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Introduction



Challenges in Time Series Forecasting

• Traditional methods (ARIMA, ETS, et al.) [1] struggle with
nonlinearities and complex interactions often present in
real-world data.

• Fully automated methods for traditional models [2] often
produce suboptimal results.

• Machine Learning methods, can learn more complex
patterns, with minimal tuning.
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State of the Art in ML

• Prophet: Additive model with trend, seasonality, and
holidays components. Developed by Facebook [3].

• DeepAR: Probabilistic forecasting with RNNs. Developed by
Amazon [4].

• DeepVAR: Vector probabilistic forecasting with RNNs.
Developed by Amazon [5].

• N-BEATS: Fast and interpretable model without RNNs.
Developed by Bengio et al. [6].

• TFT: Quantile forecasting using Variable Selection
Networks, RNNs, and Attention. Developed by Google [7].
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Important Benchmark Datasets

• Electricity Load Diagrams: Electricity consumption of
multiple clients.

• PeMS-SF: Occupancy rate of various car lanes of the San
Francisco Bay Area freeways.
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Overview

• Fits a single series.
• Easily interpretable parameters.
• Fitting can be automated much easier than classical
models [2].

• Its additive structure is easily interpretable and allows for
the injection of domain knowledge.

• Robust to missing values.
• Fast fitting.
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Classical Automated Procedures

Figure 1: Forecasts from classical automated procedures. Figure
from [3].
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Prophet Forecasts

Figure 2: Prophet forecasts. Figure from [3].
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Formulation

The Prophet Model

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖𝑡

• 𝑔(𝑡) is the trend component
• 𝑠(𝑡) is the seasonality component
• ℎ(𝑡) is the holiday component
• 𝜖𝑡 is the error term, assumed to be normally distributed
around 0.

Multiplicative seasonality can be accomplished through a log
transform.
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Trend Component

The trend component can be either a piecewise logistic growth
model or a piecewise linear growth model.
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Basic Logistic Growth

Basic Logistic Growth

𝑔(𝑡) = 𝐶
1 + exp(−𝑘(𝑡 − 𝑚))

• 𝐶 is the carrying capacity
• 𝑘 is the growth rate
• 𝑚 is an offset parameter
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Piecewise Logistic Growth

Piecewise Logistic Growth

𝑔(𝑡) = 𝐶(𝑡)
1 + exp(−(𝑘 + 𝐚(𝑡)𝑇𝜹)(𝑡 − (𝑚 + 𝐚(𝑡)𝑇𝜸)))

• 𝐶(𝑡) is a time-varying capacity
• 𝑠𝑗, 𝑗 = 1, … , 𝑆 are change points
• 𝑎𝑗(𝑡) = 1 if 𝑡 ≥ 𝑠𝑗 else 0
• 𝛿𝑗 are changes in rate
• 𝛾𝑗 make the function continuous and are computed by a
closed formula
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Piecewise Linear Growth

With the variables being the same as the logistic case:

Piecewise Linear Growth

𝑔(𝑡) = (𝑘 + 𝐚(𝑡)𝑇𝜹)𝑡 + (𝑚 + 𝐚(𝑡)𝑇𝜸)
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Change Point Selection

Change points can be manually set or selected automatically
by imposing a sparsity-inducing prior

𝛿𝑗 = Laplace(0, 𝜏)

As the hyperparameter 𝜏 → 0 the fit reduces to standard
non-piecewise logistic or linear growth.
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Change Point Extrapolation

Future change points are extrapolated as follows:

• 𝜏 is replaced by its MLE 𝜆 = 1
𝑆 ∑𝑆

𝑗=1 |𝛿𝑗|, or estimated with
a hierarchical prior on 𝜏.

• Future change points are then generatively sampled to
match the average frequency of historical change points,
i.e. 𝛿𝑗 ∼ Laplace(0, 𝜆) with probability 𝑆/𝑇 else 𝛿𝑗 = 0.

• Using multiple samples of future trends, uncertainty
intervals can be constructed.

• Those intervals are only indicative since the assumption
that the changepoints will have the same frequency and
magnitude in the future is quite strong.
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Seasonality Component

Modeled as a Fourier Series:
Seasonality Component

𝑠(𝑡) = 𝐗(𝑡)𝜷

𝐗(𝑡) = [cos (2𝜋(1)𝑡
𝑃

) , … , sin (2𝜋(𝑁)𝑡
𝑃

)]

𝜷 = [𝑎1, 𝑏1, … , 𝑎𝑁, 𝑏𝑁]𝑇 ∼ 𝒩(0, 𝜎2)

• 𝑃 is the period of the seasonality
• 𝑁 is the Fourier order, a hyperparameter.

Multiple seasonality components can be used, e.g. daily or
weekly.
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Holiday Component

Each holiday is assumed to have an independent effect on the
model.

Holiday Component

ℎ(𝑡) = 𝑍(𝑡)𝜿
𝑍(𝑡) = [𝟏𝑡∈𝐷1

, … , 𝟏𝑡∈𝐷𝐿
]

𝜿 ∼ 𝒩(0, 𝜎2)

where 𝐷𝑖 are holidays

Typically, the days around the holidays are considered as
holidays as well.
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Architecture Visualisation

Figure 3: The N-BEATS Architecture. Figure from [6].
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Overview

• Based on FC layers with ReLU. No CNNs or RNNs.
• Forecasts are partial and then summed up.
• Backcasts of a block are subtracted from the block’s input
and then are fed to the next block.

