernel introduced in [13].
The shortest-path kernel breaks down graphs into shortest paths and evaluates pairs of such paths based on
their lengths and the labels of their endpoints. The initial step involves transforming the input graphs into
shortest-paths graphs. For a given input graph G = (V, E), a new graph S = (V, E;) is created, referred to
as the shortest-path graph. In order to calculate S, some all-pairs shortest path algorithm is employed, such
as Floyd-Warshall. This graph shares the same set of vertices as the original graph G, and its edge set is a
superset of G’s edges, connecting all vertices reachable by walks in G. To complete the transformation, labels
are assigned to edges in S, with each label representing the shortest distance between its endpoints in G.

Let G;,G; be two graphs, and S;, S; their corresponding shortest-path graphs. The shortest-path kernel is
defined on S; = (V;, E;) and S; = (V}, E;) as

69

Chapter 5. Graphs

K(SuS) =3 3 kl(eie))

e;€E; e;€E;

where kwalk(ei, e;) is a positive semidefinite kernel on edges of length 1.

In labeled graphs, the kwulk(ei,ej) kernel is designed to compare both the lengths of the shortest paths
corresponding to edges e; and e;, and the labels of their endpoint vertices.

The kernel kwalk(ei, e;) is usually the dirac kernel:

1, if =
e For unlabeled graphs: kedge(€1,€2) = d(€(e1),1(e2)) = { 1 ler) = £ea),

0, otherwise

o Forlabeled graphs: keqge(€1,€2) = otherwise

5(0(er { if £(e1) = £(e2) A (L(el) = L(ed)) A ((e?) = (e

2

where we denote as ¢ the label of a vertex and e!, e? are the two endpoints of the corresponding edge.

In order to compute the shortest path kernel, the process involves calculating the shortest paths for every
pair of vertices in both graphs which takes O(n?) time and comparing all pairs of shortest paths between the
two graphs something that needs O(n*) time. As a result, the overall runtime complexity of the Shortest
Path Kernel is O(n*) which becomes impractical for large graphs.

Random Walk Kernel

The Random Walk Kernel is a well-established and extensively investigated family of kernels. Kernels within
this category primarily focus on enumerating matching walks in the two input graphs. There are several
variations of random walk kernels. The k-step random walk kernel compares random walks up to length k
in the two graphs. The most widely used member of this family of kernels is the Geometric Random Walk
Kernel [33], which compares walks when k — oo.

In order to proceed to the formal definition of the Geometric Random Walk Kernel we will first introduce
some basic concepts. Given two graphs G; = (V4, E1) and Go = (Va, E»), their product-graph denoted as
G« is computed as:

Vi = {(v1,v2) : v1 € Vi Avg € Va} where for labeled graphs we also need ¢(v1) = £(vs)
Ey = {{(v1,v2), (u1,u2)} : {vi,u1} € E1 AM{va,u2} € Es}

A visualization of the construction of the product graph can be seen in Figure 5.2.4. In general, it is true
that the k-th power of the adjacency matrix A of graph G computes walks of length k, which means that
Afj, represents the number of walks of length k& from vertex i to vertex j. It is now evident that performing
a random walk on G« is equivalent to conducting a simultaneous random walk on G; and G5. This mean
that common walks of length k can be computed using A% . Now we can define the geometric random walk

kernel for all pair of vertices belonging to |Vi| and for paths up to infinity as:

Vx| oo

P(G1,Ga) = > > WAL =" (I -2

i,j=1r=0

where e is the all-ones vector, and \ are positive weights used to ensure convergence of the corresponding
geometric series. The geometric random walk kernel converges only if A < i, where Ay is the largest
eigenvalue of Ay. Direct computation of the geometric random walk kernel requires O(n%) time severely
limiting its applicability to real-world applications. However, various optimizations [85] have succeeded in

reducing it to O(n?).

70

5.2. Graph Similarity

Figure 5.2.4: Illustration of the construction of the product graph [61]

Neighborhood Hash Kernel

The Neighborhood Hash Kernel proposed in [38] works very similarly to the Weisfeiler-Lehman Kernel.
In particular, it is designed for graphs with labeled nodes and its approach to comparing graphs involves
changing node labels and keeping track of the shared labels. To achieve this, the kernel replaces discrete node
labels with fixed-length binary arrays. These arrays are then updated using logical operations to incorporate
information about the neighborhood structure of each vertex into the labels. As we have already mentioned,
this kernel transforms each discrete node label to a fixed-length binary array consisting of d bits as:

S:{b17b2>"'abd}

where the constant d is sufficiently large to cover all possible discrete node labels. The most important step
of the algorithm as in the WL kernel, is the update of the nodel labels using the neighbourhood information.
This steps involves the usage of the binary operations XOR and the left cycle-rotation ROT. Using this
update rule, the new label (hash) of node v, denoted as N H (v), is computed as:

d
NH(v) =ROT({(v)) ® (EB f(ui)>

where N(v) = {u,...,uq} is the set of neighbors of v. The resulting hash NH(v) is still a bit array of
length d. After the neighbourhood hash update rule we presented above is applied, the kernel to compare
two graphs G and G is defined as:

c
kGG =

GO =
where c is the number of labels the two graphs have in common. By updating the bit labels several times, the
new labels can capture high-order relationships between vertices across their A-hop neighbourhood. Hence,
by updating the node labels of the two graphs {G} and {G’} for h times the similarity of this pair of graphs
can be calculated as:

kG, G) =

S| =

h
=1

71

Chapter 5. Graphs

The computational complexity of the neighborhood hash kernel is O(dhnD), where n = [V is the number of
vertices of the graphs, and D is the average degree of their vertices.

Graphlet Kernel

The Graphlet Kernel, firstly introduced in [67] and optimized in [73] using sampling, defines a similarity
measure between two graphs by considering the presence and frequency of specific graphlets in each graph.
The more similar the graphlets’ distribution between two graphs, the higher their graphlet sampling kernel
similarity score. Graphlets are small subgraphs within a larger graph. Graphlet sampling involves extracting
these small subgraphs from the original graph. The size and structure of graphlets can vary, and they are
often used to capture local patterns or motifs within the graph. Typically, graphlets contain k nodes, where
k is usually a small number like 3, 4, or 5.

Gl GQ G3 G4 GS GB

o—0 O0—0O O O

O o O0—0O O O O O
7 GB G'E) Glﬂ Gll

Figure 5.2.5: All graphlets of size 4 [61]

The set of size-k graphlets is usually denoted as G = {graphlet,, graphlet,, ..., graphlet;}. Moreover, the
d-dimensional vector fg € N has in its i-th entry the frequency of occurrence of graphlet, in the graph G,
typically denoted as #(graphlet, C G). Given two graphs G and G’ to be compared, the vectors fg and f
are calculated. The graph kernel is easily calculated now as:

k(G.G) = (fa, fer)

However, there are (:) size-k subgraphs in a graph and as a result, the exhaustive calculation of graphlets,
requires exponential time O(nk), which is computationally prohibitive. For this purpose, the authors of
[73], showed that by sampling a fixed number of graphlets the empirical distribution of graphlets will be
sufficiently close to their actual distribution in the graph, thus mitigating the high computational cost of the
initial approaches.

5.3 Scene Graphs

In this chapter, we have already explored some basic concepts of graphs as well as different approaches of
computing the similarity between pairs of them. Graph-structured data is omnipresent in various applications
due to its ability to represent and model complex relationships and interactions among different entities. From
Social Networks, where users and their connections are represented as nodes and edges, Biological Networks,
where nodes represent biological entities (e.g., proteins, genes) and edges represent interactions between them,
to Knowledge Graphs and Transportation Networks, graph representation is an essential tool to analyze the
properties of such structures.

In the dynamic intersection of computer vision and visual data understanding, scene graphs emerged as
foundational structures. Scene Graphs were first proposed in [40] in order to enhance image retrieval and
since then have attracted the attention of a large number of researchers. In the context of this thesis, the
graph structure will be used in order to represent the scene depicted in an image. This type of representation,
called scene graph, includes valuable information about objects present in an image as well as the relationships

72

5.3. Scene Graphs

among them. Scene graphs play a vital role in providing a structured framework to understand relationships
between objects and their surroundings. In practice, they are represented as directed graphs where nodes
represent entities (objects) such as cars, people, buildings, among others, and the edges represent their
relationships using the following triplet structure <subject, relation, object>.

(i fontof x {mr

warman | 4 sits on
A man and a woman sit on a park
bench along a river.

Park bench is made of gray
weathered wood

Figure 5.3.1: An example of regions of an image along with their corresponding scene graphs from the
Visual Genome Dataset [46]

Leveraging scene graphs enhances scene understanding by capturing the semantic content of an image in
a more detailed manner as well as the relationships among entities something that goes beyond traditional
object detection and recognition approaches. They form a robust foundation for image captioning systems,
facilitating the generation of contextually rich and accurate captions. For Visual Question Answering (VQA)
tasks, scene graphs offer a structured understanding of visual elements where the image and the semantics of
the corresponding scene graph are more effectively understood due to the fact that, unlike viewing it merely
as a collection of pixels, the scene graph is perceived as an assembly of interconnected entities, facilitating a

more effective interpretation. Using Scene Graphs in VQA models enhances significantly their performance
[93].

(Tstson |
R (ot))
e —- D
. " blleleans) monctone
~Enln£ @\ ,['b\gesr B @
ﬂ . has | oo |
= Ee)
i)
=
]
=
Lo (o) () () O —li
e — =)
— /. - contrasts with | { perts)
) foeae) (et .
: 1 e |
@ e
((blackibag |—{ nextto
I T— woried |
=)

Figure 5.3.2: The Complete Visual Genome Scene Graph of the image depicted in Figure 5.3.1. It is evident
that this scene graph contains different objects, attributes and relationships, defining effectively that
semantic content of the corresponding image [46].

The most important Scene Graph dataset that we will use in the context of this thesis, is the Visual Genome
Dataset introduced in [46]. Comprising over 100,000 images, it stands as one of the largest datasets for visual
understanding tasks. Each image in the dataset is densely annotated, providing a wealth of information,

73

Chapter 5. Graphs

including object labels, object relationships, region and scene descriptions. Notably, the annotations extend
to multiple instances of the same object within an image, contributing to a nuanced comprehension of object
variations and placements. Going beyond mere object recognition, Visual Genome incorporates annotations
for object relationships, detailing how objects within a scene relate to each other facilitating the capture of
hierarchical structures within visual scenes.

Another important application of scene graphs pertains to computer vision, where the creation of scene graphs
from images as well as the reverse process are significant. Numerous studies concentrate on Scene Graph
Generation, employing conventional as well as neural methods. In particular, when generating an image,
employing a graph instead of plain text offers more comprehensive information about object relationships
that sentences are unable to convey.

5.4 Related Work

In this thesis, our focus will be on the exploration of graph similarity for scene graphs. As we have already
seen, graph similarity has been extensively studied over the years. Starting with the introduction of Graph
Edit Distance [70] as a graph similarity metric, to other similarity measures such as Maximum Common
Subgraph [18] and Graph Isomorphism [9], which are methods with NP-hard complexities as they rely on
the problem of graph isomorphism, a significant scientific endeavor has been dedicated to addressing this
problem.

Apart from these traditional approaches, many optimizations have been proposed in order to speed up the
execution of graph similarity algorithms. These methods use various heuristics, such as A* and Beam Search,
to finally compute GED approximations and we have discussed them earlier in this chapter. In the context
of this thesis, in order to obtain a ground truth measure for evaluation, we will use the bipartite matching
algorithm which formulates the problem as a Linear Sum Assignment Problem (LSAP) which is solved using
the Jonker-Volgenant assignment algorithm [41]. The selection of this approach is due to the fact that it
provides an efficient balance between the accuracy of the approximate solution and computational cost.

However, the central focus of this thesis lies on neural approaches, particularly Graph Neural Networks
(GNNs). GNNs inherently incorporate graph structures at the node level producing meaningful embeddings
with respect to the complex structure of graphs. Consequently, one approach to address the graph similarity
problem, is to use Graph Convolutional Networks or other GNN layers that are able to produce permuta-
tion invariant representations. Unlike this family of approaches, which treats each graph individually during
training, other approaches work on pairs of graphs comparing them during the training stage. For instance,
SimGNN [4] combines graph with node level information, by proposing an attention mechanism to emphasize
crucial nodes, based on a selected similarity metric. Similarly, Graph Matching Networks [50] also compute
a joint similarity score of a pair of graphs by using cross-graph attention. UGraphEmb [5] employs a siamese
GNN to train on graph pairs. In practice, during the training process, regression is performed on a precom-
puted graph edit distance measure for each pair, placing this method within the realm of supervised learning.
However, the computation step needed to calculate the graph edit distance measure for each pair of graphs
is quite expensive.

It should be noted that the approaches mentioned earlier are applied to graph datasets that represent proteins,
citation networks and program dependency graphs among others. None of these approaches are designed for
scene graphs. Moreover, Contrastive Learning GNNs for unsupervised graph similarity have not been studied
for scene graphs, at least to the best of our knowledge. In general, the attention on scene graph data in the
context of graph similarity applications has been limited. The most relevant publication focused on producing
scene graph embeddings for similarity is [56] which proposes using GCN and a weak supervision signal derived
from the caption similarity of the corresponding scene graphs and do not relates to Graph Edit Distance.

74

Chapter 6

Graph Neural Networks (GININ)

As it has been established from the previous chapter, graph-structured data is prevalent in various domains
such as social networks, biological systems, molecules, materials, knowledge graphs and recommendation
engines and many other research areas. Graphs, ubiquitous in various applications, encode invaluable re-
lationships often challenging for traditional neural networks to capture effectively. For this reason, Graph
Neural Networks (GNN), a different type of neural networks operating specifically on graph data, were in-
vented. Graph Neural Networks (GNNs) are a subset of models within the broader field of Geometric Deep
Learning (GDL) [15], [16] which focuses on developing deep learning techniques for non-Euclidean structured
data, including graphs, point clouds, meshes, and manifolds. The connection between GNNs and geometric
deep learning lies in their shared goal of effectively handling data with inherent geometric or relational struc-
tures. Adapting deep learning techniques to respect and exploit this inherent geometric structure, beyond
the grid-like structures traditionally processed by standard neural networks, is the key difference of these
models from traditional neural networks. In this chapter we will cover the most significant aspects of GNNs,
present the most important GNN variants, explain how we use them and how contrastive learning can work
in this context.

Contents
6.1 Machine Learning on Graphs it 76
6.1.1 Motivation L e 76
6.1.2 Permutation Invariance and Equivariance 76
6.2 Spectral Approaches i i i i i it e e e e e e e e e e e e e e 78
6.2.1 Elements of Graph Spectral Theory 78
6.2.2 Spectral Variants 79
6.3 Spatial Approaches i e e e e e e e e e e 82
6.3.1 General Framework 82
6.3.2 Spatial Variants oL 83
6.4 How to Use Graph Neural Networks 88
6.4.1 Exploring Task Types in Graph Neural Networks 88
6.4.2 Diverse Training Approaches for Graph Neural Networks 89
6.5 Contrastive Learning on Graphs 00000 89
6.5.1 Contrasting Modes L 89
6.5.2 Graph Contrastive Learning with Augmentations (GraphCL) 90
6.5.3 InfoGraph o 92
6.5.4 Deep Graph InfoMax (DGI) 93
6.5.5 Deep Graph Contrastive Representation learning (Grace) 94

75

Chapter 6. Graph Neural Networks (GNN)

6.1 Machine Learning on Graphs

6.1.1 Motivation

The inspiration for graph neural networks (GNNs) can be traced back to the remarkable success of convolu-
tional neural networks (CNNs) and their innovative concept of convolution filters applied in images. Images
can be viewed as a special instance of graph structured data in which the nodes are the pixels and the edges
represent adjacency between pixels. Convolution filters are based on the spatial locality of pixels, which as
we said can be seem as nodes on the grid, by sliding rectangular kernels with a small receptive field over
the image to produce various feature maps. CNNs have demonstrated unparalleled efficiency in capturing
spatial hierarchies and local patterns in grid-like data. Graph neural networks emerged as a natural evolution,
adapting the convolutional framework to graphs, enabling the extraction of meaningful features and relation-
ships from complex networks. Specifically, GNNs define an embedding vector for each of the nodes, usually
initialized with inherent node properties, which are then transformed by a sequence of learnable layers. The
extension of the convolutional framework to graphs is based on the observation that we can view convolution
on graphs for a specific node i, as gathering information from the neighbouring nodes by passing messages
from the neighbours to node i. However, graphs do not have an inherent ordering of their nodes and as the
number of possible permutations increases factorially with the number of nodes, GNNs should incorporate
notions such as invariance and equivariance in their architecture.

[[+1

Figure 6.1.1: View of the convolutional receptive field for images and graphs [11]

6.1.2 Permutation Invariance and Equivariance

A graph is usually represented with an adjacency matrix denoted by A, a convenient way to specify the
edges between nodes in the graph. However, in order to define the adjacency matrix, first a specific ordering
of the nodes must be defined. If there are IV nodes in the graph, we index them using n = 1,..., N and
as a result the adjacency matrix A has dimensions N x N where A; ; = 1 if there is an edge connecting
nodes i and j (for weighted graphs the value of A4, ; = w; ;) and A; ; = 0 otherwise. For undirected graphs,
the adjacency matrix will by symmetric. Moreover, for each node n of the graph we have a D-dimensional
vector x, representing the features of this node. We can stack all these vectors into a feature matrix X of
dimensionality N x D where every row n is given by the vector x,. In order to use this representation an
ordering of the nodes should be predefined. However, the graph and its properties remain the same regardless
of the decided ordering of the nodes. In order to address this challenge the neural network should learn a
function which respects the various symmetries of the graph.

A permutation matriz P specifies a particular permutation of the node ordering and it has the same dimen-
sionality NV x N with the adjacency matrix. In particular, P contains a single 1 in each row and a single 1 in

76

6.1. Machine Learning on Graphs

each column, with 0 in all other positions. For example, if we have a graph with 4 nodes we can define P as:

o

0
0
1
0

S O =
_— o o o
o O o

If we name our nodes as (A,B,C,D) this permutation matrix corresponds to the transformation
(A,B,C,D) — (B,C,D, A) of the node ordering. When we perform such a node re-ordering, this results
in the permutation of the rows of the feature matrix X. This can be achieved with matrix multiplication as
following:
X =PX

For the adjacency matrix however, both the rows and the columns must be permuted. The rows can be
permuted as before by left-multiplication of P with the adjacency matrix and the columns can be permuted
by right-multiplication with PT. This gives rise to the permuted adjacency matrix:

A=pPAPT

As our goal is to learn a function that will not depend on a specific node ordering, we should design a
permutation invariant function to any permutation of the nodes.

A permutation invariant function f is defined as:

f(PX) = f(X)

where X for the case of graph neural networks is the feature matrix, and P is a permutation matrix. This
equation should hold for every permutation matrix P. However, although such a permutation invariant
function is suitable to ensure that any global property of the graph does not depend on the node ordering, it
destroys information for each individual node. This happens, because it practically treat nodes as sets and
not each one individually [57].

For this reason, if we want to make predictions in the node level, a node re-ordering should be reflected to
our predictions by permuting correspondingly the node features in the output. This lead us to the notion of
permutation equivariance. A permutation equivariant function f is defined as:

f(PX) = Pf(X)

which should be true for every permutation matrix P. In practice, node-level outputs are very valuable for
various downstream tasks, such as node classification.

