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ITepiindm

H ouvepyoasta avipdmou-poundt amantel cuoTAUATH TOU €YOLUV IXAVOTNTA TEOGUOUOYNG
oAAS 1o pdinong omd oAANAETUOPACELS, WOTE Vol EXTEAODY AmOTEAECUATING oAAnhoeEap-
TOUEVES epyaoiec. Auth 1 epyaoia emexTelvel TpdoTN EpEuva, ECTIALOVTUS OTT) BUVILXT
NG oLvepYastag avIPMOTOU-POUTOT 6T OL AVIPKTOL XUAOUVTOL VO GUVERYACTOVY UE EVOLY
medxtopa Bohde evioyuTixhc udinong yio Ty emiteudn evog xowol otoyou. H amddo-
o1 o€ TETOL £B0UC IANAETIOPAOELC ECUETATOL OO TNV XAVOTNTO TOU TEdxTopd Bordid
EVIOYUTXNC Udinong Vo Tpocopudletal oTov exdotote Yerotn. H uelétn poc viomole-
[ o Tpooéyyion UeTapopds udinong uéow emdellewy, ouyxexpuéva Yéow tng Pothdc
Q-uddnone and emdellelc, Ye otéy0 TNV Pertiwon Tng cuvepyaoiog aviemdTOV-pOUTOT.
Y€ BlapopoToinoT UE TNV TEONYOUUEVT EPELVA TTOL Y ENCULOTIOLAUNXE ETavVIY eToULoToNo
TOMTWAC, w¢ pEYodOC UeTaopds udinong, 1 TEOcEYYLoT) UoC, GE GUVOUNCHO WE TRO-
copuoyéc otic puluioeic Tou alyopiduou Soft Actor Critic, emdudxel va evioyloetl Tnv
TEOGUPUOC TIXOTNTA XU TNV AmoTEASopATIXOTNTA TN uddnong. Ipaypatomorinxay net-
eduota ue 24 cugpetéyovieg. To evpuatd pog LTOBNAOYOLY OTL 1 HETUPORE pdinong,
uEow NG pdinong amd emdellelc, Unopel Vo ETNEEGOEL ONUAVTIXG TIC EMLOOOELS.

A€Zelg xAedLd alinienidpaon avlp®mou-poundT - cuvepyatixy| udinon - Podid
olxtua Q - Badid evioyutin| udinon - Yetagopds pdinor - akyderduog soft actor-critic:
udinon and emdeielg



Abstract

Enhancing Human-Robot Collaboration requires robots that are not only socially aware
but also proficient in adapting and learning from interactions to perform interdepen-
dent tasks effectively. This thesis extends recent research by focusing on the dynamics
of Human-Robot Collaboration where humans collaborate with a Deep Reinforcement
Learning agent to achieve a common goal. The performance in such collaborations de-
pends on the Deep Reinforcement Learning agent’s ability to adapt and learn from its
human partner and vice versa. Our study implements an alternative Transfer Learning
(TL) approach, Learning from Demonstrations, specifically through Deep Q-Learning
from Demonstrations (DQfD), aimed at encouraging more efficient human-robot team-
work. In contrast to the foundational work that utilized Probabilistic Policy Reuse, our
approach, coupled with adjustments to the Soft Actor Critic algorithm’s settings, seeks
to enhance adaptability and learning outcomes. We conducted experiments involving
24 participants to evaluate the impact of these changes. Our findings suggest that the
direct transfer of expertise with Learning from Demonstrations, complemented by spe-
cific SAC algorithm settings can significantly influence the collaborative performance.

Keywords human-robot interaction - collaborative learning - deep Q-networks -
deep reinforcement learning - transfer learning - soft actor-critic algorithm - learning
from demonstrations



Euyaplotieg

H mapodoo dimhewuatiny epyacio extoviinxe 610 TAaiclo TNC OAOXAHEWONE TWV TEOTTL-
YLDV OTIOLdWY Hou oTr ool Hihextpohdywv Mnyavixov xoaw Mnyovixoyv Troloyi-
o1y, Tou Edvixold Metodfou TToduteyvelov. H meipopotins) avdmtudn xon UeAETT Ote-
&ydel oto gpyacTthplo T dpao TnetoTnTaC pounotixnc Roboskel | tou Epyactnplov Te-
yvoroylag I'viddoewy xaw Aoyiouxod (SKEL | The Al lab) , Ivotitodto IIhnpogopixfc xou
Trhemxowvoviody, Edvixod Kévtpou Epeuvac Puoiv Enctnuody «<AHMOKPITOY».

H emituyfic ohoxhipwon tng dimhwuatixhc epyasiog autrg, ogetheton ot peydho Badud
oTnv cuvepyooio TNy omola avéntulay pall Loy, ETOTAUOVES Xl EPELVNTEC TOUG OTOl0Ug
xa euyotoTe Yepud. Ewbixdtepa:

Tov xodnynt pov x. Kovotavtivo TCagpéota 1660 yio 10 6TL amod€yinxe tny mpdtooy
HOL YlaL TNV exTOVNoN TS epyaoiag umd emiBAEd Tou ahAd ot yia TI¢ GUUSOUAES TTOL Uou
Teoc€pepe %o’ OAN TNV OLdpxEla EQYAGIAC U0V AUTHC.

Tnv petaddaxtopiny| epeuvriteta Tou gpyactneiou Roboskel xa Mogio Aayldyrou yia
TNV EUTMOTOOUVY) TOU You €BELEE, BiVOVTaC WOU TNV EuXALpiol VO EPYAOTE UE TOV POUTOTIXG
Beaytova tou epyaotrnplou xan xuplwg Yo T cuvey Y| xadodrynot Tng oc xde Bruc Tng
gpyaotiog xou TNV GUECT) AVTUTOXELOT) OE XAVE TEOBANUO TOU OVEXUTTE.

Axbun euyoploted tov % [dpyo Ltowpvd Yoo TNV GNUOVTIX GUVELS(QOEE TOU OTIG
puluioelg Tou aPOPOVCAY TaL TEYVIXG YAPUXTNPICTIXE TWV CUOTNUATWY TOU YETOLOTOL-
AUy %o Tov YETAdOUXTOPXO EpEuVNTY| X. XpHoTo Lmodden yio Tic GUUSOUAES Tou xau
Vv Porield Tou ot cuyYpEuPY| xaL SldE¥pwon Tou XEWévou TNe pyacioug Jou.
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Chapter 1

Extevnc Iepiindm

1.1 Ewaywyn

H ouvepyasta avipdmou-poundt unopet va dewpenidel we unoxatnyopio e oAAnienidpaong
avipmrou-poundt [1]. O Sywetopds NG UE TIC GAAEC xuTnYOopleg aAANAeTidpaoNG EYXEL-
Tl GTO YEYOVOS OTL XUTd T CUVERYAGSIA, Ol GVUpWTOL XUAAOUVTOL Vo AAANAETLOEAGOUY
UE TO POUTOT Yl TNV EMTELEN XOW®OY 0TOYwY. Autdc 0 Toufug elvon EYYEVMS OIETI-
CTNUOVIXOG, AVTIAOVTOC AT TOUEIC OTWE 1) POUTOTIXY, 1) TEYVNTYH YONUOCUVY|, 1 dAANAe-
T{dpaoT avdp®dTOU-UTOAOYLOTH, 1) xowwvioloyia, 1 huyoroyia xou dikouc. H cuvepyaoio
avlp@ToU-pouTOT Boloxel TEAXTIXES EQUPUOYES OE BLdPOPOUS TOUELS TG xonuEQVOTN TG,
6mwe 1 exntardevon|2], ot Vepameutinée mopeuBdoeic (3], n ppovtida nhuawuévov [4], ohhd
xou oe Brounyovixd neptBdihovta [5].

Or mpoxAfioeic TNng cuvepYasiog PE ToL POUTOT ALEAVOVTAL OTAY OL EPYUCIEC TTOL TRETEL Vo
olateréoouy yivovton mo mepimhoxec. To poundt Yo mpémet v etvon oe Y€ar vo Aoufdvouy
ATOPACELC HOVAL TOUG, EWOIXA OTay EpYAlovTal OTEVH UE avIpMOTOUS, Yol TORADELYUd OTIWS
6ty oUVERYELOVTOL YLl VO ONXOVOUY Xt VoL UETaxvoUy Ueydha avtixelueva [6]. Eivou
ONUOVTIXO YOl TO POUTIOT OYL HOVO VoL XWVOUVTAL UE AGPAAELNL ARG XAl VO XATAVOOUY TIG
TeoYéoelc TV avlpdnwy, WoTe vo utopoly va Bontioouv pe to Béltioto tpémo (7).
[oe var yivouv autéc ot ahANAETIOEACELS OMOAES XAl QUOLXES, TOL POUTOT Vol TEETEL Vol
TeoYeoupaTiCovIal MOTE Vol TURAUTNEOUY Xl VoL AVTLOEOUY OTIC avipmTIVEG CUUTERLPORES,
var podatvouy amé T GUVERYAOTA X VoL TEOCUPUOLOUY TIC EVEQYELEC TOUG.

opd v Tpdodo cTov Topéa, 1 dnuioupYla oUoArc cuvepyaciog HETal) avlpdTmY Xou
pounot eCaxoroviel va amoterel mpdxAnor. H tautdypovn udinor, wo xplown ntuyt
TNe ouvepyaoiog, ToAES Qopéc elvan oYY xodoe e€aptdTon omd BLePOEOUS ToEAYOVTES
OTWE 1) AMOUTOVUEVT) CWUATIXY XAl TVELUOTIXY TeooTdiela, ol 6e€LOTNTES Tou avipdTvou
CUVERYATY), OL TEYVIXEG UMyovixNG Uddnong Tou YeNOYLOTOLOUVTOL XAl OL UTOAOYIOTIXES
amouthoelg g gpyaciag. To cuvepyatind poundT, avauévetar vo podoalvouy yeryopd, vo
ovary Vopllouy T IXaVOTNTES TV avIpOTIVWY CUVERYATMOY TOUC XL VA TEOGUpUOLoVToL
oToL BUVOLTS xou Tar adLVaTL oNEio TOUG.

O ahydprduot Badide evioyutinfic udinong Beloxouv mowiieg eqopuoyéc ooy Touéa,
ond popntd poundt [8] xau pounotixole Peoyioves [9] éwe drones [10] xou dhho. H emtuyia
¢ Podhidc evioyuting wdinong ota Tpoavapep¥EVTa TPOERYETUL ATt TNV IXAVOTNT TNG
vor podafvel TEpimAOXES XIVACELS Xl GUUTERLPORES TTou Efvar BUox0ho var emiteuyJoly Ue
TIC TOEAOCLOXES UEVOBOUC EAEYYOVL.

QoT600, évac and Toug TEpLoptopols TS Padide evioyuTixic pdinong etvan 1 yevixeu-

12



o1}, TNG UTEEY0UOAS YVWONG OF VEX TERLBIAROVTY, Ay VOO TEC XUTACTUACELS 1) OTY) GUVEQRY -
ofo ye véouc yproteg [11]. H exnaideuon evoc poundt and to undév yio xde véa epyaoio
xou YehoTn elvon yeovoPopa, Ue amoTéAEoUa TOAMES QopEc var xahoTd TN cuvepyaoio un
ATOOOTLXY).

oty avtyetdmorn autol Tou {NTAULATOC, Wio SLOESOUEVT AVTIUETWTLOT Efvon 1) Ue-
TOPOEE YVOONE EVTOC TwY Thatoiwv tng Bothde evioyutnic udidnone [12]. Tétolec mpo-
ondelec oToyeloLY Oyl WOVO oTNY avedapTnolo TwV POUTOT GAAd XU OTr BIEUXONLVGT)
NG AMPOOXOTTNG EVOWUATWONE TOUS 0E avipmTiveg ouddee. O amtdtepog otdyog eivon vor
meowindel wo mo BtancInTixs xou amoTeAecyaTiny cuvepyacio Yetald Twv 5V0 ETAEWY,
aLEAVOVTOC €TOL TN CUVONXT| TORUYWYIXOTNTO XL TNV dpuovia TG aANAETBpaomg.

Me Bdon v epyacio [13], n mapoloa Simhwuatixy epyoacio otoyeler vo cUUPBdAe
OTOV TOUEN TNS CUVERYGLNS avip®ToU-pouTOT EQUpUOLOVTOC ol TPOCEYYLOT) UETAUPOQREC
udinone, udinon and emdeilelc, eviog Tou aryodprduou Badide evioyutinhc udinone Soft
Actor-Critic (SAC). H yehétn TepLhaBdver cuuPETEYOVTEG OF éval Telpaua cUVERYaoTiag
oavIpOTOV-POUTOT, OYEBIACUEVO VoL alOAOYEL TNV amoTeAEopaTIXOTNTA TNE Bardide evioyu-
TG udinong xaL TG HETUPORAS PdINomg, TNy eVIoyUOY TNG UTOTEASOUATIXOTNTIS TNG
cuvepyoaoiac.

Or Baoixéc cuvelopopéc authc Tng €peuvac epthopBdvouy T uetdBaon tne pedodou
HeTaQopdc pdinong amd TNy emavayenolponoinon moltixAc oty pdinon and emdellelg
XOL TNV EQUOUOYT TG o€ TpaypoTind Peaylova Ue Tn yerion Tou Acttoupyixol YuoTruo-
to¢ ROS . Emmhéov, auty| ) dwotpl3r| Yo cuyxplvel Tic 600 uetddoug petopopds uéinong
HEOK TNG AvBAUCTC AVIAUOTG TWV ATOTEAEOUATOY TV CUUUETEYOVTIOVY and 1o Teipoya.
Oa culntniolyv enione ot dlaopéc YeTAC) AUTOY TV UEVOBOY UETAPORdS pdinong, o-
Clohoy®vTag T avTioTolEC EMNTOOES Toug oTr dladwacia cuvepyasiog. Emmiéoyv, n
LeAETN a&toloyel TNV EMBEOOT BLUPORETIXMDY EVIPOTIWY 0TOY WY oTov ahyopriyo SACoTo
TG0 TNG HETUPORAC UdUNOTS, TUPEYOVTUC TANPOPORIES YId TO TG AUTES OL TTUPAUETEOL
ennpedlouv TN Buvaixy Tng cuvepyaoioc. AuTh 1 avdAuoT GTOoYEVEL GTNV EVIOYUCT TOU
ouvepYaotag avipOTOU-POUTOT BEATIO TOTOUWVTAS TN Sladtxactio udinong ot TeocupUoY NG
TV poundT Yo TN Bertinon tng cuvepyaoiog Toug ue Toug avipntoug.

1.2 TMapeupespric Epsuva

1.2.1 Badid evioyutixr uddnon ot cuvepyacio aviponou-
EOUTOT

H evowyudtwon tng Badide evioyutinic udinong ot poumotixy| E6woe VEEG BUVATHTNTES
0T POUTOT, XUGTOVTOG T TULO TROCUPUOCTIXG XATE TN CUVERYASIA UE TOUG aVUPMTOUC.

[Tpwtov, oty ac@dheta xon TNV eumotoclv, 1 omolo etvor (wTXAC onpaciag o oe-
vdplo cuvepyaoiog poundt-ovlponwy. Ou alyodprduol Bahdc evioyvtinhc uddnong umo-
eolV var pLIUGTOOY WOTE VoL EXTIUOEVOUY T POUTOT Yial VoL BVOUV TROTEEULOTNTO GTNY
ACPAAELL, OTIWG UECK TNG %iVNoTg Toug VIO TPOXUOPIGUEVKY 0plkV AN Xou TG ETiL-
OEEELOG OVTAMOXPLONG TOUC OE TUY WV ampofienteg avipnnives evépyeleg, xepdillovtag ue
oUTOV TOV TEOTO TNV EUTIOTOCUVY TwV avipmrwy.[14].

Enlong, mohhéc epyaoiec ota mhaioio cuvepyasiog avilp®drou-poundT anountoly tepitio-
xn Mn amogdoewy xa Eheyyo. H wovotnra tng Podhdc evioyutixrg pdiinong otov yet-
PIOUO AUTOV TV TOAUTAOXWY EPYUCLWY, OTWS 1) TAOYYNOT O LWOLOUopQI TEPYBdALOVTA,
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evioyUouv TN cUUBolY Tne oTn cuvepyaoia [15].

‘Eva dhho mheovéxtnua tng efvon 6Tl “exmoudeel’ tar poundT var pordoalvouy xon va Tpo-
copuolovTal GUVEYMS TNV avipdTivy TeYVoyveaoia, BEATidVoVTaC TNy amddocy| Toug Ue
TNV T8P0BO TOU YEGVOU X0 UELWYOVTAS Tov Ypdvo udinone [16].

Emnicov, ov alydprduol Badide evioyutinfc udinong mopEyouy TeocupuooTIXOTN T
OE TRUYUATIXO YEOVO, BLac@ahlovTag OTL Ta POUTOT UToeolV Vo Aapfdvouy oTiyliales
amo@doele, euduypauilovTag TIg EVEPYELES TOUC PE TIC avlp®Tiveg TPOVEELS Xal 6TOYOUC,
Behtidvovtag Ty motdtnta T alknhenidpaong. [17].

1.2.2  TIlepropiopol Badidg evioyLTixng paddnong xou UeTo-
(popd pavnong

H Bodid evioyutinr udidnon Véter véao onueio avagopdc o1 pOUTOTIXY, ETTEENOVIAS OTU

EOUTOT Vo ovoho3dvouy OAO xou To oNUaYTX00C pdhoug oe dLdpopous Topeic. 2otdco

OO AVTIIETOTELOVTOL ONUAVTIXES TROXAACELS OE TEUXTIXEG EQPUPUOYES TNG.

‘Evo onuovtixd {itnua ebvon 1 aavendpxeta detypdtwy (sample insufficient), xa-
V¢ ot ahyopriuol Badde evioyutinc udidnone yeedlovton TOAAG BEBOYEVOL Yol VoL Vo
Ttuouy BertioTononuévee TohTxég. Mo mdavi avTiuetdnion oe autod elvon 1) THEdAANAT
YPHOM TOMATAGY POUTOT Yio TN GUAROYY| SEBOEVLY, OTwe paiveton oTo [18], av xou autd
umopel vor ebvor U TEoX TG EPAPUOOI0 Aoy w LYNAOY XOGTOUG.

Mo evahhonctiny| Moo ebvon 1) exnaideucT) Toug o€ Tep3dALov TPocopoikong, xdTt ToU
elvol TIo Y1 YOPO GAAG X0 TILO OLXOVOUIXO, XOL GTY) GUVEYELNL 1) EQPUQUOYT| TOV TELQOUATIXGY
TOMTXOY 6TOV TEaypaTixd xocpo. Teyvixéc yetagopds, 6twe 1 "Metagopd undevixrc Bo-
N [19], TEPLAPBAVOUY UEST) EQUOUOYY) TOAMTIXNC OO TEOGOUOLWOELS O TEOYUATIXES
XATACTAOELS, UTO TNV Teolno¥eon 6Tl T0 TPOCOUOLOUEVO TERBIAAOY avTxaTonTeilel Tig
mpaypatixée ouviixec. Auty 1 uévodog allohoyhinxe oTo 20] péow epyaoudv 6mwe
n winon xaw 1 ohlonon mou mpaypatomotfinxay and éva poundt. (lotdoo, 1N amoTe-
AECUATIXOTNTO TV TOMTIXOY ToU UadalvovTol OTIC TPOCOUOWWOELS UTopel var ToixiAAel
oTay €QoEUOLOVTAL OTOV TEAYHATIXO XOOUO AOY® EYYEVMV BLaPOop®Y UETALY TOU TROCO-
HOLWUEVOL o TEayHoTixo) TEQIBEANOVTOS 1 TNG TOAUTAOXOTNTAS Xou TNG AmeOPBAeTTNG
XUTYO TACTG TOU TRAYUATIXOU XOGUOU.

[o v yegupwiel autd to ydoua, yenoylomowolvtoa uédodol OTws 1) “TuyaoToinom
yweov’ domain randomization, n omolo mepthopfdvel TuyOTONOT TUEUUETEWY TEOCO-
noleong yor vor xohOer Wi oelpd amd cevdpta mporyaticol xécuou. [a mopddetyyo, o
[21] meprypdipet TV eXTOEBELGT EVOC VLY VEUTH) OVTIXEWEVOY OE DIAPOPES TPOCOUOLWUEVES
pulduioceig, oL omoleg Vo PTOPOLCAY GTN CUVEYELX VO AELTOUPYHOOUYV ATMOTEAECUATIXG OF
EPAQUOYES TRUYUITIXOU XOOUOU Ywplc TEPUTERL exTtaldeLoT), Yia epyacieg OTwS EMAOYT)
xou tono¥étnorn. Auty| n mpocéyyion €xel enlong yenowonowmniel oe dhhoug Touels, 6w N
extiunon ¥éone xar mpooavoatohopol [22] xou 1 tunuatonoinon [23], evioybovtog Ty u-
oTdletor Xou AELTOLEYIXOTNTA TWV EPAUPUOYOY Pordide eVioyuTIXC Uddnong 6T poUTOTIXT
[24].

‘Evog dhhog teploploudc eivar 1 eEL00peo TN oY EEEEEVVNONG-EXUETIAAEVOTG,
eval Yeelmdeg dlAnuua oty evioyuTixh udinon. Xe ouTOTIXES EQPUPUOYES, 1 Tuy o
elepelivnon mou amouteltan yioo T pdUNom auTtdy TV ahyopliuwy utopel va odnynoet
OE U1 AOPAUAELS EVERYELES, TEOXAUAWVTOG BLYNTXE oY) unyovixy) BASSN. Mo mpdopatn
epyaocio Tou avtipeToilel autd To (iTNua eivan To [24], 61ou oL oLy ypapelc Topoustdlouvy
ueYOB0UC, MOTE APYES ATPIAELAS VoL UTORPOVY VO EVOOUATWIOUY GTNV eEVIoYLTIXA udidno.
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H aog@dhewa €yel enlone Angiel unddn oe eqapuoyéc TeayUaTnod x6oUou, 6Twe 6To [25],
OToL yenoluoTolelTal Eval VELPWVIXG BIXTUO Yo TNV TEOBAEDT Tou amOTEAEGUATOC UG
evépyelac 600V agopd TNV aocpdiela. ‘Evog diloc meptoplonds tne tuyadoc e€epebvnong
elvor 6Tt umopet va bvor Lot ypovofopa dadixacta Adye tng udnirg SldoTaong TOU YHEOU
0pAONG O POUTIOTIXES EPUPUOYES (m.y. évoc mpdxTopac Bodidg evioyutinric wdinong mou
ENEYYEL TNV TEPLGTEOPY| TOU TEOY OV EVOC LTOOONYOUUEVOL ouToxwvhTou). Eva napdderyua
epyooiog mou avuuetorilet autd To {fnua etvon To [26], 610U EVOEBELYUEVES TEOYIES €Y OUV
yenowonoiniel otn Sradixacio exudinone oto apyixd GTadLAL.

Téhog éva onuavtind {htnua elvon 1 yYevixeuon tne yvoong (generalize knowl-
edge) and tor poundt, dSnhadh 1 hertovpyia oe véo, dyvwoto mepBdihov. Ot mopadootaxéc
Tpoceyyioelg exnaldevong amd undeviny| fdor, OTwe Eyoupe HOT avapEpel, uropel va etvan
YovoBopec xou GuY VA un evoederyuévee . H yetagopd udidnong mpoopépel ua Abon e
ETAVOLYENOWOTOMOT] YVOONG UETAEY TUPOUOLWDY EQYACLOV.

Yto [27], ou oLYYPAPELS ToEOUGIALOUY Lol EPUOUOYT UECW TNG BLUORPWONE XOGTOUG
(reward shaping) mpoxewévou vo Bedtiwdel 1 exnaidevorn evdc mpdxTopa EVIOYUTIXAS
udinong mou yenowomoleiton yia TAOHYNOT), PETOPBIANOVTAG TN GLUVEETNOY XOOTOUG UE
Bdom Tic SuvatoTNTES TOL ToEEYEL 0 oAYOpLioc SLAM.

H pdidnon ond embdeileic éyet eappootel oo [26], 6mou emhbetan to {hTnua Tne apotic
cuvdpTNoNe avtauol3rc oe éva oevdplo emhoyhc xal ToTto¥EéTnong (pick and place). H
YENOT AUTOVY TWV TEOYLWOY ETUTPETEL GTOV TEAXTORPA Vo ETLAICEL TO €pY0, TO onolo Umopel
VoL HTOY OVEPIXTO e Tyl CEQEVYNOT).

Enlone yenowonoobvton "mpo-padnuévee TOMTIXES Yo TNV EXTUBEVOT] QUTGY TV
npaxtopwy. T mopdderypa, 1 emoy tohtxoy (policy distillation ) éyer epopuootel
OTN PoUTOTIXY| OE €va TPoBANUa uddnong [28], 6mou o 0TOY0¢ elvar €vag UOVO TEdXTOPNS
vor uddel’ TEELS DLUPOPETIXES TTOMTIXES YId TEELG DLUPORETIXEG EQYAGIEC TAOYYNIONG XoUL Vol
ETMAEEEL TOLA TOALTIXT] VOL YPTOLLOTIONOEL TEOGOL0RILoVTAS OE TRUYUATIXG YEOVO TNV TEOG
entluor epyaoia.

Mio 80N tpoaéyyion ebvor 1) dueon enavoryenoylonoinon toATxic [29], 6tou o npdxto-
poc Umopel vo emAECel par evépyeta e Bdor uiag mpo-poinuévng TohTxhc avTl Tne Ouc
Tou TOMTXXC. AuTH 1) 16€a €yl yenotponomdel oto [30], 6mou ot oLYYEagElC BLddoHOLY
Eval avIpOTOEDES POUTIOT TG VAL TEQTIUTAEL YT Y0P, EXUETUAAEUOUEVOL ULaL TTOALTIXT] TTOU
ETUTEETEL OTO POUTOT VO MEQTATAEL UE xovovixy| TayutnTa. H yvodon €yel enlong peta-
peplel peTald UopPONOYIX BLopopeTIX®Y pountdT, dtwe oto [31], 6mou oL cuyypupeic
EXTIUOEVOLY EVAY QOUTIOTIXG YEIRPOTY| 3 CUVOEOUWY OF TEELC DLUPOPETINEG EQYACIES Xau
EXUETUAAEVOVTAL TIC TOMTIXES TPOXELIEVOU VoL EXTIULOEDCOLY €V POUTIOT 4 GUVOECUMV.

Télog, undpyet n udinon and avanapdotoor (representation learning ). Mio egapuoyh
e napouotdleton oto [32], émou oL ouyypagelc Selyvouv TS 1 eEaywy ONUOVTIXGOV
YUEUXTNELOTIXWY amd 1o TepBdAlov unopel vor emitoyUvel Tn dlodcacior pdinong evog
TEAXTOPA EVIOYUTIXAC udinone oTny TEpInTWOoT TNG TAOHYNONE XVNTWY POUTOT.

1.2.3 Xuvelcpopd

H epyaoia Bocileton oo mponyoluevo melpopo [13], dmou évac dvipwrog elvon uneddu-
YOC YloL TOV €ReY Y0 TOoU TEMX0U GTotyeiou Bpdone Tou poundt otov dEova (y), eved évog
npdxtopac Bohdc evioyutixic udinone eéyyet Tov dova (x), ue otdyo TV exudinon tne
Aoomng wrog epyaoiog oe mpaypatind yeovo. O otoyog etvar vo xadoplo el edv 1) puetopopd
YVOONG OO EVAY TPOEXTALDEUMEVD EUTELR0 TEdxTopa UTopel Vo BEATIOOEL T1 cuvOlXT)
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anddoan tne ouddac. YLtny epyacta [13] yenowonotjinxe n mdovohoyixr enavoypnoluo-
nolnon moltixng [29], wa Tey Vi Yetopopde udinong, 1 omola eMLTEENEL 0TOV TEAXTOPY
vor eTAEeL pe midovoTnTa, o evEpyela Tou Bociletan oe Uiol TpoNYOUUEVT TOMTIXT| EUTEL-
COYVWUOVLY avTi Ylor Tr) Ouxy| Tou.

LTNV TROCEYYIOY| UG, EIGEYOUUE OPLOHEVES TpoToToLoElS 011 Wevodo. H xdpla dio-
poporoinon and v mponyoluevn epyacta [13] éyxerton oty egappoyh tne Pohde Q
udinone anéd emdeilec (Deep Q-learning from Demonstrations) [33], g teyvixhc ue-
Tapopdc udinone mou LTdyeToL GTNY xoTnyopio uddnong and emdellelc.

‘Eva amd tor mAgovextuato e pdinone and emdellelc EvavTt Tng enavayenotLonoln-
ong TONTAG €lvar 1) QUOT TNS AAANAETBpaoTE HETAED TOL avIPMOTOU XaL TOU TEAXTOE.
LTV TEWTN, 0 CUUPETEYWY OAANAETIORY PE TOV OO Tou TEdxTopd Bordide evioyuTXrg
udinong, o omolog umopel Vo EVOLUATOVEL Ydinor amd emdellelc ey, Auth 1 mpo-
oéyyion Sloc@aiilel OTL 0 GUUPETEY WY elvon XEVTEIXOS oTr Btadascta pdinong, avomtio-
COVTAG TN O] TOU TOMTXT| Ywelg Vo emneedleTon GUECH amd TIC ATOPIOELS EVOS ELOLXO0
medxtopa. Autéd eviappivel Pl o avipmnoxevtext| eumelpio udinong, 6mou o dvipnnog
Yenotng emnpedler onpovTxd T dadnotox| Teoytd Tou poundT, eutuypuuuilovTde To e
1) O TOU LOVAOLX O TEATIYIXY).

