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Abstract

In this master thesis we present the idea of magnetic monopoles in physics. Motivation of such a
concept is given mainly by arguments of electromangetic duality. First, we explore Dirac monopole,
which is done by explicitly introducing magnetic monopole configuration to Maxwell’s electromag-
netic theory. Then we discuss in a rigorous way ’t Hooft-Polyakov monopoles, which in contrast
to Dirac monopoles, arise naturally in grand unified theories. In addition to this we generalise ’t
Hooft-Polyakov monopoles in curved spacetime. We continue then with the main text by introduc-
ing the prospect of monopoles in electroweak theory. Such idea comes with some experimental and
theoretical controversies. However, the core of this idea is useful as we will examine extensions of
the standard model with Born Infeld terms.
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Conventions

Throughout this text we are working with the Minkowski metric:

ηµν = (+,−,−,−)

And with physical units where:

ℏ = 1 c = 1

The Levi-Civita symbol is denotes as ϵa1a2....an :

ϵa1a2...an
=

{
1, even permutations

−1, odd permutations

1. INTRODUCTION

The history of magnetic monopoles is quite old, as physicists have been troubled by their absence from the early days
of Maxwell’s theory. In section 2, we will address this old speculation by covering the argument of electromagnetic
duality. Another early introduction to magnetic monopoles was made by Henri Poincaré in 1896 when he attempted
to explain the results of the Birkeland experiment. In this experiment, cathodic beams focus in a Crookes tube in the
presence of a magnet. Poincaré described that this effect could be due to the forces of a magnetic pole at rest on a
moving electric charge. Later Thompson in 1904 showcase that the angular momentum of such system is:

L⃗ = mr⃗ × dr⃗

dt
+ egr̂ (1.1)

Where r⃗ is the position of the particle with a charge e and g is the magnetic charge of the monopole. Therefore at
rest this system has angular momentum equal to eg, which is due to the interaction of the electric field of the charge
particle with the monopole. Since angular momentum of the charged particle at rest is just its spin, it suggests that
eg must be quantized. In the case of electron which has spin 1/2, it means that:

eg =
1

2
(1.2)

This remarkable result was derived by Dirac in 1931 when quantum mechanics have already formulated. Section 3
rigorously discusses the Dirac monopole. Such results explain why electric charge is quantized, a fact not covered
by any theoretical description of particles. Dirac successfully explained why the charges of subatomic particles are
quantized by explicitly introducing sources of magnetic fields. It is rather disappointing that no magnetic monopoles
have ever been detected, an experimental fact that was key for the development of Maxwell’s equations in the first
place. It makes more sense that magnetic fields should have no sources since that is the only thing we observe. Why
bother explicitly introducing them if we have never observed them? While Dirac’s approach was to try to force the
theoretical existence of magnetic monopoles in Maxwell’s theory, in other models, this is not the case.

In 2012 Higgs boson has been detected, a remarkable observation, which solidified Higgs mechanism in the standard
model of particle physics. Through this mechanism the Higgs field obtains the vacuum expectation value, which breaks
symmetry SUc(3)×SUL(2)×UY (1) of the standard model to SUc(3)×Uem(1) and the main result of this procedure
is that the subatomic particles obtain masses. This symmetry breaking pattern can viewed simply as SUL(2)×UY (1)
to Uem(1), suggesting that above energy scale of 246 GeV, where this procedure takes place, weak interactions are
unified with the electromagnetic ones. Furthermore it is widely believed that at even higher energy scales of 1016 GeV
strong interactions unify with electroweak interactions. This known as the grand unified theory (GUT) scale.

In 1974 Georgi-Glashow develop a GUT based on the symmetry group SU(5) and since the GUT scale is unexplored,
models vary1. In this text we will focus on Georgi-Glashow theory based on SU(2), which is rather a toy model than
a realistic GUT theory. Despite the unrealistic nature of this model, it provides a pedagogical approach to understand
topological objects in GUTs. This kind of objects enables such models to have magnetic monopole configurations,
which arise naturally inside the model. We will discuss this idea rigorously in section 4.

1 For example there are GUT’s based on SO(10), or even on other frameworks such supersymmetry and string theory.
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Generalization from flat space-times to curved ones, provide a more complete picture for monopole configurations
arising from GUT’s like the SU(2) Georgi-Glashow model. When these kind of monopoles are the source of spacetime
curvature, we obtain a different view of them. Their mass becomes lighter throughout the space-time and when the
Higg’s vacuum expectation value is compared to Planck energy scale, event horizons form, resulting to the identification
of the monopole with a charged black hole. We cover this generalization in section 5.

Standard model on the other hand, such topological objects seem to not be possible and thus magnetic monopoles
cannot arise as field configurations. Cho and Maison in 1997 gave a different perspective on this matter as we will
see in section 6. From this perspective standard model could have the needed topological objects such that monopole
configuration arise naturally. However there is one main theoretical challenge that this concept faces, the mass of
monopole is singular and thus making it unphysical. We will describe general schemes that could make the monopole
mass finite, but without any specified dynamics, which does not resolve the problem completely.

Even if the energy of this so called electroweak monopole is infinity, the idea of Cho and Maison could be used
for further extensions of the standard model. As we will see in section 7 Born-Infeld extension of electroweak model
predicts finite energy monopoles. This type of extension could arise from non linear behavior of gauge fields. Monopole
mass is predicted to be around 14 TeV, which is above capabilities of the LHC. Therefore this kind of monopoles have
cosmological interest, since such energies as observed in cosmic rays.

2. ELECTROMAGNETIC DUALITY

Magnetic monopoles is a subject that fascinates physicists over a century. Initial motivations can be traced back
to very existence of Maxwell equations of electromagnetism. In particular, equations in vacuum are taking the form:

∇⃗ · E⃗ = 0 (2.1)

∇⃗ · B⃗ = 0 (2.2)

∇⃗ × E⃗ +
∂B⃗

∂t
= 0 (2.3)

∇⃗ × B⃗ − ∂E⃗

∂t
= 0 (2.4)

Notice that the equations are symmetric under the transformation (E⃗, B⃗) → (B⃗,−E⃗). This kind of transformation is
a particular case of O(2) transformations for θ = −π/2.

G =

{
E → Ecos(θ)−Bsin(θ)

B → Esin(θ) +Bcos(θ)
(2.5)

The electromagnetic field tensor and its a dual form are given by:

Fµν = ∂µAν − ∂νAµ (2.6)

F̃µν =
1

2
ϵµνρσF

ρσ = ϵµνρσ∂
ρAσ (2.7)

Where µ, ν = 0, 1, 2, 3 with F0i = − 1
2ϵ0ijkF̃

jk = Ei and F̃0i = − 1
2ϵ0ijkF

jk = Bi. Then Maxwell equations in vacuum
are written as:

∂µF
νµ = 0 (2.8)

∂µF̃
νµ = 0 (2.9)

It straight forward to show that the field tensor and its dual are transforming under O(2) as:

G =

{
Fµν → Fµνcos(θ)− F̃µνsin(θ)
˜Fµν → Fµνsin(θ) + ˜Fµν cos(θ)

(2.10)
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Maxwell equations can be obtained from the langragian:

L = −1

4
FµνF

µν (2.11)

And it transforms under O(2) as:

L = −1

4
(Fµνcos(θ)− ˜Fµνsin(θ))(F

µνcos(θ)− ˜Fµνsin(θ)) =

−1

4
[FµνF

µνcos2(θ) + F̃µν F̃
µνsin2(θ)− 2sin(θ)cos(θ)Fµν F̃µν ] =

−1

4
[FµνF

µνcos2(θ) +
1

4
ϵµνρσϵ

µνmnFmnF
ρσsin2(θ)− sin(2θ)Fµν F̃µν ] =

−1

4
[FµνF

µνcos2(θ) +
1

2
(δmρ δ

n
σ − δmσ δ

n
ρ )FmnF

ρσsin2(θ)− sin(2θ)Fµν F̃µν ] =

−1

4
FµνF

µν +
1

4
sin(2θ)Fµν ˜Fµν

Now for the term Fµν F̃
µν we have:

ϵµνρσ∂
ρAσFµν = ϵµνρσ∂

ρAσ∂µAν − ϵµνρσ∂
ρAσ∂νAµ = 2ϵµνρσ∂

ρAσ∂µAν = 2ϵµνρσ∂
ρ[Aσ∂µAν ]

Thus this term is a total derivative and for vector fields that vanish asymptotically, we can drop it.
The Lagrangian of the source-free electromagnetism is invariant under O(2). This symmetry will disappear if we

introduce sources, since original Maxwell equations don’t contain magnetic monopole sources. We can maintain this
symmetry if we introduce both magnetic and electric sources. Such field configurations can be used to describe
hypothetical particles with both electric and magnetic charges. We call these dyons. Maxwell equations become:

∇⃗ · E⃗ = ρe (2.12)

∇⃗ · B⃗ = ρg (2.13)

∇⃗ × E⃗ +
∂B⃗

∂t
= j⃗e (2.14)

∇⃗ × B⃗ − ∂E⃗

∂t
= j⃗g (2.15)

Then by letting F⃗ = E⃗ + iB⃗, ρq = ρe + iρg and j⃗q = j⃗e + i⃗jq, we write the equations above as

∇⃗ · F⃗ = ρq (2.16)

∇⃗ × F⃗ − i
∂F⃗

∂t
= j⃗q (2.17)

The O(2) transformations are equivalent with U(1) and the quantities above transform as

F⃗ → eiθF⃗ (2.18)

ρq → eiθρq (2.19)
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j⃗q → eiθ j⃗q (2.20)

Maxwell equations with both electric and magnetic sources are invariant under O(2). In such theory electric and
magnetic charges are not separated, but are a part of one observable unified charge:

q =
√
e2 + g2 (2.21)

This holds since electric and magnetic fields in this case are equivalent and there is no difference between them. Such
a motivation of symmetry in the laws of electromagnetism is one of the reasons magnetic monopoles are a fascinating
subject of fundamental physics. A valid counter argument of this, is that nature itself does not need to be described by
beautiful mathematics to function. Nature is just nature, our perception of beauty should not be the only indication
of how it works. However, history of physics seems to reward those who are driven by such indications. For example,
Paul Dirac theoretically discover anti-matter, years before it was experimentally verified. In this case his drive was
mathematical beauty, which at the end paid off. In the next section, we will see how the same mind theoretically
describe magnetic monopoles, driven by motivations from electromagnetic duality.

3. DIRAC MONOPOLE

In this section we are going to investigate the theoretical description of magnetic monopoles by explicitly introducing
them as a source of magnetic field. This work was first done by Paul Dirac, which results to some theoretical challenges
that eventually lead to the quantization of electric and magnetic charges.

3.1. Dirac String

Our first attempt to describe magnetic monopoles is by considering a point-like magnetic source g. Such a source
produces a static Coulomb like magnetic field:

B⃗ = g
r⃗

r3
(3.1)

The vector potential of the magnetic monopole field satisfies:

B⃗ = g
r⃗

r3
= ∇⃗ × A⃗ (3.2)

Since g is a point magnetic sources it holds ∇⃗ · B⃗ = 4πgδ3(r⃗), but from vector calculus we know that ∇⃗ · (∇⃗ × A⃗) = 0

. Let’s analyse the problem. Given that B⃗ is spherically symmetric, we can write A⃗ as:

A⃗(r) = A(θ)∇⃗ϕ (3.3)

Where θ is the polar angle and ϕ is the azimuth angle. By using the gradient in spherical coordinates ∇ϕ =
1

rsinθ
∂
∂ϕ (ϕ)ϕ̂ = 1

rsinθ ϕ̂ and picking A(θ) = −g(1 + cosθ), we obtain:

A⃗(r) = −g 1 + cosθ

rsinθ
ϕ̂ (3.4)

This expression can written in a covariant form:

A⃗(r) = −g 1 + cosθ

rsinθ
ϕ̂ = − = g

sinθ(1 + cosθ)

sin2θ
ϕ̂ = −g 1 + cosθ

rsinθ
ϕ̂

= −g sinθ(1 + cosθ)

r(1− cosθ)(1 + cosθ)
ϕ̂ = −g

r

rsinθ

r − rcosθ
ϕ̂ =

g

r

rr̂ × (cosθr̂ − sinθθ̂)

r − z

Thus since n̂ = ẑ = cosθr̂ − sinθθ̂, we obtain the Dirac Pontetial

A⃗(r) =
g

r

r⃗ × n̂

r − r⃗ · n̂
(3.5)
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A quick calculation show that the Dirac potential indeed generates (3.1), for example the x-axis component of B⃗ is:

Bx = −∂Ay

∂z
=

∂

∂z
(
g

r

x

r − z
) = − gx

r2(r − z)2
∂

∂z
(r2 − zr) = − gx

r2(r − z)2
(2r

∂r

∂z
− r − z

∂r

∂z
)

=
gx

r3(r − z)2
(z2 − 2zr − r2) =

gx

r3

From (3.4) we see that the vector potential is singular at θ = 0 and regular at θ = π. Therefore, the static Coulomb
like magnetic field in (3.1) is ill-defined along the semi infinity line of singularity. The region θ = 0 where the vector
potential is singular is called Dirac String

To avoid the singular part of the potential we write A⃗ in a regular form:

A⃗R(r, ϵ) =
g

R

r⃗ × n̂

R− r⃗ · n̂
(3.6)

Where ϵ → 0 and R =
√
x2 + y2 + z2 + ϵ2. To calculate the regularized magnetic field ⃗BR(r, ϵ) = ∇⃗ × A⃗R, we write

it in tensor form:

BR,a = ϵabc∂bAR,c = ϵabcϵmncg∂b(
rmnn

R(R− r⃗ · n̂)
) = (δamδbn − δanδmb)g∂b(

rmnn
R(R− r⃗ · n̂)

)

= g∂b(
ranb

R(R− r⃗ · n̂)
)− g∂b(

rbna
R(R− r⃗ · n̂)

) = g
na

R(R− r⃗ · n̂)
− g

ranb
R2(R− r⃗ · n̂)

(2R
rb
R

− rb
R
r⃗ · n̂− R2

R
nb)

−3g
na

R(R− r⃗ · n̂)
+ g

na
R3(R− r⃗ · n̂)2

(2Rr2 − r⃗ · n̂r2 − r⃗ · n̂R2) = g
na

R(R− r⃗ · n̂)
− 3g

na
R(R− r⃗ · n̂)

+2gr2
na

R3(R− r⃗ · n̂
g − gϵ2

na
R3(R− r⃗ · n)2

r⃗ · n̂+ g
ra
R3

=
ra
R3

− 2g
na

R3(R− r⃗ · n̂)
(R2 − r2)

−gϵ2 na
R3(R− r⃗ · n)2

r⃗ · n̂ = g
ra
R3

− gϵ2na(
1

R3(R− r⃗ · n̂)
+

R

R3(R− r⃗ · n̂)2
)

In vector form this is written as:

B⃗R(r, ϵ) = g
r⃗

R3
− gϵ2n̂[

1

R3(R− r⃗ · n̂)
+

1

R2(R− r⃗ · n̂)2
] (3.7)

At the limit ϵ→ 0, (3.7) becomes

B⃗R(r, ϵ) ≈ g
r⃗

R3
− 2gϵ2n̂θ(z)[

1

r2(x2 + y2 + ϵ2)
+

2

(x2 + y2 + ϵ2)2
] (3.8)

From the expression it is the second is the singular term, which is non zero on the positive infinite semi axis. We can
rewrite this term by noting ρ2 = x2 + y2:

B⃗sing = −2gn̂θ(z)ϵ2[
1

(ρ2 + z2)(ρ2 + ϵ2)
+

2

(ρ2 + ϵ2)2
] = −2gn̂θ(z)f(ρ)

Now integrate the function f(ρ) :

ϵ2
∫ 2π

0

dϕ

∫ ∞

0

dρρ[
1

(ρ2 + z2)(ρ2 + ϵ2)
+

2

(ρ2 + ϵ2)2
] =

ϵ2π

z2 − ϵ2

∫ ∞

0

dw[
ϵ2

w + ϵ2
− 1

w + z2
]
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+2π

∫ ∞

−∞
dw

ϵ2

(w2 + ϵ2)2
=

ϵ2π

z2 − ϵ2
(ln1− ln

ϵ2

z2
) + 2π

∫ ∞

−∞
dw

ϵ2

(w2 + ϵ2)2

The first is zero when ϵ2 → 0, while the second term behaves like 2 dimensional delta function. We obtain then:

B⃗sing = −2gn̂θ(z)δ(x)δ(y) (3.9)

The total magnetic flux through the closed surface with a magnetic monopole inside is:

FIG. 1: Magnetic field of singular Dirac potential.

Φ =

∮
d⃗S · B⃗ = g

∮
d⃗S · r⃗
r3

− 4πg

∮
d⃗S · n̂θ(z)δ(x)δ(y) =

g

∫
dΩ− 4πg

∫ ∫
dxdyδ(x)δ(y) = 4πg − 4πg = 0

Thus since the magnetic flux is zero the initial contradiction is resolved by making the vector potential regular, but
with the cost of the Dirac string.

Dirac string must be unphysical and to see this consider the U(1) gauge transfromation of the vector potential:

A⃗′ = A⃗− i

e
U−1∇⃗U = A⃗+ ∇⃗λ(r) (3.10)

Where U = eieλ(r) ∈ U(1). A⃗′ and A⃗ produce the same magnetic field. By computing the difference between magnetic
flux:

∆Φ =

∮
d⃗S · (B⃗′ − B⃗) =

∮
d⃗S · ∇⃗ × (A⃗′ − A⃗) =

∮
d⃗S · ∇⃗ × (∇⃗λ) =

∮
dl · ∇⃗λ

We see that it must hold λ(ϕ+ 2π) = λ(ϕ), otherwise the difference between the magnetic fluxes is not zero.
This leads to the gauge transformation:

U(ϕ) = e2iegϕ (3.11)

Where ϕ′ = ϕ+ 2π. Then the vector pontetial we consder at (3.4) transforms as:

A⃗N = A⃗S − i

e
U−1∇⃗U = −g 1 + cosθ

rsinθ
ϕ̂+

2g

rsinθ
ϕ̂ = g

1− cosθ

rsinθ
ϕ̂ (3.12)
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FIG. 2: Magnetic line of solenoid of infinite length.

Notice that the new vector field is singular at θ = π and regular at θ = 0. This suggests that Dirac string has been
rotated from positive semi-axis to the negative one. Therefore, the gauge transformation acts like a rotation to the
Dirac string and this means that it does not have a physical significance.

This description can be summed up in the following thought experiment. We can imagine the magnetic field of a
solenoid of infinite length as we see in figure 2. If the magnetic lines along the solenoid length do not have a physical
significance, then the resulting magnetic field configuration is that of a magnetic monopole. These magnetic lines
along the solenoid is what we describe above as the Dirac string. Combine this with the quantum description of
particles interacting with the string as we will see that it results to the quantization of electric and magnetic charges.
Such an idea makes sense, but at the end of day the dependence from unphysical Dirac strings for the description of
magnetic monolopes to make sense seems unsatisfactory. It follows there is an equivalent description developed by
Wu and Yang for the monopole without the string, which leads to the realisation that monopoles have a topological
origins.

3.2. Topological Roots of the Abelian Monopole

The mathematical contradictions in the definition of (3.1) have lead us to the introduction of the Dirac string, where
we have showcase that is unphysical. Now we are going to approach this problem in different manner, by giving up
by the usual parameterization of R3 surrounding the monopole. First, we divide R3/{0} into two sightly overlapping
hemispheres, the north RN and the south RS . The vector potential in the north hemisphere is different than the one

FIG. 3: Division of R3/{0} into 2 sightly overlapping hemispheres.
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in the south and these two are connected by a gauge transformation U = e2ieg as we saw previously.

A⃗ =

{
A⃗N = g 1−cosθ

rsinθ ϕ̂ ,0 ≤ θ ≤ π
2 + ϵ

2

A⃗S = −g 1+cosθ
rsinθ ϕ̂ ,− ϵ

2 + π
2 ≤ θ ≤ π

This description is known as Wu-Yang monopole [23]. Consider a close loop l around the overlap region RN ∩ RS .
Then if a charged particle passes along l, then the wavefunction of the particle will pick a phase just like in a Bohm-
Aharonov experiment. Recall that in quantum mechanics an electric charge interaction with electromangnetic field
(classical field) can be described by the action of the system

S =

∫ T

0

dtL =

∫ T

0

dt(
m

2
ṙ2 + e ˙⃗r · A⃗) (3.13)

For a close path r(0) = r(T ) the phase is given by e
∮
l
d⃗r · A⃗ . We can calculate this phase factor with either A⃗N or

A⃗S in the overlap region.

e

∮
l

d⃗r · A⃗N = e

∫
RN

d⃗S · [∇⃗ × A⃗N ] = e

∫
RN

d⃗S · B⃗

e

∮
l

d⃗r · A⃗S = −e
∫
RS

d⃗S · [∇⃗ × A⃗S ] = −e
∫
RS

d⃗S · B⃗

The action is then defined up to a term:

∆S = e

∫
RN∪RS

d⃗S · B⃗ = e

∫
V

dV ∇⃗ · B⃗ = e4πg

This term must not have any physical significance. Therefore by recalling that the path integral is Z ∼ eiS this term
must me equal to 2πn for n ∈ Z. Thus we obtain

eg =
n

2
n ∈ Z (3.14)

This is a remarkable result, since the fundamental theories of physics can not explain why the electric charge is
quantized. The existence of one magnetic monopole can explain why all the electric charges are quantized. This
groundbreaking idea was firstly introduced by Dirac [1] in 1948. Note that this condition isn’t like the quantized
physical observables from quantum mechanics, which are eingvalues of hermitean operators. Instead we will see that
the quantization of electric charge has topological origin.

The corresponding wavefunctions in the overlap region are connected via the gauge transformation:

ψS = UψN = e2eigϕψN = einϕψN (3.15)

Which showcase that (3.14) is essential for wavefunctions to be single valued at each region. Indeed as the azimuthal
angle ϕ increases from 0 to 2π we have

ϕS(0) = ϕN (0) ϕS(2π) = ei4πegϕN (2π)

Now the the integer n responsibly for the quantization condition is simply a winding number. That is how many
times it circles the whole Abelian group U(1)em. To understand view U(1)em as a manifold, since U(1)em ≃ S1. The
winding number in this case is simply how many times it wraps around S1. Thus the electric charge is quantized,
because the winding number is an integer.

Winding number is a topological quantity and the fact is an integer can be traced back to the existence of magnetic
monopole at the origin. We conclude then that the magnetic monopole is a topological defect and charge quantization
relation has topological origin. Although such description is quite elegant, it does not seem to be fundamental. This
is because we started by introducing the magnetic charges in Maxwell’s theory. For instance electric charges arise
naturally in electrodynamics as a result of U(1) symmetry. We could try to formulate generalised electrodynamics
based on U(1) × U(1), but such model does not capture the mass of the monopole. This is not the case with GUT
monopoles as we will see in the next section.
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4. ’T HOOFT-POLYAKOV MONOPOLES

In this section, we are going study magnetic monopoles in the context of unified theories. Such theories can have
monopole solutions without explicitly introduce them. This is very useful if we are looking for a fundamental theory of
magnetic monopoles. We are starting from reviewing subjects, like non-Abelian gauge theories and Higgs mechanism,
that are very important to understand the concept of monopoles in unified theories. Then we will study mangnetic
monopole and dyon solutions in SU(2) Georgi-Glashow GUT for simplicity.

4.1. Non Abelian Gauge Theories

To formulate a description of monopoles in GUT’s, it is important to review non-Abelian gauge theories. Non
Abelian Gauge theories are very important in the standard model since they describe electroweak and strong interac-
tions. There are also important for GUT’s, since further unification of forces requires considering non-Abelian gauge
theories based on higher symmetry groups, with the standard model symmetry group being a subgroup in such case.

