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Abstract

In this thesis we propose a solution to a multi-objective optimization problem for an
autonomous inspection task conducted in an outdoor environment, using a mobile robot.
A user selects certain elements that require inspection, and our programs based on this
input and the environment’s map information suggest the optimal sequence of waypoints
to be visited. The metrics we account for are both the time constraint of the total move-
ment, directly related to the total distance and energy consumed, and the maximization
of the visual and infrared data captured during the inspection. We thoroughly analyzed
related work found in the literature, proposed and implemented a methodology to ad-
dress the aforementioned challenge. To achieve this we transform the whole problem into
smaller ones and solve each one separately. This, firstly, involves an interesting point se-
lection task and a path planning one, both of which take place offline as pre-processing
steps. Then based on these data and the user’s input, we transform the extracted problem
into a Generalized Traveling Salesman Problem, and employ the GLNS Solver to solve it,
as it demonstrates superior overall performance compared to the other state of the art

approaches.

Keywords

Mobile robotics, Path planning, Autonomous inspection, Multi-objective optimization,
Generalized Traveling Salesman Problem (GTSP)






ITepiindn

Ye outh TN OtmAwuotiny meotelvouue pio Abom yio éva TeoBAnua BeAtio tonolnong Toh-
Amhov xpLtnelwy mou avagépeton oe pla epyaocia emiewpnong oTolyelwy enTepixol Yheou
HE YPHOT AUTOVOUOL XWVOUUEVOL TETEATEOY 0L pounot. ‘Evoc yprRotng emhéyel ouyxexpyéva
otouyelo Tou xpivel yprowo va emiewpnioly, xon Ta TEOYEIUUNT Uag PE TN GELed Toug Bdoel
TNC EMAOYNC AUTAC XU TATPOPORLOY YL TO YdETN Tou TEPYBIAAOVTOC oUTOU, TOU Elvor amd
TEW YVWO TS, TeoTelvouv TN BEATIo TN oxohoudio and onueia ToU TEETEL VoL ETIOXEPTEL TO PO-
UTOT Yo vau pépel ot Tépag U BEATIOTO TpdTo TNV mpoavagepieica epyacio. Ol uetpiéc mou
AofBdvoupe Loy elvor 1600 0 GUVOAXOS YEOVOC TNE %ivnong, Tou €yel GUECT) CUOYETION
UE TN CUVOAXT| amOCTAOT XalL eVERYELX ToU Yol xatavahmdel Tehnde, xadmdg xou 1 cuVolx
ontxr} xou unépuien TAneogopio Tou Yo cUAey Vel Avollooue SleCodxd oyeTxd €pya TNG
BiBhoypaplag xon oyedldcoue xal VAoToW|oaue plor L€YoBOo yia T0 oX0T6 AUTO. LOUQWVOL UE
oUTY, UETATEETOVUE TO TROBANUA OE UxEOTERA X0 AUVOUNE To xdle éva Eeywetotd. Autd ano-
TeEhOUVTOL apyxd, amd pla Stadacta eVpeng THAVEDY ONUEDY EVOLOPEPOVTOS TOU ATOTEAOVY
AANEC EMOVOANTTIXES VETELS xan pia Blepyaoio oyedioong LovoraTioy, To onola SlevepyolvTal
TPOTURACHEVAC TG YLor T1) GUVEYELL. AxohoVdwe, BAoel auTOY TwV BEBOUEVKDY XaL TNG ETL-
AoYTg Tou YpenoTy, uetateémouue To TEoBANua ot I'evixeuvuévo TIpdBnua [TAavédiou Hwinty
xat To Aovoupe yenowornowwvtag Tov GLNS Solver, mou mapouctdlel tic xahbTepes embOCELC

CUYXELTIXA YE Toug uTdhottoug state of the art Adtec.
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Kwntd poundt, Ahyodpriuol oyedlaong yovoratiedyv, Autdvoun emtdewenon, Iloauxprtnplo-
x| Behtiotonoinon, Fevixevpévo [lpdPBinua IThavésiou TwintA
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Extetopévn Heplindn

Extetauevn Ilepliindn

1. Ewoaywyn

Q¢ xvnd poundt optlovton tar poundt mou dev €youv ctodepy| Bdon xou Eyouv TN duva-
TOTNTA Vo eTanavoLuvton ehediepa oe BLdpopa TEpBdANOVTAL.

[TpdPAnua BeAtiotonomong Aéyeton éva TEOBANUA Yl To 0Tolo Xavelc XaAelTon Vo BKOEL
™V xoh0TEEN ADoT) HeTal TOAGDY Tdovedy ADoEWY.

H epyaocio poag avagpépetar oe €va Uixpd aUTOVOUO TETRATEOYO XIVNTO POUTOT, YL TO OTolo
xahoVUuooTe Vo avamtuEoupe alyopiduoug yio va emAbcoupe éva TedBAnua BeAtiotonoinong
avapoptxd pe pla epyaoio emdemdenone oe xévtpo LPnAic tdone tou AAMHE (AveZdptntoc
Auwyeplotic Metagopde Hhextpinic Evépyelog) ota mhaiowa tou tpoypdupatoc ENOPAXH.
H daduxaoto xon 1 uédodog mou npotetvouue eivar o yevixr| xan umopet va enextodel Tpogovng
XL OE GANEC EQUPUOYES.

To mpoBhnua €xel we e€nc. Tmdpyouv dudpopa cTolyela, NAEXTEOAOYIXE GTNY ToEoloA
(pdom, to omoio YEAOUUE Vo EMVEMENCOVUE UE AUTOVOUO TEOTO GTO EEWTEPIXG OUTO TEPYBEANOY
Tou Ywveltal To pounoT, Omwe Qalbveton xou oty Euxdva 1. H emdewpnon npayuatonoeiton
TEUBOVTOC QWTOYPUPIEC 08 0paTd QAcua, ohhd xa utepldpec. Eyouue otn diddeor| yog
€val YT mou amexoviCEL TNV TOTOAOYIXT AVATUEAC TACT) TOU eEWTERPXOL TEdiou, Oelyvel yia
TapdderyUo TNV xhlon oe xade onueio xan dAAEC TANPOPORIEC TOU XATAATYOUV OTNV XATNYO-
plomoinon xdde xehol we mpooPdotuou N un. O 6pog xehi avapépeton Ge Yo TEPLOY T UXEY
YOpw amo éva xapTectavo onuetio Tou yoeou. Emimiéoyv, éyovue otn diddeon yog ydetec mou
TEOUCLALOLY TNV OTTIXY| TANEOYOEla, ONADY| TO TOGO XUAd BAENEL xde xeAl TOV xdde Tdavo

GTOYO.

Figure 1. To poundt nov éyovue otn didleon pag oto ewtepicé mepifdAdor tou
Kévtpov Yynlrs Tdons (KYT) tng IHaAAnrvns. Paivortar miow ka1 pepikd mdavd
otoela mpog embecypnon, mdvw oTOUS avTioToros oTHAOLS.
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‘Evoc ypriotng Aoy, Yo emhéyel yepued otolyeio To omoio Yewpet 6Tt déhouv emdemdpnon.
Ov adyoprduol pag xohodvtan va mpotetvouy 11 BEATIOTN aAAnhouyio and onueia oto yOpo
oUTO TOL TO POUTOT Vol TEETEL AUTOVOUA VoL AXONOUUTCEL, TOOXEWEVOL VoL PEPEL OF TEEAS TNV
amooTolT| emtiewpnong ue BEATIoTO TpoTo. ¢ BEATIOTO GTNY Topoloa EQopuoYT, 0pilouue ToV
TEOTO TOU PEYIOTOTOLEL TNV OTTIXY TANPOGORLA, EVE CLUYYEOVWS EAAYLOTOTOLEL TO GUYOAIXO
%6070¢ peTdPoong petald Twyv onueiwy autodv. Ipogavae yio v emedpnon xdie otolyeiou
uTdipyoLY TOANE Tdavd afldroya onueio and Ta onolo unopel va yivel 1 Aoy yio T GUAROYT
TWV GEBOUEVWV.

H pédodog mou avomtioue xar vhonoioaue ywpllel to mEdBAnua oc uTo-TEOBATuAT
Ta onolar e TN O€lpd Toug Abvovton Ye BEATioTo duvatd Teomo. Evdewtixd, ta xdpla uto-
mpoPBhfuata tne Sodixactag ebvar 1 eCoywyrh Twv mdavdy onuelwy enioxedng yio TNV emi-
Yewpenon xdde otoryeiou. H npoenelepyooio twv 6edouévmv ue yenorn aryoplduwy yio Tov
UTIOAOYLOUO TOL X060 ToUG YeTdBoone uetald auteyv. Téhog, Bdoel Twv Tapandve TANEOPORLDY
XL TNV ETAOYY TOU YeHoTN, 1 E€aywYr| Tou BEATIOTOU TAdVOU wS Ao,

1o emépeEva XEQPIAMA TOEOVCLELOVTOL XATE GELR, TEQLANTTIXG AmOTEAECUATO Ao T1) Ole-
£oduxn BiBMoypapxr] EpELV TOU TEOYUATOTIOCOUE, 1) TEOCEYYIOY| WoC Yia T AOGT) Tou Tpo-

BAuoTog, xotg xot GUUTERACUATO Xl TROTACELS Yior UEAAOVTIXY €peuva enl Tou Yéuatog.

2. Yyetxr ‘Epsuva

O oaly6pripol oyediaone povoratidyv (path planning) anoteholv évo peydho epeuvntind
XOUMATL 0Tl TAXLOLL TNE POUTOTIXNG. AcyohoLvTon YE TNV €0PECT) CUVTOUOTERWY UOVOTIATUOY
peTo€l evog apyxol onueiou xou evog onueiou otdyou ot éva tepBdihov. Kololvton vo ama-
VIAoOoLY, amo@elyovTag Tiove EUTOBLo Xon CUYYPOVKS BEATIC TOTOLOVTOS OLAPORES UETEIXES,
TS 0 YPOVOC TNS XvNome 1) Tat CUVOMXA PETEN, LETPIXES AoPEAElaS (Xivnon apxeTd poxptd
omd eunddLo yio Tapddetya), ) xou GANES UETPES TToU OYETILOVTOL YE TNV EXAOTOTE EPUPUOYT.
IToAéc teyvirée oe auth TNy xatebduvor €youv avartuydel. Evbekeydhe napovoldleton ToAD
VA6 oTic gpyoaoieg [7, 8, 9, 10]. ‘Olot ot cuyypogeic Twv tapandve ETONUAVOUY T duoXo-
Aot TV TEOBANUATOY AUTOY X0t SLITOTOVOUY OTL xUplwe ECUPTMOVTOL AN TOEAYOVTIES OTKC
OL BLIC TAGELS TOL YWEOL TNG EXACTOTE avallTNOTNE Xl TEQLOPLOUOL GTOUS UTOAOYIO TIXOUE S
nopouc. o n peylotonolnon twyv arnoterecudtwy, yivovto xdmota trade-offs. ' to oxond
auTo, oL pédodol ywellovta ot 600 ueydheg xatnyopieg: online & offline. Ou adydpriuol mou
AVOUPEROVTAL GTNY TEWTT xatnyopia oyedidlouy govordtio Tovtavd, Tny wea Tne xivnong om-
Aad1), ondte AaBdvouy umodn xan Suvopixols TERLOPIOUOUE 0TS XIVOUUEVO EUTOBL. AuTol
TOL aVXoLY OTN BeUTERN xaTryopio oyedldlouy TiC BlaBEOES Amd TELY, €YOUV GUVETMC XoL
TEPLOGOTERO YEOVO Yol DIEEODLXOTERT) AVAAUGT), OAAS VOPECOVTOL OE GTUTIXG TERYBAANOVTAL.

To mopandve mEéPAnue umopel Vo avTWETWTOTEL Ue BLdpopoug TEOTOUS, EVag amd ou-
ToUC etvon e ahyoprioug avalAtnong o yedpo mou €xel mpoxDdel BAoel TS TOTOAOYIXNC
VTIORGOS TOU Y WeoL oTov omolo avagepduacte [11]. Xprowol tétowo ahydprdyot mo-
povatdlovton oxoholinC.

O olyoprduoc tou Dijkstra, elvon €vog olyoprduog avalrtnong yed@ou mou emAvel To
TEOBANUA TOU CLVTOUOTEPOU HOVOTIATION Yiot OTIOLOVOHTOTE XaTteUDUVOUEVO (1) Un) Yedpo ue

un-apvnuxd Bden otic oxpéc [12]. Zexwvd and évav xopfo iy o eEEPELVE ETAVIANTTIXG
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TOUC YELTOVIX0UC XOUS0UE, EVIUERMVOVTIS TNV CUVTOUOTERT ANOCTACT) TPog Xdde xOuBo uéyet
va emioxelel dhoug toug xouPoug. Mrogel eniong va yenowwomoiniel yio Tnv cVpecT TwV
CUYTOUOTERMY LOVOTATIOV OO €VaY xOUf0 Tpog Evay Uovo xOUSo TEooploUoy, BaXOTTOVTAS
Tov oAy oeLiuo HOAC XaopLOTEL TO GUVTOUOTERO LOVOTIETL TEOS TOV XOUS0 AUTOV.

O ahybprduoc A* eivon évag olydprduog mou yenotponoteiton Yo Ty avalAtnon BEATIo TwY
UOVOTIOTLOY Xo TN BLAoYLoN YRAPWY. ZEXWVOVTIS ono €vay apyixd xouBo xan yvopilovtag
Totog ebvan 0 x6ufog otdyog, oe Evay yedpo Ue Bdpn, emdiwxel va Peel To BEATIOTO HovoTdTL
peTad auTt@yv. I'a 10 T0 o%0m6 AT YENOWOTOLEL EVOLY EURETIXO UMY OVIOUOS, EVRLOTIXT) CUVAE-
o, Tou xdde Popd TEOPBAETEL TNV AnOG TUoT Amd TOV TEEYOVTA xOUPo oTov xouPBo otoyo. O
A* howPdver unddn 1600 TO TEAYUATIXG XOOTOC TOU POVOTIATION OO TNV apYIXH XATEOTOO
¢ TOV TEEYOVTA XOUS0 OGO XAl TO EXTIIWUEVO XOOTOG YA TNV ETUTELEY TOU GTOYOL UTO AUTOV
Tov %x6pPo, Bdoel tng evplo g ouvdpTtnong mou €yetl emheydel. O anogdoelg AopfBdvovton
Bdoel Tou mopandve adpoicuatog. ‘Etol, o alyoprduoc emiéyel pe €€unvo TpOTO TOUG XOU-
Boug mou TEENEL Var EEPELVNOEL, OONYWVTAS OE €va BEATIOTO UOVOTATL UE ULXPOTERO TEAXO
umoloylouxd gopTo, xadde nepopileton/xateudivetar apxetd 1 avalitnon. Ov Peter Hart,
Nils Nilsson xow Bertram Raphael tou Stanford Research Institute dnuoocieucayv npdtot Tov
ohybprdupo to 1968 [13].

