g
5

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

v

DivisiON OF BIOMEDICAL ENGINEERING LABORATORY

A
7 NPOMHOEVS
Gh=:l

\

s

Discrimination of real and imaginary lower

body movement: a Deep Learning approach

DipLOMA THESIS

of

CHRISTINA MANARA

Supervisor: Prof. George Matsopoulos

Professor

This thesis is submitted in partial fulfilment for M.Sc. Data Science & Machine Learning

Athens, March 2024

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHooL OF ELECTRICAL AND COMPUTER ENGINEERING

DivisioN OF BIOMEDICAL ENGINEERING LABORATORY

Discrimination of real and imaginary lower body

movement: a Deep Learning approach

DipLOMA THESIS
of

CHRISTINA MANARA

Supervisor: Prof. George Matsopoulos

Professor

This thesis is submitted in partial fulfilment for M.Sc. Data Science & Machine Learning

Approved by the examination committee on 1st March 2024.

(Signature) (Signature) (Signature)

Prof. George Matsopoulos Panagiotis Tsanakas Georgios Stamou

Professor Professor Professor

Athens, March 2024

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHooL OF ELECTRICAL AND COMPUTER ENGINEERING

DivisioN OF BIOMEDICAL ENGINEERING LABORATORY

Copyright (C) - All rights reserved.
Christina Manara, 2024.

The copying, storage and distribution of this diploma thesis, exall or part of it, is prohibited
for commercial purposes. Reprinting, storage and distribution for non - profit, educational
or of a research nature is allowed, provided that the source is indicated and that this

message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference
is included in the bibliographic references section. I fully, individually and personally
undertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

Christina Manara

1st March 2024

Abstract

This study introduces a cutting-edge method for analyzing topographical maps derived
from electroencephalogram (EEG) data to classify leg movements. Leveraging the spatial
information encoded in EEG topographic maps, we propose a hybrid model combining
Convolutional Neural Networks (CNNs) with Recurrent Neural Networks (RNNs). This ap-
proach is designed to extract and integrate spatial features from the topographic maps
and temporal dynamics of EEG signals, respectively. By applying preprocessig techniques
(data augmentation, ensemble method for dataset imbalance etc), enhancing the model’s
ability to capture the nuanced patterns associated with different leg movements. Differ-
ent optimizers, such as Adam, RMSprop & SGD, with different parameters, are performed
in order to detect the best model’s performance. Preliminary results show the model’s
efficacy in differentiating between specific leg movement tasks, indicating its potential
utility in neurorehabilitation and brain-computer interface applications. Our research
highlights the significance of advanced signal processing and machine learning tech-
niques in interpreting complex brain signals, suggesting avenues for further exploration

in optimizing model architecture and improving real-time prediction capabilities.

Keywords

Topographical brain maps, R3DCNN, Deep Learning, Optimizers, Data augmentation

Abstract

H napovoa SimAeopatiky epyacia emyeipel va availuoest Tonoypadikoug XApteg mou mpo-
¢pxovrat ard Sedopéva ndekrpoeykeparoypapnparog (EEG) yia v tagivopnor) tov Kivroemv
TRV KAT® AKP®V. EKpetaAAeuopevol 11 XWPIKEG TTANPOPOPIES TIOU KOSIKOTIO0UVIAL OTOUG
tonoypadikoug xapteg EEG, mpoteivoupe éva uBpibiko povieédo mou cuvdualetl ta Aiktua
Zuvédigng (CNNs) pe ta EnmavaAnmuxkd Neupovikd Aiktua (RNNs). Autf] np mpoogyyion
oxeblaotnke ya va €§dyel Kal va eVOMIATOOEL XWPIKA XAPAKINPIOTIKA arnd toug XAapteg
KAl TI§ XPOVIKEG Suvaikeg tov onpatev EEG, avtiotoixa. Egappodoviag 1eXVIKEG TPOEes-
epyaoiag, PeAtidveral 1 1KaAvotnta 10U HOVIEAOU va avayvepidel ta Siakpiuika potiBa mou
oxetidovtat pe 81adopeg Kvr)oelg 1oV odiwv. Atapopetikoi BeAtiotonomnteg, onwg o Adam, o
RMSprop kat o SGD, dokipdadoviat pe §1apopeg apap€Tpoug yid va eVIOITIOTEL 1] KAAUTEPD)
anodoor tou poviedou. Ta mPoKATApPKIIKA artoteAéopata SeiXvouv TV armoteAeopaTikoOnTa
TOU POVIEAOU Ot 81aKP10n PeTal CUYKEKPIHEVOV KIVITIKOV £EQPYACIOV, UTTOSEIKVUOVTIAS T
duvatotntd Tou yla Xpron o £PapPoyES VEUPOAITOKATAOCTAONG Kal Slenapég eykepalou-
urodoyiotr). H €peuva pag tovidet) onpaocia teov mponypeévev TEXVIK®V £retepyaciag
onpdtov Kat pnxavikng pabnong oty eppnveia mepimlokev eyKEPAAIKOV ONPATQV, IIPo-
tetvoviag Spopoug yia Iepattépe egepeuvnon ot PEATIOTONOINoT g APXITEKTOVIKIG TOU

poviédou kat) BeAtionon TV SUvatot eV MPAyHATIKOU XpOvou npoBAsyng.

Aégerg KAedua

Tomoypadikoi Seppikoi xapteg eyrepadou, R3DCNN, Deep Learning, Optimizers, Data

augmentation

to myself

Acknowledgements

I would like to warmly thank Mr. Georgios Matsopoulos for supervising this thesis and
for giving me the opportunity to undertake it in the Biomedical Technology Laboratory.
Also, I particularly thank Mr. Ioannis Kakkos for his guidance and the excellent cooper-
ation we had. Finally, I would like to thank my family and my closest friends, especially

Hera Katara, who was a companion in this endeavor.

Athens, March 2024

Christina Manara

Table of Contents

Abstract

Hepidnyn

Acknowledgements
Preface

1 Introduction
1.1 Artificial Intelligence
1.2 Machine Learning o o
1.3 DeepLearning L o e
1.3.1 Artificial Neuron 0o
1.3.2 Artificial Neural Networks
1.4 Neuroscience o o e e e e e e e e
1.4.1 Human Brain 000
1.4.2 EEG e e e e e e
1.4.3 EEGFrequencyBands00 ..
1.4.4 EEG Systems 0o e e e e e e e
1.5 Related Work e

I Theoretical Part

2 Convolutional Neural Networks
2.1 Evolution of CNN Architecture
2.2 Core Components of CNNs v,
2.2.1 Convolutional Layerso,
2.2.2 Activation Functions o000
2.2.3 Pooling Layers
2.2.4 Fully Connected Layers
2.25 SoftmaxLayer. L
2.2.6 LossFunctions e
2.2.7 A simple CNN architecture
2.3 Advantages of CNNs L e
2.4 Applications of CNNs oot

17

21
21
22
23
23
23
25
26
26
27
27
28

31

33
33
34
34
35
36
37
38
39
40
41
41

TABLE OF CONTENTS

3 Recurrent Neural Networks

3.1
3.2

3.3
3.4

3.5

3.6

Evolution of RNN Architecture
Core Components of RNNs,
3.2.1 Input Layers in Recurrent Neural Networks
3.2.2 Hidden Layers in Recurrent Neural Networks
Advantages & Limitations of RNNs
Regularizationo
3.4.1 Data augmentation o000
3.4.2 Earlystopping o
3.4.3 Dropout L e e e
3.4.4 Weightdecay e
Optimizers e e e e e e
3.5.1 GradientDescent 0oL
3.5.2 Stochastic Gradient Descent (SGD)
3.5.3 Mini-batch Gradient Descent
3.5.4 Momentum L e
3.5.5 Adagrad e
3.5.6 Adam e
3.5.7 RMSProp o v i i v ittt e e e
Metrics L L e e
3.6.1 ACCUraCy i i it e e e e e e e e e
3.6.2 F1 e
3.6.3 Precision oo e
3.6.4 Recall e e e e
3.6.5 AUROCttt e s
3.6.6 Confusion Matrix L

II Practical Part

4 Implementation

4.1

4.2

4.3

4.4

4.5

4.6

Tools & Libraries e e e e e
4.1.1 Google Colab e e
4.1.2 Pytorch Lightning
4.1.3 NumPy o e
4.1.4 Matplotlib
4.1.5 Python Package eeg positions
Challenges e e
Data Collection e e e
Preprocessing L oL Lo
4.4.1 Ensemble Method
Training oL e e e e e
4.5.1 CNN-GRU e

Evaluation e e e e e

43
43
43
44
44
45
45
46
46
46
47
47
47
48
49
50
50
50
51
53
53
53
54
55
55
57

59

TABLE OF CONTENTS

III Epilogue 73
4.7 DIiSCUSSION & v v i e 75
4.7.1 Final Outcome i i i e e e e e 75

4.7.2 Future Work e e e e e e 75
Bibliography 79

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

Evolution of AL. e e 21
Artificial Neuron. oL e e 23
Artificial Neural Network., 24
Human Brain. 0o s 26
Human brain with electrodes. 27
EEG frequency bands. 27
10-20 System. e e e e 28
10-10 System.o e e e 28
Timeline of CNN evolution. 33
A Convolutional Layer. 0 o 34
Types of Activations Functions. 36
Pooling Types. o« o i i i e e e 37
A Convolutional Neural Network. 40

Recurrent Neural Network unfolded over time for a sequence of 3 inputs. . 45

Early stopping. 46
Dropout. oL e e e e 47
Gradient Descent Algorithm. 48
Stochastic Gradient Descent Algorithm. 49
ROC curves. o o i i i ittt 56
Confusion Matrix. Lo L 57
Topographic Map. o e 64
Diagram of Ensemble Classifier. 65
Learning Rate vs Accuracy - RMSprop. 71
Optimizers vs Metrics Lo L 71
Optimizers ve ROC Curve. o v v 72

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

3D CNN Architecture L e 66
RMSprop Optimizer Parameters 67
RMSprop Optimizer -1Ir 0.01 67
RMSprop Optimizer Parameters 67
RMSprop Optimizer - Ir 0.001 67
RMSprop Optimizer Parameters 68
RMSprop Optimizer - Ir 0.0001 68
RMSprop Optimizer Parameters 68
RMSprop Optimizer - Ir 0.00001 68
Adam Optimizer Parameters00 69
Adam Optimizero 69
Optimizer and Learning Rate Scheduler Parameters 70
SGD Optimizer e e e e e e e e 70

Preface

ZTnv €MoYI1) pag, Ormou 1] KAvoToHid avartuooeTdl 1€ EVIUTIOOIaKoUg pubpoug, éva Kop-
PATL g EMOUHPOVIKEG TIP0oodou £xel Sexmpioel g 161aitepa eVIUNIOOIAKO: 0 ouviuaopog
g Babiag Mabnong kat o1 fabutateg emdpacelg tng 0TO0V KOOHO TG 1ATPIKNG ATIEIKOVIONG
OtV IPAYHRATIKY {@F], e181KOTEPA OTAV MIPOKELTAL Y1d TV 5100 TOV AEMTTOPEPEIROV TOU AV-
9paruvou eykepadou. H ouvepyaoia petadl ponypevng teX Vg VOIooUvnG KAt TRV Aviy-
HATIK®V TTOAUTTAOKOTTOV TOU avOpOITVOU VOU avaoynpati¢el 1o tomio g 1atpikng diayv-
®oNg Kat dYepareiag pe pOmoug mou nponyovpévag Sempouviav akatopbwetot. Eivat éva
oUVaPIAcTKO tagidl mou egetddel) oULeusn g UNXAVIKNG VONIOoUVNG e v eubpauotn)
TEXVI NG ATIOKPUITIOYPAPNONG TRV PUCTNPIOV TOU EYKEPAAOU, KAl O1 EMIITIOCELG TOU Oev £i-
vatl Alyotepo aro enavactatikeég. Autr) eivatl 1 EKIMMANKIIKY 10topia tou g 1 Babia pdabnon
agrvel pua aveditnAn oppayida otov KOO0 g £1KOVAG TOU eyKePAAOU, urooxopevn eAmnida,
akpiBela kat) duvatouta yia npatodpaveig mponypiveg egeditelg otn veuposrmotun Kat
Vv KAWKL) @povtida.

H niapouoca Sumdeopatiki epyacia EMMKEVIPOVETAL 0TV EUPECT) TOV TTOAUTTAOK®V AEITOUPYI®V
TOU avBpWITVOU eyKePAAOU e) XpHon texvikov Babidg Mabnong yia) Sidkpion petady
MPAYHATIKOV KAl (PAVIACTIK®V KIVHOE®V TOV KATO AKP®V. To KUP10 aviiKeipevo emtuyxave-
1Al PE€0® TG avdartuing Kat g Xprong tou Avadpopikou 3D Zuvehikukou Neupwvikou
Awktiou (RSDCNN). Ta nepapatkd dedopéva reptdapBavouv) oUAAOYH EYKEPAAIKOV
TOMOYPAPIKOV XAPTOV, Trv KAtdAAnAn mpoemnedepyacia autdv, kat apddinda 1o poviédo
(R3DCNN) eivatl oxedlaocpévo £181KA yia v €§aywyr XApaKINploTKOV X®POU Kdl XPOvou,
Kad1otdVvIag 10 KAtdAAndo yia v noAuniokotnta 1ewv debopévav EEG.

