£

1)

8 B
v -
L NS0 -
NPOMHOEVS -
=
nvpPPopos

|

EoNIKO METTOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAT MHXANIKON YIIOAOTIETON
TOMEAY TEXNOAOIIAY [IAHPO®OPIKHY KAI YIIOAOTIETON
EPrAsTHPIO MIKPOYTOAOITETON KAT WHOIAKON Y YSTHMATON

Extending RISC-V ISA for Fine-Grained

Mixed-Precision in Neural Networks

AIIAOMATIKH EPrAsIA

ToL

ANESov Mdpa

EnmArenwyv: Anuftpoc Xodvieng
Kodnyntic E.M.IL

EPrasTHPIO MIKPOYTIOAOTIETON KAI WHSIAKON L TSTHMATON

Adrva, Mdptiog 2024

Edvixé Metodfio Iloauteyvelo

g%
b

Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy

B
nvpPopo

OMHOEV S

w”npom
M

Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

1

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

Extending RISC-V ISA for Fine-Grained

Mixed-Precision in Neural Networks

AIIIAOMATIKH EPrAsIA

TOoL

AXNESov Mdpa

EnmBArénwyv: Anuftploc Xodvreng
Kodnyntic E.M.IL

Evyxpldnxe and tnv toiuerr eCetaotnr emtpony| tny 26 Moptiou 2024.

(Yroypagn) (Yroypagn) (Yroypagn)
Anufteloc Yolvteng [Movarydtng Toavéxog Ywthplog E0oNe
Kodnyntic E.M.IL Kodnyntic E.M.IL Enixovpoc Kadnyntic E.M.II

Adrva, Mdptiog 2024

Edvixé Metodfo IloAuteyvelo

ge
)

Eyohy Hhextpordywv Mnyovixody xow Mnyovixdyv Trohoylotomy

Toyuéag Teyvoroyiag ITAnpogpopixrc xou Troloyiotdy

L] 23
POMHOEV S
=
A VP PoPO

W

1

Epyaotripio Muxpobnoloyiotdv xan Ungloxwmy LucTnudtey

(Troypagn)

AAEZIOE MAPAS
Awmhopotovyoc Hiextpohdyog Mryovinde xow Mryovinde Troroyiotov E.M.IL

Copyright (©) AléZoc Mdpoc, 2024.

Me empOraln movtog duxanwpatoc. All rights reserved

Anayopedeton 1 avtiypopt], amodhxeuon xou Slovour) Tng mopolcag epyaciog, € ohoxAripou
1) TUAUATOC QUTAS, Yot EUTOPWO oxomo. Emtpénetar 1 avatinmor, anotixeuot) xou dtavou
Yot OGXOTO U1 XEEOOOKOTINOG, EXTUDEUTIXAC 1) EQELVTIXAC PUONE, UTO TNV mpolmddeon va
AVOPERETAL 1) TNYT) TEOEAEUOTC Xou VoL SlaTneettan To mopdy prvupa. Epwthuata mou agopoiv

N Xenon TNS epYastag Yiol XEpO0OXOTIXG GXOTO TEETEL VoL ameLYOVOVTUL TEOG TOV GUYYQEAPEA.

HeptAngm

To auavouevo evdlapépov YOpw amd TNy avdmTuEn eQapuoyoy pnyovixic wéinone (ML)
Y0t CUGKEVES UE TEPLOPIOUEVT] UTOAOYLOTIXT LoD X0 YWENTIXOTNTA EVERYELXS TOVICEL TNV a-
vayxn Yy Ty ebpeon Aboewv tou Yo Eeywpeilouv oyl ubvo ooy apopd TNV amodoTxdTN T
Toug oe {NTUaTo EVERYELAS Xou UVAUNG ohhd xat Ttou Yo e€aapolilouy younhod yedvo extéle-
one otav undpyouv auctneol ypovxol tepopiopol. H apyitextoviny) RISC-V, ye 1o avouytd
OET EVIOA®Y X0 TI TPOCUPUOCIIES ETEXTACELS TNG, TEOCPEREL EVAY UTOCGYOUEVO BEOUO YLo
NV BehtioTonolinom Ty ohyopldumy auT®Y, ETTEETOVTOC TLO ECUTOULXEVUEVES XAl EVERYELUX
amodotixég Aooelc. Emmhéoyv, ol npdogateg mpdodol oe teyvixég quantization xou o yeodo-
Aoyiéc mou alomololV YETOBANTESC UXTAC axpifElag, UTopolY Vo GUVEIGPEROLY GTNY BehTiwon
TOU YEOVOU EXTENEONC X0 OTNY XATAVIAWOT] EVERYELNS TV VELpLVIXKOY dixtimy (NN), ywelc

vor uroBarduileton onuovtind 1 oxeifBeia Twv npolAédewy Toug.

Ye auth) TNV epyaoio, EXUETAAAEVOUUCTE AUTES TIC TEYVIXES, ETOL WOTE VO ETULTUYUVOUUE
v extéheon ohyoplduny Batidv Nevpwvixdv Awtionv (DNN) ndve oe RISC-V eneepyo-
otéc. T var BedTiddcoupe axdun TEpLOCOTERO Tal AMOTEAESHATO Yac, Yo ENEXTEIVOUUE TO GET
EVIOA®Y oL LTOG TNEICETAL amd TOV EMECEPYAT TN Xt Vol EVOWUATOOOUNE ULl VEXL AELTOURYL-
x| Hovddo eviég Tou pipeline Tou, oyEBLACUEVT AMOXAEICTIXG YLl TNV EXTEAECT] QUTWV TWV
VEwY evToh@v. o Tov ypriyopo oyediaoud TemToTinwy, Yo UAOTOCOUUE TOV ENEEERYUCTH
mdve oe po thoxéta FPGA Xilinx Virtex-7, n onola Yo emtpéder va atohoyricouue tnv a-
rotekeopatixdTNTa TG pedodoroyiag pog oe Bidpopes apyltexTovixéc Neupmvixdy Atiwy,
exTUdEVPEVL TIAVL OE BlapopeTnd alvola dedouévev. Me plo oyetind younis adénon twy
AMAUTOVPEVGY TOPWYV YioL TNV LAoTolnon tou, tne tEne tou 34.89% otn yeron twv Lookup
Tables (LUTSs) xou 24.28% ota Flip-Flops (FFs), n pedodohoyio poc xatopépver vor entto-
YOVEL TOV YpoVo extéheong xatd 13-23x oc xhaoixéc Multi-layer Perceptron apyitextovixéc,
18-28x oc tumixd Xuvehtind Aixtua xou 6-7x oe o oUvideta dixtua, cav o MobileNets,
ue eNdytotn peiwon tne axplBetog toug and 1-5%, embdeixviovtog o onuovtixy Bedtioon

o€ OYEOT UE TOV APy ENEEEQYACTAC.

AéEeic KAeloud

RISC-V, Nevpwwixd Aixtua, Mixed Precision Quantization, Yuoyedioouog Thuxov-
Aoyiouixot, Emitayuvtic Thwol, FPGA.

Abstract

The growing interest in deploying machine learning (ML) applications on devices with
restricted processing power and energy capacity underscores the necessity for computing
solutions that not only excel in power and memory efficiency but also ensure low latency for
time-sensitive applications. The RISC-V architecture, with its open-source instruction set
and customizable extensions, offers a promising pathway for optimizing these algorithms by
enabling more tailored and energy-efficient processing capabilities. Furthermore, recent
advancements in quantization and mixed precision techniques offer significant promise
for improving the run-time and energy consumption of neural networks (NN), without

significantly compromising their efficiency.

In this work, we propose to leverage these advancements to expedite the inference
process of Deep Neural Networks (DNNs) on RISC-V processors. To push performance
even further, we plan to expand the supported instruction set and incorporate a new func-
tional unit within the processor’s pipeline, specifically designed for executing these new
instructions. For rapid prototyping and design exploration, we implement the processor
on a Xilinx Virtex-7 FPGA board, enabling us to assess the efficacy of our methodol-
ogy across diverse Neural Network architectures and datasets. With a modest overhead
of 34.89% in the usage of Lookup Tables (LUTs) and 24.28% in Flip-Flops (FFs), our
framework manages to accelerate the execution time by 13-23x in classic Multi-layer
Perceptron architectures, 18-28x in typical Convolutional Networks, and 6-7x in more
complex networks, like MobileNets, with minimal reduction in their accuracy from 1-5%,

demonstrating a significant improvement compared to the original processor.

Keywords

RISC-V, Neural Networks, Mixed Precision Quantization, Hardware-Software Co-
design, Hardware Accelerator, FPGA.

Euyapiotieg

Apywd o fdeha va evyaploTiow Yepud Tov emPBAénovTa xodnynTy| pou xOplo Anurtelo
Y 0o0UVTET TOU HOU TPOGEPERE TNV EUXAUELOL VAL EXTIOVACEL TNV OLTAWUATIXY OV EpYICLH OTO EQ-
yaotiplo Mixpoenelepyaotdv xar Ungloxdy Yuotnudtony. Oo flela enlong vo euyaplo Tow
Tov unodrplo Sddxtopa I'idpyo Apuevidxo yia Tnv mtohdTun Bordeld Tou, TiC Woéeg, TIC oup-
Bouléc xan T xatevdivoelc Tou xotOAN TN BidpxEld TNG BIMAWUATIXNAC OV, XM Xl TOV
xadnynth Ywtheto 2001 Yo TIC ToEeUBAcEC Tou xou TN oLUBOATY) Tou e onuavTxd onueia
Tou épyou. Télog, euyaptotd Paditata Toug YOVElS Loy, xaddg xou Toug PIAoUS Uou Yia TNV

UTIOUOVT] X0 TNV CUUTARAC TAOT) TTOU UOU €YOLY TROGPEREL OAL AUTA TA YEOVLAL.

Contents

[Abstract

[Evyopiotieg)

/Contents|

|List of Figures|

[List of Tables|

(Extetapevn IlegitAndn

(0.1 Ewoyoyr . .

0.2 Yyeten BlBhoypagtol . . . o Lo oo

(0.3 Emoxomnon Baowwy Evvowy| . . 00000000

[0.3.1 Bovd Nevpwvixa Atetvol o oo oo

[0.3.2 Quantization|

[0.4 Configurable Mixed Precision RISC-V Architecture|.

[0.4.1 Model Quantization|

[0.4.2 Ewcoaywyn TV VEQV EVIOAOV| Lo

[0.4.3 Metatponec otov Enecepyaotn) oo oo

[0.5 AZAOYNON TV ATOTEAEOUATWY o o v oo s

[0.6 Yvunepacpato xar Merhovtxég Llooextacew oo

11

11

15

17

19
19
20
21
21
23
24
27
27
29
32
35
38

41
42
42

45

Contents

3

Theoretical Background|

3.1 Deep Neural Networks|
[3.1.1 Machine Learning - Introduction|
3.1.2 Deep Learning|

3.2 Neural Network Quantization|

[3.2.1 Quantization Fundamentals|

13.2.2 Full Integer Quantization and Inference]
13.2.3 Mixed Precision Quantization|.
8.2.4 Fine-Tuning Methods|
3.3 RISC-VI . oo oo
B31T RISC-V Overview]

B3 TowRISC/IDON . « o o o o oo e e e e

Configurable Mixed Precision RISC-V Architecture]

b.1 Model Quantization|
5.1.1 Design Space Exploration|
5.2 Integrating new Instructions on the RISC-V ISA|

[5.2.1 Custom Instruction Compilation|

[5.2.2 Description of the new instructions|

5.2.3 A Practical Examplel 00000

5.3.3 Hardware Accelerator Optimizations|

5.3.4 Implementation on FPGA|.

Experimental Results|

6.1 Comparison with Baseline RV32IMC ISAl
6.2 Comparison with State-of-the-Artf.

6.2.2 CMOSIS-NNI oo o
623 MCUNet] o o oo

6.3 Resource Utilization &Energy Consumption|

12

47
47
47
48
55
56
57
59
60
60
60
61
61

63
63
64
64

67
67
69
70
71
73
75
77
7
78
80
84

Contents

|Bibliography|

13

List of Figures

[0.1 Ot ypopixéc mapactdoelc Twv cLVIETACEWY Evepyomoinone @ (a) Sigmoid, (b)
Tahn, (c) ReLU, xou (d) Leaky ReLU.| 22
(0.2 Apyitextovixn evoc Tumx0) LUVEATIXOU AXTOOU.| L. L 23
(0.3 Aoun twv aowxwyv evtohwy Tou RISC-VISA| 25
(0.4 Yynuoatixo Awypopuo touv Ibex.| . .. oo 26
(0.5 Awrypapua pong Tnc YEV0OOAOYLIC TOU EYEL Yonowonotnvel. 28
[0.6 Inference povayo ye tn yonon ax€EUUMY PETOBANTOV 29
(0.7 H coun twv 32-bit xatoywentwy O0Tay xaAeltol N EVIOAN neur_init.| 30
(0.8 Eocwtepinn doun twv xataywentoy xata tnv xAnon twv MAC evtohwv.|. . . . 31
[0.9 Ilepeyduevo xatoywonT®y xoTd TNV EXTEAECT) TWV EVIOA®Y TTOU UAOTIOLOLY TO |
requantization BnuoL| Lo Lo oL 31
[0.10 Xynuoatixo owaypouuo tou Ibex, ueTad amd TIC TEPOTOTOLNCEL GTO UALXO TOU. |
Me mopToxaAl aVOQEQOUICTE GTO TUNUOTA TOU EYIVAV ETUTAEOV UAAAYES, EVE |
UE TEACLVO TOL VEOL TUNUATOL TOU EMECEQYAUCTN.| 32
[0.11 H mpotetvopevn apyttextovixn tou emtoyuvtn. Me npdovo yoouo avamaolo to- |
VTOL TOL OOULXG GTOLYELD TOL OTOLOL AELTOURYOUYV GE OLTAAGLAL GUYVOTNTO OO OTL |
EXEIVAL TOU UTOAOLTIOU EMECEQYAUO TN + « v v v o o o v v o o e e 33
[0.12° Xoovoc extereonc evoc Dense Layer otov enecepyaotn Ibex yio otapoppwon |
we: (a) 8-bit Bdon, (b) 4-bit Bdon, avd (c) 2-bit Bden|o 36
[0.13 Xpovoc extereonc evoc Convolutional Layer ctov enecepyaoctn Ibex yia ow- |
uoppwon ue: (a) 8-bit Bdon, (b) 4-bit Bapn, avo (c) 2-bit Bdon.| 36
[0.14 Kotavdhwon Evépyetac xde exdoyrc Twv povtedwy mou eéetdooye: (a) MLP |
an6 to “FANN-on-MCU”, (b) CNN o6 to “CMSIS-NN” | xou (¢) mcunet- |
vwwl ano to "MCOUNet™ |o oo 38
3.1 Deep Learning Family| 0 . 49
[3.2 The graphical curves of the most common activation functions : (a) Sig- |
moid, (b) Tahn, (c) ReLU, and (d) Leaky ReLU.| 50
13.3 Structure of a typical Convolutional Neural Network. 51
|3.4 Comprehensive example of Max and Average Pooling.| 52
3.0 ResNet Blockl. o o 000000 53
[3.6 Depthwise Separate Convolution.| 54

15

List of Figures

3.7 RNN, LSTM and GRU Cell Structure.| 59
13.8 8-bit Mapping across the different types of Uniform Quantization.| 57
3.9 Per-Layer vs Per-Channel Quantization in CNNs.|. 58
[3.10 A schematic of matrix - vector multiplication and requantization back to 8 |
I 3 [P 58
.11 Basic RV321 ISA Instructions Format.| 62
4.1 Example of a Neural Network Graph.| 64
4.2 Schematic Diagram of the Ibex RISC-V Core| 65
b.1 Flowchart of the proposed framework.| 68
[5.2 Pareto optimal solution of a multivariable problem.. 69
5.3 Integer only Inference| Lo o 70
[5.4 The tormat for the 32-bit registers when invoking the neur_init instruction.| 73
[5.5 Structure of the register’s content when calling the MAC instructions.| . . . 74
[5.6 Structure of the register’s content when performing the instructions for the |
| requantization step.| Lo oL 74
5.7 Schematic Diagram of the Modified Ibex Core. The components that have |
| been modified or added are highlighted with orange (decoder) and green |
| (hardware accelerator) respectively.|.o 0000000 78
5.8 Proposed Neural Network Accelerator schematic diagram. The blocks with |
| green color are operating with double the frequency, than the rest of the |
| system.| . . .o 79
5.9 Divide-and-conquer multiplication between two 16-bit numbers. The same |
| methodology can be applied in our case too.|. 81
[>.10 The Phase Locked Loop (PLL) control system is used to generate the 2 |
| difterent clock signals from a single oscillator. It can also guarantee syn- |
| chronization of the initial rising edges of the clocks.|. 83
[6.1 Latency of Dense Layer implementation on Ibex Core for Configurations: |
| (a) 8-bit weights, (b) 4-bit weights, and (c) 2-bit weights.| 86
6.2 Latency of Convolutional Layer implementation on Ibex Core for Configu- |
| rations: (a) 8-bit weights, (b) 4-bit weights, and (c) 2-bit weights.,|. 86
6.3 Architecture of MLP under examinationl. 87
|6.4 Pareto Space of the MLP under examination.| 88
6.5 Architecture of the CNN under examination) 89
6.6 Pareto Space of the CNN under examination.| 90
6.7 Main building block of the mcunet-vwwl model.| 91
|6.8 Pareto Space for the mcunet-vwwl model.| 92
6.9 Energy Consumption of each configuration we selected for the analysis of: |
| (a) MLP from “FANN-on-MCU”, (b) CNN from “CMSIS-NN”, and (c) |
[mcunet-vwwl from “MCUNet”.|. 94

List of Tables

[0.1 EvtoAn aglepwuévn ylor Tnv ooyixonoinoy e AELTOURYIXNG LOVAOUC Tou Yo

[TEOGUECGOUUE, VETOVTAC To biases TV ECOOWY.| 30
[0.2 AloTa evtoA@V aglepwUEvwY Yot TV emitayuvon tne exteieonc twv MAC o- |
[HOAOUMOV . . o o o o L 31

(0.3 AloTa eVTOA®DY Yia TNV UETATEOTN TV GUGCWEEVUEVLY TW®YV e 8-bit apiiuoue. 32

(0.4 Xpdvoc extéheonc mou xatoypdonxe (msec) Yo x3Ve LOVTENO TOU EEETACOUE.

[OL TWEC TOU AVTIOTOLYOUV GTIC AUCELC and To state-of-the-art €youv Anguet

| OO TOL AVTLOTOLYOL paper, €V Ol UTOAOLTEC UeTeNnUNXay oTov Ibex core. . . .

37

(0.5 2Ovxpion YeTaCh TOU KEYLXO0 XUl TOU TPOTOTONUEVOU ETECEQYAOTI] OGOV O-

| (OO TOUC ATOLTOVUEVOUC Topouc ot uia thaxeto FPGA Virtex-7, tnv xato-

| VOAWGOT) EVEQYELIC TOUC X0 TNV TOYLTNTA TWY POAOYLWY TOU Y ETOLUOTOLOUVTOL.|

37

5.1 Instruction dedicated for the initialization of our custom component that

| set the biases of the outputs in each layer.|

[5.2 List of Instructions dedicated for the acceleration of MAC operations.| . . .

73
74

[5.3 List of instructions dedicated for the implementation of the requantization

..

75

|6.1 Performance of the selected configurations for the MLP model under exami-

| nation. The accuracy of the baseline model with FP weights and activations

[stands at 98.14%. We have highlighted the solutions that achieve better re-

|6.2 Performance of the selected configurations for the CNN model under exami-

| nation. The accuracy of the baseline model with FP weights and activations

[stands at 78.89%. We have highlighted the solutions that achieve better re-

|6.3 Performance of each selected configuration for the mcunet-vwwl model.

| The accuracy of the baseline model with FP weights and activations stands

[at 88.9%. We have highlighted the solutions that achieve better results than

| the state-of-the-art.).

[6.4 Latency reported in milliseconds (msec) for every model we examined. The

| numbers that correspond to the state-of-the-art solutions are gathered trom

| their respective paper, while the rest are measured on the Ibex RISC-V core.| 93

17

List of Tables

6.5 Comparison between the original and the modified Ibex core regarding the

utilized resources on a Virtex-7 FPGA board, their power consumption and

the speed of the clocks used for the entirety of the system|

18

Extetopevn Ilepiindmn

0.1 Ewaywyn

O npbogatec e€ehilelc otov topéa tng Badidc pdinone (DL) éyouv mupodotrioet o
exfeTnr] al&nom oTNY AVATTUEY EQPAUPUOYXOY XaL UTNEECUOY Tou Bacwlovtal oe alyopituoug
texvnthc vonuoouvne (Al), and npocwmxoic Bondoic énc xar cvothuata acpareiog H€ow
xerone Bivieo xau fiyou. Emmiéov, n paydala e€€MEn Tou mobile computing xou tou Internet
of Things (IoT) éyouv cuyfdhher otnv dnuovpyiot EVOC BIXTOOU UE BLOEXATOUUYELO XIVNTES
OUOXEVES GUVOEDEUEVES UETAE) TOUC, TaPdYOVTAC TERAOTIEC TOCOTNTES dedouévwy. Eoutiac
QUTWV TV EEEMEEMY, ExEL Yivel emToxTixn avdyxn va enextodody ol duvatdtnteg Tou Al oty

dxen tou dixtdou (Edge) [1].

Mo eupelor yxdpo yedodoroyuwy mou eunintel oto gupd medlo tou Al etvon xan 1 Mn-
yovixy Médnon (ML), n onola €yer avaderydel we 1 emxpotodoo Aon otov Topéa autdv
[2]. TapoSootond, n avdntuén ML povtéhov anatoloe YeydAes Toodtntes evépyetas, xadoe
X0l ONUOVTIXOUE UTOAOYLOTIXOUC TOPOUS, TEOXEWEVOU va emiteuyVel o emuuntd eninedo
axplBelac. Qoto6c0, 1 eéMin teYvohoydv Oomwe Tto ToT xou to Edge Computing, €youv
oleyelpel To evolapépov Ylpw amd TNV mpooapuoyr TexvixeyV ML mdvew o evowpatmuéva
cuo TAUATA oL GLOXEVES e Teptoptouévous tépous [3]. Tho ocuyxexpéva to Tiny Machine
Learning (TinyML) cuviotd tnv oOyxhion tou ML (edwdtepa, tou DL) pe to Edge Com-
puting. To TinyML SieuxoAbvel tnv avdntuln ocuunoyoy woviéAov DL oe uixpéc cuoxeuéc
ue meploplopévn uTohoYlo Ty oyl (ot cuyvoTnTeS POOYLOU XupalvovTal cUVADWS OTIC Oe-
x&dec megahertz), ehdytotn yweNTXOTNTO WVAUNG, Xou LOAS yepixd milliwatts (mW) woyoc
[].

Emmiéov, ta tedeutala ypovia €xel napatneniel o éxpnin otny dnuogiiia twv RISC-V
QEYLTEXTOVIXMY WC Wiat EVOAoXTIXT) AOOT) €VOVTL TwV Tio Tapadoctox®y enelepyactov. To a-
vouyto0 x@oixa oeT evtohodv (ISA) tou, xadde xat 1 SuvatdTnta Tou TEocPEpEL GTOUS YEHOTES
VO UTIOPOUY VO TEOCUPUOGOUY TO UALXO TOU EMEEEQYUOTH Xl TIC EVIOAES Tou umocTneilet,
oUUPOVA UE TIC avVaYXeS Tou TpoAfuatoc Toug, €xouy Véoet Toug RISC-V enclepyactéc we
LOYLEOUC AVTAYWVICTES EVAVTL TWV aVTIOTOLY 0V AIGEWY TOU TEOGHPEEOLY XOMOGGOL, OTWS 1)
Intel, AMD xou ARM.

LTV OITAGUOTLIXY QUTH, EXHETAAAELOUEVOL TO EVEAXTO TiepBdihoy Tou RISC-V, Yo npote-
tvouye €va ohoxAnpwpévo mhaioto yior TV Tpocappoyy) Badidy Nevpwvixav Awtiov (DNN)

19

Extetopévn Hepliindn

Tdve ot tétoloug enelepyactés. Kiplog otoyog pag elvon 1 Beltiotonolnon toug, 6cov o-
POopPd TOV YEOVO EXTENEOTC TOUC, TIC OMOULTACELS TOUS OE UVAUT XL TNV GUVOMXT| XUTUVIAWOT)

eVEPYELNC OE G0OYXELON UE TOV OpyIXO EMECEQYAUOTH.

0.2 Xyetuxr BiBAoypapia

IToAhd emtuynuéva eumopd epyaheia, 6mwe ot BiBModxec CMSIS-NN oandé tpyv ARM
[5], n TensorFlow Lite (TFLite Micro) ané tn Google [6], o n X-CUBE-AI oné v
STMicroelectronics [7], yenotponotolvTon EVEEWS YLa TNV EVOWUATWOT dAY0pOUmY Unyovixhc
wdinone oe uixpoekeyxtéc (MCUs). Autd ta epyaheio Tpoc@épouy piar Towthiar TEYVIXDY
Bektiotonoinone (quantization, weight pruning) xodoe xou Bedtiotononuéves LAoTOOELS
o€ GUVOPTACELS Yia OLdpopoug TUToug Nevpwvix®y, Ue 6Téy0 TNV cuUTlesT) Tou Yeyedoug Twv
HOVTEAWY Xot TNV UelwaT Tou yedvou extéleorng Toug. To MCUNet eivon €vor dAAN pio state-
of-the-art epyacia, n onola mopéyel wa ohveTn TEOGEY YO TOL XTOC amd TNV avaliTnom
NG XOAUTERNG OUVOTAC UPYLTEXTOVIXNG TV OXTUMY, BACEL GUYXEXQUIEVKDY TEOBLAYPAPODY,
vhomolel xou oxoua o EEEWBIXEVUEVES CUVAPTHOELC YId TN HEYLIOTOTOMOT TNS AMOB0GTE Hol
e amodotxdtnTac Toug ot cucthuata IoT [8]. Qotdoo, autéc ol epyaoiec emxevipdvovTa
xuplewe oe pedodoroyieg yia Ty BehtioTonolnom TG PO TV BESOUEVGLY ot TNV XoA)TERN
EXUETAAAEVOT) TNE tEpapylor uvAuNg.

