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Abstract: The accurate “base pairing” in RNA molecules, which leads to the prediction of RNA
secondary structures, is crucial in order to explain unknown biological operations. Recently, COVID-
19, a widespread disease, has caused many deaths, affecting humanity in an unprecedented way.
SARS-CoV-2, a single-stranded RNA virus, has shown the significance of analyzing these molecules
and their structures. This paper aims to create a pioneering framework in the direction of predicting
specific RNA structures, leveraging syntactic pattern recognition. The proposed framework, Knotify+,
addresses the problem of predicting H-type pseudoknots, including bulges and internal loops, by
featuring the power of context-free grammar (CFG). We combine the grammar’s advantages with
maximum base pairing and minimum free energy to tackle this ambiguous task in a performant
way. Specifically, our proposed methodology, Knotify+, outperforms state-of-the-art frameworks
with regards to its accuracy in core stems prediction. Additionally, it performs more accurately in
small sequences and presents a comparable accuracy rate in larger ones, while it requires a smaller
execution time compared to well-known platforms. The Knotify+ source code and implementation
details are available as a public repository on GitHub.

Keywords: H-type pseudoknot structure; RNA; bulges; internal loops; parser; CFG

1. Introduction

RNA and its functions play a significant role in a variety of biological operations. DNA
molecules, where the genetic information is stored, are transcribed into mRNA, which
carries the information into the cytoplasm, where translation takes place and leads to the
production of a protein. Due to its utmost importance, this procedure is also called the
“central dogma” of molecular biology [1]. Apart from that major functionality, RNA has
been proven to be involved in a wide range of central biological phenomena, such as gene
expression regulation, site recognition, and catalysis [2,3]. All these RNAs, except the
mRNA, are called noncoding because they fulfill functions other than encoding proteins,
also elaborating the necessity of the detailed analysis of these molecules. In this context,
it is vital to predict the structure of RNA, specifically its 3D structure, to understand
its functions. This tertiary structure can be determined using techniques such as X-ray
crystallography [4] and nuclear magnetic resonance [5]. However, researchers have focused
on the development of a methodology toward the prediction of a simpler representation
of an RNA structure in a two-dimensional space, named a secondary structure, which is
a collection of A (Adenine), U (Uracil), G (Guanine), and C (Cytosine) bases that form
duplex regions and unpaired ones that form important motifs around them, such as loops,
bulges, and hairpins. Therefore, the secondary structure is this collection of pairs (A–U,
C–G, and G–U pairs) that form different motifs. The accurate location of the base pairs and
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motifs is a useful milestone and starting point for the enlightenment of the 3D structure
and, consequently, the understanding of RNA operations.

Recent RNA secondary structure prediction methods have been based mainly on a
scoring function that may rely on a thermodynamic, probabilistic, or Artificial Intelligence
(AI)-based algorithm. The majority of the methods have utilized or adopted a partially
minimum free energy algorithm introduced by Zuker, which facilitates dynamic program-
ming enhanced with parameters from experiments [6]. The Nussinov algorithm is also a
widely used method that has succeeded in predicting the largest number of base pairings
using dynamic programming [7], which performed even better when it was combined or
incorporated as an internal component in other more sophisticated algorithms, as in [8].
Other current approaches have leveraged stochastic methods, syntactic pattern recognition,
machine learning, statistical techniques, integer programming, or other heuristic algorithms
to tackle the prediction task. Section 2 contains a detailed analysis of the related literature.

In an RNA secondary structure, the pseudoknot’s prediction is the most demanding
task in terms of prediction. Other common motifs are stems, hairpins, bulges, internal
loops, and multibranch loops, which a variety of algorithms are able to predict with high
accuracy. On the other hand, the prediction of a pseudoknot is quite complicated because
dynamic programming and minimum free energy algorithms are not constructed in such
a way as to facilitate the interconnection of a pseudoknot. Another important reason is
that with the increase in the length of the RNA, these algorithms need an exponential
execution time. Thus, the need to achieve an accurate prediction for pseudoknots led our
research towards constructing a platform that predicts H-type pseudoknots combined with
bulges and internal loops with an accuracy similar to well-known methods and, at the same
time, an efficiency in terms of execution time, called Knotify+. The H-type pseudoknot [9]
consists of two stems and two loops of arbitrary lengths.