Summarizing and extending the above definitions to include both the feature and the adjacency matrix,
where when we permute the nodes, we expect the edges to accordingly act and be permuted identically, we
have the following definitions for invariance and equivariance:

e Invariance

f(PX,PAPT) = f(X)

e Equivariance

f(PX,PAPT) = Pf(X)

As we will see later on, graph neural networks are usually constituted of a number of equivariant layers and if
we need predictions on the level of the entire graph, a global pooling layer which is invariant to permutations
is finally used. After we have presented the core ideas of invariance and equivariance we will proceed with
the idea of Graph Convolution. Graph Convolution is at the core of processing graph data and the research
community has well studied both spectral and spatial approaches, which we will present in the two following
sections.

7

Chapter 6. Graph Neural Networks (GNN)

Figure 6.1.2: A typical GNN may contain permutation equivariant layers computing node-wise features and
a permutation invariant global pooling layer [16]

6.2 Spectral Approaches

It is well established that GNNs are usually divided intro spectral and spatial methods. In this section, we will
summarize the ideas of graph spectral theory and their relation to graph convolution. Graph Convolution,
from a graph signal processing perspective (GSP) [63], [26], can be viewed as a function acting on a graph
signal. Usually, a graph signal is defined on the set of vertices V' of a graph, giving a real number as value to
each vertex of the graph.

6.2.1 Elements of Graph Spectral Theory

In graph signal processing it is common to assume undirected graphs. In this context, a core element of a
graph, which is very useful in the spectral domain, is the Graph Laplacian. The Graph Laplacian is, like the
adjacency matrix, a mathematical representation of an undirected graph and is defined, for a graph with N
nodes, as:

L=D-A

where D is a diagonal degree matrix with D;; = > j A; ; and A is the adjacency matrix. However, usually
the normalized Laplacian is used. Normalizing the Laplacian makes the spectral properties of the graph less
dependent on the scale of the graph. It allows for better comparison between graphs of different sizes and
structures and they often lead to more interpretable spectral properties. The normalized Laplacian is defined
as:

The normalized graph Laplacian matrix is real, symmetric and positive semidefinite. With this property, the
normalized Laplacian matrix can be diagonalized as:

L=UAUT

where U = [ug, U1, ..., un_1] € RV*Y is the matrix of eigenvectors and A is the diagonal matrix containing
the eigenvalues (spectrum) of the graph. The eigenvectors of the normalized Laplacian matrix form an
orthonormal space because the laplacian L is normalized and thus UTU = 1. As we mentioned before, in the
field of graph signal processing, a graph signal denoted as x € R™ is a feature vector of all the nodes in the
graph where z; is the value of the ith node. Because L = UAUT and the eigenvector form an orthonormal

78

6.2. Spectral Approaches

space, the Graph Fourier transform of a signal x and the inverse graph Fourier transform, can be defined
[12], [63], [26] as:
t=UT2,2=U%

where % represents the Graph Fourier Transform of signal x. It is obvious that the Graph Fourier Transform
projects the input graph signal to the orthonormal space defined by the eigenvectors of the normalized
laplacian. The convolution theorem states that the Fourier transform of a convolution between two signals
is equivalent to the pointwise multiplication of their Fourier transforms. Given this, the Graph Fourier
Transform, a graph signal x, and a filter g € R™ the graph convolution operation is defined as:

zxg=U(U"g)® (UTz))

where ® is the element-wise Hadamard product. By denoting go(A) = diag(U”g), we have:

rxgo =UgeU'x

where gy = diag(0) is the diagonal matrix that corresponds to the spectral filter coefficients. This spectral
filter is of great significance as the various versions of spectral-based Graph Convolutional Networks (GCN)
differ based on the selection of this filter.

6.2.2 Spectral Variants
Spectral Convolutional Neural Network

Spectral CNN [17] treats the filter g9 = diag(0) with parameters § € R™ as the parameters of the neural
network and optimizes them by gradient descent. However, this method suffers from high computational com-
plexity because eigendecomposition is computationally expensive, it depends on the input graph’s structure,
and it has non-spatial locality.

Chebyshev Spectral CNN
In ChebNet [22] the basic idea is to approximate the parameterized filter go(A) with polynomials such as:

K
go(A) = 0"
k=0

where # € R¥ is a vector of polynomial coefficients. As a result of the presence of A* in the polynomial filter
and because dg(i,j) > K implies that L% (i,7) = 0, these spectral filters are exactly K-localized. However,
the computation cost is still high and for this reason Chebyshev polynomials T (z) of order k which can
be computed recursively from the graph laplacian are proposed. Specifically, the following recursive relation
holds for Chebyshev polynomials of order k:

Tk(x) = 2ka_1(x) — Tk_g(x)

with Tp = 1 and T; = z. The convolution is now defined as:

K
vxgo =Y 0, Th(L)x
k=0

2L

where L = ==~ — I, where A;q, is the largest eigenvalue of the graph laplacian L. By the diagonalization
of the graph laplacian it is easy to see that:

Ty(L) = UT (MU

Thus, this kind of filter mitigates the non-locality of Spectral CNN and its high computational complexity.

79

Chapter 6. Graph Neural Networks (GNN)

Graph Convolutional Network

In GCN [44] it was first proposed to conduct a first order approximation of the ChebNet, which results in
limiting the layer-wise convolution operation to K = 1, mitigating in this way effectively the problem of

K,
overfitting. By setting K = 1 and approximating A\, =~ 2 the equation x * g9 = Y 0,1 (L)z transforms
k=0

to a linear approximation defined as:

x % gg ~ Oy + 0, (L — In)x ~ Oy — G;D_%AD_%Z‘

By setting 6 = 9(/) = —6/1 we constrain the number of parameters and minimize the number of operations,
such as matrix multiplications per layer, which leads to the simpler expression:

xxgg~ 0N+ DiéAD*%)x

A filter of this form, as it constitutes a first order approximation of ChebNet, convolves effectively the
1-hop neigbourhood of a node. Furthemore, successive application of filters of this form convolve the k
th-order neighborhood of a node, where k is the number of successive filtering operations or convolutional
layers in the neural network model. However, Iy + D=2 AD~% has eigemvalues in the range [0, 2], and thus
stacking multiple layers of this type can lead to exploding/vanishing gradients. To address this problem, the
authors propose the following renormalization trick I + D 2AD"% — D2 AD~% where A = A+ Iy and

D=5 j A;j. Now, the convolution operator takes the following compact form:

’

X =xxgp~ D *AD :X6©

where X € RV*¢ © € RC*F | 7 € RN*F C is the dimensionality of the input node vectors and F is the
dimensionality of the output node vectors. After the convolutional operator is applied, a non linear activation
function (e.g. ReLU) is usually applied to the output matrix X.

Summarizing, the propagation rule which governs a deep neural network with GCN layers is:

HHY = f(HO A) = o(D~* AD~2 HOW)

where W are the trainable parameters of the 1-th layer, H") is the matrix representing the node features
as calculated until layer 1 and ¢ is a non-linear activation function.

Hidden layer Hidden layer
L] | ° ‘
° ! '
[—
- * ° ®
° °
® ®
Input 7 ° . Output
\ [] e /
° % . L]
. Py — 4 RelLU — RﬁU N
by s ™ b —-7—» . el e ® .
* o \ J L] \ / L]
° * o * ™ a
e ® o
\ / \
L] L]
L] L]
[¢
« * o °
o ®
* * %

Figure 6.2.1: Multi-layer Graph Convolutional Network (GCN) with first-order filters

80

6.3. Spatial Approaches

The equation governing the GCN layer can be also perceived as a spatial approach, thus brldgmg the gap
between spectral and spatial approaches. In particular, we can rewrite the equation X' =D 2AD"2X0O in
a node-wise manner, underlying the spatial nature of the GCN layer:

’ €,
z, =07 L

JEN (i)Ui \/dA Cz

This equation represents that the updated vector for node 7 is calculated if we sum the normalized node
vectors of all its neighbouring nodes (including also itself) and multiply the result with a matrix of trainable
parameters. This model proved to be very efficient on a wide variety of tasks and is probably one of the most
significant breakthroughs in the field of GNNs inspiring many other important variants.

Ly (6.2.1)

6.3 Spatial Approaches

As we have seen in the previous section, GCN [44] played a pivotal role in bridging the gap between spectral
and spatial approaches. Spatial approaches use the spatial locality of nodes in order to define the graph
convolution. In this section we will describe the basic framework for most spatial GNNs as well as some of
the most important spatial architectures.

6.3.1 General Framework

The proliferation of diverse GNN variants has accentuated the pressing need for a unified and comprehensive
framework. In this section, we will describe the most prevalent framework for spatial Convolutional GNNs.

Message Passing Neural Network (MPNN) [34] is the most important framework describing the family
of Convolutional GNNs. The procedure is divided into two phases, namely the message passing and an
optional readout phase for graph-level tasks. The goal is to define a nonlinear transformation of node
embeddings that is differentiable with respect to a set of weight parameters and which maps the node
embeddings of layer [into corresponding node embeddings in layer [+ 1. For each node n in the graph and
for each layer | of the network we define as hl, the D-dimensional vector of the embedding of node n at layer

L.

The first phase, can be divided into two successive stages, usually defined by Aggregate and Update functions.
In the aggregation stage, for each node n, messages are passed to that node from its neighbours and are
combined to form a new vector z,. The aggregation function is defined as:

= Aggregate({h :m € N(n)})

The way 2!, is formed, is permutation invariant as it does not depend on the ordering of the neighbours. The
Aggregate function is quite flexible and it can also contain learnable parameters. The second stage, called
update, which is defined as:

1 l
R = Update(hl,, 2')
updates the embedding vector of node n. Usually there is a non linear function as part of the Update
operation. An Aggregate function followed by an Update one, constitutes one layer of the network. Multiple
layers of this type can be stacked in order to extend the message passing beyond the 1-hop neighbourhood
of each node.

The readout phase as we said is optional and it is usually used when graph level predictions are required.
In this case, the graph representation is obtained by employing the readout function R to all the embedding
vectors of the nodes produced by the final message passing layer, which we name K. Then, the readout
function is defined as:

he = Readout(hX|n € G)

81

Chapter 6. Graph Neural Networks (GNN)

where h¢ is the graph embedding. Generally, the aforementioned framework is easily extended to also include
edge features. By denoting el as the edge embedding vector of the edge connencting nodes n and m as
computed from the I-th layer of the network we can extend the message passing framework to also include
edge features. The message passing equations are extended with:

eltl = Updatecage (€l bLy, BL)
zﬁ{*‘l zﬁlggﬁegatemde({elJrl m € N(n)})
h“r1 Update,wde(h 2

n»~n

where the edge embeddings are updated by combining their previous state with the state of the nodes that
are connected to this edge.

There are many different possible forms of the Aggregate function. The simplest ones, that do not depend

on the ordering of the input, include summation Aggregate({hl :m € N(n)}) = Z hl, and average
meN (n)
Aggregate({hl, : m € N(n)}) = |N:(ln)| 3> hl, where [44] is a variation of this approach.

meN (n)

Another approach includes learnable parameters inside the aggregate function in the form of:

Aggregate({hl,, : m € N(n)}) = MLPy | Y MLP,(hl,)
meN (n)

As a result of the flexibility of MLPs, the above equation can approximate any permutation invariant function
that maps a set of embeddings to a single embedding [91].

As with the Aggregate function, the Update function, given the aggregated vector 2! and the hidden repre-
sentation h!, of node n, is usually generally defined as:

Update(h,, 2L) = f(W,hl, + W2l +b)

where f is a nonlinear activation function such as ReLLU. If we set W, = W, = W the updated state of node
n is then defined as:

W = Update(hl,,) = f(W > bl +b)

meN (n),n

As we have seen, the GCN operation from [44] can be described with the equation 6.2.1. This equation can
be easily derived from the MPNN framework we defined above. Using the MPNN framework we can describe
a variety of different spatial convolutional GNNs. Their difference lies mainly in the way they define the
aggregation, update and readout functions.

6.3.2 Spatial Variants

In this section we will present some of the most important spatial GNN variants, the majority of which can
be derived as a variant of the MPNN [34].

Graph Attention Network (GAT) [83] proposes to adopt the idea of attention presented in [82] which is
very powerful in the context of the transformer architecture, for graphs. Specifically, [83] proposes a variant
of the Aggregate function of the MPNN framework that combines the messages from neighbouring nodes in
a weighted manner. The weights are defined as learnable parameters of the neural network. The intuition
behind GAT is that by weighting the incoming messages from the neighbours, it can capture an inductive
bias that says that the messages from some neighbours may be more important from the messages of other
neighbours.

82

6.3. Spatial Approaches

The updated state of node i is now derived from the following equation:

Wit = f(Z a;Whi)

JEN(7)
where f is a non-linearity applied to the weighted aggregation of neighbooring nodes.

The learnable attention weights are calculated as:

aij = softmax(LeakyReLU (a” [WhiHWhé]))

where the variable a” denotes a set of learnable parameters usually a MLP, the softmax function is used to
ensure that the attention weights sum to one and || is the concatenation operation.

This self-attention mechanism described above, can be extended by introducing multiple attention heads,
where K independent self-attention mechanisms are applied to compute the hidden states of the nodes. The
final embeddings of the nodes can then be calculated by either concatenating the K different embedding
vectors produced by the different attention mechanisms or by taking the average of them. The equations
producing the new embedding of node i using the concatenation or the average operation are the following:

W =1, £ alwkhb)
JEN(i)

K
1
Wt =Fg) aj;WrhY)
k=1jEN(i)

k

where o are the normalized attention coefficients computed by the k-th attention mechanism.

The aforementioned mechanism is called Multi-head attention. Usually, when the GAT encoder is defined,
the number of attention heads should be also determined.

softmax

concatfavg
> by

Figure 6.3.1: Left: The self-attention mechanism employed by GAT. Right: An illustration of multihead
attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and colors denote
different attention heads. The aggregated features from each head are concatenated or averaged [83].

GATV2 [14] proved that the original GAT model [83] computes a static attention among the nodes of the
graph. In particular, GAT uses the attention mechanism to focus on the most relevant nodes in a graph
when updating the features of a specific node. However, the static attention problem that the standard GAT
layer exhibits, means that the ranking of the attended nodes is unconditioned on the query node. Thus,
the attention function defines a constant ranking of the nodes, unconditioned on the query node i, which
means that the GAT network doesn’t rank nodes’ attention score depending on the specific node pair, but

83

Chapter 6. Graph Neural Networks (GNN)

it produces global attention score rankings. In practice, this means that there is a node v in the graph, that

all the other nodes assign it the highest attention score and this is analytically proved in [14]. The original
GAT layer defines the scores e;; between two nodes i and j as:

eij = LeakyReLU (™ [WhliHWhé‘D

which are then passed through a softmax layer in order to produce the normalized attention weights. The
main problem with this formulation is that the learned layers W and o (which is a simple MLP) are applied
consecutively, and thus can be collapsed into a single linear layer, contstraining the expressive power of the
layer. To fix this limitation, in GATv2 [14] they propose to simply apply the o layer after the nonlinearity

(LeakyReLU), and the W layer after the concatenation, effectively applying an MLP to compute the score
for each query-key pair. The new scores for the nodes i and j are now defined as:

eij = o (LeakyReLU([Whi|| W)

which are then passed through a softmax layer to produce the normalized attention weights c;;. The key

difference here is that a” is now outside the non-linearity effectively computing dynamic attention. This is
much more expressive than the GAT layer with the same number of parameters.

kKO k1 k2 k3 k4 k5 k6 k7 kB k9 kKO k1 k2 k3 k4 k5 k6 k7 kB k9

011 0.09 0.20

qD =1 g
04 0.13 0.06 QREE] q] 0.
0,13 0.06 Q! g2 &
0,10 0.09 0.2 g3
g4
04 0.14 r.l.-:t- gb g
07 .10 0.08 S q? 0
qa
1.0
| s sk
| i [I
|I i i il 'u :
0.8 |I i ;- I’. ! '. :i. Q0
ll :‘ .: i; lll 'I ! .'I .I. ql
0.6 |/ 10 it e g2
T B AR
:I § ;;] j ... § = q4
0.4 | !!'- i I e L]
I|I h |I i |I :! T I; I:I II Q?
.: .i -. |I i .: i -; I: - q
0.2 1 III _il P Pagon 8
R H T
TR s SO P S S e ===
kO k1 k2 k3 k4 k5 kb6 k7 kB k9

kO k1 k2 k3 k& k5 k& k7 k8 k9
{a) Attention in standard GAT (Velickovic et al. (2018)) (b)) Attention in GATv2, our fixed version of GAT

Figure 6.3.2: In a complete bipartite graph we can observe that the standard GAT computes static
attention — the ranking of attention coefficients is global for all nodes in the graph, and is unconditioned on
the query node. Specifically in this case, all query nodes attend mostly to the 8th key (k8). In contrast,
GATv2 actually computes dynamic attention, where every query has a different ranking of attention
coefficients of the keys and every node attends the most with itself [14].

84

6.3. Spatial Approaches

GraphSAGE [36] learns a function that generates embeddings by sampling and aggregating features from
a node’s local neighborhood. The primary innovation of GraphSAGE lies in its ability to perform inductive
learning, which means that it can generalize to unseen nodes during the training process. The model operates
by sampling and aggregating information from a node’s neighborhood, capturing the local graph structure.
The key components of GraphSAGE can be summarized as follows:

e Neighborhood Sampling: GraphSAGE samples uniformly a fixed-size neighborhood around each
node, capturing its immediate local graph context. This sampling strategy allows the model to handle
large graphs efficiently.

e Aggregation Strategy: After sampling, GraphSAGE employs an aggregation function (e.g., mean,
LSTM) to combine information from the sampled neighbors. This step helps capture the structural
and relational characteristics of the node’s local environment.

e Learnable Aggregation Functions: The aggregation functions in GraphSAGE are parameterized
and learnable. This means that during training, the model adapts and refines the aggregation strategy
based on the characteristics of the graph data.

e Scalability: GraphSAGE is scalable to large graphs and computationally efficient due to its neighbor-
hood sampling approach. It allows for the representation learning of nodes in graphs with millions or
even billions of edges.

e Inductive Learning: One of the significant advantages of GraphSAGE is its inductive learning ca-
pability. The model can generalize its learned representations to nodes that were not present during
training, making it applicable to a wide range of real-world scenarios.

In the context of the MPNN framework, the equations describing the way GraphSAGE functions are the
following:

e Aggregation:
hlfv(z‘) = Aggregatek({h;?*l :Vj € Snw})

where Sy ;) is a random sample of the neighboorhood of node i.

e Update:
W = fwk - ni | hlf\l(i)])

where f is a non-linear activation function.

For the aggregation function, the authors of [36] proposed several variants, such as mean, max and LSTM
aggregation. However, as the aggregation function should not depend in the order of the neighboors (e.g
permutation invariant) the LSTM aggregation operation which is not inherently permutation invariant, should
be treated carefully in order to achieve permutation invariance. One way to achieve this according to the
authors, is to apply the LSTM operator to a random permutation of the node’s neighbors, assimilating in
this way an unordered set.

GraphSAGE is practically an extension of the GCN to inductive unsupervised learning. It is proposed that
it should be trained using an unsupervised graph-based loss, but can also be trained in a supervised manner
if needed.

7
@
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 6.3.3: Visual illustration of the GraphSAGE sample and aggregate approach [36].