Me otdyo v peytotonoinon tne anddoone, apxetéc perétes [9], [10] napoucidlouy agpie-
cwuévoug emitoyuvtég Yoo DNNs. ITapdho autd, 1 cuyxexpylévn npocéyyion dev eugovilel
TV (Bt evehi&ia e diheg hooelg, oo Bev mapéyeTon TOAES PORES ETOEXTC LUTOC THELET Yot
TNV XATIAANAT cuvepyaoia ue puixpoeleyxtég Tou Beioxovtan oto Edge. Ta teheutala ypdvia,
ue Vv avodo twv RISC-V eneepyoactodv 010 mpooxfvio, moAlol gpeuvnTéc €xouv GTpapel
Tpog awToUg Yo Ty emtdyuvon Bothdv Nevpwvixov Amtionv. Kdnoeg agldroyeg epyooieg
Tou Paoilovtar oty eVewudtwon VEmv eviohdy tepthauBdvouy to FANN-on-MCU [I1], to
RedMulE [12] ot to Dory [13], , ot ontoiec 610)€00UV GTNY AMOTENECUATIXH EXTENEDT] TETOLOY
uovtéhwyv oe RISC-V enelepyaoctéc tng mhatgpopuag PULP. O xiplog neplopliondg toug eivon
T0 6Tt dev unootneilouv TV yeron ueToBANTGY youniie axplBelog (xdte omd 8-bits) xou
EMOUEVKS BeV aloToloVY TIC AUENUEVES UTOMOYICTIXEC BUVATOTNTEG TOU TEOCYEPOLY. AT
™V 8AAT, épeuvec 6mwe 1o PULP-NN [14] xou n npoéxtaon tou XpulpNN [I5] enttpénouv
TNV YPHOT TUEAUETEMY YaunhoTepng axpifetag, tetuyaivovtog Yeauatind anoteAéouata, ymeic
®OT6G0 Vo TEOBAETOLY TNV LAOTOINOY TEdEewy UETUED UETUBANTOV TOU AVUTUPLO TOVTOL UE

OLpopeTiXd apiud and bits.

ITohkéc and tig alyypoveg apyrtextovixés CPU xaw GPU epgavilouv meploplouéveg du-
VUTOTNTES Yol VELPWVIXG BlxTual xTrg axpiBetag, xadag elvon TpwTio Tt SlopopPWUEVES Yia
TOmouC Bedouévewy Twv 8, 16, xou 32-bits. Q¢ anotéleoua, N TASLOVOTNTA TWV ETTAYUVTOVY
XL TOV EQYUAEIY TOU YEMNOWOTO0OVTOL YLl TNV EXTOUOEUCT, XL TNV AVATTUET EQOOUOYWY
UE VELPWVIXY BiXTU EIVaL TEOCUPUOCUEVA TIEOC UAOTIOLAGELS TIOU YENOWLOTOL0UY Hop@ES Ln-

AoTepng axplBelag, TPOCPEROVTUC UOVAY A UERIXES YEVIXEC CTRATNYIXES YIOL TNV EVOWUATWOT)

20

0.3. Emoxonnon Baowav Evvousy

e vixey uxtic axplBetoc [16], [I7]. Trdpyouv opiopéves yelétec, ot onoleg divouv nepattépe
eugpaon otn Bertiotonoion, DNN, yenowonouwwvtac utohoyiopols uxtic axpelfetag, 0twe o
BARVINN [18], o onotdg eivor évog emtoyuvthc VAo, vhotonuévoc tdve ot éva FPGA
xou Tou onoiou 1 Aettovpyio puiuileton and évav RISC-V eneepyoot, xaw o Dustin [19], o
omofog enextelvel 1o RISC-V ISA, npoxewévou va eivon duvaty| 1 extéheon medlenmy petadd
TéTolwy YetoBAntey. Iapdha autd, tétolou eldouc mpooeyyioels, onaving yepiuvoly Yo Tnv
GUYOAXT| XATAVAAWCT) TOPWY XAl TO YWEO TOU amouTelTon, MOTE VoL bhomoindoly To GUC THUATA

TOUG.

0.3 Emoxénnon Baocweodv Evvoloy

0.3.1 Boadid Nevpwvixd Aixtuo

H Mnyovixry Mddnon (ML) etvan pla utoxoatnyopio tne Teyvntric Nonuooivng mou nept-
AhofBdver TV avamtugn ahyopldumy xaL G TATIO TIXOY HOVTEAWY TOU ETUTEENOLY GE UTOAOYIC TL-
%8 CLCTAATO VoL BEATIOO0LY TNV Amdd0CY| TOUS GE Bldpopa TEOBAAUATY UECK TNS EUTELRlOC.
To povtéha oautd oyedidlovton e oTtdyo va pordolvouy omd SeGoUEVaL Xat VoL TaiovouY omo@dcels
Ywelc va Aopfdvouv pntéc odnylec. Xuvdbudlovtag oTolyelor TOL TEOEPYOVTOL UTO TOUG TOUE-
{c TNg mAnEooEXNC, NS OTATIOTIXAC Xl 0&IOTOWOVTAS TANEOYORIES antd To EXdCTOTE TESiO
YVOOEWY, d0VOTaL Vo ONLoueyoel oAy optduoug Tou Oyt UOVO EVOL IXOVOL VO ATOXEUTTOYEA-
oLV mepimhoxa potiBa péoa oo dedouéva ahhd 1o VoL Teocupr6lovTol XaL Vo BEATIOVOVTOL UE
tov xoupd. H Badd Méidnorn (DL) anotelel évav unotopéo tou ML nou emixevtpdveton ot
YEHoM TEYVTOY VELPWIXADY dxTlmY (ANNS) tou yoapaxtneilovton and ToAATAG 6 TEMUATY
[20].

Teyvntd Nevpwvixd Aixtua

To Teyvntd Nevpwvixd Alxtua elvon UTOAOYIOTIXE HOVTEND TTIOU €YOUV EUTVELCTEL A6 TN
dopn Tou avipmivou eyxepdiou. To xiplo douxd otoiyelo Twv ANNs ovoudleton veuphvag
X0l 0LCLICTIXG Ty ELREL Vo uundel T AetTovpydTNTa Tou avtioToryou Blohoyxol xuTTdpou.
OL VEUPOVES 0pYOVHVOVTUL OE GTRMUITA, UE EVOL ELOAYWYIXO CTEMUA TOU AaU3aveL Tar BEdoUEVAL
€Ll0600L, €va 1| TEPLOTOTERN XELPA ETiNESH TOL Tar eMeeRYALoVTOL, Xal €Vol OTEMUA E£6B0U TOU
Topdryel TNV TeA) TEOBRedm. O x6ufot uetald Blaboy OV OTEWUATWY CUVOEOVTAL HETOED

Toug PEow ouvdhewy Tou ovoudlovton BdeT, TEoxewWévou Vo oynuatiotel 1o TeAxd AlxTuo.

Mio amd Tic mo Yepehwdelg Aettovpyiee twv ANNs eivon 1 egapuoyr cuvoptioewy e-
vepyonoinong otig €£6doug Tou xdie vevpwva. H yerorn toug amooxonel oty clooywyn
plog Un-YeauXoTNTAG OTOV TEOTO AElToupYldg TwV UOVTEA®Y, TO omolo €YEl ¢ AmOEEOLA
NV aviyveuor mo TOAITAOXWY GYEcEwY péoa oTa dedouéva avdhuong. O mo cuvniicuéveg

CLVAPTACEIS evepyoToinoTg aivovta oto Xy fua 0.1}

21

Extetopévn Hepliindn

Sigmoid Tanh
1.0r - LIk o~

f : :
) € —¢
. .'// o3 olz)=

l+e* |/ . il
1.5
i =1k -3 ‘I'IFII

. b

a(z)

—_— k] T
i T 3 0

{a) {by
Rell LeakngLUia=D.2]
1o 1 ~
f)] /I/.J"- LUiz) (2,220
z, 2= Leak v zh=1
clUfz)=14 |z aarferine
ReeLH| o 0, ptherwive « . __/
: i 10— o] 5 1]

())

SxAurer 0.1: Ot ypaguxéc TapaoTdoElS TwY oUVOPTHoEWY evepyomonong : (a) Sigmoid, (b) Tahn,
(¢) ReLU, xou (d) Leaky ReLU.
Iny#: [21]

Multi-layer Perceptrons

To Multi-layer Perceptrons (MLP) anoteholv tn Baoixd apyttextovixf evéc ANN xau
xataoxeudlovton and Slaboyixd TANEKS CUVOEDEUEVO GTEOUATA VELpOVWLY. Méoa oe autd To
oTpOUoTa, xde xoufog etvor BlacuVBESEUEVOC PE xdVE XOUP0 TOU UETWS ETOUEVOL ETLTEBOU,
UE AmOTEAECUO TNV Onutovpyla €vor TuxVd cLVOEdEUEVOL BixTOou. Autéd emitpénel ot MLP
vor avary vopllouv mepimhoxec oyéoelg xaun potifBa uéoa ota dedopéva, xahoTHVTaS To LOLdTER
TEOGUPUOC TIXA YOl EVREMS EQPURUOTUIN OE Bidpopoug ToUElS. 261600, oLy Ve avTeTwrilouy
duoxohieg xatd TNy encéepyaoio S60UEVwY Tou euPavIloLY GEWRIIXES 1) YweIES EEUPTAOELS.
Avutoc o meploplopog €xel UNOEL TOUG EPELVNTES VoL AVATTUEOUY TIO ECEIBIXEVUEVES OOYLTE-

XTOVIXEC OYEBLNOUEVES EWBIXS Yt TN Doy elplor aUTOY TV TUTWY dedopévov [22].
Yuvehuxtixd Nevpwvixd Aixtua

To Xuvehixtind Nevpwvixd Aixtuo (CNNs) elvar ahydprdyol eunveusuévol omd v op-
Y&vmon Tou avlp®TVOU oTTXo0 GUCTAUATOS XaL €Y0LY TEOCUPUOCTEL Yo TNV enelepyacio
onTIXOV BedouEvey. To povtéla autd exyetaAledovTon apyYEC and Tn Yeouuixy| dhyeBpa, xou
Waktepar TI¢ WBLOTNTES TN CUVENENG, YLl VoL EE8YOUV YUaXTNEIo TXE Xou VoL ovary vepilouy
wotifo péoa otor omTind dedopéva. ECoutiog TNC amoTEAEOUATIXOTNTAC TOUC GTOV EVIOTIGUO O-
VTIXEWEVRY, YENOWLOTO00VTOL XURIWS O EQUPUOYES TNE EMOTAUNG TNG OPUCNC UTOAOYIC TRV,
OTWS ebval 1 avaryvopRLom Eovag, xou umopolyv va o&lotoindoly uéyel xou oe Tohd cuvie-
TOL CUOTAUOTA OTWG AUTH TWY AUTOXVATWY AUTOVOUNG 001 YNONG Kol OTNV OVIAUGCT] LUTEIXWY

e6vov [20]. H tumxd Sops) evée CNN goivetar oto yfua

22

0.3.2 Quantization

aq '\\
. . Dog
i T Not Dog
e o — = T i 1 ¥
Input image Convolution Layer ReLU Layer Pooling Layer i S Output
' |+ Classes
Fully Conmected
Layer

ExhAua 0.2: Apyitextovixr evég tumxol Luvehxtxol Awtiou.
Iy [20]

0.3.2 Quantization

Ov onuavtixég UTOAOYIOTIXEG amAUTACELS ToU elvon €YYEVElS oe eapuoYéc Nevpwvixoy
AxtOwy, edxoTepo 0TV OUTA EXTEAOUVTOL G NAEXTRPOVIXEC GUOXEVES UE TEQLOPLOUEVOUC
unoloylotixole tépouc. e andvinon oe authv Ty TpdxANoT, N xBavtion (quantization)
TWV TOEOUETPWY TOUG OVAOVETAL (¢ Lo oTpatnyLxy| uedodoloyia ue otdyo tn ouunicon twv
HOVTEAWY %ot TNY PElWOT) TOU UTOAOYLOTIXO0U PoETOoL. (26TOC0, elvar xplolo Vo avary vwplcouue
OTL 1) TEYVINY AUTH ElodyEL oplouévoug cuUPBacuols, xadog uropel va 0dnynoel oe peiwon
e axpifelag oe olyxplomn Ue To apyxo Loviélo. XTnv dladxaota auTy, oL TUPJUETEOL TOU
otOou, T600 Ta Bdpn 600 xon oL €Codol Tou xdde ETNEDOU, UTOXEWVTOL GE YETATEOTY OE
HETAPBANTES TTOL YeNotwoTOoWOY AtydTepa bits amd ta cuufotind 16 1) 32 mou yenoidomolodvTal
xotd Ty exnaidevon [23]. Ta xupLdtepa TAEOVEXTAUOTA TNG UETATRPOTAS OF UXEPOIES TLUES Efval

1 EAUYLOTOTOMOT) TOU YEOVOU EXTEAECTC XOU OL UELWUEVES ATMALTHOELS OE UVAUT XOL EVEQYELIL.
Mixed Precision Quantization

H pelowon g axpeifetag twv yetoAntoy, oe Tiéc mou anutody Ayotepo and 8 bits yio
TNV AVOTaEAC TAGT) TOUG, UTOREL VoL EVIOYUGEL GUAVTIXG TNV anddocT Tou LAXoU. 261600, 1)
#PBAvTion oAOXANEOL TOL BixTVOU ot EAEETIXG YounAT oaxp(Bela unopel vor 00Ny HoeL o onua-
VI UEIWOT) TNE AmOB00TE TOU, XoIG TOVTIS TNV TEOGEYYLOT) AUTY) AXUTIAANAT Yot OPIOUEVES
xplowec egapupoyés. ‘Evoc xoudog tpomog yio Ty aviuetdmion autod tou mpofifiuatog etvon
va eqapuooTel éva oyfuo Mixed Precision Quantization. Me autrv tnv @uhixr meog 1o Ao
TpocEyylon, To Bden xan oL €£odoL Tou xde eTTESOL PETUTEENOVTOL OE aELIUOUS BlopOpETL-
xhc axpifetoc. ‘Etot, unopolue va enwgelndolue and ta younhdtepa bit widths (younhéteen
xoLOTEPNOT, LELWUEVT XUTAVIAWOT) EVEQYELUS X0 UXPOTERO OMOTOTWHO UVAUNGS), ENOYLOTO-
TOLOVTAC OGO TO BUVITOV TERIOGOTERO TNY petwon tne axp{Belag Twv TpoBiédeny Tou apyixol

HovTéhou.

23

Extetopévn Hepliindn

Mo amd Tic x0pleg TPOXANOELS TOL GUVBEOVTAL UE AUTHY TNV TEY VX elvon 1) xadoplouds Tng
BérTIoTNS Bladppmong Yo TNV axplfBela Twv topouétewy ot xdie otpwua. Kadoe o yopog
avalAtnong dlevpveTton ex¥eTind e ToV aEtiud TV EMTEDWY Ot €val 6ixTuO, 1) EEAVTIANTIXT
avalAtnomn Ghwv Twv Aooewyv elvan uio apxetd ypovofBopa Sodixacta, Wiitepa o€ TOAVET TE-
oo povtéda. Optopéveg Aooelg yior To (ATNUA auTd TERLAOBAVOUY TNV YENHON U MUOTIXDY
HovTEAWY Yo vo e€oxpBewldel To mdco evaiointa elvar To enineda TNy Bladxacio Tou quan-
tization [24]. 'Etot, eninedo mou yoapoxtneilovton and uhniy evaodnoio Yo yenotponotody
neplocodtepa bits, evdd avtidétwe exelva ye younhn sevacinoio uropolv va aélonotoly mopa-
uEtpoug uxpdteene axpiBelag. Mio evodhoxtinr mpocgyyion elvon 1 oTpATHYLIXY| UEWOT TWV

Otard€oiuwy EMAOYOY TEOC AvaAUoT).
Fine Tuning

H npocapuoyt| twv nopauétewy ot éva Nevpwvixd Alxtuo petd tnv xBdvtion etvar plo ou-
Y VG omopod T T Btadxaclor Yo TNV ETOVAQOEd TG anddoone Tou ot apyixd eninedo. o tnv
eniteudn autod Tou GTOYOL, oL 2 pedodoloyieg mou eqapudlovto eivon To Quantization-Aware
Training (QAT) xo to Post-Training Quantization (PTQ). Xtnv npwtn nepintwon, 1o po-
VTENO uTOxELTan o€ pio emimAéov exntaldeuoT), oty omola oL TaEdUETEOL XBAvTiong AapuBdvovta
uTOYN o avampocapuolovTaL, To OTolo EYEL WS ATOTEAECUO VA TLO ATOBOTXO XBoVTIoNEVO
wovtého. Ilopdho autd, 1 dradxacto oauth dlaxpiveton amd T LPNAEC uTohOYIGTIXES TS O-
TUTAOELS, xS xou omd TV PEYEAN ditdpxela mou ouvidwe omoutel [25]. H evahhoxtind
emhoyy Tou PTQ cuviotd pio apxetd mo taybppudun diabixacto, 1 omolo puduiler Tic Tyég
TOV ToEoUETewY, Ue TNV Porleia evog calibration oet dedouévev and 1o omolo exTd To
e0pn TGV TwV €600V Tou xdde EMTEBO, TEOXEWEVOU VoL ETAEEEL TIC XUTAAANAES THIES Yo
v xBavtion. H pedodoroyio auty, wotdc0, TOMES Qopéc cuVODEVETOL antd EMOEVWON NS

OMOTEREOUATIXOTNTOS TOU povTélou [26].

0.3.3 RISC-V

Ye avtideon ye tg undpyouoeg apyitextovixég enelepyactey, o RISC-V Swxplvetan wg
€va ovoty To0 xwdixa oeT eviohwyv (ISA) ou éyel oyedaotel yio tn dnuovpyio eZetdixeupévenv
ene€epyaotov. Apywd avantiydnxe oto Iavemotiuo e Kohpopvia, Berkeley xou avti-
TPOCWTEVEL TNV TEUTTYN YEVLY EMEEEQYAT TV TOU €Y OUV XATAOXEVACTEL BATEL TOU UELWUEVOU
ouvolou evtohdv (RISC). Abyw tne avowythc @long tou, unogel vo yenotponomndel té6co oe

oxodNuaiinés 660 xau oe Brounyovixés epopuoyéc [27].

O RISC-V yopaxtnelleton and to puxped yéyeddc tou, xodwg nepthoufBdver povdyo 47 e-
VIOAEC oL elvol UTOYPEWTIXES Yia LAoTolnon. Ye avtideor, n apyitextoviny x86 oladéTel
1.503 evtokéc, eved ot Arm enelepyactég dlodétouv mepinou 500. O RISC-V uodetel wa
AmAY) QEYLTEXTOVIXY), OTIOU OAEC OL AEITOURYIES TROYUATOTOLOUVTAL EVTOS ECWTERLXWY XOTOY (-
ENTAOV, XOU UTERYOLY OPIEPWHUEVES EVTOAES YLl TN UETUPOEA BEBOUEVWY UETAEY XATOYWENTOVY

xal UVAUNG.

24

0.3.3 RISC-V

To tumxd User-level Integer ISA €pyetan oe 500 noparhayéc: to RV32I xan to RV64I,
To. omolo tpocpépouy 32 xou 64-bit ydpoug dieudivoewy avtictorya. To Poaoixd RISC-V
ISA, oto omolo ot evtolég €youv otadepd urxoc 32 bits amoteeiton amd 6 Pacixoic TOTOUS

eviohdv [28] mou napoucidlovian oto Ly fjua 0.3}
e R-type: evioléc petall xotaywentoy.

e I-type: short immediates xou @opT®OT BEBOUEVHDV OO TNV UVAUT.

S-type: anoldrixeucr Sedouévwy oTNY Uviun.

B-type: conditional branches.

U-type: long immediates.

J-type: unconditional jumps.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
\ funct7? \ rs2 | sl | funct3 | rd | opcode | R-type
\ imm[11:0] | sl | funct3 | rd | opcode | I-type
[tmm[1L5] | rs2 [sl [funct3 | mm[4:0] [opcode | S-type
[mm[12] | imm[10:5] | rs2 [sl | funct3 | imm[4:1] [imm[11] [opcode | B-type
| imm[31:12] | rd [opcode | U-type
[imm[20] | imm[10:1] | imm[11] | imm[19:12] \ rd | opcode | J-type

Figure 0.3: Aop1 tov Bacxdv eviohoy tou RISC-V ISA.
Inyr: [28]

[Tépa amd autég Tig Pacinég EVIOAES, OL TROYPUUUATIOTES, AVAAOYA XU UE TLC UVAYXES TOU
TEOBAAUATOS TOUS, UTopoVY VoL aELOTIONGOLY ot Wid 1) Xol TOROTAVE) TEOUPETIXESG EMEXTACELS
ue evtoréc mou unootneilouvy emmiéov Asitovpyieg. Oplopéveg amd autég Tic Acttoupyieg
apopoly TNV ulomoinomn TEdEewy 6w 0 TOAATAACLCUOC Xan 1) Bladpeon UeTald axépanwy
petoBAnTov (eméxtaon M), atouxés evioléc Yy mpooBdoelc otny Uviun, OE TEPLTTOOELS
mou elvar avayxaiog o ouyypoviopdc (eméxtaon A), xadde xar evtoréc yio Ty Sroryeipton

Floating Point petafBintdv (emextdoec F, D, Q) xou dhhec [29].
lowRISC/Ibex

O Ibex elvan évag pxpde 32-bit RISC-V enelepyacthic. Apyixd, Htov pépog tng mhat-
poppac PULP, und to dvoua ”Zero-risky”, ue 6toy0 e@opuoyés ol YUUNANC XATOUVIAOONC
evépyelog. Lrucpa dwrtneeitar xou avantiooeton nepantépn and tny lowRISC. ‘Eyet unootel
extev] enolfdeuon xou utooTne(lel TNV eXTEAEST) EVIOA®Y Yiar TNV dlayeipton BuadLX®Y o-

prdumv xan apriuntiée npdielc (tpdoieon, agaipeon, Tolamiactacud xou diadpeon) uetold

25

Extetopévn Heplindn

oxépouwy YetaBantadv. H apyttextovinr xou 1 Aeltoupyxdtntd Tou 0pllovTtal YenoHIoToW VTG
™ YAdooo neptypapric uhixol (HDL) SystemVerilog. Atadétovtag éva pipeline 2 otabiov,
eXTwV omolwv 10 apyxd otddo eivar aglepwpévo otny Avdxtnon Evioaadv (IF), axohouvdo-
Uuevo amd 1o 6tédlo Atoxwdixonoinong xou Extéheone Evtoddv (ID/EX). Emmiéov, éva
TpoaeeTXd Te(to otddlo, WriteBack, eivau diardéouuo, to omolo €yel wg pdho Ty amodfxeu-
o1 TWV OTOTEAEOUATWY TV EXTEAEOUEVWY eVIOAWY Tiow oto Register File ¥ oty MvAun,

draopailovtog TNV oUolh Aettoupyio xan TNV aXEEAULOTNTO TwV BESOUEVWLV.

O muprvag BladéTerl BLdPOpES TUPUUETEOUS Yol TNV TEOCUPUOYT) TOU GTIC OMOUTACEL, OU-
YXEXPWEVODY EQapuoy®y. Ot emhoyég autég oyeT{ovTal Ue TNV AEYITEXTOVIXH TNG LOVADUS
ToMATAAGLACUOY, Xxadde xou {NTAUTO TOU apopoly TNV Lepopylar UVAUNG, TNV ACQPIAELL XAl
TNV EVOOUATOOT AELTOUPYIXMY HoVAdwY Tou ennpedlouv tnv enidoon tou (n.y. Branch Pre-
dictor). Xuyxexpiuéva, 660V apopd TN LOVASN TONATAACLIGUOY, UTEEY0UY 800 BIoptopPHoELs
dldéotuec. H mpdhtn Sievepyel Tov molamhactaoud yetald 80o 32-bit oxépowy yenowonol-
OVTog uovo évay mohhamhactooth 17 X 17, mou avtictolyel ot yeron evog Digital Signal
Processor (DSP) xatd v vhonoinon méve oe pio mhaxéta FPGA. H npd&n ohoxhnpmveto
oe 3 nhxhoug, BekTioToTOLOVTAC T YENOTN TOPWY PE XOGTOS TNV AENCT TOU YPOVOU EXTEAE-
ong. Avtldeta, 1 6eltepn emMAOYY| EMUTEENEL TOV TOMATAACLIOUS VoL OAOXANPOVETOL OE €Val
HOVO %0OXAO YENOWOTOLOVTAS TEELC ToAAamAactactég 17 X 17. Auth 1 Slaudppwor omoutel
v yehon teocdpwy DSPs—to emniéov DSP eivon amopaltnTo yia T cUGCHREUCT TV [e-
PIXWY YIVOUEVWY TOU TURAYOVTAL, TEOCHPEPOVTAS EVOL TAEOVEXTNUA ToYUTNTUC UE XOOTOS TNV

auEnuévn yeron nopwy.