Bulge loops or bulges form when a helix is interrupted by unpaired nucleotides on
one strand, and they are frequently observed in the secondary structures of RNA [10,11],
as they appear in a universal distribution in all types of structured functional RNAs [12].
Base–base mismatches, shaping internal loops, also appear often in RNA, affecting the
stability of the molecule [10]. Specifically, researchers have focused on the study of
bulges, due to the frequency with which bulged adenosine residues occur at protein
binding sites in RNA [10,13], while they also operate as contact points in the tertiary
folding of RNA [11,14]. Bulges construct unique recognition sites in RNA tertiary
structures in two ways, first by acting as molecular handles within the helical regions
and second, in an indirect way, by distorting the RNA backbone and allowing access
to base pairs in a widened deep groove [12]. Additionally, helical elements separated
by bulges frequently undergo transitions between unstacked and coaxially stacked
conformations during the folding and function of noncoding RNAs [12]. All the above
references show the importance of the identification of bulges and internal loops as
key structural elements in a wide range of RNAs and emphasize their significance and
pluralism in RNA architecture and molecular recognition.

In this work, we suggest a new version of Knotify [15], which is capable of predicting
bulges and internal loops [12] in an H-type pseudoknot. The sequence of the RNA is im-
ported to a parser which produces the entire set of the possible core stems of a pseudoknot.
Next, all these trees are decorated with possible base pairs close to the two stems (core
stems) that form the pseudoknot, with the difference that the algorithm is searching for
possible bulges and internal loops around it. Towards the prediction of the optimal tree, a
set of candidates is created according to the greatest number of base pairs, and finally, the
structure with the minimum free energy is chosen. The current update enhances Knotify+’s
ability to recognize and predict even more complex motifs, while it maintains the same
level of complexity. In practice, the additional computations increase the execution time of
the algorithm but are slight enough to be considered acceptable.
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2. Related Work

Most of the algorithms have encapsulated dynamic programming in their pipeline
process in order to determine the most likely secondary structure of an RNA, trying to
minimize the free energy [16,17]. Other approaches that have focused on pseudoknot
prediction, e.g., [18], have enforced entropy, stability, and minimum free energy. The proof
that this problem is NP (nondeterministic polynomial time)-complete [19] has encour-
aged the development of stochastic and heuristic methods [20–22]. A typical example
is Knotty [23], which predicts pseudoknots, with a CCJ (Chen–Condon–Jabbari) algo-
rithm [24] with sparsification. Additionally, ProbKnot [25] computes base pair probabilities
of non-pseudoknotted substructures, building the secondary structure based on the maxi-
mum expected accuracy. IPknot [26] also leverages the advantages of integer programming
and base pair probabilities, performing better than the previous methods. Its extension [27]
calculates secondary structures with pseudoknots in linear time using the LinearPartition
model and pseudo-expected accuracy. This improved version can handle long sequences in
a reasonable execution time, but there is still room for improvement in terms of accuracy.

Other approaches such as Pfold [28,29], PPfold [30], and RNA-Decoder [31] predict
the secondary structure by applying Stochastic Context-Free Grammar (SCFG). All these
approaches are specialized in pattern recognition, so they reveal similarities in structures,
and in turn, they can be fine-tuned by assigning appropriate weights to the rules. Other
typical SCFG-based frameworks are Contrafold [32], Evfold [33], Infernal [34], and Ox-
fold [35]. The extensive research on SCFG-based methods reveals the need for the efficient
collaboration of grammar and computation methods, heuristic and probabilistic algorithms,
minimum free energy computation, maximum base pairing, base pairing probabilities,
and other algorithmic and biological concepts. Therefore, it is crucial to find the optimal
match between these concepts, to succeed in predicting the RNA secondary structure. In
this direction, we propose a grammar-based framework, which leverages maximum base
pairing and minimum free energy, creating an efficient prediction pipeline. However, the
underlying model of the proposed methodology is that of Context-Free Grammar (CFG).