E1dkotepa, n mapovoa €pesuva edetalel v arnodoon tou poviedou (RSDCNN) pe 61a-
(Popoug BeAtiotonontég Kat pubpiolug padnong, EmMKevVipoOVIag oty agloAdynorn v {uylo-
PEVQOV HETPIKGV TASIVOUITH V1A VA TTAPEXEL P OAOKANP®UIEVE AaSloA0ynor. ZNHaviko eivat
ot 0 BeAtiotontountr|g Zroxaotikng KAiong (SGD) emdeikviel upnin anoboor), unioSnAovov-
TaG TNV AMOTEAEOHATIKOTNTA TOU OTOV IEPUTAOKO X®PO PeAtiotonoinong twv uyniov ot-
aotaocewv dedopevav EEG. Ta mepdpata pixvouv emiong gwg otnv emidpaon tov pubpov
pdabnong (learning rates), unodeikvuoviag o1l 1 peiwon tou pubpou pabnong odnyei oe
BeATiopéveg CUYIONEVEG PETPIKEG, ONIATOS0TOVIAG AETTIOIEPECTEPES TIPOCAPHIOYVES TOV Bap®v
TOU HOVIEAOU Yla EVIOYXUNEVH] YEVIKEUOT).

la wmyv exktédeon g rnapouvoag HIMA@UATIKAG gpyaociag, €ivat avaykaio va avilpeie-
TOTOUV OP1OHEVEG ONUAVIIKEG TIPOKANOEG. Mia arod autég eival 1 poviedoroinorn pe tov
mA¢ov BéAtioto Tporo, AapBavoviag unmoyn ToUg IEPLOPIOHEVOUS UTIOAOY10TIKOUG TTOPOUS.
[MapdAAnda, 1o €i60g tv Sebopévov, dnAadr eikdveg TIOU TPOEPXOVIAL ATIO TA AviioTolya

NAEKTPOEYKEPAAOYPAPATA, ATIOTEAET EVAV APKETA ATIATTNTIKO TUTIO edopévav. Auto amnarttel

Preface

0X1 HOVO TV KatdAAndn yveor) yid TV IPOEnedepyacia tov e1kovov, addd Kat e181kég yvo-
O€1g TOU oXetidovial Pe TV MPOEMESEPYAoia TOV £IKOVEV ITIOU apopouVv T XapToypadnon)
ToU eyRedpdAlou. PUOIKA, 1 AVATTIUSH AVTOTOX@V HOoVIEA®V rmou Ya epappootouv, PEow®
1oV oroiwv da ermteuxBel 10 emOupntod amnotédeopa - rou 6ev eivatl dAAo amod v Katn-
yoplornoinon petady mpaypatikhg Kal (Qaviaotikng Kivnong - €ivat pia e§ioou onpavuky
nPOKANoON.

ErunA¢ov, pia mpokAnon mou IPOKUITIEL €ival 1 avioopportiia oto ouvolo Sedopévav.
H avicopportia oto cUvoAo 8edoévav AvVIITPOO®ITEVEL P1d KATACTAOH OIMoU UIAPXEl pia
aV1oOPPOITY] KATAVOLLL] ToU aplfpou tov napadstypdtov and kabe katnyopia oe éva cUVoAo
dedopévav, ernpedloviag €0l v eknaidevon tou poviédou. Autd ouvrBwg odnyel o éva
Povtédo Tou eival eite IPORATEIANPIHEVO TIPOG TNV KAAOT] € td MePLoootepa rnapadsiypata
elte n anodoor] Tou ennpeddetal oty KAAon pe ta Atyotepa napadeiypata, n onoia propet
va elvatl kplown oe moAAég epappoyég. Tétola poviéda pmopel va mapoucidoouv armeth-
nuka vynldn akpiBela, aviukatorpidoviag ouyva v KAACH mpotipnong g risioyneiag,
napd v MPAypatiki toug duvatotnta npoBAeypng. Auto PIopel va Peiwoel onpaviikd my
eualobnoia Tou PoVIEAOU otV KAAOT NG PEIOVOTIKAG TTAEIOVOTNTAG, 08NyoOviag o€ PeEYAAo
apOpd Peudbav apvnUKOV yia T AyOTEPO AVIUIPOOXITEUOEVH KAdon. Me dAda Aoy,
Ya unfjpxav coBapég ouvErEleg, KATA TV AViXVEUOn aAmding 1 t) didayveorn acBevelov, e
artotédeopa va kabiotal avaykaia 1 EMApKNg AVIIPEIOITON T@V AVICOPPOIIEVOV CUVOARV
debopévav katd) Sadikaoia avdartuing tou poviédou.

H moAumlokotnta 1oV Xaptov eyKepaAikng tonoypadiag rmou avarnaplotouv ta dedopéva
EEG yepiletat amotedAeopatika amno to poviedo (R3IDCNN), emdsikvuoviag) Suvatotntd tou
Va ATTOKTI0El XAPAKINPIOTIKA XOPOoU, @Aacpatog Kal Xpovou. Ta suprjpata urmodeikvuouy ot
10 poviédo eival KatdAAnAo yla epyaocieg Onwg n tagivopnorn KvHoE®V Tov KAt® akpev. H
oudfjtnon tovidel Tig duvnuikeg edpappoyeg tou poviedou (RIDCNN) ot veupodoyiky épsuva
KAl TI§ IPAKTIKEG KATAOTACELS, EIIKEVIPOVOVIAS OV avOEKTIKOTNTA TOU KAl TV Ipooap-
pootkotnId T0U.

‘Eva xkaipto Brjpa oty eneSepyaoia Sedopévav eitvat) kKatdAAndn ermorpavor 1ou cuvolou
dedopévav, ypnoponolmviag evav ouvduaopod pe tpelg aduvapoug pabntég. H epapyikn
MPOCEYY10N ETUTPETIEL AETTTOPEPT] AVAAUOT], XP1OAn O ePAPPOYES OTIwG 1] avaduorn Bripa-
106 Kdal 1] apakoAoubnorn arnokatdotaong. I'a v evioxuorn tng mpooaplooTiKOTNTAS TOU
HOVIEAOU, XPIOIHOIIOI0UVIAL TEXVIKEG erauinong debopévav, Onwg 1 PETATPOIT] EIKOVOV O
KA{paKaA TOU YKP1 KAt 1] Xp1jon g teXvikig tou interpolation (Rbf). H teAsutaia nmeptrap-
Bavet v aAdayr) teov 61a0TA0E®V TOU apX1KOU TEVO0Pd, PE OTOXO TNV ATTAOIIOIN O], X®PIg TV
anwdela Anpopopiag, PETd 1ov Kaboplopod TV akplBov onpeiov-nAeKTpodiov oto Tp1XOTO
NG KEPAANG.

Ztn 8dpkela v rnepapdtev mou diednyxdnoav xpnotporoioviag to poviédo R3DCNN oe
xaptoypapnuéva eykepadika diaypappata, propouv va egaxfouv diapopa cupriepacpata
OXETIKA JE TNV Arddoor) Tou PHoviEAou 1e 81adpopoug BeAtiotonoinég Kat pubpoug pabnong,
erukevipwvovrag 18aitepa oug otabpiopéveg PeTpkég tagvopuntr).

To povtédo Gokipaoinke pe drapopoug PBeAtiotonointeg - SGD, RMSprop kat Adam -
KaBe évag pe Siapopetikoug pubpoug padnong. Ze 0,11 apopd TS OTaBPIoPEVES PETPIKEG

TaSvountr], IOV MAPEXOUV H1d 100PPOTTNEVE] ATIOWT NG ATOS00NG TOU HOVIEAOU 08 OAEG TIg

Preface

Katnyopieg, o PeAtiotoroinig SGD pe évav mpoypappatiot] pubpou pabnong eavnke va
TIPOOPEPEL UTTIEPOXT| OTNV At0door). AUTd UTTOSEIKVUEL OT1, Yid Ta dedopéva Xaptoypapnpévev
eyKePpadikov daypappdaiov, n mnpooeyylorn tou SGD otov xopo Pedtiotornoinong, Aoy v
OUVIOTOO®V NG OPHLS KAl TOV TIPOCAPHOY®V TOU pubpiou pdbnong, eivatl arnoteAeopatiky).

O pubpog padnong eivat pia CNPAVIIKI UTEPTIAPAPETPOS OTNV EKMTAISEUOT] TOV POVIEA®V
Babiag Mdbnong. Ta melpdapata deixvouv pa yevikr taorn ot yia to poviedo R3DCNN,
000 TEPIO0OTEPO PEIWVETAL 0 PUBHOG PAbnong, 1000 PeAtiwvovial ol OTaOPIoPEVES PETPIKEG,
UTIOGEIKVUOVTAG H1d IO AETTIOPEPT] TIPOCAPHOYT] TOV Bapdv Tou HoVIEAOU Tou 0dnyel ot
KAAUTEPD YEVIKEUOT).

To povtédo R3DCNN oyxediaotnke yia va avildapBdvetal ta MMOAUMAOKA XAPAKTINPLOTIKA
X®PIKIG, (PACHUATIKIG KAl XPOVIKNG @UONG ITOU IIPOKUITouv arnod ta dedopéva EEG, onwg
auta avanapiotavial ano ta xaproypapnpéva eyrepaiikd Siaypdppata. Ta mepdparta em-
SEIKVUOUV TV 1KAVOTITA TOU POVIEAOU VA AVIIHETOITIEEL TV TTIOAUTTAOKOTTA TV dedopévav
EEG, deilxvoviag pia eArmbopopa kKateubuvor) yla v Xaptoypadlon t1ou avOp®Iivou eyKe-
palou.

TUVOAIKA, auth] 1 €peuva ermBeBailmvel v arotedeopatkotnta tou poviéAou (RSDCNN)
ot Xep1opo oAurlokwv Sedopéveov EEG, avoiyoviag to pdpo yia riponypéveg egediferg ot
VEUPOAOYIKI] £pEUVA KAl TIG TIPAKTIKEG epappoyés. H egaviAnukr) egepevvnon Beduiotoron-
Ntov, pubu®V PHAbnong Kat teXViK®v ernesepyaciag 6e60EVeOV CUVEICPEPEL ONIAVTIKEG TTIPOOTT-
TIKEG OtV arodoor) Kat yevikeuor tou poviedou. H tepapyikn diabikaoia Anyng anopacemv
Kat n pébodog tagivopnong pe evoopatepévo oUvolo aro tpetg aduvapoug pabnteg evioyuouv
Vv euedi§ia tou povigdou, urodeikvuoviag 1o Suvapiko tou oe H1aPopoug Topeig Epa arod
Vv ta§vounon Kvhoemv modiev.

H évtadn tov ouveAIKUKOV veupavikav Siktuev (CNNs) yia v e§ayoyr] XOpKov Xapak-
PLOTKGOV HE Ta avadpopikda veupavikd diktua (RNNs) yia v kataypadrn XPOovikov egap-
oV £xel Beifel Suvapiko otV Arnok@dIKOoinor moAvumlokav onuatev EEG. Qotdoo, n
BeAtiotornoinon g apXIteKTOVIKNG KAl 1] EEPEVUVI O IO MPONYHEVEV HOVIEA@V da urop-
ouoe va odnyrjoel oe onpaviukeg Bedtwoelg. Meddovukeg pedéteg 9a propovoav va egetd-
COUV TNV MEIPAPATIKI] XPL0T) S1aPOPETKGDV TUTIOV CUVEAIKTIKGOV KAl AVASPOPIIKOV OTPOHATOV,
onwg Transformer-based poviéda. EmumAéov, pia ouotnpatikiy POCEYY1on otov pubpioty)
UTIEPTIAPAPETPOV A PIOPOUsE va KATACTIOEL TIEPAITEP® EKAEITTUOHEVT TNV AtO8001] TOU
HOVIEAOU, XPNOIOIIOINVIAG TEXVIKEG OTiwg random search, greed search k.Ar.

TéAog, kabwg ta poviéda yivovial mo MoAUnAoka, 1 S1aopdadion g EPUNVEUCTIOTTAS
Toug yivetal kpiowun, 16i0g o KAvika repiBdAdovia. ErurmAéov, 1 éviadn moAutporikmv
6edopévav, onwg IMRI, pe 1a 6edopéva EEG 9a priopovoce va mpoodEPE Hid IO OUVOALKT)
E1KOVA TOV EYKEPAAK®OV SpaCTNPLOTTOV, EVIOXUOVIAG TIG TIPOBAETTTIKEG SUVATOTNTEG TOU 1OV-
1édou. H efepevivnon autov tev rpooeyyioemv da PBeAtiwost 61 povo v anodoorn Kat tn
Xpnowonta twv poviédov Bactopévev oe EEG, alda Sa ocupBdlet emiong otov euputepo

TOpEA TG VEUPOTEXVOAOYIAS KAl TOV EPAPHOYROV TNG.

Chapter ﬂ

Introduction

1.1 Artificial Intelligence

The history of Artificial Intelligence (Al) spans from early theoretical underpinnings in
the mid-20th century to its current status as a cornerstone of technological advancement
and societal integration. The journey began with foundational work by pioneers who
explored the potential for machines to simulate human intelligence. The 1950s saw
the term "Artificial Intelligence" being coined at the Dartmouth Conference, marking the
official start of Al as a research field.

The initial years were marked by enthusiasm and notable successes, such as the de-
velopment of early natural language programs. However, the field faced setbacks during
the "Al winters" of the late 1970s and late 1980s, when expectations outpaced results,
leading to reduced funding and interest.

Renewed focus on machine learning and neural networks in the 1980s brought Al back
to prominence. The development of deep learning techniques in the 2010s, particularly in
areas such as image and speech recognition, showcased Al’s potential to perform complex
tasks with accuracy surpassing human benchmarks in some domains, like the game of
Go.

/AL TIMELINE &

1950 1955 1961 1964 1966 Al 1997 1998
: : WINTER ...

1999 2002 2011 2011 2014 2014 2016 2017

Figure 1.1. Evolution of AL

Chapter 1. Introduction

Today, Al is interwoven into various sectors, driving innovations in automation, enter-
tainment, healthcare, and beyond. Despite its advances, Al’s rapid growth also raises
ethical concerns regarding privacy, bias, and the impact on employment, sparking de-
bates on how to navigate its future responsibly. This condensed narrative underscores
the cyclical nature of Al’'s development - from theoretical exploration to practical appli-
cation and societal integration, highlighting the ongoing balance between technological

possibilities and ethical considerations|[1].
1.2 Machine Learning

Machine Learning (ML) is a field of Al focused on enabling machines to learn from data,

improve over time, and make decisions or predictions. Key concepts include:

e Supervised Learning: Training models on labeled data to predict outcomes for new,

unseen data, applicable in classification and regression tasks.

e Unsupervised Learning: Identifying patterns or structures in unlabeled data, used

for clustering and dimensionality reduction.

e Semi-supervised Learning: Combining labeled and unlabeled data to improve

learning efficiency, useful when labels are scarce or expensive to obtain.

¢ Reinforcement Learning: Learning to make decisions by taking actions in an

environment to maximize some notion of cumulative reward.

o Feature Extraction and Selection: Identifying the most relevant information from

the data to use for training models, crucial for model performance and efficiency.

e Overfitting and Underfitting: Challenges in ML where models either learn the
noise in the training data (overfitting) or fail to capture the underlying data pattern

(underfitting), affecting their prediction accuracy.

e Cross-validation: A technique for assessing how the outcomes of a statistical anal-

ysis will generalize to an independent dataset, helping to mitigate overfitting.

e Regularization: Techniques to simplify models to prevent overfitting, ensuring they

perform well on new, unseen data.

e Loss Functions: Metrics to quantify the difference between the model’s predictions

and actual data, guiding the training process.

e Gradient Descent: An optimization algorithm used for minimizing the loss function
in the training process, essential for finding the model parameters that result in the

best model performance.

These concepts form the backbone of machine learning, enabling a wide range of appli-

cations from predictive modeling and data analysis to autonomous systems and beyond.