• Blocks within a stack share weights.
• Interpretable version using a trend and a seasonality
stack.

• A single model can be trained on data from multiple
related time series.
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Generic Architecture

Generic Basis Layers

�̂�𝑙 = 𝐕𝑓
𝑙 𝜽𝑓

𝑙 + 𝐛𝑓
𝑙 , �̂�𝑙 = 𝐕𝑏

𝑙 𝜽𝑏
𝑙 + 𝐛𝑏

𝑙

• Affine transformation of dim 𝜽(⋅)
𝑙 basis vectors of

dimension 𝐻.
• Each vector can be thought of as a waveform.
• In the Generic architecture, the bases are learnable, thus
the waveforms don’t have inherent structure.
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Interpretable Architecture

In the Interpretable Architecture, two stacks are used: the
trend stack and the seasonality stack. The bases are fixed in
this case.
Interpretable Basis Layers

�̂�trend
𝑠,𝑙 = 𝐓𝜽𝑓

𝑠,𝑙

�̂�seas
𝑠,𝑙 = 𝐒𝜽𝑓

𝑠,𝑙

𝐓 = [𝟏, 𝐭, … 𝐭𝑝] where 𝐭 = [0, … , 𝐻 − 1]𝑇/𝐻
𝐒 = [cos(2𝜋𝑘𝐭), sin(2𝜋𝑘𝐭); 𝑘 = 0, … , ⌊𝐻/2 − 1⌋]

• The trend stack outputs a polynomial, typically of a low
degree (e.g. 2 or 3).

• The seasonality stack outputs a Fourier series. 20
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Architecture Visualization

Figure 4: The DeepAR Architecture. Figure from [4].
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Overview

• Autoregressive model.
• Probabilistic forecasts — facilitating risk management and
decision making.

• Using RNNs to learn parameters of a distribution, for each
horizon point.

• A single model can be trained on data from multiple
related time series.

• Adept at handling datasets with series of largely varying
magnitudes — a common phenomenon.

• Supports covariates with known past and future values.
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Likelihood

The distribution

𝑃 (𝐳𝑖,𝑡0∶𝑇 ∣ 𝐳𝑖,1∶𝑡0−1, 𝐱𝑖,1∶𝑇)

is assumed to have a parametric form that consists of a
product of likelihood factors

𝑇
∏
𝑡=𝑡0

ℓ(𝑧𝑖,𝑡 ∣ 𝜃(𝐡𝑖,𝑡, Θ))

parametrized by

𝐡𝑖,𝑡 = ℎ(𝐡𝑖,𝑡−1, 𝑧𝑖,𝑡−1, 𝐱𝑖,𝑡, Θ)

where ℎ is a function implemented by a multi-layer recurrent
neural network with LSTM cells, and Θ represents the model
parameters.
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Training

Samples {𝐳𝑖,1∶𝑇}
𝑖=1,…,𝑁

are taken across time series, along with
covariates 𝐱𝑖,1∶𝑇. The model is then trained to maximize the
log-likelihood of the observed data

ℒ =
𝑁

∑
𝑖=1

𝑇
∑
𝑡=𝑡0

log ℓ(𝑧𝑖,𝑡 ∣ 𝜃(𝐡𝑖,𝑡))

with respect to the parameters of the RNN ℎ(⋅) and the
parameters of 𝜃(⋅) using stochastic gradient descent.
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Inference

Multiple samples can be produced via ancestral sampling in an
autoregressive fashion. These samples can be used to
compute quantiles of interest.
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Distributions

• Normal distribution for real-valued data
• Negative Binomial for positive count data
• Beta for data in [0, 1]
• etc.
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Varying Scales

Figure 5: Exhibition of a power-law distribution of time series
entities. Sales velocity (i.e. average weekly sales of an item) across
millions of items sold by Amazon. Figure from [4].
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Varying Scales Handling

The autoregressive input 𝑧𝑖,𝑡−1 and the network output (e.g. 𝜇)
in the model are directly influenced by the observations 𝑧𝑖,𝑡,
but the non-linearities of the network have a limited operating
range.

This challenge is addressed by using an item-dependent
scaling factor 𝜈𝑖 that is used to divide the input and adjust the
distribution parameters appropriately. This scaling factor is
typically chosen to be the heuristic 𝜈𝑖 = 1 + 1

𝑡0
∑𝑡0

𝑡=1 𝑧𝑖,𝑡.
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Overview

• Autoregressive model with probabilistic forecasts.
• Combines RNNs (LSTM) and a Gaussian copula process.
• Single RNN that is unrolled for each time series separately.
• Efficient parametrization of the covariance matrix.
• Learns the joint series distribution at each time point.
• Ingrained handling of datasets with series of largely
varying magnitudes.

• Supports covariates with known past and future values.
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Overall Structure

Let 𝐡𝑡 be the collection of RNN state values 𝐡𝑖,𝑡 for all time
series 𝑖 = 1, … , 𝑁.

The joint distribution is parametrized using a Gaussian copula:

𝑝(𝐳𝑡 ∣ 𝐡𝑡) = 𝒩 ([𝑓1(𝑧1,𝑡), … , 𝑓𝑁(𝑧𝑁,𝑡)]
𝑇 ∣ 𝝁(𝐡𝑡), Σ(𝐡𝑡))

where 𝑓𝑖 = Φ−1 ∘ ̂𝐹𝑖
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Copula

Definition (Copula)

A copula function 𝐶 ∶ [0, 1]𝑁 → [0, 1] is the CDF of a
multivariate distribution with uniform marginals.