Ta mtpoPAfuata Tou Adue Ot avixouy otny xAdon NP, anoteholv pio xatnyoplo utohoyt-
OTXOY TEOBANUET®Y Yiar Tat ontola oL AOGELS TOUS UTopoLy Vo ENOANIEUTOUY GE TOALWYUUIXO
xeovo. Q201600, 1 ebpean wag Abong umopel va elvol onuavTixd mo ToAUTAOXY oAYoptduxd.
‘Exouv ABet yeydhn mpocoyt| xou €yel yivel apxeTh €peuva Aoyw Tng Wiaitepng puomMg Toug.

‘Evol amd Tol 1o Yvwo Té TeoBAAUNTA TOU aviXOUY GTNY TURATEVL XAJGT), €ivol To TEOBAN-
uo, Yvooto xou o¢ IlpoBAnua touv ITAavédiouv IMwintyh. To npéfinuo autd Yétel
v axdrovin epdtnomn: “AauBdvovtag uToPn uLo Moo amd TOAELS XAl TIC ATOC TACELC UETAUEY
xade Lebyoug autwy, mola eivat 1 GUVTOUOTERT), ONhadn BEATIOTY, Bladpour| TOU ETOXENTETAL
xade TOAT xou TEAMXE ETOTEEPEL TNV TOAN TpoéAeuang:’ Bploxel yeydhn mpoxtixy epopuoyn
0€ OLAPOPES XATACTACELS, AMO TO OYEOLUCUO OLUBPOUMY Yot TWANTES, UEYEL TNV XATOUOXELT
UTOAOYLO TIXMY TOLTG, oxoua xat xpuo tahhoypapio axtivey X [14].

IMo éva ouppeTteind tétolo TEOPANUa Ye oA ¥ To TARYOg, €uxOAa amOBEVIETOL OTL
urdpyouv (v-1)!/2 mdoavéc dadpopée. Omdre yio v = 10, undpyouv neploodtepec omd 1018
OLBPOUES, YOUUERO amayOpeUTIXO Yla eEaVTANTIXEC ADOELC.

H ovdyxn yua avdntudn npooeyylotixey okyoplduny yia Ty enthuon tou eivon Tpogo-
vic. Evdetind avagépouye pepixéc yedodoug oty xotevtuvon avtriv. H pédodoc tou
TAnoiéotepov yettova yTilelL UE TOAD XATAVONTO, AMAO TEOTO TNV OLUBPOUN. ZEXVOVTISG ATO
o Tuyata TOAN, o xdde oTddo YiveTan EMAOYY| TOou TANCLEGTEPOL YelTova TOL BEV AmOTEAEL
uéhog tng dradpounc, xar TEAXS eTo TEEPEL aToV XxOUPo Tou Eextvnoe 1 Sadixacto. Tpogavag,
emdéyeton Yeydreg Pertiwoeic. H pédodog 2-opt, Eexwvdel ye pio dn undpyovoa Sladpou,
aveldpTnTa Ye TO Twe YTloTnxe auth. EnaveAnmuxd avuxodictd 800 cuvdécuoug e 600
dAhoug Tou 0dnyoly o xahiTepn Tehxr) cuvolxy| Bladpour. H diaduacio teppatileton dtoy
oev umdeyel dhAn TéTol ahhoryr) Tou var 0omyel oe Bedtinon. H Ewdva 2 delyvel oxpiBog pla
TETOl ALY .

Mot yevixeuon Tou oxenTx00 TOL TOEOVCLAC TNXE TAUPATAVW, 0dHYNoE Touc Lin-Kernighan

oTny avdmtun dol Toug ahyoplduou, To 1971. Egapudlovtag pla oelpd ouvey®v BeATidoe-



Extetopévn Heplindn

Lo L 4

Figure 2. 2-opt xivnon

WV otV apyf) AVor Tou meoTelvetal, o ahyopriude toug mpoomael va Beel T BéATioT
oLdpouY| Yo T0 TEOPBANUA Tou TERLodELOVTOS TWANTY. ['ot var yivel autd elodyetan o oplopdg
e A —opt xivnone. To oxenuxd Baoileton ota e€hc [6]: 'Eotw T o tpéywy nepinatoc. Btnv
x&0e enavdhndn, o akyderduoc tpoonadel va Bpet 800 civoha cuvdéopwy, X = {1, ...,z }
xu Y = {y1,...,yr}, étoi dote, av oL ovvdeoyor tou X Sorypopoly and o T xou avti-
xataoTadoly and Toug cuvdEopoug Tou T, To amotéAeoya elvar €vag xaAUTEPOC TepimaToC.
[Mopdderypo plag 3 — opt xivnone nopoustaleton oty Ewdva 3. TToAld xpitriplo nopouctdlo-
VTOL GTNY EPYAOIa TOUG YLot TO TOLOL GOVOECUOL UTopOLY VoL avrixouyv 6To xdle cUvoro. T
TOEABELYUO, TEEMEL Ol GUVOEUOL X7, Y; VoL poLedlovTal To €va 8Xpo Toug, Ta CUVOAX VoL UnV
€y 0LV xoWd cTotyelo xa dhho TapdpoLY (ToPOUGCLELOVTOL GUYXEVTPWTIXE GTO XEPEAMO 2.2).
Enilong avagépinxay oe xpitrpla Yoo Tn BeEATiwoT amodotxdTnTog, YeNOULOTOWWVTAS EURETL-
200G UNYOVIOHOUS, OTWS O TEPLOPLOUOS TN avalATNONS OTOUS 5 XOVTLVOTEPOUS YEITOVES TOU
x&de x6pPBou, N 0 TEPUATIONOS TNG OANG Bladixaciog av o véog Tepinatog €xel (Blo x66T0¢ Ue
Tov mponyoluevo. O Helsgaun €gepe yepnés BeATIOOES 0TOV Topamdve ahyopiuo, Behti-
OVOVTOG TIC TOQOTAVG EUPUCTIXES, TOL 0dfynooy ctov alyopwuo LK H. Ewdyovtoag tnv
O-UETELXY), 0BYNoE 0 xoAUTERA GOVORA TAVMY YEITOVWY BEATIOVOVTAS APXETA TO XOVOETT

e evpeTrg Yertvioong. AvahuTiny| TepLypopr| auT®Y YiveETon 0To xe@dlono 2.2.

Xy X3 X5 T/\T X3

Y2

— Vi V3

Figure 3. 3-opt xivnon

Mot dhhn Tohl yveo i uédodog enihuong tou IpoBiruatog IThavédiou Hwinty eivon auth
e Ilpooopoiwuévng Avéontnons. O olydpriuog TopoucldleTal AUECHS TUPUXAT. ZEXIVAEL
o €va TPOTEWVOUEVO TOUR/UOVOTIETL ooy AOoT Xat OIS ot T Slodoyixd To BEATIOVEL

Baowlouevoc 1o A —opt oxentixd. H Slapopd €yyuton 6T0 YEYOVOS OTL amodéyeTtan xou AOOELS
f(z)c—kf(J))7 1 omola

YEWOTERES AUoEIC oE xdmoleg emavahrbeg Bdoel tng mdavotnTog exp(
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Baolletoan oTn Tpocopoiwot TNE avonTnong evog uixoL. H mapduetpoc ¢ mou napoucidleto,
avapepeTon 0T Vepuoxpacion Tou UAX0U, EVK 1) cUVAETNOY f TOU UETEUEL TO TOCO XaAY| elvon

1 exdoTtote Aoo.

Algorithm 1: Simulated Annealing [15]

1: procedure SIMULATEDANNEALING (istart, Co, Lo)
2 INITIALIZE (istart, co, Lo);

3 k + 0;

4: 14— istart;

5: while stopcriterion = FALSE do
6 for [ < 1 to L; do

7 GENERATE(j from S));
8

9

if £(j) < f(i) then

(RVE
10: else . A
11: if exp (W) > random|0, 1) then
12: 14— 7;
13: end if
14: end if
15: end for
16: k+—k+1,;
17: CALCULATE LENGTH(Lg);
18: CALCULATE CONTROL(cg);
19: end while

20: end procedure

H Tevixevor tou IMpofAjuatoc ITAavodiou ITwintdh (GTSP) civor pio e-
Téxtaon Tou Bactxol TpolAfuatog tou culnThinxe tewv. Bploxel peydhn npoxtixd epopuoyn
xou untdpyel apxeTy BBAoypapla Aoyw e Wiitepng @lone xat Suoxohiog Tou TapouctdletL.
Ye autd to TEOBANUA T0 GUVORo TwV xOUPwv yweileton ot yxpounc/cuotddec. H epdtnom
mou Vétel To MPOBANua elvan, avtioTolyo ye meLy, “Tola etvor 1) BEATIOTY), UXEOTEQOU GUVOAL-
%00 xOGTOUC OLadpour| Tou TEENEL var axolouiniel doTe Vo emoxe@Tel xavelc ToLAd Lo TOY
éva xoufo and xdie yxpourm and To mpoavagepUévia. H exdoyr| autol tou mpofifuatog
v enioxedn vy oxpBng plog gopdc oe xdde yxpoun, avagpépeton w¢ Equality Generalized
Traveling Salesman Problem (E-GTSP).

Y10 onuelo autd €yve evdereyhc BiBAoYpapxn) EpEUVA, OYETIXG UE TIC OLAPOPETIXES U-
TPy 0VOES TPOCEYYIOEIC ETALONG, XM XA TOLES AT AUTEG €YOUV TIC XAADTEPES EMOOTELS.
Trdpyouv TOAES TEOCEYYIOELS, EVOEXTIXG avapepovTal oL axpiBelc alydpriuor-exact algo-
rithms, ot onolot duw¢ topoucidlouv ueydho UTOROYIG TN XOGTOS, UEVODOL UETACY NUATIOULOY
Tou TEoPAaTo, ahyderiuoL ueiwong, YvwoTol xou we reduction algorithms, mpooeyylotixol
ahyopriuol ahhd X EUPETIXOL, TOU XAVOUV YETOT EVPLC TIXMY UEVOBWY %ot ToEOLGLALouY Ta
AAAVTEQO GUVOAXE ATOTEAECUOTAL.

"Eyouv dnuovpynidel didpopa cUVOha SEBOUEVWY, TORIAANACL UE TNV OVATTUEN TNG EQEUVIC
OTOV TOMEN aUTO, ToL OOl AMOGXOTOLY Yol TNV aZlOAOYNON TwV dldPopwy Acewy. Apyi-

x4, 1 PPAoxn pe 6edopéva GTSP _LIB, n onolo ytilel ta yxpoung Bdoel tng eyyodtntog
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Figure 4. GTSP napdderya ya 6 yrkpoung kai 23 ov-
volikd xdppovg [1]

v x0uBov. Awiéyer m = [n/5] xévtpa, 6moL N 0 GUVOAMXOC apLiUdS TWY XOUBWY, xou
EMUVIANTTIXG OUOBOTOLEL TOUC LTOAOLTOUS XOUBOUC GTA YXPOUTS TOU TANCLECTEROU XEVTPOU.
‘Ao tétora ohvoha Bedouévwy topouctdlovton otic fiBAlotixec BAF LIB, MOM _LIB xou
LARGE_LIB.

Mia ouyxpttixr o€lohéynon twv state of the art ued6dwv nopovoidletar otny epyaota [2].

Ou téooepic xahiTepeg pédodol Ty mopoloa oTiypur ot BiBAoypapia gaiveton mog etvon:

o O pntixog ahyopriuog mou mapovoidleton otny cpyaoion v Gutin & Karapetyan
[16],

e H \on Paoiopévn otov Lin-Kernighan-Helsgaun (LKH) odydprduo, yvwoth xat o¢
GLKH [1],

o H \on "avalfitnong peydhng yertovids', yvwot xat we G-LNS [17] xou
e H \on enavahapPovéuevne tomixrc avolitone (basic iterated local search) [18]

Average success rate Average percentage error

100
9

7
90 =
80
70 5
c 4
50
40 3
30 2
20
1
10
0 0 s - - -
LNS LKH MA

Basic ILS Refined ILS LNS LKH MA Basic ILS Refined ILS

@

mGTSP mBAF mMOM mLARGE mGTSP WBAF mMOM mLARGE

Figure 5. Ywontikd anoteléouata tng oUykpions twy kaAltepwy 1edddwr [2]

To amoteréopata NS oUYXELONE TOUC ToEOUGIALOVTOL UEXETE GUVOTTIXG OTA Y AP LATOL
¢ Ewoévoe 5. Ta cuunepdopota autrc tng avdhuong etvor twe 1 GLKH Aorn napoucidlet

Ta xohOtepa amoteréopota Yoo GTSP _LIB, eve) axohoudel ehagpng mlow tne n GLNS, n
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omola Be, ool UTOAOLTAL GUVOAL BEBOUEVLY TOPOUGLALEL GUVTELTTIXT UTEROYT) UETAEY Yol TV
TECGUPWV.

O GLKH solver, uetatpénet 10 YEVXEUUEVO TEOBANUL TAAVOBLOU TWANTY|, OTO XAAGGCIXO
amhOUGTERO TREOBATU TAAVOBIOU TWANTY), xou To emAVEL pe TN wédodo LKH mou mepiypdpnxe
mponyouuévwe. Tot va nporypatonoinoet ) petatpony| auth Baciletar oto épyo [19], o omolo
npoteivel T e€fic. Eotw V' xa ¢ 10 véo 6Ovoho xopupdv xau o Vo x60TN Yla TO Yp8po

avtiotorya. O olyoprduog Tng peTaTpong TERLYPApETIUL WS eEAC:
e To V' tautileton pe 1o V.

o MetaZ) xouPwv Blog cuotddag dnulovpyel évay auvdalpeto xaTeLYUVOUEVO XUXAO UE
w60t ¢y = 0, Yo x&e v, vj, 60U 0 x6PBog Vj BLABEYETOL TOV V; GTOV TROVAPERDEVTAL

®xO%NO.

/ ’ L / . /o ) ’
o Edv v, v; avixouv o€ BLapopeTIneS CUOTASES/YXpoUTS, 0pilel ¢;; = cxj + M, omou vy,
0 x0uPog mou dladéyeton Tov v; oTov xUxho , xou M plo ueydin otadepd. Apxel n tiun

Tou M va efvan yeyokltepn and to dbpolopa Twv 1 UEYAAITEPWY XOCTWY UETABAOTC.
. ’ /
o A, opllet Cij = 2M.

H petatpony| auth| Aettoupyel xadde 1o BéATIOTO Yovomdtt yio tn Aborn tou TSP npo-
BAAUaTOC, MONC CUVAVTACEL €VaY XOUPBO XATOLIG CUCTAONS, AUECKS EMCHENTETAL Xl OAOUC
Toug LTOAOLTOUS, TEOTOL emoxe@iel enduevo Yxpour and onuelo. H yetatpont| oauty| dev etvan
XATEAANAY Yl Ghoug Toug dladéatuoug AUTeg, o’ Ao autd o LKH umopel va egopuooTel
yweic TpofAfuota 6nwe anodexvieta oTo [1].