1.3 Deep Learning

1.3 Deep Learning

1.3.1 Artificial Neuron

An artificial neuron is a fundamental building block of artificial neural networks, de-
signed to mimic the properties of biological neurons. The concept of an artificial neuron
stems from the desire to replicate the human brain’s ability to process and transmit

information, thus enabling machines to learn and make decisions.

Structure and Function

An artificial neuron, as it is shown in the image 1.2, typically consists of inputs, weights,
a bias, an activation function, and an output. The inputs represent the data received by
the neuron, similar to the dendrites in a biological neuron. Each input is associated with
a weight, which adjusts the strength or importance of the input. The bias is akin to the
neuron’s threshold level that needs to be surpassed for activation.

The core operation in an artificial neuron involves the weighted sum of its inputs, plus
the bias. This sum is then passed through an activation function, which determines
the neuron’s output. The activation function’s role is to introduce non-linearity into the

neuron’s output, enabling the neural network to learn and model complex patterns.

Dendrites

A
Synapse

Human Brain Neuron

Cell Body I

Dendrites
Artificial Neuron
V : = -] izl 7‘ ou‘tpu’:

Activation Function

Inputs

Figure 1.2. Artificial Neuron.

1.3.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computing systems inspired by the biological neu-
ral networks that constitute animal brains. An ANN is based on a collection of connected
units or nodes called "artificial neurons," which loosely model the neurons in a biological
brain. Each connection, like the synapses in a biological brain, can transmit a signal

from one artificial neuron to another. The receiving neuron processes the signal and then

Chapter 1. Introduction

signals downstream neurons connected to it. ANNs have found applications in a wide
range of tasks, from speech recognition and image classification to drug discovery and

autonomous vehicle control.

Key Components and Structure

e Neurons: The basic computational units of the ANN, designed to mimic the neurons

in the brain. Each neuron receives input, processes it, and generates an output.

e Weights: These are the parameters within the neural network that transform input
data within the network’s hidden layers. Weights are adjusted during the training

process to minimize the difference between the actual output and the target output.

e Bias: A bias value allows you to shift the activation function to the left or right,

which can be critical for successful learning.

e Layers: ANNs consist of layers: an input layer, one or more hidden layers, and
an output layer. The input layer receives the initial data for processing, the hidden
layers perform computations with weights and biases, and the output layer produces

the final prediction or classification.

e Activation Function: This function is applied to the input sum, including weights
and bias, to determine the neuron’s output. Common activation functions include

sigmoid, tanh, ReLU (Rectified Linear Unit), and softmax.

Input layer : Hidden layers i Output layer
7 h, h, h 0

w1 o TN
SN
NN

. Output 1

v
ol
\

i
Input n | '/

Figure 1.3. Artificial Neural Network.

Artificial Neural Networks (ANNs) - 1.3, have revolutionized a wide array of applications
across various fields due to their ability to model complex patterns and make intelligent

decisions. This survey[2] extensively reviews applications of Artificial Neural Networks

1.4 Neuroscience

(ANNs) in diverse fields such as healthcare, where ANNs contribute to disease diagno-
sis and drug discovery; environmental science, aiding in climate modeling and pollution
control; and robotics, enhancing autonomous navigation and human-robot interaction. It
also touches on the use of ANNs in financial markets for predictive analysis and risk man-
agement, and in automotive industries, particularly for the development of self-driving car
technologies. These applications underscore the transformative potential of ANNs across
various sectors, driving innovation and solving complex challenges. In image and speech
recognition, ANNs have significantly improved the accuracy and efficiency of identify-
ing objects within images or transcribing spoken words into text, making technologies
like facial recognition and voice-activated assistants increasingly reliable. In the realm
of natural language processing (NLP), ANNs are instrumental in translating languages,
generating human-like text, and understanding user intents, thereby enhancing commu-
nication between humans and machines.

While ANNs have driven much of the progress in Al, they also face challenges such as
vulnerability to adversarial attacks, the need for large amounts of training data, and the
"black box" nature of deep learning models that makes them hard to interpret. Future
research is directed towards making ANNs more efficient, explainable, and robust against

attacks, as well as reducing their reliance on large datasets for training.

1.4 Neuroscience

In our rapidly advancing technological era, where innovation unfolds at an astonishing
pace, one facet of scientific progress has stood out as particularly awe-inspiring: the
marriage of deep learning and its profound effects on the realm of real-life medical imaging,
specifically when it comes to examining the intricacies of the human brain. The synergy
between cutting-edge artificial intelligence and the enigmatic complexities of the human
mind is reshaping the landscape of medical diagnostics and treatment in ways previously
thought unattainable. It’s a captivating journey that delves into the fusion of machine
intelligence and the delicate art of deciphering the brain’s mysteries, and its implications
are nothing short of revolutionary. This is the remarkable tale of how deep learning is
leaving an indelible mark on the world of brain imaging, promising hope, precision, and
the potential for unprecedented advancements in neuroscience and clinical care.

Neuroscience delves deeper into understanding how individual neurons operate, how
they communicate through neurotransmitters, the importance of various brain regions
like the hippocampus in memory, and the prefrontal cortex in decision-making. It
also studies the mechanisms behind neuroplasticity, illustrating the brain’s adaptabil-
ity through learning and experience. Fundamental to neuroscience is the exploration of
sensory systems, motor control, and the neural basis of consciousness. These concepts
are crucial for unraveling the complexities of neural function and dysfunction, offering

insights into treating neurological disorders.

Chapter 1. Introduction

1.4.1 Human Brain

The image 1.4 shows a sagittal section of the human brain, highlighting three main
regions: the forebrain, midbrain, and hindbrain. The forebrain is the largest part, shown
in pink, encompassing the cerebral cortex and underlying structures. Below it, in green, is
the midbrain, a small central part of the brainstem that plays a role in vision, hearing, and
motor control. The hindbrain, depicted in mauve, includes the cerebellum and brainstem

structures that control vital functions such as breathing and heart rate [3].

Midbrain Hindbrain

Figure 1.4. Human Brain.

1.4.2 EEG

An EEG, or electroencephalogram, is a test that detects electrical activity in the brain
using small metal discs attached to the scalp. Brain cells communicate via electrical
impulses even when they’re at rest, and an EEG can be used to help diagnose brain dis-
orders, monitor the depth of anesthesia, determine if someone is in a coma, or confirm
brain death. It’s often used in the diagnosis of epilepsy and other neurological condi-
tions. The test is non-invasive and can track brain wave patterns that might signify
abnormalities.

The metal discs used in an EEG are called electrodes. They are attached to the scalp
with a conductive gel or paste and are responsible for picking up the electrical impulses
that occur in the brain. These impulses are then amplified and recorded by the EEG
machine, producing a trace for each electrode that reflects the brain’s activity. The
patterns seen in an EEG can be analyzed by specialists to detect abnormalities. The
placement of the electrodes is typically done according to a standardized system known
as the International 10-20 system, which ensures that the locations are consistent for

each test and between different individuals, Figure 1.5.

1.4.3 EEG Frequency Bands

Figure 1.5. Human brain with electrodes.

1.4.3 EEG Frequency Bands

EEG waves are categorized into several frequency bands, each associated with different
brain states. Delta waves, at 4 Hz or lower, are dominant during deep sleep stages and
in infancy. Theta waves, ranging from 4 to 8 Hz, are common in children up to 13 years
old. Alpha waves, with frequencies from 8 to 12 Hz, typically appear when an adult is
relaxed and are most prominent in the posterior head regions. Lastly, Beta waves, above
12 Hz, are observed during alertness and periods of anxiety or prolonged attention [4],

Figure 1.6.
Beta MM\'\WMWMWWWM
[12-30 Hz]
et AR WA
(8-12 Hz]
Theta
[4-8 Hz)
Delta
[1-4 Hz)
|

Time

1sec

Figure 1.6. EEG frequency bands.

1.4.4 EEG Systems

The 10-20 system, figure 1.7, introduced by Herbert Jasper at the 1957 International
EEG Congress in Brussels, established a standardized approach for the placement of
EEG electrodes. The system’s nomenclature, "10" and "20", indicates the percentage
increments of the skull’s total front-back or right-left distance used to position the elec-
trodes. This distance is measured using four key anatomical landmarks on the scalp: the

nasion, the inion, and the two preauricular points. Electrodes are first positioned 10%

Chapter 1. Introduction

away from these landmarks, and subsequent electrodes are spaced at 20% intervals. For
instance, electrode Fp1 is located 10% from the nasion, while Fz is positioned 20% from

Fp1l along the front-back axis [5].

NASION

."E".

e 6@
@ ©- @--Q--O
@ ®0 O G,
Q-L @

INION

Figure 1.7. 10-20 System.

Building on this, the 10-10 system, figure 1.8, offers a more detailed electrode place-
ment strategy, essentially doubling the number of electrodes used in the 10-20 system by
halving the distance between adjacent sites to 10%. This provides a finer grid for mapping
EEG activity, allowing for more precise localization of brain activity. Both systems are
crucial for ensuring consistent, reproducible EEG recordings across different studies and

clinical assessments [5].

Figure 1.8. 10-10 System.

1.5 Related Work

To comprehend how the human brain works, this thesis aims to differentiate between
real and imaginary lower body movements using Deep Learning. After gathering topo-
graphical maps through an experiment, described properly in Chapter 4, R3DCNN is
developed and utilized in order to be achieved the main purpose of this diploma thesis.
The current research leverages this particular model on analogous data that demands
suitable spatial and temporal feature determination. Several research articles have uti-
lized this model in similar ways.

More specifically, in [6], "Learning Spatial-Spectral-Temporal EEG Features With Re-

current 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment"

1.5 Related Work

aims to tackle the challenge of cross-task mental workload assessment by using deep
learning techniques, specifically a concatenated structure of deep recurrent and 3D con-
volutional neural networks (R3DCNNs). The authors propose a new method to learn
EEG features across different tasks without prior knowledge by adding frequency and
time dimensions to EEG topographic maps through a Morlet wavelet transformation. The
R3DCNN is then trained to learn from these enriched EEG features in spatial, spectral,
and temporal dimensions. The paper validates the model using EEG signals collected
from 20 subjects performing binary classification of low and high mental workload across
spatial n-back and arithmetic tasks. The results show a significant improvement in ac-
curacy over state-of-the-art methods, with the R3DCNN achieving an average accuracy
of 88.9%. The research presents a promising direction for using deep learning models to
understand and analyze complex brain dynamics across various tasks without the need
for hand-crafted features.

The research [7], titled "Human Action Representation Learning Using an Attention-
Driven Residual 3DCNN Network," is to address the challenge of recognizing human ac-
tions in video streams by proposing a computationally efficient yet robust deep learning
model. This paper introduces the Dual-Attentional Residual 3D Convolutional Neural
Network (DA-R3DCNN), which incorporates channel and spatial attention mechanisms
to improve the identification of human activities. The DA-R3SDCNN model is designed to
propagate salient features through the network layers, significantly enhancing its perfor-
mance for the task of human activity recognition. The paper outlines the design of the
model, its advantages over other methods, and the results of extensive experiments per-
formed on benchmark datasets. The findings demonstrate that the proposed DA-R3DCNN
method achieves substantial improvements in recognition accuracy and efficiency, offer-
ing up to an 11% increase in accuracy and a 74X boost in processing speed compared to
existing techniques, making it suitable for real-time applications.

The paper [8] titled "Deep Long Short-term Memory Structures Model Temporal Depen-
dencies Improving Cognitive Workload Estimation" explores the use of deep Recurrent
Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) architectures, to
enhance the estimation of cognitive workload from EEG data. This is achieved by lever-
aging the temporal dependencies present in EEG time-series signals. The study reports
significant improvements in day-to-day feature stationarity and classification accuracy
when compared to classifiers that do not account for temporal dependence. The research
involved training various deep RNN models, including LSTMs, on data collected from six
participants over five different days within a month. Each participant-specific classifier
was trained on data from the first four days and tested on the fifth day’s data, leading to
an impressive average classification accuracy of 93.0% using a deep LSTM architecture,
which is a 59% reduction in error compared to the best results previously reported for the
same dataset. The study also assessed the significance of new features derived from the
mean, variance, skewness, and kurtosis of EEG frequency-domain power distributions,

finding that mean and variance are statistically significant features for this task.

Part ﬂ

Theoretical Part

Chapter E

Convolutional Neural Networks

2.1 Evolution of CNN Architecture

The history of Convolutional Neural Networks (CNNs) traces back to the 1960s, starting
with foundational work on the visual cortex that influenced early neural network models.
The concept of CNNs was significantly advanced in the 1980s with Fukushima’s Neocog-
nitron, a model for pattern recognition that lacked backpropagation. The introduction of
the backpropagation algorithm enabled efficient training of neural networks, setting the
stage for LeNet-5 in 1998 by Yann LeCun, which applied CNNs to digit recognition. The
breakthrough came in 2012 with AlexNet, which won the ImageNet challenge and ignited
the deep learning era in computer vision. Since then, the development of CNNs has seen
rapid progress with architectures like GooglLeNet, VGGNet, and ResNet, each pushing the
boundaries of accuracy and efficiency. The evolution from theoretical models to complex
architectures underscores the transformative impact of CNNs in artificial intelligence and

computer vision [9]. Below, in figure 2.1, it is shown the evolution of CNN architecture.

AlexNet Inception-v1 ResNet-50 Inception-v4 ResNeXt-50
2000 201 2015

1998 2003 2008 2013 2017

LeNet-5 VGG-16 Inception-v3 Xception Inception
ResNets

Figure 2.1. Timeline of CNN evolution.

Convolutional Neural Networks (CNNs) are a class of deep neural networks highly effec-

tive for processing data with a grid-like topology, such as images. CNNs are distinguished

Chapter 2. Convolutional Neural Networks

by their unique architecture, designed to automatically and adaptively learn spatial hier-
archies of features from input data. This capability makes them particularly suited for
computer vision tasks, including image and video recognition, image classification, and

object detection, among others.

2.2 Core Components of CNNs

2.2.1 Convolutional Layers

The primary building blocks of a CNN. These layers apply a convolution operation to
the input, passing the result to the next layer. A convolutional layer is composed of an
array of convolutional filters, commonly referred to as kernels.

A kernel is defined as a matrix of distinct numerical values, where each number is
referred to as a kernel weight. Initially, these weights are set to random values when
the training of a CNN starts. There are various techniques employed to initialize these
weights. Subsequently, through successive training epochs, these weights are fine-tuned,
enabling the kernel to effectively identify important features [10].

The convolution emulates the response of an individual neuron to visual stimuli, focus-
ing on small, receptive fields and allowing the network to capture spatial and temporal

dependencies in an image.