31



Sklar’s Theorem

Theorem (Sklar)
Any joint cumulative distribution 𝐹 admits a representation in
terms of its univariate marginals 𝐹𝑖 and a copula function 𝐶,

𝐹(𝑧1, … , 𝑧𝑁) = 𝐶(𝐹1(𝑧1), … , 𝐹𝑁(𝑧𝑁))

When the marginals are continuous the copula 𝐶 is unique
and is given by the joint distribution of the probability
integral transforms of the original variables, i.e. 𝐮 ∼ 𝐶 where
𝑢𝑖 = 𝐹𝑖(𝑧𝑖). Furthermore, if 𝑧𝑖 is continuous then 𝑢𝑖 ∼ 𝒰(0, 1)
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Gaussian Copula

A common modeling approach, that DeepVAR also uses, is the
Gaussian copula

Gaussian Copula

𝐶(𝐹1(𝑧1), … , 𝐹1(𝑧1)) = 𝜙𝝁,Σ(Φ−1(𝐹1(𝑧1)), … , Φ−1(𝐹𝑁(𝑧𝑁)))

Because the 𝐹𝑖 are unknown, they are replaced by their
empirical CDFs ̂𝐹𝑖(𝑣) = 1

𝑚 ∑𝑚
𝑡=1 𝟙𝑧𝑖,𝑡≤𝑣, linearly interpolated for

piecewise differentiability. The number of observations 𝑚 is a
hyperparameter, with a typical value being 𝑚 = 100.
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Varying Scales Handling

The problem of varying scales is addressed by the usage of
empirical CDFs for each series separately, as this decouples the
estimation of marginal distributions from the temporal
dynamics and the dependency structure.
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Gaussian Copula Density

The log density is computed by

log 𝑝(𝐳; 𝝁, Σ) = log 𝜙𝝁,Σ(Φ−1( ̂𝐹 (𝐳))) + log 𝑑
𝑑𝐳

Φ−1( ̂𝐹 (𝐳))

= log 𝜙𝝁,Σ(Φ−1( ̂𝐹 (𝐳))) + log 𝑑
𝑑𝐮

Φ−1(𝐮) + log 𝑑
𝑑𝐳

̂𝐹 (𝐳)

= log 𝜙𝝁,Σ(Φ−1( ̂𝐹 (𝐳))) − log 𝜙(𝚽−1( ̂𝐹 (𝐳))) + log ̂𝐹 ′(𝐳)
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Covariance Structure

The covariance matrix Σ(𝐡𝑡) is parametrized as

Σ(𝐡𝑡) = 𝐃(𝐡𝑡) + 𝐕(𝐡𝑡)𝐕(𝐡𝑡)
𝑇

where

𝐃(𝐡𝑡) = ⎡
⎢
⎣

𝑑1(𝐡1,𝑡) 0
⋱

0 𝑑𝑁(𝐡𝑁,𝑡)

⎤
⎥
⎦

∈ ℝ𝑁×𝑁

𝐕(𝐡𝑡) = ⎡
⎢
⎣

𝐯1(𝐡1,𝑡)
⋮

𝐯𝑁(𝐡𝑁,𝑡)

⎤
⎥
⎦

∈ ℝ𝑁×𝑟
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Shared Parametrization

Let 𝐲𝑖,𝑡 ∶= [𝐡𝑖,𝑡; 𝐞𝑖]
𝑇 ∈ ℝ𝑝, with 𝐞𝑖 ∈ ℝ𝐸 being

covariates/embeddings for each time series 𝑖.

The mappings 𝜇𝑖, 𝑑𝑖 and 𝐯𝑖 are parametetrized in terms of
shared functions ̃𝜇, ̃𝑑 and �̃�,

𝜇𝑖(𝐡𝑖,𝑡) = ̃𝜇(𝐲𝑖,𝑡) = 𝐰𝑇
𝜇𝐲𝑖,𝑡,

𝑑𝑖(𝐡𝑖,𝑡) = ̃𝑑(𝐲𝑖,𝑡) = 𝑠(𝐰𝑇
𝑑𝐲𝑖,𝑡),

𝐯𝑖(𝐡𝑖,𝑡) = �̃�(𝐲𝑖,𝑡) = 𝑊𝐯𝐲𝑖,𝑡,

where 𝑠(𝑥) = log(1 + 𝑒𝑥) maps to positive values (softplus),
and 𝐰𝜇 ∈ ℝ𝑝×1, 𝐰𝑑 ∈ ℝ𝑝×1, 𝑊𝐯 ∈ ℝ𝑟×𝑝 are parameters.
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Gaussian Process Perspective

Let 𝐱𝑡 ∶= 𝑓(𝐳𝑡) = [𝑓1(𝑧1,𝑡), … , 𝑓𝑁(𝑧𝑁,𝑡)].

All learnable parameters are shared across all the time series
and thus the distribution of 𝐱𝑡 can be viewed as a Gaussian
Process evaluated at points 𝐲𝑖,𝑡,

𝐱𝑖,𝑡 = 𝑔𝑡(𝐲𝐢,𝐭)
𝑔𝑡 ∼ 𝒢𝒫( ̃𝜇(⋅), 𝑘(⋅, ⋅))

𝑘(𝐲, 𝐲′) = 𝟙𝐲=𝐲′ ̃𝑑(𝐲) + �̃�(𝐲)𝑇�̃�(𝐲′)

Thus the model can be trained by calculating the Gaussian
terms in the loss function on randomly selected subsets of the
time series during each iteration. This means that the model
can be trained with batches of size 𝐵 ≪ 𝑁.
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Overview

• State of the art model.
• Combines LSTM encoder-decoder, Gating Mechanisms,
Variable Selection Networks, and Attention.