Let’s consider a field theory which is invariant under a local non-Abelian gauge group G. For example, strong
interactions are described by G = SUc(3) and electroweak-interactions by G = SUL(2)×UY (1). The effect of making
the theory invariant under such a group is by shifting regular derivatives to covariant derivatives:

∂µ → Dµ = ∂µ + ieA⃗µ · T⃗ (4.1)

Where T⃗ is a d = dim(G) dimensional vector with its components being the generators of the group G and A⃗µ is

the gauge potential. Consider U = eieθ⃗·T⃗ ∈ G where θ⃗ is the continuous parameter which G depends from. Then the
covariant derivative transforms as

D′
µ = UDµU

−1 (4.2)

By acting with Dµ on scalar fields ϕa a = 1, ., d, we can find how A⃗µ · T⃗ transforms under G. Since ϕa transforms as
ϕ′a = U b

aϕb we get

D′
µϕ

′
a = U b

aDµϕb ⇒ ∂µϕ
′
a + ieA⃗′

µ · (T⃗ )baϕ′b = UDµϕb ⇒

(∂µU
b
a)ϕb + U b

a∂µϕb + ieA⃗′
µ · (T⃗ )baU c

bϕc

U [U−1(∂µU) + ∂µ]) + ieU−1(A⃗′
µ · T⃗ )U ]ϕ = U(∂µ + ieA⃗µ · T⃗ )ϕ⇒

A⃗µ · T⃗ = − i

e
U−1∂µU + U−1(A⃗′

µ · T⃗ )U ⇒

A⃗′
µ · T⃗ =

i

e
U−1∂µU + U(A⃗µ · T⃗ )U−1 (4.3)

In the Abelian case it’s straight forward to calculate the commutator of covariant derivatives:

[Dµ, Dν ]ϕ = [ieAµ, ∂ν ]ϕ+ [∂µ, ieAν ]ϕ = ieAµ∂νϕ− ie∂ν(Aµϕ) + ie∂µ(Aνϕ)− ieAν∂µϕ =

ieAµ∂νϕ− ieAν∂µϕ− ie(∂νAµ)ϕ− ieAµ∂νϕ+ ie(∂µAν)ϕ+ ieAν∂µϕ = ie(∂µAν − ∂νAµ)ϕ = ieFµνϕ

1

ie
[Dµ, Dν ] = Fµν (4.4)

The commutator of covariant derivatives is equal to the electromagnetic field tensor. This suggests that the field
tensor behaves like the Riemann curvature tensor [Dµ, Dν ]V

a = V bRa
bµν in the field space. We can generalise this

result and obtain the field tensor for the non-Abelian case by considering (4.1) and that generator T i satisfies:

[T i, T j ] = if ijkT k Tr[T iT j ] =
δij

2
(4.5)
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And the field tensor can be obtain as

[Dµ, Dν ] = ieF⃗µν · T⃗ ⇒

ie(F i
µνT

i)ac = [∂µδ
a
b + ieAi

µ(T
i)ab, ∂νδ

b
c + ieAi

ν(T
i)bc] ⇒

ie(F i
µνT

i)ac = ie[∂µδ
a
b , A

i
ν(T

i)bc] + ie[Ai
µ(T

i)ab, ∂νδ
b
c] + (ie)2[(T i)ab, (T

j)bc]A
i
µA

j
ν ⇒

ie(F i
µνT

i)ac = ie(∂µA
i
ν − ∂νA

i
µ)(T

i)ac − ie2f ijkAj
µA

k
ν(T

i)ac ⇒

F i
µν = ∂µA

i
ν − ∂νA

i
µ − ef ijkAj

µA
k
ν (4.6)

And just like the Abelian case the free non-Abelian Lagrangian is:

Lgauge = −1

4
F⃗µν · F⃗µν (4.7)

By using the trace formula in (4.5) we can write the Lagragian as

Lgauge = −1

2
Tr[(F⃗µν · T⃗ )(F⃗µν · T⃗ )] = −1

2
Tr[F 2] (4.8)

In this form it is clear that L is invariant under G when Fµν transforms covariantly:

F⃗ ′
µν · T⃗ = UF⃗µν · T⃗U−1 (4.9)

We can generalise the Bianchi indentity (2.9) to the non-Abelian case. Just act with Jacobi identity to a test function
ϕ :

ϵµνλ[Dµ, [Dν , Dλ]]ϕ = 0 ⇒

ϵµνλ[Dµ, F⃗νλ · T⃗ ]ϕ = 0 ⇒ ϵµνλDµ(F⃗νλ · T⃗ ϕ)− ϵµνλF⃗νλ · T⃗Dµϕ = 0 ⇒ ϵµνλDµ(F⃗νλ · T⃗ ) = 0 ⇒

ϵµνλDµF
a
νλ = 0 (4.10)

We can obtain some useful formula from this identity. Set only spatial indices and we get:

ϵijkDiF
a
jk = 0 ⇒ Di(

1

2
ϵijkF a

jk) = 0 ⇒

DiB
a
i = 0 (4.11)

4.2. Higg’s Mechanism

Higg’s mechanism is an essential feature of the standard model and key for obtaining monopole configurations in
GUT’s Particles in nature obtain their mass when are interacting with the Higgs field. This is possible because of
spontaneous symmetry breaking by the Higgs mechanism. To understand this idea briefly, consider the complex scalar
Lagrangian:

L = ∂µϕ
†∂µϕ− V (ϕ†ϕ) (4.12)

Where ϕ is a complex doublet transforming under G = SU(2) × U(1), with transformation generating by

[σ
1

2 ,
σ2

2 ,
1+σ3

2 , 1−σ3

2 ]

ϕ =

(
ϕ1
ϕ2

)
∈ C2 (4.13)
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Where ϕ1, ϕ2 ∈ C. The potential can be chosen as:

V (ϕ†ϕ) = −λ
2
(ϕ†ϕ− u2)2 (4.14)

Where λ > 0 . This kind of set up of the Higgs field is what we have in the standard model. The idea of symmetry
breaking is that our theory may be invariant under a symmetry group G, but the vacuum expectation value ⟨0|ϕ |0⟩
of the scalar field is not invariant under a subgroup G/H of G. The subgroup H leaves the vacuum expectation value
invariant and we write G as G = H ×G/H.

Since we have a doublet ϕ, the vacuum expectation value has components:

⟨0|ϕa |0⟩ = Fa (4.15)

The vacuum expectation value can be obtain by minimizing the potential (4.14):

∂V

∂ϕ†i
= −λ(ϕ†ϕ− u2)ϕi = 0 ⇒

|ϕ|2 = u2 (4.16)

So a choice of (4.15) is:

⟨ϕ⟩ =
(
0
u

)
(4.17)

It’s straight forward to show that this vector satisfies

(1 + σ3)

2
⟨ϕ⟩ = 0

(1− σ3)

2
⟨ϕ⟩ ≠ 0

σ1

2
⟨ϕ⟩ ≠ 0

σ2

2
̸= 0

This means that three generators brake the vacuum expectation value and one leaves it invariant. So three of these
generators generate elements of G/H and remaining one elements of H. This suggests the symmetry breaking pattern:

SU(2)× U(1)
SSB−−−→ U(1) (4.18)

From Goldstone theorem follows then that there are three massless bosons and one massive one. The massive one is
the Higgs boson. We can write the doublet ϕ around the minimum value (4.17)

ϕ =

(
ϕ1 + iϕ2
ϕ3 + iϕ4

)
= ⟨0|ϕ |0⟩+ ϕ′ =

(
0
u

)
+

1√
2

(
ϕ′2 + iϕ′1
H − iϕ′3

)
(4.19)

And the Lagrangian (4.12) becomes:

L =
1

2
(∂µϕ

′
1∂

µϕ′1∂µ + ϕ′2∂
µϕ′2 + ∂µϕ

′
3∂

µϕ′3 + ∂µH∂
µH)− λu2H + interaction+ self − interactions (4.20)

From the term H2 we can obtain the mass of the Higgs boson

mH =
√
2λu (4.21)

Working with Higg’s mechanism and non-Abelian gauge theories, we can construct models of fundamental interactions.
These can be model’s of unification as it follows with Georgi-Glashow model.
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4.3. Georgi-Glashow Model

The idea is to take U(1)em Abelian subgroup and embedded into a higher rank non-Abelian gauge group. This
means to consider electromagnetism as part of a unified theory. Then any model of unification with an electromagnetic
Uem(1) subgroup embedded into a higher rank non-abelian group, which after spontaneous symmetry broken by the
Higgs mechanism, possesses monopole-like solutions. To explore this idea let’s consider a simply non-Abelian field
theory, the SU(2) Yang Mills2 coupled with the Higgs field triplet ϕa. Modern unified theories are described for
example by models based on higher symmetry groups like SU(5) and SO(10), but this model will provide us a simply
introduction for the unified models. The Lagrangian of this theory is:

L = −1

4
F a
µνF

aµν +
1

2
DµϕaD

µϕa − V (ϕ) (4.22)

We are working with the adjoint representation where the three generators of SU(2) are given by:

(T i)jk = −iϵijk (4.23)

For the field strength tensor, since [T i, T j ] = iϵijkT k we have:

F a
µν = ∂µA

a
ν − ∂νA

a
µ − eϵajkAj

µA
k
ν (4.24)

The potential of the scalar field is chosen to be:

V (ϕaϕa) =
λ

4
(ϕaϕa − u2)2 (4.25)

Where u2 corresponds to the minimal value of V (ϕaϕa). The equations of motion are given by Euler-Lagrange
equations:

∂µ
∂L

∂(∂µAa
ν)

=
∂L
∂Aa

ν

∂µ
∂L

∂(∂µϕa)
=

∂L
∂ϕa

⇒

∂µF
aνµ − eϵabcA

b
µF

cνµ = −eabcϕbDνϕc ∂µD
µϕa = eAb

µϵbmaD
µϕm − λϕa(ϕ

mϕm − u2) ⇒

DνF
aµν = −eϵabcϕbDµϕc DµD

µϕa = −λϕa(ϕaϕa − u2) (4.26)

To calculate the symmetric energy momentum tensor, we write the action as:

S =

∫
dx4

√
−g[−1

4
gµρgνσF

aµνF aρσ +
1

2
gµρD

ρϕaD
µϕa − V (ϕ)] (4.27)

Where gµν is the Minkowski metric and g = detgµν . Then the energy momentum tensor is given by:

Tµν =
2√
−g

δS

δgµν
(4.28)

And we get:

Tµν =
2√
−g

[−1

2

√
−ggµνL+

√
−g(−1

2
gρσF

aρµF aσν +
1

2
DµϕaDνϕa)] ⇒

Tµν = −F a µ
σ F aσν +DµϕaDνϕa − gµνL (4.29)

The component T 00 is the energy density of the system3:

T 00 = −1

2
F a
0iF

a0i +
1

4
F a
ijF

aij +
1

2
(D0ϕaD0ϕa +DiϕaDiϕa) +

λ

4
(ϕaϕa − u2)2 ⇒

2 Yang-Mills are field theories invariant under a Lie group G
3 The indices i and j are spatial.
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T 00 =
1

2
(Ea

i E
a
i +Ba

i B
a
i ) +

1

2
(D0ϕaD0ϕa +DiϕaDiϕa) +

λ

4
(ϕaϕa − u2)2

Where Ea
i = F a

0i and B
a
i = − 1

2ϵijkF
ajk are the ’color’ electric and magnetic fields. Because of gauge invariance we

can pick Aa
0 = 0. We are looking for the minimal energy, so we set static field configurations for ϕa. The energy is

then:

E =

∫
d3x[

1

2
(Ea

i E
a
i +Ba

i B
a
i +Diϕ

aDiϕ
a) +

λ

4
(ϕaϕa − u2)2] (4.30)

We observe that the minimal energy is obtained if:

F a
µν = 0 Diϕ

a = 0 ϕaϕa = u2 (4.31)

These conditions define the Higgs vacuum of the system and the vacuum energy is zero. Now consider fluctuations
H of ϕ around the vacuum ϕaϕa = u2, where the only non-zero component of the triplet is the third component.

ϕ =

 0
0

H + u

 (4.32)

By rewriting the gauge potentials as A1
i =

A+
i +A−

i√
2

and A2
i =

A+
i −A−

i√
2

and by applying (4.32) we find:

1

2
DµϕDµϕ ∋ u2e2

2
(A+

i A
+
i +A−

i A
−
i )

V (ϕ) =
λ

4
(ϕaϕa − u2)2 ∋ u2λH2

Suggesting that the particle spectrum consists of 2 massive weak force bosons A+
µ , A

−
µ with mass mW = ue, a Higgs

boson H with mass mH =
√
2λu and a photon A3

µ.
The unbroken subgroup of SU(2) leaves ϕ = u(0, 0, 1) invariant. The generator associated with this subgroup is

ϕaTa

u = T 3, which means that this subgroup is isomorphic to Uem(1). We identify this generator as the electric charge
operator

Q = e
ϕaT a

u
= eT 3 (4.33)

And electromagnetic gauge potential is written as:

Aem
µ =

1

u
ϕaAa

µ = T 3A3
µ (4.34)

Allowing us to write the covariant derivative as:

Dµ = ∂µ + iQAem
µ (4.35)

4.4. Topological Classification of the Solutions

Solutions of Georgi–Glashow model is much richer than one would naively expect. There are static solutions of
(4.26) which are soliton-like. These type of stable solutions have finite energy density and at the asymptotic spatial
they obtain the vacuum expectation value ϕaϕa = u2. The soliton theory4 tell us that these solutions are stable, if
they can not be deformed continuously to the trivial solution. The mathematical context, which describes this idea
is homotopy theory5.

4 We describe briefly some aspects of soliton theory in appendix B
5 An introduction for homotopy theory can be found in appendix A
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FIG. 4: Trivial Boundary.

In the Georgi-Glashow model the vacuum conditions ϕaϕa = u2 ⇒ ϕ1ϕ1 + ϕ2ϕ2 + ϕ3ϕ3 = u2 tell us that the
boundary manifold is sphere of radius u and we label it as S2

∞. After the symmetry breaking SU(2) → U(1) the

trivial boundary is associated with the Higgs field picking a particular direction, for example ϕ⃗ = uẑ. The vacuum
manifold on the other hand is the space of the broken symmetry SU(2)/U(1) ≈ S2

vac. Thus in order for soliton
solutions to exist, it must exist a non-trivial map between S2

∞ and S2
vac:

ϕa : S2
∞ → S2

vac (4.36)

These maps form the second homotopy group of S2
vac:

π2(SU(2)/U(1)) = π2(S
2) = Z (4.37)

Such map/solution was proposed by Polyakov and is called hedgehog solution:

ϕa = u
ra

r
, r → ∞ (4.38)

Indeed in figure 5 we see due to the topological defect at r = 0, the two maps can not be deformed continuously into
each other. In the following section we will see that this configuration indeed satisfies the properties we saw above.

FIG. 5: Hedgehog solution vs the trivial map. The first map cannot be continuously transformed to the second one.

To sum up, the first step is to look if manifold of the solutions at the asymptotic spatial is connected non-trivially
with the vacuum manifold. If this holds then soliton solutions are possible and then we solve the equation of motion
with the appropriate asymptotic conditions.

4.5. Magnetic Charge

The hedgehog solution must satisfy the conditions (4.31), so that it corresponds to the vacuum energy. The third
conditions gives for (4.38) :

(Di)
a
bϕb = ∂i(

ura
r

) + ie(Ac
iT

c)ab (
urb
r

) = 0 ⇒
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δair
2 − rira
r3

+ eAc
i ϵcab

rb
r

= 0 ⇒

rbrd
r3

(δaiδbd − δadδib) = −eAc
i ϵcab

rb
r

⇒

rbrd
r3

ϵcabϵcid = −eAc
i ϵcab

rb
r

⇒

Ac
i = −ϵcid

rd
er2

⇒

Aa
k(r) = ϵabk

rb

er2
, r → ∞ (4.39)

This corresponds to the non-Abelian magnetic field :

Bi
a = (∇×Ai)a ⇒

Bi
a = ϵabcϵinc∂b(

rn

er2
) ⇒

Bi
a =

δaiδbn − δanδbi
er4

(δnbr
2 − rnrb) ⇒

Ba
k(r) =

rark

er4
(4.40)

This magnetic field falls as 1/r2, something that we expect from coulomb like magnetic field. This suggests to identify
it as a magnetic field of the monopole, since the electric part of the field tensor is zero, F a

0i = 0. We can construct a
general solution of Dµϕ

a = 0 for ϕaϕa = u2

Dµϕ
a = 0 ⇒

∂µϕ
a = −eϵcabAc

µϕ
b ⇒

ϵdmaϕ
m∂µϕ

a = eϵdmaϵcbaA
c
µϕ

bϕm ⇒

ϵdmaϕ
m∂µϕ

a = e(δdcδmb − δdbδmc)A
c
µϕ

bϕm ⇒

ϵdma
1

e
ϕm∂µϕ

a = Ad
µϕ

mϕm −Am
µ ϕ

mϕd ⇒

1

e
ϵdmaϕm∂µϕ

a = u2Ad
µ − uAem

µ ϕd ⇒

Ad
µ =

1

u
Aem

µ ϕd +
1

eu2
edmaϕ

m∂µϕ
a (4.41)

Where we have used the projection (4.34) of Aa
µ to the unbroken subgroup U(1). Using this formula now we can

calculate the field tensor (4.24):

F a
µν = ∂µ[

1

u
Aem

ν ϕa +
1

eu2
ϵambϕ

m∂νϕ
b]− ∂ν [

1

u
Aem

µ ϕa +
1

eu2
ϵambϕ

m∂µϕ
b]
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−eϵajk[
1

u
Aem

µ ϕj +
1

eu2
ϵjmbϕ

m∂µϕ
b][

1

u
Aem

ν ϕk +
1

eu2
ϵkncϕ

n∂νϕ
c] =

ϕa

u
(∂µA

em
ν − ∂νA

em
µ )− 1

u
(Aem

µ ∂νϕ
a −Aem

ν ∂µϕ
a) +

1

eu2
ϵamb[∂νϕ

b∂µϕ
m − ∂µϕ

b∂νϕ
m]

− 1

u3
[Aem

µ ϕj∂νϕ
bϕmϵajkϵkmb +Aem

ν ϵajkϵjmbϕ
m∂µϕ

bϕk]− 1

eu4
ϵajkϵjmbϵknc(ϕ

m∂µϕ
bϕn∂νϕ

c)

Note that:

1

eu2
ϵamb[∂νϕ

b∂µϕ
m − ∂µϕ

b∂νϕ
m] =

2

eu2
ϵamb∂µϕ

m∂νϕ
b

Focus on the term − 1
u3 [A

em
µ ϕj∂νϕ

bϕmϵajkϵkmb + Aem
ν ϵajkϵjmbϕ

m∂µϕ
bϕk] and use the formula ϵabcϵamn = (δbmδcn −

δbnδcm):

1

u3
[−ϕaϕb∂µϕaAem

ν + u2∂µϕ
bAem

ν + ϕaϕb∂νϕ
bAem

µ − u2∂νϕ
aAem

µ ]

The second and the fourth term cancel the 1/u terms in the full expression. For the first and the third, we write for
example the first

ϕbϕa∂µϕ
a =

ϕb

2
∂µ(

ϕaϕa

2
) =

ϕb

2
∂µ(

u2

2
) = 0

Thus these terms are equal to zero. As for the term − 1
eu4 ϵajkϵjmbϵknc(ϕ

m∂µϕ
bϕn∂νϕ

c) we write:

− 1

eu4
ϵajkϵjmbϵknc(ϕ

m∂µϕ
bϕn∂νϕ

c) =
1

eu4
ϵknc(δamδkb − δabδkm)(ϕmϕn∂µϕ

b∂νϕ
c)

1

eu4
ϵknc(ϕ

aϕn∂µϕ
k∂νϕ

c − ϕkϕn∂µϕ
a∂νϕ

c) = − 1

eu4
ϵcnkϕ

aϕn∂µϕ
k∂νϕ

c

The field tensor is given then by

F a
µν =

ϕa

u
(∂µA

em
ν − ∂νA

em
µ ) +

2

eu2
ϵamb∂µϕ

m∂νϕ
b − 1

eu4
ϵcnkϕ

aϕn∂µϕ
k∂νϕ

c

F a
µν =

ϕa

u
(∂µA

em
ν − ∂νA

em
µ ) +

2

eu2
ϵamb∂µϕ

m∂νϕ
b − 1

eu4
ϵcnkϕ

aϕn∂µϕ
k∂νϕ

c

ϕaF a
µν = u(∂µA

em
ν − ∂νA

em
µ ) + ϵamb

2

eu2
ϕa∂µϕ

m∂νϕ
b − 1

eu2
ϵcnkϕ

n∂µϕ
k∂νϕ

c

ϕaF a
µν

u
= (∂µA

em
ν − ∂νA

em
µ ) +

1

eu3
(ϵijkϕ

i∂µϕ
j∂νϕ

k)

Fµν =
ϕaF a

µν

u
= (∂µA

em
ν − ∂νA

em
µ ) +

1

eu3
ϵijkϕ

i∂µϕ
j∂νϕ

k (4.42)

In the topolagically trivial sector where ϕa = u(0, 0, 0) we get from (4.42):

Fµν = ∂µA
em
ν − ∂νA

em
µ

This expression coincides with field tensor of Maxwell’s theory and satisfies the Bianchi identity. Recall that Bianchi
identity corresponds to the homogeneous Maxwell equations, thus in the topologically trivial sector monopole does
not exist.
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In the case of non-trivial map like hedgehog solution Bianchi identity doesn’t hold anymore and we get:

∂λFµν + ∂µFνλ + ∂νFλµ = 0 ⇒

ϵaλµν∂λFµν = 0 ⇒

ϵaλµν∂λ[(∂µA
em
ν − ∂νA

em
µ ) +

1

eu3
ϵijkϕ

i∂µϕ
j∂νϕ

k = 0 ⇒

∂λF̃λa =
1

2eu3
ϵijkϵaλµν∂λϕ

i∂µϕ
j∂νϕ

k ⇒

∂λF̃
aλ = ka (4.43)

ka =
1

2eu3
ϵaλµνϵijk∂λϕ

i∂µϕ
j∂νϕ

k (4.44)

Where F̃ aλ = 1
2ϵ

aλµν(∂µA
em
ν − ∂νA

em
µ ) is the dual electromagnetic tensor and we identify ka as a magnetic current.