A Convolution Layer

Input Filter 1

5|6 |2 |4]0]|3 3x3 T
L 4x4x3

2|4 |5 |4|5|2—|3k ReL.U- +b —
= Filter 2

51615141718 4 3x3x2 3x3x2 3x3x2

4x4x3

Figure 2.2. A Conwolutional Layer.

The above image, 2.2, illustrates the process of applying convolutional filters (kernels) to
an input matrix, commonly encountered in the convolutional layers of a neural network.
The input matrix, which could represent an image or feature map, is shown with various
numbers in each cell. Superimposed on the input are several smaller, colored grids
representing different convolutional kernels.

During the convolution operation, these kernels slide over the input matrix - a process
referred to as convolution - to create new matrices known as feature maps or convolved
features. Each position of the kernel over the input matrix involves element-wise mul-
tiplication of the kernel weights with the values of the input matrix that are currently
under the kernel. The products are then summed up to give a single number in the
corresponding cell of the output feature map.

This operation is replicated across the entire input matrix, with the kernel moving

over it according to a defined stride, which is the step size with which the kernel moves.

2.2.2 Activation Functions

The resulting feature maps highlight different features of the input data, depending on
the pattern of weights in the kernel. This is essential in CNNs as it allows the network
to detect edges, textures, colors, and other visual elements in image data, or similarly

meaningful patterns in other types of data.

2.2.2 Activation Functions

Following convolution, an activation function such as ReLU (Rectified Linear Unit) is
applied to introduce non-linearity into the model, enabling it to learn complex patterns.
Activation functions in neural networks are vital for mapping inputs to outputs, funda-
mentally determining whether neurons should be activated based on the given inputs.
These functions take the weighted sum of the inputs and biases and generate an out-
put that decides the neuron’s activation. In CNNs, non-linear activation functions follow
layers with learnable parameters, like fully connected (FC) and convolutional layers, en-
abling the network to capture complex patterns and learn from them. The ability of these
functions to be differentiated is crucial for the backpropagation of errors during network

training [10]. Among the most prevalent activation functions are:

e Sigmoid: Transforms real-numbered inputs into a range between O and 1 with an

S-shaped curve.

o(x) =
) l1+e™

e Tanh: Similar to the sigmoid but outputs values from -1 to 1, encompassing a

zero-centered range.

e“—e™
tanh(X) = m

e ReLU: Common in CNNs, it turns all negative inputs into zeros, which simplifies
computation but sometimes leads to the “Dying ReLU” problem, where neurons stop

activating.

] ReLU(x) = max(0, x) \

Alternative ReLU variants address its shortcomings:

e Leaky ReLU: Allows a small, non-zero gradient when the input is negative, prevent-

ing neurons from dying out.
e Noisy ReLU: Adds randomness to the ReLU function to aid in robust learning.

e Parametric Linear Units: Similar to Leaky ReLU, but the leak factor is learned

during training, adding adaptability to the model.

These functions, whose graphs are shown in the figure 2.3, enrich the neural network’s

learning capacity, enabling a deep model to learn and perform complex tasks effectively.

Chapter 2. Convolutional Neural Networks

Leaky ReLU

max(0:1* x,x)

max(0:1* x,x)

Binary Step Function Linear

Sigmoid / Logistic Parametric ReLU

fly)

Figure 2.3. Types of Activations Functions.

2.2.3 Pooling Layers

These layers reduce the dimensions of the data by combining the outputs of neuron
clusters at one layer into a single neuron in the next layer. Pooling (often max pooling)
helps to make the detection of features invariant to scale and orientation changes.

The primary function of the pooling layer in a Convolutional Neural Network (CNN) is
to downsample feature maps produced by convolutional layers. This process effectively
reduces the size of the feature maps while retaining most of the critical information within
them. Similar to convolutional operations, both stride and kernel sizes are predefined
before performing pooling. Various pooling techniques exist, including but not limited to
average pooling, max pooling, min pooling, global average pooling (GAP), and global max
pooling, with max, min, and GAP being the most commonly used. These methods are
instrumental in shrinking feature maps to more manageable sizes. However, one notable
drawback of pooling is its potential to diminish CNN performance. This is because while
pooling can identify the presence of certain features within an input image, it primarily

aims to locate these features without preserving all related information, leading to possible

2.2.4 Fully Connected Layers

loss of detail crucial for accurate model predictions [10].

This image, 2.4, illustrates three types of pooling operations used in Convolutional
Neural Networks: Max Pooling, Min Pooling, and Average Pooling. On the left, a feature
map is depicted with various numerical values within each cell, and a highlighted 2x2

region indicates the pool size and stride being applied.

e Max Pooling: This operation calculates the maximum value within the specified
pool size (2x2 in this case). The output only retains the maximum value from each
sub-region, effectively downsampling the feature map and reducing its dimensions

while preserving the most significant features, which are the highest values.

e Min Pooling: Conversely, min pooling takes the smallest value within each 2x2
sub-region. This method is less common and tends to preserve the low-intensity

features.

e Average Pooling: This operation computes the average of the values within the
pool size, providing an output that represents the general average feature intensity

in each sub-region.

In the provided outputs, each 2x2 sub-region of the original feature map is reduced to
a single value, corresponding to the max, min, or average of that region, resulting in a
downsized output feature map. These pooling methods help to reduce computational load,
control overfitting, and provide a form of translation invariance to the feature detection

in CNNs.

Pool size .
Stride, Average
4 0 -2 4 1 Max Pooling Min Pooling Pooling
31 0 2 1
1 0 11 1 3 4 '4 '2 0 1
4 6 510
6 5 1.0 2 1
12 0 0 0

Figure 2.4. Pooling Types.

2.2.4 Fully Connected Layers

In Convolutional Neural Networks (CNNs), fully connected (FC) layers play a crucial
role in the network’s architecture. After the initial layers have detected features using
convolution and pooling operations, the role of fully connected layers is to interpret these
features and use them for classifying the input into various categories.

In a mathematical context, fully connected layers in a CNN can be represented by a
matrix multiplication followed by a bias offset and typically an activation function. For a
given fully connected layer, if you have an input vector x, the operation performed by the

layer can be represented as follows:

Chapter 2. Convolutional Neural Networks

y =f(Wx +Db)

where:

x is the flattened input vector from the preceding layer.

e W represents the weight matrix of the fully connected layer.

b is the bias vector.

f denotes the activation function applied element-wise, such as ReLU, sigmoid, or
tanh.

y is the output vector of the fully connected layer.

2.2.5 Softmax Layer

The softmax layer is a crucial component at the output of many neural network ar-
chitectures, particularly in classification tasks. It takes as input the scores (also known
as logits) from the previous layer and converts them into probabilities by applying the
softmax function. The softmax function is designed to ensure that the output values are
in the range of [0, 1] and sum up to 1, making them interpretable as probabilities.

The softmax layer is applied to the logits (raw class scores) from the final layer of a
neural network to convert them into probabilities. The softmax function for a score vector

z is defined as:

softmax(z;) =

Zj e

where:

e % is the exponential of the score for class i.

e The denominator is the sum of exponentials of all raw class scores in the vector z.

The softmax layer ensures that each output value will be in the interval (0,1), and the
entire set of values will sum to 1, thus forming a valid probability distribution. This prop-
erty makes the softmax function particularly useful for multi-class classification prob-
lems, where it can provide a clear, probabilistic interpretation of the model’s predictions
across multiple classes.

In a neural network, applying the softmax function to the final layer’s output allows one
to interpret the highest probability as the model’s prediction for the input’s class. This
is especially useful in tasks like image classification, natural language processing (NLP),

and any other domain where probabilistic outputs are desired.

2.2.6 Loss Functions

2.2.6 Loss Functions

The previous section outlined various layers in a CNN’s architecture, culminating in the
output layer which is responsible for classification. The output layer uses loss functions
to measure the discrepancy between the predicted and actual outcomes. This error is
then minimized during the network’s learning phase. The loss function considers two key
parameters: the predicted output (or prediction) and the actual output (or label). Different

loss functions are applied based on the problem at hand, including:

e Cross-Entropy Loss Function: Often used in classification tasks, it measures the
performance of the CNN model by outputting a probability between O and 1. It
replaces the mean square error in multi-class classification scenarios and works

with softmax activations to produce a probability distribution [10].

et
pi=—— 2.1)
k=1 €k
e Euclidean Loss Function: Also known as mean square error, this function is
primarily utilized in regression problems to measure the average squared difference

between the predicted values and the actual outcome [10].

N
1
H(p.y) = oN Z (pi — y1)? 2.2)
i=1

e Hinge Loss Function: This is typically used in binary classification tasks and is
important for Support Vector Machines (SVMs) that aim to maximize the classifica-
tion margin. It is designed to penalize predictions that are on the wrong side of the

margin boundary [10].

N
H(p,y) =) max (0, m - (2y; - 1) py) (2.3)
i=1

e Focal Loss: Focal loss is a modified version of the cross-entropy loss function,
designed to address class imbalance in object detection tasks where the vast number
of easy negatives can overwhelm the training process. It was introduced by Lin et al.
in the context of training highly imbalanced datasets for object detection. The key
idea behind focal loss is to apply a modulating term to the cross-entropy loss in order
to focus learning on hard negatives. It reduces the relative loss for well-classified
examples, putting more focus on hard, misclassified examples. This is particularly
useful in scenarios where there is a large class imbalance, as it prevents the vast

number of easy negatives from dominating the loss.

The focal loss function is defined as:

FL(p;) = —a(1 — py)¥ log(pr) (2.4)

Chapter 2. Convolutional Neural Networks

where:

— p¢ is the model’s estimated probability for the class.
- a; is a balancing factor for the importance of positive/negative examples.

- v is the focusing parameter that adjusts the rate at which easy examples are

down-weighted.

Each of these loss functions plays a role in guiding the CNN to accurate predictions by

quantifying and optimizing the prediction error throughout the training process.

2.2.7 A simple CNN architecture

Input Image Vectorized Output Classification
for Classification

Feature Ve
‘ector iliti
Maps 72,7524 Probabilities

~-—0.1 0.02 | Normal

Q.

O N .
ol 38 Memngwma

%y |11 0.06| Glioma

o 03 e 0.01| Abscess

O

Zj(:l €’

Softmax
Function

Fully Connected
Layers

Convolutional
Neural
Network

Figure 2.5. A Convolutional Neural Network.

The image, 2.5, provides a visualization of a Convolutional Neural Network (CNN) pro-
cessing an input image for the purpose of classification. The process is broken down into

several stages:

e Input Image for Classification: The image on the left shows an MRI scan of the
brain, which is the input for the CNN.

e Convolutional Neural Network: In the center, the network is symbolized by a series
of vertical bars, representing the convolutional layers that extract features from the

input image.

e Vectorized Feature Maps: The extracted features are condensed into color-coded
feature maps, which are then flattened into a vector, as shown by the colorful bars

transitioning into a column of circles.

e Fully Connected Layers: These circles represent the neurons of the fully con-
nected layers, which interpret the features extracted by the convolutional layers.

The connections between these neurons are depicted by the mesh of lines.

e Output Vector [Z1, Z2, Z3, Z4]: The output of the fully connected layers is a vector

of scores (logits), one for each class that the network can classify.

e Softmax Function: The logits are then transformed by the softmax function, which
is represented by the equation below the output vector. This function converts the

logits into classification probabilities.

2.3 Advantages of CNNs

e Classification Probabilities: Finally, the probabilities are shown in a box on the
right, with the classification categories listed beside them. In this case, the CNN

has classified the input image with a high probability as "Meningioma".

e The highlighted probability (0.91 for Meningioma) indicates the CNN’s prediction
based on the highest softmax score, signifying that the network is highly confident

that the input image is of a meningioma [11].

2.3 Advantages of CNNs

e Automatic Feature Extraction: CNNs automatically detect important features
without any human supervision required for feature extraction, which is a sig-

nificant advantage over traditional algorithms.

e Robustness: They are less preprocessed compared to other image classification
algorithms. This means that they can capture invariant features despite variations

in the input.

e Versatility: Beyond image processing, CNNs have been successfully applied to a
variety of tasks such as natural language processing and time series prediction,

demonstrating their adaptability.

2.4 Applications of CNNs

Convolutional Neural Networks (CNNs) are one of the greatest breakthrough technolo-
gies for automated visual data categorization and comprehension—the skills that promise
colossal values across divergent sectors. Most importantly, it has been used effectively in
the digital space to provide descriptive labels for the images. Most importantly, they are
used for recommendation algorithms that can suggest products or services based on the
analysis of visual information. For example, an online retailer may use it to recommend
fashion items that would fit a shopper’s sense of aesthetics. Another technology used
by visual search, and another industry depending on Al, is image classification, which
allows one to perform image searches in yet more visual sectors, for example, fashion.

Semantic segmentation uses object detection to label individual pixels of the image.
These applications are vast and range from autonomous cars and security surveillance
to even medical diagnostics. One such specialization of image recognition is face recog-
nition, wherein this technology finds wide popularity on social networks through photo
tagging and is even being adapted in many software applications for identity verification
to enhance security features. Another domain in which CNNs are very powerful is optical
character recognition (OCR). The methodology based on machine learning and methods
to recognize and convert text from several visible sources into digital text representa-
tions. This is, of course, revolutionary with regard to document digitalization and further
eases how the data gets processed into a digital text format, including ebooks and on-
line databases. The rise and success of CNNs is the perfect exemplification of how deep
learning has turned into the leading factor within the extension of artificial intelligence,

providing tools able to understand and interpret visual data in an effective manner.

Chapter B

Recurrent Neural Networks

3.1 Evolution of RNN Architecture

Recurrent Neural Networks (RNNs) have a history that is the mirror of some major
milestones in the research on neural networks with regard to sequential data process-
ing. After some seminal models, such as the Hopfield network conceived in the 1980s,
RNNs advanced to the introduction of Elman and Jordan networks, the first capable
of modeling temporal architectures. One of the big breakthroughs for LSTM came in
1997 when Hochreiter and Schmidhuber first proposed it as a solution to the vanishing
gradient problem and, thus, for the first time, dramatically improved learning of depen-
dencies over many discrete time steps. This decade of the 2010s saw RNNs, in particular
LSTM and Gated Recurrent Units (GRUs), become indispensable in many revolutionary
achievements in speech recognition and natural language processing, all due to their
wider computational powers and training methods. Even with the advent of transformer
models and attention mechanisms, RNNs remain at the core of Al tools due to the non-
comparable power of modeling and property of temporal sequences, reflecting unceasing

growth into more elaborate and potent sequence models [12].