• Supports all types of covariates: static, future known, and,
unlike DeepAR and DeepVAR, future unknown covariates.

• Multi-quantile predictions.
• Intepretability through attention and variable selection
weights.
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Covariates Visualization

Figure 6: Illustration of multi-horizon forecasting with static
covariates, past-observed and apriori-known future time-dependent
inputs. Figure from [7].
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Architecture Visualization

Figure 7: The architecture of the Temporal Fusion Transformer. Figure
from [7].
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Definitions

• 𝐼 distinct time series entities.
• 𝐬𝑖 ∈ ℝ𝑚𝑠 static covariates
• 𝝌𝑖,𝑡 = [𝐳𝑇

𝑖,𝑡, 𝐱𝑇
𝑖,𝑡]

𝑇 ∈ ℝ𝑚𝜒

• 𝐳𝑖,𝑡 ∈ ℝ𝑚𝑧 observed (typically contains the target)
• 𝐱𝑖,𝑡 ∈ ℝ𝑚𝑥 known

• 𝑦𝑖,𝑡 ∈ ℝ scalar targets
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Gating Mechanisms

Gating mechanisms are introduced via the Gated Residual
Network (GRN). GRNs make the model simpler if needed and
they determine the impact of covariates.

Gated Residual Network (GRN)

GRN𝜔(𝐚, 𝐜) = LayerNorm(𝐚 + GLU𝜔(𝜼1))
𝜼1 = 𝐖1,𝜔𝜼2 + 𝐛1,𝜔

𝜼2 = ELU(𝐖2,𝜔𝐚 + 𝐖3,𝜔𝐜 + 𝐛2,𝜔)

where

GLU𝜔(𝜸) = 𝜎(𝐖4,𝜔𝜸 + 𝐛4,𝜔) ⊙ (𝐖5,𝜔𝜸 + 𝐛5,𝜔)
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Variable Selection i

Separate Variable Selection Networks for static, past and
future inputs. WLOG, the case for past inputs is presented.

Let

• 𝝃(𝑗)
𝑡 ∈ ℝ𝑑model the transformed 𝑗-th variable at time 𝑡.

• 𝚵𝑡 ∶= [𝜉(1)𝑇

𝑡 , … , 𝜉(𝑚𝜒)𝑇

𝑡 ]
𝑇
.

• 𝐜𝑠 an external context vector. For static covariates 𝐜𝑠 = 𝟎.
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Variable Selection ii

Variable Selection Weights

𝐯𝜒𝑡
= Softmax(GRN𝐯(𝚵𝑡, 𝐜𝑠))

Per Variable GRN

̃𝝃(𝑗)
𝑡 = GRN ̃𝝃(𝑗)(𝝃(𝑗)

𝑡 ),

Variable Selection Output

̃𝝃𝑡 =
𝑚𝜒

∑
𝑗=1

𝑣(𝑗)
𝜒𝑡

̃𝝃(𝑗)
𝑡 ,
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Static Covariate Encoders

Static metadata is encoded, by separate GRNs, in four distinct
context vectors:

• 𝐜𝑠 for temporal variable selection,
• 𝐜𝑒 for enriching temporal features with static information,
• 𝐜𝑐 for initializing the LSTM cell state,
• 𝐜ℎ for initializing the LSTM hidden state.
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Interpretable Multi-Head Attention

Interpretable Multi-Head Attention

InterpretableMultiHead(𝐐, 𝐊, 𝐕) = �̃�𝐖𝐻,

�̃� = { 1
𝐻

𝑚𝐻

∑
ℎ=1

A(𝐐𝐖(ℎ)
𝑄 , 𝐊𝐖(ℎ)

𝐾 )} 𝐕𝐖𝑉

= 1
𝐻

𝑚𝐻

∑
ℎ=1

Attention(𝐐𝐖(ℎ)
𝑄 , 𝐊𝐖(ℎ)

𝐾 , 𝐕𝐖𝑉)

TFT modifies multi-head attention because when different
values are used in each head, attention weights alone might
not be indicative of a particular feature’s importance.
Positional encoding is not needed — the LSTM implicitly does it.
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Temporal Fusion Decoder

The LSTM receives ̃𝝃𝑡−𝑘∶𝑡 as inputs to the encoder, and
̃𝝃𝑡+1∶𝑡+𝜏max

to the decoder.

The output of this process is 𝝓(𝑡, 𝑛), 𝑛 = −𝑘, … , 𝜏max.