85

Chapter 6. Graph Neural Networks (GNN)

Graph Isomorphism Network (GIN) [89] attempted to solve the following problem: when do graph
neural networks have the same discriminative capacity as the Weisfeiler-Lehman (WL) test? In particular,
we want a GNN to map different graphs onto different embeddings if the WL test decides they are non-
isomorphic. GIN [89] is the first spatial approach that addresses the inability of previous spatial models to
discriminate between different graph structures. The authors firstly denoted that the embeddings of a set
of neighboring nodes form a multiset. Then, the most powerful GNN should map two nodes to the same
embedding only when their neighborhoods form the same multiset, in order for the mapping function to
be injective and discriminative enough. Thus, they approached a GNN’s aggregation function as a class of
functions over multisets that a neural network can represent, and analyze whether they are able to construct
injective multiset functions. For this reason, GIN uses the Multi-Layer Perceptron and the sum function
as the aggregator. For each layer, node embeddings are summed and the result is concatenated. Thus, the
expressiveness of the sum operator is combined with the memory of previous iterations by using concatenation.
The authors proved that choosing the following update rule for node embeddings:

hl,=MLP((1+e)n™+ Y nih)
u€N (v)

results in the desired injective ability. In order to obtain graph level results, the authors propose to use node
embeddings from all depths of the neural network in the following manner:

ha =|1K. o (READOUT({hF|u € G}k =0,1, ..., K)

where the READQOUT is choosed to be a simple summation of the node embeddings of each level of the
network. In simple terms, in order to obtain an expressive enough graph representation, we sum the node
embeddings of all levels independently, and finally we concatenate them to obtain the final graph embedding
vector.

Graph AutoEncoder (GAE) and Variational Graph AutoEncoder (VGAE) are graph autoencoder
architectures proposed in [45]. Graph autoencoders are used for unsupervised learning on graph data.

The simple GAE consists of an encoder and a decoder as in traditional autoencoders. The encoder consists
of multiple GCN layers [44] with the goal to project the graph into a lower dimensional space. The encoder
takes as input the feature and adjacency matrices and produces the graph’s latent representation matrix 7
by sequentially applying the logic behing the GCN layer. In general, in order to build the encoder, one can
simply stack layers of any GNN encoder that produces node embeddings.

The decoder leverages the latent representation Z derived from the encoder to reconstruct the graph’s ad-
jacency matrix. This reconstruction process involves calculating the inner-product between the embeddings
of two vertices and subsequently applying the sigmoid function. The sigmoid function aids in predicting the
likelihood of a connection between these two vertices. The model undergoes training using the CrossEn-
tropy loss, comparing the real adjacency matrix A with the reconstructed adjacency matrix A. The equation
governing this process is presented below, where z, denotes the embedding of node v.

/L,_yu = dec(zy, 24) = 0(2X 2,)
Geonv Geonv

(L
QLunie

. Decoder
coney
Encoder

Figure 6.3.4: Visual illustration of how GAE works [88].

86

6.4. How to Use Graph Neural Networks

The VGAE, based on the variational autoencoder proposed by Kingma [43], is the variational version of GAE,
which aims to learn the underlying distribution of graph data. By learning the underlying data distribution,
the VGAE can be also used for generative tasks. In VGAE, an encoder transforms each node’s features
into a distribution in the latent space, allowing for the modeling of uncertainty. The model is trained to
reconstruct the adjacency matrix of the graph while simultaneously regularizing the latent space using the
Kullback-Leibler (KL) divergence. This incorporation of variational inference enables VGAE to capture the
inherent uncertainty in the graph structure. The distribution of the latent variables p(Z), known as the prior
distribution, is almost always set to be the Standard Normal Distribution. Hence, the encoder maps the
input data x to two vectors, the mean () and the standard deviation (o), which parameterize a multivariate
Gaussian distribution in the latent space. Usually, two GNNs are used in a VGAE to produce these two
vectors, using also an auxiliary method called the reparameterization trick. This method reparameterizes
the sampling operation in a way that makes it differentiable. Instead of directly sampling from the latent
distribution, the trick introduces a deterministic transformation involving a parameter-free noise term that is
sampled from a fixed distribution (typically a standard normal distribution). This way, the sampling operation
becomes differentiable, allowing for the backpropagation of gradients through the sampling process.

As we said, the loss of the VGAE includes the reconstruction of the adjacency matrix of the graph while
simultaneously regularizing the latent space using the Kullback-Leibler (KL) divergence. The regularization
is achieved through the Kullback-Leibler (KL) divergence term, which measures the difference between the
learned distribution ¢(Z|X, A) and the target Gaussian distribution p(Z). The optimization objective that
we seek to maximize, known as the Evidence Lower Bound (ELBO), is thus given by the following equation:

L = Eq(z|x,4) [log(p(A|2))] — KL(¢(Z]X, A) || p(2))

where the first term represents the reconstruction loss and the second term measures the discrepancy between
the prior and the approximate distribution.

6.4 How to Use Graph Neural Networks

As we have already described, the recent advancements in the field of Graph Machine Learning have given
rise to a plethora of Graph Neural Network (GNN) models, each specializing in specific tasks or offering
unique optimizations. Now that we have a clear picture of the most important variants, we can present the
tasks for which they are adept as well as the different possible training settings.

6.4.1 Exploring Task Types in Graph Neural Networks

GNN variants are able to produce embeddings in different levels making them flexible enough to focus
on various aspects of the graph structure. The different task types for which GNNs can be used, can be
categorized into three main categories, namely Node-Level Tasks, Edge-Level Tasks and Graph-Level Tasks.

e Node-Level Tasks: Node-level tasks focus on understanding and processing information at the indi-
vidual node level within a graph. In the context of GNNs, these tasks involve learning representations
for each node based on its local neighborhood, something that can be achieved by utilizing the node
representations computed by one of the already presented GNN models. This includes tasks such as
node classification, where the goal is to predict the label or category of each node, and node regression,
where the objective is to predict a continuous value associated with each node.

e Edge-Level Tasks: Edge-level tasks involve understanding and modeling relationships between pairs
of nodes in a graph. By using GNNs, useful conclusions can be drawn concerning the edges of a given
graph. Examples of edge-level tasks include link prediction, where the objective is to predict missing
or potential connections between nodes, and edge classification, where the goal is to assign labels to
edges based on their attributes or characteristics.

e Graph-Level Tasks: Graph-level tasks operate at the global level of the entire graph, considering
its overall structure and properties. These tasks involve summarizing the information from all nodes
and edges to make predictions or assessments about the entire graph. Graph-level tasks include graph

87

Chapter 6. Graph Neural Networks (GNN)

classification, where the goal is to assign a label to the entire graph, and graph regression, where the
objective is to predict a continuous value associated with the entire graph. To accomplish this, readout
operations, as we have already seen, are usually employed. The subject of this dissertation is focused
in making predictions in the graph level.

6.4.2 Diverse Training Approaches for Graph Neural Networks

Moreover, as it is the case for traditional neural networks, the different GNN variants can also be categorized
according to the type of signal they are trained with. The three fundamental types of training are namely
Supervised Learning, Semi-Supervised Learning and Unsupervised Learning.

e Supervised Learning: In supervised learning scenarios, data is labeled, encompassing classification
and regression tasks at the node, edge, or graph levels.

e Semi-Supervised Learning: Tasks in this category primarily operate on partially labeled graphs,
where only some nodes have labels. Node classification, performed in a robust manner, is a common
task in semi-supervised learning. Additionally, link prediction can be executed in a semi-supervised
fashion.

e Unsupervised Learning: Tasks characterized by completely lack of labels fall into the realm of unsu-
pervised learning. Examples include node clustering as well as learning meaningful and expressive node
and graph embeddings. Node and Graph embeddings, in particular, can be learned in a purely unsu-
pervised manner using an end-to-end encoder-decoder neural network such as VGAE [45] or through
contrastive learning techniques. Notably, in this dissertation we will use different variants that belong
to the contrastive learning family. Contrastive learning can be considered a form of self-supervised
learning. In self-supervised learning, the model is trained on a task where the labels are generated from
the input data itself, without requiring external annotations.

In summary, comprehending the versatility of GNN variants in terms of both task types and training ap-
proaches is essential for their effective utilization in diverse applications within the realm of geometric deep
learning. In the next section we will present in a detailed manner the basic concepts of contrastive learning
in graphs that we will use in this dissertation.

6.5 Contrastive Learning on Graphs

As we have already discussed in chapter 4 Contrastive Learning has emerged as a promising paradigm for
enhancing the representation learning process in machine learning tasks. Originally applied to image and text
data, contrastive learning aims to learn robust representations by contrasting positive samples with negative
samples. This methodology has shown remarkable success in capturing intricate patterns and semantics in
data. Extending the principles of contrastive learning to graph-structured data has become an active area of
research. The unique challenges posed by graphs demand tailored approaches. In this section, we delve into
the motivation behind employing contrastive learning techniques specifically for graph data, presenting the
most important ones that were used in the context of this dissertation.

6.5.1 Contrasting Modes

A key element for contrastive learning is to determine the contrastive mode [96] that will be employed.
The contrastive mode is used to define the sets of positive and negative samples, which are essential in
order to proceed to the calculation of the contrastive objective that will be optimized. In the context
of graphs, positive and negative sets are established at various levels of detail within the graph through
different contrasting modes. In common practice, three widely utilized contrasting modes are local-local CL
and global-global CL, which contrasts embeddings at identical scales, and global-local CL, which contrasts
embeddings across different scales [96]. Specifically, in same scale contrastive modes, embeddings of the two
augmented graph views corresponding to the same node or graph form the positive set, where all the others in
the batch are naturally selected as negatives. In cross-scale (global-local) contrastive mode, for every global
graph embedding s, the positive samples are considered all node embeddings v; within the graph. For node

88

6.5. Contrastive Learning on Graphs

datasets, only local-local and global-local CL are suitable, while all three modes can be employed for graph
datasets.

Node Graph
Graph . .
. representation representation
View
u; s
‘*:—A - =
— 3 7 ---+ Local-local contrasting
ﬂ) v, T‘(') Sy * Global-local contrasting
---+ Global-global contrasting
S S S

Figure 6.5.1: A general GCL framework which, after producing two augmented graph views, it encodes
them using GNN layers. The three different contrastive modes including node-node, graph-graph and
patch(node)-graph interactions, are illustrated using arrows of different colours [96].

6.5.2 Graph Contrastive Learning with Augmentations (GraphCL)

GraphCL [90] was one of the first contrastive learning approaches with augmentations for GNN pre-training
that was developed. One key element of constrastive learning are data augmentations which were under-
explored for graph-data. For this purpose, in GraphCL [90] four types of graph data augmentations were
first designed. These data augmentation techniques are utilized to produce correlated views (positive samples)
which are forced to be closer in the embedding space. GraphCL belongs to a class of models that employ
augmentation schemes that generate congruent pairs to model the joint distribution of positive pairs. The
proposed model is proved to perform mutual information maximization as we have examined it in chapter 4.

The data augmentation techniques, including both topology and feature augmentations, proposed in order
to define positive and negative samples are divided into the following categories:

e Node dropping: In the context of a graph G, node dropping involves the random removal of a specific
fraction of vertices and their associated connections. The fundamental assumption is that the absence
of these vertices does not alter the semantic content of G. The probability of dropping each node adheres
to a default independent and identically distributed (i.i.d.) uniform distribution, or any other specified
distribution.

e Edge perturbation: Introduces disruption to the connections within G by randomly adding or re-
moving a specific proportion of edges. This suggests that the semantic interpretation of G exhibits a
certain robustness to variations in the pattern of edge connectivity. Additionally, an independent and
identically distributed (i.i.d.) uniform distribution is used for the random addition or removal of each
edge.

e Attribute Masking: Attribute masking forces models to recover masked vertex attributes using the
remaining attributes. The underlying assumption is that missing partial vertex attributes should have
a minimal impact on the model predictions.

e Subgraph: This method of data augmentation samples a subgraph from G using a random walk.
The underlying assumption is that the semantics of G can be largely retained within its partial local
structure.

After the basic data augmentation techniques for graph-data are defined, the training procedure resembles
SimCLR [20]. Firstly, the provided graph G undergoes graph data augmentations to generate two correlated
views Gi7 éj as a positive pair. The strategic selection of data augmentations is crucial for different graph
dataset domains. Secondly, a GNN-based encoder f(-), which could be one of GCN, GIN, GAT among others,
extracts the graph-level embeddings h;, h; for the two augmented views of the original graph. Moreover, a
non-linear transformation g(-), named projection head, maps the augmented graph-level representations to

89

Chapter 6. Graph Neural Networks (GNN)

another latent space where the contrastive loss will be calculated. From this, it is evident that GraphCL
falls into the category of global-global CL contrastive mode. For the projection head, the authors propose a
two-layer perceptron (MLP), which is applied to obtain z;, z;.

The final step involves establishing a contrastive loss function, denoted as L(-), to enforce maximizing the
consistency between positive pairs z;, z; when compared to negative pairs. The authors propose the adop-
tion of the normalized temperature-scaled cross-entropy loss (NT-Xent) [62], [20] for this purpose, which is
practically the same as the InfoNCE loss and which we have presented in detail in chapter 4. For minibatch
training, a random minibatch containing N graphs is sampled, generating 2N augmented graphs. The nota-
tion is updated to z,_;, 2,; to represent the two augmented views of the nth graph in the minibatch. Negative

pairs are implicitly derived from the other graphs within the same minibatch, following the approach in [20].
T .

Introducing the cosine similarity function as sim(zy;, 2n,;) = %, the NT-Xent for the nth graph is
il 1Zn;

formally defined as:

exp(sim(zn, i, 2n.5)/T)
N
> exp(sim(zn,i, 2, ;)/T)

n'=1,n"#n

l, =—log

The total loss for each batch is then computed by taking the average of the terms [,, for all positive pairs in
the batch expressed by the following equation:

1 N
L= ﬁZln
k=1

The loss L can be rewritted for a batch of graphs as:

N .
1 exp (sim(2p i, 2n,;)/7)
L= N Z log —

=t) Z, exp(sim(zn,i, 2, ;)/7))
n'=1,n #n
1 al SIm(Zn is”n) N .
=¥ Z % —log Z exp(sim(zn,i, 2,7 ;)/7)
n=1 n' =1,n"#n
1 N . R 1 N N . A
=% Z sim (g(f(Gn,i))»g(f(Gn,j))) /T + N Z log Z exp (sim (g(f(Gn’i)),g(f(GnJ))) /7-) —log N
n=1 n=1 n' =1,n"#n

) +Epc, log (EP(Gj)eT(f<Gi),f<G,~)>) —logN

|
&=
E
Q
o
=
o
=~
o

where P (@Z, G i), P (G’Z), and P(G’ ;) are respectively the joint and the marginal distributions of the augmented
graphs. The function 7T'(+,-) is a learnable discriminator function parametrized by the similarity function
sim(+,) (usually the cosine similarity), temperature factor 7, and the projection head g(-).

Now we can see that, as in [62], [20], this form of loss fits the formulation of the InfoNCE loss (which is
the negative InfoNCE estimator that we have presented in chapter 4), such that minimizing it, is equivalent
to maximizing a lower bound of the mutual information between the latent representations of two views
of graphs. Consequently, minimizing this loss with respect to the neural network parameters, forces the
model to encode more similar graphs closer in the embedding space and push farther apart dissimilar ones.
Moreover, the authors argue that the projection head has a crucial role in this framework helping reaching a
much tighter lower bound compared with dropping the projection head.

90

6.5. Contrastive Learning on Graphs

—

\'\

ety Y

LT ik [TProjection [oS
] Head g(*

I.-'/ Add & Delete Edge
Q Drop Node & Edge
g

] Maximize
f('} : Agreement

89— g —> T~ L V ' -m-n jection
Shared GMMN-based Encoder II-*{_X— /*\ : “ W’ ! I ree gL I _.zj
—] ! f |
r .‘I
y,

~ i
' || Embeddings _‘_:/I h:: ‘*_a\\m_ o

Figure 6.5.2: The proposed framework for Graph Contrastive Learning where ¢;(|G) and ¢;(|G) are
augmentations sampled from an augmentation pool T and applied to input graph G. A shared GNN-based
encoder f(-) and a projection head g(-) are trained to maximize the agreement between representations z;
and z; via a contrastive loss [90].

6.5.3 InfoGraph

InfoGraph was proposed in [77] and in contrast with GraphCL which employs a global-global contrastive
mode, it uses local-global interactions in order to obtain graph level embeddings. In order to derive graph
level representations, the authors propose to maximize the mutual information between graph-level and
patch-level representations following the paradigm of Deep InfoMax [39]. This enables the produced graph
representations to capture shared aspects across all substructures (patches) which are present in the data.

In order to train the model in a mini-batch fashion, we can consider a mini-batch of training graph samples
G={G, ¢ G};V:l. No graph augmentation techniques are required for training. Passing the graphs through
a K-layer graph neural network with parameters ¢ yields node embeddings. After the initial £ layers of the
graph neural network, the input graph is encoded into a set of patch representations { hgk)} N |. Subsequently,
feature vectors from all depths are aggregated into a single feature vector that encompasses patch information
at various scales centered at each node as following:

h? = CONCAT({n{M}/)
H%(G) = READOUT({h{})
where, h{ denotes the summarized patch representation centered at node i produced by jumping concatena-

tion, and H?(G) is the global graph representation vector after applying the READOUT pooling function to
the concatenated node embeddings.

Moreover, instead of using the InfoNCE MI estimator, the authors propose the Jensen-Shannon MI estimator
in order to maximize MI on global/local pairs. For a mini-batch of N graphs the goal is to maximize:

) 1

B o. o

¢,¢—argrggg<c§ cl > L0 (hi; HO(G))
G ueG

where Iy is the mutual information estimator modeled by discriminator 7', and parameterized by a neural
network with parameters v. The Jensen-Shannon MI estimator is defined as we have seen in chapter 4 as:

Loy (h(G); HY(G)) = Ep[=sp(~ T (h{ (x), H (2)))] = Epscpr[sp(Tpu (hf ('), H? ()]

By denoting as P the set of nodes belonging to a graph G (positive samples) and as @Q the set of all other
nodes (negative samples), using cosine similarity (d) as the discriminator, we can compute the JS estimator
for each graph G easily using the formula:

91

Chapter 6. Graph Neural Networks (GNN)

h?eP(Q) 22 eQ(@)

Regarding the GNN encoder, the authors opt for GIN [89] since it imparts a more effective inductive bias for
graph-level applications. It is also crucial to carefully design graph neural networks to ensure discriminative
graph representations across various instances. For this purpose, the authors advocate for employing a
summation approach over a mean-based one for the READOUT function, asserting that it can yield significant
insights into the graph’s size.

Graph Convolution Encoder ~ Graph-level
Architect &) s representation of

[= Graph A
Graph A (2) rfl] ’
A P]") Training data of Training data of
() P Graph A vs. allnodes Graph B v.s. all nodes
CONCAT (Eq. 2) R ﬁ":) l]
I Patch-level
Al representation of
node 6

I I Egz_?—’

Figure 6.5.3: Two graphs are encoded into their corresponding feature maps by graph convolutions and
jumping concatenation. The discriminator takes a (global representation, patch representation) pair as
input and decides whether they are from the same graph. InfoGraph uses a batch-wise fashion to generate
all possible positive and negative samples in the batch. [77].

READOUT
(Eq. 3)

18podug
UOTIN[OAUOD)

e - T . B R S
+1 ' i
- @ U s W N

Ll fefe1]

6.5.4 Deep Graph InfoMax (DGI)

Deep Graph InfoMax [84] also inspired by Deep InfoMax [39] is similar to InfoGraph. However, it focuses
on learning unsupervised node and not graph embeddings via MI maximization, mostly for one graph and
not across a batch of different graphs. For this purpose, in order to obtain negative samples the authors,
propose to corrupt the original graph. This approach also falls into the category of global-local CL [96] as it
constructs global-local pairs in the following manner:

e Corrupt G to a new graph: H = C(G)
e Encode each node of both of these graphs in order to obtain patch (node) representations

e Summarize the true graph into a summary vector s by applying a readout function to the patch
representations of the true graph

e Score the encoded embedding vectors of both G and H, using the discriminator and G’s summary
vector s: D(v,s) for v in G and H

e Collate all the scores in a loss function that tries to maximize D(v, s) if v is the embedding vector of
a true node and minimize it if v is the embedding vector of a corrupted node.