Ibex Core

Register File
L -

Writeback

ADRIA U] A0 WA Biec]

20B AU AI0WAap Uoja s
JHaqul L teonasuy

LsU

=y
Compressed Instruchion

Decoder

u

@IOWRISC

EyxAue 0.4: Synuatixd Adypauuo tou Ibex.
Inyh: [30]

26

0.4. Configurable Mixed Precision RISC-V Architecture

0.4 Configurable Mixed Precision RISC-V Architecture

O x0prog oty 0¢ TNE Topolcag pyasiog elvon N avamTTLEY CUUTOY WY, LPNATE TaTNTOC Xou
evepyeloxd anodotixwv DNNs ce RISC-V enclepyaoctéc. IHapdhinia, diveton €ugpacn otnv
ehayloTonolnon Twv emTAéoV TopwV Tou Va anattndoly yio TOV TPOTOTONUEVO TURH VAL, Bla-
ogahiCovtag OTL ol BeATIOOEC GTNY ambdoaT dev o 081 YHoOLY GTNY UTERBOAXT XATAVAAWON)
Topwyv. Auth 1 uedodoloyla etvar euEAXTN xou papuoclur oe dLdpopoug Tomoug DNNs. Iog’
Ol awtd, Vo eoTidoouye oe apyttextovixés MLP xoaw CNN, xodde autég ebvar oL douéc mou

Yenowonotobvta cuyvotepa oe ML egapuoyéc yio ouoxeuéc oto Edge xan yixpoeheyutéc.

H pedodoroyia mou Yo axohovdricouue umopet vo ywetoTel oe Tpla xUpto oTddte. Apyixd, ou
TOPAUETEOL TOL HOVTENOU LTOXEVTOL o€ o Stodixacior Mixed Precision Quantization (MPQ).
INo vo tpocdlopiotel 1 Bértiotn emhoyy| Bopndv yia xde eninedo, mou Ya evioydouv Tnv
TayOTTa AcLToupyiag Tou HOVTEAOU, BlaTne®VTaS TNV oxplBeld Tou, SlevepYoUUE Uia EVOEAEYT
elepelivnon tov dléoiuwy emhoyoyv. Ta neputépw Peitinon tng anddoong tou RISC-V,
eMAEYOUUE Vo eTEXTELVOUPE TO UTOGTNELLOUEVO GOVORO EVTOAGDY Tou enelepyaoth. Ot evioiég
awTEG Vo ahANAETLOPOLY pe evay emitoyuvth) NN, evowupatwuévo appovixd yéoa oto pipeline
Tou enelepyaoty. Tnv uedodoroyio auth, xaddc xou TNV EMTAEOV AetToLEYIXT| HoVAda Ho TIC
00XUACOVUE TdVL 6To LAXG Tou Ibex. H mpoximtouca apyttextovixr Yo uhomomdel xou Yo

a&ioroyniel oty mhaxéta FPGA Virtex-7 mou mopéyeton and tnv Xilinx.

Mio cOvtoun emoxonnon g peodoroyiog mou Yo axohovd|couUE GTNY BITAWUATIXT AUTH

obvetan oo Byua [0.5

0.4.1 Model Quantization

H apynr| @don nepihopfdvel tnv Boduovounor g oxeifBeiag evoc Nevpwvixod Awxtiou
xaL T Aemtouepn] pOduion Tne axpifelag Twv PETABANTOY Tou ety and TNy €vtaln Tou o1
ouoxevh) pac (@ oto Syfua[0.5). Tiat tnv pelwon 10V oUVOMXGY ETAOYGV, €Y OUpE ETAEEEL
VoL xwdomololuE evioda o Bedopéva eLa6B0L XL TIC TYES evepyomoinong oTig e€600ug e A
To enimedo ToL BIXTOOL PAS, YENOWOTOLOVTIS ATOXAETTIXG 8-BIT avamopaoTdoelc. AuTtég oL
Téc unopel vo elvan 1600 mpooruacuévec (int8) 6oo xou un-npoonuacuévec (uint8). Ooov
apopd Ta Bdpn TOU SXTUOL, AUTH UTORPOVY VO UETUTEATOUY OE axXEpoLo Lop®T UE avahuaoT 2,
4, 1} 8-bit.

Aopfdvovtog untddmn TNV TOAUTAOXOTNTA TNG APYLITEXTOVIXNC EVOS HOVTEAOU XOL TNV OTo-
TEAEOUATIXOTNTE TOU GTO OET OEQOUEVWY TOU €YEL EXTOUOEVUTEL, OL TUPAUETEOL TOU UOVTEAOU
oEY X3 UETOTEETOVTAL OE XBavTouévn popgy| yenotponownvioc PTQ. Edv ta arotehéopota dev
elvol aEXETA eavoTonTxd, 1 Bladixacior eVioyVETAL TEPAUTEPL BEATIOVOVTAS TIC TUQUUETEOUS

péow QAT uéypl va emiteuvydel To amodextod eninedo anddoong.

H eZoavtinun avalhtnon avadexvieto we pla otomiotn uedodohoyla, Wiaktepa 6Tay avTi-

petwnilovyue wixpd Nevpwvixd Abxtua (NN) e Aya otpdyata. Auth n uédodog e&acpolilel

27

Extetopévn Heplindn

Trained Floating
Pointi\/lodel

Find Best Configuration
for Mixed Precision Calculate

Quantization Accuracy Loss

o Quantized Model

Create C program of the
Update RISC-V toolchain network's architecture
about our new instructions with our new instructions
included

Develop Hardware
Accelerator

Build RISC-V toolchain Generate RISC-V Binary Modify Ibex Core
RISC-V
.elf executable Corein
l SystemVerilog

Behavioral SImultation
on SPIKE ISA Simulator

Run on cycle accurate
simulator - Verilator

Implementation on

Vivado

Ensure the correct v
compilation of our Measure Latency Report Utilized
instructions and Speedup Resources

ExApa 0.5: Audypoupo poric g uedodohoyiag mou el yenowonoiniet.

OTL 1 eTAEYREVY Blaubppwon yia Ta B Tou xdie emmédou Va eivon 1) BEATIO TN EVTOC TOV X0
Yoplopévwy neptoplopnv. Tap” Oha autd, autr 1 oteaTnyXy lvon dUoxolo va e@apuocTel oe
ueydio mtoAvenineda NNs, 6edouévou Tou TEpdoTIOU GYXOU TWV BUVATWY ETAOYMY TOU TEETEL
vor oavohutoly. Auth 1) TedXANCT, GE GUVBLAOUS UE TOUG CNHAVTLIXOUS YEOVOUC EXTaldEVONC,
Tumxolg xotd 1o QAT, xahotd emtoxTins TNV e€peELYNON EVAARAXTIXOY AVCEWY Yid TNV

A(BAVTION POVTEAWY PEYAADTEENC XAUOXAS.

M mpox T %o amodoTixr) AVom Yo TV avTETOTOT auToV Tou {nTthuatog nepthopBdvel
TNV oUAdOTOINGT) DLABOY KDY ETLTEDWY TOU LOVTEAOU X0 TNV AVTWUETOTICT TOUS WG Wia eviaia
OVTOTNTA, UELOVOVTOS ETOL TNV EXTUOT TOU YWeou Twv mdavedy Aboewv. Evalloxtixd uro-
polue va ¥étouye otadepd bit-width oe enineda, Twv onolwv To LUTOhoOYIOTIXG YopTio eivon
apEANTED GE GYEOT UE TO GOVORO TV LTOAOYICUGY 1| Vo amoppintoupe AUCELS, oL ontoleg Yo

odnyNoouy oe TOAD ueydAr urofdiuion tne axplBelac Tou povtérou. H ypron tétoiwy otpo-

28

0.4.2 Ewoywy? Tov VE©V EVIOADY

TNYWXOV €lvan avoryxoda, otay 1 eEovTANTIN XEAUPn OAOXANEOU TOU YWEOUL Elvol avEPLXTY,
elte AOY® YPOVIXOV TEPLOPLOUOY EITE AOYW TEPLOPLOPEVMY UTOAOYICTIXOY TopwY. (2061600,
ouTH 1 Yelwon umopel va €piel pe éva x60Tog, xoig eviEyeton vor ulodetniel wa Aydtepo

amodoTxr AUoT).

0.4.2 Ewaywyn TV VEOV EVIOADY

H Swdixactio mou neprypdgpel v extéieon DNN povtéhwy, poviyo ue tny yerorn axépaiwy
HETOBANTOV, ATOTUTMVETOL OTTIXE 6TO Ly ud

output

int2

Yynpo 0.6: Inference yovdyo ye t yprion axépateyv YeTaBANTOY

H dwdwocio uropel v dloxpriel oe 3 Eeyweiotég @doec. To mpddto Bruc aopd tny
apyxomoinom Twv e€6dwv, Vétovtag Tic bias Twég toug. Avtl yio v yerorn 32-bit yeta-
BAnTdy, ulo evadhoxtixt| xou €€loou amodotixf) Avor elvon adlonotioouye 8-bit apriuoie xou
OTNV CLVEYELL EXTEAOVTOC 0plo TERT) OAloUNoT va tpoceyyicoupe Tig 32-bit apyés Twég. H
0eUTEREN Qdom, 1M omola €lval XAl 1) UTOAOYICTIXG TIO amouTNnTiXr], TEPLAoWPBAveEL TNy exTéAeon
OV TWV OTUTOVUEVKDY TOMATAACIAOUMY PETAEY TOV ELGOBOU TOU EXYGC TOTE ETUTESOU XAk TWV
avtioToywy Bapwy Touc. To anoteAéouato TwV TOMATAACIACUMY GTT CUVEYELN CUCOWEEVO-
vrow poli ye o mponyoupévewe optopéva biases. Autéq ol Slaboyinéc TEdEElC TOAATAAGIACHOV-
ovoowpevone (MAC) eivon xodoplotinéc xan anoteloly To enixevipo g Peltiotonoinong
otny €peuvd pag. To tehixd oTddlo e€aopahilel TNV UETATROTY| TWV AMOTEAECUATOVY and 32-
bit o 8, wote va TpoodotEr)olV GTO emoUEVO ENinedo. AuTd EMTUYYAVETUL PECW EVOSC
Tolhamhactaouol pe plor Vet T xou oty cuvéyelo axoroudel pla 6eid ohiodnom, wote

1 €€0d0¢ va Beedel oto emuuntd ebpog TWOV.

H Sour twv eviodov mou Yo tpootedouy Yo elvon (Bla ye exelvewv mou avixouv otic R-type
evtoréc Tou RISC-V ISA . Ilpoxeiévou va dac@ahiotel 1 opdr) avayvodplorn Twy eVIOA®Y,

xadog xan v vo emitevy Vel) owoth Aettoupyio Toug, Yo TEEmEL Vo 0ploouE:
e To 6voua g xde pioag, To onolo Yo TEETEL Vor AVAOEIXYUEL TNV AELTOUEYIXOTNTA TNS.

29

Extetopévn Hepliindn

o To anopattnra medlo péoa oo 32-bit mhalolo tng xde evtorrc. Iho cuyxexpyéva, yia

wo R-type evtohn, npénet va xadopicouye:

1. To opcode, to omoio uTodNAGYVEL TNV gLEUTERN xaTNYOPia TOL avixel. Egdcov dheg
oL Véeg evtokég Yo oflomololvton Yo Ty Bedtiotonoimon Neupovixodv Axtiwy,

Yo €youv OAec TO (B0 opcode.

2. Tic Twéc v Function codes (funct3, funct7), to onola ypnotponotodvton yior vo
Tpoadlopicouy TNy Aettoupyia | TNV Topahhayn piog eVTOAYC péoa oty xatnyoplo

Tou 1) {Bla avrEL.

3. Toug xatoywenTtéc oL omoloL XATd TNV EXTEAECT) TOU TEOYEIUUATOS, Yo Yenouuo-

roindoly we ot elcodot xou €£odol Tne.

O véec evioléc ou Ya tpoctedolv 670 Toohenowy (B oto Ly Aua(0.5) o éyouv we otdyo
v extéleon xou Bertiotonoinon xadevog amd ta 3 oTdd TOU TEPLYPAPUUE TEOTYOUUEVKS

xou Vo potpdlovtan to (Bto opcode (0247 or 100 0000 oe duadixr uop®Hh).

H mpddtn omd autée Ya oltonoteiton yioo var apyixonoel tov NN emitoyuvts mou xou Yo
ollomolel 2 xatoywentés oToug omoloug Va eunepiéyovion téooeplc 8-bit Twwéc biases , evd
oTOV 6eUTERO XaTayWENTY, Vo Beloxovtar Tywég mou Yo UTOBNAMYOLY To TAHDOC TWV APLOTEPWY
oho¥fioemy Tou Yo avTicToy oLV oe xdie éva and autd ta biases (BAéne TyAua[0.7)).

31 24 16 2 0
rsl | Bias_1 | Bias 2 | Bias_3 | Bias_4 |

) | Shift Bias 1 | Shift Bias 2 | Shifi Bias 3 | Shift Bias 4 |

SxApno 0.7: H Sopn tev 32-bit xatoywentody dtav xalelton n evtoAn neur_init.

‘Ovopa EvtolAic | funct?7 funct3 rsl rs2 IMepvypapn

IMAdoc aplotepmy

o o Apywomnolnon twv
neur_init 000 0000 100 4 8-bit biases ohoUfoewy

, i biases yia xdde €€0do
yia x&de bias

ITivaxag 0.1: Evtohy aglepwuévn yia Ty apytxononon e Aettoupyxic Lovadac mou Yo

npoc¥écoupe, Vétovtac o biases twv e£60wv.

H deltepn oepd evTOA®Y TOU Yol EVOOUATMOOLUE Efval GYEBIAOUEVT] YL VO DIEUXOADVEL TIG
Aertovpyieg Twv MAC evioldyv, ol onolec elvan xploweg yio Tov alyoprdud poc. Kdide pio
am6 autég Yo exteleiton o€ povdya Evay x0xAo xan Yoo LAOTOLEL €Val BLaXELITO GEVARLO, OTWS
oUTé TEOXVUTTOUY amtd Tov cuVOLNCUS Tne axpifeloc Twv Bopody (2, 4 1 8-bit) xou T wopen
TWVY E1060WY TOU EXYOTOTE EMTEDOU, TRPOCNUACUEVN 1| un-TipooTuacuévn (Bhéne Syhua [0.8).
Avut) n oxdmun dudxptorn urneetel 800 oxomolc. O mp®TOC elvan Yot AOYOUS GUPHVELIS XAl
guxoMac Ypnong, xoNe PEATIOVEL TNV AVOYVOCLUOTNTA XoL T YENOTXOTNTO Tou Tnyolou

WO, EVE) 0 BEVTEPOG EYEL TILO TRUXTIXO YULUX TR, XAV UTOPOVUE VoL ETWPEANDYOUUE amtd

30

0.4.2 Ewoywy? Tov VE©V EVIOADY

kY 24 16 8 0
rs1 \ w1 | w2 | W3 | W4 \

2| 1 | D | 13 | 14 |
(a) 8-bit Inputs and §-bit Weights

M 23 24 20 16 12 8 4 0

rs1 \ Wi | w2 | W3 | w4 | ws | W6 | w7 | w8 \

2| 1 | 12 | 13 | 14 |
(b) 8-bit Inputs and 4-bit Weights

M o 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

rsl ‘ w1 | w2 wo

w3 | w4 | ws

Wé | w7 | W8

W10 | wi | Wiz | w13

Wi4 | W13

wie ‘

2| 1 | 12 | 13 | 14 |
() 8-bit Inputs and 2-bit Weights

SxApo 0.8: Eowtepin) dour| Twv xotaywentdy xatd v xAhor twv MAC evtohoy.

QUTY TNV XOTNYOPLOTONOT TROXEWEVOU VO EVERYOTOLCOUUE OLUPORETIXG CTUATO XUTH TNV
amoxwodxomoinon xde eviolric. Autd To oot Elvor 0UCLOON YL T OWOTY AstToupYio Tou

ETULTOLUVTH UAXOU, GoTe va utohoyilel pe oxplfeia Tig e€680ug oe xde mepintwon,.

‘Ovopa Evtolvc funct7? | funct3 rsl rs2 IMepuypapn
neur_mac_u_8b 000 1000 010 4 8-bit unsigned elcodol | 4 8-bit Bdpn 4 MAC Jertouvpylec
neur_mac_u_4b 000 0100 | 010 |4 8-bit unsigned eicodot | 8 4-bit Bdpn 8 MAC)ettoupyleg
neur_mac_u_2b 000 0010 010 4 8-bit unsigned elcodol | 16 2-bit Pden 16 MAC Aettoupyleg
neur_mac_s_8b 001 1000 | 010 4 8-bit signed eloodol | 4 8-bit Bdpen 4 MAC Jertoupylec
neur_mac_s_4b 001 0100 010 4 8-bit signed eloodol 8 4-bit Bapn 8 MAC hertovpyieg
neur_mac_s_2b 001 0010 | 010 4 8-bit signed elcodol | 16 2-bit Bden | 16 MAC kettoupyieg

ITivaxag 0.2: Aloto eVIOADY aplepwPéVvewY Yol TNV emLtdyuvon g extéheons twv MAC

AXONOLVLDY.

To tehevtaio oeT eviohwy Va eivon uedYuvo Ylol TN PETATEOTH TWV TWWY Tou elvon o-
noUnxeuuéveg otoug 32-bit cucowpeutéc oe 8-bit apripolc. Méoa otoug mhalolo Twv
HATOY WENTOV-ELTOOWY, ElVOL CUYYWVEUUEVES Ol amapaftnTee HETOBANTES Yol TOV TOANATAG-
otaoud xou TN aplotepr| ohlotnon (Bréne Tyfua[0.9). Autéc elvor or povadixée eviohéc mou
amoutoVV Topomdve amd 1 xOxAo yio T extéheot) Toug (3-5 xOxhot), avdhoya ye tov av Vu

el ohoxhnewiel TAfewe o unoloylouog 1wy MAC evtoh®v.

31 24 16 3 0
rsl | Multiplier 1 | Multiplier 2 | Multiplier 3 | Multiplier 4 |

rsl Qutput_Shift 1 Qutput_Shift 2 Qutput_Shift 3 Qutput_Shift 4
tput_ 5 tput_ . tput_ N tput_. -

IyxApo 0.9: Iepleyduevo xotoywenTdy Xotd TNV EXTEAECT] TWY EVIOADY TOU UAOTIOLOUY TO

requantization Brjuo.

31

Extetopévn Heplindn

‘Ovopa Evtolvg | funct? | funct3 rsl rs2 ITepiypapn
1 . M .
4 8bit teheoTéc 4 8-bit Tyéc sron:porfn WV
neur_res_u 000 0001 001 yio 0egud ATOTEAECUATWY OE
Yot Toh/yo))
ohioinon uint8
e . M ,
4 8-bit teheotéc 4 8-bit Tyéc swrporfn Y
neur.res_s 000 0000 | 001 yior 8egid ATOTENEOUATOLY OE
Yot Toh/yo) .
ohicinon int8

ITivacag 0.3: Alota eVIOA®OY Yol TNV UETATEOTY) TWV CUGCWEEVUEVWY TIuwY ot 8-bit aprduoic.

0.4.3 Meratponég ctov Enelepyacty

To televtalo (BrAuc apopd TNV TEOTOTONGCY, TOU ENECEQYACTYH YLo TNV UTOC TR TWV
véwv eviohdv (@ oto Syfpo [0.5). Avtl va avamtiZoupe évav Eexwplotd co-processor, o
emToyLVTHC Yo Totovetniel oTo Bedtepo oTddO Tou pipeline, 6mou hauBdvel ywpea 1 amox-
woxonolnon xou 1 extéheon xdde eviodhc. Auth 1 and@aon amodeixvieTal Oyt OV oL TILO
YEHYORT, OARG ol TO ATMOBOTIXY WS TEOSC TNV XUTAVIAWGOT) EVEQYELNS, OE GUYXELON UE TNV
AN emhoyt. To x0plo mheovéxtnuo autrc TNe €viaEng xplveton oTn oNUavTXy Uelwon Tng
UETOPORAC BEBOPEVWY UEGK TOL BLAOAOU TOU BIAGUVOEEL T1 UVAUT], TOV xVpLo ENEEERY O TH Xol
ouTé Tou Yo fTav évag EexwpeloTtdg co-processor. Mnopolue enlong va enwgeindolue and
TNV XOWVN YeNoT TwV Topwy Tou eNcepYaoTy, 0K clvar ol cache uviueg xau dhha xplot-
wot ototyeior (.. TOAMATAACLUOTES), TEOXEEVOU VO UNOTIOLACOUKE SLdPopous UTOAOYIGUOUS

OTOV ETUTUYLVTH UOG.

Ibex Core

Register File

|

Decode and Execute ‘_V_rj:‘.eback

20111 U] IO WA P B8]

aou e U] AI0Way UoT nsu|

o
Compressed Instruction

Decoder

FLQ

BIcwRISC = . PMP Check

Eyxhpo 0.10: XSynuotixd dudypouua tou Ibex, upetd and tic tpomonoifoelc 6To LAXG Tou. Me
TOPTOXOAL OVUPEROUAOTE OTOL TUAUOTA IOV €yvay ETUTAEOV 0ANAYES, EVE) UE TEAOLVO Tl VEO TURUATOL

Tou enelepyaoTh.

To Baowd yopoxTneioTixd Tou emtoyLVTYH ebvat 1 duVITOTNTE Tou Vo enelepydleTon Tou-

oy pova T€aoeplg €£600ue. AuTH 1) BuVATOTNTY TUEEAANANG enelepyaciog eVioyUel onuavTIXd

32

0.4.3 Metatponéc otov Enclepyoaoth

TNV am6d0CT TOV, ETUTEETOVTOS GTO cUGTNUA Vo Slaryelptleton TOAATAS Sedouéva uéca GTovV
8o x0xho. To evdidueoca anoteréouato TV LTOAOYICUGY amodnxedovion ot 32-bit Tomxoic
AATAY WENTES EVTOC TN hovadag. [Tépa and Toug cucowpeutég autols, Ta Bacixdtepa oToLy el
Tou ebvan (BAéme Eyhuo |0.11):

o Anoxwdixonowmtns Bapwv - Eicédwv: Yyedaouévog yia Tov yelpiopd oo 32-
bit TeAecTt®yV, 0 anoxwdonontrc yenowonotel to medio ‘funct?’ yia va avayvopicet
X0l VO TOROOXEVATEL Tal opiopata Tou Yo epnioxoly otov Tohhamhactaoud. Hopdyel 8
Cebyn Ty 16-bit nou Yo tpowidndoly yia enelepyaoio and Tic UTOAOLTES LOVADES TOL

ETUTOYUVTY.

e Movdda IToAhanhaciacpov-Suvocownpevone (MAC): H yovido MAC hop-
Bdvel TIC AMOXWOIXOTONUEVES THIES XoL BLEEAYEL TOUG ATAPAiTNTOUC TOAATAACIACUOUG.
Ye mepintooeig mou ebvon omopaitnto (nepumtdoec (b) xa (¢) oto Uyfua 0.8), pept-
%3 anotehéopato oTr cuvEyela adpollovial TEoTo) GLUCCWEEUTOLY Tiow cToug 32-bit

HATOLY WENTES.

e Requantization Block: H yovdoo auty| Aaufdvel o¢ €lcodo Tig Tyég and Toug 6uao-

WEEUTES XoU EEQYEL TIC TWES TNV XATIAANAN LOp®T], OOTE VoL ATOUNXEUTOLY OTN UVAUN.

Rs2 Rs1 Rs2 R‘s1 RT R|52

T - -
Biases functd Requantization

J\ Block
ll 32-bit shift | 4% 32

Operation

MAC Unit

Inputs

Weights
shi

32Bit
Registers

ift Biases

Output Shift Values

|
Adders it i
32-bit Shift
for —r) Operation
Rounding

Weight - Quantized Multipliers
Input

Decoder

4x32 4x32

=z 1,
5
328t
+ " 32.it
Registers
4x32 I

232 (2 MSB Truncated)

Enable

Weight Bit Width

8x17

D System Frequency
D 2x System Frequency

8x17

34x34 ALU
Partial
Product
Adder

34x34

Partial
Product

Adder

1

32Bit
Registers

funct? ——

int8/ Clamp

uint8 Function

funct3 Rd (Output)

YxAua 0.11: H npotewvdpevn apyttextovixi tou emttoyuvth. Me npdowvo yeduo avanapiotovton
Ta douuxd otouyela Tor omolo Aettoupyoly o Bimhdola cuYVOTNTA and 6TL EXEVO TOU UTOAOLTOU

eneepyaot.

Oplopéveg and Ti¢ oyedaotinég emoyég mou AdBoue, ye xOpto otoyo v adinomn tng
OLEXTEQAULWTIXOTNTOC TOU ETUTAYUVTH X0 TNV EAXYLOTOTOMOT TWV avayXaiwy ETTAEOY TOPWY
OVOUPEQOVTAL TTUEAXBTE).