Machine learning algorithms have also been proposed in the literature. They endeavor
to unveil hidden patterns by applying supervised and unsupervised methods in train-
ing datasets. The majority of these need large datasets because they use deep learning
techniques which require a significant amount of data for the training process to avoid
overfitting. In [36], for example, the authors used deep learning and tertiary constraints to
tackle this task, while others, e.g., [8], have constructed bidirectional-LSTM (long short-term
memory) networks and the IBPMP (improved base-pair maximization principle) to select
the correct base pairs to then predict the optimal structure. Similarly, 2dRNA [37] applies
a coupled two-staged deep neural network that provides data to a U-net architecture. A
bidirectional LSTM encodes the data in a higher dimension, and at the final stage, a fully
connected network decodes them, producing the dot-bracket structure. To predict the sec-
ondary structure, including pseudoknots, ATTfold [38] also adopts deep learning models
by incorporating an attention mechanism as an encoder. It encodes a base pairing score
matrix; then, a CNN (Convolutional Neural Network) decodes the data in an appropriate
format. The training process takes place according to hard biological concepts, aiming to
reduce structures that do not exist in nature in agreement with the folding rules.

3. Theoretical Background

Next, we provide background information about the core theoretical concepts such as
RNA, pseudoknots, bulges and internal loops, and parsers. This information is necessary
for the illustration of the proposed methodology in Section 4.

3.1. RNA

RNA is a single-stranded molecule that folds, forming a specific set of RNA base pairs,
the Watson–Crick base pairs (A–U and G–C), [39] and, less frequently, the G–U wobble-
base pair. Its secondary structure is a dominant component for the explanation of various
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biological processes. The nitrogenous bases A, C, G, U, sugars, and a phosphate backbone
are combined to form RNA and its forms such as mRNA, tRNA, and rRNA, which are
all involved in the production of protein; one of these, the mRNA, carries the genetic
information. The most significant motifs and the most frequent in nature are those of loops,
kissing loops, bulges, hairpins, and pseudoknots. Our contribution is a methodology that
is concentrated on H-type pseudoknots, incorporating bulges and internal loops.

3.1.1. The Pseudoknot Motif

One of the least frequent patterns in RNA sequences, but challenging in terms of
prediction, is the pseudoknot. A pseudoknot is said to exist when two base pairs intersect.
This motif was initially observed in the Turnip Yellow Mosaic virus [40]. The simplest type
of pseudoknot is formed by two single-stranded sections. Numerous variations have been
observed, but the four main types [41] are the H, K, L, and M types, as shown in Figure 1 [42].
Specifically, the H-type pseudoknot [9] consists of two stems and two loops of arbitrary
length. The intersection of a couple of base pairs (or core stems in our notation) leads to
its creation.

Figure 1. The most common types of pseudoknots (after [42]).

3.1.2. Bulges and Internal Loops

A bulge is constructed by unpaired bases (A, U, G, and C) and its size may be from one
to many unpaired bases. Their appearance in all types of structured functional RNAs [12]
emphasizes their utmost importance and led our research to embody them in our pseu-
doknot prediction framework. To illustrate this motif, we present the unpaired bases that
form a bulge with red dots in Figure 2a. Internal loops, which are also known as interior
loops, may be created in an RNA sequence when the double-stranded RNA separates as a
consequence of no pairing between the nucleotides. The difference between interior loops
and stem loops is that interior loops exist in the middle of a stretch of double-stranded
RNA. To illustrate this motif, we present the unpaired bases that form an internal loop with
red dots in Figure 2b.

