

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΑΛΕΞΑΝΔΡΟΣ ΓΚΙΤΣΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Συλλογή ραδιοβιολογικών δεδομένων για ανθρώπινες κυτταρικές σειρές σε έκθεση ακτινοβολίας γ

Επιβλέπων καθηγητής: ΑΛΕΞΑΝΔΡΟΣ ΓΕΩΡΓΑΚΙΛΑΣ

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΕΡΙΛΗΨΗ	.3
ABSTRACT	.4
ΕΥΧΑΡΙΣΤΙΕΣ	.5
ΚΕΦΑΛΑΙΟ 1 Χαρακτηριστικά ιοντιζουσών ακτινοβολιών	
1.1 Ορισμός των ιοντιζουσών αντινοβολιών	6
1.2 Προέλευση ιοντιζουσών αντινοβολιών	6
1.3 Η Ανακάλυψη των ιοντιζουσών ακτινοβολιών και η ιστορία των ακτινών γ	7
 1.4 Μηχανισμοί αλληλεπίδρασης ακτινοβολίας γ με την ύλη 1.4.1 Φωτοηλεκτρικό φαινόμενο 1.4.2 Φαινόμενο Compton 1.4.3 Δίδυμη γέννηση 	9 .10 11
ΚΕΦΑΛΑΙΟ 2 Στοιχεία Βιολογίας	
2.1 Εισαγωγή	12
2.2 Συστατικά των ευκαρυωτικών κυττάρων	.12
 2.3 Οργανίδια των κυττάρων 2.3.1 Πλασματική μεβράνη 2.3.2 Πυρήνας 2.3.3 Ριβοσώματα 2.3.4 Μιτοχόνδρια 2.3.5 Ενδοπλασματικό δίκτυο 2.3.6 Σύμπλεγμα Golgi 2.3.7 Λυσοσώμα 2.3.8 Υπεροξειδοσώματα 2.3.9 Κυτταρικός σκελετός 	14 15 15 16 16 16 .17 .17
2.4 Κυτταρικος κυκλος	.17
 2.6 Βιολογική δράση της ιοντίζουσας ακτινοβολίας 2.6.1 Άμμεση δράση 2.6.2 Έμμεση δράση 	.22
 2.7 Βλάβες και επιδιόρθωση του DNA 2.7.1 Εισαγωγή	25 25 25
2.7.4 Αλκυλίωση	25 26

2.7.5 Αβασικά σημεία	
2.7.6 Επιδιόρθωση με εκτομή βάσεων	
2.7.7 Interstrand DNA crosslinks	
2.7.8 Θραύσεις απλής έλικας – SSB	
2.7.9 Θραύσεις διπλής έλικας – DSB	
2.7.10 Ομόλογος και μη ομόλογος ανασυδυσμός	
ΚΕΦΑΛΑΙΟ 3 Μέθοδος	

3.1 Καμπύλη επιβίωσης κυττάρων	.30
3.2 Γραμμικό-τετραγωνικό μοντέλο LQ	31
3.3 Πίνακας συλλογής ραδιοβολογικών δεδομένων	.33
3.4 Πρόγραμμα WebPlotDigitizer	36
3.5 Ο Υπολογισμός του γραμμικού και του τετραγωνικού συντελεστή	
3.5.1 Ο κώδικας σε γλώσσα Python	39
3.5.2 Το λογισμικό Origin	40
3.5.3 Παράδειγμα υπολογισμού γραμμικού και τετραγωνικού συντελεστή	για
μια καμπύλη επιβίωσης	41

3.6 Ρυθμός επαγωγής δίκλωνων θραύσεων ανά Gy avá Gbps......43

3.7 Monte Carlo Damage Simulation (MCDS)

3.7.1	Η χρήση και ο αλγόριθμος του MCDS	45
3.7.2	Αρχεία εισόδου και εξόδου	
3.7.3	Παράδειγμα χρήσης του MCDS	55

ΚΕΦΑΛΑΙΟ 4 Αποτελέσματα

4.1 Συλλογή ρ σειρών	αδιοβιολογι	κών δεδομένα	ων ανθρο 	ύπινων 	κυτταρικών 58
4.2 Ο λόγος <i>α/β</i>	•••••	•••••		•••••	63
4.3 Παρατηρήσει α/β	ς και σχόλια	για τους συντ	ελεστές α,	β και τον	ν λόγο 69
4.4 Πειραματι DSB/(Gbp·Gy)	κές και	θεωρητικές	τιμές	ρυθμού	επαγωγής 71
ΣΥΜΠΕΡΑΣΜΑ	•••••		•••••	• • • • • • • • • • • •	72
ПАРАРТНМА		••••••		•••••••••	73
ΒΙΒΛΙΟΓΡΑΦΙΑ		• • • • • • • • • • • • • • • • • • • •			94

ΠΕΡΙΛΗΨΗ

Η ιοντίζουσα ακτινοβολία αλληλεπιδρά με την ύλη και προκαλεί ιοντισμό στα άτομα που την απαρτίζουν. Σε βιολογικό επίπεδο η αλληλεπίδραση γίνεται με τα βιολογικά μόρια που περιέχονται σε έναν ζωντανό οργανισμό, ιδιαίτερα με αυτό του DNA. Το μόριο του DNA είναι συνεχώς εκτεθειμένο στην ιοντίζουσα ακτινοβολία, έτσι οι ιονισμοί προκαλούν αλλαγές στην μορφολογία του μορίου με αυτό να συνεπάγεται στην δημιουργία μεταλλάξεων, καρκινογενέσεων ή ακόμα και στον κυτταρικό θάνατο. Οι τρεις αυτές συνέπειες μπορούν να αποτραπούν με την βοήθεια επιδιορθωτικών μηχανισμών που διαθέτει το κύτταρο.

Η επιβίωση των κυττάρων εξηγείται με διάφορα μοντέλα που έχουν αναπτυχθεί. Ένα τέτοιο μοντέλο είναι το γραμμικό-τετραγωνικό (LQ) μοντέλο. Με βάση το μοντέλο αυτό και με την βοήθεια κάποιων εργαλείων εξάγονται και επεξεργάζονται οι πληροφορίες που περιέχονται στα διαγράμματα επιβίωσης κυττάρων. Τα διαγράμματα αυτά έχουν ληφθεί από μελέτες που έχουν γίνει σε ανθρώπινα κύτταρα αφού εκτεθεί σε συνθήκες ακτινοβολίας γ. Για τα κύτταρα αυτά υπολογίζουμε τις πειραματικές τιμές των α, β που είναι δύο συντελεστές του μοντέλου LQ όπως επίσης και τον λόγο τους α/β . Τέλος, η πειραματικές τιμές του λόγου α/β των κυττάρων συγκρίνονται με τις αντίστοιχες βιβλιογραφικές τιμές.

Εκτός από τον υπολογισμό των α και β, εκτελέστηκε μια προσομοίωση. Η προσομοίωση αυτή ήταν το MCDS (Monte Carlo Damage Simulation). Το MCDS προσομοιώνει την δημιουργία βλαβών στο DNA όταν το κύτταρο εκτίθεται σε ιοντίζουσα ακτινοβολία σε διάφορες συγκεντρώσεις οξυγόνου. Οι τιμές που εμφανίζονται μετά το τέλος της προσομοίωσης είναι οι θεωρητικές και συγκρίνονται με τις πειραματικές τιμές οι οποίες προκύπτουν από διαγράμματα σχηματισμού βλαβών που προέρχονται από άλλες μελέτες.

Στόχος της διπλωματικής εργασίας ήταν να δημιουργηθεί μια συλλογή από ραδιοβιολογικά δεδομένα ανθρώπινων κυτταρικών σειρών μετά από έκθεση σε ακτινοβολία γ η οποία θα βοηθήσει στην περαιτέρω μελέτη της συμπεριφοράς των κυττάρων σε ιοντίζουσα ακτινοβολία. Η παρούσα διπλωματική εργασία αποτελεί ένα μέρος μιας ευρύτερης μελέτης, μιας διδακτορικής διατριβής της Β. Ζαννή.

ABSTRACT

Ionizing radiation interacts with matter and causes to its atoms ionization. In biological level the interaction happens with biological molecules contained in a living organism, especially with DNA. The DNA molecule is constantly exposed in ionizing radiation, so the ionizations cause alterations in the molecule morphology, which leads to mutations, carcinogenesis or even cellular death. These three consequences can be prevented by repair mechanisms that are equipped in the cell.

Various developed models can explain the cell survival. One of these models is the linear-quadratic model. Based on this model and with the help of some tools, information from cell survival diagrams is taken and processed. These diagrams have been taken by gamma radiated human cell studies. For these cells we compute the experimental alpha, beta values, which are two coefficients of LQ model as well as their ratio alpha/beta. Finally, the experimental alpha/beta ratio value of cells is compared to the equivalent literature values.

Apart from alpha and beta computation, a simulation has been executed. This simulation is MCDS (Monte Carlo Damage Simulation). MCDS simulates the DNA damage formation during the presence of ionizing radiation in various oxygen concentrations. The values appearing at the end are the theoretical values and they are compared to experimental values derived by damage formation diagrams coming from other studies.

The purpose of this thesis was the creation of human cell lines radiobiological data collection after gamma radiation exposure. The creation of such a collection will contribute to additional study of cell response to ionizing radiation. Also this thesis consist a part of a greater study, a doctoral thesis by V. Zanni

ΕΥΧΑΡΙΣΤΙΕΣ

Τελειώνοντας την διπλωματική εργασία, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου, Αλέξανδρο Γεωργακίλα για την εμπιστοσύνη που έδειξε, για την συνεργασία μας και για την βοήθεια που προσέφερε μέσω των παρατηρήσεων του και μέσω της επίλυσης αποριών που είχα έτσι ώστε να γίνει η ολοκλήρωση της με επιτυχία.

Θα ήθελα ακόμα να ευχαριστήσω την διδακτορικό Βάσω Ζαννή η οποία επίσης μου έλυσε πολλές απορίες σχετικά με την διπλωματική. Μου έδειξε επίσης τον τρόπο λειτουργίας των απαραίτητων εργαλείων, όπως είναι το WebPlotDigitizer, το MCDS και ένας κώδικας γραμμένος σε γλώσσα Python έτσι ώστε να γίνει σωστά και αποτελεσματικά η επεξεργασία των δεδομένων. Θα ήθελα επίσης να την ευχαριστήσω που ανέπτυξε και μοιράστηκε τον κώδικα Python μαζί μου.

Τέλος θα πρέπει να ευχαριστήσω του γονείς μου, την αδερφή μου και τους φίλους μου οι οποίοι ήταν παρόντες κατά τη διάρκεια αυτής της δύσκολης και μακροχρόνιας διαδικασίας μέσω της ψυχολογικής υποστήριξής που μου παρείχαν.

ΚΕΦΑΛΑΙΟ 1

Χαρακτηριστικά ιοντιζουσών ακτινοβολιών

1.1 Ορισμός των ιοντιζουσών αντινοβολιών

Ιοντίζουσα ακτινοβολία ονομάζεται το είδος της ακτινοβολίας το οποίο έχει την ικανότητα να απομακρύνει ηλεκτρόνια από άτομα ή μόρια. Κάθε φορά που πραγματοποιείται αυτή η αλληλεπίδραση, προκύπτουν ένα άτομο ή μόριο που είναι θετικά φορτισμένο και ένα ηλεκτρόνιο που ως γνωστόν φέρει αρνητικό φορτίο. Ο λόγος για τον οποίο συμβαίνει αυτό το γεγονός είναι ότι η ενέργεια σύνδεσης των ηλεκτρονίων είναι πολύ μικρότερη από την ενέργεια της προσπίπτουσας ακτινοβολίας. Πιο συγκεκριμένα, η ενέργεια σύνδεσης των ηλεκτρονίων είναι της τάξης των μερικών ηλεκρονιοβόλτ (eV) ενώ των ιοντιζουσών ακτινοβολιών μπορεί να φτάνει και στην τάξη των MeV. Η ιοντίζουσα ακτινοβολία ονομάζεται και ως ακτινοβολία υψηλής ενέργειας.

Οι ιοντίζουσες ακτινοβολίες διαθέτουν τρία χαρακτηριστικά. Ένα χαρακτηριστικό τους είναι ότι παρουσιάζουν διεισδυτικότητα, μπορούν να διέρχονται στο εσωτερικό ενός υλικού σε σημαντικό βάθος χωρίς να έχει σημαντικές απώλειες ενέργειας. Μερικά είδη ακτινοβολιών, ως δεύτερο χαρακτηριστικό, μπορεί να είναι φορτισμένα με αποτέλεσμα κατά τη διέλευσή τους μπορεί να προκαλέσουν διαταραχές στην ισορροπία των ηλεκτρικών δυνάμεων ανάμεσα στα δομικά συστατικά των ατόμων και των μορίων. Το τρίτο και τελευταίο γνώρισμα είναι η μεγάλη τους ενέργεια. [1]

Λόγω της ύπαρξης των χαρακτηριστικών που αναφέρθηκαν, οι ιοντίζουσες ακτινοβολίες προκαλούν βιολογικά αποτελέσματα όταν γίνεται αλληλεπίδραση με τα κύτταρα. Μπορεί στο γενετικό υλικό ενός κυττάρου να προκληθούν βλάβες με αποτέλεσμα το κύτταρο να μετατραπεί σε καρκινικό ή να υποστεί θάνατο. [2]

1.2 Προέλευση ιοντιζουσών αντινοβολιών

Η προέλευση των ιοντιζουσών ακτινοβολιών μπορεί σχετίζεται με φυσική πηγή είτε με ανθρωπογενή πηγή. Στις φυσικές πηγές περιλαμβάνονται η κοσμική ακτινοβολία και τα κάποια από τα συστατικά που περιέχονται στον φλοιό της γης και στη θάλασσα. Μια συνιστώσα της κοσμικής ακτινοβολίας είναι τα πρωτόνια. Τα πρωτόνια αλληλεπιδρούν με τα μόρια της ατμόσφαιρας και παράγονται νετρόνια χαμηλής και μη ενέργειας. Τα νετρόνια που έχουν χαμηλή ενέργεια αντιδρούν με το άζωτο και παράγεται το τρίτιο ³Η που στην συνέχεια ενσωματώνεται στους υδρατμούς και στο νερό της βροχής. Τα νετρόνια που δεν έχουν χαμηλή ενέργεια όταν αντιδρούνν με το άζωτο παράγεται ραδιενεργός άνθρακας ¹⁴C το οποίο με τη μορφή του διοξειδίου του άνθρακα απορροφάται από τους ζωντανούς οργανισμούς.

Στον φλοιό της γης υπάρχουν ραδιενεργά συστατικά. Εκτός από τα ουρανιούχα πετρώματα, ενδιαφέρον παρουσιάζουν το ραδιενεργό ισότοπο του

καλίου ⁴⁰K και το ραδόνιο. Το ραδιενεργό κάλιο αποτελεί το 0.0012% του φυσικού καλίου. Το ραδιενεργό κάλιο δεν βρίσκεται μόνο στον γήινο φλοιό, αλλά και στην θάλασσα. Λόγο της μεγάλης αφθονίας του φυσικού καλίου, ένα μεγάλο ποσοστό της θερμότητας οφείλεται στη διάσπαση του ραδιενεργού καλίου. Το ραδόνιο είναι ευγενές αέριο που απελευθερώνεται από τα πετρώματα. Το αέριο αυτό έχει την τάση να συγκεντρώνεται σε κλειστούς χώρους, εισέρχεται στον ανθρώπινο οργανισμό μέσω της αναπνοής και κάνει διασπάσεις.

Στις ανθρωπογενείς πηγές περιλαμβάνονται μέθοδοι διάγνωσης ασθενειών και θεραπείας μορφών καρκίνου. Σε αυτήν την περίπτωση μπορεί να χρησιμοποιούνται οι ακτίνες Χ αλλά και διάφορα τεχνητά ραδιοϊσότοπα. Ένα από τα τεχνητά ραδιενεργά που χρησιμοποιούνται στην ιατρική είναι το τεχνήτιο. Επίσης άλλες πηγές αυτής της κατηγορίας είναι τα πυρηνικά εργοστάσια για την παραγωγή ηλεκτρικής και η χρήση της ραδιενέργειας για ερευνητικούς σκοπούς. [3]

Εικόνα 1 Το φάσμα της ηλεκτρομαγνητικής ακτινοβολιας [4]

1.3 Η Ανακάλυψη των ιοντιζουσών ακτινοβολιών και η ιστορία των ακτινών γ

Η ανακάλυψη των πρώτων μορφών ιοντίζουσας ακτινοβολίας έγινε μέσω της παρατήρησης του αποτελέσματος της αμαύρωσης που εμφανιζόταν στις φωτογραφικές πλάκες. Οι ακτίνες X και ορισμένα πετρώματα ουρανίου ήταν αυτά που είχαν την ιδιότητα αμαύρωσης. Όταν πραγματοποιήθηκαν περισσότερα πειράματα, πρόκυψε ότι η ακτινοβολία των πετρωμάτων ουρανίου αποτελείται από τρεις συνιστώσες ανάλογα με το πως συμπεριφέρονται όταν διέρχονται μέσα σε ένα μαγνητικό πεδίο. Οι συνιστώσες αυτές λόγω άγνοιας της φύσης τους ονομάστηκαν ακτινοβολίες α, β και γ. Η πρώτη εκτρέπεται ως ένα σωματίδιο με θετικό φορτίο, η δεύτερη ως ελαφρύ σωματίδιο με αρνητικό φορτίο ενώ η τρίτη δεν παρουσιάζει εκτροπή της πορείας στο πεδίο. Η ακτινοβολία α αποτελείται από πυρήνες ηλίου που προέρχονται από την σχάση πυρήνων που έχουν ατομικό αριθμό μεγαλύτερο από τον μόλυβδο, η ακτινοβολία β είναι ηλεκτρόνια ή ποζιτρόνια που προέρχονται από την μεταστοιχείωση ενός πυρήνα πλούσιο σε νετρόνια ή πρωτόνια σε έναν ισοβαρή σταθερό πυρήνα, ενώ η ακτινοβολία γ προκύπτει από την αποδιέγερση πυρήνων που αρχικά βρίσκονται μια σχετικά υψηλή ενεργειακή κατάσταση και καταλήγουν σε μια χαμηλότερη. [3,5]

Η ανακάλυψη των ακτινοβολιών α και β προηγείται από την ανακάλυψη των ακτινών γ και οφείλεται σε πείραμα που πραγματοποίησε ο Ernest Rutherford το 1899. Εφόσον το θέμα της παρούσας διπλωματικής εργασίας σχετίζεται με τις γ, αξίζει περισσότερο να αναφερθεί η ιστορία που υπάρχει πίσω από αυτές. Οι ακτίνες γ ανακαλύφθηκαν το 1900 από τον Paul Villard. Ο Villard χρησιμοποίησε μία θωράκιση κατασκευασμένη από μόλυβδο. Μέσα στην θωράκιση τοποθέτησε μια αμπούλα η οποία περιείχε χλωριούχο βάριο και ράδιο. Η θωράκιση είγε ένα μικρό άνοιγμα από το οποίο έβγαινε μια ευθυγραμμισμένη δέσμη. Σε μία συγκεκριμένη απόσταση από την έξοδο της δέσμης τοποθετήθηκαν δύο φωτογραφικές πλάκες και ανάμεσά τους ένα φύλλο μολύβδου με πάγος 0.3 mm. Οι φωτογραφικές πλάκες μαζί με το μολύβδινο φύλλο τυλίχθηκαν με χαρτί. Στην παραπάνω διάταξη επίσης εφαρμόστηκε εξωτερικά ένα μαγνητικό πεδίο. Η ακτινοβολία α παραλείπονταν από το πείραμα καθώς το χαρτί την απορροφούσε. Στο τέλος του πειράματος, οι δύο φωτογραφικές πλάκες παρουσίαζαν διαφορά. Η πρώτη φωτογραφική πλάκα (αυτή που ήταν πιο κοντά στην πηγή) είχε δύο κηλίδες, μια κηλίδα που δημιουργήθηκε από ακτινοβολία που επηρεάζεται από το μαγνητικό πεδίο και μία κηλίδα που προέρχεται από την ανεπηρέαστη ακτινοβολία σημειώθηκε με το γράμμα «γ». Η πρώτη κηλίδα σημειώθηκε με το γράμμα «β» (πρόκειται για την ακτινοβολία β) και η δεύτερη κηλίδα σημειώθηκε με το γράμμα «γ». Η δεύτερη φωτογραφική πλάκα είχε μόνο μία κηλίδα, επειδή η μία ακτινοβολία απορροφήθηκε από το μολύβδινο φύλλο. Στη δεύτερη φωτογραφική πλάκα η κηλίδα είχε την ίδια αμαύρωση με την κηλίδα που σημειώθηκε με το γράμμα πρώτης πλάκας. Επομένως με το συγκεκριμένο πείραμα $\langle \langle \gamma \rangle \rangle$ της ανακαλύφθηκε ένας νέος τύπος ακτινοβολίας. Η καινούρια ακτινοβολία δεν εκτρέπεται από το μαγνητικό πεδίο όπως γίνεται με την α και β, και μάλιστα παρουσιάζει διεισδυτικότητα μεγαλύτερη από τις ακτίνες Χ. Αργότερα η ακτινοβολία που παρουσιάζει αυτά τα χαρακτηριστικά ονομάστηκε γ. [6]

Εικόνα 2 Πειραματική διάταξη του Paul Villard για την ανακάλυψη των ακτίνων γ [6]

Εικόνα 3 Οι πλάκες μετά την ακτινοβόληση από τις ακτίνες που προέρχονται από το ράδιο [6]

1.4 Μηχανισμοί αλληλεπίδρασης ακτινοβολίας γ με την ύλη

1.4.1 Φωτοηλεκτρικό φαινόμενο

Ως φωτοηλεκτρικό φαινόμενο χαρακτηρίζεται η εκπομπή ηλεκτρονίων από ένα μέταλλο η οποία προκαλείται όταν γίνεται πρόσπτωση ηλεκτρομαγνητικής ακτινοβολίας στην επιφάνειά του. Στην πραγματικότητα ο όρος χρησιμοποιείται σήμερα με ένα πολύ ευρύτερο περιεχόμενο. Δηλώνει την απόσπαση ηλεκτρονίου από οποιοδήποτε σύστημα, είτε αυτό είναι άτομο είτε μόριο ή στερεό όταν το ηλεκτρόνιο είναι δέσμιο.

Η ανακάλυψη του φωτοηλεκτρικού φαινομένου έγινε από τον Heinrich Hertz το 1887 όταν πειραματιζόταν με τα ηλεκτρομαγνητικά κύματα. Από τις παρατηρήσεις των πειραμάτων δημιουργήθηκε μεγάλο ενδιαφέρον και στη συνέχεια πραγματοποιήθηκαν ακόμα περισσότερα πειράματα. Από τα αποτελέσματα αυτών διαπιστώθηκε ότι:

- Από τις ακτινοβολούμενες μεταλλικές πλάκες εκπέμπονται ηλεκτρόνια και ποτέ ιόντα με θετικό φορτίο.
- Υπάρχει ένα κατώφλι συχνότητας ακτινοβολίας το οποίο σε κάθε μέταλλο είναι διαφορετικό. Η εκπομπή των ηλεκτρονίων είναι εξαρτώμενη από τη συχνότητα της ακτινοβολίας και για να γίνει η εκπομπή θα πρέπει η προσπίπτουσα ακτινοβολία να έχει συχνότητα μεγαλύτερη από μια συχνότητα κατωφλίου.
- Η ένταση που έχει το φωτοηλεκτρικό ρεύμα είναι ανάλογη της έντασης της ακτινοβολίας
- Η ενέργεια των αποσπώμενων ηλεκτρονίων μεταβάλλεται γραμμικά με τη συχνότητα της ακτινοβολίας και παραμένει ανεξάρτητη από την έντασή της.

Εκείνη την εποχή η ύπαρξη των ελεύθερων ηλεκτρόνιων στα μέταλλα ήταν γνωστή και κλασική ηλεκτρομαγνητική θεωρία αποδεχόταν την ύπαρξη του φωτοηλεκτρικού φαινομένου. Χρησιμοποιώντας την κλασική ερμηνεία θεωρούσαν ότι τα ελεύθερα ηλεκτρόνια επιταχύνονται από την προσπίπτουσα ακτινοβολία όμως υπήρχαν αποτυχίες στην εξήγηση κάποιων παρατηρήσεων, μια από της παρατηρήσεις ήταν η εξάρτηση του φαινομένου από την συχνότητα. Ο Einstein εξέτασε να δει ποιο θα ήταν το αποτέλεσμα αν η ακτινοβολία αποτελείται από κβάντα με ενέργεια hf (όπου f η συχνότητα και h η σταθερά Plank). Το ηλεκτρόνιο όταν απορροφά ένα κβάντο, η ενέργεια του αυξάνεται κατά hf. Βέβαια, ένα μέρος της ενέργειας καταναλώνεται στην απόσπαση του ηλεκτρονίου από το μέταλλο. Αυτήν την ενέργεια την ονομάζουμε έργο εξόδου W. Το υπόλοιπο μέρος της ενέργειας προσφέρεται στο ηλεκτρόνιο το οποίο ξεκινά την κίνηση. Η ταχύτητα του ηλεκτρονίου u τελικά δίνεται από τη σχέση:

$$\frac{1}{2}mu^2 = hf - W$$

Η εξίσωση αυτή μπορεί πλέον να εξηγήσει την ύπαρξη του κατωφλίου συχνότητα. [7]

Εικόνα 4 Σχηματική αναπαράσταση του φωτοηλεκτρικού φαινομένου [8]

1.4.2 Φαινόμενο Compton

Το φαινόμενο Compton είναι το φαινόμενο στο οποίο η ηλεκτρομαγνητική ακτινοβολία με μικρό μήκος κύματος σκεδάζεται πάνω σε ελεύθερα ή ασθενώς δέσμια ηλεκτρόνια (μπορεί και σε άλλα φορτισμένα σωματίδια). Όταν η ακτινοβολία σκεδάζεται, το μήκος κύματος αυξάνεται. Όσο μεγαλύτερη είναι η αύξηση του μήκους κύματος τόσο μεγαλύτερη είναι η γωνία σκέδασης. [9]

Σύμφωνα με την κλασική ερμηνεία η εξήγηση του μηχανισμού είναι πολύ απλή. Το ηλεκτρικό πεδίο της ακτινοβολίας προκαλεί ταλάντωση στα ηλεκτρόνια τα οποία με την σειρά τους εκπέμπουν ξανά την ακτινοβολία. Βέβαια η ακτινοβολία που εκπέμπεται από τα ταλαντευόμενα ηλεκτρόνια έχει ίδια συχνότητα με την αρχική, πράγμα που αυτό είναι μια αστοχία. Αν θεωρηθεί ότι η ακτινοβολία αποτελείται από φωτόνια, τότε το φαινόμενο Compton είναι ένα είδος ελαστικής σκέδασης. Πιο συγκεκριμένα το φωτόνιο όταν συγκρούεται με το ακίνητο ηλεκτρόνιο αλλάζει κατεύθυνση και λόγω της αρχής διατήρησης της ορμής το ηλεκτρόνιο θα τεθεί σε κίνηση. Το φωτόνιο μετά την κρούση χάνει ένα μέρος της ενέργειάς του και προσφέρεται στο ηλεκτρόνιο για να αποκτήσει ορμή. Εφόσον το φωτόνιο χάσει ενέργεια τότε το μήκος κύματός του αυξάνεται. [7] Η σχέση που περιγράφει το νέο μήκος κύματος λ' είναι:

$$\lambda' = \lambda_0 + \frac{h}{m_e c} \left(1 - \cos\varphi\right)$$

όπου λ_0 το αρχικό μήκος κύματος του φωτονίου, m_e η μάζα του ηλεκτρονίου και φ η γωνία σκέδασης [7,9]

Εικόνα 5 Το φαινόμενο Compton. Ένα φωτόνιο συγκρούεται με ένα ακίνητο ηλεκτρόνιο (στόχος), το ηλεκτρόνιο τίθεται σε κίνηση ενώ το φωτόνιο αλλάζει κατεύθυνση χάνοντας ενέργεια. [10]

1.4.3 Δίδυμη γέννηση

Η δίδυμη γέννηση είναι η μετατροπή της ακτινοβολίας σε ένα ζεύγος ηλεκτρονίου και ποζιτρονίου. Αυτός τύπος αλληλεπίδρασης με την ύλη παρατηρείται όταν ένα φωτόνιο διέρχεται σε ένα πεδίο Coulomb το οποίο δημιουργείται από έναν πυρήνα ενός ατόμου. Συνεπώς με αυτό το φαινόμενο αυτό δημιουργείται ύλη από ενέργεια. Η ελάχιστη ενέργεια για να δημιουργηθεί ένα ηλεκτρόνιο είναι 511 keV. Ένα φωτόνιο με ενέργεια 511 keV δε μπορεί από μόνο του να μπορεί να δημιουργήσει ένα ηλεκτρόνιο, για αυτό πρέπει να υπάρξει ταυτόχρονα και ένα αντισωματίδιο που να έχει την ίδια μάζα και αντίθετο φορτίο. Με αυτό συνεπάγεται ότι η ελάχιστη ενέργεια που πρέπει να έχει το φωτόνιο για να κάνει δίδυμη γέννηση είναι το άθροισμα των μαζών ηρεμίας του ηλεκτρονίου και του ποζιτρονίου που είναι 1.022 MeV. [6]

Εικόνα 6 Η δίδυμη γέννηση [11]

ΚΕΦΑΛΑΙΟ 2

Στοιχεία Βιολογίας

2.1 Εισαγωγή

Ως κύτταρο ορίζεται η βασικότερη μονάδα της ζωής. Όλα τα ζώα και όλα τα φυτά ως έμβιοι οργανισμοί αποτελούνται από πολλά κύτταρα όπου συνεργάζονται όλα μαζί για να επιτελέσουν μια λειτουργία. Οι οργανισμοί οι οποίοι αποτελούνται από πολλά κύτταρα ονομάζονται πολυκύτταροι. Βέβαια υπάρχουν οργανισμοί οι οποίοι δεν είναι πολυκύτταροι, αλλά μονοκύτταροι οι οποίοι είναι μεμονωμένα κύτταρα. Στους μονοκύτταρους οργανισμούς μπορεί να περιλαμβάνονται τα βακτήρια και τα πρωτόζωα.

Τα κύτταρα αν και μοιράζονται πολλά κοινά χαρακτηριστικά, συνεχίζουν να έχουν διαφορές μεταξύ τους. Τα κύτταρα με την πάροδο των ετών έχουν προσαρμοστεί σε πολλές μορφές περιβάλλοντος και έχουν αναπτύξει διάφορους λειτουργικούς ρόλους. Για παράδειγμα τα νευρικά κύτταρα έχουν μακριές και λεπτές προεκτάσεις οι οποίες συμβάλουν στην γρήγορη μετάδοση των κυττάρων. Τα φυτικά κύτταρα στο εξωτερικό τους διαθέτουν ένα δύσκαμπτο στρώμα το οποίο βοηθά στην στήριξη των φυτικών οργανισμών. Όσο διαφορετικά και αν είναι τα κύτταρα, χρησιμοποιούν τις ίδιες στρατηγικές και μηχανισμούς για να διατηρήσουν την υγεία τους σε φυσιολογικό επίπεδο, να διαλέξουν τις απαραίτητες ουσίες από το εξωτερικό περιβάλλον και να πολλαπλασιαστούν. [12]

Τα κύτταρα ταξινομούνται σε ευκαρυωτικά και σε προκαρυωτικά. Τα κύριο χαρακτηριστικό που χωρίζει τα ευκαρυωτικά από τα πρωκαρυωτικά κύτταρα είναι ότι τα ευκαρυωτικά κύτταρα έχουν πυρήνα σχηματισμένο από μεμβράνη ενώ τα πρωκαρυωτικά δεν έχουν. Σε γενικές γραμμές τα ευκαρυωτικά κύτταρα έχουν πιο πολύπλοκη δομή από τα προκυαρυωτικά, δηλαδή έχουν πολύπλοκο ενδομεμβρανικό σύστημα, κυτταρικό σκελετό και κυτταρικό κύκλο .Επίσης, το γενετικό υλικό των ευκαρυωτικών κύτταρων είναι μεγαλύτερο από αυτό των προκαρυωτικών. [13]

2.2 Συστατικά των ευκαρυωτικών κυττάρων

Τα κύτταρα αποτελούνται από διάφορα είδη συστατικών. Τα συστατικά αυτά είναι το νερό, τα ανόργανα ιόντα και τα οργανικά μόρια.

Το νερό είναι το συστατικό το οποίο βρίσκεται σε μεγαλύτερη αφθονία στο κύτταρο και καταλαμβάνει το 70% της μάζας του κυττάρου. Το νερό έχει μια κρίσιμη ιδιότητα η οποία είναι η πολικότητα. Στο μόριο του νερού τα άτομα του υδρογόνου έχουν ελαφρώς θετικό φορτίο και το άτομο του οξυγόνου έχει ελαφρώς αρνητικό φορτίο. Λόγω της πολικής αυτής φύσης, το μόριο του νερού δημιουργεί δεσμούς υδρογόνου μεταξύ άλλων μορίων νερού ή άλλου είδους μορίων με πολικότητα. Η πολικότητα επιτρέπει επίσης στα μόρια του νερού να αλληλεπιδρούν με αρνητικά ή θετικά φορτισμένα ιόντα. Οι παραπάνω αλληλεπιδράσεις καθιστούν τα πολικά μόρια και τα ιόντα να είναι ευδιάλυτα

στο νερό, ενώ τα μόρια που δεν χαρακτηρίζονται από πολικότητα είναι δυσδιάλυτα. Τα ευδιάλυτα συστατικά ονομάζονται αλλιώς υδρόφιλα, ενώ τα δυσδιάλυτα ονομάζονται υδρόφοβα.

Στο νερό υπάρχουν διαλυμένα ιόντα τα οποία καταλαμβάνουν το 1% της μάζα του κυττάρου. Τα ανόργανα ιόντα που περιέχει το κύτταρο είναι τα ιόντα νατρίου (Na⁺), καλίου (K⁺), μαγνησίου (Mg²⁺), ασβεστίου (Ca²⁺) και χλωρίου (Cl⁻). Επίσης περιέχονται φωσφορικά ιόντα (PO₄³⁻) και όξινα ανθρακικά ιόντα (HCO₃⁻). Τα ιόντα αυτά συμμετέχουν σε σειρά διαδικασιών μεταβολισμού, για αυτό παίζουν σημαντικό ρόλο στην λειτουργία των κυττάρων.

Τα οργανικά μόρια των κυττάρων ταξινομούνται σε τέσσερις κατηγορίες: τους υδατάνθρακες, τα λιπίδια, οι πρωτεΐνες και τα νουκλεϊκά οξέα. Οι πρωτεΐνες, τα νουκλεΐκά οξέα και οι περισσότεροι υδατάνθρακες δημιουργούνται είναι μακρομόρια τα οποία δημιουργούνται από την σύνδεση εκατοντάδων ή χιλιάδων μορίων σχετικά μικρού μοριακού βάρους (πολυμερισμός). Τα μακρομόρια αποτελούν το 80 με 90% της ξηρής μάζας του κυττάρου. Το υπόλοιπο ποσοστό περιλαμβάνει μικρές οργανικές ενώσεις και δομικά συστατικά μακρομορίων.

Οι υδατάνθρακες περιλαμβάνουν τα απλά σάκχαρα (μονοσακχαρίτες) και τους πολυσακχαρίτες. Η γλυκόζη είναι ένα απλό σάκχαρο και είναι το βασικό θρεπτικό συστατικό των κυττάρων. Οι υδατάνθρακες δεν προορίζονται μόνο στην διάσπασης τους για παροχή ενέργειας στο κύτταρο, άλλα είναι ένα σημείο έναρξης για την παραγωγή άλλων ουσιών. Οι πολυσακχαρίτες είναι μορφές αποθήκης των σακχάρων και συμμετέχουν στον σχηματισμό δομικών μερών κυττάρων. Δύο συνηθισμένοι πολυσακχαρίτες είναι το γλυκογόνο που απαντάται στα ζώα και το άμυλο που απαντάται στα φυτά.

Τα λιπίδια συμμετέχουν σε τρεις σημαντικούς ρόλους για την λειτουργία των κυττάρων. Τα συστατικά αυτά χρησιμοποιούνται ως μια μορφή αποθήκης ενέργειας, αποτελούν δομικά συστατικά για τις μεμβράνες των κυττάρων και γρησιμοποιούνται στην διαδικασία της κυτταρικής σηματοδότησης. Τα πιο απλά λιπίδια είναι τα λιπαρά οξέα, οποία αποτελούνται από μακριές αλυσίδες υδρογονανθράκων και σε μια από τις άκρες των αλυσίδων υπάρχει συνδεδεμένη μια καρβοξυλική ομάδα. Τα λιπαρά οξέα χωρίζονται σε ακόρεστα και κορεσμένα ανάλογα με το αν έχει ή αν δεν έχει η ανθρακική αλυσίδα τουλάχιστον έναν διπλό δεσμό. Τα λιπαρά οξέα αποθηκεύονται στην μορφή των τριγλυκεριδίων, τα οποία αποτελούνται από τρία μόρια λιπαρών οξέων συνδεδεμένα σε ένα μόριο γλυκερόλης. Τα τριγλυκερίδια είναι πιο αποτελεσματικές μορφές αποθήκης ενέργειας από τους υδατάνθρακες καθώς απελευθερώνουν δυο φορές περισσότερη ενέργεια ανά μονάδα μάζας. Όπως αναφέρθηκε προηγουμένως οι μεμβράνη των κυττάρων αποτελείται από λιπίδια. Το κυριότερο λιπίδιο ου είναι συστατικό των μεμβρανών είναι τα φωσφολιπίδια. Τα φωσφολιπίδια διαφέρουν από τα τριγλικερίδια διότι στο μόριο της γλυκερόλης υπάρχουν δύο αλυσίδες υδρογονανδράκων και ναι φωσφορική ομάδα. Η φωσφορική ομάδα είναι υδρόφιλη, ενώ οι αλυσίδες είναι υδρόφοβες.

Στο κύτταρο υπάρχουν δυο είδη νουκλεϊκών οξέων, το δεοξυριβονουκλεϊκό οξύ (DNA) και το ριβονουκλεϊκό οξύ (RNA). Το DNA είναι το γενετικό υλικό των κυττάρων. Το RNA περιλαμβάνει τρία είδη που

συμμετέχουν στην διαδικασία της πρωτεϊνοσύνθεσης, το αγγελιοφόρο RNA το μεταφορικό RNA και το ριβοσωμικό RNA. Τα νουκλεϊκά οξέα ως μακρομόρια έχουν ως δομικά συστατικά τα νουκλεοτίδια.