This current is conserved:

∂ak
a = 0 (4.45)

Since the terms after the action of ∂a are antisymmetric-symmetric products. We should note that this is not a
Noether current, because it does not originate from a continuous symmetry. The magnetic charge that composes this
current is called t’Hooft-Polyakov monopole.
We can calculate the magnetic charge by taking the zeroth component of the magnetic current :

g =

∫
d3xk0 =

1

2eu3

∫
d3xϵλµνϵijk∂λϕ

i∂µϕ
j∂νϕ

k =
1

2eu3

∫
d3xϵλµνϵijk∂λ[ϕ

i∂µϕ
j∂νϕ

k] =

g =
1

2eu3

∮
dSλϵ

λµνϵijkϕ
i∂µϕ

j∂νϕ
k

Where in the last line we used Stoke’s theorem and the integral has been taken over surface S2 on the spatial
asymptotic. We can parameterise this surface with coordinates ξa for a = 1, 2. Then it holds that

∂νϕ
k =

∂ξa

∂rν
∂ϕk

∂ξa

dS = det(
∂r

∂ξ
)d2ξ ⇒ dSλ =

1

2!
ϵλmnϵab

∂rm

∂ξa
∂rn

∂ξb
d2ξ

Then by also letting ϕ̂a = ϕa/u we get for the magnetic charge:

g =
1

2e

∮
dSλϵ

λµνϵijkϕ̂
i∂µϕ̂

j∂ν ϕ̂
k =

1

4e

∮
d2ξϵλmnϵuv

∂rm

∂ξu
∂rn

∂ξv
ϵλµνϵijk

∂ξb

∂rµ
ϕ̂i
∂ϕ̂j

∂ξb
∂ξa

∂rν
∂ϕ̂k

∂ξa
⇒

g =
1

4e

∮
d2ξ(δµmδ

ν
n − δµnδ

ν
m)ϵuv

∂rm

∂ξu
∂rn

∂ξv
ϵijk

∂ξb

∂rµ
ϕ̂i
∂ϕ̂j

∂ξb
∂ξa

∂rν
∂ϕ̂k

∂ξa
⇒

g =
1

4e

∮
d2ξϵuvϵijk(

∂rµ

∂ξu
∂rν

∂ξv
∂ξb

∂rµ
∂ξa

∂rν
− ∂rν

∂ξu
∂rµ

∂ξv
∂ξb

∂rµ
∂ξa

∂rν
)ϕ̂i

∂ϕ̂j

∂ξb
∂ϕ̂k

∂ξa
⇒

g =
2

4e

∮
d2ξϵbaϵijkϕ̂

i ∂ϕ̂
j

∂ξb
∂ϕ̂k

∂ξa
=

1

e

∮
d2ξ

1

2
ϵbaϵijkϕ̂

i ∂ϕ̂
j

∂ξb
∂ϕ̂k

∂ξa
⇒

g =
1

e

∮
d2ξ

√
g =

4πn

e
, n ∈ Z (4.46)

Where g is the determinant of the metric of S2 on the spatial asymptotic. The integer n originates from the number

of times isovector ϕ̂ covers the sphere S2
vac. As for the 4π factor it is clear that originates from the integration of the

unit sphere S2
vac. This condition is the non Abelian anologue of the Dirac quantization condition (3.14).

eg = 4πn, n ∈ Z (4.47)
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4.6. ’t Hooft-Polyakov Ansatz

The asymptotic solutions (4.38), (4.39) are boundary conditions that solutions of (4.26) must respect. Again we
consider static fields and since the system of equations possesses spherical symmetry, ’t Hooft and Polyakov suggest
a solution of the form:

ϕ⃗ = uH(r)r̂ ⇒

ϕa = u
ra

r
H(r) (4.48)

A⃗n =
1

e
[1−K(r)]r̂ × ∂nr̂ ⇒

Aa
n = ϵamn

rm

er2
[1−K(r)] (4.49)

Aa
0 = 0 (4.50)

This is called ’t Hooft Polyakov ansatz. As r → ∞ the functions H(r),K(r) must satisfy:

H(r)
r→∞−−−→ 1 (4.51)

K(r)
r→∞−−−→ 0 (4.52)

H(r)
r→0−−−→ 0 (4.53)

K(r)
r→0−−−→ 1 (4.54)

So that boundary conditions (4.38), (4.39) hold at infinity and the fields are regular at r = 0. We could try to
substitute these solutions to equations of motions (4.26), but we will try something more convenient. We are going
to substitute them to the energy functional (4.30) and we will consider monopole solution that corresponds to a local
minimum of (4.30). We get:

V (ϕaϕa) =
λ

4
[ϕaϕa − u2]2 =

λ

4
[u2H2 − u2]2 =

λu4

4
[H2 − 1]2 (4.55)

Ea
n = F a

0n = ∂0A
a
n − ∂nA

a
0 − eϵabcAb

0A
c
n = 0 (4.56)

Ba
i =

1

2
ϵijkF

ajk =
1

2
ϵijk(∂

jAak − ∂kAaj − eϵabcAbjAck) ⇒

Ba
i =

1

2
ϵijk(

2

er2
(1−K)ϵajk − 1

er4
[2(1−K) + rK ′][ϵamkrmr

j − rmr
kϵamj ]− 1

er4
ϵcabϵbmjϵcnk(1−K)2rmrn) ⇒

Ba
i = 2δai (1−K)

1

er2
− 1

er4
[2(1−K) + rK ′][r2δai − rir

a]− 1

er4
(1− 2K +K2)rir

a ⇒

Ba
i =

2

er4
rir

a − 2K

er4
rir

a − K ′

er
δai +

K ′

er3
rir

a − 1

er4
rir

a +
2K

er4
rir

a − K2

er4
rir

a
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Ba
i =

1

er4
[1 + rK ′ −K2]rir

a − δai
K ′

er
⇒

Ba
i B

a
i =

1

e2r4
[1 + r2(K ′)2 +K4 − 2K2 − 2rK2K ′ + 2rK ′] +

3(K ′)2

e2r2
− 2

K ′ + r(K ′)2 −K2K ′

e2r3
⇒

Ba
i B

a
i =

1− 2K2 +K4

e2r4
+ 2

(K ′)2

e2r2
⇒

Ba
i B

a
i =

(1−K2)2

e2r4
+

2(K ′)2

e2r2
(4.57)

(Di)
a
bϕ

b = ∂i(ϕ
a) + eAc

i ϵcabϕ
b =

uH

r3
[δai r

2 − rir
a] +

urari
r2

H ′ + ϵcmiϵcab
rmrb

r3
uH(1−K) ⇒

(Di)
a
bϕ

b =
uH

r3
[δai r

2 − rir
a] +

urari
r2

H ′ + [rari − r2δai ][
uH

r3
− uHK

r3
] ⇒

(Di)
a
bϕ

b =
urari
r2

[H ′ − HK

r
] +

uHK

r
δai

DiϕDiϕ = u2[(H ′)2 +
(HK)2

r2
− 2

H

r
KH ′] +

3u2

r2
H2K2 +

u2

r2
(
2HKH ′

r
− 2(

HK

r
)2) ⇒

DiϕDiϕ = u2(H ′)2 +
2u2

r2
(HK)2 (4.58)

Then we substitute (4.55),(4.56), (4.57), (7.67) into (4.30):

E =

∫
d3x[

(1−K2)2

2e2r4
+

(K ′)2

e2r2
+
u2

2
(H ′)2 +

u2

r2
(HK)2 +

λu4

4
[H2 − 1]2] ⇒

E = 4π

∫ ∞

0

dr[
(1−K2)2

2e2r2
+

(K ′)2

e2
+
u2r2

2
(H ′)2 + u2(HK)2 +

λu4r2

4
[H2 − 1]2] (4.59)

We let the energy density as:

H =
(1−K2)2

2e2r2
+

(K ′)2

e2
+
u2r2

2
(H ′)2 + u2(HK)2 +

λu4r2

4
[H2 − 1]2 (4.60)

The Euler-Lagrange equations that correspond to the local minimum of the energy of the system are:

∂H
∂H

=
d

dr
(
∂H
∂H ′ ) (4.61)

∂H
∂K

=
d

dr
(
∂H
∂K ′ ) (4.62)

Then H and K satisfy the following differential equations:

∂H
∂H

= 2u2K2H + λu4r2H[H2 − 1]

d

dr
(
∂H
∂H ′ ) = u2r2H ′′ + 2u2rH ′
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⇒ H ′′ = 2K2H
1

r2
− 2

r
H ′ + λu2H[H2 − 1] (4.63)

∂H
∂K

= −2K
1−K2

e2r2
+ 2u2H2K

d

dr
(
∂H
∂K

) = 2
K ′′

e2

⇒ K ′′ =
K(K2 − 1)

r2
+ e2u2H2K (4.64)

Now let ξ = uer and the equations (4.63), (4.64) become by noting that:

d

dr
= eu

d

dξ

d2

dr2
= e2u2

d2

dξ2

And we get:

d2K

dξ2
=
K(K2 − 1)

ξ2
+H2K (4.65)

d2H

dξ2
=

2K2H

ξ2
− 2

ξ

dH

dξ
+
λ2

e2
H(H2 − 1) (4.66)

Equations (4.66) and (4.65) can be solved only numerical. This does not hold in the case of λ = 0, which corresponds
to the massless Higgs. This situation is called Bogomol’nyi limit. We will study this limit later on. In figure 6

FIG. 6: Profile functions K(ξ) and H(ξ)/ξ are shown for the ’t Hooft– Polyakov monopole at λ = 0, λ = 0.1 and λ = 1 [3]

we see that the functions H(ξ), K(ξ) approach their asymptotic values quite fast. The gauge fields Aa
µ approach its

asymptotic value outside a core with radius of order Rc. This defines the core of the of monopole. Then we can
estimate [14] the scale of the energy (4.59) as:

E = Emag + Es ∼
4π

e2
[
1

Rc
+ u2e2Rc] (4.67)

Where we have ignored the Higg’s potential dependence from the energy, since we will see in (4 4.9), that the energy of
the configuration does not depend sensitively on the coupling λ. The first term describes the energy of the magnetic
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field inside the core and the second the one the energy of the scalar field inside the core. By minimizing this expression
we obtain the value of Rc:

dE

dRc
= 0 ⇒

Rc = (ue)−1 =
1

MW
∼ 10−28cm (4.68)

Note that the energy of the system (4.59) indeed tends to zero as r → ∞, which is the vacuum value. We can also
check if the system contains magnetic charge by calculating the magnetic flux:

g =

∮
dSiBi =

∮
dSi

ϕaBa
i

u
=

1

u

∫
d3x(Ba

i ∂iϕ
a + ϕa∂iB

a
i )

We can use the formula (4.11):

ϕa∂iB
a
i = −e

2
ϕaϵabcϵijk(∂iA

bjAck +Abj∂iA
ck) = eϵijkϵcab∂iA

a
jA

c
kϕ

b = (ϵ0ijk∂iA
a
j )eA

c
kϵcabϕ

b = eBa
kA

c
kϵcabϕ

b

Thus we get:

g =
1

u

∫
d3xBa

i Diϕ
a (4.69)

We continue and we get:

g =
1

u

∫
d3xBa

i Diϕ
a =

1

u

∫
d3x[

1

er4
[1 + rK ′ −K2]rir

a − δai
K ′

er
][
urari
r2

[H ′ − HK

r
] +

uHK

r
δai ] ⇒

g =
4π

e

∫ ∞

0

dr[(1 + rK ′ −K2)(H ′ − HK

r
) +

HK

r
(1 + rK ′ −K2)−K ′r(H ′ − HK

r
)− 3K ′KH] ⇒

g =
4π

e

∫ ∞

0

dr[H ′− HK

r
+rK ′H ′−K ′KH−K2H ′+

HK3

r
+
HK

r
+HKK ′− HK3

r
−K ′H ′r+HKK ′−3KK ′H] ⇒

g =
4π

e

∫ ∞

0

dr[H ′(1−K2)− 2KK ′H] =
4π

e

∫ ∞

0

dr
d

dr
[H(1−K2)] =

4π

e
[H(1−K2)]r=∞

r=0 =
4π

e

Thus ’t Hooft-Polyakov ansatz provides a solution that contains magnetic charge and satisfies the appropriate
asymptotic behavior. Notice that the magnetic charge in this configurations is not fixed by an integer, but it cor-
responds to n = 1 in (4.47). On the other hand, at the boundary of the configurations, charges have a similar
quantization condition like the Dirac quantization (3.14). This is because at large distances the SU(2) symmetry is
broken to U(1)em and the magnetic soliton resembles a Dirac monopole. But at distances smaller than the wavelength
of the W bosons inside the core of the monopole the SU(2) symmetry is restored and we get a pure GUT magnetic
soliton.

4.7. Julia-Zee Dyon

In the ’t Hooft Polyakov ansatz, we let Aa
0 = 0. This can be generalised to a non zero time component of the vector

field by setting it:

Aa
0 =

1

e
V (r)r̂a (4.70)

Then we can write the solution in covariant form:

A⃗µ =
1

e
V (r)∂µtr̂ +

1

e
[1−K(r)]r̂ × ∂µr̂ (4.71)
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This field configuration is a non-Abelian dyon, a configuration which has both electric and magnetic charges. The
non-Abelian electric field is given by:

Ea
i = F a

0i = ∂0A
a
i − ∂iA

a
0 − eϵabcA

b
0A

c
i ⇒

Ea
i = − V

er
δai − r̂ar̂i

er
(rV ′ − V )− 1

er
V (1−K)(r̂ar̂i − δai )

Ea
i = −1

e

V K

r
δai +

1

er
[V K − rV ′]r̂ar̂i (4.72)

1

2
Ea

i E
a
i =

1

2r2e2
[r2(V ′)2 + 2V 2K2]

The energy functional (4.30) becomes:

E = 4π

∫ ∞

0

dr[
1

2e2
(2V 2K2 + r2(V ′)2) +

(1−K2)2

2e2r2
+

(K ′)2

e2
+
u2r2

2
(H ′)2 + u2(HK)2 +

λu4r2

4
[H2 − 1]2] (4.73)

With energy density:

H =
1

e2
(V 2K2 +

r2(V ′)2

2
) +

(1−K2)2

2e2r2
+

(K ′)2

e2
+
u2r2

2
(H ′)2 + u2(HK)2 +

λu4r2

4
[H2 − 1]2 (4.74)

From the energy functional we can estimate the radius of the core of the dyon and since electric terms will give the
same behavior as the scalar kinetic term. Thus we expect a core of radius Rc ∼ 10−28cm.
The equation of motion for H(ξ) again is given by (4.66) after the change of variable ξ = eur. For K(r) and V (r)

we get:

∂H
∂K

= 2KV 2 1

e2
− 2K

1−K2

e2r2
+ 2u2H2K

d

dr
(
∂H
∂K ′ ) = 2

K ′′

e2

ξ=eur−−−−→ K ′′ = K(H2 + V 2) +
K(K2 − 1)

ξ2
(4.75)

∂H
∂V

= 2
1

e2
V K2 d

dr
(
∂H
∂V ′ ) =

1

e2
(2rV ′ + r2V ′′)

ξ=eur−−−−→ V ′′ =
2V K2

ξ2
− 2V ′

ξ
(4.76)

This system of equations can be solved numerically. Note that the function V (r) has an asymptotic behavior:

V (r)
r→0−−−→ 0 V (r)

r→∞−−−→ C (4.77)

Where the constant C is associated with the electric charge as we will see. Note that from equation of motion (4.26)
for the gauge field, we can obtain by letting µ = 0 and ν spatial:

DiF
a
0i = −eϵabcϕbD0ϕc ⇒ DiE

a
i = −u

2

e
ϵabcH

2(r)V (r)
rb

r

ra

r

rc

r
= 0 ⇒

DiE
a
i = 0 (4.78)

⇒ ϕa∂iE
a
i = eEa

i ϵcabA
c
iϕ

b
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Just as with magnetic charge we can calculate the electric charge from the Gauss law:

q =
1

u

∮
dSnE

a
nϕ

a =
1

u

∫
d3x(ϕa∂nE

a
n + Ea

n∂nϕ
a)

q =
1

u

∫
d3xEa

nDnϕ
a (4.79)

Where we have make use of (4.78). We have:

q =
4π

u

∫ ∞

0

drr2[−1

e

V K

r
δai +

1

er
[V K − rV ′]r̂ar̂i][ur̂

ar̂i[H
′ − HK

r
] +

uHK

r
δai ] ⇒

q =
4π

e

∫ ∞

0

drr2[−V K
r
δai +

1

r
[V K − rV ′]r̂ar̂i][r̂

ar̂i(H
′ − HK

r
) +

HK

r
δai ] ⇒

q = −4π

e

∫ ∞

0

dr[2HVK2 + r2H ′V ′] ⇒

q = −4π

e

∫ ∞

0

dξ[2HVK2 + ξ2H ′V ′] ⇒

(4.76)−−−−→ q = −4π

e

∫ ∞

0

dξ[ξ2HV ′′ + 2ξV ′H + ξ2V ′H ′] = −4π

e

∫ ∞

0

dξ[ξ2(HV ′)′ + (ξ2)′V ′H] = −4π

e

∫ ∞

0

dξ
d[ξ2HV ′]

dξ

To compute this note that (4.76)

ξ2V ′′ = 2V K2 − 2V ′ξ ⇒
∫ ∞

0

dξV ′′ξ2 = 2

∫ ∞

0

dξV K2 − 2

∫ ∞

0

dξξV ′ ⇒

V ′ξ2|ξ=∞ −
∫ ∞

0

dξ2ξV ′ =

∫ ∞

0

dξ2V K2 − 2

∫ ∞

0

dξξV ′ ⇒

V ′Hξ2|ξ=∞ =

∫ ∞

0

dξ2V K2 = −A

Thus we get:

q =
4πA

e
= gA (4.80)

Where g is the magnetic charge of the configuration. Notice that for A = 0, electric charge vanishes and as r → ∞,
V → 0. This suggests that for V = 0 ⇒ Aa

0 = 0 the configuration of the system describes a magnetic monopole.
Also note that A is an arbitrary parameter and it is not quantized on the classical level unlike the magnetic charge
quantization, which has topological origins. Anti-dyon solution is also possibly since we could let A → −A, or we
could perform a gauge transformation that changes A0

µ → −A0
µ. Finally, Aa

0 is parallel to the Higgs triplet ϕa and
thus we can consider it as an additional triplet of scalar fields. This is called Julia-Zee correspondence ϕa ⇔ Aa

0 .

4.8. The Bogomol’nyi Limit

Let’s try to calculate a lower bound for the dyon and magnetic monopole mass. Our starting point is the energy of
static configuration (4.30) and we write in a general form:

E =

∫
d3x[

1

2
(Ea

i E
a
i +Ba

i B
a
i +Diϕ

aDiϕ
a) +

λ

4
(ϕaϕa − u2)2] ⇒
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E =

∫
d3x[

1

2
(Ea

i E
a
i +Ba

i B
a
i + cos2(a)Diϕ

aDiϕ
a + sin2(a)Diϕ

aDiϕ
a) +

λ

4
(ϕaϕa − u2)2 ⇒

E =

∫
d3x

1

2
[(Ea

i −sin(a)Diϕ
a)2+(Ba

i −cos(a)Diϕ
a)2]+sin(a)

∫
d3xEa

i Diϕ
a+cos(a)

∫
d3xBa

i Diϕ
a+

∫
d3x

λ

4
(ϕaϕa−u2)2

(4.81)
Where a is an arbitrary real number. We have mention that the differential equations (4.66) and (4.65) have analytical
solution only for λ = 0. The potential then vanishes and the minimum of (4.81) occurs for:

Ea
i = sin(a)Diϕ

a Ba
i = cos(a)Diϕ

a (4.82)

Since then the scalar field vanishes. These are the Bogomol’nyi–Prasad–Sommerfield (BPS) equations. Substi-
tute these equations to (4.81) and we get:

E = sin(a)

∫
d3xEa

i Diϕ
a + cos(a)

∫
d3xBa

i Diϕ
a = usin(a)q + ucos(a)g ⇒

E ≥ u(sin(a)q + cos(a)g) (4.83)

Where we have used (4.79) and (4.69). Equation (4.83) provides a lower bound for the energy of the configurations.
As a function of a, (4.83) has a minimum for:

dE

da
= 0 ⇒ tan(a) =

q

g
= A (4.84)

This provides a lower bound for dyon mass:

M ≥ u|q + ig| = u
√
q2 + g2 (4.85)

This is known as the Bogomol’nyi bound. By considering (4.84) the lower bound for the dyon mass becomes:

M ≥ u(sin(a)q + cos(a)g) = u(gtan(a)sin(a) + gcos(a)) =
ug

cos(a)
=

4πu

ecos(a)
=

137mW

cos(a)

Where the bound holds for a ∈ [0, π/2). Equation (4.84) tell us the amount of electric and magnetic charge dyon
contains. Therefore the mass of dyon depends from the electric and magnetic charge in the configuration. Note that
(4.82) give:

Ea
i = sin(a)Diϕ

a ⇒ −uJK
r2

δai + u
J + JK − rJ ′

r4
rari = sin(a)[

urari
r2

[H ′ − HK

r
] +

uHK

r
δai ] ⇒

sin(a)H = −V (4.86)

Ba
i = cos(a)Diϕ

a ⇒ 1

er4
[1 + rK ′ −K2]rari − δai

K ′

er
= cos(a)

urari
r2

[H ′ − KH

r
] + cos(a)

uHK

r
δai

K ′ = −cos(a)HKeu 1−K2 = uer2cos(a)H ′

ξ=eur−−−−→ dK

dξ
= −cos(a)HK (4.87)

ξ=eur−−−−→ dH

dξ
=

1

cos(a)

1−K2

ξ2
(4.88)

And this system of differential equations is solved by [10]:

V (ξ) = tan(a)[coth(ξ)− 1

ξ
] (4.89)
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K(ξ) =
ξ

sinh(ξ)
(4.90)

H(ξ) =
1

cos(a)
(coth(ξ)− 1

ξ
) (4.91)

Where the boundary conditions (4.53), (4.51), (4.54), (4.52) and (4.89) are satisfied.
Now let’s investigate the lower bound of the magnetic monopole which corresponds for C = 0 ⇒ a = 0. Then the

BPS equation, since Ea
i = 0, is given by:

Ba
i = Diϕ

a (4.92)

This equation gives

1

er4
[1 + rK ′ −K2]rari − δai

K ′

er
=
urari
r2

[H ′ − KH

r
] +

uHK

r
δai

⇒ K ′ = −ueHK 1 + rK ′ −K2 = eur2[H ′ − HK

r
]

ξ=eur−−−−→ dK

dξ
= −HK 1 + ξ

dK

dξ
−K2 = ξ2[

dH

dξ
− HK

ξ
] ⇒

dK

dξ
= −HK ξ2

dH

dξ
= 1−K2 (4.93)

This system of differential equations is solved by [10]:

K(ξ) =
ξ

sinh(ξ)
H(ξ) = coth(ξ)− 1

ξ
(4.94)

Where the boundary conditions (4.53), (4.51), (4.54) and (4.52) are satisfied. Notice that these solutions can be
obtained if we set a = 0 at the (4.91) and (4.89). In figure (8) and (7) we can see that the functions H(ξ) and K(ξ)
have the expected behavior. By setting q = 0 and a = 0, (4.85) becomes

M ≥ ug =
ue

e2/4π
= 137mW (4.95)

FIG. 7: Graph of K(ξ) FIG. 8: Graph of H(ξ)

If we consider the experimental value of the weak bosons to be around 90GeV , we get an enormous lower bound of
12 TeV . In this model the mass is too large, therefore it might explain the lack of experimental evidence so far. If this
is the case, recall that an electromagnetic theory which is symmetric under O(2) field transformations have one unified
charge (2.21). Then the magnetic charge is expected to be observed at TeV scale, therefore a dyon configuration for
example bellow this scale has a unified charge q2 = e2 + g2 ≈ e2.
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4.9. Monopole mass dependence from the Higgs coupling

BPS limits provides a lower bound for the monopole mass, since Higgs potential is turned off. We can compute
correction due to the effect of λ being non-zero. This can be done by using numerical analysis techniques to solve the
system of differential equations and hence calculating the mass of the monopole.

Firstly we change the variable ξ = eur and let β2 = 2λ
e2 = (mH

mW
)2, thus (4.59) becomes:

M(β) =
4πu

e

∫ ∞

0

dξ[
(1−K2)2

2ξ2
+ (K ′)2 +

ξ2

2
(H ′)2 + (HK)2 +

β2

8
ξ2(H2 − 1)2] = 137mWC(β) (4.96)

Where the Bogomol’nyi bound holds:

C(β) ≥ C(0) = 1 (4.97)

Notice that:

dC

dβ
=
β

4

∫ ∞

0

dξ[ξ2β(H2 − 1)2] > 0 (4.98)

Which means the mass of the monopole increases as a function β.
The other extreme case where β → ∞, the potential energy term forces the Higgs field to be frozen at its vacuum

value almost everywhere. Thus at this limit H(ξ) = 1 for all ξ > 0. In this case the system of differential equations
reduces to a massive Yang-Mills equation, (4.65) gives:

ξ2K ′′
∞ = K3

∞ −K∞ + ξ2K∞ (4.99)

And the energy integral (4.96) becomes:

C(∞) =

∫ ∞

0

dξ[
(1−K2

∞)2

2ξ2
+ (K ′

∞)2 +K2
∞] = 1.787 (4.100)

Where we have used the result of [6]. Therefore for the intermediate values of β, 1 < C(β) < 1.787. Indeed numerical
solutions showcase this behavior in figure (9). For small values6 of β both numerical [7] and asymptotic [6] solutions

FIG. 9: C(β) as a function of β, accurate up to 11 digits [7].

suggest an expansion for C(β):

C(β) = 1 +
β

2
+O(β2) (4.101)

Similarly for large values7 of β we have an expansion of C(β):

C(β) = 1.787− 2.228

β
+O(

1

β2
) (4.102)

6 (10−4 ≤ β ≤ 5× 10−4)
7 (1000 ≤ β ≤ 2000)
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5. GRAVITATIONAL ’T HOOFT POLYAKOV MONOPOLES

In this section, we are going to discuss the gravitational effects of monopole configurations in Georgi-Glashow model.
First we are going derive general properties of the monopole solution in curved space-time and then we are going to
discuss the circumstances under which monopoles in such model can be viewed as black holes.

