
National Technical University of Athens
School of Electrical and Computer Engineering
Division of

Machine Learning for Forecasting: A Comparative

Analysis

Performance Assessment on Electricity Load and Traffic Datasets

Diploma Thesis
of

KONSTANTINOS PAPADAKIS

Supervisor: Stephanos Kollias
Professor Emeritus

Athens, March 2024

National Technical University of Athens
School of Electrical and Computer Engineering
Division of

Machine Learning for Forecasting: A Comparative
Analysis

Performance Assessment on Electricity Load and Traffic Datasets

Diploma Thesis
of

KONSTANTINOS PAPADAKIS

Supervisor: Stephanos Kollias
Professor Emeritus

Approved by the examination committee on 15th March 2024.

(Signature) (Signature) (Signature)

. .
Stephanos Kollias Georgios Stamou Athanasios Voulodimos
Professor Emeritus Professor Assistant Professor

Athens, March 2024

National Technical University of Athens
School of Electrical and Computer Engineering
Division of

Copyright © – All rights reserved.
Konstantinos Papadakis, 2024.

The copying, storage and distribution of this diploma thesis, exall or part of it, is pro-
hibited for commercial purposes. Reprinting, storage and distribution for non - profit,
educational or of a research nature is allowed, provided that the source is indicated and
that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the
Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROP-
ERTY RIGHTS
Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference is
included in the bibliographic references section. I fully, individually and personally under-
take all legal and administrative consequences that may arise in the event that it is proven,
in the course of time, that this thesis or part of it does not belong to me because it is a
product of plagiarism.

(Signature)

. .
Konstantinos Papadakis

15th March 2024

Abstract

This thesis investigates the performance of advanced machine learning models for time
series forecasting. Prophet, N-BEATS, DeepAR, DeepVAR, and the Temporal Fusion
Transformer are applied to the Electricity Load Diagrams and PEMS-SF datasets. Results
are rigorously evaluated using appropriate forecasting metrics. The study highlights the
strengths and weaknesses of each model in handling real-world data complexities, offer-
ing insights for choosing optimal forecasting methods based on data characteristics and
problem domain.

Keywords

Timeseries, Forecasting, Machine Learning, Deep Learning, Neural Networks, N-BEATS,
DeepAR, DeepVAR, Temporal Fusion Transformer, Prophet

1

to my family

Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor, Prof. Stephanos
Kolias, and cosupervisor, Dr. Paraskevi Tzouveli, for their invaluable guidance, insightful
feedback, and unwavering support throughout this research project. Their expertise and
encouragement were instrumental in shaping this work.

Finally, a heartfelt thank you to my family, my girlfriend and my friends for their uncon-
ditional love, patience, and continuous belief in me. This accomplishment would not have
been possible without their support.

Athens, February 2024

Konstantinos Papadakis

5

Table of Contents

Abstract 1

Acknowledgements 5

Preface 15

1 Introduction 17

2 Forecasting Models 19
2.1 Prophet . 19

2.1.1 Model Overview . 19
2.1.2 Model Architecture . 22
2.1.3 Strengths and Limitations . 24

2.2 N-BEATS . 25
2.2.1 Model Overview . 25
2.2.2 Model Architecture . 26
2.2.3 Strengths and Limitations . 28

2.3 DeepAR . 28
2.3.1 Model Overview . 28
2.3.2 Model Architecture . 29
2.3.3 Strengths and Limitations . 31

2.4 DeepVAR . 31
2.4.1 Model Overview . 31
2.4.2 Model Architecture . 33
2.4.3 Strengths and Limitations . 35

2.5 Temporal Fusion Transformer (TFT) . 36
2.5.1 Model Overview . 36
2.5.2 Model Architecture . 37
2.5.3 Strengths and Limitations . 43

3 Datasets 45
3.1 Introduction . 45
3.2 Electricity Load Diagrams Dataset . 45

3.2.1 Original Dataset . 45

7

TABLE OF CONTENTS

3.2.2 Usage in This Thesis . 45
3.2.3 Exploratory Data Analysis . 46

3.3 PeMS-SF Dataset . 49
3.3.1 Original Dataset . 49
3.3.2 Usage in This Thesis . 49
3.3.3 Exploratory Data Analysis . 50

3.4 Conclusion . 53

4 Methodology 55
4.1 Method Overview . 55
4.2 Evaluation Metrics . 57

4.2.1 Mean Squared Error (MSE) . 57
4.2.2 Root Mean Squared Error (RMSE) 58
4.2.3 Mean Absolute Error (MAE) . 58
4.2.4 Mean Absolute Percentage Error (MAPE) 58
4.2.5 Symmetric Mean Absolute Percentage Error (SMAPE) 58
4.2.6 Mean Absolute Scaled Error (MASE) 58

4.3 Hyperparameter Spaces . 59
4.3.1 Prophet . 59
4.3.2 N-BEATS . 59
4.3.3 DeepAR . 60
4.3.4 DeepVAR . 60
4.3.5 Temporal Fusion Transformer . 60

4.4 Source Code . 60

5 Model Applications and Results 63
5.1 Prophet . 64
5.2 N-BEATS . 67
5.3 DeepAR . 70
5.4 DeepVAR . 72
5.5 Temporal Fusion Transformer . 74

6 Conclusion and Future Work 79
6.1 Summary of Findings . 79
6.2 Implications and Recommendations . 80
6.3 Future Work . 80
6.4 Closing Statement . 81

Bibliography 88

8

List of Figures

2.1 The number of events created on Facebook. There is a point for each day,
and points are color-coded by day of the week to show the weekly cycle.
The features of this time series are representative of many business time
series: multiple strong seasonalities, trend changes, outliers, and holiday
effects. Figure from [1]. 20

2.2 Forecasts on the time series from Figure 2.1 using a collection of automated
forecasting procedures [2]. Forecasts were made at three illustrative points
in history, each using only a portion of the time series up to that point.
Forecasts for each day are grouped and colored by day of the week to
visualize weekly seasonality. Figure from [1]. 20

2.3 Forecasts on the time series from Figure 2.1 using Prophet. Figure from [1]. 21
2.4 The N-BEATS Architecture. The basic building block is a multi-layer fully

connected network with ReLU nonlinearities [3]. It predicts basis expan-
sion coefficients both forward, θf , (forecast) and backward, θb, (backcast).
Blocks are organized into stacks using the doubly residual stacking princi-
ple. A stack may have layers with shared gb and gf functions. Forecasts are
aggregated hierarchically. This enables building a very deep neural network
with interpretable outputs. Figure from [4]. 26

2.5 The distribution of sales velocity (i.e. average weekly sales of an item) across
millions of items sold by Amazon. Figure from [5]. 29

2.6 The DeepAR Architecture. Training (left): At each time step t, the inputs
to the network are the covariates xi,t, the target value at the previous time
step zi,t−1, as well as the previous network output hi,t−1. The network
output hi,t = h(hi,t−1, zi,t−1,xi,t,Θ) is then used to compute the parame-
ters θi,t = θ(hi,t,Θ) of the likelihood ℓ(zi | θ), which is used for training
the model parameters. For prediction, the history of the time series zi,t is
fed in for t < t0, then in the prediction range (right) for t ≥ t0 a sample
ẑi,t ∼ ℓ(· | θi,t) is drawn and fed back for the next point until the end of
the prediction range t = t0 + T generating one sample trace. Repeating
this prediction process yields many traces representing the joint predicted
distribution. Figure from [5]. 29

2.7 Illustration of multi-horizon forecasting with static covariates, past-observed
and apriori-known future time-dependent inputs. Figure from [6]. 36

2.8 The architecture of the Temporal Fusion Transformer. Figure from [6]. . . 37

9

LIST OF FIGURES

3.1 Electricity Load Diagrams Correlation . 46

3.2 Heatmap of Hourly Electricity Consumption. Data from Monday 2014–02–
03 to Sunday 2014–02–09. 47

3.3 Electricity Load Diagrams Seasonality Visualization 48

3.4 PeMS-SF Correlation Visualization . 50

3.5 Heatmap of Hourly Lane Occupancy Rates. Data from Monday 2008–01–07
to Sunday 2008–01–14. 51

3.6 PeMS-SF Seasonality . 52

4.1 Overview of the methodology. 56

4.2 Cross-validation for tuning Prophet hyperparameters. 57

5.1 MASE of the models on each series of the datasets. 64

5.2 Predictions of Prophet on the Electricity dataset. 65

5.3 Cross-validation SMAPE of Prophet on the Electricity dataset. The grey
dots represent SMAPEs on that specific time index, one from each simu-
lated historical forecast, and the blue line represents the average SMAPE
on that time index. 66

5.4 Trend and seasonality components of Prophet on the Electricity dataset. . 66

5.5 Model overview of Prophet on the Electricity dataset. Forecasts in blue
lines, uncertainty in light blue, true values in black dots, and important
change points in dashed vertical red lines. 66

5.6 Predictions of Prophet on the Traffic dataset. 66

5.7 Cross-validation SMAPE of Prophet on the Traffic dataset. The grey dots
represent SMAPEs on that specific time index, one from each simulated
historical forecast, and the blue line represents the average SMAPE on
that time index. 67

5.8 Trend and seasonality components of Prophet on the Traffic dataset. 67

5.9 Model overview of Prophet on the Traffic dataset. 67

5.10 Optuna results for the N-BEATS model on the Electricity dataset. 68

5.11 Predictions of N-BEATS on the Electricity dataset. 68

5.12 Trend-Seasonality interpretation of N-BEATS on the Electricity dataset. . 69

5.13 Optuna results for the N-BEATS model on the Traffic dataset. 69

5.14 Predictions of N-BEATS on the Traffic dataset. 69

5.15 Trend-Seasonality interpretation of N-BEATS on the Traffic dataset. 70

5.16 Optuna results for the DeepAR model on the Electricity dataset. 71

5.17 Probabilistic predictions of DeepAR on the Electricity dataset. Monte
Carlo samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98. 71

5.18 Optuna results for the DeepAR model on the Traffic dataset. 71

5.19 Probabilistic predictions of DeepAR on the Traffic dataset. Monte Carlo
samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98. 72

10

LIST OF FIGURES

5.22 Average Correlation of the DeepVAR model on the Electricity dataset. Re-
sult from the average of the covariance matrices across Monte Carlo samples
and forecast indices. See also Figure 3.1 . 73

5.20 Optuna results for the DeepVAR model on the Electricity dataset. They
were replaced with DeepAR’s hyperparameters for the final results. 73

5.21 Probabilistic predictions of DeepVAR on the Electricity dataset. Monte
Carlo samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98. 73

5.24 Average Correlation of the DeepVAR model on the Traffic dataset. Result
from the average of the covariance matrices across Monte Carlo samples
and forecast indices. See also Figure 3.4 . 74

5.23 Probabilistic predictions of DeepVAR on the Traffic dataset. Monte Carlo
samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98. 74

5.25 Optuna results for the TFT model on the Electricity dataset. 75
5.26 Quantile predictions of TFT on the Electricity dataset. The attention

weights for each time index are also shown. Predictions at quantiles 0.1,
0.5 and 0.9 . 76

5.27 Average attention of TFT on the conditioning range on the Electricity dataset. 76
5.28 Variables importance of the encoder and decoder of the TFT model on the

Electricity dataset. Computed using the softmax outputs of the Variable
Selection Networks across time. 76

5.29 Optuna results for the TFT model on the Traffic dataset. 77
5.30 Quantile predictions of TFT on the Traffic dataset. The attention weights

for each time index are also shown. Predictions at quantiles 0.1, 0.5 and 0.9 77
5.31 Average attention of TFT on the conditioning range on the Traffic dataset. 77
5.32 Variables importance of the encoder and decoder of the TFT model on

the Traffic dataset. Computed using the softmax outputs of the Variable
Selection Networks across time. 78

11

List of Tables

5.1 Performance of the models on the datasets. MAPE was omitted for the
Electricity dataset due to the presence of zeros in the true values. 63

5.2 Optuna-found hyperparameters for N-BEATS. 68
5.3 Optuna-found hyperparameters for DeepAR. 71
5.4 Optuna-found hyperparameters for DeepVAR. They were replaced with

DeepAR’s hyperparameters for the final results. 72
5.5 Optuna-found hyperparameters for TFT. 75

13

Preface

My interest in the field of forecasting stems from a desire to understand the complex
patterns that shape our world and to develop tools that can inform future decision-making.
Traditional forecasting methods, while valuable, often fall short when dealing with the
nonlinearities and multiple dependencies present in real-world data. Machine learning
presents a compelling avenue for creating more adaptable and accurate forecasting models.

This thesis delves into the application of several cutting-edge machine learning techniques
to the task of time series forecasting. I was particularly drawn to the diverse capabilities
of models like Prophet, N-BEATS, DeepAR, DeepVAR, and the Temporal Fusion Trans-
former. My goal was to investigate how these models perform on datasets of practical
importance, such as energy consumption and traffic flow.

Throughout this research journey, I’ve gained a deeper appreciation for the challenges and
nuances of forecasting. This thesis represents the culmination of my efforts, and I hope it
offers valuable insights into the potential of machine learning in this field.

15

Chapter 1

Introduction

The ability to accurately forecast future trends in time series data holds immense value
across diverse fields. From businesses seeking to optimize inventory and supply chains
to policymakers aiming for efficient energy distribution and infrastructure planning, reli-
able forecasting underpins informed decision-making. Traditional statistical methods like
ARIMA and exponential smoothing [7] have long provided a foundation for time series
analysis. However, these methods often face limitations when confronting the complex-
ities of real-world data, particularly in scenarios marked by nonlinear patterns, multiple
interacting variables, and irregular seasonality.

The rise of machine learning (ML) has ushered in a new era of possibilities for time series
forecasting. ML algorithms possess an inherent capacity to uncover intricate patterns and
relationships within vast and complex datasets. This enables them to model nonlinearities,
handle high-dimensional data, and potentially incorporate exogenous variables – aspects
that pose challenges for traditional methods. Consequently, ML-based forecasting models
have garnered significant interest within the research community and across industries.

This thesis delves into the application of several state-of-the-art machine learning models
specifically designed for time series forecasting. The selected models encompass a range of
methodologies:

Prophet : Developed by Facebook, Prophet offers flexibility and the ability to handle data
characterized by trends, multiple seasonalities, and the impact of holidays [1].

DeepAR: A deep learning model from Amazon that leverages recurrent neural networks to
model probabilistic distributions of future values, providing insights into potential uncer-
tainty [5].

DeepVAR: A more sophisticated probabilistic deep learning model extending the capabili-
ties of DeepAR [8].

N-BEATS : A deep neural architecture employing a unique combination of backward and
forward residual links and interpretable basis functions [4].

Temporal Fusion Transformer : A cutting-edge attention-based model designed to handle
high-dimensional time series with long-range dependencies and a multitude of variables [6].

17

Chapter 1. Introduction

This research will subject these models to a rigorous evaluation on two real-world datasets:
the Electricity Load Diagrams [9] and the PeMS-SF [10] traffic dataset. These datasets
offer distinct forecasting challenges, allowing for a comprehensive assessment of model
strengths and weaknesses under varying conditions.

It should be mentioned that many deep neural network models have been developed and
applied for forecasting and prediction of time series in a variety of applications by mem-
bers of the Artificial Intelligence and Learning Systems Lab of the National Technical
University of Athens. In particular, CNN-RNN architectures, Bayesian architectures with
capsules and uncertainty estimation, semi and self-supervised learning algorithms, domain
adaptation, augmentation, transformers and attention methodologies have been developed
and used in applications, such as medical imaging [11, 12], image captioning [13], fault
detection in nuclear power stations [14, 15], agri-food production prediction [16, 17, 18],
load demand forecasting of power systems [19], human behavior prediction [20, 21], as well
as for capsule networks [22, 23, 24] and transparency [25, 26].

18

Chapter 2

Forecasting Models

This chapter provides a comprehensive exploration of the machine learning models cen-
tral to this thesis: Prophet, DeepAR, DeepVAR, N-BEATS, and the Temporal Fusion
Transformer. These diverse models represent a range of approaches to forecasting, from
probabilistic formulations to advanced neural network architectures. Understanding the
underlying mechanisms of each model is crucial for both their effective application and
interpreting their results.