92

6.5. Contrastive Learning on Graphs

Figure 6.5.4: An illustration of the most important steps of DGI [84].

For the encoder the authors choose the GCN [44] and for the READOUT function they use the mean of all
the node embeddings. For a simple corruption function, they propose to randomly shuffle the initial feature
matrix X of the original graph. More sophisticated approaches include corrupting also the adjacency matrix,
among others. For the loss function, they employ the Jensen-Shannon MI estimator we have already seen,
forcing the discriminator to give scores close to 1 for the true nodes, and scores close to 0 for the corrupted
nodes when they are compared with the summary vector s.

6.5.5 Deep Graph Contrastive Representation learning (Grace)

Grace, as introduced in [95], presented an innovative approach to unsupervised graph representation learn-
ing. This involves employing a contrastive objective at the node level, where two graph views are created by
performing various augmentations to the original graph data. The learning process focuses on maximizing
the agreement of node representations within these two views. In contrast to comparing node-level embed-
dings with global ones as in InfoGraph and DGI and in contrast to GraphCL which compares graph level
embeddings, the emphasis in GRACE is on contrasting embeddings specifically at the node level. Thus, the
contrasting mode employed, lies in the category of local-local CL [96]. The methodology involves generat-
ing two augmented graph views through randomly corrupting the topology and the node attributes of the
original graph. Afterwards, the model is trained using the normalized temperature-scaled cross-entropy loss
(InfoNCE / NT-Xent) to enhance the agreement among corresponding node embeddings in these views.
The augmentation techniques used include removing edges and masking features but no node dropping is
performed in order to keep the alignment between the same nodes in the two views. The loss used is exactly
the same as in the case of GraphCL except that instead of passing graph embeddings inside the loss we pass
node level embeddings. If we consider a mini-batch of graphs, for each node only one positive sample exists.
Negative samples are not calculated explicitly, instead, given a positive pair, negative samples are considered
all other nodes in the two views. This results in the following expression:

sim(ug,v;)

(& T

l(myw) = log sim(ug,v7) sim(ug,v) sim(ug,ug)
e

sim(ug,vg) N sim(ugo) N
T + D ki ki € 7 D ki kpi € 7

where in order to compute the loss for a positive pair of nodes, we need in the denominator to include both
inter-view negative nodes and intra-view negative nodes. Thus, the two summations in the denominator
represent these two quantities. In order to obtain the total loss in a batch, we simply take the average of
these losses over all positive pairs.

93

Chapter 6. Graph Neural Networks (GNN)

seRsss Original feawres

1 u e Corrupted features

Positive pairs
S Negative pairs (intra-view)

=== Negative pairs (inter-view)

Figure 6.5.5: An illustration of the local-local CL conducted by GRACE [95].

94

Chapter 7

Counterfactual Explanations

As Al systems become more prevalent in various aspects of our lives, it is crucial for users to trust and
understand the decisions made by these systems. Explainable AT (XAI) [3] refers to the set of techniques
and methodologies designed to make the decision-making processes of artificial intelligence (AI) systems
more transparent and understandable to humans . The need for XAl arises as Al models, particularly those
based on deep learning and complex algorithms, often function as "black boxes," making it challenging to
interpret their outputs and understand the underlying reasoning behind their decisions. XAI helps build trust
and promotes social acceptance of Al systems, especially in critical applications such as healthcare, finance
and autonomous vehicles. This happens because users are more likely to adopt and accept Al systems if
they can comprehend and trust the decisions made by them, especially in applications where human lives
or sensitive information are involved. Moreover, XAl can provide valuable insights into how models work,
enabling experts to debug and improve their models more effectively, identifying and addressing biases and
discrimination that may also arise from AI models.

In the context of this thesis, we will focus on a specific explainability technique known as Counterfactual
Explanations. In this chapter we will introduce the basic concepts behind this type of explanations and
explain their details thoroughly based on [31] and [23].

Contents
7.1 Introduction @ . @ i i i i i e e e e e e e e e e e e e e e e e e e 98
7.2 Conceptual Edits and Algorithmic Framework 98
7.3 GNNs for Semantic Counterfactuals, 101
7.4 Related Work 0 0 0 i i e e e e e e e e e e e e e e e e e e e 102

95

Chapter 7. Counterfactual Explanations

7.1 Introduction

Counterfactual Explanations are a concept commonly used in the field of explainable artificial intelligence
(XATI) to help users understand the reasoning behind a classifier’s predictions. The basic idea is to provide an
explanation by considering alternative scenarios. Specifically, these alternative scenarios relate to questions
such as "What has to change for this to be classified as X instead of Y?" or "What would need to change
in order for the model to make a different decision". In this way, they can provide valuable insights for
the decision-making process of classifiers. The goal is to explain why a particular prediction was made by
exploring what changes in the input features would lead to a different outcome. For example, in a credit
scoring model, a counterfactual explanation might reveal the changes in financial variables that could lead
to a more favorable credit decision.

Generally, good Counterfactual Explanations could posses several attributes which we will shortly explain
below:

e Model Agnostic: There are both model agnostic and model specific counterfactual explanation meth-
ods. The fact that counterfactual explanations can be generated for a wide range of AI models, including
model agnostic techniques that only work with the model inputs and outputs and not the internal struc-
ture of specific models, boosts them with increased flexibility. This is in contrast to other explainability
methods, such as decision trees which are effective for capturing non-linear relationships in data, but
they might struggle with very complex, high-dimensional spaces. Counterfactual explanations can still
be effective in such cases, dealing with complex black-box models like deep neural networks

e Actionability: Counterfactual explanations aim to explain a model’s decision by presenting a sce-
nario in which a different set of inputs would have led to a different outcome. Actionability becomes
relevant when considering whether the proposed changes in the counterfactual scenario are realistic
and implementable. An actionable counterfactual explanation is one that provides insights that can be
translated into actionable steps or decisions to achieve a desired outcome. In other words, it helps users
or stakeholders understand not only why a particular decision was made but also what changes can be
made to influence the decision in the future. For example, in the context of AI decision-making, if a
model denies a loan application, a counterfactual explanation may suggest changes to the applicant’s
features (such as income or credit score) that would have resulted in an approval. Actionability in this
context would involve ensuring that the suggested changes are practical and feasible for the applicant
to implement, such as improving their credit score over time.

e User Friendly: Counterfactual explanations are often designed to be more user-friendly and intuitive,
because they are contrastive to the current instance and because they are selective, meaning they usually
focus on a small number of feature changes. This makes them more suitable for applications where
end-users with varying levels of technical expertise need to understand and trust the model predictions

e Fairness: Counterfactual explanations can be used to explore and address biases in model predictions.
By generating counterfactual instances that lead to different outcomes, it becomes possible to identify
and mitigate biases in the model ensuring its robustness

e Instance Based Explanations: Counterfactual explanations are generation for every input sam-
ple. Instance-based explanations focus on a specific instance or prediction, providing a highly tailored
explanation for that particular case. This can be more precise and relevant to the user’s immediate
concerns

A good counterfactual explanation should be able to produce the predefined prediction as closely as possible.
However, there are usually multiple different counterfactual explanations for the same instance which explain
it equally well. Usually, the goal is to provide a minimal explanation which is the closest one in terms of
some distance metric, such as set edit or graph edit distance which we will use in this thesis.

7.2 Conceptual Edits and Algorithmic Framework

In this section, we will introduce the Counterfactual Explanation Framework presented in [31] and we will
show how it can be integrated in the context of scene graph retrieval using Contrastive GNNs. In particular,

96

7.2. Conceptual Edits and Algorithmic Framework

in [31] the authors propose a theoretical framework in order to compute the Optimal counterfactual path for
a specific input, in the context of black box classifiers. The method is based on the notion of conceptual edits
which are more interpretable and work on the semantic space instead of working in the pixel level. In order
to present the exact definition of conceptual edits we should first introduce some notation.

The approach makes use of the notation from Description Logics [80] in order to describe concepts and their
relationships. Concepts are the general representations of objects present in the input data. The Black
Box Classifier is formally denoted as F' : D — [0,1]¢ where c is the number of distinct classes and D is

the classifier’s input domain that we want to explain. Concerning the classifier, we only need to be able to
observe its output given a specific input.

Explanation Dataset

Features Black Box
{laptop, computer.n.01, Classifier - F
person, mamal.n.01,
{laptop, person} }‘Iapiop, computer.n.01, —’
\ o
\ /,
\ Tbox
| {laptop, computer.n.01,
| ; m cat € mammal.n.01
{apwgeg;arson \ person ¢ mammal.n.01 lpersan‘ I'I'Ial'l'18].I"I,I’..'P(‘:ll‘i L,
laptop € computer.n.01 aptop, computer.n.01,
teddy bear C plaything Ctoy | =)
(\
{cat, teddy bear ."I — {cat, mamal.n.01,
o I Pz \\\ teddy bear, pl}aymmg. —» [Veterinarians Office)
S 1oy, ...
e \\\
// \\ |
~ EY
{bed, teddy bear} {bed, furniture.n.o1,
teddy bear, toy, ...} Target Image
Local Counterfactual
Explanations
Target Label . Conceptual Edit
ey — cat
Inputs Outputs

Figure 7.2.1: An illustration of the Conceptual Edits as Counterfactual Explanations Framework [31].

An important concept used in this framework is the Explanation Dataset. Given the domain D of the

classifier (which can be for example images from the COCO dataset [52]) and a set of atomic concepts CN,
the explanation dataset is defined as:

(x4, C;), which is a set of tuples where x; € D and C; C CN

Another crucial detail is that, the atomic concepts C'N, should belong to an external knowledge, such as

WordNet [59]. In this way, it is ensured that there is a TBox for the atomic concepts providing us with a
hierarchy between them.

A TBox is a set of terminological axioms of the form A C B, where A, B C C'N, as they are defined in the
WordNet [59] noun hierarchy. A more useful representation of the TBox is if we consider it as a knowledge
graph. This graph is a directed graph G(V, E) in which every node represents a different atomic concept or
the universal concept T and the edges have a direction from A to B. If we ignore the direction of the edges
we have the undirected TBox graph. Moreover, weights can be assigned to the edges of the graph and if any
concept isn’t included in any other concept, it is included in the universal concept T

Now, we can define another important term used in the framework, called Concept Distance. The Concept
Distance dr (A, B) between two concepts A and B, is calculated in the undirected TBox graph and is defined
as the length of the shortest path between the two vertices corresponding to the concepts A and B. After we
have determined the Concept Distance we can now introduce the notion of Conceptual Edits.

97

Chapter 7. Counterfactual Explanations

A Conceptual Edit transforms a set of concepts A via one of the following three ways:
e Replacement of concept A € A with concept B ¢ A denoted as e4—p(A)
e Deletion of concept A € A denoted as eg—7(A)
e Insertion of concept B ¢ A into A denoted as er—spg(A)

Each of the aforementioned Conceptual Edits €;_,, where x,y € CN is linked to a cost following the edit
operation. This cost is equal to the concept distance dr(x,y) between the concepts z,y in the corresponding
TBox graph.

By leveraging the definition of a concept set edit, we can now establish a concept set edit distance for sets of
concepts. This distance is determined as the lowest cost produced by a series of concept set edits needed to
transform the initial set of concepts into the second set. Intuitively, the concept set edit distance measures
how conceptually similar two elements of an explanation dataset are and plays a crucial role in generating
counterfactual explanations.

However, as we have already discussed earlier in the previous section, at the core of a good counterfactual
explanation lies the fact that we want to find small conceptual alterations which lead to significant changes
in the classifier’s decision. In order to take this fact into account, we define, for two elements a = (z,,C,)
and b = (xp,Cp) of the explanation dataset, a measure called Significance of Transformation. Given the
classifier F, the TBox graph and the concept set edit distance for the set of concepts C, and C}; denoted as
Dy (Cy, Cy), the Significance of Transformation is defined as:

_ | F(za) = F(z)|
o(a,b) = Dr(Co.Cy)

Tt is evident that the quantity o(a,b) and as a result, the significance of the transformation, is high, when the
set edit distance between the concepts is small and the variation in the classifier’s output is high. Now, an
intermediate weighted graph can be computed, where there is a vertex for every sample of the explanation
dataset and each pair of nodes (a,b) is connected with a directed edge of weight ﬁ.

Finally, this intermediate weighted graph can be used in order to generate Local and Generalized Counter-
factual Explanations. These two types of counterfactual explanations are defined below:

e Local Counterfactual Explanations: This type of counterfactual explanations, assumes an expla-
nation dataset D = {z;,C;}, a classifier F' and the intermediate graph G(V,E) where V = D and E
contains edges of weight ﬁ for every pair of a,b € D. A local counterfactual explanation from an
element a of the explanation dataset to an element b of a different target class H, such that F(b) = H
and F(a) # H, is every path between nodes a and b. However, we want to find optimal counterfactual
explanations and therefore we keep only shortest paths on the constructed graph that correspond to a
set of conceptual edits that transform the concept a to a different concept belonging to the target class
H in a minimal way

e Generalized Counterfactual Explanations: This type of counterfactual explanations involves the
computation of counterfactuals for only a subset of instances of the explanation dataset, which are
usually samples classified to a specific class by the classifier. Given also a target class H, Generalized
Counterfactual Explanations is a measure of importance for every concept C. Intuitively, this impor-
tance measure, is a quantity that calculates how often a concept is deleted or inserted in order to lead to
a transformation leading to the target class H, starting from the instances of the selected region of the
explanation dataset that are classified to a different class. Introducing some mathematical formalism,
lets denote a region of the explanation dataset D as Rg. Given that Eg, is the multiset containing
the conceptual set edit transformations, generated by the optimal local counterfactual explanations in
order to transform every element of Rg to the target class H, the importance of every concept C € CN
is calculated according to the following formula:

Hezsc € Ery }| — [{ec—z € ERrg
|Rq]

98

7.3. GNNs for Semantic Counterfactuals

where x € C'N.

In order to determine the overall complexity of the proposed framework, we should carefully look at the
calculations involved at every step of the general algorithm. Let’s analyze the process and break it down into
its constituent algorithms.

At the first stage of the algorithm, the Concept Distance between all pairs of the present concepts on the
undirected TBox graph should be calculated. This is achieved using Dijkstra’s algorithm on the udirected
TBox graph where each vertex corresponds to one concept and every edge corresponds to one subsumption
relationship between two concepts. Dijkstra’s algorithm can effectively compute the shortest path between
every two concepts.

Subsequently, at the next stage of the process, the Concept Set Edit Distance from one set of concepts A
to another set of concepts B should be calculated. This quantity measures the minimal conceptual edits in
order to turn the set of concepts A into the set of concepts B. This is achieved by constructing a bipartite
graph where each concept belonging to A is connected to every concept belonging to B, after the deletion of
common concepts of the two sets. Each concept is represented by a node in the bipartite graph and the edges
of this graph are assigned with weights. The values of these weights are equal to the concept distance between
the two concepts that the edge connects and they were calculated using Dijkstra’s algorithm in the first step.
Then, the Concept Set Edit Distance is computed by calculating the minimum weight full matching of the
bipartite graph by using Karp’s algorithm [42] which has a time complexity of O(]A||B|log|B|).

Finally, in order to compute Local Counterfactual Explanations, a graph, with vertices all the elements of the

explanation dataset and edges with weights U(i"b) = F?IT@()C—' “ﬁ?;i)l for all pairs of elements of the explanation

dataset, is constructed. The quantity Dr(C,, Cy) is the Concept Set Distance calculated in the second step
using Karp’s algorithm. This algorithm also provides us with the minimal edits needed in order to compute
this set distance which are then placed as labels to the edges of the constructed graph. Now, by using again
Dijkstra’s algorithm in order to compute shortest paths in the constructed graph between two elements of
the explanation dataset, the Optimal Local Counterfactual Explanations are generated.

7.3 GNNs for Semantic Counterfactuals

However, the aforementioned framework proposed in [31], suffers from certain limitations. While the definition
of concepts as objects or relations semantically enriches the proposed approach, by leveraging Set Edit
Distance to measure the discrepancy between two samples (e.g images) of the dataset, crucial information
regarding the way the objects are related, is sacrificed. Following the approach presented in [24] we leverage
Graph Neural Networks in order to take full advantage of graph structured data. Specifically, by representing
the input data as semantic graphs, something that, in the case of images, means that we work with the
corresponding scene graphs, the relations between the sets of concepts (e.g the edges between nodes in scene
graphs) are taken into consideration and therefore a richer representation is used in order to obtain conceptual
counterfactual explanations.

In this case, instead of calculating the Set Edit Distance, it is crucial to be able to calculate the Graph Edit
Distance (GED) between the semantic graphs of the dataset. By calculating GED, our model will be later ca-
pable to retrieve the most similar graphs belonging to another, target class, and therefore generate a semantic
counterfactual explanation for a vision classifier’s decision. The set of edits of this counterfactual explanation
will be consisted of the vertex/edge insertion, deletion and substitution operations as calculated from GED.
However, these graph edits cannot be exactly calculated as GED relates to the NP-hard graph similarity
problem. In order to bypass solving this computational expensive problem, or using a still computational
expensive GED approximation algorithm, we leverage GNNs in order to obtain scene graph representations
on the embedding space. By reassuring that our GNN model embeds scene graphs with respect to their
graph proximity relationship, we can retrieve, for a given query graph, the most similar data points of the
explanation dataset belonging to a target class and then compute GED only between the query graph and
the most similar retrieved one, thus yielding the necessary graph edits to transfer to the target class. As a
result, the computational cost needed to obtain the counterfactual explanations is significantly reduced as
the GED is computed only between the query graph and the most similar retrieved ones and not between all
possible candidates.

99

Chapter 7. Counterfactual Explanations

The specific architectures that we will explore for the GNN encoder, belong to the family of Contrastive
GNNs. In this way, the training procedure of the neural network can be completely unsupervised (or weakly
supervised) and no need of expensive pre-computation of GED is necessary. Moreover, integrating Contrastive
GNN s to this semantic counterfactual explanation framework, completes the line of work proposed in [24],
where Graph Autoencoders and Supervised GNN encoders are extensively studied.

7.4 Related Work

Counterfactual explanations have attracted the attention of a significant proportion of researchers. As a
result, many works have been published focused in this field in recent literature. The vast majority of
these works focuses on visual classifiers. These approaches leverage feature level attributes in order to find,
highlight and modify impactful areas of an image that lead to a different classification result. Approaches
proposed from Goyal et al. [35] and Vandenhende et al. [81] are based on pixel-level edit methods, focusing
on marking and altering significant image areas to influence the model’s predictions. However, what stands
out in [81] is the usage of an auxiliary model for semantic similarity prediction between local regions, in an
attempt to enforce semantically consistent area exchanges.

Moreover, several works includes external knowledge from ontological knowledge, such as knowledge graphs,
semantically enriching the model. This is illustrated in works such as [76], where the WordNet hierarchy is
used, and in [1] where an ontology-based approach is used to assist a classifier for a semantic segmentation
task by providing explanations for misclassification errors.

Finally, the majority of works combining Graph Neural Networks and Counterfactual Explanations, are
focused on explaining GNNs themselves and not providing Counterfactual Explanations using GNNs. More
details can be found in Lucic et al. [55] and Bajaj et al. [6].