ExpetdiAevon Twv tépwy Tou enclepyacTty

33

Extetopévn Hepliindn

‘Omou elvon duvatdy, o emToyLYTAC poledleTon TOpoug e Tov xUplo emelepyacty. Ilo
CUYXEXQWIEVA, ETUAEYOUUE VO ETAVOYENOWOTOCOUUE TOUS TOMNATAACIACTES TOU YLl VoL U-
ToAOY{COUUE OAOL TaL AmOEOUTNTA YIVOUEVA, XaTd Tn Sudpxelo Twv MAC evioh®dv xat yia Tnv
otadacta Tou requantization. ‘Omwe avapépaue xou TEONYOLREVWS, Yol TNV LAOTOMGT TOu
Tolamhactaopol uetall 800 32-bit axepaiwy ot évay x0xAo, o Ibex Swodétel Tpeic ToAamho-
oo téc 17X 17 bit xou otn cuvéyeta tpootétel yali To LEEIXE YIVOUEVL Yia VoL OTULOVPYHOEL TO
el anotéheopa. Mo var xaAbhoupe TI amanTOELS TOU ETULTOYUVTTH OIS Kol Y1a VoL EVIGY OTOU-
UE TEpanTéP® TNV UTOAOYIOTIXY TOU BUVaUY), EMEXTEVOUUE aUTH T1) SLETOET EVOWUATOVOVTOG
evay eMTAE0V TOMATAUGLAG TY|, UE BAoT TO GYEDBIAOUO TV LTEEYOVTILY TV, 26Tdc0, XaTd
7o implementation ndvew oe éva FPGA, 1660 0 apyxr), 660 XL 1] ToOTOTOLNUEVY OEYLTEXTO-
vixt| ogtonototy 4 DSPs. Auté ogelleton 610 0Tl To emimiéov DSP Yo ypnowonowmdel otny
ulo TeplnTwon yio To dYpoloua TRV UERIXMOY YIVOUEVKY, EVG GTNY 0cUTERT), Va yenoulorotniel

Ao TOV ETUTOYUVTY HOS Yo TNV EXTEAECT] EVOC 0XOUN TOANATAUCLAGHUOV.
Pipelining

To pipelining eivon yior TeYVIX TOL YENOWOTOLETOL EVEEWS OTNV APYLTEXTOVIXT] UTOAO-
YIOTOV yioe vou auEnfioel TN pot| dedopévwy péoa ot éva enclepyaoth. Autd To emiTUYYdvEL
OLLEMVTOG [Lal OLepyaoior OF OEXETY EMUEQOUS GTABLAL XOU ETUTEETOVTAS OE XGUE GTABLO VoL YEL-
olleton €vo BlapopeTnd XOPUATL TOU UTOAOYLOUOD, SlacgailovTtac €Tal TNV CLUVEYY) XL TLO
amodoTXn) EXTENEOT EVTOA®Y. AmodeixvieTon Wiaitepa Yprowr oe tpoypduuata ywelc data
hazards, to onola TeoxOnTOUY OTAY 1) EXTEAEST] TWV EVIOA®Y EE0RTATAL OO ToL ATOTEAEGUATOL
TWV TEOMYOVUEVKY. Lo GUC THUATY UE pipeline, To arotéheoua xde oTadiou TEocwEWVE aro-
InredovTaL G XAToy weNTES TEoTo UETOPBBacTOUY GTO ENOUEVO GTABLO. AV X0l O GUVORLXOC
aEtIUOC TV XOXAWY TOU AMOUTOUVTOL YIoL TNV EXTEAECT) EVOC UOVO UTOAOYLOUOU AUEAVETOL, EV
Téhel enwgerolpacte and o avinuévo throughput xadde xou and 1o yewwuévo xpiowo po-
VOTITL, TO OTO{0 Yo ETUTEETEL VoL LENCOUUE T1) GLYVOTNTA TOU POAOYIO) TIOU Y ENOLHLOTOLELTAL
yio qUTES TG Aettoupyieg. Lty mepintwon pog, vhomololue €va pipeline 610 ecwtepd dLO
OLaXELTOYV oToLElwY: TNV Hovdda mou elvan agiepwuévn otny extéreot) twv MAC evioldv oe
CLYOLACUO UE TOV ATOXWOIXOTOLNTH Tou Teonyeito, xou To block mou elvar uteduvo yia o

Bruo Tou requantization.
AUEnon Yuyvétntag Asitouvpyiog

AeBopEVOU OTL 1] APYITEXTOVIXT| OIS EVOWUATOVEL LOVO TEGOERLS TOAATAACLOGC TEC XAl Ao~
Bdvovtog unodn 6Tl oplopéveg eVTohég amoutoly TNy extéleon 8 1) axdun xou 16 MAC oxo-
houdov, n emBoln xaduc teproewy 6To pipeline tou enelepyac T Vo HToY ETTAXNTIXY VLol TNV
oYY TV 0pUOV ATOTEAEOUATOY. LUYXEXPWEVA, Yo TIC EVTOAEC mou amartoly 8 MAC
alknhouyieg, Yo emBdrhape xaduotéonomn 1 xUxhou, eved Yo exelveg Tou amautoLy 16, xodu-

otépnon 3 xOxAwy Yo oy avamd@eux T ywelc emmAéov BEATIO TOTOACELS GTOV ENEEERY T TH.

H eqappoy ploag eTepoyevols oTRatnYIXTG OGOV apopd To. OAOYLXL TOU GUC TAUATOS, OTIOU

Ol HOVEOES UE TOV UEYUAUTERO UTOAOYIOTIXG pOpTO Var Acttoupyoly ot umAdTepn cuyVOTNTA

34

0.5. AZohoynom twv AnoteAeoud Ty

ond 1o undloino oo Tnua arnotekel pa Aoon oe auth Tt medxknon [31]. Auth n tpocéyyion
o ToYEVEL dueca 0T BEATIoTOTOMON TNG AMOBOCNC TWY TOAATAACIAC TGV Xl AP0l TWY TOU
eumAéxovton oTic MAC evtoléc xou otn Sradacta diaudppnong tng e£66ou. Auidvovtog T
ouyvoTnTa Aettoupyiog Toug, eluacte oe VEoT Vo EXTEAECOUNE TEQIGGOTEQOUS UTOAOYIGUOUS
ovaL LOVEDA YpOVOU, aLEGVOVTIC AMOTEAECUATIXG TNV GUVOALXT anddoor Tou cuoThaTog. §2-
01600, Ye TNy Lvovétnon ulag Tétolog oTpaTnyC, Utopel va tpoxdouy didgopa {ntruaTa
CUYYPEOVIOUOU, OTwe Blaplopd 1) anAclo BESOUEVLY XATA TIC METAUPORES UETAEL GTOoLyElWwY
TOL AELTOURYOLY GE BLOPORETIXES GLYVOTNTES, EVG ETONE ToporTneeiton xon adEnon aTny xa-
TAVAAWOT eVERPYELUG XADWE X0 GTOUG ATAUTOVUEVOUS TOPOUS YL TNV UAOTONGT Tou TEAXOU

CUC TAUATOC .

INot v amhomotfooupe tor INTALATA GUYYEOVIOUOU UE TO XVPL0 PONOL TOU EMEEEQRYUOTH,
amogociooye Vo aLENCOUUE T1 GUYVOTNTA TOU VEOU POAOYLOU XaTd pior Ty mou ebvon SOV
Tou BVo. Acdopévou 6Tl o muprvag Ibex Aertoupyel ye Baowr cuyvotnta 50 MHz, emhéZapue
va. putuloouye To BeUTERO POAOL o dimtAdota ouyvotnta ota 100 MHz. Me auty| tnv npocéy-
YIOM, UTOPOVUE VoL ETULTUYOLUE Xt TNV {nTtoduevn adinom otny ToydTNTo TWV UTOAOYLOU®MY,
ool yivetar TAéoV Buvath 1 exTEAEOT TWV EVIOAOY Tou avolopfdvouv 8 MAC umoloyi-
opole (1 xaduotépnomn eZaxohovdel vo eivar amopaditnTn Yot TNV TEheuTaio TERITTWON), EVEH
eniong Slatneolue oe YAUNAS ETUTEDN TNV XATAVAAWGCT) EVERYELIC Xl TNV TOAUTAOXOTNTA TNG

oyedlaong.
Soft SIMD

H teheutola BedtioTomoinon otoyelel 0To eMTUYEL TNV OAOXATIPWON TWV EVIOANDY TOU
extelolyv 16 MAC vnohoyiopolc oe évay uévo xOxho. Eumveuouévor and v épeuva [32],
ETUOLOXOVKE VOL EMITOYOUUE AUTOV TOV GTOYO TEAYUATOTOWWVTOG U0 TOAATAAGLICUOUE UETUED

Twv 2-bit Bapdv xan v 8-bit 1060wV ot Evay UbVO TOANATAAGLIGTY.

To anotéheoyo tou ToAamAactaopol Yetoll evoc 2-bit apriuol xou évoc 9-bit apriuo
- 9, 06Tt To emmAfov bit elvon avaryxaio yia To TEOONUO TNE ELWGHBOL - amouTel WS EALYLOTO
mhdtog 11 bits yio x| avomapdotacn Tou. Xe TETOLOUC TOAATAACLICUOVS, To 22 aviTERX
bits elvar yeudta opoldpopgpa eite ye 1 elte pe 0, UETAPEPOVTUC AMOTEAECUATIXG UOVO €Vl
bit TAnpogoplac. AuTtd TO YUEUXTNEIOTING ETUTEETEL TN YENOT AUTOV TOV AVOTEPWY bits yia
TNV eXTEAEOT] EVOC EMTAEOV UTOAOYLOHOU TaUTOY POV, Ywelc vo emnpedleton 1 oxplBetor Twv

OTOTEAECUATWY TOU TOTOVETOUVTOL GTA ALYOTERO ONUAVTIXG bits.

0.5 AZ&wAo6YNoT Twv ATOTEAECUATWY

Io vor a€lohoyooupe TNy anddocT) TOU ETUTUYLVTH Hag, oy Lxd Yo cuyxelvovTag To amoTe-
Mopoto tne extéheong evie IIApouc Xuvdedeuévoue (Dense) xou evoc Luvehixtixol emnédou
EvovTl TV avtioTolywy vhonooewy nou Bactlovta oto RV32IMC ISA. ITo cuyxexpuuéva

Yo e€eTdo0OVYE:

35

Extetopévn Heplindn

1. éva Fully Connected Layer pe 512 eio660ug xopBoug o 256 x6uoug e€ddou xau

2. éva convolutional kernel nmou enelepydletar plo eloodo ye daotdoeg 16 x 16 x 32
(xenotponowdvag Sidtaln dedopévev “YThoc-IIhdtoc-Kavdhia) yenowonowwvtog ¢piktpa
e Swotdoelg 64 x 3 x 3 x 32 (II\jdog gpiktpwy X IIAdtoc Pihtpwy x "YTdoc Piitpwv

x Kovdha Eie6dov)

Ye xde yétpnon, Yo e€epeuvicouye xdie Buvat BloudpPwon Yia T axpeifelo Twy Bapdy
eve) eniong Yol amoTuTooUUE TKg xdde TeY VXY BeATioTONOMONE TOU EMLTAYUVTY enEedlel TNV
el enidoon. Ta anotedéoporta tne olvyxpong omewxoviovron ota Ly fuorta [0.12) xa
O tehixée pog vhonowoelc Tetuyaivouy emtdyuvon 7.9 - 17.6x ota [IAfpne Yuvdedeuéva

otpwuota xou 12.0 - 33.1x oe Luvehtixd eninedo.

X106 (a) 8-bit Weights (b) 4-bit Weights (c) 2-bit Weights

9.01x 1047x 12.50x 11.38x 12.49x 15.49x 17.60x
10

4
@

14
'S

Number of Cycles
o
o

0.2

0.0

ExAne 0.12: Xpdvoe extéleone evoc Dense Layer otov ene€epyaot Ibex yia diopdppoon pe:
(a) 8-bit Bdpn, (b) 4-bit Bden, avd (c) 2-bit Bden.

x107 (a) 8-bit Weights (b) 4-bit Weights (c) 2-bit Weights

9.52x 12.00x 13.76x 17.49x 21.52x 19.33x 21,56x 28.14x 33.12x

Number of Cycles

M = ==

$

9 9
B S 5 S »
2 & N 3 N 2. N @ B
& & el & & A Rl & & < s
1 < & < L & < o RN
& x T & x $R G oF & x ® G AL
QO'\? & o\ov. * & & Qov. * & xq\c,\-c’ o
& & K & 8

Exfpa 0.13: Xpoévog extéheong evog Convolutional Layer otov enegepyaoty| Ibex yua
dropdppwon pe: (a) 8-bit Bden, (b) 4-bit Bden, avd (c) 2-bit Pden.

I vor avadet€ouye TARpee TNV anoteheopatixdTnTa TNe Yevodoroylug yag, mapouctdlou-

UE WLlal ETIOXOTNGT) TNE AmOB0GTG Tou TpoTomolnuévou tuprva Ibex mdve oe didpopa povtéra

36

0.5. AZohoynom twv AnoteAeoud Ty

DNN. Ta emAeypéva govtéra emhéydnxay BACEL TN ARYLTEXTOVIXHS TOUS, TNS TOAUTAOXOTY-

TAC TOUC Xoi TNG EEAMPETIXNC ATODOGT| TOUG GE OLAPOPES EPUOUOYES.

O Iivoxag TEPLAUBAVEL TOl ATOTEAECUSTWY TOU €YOUUE OMOXTACEL OO OAAL TO. UO-
vTéla Tou €youue avahboaue. Eotidlouye xuplwe oTtov ypdvo extéleonc mou mopotneelital
otov Ibex, 1600 ye TNV EVOLUITWOT VEWY EVIOAGY 600 xal ywelc autés. Emmniéov, mepl-
AUBAVOUPE TIC XAVOVIXOTIOMNUEVES THIES, OTwe auTEG €xouv Anglel and Tic state-of-the-art
¢peuvee [5], [8] xou [II], mapéyovtac éva onueio avagpopds yior olyxpLon xon oamodevIoVToS

TNV AMOTEAECUATIXOTNTA TNG TEOCEYYLIONG oS OTNV EVIGYLOT TNE AmOd00TC.

Movtéio RV32IMC | State of the art QNN pe peiwon axpifeiog
<1% <2% <5%
MLP o6 23.13 msec 1.60 msec 1.77 msec | 1.41 msec | 1.01 msec
FANN-on-MCU
ONN ard 3480 msec 428 msec 195 msec 145 msec 123 msec
CMSIS-NN
mcunet-vww-1 3697 msec 552 msec 619 msec 548 msec 525 msec

ITivaxoag 0.4: Xpdvog extéheone nov xotoypdgnxe (msec) yio xdde poviého nou edetdoope. O
TWES TOU aVTIoTOLYoLY OTIC AUoelg and to state-of-the-art €youv Angdel and o avtiotolya paper,

eve oL undhoineg petpinxay otov Ibex core.

Oa avallooupe To TpodcieTo @optio Tou ey N otov apyxd RISC-V enclepyaoty, 0 o-
Tolo cLVIGTE Baoind xEiTHELo XdOAT T SLEEXEL TNS ERYAUCTNG LAC, OLOUTERO XAUTE TNV OVATTU-
&n tou emtoyuvtr. O Iivaxog TEPLEYEL CUYXEVTPWTIXE TOUC TOPOUSG TOU XOTOY QApNXoLy
xatd TNV @domn tne vhonoinong tévw o FPGA. H yedodoloylo pog xotapépvel va evioydoet
v anddoon tou Ibex, dwtnpdviac Ty adénon twv mépwy (34.89% alinon oty yerion
Lookup Tables xau 24.28% abinon otnv yerion Flip-Flops) xou tnv xotavdhwon evépyetog
(5mW al&nom) oe younhd eninedo.

Ibex Processor Apxixodg ITpotewbpevos
LUTs 5479 7391
FFs 5122 6366
DSPs 4 4
Kotavdiwon Ioxbog (Watt) 0.256 0.261
Suyvotnta Poloyiod 50 MHz 50 MHz/100 MHz (Dual Clock Conf.)

Table 0.5: X0yxpion ueto€d TOU dPYIXOY XL TOU TPOTOTONUEVOU ENEEERYATTY OGOV OPOPd TOUG
anoutoluevoug tépoug oe ula mhaxéta FPGA Virtex-7, tnv xatavdhwon evépyelag Toug xou thy

Ta O TNTA TWV POROYLWY TOU Y ENOULOTOL00VTAL.

Ov mo evepyelomd anodotixég Aooelg eivon exelvec Ye v uPnAoTER amdAcla oxplBelag.
Auto ogelheTol GTNY EMTAYUVOT TTOL TETUYAVOUUE, TaEd TNV 0pLoxn) alENTT OTNY XATAVIAWOT)
oY VOC TNC TEOTEWVOUEVNG ORYITEXTOVIXHC. LUYXEXQPWEVA, OUTEC Ol BEATIOTOTOINTELS 001 YOUV
oe pla Yelowon 22.46x otig encéepyaotinég anoutroelg yio To MLP, wa yelwon 27.75x yia to

CNN, »ou pia peiworn 6.91x yio to meunet-vwwl. To MyAua TOEOUGLALEL TOL ONUAVTIX.
AEQEOY OTNY XATAVIAWDGCT) EVEQYELOG.

37

Extetopévn Heplindn

Model
BN Baseline HEM < 1%acc.loss HEE < 2% acc. loss < 5% acc. loss
0.006 12.82x 16.09x 22.46x 17.50x 23.54x 27.75x
I 0.8
2 0.005 I
>
2
= 0.004 0.6
2
=]
g I
€ 0.003
2 I 0.4
S
>.0.002
g
e 0.2
W 0.001
X 0.0
0.000 (a) UCl MLP (b) CMSIS CNN
5.86x 6.62x 6.91x
w08
=
2
c
© 0.6
I
€
3
2
S04
o
>
g
c 0.2
w
0.0

(c) MCUNET VWW-1

EyAuo 0.14: Koatavdhwon Evépyelog xdde exBoyfic twv poviéhwy nou eetdoape: (a) MLP and
10 “FANN-on-MCU”, (b) CNN ané 1o “CMSIS-NN”, ot (¢) mcunet-vwwl anéd to “MCUNet”.

0.6 Xvunepdopata xow MeAhoviixég Ilpoextdosig

Yy epyoota pog, TUpOLCIACUUE EVa OMNOXATPWUEVO TAX(CLO Yot TNV avamTugn xou Beh-
Ttiotonoinon povtéhwy TinyML oe évav enelepyaoctr) RISC-V. Anodeiloye 611 péow tne
epopuoyNc evoc oyruatog Mixed Precision Quantization xou tng pedoduxrc egepebivnong
OAWY TWV GYEDLACTIXWY ETLAOY GV, dUVATOL Vo Bpolue AUGELS TTOU lGOPEOTIOUY ETLTAYUVOT| TWV
oAy oplHUWY EAYLOTOTOLOVTOC TG ATWAEIES TNV axplfBela Twv povtéhwy. T'a va evioyboouue
TNV EXTEAECT] TOUC OTOV ETMAEYUEVO enelepyao Ty, enextelvopue To RV32IMC ISA ye e&eidi-
AEUPEVEC EVTOAEC X0 EVOWUATOOUUE Uil ETLTAEOV AELTOLEYWXT] Lovdda péca 6To pipeline tou
ene€epYUo T Yiot VoL TIC UTOaTNelEel. AUTY| 1) TROGEYYLOT XUTAUPERVEL VO CUVAYWVIOTEL oI OF
TOMEC TEQITTAOOELS VoL EETEPAOEL TIC aVTIoTOLYES ETOOCELS EpYURElwY ot ueYoBoAOYLWY TOU

otoyevouy opyttextovxéc RISC-V, xodog xou ddkeg IoT cuoxeuée.

Oplouéveg mpotdoelg, wote v Behtirdoly TEQUTERR To ATOTEAEGUATO UG UEANOVTIXG

APOEOLY TNV:

o 1o anoteheopatiny e€epelVNOT TOU YEOL ANICEWY PECW TNG AVATTUENG Wiag TayUTEENC

oTEATNYXAC, PACIOPEVNG OE GTATICTIXES TWES Yia TNV extiunom tng evaoinolaug xdie

38

0.6. Yuurepdouata xou MeArovtixég Hpoextdoeig

CTEWUATOS XAl TNV ATOTEAEOUOTIXNY TauToToNon NS BEATIOTNG Bloadp@wong yia TNV

axp{Bela TV Bopdv.

Evowudtwon post-load increment evtohov yia tnv amhodcTtevon Tng dayeipiong 6edo-

HEVWY EVTOC PBpoy Y xal ETUVORUUBOVOUEVLY AELTOURYLOV.

Thonoinon tou enelepyaoth oe Application-Specific Integrated Circuit (ASIC) te-

YVOAOYLES, VIOt 0XOUA XOADTEQES ETUOOTELS OO0V APORE TNV ToLYOTNTOL XAk TNV EVEQYELXL.

Thonoinon noAamhwy tuprvwy tne RISC-V apyttextovinric Tou xataoxeudooue Tave

oty Bt FPGA miaxéta, yio va auEACOUVUE TNV TORUAANAOTOMNGT TwV ahyopliuwy Hag.

Eqgoguoyt tne pedodoroyiog pag oe dapopetinotc RISC-V enelepyaotéc, yio vo ano-
BelouUe TNV EYXUEOTNTA Xt ELEVTNTA TNG.

39

Chapter 1

Introduction

Recent advancements in deep learning (DL) have fueled an exponential growth in artifi-
cial intelligence (AI) applications and services, ranging from personal assistants to recom-
mendation engines to video and audio surveillance systems. Furthermore, the expansion
of mobile computing and the Internet of Things (IoT) has led to billions of mobile tbeing
interconnected, producing vast amounts of data at the network’s edge. Motivated by this
evolution, there is a pressing need to extend Al capabilities to the edge of the network.
Doing so is essential for tapping into the vast potential of big data generated at the edge,
enabling real-time data processing, analysis, and decision-making closer to where data is
created. This shift aims to enhance efficiency, reduce latency, and support the development

of more responsive and intelligent edge-based applications [I].

A wide array of methodologies falls within the expansive scope of AI, among which Ma-
chine Learning (ML) has emerged as a particularly prominent technique [2]. Traditionally,
the deployment of ML has been power-intensive, necessitating substantial computational
resources to achieve the desired level of accuracy. This requirement has historically re-
stricted the application of ML to high-capacity devices, such as network nodes, equipped
to handle such demands. However, the evolution of technologies like the IoT and edge
computing has sparked a keen interest in adapting ML techniques for use in resource-

constrained embedded devices [3].

The advent of Tiny Machine Learning (TinyML) marks a revolutionary convergence
of ML (specifically, DL) with edge computing technology. TinyML facilitates the de-
ployment of compact DL models onto small edge devices that are subject to resource
limitations, including restricted computational power (with clock speeds typically in the
tens of megahertz), minimal memory capacity, and a mere few milliwatts (mW) of power
consumption. This innovation empowers devices to perform data analysis and interpre-
tation locally, enabling them to act in real-time based on the insights gained. Moreover,
TinyML has made it feasible to deploy pre-trained DL models onto these edge devices.
This is achieved through the application of techniques such as quantization and pruning,

which significantly reduce the size of DL models and optimize them for efficient infer-

41

Chapter 1. Introduction

ence, thus bridging the gap between advanced Al capabilities and resource-constrained

environments [4].

Recently, RISC-V has emerged as a notable open-source alternative to traditional Con-
trol Process Unit (CPU) architectures. This development has positioned RISC-V as a
formidable competitor of Intel, AMD, and ARM CPUs, across both 32-bit and 64-bit
variants, primarily due to its royalty-free nature [33]. The defining and most significant
attribute of RISC-V is its open-source Instruction Set Architecture (ISA). This feature
enables individuals to customize it by adding their unique instructions and functionali-
ties. Such flexibility is pivotal as it facilitates the creation of highly efficient, low-latency
co-processors, functional units, and accelerators. Unlike traditional approaches, these en-
hancements can be integrated directly within the RISC-V architecture, eliminating the
complexities associated with treating them as external devices reliant on memory map-
ping and interrupts for communication. This inherent adaptability of RISC-V not only
democratizes processor design but also significantly accelerates innovation in customized

computing solutions.

1.1 Contributions

In this work, we utilize the flexible RISC-V eco-system to provide an end-to-end frame-
work designed to deploy Deep Neural Networks (DNNs) on RISC-V cores. Our primary
objective is to optimize the performance of these models by reducing their latency, mem-
ory footprint and power consumption with respect to the initial RISC-V processor setup.
The first step involves the quantization of the Network’s floating point (FP) parameters.
We apply a Mixed Precision Quantization scheme, wherein the weights of each layer are
converted into integers, each with a distinct bit-width resolution. Through an exhaustive
search of the design space, we identify configurations that significantly enhance the model’s
speed without compromising its original accuracy. To maximize performance on the RISC-
V core, we decide to extend the processor’s supported instruction set. The instructions
we introduce are targeting a custom functional unit that is integrated in the processor’s
pipeline and is specialized in executing Deep Neural Network (DNN) algorithms. Our
approach was evaluated in a variety of DNN architectures and dataset and it manages to
compete and in many cases outperform state-of-the-art methodologies and other popular
frameworks dedicated to incorporating Neural Networks (NNs) in microprocessors and
RISC-V cores.

1.2 Thesis Outline

This document consists of 6 main chapters. In chapter[2, we are briefly going to present
some state-of-the-art methodologies that aim at optimizing the inference of DNNs on edge

devices. Some of these works will later be used as the baseline for our final results. In

42

1.2. Thesis Outline

chapter [3] we will dive into the theoretical background needed in order to gain a better
understanding of the concepts, techniques and structures that are used throughout this
work. Following, in chapter [4 we focus on the frameworks and tools that will be used in
our approach, as well as the Ibex processor that is the “heart” of our work, since this is
the selected RISC-V core that we are going to modify and test. Chapter [is the main
section of this work, in which we thoroughly describe the entirety of our methodology
and the optimization steps that resulted in the final architecture. In chapter [6] we are
going to present all the experimental results that were conducted and compare them to
related works. Finally, chapter [7| evaluates the performance of our design and provides

some suggestions in order to further optimize the results in the future.

43

Chapter 2

Related Work

As NNs continue to garner increasing interest, several frameworks like PyTorch [34],
TensorFlow [35], and Caffe2 [36] have emerged, primarily designed for training NNs and
deploying them at scale in GPU-accelerated data centers. Recently, however, there has
been a significant shift towards optimizing neural network (NN) inference for low-power
edge devices, particularly microcontrollers (MCUs) and RISC-V cores. In this context,
we will provide an overview of some widely-used frameworks and state-of-the-art methods

that aim at deploying NN models on these resource-constrained platforms.