O GLNS solver, mou doetl tng mponyoluevng avdhuong Topouctdlet To XoahOTERA GUVOAXS.
omotehéopata, mopouotdotnxe to 2017 and toug Smith & Imeson [17]. Aeitouvpyel yOpw amd
10 oxentxd tou adaptive large neighborhood search (ALNS), ota elAnvixd mpocappoo tixy
ovolATNOT UEYSANG YELTOVIAC. ZEXVIEL OTWS XOL TEWY UE Wlal TEOTEWOUEVT AOOT) XOL ETAUVAAT)-
TS apopel ot TPOCVETEL GUVBECHOUS PECHL EVPLOTIXWY CUVIRTHCEWY UEYEL VO PTAOEL OE
ula ouvixn teppatiopol. Kdnow Bden oyetilovioun ye autég Tic eUploTiXéS ELoAYOYNE Xou
dlorypapnc, YU auTto xan 6voua teocopUootixy avalhtnon. Ilepioodtepeg mhnpogopleg yu ow-
Té€¢ umopel xavelc va Bel 6TO avToTOLY O XEQPAAALO TN EPYUCIUC UAC, XU UXOUIL TILO VOAUTIXG.
oty ey epyooio [17] Weudoxmdixag yio Tov olyoptiuo axohouviei.

H emoy?| tou aprduod 1wy xopupoy tou Yo agopedoly ivon Tuyala, xot TEoXOTTEL OUOL-
opopga amd 1o €VP0¢ 1 ¢ Npgz. Booioyévo oe €va xpltrplo Tpocouotwuévng avontnong
(Yeouun 16 tou odyoplduou) anodéyeton 1 anoppintet Ty tponononuévn dtadpou Thew. Ap-
XXO %ELTTplo TepUaTIool amotelel 1 un Bedtinon tne Aong petd and optopéveg emavorferg
Tou olyopldpou. Ev cuveyela, puepinéc enavexivwioels Tne dladixaclag TeoyUoTOTOLOVTAL, UE
NV xoAUTEEN Xdde oTiyun Ao, ue uxpoteen Yepuoxpacicg Tpocouolnong avonTnong oK.

MeTd and pepwd Bruoata un Bektiwong tne Aong, ToAL, oToATdEL Xou auTH 1) BtadLxacto.

3. H cuvelocgopd pog

INo v enthuon tou npoPAruatoc BehtioTononone TOAATAGY %ELITNeltY Tou xoholUa-

O TE VoL EMAUGOUUE, XAl TO OO0 TUPOUCIAC TNKE TEONYOUUEVKC, TEOTEVOUUE TO YWELOUO TOU
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Algorithm 2: GLNS(G, Py ) [17]

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

A -

: Input: A GTSP instance (G, Py). > G: Graph, Py: partition of vertices V into sets
: Output: A GTSP tour on G.
: for i =1 to num_trials do
T < initial _tour(G, Py)
Tbest,i T
repeat
Select a removal heuristic R and insertion heuristic I using the selection weights
Select the number of vertices to remove, N,, uniformly randomly from
{1, ..., Nmax}
Create a copy of T called Thew
Remove N, vertices from Ty using R
For each of the N, sets not visited by Ty, using I insert a new vertex into
Tnew
Locally re-optimize Thew
if w(Thew) < W(Thest,i) then
Tbest,i  Thew
end if
if accept(Thew, I') then
T « Tnew
Record improvement made by R and [
end if
until stop criterion is met
Update selection weights based on improvements of each heuristic over trial
end for
return tour Thes,; that attains min; w(Thest,i)
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TpofAfuatoc og el U€poug LUTOTEOBAAUNTA XaL TNV ETIAUGT AUTOY PE TO BEATIGTO BuVATO
TEoOTO.

Apyxd, yerowo etvar vo Topousctdoouyue To dedouéva Tou €youue oTn dlddeon yag yio T
uet’ émerta oavdAuom mou Yo Sie&dryouue. Metd amd pio BOATA TOU POUTOT GTOV EEWTERPLXO YOEO
Tou Kévtpou Tnirc Tdorng, ue tnheyeipiopd autol, mpaypatonot|dnxe 1 AeyOuevn cUAROYN
oedopévey. Ano authy Teoéxuday ta e€nc. XApTEC TOTOAOYIXAC AVATAUPACTACNE TOU YMEOU,
ONAad”) pe Thnpogoplec Tou LPGUUTOS ot xdde oNueio, TNG TEAUTNTIC TOL EBAPOUS Xol SARWY
avtioTtorywyv topopétewy. H Ewxdva 6 tapouctdlel €va ydpTn, UE TO YeWUA VoL UTOBNADVEL TNV
Thneogopta vhwuatog. No onueiwdel 6Tl 1 TANPOQOplo AUTY| AVUPERETAL UOVO GTT| SLaBEOUN
Tou eXTEAECTNXE 1) xivnom Tou poundT oTN Tpoavapepieica xivnoTn CUANOYTE BEBOUEVKY TOL.
Trdpyer xou 1 avtioTolyn avanapdoTaoy Ue EMEXTACT, Yt OAO TO YTy, AAAd UE %dmolo

UEYOAOTERO GPAAUAL.

Figure 6. Xdptng avandpaotaong tov viwpatos oe
kdOe onueio tng 01adppouns mov akoAolinoe to pourét
ya tn ouvAdoyn dedouévwy. To xpdua vrodeikvie g
upés avtés. Voo kivoluaote mpos ta deéid nrjyavoupe
o€ VYPnASTepeS TIUES.

Ané Ti¢ Topandve TANEOPORIES YE XATIAANAT avdALGT TEOXOTTOUY YEPTES TEOGRBUCIUOTT-
o /Potodtnrog, dnwe tne Ewdvac 7. Auth ) @opd mopadétouue TNy €x800T OAOXANEOU TOU
YGeTn. LNy Tapoloa gdoT 1) TANpopopio auTr elvon duadixY, dNAadT 1| elvon TpocBdoluo éva
xeh 1 oyt Ioap” Ghar autd 1 Aoom pag AauBdver uTOPN TN HEAAOVTIXNT EMEXTUON VIl CUVEYES
PacU TWOVY TeooPacuotnTag Bdoet Tng euxohiog 1 Suoxoiiag aviicTorya Tng medcuong.

Emmiéov, €youue otn Sdleon pac ydetec mou avanaplotoly %60ty opatdétntoc. Ildco
%aAG ONAadT BAETEL TO %dde xeAL TOL BLOBLIGTOL XAPTEGLAVOL YWEOU, Tov xdle Tavoe 6Toyo
npog emiewpnon. Iapdderyuo evoexTind eivon autd tTng Ewdvag 8. Me xdxxvo gatvovtan ot
nahég TEpLOYEC eV 600 TANGLALEL To XiTEvo, 1) TAnEoopla Tou hauBdvouue and Ta avticToly o
XEN YELPOTEPEVEL.

AvantO&aye hotndv xou vAonotoaue po edodoroyia yia T AVoT Tou TEoBAYUATOC
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Figure 7. Xdptng avandpaotaons tns mpoofaoiudtn-
Ta§ 6AoU ToU €€wTEP1KOU XPOU, YWwOTOS Kal e ToY 6po
traversability map.

Figure 8. Xdptng avandpaotaons tng ontiknig mAnpo-
poplag, yia éva otoryeio otoyo. Xta ayylikd avapepoua-
ote 0to Ydptn ws visibility map.
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Bdoel TV BedoUEVKV ToL TapoUcLdc Txay Tapandvew. H Adorn yoc Baciletoun o 600 Sodixa-
olec. H pla mpaypotonoteiton plar popd xou mponapaoxcudlel Thnpooples Yo opyotepa. H
deUTEEN TEarypaToTOLE(ToL XGDE POEd AVEAOYX UE TIC AMOUTACEIC TOU YENoTr. Aemtouépeteg
unopel xavelc va Bel oto dudypouue e Ewdvoc 3.8, tou avtioToryou xegoraiou.

H npwtn @don avagépeton oe dVo Boaoixd otddio. 1. Tov urtohoyloud Ghwv Twv movody
onuelwv evdlagépovtog yia xdlde otoyo emedpnone (dhec Tic xohéc exxovornmuxéc Véoelg
onhadh). 2. Tov unohoyioud anoctdoeny YeTadlh GAWY QUTOV.

[N tov vrodoyioud dAwv twv mbavdy onueiwy evdiapéportos yia kdbe atoyo embewpn-
ongs, epyoalouacte we e&hc. Kdle otoyelo avoletan Eeywplotd Bdoel Tng onTxhAc TANROPO-
ploc mou €youue otn dddeor| pac. Eva yxpoun and onueio/xehd eZdyeton ooy anoteAéoua
yioo Tov xde atéyo. T va mpoxdier autd apyxd Vétouue oe xdlde xehl T lon pe 1o
UECO 6p0 TWV TV ot pio oxTivar et aAAd txavorotnTixy) Terypw Tou. Autd mporyuato-
TOE(ToL TTPOXEWEVOL Tal GNUELX EVOLAPEROVTOS VoL AVUPEQOVTAL OE [iol XUAT) TIEPLOY T XU Oyl GE
ueUovopéva onueia, Tou eVOEYOUEVKOC Vo UTdpYouY UETENELTA BuoXOAieg ot Aeic. Axoho-
D00, SLUTEEYOUHE OAAL TaL XEMGL XAl YPNOWOTOLWVTAS Tov alyoprduo introsort tng standard
libraryBusaiodnixne tng yAnooag C, to 60pTdpouye. LyeOIdCUUE XAl VAOTIOLACOUE EVOLY ATTAT-
070 ahyOpPo Ylol TNV ETAOYT TV ONUElwY auT®Y, 0 omolog doukelel wg e€Xg. Apyind
ETAEYOUUE TO XEN PE TO XoAUTEPO ox0p/EéVOeElln opatdtnToc (UETd TN dtadixaoia pe Toug
HEoouC GpouC TEPLOYWY). Axohollng, ETAEYOUUE TO AéomS ENOPEVO XOADTEPO TO OTOlO
éyet pla cavortounuixy oméotaon (my. 1 uétpo) axtivo paxpeld and dha ta mponyolueve. H
oradixacio emavohouBdvetar €wg GTou 6ev LTdEY oLV Ak onueior xahlTepa amd €va threshold
xalL LoxpUTEROL AmO Tl TEOTYOUUEVL BACEL TOV TUEATAVE TEOBLAYQUPOY.

Yty Ewova 9 e€nyetton ye tn Borjieior oxaplpuatoc, 1 ovory XotoTnTo Xt To e Yo evon ot
AEYOUEVES CUCTAOES OF €val uToVETIXG Tapddetya. XNy Eudva 10, dhwoTte, mapovotdleton

EVOL TEAYUATIXG TapddELYo cLUCTAONS onueiwy Yia éva ornuelo-otdyo.

slEanay:
u ' 4
. miy

X
Figure 9. EreEnynuatikn  eixova Figure 10. 'Eva amotéleoua ovotdoas.
Yia TNy avaykadtnta oy  YKpours/ou- Paivetar and ta kitpva kKovtdkia, Tdvw 0TO
otdowyv. Me X areicovilovtal ta kaAd on- xdptn opatotntag mov eneénynnie mpon-
ueta opatéTnTag ya tov kdle otdyo. YOULEVWS.

Y10 onuelo autd, eve €youv eloaydel dha Tor mdavd onuela evdlagépovtog, emudolue
va utodoylooupe GAes Tis petaél tovg arootdoe (offline). H xOpia anaitnon oty napoloa
@pdom etvar 0 xaAOTEPOC BUVATOS UTOAOYLOUOS OAWY TWV ATOCTAGEWY AUTOY, UE TO UXPOTERO
duVATO GdhUa dINAadY|, xadde oL TAnpogoplec Tou Yo TpoxLPouy Yo YENOLLOTOLUVTUL CGU-

véyeto oto péMhov. T vo emitevyVel auvtd, xpldnxe opdn n emhoyh tou ahyopiduouv A*, ue
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EUPLOTIXY cUVEETNON TNV eUxABel andotaon (tou odnyel oe BérTioteg ADoele, xodme elvor
TévTo xeoTEEN 1) [om UE TNV TEaYaTiny) andoTaoT KOS TO OTOY0), KoL 1) ETOVAANTTLXY| EQap-
poy” awtol u€ypl eavTAfoewe OhwY Twv midovey (euymy and onueio. AtoteAéopo TN OAnNg
dtadxaotag etvon 1 e€aywyr) EVOS Tivoxa UE DEBOPEVY ATOC TACEWY.

‘Otay 0 yphoTNg TOL TEOYEAUUATOS Uag eTAEEEL Tar oTotyela Tou Vélel va emdewpniody
QUTOUOTA ATO TO XWOUUEVO QOUTOT, Uiol OELpd amd Opdoelc Aaufdvouv yoea. Bdoel twv
onueleY eVOLAPEEOVTOS Xal TOU TiiVaxa ATOGTACEWY Tou Exouv Tapay Vel and ta Tpornyolueva
Briworta, Snuiovpyolue To xatdAAnho apyelo yia Ty enthuon tou Ievixeupévou IpoBiAuatoc
[Mavédou Iwint GTSP. To ev Aoyw apyelo, €xel QOPUAT OTWS QUVETOL TORUXATE.

Listing 1: GTSP File Format for Solvers

NAME: GTSP_ format explanation
TYPE: GTSP

DIMENSION: 6

GTSP_SETS: 3

EDGE_WEIGHT TYPE: EXPLICIT
EDGE WEIGHT FORMAT: FULL MATRIX
EDGE WEIGHT SECTION

0 200 2310 6052 404 10912

240 0 2166 5895 634 10719
2326 2195 0 3900 2724 8801
6195 6031 3978 0 6599 4888
434 639 2723 6457 0 11356
10869 10598 8697 4725 11217 0
GTSP_SET SECTION

113 —1

2245 -1

36 1

EOF

‘Onwe patveton mapamdvey dSnhevovton Ta x60Tn uetdBaong and xde onueio evdilapépovtog
oe xdde drro. Kdtw opllovtar ol cucTddeg. Y10 TopdV TUEABELYUY, €YOUUE 3 CUCTABES, 1|
1n anoteleltan amd ta onueion un apriudy 1 xon 3, 1 2n and {2,4,5}, eved 1 3n uévo and 1o 6o
%At OELRd oMuElo.

Autéd to gopudt drafdletar amd ta Stdéoipa mpoypduuata entivong GTSP mpofinudrtoy,
xaL EMOTEEPOUY TNV ahAnlouyla and onuela yia BEATIOTN Suvatrh AOoM Tou YEVIXEUPEVOU
TEOBAAUATOC TAAVOBLOU TWANTH.

Y10 onuelo autd Soxyddoaue Toug 2 xohitepoug solver, GLKH & GLNS, 6nwg mapouot-
dotnxay and tn oyxetnh BiBAoypapix épeuva. Adyw tng yevixdtepng uncpoyhc Tou GLNS,
oTN oLYXELTIXY 0ELONOYTOT) TOUS, 0TS TopoualdleTal xou oTny Ewdva 5, auth Aoy xou 1 u-
Aomolnon mou tehxidg emhéynxe. A&ilel va onpeiwdel twe 1 npoavagepielon olyxplon Exel
extereotel og mOAD yeydha datasets mpoBAnudTwmY €0 oyedlacuévna YU auTé TO GXOTO.
Ta uixpd oc dyxo BedoUEVA TIOU €YOUPE T TAaloL AUTNAC NG BLMAWUATIXNS ToEOLGLELoUY

TapouoLa enidoan xon Yot Toug 600 AUTES, xadoe TdvTa Beloxouv T BEATIOTN aAAnhouyio xau
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o€ oAU opopoto yeovo. I' autd xpiveton doxomnn 1 e€oywYn) CUUTEQUCUATWY XAT AUTOV TOV

TeoTO.