100

Chapter 8

Proposal

In this chapter, we propose the Contrastive Graph Neural Network model, that will be used to tackle the
problem of Scene Graph Similarity in the context of the Information Retrieval task on the Scene Graph
dataset, Visual Genome. In particular, all the experimentation with the original contrastive models as well
as the proposed rank aware fine tuning will be presented and explained thoroughly. In the following sections,
we first highlight the main contributions of this thesis and after that present the proposed models in detail.

8.1 Contributions

Below, the key contributions of this thesis are summarized:

e We employ various Contrastive Graph Neural Network approaches to investigate Scene Graph Similarity
as our chosen task. To the best of our knowledge, there has been limited academic focus on utilizing
Graph Contrastive Learning to address this issue. Therefore, our objective is to provide a comprehensive
overview of the problem, the methodologies we employ for its resolution, and to offer an additional
perspective through the use of contrastive methods, complementing the existing approaches in [24] and
[25].

e By employing Contrastive Approaches, we can train the models in an unsupervised manner, eliminating
the necessity to calculate Graph Edit Distance between graph samples. Moreover, these architectures
eliminate the need for pairs of graphs during training, thereby decreasing the sample order from O(n?)
in supervised models to O(n). These two essential factors are the main drivers behind the expedited
training of the proposed models.

e We thoroughly study the performance of various Graph Convolutional variants as building blocks
in the employed Contrastive approaches for the scene graph retrieval task. We observe that Graph
Contrastive pretraining, whether on dense or sparse random graphs, represents equally competitive
approaches. Additionally, we propose Rank Aware Fine-tuning for a selected pool of scene graphs as a
further optimization of the original models. This, coupled with the use of a small percentage of ground
truth, enhances the retrieval capabilities of the models. Furthermore, we evaluate the impact of these
different architectures by assessing both quantitative and qualitative results in the Graph Similarity
task.

e The GNN models we propose generate similarity scores for all Scene Graphs, enabling their integration
into a Counterfactual Explainer Framework, similar to the one outlined in Chapter 7. The resulting
comparative results serve as the basis for generating counterfactual explanations. Importantly, there is
limited previous literature that combines these elements to make this task of Al interpretability easier.

101

Chapter 8. Proposal

Node Graph
representation representation

0, Lo,

— . S —

(I 2 r N ---+ Local-local contrasting
ﬂ:} ! v, T‘{‘} S5 * Global-local contrasting

---+ Global-global contrasting
S

Figure 8.2.1: Training pipeline of Contrastive GNNs [96].

8.2 Proposed Models

The GNN models we experiment with are based on Graph Contrastive approaches applied at various levels
of granularity within the graph. Specifically, we use GraphCL, InfoGraph, and Grace, each calculating
the contrastive loss at the Graph-Graph, Graph-Node, and Node-Node levels, respectively as presented in
Chapter 6. This explicitly determines the way the models are trained and evaluated.

e Training: Contrastive GNNs receive batches of graphs as input, with their primary goal being to
generate meaningful representations that capture the underlying structure and relationships within
the graph. Specifically, this is achieved by leveraging the idea that similar nodes/graphs should have
corresponding representations. Consequently, in this training context, each dataset of N graphs provides
N samples for training. In contrast, supervised GNN approaches for graph similarity utilize pairs of
graphs from the original dataset. This straightforward distinction significantly reduces the training
time of the GNN model from O(n?) to O(n), where n is the number of samples.

e Evaluation: The evaluation process of the proposed Contrastive GNN models involves simply passing
the graph as input to the trained GNN Encoder to obtain the final Node Embeddings. Subsequently, a
Global Pooling method is employed to derive a single Graph Level Embedding. This procedure is quite
fast, requiring minimal computational power (less than 1 second for the inference of 1000 graphs).

The training process follows the outline presented in Figure 8.2.1. The input consists of batched scene
graphs, which are then processed by a GNN Encoder. The encoder comprises stacked layers of a GNN
variant combined with other types of standard layers like activation, normalization, and dropout. The GNN
model produces node-level embeddings, which are then pooled to create global graph embeddings.

During training, a set of scene graphs passes through the model, computing the contrastive loss under one
of the modes: Local-Local, Global-Local, and Global-Global, and back-propagating it through the network.
In particular, for the three different approaches we employed, leveraging contrastive loss at three different
granularities of the graph, we use the Mutual Information estimators proposed by the authors. Specifically,
in GraphCL [90], which functions under the Global-Global mode, and in Grace [95], which works under the
Local-Local mode, we use the InfoNCE Mutual Information estimator as loss. For InfoGraph [77], operating
under the Local-Global mode, we use the Jensen-Shannon Mutual Information estimator. Following the
example of [20], we incorporate a projection head (e.g., MLP) after the base GNN encoder and calculate
the contrastive loss in the embedding space spanned by this projection head. After training, the authors
of SimCLR [20] recommend discarding the projection head. In our case, during inference, we experimented
with both using and not using the projection head, selecting the model that exhibited the best performance
each time.

The GNN encoder’s implementation holds a pivotal role in the overall process. Figures 8.2.2 and 8.2.3
provide a detailed insight into the design of the GAT/GATv2 [83, 14] and GCN/GIN [44, 89] variants,
respectively.

102

8.2. Proposed Models

|
1
)

—_—

Concatenation —

II
-

-——

Figure 8.2.2: Design of GAT/GATv2 encoder variants

In the layers illustrated in 8.2.2, GAT or GATv2 convolutions are followed by the ReLU activation function.
Incorporating dropout allows users to deactivate neurons with a probability parameter p to prevent overfitting.
The attention variants demand careful consideration in dimension definition due to the application of multi-
head attention, wherein input dimensions are multiplied by the number of heads in each layer.

Conversely, the architectures of GCN and GIN variants differ primarily through the utilization of batch
normalization after each convolutional layer. Concerning GIN, designing an MLP model becomes necessary
to train the weight parameter of the central node of the convolution. We chose a linear fully connected layer,
succeeded by a ReLU activation function, and another fully connected linear layer, as proposed in the GIN
paper [89]. Dropout is once again employed.

It is noteworthy that the node embeddings generated by each layer of the GNN encoders are concatenated
before being pooled. This practice aims to preserve more information gathered throughout the process,
creating more expressive graph embeddings, which have demonstrated superior performance in the scene
graph retrieval task. Such an approach is also used in the GIN paper [89].

We must also establish a Global Pooling function for aggregating Node Embeddings into a singular Graph
Embedding. Following trials with commonly used global pooling functions (mean/max/min/sum), it became
apparent that the Sum pooling function delivered the most favorable results. As a result, all ultimate models
incorporate this particular function. This decision aligns with the approach of GIN’s [89] creators, who also
chose to sum node embeddings to enhance expressivity. To optimize efficiency, these operations are preferably
conducted in batches

For inference in the context of the Scene Graph Retrieval Task, the final graph embedding vectors are
compared as classical vectors, and for this purpose, we decided to use cosine similarity. We also experimented
with Lo distance, but there was a significant performance drop in this case.

In all cases, within the frameworks of GraphCL, InfoGraph, and Grace, with careful hyperparameter tuning
and the selection of the best GNN encoder in each instance, these models delivered competitive results in
an inductive setting compared to Graph Kernels, surpassing them by a small margin. To further enhance
the desired metrics, we draw inspiration mainly from [56] (for a more in depth view one can look at [19]),
where weak supervision from the text modality (the image captions of the corresponding scene graphs) is
leveraged to bring scene graphs with more similar captions closer together and push dissimilar ones apart. In
pursuit of this, we modify the rank-aware loss to provide weak supervision from a distance perspective using
Graph Edit Distance rather than using caption similarity. After initially pretraining a model within one of
the frameworks GraphCL, InfoGraph, or Grace, we proceed to fine-tune it. During this fine-tuning phase,
the model is exposed to a limited percentage of Graph Edit Distance (GED) ground truth. The rank-aware
loss, defined in the equation below, operates in a contrastive fashion. It processes triplets of scene graphs.

103

Chapter 8. Proposal

—iN
F *
y y
= N
T hg —m— hy
Y Y Y
Concatenation

Figure 8.2.3: Design of GCN/GIN encoder variants

For a given anchor A, we uniformly and randomly sample two other scene graphs. The one with the smallest
GED from the anchor is considered a positive sample P, while the other is treated as a negative one, N.

L = —PlogP — (1 — P)log(1 — P)

In the equation above, the graph embeddings of A, P, N are denoted as fa, fp, fn and are produced by
the GNN model. The probability P of having similarities (or distances) in the correct order is calculated

5 fAfp—fAfn (s 1 1 d
as P =o <%) Additionally, P(day > dap) = P (— < m) = P(say < sap) = —dax

dan dap+dan’
represents the desired target value.

By using this loss, which ’punishes’ the model whenever the negative sample is embedded closer to the anchor
than the positive one, the initial meaningful embeddings produced through Mutual Information maximization
are further improved. Consequently, the newly fine-tuned GNN can be employed for scene graph retrieval,
resulting in even more competitive results compared to graph kernels.

The upcoming chapter will provide details on the particular hyperparameters and other selections (such as
layers, latent size, epochs, batch size, optimizers, augmentations etc.) for each model.

104

Chapter 9

Experiments

In this chapter, we will provide a thorough explanation of the experiments conducted to assess the proposed
models and compare them to our baseline, Graph Kernels. This section begins by presenting preliminary
information about the Visual Genome dataset, along with the preprocessing steps applied to the scene graphs.
Subsequently, we will delve into the utilization and implementation of Graph Edit Distance to derive the
Ground Truth, accompanied by a detailed presentation of the Evaluation Metrics relevant to the Information

Retrieval task.

Having laid the groundwork, we proceed to analyze our experimentation with the Contrastive GNN models,
followed by the presentation of evaluation results. In addition to quantitative findings, we include visual repre-
sentations of the most similar images to provide a qualitative and more intuitive insight into the performance

of the proposed models.

Contents
9.1 Preliminaries 0 0 i i e e e e e e e e e e e e e e e e e e e 108
9.1.1 Dataset e e e e 108
9.1.2 Evaluation Metrics e 112
9.1.3 Ground Truth e 114
9.2 Training Details 0 0 0 i i e e e e e e e e e e e 117
9.2.1 Graph Kernels e 117
9.2.2 GNNS e 118
9.3 Results i i e 119
9.3.1 Quantitative Results 119
9.3.2 Qualitative Results L Lo 124

105

Chapter 9. Experiments

9.1 Preliminaries

9.1.1 Dataset

The dataset that we will use is Visual Genome [47], a large-scale dataset focused on visual understanding
using graph structured information, particularly in the realm of computer vision. It contains over 108k
images which are detailed annotated, including objects, relationships, and attributes within the images as
well as region and image descriptions. All these entities are also mapped to WordNet synsets. This dataset
serves as a benchmark for evaluating the performance of algorithms and models in tasks related to image
understanding, object recognition, and scene analysis. The scene graphs provided in the dataset are paired
with images mainly from the MS-COCO [52] dataset.

Figure 9.1.1: An example of an image alongside with its corresponding scene graph where the types of
relationships have been removed

As it is evident from the figure above, scene graphs capture effectively the semantic content of an image by
representing objects as nodes and their interactions as edges in the graph.

Data preprocessing

To process the scene graphs using graph neural networks, we need to preprocess them to determine the initial
node attributes and establish our approach to utilizing the relationship information provided in the original
dataset. Below, we provide a detailed explanation of our methodology.

e Node Attributes: The original Visual Genome scene graphs lack node attributes. However, Graph
Neural Networks (GNNs) necessitate a feature matrix with numerical values as input. To overcome
this limitation, we utilized the ’objects’ field from the original dataset. Within this field, for each
scene graph, we extracted the synsets and names associated with every object present in the image. To
convert the string descriptions of objects into numerical vectors, we employed GloVe Word Embeddings
[65], a well-established method in the field of Natural Language Processing (NLP) trained on word co-
occurrence, effectively capturing the concepts conveyed by the words. Specifically, for each object name,
we conducted a straightforward lookup in the GloVe table to obtain the corresponding node features. We
opted for the 300-dimensional version of GloVe embeddings, as they consistently improved performance
by providing more comprehensive information about the objects. In the same time, we kept the node
synsets in order to later feed them to the GED algorithm that computes the ground truth using the
"is-a" hierarchy provided by WordNet [59]. For this purpose, we removed all nodes without synsets
assigned to them in order to make them WordNet compatible. The exact procedure will be presented
in the ground truth subsection. Additionally, we removed the ’attributes’ field from every object to
exclude redundant information from our graphs. For instance, in the case of an image containing a car,
potential attributes might include its color or brand. To ensure our models focus on the presence of
the car rather than intricate details, we decided to disregard this additional information.

106

9.1. Preliminaries

e Edges: To leverage the relationships field provided in the original dataset, we opted to represent all
relationships as directed edges connecting the object to the specified subject. Similar to node attributes,
relationships exhibit various types. However, we chose not to incorporate this additional information,
given that the majority of graph kernels do not consider edge features. Moreover, the approximate
bipartite matching Graph Edit Distance algorithm [29] used to compute the ground truth primarily
accounts for node information. Besides that, the core semantic information of the images, in which
we are mostly interested, resides in the objects represented as nodes and for simplicity we decided to
disregard this additional information.

Following the aforementioned preprocessing, the subsequent task involves identifying the subset(s) of scene
graphs that will be utilized for training and evaluation in the retrieval task. As we experiment with Con-
trastive Graph Neural Networks (GNNs) under various modes (Transductive and Inductive), we have initially
selected specific subsets of scene graphs with defined attributes. In either case, we have set the number of
scene graphs in each pool to be 1000, where each scene graph within a pool will serve as a query graph for
the retrieval task, and the other 999 graphs will be used as answer graphs. In this manner, by ensuring that
the Answer Set is sufficiently large to encompass a diverse range of graphs, the evaluation of the proposed
retrieval models can be more accurate.

We will now describe the procedure we employed to define and select scene graphs from two different cate-
gories, namely Dense and Random Scene Graphs. The motivation behind this split into two pools of 1000
graphs is twofold.

On the one hand, we observed that the vast majority of scene graphs in the dataset were very sparse (e.g
have low density). These graphs featured numerous isolated nodes, impeding the effectiveness of the message
passing scheme executed by GNNs, as well as the functioning of various Graph Kernels reliant on node
connections. A sparse (randomly selected scene graph) can be seen in Figure 9.1.3 where one can see the
obious sparsity of the graph. The primary motivation behind this choice was to leverage the GNN message
passing capabilities to their fullest extent in the dense subset, given the limitations posed by sparse scene
graphs.

On the other hand, the selection of the random subset was driven by its characteristic of being an uncon-
strained sub-dataset, requiring no specialized handling. Furthermore, our interest extended to examining
the adaptability of a pretrained Contrastive GNN in a random subset and assessing its performance when
applied to a more constrained dataset like the dense one.

To create the Dense Set, we introduced specific criteria for selecting scene graphs. Specifically, we chose
graphs with a minimum of 3 nodes and 3 edges, and their density values fell within the range of [0.1, 1.0].
The key element here lies in adding the density constraint to enhance the utilization of GNN Message-Passing
capabilities. Graph statistics for the Dense Set are depicted in Figure 9.1.4.

For the Random Set, we simply picked 1000 random graphs, imposing two constraints. Firstly, the number
of nodes had to be equal to or greater than 6, and the number of edges had to be equal to or greater
than 3. These constraints were applied in order not to consider graphs with limited number of objects and
relationships (edges). Basic statistics for the Random Set are depicted in Figure 9.1.2.

Tt is important to note that in subsequent experiments, if necessary (e.g., in inductive settings), we will utilize
a distinct randomly selected set, subject to the same constraints, exclusively for training purposes. Inference
will consistently be carried out within either the Original Dense or Random Sets.

107

Chapter 9. Experiments

Number of Nedes per Graph

40 60 80

Number of Edges per Graph

30 40 50
Density per Graph

0.20

Figure 9.1.2: Statistics for scene graphs in the Random Set

.)

Figure 9.1.3: An example of an image alongside with its corresponding scene graph from the Random Set.

108

9.1. Preliminaries

Number of Nedes per Graph

1501

100

= J
4 6 8 10 12 14
Number of Edges per Graph

160

140

1204

100 4

5 10 15 20 25
Density per Graph

05 0.6 0.7 0.8

Figure 9.1.4: Statistics for scene graphs in the Dense Set

‘.‘,’»:'?', % =i T
Lo MR = e

«

Figure 9.1.5: An example of an image alongside with its corresponding scene graph from the Dense Set.

109

Chapter 9. Experiments

9.1.2 Evaluation Metrics

As it has been made evident through this thesis, the task for which we employ Graph Kernels and Contrastive
Graph Neural Networks is an Information Retrieval task. Consequently, the methods used ultimately output
ranked lists of the most similar scene graphs for a given query. Therefore, the metrics suitable for comparing
results with the ground truth, as established by the approximated Bipartite Matching GED algorithm, and
for evaluating our models’ performance are traditional information retrieval metrics.

In the context of information retrieval, MAP (Mean Average Precision), MRR (Mean Reciprocal Rank), and
NDCG (Normalized Discounted Cumulative Gain) are important and the most prevalent evaluation metrics
used to assess the performance of information retrieval systems, and these are the metrics that we will use.

These metrics are offline, order-aware, and suitable for evaluating Information Retrieval Systems by compar-
ing the rankings of ’Actual’ and "Predicted’ results for the same Query object. ’Order-Aware’ indicates that
returning an actual relevant result at rank one is more favorable than at rank four within the context of these
metrics. An essential aspect of this process involves determining the size of relevant answers and the number
of predicted elements for evaluation. To strike a balance, we have chosen to consider as 'Relevant’ the first
50 elements of the ’Actual’ rankings and evaluate on the first 10 of the 'Predicted’ elements.

This prevents overly optimistic metrics (such as MRR) when the size of 'Relevant’ elements is too long or a loss
of effectiveness when it’s too short due to a high number of 'incorrect’ items in the 'Predicted’ ranking. These
considerations are crucial for ensuring a meaningful evaluation of our models. In the upcoming definitions,
we will practically set k to 10 in our experiments.

Mean Reciprocal Rank (MRR@K)

The Mean Reciprocal Rank (MRR) is a metric that evaluates the effectiveness of a recommendation system
by considering the reciprocal rank of the first relevant item returned in the "Predicted" list of elements.
Reciprocal rank is the multiplicative inverse of the rank of the first relevant item. The idea behind MRR is
to reward systems that place relevant items higher in the recommendation list.

The MRR@K for a set of queries is defined as:

1Ql

1 1
MRROK = — % ——
RR Q| ; rank;

where @ is the set of queries, rank; is the rank of the first relevant item returned for query 4, and |Q)| is the
total number of queries. Some key characteristics of MRR@K include:

e MRR focuses on the rank of the first relevant item, emphasizing the importance of presenting relevant
items early in the list. For this reason, it is in general easily interpretable compared to other metrics

e MRR values range from 0 to 1, where 1 indicates that the first relevant item is always ranked first
across all queries

e Nevertheless, MRR has its constraints. It fails to consider the placements of subsequent pertinent items
beyond the initial one and treats all relevant items with equal importance. To illustrate, suppose we
want to suggest around 10 products to a user. We request the information retrieval (IR) system to fetch
10 items. It’s possible that only one item in the top rank is truly relevant, with the rest being irrelevant.
While having nine out of ten irrelevant items is a disappointing outcome, the Mean Reciprocal Rank
(MRR) would still yield a perfect score of 1.0. Consequently, it is frequently employed in conjunction
with other metrics like Average Precision or NDCG to provide a more comprehensive evaluation

Mean Average Precision (MAP@K)

Mean Average Precision (MAP) is a metric that assesses the quality of a retrieval system. It quantifies the
average precision values for various retrieval queries and then computes their mean. Precision is a measure
of accuracy, specifically the ratio of relevant instances retrieved to the total instances retrieved. The main
components essential for the calculation of MAPQK are presented below.