‘Evag dhhog Aoyog mou emhé€ae Tn ouyxexpyévn uédodo eivon Adyw tng oupBatdTn-
¢ tou pe 1o mhaioo SAC [34]. To DQID ouvdudlet ) dOvoun tou Q-learning pe
udinon and emdellelc, EMTEENOVIAG 0TOV TEdxTOopa Vo Enw@eniel ard v xododrynon
TV EWBXOY. AuTh 1 u€vodog evowpatdveTon ue Tov SAC | évay alyopripo Pothdc evioyu-
TN PEUMONE EXTOC TOMTIXAC, YVOOTO Yo T1) 0 TadepdTnTa Xou TNV amédoot] Tou. Auth
1 oupPatdTnTo Pag TaPEYEL Eva loyued Thaiolo yia Ty epyacio pag. Emmiéov, to DQID
AEITOVEYEL UE TEOTIO EXTOC GUVDESTS Xl EXTOC TOAMTIXNG, ETUTPENOVTAS ATOTEAEOUITLXY
uddnon and mponyoluevee eunelpiec [35], BEATLOVOVTAC TNV TEOCUPUOC TIXOTNTA oL TNV
amOBOGT) TOU POUTOT UG OF CEVHPLY CUVEQYUCING OE TEAYUATIXG YEOVO.

Ou x0pieg ouvelopopég TN HERETNG Yag ebvan:

o Egapuoyn DQID w¢ pedddou petagopde udinone otny epyaoto.

o Awclaymyh) ouyxELTixig YEAETNG UE OPADES avip®TOou-poUndT Yiot TNV allohGYTOT
TOU avTiXTUTOL TNG UEVEBOU.

o YUyxpton tng ye tn wevodo PPR nou epapudotnxe os npoyevéotepeg epyaoies.

o Enidpaom OLapopeTiX®Y EVIPOTLOY GTOYWY XUl CUVIQTHCEWY EVEQYOTOINGNG OTOV
oAyopripo SAC TNV amOTEASOUATIXOTNTO TNG CUVERYAGOC.

1.3 MeJodoroyia

Ye auTO TO XEQPIAO, TUPOLCLILETOL 1) ETOXOTNGY TKV UEVOBOAOYLOY XAl TV TELQUO-
Ty puiuicewy Tou yenowonoinxay ot YeAETN cuvepyaoiag avlpwmou-poutot. E-
lomng, TEpLYEdpETOL AETTOUERMC 1) Yeion Tou ahyderduou Soft Actor Critic (SAC) yio tov
eheyyo tou poundt oto melpopa HRC . Emmiéov, auth| 1 evotnta elodyel TNy €Qapuoy
e pedddou petagopdc udinone Deep Q-Learning from Demonstrations (DQfD) , oto
melpoquar pog.
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2T GUVEYELL, OVUPEQOVTOL TOGO TU VTLXELUEVIXG OGO YO TAL UTIOXEWEVIXE. XPLTARLAL TTIOU
YENOHOTOOUVTOL Yiol TNV a&LOAGYNOT TNE TOLOTNTAC TNE CLVERPYUTiog avipmdTov-ouToT,
OTWE %o 1) ONUACTN TNC XATAVONONG TOV TEOCHTUXOTATWY TV CUUUETEYOVIOV.

1.3.1 Ernwoxonnon tng cuvepyYaTixng epyaciog

H oudda anotehettar and éva poumotnd PBeaylova 6 Boducv ehevdepiog xan Evay dvipn-
no. To poundt tonodeteitan ot Yéon tou emnédou (empdveloc) epyaoiog oL TO TEALXO
otoyelo ebvar xdeto oTo eninedo epyaolauc xou UTOPEl Vo xiveltal ToEdAANACL UE AUTO OE
éva oplopévo Uog. Erniong, éva Ailep, mou delyvel mpog To eminedo epyaociog, eivon mpo-
copTNUEVO 0To Tehx6 oTolyelo dpdong. Eva o dvipwnog eAéyyel v xivnomn tou TeAixol
ototyelou Spdong oTov évay dZova (y), YENOWOTOLOVTUS TO TANXTEOAOYLO0, VUG Topdyo-
vtog Bohde evioyutixhc pdinone, ebvar uteduvog yio v xivnon otov dova (x). Me
TOV GLVOUGHO TWV XIVACEWY BV0 ETalpwy To poundt umopel va xivniel oto eninedo xy ,
TEPLOPLOMEVO GE EVal TETEAYWVO BlaoTdoewy 20 ex X 20 ex.

Yy apyf xdie doxhc - “mouyvidloU’, To poumoT emAEYEL Tuyoda war apyixr VEo
and T TEooERIC BLUVITES (OTIC YWVIES TOU TETPAYMVOU) xou Totovete(tar and néve ™me,
omwe anewovileton oto oy. 1.1. Trn oty mou @tdvel otny apyixy| Véom, uior oxohouvdia
TRV GUVTOUGY X0l EVOS PEYEAOU Ny NTX00 TOVOU «BEET> oNuaTodoToly TNV Evapdn Tou
oy WLoLoL. ‘Otary Eextvd To maky vVIdL, 0 6Ty 0g TNE opddag etvon va pépet TNy xouxxido Aélep
uéoo otov x0xho tng Véong Tou otdyou, Tou PeloxeTton 6T0 %EVvipo Tou TeTpayvou. H
ouddo xepdilel av xatapépel va pépet TNV xouxida Aéilep péoa 6Tov x0xho g Véong Tou
otéyou, pe axtiva=0,01 m/s , ye toydtnTor uxpotepn and 0,05 m/s, oe 30 Beutepdienta
amb TNV EYT) TOU Ty VLLo.

YyfAua 1.1: Apyworoinuévn 9éom. O xivioelg Tou poumot meptopllovtoan 6To TETEAYMVO.
To tehxd oToryelo dpdong Tonoveteiton oe plo amd Ti¢ Téooeplg apyinég Véoelg ("0") xou n
opddo avIOTOU-pOUTOT TEETEL VoL TO PEREL 6TO XEVTRO (®) TOU TETPUYDOVOU.

Trdpyouy 500 EeYWELOTEC OUADES CUUUETEYOVTILV:
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1. Opdda yweic petapopd wddnong: Ol cuuueTéyovieg 6 QUTHY TNY Ouddo oA~
Anhemidpoly e évay mpdxtopa Bahidc evioyutixrc pudinone 1.3.4 Eexvavtog ywels
meonyoluevn exmaldeuor. H dwadicactio pdinone tou mpdxtopa Bactleton amoxhel-
oG GTNY CAANAETIOEAOCT) TOU UE TOV CUUUETEYOVTA XATE T1) OLUEXELNL TOU TELQGO-
ToC.

2. Oudda pe petopopd mddnong: O GUUUETEYOVTEC QUTAS TNS OUddUC CUVER-
yalovton pe €vay medxtopa Badide evioyutinhc Uddnong mou yadalver amd To dedo-
péva eniBEIENE ToU EBWOY RS Xat amtd TNV AAANAETIOEACT] UE TOV GUUUETEYOVTAL.

1.3.2 Opdda ywelc petagopd uddnong

To mhfpeg mouyvidt, ywelc petagpopd udinong, aroteheiton and 110 doxyéc xar Topoust-
dletan oto oo 1.2

Testing Random
B o o e
Training - SAC Agent
Block Replay
buffer
Offline
training Demonstration

Replay Buffer

e d kbbb

v
./ ﬁ

2 winnning 3winnning - 3winnning : 2winnning
games games games games !

Yyfuar 1.2: Awdrypapar mouyvidlol ywels petapopd udinong

Aopr oy vidLoL

Kde pmhox oo nelpopd wag amoteheiton omd 10 doxydéc. Avagepouacte oe pla oxohoudia
evOg Umhox exmaideuong, oaxohoudoluevn and uio cuvedpio exntaldeuong eXTOE GUVOEOTG
(offline G/U), xou ot cuvéyeta éva umhox doxiunc, we batch. Ta dedouévo touv culAéyo-
VTOUL XOUTAL T SLdPXELL ToV UTAOX EXTaldevoTg anotnxedovton oto buffer emavéindmne. Autd
ToL OEOOUEVOL YENOLLOTOLOUYTOL OTT) GUVEYELX OTIC OLVEDPlEC eExTaBEVOTC EXTOC GUVOEDTC.
H xOpua eotiooy| pog yio avdhuon xon anoteAéopota Yo eivol 6Tol UTAOX BOXUUOV (test
blocks). Eivou ONUAVTIXG Vo onueiwlel 6Tl o TpdxTopag e@apuolel TNV (Blo TOATIXY| TOC0
oto umhox exnaideuong (train block) 6co xou 6to pmiox Soxmy. O umopolvooue vo
YENOHLOTOACOUNE U6VO Eval umhox peToll xdie exnaldeuong extdc cUVEeoNS, ahhd Ltode-
THOOUE AUTAY TNV TEOCEYYLON YLl VO BLEUXOAUVOUNE TNV QUECT] GUYXQLOT) UE TOL EVETUATOL
ond Ty mponyoluevn epyaocta [13].

1.3.3 Opcdda petagopds wddnong

L1 UERETN pag, wE «EWBLXOCy 0plleTon €vol dTOUO UE UEYAAN uTELplar 0To Touy vidt, Ewe xou
30-40 opeg mouywidto0. O edindg cUPPETEYEL 0TV (Blar pliulon Touyvidtod cay TNV opddo
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ywelc petapopd udinong. Oplopéveg amd Tic alniemdpdoelc peTald Tou EWdixol xou Tou
Tpdxtopa, ouyxexpyéva 10 emtuymuévo mouy vidla, xataypdpovtor (6Twe QoiveTal omd Tig
Soxexouuévee ypauuée oty Ewdva 5.2).  Auth n oulhoyr ahhnhenidpdoewy edixdv
oynuatiCel tov buffer dedopévwv enldelng, o omolog yerotuonoteiton yior TN UETOPORS
YVOOTE.

H npocéyyion yio petagopd uddnone eivar eumvevopévn and ) uédodo DQID [33].
Avth) 1 pédodog mepthauBaver 500 Blaxpitéc PAcELS. DTNV apytxy| Pdor), E6TIICOUUE TNV
TEOo-eXTAldEVST), 1 omolo TEPAIUPAVEL EXTU(OEUCT) EXTOC GUVOEOTC UMOXAEITIXG PE TO
buffer emdeilewv. Auth n @dor divel GTov TEdXTOPA ol 0Py X XATOVONOT) TOU TER3dA-
AOVTOG YENOWOTOLWYTOG DEBOUEVA amtd TNV AAANAETDpoT pe Tov edxd. H dedtepn don
onuatodoTel TNV Evopdn TG IAMNAETIBEACTC TOU TEAXTOPN UE TOV EXYC TOTE GUUUETEYOVTOL.
Ebw, 1 exmaldeuot Tou TedxTopa XaTd T SLIOXELN TMV GUVEDELOY EXTOC GUVOECTIC EVOWA-
TOVEL dedouEvaL ETBELENC oIt TOV ELOLXO X0 DEBOUEVOL TTOU OTULOVEYOUVTOL OO TOUS (Bloug
TOUC GUUMETEYOVTES. LUYXEXQUEV, UELWVOUUE OTAOLXE TNV ovohoY{ol TV BEDOUEVKY
en{deiing oe xde cuvedpio ExTAldEVONE PE TNV TéPOBO TV UTAoxg. AuTH 1 oTeaTYX)
ETUTEETEL OTOV TEAXTORA VoL TEOGUPUOLETOL GTY) LOVOBIXY| GTEUTNYIXY) XGVE CUUPETEYOVTOL.
To oyfuo 1.3 anewxovilel Ty Slabxacior Tou YxEoUT PETUPORS Udinong.

Testing Random
Block OO S

Training - SACAgent

Block Replay
buffer
Offline .
training Demonstration
Replay Buffer

Phase one ; Phase two

il ke i L

Eyuar 1.3: Awdrypauuar Tonyvidlol ue UeTapopd udidnong

1.3.4 TIlpdxtopag Badidg evioyutixnig wddnong

To melpopo ahhnhenidpaone avipnmou poundT mepthopfdver Evay dvipnmno Tou eAEYyEL
NV emiTdyuvon oTov dEova (¥ ) xou Evary TopdyovTa eVioy LT udinong mou eAéyyel TNy
emtdyuvon Tou dZova (x ) Tou TEAxo) atotyelov Spdorg.

Enéape to ouyxexpuévo ahybprduo yio to neipaya poc xodog etvan évog (model-free
) ahyoprduog, dnhadr o SAC Sev amoutel €va tpoxadoplopévo povtélo tou neptBdAlovtog,
MO TOVTAG TOV TEOCUPUOcIUo o ampdfienta nepBdhhovto (aAAnhenibpoon aveddnou-
ooundt). Emmiéov o SAC w¢ alyopriuoc extéC TOMTIXAC YENOOTOLE! TEONYOUUEVES
eunetplec yioo TNV exTaldEUOY| TOU, €val BACIXO TASOVEXTNUO OE GEVAPLY UE TEQLOPLOUEVOL
dedoueva ahhnAenidpaone ot Tpayuatind yeovo. Eva dhho mheovextnud Tou eivon 1) duva-
ToTNTA Pdinong extoc oLvoeonc offline training . Autéd To yopEUXTNELOTIXG ETUTEENEL GTOV
SAC va BeitioTonolel TNV TOMTIXY TOU YENOHIOTOLWYTOS OE00UEVA TTOU €YUV GUAREYVEL
TEONYOUPEVWLS, XdTL ToL ebvan ETwPELES oe TepBdAlovTa dTou 1 cuveyric online pdinon
oev eivon et Téhoc o SAC mpocopudlel Ty e€epedvnor UECW TNG XOVOVIXOTOLN-
one e evrponiog, To omolo elvan onuavTixd ot epyaciec aAnienidpoone mou amoutolv
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TPOGUQUOC TIXOTINTOL X0 AV TUTOXQLOT).

YAonoinorn xou nopdueter Touv SAC

O aryobpriuoc BaociCeton otn poviehonolnon puéow Mapxoliavrc dadixactioc Adng amo-

pdoewyv. Ilo cuyxexpyeva:

o Katdotaon (S): IlepiauBdver tn 9éom xou tn oy btnta {eeposy , eeposy , eevely , eevel, }

ToU TEMX0U GToLylou dpdomg.

o Apdom (A): Opileta n emtdyuvon otov dZova x , pe mdavég Tée -1, 0 4 1.

o AvtapoBf (R): Xpnowonojdnxe apotr) cuvapTnomn xG0TOUC UE TOWVY YLol XoTo-
oTtdoelg extoc otdyou (-1) xou avtapols yioe v eniteuin tou otéyou (10).

Yrov ITivoxa 1.1, mapoucidlovton ot puiuloelc Yo TIC UTEQTURUUETEOUS TOU LOVTEAOU,
ot oroieg Pacilovton 070 [13], pe Tic oxdrovdec B0 odhayéc:

e YJuvdptnor evepyonoinong: H ouvdptnon evepyomnolnong v veupmvixay di-
Moge ané ReLU oe Tanh . Auty| n tpomonoinon €ytve hAoyw tng cuyfotodtntog Tng
Tanh pe v apyxonoinon Xavier [36] xou dhheg epyaoieg dnwe 1 [37] 6mou yenot-
uornoinoav tov SAC pe v Tanh yia vo xadoplcouy tn BérTiotn yovio diebduvorng
YLt auTOVOUT 001 YNoT oE plo oo

e Xtoyo0g eviponiag: O otdyoc eviponiuc tpononotfinxe ond 0, 36x(—log(1/|Al))
oe 0,98 % (—log(1/|A])), 6mou 1o A aviinpoownelel 10 YHpo dpdone pe 3 mdavéc
evépyeieg. Auth 1 mpocopuoyt| eviuypauuileTon Ue TV TEOCEYYIOT Tou EloYUN
oty gpyaota Tou x. Xplotodovhou yio To dloxertd SAC [38], 6mou mpotdinxe auth
1 CUYXEXEWEVT BLTUTIOT) 0TOYOU EVTPOTHOC.

Table 1.1: Puluiceig draxprtod SAC

Hyper-parameter

[13] value

our value

Layers
Fully connected layer units
Batch size
Replay buffer size
Discount rate
Learning rate Actor
Learning rate Critic
Learning rate Alpha temperature
Optimizer
Weight initializer
Activation function
Networks update per off-line training
Loss function
Entropy target

2 fully connected, 1 output
32,32, moves available:3
256
1000000
0.99
0.0003
0.0003
0.001
Adam
Xavier initialization
Relu
14.000
Mean square error
0.36*(-log(1/|A))

2 fully connected, 1 output
32,32, moves available:3
256
1000000
0.99
0.0003
0.0003
0.001
Adam
Xavier initialization
Tanh
14.000
Mean square error
0.98*(-log(1/|A)))
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1.3.5 Ileipoportixy dtadixacia

Ov ouypetéyovteg ywelotnxay oe 2 ouddeg, ol wool énoudoy To mouy vidl ywelc YeTapopd
udinong eved ot dhhol wiool émoulayv ue. oy amd tnv évapln tou mewpduoatog doUNXe
EVaL EVTUTIO GUYXTAUEOTC GTOUG CUUHETEYOVTEG TTIOU TOUG EVIUEQMVE OTL 1) EUTAOXY TOUG
Aoy edelovtin xo 6Tl xauio tpocwmix TAnpogoplo dev Yo yenouomoindel ywelc
ouvaiveor|] Toug. H evnuepwtiny emotol) xau o éviumo ouyxatdeone Bploxovton ota
Hapapthuata 5. To mpwtdxohlho uerétng eyxplinxe and tnv Emtpons) Epeuviv tou
Edvixol Kévtpou Epeuvac Puoixwv Emotnuoy «<AHMOKPITOY». Metd 1o évtuno
ouyxatdieong, ol cuuueTéyovieg (ATnoay cuumAfipwoay o Epwtnuatoldyo 1 5.3.3, to
omoio aopd oTotyela Ylor TOV Yoo T xdde GUUUETEYOVTA xadde xou TNV drodn Tou
yioe Ty Teyvnth) Nonuooivn,.

Experiment Procedure

_ — -
- - - _ _ Q”mmm” - Mh'w'mg

Yyfuor 1.4: Tlewpapoins Srodixactio

Metd ) cuunAripwon tou Epwtnuatoroyiou 1 860nxay odnyieg mou 8éUnxav oe xdie
CUUUETEYOVTA, OYETIXA UE TN PUOT TNG CLUVERYUCIAG UE TO POUTOT, TNV EPYUCIN TOU ava-
howPdver o xadévag Toug, Tov dZova Tou eAEYYEL xdle UENOC TNC OUABS, TOV GUVORXO
oprdud doxdy (110) xadode xon 6t xdde mouyvidt Vo unopoloe vor TEAELOOEL YE VXY’
1 ATt To xodévar ue Sloxpttole yous. EZnyhinxe 6Tt ou xiviioeic Tou poundT mepto-
ciovtay oc pa xodoploUEvn TEPTEAY VX TERLOY T, OTwS Gaivetor oto 1.1. Emmiéov, ot
CUUPETEYOVTEG EVNUERWINXAY YIoL TNV ACPAAELL AOYW TWV XVNUATIXGDY TEPLOPIOUMY TOU
EOMUTOT X0 TOU XOUUTILOL amevepyomoinomng extoxtng avdyxng. Ot ocupuetéyovieg Oev e-
VNUEEOUTXAY YLt ToV TEdxTopa Bardidc evioyuTixic udinorne mou eréyyel Tnv xivnorn oTov
d€ova (x) o0TE Yo TNV eXTUBEUCT) EXTOC GUVOEDTC TOL TEdxTopa xdle 20 maryvidla, olTe
NV opdda Toug.

Ou odnyleg evnuépwoay emlong TOUG CUUUETEYOVTES YL TOV TUTO EAEYYOU TIOU Elyoy
otov dZova (y). Buyxexptuévo n odnyla Tou divetar yio To yelplopo elvou:

o i O cupPETE WY UTOPEL Vol ATOUAUXEUVEL TO TEAXG OTOLYElD DEdOoNS amtd aUTOHV.

o 'm": O cuUPETEY WY UTOPEL Vo UETAXIVHOEL TO TEAXO GToLyElD Bpdong TEOC TO UEROG
TOU.

e 'k ‘Otav matdel to xouunt k7, o cuuuetéywy divel evioly| oto Tehxd oTolyelo
dpdiong var cuveyioel var xveltan Ue Tov (Blo axEBOE TEOTO TOU XWOoUVTAY TN OTLYWY
TOL TETNOE TO XOUUTL.

Ov ouppetéyovteg éhafav Véon omwe amewoviletar oty Ewdva 1.5 xou Eexivnoay
T0 Taky VIOl eCoelwong, OTwe TEptypdpeTal 6To 5.2.1, TEOXEWEVOU VoL ATOXTHACOLY Go-
PECTERT HATAVONON) X EAEYYO TNG XIVNONG TOU POUTOT XaTd Prxog evog dova. Mohig
oloxhnpaydnxe 1 eCoelwon), Tpoywenoay oTo xVplo Touyvidl cuvepyaoioug, TS TEQL-
Yedpeton 670 5.1.1. Metd to mowyvidL, oL cupueTéyovieg cuuthtpwoay To Epwtnuatordylo
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2 5.3.2, oxomog tou omolov efvan var aZlOAOYHOOLY Tal UTOXEWEVIXG UETEO TN GUVERYO-
olag. Y10 téhog mpaypatomolinxe evuepwTnt) cuvedpla. Auti 1 cuvedplo €dwoe TNV
€UXALEAL GTOUC GUUUETEYOVTES VL LOLROG TOUY TIC EUTELRIES Xo TIC OXEPELS TOUC OYETIX UE
NV AAANAETUDEAGCT), TEOGPELOVTAC TOAUTIIES TEWTOYEVELS TANPOYOplEC Yo T cuvepyacio
avp®TOU-POUTOT.

Yo 1.5: H ywpodétnon tou nepduatog cuvepyaoiog aviondnou-pounort.

1.3.6 Metpuxeg

Avtixeipevind Keoutrpia

TN UEAETN) HOG, TO AVTIXEWEVIXG UETEU YENOWEVOUY (G TOCOTIXOTOLACLHIOL OElXTES, Ta-
EEYOVTAC Lo AVTIXELEVIXT] 0ELOAOY MO TNS AAANAETIBPAONE LETOEY TwY avip®dTvVeDY GUU-
METEYOVTWY xal Tou poUnoT. Autd tar pétpa mepthou3dvouy:

e JUVOAXOG Ypovog alAnienidpaong: To yéyedog autd YeTEUEL T GUVOALXY
Odpxetor TN EVERYNC eNTAOXTC UETAC) TOU GUUMETEYOVTA X0l TOU POUTOT XATd TN
odipxelor xde epyaotog.

o Yxop: Zaxwvovtac and 150, To oxop YetdveTon xotd va Yo xdie mAaioto EAEYy o
(control frame) xatd ) didpxeta Tou TouywdLOY. Autéd evduypouuileton ye ™ ou-
YVOTNTO TV Thaolwy eAEyyou, mou epgaviCovial xdde 200 ms, evtog Tng Sudpxelag
TV 30 BeUTEPOAETTOWVY Ul DoXAG. LUVETGS €youde 150 mhaioto eAéyyou avd
oy vidt.
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o Aptdpog vixadyv: To péyedoc autd napaxorovlel T0 GLUVOAXO aELIUO TWV ETLTU-
YNLEVOY Boxylwy o€ évor umhox (10 mouyvidua).

o Kavovixonowmuévn diavudeioa andotacn: Troloyleton we 1 andotaom
oL BV NXE, TOMMATAACLACUEVT] UE TO TOGOGTH TOU GUVORLXOU YEOVOU TIOL BlupXeEl
€vol Ty vioL.

o Ocpuoypdppator [lpdxeiton yior ywenes avanopactdoelg Tou delyvouy N ou-
YVOTNTA TV VEcEwy Tou TEMXOV GToLyelov Bpdone o Gho To YWEO epYasiag mo-
PEYOVTAC Lo OTITIXY) OVOTOEEO TAUOT) TNG AAANAETORAOTG.

[Mot var avohOGoUUE AUTEL TIC AVTIXELIEVIXES PUETEHOELS, YPNOWOTOWoUUE UeVOBOUC O Ta-
TIo TN avdAvong, 6mwe 1 mixed ANOVA, yio voo GUUTERAVOUUE oty To AMOTEAEGUOTOL LOIG
ETUOUXVUOUY OTATIO TIXEG ONUAVTIXOTNTEC.

Y roxeithevind xpLtrpla

To unoxewevind pétpa elvor onuovTXd Yyl TV xotavonon e ovdedmivig avtiindng
XoTd TNV AAANAET{Opaon e TO poundT. AuTéc ol xataypagés Pactlovial 6TIC TPOCWTIXES
amoPelg xaL EUTELRIEG TWV CUUHETEYOVIWY, ATOTUTMVOVTAS TTUYEG TNG ahAnienidpaong
Tou efvon 60ox0h0 Vo TocoTixomoinVoly aviixeyevixd. H uehétn yog ypnowomnoinoe €va
EPWTNUATONGYIO EUTVELCUEVO amtd To €pyo Tou Hoffman [39], eotdlovtac oe €8 Baowrég
TTUYEC TNG ouvepYaotag: euyépela otV aAAnAenidpaon avipwrou-Al cuuforr tng TN,
Behtiwon tne ouddag, eumoToovr, exnaideuct xou ouuuayio. To epwtnuoatordyto ivan
TPOGUQUOCHEVO GTOUG GTOYOUC TNG UEAETNG o EYEL OYEDIAOTEL Yo VoL XAToypdQEL TIg
avTeic o eumelpleg xde ouupeTéyovta xo)” OAn Tn Sudpxeld TNG CAANAETUORUONS.

Katavénon tTwv npocnmixoThTuy TV CURUETEYOVT®Y OTTNV dAANAEn{dpa-
on avip®ToOV-POUTOT

Avoryvepiloviag T onuacia Twy aTtouixey SlapopoToRCEWY, 1 EpELVE Hag bivel emlong €u-
(QOOT) GTNV XATAVONOT) TWV TROCWTIXOTHTWY TWV CUUPETEYOVIWY GT1) GLUVERYUGta avipnTou-
counot. H mpoocwmxdtnto evog avipdtou mou cUUUETEYEL 6TO Telpopo Umopel vo emnpe-
doel oNUOVTIXG TN OTEATNYIXY| XaL TNV CAANAETIOPUGY| TOU UE TO POUTOT, ATUTOVTOG (Lol
TEOCUPUOC TIXT| ATOXPLOT| A6 TO POUTOTIXG GUCTNUA. ['iot Tov oxomd autod, avantiioue To
"Eewtnuatordylo 17, 10 onolo 0L GUUUETEYOVTEC GUUTANEMYOLY TRtV omd TNV €vopdn Tou
mouy vidoU. Autd to epwTnuatordYlo ywelletoun ot Tela pépn):

1. Big Five (Xapaxtnplotixd T1c TpoowmxotnTag): Auté to tuiua, me-
erhouPBdver 50 epwtroeg Tou pag Bondoldy Vo XATUVOGOUPE TEVTE BACINEG TTUYES
¢ TpoowmxotnTag: Elwoteépeia, Eunpocdpuoctindtnta, Eucuvednoio, Suvor-
odnuotnr) otadepdtnro/Nevpwtioude o Avolytdc oe véeg eumeipiec.

2. Schwartz Portrait Values Questionnaire (PVQ): Xpnowonowdvtoc 10 PVQ-
21 amotunwvovton 6éxa Paoixég aviphmveg allec.

3. Al Attitude Scale: Auty| nxhipaxa pog fordd vo xatovoiooude T GUVALCY AT
xo TG OXEPELC TWV GUUPETEYOVIWY oYeTWd pe Ty TN,
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Méow authAc TG TEOCEYYLIONG, N UEAETH YOG CTOYEVEL 0T ONUtovpyia ULog xaTavon-
ONG TOCO TWV OVTIXEWEVIXGDY OGO XUl TV UTOXEWEVIXGY TTUYOV TN oAANAenidpaong
avp®TOV-pOUTOT.

1.4 Amnoteléopata xOplag UEAETNG

e autd 1O AEPIANO TUPOLCLALOVTOL Tol ATOTEAECUOTA TNG UEAETNG. MTNV ooy r| AmoTu-
TOVOVTAL T Y UEUXTNELO TIXEL TWV CUUHUETEYOVTIWY. LT GUVEYELL CUYXEIVOVTOL TOL YOR0X TN
ELOTIXG X Ot AEIEC TNG TEOOWTIXOTNTAUS PETAL) oUddwY yenoylotowwvtag Ta Big Five xou
Schwartz Portrait Values Questionnaire (PVQ). EZetdletou eniong TN oTdoN TV CUUUE-
TEYOVIWY ATEVAVTL OTNY TEYVNTH VONUOoULYY), 1 omtola efvon onpovTix ylol TV xaTovonoT)
NG AAANAETOPAUOTC TOUS UE TO POUTOT.

Enlone napouctdlovton o avTIXEWEVIXE. OTOTEAEOUATY, OIS OL YPOVOL AAANAETIDEA-
omNg, Ol xaUTUAES Udinong xou ol YeTeioelc anodoonec. Alevepyelton GTUTIOTIXY avaAuoT
Yoo TV emaAfleVon TG 0pUOTNTAG TWY EVRTIUATOY, E0TIALOVTAC OTIS DlpOopES ambdooNng
peTag) TV ouddwy. Emnpdoteta, 10 xE@IAao SIEPELVE TIC UTOXEWEVIXES EUTELplEC, OU-
UTERLAUPBOVOUEVWY TV AVTIAADEWY TV GUUPETEYOVTWY VLo TOV EAEYYO %ok TNV TOLOTN T
NG ouvepyaoiog.