The chapter will delve into the core concepts, mathematical foundations, unique strengths,
and potential limitations of each model. This exploration will lay the groundwork for the
subsequent evaluation of these models on real-world datasets. By critically examining their
theoretical basis and practical design, we can gain valuable insights into their performance,
make informed choices, and drive their effective application in solving complex forecasting
problems.

2.1 Prophet

2.1.1 Model Overview

Prophet [1] is a forecasting tool developed by Facebook’s Core Data Science team, designed
to address the challenges of forecasting time series data that exhibit strong seasonal ef-
fects. It is particularly well-suited for data with clear patterns of seasonality and holidays,
which are common in business metrics like sales, website traffic, and demand forecasting.
Prophet’s intuitive approach and ease of use make it accessible to both data scientists and
analysts, facilitating its adoption in a wide range of applications.

The time series in Figure 2.1 provides a useful illustration of the difficulties in producing
reasonable forecasts with fully automated methods [2, 27, 7]. Figure 2.2 shows forecasts
using several automated procedures from the R forecast package [28]. The forecasts are
shown at three different points in the history of the time series, and it is clear that the
automated procedures are not able to capture the complex patterns in the data. In contrast,
Figure 2.3 shows forecasts made by Prophet, which can capture the complex patterns in
the data. Tuning these traditional methods requires a lot of expertise and manual effort,

19

Chapter 2. Forecasting Models

Figure 2.1. The number of events created on Facebook. There is a point for each day,
and points are color-coded by day of the week to show the weekly cycle. The features of this
time series are representative of many business time series: multiple strong seasonalities,
trend changes, outliers, and holiday effects. Figure from [1].

Figure 2.2. Forecasts on the time series from Figure 2.1 using a collection of automated
forecasting procedures [2]. Forecasts were made at three illustrative points in history, each
using only a portion of the time series up to that point. Forecasts for each day are grouped
and colored by day of the week to visualize weekly seasonality. Figure from [1].

20

2.1.1 Model Overview

Figure 2.3. Forecasts on the time series from Figure 2.1 using Prophet. Figure from [1].

while Prophet can produce high-quality forecasts with minimal tuning. This allows the
Prophet model to be used at scale, which fits our case.

Prophet is a decomposable time series model [29] that consists of three main compo-
nents: trend, seasonality, and holidays. The trend component models non-periodic changes
over time, the seasonality component captures periodic changes driven by seasonality (e.g.
weekly, monthly, or yearly), and the holidays component allow for the modeling of irregular
events that can impact the time series. The model is formulated as follows:

y(t) = g(t) + s(t) + h(t) + ϵt (2.1)

where g(t) is the trend component, s(t) is the seasonality component, h(t) is the holiday
component, and ϵt is the error term, assumed to be normally distributed around 0.

This specification is similar to a Generalized Additive Model (GAM) [30], a class of regres-
sion models with potentially non-linear smoothers applied to the regressors. In Prophet
only time is used as a regressor but possibly several linear and non-linear functions of
time as components. Modeling seasonality as an additive component is the same approach
taken by exponential smoothing [31]. Multiplicative seasonality, where the seasonal effect
is a factor that multiplies g(t), can be accomplished through a log transform. The GAM
approach is flexible and allows for the inclusion of additional components, and it also fits
very quickly with the L-BGFS algorithm.

Prophet is framing the forecasting problem as a curve-fitting exercise, which is inher-
ently different from time series models that explicitly account for the temporal dependence
structure in the data. While this approach lacks some important advantages of using a
generative model such as ARIMA [32], it provides several practical advantages

• Flexibility: Seasonality with multiple periods is easily accommodated, and many
different assumptions about the trend can be imposed.

• Robustness to missing values: The measurements do not need to be regularly spaced,
and we do not need to interpolate missing values e.g. from removing outliers.

• Fast fitting: Allowing explorations of many possible models.

21

Chapter 2. Forecasting Models

• Easily Interpretable Parameters: The parameters of the model have a clear interpre-
tation, which can be useful for introducing domain knowledge to the model.

2.1.2 Model Architecture

The Trend Model

The trend model can be either a saturating growth model, or a piecewise linear model.

Saturating growth is found in many growth processes, where there is nonlinear growth that
saturates at a carrying capacity. This sort of growth is typically modeled using the logistic
growth model, which in its most basic form is

g(t) =
C

1 + exp(−k(t−m))
(2.2)

with C being the carrying capacity, k the growth rate, and m an offset parameter.

In many real-world scenarios, the carrying capacity as well as the growth are not constant.
Prophet allows for a more flexible model by allowing the carrying capacity to change over
time, and by allowing the growth rate to be a piecewise linear function of time.

The carrying capacity is then modeled as a time-varying capacity C(t).

The variations of growth are modeled as a piecewise linear function k + a(t)Tδ, where

aj(t) =

1, if t ≥ sj

0, otherwise
(2.3)

with sj , j = 1, . . . , S being the changepoint times, and δj being the change in rate that
occurs at time sj . When the rate k is adjusted, the offset parameter m must also be
adjusted to ensure that the function is continuous at the change points. The correct
adjustment at changepoint j is

γj =

sj −m−
∑
l<j

γl

(1− k +
∑

l<j δl

k +
∑

l≤j δl

)
(2.4)

The piecewise logistic growth model is then

g(t) =
C(t)

1 + exp(−(k + a(t)Tδ)(t− (m+ a(t)Tγ)))
(2.5)

For forecasting problems where saturating growth is not observed, a piece-wise constant
rate of growth offers a simple and often effective model. In this case, the trend model can
be expressed as follows:

g(t) = (k + a(t)Tδ)t+ (m+ a(t)Tγ) (2.6)

22

2.1.2 Model Architecture

where γj = −sjδj .

The change points sj can either be manually set or automatically selected by the model
given a set of candidates. Automatic selection can be done for both the saturating growth
and piecewise linear models by imposing a sparsity-inducing prior on the change points,
for example, δj = Laplace(0, τ). Here τ directly controls the flexibility of the model in
altering its rate. As the prior has no impact on the primary growth rate k, we have that
as τ → 0 the fit reduces to standard non-piecewise logistic or linear growth.

After the model is fitted and attempts to extrapolate a forecast, the trend will have a
constant rate. Uncertainty in the trend can then be estimated by replacing the rate scale
parameter τ with its maximum likelihood estimate λ = 1

S

∑S
j=1 |δj |. Alternatively, in a

fully Bayesian framework, this could be done with a hierarchical prior on τ to obtain its
posterior. Future change points are then generatively sampled in such a way that the
average frequency of the change points matches that in the history:

∀j > T,

δj = 0 w.p. 1− S
T

δj ∼ Laplace(0, λ) w.p. ST

(2.7)

Uncertainty in the forecast trend is measured by assuming that future trends will exhibit
the same average frequency and magnitude of rate changes observed in the historical data.
The inferred λ is then used to simulate potential future trends, which are subsequently
used to compute uncertainty intervals.

The assumption that the trend will continue to change with the same frequency and mag-
nitude as observed in the past is quite strong. Therefore, the uncertainty intervals are not
expected to have exact coverage. However, they provide a useful indication of the level
of uncertainty and can serve as an indicator of overfitting. Increasing the flexibility of
the model by adjusting τ allows for better fitting of the historical data, resulting in lower
training error. However, this increased flexibility can lead to wider uncertainty intervals
when projecting into the future.

The Seasonality Model

The seasonality component s(t) is modeled as a Fourier series:

s(t) =
N∑
n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
(2.8)

where P is the period of the seasonality, and N is the number of Fourier terms. The number
of Fourier terms N is a hyperparameter of the model. The seasonality model is flexible
and can capture complex seasonal patterns, including multiple seasonalities with different
periods. The seasonality model can also be extended to include additional seasonalities,
such as daily, weekly, monthly, and yearly seasonality, as well as custom seasonalities.

Fitting seasonality requires estimating the 2N coefficients β = [a1, b1, . . . , aN , bN]
T of the

23

Chapter 2. Forecasting Models

Fourier components X(t) =
[
cos
(
2π(1)t
P

)
, . . . , sin

(
2π(N)t
P

)]
. Using this notation we can

rewrite 2.8 as s(t) = X(t)β. A smoothing prior is imposed to the seasonality by considering
β ∼ Normal(0, σ2). Truncating the series at N applies a low-pass filter to the seasonality,
therefore increasing N allows for fitting more complex seasonal patterns, but with the risk
of overfitting.

The Holiday Model

The incorporation of holidays into the model is simplified by assuming that the effects of
holidays are independent. Each holiday i, is associated with a set of past and future dates
Di. An indicator function is introduced to determine if a given time t, falls within holiday i.
Additionally, each holiday is assigned a parameter κi, which represents the corresponding
change in the forecast. The holiday component is then defined as:

h(t) = Z(t)κ (2.9)

where
Z(t) = [1t∈D1 , . . . ,1t∈DL

] (2.10)

As with the seasonality component, a smoothing prior is imposed on the holiday effects by
considering κ ∼ Normal(0, ν2).

It is often necessary to consider the effects of a range of days around a specific holiday. In
order to capture these effects, additional parameters are included for the days surrounding
the holiday. This approach treats each day within the window around the holiday as if it
were a holiday itself.

Model fitting

The entire model can be expressed in a few lines of Stan code [33], given in Listing 1. For
model fitting, Stan’s L-BFGS [34] is used to find a maximum a-posteriori estimate but
also can do full posterior inference to include model parameter uncertainty in the forecast
uncertainty.

2.1.3 Strengths and Limitations

Prophet’s strengths lie in its simplicity and effectiveness in dealing with common challenges
in time series forecasting, such as seasonality and holiday effects. It performs exceptionally
well on daily and weekly data, making it a popular choice for business and financial metrics
forecasting. Prophet automatically detects changes in trends and seasonality, making it
robust to missing data and shifts in patterns. This adaptability is crucial for real-world
datasets that often exhibit non-linear trends and abrupt changes. With its intuitive API
and minimal need for manual tuning, Prophet allows users to quickly generate forecasts.
This ease of use democratizes access to advanced forecasting techniques, enabling users
from various backgrounds to leverage sophisticated time series analysis. Prophet provides

24

2.2 N-BEATS

Listing 1: Fitting a time series with Prophet

model {
// Priors
k ~ normal(0, 5);
m ~ normal(0, 5);
epsilon ~ normal(0, 0.5);
delta ~ double_exponential(0, tau);
beta ~ normal(0, sigma);

// Logistic likelihood
y ~ normal(C ./ (1 + exp(-(k + A * delta) .* (t - (m + A * gamma)))) +

X * beta, epsilon);

// Linear likelihood
y ~ normal((k + A * delta) .* t + (m + A * gamma) + X * beta, sigma);

}

built-in functionality for estimating uncertainty intervals in forecasts (although limited),
which is essential for risk management and planning purposes.

While Prophet offers significant advantages, it has limitations, particularly when deal-
ing with highly irregular time series, multivariate datasets, or when the forecasting task
requires capturing complex interactions between variables. It is primarily designed for
univariate time series forecasting, which may limit its applicability in scenarios requiring
the consideration of external factors or interdependencies between multiple series.

2.2 N-BEATS

2.2.1 Model Overview

Neural basis Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) [4]
is a deep neural architecture based on backward and forward residual links and a deep
stack of fully connected layers. The architecture has many desirable properties, being
interpretable, applicable without modification to a wide array of target domains, and
fast to train. It represents a significant departure from traditional time-series forecasting
models, and eschewing recurrent or convolutional layers commonly found in other deep
learning approaches for time series analysis. It was the first architecture to empirically
demonstrate that pure Deep Learning using no time-series specific components outperforms
well-established statistical approaches on datasets like M3 [35], M4 [36] and the tourism
dataset [37]. It is also feasible to design an N-BEATS architecture with an interpretable
output composed of a trend and a seasonality component.

The architecture is based on a stack of fully connected layers, with each layer having several
blocks. Each block consists of a backcast and forecast sub-network, with the backcast sub-
network predicting the residuals of the target time series and the forecast sub-network
partially predicting the future values of the target time series. The architecture is trained

25

Chapter 2. Forecasting Models

Figure 2.4. The N-BEATS Architecture. The basic building block is a multi-layer fully
connected network with ReLU nonlinearities [3]. It predicts basis expansion coefficients
both forward, θf , (forecast) and backward, θb, (backcast). Blocks are organized into stacks
using the doubly residual stacking principle. A stack may have layers with shared gb and gf

functions. Forecasts are aggregated hierarchically. This enables building a very deep neural
network with interpretable outputs. Figure from [4].

using a combination of L1 and L2 loss functions, and the backcast and forecast sub-networks
are trained jointly.

The model can be trained on multiple time series. If every time series is interpreted as a
separate task, this can be linked back to multitask learning and to meta-learning [38], in
which a neural network is regularized by learning on multiple tasks to improve generaliza-
tion.

2.2.2 Model Architecture

The basic building block has a fork architecture and is depicted in Figure 2.4 (left). The
index l is omitted in the image for brevity. The l-th block of a stack accepts its respective
input xl and outputs two vectors x̂l and ŷl. At the first Block (l = 1) x1 = x and for the
other blocks it is xl = xl−1 − x̂l−1. The forecast ŷl is a partial forecast. Partial forecasts
are then summed to produce the stack forecast

∑
l ŷl, and stack forecasts are summed to

produce the final forecast ŷ. Each block l performs the following operations:

hl,1 = FCl,1(xl), hl,2 = FCl,2(hl,1), hl,3 = FCl,3(hl,2), hl,4 = FCl,4(hl,1), (2.11)

θbl = LINEARbl (hl,4), θfl = LINEARfl (hl,4) (2.12)

26

2.2.2 Model Architecture

ŷl =

dim(θfl)∑
i=1

θfl,iv
f
i , x̂l =

dim(θbi)∑
i=1

θbl,iv
b
i (2.13)

This part of the architecture attempts to find forecast and backcast coefficients θfl and θbl
that are used as projection coefficients for the basis vectors vfi and vbi of the basis layers
gfl and gbl so that the result is an accurate estimation of the partial stack forecast and
backast ŷl and x̂l. The input xl is the residual of the target time series at the l-th block.
The basis vectors can be chosen to be learnable, or they can have a fixed structure to
impose problem-specific biases and/or make the results interpretable, as we will discuss in
Section 2.2.2.

The partial and residual inputs are then passed to the next stack. Each stack has its
own (learnable or not) basis vectors. The final forecast is the (double) sum of the partial
forecasts of each block of each stack. This approach is called doubly residual stacking and
it results in interpretable results unlike other residual connection approaches [39] [40].

There are two main configurations of the N-BEATS architecture, the Generic architecture
and the Interpretable architecture.

Generic Architecture

The Generic architecture does not rely on any specific time series knowledge (e.g. weekly
seasonality). The basis layers gfl and gbl are set to be a linear projection of the previous
layer output, thus the outputs of block l are:

ŷl = Vf
l θ

f
l + bfl x̂l = Vb

lθ
b
l + bbl (2.14)

The interpretation of this model is that the FC layers in the basic building block depicted
in Figure 2.4 learn the predictive decomposition of the partial forecast by ŷl in the basis
Vf
l learned by the network. Matrix Vf

l has dimensionality H × dim(θfl). Therefore,
the first dimension of Vf

l has the interpretation of a discrete-time index in the forecast
domain. The second dimension of the matrix has the interpretation of the indices of the
basis functions, with θfl being the expansion coefficients for this basis. Thus the columns of
Vf
l can be thought of as waveforms in the time domain. Because no additional constraints

are imposed on the form of Vf
l , the waveforms learned by the deep model do not have an

inherent structure. This leads to ŷl not being interpretable.

Interpretable Architecture

The Interpretable architecture can be constructed by adding structure to the basis layers
at stack level. A common practice in forecasting is to decompose a time series into trend
and seasonality. This decomposition can be achieved in N-BEATS by using two stacks:
a trend stack followed by a seasonality stack, with both stacks having fixed basis vectors
which we now describe.