Όσον αφορά τις πρωτεΐες, κύριος ρόλος των πρωτεϊνών είναι τα πραγματοποιούν διεργασίες όπως ορίζει το γενετικό υλικό. Κάθε κύτταρο περιέχει αρκετές χιλιάδες πρωτεΐνες οι οποίες πραγματοποιούν ένα μεγάλο εύρος από λειτουργίες. Ο ρόλος των πρωτεϊνών διαθέτει πολλές μορφές. Οι πρωτεΐνες λειτουργούν ως δομικό συστατικό των κυττάρων και των ιστών. μεταφέρουν και αποθηκεύουν μικρά μόρια, βοηθούν στην μετάδοση πληροφοριών από ένα κύτταρο σε άλλο και συμβάλουν στην άμυνα κατά των λοιμώξεων. Η πιο θεμελιώδης ιδιότητα των πρωτεϊνών είναι να λειτουργούν ως ένζυμα και καταλύτες για την πραγματοποίηση χημικών αντιδράσεων στα βιολογικά συστήματα. Οι πρωτεΐνες είναι αλυσίδες οι οποίες προκύπτουν από τον συνδυασμό είκοσι διαφορετικών μορίων (μονομερή) που ονομάζονται αμινοξέα. Οι πρωτεΐνες δομικά δεν μοιάζουν απλά με αλυσίδες από αμινοξέα, η δομή τους μπορεί να εξελίσσεται σε στάδια. Τα στάδια είναι η πρωτογενής δομή η οποία δείγνει από πόσα και ποια αμινοξέα αποτελείται η πρωτεΐνη, η δευτερογενής δομή στην οποία τα αμινοξέα ταξινομούνται σε περιορισμένες περιοχές στην πολυπεπτιδική αλυσίδα (πρωτεΐνη) με αποτέλεσμα η αλυσίδα να παίρνει πεπλατυσμένη μορφή ή μορφή έλικας, η τριτογενής δομή όπου στην πολυπεπτιδική αλυσίδα γίνεται η τελική αναδίπλωση στον χώρο με τέτοιο τρόπο που πλευρικές αλυσίδες αμινοξέων που βρίσκονται σε διαφορετικές περιογές της πρωτογενούς δομής αλληλεπιδρούν μεταξύ τους. Στην τριτογενή δομή η πρωτεΐνη αποκτά λειτουργικότητα. Στις πρωτεΐνες η τριτογενής δομή είναι το τελευταίο στάδιο εξέλιξης. Βέβαια υπάρχουν πρωτεΐνες οι οποίες εξελίσσονται σε τέσσερα στάδια, δηλαδή περιλαμβάνουν μια δομή που ονομάζεται τεταρτογενής. Στην τεταρτογενή δομή υπάρχουν πολλές πολυπεπτιδικές αλυσίδες που συνδέονται μεταξύ τους για να φτιαχτεί μία **πρωτεΐνη**. [14]

2.3 Οργανίδια των κυττάρων

2.3.1 Πλασματική μεβράνη

Η πλασματική μεμβράνη είναι το σύνορο που χωρίζει το εσωτερικό του κυττάρου με το εξωτερικό περιβάλλον του και αποτελείται από μόρια λιπιδίων. Από μόνη της η πλασματική μεμβράνη είναι μη διαπερατή από ιόντα και από τα περισσότερα υδατοδιαλυτά μόρια. Για να εισέλθουν οι ουσίες στα κύτταρα, θα πρέπει να περάσουν μέσω καναλιών-αντλιών πρωτεϊνικής φύσης.

Οι αντλίες δεν παρέχουν στο κύτταρο μόνο θρεπτικά συστατικά, αλλά ελέγχει και την συγκέντρωση των ιόντων στο εσωτερικό. Εκτός από τις πρωτεΐνες που αποτελούν τις αντλίες υπάρχουν και άλλα δύο είδη πρωτεϊνών που υπάρχουν στην πλασματική μεμβράνη με τα οποία το κύτταρο επικοινωνεί με το εξωτερικό περιβάλλον. Το ένα από αυτά τα είδη δημιουργούν ηλεκτρικά ή χημικά σήματα στο κύτταρο όταν σε αυτά ενωθεί κάποιος εξωτερικός

παράγοντας (π.χ. ορμόνη) και το άλλο είδος βοηθάει το κύτταρο να συνδέεται με άλλα κύτταρα έτσι ώστε να γίνει μία πραγματοποίηση διαδικασίας. [15]

2.3.2 Πυρήνας

Ο πυρήνας είναι το οργανίδιο το οποίο στο εσωτερικό του φιλοξενεί το γενετικό υλικό, δηλαδή το DNA. Το γενετικό υλικό σχετίζεται με λειτουργίες όπως την έκφραση των γονιδίων, την αντιγραφή, τον ανασυνδυασμό και την επιδιόρθωση οι οποίες καθορίζουν τον τρόπο με τον οποίο θα εξελιχθεί η ζωή του κυττάρου. Το πυρηνόπλασμα που είναι το εσωτερικό περιβάλλον του πυρήνα έχει σύνορο μια διπλή μεμβράνη που ονομάζεται πυρηνική μεμβράνη. Η πυρηνική μεμβράνη έχει στην επιφάνειά της πόρους μέσω των οποίων εισέρχονται ή εξέρχονται συστατικά εντός ή εκτός του πυρήνα. Η εισερχόμενη κυκλοφορία στον πυρήνα αποτελείται από πυρηνικές πρωτεΐνες και πρωτεΐνες ριβοσωμάτων, ενώ η εξερχόμενη από mRNA και ριβοσώματα. Τα ριβοσώματα δημιουργούνται από τον πυρηνίσκο. [15]

Το DNA δεν είναι το μοναδικό είδος μακρομορίου που περιέχεται στον πυρήνα. Ο πυρήνας περιέχει πρωτεΐνες οι οποίες κατανέμονται στο πυρηνόπλασμα και τον πυρηνίσκο. Περιέχει επίσης κατιόντα νατρίου, καλίου και μικρές συγκεντρώσεις κατιόντων ασβεστίου σε σχέση με τα προηγούμενα δύο ιόντα. Τα κατιόντα αυτά βρίσκονται σε μεγαλύτερη αφθονία από τα αντίστοιχα ανιόντα λόγω των αρνητικά φορτισμένων φωσφορικών ομάδων και πρωτεϊνών που αυτές με τη σειρά τους υπερισχύουν σε ποσότητα τις θετικά φορτισμένες πρωτεΐνες.[16]

2.3.3 Ριβοσώματα

Τα ριβοσώματα είναι οργανίδια στα οποία γίνεται η σύνθεση των πρωτεϊνών. Το mRNA προερχόμενο από τον πυρήνα συνδέεται με ένα ριβόσωμα και αυτό με την σειρά του δημιουργεί μια πρωτεΐνη της οποίας τα αμινοξέα θα έχουν τέτοια ακολουθία όπως ορίζει η ακολουθία των νουκλεοτιδίων του mRNA. [15]

2.3.4 Μιτοχόνδρια

Τα μιτοχόνδρια διασπούν τα θρεπτικά συστατικά που λαμβάνει το κύτταρο ώστε να γίνει η σύνθεση της τριφωσφορικής αδενοσίνης ATP. Η παραγωγή της ATP γίνεται με την βοήθεια ενζύμων που παράγει το ίδιο το μιτοχόνδριο. Η ATP στη συνέχεια χρησιμοποιείται στην πραγματοποίηση αντιδράσεων που απαιτούν ενέργεια.

Ο τρόπος για να παράγουν τα μιτοχόνδρια ATP είναι να χρησιμοποιηθεί μοριακό οξυγόνο για να γίνει η οξείδωση των λιπιδίων, των πρωτεϊνών και των σακχάρων σε διοξείδιο του άνθρακα και νερό. Τα μιτοχόνδρια επίσης αντιδρούν σε τοξικά ερεθίσματα από το περιβάλλον και προκαλούν στο κύτταρο απόπτωση, δηλαδή κυτταρικό θάνατο. Αυτό γίνεται με ένα σύνολο από ένζυμα που διασπούν τις πρωτεΐνες και τα νουκλεϊκά οξέα καθώς το

κύτταρο σπάει σε κομμάτια. [15]Σε ένα κύτταρο δεν είναι μόνο ο πυρήνας που περιέχει DNA, αλλά και τα μιτοχόνδρια. [17]

2.3.5 Ενδοπλασματικό δίκτυο

Οι πρωτεΐνες που προορίζονται για τη κυτταρική μεμβράνη και το εξωκυτταρικό περιβάλλον σχετίζονται με το ενδοπλασματικό δίκτυο. Το ενδοπλασματικό δίκτυο είναι ένα συνεχές σύστημα από μεμβρανώδεις πεπλατυσμένους σάκους και σωληνίσκους. Οι πρωτεΐνες που σχετίζονται με το ενδοπλασματικό δίκτυο φέρουν αλληλουχίες σημάτων από αμινοξέα που στοχεύουν τα ριβοσώματα τους στους υποδοχείς του ενδοπλασματικού δικτύου. Η περιογή του ενδοπλασματικού δικτύου που φέρει προσκολλημένα ριβοσώματα ονομάζεται αδρό ενδοπλασματικό δίκτυο. Καθώς μια πολυπεπτιδική αλυσίδα αναπτύσσεται, η αλληλουχία των αμινοξέων της καθορίζει εάν η πρωτεΐνη θα αναδιπλωθεί στην λιπιδική διπλοστοιβάδα ή μεταφερθεί σε άλλο σημείο της κοιλότητας του ενδοπλασματικού δικτύου. Ένζυμα που περιέχονται στο ενδοπλασματικό δίκτυο προσθέτουν πολυμερή σακχάρων σε μερικές πρωτεΐνες που εκτίθενται στην κοιλότητα. Κάποιες πρωτεΐνες παραμένουν στο ενδοπλασματικό δίκτυο ενώ άλλες μεταφέρονται σε άλλα μέρη του κυττάρου. Το ενδοπλασματικό χαρακτηρίζεται από μια δυναμικότητα. Κινητικές πρωτεΐνες κινούνται κατά μήκος των σωληνίσκων για να τραβήξουν τις μεμβράνες του ενδοπλασματικού δικτύου σε ένα διακλαδιζόμενο δίκτυο που εκτείνεται στο κυτταρόπλασμα. Η συνεχής αυτή κίνηση μετακινεί κυστίδια που βρίσκονται ανάμεσα στο ενδοπλασματικό δίκτυο και το σύμπλεγμα Golgi. Τα κυστίδια αυτά κουβαλούν ευδιάλυτες πρωτεΐνες, επιπροσθέτως μεταφέρουν λιπίδια μεμβράνης και πρωτεΐνες. ενδοπλασματικό δίκτυο περιέχει ένζυμα Επίσης, το τα οποία συνθέτουν πολλά κυτταρικά λιπίδια και μεταβολίζουν φάρμακα καθώς και αντλίες-κανάλια τα οποία ρυθμίζουν την συγκέντρωση των ιόντων ασβεστίου στο κυτταρόπλασμα. [15]

2.3.6 Σύμπλεγμα Golgi

Στο κέντρο του κυττάρου κοντά στον πυρήνα υπάρχει ένα οργανίδιο του ονομάζεται σύμπλεγμα Golgi. Το σύμπλεγμα Golgi είναι ένα μεμβρανώδες οργανίδιο το οποίο αποτελείται από πεπλατυσμένους σάκους και πολλές κύστες. Μια από τις λειτουργίες που πραγματοποιεί το οργανίδιο αυτό είναι να συνθέτει πολύπλοκες δομές υδατανθράκων που μπορεί να βρίσκονται σε πρωτεΐνες και λιπίδια. Το σύμπλεγμα Golgi είναι ένα σημαντικό σημείο στο οποίο οι πρωτεΐνες και τα λιπίδια ταξινομούνται για να μεταφερθούν σε συγκεκριμένες τοποθεσίες εντός του κυττάρου. [15,18]

2.3.7 Λυσοσώμα

Το λυσόσωμα είναι ένα μεμβρανώδες οργανίδιο που περιέχει αποικοδομητικό ένζυμο. Μετά από την σύνθεση από το αδρό ενδοπλασματικό δίκτυο, οι λυσοσωμικές πρωτεΐνες κινούνται μέσα στο σύμπλεγμα Golgi, όπου ένζυμα προσθέτουν ένα τροποποιημένο σάκχαρο, την φωσφοριλιωμένη μανόζη. Οι λυσοσωμικές πρωτεΐνες μεταφέρονται στην κοιλότητα του λυσοσώματος με την βοήθεια κυστών οι οποίες κατευθύνονται σε υποδοχείς φωσφορυλιωμένης μανόζης. Όταν ένα κύτταρο καταναλώνει μικροοργανισμούς ή άλλα υλικά δημιουργείται μια μεμβρανώδης κύστη που ονομάζεται ενδόσωμα. Το περιεχόμενο του ενδοσώματος μεταφέρεται στο λυσόσωμα για να διασπαστεί από το λυσοσωμικό ένζυμο. [15]

2.3.8 Υπεροξειδοσώματα

Τα υπεροξειδιοσώματα είναι οργανίδια περιβαλλόμενα από μεμβράνη που στο εσωτερικό τους περιέχουν ένζυμα τα οποία συμμετέχουν στην πραγματοποίηση οξειδωτικών αντιδράσεων. Τα ένζυμα των υπεροξειδιοσωματίων οξειδώνουν τα λιπαρά οξέα αλλά η ενέργεια δεν χρησιμοποιείται για να παραχθεί ΑΤΡ όπως γίνεται με τα μιτοχόνδρια.[15]

2.3.9 Κυτταρικός σκελετός

Στο κυτταρόπλασμα υπάρχει ένα δίκτυο πρωτεϊνών το οποίο διατηρεί το σχήμα που έχουν τα κύτταρα και γενικά προσφέρει μηχανική στήριξη σε αυτό. Αυτό το δίκτυο πρωτεϊνών ονομάζεται κυτταρικός σκελετός και διακρίνεται σε τρία είδη πρωτεϊνικών πολυμερών, τα νημάτια ακτίνης, τα ενδιάμεσα νημάτια και τους μικροσωληνίσκους. Κάθε πολυμερές έχει τις δικές του γαρακτηριστικές ιδιότητες και δυναμικές. Τα νημάτια ακτίνης και οι μικροσωληνίσκοι παρέχουν διαδρομές για τις κινητικές πρωτεΐνες οι οποίες συμβάλουν στην κίνηση των κυττάρων. Τα νημάτια ακτίνης προσδένονται στην κυτταρική μεμβράνης και ενισχύουν την επιφάνεια του κυττάρου. Τα ενδιάμεσα νημάτια είναι ευλύγιστα και δυνατοί ενδοκυτταρικοί τένοντες οι οποίοι είναι χρήσιμοι όταν το κύτταρο υπόκειται σε φυσικές καταπονήσεις. Τα ενδιάμεσα νημάτια δημιουργούν δέσμες και συνδέουν τον πυρήνα με την κυτταρική μεμβράνη, με αυτόν τον τρόπο παράλληλα ενισχύεται και η πυρηνική μεμβράνη. Οι μικροσωληνίσκοι είναι κυλινδρικά πολυμερή τα οποία στην συμπίεση είναι πιο ανθεκτικά από την ακτίνη και τα ενδιάμεσα νημάτια. Οι μικροσωληνίσκοι λειτουργούν ως ράβδοι ενίσχυσης του κυτταρικού σκελετού και ως διαδρομές για δύο είδη κινητικών πρωτεΐνών.[15]

2.4 Κυτταρικός κύκλος

Ο κυτταρικός κύκλος είναι μια περίπλοκη διαδικασία η οποία σχετίζεται με την ανάπτυξη και τον πολλαπλασιασμό των κυττάρων, την ρύθμιση της επιδιόρθωσης των βλαβών του DNA, την απόκριση σε τραύματα και ασθένειες όπως ο καρκίνος. Η διαδικασία του κυτταρικού κύκλου περιλαμβάνει έναν μεγάλο αριθμό πρωτεϊνών οι οποίες οδηγούν το κύτταρο σε μια σειρά από γεγονότα με αποκορύφωση την μίτωση με την οποία παράγονται δύο θυγατρικά κύτταρα. Οι πρωτεΐνες που παίζουν κεντρικό ρόλο στην εξέλιξη του κυττάρου είναι οι κυκλινο-εξαρτώμενες κινάσες (cdks) και οι κυκλίνες. Καθώς ένα κύτταρο αναπτύσσεται, περνάει σε κάποιες φάσεις. Οι φάσεις αυτές είναι η $G_1,$ η S, η G_2 και η M.

- Στην φάση G₁ το κύτταρο προετοιμάζεται για την σύνθεση του DNA.
- Στην φάση S γίνεται η σύνθεση του DNA.
- Στην φάση G₂ γίνεται η προετοιμασία για την μετάβαση του κυττάρου στη φάση M, της μίτωσης.

Οι φάσεις G_1 και G_2 αποτελούν τα «κενά» του κυτταρικού κύκλου. Η μίτωση περιλαμβάνει τέσσερις υπο-φάσεις, την πρόφαση, μετάφαση, την ανάφαση και την τελόφαση. Σε ορισμένα κύτταρα υπάρχει και η φάση G_0 η οποία προηγείται της G_1 . Στην φάση G_0 τα κύτταρα παραμένουν σε μια κατάσταση αδράνειας και δεν εξελίσσονται. Αν δράσει κάποιος παράγοντας σε εκείνα τα κύτταρα τότε αρχίζει και γίνεται μετάβαση από την G_1 στην μίτωση.

Όπως αναφέρθηκε προηγουμένως οι πρωτεΐνες οι οποίες συμμετέχουν στον κυτταρικό κύκλο είναι οι κυκλινο-εξαρτώμενες κινάσες και οι κυκλίνες. Οι cdks είναι πρωτεΐνες θρεονίνης/σερίνης και ενεργοποιούνται σε συγκεκριμένα σημεία του κυτταρικού κύκλου. Οι cdks είναι σημαντικές για την εξέλιξη επειδή παρεμποδίζουν την μίτωση όταν απενεργοποιούνται. Η ρύθμιση των cdks γίνεται με διάφορες μεθόδους, μια από αυτές είναι η φωσφοριλίωση της θρεονίνης και τις ενεργοποιούν. Υπάρχει περίπτωση να συνδέονται περισσότερες από μία κυκλίνες.

Ό κυτταρικός κύκλος σε ένα κύτταρο είναι δυνατόν να διαταράζεται από διάφορους παράγοντες. Μερικοί από αυτούς είναι οι τοξίνες και οι παθογόνοι παράγοντες, κυρίως ιοί οι οποίοι χρησιμοποιούν το DNA του ξενιστή για αναπαραχθούν. Ο καρκίνος ορίζεται ως ο ανεξέλεγκτος πολλαπλασιασμός των κυττάρων, έτσι, τα ογκογονίδια και και τα ογκοκατασταλτικά γονίδια συνδέονται κατά κάποιον τρόπο με τον κυτταρικό κύκλο.[19]

Τα κύτταρα παρουσιάζουν διαφορετική ευαισθησία στην ιοντίζουσα ακτινοβολία ανάλογα με την φάση που βρίσκονται. Τα κύτταρα παρουσιάζουν μέγιστη ανθεκτικότητα στην φάση G_0 , στις αρχές της φάσης G_1 και στο τέλος της φάσης S. Η ανθεκτικότητα χάνεται στο τέλος της G_1 , G_2 και στην M.[20]

Εικόνα 7 Οι πέντε φάσεις του κυτταρικού κύκλου [21]

2.5 Δομή του DNA

Το DNA είναι το μόριο το οποίο περιέχει πληροφορίες για το πώς πρέπει να λειτουργήσει το κύτταρο. Το DNA εναλλακτικά ονομάζεται δεοξυριβονουκλεΐκό οξύ λόγω χημικής ιδιότητας του και κατανέμεται στον πυρήνα και τα μιτοχόνδρια του κυττάρου.

Η δομή που έχει το δεοξυριβονουκλεϊκό οξύ είναι μορφής διπλής έλικας, δηλαδή δύο αλυσίδες που τυλίγουν η μια την άλλη. Στο μόριο του DNA διακρίνεται το εξωτερικό μέρος και το εσωτερικό μέρος. Το εξωτερικό μέρος αποτελεί την ραχοκοκαλιά του μορίου και αποτελείται από μια σειρά δύο μορίων που εναλλάσσονται μεταξύ τους, την φωσφορική ομάδα και έναν σάκχαρο που ονομάζεται δεοξυριβόζη. Οι δεοξυριβόζη με την φωσφορική ομάδα δημιουργούν ένα ισχυρό δεσμό ο οποίος προκύπτει όταν ένα από τα άτομα των παραπάνω μορίων μοιράζονται ένα ζεύγος ηλεκτρονίων. Οι αλυσίδες του DNA έχουν πολικότητα και η στροφή των ελίκων είναι δεξιόστροφη. Στο εσωτερικό μέρος του DNA βρίσκονται οι βάσεις. Οι βάσεις ενώνονται με μόρια δεοξυριβόζης και προεξέγουν προς τον άξονα της διπλής έλικας. Τα μόρια των βάσεων είναι τέσσερα και είναι: η αδενίνη (A), η θυμίνη (T), η γουανίνη (G) και η κυτοσίνη (C). Η αδενίνη και η γουανίνη αποκαλούνται πουρίνες, ενώ η θυμίνη και η κυτοσίνη πυριμιδίνες. Ο συνδυασμός της βάσης με μια δεοξυριβόζη και μια φωσφορική ομάδα ονομάζεται νουκλεοτίδιο το οποίο είναι το μονομερές του μορίου του DNA, όπως αναφέρθηκε σε προηγούμενο μέρος. Η σειρά με την οποία είναι τοποθετημένα τα νουκλεοτίδια με τις βάσεις τους, παρέχουν την πληροφορία η οποία δείγνει την σύνθεση των πρωτεϊνών. Οι δύο έλικες του μορίου DNA συγκρατούνται μεταξύ τους με δεσμούς υδρογόνου μέσω των βάσεων. Κάθε βάση συνδέεται με μια άλλη βάση της αντίθετης αλυσίδας. Η αδενίνη της μίας έλικας συνδέεται με μία θυμίνη της άλλης έλικας με δύο δεσμούς υδρογόνου και κυτοσίνη της μιας έλικας συνδέεται με μια γουανίνη της άλλης έλικας με τρεις δεσμούς υδρογόνου.

Προσέχοντας την δομή της διπλής έλικας, φαίνεται στην αρχή ότι το DNA είναι ένα αδρανές μόριο. Η διάταξη των επίπεδων ζευγών βάσεων προσφέρει στο μόριο ακαμψία η οποία βοηθάει στην διατήρηση του γενετικού κώδικα. Αυτό όμως δεν σημαίνει ότι στο μόριο δεν μπορούν να γίνουν βιοχημικές αντιδράσεις. Παρά την εμφάνιση της διπλής έλικας, το DNA αντιδρά με διάφορους τρόπους με άλλα μόρια που βρίσκονται στο κύτταρο. Με την παρουσία αυτής της ιδιότητας το κύτταρο μπορεί να ελέγξει με ποιο τρόπο εκφράζεται η πληροφορία στο DNA. [22]

Το μοντέλο της διπλής έλικας οφείλεται στον James D. Watson και Francis H.C. Crick και στα πειράματα κρυσταλλογραφίας ακτινών Χ που πραγματοποιήθηκαν από τους Maurice H. F. Wilkins, Rosalind E. Franklin και Raymond G. Gosling. [23] Πριν την παρουσίαση του μοντέλου της διπλής έλικας το 1953 από τους Watson και Crick υπήρχαν προγενέστερες ιδέες και μοντέλα για την δομή του γενετικού υλικού. Ένα από αυτά τα μοντέλα ήταν αυτό των Pauling και Corey. Στο μοντέλο των Pauling και Corey οι αλυσίδες που τυλίγονται μεταξύ τους είναι τρεις, οι φωσφορικές ομάδες βρίσκονται εσωτερικά κοντά στον άξονα της αλυσίδας και οι βάσεις στο εξωτερικό μέρος της αλυσίδας. Σύμφωνα με την γνώμη των Watson και Crick το μοντέλο της τριπλής έλικας των Pauling και Corey αστοχεί για δύο λόγους. Ο πρώτος λόγος είναι ότι τα διαγράμματα από την περίθλαση των ακτινών Χ δεν οφείλονται στο ελεύθερο οξύ αλλά στο άλας (κρύσταλλος). Χωρίς τα άτομα υδρογόνου που δίνουν τον όξινο χαρακτήρα δεν είναι ξεκάθαρο από τι δυνάμεις συγκρατείται η δομή, κυρίως όταν οι αρνητικά φορτισμένες ομάδες κοντά στον άξονα απωθούνται μεταξύ τους. Ο δεύτερος λόγος είναι ότι κάποιες από τις αποστάσεις van der Waals φαίνονται να είναι πολύ μικρές. Μεταγενέστερα της παρουσίασης του μοντέλου της διπλής έλικας πραγματοποιήθηκαν αρκετά πειράματα βιοφυσικής και ηλεκτρονικής μικροσκοπίας οποία τα επιβεβαιώνουν την χαρακτηριστική δομή του DNA. [24]

Το μοντέλο της διπλής έλικας των είναι ευφυές και παρουσιάζει τέσσερις ιδιότητες.

- Πρώτον το μοντέλο εξηγεί την αντιγραφή του γενετικού υλικού το οποίο είναι η βάση της αναπαραγωγής, ένα οριστικό χαρακτηριστικό για την ζωή.
- Δεύτερον, γίνεται η εξήγηση της ειδικότητας που έχει το γενετικό υλικό, δηλαδή την ποιότητα που έχουν τα γονίδια και πως αυτή η ειδικότητα διατηρείται στην διαδικασία της αντιγραφής.
- Τρίτον, εξηγείται ότι το DNA είναι μακρομόριο το οποίο περιέχει πληροφορία.
- Τέλος, το μοντέλο της διπλής έλικας δείχνει την ικανότητα του γενετικού υλικού να παρουσιάζει μεταβολές, δηλαδή το χαρακτηριστικό των γονιδίων να παθαίνουν μετάλλαξη. [23]

Το γενετικό υλικό στα κύτταρα του ανθρώπου έχει 6.4 · 10⁹ ζεύγη βάσεων και σε μήκος είναι περίπου 2 μέτρα. Όλο το μήκος του γενετικού υλικού μπορεί και χωράει σε πυρήνα με μέση διάμετρο τα 6 μm. Από όλο το ανθρώπινο γονιδίωμα, μόνο το 3% αποτελούν γονίδια τα οποία σε αριθμό κυμαίνονται στα 30000. Το γενετικό υλικό δεν είναι μια ενιαία γραμμή στο εσωτερικό του πυρήνα αλλά χωρίζονται σε τμήματα. Τα τμήματα αυτά ονομάζονται χρωμοσώματα. Στον πυρήνα κάθε ανθρώπινου κυττάρου υπάρχουν 22 ζεύγη αυτοσωμικών χρωμοσωμάτων και 2 φυλετικά χρωμοσώματα. Τα χρωμοσώματα δεν ίδια στο μέγεθος, αλλά διαφέρουν. Από τα αυτοσωμικά, το μεγαλύτερο σε μέγεθος χρωμόσωμα είναι το νούμερο 1 με μήκος 249 εκατομμύρια ζεύγη βάσεων και το μικρότερο είναι το νούμερο 21 με μήκος 54 εκατομμύρια ζεύγη βάσεων. **[25,26]**

Το γρωμόσωμα δεν είναι απλά ένα τμήμα του DNA, είναι στην ουσία DNA το οποίο είναι συμπιεσμένο από πρωτεΐνες.. Οι πρωτεΐνες αυτές ονομάζονται ιστόνες οι οποίες βρίσκονται σε μεγάλες ποσότητες στο κύτταρο. Οι ιστόνες είναι υπεύθυνες για το πρώτο και βασικό επίπεδο οργάνωσης των χρωμοσωμάτων. Το βασικό αυτό επίπεδο ονομάζεται νουκλεόσωμα. Το νουκλεόσωμα είναι ένα σύμπλοκο από ένα οκταμερές ιστονών που περιμετρικά είναι τυλιγμένο το μόριο του DNA. Το οκταμερές ιστονών αποτελείται από τέσσερα ζεύγη ιστονών Η2Α, Η2Β, Η3, Η4. Μήκος από 146 ζεύγη βάσεων DNA τυλίγεται γύρω από ένα οκταμερές ιστονών και μετά από 80 ζεύγη βάσεων θα τυλιχτεί γύρω από ένα άλλο οκταμερές. Όταν αυτή διαδικασία επαναλαμβάνεται πολλές φορές, δημιουργείται μια σειρά από νουκλεοσώματα συνδεδεμένα με ελεύθερο DNA, μια κατασκευή που μοιάζει σαν χορδή με χάντρες. Οι σειρά των νουκλεοσωμάτων στην συνέχεια με την βοήθεια της ιστόνης Η1 και με έναν μηχανισμό ένωσης των νουκλεοσωμάτων δημιουργείται μια ίνα πάγους 30 nm που ονομάζεται γρωματίνη. Η γρωματίνη είναι το βασικό υλικό των χρωμοσωμάτων. [26]

Εικόνα 8 Η ελικοειδής δομή του μορίου DNA [27]

2.6 Βιολογική δράση της ιοντίζουσας ακτινοβολίας

Τα βιολογικά αποτελέσματα λόγω αλληλεπίδρασης ιοντίζουσας ακτινοβολίας με τους οργανισμούς προκύπτουν με άμεσο ή έμμεσο τρόπο.

Εικόνα 9 Η έμμεση και η άμεση δράση της ιοντίζουσας ακτινοβολίας [28]

2.6.1 Άμμεση δράση

Όταν οποιαδήποτε μορφή ιοντίζουσας ακτινοβολίας απορροφάται από τη βιολογική ύλη, υπάρχει πιθανότητα να αλληλεπιδράσει με απευθείας πρόσπτωση σε κρίσιμους στόχους στα κύτταρα. Στα άτομα του στόχου μπορεί να προκληθεί ιονισμός ή διέγερση. Τα μόρια ενός οργανισμού όπως είναι τα ένζυμα, οι δομικές πρωτεΐνες, το RNA και το DNA είναι επιρρεπή στην ιοντίζουσα ακτινοβολία, για αυτό και είναι δυνατόν να εμφανιστούν βιολογικά αποτελέσματα όπως είναι οι θραύσεις απλής ή διπλής έλικας στην περίπτωση του DNA. Τα άμεσα βιολογικά αποτελέσματα έχουν μεγαλύτερη πιθανότητα να εμφανιστούν όταν η ακτινοβολία έχει υψηλό LET που έχουν τα φορτισμένα σωματίδια. **[28,29]**

2.6.2 Έμμεση δράση

Ο εναλλακτικός μηχανισμός για να εμφανιστούν βιολογικά αποτελέσματα μετά από την δράση της ιοντίζουσας ακτινοβολίας είναι ο έμμεσος τρόπος. Στην περίπτωση του έμμεσου τρόπου η ακτινοβολία αντί να προσπέσει σε μόρια όπως είναι οι πρωτεΐνες και τα νουκλεϊκά οξέα προσπέφτει κυρίως στα μόρια του νερού που βρίσκονται στο κύτταρο και αυτό επειδή το νερό βρίσκεται σε μεγάλο ποσοστό. Όταν η ιοντίζουσα ακτινοβολία αλληλεπιδράσει με τα μόρια νερού τότε αρχίζει μια διαδικασία χημικών αντιδράσεων η οποία ονομάζεται ραδιόλυση. Κατά την ραδιόλυση του νερού σχηματίζονται ελεύθερες ρίζες. Η ελεύθερη ρίζα είναι ένα άτομο ή ένα μόριο το οποίο φέρει

ασύζευκτο ηλεκτρόνιο στην εξωτερική στοιβάδα. Ένα τροχιακό ηλεκτρόνιο δεν περιστρέφεται μόνο γύρων από τον πυρήνα αλλά και γύρω από τον άξονά του (σπιν). Σε ένα άτομο ή μόριο με άρτιο αριθμό ηλεκτρονίων, τα σπιν είναι συζευγμένα. Έτσι για κάθε ηλεκτρόνιο με δεξιόστροφο σπίν υπάρχει ένα ηλεκτρόνιο με αριστερόστροφο σπίν. Η κατάσταση αυτή χαρακτηρίζεται από χημική σταθερότητα. Όμως αν σε ένα άτομο ή μόριο έχει περιττό αριθμό ηλεκτρονίων τότε στην εξωτερική στοιβάδα υπάρχει μόνο ένα ηλεκτρόνιο το οποίο δεν μπορεί συζευχθεί με άλλο που να έχει αντίθετο σπιν. Αρά το ηλεκτρόνιο αυτό είναι ασύζευκτο. Οι ελεύθερες ρίζες είναι ασταθείς με χρόνους ζωής της τάξης των 10⁻¹⁰ δευτερολέπτων και αντιδρούν με το DNA με αποτέλεσμα να γίνεται τροποποίηση. Τα 2/3 των βιολογικών αποτελεσμάτων που εμφανίζονται με έμμεσο τρόπο οφείλονται στις ακτινοβολίες που έχουν χαμηλό LET, δηλαδή στις ακτίνες X και γ. **[28,29]**

Η διαδικασία της ραδιόλυσης πραγματοποιείται σε τρία βασικά στάδια με το καθένα να διαρκεί ορισμένο χρονικό διάστημα. Τα τρία στάδια της ραδιόλυσης είναι:

- Το φυσικό στάδιο το οποίο συμβαίνει 1 fs μετά την αρχική αλληλεπίδραση της ύλης με την ιοντίζουσα ακτινοβολία. Γίνεται η απόθεση της ενέργειας που ακολουθείται από διαδικασίας γρήγορης χαλάρωσης. Αυτό οδηγεί στον σχηματισμό των ιονισμένων μορίων νερού (H₂O⁺), διεγερμένων μορίων νερού(H₂O^{*}) και ηλεκτρονίων.
- Το φυσικο-χημικό στάδιο που διαρκεί το χρονικό διάστημα από 10⁻¹⁵ έως 10⁻¹² sec μετα την ακτινοβόληση. Σε αυτό το στάδιο συμβαίνουν διάφορες διαδικασίες που μπορεί να είναι η αντίδραση των ιονισμένων μορίων, ο αυτοϊονισμός των διεγερμένων καταστάσεων, θερμοποίηση των ηλεκτρονίων, διάχυση οπών κτλ.
- Το χημικό στάδιο που διαρκεί το χρονικό διάστημα από 10⁻¹² έως 10⁻⁶ sec μετά την ακτινοβόληση. Στο χημικό στάδιο τα προϊόντα της ραδιόλυσης διαχέονται στο διάλυμα και αντιδρούν είτε με τα περιβαλλόμενα μόρια ή μεταξύ του. [30]

Οι βασικές αντιδράσεις που στις οποίες υποβάλλεται το νερό είναι αλληλοεξαρτώμενες και ένα σημαντικό ποσό ενέργειας δαπανάται σε αυτή τη σειρά διαδικασιών. Η μία σειρά βασικών αντιδράσεων που υπάρχουν είναι η διάσπαση που νερού σε ρίζες υδροξυλίου υδρογόνου και διαλυμένων ηλεκτρονίων σύμφωνα με τις παρακάτω χημικές εξισώσεις:[31]

$$H_2O \rightarrow H_2O^+ + e^-$$
$$H_2O^+ + H_2O \rightarrow H_3O^+ + OH \bullet$$

και με την σύλληψη ενός ηλεκτρονίου

$$\begin{split} \mathrm{H_2O}^* &\rightarrow \mathrm{OH}\bullet \,+\, \mathrm{H}\bullet \\ \mathrm{H_2O}+ \,e^- &\rightarrow \mathrm{H_2O}^- \\ \mathrm{H_2O}^- &\rightarrow \mathrm{OH}^- +\, \mathrm{H}\bullet \end{split}$$

Η άλλη σειρά βασικών αντιδράσεων προκύπτει με την συνεχή χρήση ακτινοβολίας χαμηλού LET όπου σχηματίζονται σε μικρές συγκεντρώσεις μόρια υδρογόνου H₂ και υπεροξειδίου του υδρογόνου H₂O₂. Σε ακτινοβολίες με υψηλό LET οι συγκεντρώσεις των δύο αυτών μορίων είναι μεγαλύτερη. Οι παρακάτω δύο αντιδράσεις γίνονται με αλυσιδωτό τρόπο με το οποίο μόρια νερού σχηματίζονται ξανά. [**30**]

$$H\bullet + H_2O_2 \rightarrow H_2O + OH\bullet$$
$$OH\bullet + H_2 \rightarrow H_2O + H\bullet$$

Οι ελεύθερες ρίζες υδροξυλίου και υδρογόνου που σχηματίζονται από την πρώτη σειρά αντιδράσεων και δεν εξαντλούνται στην δεύτερη σειρά αντιδράσεων εξαφανίζονται μέσω του ανασυνδυασμού τους σε νερό όπως φαίνεται στην παρακάτω εξίσωση:

$$H\bullet + OH\bullet \rightarrow H_2O$$

Επιπλέον, υπάρχουν αρκετές πιθανές δευτερεύουσες χημικές ουσίες που παράγονται από την αλληλεπίδραση μεταξύ των πρωταρχικών προϊόντων ή από την αντίδραση των πρωταρχικών προϊόντων με το οξυγόνο που είναι διαλυμένο. Η αντίδραση των ατόμων υδρογόνου με το οξυγόνο δημιουργεί ρίζες υπεροξειδίου HO₂.

$$H\bullet + O_2 \rightarrow HO_2\bullet$$

Οι ελεύθερες ρίζες σε κοντινή απόσταση από το σημείο του σχηματισμού τους αλληλεπιδρούν μεταξύ τους παράγοντας μόρια υδρογόνου H_2 , υπεροξειδίου του υδρογόνου H_2O_2 και οξυγόνου O_2 .

$$\begin{split} & H \bullet + H \bullet \rightarrow H_2 \\ & OH \bullet + OH \bullet \rightarrow H_2O_2 \\ & HO_2 \bullet + HO_2 \bullet \rightarrow H_2O_2 + O_2 \\ & OH \bullet + HO_2 \bullet \rightarrow H_2O + O_2 \\ & H \bullet + HO_2 \bullet \rightarrow H_2O_2 \end{split}$$