To xepdhoro ovtimopafdihet eniong auTd Tar EUPUATOL UE THY TEONYOUUEVY YeAéTN [13]
xou elodyer pior véo tetpoatixy) gdon (Pdon 2), pe tpononoinuéves puduioec.

ivoxag 1.2: XopoxTEtoTind TV CUUUETEYOVTWY 0TN UEAET

Xopaxtnelotixo Aentouépeieg

Kotoavour| ¢iiou 5 yuvaixee, 11 dvopec

Hiuxdo 16 - 31 etV

Emuxpateg yepl 13 Be€ioyElpee, 3 UpIoTEPOYELRES

Eunetplo mouyvidon 8 ue 5 ypovia, 2 ue 3-5 ypowwa, 1 ue 0-1 €tog, 5 ye xavéva
Hpotumueveg cuoxeueg mayvidioy | 10 gopntol utohoyioTtée, 3 xovooies, 2 xivntd, 1 xovéva

Big 5 xou PVQ

H olyxplon v yapaxtneloTixmy TNg TeocnmuxdtnTog Wécw tou Big 5 twy 500 ouddny,
mopovotdleton oto 1.6 xou oto 1.7, Belyvel oUYXAIoN ¢ TEOG T YUEAXTNEWOTIXG TNG
TEOCKHTUIXOTNTAC ToUC. AuTH| 1 GUYXALGT UTOBNAGVEL OTL, 66OV aopd T1) GUVERY UGN TOUG
UE TO POUTOT, xou oL BVO oUddeS ebvon TIovS vor eupoavi{ouv TUPOUOLEG CUUTEQLPOREC.

Katd tny e€étaon tov anoteheoudtwv PVQ, 6nwe aneixoviletar oto 1.9 yio tnv oudda
e peTopopd udinong xou 1.8 yior TNy oudda ywels auty|, undeyouv BUPOREC GE OPLOUEVL
XoUL CUYXEXPUIEVA YopaxTneto Tixd. H mpdhtn Belyver optond uPnhdTepe TIWéS o GUYXEXQL-
uévouc Touelc, x4t mou TAVOC XUTABEVUEL TEPLOGOTERO EVIOUCLHOOT XAl BNULOVEYXT
TEOGEYYLON OTIC AAANAETLORAOELS avipnTou-poundT. Eivor axdun mdavd vo delyver yeyo-
AOTEEY BIAIEST) YIoL TNV ATOXTNOT] VEWY EUTELQLV X0 LOYVEOTERO XIVNTEO Yol TNV EMETEVED
OTOYWY XoTd TNV ENITEVEN TWV ETBIWXOUEVWY GTOYWY TWY EQYACUOY.

ITévteg, mopd TIC BLapoROTOLACELS GE OPLOHEVES TTTUYES TWV YURUXTNELO TIXWOY TNE TTRO-
WX TOUC PUOLOY VLIS, oL BUO ouddeS TapoLaLdlouy TtapdUoL GOVIEST) TEOCKHTUXOTY-
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T0¢. AuTh) 1 GUYXALOT TV TROCWTIXOTHTLY 00NYEL 6T0 CUUTEPACUA OTL oL OL BUO OUddES
ebvon mdavd va tpoceyyloouy Tic IAMNAETIORACELS avDP®TOU-POUTOT UE GUYXP{oLUO TEOTO.

Big 5 Personality Traits - No Transfer Group (Mean * Std Dev) Big 5 Personality Traits - TL Group (Mean * Std Dev)
Agreeableness Agreeableness

Conscientioysness Conscientioysness

Extfaversion Extfaversion

Emotional Stepility Emotional Stpility

Ttellect/imagination Ttellect/imagination

Yyfuo 1.6: Big 5 No TL group Yyfuo 1.7: Big 5 TL group

No TL Group Traits (Mean = Std Dev) TL group Traits (Mean = Std Dev)
Self-Direction Universalism Self-Direction Universalism

Stimulatjgn Beqevolence Stimulatjgn Beqevolence
Hedonism Tijadition Hedonigm Tfadition

Achieverent cfformity Achieverent cofformity

Power security Power Security

Yyfuo 1.8: PVQ 21 No TL group Yyfuo 1.9: PVQ 21 TL group

‘Arodn yia v Texyvnty Nonpooivy

Kau ot 800 ouddeg, €éyouv et dmodn yio tnv Teytnth Nonuoolvr, émwe qaiveton
otov Iivaxor 1.3. H opdda pe yetagopd pddnong eugavileton neplocdtepo YeTint| oyetind
UE TNV TEYYNTH YoNuooUvr), otolyelo mou delyvel 6Tl €youv UeYaADTERY EUTIOTOCUVY OT1|
CLVERYGSLA UE TO POUTOT XaTd T1) OLdpxeta Tng epyactag. H dhhn oudda, ov xau elvor eniong
Yetnr|, umopel var etvar Afyo To TRooEXTIX Xt ETLPUANXTIXY, oTolyElo Tou oTotyEloVeTEl
TEOOTAIELL AVIY VEUGTS VEWY TOOOTTIXGY Xt avalNTACEMY TNG YPHONS XOL TGV EQUOUOY OV
NG TEEYOUCUS TEYVOhOYIag.

ivocag 1.3: ‘Anodm yioe tv Teytnt Nonuooivn

Oudodo Méoo | Tumxy| amdxion
Xwplg petagopd udinong | 0.488 0.406
Me petagpopd udinong 0.541 0.369

Yuvohixd, Je Bdon TiC mopamdvey amavTAOELS, oL BU0 OUddES BEV TapoLGdlouy onuo-
VTIXEC OLUPORES OTOL YUQUXTNELO TIXG X0l TIC CUUTIEQLPORES TOUG.
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1.4.1 AvTixeluevind AmOTEAECUATA

o oy vidLor BOXIUMY, 1) OUAdN UE UETOPORE UdINoNe EPPAVICE UECO YPOVO UAANAETIDPA-
ong 21 AeTTOV PE TOV TEAXTORA, UE TUTIXH amoXAlon 2,6 Aenteyv. Avtileta, 1 oudda ywelc
elye y€oo ypovo aAinienidpaong 26 Aemtd, ye Tumixn amoxAon 1,4 hentd.

Omntie avamapdotaom Tng xoumuANg exudinong ota 60 maryvido SoxueY, TUEOUGH-
aleton otic Eioveg 1.100" xon 1.108°, ot onoleg anexoviouv Tic xaumdAieg pdinong yio Tic
VIXEC xa1 TIC AVTOUOLBES, xou OTIC BU0 OUddES, XS xou amddocT Tou ewixol. H oudda
Ywelc petopopd udinong dotneel o oyeTnd oTaepY| AmOBOGCT), EVE O EWBIXOS DELY VEL ia
oLVOAXT| Xah1) amédoon AaufBdvovTag LUTodn TNV OAT CAANAETBpoOM.

Emniéov, oto Lyrua 1.10Y", napousidlouue tnv xavovixomonuévn dwovuieion ando to-
orn mou ebvan 7 dravuleloo andGTUACT, TOAMATAACIACUEVT] UE TO TOGOGTO TOU GUVOAIXOU
YOVOUL oL BATUVATOL GE EVal Towy VIOL.

Wins per Test Block Rewards per Test Block

(o) Nixec otor pmhox Soxiud>v (B") AvrtopolBéc ota umhox doxuodv

Normalized Travelled Distance per Test Block

Normalized Travelled Distance

05

Baseline 2 3 4 5 6
Block Number

(v") Kavovixonoinuévn davuieioo anéotact oo umhox Soxiudy

Eyfuo 1.10: Anoteréoporta oo uniox doxuev: Nixeg, AviauolBéc, xow xavovixomotnuévn
otavulelon andoTaom

‘Eva xployo gpyokeio yia TNy xatavonoT Tng CUUTERLPORES TV ouddwy clvon to Yep-
Hoyedupata tou napouctdlovta ato 6.8. Katd tn Sidpxeto tou Pooxol (baseline) umhox
(e8¢h ot T 2 YXEOUT CAANAETOEOVY pe évay Tuyaio TedxTopa), uLa eupeio xatdhndn ot
XEAG UTOONAGDVEL ULt SLEQELVITIXY| PAGT) OTIOU OL OUADOES ECOXELDOVOVTAL UE TO TERLBAANOV
xaL TNV epyaoia.

Ané manpetépw eEETAOT TWV UTAOX DOXUIWY, XATHYRAPOVTAL EVOELELS UETOPORAS Uddn-
ong oty opdda. Auto eivon epgavég amd Eva potifo 6mou i yeauuy VPNAc cuyvoTnTC
epgaviletan otoepd oe éva oplouévo onueio atov dZova (x), Selyvovtag 6Tt 1 ouddo -
TUOXETTETOL GLY VY Uiot CUYXEXEWEVT Oladpour. Autd to YotiBo umodnhmvel 6Tl 1) ouddo
o&tomolel AMOTEAEGUATIXG TIC ETUOEIEELC TRV EWBLXMY, 0V Xl UTOONAWVEL ETtiong W Tdovi)
e&dpTNom amd AUTH TN CTEATHYLX.
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Expert's - Baseline Expert's - Block 3 Expert's - Block 6

o =1 BRG =1 ol
m m

—0.30 025 020 030 025 020 ~0.30 025 ~020
TL - Baseline TL - Block 3 TL - Block 6

0.26 : 0.26 ) 0.26 ‘
| | | B

—0.30 025 —0.20 —0.30 025 —0.20 —0.30 025 —0.20
No TL - Baseline No TL - Block 3 No TL - Block 6

0.0

-0.30 -0.25 -0.20 -0.30 -0.25 -0.20 -0.30 -0.25 -0.20

Yyfuo 1.11: Xuumeptpopd tne ouddoc We tov edixd (1n oepd), wo ouddo pe LED(2n
oeLpd) xou ol opdda ywels uetapopd udinone (3n oewpd). To Vepuodiorypduuoto delyvouv
™ Véom tne xouxxidag AéWlep oTn Pooind umhox, 6TO 30 XU GTO TEAEUTALO UTAOX BOXUUNS.
Ov opriuol umtodewvbouy 1 cUYVOTNTA Pe TNV oTtola 1) xouxxida xoTohduBave xdlde el
(lex. x lex.) - dnhadr| o xovovixomonuévog aptdudc twv (euy®y X, ¥ Tou UeTerdnxoy
MECQ OTO XEAL X OToL OEXQL Ty VIBLaL Uiag TToeTidC.

Y TATLOTINS ATOTEAECUATA

e Ohn TNV aVIAUGT), GTOYEVOUUE VO TORUTNENOOUUE TIC OLUPORES TOV 2 OUEDWY XAl Vol
a&LOAOYGOUPE TOV aVTIXTUTIO TN UEVOB0U UETAPORAS UEUMONE OTNY AmbOB0CT| TV GUUUE-
TEYOVIWY. LTO TEWTO UTAOX, TO OO0 YENOWEVEL 1S CUYXELOT UETAEY TwV BU0 OUddwWY,
OEV EVTOTIOTNXAY CTATIOTIXG ONUUVTIXES Olopopés, elte oTig avTopolBes, elte otic vixeg
HETOEY TwV 0uddwy. 201000, 0TO TEAEUTAUO UTAOX, TOQUTNENOOUE UL O TUTIC TIXE. OT)d-
VT OLopopdt OTIC aVTOUOLBES UETOEY TV 800 OUddwY, ATOBEXVIOVTUS OTL 1) METOPORY
udinong etye avtixtumo ot avtapoBés. Autd to anoteréoyata, cuvolilovton oTov mivo-
xa 1.4 mou mapouctdler o anoteréopata Tng doxyc Mann-Whitney Utdco yua 1o mpdto
000 XAl YLo TO TEAEUTOLO UTAOX.

MnAox MeztafAnty | Mann-Whitney U | Twuy P
Ipoto (Baseline) | AvtapolBéc 45,5 0,165
ITpchto (Baseline) Nixec 47.0 0.119

Teleutaio AvrapolBég 52.0 0.038

Teheutaio Nixec 51,5 0,043

ivaxag 1.4: ATOTEAEOUOTO OTATIOTIXGDY BOXUIMY Yol TO TEMTO Xl TO TEAEUTHLO UTAOX
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Emuniéov, éywve ypron e two-way mixed ANOVA péow tng ouvdptnong bwtrim
o to moxéto WRS2 [40] yia vor aflohoYACOUUE TNV AMOTEAECUATIXOTNTOL TG UETUPOPES
udinone oc BLPOPETING UTAOX XATA T1) OLIEXELN TOU TELRIUUTOC. AUTY| 1) avdhuoT) Gy EDL-
Gotnxe Yo vor alohoYHOEL TOGO TIC OANAYES EVTOC TNG OUAdaC (0€ GAoL ToL UTAOX-YPOVOC)
060 %ol TIC OLaPopES PETAEY TwV ouddwv. Ta anoteréopata napouctdlovton otov 6.4

H avdhuor amoxdhule:

2 TATIOTIXE ONUAVTIXT SLopopd HETAZY TwV opddwv (p-value < 0,0001),
TOU ATOOEIXVUEL [LOL OUGLUGTIXY OLolpopd. GTNV XOVOVIXOTIOUNUEVT] ATOCTAOT UETUED TWV
opddwy. Autd 1o elpnua utootnellel Ty utdleon OTL 1) ueTaPopd udinong emneedle
Yetxd Ty amédoon,.

Y TaATIoTIXd oNUAVTIXT Stapopd ueTadD Twv wrhox: (p-value < 0,0001), u-
TOONAGVOVTOS OTL 1) XAVOVIXOTOLNUEVT) ATOC TAUCT) OANALEL ONUAVTIXG OE BLUPOPETING UTAOX
uéoo o xde oudda. Autd To amoTéAEoUa €lvor EVOEXTIXG WUiog Oladixactiog udinong 1
TEOGUPUOYHC ToU GUUPBaiVEL UE TNV TéEOBO TOL YEOVOU.

My otatiotixa onpaviixy enidpacn arAnienidpaong: H adinienidpauon
UETOED ouddoc xat umhox Bev Atay oTatioTixd onuavtxy ( p-value = 0,7168), xatadu-
xvoovtog 6Tt To YotlBo Tng ahhayic 0T umhox efvan dpxeTd OUOoL0 PETAE) TWV OUBDWY.
Kot ot 800 ouddec mapouctdlouy mapouoteg tpoytéc Pertiwong 1 adiayhc Ue TNy tdpodo
TOU YPOVOUL.

MetafAnt] | LtatioTind | T p
umhox 8.0571 0.0010
oudda 78,0173 < 0,001
umhox:oudoo | 0,5774 0,7168

Hivoxag 1.5: Two-Way Mixed ANOVA oty xavovixoroinuévn dwavuldeico andotoon

Eva umdpyet otatio T onuavTixoTnTo LETOEY TWV oUddeV, 1) EMAELN 6 TATIo TIXAG O
MOV TXOTNTAS METUE) UTAOX X0 OEDWY UTOBNAGOVEL OTL 1) TROYId BEATIWONG, EVE UTHPYEL,
OEV OLUPEREL UETAEY TV OUABOY Xt T1) BIEEXELN TOU TELRAUATOC.

1.4.2 Y roxsleVIXd ATOTEAECUAT
Keion ehéyyovu

Yy avdhuct Tou EAEYYOU Tou pouTtoTxol Bpayiova, ol GUUUETEYOVTES PWTHUNMAY Yo
TNV WVOTNTE ToUg Vo xplvouv Tov €AYy Toug, ot €CL BLPORETING. YEOVIXY OLUCTAUATL
(pero’t T0 umhox [Bdong xou o€ xdie exmaldeuon exTOg o\’)vﬁeong). To epwtnua fTav:

[Iog Yo Poduoroyoloate TN avVOTNTE GoG VoL EAEYYETE TNV %IVNOT TWV YEPUOY OO
tehevtaior 10 mouyvidia amd 1 (yweic éheyyo) éwg 9 (TArene éreyyoc)”

H yeagpuxd mapdotoon oto My fua 1.12 xoataypdpet ontind Behtiwoelg otny xplon eréy-
you (JOC) pe tnv mdpodo tou ypdvou xar yio Tic 2 opddes. Ta amotehéopoto Seiyvouy
otaTlo TNy onuaocta wovo otn Bertinon twv Poduoloyidy Ue TNV TEEOdo TOL YEOVOU
(p=0,0001), &yt yetal TV ouddwy (p=0,246) ¥ oty akknienidpoon uetalld ouddog xou
ypovou (p=0,53).

28



JoC between the 2 groups

T T
—— No Transfer Group -+
9+ —#— TL Group - +

Judgment of Control (JoC)
w
; )
f t
. N
\
N
"
}
L
T

Baseline 2 3 4 5 6
Blocks

Eyfuo 1.12: Kplon eréyyou

Merproeig cuvepyaciag

Ov yetprioeic ouvepyaotac Tou Tapouctdlovial oTto Lyfue 1.13 yenowonotoly ua xhipoxa
Likert yio voo a€lohoyfioouy tnv amédootr Twv 600 Opddwy GE OLAPOPES SLUCTAOELS TNG
opadixig epyaociog, Epwtnuatordyio 2 6w napousidletar 6to .2.6.

Me Baduoroyiec mou Eemepvoldy To 3 GTNV ELYERELN, TA YOPOXTNELO TIXE CUUTAEXT Xou
™ Behtiwon, %o oL 800 opddeg QUvETAL VoL £YOLY EUVOIXE ATOTEAEGUOTA, UTOONAMVOVTAS
xohf) ToldTNTa cuvepYasiag o auToUg Toug Topelc. Ol UETPNOEC CUVEIGPORAS Xou EUTI-
0T000UYNG xuPatvovTol Y0pw and TO PECO TNG XALHOXAS, AVTUVAXAMVIUG Lol OLDETERN 1)
HETELL GTAOT), OTOU OL GUUPETEYOVTEC OUTE CUUPOYNOAY 00TE BLAPOYNOUY EVIOVA UE TIG
onhwoelg mou oyetiovial Ye To eninedo GECUEVOTIC TOUC 1 TNV EUTLCTOGUVY] TOUS GTOUG
ouunaixteg Toug. AT6 AUTO CUVETAYETAL OTL EVE 1) CUVERYACTN HTAY AELTOVEYIXY), UTAEYEL
meprioplo Behtiwong otov TpdéTo Ue Tov omolo acvdvovTton Tor dTopa Yo T GUUBOoAY Tou
TedxTopa Xat TNV oflomoTla Tou.

Collaboration metrics between the 2 groups

B No Transfer Group
404 = TL Group

3.5

3.0

251

Scores.

2.04

154

104

054

0.0 -

Fluency Contribution Teammate traits Improvement
Traits

Yyfuo 1.13: Metproeig ocuvepyaoiog
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1.4.3 XU0vxplon ue mponyYoLUeEVY Epyacia

Autr 1 evoTnTo TOEOUGIALEL Lot GUYXELTIXY| AVIAUGT) TNG EQEUVAC UOC, 1) OTOlaL YTNOULOTOLEL

Uar TeoGEYYIoN EXUdINONG PETAUPORAS Ydinong and emBElEElS, UE TN UEAETN [13], otV

omola yenowonolninxe wo pedodog emavayenoylonolnong TolTxrg, otny (Bl dladtxacto.
Trdpyouy 4 Boacixéc Slapopéc PETaC) ToV 2:

o ITapdpetpog otodyoL evipomiag: Oploaue TNy Tapduetpo eviporniog ctdyou
070 0,98 x (— log(‘ljl)) , €V 1o [13] epdppooe yior uixpdtepn eviponio otéyo 0, 36 X

(—log(py)) 5-1.2.

e JUVAETNOTY EVERYOTOINOYNS TWV VELEKWVIX®Y BLxTLWY Tou SAC : Xty
TEOGEYYION o, N ouvdptnon evepyonoinong ftav Tanh, evéd o [13] yenowornoto-
Uoe ReLU 5.1.2.

o Aptdpog mouyvidLdv: Y10 [13] 0 cuvohxds aptdude oy VidLY Aoy 150 eve
euelc etyopue 110 5.1.1.

o Apywxomnoinoy Tou mpdxTopa: XTNV TEOCGEYYLOY| YOS, Ol GUUUETEYOVIES OF
xqe ouddo EeXtvOUY TO TPMTO TOUG EXTOUOEUTIXG UTAOX UE EVOY UEYIXOTONUEVO
TEdxTORM, EVG 0TV epyacta [13], oL cuuuetéyovies ahhnhemdpoloay Ue évay Tuyaio
TEAXTOPA GTNY TEWT UTAOX exnaideuong 5.2.1.

Arné 1o oyfua 1.14, umopolue vor cUYXEIVOUUE TIC aVTOHOBEC OE UTAOX BOXIUNAC Yol
™ wévodo PPR pe tig duxég pag oto 1.103". Auty| n olyxpion amoxahinTel Tpelg Bacixég
OLUPOPES:

1. Anédoor eduxwv: H yehétn pog detyvel 6TL oL avtapolBEC Tou o0 dlatneoly
woe péomn tun mepimou 70. Avtideta, to [13] Belyvel 6Tt 0 eWdinde Eexvd Ye youn-
Aotepeg Baduohoyieg adAd @Tdvel yeryopa T Baduoroyia tou 140 and to deltepo
uTAoX 1oL oLYXALVEL exel.

2. Anodoomn ouddag petagopds wddnorng: Yto [13], n opdda eupavilel o
oTadLX ) XUUTOAT EXUdINCNC, GTAVOVTOSC TNV am6d00T G ETUNEDO €BXOV UYL TO
€Boopo umrox. H pédodog pog amoxahimter wio mo yeryoen aey | Behtiworn aAAd
oUYXAOT € YounhoTEEO eninedo avtouolBhg, yipw oto 70.

3. Anodoom opddag ywels petapopd wddnong: To [13] avagépet edylot
Behtiwon otny oudda, pe uéytotn avitopolBr 10 oto tedeutalo pumhox. Xt UEAETN
Hog, 1 ouddo Eexavd pe pior péom avtapo3n 10 xan emdeviel pdinom, gtévovtag
uéon avtopol3r) 40 oto Tehxd pmhox.
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Yyfuo 1.14: Kopndieg avtopoBodv oty uédodo [13]

Apyind, Yewpriooye Tt auTég oL SLapopég Yo umopoloay ev PEpEL Va amodoYoly 6Toug
BLOPOPETIXOVC GTOYOUC TNG EVTPOTING UETAHEY TwY 600 Yeiet®y. Ia va to adloloyrcouue
QUTO, TEAYUATOTOLACOUE TELRAUATA UE DLUPOPETIXES EVIPOTUEC-OTOYOUS XATA TN OLdpXELdl
NG CUVERYOOIUS EUTELROYVWUOVWV-TROXTOLMY, HEPXE amd Ta oTolo TopouctdlovTol 6To
[Mopdotnuo 1.

Yuvontind, to anotehéoupata amoxdiuday ac o uddnom xdte and dlapopeTixég pul-
uloeig evipomiag xatd T dudpxela AAANAETLOPdOEWY Ye Tov Edd. O TEdxTopus ovTLE-
TOTOE TEOXAOELS 0TO Vo HdUel e GUVETEL (Lol amoTEAEOHATIXT| ToALTixY. Mia pOduion
udmiric evtponiac 0,98 X (—log(%')), Tou evidppuve TNV eEEPEUVNOT), XATECTNOE TO
0UOXOANO TOV EVIOTIOUO TOU LTOXEUEVOU TpofhAuatog. Me [Bdon autd ta supruorta, Tpo-
©x0OTTEL OTL 1) ahhary | 6T cuvdptnom evepyoroinong Tanh unopel vo 0dAynoe duvntixd oe
€vor TEOBANA e€apavI{OUEVTC THEOY (Y OU [41]. Q¢ UTOTENECUA, OEV GUVIGTOUNE T1) YeNoM
Tou SAC e evepyornoinon Tanh , eduxd oe authy v pédodo.

1.5 Amnoteiécupata Pdong 2

Hporypoartomotfinxay npdcleta melpduato UE Tr CLUVAETNOY EVEPYOTOINONG OTNV EYIXT)|
e eUduon (amd Tanh oe Relu) xou evtponia otdyo 0,36 x (—log(ﬁ)). Emuniéov,
npootécaye 3 axdun batches yio va eivon oe TAAEN cuvdgela e o [13]. Ou avagepdoliue
O€ QUTE ToL TEWAUATA WS PAoT) 2. ATOQAC{CUUE VoL UNY CUUTERLAGBOVUE Tol EpWTNUATOAOYLOL
Big 5 xaw o PVQ oo mewpdpato tng @dong 2.

Autd ta melpduoto TEptAduBavay 8 GUUUETEYOVTEC UE TA YORAXTNPIOTIXG TOUG TOU
TEO(pOUOLd(COV‘EO(L oto 1.6:

Hivaxag 1.6: Xopaxtnelotixd v cUPPETEYOVTLY (@don 2)

Xopaxtnelotixo Aentopépeieg

Kotoavour| giiou 4 yuvaixeg, 4 dvopeg

Hiudo 22-24 etyv

Emxpatéc yépl 8 deloyelpeg

Eunetplo mouyvidon 4 ye 5 ypovw, 1 ye 3-5 ypovia, 1 pe 1 €1o¢, 2 e xoveva
HpoT®UEVES CUOXEUES T VIBLOU | 2 QopNTol UTOAOYIOTES, 2 XOVOOAES, 2 xvnTd, 2 xavéva

31



‘Arodn yia v Texyvnty Nonpooivy

Kot ot 800 ouddee, éyouv Yetixn drodn yia tnv Teyyntr vonuocivn, énwe gafvetow 6Tov
ivaxa 1.7. H otdon anévoavtl oty Te)vnTH) vonuoolvr €6eile TapoUoLa omoTEAECUATOL
ME TNV Opddu UETAPOEAS HAINoNG Var UTERLOYVEL, AN YwpEIC ONUAVTIXES DlapOPES.

Hivaxag 1.7: "Anodn vy tnv Teywnth Nonuoolvn (@don 2)

Ouddoa Méoo | Tumxy| amdxAion
Xwplg petagopd udinong | 0.448 0.621
Me petagpopd udinong 0.666 0.660

1.5.1 AvTXeluevind ATOTEAECUAT

270 PEGO YPOVO IAANAETBEAUOTG TWV BOXLIACTIXWY TOLY VLOLWY, 0L BU0 OddES by oy UEYAAN
OLpopdl e GYEON UE TNV TEONYOUUEVT]. LUYXEXQWEVA, 1) OUddN UE UETAUPORS Udinong
eUPAVIoE PEGO YEOVO aAANAET{OpaoTG 11,45 AETTOVY UE TOV TORAYOVTY, UE TUTLXT ATOXALCT
0,76 Aemtd. Avtideto, 1 oudda yweic elye péoo ypdvo arinienidpaons 29,7 Aemtd, ue
U amoxAoT 6,35 AemTd.

Mo ontixry avamapdotacy e padnotoxic meoddou ota 80 mouyvidlor SoXUMY TWV
TELRAUATWY pdong 2, Tapovotdletar 6Tig Eixdveg 1.15a" xan 1.1503", ou omoieg ameixoviCouv
TIC XOUTOAES PaINomg Yo Vixeg xan avTaolB3Eg, yio Ti 000 OUdOES, xomS XaL TNV AnddooT)
ToU eunelpoyvoUova. Emmiéov, oto Lyfua 1.15Y", mapouctdCouye TNV XoVOVIXOTOUUEVT
otavulelon andoTao.

Eotdlovtag otnyv xoumiAn expdinong avtopoBony 1.153" uropolue vo napatneicouus
TOL TR ATE):

Aedopévou 6Tl 0 edndC TETLYE TN PEYLO TN avToOLPT| amd To GE0TEQO UTAOX BOXIUNAC
ETAECOUE VoL DLUTNEHOOUPE T GUVETELN UE TOL TEONYOUUEVAL TELRGUOTA {NTWVTAS Amd TOV
€W0IXO Vo CUUUETEYEL Yo Tov (o aprdud umhox. Emmiéov, Va dwtnpricouue tig {Bieg
avoloyieg 6edouévev entideling amd Tic aAANAETORACELS Toug, avTixaTonTElloVTaC TN Ue-
Yodoloyla Tng mponyoUlUEVNG UEAETTG.

[o Ty opddo e YeTapopd udinong, to dorydoto OElyVouv 6Tl Tapdho Tou UTde-
YEL Dt OovoT 6TO BEUTERO UTAOX BOXUIY|C, 1) OUAON ETLTUY YAVEL GTOERS (Lol avTopol3T
140 and o Tplto umhox doxwnc xou UeTd. AuTh 1 amddoor pyeton o avtideon ue v
TEONYOUUEVY UEAETT), YOG, OTNY oTtola 1 u€yto T avTopol3r) mou emttelydnxe Htoy 60 amd
0 60 umhox. Emmkéov, autéd to amotéheopa Supéper and to [13], 6mou 1 Bl opdda
mou yenowonowel PPR TL | éptace og anddoorn cuyxplown pe auty| evog edixol 610
televtado (60) pumhox.