27

Chapter 2. Forecasting Models

The basis vectors of the trend stack are T := [1, t, . . . tp] where t := [0, . . . ,H − 1]T /H,
which makes each element of ŷtrend

s,l a polynomial in time (typically of low degree e.g. 2 or
3).

The basis vectors of the seasonality stack are such so that each element of ŷseasonality
s,l is a

Fourier series, thus the basis vectors are S := [cos(2πkt), sin(2πkt); k = 0, . . . , ⌊H/2−
1⌋], that is each basis vector is a discretized sinusoid.

In matrix form, we have:

ŷtrend
s,l = Tθfs,l (2.15)

ŷseasonality
s,l = Sθfs,l (2.16)

The trend stack finds a (low) polynomial trend, then the detrended series is fed into the
seasonality stack. The number of blocks is typically 3 for both trend and seasonality and
the block weights are typically shared within a stack.

2.2.3 Strengths and Limitations

One of the most significant strengths of N-BEATS is its flexibility and adaptability to var-
ious time series forecasting challenges without requiring extensive model reconfiguration.
Moreover, the model’s architecture promotes ease of use and interpretability.

While N-BEATS excels in many forecasting scenarios, the model’s purely data-driven ap-
proach means it may not fully incorporate domain-specific knowledge or exogenous vari-
ables without modifications to its architecture. Additionally, N-BEATS does not natively
provide uncertainty quantification, which could be an essential requirement in risk man-
agement and decision-making scenarios.

2.3 DeepAR

2.3.1 Model Overview

DeepAR [5], developed by Amazon Research, is a forecasting model that uses autoregressive
recurrent networks [41, 42, 43] for probabilistic forecasting, aiming to predict the future
distribution of a time series based on its past. It is particularly effective for datasets with
many related time series, by learning a global model from historical data of all time series
in the data set. Its probabilistic forecasts allow for the generation of uncertainty intervals,
which are crucial for risk management and decision-making.

DeepAR is adept at managing the varied scale of time series datasets commonly encoun-
tered in real-world scenarios, such as retail sales data, which often exhibit a power-law
distribution in their magnitude. An example of such a distribution is shown in Figure 2.5
which shows the distribution of sales velocity (i.e. average weekly sales of an item) across
millions of items sold by Amazon.

28

2.3.2 Model Architecture

Figure 2.5. The distribution of sales velocity (i.e. average weekly sales of an item) across
millions of items sold by Amazon. Figure from [5].

Figure 2.6. The DeepAR Architecture. Training (left): At each time step t, the inputs to
the network are the covariates xi,t, the target value at the previous time step zi,t−1, as well
as the previous network output hi,t−1. The network output hi,t = h(hi,t−1, zi,t−1,xi,t,Θ) is
then used to compute the parameters θi,t = θ(hi,t,Θ) of the likelihood ℓ(zi | θ), which is used
for training the model parameters. For prediction, the history of the time series zi,t is fed in
for t < t0, then in the prediction range (right) for t ≥ t0 a sample ẑi,t ∼ ℓ(· | θi,t) is drawn
and fed back for the next point until the end of the prediction range t = t0 + T generating
one sample trace. Repeating this prediction process yields many traces representing the
joint predicted distribution. Figure from [5].

DeepAR excels at capturing seasonal patterns and dependencies on covariates across time
series, reducing the need for manual feature engineering. It leverages information from
similar items, enabling accurate forecasts even for items with limited or no historical data,
a scenario where traditional single-item forecasting methods struggle.

2.3.2 Model Architecture

Likelihood Model

The model’s goal is to estimate for each time series i the conditional distribution of its
future zi,t0:T given its past zi,1:t0−1 as well as any available covariates xi,1:T , which are
assumed to be known at all time points:

P (zi,t0:T | zi,1:t0−1,xi,1:T) (2.17)

The past and future time ranges are also referred to as conditioning and prediction ranges,
respectively.

29

Chapter 2. Forecasting Models

The distribution is assumed to have a parametric form that consists of a product of likeli-
hood factors:

QΘ(zi,t0:T | zi,1:t0−1,xi,1:T) =
T∏
t=t0

QΘ(zi,t | zi,1:t−1,xi,1:T) =
T∏
t=t0

ℓ(zi,t | θ(hi,t,Θ)) (2.18)

parametrized by
hi,t = h(hi,t−1, zi,t−1,xi,t,Θ) (2.19)

where h is a function implemented by a multi-layer recurrent neural network with LSTM
cells.

The model is autoregressive and recurrent, in the sense that it consumes the observation
at the last time step zi,t−1 as input, and the previous output of the network hi,t is fed back
as input at the next time step. The likelihood ℓ(zi,t | θ(hi,t)) is a fixed distribution whose
parameters are given by a function θ(hi,t,Θ) of the network output hi,t. Information about
the observations in the conditioning range is encapsulated in the network state hi,t0−1.

Given the model parameters Θ, joint samples z̃i,t0:T ∼ QΘ(zi,t0:T | zi,1:t0−1,xi,1:T) are
obtained through ancestral sampling by sampling z̃i,t ∼ ℓ(· | θ(h̃i,t,Θ)) where

h̃i,t = h(hi,t−1, z̃i,t−1,xi,t,Θ) (2.20)

h̃i,t0−1 = hi,t0−1 (2.21)

z̃i,t0−1 = zi,t0−1 (2.22)

The likelihood ℓ(z | θ) determines the “noise model” and is chosen to match the statistical
properties of the data. It can be any parametric distribution, as long as samples from the
distribution can cheaply be obtained, and the log-likelihood and its gradients with respect
to the parameters can be evaluated. Typically, the Gaussian distribution is often used for
real-valued data, the Beta Distribution for data in the unit interval, the Bernoulli distribu-
tion for binary data, the Negative Binomial distribution for count data, as well as mixtures
for distributions when the statistical properties are more complex. The parameters of the
likelihood are computed from the network output by appropriate transformations, for ex-
ample in the Gaussian case the variance is computed by an affine transformation followed
by a softplus transformation of the network output to ensure positivity.

Training

Given a dataset of time series {zi,1:T }i=1,...,N and associated covariates xi,1:T the model is
trained by maximizing the log-likelihood of the observed data,

L =
N∑
i=1

T∑
t=t0

log ℓ(zi,t | θ(hi,t)) (2.23)

with respect to the parameters of the RNN h(·) and the parameters of θ(·) using stochastic
gradient descent.

30

2.3.3 Strengths and Limitations

For each time series in the dataset, multiple training instances are generated by selecting
windows with different starting points from the original time series. In practice, the total
length T, as well as the relative length of the conditioning and prediction ranges, are kept
fixed for all training examples. When selecting these windows, the goal is to ensure that
the entire prediction range is always covered by the available ground truth data. It is
possible to choose t = 1 to be before the start of the time series and left-pad with zeros,
allowing the model to learn the behavior of a “new” time series while considering all other
available features. By augmenting the data using this windowing procedure, the model
receives information about absolute time only through covariates, rather than through the
relative position of zi,t in the time series.

Scale Handling

Datasets that exhibit a power-law of scales, present two main challenges. The first challenge
is that the autoregressive input zi,t−1 and the network output (e.g. µ) in the model are
directly influenced by the observations zi,t, but the non-linearities of the network have a
limited operating range. Therefore, the network needs to learn how to scale the input
appropriately in the input layer and then invert this scaling at the output. This issue is
addressed by using an item-dependent scaling factor νi that is used to divide the input
and multiply the output (by adjusting the distribution parameters appropriately). This
scaling factor is typically chosen to be the heuristic νi = 1 + 1

t0

∑t0
t=1 zi,t. The second

challenge arises from the imbalance of the data. This is usually counteracted by sampling
non-uniformly from the dataset.

2.3.3 Strengths and Limitations

DeepAR’s ability to generate probabilistic forecasts provides valuable insights into future
uncertainties, enabling effective risk management. The model effectively handles varying
magnitudes in time series data through techniques like input scaling, making it particu-
larly useful for datasets with skewed distributions. Extensive empirical testing on real-
world datasets has consistently demonstrated the versatility and accuracy of DeepAR in
producing reliable forecasts.

The sophistication of DeepAR may lead to more complex model tuning and require higher
computational resources compared to simpler models. For optimal performance, DeepAR
relies on the availability of large datasets with multiple related time series, which may not
always be available. As with many deep learning models, the interpretability of DeepAR
can be limited, making it difficult to understand the model’s decision-making process.

2.4 DeepVAR

2.4.1 Model Overview

DeepVAR [8] extends the DeepAR model by jointly forecasting multiple related time series,
explicitly capturing the dependencies among them through a joint distribution. This vector

31

Chapter 2. Forecasting Models

autoregressive approach enhances forecasting accuracy for systems where the time series
influence one another, such as anomaly detection, demand forecasting, traffic networks and
power grids.

The model combines an RNN-based time series model with a Gaussian copula process [44]
output model utilizing a low-rank-plus-diagonal covariance structure to handle non-Gaussian
marginal distributions. This approach significantly reduces computational complexity and
enables the modeling of time-varying correlations among thousands of time series by re-
ducing the number of parameters.

In forecasting tasks, it is common to predict multiple related time series, such as various
metrics for a compute fleet or multiple products within the same category for demand
forecasting. However, in high-dimensional settings, estimating large covariance matrices
poses a challenge, leading to the assumption of conditional independence among these
time series. However, in scenarios where the correlations between time series are signifi-
cant, assuming independence is not appropriate. For instance, in anomaly detection, the
simultaneous deviation of multiple nodes from their expected behavior can be a cause for
concern, even if no individual node exhibits clear signs of anomalous behavior.

Classical univariate methods have been expanded to accommodate multivariate analysis,
with vector autoregressions (VAR) expanding upon autoregressive models [45], alongside
the development of multivariate state-space models [46] and multivariate generalized au-
toregressive conditional heteroskedasticity (MGARCH) [47] models. However, as the di-
mensionality of these problems increases, so does the complexity of estimating these models,
primarily due to a surge in the number of parameters. This complexity has historically
limited their application to low-dimensional scenarios. To overcome these challenges, re-
searchers have implemented dimensionality reduction techniques and regularization strate-
gies, particularly for VAR [48, 49] and MGARCH [50, 51] models. Despite these efforts,
these models still struggle to handle applications that involve more than a few hundred
dimensions [52].

Deep Learning approaches usually fit a global (i.e. shared) sequence-to-sequence model to
a collection of time series but generate statistically independent predictions.

DeepVAR solves the issue of the quadratic complexity of estimating the covariance matrix
by utilizing the low-rank plus diagonal covariance structure of the factor analysis model [53,
54, 55, 56] in combination with Gaussian copula processes [44] to an LSTM [41] to jointly
learn temporal dynamics and the time-varying covariance structure, while significantly
reducing the number of parameters that need to be estimated.

The challenge of handling varying magnitudes in time series, as discussed in Section 2.3,
is tackled by separately modeling the marginal distribution of each time series using a
non-parametric estimate of its cumulative distribution function (CDF). By utilizing this
CDF estimate as the marginal transformation in a Gaussian copula, the issue of scaling is
effectively addressed, as it allows for the independent estimation of marginal distributions
while considering the temporal dynamics and dependency structure.

32

2.4.2 Model Architecture

2.4.2 Model Architecture

Overall Structure

DeepVAR tries to estimate the conditional distribution P (zT+1, . . . , zT+τ | z1, . . . zT), where
zt is the vector of time series values at time t, [1, T] is the conditioning range and [T +1, τ]

the prediction range. The model is structured as a non-linear, deterministic state space
model, where the state hi,t evolves independently for each time series i based on the tran-
sition dynamics φ.

hi,t = φθh(hi,t−1, zi,t−1), i = 1, . . . , N (2.24)

The transition dynamics φ are parameterized using an LSTM [41]. The LSTM is unrolled
for each time series separately, but the parameters are shared across all the time series.

Given the state values hi,t for all time series i = 1, . . . , N , and denoting with ht the collec-
tion of state values for all series at time t, the joint emission distribution is parametrized
using a Gaussian copula,

p(zt | ht) = N
(
[f1(z1,t), . . . , fN (zN,t)]

T | µ(ht), Σ(ht)
)

(2.25)

where fi = Φ−1 ◦ F̂i with Φ−1 being the inverse of the standard normal CDF and F̂i being
an estimate of the CDF of the marginal distribution of the i-th time series zi,1, . . . , zi,T .
The functions µ(·) and Σ(·) map the state ht to the mean and covariance of a Gaussian
distribution over the transformed observations.

The joint distribution of the observations is assumed to be factorized as

p(z1, . . . , zT+τ) =
T+τ∏
t=1

p(zt | z1, . . . , zt−1) =
T+τ∏
t=1

p(zt | ht) (2.26)

The state update function φ and the mappings µ(·) and Σ(·) have free parameters θφ, θµ
and θΣ respectively that are learned from the data. The vector of all free parameters is
denoted by θ. Given θ and hT+1, Monte Carlo samples can be produced from the joint
distribution

p(zT+1, . . . , zT+τ | z1, . . . , zT) = p(zT+1, . . . , zT+τ | hT+1) =

T+τ∏
t=T+1

p(zt | ht) (2.27)

by sequentially sampling from P (zt | ht) and updating the state ht using the state update
function φ. The free parameters θ are learned by maximizing the log-likelihood of the
observed data z1, . . . , zT , that is by minimizing the loss function

− log p(z1, . . . , zT) = −
T∑
t=1

log p(zt | ht) (2.28)

using stochastic gradient descent. For long time series, the model is trained on random
slices of fixed length L and predictions are computed using the first L− τ time points.

33

Chapter 2. Forecasting Models

The Gaussian Copula

Each summand of the log-likelihood p(z | h) in equation 2.28 (t is omitted for brevity) can
be computed by a simple formula, whose derivation is given below.

A copula function C : [0, 1]N → [0, 1] is the CDF of a multivariate distribution with
uniform marginals. Sklar’s theorem [57] states that any multivariate distribution can be
represented by a copula function and its marginals, and that if the marginals are continuous,
the representation is unique, and it is given by the formula F (z) = C(F1(z1), . . . , FN (zN)),
where Fi is the CDF of the i-th marginal distribution. (Note that F (X) ∼ U(0, 1) if F is
the CDF of a continuous random variable X.)

A common modeling choice for the copula function is the Gaussian copula, which is given
by the formula C(F1(z1), . . . , F1(z1)) = ϕµ,Σ(Φ

−1(F1(z1)), . . . ,Φ
−1(FN (zN))), where ϕµ,Σ

is the CDF of the multivariate normal distribution with mean µ and covariance matrix Σ,
and Φ is the CDF of the standard normal distribution. The variables are then related in
the following manner:

x
Φ7→ u

F−1

7→ z z
F7→ u

Φ−1

7→ x (2.29)

This is how the formula in 2.25 is derived. Because the marginals Fi are not known,
they are replaced by their linearly interpolated (for piecewise differentiability) empirical
estimates F̂i(v) = 1

m

∑m
t=1 1zi,t≤v. The sample size m used to estimate the empirical CDFs

is a hyperparameter of the model, but a size of 100 is typically a good choice.

This allows for a derivation of the log-likelihood formula of each summand in equation 2.28:

log p(z;µ,Σ) = log ϕµ,Σ(Φ
−1(F̂ (z))) + log

d

dz
Φ−1(F̂ (z)) (2.30)

= log ϕµ,Σ(Φ
−1(F̂ (z))) + log

d

du
Φ−1(u) + log

d

dz
F̂ (z) (2.31)

= log ϕµ,Σ(Φ
−1(F̂ (z)))− log ϕ(Φ−1(F̂ (z))) + log F̂ ′(z) (2.32)

where ϕ is the probability density function of the standard normal distribution.

Covariance Structure

Estimating a covariance matrix of full rank is computationally expensive in high-dimensional
settings. DeepVAR addresses this issue by using a low-rank-plus-diagonal parametrization
of the covariance. For notational simplicity, let xt := f(zt) = [f1(z1,t), . . . , fN (zN,t)]. We
then have p(xt | ht) = N (xt | µ(ht),Σ(ht)). The covariance matrix Σ(ht) is parametrized
as

Σ(ht) = D(ht) +V(ht)V(ht)
T (2.33)

34

2.4.3 Strengths and Limitations

where

D(ht) =


d1(h1,t) 0

. . .