Figure 2. H-type pseudoknots with bulges (a) and internal loops (b). Unpaired bases forming a bulge
or internal loop are represented with red dots.
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3.2. Syntactic Pattern Recognition

The proposed framework, Knotify+, is an extension of the work presented in [15],
including prediction of bulges and internal loops. The underlying model in predicting
pseudoknots of type H in [15] is that of context-free grammar (CFG). According to
syntactic pattern recognition theory, a language [43], which is a collection of syntactic
rules, should be initially defined. These rules construct parse trees that contain the string
of interest at the terminal nodes. The grammar is comprised of a collection of syntax rules
enriched with a vocabulary. According to them, we recognize the inclusion of a string
of symbols in a specific language. As Noam Chomsky [44] proposed, grammar can be
classified into four categories, known as the Chomsky hierarchy. Knotify+ encapsulates a
CFG widely used in a considerable number of applications, such as speech processing
and compilers [45].

Context-Free Grammar

In order to construct a CFG [46], four sets 〈NT, T, R, and S〉 should be defined. S is
the start nonterminal symbol, terminal symbols and nonterminal symbols form the sets
T and NT, respectively, and the syntactic rules form the set R. The notation of the syntax
rules is L→ δ, where L ∈ NT and δ ∈ (T ∪ NT)∗, defining that L is capable of producing a
string of symbols δ.

Due to their high expressiveness, there is a considerable number of parsers in the
literature. The most cited and widely used algorithms are the CYK [47] introduced by Cocke,
Younger, and Kasami and the Earley parser [48]. Modifications of the abovementioned
parsers are presented in [49–51] and as parallel versions in [52,53].

Knotify+, similarly to [15], encapsulates Yet Another Early Parser (YAEP) [54], which
is a performant Earley’s parser implementation for ambiguous grammar and appropriate
for our RNA pseudoknot prediction grammar.

4. Proposed Methodology

In this section, the methodology proposed by the Knotify+ platform is presented.
Knotify+ is an extension of the Knotify platform presented in [15], including the pruning
technique presented in [42], capable of predicting bulges and internal loops around the core
stems of the pseudoknot. Knotify manages to predict a pseudoknot in an RNA sequence
making use of three main tasks: (a) a CFG parser analyzes the RNA sequence so that all
trees in which a pseudoknot pattern is detected are generated; (b) the produced trees are
parsed to detect the core stems that form the pseudoknot and the possible base pairs around
the core stems of the pseudoknot, (c) the optimal tree is selected using two well-known
criteria, that of the maximum number of base pairs and the minimum free energy of the
sequence. A thorough analysis of the abovementioned tasks (see Figure 3) is provided in
the next subsections. Knotify+ adds a new task (see the blue box in Figure 3) before the
selection of the pseudoknot, which is responsible for the identification of bulges or internal
loops around the core stems.

Figure 3. Overview of the Knotify+ proposed methodology.

Consequently, the proposed implementation receives as input a string representing
an RNA sequence of nitrogenous bases and produces the base pairing of the given RNA
sequence in extended dot-bracket notation. The Knotify+ source code and implementation
details are available as a public repository on GitHub [55].
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4.1. CFG to Identify Pseudoknots

Knotify+’s methodology is based on the platform proposed in [15]. Hence, Knotify+
makes use of an efficient CFG parser. Therefore, initially, the appropriate primitive patterns
should be selected. With regard to the RNA sequence representation, the obvious choice
was to assign the nitrogenous bases A, C, G, and U to the characters “A”, “C”, “G”, and
“U”, respectively, which also formed the set T of the terminal symbols of the grammar.
The sequences of those four characters, such as AAUCCGG or CCGAAAUACG, formed
a string that represents an RNA. After the primitive patterns were selected, a convenient
grammar was defined, so as to syntactically analyze the linguistic representation of the
original patterns.