5.1. ’t Hooft-Polyakov Monopoles In Curved Space-Time

The Lagrangian of the Georgi-Glashow model inside gravitational field is given by:

√
−gL =

√
−g[− R

16πG
− 1

4
F⃗µν · F⃗µν +

1

2
Dµϕ

aDµϕa − λ

2
(ϕaϕa − u2)2] =

√
−g[Lgravity + Lmatter] (5.1)

Where R the Ricci scalar. Now our model has two sectors, the gravitational and matter sector.

Lgravity = −
√
−g R

16πG
(5.2)

Lmatter =
√
−g[−1

4
F⃗µν · F⃗µν +

1

2
Dµϕ

aDµϕa − λ

4
(ϕaϕa − u2)2] (5.3)

In this analysis we are going to work with the static the spherical symmetric metric:

ds2 = B(r)dt2 −A(r)dr2 − r2dΩ2 (5.4)

Where dΩ is the infinitesimal solid angle:

dΩ2 = dθ2 + sin2(θ)dϕ2 (5.5)

Asymptotically we expect space-time to be flat:

A(∞) = B(∞) = 1 (5.6)

For our convenience we let:

A(r) = (1− 2GM(r)

r
)−1 (5.7)

Where M(r) corresponds to the mass produced by the SU(2) configurations. We want to generalise monopole
configurations studied in the previous section to curved space-time. For this we consider the configuration in ’t Hooft
ansatz:

ϕa = uH(r)r̂a (5.8)

Aa
i =

1−K(r)

e
[r̂ × ∂ir̂]

a (5.9)

Aa
0 = 0 (5.10)

With boundary conditions:

H(0) = 0 H(∞) = 1 K(0) = 1 K(∞) = 0 (5.11)

These fields correspond to monopole configuration as we saw in the previous section. Therefore the difference with the
flat case is that now the mangetic monopole causes the space-time to be curved. In order to study this generalization
we will compute the various terms in our Lagrangian, which are affected by the curved-spacetime. We note that:

g00 = (g00)−1 = B(r) g11 = (g11)−1 = −A(r) g22 = (g22)−1 = −r2sin2(θ) g33 = (g33)−1 = −r2 (5.12)
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From the previous section we have the components of the covariant derivative acting on the Higgs field:

(Di)
a
bϕ

b = ur̂ar̂i[H
′ − HK

r
] +

uHK

r
δai (5.13)

Write them as vectors in spherical coordinates (t, r, θ, ϕ):

D1ϕ⃗ = ur̂H ′ D2ϕ⃗ =
uHK

r
θ̂ D3ϕ⃗ =

uHK

r
ϕ̂ (5.14)

Time components are zero since our solution is static. Then the kinetic Higgs term becomes:

1

2
Diϕ⃗ ·Diϕ⃗ =

1

2
giiDiϕ⃗ ·Diϕ⃗ = −u

2H
′2

2A
− u2H2K2

r2
(5.15)

The components of non-Abelian tensor are given by:

F a
ij =

K ′

er
(ϵabj r̂

br̂i − ϵabir̂
br̂j) +

2(1−K)

er2
[ϵaij + ϵabir̂

br̂j − ϵabj r̂
br̂i]−

r̂ar̂m

er2
(K − 1)2ϵijm (5.16)

The non-zero components are then:

F⃗12 =
K ′

e
ϕ̂ (5.17)

F⃗13 = −K
′

e
sin(θ)θ̂ (5.18)

F⃗23 =
sin(θ)

e
(1−K2)r̂ (5.19)

Then we calculate the kinetic energy of the non-Abelian field:

−1

4
giρgjσF⃗ρσ·F⃗ij = −1

2
g11g22(F⃗12)

2−1

2
g22g33(F⃗23)

2−1

2
g11g33(F⃗13)

2 = − (K ′)2

2Ae2r2
− (K ′)2sin2(θ)

2e2Ar2sin2(θ)
− sin2(θ)

2e2r4sin2(θ)
(1−K2)2 ⇒

−1

4
F⃗ij · F⃗ ij = − (K ′)2

Ae2r2
− (1−K2)2

2e2r4
(5.20)

The Higgs potential is equal to:

−λ
4
(ϕaϕa − u2)2 = −λu

4

4
(H2 − 1)2 (5.21)

Note that:

√
−g =

√
−det(gµν) = r2sin(θ)

√
AB (5.22)

Therefore, the matter contribution to the action is:

Smatter = 2π

∫
dt

∞∫
0

r2dr

π∫
0

dθr2sin(θ)
√
AB[− (K ′)2

Ae2r2
− (1−K2)2

2e2r4
− u2H

′2

2A
− u2H2K2

r2
− λu4

4
(H2 − 1)2] ⇒

Smatter = −4π

∫
dt

∞∫
0

drr2
√
AB{ 1

A
[
(K ′)2

e2r2
+
u2H

′2

2
] +

u2H2K2

r2
+

(1−K2)2

2e2r4
+
λu4

4
(H2 − 1)2} =

∫
dt

∞∫
0

drLmatter

(5.23)
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From the matter sector we can obtain the equations of motions for the field functions. We apply the Euler-Lagrange
equations for the gauge field:

d

dr
(
∂Lmatter

∂K ′ ) =
∂Lmatter

∂K
⇒

d

dr
[

√
B

A

K ′

e2
] =

√
ABK(uH)2 +

√
AB

e2r2
K(K2 − 1) ⇒

1√
AB

d

dr
[

√
B

A
K ′] = K(ueH)2 +

1

r2
K(K2 − 1) (5.24)

And for the Higgs field:

d

dr
(
∂Lmatter

∂H ′ ) =
∂Lmatter

∂H
⇒

1

r2
√
AB

d

dr
[r2H ′

√
B

A
] = 2

HK2

r2
+ λu2H(H2 − 1) (5.25)

Notice in flat space-time limit; A,B → 1, equations (5.25) and (5.24) reduce to (4.66) and (4.65) as it was expected.
Now we proceed with the gravity sector. The Ricci scalar of the static spherical metric is given by [29]:

R =
B′′

AB
− B′A′

2A2B
− B

′2

2B2A
+

2B′

rAB
− 2A′

rA2
− 2

r2
(1− 1

A
) (5.26)

Since the gravitational sector will give rise to equations of motion for the functions A(r) and B(r), we let the quantities:

T =
(K ′)2

e2r2
+
u2H

′2

2
(5.27)

U =
u2H2K2

r2
+

(1−K2)2

2e2r4
+
λu4

4
(H2 − 1)2 (5.28)

Therefore we write the action of the system:

S = −4π

∫
dt

∫ ∞

0

drr2[

√
AB

16πG
(
B′′

AB
− B′A′

2A2B
− B

′2

2B2A
+

2B′

rAB
− 2A′

rA2
− 2

r2
(1− 1

A
)) +

√
AB(

T

A
+ U)] (5.29)

Notice that:

r2B′′
√
AB

− r2B′A′

2A
√
AB

− r2B
′2

2B
√
AB

+
2rB′
√
AB

=
(r2B′)′√
AB

− r2(BB′A′ +AB′B′)

2AB
√
AB

=

√
AB(r2B′)′ − r2BB′A′+r2AB′B′

2
√
AB

AB
⇒

r2B′′
√
AB

− r2B′A′

2A
√
AB

− r2B
′2

2B
√
AB

+
2rB′
√
AB

=

√
AB(r2B′)′ − r2B′BA′+AB′

2
√
AB√

(AB)2
=

√
AB(r2B′)′ − r2B′ (AB)′

2
√
AB√

(AB)2
⇒

r2B′′
√
AB

− r2B′A′

2A
√
AB

− r2B
′2

2B
√
AB

+
2rB′
√
AB

=

√
AB(r2B′)′ − r2B′(

√
AB)′

√
AB

2 = (
r2B′
√
AB

)′

Therefore these terms don’t contribute, since they are written as a total derivative. We left with:

S = 4π

∫
dt

∫ ∞

0

drr2[

√
AB

16πG
(
2A′

rA2
+

2

r2
(1− 1

A
))−

√
AB(

T

A
+ U)] (5.30)
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To simplify the expression we let:

X =
√
AB (5.31)

Y =

√
B

A
(5.32)

From these we obtain:

A =
X

Y
(5.33)

B = XY (5.34)

It holds:

A′ =
X ′Y −XY ′

Y 2
(5.35)

Thus we get:

S = 4π

∫
dt

∫ ∞

0

dr[
1

16πG
(2r

X ′Y

X
− 2rY ′ + 2X − 2Y )− (Y T +XU)r2] =

∫
dt

∫ ∞

0

drL (5.36)

Now we obtain the equations of motion for X and Y , by applying the Euler-Lagrange equations:

d

dr
(
∂L
∂X ′ ) =

∂L
∂X

⇒

1

8πG

d

dr
[
rY

X
] = − 1

8πG

rX ′Y

X2
+

1

8πG
− Ur2 ⇒

d

dr
(
rY

X
) = −rX

′Y

X2
+ 1− 8πGUr2 ⇒

(rY )′ = X(1− 8πGr2U) (5.37)

d

dr
(
∂L
∂Y ′ ) =

∂L
∂Y

⇒

− 1

8πG
=

1

16πG
[
2rX ′

X
− 2]− Tr2 ⇒

X ′

X
= 8πGTr (5.38)

Integrate (5.38):

X(r) = exp[8πG

r∫
∞

drTr] →

A =
1

B
exp[16πG

r∫
∞

drTr] =
1

B
exp[F (r)] (5.39)
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We write thus Y as:

Y =

√
B

A
=

1

A
exp[

F (r)

2
] (5.40)

Using this we obtain from (5.37):

(
r

A
exp(

F

2
))′ =

√
AB(1− 8πGr2U) ⇒

(
r

A
exp(

F

2
))′ = exp[

F (r)

2
](1− 8πGr2U) ⇒

(
r

A
)′exp(

F

2
) +

1

2

r

A

dF

dr
exp(

F

2
) = exp(

F

2
)(1− 8πGr2U) ⇒

(
r

A
)′ +

8πGTr2

A
= (1− 8πGr2U) ⇒

(
r

A
)′ = 1− 8πGr2(U +

T

A
) (5.41)

Note that:

A =
1

1− 2GM(r)
r

⇒

r

A
= r − 2GM(r) (5.42)

Therefore we get:

1− 2GM ′ = 1− 8πGr2[U + T (1− 2GM

r
)] ⇒

M ′ = 4πr2(T + U)− 8πGMTr (5.43)

Let now:

P (r) = 8πG

∞∫
r

drTr (5.44)

Then we multiply (5.43) with exp(−P (r)) and we get:

M ′exp(−P (r)) = 4πr2(T + U)exp(−P (r))− 8πGMrexp(−P (r)) ⇒

∞∫
0

drM ′exp(−P (r)) = 4π

∞∫
0

drr2(T + U)exp(−P (r))− 8πG

∞∫
0

drTMrexp(−P (r)) ⇒

∞∫
0

drM ′exp(−P (r)) = 4π

∞∫
0

drr2(T + U)exp(−P (r))− 8πG

∞∫
0

drTMrexp(−P (r)) ⇒
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∞∫
0

drM ′exp(−P (r)) = 4π

∞∫
0

drr2(T + U)exp(−P (r))−
∞∫
0

drM [exp(−P (r))]′ ⇒

Mexp(−P (r))|∞0 = 4π

∞∫
0

drr2(T + U)exp(−P (r)) ⇒

M :=M(∞) = 4π

∞∫
0

drr2(T + U)exp(−P (r)) + exp(−P (0))M(0) (5.45)

When we investigate the matter field functions K(r) and H(r) we saw that they obtain their asymptotic behaviors
for r → ∞ outside the monopole core. Therefore M := M(∞) can be considered as total mass of the monopole in
curved space-time. In order for (5.7) to be well defined at r = 0, it must M(0) = 0. Then by taking the limit r → 0,
we have A(0) = 1. Physically speaking this means that there is no singularity at the center of the monopole. We get
then:

M(∞) = 4π

∞∫
0

drr2(T + U)exp(−P (r)) (5.46)

In addition to this we rewrite (5.43):

M ′ = 4πr2(T + U)− 8πGMTr = 4πr2(T + U)− 4πr2T (1− 1

A
) = 4πr2(

T

A
+ U) ⇒

M(∞) = 4π

∞∫
0

drr2(
T

A
+ U) (5.47)

Thus (5.46) and (5.47) describe equallyM(∞). We will show now this is simply the energy of the system. The energy
momentum tensor is given by (4.29)

Tµ
ν = −gσρF aµ

ρ F a
σν +DµϕaDνϕ

a − δµνLmatter (5.48)

The Hamiltonian of the system is given by:

H = T 0
0 = −Lmatter = −[−1

4
F⃗µν · F⃗µν +

1

2
Dµϕ

aDµϕa − λ

2
(ϕaϕa − u2)2] ⇒

E = 4π

∞∫
0

r2[
T

A
+ U ] (5.49)

Therefore indeed (5.46) is the energy of the system. Finally let’s discuss two remarks. First from (5.36) we have:

S =
1

2G

∫
dt

∫ ∞

0

dr[(r
X ′Y

X
− rY ′ +X − Y )− 8πG(Y T +XU)r2] ⇒

L = r
X ′Y

X
− rY ′ +X − Y − 8πG(Y T +XU)r2 (5.50)

Use (5.38):

L = Y r28πGT − r(Y )′ +X − Y − 8πG(Y T +XU)r2 ⇒
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L = −r(Y )′ +X − Y − 8πGXUr2 ⇒

L = −r(
√
B

A
)′ +

√
AB −

√
B

A
−
√
AB8πGUr2 = −r(

√
AB

A
)′ +

√
AB −

√
AB

A
−
√
AB8πGUr2 ⇒

L = −r[ 1
A
(
√
AB)′+

√
AB(

1

A
)′]+

√
AB−

√
AB

A
−
√
AB8πGUr2 = r(

√
AB)′−r(

√
AB)′−r 1

A
(
√
AB)′−r

√
AB(

1

A
)′+

√
AB(1− 1

A
)−

√
AB8πGUr2 →

L = r(
√
AB)′(1− 1

A
)+

√
AB(1− 1

A
)−r

√
AB(

1

A
)′−r(

√
AB)′−

√
AB8πGUr2 = [r(

√
AB)(1− 1

A
)]′−r(

√
AB)′−

√
AB8πGUr2

From (5.38):

(
√
AB)′ =

√
AB8πGTr

And we obtain:

L = [r(
√
AB)(1− 1

A
)]′ − 8πGTr2

√
AB −

√
AB8πGUr2

The total derivative does not contribute to L and we left with:

L = −8πr2G
√
AB(T + U)

And we can multiply L with (2G)−1:

L = −4πr2
√
AB(T + U) ≤ 0 (5.51)

This means that the action functional is manifestly negative, which means the energy functional:

E = −
∫
dt

∞∫
0

drL (5.52)

Is positive definite and thus has a greatest lower bound E. This suggests that the system has indeed a solution.
As a second remark, consider 5.44 and notice since T ≥ 0 then P (r) ≥ 0. This also means that exp(−P (r)) ≥

exp(−P (0)), since P (∞) = 0. Therefore for non-singular solutions (M(0) = 0) obtain:

M ≥ exp(−P (0))
∞∫
0

dr4πr2(T + U) (5.53)

Recall that the integral above is simply the monopole mass in flat space. Then by taking the BPS limit; λ = 0:

Mmin
curved ≥Mmin

flat exp(−P (0))

And since exp(−P (0)) << exp(−P (∞)) = 1 we conclude:

Mmin
curved ≤Mmin

flat (5.54)

This a very interesting remark, when monopole is considered with a curved background, its mass gets smaller compared
to a flat background.

5.2. ’t Hooft Polyakov Monopole As A Black Hole

So far we have consider monopole solution in curved space-time with M(0) = 0 such that there is no singularity
at r = 0. In order for a black hole to form, it is necessary for event horizons to form. This occurs when A(rh) = ∞,
with rh being the event horizon. Solving this we can find:

1− 2GM(rh)

rh
= 0 ⇒
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M(rh) =
rh
2G

(5.55)

Then the differential equation (5.43) becomes:

M ′ = 4πr2(T + U)− 8πGMTr = 4πr2(T + U)− 4πr2T (1− 1

A
) = 4πr2(

T

A(rh)
+ U) ⇒

M ′(rh) = 4πr2hU (5.56)

Using this we can set the following condition at the event horizon:

(
1

A
)′|rh = (1− 2GM(r)

r
)′|rh = −2GM ′(rh)

rh
+

2GM(rh)

r2h
⇒

(
1

A
)′|rh =

1

rh
− 8πGUrh (5.57)

Now the equations of motion for the matter fields for r = rh give two conditions:

(5.25) ⇒ 1

r2h
√
AB

d

dr
[r2H ′

√
B

A
]|rh = 2

HK2

r2h
+ λu2H(H2 − 1) ⇒

1

r2h
√
AB

[rhH
′ d

dr
[r
√
B/A]|r=rh ] =

1

r2h
√
AB

rhH
′[rY ]′r=rh

= 2
HK2

r2h
+ λu2H(H2 − 1)

Use (5.37):

H ′(rh)(
1

rH
− 8πGrhU) = H ′(rh)(

1

A
)′|rh = 2

H(rh)K
2(rh)

r2h
+ λu2H(rh)(H

2(rh)− 1) (5.58)

(5.24) ⇒ 1√
AB

d

dr
[

√
B

A
K ′]|rh = K(ueH)2 +

1

r2h
K(K2 − 1) ⇒

1√
AB

d

dr
[

√
B

A
]|rhK ′ = K(ueH)2 +

1

r2h
K(K2 − 1) ⇒

1

X
(Y ′K ′)|rh = K(ueH)2 +

1

r2h
K(K2 − 1)

Note that at r = rh:

Y + Y ′rh = X[1− 8πGr2hU ] ⇒

Y ′|rh = X[
1

rh
− 8πGrhU ]

Thus we obtain:

K ′[
1

rh
− 8πGrhU ] = K ′(

1

A
)′|rh = K(rh)(ueH(rh))

2 +
1

r2h
K(rh)(K

2(rh)− 1) (5.59)

These additional conditions overdetermine the solution, suggesting that for non-singular conditions events horizons
don’t exist.
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Let’s investigate singular solution, where M(0) ̸= 0 and 1/A(0) = 0. We expect a different mass from the singular
case. Consider the asymptotic behavior of the fields, where:

H(∞) = 1 K(∞) = 0 (5.60)

For these values we have:

T = 0 V =
1

2e2r4
(5.61)

Then (5.43), gives:

M ′(r) = 4πr2U =
2π

e2r2
⇒

M(r)−M(∞) =

∞∫
0

dr
2π

e2r2
= − 2π

e2r
⇒

M(r) =M − 2π

e2r
(5.62)

Then (5.7) gives:

A(r) = (1− 2GM(r)

r
)−1 ⇒

A(r) = (1− rs
r

+
4πG

e2r2
)−1 = (1− 2GM

r
+
r2q
r2

)−1 (5.63)

Where:

rs = 2GM (5.64)

r2q = G
Q2

m

4π
‘ =

G

4π
(
4π

e
)2 =

4πG

e2
(5.65)

In addition to this (5.38) gives:

X ′ = 0 ⇒
√
AB = 1 ⇒

B(r) =
1

A(r)
(5.66)

This means that the monopole singular solution corresponds Reissner-Nordstrom black hole with a magnetic charge
qm = 4π

e . The event horizons are given by:

r± = GM ±
√
G2M2 − r2q (5.67)

The quantity under the square root must be positive, because if it’s negative we get a naked singularity. Therefore it
must hold:

M ≥ Qm√
4πG

(5.68)

Therefore, there is a critical value of monopole mass Mc = Qm/
√
4πG , for a black hole to form. We have mentioned

that gravity decreases the monopole mass and is smaller than the flat case in the BPS limit, where MBPS
flat = 4πu/e.

Thus it is a good approximation to let Mc =MBPS
flat . We find then:

4πu

e
≥ Qm√

4πG
⇒
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16π2u2

e2
≥ 16π2

4πGe2
⇒

u2 ≥ 1

4πG
=
M2

Planck

4π
∼M2

Planck ⇒

ucritical =
MPlanck

2
√
π

∼ 1019GeV (5.69)

Let’s discuss this result. For u << MPlanck, we expect gravitational effects to be weak and thus the system behaves
similarly to the flat problem. On the other hand, for u >> MPlanck, recall that the monopole radius is given by
R = 1/eu :

r± >> R (5.70)

We see that the event horizon is larger than the magnetic monopole. This means when the vacuum expectation
value is much larger than the Planck mass, the event horizon of the black hole tends to ’hide’ the monopole. Thus
the magnetic monopole becomes a black hole. In addition to this let’s see how the event horizon arises, while the
monopole mass increases. In particular from 5.7, we see that when M(r)/r takes its maximum value, 1/A(r) takes
its minimum. The maximum value of mass is obtained asymptotically, therefore we consider (5.62):

M(r)

r
=
M

r
− 2π

e2r2
⇒

[
M(r)

r
]′ = −M

r2c
+

4π

e2r3c
= 0 ⇒

M

r2c
=

4π

e2r3c
⇒

rc =
4π

e2
1

M

Now we approximate M =M(∞) ≈ 4πu
e and we get:

rc ≈
1

eu
= R (5.71)

We see that the 1/A takes its minimum value approximate at the monopole radius. Its minimum value is given by:

1

A(rc)
= [1− 2GM(rc)

rc
] ≈ [1− 2G(

4πu2

e
e− 2π

e2
u2e2)] = [1−G4πu2] ⇒

1

A(rc)
≈ 1−G4πu2 ≈ 1−O(

u2

M2
Planck

) (5.72)

We see that the minimization of 1/A(r) is controlled by the value of u. This is what we expected, since we already
noted that the event horizon appears for u ∼ ucritical = 1

2
√
πG

. Indeed the formula above produces the expected

result:

1

A(rc)
≈ 1− 4πG(

1

2
√
πG

)2 = 0

This argument also tell us that when the event horizon starts to appear for u ≈ ucritical, then the event horizon is
equal to the monopole radius rc.
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As a final remark the fields behave asymptotically near the event horizon outside of the monopole core. Then the
solution for this region is the Reissner-Nordstrom solution. It would be unphysical for fields to behave asymptotically
for finite distances. This because the proper length from the center of the monopole tends to be infinity. This is
because A(r) behaves as A(r) ∼ (r − rh)

−2 near rh and thus blows up at A(rh). Then the proper length :

l(r) =

r∫
0

dr[A(r)]1/2
r→rh−−−→ ∞ (5.73)

To sum up the discussion, we have showcase that for non-singular solutions event horizon cannot be form. Therefore
we investigate singular solutions, where we showcase that event horizons can be formed for vacuum expectation values
u ≥ ucritical ∼ MPlanck. For u < ucritical the gravitational effects are weak and we expect for system to behave
similarly to the flat space-time case. On the other hand for u >> ucritical, outside the monopoles core the space-time
behaves like the Reissner-Nordstrom solution and the monopole is contained inside the black hole. We highlight that
the solution behaves like Reissner-Nordstrom for asymptotic values of fields and as we approach to finite distances,
the metric must differ. For the critical value u ∼ ucritical, the event horizon of the black hole coincides with monopole
radius. Finally, from this discussion it is clear that as vev increases from the critical value, the event horizon tends
to expand so that monopole is contained inside the horizon.