Όταν διαχέονται οι ελεύθερες ρίζες και τα μόρια που παράγονται από την ραδιόλυση, αντιδρούν συμφωνα με τις παρακάτω εξισώσεις:

$$\begin{array}{rcl} OH\bullet &+ & H_2O_2 \rightarrow H_2O + & HO_2\bullet \\ HO_2\bullet &+ & H_2O_2 \rightarrow H_2O + & OH\bullet + & O_2 \\ OH\bullet &+ & H_2 \rightarrow H_2O + & H\bullet \\ H\bullet &+ & H_2O_2 \rightarrow H_2O + & OH\bullet \\ H\bullet &+ & H_2O_2 \rightarrow H_2 + & HO_2\bullet \end{array}$$

[31]

2.7 Βλάβες και επιδιόρθωση του DNA

2.7.1 Εισαγωγή

Η διατήρηση της γενετικής πληροφορίας στους ζωντανούς οργανισμούς είναι σημαντική για την διαιώνιση της ζωής. Το γενετικό υλικό επειδή είναι δραστικό μόριο μπορεί να υποστεί χημικές τροποποιήσεις από εξωγενείς ή ενδογενείς παράγοντες. Οι χημικές αυτές τροποποιήσεις μπορεί να προκαλέσουν μετάλλαξη. Η μετάλλαξη μπορεί παίξει απαραίτητο ρόλο στην εξέλιξη, ωστόσο προκαλεί καρκίνους, γήρανση και άλλες ασθένειες. Οι μεταλλάξεις εμφανίζονται και από τα λάθη της DNA πολυμεράσης κατά της διάρκεια της αντιγραφής. Παρά το γεγονός ότι το γενετικό υλικό είναι επιρρεπές στις μεταλλάξεις, το κύτταρο διαθέτει μηχανισμούς που του επιτρέπουν τα διορθώνει τις πιθανές βλάβες του. [32]

2.7.2 Απαμίνωση

Η απαμίνωση ορίζεται ως η απώλεια μιας εξωκυκλικής αμινομάδας. Από τις τέσσερις βάσεις του DNA μόνο τρεις βάσεις μπορούν να υποστούν απαμίνωση. Από την απαμίνωση της αδενίνης προκύπτει η υποξανθίνη, η κυτοσύνη μετατρέπεται σε ουρακίλη, η γουανίνη σε ξανθίνη. Υπό κανονικές συνθήκες υπάρχει ένα συστατικό που ονομάζεται 5-μεθυλοκιτοσίνη που είναι παράγωγο της κυτοσίνης. Όταν η 5-μεθυλοκιτοσίνη υποστεί απαμίνωση τότε μετατρέπεται σε θυμίνη. Μια τέτοια απαμίνωση οδηγεί σε λανθασμένο συνδυασμό βάσεων, πιο συγκεκριμένα δημιουργούνται ζεύγη θυμίνης γουανίνης. Όλες οι απαμινώσεις βάσεων είναι είναι μεταλλαξιογόνες. Η υποξανθίνη δημιουργεί ζεύγος με την κυτοσίνη κατά τη διαδικασία της αντιγραφής με αποτέλεσμα τα ζεύξη αδενίνης-θυμίνης να μεταβάλονται σε ζεύξη γουανίνης-κυτοσίνης, ενώ η ουρακίλη ενώνεται με την αδενίνη και προκαλείται μεταβολή ζευγών κυτοσίνης-γουανίνης σε ζεύγη θυμίνης-

2.7.3 Οξείδωση

Η οξείδωση του DNA γίνεται από τις δραστικές μορφές οξυγόνου (ROS). Οι πιο σημαντικές δραστικές μορφές οξυγόνου είναι η ρίζα υπεροξειδίου

 $(O_2 \bullet -)$, η ρίζα υδροξυλίου (OH•) και το υπεροξείδιο του υδρογόνου (H_2O_2) . Ένα από τα πιο άφθονα προϊόντα της οξείδωσης είναι μια ουσία που ονομάζεται 8-oxo-dG. Τα μέρη του σώματος στα οποία έχει αναπτυχθεί όγκος, έχουν την συγκεκριμένη ουσία σε υψηλά επίπεδα. Η οξείδωση του DNA μπορεί να προκαλείται ο εξωγενείς παράγοντες όπως είναι η ακτινοβολία γάμμα ή από ενδογενείς παράγοντες δηλαδή οξειδώσεις που δημιουργούνται διαδικασίες μεταβολισμού όπως για παράδειγμα ο οξειδωτικός από μεταβολισμός στα μιτοχόνδρια και οι παθολογικές συνθήκες όπως η φλεγμονή. Οι δραστικές μορφές οξυγόνου είναι δυνατόν να παράγονται και από συνθήκες που δεν χαρακτηρίζονται απαραίτητα μη φυσιολογικές. Περίπου το 2% του οξυγόνου που καταναλώνεται από τον άνθρωπο παράγει δραστικές μορφές οξυγόνου. Σε κανονικές συνθήκες δεν παράγεται μεγαλύτερη ποσότητα ROS από αυτή που μπορούν να καταβολίσουν οι ιστοί. Βέβαια αν η παραγωγή των δραστικών μορφών οξυγόνου ξεπεράσει την ικανότητα του οργανισμού να αμύνεται ενάντια σε αυτές τότε μπορεί να εμφανιστεί ένα σύνολο από ασθένειες. Τέλος, το οξειδωτικό στρες δεν προκαλεί βλάβες μόνο στις βάσεις του DNA, άλλα και στο εξωτερικό της αλυσίδας που απαρτίζεται από σάκχαρα και φωσφορικό οξύ με αποτέλεσμα να δημιουργούνται θραύσεις απλής (SSB) και διπλής (DSB) έλικας. [33,34]

2.7.4 Αλκυλίωση

Η αλκυλίωση είναι η διαδικασία στην οποία μια μικρή ή μια πιο σύνθετη αλκυλοομάδα προστίθεται στις βάσεις του DNA. [35] Οι αλκυλοομάδες προστίθενται κατά προτίμηση στην γουανίνη όπου 70% των αλκυλιώσεων παρουσιάζονται σε αυτήν. Όταν οι βάσεις παθαίνουν αλκυλίωση μπορεί να μετατρέπονται σε O²-αλκυλοθυμίνη, O⁴-αλκυλοθυμίνη O⁶-μεθυλογουανίνη, O⁶-αιθυλογουανίνη, οπότε τα προϊόντα προκαλούν μετάλλαξη. [33,36,37] Κάποιες βλάβες είναι πιθανό να μπλοκάρουν την δράση της DNA πολυμεράσης πραγμα που δημιουργείται κυτταροτοξικό αποτέλεσμα. Οι ουσίες που προκαλούν αλκυλίωση βρίσκονται σε αφθονία στο περιβάλλον, χρησιμοποιούνται σε χημειοθεραπείες και μπορεί να παράγονται από τις νιτροζαμίνες που με αυτές με τη σειρά τους είναι αποτέλεσμα υπερπαραγωγής των διαστικών μορών οξυγόνου και αζώτου. [33]

2.7.5 Αβασικά σημεία

Τα αβασικά σημεία είναι σημεία του DNA στα οποία οι βάσεις απουσιάζουν και αποτελεί έναν από τους πιο συνηθισμένους τύπους βλαβών. Η υδρόλυση είναι ένας από τους παράγοντες που μπορεί να δημιουργήσει αβασικά σημεία, καθημερινά δημιουργούνται κατά εκτίμηση 10000 τέτοιες βλάβες σε ένα κύτταρο. Τα αβασικά σημεία μπορούν επίσης να δημιουργηθούν τις DNA γλυκοσυλάσες στην προσπάθεια να αφαιρεθούν λάθος βάσεις και βάσεις που έχουν υποστεί ζημιά. Η παρουσία των αβασικών σημείων είναι απειλητική για την φυσιολογική λειτουργία του κυττάρου επηρεάζοντας την αντιγραφή του DNA. [38,39]

2.7.6 Επιδιόρθωση με εκτομή βάσεων

Η οξείδωση, η αλκυλίωση, η απαμίνωση των βάσεων, τα αβασικά σημεία και οι θραύσεις απλής έλικας μπορούν επιδιωθροθούν με έναν μηχανισμό που ονομάζεται επιδιόρθωση εκτομής βάσεων (Base Excision Repair BER). Ο μηχανισμός BER ξεκινάει από ειδικά ένζυμα που ονομάζονται DNA γλυκοσυλάσες. Οι DNA γλυκοσυλάσες ανιγνεύουν τις αλλοιωμένες βάσεις και τις απομακρύνουν από το DNA. Οι DNA γλυκοσυλάσες μπορεί να ταξινομούνται σε μονολειτουργικές (monofunctional) και διλειτουργικές Οι μονολειτουργικές DNA γλυκοσυλάσες δρουν στις (bifunctional). αλκυλιωμένες βάσεις στην ουρακίλη (απαμινωμένη κυτοσύνη) κάνοντας υδρόλυση τον γλυκοσιδικό δεσμό σχηματίζοντας ένα αβασικό σημείο. Οι διλειτουργικές DNA γλυκοσυλάσες μπορεί να δρουν στις οξειδωμένες βάσεις με το να αφαιρούν την οξειδωμένη βάση δημιουργώντας ένα αβασικό σημείο και μετα αυτό να το μετατρέπουν σε θραύση απλής έλικας. Στην περίπτωση που παίρνει δράση μια μονολειτουργική γλυκοσυλάση, τότε στη συνέγεια δρά ένα ένζυμο που ονομάζεται AP ενδονουκλεάση το οποίο δημιουργεί SSB σπάζοντας τον φωσφοδιεστερικό δεσμό. Αφού δημιουργηθεί SSB, το επόμενο στάδιο είναι η σύνθεση νέου νουκλεοτιδίου από την DNA πολυμεράση β. Η DNA πολυμεράση β υπάρχει περίπτωση να επανατοποθετήσει νουκλεοτίδια και πέρα από το σημείο της βάβης. Τέλος, δημιουργείται φωσφοδιεστερικός δεσμός μεταξύ του νέου νουκλεοτιδίου και ενός προϋπάρχοντος νουκλεοτιδίου με την βοήθεια της DNA ligase. [33,40,41]

2.7.7 Interstrand DNA crosslinks

Όπως γνωρίζουμε, η δύο έλικες του DNA συνδέονται με την βοήθεια των δεσμών υδρογόνου, υπάρχει όμως και η περίπτωση που σε ένα σημείο του DNA η σύνδεση της διπλής έλικας να μην γίνεται με δεσμό υδρογόνου αλλά με ομοιοπολικό δεσμό. Τέτοιες βλάβες αναφέρονται στην αγγλική βιβλιογραφία ως Interstrand DNA crosslinks (ICLs). Η σύνδεση με ομοιοπολικό δεσμό γίνεται μέσω παραγόντων αλκυλίωσης που προέρχεται από ενδογενή (μεταβολισμός) ή από εξωγενή αίτια. [42] Αυτές οι βλάβες είναι πιθανό να δημιουργούνται από ζεύγος αβασικών σημείων. Ένα τέτοιο κενό βάσεων δημιουργεί πολύ εύκολα ICL. [43] Η παρουσία του ομοιοπολικού δεσμού ανάμεσα στις αλυσίδες αποτελεί εμπόδιο στον χωρισμό τους, ένα απαραίτητο βήμα για να ξεκινήσουν οι μεταβολικές διαδικασίες του DNA, όπως είναι η αντιγραφή και η μεταγραφή. [44]

2.7.8 Θραύσεις απλής έλικας - SSB

Οι θραύσεις απλής έλικας (single strand break SSB) είναι ασυνέχειες που παρουσιάζονται σε μια από τις αλυσίδες του DNA. Οι θραύσεις απλής έλικας συνοδεύονται συχνά από απώλεια νουκλεοτιδίου στο σημείο της θραύσης. Η πιο συνηθισμένη πηγή δημιουργίας των θραύσεων απλής έλικας είναι οι

δραστικές μορφές οξυγόνου. Με την παρουσία του υπεροξειδίου του υδρογόνου, οι θραύσεις απλής έλικας συμβαίνουν τρεις τάξεις μεγέθους συχνότερα από τις δίκλωνες θραύσεις (DSB). Η εμφάνιση των SSB δημιουργείται είτε με άμεσο τρόπο, δηλαδή με την αποσύνθεση του οξειδωμένου σακχάρου ή με έμμεσο τρόπο κατά την διάρκεια του μηχανισμού BER για την επιδιόρθωση των βάσεων που έχουν υποστεί βλάβη. [45,46]

2.7.9 Θραύσεις διπλής έλικας - DSB

Όταν δύο θραύσεις απλής έλικας βρεθούν πολύ κοντά η μία με την άλλη τότε προκύπτει η θραύση διπλής έλικας (double strand break, DSB). Η θραύση διπλής έλικας είναι η πιο σημαντική και η πιο σοβαρή βλάβη που μπορεί να υποστεί το γενετικό υλικό στο κύτταρο, και αυτό επειδή η επιδιόρθωση αυτή αποτελεί δύσκολη διαδικασία. Η δίκλωνες θραύσεις δεν συσχετίζονται μόνο με τις θραύσεις απλής έλικας, αλλά με τις βάσεις που έχουν υποστεί ζημιά. Για τον λόγο αυτό, όταν γίνεται απόπειρα αντιγραφής του γενετικού υλικού μαζί με τις προαναφερθείσες βλάβες μπορούν να προκύψουν τα DSB. Τα DSB μπορούν επίσης να εμφανιστούν και στην διαδικασίας επιδιόρθωσης άλλων τύπων βλαβών. Η θραύσεις διπλής έλικας μπορούν να προκαλέσουν στα χρωμοσώματα θραύση, μετατόπιση και γενικότερα απώλεια τμημάτων τους.

Όσον αφορά την αλληλεπίδραση της ακτινοβολίας με το DNA, η χωρική κατανομή των θραύσεων στο DNA εξαρτάται από τη ποιότητα της ακτινοβολίας, δηλαδή όσο μεγαλύτερη είναι γραμμική μεταφορά ενέργειας τόσο μεγαλύτερη είναι η πολυπλοκότητα της ζημιάς και όσο μεγαλύτερη είναι η πυκνότητα ιονισμού τόσο μεγαλύτερη είναι η συγκέντρωση των βλαβών.

Η ποσοτικοποίηση του αριθμού και της κατανομής των θραύσεων διπλής έλικας που προκαλούνται από την ακτινοβολία είναι περίπλοκο πρόβλημα κυρίως στις μικρές δόσεις. Μερικές τεχνικές που χρησιμοποιούνταν στο παρελθόν ήταν η τεχνική αργής καθίζησης (low speed sedimentation), η τεχνική CFGE (constant field gel electrophoresis) και η τεχνική PFGE (pulsed field gel electrophoresis). Ωστόσο, η ευαισθησία αυτών των τεχνικών δεν είναι αρκετή για να εντοπίζει DSBs σε δόσεις που χρησιμοποιούνται για την επαγωγή μεταλλάξεων ή κυτταρικού θανάτου που γενικά είναι της τάξης των λίγων Gy ή και γαμηλότερα. Μια σημαντική βελτίωση έγινε όταν αναπτύγθηκε η τεχνική ανοσοφθορισμού. Όπως αναφέρθηκε σε προηγούμενη παράγραφο το DNA τυλίγεται γύρω από ένα οκταμερές ιστονών. Μία από αυτές τις ιστόνες είναι η Η2Α. Υπάρχει μία παραλλαγή της ιστόνης Η2Α που ονομάζεται Η2ΑΧ. Όταν δημιουργείται DSB στο DNA, η ιστώνη H2AX φωσφορυλιώνεται στην σερίνη 139. Με αυτήν την φοσφορυλίωση δημιουργείται το γ-Η2ΑΧ το οποίο γρησιμοποιείται ως δείκτης για τα DSB. Τα γ-H2AX οπτικοποιούνται ως εστίες (foci) από τον ανοσοφθορισμό χρησιμοποιώντας συγκεκριμένα αντισώματα. Με τεχνική του ανοσοφθορισμού δίνεται η δυνατότητα να μελετηθούν οι δίκλωνες θραύσεις σε κύτταρα που έχουν δεχτεί δόση μικρότερη του 1 Gy, αλλά και σε δόσεις των λίγων mGy σε ορισμένες περιπτώσεις. Η τεχνική επίσης έχει χρησιμοποιηθεί σε κύτταρα που έχουν δεχτεί ακτινοβολία με χαμηλό ή υψηλό LET και στην μελέτη μηχανισμού

επιδιόρθωσης. Γενικά έχει βρεθεί ότι ο αριθμός των εστιών γ-H2AX αυξάνεται 30 λεπτά μετα την ακτινοβόληση. **[47,48]**

Εικόνα 10 Η Διαφορά μεταξύ μονόκλωνης και δίκλωνης θραύσης σε ένα τμήμα του μορίου DNA [49]

2.7.10 Ομόλογος και μη ομόλογος ανασυδυσμός

Για να πραγματοποιηθεί η επιδιόρθωση των θραύσεων διπλής έλικας χρησιμοποιούνται δύο μηχανισμοί, είτε η μη ομόλογη σύνδεση άκρων (Non Homologous End Joining NHEJ) ή ο ομόλογος ανασυνδυασμός (HR). Με την βοήθεια του ομόλογου ανασυνδυασμού επιδιορθώνονται επίσης και τα ICLs. Στην περίπτωση της μη ομόλογης σύνδεσης γίνεται απευθείας σύνδεση των θραύσεων, ενώ στην επιδιόρθωση με ομόλογο ανασυνδυασμό, στην περιοχή που υπάρχει βλάβη δημιουργείται μονόκλωνη αλυσίδα DNA. Η μονόκλωνη αλυσίδα DNA αφού δημιουργηθεί ψάχνει μια ομόλογη περιοχή σε άλλη αλυσίδα για να συνθέσει το γενετικό υλικό που λείπει. Στο τέλος του ομόλογου ανασυνδυασμού οι ομόλογες αλυσίδες φαίνεται να έχουν ανταλλάξει τμήμα γενετικού υλικού. [50,51]

ΚΕΦΑΛΑΙΟ 3

Μέθοδος

3.1 Καμπύλη επιβίωσης κυττάρων

Η καμπύλη επιβίωσης των κυττάρων είναι μια καμπύλη που περιγράφει τη σχέση μεταξύ του ποσοστού επιβίωσης των κυττάρων και της δόσης ακτινοβολίας που έχουν απορροφήσει. Ο κύκλος ζωής ενός κύτταρου μπορεί να τερματιστεί με διάφορους μηχανισμούς. Ο συνηθέστερος μηχανισμός είναι η μίτωση από την οποία προκύπτουν δυο κύτταρα από ένα αρχικό. Ένας άλλος μηχανισμός είναι και ο προγραμματισμένος θάνατος του κυττάρου που ονομάζεται απόπτωση. Τα κύτταρα που θανατώνονται με οποιονδήποτε τρόπο έχουν ένα κοινό, χάνουν την ικανότητα πολλαπλασιάζονται επ'αορίστον.

Στην σχεδίαση της καμπύλης επιβίωσης, ο άξονας της δόσης απορρόφησης είναι γραμμικός, ενώ ο άξονας του ποσοστού κυττάρων που έχουν επιβιώσει είναι λογαριθμικός. Στην περιοχή των χαμηλών δόσεων η καμπύλη εμφανίζεται ως ευθεία με πεπερασμένη αρχική κλίση ενώ όταν η δόση αυξηθεί αρκετά η καμπύλη αρχίζει και λυγίζει. Η καμπύλη θα τείνει να πάρει την μορφή ευθείας γραμμής όταν η δόση είναι πολύ μεγάλη. [29,52]

Η μορφή που έχει η καμπύλη επιβίωσης για ένα συγκεκριμένο κύτταρο εξαρτάται από τον τύπο ακτινοβολίας που δέχεται το κύτταρο, από την συγκέντρωση του οξυγόνου και διαφόρων ουσιών-χημικών παραγόντων που βρίσκονται στο περιβάλλον του κυττάρου. Όσο μεγαλύτερη είναι η συγκέντρωση του οξυγόνου τόσο μεγαλύτερο είναι το βιολογικό αποτέλεσμα της ακτινοβολίας. Όσον αφορά τους χημικούς παράγοντες, κάποιοι έχουν την ιδιότητα να μειώνουν την απόκριση των κυττάρων (radioprotectors), δηλαδή να γίνουν πιο ανθεκτικά στην ακτινοβολία ενώ άλλοι κάνουν τα κύτταρα ευαίσθητα στην ακτινοβολία (radiosensitizers). [52]

Εικόνα 11 Παράδειγμα καμπυλών επιβίωσης δύο ανθρώπινων κυτταρικών σειρών [53]

3.2 Γραμμικό-τετραγωνικό μοντέλο LQ

Η προσπάθεια μοντελοποίησης της επιβίωσης των κυττάρων που δέχονται ιοντίζουσα ακτινοβολία ξεκίνησε αμέσως με τις πρώτες χρήσεις της ακτινοθεραπείας. Η ανάπτυξη τέτοιων μοντέλων συμβάλει στην κατανόηση του τρόπου αντίδρασης των κυττάρων στην ακτινοβολία έτσι ώστε να βελτιστοποιηθεί η διαδικασία της ακτινοθεραπείας κάνοντας εκτίμηση και περιορισμό των επιπλοκών.

Ένα μοντέλο που χρησιμοποιείται για να εκφράσει την επιβίωση των κυττάρων σε συνάρτηση με την δόση της ακτινοβολίας είναι το γραμμικότετραγωνικό μοντέλο LQ (Linear-Quadratic model). Το μοντέλο LQ παρέχει ικανοποιητική και πρακτική χρήση για την εξήγηση της δόσης και του βιολογικού αποτελέσματος. Στη χρήση του μοντέλου αυτού δεν εμφανίζονται οι προκλήσεις που εμφανίζονται σε άλλα μοντέλα που περιγράφουν την επιβίωση των κυττάρων και αποτελεί η προτιμότερη επιλογή σε εργαστηριακές και κλινικές συνθήκες. Ένας άλλος λόγος για την χρήση που του γραμμικούτετραγωνικού μοντέλου μάλλον είναι και η απλότητα του καθώς ο μαθηματικός τύπος που εκφράζει την πιθανότητα επιβίωσης των κυττάρων σε συνθήκες ιοντίζουσας ακτινοβολίας είναι:

$$S = e^{-aD - \beta D^2}$$

Όπου S η πιθανότητα επιβίωσης, D η δόση της ιοντίζουσας ακτινοβολία, α και β συντελεστές που περιγράφουν την ευαισθησία των κυττάρων στην ακτινοβολία [54,55]. Τα κύτταρα που έχουν μεγάλες τιμές α και β είναι πιο ευαίσθητα [56]. Πιο συγκεκριμένα οι παράγοντες που επηρεάζουν τις τιμές των συντελεστών α και β είναι:

- Η εσωτερική ευαισθησία του κυττάρου
- Η ευαισθησία που έχει το κύτταρο σε κάποια φάση του κύκλου του
- Ο ρυθμός δόσης ιοντίζουσας ακτινοβολίας
- Κλασματοποίηση δόσης
- Η συγκέντρωση οξυγόνου
- Η γραμμική ενέργεια μεταφοράς ενέργειας LET

[55]

Πριν από την πρώτη εμφάνιση του γραμμικού-τετραγωνικού μοντέλου, ένα διαδεδομένο εκείνη την εποχή μοντέλο ήταν ένα που βασίζεται στην θεωρία στόχου (single hit multitarget theory). Σύμφωνα με την θεωρία στόχου, η πιθανότητα επιβίωσης των κυττάρων δίνεται από τον τύπο:

 $S = 1 - (1 - e^{-qD})^n$

Σε ένα κύτταρο υπάρχουν *n* στόχοι που πρέπει να χτυπηθούν έτσι ώστε το κύτταρο να απενεργοποιηθεί. Η πιθανότητα να χτυπηθεί ένας και μόνο στόχος είναι $1 - e^{-qD}$. Η πιθανότητα να χτυπηθούν *n* ανεξάρτητοι στόχοι είναι $(1 - e^{-qD})^n$. Η πιθανότητα να μην χτυπηθούν οι *n* ανεξάρτητοι στόχοι είναι $1 - (1 - e^{-qD})^n$, δηλαδή όπως λέει η παραπάνω συνάρτηση επιβίωσης των κυττάρων.

Η πρώτη προσπάθεια εξήγησης του γραμμικού τετραγωνικού μοντέλου έγινε από τους Kellerer και Rosi η οποία βασίζεται στη θεωρία διπλής δράσης της ακτινοβολίας (dual radiation action theory) και σε επιχειρήματα μικροδοσιμετρίας. Αργότερα, εισήχθη από τους Chadwick και Leenhouts μια πιο απλή εξήγηση από αυτήν των Kellerer και Rosi. Σύμφωνα με τους Chadwick και Leenhouts, μια δίκλωνη θραύση έλικας θεωρείται ένα θανατηφόρο γεγονός που απενεργοποιεί το κύτταρο. Ένα DSB μπορεί να προκαλείται από ένα σωματίδιο που με αρκετή ενέργεια σπάει και τις δύο αλυσίδες του DNA ταυτόχρονα ή από δύο σωματίδια που το καθένα δημιουργεί μονόκλωνη θραύση έλικας στην ίδια περιοχή. Η πιθανότητα να σχηματιστεί ένα DSB από ένα σωματίδιο είναι $1 - e^{-k_1 D}$. Η πιθανότητα να σγηματιστεί ένα SSB από ένα σωματίδιο είναι $1 - e^{-k_2 D}$, όποτε η πιθανότητα να δύο ξεχωριστά δημιουργηθεί ένα DSB από σωματίδια είναι $(1-e^{-k_2D})(1-e^{-k_3D})$, όπου $1-e^{-k_3D}$ η πιθανότητα ενός SSB δεδομένου ότι αυτό έχει ήδη δημιουργηθεί σε γειτονική περιοχή. Ο συνολικός αριθμός των DSB είναι:

Αριθμός των DSB =
$$A(1 - e^{-k_1 D}) + B(1 - e^{-k_2 D})(1 - e^{-k_3 D})$$

όπου A + B ο μέγιστος αριθμός των δίκλωνων θραύσεων. Αν η πιθανότητα θραύσης μιας αλυσίδας του DNA είναι μικρή, τότε η παραπάνω εξίσωση γίνεται:

Αριθμός των DSB = $Ak_1D + Bk_2k_3D^2 = \alpha D + \beta D^2$

όπου $\alpha = Ak_1$ και $\beta = Bk_2k_3$. Με την χρήση της στατιστικής Poisson προκύπτει τελικά ο περίφημος τύπος της επιβίωσης των κυττάρων σύμφωνα με το μοντέλο LQ, $S = e^{-aD-\beta D^2}$. [57]

Η σχέση που εκφράζει το ποσοστό επιβίωσης των κυττάρων περιέχει, όπως αναφέρθηκε προηγουμένως, δύο ενδιαφέροντες συντελεστές. Ο συντελεστής α αντιπροσωπεύει τον θάνατο τον κυττάρων που προκαλείται από πρόσπτωση ενός σωματιδίου, ενώ ο συντελεστής β αντιπροσωπεύει τον κυτταρικό θάνατο έπειτα από πολλαπλή πρόσπτωση σωματιδίων. Συχνά γίνεται ο υπολογισμός ενός κλάσματος, του α/β . Το κλάσμα α/β έχει ως μονάδες μέτρησης το Gy και δείχνει σε ποια δόση ιοντίζουσας ακτινοβολίας η συνεισφορά της γραμμικής συνιστώσας α και της τετραγωνικής β στην θανάτωση του κυττάρου είναι ίδια. Σε δόσεις μικρότερες του α/β , είναι πιθανό οι βλάβες να είναι τόσο μικρές που η διαδικασία της επιδιόρθωσης δεν απαιτεί πολύ χρόνο. Η πρόσπτωση ενός σωματιδίου είναι υπεύθυνη για το κυτταρικό θάνατο σε εκείνο το εύρος δόσεων. Εάν η δόση ξεπεράσει το α/β θεωρείται ότι το κύτταρο έχει υποστεί πολλαπλή ζημιά με αποτέλεσμα η ανάγκη για να επιδιορθωθεί η ζημιά αυξάνεται εκθετικά με την δόση και ο κυτταρικός θάνατος οφείλεται κυρίως σε πολλαπλές προσπτώσεις σωματιδίων. [55,58]

Οι ιστοί ανάλογα με τον τρόπο αντίδρασης στην ακτινοβολία χωρίζονται σε ιστούς πρώιμης ανταπόκρισης (early responding tissues) και σε ιστούς καθυστερημένης ανταπόκρισης (late responding tissues). Οι ιστοί πρώιμης ανταπόκρισης έχουν μεγάλο ρυθμό πολλαπλασιασμού και αντιδρούν σε μικρό χρονικό διάστημα μετά το τέλος της ακτινοβόλησης. [54,59,60] Στους ιστούς καθυστερημένης ανταπόκρισης παρατηρείται μικρότερος ρυθμός πολλαπλασιασμού και αντίδραση που εμφανίζεται έπειτα από πολύ μεγάλο χρονικό διάστημα. Οι ιστοί πρώιμης ανταπόκρισης έχουν αυξημένη τιμή α/β και είναι ανθεκτικοί στην κλασματοποίηση, ενώ οι ιστοί καθυστερημένης ανταπόκρισης έγουν μικρή τιμή α/β και είναι ευαίσθητοι στην κλασματοποίηση. [54,55,56]

Είναι σημαντικό να αναφερθεί ότι οι συντελεστές α και β του γραμμικού τετραγωνικού μοντέλου δεν πρέπει να παίρνουν αρνητικές τιμές καθώς τέτοιες τιμές δεν έχουν βιολογική σημασία. Το γραμμικό τετραγωνικό μοντέλο δυσκολεύεται να δώσει ξεκάθαρη εικόνα σε μεγάλες δόσεις, κυρίως σε μεγαλύτερες των 8 ή 10 Gy. Σε μεγάλες δόσεις το ποσοστό επιβίωσης των κύτταρων είναι πολύ μικρό και δεν είναι αντιπροσωπευτικό, επιπλέον είναι πιθανό να υπάρχουν σημαντικές διακυμάνσεις μεταξύ διαφόρων πειραμάτων. [61,62]

Η συνάρτηση $S = f(D) = e^{-\alpha D - \beta D^2}$ από την οποία περιγράφεται η καμπύλη επιβίωσης έχει πρώτη και δεύτερη παράγωγο:

$$S' = f'(D) = (-\alpha - 2\beta D)e^{-\alpha D - \beta D^2}$$
με ρίζα την
$$D_0 = -\frac{\alpha}{2\beta}$$

και
$$S'' = f''(D) = (4\beta^2 D^2 + 4\alpha\beta D - 2\beta + \alpha^2)e^{-\alpha D - \beta D^2}$$
που έχει ρίζες τις

$$D_1 = \frac{-\alpha - \sqrt{2\beta}}{2\beta} \quad \text{και} \quad D_2 = \frac{-\alpha + \sqrt{2\beta}}{2\beta} \quad \text{προφανώς ισχύει } D_1 < D_0 < D_2$$

1. Άν a > 0 και $\beta > 0$ τότε η συνάρτηση S τείνει να μηδενιστεί στο -∞ και στο +∞. Είναι αύξουσα στην περιοχή $D < D_0$ και φθίνουσα στην περιοχή $D > D_0$ εφόσον η πρώτη παράγωγος είναι θετική και αρνητική στις αντίστοιχες περιοχές. Στην περιοχή $D < D_1$ ή $D < D_2$ η καμπύλη S είναι κυρτή ενώ στην περιοχή $[D_1, D_2]$ η καμπύλη S είναι κοίλη. Το σημείο D_0 είναι ολικό μέγιστο και τιμή $\exp(a^2/4\beta) > 1$ και βρίσκεται στην περιοχή των αρνητικών δόσεων όπου δεν έχει νόημα. Συνεπώς η ρεαλιστική καμπύλη επιβίωσης που ορίζεται στις θετικές δόσεις έχει μέγιστη τιμή το 1 στα 0 Gy και μειώνεται η επιβίωση όσο αυξάνεται η δόση.

- 2. Άν $\alpha < 0$ και $\beta > 0$ τότε η συνάρτηση S τείνει να μηδενιστεί στο -∞ και στο +∞, η μονοτονία και η κυρτότητα παραμένουν ίδιες όπως στην περίπτωση 1 ενώ το σημείο D_0 που είναι ολικό μέγιστο βρίσκεται πλέον στην περιοχή των θετικών δόσεων με την μέγιστη τιμή είναι $\exp(\alpha^2/4\beta) > 1$. Δεν γίνεται όσο αυξάνεται η δόση να αυξάνεται η επιβίωση και μάλιστα να ξεπερνά το 1 και μετά να μειώνεται πάλι.
- 3. Άν a > 0 και $\beta < 0$ τότε η συνάρτηση S τείνει να απειρίζεται στο -∞ και στο +∞. Είναι φθίνουσα στην περιοχή $D < D_0$ και αύξουσα στην περιοχή $D > D_0$ εφόσον η πρώτη παράγωγος είναι αρνητική και θετική στις αντίστοιχες περιοχές. Η δεύτερη παράγωγος δεν έχει ρίζες και είναι παντού θετική όποτε η καμπύλη S είναι παντού κυρτή. Το σημείο D_0 είναι ολικό ελάχιστο και ελάχιστη τιμή είναι $\exp(a^2/4\beta) < 1$. Όσον αφορά αυτήν την περίπτωση, δεν γίνεται με την ακτινοβολήση η επιβίωση να μειώνεται και μετά από κάποια αύξηση της δόσης η επιβίωση να αυξάνεται ξανά.
- 4. Άν $\alpha < 0$ και $\beta < 0$ τότε η συνάρτηση S τείνει να απειρίζεται στο -∞ και στο +∞, η μονοτονία και η κυρτότητα παραμένουν ίδιες όπως στην περίπτωση 3 ενώ το σημείο D_0 που είναι ολικό ελάχιστο βρίσκεται στην περιοχή των αρνητικών δόσεων με ελάχιστη τιμή $\exp(\alpha^2/4\beta) < 1$. Σε αυτήν την περίπτωση η επιβίωση αυξάνεται πιο πολύ από τη μονάδα όσο αυξάνεται η δόση, πράγμα που είναι αδύνατο.

Οι συντελεστές α και β υπολογίζονται όταν γίνεται παρεμβολή μιας καμπύλης της μορφής $S = f(D) = e^{-\alpha D - \beta D^2}$ στα πειραματικά σημεία των γραφικών παραστάσεων επιβίωσης-δόσης (fitting). Υπάρχουν φορές που οι συντελεστές κατά την εφαρμογή του fitting βγαίνουν αρνητικοί συνεπώς και ο λόγος α/β βγαίνει αρνητικός. Η εμφάνιση των αρνητικών τιμών των συντελεστών είναι ένα στατιστικό φαινόμενο. Αν και από ραδιοβιολογικής απόψεων τα αρνητικά α/β δεν είναι ρεαλιστικά, δεν συνίσταται η εφαρμογή περιορισμών στα α και β. Αν περιορίζονται τα αρνητικά α και β τότε ο υπολογισμός δεν καταλήγει στο σωστό αποτέλεσμα [56]

Το γραμμικό-τετραγωνικό μοντέλο είναι ένα πολύ χρήσιμο εργαλείο για την μελέτη της συμπεριφοράς των κυττάρων σε συνθήκες ακτινοβολίας. Με λίγα λόγια παρουσιάζονται οι εξής ιδιότητες:

- Είναι ένα μηχανιστικό και βιολογικά βασισμένο μοντέλο
- Έχει λίγες παραμέτρους, αρκετές για να χαρακτηριστεί πρακτικό
- Διαθέτει ικανότητα πρόβλεψης σε επιδράσεις ρυθμού δόσης και κλασματοποίησης στο εργαστήριο
- Τα περισσότερα μηχανιστικά μοντέλα θανάτωσης κυττάρων προβλέπουν τις ίδιες εξαρτήσεις κλασματοποίησης με το LQ
- Μέχρι σήμερα δεν φαίνεται να παρουσιάζει προβλήματα σε κλινικό επίπεδο [62]

3.3 Πίνακας συλλογής ραδιοβολογικών δεδομένων

Για την δημιουργία της συλλογής ραδιοβιολογικών δεδομένων για ανθρώπινες κυτταρικές σειρές υπό έκθεση σε ακτινοβολία γ, απαραίτητη προϋπόθεση ήταν η αναζήτηση μελετών και πειραμάτων επιβίωσης κυττάρων με την βοήθεια της μηχανής αναζήτησης PubMed, πληκτρολογώντας τις λέξεις-κλειδιά «gamma ray radiation human cells». Στο PubMed ελέγχθηκαν 2000 μελέτες-πειράματα από τα οποία μόνο τα 127 ήταν χρήσιμα για την συγγραφή της διπλωματικής εργασίας. Η μελέτες επιβίωσης κυττάρων στις οποίες δόθηκε βάση για την συγγραφή της παρούσας διπλωματικής εργασίας είχαν πραγματοποιηθεί την περίοδο 2000-2020.

Όπως υπονοεί ο τίτλος της διπλωματικής εργασίας, τα κύτταρα στα οποία είχε γίνει η μελέτη προέρχονται από τον άνθρωπο και όχι από διαφορετικά είδη από αυτόν, για παράδειγμα, μύκητες και κύτταρα που μπορεί προέρχονταν από χάμστερ δεν λήφθηκαν υπόψη. Τα ανθρώπινα κύτταρα ήταν είτε καρκινικά ή φυσιολογικά. Υπήρχαν μελέτες στις οποίες η ακτινοβόληση με ακτινοβολία γ στα κύτταρα γινόταν σε συνδυασμό με την παρουσία παραγόντων (π.χ. ουσιών) που επηρεάζουν την ευαισθησία τους στην ακτινοβολία. Τα αποδεκτά για την εργασία πειράματα ήταν αυτά που γινόταν καθαρά μόνο με ακτινοβόληση. Οι συνθήκες συγκέντρωσης οξυγόνου κατά την έκθεση στην ακτινοβολία θεωρούνται κανονικές στην περίπτωση που δεν αναφέρεται τίποτα για αυτό και απορρίφθηκαν πειράματα στα οποία υπήρχαν συνθήκες υποξίας ή υπεροξίας (χαμηλή και υψηλή συγκέντρωση οξυγόνου αντίστοιχα). Εξίσου σημαντικό είναι ότι τα κύτταρα δεν δέχονται τροποποιήσεις γονιδίων.