Several leading frameworks, such as CMSIS-NN from ARM [5], TensorFlow Lite for mi-
crocontrollers (TFLite Micro) from Google [6], and X-CUBE-AI from STMicroelectronics
[7] are widely used commercially in order to integrate ML algorithms into MCUs. These
frameworks offer a variety of optimization techniques (quantization and weight pruning)
and optimized kernels that allow practitioners to compress the size of the models and
minimize their latency when running on edge devices. MCUNet is another state-of-the-
art work that provides a sophisticated approach that not only searches for the optimal
architecture of the networks, but also implements specialized functions to maximize per-
formance and efficiency on IoT systems [§]. Nonetheless, these works confine their Design
Space Exploration primarily to dataflow optimizations, focusing either on the memory

hierarchy or on strategies for loop unrolling and tiling.

To further push performance, several studies [9], [10] introduce dedicated DNN acceler-
ators. However, this approach often compromises on providing comprehensive support for
instruction-driven MCUs on ultra-edge platforms, affecting versatility across a wide range
of IoT nodes. With the increasing prominence of RISC-V cores in recent years, there has
been a notable surge in research focusing on exploring RISC-V architectures for NN ac-
celeration. It has been observed that enhancing the throughput of RISC-V processors for
quantized DNNs demonstrates significant potential over the use of dedicated DNN accel-
erators. These strategies are centered around expanding the RISC-V ISA by introducing
new instructions specifically designed to expedite the inference process of Quantized Neu-
ral Networks (QNNs) on RISC-V cores. Some notable works include FANN-on-MCU [11],

45

Chapter 2. Related Work

RedMulE [12] and Dory [I3] that enable the inference of lightweight and energy-efficient
NNs on the RISC-V-based PULP platform processors. These works enable only 8-bit
or higher precision, which can hardly leverage the computational reduction potential of
lower-bit quantized DNNs. RISC-V processors, such as the ones introduced by PULP-NN
[14], achieve notable speed improvements by facilitating lower-bit DNN inference, through
the use of instructions designed to pack and extract vectors of smaller data sizes, such
as 4-bit and 2-bit, while utilizing the same SIMD MAC units. However, these casting in-
structions incur overheads for computations based on 4-bit and 2-bit sizes, which in turn
reduce the performance gains for these lower bit widths. On the other hand, its extension
XpulpNN [I5] supports 2, 4, and 8-bit SIMD operations but requires that both operands

are of equal precision.

Many of the current CPU and GPU architectures exhibit limited capabilities for mixed-
precision neural networks, as these systems are primarily optimized for 8, 16, and 32-bit
data types. As a result, the vast majority of accelerators and established software frame-
works for neural network training and deployment are tailored towards implementations
that utilize higher-precision formats, offering only broad strategies for integrating mixed-
precision techniques [16], [I7]. There exist some works that emphasize on optimizing
coarse-grained (per-network or per-layer) mixed-precision operations with sub-byte pa-
rameters, such as BARVINN [18§], which is an FPGA based neural network accelerator
that communicates with a RISC-V core and Dustin [19] that extends the RV32IC to per-
form mixed-precision operations. However, these approaches often overlook critical factors

like area and resource utilization, which are essential for more efficient implementations.

46

Chapter 3

Theoretical Background

3.1 Deep Neural Networks

3.1.1 Machine Learning - Introduction

In the dynamic landscape of technological advancement, ML stands at the forefront,
driving innovation and transforming the way we perceive and interact with the world.
Whether it’s predicting stock market trends, recognizing speech, or recommending per-
sonalized content, the applications of ML are vast and diverse, permeating through various

industries such as healthcare, finance, marketing, and more.

ML is a subfield of Al that involves the development of algorithms and statistical models
that enable computers to improve their performance in tasks through experience. These
algorithms and models are designed to learn from data and make predictions or decisions
without explicit instructions. It combines elements stemming from the fields of computer
science, statistics as well as domain-specific knowledge to create algorithms that not only

decipher complex patterns within data but also adapt and improve over time.

ML can be broadly categorized into four types based on the learning styles and ap-
proaches [37]:

e Supervised Learning: the algorithm is trained on a labeled dataset, where the in-
put data is paired with corresponding output labels. After the training is completed,
the model is usually tested in new unseen data, in order to estimate its performance.
It is most commonly applied in classification tasks, such as object detection, and

regression problems.

e Unsupervised Learning: in this case the algorithm is dealing with unlabeled data
and is trying to discover hidden patterns and structures within the training data,
without any human interference. This method is preferred in clustering problems,

dimensionality reduction tasks or anomaly detection.

47

Chapter 3. Theoretical Background

e Semi-supervised Learning: this is a paradigm that falls between supervised and
unsupervised learning. The ML model is trained on a dataset that contains both
labeled and unlabeled data. The labeled data allow the model to understand the
relationships between the input data and the expected outputs, while the unlabeled
inputs help the model generalize and discover underlying structures. Semi-supervised
training is suitable in cases in which obtaining labeled data is a time-consuming task

and unlabeled data are numerous.

¢ Reinforcement Learning: this type of algorithm enables software agents to inter-
act with the environment around them, make decisions and learn through trial-and-
error. Based on the outcome of its decisions, the model receives a penalty or a reward
and adjusts its parameters accordingly, in order to improve its efficiency. This type
of strategy has been applied in the gaming industry or even in more sophisticated

systems, such as robotics or autonomous driving.

3.1.2 Deep Learning

Over the recent years, the ML community has widely recognized the DL computing
paradigm as the gold standard and it has emerged as the predominant approach in the
field. Exceptional outcomes on demanding tasks have been attained by developers and
researchers, and in certain instances, they have succeeded in generating models that equal
or surpass human capabilities in these specific tasks. DL constitutes a subfield of ML
(see Figure [3.1)), concentrating on the utilization of artificial neural networks (ANNs)
characterized by multiple layers [20].

Artificial Neural Networks

ANNs are computational models that have drawn inspiration from the structure of
a human’s brain. The main building block of ANNs is called a neuron and it mimics
the functionality of its biological counterpart. Neurons are organized into layers, with an
input layer receiving data, one or more hidden layers processing them, and an output layer
producing the final result. Nodes between consecutive layers are connected to each other

via synapses called weights, in order to form the Network.

Each neuron receives multiple input data and produces an output value, which can
be calculated by applying a nonlinear function on the weighted sum of its inputs plus a
learnable bias term, as described in Equation [3.1]138].

y=1rf (i Wiui+b> =f (WTu+b) (3.1)
i=1

The function f on the equation is called activation function and allows the model to discover

more complex relationships within the input data. These functions decide if the neuron

48

3.1.2 Deep Learning

Artificial Intelligence:
Mimicking the intelligence or
behavioural pattern of humans

or any other living entity.

Machine Learning:
A technique by which a computer
can "learn" from data, without
using a complex set of different
rules. This approach is mainly
based on training a model from
datasets.

Deep Learning:
A technique to perform
machine learning

inspired by our brain's
own network of
neurons.

Figure 3.1: Deep Learning Family

should be activated or not, based on the magnitude of the signal they receive. Some of

the most commonly used activation functions in modern NNs are:

e Sigmoid (logistic) function
e Hyperbolic Tangent (Tanh)
e Rectified Linear Unit (ReLU)

o Leaky ReLLU

The mathematical formulas representing these activation functions, along with their graph-

ical representations, are depicted in Figure [3.2
Multi-layer Perceptrons

A Multi-layer Perceptron (MLP) represents the foundational architecture of an Artifi-
cial Neural Network (ANN) and is composed of several Dense or Fully Connected layers.
Within these layers, every node is interconnected with every node in the following layer, es-
tablishing a densely connected network. Such comprehensive connectivity enables MLPs
to discern intricate relationships and patterns within the data, rendering them highly
adaptable and broadly applicable across various fields. The output of node i in the k-th

layer can be calculated using the formula:

49

Chapter 3. Theoretical Background

Sigmioid Tanh
10 — W
.' P
| //- osll e(z)=2=2
"7[-} l+e- Il.." - || ' & e
"':i - -3 1|.|b|£ 3 I
i
/ u.;l'
i R 3 i —‘{In-
{a) {by
RelU LeakngLUia=D.2]
I g -~
r : 5 /-I/TH"- e} (2 zedl
z, 2= Leak v zh=1
Rellz)=1 / |z, afherine
L2} |, otherwise T——— : 5

())

Figure 3.2: The graphical curves of the most common activation functions : (a) Sigmoid, (b)
Tahn, (¢) ReLU, and (d) Leaky ReLU.
Source: [21]

Nk-1
aF = f Z wfjaffl + wh, (3.2)
j=1

While Multi-layer Perceptrons (MLPs) are recognized as universal approximators ca-
pable of being trained to replicate any given nonlinear input-output mapping, they of-
ten encounter challenges when processing sequential or spatial data. This limitation has
prompted researchers to develop specialized architectures designed specifically for handling
these types of data [22].

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) stand as a transformative advancement in the
realm of DL. Inspired by the organization of the human visual system, these algorithms
have been tailored for the processing of visual data. CNNs leverage principles from linear
algebra, particularly convolution operations, to extract features and recognize patterns
within visual information. Because Convolutional Networks are so effective at identifying
objects, they are primarily deployed in computer vision tasks, such as image recognition
and object detection, with common use cases including self-driving cars, facial recognition
and medical image analysis. However, their adaptability extends to handling audio and

other forms of signal data as well.

CNNs mainly consist of 3 components: convolutional, pooling and fully connected
layers. The typical architecture of a CNN is illustrated in Figure 3.3

50

3.1.2 Deep Learning

1. Dog
| - Nat Dog
e o — = T i 1 ¥
Input image Convolution Layer ReLU Layer Pooling Layer i ,.ff Output
' |+ Classes
Fully Conmected
Layer

Figure 3.3: Structure of a typical Convolutional Neural Network.
Source: [20]

The convolutional layer is the fundamental building block of a CNN and is where
the majority of computations occur. This layer performs the dot product between a
matrix of learnable parameters otherwise known as a kernel and a restricted portion of
the receptive field of an input image. The output feature map that will be produced,
contains information about the presence of specific features [20]. These features could
vary from basic image characteristics such as edges, textures and colors, especially in the
earlier convolutional layers, to more complex structures, such as objects and shapes in

later stages.

Pooling layers serve as crucial components strategically positioned after Convolutional
Layers. Their primary purpose is to downsample the spatial dimensions of the feature
maps, contributing to a reduction in the computational complexity of the network. This
downsampling, in turn, offers advantages such as faster training and more efficient in-
ference times, making pooling layers integral for enhancing the overall performance and
efficiency of CNN architectures. Furthermore, it is useful for extracting dominant features
which are rotationally and positionally invariant, thus maintaining the process of effec-
tively training the model. There are two types of pooling layers that are mainly used in
modern CNNs:

e Max Pooling, that returns the maximum value from the portion of the image

covered by the kernel and

e Average Pooling, that returns the average of all the values from the portion of

the image covered by the kernel.

A detailed illustration of how the two pooling functions operate is provided in Figure [3.4

o1

Chapter 3. Theoretical Background

max pooling
20 30

112(37
r12 20|30 0

8 (121 2|0

34701 37| 4
I112100 2512

average pooling

Figure 3.4: Comprehensive example of Max and Average Pooling.

In recent years, the evolution of CNNs has been driven by a multitude of challenges and
a growing demand for enhanced performance in various fields. The increasing complexity of
tasks, especially in the realms of computer vision and pattern recognition, has necessitated
advancements in the architecture and capabilities of CNNs. These challenges include
the need for improved accuracy, efficiency, and adaptability to diverse data types and

modalities.

While on the one hand, deeper and more complex networks can often perform better,
training them efficiently is a very time consuming and challenging task, due to problems
like vanishing or exploding gradients. Architectures like ResNet [39] have introduced the
concept of residual connections as an elegant solution to this problem. These shortcut
connections provide a direct path for the input to bypass the block’s internal transforma-
tions and reach the output (see Figure [3.5). The residual learning concept that involves
learning the difference between the input and output has had a profound impact on the
training of DNNs, enabling the development of deeper and more expressive architectures

that can effectively learn complex representations from data.

Expanding the size of NNs is a typical tactic to boost their performance. However, such
scaling up requires more computational power. When deploying on resource-limited plat-
forms, such as mobile or embedded devices, the increased demands of larger models pose
a significant challenge. Furthermore, time-critical applications, like autonomous vehicles
or augmented reality, struggle to satisfy their stringent temporal constraints when oper-
ating on devices with constrained computing resources. An effective strategy employed
in models such as MobileNets [40] involves the use of Depthwise Separable Convolutions,

which serve as a more efficient alternative to standard convolutional layers.

52

3.1.2 Deep Learning

X

h 4

weight layer
F(x) Jrelu <
weight layer identity

Figure 3.5: ResNet Block.
Source: [39]

A conventional convolutional layer accepts a feature map F with dimensions DF x
DF x M, where DF represents the spatial width and height of the square input feature
map and M denotes the number of input channels (input depth). This layer produces
an output feature map G of dimensions DF x DF x N, with N being the number of
output channels (output depth). At the same time, the operation of these layers is defined
by a convolutional kernel K, which is sized at DK x DK x M x N. Here, DK is the
square spatial dimension of the kernel, and M and N are the numbers of input and output

channels, respectively, as previously mentioned.

Assuming that stride is equal to one and that padding is applied, the output feature map

can be computed as:

Grin = Z Kijmmn * Freti-1,4+j—1,m (3.3)

z?]?m

The computational cost of the standard convolutions is:
DK -DK-M-N-DF-DF (3.4)

Depthwise Separable convolutional layers are a variant of convolutional layers that
simplify the computation and reduce the number of parameters, while maintaining the
model’s accuracy at the same level. This approach factorizes the standard convolution

into:

e a depthwise convolution and

e a pointwise convolution (1x1 convolution).

Unlike standard convolutional layers that apply a filter across all input channels and
combine the results, depthwise convolutions perform a single convolution for each input

channel. Depthwise convolution with one filter per input channel can be written as:

53

Chapter 3. Theoretical Background

Gram =Y Kijom * Fric114j-1m (3.5)

2%
where K is the depthwise convolutional kernel of size DK x DK x M where the m-th
filter in K is applied to the m-th channel in F to produce the mth channel of the filtered

output feature map G. The depthwise convolution has a computational cost of:

DK -DK -M-DF - DF (3.6)

Depthwise convolution is notably efficient when compared to standard convolution.
Nevertheless, it exclusively filters input channels and it does not combine them into creat-
ing new features. So an additional layer, which performs pointwise convolution is needed,
in order to generate these new features. In other words, this layer calculates a linear
combination of the outputs of the depthwise convolution via applying a 1x1 convolution.
The total cost of the Depthwise separable convolutions is the sum of the depthwise and

1x1 pointwise convolutions:

DK -DK-M-DF-DF+M-N-DF-DF (3.7)

/4

e,
L

T4

Figure 3.6: Depthwise Separate Convolution.
which is significantly lower than the one in standard convolutions.
Recurrent Neural Networks
Recurrent Neural Networks (RNNs) stand at the forefront of sequential data processing

within the realm of AI. Such data can be handwriting, genomes, text or numerical time se-

ries which are often produced in industry settings. Nonetheless, they can also be employed

o4

3.2. Neural Network Quantization

on images when they are decomposed into a sequence of patches and processed accordingly
[41]. What separates them from other ANNs is how the information flows through them.
RNNs have the unique ability to retain information from previous time steps, creating

some type of memory, hence making them exceptional when handling sequential inputs.

There are other sub-classes of RNNs, most notably the Long Short Term Memory
(LSTM) and the Gated Recurrent Unit (GRU) architectures, which have gained prefer-
ence over traditional RNNs, primarily due to their ability to address certain limitations
associated with RNNs, such as the vanishing gradient problem and the challenge of re-

taining information over long sequences of data.

‘:ht:‘ Forget gate ‘:ht:‘ (ht ‘

i

N
1
1
1
1

ST TTTTTN

@ @ Input gate Output gate @ Reset gate Update gate
RNN LSTM GRU

Figure 3.7: RNN, LSTM and GRU Cell Structure.

3.2 Neural Network Quantization

The substantial computational demands inherent in deploying NNs on resource con-
strained embedded electronic devices present a significant challenge. In response to this,
NN quantization surfaces as a strategic methodology aimed at compressing models and al-
leviating computational burdens. However, it is crucial to acknowledge that quantization
introduces trade-offs, as it may result in accuracy degradation compared to the original
model. This delicate balance between computational efficiency and model precision under-
scores the nuanced considerations inherent in the adoption of quantization for real-world

deployment on constrained devices.

In the process of NN quantization, the parameters of the network, both weights and
activations, undergo storage in a bit precision lower than the conventional 16 or 32 bits
used during training [23]. Utilizing lower-precision formats during inference yields several

advantages:

1. Decreased Latency: Lower-precision formats result in lower latency, leveraging
processors that exhibit higher throughput for arithmetic operations with fewer bits.
This acceleration is particularly beneficial for intensive mathematical operations like

matrix multiplications and convolutions.

95

Chapter 3. Theoretical Background

2. Diminished Memory Footprint: Storing the network’s parameters in lower bit
precision contributes to a reduced memory footprint. This not only conserves mem-

ory space but also enhances the efficient utilization of the system’s caches.

3. Energy Efficiency: Lower precision facilitates faster algorithm execution and re-
duces memory accesses, leading to decreased power consumption. This energy effi-

ciency is a valuable outcome of employing lower-precision formats during inference.

3.2.1 Quantization Fundamentals

Initially, it is essential to establish a systematic method to transform real values, which
are expressed as FP numbers, into a narrower precision range. Our emphasis will be on
Uniform Quantization, the most widely used quantization technique known for facilitating

efficient fixed-point implementation arithmetics.

Uniform Quantization is characterized by three parameters: the scale factor (S), the
zero point (Z), and the bit width (b). The scale factor and zero point play a pivotal role in
mapping real values onto an integer grid, the size of which is determined by the bit width.
Typically represented as a FP number, the scale factor dictates the quantizer’s step size.
On the other hand, the zero point, an integer value, guarantees accurate quantization
of the real zero, a crucial aspect for operations such as zero padding or ReLU to avoid

introducing quantization errors.

There are 2 types of Uniform Quantization: Asymmetric and Symmetric. The main

difference between the 2 is that in the latter case, the zero point value is equal to 0. First

we map the real-valued vector x to the unsigned integer grid {—20=1, ... 20=1 —1}:
Zing = clamp ([%} + Z; 2071 bl _ 1) (3.8)

where [] is the round-to-nearest operator and clamping is defined as:

a, r<a
clamp(z;a,¢c) =<z, a<z<c (3.9)
c, T>¢cC

For the case of unsigned integers, the quantization scheme is described by the following

equation:

r
S

Unsigned symmetric quantization is particularly appropriate for distributions that exhibit

Zuing = clamp ([} +Z:0,2° - 1) (3.10)

a single tail, as observed in ReLLU activations. Conversely, signed symmetric quantization
is a suitable choice for distributions that demonstrate approximate symmetry around zero,

a common scenario when quantizing the weights and biases of a network [42].

56

3.2.2 Full Integer Quantization and Inference

The values of the scale factors and zero points are highly dependent on the clipping

range [«, B8] of the FP values and are computed as described in the following equations:

8 —«a

g—r-_°
20 —1

(3.11)

Z=—[3-8]—-2""1 (3.12)

As we can see, it is essential to determine the clipping range before calculating the scale
and zero-point values. This procedure is called calibration. In asymmetric quantization,
a very simple but effective approach is to use the minimum and maximum values of the

signal, i.e., @ = ryipn and S = rmax. In the case of symmetric quantization, we choose a

symmetric clipping range of 5 = —a = max(|”min|, |"max|)-
Symmetric signed Symmetric unsigned
S Xintg S Xyints
-128 127 255
Lo by o 0

b beea bl
0 & max 0 T max

Asymmetric
& (Xuintﬁ - "-’)

0 255

el
Lol bt b
min = —8z & 0 max

Figure 3.8: 8-bit Mapping across the different types of Uniform Quantization.
Source: [42)

In CNNs, the convolutional filters can have a different range of values. Consequently,
a distinguishing factor among quantization methods lies in the granularity with which the
clipping range [a, (] is determined for the weights. The first method is called per-tensor
quantization, in which only a single set of quantization parameters (scale factor and zero
point) is selected. Even though this technique is associated with sub-optimal accuracy, it is
often preferred, as it can easily be mapped into hardware. The second approach is referred
to as per-channel quantization and is currently the established method for quantizing
convolutional kernels. In this scenario, each channel is assigned a distinct scaling factor,

ensuring enhanced quantization resolution and improved overall performance (see Figure
39).
3.2.2 Full Integer Quantization and Inference

In addition to the previously outlined benefits, Full Integer Quantization is put into
action when deploying a ML model on a microcontroller or device, lacking support for FP

and fixed-point arithmetic operations.

o7

Chapter 3. Theoretical Background

per-channel quantization

52,72
51, 21

50, 20

per-tensor quantization

57

Figure 3.9: Per-Layer vs Per-Channel Quantization in CNNs.

The products that result from the matrix multiplications between the input and weight
vectors are stored in an accumulator with higher bit width, typically 32-bits or more.
This approach mitigates the risk of errors arising from overflow. The activations stored
in the 32-bit accumulators need to be written to memory before they can be used by
the next layer. To minimize data transfer and simplify the operations of the next layer,
these activations undergo quantization back to a lower bit width. This step is called

requantization. Figure [3.10| provides a simplified schematic of this whole procedure.

Input values
Sy

""""1,1 ‘“1"1,'_'-' ‘“1"1,5' V""1,+

W W Wos Wy,

Memory

Wi, Wi, Wiz Wi,

Weight values
E[J!
uoljeznuenbay

Wy Weo Wez Wi,

INT8 INT32

Figure 3.10: A schematic of matrix - vector multiplication and requantization back to 8 bits.

Source: [42]

Consider the multiplication of two square N x N matrices of real numbers, r; and
ro, with their product represented as r3 = r1 - ro. We denote the entries of each of these

matrices r,, (where = 1,2 or 3) as r(()f 9 for 1 < 1,7 < N, and the quantization parameters

o8

3.2.3 Mixed Precision Quantization

with which they are quantized as (S, Z»). We denote the quantized entries by qg 7). The
relation between the real and the quantized values based on equation (3.8 can be expressed
as:

r?) = So - (q§7) = Za) (3.13)

The results from matrix multiplication can be given by:
N
Sy (a5 = 25) =Y S1- (0 — 21) - 8- (4" - 22) (3.14)
j=1
This equation can also be written as:
N
a =My <qgi’j) - Z1> : <CJ§j’k) - Zz) (3.15)
j=1

where M is defined as:

= (3.16)

In equation the only FP value is the multiplier M, which is derived by the scaling
values S1, So, and S3 as shown in equation Instead of this formula, we can use the

following approximate expression [43]:
M= My-27" (3.17)

where My and n are both non negative integers. As a result, rather than performing a
multiplication with a FP number, we will replace it with a multiplication with an integer
value followed by a rounding bit shift operation. After scaling down the accumulated
result, the last step is to cast it down to an unsigned integer value (uint8), if ReLLU is the

applied activation function, or to a signed 8-bit (int8) format otherwise.

3.2.3 Mixed Precision Quantization

Reducing the quantization to even lower bit widths (below 8 bits) can substantially
enhance hardware performance. However, quantizing the entire network to extremely low
precision may lead to a considerable loss in accuracy, making it unsuitable for critical
applications. An elegant way to tackle this problem is to apply Mixed Precision Quanti-

zation.

In this hardware friendly approach, weights and activations in each layer are quantized
with different bit widths. This way we can benefit from the lower bit width (lower latency,
decreased power consumption and lower memory footprint), while minimizing accuracy

degradation as much as possible.

One of the primary challenges associated with this technique is determining the optimal
configuration for the bit widths of the weights in each layer. The search space expands ex-
ponentially with the number of layers in a network, making exhaustive search, particularly

in large models like MobileNets, a time-consuming task.

99

Chapter 3. Theoretical Background

Suppose we have an L-layers network, each layer has n optional bit-widths for weights and

activations, the resulting search space is:

n?l (3.18)

Many different methods have been proposed in order to tackle this problem. Their main
objective is to identify how sensitive each layer is to quantization. More sensitive layers are
kept at higher precision, while more aggressive quantization is applied on layers with lower
sensitivity [24]. Other solutions involve reducing the design space, in order to speedup the

whole process.

3.2.4 Fine-Tuning Methods

Adjusting the parameters in the NN after quantization is frequently necessary. This ad-
justment can be accomplished through either retraining the model, known as Quantization-
Aware Training (QAT), or without retraining, a process often referred to as Post-Training
Quantization (PTQ).

QAT involves refining the model through additional training, with quantization in
mind. During QAT, the quantization parameters (scaling, clipping, and rounding) are
integrated into the training procedure. This incorporation allows the model to learn
and adapt to maintain its accuracy even after quantization, resulting in a more efficient
quantized model. During training, the forward and backward pass are performed in FP
format, which is necessary in order to avoid zero gradient values. However the weights are
quantized after each iteration to imitate the testing or inference phase [25]. Nonetheless, a
significant drawback of QAT is the computational cost associated with retraining the NN
model. This retraining process may necessitate several hundred epochs to regain accuracy,

particularly when dealing with low-bit precision quantization.

PTQ is a quantization technique where the model is quantized after it has been trained.
The Quantization parameters are determined with the use of a calibration dataset (rep-
resentative of the data that model has been trained at), without any further fine tuning.
As such, PTQ stands out as a fast method for quantizing NNs [26]. However, this process

often entails a trade-off with lower accuracy when compared to QAT.