Hporypoatonot{inxe moloTndg EAEYY0C TWV AMOTEAEOUATLY Uag, o onolog Borinoe mold
XATE TNV AVATTUEN TOU xWOOLXA OE OLopUwon haddv xon oTtny TeAnt| emPBefaimwon ot 1 6An 1
dadixacior doulelel omwe meptuévape. H Ewodva 11, napovoidler éva napddelypo BEATIOTNG
TEOTEWOUEVNS ahAniouylag aAAd xou Tng Otadpouric mou mpotelvel o global planner. 'Eyet
mpayuatonoinlel inflation oto ydetn YOew amd eunddio xan yevixdtepa un mpooBdoyla on-
uelo, OTE TO POUTOT var odnyeiTon uéoo and o aocpokelc yertoviée onuelwv. Me xitpvo
rapouctdlovton o onuelor EVOLAPEPOVTOC, EVE UE TNV TEACWVY YROUUT 1) Oladpoun Tou TpoTe-
tvetow. O local planner otn cuvéyeta Booilduevog o autéd 10 oxéntixo Yo aEloTol oEL Toug
xotdAAnhoug akyoplduous, Mote pévo pe eicodo o onuela (CUVTETAYUEVES) XL THY XATEAAT-
AN oAknhouyio auTY, xaL Oyl TNV TEACVN YRUUUT, Vo EXTEAECEL T GUVOAIXY xivnon yio TV

epyaotia emdedenong.

Figure 11. Ilapdderyua anoteAéouatos yag PértioTns dadpouns ya tny emie-
wpnon 4 oroyyeiwy.

INo Ty vdomoinon twv Topamdve yenotponothunxay ol eENg teyvoroyieg. Apyixd, YAOo-
oa Tpoypoppatiopod C+-+ kote va youde TNy xohiteer duvatr anddoor. AZonojinxe to
ROS framework xou Bondntixy) @dvnxe 1 ypnor Uepixwy cuVapTAcE®Y and T BiBhlotixeg
gridmap, costmap, navfn, xuplwg otn Slayelplon Twv Scoduévenvy Tou Ydetrn. Ou ulomotoelg
wwv GTSP Solvers, GLKH & GLNS, eivou Stondéoieg eup€we 6To SLadinTuo xou EVOWUATOUT-
xav PE Tov xatdhhnho teomo. Téhog, alonoinxe to epyoleio RViz ROS yia tnv ontixorno-
(nomn 6wV TwV ATOTEAECUUTWY, TOU EBUUE XA GTNY TaEATAVEL avdAucT. Tpaypatomoifinxe
EXTEVAC TOLOTIXY] AVIAUCT] TV OTOTEAEOUATWY, 1) OTtold ToEOUGIALETaL OTO AVTIGTOLYO Xe-

pdloto, emBefouwvovtag TNy opdy Aertovpyia TS AVOTC TOU TEOTEVOULE.
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4. YUUTEPACUATA XA UEANOVTLXY] EPEVVA

Yuunepacyatixd, vhomowinxe ula pédodog yia 0 Abor évog mpoPAfuatog PeltioTono-
inonc mohhamhv xprtnelwy yior Ty emtdéwenon otolyelnv pe egapuoyt o Kévtpa Tdhninc
Tdone. Kouudtio and tnv npotewvduevn Aor umopodyv vo etextoadoly xon Vo QopuocToOv
oe TANUOEA GAAWY EQURUOYOY Xt TEOBANUAT®Y, and cevdpla avalATNone xaL didowong, o€
QOUTIOTIXEC XATUACKEVES XAl CUYXOAACELS, UEYPL OYEDLATT] ONOXANPOUEVEDY HUXAWUATOVY, AANS
OXOUA XOUL EQUPUOYES OE TOUpLoUO xau emtioxedelg aglodéatmv.

Evvoeiton mwe 10 €pyo pag emOEYETUL ENEXTACELS XOU TOPOVCLALEL UEYSAO EVOLUPECOV 1)
xatevduvon autr. Evieixtind mpoteivouue tnv €peuva xou avdmtudn evoc xohltepou alyopiv-
Hov, amd ToV ATANGTO oAYOELIUO ToL LAOTIOWUNXE, Yiot TNV oy wYT oNUelwY eVOLapEpOVTOC.
Emuuolue 1t peyiotomoinon tou apriuold twv mdavev onueiwy, mou mapdhinio €yl o
BéATIoTO GUVOAXS PEGO Gpo amd oxopg opatoTnTac. Meydho gpeuVNTIXG EVOLIPEROV BARw-
o1e Tapouctdlel, 1 avdnTtudn avticTolyng Abong yio cuvepyalouevo yxpour amd pounot. H
avantugn plag tétolog hoong Yo Ponidroet Tohd oe emidewpnoelc PeYoAITERES XAlHOXAS XL OE

EXTEVEC TERPA Yol TiLO TepimAoxa TepIBdihovTaL.






Chapter

Introduction

1.1 Basic Definitions

Mobile robotics is a subfield of robotics that is concerned with the design, construction
and operation of robots that are not fixed in a certain physical location, but have the capa-
bility to move around in various environments. Mobile robots, unlike industrial ones that
typically operate within confined spaces, can navigate through dynamic and often unpre-
dictable surroundings. These robots are usually equipped with onboard sensors, actuators
and proper computer programs/intelligence in order to perceive their environment, make
decisions and adapt autonomously to changing conditions.

Inspection, within the context of robotics, refers to the examination, assessment and
generally surveillance of objects, structures or even whole environments using robotic sys-
tems. Robotic inspection serves different purposes across industries including infrastruc-
ture maintenance, environmental monitoring and security surveillance. Robots equipped
with proper sensors can navigate autonomously and perform the inspection efficiently and
accurately in a repeated fashion or in hazardous/hard-to-reach locations.

Path planning, also known as motion planning, is a computational problem of finding a
sequence of valid configurations from which a robot can navigate from a current position to
a specified goal within an environment. The objective, most of the times, is for the robot
to reach its destination safely and efficiently; minimizing the risk of possible collisions
(or minimizing/maximizing other metrics), while at the same time optimizing its route to
conserve energy and time.

An optimization problem, in mathematics, engineering, computer science and eco-
nomics, is the problem of finding the best solution from all feasible solutions. The Travel-
ing Salesman Problem (TSP) is one classic optimization problem which asks the question:
"Given a list of cities and the distances between them, what is the shortest possible route
that visits each city exactly once and returns to the original city?" This problem extends

to different scenarios and will be later more thoroughly discussed in our study.

1.2 Problem

The problem we tackle is as follows. There is a set of different items we want to

inspect, by taking photos (both RGB and infrared), in an outdoor environment. We
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possess a topological representation of the static map of this environment, along with a
map indicating how well various poses across the map perceive each one of these items. We
are equipped with a 4-wheel mobile robot, using LiDAR, different other sensors like IMU
(Inertial Measurement Unit) and the necessary actuators for autonomous navigation. A
user determines which elements from the environment require inspection on each occasion.

Consequently, an automated solution is needed to generate the most optimal plan
and sequence for visiting suitable configurations capable of effectively inspecting every
user-selected element (taking into consideration both the time and energy limits, while
simultaneously capturing the best possible images for inspection).

The solution of this problem will be applied within the context of a project called “ENO-
RAST”, which deals with inspecting elements of high-voltage facilities of the ADMIE/IPTO

(Independent Power Transmission Operator).

Figure 1.2. High woltage facility,
Figure 1.1. Outdoor environment of a some elements that may need inspection
high voltage facility in Pallini, Greece. shown.

1.3 Owur Contribution

Taking into consideration the above, we propose an automated system that takes as
inputs a map representation of the environment, a cost-map that indicates how well each
pose captures the inspection and a set of elements requiring inspection. After that the
program suggests the best sequence of points that it needs to go so as to carry out the
inspection task. This sequence will then be executed onboard using a local planner.

Our proposal is a system that creates an offline distance matrix between different points
that may be useful in the future. When the user selects the elements to be inspected, a set

of points is generated for each one. These points, located in cartesian space, indicate that
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the visibility of the element/item there exceeds a certain threshold. The system employs
an EGTSP (Equality Generalized Traveling Salesman Problem) solver, called GLNS, to
suggest the best possible sequence of points in the environment to visit that optimizes the

inspection task.

1.4 Organization

The present thesis is structed as follows:

e In Chapter 2 we analyze related work, background knowledge and tools.

Chapter 2.1 deals with key terminology,

Chapter 2.2 presents the path planning problem and describes some solutions.

— Chapter 2.3 focuses on the Traveling Salesman Problem, its approaches and

presents some solutions of it.

Chapter 2.4 extends the analysis to the Generalized Traveling Salesman Prob-

lem.

Chapter 2.5 briefly presents available technologies.
e In Chapter 3 we thoroughly present our contribution and solution to the problem.
e In Chapter 4 we present the experimental results of our solution.

e In Chapter 5 we summarize the key concepts of the work and discuss future research

directions.






Chapter

Background & Related Work

2.1 Key Terminology

In this section, we delve into key terminology relevant to our study, providing a com-
prehensive understanding of the fundamental concepts needed.

Optimization refers to the process of finding the best solution among a set of feasible
solutions to a particular problem. This could involve maximizing or minimizing an ob-
jective function while satisfying certain constraints. Multi-objective optimization, as the
name suggests, involves optimizing several objectives simultaneously. The problem be-
comes challenging when the objectives are of conflict to each other, that is, the optimal
solution of an objective function is different from that of the other. With or without the
presence of constraints, these problems give rise to a set of trade-off optimal solutions,
popularly known as Pareto-optimal solutions.

Combinatorial optimization is a subfield of mathematical optimization focused on find-
ing an optimal object from a finite set of objects, where the set of feasible solutions is
discrete or can be reduced to a discrete set.

Complezity in the context of computational problems refers to the amount of computa-
tional resources required to solve a problem. It is commonly categorized as time complexity,
which measures the number of computational steps needed to solve a problem, and space
complexity, which measures the amount of memory required for the solution.

The Big O notation, often denoted as O(), is a mathematical notation used in computer
science to exactly describe the upper bound complexity of an algorithm. It represents the
upper bound of the growth rate of a function, typically in terms of the input size n, where
n represents the size of the problem.

A polynomial algorithm is one whose time complexity is bounded by a polynomial func-
tion of the input size. Problems with polynomial time complexity are generally considered
efficiently solvable.

NP problems are a class of computational problems for which solutions can be verified
in polynomial time. This means that if a solution is given, it can be relatively quickly
checked. However, finding a solution may be much more difficult. As [20] thoroughly
explains, NP-hard problems are those for which a solution can be verified in polynomial
time but for which no polynomial-time algorithm is known for finding a solution. NP-

complete problems are a subset of NP-hard problems. They are the most challenging
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among NP problems because they are both in NP and NP-hard, meaning that any problem
in NP can be reduced to an NP-complete problem in polynomial time. In essence, if an
efficient algorithm for solving any NP-complete problem exists, it could be used to solve
all NP problems efficiently.

Graph theory is the study of graphs, which are mathematical structures used to model
pairwise relations between objects. A graph is made up of vertices, also called nodes,
which are connected by edges, also called links. A distinction is made between undirected
graphs, where edges link two vertices symmetrically, and directed graphs, where edges link
two vertices asymmetrically. Graphs are one of the principal objects of study in discrete

mathematics.

Figure 2.1. A job applicant model, depicted as a graph [3]

A tree is a connected graph without cycles. A spanning tree of a graph G with n nodes
is a tree with n-1 edges from G. A minimum spanning tree is a spanning tree of minimum
length.

A Hamiltonian path, in graph theory, is a path in an undirected or directed graph that
visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex
exactly once.

Heuristic functions, fundamental in artificial intelligence and optimization, are problem-
solving tools which estimate (or measure) the cost of the solution at the particular state in
the search process. These functions guide by offering a way to evaluate possible actions or
paths in a problem space, assisting in decision-making. Heuristics are particularly valuable
in scenarios where exhaustive search methods are impractical due to high computational
complexity. By leveraging heuristic information, algorithms can efficiently navigate large
search spaces to find satisfactory solutions in a timely manner. A heuristic algorithm is an
algorithm that attempts to find a certain instance of X that maximizes f (or the profit) by
iteratively invoking a heuristic function. The instance that maximizes f will be the optimal
solution to the optimization problem. [21]

Many heuristic algorithms and heuristic functions have been reported in the litera-
ture, where the former include the alpha-beta search [22], backtracking, hill-climbing [23],
simulated annealing [24], tabu search [25] and other.

Greedy algorithms are simple, yet powerful, techniques used to solve optimization prob-
lems by making the locally optimal choice at each stage. They select the best available

option without considering the overall problem structure or future consequences.
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Visibility refers to the extent to which an object or location can be seen from a particular
point or set of points. In the context of robotics and path planning, typically visibility
plays a crucial role in determining the feasibility and effectiveness of navigation strategies.
In our context, visibility will play a vital role in determining the effectiveness of our path
planning algorithms for the inspection task we are dealing with.

Mobile ground robots are traditionally designed to move on flat terrain and their map-
ping, planning, and control algorithms are typically developed for a two-dimensional ab-
straction of the environment. However, when navigating in rough terrain (e.g. with tracked
vehicles or legged robots), the algorithms must be extended to take into account all three
dimensions of the surrounding. As [4] thoroughly describes, the most popular approach
is to build an elevation map of the environment, where each coordinate on the horizontal
plane is associated with an elevation/height value. For simplicity, elevation maps are often
stored and handled as grid maps, which can be thought of as a 2.5-dimensional representa-
tion, where each cell in the grid holds a height value. In order to estimate the traversability
of the terrain, the elevation information is appropriately processed; multiple filters are used

to interpret the data based on the slope, step height, and roughness of the terrain.

Mot Fully
Traversable Traversable

Figure 2.2. The traversability of the terrain is judged based on the acquired
elevation map. The traversability estimation takes factors such as slope, step size,
and roughness of the terrain into consideration. [4]

A LiDAR sensor (acronym stands for "light detection and ranging") commonly uses
a mechanically rotating laser beam to sweep a planar sector of the environment, measur-
ing time-of-flight of the reflected beams to compute range estimates from the sensor to
obstacles. IMU (Inertial Measurement Unit) is an electronic device that measures and
reports a body’s specific force, angular rate, and sometimes the orientation of the body,
using a combination of accelerometers, gyroscopes, and sometimes magnetometers. Wheel
encoders measure the rotation of the vehicle’s wheels, providing some information about
its movement, speed, and distance traveled. These are the main sensors that combined

with cameras are frequently used to calculate the map representation of the environment,
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help the robot localize and navigate autonomously.