Από τις αποδεκτές μελέτες για τον στόχο της διπλωματικής εργασίας καταγράφτηκαν κάποια δεδομένα. Τέτοια δεδομένα ήταν η κυτταρική σειρά, το είδος του κυττάρου, δηλαδή αν είναι φυσιολογικό ή καρκινικό, την πηγή της ακτινοβολίας γ, τον ρυθμό δόσης της ακτινοβολίας και την φάση του κυτταρικού κύκλου. Όσον αφορά τις πηγές ακτινοβολίας, σχεδόν πάντα χρησιμοποιείται είτε το καίσιο-137 ή το κοβάλτιο-60. Η κάθε μία από αυτές τις πηγές εκπέμπει συγκεκριμένη ενέργεια ακτινοβολίας. Εκτός από του τα δεδομένα που αναφέρθηκαν πολύ σημαντικό ήταν η εξαγωγή των καμπυλών επιβίωσης των κυττάρων και των γραφικών παραστάσεων των εστιών γΗ2ΑΧ ανά κύτταρο σε συνάρτηση με τον χρόνο που περνάει μετά το τέλος της ακτινοβόλησης (post irradiation time) όταν τα κύτταρα ακτινοβολούνται σε σταθερή δόση. Συχνά, οι εστίες γΗ2ΑΧ ανά κύτταρο σε συνάρτηση με τον γρόνο που περνάει μετά το τέλος της ακτινοβόλησης σε σταθερή δόση απεικονίζονται με μορφή ιστογράμματος, το ίδιο αλλά πολύ σπάνια γίνεται και με την απεικόνιση του ποσοστού επιβίωσης σε συνάρτηση με την δόση. Τα ιστογράμματα είναι εξίσου σημαντικά με τις καμπύλες για την εξαγωγή πληροφοριών.

Εικόνα 12 Τα ενεργειακά διαγράμματα των ραδιοιοτόπων κοβαλτίου-60 και καισίου-137 με τις εκπεμπόμενες ακτίνες γ [63,64]

Συγκεντρώνοντας τα δεδομένα από τα πειράματα και εξάγοντας πληροφορίες από τα διαγράμματα συμπληρώνουμε έναν πίνακα με την βοήθεια του Excel που έχει την εξής μορφή:

#ExpID	PMID	#Exp	Human	Tissue	Cell	Cell	Gamma	Dose	ai_fit	bi_fit	DSBs/Gy*Gbps
			Cells		Class	Cycle	Ray	Rate			(15-30 min)
							Source				
1											
2											
3											
N											

Πίνακας 1 Η μορφή του πίνακα του συμπληρώνουμε στο Excel για την δημιουργία της συλλογής των ραδιοβιολογικών δεδομένων για ις ανθρώπινες κυτταρικές σειρέες

- > **<u>#ExpID</u>**: Η αρίθμηση της κυτταρικής σειράς στο αρχείο Excel
- PMID: Κάθε μελέτη ή άρθρο που βρίσκεται PubMed χαρακτηρίζεται από έναν κωδικό, τον PMID. Η χρήση του κωδικού PMID είναι ένας σύντομος τρόπος για να αναφερθεί η πηγή από την οποία λαμβάνονται οι χρήσιμες πληροφορίες. Επίσης βοηθάει στην καλύτερη οργάνωση στην επεξεργασία των δεδομένων.
- <u>#Exp:</u> Η αρίθμηση της σειράς των (αποδεκτών για τον στόχο της διπλωματικής) πειραμάτων που αναφέρονται σε ένα άρθρο με συγκεκριμένο κωδικό PMID.
- Human Cells: Το ανθρώπινο κύτταρο ή το όνομα της κυτταρικής σειράς.

- > <u>Tissue:</u> Ο ιστός ή το όργανο από τον οποίο προέρχεται η κυτταρική σειρά
- <u>Cell Class</u>: Το είδος του κυττάρου, δηλαδή αν είναι φυσιολογικό ή καρκινικό. Τα φυσιολογικά κύτταρα συμβολίζονται με **n** ενώ τα καρκινικά με **t**.
- > <u>Cell Cycle:</u> Η φάση του κύκλου στην οποία βρίσκεται το κύτταρο.
- Gamma Ray Source: Η πηγή της εκπεμπόμενης ακτινοβολίας γ.
- > **Dose Rate:** Ο ρυθμός δόσης της ακτινοβολίας.
- > <u>ai_fit & bi_fit:</u> ai_fit και bi_fit ο γραμμικός α και ο τετραγωνικός β συντελεστής του μοντέλου LQ. Ο γραμμικός συντελεστής εκφράζεται σε μονάδες Gy⁻¹ και ο τετραγωνικός σε Gy⁻².
- DSBs/(Gy*Gbps) (15-30 min)¹: Ο ρυθμός επαγωγής δίκλωνων θραύσεων DNA ανά ένα δισεκατομμύριο ζεύγη βάσεων ανά 1 Gy ακτινοβολίας. Ο αριθμός αυτός λαμβάνεται αφού περάσουν 15 με 30 λεπτά μετά το τέλος της ακτινοβόλησης.

Τα στοιχεία των τριών τελευταίων στηλών, δηλαδή τον γραμμικό α, τον τετραγωνικό συντελεστή β και τις βλάβες DSB ανά Gbps ανά Gy τα λαμβάνουμε έμμεσα αφού μελετηθούν τα αντίστοιχα διαγράμματα που αναφέρονται προηγουμένως. Υπήρξαν φορές που οι συντελεστές α και β του μοντέλου LQ ήταν έτοιμοι υπολογισμένοι από τους ερευνητές που πραγματοποίησαν το πείραμα. Για να υπολογιστούν τα τρία εκείνα μεγέθη είναι απαραίτητη η χρήση τριών εργαλείων, του WebPlotdigitizer, του λογισμικού Origin και ενός κώδικα γραμμένο σε γλώσσα Python. Για αυτό και στη συνέχεια ακολουθεί ο τρόπος χρήσης τους.

3.4 Πρόγραμμα WebPlotDigitizer

Για να υπολογιστούν τα στοιχεία του πίνακα που θέλουμε, είναι σημαντικό να λάβουμε ζεύγη τιμών Χ,Υ από τις γραφικές παραστάσεις. Παρατηρώντας τις γραφικές παραστάσεις, είναι δύσκολο να λάβουμε οπτικά τα ζεύγη τιμών διότι δεν υπάρχει ικανοποιητική ακρίβεια εφόσον στις καμπύλες επιβίωσης χρησιμοποείται συνήθως ημιλογαριθμική κλίμακα. Το πρόβλημα αυτό λύνεται με την βοήθεια του WebPlotDigitizer, ένα πρόγραμμα το οποίο μετατρέπει να οπτικοποιημένα δεδομένα σε αριθμητικά.

To WebPlotDigitizer ως ένα ημι-αυτοποιημένο εργαλείο διαθέτει τα παρακάτω χαρακτηριστικά που κάνει την χρήση του εύκολη:

¹ Gbps : Giga base pairs

- Λειτουργεί με μεγάλη ποικιλία γραφημάτων (γραφικές παραστάσεις σε καρτεσιανές, πολικές συντεταγμένες, ιστογράμματα κτλ).
- Οι αλγόριθμοι αυτόματης εξαγωγής διευκολύνουν την εξαγωγή μεγάλου όγκου δεδομένων από τα σημεία.
- Το πρόγραμμα είναι ανοιχτού κώδικα και μας δίνεται η δυνατότητα να χρησιμοποιείται δωρεάν είτε online είτε κατεβασμένο στον υπολογιστή.
- Μέχρι στιγμής έχει χρησιμοποιηθεί σε εκατοντάδες εργασίες από χιλιάδες χρήστες.
- Είναι χρήσιμο επίσης για την μέτρηση αποστάσεων ή γωνιών μεταξύ διαφόρων χαρακτηριστικών.

Η διαδικασία για την εξαγωγή ζευγών τιμών με το WebPlotDigitizer είναι απλή και τα βήματα παρουσιάζονται με την μορφή παραδείγματος ως εξής:

Ι. Η εικόνα φορτώνεται στο WebPlotDigitizer.

Εικόνα 13 Η εικόνα που φορτώνεται στο WebPlotDigitizer [65]

II. Γίνεται η επιλογή τους είδους του διαγράμματος που πρόκειται να μελετηθεί. Στην συγκεκριμένη περίπτωση επιλέγουμε δισδιάστατο γράφημα X,Y.

Choose Plot Type
2D (X-Y) Plot
O 2D Bar Plot
O Polar Diagram
O Ternary Diagram
O Map With Scale Bar
○ Image
O Circular Chart Recorder
Align Axes Cancel

Εικόνα 14 Επιλογή τύπου γραφήματος

III. Κάνουμε κλικ σε τέσσερα γνωστά-προφανή σημεία στους άξονες της γραφικής παράστασης έτσι ώστε να γίνει ευθυγράμμιση.

 \setminus

Εικόνα 15 Διαδικασία ευθυγράμμισης των αξόνων

X and Y Axes Calibration								
Enter X-values of the two	points click	ked on X-axis ed on Y-axes	and Y-values of the two points					
	Point 1	Point 2	Log Scale					
X-Axis:	0	10						
Y-Axis:	0.01	1						
Assume axes are p	er <mark>fectly al</mark> ig cc	ned with ima prrection)	ge coordinates (skip rotation					
*For dates, use yyyy/mm/dd hh:ii:ss format, where ii denotes minutes (e.g. 2013/10/23 or 2013/10 or 2013/10/23 10:15 or just 10:15). For exponents, enter values as 1e-3 for 10^-3.								
		ОК						

Εικόνα 16 Διαδικασία ευθυγράμμισης των αξόνων

ΙV. Κάνουμε κλικ τα σημεία από τα οποία προκύπτει η καμπύλη.

Εικόνα 17 Εξαγωγή ζευγών τιμών από την γραφική παράσταση

V. Βλέπουμε τα σημεία σε μορφή ζευγών τιμών Χ,Υ και εξάγουμε ένα αρχείο τύπου .CSV

Εικόνα 18 Ζεύγη τιμών και η εξαγωγή του αρχείου CSV

3.5 Ο Υπολογισμός του γραμμικού και του τετραγωνικού συντελεστή

3.5.1 Ο κώδικας σε γλώσσα Python

Μια γλώσσα προγραμματισμού που χρησιμοποιείται έντονα στις μέρες μας είναι η γλώσσα Python. Η Python είναι μια γλώσσα υψηλού επιπέδου που χρησιμοποιείται στον αντικειμενοστρεφή και στον διαδικαστικό προγραμματισμό. Η Python συνδυάζει την αξιοσημείωτη ισχύ με ένα σαφές συντακτικό, γεγονός που κάνει την γλώσσα εφαρμόζεται σε μεγάλο εύρος προβλημάτων. Ένα πρόβλημα που θα πρέπει να λυθεί κατά την διαδικασία εκπόνησης της διπλωματικής εργασίας είναι να υπολογίσουμε τους συντελεστές α και β της γνωστής καμπύλης του μοντέλου LQ όταν αυτή προσαρμόζεται στα πειραματικά δεδομένα (fitting) από τις μελέτες επιβίωσης των κύτταρων. Παρακάτω φαίνεται ο κώδικας Python που χρησιμοποιήθηκε:

```
import numpy as np
#import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
points = np.array([(X<sub>1</sub>,Y<sub>1</sub>), (X<sub>2</sub>,Y<sub>2</sub>),...,(X<sub>N</sub>,Y<sub>N</sub>)])
xdata = points[:,0]
ydata = points[:,1]
def f(x,a,b):
    return np.exp(-a*x-b*(x**2))
#bounds=((0.001, -np.inf), (np.inf, np.inf))
#popt, pcov = curve_fit(f, xdata, ydata, p0=[0.1, 1e-
3],bounds=bounds)
popt, pcov = curve fit(f, xdata, ydata, p0=[0.1, 1e-
3])
```

```
#perr = np.sqrt(np.diag(pcov))
print(popt)
#print(perr)
```

Από το αρχείο CSV που λαμβάνεται από το WebPlotDigitiger, παίρνουμε τα ζεύγη X,Y και τα εισάγουμε στην τέταρτη γραμμή του κώδικα. (X_1, Y_1) είναι το πρώτο ζεύγος τιμών, (X_2, Y_2) το δεύτερο ζεύγος τιμών κ.ο.κ.

Ο κώδικας εκτελείται τόσες φορές όσες είναι οι γραμμές του πίνακα που συμπληρώνεται μέσω της χρήσης του Excel. Στο τέλος της εκτέλεσής του εμφανίζονται οι τιμές των συντελεστών α και β . Δυστυχώς ο κώδικας δεν είναι ανεπτυγμένος με τέτοιο τρόπο που να υπολογίζει τα σφάλματα των α και β , για τον λόγο αυτό εφαρμόζεται μια άλλη τεχνική για τον υπολογισμό τους. Η τεχνική αυτή δεν είναι άλλη πέρα από την χρήση του λογισμικού Origin.

3.5.2 Το λογισμικό Origin

Το Origin είναι ένα λογισμικό που με την βοήθειά του σχεδιάζονται γραφικές παραστάσεις. Η διαδικασία σχεδίασης γραφικών παραστάσεων με το Origin είναι πολύ απλή. Για να γίνει αυτό συμπληρώνονται οι στήλες των τιμών X και Y και επιλέγομε «σχεδίαση» (plot). Στο Origin υπάρχει και η δυνατότητα να γίνει fitting μιας καμπύλης οποιαδήποτε μορφής στα σημεία της γραφικής παράστασης. Για αυτό από τα αρχεία CSV που δημιουργήθηκαν από το WebPlotDigitizer χρησιμοποιήθηκαν τα ζεύγη τιμών X,Y για να σχεδιαστεί η γραφική παράσταση σε μορφή αναπαράστασης των σημείων. Μετά από κάθε σχεδίαση τέτοιας γραφικής παράστασης, στα σημεία, γινόταν fitting με την καμπύλη LQ υπολογίζονται αυτόματα οι συντελεστές α και β μαζί με τα σφάλματά τους. Η χρήση του λογισμικού Origin δεν ήταν απλά ένας τρόπος για υπολογιστούν τα σφάλματα των συντελεστές αυτοί υπολογίζονται σωστά.

3.5.3 Παράδειγμα υπολογισμού γραμμικού και τετραγωνικού συντελεστή για μια καμπύλη επιβίωσης

Έχοντας υπόψη την καμπύλη της εικόνας 13, με βάση το αρχείο CSV που εξάγεται από το WebPlotDigitizer η καμπύλη προσεγγίζει τα σημεία με ζεύγη τιμών Χ,Υ όπως φαίνεται στον παρακάτω πίνακα:

Х	Y
0	1
1,996587	0,680694
4,010239	0,319711
6,006826	0,147647
8,003413	0,039078

Πίνακας 2 Δεδομένα δόσης (X) –ποσοστού επιβίωσης (Y)

Χρησιμοποιώντας τα ζεύγη Χ,Υ στην τέταρτη γραμμή του κώδικα Python, ο κώδικας γράφεται ως εξής:

```
import numpy as np
#import matplotlib.pyplot as plt
from scipy.optimize import curve fit
points = np.array([(0,1), (1.996587, 0.680694), (4.010239,
0.319711), (6.006826, 0.147647), (8.003413, 0.039078)])
xdata = points[:,0]
ydata = points[:,1]
def f(x,a,b):
   return np.exp(-a*x-b*(x**2))
#bounds=((0.001, -np.inf), (np.inf, np.inf))
#popt, pcov = curve fit(f, xdata, ydata, p0=[0.1, 1e-
3], bounds=bounds)
popt, pcov = curve fit(f, xdata, ydata, p0=[0.1, 1e-3])
#perr = np.sqrt(np.diag(pcov))
print(popt)
#print(perr)
```

Μετά το τέλος της εκτέλεσης του κώδικα εμφανίζονται οι τιμές των α και β που είναι 0.1312 Gy⁻¹ και 0.0345 Gy⁻² αντίστοιχα.

Για να υπολογίζουμε τα σφάλματα των
 α και βεισάγουμε τα δεδομένα του αρχείου CSV στο Origin.

	A(X)	B(Y)	
Long Name	Dose	Survival	
Units	Gy		
Comments			
1	0	1	
2	1,99659	0,68069	
3	4,01024	0,31971	
4	6,00683	0,14765	
5	8,00341	0,03908	
6			
7			
8			
9			
10			
11			
12			

Εικόνα 19 Εισαγωγή των δεδομένων στο Origin

Τις τιμές X,Y τις αναπαριστούμε με μορφή σημείων σε σύστημα καρτεσιανών και σχεδιάζουμε εκ νέου μια καμπύλη επιβίωσης $S=\exp(-\alpha D-\beta D^2)$ κάνοντας fitting.

Όταν γίνεται το fitting, μαζί με την γραφική με την καμπύλη επιβίωσης εμφανίζεται ένα το παρακάτω πλαίσιο το οποίο δείχνει τις παραμέτρους της καμπύλης.

Model	LinQuad (User)		
Equation	y = exp(-a*x-b*x		
Reduced Chi-Sqr	2,54027E-4		
Adj. R-Square	0,99839		
		Value	Standard Error
Cupical	а	0,13118	0,01925
Survival	b	0,03449	0,00498

Βλέποντας το πλαίσιο συμπεραίνουμε ότι:

 $a = 0.13118 \pm 0.01925 \text{ Gy}^{-1} \text{ } \kappa \alpha \beta = 0.03449 \pm 0.00496 \text{ Gy}^{-2}$

3.6 Ρυθμός επαγωγής δίκλωνων θραύσεων ανά δόση ακτινοβολίας ανά Gbp

Ο υπολογισμός του ρυθμού επαγωγής DSB/(Gbp·Gy) είναι τις περισσότερες φορές λιγότερο χρονοβόρος από τον υπολογισμό των συντελεστών α και β , διότι συχνά δεν χρησιμοποιείται κάποιος κώδικας όπως αυτόν της Python ή κάποιου λογισμικού όπως αυτό του Origin. Ίσως σε μερικά διαγράμματα που δεν φαίνονται τόσο ευανάγνωστα να είναι απαραίτητη η χρήση του WebPlotDigitizer.

Τα διαγράμματα που βασιζόμαστε για να υπολογίσουμε τις εστίες DSB έχουν ενδεικτικά τις μορφές όπως φαίνονται στις παρακάτω εικόνες:

Εικόνα 21 [66]

Για να υπολογιστεί το η στήλη με τα στοιχεία του ρυθμού επαγωγής **DSBs/(Gy*Gbps) (15-30 min)**, πρέπει να επεξεργαστούμε τρία μεγέθη τα οποία φαίνονται στα διαγράμματα. Τα μεγέθη αυτά είναι οι εστίες γH2AX ανά κύτταρο (ή πυρήνα), τον χρόνο που περνάει μετά το τέλος της ακτινοβόλησης και την δόση της ακτινοβολίας. Εφόσον το πλήθος των εστιών γH2AX είναι ίδιο με το πλήθος των DSBs, τον αριθμό εστιών γH2AX ανά κύτταρο τον διαιρούμε με το 6.4 έτσι ώστε να ξέρουμε τον αριθμό εστιών γH2AX ανά Gbp άρα και τον αριθμό των DSBs ανά Gbp. Αυτό γίνεται διότι το DNA στον πυρήνα του ανθρώπινου κυττάρου έχει μήκος 6.4 δισεκατομμύρια ζεύγη βάσεων (6.4 Gbp). Τον αριθμό DSB ανά Gbp τον διαιρούμε με την δόση της ακτινοβολίας όποτε προκύπτει ο ρυθμός επαγωγής DSB ανά Gy ανά Gbp και μάλιστα πρέπει να αντιστοιχεί στο χρόνο που περνάει μετά το τέλος της ακτινοβόλησης που είναι τα 30 λεπτά.

Η παραπάνω διαδικασία γίνεται πιο κατανοητή με μερικά παραδείγματα:

Στην εικόνα 21 βλέπουμε δύο μορφές μιας γραφικής παράστασης των εστιών γH2AX ανά κύτταρο σε συνάρτηση με την δόση της ακτινοβολίας. Οι τιμές των εστιών γH2AX αντιστοιχούν στα 30 λεπτά μετά την ακτινοβόληση. Για να υπολογιστεί ο ρυθμός επαγωγής DSBs/(Gy*Gbps) πρέπει να γίνει fiiting μιας ευθείας που να προσεγγίζει τα πειραματικά σημεία. Η κλίση της ευθείας που προκύπτει είναι ο αριθμός εστιών γH2AX ανά κύτταρο ανά Gy. Στην περίπτωση της εικόνας 21 η κλίση είναι έτοιμη υπολογισμένη και έχει την τιμή 15,5 εστίες γH2AX ανά κύτταρο ανά Gy. Για να καταλήξουμε στο τελικό επιθυμητό αποτέλεσμα πρέπει η κλίση να διαιρεθεί με το 6,4. Με λίγα λόγια:

$$\frac{15.5 \text{ estieg gH2AX / Gy}}{\text{kúttaro}} = \frac{15.5 \text{ DSBs / Gy}}{\text{kúttaro}} = \frac{15.5 \text{ DSBs / Gy}}{6.4 \text{ Gbps}} = 2.42 \frac{\text{DSBs}}{\text{Gbps} \cdot \text{Gy}}$$

Το διάγραμμα της εικόνας 22 δείχνει τον αριθμό εστιών γH2AX που σχηματίζονται 0.5 h μετά από ακτινοβολία των 2 Gy. Σε αυτό το διάγραμμα όταν επιλέξουμε την πρώτη στήλη των 2 Gy έχουμε:

 $\frac{47 εστίες γH2AX}{κύτταρο} = \frac{47 DSBs}{κύτταρο} = \frac{47 DSBs}{6.4 Gbps} = 7.34 \frac{DSBs}{Gbps}$

δηλαδή 3.67 $\frac{\text{DSBs}}{\text{Gbps} \cdot \text{Gy}}$

3.7 Monte Carlo Damage Simulation (MCDS)

3.7.1 Η χρήση και ο αλγόριθμος του MCDS

Το MCDS είναι μια προσομοίωση με γρήγορο αλγόριθμο η οποία υπολογίζει το πλήθος ομαδοποιημένων ή μη βλαβών σε ένα κύτταρο το οποίο μπορεί να έχει ακτινοβοληθεί με φωτόνια, μονοενεργειακά ηλεκτρόνια, ή βαρεά ιόντα όπως το ⁵⁶Fe. Το MCDS μπορεί να προσομοιώσει την εμφάνιση βλαβών σε διάφορες συγκεντρώσεις οξυγόνου, είτε είναι χαμηλές είτε είναι υψηλές ή κανονικές. Το MCDS είναι ένα πρόγραμμα που διατίθεται δωρεάν και μπορεί να χρησιμοποιηθεί τόσο για εκπαιδευτικό όσο και για ερευνητικό σκοπό. **[68]**

Στους τύπους των βλαβών που προσομοιώνει το MCDS περιλαμβάνονται οι βλάβες βάσεων, οι απλές μονόκλωνες θραύσεις SSB, οι απλές δίκλωνες θραύσεις DSB, δύο ή περισσότερες θραύσεις που βρίσκονται στην ίδια έλικα (SSB⁺) δύο ή περισσότερες θραύσεις σε αντίθετες έλικες χωρίς να αποτελούν DSB (2SSB), δίκλωνες θραύσεις με επιπρόσθετες θραύσεις σε μια έλικα σε τμήμα 10 ζευγών βάσεων (DSB⁺) και περισσότερες από μία δίκλωνες θραύσεις σε μήκος σε τμήμα 10 ζευγών βάσεων (DSB⁺⁺). Το σύνολο των SSB αναφέρεται στον συνδυασμό των απλών μονόκλωνων θραύσεων SSB, των SSB⁺ και των SSB⁺⁺⁺, ενώ το σύνολο των DSB αναφέρεται στον συνδυασμό των απλών δίκλωνων θραύσεων DSB, των DSB⁺ και των DSB⁺⁺. [69]

Για να πραγματοποιηθεί η προσομοίωση δημιουργίας βλαβών DNA, είναι απαραίτητο αρχικά να προσδιοριστούν τέσσερις παράμετροι. Οι παράμετροι αυτές είναι:

- 1. Ο αριθμός θραύσεων κλώνων ανά Gy ανά κύτταρο, σ_{Sb} .
- 2. Ο αριθμός βλαβών βάσεων ανά Gy ανά κύτταρο, σ_{Bd}.
- 3. Το μήκος του DNA σε ζεύγη βάσεων ανά Gy ανά κύτταρο, nseg.
- 4. Το ελάχιστο μήκος του DNA σε ζεύγη βάσεων, N_{min}, που δεν έχει υποστεί ζημιά ανάμεσα σε στοιχειώδεις ζημιές τέτοιες ώστε αυτές οι στοιχειώδεις ζημιές να θεωρούνται ότι βρίσκονται σε ομαδοποιημένες βλάβες.

Ο αλγόριθμος του MCDS για την προσομοίωση των βλαβών αποτελείται από δύο σημαντικά στάδια. Στο πρώτο στάδιο γίνεται με τυχαίο τρόπο η κατανομή των στοιχειωδών βλαβών σε ένα τμήμα DNA που δημιουργούνται στο κύτταρο

από μια συγκεκριμένη ποσότητα ακτινοβολίας. Στο δεύτερο στάδιο, οι συνολικές βλάβες του τμήματος χωρίζονται σε ομάδες οι οποίες καθορίζονται από τον παράγοντα N_{min} .

Το πρώτο στάδιο εξελίσσεται σε πέντε βήματα:

- 1. Γίνεται ο υπολογισμός των παραμέτρων για μια δόση *D*. Το μήκος του τμήματος ανά κύτταρο είναι $N_{seg}=gn_{seg}D$ και ο συνολικός αριθμός των θραύσεων των κλώνων ανά κύτταρο είναι $\Sigma_{Sb} = g\sigma_{Sb}D$, όπου to *g* είναι ένα αδιάστατο μέγεθος που χρησιμοποιείται για να ρυθμίσει την απόλυτη απόδοση των βλαβών DNA έτσι ώστε να γίνει καλύτερη η μίμηση των πειραματικών παρατηρήσεων για συγκεκριμένους κυτταρικούς τύπους.
- 2. Επιλέγεται τυχαία ένα ζεύγος νουκλεοτιδίων από το τμήμα DNA. Δηλαδή επιλέγεται ένας ακέραιος αριθμός στο διάστημα [1, N_{seg}].
- 3. Επιλογή μιας έλικας του DNA στην τύχη. Εάν το επιλεγμένο νουκλεοτίδιο δεν έχει ήδη υποστεί ζημιά τότε γίνεται η καταγραφή της θραύσης έλικας στο σημείο, διαφορετικά γίνεται μετάβαση στο βήμα 2.
- 4. Θέτουμε $\Sigma_{Sb} = \Sigma_{Sb} 1$. Αν $\Sigma_{Sb} > 0$ τότε μεταβαίνουμε στο βήμα 2.
- 5. Επαναλαμβάνουμε τα βήματα 2 έως 4 για τις βλάβες βάσεων.

Το δεύτερο στάδιο εξελίσσεται σε τέσσερα βήματα:

- Ξεκινάμε από τη μια άκρη του τμήματος του DNA και εντοπίζουμε την πρώτη στοιχειώδη σε μία από τις έλικες ή και στις δύο. Θέτουμε την αρχή της ομαδοποιημένης βλάβης στο σημείο της στοιχειώδους βλάβης.
- 2. Ξεκινώντας με ένα ζεύγος βάσεων μετά την τελευταία ταυτοποιημένη στοιχειώδη βλάβη, προχωράμε κατά μήκος του τμήματος DNA και μετράμε τον αριθμό των άθικτων ζευγών βάσεων μέχρι να εμφανιστεί η επόμενη στοιχειώδη βλάβη. Αν το τέλος του τμήματος DNA φτάσει πριν συναντηθεί άλλη στοιχειώδη βλάβη τότε θέτουμε το τέλος της ομαδοποιημένης βλάβης στη τελευταία στοιχειώδη ζημιά που ανιχνεύτηκε.
- 3. Εάν το πλήθος των άθικτων ζευγών βάσεων είναι μεγαλύτερο ή ίσο του N_{min}, θέτουμε την θέση τερματισμού της ομαδοποιημένης στο σημείο της στοιχειώδους ζημιάς που βρίσκεται στην αντίθετη φορά. Έπειτα θέτουμε το σημείο εκκίνησης της επόμενης ομαδοποιημένης βλάβης στο σημείο που βρίσκεται στην ίδια φορά κατεύθυνσης κίνησης.
- 4. Μετάβαση στο βήμα 2

[70]

3.7.2 Αρχεία εισόδου και εξόδου

Το MCDS αποτελείται από τρία μέρη, ένα αρχείο εισόδου, ένα εκτελέσιμο αρχείο (αρχείο τύπου **.EXE**) και ένα αρχείο εξόδου. Το αρχείο εισόδου είναι αυτό που μπορούμε να επεξεργαστούμε, δηλαδή περιέχει κάποιες παραμέτρους τις οποίες μπορούμε να ρυθμίσουμε ανάλογα με τον τρόπο που θέλουμε να τρέξει η προσομοίωση. Το εκτελέσιμο πρόγραμμα διαβάζει τις παραμέτρους του αρχείου εισόδου και γίνεται ο υπολογισμός των βλαβών του DNA. Το

αρχείο εξόδου είναι το αρχείο στο οποίο καταγράφονται τα αποτελέσματα των υπολογισμών.

Στο αρχείο εισόδου μπορούμε να ελέγξουμε τις παρακάτω παραμέτρους:

SIMCON: παράμετροι ελέγχου προσομοίωσης

seed : seed για γεννήτρια τυχαίων αριθμών (προεπιλογή = 987654321) nocs : αριθμός των προσομοιώσεων MC (Προσομοίωση που αντιπροσωπεύει ζημιά σε ένα κύτταρο)

CELL: Χαρακτηριστικά και παράμετροι του κυττάρου

DNA : περιεχόμενο DNA στον πυρήνα του κυττάρου (σε Gbp)

NDIA : διάμετρος του πυρήνα του (σε μm) – χρησιμοποιείται για να υπολογιστούν μικροδοσιμετρικές ποσότητες

CDIA : διάμετρος του κυττάρου (σε μm) –πρέπει να είανι μεγαλύτερο ή ίσο από το NDIA (προεπιλογή CDIA=NDIA)

WEM : ισοδύναμη απόσταση νερού του σωματιδίου που πρέπει να ταξιδέψει στην επιφάνεια του κυττάρου (mg/cm²)

EVO2: Περιβαλλοντική συγκέντρωση οξυγόνου

pO2 : η επί τοις εκατό συγκέντρωση του οξυγόνου (0 ως 100%) **m0**: Μέγιστο OER² για την επαγωγή των SSB **k**: συγκέντρωση για να εμφανιστεί το ήμισυ του μεγίστου OER **q, r**: παράμετροι διόρθωσης ποιότητας ακτινοβολίας

DMSO: Παράμετροι ελέγχου DMSO

CONC: συγκέντρωση DMSO (σε mol/lt)

RADX: Παράμετροι έκθεσης σε ακτινοβολία

PAR : τύπος σωματιδίου (e.g., e, p, 1H, 2H, 4He, 12C, 56Fe, ...} **KE** : κινητική ενέργεια του σωματιδίου σε MeV

MCDS: Άλλες παράμετροι προσομοίωσης βλαβών

Fbl: ποσοστό βλαβών βάσεων που είναι αβασικά σημεία

Έστω ότι έχουμε το παρακάτω αρχείο εισόδου:

SIMCON: nocs=10000 seed=987654321 CELL: DNA=1 ndia=5 EVO2: pO2=100 RADX: par=e ke=0.01

² OER: Oxygen Enhancement Ratio

Όταν εκτελείται το MCDS, ανάλογα με το αρχείο εισόδου θα προκύψει το ανάλογο αρχείο εξόδου:

MCDS Version 3.10A 05-DEC-2011

0.717 running time (min)
987654321 random number seed
10000 number of cells (nocs)
0.0000E+00 water-equivalent material (WEM) thickness (mg/cm^2)
1.0000E+00 Desired dose to the cell nucleus (Gy)
1.0000E+00 DNA content (Gbp)
TARGET (cell) DEFINITION (4V/S = mean chord length) DIAMETER 4V/S Volume Mass (um) (um) (um^3) (ng)
DNA 1.021E+00 1.021E-03 NUCLEUS 5.000E+00 3.333E+00 6.545E+01 6.545E-02 CYTOPLASM 0.000E+00 0.000E+00 0.000E+00 CELL 5.000E+00 3.333E+00 6.545E+01 6.545E-02

NOTE: In human DNA, 1 Gbp=0.979 ng (not including bound H2O). DNA volume computed using a density of 1 g/cm^3.

INCIDENT PARTICLE: e- (mass = $5.48580E-04 u = 5.10999E-01 MeV/c^2$) 1.00000E-02 MeV >= 1.27750E-06 MeV 1.82289E+01 MeV/u >= 2.32874E-03 MeV/u) 1.01587E-01 MeV (p*c = momentum x speed of light) 1.22062E+01 pm (de Broglie wavelength) 1.01957E+00 = T/m0c2+1 (Lorentz factor) >= 1 1.00000E+00 ABS(effective charge); Barkas 1963 1.94986E-01 beta = (v/c) <= 1 $2.63024E+01 (zeff/beta)^2 <= 2.000E+05$ 2.27754E+00 keV/um (total stopping power in H2O) 2.27714E+00 keV/um (0.018% radiative)2.57387E-04 CSDA range of particle (cm) in H2O

PARTICLE TRANSPORT - Beam of radiation incident on bottom of cell culture dish (WEM=0.00 um, cell=5.00 um, nucleus=5.00 um; total distance traveled to reach nucleus=0.000 um of H2O).

-	Cell -		Nucle	us
Incident	Entry	Exit	Entry	Exit

KE (MeV) 1.0000E-02 1.0000E-02 0.0000E+00 1.0000E-02 0.0000E+00 (Zeff/beta)^2 2.6302E+01 2.6302E+01 0.0000E+00 2.6302E+01 0.0000E+00 LET (keV/um) 2.2771E+00 2.2771E+00 0.0000E+00 2.2771E+00 0.0000E+00 Res. Range (um) 2.5739E+00 2.5739E+00 0.0000E+00 2.5739E+00 0.0000E+00 DPUF1 (nGy-cm²) 3.6480E+00 3.6480E+00 0.0000E+00 3.6480E+00 0.0000E+00 DPUF2 (nGy-cm²) 4.1966E+00 4.1966E+00 ----8.7320E+00 8.7320E+00 Edep (keV) ----YF (keV/um) 2.6196E+00 ----2.6196E+00 ---ZF (Gy) --- 2.1373E-02 ---2.1373E-02

LET=(Stot-Srad); absorbed dose per unit fluence (DPUF1) = 1.602*LET/rhoAvg. absorbed dose within target (i.e., DPUF2) = 2.5*pi*d*d*zfEdep = 0.1602*ZF*PI*d*d*d/6; yf = edep/lbar = $0.25*edep*{area}/{volume}$

DAMAGE FORMATION AND CLUSTERING (normoxic conditions)

25764 segment length, nseg (bp per cell per Gy)

- 1300 number of strand breaks, sigSb (per cell per Gy)
- 3900 number of base damages, sigBd (per cell per Gy)
- 3.0 base damage to strand break ratio, f
- 9 minimum distance between clusters, Nmin (bp)

- 10 maximum distance between two Sb to compose a DSB, Ndsb (bp)
- 0.0 fraction Bl/Bd

OXYGEN SIMULATION (M0=1.740, K=0.3372, q=946.10, r=2.15)

1.0000E+02 % O2 concentration (=760.00 mmHg)

2.4929E-08 chemical repair probability (pcr)

1.0000E+00 O2 fixation probability (1-pcr)

1.0000E+00 Approx. HRF for SSB induction [=1/(1-pcr)]

1.0000E+00 Approx. HRF for DSB induction [1/(1-pcr)]^2

DMSO SIMULATION

5.0000E-01 fraction of non-scavengeable DNA damage (fnsd)

5.0000E-01 concentration (mol dm^-3) at half-level (chmx)

0.0000E+00 DMSO concentration (mol dm^-3)

TABLE 1. Percent (%) cluster yields by complexity, as classified using the scheme of Nikjoo et al. (IJRB 71, 467-483 1997 and and Radiat. Res. 156, 577-583 2001).

(7.00	1 00			D.1.	(C1.
57.80	3 BD	- one c	or more	ва	no	50

29.088 SSB - Sb (no auxilary damage)

1.413 SSB+ - two Sb on the same strand

0.186 2SSB - two or more Sb on opposite strands separated by at least 10 bp

1.243 DSB - two Sb on opposite strands with a separation <= 10 bp

0.184 DSB+ - DSB accompanied by one (or more) additional Sb within 10 bp separation

0.024 DSB++ - more than one DSB whether within the 10 bp separation or further apart

5.211 SSBc - fraction of complex damage (SSB+ and 2SSB) among SSBs

42.609 SSBcb - fraction of complex damage (SSB+ and 2SSB) among SSBs; base damage included

- 14.290 DSBc fraction of complex damage (DSB+ and DSB++) among DSBs
- 53.804 DSBcb fraction of complex damage (DSB+ and DSB++) among DSBs; base damage included

TABLE 2. Number of clusters per cell (DNA=1.000 Gbp, AD=1.000 Gy).