3.3 RISC-V

3.3.1 RISC-V Overview

In contrast to proprietary processor architectures, RISC-V distinguishes itself as an
open-source ISA tailored for crafting customized processors designed for a variety of end

applications. Originating from the University of California, Berkeley, the RISC-V ISA

60

3.3.2 Base User-Level ISA

represents the fifth generation of processors built on the principles of the reduced instruc-
tion set computer (RISC). Due to its open-source nature, RISC-V can be utilized both in

academic and industrial applications [27].

RISC-V is touted for being a very small and efficient architecture, and at the same
time has been defined to be easily extensible. In recent years, it has gained popularity
because the architecture provides simplified instructions to the processor to accomplish
various tasks. It also enables designers to create thousands of potential custom processors

that specialize on a specific task, e.g NN Optimization.

3.3.2 Base User-Level ISA

The RISC-V foundation is characterized by its modest size, comprising merely 47 in-
structions that are obligatory for implementation. In contrast, the x86 architecture encom-
passes 1.503 instructions, and Arm features around 500. RISC-V adopts a straightforward
load/store architecture, where all operations take place within internal registers, and there

are dedicated instructions for transferring data between registers and memory.

The standard user-level integer ISA in RISC-V comes in two variations: RV32I and
RV64I, offering 32-bit and 64-bit address spaces, respectively. In the base RISC-V ISA,
instructions are of a fixed length at 32 bits, and they must align naturally on 32-bit
boundaries [28]. There are 6 basic instruction formats that are shown in Figure

e R-type: register to register

I-type: short immediates and loads

S-type: stores

B-type: conditional branches, a variation of S-type

U-type: long immediates

J-type: unconditional jumps, a variation of U-type

3.3.3 RISC-V ISA Extensions

The RISC-V ISA is extendable, which means that developers, based on the requirements
of their project, can evaluate if they need to use more instructions than the ones that base
integer ISA offers. RV32I uses one-eighth of the encoding space. This means there’s plenty

of room for extensions.

Each base integer ISA can be extended with one or more of the standard optional
instruction-set extensions defined by the RISC-V Foundation. Some of the most important

ones are noted below [29]:

61

Chapter 3. Theoretical Background

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
\ funct7 \ s2 | sl | funct3 | rd | opcode | R-type
\ imm[11:0] | sl | funct3 | rd | opcode | I-type
[imm[i1:] | rs2 [sl | funct3 | imm[40] [opcode | S-type
[imm[12] | imm[10:5] | rs2 [wsl | funci3 | imm[d:A] [imm[11] | opcode | B-type
\ imm[31:12] \ rd | opcode | U-type
[fmm[20] | Tom]10:1] [Tom[11] | mm[19:12] | rd [opcode | J-type

Figure 3.11: Basic RV32I ISA Instructions Format.
Source: [28]

M-Extension: Instructions for Integer (signed and unsigned) multiplication and
division.
A-Extension: Atomic instructions that read, modify, and write memory atomically

to provide synchronization across several RISC-V harts in the same memory space.

F-Extension: Offers Single-precision FP instructions that are compliant with IEEE
754-2008 and adds another extra 32 registers for FP operations (each 32-bits in
length).

D-Extension: Includes instructions for double-precision FP compliant with IEEE
754-2008 and extends the width of the FP registers to 64-bits.

Q-Extension: Adds support for instructions that implement Quad-precision FP
operations compliant with IEEE 754-2008. Furthermore, the width of the registers
is widened to 128-bits.

C-Extension: Compressed instructions (16-bit instructions) to produce reduced

code size.

Counters-Extension: Provides up to 32 64-bit counters that can be accessed
through specific read-only Control and Status registers (CSR) and can be very useful

for counting the elapsed number of cycles or programmable event counting.

B-Extension: It is a bit manipulation instruction-set extension.

62

Chapter 4

Utilized Tools and Frameworks

4.1 PyTorch

PyTorch, built upon the Torch library, is an open-source ML framework utilized in
domains such as reinforcement learning, computer vision and natural language processing.
Initially developed by Meta Al, it is currently under the Linux Foundation’s umbrella.
Although the Python interface is more polished and the primary focus of development,
PyTorch also has a C++ interface.

Written in Python, it’s relatively easy for most ML developers to learn and use. Py-
Torch stands out due to its outstanding support for GPUs and its utilization of reverse-
mode auto-differentiation, allowing for dynamic modification of computation graphs. This

makes it a popular choice for fast experimentation and prototyping.

PyTorch provides two high-level features [34]:

e Tensor computation (like NumPy) with strong GPU acceleration

e DNNs built on a tape-based autograd system

PyTorch, similarly to other popular ML frameworks, such as TensorFlow, use tensors
and graphs as their core components. Tensors are a core PyTorch data type, similar to a
multidimensional array, serving the purpose of storing and manipulating both the inputs
and outputs of a model, along with the model’s parameters. While sharing similarities with
NumPy’s data structures (namely ndarrays), tensors possess the added capability of run-
ning on GPUs, facilitating accelerated computing. Graphs are data structures consisting
of connected nodes (called vertices) and edges. Every modern framework for DL is based
on the concept of graphs, where NNs are depicted as a graph structure of computations
(see Figure . While numerous frameworks, like TensorFlow, adopt static computa-
tion graphs, PyTorch distinguishes itself by employing dynamic computation graphs. In
PyTorch, the computation graph is constructed and reconstructed during runtime. The
same code responsible for executing computations in the forward pass is simultaneously

engaged in creating the data structure necessary for backpropagation.

63

Chapter 4. Utilized Tools and Frameworks

Ctanh] b
h, = tanh(Wph[, + Wix")

Figure 4.1: Example of a Neural Network Graph.

4.2 Brevitas

Brevitas is a PyTorch library that allows us to perform quantization to NN models
and can support both PTQ and QAT. It has found successful application in numerous
research initiatives and commercial deployments aimed at CPUs, GPUs, and custom ac-
celerators operating on Xilinx FPGAs. The general quantization technique employed is
affine quantization, with focus on uniform quantization. As of now, out-of-the-box support

for non-uniform quantization is not available.

Brevitas provides the necessary tools and functions in order to implement and fine
tune quantized models. More specifically, it offers quantized implementations of the most
commonly used DNN layers, while at the same time it allows developers to configure
their models with a variety of quantization schemes, e.g. power of two quantization, and
different bit-widths for the weights and activations of each layer of the network. Lastly,
the library has the built-in tools for researchers to create new QAT techniques and test
their efficiency [44].

4.3 1lowRISC/Ibex

Ibex is a small production-quality open source 32-bit RISC-V processor. Ibex was
originally part of the PULP platform, under the name “Zero-risky” aimed at very low
power applications. Nowadays it is maintained and further developed by lowRISC [30].

Ibex is being extensively verified and supports the Integer (I) or Embedded (E), Integer
Multiplication and Division (M), Compressed (C), and B (Bit Manipulation) extensions.
Its architecture and functionality are meticulously defined using SystemVerilog. Featuring
a 2-stage pipeline, the core’s initial stage is dedicated to Instruction Fetch (IF), followed
by the Instruction Decode and Execution (ID/EX) stage. Additionally, an optional third
stage, WriteBack, is available, tasked with writing the results of executed instructions

back to the Register File or Memory, ensuring seamless operation and data integrity.

64

4.3. lowRISC/Ibex

The core possesses various parameters that can be adjusted to align with the require-
ments of specific applications, enhancing its adaptability to diverse scenarios. This char-
acteristic renders the core highly parameterizable. The options include different choices
for the architecture of the multiplier unit, as well as a range of performance and security
features. Specifically, regarding the multiplier unit, there are two distinct configurations
available. The first setup conducts the multiplication between two 32-bit integers using
only one 17 x 17 multiplier, which corresponds to the utilization of one Digital Signal Pro-
cessor (DSP) in a FPGA design. The operation completes in 3 cycles, optimizing resource
usage at the cost of increased operation time. In contrast, the second alternative allows
for single-cycle multiplication by employing three 17 x 17 multipliers. This setup requires
four DSPs—the additional DSP is essential for accumulating the partial products. This

configuration offers a speed advantage at the expense of increased resource utilization.

Ibex Core

Register File
L

Decode and Execute Writeback

e
. :

ALU
J| |MultDiy

Figure 4.2: Schematic Diagram of the Ibex RISC-V Core.
Source: [30]

Instruction Fetch

[i

ach
Prefetch I
L L
‘" Buffer

Compressed Instruction

AR U] Ao wa py Bl
A= A BT

aoBIajul AoWapy uono nrsuy

LsU

Decoder

.

@IowRISC

SPIKE RISC-V ISA Simulator

SPIKE is an open-source simulator that emulates the behavior of RISC-V processors.
It is primarily designed for software development, testing, and debugging, providing a
convenient environment for RISC-V software developers. It can simulate different variants
of the RISC-V ISA, including RV32I, RV64I and various instruction set extensions [45].
Spike proves to be especially valuable for developers when introducing new instructions to
the RISC-V ISA, as it provides confirmation that the RISC-V toolchain has been effectively
updated to incorporate the new instructions and ensures that the correct executable has

been generated.

65

Chapter 4. Utilized Tools and Frameworks

FuseSoC

FuseSoC is an award-winning open-source tool and framework designed for managing
and building Hardware Description Language (HDL) codes. It provides a flexible and scal-
able environment for developing, sharing, and integrating Intellectual Property (IP) cores
and can be an aid for creating, building and simulating System-on-Chip (SoC) solutions
[46]. Ibex flows utilize FuseSoC to collect the necessary Register-Transfer Level (RTL)
files and perform builds, automating the process of constructing the Ibex core for both
simulation and deployment on FPGA or ASIC platforms. Furthermore, by specifying a

set of parameters, different configurations of the RISC-V core can be built and evaluated.
Verilator

Verilator is an open-source tool used for the simulation and synthesis of digital designs
described in Verilog or SystemVerilog. It operates as a cycle-accurate simulator and syn-
thesizer, offering designers a powerful platform for modeling and analyzing digital circuits,
by allowing them to simulate the behavior of their components at a detailed level, tracking
changes from one clock cycle to the next. Verilator is known for its speed and efficiency,

as it can outperform other closed-source commercial simulators.

Verilator is invoked using parameters similar to GCC or Synopsys’s VCS. Verilator
reads the HDL code, conducts lint checks, and optionally incorporates assertion checks and
coverage-analysis points. The resultant Verilated C++/SystemC files are then compiled
by a C++ compiler (such as gee/clang/MSVC++), potentially alongside a user’s custom
C++/SystemC wrapper file, to instantiate the Verilated model. Executing the resulting

executable facilitates the simulation of the design [47].

Verilator can be used in compliance with FuseSoc to simulate the functionality of the
Ibex core when running an executable file (in the formats of .elf or .vmem). Following
the simulation, we can verify the accurate execution of the program and obtain valuable
insights into the program’s latency, the count of retired instructions, and other relevant

metrics.

66

Chapter 5

Configurable Mixed Precision
RISC-V Architecture

In this section, we are going to thoroughly discuss the workflow used in this thesis.
The primary goal centers on deploying compact, high-speed, and energy-efficient DNNs
on RISC-V cores. Concurrently, there’s a focus on minimizing the additional resource uti-
lization required on the modified core, ensuring that the enhancements in performance and
efficiency do not come at the expense of excessive resource consumption. This methodol-
ogy is versatile and applicable across various types of DNNs. Nevertheless, our primary
focus and analysis will be on MLPs and CNN architectures, as these are the structures
that are most commonly utilized in ML applications, deployed on edge devices and micro-

controllers, making them highly relevant for our exploration of efficient NN development.

Our methodology unfolds across three primary stages. Initially, the model parame-
ters undergo a process of Mixed Precision Quantization (MPQ). To identify the optimal
configurations that boost the model’s operational speed while preserving its accuracy, we
conduct a thorough exploration of the design space. To further enhance performance on
the RISC-V core, we opt to extend the processor’s supported instruction set. The newly
introduced instructions are specifically designed to interact with a NN accelerator, seam-
lessly integrated within the processor’s pipeline. As a demonstration of our approach’s
viability, we apply this methodology on the Ibex core. The resulting architecture will be
mapped and evaluated on the Virtex-7 FPGA board provided by Xilinx.

The proposed methodology can be summarized in Figure [5.1

5.1 Model Quantization

The initial phase involves meticulously calibrating the precision of a designated NN
and fine-tuning its variables prior to its integration into our device (€@ in Figure [5.1)). As
delineated in Section the strategy of MPQ stands out as particularly advantageous.

To streamline the range of design options, we have chosen to uniformly encode the input

67

Chapter 5. Configurable Mixed Precision RISC-V Architecture

Trained Floating
Pointi\/lodel

Find Best Configuration
for Mixed Precision Calculate

Quantization Accuracy Loss

o Quantized Model o

Create C program of the
Update RISC-V toolchain network's architecture
about our new instructions with our new instructions
included

Develop Hardware
Accelerator

Build RISC-V toolchain Generate RISC-V Binary Modify Ibex Core
RISC-V
.elf executable Corein
l * SystemVerilog
v
Behavioral SImultation Run on cycle accurate | Implementation on
on SPIKE ISA Simulator simulator - Verilator Vivado
Ensure the correct v
compilation of our Measure Latency Report Utilized
instructions and Speedup Resources

Figure 5.1: Flowchart of the proposed framework.

data and the activation values across all layers of our network using only 8-bit represen-
tations. These representations can accommodate both signed (int8) and unsigned (uint8)
values. Regarding the network’s weights, they can be quantified using signed numerical

values with either 2-bit, 4-bit, or 8-bit resolution.

Considering the complexity of a given model and its efficacy on the dataset it’s been
trained at, the model’s parameters are initially transformed into a quantized format using
PTQ. Should the results from PTQ not meet the expected standards of performance,
the process is further enhanced by refining the parameters through QAT until achieving
the targeted level of performance. To streamline the QAT phase and ensure an efficient
training process, several strategies are employed, including early stopping mechanisms.
These mechanisms are activated when further training yields diminishing returns, thereby

optimizing the training duration without sacrificing the model’s accuracy.

68

5.1.1 Design Space Exploration

5.1.1 Design Space Exploration

Since the bit width of the weights is the only parameter that we need to determine in
each layer, the total number of configurations for the entirety of the model that we need
to analyze, according to equation is equal to 3%, where L is the total number of
parameterizable layers in the network. Exhaustive search spanning all conceivable config-
urations proves to be a robust methodology, especially when dealing with small NNs with
a few number of layers. This method ensures that the selected precision configuration is
not just a feasible solution but the optimal one within the defined constraints. Neverthe-
less, this strategy becomes impractical for large NNs, given the sheer volume of possible
configurations that need scrutiny. This challenge, in combination with the substantial
training times, typical of QAT, necessitates the exploration of alternative strategies for

the quantization of larger-scale models.

A practical and efficient solution to address this challenge involves grouping sequential
layers into blocks and assessing them as a single entity, thereby diminishing the range of the
exploration space. Alternatively, we can set a fixed bit-width at levels whose computational
load is negligible compared to the total computations, or we can discard solutions that
would lead to a significant degradation in the model’s accuracy. However, this reduction of
the design space may come at a cost, as it risks bypassing certain configurations, potentially

resulting in the adoption of a suboptimal precision setting for the model.

After a comprehensive evaluation of all potential configurations, the concluding phase
involves selecting a Pareto-optimal solution. This solution is meticulously calibrated to
strike a strategic balance between computational cost and model accuracy. Such an ap-
proach guarantees that enhancements in any one objective inevitably necessitate conces-
sions in the other. Pareto-optimal solutions are distinct configurations positioned on the
Pareto frontier, identifiable through graphical representation. These solutions are intercon-
nected, forming a curve on the Pareto frontier that traverses through a multi-dimensional

space, visually representing the optimal configurations between conflicting objectives (see
Figure |5.2)).

Minimize f(x)

A Non- dominated or
O Pareto-Optimal Solution = {@}

»
Ll
B — Minimize f(x)
improve !

Figure 5.2: Pareto optimal solution of a multivariable problem.

Upon completion of this procedure, all essential parameters of the network, including

69

Chapter 5. Configurable Mixed Precision RISC-V Architecture

weights, biases, and quantization parameters (scales, zero points and the multiply and

shift values for the requantization step), will be precisely defined and established.

5.2 Integrating new Instructions on the RISC-V ISA

The algorithm for the inference of a NN that we will implement and optimize can

schematically be described in Figure [5.3

I

Requantization

output

int2

Figure 5.3: Integer only Inference

The computation of each layer’s output in a NN is a process that can be divided into
three distinct phases. The initial phase revolves around setting the biases for each neuron,
or in the case of a convolutional layer, for each activation map. Typically, biases are stored
in a higher bit width (32 bits), with their scale values derived from the product of scale
factors between input and weight vectors. An efficient approximation can be achieved by
representing these biases as 8-bit variables, followed by a left shift operation, a technique

that effectively maintains the network’s overall efficiency.

The second phase, which is computationally the most demanding, involves carrying
out all the required multiplications between the input values and their corresponding
weights. The multiplication results are then collectively accumulated and added to the
previously set biases. These successive multiply-accumulate (MAC) operations are pivotal

and represent the focal point of optimization in our research.

The final phase entails the requantization of the 32-bit accumulated result back into an
8-bit numerical value, which can be either unsigned or signed. As outlined in section
(equation [3.17)), this requantization is accomplished through a multiplication followed by

70

5.2.1 Custom Instruction Compilation

a right shift operation. Subsequently, an activation function is applied to this 8-bit value,

yielding the final output that will be passed on to the subsequent layer.

5.2.1 Custom Instruction Compilation

The RISC-V eco-system offers a flexible environment, which by enabling the augmen-
tation of the processor’s instruction set, allows us to create a bespoke system that can

optimize the application of DNNs.

The initial action required in this process is to update the RISC-V toolchain, which
contains the C (and C++) cross-compiler. This updated compiler will be responsible for
generating the executable file, which will incorporate the newly introduced instructions.
Since modifying the GCC compiler itself would prove too complex, we will instead modify
the RISC-V GNU/GCC Binutils. By updating the Binutils, which are a collection of tools
for handling binary files, we can add the new instructions required for our purposes. This
approach, however, implies that the GCC compiler will not have full awareness or direct

support for these newly added instructions [48].

As a result, to effectively utilize these instructions within our code, we will need to
resort to using inline assembly. Inline assembly provides a way to embed assembly code
within high-level language programs, allowing direct access to the processor’s instruction
set, including the custom instructions that we intend to add. To declare inline assembly
functions the keyword “asm volatile” has to be used. By marking the instruction as
“volatile” we ensure that the instruction will be utilized exactly as intended in the context

of our application and will not be affected by the compiler’s optimizations.

The new instructions to be added to the ISA will mirror the structure of the R-type
arithmetic instructions found in the I-extension. To ensure distinct identification and

proper functionality of each instruction, we will need to:

e Provide a unique name, which is crucial for clarity and ease-of-use. The name

should preferably be indicative of its functionality.

e Define the necessary instruction fields. For the case of R-type instructions, we will

need to specify:

1. the opcode of the instruction: this field identifies the overall category of the

instruction. Since our instructions will only be applied in NN algorithms, we

will provide a new unique opcode to all of them.

2. Function codes (funct3, funct7): these fields further specify the operation or

variation of the instruction within its opcode category.

3. Source and destination registers: these fields specify the registers that the in-

puts and outputs will be stored, during the runtime.

71

Chapter 5. Configurable Mixed Precision RISC-V Architecture

All pertinent information regarding the new instructions should be meticulously in-
corporated into the relevant files within the RISC-V toolchain (@ in Figure [5.1). For
instance, if we aim to introduce a novel R-type instruction named ” my_new_instruction”,

then the files that will require updating are the following:

1. path/to/riscv-gnu-toolchain/riscv-binutils-gdb /include /opcode/riscv-opc.h

where we declare the instruction and its structure, by defining the MATCH and
MASK variables. MATCH is essentially a 32-bit hexadecimal number, incorporat-
ing the values for the opcode and the function codes. Meanwhile, MASK is another
32-bit hex value that indicates which bits in the instruction should be compared
against the MATCH value to determine if the fetched instruction is the one in ques-
tion. It’s important to note that for custom instructions the two least significant
bits of the MATCH value must be set to 1. The following piece of code showcases
the changes that need to be made in the file.

#ifndef RISCV_ENCODING_H
#define RISCV_ENCODING_H

/* Instruction opcode macros. */
/* New opcode = 0x27 (010 0111) =/
/* funct3 = 010, funct7? = 0z0 */

#define MATCHNEW 0x6027
#define MASKNEW 0xfe00707f

#endif /+ RISCV.ENCODING.H +/

#ifdef DECLARE_INSN
DECLARE_INSN (my_new_instruction , MATCHNEW, MASKNEW)

#endif /+ DECLARE_INSN x/

2. path/to/riscv-gnu-toolchain /riscv-binutils-gdb/opcodes /riscv-opc.c

In this scope we declare additional information, such as the name of the instruction,
whether the instruction is targeted for only 32 or 64-bit RISCV variants, the type

of the new instruction and its operands.

const struct riscv_opcode riscv_opcodes|[] =

{
/* name, zlen, isa, operands, match, mask, match_func, pinfo.x/
{”my_new_instruction”, 0, INSN_CLASS.I, 7d,s,t”,

MATCHNEW, MASKNEW, match_opcode, 0},

72

5.2.2 Description of the new instructions

5.2.2 Description of the new instructions

The new instructions to be integrated into the RISC-V ISA can be classified in three
different categories, each tailored to address one of the three phases we have analyzed
respectively (Figure . These instructions will be embedded within the source codes that
implement the various types of NN layers, thereby enhancing their operational efficiency
and effectiveness. All of them will share the same opcode (0247 or 100 0000 in binary
form) and will be uniquely identified by the funct3 and funct7 fields.

The first instruction we will introduce to the ISA is designed to execute the initial phase
of our outlined procedure, primarily focusing on establishing the biases for each output.
This single cycle instruction will utilize two input registers, each holding 32-bit values.
The first register is particularly structured to concatenate four 8-bit weights, forming a
cohesive 32-bit value. The second register specifies the number of left bit shifts required
in order to transform the original 8-bit weights into an approximated 32-bit value of the
bias number that was produced during the QAT process (see Figure .

31 24 16 3 0
rsl | Bias_1 | Bias 2 | Bias_3 | Bias_4 |

rs2 | Shift Bias 1 | Shift Bias 2 | Shifi Bias 3 | Shift Biasd |

Figure 5.4: The format for the 32-bit registers when invoking the neur_init instruction.

Instruction Name funct?7 funct3 rsl rs2 Description

ifts Setting the bi fi
neur_init 000 0000 100 4 8-bit biases Amount of left shifts CULELE LAS DIAses S01

for each bias each output

Table 5.1: Instruction dedicated for the initialization of our custom component that set the

biases of the outputs in each layer.

The second suite of instructions we plan to integrate into the RISC-V ISA is metic-
ulously designed to facilitate the MAC operations pivotal to our algorithm. Within this
phase, we intend to introduce a diverse array of instructions, each tailored to address dis-
tinct scenarios that arise from the combination of the weight’s resolution (2-bit, 4-bit, or
8-bit) and the format of the inputs for a particular layer — either unsigned 8-bit or signed
8-bit (see Figure . Every instruction in this set will also be scheduled to be executed
in just one cycle. This deliberate differentiation serves two purposes. The first one is for
clarity reasons and ease-of-use as it enhances the readability and usability of the source
code, while the second is a more practical one, as we can benefit from this categorization in
order to trigger different signals during the decoding of each instruction. These signals are
essential for the proper functioning of the specialized hardware accelerator, which will be
incorporated into the processor’s pipeline. The accelerator, in turn, utilizes these signals

to accurately compute the outputs for each scenario.

73

Chapter 5. Configurable Mixed Precision RISC-V Architecture

kh 24 16 8 0
sl | Wl | w2 | W3 | w4 |

"SI I | I | 13 | 4 |
(a) 8-bit Inputs and 8-bit Weights

A 28 24 20 16 12 2 4 0

rs1 | Wi \ w2 | W3 | w4 | Wws | W5 \ w7 | w8 |

rs2 | 1l | %) | 3 | 4 |

A . 28 26 24 2 20 18 16 14 12 10 8] 4 2 0

rsl | w1 | w2

w3 | w4 | W3

we

W10 | w1 |'\"12

W13 | Wi4 | W13

W16 |

"SI 1 | 12 | 13 | 14 |
(c) 8-bit Inputs and 2-bit Weights

Figure 5.5: Structure of the register’s content when calling the MAC instructions.

Instruction Name funct7 | funct3 rsl rs2 Description
neur_mac_u-8b 000 1000 | 010 |4 8-bit unsigned inputs | 4 8-bit weights 4 MAC operations
neur_mac_u 4b 000 0100 | 010 |4 8-bit unsigned inputs | 8 4-bit weights 8 MAC operations
neur_mac_u_2b 000 0010 | 010 |4 8-bit unsigned inputs | 16 2-bit weights | 16 MAC operations
neur_mac_s_8b 001 1000 | 010 4 8-bit signed inputs | 4 8-bit weights 4 MAC operations
neur_mac_s_4b 001 0100 | 010 4 8-bit signed inputs | 8 4-bit weights 8 MAC operations
neur_mac_s_2b 001 0010 | 010 4 8-bit signed inputs | 16 2-bit weights | 16 MAC operations

Table 5.2: List of Instructions dedicated for the acceleration of MAC operations.