2.2 Path Planning Algorithms

Path planning is a fundamental task in robotics, essential for letting autonomous vehi-
cles and generally robots navigate from an initial state to a desired destination through an
environment. The definition of the path planning problem is very straightforward: “find
a collision-free motion between an initial (start) and a final configuration (goal) within
a specified environment” [11|. Simultaneously the extracted solution can also optimize
certain criteria such as minimizing the total distance covered, maximizing safety or other
task-related criteria (e.g. maximizing visibility metrics in an inspection task).

Much work can be found the robotic literature, dealing with path planning. The first
definitions and algorithms date back to the 1970s. A comprehensive overview of path
planning techniques can be found in [7]. Other useful reviews of path planning techniques
can be found in (8, 9, 10].

Path planning algorithms are usually divided in three categories, according to the
methodologies used to generate the geometric path, namely: roadmap techniques, cell
decomposition algorithms, and artificial potential methods [11].

The difficulty in solving the path-planning problem rises from factors like high di-
mensional search spaces, geometric constraints or limitations in computational resources.
Therefore the solution often requires a trade-off between efficiency and optimality. Path
planning methods can be broadly categorized into offline and online approaches [26], each
one handling differently this trade-off. Offline planners compute the entire trajectory
beforehand, whereas online planners generate it incrementally during motion. Both ap-
proaches have their own advantages and are suited to different applications. Offline plan-
ning is useful for tasks in static environments where optimality is crucial, while online
planning is essential for dynamic environments or scenarios where the robot’s path must
be determined on-the-go. Another distinction between offline and online planners is that
the former may produce globally optimal solutions if the environment is fully known,
whereas the latter is locally optimal most of the times.

For the local planning problems one of the most used algorithms proposed is the RRT
(Rapidly exploring random trees). For the global planning problem, that we also face
in our work, the two most prominent methods are the Dijkstra’s algorithm and the A*

algorithm. In the following sections we present them in detail.

2.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm, named after its discoverer E.W. Dijkstra [27], is a graph search
algorithm that solves the shortest-path problem for any weighted graph with non-negative
weights [12]. It starts from a source node and iteratively explores the neighboring nodes,
updating the shortest distance to each node until all nodes have been visited. It can also
be used for finding the shortest paths from a single node to a single destination node by

stopping the algorithm once the shortest path to the destination node has been determined.
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Dijkstra’s original algorithm does not use a min-priority queue and runs in time O(|V|?)
[28]. The time complexity of Dijkstra’s algorithm, implemented with a binary heap, is
O(|E|+|V[log|V|), where V are the vertices and E are the edges [29]. There are various other
implementations of Dijkstra’s algorithm, each one having slightly different time complexity.

The selection obviously is based on the specific needs of each individual problem.

2.2.2 A* Algorithm

A* (pronounced as "A star") is a computer algorithm that is widely used in path-
finding and graph traversal. Given a weighted graph, a source node and a goal node, the
algorithm tries to find the shortest path (with respect to the given weights) from source
to goal. A* considers both the actual cost from the start node (source) to the current
node and the estimated cost (heuristic) to reach the goal from this current node, where
current node refers to an intermediate node in the path. Thus, it intelligently prioritizes
nodes to explore, leading to an optimal path with minimal computational overhead. Peter
Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute first published the
algorithm in 1968 [13].

At each iteration of its main loop, A* needs to determine which of its paths to extend. It
does so based on the cost of the path and an estimate of the cost required to extend the path
all the way to the goal. Specifically, A* selects the path that minimizes: f(n) = g(n)+h(n),
where n is the next node on the path, g(n) is the cost of the path from the start node to
n, and h(n) is a heuristic function that estimates the cost of the cheapest path from n to
the goal.

Compared to Dijkstra’s algorithm, A* typically explores fewer nodes than Dijkstra’s al-
gorithm, especially in scenarios where the heuristic provides meaningful information about
the distance to the goal. Yet, the A* algorithm is limited to finding the shortest path from
a given source to a particular goal and cannot construct the shortest-path tree from the
source to all potential destinations. This constraint is necessary for using a specific-goal-
directed heuristic.

As [13] throughly discusses, we call an algorithm admissible if it is guaranteed to find
an optimal path from source to a preferred goal node for any graph. It is proved that if
the heuristic function selected for A* suggests costs that are always smaller or equal to
the actual distance from the current node to the goal node, that the algorithm always will
suggest the optimal, best path, and thus be considered admissible.

As [30] describes in detail, the time complexity of A* depends on the heuristic. In the
worst case of an unbounded search space, the number of expanded nodes grows exponen-
tially with the depth of the solution (the shortest path), denoted by d: O(b%), where b is
the branching factor (the average number of successors per state). This analysis assumes
the presence of a goal state and its accessibility from the initial state. However, if the
goal state is unreachable from the start state and the state space is infinite, the algorithm
will not terminate. The heuristic function has a vital effect on the practical performance
of A* search, since a good heuristic allows A* to prune away many of the b% nodes that

an uninformed search would expand. The time complexity is polynomial when the search
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space is a tree, and the heuristic function h meets the following condition:
|h(z) — b+ (z)| = O(logh * (x))

where h* is the exact cost to get from x to the goal, also referred to as the optimal
heuristic. In simpler terms, the error of the heuristic function h will not grow faster than
the logarithm of the h* that returns the true distance from x to the goal.

The space complexity of A* is approximately the same as that of all other graph search
algorithms, as it keeps all generated nodes in memory. In practice, this aspect turns out
to be the biggest disadvantage of the A* search algorithm, prompting the development of

memory-bounded heuristic search methods like Iterative Deepening A* [31].

2.3 Traveling Salesman Problem

The Traveling Salesman Problem, TSP for short, is a well-known optimization problem
that has commanded much attention of mathematicians and computer scientists due to
its simple yet challenging nature. The problem can simply be stated as: If a traveling
salesman wishes to visit exactly once each of a list of m cities (where the cost of traveling
from city i to city j is ¢;;) and then return to the home city, what is the most efficient route
the salesman can take to minimize overall travel cost, returning to the starting city?

The Traveling Salesman Problem is quite famous with various applications in different
scenarios. The problem emerges in manufacturing of computer chips, in the order-picking
problem in warehouses, in mask plotting in PCB (Printed Circuit Board) production, to
even x-ray crystallography, as outlined in [14]. As [2] states, the problem has been recorded
in the history of combinatorial optimization since 1930. Merrill M. The first mathematical
formulation of the problem was provided by Flood when he came across it while solving a
school bus routing problem in 1948 [32].

The challenge becomes evident when one considers the number of potential tours - an
staggering figure even for a relatively small number of "cities". For a symmetric problem
with n cities it can easily be proven that there are (n-1)!/2 possible tours. So, if n is 20,
there are more than 10'® tours.

As the theory of NP-completeness evolved, the TSP was one of the first problems to
be proven NP-hard by Karp in 1972. Consequently, new algorithmic techniques have first
been developed for or at least have been applied to the TSP to showcase their effectiveness.
Some examples are branch and bound, Lagrangean relaxation, Lin-Kernighan type meth-
ods, simulated annealing, and the field of polyhedral combinatorics for hard combinatorial
optimization problems [33].

Algorithms for solving the TSP may be divided into two main classes:
e Exact algorithms;
e Approximate (or heuristic) algorithms.

Exact algorithms are assured to discover the optimal solution within a finite number of

steps. Today one can find exact solutions to symmetric problems with a few hundred cities,
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with occasional reports even mentioning solutions involving problems with thousands of
cities. The most effective exact algorithms are cutting-plane or facet-finding algorithms
[34, 35]. The complexity of these algorithms is notable, often consisting of codes on the
order of 10,000 lines. Additionally, the algorithms are very demanding of computer power.
For instance, achieving an exact solution for a symmetric problem involving 2392 cities
took over 27 hours on a high-performance supercomputer [36].

In contrast, the approximate algorithms yield satisfactory solutions without ensuring
the discovery of the optimal ones. These algorithms are usually very simple and have
(relative) short running times. Some of the algorithms give solutions that differ only by
a few percents from the optimal ones, in average. Therefore, if a small deviation from
optimum is acceptable, it might be appropriate to use an approximate algorithm.

The class of approximate algorithms may be subdivided into the following three classes

[5]:
e Tour construction algorithms
e Tour improvement algorithms
e Composite algorithms

The tour construction algorithms operate by incrementally constructing a tour, adding
one city at a time until the tour is complete. The tour improvement algorithms improve
upon a tour by performing various exchanges.

In the next subsections, we will shortly delve into some of the most prominent algo-
rithmic approaches to solving the problem. This analysis will also help build a sufficient

knowledge-base for the understanding of later algorithms that are discussed in this work.

2.3.1 Nearest-neighbor Algorithm

A simple example of a tour construction algorithm is the so-called nearest-neighbor
algorithm [37]: Start in an arbitrary city. While there are still unvisited cities, visit the
nearest city that still has not appeared in the tour. Finally, return to the first city. This
approach is simple, but often too greedy. The first distances in the construction process
are reasonable short, whereas the distances at the end of the process usually will be rather
long. A lot of other construction algorithms have been developed to remedy this problem
(see for example [38] and [39)]).

2.3.2 2-opt Algorithm

The tour improvement algorithms have shown significant success, with one notable
example being the 2-opt algorithm. This approach begins with a predefined tour and
iteratively replaces two links within the tour with two different links, resulting in a shorter
overall tour length. The process continues until no further improvements can be made.

Figure 2.3 illustrates a 2-opt exchange of links, a so-called 2-opt move. Note that a
2-opt move keeps the tour feasible and corresponds to a reversal of a subsequence of the

cities.
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Figure 2.3. A 2-opt move [5]

2.3.3 Lin-Kernighan Algorithm

A generalization of this simple principle forms the basis for one of the most effective
approximate algorithms for solving the symmetric TSP, the Lin-Kernighan algorithm |6].
The original algorithm, as implemented by Lin and Kernighan in 1971, had an average
running time of order n?? and was able to find the optimal solutions for most problems
with fewer than 100 cities.

As [6] thoroughly describes, the 2-opt algorithm is a special case of the X\-opt algorithm
[40], where in each step A links of the current tour are replaced by A links in such a way
that a shorter tour is achieved. In other words, in each step a shorter tour is obtained by
deleting A links and putting the resulting paths together in a new way, possibly reversing
one ore more of them.

A tour is said to be A-optimal (or simply A-opt) if it is impossible to obtain a shorter
tour by replacing any A of its links by any other set of A links. It is obvious that any
M-optimal tour is also N-optimal for 1 < X < \. It is also easy to see that a tour that
contains n cities is optimal if and only if it is n-optimal. It is a drawback that A must be
specified in advance. It is difficult to know what A to use to achieve the best compromise
between running time and quality of solution.

Lin and Kernighan addressed this limitation by introducing a powerful variable A-opt
algorithm. This algorithm dynamically adjusts the A\ value as it progresses, determining the
appropriate X\ value at each iteration of its execution. At each iteration step the algorithm
examines, for ascending values of A, whether an interchange of A links may result in a
shorter tour. Given that the exchange of r links is being considered, a series of tests is
performed to determine whether r+1 link exchanges should be considered. This process
continues until certain termination criteria are met.

The Lin-Kernighan algorithm falls under the category of local optimization algorithms
[41]. Tt operates by executing exchanges, also known as moves, that transform one tour into
another. Given a feasible tour, the algorithm repeatedly performs exchanges to minimize
the length of the current tour, until a tour is reached for which no exchange yields an

improvement. This process can be repeated numerous times starting from initial tours
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generated in a randomized manner.

Below, we provide a detailed description of the algorithm [6]:

Let T be the current tour. At each iteration step the algorithm attempts to find two
sets of links, X = {z1,...,2,} and Y = {y1, ..., y»}, such that, if the links of X are deleted
from T and replaced by the links of Y, the result is a better tour. This interchange of links

is called a r-opt move. Figure 2.4 illustrates a 3-opt move.

Xz X3 X2 r—\T X3

y2

Y1 ¥3

Figure 2.4. A 3-opt move [5]

Initially both X and Y sets are empty and they are being constructed element by
element. In step 7, a pair of links, z; and y;, are added to X and Y, respectively. In order
to achieve a sufficient efficient algorithm, only links that fulfill the following criteria may

enter X and Y.

ti+1

b X; -1

Figure 2.5. Restricting the choice
of Ti, Yi, Tiy1, and yiy1 [6]

1. The sequential exchange criterion:

Links z; and y; must share an endpoint, and so must y; and z; 1. If ¢; denotes one
of the two endpoints of z1, we have in general: z; = (to;—1,%2), i = (t2i, t2i+1), and
Tit+1 = (t21+1,t21+2) for ¢ > 1. See Figure 2.5.

As seen, the sequence (x1,y1,2,Y2, X3, ..., Ty, yy) constitutes a chain of adjoining

links.



Chapter 2. Background & Related Work

A necessary (but not sufficient) condition that the exchange of links X with links YV
results in a tour is that the chain is closed, i.e., y, = (t2,,t1). Such an exchange is

called sequential.

Generally, an improvement of a tour may be achieved as a sequential exchange by a
suitable numbering of the affected links. However, this is not always the case. Figure

2.6 shows an example where a sequential exchange is not possible.
X2 X2

Y2
Y3

X3 Xy T X3 X4

¥4
Yi

X1 X1

Figure 2.6. Nonsequential exchange (r=4) [6]

The feasibility criterion:

It is required that x; = (t2;—1, t2;) is chosen so that, if ¢9; is joined to 1, the resulting
configuration is a tour. This feasibility criterion is used for ¢ > 3 and guarantees that
it is possible to close up to a tour. This criterion was included in the algorithm both

to reduce running time and to simplify the coding.

The positive gain criterion:

It is required that y; is always chosen so that the gain, GG;, from the proposed set of
exchanges is positive. Suppose ¢; = ¢(x;) — ¢(y;) is the gain from exchanging x; with
y;. Then G; is the sum g1 + go + ...+ g;. This stop criterion impacts the algorithm’s

overall efficiency.

The disjunctivity criterion:

It is required that the sets X and Y are disjoint. This simplifies coding, reduces

running time and gives an effective stop criterion.

The outline of the basic Lin-Kernighan Algorithm can be seen in Figure 2.7.
A bottleneck of the algorithm is the search for links to enter the sets X and Y. In order

to increase efficiency, special care therefore should be taken to limit this search. Thus, to

limit the search even more Lin and Kernighan refined the algorithm by introducing the

following rules.

5.

The search for a link to enter the tour, y; = (t2;, t2;+1), is limited to the five nearest

neighbors to tg;.

. For i > 4, no link, z;, on the tour must be broken if it is a common link of a small

number (2-5) of solution tours.
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1. Generate a random initial tour T.

Leti= 1. Choose t;.

. Choose x; =(t.t;) e T.

Choose y, =(t,.t3) ¢ T such that G, > 0.
If this is not possible, go to Step 12.

5. Leti=i+1.
6. Choose x; = (ty;.t5;) € T such that

8. If there is an untried alternative for y,, let 1 =2 and go to Step 7.
9. If there is an untried alternative for x,, let 1 =2 and go to Step 6.
10. If there is an untried alternative for y,, let 1= 1 and go to Step 4.
11. Ifthere is an untried alternative for x,, let 1= 1 and go to Step 3.
12. If there is an untried alternative for t,, then go to Step 2.
13. Stop (or go to Step 1).