Numbe	er of	- DSB		SSE	3	(THER -		ALL CI	USTERS	
lesion	s Averag	e s	SEM A	Average	SEM	Avera	ige S	SEM	Average	SEM	
1			1 07211E-	 +02 3 151	81E-02	3 21510E	+02 5 80	6577E-	02 4 28721F	E+02 7 03672E-02	
2	4 07712E-	-00 7 9	92953E-03	5 14245F	$\pm 01 25$	5365E-02	7 1391	8E+01	2 87462E-02	1 26893E+02 3 71506E-02	
3	2.72947E-	+00 6	56848E-03	1 89582F	$\pm 01 \ 1.6$	5296E-02	1 5788	8E+01	1 49734E-02	3 74765E+01 2 21238E-02	
4	1.25733E-	+00 4.1	54215E-03	6.32987F	+00 9.9	8640E-03	3.5012	3E+00	7.41911E-03	1.10884E+01 1.28390E-02	
5	4.93267E-	01 2.8	35709E-03	2.00868E	+00 5.68	3784E-03	7.76900	E-01	3.56877E-03	3.27885E+00 7.16757E-03	
6	1.80567E-	01 1.7	3442E-03	6.15783E	-01 3.16	774E-03	1.73250	E-01 1	.68362E-03	9.69600E-01 3.97510E-03	
7	6.25500E-	02 1.0)1172E-03	1.84183E	-01 1.74	624E-03	3.70833	E-02 7	.79272E-04	2.83817E-01 2.15754E-03	
8	2.15667E-	02 5.9	9696E-04	5.46167E	-02 9.46	257E-04	8.30000	E-03 3	.70903E-04	8.44833E-02 1.18322E-03	
9	7.40000E-	03 3.5	52897E-04	1.60667E	-02 5.18	858E-04	1.66667	E-03 1	.69157E-04	2.51333E-02 6.46087E-04	
10	2.25000E	-03 1.9	93786E-04	4.56667E	2-03 2.76	6144E-04	3.50000)E-04 ~	7.62998E-05	7.16667E-03 3.46231E-04	
11	9.33333E	-04 1.2	24378E-04	1.40000E	2-03 1.52	2117E-04	8.33333	E-05	3.72603E-05	2.41667E-03 1.99243E-04	
12	2.66667E	-04 6.0	66166E-05	3.50000E	2-04 7.62	2998E-05	1.66667	'E-05	1.66667E-05	6.33333E-04 1.02550E-04	
13	5.00000E	-05 2.3	88646E-05	1.33333E	2-04 4.71	239E-05			1.83333E	-04 5.52494E-05	
14			1.66667E	-05 1.666	67E-05			1.6666	7E-05 1.6666	57E-05	
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
20											
∠/ 28											
20 29											

	1.0(00)	 	 	

 $Total \quad 8.83277E+00 \quad 1.11051E-02 \quad 1.86809E+02 \quad 2.49840E-02 \quad 4.13189E+02 \quad 4.49584E-02 \quad 6.08831E+02 \quad 4.66875E-02 \quad 0.08831E+02 \quad 0.088841E+02 \quad 0.088841E+02 \quad 0.08841E+02 \quad 0.08$

NOTE: The category "OTHER" includes all classes of individual and clustered DNA lesion, except for SSB and DSB. SEM = standard error of the mean.

 TABLE 3. Number of clusters per cell per track (DNA=1.000 Gbp, ZF=0.02137 Gy).

Numbe	er of	- DSB -		SS	В	(OTHER		ALL C	LUSTERS	
lesion	s Average	e S	SEM .	Average	SEM	Avera	age	SEM	Average	SEM	
1			2.29143E	2+00 6.73	638E-04	6.87165E	E+00 1.2	25370E	E-03 9.163081	E+00 1.503961	E-03
2	8.71405E-0	02 1.6	9478E-04	1.099101	$\pm +00$ 5.4	15793E-04	1.5258	6E+00	6.14395E-04	2.71210E+00) 7.94022E-04
3	5.83371E-0	02 1.4	0389E-04	4.051951	E-01 3.5	3287E-04	3.3745	6E-01	3.20027E-04	8.00988E-01	4.72853E-04
4	2.68731E-0	02 9.70	0797E-05	1.352891	E-01 2.1	3440E-04	7.4832	1E-02	1.58569E-04	2.36994E-01	2.74408E-04
5	1.05426E-0	02 6.1	0647E-05	4.293171	E-02 1.2	1567E-04	1.6604	7E-02	7.62756E-05	7.00791E-02	1.53193E-04
6	3.85926E-0	03 3.7	0698E-05	1.316121	E-02 6.7	7044E-05	3.7028	8E-03	3.59840E-05	2.07233E-02	8.49600E-05
7	1.33689E-0	03 2.1	6235E-05	3.93656I	E-03 3.7	3224E-05	7.92584	4E-04	1.66554E-05	6.06603E-03	4.61133E-05
8	4.60946E-0	04 1.2	8173E-05	1.167331	E-03 2.0	2244E-05	1.7739	6E-04	7.92734E-06	1.80567E-03	2.52890E-05
9	1.58161E-0	04 7.54	4250E-06	3.433941	E-04 1.1	0896E-05	3.5621	8E-05	3.61540E-06	5.37176E-04	1.38089E-05
10	4.80894E-	05 4.1	4180E-06	9.76037	E-05 5.9	90204E-06	7.4805	7E-06	1.63076E-06	1.53174E-04	7.40002E-06
11	1.99482E-	05 2.6	5835E-06	2.99223	E-05 3.2	25121E-06	1.7810	19E-06	7.96368E-07	5.16516E-05	4.25843E-06
12	5.69948E-	06 1.4	2380E-06	7.48057	E-06 1.6	63076E-06	3.5621	8E-07	0.00000E+00	1.35363E-05	2.19181E-06
13	1.06865E-	06 6.1	6926E-07	2.84974	E-06 1.0	00718E-06			- 3.91840E	E-06 1.18085E	-06
14			3.56218I	E-07 0.00	000E+00)		3.562	218E-07 0.000	000E+00	
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
33											
34											
35											
36											

37											
38											
39											
40											
41											
42											
43											
44											
45											
46											
47											
48											
49											
50											
Total	1.887831	E-01 2.3	7350E-04	3.99269	0E+00 5	.33985E-04	8.831	2E+00	9.60898E-04	1.30126E+01	9.97855E-04

TABLE 4. Cluster Length (in base pair)

Numb	er of	DSB -	====== EM /	== SS Average	SB	(Aver:	OTHER age	SEM	ALL CL Average	USTERS SEM	
1			1 66667E	== _01_0_00	000E+00	1 666675	-01 0	00000E+(00 1.66667E.	01 0 00000E+00	
2	9 087951	 -01 9 50	1.00007L	9 34008	$F_01 25$	3834F-04	9 3214	16F-01 2	19123E-04	01 0.00000E+00 0 32150E-01 1 6278	9F-04
3	1 600501	5+00 1.60	1258E-04	1 71394	SE+00.59	95183E-04	1 698	869F+00	6 40744F-04	1 69926E+00 4 18	739F-04
4	2 32948	$\Xi + 00 \ 1.0$	4461E-03	2 49379	PE+00 1	25124E-03	2.467	796E+00	1 69381E-03	2 46687E+00 9 42	920E-04
5	3 074931	5+00 5.0 5+00 6.10	0847E-03	3 26983	SE+00 2	64606E-03	3 232	288E+00	4 62990E-03	3 23219E+00 2 05	481E-03
6	3 84176	$5+00 \ 0.1$	7984F-02	4 04511	E+00 = 2.9	94211E-03	4 004	571E+00	1.06641E-02	3 99820E+00 4 63	911E-03
7	4 61590F	$\Xi + 00 1.0$ $\Xi + 00 1.8$	2157E-02	4 81126	5E+00 1	14314E-02	4 751	30E+00	2.36757E-02	4 76345E+00 9 55	292E-03
8	5 34194	$\Xi + 00 34$	1088E-02	5 55766	5E+00 2	15607E-02	5 520	0.04E+0.0	5 47835E-02	5 50624E+00 1 79	117E-02
9	6 11902F	$\Xi + 00 5.1$	4153E-02	6 38662	2E+00 4	22768E-02	6 161	56E+00	1 19451E-01	6 29292E+00 3 36	987E-02
10	6 83831	E+00 1 1	3629E-01	7 1725	3E+00 8	60650E-02	2 6 96	825E+00	3 63991E-01	7 05040E+00 6 8	0345E-02
11	7 50298	E+00 2.0	7041E-01	8 0992	1E+00 1	85388E-01	7 46	667E+00	8 85689E-01	7 84713E+00 1 3	8414E-01
12	8.36458	E+00 2.0	3927E-01	9.1746	0E+00 3	.01117E-01	8 83	333E+00	0.00000E+00	8.82456E+00 2 1	4640E-01
13	9.61111	E+00 10	5556E+0) 9.7916	57E+00 6	19420E-0	1		- 9.742421	E+00 5.06704E-01	
14			9.66667F	E+00 0.0	0000E+00)		9.666	67E+00 0.000	00E+00	
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
33											
34											
35											
36											
37											
38											
39											
40											
41											
42											
43											
44											
45											

46											
47											
48											
49											
50											
Average	1.549	21E+00	1.40042E-0	03 6.	66934E-01	2.28917	E-04	3.84965E-01	9.79719E-05	4.88381E-01	9.84797E-05

TABLE 5. Density of lesions forming a cluster (in units of lesions per nucleotide).

Jumber	of 1	DSB	SS	В	(OTHER		ALL C	LUSTERS	
esions	Average	SEM	Average	SEM	Avera	age	SEM	Average	SEM	
:										
1		- 8.33333	E-02 0.000	000E+00	8.33333E	E-02 0.0	0000E	+00 8.333331	E-02 0.00000E	+00
2 4	1.55652E-02	2 7.68861E-0	5 4.14437E	E-02 1.73	447E-05	4.1744()E-02	1.51756E-05	4.17448E-02	1.12776E-05
3 3	3.18694E-02	2 4.65260E-0	5 2.929561	2-02 1.53	443E-05	2.96308	SE-02	1.68768E-05	2.96238E-02	1.09376E-05
4 2	2.73252E-02	2 4.78494E-0	5 2.51588E	E-02 1.78	378E-05	2.54635	5E-02	2.41962E-05	2.55028E-02	1.36863E-05
5 2	2.49769E-02	2 6.21394E-0:	5 2.31888E	E-02 2.41	516E-05	2.35220)E-02	4.34823E-05	2.35376E-02	1.92609E-05
6 2	2.35322E-02	2 8.17114E-0:	5 2.20696E	E-02 3.97	750E-05	2.23227	7E-02	7.26874E-05	2.24007E-02	3.18247E-05
7 2	2.23646E-02	2 1.03021E-04	4 2.13920E	E-02 5.93	547E-05	2.17265	5E-02	1.27660E-04	2.16438E-02	5.10170E-05
8 2	2.20795E-02	2 1.76890E-04	4 2.10389E	E-02 9.40	727E-05	2.12603	3E-02	2.44207E-04	2.13041E-02	8.25914E-05
9 2	2.13483E-02	2.24534E-04	4 2.04807E	E-02 1.53	912E-04	2.11321	LE-02	4.55785E-04	2.07828E-02	1.23654E-04
10	2.11760E-0	2 4.03014E-0	4 2.02333	E-02 2.84	913E-04	2.1339	4E-02	1.43498E-03	2.06037E-02	2.33705E-04
11	2.12458E-0	2 5.97971E-0	4 1.97928	E-02 5.06	6810E-04	2.1713	7E-02	2.70350E-03	2.04202E-02	3.86425E-04
12	2.03172E-02	2 7.48325E-0	4 1.85559	E-02 6.03	044E-04	1.8867	9E-02	0.00000E+00	1.93057E-02	4.73708E-04
13	1.92156E-02	2 1.96087E-0	1.89950	E-02 1.27	226E-03			- 1.90552E	E-02 1.01721E-	.03
14		2.01	149E-02 0.	00000E+0	0		2.	01149E-02 0.0	00000E+00	
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46	•									
46 47										
46 47 48	·									
46 47 48 49										

Average 3.68848E-02 4.00150E-05 6.34098E-02 8.42424E-06 7.34576E-02 4.38942E-06 6.98437E-02 4.01211E-06

NOTE: Lesion density computed as the number of lesions per cluster divided by twice the cluster length.

THELE O. Cluster composition (70 50 per cluster)	ΤA	BLE	6.	Cluster	comp	osition	(% S	b per	cluster)	
--	----	-----	----	---------	------	---------	------	-------	----------	--

Manul	======================================		 ת	==	CD	0		D		ICTEDC
lesion	S Avera	DS	SEM	Si Average	SE	U	11 HE	K SEM	ALL CLU	SFM
	=======			======		=======		=======		5EW
				==						
1			1.66667E	+01 0.0	0000E+00	0.00000E	+00	0.0000E+	+00 4.16786E	+00 1.01201E-03
2	1.66667E	+01	0.00000E+00	8.9551	2E+00 1	.23714E-03	0.0	0000E+00	0.00000E+00	4.16446E+00 1.55686E-03
3	1.20279E	+01	5.19892E-03	6.5139	4E+00 2.	05603E-03	0.00	0000E+00	0.00000E+00	4.17105E+00 2.58548E-03
4	9.81554E	+00	8.92702E-03	5.3633	6E+00 3.	45450E-03	0.00	000E+00	0.00000E+00	4.17349E+00 4.31487E-03
5	8.52936E	+00	1.50681E-02	4.7089	3E+00 6.	10994E-03	0.00	000E+00	0.00000E+00	4.16969E+00 7.45474E-03
6	7.68849E	+00	2.30821E-02	4.2881	0E+00 I.	15519E-02	0.00	000E+00	0.00000E+00	4.15009E+00 1.33802E-02
/	/.08139E	+00	3.5908/E-02	4.0191	0E+00 I.	93308E-02	0.00	000E+00	0.00000E+00	4.1/84/E+00 2.3/004E-02
8	0.00048E	2+00 2+00	0.09200E-02	3./324	8E+00 5. 4E+00 5	18404E-02 60083E-02	0.00	000E+00	0.00000E+00	4.125/2E+00 5.75425E-02 4.11783E+00 6.22577E 02
10	5 870651	7+00 7+00	9.25802E-02	3.6000	4E+00 3.	10610E-02	0.00	000E+00	0.00000E+00	4.11783E+00 0.22377E+02 4.14484E+00 1.09180E-01
11	5 65476	E+00	1.98722E-01	3 5173	2E+00 1	70534E-01	0.0	0000E+00	0.00000E+00	4 22153E+00 1 65250E-01
12	5 72917	E+00	2 14979E-01	3 3730	2E+00 3	53078E-01	0.0	0000E+00	0.00000E+00	4 27632E+00 3 07152E-01
13	6.41026	E+00	1.95837E+0	0 3.525	64E+00 5	.80979E-01	0.0		- 4.31235E	+00 7.38968E-01
14			3.57143E	E+00 0.0	0000E+0)		3.5714	43E+00 0.000	00E+00
15										
16										
17										
18										
19										
20										
21										
22										
23										
24 25										
25										
27										
28										
29										
30										
31										
32										
33										
34										
35										
30										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50						1 200125	 02 0			0 4 16744ELOO 4 22622E 04
Averag	e 1.3314	+0E+(1 4./83/9E-	05 1.29	431E+01	1.29813E-	05 (0.00000E+0	00 0.00000E+0	JU 4.10/44E+UU 4.32023E-U4

NOTES: (% Sb) is the percentage of lesions that are strand breaks. The number of Sb is $[(\% \text{ Sb})/100]^*(\# \text{ lesions})$. The number of Bd is $(1-(\% \text{ Sb})/100)^*(\# \text{ lesions})$.

Ο πίνακας που είναι χρήσιμος για εμάς είναι ο πίνακας 2 που εμφανίζει τον αριθμό των DSB. Στην παράμετρο ακτινοβόλησης ως προσπίπτοντα σωματίδια επιλέγουμε τα ηλεκτρόνια. Θεωρούμε ότι η ακτινοβολία γ δεν είναι ο κύριος λόγος που προκαλείται ζημιά, αλλά τα δευτερεύοντα ηλεκτρόνια που

προκύπτουν από την αλληλεπίδραση της ακτινοβολίας γ με τα ηλεκτρόνια των ατόμων λόγω του φαινομένου Compton. Το MCDS το τρέχουμε προσομοιώνοντας συνθήκες υποξίας και φυσιολογικές συνθήκες συγκέντρωσης οξυγόνου.

Το μήκος κύματος λ_0 του φωτονίου προερχόμενο από το κοβάλτιο-60 είναι 0,1056·10⁻¹¹ m. Όταν γίνει αλληλεπίδραση με το ηλεκτρόνιο, το νέο μήκος λ' κύματος γίνεται:

$$\lambda' = \lambda_0 + \frac{h}{m_e c} (1 - \cos \varphi) = 0,001056 \cdot 10^{-9} \text{ m} + \frac{6,626 \cdot 10^{-34} \text{ Js}}{(9,11 \cdot 10^{-31} \text{ kg})(3 \cdot 10^8 \text{ m/s})} (1 - \cos \varphi) = 0,1056 \cdot 10^{-11} + 0,242 \cdot 10^{-11} \cdot (1 - \cos \varphi) \quad [\text{m}]$$

Λόγω αρχής διατήρησης της ενέργειας το ηλεκτρόνιο θα αποκτήσει κινητική ενέργεια:

$$KE = E_0 - E' = hf_0 - hf' = \frac{hc}{\lambda_0} - \frac{hc}{\lambda'} = hc \left(\frac{1}{\lambda_0} - \frac{1}{\lambda'}\right) =$$

$$= 6,626 \cdot 10^{-34} \cdot 3 \cdot 10^8 \text{ Jm} \cdot \left(\frac{10^{11}}{0,1056 \text{ m}} - \frac{10^{11}}{0,1056 \text{ m} + 0,242 \cdot (1 - \cos\varphi) \text{ m}}\right) =$$

$$= 19,87 \cdot 10^{-15} \cdot \left(\frac{1}{0,1056} - \frac{1}{0,3476 - 0,242 \cos\varphi}\right) \text{ [J]} \Leftrightarrow$$

$$\Leftrightarrow KE = 12,4 \cdot 10^4 \cdot \left(\frac{1}{0,1056} - \frac{1}{0,3476 - 0,242 \cos\varphi}\right) \text{ [eV]}$$

Η μέγιστη τιμή της κινητικής ενέργειας που μπορεί να αποκτήσει το ηλεκτρόνιο είναι 964 keV.

Όμοια την περίπτωση του καισίου-137, το μήκος κύματος λ_0 της εκπεμπόμενης ακτινοβολίας είναι 0,1873·10⁻¹¹ m. Όταν γίνει αλληλεπίδραση με το ηλεκτρόνιο, το νέο μήκος λ' κύματος γίνεται:

$$\lambda' = \lambda_0 + \frac{h}{m_e c} (1 - \cos \varphi) = 0,001873 \cdot 10^{-9} \text{ m} + \frac{6,626 \cdot 10^{-34} \text{ Js}}{(9,11 \cdot 10^{-31} \text{ kg})(3 \cdot 10^8 \text{ m/s})} (1 - \cos \varphi) = 0,1873 \cdot 10^{-11} + 0,242 \cdot 10^{-11} \cdot (1 - \cos \varphi) \quad [\text{m}]$$

$$\begin{split} & KE = E_0 - E' = hf_0 - hf' = \frac{hc}{\lambda_0} - \frac{hc}{\lambda'} = hc \left(\frac{1}{\lambda_0} - \frac{1}{\lambda'}\right) = \\ &= 6,626 \cdot 10^{-34} \cdot 3 \cdot 10^8 \text{ Jm} \cdot \left(\frac{10^{11}}{0,1873 \text{ m}} - \frac{10^{11}}{0,1873 \text{ m} + 0,242 \cdot (1 - \cos\varphi) \text{ m}}\right) = \\ &= 19,87 \cdot 10^{-15} \cdot \left(\frac{1}{0,1873} - \frac{1}{0,4293 - 0,242 \cos\varphi}\right) \text{ [J] } \Leftrightarrow \\ &\Leftrightarrow KE = 12,4 \cdot 10^4 \cdot \left(\frac{1}{0,1873} - \frac{1}{0,4293 - 0,242 \cos\varphi}\right) \text{ [eV]} \end{split}$$

Η μέγιστη τιμή της κινητικής ενέργειας που μπορεί να αποκτήσει το ηλεκτρόνιο είναι 477 keV.

3.7.3 Παράδειγμα χρήσης του MCDS

Έστω ότι γίνεται ακτινοβόληση από (δευτερεύοντα) ηλεκτρόνια με ενέργεια 5 keV σε ένα κύτταρο που βρίσκεται σε περιβάλλον με συγκέντρωση οξυγόνου 10%, τότε στο αρχείο εισόδου γράφουμε:

```
SIMCON: nocs=10000 seed=987654321
CELL: DNA=1 ndia=5
RADX: par=e ke=0.005
EVO2: p02=10.0 m0=2.0 k=0.25 q=1000 r=2
DMSO: CONC=1 FNSD=0.75 CHMX=0.2
MCDS: fb1=0.25
```

Όταν τελειώσει η εκτέλεση του προγράμματος, εστιάζοντας στον πίνακα 2, προκύπτει το παρακάτω αποτέλεσμα:

MCDS Version 3.10A 05-DEC-2011

0.661running time (min)987654321random number seed10000number of cells (nocs)0.0000E+00water-equivalent material (WEM) thickness (mg/cm^2)1.0000E+00Desired dose to the cell nucleus (Gy)1.0000E+00DNA content (Gbp)

TARGET (cell) DEFINITION (4V/S = mean chord length)

DIAMETER 4V/S Volume Mass (um) (um) (um^3) (ng)

 DNA
 -- 1.021E+00
 1.021E-03

 NUCLEUS
 5.000E+00
 3.333E+00
 6.545E+01
 6.545E-02

 CYTOPLASM
 -- 0.000E+00
 0.000E+00
 CELL
 5.000E+00
 3.333E+00
 6.545E+01
 6.545E-02

NOTE: In human DNA, 1 Gbp=0.979 ng (not including bound H2O). DNA volume computed using a density of 1 g/cm³.

INCIDENT PARTICLE: e- (mass = $5.48580E-04 u = 5.10999E-01 MeV/c^2$) $5.00000E-03 MeV \ge 1.27750E-06 MeV$ $9.11444E+00 MeV/u \ge 2.32874E-03 MeV/u$) 7.16588E-02 MeV (p*c = momentum x speed of light) 1.73042E+01 pm (de Broglie wavelength) $1.00978E+00 = T/m0c2+1 (Lorentz factor) \ge 1$ 1.00000E+00 ABS(effective charge); Barkas 1963 $1.38874E-01 beta = (v/c) \le 1$ $5.18511E+01 (zeff/beta)^2 \le 2.000E+05$

3.78831E+00 keV/um (total stopping power in H2O)

3.78793E+00 keV/um (99.990% collisional)

3.78951E-04 keV/um (0.010% radiative)

8.07669E-05 CSDA range of particle (cm) in H2O

PARTICLE TRANSPORT - Beam of radiation incident on bottom of cell culture dish (WEM=0.00 um, cell=5.00 um, nucleus=5.00 um; total distance traveled to reach nucleus=0.000 um of H2O).

----- Cell ----- Nucleus -----Incident Entry Exit Entry Exit

KE (MeV) 5.0000E-03 5.0000E-03 0.0000E+00 5.0000E-03 0.0000E+00 (Zeff/beta)² 5.1851E+01 5.1851E+01 0.0000E+00 5.1851E+01 0.0000E+00 LET (keV/um) 3.7879E+00 3.7879E+00 0.0000E+00 3.7879E+00 0.0000E+00 Res. Range (um) 8.0767E-01 8.0767E-01 0.0000E+00 8.0767E-01 0.0000E+00 DPUF1 (nGy-cm²) 6.0683E+00 6.0683E+00 0.0000E+00 6.0683E+00 0.0000E+00 DPUF2 (nGy-cm²) ----2.3739E+00 ----2.3739E+00 4.9394E+00 ----Edep (keV) 4.9394E+00 ---YF (keV/um) 1.4818E+00 ----1.4818E+00 ZF (Gy) --- 1.2090E-02 --- 1.2090E-02

LET=(Stot-Srad); absorbed dose per unit fluence (DPUF1) = 1.602*LET/rhoAvg. absorbed dose within target (i.e., DPUF2) = 2.5*pi*d*d*zfEdep = 0.1602*ZF*PI*d*d*d/6; yf = edep/lbar = $0.25*edep*{area}/{volume}$

DAMAGE FORMATION AND CLUSTERING (normoxic conditions)

- 25764 segment length, nseg (bp per cell per Gy)
- 1029 number of strand breaks, sigSb (per cell per Gy)
- 3087 number of base damages, sigBd (per cell per Gy)
- 3.0 base damage to strand break ratio, f
- 9 minimum distance between clusters, Nmin (bp)
- 10 maximum distance between two Sb to compose a DSB, Ndsb (bp)
- 0.2 fraction Bl/Bd

OXYGEN SIMULATION (M0=2.000, K=0.2500, q=1000.00, r=2.00)

1.0000E+01 % O2 concentration (=76.00 mmHg)

6.0974E-07 chemical repair probability (pcr)

1.0000E+00 O2 fixation probability (1-pcr)

1.0000E+00 Approx. HRF for SSB induction [=1/(1-pcr)]

1.0000E+00 Approx. HRF for DSB induction [1/(1-pcr)]²

DMSO SIMULATION

7.5000E-01 fraction of non-scavengeable DNA damage (fnsd)

2.0000E-01 concentration (mol dm^-3) at half-level (chmx)

1.0000E+00 DMSO concentration (mol dm^-3)

TABLE 2. Number of clusters per cell (DNA=1.000 Gbp, AD=1.000 Gy).

Number	of	DSB	SSI	В	OTHE	R	ALL C	LUSTERS
lesions	Average	SEM	Average	SEM	Average	SEM	Average	SEM

1 --- 9.37631E+01 2.75644E-02 2.81235E+02 5.28093E-02 3.74998E+02 6.33244E-02

2 3.03928E+00 6.93183E-03 3.82992E+01 2.21309E-02 5.30705E+01 2.52433E-02 9.44091E+01 3.20642E-02

3	1.72582E-	+00 5.29	9307E-03	1.2026	4E+01 1.3	31490E-02	1.002	257E+01 1.	21249E-02	2.37779E+01 1.77867E-0)2
4	6.66467E	-01 3.29	570E-03	3.42372	2E+00 7.3	6093E-03	1.895	43E+00 5.4	47541E-03	5.98562E+00 9.58621E-0	3
5	2.24417E	-01 1.92	929E-03	9.27600)E-01 3.80	6898E-03	3.554	50E-01 2.40	0849E-03	1.50747E+00 4.87786E-03	
6	7.01833E	-02 1 07	654E-03	2 4206	7E-01 2.00	0047E-03	6 563	33E-02 1 0 ⁴	5167E-03	3 77883E-01 2 50371E-03	
7	2 07667E	-02 5.88	990F-04	6 10000	0E - 02 = 1.00	0510E-03	1 336	67E-02 4.6	7190E-04	9 51333E-02 1 26056E-03	
8	5 76667E	02 3.00	041E 04	1 61333	3E 02 5 2	1855E 04	2 2 2 2 2	33E 03 1 0	1643E 04	2 41333E 02 6 37808E 04	
0	1.20007E	$03 \ 3.10$	276E 04	2 75000	$DE 02 \ 3.2$	205E 04	5 022	22E 04 08	1045E-04	6 12222E 02 2 17221E 04	
9	1.00000E	-05 1.72	2/0E-04	3./3000	JE-03 2.40 DE 02 1 2	0000E-04	0.000.	55E-04 9.04	+333E-03	0.13535E-05 5.17521E-04	
10	3.1000/E	-04 9.20	0000E-05	1.0500	0E-03 1.3	390/E-04	8.333	555E-05 5.7	2003E-05	1.05000E-03 1.00092E-04	
11	1.50000E	-04 4.9	9800E-05	1.8333	3E-04 5.5	2494E-05			3.33333E	-04 /.4464/E-05	
12	5.00000E	-05 2.88	8646E-05	8.3333	3E-05 3./	2603E-05			1.33333E	-04 4./1239E-05	
13			1.66667E	-05 1.6	6667E-05			1.66667/E	-05 1.6660	57E-05	
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
25											
20											
21											
20											
29											
30											
31											
32											
33											
34											
35											
36											
37											
38											
39											
40											
41											
42											
43											
44											
45											
46											
47											
48											
49											
50											
JU Totol	5 75500	 E±00_0	 16427E 02	1 107	 64E±02 2	 07282E	$2^{}$	 6664E±02	2 97290E 0	0 5 01184E±02 4 02424E	02
rotal	5.15544	⊔⊤UU 9.	1043/E-U3	1.40/	04ETUZ Z	/203E-U	i∠ 3.40	0004ETUZ .	J.0/J07E-U	2 J.UII04E7UZ 4.UZ4Z4E	-02

NOTE: The category "OTHER" includes all classes of individual and clustered DNA lesion, except for SSB and DSB. SEM = standard error of the mean.

Παρατηρώντας τα αποτελέσματα, ο ρυθμός επαγωγής DSB ανά Gbp·Gy είναι 5.76

ΚΕΦΑΛΑΙΟ 4

Αποτελέσματα

4.1 Συλλογή ραδιοβιολογικών δεδομένων ανθρώπινων κυτταρικών σειρών

Παρακάτω φαίνεται η συλλογή ραδιοβιολογικών δεδομένων ανθρώπινων κυτταρικών σειρών που έχουν εκτεθεί σε ακτινοβολία γ. Οι συντελεστές α και β που εμφανίζονται με πράσινο χρώμα για μια κυτταρική σειρά ήταν υπολογισμένοι από τους ερευνητές που έκαναν το πείραμα. Με γαλάζιο χρώμα σημειώνονται οι συντελεστές στους οποίους δεν εμφανιζόταν το σφάλμα κατά τον υπολογισμό.

#E x p	PMID	# E x	Human Cells	Tissue	Cell Class	Cell Cycle	Gamma Ray Source	Dose Rate (Gy/mn)	α (Gy⁻¹)	β (Gy⁻²)	DSBs/ Gy*G bps
ID		р									(15-
											30 min)
4	28718725	4	NACE 7	hreat			<u> </u>	1	0.05 (2+0.0270	0.0475+0.0105	N/A
2	20710725	1	IVICE-7	breast	۱ +	a	127Cc	1	0.0562 ± 0.0378	0.0475±0.0105	N/A
2	2/1811726	1		colon	ι +	a	6000	0.99	0.0409±0.0328	0.0134±0.0039	N/A
	24011720	1	ANU01-1	colon	ι	a	0000	1	0.289910.0202	0.0042210.0047	N/A
-	21777021	1	HTB140	skin	t t	а	6000	1	0 0285+0 0059	323	Ν/Δ
5	29414878	1	Δ549	lung	t	a	137Cs	25	0.0358+0.0076	0.04167+0.0016	N/A
6	29414878	2	AG1522	fibroblast	n	a	137Cs	2.5	0.2289+0.0184	0.0722+0.0069	N/A
7	26266801	1	A549	lung	t	a	60Co	0.5	0.0838±0.0442	0.02678±0.0086	N/A
8	26266801	2	H1299	lung	t	а	60Co	0.5	0.0092±0.0146	0.0342±0.0033	, N/A
9	26266801	3	BEAS-2B	bronchial	n	а	60Co	0.5	0.0429±0.0112	0.0186±0.0021	N/A
10	24002026	1	A549	lung	t	а	137Cs	2.8	N/A	N/A	3.70
11	23724988	1	HEBC3KT	bronchial	n	а	137Cs	N/A	0.0114±0.0632	0.1206±0.02989	N/A
12	26967573	1	U87	brain	t	а	137Cs	1.8	0.1513±0.0230	0.0321±0.0059	N/A
13	26967573	2	U251	brain	t	а	137Cs	1.8	0.2017±0.0187	0.0441±0.0064	N/A
14	22516036	1	HPBL	peripheral blood lymphocyt es	n	G0	60Co	1.6	0.0653±0.0747	0.0708±0.0274	N/A
15	19828717	1	CGI 1	skin fibroblast xHeLa	n	a	6000	0 33	0 0398+0 0254	0 0241+0 0056	N/A
16	23679558	1	NHRF	bronchial	n	a	60Co	0.09	0.0330 ± 0.0234	0.021+0.004	N/A
17	24549366	1	TK6	blood	n	a	137Cs	0.4	1.9521+0.2649	0.7421+0.4051	N/A
18	30576946	1	Hela	cervical	t	a	137Cs	3.37	0.1372+0.0077	0.0328+0.0023	N/A
19	30576946	2	HepG2	liver	t	a	137Cs	3.37	0.3427±0.0369	0.0578±0.0143	N/A
20	23194191	1	PANC-1	pancreas	t	а	N/A	7.1	0.41±0.10	0.13±0.07	, N/A
21	21916697	1	HTori-3	thyroid	n	а	137Cs	N/A	0.1653±0.0060	0.0189±0.0019	N/A
22				skin							
	23880859	1	GM03652	fibroblasts	n	а	60Co	N/A	0.2637±0.0249	0.0281±0.0077	1.98
23				skin							
	23880859	2	GM02052	fibroblasts	n	а	60Co	N/A	1.7024±0.0160	0.0722±0.0143	0.50
24										0.01962±0.0070	
	26059740	1	HeLaS3	cervical	t	а	N/A	0.001	0.0855±0.0323	8	N/A
25	32488310	2	U2OS	bone	t	а	137Cs	0.39	0.2347±0.0941	0.2093±0.0627	N/A