6. ELECTROWEAK MONOPOLES

In this section we are going to review to concept of dyons in the electroweak model. We are starting with reviewing
the electroweak model without matter fields and continue with topological arguments that support the existence of
stable solutions within the standard model framework. Then we will introduce the Cho-Maison dyon solution which
can be viewed as hybrid between ’t Hooft-Polyakov monopole and Dirac monopole. Such solution is very charming,
since it is widely believed that monopoles within the standard model are not possible. Despite that, there is a crucial
problem; the energy of configuration is infinite. We describe two general schemes, under which the mass of Cho-
Maison dyon can become finite. These schemes could be originated from some unspecified dynamics that arise from
modifications of the standard model or from quantum corrections. We are starting with regularising the dyons energy
by modifying the interactions of W -bosons with the electromagnetic field. Moreover, we compare the infinite energy
dyon in electroweak model with finite one in the Georgi-Glashow model. After that we discuss the regularization of
the hypercharge sector.

6.1. Electroweak Model

Electromagnetic and weak interactions are expected to unify at the energy scale of 246 GeV and the model which
describes electroweak interactions is known as Weinberg-Salam model. Such model is a SUL(2) × UY (1) Yang Mills
field coupled with a complex Higgs doublet. The SUL(2) part is associated with the non-Abelian gauge field W a

µ and
UY (1) with Abelian hypercharge gauge field Bµ. The Lagrangian of this theory is:

L = −1

4
F a
µνF

aµν − 1

4
GµνG

µν + (Dµϕ)
†Dµϕ− λ

2
(ϕ†ϕ− u2)2 (6.1)

F a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵajkW j

µW
k
ν (6.2)

Gµν = ∂µBν − ∂νBµ (6.3)

Dµ = ∂µ − i
g

2
σ⃗ · W⃗µ − i

g′

2
Bµ (6.4)

Where we are working in the spinor representation and group elements of SUL(2) × UY (1) are generated by

[σ
1

2 ,
σ2

2 ,
1+σ3

2 , 1−σ3

2 ] with σi being the Pauli matrices. The symmetry breaking procedure for such field theory has
been discussed analytically in (4 4.2) for the scalar sector and the mass of the resulting Highs field is given by (4.21).
In addition to the massive Higg’s boson, the non-Abelian gauge bosons also obtain mass. To showcase this let:(

Bµ

W 3
µ

)
=

(
cos(θW ) −sin(θW )
sin(θW ) cos(θW )

)(
Aµ

Zµ

)
(6.5)
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W∓
µ =

1√
2
(W 1

µ ± iW 2
µ) (6.6)

g′ = gtan(θW ) (6.7)

cos(θW ) =
g√

g2 + g′2
sin(θW ) =

g′√
g2 + g′2

(6.8)

Where θW ≈ π
6 is the Weinberg angle. Then let the scalar field take the vacuum expectation value (4.17) and in the

kinetic term of the scalar field we find:

(Dµϕ)
†(Dµϕ) ∋ g2u2

8
(W+

µ W
+µ +W−

µ W
−µ) +

u2g2

8cos2(θW )
ZµZ

µ (6.9)

Also note that:

Dµϕ ∋ [−ig
2
(1 + σ3)sin(θW )Aµ − ig

cos(θW )
(
σ3

2
− sin2(θW )

1 + σ3

2
)Zµ − ig

2
(
σ1 + iσ2

√
2

W+
µ +

σ1 − iσ2

√
2

W−
µ )]ϕ

We identify the coupling e = gsin(θW ). e is the fundamental electric charge associated with ubroken U(1) generator
1+σ3

2 as we saw in (4 4.2). We can write the fundamental electric charge as a function of the couplings g and g′ by
using (6.8):

e =
gg′√
g2 + g′2

(6.10)

Recall the symmetry breaking pattern (4.18) and now in this physical context, becomes:

SU(2)× UY (1)
SSB−−−→ Uem(1) (6.11)

Therefore the vector field Aµ is associated with the unbroken group is the electromagnetic field. From (6.9) we can
obtain the masses of the vector bosons W+, W− and Z:

mW =
gu

2
(6.12)

mZ =
u
√
g2 + g′2

2
(6.13)

mW

mZ
= cos(θW ) (6.14)

To showcase the electric charge of vector bosons, notice in (6.4) that W a
µ don’t interact with the hypercharge field

Bµ, thus they all have hypercharge zero. The standard model vacuum satisfies:

σ3

2
|0⟩ = 0 (6.15)

And we write:

gW a
µ

σa

2
=

g√
2
(W+

µ

σ1 − iσ2

2
+W−

µ

σ1 + iσ2

2
) + gW 3

µ

σ3

2
=

g√
2
[W+

µ

σ−

2
+W−

µ

σ+

2
] + gW 3

µ

σ3

2

Where the following commutation relation holds:

[
σ3

2
,
σ±

2
] = ∓σ

±

2
(6.16)
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We identify the gauge boson isospin states:

W±
µ

σ∓

2
|0⟩ W 3

µ

σ3

2
|0⟩ (6.17)

By acting with σ3/2 to these states we can find their isospin eignvalue:

σ3

2
W±

µ

σ∓

2
|0⟩ = ±σ

3

2
W±[

σ3

2
,
σ∓

2
] |0⟩ = ±σ

3

2
W±

µ

σ3

2

σ∓

2
|0⟩ = ±W±

µ

σ∓

2
|0⟩

σ3

2
W 3

µ

σ3

2
|0⟩ = 0

Therefore the isospin of W 3 is IW 3 = 0 and the isospin of W± is IW± = ±1 Remember the empirical formula:

Q = I +
Y

2
(6.18)

Where Y is the hypercharge and Q is the electric charge. This means that QW 3 = 0 and QW± = ±1. Note that Z is
a superposition of B and W 3, and since B also has zero electric charge8 then QZ = 0.

6.2. Topological argument

Let’s investigate if stable soliton like solution are possible in the electroweak model. After symmetry breaking
the broken group is (SU(2) × UY (1))/Uem(1) ∼ S2. The vacuum expectation value of the complex Higgs doublet is
given by the condition (4.16) and |ϕ1|2 + |ϕ2|2 = u2. This means that vacuum manifold is S1 and then π1(S

2) = ∅.
Therefore, at first look this suggest that it does not exists an asymptotic solution ϕ, that can not be continuously
deformed to trivial solution and thus we can not construct a stable soliton like solution.

It turns out that Cho and Maison [11] have established that the electroweak model has the similar topogolical
structure as the Georgi-Glashow model. To understand this observation consider the Higgs complex doublet ϕ ∈ C2

and a map f : C2 → CP 1. In this way, the Higgs doublet plays a role a CP 1 field. Viewing the Higgs doublet as

FIG. 10: Stereographic projection. This showcases the homoemorphism between S2 and CP 1.

a CP 1 field changes the vacuum manifold since CP 1 is homeomorphic to S2 and then π2(S
2) = Z. In (6 6.3) we

will define the CP 1 field as a triplet, which can viewed as a map S2
∞ → S2

vac. We conclude that such a topological
argument suggest the existence of a stable soliton like solution in electroweak model.

6.3. Cho-Maison Dyon solution

We consider static solutions and the Lagrangian (6.1) becomes:

L = −1

4
F a
ijF

aij − 1

4
GijG

ij + (Diϕ)†Diϕ− λ

2
(ϕ†ϕ− u2)2 (6.19)

8 This holds since B has zero isospin (SU(2) singlet) and zero hypercharge.
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With i, j and k being spatial indices. We can obtain the equations of motions from Euler-Lagrange equations:

∂i
∂L
∂∂iϕ†

=
∂L
∂ϕ†

⇒

∂iD
iϕ = ig

σ⃗

2
· W⃗iD

iϕ+
ig′

2
Bi − λ(ϕ†ϕ− u2)ϕ⇒

DiD
iϕ = −λ(ϕ†ϕ− u2)ϕ (6.20)

∂i
∂L

∂∂iW a
j

=
∂L
∂W a

j

⇒

∂iF
aji + gϵamcW

miF cji =
ig

2
[(Djϕ)†σaϕ− ϕ†σaDjϕ] ⇒

D̂iF
aji = Jaj (6.21)

D̂i = ∂i − ig
σ⃗

2
· W⃗i (6.22)

Jaj = ig[(Djϕ)†
σa

2
ϕ− ϕ†

σa

2
Djϕ] (6.23)

∂i
∂L

∂∂iBj
=

∂L
∂Bj

⇒

∂jG
ji =

ig′

2
[(Diϕ)†ϕ− ϕ†(Diϕ)] ⇒

∂jG
ji = −Ki (6.24)

Ki =
ig′

2
[(Diϕ)†ϕ− ϕ†(Diϕ)] (6.25)

Now we let:

ϕ =
1√
2
ρξ (ρ2 = 2ϕ†ϕ, ξ†ξ = 1) (6.26)

ϕ̂ = ξ†σ⃗ξ (6.27)

Wi = ϕ̂ · W⃗i (6.28)

Ci = iξ†∂iξ (6.29)

The equation (6.27) provides a triplet description of the CP 1 field. First let’s show that ϕ̂ transforms according to
the adjoint representation. The complex Higgs doublet transforms as:

ϕ
′
= eig

σ⃗
2 ·θ⃗+i g′y

2 ϕ ≈ ϕ− iϵa
σa

2
ϕ− i

ϵ′

2
ϕ (6.30)
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If ϕ̂ is an adjoint triplet then it holds:

ϕ̂′ = e−iT⃗ ·θϕ̂⇒ ϕ̂a
′
≈ ϕ̂a − gcϵcabϕ̂b (6.31)

We have:

ϕ̂a
′
= ϕ†

′
σaϕ

′
⇒

ϕ̂a − gcϵcabϕ̂b = ϕ†(1 + iϵc
σc

2
+ i

ϵ′

2
)σa(1− iϵc

σc

2
− i

ϵ′

2
)ϕ⇒

ϕ̂a − gcϵcabϕ̂b = ϕ†σaϕ+
iϵc

2
ϕ†σcσaϕ− iϵc

2
ϕ†σaσcϕ+ ...⇒

ϕ̂a − gcϵcabϕ̂b = ϕ̂a +
iϵc

2
ϕ†(δca + iϵcabσb)ϕ− iϵc

2
ϕ†(δac + iϵacbσb)ϕ⇒

−gcϵcabϕ̂b = −ϵ
c

2
ϵcabϕ̂b +

ϵc

2
ϵacbϕ̂b = −ϵcϵcabϕ̂b

Then if the infinitesimal angles are equal; ϵc = gc, indeed ϕ̂ is an adjoint triplet. For a soliton-like solution, just like
in the case of Georgi-Glashow model, asymptotically the covariant derivative of the Higg’s field is zero; Dµϕ = 0.

Then it also holds asymptotically if we pick ρ→ ρ0 =
√
2u:

Dµ(ϕ̂) = Dµ(ξ
†σ⃗ξ) =

2

ρ0
Dµ(ϕ

†σ⃗ϕ) =
2

ρ0
(Dµϕ)

†σ⃗ϕ+
2

ρ0
(ϕ†σ⃗Dµϕ) → 0

Dµϕ̂→ 0 (6.32)

We obtain asymptotically then :

Dµϕ̂→ 0

∂µϕ̂
a = gϵcabW

c
µϕ̂

b ⇒

ϵρmaϕ̂
m∂µϕ̂

a = gϵcabϵρmaW
c
µϕ̂

mϕ̂b ⇒

1

g
[ϕ̂× ∂µϕ̂]

ρ = −gW ρ
µ + g(W a

µ ϕ̂
a)ϕ̂ρ

W⃗µ → ϕ̂Wµ − 1

g
ϕ̂× ∂µϕ̂ Wµ = W⃗µ · ϕ̂ (6.33)

We are looking for dyon solution, which satisfies such asymptotic behavior. As for the U(1) field, for a dyon solution
we expect to have a Dirac-potential behavior. With that in mind we consider the following ansatz:

W⃗µ = −1

g
W (r)∂µtr̂ +

1

g
(f(r)− 1)r̂ × ∂µr̂ (6.34)

Bµ = − 1

g′
B(r)∂µt−

1

g′
(1− cos(θ))∂µϕ (6.35)

Where f(∞) = 0 and W (∞) < ∞. The ansatz above describes the most general spherical symmetric dyon of
SU(2) × U(1). The second term in Bµ is familiar, since we recognise it from (3.12). Such a term produces a string
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singularity along the negative z-axis in ξ. ’t Hooft-Polvakov monopole on the other hand does not contain Dirac
string. An important note is that such monopole solution derived by working in a particular gauge. This is may be
a problem, since the solution may not be gauge invariant. We conclude then that Cho-Mason monopole is hybrid
between Dirac monopole and ’t Hoof-Polyakov monopole. Since we have a spherical symmetric ansatz:

ρ = ρ(r) (6.36)

And we are working in the radial gauge where

ξ = i

(
sin(θ/2)e−iϕ

−cos(θ/2)

)
(6.37)

For such ξ, (6.27) becomes:

ϕ̂1 = −cos(θ/2)sin(θ/2)(eiϕ + e−iϕ) = −sin(θ)cos(θ) = −x
r

ϕ̂2 = −icos(θ/2)sin(θ/2)(eiϕ − e−iϕ) = −sin(θ)sin(ϕ) = −y
r

ϕ̂3 = sin2(θ/2)− cos2(θ/2) = −cos(θ) = −z
r

Therefore we get:

ϕ̂ = ξ†σ⃗ξ = −r̂ (6.38)

Notice that (6.37) is not well defined for θ = π, since it maps z < 0 to ξ = i(e−iϕ, 0). As described in [22] we could set
the field equal to zero along the negative z-axis, thus producing a vortex line. Then such string will always pull the
monopole and cannot be static. This kind of monopole is called Nambu monopole. The vortex may also have a finite
length and terminate some distance away on an antimonopole, then the resulting monopole-antimonopole pair will be
spinning around the common center of mass. These is another interpretation of such Higgs field. We can divide the
space to north and south hemispheres like Wu Yang monopole and use (6.37) for the north hemisphere and the U(1)
transformed ξ′ = eiϕξ for the south hemisphere. We proceed with such interpretation for the field configuration.
As a final remark we write the non-Abelian current (6.23) by substituting (6.26) as:

Jaj =
ig

2
[(Djϕ)†σaϕ− ϕ†σaDjϕ] =

igρ2

4
[(∂jξ)†σaξ +

ig

2
ξ†σ⃗ · W⃗ jσaξ + ig′Bjξ†σaξ − ξ†σa∂jξ +

ig

2
ξ†σaσ⃗ · W⃗ jξ] ⇒

Jaj =
−gρ2

4
[−i(∂jξ)†σaξ + iξ†σa∂jξ +

g

2
ξ†(σbσa + σaσb)ξW jb + g′Bjξ†σaξ] ⇒

Jaj =
−gρ2

4
[−i(∂jξ)†σaξ + iξ†σa∂jξ + gξ†δabξW jb + g′Bjξ†σaξ]

From [22] one can find Fierz identity:

ϕ̂i(ξ†∂µξ − ∂µξ
†ξ)− (ξ†σi∂µξ − ∂µξ

†σiξ) = i[ϕ̂× ∂µϕ̂]
i (6.39)

2ϕ̂iCµ − (iξ†σi∂µξ − i∂µξ
†σiξ) = −[ϕ̂× ∂µϕ̂]

i ⇒

(iξ†σi∂µξ − i∂µξ
†σiξ) = ϕ̂i2Cµ + [ϕ̂× ∂µϕ̂]

i (6.40)

Then the current becomes:

Jaj =
−gρ2

4
[2ϕ̂aCj + gW ja + g′Bj ϕ̂a + ϵabcϕ̂

b∂j ϕ̂c] ⇒

J⃗j =
−gρ2

2
[
g

2
W⃗j + (

g′

2
Bj + Cj)ϕ̂+

1

2
ϕ̂× ∂j ϕ̂] (6.41)

As for the hypercharge current (6.25) by substituting (6.26) we get:

Kj =
ig′

2
[(Diϕ)†ϕ−ϕ†(Diϕ)] =

ig′ρ2

4
[(∂jξ)†ξ− ξ†∂jξ+ ig′Bj + igξ†σaξW ai] =

ig′ρ2

4
[i2iξ†∂jξ+ ig′Bj + igξ†σaξW ai]

Kj =
−g′ρ2

2
[Cj +

g′

2
Bj +

g

2
Wj ] =

g′

g
(J⃗j · ϕ̂) (6.42)
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6.4. Energy of electroweak Dyon

To compute the energy of the configuration we must first compute the energy momentum tensor of the electroweak
model:

Tµν =
2√
−g

δS

δgµν
= −F a µ

σ F aσν −G µ
σ G

σν + 2(Dµϕ)†Dνϕ− gµνL (6.43)

The energy density is then:

H = T 00 =
1

2
F a
0iF

a0i +
1

4
FijF

ij +
1

2
G0iG

0i +
1

4
GijG

ij + (D0ϕ)†D0ϕ+ (Diϕ)†Diϕ+
λ

2
[ϕ†ϕ− u2]2 (6.44)

The electric and magnetic fields associated with the non Abelian gauge field and abelia one are given by:

Ea
i = F a

0i Ba
i = −1

2
ϵijkF

ajk (6.45)

Ei = G0i Bi = −1

2
ϵijkG

jk (6.46)

And we write the energy density as:

H =
1

2
Ea

i E
a
i +

1

2
Ba

i B
a
i +

1

2
EiEi +

1

2
BiBi + (D0ϕ)†D0ϕ+ (Diϕ)†Diϕ+

λ

2
[ϕ†ϕ− u2]2 (6.47)

We compute the field tensor of the non Abelian field:

F a
µν =

W ′

g
[∂µtr̂ν − ∂νtr̂µ]r̂

a +
f ′

gr
[ϵabν r̂µ − ϵabµr̂ν ]r̂

b +
2(f − 1)

gr2
[ϵaµν − ϵabν r̂

br̂µ + ϵabµr̂
br̂ν ]

+
Wf

gr
[∂νt(r̂

ar̂µ − δaµ)− ∂µt(r̂
ar̂ν − δaν )] +

(f − 1)2

gr2
ϵµνmr̂

ar̂m (6.48)

Note that levi-civita symbol here takes only spatial indices (1, 2, 3). The field tensor of the Abelian field:

Gµν = −B
′

g′
[r̂µ∂νt− r̂ν∂µt]−

sin(θ)

g′
[∂νθ∂µϕ− ∂µθ∂νϕ] (6.49)

We can calculate Ea
i :

Ea
i = F a

0i =
1

gr
[(rW ′ −Wf)r̂ar̂i + δaiWf ] (6.50)

→ 1

2
Ea

i E
a
i =

1

2g2r2
[(rW ′)2 + 2W 2f2] (6.51)

As for Bak we have:

Bak =
1

2
ϵkijF a

ij =
1

gr2
[(rf ′ − (f2 − 1))r̂ar̂k − rf ′δak ] (6.52)

→ 1

2
BakBak =

1

g2r4
[(f ′)2r2 +

(f2 − 1)2

2
] (6.53)

We continue similarly with the Abelian field:

Ei = G0i =
B′

g′
r̂i (6.54)
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→ 1

2
EiEi =

(B′)2

2g′2
(6.55)

Bi = −1

2
ϵijkGjk ⇒ Br = − 1

g′r2
(6.56)

1

2
BrBr =

1

2(g′)2r4
(6.57)

The potential term becomes:

λ

2
[ϕ†ϕ− u2]2 =

λ

2
[
ρ2

2
− u2]2 (6.58)

Now let’s calculate the remaining terms:

D0ϕ = −ig
2
σaW a

0

ρξ√
2
− ig′

2
B0

ρξ√
2
= i

σar̂a

2
W (r)

ρξ√
2
+
i

2
B
ρξ√
2

(D0ϕ)†(D0ϕ) =
ρ2

8
[W −B]2 (6.59)

Diϕ = ∂iϕ− ig
σ⃗

2
· W⃗iϕ− ig′

2
Biϕ (6.60)

(Diϕ)†Diϕ = ∂iϕ†∂iϕ+
ig

2
(ϕ†σ⃗ · W⃗i∂

iϕ− ∂iϕ†σ⃗ · W⃗iϕ) +
ig′

2
Bi(ϕ

†∂iϕ− ∂iϕ†ϕ) +
gg′

2
Biϕ

†σ⃗ · W⃗ iϕ+
g′2

4
BiB

iϕ†ϕ

+
g2

4
ϕ†ϕW a

i W
ai ⇒

(Diϕ)†Diϕ =
1

2
ρ2∂iξ

†∂iξ +
1

2
∂iρ∂

iρ+
ig

4
(ξ†σ⃗ · W⃗i∂

iξ − ∂iξ†σ⃗ · W⃗iξ) +
ig′

2
ρ2ξ†∂iξBi +

gg′

4
ρ2ξ†σ⃗ · W⃗iξB

i +
g′2

8
ρ2BiB

i

+
g2ρ2

8
W a

i W
ai

Let’s calculate each term in this expression:

1

2
∂iρ∂

iρ+
1

2
ρ2∂iξ

†∂iξ =
(ρ′)2

2
+

ρ2

8r2
+
ρ2sin2( θ2 )

2r2sin2θ

ig

4
(ξ†σ⃗ · W⃗i∂

iξ− ∂iξ†σ⃗ · W⃗iξ) =
gρ2

2
Ciϕ̂ · W⃗ i +

gρ2

4
W⃗ i · (ϕ̂× ∂iϕ̂) =

gρ2

4r
W a

i ϵabir̂
b =

(f − 1)ρ2

4r2
ϵabiϵanir̂

nr̂b =
f − 1

2r2
ρ2

ig′

4
ρ2ξ†∂iξBi =

iρ2

2
[−isin2(

θ

2
)∂iϕ][−(1− cos(θ))∂iϕ] = −

ρ2sin4( θ2 )

r2sin2(θ)

gg′

4
ρ2ξ†σaξW a

i B
i ∼ r̂ar̂nϵani = 0

g′2ρ2

8
BiB

i =
ρ2

2r2
sin4( θ2 )

sin2(θ)
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g2ρ2

8
W a

i W
ai =

ρ2

4r2
(f2 − 2f + 1)

Put all this together and we obtain:

(Diϕ)†Diϕ =
(ρ′)2

2
+
ρ2f2

4r2
− ρ2

8r2
+

ρ2

2r2sin2(θ)
[sin2(

θ

2
)− sin4(

θ

2
)]

=
(ρ′)2

2
+
ρ2f2

4r2
− ρ2

8r2
+

ρ2

2r2sin2(θ)
[
1

2
− 1

2
cos(θ)− 1

4
− 1

4
cos2(θ) +

cos(θ)

2
]

=
(ρ′)2

2
+
ρ2f2

4r2
− ρ2

8r2
+

ρ2

2r2sin2(θ)
[
1

4
− (

1

4
− 1

4
sin2(θ))] ⇒

(Diϕ)†Diϕ =
(ρ′)2

2
+
f2ρ2

4r2
(6.61)

By substituting (6.51), (6.53), (6.55), (6.57), (6.58), (6.59), (6.61) into (6.44) we get:

H =
1

2g2r2
[(rW ′)2 + 2Wf2] +

1

g2r4
[(f ′)2r2 +

(f2 − 1)2

2
] +

(B′)2

2g′2
+

1

2(g′)2r4

+
λ

2
[
ρ2

2
− u2]2 +

ρ2

8
[W −B]2 +

(ρ′)2

2
+
f2ρ2

4r2
(6.62)

We obtain the energy of the configuration if we integrate this expression:

E = E1 + E2 (6.63)

E1 =
2π

g′2

∫ ∞

0

dr

r2
(6.64)

E2 = 4π

∫ ∞

0

dr[
r2(W ′)2

2g2
+
f2W 2

g2
+

(f ′)2

g2
+

(f2 − 1)2

2g2r2

+
(rB′)2

2g′2
+
λr2

2
[
ρ2

2
− u2]2 + r2

ρ2

8
[W −B]2

+
(rρ′)2

2
+
f2ρ2

4
] (6.65)

E2 is finite, but E1 is infinite and originates from the point like hypercharge magnetic monopole. This means that
we can not determine the dyon mass in a classical level. We will discuss in later sections how to make the energy of
the dyon finite.