0 dN (hN,t)

 ∈ RN×N (2.34)

V(ht) =


v1(h1,t)

...
vN (hN,t)

 ∈ RN×r (2.35)

The mappings µi, di and vi are parametetrized in terms of shared functions µ̃, d̃ and ṽ

that depend on an E-dimensional feature vector ei ∈ RE for each individual time series i.
These vectors can be known covariates or learned embeddings. By concatenating the state
and the feature vectors yi,t := [hi,t; ei]

T ∈ Rp the parametrization is as follows:

µi(hi,t) = µ̃(yi,t) = wT
µyi,t, (2.36)

di(hi,t) = d̃(yi,t) = s(wT
d yi,t), (2.37)

vi(hi,t) = ṽ(yi,t) = Wvyi,t, (2.38)

where s(x) = log(1 + ex) maps to positive values, and wµ ∈ Rp×1, wd ∈ Rp×1, Wv ∈ Rr×p

are parameters.

All learnable parameters are shared across all the time series and thus the distribution of
xt can be viewed as a Gaussian Process evaluated at points yi,t; symbolically:

xi,t = gt(yi,t) (2.39)

gt ∼ GP(µ̃(·), k(·, ·)) (2.40)

k(y,y′) = 1y=y′ d̃(y) + ṽ(y)T ṽ(y′) (2.41)

By considering this perspective, we can observe that the model can be trained by calcu-
lating the Gaussian terms in the loss function on randomly selected subsets of the time
series during each iteration. In other words, we can train the model using batches of size
B ≪ N . Additionally, if there is prior knowledge about the covariance structure, such as
in the case of spatial data where the covariance is related to the distance between points,
this information can be easily incorporated into the kernel. This can be done by either
using a pre-specified kernel exclusively or by combining it with the learned, time-varying
kernel mentioned earlier.

2.4.3 Strengths and Limitations

DeepVAR’s strength lies in its ability to capture the dependencies among multiple re-
lated time series efficiently, making it suitable when parallel time series share significant
information.

The LSTM component of the model can slow down its speed due to its non-parallelizable

35

Chapter 2. Forecasting Models

Figure 2.7. Illustration of multi-horizon forecasting with static covariates, past-observed
and apriori-known future time-dependent inputs. Figure from [6].

nature. Additionally, the model’s interpretability is constrained, and it often requires
a substantial amount of data to achieve optimal performance, which can be difficult in
domains with limited or expensive data availability.

2.5 Temporal Fusion Transformer (TFT)

2.5.1 Model Overview

The Temporal Fusion Transformer (TFT) [6] is an architecture that uses attention mech-
anisms to achieve effective multi-horizon forecasting, i.e. the prediction of variables of
interest at multiple future time steps, and provides interpretable insights into temporal
dynamics. It employs recurrent layers for analyzing short-term patterns, and self-attention
layers for understanding long-term relationships. The TFT also includes specific compo-
nents for choosing important features and gating layers to eliminate non-essential elements,
which helps it perform well in various situations.

In practical multi-horizon forecasting scenarios, it is common to have access to various data
sources, as depicted in Figure 2.7. These sources include information about the future (such
as upcoming holiday dates), other external time series (such as historical customer foot
traffic), and static metadata (such as the location of a store). However, there is often
limited knowledge about how these different data sources interact with each other. This
diversity of data sources, coupled with the lack of information about their interactions,
poses significant challenges for multi-horizon time series forecasting.

In many Deep Neural Network (DNN) forecasting architectures, the consideration of dif-
ferent types of inputs commonly found in multi-horizon forecasting is often overlooked.
These architectures either assume that all exogenous inputs are known in advance (a com-

36

2.5.2 Model Architecture

Figure 2.8. The architecture of the Temporal Fusion Transformer. Figure from [6].

mon assumption in autoregressive models) or neglect important static covariates, which are
simply concatenated with other time-dependent features at each step. Additionally, Most
DNN architectures are considered “black-box” models, as they rely on intricate nonlinear
interactions among numerous parameters. Consequently, explaining the reasoning behind
model predictions becomes challenging, making it difficult for users to trust the model’s
outputs and for developers to debug it. Common explainability methods like LIME [58]
and SHAP [59], in their conventional form, do not account for the temporal ordering of
input features.

The Temporal Fusion Transformer tackles these challenges through the integration of static
covariate encoders that generate context vectors for utilization across the network, the
employment of gating mechanisms and sample-dependent variable selection to reduce the
impact of non-essential inputs, the inclusion of a sequence-to-sequence layer for processing
both known and observed inputs on a local scale, and the implementation of a temporal
self-attention decoder designed to uncover and learn from any long-term dependencies
within the dataset. This allows for the identification of globally significant variables for
the prediction task, persistent temporal patterns, and significant events.

2.5.2 Model Architecture

A time series dataset can be viewed as being composed of I distinct entities (e.g. different
stores in retail, or patients in healthcare), each associated with a set of static covariates
si ∈ Rms , as well as inputs χi,t ∈ Rmχ and scalar targets yi,t ∈ R at each time-step

t ∈ [0, Ti]. Inputs that vary over time are subdivided into two categories χi,t =
[
zTi,t,x

T
i,t

]T
:

observed inputs zi,t ∈ Rmz , which can only be measured at each step and are unknown
beforehand, and known inputs xi,t ∈ Rmx , which can be predetermined (e.g. the day-of-
week at time t).

TFT does quantile regression (for example outputting the 10th, 50th, and 90th percentiles

37

Chapter 2. Forecasting Models

at each time step). Each quantile forecast takes the form:

ŷi(q, t, τ) = fq(τ, yi,t−k:t, zi,t−k:t,xi,t−k:t+τ , si), (2.42)

where ŷi,t+τ (q, t, τ) is the predicted qth sample quantile of the τ -step-ahead forecast at time
t, and fq(·) is a prediction model. Forecasts are outputted simultaneously for τmax time
steps and all past information is incorporated within a finite look-back window k, using
target and known inputs up till and including the forecast start time t, and known inputs
across the entire range.

The major components of TFT are:

1. Gating mechanisms that filter any non-essential parts of the structure, thus adapting
the depth and complexity of the network to fit a broad spectrum of datasets and
situations.

2. Variable selection networks implemented to select the most relevant input variables
at every timestep.

3. Static covariate encoders designed to assimilate static attributes into the network by
generating context vectors that modulate the temporal dynamics.

4. Temporal processing capabilities that facilitate the learning of both long-term and
short-term temporal relationships derived from both observed and known time-varying
inputs. This involves the use of a sequence-to-sequence layer for local processing,
while an interpretable multi-head attention block is utilized to learn long-term de-
pendencies.

5. Prediction intervals through quantile forecasts to ascertain the probable range of
target outcomes at each forecast horizon.

The high-level structure of TFT is shown in Figure 2.8.

Gating Mechanisms

Determining the precise relationship between exogenous inputs and desired outputs is
not always straightforward, as it is not always evident beforehand which variables will
be pertinent. It is equally challenging to ascertain the degree of non-linear processing
that is necessary, and there are cases where simpler models may be more suitable, for
instance, when datasets are small or noisy. To provide a model with the versatility to
engage non-linear processing selectively and only as needed, the Gated Residual Network
(GRN) is introduced (depicted in Figure 2.8) as an integral element of the Temporal Fusion
Transformer (TFT). The GRN accepts a primary input a along with an optional context

38

2.5.2 Model Architecture

vector c, resulting in:

GRNω(a, c) = LayerNorm(a+GLUω(η1)) (2.43)

η1 = W1,ωη2 + b1,ω (2.44)

η2 = ELU(W2,ωa+W3,ωc+ b2,ω) (2.45)

where ELU is the Exponential Linear Unit activation function [60], η1,η2 ∈ Rdmodel , are
layers in between, LayerNorm is a standard layer normalization [61], and ω is an index
to denote weight sharing. When W2,ωa + W3,ωc + b2,ω is significantly positive (≫ 0),
the ELU function behaves similarly to an identity function, and when it is considerably
negative (≪ 0), it will generate a constant output. Gating layers based on Gated Linear
Units (GLUs) [62] offer the flexibility to minimize any superfluous components of the
architecture for a given dataset. Assuming γ to be the input, the GLU is defined as:

GLUω(γ) = σ(W4,ωγ + b4,ω)⊙ (W5,ωγ + b5,ω), (2.46)

where σ(·) is the sigmoid activation function, W(·) ∈ Rdmodel×dmodel , b(·) ∈ Rdmodel represent
the weights and biases, ⊙ symbolizes the element-wise Hadamard product, and dmodel is
the TFT’s common hidden state size. The GLU allows for the modulation of the GRN’s
impact on the original input a, potentially skipping over the layer entirely if necessary as
the GLU outputs could be all close to 0 in order to suppress the nonlinear contribution.
For instances without a context vector, the GRN simply treats the context input as zero.
During training, dropout is applied before the gating layer and layer normalization – i.e.
to η1.

Variable Selection Networks

Although numerous variables may be accessible, their significance and specific contribu-
tion to the output are often indeterminate. TFT is designed to perform instance-wise
variable selection via variable selection networks that apply to both static covariates and
time-dependent covariates. This selection process provides insights into which variables are
paramount for the predictive task at hand. Additionally, it allows TFT to discard any un-
necessary and noisy inputs that might adversely affect performance. Real-world time series
datasets often contain features with varying levels of predictive relevance; hence, variable
selection can optimize model performance by leveraging learning capacity primarily on the
most significant variables.

Entity embeddings [63] are utilized for categorical variables to serve as feature represen-
tations, and perform linear transformations on continuous variables, transforming each
variable into a Rdmodel-dimensional vector that aligns with the dimensionality required
for subsequent layers, including skip connections. TFT uses separate variable selection
networks for static, past and future inputs, each denoted by distinct colors in Figure 2.8.
Without loss of generality, the variable selection network for past inputs is presented below;
for future and static inputs the form is the same:

39

Chapter 2. Forecasting Models

Let ξ(j)t ∈ Rdmodel be the transformed input of the j-th variable at time t, with Ξt =

[ξ
(1)T

t , . . . , ξ
(mχ)

T

t]
T

representing the concatenated vector of all past inputs at time t. The
variable selection weights are generated by processing both Ξt and an external context
vector cs through a GRN, followed by a softmax layer:

vχt = Softmax(GRNvχ(Ξt, cs)), (2.47)

where vχt ∈ Rmχ is a vector of variable selection weights, and cs is derived from a static
covariate encoder. For static variables, the context vector cs is omitted since they already
have access to static information. At each time step, an additional layer of non-linear
processing is implemented by passing each ξ(j)t through its own GRN:

ξ̃
(j)
t = GRNξ̃(j)(ξ

(j)
t), (2.48)

where ξ̃(j)t is the processed feature vector for variable j. Notably, each variable has its
GRN with weights shared across all time steps t. The processed features are then weighted
by their variable selection weights and combined as follows:

ξ̃t =

mχ∑
j=1

v(j)χt
ξ̃
(j)
t , (2.49)

where v
(j)
χt is the j-th element of the vector vχt .

Static Covariate Encoders

Differing from other time series forecasting models, the Temporal Fusion Transformer
(TFT) is architected to assimilate information from static metadata through the utilization
of separate GRN encoders. These encoders are tasked with generating four distinct context
vectors, cs, ce, cc, and ch. These vectors are integrated into various junctures within the
temporal fusion decoder, where static variables are crucial to processing the sequence. This
includes the provision of contexts for temporal variable selection (cs), localized processing
of temporal features (cc, ch), and enrichment of temporal features with static information
(ce). For instance, considering ζ to be the output of the static variable selection network,
contexts for temporal variable selection would be formulated as cs = GRNcs(ζ).

Interpretable Multi-Head Attention

The Temporal Fusion Transformer (TFT) employs a self-attention mechanism for capturing
long-term dependencies across various time steps, adapted from the multi-head attention
mechanism found in transformer-based architectures [64, 65] to enhance explainability.
Generally, attention mechanisms scale values V ∈ RN×dV based on the relationships in-
ferred from keys K ∈ RN×dattn and queries Q ∈ RN×dattn as follows:

40

2.5.2 Model Architecture

Attention(Q,K,V) = A(Q,K)V (2.50)

where A denotes a normalization function, often chosen to be the scaled dot-product at-
tention [64]:

A(Q,K) = Softmax

(
QKT

√
dattn

)
. (2.51)

To enhance the learning capability of this standard attention mechanism, TFT utilizes
multi-head attention [64], deploying different heads across distinct representation sub-
spaces:

MultiHead(Q,K,V) = [H1, . . . ,HmH]WH (2.52)

Hh = Attention(QW
(h)
Q ,KW

(h)
K ,VW

(h)
V) (2.53)

where W
(h)
Q ∈ Rdmodel×dattn , W

(h)
K ∈ Rdmodel×dattn , W

(h)
V ∈ Rdmodel×dV are head-specific

weights for queries, keys, and values, and WH ∈ R(mH ·dV)×dmodel linearly combines outputs
from all heads Hh.

However, when different values are used in each head, attention weights alone might not
be indicative of a particular feature’s importance. Therefore, TFT modifies multi-head
attention to share values in each head and uses additive aggregation of all heads:

InterpretableMultiHead(Q,K,V) = H̃WH , (2.54)

H̃ = Ã(Q,K)VWV (2.55)

=

{
1

H

mH∑
h=1

A(QW
(h)
Q ,KW

(h)
K)

}
VWV (2.56)

=
1

H

mH∑
h=1

Attention(QW
(h)
Q ,KW

(h)
K ,VWV) (2.57)

where WV ∈ Rdmodel×dV are value weights shared across all heads, and WH ∈ Rdattn×dmodel

is used for linear mapping. Equation 2.56 shows that each head is capable of discerning
diverse temporal patterns while attending to a shared group of input features. This process
can be viewed as a simple ensemble over attention weights into the consolidated matrix
Ã(Q,K) as illustrated in Equation 2.55. In contrast to A(Q,K) shown in Equation 2.51,
Ã(Q,K) yields an increased representation capacity efficiently.

41

Chapter 2. Forecasting Models

Temporal Fusion Decoder

Points of significance in a time series are often identified in the context of their surrounding
values, such as anomalies, change points and seasonal patterns. Leveraging local context
on top of point-wise values can thus lead to increased performance. For instance, [66] uses
a convolutional layer to enhance locality, but this is not suitable when the past and future
inputs differ in numbers. TFT addresses this by using a sequence-to-sequence model that
naturally handles these differences by feeding ξ̃t−k:t to the encoder and ξ̃t+1:t+τmax to the
decoder. This then generates temporal features ϕ(t, n), n = −k, . . . , τmax. The encoder
and decoder are typically implemented by an LSTM network. This process also serves
as a replacement for standard positional encoding, since it provides an inherent bias for
the chronological sequence of the inputs. Static metadata is integrated into the local
computation by initializing the first LSTM’s cell and hidden states with ce, ch context
vectors derived from static covariate encoding. A gated skip connection is also employed
over this layer:

ϕ̃(t, n) = LayerNorm(ξ̃t+n +GLUϕ̃(ϕ(t, n))), n = −k, . . . , τmax (2.58)

Static Enrichment Layer

Static covariate information is injected via a static enrichment layer:

θ(t, n) = GRNθ

(
ϕ̃(t, n), ce

)
, n = −k, . . . , τmax (2.59)

where the weights of GRNθ are shared across the entire layer and ce is a context vector
derived from static covariate encoding.