110

9.1. Preliminaries

1. Precision:

e Precision is calculated for each position (up to K = 10 for our experiments) in the "Predicted"
ranking list returned by the retrieval system. It is the ratio of relevant instances to the total
number of instances retrieved up to that position.

e Precision at rank k is given by:

Number of relevant items among the top k

Precision@k = 3

2. Average Precision (AP):

e Average Precision is the average of precision values at all positions where a relevant element is
present in the "Predicted" List. It is computed by summing the precision values at each relevant
position and dividing by the total number of relevant instances.

e It is defined as following:

SO%_, Precision@k x rel(k)

APQK =
Total number of relevant instances

where K is the total number of items in the "Predicted" list (e.g in our experiments K = 10), and
rel(k) is an indicator function equal to 1 if the item at rank k is relevant and 0 otherwise.

3. Mean Average Precision (MAP): MAP is the mean of AP values calculated in the previous step
across multiple queries. It is defined as:

Q
MAPQE — 21—15@@[(

where Q is the total number of queries.

An important aspect of MAPQK metric is that it places importance on the correct ordering of relevant
items. A system that consistently ranks relevant items higher will have a higher MAP score. In general,
MAPQK is particularly relevant in scenarios where the order of retrieval matters, such as search engine
results, recommendation systems, and object detection. However, it is sensitive to the number of relevant
items in the dataset as a small number of relevant items may lead to a less reliable evaluation. MAPQK
provides a clear, interpretable measure of system performance, as it directly relates to the precision and
ordering of relevant items.

Normalized Discounted Cumulative Gain (NDCGQ@K)

Normalized Discounted Cumulative Gain (NDCG@K) is a widely used metric in information retrieval and
recommendation systems to evaluate their effectiveness. It measures the quality of a ranked list of items by
considering both the relevance and the position of each item within the list. Let’s break down the components
and concepts associated with NDCGQK:

1. Cumulative Gain (CG): Cumulative Gain is a measure that sums up the relevance scores of the top K
(in our experiments K = 10) items in the "Predicted" ranked list returned by a retrieval model. The relevance
score is different this time. It is a range of relevance ranks where 0 is the least relevant, and some higher
value is the most relevant. In order to define the relevance scores in our experiments, we use the inverse of
the Graph Edit Distance Ground Truth as the concept of relevance is inverse to that of Edit Distance. Then,
using a Min-Max Scaler we transform these values into a scale of 1 to 10 in order to avoid extreme values.
The formula for Cumulative Gain at position K is as follows:

K
CGQK = rel;

i=1
111

Chapter 9. Experiments

2. Discounted Cumulative Gain (DCG): DCG is an extension of Cumulative Gain that introduces a
discount factor to give less importance to items that appear lower in the ranked list. The discount factor is
often logarithmic to penalize lower-ranked items more. The formula for DCGQK is:

K

rel;
DCGaK = E:KEXZFB

In this way, higher scores are assigned to elements that are relevant and also appear higher in the "Predicted"
List.

3. Ideal Cumulative Gain (IDCG): IDCG represents the maximum achievable Cumulative Gain for a
given set of items. It is obtained by sorting the items based on their true relevance scores in descending order
and calculating the Cumulative Gain. The formula for IDCG@K is similar to DCG@K, but it considers the
ideal ordering:

Telldeal i
IDCGAK = E:ng—fﬁ

where religeal,; is the relevance of the ideal item at position i in the sorted list.

4. Normalized Discounted Cumulative Gain (NDCG): NDCG is the normalized version of DCG,
calculated by dividing the DCGQK by the IDCGQK. This normalization ensures that the metric falls within
the range [0, 1], with 1 indicating a perfect ranking. The formula for NDCGQK is:

DCGaQK

NDCGOK = themak

NDCG is particularly useful when comparing results across different datasets or systems, as it provides a
standardized measure for quantitative comparison. However, it is much more complex than other metrics as
a results of the complicated calculations involved. As a result, it is not easily intuitively interpretable/ In
summary, NDCGQK is a comprehensive metric that considers both the relevance and position of items in a
ranked list. In our case, where we have multiple queries, we just calculate the mean value of NDCG across
all queries.

9.1.3 Ground Truth

It is apparent from the Evaluation Metrics subsection that to assess the effectiveness of the intended models,
it is essential to identify the actual relevant outcomes for each query. To accomplish this objective, it is
necessary to establish a quantitative measure, ultimately resulting in the computation of the ground truth.
As we have already mentioned in subsection 5.2.1, the ground truth similarity score between two graphs is
computed by the Graph Edit Distance algorithm. In our case, we need to compute a ground truth matrix
where the graph edit distances between any pair of graphs will be stored. However, the computational cost
of the exact Graph Edit Distance is prohibitive as it does not exist a polynomial algorithm for it.

To generate the ground truth matrix for the Random and Dense Sets, each comprising 1000 graphs, the
GED algorithm must be executed approximately 500,000 times for each set. To alleviate the computational
burden associated with GED computation, we employed the Bipartite Matching approximation algorithm,
leveraging the Volgenant-Jonker assignment algorithm [41] as outlined in Section 5.2.1. In essence, the
Bipartite Matching approximation initially calculates the exact edit distance, focusing solely on node edit
operations like insertions, deletions, and substitutions. Subsequently, it deduces the edge edit operations. The
node edit distance problem is treated as a Linear Sum Assignment Problem (LSAP), where the Volgenant-
Jonker (VJ) algorithm is employed. This algorithm efficiently solves the LSAP in polynomial time. This
approximation algorithm was selected as it offers a reliable estimation of the optimal solution in real-world
scenarios while maintaining a comparatively low computational cost. In order to implement the approximate
Bipartite Graph Matching Edit distance algorithm, we used the Deep Graph Learning library in Python,
known as DGL, as detailed by Wang et al. in their work [86].

112

9.1. Preliminaries

However, we should first provide the algorithm with the costs of insertion, deletion and substitution of nodes.
For this purpose we leverage the WordNet [59] Tbox graph in order to compute the concept distance between
every two objects that we need as proposed in [31].

WordNet is a lexical database of the English language that organizes words into sets of synonyms (synsets),
representing concepts or meanings. Developed at Princeton University, WordNet is widely used in various
natural language processing tasks.

One significant aspect of WordNet is its hierarchical structure, particularly the is-a hierarchy, which captures
hypernym-hyponym relationships. In this hierarchy, a hypernym is a more general term or concept, while a
hyponym is a more specific term or concept. The is-a relationship signifies that a hyponym is a subtype or
instance of its hypernym. For instance:

e Hypernym: Animal
— Hyponyms: Mammal, Bird, Fish

In this example, "Mammal," "Bird," and "Fish" are hyponyms of the hypernym "Animal." This hierarchical
structure allows for a more nuanced understanding of the relationships between words, making WordNet a
valuable resource for tasks such as word sense disambiguation, information retrieval, and semantic similarity
analysis. The is-a hierarchy is crucial for capturing the hierarchical organization of concepts in the English
language.

ENTITY
LOCATION SUBSTANCE

ARTIFACT ORGANISM /\

INSTRUMENT =7 FOOD
CLOTHING CHEMICAL
VEHICLE VERTEBRATE PLANT
FACILITY
INVERTEBRATE
SPACECRAFT TREE
BIRD FISH
AIRCRAFT VESSEL MAMMAL FLOWER

Figure 9.1.6: A simple representation of the portion of the WordNet noun hierarchy below the concept root
node “entity”.

As the Visual Genome dataset provides a corresponding Synset for each object in a scene graph, and since
we have represented each object as a node in a graph, the utilization of WordNet for measuring concept
distance becomes straightforward. Specifically, we utilize the NLTK Python package [53| which provides us
with access to the WordNet database and the Noun Hierarchy.

In order to compute the concept distance between two synsets in the is-a hierachy we use the
path_similarity function that the NLTK package encompasses. This function calculates a score rang-
ing from 0 to 1 denoting the similarity between two word senses based on the shortest path in the is-a
(hypernym/hyponym) taxonomy.

Thus, in order to provide the Bipartite Matching algorithm with the costs of Node Substitutions we use the
path_similarity to derive the similarity score for all possible pairs of nodes between graph G; and graph
Gj. Afterwards, the concept distance between every pair of nodes is calculated as 1 — similarity _score. For
Node Insertion and Deletion costs, the same procedure is followed but instead of using the path_similarity
function for pairs of concepts, we use it to calculate the similarity between each node and the Entity Node
which is the root node of the is-a hierarchy.

113

Chapter 9. Experiments

This procedure is repeated for every possible pair of scene graphs both for the Dense and the Random Sets
and the final ground truth matrices are obtained. The runtime for the "Random" dataset was approximately
~ 8 hours, and for the "Dense" dataset, it was approximately ~ 2 hours.

Here, we present a set of representative images and analyze their similarity scores using the Graph Edit
Distance metric we defined.

In Figure 9.1.7, two distinct images are featured, each with identical scene graphs. The effectiveness of the
Bipartite Matching algorithm is evident as it accurately identifies a graph edit distance of 0, indicating the
similarity between the images based on their respective scene graph representations.

The last figure, 9.1.8, presents two images—one from a bathroom and the other from a tennis game—with
structurally very similar scene graphs. Despite this, the ground truth approximate GED algorithm assigns
them a high score, and the tennis court image doesn’t even appear in the top 20 ranking list. This observation
underscores the crucial role of object semantics, as the approximate GED algorithm places significant impor-
tance on these semantics. For instance, the concept of a ’tile’ is notably distant in the WordNet hierarchy
from the concept of a 'player’. All these observations substantiate the effectiveness of the Bipartite Matching
algorithm as an excellent similarity measure, affirming our decision to employ it as our ground truth

su rd

Figure 9.1.7: Here are two images from the Dense Set, each featuring an identical scene graph. The
approximate GED algorithm accurately assigned a distance score of 0, recognizing that they share the same
semantical content

114

9.2. Training Details

Figure 9.1.8: An illustration of two structurally similar images scored with a significant distance by the
Bipartite Matching GED algorithm due to their distinct semantic content.

9.2 Training Detalils
9.2.1 Graph Kernels

For the conducted experiments, it is crucial to establish baseline techniques to compare them with our Con-
trastive GNN models in the task of scene graph similarity. As detailed in subsection 5.2.2, the predominant
approach for assessing graph similarity involves the utilization of graph kernels. Consequently, various ker-
nels, such as Weisfeiler-Lehman (WL), Shortest Path, Neighborhood Hash, Random Walk, and Graphlet
Sampling Kernel, were evaluated on our subset of graphs using the GraKeL Python library [75].

The operations of the aforementioned kernels are detailed in subsection 5.2.2. Much like the ground truth,
these kernels generate similarity matrices for each pair of graphs. It’s noteworthy that, in contrast to graph
kernels, GED serves as a dissimilarity measure, offering scores that signify the extent of dissimilarity between
pairs of graphs.

The GraKeL library |75 offers a user-friendly interface for determining the values of different parameters
utilized in various variants of graph kernels. The parameters that we used for each of the five graph kernels
are the following:

Weisfeiler-Lehman Kernel: The Weisfeiler-Lehman Kernel takes two main parameters. The first one is
the base kernel k used between two graphs, and the second one is the number of iterations h used. We set
the iteration number to 20, and we use the default base graph kernel, which is the Vertex Histogram Kernel.

115

Chapter 9. Experiments

Random Walk Kernel: For the Random Walk Kernel, we employed the RandomWalkLabeled kernel
variation, which also considers node labels. The default kernel type and lambda parameters were used,
namely geometric with a lambda (\) value of 0.1. Geometric simply determines the way the inner summation
will be performed as described in subsection 5.2.2.

Shortest Path Kernel: For the Shortest Path Kernel, two main parameters need to be determined. Firstly,
the most crucial parameter is called algorithm_type, which determines the underlying algorithm used to
compute the shortest paths. One can choose among the Dijkstra or Floyd-Warshall algorithm or opt for the
Auto selection, which automatically selects the faster option based on input graphs. The other parameter is
denoted as with_labels, determining whether nodes have labels or not. For both parameters, we used the
default setting of Auto algorithm and True for with_labels.

Neighborhood Hash Kernel: For the Neighborhood Hash Kernel, two important parameters should be
determined, called R and bytes, representing the maximum number of Neighborhood Hash iterations and
the byte size of node hashes, respectively. We opted for the default values for both parameters, setting them
to 3 and 2.

Graphlet Sampling Kernel: The main parameter for this kernel is the maximum size of graphlets to be
used, and we set this to the default value, which is 5.

9.2.2 GNNs

In order to build and evaluate the proposed models, we used the graph learning library Pytorch Geometric
[30] and we also used some tools from the PyGCL library [96] for our contrastive modules.

An important observation for our experiments concerning the training and testing data lies in the concepts
of inductive and transductive learning, which we will explain shortly below.

Inductive Learning: Inductive learning is a type of learning where the system tries to learn the underlying
patterns or rules from training data in order to make predictions about unseen, future data. The goal of
inductive learning is to generalize from specific instances to general rules or patterns. In other words, it
aims to infer a general function from specific examples. Once the model is trained, it can be used to make
predictions on new, unseen data.

Transductive Learning: Transductive learning, on the other hand, is a type of learning where the system
attempts to predict the labels or properties of specific, unlabeled instances based on the labeled data available.
Unlike inductive learning, transductive learning doesn’t aim to learn a general model of the underlying data
distribution. Instead, it focuses on making predictions for the specific unlabeled instances provided.

Transductive learning is particularly useful when the goal is to predict labels for a specific set of instances
without necessarily generalizing to new, unseen data. It can be thought of as a form of semi-supervised
learning, where the model leverages both labeled and unlabeled data to make predictions.

In graph machine learning, transductive learning is particularly relevant due to the interconnected nature
of graph data. Graphs often represent complex relationships between entities, such as social networks,
biological networks, or citation networks. By exploiting the local and global structural information encoded
in the graph, transductive learning methods can effectively make predictions for unlabeled nodes based on
their proximity and relationships with labeled nodes. Transductive learning approaches are crucial for tasks
such as node classification and link prediction among others.

In the experiments conducted, we explored both Transductive and Inductive settings. Specifically, the initial
experiments presented fall under the inductive setting, where we train our models on a randomly selected
set of scene graphs. Subsequently, inference is performed on both the original Random Set and the original
Dense Set to evaluate the models’ generalization across scene graphs with different attributes compared to
graph kernels.

Furthermore, the proposed fine-tuning does not aim to learn a general model of the underlying data dis-
tribution. Instead, it focuses on enhancing the models’ performance in predicting for a specific unlabeled
set of graphs provided (e.g., the Dense subset) using only a small percentage of labels thus falling into the

116

9.3. Results

transductive category. This approach allows the initial pre-trained models on a random subset to be adapted
to specific sets of scene graphs.

For the initial inductive experiments, we separately tested all four variants we examined: GCN, GAT, GATv2,
and GIN, with each of the three contrastive modules: GraphCL, InfoGraph, and Grace. Then, for the fine-
tuning process on the dense set, we experimented with the most successful combinations.

For the hyperparameters of the GNN models, we will first list those that were common across all model
variations. We employed the Adam optimizer for training all models, and we also conducted experiments with
the optimizer’s parameters, particularly the learning rate and weight decay. After careful experimentation,
we set the learning rate equally to 1le — 4 for all the models.

We also experimented with the number of layers used, and we concluded that models with 2 layers and con-
catenation of the results of the first and second layers outperformed other combinations. Another important
parameter is the dimensionality of the final embeddings. We determined that the optimal solution was for
them to be 512.

Moreover, the convolutional variants that utilize multi-head attention require specific attention to the number
of heads. Experiments were conducted with 1, 2, and 4 heads, among which the configuration with 4 heads
yielded consistently the best results.

Finally, the hyperparameters of epochs, batch size and augmentations are critically important for Contrastive
Graph Neural Networks (GNNs). In general, contrastive learning hinges on the principle of bringing positive
samples (similar or semantically related samples) closer together in the embedding space while pushing
negative samples (dissimilar samples) farther apart. These positive and negative samples play a crucial role
in encouraging the model to learn meaningful representations, typically obtained from within each batch.
Therefore, the batch size is a vital hyperparameter in this context. In general, contrastive learning tends to
benefit from larger batch sizes, although it’s essential to strike a balance. A batch size that is neither too
small nor too large is optimal for achieving effective learning outcomes.

Regarding augmentation techniques, our comprehensive experimentation revealed that node and edge
dropout, along with feature masking, showed the most promise. For the GraphCL variant, we ultimately
selected node and edge dropout. However, for the Grace variant, we decided on edge dropout and feature
masking to preserve the necessary node alignment for the Local-Local contrastive loss. In general, we observed
that relatively small percentages for dropout and feature augmentations were more beneficial for constructing
positive samples, as opposed to large percentages which tended to result in significant corruption of the initial
graph.

Furthermore, for all Graph Neural Networks (GNNs), we employed a projection head, such as a Multi-Layer
Perceptron (MLP), after the global pooling operation. This projection head is utilized to map the graph
embedding into another latent space where the contrastive loss is computed. Typically, this MLP head
comprises a single fully connected linear layer followed by a ReLU activation, then another linear layer.
When training Contrastive GNNs solely in an unsupervised manner, we discovered that graph embeddings
generated immediately after the global pooling operation yielded superior performance for all convolutional
variants, with the exception of Graph Attention Network (GAT) and GATv2, where the use of the projection
head proved beneficial during inference. Concerning the fine tuning procedure on the dense set, we found
that training the GNN along with the MLP head and then using these two modules together for inference
was the best performing option.

Below we summarize in the provided table the best combinations that were utilized for each of the models:

9.3 Results

9.3.1 Quantitative Results

Firstly, we will present the final MAP, MRR, and NDCG scores achieved by both the Graph Kernels and
GNN Models on the original Random Set. Each specific GNN model corresponds to the Optimal model
with hyperparameters detailed in Table 9.1. All GNNs are trained on a separate random subset of 1000
scene graphs. The Evaluation Metrics are displayed in Tables 9.2 and 9.3. In the former, we observe the

117

Chapter 9. Experiments

Table 9.1: Optimal Hyperparameters

Model GNN Epochs Batch Size Augmentations Attention Heads
GCN 50 64 Node/Edge Dropout p = 0.05 -
GIN 40 128 Node/Edge Dropout p = 0.05 -
GraphCL a9 128 Node/Edge Dropout p = 0.05 4
GATv2 20 128 Node/Edge Dropout p = 0.05 4
InfoGraph GIN 40 128 - -
GCN 50 128 Node Dropout /Feature Masking p = 0.15 -
Grace GIN 80 128 Node Dropout /Feature Masking p = 0.15 -
GAT 20 16 Node Dropout/Feature Masking p = 0.15 4
GATv2 40 16 Node Dropout/Feature Masking p = 0.15 4

performance of graph kernels and unsupervised GNNs trained contrastively, while in the latter, we observe the
performance of the best GNN models after the fine-tuning process, which exposes them to a small percentage
of ground truth.

Table 9.2: Final Metric Scores for the Graph Kernels and the GNN models without fine tuning, on the
Original Random Subset in an inductive setting. Training has been performed on another random subset.
Bold denotes the best result for each architecture.