6.5. Equations of motion reduction

From the (6.62) we can reduce the equations of motion to a system of differential equations for f(r), ρ(r), W (r)
and B(r). These function must minimise the energy of the system, since we want to obtain the mass of the dyon.
The Euler langrage equations are:

∂H
∂f

=
d

dr
(
∂H
∂f ′

)
∂H
∂ρ

=
d

dr
(
∂H
∂ρ′

) (6.66)
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∂H
∂W

=
d

dr
(
∂H
∂W ′ )

∂H
∂B

=
d

dr
(
∂H
∂B′ ) (6.67)

We compute the derivatives:

∂H
∂f

=
2fW 2

g2
+

2f(f2 − 1)

g2r2
+
fρ2

2

d

dr
(
∂H
∂f ′

) =
2f ′′

g2

∂H
∂ρ

= λr2[
ρ2

2
− u2]ρ+

r2

4
[W −B]2 +

ρf2

2

d

dr
(
∂H
∂ρ′

) = r2ρ′′ + 2rρ′

∂H
∂W

=
2Wf2

g2
+
r2ρ2

4
[W −B]

d

dr
(
∂H
∂W

) =
r2W ′′

g2
+

2rW ′

g′

∂H
∂B

= −r
2ρ2

4
[W −B]

d

dr
(
∂H
∂B′ ) =

r2B′′

g′2
+

2rB′

g′2

And thus we get the following differential equations:

f ′′ − f2 − 1

r2
f = (

g2ρ2

4
+W 2)f (6.68)

ρ′′ +
2

r
ρ′ − f2

2r2
ρ =

1

4
(W −B)2ρ+ λ(

ρ2

2
− u2)ρ (6.69)

W ′′ +
2

r
W ′ − 2

f2

r2
W =

g2

4
ρ2(W −B) (6.70)

B′′ +
2

r
B′ =

g′2ρ2

4
(B −W ) (6.71)

To integrate this system of differential equations we may choose the boundary conditions:

f(0) = 1, ρ(0) = 0, W (0) = 0. B(0) = b0 f(∞) = 0, ρ(∞) = ρ0 =
√
2u, W (∞) =W0 B(∞) = B0

(6.72)

In order to investigate the asymptotic behaviors of these functions we let:

x = u
√
λr =

mH√
2
r ϵ =

g2

2λ
ϵ′ =

g′2

2λ
Z(x) = B(x)−W (x) ρ̃(x) =

ρ

ρ 0

(6.73)

And the system of differential equations becomes:

ρ̃′′(x) +
2ρ̃(x)

x
− f2ρ̃(x)

2x2
=

1

2m2
H

Z2(x)ρ̃(x) + (ρ̃(x)− 1)ρ̃(x) (6.74)

f ′′(x)− f3(x)− f(x)

x2
= ϵf(x)ρ̃2(x) +

2

m2
H

(B(x)− Z(x))2f(x) (6.75)

Z ′′(x) +
2

x
Z ′(x) +

2f2(x)

x2
(B(x)− Z(x)) = (ϵ+ ϵ′)Zρ̃2(x) (6.76)

B′′(x) +
2B′(x)

x
= ϵ′ρ̃2(x)Z(x) (6.77)
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We starting by investigating the behavior as x→ 0. Let:

f(x) = 1 + δ0(x) |δ0(x)| << 1 (6.78)

Z(x) = b0 + δ1(x) |δ1(x)| << 1 (6.79)

B(x) = b0 + δ2(x) |δ2(x)| << 1 (6.80)

Then (6.74) becomes:

x2ρ̃′′(x) + 2xρ̃(x) + ρ̃(x)[x2 − 1

2
(1 +

b20
2m2

H

)] = 0

For small b0 we get:

x2ρ̃′′(x) + 2xρ̃′(x) + ρ̃(x)(x2 − 1

2
) = 0

x2ρ̃(x) + 2xρ̃(x) + (x2 − −1 +
√
3

2
(
−1 +

√
3

2
+ 1))ρ̃(x) = 0

x2ρ̃(x) + 2xρ̃(x) + (x2 − δ(δ + 1))ρ̃(x) = 0 (6.81)

Where we let δ = −1+
√
3

2 . This equation is solved by spherical Bessel functions [20] and for a regular solution around
x = 0 we have:

ρ̃(x) = c1jδ(x) = c1

√
π

2
xδ

∞∑
m=0

(−1)m

m!

(x/2)2m

Γ(δ +m+ 3/2)
≈ c1x

δ[1− x2

2(2δ + 3)
] (6.82)

Equation (6.77) becomes when x→ 0:

δ′′2 (x) +
2

x
δ′2(x) = ϵ′b0c

2
1[1−

x2

4δ + 6
]2 ⇒

δ2(x) = ϵ′b0c
2
1x

2δ+2[
1

(2δ + 3)(2δ + 2)
− x2

(2δ + 3)(2δ + 4)(2δ + 5)
+O(x4)] ⇒

B(x) = b0(1 + ϵ′c21x
2δ+2[

1

(2δ + 3)(2δ + 2)
− x2

(2δ + 3)(2δ + 4)(2δ + 5)
+O(x4)]) (6.83)

Equation (6.75) becomes when x→ 0:

δ′′0 (x)−
δ0(x)

x2
= ϵ′b0c

2
1x

2δ[1− x2

4δ + 6
]2 ⇒

δ0(x) =
ϵc21
2
x2δ+2[

1

δ(2δ + 3)
− x2

4δ3 + 20δ2 + 31δ + 15
+O(x4)] (6.84)

Equation (6.76) becomes when x→ 0:

δ′′1 +
2

x
δ′1 −

2δ1
x2

= (ϵ+ ϵ′)ρ̃2b0 −
2

x2
δ2 ⇒

δ1(x) = z1x+
b0c

2
1

2
x2δ+2[(ϵ+ϵ′)(

1

(2δ + 1)(δ + 2)
− x2

(2δ + 3)2(δ + 3)
)−ϵ′ x2

(2δ + 3)(δ + 3)(2δ2 + 5δ + 3)
+O(x4)] (6.85)
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We continue with the asymptotic behaviors as x→ ∞. To do this we expand the functions as:

ρ̃(x) = 1 +∆0(x), |∆0(x)| << 1 (6.86)

B(x) = B0 +∆1(x), |∆1(x)| << 1 (6.87)

Z(x) = Z0 +∆2(x), |∆2(x)| << 1 Z0 = B0 −W0 (6.88)

Equation (6.75) when x→ ∞ becomes:

f ′′(x)− (ϵ+
2W0

m2
H

)f(x) = 0 ⇒

f(x) = f1exp(−kx) k2 = ϵ+
2W 2

0

m2
H

(6.89)

To simplify the calculations we set Z0 = 0 →W0 = B0. Then when x→ 0, (6.74) becomes:

∆′′
0(x) +

2

x
∆′

0(x)− 2∆0(x) = 0 ⇒

∆0(x) = ρ1
exp(−

√
2x)

x
(6.90)

(6.76) becomes when x→ 0:

∆′′
2 +

2

x
∆′

2 − (ϵ+ ϵ′)∆2 = 0 ⇒

∆2(x) = b1
exp(−xν)

x
ν2 = ϵ+ ϵ′ (6.91)

6.77 becomes when x→ ∞:

∆′′
1 +

2

x
∆′

1(x) = ϵ′B1
exp(−νx)

x
⇒

∆1(x) =
W1

x
+

B1ϵ
′

ϵ+ ϵ′
exp(−x

√
ϵ+ ϵ′)

x
(6.92)

We sum up the asymptotic behaviors when x→ ∞:

f(x)
x→∞−−−−→ f1exp(−kx), k2 = ϵ+

2W 2
0

m2
H

ρ̃(x)
x→∞−−−−→ 1 + ρ1

exp(−
√
2x)

x

Z(x)
x→∞−−−−→ b1

exp(−νx)
x

, ν2 = ϵ+ ϵ′

B(x)
x→∞−−−−→ B0 +

W1

x
+
B1ϵ

′

ν2
exp(−xν)

x

(6.93)

And the asymptotic behaviors around x = 0:

ρ̃(x)
x→0−−−→ c1x

δ[1− x2

2(2δ + 3)
+O(x4)]

B(x)
x→0−−−→ b0

(
1 +

ϵ′c21
2
x2δ+2

[
1

(2δ + 3)(δ + 1)
− x2

(2δ + 3)(δ + 2)(2δ + 5)
+O(x4)

])
f(x)

x→0−−−→ 1 +
ϵc21
2
x2δ+2

[
1

δ(2δ + 3)
− x2

4δ3 + 20δ2 + 31δ + 15
+O(x4)

]
Z(x)

x→0−−−→ b0(1 +
c21
2
x2δ+2[(ϵ+ ϵ′)(

1

(2δ + 1)(δ + 2)
− x2

(2δ + 3)2(δ + 3)
)− ϵ′

x2

(2δ + 3)(δ + 3)(2δ2 + 5δ + 3)
+O(x4)]

(6.94)
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The differential equations (6.71), (6.68) (6.70), (6.69) are very similar to the differential equations of Julia-Zee
solution for Julia-Zee dyon in (4 4.7). Indeed the equations are identical if we let W (r) = B(r). The fact that
W (r) ̸= B(r) is a crucial difference, since this represents the neutral Z boson (6.110).

6.6. Mangetic and Electric Charge of Cho-Maison Solution

It’s very important to showcase that SUL(2)× UY (1) field soliton-like configurations indeed contain magnetic and
electric charges. We expect asymptotically that such configuration to contain a magnetic charge, which satisfies the
Dirac quantization just like we saw in Georgi-Glashow model. Asymptotically the SUL(2) field is given by (6.33).
Notice that the field is not described by a particular gauge. As for the UY (1) hypercharge field in general contains a
UY (1) magnetic charge g̃ and the potential is then for spatial indices:

Bi = g̃(1− cos(θ))∂iϕ (6.95)

Then if we follow the analysis of Dirac-monopole and identify the coupling g′ with the electric charge we find that:

g̃g′ =
n

2
n ∈ Z (6.96)

And Cho-Maison dyon solution holds for n = −2. Asymptotically just like in Georgi-Glashow model the
SUL(2) × UY (1) is broken to Uem(1) and we expect magnetic charge of the electroweak dyon to be fixed by an
integer. Asymptotically the electromagnetic field tensor is given by [22]:

F em
jk → −sin(θW )F⃗jk · ϕ̂+ cos(θW )Gjk (6.97)

And the fields behave as:

F⃗jk · ϕ̂→ −1

g
ϕ̂ · (∂j ϕ̂× ∂ν ϕ̂) (6.98)

Gjk → n

2g′
sin(θ)[∂kθ∂jϕ− ∂jθ∂kϕ] (6.99)

The magnetic charge is given then:

qm =
e

g

∫
dSiϵ

ijk 1

2
F⃗jk · ϕ̂+

e

g′

∫
dSi

1

2
ϵijkGjk ⇒

qm = − e

g2

∫
dSiϵ

ijk 1

2
ϕ̂ · (∂j ϕ̂× ∂ϕϕ̂)−

en

2g′2

∫
dSiϵ

ijksin(θ)∂jθ∂kϕ⇒

qm = −4πe

2g2
n− 4πne

2g′2
n ∈ Z

Where we have used the result from (4.46). Then we have:

qm = −4πen

2
(
1

g2
+

1

g′2
) ⇒

qm = −2πn

e
n ∈ Z

Since n ∈ Z we let −2n→ 4n and thus we confirm that:

qm =
4πn

e
n ∈ Z (6.100)

To determine the electric and magnetic charge of the configuration described by the Cho-Maison dyon solution we
are going to work in the unitary gauge where:

ξ → Uξ =

(
0
1

)
(6.101)
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U = −i
(

cos(θ/2) sin(θ/2)e−iϕ

sin(θ/2)eiϕ −cos(θ/2)

)
(6.102)

The non-Abelian gauge field transforms as:

W⃗ ′
µ · σ⃗

2
= − i

g
U−1∂µU + UW⃗µ · σ⃗

2
U−1 (6.103)

And we get:

W⃗ ′
µ =

1

g

 (sin(ϕ)∂µθ + sin(θ)cos(ϕ)∂µϕ)f(r)
(−cos(ϕ)∂µ + sin(θ)sin(ϕ)∂µϕ)f(r)

−W (r)∂µt− (1− cosθ)∂µϕ

 (6.104)

In this unitary gauge we set:

r̂ →

0
0
1

 (6.105)

Note that:

Wµ =
1√
2
(W 1

µ + iW 2
µ) =

if(r)

g
√
2
eiϕ[(∂µθ) + isin(θ)∂µϕ] (6.106)

Focus on the singular component of the non Abelian gauge field:

W 3
µ = −1

g
W (r)∂µt−

1

g
(1− cos(θ))∂µϕ (6.107)

We can easily obtain the inverse transformation of (6.5) and by using (6.8) we get:(
Aµ

Zµ

)
=

1√
g2 + g′2

(
g g′

−g′ g

)(
Bµ

W 3
µ

)
(6.108)

Then (6.107) and (6.35) become by using (6.10):

Aµ =
e

g′
Bµ +

e

g
W 3

µ = −e[ 1
g2
W (r) +

1

g′2
B(r)]− 1

e
(1− cos(θ))∂µϕ (6.109)

Zµ = − e
g
Bµ +

e

g′
W 3

µ =
e

gg′
[B(r)−W (r)]∂µt (6.110)

These are the physical fields of photons and Z-bosons. Then the electric charge of the configuration will be given by:

qe =

∮
d⃗S · E⃗ =

∮
dSiEi =

∮
dSiF0i (6.111)

Where Fµν is the electromagnetic field tensor:

Fµν = ∂µAν − ∂νAµ = −e[ 1
g2
W ′(r) +

1

g′2
B′(r)][r̂µ∂νt− r̂ν∂µt]−

1

e
sin(θ)[∂µθ∂νϕ− ∂νθ∂µϕ] (6.112)

F0i = e[
A′

g2
+
B′

g′2
]r̂i (6.113)

Thus the electric charge is:

qe = e

∮
dSir̂i[

W ′

g2
+
B′

g′2
] = 4πe|r

2W ′

g2
+
r2B′

g′2
|∞0
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qe =
4π

e
|sin2(θW )r2W ′ + cos2(θW )r2B′|r=∞ =

4π

e
W1(sin

2(θW ) + cos2(θW )) =
4π

e
W1 (6.114)

Where we have used the asymptotic behaviors (6.93). As for the magnetic charge we have:

qm =

∮
d⃗S · B⃗ =

∮
dSiBi =

−1

2

∮
dSiϵijkFjk (6.115)

We can easily compute the magnetic field in spherical coordinates:

Bi = −1

2
ϵijkFjk =

sin(θ)

e
ϵijk∂jθ∂kϕ⇒

Br =
1

er2
(6.116)

And thus:

qm =
4π

e
(6.117)

The configuration should not contain any neutral charges. To check that consider the field tensor:

Fµν = ∂µZν − ∂νZµ =
e

gg′
[B′ −W ′](r̂µ∂νt− r̂ν∂µt) (6.118)

F0i = − e

gg′
[B′ −W ′]r̂i Fij = 0 (6.119)

And the charges are:

Ze = −4πe

gg′
[r2B′ − r2W ′]r=∞ = 0 Zm = 0 (6.120)

We conclude that Cho-Mason solution indeed describes a dyon, which resembles a hybrid between Dirac and ’t
Hooft Polyakov monopole, since it contains a singular string and it seems to be stable configuration with a magnetic
topological charge. We highlight it like this, because there is a crucial problem with such solution; the energy of the
configuration is infinite from the hypercharge field contribution. This suggests this dyon configuration may not be
stable after all. Another important problem with this analysis is that it may not be gauge invariant, since the solution
was obtained by fixing ξ in a particular gauge. If the solution is gauge dependent after all, this suggests that such
configuration cannot be physical.

As final remark let’s investigate the magnetic charge in the radial gauge. The gauge invariant electromagnetic
tensor is given by [22]:

F em
jk = sin(θW )F⃗jk · ϕ̂+ cos(θW )Gjk (6.121)

In the radial gauge ϕ̂ = −r̂ and the magnetic charge is given by:

qm = − e
g

∫
dSiϵ

ijk 1

2
F⃗jk · r̂ + e

g′

∫
dSi

1

2
ϵijkGjk (6.122)

we get from (6.48):

F a
jk · r̂a =

f2 − 1

gr2
ϵjkar̂

a (6.123)

Let’s calculate the first term in the expression of the magnetic charge:

− e
g

∫
dSi

f2 − 1

gr2
r̂i = − e

g2

π∫
0

dθ

2π∫
0

dϕsin(θ)(f2(∞)− 1) =
4πe

g
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The second gives:

e

g′

∫
dSi

1

2
ϵijkGjk =

4πe

g′2

Then magnetic charge is given by:

qm = 4πe(
1

g2
+

1

g′2
) ⇒

qm =
4π

e
(6.124)

The fact that the magnetic charge is consistent in both radial and unitary gauge, it’s a great indication that our
physical observables are gauge independent.

6.7. Electromagnetic Regularization

We are starting by adding extra electromagnetic interactions of the charged W fields with the dyon. This is the
most economic way to regularise the energy of the monopole, since we are using the already existingW boson without
introducing a new source.

Consider the electroweak Lagrangian (6.1) in the unitary gauge where:

ϕ =
ρ(x)√

2

(
0
1

)
(6.125)

With x being a space-time coordinate. We write:

Dµϕ
†Dµϕ = ∂µϕ†∂µϕ+

ig

2
(ϕ†σ⃗ · W⃗µ∂

µϕ− ∂µϕ†σ⃗ · W⃗µϕ) +
ig′

2
Bµ(ϕ

†∂µϕ− ∂µϕ†ϕ) +
gg′

2
Bµϕ

†σ⃗ · W⃗µϕ+
g′2

4
BµB

µϕ†ϕ

+
g2

4
ϕ†ϕW a

µW
aµ

In the unitary gauge holds:

ϕ†ϕ =
1

2
ρ2

∂µϕ†∂µϕ =
1

2
∂µρ∂

µρ

ϕ†σ⃗ · W⃗µ∂
µϕ− ∂µϕ†σ⃗ · W⃗µϕ = ρW 3

µ∂
µρ− ρW 3

µ∂
µρ = 0

ϕ†∂µϕ− ∂µϕ†ϕ =
1

2
ρ∂µρ− 1

2
∂µρρ = 0

ϕ†σ⃗ · W⃗µϕ = −ρ
2

2
W 3

µ

And we get:

Dµϕ
†Dµϕ =

1

2
∂µρ∂

µρ− gg′

4
ρ2BµW

3µ +
g′2

8
BµB

µρ2 +
g2

8
ρ2W a

µW
aµ (6.126)
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We expand the kinetic energy of the non-Abelian field (6.2):

−1

4
F aµνF a

µν = −1

4
(∂µW

a
ν − ∂νW

a
µ )(∂

µW aν − ∂νW aµ)− 1

4
2gϵajk(∂µW

aν − ∂νW
aµ)W j

µW
k
ν

−g
2

4
(W j

µW
jµW k

νW
kν −W k

µW
jµW k

νW
jν)

Let Aµ =W 3
µ , Fµν = ∂µAν − ∂νAµ and F±

µν = ∂µW
±
ν − ∂νW

±
µ by recalling (6.6) , then the first term gives:

−1

4
FµνF

µν − 1

2
F−
µνF

+µν

The second term gives:

−g
2
ϵ3jkF

µνW j
µW

k
ν − g

2

2∑
i=1

ϵijk(∂µW
i
ν − ∂νW

i
µ)W

jµW kν =

ig

2
Fµν(W+

µ W
−
ν −W−

µ W
+
ν ) +

ig

4
(F−

µν + F+
µν)(W

−µAν −W+µAν −W−νAµ +W+νAµ) =

igFµνW+
µ W

−
ν +

ig

2
(F+

µν + F−
µν)(W

−µAν −W+µAν)

And the third one:

−g
2

4
(W j

µW
jµW k

νW
kν −W k

µW
jµW k

νW
jν) =

g2

4
[−4(W−µW+

µ )2 + 2(W−
µ W

+µ)2 + 2W+
µ W

+µW−
ν W

−ν ] =

g2

4
(W+

µ W
−
ν −W−

µ W
+
ν )(W+µW−ν −W−µW+ν)

Thus the non Abelian kinetic energy is:

−1

4
F aµνF a

µν = −1

4
FµνF

µν − 1

2
F−
µνF

+µν + igFµνW+
µ W

−
ν +

ig

2
(F+

µν + F−
µν)(W

−µAν −W+µAν) (6.127)

The potential term becomes with (6.125)

V = −λ
2
(
ρ2

2
− u2)2 (6.128)

Add (6.127) and (6.126)

−1

4
FµνF

µν − 1

4
F−
µνF

+µν + igFµνW+
µ W

−
ν +

ig

2
(F+

µν + F−
µν)(W

−µAν −W+µAν)

+
1

2
∂µρ∂

µρ− gg′

4
ρ2BµAµ +

g′2

8
BµB

µρ2 +
g2

8
ρ2AµAµ +

g2

4
ρ2W+

µ W
−µ =

−1

4
FµνFµν + igFµνW+

µ W
−
ν +

1

2
∂µρ∂

µρ+
1

4
ρ2[g2W+

µ W
−µ + (g′Bµ − gAµ)(g

′Bµ − gAµ)]

+
1

2
(−∂µW−

ν ∂
µW+ν + ∂µW

−
ν ∂

νW+µ + ∂νW
−
µ ∂

µW+ν − ∂νW
−
µ ∂

νW+µ) +
1

2
∂µW

−
ν (W−µigAν −W−νigAµ)
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−1

2
∂µW

+
ν (W+µigAν −W+νigAµ) +

1

2
∂µW

+
ν (W−µigAν −W−νigAµ)− 1

2
∂µW

−
ν (W+µigAν −W+νigAµ) =

−1

4
FµνFµν + igFµνW+

µ W
−
ν +

1

2
∂µρ∂

µρ+
1

4
ρ2[g2W+

µ W
−µ + (g′Bµ − gAµ)(g

′Bµ − gAµ)]− 1

2
|DµW−ν −DνW−ν |2

Where the covariant derivative is defined as Dµ = ∂µ + igAµ. And the electroweak Lagrangian is written as:

L = −1

4
FµνFµν − 1

4
GµνG

µν +
1

2
∂µρ∂

µρ− λ

2
(
ρ2

2
− u2)2

−1

2
|DµW−ν −DνW−µ|2 + g2

4
(W+

µ W
−
ν −W−

µ W
+
ν )(W+µW−ν −W−µW+ν)

+igFµνW+
µ W

−
ν +

1

4
ρ2[g2W+

µ W
−µ + (g′Bµ − gAµ)(g

′Bµ − gAµ)] (6.129)

Notice that by working on the unitary gauge we have decompose the initial non-Abelian theory of electroweak
interactions to an Abelian theory with electroweak sources. To regularise the Cho-Maison solution we introduce an
extra interaction L′:

L′ = iagFµνW+
µ W

−
ν +

β2g2

4
(W+

µ W
−
ν −W−

µ W
+
ν )(W+µW−ν −W−µW+ν) (6.130)

Where a and β are treated as free parameters. For example such modification of the bare theory could be arise from
quantum corrections, where these parameters are scale dependent. Also considering them as free parameters is easier
and their final value is possible to obtain from quantum corrections near r = 0. We proceed by computing the energy
momentum tensor of the modified theory :