Temporal Self Attention Layer

All statically-enriched temporal features are grouped into a matrix Θ(t) = [θ(t,−k), . . . ,θ(t, τ)]T

and interpretable multi-head attention is applied at each forecast time:

B(t) = InterpretableMultiHead(Θ(t),Θ(t),Θ(t)) (2.60)

= [β(t,−k), . . . ,β(t, τmax)] (2.61)

With mH being the number of heads, the dimensions are dV = dattn = dmodel/mH . Decoder
masking [64, 66] is applied to the multi-head attention layer to ensure that each temporal
dimension can only attend to features preceding it. The self-attention layer can learn
long-term dependencies that the LSTM might not be able to. To facilitate training an
additional gating layer is applied:

δ(t, n) = LayerNorm(θ(t, n) + GLUδ(β(t, n))), n = −k, . . . , τmax (2.62)

42

2.5.3 Strengths and Limitations

Position-wise Feed-forward Layer

Additional non-linear processing is applied to the output of the self-attention layer:

ψ(t, n) = GRNψ(δ(t, n)), n = −k, . . . , τmax (2.63)

where the weights of this GRN are shared across the entire layer. A gated residual con-
nection that skips the entire transformer block is applied after the GRN to yield a simpler
model if additional complexity is unnecessary:

ψ̃(t, n) = LayerNorm
(
ϕ̃(t, n) + GLUψ̃(ψ(t, n))

)
, n = −k, . . . , τmax (2.64)

Quantile Ouputs

TFT generates prediction intervals, by outputting quantiles, e.g. the 10th, 50th, and 90th

percentiles at each time step. Quantile forecasts are generated by an affine transformation
on the output of the temporal fusion decoder:

ŷi(q, t, τ) = Wqψ̃(t, τ) + bq (2.65)

where Wq ∈ R1×d, bq ∈ R are specified per quantile q.

Loss Functions

TFT is trained jointly by minimizing the quantile loss [67] summed across all quantile
outputs:

L(Ω,W) =
∑
yt∈Ω

∑
q∈Q

τmax∑
τ=1

QL(yt, ŷ(1, t− τ, τ), q)

Mτmax
(2.66)

QL(yt, ŷ, q) = q(y − ŷ)+ + (1− q)(ŷ − y)+ (2.67)

where Ω is the domain of the training data containing M samples, W represents the weights
of the TFT, Q is the set of output quantiles (a typical choice is Q = {0.1, 0.5, 0.9}), and
(·)+ = max(0, ·).

2.5.3 Strengths and Limitations

TFT’s state-of-the-art strength stems from its ability to incorporate all types of inputs
commonly found in multi-horizon forecasting, including static, past-observed and apriori-
known covariates. This, along with its ability to model complex temporal relations by
capturing both long-term and short-term dependencies, as well as its interpretability make
it a very powerful and accurate tool for time series forecasting.

The complex architecture of TFT can also be a limiting factor, as it requires a substantial
amount of data to achieve optimal performance, and it is quite computationally expensive
to train and run.

43

Chapter 3

Datasets

3.1 Introduction

The efficacy of machine learning models in forecasting relies heavily on the quality, nature,
and preprocessing of the datasets used for training and evaluation. This thesis evaluates
several advanced forecasting models on two distinct datasets, each offering unique chal-
lenges and insights into the models’ capabilities in handling real-world time series data.
These datasets are the Electricity Load Diagrams dataset [9], concerned with electricity
consumption, and the PeMS-SF dataset [10], concerned with traffic flow, both of which
have been meticulously processed and modified for time series forecasting with the models
of Chapter 2. This chapter provides an overview of the original datasets, detailing their
nature and importance, it explains how they have been adapted and utilized in this thesis
and explores their intricacies.

3.2 Electricity Load Diagrams Dataset

3.2.1 Original Dataset

The Electricity Load Diagrams dataset [9] originates from the UCI Machine Learning
Repository [68] and contains electricity consumption data in 15-minute intervals from 2011
to 2014. This dataset is composed of data from 370 clients, offering a comprehensive view
of electricity demand patterns over various seasons and times of the day. Notably, some
clients were created after 2011, thus the time series are not all time-parallel in the original
dataset. The significance of this dataset lies in its reflection of real-world electricity usage
patterns, making it an invaluable resource for forecasting electricity demand — a critical
component in managing and optimizing energy distribution and generation.

3.2.2 Usage in This Thesis

For this thesis, 50 parallel time series have been selected and processed from the Electricity
Load Diagrams dataset. The processed series span from January 2, 2014, to September 1,
2014, providing a focused period for analysis that includes variations in electricity demand
across different seasons. To adapt the dataset for hourly forecasting, the original 15-

45

Chapter 3. Datasets

(a) Correlation Heatmap
(b) Correlation Histogram (values of 1.0 ex-
cluded)

Figure 3.1. Electricity Load Diagrams Correlation

minute interval data have been resampled to 1-hour intervals by averaging the values.
This preprocessing step simplifies the dataset, making it more suitable for evaluating the
forecasting models’ performance over longer time horizons.

3.2.3 Exploratory Data Analysis

Exploratory Data Analysis (EDA) on the Electricity Load Diagrams dataset serves as
the foundation for understanding the intricate patterns of electricity consumption across
different clients and periods. This phase is critical for uncovering underlying trends, sea-
sonalities, and anomalies in electricity usage, which are pivotal for accurate forecasting.
The analysis begins with a comprehensive examination of the dataset’s statistical proper-
ties, including distributions of electricity consumption rates, identification of peak demand
periods, and assessment of variability across different days and months. This initial inves-
tigation aims to highlight the dataset’s characteristics, such as daily and seasonal cycles,
outliers, and long-term trends. By visualizing these features through time series plots,
heatmaps, and boxplots, we gain invaluable insights into the data’s structure, guiding the
preprocessing and model selection phases of the thesis.

The first visualization presented in the exploratory data analysis is a correlation heatmap,
providing a pairwise comparison of consumption patterns across different clients (Fig-
ure 3.1a). Each square in the heatmap represents the Pearson correlation coefficient be-
tween two households’ electricity consumption. Red tones indicate positive correlations,
suggesting similar usage patterns, while blue tones suggest inverse relationships. The
strong red diagonal line confirms that each household’s series is perfectly correlated with
itself, as expected by the definition of the correlation. Notably, most households show a
moderate to high positive correlation with each other (Figure 3.1b), which could imply a
common underlying factor influencing consumption, such as time of the day or seasonality.

The second visualization is a heatmap showcasing the hourly electricity consumption for
one week across different households (Figure 3.2). This visualization uses a color gradient
to represent the log-transformed consumption values, where lighter colors correspond to

46

3.2.3 Exploratory Data Analysis

Figure 3.2. Heatmap of Hourly Electricity Consumption. Data from Monday 2014–02–03
to Sunday 2014–02–09.

higher usage. The repeating patterns indicate the cyclical nature of electricity usage within
a day and across the week. This pattern is especially evident in the consistent light vertical
bands, likely representing evening peak usage times when residents are typically at home.

To delve deeper into the hourly patterns, boxplots disaggregate the data by hour (Fig-
ure 3.3b). These plots reveal the distribution of consumption at different times, highlight-
ing the presence of outliers and the variability within each hour. The median consumption
line within each boxplot indicates the central tendency, which, when observed in conjunc-
tion with the median hourly consumption line chart (Figure 3.3d), shows a clear pattern of
peak and off-peak usage. The hourly median line chart plots the median value of electric-
ity consumption across all households against the hours of the day, illustrating the typical
daily consumption cycle with a steep rise in the morning, a slight dip in the afternoon,
and a peak in the evening hours.

The weekly boxplot visualization (Figure 3.3c) breaks down electricity consumption by
the day of the week, providing insights into how usage varies on weekdays versus week-
ends. The boxplots suggest a lower median and tighter distribution on weekends, which is
corroborated by the median weekly electricity consumption line chart (Figure 3.3e). This
final chart plots the median electricity consumption against the days of the week, showing
a noticeable drop during the weekend, likely reflecting the reduced activity in commercial
spaces and changes in residential patterns.

When examining the longer-term trends, a line chart of median electricity consumption over
several months (Figure 3.3a) provides insights into broader consumption patterns. This
chart shows fluctuations that could be associated with external factors such as temperature
changes, holidays, or other seasonal effects. Notably, on the last Sunday of March, the
Electricity consumption is zero, which is an artificial value due to the daylight saving time
change.

Together, these visualizations form a comprehensive EDA framework that highlights the

47

Chapter 3. Datasets

(a) Median Electricity Consumption

(b) Hourly Boxplot of Electricity Consump-
tion

(c) Weekly Boxplot of Electricity Consump-
tion

(d) Median Hourly Electricity Consumption (e) Median Weekly Electricity Consumption

Figure 3.3. Electricity Load Diagrams Seasonality Visualization

48

3.3 PeMS-SF Dataset

complex nature of electricity consumption patterns. The diurnal and weekly cycles, the
presence of outliers, and the impact of seasonal and weekly factors on electricity usage are
all crucial considerations for any forecasting model. This analysis not only informs the
preprocessing and feature engineering stages but also provides a baseline understanding
against which the performance of the forecasting models can be evaluated.

3.3 PeMS-SF Dataset

3.3.1 Original Dataset

The PeMS-SF dataset [10], also sourced from the UCI Machine Learning Repository, orig-
inally serves for time series classification and stems from the Performance Measurement
System (PeMS) in California. It comprises traffic occupancy rates collected from sensors
in the freeway system of the San Francisco Bay area. Particularly, it includes data from
963 lanes from January 1st, 2008 to March 30th, 2009 with a sampling frequency of 10
minutes, and with missing values at four entire days (January 20, February 17, March 8,
and May 25, 2008).

This dataset is originally structured for the task of classifying the day of the week, given
data of a single day. For this purpose, it has partitioned the time series into days, which are
then shuffled and split into training and testing sets, with each series having a label denoting
its corresponding day of the week. The dataset also contains a file with information about
the permutation that was used to shuffle the data, as well as a file with the IDs of each
lane.

3.3.2 Usage in This Thesis

In this thesis, the PeMS-SF dataset has been repurposed for time series forecasting, focusing
on a single time series for each car lane. The original time series can be reconstructed from
the day of the week labels, the permutation, and the first date of the dataset (January 1st,
2008). More specifically, this reconstruction is achieved by concatenating the train and
test sets, then applying the inverse permutation, and computing the timestamps through
incrementing the starting date by the pairwise differences of the day of the week labels
modulo 7.

From this dataset, the first 50 time series have been selected and processed, covering the
period from January 1, 2008, to June 25, 2008. The dataset has been resampled to a 1-hour
frequency by averaging the values, consistent with the Electricity Load Diagrams dataset,
to facilitate hourly traffic forecasting. The missing values have been replaced with zeros
for the DL models and left as is in the case of the Prophet model. This adjustment allows
for a standardized approach to handling missing data across the models evaluated, with
Prophet being the exception due to its inherent handling of missing values.

49

Chapter 3. Datasets

(a) Correlation Heatmap
(b) Correlation Histogram (values of 1.0 ex-
cluded)

Figure 3.4. PeMS-SF Correlation Visualization

3.3.3 Exploratory Data Analysis

The Exploratory Data Analysis for the PeMS-SF dataset focuses on understanding traffic
flow dynamics and occupancy patterns within the freeway system of the San Francisco
Bay area. This analysis is crucial for identifying the key features of traffic behavior,
including rush hour peaks, weekly cycles, and the impact of holidays and special events on
traffic volumes. By examining the dataset’s statistical summaries, visualizing occupancy
rates over time, and detecting periods of missing data, this EDA phase aims to uncover
the complexities of traffic data that must be considered for effective forecasting. Special
attention is given to the treatment of missing values and the identification of anomalies,
which could significantly influence the performance of forecasting models. Through this
detailed exploration, the analysis sets the stage for selecting appropriate data processing
techniques and forecasting strategies that can handle the dataset’s specific challenges.

The exploratory data analysis for the PEMS-SF dataset begins with an examination of the
correlation between different lane occupancy rates (Figure 3.4a). The heatmap illustrates
the Pearson correlation coefficients between the time series of different lanes. A predomi-
nance of warm colors suggests that many lanes exhibit similar traffic patterns, indicating
possible relationships or dependencies between the flows of adjacent lanes or those within
the same traffic control segments.

The next visualization is a heatmap displaying lane occupancy rates over one week (Fig-
ure 3.5). This diagram uses a logarithmic scale to represent occupancy rates, where the
color intensity reflects higher or lower levels of traffic. Patterns emerge across different
times of the day and week, with certain periods showing consistently higher occupancy,
potentially corresponding to morning and evening rush hours.

To provide a more granular view, an hourly boxplot disaggregates lane occupancy rates
throughout the day (Figure 3.6b). This chart reveals the distribution of traffic volumes
at different times and highlights variability and outliers, which could indicate incidents or
unusual traffic conditions. The plot shows higher median values during typical peak hours,

50

3.3.3 Exploratory Data Analysis

Figure 3.5. Heatmap of Hourly Lane Occupancy Rates. Data from Monday 2008–01–07
to Sunday 2008–01–14.

affirming the presence of daily traffic cycles.

The median hourly lane occupancy rate line chart (Figure 3.6d) further clarifies these daily
patterns. The curve rises sharply during peak hours and dips in off-peak times, including
late night and early morning, illustrating the ebb and flow of traffic volume.

Weekly traffic patterns are examined using a boxplot by day of the week (Figure 3.6c).
This visualization can indicate how traffic volumes shift between weekdays and weekends,
with weekdays typically showing higher occupancy rates due to commuter traffic.

The weekly patterns are further explored with a median weekly lane occupancy rate line
chart (Figure 3.6e), which shows the average occupancy rate for each day of the week. The
curve typically peaks on weekdays and drops during the weekend, highlighting the reduced
traffic volumes when fewer people travel to work or school.

A line chart of the median occupancy rate over several months (Figure 3.6a) provides
insights into broader traffic patterns, potentially influenced by external factors such as
weather conditions, holidays, or construction work. The chart may reveal days with par-
ticularly high or low traffic volumes, which can be critical for forecasting and understanding
traffic behavior. It should be noted that the missing values in the dataset are visible in
this chart as gaps in the time series.

These visualizations collectively provide an in-depth look into the traffic dynamics captured
by the PEMS-SF dataset. The observed correlations between lanes, the distinct hourly
and weekly patterns, and the impact of longer-term factors on lane occupancy rates are all
critical elements that inform the subsequent modeling efforts. Such a detailed exploratory
analysis is essential for identifying the most relevant features and patterns to consider when
developing and tuning traffic forecasting models.

51

Chapter 3. Datasets

(a) Median Lane Occupancy Rates

(b) Hourly Boxplot of Lane Occupancy
Rates (c) Weekly Boxplot of Lane Occupancy Rates

(d) Median Hourly Lane Occupancy Rates (e) Median Weekly Lane Occupancy Rates

Figure 3.6. PeMS-SF Seasonality

52

3.4 Conclusion

3.4 Conclusion

The careful selection and preprocessing of the Electricity Load Diagrams and PeMS-SF
datasets allow for a rigorous evaluation of the forecasting models. By adapting these
datasets for time series forecasting, this thesis aims to shed light on the predictive power
of the models and flexibility in dealing with different types of real-world data. The modifi-
cations made to the datasets, including resampling and handling missing values, are critical
for ensuring the datasets’ suitability for the forecasting tasks at hand, providing a fair basis
for comparison across the models.

53

Chapter 4

Methodology

This chapter details the methodology applied to preprocess the datasets, tune and train the
forecasting models, and evaluate their performance. The aim is to provide a comprehensive
understanding of the practical steps taken to ensure the reliability and validity of the
forecasting outcomes.

4.1 Method Overview

The thesis aims to forecast the last day of each time series within the datasets. For this
purpose, the Prophet model is fitted individually for each time series, utilizing historical
data up to the penultimate day. Deep learning models, employ a strategy of fitting on ran-
dom selections of sequences of 7+1 days (for DeepVAR these selections are synchronized),
utilizing the first seven days to forecast the final day. This approach ensures a balance
between leveraging historical trends and focusing on the immediate past for prediction
accuracy.

Hyperparameter tuning for the Prophet model employs a cross-validation strategy in the
form of Simulated Historical Forecasts (SHF) [1]. This procedure, depicted in 4.2, is based
on classical rolling origin methods [69], but uses only a small sequence of cutoff dates
rather than making one forecast per historical date, to reduce the computational cost and
produce measurements that are not as correlated. Specifically, we start with a cutoff point
that is relatively close to the final date and then select more cutoff points by advancing
with half-horizon strides.