MAP@10 MRR@10 NDCG@10

Shortest Path Kernel 0.1148 0.4862 0.6851
Random Walk Kernel 0.0508 0.2509 0.5971
Weisfeiler-Lehman Kernel 0.0995 0.4315 0.6560
Graphlet Sampling Kernel 0.1030 0.3810 0.6296
Neighborhood Hash Kernel 0.1035 0.4733 0.7112
GraphCL

GCN 0.1123 0.4213 0.6737

GIN 0.1157 0.4614 0.6882

GAT 0.0919 0.4157 0.6788

GATv2 0.0933 0.4068 0.6805
InfoGraph

GIN 0.1229 0.4649 0.6982
Grace

GCN 0.1016 0.4291 0.6819

GIN 0.1122 0.4550 0.6872

GAT 0.1243 0.4769 0.7479

GATv2 0.1223 0.4892 0.7504

The first observation we make with Graph Kernels is the superiority of the Shortest Path Kernel in terms
of MAP@10 and MRR@10, along with the Neighborhood Hash Kernel, which performs competitively across
all metrics and outperforms all kernels in terms of NDCG@10. The other three Kernels are surpassed by
these two on all three metrics. The underperformance of the Random Walk kernel can be explained if we
correlate it with its underlying concept. Specifically, this kernel relies on fundamental structural properties
of a graph, particularly in random walks. However, scene graphs are typically small graphs, and moreover,
the random subset is quite sparse. Consequently, random walks are not as informative about scene graphs.
Similarly, the graphlet sampling kernel also relies on structural properties of the graph, specifically on the
appearance of prototypes (graphlets), and for this reason, it does not perform adequately. On the other hand,
Weisfeiler-Lehman and Neighborhood Hash Kernels rely on the labels of graphs and implement a procedure
of re-labeling the nodes and updating the information. This procedure resembles a lot the message passing

118

9.3. Results

Table 9.3: Final Metric Scores for the best GNN models with fine tuning, on the Original Random Subset
with supervision from a small subset of the ground truth. Bold denotes the best result for each metric.

MAP@10 MRR@10 NDCG@10
10 epochs 30 epochs 10 epochs 30 epochs 10 epochs 30 epochs

GraphCL

GIN 0.1431 0.1881 0.5271 0.5624 0.7436 0.8009
InfoGraph

GIN 0.1738 0.2164 0.5311 0.5717 0.7747 0.8120
Grace

GAT 0.1957 0.2177 0.5864 0.5840 0.8117 0.8176

GATv2 0.1935 0.2350 0.5616 0.6005 0.8075 0.8227

scheme employed by the majority of GNNs. This approach seems to be successful in considering as much
graph information as possible to compare pairs of graphs and extract similarity scores. The Neighborhood
Hash kernel indeed performs best in terms of NDCG@10 with a 3% improvement compared to the Shortest
Path Kernel and has the second-best MRR@10 and MAP@10 scores. However, the Weisfeiler-Lehman Kernel
is third in terms of MRR@10 and NDCG@10 and only fourth in MAP@10, but it is close to the top three.
We expected it to perform better, but it is generally competitive with the other kernels, with the exception
of the Random Walk kernel that performs poorly.

Regarding the Contrastive GNN models, the initial observation is that all of them are competitive against
several graph kernels. However, they struggle to outperform the best scores of the baseline Graph Kernels,
especially in terms of NDCG, as well as the other two metrics. However, in the context of the Grace framework,
where the contrastive loss is performed at the level of node embeddings rather than graph embeddings, we
observe that the use of attentional variants GAT and GATv2 can outperform the best kernels in all metrics.
Specifically, when combined with the GATv2 variant, it outperforms the Neighborhood Hash Kernel by a
margin of 4% in the NDCG@10 metric.

A general observation about the combination of the three different frameworks with the four different GNN
variants is that when graph embeddings are used in the contrastive loss (e.g., GraphCL, InfoGraph), the
GIN variant is the most competitive across all metrics. This fact justifies the fame of GIN as one of the most
powerful GNNs in tasks at the graph level. However, when the contrastive loss is performed at the node
level, the attentional variants, utilizing attention between node embeddings, appear to be quite beneficial
surpassing all other combinations. It should also be noted that the sparsity of the Random Set does not
appear to significantly influence the performance of contrastive learning on a large scale.

Moving on to more complex architectures, we can see that the Rank Aware Fine Tuning, using a small
percentage of the ground truth of the original Random Set, provides a significant boost across all three metrics
as it is evident from Table 9.3. Let’s first determine the percentage of the ground truth that corresponds to
10 and 30 epochs in the worst case scenario. In each epoch, for each of the 1000 graphs, 2 graphs are sampled
as positive and negative samples. Consequently, one epoch exposes the model to the relative similarity of
positive and negative samples to the anchor, making use of 2000 ground truth pairs. The total number of
ground truth pairs for 1000 graphs is 500,000. As a result, 10 epochs correspond to the use of 4% of the
ground truth, and 30 epochs correspond to the use of 12% of the ground truth. Thus, by utilizing a small
percentage of the ground truth, we are able to achieve values of MAP@Q10, MRR@10, and NDCG@10 that
are more than 10% higher compared to the best results from the graph kernels with 30 epochs of fine-tuning.
These results were attained using the most promising combinations, particularly the Grace Framework with
GAT/GATV2 variants. Moreover, 10 epochs are also enough in order for one to see a significant boost to the
metrics.

In order to see how our models perform to another Set of scene graphs with specific and constrained charac-
teristics we decided to test the best unsupervised contrastively pretrained (trained on a random set of 1000
scene graphs) GNN models on the original Dense Set. The final MAP, MRR, and NDCG scores achieved by
both the Graph Kernels and GNN Models on the original Dense Set are displayed in Tables 9.2. In Table

119

Chapter 9. Experiments

9.3 we observe the performance of the best GNN models after the fine-tuning process, which exposes them
to a small percentage of the dense ground truth this time. Each specific GNN model corresponds to the best
performing models from the pretraining on the random set.

In the Dense Subset, the Weisfeiler-Lehman Kernel achieves the highest scores for MAP@10 and NDCG@10,
followed by the Shortest Path and Neighborhood Hash Kernels, which also perform competitively well.
Once again, the Graphlet Sampling and Random Walk Kernels perform quite poorly. It is evident once
again that the Contrastive GNNs, trained on a random set, can generalize quite well on the dense set and
perform competitively enough, even surpassing the best kernels by a small margin of 1% in NDCG@10, 3%
in MRR@10, and 1% in MAP@10.

Table 9.4: Final Metric Scores for the Graph Kernels and the best pretrained GNN models without fine
tuning, on the Original Dense Subset in an inductive setting. Training has been performed on a random
subset. Bold denotes the best result for each architecture.

MAP@10 MRR@10 NDCG@10

Shortest Path Kernel 0.1237 0.4618 0.6171
Random Walk Kernel 0.0928 0.3913 0.5964
Weisfeiler-Lehman Kernel 0.1253 0.4570 0.6279
Graphlet Sampling Kernel 0.0389 0.0965 0.5317
Neighborhood Hash Kernel 0.1034 0.3868 0.6132
GraphCL

GCN 0.1281 0.4724 0.6230

GIN 0.1339 0.4914 0.6302
InfoGraph

GIN 0.1354 0.4882 0.6282
Grace

GAT 0.1152 0.4715 0.6285

GATv2 0.1280 0.4902 0.6394

Table 9.5: Final Metric Scores for the best GNN models with fine tuning, on the Original Dense Subset
with supervision from a small subset of the ground truth. Bold denotes the best result for each metric.

MAP@10 MRR@10 NDCG@10
10 epochs 30 epochs 10 epochs 30 epochs 10 epochs 30 epochs

GraphCL

GIN 0.1670 0.1990 0.5292 0.5784 0.6713 0.7006
InfoGraph

GIN 0.1605 0.2003 0.5322 0.5657 0.6735 0.7001
Grace

GAT 0.1723 0.2111 0.5247 0.5688 0.6834 0.7073

GATv2 0.1732 0.2207 0.5537 0.5915 0.6876 0.7140

Once again, we can see that the Rank Aware Fine Tuning, using a small percentage of the ground truth of
the original Dense Set, provides a significant boost across all three metrics as it is evident from Table 9.7. By
utilizing a small percentage of the ground truth, we are able to achieve values of MAP@10, MRR@10, and
NDCG@10 that are approximately 9-10% higher compared to the best results from the graph kernels with
30 epochs of fine-tuning. Moreover, 10 epochs are also enough in order for one to see a significant boost to
the metrics. For the fine tuning, we selected for each framework the most promising GNN variant.

In order to justify our choice of first pretraining the GNNs contrastively on a random set and then fine-
tuning them on the selected set, we provide Table 9.6, where one can observe the performance of the GNN

120

9.3. Results

encoders used for fine-tuning. These GNN encoders were trained for only 30 epochs using the proposed
Rank Aware loss, without contrastive pretraining. However, these models successfully outperform the graph
kernels, albeit by a significant margin from the corresponding models that have been contrastively pretrained
and then fine-tuned for the same number of epochs (e.g., 30 epochs), thus highlighting the benefits of our
approach.

Table 9.6: Final Metric Scores for the best GNN models trained for 30 epochs only with the ranking loss.
Inference is performed on the Original Dense Subset.

MAP@10 MRR@10 NDCG@10
30 epochs 30 epochs 30 epochs

GIN

GIN 0.1704 0.5318 0.6773
GAT

GAT 0.1624 0.5208 0.6739
GATv2

GATv2 0.1651 0.5293 0.6732

It is safe to say that the GNN methods consistently outperform the kernel-based approaches and are able to
achieve significant improvements. In conclusion, GNNs prove to be a highly effective solution for the Graph
Similarity task. Additionally, it’s important to note that the biggest advantage of GNNs over Graph Kernels
is that they provide general-purpose embeddings that can be utilized for various downstream tasks.

Finally, we present the training times for solely contrastive pretraining on the random set and contrastive
pretraining followed by fine tuning on the dense set.

Table 9.7: Final Training Times for the best GNN models with fine-tuning, on the Original Dense Subset
with supervision from a small subset of the ground truth.

Contrastive Pretraining Time Pretraining + Fine Tuning Time

10 epochs 30 epochs

GraphCL

GIN 32sec 44sec 1min 05sec
InfoGraph

GIN 50sec 1min 0O4sec 1min 46sec
Grace

GAT 2min 12sec 2min 50sec 4min 02sec

GATv2 4min 28sec 5min 36sec 6min 39sec

The higher training times for GAT variants is something we expected as the training of multiple attention
heads requires additional time. Moreover, the Grace framework is computationally a bit heavier compared
to the others as it performs the contrastive loss for every node in the batch (and not for every graph in the
batch). Additionally, taking into account that we also use 4 % or 12 % of the ground truth, the computational
trade-off is certainly in our favor, as we only need approximately 4% or 12% of the time required for total
ground truth computation to significantly boost our metrics if we choose to fine-tune the models.

121

Chapter 9. Experiments

9.3.2 Qualitative Results

To qualitatively evaluate the proposed models, we should also incorporate the images corresponding to the
scene graphs recommended by both the GNNs and Graph Kernels in response to specific queries. Specifically,
we will display some query images along with the first few retrieved images in the dense set by our best model,
Grace with GATv2 encoder fine-tuned for 30 epochs. Since our model does not have access to the images
during training and relies solely on the corresponding scene graphs, there might be cases where the images
are not similar, but the similarity of the graphs leads the model to rank them highly. Below, we provide pairs
of query-answer examples to illustrate these scenarios.

Figure 9.3.1: Query Image

Figure 9.3.2: Top 3 Results - GNN Model

122

9.3. Results

Figure 9.3.4: Query Image

Figure 9.3.5: Top 3 Results - GNN Model

123

Chapter 9. Experiments

Figure 9.3.7: Query Image

Figure 9.3.8: Top 3 Results - GNN Model

124

9.3. Results

Figure 9.3.10: Query Image

Figure 9.3.11: Top 3 Results - GNN Model

These qualitative results affirm the superiority of our GNN model, which has also been demonstrated quan-
titatively. It appears that our model can retrieve images with closer semantic content than the best kernels
in various cases.

125

Chapter 9. Experiments

126

Chapter 10

Conclusion

10.1 Discussion

In this thesis, we addressed the challenge of Graph Similarity through the lens of Contrastive Learning.
Our experiments aimed to evaluate the effectiveness of proposed Contrastive Graph Neural Network (GNN)
models compared to baseline Graph Kernels, focusing on graph similarity tasks using the Visual Genome
dataset. Through a systematic exploration of different GNN architectures and contrastive learning frame-
works, accompanied by thorough evaluation using metrics such as Mean Average Precision (MAP), Mean
Reciprocal Rank (MRR), and Normalized Discounted Cumulative Gain (NDCGQG), several significant insights
were gained.

Initially, the superiority of certain Graph Kernels, such as the Shortest Path Kernel, Neighborhood Hash
Kernel and Weisfeiler-Lehman was evident. However, limitations were observed with kernels relying heavily
on structural properties, such as the Random Walk Kernel and Graphlet Sampling Kernel, suggesting their
inadequacy in capturing the intricacies of scene graphs.

Contrastive GNN models demonstrated competitiveness against various Graph Kernels, particularly atten-
tional variants such as GAT and GATv2, especially when contrastive loss was applied at the node embedding
level (Grace Framework). Conversely, the Generalized-Isomorphism Network (GIN) variant exhibited re-
markable competitiveness when graph embeddings were integrated into the contrastive loss (GraphCL and
InfoGraph framework). Our exploration encompassed four distinct convolutional Graph Neural Network
(GNN) variations for each of the GraphCL, InfoGraph, and Grace contrastive approaches, evaluating their
effectiveness, complexity, and expressive capacities. Specifically, we employed GCN, GIN, GAT, and GATv2.
These GNN variants facilitated graph embedding in a space capable of capturing both structural and semantic
similarities among graphs. Subsequently, these embeddings were utilized for graph comparison, facilitating
the identification of the most similar pair for each graph. To establish a ground truth, we utilized an ap-
proximate Graph Edit Distance algorithm rooted in bipartite graph matching, complemented by hierarchical
semantic information extracted from WordNet and path similarity algorithms applied to this hierarchy. Our
comprehensive analysis provided significant insights into the quality and expressive capabilities of all the
aforementioned methods.

Furthermore, the introduction of Rank Aware Fine Tuning, utilizing a small percentage of ground truth data,
significantly boosted performance across all metrics. This fine-tuning process showcased the ability of GNN
models to generalize well, even surpassing the performance of the best Graph Kernels on both sparse and
dense subsets of the dataset.

Comparisons between contrastively pretrained GNN models and those without contrastive pretraining un-
derscored the efficacy of the proposed approach, with contrastive pretraining followed by fine-tuning yielding
superior results.

In summary, the experiments firmly establish the efficacy of Contrastive GNN techniques in the graph simi-
larity task, consistently surpassing traditional kernel-based methods. Additionally, the adaptability of GNN

127

Chapter 10. Conclusion

embeddings creates opportunities for utilizing these models across different downstream tasks, highlighting
their usefulness beyond solely graph similarity tasks. Therefore, this research offers valuable perspectives on
the utilization of Contrastive GNNs in tasks related to graphs.

Ultimately, the primary objective of training these GNN models and assessing them in the context of In-
formation Retrieval tasks is to integrate them into a Counterfactual-Explanations Framework. Specifically,
identifying the most similar pair of images allows for the computation of only some specific edit distances,
rather than calculating edit distances for every pair of the dataset. As a result, the proposed method, which
utilizes the corresponding scene graph of an image for retrieving the optimal pair, introduces a significant
acceleration in this process. This framework incorporates external knowledge to provide explanations for
samples within any dataset. If this external knowledge is structured in graph formats, then GNN models,
akin to those examined in this thesis, can be deployed to enhance performance and reduce computation times.

10.2 Future Work

For future work, several paths could be explored to further enhance the understanding and application of
Contrastive Graph Neural Networks (GNNs) in the domain of graph similarity and beyond:

1. Exploration of Additional Contrastive Learning Techniques: This thesis focuses on Contrastive
Graph Neural Networks for graph similarity tasks. In this context, exploring alternative contrastive
learning techniques could offer valuable insights. Variants such as those based on Barlow Twins Loss
[10] or Bootstrapped Graph Latents [79], among others, have demonstrated promising results in graph
data, warranting further investigation into their performance for the task of scene graph retrieval.

2. Integration of Edge Attributes in the aggregation functions: In addition to the explored
avenues, incorporating edge attributes into the graph representation could further enrich the expressive
power of Contrastive Graph Neural Networks (GNNs). Edge attributes contain valuable information
about relationships between nodes in a graph, which can significantly enhance the model’s ability to
capture semantic and structural similarities.

3. Fine-tuning Strategies: Further exploration of fine-tuning strategies could yield significant benefits.
This includes experimenting with various percentages of ground truth data for fine-tuning or investi-
gating alternative approaches for rank-aware fine-tuning, which could enhance model performance and
generalization across varied datasets. Additionally, experiments should be conducted using either the
same or different rank-aware losses with the goal of making the models capable of performing equally
well or even better in an inductive setting.

By pursuing these paths for future work, researchers can continue to advance the understanding and practical
applications of Contrastive GNN techniques, ultimately contributing to the broader field of graph represen-
tation learning in scene graphs and its diverse applications.

128

Chapter 11

Bibliography

(1]
2]

131
4]
5]
16]

7]

18]
19]

[10]

[11]

[12]
[13]

14]
[15]
[16]
17]

[18]

Alirezaie, M. et al. “A symbolic approach for explaining errors in image classification tasks”. In: Working
Papers and Documents of the IJCAI-ECAI-2018 Workshop on. 2018.

Alvarez-Gonzalez, N., Kaltenbrunner, A., and Gémez, V. “Beyond Weisfeiler Lehman with Local Ego-
Network Encodings”. In: Machine Learning and Knowledge Extraction 5.4 (2023), pp. 1234-1265. 1SSN:
2504-4990. poI: 10.3390/make5040063. URL:

Arrieta, A. B. et al. “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI”. In: Information fusion 58 (2020), pp. 82-115.

Bai, Y. et al. “Simgnn: A neural network approach to fast graph similarity computation”. In: Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining. 2019, pp. 384-392.
Bai, Y. et al. “Unsupervised inductive graph-level representation learning via graph-graph proximity”.
In: arXiv preprint arXiv:1904.01098 (2019).

Bajaj, M. et al. “Robust Counterfactual Explanations on Graph Neural Networks”. In: Advances in
Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc.,
2021, pp. 5644-5655. URL:

Al-Behadili, H. N. K., Ku-Mahamud, K. R., and Sagban, R. “Rule pruning techniques in the ant-
miner classification algorithm and its variants: A review”. In: 2018 IEEE Symposium on Computer
Applications Industrial Electronics (ISCAIE). 2018, pp. 78-84. DOI: 10.1109/ISCAIE.2018.8405448.
Belghazi, M. 1. et al. MINE: Mutual Information Neural Estimation. 2021. arXiv: 1801.04062 [cs.LG].
Berretti, S., Del Bimbo, A., and Vicario, E. “Efficient matching and indexing of graph models in content-
based retrieval”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 23.10 (2001),
pp- 1089-1105.

Bielak, P., Kajdanowicz, T., and Chawla, N. V. “Graph Barlow Twins: A self-supervised representation
learning framework for graphs”. In: Knowledge-Based Systems 256 (2022). 1ssN: 0950-7051. por: 10.
1016/j.knosys.2022.109631. URL:

Bishop, C. M. and Bishop, H. Deep Learning - Foundations and Concepts. Ed. by S. Cham. 1st ed.
2023. 1SBN: 978-3-031-45468-4. DOIL: https://doi.org/10.1007/978-3-031-45468-4.

Bo, D. et al. A Survey on Spectral Graph Neural Networks. 2023. arXiv: 2302.05631 [cs.LG].
Borgwardt, K. and Kriegel, H. “Shortest-path kernels on graphs”. In: Fifth IEEE International Confer-
ence on Data Mining (ICDM’05). 2005, 8 pp.-. DOL: 10.1109/ICDM.2005.132.