The proposed platform makes use of the CFG GRNA that was initially presented and
extensively described in [15]. Knotify+ initially executed the space elimination proposed
in [42] aiming to dramatically decrease the substrings to be parsed by our sliding-windows
technique. Then, the CGF parser analyzed the RNA sequence so that all trees in which a
pseudoknot pattern was detected were generated. The main contribution of this paper is
the creation of a new module that predicts bulges and internal loops around the core stems
when the pseudoknot is decorated. This process is presented in Section 4.2. Finally, the last
task of pseudoknot selection is executed as described in [42] and presented in Section 4.3.

4.2. Decorate Core Stems

During the first task, all parse trees were constructed by the parser. By the use of these
trees, all possible pseudoknots and their core stems were allocated. The second task dealt
with the traversing of all these trees to locate further stems. The CFG proposed in [15] was
dedicated to detecting the initially crossing stems of the pseudoknot, in our notation the
core stems, trying to amend the CFG parser’s efficiency. Consequently, all parse trees were
evaluated for the possible detection of base pairs surrounding the pseudoknot’s core stems.
All bases located in each of the two loops were consecutively checked for their ability to
create a pair with a base in an appropriate position.

In Table 1, the process of the core stems decoration is presented. After the parser
detected the core stems U–A and C–G at positions 10–17 and 5–11, the two pseudoknot
loops were specified. The left loop was at positions 6 to 9, and the right loop was at
positions 12 to 16. The bases in these loops were initially examined for whether they might
pair with bases outside the pseudoknot’s loops. The base pairs in the left loop were tested
for a match with bases at positions 18 to 22, while bases in the right were tested for a match
with bases at positions 18 to 22.

In both loops of the pseudoknot, the base pairs at positions 9–18, 8–19, 4–12, and 3–14
were sequentially detected during stages 1 to 4, respectively. Table 1 presents this procedure
in detail. Once no more sequential base pairs could be formed, the existence of bulges and
internal loops was checked (stage 5). For each side, left or right, the unpaired bases were
examined for whether they could form a base pair after creating a bulge or an internal loop.
In our example, on the left side, the set at positions 6–7 may form base pairs with a set at
positions 20–22 after creating bulges; those two sets were called the left pair of sets. On
the right side, the set at positions 1–2 may form base pairs with a set at positions 14–16
after creating bulges; those two sets were called the right pair of sets. Users may define
the maximum bulge size, which is given as an argument when the program is executed.
This parameter is called the maximum_bulge_size. For each pair of sets, there may be a bulge
of length 0 to maximum_bulge_size at one set and 0 to maximum_bulge_size at the other set.
In the case where the bulge’s length is zero on one side and greater than zero on the other
side, then a bulge is located. Otherwise, if the bulge’s length is greater than zero on both
sides, then an internal loop is located. The Cartesian product of those cases was executed,
and multiple dot-brackets strings were produced. By applying the criteria of the minimum
free energy and the greatest number of base pairs of the pseudoknot, the optimal case was
selected. The result of this procedure is shown in stage 5 of Table 1. Regarding the left
pair of sets, there may be a base pair at positions 7–21 after creating a bulge at position 20.
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Regarding the right pair of sets, there may be a base pair at positions 2–16 after creating a
bulge at positions 14–15, there may be a base pair at positions 1–14 after creating a bulge at
position 2, or there may be a base pair at positions 1–15 after creating a bulge at position 2
and another one at position 14, creating in this way an internal loop. The last case was the
one that was finally selected, as shown in stage 5, where the internal loop is highlighted
in red.

Table 1. The decoration process around the core stems of an H-type pseudoknot. Unpaired bases
forming a bulge or internal loop are represented with red dots.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

String A C A U C C G C C U G A U U U G A G C A C A
Core
stems: . . . . [ . . . . ( ] . . . . . ) . . . . .