H oudda yowplc petagpopd udinong nétuye aviauol3) 80 oto 60 umiox, mou civar on-
movtiny) Bedtioon and ta 40 mou elyov emtevydel ud TEoNYolUEVES GUVDTXES GTO (Blo
otédo. Tiveton Wi adloonueinTn obyxplon Ye TV amddocT TN OUEdAS XaTd TN (GdoT
2, n ornola €gtaoe o avtopolPr 80 oto 6o umhox, oe avtieorn pe To cvpruaTa and TO
[13], 6mou 1 péomn avtapolr) oe autd 10 oTddo ftay wévo 20, xadne @olveton oTo Xy.
1.14. Auth n Bektiwon uropel miavotata vo cuvdelel pe Tn yerion evog apytxomolnuévou
TEdxTopa 5.2.1 %oTd TN OLEXELN TOU TEMOTOU UTAOX EXTIUUOEUCTS, ONUELOVOVTUS TN UOVY
OLapopd HeTa€) TKV 800 TEOCEYYIoEWY TWV OUAOWY Yweic UETapopd udinong.
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Wins per Test Block o0 Rewards per Test Block

' ob—i
Baseline 3 a H 5 7 s Baseline
BlockNumber T T T piock Number

(o) Nixeg otor pmhox Soxiuddv (@don 2) (B) AvtapolBéc oto umhox doxudv (@don 2)

Normalized Travelled Distance per Test Block

—— Expert
- T
—$— NoTL

Normalized Travelled Distance

Block Number

(v)) Kavovixormoinuévn dtavuldeloo anéotacn ot umhox
doxauwv (pdon 2)

Yyfuar 1.15: Nixeg, avtapoéc xou xavovixonownuévn dwavuielon andoTtao (cpolon 2)
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Eqe YtatioTind Soxiuwy | p-value
(H) uTAOX 24.042 < 0.001
ouddL 26.135 < 0.001
umhox:opoda | 3.539 0.00382
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Kplon ehéyyou
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UETENOELS OLVERYAOLUC 33. LUYEXQUIEVA, 1) OUBO UETAPORAS udinong Eenépace TNV GhAN
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1.6 Xvurnepdopota

H nopodoa Simhywotixr| emexteivel 1o épyo [13] e€epeuvddviag o Slpope T TEOGEY-
Y101 UETAUPORAC pdinong, cuyxexpwéva tn Bahd Q pdinon amd emdeilerc. H pehé
wog dtagopomoleltan amd auth T u€Yodo ue TNV TEoNYoLUEVT TavOrOYLXT) ETAVIY PO
poroinomn moATXAg xou €CETALEL TIC EMNTWOELS TWY OAYORLIUIXGOY TPOTOTOLCEWY OTNY
amoteheopaToTNTA TG ouvepyaotag. [loupd Tig apyinéc TPOXANOEIS UE TIC TPOCUPUOYES
TopauéTewy ToL alyderduou Soft Actor-Critic (SAC), n emavagopd otic apyxéc puiuioels
XOTE TNV EQARUOYT| TNG VEUS UeVOB0U PETAPORAS Udinong €Belle BEATIOOELS OTN CUVERY Q-
TIXY) AmODOCT), OTWE ATODEVUETUL UTO TOV GUVOAMXO YPOVO AAANAETOpOOTG oTor Taky vidtal
OOXUYLWY XL OO TNV TEOTERT CUYXALON TNG OUABuS UETAPORAS Udinong.

Avoryvepilovtag Toug TeEploptolols NG HEAETNG, OIS 1) iXET) OUEDN CUUUETEYOVTWY
%o 1) WLUTEROTNTA TNE EPYASTAS, 1 OTOld BEV EVOWUATWVEL TIC TOAUTAOXOTNTES TOU TRy~
HOTIXOU XOOUOU, OL UEAAOVTIXES EQEUVITIXES XATEVVUVOELC TRETEL VoL TERLAAUPBAVOUY Tiepo-
Tépw dlepelvnom g uedodoloyiog petapopdc udinong ue uPnAdTepn T TG TUEAUUETEOU
evtponiog 0Toyou mou Tiaveg Vo SUUBIAAEL 0TV xoAUTERY e€utouixeuoT Tou alyopld-
wou ot xde ovuuetéyovta. Enlong uio dhin xatedduvon npog tnv e€otouixeuon etvan 1)
OlEPELYNGT TOL BEATIOTOU TOGOGTOU UETAPORAS YVWOTNG ATd TOV ELOXO.
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Chapter 2

Introduction

Human-Robot Collaboration (HRC) can be considered a sub-field of Human Robot
Interaction (HRI)[1]. HRC explores how humans and robots can work together to ac-
complish mutual objectives. This field is inherently multidisciplinary, drawing from
areas such as robotics, artificial intelligence, human-computer interaction, sociology,
psychology, and more, to develop systems where humans and robots can complement
each other’s capabilities. HRC finds practical applications in everyday scenarios in-
cluding educational support [2], therapeutic interventions [3|, and companionship [4],
as well as in industrial settings [5].

The challenges of collaborating with robots get bigger when the tasks become more
complicated. Robots need to be intellogent enough to make autonomous decisions,
especially when working closely with people, like when lifting and moving big items
together [6]. It is important for robots to not only move around safely but also to
understand what people are trying to do so they can help in the right way |7]. To make
these interactions smooth and natural, robots should be built to notice and react to
human behaviors, learn from working together, and adjust their actions.

Despite the progress in robotics, creating smooth and fully independent teamwork
between humans and robots is still challenging. Learning together, a crucial aspect
of collaboration, can be slow and depends on various factors such as the physical and
mental effort required, the human partner’s skills, the machine learning techniques
used, and the task’s computational demands. Robots, or cobots, are expected to learn
quickly, recognize their human partners’ abilities, and adjust to their strengths and
weaknesses.

Recent developments in deep reinforcement learning (DRL) have opened new ways
for examining HRC in real-time across various applications, from mobile robots [8] and
robotic arms [9] to drones [10] and more. DRL’s success in these areas comes from its
ability to learn complex motions and behaviors that are hard to achieve with traditional
control methods.

However, a limitation in DRL for robotics is the challenge of generalizing learned
knowledge to new, unfamiliar situations or when working with new partners [11]. The
standard practice of training a robot from scratch for each new task is time-consuming
and inefficient, affecting the team’s productivity and leading to fatigue.

Addressing this issue, transferring knowledge within DRL frameworks [12] presents
a solution, offering several strategies for enhancing learning efficiency. Such efforts
are directed not only towards enhancing the independence of robots but also towards
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facilitating their seamless integration into human teams. The ultimate goal is to foster a
more intuitive and effective partnership between humans and robots, thereby elevating
the overall productivity and harmony of collaborative endeavors.

Building upon the work in [13], this thesis aims to contribute to the field of HRC
by implementing a Transfer Learning approach, Learning from Demonstrations (L{D),
within the Soft Actor-Critic (SAC) DRL algorithm. The study involves human partic-
ipants in an HRC experiment, designed to assess the effectiveness of DRL and transfer
learning in enhancing the efficiency of HRC.

The key contributions of this research include transitioning the Transfer Learning
method from policy reuse to learning from demonstrations, and implementing it within
the Robot Operating System (ROS). Furthermore, this thesis will compare the two TL
methods based on the analysis of participant outcomes from the HRC experiment. We
will also delve into the differences between these TL methods, assessing their respective
impacts on the collaborative process. Additionally, the study evaluates the effect of
different target entropies on the SAC algorithm in the context of TL, providing insights
into how these parameters influence the dynamics of HRC. This analysis aims at en-
hancing HRC by optimizing the learning and adaptation process of robots to improve
their collaboration with humans.

The structure of this thesis is organized as follows: Chapter 3, we briefly review
the fundamentals of Machine Learning (ML) and Reinforcement Learning (RL), with
a particular emphasis on DRL and the SAC algorithm. We also introduce the concept
of TL, and the main and its significance in enhancing learning efficiency. Chapter 4
explores existing research in HRI, presenting applications of DRL in robotics for HRC
scenarios, discussing the limitations of current methodologies, and highlighting how TL
offers promising solutions for overcoming these challenges. In Chapter 5, the approach
and methods employed in this research are outlined, including the formulation of the
DRL agent and the implementation of TL. This Chapter also discusses the objective
and subjective measures that are used to evaluate the effectiveness of TL. Chapter 6
presents the experimental outcomes, showcasing the impact of the chosen TL method
on improving HRC. This section highlights how adjustments to the SAC parameters,
specifically target entropy and the activation function, modulate the effectiveness of
the collaborative tasks and also includes a comparison with previous work [13| that
employed a different TL method. Additionally, it discusses subsequent experiments that
further explore modifications to the SAC settings, offering a comprehensive analysis of
how these changes influence the dynamics of human-robot collaboration.
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Chapter 3

Background

In this chapter, the discussion begins with a brief review of the primary categories
of machine learning: supervised, unsupervised, and semi-supervised learning. Follow-
ing this review, there is an exploration into the concept of Artificial Neural Networks,
providing a crucial foundation for understanding more sophisticated algorithms. The
focus then shifts to reinforcement learning, characterized by a learning process through
feedback and adjustments and expands to deep reinforcement learning, renowned for its
ability to handle more complex tasks. The Soft Actor-Critic algorithm, a key technique
in deep reinforcement learning, is also introduced. Furthermore, the chapter introduces
the fundamentals of Transfer Learning, emphasizing its role in enhancing learning pro-
cesses by utilizing knowledge from previously encountered similar tasks. A special focus
is placed on Learning from Demonstrations, an approach that effectively demonstrates
the implementation of transfer learning strategies.

3.1 Machine learning

Machine learning (ML) is a field where computers learn to solve problems without being
explicitly told how. It is something humans interact with on a daily basis, often without
realizing it, influencing choices from the products we browse online to the movies we
watch. Based on the analysis in [42], there are several ML categories and algorithms,
as shown in Figure 3.1.

There are four primary learning approaches: supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning The selection of the
learning method and algorithm depends on the type of the problem and the availability
of the data.

e Supervised Learning: In supervised learning, a dataset with pairs of inputs
and their corresponding outputs, is collected. The goal is to use an optimization
algorithm to build a function that not only fits this data well, but also predicts
accurately on new data it has not seen before. Supervised learning is often used
for two main tasks: regression, where continuous values are predicted, and classifi-
cation, where the data is categorized into different groups. The process typically
involves minimizing a loss function, which measures "how far off" the model’s
predictions are from the actual results in the dataset.

39



Categories and Algorithms
of Machine learning

I

Supervised Learning Unsupervised Learning

- Classification - Classification
- Classification - Clustering
- Clustering - Control
- Regression - Association ‘
- Linear Regression - K-means Clustering . -Q-Learning
- Logistic Regression - Principal Component Analysis (PCA) - UClassity - Monte Carlo Tree Search
- Random Forest - t-Distributed Stochastic Neighbour - GATE - Temporal Difference (TD)
- Network Neural A ke - Asynchronous Actor-Critic Agents
(AAAC)

Figure 3.1: Classification of the most common machine learning algorithms [43]

e Unsupervised Learning: In unsupervised learning, the dataset does not have
labeled input-output pairs. Instead, the emphasis is upon discovering hidden
patterns and structures within it. This approach is useful in tasks like cluster-
ing, where similar data points are grouped together, dimensionality reduction,
which simplifies data without losing important information, and density estima-
tion, where the distribution of data points is determined. Unsupervised learning
focuses more on uncovering insights and inherent features of the data.

e Semi-Supervised Learning: In semi-supervised learning, the dataset includes
both labeled and unlabeled data. This method is useful when fully labeled data
is scarce or costly. It combines elements of supervised and unsupervised learning,
using the labeled portion to enhance learning and make predictions about the
unlabeled part. It is effective for tasks like classification and regression when
complete data labeling is impractical.

¢ Reinforcement Learning (RL): Reinforcement Learning is a type of machine
learning where an agent learns to make decisions by performing actions in an
environment to achieve a goal. The agent receives rewards based on its actions
and learns to maximize cumulative rewards over time. RL is distinct for its focus
on sequential decision-making and interaction with a dynamic environment. A
more detailed exploration of Reinforcement Learning will be provided in Section
3.2.

3.1.1 Artificial Neural Networks

Traditional ML methods often rely on selecting specific features from data, which can
be challenging or even impossible when dealing with large or complex datasets. That is
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why in these occasions we prefer to use neural networks who are inspired by the human
brain which consists of billions interconnected units (neurons) organized in layers. Just
as neurons in the brain take inputs through our senses and transmit signals through
dendrites and axons, artificial neurons in these networks receive and process data in a
similar interconnected way. This structure enables neural networks to process large or
complex datasets without the need for manual feature selection. Figure 3.2 illustrates
the comparison between biological neurons and their artificial counterparts.

Dendrite
Axon Terminal

Wl A Node of g, J= & T

ANV soma Ranvier ~ J~Z X bl

= l" jif' | 4 ¥ - 1 - - Sum Activation

- | ¥ \ [
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L <0 B Axon - . f " f(ZW X )
> . ¢ X W, _ Z (|
7{’4" y | \‘Efr Schwann cell

L7, AR -
Myelin sheath
Nucleus
Structure of a typical neuron Structure of artificial neuron

Figure 3.2: Biological neurons to Artificial neurons [44]

Each layer in a neural network consists of multiple neurons. These neurons receive
input, process it, and pass the output to the next layer. The process begins with the
input layer, where each neuron represents a feature of the input data. The input to
each neuron is weighted, reflecting the importance or relevance of that feature with the
context of the task. Additionally, a bias term is added to the input before it undergoes
a transformation via an activation function. This function determines whether and
to what extent the signal should be passed further along the network. The output
of each neuron, after being processed by the activation function, is then passed on to
the next layer. This process continues until the final layer, typically known as the
output layer, which produces the final result of the neural network. The structure
and depth of these layers can vary greatly, depending on the complexity of the task
and the design of the network. Learning in neural networks occurs through a process
known as backpropagation. This involves adjusting the weights of the connections
between neurons based on the error of the network’s output compared to the expected
result [45]. The error is calculated using a loss function, which measures the difference
between the network’s prediction and the actual target values. During training, the
network performs a forward pass to make predictions, and then a backward pass to
propagate the error back through the network, updating the weights. This iterative
process of forward and backward passes allows the network to learn from the data,
gradually improving its predictions over time. The structure of a neural network is
illustrated in Figure 3.3

e Loss Functions: Loss functions play a crucial role in neural network training.
They quantify the error between predicted values (y) and actual target values
(y). A common one is Mean Squared Error (MSE) which measures the average
squared difference between predicted and actual values, making it suitable for
regression tasks.
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e Activation Functions: Activation functions introduce non-linearity into the
neural network, enabling it to capture complex patterns and relationships in the
data. Common activation functions include:

(] Sigmoid:
The sigmoid function transforms input into a range between 0 and 1, suitable
for binary classification problems.

o(z) = (3.2)

O ReLU (Rectified Linear Unit):

ReLU is widely used due to its simplicity and effectiveness. It outputs z for
positive inputs and 0 for negative inputs.

ReLU(z) = max(0, z) (3.3)

O tanh (Hyperbolic Tangent):

Tanh is similar to the sigmoid but maps inputs to a range between -1 and 1,
making it useful for centered data.

tamh(z) = & (3.4)
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Figure 3.3: Artificial Neural Network [46]

There are several types of Artificial Neural Networks (ANNs) designed for specific
tasks. For example Feedforward Neural Networks (FNNs) FNNs, also known as
multi-layer perceptrons (MLPs), are the foundation of most neural networks. Con-
volutional Neural Networks (CNNSs) are suitable for image-related tasks, such as
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image classification and object detection. They use convolutional layers to automati-
cally learn features from images. Recurrent Neural Networks (RINNs) are used for
sequential data tasks like natural language processing and time series prediction. They
have recurrent connections that allow them to maintain a hidden state and process
sequences.

3.2 Reinforcement Learning

Reinforcement Learning (RL), often used to solve complex decision-making problems,
involves an agent interacting with an environment over multiple time steps. RL differs
in an important way from supervised and unsupervised learning. It does not use a
dataset as a starting point. Instead, it generates data on-line or off-line as dictated by
the needs of the optimization algorithm it uses.

In this section, we analyze the fundamental concepts of RL, drawing from the fun-
damental works of Dimitri P. Bertsekas [47], [48], and Richard S. Sutton and Andrew
G. Barto [49].

3.2.1 RL Formulation

A basic tool of RL is the concept of Markov Decision Processes (MDPs). MDPs provide
a mathematical framework to model decision-making scenarios where outcomes are
influenced by both random factors and the decisions of the agent. This framework
offers a structured approach for defining and formalizing an environment in RL. An
MDP encompasses several key components:

e States (5): The set of all possible states in the environment.
e Actions (A): For each state s, A(s) represents the set of possible actions.

e Reward Function (r): A function r: Sx A — R, where r(s, a) is the immediate
reward received after taking action a in state s.

e Transition Probability Function (P): A function P : SxAxS — [0, 1], where
P(s,a,s'") gives the probability of transitioning to state s’ after taking action a in
state s.

e Discount Factor (v): A factor between 0 and 1 that discounts future rewards,
reflecting the preference for immediate rewards over future rewards.

In the context of MDPs and Bellman equations, s’ represents a generic subsequent
state in theoretical discussions, while s; and s;;; denote the current and next states in
a temporal sequence during agent-environment interactions.

In practice, at each timestep t = 0, 1,2, ..., the agent interacts with its environment
by observing the current state s;, selecting an action a, according to its policy ,
and transitioning to the next state s;;1, as illustrated in Figure 3.4. The policy 7, is
a function that maps states to probabilities of selecting each possible action. Every
action taken by the agent results in a reward r; and a transition to a new state s; ;.
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This continuous cycle of observation, action, and reaction forms the core of the learning
and decision-making process in Reinforcement Learning.

The primary objective of the agent is to discover a policy 7 that maximizes the
expected total discounted return. Under policy 7w, this return, denoted as R; =
Yoo v*r 4k, is the cumulative sum of rewards received over time, each discounted

by the factor ~.
:| Agent Il

state reward action
S, R, A,

Rz+1 (

S.. | Environment ]4——

\

Figure 3.4: The agent—environment interaction in a MDP [50]

To achieve this goal, the agent relies on several key concepts:

e State Value Function V™(s): This function indicates the expected total dis-
counted return when starting from state s and following policy 7 thereafter. It is
given by:

V™(s) =E{R: | st =s} =E;

Z”Ykrtﬂcﬂ | s = S] (3.5)

k=0
It assesses the overall potential of being in a particular state under the policy.

e Action-Value function (Q-value) Q™(s,a): This function predicts the ex-
pected total discounted return from taking action a; in state s;, under policy

m. The Q-value is crucial for determining the effectiveness of actions in specific
states. It’s defined as:

Q" (s,a) =E{R; | sy = s,a, = a} = E,
k=0

kaerH | s =s,a; = a] (3.6)

Bellman Equations: According to Bellman equations, the value function can
be decomposed into two parts: the immediate reward (r) plus the discounted value
function of the next state. Specifically, for a policy w, the Bellman equation for the
value function is expressed as:

V7™(s) = E, (3.7)

r(s,a) + 7 Z P(s'|s,a)V7(s")

)
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Similarly, the Bellman equation for action-value function Q™ (s,a) under policy 7 is
given by:

Q"(s,a) = Eq |r(s,a) +7 Y P(s']s,0)Q"(s, m(s")) (3.8)

These Bellman equations play a crucial role in reinforcement learning by breaking

down the problem into smaller sub-problems, making it possible to derive optimal

policies. The ultimate goal is to find the optimal policy 7* and the associated optimal

value functions V*(s) and Q*(s, a), which maximize the expected return. The optimal

policy, 7*, selects actions that yield the highest expected cumulative reward, and the
optimal value functions reflect the maximum achievable returns.

Exploration-Exploitation trade-off

In RL, the agent faces a fundamental dilemma known as the ‘exploration-exploitation
trade-oftf’. This dilemma arises from the need to balance two conflicting objectives: ex-
ploration and exploitation. Exploration involves the agent exploring its environment
to gather information about the rewards associated with different actions and states.
Without exploration, the agent might settle for suboptimal actions based on limited
knowledge. Exploitation, on the other hand, involves choosing actions that are known
to be effective based on the available information to maximize expected cumulative
reward.

3.2.2 Reinforcement Learning Algorithms

In RL, there are mainly two different approaches for training an agent:

On-Policy Learning: In on-policy learning, the agent learns the value of the policy
that it is currently using to make decisions. This includes learning from the exploration
steps it takes. The policy being improved is the same policy used to make decisions. A
typical example of an on-policy method is SARSA (State-Action-Reward-State-Action)
[51].

Off-Policy Learning: Off-policy learning, in contrast, allows the agent to learn
a policy different from the one it is executing. This approach enables the agent to
learn from actions it has not taken, broadening its understanding of the environment.
Q-learning [52] is a well-known off-policy method.

Both on-policy and off-policy learning have unique advantages and are suitable for
different types of problems in Reinforcement Learning. Understanding these strategies
is crucial for designing effective RL algorithms.

RL algorithms are also divided into Model-Free and Model-Based methods.
Model-Free RL learns directly from interactions with the environment without explicitly
modeling its dynamics, focusing on trial-and-error learning. In contrast, Model-Based
RL uses or learns a model of the environment to plan actions, enabling more informed
decision-making. Each approach offers distinct methodologies and is suitable for differ-
ent types of problems. A summary of these approaches is presented in Figure 3.5.
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RL Algorithms
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Figure 3.5: RL algorithms categorization [53]

Model-Free Reinforcement Learning

In Model-Free RL, the agent learns to make decisions based solely on the experiences
it gains from interacting with the environment. It does not build an explicit model
of the environment’s dynamics. Instead, it focuses on estimating the value of states
and actions to determine the best course of action. The learning of these algorithms
comes with a trial and error procedure. Model-Free RL can be further divided into
value-based, policy-based, and actor-critic methods.

Value-Based Algorithms These algorithms focus on estimating the value function
to determine the best policy. They are characterized by a longer computation time due
to the extensive state and action spaces.

e Monte Carlo (MC) Methods: In RL, MC methods are used to estimate the
value function and policy based on averaging sample returns. These methods
operate on complete episodes and do not require a model of the environment.
The value of a state s under policy 7 is estimated by:

N(s)
V(s) = ﬁ Z Ry, (3.9)

where N (s) is the number of times state s is visited, and Ry ; is the return following
the i-th visit to state s. Monte Carlo methods are effective in episodic tasks where
all episodes eventually terminate. They are suitable for episodic tasks with high
variance and zero bias.

e Temporal Difference (TD) Learning: TD represents a class of model-free
reinforcement learning methods that learn by bootstrapping from the current
estimate of the value function. TD Learning is significant as it allows for learning
directly from raw experience without a model of the environment’s dynamics.
Unlike Monte Carlo methods, TD learning updates estimates based partly on
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other learned estimates, without waiting for a final outcome. A fundamental TD
method is TD(0), represented by the formula:

V(s) < V(s)+alr+9V(s) —V(s)] (3.10)

Here, « is the learning rate, v is the discount factor, r is the reward received
after transitioning from state s to s’, V/(s) represents the estimated value of state
s, and V(s) is the estimated value of the next state s’. This method combines
the sampling of Monte Carlo with the bootstrapping of dynamic programming.
An extension of TD(0) is TD(A), which considers multiple steps in the update
process, providing a more flexible approach to learning suitable for continuous
tasks.

Within the TD Learning framework, Q-Learning is a prominent off-policy, model-
free algorithm used to find the maximum Q-value for state-action pairs. It updates
Q-values for each state-action pair iteratively using the Bellman equation:

Q(s,a) < Q(s,a) + alr + ymax Q(s',d) — Q(s, a)] (3.11)

Here, s and s’ are the current and next states, a is the current action, r is the
received reward, « is the learning rate, v is the discount factor, and max, Q(s',a’)
estimates the best action for the next state s’ according to the action value func-
tion. Q-Learning aims to learn a policy that maximizes the total reward over a
trajectory and is effective in environments with discrete state and action spaces.

Policy-Based Algorithms These algorithms directly learn the policy based on the
actions chosen for specific states, suitable for large state-space applications. Traditional
policy-based methods are particularly effective in environments with high-dimensional
or continuous action spaces and are known for their ability to learn stochastic policies.
Most of the Policy-Based algorithms make use of the Policy Gradient Theorem.

e Policy Gradient Theorem: Let 6 parametrize this policy as my. The objective
is to maximize the expected return J(0) = E,,[R(7)], where R(7) is the return of
a trajectory 7 generated by policy .

The policy gradient theorem states that the gradient of the expected return with
respect to the policy parameters 6 can be expressed as an expectation:

Vo J(0) = E,, [Vglogmy(s,a)Q™(s,a)] (3.12)

Here, Q™ (s, a) is the action-value function under policy 7y, and the expectation is
over the state and action space according to the policy my. A standard approach to
solve the maximization problem, is to use Gradient Ascent. In the gradient ascent
update step, we adjust the policy parameters # in the direction that increases the
expected return:

0+ 0+ aVyJ(0)

Here, « is the learning rate, and this update is repeated iteratively to improve
the policy.
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Actor-Critic Algorithms Actor-Critic methods in Model-Free RL combine the con-
cepts of value-based and policy-based approaches. The ‘actor’ is responsible for selecting
actions based on a policy, while the ‘critic’ assesses these actions using a value func-
tion. This combination allows the agent to balance the direct policy approach with
value-based learning, leading to efficient policy improvement.

The actor updates the policy in the direction suggested by the critic’s value function.
This framework integrates the strengths of both value-based and policy-based methods,
providing more stability and efficiency in learning than using either approach alone. We
will elaborate further in Actor Critic algorithms in the next subsection

Model-Based Reinforcement Learning

Model-Based RL employs models of the environment for more informed planning and
decision-making. These models can either be given or learned. There are two main
methods in Model-Based RL.

In Learning the model a common method is World Models [54], which creates
internal representations of the environment, often using techniques like Variational
Autoencoders and Recurrent Neural Networks. Effective in complex scenarios, they
enable understanding and predicting dynamics, particularly in robotics and computer
vision.

Given model methods utilize a pre-existing, known model of the environment.
Common dynamic programming techniques include Policy Iteration and Value Itera-
tion. These methods solve problems by decomposing them into simpler sub-problems
using the environment’s known model.

3.3 Deep Reinforcement Learning

As we explored the foundational concepts of RL, it is important to acknowledge its
limitations, particularly in complex, high-dimensional environments. Traditional RL
methods, while powerful, have limitations. Some of these include:

e Scalability: Traditional RL methods face computational challenges as the size
of the state and action spaces increases.

e Sample Efficiency: These algorithms often require a large number of samples
to learn effective policies, which can be impractical in real-world scenarios.

e Generalization: Traditional RL methods struggle with applying their learned
policies to new, unseen environments.

These limitations have led to the emergence of Deep Reinforcement Learning (DRL),
which combines the decision-making framework of RL with the representational power
of deep neural networks.

Function Approximation is used in RL to estimate value functions and policies
in large or continuous state spaces. Neural networks are often used in DRL for function
approximation due to their ability to model complex, non-linear relationships. This
integration addresses the scalability and generalization issues of traditional RL, enabling
applications in more complex environments.
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The field of DRL has achieved many breakthroughs, like the success of DeepMind’s
AlphaGo and its ability to master the game of Go, a task previously thought to be
beyond the reach of computer algorithms [55],[56], or QT-Net [57], a novel adaptive
trading model that uses DRL to autonomously develop quantitative trading strategies.
These successes show the potential of DRL in solving complex, real-world problems.

3.3.1 Key Algorithms in Deep Reinforcement Learning

DRL encompasses a variety of algorithms, each designed to deal with different aspects
of learning and decision-making in complex environments.

Deep Q-Networks (DQN) [58], firstly introduced by DeepMind, marked a signif-
icant advancement in DRL. Using only the pixel data from the Atari game screens, the
DQN agent learned to play these games effectively, demonstrating its ability to process
and act on complex visual inputs.

DQN uses a neural network to approximate the Q-value function, typically denoted
as (s, a; 0) in this context. This differs from Q™ (s, a; 0), as DQN, an off-policy method,
aims to directly approximate the optimal Q-value function, rather than one for a specific
policy m. It employs two neural networks to enhance stability and performance: the
main Q-network and a copy of it named the Target network. The main Q-network,
parameterized by 6, is responsible for learning the Q-values. It is updated frequently
and directly learns from the interactions with the environment. The Target network,
parameterized by 67, is a more stable version of the main Q-network. It is used to
generate the Q-value targets in the Q-learning update rule. The key reason for using
the Target network is to provide consistent targets for a while, as frequent updates of
Q-values can lead to instability due to the moving targets problem. The parameters of
the Target network, 6, are periodically updated to match those of the main Q-network,
0, but this happens less frequently to maintain stability in the learning process. DQN
also use experience replay. This technique involves storing experiences (s, a,r, s;41) in
a replay buffer D to minimize correlations between consecutive learning samples. The
loss function in DQN, L(#), is defined as:

L(0) = E(sparserov(p) [(Q(s1,a;0) —y)°] (3.13)

where y = r + ymax, Q(s441,a’;607).

Here, 6 represents the parameters of the main Q-network, and #~ represents the
parameters of the target network. The term U(D) denotes uniform sampling from a
replay buffer D, which is a collection of past experiences (s, a,r, s;1+1). The loss function
helps the network learn the optimal values for state-action pairs by minimizing the
difference between the current Q-value estimates, Q(s,a;#), and the target Q-values,
y, which are calculated using the more stable target network parameters, 6.

Policy Gradient Methods optimize the policy function directly, offering a more
flexible approach in environments with continuous action spaces. Most of these methods
use the policu gradient theorem, we discussed in Section 3.2.2.

Deep Q-Networks (DQN) and Policy Gradient Methods have shown us dif-
ferent ways to approach learning in complex environments. DQN focuses on learning
value functions, while Policy Gradient Methods concentrate on directly learning the
best actions. These methods set the stage for a more advanced type of algorithms:
Actor-Critic Methods.
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3.3.2 Actor-Critics Variants Overview

Actor-Critic Methods are a significant advancement in both DRL and traditional RL,
combining the aspects of policy optimization (actor) with value function approximation
(critic). This hybrid approach combines the benefits of both methodologies, leading to
more efficient and stable learning processes. In the this subsection, we will mention
some of the actor-critic methods, with a special focus on the Soft Actor-Critic algorithm,
which we will be using in this thesis.