(a) if t,; is joined to t,, the resulting configuration is a
tour, T°, and

(b) x;#y, forall s <1
If T" is a better tour than T, let T="T" and go to Step 2.
Choose y; = (ty;.t5.1) € T such that

(a) G;= 0,

(b) y;#x forall s<1, and

(c) x,,, exists.
If such y, exists, go to Step 5.

Figure 2.7. The basic Lin-Kernighan Algorithm [5]
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7. The search for improvements is stopped if the current tour is the same as a previous

solution tour.

8. When link y; (i > 2) is to be chosen, each possible choice is given the priority
c(@iv1) — c(yi).

9. If there are two alternatives for x4, the one where c(x4) is highest is chosen.

Lin’s and Kernighan’s refinements are mostly heuristics rules. 5 through 7 primarily

aim to limit the search, while 8 and 9 primarily focus on directing the search.

Lin-Kernighan-Helsgaun Algorithm

A modified and extended version of their algorithm was presented in Helsgaun’s work in
[5]. This algorithm is a considerable improvement of the original algorithm. The increase
in efficiency is primarily achieved by a revision of Lin and Kernighan’s heuristic rules for
restricting and directing the search. Although their heuristic rules seem natural, a critical
analysis can easily show that they suffer from several defects.

A central rule in the original algorithm is the heuristic rule that restricts the inclusion
of links in the tour to the five nearest neighbors to a given city (Rule 5). This rule directs
the search against short tours and reduces the search effort substantially. However, there is
a certain risk that the application of this rule may prevent the optimal solution from being
found. If an optimal solution contains one link, which is not connected to the five nearest
neighbors of its two end cities, then the algorithm will have difficulties in obtaining the
optimum. For example, for a 532-city problem [42] one of the links in the optimal solution
is the 22nd nearest neighbor city for one of its end points.

Helsgaun introduced the a-measure for specifying this candidate set, and is found to be
much better than using nearest neighbor approach. Firstly, it is important to understand
the I-tree concept, whose definition follows. A I-tree for a graph G = (N, E) is a spanning
tree on the node set N \ {1} combined with two edges from E incident to node 1. The
choice of node 1 as a special node is arbitrary. Note that a 1-tree is not a tree since it
contains a cycle. An explanatory example is depicted in Fig. 2.8.

A minimum 1-tree is a 1-tree of minimum length. An optimal tour normally contains
between 70 and 80 percent of the edges of a minimum 1-tree. Therefore, minimum 1-trees
seem to be well suited as a heuristic measure of ‘nearness’. Edges that belong, or ‘nearly
belong’, to a minimum 1-tree, stand a good chance of also belonging to an optimal tour.
Conversely, edges that are ‘far from’ belonging to a minimum 1-tree have a low probability
of also belonging to an optimal tour.

This measure of 'nearness’ can be defined as follows. Let T be a minimum 1-tree of
length L(T), and let T (i, ) denote a minimum 1-tree required to contain the edge (i, 7).
Then the a-nearness of an edge (i, j) is defined as the quantity (i, j) = L(T (4, 7)) —L(T).
Thus, the a-nearness of an edge is the increase of length when a minimum 1-tree is required
to contain this edge.

The a-measure can be used to systematically identify those edges that could conceivably

be included in an optimal tour, and disregard the remainder. These promising edges’,
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\
/ 1 —=a— special node

Figure 2.8. A 1-tree [5]

called the candidate set, may, for example, consist of the k a-nearest edges incident to
each node, and/or those edges having an a-nearness below a specified upper bound.

This approach, enhances a lot the original one, but it would not be of much practical
if the computations of those values were too expensive. An algorithm is presented in [5]

that computes all a-values, with time complexity being O(n?) and space complexity O(n).

2.3.4 Simulated Annealing

Simulated annealing, is among the best known local search heuristic algorithms, it
performs quite well and is widely applicable.
In condensed matter physics, annealing is known as a thermal process for obtaining

low energy states of a solid in a heat bath. The process consists of the following two steps
[43]:

e increase the temperature of the heat bath to a maximum value at which the solid

melts;

e decrease carefully the temperature of the heat bath until the particles arrange them-

selves in the ground state of the solid.

It is known that, if the lowering of the temperature is done sufficiently slowly, the
solid can reach thermal equilibrium at each temperature. In the Metropolis algorithm
[44] this is achieved by generating a large number of transitions at a given value of the
temperature. Thermal equilibrium is characterized by the Boltzmann distribution, which
gives the probability of the solid of being in a state / with energy F; at temperature T,

and which is given by

exp (—EZ/kBT>
Z]’ eXp (_Ej/kBT) ’

Pr{X =i} =
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where X is a random variable denoting the current state of the solid and the summation
extends over all possible states.

The following equivalences with combinatorial optimization problems occur.

e solutions in the combinatorial optimization problem are equivalent to states of the

physical system;
e the cost of a solution is equivalent to the energy of a state.

A control parameter ¢; is introduced, which plays the role of the temperature. A fitness
function f is also introduced, which measures the performance for the candidate solution.
A typical feature of simulated annealing is that, besides accepting improvements in cost,
it also accepts deteriorations to a limited extent. In the pseudo-code of algorithm 1, we

can see how the algorithm works.

Algorithm 1: Simulated Annealing [15]

1: procedure SIMULATEDANNEALING (istart, Co, Lo)
2 INITTIALIZE (istart, co, Lo);

3 k < 0;

4: 14— istart;

5: while stopcriterion = FALSE do
6 for [ + 1 to Ly do

7 GENERATE(j from S;);
8

9

if £(j) < f(i) then

L7
10: else
11: if exp (W) > random|0, 1) then
12: 14 7;
13: end if
14: end if
15: end for
16: k< k+1;
17: CALCULATE LENGTH(Lyg);
18: CALCULATE CONTROL(cg);

19: end while
20: end procedure

Therefore for the context of Traveling Salesman Problem, a Simulated Annealing al-
gorithm would commence with a random tour and then proceed based on the k-opt logic
(eg. 2-opt), with the difference that it also accepts solutions that produce decline in the
f(i)—f(j))

overall result, with a relatively small probability, by comparing the value of exp ( o

with a random number on the interval [0,1). It is obvious that the speed of convergence
of the algorithm is determined by the choice of the parameters Lj and ¢ with k=0,1,...,
denoting the iteration step of the algorithm.

Other solutions to the TSP include a variety of approaches, that will not be discussed in
this work. In addition to those mentioned above, notable methods include the Christofides

algorithm, which provides an approximation solution with a guaranteed upper bound, as
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well as the Ant Colony Optimization (ACO) algorithm, inspired by the foraging behavior

of ants, which efficiently explores the solution space to find near-optimal solutions.

2.4 Generalized Traveling Salesman Problem

The Generalized Traveling Salesman Problem (GTSP) is an extension of the classical
Traveling Salesman Problem (TSP) and it is among the most researched combinatorial
optimization problems due to its theoretical properties, complexity aspects and real-life
applications in various areas. The GTSP is one practical extension of the TSP, first intro-
duced by [45], where the set of vertices V is further segmented into n number of groups
and it asks to find a minimum-cost route visting at least one vertex from each group before
reaching the destination.

GTSP could mathematically be defined as follows [46]: Let G = (V, E) be a graph
where V' = {v1,v2,...,v,} is the set of vertices, £ = {(vi,v;)|i # j;vi,v; € V} is the
edge set, and W = {w;;} is the non-negative cost or weightage defined on E. If E is
undirected, then directions become irrelevant, i.e., (vi,v;) = (vj,v;). Furthermore, V is
partitioned into z mutually exclusive and exhaustive groups such that V9 = {V;, V5, ..., V,.}
and V = ViUV U..UV, with V,NV, =0 for all a,8 = 1,2,...,z and a # (. It asks
to determine the shortest Hamiltonian route that passes through each group at least once
(introduced independently by [45], [47]) or exactly once (introduced by [48]). If the matrix
W is symmetrical, i.e., w;; = wj; for all 4,5 = 1,2,...,n and ¢ # j, the problem is prefixed
as symmetric; otherwise, it is asymmetric. This results in many vertices from each group
left to be visited.

-

L

Figure 2.9. [llustration of the GTSP for an instance with 6 clusters
(n=23, m=6). [1]

The exactly once variant of the GTSP is also known as the Equality Generalized
Traveling Salesman Problem, Equality-GTSP or E-GTSP, where the shortest route

contains exactly one vertex, i.e., station, from each group in V9 [46]. The E-GTSP is
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an NP-hard problem [49], as it reduces down to TSP (also NP-hard) whenever individual
groups become singleton (|V,| = 1,Va = 1,2..,z). In this context, a g-tour is a closed
Hamiltonian cycle, that visits exactly one vertex from each group before returning to the

starting point.

2.4.1 Overview of GTSP Solution Approaches

In this section, we examine various approaches to solve the GTSP. We categorize these

approaches based on the optimization techniques they employ [2], as shown below.

Exact Algorithms

The exact methods are cable of producing the optimal solution for a given optimization
problem. Generally, for NP-hard problems, these methods are very time-consuming be-
cause of the complexity of the calculations, thereby making them applicable in very limited
cases. Therefore, exact approaches are adopted in only a few papers and they perform well
only on small problem instances.

[45], [47] and [50] proposed dynamic programming (DP) approaches for solving the
GTSP derived from DP methods for the classical TSP, in which a state is defined by the
clusters that have been already visited. A major drawback of these DP approaches is that
the number of states grows exponentially as the number of clusters increases.

[51] described a branch-and-bound algorithm for solving the GT'SP based on the min-
imal rooted tree as a relaxation. The authors were able to solve instances with up to 13
clusters and 52 vertices optimally.

[48] provided a method based on integer linear programming that can be applied to
both Euclidean and non-Euclidean problems, with the only restriction that the distance
matrix is symmetric. Their proposed exact method was rather effective.

[52] described a branch-and-cut method that generated optimal solutions for problems
with up to 89 clusters and 442 vertices; size still insufficient for real-world applications.
This type of algorithms generally requires very large computation times to solve large

instances.

Transformation methods

Due to the complexity of generalized combinatorial optimization problems, transform-
ing them into classical combinatorial optimization problems is a convenient solution, al-
though such transformations are usually implying a growth in the size of the problems’
instance. Transformation methods of the GTSP into the TSP have been researched in
several works.

The first transformation of the GTSP into the TSP was proposed in [53]. A major
drawback of this transformation is that the number of vertices of the transformed TSP is
more than three times larger than the number of vertices in the corresponding GTSP.

A quite efficient transformation of the asymmetric GTSP into the classical asymmetric

TSP is described in [19]. Their transformation was done in two steps and is characterized
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by the fact that it does not increase the number of vertices but slightly increases the
number of arcs.

[54] proposed a different transformation that dropped off the size of the corresponding
TSP. In their transformation, a GTSP instance is transformed into an instance of the
asymmetric TSP having twice the number of vertices as the original GTSP. Modifying
this transformation, [55] described a more efficient transformation in which the number of
vertices in the transformed TSP does not surpass the number of vertices in the original
GTSP.

Reduction algorithms

An important characteristic of GTSP is that it is not necessary to visit all the vertices
of the graph. The GTSP can contain vertices that do not belong to the optimal solution
and therefore may be eliminated. An analogous situation is encountered regarding the
edges. Thus, reduction algorithms that eliminate either vertices or edges of the underlying
graph might be of interest.

Three reduction algorithms that eliminate redundant vertices and edges, while main-
taining the value of the optimal solution, can be found in [16]. The first reduction algorithm
eliminates the redundant vertices, the second one eliminates the redundant edges, and the
third one both. All proposed reduction methods keep the vertices and edges that are in
the optimal solution. The proposed combined reduction algorithm has a running time of
O(n?) in the worst case scenario, reduced the size of the instance by 15-20% and lowered
the computational time by approximately 45%.

Another reduction method was proposed in [56] . Their pre-processing technique selects
from every cluster the closest vertices to the other clusters and removes the vertices that
have never been chosen to reduce the solution search space size. The proposed method had
very small running times, while the rate of the reduction is up to 98%, very competitive

against the reduction algorithms described in the previous paragraph (proposed in [16]).

Approximation algorithms

Approximation algorithms are polynomial time algorithms that produce approximate
solutions to NP-hard optimization problems, with demonstrable guarantees on the quality
of the solution. The design and analysis of approximation algorithms include a mathemati-
cal proof confirming the quality of the generated solutions in the worst case, distinguishing
them from heuristic approaches, which find reasonably good solutions, but do not provide
any clear indication about the quality of the solutions.

The most prominent research in this direction can be found in the works of [57], [58]
that exploits the classical Christofides approximation algorithm [59]. Also, in later works

[60] and [61].

Heuristic algorithms

When it comes to solving problems faster and traditional methods are too slow, or

when an exact solution cannot be yield by means of a traditional method and a suboptimal
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solution needs to be identified, heuristic algorithms come into play. The main distinction
between these classes of techniques is that exact methods ensure that a solution is optimal,
while heuristic methods may provide good quality solutions but without any assurance of
optimality.

A composite heuristic for solving the GTSP, called Generalized Initialization, Inser-
tion and Improvement, denoted by GI3, which is an extension of the heuristic algorithm
presented in [62] for the classical TSP, was introduced in [63].

A random-key genetic algorithm (GA) for solving the GTSP was proposed in [64]. The
advantage of their approach was that solutions produced by the crossover or the mutation
operators are feasible solutions of the GTSP.

A memetic algorithm in which a genetic algorithm is combined with local search tech-
niques is also provided in [65]. The main contribution of the authors was the originality of
the crossover operator which relies on large neighborhood search.

Helsgaun [1] combined the efficient transformation of the asymmetric GTSP into the
classical asymmetric TSP developed by [19] with the powerful Lin-Kernighan-Helsgaun
(LKH) TSP solver to solve the transformed GTSP instances. In this way, he was able to
improve the quality of the solutions for the GTSP LIB [52] instances over the best existing
algorithms at that time.

An efficient solution approach for solving the GTSP that relies on adaptive large neigh-
borhood search, called GLNS, was presented in [17]. Their algorithm removes and inserts
vertices over and over again into the generalized tour. Its main characteristic is the in-
troduction of a general insertion mechanism that includes as specific cases the well-known
nearest, farthest, and random insertion mechanisms.

A basic iterated local search (Basic ILS) and a refined version of the algorithm (Refined
ILS) was provided in 2022 in [18].

2.4.2 Evaluation Datasets

The existing datasets used for testing the performance of different solution approaches

for the GTSP belong to four libraries, as analyzed in [2].

1. GTSP_LIB was proposed in [52] organizes vertices into clusters based on their prox-
imity to each other. It iteratively selects m = [n/5] cluster centers, ensuring that
each chosen center maximizes its distance from the nearest previously selected center.
The remaining vertices are assigned to the cluster whose center is closest to them.
This way of clustering the vertices simulates the geographical regions. GTSP_LIB
contains 88 symmetric and asymmetric instances with up to 1084 vertices and 217
clusters. The instances were acquired from the Reinelt’s TSP _LIB [66].