Stage 1 . . . . [ . . . ( ( ] . . . . . ) ) . . . .
Stage 2 . . . . [ . . ( ( ( ] . . . . . ) ) ) . . .
Stage 3 . . . [ [ . . ( ( ( ] ] . . . . ) ) ) . . .
Stage 4 . . [ [ [ . . ( ( ( ] ] ] . . . ) ) ) . . .

Stage 5 [ . [ [ [ . ( ( ( ( ] ] ] . ] . ) ) ) . ) .

Knotify+ allows the user to choose the option of the base pairs, U–G, as an argument
from the command line, as well as the value of the maximum_bulge_size.

4.3. Optimal Tree Selection

Knotify+ incorporated a hybrid model to choose the optimal tree among the trees
that were produced from the CFG. This task facilitated the maximum base pairing and the
MFE (Minimum Free Energy) principles. In the first stage, it ranked all the produced trees
according to the count of base pairs around the pseudoknot, excluding the stems formed
after the bulges or internal loops. The next stage consisted of the application of the MFE
in the trees that were ranked at the top in the first stage, i.e., the trees with the most base
pairs around the pseudoknot. After extensive experiments, we observed that including all
the possible detected stems after the bulges or internal loops may lead to excluding the
correct RNA sequence from the top-ranking sequences (regarding base pairs count) that
were promoted to the second stage of selection, that of the MFE calculation. Consequently,
the first task of the proposed tree selection, that of maximum pairing, was applying it to
the RNA sequences without taking into consideration the stems detected after the bulges
or internal loops.

Finally, the secondary structure with the minimum free energy was selected. A module
derived from HotKnots [56] calculated each candidate’s energy and, in turn, provided the
energy scores to Knotify+ to make the final selection. The energy calculation algorithm
was introduced by Mathews [57], but we used a variation based on [58] presented in the
following relation:

Gpseudo = β1 + β2 ∗ Bp + β3 ∗Up, (1)

where β1 is the weight or cost of the existence of a pseudoknot; Bp is the total number of
core stems; Up is the total number of unpaired bases inside the pseudoknot. Following the
experimental evaluation in [56], we set the parameters β2 (cost for the core stems) and β3
(cost for the unpaired bases) equal to 0.1 and β1 equal to 9.6 (see Figure 4).
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Figure 4. β1 is the weight or cost of the existence of a pseudoknot; β2 is the cost of the core stems; β3

is the cost of the unpaired bases inside the pseudoknot (after [56]).

5. Performance Evaluation
5.1. Dataset Construction

To evaluate Knotify+’s accuracy against other methodologies, a dataset [59] consisting
of 260 well-known RNA sequences including pseudoknots, was constructed. A consider-
able number of these sequences formed bulges or internal loops after their core stems of the
pseudoknot. The dataset was separated into four sets by length. The first set consisted of
75 RNA sequences of lengths smaller than 30, the second had 67 RNA sequences of lengths
between 30 and 40, the third had 55 RNA sequences of lengths between 40 and 50, and
the last set had 63 RNA sequences of lengths greater than or equal to 50. The sequences
were selected from the RNA Database platforms [60,61] that provide publicly available
data. The proposed methodology was compared against two efficient implementations
proposed in the literature, i.e., IPknot and Knotty [23,26], as well as the previous version
of our implementation. Consequently, four platforms were used during the performance
evaluation task, i.e., IPknot, Knotty, Knotify, and Knotify+.

5.2. Methods of Evaluation

In measuring our framework’s performance, three methods were chosen: (a) the
percentage of the pseudoknot’s core stems prediction, (b) the confusion matrix including
the precision (PPV), recall, F1-score, and MCC (Matthews correlation coefficient), and (c)
the execution time. Concerning the Knotify+ platform, all experiments were implemented
with the parameter maximum_bulge_size equal to 3.