Brody, S., Alon, U., and Yahav, E. How Attentive are Graph Attention Networks? 2022. arXiv: 2105.
14491 [cs.LG].

Bronstein, M. M. et al. “Geometric deep learning: going beyond euclidean data”. In: IFEE Signal
Processing Magazine 34.4 (2017), pp. 18-42.

Bronstein, M. M. et al. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. 2021.
arXiv: 2104.13478 [cs.LG].

Bruna, J. et al. “Spectral networks and locally connected networks on graphs”. In: arXiv preprint
arXiv:1812.6203 (2013).

Bunke, H. and Shearer, K. “A graph distance metric based on the maximal common subgraph”. In:
Pattern recognition letters 19.3-4 (1998), pp. 255-259.

129

https://doi.org/10.3390/make5040063
https://doi.org/10.1109/ISCAIE.2018.8405448
https://arxiv.org/abs/1801.04062
https://doi.org/10.1016/j.knosys.2022.109631
https://doi.org/10.1016/j.knosys.2022.109631
https://doi.org/https://doi.org/10.1007/978-3-031-45468-4
https://arxiv.org/abs/2302.05631
https://doi.org/10.1109/ICDM.2005.132
https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/2104.13478

Chapter 11. Bibliography

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

[27]

28]

[29]

[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]

Burges, C. et al. “Learning to rank using gradient descent”. In: Proceedings of the 22nd international
conference on Machine learning. ICML ’05. Bonn, Germany: ACM, 2005, pp. 89-96. 1SBN: 1-59593-180-
5. DOI: 10.1145/1102351.1102363. URL:

Chen, T. et al. A Simple Framework for Contrastive Learning of Visual Representations. 2020. arXiv:
2002.05709 [cs.LG].

Chopra, S., Hadsell, R., and LeCun, Y. “Learning a similarity metric discriminatively, with application
to face verification”. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05) 1 (2005), 539-546 vol. 1. URL:

Defferrard, M., Bresson, X., and Vandergheynst, P. “Convolutional neural networks on graphs with fast
localized spectral filtering”. In: Advances in neural information processing systems 29 (2016).
Dervakos, E. et al. Choose your Data Wisely: A Framework for Semantic Counterfactuals. 2023. arXiv:
2305.17667 [cs.AI].

Dimitriou, A. et al. Graph Edits for Counterfactual Explanations: A comparative study. 2024. arXiv:
2401.11609 [cs.LG].

Dimitriou, A. et al. Structure Your Data: Towards Semantic Graph Counterfactuals. 2024. arXiv: 2403.
06514 [cs.CV].

Dong, X. et al. “Graph Signal Processing for Machine Learning: A Review and New Perspectives”. In:
IEEF Signal Processing Magazine 37.6 (Nov. 2020), pp. 117-127. 1sSN: 1558-0792. DOIL: 10.1109/msp.
2020.3014591. URL:

Donsker, M. D. and Varadhan, S. R. S. “Asymptotic evaluation of certain markov process expectations
for large time. IV”. In: Communications on Pure and Applied Mathematics 36.2 (1983), pp. 183-212.
DOIL: https://doi.org/10.1002/cpa.3160360204. eprint: URL:

Fankhauser, S., Riesen, K., and Bunke, H. “Speeding Up Graph Edit Distance Computation through
Fast Bipartite Matching”. In: Graph-Based Representations in Pattern Recognition. Ed. by X. Jiang,
M. Ferrer, and A. Torsello. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 102-111. 1SBN:
978-3-642-20844-7.

Fankhauser, S., Riesen, K., and Bunke, H. “Speeding up graph edit distance computation through fast
bipartite matching”. In: International Workshop on Graph-Based Representations in Pattern Recogni-
tion. Springer. 2011, pp. 102-111.

Fey, M. and Lenssen, J. E. “Fast Graph Representation Learning with PyTorch Geometric”. In: ICLR
Workshop on Representation Learning on Graphs and Manifolds. 2019.

Filandrianos, G. et al. “Conceptual Edits as Counterfactual Explanations.” In: AAAI Spring Sympo-
sium: MAKE. 2022.

Fischer, A. et al. “A Hausdorff Heuristic for Efficient Computation of Graph Edit Distance”. In: Struc-
tural, Syntactic, and Statistical Pattern Recognition. Ed. by P. Franti et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 83-92. 1SBN: 978-3-662-44415-3.

Gartner, T., Flach, P., and Wrobel, S. “On Graph Kernels: Hardness Results and Efficient Alternatives”.
In: Learning Theory and Kernel Machines. Ed. by B. Scholkopf and M. K. Warmuth. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 129-143. 1SBN: 978-3-540-45167-9.

Gilmer, J. et al. Neural Message Passing for Quantum Chemistry. 2017. arXiv: 1704.01212 [cs.LG].
Goyal, Y. et al. “Counterfactual Visual Explanations”. In: Proceedings of the 36th International Con-
ference on Machine Learning. 2019, pp. 2376-2384.

Hamilton, W., Ying, Z., and Leskovec, J. “Inductive representation learning on large graphs”. In: Ad-
vances in neural information processing systems 30 (2017).

Hamming, R. W. “Error detecting and error correcting codes”. In: The Bell system technical journal
29.2 (1950), pp. 147-160.

Hido, S. and Kashima, H. “A Linear-Time Graph Kernel”. In: 2009 Ninth IEEE International Confer-
ence on Data Mining. 2009, pp. 179-188. DOI: 10.1109/ICDM.2009. 30.

Hjelm, R. D. et al. Learning deep representations by mutual information estimation and mazimization.
2019. arXiv: 1808.06670 [stat.ML].

Johnson, J. et al. “Image retrieval using scene graphs”. In: 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2015, pp. 3668-3678. DOI: 10.1109/CVPR.2015.7298990.

Jonker, R. and Volgenant, A. “A shortest augmenting path algorithm for dense and sparse linear
assignment problems”. In: Computing 38.4 (1987), pp. 325-340.

130

https://doi.org/10.1145/1102351.1102363
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2305.17667
https://arxiv.org/abs/2401.11609
https://arxiv.org/abs/2403.06514
https://arxiv.org/abs/2403.06514
https://doi.org/10.1109/msp.2020.3014591
https://doi.org/10.1109/msp.2020.3014591
https://doi.org/https://doi.org/10.1002/cpa.3160360204
https://arxiv.org/abs/1704.01212
https://doi.org/10.1109/ICDM.2009.30
https://arxiv.org/abs/1808.06670
https://doi.org/10.1109/CVPR.2015.7298990

[42]

[43]
[44]

j45]
6]
j47]
48]
9]
50}
51]
/52]
53]
54]
551

[56]

[57]
[58]
[59]
[60]

[61]

[62]
[63]

[64]

[65]

|66]
[67]

[68]

Karp, R. An Algorithm to Solve the mzn Assignment Problem in Expected Time O (mn log n). Tech.
rep. UCB/ERL M78/67. EECS Department, University of California, Berkeley, Sept. 1978. URL:
Kingma, D. P. and Welling, M. Auto-Encoding Variational Bayes. 2022. arXiv: 1312.6114 [stat.ML].
Kipf, T. N. and Welling, M. “Semi-supervised classification with graph convolutional networks”. In:
arXiv preprint arXiv:1609.02907 (2016).

Kipf, T. N. and Welling, M. “Variational graph auto-encoders”. In: arXiv preprint arXiv:1611.07308
(2016).

Krishna, R. et al. Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image
Annotations. 2016. arXiv: 1602.07332 [cs.CV].

Krishna, R. et al. “Visual genome: Connecting language and vision using crowdsourced dense image
annotations”. In: International journal of computer vision 123.1 (2017), pp. 32-73.

Kullback, S. and Leibler, R. A. “On Information and Sufficiency”. In: Ann. Math. Statist. 22.1 (1951),
pPp. 79-86.

LeCun, Y. et al. “Object recognition with gradient-based learning”. In: Shape, contour and grouping in
computer vision. Springer, 1999, pp. 319-345.

Li, Y. et al. “Graph matching networks for learning the similarity of graph structured objects”. In:
International conference on machine learning. PMLR. 2019, pp. 3835-3845.

Lin, J. “Divergence measures based on the Shannon entropy”. In: IEEE Transactions on Information
Theory 37.1 (1991), pp. 145-151. pOI: 10.1109/18.61115.

Lin, T.-Y. et al. Microsoft COCO: Common Objects in Context. 2015. arXiv: 1405.0312 [cs.CV].
Loper, E. and Bird, S. NLTK: The Natural Language Toolkit. 2002. arXiv: cs/0205028 [cs.CL].
Lopez-Bernal, D. et al. “Education 4.0: Teaching the Basics of KNN, LDA and Simple Perceptron
Algorithms for Binary Classification Problems”. In: Future Internet 13 (July 2021), p. 193. por: 10.
3390/£113080193.

Lucic, A. et al. “Cf-gnnexplainer: Counterfactual explanations for graph neural networks”. In: Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR. 2022, pp. 4499-4511.

Maheshwari, P., Chaudhry, R., and Vinay, V. “Scene graph embeddings using relative similarity super-
vision”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 3. 2021, pp. 2328—
2336.

Maron, H. et al. “Invariant and equivariant graph networks”. In: arXiv preprint arXiv:1812.09902
(2018).

Mikolov, T. et al. “Efficient estimation of word representations in vector space”. In: arXiv preprint
arXiv:1301.3781 (2013).

Miller, G. A. “WordNet: a lexical database for English”. In: Communications of the ACM 38.11 (1995),
pp. 39-41.

Neuhaus, M., Riesen, K., and Bunke, H. “Fast Suboptimal Algorithms for the Computation of Graph
Edit Distance”. In: Aug. 2006, pp. 163-172. 1SBN: 978-3-540-37236-3. DOI: 10.1007/11815921_17.
Nikolentzos, G., Siglidis, G., and Vazirgiannis, M. “Graph Kernels: A Survey”. In: Journal of Artificial
Intelligence Research 72 (Nov. 2021), pp. 943-1027. 1ssN: 1076-9757. poI: 10.1613/jair.1.13225.
URL:

Oord, A. van den, Li, Y., and Vinyals, O. Representation Learning with Contrastive Predictive Coding.
2019. arXiv: 1807.03748 [cs.LG].

Ortega, A. et al. Graph Signal Processing: Overview, Challenges and Applications. 2018. arXiv: 1712.
00468 [eess.SP].

Peng, J. et al. “Machine Learning Techniques for Personalised Medicine Approaches in Immune-
Mediated Chronic Inflammatory Diseases: Applications and Challenges”. In: Frontiers in Pharmacology
12 (Sept. 2021). DOI: 10.3389/fphar.2021.720694.

Pennington, J., Socher, R., and Manning, C. D. “GloVe: Global Vectors for Word Representation”. In:
Empirical Methods in Natural Language Processing (EMNLP). 2014, pp. 1532-1543. URL:

Poole, B. et al. On Variational Bounds of Mutual Information. 2019. arXiv: 1905.06922 [cs.LG].
Przulj, N. “Biological network comparison using graphlet degree distribution”. In: Bioinformatics 23.2
(Jan. 2007), e177—183. 1sSN: 1367-4803. DOI: 10.1093/bioinformatics/bt1301. URL:

Riesen, K., Fankhauser, S., and Bunke, H. “Speeding Up Graph Edit Distance Computation with a
Bipartite Heuristic.” In: Jan. 2007.

131

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1602.07332
https://doi.org/10.1109/18.61115
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/cs/0205028
https://doi.org/10.3390/fi13080193
https://doi.org/10.3390/fi13080193
https://doi.org/10.1007/11815921_17
https://doi.org/10.1613/jair.1.13225
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1712.00468
https://arxiv.org/abs/1712.00468
https://doi.org/10.3389/fphar.2021.720694
https://arxiv.org/abs/1905.06922
https://doi.org/10.1093/bioinformatics/btl301

Chapter 11. Bibliography

[69]
[70]

[71]

[72]

(73]

[74]
[75]

[76]

[77]

78]

[79]
[80]
[81]
[82]
[33]
[84]
[85]
[36]

[87]

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. “Learning representations by back-propagating
errors”. In: nature 323.6088 (1986), pp. 533-536.

Sanfeliu, A. and Fu, K.-S. “A distance measure between attributed relational graphs for pattern recog-
nition”. In: IEEFE transactions on systems, man, and cybernetics 3 (1983), pp. 353-362.

Schroff, F., Kalenichenko, D., and Philbin, J. “FaceNet: A unified embedding for face recognition and
clustering”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
June 2015. DOI: 10.1109/cvpr.2015.7298682. URL:

Shannon, C. E. “A mathematical theory of communication”. In: The Bell system technical journal 27.3
(1948), pp. 379-423.

Shervashidze, N. et al. “Efficient graphlet kernels for large graph comparison”. In: Proceedings of the
Twelth International Conference on Artificial Intelligence and Statistics. Ed. by D. van Dyk and M.
Welling. Vol. 5. Proceedings of Machine Learning Research. Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA: PMLR, 16-18 Apr 2009, pp. 488-495. URL:

Shervashidze, N. et al. “Weisfeiler-lehman graph kernels.” In: Journal of Machine Learning Research
12.9 (2011).

Siglidis, G. et al. “GraKeL: A Graph Kernel Library in Python.” In: J. Mach. Learn. Res. 21.54 (2020),
pp- 1-5.

Silva, V. S., Freitas, A., and Handschuh, S. “Exploring knowledge graphs in an interpretable composite
approach for text entailment”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33.
01. 2019, pp. 7023-7030.

Sun, F.-Y. et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning
via Mutual Information Mazimization. 2020. arXiv: 1908.01000 [cs.LG].

Takami, S. and Inokuchi, A. “Accurate and Fast Computation of Approximate Graph Edit Distance
based on Graph Relabeling”. In: International Conference on Pattern Recognition Applications and
Methods. 2018. URL:

Thakoor, S. et al. Large-Scale Representation Learning on Graphs via Bootstrapping. 2023. arXiv:
2102.06514 [cs.LG].

The Description Logic Handbook: Theory, Implementation and Applications. 2nd ed. Cambridge Uni-
versity Press, 2007.

Vandenhende, S. et al. Making Heads or Tails: Towards Semantically Consistent Visual Counterfactuals.
2022. arXiv: 2203.12892 [cs.CV].

Vaswani, A. et al. “Attention is all you need”. In: Advances in neural information processing systems
30 (2017).

Velickovi¢, P. et al. “Graph attention networks”. In: arXiv preprint arXiv:1710.10903 (2017).
Velickovi¢, P. et al. Deep Graph Infomazx. 2018. arXiv: 1809.10341 [stat.ML].

Vishwanathan, S. V. N. et al. Graph Kernels. 2008. arXiv: 0807.0093 [cs.LG].

Wang, M. et al. “Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural
Networks”. In: arXiv preprint arXiv:1909.01315 (2019).

Weisfeiler, B. and Leman, A. “The reduction of a graph to canonical form and the algebra which appears
therein”. In: NTI, Series 2.9 (1968), pp. 12-16.

Wu, Z. et al. “A comprehensive survey on graph neural networks”. In: IEEFE transactions on neural
networks and learning systems 32.1 (2020), pp. 4-24.

Xu, K. et al. “How powerful are graph neural networks?” In: arXiv preprint arXiv:1810.00826 (2018).
You, Y. et al. Graph Contrastive Learning with Augmentations. 2021. arXiv: 2010.13902 [cs.LG].
Zaheer, M. et al. Deep Sets. 2018. arXiv: 1703.06114 [cs.LG].

Zhang, A. et al. “Dive into Deep Learning”. In: arXiv preprint arXiv:2106.11842 (2021).

Zhang, C., Chao, W.-L., and Xuan, D. An Empirical Study on Leveraging Scene Graphs for Visual
Question Answering. 2019. arXiv: 1907.12133 [cs.CV].

Zhang, K. “A constrained edit distance between unordered labeled trees”. In: Algorithmica 15.3 (1996),
pp. 205-222.

Zhu, Y. et al. Deep Graph Contrastive Representation Learning. 2020. arXiv: 2006.04131 [cs.LG].
Zhu, Y. et al. An Empirical Study of Graph Contrastive Learning. 2021. arXiv: 2109.01116 [cs.LG].

132

https://doi.org/10.1109/cvpr.2015.7298682
https://arxiv.org/abs/1908.01000
https://arxiv.org/abs/2102.06514
https://arxiv.org/abs/2203.12892
https://arxiv.org/abs/1809.10341
https://arxiv.org/abs/0807.0093
https://arxiv.org/abs/2010.13902
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1907.12133
https://arxiv.org/abs/2006.04131
https://arxiv.org/abs/2109.01116

	25524373c8518a8751112125a72433f7675bdcaeb98bd9f531c68100a2fbd935.pdf
	69db8ac32a0d8a951d5c3bafb58df32849144836d83e33016fcd666bf7fb6f98.pdf
	25524373c8518a8751112125a72433f7675bdcaeb98bd9f531c68100a2fbd935.pdf
	Contents
	List of Figures
	Εκτεταμένη Περίληψη στα Ελληνικά
	Θεωρητικό υπόβαθρο
	Θεωρία Γράφων
	Απόσταση Επεξεργασίας Γράφων
	Πυρήνες Γράφων
	Γράφοι Σκηνής
	Νευρωνικά Δίκτυα Γράφων
	Αντιθετική Μάθηση για Νευρωνικά Δίκτυα Γράφων
	Εξηγήσεις με Αντιπαράδειγμα

	Προτεινόμενες Προσεγγίσεις
	Συνεισφορά
	Προτεινόμενα Μοντέλα

	Πειράματικό Μέρος
	Σύνολο Δεδομένων
	Μετρικές αξιολόγησης
	Βασική Αληθεία
	Πυρήνες Γράφων
	Νευρωνικά Δίκτυα Γράφων
	Ποσοτικά Αποτελέσματα
	Ποιοτικά Αποτέλεσματα

	Συμπεράσματα
	Συζήτηση
	Μελλοντικές Κατευθύνσεις

	Introduction
	Background
	Machine Learning
	Input Data Types
	Learning Categories

	Deep Learning
	Basic Concepts
	Deep Learning Models

	Contrastive Learning
	Elements of Information Theory
	Entropy
	Kullback-Leibler (KL) Divergence
	Jensen-Shannon Divergence (JSD)
	Mutual Information

	Training Objectives in Contrastive Learning
	Contrastive Loss
	Triplet Margin Loss
	Mutual Information Maximization Losses

	Graphs
	Graph Theory
	Graph Similarity
	Graph Edit Distance
	Graph Kernels

	Scene Graphs
	Related Work

	Graph Neural Networks (GNN)
	Machine Learning on Graphs
	Motivation
	Permutation Invariance and Equivariance

	Spectral Approaches
	Elements of Graph Spectral Theory
	Spectral Variants

	Spatial Approaches
	General Framework
	Spatial Variants

	How to Use Graph Neural Networks
	Exploring Task Types in Graph Neural Networks
	Diverse Training Approaches for Graph Neural Networks

	Contrastive Learning on Graphs
	Contrasting Modes
	Graph Contrastive Learning with Augmentations (GraphCL)
	InfoGraph
	Deep Graph InfoMax (DGI)
	Deep Graph Contrastive Representation learning (Grace)

	Counterfactual Explanations
	Introduction
	Conceptual Edits and Algorithmic Framework
	GNNs for Semantic Counterfactuals
	Related Work

	Proposal
	Contributions
	Proposed Models

	Experiments
	Preliminaries
	Dataset
	Evaluation Metrics
	Ground Truth

	Training Details
	Graph Kernels
	GNNs

	Results
	Quantitative Results
	Qualitative Results

	Conclusion
	Discussion
	Future Work

	Bibliography