The final collection of instructions we plan to introduce to the ISA will be used during
the requantization step of the algorithm, where we transform the 32-bit accumulated
results back to an 8-bit values. Each instruction in this set will operate on 32-bit words
stored in the source registers. These 32-bit words are structured to encapsulate both the
8-bit values necessary for the multiplication process and the parameters for the right-shift
operation that will be applied on every output of the respective layer (see Figure [5.6)).
Upon decoding, these instructions will interact with the custom unit in order to cast the
outputs to the appropriate 8-bit format (signed or unsigned). These are the only multi-
cycle instructions that will be added in the ISA, since their execution lasts 3-5 clock cycles
(depending on if the execution of the MAC instructions has been successfully completed)
and their output will be stored back in memory.

3 24 16 3 0
15l | Multiplier 1 ‘ Multiplier 2 | Multiplier 3 | Multiplier 4 |

182 Qutput_Shift 1 Qutput_Shift 2 QOutput_Shift 3 Output_Shift 4
fput_ N tput_ N tput_. - tput N

Figure 5.6: Structure of the register’s content when performing the instructions for the

requantization step.

74

5.2.3 A Practical Example

Instruction Name | funct7 | funct3 rsl rs2 Description
T Tes. L 000 0001 001 4 8-bit multiplication 4 S—k.)it Valu.es Requanﬁizatim{and
values for right shift conversion to uint8
UL T6S.S 000 0000 001 4 8-bit multiplication 4 8-b.it valu.es Requant.izatior% and
values for right shift conversion to int8

Table 5.3: List of instructions dedicated for the implementation of the requantization step.

5.2.3 A Practical Example

In the upcoming section, we’ll present a brief example illustrating the integration of the
newly introduced instructions within the source code for a straightforward Dense (Fully
Connected) layer. This instance presumes that the layer’s weights are quantized to an
8-bit precision and that both the inputs fed into the layer and the outputs generated will

utilize an unsigned 8-bit (uint8) format.

The code snippet presented below is a customized version of the function that describes
the behavior of this layer with the use of the basic RV32IMC ISA and is inspired by the

implementation from the Tensorflow Lite Library [6]:

/* Requantization Function =/
int requantize_relu(int accumulated_value, int multiplier ,
int right_shift){
int32_t quantized_value = accumulated_value * multiplier;
// Rounding Operation
quantized_value += (1 << (right_shift — 1));
quantized_value = quantized_value >> right_shift;
// Apply ReLU activation function
// and clamp the value to [0,255]
quantized_value < 0 7 0:(quantized_value > 255 7 255:quantized_value);

return quantized_value;

void mlp_layer (int input[],int output[],int num_inputs,int num_outputs,
const int weights [][num.inputs],const int bias[], const int b_shift[],

const int quantized_multiplier , const int out_shift){

int z1, z2, z3, z4;
for (int i = 0; i < num_outputs; i+=4) {
/* Step 1: Set up the biases for each neuron */
z1 = bias[i] << b_shift [i];
72 bias[i4+1] << b_shift [i+1];
z3 = bias[i+2] << b_shift [i+2];
z4 = bias[i+3] << b_shift [i+3];
/* Step 2: Ezecute MAC operations x/
for (int j = 0; j < num_inputs; j++) {
zl += input[j] * weights[j][i];
z2 += input[j] * weights[j][i+1];
illi+2];

z3 += input[j] * weights]

75

Chapter 5. Configurable Mixed Precision RISC-V Architecture

z4 4= input[j]

}

* weights [j][i+3];

/* Step 8: Requantize and apply activation function x/

z1 = requantize_relu(zl, quantized_multiplier ,
z2 = requantize_relu(z2, quantized_multiplier ,
z3 = requantize_relu(z3, quantized_multiplier ,
z4 = requantize_relu(z4, quantized_multiplier ,
output[i] = z1;

output [i+1] = z2;

output [i+2] = z3;

output [i+3] = z4;

We notice that we have applied the Loop Unrolling transformation technique on the
outer loop. This optimization method unfolds the loop, executing multiple iterations
within a single loop cycle, thus reducing the number of iterations and the associated
control overhead. Furthermore, it can enhance the performance of critical sections within
applications, due to the improved cache memory utilization. When compilers are invoked
with specific optimization flags, they can automatically apply loop unrolling among other
optimization techniques to enhance code execution efficiency. However, in this scenario,
we are manually applying loop unrolling to gain a clearer understanding of the impact of
the new instructions. These instructions are designed to operate on at least 4 data points

in parallel, significantly optimizing computational processes. With the introduction of the

’

out_shift);

out_shift);
)
)

out_shift
out_shift

’

)

new instructions, the code can be reconstructed as shown below:

void mlp_layer_8bits_relu(int input[], int output[], int num_inputs,
int num_outputs, const int weights [][num_inputs], const int bias][],
const int b_shifts[], const int quantized_multiplier ,
const int out_shift_rl){
int z, w, inp, temp, quant_mul, shift;

for (int i = 0;

/* Step

i < num_outputs >> 2; i++) {
1: Set up the biases for each neuron x/

asm volatile(”neur_init-%0,-%1,-%2\n” :”=r”" (z):”r” (bias[i]),

» L
T

(b_shifts[i]):);

for (int j = 0; j < num_inputs >> 2; j++) {
/* Step 2: Ezecute MAC operations x/

W =
inp

asm

asm

W =

asm

weights [1][4%]];
= input [j];

volatile (”neur_macc_u_8b-%0,-%1,-%2\n” :”

”

r”(inp):);
weights [1][4*j+1];

volatile (”neur_macc-u_-8b-%0,-%1,-%2\n”

”

r”(inp):);
weights [1][4*j+2];

volatile (”neur_macc_-u_8b-%0,-%1,-%2\n" :”

”

r”(inp):);
weights [1][4*j+3];

volatile (” neur_macc_-u_8b-%0,-%1,-%2\n”

76

=r” (temp):

:7=r” (temp):

=r” (temp):

:7=r" (temp):

” I‘” (W) ,

” rn (W) ,

5.3. Hardware Modifications

"x7(inp):);
}

/* Step 8: Requantize and apply activation function */
asm volatile(”neur_res_u-%0,-%1,-%2\n” :”"=r” (output [i]):

7r” (quantized _multiplier),”r” (out_shift_rl):);

Comparing the original and optimized algorithms, it’s evident that the latter demon-

strates superior performance due to several critical factors:

1. Reduced number of iterations in the nested loops.

2. Decreased number of total executed instructions (e.g. in the original code opera-
tions like MAC require separate cycles for the execution of the multiplication and
addition, while on the optimized code, this can be achieved with the use of just one

instruction).
3. Parallel execution of every individual step on multiple input data.

4. Significant reduction in memory loads and stores.

5.3 Hardware Modifications

5.3.1 Core

The co-design of hardware and software is a pivotal element in our optimization strat-
egy. By integrating new instructions into the ISA, we’re able to generate specific signals
that activate a new component, functioning as a NN accelerator (@ in Figure . This
synergy between hardware enhancements and software instructions is central to boosting

the efficiency and performance of NN computations.

Rather than developing a separate coprocessor, this new component will be positioned
on the second stage of the pipeline, where the decoding and execution of each instruction
takes place (see Figure . This decision underpins the creation of a solution that is
not only faster and more robust but also more power-efficient, when compared to the
other option. The key advantage of this integration lies in the significant reduction of
data transfer across the bus system that interconnects memory, the main processor, and
what would have been a separate NN coprocessor. This approach minimizes latency and
energy consumption associated with data movement, thereby enhancing the overall system
performance and efficiency. We can also benefit from sharing the processor’s resources,
such as the cache memory and other crucial components (e.g. multipliers), in order to

implement various computations in our accelerator.

Given that the system’s decoder is initially not configured to recognize the newly intro-

duced instructions, modifications to the decoder are imperative, alongside the integration

7

Chapter 5. Configurable Mixed Precision RISC-V Architecture

Ibex Core

Register File
L

|

Decode and Execute Writeback

Ao A0 Wa] B1ec]

aoudaqu] LIOWaR] UOTo NIsU]

Compreszsed Instruction

Decoder

-

@ lowRISC

Figure 5.7: Schematic Diagram of the Modified Ibex Core. The components that have been
modified or added are highlighted with orange (decoder) and green (hardware accelerator)

respectively.

of the accelerator. By updating the decoder, we ensure it can accurately interpret the
opcode and function code fields of these new instructions. This modification enables the
decoder to correctly identify and differentiate the new instructions, extract the necessary
values from the source registers, and subsequently feed forward this information to the

newly added unit.

5.3.2 Hardware Accelerator

In the upcoming section, we will delve into the architecture of the newly integrated
component, exploring its functionalities and the strategic design decisions undertaken to
enhance its performance. A simplified block diagram that illustrates its internal structure

can be seen in Figure |5.8

Functionality

The core attribute of this accelerator is its capability to simultaneously compute four
outputs, whether they are neurons in the context of a MLP or activation map features
within CNNs. This parallel processing feature significantly enhances the computational

efficiency, enabling the system to handle multiple data within the same operational cycle.

The intermediate results of the computations are held in additional 32-bit registers,
serving as accumulators within the new component. The operational sequence begins

with the initial instruction, which primarily sets up these registers by initializing them

78

5.3.2 Hardware Accelerator

with the shifted bias values. Upon decoding the subsequent series of instructions, the
component is tasked with performing the multiplications between the input vectors and
their corresponding weights, with the resulting products being aggregated in the 4 regis-
ters - accumulators. As the process advances to the concluding phase, triggered by the

third and final set of instructions, the component undertakes the task of converting the

activations to 8-bit values.

Architecture

Apart from the 32-bit registers, the accelerator is composed of several other key com-

ponents, each playing a vital role in the processing pipeline (see Figure |5.8)):

e Weights - Inputs Decoder: Equipped to handle two 32-bit operands, the decoder

funct7—» Weight Bit Width

utilizes the ‘funct?’ field to effectively identify and segregate the operands that will
be involved in multiplication. This component produces 8 pairs of 16-bit values that

will be forwarded for processing by the rest of the accelerator’s units.

Multiply-and-Accumulate (MAC) Unit: Following the decoder, the MAC unit
receives the decoded operands and conducts the necessary multiplications. In in-
stances where it is necessary (cases (b) and (c) in Figure [5.5]), some pairs of these
products are then summed together before being accumulated back into the 32-bit

registers.

Requantization Block: this specialized block implements the requantization step.
This component takes as input the values from the accumulators and its outputs
are the ones that will be stored in the memory, in order to be advanced on the next

layer of the network.

Rs2 Rs1 Rs2 Rs1 Rs1 Rs2

Inputs Weights MAC Unit ‘ Bla:ses functd Requantization

Shift Biases Block i
Weight - \l\ Quantized Multipliers Output Shift Values

lll it shit | 4 %32
32-bit Shift
Decoder e : : ‘
Zz " 328it : Adders | >
funct3 Enable R‘S:izl:n . 4%32 az-blt e
Registers Rounding
4%32 ‘
I
2x32 (2 MSB Truncated)
S 32 Bit 32Bit
Registers Registers

8x17

MuL 34x34 ALU
Partial
Product
muL
Add
D System Frequency er —| funct? intg/ Clamp
uint8 Function
MuL 34x34
D 2x System Frequency PPa:lalt
roduct
MuL Adder

funct3 Rd (Output)

Figure 5.8: Proposed Neural Network Accelerator schematic diagram. The blocks with green

color are operating with double the frequency, than the rest of the system.

79

Chapter 5. Configurable Mixed Precision RISC-V Architecture

5.3.3 Hardware Accelerator Optimizations

In this section, we describe the design choices made to elevate the performance of the
accelerator, with a primary focus on optimizing efficiency. The overarching objective is to
amplify the throughput of MAC operations per cycle, a critical metric for computational ef-
ficiency in NN processing, while simultaneously minimizing resource utilization and power
consumption. These optimizations will enable us to activate the system’s prefetcher and
utilize the advanced optimization flags of the GCC compiler resulting in the generation of

faster and more efficient code, without having to stall the processor’s pipeline.

Exploiting Processor Resources

Where possible, the accelerator shares resources with the main processor. More specif-
ically we opt to use the processor’s multipliers in order to compute all the necessary
products, during the MAC operations and the requantization procedure. For the imple-
mentation of the multiplication between two 32-bit integers in a single cycle, Ibex employs
three 17x17 bit multipliers and then adds together the partial products to create the final
result. To meet the specific demands of our accelerator and to further boost its compu-
tational capacity, we plan to extend this setup by incorporating an additional multiplier,
mirroring the design of the existing three. This inclusion is intended to scale up the

system’s ability to handle parallel computations effectively.

Upon implementing both the original and the enhanced core designs on an FPGA de-
vice, we observe the utilization of 4 DSP blocks. This allocation stems from the operational
requirements where, in the base multiplication scenario, 3 DSP blocks are dedicated to
computing the partial products, and the fourth block is tasked with their aggregation. In
contrast, with the modified core architecture, the ”introduction” of the additional unit
permits the use of these DSPs to perform four independent multiplications across each

one of them.

Pipelining

Pipelining is a computer architecture technique used to increase the throughput or
execution speed of a CPU by overlapping the execution of multiple instructions. It allows
us to fetch and process new data in every single cycle and can particularly prove useful in
scenarios devoid of data hazards, which occur when instructions rely on the outcomes of
preceding ones. By dividing the processing tasks into several smaller stages and allowing
each stage to handle a different part, pipelining ensures a more continuous and efficient

flow of instruction execution.

In the pipelined architecture of our design, the outcomes of each stage within the pro-

cessing blocks are temporarily held in registers before being transitioned to the subsequent

80

5.3.3 Hardware Accelerator Optimizations

stage. Even though the total amount of cycles needed in order to execute a single compu-
tation increases, we benefit from the higher throughput of the pipelined design as well as
the decreased critical path of the particular block (this allows us to potentially increase
the frequency of the clock used for these operations). In our design, we implement pipelin-
ing within the internal architecture of two distinct blocks: the component dedicated to
executing the MAC operations, which operates in conjunction with a preceding decoder,

and the unit responsible for the requantization step.

In the first case, we have divided the execution of the MAC instruction into three
different stages. In the initial cycle, upon receiving the two operands (weights and inputs),
the system decodes their values according to the funct7 value of the instruction and stores
them before using them for our computations. The second stage is dedicated to performing
the actual multiplication operations between the decoded operands and the extra additions
between the multiplication products when needed, while in the final stage, the results
computed in the previous step are added to the accumulators. In the second occasion, the
requantization procedure unfolds over three distinct cycles: the first cycle is dedicated to
the multiplication process. The second cycle encompasses a rounding operation (which is
performed by an addition with a specified value) to refine the results followed by a right
shift to scale down the values, and the third cycle involves the clamping of the outputs to
ensure they fall within the designated range, depending on whether the output is asked

to be in nt8 or wint8 format.

Since we only have access to 17x17 multipliers, it is not feasible to compute the result
between a 32-bit value and an 8-bit number directly. For this exact reason we are going to
divide the 32-bit number into two 16-bit ones and calculate the partial products between

all the formed pairs. This divide-and-conquer approach can be seen in Figure [5.9

LA LA |
x | Bu |[B |

[PPis || PPia | PPi=ALXBL

| PP2p | | PPaa | PP; = A x By

| PPsg | | PP3a | PPy =Aux B

+ | PP || PPaa | PPy =Aux By
| FP[31;241| |FF'[23;131 | | FPpis:8) | [FPr: J

Figure 5.9: Divide-and-conquer multiplication between two 16-bit numbers. The same

methodology can be applied in our case too.
Source: [49]

We can further simplify this strategy in our implementation, because the second operant
that corresponds to the 8-bit quantized multiplier (from equation|3.17)) is always a positive

number and that means that its 16-higher bits will always be grounded to zero. This allows

81

Chapter 5. Configurable Mixed Precision RISC-V Architecture

us to perform this calculation by just computing two out of the four partial products and

then adding them together after properly aligning.
Frequency Scaling

So far we have mentioned that the MAC instructions will be executed, ideally, in just
one cycle. However, as we can see in Table the different types of instructions that are
involved in these operations, execute a varying number of multiplications and additions.
Given that our architecture incorporates only four multipliers and considering that certain
instructions demand the execution of 8 or even 16 MAC sequences, a straightforward
execution approach would inherently lead to pipeline stalls. Specifically in a pipelined
architecture, to accommodate instructions requiring 8 MAC sequences, we would encounter
a stall of 1 cycle, and for those necessitating 16 sequences, a stall of 3 cycles would be

unavoidable without additional optimizations to the processor.

Adopting a heterogeneous clocking strategy, where key computational components op-
erate at a higher frequency than the rest of the system, presents an elegant solution to the
challenge [31]. This approach directly targets the optimization of those units that bear the
majority of the computational workload, specifically the multipliers and adders involved in
MAC operations and the scaling down process. By increasing the clock frequency of these
critical components, we are able to execute more operations per unit of time, effectively
increasing their throughput. However, by using a higher frequency clock, new difficulties
arise. Notably, various synchronization issues may occur, such as data corruption or loss
during transfers between components operating at different frequencies. Furthermore, as
clock speed escalates, resources that are utilized will also increase due to the additional
circuitry needed in order to maintain signal integrity over longer distances. Another criti-
cal aspect to consider is the surge in power consumption, as dynamic power consumption

is proportional to the operating frequency.

In order to simplify synchronization with the processor’s main clock, we decided to
upscale the frequency of the new clock by a power-of-two. Since the Ibex core operates at
a baseline frequency of 50 MHz, we chose to configure the second clock with double the
frequency at 100 MHz. By adopting this approach we can achieve increased computational
speed, since the single cycle execution of the instructions that compute 8 MAC operations
is possible (1 stall will still be required for the last case), while also balancing power

consumption, resource utilization and design complexity.
Soft SIMD

The last optimization focuses on implementing the instructions that execute 16 MAC
operations in a single cycle. Inspired by [32] we are planning on achieving this goal by
packing two multiplications between the 2-bit weights and the 8-bit inputs into a single

multiplier.

82

5.3.3 Hardware Accelerator Optimizations

Phase
Reference detector Loop filter Qutput

VWV LF 0—”\/\/\/\/\/\/\/\;

Frequency divider

Figure 5.10: The Phase Locked Loop (PLL) control system is used to generate the 2 different
clock signals from a single oscillator. It can also guarantee synchronization of the initial rising
edges of the clocks.

The outcome of multiplying a 2-bit number by a 9-bit number - accounting for both
unsigned and signed inputs, which necessitates an additional bit for the sign - requires
a minimum width of 11 bits for precise representation. In such multiplications, the top
22 bits are uniformly filled with either 1s or Os, effectively conveying only a single bit of
information. This characteristic allows for the utilization of these upper bits to perform
an additional computation concurrently, without impacting the results of the lower-order
inputs. To effectively leverage the unused upper bits for an additional computation, two

essential guidelines must be adhered to:

1. The computation involving the upper bits must not influence the outcome of the

lower bits.

2. It should be possible to identify and correct any interference of the upper bits caused

by the computation involving the lower bits.

Specifically in our case, to satisfy the first rule, the least significant bit of the upper
product results must not fall into the lower 11-bits. Thus, the upper bits that correspond
to the second weight must commence from at least the 12th bit onwards. For safety
reasons, we are going to add a guard bit between the results of the 2 multiplications and

start from the 13th bit. The equation that expresses the result is the following:
Wy 2B+ W) Iy =Wy Iy - 2% + Wy - Iy

To obtain the outcomes of the two simultaneous multiplications, we can extract the bits
located in positions 23 to 13 for the upper multiplication result, and positions 10 to 0 for

the lower multiplication result.

Regarding the second rule, a thorough examination of all possible outcomes from the
combinations of numbers used in our method reveals that errors in the results of the
multiplication involving the higher bits occur exclusively when the weight associated with
the lower bits is negative. Notably, in every instance of such discrepancies, the actual

result differs from the expected outcome by only 1. Given the predictable nature of

83

Chapter 5. Configurable Mixed Precision RISC-V Architecture

these scenarios, the simplest solution to this minor issue is to adjust the result of this
multiplication by adding a value of 1. This adjustment effectively corrects the error,

ensuring the accuracy of the computation.

5.3.4 Implementation on FPGA

The final step involves gathering comprehensive details regarding the required resources,
the anticipated power consumption of our system and the latency of the critical paths in
our design. The latter is crucial because we must make sure that we meet all the timing
constraints in our design, especially because we are using a dual clock configuration. The
mapping on the FPGA device is done with the assistance of the Xilinx Vivado tool. For our
implementation we use the XC7TVX485T part of the Xilinx Virtex-7 FPGA family, which
has sufficient memory for the evaluation of all of the benchmarks that we will examine in

the following chapter.

84

Chapter 6

Experimental Results

In this chapter, we will showcase the results of our implementation, with a particular

emphasis on key performance metrics, including;:

e the accuracy of the quantized models,

e the latency experienced during the execution of our models on the Ibex RISC-V

core, operating at 50 MHz and

e the resource utilization and power consumption observed while deploying the models
on the FPGA device

All models featured in this chapter underwent compilation with the -O3 optimization flag
activated. This option ensures that more aggressive optimization steps will be taken by
the compiler. As a result, compilation time becomes slower, but in return we can achieve

the best results in terms of latency.

6.1 Comparison with Baseline RV32IMC ISA

To assess the performance of our design, we will initially compare the execution results
of a Dense and a Convolutional layer against their respective implementations based on
the RV32IMC ISA. The complexity and computational intensity of these common compu-
tational patterns make them ideal for revealing the advantages of our optimized hardware
architecture over standard RV32IMC ISA implementations, especially in the context of

efficiency and speed. More specifically, we are going to benchmark:

1. a fully connected layer configured with 512 input nodes and 256 output nodes and

2. a convolutional kernel processing a 16 x 16 x 32 input tensor (utilizing a Height-
Width-Channel data layout) with a filter dimension of 64 x 3 x 3 x 32 (Channels x
Kernel Width x Kernel Height x Multiplier).

85

Chapter 6. Experimental Results

In each benchmark, we will explore every potential configuration for the bit widths em-
ployed in representing the weights. Additionally, we are going to depict how each accel-
erator optimization technique affects the final performance in every instance. The results
of the comparison in terms of latency measured in clock cycles, are presented in Figures
[6.1] and [6.2] for the Fully Connected Layer and the CNN kernel respectively. Our final im-
plementation can improve inference on the RISC-V core by 7.9 - 17.6x on a single Dense

layer and 12.0 - 33.1x on the much more computationally demanding convolutional layer.

x106 (a) 8-bit Weights (b) 4-bit Weights (c) 2-bit Weights

9.01x 1047x 12,50x 11.38x 12.49x 15.49x 17.60x

Number of Cycles

Figure 6.1: Latency of Dense Layer implementation on Ibex Core for Configurations: (a) 8-bit
weights, (b) 4-bit weights, and (c¢) 2-bit weights.

x107 (a) 8-bit Weights (b) 4-bit Weights (c) 2-bit Weights

9.52x 12.00x 13.76x 17.49x 21,52 19.33x 21,56x 28.14x 33.12x

Number of Cycles

£ 3 (] $ 2
o & ol & & E®
o <8 Y & ¥ N
o x & & x S
55 & & N
& & o * &

Figure 6.2: Latency of Convolutional Layer implementation on Ibex Core for Configurations:
(a) 8-bit weights, (b) 4-bit weights, and (c) 2-bit weights.

Our approach heavily favors the more extreme quantization scenarios, evidenced by
both benchmarks showing that the most significant speedup improvements are achieved
when employing 2-bit parameters. This behavior is attributed primarily to two factors.
Firstly, the use of 2-bit parameters allows for a denser packing of weights within the
instructions, which significantly reduces the amount memory accesses and the number

of MAC instructions required. The second reason is that our accelerator is meticulously

86

6.2. Comparison with State-of-the-Art

designed to process each MAC instruction within a single cycle, thereby amplifying the
efficiency gains for configurations utilizing 2-bit weights compared to those with higher
bit widths.

6.2 Comparison with State-of-the-Art

To fully illustrate the efficacy of our methodology, we plan to present a detailed overview
of the modified Ibex core’s performance across a diverse array of NN models. The selected
models for evaluation are prominent in cutting-edge research, as discussed in Chapter
and were chosen based on their complexity and exceptional performance in various

applications. For every case-study we are going to:

1. Describe their architecture, the dataset they were trained at and their full precision

performance.

2. Identify the pareto optimal solutions, by assessing the trade-offs between the quan-

tized model’s accuracy and the total number of MAC instructions executed.

3. Select from the pareto frontier the best solution that demonstrates accuracy degra-
dation of less than 1%, 2% and 5%, measure the execution time of the optimized

algorithm (with the new instructions included) and compare it with the initial model.

It is important to note that the reported times from the state-of-the-art works [5], [8] and

[11], are normalized based on the frequency of the Ibex core.

6.2.1 FANN-on-MCU

The first model to be evaluated is a MLP with a relatively simple structure, which is
illustrated in Figure (with the use of the Netron App). The architecture has been
replicated from [I1] and it has 76 inputs, 10 outputs and 3 hidden layers with 300, 200
and 100 nodes. However, the dataset it has been trained at is not public, we will use
one from the UCI database [50] that has a similar number of input features and expected

outputs/classes. The baseline model with FP parameters reaches an accuracy of 98.14%.

Gemm Gemm
B (100x200) B (10x100)
€ (100) C (10)

Figure 6.3: Architecture of MLP under examination.

B (300x76) LogSoftmax

C (300)

B (200%300)
C (200)

batch_sizex76 batch_sizex10

Given that the model is composed of four consecutive Fully Connected Layers, we
are presented with a total of 81 potential configurations to evaluate. Our task is to
meticulously examine each configuration to identify which ones deliver optimal results
that align with our specific requirements. Since measuring the latency for each individual

configuration on the Ibex core is an impractical and time-intensive task, we will utilize

87

Chapter 6. Experimental Results

the count of MAC instructions executed as a proxy to estimate which solutions are likely

to exhibit the lowest latency.