A gated skip connection is employed over the LSTM part:

̃𝝓(𝑡, 𝑛) = LayerNorm( ̃𝝃𝑡+𝑛 + GLU ̃𝜙(𝝓(𝑡, 𝑛))), 𝑛 = −𝑘, … , 𝜏max
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Static Enrichment Layer

Static covariate information is injected via a static enrichment
layer:

𝜽(𝑡, 𝑛) = GRN ( ̃𝝓(𝑡, 𝑛), 𝐜𝑒) , 𝑛 = −𝑘, … , 𝜏max
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Temporal Self Attention Layer

All statically-enriched temporal features are grouped into a
matrix 𝚯(𝑡) = [𝜽(𝑡, −𝑘), … , 𝜽(𝑡, 𝜏)]𝑇 and interpretable
multi-head attention is applied at each forecast time:

𝐁(𝑡) = InterpretableMultiHead(𝚯(𝑡), 𝚯(𝑡), 𝚯(𝑡))
= [𝜷(𝑡, −𝑘), … , 𝜷(𝑡, 𝜏max)]

A gated skip connection is also added here:

𝜹(𝑡, 𝑛) = LayerNorm(𝜽(𝑡, 𝑛)+GLU𝛿(𝜷(𝑡, 𝑛))), 𝑛 = −𝑘, … , 𝜏max
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Position-wise Feed-forward Layer

Additional non-linear processing is applied to the output of
the self-attention layer:

𝝍(𝑡, 𝑛) = GRN(𝜹(𝑡, 𝑛)), 𝑛 = −𝑘, … , 𝜏max

A gated skip connection over the entire transformer block is
also applied:

̃𝝍(𝑡, 𝑛) = LayerNorm ( ̃𝝓(𝑡, 𝑛) + GLU�̃�(𝝍(𝑡, 𝑛))) , 𝑛 = −𝑘, … , 𝜏max
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Quantile Ouputs

̂𝑦𝑖(𝑞, 𝑡, 𝜏) = 𝐖𝑞
̃𝝍(𝑡, 𝜏) + 𝑏𝑞

e.g. 𝑞 = 0.1, 0.5, 0.9
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Loss Function

Quantile Loss

ℒ(Ω, 𝐖) = ∑
𝑦𝑡∈Ω

∑
𝑞∈𝒬

𝜏max

∑
𝜏=1

QL(𝑦𝑡, ̂𝑦(1, 𝑡 − 𝜏, 𝜏), 𝑞)
𝑀𝜏max

QL(𝑦𝑡, ̂𝑦, 𝑞) = 𝑞(𝑦 − ̂𝑦)+ + (1 − 𝑞)( ̂𝑦 − 𝑦)+

where Ω is the domain of the training data containing 𝑀
samples, 𝐖 represents the weights of the TFT, 𝒬 is the set of
output quantiles (a typical choice is 𝒬 = {0.1, 0.5, 0.9}), and
(⋅)+ = max(0, ⋅)
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Datasets



Datasets
Electricity Load Diagrams Dataset



Original Dataset

• From the UCI ML Repository [8]
• Electricity consumption of 370 clients
• Data from 2011 to 2014
• 15 min frequency
• Some clients’ history starts after the dataset’s minimum
date
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Usage in the Thesis

• The first 50 time series were selected (all clients have
data)

• Data from January 2, 2014, to September 1, 2014.
• Resampled frequency to 1 hour (averaged).
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Time Series Heatmap

Figure 8: Heatmap of Hourly Electricity Consumption. Data from
Monday 2014–02–03 to Sunday 2014–02–09. Seasonal patterns, as
well as varying varying scales, are evident.
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Correlation

(a) Correlation Heatmap
(b) Correlation Histogram (values
of 1.0 excluded)

Figure 9: Electricity Load Diagrams Correlation. Moderate to high
positive correlations, with seasonality being a common underlying
factor.
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Median

Figure 10: Median Electricity Consumption. The consumption is 0 on
the last Sunday of March, due to daylight savings.
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Seasonal Boxplots

(a) Hourly Boxplot (b) Weekly Boxplot

Figure 11: Boxplots of hourly mean values of each time series.
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Seasonal Medians

(a) Median Hourly Electricity
Consumption

(b) Median Weekly Electricity
Consumption

Figure 12: Median of mean values of each time series.
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Datasets
PeMS-SF Dataset



Original Dataset

• Stands for “Performance Measurement System — San
Francisco”.

• From the UCI ML Repository [9].
• Occupancy rates from 963 lanes in the Sans Francisco Bay
area in California.

• Data from January 1, 2008 to March 30, 2009.
• 10 min frequency.
• Missing values at 4 entire days (holidays and sensor
malfunctioning).

• Dataset in form for classification tasks.
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Usage in the Thesis

• Data restructured for forecasting, through concatenations,
inverse permutations, and inferring timestamps and
missing days.

• The first 50 time series were selected (all clients have
data).

• Data from January 1, 2008, to June 25, 2008.
• Resampled frequency to 1 hour (averaged).
• Missing value replaced with 0 for DL models, left as is for
Prophet.
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Time Series Heatmap

Figure 13: Heatmap of Hourly Lane Occupancy Rates. Data from
Monday 2008–01–07 to Sunday 2008–01–14.
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Correlation

(a) Correlation Heatmap
(b) Correlation Histogram (values
of 1.0 excluded)

Figure 14: PeMS-SF Correlation. Moderate to high positive
correlations, with seasonality being a common underlying factor.
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Median

Figure 15: Median Occupancy Rates. Missing days are visible.
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Seasonal Boxplots

(a) Hourly Boxplot (b) Weekly Boxplot

Figure 16: Boxplots of hourly mean values of each time series.
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Seasonal Medians

(a) Median Hourly Occupancy
Rates

(b) Median Weekly Occupancy
Rates

Figure 17: Median of mean values of each time series.
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Methodology



Methodology
Overview



Goal

• The goal is to accurately forecast the last day of each
dataset.

• Prophet and DL methods are handled differently.
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Depiction

Datasets

Electricity Traffic

Select 50 series.
Select time span.
1 hour frequency.