	33924205	1	A549	lung	t	а	137Cs	N/A	0.3089±0.0360	0.0274±0.0110	N/A
27	32988872	1	HeLa	cervical	t	а	60Co	2.5	0.0123±0.0708	0.1001±0.0277	N/A
28	27840931	1	HeLa	cervical	t	а	60Co	N/A	0.3736±0.0112	0.0284±0.0049	N/A
29		-		dental	-	-		,			,
_	21251334	1	ΔΡΟΟ	nuln	n	а	60Co	0.62	0 3011+0 0081	0 0427+0 0027	N/A
30	21231331	-	74 80	dental				0.01	0.001120.0001	0.0.2/20.002/	,
	21251334	2	PSEC	nuln	n	а	6000	0.62	0 0899+0 0494	0 0471+0 0141	N/A
31	23362981	1	н1299	lung	t t	a	137Cs	3.85	0.2308+0.0059	0.0471±0.0141	N/A
32	23362081	2		lung	ر +	2	13705	3.85	0.1801+0.02/8	0.0238±0.0017	N/A
32	23302381	1		lung	ι +	a	6000	2.05	0.180110.0248	0.0278 ± 0.0003	2.45
3/	21039732	1		ckin	ι n	a	6000	J N/A	0.0382 ± 0.0323	0.1320 ± 0.01014	2.45 N/A
25	27043923	1		SKIII	+	d	12700	N/A	0.1990±0.0100	0.0167±0.0046	N/A
35	30305074	1	5037	bladder	ι +	a	12705	0.79	0.4232±0.0037	0.0134 ± 0.0012	N/A
27	30365074	2	5037K	brain	ι +	d	13703	0.79	0.1725±0.0222	0.0323±0.0071	N/A
20	23658321	1	U87MG	Drain	ι •	d	13705	0.78	0.1070±0.0061	0.0332±0.0015	N/A
38	23658321	2	0251MG	brain	τ	а	137Cs	0.78	0.1514±0.0065	0.0292±0.0016	N/A
39	21087168	1	FEP1811	SKIN	n	а	13/Cs	0.73	0.2311±0.0071	0.0148±0.0018	N/A
40	26722033	1	LNCaP	prostate	t	а	137Cs	0.86	0.1367±0.0422	0.0062±0.0069	N/A
41	26722033	2	DU145	prostate	t	а	137Cs	0.86	0.1957±0.0286	0.0073±0.0054	N/A
42	26722033	3	PC3	prostate	t	а	137Cs	0.86	0.2483±0.0298	0.0024±0.0056	N/A
43			SK-N-			_	C0C-	4	0 1 100 10 0000	0 0000 0 0005	NI / A
4.4	23616582	1	BE(2c)	nerve	τ	а	6000	1	0.1489±0.0096	0.0222±0.0025	N/A
44	21075549	1	HeLa	cervical	t	а	137Cs	7.5	0.2276	0.0330	N/A
45				Head/nec			4070		0.00000	0.04000	
16	21075549	2	SQ20B	K	t	а	13/Cs	7.5	0.02029	0.01096	N/A
46	21075549	3	HeLa	cervical	t	а	137Cs	3	0.2134	0.0535	N/A
47	21075549	4	SQ20B	Head/neck	t	а	137Cs	3	0.03567	0.00982	N/A
48	23060564	1	HCT116	colon	t	а	60Co	1.64	0.1254±0.0276	0.0737±0.0111	N/A
49	33933460	1	INT-407	intestine	n	а	60Co	1	0.2682±0.0697	0.0163±0.0203	N/A
50	22207212	1	MDA-	broact	+	2	12700	0.70	0.0678+0.0200		0.20
E1	32397212	T	MB-231	bono	ι	d	15705	0.79	0.0078±0.0200	0.11000±0.0090	0.36
21	0001800	1		Done		-	12700	0.0	1 75 +0.06	0.097 +0.020	
52	9001890	T	H2B-2	Inarrow	n	d	13705	0.9	1.75 ±0.00	0.087 ±0.029	N/A
52	000000	2		bone		_	1270-	0.0	1 40 10 05	0.00410.010	
F2	9661896	2	MOLI-4	hans	n	d	13705	0.9	1.49 ±0.05	0.004±0.018	N/A
55	000000			bone							
F 4	9661896	3	Reh	marrow	n		4 1 771-	0.0	1 00 10 01		NI/A
54						a	137Cs	0.9	1.06 ±0.01	0.005 ±0.005	N/A
			0514	bone		d	137Cs	0.9	1.06 ±0.01	0.005 ±0.005	N/A
	9661896	4	CEM	bone marrow	n	a	137Cs	0.9	1.06 ±0.01 0.61±0.03	0.005 ±0.005 0.081 ±0.006	N/A N/A
55	9661896	4	CEM	bone marrow bone	n	a	137Cs	0.9	1.06 ±0.01 0.61±0.03	0.005 ±0.005 0.081 ±0.006	N/A N/A
55	9661896 9661896	4	CEM HL-60	bone marrow bone marrow	n n	a a a	137Cs 137Cs 137Cs	0.9 0.9 0.9	1.06 ±0.01 0.61±0.03 0.62±0.02	0.005 ±0.005 0.081 ±0.006 0.029±0.004	N/A N/A N/A
55 56	9661896 9661896	4	CEM HL-60	bone marrow bone marrow lung	n n	a a a	137Cs 137Cs 137Cs	0.9 0.9 0.9	1.06 ±0.01 0.61±0.03 0.62±0.02	0.005 ±0.005 0.081 ±0.006 0.029±0.004	N/A N/A N/A
55	9661896 9661896 21889946	4	CEM HL-60 HF19	bone marrow bone marrow lung fibroblast	n n n	a a a a	137Cs 137Cs 137Cs 137Cs	0.9 0.9 0.9 0.3	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062	N/A N/A N/A
55 56 57	9661896 9661896 21889946	4	CEM HL-60 HF19	bone marrow bone marrow lung fibroblast lung	n n n	a a a	137Cs 137Cs 137Cs 137Cs	0.9 0.9 0.9 0.3	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062	N/A N/A N/A N/A
55 56 57	9661896 9661896 21889946 21889946	4 5 1 2	CEM HL-60 HF19 NBS1	bone marrow bone marrow lung fibroblast lung fibroblast	n n t	a a a a	137Cs 137Cs 137Cs 137Cs 137Cs	0.9 0.9 0.9 0.3 0.3	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343	N/A N/A N/A N/A
55 56 57 58	9661896 9661896 21889946 21889946 20932650	4 5 1 2 1	CEM HL-60 HF19 NBS1 AR081-1	bone marrow bone marrow lung fibroblast lung fibroblast colon	n n t t	a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co	0.9 0.9 0.9 0.3 0.3 1	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737	N/A N/A N/A N/A N/A
55 56 57 58 59	9661896 9661896 21889946 21889946 20932650 29678153	4 5 1 2 1 1	CEM HL-60 HF19 NBS1 AR081-1 HeLa	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical	n n t t	a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A	0.9 0.9 0.9 0.3 0.3 1 2	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474 0.1204±0.0158	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033	N/A N/A N/A N/A N/A N/A
55 56 57 58 59 60	9661896 9661896 21889946 21889946 20932650 29678153 29678153	4 5 1 2 1 1 1 2	CEM HL-60 HF19 NBS1 ARO81-1 HeLa MCF-7	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast	n n t t t t	a a a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A N/A	0.9 0.9 0.9 0.3 0.3 1 2 2	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474 0.1204±0.0158 0.1780±0.013	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026	N/A N/A N/A N/A N/A N/A N/A
55 56 57 58 59 60 61	9661896 9661896 21889946 21889946 20932650 29678153 29678153 29678153	4 5 1 2 1 1 2 1 1 2 1	CEM HL-60 HF19 NBS1 AR081-1 HeLa MCF-7 A549	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast lung	n n t t t t t	a a a a a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A N/A 137Cs	0.9 0.9 0.3 0.3 1 2 2 0.87	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474 0.1204±0.0158 0.1780±0.013 0.1757±0.0132	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026 0.0232±0.0039	N/A N/A N/A N/A N/A N/A N/A N/A N/A
55 56 57 58 59 60 61 62	9661896 9661896 21889946 21889946 20932650 29678153 29678153 29678153 27150432 23091617	4 5 1 2 1 1 2 1 1 2 1 1 1	CEM HL-60 HF19 NBS1 AR081-1 HeLa MCF-7 A549 GBM4	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast lung brain	n n t t t t t	a a a a a a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A N/A 137Cs 137Cs	0.9 0.9 0.3 0.3 1 2 2 0.87 N/A	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474 0.1204±0.0158 0.1780±0.013 0.1757±0.0132 0.2613±0.0111	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026 0.0232±0.0039 0.0358±0.0034	N/A
55 56 57 58 59 60 61 62 63	9661896 9661896 21889946 20932650 29678153 29678153 27150432 23091617 23091617	4 5 1 2 1 1 2 1 1 2 1 1 2	CEM HL-60 HF19 NBS1 AR081-1 HeLa MCF-7 A549 GBM4 GBM8	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast lung brain brain	n n t t t t t t	a a a a a a a a a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A N/A 137Cs 137Cs 137Cs	0.9 0.9 0.3 0.3 1 2 2 0.87 N/A N/A	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474 0.1204±0.0158 0.1780±0.013 0.1757±0.0132 0.2613±0.0111 0.3301±0.0230	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026 0.0232±0.0039 0.0358±0.0034 0.0506±0.0083	N/A
55 56 57 58 59 60 61 62 63 64	9661896 9661896 21889946 21889946 20932650 29678153 29678153 29678153 27150432 23091617 23091617 23964692	4 5 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	CEM HL-60 HF19 NBS1 AR081-1 HeLa MCF-7 A549 GBM4 GBM8 HT-29	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast lung brain brain colorectal	n n t t t t t t t t	a a a a a a a a a a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A N/A 137Cs 137Cs 137Cs 60Co	0.9 0.9 0.3 0.3 1 2 2 0.87 N/A N/A 1.95	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474 0.1204±0.0158 0.1780±0.013 0.1757±0.0132 0.2613±0.0111 0.3301±0.0230 0.0727±0.0026	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026 0.0232±0.0039 0.0358±0.0034 0.0506±0.0083 0.00074±0.0003	N/A
55 56 57 58 59 60 61 62 63 64 65	9661896 9661896 21889946 21889946 20932650 29678153 29678153 27150432 23091617 23091617 23964692 32941855	4 5 1 2 1 1 2 1 1 2 1 1 2 1 1 1	CEM HL-60 HF19 NBS1 AR081-1 HeLa MCF-7 A549 GBM4 GBM4 GBM8 HT-29 BEAS-2B	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast lung brain brain colorectal bronchial	n n t t t t t t t t t t t	a a a a a a a a a a a a a a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A N/A 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	0.9 0.9 0.3 0.3 1 2 2 0.87 N/A N/A 1.95 0.75	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474 0.1204±0.0158 0.1780±0.013 0.1757±0.0132 0.2613±0.0111 0.3301±0.0230 0.0727±0.0026 0.1781±0.0437	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026 0.0232±0.0039 0.0358±0.0034 0.0506±0.0083 0.00074±0.0003 0.0175±0.0110	N/A
55 56 57 58 59 60 61 62 63 64 65 66	9661896 9661896 21889946 20932650 29678153 29678153 27150432 23091617 23091617 23964692 32941855	4 5 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1	CEM HL-60 HF19 NBS1 AR081-1 HeLa MCF-7 A549 GBM4 GBM8 HT-29 BEAS-2B	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast lung brain brain colorectal bronchial	n n t t t t t t t t t	a a a a a a a a a a a a a a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A N/A 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	0.9 0.9 0.3 0.3 1 2 2 0.87 N/A N/A 1.95 0.75	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474 0.1204±0.0158 0.1780±0.013 0.1757±0.0132 0.2613±0.0111 0.3301±0.0230 0.0727±0.0026 0.1781±0.0437	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026 0.0232±0.0039 0.0358±0.0034 0.0506±0.0083 0.0074±0.0003 0.0175±0.0110 0.00606±0.0043	N/A
55 56 57 58 59 60 61 62 63 64 65 66	9661896 9661896 21889946 21889946 20932650 29678153 29678153 29678153 27150432 23091617 23091617 23964692 32941855 22928007	4 5 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1	CEM HL-60 HF19 NBS1 AR081-1 HeLa MCF-7 A549 GBM4 GBM8 HT-29 BEAS-2B HepG2	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast lung brain brain colorectal bronchial	n n t t t t t t t t t t	a a a a a a a a a a a a a a a a a a a	137Cs 137Cs	0.9 0.9 0.3 0.3 1 2 2 0.87 N/A 1.95 0.75 N/A	$\begin{array}{c} 1.06 \pm 0.01 \\ \hline 0.61 \pm 0.03 \\ \hline 0.62 \pm 0.02 \\ \hline 0.7422 \pm 0.1499 \\ \hline 1.5191 \pm 0.2086 \\ \hline 0.05474 \\ \hline 0.1204 \pm 0.013 \\ \hline 0.1780 \pm 0.013 \\ \hline 0.1757 \pm 0.0132 \\ \hline 0.2613 \pm 0.0111 \\ \hline 0.3301 \pm 0.0230 \\ \hline 0.0727 \pm 0.0026 \\ \hline 0.1781 \pm 0.0437 \\ \hline 0.1566 \pm 0.0268 \end{array}$	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026 0.0232±0.0039 0.0358±0.0034 0.0506±0.0083 0.00074±0.0003 0.0175±0.0110 0.00606±0.0043 9	N/A
55 56 57 58 59 60 61 62 63 64 65 66 67	9661896 9661896 21889946 20932650 29678153 29678153 27150432 23091617 23091617 23964692 32941855 22928007	4 5 1 2 1 1 2 1 1 2 1 1 1 1 1 1	CEM HL-60 HF19 NBS1 AR081-1 HeLa MCF-7 A549 GBM4 GBM8 HT-29 BEAS-2B HepG2	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast lung brain brain colorectal bronchial	n n t t t t t t t t t t	a a a a a a a a a a a a a a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A N/A 137Cs 137Cs 137Cs 60Co 137Cs 137Cs 137Cs 137Cs	0.9 0.9 0.3 0.3 1 2 2 0.87 N/A 1.95 0.75 N/A	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474 0.1204±0.0158 0.1780±0.013 0.1757±0.0132 0.2613±0.0111 0.3301±0.0230 0.0727±0.0026 0.1781±0.0437 0.1566±0.0268	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026 0.0232±0.0039 0.0358±0.0034 0.0506±0.0083 0.00074±0.0003 0.0175±0.0110 0.00606±0.0043 9 0.00441±0.0040	N/A
55 56 57 58 59 60 61 62 63 64 65 66 67	9661896 9661896 21889946 21889946 20932650 29678153 29678153 27150432 23091617 23091617 23091617 23964692 32941855 22928007	4 5 1 2 1 1 2 1 1 2 1 1 1 1 2 2 1 1 1 2 2 1 2 2 2	CEM HL-60 HF19 NBS1 ARO81-1 HeLa MCF-7 A549 GBM4 GBM8 HT-29 BEAS-2B HepG2 Huh7	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast lung brain brain colorectal bronchial liver	n n t t t t t t t t t t	a a a a a a a a a a a a a a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A N/A 137Cs 137Cs 137Cs 60Co 137Cs 137Cs 137Cs 137Cs 137Cs	0.9 0.9 0.3 0.3 1 2 2 0.87 N/A 1.95 0.75 N/A N/A N/A	$\begin{array}{c} 1.06 \pm 0.01 \\ \hline 0.61 \pm 0.03 \\ \hline 0.62 \pm 0.02 \\ \hline 0.7422 \pm 0.1499 \\ \hline 1.5191 \pm 0.2086 \\ \hline 0.05474 \\ \hline 0.1204 \pm 0.0158 \\ \hline 0.1780 \pm 0.013 \\ \hline 0.1757 \pm 0.0132 \\ \hline 0.2613 \pm 0.0111 \\ \hline 0.3301 \pm 0.0230 \\ \hline 0.0727 \pm 0.0026 \\ \hline 0.1781 \pm 0.0437 \\ \hline 0.1566 \pm 0.0268 \\ \hline 0.1139 \pm 0.0254 \\ \end{array}$	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026 0.0232±0.0039 0.0358±0.0034 0.0506±0.0083 0.00074±0.0003 0.0175±0.0110 0.00606±0.0043 9 0.00441±0.0040 6	N/A
55 56 57 58 59 60 61 62 63 64 65 66 67 68	9661896 9661896 21889946 21889946 20932650 29678153 29678153 27150432 23091617 23091617 23091617 23964692 32941855 22928007 22928007 28849129	4 5 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1	CEM HL-60 HF19 NBS1 AR081-1 HeLa MCF-7 A549 GBM4 GBM8 HT-29 BEAS-2B HepG2 Huh7 U2O2	bone marrow bone marrow lung fibroblast lung fibroblast colon cervical breast lung brain brain colorectal bronchial liver liver	n n t t t t t t t t t t t t	a a a a a a a a a a a a a a a a a a a	137Cs 137Cs 137Cs 137Cs 137Cs 60Co N/A N/A 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	0.9 0.9 0.3 0.3 1 2 2 0.87 N/A 1.95 0.75 N/A N/A N/A 3.81	1.06 ±0.01 0.61±0.03 0.62±0.02 0.7422±0.1499 1.5191±0.2086 0.05474 0.1204±0.0158 0.1780±0.013 0.1757±0.0132 0.2613±0.0111 0.3301±0.0230 0.0727±0.0026 0.1781±0.0437 0.1566±0.0268 0.1139±0.0254 0.182±1.260	0.005 ±0.005 0.081 ±0.006 0.029±0.004 0.1140±0.1062 0.0229±0.2343 0.00737 0.0187±0.0033 0.0121±0.0026 0.0232±0.0039 0.0358±0.0034 0.0506±0.0083 0.00074±0.0003 0.0175±0.0110 0.00606±0.0043 9 0.00441±0.0040 6 0.042±0.447	N/A N/A

69	28849129	2	KHOS/NP	bone	t	а	137Cs	3.81	0.097±0.728	0.148±0.162	N/A
70	21609781	1	A549	lung	t	а	60Co	3	N/A	N/A	1.88
71				peripheral							
				blood							
				lymphobla							
	28340109	1	ТК6	st	t	а	137Cs	0.4	0.2163±0.2788	1.378±0.4219	N/A
72	25964552	1	PK-59	pancreas	t	а	137Cs	N/A	0.1426±0.0446	0.0392±0.0137	N/A
73	25964552	2	РК-45р	pancreas	t	а	137Cs	N/A	0.0972±0.0250	0.0577±0.0085	N/A
74	21498708	1	MCF-7	breast	t	а	137Cs	N/A	0.0408±0.0080	0.0113±0.0012	N/A
75	21498708	2	MCF-12a	breast	t	а	137Cs	N/A	0.0935±0.0190	0.0040±0.0026	N/A
76	32878788	1	A549	lung	t	а	60Co	1	0.1176±0.0151	0.0218±0.0048	N/A
77	21874259	1	H460	lung	t	а	137Cs	3.81	0.3694±0.0261	0.0911±0.0144	N/A
78	24515253	1	H1299	lung	t	а	60Co	N/A	0.130 ± 0.033	0.0176 ± 0.0048	N/A
79	24515253	2	H1299	lung	t	а	137Cs	N/A	0.113 ± 0.074	0.0474 ± 0.0103	N/A
80	23873780	1	HeLa	cervical	t	а	137Cs	N/A	0.1112±0.0998	0.0781±0.0404	N/A
81	27765919	1	KHOS/NP	bone	t	а	137Cs	3.81	0.348 ± 0.607	0.022± 0.117	N/A
82	31562368	1	HeLa	cervical	t	а	60Co	0.001	0.0939	0.0539	N/A
83	30476230	1	TPC-1	thyroid	t	а	137Cs	0.95	0.1781±0.0064	0.0666±0.0023	N/A
84	30476230	2	KTC-1	thyroid	t	а	137Cs	0.95	0.096±0.003	0.071±0.001	N/A
85	30476230	3	WRO	thyroid	t	а	137Cs	0.95	0.1136±0.0106	0.027±0.002	N/A
86	30476230	4	FRO	thyroid	t	а	137Cs	0.95	0.1042±0.0049	0.0196±0.0009	N/A
87	30476230	5	KTC-2	thyroid	t	а	137Cs	0.95	0.1168±0.0238	0.0281±0.0055	N/A
88			Nthy-ori 3-								
	30125607	1	1	thyroid	n	а	137Cs	7.7	0.4516±0.0463	0.0046±0.0153	N/A
89										0.01339±0.0287	
	30125607	2	WRO	thyroid	t	а	137Cs	7.7	0.2330±0.1182	6	N/A
90	30125607	3	TPC-1	thyroid	t	а	137Cs	7.7	0.1432±0.0375	0.131±0.0185	N/A
91	21815748	1	SiHa	cervical	t	а	60Co	1	0.0846±0.0392	0.0284±0.0099	N/A
92			MDAMR45								
								_			
	21815748	2	3	breast	t	а	60Co	1	0.1489±0.0328	0.028±0.009	N/A
93	21815748 21815748	2 3	3 WM115	breast skin	t t	a a	60Co 60Co	1	0.1489±0.0328 0.5428±0.0025	0.028±0.009 0.0227±0.0009	N/A N/A
93 94	21815748 21815748 29633065	2 3 1	3 WM115 HT29	breast skin colon	t t	a a a	60Co 60Co 137Cs	1 1 1	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248	0.028±0.009 0.0227±0.0009 0.0135±0.0058	N/A N/A N/A
93 94 95	21815748 21815748 29633065 29633065	2 3 1 2	3 WM115 HT29 SW620	breast skin colon colon	t t t	a a a a	60Co 60Co 137Cs 137Cs	1 1 1 1	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260	N/A N/A N/A N/A
93 94 95 96	21815748 21815748 29633065 29633065 29633065	2 3 1 2 4	3 WM115 HT29 SW620 NCM-460	breast skin colon colon colon	t t t n	a a a a a	60Co 60Co 137Cs 137Cs 137Cs	1 1 1 1 1	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202	N/A N/A N/A N/A
93 94 95 96 97	21815748 21815748 29633065 29633065 29633065 29633065 27802188	2 3 1 2 4 1	3 WM115 HT29 SW620 NCM-460 Huh7	breast skin colon colon colon liver	t t t n t	a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005	N/A N/A N/A N/A N/A
93 94 95 96 97 98	21815748 21815748 29633065 29633065 29633065 29633065 27802188 26824362	2 3 1 2 4 1 1	3 WM115 HT29 SW620 NCM-460 Huh7 A549	breast skin colon colon colon liver lung	t t t n t t	a a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003	N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99	21815748 21815748 29633065 29633065 29633065 29633065 27802188 26824362	2 3 1 2 4 1 1	3 WM115 HT29 SW620 NCM-460 Huh7 A549	breast skin colon colon liver lung peripheral	t t t n t t	a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003	N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99	21815748 21815748 29633065 29633065 29633065 27802188 26824362	2 3 1 2 4 1 1	3 WM115 HT29 SW620 NCM-460 Huh7 A549	breast skin colon colon liver lung peripheral blood	t t t t t	a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003	N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99	21815748 21815748 29633065 29633065 29633065 27802188 26824362	2 3 1 2 4 1 1	3 WM115 HT29 SW620 NCM-460 Huh7 A549	breast skin colon colon liver lung peripheral blood lymphobla	t t t t t	a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003	N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99	21815748 21815748 29633065 29633065 29633065 27802188 26824362 33453991	2 3 1 2 4 1 1 1	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6	breast skin colon colon liver lung peripheral blood lymphobla st	t t t t t	a a a a a a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003	N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100	21815748 21815748 29633065 29633065 29633065 27802188 26824362 33453991 23081821	2 3 1 2 4 1 1 1 2 2 2	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO	breast skin colon colon liver lung peripheral blood lymphobla st thyroid	t t t n t t t	a a a a a a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.6762±0.0479 0.4602±0.0045	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.1996±0.0445 0.046±0.002	N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100 101	21815748 21815748 29633065 29633065 29633065 27802188 26824362 33453991 23081821 23081821	2 3 1 2 4 1 1 1 2 3	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3	breast skin colon colon liver lung peripheral blood lymphobla st thyroid	t t t t t t t	a a a a a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A N/A	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.6762±0.0479 0.4602±0.0045 0.7226	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.1996±0.0445 0.046±0.002 0.035	N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100 101 102	21815748 21815748 29633065 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821	2 3 1 2 4 1 1 1 2 3 4	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid	t t t t t t t t	a a a a a a a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.6762±0.0479 0.4602±0.0045 0.7226 0.0870±0.0037	0.028±0.009 0.0227±0.009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.1996±0.0445 0.046±0.002 0.035 0.1325±0.0014	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100 101 102 103	21815748 21815748 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 30755594	2 3 1 2 4 1 1 1 1 2 3 4 1 1	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WR0 CG3 CGTH H460	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid lung	t t t t t t t t t	a a a a a a a a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.6762±0.0479 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.1996±0.0445 0.046±0.002 0.035 0.1325±0.0014 0.1076±0.0014	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100 101 102 103 104	21815748 21815748 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 30755594 30755594	2 3 1 2 4 1 1 1 2 3 4 1 2 2 3 4 1 2	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid lung lung	t t t t t t t t t	a a a a a a a a a a a a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.6762±0.0479 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.1996±0.0445 0.046±0.002 0.035 0.1325±0.0014 0.1076±0.0045	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100 101 102 103 104 105	21815748 21815748 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 30755594 30755594 26759383	2 3 1 2 4 1 1 1 2 3 4 1 2 2 1	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 A549	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung	t t t t t t t t t t	a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A 3 3 N/A	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0047 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.1996±0.0445 0.046±0.002 0.035 0.1325±0.0014 0.1076±0.0014 0.0445±0.0045 0.0471±0.004	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100 101 102 103 104 105 106	21815748 21815748 29633065 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 23081821 30755594 30755594 26759383 26033480	2 3 1 2 4 1 1 1 2 3 4 1 2 3 4 1 2 1 2 2	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 A549 A549	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung	t t t t t t t t t t t t	a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3 N/A 0.81	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0045 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0045 0.046±0.002 0.035 0.1325±0.0014 0.1076±0.0014 0.0445±0.0045 0.0471±0.004	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100 101 102 103 104 105 106 107	21815748 21815748 29633065 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 30755594 30755594 26759383 26033480	2 3 1 2 4 1 1 1 2 3 4 1 2 3 4 1 2 2 1 2 2	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 A549 A549 A549	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung	t t t t t t t t t t t t	a a <td< td=""><td>60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs</td><td>1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3 N/A 0.81 N/A</td><td>0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.00479 0.4602±0.00479 0.4602±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271</td><td>0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0045 0.046±0.002 0.035 0.1325±0.0014 0.1076±0.0014 0.0445±0.0045 0.0471±0.004 0.0277±0.0057</td><td>N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td></td<>	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3 N/A 0.81 N/A	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.00479 0.4602±0.00479 0.4602±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0045 0.046±0.002 0.035 0.1325±0.0014 0.1076±0.0014 0.0445±0.0045 0.0471±0.004 0.0277±0.0057	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100 101 102 103 104 105 106 107	21815748 21815748 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 30755594 30755594 26759383 26033480	2 3 1 2 4 1 1 1 2 3 4 1 2 3 4 1 2 1 2 2 2	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 A549 A549 MIA PaCa-2 2	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung lung	t t t t t t t t t t t t t	a a <td< td=""><td>60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs</td><td>1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 0.81 N/A N/A</td><td>0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.00479 0.4602±0.00479 0.4602±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271</td><td>0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.1076±0.0014 0.0445±0.0045 0.0471±0.004 0.0277±0.0057 0.0253±0.0009</td><td>N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td></td<>	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 0.81 N/A N/A	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.00479 0.4602±0.00479 0.4602±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.1076±0.0014 0.0445±0.0045 0.0471±0.004 0.0277±0.0057 0.0253±0.0009	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	21815748 21815748 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 30755594 30755594 26759383 26033480 23448094 22037799	2 3 1 2 4 1 1 1 2 3 4 1 2 3 4 1 2 2 1 2 2 2	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 A549 A549 MIA PaCa-2 2 T98	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung lung lung	t t t t t t t t t t t t t t t	a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A 3 3 N/A 0.81 N/A N/A N/A	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0014 0.0762±0.0479 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.1076±0.0014 0.0445±0.0045 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100 101 102 103 104 105 106 107 108 109	21815748 21815748 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 30755594 26759383 26033480 23448094 22037799 27098303	2 3 1 2 4 1 1 1 2 3 4 1 2 3 4 1 2 2 1 2 2 1	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 A549 A549 A549 A549 MIA PaCa-2 T98 MCF-7	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung lung lung brain	t t t t t t t t t t t t t t t t	a a a	60Co 60Co 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3 N/A 0.81 N/A N/A 3.81	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0045 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037 0.2768±0.0238	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.0445±0.0045 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092 0.182±0.015	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	21815748 21815748 29633065 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 23081821 30755594 30755594 26759383 26033480 23448094 22037799 27098303	2 3 1 2 4 1 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 A549 A549 MIA PaCa-2 T98 MCF-7 MIA PaCa-2 2	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung lung jancreas brain breast	t t t t t t t t t t t t t t t t t t	a a a a <td>60Co 60Co 137Cs</td> <td>1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3 N/A 0.81 N/A N/A 3.81 17.4</td> <td>0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0047 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037 0.2768±0.0238</td> <td>0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092 0.182±0.015 0.0930±0.0074</td> <td>N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td>	60Co 60Co 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3 N/A 0.81 N/A N/A 3.81 17.4	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0047 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037 0.2768±0.0238	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092 0.182±0.015 0.0930±0.0074	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
93 94 95 96 97 98 99 99 100 101 102 103 104 105 106 107 108 109 110	21815748 21815748 29633065 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 23081821 30755594 30755594 26759383 26033480 23448094 22037799 27098303 22404155	2 3 1 2 4 1 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 1 2 3 4 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 A549 A549 MIA PaCa-2 T98 MCF-7 MIA PaCa-2 2 T98 MCF-7 MIA PaCa-2 2	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung lung lung brancreas brain breast	t t t t t t t t t t t t t t t t t t t	a a <td< td=""><td>60Co 60Co 137Cs</td><td>1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3 N/A 0.81 N/A N/A 3.81 17.4 2.2</td><td>0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.00479 0.4602±0.00479 0.4602±0.0047 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037 0.2768±0.0238 0.0293±0.0201</td><td>0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.0471±0.004 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092 0.182±0.015 0.0930±0.0074 0.0583±0.0046</td><td>N/A N/A N/A</td></td<>	60Co 60Co 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3 N/A 0.81 N/A N/A 3.81 17.4 2.2	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.00479 0.4602±0.00479 0.4602±0.0047 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037 0.2768±0.0238 0.0293±0.0201	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.0471±0.004 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092 0.182±0.015 0.0930±0.0074 0.0583±0.0046	N/A
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112	21815748 21815748 29633065 29633065 29633065 27802188 26824362 33453991 23081821 230	2 3 1 2 4 1 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 3 4 1 2 2 3 4 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 MIA PaCa-2 T98 MCF-7 MIA PaCa-2 2 A549	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung lung lung brain breast pancreas lung	t t t t t t t t t t t t t t t t t t t	a a <td< td=""><td>60Co 60Co 137Cs</td><td>1 1 1 1 3.81 2 N/A N/A N/A N/A N/A N/A 0.81 N/A N/A 3.81 17.4 3.2 3.2 3.2 3.2</td><td>0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0047 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037 0.0802±0.0297 0.2768±0.0238 0.0293±0.0215</td><td>0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.046±0.002 0.035 0.1325±0.0014 0.0471±0.004 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092 0.182±0.015 0.0930±0.0074 0.0583±0.0046 0.0230±0.0048</td><td>N/A N/A N/A</td></td<>	60Co 60Co 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A N/A 0.81 N/A N/A 3.81 17.4 3.2 3.2 3.2 3.2	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0047 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037 0.0802±0.0297 0.2768±0.0238 0.0293±0.0215	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.046±0.002 0.035 0.1325±0.0014 0.0471±0.004 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092 0.182±0.015 0.0930±0.0074 0.0583±0.0046 0.0230±0.0048	N/A
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113	21815748 21815748 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 23081821 30755594 30755594 26759383 26033480 23448094 22037799 27098303 222404155 23332223	2 3 1 2 4 1 1 1 2 3 4 1 2 3 4 1 2 2 2 1 1 1 2 1 2 1 2 1 1 2 3 4 1 1 2 3 4 1 1 2 1 2 3 4 1 1 2 3 4 1 1 2 1 2 3 4 1 1 2 2 3 4 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 MIA PaCa-2 T98 MCF-7 MIA PaCa-2 Z MIA PaCa-2 CG3 CGT-7 MIA PaCa-2 CO MIA PaCa-2 CO MIA PaCa-2 CO SUB MIA PaCa-2 CO MIA PaCa-2 CO MIA PaCa-2 CO MIA PaCA-2 CO CO CO CO CO CO CO SUB MIA PACA-2 CO CO CO CO CO CO CO CO <td>breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung lung lung lung brain breast pancreas lung lung</td> <td>t t t t t t t t t t t t t t t t t t t</td> <td>a <td< td=""><td>60Co 60Co 137Cs</td><td>1 1 1 1 3.81 2 N/A N/A N/A N/A N/A N/A 0.81 N/A N/A 3.81 17.4 3.2 3.2 N/A</td><td>0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0047 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037 0.0802±0.0297 0.2768±0.0238 0.0293±0.0201 0.0756±0.0150 0.3235±0.0158</td><td>0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.046±0.002 0.035 0.1325±0.0014 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092 0.182±0.015 0.0930±0.0074 0.0583±0.0048 0.0230±0.0048 0.0230±0.0048</td><td>N/A N/A N/A</td></td<></td>	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung lung lung lung brain breast pancreas lung lung	t t t t t t t t t t t t t t t t t t t	a a <td< td=""><td>60Co 60Co 137Cs</td><td>1 1 1 1 3.81 2 N/A N/A N/A N/A N/A N/A 0.81 N/A N/A 3.81 17.4 3.2 3.2 N/A</td><td>0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0047 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037 0.0802±0.0297 0.2768±0.0238 0.0293±0.0201 0.0756±0.0150 0.3235±0.0158</td><td>0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.046±0.002 0.035 0.1325±0.0014 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092 0.182±0.015 0.0930±0.0074 0.0583±0.0048 0.0230±0.0048 0.0230±0.0048</td><td>N/A N/A N/A</td></td<>	60Co 60Co 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A N/A 0.81 N/A N/A 3.81 17.4 3.2 3.2 N/A	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0047 0.4602±0.0045 0.7226 0.0870±0.0037 0.3694±0.0026 0.1048±0.0187 0.1185±0.0126 0.0342±0.0271 0.4518±0.0037 0.0802±0.0297 0.2768±0.0238 0.0293±0.0201 0.0756±0.0150 0.3235±0.0158	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.046±0.002 0.035 0.1325±0.0014 0.0471±0.004 0.0277±0.0057 0.0253±0.0009 0.0682±0.0092 0.182±0.015 0.0930±0.0074 0.0583±0.0048 0.0230±0.0048 0.0230±0.0048	N/A N/A
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113	21815748 21815748 29633065 29633065 27802188 26824362 33453991 23081821 23081821 23081821 23081821 30755594 26759383 26033480 23448094 22037799 27098303 22404155 23332223 23332223	2 3 1 2 4 1 1 1 2 3 4 1 2 3 4 1 2 1 2 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	3 WM115 HT29 SW620 NCM-460 Huh7 A549 TK6 WRO CG3 CGTH H460 A549 MIA PaCa-2 T98 MCF-7 MIA PaCa-2 2 A549 H460 SK-Mel5	breast skin colon colon liver lung peripheral blood lymphobla st thyroid thyroid thyroid lung lung lung lung lung brain breast pancreas lung lung skin ckin	t t t t t t t t t t t t t t t t t t t	a a <td< td=""><td>60Co 60Co 137Cs</td><td>1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3 N/A 0.81 N/A N/A 3.81 17.4 3.2 3.2 N/A N/A</td><td>0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0045 0.4602±0.0045 0.4602±0.0045 0.3694±0.0026 0.1048±0.0187 0.3694±0.00271 0.3694±0.00271 0.34518±0.0126 0.0342±0.0271 0.4518±0.0037 0.2768±0.0238 0.0293±0.0201 0.0756±0.0150 0.3235±0.0158 0.3166±0.0200</td><td>0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.0445±0.0045 0.0471±0.004 0.0277±0.0057 0.0253±0.0099 0.0682±0.0092 0.182±0.015 0.0930±0.0074 0.0583±0.0048 0.0197±0.0071 0.0230±0.0071</td><td>N/A N/A N/A</td></td<>	60Co 60Co 137Cs	1 1 1 1 3.81 2 N/A N/A N/A N/A N/A 3 3 N/A 0.81 N/A N/A 3.81 17.4 3.2 3.2 N/A N/A	0.1489±0.0328 0.5428±0.0025 0.2536±0.0248 0.2282±0.1157 0.3695±0.0859 0.2998±0.0015 0.0766±0.0014 0.0766±0.0045 0.4602±0.0045 0.4602±0.0045 0.3694±0.0026 0.1048±0.0187 0.3694±0.00271 0.3694±0.00271 0.34518±0.0126 0.0342±0.0271 0.4518±0.0037 0.2768±0.0238 0.0293±0.0201 0.0756±0.0150 0.3235±0.0158 0.3166±0.0200	0.028±0.009 0.0227±0.0009 0.0135±0.0058 0.0386±0.0260 0.0416±0.0202 0.03160±0.0005 0.0249±0.0003 0.0249±0.0003 0.046±0.002 0.035 0.1325±0.0014 0.0445±0.0045 0.0471±0.004 0.0277±0.0057 0.0253±0.0099 0.0682±0.0092 0.182±0.015 0.0930±0.0074 0.0583±0.0048 0.0197±0.0071 0.0230±0.0071	N/A N/A

115						G0/					
	25844944	1	AG01522	foreskin	n	G1	137Cs	1	0.7097±0.0214	0.0207±0.0116	3.96
116	21249311	1	H460	lung	t	а	137Cs	3.81	0.0021±0.047	0.0554±0.0188	N/A
117	27557627	1	TE-10	esophagus	t	а	137Cs	3.81	0.1156±0.0379	0.0227±0.0083	N/A
118	27557627	2	TE-8	esophagus	t	а	137Cs	3.81	0.2818±0.0474	0.0104±0.0111	, N/A
119	27557627	3	TE-4	esophagus	t	а	137Cs	3.81	0.4663±0.0171	0.0058±0.0050	, N/A
120	27557627	4	TE-14	esophagus	t	а	137Cs	3.81	0.4460±0.0470	0.00910±0.0139	N/A
121	30582964	1	HCT116	colon	t	a	137Cs	0.77	0 1803+0 0838	0 0273+0 0213	N/A
122	24121106	1	PC3	prostate	t	a	60Co	2.5	0.1326+0.0170	0.0518+0.0048	N/A
123	24121106	2	DU145	prostate	t	a	60Co	2.5	0.1691+0.0213	0.0269+0.0043	N/A
124	21121100	-	HCT116	produce				1.0	0.100110.0110	0.020020.0010	
			(wt 162								
	30026328	1	p53)	colon	t	а	137Cs	1	0.1897±0.0031	0.0269±0.0043	N/A
125	30310276	1	A549	lung	t	а	192Ir	N/A	0.1533±0.047	0.0057±0.0105	N/A
126	30310276	2	DU145	prostate	t	а	192lr	N/A	0.1175±0.0201	0.0092±0.0044	N/A
127	26288178	1	IGROV-1	ovary	t	а	137Cs	N/A	0.063	0.094	N/A
128	26288178	2	OC316	ovary	t	а	137Cs	N/A	0.149	0.1494	N/A
129	26001755	1	HBEC3KT	bronchial	n	а	137Cs	N/A	0.0562±0.0904	0.1016±0.0382	N/A
130	25371289	1	U-87	brain	t	а	137Cs	3.4	0.2005±0.1091	0.0121±0.0232	N/A
131	22289037	1	HeLa	cervical	t	а	137Cs	N/A	0.2373±0.0211	0.0446±0.0077	N/A
132	23955054	1	A172	brain	t	а	60Co	1.3	0.5791±0.0031	0.0555±0.0014	N/A
133	28560323	1	MCF7	breast	t	а	N/A	6	0.4311±0.0031	0.1278±0.0014	N/A
134	25681012	1	UW228-1	brain	t	а	137Cs	N/A	0.1513±0.0408	0.0099±0.0090	N/A
135	25681012	2	Res196	brain	t	а	137Cs	N/A	0.2267±0.0590	0.0046±0.0138	N/A
136	21277099	1	PC3	prostate	t	а	137Cs	2.71	0.0258±0.0566	0.1283±0.0246	N/A
137	21277099	2	DU145	prostate	t	а	137Cs	2.71	0.0741±0.0749	0.0227±0.0131	N/A
138	21277099	3	LNCaP	prostate	t	а	137Cs	2.71	0.0528±0.0221	0.106±0.009	N/A
139	21277099	4	RWPE1	prostate	n	а	137Cs	2.71	0.1774±0.0335	0.0331±0.0091	N/A
140	21277099	5	267B1	prostate	n	а	137Cs	2.71	0.0302±0.0164	0.0551±0.0046	N/A
141	21642866	1	H460	lung	t	а	137Cs	1.8	0.3465±0.0130	0.0503±0.0048	N/A
142	25738799	1	A549	lung	t	а	60Co	N/A	0.2336±0.1033	0.050±0.039	N/A
143	25738799	2	H1299	lung	t	а	60Co	, N/A	0.1637±0.0353	0.0245±0.009	N/A
144				esophagu							
	24336110	1	EC109	s	t	а	137Cs	0.79	0.0154±0.0064	0.0009±0.0009	N/A
145				brain							
	25229646	1	X01	stem cells	t	а	137Cs	N/A	0.1236	0.040	N/A
146				brain							
	25229646	2	CSC2	stem cells	t	а	137Cs	N/A	0.1038	0.025	N/A
147	24804226	1	A549	lung	t	а	60Co	2.4	0.0352±0.0054	0.0019±0.0008	N/A
148				-						0.00156±0.0006	
	21336967	1	HepG2	liver	t	а	137Cs	N/A	0.101±0.005	8	N/A
149	21336967	2	RHepG2	liver	t	а	137Cs	N/A	0.138±0.006	0.0078±0.0010	N/A
150										0.02035±0.0087	
	25776488	1	NCI-H460	lung	t	а	137Cs	N/A	0.3028±0.0349	1	N/A
151	33323404	1	A549	lung	t	а	137Cs	3.25	0.0801±0.0045	0.044±0.001	N/A
152	20960462	1	LNCaP	prostate	t	а	137Cs	N/A	0.3212±0.0301	0.098±0.013	N/A
153	20960462	2	PC3	prostate	t	а	137Cs	N/A	0.2804±0.0395	0.0324±0.0122	N/A
154		1		peripheral							
	32970517	1	PBMCs	blood	n	а	60Co	0.65	0.1773±0.0209	0.0263±0.0076	N/A
155	32155687	1	A549	lung	t	а	137Cs	0.79	0.0602±0.0353	0.0477±0.0098	N/A
156	21497989	2	SY5Y	brain	t	а	137Cs	1.97	0.2196	0.0416	N/A
157	21497989	3	Kelly	brain	t	а	137Cs	1.97	0.1141±0.0623	0.0297±0.0158	N/A
158	21497989	4	Tet21	brain	t	а	137Cs	1.97	0.38405	0.05713	N/A
159	25245467	1	T98G	brain	t	а	137Cs	0.56	0.1776±0.0626	0.0569±0.0213	N/A
160	22132723	1	T-47D	breast	t	а	60Co	0.67	0.20 ± 0.01	0.022 ± 0.002	N/A
161	25227747	1	SH-SY5Y	nerve	t	а	60Co	0.95	0.1776±0.0626	0.056±0.021	N/A
162	23595626	1	U251	brain	t	а	60Co	N/A	0.33±0.15	0.09±0.03	N/A
		_									

163	30344816	4	SAS/mp53	head/neck	t	а	60Co	2.5	0.1784	0.00052	N/A
164	30344816	5	SAS/mp53	head/neck	t	а	60Co	0.04	0.0594	0.0064	N/A
165	30344816	6	SAS/mp53	head/neck	t	а	60Co	0.001	0.0450	0.0064	N/A
166	22951319	1	ONS-76	brain	t	а	137Cs	0.9	0.13 ± 0.03	0.05 ± 0.003	N/A
167	21784649	1	DU 145	prostate	t	а	137Cs	2.1	0.1299±0.0263	0.0365±0.0069	N/A
168	22866150	1	HTori-3	thyroid	n	а	137Cs	N/A	0.2759±0.0170	0.0367±0.0074	N/A
169	27834104	1	PC3	prostate	t	а	137Cs	0.77	0.4201±0.0073	0.0399±0.0028	N/A
170	27834104	2	HepG2	liver	t	а	137Cs	0.77	0.1806±0.0298	0.0722±0.0109	, N/A
171	22510595	1	PC3	prostate	t	а	137Cs	N/A	0.2145±0.0089	0.0423±0.0028	, N/A
172		-	MDA-MB-		-	-					
	27363012	1	231	breast	t	а	137Cs	0.74	0.0523±0.0126	0.0465±0.0034	N/A
173			MDA-MB-								
	27363012	2	468	breast	t	а	137Cs	0.74	0.4751±0.0563	0.0194±0.0194	N/A
174	27363012	3	Hs578T	breast	t	а	137Cs	0.74	0.2333±0.0098	0.0093±0.0024	N/A
175	24363165	1	RKO	colon	t	а	137Cs	0.5	0.68 ± 0.063	0.02 ± 0.015	N/A
176				esophagu							
	23188185	1	EC9706	S	t	а	137Cs	2.4	0.0659±0.0127	0.0088±0.0021	N/A
177				esophagu							
	23188185	2	KYSE150	S	t	а	137Cs	2.4	0.0468±0.0186	0.011±0.003	N/A
178	32910708	1	HTB140	skin	t	а	60Co	1	0.036 ± 0.009	0.000 ± 0.000	N/A
179	32910708	2	HTB 177	lung	t	а	60Co	1	0.120 ± 0.048	0.050 ± 0.016	N/A
180	32910708	3	CRL 5876	lung	t	а	60Co	1	0.166 ± 0.059	0.042 ± 0.009	N/A
181	32910708	4	MCF-7	breast	t	а	60Co	1	0.064 ± 0.017	0.057 ± 0.010	N/A
182				peripheral							
				blood							
				lymphobla							
	21520998	1	TK6	st	n	а	137Cs	1.1	1.329±0.053	0.0674±0.0479	N/A
183	32120829	1	HeLa	cervix	t	а	137Cs	N/A	0.24 ± 0.01	0.049 ± 0.002	N/A
184	26512655	1	F11	skin	n	а	60Co	0.37	0.6727	0.0535	N/A
185	22302044	1	HepG2	liver	t	а	137Cs	0.79	0.4322±0.0055	0.0357±0.0020	N/A
186	23349340	1	A549	lung	t	а	60Co	N/A	0.07161	0.04232	N/A
187				umblical							
	27222438	1	HUVEC	cord	n	а	60Co	0.38	0.2609±0.0391	0.0509±0.0135	N/A
188				bone							_
400	23341263	1	hMSC	marrow	n	а	N/A	1.48	N/A	N/A	5
189	23341263	2	U251	brain	t	а	N/A	1.48	N/A	N/A	6.69
190	22085604	1	lymphocyt	blood	n	60	6000	1	Ν/Δ	Ν/Δ	1 87
191	55565054	T	lymnhocyt	51000		00	0000	1		ŊЛ	1.07
101	26305808	1	es	blood	n	G0	60Co	1	N/A	N/A	0.48
192	26959322	1	HTB140	skin	t	а	60Co	1	N/A	N/A	1.87
193	26049366	1	HeLa	cervix	t	а	60Co	N/A	N/A	N/A	0.48
194				umblical							
	26727594	1	HUVEC	cord	n	а	60Co	1.3	N/A	N/A	2.84
195				fibrous							
				connectiv							
	30373428	1	HT1080	e tissue	t	G1	60Co	0.94	N/A	N/A	4
196				umblical							
	23607485	1	UCBC	cord	n	а	60Co	1	N/A	N/A	0.58
197			NHDF-								
	29271466	1	Neo	skin	n	а	60Co	1	N/A	N/A	2.96
	24460242	1	Lvm/cvte	blood	n	G0	60Co	0.5	N/A	N/A	2.86

Πίνακας 3 Συλλογή ραδιοβιολογικών δεδομένων για ανθρώπινες κυτταρικές σειρές σε έκθεση ακτινοβολίας γ

4.2 Ο λόγος α/β

Αρχικά, από την συλλογή υπολογίζονται οι τιμές των $(\alpha/\beta)_i$ των ιστών που εμφανίζονται με την μεγαλύτερη συχνότητα. Το σφάλμα των τιμών α/β υπολογίζεται με τον τύπο διάδοσης όπως φαίνεται παρακάτω:

$$\delta\left(\frac{\alpha}{\beta}\right)_{i} = \sqrt{\left(\frac{\partial(\alpha / \beta)}{\partial \alpha} \delta \alpha\right)^{2} + \left(\frac{\partial(\alpha / \beta)}{\partial \beta} \delta \beta\right)^{2}} = \sqrt{\left(\frac{\delta \alpha}{\beta}\right)^{2} + \left(-\frac{\alpha \delta \beta}{\beta^{2}}\right)^{2}}$$

όπου δα και δβ τα σφάλματα των α και β αντίστοιχα.