Deep learning models’ hyperparameters except for the learning rate are optimized using
the Optuna library [70] and its Tree-Structured Parzen Estimator (TPE) [71], a Bayesian
optimization method, with 30 trials per model and dataset. The learning rate where a mix
of Optuna and Pytorch Lightning’s Tuner that uses the Cyclical Learning Rates (CLR)
method [72] was employed. Validation is performed on the last three weeks of data sans the
final day, constituting approximately 10% of the total training samples. This validation set
also facilitates early stopping, optimizing the training process by preventing overfitting.

For deep learning models, missing values were substituted with zeros, a common practice
that can also be viewed as a form of training regularization. In contrast, the Prophet model

55

Chapter 4. Methodology

Datasets

Electricity Traffic

Select 50 series.
Select time span.
1 hour frequency.

Repurpose from
classification to

forecasting

Prophet Model

Prophet

Parameter search
(Simulated Historical

Forecasts)

One Model / Series

Deep Leaning Models

DeepAR
DeepVAR

TFT
N-BEATS

Parameter Search
(Tree-Structured

Parzen Estimator)

One Model / Dataset.
In 7 Days, Out 1 Day.

Impute with 0.

Hour, weekday, and
entity id covariates.

Predict final day

Train

Model

Dataset

Figure 4.1. Overview of the methodology.

56

4.2 Evaluation Metrics

Figure 4.2. Cross-validation for tuning Prophet hyperparameters.

inherently manages missing values by simply ignoring them, thus no imputation was used
in that case.

Data normalization for Prophet is inherently managed via its Stan backend, requiring no
explicit action. Deep learning models employ standard scaling for normalization purposes.

Covariates for the DL models, except N-BEATS, are the time series name as a static
categorical feature, as well as the day of the week and the hour of the day as time-varying
known categorical covariates. N-BEATS is excepted because its architecture does not
support covariates. The Prophet model, fitting each time series individually, does not
require the time series name covariate and internally manages temporal covariates.

4.2 Evaluation Metrics

To assess the accuracy and performance of the forecasting models, several metrics are
utilized, each capturing different aspects of the forecast errors. These metrics include
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage
Error (SMAPE), and Mean Absolute Scaled Error (MASE).

4.2.1 Mean Squared Error (MSE)

MSE measures the average squared difference between the estimated values and the actual
value. It is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.1)

where yi represents the actual values, ŷi are the predicted values, and n is the number of
observations. MSE gives a higher weight to larger errors due to the squaring part of the
formula, making it particularly useful when large errors are undesirable.

57

Chapter 4. Methodology

4.2.2 Root Mean Squared Error (RMSE)

RMSE is the square root of MSE, providing an error metric in the same units as the data,
which makes interpretation easier. It is calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (4.2)

4.2.3 Mean Absolute Error (MAE)

MAE measures the average magnitude of the errors in a set of forecasts, without considering
their direction. It is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.3)

MAE is particularly useful for understanding how big the error will be on average.

4.2.4 Mean Absolute Percentage Error (MAPE)

MAPE expresses the error as a percentage of the actual values, providing a clear picture
of the error size relative to the true values. It is calculated as:

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (4.4)

MAPE is easy to interpret but can be undefined or infinite for values of yi = 0 and can
disproportionately penalize overestimates.

4.2.5 Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE adjusts MAPE to be symmetric, ensuring that overestimates and underestimates
are penalized equally. It is calculated as:

SMAPE =
100%

n

n∑
i=1

2|yi − ŷi|
|yi|+ |ŷi|

(4.5)

SMAPE is bounded between 0 and 200%.

4.2.6 Mean Absolute Scaled Error (MASE)

MASE measures the accuracy of forecasts relative to a naïve baseline prediction, scaling the
MAE by the average absolute difference between consecutive observations in the training
dataset. It is defined as:

MASE =
MAE

1
n−1

∑n
i=2 |yi − yi−1|

(4.6)

MASE is particularly useful because it is scale-independent and can be used to compare
forecast performance across different data sets.

58

4.3 Hyperparameter Spaces

4.3 Hyperparameter Spaces

The DL models and Prophet are handled differently. For training the DL models, dropout
values from 0.1, 0.2, 0.3, 0.4, and 0.5 were tried as well as gradient norm clipping to values in
the logarithmic space of [10−1, 102]. The batch size was set to 128 for both datasets and all
DL models. Additionally, all the DL models were trained using early stopping with patience
5 and tolerance 10−4 on the validation loss. In the case of the learning rates, a mixed
method was used: First, we let Pytorch Lightning’s Tuner class [72] try and find a learning
rate in [10−8, 1], and if the attempt was successful and the learning rate was less than
10−2, then we accept it, otherwise, we let Optuna [71] suggest a value from the logarithmic
space of [10−4, 10−2]. In the case of the DeepVAR model, the Tuner was not used, due to
implementation limitations (Cholesky Decomposition on a non-positive-definite matrix),
so we let Optuna recommend a value in the logarithmic space of [10−5, 10−2].

4.3.1 Prophet

The Prophet model was tuned for the τ parameter of the Laplacian prior distribution of
the change points. For both datasets, the values that were tested were 0.001, 0.01, 0.1
and 0.5. Daily and weekly seasonality components were used with Fourier orders of 4
and 3 respectively, which are recommendations from the original paper [1] and defaults
of the Prophet package. These seasonality components were set to be multiplicative for
the electricity dataset, and additive for the traffic dataset, to accommodate the nature
of the data. Linear growth was used for the electricity dataset and logistic growth with
saturation points at 0 and 1 for the traffic dataset. The values of the smoothing priors
imposed on the seasonalities were set to 10.0 (Prophet’s default), resulting in very little
smoothing, allowing the models to learn more complex seasonal patterns, and delegating
regularization to the Fourier order. The first 80% of the training data were used to find
change points, and this relatively conservative choice (also Prophet’s default) is due to the
relatively stable trend patterns that both datasets exhibit. A holiday component was not
added because the country of the electricity dataset is unknown and the traffic dataset
has removed data from holidays. For validation, the first 205 days were used as a starting
cutoff point for electricity and 169 days for traffic, in both cases iterating into new cutoff
points with half-horizon (half-day) steps.

4.3.2 N-BEATS

The interpretable architecture was used for the N-BEATS model, due to the clear seasonal
patterns found in both datasets, with the trend polynomial degree set to 3. For both the
trend and the seasonality stacks, three blocks were used, with three FC layers each. The
FC weights are shared with the other blocks across a stack. Sizes 64 and 256 were tried for
the FC layers of the trend stack, while for the seasonality stack the candidate sizes were
512 and 2048.

59

Chapter 4. Methodology

4.3.3 DeepAR

DeepAR was set to have 2 LSTM layers with their sizes tested to be 80, 160, and 320. The
traffic dataset was modeled using the Beta distribution, since its values lie in [0, 1], while
the electricity dataset was modeled using the Normal distribution. The number of Monte
Carlo samples used for prediction was 100. The embedding size of the covariates was set
using the heuristic

min{round(1.6n0.56), 100} if n > 2 else 1 (4.7)

where n is the number of covariates. This heuristic is used by default by Pytorch Fore-
casting.

4.3.4 DeepVAR

The rank of the non-diagonal part of the covariance matrix was set to 10, which is what
the original paper uses for datasets with a greater number of time series, implying that
10 is sufficient for our case. The LSTM configuration, the embedding size, and the Monte
Carlo samples were the same as those in DeepAR, although, in the end, a configuration
found through manual experimentation was chosen that performed better than Optuna’s
suggestions.

4.3.5 Temporal Fusion Transformer

TFT is set to output quantiles 0.1, 0.5 and 0.9. Model sizes 80, 160 and 320 were tested.
A single LSTM layer was used and the number of interpretable multihead attention heads
was set to 4. The embedding size here is equal to the model size, as is imposed by the
architecture.

4.4 Source Code

The source code for the experiments can be found as a Python package named thesis,
hosted on https://github.com/k-papadakis/dsml-thesis-code. This package encapsu-
lates the functionality required for hyperparameter searching and model training. Users can
install this package with pip install --upgrade git+https://github.com/k-papadakis

/dsml-thesis-code.git and typing thesis -h in the terminal for detailed usage instruc-
tions (to reproduce the results use the argument --seed 42). The package leverages the
libraries Pytorch Forecasting for deep learning models and Optuna for hyperparameter op-
timization, with Facebook’s Prophet library utilized for the Prophet model. Both datasets
are meticulously prepared to align with the APIs of the Pytorch Forecasting and Prophet
libraries.

DL experiments were conducted on a single NVIDIA Tesla P100 GPU. The time required
to optimize DL hyperparameters, using 30 Optuna trials per model is approximately 16
hours. The time required to train all DL models for both datasets is approximately 5

60

https://github.com/k-papadakis/dsml-thesis-code

4.4 Source Code

hours. The time required to find hyperparameters of the Prophet models for all time series
of both datasets and train those models is approximately 3 hours.

61

Chapter 5

Model Applications and Results

This chapter details the results obtained from the application of the models described in
Chapter 2 on the datasets described in Chapter 3 using the methodology described in
Chapter 4.

MASE SMAPE RMSE MAE

Prophet 1.81 0.231 16.8 14.2
N-BEATS 0.84 0.104 18.3 7.6
DeepAR 0.64 0.078 14.0 5.6
DeepVAR 0.66 0.080 15.1 5.9
TFT 0.86 0.103 20.6 7.9

(a) Performance on Electricity

MASE SMAPE RMSE MAE MAPE

Prophet 0.943 0.290 0.01547 0.01149 0.345
N-BEATS 0.436 0.101 0.01195 0.00529 0.133
DeepAR 0.438 0.087 0.01083 0.00494 0.106
DeepVAR 0.542 0.161 0.01073 0.00618 0.229
TFT 0.408 0.089 0.01281 0.00495 0.101

(b) Performance on Traffic

Table 5.1. Performance of the models on the datasets. MAPE was omitted for the
Electricity dataset due to the presence of zeros in the true values.

63

Chapter 5. Model Applications and Results

(a) Electricity MASE

(b) Traffic MASE

Figure 5.1. MASE of the models on each series of the datasets.

The performance of each model on each dataset on the metrics described in Section 4.2 is
presented in Tables 5.1a and 5.1b. An evaluation of the performance of each architecture
per series is shown in Figures 5.1a and 5.1b.

From each dataset, the series with the lowest, median, and highest average values are
shown, so that they represent samples from all scales and allow us to see how each model
handles them. See also the discussion in 2.3.1 for the discussion on varying scales and the
power law.

In the following sections, each model’s performance is discussed in detail, with the main
focus being on the MASE.

5.1 Prophet

Based on Tables 5.1a and 5.1b, Prophet consistently underperforms compared to the other
models across all metrics. This suggests inherent limitations in its ability to capture
the complex patterns present in the data, possibly due to its relatively simple, albeit
interpretable, additive structure. It should be noted though that the uncertainty intervals
do generally cover the true values appropriately, which is useful for further decision making.

64

5.1 Prophet

While manual adjustments might improve performance in isolated cases, this approach
lacks scalability and highlights Prophet’s lower learning capacity compared to the more
flexible deep learning (DL) models. Prophet’s focus on decomposing time series into simpler
components likely restricts its ability to model the intricate nonlinearities and dependencies
exhibited by the datasets.

Figures 5.2 and 5.6 display Prophet’s predictions on the Electricity and Traffic datasets.
Figures 5.3 and 5.7 present the errors generated by Simulated Historical Forecasts, offering
insights into the model’s accuracy. For a deeper understanding of Prophet’s modeling
process, Figures 5.4 and 5.8 illustrate the trend and seasonality components extracted by
the model. Finally, Figures 5.5 and 5.9 highlight the significant change points in the trend
identified by the model.

In the electricity dataset, the models demonstrate limitations in accurately capturing the
extreme values of MT003 and the volatility of MT015, although they exhibit relatively
satisfactory forecasting performance for MT045. While the trend component is adequately
captured, the models struggle to precisely capture the underlying seasonality. The daily
seasonality of MT015 and MT043 exhibits a significant decrease during sleeping hours, as
expected. Furthermore, the consumption of MT015 is lower during weekends, potentially
indicating a business-related usage pattern, while MT043’s consumption is higher, possibly
indicating a household-related usage pattern. However, the pattern for MT003 is not as
discernible.

In the traffic dataset, which exhibits a higher degree of regularity, the models exhibit
enhanced performance, albeit with certain challenges in accurately capturing the higher
values. Furthermore, the models encounter difficulties in effectively capturing the abrupt
increase in variance observed in series 400041 from March onwards. The presence of double
peaks in the daily seasonality, learned by all three models, corresponds to the morning and
evening rush hours. Additionally, the notable decrease during weekends in the weekly
component aligns with the expected behavior of the traffic dataset. Finally, from the error
plots it is readily seen that the model has trouble accurately predicting 12 to 16 hours
ahead.

(a) MT003 (b) MT015 (c) MT043

Figure 5.2. Predictions of Prophet on the Electricity dataset.

65

Chapter 5. Model Applications and Results

(a) MT003 (b) MT015 (c) MT043

Figure 5.3. Cross-validation SMAPE of Prophet on the Electricity dataset. The grey dots
represent SMAPEs on that specific time index, one from each simulated historical forecast,
and the blue line represents the average SMAPE on that time index.

(a) MT003 (b) MT015 (c) MT043

Figure 5.4. Trend and seasonality components of Prophet on the Electricity dataset.

(a) MT003 (b) MT015 (c) MT043

Figure 5.5. Model overview of Prophet on the Electricity dataset. Forecasts in blue lines,
uncertainty in light blue, true values in black dots, and important change points in dashed
vertical red lines.

(a) 400015 (b) 400071 (c) 400041

Figure 5.6. Predictions of Prophet on the Traffic dataset.

66

5.2 N-BEATS

(a) 400015 (b) 400071 (c) 400041

Figure 5.7. Cross-validation SMAPE of Prophet on the Traffic dataset. The grey dots
represent SMAPEs on that specific time index, one from each simulated historical forecast,
and the blue line represents the average SMAPE on that time index.

(a) 400015 (b) 400071 (c) 400041

Figure 5.8. Trend and seasonality components of Prophet on the Traffic dataset.

(a) 400015 (b) 400071 (c) 400041

Figure 5.9. Model overview of Prophet on the Traffic dataset.

5.2 N-BEATS

The N-BEATS model yielded robust predictions for the traffic dataset; however, its perfor-
mance was less effective for the electricity dataset. Hyperparameter optimization revealed
a preference for increased sizes in the trend and seasonality FC layers, with an intermediate
degree of dropout and restrictions on gradient norms.

Analysis of the electricity dataset outcomes revealed the model’s proficiency in capturing
the time series pattern but not the scale of the values. The model’s learned seasonality
aligned with the prediction range but diverged from the conditioning range, a result an-
ticipated due to the exclusion of conditioning range errors from the loss calculation. The
trend alignment was satisfactory.

67

Chapter 5. Model Applications and Results

Contrastingly, for the traffic dataset, N-BEATS showcased an adeptness in mirroring both
the pattern and scale of the series, benefiting from the dataset’s consistent scale. As with
the electricity dataset, inaccuracies in the seasonality component within the conditioning
range were noted, attributable to the model’s loss function configuration.

Grad Clip Dropout Learning Rate Trend size Seasonality size

electricity 1.60 0.2 0.0005 256 2048
traffic 1.25 0.3 0.0008 256 2048

Table 5.2. Optuna-found hyperparameters for N-BEATS.

1.5

2

2.5

3

3.5

Objective Value

Parallel Coordinate Plot

1.5

2

2.5

3

3.5

Objective Value

3.7759

1.3232

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

dropout

0.5

0.1

0.138

1

10

81.2

gradient_clip_val

0.000131

0.001

0.00692

learning_rate

512

2048

seasonality

64

256

trend

(a) Parallel Coordinates

0.08

0.09

0.29

0.54

0 0.1 0.2 0.3 0.4 0.5

trend

seasonality

dropout

gradient_clip_val

Hyperparameter Importances

Hyperparameter Importance

H
yp

er
pa

ra
m

et
er

(b) Hyperparameter Importances

Figure 5.10. Optuna results for the N-BEATS model on the Electricity dataset.