Some basic actor-critic variants are:

e Advantage Actor Critic (A2C) / Asynchronous Advantage Actor Critic
(A3C) [59]: A3C enables simultaneous exploration by multiple agents in different
environments, enhancing the learning speed. A2C provides a synchronous variant,
contributing to more stable updates. Both methods utilize Temporal Difference
(TD) error for action evaluation.

e Deep Deterministic Policy Gradient (DDPG)[60]: DDPG merges Q-learning
with policy gradient methods and is well-suited for continuous action spaces. It
uses deterministic policies for efficient exploration and incorporates a replay buffer
and target networks, aiding stability in complex environments.

e TRPO (Trust Region Policy Optimization)[61] : TRPO uses a trust re-
gion to constrain policy updates, enhancing stability. Its key advantages include
more stable policy updates, better sample efficiency, and improved convergence
compared to standard policy gradient methods.

e PPO AC (Proximal Policy Optimization Actor Critic)[62]: PPO AC al-
ternates between sampling data and optimizing a ‘surrogate’ objective function.
Its strengths include combining policy gradient methods with minibatch updates,
stability and simplicity in implementation, and competitive performance among
actor-critic algorithms.

e Soft Actor Critic (SAC): SAC, which will be elaborated further in the next

subsection, integrates actor-critic architecture with entropy regularization.

3.4 Soft Actor-Critic

The Soft Actor-Critic SAC algorithm emerges as a solution to some of the limitations
inherent in traditional actor-critic methods. These traditional approaches often suffer
from instability and a lack of sufficient exploration, leading to premature convergence
to suboptimal policies and difficulty in fully solving complex tasks. To address these
issues, Haarnoja et al. [63] [64] propose a stochastic policy, emphasizing the role of
entropy maximization as outlined in the next paragraph. Such an approach ensures
that the policy not only seeks optimal rewards but also retains a level of randomness in
its actions, a crucial element for discovering more effective strategies in both discrete
and continuous state spaces.

20



Maximum Entropy RL

Maximum Entropy RL [65] introduced a novel approach to address the Exploration-
Exploitation dilemma, Section 3.2.1 in RL. It integrated a measure of randomness, or
entropy, into the decision-making policy of an agent. This technique encourages the
policy to explore a broader range of actions, thus preventing the agent from converging
too quickly to suboptimal strategies. By maximizing entropy along with the expected
returns, the policy not only seeks immediate rewards but also maintains a degree of
unpredictability in its actions, which is key to discovering more effective strategies and
understanding the environment comprehensively.

The concept of entropy, originally adapted from physics [66], describes the measure
of disorder or randomness in a system. In information theory, entropy represents the
level of uncertainty or the informational content in a dataset. In the context of RL,
entropy quantifies the unpredictability in an agent’s action selection process. High
entropy in RL implies that the agent is exploring its environment by trying out a
variety of actions, which is particularly crucial during the initial stages of learning.
This prevents the agent from prematurely locking onto a narrow set of potentially
suboptimal actions.

3.4.1 Soft Actor-Critic formulation

In this section, we will adopt the following notation for consistency with SAC’s paper: s;
represents the current state, s;,; denotes the next state, a, signifies the action taken at
time ¢, and r; the reward received at time ¢ . This notation aligns with the conventions
used in the Soft Actor-Critic (SAC) formulation as presented in the SAC paper.

SAC, embodying the principles of maximum entropy RL, optimizes a policy 7 to
simultaneously maximize expected rewards and entropy. As illustrated in (eq. 3.14),
the entropy H of a policy 7 at a state s; is calculated as the negative logarithm of the
probability of selecting any given action at that state

H(m(-|st)) = —logm(+]s¢) (3.14)

In SAC, this entropy serves as a critical component in the policy optimization pro-
cess. It ensures that the policy does not become overly deterministic and remains
capable of exploring new and potentially rewarding actions.

Therefore, the objective of SAC is formalized as:

T
" = arg maxE:E7r [V (re + aH(7(+|s1)))] (3.15)
4 t=0

Here, 7* is the optimal policy, T" denotes the number of timesteps, ~ is the discount
rate, « is the temperature parameter that determines the relative importance of the en-
tropy term controlling the stochasticity of the optimal policy, and H (7 (-|s;)) represents
the entropy of the policy at state s. The notation 7, denotes the trajectory distribution
under policy 7, which refers to the probability distribution of state-action pairs when

the agent follows policy 7 over time.
The soft state-value function V7 (s) (eq. 3.16) and soft action-value function Q™ (s, a)
(eq. 3.17) in SAC extend the concepts of the traditional state-value function (eq. 3.5
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and action-value function (eq. 3.6) by incorporating maximum entropy regularization

(aH (m(-]51)))-

Z Vre + aH (m(-[s,))

Sp = s] (3.16)

Q Stuat

Z’yn—i—@Z’yH (‘]s¢))

From equations ( 3.16), ( 3.17) it is possible to derive the connection between soft
state-value and soft action-value function ( 3.18) and the Bellman equation ( 3.19)

So = 8,ay = a] (3.17)

V™(s) = Ex [Q7 (8¢, a0)] + aH ((+|s4)) (3.18)
Q" (s¢,a1) = Ex [ry + 7(Q" (8141, ar1) + aH (7(+|5¢41)))] (3.19)
Er [re + yVa(st41)]

Learning procedure

Dual Q networks In SAC algorithm, two separate Q-networks, as proposed in [67],
are employed, denoted as (Qy, and Q)g,. This dual network architecture is designed to
address the overestimation bias commonly observed in Q-learning algorithms. During
training, for each action, the minimum value between these two networks is selected.

SAC learns through a process of soft policy iteration, which includes policy evalu-
ation and policy improvement steps. In policy evaluation, SAC trains the Q-function
to estimate expected future rewards, while in policy improvement, it adjusts the policy
parameters to maximize expected rewards.

Policy evaluation Q-function is parameterized as Qg(s;, a;) using a neural network
with parameters . The training process focuses on minimizing the Mean Squared
Bellman Error, using the value network to form the Bellman backups using (eq. 3.20).

1
JQ(6> = E(Snat)ND 5 (Q9(St7 at) - (Tt + 7E8t+1~p(8t,at)[‘/§<St+1>]))2 (32())

Then the state-value function can be implicitly parameterised thought (eq. 3.21)
which derives from (eq. 3.18) .

V™ (sy) := E[Q (8¢, ar) — alog(m(ay|s))] (3.21)

Policy improvement The policy parameters can be learned by directly minimizing
the expected KL-divergence:

Jﬂ'(¢) = EstN’D

Dy, (%('\St)

exp(Qs (s, -))
7000 )] . (3.22)

02



The authors in [63| state that there are several options to minimize J;(¢), but in
this case it is convenient to apply the reparameterization trick as the Q-function ,which
is represented by a neural network, can be differentiated. This works by reparameter-
izing the policy using a neural network which outputs the parameters of a probability
distribution over actions. In the case of SAC, this distribution is often modeled as a
Gaussian distribution with a mean and a covariance. The reparameterization is:

ar = fyles i) (3.23)

Here e, is a noise vector sampled from some fixed distribution.
Therefore, it is possible to rewrite (eq. 3.22) as (eq. 3.24).

Jﬂ'(¢) = Eg;npeinn [108; 7T¢(f¢(€t; st)|se) — Qo(st, f¢(€t§ St))] ) (3.24)

Here 74 is defined implicitly in terms of f;. We can approximate the gradient of
(eq. 3.24) with:

@qﬁJﬂ(gb) =V, log my(as|st)
+ (Vg log 7T¢(at’5t) — V4, Q(s4,a1)) v¢f¢(€t; S¢), (3.25)

where a; is evaluated at fs(e;; st).

Entropy tuning SAC algorithm uses a stochastic policy enhanced with entropy reg-
ularization. The key component, the entropy coefficient «, is essential for balancing
exploration and exploitation. Higher values of a encourage exploration, while lower
values focus on exploitation. The optimal setting of « is non-trivial and varies across
environments, requiring careful adjustment to achieve the most stable and rewarding
learning outcomes. In [64], the authors propose a dynamic entropy approach, allow-
ing the policy to explore more in states of uncertainty and exploit in states where the
optimal action is clearer. The temperature loss gradient is formalized in (eq. 3.26):

J(a) = Eqpur |[—alog m(ays;) — aH | (3.26)

SAC adaptation for Discrete Action Settings

At [38] Christodoulou proposed an adaptation of the SAC algorithm to discrete action
spaces. The steps in deriving the objectives are still valid, meaning (eq. 3.20, 3.24 and
3.26) still hold, with some modifications.

e The policy no longer outputs the mean and covariance of the action distribution,
but directly outputs the action distribution, changing from 7 : S — R4l to
7 : S — [0,1]1 using a softmax function in the final layer.

e The soft Q-function now outputs the Q-value for each possible action instead of
just the input action, transitioning from Q : S x A = R to @ : S — R
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In discrete action setting there is no need for an estimate in order to minimize
the soft Q-function cost (eq. 3.20), since the action distribution is now completely
determined, in contrast to continuous settings where the action probabilities are
not explicitly defined. As a result, the soft state-value calculation changes from
(eq. 3.21) to:

V7(s) = (s:)" [Q(s0) — avlog(m(s,))] (3.27)

The calculation of the temperature loss is adjusted similarly, with the temperature
objective changing from (3.26) to (3.28).

J(a) = m(s)" [—a (logm(si) + H)] (3.28)

With the policy outputting the exact action distribution, the reparameterization
trick is no longer needed, allowing for a direct calculation in the policy objective
(eq. 3.29).

Jr(¢) = Esinp [Wt(5t>T [alog ms(se) — QG(St)” (3.29)

The SAC algorithm with discrete actions is presented in 3.6.

Algorithm 1 Soft Actor-Critic with Discrete Actions (SAC-Discrete)

Initialise Qg, : S — R4, Qo, : S — RHAI, g S —[0,1] A © Initialise local networks
Initialise Qg, : S — RI41, Qq, : § — RIAI ©> Initialise target networks
Gy < 01,0, « 8, > Equalise target and local network weights
D+ 1> Initialize an empty replay buffer

for each iteration do
for each environment step do

ay ~ Ty (az|s:) 1> Sample action from the policy
St41 ~ PlSt41]5e. at) > Sample transition from the environment
D« DU{(s¢,a1,7(51,0¢),5001)} > Store the transition in the replay buffer
for each gradient step do
0; 8, — AoV, J(6;) fori € {1,2} 1> Update the Q-function parameters
=6 — A\ Vud(¢) > Update policy weights
o a— AV J(a) ~ > Update temperature
Qi —7Qi + (1 —7)Q; fori € {1,2} 1> Update target network weights
Output 6y, 0, & > Optimized parameters

Figure 3.6: Discrete SAC pseudo code,[38]

3.5 Transfer Learning

Transfer learning (TL) is a technique where a model or policy developed for one task is
repurposed on a different but related task. In RL, TL involves using knowledge gained
from one environment to enhance performance in another. This is particularly useful in
HRC, where an agent must learn both the task and efficient cooperation with a human
partner. TL can boost the learning efficiency of such teams, but it is crucial to avoid
negative transfer, which can hinder problem-solving in new contexts.

TL can be implemented in various forms, each impacting training and co-learning
differently. Zhungadi [12] categorizes TL in 5 approaches based on the type of informa-

tion transferred:

o4



e Reward Shaping (RS) [68|: This method involves modifying the reward struc-
ture of the learning environment based on external knowledge, such as insights
from domain experts. The goal is to guide the agent towards more desirable
behaviors by enhancing or diminishing rewards for certain actions. This can sig-
nificantly speed up the learning process by providing more informative feedback to
the agent. One example of RS in HRI is [69] in which, a RS framework is applied
in a simulation scenario where a human-robot team performs a search-and-rescue
mission. The results showed that the proposed framework successfully modifies
the robot’s optimal policy, enabling it to increase human trust with a minimal
task performance cost.

e Learning from Demonstration (LfD): LfD involves the agent learning from
demonstrations provided by either a human expert or a pre-trained model. These
demonstrations act as a guide, showing the agent effective strategies and actions
in various states. This method is particularly useful in scenarios where the agent
needs to learn complex tasks that are difficult to discover through trial and error
alone. In the survey [70], the state of the art in LfD for collaborative robots is
reviewed, with a focus on improving HRC by reducing complexity for human oper-
ators and aligning solutions with smart manufacturing. This approach empowers
non-experts to teach robots new knowledge and enhances their collaboration with
humans in various tasks [71].

e Policy Transfer (PT): In PT, the agent leverages pre-trained policies from
related tasks. This method is based on the assumption that certain aspects of
the decision-making process in one task are applicable to another. By reusing
these policies, the agent can bypass part of the learning process, adapting the
existing knowledge to the new task. One approach to achieve this is thought policy
distillation |72], which means that the agent will select an action by minimizing
the the divergence of action distributions between the source policies and the
target policies. Another way is direct policy reuse [29], where the agent selects,
with a probability, an action based on a previous learned policy instead of his
own policy. An example of a transfer policy is demonstrated in [73], where a
robot learns both a task-focused policy and a safety-focused policy. The safety
estimator model, helps determine which policy to use during execution. This
approach enables robots to adapt to new environments while prioritizing safety

e Inter-Task Mapping (ITM): ITM involves creating mapping functions between
the source state space and target state space, the source action space to the target
action space [74]. These functions help in translating the knowledge from one task
to another, especially when the tasks are similar but not identical. Thought these
mappings one of the previously mentioned TF methods can be applied. In [75], the
results show that using multiple mappings significantly enhances transfer learning
performance compared to single mapping or non-transfer methods.

e Representation Transfer: Representation learning aims at extracting features
of the source problem which exist in the target problem as well. This is achieved
by disentangling the state space, the action space or the reward space into task-
invariant sub-spaces which are shared by both source and target domains. A work
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of reusing representations is |76], which proposed the progressive neural network
structure to enable knowledge transfer across multiple RL tasks in a progressive
way.

Each of these methods offers unique advantages and can be chosen based on the
specific requirements of the task. When implementing TL in RL, it is essential to
consider the compatibility of these methods with the chosen RL framework and the
nature of the tasks involved.

3.5.1 Deep Q-Learning from Demonstrations (DQfD)

DQID, a variant of Learning from Demonstrations TL, is an innovative approach in RL,
developed by Google DeepMind [33]

Algorithmic Pipeline

1. Pre-training from Demonstrations: Initially, the model undergoes pre-training
using a dataset of expert demonstrations. This phase enables the model to acquire
an understanding of desired behaviors, essential for effective learning.

2. Combining Q-Learning and Demonstrations: After pre-training, DQfD in-
tegrates traditional Q-learning updates with specialized loss functions derived
from these expert demonstrations. This combination ensures the model learns
effectively from both its experiences and the expert demonstrations.

3. Regularization and Optimization: To prevent overfitting to the demonstra-
tion data, DQfD employs regularization techniques. Additionally, it utilizes opti-
mization methods like gradient descent to enhance the model’s performance.

Mathematical Formulation

The DQIfD loss function is a composite of several components, each serving a specific
purpose:

e Temporal Difference (TD) Loss:

TD Loss = <Q(S7a) - (T + VIILE/LXQ(S,’G/)))Q

This loss is fundamental in Q-learning, capturing the difference between predicted
and actual rewards, thus guiding the model to learn the optimal policy.

e Supervised Learning Loss from Demonstrations:

Supervised Loss = Z (Q(s,a) — Q" (s, a))2

(s,a)€demonstrations

This component focuses on learning from expert demonstrations, aligning the
model’s actions with those of the expert.
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e Large Margin Classification Loss:

This loss ensures that the values of non-expert actions are lower than the expert’s
actions, grounding the Q-values and aligning the policy with the expert’s behavior.

e L2 Regularization Loss: This loss is applied to the network’s weights and bi-
ases, reducing overfitting especially important when working with smaller datasets.

Je(Q) = max[Q(s, a) +(ap, a)] - Q(s, ap)

e Overall Loss Function:

J(Q) = Jpo(Q) + MJn(Q) + XA Je(Q) + As3Jr2(Q)

The overall loss is a weighted sum of these components, balancing learning from
expert behavior, adherence to the Bellman equation, prevention of overfitting,

and policy alignment.

Algorithm 1 Deep Q-learning from Demonstrations.

I:

13:
14:
15:
16:
17:

Inputs: Dreplay. jpitialized with demonstration data set,
- weights for initial behavior network (random), #':
weights for target network (random), 7: frequency at
which to update target net, k: number of pre-training
gradient updates

: forstepst € {1,2,...k} do

Sample a mini-batch of n transitions from D7ePlov
with prioritization

Calculate loss .J(()) using target network

Perform a gradient descent step to update ¢

if t mod 7 = 0 then ' < @ end if

: end for
: forstepst € {1,2,...} do

Sample action from behavior policy a ~ w¢¥¢
Play action a and observe (s', 7).
Store (s,a,r,s’) into D"Ple¥  overwriting oldest
self-generated transition if over capacity
Sample a mini-batch of n transitions from D7ePlov
with prioritization
Calculate loss .J(()) using target network
Perform a gradient descent step to update
if t mod 7 = 0 then / « @ end if
54§
end for

The DQfD algorithm is depicted in 3.7. DQfD is applicable in various domains,
particularly where expert demonstrations can bootstrap learning, such as in robotics
and strategy games. There are other variants of DQfD, like [77], which involves simul-
taneous pretraining of policy functions and state-action value estimators using expert
demonstrations. These are applied to algorithms like DDPG and ACER, demonstrating

Figure 3.7: DQfD pseudocode,[33]

enhanced performance compared to traditional RL methods.
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Chapter 4

Related work

This chapter talks about the history and development of Human-Robot Interaction
(HRI). It starts from the first industrial robot made in the 1950s and goes to modern
times where robots use advanced Artificial Intelligence (AI) and machine learning. It
highlights the transformative role of Deep Reinforcement Learning (DRL) in robotics,
enabling robots to undertake intricate tasks autonomously. The significance of DRL in
facilitating effective Human-Robot Collaboration (HRC) is also examined, alongside its
inherent challenges, such as the scarcity of learning data and the complexities involved
in transferring knowledge. Finally, this chapter outlines the principal contributions of
this study, shedding light on its impact on the field of HRC.

4.1 Overview of Human-Robot Interaction (HRI)

HRI has a significant evolution and advancement. It began in the late 1950s with the
introduction of Unimate, the first industrial robot. This marked a new phase in HRI,
known as ‘indirect interaction” where humans programmed robots to execute specific
tasks, effectively setting the stage for future advancements in robotics.

In the following decades, as outlined in 78], HRI transitioned from its initial direc-
tive nature, where robots were just executors of human commands, to a more nuanced
and collaborative interaction. Sheridan’s work analyze early challenges in HRI, such as
the intricacies of human supervisory control and the emergence of social robotics.

The recent integration of advanced Al and machine learning has significantly rev-
olutionized HRI. This evolution has broadened the scope of HRI, incorporating things
like communication and ethical decision-making into robotic capabilities. Today, robots
are integrating into daily human activities, not just enhancing human capabilities and
experiences, but also make this interaction user friendly and anthropocentric.

As the field grows, it is important to understand the different types of interactions
that occur between us and robots. Drawing from the categorization in [1], HRI can be
broadly classified into three types, each representing a different level of interaction and
autonomy:

e Instruction: We can view it as an one-way communication, this form involves
humans issuing commands that robots execute. Here, robots act primarily as
tools, carrying out tasks set by humans.
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e Cooperation: This involves more dynamic interaction, where humans and robots
work on separate tasks but contribute towards a shared objective. It requires a
certain level of autonomous functioning from the robot, guided by human input.

e Collaboration: Here there is a sequence of interdependent actions meaning that
each participant affect the actions of the other partner.

The applications of HRI are diverse, impacting various aspects of our lives. In
healthcare, robots assist in complex surgeries [79]. Also rehabilitation robotics repre-
sents a significant advancement, particularly in providing therapy for stroke patients
and those with motor disorders [80]. The manufacturing sector has been transformed by
collaborative robots (cobots), enhancing performance and flexibility in assembly lines
[5]. These robots are designed to work safely alongside humans, per-forming tasks that
are either hazardous or repetitive. Social robots [81] are designed for direct interac-
tion with humans, often with anthropomorphic designs, even for educational purposes
[82]. Last but not least in entertainment and gaming, HRI introduces new forms of
interaction, as explored in studies like [83].

The integration of robots in these sectors demonstrates the need of robots to be able
to adapt in different functions and highlights the importance of continual advancements
in this field. a key focus of current research in the field of HRI is to enhancing human-
robot collaboration, especially in tasks requiring precision and adaptability, but at the
same time keeping human as the center of the design.

4.2 Deep Reinforcement Learning in Robotics

4.2.1 Implementations of DRL in Robotic Tasks

In the domain of robotics, DRL has brought changes, as it is applied to a wide array of
robotic systems to address tasks that require sophisticated decision-making and control.
DRL offers a way for robots to learn and perform complex actions that would be difficult
to achieve with traditional programming methods due to the complexity of the tasks.
For instance, mobile robots have utilized DRL to navigate autonomously [84],[85].
For example in [8] the authors use the Asynchronous Advantage Actor-Critic algorithm
to enable a mobile robot to navigate without a map or a path planner but only using
data from a 2D laser scan and a RGB-D camera. The goal is for the robot to get to
a predefined goal pose while avoiding static obstacles and is achieved by training the
robot to a simulated environment and then deploying it to the real world. Similarly,
in robotic arm control [9], [86]. An example of robot arm motion control is [87] where
a Deep Q network has been used in to enable a 3 DoF robotic arm to reach target
configurations without prior knowledge of the goal and using only raw visual pixels as
input to the network. Another DRL application to robotics is at grasping [88]. In [89]
the authors propose a Q-learning based network architecture for improving the grasping
capabilities of a robotic manipulator using raw visual data input from a multi-camera
setup. By employing advanced learning algorithms, robots can learn to pick up and
manipulate objects with a precision that mimics the dexterity of the human hand [18].
This learning process can be so detailed that it can even be based on raw visual data,
allowing the robot to adapt to different tasks without being explicitly programmed for
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each one. In drones [10], equipped with a stereo-vision front camera, learn to avoid
obstacles within a geo-fenced area and reach their destination, demonstrating improved
performance and consistency in their tasks. Other examples can be found [90] , [91]. In
[92], the authors present a DRL algorithm based on maximum entropy RL in order to
teach a quadrupedal how to walk. An additionally interesting result is that the robot
learns without having access to his dynamic model.

DRL in HRC

The integration of DRL into robotics has had a profound impact on the capabilities
of robots, making them more adept at collaborating with humans. This integration is
particularly relevant in the context of HRC, where robots and humans work together
on tasks, often in close proximity.

Firstly, safety and trust are crucial in HRC scenarios. DRL algorithms can be tuned
to train robots to prioritize safety, operate within predefined boundaries, and respond
adeptly to unforeseen human actions, thereby gaining confidence in their collaboration
[14].

Also HRC often involves tasks that require intricate decision-making and control.
DRL’s proficiency in handling complex tasks, such as precision grasping and navigating
through cluttered environments, enhance the robot’s contribution to the collaboration
[15].

Another advantage of DRL is that enables robots to continuously learn and adapt
from human expertise, improving their performance over time and reducing the learning
curve for new tasks [16].

Furthermore, DRL algorithms provide real-time adaptability, ensuring that robots
can make instantaneous decisions and adjustments, aligning their actions with human
intentions and goals, thereby augmenting the quality of HRC interactions [17].

A study in this area is presented in [93], where Shafti developed a HRC framework
involving a robotic manipulator and a human user. The objective involves shifting a ball
from a starting corner to a designated target location by manipulating a tilting platform,
as depicted in 4.1. Within this setup, one axis of the platform is under human control,
while the other axis is managed by the robot. Additionally, the platform features
various obstacles that necessitate collaborative efforts from both the human and robot
to navigate and achieve the goal. Lygerakis [94] created a visual simulation of this
work in order to evaluate different training approaches. Then, in his work Koutrintzes
[34] applied a TL methodology, called Deep Q-learning from Demonstrations, in this
environment to examine how this can enhance the Human-Agent collaboration.
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Figure 4.1: The robotic setup used for Shafti’s HRC experiment,|93]

4.2.2 Limitations of DRL in Robotics

DRL might advance robotics in various aspects, making them more intelligent and
autonomous but it comes with its limitations when it comes to practical robotics ap-
plications.

DRL algorithms often face sample insufficiency problems, as they need large
datasets for the algorithm to develop policies close to the optimal. One way to overcome
this issue is through the parallel utilization of multiple robots to gather data, as seen
in [18] where fourteen robots were deployed for collecting data to train a model for
predicting grasp. This strategy, while effective, may not be practical due to the high
costs and potential lack of hardware resources.

An alternative solution is to train robots within simulated environments, which is not
only quicker but also more cost-efficient, and then apply the learned policies in the real
world. Tranfer Learning techniques like "Zero-shot Transfer" [19], involves direct policy
application from simulations to real-life situations, provided the simulated environment
closely mirrors the actual conditions. This method was evaluated in [20] through tasks
such as reaching, pushing, and sliding conducted by a robotic manipulator. Yet, the
efficacy of policies learned in simulations may vary when applied to the real world due
to inherent differences between the simulated and real environments or the complexity
and unpredictability of real-world conditions

To bridge this gap, "Domain Randomization" is employed, which involves random-
izing simulation parameters to span a range of real-world scenarios. For instance, [21]
describes training an object detector in diverse simulated settings, which could then
operate effectively in real-world applications without further training, for tasks like
pick-and-place operations. This approach has also been utilized in other areas such as
pose estimation [22] and semantic segmentation 23], enhancing the robustness of DRL
applications in robotics [24] .

Another limitation is the exploration-exploitation trade-off, a fundamental
dilemma in reinforcement learning. In robotic applications, random exploration needed
for learning can lead to unsafe actions, potentially causing mechanical damage. A re-
cent work which addresses this issue is [24], where the authors present methods so that
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safety principles can be incorporated in reinforcement learning. Safety has also been
taken into account in real-world applications, like [25], where a neural network is used
to predict the outcome of an action in terms of safety. Another limitation of random
exploration is that it can be a time consuming procedure due to the high dimension-
ality of the action space in robotic applications (e.g. an agent controlling the rotation
of the wheel of a self-driving car). An example work which addresses this issue is [26],
where demonstrated trajectories have been utilised as a bias that governs the learning
procedure in early stages.

One more issue of DRL in robotics is the ability of the robots to generalize knowl-
edge in order to operate in new, unknown circumstances and environments. Most works
try to solve a RL task by training the robot from scratch. However, this approach is
non-optimal mainly because it is time consuming. One way to overcome this issue is
by transferring knowledge among conceptually similar tasks, just as humans do. The
methods for applying transfer learning in DRL have been presented in 3.5. In [27], the
authors present an implementation of reward shaping in robotics in order to improve
the training of an RL agent used for mobile navigation by altering its reward function
based on the knowledge about the map provided by the SLAM algorithm. Learning
from demonstration has been applied in [26] where the issue of sparse reward function is
a pick-and-place scenario is addressed. The use of demonstrated trajectories for efficient
exploration enables the agent to solve the task, which might have been infeasible with
random exploration. Pre-learned policies have also been used for training DRL agents.
For example, policy distillation has been applied in robotics in a continual learning
problem [28], where the goal is for a single RL agent to learn three different policies for
three different navigation tasks and learn which policy to use by identifying in real time
the task to be solved. The second approach is direct policy reuse [29] , and the agent
can select an action based on the pre-learned policy instead of his own policy. This idea
has been used in [30], where the authors teach a humanoid robot how to walk fast by
exploiting a policy that allows the robot to walk in a normal speed. Knowledge has also
been transferred between morphological different robots, like in 31|, where the authors
train a 3-link robotic manipulator in three different tasks (target reaching, peg inser-
tion, and block moving) and exploit the policies in order to train a 4-link one. Finally,
in the context of representation learning, some works such as [95] show how to reuse
the extracted features for transferring knowledge, while other such as [96] focus on the
feature extraction. An application of representation learning in robotics is presented in
[32], where the authors show how extracting important features from the environment
can accelerate the learning procedure of an RL agent in the case of slot car racing and
mobile robot navigation.

4.3 Motivation and contribution

Our work is based on Tsitos experiment 13|, where a human, controlling the y-axis of
the robot’s end effector collaborates with a DRL agent controlling the x-axis, in order
to learn how to solve a task in real-time. The experimental setup will be detailed in
the next chapter 5.1. It focus is to determine whether knowledge transfer from a pre-
trained expert agent can improve the overall team performance. In his work, Tsitos
used Probabilistic Policy Reuse (PPR), a direct policy reuse TL technique 3.5, which
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allows the agent to select, with a probability, an action based on a previous learned
expert policy instead of his own.

In our approach, we introduce some modifications, which will be discussed in detail
in the next chapter 5.1. However, the primary deviation from the previous work [13]
is in our implementation of Deep Q-learning from Demonstrations (DQfD) [33|, a TL
technique based on Learning from Demonstration (LfD), instead of PPR.

One of the advantages of LD over PPR is the nature of the interaction between
the human participant and the agent. In LfD, the participant interacts with their
own DRL agent, which may incorporate learning from expert demonstrations. This
approach ensures that the participant is central to the learning process, developing their
own policy rather than being directly influenced by an expert agent’s decisions. This
fosters a more human-centric learning experience, where the human user significantly
influences the robot’s learning trajectory, aligning it with their unique style.