Tµν =
2√
−g

δS

δgµν
= −gµνL−FµσF ν

σ−GµσGν
σ+∂

µρ∂νρ+4ig(1+a)FµσW+νW−
σ −(DµW+

a −DaW
+µ)(DνW−a−DaW−ν)

g2(1 + β)(W+µW−
a −W+

a W
−µ)(W+νW−a −W+aW−ν) + ρ2[g2W−µW+ν +

1

2
(g′Bµ − gAµ)(g′Bν − gAν)] (6.131)

We write the solutions (6.38) in the unitary gauge where

W−
µ = (W+

µ )∗ =
i

g

f(r)√
2
eiϕ(∂µθ + isin(θ)∂µϕ) (6.132)

Aµ =W 3
µ = −1

g
W (r)∂µt−

1

g
(1− cos(θ))∂µϕ (6.133)

And we also have

ρ = ρ(r) (6.134)

Now the energy of the configuration can be obtained by integrating T 00. The energy expression will be similar to
(6.65), with some modifications from the terms:

T 00 ∋ −g
2

4
(β)(W+

i W
−
j −W−

i W
+
j )2 − igaFijW

+
i W

−
j =

−g
2

16
β(2isin(θ)∂iθ∂jϕ− 2isin(θ)∂jθ∂iϕ)

2 − 2igaFθϕW
+
θ W

−
ϕ =

f4

2g2r4
β − a

f2

g2r4
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As for the rest of the terms, they contribute to (6.65) and the expression (6.65) by extracting 1/r2 term becomes:

E2 =
4π

g2

∫ ∞

0

dr[
r2(W ′)2

2
+f2W 2+(f ′)2+

g2r2

2g′2
B′2+g2

λr2

2
[
ρ2

2
−u2]2+g2r2 ρ

2

8
[W −B]2+

(rρ′)2

2
+
g2f2ρ2

4
] (6.135)

As for the singular energy term (6.64) with the modifications mentioned above and the term we extract from (6.65),
becomes:

E1 =
2π

g2

∫ ∞

0

dr

r2
[(1 + β)f4 − 2(a+ 1)f2 + 1 +

g2

g′2
] (6.136)

When a = β = 0 E1 is singular, but it becomes regular if:

1 +
g2

g′2
+ (1 + β)f4(0)− 2(a+ 1)f2(0) = 0 (6.137)

In addition to that the extremization of the energy functional provides us with:

(1 + a)f(0)− (1 + β)f3(0) = 0 ⇒

f2(0) =
1 + a

1 + β
(6.138)

Combine (6.137), (6.138) and we get:

1 +
g2

g′2
− 2

(1 + a)2

1 + β
+

(1 + a)2

1 + β
= 0 ⇒

(1 + a)2

1 + β
= 1 +

g2

g′2
=

1

sin2(θW )
(6.139)

And we get for f(0)

f(0) =
1√

(1 + a)sin2(θW )
(6.140)

Now the boundary condition of f(r) in (6.72) provides us with:

f(0) = 1 ⇒ (1 + a)sin2(θW ) = 1 ⇒

a = cot2(θW ) (6.141)

The parameter a depends from the initial condition of the gauge field. Next let’s investigate how the equations of
motion are modified. The Euler-Lagrange equations that minimise the energy functional give:

δE

δf
=

d

dr
(
δE

δf ′
) ⇒

f ′′ − 1

sin2(θW )r2
f(f2 − 1) = (

g2ρ2

4
+W 2)f (6.142)

The remaining equations of motion are left unchanged and given by (6.71), (6.69), (6.70). We also integrate the
equations with the boundary conditions (6.72). Numerical integration of the energy functional gives [12]:

E = 2.922sin2(θW )
4π

e2
MW (6.143)

We note that the integration was performed for λ/g2 = 0.5. The energy is finite and since the differential equations
are very similar to the differential equations that Cho-Maison solution satisfy. Then the solution here is expected to
be similar.
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6.8. Comparison to Julia-Zee Dyon

Cho-Maison solution describes a dyon field configuration in SU(2)×U(1) theory with a singularity at the center. On
the other hand Julia-Zee solution describes a dyon field configuration in SU(2) theory which is regular. To regularise
the Cho-Maison solution is crucial the differences between these two dyons.

Notice when Z bosons are absent, (6.129) becomes:

L = −1

4
FµνF

µν +
1

2
∂µρ∂

µρ

−1

2
[DµW ν −DνWµ]∗[DµWν −DνWµ]

+igFµνW
∗µW ν +

g2

4
(W ∗

µWν −W ∗
νWµ)(W

∗µW ν −W ∗νWµ)− λ

2
(
ρ2

2
− u2)2 +

1

4
ρ2g2W ∗

µW
µ (6.144)

One the other hand (4.22) after Abelianization becomes:

L = −1

4
FµνFµν +

1

2
∂µρ∂

µρ− 1

2
[DµW ν −DνWµ]∗[DµWν −DνWµ]

+igFµνW
∗µW ν +

g2

4
(W ∗

µWν −W ∗
νWµ)(W

∗µW ν −W ∗νWµ)− λ

2
(
ρ2

2
− u2)2 + g2ρ2W ∗

µW
µ (6.145)

Notice that (6.145) is identical to (4.22). The only difference is the coupling strengths of W -boson self-interaction
and Higgs interaction of W -bosons. This originates from the fact the electroweak model has two coupling constants
and Georgi-Glashow model has only one coupling constant. This suggests that in spite of the fact the Cho-Maison
solution has infinity energy, it is not much different from Julia-Zee dyon in Georgi-Glashow model.

Consider the Julia-Zee solution (4.71) together with (4.48):

ϕ⃗ = uH(r)r̂ = ρ(r)r̂ (6.146)

A⃗µ =
1

e
A(r)∂µtr̂ +

1

e
(1−K(r))r̂ × ∂µr̂ (6.147)

In the unitary gauge these solutions are written as:

Wµ =
A1

µ +A2
µ√

2
=
i

e

K(r)√
2
eiϕ(∂µθ + sin(θ)∂µϕ) Aµ = A3

µ = −1

e
V (r)∂µt−

1

e
(1− cosθ)∂µϕ (6.148)

This is an identical solution to Cho-Maison solution expressed in terms of the physical fields (6.106), (6.109) when
Z = 0. In addition to that the differential equations for Julia-Zee dyon in (4 4.7) are very similar to the differential
equations of Cho-Maison dyon in (6 6.5). Integration with boundary conditions mentioned in (4 4.7) gives a finite
energy dyon. This confirms that Julia-Zee dyon is regularized by the function ρ(r), A(r) and K(r). Therefore, Julia-
Zee dyon is an Abelian monopole regularized by the charged vector bosons and the Higg’s field, where the charged
bosons add electric charge in the configuration. On the other hand Cho-Maison dyon has a non trivial dressing of
Z-bosons, something that Julia-Zee dyon does not have. But notice the Z-boson plays no role in the Cho-Maison
monopole9. This suggests that the Cho-Maison monopole could be modified to have finite energy.

9 W (r) = B(r) = 0 in (6.109) and (6.110)
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6.9. Hypercharge Regularization

When we first compute the energy of the electroweak dyon the infinity contribution comes from the hypercharge
field. Then E1 in (6.53) can be finite if quantum corrections makes the coupling 1

g′2 zero at small distances.

To do this consider the following effective Lagrangian:

Leff = (Dµϕ)†Dµϕ− λ

2
(ϕ†ϕ− u2)2 − 1

4
F a
µνF

aµν − 1

4
ϵ(|ϕ|2)GµνG

µν (6.149)

This dielectric ’constant’ in front of the UY (1) kinetic term could be arise from unspecified dynamics. In this subsection
we are not going to discuss an ultraviolet completion of the Standard model that might lead to such behavior, but
we are going to investigate the behavior of ϵ(|ϕ|2) that could make the energy of the dyon finite. We normalise the

function ϵ(|ϕ|2) as ϵ(|ϕ|2) ϕ→u−−−→ 1, in order to restore the conventional normalisation of the U(1) gauge field in the
standard electroweak vaccum. Adding this constant does not change the differential equations of A(r) and f(r),
and will be the same as in (6 6.5). But, we expect the differential equations of B(r) and ρ(r) to change due to
ϵ(|ϕ|2) = ϵ(ρ2). To obtain the new differential equations focus on the terms in (6.44):

H ∋ ϵ(ρ2)
1

2
EiEi + ϵ(ρ2)

1

2
BiBi + (D0ϕ)†D0ϕ+ (Diϕ)†Diϕ+

λ

2
(ϕ†ϕ− u2)2 ⇒

H ∋ [r2
(B′)2

2g′2
+

1

g′2r2
]ϵ(ρ2) +

r2ρ2

8
[W −B]2 +

r2(ρ′)2

2
+
f2ρ2

4
+ r2

λ

2
(
ρ2

2
− u2)2 (6.150)

Then the differential equations are given by:

d

dr
(
∂H
∂B′ ) =

dH
dB

⇒

r2B′′ϵ+ 2rB′ϵ+ 2ρρ′B′r2ϵ′ = −r
2ρ2g′2

4
(W −B) ⇒

B′′ + 2B′(
1

r
+ ρρ′

ϵ′

ϵ
) = −ρ

2g′2

4ϵ
(W −B) (6.151)

Where ϵ′ = dϵ
dρ2 . As for ρ(r):

d

dr
(
∂H
∂ρ′

) =
dH
dρ

⇒

ρ′′ +
2

r
ρ′ =

ρ

g′2r4
ϵ′ +

f2ρ

2r2
+ λρ(

ρ2

2
− u2) +

ρ

4
(W −B)2 + ϵ′

ρB′2

g′2
⇒

ρ′′ +
2ρ′

r
− f2ρ

2r2
=

ρ

g′2
(
1

r4
+B′2)ϵ′ + λρ(

ρ2

2
− u2) +

ρ

4
(W −B)2 (6.152)

This tells us that ϵ effectively changes the U(1)Y gauge coupling g′ to the ’running’ coupling ḡ′ = g′/
√
ϵ. This is

because with rescaling of Bµ to Bµ/g
′, g′ changes to g′/

√
ϵ. So by making ḡ′ infinite at the origin, we can regularise

the energy of the configuration. In particular near the origin the singular term in (6.136) for a = β = 0 becomes:

E1 ∋ 2π

∫ ∞

0

dr

ḡ′2r2
≈ ϵ

g′2r2
∼
ρn

r2
∼ rnδ−2

For the energy to be finite it must holds:

n > 2/δ ⇒
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FIG. 11: Running coupling ḡ′ of U(1)Y as a function of mW r.

ϵ(ρ) M [TeV]

5( ρ
ρ0
)8 − 4( ρ

ρ0
)10 6.6

6( ρ
ρ0
)10 − 5( ρ

ρ0
)12 6.2

8( ρ
ρ0
)8 − 10( ρ

ρ0
)10 + 3( ρ

ρ0
)12 6.8

8( ρ
ρ0
)14 − 7( ρ

ρ0
)16 5.7

−8( ρ
ρ0
)14log(ρ) + ( ρ

ρ0
)16 5.4

TABLE I: Monopole masses in TeV for various ϵ(ρ) regularisations that are consistent with both theoretical and phenomeno-
logical constraints [16].

n > 1 +
√
3 ≈ 2.732 (6.153)

In figure (11) we observe the running coupling ḡ′ becomes divergent at the origin. This confirms that the ultraviolet
regularisation of the electroweak dyon is possible. For W = B = 0 we can estimate the monopole energy and for
n = 8 at (6.153) we get [13]:

E ≈ 0.65
4π

e2
mW ≈ 7.19TeV (6.154)

.
However if we pick ϵ(ρ) ∼ ρ8 there is an experimental problem with this choice. In particular, the effective

Hγγ coupling is much larger than is allowed by the LHC measurements [17]. Also such decay measurements are
consistent with standard model calculations. Therefore, in addition to the theoretical constrain (6.153) we must take
into account this phenomenological constraint. Further constraints of ϵ(ρ) that are consistent with both theoretical
and phenomenological properties can seen in table I together with the associated monopole masses. We have seen
two schemes, under which electroweak monopole obtains a finite mass. These two schemes are modification of the
Lagrangian, which could arise from extension of standard model. In the next section we will see a particular extension
by using Born-Infled terms.

7. BORN-INFELD MONOPOLES

In this section we are going to discuss monopole configurations in extensions of the standard model by using non-
linear terms in the gauge sector. Such terms are known as Born-Infeld terms and arise naturally in the low-energy limit
of strings. We are starting by briefly discussing the non-liner framework of electrodynamics, before introducing Born-
Infeld electrodynamics and their relation with string theory. Then we firstly apply such modifications to electroweak
model, in particular to the hypercharge sector and construct finite-energy monopole configuration. Additionally we
apply these modifications non-Abelian SO(3) models with monopole configurations for flat and curved backgrounds.
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7.1. General Structure of Non-Linear Electrodynamics

Electromagnetism described by the Maxwell equations in (2) is used to study electric and magnetic fields in vacuum.
When a material is present Maxwell equations are modified, since light itself behaves differently in various mediums.

In particular fields change as E⃗ → D⃗(E⃗, B⃗) and B⃗ → H⃗(E⃗, B⃗), due to the incorporation of magnetisation and
polarization. Linear materials have linear relations between fields. but other materials may have more complicated
relations. As for physical laws (2.2), (2.3) remain the same and the others laws are modified as:

∇⃗ · D⃗ = ρ (7.1)

∇⃗ × H⃗ = j⃗ +
∂D⃗

∂t
(7.2)

Where ρ and j⃗ are free sources that do not take into account the polarization charges and magnetization currents.
The field tensor also changes as Fµν → Gµν , where just like standard electromagnetic field tensor we get:

G0i = Di (7.3)

Gij = ϵijkHk (7.4)

And the modified physical laws become:

∂µG
νµ = jνf (7.5)

The equations above are regarded to be of limited validity, as they deal with materials, most of which do not generally
lead themselves to exact analysis. Born–Infeld and in general nonlinear theories of electrodynamics in fact suggest
that the above equations are as fundamental as the original Maxwell equations, if not more so. These theories do
not aim to describe electromagnetism in the presence of materials but rather electromagnetism in the vacuum. The
point is that in nonlinear electrodynamics the vacuum itself behaves as some kind of material. The Lagrangian of
such system will be a function of the standard electromagnetic field tensor. The action is written then:

S =

∫
d4x[L(Fµν) +Aµjµ] (7.6)

Since field tensor is gauge invariant then L is also gauge invariant.
Consider an infinitesimal variations of the field tensor δFµν , then a general function M of Fµν varies as:

δM =
1

2

∂M

∂Fµν
δFµν

Where 1/2 factor is used since δFµν = −δFνµ. The variation of the action must vanish:

δS =

∫
d4x[

1

2

∂L
∂Fµν

δFµν + jµδAµ] = 0 ⇒

∫
d4x

1

2

∂L
∂Fµν

(∂µδAν − ∂νδAµ) +

∫
d4xjµδAµ = 0 ⇒

∫
d4xδAµ[∂ν

∂L
∂Fµν

+ jµ] = 0

Therefore by comparing it with (7.5) we get:

∂L
∂Fµν

= −Gµν (7.7)

Using chain-rule we can find a formula that relates D⃗ with Lagrangian L:

∂L
∂Ei

=
∂L
∂F0i

∂F0i

∂Ei
=

∂L
∂F0i

= −Di ⇒
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D⃗ = − ∂L
∂E⃗

(7.8)

In a similar manner we can show that:

H⃗ =
∂L
∂B⃗

(7.9)

With these formulas we can also calculate the the Hamiltonian of the system:

H =
∂L
∂Ȧµ

Ȧµ − L ⇒

H = D⃗ · E⃗ − L (7.10)

It is easy to check that these equations hold for Maxwell equations when E⃗ = D⃗ and B⃗ = H⃗. So far we have not
consider any particular form of L. but we are limited since it must be both Lorentz and gauge invariant. In particular,
it must be a function of :

s = −1

4
FµνF

µν =
1

2
(E2 −B2) (7.11)

p = −1

4
Fµν F̃

µν = E⃗ · B⃗ (7.12)

In fact these are the only two Lorentz invariant quantities we can consider.
As a final remark we should discuss when electrodynamics exhibit a non-linear behavior. This is known as

Schwinger limit and is defined as a critical value of the electric for which the electrodynamics exhibit a non-linear
behavior. The limit is defined as [27]:

Ec =
m2c3

ℏ
(7.13)

Bc =
m2c2

ℏ
(7.14)

Where m is the mass of a charged particle. For electric fields E >> Ec the vacuum is expected to create enough
virtual electron-positron pairs, causing the electromagnetism to be non-linear theory. For an electron field example,
the critical values are:

Ec ≈ 108V/m Bc ≈ 109T (7.15)

These are enormous values. For instance such magnetic fields are exceeded in magnetars and such electric fields are
capable to accelerate a proton from rest to the maximum energy attained by protons at the LHC.

7.2. Born-Infeld Electrodynamics

We can try to modify the electromagnetic Lagrangian, by considering Lorentz invariant quantities. From a modified
expression we should to recover our usual Maxwell Lagrangian in a particular limit. Such Lagrangian is the Born-Infeld
Lagrangian:

L = −β2

√
1− 2s

β2
− p2

β4
+ β2 = β2(1−

√
1 +

1

2β2
FµνFµν − 1

16β4
(Fµν F̃µν)2 (7.16)

At the limit where β → ∞ we have:

L β→∞−−−−→ β2 − β2(1 +
1

4β2
FµνFµν) = −1

4
FµνFµν
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Of course there are other combinations, which recover Maxwell’s Lagrangian, but this one has some interesting
properties. One of them is that it can be written as:

L = β2[1−
√
−det(η + 1

β
F )] (7.17)

The η and F are the metric tensor and field tensor written as matrices. To show that this coincides with our initial
Born Infeld Lagrangian we rescale F ′ = F

β and L′ = L
β2 :

L′ = 1−
√
−det(η + F ′) ⇒

L′ = 1−
√
−det(η(1 + ηF ′)) = 1−

√
−det(η)det(1 + ηF ′)) ⇒

L′ = 1−
√
det(1 + ηF ′))

We have:

1 + ηF ′ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 =


1 E1 E2 E3

E1 1 B3 −B2

E2 −B3 1 B1

E3 B2 −B1 1

 ⇒

det(1 + ηF ′) = −1− (B2 − E2) + (E⃗ · B⃗)2 = −1 +
1

2
FµνF

µν +
1

16
(Fµν F̃

µν)2

Therefore, this form of Born-Infeld Lagrangian is equivalent to the original one. In string theory gauge field on a
D-brane are described by a similar Lagrangian:

L = −T0
√

−det(η + F

T0
) (7.18)

Where T0 is the string tension, which characterises the string scale. This suggests that parameter β can be identified
as the string tension.

A simply application of Born-Infeld electrodynamics is the electrostatic energy of point like charge Q. In Maxwell’s
theory of electromagnetism this energy is infinity. Indeed,

EQ =
1

8π

∫
d3xE2 =

1

8π

∫ ∞

0

dr4πr2
Q2

r4
→ ∞

Now let’s calculate the same energy with Born-Infled Lagrangian. For an electrostatic charge we have:

L = β2(1−
√
1− 1

β2
E2)

To calculate the energy of the point-like charge we have:

D⃗ = − ∂L
∂E⃗

=
E⃗√

1− E2

β2

⇒

E⃗ =
D⃗√

1 + D2

β2

(7.19)

For a point-like charge over closed surface S holds:∮
D⃗ · d⃗a = Q⇒
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D⃗ =
Q

4πr2
r̂ (7.20)

Then according to (7.10) the Hamiltonian density is given by:

H =
D2√
1 + D2

β2

− β2(1−
√

1− D2/β2

1 + D2

β2

) =
1 +D2/β2√
1 +D2/β2

− β2 ⇒

H = β2
√
1 +D2/β2 − β2 ⇒

H = β2

√
1 +

Q2

16π2β2r4
− β2 (7.21)

And the total energy of the point-like charge is:

EQ =

∫
d3xH =

∫ ∞

0

dr4πr2(β2

√
1 + (

Q

4πβr2
)2 − β2) = 4πβ2

∫ ∞

0

dr(r2

√
1 + (

Q

4πβr2
)2 − r2)

Let x =
√

4π
Qβ r and we have:

EQ = Q

√
Qβ

4π

∫ ∞

0

dx(
√
1 + x4 − x2) ≈ 1

4π
4.382Q3/2β1/2 =

1

4π
4.382Q3/2(T0)

1/4

Therefore the electrostatic energy becomes finite and depends from the string tension T0. At the limit T0 → ∞ the
energy becomes infinity, thus the expression is consistent with the recovery of Maxwell’s theory.

So far we have discuss the Abelian Born Infeld Lagrangian. We can generalise this description to a Yang-Mills field.
Such generalization is not unique and the simplest one is given by [25]:

L = β2tr[1−

√
−det(η + F

β
)] = β2tr[1−

√
1 +

1

2β2
FµνFµν − 1

16β4
(Fµν F̃µν)2] (7.22)

Where Fµν = F a
µνT

a is the non-Abelian field tensor. A second possibility is [25]:

L = β2Str[1−

√
−det(η + F

β
)] = β2tr[1−

√
1 +

1

2β2
FµνFµν − 1

16β4
(Fµν F̃µν)2] (7.23)

Where we have used the symmetric trace operation:

Str(T1, T2, ..TN ) =
1

N !

∑
p

tr(Tp(1)Tp(2)...Tp(N)) (7.24)

Coming next we are going to see further applications of Born-Infeld electrodynamics to monopoles. Such models
can considered as standard model extensions that can be viewed as a low-energy limit of strings, or simply extensions
with gauge fields exhibiting a non-linear behavior.

7.3. Electroweak Born-Infeld Monopole

In (6 6.9) we have discussed how a modified U(1)Y kinetic term in the effective Lagrangian could make the monopole
mass finite without specify any dynamics that make this possible. Modifications of the theory beyond the standard
model such as a non-linear Born-Infeld gauge theory could fit this description. Such theory arises as a low energy limit
of strings, that effects the full standard model gauge sector, but for our purpose we will restrict to the Born-Infled
hypercharge sector. Then we will investigate monopole solutions of Cho-Maison type.
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Therefore, by replacing the kinetic hypercharge term in (6.1) by the Born-Infled term, we have:

L = (Dµϕ)
†Dµϕ− λ

2
(ϕ†ϕ− u2)2 − 1

4
F aµνF a

µν + β2(1−
√
1 +

1

2β2
GµνGµν − 1

16β4
(GµνG̃µν)2 (7.25)

In string theory models the parameter β2 = 1
2πa′ = T0 is the string tension, which sets the string energy scale. In

this analysis we treat β as a free parameter that is restricted by experiment. In the limit β → ∞ we recover (6.1)
and expect the energy of the monopole to be infinite.