(a) MT003 (b) MT015 (c) MT043

Figure 5.11. Predictions of N-BEATS on the Electricity dataset.

68

5.2 N-BEATS

(a) MT003 (b) MT015 (c) MT043

Figure 5.12. Trend-Seasonality interpretation of N-BEATS on the Electricity dataset.

0.54

0.56

0.58

0.6

0.62

0.64
Objective Value

Parallel Coordinate Plot

0.54

0.56

0.58

0.6

0.62

0.64

Objective Value

0.64172

0.52688

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

dropout

0.5

0.1

0.115

1

10

97.3

gradient_clip_val

0.000363

0.001

0.00692

learning_rate

512

2048

seasonality

64

256

trend

(a) Parallel Coordinates

0.13

0.13

0.20

0.54

0 0.1 0.2 0.3 0.4 0.5

gradient_clip_val

trend

dropout

seasonality

Hyperparameter Importances

Hyperparameter Importance

H
yp

er
pa

ra
m

et
er

(b) Hyperparameter Importances

Figure 5.13. Optuna results for the N-BEATS model on the Traffic dataset.

(a) 400015 (b) 400071 (c) 400041

Figure 5.14. Predictions of N-BEATS on the Traffic dataset.

69

Chapter 5. Model Applications and Results

(a) 400015 (b) 400071 (c) 400041

Figure 5.15. Trend-Seasonality interpretation of N-BEATS on the Traffic dataset.

5.3 DeepAR

The performance of DeepAR on the electricity dataset was notably superior in compari-
son to alternative methodologies, demonstrating commendable results also on the traffic
dataset. It was observed that despite certain predictions not achieving exactitude, the pro-
vision of confidence intervals effectively compensates by encompassing the target values.

The exploration of hyperparameters yielded an optimization towards an intermediate size
for the Long Short-Term Memory (LSTM) architecture across both datasets, alongside
comparable learning rates and an allowance for increased gradient norms within the traffic
dataset.

Regarding the electricity dataset, the capacity of DeepAR to apprehend and replicate the
dynamics across various time-series magnitudes was affirmed, aligning with the assertions
made within the foundational paper. Specifically, within the context of the MT003 series,
DeepAR excelled in accurately discerning the series’ structural nuances and generating ro-
bust forecasts. The model’s prediction of a drop to zero was precisely anticipated within the
confidence interval. Given that DeepAR’s target distribution for this scenario is modeled
on a Normal distribution, which is symmetric, the derived confidence intervals are inher-
ently symmetrical, despite the practical applicability of a skewed interval. Consequently,
this introduces a measure of uncertainty devoid of skewness indication, notwithstanding
the practical relevance of anticipating a downward skew.

In the analysis of the traffic dataset, the accuracy of DeepAR’s predictions was similarly
noteworthy. The departure from symmetrical distributions is attributed to the usage of the
Beta distribution. Instances such as 400071 and 40041 exhibited relatively broad confidence
intervals at the peaks, congruent with the magnitudes of historical peaks, thereby reflecting
the model’s adeptness at capturing the dataset’s variability.

70

5.3 DeepAR

LSTM Size Grad Clip Dropout Learning rate

electricity 160 5.83 0.4 0.006
traffic 160 44.44 0.4 0.004

Table 5.3. Optuna-found hyperparameters for DeepAR.

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

Objective Value

Parallel Coordinate Plot

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

Objective Value

3.22374

2.83083

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

dropout

0.5

0.1

0.262

1

10

70.3

gradient_clip_val

80

160

320

hidden_size

0.000124

0.001

0.00982

learning_rate

(a) Parallel Coordinates

0.10

0.11

0.30

0.49

0 0.1 0.2 0.3 0.4 0.5

hidden_size

dropout

gradient_clip_val

learning_rate

Hyperparameter Importances

Hyperparameter Importance

H
yp

er
pa

ra
m

et
er

(b) Hyperparameter Importances

Figure 5.16. Optuna results for the DeepAR model on the Electricity dataset.

(a) MT003 (b) MT015 (c) MT043

Figure 5.17. Probabilistic predictions of DeepAR on the Electricity dataset. Monte Carlo
samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98.

−3.9

−3.8

−3.7

−3.6

−3.5

−3.4

−3.3

Objective Value

Parallel Coordinate Plot

−3.9

−3.8

−3.7

−3.6

−3.5

−3.4

−3.3

Objective Value

−3.2797

−3.97724

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

dropout

0.5

0.1

0.262

1

10

98

gradient_clip_val

80

160

320

hidden_size

0.000124

0.001

0.0094

learning_rate

(a) Parallel Coordinates

0.03

0.13

0.19

0.65

0 0.1 0.2 0.3 0.4 0.5 0.6

dropout

hidden_size

learning_rate

gradient_clip_val

Hyperparameter Importances

Hyperparameter Importance

H
yp

er
pa

ra
m

et
er

(b) Hyperparameter Importances

Figure 5.18. Optuna results for the DeepAR model on the Traffic dataset.

71

Chapter 5. Model Applications and Results

(a) 400015 (b) 400071 (c) 400041

Figure 5.19. Probabilistic predictions of DeepAR on the Traffic dataset. Monte Carlo
samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98.

5.4 DeepVAR

DeepVAR exhibited commendable performance on the electricity dataset, akin to that of
DeepAR; however, its efficacy on the traffic dataset was found lacking.

While hyperparameter optimization was conducted for DeepVAR (Table 5.4), subsequent
experimentation revealed that adopting the optimized hyperparameters from DeepAR
yielded superior performance. Therefore, the final results presented in this thesis utilize
DeepAR’s hyperparameter configuration for DeepVAR as well.

Within the context of the electricity dataset, DeepVAR’s forecasted outcomes bore a strik-
ing resemblance to those of DeepAR, making it, alongside DeepAR, uniquely capable of
rendering precise predictions for the MT003 series.

It is to be noted that the confidence intervals are symmetric, which is due to the series vector
being modeled to have a multivariate normal distribution, by utilizing a Gaussian copula,
which renders the marginal distributions normal, like in the DeepAR case. Comparative
analysis of the averaged learned covariance matrices, as depicted in Figure 5.22, with those
in Figure 3.1, reveals a parallel in the overall structure. However, discrepancies in the
distribution and mean values of these covariances are evident. A potential contributor
to this variation is the model’s diagonal-plus-low-rank approximation for the covariance,
utilizing a rank of 10 as opposed to the full rank of 50.

Concerning the traffic dataset, the model’s estimations of distribution means were approx-
imately accurate, yet the quantiles displayed significant variance, a scenario not justified
by the dataset’s noise levels. This issue is most likely attributed to an inadequate estima-
tion of the covariance matrix, as illustrated in Figure 5.24, particularly when juxtaposed
against Figure 3.4.

LSTM Size Grad Clip Dropout Learning rate

electricity 160 1.23 0.3 0.001
traffic 80 96.73 0.5 0.006

Table 5.4. Optuna-found hyperparameters for DeepVAR. They were replaced with
DeepAR’s hyperparameters for the final results.

72

5.4 DeepVAR

(a) Correlation Heatmap (b) Correlation Histogram (1.0 excluded)

Figure 5.22. Average Correlation of the DeepVAR model on the Electricity dataset.
Result from the average of the covariance matrices across Monte Carlo samples and forecast
indices. See also Figure 3.1

145

150

155

160

165

Objective Value

Parallel Coordinate Plot

145

150

155

160

165

Objective Value

166.648

140.542

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

dropout

0.5

0.1

0.262

1

10

96.7

gradient_clip_val

80

160

320

hidden_size

1.38e-05

0.0001

0.001

0.00836

learning_rate

(a) Parallel Coordinates

0.10

0.13

0.23

0.54

0 0.1 0.2 0.3 0.4 0.5

hidden_size

dropout

gradient_clip_val

learning_rate

Hyperparameter Importances

Hyperparameter Importance

H
yp

er
pa

ra
m

et
er

(b) Hyperparameter Importances

Figure 5.20. Optuna results for the DeepVAR model on the Electricity dataset. They
were replaced with DeepAR’s hyperparameters for the final results.

(a) MT003 (b) MT015 (c) MT043

Figure 5.21. Probabilistic predictions of DeepVAR on the Electricity dataset. Monte
Carlo samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98.

73

Chapter 5. Model Applications and Results

(a) Correlation Heatmap (b) Correlation Histogram (1.0 excluded)

Figure 5.24. Average Correlation of the DeepVAR model on the Traffic dataset. Result
from the average of the covariance matrices across Monte Carlo samples and forecast in-
dices. See also Figure 3.4

(a) 400015 (b) 400071 (c) 400041

Figure 5.23. Probabilistic predictions of DeepVAR on the Traffic dataset. Monte Carlo
samples: 100, Quantiles: 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98.

5.5 Temporal Fusion Transformer

The Temporal Fusion Transformer (TFT) demonstrated superior performance on the traffic
dataset while exhibiting suboptimal results on the electricity dataset.

The hyperparameter optimization process advocated for a configuration of medium com-
plexity for the electricity dataset and a more complex configuration for the traffic dataset.
The optimization imposed constraints on the norms, maintaining them at lower values for
the electricity dataset and permitting significantly higher values for the traffic dataset.
Recommendations for dropout rates and learning rates remained consistent across both
datasets.

In the context of the electricity dataset, while the TFT was capable of accurately capturing
the temporal patterns of the time series, it encountered difficulties in accurately learning
the magnitudes of the series, in contrast to the DeepAR model. The model’s attention
in Figure 5.27 peaks at two days in the past instead of one, which could be related to
the model’s underperformance on the dataset. The encoder’s variable selection network
assigned greater importance to the hour covariate over historical time series data, as evi-

74

5.5 Temporal Fusion Transformer

denced in Figure 5.28a, suggesting a relative underperformance in learning from the time
series data —a conclusion further supported by the superior efficacy of alternative models.
The emphasis on the hour of the day by both the encoder and decoder’s variable selection
networks, as illustrated in Figure 5.28, aligns with expectations considering the significant
influence of time of day on electricity consumption patterns.

Conversely, on the traffic dataset, characterized by less variation in time series magnitudes,
TFT achieved remarkable predictive accuracy. The model’s attention exhibited peaks at
intervals corresponding to multiples of 24 hours in the past, with a pronounced emphasis
on data from the preceding day, followed by data from five and six days prior, as shown
in Figure 5.31. This attention distribution could be indicative of the model leveraging
information from the previous day for local trends, and information from five and six days
prior for capturing weekly patterns since data from seven days ago are not in the lookback
window. In this dataset, the decoder’s variable selection network prioritized historical
time series data significantly, as shown in Figure 5.32a, marking a distinct contrast to the
electricity dataset scenario. The importance assigned to the day of the week and hour of the
day by the variable selection network was approximately equal, as indicated in Figure 5.28,
suggesting a balanced consideration of these factors in the model’s predictive process.

Model Size Grad Clip Dropout Learning Rate

electricity 160 0.43 0.1 0.007
traffic 320 20.69 0.2 0.003

Table 5.5. Optuna-found hyperparameters for TFT.

6

8

10

12

14

16

Objective Value

Parallel Coordinate Plot

6

8

10

12

14

16

Objective Value

16.631

4.189

0.1

0.15

0.2

0.25

0.3

0.35

0.4

dropout

0.4

0.1

0.137

1

6.36

gradient_clip_val

80

160

320

hidden_size

7.59e-08
1e-07

1e-06

1e-05

0.0001

0.001

0.00692

learning_rate

(a) Parallel Coordinates

0.16

0.36

0.48

0 0.1 0.2 0.3 0.4 0.5

gradient_clip_val

hidden_size

dropout

Hyperparameter Importances

Hyperparameter Importance

H
yp

er
pa

ra
m

et
er

(b) Hyperparameter Importances

Figure 5.25. Optuna results for the TFT model on the Electricity dataset.

75

Chapter 5. Model Applications and Results

(a) MT003 (b) MT015 (c) MT043

Figure 5.26. Quantile predictions of TFT on the Electricity dataset. The attention
weights for each time index are also shown. Predictions at quantiles 0.1, 0.5 and 0.9

Figure 5.27. Average attention of TFT on the conditioning range on the Electricity
dataset.

(a) Encoder Variables Importance (b) Decoder Variables Importance

Figure 5.28. Variables importance of the encoder and decoder of the TFT model on the
Electricity dataset. Computed using the softmax outputs of the Variable Selection Networks
across time.

76

5.5 Temporal Fusion Transformer

0.0036

0.0037

0.0038

0.0039

0.004

0.0041

Objective Value

Parallel Coordinate Plot

0.0036

0.0037

0.0038

0.0039

0.004

0.0041

Objective Value

0.00418168

0.00357541

0.1

0.15

0.2

0.25

0.3

0.35

0.4

dropout

0.4

0.1

0.116

1

10

20.7

gradient_clip_val

80

160

320

hidden_size

0.00191

0.01

learning_rate

(a) Parallel Coordinates

0.21

0.37

0.42

0 0.1 0.2 0.3 0.4

gradient_clip_val

hidden_size

dropout

Hyperparameter Importances

Hyperparameter Importance

H
yp

er
pa

ra
m

et
er

(b) Hyperparameter Importances

Figure 5.29. Optuna results for the TFT model on the Traffic dataset.

(a) 400015 (b) 400071 (c) 400041

Figure 5.30. Quantile predictions of TFT on the Traffic dataset. The attention weights
for each time index are also shown. Predictions at quantiles 0.1, 0.5 and 0.9

Figure 5.31. Average attention of TFT on the conditioning range on the Traffic dataset.

77

Chapter 5. Model Applications and Results

(a) Encoder Variables Importance (b) Decoder Variables Importance

Figure 5.32. Variables importance of the encoder and decoder of the TFT model on the
Traffic dataset. Computed using the softmax outputs of the Variable Selection Networks
across time.

78

Chapter 6

Conclusion and Future Work

6.1 Summary of Findings

This thesis embarked on a comprehensive investigation of machine learning models for time
series forecasting, with a focus on their applicability to real-world electricity consumption
and traffic flow datasets. The selected models, spanning from the established Prophet
framework to cutting-edge deep learning architectures, were meticulously evaluated using
a rigorous experimental methodology.

Key takeaways from this research include:

• Deep Learning Supremacy : Deep learning models (N-BEATS, DeepAR, DeepVAR,
TFT) consistently outperformed Prophet on both datasets, particularly in accurately
capturing complex patterns and nonlinearities. This underscores the power of DL
for sophisticated time series analysis when the volume of the data allows it.

• Dataset Nuances: Model performance varied significantly based on the dataset. N-
BEATS excelled on the more regular traffic patterns but struggled with the electricity
dataset’s variability. Similarly, TFT’s accuracy was influenced by the dataset’s scale
and complexity.

• Probabilistic Advantage: DeepAR and DeepVAR’s ability to provide probabilistic
forecasts, TFT’s confidence intervals, as well as Prophet’s uncertainty intervals, is
a significant advantage, offering valuable insight into potential uncertainty, that can
heavily impact decision-making. That said, such intervals should be used with cau-
tion since they can often be misleading.

• The Importance of Manual Tuning : In certain cases, manual hyperparameter tuning
outperforms fully automated approaches for deep learning models. This underscores
the value of domain knowledge and experimentation within the optimization process.

• Interpretability Considerations: While N-BEATS offers a theoretically interpretable
architecture, the results suggest that practical interpretability benefits might be lim-
ited. TFT, on the other hand, provided valuable insights through its attention mech-
anism and variable selection. Finally, the interpretability of the Prophet model comes

79

Chapter 6. Conclusion and Future Work

with model simplicity.

6.2 Implications and Recommendations

The findings of this thesis have practical implications for real-world forecasting applica-
tions:

• Electricity Demand Management : DL models like DeepAR, due to their precision
and uncertainty quantification, offer significant potential for optimizing energy dis-
tribution and planning.

• Traffic Congestion Mitigation: TFT’s strong performance on the traffic dataset sug-
gests its suitability for real-time traffic prediction, aiding in traffic management and
infrastructure planning decisions.