Another reason we chose DQfD is because of its compatibility with the SAC frame-
work [34]. DQfD combines the power of Q-learning with learning from demonstrations,
allowing the agent to benefit from expert guidance. This method integrates with SAC,
an off-policy RL algorithm known for its stability and performance. This compatibility
provides us with a robust framework for our HRC task. Additionally, DQfD operates in
an offline and off-policy manner, enabling efficient learning from past experiences [35],
enhancing the adaptability and performance of our robot in real-time HRC scenarios.

The main contributions of our study are:

e Implementing LfD as a TL method to the task.

e Conducting a comparative study with human-robot teams to assess the impact
of LiD.

e Comparison of LfD to the previously implemented PPR method.

e Discussing the influence of different target entropies and activation functions in
the SAC algorithm on the effectiveness of the collaboration.
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Chapter 5

Methodology

In this chapter, we present the overview of the methodologies and experimental setup
used in the Human-Robot Collaboration (HRC) study.

The first section begins with an overview of the collaborative task. The game
structure, familiarization process, and baseline and initialization phases for both groups
are explained in detail. It also details the use of the Soft Actor Critic (SAC) algorithm
for robot control in the HRC experiment. Furthermore, this section introduces the
application of Deep Q-Learning from Demonstrations (DQfD), a Transfer Learning
(TL) method, to enhance the SAC agent’s performance by integrating learning from
expert demonstrations, into our methodology.

The second section, outlines both objective and subjective measures used to evaluate
quality of human-robot collaboration. It also emphasizes in understanding participant
personalities through comprehensive questionnaires, an aspect critical to exploring in-
dividual interactions with Al and robots.

5.1 Research Approach

5.1.1 Overview of the Collaborative task

The human-robot collaborative task was taken from [13]. The team consists of a Uni-
versal Robot UR3, which is a non-redundant 6-DoF robotic arm and a human. The
robot is placed to the middle of a 1m x 1m table and its end effector (EE) perpendicular
to the table and can move parallel to it a certain height. Also, a laser is attached to
the EE pointing to the table. While the human controls the movement of the EE in
one axis (y-axis), using the keyboard, a DRL agent, as explained in Section 5.1.2, is
responsible for the movement in the (x-axis). With the combination of the motions of
two partners the robot can move in the xy pane, constrained in a 20cm X 20cm square.

At the beginning of each game, the robot chooses randomly an initial position out
of the four possible (at the corners of the square) and placed on top of it, as it is
depicted in Figure 5.1. At the time it reaches the starting position a sequence of three
short and one long "beeps" indicates the start of the game. When the game starts
the task of the human-DRL agent team is to bring the laser dot inside a the circle of
the goal position, located at the center of the square. The goal position has a position
and velocity tolerance which are 0.01m and 0.05 m/s respectively. The team wins if it
manages to bring the laser dot inside the circle of the goal position, with radius=0.01,
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with velocity lower than 0.05, at 30 secs from the beginning of its game, else it timeouts.
The player will be informed with a different sound in both cases.

Figure 5.1: Initialized Position. The robot’s movements are constrained within a 20cm x
20cm area. The EE is placed in one of the four starting (‘o) positions and the HR
team has to bring the EE in the centre (®) of the square. A laser pointer attached to
the EE of the robot provides to the human visual feedback about the position of the
EE that is controlled.

5.1.2 Reinforcement Learning agent

The HRC task, as detailed in Section 5.1.1 consists of a human controlling the y-axis
and a DRL agent controlling the acceleration in x-axis of the EE. A discrete Soft Actor
Critic algorithm, Section 3.4, is responsible for the movement of the EE in the x-axis.

For our task, we chose discrete SAC due to its features that align well with the
requirements of this complex and dynamic task. Firstly, discrete SAC is a model-free
algorithm, meaning it does not require a predefined model of the environment which
is beneficial in HRC settings where the environment dynamics can be unpredictable
and influenced by human actions. Being an off-policy algorithm, discrete SAC learns
from past experiences, allowing it to leverage previously collected data. This is crucial
in scenarios where real-time interaction data is valuable and limited. Additionally,
discrete SAC incorporates offline training, which enables the algorithm to optimize its
policy using previously gathered data. This aspect is particularly useful in HRC, where
continuous online learning might be impractical. Moreover, discrete SAC’s emphasis
on entropy maximization ensures a balance between exploration and exploitation, a
crucial limitation of DRL in HRC tasks as discussed in Section 4.2.2 where adaptability
and responsiveness to new situations are essential. The algorithm’s ability to adjust its
exploration strategy dynamically through entropy regularization makes it well-suited
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for HRC tasks. Overall, the combination of these features makes discrete SAC a suitable
choice for our HRC task, providing a robust and flexible framework for effective HRC.

Discrete SAC employs a stochastic policy, using a softmax function to generate a
probability distribution for action selection. Actions are chosen based on this distri-
bution, ensuring a degree of randomness in decision-making. The SAC’s exploration
strategy is achieved by a soft policy, where all actions have a calculable chance of being
selected. This probability is influenced by the entropy of the action probabilities and
the alpha temperature, a parameter adjusted during offline training to align with the
target entropy.

The MDP formulation for our problem is defined as follows:

o S = {eeposy, eeposy, eevely, eevely }. Position and velocity of the EE

e A ={-1,0,1}. Acceleration in the x-axis.

R —1 non-goal state at each timestep (200ms)
[ ] e
10 goal

The selected states - position and velocity of the EE are crucial for the task, as the
goal involves reaching a specific position with a velocity constraint. The inclusion of
both position and velocity in the state representation allows the agent to learn not only
how to reach the goal but also to control its approach speed, adhering to the defined
tolerances.

The sparse reward function, taken by [93] means that the agent does not have
an explicit knowledge of the goal position, so reaching goal is crucial to it forming
a representation of state values. This simplifies the learning process and implicitly
penalizes the time taken to reach the target. This approach emphasizes the importance
of reaching the goal efficiently, as each timestep without success incurs a penalty, thereby
encouraging the agent to find quicker paths to the goal.

In Table 5.1, the settings for the hyper-parameters of the model are presented, which
are based on [13], with the following two changes:

e Activation Function: The activation function was changed from Relu to Tanh.
This modification was made due to Tanh’s compatibility with Xavier initialization
[36] and other papers like [37] where they used SAC with Tanh to determine the
optimal steering angle for autonomous race track.

e Entropy Target: The entropy target was modified from 0.36 % (— log(1/|A])) to
0.98 % (—log(1/|A|)), where A represents the action space with 3 possible actions.
This adjustment aligns with the approach introduced in Christodoulou’s paper on
discrete SAC [38], where this specific entropy target formulation was proposed.

66



Table 5.1: discrete SAC settings

Hyper-parameter [13] value this thesis value
Layers 2 fully connected, 1 output | 2 fully connected, 1 output
Fully connected layer units 32,32, moves available:3 32,32, moves available:3
Batch size 256 256
Replay buffer size 1000000 1000000
Discount rate 0.99 0.99
Learning rate Actor 0.0003 0.0003
Learning rate Critic 0.0003 0.0003
Learning rate Alpha temperature 0.001 0.001
Optimizer Adam Adam
Weight initializer Xavier initialization Xavier initialization
Activation function Relu Tanh
Networks update per off-line training 14.000 14.000
Loss function Mean square error Mean square error
Entropy target 0.36*(-log(1/]A])) 0.98*(-log(1/|Al))

5.1.3 Robot Control
Human and RL Control

Both human operators and RL agent are in charge of the EE trajectory in their axes
through specified accelerations. These accelerations are integrated over time to derive
the velocities commanded to the robot. Thus, the control strategy, taken from [13]
includes a feedforward term on the acceleration as delineated by the following equations:

Foom = U (5.1)
:tcom - jjcom + Tc : jjcom (52)

Here, u symbolizes the acceleration determined by either the human or the RL
agent, Teom 18 the velocity commanded, and 7, represents the control cycle, set to 0.008
seconds corresponding to the robot controllers’ operation at a frequency of 125Hz.

During the HRC task, both entities are permitted to command a set of three distinct
accelerations, which includes:

o . 2
e A positive acceleration of +am/s
. . 2
e A negative acceleration of —am/s
. 2
e Zero acceleration, or 0m/s

where a > 0 is a predetermined positive constant. This control schema introduces an
inherent challenge within the game, reinforcing the notion of mutual learning and adap-
tation as the human participant masters the dynamics of robot motion in collaboration
with the RL agent.

67



Reset Mechanism

Prior to the initiation of each HRC game, a feedback control law, concerning the EE’s
position is employed to navigate the EE to a predefined starting location. This prepara-
tory control law, taken by [13], is formulated as:

j:com == Kp : (xdes - xcurr) (53)

In this context, x4es signifies the desired EE position, x.y,. is its current position, and
K, is a gain matrix constituting the proportional control element, specifically a 2 x 1
matrix in this scenario. This mechanism ensures the robot’s motion is appropriately
calibrated, setting the stage for the forthcoming HRC interactions.

5.2 Study design

There are two distinct participant groups:

1. No Transfer Learning Group: Participants in this group interact with a DRL
agent 5.1.2 starting without prior training. The learning process of the agent is
solely based on its interaction with the participant during the experiment.

2. Transfer Learning Group: This group’s participants collaborate with a DRL
agent that learns both thought the participant’s and the expert’s demonstration
data.

5.2.1 No transfer Learning Group

The complete game consists of 110 trials, following the pipeline of the game without
TL as presented in Figure 5.2.

Testing Random
B m e
Training - SAC Agent
Block Replay
buffer
Offline
training Demonstration

Replay Buffer

btk b

2winnning X 3winnning © 3winnning : 2winnning :
games games games | games |

Figure 5.2: No Transfer learning Game Diagram

68



Game Structure

Each block in our experiment consists of 10 trials. We refer to a sequence of a training
block, followed by offline gradient updates (G/U), and then a testing block, as a ’batch’.
The data collected during the training blocks are stored in the replay buffer. This data
is then utilized in the offline training sessions. Our primary focus for analysis and
results will be on the testing blocks. It’s important to note that the agent employs the
same policy in both the training and testing blocks that immediately follow each offline
training session. We could use only one block between each offline training but we
adopted this approach to facilitate a direct comparison with the findings from Tsitos’
previous work [13]. The parameters of the game are gathered in Table 5.2.

Table 5.2: Game Parameters

Game Parameters Values
training games 50
Test games 60
Maximum games duration 30 secs
duration of RL agent 0.2 secs
Total update cycles 70000
win reward 10
non-win penalty -1
goal position tolerance 0.01 m
goal velocity tolerance 0.05 m/s
maximum velocity in one axis 0.2

Familiarization

To provide participants the opportunity to assess their control over the robot, we con-
ducted a preliminary test before the main 110 games. This test involved 10 games
where the EE, could only move in the direction controlled by the human player. At the
start of each game, the EE was placed in a starting position at the same height with
the goal at the agnet’s axis, so his contribution was not necessary. The player then
had 10 seconds to move a red dot to a target area at a slow speed. This setup helped
us assess the participant’s skill in guiding the robot’s movement. The target area and
allowed position error were the same as in the main HRC game, but we set a stricter
speed limit of 0.02m/s for this test. This approach was important because the robot’s
movement in the main games could influence the human’s actions, and we wanted to
understand each participant’s basic ability to control the robot.

Baseline Block We refer to the initial testing block as the "baseline". In this block,
all participants interact with a randomly acting agent, where each action is equally
likely. The baseline block is the only shared phase between the two groups and serves
to assess participant behavior and differences before the application of TL.
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Initialized Agent

One of the changes we implemented is that, following the Baseline block, participants
in each group now commence their first training block with an initialized agent, as
opposed to Tsitos” work [13] where they interacted with a random agent.This approach
was adopted due to the significant variance observed in the performance of randomly
initialized agents. To address this, we conducted an experiment where an expert inter-
acted with 15 different initialized agents, as illustrated in Figure 5.3. The performance
of these agents varied greatly, with some nearly matching the efficiency of trained poli-
cies, while others struggled significantly.

In our study, we aimed to minimize the impact of this variance on participant
performance and experience. Ideally, a larger sample size would have been used to
absorb this variance, but due to practical constraints, we were limited to typical sample
sizes of 10-20 participants.

Another potential solution was to refine the initialization process to achieve more
consistent performance across agents. However, such a change could fundamentally
alter the co-learning experience and limit our ability to compare our findings with
similar studies. Therefore, we opted for a uniform initialization across all participants.

We selected the median-performing agent from our initial test (Run 4) as the stan-
dard initialization for all participants. This agent was used for the No TL group,
ensuring a consistent starting experience for all participants and highlighting the influ-
ence of individual collaboration approaches on the learning process. At Section 5.2.2
we discuss about the Transfer Learning group’s initialized agent.

Agents Ranked by Mean Score (Ascending)

Mean Score

2 7 8 6 12 1 13 4 10 9 11 3 15 5 14
Agent Number

Figure 5.3: Performance of Different Initialized Agents

5.2.2 Transfer Learning Group

In our study, an "expert" is defined as an individual with extensive experience in the
game, up to 30-40 hours of gameplay. The expert engages in the same game setup
as a participant in the non-transfer learning group. Some of the interactions between
the expert and the agent, particularly 10 successful games, are recorded (as illustrated
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by the dotted lines in Figure 5.2). This collection of expert interactions formed the
demonstration data buffer, which is used to transfer knowledge to the learning agent.

Our approach to TL in this game is inspired by the DQfD method [33], as detailed
in Section 3.5.1. The application of DQfD in our HRC task is particularly benefi-
cial for several reasons. Firstly, the expert demonstrations used in DQfD are directly
relevant to our task, as both the experts and participants are involved in the same
game environment. This direct applicability ensures that the knowledge transferred
is useful. Secondly, there’s a natural compatibility with the SAC framework, particu-
larly through the Q Learning aspect of the SAC’s critic network. This compatibility
facilitates a smoother integration of the transfer learning process.

This method involves two distinct phases. In the initial phase, we focus on pre-
training, which includes offline training exclusively with the demonstration replay buffer.
This phase gives the agent an initial understanding of the environment by utilizing ex-
pert data. The second phase marks the beginning of the agent’s interaction with human
participants. Here, the agent’s training during offline sessions incorporates a mix of ex-
pert demonstration data and data generated by the participants themselves. Notably,
we gradually reduce the proportion of demonstration data in each subsequent offline
training session. This strategy allows the agent to progressively adapt and its responses
to the unique strategy of each participant.

Figure 5.4 illustrates the TL pipeline in detail. To address the issue of variance in
agent initialization, as discussed in Section5.2.1, we employ the same initialized agent.
The initial offline training session is conducted using this agent. The agent that emerges
from this initial training session, having been exposed to the demonstration data, is then
uniformly employed for all participants within the TL group.

Divergent from the original DQfD

In our methodology, we have chosen not to employ the two loss functions used in off-line
training sessions in [33]: the Large Margin Classification Loss and the N-step Double Q-
learning Loss with L2 Regularization. The Large Margin Classification Loss is designed
to emphasize demonstration actions over other possibilities, creating a distinction be-
tween preferred and less optimal actions. This approach, could potentially restrict the
agent’s ability to adapt and personalize its policy to new users. On the other hand, the
N-step Double Q-learning Loss, combined with L2 Regularization, is typically used to
enhance generalization to new environments and improve sample efficiency. However,
given the demonstrated capabilities of SAC algorithm in handling unseen scenarios and
its sample efficiency, as evidenced in the works of Haarnoja [64] and Christodoulou
[38], we decided instead of using these additional loss functions, a more straightforward
approach for the off-line training session. The new agent is trained using only the
demonstration replay buffer, without the modifications introduced by the additional
loss functions. This approach is based on the confidence in the SAC’s abilities and is
aimed at ensuring that the agent can adapt more flexibly and personally to new users.
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Figure 5.4: Transfer Learning Game Diagram

5.2.3 Experimental procedure

The participants were divided in 2 groups, half of them played the game without transfer
learning while the other half played with L{D.

Before the beginning of the experiment a consent form where given to the par-
ticipants informing them that their involvement was voluntary and that no personal
information will be used against their will. The information letter and the consent
form can be found in Appendices 5 The study protocol was approved by the Research
Committee (REC) of NSCR "Democritus". After the consent form the participants
requested to complete Questionnaire 1 which will be discussed in Section 5.3.3.

Experiment Procedure

_ _ -
- - - - - nnnnnnnnn -

Figure 5.5: Experimental procedure

By the completion of Questionnaire 1 instructions where given to each participant,
about the nature of the collaboration with the robot, the task they are sharing, the
axis each member of the team controls, the total number of trials (110), Participants
learned that each game could end in a "win" or "lose," each with distinct sounds. They
were also briefed on the visualization module and that the games were divided into
sets of 20. It was explained that the robot’s movements were restricted to a designated
rectangular area, as shown in Figure 5.1. Additionally, participants were assured of
safety due to the robot’s kinematic constraints and the emergency shutdown button.
The participants where not informed about the DRL agent controlling the EE motion
in the perpendicular (x-axis) were controlling neither the offline training of the agent
every 20 games, neither their group (Transfer Learning, no Transfer Learning).

The instructions also informed the participants about the type of control they had
at the (y-axis). Specifically the instruction given where:

ll Il

° The participant can move the EE away from him.

e "m": The participant can move the EE towards him

72



e "k": When pressing the "k" button, the participant commands the EE to continue
moving the exact same way it was moving the moment he pressed the button.

The participants were directed to position themselves as shown in Figure 5.6, and
started the familiarization game, as detailed in 5.2.1 in order to gain a clearer under-
standing and control over the robot’s movement along one axis. Once the familiarization
was concluded, they proceeded to the main HRC game, as described in 5.1.1. Following
the HRC game, the participants requested to complete Questionnaire 2 5.3.2, which
purpose is to evaluate the subjective measures of the collaboration. At the end a de-
briefing session was conducted. This session provided an opportunity for participants
to share their experiences and thoughts on the collaborative effort, offering insights into
the human-robot collaboration.

Figure 5.6: The Human-Robot Collaboration setup The robot is placed in the middle
of 1m x 1m table.

5.3 Measures

5.3.1 Objective Measures

Objective measures are quantifiable indicators that allow for an impartial assessment.
In our study, the following metrics were utilized to gauge performance:

e Total Interaction Time: The complete duration of active engagement between
the human participant and the robot during each task.
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e Score: Initiated from a base score of 150, the score decreases by one for every
control frame during the game, aligning with the frequency of control frames (one
every 200 ms) within the 30-second duration of a trial, resulting in 150 control
frames per game.

e Number of Wins: The total count of successful trials within a series of game
sessions, known as a game block.

e Normalized Travel Distance: This is the travelled distance multiplied by the
percentage of the total time spent in a game.

e Heatmaps: Spatial representations showing the frequency of the end-effector’s
positions across the workspace during each block.

Statistical Approach for Objective Measures

Our analysis approach involved applying mixed ANOVA to analyze the data across
different conditions and blocks, which allowed us to investigate the interaction effects
comprehensively. We predetermined the alpha level for statistical significance at 0.05.

5.3.2 Subjective Measures

Subjective measures are essential in understanding how people perceive and interact
with Al in collaborative tasks. These measures, based on each participant personal
opinions and experience, help capture aspects which are challenging to quantify objec-
tively. Many studies have presented subjective measures to evaluate better the experi-
ence of the human. Works in human-robot dialogue systems [97], conversation agents
[98], explainable Ai [99] are some examples of focus for using subjective measures.

Our focus is on the validation of human-robot teaming fluency, so we focused on the
proposed questionnaire by Hoffman. Our questionnaire 2, inspired by the work of Hoff-
man [39], focuses on six key aspects of collaboration: fluency in human-Al interaction,
ATD’s contribution, team improvement, trust, training, and alliance, Figure 5.7.

1 Human-Robot Fluency a=0.801 6 Working Alliance for H-R Teams a=0.843
* “The human-robot team worked fluently together.” Bond sub scale (a=0.808)
¢ “The human-robot team’s fluency improved over time.”* ¢ "I feel uncomfortable with the robot.” (reverse scale)

“The robot contributed to the fluency of the interaction,” * “The robot and I understand each other.”

Robot Relative Contribution a=0.785 : ,,1 believe the robot likes me. "

“I had to carry the weight to make the human-robot team better.” (R) * ”The robo§ and ]‘ respect eac}w otl?gr. ”
“The robot contributed equally to the team performance.” : "] am confident in the r()bol. N ab111ty”to help me.
“I was the most important team member on the team.” (R) ﬂJ feeel that the robot appreciates me.

“The robot was the most important team member on the team.” * “The robot and I trust each other.

Trust in Robot a=0.772 Goal sub scale (a=0.794)

P : . : e * “The robot perceives accurately what my goals are.”
I trusted the robot to do tk ht th t the right time.
“Thr::ocbot V\Era]’:‘tl{;:t(x:vo(:th‘cl’r‘g 1ing at the right time * “The robot does not understand what I am trying to accomplish.”(R)
o Y- ¢ “The robot and I are working towards mutually agreed upon goals.”
Positive Teammate Traits @=0.827 Additional
“The robot was intelligent.”
“The robot was trustworthy.”

el e e ) s s s N e

* “ Ifind what I am doing with the robot confusing.”(R)

+ “The robot was committed to the task.” 7 Individual Measures

5 Improvement* 0=0.793 ¢ “The robot’s had an important contribution to the success of the
¢ “The human-robot team improved over time” team.”

¢ “The human-robot team'’s fluency improved over time.” + “The robot was committed to the success of the team.”

¢ “The robot’s performance improved over time.” ¢ “TI'was committed to the success of the team.”

* only applicable for a learning or adaptation scenario * “The robot was cooperative.”

Figure 5.7: Subjective fluency metric scales and items used in our studies 39|

In each study the questionnaire changes to fit the objective. In [100] some of these
measures are used to evaluate the relationship between human- robot interaction fluency
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in job performance and job satisfaction. Another example is [101] where the classifica-
tion in a human to robot grasping handover task is evaluated. Tsitos [13] used six of
these measures, excluding the individual measure, in order to evaluate the difference in
experience between the 2 groups.

In our study we developed Questionnaire 2 which is administered throughout and at
the end of the interaction (the exact structure of the whole procedure will be explained
at the next chapter). It is designed to capture the aspects of collaboration, reflecting
the participant’s evolving perceptions and experiences. The final Questionnaire 2 with
[13| modifications can be found in Appendix .2.6

5.3.3 Understanding Participant Personalities in Human-Robot
Collaboration

In research where humans are interacting with robots or artificial intelligence, the per-
sonalities of the human participants are of significant interest. More importantly in
Human-Robot Collaboration (HRC), as an individual’s personality forms their strategy
during the interaction, making the robot adapt to it.

Previous works [102], [103]| have utilized the Big Five personality trait questionnaire
to better understand human experiences in Human Agent Collaboration. Additionally,
a custom scale was used in [104] to explore future directions for personality research,
focusing on how advances in information technology, such as Al and robotics, will
require an understanding of individual traits.

That’s why we developed 'Questionnaire 1°, a set of questions helps us get a full
picture of each person’s personality and what they think about AI. We ask the the
participants to answer this before they start the game.

Questionnaire 1

'Questionnaire 1’ is made up of four different parts, each looking at different character-
istics about a person:

1. Big Five Personality Traits
2. Schwartz Portrait Values Questionnaire (PVQ)
3. Al Attitude Scale

4. Additional Personal Questions

Big Five Personality Traits

The Big Five Personality Traits questionnaire, which can be found in Appendix .2.1,
includes 50 questions that help us understand five key aspects of personality. This
questionnaire focus on five main characteristics:

e Extraversion: This trait measures how outgoing and social a person is.

e Agreeableness: This trait looks at how kind, cooperative, and compassionate a
person is. .
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e Conscientiousness: This trait assesses how organized, responsible, and hard-
working a person is. Highly conscientious individuals are usually very reliable and
well-organized.

e Emotional Stability/Neuroticism: This trait measures how calm and emo-
tionally stable a person is..

¢ Openness to Experience: This trait evaluates how open-minded, imaginative,
and curious a person is.

The Big Five model, is a well-established framework in psychology. It suggests that a
personality can be described using these five basic dimensions.

The questionnaire we use is based on the work of Goldberg [105] and translated by
Tsaousi [106]. It consists of 50 items, with 10 questions for each personality dimension.
These questions, divided by each trait, are provided in Appendix .2.1.

Schwartz Portrait Values Questionnaire

The Schwartz Portrait Values Questionnaire (PVQ) [107]|, developed by Shalom H.
Schwartz, is a version of the original Schwartz Value Survey (SVS) [108]. Our study
utilizes the PVQ-21, a shorter variant with 21 items. This version was selected for
its ability to maintain participant engagement without loosing the depth of insight.
The PVQ-21 captures Schwartz’s ten basic human values, each representing unique
motivational goals:

e Self-Direction: Emphasizing independent thought, creativity, and personal free-
dom.

e Stimulation: Focused on seeking excitement, novelty, and adventure.

e Hedonism: The pursuit of pleasure and enjoyment.

e Achievement: Aiming for personal success and demonstrating competence.
e Power: The desire for control, influence, and social status.

e Security: Prioritizing safety, stability, and order.

e Conformity: Adherence to social norms and expectations.

e Tradition: Respect for customs, cultural heritage, and traditional values.

e Benevolence: Concern for the welfare of others, showing empathy and compas-
sion.

e Universalism: Valuing social justice, equality, and environmental sustainability.

Each question in the PVQ-21, in both English and Greek, are presented in .2.2
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Attitudes towards Al Scale

The AI Attitude Scale helps us understand how people feel and think about Al. Schep-
man’s at [109] developed 3 questionnaires :

e The first had two types of questions about Al. Some questions were positive, like
"Artificial intelligence has many good uses." Others were negative, like " Artificial
intelligence could take away people’s jobs." There were 32 questions in total.

e The second asked 42 questions about how comfortable people are with Al do-
ing things like "Translating languages in real-time" or "Helping police decide if
someone might do a crime again."

e The third was similar to the second but compared what Al can do against what
humans can do.

Out of the first part, 20 questions were kept. 7 were removed due to high association,
and 5 were taken out because of Exploratory Factor Analysis. This final set of 20
questions, with 12 positive and 8 negative ones, is what we call the Al Attitude Scale.

Schepman tested this questionnaire with 100 people to see if it really shows how
people generally feel about Al. He compared it with the second and third parts, which
were more specific. In another study [110], Schepman looked at whether things like
personality traits can be linked to how people feel about AI. For this, he used the Big
Five personality traits and asked 300 people. The AI Attitude scale questionnaire can
be found in Appendix .2.3

Additional Personal Questions

This section gathers more specific information about the participants, including: Per-
sonal Information: Age, gender, dominant hand, and any eye/neurological problems
(5 questions). Gaming Experience: Assessing the participant’s familiarity and ex-
perience with gaming (2 questions). Knowledge about AI: Questions to gauge the
participant’s understanding and awareness of Al technologies (3 questions). These
questions can be found at Appendix .2.4.
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Chapter 6

Results

In this chapter, the results of the HRC study are presented. The chapter covers the par-
ticipants’ characteristics, including demographics and personal attributes like gender,
age, handedness, gaming experience, and preferred devices.

The analysis compares personality traits and values between groups using the Big
Five personality traits (Big 5) and Schwartz Portrait Values Questionnaire (PVQ). It
also examines participants’ attitudes towards Al.

Objective results such as interaction times, learning curves, and performance metrics
are detailed. This section highlights the differences and similarities in strategies and
behaviors between groups over the course of the experiment.

A statistical analysis is conducted to validate the findings, focusing on performance
differences between groups. Finally, the chapter explores subjective experiences, in-
cluding participants’ perceptions of control and collaboration quality.

The chapter also contrasts these findings with the previous study [13] and introduces
a new follow-up study, with modified settings. This analysis explores the impact of these
changes on the experiment’s outcomes, offering insights into how alterations in the setup
influence participant responses and interaction dynamics.

6.1 Results - Main Study

These experiments included 16 participants, 8 for each group, with their characteristics
presented in Table 6.1:

Table 6.1: Characteristics of Study Participants

Characteristic Details

Gender Distribution 5 women, 11 men

Age Range 16 - 31 years

Handedness 13 right-handed, 3 left-handed

Gaming Experience 8 with >5 years, 2 with 3-5 years, 1 with <1 year, 5 with none
Preferred Gaming Devices | 10 laptops, 3 consoles, 2 mobiles, 1 none
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Big 5 and PVQ

The comparison of the Big Five personality traits between the two groups, as shown in
6.1 and 6.2, shows a similarity in their personality profiles. This resemblance suggests
that, in terms of HRC, both groups are likely to exhibit similar behaviors and attitudes
towards the robot.

When examining the PVQ 21 results, as depicted in 6.4 for the TL group and 6.3 for
the No TL group, there are differences in certain traits like universalism, stimulation,
hedonism, and achievement. The TL group shows marginally higher values in these
areas, which could imply a slightly more enthusiastic and creative approach to human-
robot interactions. They might exhibit a greater openness to new experiences and a
stronger motivation to achieve goals during tasks. However, it’s important to note that
these differences are relatively minor and do not significantly deviate from the overall
similarity in personality composition between the two groups.

While there are some differences in certain aspects of their personality traits, the
two groups exhibit a similar personality composition. This similarity indicates that
both groups are likely to approach human-robot interactions in comparable way.