2. BAF LIB was proposed in [67], by Bontoux as part of his PhD thesis. The instances
from this library were derived as well from Reinelt’s TSP _LIB [66]. A main feature
of generating the clusters is that there are no geographical regions, like before, and
the clusters are generated pseudo-randomly. BAF LIB contains 56 instances which

are symmetric with up to 1084 vertices and 217 clusters.
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3. MOM _ LIB was introduced in [68] initially for the case of the clustered TSP, then for
the GTSP and the clustered shortest-path tree problem [69]. MOM LIB includes
six kinds of Euclidean instances which were generated using distinctive algorithms
[68]. There were small instances with vertices ranging from 30 to 120, and clusters
ranging from 2 to 42. There were large instances with vertices ranging from 108 to

3000, and partitioned into clusters ranging from 4 to 200.

4. LARGE_LIB was proposed in [1] and has 44 very large, symmetric instances with
the number of clusters ranging from 10 to 17.180 and the number of vertices ranging
from 1.000 to 85.900. These instances were derived from TSP LIB and the National
TSP benchmark library [70]. The clusters were obtained using Fischetti’s clustering
procedure [52].

2.4.3 Comparative Analysis of Existing Algorithms

The best performing state of the art algorithms for solving the GTSP that have been

published in the literature are:
e the memetic algorithm (MA) described by Gutin & Karapetyan (2010) [16],

o the Lin-Kernighan-Helsgaun (LKH) solution approach provided by Helsgaun (2015)

(1,

e the large neighborhood search (LNS) algorithm described by Smith & Imeson (2017)
[17],

e a basic iterated local search (Basic ILS) and a refined version of the algorithm (Re-

fined ILS) provided by Schmidt & Irnich (2022) [18].

Pop et al in their work [2], thoroughly describe the comparisons between these state of
the art solvers for GTSP. We summarize this analysis in the following paragraphs.

The box plots of the success rates and the average percentage errors obtained on dif-
ferent GTSP libraries based on the processed results are shown in Fig.2.10 - Fig.2.13.

The success rate of an algorithm, when solving an instance, represents the percentage
of runs at which it found the Best Known Solution (BKS). The percentage error e that

occurs when an instance is solved by an algorithm is given by the following formula:

foundSolution — BK S
e =100 - BRS %

In conclusion, based on the above, we observe that the LNS algorithm, also called
GLNS, described in [17] by Smith & Imeson showed the best overall performance. Yet,
considering the GTSP _LIB dataset, and only there, Helsgaun’s GLKH method [1] showed
slightly superior performance.

Both solutions are thoroughly presented in the two following subsections.
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Figure 2.10. Box plots of the success rate for five algorithms on the GTSP_LIB and
MOM __LIB instances [2]
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Figure 2.11. Box plots of the success rate for five algorithms on the BAF LIB and
LARGE LIB instances [2]
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2.4.4 GLKH Solution

This solution transforms the E-GTSP problem to a TSP and employs the LKH algo-
rithm to solve the instance. It is well known that any E-GTSP instance can be transformed
into an asymmetric TSP instance containing the same number of vertices. This work takes
advantage of the approach introduced by Noon & Bean in [19], who state that he transfor-
mation can be described as follows, where V' and ¢’ denote the vertex set and cost matrix

of the transformed instance:
1. V' isequal to V.

2. Create an arbitrary directed cycle of the vertices within each cluster and define

c’i; = 0 when v; and v; belong to the same cluster and v; succeeds v; in the cycle.

3. When v; and v; belong to different clusters, define céj = cij + M, where vy, is the
vertex that succeeds v; in a cycle, and M is a sufficiently large constant. It suffices

that M is larger than the sum of the n largest costs.
4. Otherwise, define ¢/;; = 2M.

This transformation works because once a cluster is entered at a vertex v;, an optimal
TSP tour always visits all other vertices of the cluster before moving to the next cluster.
The optimal TSP tour must have zero cost inside the cluster and the inter-cluster edges
must be exactly m . Thus, the cost of the g-tour for the E-GTSP is the cost of the TSP
tour minus mM . The g-tour can be extracted by selecting the first vertex from each cluster
in the TSP tour.

The aforementioned transformation allows one to solve E-GTSP instances using an
asymmetric TSP solver. However, in the past this approach has had very little application,
due to the unusual structure of the produced TSP, which is hard to handle for many existing
TSP solvers. Since a near-optimal TSP solution may correspond to an infeasible E-GTSP
solution, heuristic TSP solvers are often considered inappropriate [71, 72]. In [1], it is
shown that this need not be the case if the heuristic TSP solver LKH is used.

The E-GTSP solver based on LKH, also referred to as GLKH, follows a structured
procedure to solve the problem efficiently. First, it reads the E-GTSP instance and then
transforms it into an asymmetric TSP instance. Next, it writes the transformed TSP
instance to a problem file and specifies suitable parameter values in a separate parameter
file. Once the input files are prepared, the solver executes LKH using these files. After
obtaining the solution to the TSP instance, GLKH extracts the g-tour from the TSP
solution tour. Finally, it performs post-optimization of the g-tour, refining the solution

further to improve its quality.

2.4.5 GLNS Solution

Smith and Imeson in their work in 2017 [17| proposed the GLNS solution for the
Equality Generalized Traveling Salesman Problem (GTSP). This solver operates under
the general framework of adaptive large neighborhood search (ALNS) [73]. The idea is
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relatively simple. We begin with an initial solution and then iteratively destroy and repair
until a termination condition is reached. In the ALNS framework there are two types
of heuristics, one for insertions and one for removals. Weights are associated with each
one and are being updated during the procedure. This mechanism of altering the weights

results to the name adaptive.

The GLNS algorithm can be seen right below.

Algorithm 2: GLNS(G, Py) [17]

1: Input: A GTSP instance (G, Py). ©> G: Graph, Py: partition of vertices V into sets
2: Output: A GTSP tour on G.

3: for i =1 to num_trials do

4: T < initial _tour(G, Py)

5: Tbest,z‘ T

6: repeat

7 Select a removal heuristic R and insertion heuristic I using the selection weights
8: Select the number of vertices to remove, N,, uniformly randomly from

{1, ..., Nmax}
9: Create a copy of T called Thew
10: Remove N, vertices from Tyey using R
11: For each of the N, sets not visited by Ty, using I insert a new vertex into
Tnew

12: Locally re-optimize Thew

13: if w(Thew) < w(Thest,;) then

14: Tbest,i < Thew

15: end if

16: if accept(Thew, ') then

17: T < Thew

18: Record improvement made by R and I

19: end if
20: until stop criterion is met
21: Update selection weights based on improvements of each heuristic over trial
22: end for

23: return tour Thes; that attains min; w(Thest,:)

The algorithm starts with an initial (random) tour. It repeatedly performs removals
and insertions, updating at the end the scores of each removal and insertion heuristic based
on their success. It randomly selects the number of vertices to be removed, uniformly in
the range 1 to Nyq.. Based on a simulated annealing criterion (line 16 of algorithm) it
accepts or declines the modified tour Tj,e,. Then certain stopping criteria are employed.
The first phase is an initial descent, which stops after a fixed number of non-improving
iterations. The second consists of several warm restarts, each one beginning with the best
solution found so far, yet with a lower simulated temperature. Each restart also ends after
a certain number of non-improving steps.

Four insertion heuristics were proposed [52] for iteratively constructing the GTSP tour:

e Nearest insertion picks the set V; that contains a vertex v at minimum distance to a
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vertex on the partial tour 7'. This means that we choose the set V; as follows:

argmin min dist (V;, u) .
ViePy\Pp UEVT

o Furthest insertion picks the set V; whose closest vertex to a vertex on the partial

tour T is maximum. This means:

argmax min dist (V;,u) .
ViePy\Pr uEVT

e Random insertion picks uniformly randomly from Py \Pp , a set V;.

e Cheapest insertion picks the set V; that contains the vertex v that minimizes the

insertion cost, as follows:

argmin min _ {w(z,v) +wv,y) —w(z,y)}
%EPV\PT UE‘/Z,(x,y)GET

The above can be unified into a single insertion heuristic and thus all of them can be
selected based on certain probabilistic criteria (thoroughly discussed in [17]).

A removal heuristic framework is described in the algorithm below.

Consider a partial tour T' containing [ € {m — N, + 1,...,m} vertices, where for
simplicity of notation, the vertices are numbered such that Vp = {1,...,y;} and Ep =
{(vi,v2), (v2,v3),...,(v;,v1)}. Then, for a fixed parameter A and a set of distances r; for

each v; € Vr, the general removal framework is specified in the following algorithm.

Algorithm 3: Removal heuristic framework for a given A and distance metric r;.

1: Input: A partial tour 7' = (Vp, E7), A € [0,00), and values r; for each v; € Vp

2: Output: A new tour with one vertex removed from Vp

Randomly select k € {1, ...,1} according to the unnormalized probability mass function
A A, A

Pick the vertex v € Vr with the kth smallest value r;.

Remove v from Vp

Remove (vj_1,v;) and (vj,vj41) from Ep and add (vj_1,v;41) to Ep.

return T’

w

The weights for both the insertions heuristics employed and the removal ones are being

adapted /updated after each iteration. The score for each iteration is calculated as follows:

score = max { ) = 0 (Toew ) o}

w(T)

This score gives the fractional improvement in tour cost, where the max ensures that
we do not penalize a heuristic when it increases the tour cost. At the end of a trial, the
overall score for a heuristic is given by the sum of its scores, divided by the number of
times it was used (i.e. the average score). We then update the weight of each heuristic as

€ times the previous weight plus 1 — € times the average score on the trial.
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Local tour optimization techniques are also employed. Two of them are the Re-Optimize
Vertex in Fach Set (Re-Opt), and Move-Opt. The first one re-optimizes the vertex in each
set, keeping the ordering of the sets fixed, while the latter attempts to optimize the ordering

of the sets. More information can be retrieved from the original work in [17].

2.5 Available Technologies

There are several available technologies that would help us handle and solve our prob-

lem. Our work primarily is based on the following;:

e C-++, which is a high-level, general-purpose programming language created by Dan-

ish computer scientist Bjarne Stroustrup in 1985,

e Julia language, which is a dynamic programming language primarily designed for
numerical analysis and computational science. It offers high-performance capabilities

and is increasingly popular among researchers and scientists, and

e ROS, which stands for Robot Operating System. It is an open-source robotics middle-
ware suite. It also offers tools and libraries that help developers create complex and

robust robot applications.
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GTSP Planner Implementation

3.1 Introduction

As already discussed in the introduction of this thesis, we want to solve a quite complex
multi-objective optimization problem. A user is going to select a set of elements that
need to be automatically inspected. Our programs should propose an optimal sequence of
waypoints in order to maximize the visibility of the targets for the inspection task, while
simultaneously proposing a low-cost route.

Many ideas can be stated to solve this optimization problem. We propose a solution
that breaks down the problem into to smaller ones and solve each one effectively and effi-
ciently. It’s main components are the selection of possible waypoints (arranged in clusters),
the solution to a path-planning problem between these points to generate a cost matrix
and the solution of a Generalized Traveling Salesman Problem based on the elements that

the user wants to be inspected.

3.2 Data Format

The data with which we work with consists of information retrieved after a quite infor-
mative walk of the robot in the high voltage facility’s outdoor environment. The robot was
tele-operated and covered a satisfying distance, yet not all the environment extensively.
The route it followed can be seen in Figure 3.1. In the following paragraphs the format of
the data available is thoroughly presented. Later on, based on this information we propose
our methodology /solver.

Elevation data is presented in Figures 3.1, 3.2, and 3.3. In Figure 3.1 the elevation is
depicted in the super-safe edition, which exclusively refers to the map of the route that the
robot followed during the data-gathering walk. Figure 3.2 illustrates the entire mapping
of the environment which as expected is not as accurate since the robot did not cover the
entire distance. This mapping was generated using algorithms based on the data collected
by the robot. Therefore, precise measurements of each region are crucial for accurately
creating the map. Finally, Figure 3.3 provides a side-view perspective of the elevation data.

The elevation data combined with the roughness of the terrain, the slope and proper
calculations resulted in the traversability map, shown in Fig. 3.6, 3.7. The data we work

with in this work is binary (0 and 1); zero values represent non-traversable areas, while
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ones represent traversable ones. In the aforementioned figures, ones are shown by the
puprle cells, while zeros by the black. A next step is to transform the traversability map
to account for a range of values, from non traversable cells and low traversible points to
higher ones. The algorithms we use work for both approaches.

With the proper analysis and implementation of our team, based on ray-casting algo-
rithms, visibility maps were generated. Some of them can be seen in Figures 3.4 and 3.5,
each one referring to a different element. We can easily detect zones where the visbility is
high for the certain element, red indicating the best points. Based on the above implemen-
tation each element might also has a different visibility map for each side of it, depending

on which exact part of it we want to inspect.

Figure 3.1. Top-view of the route that the robot followed on its data-gathering
walk. The colors indicate the elevation data. In the left-side there there is low
elevation, while in the right-side is higher.

3.3 Methodology

In order to solve the problem we developed a method, which is described in detail in
flowchart of Fig. 3.8. The method can be divided into two separate procedures. The
one runs offline, once, and its the data preprocessing step. The second part functions on
demand, triggered whenever a user requests a plan.

In flowchart of Fig. 3.8 the first two brackets, named "Calculate interesting points"
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Figure 3.2. The whole map of the envi- Figure 3.3. Elevation data of the envi-
ronment based on the data the robot gath- ronment, side-view. Left-side shows low
ered and analyzed. Color shows elevation elevation, while right-side much higher.
data. Color indicates elevation data.

Figure 3.4. Representation of the visibility data for an element. We can see the

whole map, as well as the part with high visibility coloured. Red indicates better
vistbility score.
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Figure 3.5. Representation of the visibility data for an element. We
can see the whole map, as well as the part with high visibility coloured.
Red indicates better visibility score.

Figure 3.6. Representation of the traversability data for the whole map.
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Figure 3.7. Representation of the traversability data for the super-safe map.

and "Compute Offline Distances" respectively refer to the preprocessing step, while the
two last brackets refer to solving the exact problem instance.

In the following subsections we delve into how these procedures exactly work.

3.3.1 Calculate Interesting Points

The 1st step is to calculate the interesting points, where interesting refers to points
with high visibility scores for every possible element that might need inspection in the
future. Each element is analyzed separately based on its visibility data. A cluster of points
(where cluster size > 1) is generated, with points indicating high visibility of the exact
target.

In Fig 3.9, a simple visual explanation is shown to demonstrate the need of point
clustering. For each element, there might be more than one point with good visibility
score. We need to consider many of them as visiting potential waypoints for our planning
and optimize later in the path-planning steps. Needless to say that the points within the
cluster must have some distance between them so as to provide adequate differentiation.
In Fig 3.9, the x’s represent the extracted waypoints and the rectangles the elements to be
inspected.

In order to determine these interesting points for each element, we employ a greedy
algorithm based on the information provided from the visibility maps (eg. Fig. 3.4-3.5).