Στο τέλος υπολογίζεται ο μέσος όρος των α/β μαζί με το σφάλμα σε διάστημα εμπιστοσύνης 95%. Το σφάλμα του μέσου όρου με διάστημα εμπιστοσύνης 68.3% δίνεται από τον τύπο:

$$\delta(a / \beta) = \sqrt{\frac{\sum_{i=1}^{n} \left[\left(\alpha / \beta \right)_{i} - \left(\alpha / \beta \right) \right]^{2}}{n(n-1)}}$$

					Dose			
#5valD		Human	Coll	Commo	Rate	α (Gv ⁻¹)	β (Gv⁻²)	
#схрір	PIVIID		Class	Gamma Ray Source	(Gy/min)		- (-) /	$(\alpha / \beta)_i$ (Gy)
155	32155687	A549	t	137Cs	0 79	0.0602+0.0353	0 0477+0 0098	1 262+0 784
106	26033480	Δ549	t t	137Cs	0.75	0.0342+0.0271	0.0277+0.0057	1 234+1 011
61	20055480	A540	+	1270	0.01	0.1757+0.0132	0.0277±0.0037	7 572+1 20/
02	27130432	A549	ι +	1270	0.87	0.0766+0.0014	0.0232 ± 0.0039	2 076+0 067
96	20624502	A549	l	13703	2	0.0700±0.0014	0.0249±0.0005	5.070±0.007
104	30755594	A549	t	137Cs	3	0.1048±0.0187	0.04447±0.00445	2.355±0.483
111	23332223	A549	t	137Cs	3.2	0.0756±0.0150	0.0583±0.0046	1.297±0.277
151	33323404	A549	t	137Cs	3.25	0.0801±0.0045	0.044±0.001	1.82±0.11
105	26759383	A549	t	137Cs	N/A	0.1185±0.0126	0.0471±0.004	2.516±0.342
26	33924205	A549	t	137Cs	N/A	0.3089±0.0360	0.0274±0.0110	11.27±4.71
7	26266801	A549	t	60Co	0.5	0.08381±0.04416	0.02678±0.00856	3.13±1.93
76	32878788	A549	t	60Co	1	0.1176±0.0151	0.0218±0.0048	5.39±1.37
147	24804226	A549	t	60Co	2.4	0.0352±0.0054	0.0019±0.0008	18.53±8.30
142	25738799	A549	t	60Co	N/A	0.2336±0.1033	0.050±0.039	4.672±4.189
186	23349340	A549	t	60Co	N/A	0.07161	0.04232	1.692
		CRL						
180	32910708	5876	t	60Co	1	0.166 ± 0.059	0.042 ± 0.009	3.95±1.64
31	23362981	H1299	t	137Cs	3.85	0.2308±0.0059	0.0298±0.0017	7.74±0.48
79	24515253	H1299	t	137Cs	N/A	0.113 ± 0.074	0.0474 ± 0.0103	2.38±1.64
78	24515253	H1299	t	60Co	N/A	0.130 ± 0.033	0.0176 ± 0.0048	7.39±2.75
143	25738799	H1299	t	60Co	N/A	0.1637±0.0353	0.0245±0.009	6.68±2.85

Καρκίνος πνεύμονα:

141	21642866	H460	t	137Cs	1.8	0.3465±0.0130	0.0503±0.0048	6.89±0.71
103	30755594	H460	t	137Cs	3	0.3694±0.0026	0.1076±0.0014	3.433±0.051
77	21874259	H460	t	137Cs	3.81	0.3694±0.0261	0.0911±0.0144	4.055±0.702
112	23332223	H460	t	137Cs	3.2	0.3235±0.0158	0.0230±0.0048	14.07±3.01
32	23362981	НСОХР	t	137Cs	3.85	0.1801±0.0248	0.0278±0.0063	6.48±1.72
179	32910708	HTB 177	t	60Co	1	0.120 ± 0.048	0.050 ± 0.016	2.4±1.2
		NCI-						
150	25776488	H460	t	137Cs	N/A	0.3028±0.0350	0.0204±0.0087	14.88±6.59

Πίνακας 4 Τα στοιχεία α/β του καρκίνου του πνεύμονα

Εικόνα 23 Ιστόγραμμα πειραματικών τιμών α/β του καρκίνου του πνεύμονα. Η μέση τιμή λόγου α/β είναι 5.62±1.80 Gy

Καρκίνος θυροειδή

		Human	Coll	Gamma	Dose Bate			
#ExpID	PMID	Cells	Class	Source	(Gy/min)	α (Gy⁻¹)	β (Gy⁻²)	α/ β (Gy)
83	30476230	TPC-1	t	137Cs	0.95	0.1781±0.0064	0.0666±0.0023	2.67±0.13
84	30476230	KTC-1	t	137Cs	0.95	0.096±0.003	0.071±0.001	1.352±0.046
85	30476230	WRO	t	137Cs	0.95	0.1136±0.0106	0.027±0.002	4.21±0.50
86	30476230	FRO	t	137Cs	0.95	0.1042±0.0049	0.0196±0.0009	5.323±0.343
87	30476230	KTC-2	t	137Cs	0.95	0.1168±0.0238	0.0281±0.0055	4.126±1.174
90	30125607	TPC-1	t	137Cs	7.7	0.1432±0.0375	0.131±0.0185	1.093±0.325
100	23081821	WRO	t	137Cs	N/A	0.4602±0.0045	0.046±0.002	10.00±0.45
101	23081821	CG3	t	137Cs	N/A	0.7226	0.035	20.64

Πίνακας 5 Τα στοιχεία α/β του καρκίνου του θυροειδή

Εικόνα 24 Ιστόγραμμα πειραματικών τιμών α/β του καρκίνου του θυροειδή. Η μέση τιμή λόγου α/β είναι

6.17±4.58 Gy

Καρκίνος του ήπατος

#ExpID	PMID	Human Cells	Cell Class	Gamma Ray Source	Dose Rate (Gy/min)	α (Gy⁻¹)	β (Gy⁻²)	α / β (Gy)
19	30576946	HepG2	t	137Cs	3.37	0.3427±0.0369	0.0578±0.0143	5.93±1.60
66	22928007	HepG2	t	137Cs	N/A	0.1566±0.0268	0.00606±0.00439	25.8±19.2
67	22928007	Huh7	t	137Cs	N/A	0.1139±0.0254	0.00441±0.00406	25.8±24.5
97	27802188	Huh7	t	137Cs	3.81	0.2998±0.0015	0.0316±0.0005	9.48±0.16
148	21336967	HepG2	t	137Cs	N/A	0.101±0.005	0.00156±0.00068	64.7±28.4
149	21336967	RHepG2	t	137Cs	N/A	0.138±0.006	0.0078±0.0010	17.6±2.4
170	27834104	HepG2	t	137Cs	0.77	0.1806±0.0298	0.0722±0.0109	2.50±0.56
185	22302044	HepG2	t	137Cs	0.79	0.4322±0.0055	0.0357±0.0020	12.1±0.7

Πίνακας 6 Τα στοιχεία α/β του καρκίνου του ήπατος

Εικόνα 25 Ιστόγραμμα πειραματικών τιμών α/β του καρκίνου του ήπατος. Η μέση τιμή λόγου α/β: είναι 20.48±17.2 Gy

Καρκίνος εγκέφαλου

				Gamma	Dose			
		Human	Cell	Ray	Rate		$\beta \left(\alpha^{-2} \right)$	1.0
#ExpID	PMID	Cells	Class	Source	(Gy/min)	α (Gy -)	0 (Gy⁻)	α/ β(Gy)
134	25681012	UW228-1	t	137Cs	N/A	0.1513±0.0408	0.0099±0.0090	15.28±14.49
156	21497989	SY5Y	t	137Cs	1.97	0.2196	0.0416	5.28
157	21497989	Kelly	t	137Cs	1.97	0.1141±0.0623	0.0297±0.0158	3.84±2.93
158	21497989	Tet21	t	137Cs	1.97	0.38405	0.05713	6.722
159	25245467	T98G	t	137Cs	0.56	0.1776±0.0626	0.0569±0.0213	3.12±1.60
162	23595626	U251	t	60Co	N/A	0.33±0.15	0.09±0.03	3.66±2.07
166	22951319	ONS-76	t	137Cs	0.9	0.13 ± 0.03	0.05 ± 0.003	2.6±0.6

Πίνακας 7 Τα στοιχεία α/β του καρκίνου του εγκεφάλου

Εικόνα 26 Ιστόγραμμα πειραματικών τιμών α/β του εγκεφάλου. Η Μέση τιμή λόγου α/β: 5.79±3.34 Gy

Καρκίνος προστάτη

				Gamma	Dose			
#51D	DNUD	Human	Cell	Ray	Rate	α (Gv ⁻¹)	β (Gv ⁻²)	a B CW
#ExpID	PMID	Cells	Class	Source	(Gy/min)		0 (0,)	<i>u</i> / 0(Gy)
41	26722033	DU145	t	137Cs	0.86	0.1957±0.0286	0.0073±0.0054	26.77±20.27
122	24121106	PC3	t	60Co	2.5	0.0997±0.0188	0.0584±0.0053	1.71±0.36
123	24121106	DU145	t	60Co	2.5	0.1691±0.0213	0.0269±0.0043	6.29±1.28
126	30310276	DU145	t	192Ir	N/A	0.1175±0.0201	0.0092±0.0044	12.8±6.5
138	21277099	LNCaP	t	137Cs	2.71	0.0528±0.0221	0.106±0.009	0.498±0.212
152	20960462	LNCaP	t	137Cs	N/A	0.3212±0.0301	0.098±0.013	3.28±0.53
153	20960462	PC3	t	137Cs	N/A	0.2804±0.0395	0.0324±0.0122	8.65±3.48
167	21784649	DU 145	t	137Cs	2.1	0.1299±0.0263	0.0365±0.0069	3.559±0.986
169	27834104	PC3	t	137Cs	0.77	0.4201±0.0073	0.0399±0.0028	10.53±0.76
171	22510595	PC3	t	137Cs	N/A	0.2145±0.0089	0.0423±0.0028	5.07±0.39

Πίνακας 8 Τα στοιχεία α/β του καρκίνου του προστάτη

Εικόνα 27 Ιστόγραμμα πειραματικών τιμών α/β του προστάτη. Η Μέση τιμή λόγου α/β: 7.91±4,86 Gy.

Καρκίνος μαστού

#ExpID	PMID	Human Cells	Cell Class	Gamma Ray Source	Dose Rate (Gy/min)	α (Gy ⁻¹)	в́ (Gy ⁻²)	α∕ β (Gy)
1	28718725	MCF-7	t	60Co	1	0.0562±0.0378	0.0475±0.0105	1.18±0.84
		MDA-MB-						
50	32397212	231	t	137Cs	0.79	0.0678±0.0200	0.1160±0.0090	0.585±0.178
60	29678153	MCF-7	t	N/A	2	0.1780±0.013	0.0121±0.0026	14.7±3.3
74	21498708	MCF-7	t	137Cs	N/A	0.0409±0.0080	0.0113±0.0012	3.62±0.81
75	21498708	MCF-12a	t	137Cs	N/A	0.0935±0.0190	0.0040±0.0026	23.4±15.9
		MDAMB4						
92	21815748	53	t	60Co	1	0.1489±0.0328	0.028±0.009	5.32±2.07
109	27098303	MCF-7	t	137Cs	3.81	0.2768±0.0238	0.182±0.015	1.52±0.18
133	28560323	MCF7	t	N/A	6	0.4311±0.0031	0.1278±0.0014	3.37±0.04
160	22132723	T-47D	t	60Co	0.67	0.20 ± 0.01	0.022 ± 0.002	9.09±0.94
		MDA-MB-						
172	27363012	231	t	137Cs	0.74	0.0523±0.0126	0.0465±0.0034	1.12±0.28
174	27363012	Hs578T	t	137Cs	0.74	0.2333±0.0098	0.0093±0.0024	25.07±6.56
181	32910708	MCF-7	t	60Co	1	0.064 ± 0.017	0.057 ± 0.010	1.12±0.36

Πίνακας 9 Τα στοιχεία α/β του καρκίνου του μαστού

Εικόνα 28 Ιστόγραμμα πειραματικών τιμών α/β του μαστού. Η Μέση τιμή λόγου α/β: 7.51±5.10 Gy.

				Gamma	Dose			
#ExpID	PMID	Human Cells	Cell Class	Ray Source	Rate (Gy/min)	α (Gy ⁻¹)	𝕴 (Gy⁻²)	α/ β (Gy)
18	30576946	HeLa	t	137Cs	3.37	0.1372±0.0077	0.0328±0.0023	4.18±0.38
24	26059740	HeLaS3	t	N/A	0.001	0.0856±0.0323	0.0196±0.0071	4.36±2.28
28	27840931	HeLa	t	60Co	N/A	0.3736±0.0112	0.0284±0.0049	13.2±2.30
44	21075549	HeLa	t	137Cs	7.5	0.2276	0.0330	6.89
46	21075549	HeLa	t	137Cs	3	0.2134	0.0535	3.99
59	29678153	HeLa	t	N/A	2	0.1204±0.0158	0.0187±0.0033	6.44±1.42
82	31562368	HeLa	t	60Co	0.001	0.0939	0.0539	1.74
91	21815748	SiHa	t	60Co	1	0.0846±0.0392	0.0284±0.0099	2.98±1.72
131	22289037	HeLa	t	137Cs	N/A	0.2373±0.0211	0.0446±0.0077	5.32±1.03
183	32120829	HeLa	t	137Cs	N/A	0.24 ± 0.01	0.049 ± 0.002	4.90±0.28

Καρκίνος τραχήλου της μήτρας

Πίνακας 10 Τα στοιχεία α/β του καρκίνου του τραχήλου της μήτρας

Εικόνα 29 Ιστόγραμμα πειραματικών τιμών α/β του τραχήλου της μήτρας. Μέση τιμή λόγου α/β: 5.40±1.98 Gy

4.3 Παρατηρήσεις και σχόλια για τους συντελεστές
 α,β και τον λόγο α/β

#E x	PMID	# E	Human Cells	Tissue	Cell Class	Cell Cycle	Gamma Ray	Dose Rate	α (Gy ⁻¹)	β (Gy⁻²)
р		х				,	Source	(Gy/min)		
ID		р								
44	21075549	1	HeLa	cervical	t	а	137Cs	7.5	0.2276	0.0330
45	21075549	2	SQ20B	Head/neck	t	а	137Cs	7.5	0.02029	0.01096
46	21075549	3	HeLa	cervical	t	а	137Cs	3	0.2134	0.0535
47	21075549	4	SQ20B	Head/neck	t	а	137Cs	3	0.03567	0.00982
163			SAS/mp5							
	30344816	4	3	head/neck	t	а	60Co	2.5	0.1784	0.00052
164			SAS/mp5							
	30344816	5	3	head/neck	t	а	60Co	0.04	0.0594	0.0064
165			SAS/mp5							
	30344816	6	3	head/neck	t	а	60Co	0.001	0.0450	0.0064

Στην συλλογή των κυτταρικών υπάρχουν οι παρακάτω γραμμές:

Πίνακας 11

Παρατηρώντας αυτές τις γραμμές (πίνακας 11), για τις κυτταρικές σειρές HeLa και SAS, όσο αυξάνεται ο ρυθμός δόσης τόσο αυξάνεται η τιμή του συντελεστής *α* εφόσον είναι το πείραμα είναι το ίδιο (ίδιος αριθμός PMID). Βέβαια στην κυτταρική σειρά SQ20B όσο μειώνεται ο ρυθμός δόσης τόσο αυξάνεται ο συντελεστής *α*. Στις κυτταρικές σειρές A549 του πνεύμονα και HepG2 του ήπατος δεν φαίνεται κάποια σχέση που να συνδέει τον ρυθμό δόσης με τον συντελεστή *α* όσο το πείραμα είναι διαφορετικό (διαφορετικός αριθμός PMID). Λόγω του μικρού στατιστικού δείγματος που παρουσιάζει την συμπεριφορά αυτή είναι δύσκολο να βγάλουμε ένα γενικό συμπέρασμα για το πώς εξαρτάται κάποιος από τους συντελεστές του μοντέλου LQ με τον ρυθμό δόσης.

#E	PMID	Human	Tissue	Cell	Cell	Gamma	Dose	α (Gv ⁻¹)	β (Gv ⁻²)
х		Cells		Class	Cycle	Ray	Rate		- (-, ,
р						Source	(Gy/min)		
ID									
3	24811726	AR081-1	colon	t	а	60Co	1	0.2899±0.0202	0.00422±0.00467
58	20932650	AR081-1	colon	t	а	60Co	1	0.05474	0.00737
2	30544713	HCT 116	colorectal	t	а	137Cs	0.99	0.0469±0.0328	0.0154±0.0059
121	30582964	HCT116	colon	t	а	137Cs	0.77	0.1803±0.0838	0.0273±0.0213
124	30026328	HCT116	colon	t	а	137Cs	1	0.1897±0.0031	0.0269±0.0043
17	24549366	TK6	blood	n	а	137Cs	0.4	1.9521±0.2649	0.7421±0.4051
71	28340109	TK6	lymphoblast	n	а	137Cs	0.4	0.2163±0.2788	1.378±0.4219

Πίνακας 12

Στις παραπάνω γραμμές φαίνονται τρία διαφορετικά είδη ιστών που το καθένα γίνεται αντικείμενο δύο διαφορετικών πειραμάτων. Δυο ομάδες ερευνητών χρησιμοποιούν ίδιο ρυθμό δόσης και ίδια πηγή ακτινοβολίας για την δημιουργία καμπυλών επιβίωσης, ωστόσο οι συντελεστές α και β έχουν σημαντική διαφορά μεταξύ τους.
Παρακάτω αναφέρονται οι βιβλιογραφικές και συνοψίζονται οι πειραματικές τιμές *α/β* των καρκινικών οργάνων

Όργανο	Πειραματικές τιμές α/β (Gy)	Βιβλιογραφικές τιμές α/β (Gy)
Πνεύμονας	5.62±1.80	10-20
Θυροειδής	6.17±4.58	10
Ήπαρ	20.48±17.2	10
Εγκέφαλος	5.79±3.34	5-10.8
Προστάτης	7.91±4,86	1-3
Μαστός	7.51±5.10	4
Τράχηλος μήτρας	5.40 ± 1.98	10

Πίνακας 13 Βιβλιογραφικές και πειραματικές τιμές καρκινικών οργάνων [71,72,73,74,75,76].

Οι τιμές των *α/β* για κάθε καρκινικό ιστό παρουσιάζουν διακύμανσεις. Οι πειραματικές τιμές των *α/β* για κάθε ιστό συμφωνούν είτε πλησιάζουν της τιμές *α/β* που υπάρχουν στην βιβλιογραφία. Οι πιθανοί λόγοι για τους οποίους υπάρχουν αυτές οι διακυμάνσεις είναι ότι σε κάθε τύπο όγκου αντιστοιχεί και διαφορετικό είδος ιστού στο οποίο υπάρχει και διαφορετική ευαισθησία στην ακτινοβολία γ. Για τις κυτταρικές σειρές που συνιστούν συλλογή δεν γνωρίζουμε στις περισσότερες περιπτώσεις σε ποια φάση του κύκλου βρίσκονταν τα κύτταρα θεωρούνται ασύγχρονα που σημαίνει ότι τα κύτταρα στην καλλιέργεια κυττάρων των πειραμάτων βρίσκονται σε διαφορετική φάση του κύκλου τους και με διαφορετικό ποσοστό.

Οι καμπύλες επιβίωσης προκύπτουν από in vitro πειράματα τα οποία δεν προβλέπει πάντα τον τρόπο συμπεριφοράς των κυττάρων. Στα in vitro πειράματα είναι δύσκολη η ύπαρξη της καλής καθώς ο αρχικός αριθμός των κυττάων πρέπει να είναι τόσο υψηλος έτσι ώστε να υπάρχει επαρκής αριθμός κυττάρων σε μεγάλες δόσεις. [77] Οι μικρές και οι μεγάλες δόσεις επηρεάζουν την ποιότητα προσαρμογής καμπύλης στα πειραματικά σημεία της γραφικής παράστασης. Αυτό συμβαίνει διότι αυτές οι καμπύλες γαρακτηρίζονται από αρχική (- α) και τελική κλίση (-2 β D).[58][77] Όταν στην καμπύλη επιβίωσης περιλαμβάνονται μόνο γαμηλές δόσεις οι συντελεστές α και β , ειδικά ο β με την μικρή τιμή, έγουν σημαντική αβεβαιότητα. Η αρχική και η τελική δόση, δηλαδή το εύρος των δόσεων που χρησιμοποιείται για την δημιουργία καμπύλων επιβίωσης επηρεάζει τους συντελεστές α και β , άρα και τον λόγο α/β .[58]Τα πειράματα μεταξύ τους παρουσιάζουν ετερογένεια. Σε κάθε πείραμα, για βγει μια καμπύλη επιβίωσης ανεξάρτητα αν είναι ή δεν είναι κεντρικός στόχος, χρησιμοποιείται διαφορετική μεθοδολογία. Το αποτέλεσμα που βγαίνει είναι έγκυρο μόνο για την μεθοδολογία που χρησιμοποιείται. [56]

4.4 Πειραματικές και θεωρητικές τιμές ρυθμού επαγωγής DSB/(Gbp·Gy)

Μέσω της προσομοίωσης MCDS υπολογίστηκαν οι θεωρητικές τιμές του ρυθμού επαγωγής DSB/(Gbp·Gy). Η προσομοίωση εκτελέστηκε για πέντε διαφορετικές ενέργειες δευτερευόντων ηλεκτρονίων ενέργειας 1 keV, 2 keV, 10 keV, 100 keV και 900 keV σε συγκεντρώσεις οξυγόνου από 0,3% έως 20%. Οι χαμηλές συγκεντρώσεις οξυγόνου είναι χαρακτηριστικό των καρκινικών κύτταρων και κυμαίνονται από 0.3% έως 4.2%, ενώ στα φυσιολογικά κύτταρα η συγκέντρωση είναι γύρω στο 20%. **[78]**

Τα αποτελέσματα του MCDS αναπαρίστανται σε γραφική παράσταση όπως φαίνεται στην παρακάτω εικόνα:

Εικόνα 30 Σχηματισμός DSB για πέντε διαφορετικές ενέργειες ηλεκτρονίων σε συνάρτηση με την συγκέντρωση οζυγόνου όπως έδειζε το MCDS

Η προσομοίωση έδειξε ότι όσο αυξάνεται η συγκέντρωση του οξυγόνου τόσο αυξάνεται και ο σχηματισμός των DSBs. Στην περιοχή των χαμηλών συγκεντρώσεων οξυγόνου η αύξηση των DSBs είναι απότομη και καθώς απομακρυνόμαστε από την περιοχή αυτή η αύξηση γίνεται όλο και πιο ήπια. Όσο μεγαλώνει η ενέργεια των ηλεκτρονίων τόσο μειώνεται ο σχηματισμός των DSBs. Για τυχαία σταθερή συγκέντρωση οξυγόνου, στις χαμηλές ενέργειες έχουμε απότομη μείωση του σχηματισμού των DSBs ενώ στις υψηλές ενέργειες η μεταβολή δεν είναι ιδιαίτερα εμφανής. Η καμπύλες των 100 keV και των 900

keV πρακτικά ταυτίζονται. Ο ρυθμός επαγωγής DSB/(Gbp·Gy) κυμαίνεται από 5.2 έως 8.3 στις φυσιολογικές συνθήκες οξυγόνου ενώ σε συνθήκες υποξίας κυμαίνεται από 2.5 έως 6.2 DSB/(Gbp·Gy).

Παρακάτω φαίνονται τα πειραματικά αποτελέσματα, δηλαδή κυτταρικές σειρές από την συλλογή που είχαν πληροφορία για τον ρυθμό επαγωγής DSB/(Gbp·Gy)

#E	PMID	Human Cells	Tissue	Cell	Cell	Gamma	Dose	DSBs/Gy*
x				Class	Cycle	Ray	Rate	Gbps
р						Source	(Gy/min)	(15-30
ID								min)
10	24002026	A549	lung	t	а	137Cs	2.8	3.70
22	23880859	GM03652	skin fibroblasts	n	а	60Co	N/A	1.98
33	21839752	A549	lung	t	а	60Co	3	2.45
65	32941855	BEAS-2B	bronchial	n	а	137Cs	0.75	1.34
70	21609781	A549	lung	t	а	60Co	3	1.88
115	25844944	AG01522	foreskin	n	G0/G1	137Cs	1	3.96
188	23341263	hMSC	bone marrow	n	а	N/A	1.48	5
189	23341263	U251	brain	t	а	N/A	1.48	6.69
190	33985694	lymphocytes	blood	n	G0	60Co	1	1.87
192	26959322	HTB140	skin	t	а	60Co	1	1.87
194	26727594	HUVEC	umblical cord	n	а	60Co	1.3	2.84
			fibrous connective					
195	30373428	HT1080	tissue	t	G1	60Co	0.94	4
197	29271466	NHDF-Neo	skin	n	а	60Co	1	2.96
198	24168313	lymphocytes	blood	n	G0	60Co	0.5	2.86

Πίνακας 14 Στοιχεία ρυθμού επαγωγής DSBs/Gy*Gbps για κυτταρικές σειρές που αναφέρονται στην συλλογή

Συγκρίνοντας τις θεωρητικές τιμές του ρυθμού επαγωγής DSB/(Gbp·Gy) με τις πειραματικές διαπιστώνουμε ότι κάποιες πειραματικές τιμές βρίσκονται εντός ή κοντά στο θεωρητικό εύρος τιμών ενώ κάποιες πειραματικές τιμές βγαίνουν έξω από το θεωρητικό εύρος τιμών. Εάν υπήρχαν περισσότερες διαθέσιμες σειρές με τον ρυθμό επαγωγής DSB/(Gbp·Gy) τοτέ θα μπορούσαμε να διαπιστώσουμε κατά πόσο οι πειραματικές τιμές συμφωνούν με τα θεωρητικά εύρη.

ΣΥΜΠΕΡΑΣΜΑ

Στην παρούσα διπλωματική εργασία έγινε αναζήτηση μελετών που έγιναν σε ανθρώπινα κύτταρα όταν αυτά εκτίθενται σε ιοντίζουσα ακτινοβολία γ. Από ένα μεγάλο μέρος τέτοιων μελετών που ελέγχθηκαν, κρίθηκε ότι ένα μικρό μέρος από το σύνολο τέτοιων μελετών ήταν χρήσιμο για τον σκοπό της εργασίας. Σκοπός ήταν να δημιουργηθεί μια συλλογή ραδιοβιολογικών δεδομένων για ανθρώπινα κύτταρα που το πιο σημαντικό στοιχείο της είναι η αναφορά των συντελεστών α και β του μοντέλου LQ. Η δημιουργία μια τέτοιας συλλογής φάνηκε στην αρχή ότι θα ήταν χρήσιμη τόσο στον κλινικό τομέα όπως για παράδειγμα στην σχεδίαση ενός πλάνου μιας αποτελεσματικής ακτινοθεραπείας, όσο και στον ερευνητικό τομέα για την περαιτέρω μελέτη της επίδρασης της ακτινοβολίας γ στα ανθρώπινα κύτταρα

Επειτα από σύγκριση των πειραματικών και βιβλιογραφικών τιμών α/β, η συλλογή ραδιοβιολογικών δεδομένων για ανθρώπινες κυτταρικές περιέχει αποτελέσματα τα οποία παρουσιάζουν διακύμανση. Η συλλογή που δημιουργήθηκε στα πλαίσια της διπλωματικής εργασίας δεν έχει επαρκή όγκο. Η συλλογική προσπάθεια βοηθάει στην δημιουργία μια συλλογής μεγάλης σε όγκο η οποία να έχει το χαρακτηριστικό της καλής στατιστικής. Το γραμμικότετραγωνικό μοντέλο παραμένει ένα διαδεδομένο και εύκολο στην χρήση εργαλείο για την μελέτη των κυττάρων σε συνθήκες ιοντίζουσας ακτινοβολίας, ωστόσο πρέπει να χρησιμοποιείται με σοφό τρόπο. Ίσως είναι αναγκαία η ανάπτυξη και άλλων μοντέλων επιβίωσης κυττάρων που να είναι πιο ακριβή στην πρόβλεψη.