Figure illustrates the Pareto Space, mapping the trade-off between accuracy (de-
picted on the y-axis) and the quantity of MAC operations performed (shown on the x-axis)
for this specific model. On the same graph, apart from the solutions that are located on
the Pareto frontier (with the green square symbol), we will also include the full precision
model (represented by a star symbol) to visually demonstrate the accuracy degradation
and the reduction in the number of MAC operations achieved through our optimization

approach.

* original(non optimized) model ® mixed precision layer configurations B pareto optimal configurations

100 -
98 1 *
. L]
96 e, - ®
— n o |
I 7S
Z 94 o, £ 1
g o 87
5 LI »
o N a ola
g @ =sce .
L]
L]
90
88
0.00 0.10 0.20 0.30 0.40 0.9 1.0 1.1
x10°

MAC Instructions

Figure 6.4: Pareto Space of the MLP under examination.

Table provides a comprehensive summary of each selected configuration that was
executed on the Ibex core, as well as a comparative analysis the speedup metrics in relation
to the original RV32IMC implementation and the findings reported in the "FANN-on-
MCU” paper. More specifically, with the use of the original ISA, the algorithm is executed
in 23.13 milliseconds. In contrast, [I1] demonstrates that the same model, when run
on a single Ibex core, completes in 11.4 milliseconds and when deployed on a multicore

system, the execution time significantly reduces to just 1.6 milliseconds.

Speedup
Accuracy Weight Speedup w.r.t
. . Accuracy w.r.t
Degradation Configuration RV32IMC [
<1% acc. drop (4,4, 4, 2) 97.22 % 13.0x 0.89x
<2% acc. drop (2, 8, 4,38) 96.29 % 16.3x 1.12x
<5% acc. drop (2,2,2,4) 94.44 % 22.9x 1.59x

Table 6.1: Performance of the selected configurations for the MLP model under examination.
The accuracy of the baseline model with FP weights and activations stands at 98.14%. We have
highlighted the solutions that achieve better results than the state-of-the-art.

88

6.2.2 CMSIS-NN

6.2.2 CMSIS-NN

The second model under our examination originates from reference [5]. The CMSIS-
NN library, renowned for its widespread use in deploying neural networks on ARM pro-
cessors, serves as a benchmark in numerous studies, providing a foundational comparison
for their outcomes. The architecture of this model is depicted in Figure showcasing
its structural details and design considerations. It is a more intricate and computation-
ally demanding network compared to the previous one we evaluated. It comprises three
consecutive blocks of Convolutional layers, each succeeded by a Max Pooling layer, culmi-
nating in a Fully Connected layer that functions as a classifier. We will assess this model’s
performance using the widely recognized Cifar10 dataset, offering a comprehensive evalu-
ation of its capabilities in handling complex image recognition tasks. Since this network
also consists of 4 layers in total, we are going to thoroughly investigate every possible

combination of bit-width configurations for each layer.

Conv

W (32x3x5x5)
B (32)

MaxPool

Conv

W (32x32x5x5)
B (32)

MaxPool

Conv

W (64x32x5x5)
B (64)

MaxPool

Reshape

Gemm
B (10x1024)
C (10)

LogSoftmax

batch_size

Figure 6.5: Architecture of the CNN under examination.

The outcomes of our detailed analysis are presented in Figure and Table Figure
graphically depicts the Pareto space that is produced after performing QAT to meticu-

lously fine-tune the model’s parameters, while Table [6.2]lists all the necessary information

89

Chapter 6. Experimental Results

about the speedup we achieve when deploying the selected configurations on the Ibex core.
For a single inference of the NN, the baseline RV32IMC needs up to 3480 milliseconds,
while the CMSIS-NN library can execute the same algorithm in just 428 milliseconds,
when operating at 50 MHz with an accuracy of 78.89%.

* original(non optimized) model ® mixed precision layer configurations B pareto optimal configurations
80 -
_ a0
79 et g 0
2% ®
78 o L0, 3
B T NP
= M L]
£ S| ‘. .“ a l.
g 77 1 e v %
5 [|
S °
2 76 o
< 0 []
L] ' '
u
75 2 .
e ©®
74
L
T T T f f T 1
0.00 0.10 0.20 0.30 0.40 1.1 1.2 1.3

7
MAC Instructions *10

Figure 6.6: Pareto Space of the CNN under examination.

. Speedup
Accuracy Weight Speedup w.r.t
. . Accuracy w.r.t
Degradation Configuration RV32IMC Bl
<1% acc. drop (4,8,2,2) 77.95 % 17.8x 2.19x
<2% acc. drop 4, 2,4, 2) 76.90 % 24.0x 2.95x
<5% ace. drop (2,2,2,4) 74.19 % 28.3x 3.47Tx

Table 6.2: Performance of the selected configurations for the CNN model under examination.
The accuracy of the baseline model with FP weights and activations stands at 78.89%. We have
highlighted the solutions that achieve better results than the state-of-the-art.

6.2.3 MCUNet

The last model we are going to analyze comes from the MCUNet paper [§]. Specifi-
cally, we will deploy the mcunet-vww1 model, which presents a higher level of complexity
compared to the two previously analyzed models due to its integration of various layer

types. This network is a more compact version of MobileNetV2 [51] and is composed of:

e An initial conventional convolutional layer that processes the input data,

e Fifteen composite blocks of layers, each consisting of depthwise and pointwise convo-
lutions. Some of these blocks also feature residual connections that facilitate the flow

of information by linking the inputs directly to the outputs of these blocks (Figure

6.7).

90

6.2.3 MCUNet

e An average pooling layer followed by a fully connected (Dense) layer, to produce the

final output predictions of the network.

N\

Add

W (38420611
B {384)

W {384 133}
B (334}

Figure 6.7: Main building block of the mcunet-vww1 model.

This model is trained and evaluated on the Visual Wake Words (VWW) Dataset [52], a
collection of images designed to facilitate the development of models capable of detecting
a person within the device’s field of view. Owing to the extensive number of layers that
constitute this NN, an exhaustive examination of every possible weight configuration is

impractical.

To address this challenge, we have opted to aggregate sets of three consecutive blocks,
applying a consistent bit-width across them for quantization purposes. Additionally, just
for the last layer of the network we are going to manually set its bit-width to 8-bit, as it
does not contribute a lot to the network’s total workload. This leads us to search through
736 possible configurations. Although this approach may lead to a suboptimal solution,
it allows us to expedite the analysis process considerably. Figure [6.8] displays the Pareto
space, highlighting the trade-off between accuracy and the estimated latency, based on

the number of MAC instructions for the mcunet-vww1 model.

The baseline model accuracy on the Visual Wake Words (VWW) dataset is 88.9%.
In terms of performance, executing a single iteration of the feed-forward algorithm using
the MCUNet framework takes up to 552 milliseconds. In contrast, employing the orig-
inal RV32IMC ISA for the same task requires approximately 3697 milliseconds. The
MCUNet framework offers a markedly more efficient solution in terms of both execution

time and memory usage, especially when compared to the performance of the unoptimized
RISC-V core, as well as the CMSIS-NN library (1162 milliseconds) and the X-CUBE-AI

91

Chapter 6. Experimental Results

* original(non optimized) model ® mixed precision layer configurations B pareto optimal configurations
90 4
H al
85 - !I -
31y
",y
80 Ry
[] ". ®

ad

| i
.
JE

T T T { f T
0.00 0.10 0.20 0.30 040 1.1 1.2 1.3
x107

Accuracy (%)

60

MAC Instructions

Figure 6.8: Pareto Space for the mcunet-vwwl model.

package (591 milliseconds). Table compiles all essential metrics for the optimal con-
figurations found on the Pareto frontier. These configurations meet the established criteria
for minimal accuracy loss post-quantization and they are presented alongside the results
from the RV32IMC ISA and MCUNet to facilitate a thorough comparative analysis.

Speedu
Accuracy Weight Speedup w.r.t P P
; . Accuracy w.r.t
Degradation Configuration RV32IMC 5]
<1% acc. drop (8,8,8,4,8,4) 88.15 % 5.97x 0.89x
<2% acc. drop (8,4,4,4,8,8) 87.02 % 6.74x 1.007x
<5% acc. drop (8,4,4,4,4,4) 84.50 % 7.04x 1.05x

Table 6.3: Performance of each selected configuration for the mcunet-vwwl model. The
accuracy of the baseline model with FP weights and activations stands at 88.9%. We have
highlighted the solutions that achieve better results than the state-of-the-art.

It is crucial to acknowledge that employing 2-bit quantization for this particular chal-
lenge, fails to yield satisfactory outcomes, as it leads to significant accuracy loss in this
complex model, absent extensive fine-tuning of its parameters. Given the constraints in
available resources and time, conducting QAT for extended durations across every con-
figuration is impractical in this context, though such an approach might have potentially

enhanced performance.

It’s worth mentioning that while our method (slightly) surpasses the performance of
the state-of-the-art solution, along with the CMSIS-NN and X-CUBE-AI implementations,
achieving only minimal accuracy loss, the enhancement over the RV32IMC ISA does not
match the impressive gains observed in the two previously evaluated models. This dis-
crepancy primarily stems from the fact that the speedup realized during the execution of

Depthwise convolutions is approximately 4.5-5 times across all weight resolutions. Such

92

6.3. Resource Utilization & Energy Consumption

layers do not permit the same degree of input reuse as seen in standard convolutional layers
(utilized for the pointwise convolution operations), where we noted a latency improvement
exceeding 13 times for this specific model. The inherent architectural differences in Depth-
wise convolutions limit the extent to which performance can be optimized compared to

standard convolutions.

Table contains an overview of the results that we acquired from all the models
that we have analyzed thus far. Our focus predominantly lies on the latency observed
during the execution of each model on the Ibex core, both with the incorporation of new
instructions and without them. Additionally, we include the normalized latency figures
as measured in the state-of-the-art solutions, providing a benchmark for comparison and

demonstrating the effectiveness of our approach in enhancing computational performance.

Model RV32IMC | State of the art QNN with accuracy degradation
<1% <2% <5%
MLP from 23.13 msec 1.60 msec 1.77 msec 1.41 msec 1.01 msec
FANN-on-MCU
CNN from 3480 msec 428 msec 195 msec 145 msec 123 msec
CMSIS-NN
mcunet-vww-1 3697 msec 552 msec 619 msec 548 msec 525 msec

Table 6.4: Latency reported in milliseconds (msec) for every model we examined. The numbers
that correspond to the state-of-the-art solutions are gathered from their respective paper, while

the rest are measured on the Ibex RISC-V core.

6.3 Resource Utilization & Energy Consumption

In this last section, we will detail the overhead introduced to the initial RISC-V pro-
cessor, a critical aspect of our consideration throughout this entire project, particularly in
the development of the hardware accelerator. Table compiles data from the implemen-
tation phase, reflecting the processor’s mapping onto the FPGA device. Our methodology
has successfully enhanced the performance of the Ibex core while keeping the increase in

resource usage and power consumption to a minimum. More specifically, we report:
e A 34.89% rise in the usage of Lookup Tables (LUTS),
e A 24.28% increase in the employment of registers, specifically Flip-Flops (FFs),
e The retention of the original count of DSP blocks, with no additional units required,

e A modest 5 mW surge in the design’s power consumption,which mainly stems from

the incorporation of a secondary clock operating at a higher frequency.

These metrics underscore our commitment to optimizing the Ibex core’s performance in a
resource-efficient manner, balancing the dual objectives of enhancing computational speed

and maintaining low power usage.

93

Chapter 6. Experimental Results

Ibex Processor Initial Proposed
LUTs 5479 7391
FFs 5122 6366
DSPs 4 4
Power Consumption (Watt) 0.256 0.261
Clock(s) Frequency 50 MHz | 50 MHz/100 MHz (Dual Clock Conf.)

Table 6.5: Comparison between the original and the modified Ibex core regarding the utilized
resources on a Virtex-7 FPGA board, their power consumption and the speed of the clocks used

for the entirety of the system

Our most energy-efficient solutions, despite experiencing the highest accuracy loss,
achieve the most significant reductions in processing demands. This efficiency is due to the
speed enhancements realized, notwithstanding a slight increase in the power consumption
of the proposed architecture. Specifically, these optimizations result in a 22.46x reduction
in processing demands for the first model, a 27.75x decrease for the second case study,
and a 6.91x reduction for the mcunet-vwwl model. Figure [6.9]showcases the considerable
efficiency gains per inference for each model, demonstrating the substantial improvements

our approach offers, even when trading off a degree of accuracy.

Model
BN Baseline HEM < 1%acc.loss HEE < 2% acc. loss < 5% acc. loss
0.006 12.82x 16.09x 22.46x 17.50x 23.54x 27.75x
I 0.8
#0.005 I
>
2
= 0.004 0.6
o
=]
g I
€ 0.003
2 I 0.4
S
2.0.002
2
L 0.2
W 0.001
. 0.0
0.000 (a) UCl MLP (b) CMSIS CNN
5.86x 6.62x 6.91x
zos
>
2
C
© 0.6
s
£
3
2
S04
o
>
g
S 0.2
0.0

(c) MCUNET VWW-1

Figure 6.9: Energy Consumption of each configuration we selected for the analysis of: (a) MLP
from “FANN-on-MCU”, (b) CNN from “CMSIS-NN”, and (¢) mcunet-vwwl from “MCUNet”.

94

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this work, we have presented an end-to-end workflow designed for the deployment
and optimization of TinyML models on a RISC-V core. We demonstrated that through
the application of a MP(Q scheme and a methodical exploration of the Design Space, it is
possible to identify solutions that adeptly balance the trade-off between latency and ac-
curacy loss. To enhance the execution of those Quantized Neural Networks on the chosen
processor, we extended the RV32IMC ISA with specialized instructions and incorporated
a functional unit into the processor’s pipeline to support them. This approach manages
to compete and in many cases outperform state-of-the-art works targeting RISC-V archi-

tectures, as well as popular frameworks employed by IoT devices.

7.2 Future Work

Some potential optimizations that could elevate the efficiency of our work and expand

its applicability include:

e Refining Design Space Exploration by developing a faster and more robust strategy,
based on statistical metrics to estimate the sensitivity of each layer and efficiently

identify the optimal configuration for the bit-width resolution of the weights.

e Incorporating post-load increment instructions that automatically increment the ad-
dress after a load operation to streamline data handling within loops and repetitive

operations.

e Mapping the processor onto an Application-Specific Integrated Circuit (ASIC) design

for enhanced performance in terms of speed and power efficiency.

e Deploying multiple instances of the proposed architecture on a single FPGA board
presents an opportunity to increase parallel processing, which can significantly speed

up model inference by distributing computational tasks across multiple cores.

95

Chapter 7. Conclusion and Future Work

e Applying the workflow to a broader range of RISC-V cores, which in turn will help

us assess the generalizability and performance scalability of the approach.

96

Bibliography

[1]

Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge intelli-
gence: Paving the last mile of artificial intelligence with edge computing. Proceedings
of the IEEFE, 107(8):1738-1762, 2019.

Maurizio Capra, Beatrice Bussolino, Alberto Marchisio, Guido Masera, Maurizio Mar-
tina, and Muhammad Shafique. Hardware and software optimizations for accelerating
deep neural networks: Survey of current trends, challenges, and the road ahead. IFEFE
Access, 8:225134-225180, 2020.

Rakhee Kallimani, Krishna Pai, Prasoon Raghuwanshi, Sridhar Iyer, and Onel L. A.
Lépez. Tinyml: Tools, applications, challenges, and future research directions. Mul-

timedia Tools and Applications, September 2023.

Norah N. Alajlan and Dina M. Ibrahim. Tinyml: Enabling of inference deep learning
models on ultra-low-power iot edge devices for ai applications. Micromachines, 13(6),
2022.

Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn: Efficient neural network

kernels for arm cortex-m cpus, 2018.

Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, Shlomi Regev, Rocky Rhodes, Tiezhen
Wang, and Pete Warden. Tensorflow lite micro: Embedded machine learning on

tinyml systems, 2021.

STMicroelectronics. X-CUBE-AI - Artificial Intelligence Expansion Package. https:
//www.st.com/en/embedded-software/x-cube-ai.html, 2023.

Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. Mcunet:

Tiny deep learning on iot devices, 2020.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized

convolutional neural networks for mobile devices, 2016.

Ruizhou Ding, Zeye Liu, R. D. Shawn Blanton, and Diana Marculescu. Quantized
deep neural networks for energy efficient hardware-based inference. In 2018 28rd Asia
and South Pacific Design Automation Conference (ASP-DAC), pages 1-8, 2018.

97

https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html

Bibliography

[11]

[12]

[13]

[14]

[15]

[20]

Xiaying Wang, Michele Magno, Lukas Cavigelli, and Luca Benini. Fann-on-mcu: An
open-source toolkit for energy-efficient neural network inference at the edge of the
internet of things, 2022.

Yvan Tortorella, Luca Bertaccini, Luca Benini, Davide Rossi, and Francesco Conti.
Redmule: A mixed-precision matrix-matrix operation engine for flexible and energy-

efficient on-chip linear algebra and tinyml training acceleration, 2023.

Alessio Burrello, Angelo Garofalo, Nazareno Bruschi, Giuseppe Tagliavini, Davide
Rossi, and Francesco Conti. Dory: Automatic end-to-end deployment of real-world
dnns on low-cost iot mcus. IEEE Transactions on Computers, 70(8):1253-1268, Au-
gust 2021.

Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini.
Pulp-nn: accelerating quantized neural networks on parallel ultra-low-power risc-v
processors. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 378(2164):20190155, December 2019.

Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Luca Benini, and Davide
Rossi. Xpulpnn: Enabling energy efficient and flexible inference of quantized neural

network on risc-v based iot end nodes, 2020.

Philip Colangelo, Nasibeh Nasiri, Eriko Nurvitadhi, Asit K. Mishra, Martin Mar-
gala, and Kevin Nealis. Exploration of low numeric precision deep learning inference
using intel®) fpgas. 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 73-80, 2018.

Hao Zhang, Dongdong Chen, and Seok-Bum Ko. New flexible multiple-precision
multiply-accumulate unit for deep neural network training and inference. IEEFE Trans-
actions on Computers, 69(1):26-38, 2020.

Mohammadhossein Askarihemmat, Sean Wagner, Olexa Bilaniuk, Yassine Hariri,
Yvon Savaria, and Jean-Pierre David. Barvinn: Arbitrary precision dnn accelera-
tor controlled by a risc-v cpu. In Proceedings of the 28th Asia and South Pacific
Design Automation Conference, ASPDAC ’23. ACM, January 2023.

Angelo Garofalo, Gianmarco Ottavi, Alfio di Mauro, Francesco Conti, Giuseppe Tagli-
avini, Luca Benini, and Davide Rossi. A 1.15 tops/w, 16-cores parallel ultra-low power
cluster with 2b-to-32b fully flexible bit-precision and vector lockstep execution mode.
In ESSCIRC 2021 - IEEFE JTth European Solid State Circuits Conference (ESSCIRC),
pages 267-270, 2021.

L. Alzubaidi, J. Zhang, A.J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. San-
tamaria, M.A. Fadhel, M. Al-Amidie, and L. Farhan. Review of deep learning: con-

cepts, cnn architectures, challenges, applications, future directions. Journal of Big
Data, 8(1):53, 2021.

98

Bibliography

[21]

[23]

[25]

[32]

[33]

Junxi Feng, Xiaohai He, Qizhi Teng, Chao Ren, Honggang Chen, and Yang Li. Re-
construction of porous media from extremely limited information using conditional
generative adversarial networks. Phys. Rev. E, 100:033308, Sep 2019.

Anke Meyer-Béase. X - specialized neural networks relevant to bioimaging. In Anke
Meyer-Base, editor, Pattern Recognition in Medical Imaging, pages 318-345. Aca-
demic Press, San Diego, 2004.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. In-
teger quantization for deep learning inference: Principles and empirical evaluation,

2020.

Nilesh Prasad Pandey, Markus Nagel, Mart van Baalen, Yin Huang, Chirag Patel,
and Tijmen Blankevoort. A practical mixed precision algorithm for post-training

quantization, 2023.

Giorgos Armeniakos, Georgios Zervakis, Dimitrios Soudris, and Jorg Henkel. Hard-
ware approximate techniques for deep neural network accelerators: A survey. ACM
Computing Surveys, 55(4):1-36, November 2022.

Jiawei Liu, Lin Niu, Zhihang Yuan, Dawei Yang, Xinggang Wang, and Wenyu Liu.

Pd-quant: Post-training quantization based on prediction difference metric, 2023.

RISC-V Foundation. RISC-V Foundation — Instruction Set Architecture (ISA).
https://riscv.org/, 2019. Accessed: 2023-02-10.

A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi¢. The risc-v instruction set
manual, volume 1: User-level isa, version 2.0. Technical report, RISC-V Foundation,
May 2014. Version 2.0.

Enfang Cui, Tianzheng Li, and Qian Wei. Risc-v instruction set architecture exten-
sions: A survey. IEEE Access, 11:24696-24711, 2023.

lowRISC. Ibex: A small and efficient RISC-V core. https://github.com/lowRISC/
ibex, 2023.

Vasileios Leon, Muhammad Abdullah Hanif, Giorgos Armeniakos, Xun Jiao, Muham-
mad Shafique, Kiamal Pekmestzi, and Dimitrios Soudris. Approximate computing

survey, part i: Terminology and software & hardware approximation techniques, 2023.

Convolutional neural network with int4 optimization on xilinx devices white paper.

Online, 2014. https://api.semanticscholar.org/CorpusID:225061851.

Marco Cococcioni, Federico Rossi, Emanuele Ruffaldi, and Sergio Saponara. A
lightweight posit processing unit for risc-v processors in deep neural network ap-
plications. IEEE Transactions on Emerging Topics in Computing, 10(4):1898-1908,
2022.

99

https://riscv.org/
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://api.semanticscholar.org/CorpusID:225061851

Bibliography

[34]

[36]

[41]

[42]

[44]

[45]

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library, 2019.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-
lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaogiang

Zheng. Tensorflow: A system for large-scale machine learning, 2016.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding, 2014.

I. H. Sarker. Machine learning: Algorithms, real-world applications and research
directions. SN Computer Science, 2(3):160, 2021.

Evelyn Herberg. Lecture notes: Neural network architectures, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition, 2015.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convo-

lutional neural networks for mobile vision applications, 2017.

Robin M. Schmidt. Recurrent neural networks (rnns): A gentle introduction and

overview, 2019.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van
Baalen, and Tijmen Blankevoort. A white paper on neural network quantization,

2021.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of

neural networks for efficient integer-arithmetic-only inference, 2017.

Alessandro Pappalardo. Xilinx/brevitas. https://github.com/Xilinx/brevitas,
2023.

Riscv-Software-Src. RISCV-software-src/RISCV-isa-SIM: Spike, a RISC-V ISA sim-

ulator. https://github.com/riscv-software-src/riscv-isa-sim, 2023.

Olofk. fusesoc: Package manager and build abstraction tool for fpga/asic develop-
ment. https://github.com/olofk/fusesoc, 2023.

100

https://github.com/Xilinx/brevitas
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/olofk/fusesoc

Bibliography

[47]

[48]

[49]

[51]

[52]

Verilator. Verilator/Verilator: Verilator open-source SystemVerilog Simulator and
Lint System. https://github.com/verilator/verilator, 2023.

Adding custom instructions to the risc-v gnu-gcc toolchain. https://hsandid.

github.io/posts/risc-v-custom-instruction/.

M. Abrar, H. Elahi, B.A. Ahmad, et al. An area-optimized n-bit multiplication
technique using n/2-bit multiplication algorithm. SN Applied Sciences, 1:1348, 2019.

Clara Higuera, Katheleen Gardiner, and Krzysztof Cios. Mice protein expres-
sion. https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression,

2015. DOI: 10.24432/C50S3Z.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks, 2019.

Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and Rocky
Rhodes. Visual wake words dataset, 2019.

101

https://github.com/verilator/verilator
https://hsandid.github.io/posts/risc-v-custom-instruction/
https://hsandid.github.io/posts/risc-v-custom-instruction/
https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression
https://doi.org/10.24432/C50S3Z

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	List of Tables
	Εκτεταμένη Περίληψη
	Εισαγωγή
	Σχετική Βιβλιογραφία
	Επισκόπηση Βασικών Εννοιών
	Βαθιά Νευρωνικά Δίκτυα
	Quantization
	RISC-V

	Configurable Mixed Precision RISC-V Architecture
	Model Quantization
	Εισαγωγή των νέων εντολών
	Μετατροπές στον Επεξεργαστή

	Αξιολόγηση των Αποτελεσμάτων
	Συμπεράσματα και Μελλοντικές Προεκτάσεις

	Introduction
	Contributions
	Thesis Outline

	Related Work
	Theoretical Background
	Deep Neural Networks
	Machine Learning - Introduction
	Deep Learning

	Neural Network Quantization
	Quantization Fundamentals
	Full Integer Quantization and Inference
	Mixed Precision Quantization
	Fine-Tuning Methods

	RISC-V
	RISC-V Overview
	Base User-Level ISA
	RISC-V ISA Extensions

	Utilized Tools and Frameworks
	PyTorch
	Brevitas
	lowRISC/Ibex

	Configurable Mixed Precision RISC-V Architecture
	Model Quantization
	Design Space Exploration

	Integrating new Instructions on the RISC-V ISA
	Custom Instruction Compilation
	Description of the new instructions
	A Practical Example

	Hardware Modifications
	Core
	Hardware Accelerator
	 Hardware Accelerator Optimizations
	Implementation on FPGA

	Experimental Results
	Comparison with Baseline RV32IMC ISA
	Comparison with State-of-the-Art
	FANN-on-MCU
	CMSIS-NN
	MCUNet

	Resource Utilization & Energy Consumption

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