3.2 Core Components of RNNs

Recurrent Neural Networks (RNNs) are a specialized form of artificial neural networks
designed to handle sequential or time-series data. They play a crucial role in solving
time-related problems across various domains, including language translation, natural
language processing (NLP), speech recognition, and generating image descriptions. RNNs
are integral to the functionality of widely-used technologies such as voice-activated as-
sistants like Siri, voice search features, and translation services like Google Translate.
Unlike feedforward and convolutional neural networks (CNNs) that process inputs in iso-
lation, RNNs leverage their inherent "memory" to use information from previous inputs,
allowing the network’s outputs to be influenced by the sequence’s history. This charac-
teristic enables RNNs to model the dependency between sequence elements effectively.
However, standard unidirectional RNNs may not predict future events in a sequence,
as they process data in a forward direction without considering subsequent inputs that

could inform the prediction [13].

Chapter 3. Recurrent Neural Networks

3.2.1 Input Layers in Recurrent Neural Networks

In Recurrent Neural Networks (RNNs), input layers serve as the entry points for sequen-
tial data to be processed over time. Unlike feedforward neural networks, RNNs maintain
a form of memory by reusing the output from previous steps as part of the input for
the current step. This allows them to handle inputs of varying lengths and to process
temporal dynamics within the data. The input layer in RNNs must be capable of cap-
turing these temporal dependencies, often through the use of specialized cells like LSTM
(Long Short-Term Memory) or GRU (Gated Recurrent Unit) units that regulate the flow of

information to remember patterns over long sequences effectively.

3.2.2 Hidden Layers in Recurrent Neural Networks

The hidden layers in RNNs are crucial for processing sequential data, incorporating a

mechanism to remember information across timesteps. The key operations involve:

Hidden State Update
The hidden state at timestep t, denoted as hy, is updated based on the current input x;
and the previous hidden state h;_;, using the formula:
he = f(Whnhi-1 + Winx; + br)

where f is a non-linear activation function such as tanh or ReLU, Wy;, are the weights
for the hidden-to-hidden connections, Wy, are the weights for the input-to-hidden con-

nections, and by, is the bias term for the hidden layer.

Output Calculation
The output at timestep t, denoted as yy, is calculated from the current hidden state
using;:
yr = g(Wryhi + by)

where g is an activation function, often softmax for classification tasks, Wy, are the

weights for the hidden-to-output connections, and b, is the output bias term [14].

Backpropagation Through Time (BPTT)
Training RNNs involves unfolding them through time and applying backpropagation, a
process known as Backpropagation Through Time (BPTT), described by:
L~ ol
oW L ow

where L is the loss function, T is the sequence length, and W represents the model

weights. This process accounts for the temporal sequence of operations in the gradient

3.3 Advantages & Limitations of RNNs

calculation.

- Output

W, W, W,

ﬁ\
RNN Cell RNN Cell RNN Cell

A A

Figure 3.1. Recurrent Neural Network unfolded over time for a sequence of 3 inputs.

3.3 Advantages & Limitations of RNNs

Recurrent Neural Networks (RNNs) are recognized for their dynamic structure, which
renders them a potent tool for a variety of temporal processing tasks. They are partic-
ularly noted for their computational strength and broad applicability across numerous
temporal modeling applications. An essential attribute of RNNs is their universal approx-
imation capability, allowing them to model a wide range of nonlinear dynamic systems
with a high degree of precision. This is achieved through the network’s ability to establish
complex relationships between sequences of inputs and outputs. However, RNNs come
with certain drawbacks, such as the challenges in practical implementation despite their
theoretical prowess. A significant obstacle faced during training RNNs is the vanish-
ing gradient problem, which can impede the learning of long-range dependencies within
data sequences. Additionally, the inherent nonlinearity and the complexity involved in
adjusting the weights can lead to difficulties in maintaining the stability of the network
[15].

3.4 Regularization

Regularization in machine learning and statistics is a technique used to prevent overfit-
ting by imposing penalties on model parameters. Overfitting occurs when a model learns
the training data too well, capturing noise along with the underlying patterns, which can
negatively affect its performance on new, unseen data. Regularization techniques, such
as L1 (Lasso) and L2 (Ridge) regularization, add a complexity penalty to the model’s loss
function, which constrains the model’s coefficients. This can encourage sparser models
with fewer parameters or ensure that the model’s parameters remain small, making the
model simpler and less likely to overfit. Regularization is a cornerstone of effective model

training, allowing for models that generalize better to new data.

Chapter 3. Recurrent Neural Networks

3.4.1 Data augmentation

Data augmentation is a strategy used to enhance the diversity of training data without
collecting new samples. It artificially inflates the dataset by introducing variations of
existing data, which helps models generalize better. This is especially useful in addressing

imbalances within datasets [16].

3.4.2 Early stopping

Early stopping, a different regularization approach, halts training when performance
on validation data stops improving, preventing overfitting [16]. The graph on figure 3.2
illustrates the concept of early stopping in training machine learning models. It plots
training and validation loss (error) over the number of training epochs. The blue line
represents the training loss, which decreases steadily as training progresses, indicating
that the model is learning from the training data. The red line represents the validation
loss, which also decreases initially but begins to rise again, signaling overfitting. The
point where the validation loss stops decreasing and starts to increase is marked for early
stopping. This is where the training should be halted to prevent the model from learning

the noise in the training data, thereby generalizing better to new data.

Loss

(Error) —— Train

Valid

Early stopping Epochs

Figure 3.2. Early stopping.

3.4.3 Dropout

Neural networks, structured with input, hidden, and output layers, benefit from tech-
niques like dropout and weight decay. Dropout temporarily removes nodes during training
to encourage a robust network, simulating an ensemble of networks [16]. On the left of
the figure 3.3 is a fully connected network with one input layer, multiple hidden layers,
and an output layer. All nodes are active and connected. On the right, dropout has been

applied, randomly deactivating nodes (marked with an ’X’) and their connections. This

3.4.4 Weight decay

process thins the network, preventing co-adaptation of nodes and promoting generaliza-
tion. The resultant network simulates training diverse architectures, leading to a model

less prone to overfitting and with improved robustness to varied input data.

Output layer

Hidden layers

- AN SN
. InPUt layer . o & . ‘
Y N Y

Figure 3.3. Dropout.

3.4.4 Weight decay

Weight decay, similar to L1 regularization, encourages sparsity in the network by driv-
ing some weights to zero, simplifying the model and mitigating over-complexity. While
dropout affects the network’s depth, weight decay operates linearly, offering different ben-

efits in combating overfitting [16].

3.5 Optimizers

In machine learning, optimizers are algorithms or methods used to change the at-
tributes of the neural network, such as weights and learning rate, to reduce the losses.
Optimizers leverage the gradient (derivative) of the loss function to navigate the complex,
high-dimensional space of model parameters towards a region that minimizes the loss.
The choice of optimizer can significantly influence the speed and quality of the training

process, as well as the ability of the model to converge to a good solution.

3.5.1 Gradient Descent

Gradient descent is a fundamental optimization technique in machine learning, utilized
to refine model parameters and reduce the cost function. This iterative method enhances
the model’s accuracy by adjusting parameters against the gradient of the cost function,
which gauges the model’s error or loss.

The cost function quantifies the difference between the model’s predictions and the
actual data. The aim of gradient descent is to identify the parameter values that minimize
this error, thereby enhancing the model’s predictive accuracy.

In practice, gradient descent evaluates the slope of the cost function at a given point and

proceeds in the reverse direction—toward the negative of the gradient. This is because

Chapter 3. Recurrent Neural Networks

moving against the gradient leads to a decrease in the cost function’s value. The size
of the steps taken during each iteration of gradient descent is governed by the learning
rate. This hyperparameter is crucial as it affects how quickly the algorithm converges to
a minimum, with too large a learning rate potentially causing overshooting and too small
leading to slow convergence, figure 3.4.

Gradient descent’s versatility allows it to be implemented across a range of machine
learning models, from simple linear regression to complex neural networks, making it
a versatile tool for optimizing a wide array of predictive algorithms through systematic

parameter adjustments [17].

Gradient Desgy
(t

"

Figure 3.4. Gradient Descent Algorithm.

The update rule of gradient descent is given by:

Snew = Bold — aVaJ(9)
where:
e 9 represents the parameters of the model,
e a is the learning rate,
e VyJ(9) is the gradient of the cost function J(8) with respect to the parameters 8.

This rule is applied iteratively to minimize the cost function J(8), leading to an improve-

ment in the model’s performance.

3.5.2 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a variant of the gradient descent optimization
method tailored for machine learning tasks. It streamlines the optimization process by
updating model weights incrementally, using a single randomly selected data point at
each iteration, rather than the entire dataset. This approach allows SGD to navigate

the hypothesis space, which is useful when dealing with continuously parameterized

3.5.3 Mini-batch Gradient Descent

hypotheses and differentiable error functions. While traditional gradient descent can be
slow and may get stuck in local minima, SGD enhances efficiency by reducing the time
required for convergence and is not as prone to overfit to the training data due to its
stochastic nature. This makes it particularly effective for large-scale data, which has
become increasingly common. SGD has been instrumental in training neural networks,
significantly cutting down computational time and catering to complex problems without

compromising on model performance [18].

Stochastic Gradient ————
Descent 0

Figure 3.5. Stochastic Gradient Descent Algorithm.

3.5.3 Mini-batch Gradient Descent

Mini Batch Gradient Descent is like a cross-over approach between GD and SGD. It
deals with first dividing the dataset into small datasets (batches) instead of iterating
through the whole dataset or one observation, and for each batch, the gradients are
calculated [19].

Given a cost function J(8), where 8 represents the model parameters, the update rule

for Mini Batch Gradient Descent at iteration t is given by:
Bt1 = 8¢ — AVad(8y; XMyl
where:
e §; is the value of the parameters at iteration t.
e a is the learning rate.

o VoJ(9y; XEHM ((EHM) s the gradient of the cost function with respect to the param-

eters, evaluated on the mini-batch from i to i + n.

o XMW and yEH*n represent the input features and targets of the mini-batch, re-

spectively.

Chapter 3. Recurrent Neural Networks

This method balances the speed of SGD with the reduced variance in the gradient
estimates, leading to more stable and reliable convergence towards the minimum of the

cost function.

3.5.4 Momentum

In the context of machine learning and particularly neural network training, momentum
is a technique used to accelerate the convergence of the gradient descent optimization
algorithm. It helps to navigate the relevant cost landscape more efficiently, preventing
oscillations and speeding up convergence by adding a fraction of the previous update
vector to the current update. Essentially, it combines the gradient (a measure of how
much the loss would change if the model parameters were modified) with the momentum
from previous steps. This can prevent the optimization from getting stuck in local minima
and provides a more stable and faster convergence towards the global minimum of the

loss function.

3.5.5 Adagrad

AdaGrad is a gradient-based optimization algorithm that dynamically adapts the learn-
ing rate for each parameter, enhancing efficiency in ML and DL models. Introduced
in 2011, it adjusts learning rates based on the accumulation of squared gradients, de-
creasing rates for frequently updated parameters and increasing for less frequent ones,
promoting faster convergence and better handling of data sparsity. However, AdaGrad
may suffer from an over-accumulation of gradients, causing the learning rate to diminish
too much, potentially halting learning. This limitation is addressed by newer algorithms
like Adam, which regulate the accumulation to ensure continuous learning progress [20].

The update rule for the AdaGrad optimization algorithm can be represented mathemat-

ically as follows:

n
VG + €

Ot+1,i = Oti — Gt

Where:
e §;; represents the parameter at time step t.
e 7] is the initial learning rate.

e Gy; is the sum of the squares of the past gradients with respect to 8;; up to time

step t.
e ¢ is a small constant added to improve numerical stability.

e g;; is the gradient at time step t.

3.5.6 Adam

Adam is an optimization algorithm that efficiently uses first-order gradients and re-

quires minimal memory. It calculates adaptive learning rates for each parameter by esti-

3.5.7 RMSprop

mating the moments of gradients, hence the name ’adaptive moment estimation.” Adam
blends the strengths of AdaGrad, which excels with sparse gradients, and RMSProp, which
is effective for online and non-stationary problems. It offers several benefits: it is unaf-
fected by gradient scaling, imposes stepsize bounds, adapts to non-stationary objectives,
handles sparse gradients, and integrates a form of stepsize annealing [21].

The Adam optimization algorithm’s update rule is typically represented by the following

equations:
my = Bimy—1 + (1 — B1)g:
U = Boveoy + (1 = Bo)g?
~ my
t t
1-5
~ Ut
U =
1-5
my
Ot+1 = Ot — 7}
Uy + €
Where:

g: is the gradient at timestep t.

m; and v are estimates of the first moment (the mean) and the second moment (the

uncentered variance) of the gradients, respectively.

m; and D; are bias-corrected versions of m; and vy.

S1 and f35 are the exponential decay rates for these moment estimates.

9: is the parameter vector at timestep t.
e 7 is the stepsize.

e ¢ is a small scalar used to prevent division by zero.

3.5.7 RMSprop

RMSprop, which stands for Root Mean Square Propagation, is an adaptive learning
rate optimization algorithm [22] designed to address some of the issues encountered
with the traditional stochastic gradient descent (SGD) method in training artificial neural
networks. It was first proposed by Geoff Hinton in his Coursera class on neural networks

and is widely used for deep learning applications.

Chapter 3. Recurrent Neural Networks

Key Features of RMSprop

e Adaptive Learning Rates: Unlike SGD, which maintains a constant learning rate
throughout the training process, RMSprop adjusts the learning rate for each param-
eter dynamically. It makes the learning rate smaller for parameters associated with
frequently occurring features and larger for parameters associated with infrequent

features.

e Gradient Squaring: RMSprop works by keeping a moving average of the squared
gradients for each weight. This square gradient emphasizes the influence of gradi-

ents with larger magnitudes.

e Normalization: The algorithm divides the learning rate for a weight by a running
average of the magnitudes of recent gradients for that weight. This normalization
balances the step sizes, making the optimization process less sensitive to the scale

of the gradients.

The running average of the squared gradients is computed by:

E[g*]: = VE[g*]i-1 + (1 — y)g7
where:
e E[g?]; is the expectation of the squared gradients at time step t.
e y is the decay rate.
e g; is the gradient at time step t.

The weights are then updated using the equation:

Oty1 = O — +gt
E[g*]t + €

where:
e 9.1 is the updated weight.
e 9, is the current weight.
e 7 is the learning rate.

e ¢ is a small number to prevent division by zero, typically around le — 8.

Benefits of RMSprop

Stabilizes the Learning Path: By adjusting the learning rate, RMSprop avoids aggressive

weight updates that can destabilize the learning process.

e Improves Convergence: It tends to converge faster and with less tuning of the

learning rate compared to SGD.