Big 5 Personality Traits - No Transfer Group (Mean + Std Dev) Big 5 Personality Traits - TL Group (Mean * Std Dev)
Agreeableness Agreeableness

rrrrrrrrr

Emotional Stapility Emotional Stbility

Tntellect/imagination Tntellect/imagination

Figure 6.1: Big 5 No TL group Figure 6.2: Big 5 TL group

No TL Group Traits (Mean = Std Dev) TL group Traits (Mean = Std Dev)
Self-Direction Universalism self-Direction Universalism

Figure 6.3: PVQ 21 no TL group Figure 6.4: PVQ 21 TL group

Attitude towards Al

Both groups, No TL and TL, generally view Al positively, as shown in Table 6.2. The
TL group seems a bit more positive about AI, which might make them more trusting
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in working with the robot during the task. The No TL group, while also positive,
might be a bit more cautious and curious, which could lead them to try out new ways
thought the interaction. The assessment of attitudes towards Al concentrates solely in
the difference between the positive and negative mean values.

Table 6.2: Attitude towards Al

Group | Mean score | Std
No TL 0.488 0.406
TL 0.541 0.369

Overall, based on the above answers, the two groups, do not exhibit significant
differences in their characteristics and attitudes. Both groups show similar profiles in
terms of the Big Five personality traits, suggesting comparable behavioral tendencies
in their interactions. While there are some variations in the PVQ 21 results, with the
TL group displaying slightly higher values in certain traits, these differences do not
appear to be substantial enough to indicate a distinct divergence in their approach
to Al and robotics. The attitudes towards Al, as reflected in the mean scores, are
generally positive in both groups, with the TL group showing a little more positive
outlook. However, this difference is not important, indicating that both groups are
likely to engage with Al and robotics in similar ways, with perhaps minor variations in
their levels of enthusiasm and trust.

6.1.1 Objective Results

In the test games, the TL group exhibited an average interaction time of 21 minutes
with the agent, with a standard deviation of 2.6 minutes. In contrast, the NO TL group
had a mean interaction time of 26 minutes, with a standard deviation of 1.4 minutes.

A visual representation of the learning progress over the 60 testing games, is pre-
sented to Figures 6.5 and 6.6, which depict the learning curves for Wins and Rewards,
across both groups, as well as the expert’s performance. These figures illustrate the
strategies and performance levels of the TL and No TL groups, giving an insight on
how they adapt and improve over time. As the experiment progresses, the TL group
performance is close to the expert’s. The No TL group maintains a relatively stable
performance, while the expert shows an overall good performance thought the whole
interaction.

Additionally, in Figure 6.7, we present the normalized traveled distance which is the
travelled distance multiplied by the percentage of the total time spent in a game.
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Figure 6.5: Wins over the testing blocks
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Figure 6.6: Rewards over the testing blocks
Normalized Travelled Distance per Test Block
2.5
§ 2.0
3 —o— Expert
% 1.5+ T
E —— NoTL

=
o
.

0.5 1

Baseline 2 3 4 5 6
Block Number

Figure 6.7: Normalized Traveled Distance over the testing blocks

Heatmaps are a key tool for analyzing group behavior, as depicted in Figure 6.8.
The expert, who has extensive experience with the game, aims to teach the goal to the
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agent from the start, unlike the baseline games. of the participants, where interactions
with a random agent result in a widespread occupancy across the grid. This widespread
distribution signifies an exploratory phase, where teams are getting accustomed to the
environment and the task, indicating an absence of targeted learning initially.

Moving through the experiment, in the TL group, a noticeable pattern emerges. A
consistently appearing high-frequency line on a specific point of the x-axis demonstrates
the group’s repeated engagement with a certain path. This pattern points to the transfer
of knowledge from the expert demonstrations, signaling effective learning within the
TL group. However, the expert’s strategy seems to constrain personal strategies. In
contrast, the No TL group, which does not benefit from expert data, exhibits a broader
spectrum of strategies. This suggests that while the expert’s strategy aids in focused
learning for the TL group, it might limit the development of individual strategies, as
evidenced by the more diverse approaches in the No TL group.
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Figure 6.8: Testing blocks behaviour of the team with the expert human (1st row),
a team in the LfD group (2nd row) and a team in the No TL group (3rd row). The
heatmaps show the laser dot’s position in the Baseline, 3th and last testing blocks. The
numbers indicate the frequency with which the dot occupied each cell (Icm x lem) -
that is the normilized number of x, y pairs counted within the cell in all ten games of
a batch.

Statistical results

Throughout our analysis, we aimed to assess the differences of the two groups and
evaluate the impact of TL on participant performance. Our initial normality tests
revealed that neither rewards nor wins data followed a normal distribution in both the
first and last blocks of 10 games, so we proceeded with non-parametric statistical tests.
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In the first block, which serves as a baseline comparison, no statistically significant
differences were detected in either rewards or wins between the TL and NO TL groups.
However, in the last block, we observed a statistically significant difference in rewards
and rewards between the two groups, indicating that TL had an impact on cumulative
rewards. To summarize these results, we have created a Table 6.3 presenting the Mann-
Whitney U test results for both the first and last blocks.

Block Variable | Mann-Whitney U Statistic | P-value
First (Baseline) | Rewards 45.5 0.165
First (Baseline) Wins 47.0 0.119

Last Rewards 52.0 0.038
Last Wins 51.5 0.043

Table 6.3: Statistical Test Results for First and Last Blocks

Furthermore, we employed a robust two-way mixed ANOVA using the bwtrim func-
tion from the WRS2 package [40] to assess the efficacy of TL across different blocks of the
experiment. This analysis was designed to evaluate both within-group changes (across
blocks-time) and between-group differences (TL vs. No TL groups). The results are
presented in Table6.4

The analysis revealed:

A highly significant group effect (p-value < 0.0001), indicating a substantial
difference in normalized distance between the TL and No TL groups. This finding
supports the hypothesis that Transfer Learning positively impacts performance, with
the TL group showing more favorable results compared to the No TL group.

A significant block effect : (p-value = 0.0010) was observed, suggesting that
normalized distance changes meaningfully across different blocks within each group.
This effect is indicative of a learning or adaptation process occurring over time.

Non-Significant Interaction Effect: The interaction between group and block
was not significant (p-value = 0.7168), implying that the pattern of change across
blocks is consistent between the TL and No TL groups. Both groups exhibit similar
trajectories of improvement or change over time.

Effect Test Statistic | p-value
Block 8.0571 0.0010
Group 78.0173 < 0.001
Block:Group | 0.5774 0.7168

Table 6.4: Two-Way Mixed ANOVA results on normalized travelled distance

The significant group effect underlines the effectiveness of Transfer Learning in en-
hancing performance metrics, as measured by normalized distance. The lack of a sig-
nificant interaction effect suggests that the improvement trajectory, while present, does
not differ between the TL and No TL groups across the experiment’s duration.
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6.1.2 Subjective Results
Judgement of Control

In the analysis of perceived control over the robotic arm, participants were asked for
their ability to judge their control, across six different intervals (after the baseline block
and at each offline training session). The question was:

"How would you rate your ability to control arm movement in the last 10 games
from 1 (no control) to 9 (complete control)?"

The plot in Figure 6.9 visually suggests improvements in Judgment of Control (JOC)
over time for both the TL Group and the No TL, with the TL Group appearing to have
higher scores. This might implies a greater sense of control mastery in the TL Group.

However, a detailed statistical analysis using a robust two-way mixed ANOVA re-
veals a different aspect. The results show statistical significance only in the improvement
of JOC scores over time (p=0.0001), not between the groups (p=0.246) or in the in-
teraction between group and time (p=0.53). This indicates that both groups improved
their perceived control ability over time, regardless of the transfer learning aspect.

JoC between the 2 groups

—— No Transfer Group
9+ TL Group

Judgment of Control {JoC)

| \
T T T T T T
Baseline 2 3 4 5 6
Blocks

Figure 6.9: Judgement of Control

Collaboration Metrics

The collaboration metrics presented in Figure 6.10 utilize a Likert scale to evaluate the
performance of the two groups—TL Group and No TL—across various dimensions of
teamwork, Questionnaire 2 as presented in .2.6.

With scores exceeding 3 in Fluency, Teammate Traits, and Improvement, both
groups are seen to have favorable outcomes, indicating good collaboration quality
in these areas. These higher scores suggest that participants found the interactions
smooth, valued the qualities of their teammates positively, and recognized notable
progress in their collaborative efforts throughout the task.

Contribution and Trust metrics hover around the midpoint of 3 on the scale, re-
flecting a neutral or moderate stance, where participants neither strongly agreed nor
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disagreed with the statements related to their engagement levels or their trust in team-
mates. This might imply that while the collaboration was functional, there is room
for improvement in how individuals feel about the agent’s input and the reliability of
their team members. Nevertheless, this is not surprising given the overall objective
performance.

Notably, the Alliance metric scores near 2 for both groups, indicating a less favorable
perception of team unity. This lower score may point to potential issues in forming
a strong partnership or bond within the teams, which could be a concern for tasks
requiring high levels of cooperation and shared goals.

Collaboration metrics between the 2 groups

s No Transfer Group
4.0 === TL Group

Fluency Contribution Teammate traits Improvement Alliance
Traits

Figure 6.10: Collaboration Metrics

6.1.3 Comparison with previous work

This section presents a comparative analysis of our research, which employs a Learning
from Demonstrations transfer learning approach, with the study by Tsitos [13], which
utilized a Policy Reuse method, in the same task. There are 4 main differences between
the 2 works:

e Entropy Target Parameter: We had the target entropy parameter set at 0.98 x
(— log(ﬁ)) , while [13] applied a smaller target entropy of 0.36 x (— log(|—il|)) 5.1.2.

e Activation Function of SAC’s Neural Networks: In our approach, the ac-
tivation function was Tanh, while [13] used ReLU 5.1.2.

e Number of Batches: [13| had 7 batches in his study, while we had 5 5.1.1.

e Initialization of Agent in First Training Block: In our approach, partici-
pants in each group begin their first training block with an initialized agent, while
in [13] work, participants interacted with a random agent at the first training block
5.2.1.

In Figure 6.11, we compare the rewards over testing blocks for the PPR method
with ours in Figure6.6. This comparison reveals three main differences:
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1. Expert Performance: Our study shows the expert’s rewards maintaining a
mean value of around 70. In contrast, [13| shows the expert starting with lower
scores but quickly reaching the score of 140 from the second block and converges
there.

2. TL Group Performance: In [13], the TL group shows a gradual learning curve,
reaching expert-level performance by the seventh block. Our method reveals a
more rapid initial improvement but a plateau at a lower reward level, around 70.

3. No TL Group Performance: [13] reports minimal improvement in the No TL
group, with a maximum reward of 10 in the last block. In our study, the No TL
group starts at a mean reward of 10 and shows observable learning, reaching a
mean reward of 40 in the final block.

100 4

No TL

PPR

o ®  expert
604

£ 80
-4

404

Bascline Bl B2 B3 B4 B3 B6 B7

Figure 6.11: Rewards of PPR method,[13]

At first, we considered that these differences could be partly attributed to variations
in the entropy target objectives between the two studies. To assess this, we conducted
experiments with different target entropies during the expert-agent collaboration, some
of which are presented in Appendix .1.

In summary, the results revealed unstable learning under different entropy settings
during interactions with the expert. The agent faced challenges in consistently learning
an effective policy. A high entropy setting of 0.98 x (— log(ﬁ)), which encouraged ex-
ploration,made it harder to identify the underlying problem. Based on these findings,
it is suggested that the change to the Tanh activation function may have contributed,
potentially leading to a vanishing gradient problem [41]. Given these observations,
our analysis shifted towards examining the impact of the activation function change.
Therefore, in light of these results, we advise against employing SAC with Tanh activa-
tion within this particular experimental framework, as the focus on activation function
alterations emerged as a critical area based on the challenges encountered with entropy
settings.

6.2 Follow-up study

The activation function was reverted to its original setting (from Tanh to ReLU), and
additional experiments were conducted using a target entropy of 0.36 x (—log(‘—j"))
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along with the ReLLU activation function. Furthermore, three more batches were added
to align with [13|, and these experiments are referred to follow-up study. The Big 5
and PVQ were not included in the of follow-up study experiments.

These experiments included 8 participants with their characteristics presented in
6.5:

Table 6.5: Characteristics of follow-up study Participants

Characteristic Details

Gender Distribution 4 women, 4 men

Age Range 22-24 years

Handedness 8 right-handed

Gaming Experience 4 with >5 years, 1 with 3-5 years, 1 with <1 year, 2 with none
Preferred Gaming Devices | 2 laptops, 2 consoles, 2 mobiles, 2 none

Attitude towards Al

Both groups, No TL and TL, generally view AI positively, as shown in Table 6.6.
The Attitude towards Al exhibited similar results, with the TL group having a more
positive view of Al. However, based on the statistical test result showing a p-value of
approximately 0.141, there were no significant differences between the groups’ attitudes
towards Al

Table 6.6: Attitude towards Al follow-up study

Group | Mean score | Std
No TL 0.448 0.621
TL 0.666 0.660

6.2.1 Objective Results

In the test games average interaction time, the two groups had a big difference compared
with the previous. Specifically the TL group exhibited an average interaction time of
11.45 minutes with the agent, with a standard deviation of 0.76 minutes. In contrast, the
NO TL group had a mean interaction time of 29.7 minutes, with a standard deviation
of 6.35 minutes.

A visual representation of the learning progress over the 80 testing games of follow-
up experiments, is presented to Figures 6.12a and 6.12b, which depict the learning
curves for Wins and Rewards, across both groups, as well as the expert’s performance.
Additionally, in Figure 6.12c, we present the normalized traveled distance which is the
travelled distance multiplied by the percentage of the total time spent in a game.

Focusing on the rewards learning curve, Figure 6.12b we can observe:

Given that the expert reached the maximum reward from the second test block
(similar to [13]), we have chosen to maintain consistency with previous experiments by
having the expert participate for an identical number of blocks. Additionally, we will
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preserve the same proportions of demonstration data from their interactions, mirroring
the methodology of our earlier study.

For the TL group, observations indicate that although there is variance in the second
testing block, the group consistently achieves a reward of 140 from the third testing
block onwards. This performance contrasts with our previous study, in which the
maximum reward reached was 60 by the 6th block. Additionally, this outcome differs
from [13], where the TL group, employing PPR TL, reached a performance comparable
to that of an expert by the final (6th) block.

The No TL group achieved a reward of 80 at the 6th block, which is a significant
improvement from the 40 achieved under previous conditions at the same stage. A
notable comparison is drawn with the "No TL" group’s performance during the follow-
up study, which reached a reward of 80 at the 6th block, contrasting with findings from
[13]|, where the mean reward at this stage was only 20, as shown in Fig. 6.11. This
improvement can likely be linked to the use of an initialized agent Section 5.2.1 during
the first training block, marking the only difference between the two "No TL" groups’
approaches. We should mention that this might not be the case as it could be a result
of better participants in the TL group and also less participants than [13].

Wins per Test Block 0 Rewards per Test Block

EEEEEE

aaaaaaaa 2 3 3 H © 7 8 Baseline
uuuuuuuuuuu

(a) Wins over the testing blocks of follow-up(b) Rewards over the testing blocks of follow-
study up study

Normalized Travelled Distance per Test Block

215 —— Expert
-+ T

05 [N
00
2 3 6

Baseline

Block Number

(c) Normalized Traveled Distance over the testing blocks
of follow-up study

Figure 6.12: Wins, Rewards and Normalized Traveled Distance of follow-up study

In Figures 6.13a and 6.13b, the individual performance of each participant is visually
represented. An interesting observation can be made from these plots. Specifically,
it is notable that Participant No TL 4 appears to be converging towards a reward
pattern similar to that of the TL group, particularly reaching a reward level of 140.
This convergence in performance is reminiscent of a similar behavior observed in a
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participant in [13], indicating that with this entropy setting, participants can reach the
optimal behaviour but not as fast TL participants.

(a) Testing blocks rewards for all participants(b) Testing blocks rewards for all participants
(without standard deviation) (with standard deviation)

Figure 6.13: Combined Figures for of follow-up study Rewards

The heatmaps for the of follow-up study, depicted in Figure 6.14, distinctly highlight
the effects of transfer learning within the TL group. Notably, an X’ shaped pattern
emerges in the final block, which not only aligns closely with the patterns observed in
the expert’s heatmaps (Figure 6.15) but also represents the optimal interaction strategy
that minimizes completion time. This pattern underscores the successful transfer of
strategic knowledge, as the TL group’s learning buffer was effectively enriched with
interactions drawn from the expert’s demonstrations.

TL - Baseline TL - Block 4 TL - Block 7

032
030 0 030 s 030 08
0.28 0.28 028
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024 024 024

04 04 04
onfy W 02 02
0.20 02 0.20 02 0.20 02
018

No TL - Baseline No TL - Block 4 No TL - Block 7

| M|

Figure 6.14: Testing blocks (of follow-up study) behaviour of the a team in the LfD
group (1st row) and a team in the No TL group (2nd row). The heatmaps show the
laser dot’s position in the Baseline, 3th and last testing blocks. The numbers indicate
the frequency with which the dot occupied each cell (lem x lem) - that is the number
of x, y pairs counted within the cell in all ten games of a batch.
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Figure 6.15: Testing blocks of the expert of follow-up study)

Statistical results

Furthermore, we employed a robust two-way mixed ANOVA using the bwtrim function
from the WRS2 package [40] to assess the efficacy of TL across different blocks of the
experiment. This analysis was designed to evaluate both within-group changes (across
blocks-time) and between-group differences (TL vs. No TL groups). The results are
presented in 6.7

The analysis revealed:

Effect of Group: The analysis revealed a highly significant group effect (p-value
< 0.001), indicating a substantial difference in normalized distance between the TL and
No TL groups. This finding supports the hypothesis that Transfer Learning positively
impacts performance, with the TL group showing more favorable results compared to
the No TL group.

Effect of Block: A significant block effect was also observed (p-value = 0.0010),
suggesting that normalized distance changes meaningfully across different blocks within
each group. This effect is indicative of a learning or adaptation process occurring over
time.

Interaction Effect: The interaction between group and block was significant (p-
value = 0.00382), implying that the pattern of change across blocks is consistent between
the TL and No TL groups. Both groups exhibit similar trajectories of improvement or
change over time.

The statistically significant results observed for all our variables underscore the effec-
tiveness of the LfD method, especially with the new settings incorporating the SAC’s
adjustments (ReLU activation function combined with a 0.36 x (—log(ﬁ)) entropy

setting).
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Effect Test Statistic | p-value
Block 24.042 < 0.001
Group 26.135 < 0.001
Block:Group | 3.539 0.00382

Table 6.7: Two-Way Mixed ANOVA results on normalized travelled distance

6.2.2 Subjective Results
Judgement of Control

The plot in Figure 6.16 visually suggests improvements in Judgment of Control (JOC)
over the end of each testing block (8) for both the TL Group and the No TL, with
the TL Group appearing to have higher scores. This might implies a greater sense of
control mastery in the TL Group.

The results show statistical significance only in the improvement of JOC scores over
time (p-value < 0.001), between the groups (p-value < 0.001) but not in the interaction
between group and time (p=0.53).

JoC between the 2 groups

—— No Transfer Group
94 TL Group

Judgment of Control (JoC)

T T T T T T T T
Baseline 2 3 4 5 6 7 8
Blocks

Figure 6.16: Judgement of Control

Collaboration Metrics

In the follow-up study, we observed that the TL Group consistently achieved higher
scores than the No TL across multiple collaboration metrics 6.17. Specifically, the
TL Group outperformed the No TL in the dimensions of Fluency, Teammate Traits,
Improvement and Trust. These higher scores suggest that participants in the TL Group
experienced smoother interactions, held more positive perceptions of their teammates,
demonstrated notable progress in their collaborative efforts, and reported a better sense
of team compared to the No TL.
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Collaboration metrics between the 2 groups

B No Transfer Group
s TL Group

Fluency Contribution Teammate traits Improvement Alliance
Traits

Figure 6.17: Collaboration Metrics of follow-up study
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Chapter 7

Conclusion and Discussion

In [13], a human-agent collaboration game was developed to assess the interaction
dynamics between humans and a Soft Actor-Critic agent. This game had a human and
an agent with the joint control of a robotic manipulator’s end-effector movement in the
xy-plane, where the human was responsible for the y-axis and the agent for the x-axis.
The objective was to move the end-effector to a specified target location at a controlled
with low speed. This setup used as a method to explore the efficacy of leveraging an
expert-trained agent’s policy (probabilistic policy reuse method) for Transfer Learning
in facilitating the collaboration between a RL agent and a human. The investigation
aimed to understand the impact of policy reuse on the learning curve and performance
in collaborative tasks.

Building upon this work [13|, this thesis explored another approach by adopting
a Learning from Demonstrations Transfer learning method called Deep Q-learning by
Demonstrations, with a focus on the direct transfer of expertise through demonstra-
tions. This adjustment aimed to assess and compare the relative effectiveness of policy
reuse with Learning from Demonstrations in enhancing the human robot collaboration.
Furthermore, our study introduced modifications to the SAC algorithm’s parameters,
including an increase in target entropy from 0.36 x (— log(ﬁ)) t0 0.98 x (— log(‘j}')) to
encourage exploration and a switch from ReLU to the tanh activation function.

The results from 16 participants indicated that these modifications did not suc-
cessfully promote an efficient transfer of expert knowledge. Subsequent analyses with
varying target entropy values suggested that the employment of the tanh activation
function led to unstable learning results. Follow-up study, with 8 participants, re-
verting to the original settings while implementing our Learning from Demonstrations
method, yielded more promising results. The overall interaction time for the Transfer
Learning group was significantly reduced.

The Transfer Learning group achieved earlier convergence compared to the original
study’s outcomes using policy reuse [13]. Remarkably, our findings indicate that con-
vergence was attained as early as the second training block, a significant acceleration
in learning pace compared to the previous study, which only saw convergence by the
seventh block. This advancement underscores the efficiency of the Transfer Learning
approach in facilitating rapid adaptation and learning within the given tasks, highlight-
ing its potential to significantly reduce the time required for the human-agent team to
achieve optimal performance levels.

Additionally, we observed that initializing the agent in the first training block posi-
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tively impacted the rewards in the No TL group, surpassing those in the original study
[13] which commenced with an agent taking random actions. However, this improve-
ment is not conclusively attributed solely to the methodological changes. It might also
be due to the relatively small sample size of participants involved in the study or poten-
tially "better" participants in the TL group. These factors introduce variability that
could skew the observed outcomes, suggesting that further research with a larger and
more diverse participant pool is necessary to validate these findings definitively.

In acknowledging the limitations of our study, it’s important to note several factors
that could influence the outcomes and interpretations of our findings. Firstly, the
sample size of our participant pool was relatively small, with 16 participants in the initial
phase and 8 in the second. This limitation restricts the generalizability of our results to
broader contexts. Additionally, the specificity of the task may not fully encapsulate the
complexities and variabilities found in real-world human-robot collaboration scenarios.
Our study’s reliance on a single learning method, Learning from Demonstrations, for
Transfer Learning, also presents a limitation. While providing valuable insights, this
focus may overlook the potential benefits of other TL methods.

For future work, we recommend further exploration into the implementation of
Learning from Demonstrations with a higher target entropy parameter, giving more
room for exploration to the agent, which could facilitate more personalized adjust-
ments for each participant. Additionally, it would be valuable to conduct experiments
to determine the optimal percentage of expert knowledge transfer, also allowing for
personalization in the learning process.
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Appendix A

Appendix Title

.1 Entropy Tuning

Based on the results from our comparative analysis with Tsitos’ study [13], this section
explores the critical role of entropy tuning in SAC algorithm. The differences observed
in the performance underscore the significance of the entropy target parameter in de-
termining learning outcomes. Our objective is to examine how adjustments in entropy
levels can influence the learning curve and strategy development in transfer learning
scenarios.

We conducted a series of experiments involving an expert with consistent perfor-
mance in the task, focusing on testing different entropy targets. These experiments are
aimed at gaining a deeper understanding of the impact of entropy parameter adjust-
ments on the learning process.

The importance of entropy tuning in SAC is highlighted by recent research in the
field. For instance, in [111] Meta-SAC is introduced, which builds upon the SAC algo-
rithm [64] and utilize metagradient along with a novel meta loss objective to automati-
cally tune the entropy temperature in SAC. This approach has shown promising results,
outperforming previous methods like SAC-v2 [64] in complex tasks like humanoid-v2.

In this study [112] the authors introduce the Target Entropy Scheduled SAC (TES-
SAC) method, applied to the SAC algorithm in discrete action space settings, par-
ticularly focusing on a range of Atari 2600 games and classical control tasks. They
examined the effects of different constant target entropy values on the SAC algorithm,
specifically testing H = C' - log |A| where C' varied among 0.98, 0.5, and 0.01 and their
method TES-SAC 1. This analysis showed the influence of entropy settings on learning
efficacy and overall performance .
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Normalized by best fixed TE

. TE=0.98
mm TE=0.5

m TE=0.01
. TES-SAC

Figure 1: Different constant target entropies performance,[112]

Another observation was the dynamic response of the temperature variable v and
policy entropy under these entropy configurations. For example, in environments like
MsPacman, a low target entropy such as H = 0.01-log | A| led to an exponential decrease
in «, due to the policy entropy’s inability to meet such low targets, influenced by the
minimum entropy level of the environment. In contrast, environments like BattleZone,
where the minimum entropy level is near zero, did not exhibit a rapid decline in o even
with low target entropy settings. These results highlight that the effectiveness of target
entropy in SAC can significantly differ across various environments.

In our experiment, we examined the behavior of the agent in the agent-expert in-
teraction for various constant target entropy values on the SAC algorithm. We present
results for three of them H = C - log|A| where C' varied among 0.98, 0.75, and 0.36
and 2 illustrates the performance of these three settings, based on the rewards of each
block.
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Figure 2: Rewards for different entropies

Figures 2 display the rewards obtained under different entropy settings while the
agent interacting with the expert. Interestingly, all the entropy settings revealed signs
of unstable learning. In each case, the agent exhibited a pattern of transitioning from
high rewards to lower rewards and then returning to a similar performance level, with-
out being able to consistently learn a good policy. The performance instability was less
pronounced with a high entropy setting of C=0.98, which encourages more exploration.
This increased exploration appeared to mask the underlying issues with the SAC algo-
rithm, making it challenging to identify the root cause of the problem. This led us to
consider the change of the activation function to Tanh, might have caused the problem
in the learning procedure. One possible reason is the vanishing gradient problem [41].

.2 Questionnaire Appendices

.2.1 Appendix A: Big Five Personality Traits Questionnaire

This appendix contains the 50 questions of the Big Five Personality Traits question-
naire. The questionnaire assesses five key personality characteristics: Extraversion3,
Agreeableness 4, Conscientiousness 2, Emotional Stability /Neuroticism 5, and Open-
ness to Experiencel.

.2.2 Appendix B: Schwartz Portrait Values Questionnaire

Appendix B presents the 21 questions of the Schwartz Portrait Values Questionnaire,
detailed in Tables 6, 7, 8. This questionnaire is designed to evaluate the participant’s
value system.
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.2.3 Appendix C: Al Attitude Scale

In Schepman’s study on Al attitudes, the refined 20-item AI Attitude Scale, which
includes 12 positive and 8 negative questions, is presented in 6 and is translated to
Greece in 10,11. This scale, developed after rigorous analysis and validation, effectively
captures the general public’s perception of AL"

.2.4 Appendix D: Additional Personal Questions

This section includes the additional personal questions that were asked to gain insights
into the participants’ backgrounds and experiences. It covers personal information,
gaming experience, and knowledge about AT 9.

.2.5 Appendix E: Questionnaire 1

Questionnaire 1 combines all the questionnaires from .2.1,.2.2,.2.3,.2.4, . This question-
naire was used to assess personality traits, values, attitudes towards Al, and personal
background information of the participants before the start of the collaborative process.

.2.6 Appendix F: Questionnaire 2

We utilized a questionnaire to assess subjective experiences in human-AI collaboration.
Our approach is based on the methodology of Tsitos, with initial concepts are based
inHoffman and with Tsitos feedback we improved measures to yield more meaningful
results.

A key observation from Tsitos was the inconsistency in responses regarding the
robot’s contribution, primarily due to ambiguous framing of questions related to per-
formance levels. To address this, we divided the Human-Agent Contribution category
into two segments: four questions about the last block’s performance and two about
the overall process. This structure aims to unify participants’ mindset while capturing
both the training process and the final outcome contributions. The first four questions,
focusing on the final block’s performance, are:

1. Assessment of the team’s performance in the last ten tests.
2. Personal responsibility for this performance.

3. The performance as a joint team effort.

4. The Al system’s primary responsibility for the performance.

We altered the grouping of questions 2-4, pairing questions 2 and 4 with a reverse
scale for question 2. This grouping provides insights into the perceived Al contribution
in the final block. However, we believe that a narrative approach, interpreting individ-
ual responses, is more insightful than presenting grouped results. This method helps
understand the context of team effort and responsibility, whether it’s about assigning
blame or recognizing contributions.

Post these four questions, participants responded to two additional questions about
the human agent’s contribution throughout the entire interaction:
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5. Personal importance as a team member.

6. The Al system’s importance as a team member.

Though these questions aim to clarify the perceived importance of each member,
we find their internal consistency limited. They are better used individually for a
comprehensive narrative.