To begin, we preprocess the data by assigning the average score of a 0.5m radius region
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Figure 3.8. A flowchart to better explain the created procedure.
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Figure 3.9. One possible scenario to better explain how the clustering works. Rect-
angles are the elements to be inspected, while the z’s represent viewpoints and form
clusters respectively.
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to each cell of the gridmap. This approach prioritizes visiting regions with high scores
rather than individual points.

Next, we sort each point based on its score using the C-language standard library
sort function, which employs the introsort algorithm for sorting, which is a is a hybrid
sorting algorithm that provides both fast average performance and optimal worst-case
performance.

Then the greedy algorithm takes place. It works as follows. It firstly chooses the point
with the best score, produced by the sorting. If multiple points share the same score, it
randomly selects one among them. Then it proceeds to select the next best point that
is not within a 1.5m radius of any previously chosen interesting points. This process
continues until either five points have been selected or no additional points with scores
above a certain threshold are found.

In the Figure 3.10 we can see as an example a clusters of three points (yellow markers),

depicted above the visibility map in reference to a certain element.

Figure 3.10. An example of a cluster of points extracted, visualized with yellow markers
wn the visibility map. The points appear to be into red zones, with some distance between
them.

3.3.2 Compute Distances

The 2nd step of our procedure immediately follows the calculation of the interest-
ing/high scoring visibility points and the appropriate clustering, described before.
This offline pre-processing step occurs only once, and its primary objective is to prepare

the necessary information, compute the distances between the points, for extracting optimal
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plans later on. Optimality is not the primary concern at this stage, as it runs once and
offline. Yet, accurate calculations are essential due to the fact that the will be repeatedly
exploited in the next steps and determine the accuracy of the solutions.

So, we have a list of interesting points extracted from the previous step. Between all
these pair of points we want to calculate the exact cost based on the traversability map’s
data.

The outcome we wish for, with the following priority, is
1. the highest possible accuracy of the calculations (i.e. exact cost),
2. lowest possible complexity for the above.

To achieve the outcome we want with relatively low complexity, we employ the A*
algorithm, with euclidean heuristic function, so as to produce heuristic proposals always
lower or equal to the actual distance to the goals and thus be admissible. We run for each
pair of points. The advantages of the selection of this algorithm are also emphasized in
Chapter 2.

Therefore we create a full matrix, as shown in Figure 3.11, where each point refers to
a traversal cost (e.g. (i,j) refers to the cost from point i to point j). We perform such
a solution because we want to adapt our traversability maps for binary to range values,
creating thus a costmap based on elevation and other terrain information that are going

to create asymmetries.

i I k
i 0 (i,3) (i,k)
] (3,1) 0 (3,k)
k (k,1) (k,3) Y

Figure 3.11. Full distance matriz format. (a,b) refers to the traver-
sal cost from node a to node b.

3.3.3 Solve An Instance of the Problem

This step is not executed off-line, is the one executed on demand. When the user

specifies the elements for the autonomous inspection, certain steps are taken.
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With proper retrieval of the information analyzed in the previous steps we have insight
about the possible points we are going to visit, how the clusters are formed and the distances
between all these points. In reality we have a big distance matrix possessing all the possible
pairs’ distances, the clusters we want to visit, and which points are located into these
clusters. A proper slicing takes place in this original matrix and a new one is retrieved
consisted only of points that might be waypoints in the specific problem’s solution.

After we have created the matrix we transform it to the appropriate file format for the

GTSP Solvers to solve, as shown right below.

Listing 3.1: GTSP File Format for Solvers

NAME: GTSP_ format explanation
TYPE: GTSP

DIMENSION: 6

GTSP_SETS: 3

EDGE_WEIGHT TYPE: EXPLICIT
EDGE WEIGHT FORMAT: FULL MATRIX
EDGE_WEIGHT SECTION

0 200 2310 6052 404 10912

240 0 2166 5895 634 10719
2326 2195 0 3900 2724 8801
6195 6031 3978 0 6599 4888
434 639 2723 6457 0 11356
10869 10598 8697 4725 11217 0
GTSP_SET SECTION

113 -1

2245 —1

36 1

EOF

The above file describes a problem and will be used by a GTSP solver to be solved.
It describes a relatively small problem consisted of 6 total points and 3 clusters/sets (1st
one consisted of points numbered 1 and 3, 2nd of {2,4,5} and 3rd one consisted just of
one point numbered 6). The EDGE WEIGHT SECTION depicts the retrieved matrix
just for the appropriate points. Notice that the matrix might also be non symmetrical for
datasets that are not binary and account for a range of values. For example a lower cost
is assigned if a traversal happens to be downhill, than uphill etc. For our analysis, due to
the fact that we work with a binary traversability map, the matrices are symmetric.

Solvers give the optimal sequence of points. GLKH’s solution for example is "3, 6, 4".
The (z,y) coordinates of these points are also avalaible, so our output are the coordinated
of the waypoints the robot is going to visit with the proper sequence.

Both GLKH and GLNS Solvers were employed and tested. Our dataset is quite small
to extract conclusions on which is better for it by testing it. We need to determine based
on characteristics of it.

A thorough analysis of the different state-of-the-art solvers and a benchmarking of
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which one performs better in each of the available datasets is presented thoroughly in
Chapter 2. A first thought would be to categorize our dataset’s format as more similar
to GTSP_LIB. Yet although the clusters are formed like geograpichal regions, there are
certain scenaria, like the one shown in Fig. 3.12, where the points might not be located
in such an orchestrated way. We concluded that GLNS Solver is going to be our solver,

which showed the best overall performance in the aforementioned analysis.

Figure 3.12. Cluster example to illustrate a possible scenario

3.4 Implementation
In order to implement the above, we used the following technologies and tools.

e We decided to implement our code in C++, in order to result in relatively high-

performing executable files with ROS integration.

e We used the ROS framework for our implementation and exploited some functions
from the libaries gridmap, costmap and navfn. They mainly helped in handling the
map’s data, using the format both provided by gridmap and costmap. Then we could
implement our greedy algorithm for the computation of the interesting points, and

experiment with different planners for creating the distance matrices.

e We then used the GTSP Solvers GLKH and GLNS, provided by the authors of these
papers (widely available in the Internet). The latter needs Julia language properly

configured in our machines for it to run.
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e Last but not least, we used the RViz ROS tool which helped us in the visualization
of each part of our contribution. Some output images from these visualizations are
the ones shown in our analysis in Chapters 3 and 4. It helped a lot debug mistakes

of our code, as well as extract useful conclusions.

The code of our implementation will be made available on the GitHub profile of @and-

vatistas for broader access.
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Experimental Results

In this chapter, we present the experimental results of the proposed GTSP planner, for
the inspection task problem we want to solve in an outdoor high-voltage facility environ-
ment. The data for our experiments was captured from a high voltage facility in Pallini,

Greece.

4.1 Setup

In the context of our specific solution a ROBOTNIK mobile robot, model named SUM-
MIT XL [74] is being used for the navigation in the high-voltage facility. The robot
is equipped with a LiFePo4 15Ah@48V battery, a DualShock 4 PS4 controller for tele-
operation (if needed for testing things), a Jetway JNF797-Q370 Intel® 8th Generation
Core™ i7 as CPU, 250GB SSD, 8GB RAM, encoders in wheels, "VectorNav VN-100T-CR"
Inertial measurement unit (IMU), "Orbbec Astra S" RGB Camera, 3D Laser Robosense
RS LIDAR 16, GPS u-blox C099-F9P-1 and 4G TELTONIKA RUTX11 router. Figures
4.1 and 4.2 depict the robot in a close-up photo, and in the outdoor environment.

The algorithms of our contribution run in our computers (or on the user’s one). The
optimal sequence of the points is then being given to the robot to execute the task. Yet,

it is useful and important to have mind the actual configuration.

4.2 Experimental Data

As already discussed in Chapter 3, a quite informative tele-operated data gathering walk
of our robot, originally took place in the high-voltage facility’s outdoor environment. Based
on the information received and the proper analysis of it, elevation maps, traversability
maps and visibility ones were created. These exact maps retrieved, are the ones also
presented as indicative examples in Figures of Chapter 3, in the "Data Format" section,
Section 3.2.

Additionally, information from the robot’s sensors properly analyzed resulted in the
creation of the point-cloud seen in Figures 4.3 and 4.4, where each point represents a
single point of the environment. We can easily detect from this point of view several
electric poles of the high voltage facility, one next to the other, referring to poles as seen

in Figure 1.2 for example.
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Figure 4.1. The mobile robot we work
with

Figure 4.2. Our mobile robot in the high voltage facility
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Figure 4.3. Point cloud of part of the environment. We can easily
detect some electric poles, one next to the other.

Figure 4.4. Alternative visualization for the point cloud of part of the
environment. We can easily detect some electric poles, one next to the
other.
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Also, a representation of the elevation map, combined with the above 3d information
is presented in Figure 4.5. We can easily detect with black the electric poles and the other
related elements. Simultaneously the colormap indicates the values of the elevation in each
cell. High elevation values are represented with red colors, while bluer ones represent lower

values.

Figure 4.5. Elevation map combined with the 3d representation of the points in
the outdoor high-voltage facility.

4.3 Results Analysis

As thoroughly already discussed, the result of our planner is the optimal sequence
of point coordinates that the robot should visit to optimize its multi-target inspection
task. Based on the selected elements for inspection and the environment’s related data,
our programs operate according to the proposed flowchart and recommend the optimal
sequence of points to be visited.

Except for this waypoints’ sequence, we can additionally visualize the extracted paths,
that our global planner calculated, as shown in Fig. 4.6. This way we can gain insight
about the high-level plan of the route that the robot is going to follow. With yellow
markers we can see the interesting points, while the green line connects these points based
on the global path-planning proposal. Red and black cells indicate traversable areas and
non-traversable respectively. As one would expect it only visits one point from each cluster

and moves through traversable cells.
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Figure 4.6. Ezample of optimal tour extracted for the inspection of 4 elements. Yellow
markers show the interesting points, while the green line shows roughly the proposed path.

Our dataset is really small compared to the instances of the libraries that the GTSP
Solvers were originally tested. Our selected solver can extract the optimal routes in frac-
tions of a second for our cases (5-30 elements). Given that we refer to an NP-hard task, a
benchmarking here is out of the scope of this thesis. A qualitative analysis was conducted
across various scenarios, such as the one depicted in Fig. 4.6. This analysis primarily
served to confirm that our algorithms functioned as intended and helped us in debugging
during the development phase.

Therefore an extensive qualitative analysis was conducted. In each figure from the
ones shown below we solve the problem of the inspection task of 4 different elements. The
difference between Figures 4.7-4.11 lies in the starting point.

The starting points can be seen with the blue markers. Four clusters respectively appear
and are consisted of the points visualized as yellow markers. Also, the traversability map
is shown in red (red equals traversable, black non-traversable areas), and the point cloud
of the 3d map’s representation in brown. With green line we can see the proposed optimal
path.

These experiments confirm that our procedure functions as intended. The running
times are remarkably low, while simultaneously the extracted paths for each example are
optimal. We can easily detect that each time, a different waypoint for each cluster might
be chosen. For instance, in the first two scenarios depicted in Fig.4.7 and in Fig.4.8,
concerning the upper right cluster of yellow interesting points, a different waypoint was
finally selected as one can easily distinguish.

Our next step for enhancing our results could be an inflation around the objects and
generally non-traversable areas of the map, and/or an application of morphological filters.

As a result, the robot will be guided through even safer areas, as sometimes it seems to
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Figure 4.7. Ezample 1 of optimal tour extracted for the inspection of 4 elements. Yellow
markers show the interesting points, while the green line shows roughly the proposed path.
Blue marker indicates the starting point, different each time.

Figure 4.8. Example 2 of optimal tour extracted for the inspection of 4 elements. Yellow
markers show the interesting points, while the green line shows roughly the proposed path.
Blue marker indicates the starting point, different each time.
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Figure 4.9. Fzxample 3 of optimal tour extracted for the inspection of 4 elements. Yellow
markers show the interesting points, while the green line shows roughly the proposed path.
Blue marker indicates the starting point, different each time.

Figure 4.10. Example 4 of optimal tour extracted for the inspection of 4 elements. Yellow
markers show the interesting points, while the green line shows roughly the proposed path.
Blue marker indicates the starting point, different each time.
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Figure 4.11. Ezxzample 5 of optimal tour extracted for the inspection of 4 elements. Yellow
markers show the interesting points, while the green line shows roughly the proposed path.
Blue marker indicates the starting point, different each time.

suggest paths that pass through quite narrow passages that may produce danger.



Chapter

Conclusions

5.1 Brief Summary of Thesis Contributions

In this thesis we addressed with a mutli-objective optimization problem for an inspec-
tion task of a mobile robot in an outdoor environment. We broke the problem down to
seperate subproblems and solved each one optimally.

In Chapter 2 we conducted a comprehensive examination of the existing knowledge
within the literature, offering an in-depth analysis. The chapter commenced with an ex-
ploration of key terminology and fundamental concepts essential for comprehending sub-
sequent discussions. Our focus then shifted to the path-planning problem, distinguishing
between online and offline aspects, with an emphasis on the most widely employed offline
methodologies; specifically the Dijkstra algorithm and the A* algorithm. We described
these algorithms in depth, provided pseucode and discussed their pros and cons. Then, we
discussed the Traveling Salesman Problem and described some prominent approaches, im-
portant for developing a fundamental understanding. This foundational knowledge served
as a crucial cornerstone for the subsequent exploration of the Generalized Traveling Sales-
man Problem (GTSP). Our investigation of the GTSP consisted of its mathematical for-
mulation, an extensive overview of GTSP solutions, and a benchmark evaluation of the
state of the art algorithms. We then presented some key technologies and tools, used for
applications such as ours.

We developed an approach characterized by two distinct stages. The one performed
offline for the calculation of interesting/high-scoring visible points and for the cost compu-
tation for the traversal between them. The second one performed on demand which deals
with the exact problem and proposes the optimal sequence of waypoints to be visited.

After a thorough analysis we employ a greedy algorithm for determining the interesting
points, A* for determining the cost matrix and GLNS Solver for solving the GTSP.

Our approach can also be used in several other applications. Needless to say, it can be
used in underwater and aerial inspection tasks. Besides, it can be adapted for a range of
other purposes with suitable adjustments. For instance, it could be employed to come up
with efficient plans for autonomous robotic operations, such as search and rescue missions
(covering larger areas by visiting optimal waypoints) and robotic construction applications
(for example in welding). Additionally, it could tackle challenges in various other domains

where GTSP finds applications (ranging from PCB creation/testing and computer networks
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to tourism and sightseeing).

5.2 Future Research Directions

The future development of this work could explore several promising directions.

One direction of research involves refining our method for identifying potential inter-
esting points. By enhancing the algorithms and techniques used in this process, we can
improve the accuracy and effectiveness of our point selection. A more sophisticated system
for determining interesting points could result in clusters with a greater number of points
and with higher total average score. Thus leading to more efficient and effective solutions.

Another intriguing possibility is adapting our solution to leverage a fleet of mobile
robots. This approach has the potential to significantly enhance the scalability of our
system. By coordinating multiple robots to work together, we can cover larger areas
more quickly and handle more complex environments. The development of algorithms and

protocols for robot collaboration also presents a really exciting research challenge overall.
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