• Model Selection Guidance: This research provides a data-driven basis for model
selection. Practitioners can consider the nature of their datasets (regularity, scale,
covariates) and the need for uncertainty quantification when choosing forecasting
tools.

• Practitioner Guidance: This study informs practitioners about model strengths and
weaknesses under varying scenarios, and highlights the need to consider dataset char-
acteristics, interpretability requirements, and the importance of uncertainty when
selecting and fine-tuning forecasting solutions.

6.3 Future Work

This thesis opens up several avenues for future research:

• Hybrid Approaches: Explore combining the strengths of Prophet’s interpretability
with the power of DL models to create hybrid forecasting solutions.

• Additional Datasets: Evaluate these models on datasets from other domains (e.g.,
finance, weather) to investigate their generalizability and performance in different
contexts.

• Expanding Scope: Incorporate external factors like weather conditions or special
events into models to enhance forecasting accuracy and inform proactive decision-
making.

• Real-World Deployment : Investigate the challenges of deploying forecasting mod-
els in real-world operational settings, considering aspects like model maintenance,
scalability, and integration with existing systems.

• Limitations of Interpretability : Investigate the factors hindering interpretability in
theoretically interpretable architectures like N-BEATS.

80

6.4 Closing Statement

• Power of Attention Mechanisms: Further exploration of attention-based models like
TFT could yield insights into the key drivers and dependencies within complex time-
series data.

6.4 Closing Statement

This thesis underscores the importance of understanding both models and data character-
istics for effective forecasting. While deep learning offers notable advantages, approaches
like Prophet or ARIMA retain value for simpler scenarios. Practitioners should carefully
consider trade-offs between accuracy, interpretability, and uncertainty quantification. By
continuing to explore the nuances of model performance and developing new techniques,
the field of time series forecasting holds immense promise for data-driven decision-making
across diverse domains.

81

Bibliography

[1] Sean J Taylor and Benjamin Letham. Forecasting at scale. PeerJ Preprints, 5:e3190v2,
2017.

[2] Rob J. Hyndman and Yeasmin Khandakar. Automatic Time Series Forecasting: The
forecast Package for R. Journal of Statistical Software, 27(3):1–22, 2008.

[3] Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltz-
mann Machines. International Conference on Machine Learning, 2010.

[4] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados and Yoshua Bengio. N-BEATS:
Neural basis expansion analysis for interpretable time series forecasting, 2020.

[5] Valentin Flunkert, David Salinas and Jan Gasthaus. DeepAR: Probabilistic Forecasting
with Autoregressive Recurrent Networks. CoRR, abs/1704.04110, 2017.

[6] Bryan Lim, Sercan O. Arik, Nicolas Loeff and Tomas Pfister. Temporal Fusion Trans-
formers for Interpretable Multi-horizon Time Series Forecasting, 2020.

[7] Rob J. Hyndman and George Athanasopoulos. Forecasting: principles and practice.
OTexts, Melbourne, Australia, 2nd edition, 2018. Accessed on 2023-01-01.

[8] David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico and Jan
Gasthaus. High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Cop-
ula Processes, 2019.

[9] Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Reposi-
tory, 2015. DOI: https://doi.org/10.24432/C58C86.

[10] Marco Cuturi. PEMS-SF. UCI Machine Learning Repository, 2011. DOI:
https://doi.org/10.24432/C52G70.

[11] Dimitrios Kollias, Anastasios Arsenos and Stefanos Kollias. A deep neural architecture
for harmonizing 3-D input data analysis and decision making in medical imaging.
Neurocomputing, 542:126244, 2023.

[12] Natalia Salpea, Paraskevi Tzouveli and Dimitrios Kollias. Medical image segmentation:
A review of modern architectures. European Conference on Computer Vision, pages
691–708. Springer, 2022.

[13] Deema Abdal Hafeth, Stefanos Kollias and Mubeen Ghafoor. Semantic Representa-
tions with Attention Networks for Boosting Image Captioning. IEEE Access, 2023.

83

BIBLIOGRAPHY

[14] Antonios Papaoikonomou, James Wingate, Vasudha Verma, Aiden Durrant, George
Ioannou, Tasos Papagiannis, Miao Yu, Georgios Alexandridis, Abdelhamid Dokhane,
Georgios Leontidis and others. Deep learning techniques for in-core perturbation
identification and localization of time-series nuclear plant measurements. Annals of
Nuclear Energy, 178:109373, 2022.

[15] Stefanos Kollias, Miao Yu, James Wingate, Aiden Durrant, Georgios Leontidis,
Georgios Alexandridis, Andreas Stafylopatis, Antonios Mylonakis, Paolo Vinai and
Christophe Demaziere. Machine learning for analysis of real nuclear plant data in the
frequency domain. Annals of Nuclear Energy, 177:109293, 2022.

[16] Mamatha Thota, Stefanos Kollias, Mark Swainson and Georgios Leontidis. Multi-
source domain adaptation for quality control in retail food packaging. Computers in
Industry, 123:103293, 2020.

[17] Liyun Gong, Miao Yu and Stefanos Kollias. Optimizing Crop Yield and Reducing
Energy Consumption in Greenhouse Control Using PSO-MPC Algorithm. Algorithms,
16(5):243, 2023.

[18] Bashar Alhnaity, Stefanos Kollias, Georgios Leontidis, Shouyong Jiang, Bert Schamp
and Simon Pearson. An autoencoder wavelet based deep neural network with attention
mechanism for multi-step prediction of plant growth. Information Sciences, 560:35–50,
2021.

[19] Ilianna Kollia and Stefanos Kollias. A deep learning approach for load demand fore-
casting of power systems. 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 912–919. IEEE, 2018.

[20] Dimitrios Kollias and Stefanos Zafeiriou. Exploiting multi-cnn features in cnn-rnn
based dimensional emotion recognition on the omg in-the-wild dataset. IEEE Trans-
actions on Affective Computing, 12(3):595–606, 2020.

[21] Andreas Psaroudakis and Dimitrios Kollias. MixAugment & Mixup: Augmentation
Methods for Facial Expression Recognition. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2367–2375, 2022.

[22] Fabio De Sousa Ribeiro, Francesco Calivá, Mark Swainson, Kjartan Gudmundsson,
Georgios Leontidis and Stefanos Kollias. Deep bayesian self-training. Neural Comput-
ing and Applications, 32(9):4275–4291, 2020.

[23] Fabio De Sousa Ribeiro, Georgios Leontidis and Stefanos Kollias. Capsule routing
via variational bayes. Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3749–3756, 2020.

[24] Fabio De Sousa Ribeiro, Georgios Leontidis and Stefanos Kollias. Introducing routing
uncertainty in capsule networks. Advances in Neural Information Processing Systems,
33:6490–6502, 2020.

84

BIBLIOGRAPHY

[25] Dimitrios Kollias, Miao Yu, Athanasios Tagaris, Georgios Leontidis, Andreas Stafy-
lopatis and Stefanos Kollias. Adaptation and contextualization of deep neural network
models. 2017 IEEE symposium series on computational intelligence (SSCI), pages
1–8. IEEE, 2017.

[26] N Bouas, Y Vlaxos, V Brillakis, M Seferis and S Kollias. Deep transparent prediction
through latent representation analysis. arXiv preprint arXiv:2009.07044, 2020.

[27] Rob J Hyndman, Anne B Koehler, Ralph D Snyder and Simone Grose. A state space
framework for automatic forecasting using exponential smoothing methods. Interna-
tional Journal of Forecasting, 18(3):439–454, 2002.

[28] Rob Hyndman, George Athanasopoulos, Christoph Bergmeir, Gabriel Caceres, Leanne
Chhay, Mitchell O’Hara-Wild, Fotios Petropoulos, Slava Razbash, Earo Wang and
Farah Yasmeen. forecast: Forecasting functions for time series and linear models,
2023. R package version 8.21.1.

[29] Andrew C. Harvey and Neil Shephard. 10 Structural time series models. Econometrics,
volume 11 in Handbook of Statistics, pages 261–302. Elsevier, 1993.

[30] Trevor Hastie and Robert Tibshirani. Generalized Additive Models: Some Applica-
tions. Journal of the American Statistical Association, 82(398):371–386, 1987.

[31] Everette S. Gardner Jr. Exponential smoothing: The state of the art. Journal of
Forecasting, 4(1):1–28, 1985.

[32] G. E. P. Box and G. M. Jenkins. Some Recent Advances in Forecasting and Control.
Journal of the Royal Statistical Society Series C: Applied Statistics, 17(2):91–109,
2018.

[33] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li and Allen Riddell. Stan:
A Probabilistic Programming Language. Journal of Statistical Software, 76(1):1–32,
2017.

[34] Richard H. Byrd, Peihuang Lu, Jorge Nocedal and Ciyou Zhu. A Limited Memory Al-
gorithm for Bound Constrained Optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208, 1995.

[35] Spyros Makridakis and Michèle Hibon. The M3-Competition: results, conclusions and
implications. International Journal of Forecasting, 16(4):451–476, 2000. The M3-
Competition.

[36] Spyros Makridakis, Evangelos Spiliotis and Vassilios Assimakopoulos. The M4 Com-
petition: 100,000 time series and 61 forecasting methods. International Journal of
Forecasting, 36(1):54–74, 2020. M4 Competition.

[37] George Athanasopoulos, Rob J. Hyndman, Haiyan Song and Doris C. Wu. The tourism
forecasting competition. International Journal of Forecasting, 27(3):822–844, 2011.

85

BIBLIOGRAPHY

Special Section 1: Forecasting with Artificial Neural Networks and Computational
Intelligence Special Section 2: Tourism Forecasting.

[38] Y. Bengio, S. Bengio and J. Cloutier. Learning a synaptic learning rule. IJCNN-
91-Seattle International Joint Conference on Neural Networks, volume ii, pages 969
vol.2–, 1991.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Deep Residual Learning
for Image Recognition, 2015.

[40] Gao Huang, Zhuang Liu, Laurensvan der Maaten and Kilian Q. Weinberger. Densely
Connected Convolutional Networks, 2018.

[41] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-
putation, 9(8):1735–1780, 1997.

[42] Kyunghyun Cho, Bartvan Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk and Yoshua Bengio. Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation, 2014.

[43] Alex Graves. Generating Sequences With Recurrent Neural Networks, 2014.

[44] Andrew Gordon Wilson and Zoubin Ghahramani. Copula Processes, 2010.

[45] Helmut Lütkepohl. New Introduction to Multiple Time Series Analysis. Springer
Berlin Heidelberg, 1 edition, 2005.

[46] James Durbin and Siem Jan Koopman. Time Series Analysis by State Space Methods.
Oxford University Press, 2012.

[47] Luc Bauwens, Sébastien Laurent and Jeroen V. K. Rombouts. Multivariate GARCH
models: a survey. Journal of Applied Econometrics, 21(1):79–109, 2006.

[48] Ben S. Bernanke, Jean Boivin and Piotr Eliasz. Measuring the Effects of Monetary
Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach*. The Quar-
terly Journal of Economics, 120(1):387–422, 2005.

[49] Laurent A.F. Callot and Anders Bredahl Kock. 238Oracle Efficient Estimation and
Forecasting With the Adaptive Lasso and the Adaptive Group Lasso in Vector Autore-
gressions. Essays in Nonlinear Time Series Econometrics. Oxford University Press,
2014.

[50] Royvan der Weide. GO-GARCH: A Multivariate Generalized Orthogonal GARCH
Model. Journal of Applied Econometrics, 17(5):549–564, 2002.

[51] Robert Engle. Dynamic Conditional Correlation. Journal of Business & Economic
Statistics, 20(3):339–350, 2002.

[52] Andrew J. Patton. A review of copula models for economic time series. Journal of
Multivariate Analysis, 110:4–18, 2012. Special Issue on Copula Modeling and Depen-
dence.

86

BIBLIOGRAPHY

[53] C. Spearman. "General Intelligence," Objectively Determined and Measured. The
American Journal of Psychology, 15(2):201–292, 1904.

[54] Donald Rubin and Dorothy Thayer. EM algorithms for ML factor analysis. Psy-
chometrika, 47(1):69–76, 1982.

[55] H. Toutenburg. Everitt, B. S.: Introduction to Latent Variable Models. Chapman and
Hall, London 1984. 107 pp., £ 9.50. Biometrical Journal, 27(6):706–706, 1985.

[56] Sam Roweis and Zoubin Ghahramani. A Unifying Review of Linear Gaussian Models.
Neural Computation, 11(2):305–345, 1999.

[57] M. Sklar. Fonctions de répartition à N dimensions et leurs marges. Annales de l’ISUP,
VIII(3):229–231, 1959.

[58] Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin. "Why Should I Trust You?":
Explaining the Predictions of Any Classifier, 2016.

[59] Scott Lundberg and Su In Lee. A Unified Approach to Interpreting Model Predictions,
2017.

[60] Djork Arné Clevert, Thomas Unterthiner and Sepp Hochreiter. Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs), 2016.

[61] Jimmy Lei Ba, Jamie Ryan Kiros and Geoffrey E. Hinton. Layer Normalization, 2016.

[62] Yann N. Dauphin, Angela Fan, Michael Auli and David Grangier. Language Modeling
with Gated Convolutional Networks, 2017.

[63] Yarin Gal and Zoubin Ghahramani. A Theoretically Grounded Application of Dropout
in Recurrent Neural Networks, 2016.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser and Illia Polosukhin. Attention Is All You Need, 2023.

[65] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu Xiang Wang
and Xifeng Yan. Enhancing the Locality and Breaking the Memory Bottleneck of
Transformer on Time Series Forecasting, 2020.

[66] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu Xiang Wang
and Xifeng Yan. Enhancing the Locality and Breaking the Memory Bottleneck of
Transformer on Time Series Forecasting, 2020.

[67] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy and Dhruv Madeka. A
Multi-Horizon Quantile Recurrent Forecaster, 2018.

[68] Markelle Kelly, Rachel Longjohn and Kolby Nottingham. The UCI Machine Learning
Repository. https://archive.ics.uci.edu.

[69] Leonard J. Tashman. Out-of-sample tests of forecasting accuracy: an analysis and
review. International Journal of Forecasting, 16(4):437–450, 2000. The M3- Compe-
tition.

87

https://archive.ics.uci.edu

BIBLIOGRAPHY

[70] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta and Masanori Koyama.
Optuna: A Next-generation Hyperparameter Optimization Framework. Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2019.

[71] Shuhei Watanabe. Tree-Structured Parzen Estimator: Understanding Its Algorithm
Components and Their Roles for Better Empirical Performance, 2023.

[72] Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks, 2017.

88

	Abstract
	Acknowledgements
	Preface
	Introduction
	Forecasting Models
	Prophet
	Model Overview
	Model Architecture
	Strengths and Limitations

	N-BEATS
	Model Overview
	Model Architecture
	Strengths and Limitations

	DeepAR
	Model Overview
	Model Architecture
	Strengths and Limitations

	DeepVAR
	Model Overview
	Model Architecture
	Strengths and Limitations

	Temporal Fusion Transformer (TFT)
	Model Overview
	Model Architecture
	Strengths and Limitations

	Datasets
	Introduction
	Electricity Load Diagrams Dataset
	Original Dataset
	Usage in This Thesis
	Exploratory Data Analysis

	PeMS-SF Dataset
	Original Dataset
	Usage in This Thesis
	Exploratory Data Analysis

	Conclusion

	Methodology
	Method Overview
	Evaluation Metrics
	Mean Squared Error (MSE)
	Root Mean Squared Error (RMSE)
	Mean Absolute Error (MAE)
	Mean Absolute Percentage Error (MAPE)
	Symmetric Mean Absolute Percentage Error (SMAPE)
	Mean Absolute Scaled Error (MASE)

	Hyperparameter Spaces
	Prophet
	N-BEATS
	DeepAR
	DeepVAR
	Temporal Fusion Transformer

	Source Code

	Model Applications and Results
	Prophet
	N-BEATS
	DeepAR
	DeepVAR
	Temporal Fusion Transformer

	Conclusion and Future Work
	Summary of Findings
	Implications and Recommendations
	Future Work
	Closing Statement

	Bibliography