5.2.1. Pseudoknots’ Core Stems Prediction

In Table 2, the capability of each platform of predicting the core stems of the pseudo-
knots is presented. The second column presents the number of pseudoknots for which a
platform succeeded in predicting both core stems, while the fourth column presents the
number of pseudoknots for which a platform succeeded in predicting just one core stem.
The proposed methodology, Knotify+, similar to Knotify, detected both core stems of the
pseudoknot perfectly in 142 out of 260 sequences, while IPknot did so in 38 sequences and
Knotty in 121 sequences. Moreover, Knotify+, succeeded in additionally detecting one
core stem of the pseudoknot in 45 sequences, while IPknot did so in 22 sequences, Knotty
in 47 sequences, and Knotify in 38 sequences. Consequently, Knotify+ outperformed the
other platforms, succeeding in predicting at least one core stem in 63.27% of the dataset’s
sequences, with IPknot at 18.85%, Knotty at 55.58%, and Knotify at 61.92%. This finding
demonstrates that even in cases where the exact prediction was not feasible, Knotify+
predicted at least one core stem better than our previous implementation Knotify and the
other two well-known platforms.
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Table 2. Pseudoknot location prediction according to the core stems in the whole dataset.

Platform 2 Matches 2 Matches (%) 1 Match At Least 1
Match (%)

IPknot 38 14.62 22 18.85
Knotty 121 46.54 47 55.58
Knotify 142 54.62 38 61.92

Knotify+ 142 54.62 45 63.27

Adopting the methodology of locating the pseudoknot proposed in [57], we permitted
the location of the one base of each stem to be moved one position on the right or left.
Consequently, pair (k, l) was equivalent to (k ± 1, l) or (k, l ± 1). The results of predicting
the pseudoknots’ core stems are also shown in Figure 5.

Figure 5. Percentage of at least one core stem prediction for each method.

5.2.2. Confusion Matrix, Precision, Recall, F1-Score, and MCC

The performance of all platforms regarding the precision, the recall, the F1-score, and
the Matthews Correlation Coefficient (MCC) is presented in Table 3. The definitions of
these metrics are presented in Equations (2)–(5). In Equations (2)–(5), tp (true positive)
expresses the count of the correctly predicted base pairs, fp (false positive)—thecount of the
incorrectly predicted base pairs, fn (false negative)—the count of the base pairs that were
not predicted, and tn (true negative)—the count of those correctly not predicted.

PPV =
tp

tp + f p
(2)

Recall =
tp

tp + f n
(3)

F1− score =
2× PPV × Recall

PPV + Recall
(4)

MCC =
tp× tn− f p× f n√

(tp + f p)(tp + f n)(tn + f p)(tn + f n)
(5)

As shown in Table 3, the proposed methodology outperformed the previous version
of Knotify regarding the recall, F1-score, and MCC and also reduced the distance from
Knotty, which still had better performance at those metrics. In addition, regarding the
precision metric, Knotify+ maintained better performance than Knotty, as Knotify did.
Knotify+ achieved a greater number of tp than Knotify, a fact that showed the improvement
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in the prediction, but its attempt to add stems after bulges or interior loops increased the
number of fp and therefore decreased the precision. Despite this reduction in precision,
the F1-score, the harmonic mean of the precision and recall, and the metric that describes
the prediction rate overall was higher in Knotify+ than in Knotify. Finally, IPknot had the
lowest performance in all metrics.

Table 3. The confusion matrix for each method in the entire dataset.

Platform tp tn fp fn Precision Recall F1-
Score MCC

IPknot 3850 3746 1488 1606 0.721 0.706 0.713 0.421
Knotty 5006 3331 1836 517 0.732 0.906 0.810 0.574
Knotify 4170 4061 1154 1305 0.783 0.762 0.772 0.540
Knotify+ 4342 3975 1306 1053 0.769 0.805 0.786 0.558

In Table 4, the confusion matrices are presented and divided into four sets for each
method, providing the tp, tn, fp, and fn in detail. Knotify+ counted more tp and lower or
equal fp and fn for the sequences smaller than 40 (L < 30 and 30 ≤ L < 40) compared to the
evaluated methods. Its prediction capability in sequences larger than 40 (40 ≤ L < 50 and
L ≥ 50) was better than Knotify’s and comparable to but still lower than Knotty’s, which
increased its prediction capability when the length increased.