3.6 Metrics

e Effective for Recurrent Neural Networks: RMSprop has proven effective in train-
ing RNNs, which are sensitive to the choice of the learning rate due to the vanishing

and exploding gradient issues.

RMSprop has become a go-to optimization technique in various deep learning tasks,
particularly useful when dealing with complex models and non-convex optimization land-

scapes.

3.6 Metrics

In machine learning, metrics [23] are essential for evaluating and comparing the per-
formance of models. They provide quantitative measures to assess how well a model’s

predictions match the actual data.

3.6.1 Accuracy

Accuracy is a fundamental metric in the field of machine learning and statistics, used
to measure the overall correctness of a model’s predictions. It is defined as the ratio
of correctly predicted observations (both true positives and true negatives) to the total
number of observations in the dataset.

Mathematically, it can be expressed as:

Number of Correct Predictions

Accuracy =
Y Total Number of Predictions

Accuracy is particularly straightforward to understand and communicate, making it
a popular choice for evaluating model performance in classification tasks. However, its
simplicity can also be a limitation, especially in cases of imbalanced datasets where one
class significantly outnumbers the other. In such scenarios, a model could achieve high
accuracy by simply predicting the majority class for all instances, but it would fail to
capture the nuances and potentially critical patterns of the minority class.

For example, in a medical diagnosis application where the dataset contains 95% nega-
tive (healthy) cases and only 5% positive (disease) cases, a model that predicts ‘negative’
for all cases would achieve 95% accuracy. Despite the high accuracy, this model would
be practically useless since it fails to identify any of the positive cases, which are usually
of more significant interest.

Thus, while accuracy is a valuable metric for providing a quick overview of model
performance, it is essential to complement it with other metrics like precision, recall,
and the F1 score, especially in cases of class imbalance. These additional metrics can
provide a more nuanced understanding of a model’s strengths and weaknesses, ensuring

a comprehensive evaluation of its performance.

3.6.2 F1

The F1 score is a crucial metric in the evaluation of classification models, especially in
scenarios where there are imbalanced classes or when the cost of false positives and false

negatives varies significantly. It is the harmonic mean of precision and recall, two metrics

Chapter 3. Recurrent Neural Networks

that assess the accuracy of a model’s positive predictions and its ability to identify all
actual positives, respectively.
The formula for the F1 score is:

precision - recall
F1=2.

precision + recall

where:

e Precision is the ratio of true positive predictions to the total positive predictions

(including both true positives and false positives).

e Recall also known as sensitivity, measures the ratio of true positive predictions
to the actual positive cases in the dataset (the sum of true positives and false

negatives).

The F1 score ranges from O to 1, where a higher score indicates a better balance between
precision and recall. A score of 1 signifies perfect precision and recall, whereas a score of
0 indicates that the model fails either in precision or recall.

This metric is particularly valuable because it accounts for both the false positives and
false negatives in its calculation, providing a more nuanced view of a model’s performance
than accuracy alone, especially in datasets where positive cases are rare or in applications
where false negatives carry a higher risk than false positives (or vice versa). The F1 score
is widely used in binary classification tasks, including document classification, spam

detection, and disease diagnosis, where making a correct positive prediction is critical.

3.6.3 Precision

Precision, also known as the positive predictive value, is a key metric in the evaluation
of classification models, particularly in the context of binary classification problems. It
measures the proportion of true positive predictions in relation to the total number of
positive predictions made by the model. In simpler terms, precision answers the question:
"Of all the instances the model labeled as positive, how many were actually positive?"

The formula for precision is defined as:

True Positives

Precision = — —
True Positives + False Positives

where:
e True Positives (TP) are the instances correctly identified as positive by the model.
e False Positives (FP) are the instances wrongly identified as positive by the model.

Precision is particularly important in situations where the cost of a false positive is
high. For instance, in email spam detection, a false positive (marking a legitimate email
as spam) could mean missing an important message, so a high precision model would be
preferable to minimize this risk.

However, precision alone does not provide a complete picture of a model’s performance.

It does not take into account the false negatives (positive instances missed by the model).

3.6.4 Recall

Therefore, precision is often used in conjunction with recall (sensitivity), which measures
the proportion of actual positives correctly identified by the model. Balancing precision
and recall is crucial in many real-world applications, and metrics like the F1 score are

used to find a harmonic balance between these two metrics.

3.6.4 Recall

Recall, also recognized as sensitivity or the true positive rate, is a fundamental metric
for assessing the effectiveness of classification models, especially when the identification
of all actual positives is critical. Recall quantifies the fraction of actual positive instances
that the model accurately identifies from the entire set of true positive instances available.
It essentially asks, "Of all the instances that are truly positive, how many were successfully
detected by the model?"

The mathematical expression for recall is as follows:

True Positives
Recall =

True Positives + False Negatives

where:

e True Positives (TP) refer to the instances that the model correctly predicts as pos-

itive.

e False Negatives (FN) denote the positive instances that the model incorrectly clas-

sifies as negative.

Recall is particularly important in fields such as medical diagnosis or fraud detection,
where missing a positive case (such as failing to identify a disease or a fraudulent trans-
action) could have serious consequences. High recall indicates that the model is capable
of capturing most of the positive cases, which is desirable in these sensitive applications.

However, optimizing for recall alone may lead to an increase in false positives, as the
model might label more instances as positive to ensure it misses fewer actual positives.
Therefore, recall is often used in conjunction with precision to provide a more balanced
view of the model’s performance. Balancing these two metrics is crucial for developing
effective classification models, especially in situations where both identifying all positives

and maintaining accuracy in positive predictions are important.

3.6.5 AUROC

The Area Under the Receiver Operating Characteristic Curve (AUROC) serves as a crit-
ical metric for assessing the effectiveness of classification models by evaluating their
capacity to accurately prioritize examples. In the context of a clinical risk prediction
model, AUROC reflects the likelihood that a patient who underwent an event is assigned
a higher risk score by the model compared to a patient who didn’t experience such an
event. Similarly, for a model classifying handwritten digits "1" and "0," AUROC indicates
the chance that an image labeled "1" is deemed more likely to be a "1" by the model than

an image labeled "0." Essentially, AUROC assesses a model’s "discrimination" ability, or

Chapter 3. Recurrent Neural Networks

its capability to distinguish between positive and negative examples. An AUROC value of
0.8 signifies strong discrimination power, implying that in 80% of cases, the model will
correctly differentiate a patient with an event from one without based on the assigned

risk.

Figure 3.6. ROC curves.

The above diagram, 3.6, depicted showcases various ROC curves, with the AUROC
(Area Under the Receiver Operating Characteristic Curve) being the space underneath
each curve. An AUROC score can range from 0.5, indicative of no predictive ability

similar to random guessing, to 1.0, which signifies perfect prediction accuracy.

e An AUROC of 0.5, represented by the red dashed line, equates to the predictive

power of flipping a coin, essentially marking a model as ineffective.
e Scores below 0.7 suggest the model’s performance is not optimal.

e A score within the 0.70 to 0.80 range is considered to indicate good model perfor-

mance.
e Scores exceeding 0.8 denote excellent predictive capability.

e A perfect score of 1.0, illustrated by the purple line, denotes an ideal classifier that

makes no errors in prediction.

Overall, the AUROC represents the area covered by the ROC curve, which plots the
relationship between the true positive rate (TPR) and the false positive rate (FPR) at various
threshold settings [24].

3.6.6 Confusion Matrix

3.6.6 Confusion Matrix

Confusion matrices are tools used to evaluate the performance of a classification model
by analyzing its predictions on a dataset. They provide insight into how well the model
performs, highlighting its accuracy in distinguishing between different classes. A confu-
sion matrix is typically generated from a model’s predictions on a validation or test set,
not seen by the model during training [25].

In a confusion matrix:

True Class
Positive Negative
0 o
7] 2
8 % P FP
o ¢
©
o
]
O
L
T =
® T FN TN
t =
a 2

Figure 3.7. Confusion Matrix.

The columns labeled “Actually Positive” and “Actually Negative” represent the actual,
true labels of the data. These labels could denote whether a digit is genuinely a 1 or O, if
a patient genuinely has a specific disease or not, or whether a chest x-ray truly indicates
pneumonia, among other examples.

The rows labeled “Predicted Positive” and “Predicted Negative” capture the model’s pre-
dictions, indicating whether it perceives the examples as positive or negative.

The elements within the confusion matrix—True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN)—are numerical counts that categorize the

predictions:

True Positives (TP) count the instances correctly identified as positive by the model.

True Negatives (TN) count the instances correctly identified as negative.

False Positives (FP) represent the negative instances that were incorrectly labeled

as positive by the model.

False Negatives (FN) tally the positive instances that the model mistakenly labeled

as negative.

Chapter 3. Recurrent Neural Networks

Understanding these metrics allows for a comprehensive evaluation of a model’s pre-
dictive capabilities and its potential strengths and weaknesses, facilitating a comparison

between different models to select the most suitable one for a specific application.

Part [ﬂ

Practical Part

Chapter ﬂ

Implementation

4.1 Tools & Libraries

4.1.1 Google Colab

Google Colab is a free, cloud-based platform that facilitates machine learning and data
science research by providing a collaborative environment for Python programming. It’s
ideal for a wide range of applications from machine learning to data analysis, offering zero
configuration access to advanced computing resources like GPUs and TPUs. Integrated
with Google Drive, it allows for easy storage and sharing of Jupyter notebooks, and comes
preloaded with many popular data science libraries, streamlining workflow and education.
Colab’s browser-based, system-agnostic design ensures accessibility, removing the need
for local computational resources and democratizing access to cutting-edge Al tools [26].

A challenge of the present thesis is the modeling using limited resources.

4.1.2 Pytorch Lightning

PyTorch Lightning serves as an efficient wrapper for the PyTorch deep learning frame-
work, offering a simplified workflow for researchers and developers. Its primary objective
is to separate the scientific code from the engineering backend, significantly reducing the
amount of boilerplate code and bringing clarity to the research process. This framework
structures the training code in a way that enhances readability and maintainability, which
is particularly beneficial for complex models. One of the standout features of PyTorch
Lightning is its emphasis on reproducibility, a vital requirement in scientific research. It
ensures that experiments can be easily repeated and verified by others. Moreover, the
framework is designed with scalability in mind, enabling models to be effortlessly scaled
to run on various hardware configurations, including multiple GPUs and TPUs, as well
as across different nodes.

PyTorch Lightning boasts seamless integration with a suite of popular libraries and
tools within the machine learning landscape, fostering a robust and flexible environment
for model development and tracking. This integration extends to tools for experiment
tracking, lifecycle management, and more, which streamlines the development pipeline
from research to production. The framework is supported by an active community of

contributors, ensuring continuous evolution and the incorporation of cutting-edge fea-

Chapter 4. Implementation

tures. Despite its structured approach, PyTorch Lightning provides researchers with the
flexibility to override and tailor specific aspects of the training process to fit their unique
requirements.

In summary, PyTorch Lightning is a powerful tool that abstracts away much of the
complexity associated with deep learning model training, enabling developers and re-
searchers to focus on the core aspects of their work. Its design principles promote clean
code, reproducibility, and ease of scaling, making it an excellent choice for those seeking
to accelerate their deep learning projects [27]. PyTorch Lightning is used for the purposes
of this diploma thesis.

4.1.3 NumPy

NumPy, standing for Numerical Python, is a foundational Python library for scien-
tific computing, offering robust support for large, multi-dimensional arrays and matrices,
alongside a plethora of mathematical functions to efficiently operate on these structures.
Central to NumPy is its ndarray object, optimized for high-speed operations and designed
for array-oriented computing, making it indispensable for a wide array of mathematical
tasks, from linear algebra to statistical analyses. Its capability for broadcasting allows
for flexible arithmetic operations on arrays of differing shapes. Widely integrated across
scientific computing libraries and applications in domains ranging from image processing
to machine learning, NumPy is bolstered by a vast community, ensuring extensive doc-
umentation and support. This combination of performance, versatility, and community
support cements NumPy’s role as a critical tool in data analysis and scientific research
[28].

4.1.4 Matplotlib

Matplotlib is an essential library in the Python data science ecosystem, renowned for
its ability to generate a wide array of static, animated, and interactive visualizations. With
its comprehensive suite of plotting functions and vast customization options, Matplotlib
enables users to craft detailed graphs, charts, and figures. This versatility makes it an
invaluable tool for data analysts and researchers who need to visualize complex datasets
and analytical results. Whether for exploratory data analysis or presenting findings,
Matplotlib’s robust functionality ensures that users can convey their data in visually

compelling and informative ways [29].

4.1.5 Python Package eeg_positions

The eeg_positions Python package enables the computation and visualization of stan-
dard EEG electrode placements on a spherical head model, adhering to the 10-20, 10-10,
and 10-05 systems. It offers functionality to approximate electrode locations for EEG data
analysis, providing a solution to the often undocumented calculation of these positions
found in various resources. Utilizing a 3D "RAS" coordinate system, the package consid-

ers anatomical landmarks (nasion, left and right preauricular points, vertex, and inion)

4.2 Challenges

to define the electrode coordinates accurately. Users can easily install the package via
pip, access pre-computed electrode positions in the repository’s data directory, and utilize
utility functions for projecting 3D locations into 2D space for plotting. This tool not only
facilitates accurate electrode positioning for topographical plotting and sensor location
visualization but also offers customization options for specific research needs. Also, the

appropriate repository, could be found at this link [30].
4.2 Challenges

In order to carry out the present diploma thesis, it is necessary to overcome some
significant challenges. One of these is modeling given limited computational resources
in the most optimal way. Concurrently, the type of data, images that have emerged
from respective electroencephalograms, represents a quite demanding data type as it
requires not only the appropriate knowledge for preprocessing the images in a broader
handling approach, but also specific expertise related to the preprocessing of images
concerning brain mapping. Naturally, the development of corresponding models to be
applied, through which the desired outcome will be achieved - which is none other than the
classification between real and imaginary movement, is an equally important challenge.

Moreover, one challenge that arises is the imbalance in the dataset. Dataset imbalance
represents a situation where there is an uneven distribution of the number of examples
from classes in a dataset, therefore skewing model training. This usually results in a
model that is either biased towards the majority class or its performance is compromised
on the minority class, which might be a critical class in many applications. Such models
might show deceptively high accuracy, rather reflecting the class prevalence of the major-
ity class than showing its true predictive power. This may largely decrease the sensitivity
of the model to the minority class, resulting in a large quantity of false negatives for the
less represented class. That is, it would often be the case that there would be severe
consequences of this kind of model during fraud detection or disease diagnosis—handling

adequately of imbalanced datasets during the process of model development.