Repurpose from
classification to

forecasting

Prophet Model

Prophet

Parameter search
(Simulated Historical

Forecasts)

One Model / Series

Deep Leaning Models

DeepAR
DeepVAR

TFT
N-BEATS

Parameter Search
(Tree-Structured

Parzen Estimator)

One Model / Dataset.
In 7 Days, Out 1 Day.

Impute with 0.

Hour, weekday, and
entity id covariates.

Predict final day

Train

Model

Dataset

Figure 18: Overview of the methodology.
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Prophet Methodology

• One model for each time series.
• Separate hyperparameter search for each model.
• Validation with Rolling Historical Forecasts with half
Horizon strides.
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Rolling Historical Forecasts

Figure 19: Cross-validation for tuning Prophet hyperparameters.
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DL Models Methodology

• A single model for each dataset.
• Input 7 days, output 1 day.
• Time series name, hour, weekday as covariates (except
N-BEATS).

• Validation set using the last 3 weeks (excluding the final
day) — approximately 10% of the data.

• Validation set used for hyperparameter tuning and early
stopping.

• Hyperparameter tuning with a mix of
• Optuna’s [10] Tree-Structured Parzen Estimator (TPE) [11]
• Pytorch Lightning’s Tuner that uses Cyclical Learning
Rates (CLR) [12]
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Methodology
Evaluation Metrics



Mean Squared Error (MSE)

Mean Squared Error (MSE)
1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2

Gives a higher weight to larger errors due to the squaring part
of the formula, making it particularly useful when large errors
are undesirable.
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Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE)

√ 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2

The square root of MSE.
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Mean Absolute Error (MAE)

Mean Absolute Error (MAE)
1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖|

MAE is particularly useful for understanding how big the error
will be on average.
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Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error (MAPE)
100%

𝑛

𝑛
∑
𝑖=1

∣𝑦𝑖 − ̂𝑦𝑖
𝑦𝑖

∣

MAPE is easy to interpret but can be undefined or infinite for
values of 𝑦𝑖 = 0 and can disproportionately penalize
overestimates — for example, if ̂𝑦 = 2, then ape = 100% when
𝑦 = 1, while ape = 33.3% when 𝑦 = 3.
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Symmetric Mean Absolute Percentage Error (SMAPE)

Symmetric Mean Absolute Percentage Error (SMAPE)
100%

𝑛

𝑛
∑
𝑖=1

2|𝑦𝑖 − ̂𝑦𝑖|
|𝑦𝑖| + | ̂𝑦𝑖|

SMAPE adjusts MAPE to be symmetric, ensuring that
overestimates and underestimates are penalized equally. It is
bounded between 0 and 200%.
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Mean Absolute Scaled Error (MASE)

Mean Absolute Scaled Error (MASE)
MAE

1
𝑛−1 ∑𝑛

𝑖=2 |𝑦𝑖 − 𝑦𝑖−1|

MASE measures the accuracy of forecasts relative to a naïve
baseline prediction, scaling the MAE by the average absolute
difference between consecutive observations in the training
dataset. MASE is particularly useful because it is
scale-independent and can be used to compare forecast
performance across different datasets.
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Methodology
Hyperparameter Spaces



Prophet

• 𝜏 ∈ {0.001, 0.01, 0.1, 0.5} for the change point prior
• Daily seasonality of Fourier order 4
• Weekly seasonality of Fourier order 3
• No smoothing priors for seasonalities — regularization
delegated to the Fourier order.

• Multiplicative seasonality for Electricity, additive for Traffic.
• Linear growth for Electricity, Logistic growth saturated at 0
and 1 for Traffic.

• The first 80% of the training data was used to find change
points, due to relatively stable trends.

• No holiday component — unknown country for electricity,
missing from traffic.

• Validation first cutoff day 205 for electricity, day 169 for
traffic. Half horizon steps.
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DL Models

• dropout ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
• Gradient norm clipping in the logarithmic space of

[10−1, 102]
• Batch size 128
• Early stopping on the validation loss with patience 5 and
tolerance 10−4.

• Learning rate: CLR in [10−8, 1] if successful and < 10−2, else
TPE suggestion in the logarithmic space of [10−4, 10−2].
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N-BEATS

• Interpretable architecture
• Trend polynomial degree: 3
• 3 blocks per stack
• 3 FC layers per block
• Trend stack FC layer size: 64, 256
• Seasonality stack FC layer size: 512, 2048
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DeepAR

• 2 LSTM layers
• LSTM hidden size: 80, 160, 320
• Normal distribution for electricity, Beta distribution for
traffic

• Monte Carlo samples for prediction: 100
• Embedding size:

min{round(1.6𝑛0.56), 100} if 𝑛 > 2 else 1
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DeepVAR

• Rank of the non-diagonal part of the covariance matrix: 10
• LSTM configuration, embedding size, Monte Carlo samples
same as DeepAR.
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Temporal Fusion Transformer

• quantiles = (0.1, 0.5, 0.9)
• 𝑑model ∈ {80, 160, 320}
• 1 LSTM layer
• 4 attention heads
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Source Code

github.com/k-papadakis/dsml-thesis-code

Install with pip install --upgrade git+https://
github.com/k-papadakis/dsml-thesis-code.git

For usage info, run thesis -h
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Results



Performance on Electricity

MASE SMAPE RMSE MAE

Prophet 1.81 0.231 16.8 14.2
N-BEATS 0.84 0.104 18.3 7.6
DeepAR 0.64 0.078 14.0 5.6
DeepVAR 0.66 0.080 15.1 5.9
TFT 0.86 0.103 20.6 7.9