In the Improvement category, we added two new questions to evaluate each mem-
ber’s role in team enhancement. These questions are crucial for understanding par-
ticipants’ perceptions of each member’s importance in the co-learning experience. All
questions were translated into Greek for our participants and are detailed in Question-
naire 2 12. 13

.2.7 Appendix F: information letter and consent form

Information letter can be found in tables 3, 4and the consent form at 5

Table 1: Big Five Questions - Openness to Experience

Greek English Pos/Neg
Have a rich vocabulary Pos
‘Eyw éva mhololo Aedildyto.
Neg
Avoxoheopar va xatavoriow ogn- | Have difficulty understanding ab-
ONUEVEC LOEEC. stract ideas
Pos
‘Eyw (oner| gavtacta. Have a vivid imagination
Neg
Aev evolopépopan yior apnenuévee - | Am not interested in abstract ideas
Ogec.
Pos
‘Eyw eoupetinéc 10éec. Have excellent ideas
Neg
Aev €yw %ol avtacta. Do not have a good imagination
Am quick to understand things Pos
Efuat yeriyopoc/n oo vo xatahoBa-
v medyuoTa.
Use difficult words Pos
Xpnowonot® dUoX0AES MECELC.
Spend time reflecting on things Pos
Aplepive ypovo yio VoL a&lohoy e Ta
TEdy AT
Am full of ideas Pos
Efpou yepdrog/n 0éec.
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Table 2: Big Five Questions - Conscientiousness

Greek English Pos/Neg

Am always prepared Pos
Efuon mdvtote mpostoyacuévog

Leave my belongings around Neg
Agrive o TedyuaTd pou ohoyupd

Pay attention to details Pos
Alve Tpocoy 1| OTIC AETTOERELES

Make a mess of things Neg
To xdvew dve ®dtw

Get chores done right away Pos
Kéve tic «ayyopelecy» aueonc

) , ) ) Often forget to put things back in Neg

Yuyvé Eeyver var Bl To TAYUATY | their proper place
Tlow ot 6woTH Toug Véo

Like order Pos
Mou apéoel 1 téen

Shirk my duties Neg
Anogedyw autd Tou TEETEL Var xAve)

Follow a schedule Pos
Axolouide éva mpdypouua

Am exacting in my work Pos

Efuon axpiric otn douAeld puou
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Table 3: Big Five Questions - Extraversion

Greek English Pos/Neg

Am the life of the party Pos
Efuon n Cwn oe éva ndptt

Don’t talk a lot Neg
Aev WA ToAY

Feel comfortable around people Pos
Awc¥dvopan dveta 6tav Peloxoyar o-
vapeoa o avlp®ToUg

Keep in the background Neg
ITpoTw® vor UEVE GTO TUPAGKAVIO

Start conversations Pos
Apyilw oulntioeic

Have little to say Neg
‘Eyw ehdyloto mpdypato vor me

Talk to a lot of different people at Pos
MuAe pe ToAAOUE DLUPORETIXOUE V- parties
Yonnoug ota TdpeTL

Don’t like to draw attention to my- Neg
Aev pou apéoel va TPoceEMI® TNY | galf
TEOCOY Y| TV U0V

Don’t mind being the centre of at- Pos
Aev pe evoyhel va elpon t0 enixe- | tantion
VTPO TG TPOCOY NG

Am quiet around strangers Neg

Efpot fovyoc/n dtov Beloxopar o-
Vaueoo ot LEvoug
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Table 4: Big Five Questions - Agreeableness

Greek English Pos/Neg

Feel little concern for others Neg
Awc¥dvouar pxed evolagpépoy  yia
TouC dAhouC

Am interested in people Pos
Evbagépouan yio Toug avipmroug

Insult people Neg
Ipoodihw Toug dhhoug

Sympathize with others’ feelings Pos
YuuTdoyw e o cuVACVRUAT TWY
AWV

Am not interested in other people’s Neg
Aev evdlapépoyar yior To. TpoBAuo- problems
o TV ARGV

Have a soft heart Pos
‘Eyw pahaxt| xopdud

Am not really interested in others Neg
Aev evdilpépouat TEOYUATIXG Yol
Toug dhhoug avipmToug

Take time out for others Pos
Bploxw ypdvo yia toug dhhoug

Feel others’ emotions Pos
Awcddvopor Tor cuvonoUAUTE TWY
S2VNaYY

Make people feel at ease Pos

Kéve toug avidpwnoug v oawoddvo-
VoL AVETA
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Table 5: Big Five Questions - Neuroticism

Greek English Pos/Neg

Get stressed out easily Neg
Avyyovoyar ebxoha

Am relaxed most of the time Pos
Efuou Xa)\apég/r’] TIC TEQLOGOTEQREC
(POPES

Worry about things Neg
Avnouyd yio Sidopa TpdryporTal

Seldom feel blue Pos
Ymdviar vorwie pehoryy ohla

Am easily disturbed Neg
Evoyloluar ebxola

Get upset easily Neg
Avaotatdyvopor €0xola

Change my mood a lot Neg
H Suddeor} pou adhdler Sropxg

Have frequent mood swings Neg
‘Eyw cuyvég evarhayég ot didideon
Uou

Get irritated easily Neg
Exveuptlopat ebxoha

Often feel blue Neg

Yuyvé anoVdvouon ueAoryy oA
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Table 6: Personal Values Questionnaire (PVQ) Questions- part 1

English Question (Male Version)

Greek Question (Combine Male and
Female Version)

BENEVOLENCE

It’s very important to him to help the
people around him. He wants to care for
other people.

Efvor moh0 onuavtixd yio autiv/ov va Bon-
& toug avdpdroue mou TN/ Tov TERIBEA-
Aouv. EvolupépeTtar yior T0 x0AO TV dh-
AOV.

It is important to him to be loyal to his
friends. He wants to devote himself to
people close to him.

Eivor onuoavtixd yua autiv/év va ebvor -
o1h/oc oToug gihouc Tne/Tou. Oéhel va a-
pootwveTtal oToug avipntoug Tou Peloxo-
vToL XovTtd TNne/Tou

UNIVERSALISM

He thinks it is important that every per-
son in the world be treated equally. He
wants justice for everybody, even for peo-
ple he doesn’t know.

Ihotebel mwg ebvar onuovTind dhol oL dv-
Yool 6TOV *XOCUO VoL aVTIIETWTICoVToL I-
ootiua. Iliotedel 6TL GAoL TEETEL VoL EY oLV
(diec euxanpteg otn Lo

It is important to him to listen to people
who are different from him. Even when
he disagrees with them, he still wants to
understand them.

Tng/Tou elvon onuovTind, vor axoveL ov-
Yowmoug UE OLapopeTINEG andelg amd Tig
OWéc Tng/rou. Axbuo xon otory Btapeyvet
YéheL vo umopel var Toug xatovoet.

He strongly believes that people should
care for nature. Looking after the envi-
ronment is important to him.

ITioTeder axpddoavta 6Tt oL dvipwnol TEEnEL
vo. TpooTatelouy TN @Uor. H mpootacia
Tou TEPPBAANOVTOC Elvar TOAD oTuaVTIXY
Yo authv/ov.

SELF-DIRECTION

Thinking up new ideas and being creative
is important to him. He likes to do things
in his own original way.

Eivor Toh0 onuovtind yio authv/6v va éyet
XAVOURYLEC LOEEC xa Vo efvar OnuLovpyL-
xn/oc. Tov/Tnv apéoet va xdver npdryua-
TOL UE TOV BIX0 TNE/TOL TPWTOTUTO TEOTO.

It is important to him to make his own
decisions about what he does. He likes to
be free to plan and to choose his activities
for himself.

Eivor onuovtixd yioo owthv/ov vo Aoy-
Bdver Tic Buxéc Tng/rou ATOPYCELS Lol OTL
TEOXELTOL Vo xdvel. ©Elel va elvon ehelie-
en/og xon vou uny e€optdtal omd dhhouc.
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Table 7: Personal Values Questionnaire (PVQ) Questions- part 2

STIMULATION

He likes surprises and is always looking
for new things to do. He thinks it is im-
portant to do lots of different things in
life.

Tne/Tou apéoouv ov exnhhgels xar Véhet
vor xdver mévtor xouvolplor medyuporton. i
otevel 6Tl otn (wh €lvar oNUavTIXG Vo
AAVELS TTOAAG DLUPOPETIXG TIRSY AT

He looks for adventures and likes to take
risks. He wants to have an exciting life.

Avalntel v nepimétela xon etvon pupoxiv-
duvoc. Oélel n Lwn tg/Tou va ebvan ou-
Welejiiclogibiay

HEDONISM

Having a good time is important to him.
He likes to “spoil” himself.

H xohomépaon clvar onuavtind yu ou-
™v/év. Tng/Tou opéaer vor xahopadaiver
TOV EVTO TNE/TOU.

He seeks every chance he can to have fun.
It is important to him to do things that
give him pleasure.

vt Qdryver euxonplor yioo yAévti. Eivou
ONUOVTXS YLoL QUTHY/ OV Vo Xdver Tpdryuata
TOU TNV/TOV EUYAPIGTOVV.

ACHIEVEMENT

It is very important to him to show his
abilities. He wants people to admire what
he does.

Eivor moAd onuavtid YU authv/6v vo de-
fyvel g wovotntéc tng/tou.  Oélel o
%x60Uo¢ Vo Youudlel auTtéd TOU XAVEL.

Being very successful is important to him.
He likes to impress other people.

H emtuyio tng/tou, eivar okl onpovtixy
vt v/ Tov (B0, Exniler 611 o xéopoc
o avaryveploer tor emtedypatd Tng/Tov.

POWER

It is important to him to be rich. He
wants to have a lot of money and expen-
sive things.

Eivor onuoavtind yu' authv/év v etvon mho-
bota/tog. Ohel vou €yel TOAE AepTd xou
o3 TEdy AT

It is important to him to be in charge and
tell others what to do. He wants people
to do what he says.

Eivor onuoavtind yo autriv/6v va tnv/Tov
o€fovton oL dhhol.  Ofkel ol dhhot va
HAVOLY OUTO TTOU TOUC AEEL.
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Table 8: Personal Values Questionnaire (PVQ) Questions- part 3

SECU

RITY

It is important to him to live in secure
surroundings. He avoids anything that
might endanger his safety.

Eivor moh0 onpovtixd yu autrv/6v vo (et
o€ €va ao@aréc tepBdihov. Amogelyel o-
TonTote Yo umopovioe va YE€aEL o€ X IVOUVO
TNV 0oQIAELS TNG/ ToL.

It is very important to him that his coun-
try be safe from threats from within and
without. He is concerned that social or-
der be protected.

Eivor moAl onuovtixd yio authv/ov 1 xu-
Bepvnom va unopel vo eyyunel yioo Ty o-
o@dleld tng/Tou. Oéhel éva xpdtog Loyu-
e0, VO Vo TPOCTATEDCEL TOUG TOALTES
Tou

CONFO

RMITY

He believes that people should do what
they’re told. He thinks people should fol-
low rules at all times, even when no-one
is watching.

IIiotedel 6Tt oL dvipmnol Tpénel var xdvouy
autod mou Ttouc Aéve. Iliotedel 6Tl oL dv-
Yowmol TEETEL TAVTA Vo TNEOLY TOUC Xa-
VOVEC, axOua o OTtay xovelc Bev Toug

Brénel.

It is important to him always to behave
properly. He wants to avoid doing any-
thing people would say is wrong.

Efvor onuovtind yla authv/6v va cuumept-
pEpETAL TTAVTA OWCTA. OEAEL VoL ATOPEVYEL
VoL XAVEL TIRdY Tl TOU oL dAAOL Vo EAeyary
ot ebvon A&doc.

TRAD

ITION

He thinks it’s important not to ask for
more than what you have. He believes
that people should be satisfied with what
they have.

Eivor onuavtind yu' autiv/év va elvon to-
Tcswr']/o'g xou PeTELOQenv.  Ilpoomadel va
unv teafd tnv mpocoyr. Iliotelel oL ot
dvdpwmol TEETEL TaVTAL VoL TNEOVY TOUS X0t
VOVEC, axOUd o OTay XOVelC Bev Toug

BAEmer.

Religious belief is important to him. He
tries hard to do what his religion requires.

H nopddoor ebvar xdtt ToAD onuovtind yia
avthv/6v. Ilpoonadel va tnpel tor fn xou

Ta 9oL
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English

\ Greek

Personal Information

Gender

dYNo

Age

Hhxdo

Dominant Hand

Emxpatéc yépl

Diagnosed Neurological Condition

Ay vwopévr veupoloyr| mdinon

Use of Myopia Glasses/Lenses

XphHon YUUAL)Y/ Gaxmy pumtiog

Experience

in Gaming

What experience do you have with gam-
ing?

T epnetpla €yelc pe mavyvidio (youuvy):

What is your preferred platform

o ebvon 1 TEOTWOUEVT TAUTQOPUA GG *

Knowledge about Al

How would you describe your relationship
with AI?

Hwe Yo yapoxtneilote tn oyéon cog ue
v TN

Do you come into contact with Al appli-
cations in your daily life?

‘Epyeote oe emagn pe egapuoyéc TN oty
xodnueEVOTNT Cog

What is the main source of information
on developments around Al issues?

ot ebvan 1 xOptar YY) evuépwong Towv
eZehiewv Yopw and Yéuato TN

Table 9: Questions about Personal Information, Experience in Gaming, and Knowledge

in Al
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Table 10: AI Attitude Scale Questions- part 1

Greek English Pos/Neg
) ) For routine transactions, I would Pos
90‘ TpoTiovoY va O‘XMXETE‘BP@ P& | rather interact with an artificially
éva obotnpo TN mapd pe vov dv- intelligent system than with a hu-
Vpwmo vl TIC CUVEAAIYEC TNG X0 | o
Unuepviic Cwhg.
. . . . POS
H TN uropel va mpoogéper véeg | Artificial Intelligence can provide
OWOVOUXES EUXALPlEC Yo TN Ywpo | new economic opportunities for
HOUL. this country.
) ) Organisations use Artificial Intelli- Neg
Opyavioyol yenotwomowly tnv TN gence unethically.
ue aviduco TpoéTO.
) ) Artificially intelligent systems can Pos
To ovothuata TN unopodv  vo help people feel happier.
Bondncouv Toug avipmnoug vo o
o¥dvovTa To EUTUYIGUEVOL.
I am impressed by what Artificial Pos
Efyor evtunwotaopévoc and 1o Tl Intelligence can do.
umopel va xdver  'TN.
) ) ) I think artificially intelligent sys- Neg
Nopilw 6m e ovotfpota TN | tor g make many errors.
%AvoLY TOANG A&l
) , I am interested in using artificially Pos
EvBiagépopion ver ypnoorold ou- | ineelligent systems in my daily life.
othuata TN otnv xodnuepvy| pou
L.
I find Artificial Intelligence sinis- Neg
Oewpe 6Tt N TN elvou xaxdouvhn. | 1o
Artificial Intelligence might take Neg
H TN unopel va mdpet tov EAEYYO | control of people.
amé Toug avpMOToUC.
I think Artificial Intelligence is Neg

NopiCw 61t n TN eivon emxivouvn,.

dangerous.
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Table 11: AI Attitude Scale Questions-part 2

) ) ) ) Artificial Intelligence can have posi- | Pos
H TN propel vor €yer Jetnée emevep- | e impacts on people’s wellbeing.
YEIEC OTNV eunuepia TV avlp®Twy.
Artificial Intelligence is exciting. Pos
H TN efvou cuvapraotx).

) ) ) An artificially intelligent agent would | Pos
O oag oL EUYVOULY av PTopolot- | 1 hetter than an employee in many
TE VoL ETAEEETE BUUPOVE AmOAUT. routine jobs.

) ) ) ) There are many beneficial applica- | Pos
Ye TOMEC epyaoieg pOUTIVOC  EVU | tiong of Artificial Intelligence.
obotnuo TN Yo Aty xahbtepo amd
evay dvipwro.

) ) ) ) I shiver with discomfort when I think | Neg
Avatppudle  amb - Buogopia 0TV | ahout future uses of Artificial Intelli-
OXEPTOUOL TIC UEANOVTIXES YPNOELS TNG gence.

TN.

) ) Artificially intelligent systems can | Pos
Ta ovotfpote TN propody va ano- perform better than humans.
0WOOLY XUAITERY ATt TOUG AV IOOTOUG.

) ) ) Much of society will benefit from a fu- | Pos
Meydho pepoc e xowwviag Do €ne- | tyre fiull of Artificial Intelligence
gekniel and éva pélhov yeudto TN.

) ) I would like to use Artificial Intelli- | Pos
Oa fdeha va yenowonoiow TN ot gence in my own job.
01| LOU BOUAELG.
) ) ) People like me will suffer if Artificial | Neg
Aviporor ooy xa pever o unogepouy Intelligence is used more and more.
av n TN yenowomnoteiton 6ho xou Teplo-
cOTERO.

Artificial Intelligence is used to spy on | Neg

H TN yenowonoteiton yio tnv xoto-
oxomelol TV avIpOTOV.

people
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Table 12: Subjective measures separated into each measure part 1.

Greek ‘ English ‘ Pos/Neg
FLUENCY
) ) ) The human-robot team worked to- Pos
H ouddo avipdmou - poundt cuvep- gether seamlessly
YOO TNXE AMEOOHOTTY
) ) ) The team’s cooperation has be- Pos
H ouvepyasto tng opddac €Ywe o | ome more fluid over time.
e0puiun e T TdEodo TOu YEOVOL.
) ) ) The robot contributed to the fluid Pos
To popndt cuveloegepe oty edpLl- | (olaboration of the team.
un ouvepyaoio TnNg ouddag.
CONTRIBUTION
o ) ) 7 I had the main responsibility for Neg
Eyo etyo my xdpto evdovn Y1 au- | g performance.
TV TNV eTldoo.
o ) ) : The robot was primarily responsi- Pos
To poprdr eiye Ty x0plo evdIVN YL | ble for this performance.
ouTY| TNV enidoon.
TRUST
) ) o I had confidence in the robot that Pos
Eiyo epmiotootvn 010 poundt 6Tt | it would do the right thing at the
Yo €xave T0 0WOTO TEAYUN TN OG- right time.
o1 Ty,
) ) ) There was mutual trust between Pos
Trreye opoBola eumotocivny a- me and the robot.
VOUESH GE UEVA XL TO POUTOT.
TEAMMATE TRAITS
The robot was intelligent. Pos
To poumdt Aoy eugpuéc.
The robot was trustworthy. Pos
To poumét Atay alioémicTO.
o ) The AI system was dedicated to Pos
To poundt ATav APOCLOUEVO TNV achieving the goal.
eniteudn Tou oTOYOUL.
The robot was cooperative. Pos
To poundt Aoy cuvepydoyo.
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Table 13: Subjective measures separated into each measure-part 2.

IMPROVEMENT
The human-robot team improved Pos
H opdda avipwmou - poundt PeATi- | juar time.
OOnxe e TNy Tpodo Tou Yedvou.
My performance improved during Pos
H enidoot| pou Pertioddnxe xatd ) | i experiment.
OLBIPXELL TOU TELRAUATOG.
) ) ) The performance of the robot im- Pos
H emioon tou pourndt Pehnodnpe | hioved during the experiment.
XA TN OLAEXEL TOU TELOGUATOG.
o ) ) I had the main responsibility for the Pos
Evo elya my xpua euthown yior Ty improvement of the team.
Behtlwon tng ouddag.
o ) ) The robot had the main responsibil- Pos
To poundr efye Ty x0pta VOV Y% | ity for the improvement of the team
Vv Behtiwon tne opddoag
ALLIANCE
I believed that the robot could help Pos
ioTeua 6Tt T0 POUTOT PTOPOUGE VL | 1)
ue Bonivoet.
The robot could perceive my inten- Pos
To pourot uropovoe va avtAn@Uel | ti5ps.
Tic TeoYETELC Uou.
The robot didn’t understand what Neg
To poundt dev xotahdforve T PO~ | [ was trying to achieve.
onodoloa Vo TETOY .
I think working with the robot was Neg
Ocwp® 6Tl 1] cuvepyasio UE TO PO- confusing
UTOT ATOY UTEEOELTIXT
EXTRA ITEMS
) ) ) How do you judge the team’s per- | Pos/Neg
Iwe xpivete Ty emiboon e 0uddAC | formance in the last ten tests?
OTIC TEASUTUUEG DEXO DOXYIES
The responsibility for this perfor- | Pos/Neg
H euthovn yioe autd v enldoon fTav: | ance was:.
What did you think of working with | Pos/Neg

Ilw¢ cou @dvnxe 1 cuvepyasta Ue To
coundt ‘Eyeic xdmolo oyohla ylo 10
nelpouar

the robot? Do you have any com-
ments on the experiment?
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Zuvodsvtiki Evnuepotixi Emoetoin

"Epsuvva 7o T svvepyacio avlpomov-Teypynmic Nonpooivie

Eyste sxdnioost svbwopspov va AdPste pépoc om Swefoyeyn £psvvoc mov Yiveton oTo TAoicwo
sxmovmonc durhopotac epyaciog Tov Nikdha Ztavpov, oyoif Hisktpoldyov Miyovikidv Mnyavicodv
Ynoloynotav Tov Efvicod Metodfov [Toivieyveion, o8 cvvepyasio ue o EKESE “Anudxpiroc™. H
Epsuvva EysL ¢ GTOY0 TV avamtuln neBddov yia Ty shpudun cuvepyacin svés ovBpdmov U Eva pouToT,
og &vo mparypatikd nepifidiiov omov amtsitol CUVBLOCIOS KNVTITE@Y oo Tov dbo ouvepyaTEs.

Tpoxmixég winpogopies

H wefayom mc Epeuvas viveror oo ydpo tov epyactrpiov Roboskel (xripro Kevrpiris Biflwotmime,
EKE®E Anudxkprroc). H Swdacio colhoyic Ssdopévev olowinpédveton s mo smioksym mov Ba
SwprEoet mepimov 1.5 dpo. H cuppetoyn cos yivetor oe eBehovrn Paon kon Sev £yet koviva 6QeLos Yo
o0, 01KOVOLKD, T omowedimote diin: oo

H diadcasio / Miope va dioxdye Ty diadmxasio;

Yo mhaicw me hefoyoyrc Tov mepduotos kakeicte va cuvepyootsite pe &va cvompoe TN o va
shiylete amd kowvod T BEom evos Ppogiova ko va Tov petagépete ot pio Béon-otdyo. Eosis ehéyyets v
xivnon tov Ppoyiove o Evov dfove pécm svos minktpoloviov. To cbotnuo TN sivor vretBuvo va
ghéyyeL Ty wivmom tov dhhov dfove. Tovolaxd fo extehicets 100 Soxwéc. Kdbe doxpn ohokdinpivetol
gite Ot emrevyBel o otdyos site av mopEiBouvv 30 Ssuispolemte. Ito Téhog waf: Sowwurc Ba
SVIUEpGVECTE T TNV emidoom g opddos cog Avd ToxTd ypovid Steomiueta Ba yivovoo Sodeippota
@ote va amogsvyfel omowadnnots KoTOoT.

H cvppetop coc sivon s8zhovrua). Mropeite va eyketol.eiyeres TN Swdikecio omo1od|ToTe oTVYM.
Ti sidove dedousva Ba oodlsrBobv kan mwe Ga ypnoywonomBoiv;

Tmv opyn o Swdwooies Be cor (nmBsi vo cupminp®oste Evol SPETNUOTOLGYIO pe KOmow
Smuoypapiki oTowysin Kon Gec Sp@TGEL OV APOPOLY TS YVOCEL GUg, TV EUTELPIn Gog Kot TIfY

Figure 3: Information letter 1
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TpocemuKOTTe. oos. Koatd m Suipksin kot oTo TEhog Tov mEpduetos, Bo wimbsits vo oyoludoste
Sudgopeg wruyEs TS cuvepyaoias oog pe Ty TN

Emione, dhio dedopéve mov Bu cuidsyfolv sivan . otovysin oyeTued ue Ty gmidogn Tov cuomiuatos TNg
WOV ¥pNoonoEiToL KoL oL EvEpYEles TOL avBpomon, dniedn To mAKTpe mov wotds kotd Ty sfayom
Tev mepopdtey. To dsdousva Bu yprowomom oty Y10 EpSWI|TIODS GKOTOU..

H ovidop 6hov Tov dedouévey Ba yivel avdvoua LE T ¥pHion Kodiol ovélaTos cupneTEyovTa ().
Y1Z, x5

Ti sidove mlnpogopisc Ba sivar Siabéoiuse dnudono;

Anuocie o= nepintoon dnuocizvons B yivory dwficwe To omOTEAEOLOTE CTOTIOTHO|S ovAalwvoTs el
TV cuiieyBivioy Sedbopstvey xofos Kot LEHOVOUEVES GIOVTHGEL OF GVOLYToD TOMOU SPOTHGCELS JOpic

vo ouvoebzsi kopio winpogopio wov ogopd Kodké dvopo 1 allo SNuoTpOQIKG GTOLYEID TOUL
aTOROV.

Ot pdpues cuykoTdfeons Bo guAnyBohy SUMoTEVTIRG omd To [TIT.

Yrépyovv kivdovor xar seveydfceic kard ™) didprsia the ovdlopic dsdousver;

H cvpustoyt oo oto nsipoun dev s kovéve kiviuvo via sodc, obte o ooBovBeits wdmow svoyinon
wotd T Sudpiceid Tov. Emions Sev ypewdleTor wopio mpogilal Kutd T Sidpetd Tov.

Ay EyETE KATOES TEPAITEPD OITOPIES Y10 Ta TpovapepBEyTo, 11 MOTAGETE VoL oS POTHOETE.

H ovppstoyn oo sivon sbsiovrua. H apwon meponic svykorabeonc 6sv EmoEpal Kopio apvnTikn
GUVETEWDL GE E6OC. AOTNPEITE emions To Swwoiopo ovaipestc TNC cuykutabsons cuc orowadnToTe
GTIYI] KOTG T SIGPKELD TIS CUMPETOYNC GUC GTI PELETN 1] KOl PETA oW ouTi). v mEpiTTOon
TETOWG OVOpEST|S, TO CUYKEVTpOUEVE dedopsva cos o oypogoiv dusca.

Av Eyete Ghec EpETHOEIC, UTopsite vo ansvbuvlsits oTowg:

Ap. Mopio Aaéylov, mi.: 2106503201, email: mdagiogl@ut demokritos_gr.

Figure 4: Information letter 2

Avriypago Zvppstégovra
Avjloen svykatabsong

ApBpés soppetiyovro:

Ankove  vaeibove 6Tt Eyo  SwPhdost T dfheon
CUYKATGBEGTC KL T1) GUVOJEVTIKY] EVIUEPOTIKY] EMOTOAY.
H o@bon, o okomdc Kot Ol MBOVEC EMATOCE TNG
Suwdikacios pov Eyovv eknynBel emeprdc. Tvopiln 6T éyo
dwkaiope ve eykotoieiye T Swdikocic omowdrmots
oTIyp.

ANLOVE 0TI CLUQOVE OTI GCLUUETOY| TG TapPOLCOC
Epevvac.

Ay. Tlopaoxeor), /[ 202..

Yroypoogn

Ovopoten@vopo [pe kepuiaio]

Ynevbvvog Epeuvntiic

Ap. Bayyéhne Kopralétong

Ivet. IThnpogopuxc &
Trnhemxowvenvidv.EKX E ® E. «Anudxpirocn

Eyste SePacet v evnuepoTiky] GuvoSsuTiKy EMOTOA;

| NAT| OXI|

Eiyote mv soxapio vo aspbivets Sievkpric ks spoToeis;
| NAI| OXI|

AdPate wavomonTikés anavT|GELS OTIC EPGOTIGEL GUS,

| NAT| OXI|

AdParte emopxeis mhnpooopiss yio ™ duwdwacia;

| NAT| OXT|

Amo ooy svpuepobikats:

Ovoper: ...

T'vepilets 611 &xete To dikedopn va anoywpficste onoadimote oTryuf
Tpw 1 ketd T Sudpkeawe mg Subikasia. yopic va mmiokoynoets Tovg
Adryovg ™ andpucc cug;

| NAI| OXI |

Figure 5: Consent form
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Subscale {not for display]  Number [not for display) ltem

Positive 1 FFor routine transactions, | would rather interact with an antificially intelligent system than with a human.
Positive 2 Artificial Intefligence can provide new economic opportunities for this country.
Megative 3 Organisations wse Artificial Intelligence unethically,
Porsitive 4 Artificially intelligent systems can help people feel happier.
Positive s 1 am impressed by what Anificial iveligence can do.
[ 1 think artificially intelligent systems make many efmors.
Positive 7 I am interested in using artificially intelligent systems in my daily life.
Negative B I find Artificial Intelligence sinister.
Hegative 9 Artificial Intefligence might take conirol of people.
Negative 10 I think Artificial Intelligence is dangerous.
Positive n Nﬂdﬂlmmmmimmw'sm
Positive 12 Artificial Intefligence is exciting.
Attention Check A 1| would be grateful if you could select Strongly agree.
Porsitive 13 An artificially intelligent agent would be better than an employee in many routine jols,
Positive 4 There are many beneficial applications of Artificial Intelligence.
Negalive 15 I shiver with discomion when | think about future uses of Adtifidal Intelligence.
Positive 16 Artificially inelligent systems can perform betler than humans.
Positive 17 Much of society will benefit from a future full of Anificial Intefligence
Positive 18 1 would like o use Artificial Intelligence in my own job.
Megative 19 People like me will suffer if Antificial Inteligence is used more and more.
i 20 Artificial Intedli is used 1o spy on people
Scoring: Check ¢ liance with the ion Check, then di it from the scoring. Score items marked “Positive” as Strongly disagree — 1; (Somewhal) dis-

gree — L Neutral — 3; (Somewhall agree — 4 and Strongly agree — 5. Score the flems marked “Negative® in reverse so that Strongly disagree — 5;
(Somewhat) disgree — 4; Neutral = 3; (Somewhal) agree — 2; and Strongly agree — 1. Then take the mean of the positive ilems to form an overall score for
the positive subscale, and the mean of the negative items 1o form the negative subscale. The higher the score on each subscale, the more positive the atti-
tude, We do not recomimend caloulating an overall scale mean.

Figure 6: Attitude towards Al
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