4.3 Data Collection

The topographic brain map, as it is shown in figure 4.1, is an illustration in which elec-
trical activity or functional imaging data of the brain are projected onto an illustration of
the brain or a standard template. Such maps are commonly derived from data that are in
turn derived from electroencephalography (EEG), functional magnetic resonance imaging
(fMRI), or other neuroimaging techniques. It is useful to illustrate spatial patterns of ac-
tivity across the brain, such as distribution over the scalp of electrical potentials in EEG,
or of areas of increased blood flow in fMRI, which correspond with underlying patterns of
neural activity. In that sense, the topographic map helps in identifying which parts of the
brain are more active or are involved in carrying out a task, a state of consciousness, or
any other conditions related to the processing of certain kinds of stimuli for researchers
and clinicians. They have been of great help in science, especially neuroscience and
psychology, to assist in some areas such as furthering brain function, diagnosis of neu-

rological disorders, and also for development in brain-computer interfaces.

Chapter 4. Implementation

In our case, the data used in this thesis are topographic maps of the brain with di-
mensions - (3, 656, 875), which have been derived from electroencephalograms. The
experiment conducted involved 33 participants, who were appropriately fitted with an
electrode cap to capture their brain activity during the experiment. Specifically, they
were asked to either perform or simply imagine the movement of their lower limbs: left
foot, right foot, both, or none. Data were recorded for each experiment (real or imaginary
movement of the lower limbs), with 20 temporal events for each participant. In relation to
each of these events, 50 topographic maps are displayed in which each map represents
the illustration of a frequency originating from the participant’s electroencephalogram
(1-50Hz).

Figure 4.1. Topographic Map.

4.4 Preprocessing

The first and important step toward processing the data set: appropriately labeling the
data set. Basically, an ensemble method will be used, where three weak learners will
be combined, and each of them classifies the dataset into different subsets. In order to
make the above process comprehensive, the following diagram is forwarded along with

the respective label and the classifier used.

4.4.1 Ensemble Method

The diagram, in figure 4.2, depicts a decision process within a neural network using
Recurrent 3D Convolutional Neural Networks (R3DCNN). The process begins with an
R3DCNN that determines whether there is any leg movement. If no movement is detected,
the decision branches off to indicate 'No movement’. If leg movement is detected, another
R3DCNN takes over to further assess the movement. If the movement involves both legs,
yet another R3DCNN is employed to differentiate between right and left leg movement.

This hierarchical approach allows for a nuanced analysis of leg movements, potentially

4.5 Training

useful in applications like gait analysis or physical therapy rehabilitation monitoring.
Finally, the use of the ensemble method aims to eliminate the unbalance dataset after the

appropriate labeling that is performed.

‘ R3IDCNN ‘
1
i Leg Movemant
No
movement ‘ RADCNN ‘
i Both Leg Mavement
Mo movement
(Both Legs) R3DCNN

L

Right Left

Figure 4.2. Diagram of Ensemble Classifier.

To adapt the model to new data and achieve better generalization, the technique of
data augmentation is used, where images are transformed into grayscale. Additionally,
the technique of interpolation (Rbf) is used, wherein after the precise points of the elec-
trodes on the scalp have been determined (using the eeg_positions library, system 10-20),
resizing is performed converting the original tensor from (50, 1, 656, 875) - (sequence,
channel, height, width) to (50, 1, 80, 80).

4.5 Training

4.5.1 CNN - GRU

The R3DCNN model is a deep learning framework designed to interpret topographi-
cal maps derived from EEG data for the assessment of mental workload. This model
integrates recurrent and convolutional neural networks to learn from the spatial, spec-
tral, and temporal dimensions of EEG signals, which are represented in the form of 3D
topographic maps.

The topographical maps are transformed into a 3D structure, with the spatial and
spectral characteristics derived from EEG channels and frequency bands, respectively.
The model is trained on sequences of these 3D EEG cubes, allowing the recurrent neural
network part to capture temporal dynamics and the convolutional part to extract spatial-
spectral features.

This approach provides a comprehensive understanding of EEG data, tapping into the

complex patterns associated with different cognitive states. The RSDCNN model’s ability

Chapter 4. Implementation

to accurately classify mental workload levels without the need for hand-crafted features
is particularly valuable, potentially offering a robust tool for real-time applications where

swift and accurate assessment of mental states is crucial.

Model
Table 4.1. 3D CNN Architecture
Layer In Channels Out Channels Kernel Size Stride/Padding
Conv3d 1 32 3Xx3x%x3 1/1
ReLU - - - -
MaxPool3d - - 1XxX2x%x2 1x2x2
Conv3d 32 64 3xXx3x%x3 1/1
ReLU - - - -
MaxPool3d - - 1XxX2x2 1X2x2
Conv3d 64 128 3x3x3 1/1
ReLU - - - -
MaxPool3d - - 1X2X2 1x2x%x2

4.6 Evaluation

RMSprop

The four experiments from tables 4.3-4.9 are shown the performance of the RSDCNN

model with different learning rates using the RMSprop optimizer.

e Learning Rate 0.01 (First Table): The weighted metrics demonstrate moderate
performance with an Accuracy of 59.74%, an F1-Score of 0.318, and an AUROC of
0.5032. This indicates that the learning rate might be too high, leading to potentially

suboptimal convergence.

e Learning Rate 0.001 (Second Table): Lowering the learning rate to 0.001 leads
to improved performance, with the Accuracy increasing slightly to 59.02%, the F1-
Score jumping to 0.5839, and the AUROC to 0.5168. This suggests that a smaller

learning rate begins to improve the model’s ability to generalize.

e Learning Rate 0.0001 (Third Table): Further decreasing the learning rate to
0.0001 shows mixed results. The Accuracy improves significantly to 63.77%, the
best among all four experiments, while the F1-Score and AUROC see slight decreases
to 0.5163 and 0.5146, respectively.

e Learning Rate 0.00001 (Fourth Table): The lowest learning rate of 0.00001 yields
the best overall weighted results, with a marked increase in all metrics. The Accu-
racy soars to 74.43%, the F1-Score to 0.6888, and the AUROC to 0.7403, indicating

that the R3DCNN model achieves its best performance at this learning rate.

In conclusion, the weighted (which has been resulted as the average value of the three

classifiers) classifier performance metrics suggest that the RS3DCNN model benefits from a

4.6 Evaluation

lower learning rate, with 0.00001 being the optimal in this set of experiments. It achieves
the highest scores in terms of the ability to correctly identify classes (Accuracy), the bal-
ance between precision and recall (F1-Score), and the model’s discriminative ability (AU-
ROC). This could indicate that the model as a whole responds better to finer adjustments

during training, leading to a more robust generalization.

Parameter Value
Number of Epochs 10
Batch Number 64
Learning Rate (Ir) 0.01
Alpha 0.99
Epsilon (eps) 1x1078
Weight Decay 1x107°
Momentum 0.9
Centered True

Table 4.2. RMSprop Optimizer Parameters

Metric | Classifier 1 | Classifier 2 | Classifier 3 | Weighted
F1-Score 0.1871 0.1774 0.5895 0.318
Precision 0.7575 0.3401 0.4838 0.5271

Recall 0.1086 0.1263 0.7662 0.3337

AUROC 0.5131 0.5175 0.4790 0.5032

Accuracy 50.52% 63.12% 65.59% 59.74%

Table 4.3. RMSprop Optimizer - Ir 0.01

Parameter Value
Number of Epochs 10
Batch Number 64
Learning Rate (Ir) 0.001
Alpha 0.99
Epsilon (eps) 1x1078
Weight Decay 1x1076
Momentum 0.9
Centered True

Table 4.4. RMSprop Optimizer Parameters

Metric | Classifier 1 | Classifier 2 | Classifier 3 | Weighted
F1-Score 0.7531 0.3517 0.6470 0.5839
Precision 0.7597 0.3360 0.4871 0.5276

Recall 0.7522 0.3762 0.9729 0.7004

AUROC 0.5236 0.5200 0.5069 0.5168

Accuracy 63.02% 55.10% 58.95% 59.02%

Table 4.5. RMSprop Optimizer - lr 0.001

Chapter 4. Implementation

Parameter Value
Number of Epochs 10
Batch Number 64
Learning Rate (Ir) | 0.0001
Alpha 0.99
Epsilon (eps) 1x1078
Weight Decay 1x107°
Momentum 0.9
Centered True

Table 4.6. RMSprop Optimizer Parameters

Metric | Classifier 1 | Classifier 2 | Classifier 3 | Weighted
F1-Score 0.7472 0.2497 0.5272 0.5163
Precision 0.7591 0.3157 0.4744 0.5164

Recall 0.7378 0.2195 0.5970 0.5181
AUROC 0.5371 0.5199 0.4868 0.5146
Accuracy 62.70% 68.95% 59.68% 63.77%

Table 4.7. RMSprop Optimizer - Ir 0.0001

Parameter Value
Number of Epochs 10
Batch Number 64
Learning Rate (Ir) | 0.00001
Alpha 0.99
Epsilon (eps) 1x 1078
Weight Decay 1x107°
Momentum 0.9
Centered True

Table 4.8. RMSprop Optimizer Parameters

Metric | Classifier 1 | Classifier 2 | Classifier 3 | Weighted
F1-Score 0.9503 0.5785 0.5378 0.6888
Precision 0.9176 0.5192 0.4823 0.6397

Recall 0.9862 0.6635 0.6123 0.7540
AUROC 0.9483 0.7321 0.5028 0.7403
Accuracy 92.29% 68.85% 62.15% 74.43%

Table 4.9. RMSprop Optimizer - Ir 0.00001

Adam

In the experiment 4.11 using the Adam optimizer, the weighted metrics across different

classifiers can be summarized as follows:

o F1-Score: The weighted F1-Score is 0.5627, which is a balance between precision
and recall. This score suggests a moderate performance in terms of the harmonic

mean between these two metrics.

e Precision: The weighted precision is 0.5909, indicating that, on average, the model

4.6 Evaluation

has a fair probability of not labeling a negative sample as positive.

e Recall: The weighted recall is 0.5944, which means the model has a moderate

capability of finding all the relevant instances across the classifiers.

e AUROC: The Area Under the Receiver Operating Characteristic curve is 0.6245 for
the weighted average, showing an acceptable level of separability. This implies that
the model has a reasonable ability to distinguish between the positive and negative

classes.

e Accuracy: The overall weighted accuracy of the model is 59.91%, which is relatively
lower compared to the other metrics, indicating that there is room for improvement

in correctly identifying all instances.

The weighted metrics indicate that the model performs moderately well with the Adam
optimizer at the given learning rate. While the model is relatively good at precision and
recall, its accuracy suggests it may still confuse some classes or have difficulty with
certain instances. The AUROC indicates that the model’s predictive quality is acceptable,
but there may be potential to enhance it by tuning other hyperparameters or training for

more epochs.

Parameter Value
Batch Number 64
Number of Epochs 10
Optimizer Adam
Learning Rate (Ir) 1x107°

Table 4.10. Adam Optimizer Parameters

Metric | Classifier 1 | Classifier 2 | Classifier 3 | Weighted
F1-Score 0.6366 0.4922 0.5594 0.5627
Precision 0.8688 0.4336 0.4704 0.5909

Recall 0.5099 0.5795 0.6939 0.5944

AUROC 0.7243 0.6539 0.4954 0.6245

Accuracy 57.18% 61.56% 61.01% 59.91%

Table 4.11. Adam Optimizer

SGD

For the experiment 4.13 utilizing the SGD optimizer with a learning rate of 0.01, mo-
mentum of 0.9, and employing a StepLR learning rate scheduler, the weighted metrics

across classifiers are:

e F1-Score: The weighted F1-Score is 0.8333, indicating a strong balance between
precision and recall. This high score suggests that the model is robust in terms of

the harmonic mean of precision and recall across the different classifiers.

Chapter 4. Implementation

e Precision: The weighted precision is 0.8408, suggesting that when the model pre-

dicts a positive class, it is correct 84.08% of the time on average.

e Recall: The weighted recall, at 0.8309, shows that the model is able to find 83.09%

of all the relevant instances in the dataset, on average.

e AUROC: The Area Under the Receiver Operating Characteristic curve is 0.8904,
which is quite high and indicates a strong ability of the model to differentiate be-

tween the classes.

e Accuracy: The weighted accuracy is 84.63%, which is quite high and indicates that

the model is correctly identifying a high percentage of all instances.

These weighted metrics from the experiment suggest excellent model performance with
the SGD optimizer. The use of the StepLR scheduler, which decreases the learning rate at
regular intervals, seems to be effective in conjunction with SGD’s momentum term. The

model shows a high degree of predictive reliability and discriminative power, as evidenced

by the high scores across all metrics.

balance between learning rate adjustments and momentum-based optimization, resulting

in strong classifier performance.

Component Configuration
Optimizer SGD

Learning Rate (Ir) | 0.01
Momentum 0.9

Scheduler StepLR

Step Size 1

Gamma 0.9

Name Ir_scheduler

This configuration appears to provide a good

Table 4.12. Optimizer and Learning Rate Scheduler Parameters

Metric | Classifier 1 | Classifier 2 | Classifier 3 | Weighted
F1-Score 0.9248 0.7907 0.7846 0.8333
Precision 0.9167 0.7783 0.8274 0.8408

Recall 0.9344 0.8098 0.7485 0.8309

AUROC 0.8960 0.9160 0.8594 0.8904

Accuracy 88.75% 85.93% 79.21% 84.63%

Graphs

This bar chart, in figure 4.3, represents learning rate vs. accuracy for a model trained
with the RMSprop optimization algorithm. It is evident that the model achieves an appre-
ciable increase in accuracy as the learning rate decreases between 0.01 to 0.00001. The

accuracy is also relatively constant, moving from 59.74% to 59.02%, as the learning rate

Table 4.13. SGD Optimizer

4.6 Evaluation

Learning Rate vs Accuracy - RMSprop
80.00% —

74.43%

60.00% 63.77%

50.74% 50.02%

40.00% —+

Accuracy (%)

2000% 4

0.00%

001 0.001 0.0001 0.00001

Leamung Rate

Figure 4.3. Learning Rate vs Accuracy - RMSprop.

is reduced from 0.01 to 0.001. However, at lower learning rates, a considerable increase
in performance can be observed, with accuracy increasing to 63.77% at 0.0001 and peak-
ing at 74.43% when the learning rate has been further reduced to 0.00001. The graph

shows that for this model, use of a lower learning rate will lead to better model accuracy.