Table 1: Performance on Electricity. MAPE was omitted due to the
presence of zeros in the true values.
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Performance of Traffic

MASE SMAPE RMSE MAE MAPE

Prophet 0.943 0.290 0.01547 0.01149 0.345
N-BEATS 0.436 0.101 0.01195 0.00529 0.133
DeepAR 0.438 0.087 0.01083 0.00494 0.106
DeepVAR 0.542 0.161 0.01073 0.00618 0.229
TFT 0.408 0.089 0.01281 0.00495 0.101

Table 2: Performance on Traffic
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MASE on Electricity

Figure 20: MASE on Electricity
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MASE on Traffic

Figure 21: MASE on Traffic
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Remarks

To represent results from all scales, the series with the lowest,
median, and highest mean values from each dataset are shown
in what follows.

The main focus is on MASE, due to its interpretability, scale
independence, robustness to outliers, handling of zeros, and
unbiasedness towards over/under-predicting.
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Results
Prophet



Remarks

Prophet consistently underperforms compared to the other
models across all metrics.

This highlights Prophet’s lower learning capacity compared to
DL models.

Manual adjustments might improve performance, but this
approach lacks scalability.

Uncertainty intervals do generally cover the true values
appropriately, which is useful for further decision-making.
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Electricity Prediction

(a) MT003 (b) MT015 (c) MT043

Figure 22: Predictions of Prophet on the Electricity dataset.
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Electricity CV

(a) MT003 (b) MT015 (c) MT043

Figure 23: Cross-validation SMAPE of Prophet on the Electricity
dataset. The grey dots represent SMAPEs on that specific time index,
one from each simulated historical forecast, and the blue line
represents the average SMAPE on that time index.
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Electricity Components

(a) MT003 (b) MT015 (c) MT043

Figure 24: Trend and seasonality components of Prophet on the
Electricity dataset.
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Electricity Models

(a) MT003 (b) MT015 (c) MT043

Figure 25: Model overview of Prophet on the Electricity dataset.
Forecasts in blue lines, uncertainty in light blue, true values in black
dots, and important change points in dashed vertical red lines.
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Traffic Prediction

(a) 400015 (b) 400071 (c) 400041

Figure 26: Predictions of Prophet on the Traffic dataset.

96



Traffic CV

(a) 400015 (b) 400071 (c) 400041

Figure 27: Cross-validation SMAPE of Prophet on the Traffic dataset.
The grey dots represent SMAPEs on that specific time index, one from
each simulated historical forecast, and the blue line represents the
average SMAPE on that time index.

97



Traffic Components

(a) 400015 (b) 400071 (c) 400041

Figure 28: Trend and seasonality components of Prophet on the
Traffic dataset.
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Traffic Models

(a) 400015 (b) 400071 (c) 400041

Figure 29: Model overview of Prophet on the Traffic dataset.
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Results
N-BEATS



Best Params

Clip Dropout LR Trend Seas

electricity 1.60 0.2 0.0005 256 2048
traffic 1.25 0.3 0.0008 256 2048

Table 3: Optuna-found hyperparameters for N-BEATS.

100



Electricity Optuna
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Figure 30: Optuna results for the N-BEATS model on the Electricity
dataset.
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Electricity Prediction

(a) MT003 (b) MT015 (c) MT043

Figure 31: Predictions of N-BEATS on the Electricity dataset. The
model captures the pattern, but not the magnitudes. This is possibly
due to the varying scales challenge.
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Electricity Interpretation

(a) MT003 (b) MT015 (c) MT043

Figure 32: Trend-Seasonality interpretation of N-BEATS on the
Electricity dataset. The model’s learned seasonality aligns with the
prediction range but diverges from the conditioning range.
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Traffic Optuna
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Figure 33: Optuna results for the N-BEATS model on the Traffic
dataset.
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Traffic Prediction

(a) 400015 (b) 400071 (c) 400041

Figure 34: Predictions of N-BEATS on the Traffic dataset. The model
performs well here, possibly due to the traffic dataset not having
varying scales.
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Traffic Interpretation

(a) 400015 (b) 400071 (c) 400041

Figure 35: Trend-Seasonality interpretation of N-BEATS on the Traffic
dataset.
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Results
DeepAR



Best Params

LSTM Clip Dropout LR

electricity 160 5.83 0.4 0.006
traffic 160 44.44 0.4 0.004

Table 4: Optuna-found hyperparameters for DeepAR.
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Electricity Optuna
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Figure 36: Optuna results for the DeepAR model on the Electricity
dataset.
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Electricity Prediction

(a) MT003 (b) MT015 (c) MT043

Figure 37: Probabilistic predictions of DeepAR on the Electricity
dataset. Monte Carlo samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75,
0.9, 0.98. The model exhibits superior performance, possibly due to
its varying scale handling. The prediction intervals appropriately
encompass the target values.
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Traffic Optuna
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Figure 38: Optuna results for the DeepAR model on the Traffic
dataset.
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Traffic Prediction

(a) 400015 (b) 400071 (c) 400041

Figure 39: Probabilistic predictions of DeepAR on the Traffic dataset.
Monte Carlo samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98.
Wide prediction intervals due to variability in the conditioning range.
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Results
DeepVAR