Table 4. The confusion matrices for each method per set.

Length L < 30 30 ≤ L < 40 40 ≤ L < 50 L ≥ 50

Platform tp tn fp fn tp tn fp fn tp tn fp fn tp tn fp fn

IPknot 916 514 124 337 824 810 294 355 754 897 396 284 1368 1519 674 631
Knotty 1196 469 146 80 1064 786 316 117 894 803 510 124 1848 1264 876 204
Knotify 1230 490 132 39 748 991 288 304 748 991 288 304 1218 1723 420 831
Knotify+ 1248 486 132 25 1010 847 316 110 798 1004 328 242 1286 1638 530 676

Figures 6–9 present the results for each metric per set depending on the length. In
evaluating these figures, our methodology typically outperformed all the methods in all the
metrics when the length was smaller than 30. In the sequences between 30 and 40, Knotify+
was still more efficient according to the F1-score and the MCC because of its high recall and
comparable precision rate. In the sequences between 40 and 50, Knotify+ outperformed
Knotify in all metrics and was equivalent to Knotty regarding the F1-score and MCC.
Finally, for the sequences larger than 50, Knotty outperformed the other methodologies.
The main reason for this superiority is that as the sequence’s length increased, there were
more motifs apart from pseudoknots, bulges, and internal loops, for example, hairpins,
which Knotify+ was inherently not capable of predicting in this version. These structures
may be located by Knotty, augmenting its tp score, leading to higher recall and F1-score
metrics. Having observed this fact, our research team has set, as a future goal, adding to the
platform the ability to detect additional complex patterns in the loops of the pseudoknot.
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Figure 6. Metrics for the sequences of length < 30.

Figure 7. Metrics for the sequences of length ≥ 30 and < 40.

Figure 8. Metrics for the sequences of length ≥ 40 and < 50.
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Figure 9. Metrics for the sequences of length ≥ 50.

5.2.3. Execution-Time Comparison

The third metric was the execution time, where the proposed methodology was tested
against the other platforms in terms of time efficiency. Table 5 illustrates the required
prediction time for each method.

Table 5. The execution time required for each method in the whole dataset.

Platform Total Time (s) Average Time (s)

IPknot 117.02 0.45
Knotty 582.91 2.24
Knotify 56.43 0.22

Knotify+ 74.05 0.28

The second column of Table 5 presents the required per platform execution time for
the whole dataset. Knotify+ required 74.05 s; IPknot required 117.02 s; Knotty required
582.91 s. Obviously, Knotify+ was approximately eight times (582.9/74.05 = 7.87) faster
than Knotty. The third column presents the average execution time for each method.

6. Conclusions

The prediction of the RNA secondary structure is quite a challenging task, especially
for pseudoknotted structures. In this context, we proposed an intelligent grammar-based
algorithm that predicted H-type pseudoknots with bulges and internal loops. It detected the
secondary structure performant, and its accuracy was comparable to well-known platforms.
Especially for sequences smaller than 30 bases, it outperformed all the examined methods,
showing that the enhancement of its expressiveness led to an important advancement
of our previous version. The most notable finding was that the proposed methodology
outperformed our previous version Knotify regarding the recall, F1-score, and MCC in
all sets, showing a significant improvement for sequences larger than 40. In addition,
Knotify+ continued to outperform Knotty for small sequences, while it was comparable
for sequences between 30 and 50, and significantly decreased the gap with Knotty for
sequences larger than 50 bases. Meanwhile, Knotify+ maintained the highest percentage of
core stems prediction compared to all the examined methods and was approximately eight
times faster than Knotty.
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