Optimizers vs Metrics

Accwacy [Fl-Score Precision [Recal [Aurcc
1.00 —
075 +
8 o080+
! 1
0.25 +
000 +——
EMSprop Adam 5GD
Optimizers

Figure 4.4. Optimizers vs Metrics

The bar chart 4.4, "Optimizers v/s Metrics," considers the performance exhibited by the
three different optimizers—RMSprop, Adam, and SGD—against the five different metrics:
Accuracy, F1-Score, Precision, Recall, and AUROC. Out of the five bars representing the
said metric, one bar for each of the groups of optimizer takes the specified value. The
scale of values is from O to 1, or rather from 0% to 100%. It is clearly seen that all three
optimizers depict almost similar performance in terms of the metrics with slight variation.
For example, one optimizer would have slightly higher Recall but lower Precision, or
higher F1-Score but slightly lesser in Accuracy. The AUROC bars seem high throughout
for any of the optimizers, which indicates good class discrimination. Such a plot will,
therefore, make it clear to understand the compromise between different metrics by any

of the optimizers and help in finding out which optimizer is correct for the given problem

Chapter 4. Implementation

depending on that problem’s key metric.

Receiver Operating Characteristic

True Positive Rate

— 5GD
— Adam
= RMSprop

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4.5. Optimizers vs ROC Curve.

The Receiver Operating Characteristic (ROC) curve, in figure 4.5, shows the perfor-
mance of three different optimization algorithms—Stochastic Gradient Descent (SGD),
Adam, and RMSprop—used in the current classification of leg movement. The curve plots
the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold
settings.

The curve for SGD, shown in blue, is closest to the top-left corner of the graph, which
indicates a higher True Positive Rate (TPR) for any given False Positive Rate (FPR) com-
pared to the other two algorithms. This positioning suggests that SGD has a larger area
under the curve (AUC), which is indicative of a better overall performance in classification
tasks. Thus, SGD would be considered the best optimizer among the three, based on this

ROC curve analysis.

Part [ﬁ]

Epilogue

4.7 Discussion

4.7 Discussion

4.7.1 Final Outcome

Based on the experiments conducted using the RSDCNN model on topographical brain
maps, several conclusions can be drawn about the model’s performance with different

optimizers and learning rates, particularly looking at the weighted classifier metrics.

e Model Performance Across Optimizers: The model was tested with various op-
timizers—SGD, RMSprop, and Adam—each with different learning rates. In terms
of weighted classifier metrics, which provide a balanced view of the model’s perfor-
mance across all classes, the SGD optimizer with a learning rate scheduler appeared
to offer superior performance. This suggests that for the topographical brain map
data, which is complex and high-dimensional, SGD’s approach to navigating the op-
timization landscape, possibly due to its momentum component and learning rate

adjustments, is effective.

e Impact of Learning Rate: The learning rate is a critical hyperparameter in training
deep learning models. The experiments show a general trend that, for the RSDCNN
model, as the learning rate decreases, the weighted metrics improve, indicating a

finer adjustment to the model weights that leads to better generalization.

e Data Complexity and Model Suitability: The R3DCNN model is designed to cap-
ture the complex spatial, spectral, and temporal features inherent in EEG data,
as represented by the topographical brain maps. The experiments demonstrate
the model’s capacity to handle the complexity of EEG data, showing a promising
direction for leg movement classification task. Given the high dimensionality and
variability of EEG signals represented by the topographical brain maps, the use
of 3D convolutions and recurrent layers is appropriate for extracting meaningful

patterns that are crucial for accurate classification.

The general discussion indicates that the R3DCNN model, paired with the right opti-
mizer and learning rate, can effectively learn from EEG data presented as topographical
brain maps. The model’s ability to perform well across different tasks (as weighted by
classifiers) suggests its robustness and potential for broader applications in neurological

research and practical applications such as monitoring other movements of human parts.

4.7.2 Future Work

Building upon the current implementation of the CNN-RNN model for classifying leg
movements using EEG data represented as topographical brain maps, there are multi-
ple directions for future research that promise to enhance the model’s effectiveness and
applicability. The integration of convolutional neural networks (CNNs) for spatial feature
extraction with recurrent neural networks (RNNs) for capturing temporal dependencies
has shown potential in decoding complex EEG signals. However, optimizing the archi-

tecture and exploring more sophisticated models could yield significant improvements.

Future studies might consider experimenting with different types of convolutional and
recurrent layers, such as dilated convolutions for capturing spatial features at various
scales or Transformer-based models for better temporal analysis. Additionally, a system-
atic approach to hyperparameter tuning could further refine model performance, making
use of techniques like grid search, random search, or even Bayesian optimization to find
optimal settings.

Another critical area for future work is enhancing the model’s ability to generalize across
subjects, a common challenge in EEG signal analysis due to inter-individual variability.

Lastly, as models become more complex, ensuring their interpretability and explainabil-
ity becomes crucial, especially in clinical settings. Future efforts should focus on making
the models more transparent, using techniques such as saliency maps or layer-wise
relevance propagation to understand model decisions better. Additionally, integrating
multimodal data, such as fMRI or physiological signals, with EEG data could offer a more
comprehensive view of neural activities, enhancing the model’s predictive capabilities.
Pursuing these avenues will not only improve the performance and utility of EEG-based

models but also contribute to the broader field of neurotechnology and its applications.

Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

History of AL https://tutorialforbeginner.com/history-and-application-of-ai.

Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada,
Nachaat AbdElatif Mohamed ka1t Humaira Arshad. State-of-the-art in artificial neural
networlk applications: A survey. Heliyon, 4:¢00938, 2018.

The British Neuroscience Association kat The European Dana Alliancefor the Brain.
Neuroscience: Science of the Brain. The British Neuroscience Association, Liverpool,

UK, 2003. An introduction for young students.

Ildar Rakhmatulin. Progress in neural networks for EEG signal recognition in 2021.
Available as preprint, 2021. South Ural State University, Department of Power Plants

Networks and Systems, Chelyabinsk, Russia.

TMSi. The 10-20 System for EEG. https://info.tmsi.com/blog/the-10-20-system-for-

eeg, 2024. Accessed: insert access date here.

Pengbo Zhang, Xue Wang, Weihang Zhang xat Junfeng Chen. Learning Spa-
tial-Spectral-Temporal EEG Features With Recurrent 3D Convolutional Neural Net-
works for Cross-Task Mental Workload Assessment. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 27(1):31-42, 2019.

Taufique Ahmed xat Luca Longo. Examining the Size of the Latent Space of Con-
volutional Variational Autoencoders Trained With Spectral Topographic Maps of EEG
Frequency Bands. IEEE Access, 10:107575-107586, 2022.

Ryan G. Hefron, Brett J. Borghetti, James C. Christensen kat Christine M. Schubert
Kabban. Deep Long Short-term Memory Structures Model Temporal Dependencies
Improving Cognitive Worlkload Estimation. Pattern Recognition Letters, 94:96-104,
2017.

Appyhigh Technology Blog. Convolutional Neural Networks: A Brief History of
Their Evolution. https://medium.com/appyhigh-technology-blog/convolutional-neural-
networks-a-brief-history-of-their-evolution-ee3405568597, 2020. Accessed: [insert
date here].

Laith Alzubaidi, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-Dujaili, Ye Duan, Om-
ran Al-Shamma, J. Santamaria, Mohammed A. Fadhel, Muthana Al-Amidie kat Laith
Farhan. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applica-
tions, Future Directions. Journal of Big Data, 8(53), 2021.

https://tutorialforbeginner.com/history-and-application-of-ai
https://info.tmsi.com/blog/the-10-20-system-for-eeg
https://info.tmsi.com/blog/the-10-20-system-for-eeg
https://medium.com/appyhigh-technology-blog/convolutional-neural-networks-a-brief-history-of-their-evolution-ee3405568597
https://medium.com/appyhigh-technology-blog/convolutional-neural-networks-a-brief-history-of-their-evolution-ee3405568597

BIBLIOGRAPHY

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

MRI Questions. Convolutional Networlk. https://mriquestions.com/convolutional-

network.html, 2021. Accessed: insert access date here.

Wikipedia contributors. Recurrent neural network - History. https://en.wikipedia.

org/wiki/Recurrent_neural_network, 2024. Accessed: insert access date here.

IBM. Recurrent Neural Networks. https://www.ibm.com/topics/recurrent-neural-

networks, 2024. Accessed: insert access date here.

PolarSparc. Deep Learning - Recurrent Neural Networks. https://www.polarsparc.com/

xhtml/DL-RecurrentNN.html, 2023. Accessed: insert access date here.

First Initial. [if available] Author’s Last Name. The Main Advantages and Disad-
vantages of the RNN. https://www.researchgate.net/figure/The-Main-Advantages-and-
Disadvantages-of-the-RNN_tb12_343837591, 2024. Accessed: insert access date here.

IBM. Regularization. https://www.ibm.com/topics/regularization, 2024. Accessed:

insert access date here.

Analytics Vidhya. How Does the Gradient Descent Algorithm Work in Machine Learn-
ing? https://www.analyticsvidhya.com/blog/2020/10/how-does-the-gradient-descent-

algorithm-work-in-machine-learning/, 2020. Accessed: insert access date here.

Cornell University. Stochastic Gradient Descent. https://optimization.cbe.cornell.
edu/index.php?title=Stochastic_gradient_descent, 2024. Accessed: insert access date

here.

Baeldung. Gradient, Stochastic, and Mini-Batch Descent Explained. https://www.
baeldung.com/cs/gradient-stochastic-and-mini-batch, 2024. Accessed: insert access

date here.

Giskard. Adaptive Gradient Algorithm (AdaGrad). https://www.giskard.ai/glossary/

adaptive-gradient-algorithm-adagrad, 2024. Accessed: insert access date here.

Diederik P. Kingma kat Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980, 2014.

GeeksforGeeks. Gradient Descent with RMSprop from Scratch. https://www.
geeksforgeeks.org/gradient-descent-with-rmsprop-from-scratch/, 2024. Accessed:

insert access date here.

GeeksforGeeks. Metrics for Machine Learning Model. https://www.geeksforgeeks.org/

metrics-for-machine-learning-model/, 2024. Accessed: insert access date here.

Glassbox Medicine. Measuring Performance: AUC (AUROC). https://
glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/, 2019. Accessed:

insert access date here.

https://mriquestions.com/convolutional-network.html
https://mriquestions.com/convolutional-network.html
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://www.ibm.com/topics/recurrent-neural-networks
https://www.ibm.com/topics/recurrent-neural-networks
https://www.polarsparc.com/xhtml/DL-RecurrentNN.html
https://www.polarsparc.com/xhtml/DL-RecurrentNN.html
https://www.researchgate.net/figure/The-Main-Advantages-and-Disadvantages-of-the-RNN_tbl2_343837591
https://www.researchgate.net/figure/The-Main-Advantages-and-Disadvantages-of-the-RNN_tbl2_343837591
https://www.ibm.com/topics/regularization
https://www.analyticsvidhya.com/blog/2020/10/how-does-the-gradient-descent-algorithm-work-in-machine-learning/
https://www.analyticsvidhya.com/blog/2020/10/how-does-the-gradient-descent-algorithm-work-in-machine-learning/
https://optimization.cbe.cornell.edu/index.php?title=Stochastic_gradient_descent
https://optimization.cbe.cornell.edu/index.php?title=Stochastic_gradient_descent
https://www.baeldung.com/cs/gradient-stochastic-and-mini-batch
https://www.baeldung.com/cs/gradient-stochastic-and-mini-batch
https://www.giskard.ai/glossary/adaptive-gradient-algorithm-adagrad
https://www.giskard.ai/glossary/adaptive-gradient-algorithm-adagrad
https://www.geeksforgeeks.org/gradient-descent-with-rmsprop-from-scratch/
https://www.geeksforgeeks.org/gradient-descent-with-rmsprop-from-scratch/
https://www.geeksforgeeks.org/metrics-for-machine-learning-model/
https://www.geeksforgeeks.org/metrics-for-machine-learning-model/
https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/
https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/

BIBLIOGRAPHY

[25]

(26]

[27]

(28]

[29]

[30]

Glassbox Medicine. Measuring Performance: The Confusion Matrix. https:
//glassboxmedicine.com/2019/02/17/measuring-performance-the-confusion-matrix/,

2019. Accessed: insert access date here.

Google. Google Colaboratory. https://colab.research.google.com/, 2024. Accessed:

insert access date here.

Lightning Al. Lightning AI. https://lightning.ai/, 2024. Accessed: insert access

date here.

NumPy Developers. NumPy Documentation. https://numpy.org/doc/, 2024. Accessed:

insert access date here.

Matplotlib Developers. Matplotlib Documentation. https://matplotlib.org/, 2024.

Accessed: insert access date here.

Stefan Appelhoff. EEG electrode positions. https://github.com/sappelhoff/eeg_

positions, 2022. Accessed: insert access date here.

https://glassboxmedicine.com/2019/02/17/measuring-performance-the-confusion-matrix/
https://glassboxmedicine.com/2019/02/17/measuring-performance-the-confusion-matrix/
https://colab.research.google.com/
https://lightning.ai/
https://numpy.org/doc/
https://matplotlib.org/
https://github.com/sappelhoff/eeg_positions
https://github.com/sappelhoff/eeg_positions

	Abstract
	Περίληψη
	Acknowledgements
	Preface
	Introduction
	Artificial Intelligence
	Machine Learning
	Deep Learning
	Artificial Neuron
	Artificial Neural Networks

	Neuroscience
	Human Brain
	EEG
	EEG Frequency Bands
	EEG Systems

	Related Work

	I Theoretical Part
	Convolutional Neural Networks
	Evolution of CNN Architecture
	Core Components of CNNs
	Convolutional Layers
	Activation Functions
	Pooling Layers
	Fully Connected Layers
	Softmax Layer
	Loss Functions
	A simple CNN architecture

	Advantages of CNNs
	Applications of CNNs

	Recurrent Neural Networks
	Evolution of RNN Architecture
	Core Components of RNNs
	Input Layers in Recurrent Neural Networks
	Hidden Layers in Recurrent Neural Networks

	Advantages & Limitations of RNNs
	Regularization
	Data augmentation
	Early stopping
	Dropout
	Weight decay

	Optimizers
	Gradient Descent
	Stochastic Gradient Descent (SGD)
	Mini-batch Gradient Descent
	Momentum
	Adagrad
	Adam
	RMSprop

	Metrics
	Accuracy
	F1
	Precision
	Recall
	AUROC
	Confusion Matrix

	II Practical Part
	Implementation
	Tools & Libraries
	Google Colab
	Pytorch Lightning
	NumPy
	Matplotlib
	Python Package eeg_positions

	Challenges
	Data Collection
	Preprocessing
	Ensemble Method

	Training
	CNN - GRU

	Evaluation

	III Epilogue
	Discussion
	Final Outcome
	Future Work

	Bibliography