Best Params

LSTM Clip Dropout LR

electricity 160 1.23 0.3 0.001
traffic 80 96.73 0.5 0.006

Table 5: Optuna-found hyperparameters for DeepVAR. They were
replaced with DeepAR’s hyperparameters for the final results.
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Electricity Optuna
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Figure 40: Optuna results for the DeepVAR model on the Electricity
dataset. They were replaced with DeepAR’s hyperparameters for the
final results.
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Electricity Prediction

(a) MT003 (b) MT015 (c) MT043

Figure 41: Probabilistic predictions of DeepVAR on the Electricity
dataset. Monte Carlo samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75,
0.9, 0.98. Predictions are similar to DeepAR.
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Electricity Correlation

(a) Correlation Heatmap
(b) Correlation Histogram (1.0
excluded)

Figure 42: Average Correlation of the DeepVAR model on the
Electricity dataset. Result from the average of the covariance
matrices across Monte Carlo samples and forecast indices. The
learned correlation matrix resembles the original, but not entirely,
possibly due to the low-rank-plus-diagonal parametrization.
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Traffic Prediction

(a) 400015 (b) 400071 (c) 400041

Figure 43: Probabilistic predictions of DeepVAR on the Traffic dataset.
Monte Carlo samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98.
The model underperforms here — modeling with a Gaussian copula
might not be appropriate.
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Traffic Correlation

(a) Correlation Heatmap
(b) Correlation Histogram (1.0
excluded)

Figure 44: Average Correlation of the DeepVAR model on the Traffic
dataset. Result from the average of the covariance matrices across
Monte Carlo samples and forecast indices. The estimate is quite
different from the true value.
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Results
Temporal Fusion Transformer



Best Params

𝑑model Clip Dropout LR

electricity 160 0.43 0.1 0.007
traffic 320 20.69 0.2 0.003

Table 6: Optuna-found hyperparameters for TFT.
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Electricity Optuna
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Figure 45: Optuna results for the TFT model on the Electricity dataset.
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Electricity Prediction

(a) MT003 (b) MT015 (c) MT043

Figure 46: Quantile predictions of TFT on the Electricity dataset. The
attention weights for each time index are also shown. Predictions at
quantiles 0.1, 0.5 and 0.9. Underperformance is possibly due to
varying scales. Uninformative prediction intervals.
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Electricity Attention

Figure 47: Average attention of TFT on the conditioning range on the
Electricity dataset. Peaks at 24-hour multiples. A higher peak at two
days in the past instead of one could be related to the model’s
underperformance on the dataset.
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Electricity Variable Importance

(a) Encoder Variables Importance (b) Decoder Variables Importance

Figure 48: Variables importance of the encoder and decoder of the
TFT model on the Electricity dataset. Computed using the softmax
outputs of the Variable Selection Networks across time. The
historical consumption not being the most important possibly
relates to the lack of performance.
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Traffic Optuna
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Figure 49: Optuna results for the TFT model on the Traffic dataset.
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Traffic Prediction

(a) 400015 (b) 400071 (c) 400041

Figure 50: Quantile predictions of TFT on the Traffic dataset. The
attention weights for each time index are also shown. Predictions at
quantiles 0.1, 0.5 and 0.9. Remarkable performance.
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Traffic Attention

Figure 51: Average attention of TFT on the conditioning range on the
Traffic dataset. Possibly using 1 day before as local context, and 5–6
days before as “weekly seasonality” since 7 days before is not
available.
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Traffic Variable Importance

(a) Encoder Variables Importance (b) Decoder Variables Importance

Figure 52: Variables importance of the encoder and decoder of the
TFT model on the Traffic dataset. Computed using the softmax
outputs of the Variable Selection Networks across time. The
historical occupancy rates are found to be the most important,
unlike in the electricity case.
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Conclusion



Summary of Findings i

Deep Learning Supremacy
Deep learning models consistently outperformed Prophet on
both datasets. This underscores the power of DL in
forecasting when the volume of the data allows it.

Dataset Nuances
Model performance varied significantly based on the dataset.
The complexity of the patterns and the distribution of the
scales play an important role.
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Summary of Findings ii

Probabilistic Advantage
Confidence intervals can offer valuable insight and heavily
impact decision-making, but they should be used with
caution since they can often be misleading.

The Importance of Manual Tuning
In certain cases, manual hyperparameter tuning outperforms
fully automated approaches for deep learning models. This
underscores the value of domain knowledge and
experimentation within the optimization process.

128



Summary of Findings iii

Interpretability Considerations
While N-BEATS offers a theoretically interpretable
architecture, the results suggest that practical interpretability
benefits might be limited. TFT, on the other hand, provided
valuable insights through its attention mechanism and
variable selection. Finally, the interpretability of the Prophet
model comes with model simplicity.
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Future Work i

Hybrid Approaches
Explore combining the strengths of Prophet’s interpretability
with the power of DL models to create hybrid forecasting
solutions.

Additional Datasets
Evaluate these models on datasets from other domains (e.g.,
finance, weather) to investigate their generalizability and
performance in different contexts.
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Future Work ii

Expanding Scope
Incorporate external factors like weather conditions or
special events into models to enhance forecasting accuracy
and inform proactive decision-making.

Real-World Deployment
Investigate the challenges of deploying forecasting models in
real-world operational settings, considering aspects like
model maintenance, scalability, and integration with existing
systems.
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Future Work iii

Limitations of Interpretability
Investigate the factors hindering interpretability in
theoretically interpretable architectures like N-BEATS.

Power of Attention Mechanisms
Further exploration of attention-based models like TFT could
yield insights into the key drivers and dependencies within
complex time-series data.
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Thank you!
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