ПАРАРТНМА

Παρακάτω αναφέρονται τα δεδομένα δόσης-επιβίωσης που λήφθηκαν από το Webplotdigitizer για υπολογιστούν τα α, β των κυτταρικών σειρών

1. PMID: 28718725

MCF-7		
Dose	Survival	
0	1	
1,997226	0,724223	
4,002774	0,402806	
5,991678	0,10049	

2. PMID: 30544713

HCT 116		
Dose	Survival	
0	1	
2,030309	0,824074	
4,027004	0,6408	
6,006787	0,498286	
8,022812	0,200688	

3. PMID: 24811726

ARO81-1		
Dose	Survival	
0	1	
0,991597	0,726043	
2,991597	0,422346	
4,991597	0,211935	
7,983193	0,064988	

4. PMID : 21777021

HTB140		
Dose	Survival	
0	1	
8,015873	0,762699	
11,98413	0,677957	
16,03175	0,554939	
20	0,535674	
23,96825	0,37182	

5. PMID : 29414878

A549		
Dose	Survival	
0	1	
4,022535	0,413906	
6,016901	0,150475	
8,04507	0,042204	
10,00563	0,011238	
11,9662	0,001207	

6. PMID: 29414878

AG1522		
Dose	Survival	
0	1	
2,025974	0,468779	
4	0,121303	
6,025974	0,028712	
8,017316	0,002367	

7. PMID : 26266801

A549		
Dose	Survival	
0	1	
3,9783	0,45871	
5,974684	0,260246	
8	0,066539	

H1299		
Dose	Survival	
0	1	
1,98778	0,867757	
3,97556	0,643884	
5,995927	0,342537	

BEAS-2B		
Dose	Survival	
0	1	
1,99961	0,869221	
3,981927	0,60619	
5,997759	0,406159	
7,996249	0,218339	

10. PMID : 24002026

11. PMID: 23724988

HEBC3KT	
Dose	Survival
0	1
0,492958	0,990646
1	0,901783
1,985915	0,553168
3	0,369272

12. PMID : 26967573

U87	
Dose	Survival
0	1
2,043261	0,632244
4,048722	0,343082
6,05211	0,097983
8,056979	0,044261
10,06106	0,015656

13. PMID : 26967573

U251	
Dose	Survival
0	1
1	0,805136
2	0,539516
4	0,221008
6	0,073078
8	0,010258
10	0.001397

14. PMID : 22516036

HPBL	
Dose	Survival
0	1
1,001658	0,818452
1,996683	0,6875
3,004975	0,491071
3,993367	0,1875

15. PMID : 19828717

CGL1	
Dose	Survival
0	1
0,971866	0,959716
1,483309	0,834504
2,974417	0,719686
4,486589	0,576387
5,982289	0,296093
8,99344	0,08414

16. PMID: 23679558

17. PMID : 24549366

TK6	
Dose	Survival
0	1
0,102326	0,845451
0,497674	0,342707
1,009302	0,135288

HeLa	
Dose(Gy)	Survival
0	1,000074
0,994975	0,842314
1,98995	0,668893
3,994975	0,323697
6,015075	0,133249

HepG2	
Dose(Gy)	Survival
0	1
1,974288	0,407539
3,986108	0,094929
5,997079	0,030611

20. PMID: 23194191

21. PMID: 21916697

HTori-3	
Dose(Gy)	Survival
0	1
0,997895	0,83718
1,983158	0,663969
3,991579	0,383612

24. PMID: 26059740

HeLaS3	
Dose(Gy)	Survival
0	1
2,962383	0,637538
4,521089	0,48583
5,965566	0,280027

25. PMID : 32488310

U2OS	
Dose(Gy)	Survival
0	1
0,53625	0,896762
1,028203	0,573941
2,031917	0,261546
3,026114	0,094593
4,039887	0,042345
5,03509	0,009646

22. PMID: 23880859

GM03652	
Dose(Gy)	Survival
0	1
1	0,776083
2	0,519513
4,068966	0,25332
6	0,06694
8	0,020079

23. PMID: 23880859

GM02052	
Dose(Gy)	Survival
0	1
1	0,169573
2	0,024802
4	0,001316

26. PMID : 33924205

A549	
Dose(Gy)	Survival
0	1
2,009368	0,477947
4,018735	0,204711
6	0,041596

HeLa	
Dose(Gy)	Survival
0	1
0,995918	0,851171
1,983673	0,724467
2,987755	0,345823
4	0,204647

HeLa	
Dose(Gy)	Survival
0	1
0,512376	0,835738
1,00751	0,657595
1,502742	0,538628
2,01492	0,415409
4,012199	0,138357
6,009429	0,045165
8,023653	0,014164

29. PMID: 21251334

APDC	
Dose(Gy) Survival	
0	1
2,008316	0,460687
3,991684	0,149565
6,012474	0,038748

30. PMID : 21251334

PSFC	
Dose(Gy)	Survival
0	1
1,995842	0,676179
3,991684	0,364825
5,987526	0,072083

31. PMID : 23362981

H1299	
Dose(Gy)	Survival
0	1
1,985413	0,560844
3,982872	0,252236
5,992538	0,082756

32. PMID : 23362981

HCOXP	
Dose(Gy)	Survival
0	1
1,988266	0,612245
4,010419	0,335292
5,999786	0,112421
7,989764	0,026977

33. PMID: 21839752

A549	
Dose(Gy)	Survival
0	1
1	0,8
2	0,5
3	0,2

34. PMID : 27043923

HaCaT	
Dose(Gy)	Survival
0	0,999573
0,746167	0,861236
0,994714	0,820236
2,50148	0,523108
5,009936	0,243445

35. PMID : 30365074

5637	
Dose(Gy)	Survival
0,014925	1
2,025861	0,397245
4,036241	0,138761
6,016374	0,044219
8,026516	0,014618

5637R	
Dose(Gy)	Survival
0,014925	1
2,027449	0,573629
4,037829	0,200373
6,018121	0,066243
8,027786	0,019613

U87MG	
Dose(Gy)	Survival
0	1
1,99511	0,709768
4,00978	0,376428
6,00489	0,165334
8	0,046504

38. PMID : 23658321

U251MG	
Dose(Gy)	Survival
0	1
1,994859	0,665527
3,989717	0,360496
5,943445	0,168094
7,979434	0,049095

39. PMID : 21087168

FEP1811	
Dose(Gy)	Survival
1,976744	0,602865
4,011628	0,30445
8,023256	0,065041
11,97674	0,011938
16,04651	0,001617
20,05814	7,38E-05

40. PMID : 26722033

1	
LNCaP	
Dose(Gy)	Survival
0	1
0,979144	0,983961
2,002523	0,65311
4,005046	0,551851
6,031032	0,30777
8,050122	0,272029
10,06274	0,117163

41. PMID : 26722033

DU145	
Dose(Gy)	Survival
0	1
0,989637	0,752323
1,981237	0,69614
3,970983	0,404335
5,978183	0,263845
7,97011	0,134652
9,974255	0,033302

42. PMID : 26722033

PC3	
Dose(Gy)	Survival
0	1
1,000561	0,710748
2,001632	0,62368
4,005711	0,379103
5,991229	0,221965
8,015298	0,117672
10,00775	0,029557

SK-N-BE(2c)	
Dose(Gy)	Survival
0	1
1,05404	0,83334
2,069204	0,653255
3,065744	0,531028
5,073377	0,265198
7,058518	0,108955

44. PMID : 21075549
45. PMID : 21075549
46. PMID : 21075549
47. PMID : 21075549
48. PMID : 23060564

HCT116	
Dose(Gy)	Survival
0	1
1,011364	0,796458
2,011364	0,60127
3,011364	0,342676
5,011364	0,077542

INT-407	
Dose(Gy)	Survival
0	1
0,959138	0,68461
1,970043	0,618215
3,980097	0,265492
5,975405	0,091627

50. PMID : 32397212

MDA-MB-231	
Dose(Gy)	Survival
0	1
1,192771	0,778867
2,198795	0,489488
3,204819	0,247896

51. PMID : 9661896

52. PMID : 9661896

53. PMID : 9661896

54. PMID : 9661896

55. PMID : 9661896

56. PMID : 21889946

HF19	
Dose(Gy)	Survival
0	1
0,19881	0,965714
0,455693	0,693281
0,940637	0,396721
1,415759	0,247708
1,908948	0,190679
2,383854	0,125454
2,870878	0,043288

57. PMID : 21889946

NBS1	
Dose(Gy)	Survival
0	1
0,437841	0,53367
0,905291	0,215443
1,827287	0,081113

58. PMID: 20932650

ARO81-1	
Dose(Gy) Survival	
0	1
3,002989	0,793875
4,998014	0,632765

59. PMID : 29678153

HeLa	
Dose(Gy)	Survival
0	1
1,004274	0,901675
2,008547	0,701261
4,017094	0,45192
6,025641	0,267637
7,991453	0,103874
10,04274	0,039479

60. PMID : 29678153

MCF-7	
Dose(Gy)	Survival
0	1
0,864251	0,847087
1,869866	0,688395
3,902941	0,409838
5,896658	0,234083
7,910054	0,136501
9,966239	0,021544

A549	
Dose(Gy)	Survival
0	1
1	0,811594
2	0,655797
4	0,32971
8	0,065217

GBM4	
Dose(Gy)	Survival
0,032457	1
2	0,514681
4,005842	0,194295
6,014281	0,061441
8,03051	0,011421

63. PMID : 23091617

GBM8	
Dose(Gy)	Survival
0	1
2,059072	0,407152
4,084388	0,118351
6,042194	0,01
8,033755	0,001

64. PMID : 23964692

HT-29	
Dose(Gy)	Survival
0	1
1,980914	0,868571
3,977906	0,742857
7,970503	0,525714
12,00879	0,38

65. PMID : 32941855

BEAS-2B	
Dose(Gy)	Survival
0	1
2,008032	0,623959
4,016064	0,405971
8,032129	0,048268

66. PMID: 22928007

HepG2	
Dose(Gy)	Survival
0	1
1,951872	0,664579
3,983957	0,524578
5,989305	0,323346
7,994652	0,157322
10,02674	0,118952

67. PMID : 22928007

Huh7	
Dose(Gy)	Survival
0,047419	1
4,054857	0,524578
6,02925	0,323346
10,00225	0,118952

68. PMID : 2884912969. PMID : 2884912970. PMID: 21609781

71. PMID : 28340109

TK6	
Dose(Gy)	Survival
0	1
0,10883	0,912281
0,50924	0,654971
1,01232	0,175439

72. PMID: 25964552

PK-59	
Dose(Gy)	Survival
0	1
1	0,780112
2	0,689025
3,97619	0,298875
6	0,091366

73. PMID: 25964552

РК-45р	
Dose(Gy)	Survival
0	1
1,003891	0,883239
2,007782	0,629535
3,992218	0,270005
6	0,084425

MCF-7	
Dose(Gy)	Survival
0	1
2,504931	0,84427
5,009862	0,618712
7,514793	0,368015
10	0,229045

MCF-12a	
Dose(Gy)	Survival
0	1
2,485265	0,81337
5,032876	0,532033
7,4974	0,37883
10,00616	0,286908

76. PMID: 32878788

A549	
Dose(Gy)	Survival
0	1
1,007389	0,883022
2,003461	0,711007
3,982677	0,446496

77. PMID: 21874259

H460	
Dose(Gy)	Survival
0	1
0,991124	0,628029
2,011834	0,337769
3,994083	0,044306

78. PMID: 24515253 79. PMID: 24515253

80. PMID: 23873780

HeLa	
Dose(Gy)	Survival
0	1
0,978547	0,923975
1,983785	0,505503
3,993037	0,199183
6,001374	0,096457
8,030965	0,039068

81. PMID: 27765919

82. PMID: 31562368

HeLa	
Dose(Gy)	Survival
0	1
2	0,667995
4	0,289892

83. PMID: 30476230

TPC-1		
Dose(Gy)	Survival	
0	1	
1,992754	0,537228	
3,985507	0,17302	
5,942029	0,028861	
8,007246	0,001668	

84. PMID: 30476230

KTC-1	
Dose(Gy)	Survival
0	1
1,992754	0,6218
4,021739	0,215443
6,014493	0,041596
8,007246	0,002077

85. PMID: 30476230

WRO	
Dose(Gy)	Survival
0	1
1,956522	0,719686
3,949275	0,415956
5,978261	0,207711
7,971014	0,059948
10,03623	0,012005

FRO	
Dose(Gy)	Survival
0	1
3,985507	0,481437
6,014493	0,26827
8,007246	0,120051
10,03623	0,048144

KTC-2	
Dose(Gy)	Survival
0	1
1,956522	0,693857
4,021739	0,43144
5,978261	0,160823
7,971014	0,055723
9,891304	0,025864

88. PMID: 30125607

Nthy-ori 3-1	
Dose(Gy)	Survival
0	1
1,008	0,617413
2,992	0,271991
5,008	0,073979

89. PMID: 30125607

WRO	
Dose(Gy)	Survival
0,010752	1
0,963994	0,668554
2,975631	0,560575
4,991641	0,185251
7,98405	0,029508

90. PMID: 30125607

TPC-1	
Dose(Gy)	Survival
0	1
1,033592	0,753222
2,997416	0,191448
4,981912	0,047525
8	0,006385

91. PMID: 21815748

SiHa	
Dose(Gy)	Survival
0	1
1,015385	0,824575
2	0,785756
4,030769	0,473579
5,969231	0,198806
5,969231	0,198806
8	0,070496

92. PMID: 21815748

MDAMB453	
Dose(Gy)	Survival
0	1
1,015385	0,886429
2	0,617413
3,969231	0,363253
6,030769	0,160025
8	0,040488

93. PMID: 21815748

WM115	
Dose(Gy)	Survival
0	1
1,969231	0,314327
4	0,079529
6	0,016997
8	0,001941

94. PMID: 29633065

HT29	
Dose(Gy)	Survival
0	1
2,006969	0,554909
4	0,317647
5,993031	0,119601
7,972125	0,050953

95. PMID: 29633065

SW620	
Dose(Gy)	Survival
0	1
4	0,219608
5,993031	0,049013
7,972125	0,039188

NCM-460	
Dose(Gy)	Survival
0	1
4	0,117647
5,979094	0,021548
7,958188	0,011724

Huh7	
Dose(Gy)	Survival
0	1
2,009496	0,481867
4,004653	0,180342
6,012698	0,053163

98. PMID: 26824362

A549	
Dose(Gy) Survival	
0	1
2,014081	0,774481
6,022822	0,255193

99. PMID: 33453991

TK6	
Dose(Gy)	Survival
0	1
0,487562	0,692865
1	0,404956
1,492537	0,240672

100. PMID: 23081821

WRO	
Dose(Gy)	Survival
0	1
2,508475	0,23569
5,016949	0,030858
7,525424	0,003162

101. PMID: 23081821

CG3	
Dose(Gy)	Survival
0	1
2,508475	0,130925
5,016949	0,011029

102. PMID: 23081821

CGTH	
Dose(Gy)	Survival
0	1
2,542373	0,340341
5,050847	0,021899
7,525424	0,000842

103. PMID: 30755594

H460	
Dose(Gy)	Survival
0	1
1,008621	0,617586
3,025862	0,121695
5,017241	0,011743

104. PMID: 30755594

A549	
Dose(Gy)	Survival
0	1
0,945148	0,866931
4,995781	0,20421
6,987342	0,039527

105. PMID: 26759383

A549	
Dose(Gy)	Survival
0	1
2,037399	0,643444
4,016662	0,293823
8,010908	0,009067

106. PMID: 26033480

A549	
Dose(Gy)	Survival
0	1
2	0,8
4	0,6
6	0,3
8	0,1

MIA PaCa-2	
Dose(Gy)	Survival
0	1
4	0,109515
6,030151	0,026367
8	0,004982

T98	
Dose(Gy)	Survival
0	1
2	0,65332
3,012658	0,402756
4	0,273511
5,012658	0,101954
5,974684	0,053838

109. PMID: 27098303

MCF-7	
Dose(Gy)	Survival
0	1
1,004936	0,631892
1,994072	0,275749
4,014741	0,026182

110. PMID: 22404155

MIA PaCa-2	
Dose(Gy)	Survival
0	1
0,855596	0,918973
2,820862	0,429564
4,890722	0,106543

111. PMID: 23332223

A549	
Dose(Gy)	Survival
0	1
2,027304	0,670928
3,993174	0,300121
6	0,066676

112. PMID: 23332223

H460	
Dose(Gy)	Survival
0	1
1,993564	0,475794
4,016209	0,195129
5,997517	0,0552

113. PMID: 32298492

SK-Mel5	
Dose(Gy)	Survival
0	1
1,007874	0,716976
1,984252	0,482488
4	0,218499
8	0,005713

114. PMID: 32298492

SK-Mel28	
Dose(Gy)	Survival
0	1
1,007874	0,909318
2,015748	0,763884
4,031496	0,498021
8	0,089976

115. PMID: 25844944

AG01522	
Dose(Gy)	Survival
0	1
0,528701	0,696467
0,981873	0,478364
1,993958	0,219477
3,006042	0,103539
3,987915	0,044312
0 0,528701 0,981873 1,993958 3,006042 3,987915	1 0,696467 0,478364 0,219477 0,103539 0,044312

116. PMID: 21249311

H460	
Dose(Gy)	Survival
0	1
1,003484	0,914031
2,020906	0,829696
3,02439	0,583131
4,013937	0,272543

TE-10	
Dose(Gy)	Survival
0	1
2,017804	0,68429
4,011869	0,483293
5,982196	0,219261
8,023739	0,056308

TE-8	
Dose(Gy)	Survival
0	1
2,017804	0,514838
4,011869	0,315396
6,005935	0,124114
8	0,020153

119. PMID: 27557627

TE-4	
Dose(Gy)	Survival
0	1
1,970326	0,387347
4,011869	0,145369
6,005935	0,052029
8	0,005342

120. PMID: 27557627

TE-14	
Dose(Gy)	Survival
0	1
2,017804	0,381273
4,011869	0,170263
6,005935	0,031874
8	0,003598

121. PMID: 30582964

HCT116	
Dose(Gy)	Survival
0,026042	0,855641
2,034014	0,657216
4,033112	0,242894
6,038611	0,152157
8,098085	0,081556

122. PMID: 24121106

PC3	
Dose(Gy)	Survival
0	1
1,002639	0,837954
3,957784	0,250664
5,989446	0,085647
7,994723	0,02156
10	0,004177

123. PMID: 24121106

DU145	
Dose(Gy)	Survival
0	1
3,970149	0,337791
6,029851	0,125442
8,059701	0,054084
10	0,016868

124. PMID: 30026328

HCT116 (wt 162 p53)	
Dose(Gy)	Survival
0	1
2,008163	0,48426
4,016327	0,117125
6	0,016258

125. PMID: 30310276

A549	
Dose(Gy)	Survival
0	1
0,93865	0,879923
1,95092	0,766682
3,993865	0,416541
6,03681	0,362935

126. PMID: 30310276

DU145	
Dose(Gy)	Survival
0	1
0,941538	0,863317
1,956923	0,798229
4,006154	0,518673
6,055385	0,35743

IGROV-1	
Dose(Gy)	Survival
0	1
2,003795	0,603237
4,00759	0,170493

OC316	
Dose(Gy)	Survival
0	1
2,003795	0,407152
3,99241	0,05097

129. PMID: 26001755

LIDEC2VT	
IDECSKI	
Dose(Gy)	Survival
0	1
0,509849	0,985877
2,006427	0,553226
2,999451	0,366968

130. PMID: 25371289

U-87	
Dose(Gy)	Survival
0	1
1,933213	0,558259
3,988909	0,511518
6,022905	0,12626
7,993249	0,066494

131. PMID: 22289037

HeLa	
Dose(Gy)	Survival
0	1
1,029046	0,726307
2,008299	0,53805
4	0,187748
6,008299	0,038506
8,016598	0,002675

132. PMID: 23955054

A 170	
A1/2	
Dose(Gy)	Survival
0	1
1,985816	0,254286
4,007092	0,040464
5,992908	0,003494
7,978723	0,000401

133. PMID: 28560323

MCF7	
Dose(Gy)	Survival
0	1
0,491991	0,751384
0,995423	0,601603
2,997712	0,073955
5	0,009687

134. PMID: 25681012

UW228-1	
Dose(Gy)	Survival
0	1
0,52459	0,969861
1,04918	0,915427
1,967213	0,63496
3,978142	0,475683
7,956284	0,168179

135. PMID: 25681012

Res196	
Survival	
1	
0,977755	
0,771341	
0,535562	
0,446263	
0,089633	

136. PMID: 21277099

PC3	
Dose(Gy)	Survival
1,085396	0,844385
3,044266	0,263899
5,084218	0,073979
7,045999	0,032055
9,037301	0,003819

DU145	
Dose(Gy)	Survival
0,928762	0,861493
4,956427	0,459061
6,978974	0,153833
8,999666	0,060838

LNCaP	
Dose(Gy)	Survival
0,953329	0,86375
2,951277	0,339854
4,936013	0,054613
6,975601	0,025487
9,000576	0,00564

139. PMID: 21277099

RWPE1	
Dose(Gy)	Survival
0,900393	0,804474
2,938888	0,475516
4,935686	0,163154
6,955939	0,057004
8,928538	0,020652

140. PMID: 21277099

267B1	
Dose(Gy)	Survival
1,033592	0,926058
3,03876	0,535339
5,043928	0,218743
7,007752	0,05311
9,033592	0,025012

141. PMID: 21642866

H460	
Dose(Gy)	Survival
0,000245	1,000094
2,054191	0,396058
4,031819	0,111917
6,02184	0,014906

142. PMID: 25738799

A549	
Dose(Gy)	Survival
0,992218	0,838095
1,984436	0,439241
4,007782	0,180434
5,992218	0,092679
8,015564	0,019038

143. PMID: 25738799

H1299	
Dose(Gy)	Survival
0,990099	0,873326
1,980198	0,633097
4	0,327119
6	0,190288
8,019802	0,043622

144. PMID: 24336110

EC109		
Dose(Gy)	Survival	
0	1	
2,008547	0,977045	
4,017094	0,872122	
5,961538	0,876524	
7,991453	0,848092	

145. PMID: 25229646

X01	
Dose(Gy)	Survival
0	1
1,988166	0,666454
4	0,319226

146. PMID: 25229646

CSC2	
Dose(Gy)	Survival
0	1
2,010929	0,733341
4,065574	0,433246

A549	
Dose(Gy)	Survival
0	1
2,015431	0,911447
3,999419	0,843674
6,01485	0,768964
8,014321	0,658858

HepG2	
Dose(Gy)	Survival
0	1
3,06383	0,729008
5,93617	0,51145
9	0,358779

149. PMID: 21336967

RHepG2	
Dose(Gy)	Survival
0	1
3,06383	0,610687
6	0,320611
9	0,156489

150. PMID: 25776488

NCI-H460	
Dose(Gy)	Survival
0	1
3	0,331767
5,021739	0,143301
6,978261	0,031623

151. PMID: 33323404

A549	
Dose(Gy)	Survival
0,010177	0,999828
1,958192	0,723724
3,967572	0,360314
6,008531	0,129301

152. PMID: 20960462

LNCaP	
Dose(Gy)	Survival
0	1
1,980149	0,360681
4,004963	0,055498
6,014888	0,01247

153. PMID: 20960462

PC3		
Dose(Gy)	Survival	
0	1	
2,018506	0,492388	
3,988541	0,207638	
6,011262	0,043114	

154. PMID: 32970517

PBMC	
Survival	
0,706122	
0,570175	
0,375731	

155. PMID: 32155687

A549		
Dose(Gy)	Survival	
0	1	
2,027592	0,713737	
4,009061	0,392157	
6,000223	0,098279	

156. PMID: 21497989

SY5Y	
Dose(Gy)	Survival
0	1,025863
4	0,213603
6	0,059945

157. PMID: 21497989

Kelly	
Dose(Gy)	Survival
0	1
2,059693	0,666364
4,032826	0,444138
6,050801	0,126888

Tet21 (MYCN		
overexpressed)		
Dose(Gy)	Survival	
0	1	
3,995604	0,086596	
6,013187	0,012589	

T98G	
Dose(Gy)	Survival
0	1
1,590622	0,670019
3,626138	0,209768
5,632583	0,104086
7,594161	0,033246

160. PMID: 22132723

161. PMID: 25227747

SH-SY5Y	
Dose(Gy)	Survival
0	1
2,975476	0,849931
5,047332	0,699993
7,078044	0,506266

162. PMID: 23595626

163. PMID: 30344816

SAS/mp53	
Dose(Gy)	Survival
0	1
3,515563	0,530604
14,64036	0,065541

164. PMID: 30344816

SAS/mp53	
Dose(Gy) Survival	
0	1
8,103557	0,403185
13,76482	0,128852

165. PMID: 30344816

SAS/mp53	
Dose(Gy)	Survival
0	1
6,524234	0,565319
11,14909	0,269894

166. PMID: 22951319

167. PMID: 21784649

DU145	
Dose(Gy)	Survival
0	1
2,013652	0,67711
4,027304	0,301179
5,972696	0,145726
7,986348	0,039813

168. PMID: 22866150

HTori-3	
Dose(Gy)	Survival
0	1
0,790875	0,785867
1,231939	0,6874
1,977186	0,48534
4	0,190138

169. PMID: 27834104

PC3	
Dose(Gy)	Survival
0	1
1,943795	0,37958
3,908495	0,106771
5,974786	0,016814

170. PMID: 27834104

HepG2	
Dose(Gy)	Survival
0	1
1,986988	0,527992
4,004907	0,142326
5,981089	0,045387
8,020027	0,003469
8,020027	0,003469

PC3	
Dose(Gy)	Survival
0	1
1,898734	0,568947
4,018987	0,218803
5,981013	0,055994
7,943038	0,008153

MDA-MB-231	
Dose(Gy)	Survival
0	1
1,980723	0,756463
3,990361	0,376494
5,985542	0,147808

173. PMID: 27363012

MDA-MB-468	
Dose(Gy)	Survival
0	1
1,995816	0,353686
4,004184	0,125088
5,974895	0,009086

174. PMID: 27363012

Hs578T	
Dose(Gy)	Survival
0	1
1,914567	0,613591
3,960131	0,351119
5,978708	0,172331

175. PMID: 24363165

176. PMID: 23188185

EC9706	
Dose(Gy)	Survival
0	1
1,920072	0,844214
3,970574	0,661548
6,004816	0,518385
7,992037	0,316654

177. PMID: 23188185

KYSE150	
Dose(Gy)	Survival
0	1
2,018182	0,833166
4	0,713935
6,018182	0,53163
8,054545	0,307472

PMID: 32910708
PMID: 32910708
PMID: 32910708
PMID: 32910708
PMID: 32910708

182. PMID: 21520998

TK6	
Dose(Gy)	Survival
0	1
0,484778	0,506895
0,976414	0,271911
1,482324	0,116298
1,98829	0,048812
2,494145	0,021275

183. PMID: 32120829

184. PMID: 26512655

F11	
Dose(Gy)	Survival
0	1
1,942153	0,221283
3,95965	0,03012

185. PMID: 22302044

HepG2	
Dose(Gy)	Survival
0	1
1,995624	0,366361
4,008753	0,098284
6,004376	0,022562

A549	
Dose(Gy)	Survival
0	1
4,029897	0,376903
6,048771	0,137883

HUVEC	
Dose(Gy)	Survival
0	1
2,002864	0,48698
4,044704	0,140507
6,030972	0,047437
8,001606	0,012546

188.	PMID: 23341263
189.	PMID: 23341263
190.	PMID: 33985694
191.	PMID: 26305808
192.	PMID: 26959322
193.	PMID: 26049366
194.	PMID: 26727594
195.	PMID: 30373428
196.	PMID: 23607485
197.	PMID: 29271466
198.	PMID: 24168313

ΒΙΒΛΙΟΓΡΑΦΙΑ

- 1. Robert L. Platzman. What is ionizing radiation? *Scientific American INC* (1959).
- 2. Marianne Sowa, Benjamin J. Arthurs, Brian J. Estes and William F. Morgan Effects of ionizing radiation on cellular Structures, induced instability and carcinogenesis. *Birkhäuser Verlag*(2006).
- Παναγιώτης Α. Ασημακόπουλος. Εισαγωγή στην πυρηνική Φυσική. Εκδόσεις πανεπιστημίου Ιωαννίνων, 2^η έκδοση, (2005).
- 4. Muhammad Uthman, Farouq E. Shaibu, Bara'u Gafai Najashi, Ismail Farouk Labran Labran, Abubakar Sadiq Umar, Umar Sani Abdullahi. 5G Radiation and Covid-19: The Non-Existent Connection. *International Journal of Research in Electronics and Computer Engineering*, Vol 8 Issue 2 (April-June 2020).
- W. N. Cottingham, D.A. Greenwood. Εισαγωγή στην πυρηνική Φυσική. Τυπωθήτω/Γιώργος Δαρδάνος. (1992).
- 6. Michael F. L'Annunziata. Radioactivity Introduction and History. *Elsevier*. (2007).
- Stephen Gasiorowicz. Κβαντική Φυσική. Εκδόσεις Κλειδάριθμος, 3ⁿ Αμερικάνικη έκδοση.
- 8. <u>https://thescienceandmathszone.com/the-photoelectric-effect-photons-and-plancks-</u> equation/?fbclid=IwAR37YQvkM2eACNUmMpmEvTQX4lF8v5G9o8V0a zaqoo37oUodjBcVf6kwjEs
- 9. Στέφανος Λ. Τραχανάς. Κβαντομηχανική Ι. Πανεπιστημιακές Εκδόσεις Κρήτης.
- 10. <u>https://commons.wikimedia.org/wiki/File:Compton_scattering_diagram.png</u> <u>?fbclid=IwAR3XSvRhrYUDIL-34-PyPLwP-</u> <u>xKswBxookHvIIMGz1xjKTc6L-ge_ShfskI</u>
- 11. <u>https://commons.wikimedia.org/w/index.php?search=pair+production&title</u> =Special:MediaSearch&go=Go&type=image
- 12. <u>https://www.nature.com/scitable/ebooks/essentials-of-cell-biology-14749010/118237871/</u>
- 13. Tibor Vellai, Gábor Vida. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. *The royal society publishing*. (1999)

- 14. Geoffrey M. Cooper. The Cell: A Mollecular Approach. Eight Edition. Sinauer Associates, Oxford university press. (2019). https://www.ncbi.nlm.nih.gov/books/NBK9879/
- 15. Thomas D. Pollard, William C. Earnshaw, Jennifer Lippincott-Schwartz, Graham T. Johnson. Cell Biology. Third Edition. *Elsevier*. (2017).
- 16. Karsten Rippe. Dynamic organization of the cell nucleus. *Elsevier*. (2007).
- 17. John M. Butler, Barbara C. Levin. Forensic applications of mitochondrial DNA. *Trends in Biotechnology* Vol. 16 (April 1998).
- 18. Ben Short, Francis A. Barr. The Golgi apparatus. *Current Biology* Vol. 10 No 16 (2000).
- 19. K. A. Schafer. The Cell Cycle: A Review. Vet Pathology 35: 461-478 (1998).
- 20. Navnet Sharda, Chin-Rang Yang, Timothy Kinsella, David Bootman. Radiation Resistance. *Elsevier* (2002)
- 21. GP Mongol, FRG Carneiro, BK Robbs, DV Faget and JPB Viola. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. *Macmillan Publishers* (2016).
- 22. Gary Felsenfeld. DNA Scientific American, Vol. 253, No. 4 (October 1985)
- 23. Peter Portin. The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNA. *Journal of Genetics*, Vol. 93, No. 1 (April 2014).
- 24. James Watson, Francis Crick. Molecular structure of nucleic acids. *Nature* No 4356 (April 25 1953).
- 25. Wojciech Makaołwski. The human genome structure and organization. *Acta Biochimica Polonica* Vol. 48 No. 3 p. 587-598 (2001)
- 26. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Molecular Biology of the cell. *Garland Science* (2002). <u>https://www.ncbi.nlm.nih.gov/books/NBK26834/</u>
- 27. Lanez Elhafnaui. Synthesis, characterization and in vitro and in silico study of biological activities of some ferrocenylmethyl-nucleic bases derivatives. Doctorat Thesis. University Kasdi Merah Ouargla, Faculty of Mathematics and Science of Matter. Domain: Sciences of Matter, Branch: Chemistry Speciality: Electrochemistry of bioactive substances of pharmaceutical interest (11/11/19)
- 28. Abdelhamid H. Elgazzar, Nafisah Kazem. Biological effects of ionizing radiation. *The Pathophysiologic Basis of Nuclear Medicine*. Chapter 23

- 29. Eric J. Hall, Amato J. Giaccia. Radiobiology for the radiologists, Seventh edition. *Wolters Kluwer*
- 30. Sophie Le Caër. Water Radiolysis : Influence of Oxide Surfaces on H₂ Production under Ionizing Radiation. *Water* (2011).
- 31. W. M. Dale. Direct and indirect effects of ionizing radiations. *Strahlenbiologie/Radiation Biology, Springer* (1966).
- 32. Nimrat Chatterjee and Graham C. Walker. Mechanisms of DNA Damage, Repair and Mutagenesis. *Environmental and Molecular Mutagenesis Wiley Periodicals* (2017).
- 33. Lisiane B. Meira, Nicolas E. Burgis, Leona D. Samson. Base Excision Repair. Chapter 2.3. *Springer* (2005).
- 34. Ann E. Aust, Jamie F. Eveleigh. Mechanisms of DNA oxidation. *Society for Experimental Biology and Medicine* (1999)
- 35. Yihan Peng, Huadong Pei. DNA alkyliation lesion repair: outcomes and implication in cancer chemotherapy. *Zhejiang University Press* (2021).
- 36. William M. Grady, Cornelia M.Urlich. DNA alkylation and DNA methylation: cooperating mechanisms driving the formation of colorectal adenomas and adenocarcinomas? <u>www.gutjnl.com</u>
- 37. Diana L. Bordin, Michele Lima, Guido Lenz, Jenifer Saffi, Lisiane B. Meira, Paul Mésange, Daniele G. Soares, Annete K. Larsen, Alexandre E. Escargueil, João A.P. Henriques. DNA Alkyliation damage and autophagy induction. *Elsevier* (2013).
- 38. Zheng J. Liu, Sergio Martinez Cuesta, Pieter van Delft and Shankar Balasubramanian. Sequencing abasic sites in DNA at single-nucleotide resolution. *Nature Chemistry* Vol 11 July 2019.
- 39. Grigory L. Dianov, Kate M. Sleeth, Irina I. Dianova, Sarah L. Allison. Repair of abasic sites in DNA. *Elsevier* (2003).
- 40. D. O. Zharkov. Base excision DNA repair. Birkhäuser verlag (2008).
- 41. Keith W. Caldecott. Mammalian DNA base excision: Dancing in the moonlight. *Elsevier*
- 42. Satoru Hashimoto, Hirofumi Anai and Katsuhiro Hanada. Mechanisms of interstrand DNA crosslink repair and human disorders. *BioMed Central* (2016).
- 43. Kohei Ichikawa, Naoshi Kojima Yu Hirano, Toshie Takebayashi, Keiko kowata and Yasuo Komatsu. Interstrand cross-link of DNA by covalently linking a pair of abasic sites. *TheRoyal Society of Chemistry* (2012).

- 44. Yaling Huang and Lei Li. DNA crosslinking damage and cancer a tale of friend and foe. *Pioneer Bioscience Publishing Company* (2013).
- 45. Keith W. Caldecott. Single-strand break repair and genetic disease. *Macmillan Publishers*. Volume 9 (August 2008).
- 46. Grigory L. Dianov, Jason L. Parsons. Co-ordination of DNA single strand break repair. *Elsevier* (2006).
- 47. F. Antoneli, A. Campa, G. Esposito, P.Giardullo, M.Belli, V. Dini, S. Meschini, G.Simone, E. Sorrentino, S. Gerardi, G. A. P. Cirrone and M. A. Tabocchini. Induction and Repair of DNA DSB as Revealed by H2AX Phosphoryliation Foci in Human Fibroblasts Exposed to Low- and High-LET radiation: Relationship with Early and Delayed Reproductive Cell Death. *Radiation Reasearch Society* (2015).
- 48. P. A. Jeggo and M Löbrich. DNA double-strand breaks: their cellular and clinical impact? *Oncogene Nature Publishing Group* (2007).
- 49. Christopher W Theodorakis. Mutagenesis. *Elsevier* (2008)
- 50. Gabriel Matos-Rodrigues, Emanuelle Martini and Bernard S. Lopez. Mouse Models for Deciphering the impact of Homologus Recombination on Turorigenesis. *Multidisciplinary Digital Publishing Institute* (2021).
- 51. Kai Yang, Rong Guo and Dongyi Xu. Non-homologous end joining: advances and frontiers. *Acta Biochimica et Biophysica Sinica, Oxford Academic* (2016).
- 52. N. Suntharalingam, E. B. Podgorsak, J.H. Henry. Basic Radiobiology. Chapter 14
- 53. Kristina Goetze, Christian G. Fabian, Andrea Siebers, Livia Binz, Daniel Faber, Stefano Indraccolo, Giorgia Nardo, Urlike G. A. Sattler, Wolfgang Mueller-Klieser. Manipulation of tumor metabolism for therapeutic approaches: ovariarian cancer-derived cell lines as a model system. *Springer* (2015)
- 54. Stephen Joseph McMahon. The linear quadratic model: usage, interpretation and challenges. *Institute of Physics Engineering in Medicine* (2018).
- 55. Bahman Emami, Gayle Woloschak, William Small Jr. Beyond the linear quadratic model: intraoperative radiotherapy and normal tissue tolerance. *Translational Cancer Research*, Vol 4, No 2 April 2015.
- 56. C. M van Leeuwen, A. L. Oei, J. Crezee, A. Bel, N. A. P. Franken, L. J. A. Stalpers and H. P. Kok. The alfa and beta of tumors: a review of

parameters of the linear-quadratic model, derived from clinical radiotherapy studies. *Radiation Oncology* (2018).

- 57. F. W. McKenna and S. Ahmad. Fitting techniques of cell survival curves in high-dose region for use in stereocratic body radiation therapy. *IOP Publishing*, Phys. Med. Biol. 54 (2009) 1593-1608.
- 58. Loudres M. Garcia, David E. Wilkins and Gijsbert P. Raaphorst. α/β Ratio: A dose range dependence study. *Elsevier*, Int. J. Radiation Oncology Bio;> Phys., Vol 67 No.2 November 2 2007.
- 59. W. Dörr. Radiobiology of tissue reactions. ICRP (2013)
- 60. Nina-Sophie Hegemann, Matthias Guckenberger, Claus Belka, Ute Ganswindt, Farkhad Manapov and Minglul Li. Hypofractionated radiotherapy for prostate cancer. *Radiation Oncology* (2014).
- 61. B. Fertil, H. Dertinger, A. Courdi and E. P. Malaise. Mean Inactivation Dose: A Useful Concept for Intercomparison of Human Cell Surval Curves. *Academic Press* (1984) Radiation Research Society.
- 62. David J. Brenner. Point: The linear-quadratic model is an appropriate methology for determing iso-effective doses at large doses per fraction. *Elsevier* (2008).
- 63. Mahammad Aqeel Ashraf, Muhammad Abdur Rehman, Mohd Jamil Maah and Ismail Yusoff. Ceasium–137: Radio-chemistry, Fate and Transport, Remediation and Future Concerns. *Taylor and Francis* (2013)
- 64. Jiancheng Yang, Gregory J. Koller, Chaker Fares, F. Ren, S. J. Pearton, Jinho Bae, Jihyun Kim, and David J. Smith. ⁶⁰Co Gamma Ray Damage in Homoepitaxial β-Ga₂O₃ Schottky Rectifiers. *ECS Journal of Solid State Science and Technology* (2019).
- 65. Linda Yasui, Thomas Kroc, Samantha Gladden, Christine Andorf, Sajit Bux, Narayan Hosmane. Boron neutron capture in prostate cells. *Elsevier* (2012).
- 66. Gaëtan Gruel, Carmen Villagrasa, Pascale Voisin, Isabelle Clairand, Marc Berderitter, Jean-François Bottollier-Depois, Joan Francesc Barquinero. Cell to Cell Variabillity of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition. *PLOS ONE* (2016)
- 67. Andrea Di Francesco, Cristiano De Pittà, Francesca Moret, Vito Barbieri, Lucia Celotti and Maddalena Mognato. The DNA-Damage Response to γ-Radiation Is Affected by miR-27a in A549 Cells
- 68. Ya-Yun Hsiao, Fang-Hsin Chen, Chun-Chieh Chan and Ching-Chi Tsai. Monte Carlo Simulation of Double_Strand Break Induction and Conversion

after Ultrasoft X-rays Irradiation. International Journal of Molecular Sciences (2021).

- 69. Wei-Ren Luo, Fang-Hsin Chenb, Ren-Jing Huanga,e, Yu-Pin Chenf, and Ya-Yun Hsiao. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB inductions and conversions induced by therapeutic proton beams.
- 70. Semenenko and R. D. Stewart. V. A. Semenenko and R. D. Stewart. A Fast Monte Carlo Algorithm to Simulate the Spectrum of DNA. *Radiation Research Society* (2004).
- 71. Chan Woo Wee. Radiotherapy for Newly Diagnosed Glioblastoma in the Elderly: What is the standart? The Korean Brain Tumor Society, The Korean Society for Neuro-Oncology, and The Korean Society for Pediatric Neuro-Oncology (2022)
- 72. Noriyoshi Takahashi, Haruo Matsushita, Rei Umezawa, Takaya Yamamoto, Yojiro Ishikawa, Yu Katagiri, Shun Tasaka, Kazuya Takeda Katsuya Fukui, Noriyuki Kadoya, Kengo Ito, Keiichi Jingu. Hypofractionated Radiotherapy for Anaplastic Thyroid Carcinoma: 15 years of Experience in a Single Institution. *European Thyroid Journal. Published by S.Karger* (2022).
- 73. Kara D. Romano, Colin Hill, Daniel M. Trifiletti, Sean Reach, Bethany J. Horton, Neil Shah, Dylan Campbell, Bryce Libby and Timothy N. Showwalter. High dose-rate tandem and ovoid brachytherapy in cervical cancer: dosimetric predictors of edverse events. *Radiation Oncology* (2018).
- 74. K.J. Ray, N.R. Sibson, A.E. Kiltie. Treatment of Breast and Prostate Cancer by Hypofractinated Radiotherapy: Potential Risks and Benefits. *Clinical Oncology Elsevier* (2015).
- 75. Hiroshi Doi, Naohito Beppu, Hazuhiro Kitajima and Kuribayashi. Stereocratic Body Radiation Therapy for Liver Tumors: Current Status and Perspectives. *Anticancer Research* (2018).
- 76. Ilias V. Karagounis, Eleni K. Skourti, Maria V. Liousia and Michael I. Koukourakis. Assessment of Radiobiological α/β Ratio in Lung Cancer and Fibroblast Cell Lines Using Viability Assays. *In vivo 31*: 175-180 (2017).
- 77. B. Andisheh, M. Edgren, Dž. Belkić, P. Mavroidis, A. Brahme, B. K. Lind A Comparative Analysis of Radiobiological Models for Cell Surviving Fractions at High Doses. *Technology in Cancer Research and Treatment, Adenine Press* (2013).
- 78. S. R. McKeown. Defining normoxia, physoxia and hypoxia in tumorsimplications for treatment response. *British Institute of Radiology* (2014).