We can obtain the equations of motion from (7.25) and since only the hypercharge sector is modified, equations
(6.20), (6.21) remaining the same and the hypercharge field satisfies:

∂µ
∂L

∂∂µBν
=

∂L
∂Bν

⇒

∂µ(
− 1

4
∂

∂µBν
[GabG

ab] + 1
16β2GabG̃

ab ∂
∂µBν

[GabG̃
ab]√

1 + 1
2β2GabGab − 1

16β4 (GabG̃ab)2
) =

ig′

2
[ϕ†Dνϕ− (Dνϕ)†ϕ] ⇒

∂µ[
Gµν − 1

4β2 (GabG̃
ab)G̃µν√

1 + 1
2β2GabGab − 1

16β4 (GabG̃ab)2
] =

ig′

2
[ϕ†Dνϕ− (Dνϕ)†ϕ] (7.26)

In this model we will consider a static Cho-Maison monopole solution. To obtain this solution we set B(r) = 0 in
(6.35) and W (r) = 0 in (6.38), while working with the gauge (6.27). The solution is then

ϕ =
1√
2
ρξ (7.27)

W⃗µ =
f − 1

g
r̂ × ∂µr̂ (7.28)

Bµ = − 1

g′
(1− cos(θ))∂µϕ (7.29)

We expect the Higgs solution ϕ and the non-Abelian W⃗µ solution to satisfy the equations of motion, since they are
the same as in the electroweak model. But we should check if the same holds for the Abelian Bµ. (7.26) gives if we
substitute Bµ:

∂µ[
Gµν√

1 + 1
β2g′2r4

] =
ig′

2
[ϕ†Dνϕ− (Dνϕ)†ϕ] ⇒

1

r

∂

∂θ
[

1
g′r2√

1 + 1
β2g′2r4

] = 0
1

rsin(θ)

∂

∂ϕ
[−

1
g′r2√

1 + 1
β2g′2r4

] = 0

Therefore Bµ satisfies equations of motion. The energy functional of the system is expected to be very similar to
Cho-Maison dyon. In particular we must set W = B = 0 at (6.65) and (6.64) must change due to Born-Infeld term.
Now let’s focus how the Born-Infeld term effects the energy momentum tensor, we have:

Tµν ∋ −gµνL − 1√
1 + 1

2β2GµνGµν − 1
16β4 (GµνG̃µν)2

[GνbGµ
b −

1

4β2
(GabG̃ab)G

µ
cG̃

νc] ⇒

H ∋ −β2[1−
√
1 +

1

2β2
GµνGµν − 1

16β4
(GµνG̃µν)2]− 1√

1 + 1
2β2GµνGµν − 1

16β4 (GµνG̃µν)2
[G0bG0

b−
1

4β2
(GabG̃ab)G

0
cG̃

0c] ⇒
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H ∋ −β2[1−
√
1 +

1

2β2
GµνGµν − 1

16β4
(GµνG̃µν)2]

Where the Abelian electric fields Ei = G0i are zero since we have static configuration. We compute now (6.49) and
the only non-zero components are:

G23 = −G32 =
1

g′r2
(7.30)

We also have:

G̃23 =
1

2
ϵ23ρσG

ρσ = 0

Then hypercharge sector contributes to the Hamiltonian:

H ∋ −β2[1−
√
1 +

1

β2g′2r4
]

And the energy of the monopole is given by:

E = 4πβ2

∫ ∞

0

dr[

√
r4 +

1

β2g′2
− r2]

+4π

∫ ∞

0

dr[
(f ′)2

g2
+

(f2 − 1)2

2g2r2
+
λr2

2
[
ρ2

2
− u2]2 +

(rρ′)2

2
+
f2ρ2

4
] (7.31)

The second term of the energy is finite just like the Cho-Maison dyon. As promised the first term which was infinite
in Cho-Maison dyon, now it is finite and we can compute it analytically. We let r = x√

g′β
:

E1 = 4πβ2

∫ ∞

0

dx√
g′β

(
√
x4 + 1− x2)

1

g′β
= 4π

√
β

g′3
(Γ(1/4))2

6
√
π

≈ 15.53

√
β

g′3
(7.32)

Notice the similarity with the electrostatic energy of the point charge. We also observe that as β → ∞, (7.32) becomes
infinite, since at this limit Cho-Maison monopole solution holds. Using standard model value g′ = 0.357 we get:

E1 ≈ 72.81
√
β (7.33)

As for the other term:

E2 = 4π

∫ ∞

0

dr[
(f ′)2

g2
+

(f2 − 1)2

2g2r2
+
λr2

2
[
ρ2

2
− u2]2 +

(rρ′)2

2
+
f2ρ2

4
] (7.34)

More work must be done in order to compute it.
From the energy functional we get differential equations for f(r) and ρ(r) by using Euler-Lagrange equations:

d

dr

δE

δf ′
=
δE

δf

d

dr

δE

δρ′
=
δE

δρ
⇒

2

g2
f ′′ =

2f(f2 − 1)

g2r2
+
fρ2

2
2rρ′ + r2ρ′′ = λr2[

ρ2

2
− u2]ρ+

f2ρ

2
⇒

f ′′ − f(f2 − 1)

r2
=
g2fρ2

4
(7.35)

ρ′′ +
2ρ′

r
− f2ρ

2r2
= λ[

ρ2

2
− u2]ρ (7.36)
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The functions f and ρ satisfy the boundary conditions:

f(0) = 1 f(∞) = 1 ρ(0) = 0 ρ(∞) = ρ0 =
√
2u (7.37)

Now let’s investigate the asymptotic behaviors of f(r) and ρ(r). To simplify the differential equations we let:

ρ̃ =
ρ

ρ0
ρ0 =

√
2u (7.38)

x = µr µ2 =
λρ20
2

(7.39)

Differential equation (7.36) becomes:

µ2ρ̃′′ + µ2 2ρ̃
′

x
− µ2 f

2ρ̃

2x2
=
λρ20
2

(ρ̃2 − 1)ρ̃⇒

ρ̃′′(x) +
2ρ̃′(x)

x
− f2ρ̃(x)

2x2
= (ρ̃2(x)− 1)ρ̃(x) (7.40)

As for (7.35) we get:

µ2f ′′ − µ2 f(f
2 − 1)

x2
=
g2ρ20
4

fρ̃2

Let ϵ = g2

2λ and we get:

f ′′(x)− f(x)(f2(x)− 1)

x2
= ϵf(x)ρ̃2(x) (7.41)

At large distances where x→ ∞ we let ρ̃(x) = 1 + δ̃(x), |δ̃(x)| << 1 and (7.41) becomes:

f ′′ ≈ ϵf ⇒

f(x) = f1e
−
√
ϵx (7.42)

Where f1 is a free parameter. To include subleading behavior we let f(x) = f1e
−
√
ϵx +∆(x) and (7.41) gives:

ϵf1e
−
√
ϵx +∆′′(x) +

1

x2
f1e

−
√
ϵx ≈ ϵf1e

−
√
ϵx + ϵ∆ ⇒

∆′′(x)− ϵ∆(x) ≈ −f1e
−
√
ϵx

x2
= P (x)

This inhomogeneous differential equations has a particular solution [20]:

∆p(x) = −∆1(x)

∫ x

x0

dt
P (t)∆2(t)

W (t)
+ ∆2(x)

∫ x

x0

dt
P (t)∆1(t)

W (t)

Where ∆1(x) and ∆2(x) are solutions of the homogeneous equations and W (x) = ∆1(x)∆
′
2(x) −∆′

2(x)∆1(x) is the
Wronskian determinant. We compute these easily:

∆1(x) = e
√
ϵx ∆2(x) = e−

√
ϵx

W = −2
√
ϵ

And we proceed as:

∆(x) = −e
√
ϵx

2
√
ϵ

∫ x

x0

dt
f1e

−2
√
ϵt

t2
+
e−

√
ϵx

2
√
ϵ

∫ x

x0

dt
f1
t2
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The first term gives:

∼ −e
√
ϵx

∞∑
n=2

(−2
√
ϵ)n

n!(n− 1)
[xn−1 − xn−1

0 ]− e
√
ϵxln(

x

x0
)− e

√
ϵx(− 1

x
+

1

x0
) → ∞

Thus it must be discarded, since f(∞) = 1. Due to the second term, we get:

∆(x) = c1∆2(x) + ∆p(x) = c1e
−
√
ϵx + f1

e−
√
ϵx

2
√
ϵ
(− 1

x
+

1

x0
) = (c1 + f1

1

2
√
ϵx0

)e−
√
ϵx − f1

2
√
ϵ

e−
√
ϵx

x

Thus the asymptotic f(x) = f∞(x) behaves:

f∞(x) ≈ f1e
−
√
ϵx+c1e

−
√
ϵx+f1

e−
√
ϵx

2
√
ϵ
(− 1

x
+

1

x0
) = e−

√
ϵx(c1+f1+

f1
2
√
ϵx0

)− f1
2
√
ϵx
e−

√
ϵx = d1e

−
√
ϵx− f1

2
√
ϵx
e−

√
ϵx ⇒

f∞(x) = e−
√
ϵx[d1 −

f1
2
√
ϵx

(1− 1

2
√
ϵx

+O(
1

x2
))] (7.43)

Now substitute ρ̃ = 1 + δ̃ in (7.40) and we get:

δ̃′′ +
2

x
δ̃′ − f2

2x2
≈ 2δ̃ ⇒

δ̃′′ +
2

x
δ̃′ − 2δ̃ ≈ f2∞

2x2
= F (x) ⇒

A particular solution is given again by:

δ̃(x) = −δ1(x)
∫ x

x0

dt
F (t)δ2(t)

W (t)
+ δ2(x)

∫ x

x0

dt
F (t)δ1(t)

W (t)

We compute the homogeneous solutions and the Wronskian determinant.

δ′′ +
2

x
δ′ − 2δ = 0

δ=σ
x−−−→

σ′′ − 2σ = 0 ⇒

σ1(x) = e
√
2x σ2(x) = e−

√
2x ⇒

δ1(x) =
e
√
2x

x
δ2(x) =

e−
√
2x

x

W (x) = δ1δ
′
2 − δ′1δ2 = −2

√
2

x2

And a particular solution is:

δ̃p(x) = − d1

2
√
2x

[
f1
2
√
ϵ
exp(−2

√
ϵx) +

√
2f1(

√
2ϵ− 1) +

√
ϵd1

2
√
2ϵ(

√
2ϵ− 1)

exp(−2(
√
2−

√
ϵ)x)] (7.44)

ρ̃(x) = 1 + c2δ2(x) + δ̃(x) (7.45)

Now we proceed with the small asymptotic behaviors of f(x) and ρ̃(x). Around x = 0 we have f(x) = 1 + ∆0(x),
|∆0(x)| << 1 and (7.41) becomes:

∆
′′

0 (x)−
2∆0(x)

x2
= ϵρ̃2(x) (7.46)
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As for (7.40) we get:

x2ρ̃(x) + 2xρ̃(x) + (x2 − 1

2
)ρ̃(x) = 0 ⇒

x2ρ̃(x) + 2xρ̃(x) + (x2 − δ(δ + 1))ρ̃(x) = 0 (7.47)

Where we let δ = −1+
√
3

2 . The solution is

ρ̃(x) = c1jδ(x) = c1

√
π

2
xδ

∞∑
m=0

(−1)m

m!

(x/2)2m

Γ(δ +m+ 3/2)
≈ c1x

δ[1− x2

2(2δ + 3)
] (7.48)

Thus (7.46) becomes:

∆′′
0 − 2

x2
∆0(x) = ϵc21x

2δ[1− x2

2(2δ + 3)
]2

Which has a particular solution:

∆0 =
ϵc21
3
x2δ+2[

3

2δ(3 + 2δ)
− 3x2

2
(15 + 31δ + 20δ2 + 4δ3)−1 +O(x4)] (7.49)

We conclude that for asymptotic behaviors we have:

f(x)
x→∞−−−−→ exp(−

√
ϵx)(d1 −

f1
2
√
ϵx

(1− 1√
ϵx

+
1

2ϵx2
)

ρ̃(x)
x→∞−−−−→ 1 + c2

e−
√
2x

x
− d1

2
√
2x

[
f1
2
√
ϵ
exp(−2

√
ϵx) +

√
2f1(

√
2ϵ− 1) +

√
ϵd1

2
√
2ϵ(

√
2ϵ− 1)

exp(−2(
√
2−

√
ϵ)x)]

f(x)
x→0−−−→ 1 +

ϵc21
3
x2δ+2[

3

2δ(3 + 2δ)
− 3x2

2
(15 + 31δ + 20δ2 + 4δ3)−1 +O(x4)]

ρ̃(x)
x→0−−−→ c1x

δ[1− x2

2(2δ + 3)
]

(7.50)

Higher order small x asymptotic analysis with Pade approximation is discussed in [19] by taking into account the
asymptotic behaviors derived in (7.50). This allows to numerically estimate E2 in (7.34) and we get:

E2 = 7617GeV (7.51)

Therefore the total total energy of the configuration is given by:

E = (72.81

√
β

(GeV )2
+ 7617)GeV (7.52)

Born-Infeld parameter β is constrained by measurements by ATLAS as mentioned in [19]:√
β ≥ 90GeV (7.53)

And thus the energy of the system is expected to have o lower bound of:

E ≥ 14.17TeV (7.54)

Of course such bound suggests that monopoles in our model are out of detection range of LHC, but is of potential
relevance to future colliders and cosmic rays.
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7.4. Simply trace SO(3) Born-Infeld Monopole

Now we are going to consider the non-Abelian Lagrangian (7.22) for the SO(3) group. Such gauge field is chosen to
be coupled with a Higgs field in the adjoint representation. We want to investigate magnetic monopole configurations,
therefore Fµν F̃

µν = T aT bFaµν F̃
bµν = −4Ea

i B
bi = 0. We write then Lagrangian of our model:

L =
1

2
(Dµϕ)

a(Dµϕ)a − λ

4
(ϕaϕa − u2)2 + β2tr[1−

√
1 +

1

2β2
FµνFµν ] (7.55)

With:

(Dµϕ)
a = ∂µϕ

a + ie(T⃗ · A⃗µϕ)
a (7.56)

Where A⃗µ is the non-Abelian SO(3) field. Topological arguments that we saw for the SU(2) ’t Hooft-monopole still
hold for such model and we consider the following ansatz:

A⃗i =
1−K(r)

e
r̂ × ∂ir̂ (7.57)

ϕ⃗ = uH(r)r̂ (7.58)

With the following boundary conditions:

H(∞) = 1 H(0) = 0 K(∞) = 0 K(0) = 1 (7.59)

So that asymptotically they satisfy:

ϕ⃗
r→∞−−−→ ur̂ (7.60)

A⃗i
r→∞−−−→ −1

e
r̂ × ∂ir̂ (7.61)

These are soliton-like configurations just like those we investigate in Georgi-Glashow model, but in this case the gauge
sector exhibits a non-linear behavior. The equations of motion for the non-Abelian gauge field are given by:

∂µ
∂L
∂µA⃗ν

=
∂L
∂A⃗ν

⇒

∂µ[
F aµν√

1 + 1
4β2F a

bcF
abc

] = eϵabcDνϕbϕc ⇒

∂µ[
F⃗µν√

1 + 1
4β2 F⃗bc · F⃗ bc

] = eDν ϕ⃗× ϕ⃗ (7.62)

The energy momentum tensor is given by:

Tµν =
2√
−g

δS

δgµν
= −gµνL+ (Dµϕ)a(Dνϕ)a − β2 gaσF

cµaF cνσ√
1 + 1

4β2 F⃗γδ · F⃗ γδ
(7.63)

The Hamiltonian density is given then:

H = T 00 = −1

2
(Dµϕ)

a(Dµϕ)a +
λ

4
(ϕaϕa − u2)2 − β2[1−

√
1 +

1

4β2
F⃗µν · F⃗µν ]− β2

2

gaσF⃗
0a · F⃗ 0σ√

1 + 1
4β2 F⃗γδ · F⃗ γδ

(7.64)
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The non-Abelian field tensor is given by:

F a
µν = ∂µA

a
ν − ∂νA

a
µ − eϵabcAb

µA
c
ν =

K ′

er
(ϵabν r̂

br̂µ − ϵabµr̂
br̂ν) +

2(K − 1)

er2
[ϵaµν + ϵabµr̂

br̂ν − ϵabν r̂
br̂µ]−

r̂ar̂m

er2
(K − 1)2ϵµνm (7.65)

Therefore only spatial indices survive. The Higgs kinetic term is given by:

(Dµϕ)
a = ∂µϕ

a + eϵcabAc
µϕ

b ⇒

(Di)
a
bϕ

b =
urari
r2

[H ′ − HK

r
] +

uHK

r
δai (7.66)

DiϕDiϕ = u2(H ′)2 +
2u2

r2
(HK)2 (7.67)

To calculate the contribution of the gauge field we write the non Abelian kinetic term in terms of the color magnetic
field:

1

4β2
F⃗ij · F⃗ ij =

1

2β2
Ba

i B
a
i (7.68)

The color magnetic field is given by:

Ba
i =

1

2
ϵijkF

ajk =
1

er4
[1 + rK ′ −K2]rir

a − δai
K ′

er
(7.69)

And thus we get:

1

4β2
F⃗ij · F⃗ ij =

(1−K2)2

2β2e2r4
+

(K ′)2

β2e2r2
(7.70)

Now by using the formulas above we can calculate the energy functional of the configuration is given by:

E =

∫
d3xH = 4π

∞∫
0

drr2{λu
4

4
(H2 − 1)2 − β2(1−

√
1 +

(1−K2)2

2β2e2r4
+

K ′2

β2e2r2
) +

(uH ′)2

2
+ (

uHK

r
)2} (7.71)

Since the configuration is static, equations of motion are given by

d

dr
(
∂H
∂H ′ ) =

∂H
∂H

(7.72)

⇒ H ′′ =
2K2H

r2
− 2

r
H ′ + λu2H[H2 − 1] (7.73)

d

dr
(
∂H
∂K ′ ) =

∂H
∂K

(7.74)

⇒ d

dr
[

K ′√
1 + (1−K2)2

2β2e2r4 + K′2

β2e2r2

] =
K(K2 − 1)

r2
1√

1 + (1−K2)2

2β2e2r4 + K′2

β2e2r2

+ 2K(ueH)2

Let:

R =

√
1 +

(1−K2)2

2β2e2r4
+

K ′2

β2e2r2
(7.75)
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And we get:

d

dr
(
K ′

R
) =

K(K2 − 1)

r2R
+K(Heu)2 ⇒

r2K ′′ −K ′R
′

R
r2 = K(K2 − 1) +KR(Heu)2r2 (7.76)

The non-Abelian field tensor and the Higgs field are the same as the one in Georgi-Glashow model, thus the magnetic
charge of the configuration is equal to:

qm =
4π

e
(7.77)

Finally numerical results [25] of the differential equations showcase that there are some critical values βc for which
when β ≤ βc there are no numerical solution due to high non-linearity of the equations. Moreover for these values the
monopole energy is infinity. Some critical values are βc = 0.41 for λ/e2 = 0 and βc = 0.62 for λ = 0.5. The origins
of βc is quite interesting. In Georgi-Glashow model the radius of the monopole core is given by Rc = 1/MW = 1/ue,
with Mw being the mass of the W bosons. There is another length associated with Higgs field and we let it as
RH = 1/MH ∼ 1/

√
λu. This is simply the region for which the Higg’s obtains the vacuum expectation value. We let

the dimensionless parameter:

a =
RH

Rc
=

e√
λ

(7.78)

Then according to numerical solution monopole configuration arise for a ∼ 1. Now in our current model there is
an another parameter β for which RH and Rc could in principle depend from β and u

√
λ and the configuration

minimizing the energy will result from the matching of both parameters determining the size of the monopole. In the
region defined by βc, such matching is impossible [25]. Therefore, the critical value βc is simple the range where it is
impossible to adjust the parameters of the model such that the energy is minimised.

7.5. Simply trace SO(3) Gravitational Born-Infeld Monopole

Consider the simply trace SO(3) Born-Infeld model in curved spacetime. The spacetime is described by a spherical
symmetric solution of Einstein’s equations and we use the parametirization [27]:

ds2 = B(r)dt2 −A(r)dr2 − r2dΩ2

= e2ν(r)dt2 − e2σ(r)dr2 − r2dΩ2 (7.79)

Where the the functions B(r) and A(r) satisfy the following conditions:

B(∞) = A(∞) = 1 (7.80)

ν(∞) = σ(∞) = 0 (7.81)

We will consider monopole configurations and the Lagrangian of model is given by:

L = − R

16πG
+

1

2
Dµϕ⃗ ·Dµϕ⃗+ β2tr(1−

√
1 +

1

2β2
FµνFµν)− λ

4
(ϕ⃗ · ϕ⃗− u2)2 = Lg + Lm (7.82)

Lg = − R

16πG
(7.83)

Lm =
1

2
Dµϕ⃗ ·Dµϕ⃗+ β2tr(1−

√
1 +

1

2β2
FµνFµν)− λ

4
(ϕ⃗ · ϕ⃗− u2)2 (7.84)
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And the action of the system is given by:

S =

∫
d4x

√
−gL (7.85)

The field solution of the matter section is given by:

ϕ⃗ = uH(r)r̂ (7.86)

A⃗i =
1

g
(1−K(r))r̂ × ∂ir̂ A⃗0 = 0 (7.87)

With boundary conditions:

H(∞) = 1 H(0) = 0 K(0) = 1 K(∞) = 0 (7.88)

We have describe ’t Hooft monopole configuration in curved spacetime in section (5). Most of the general calculations
performed in this section still hold for this case. In particular equations of motion for A(r) and B(r) obtained from
gravity sector remain the same. The same holds for the Higgs field in the matter sector and we expect the gauge field
to satisfy different equations motion. Recall from (5)

−1

4
F⃗ij · F⃗ ij = − (K ′)2

Ae2r2
− (1−K2)2

2e2r4
(7.89)

Then the Born-Infeld term gives:

β2tr(1−
√
1 +

1

2β2
FijF ij) = β2(1−

√
1 +

1

4β2
F⃗ij · F⃗ ij) = β2(1−

√
1 +

(K ′)2

Aβ2e2r2
+

(1−K2)2

2β2e2r4
= β2(1−R) (7.90)

Where we have let:

R =

√
1 +

(K ′)2

Aβ2e2r2
+

(1−K2)2

2β2e2r4
(7.91)

This in order to calculate the equation of motion for the gauge field we consider the rest of the terms in the action:

S =

∫
d4x

√
−gL ∋ −4π

∫
dt

∞∫
0

dr
√
AB{u2H2K2 − β2r2(1−R)}

The equation of motion for the gauge field is given:

d

dr
[
∂(
√
−gL)
∂K ′ ] =

∂(
√
−gL)
∂K

⇒

d

dr
[
√
ABβ2r2

∂R
∂K ′ ] = 2

√
ABu2H2K + β2r2

√
AB

∂R
∂K

We have:

∂R
∂K

=
2

R
K(K2 − 1)

β2e2r4

∂R
∂K ′ =

2

R
K ′

Aβ2e2r2

Then we get:

d

dr
[

√
B

A

K ′

R
] =

√
AB(euH)2K +

√
AB

K(K2 − 1)

Rr2
⇒
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r2√
AB

d

dr
[

√
B

A
K ′]− R′

R
K ′r2

A
= (euHr)2KR+K(K2 − 1) (7.92)

Note in that in the flat limit, where A(∞) = B(∞) = 1, we obtain the differential equation of the gauge field in
(7.76), as it was expected.

From the energy momentum tensor we can obtain the Hamiltonian of the system:

H = −Lm = −[
1

2
Dµϕ⃗ ·Dµϕ⃗+ β2tr(1−

√
1 +

1

2β2
FµνFµν)− λ

4
(ϕ⃗ · ϕ⃗− u2)2]

=
λu4

4
(H2 − 1)2 +

u2H
′2

2A
+
u2H2K2

r2
− β2(1−R) (7.93)

The energy of the monopole configuration is given by:

E = 4π

∞∫
0

drr2[
λu4

4
(H2 − 1)2 +

u2H
′2

2A
+
u2H2K2

r2
− β2(1−R)]

= 4π

∞∫
0

drr2[
λu4

4
(H2 − 1)2 +

u2H
′2e−2σ(r)

2
+
u2H2K2

r2
− β2(1−

√
1 +

e−2σ(r)(K ′)2

β2e2r2
+

(1−K2)2

2β2e2r4
)] (7.94)

Numerical results of this system are described in [27]. Let’s sum up the most important results. In this analysis we
let a2 = 4πGu, where various solutions corresponding to different values of u, have been studied. The system exhibits
a similar behavior just like the flat case, where the monopole solution cease to exist for values of β bellow the critical
value βc ∼ 0.1. At last from this analysis it was found for definite value of β it exists a maximum value amax of a, for
which the monopole solution cease to exist for a > amax. In particular it was found as β increases a2max decreases.
The reason for such behavior is that for values a < amax the monopole becomes gravitationally unstable and collapses.

Conclusion

To sum up, magnetic monopoles are a theoretical concept in fundamental physics, with no experimental evidence.
Despite this physicists remained stubborn about this idea, with monopoles being contained in theoretical models ever
since the first exploration of Maxwell’s theory. The main goal of this thesis was to present the prospect electroweak
monopoles in the standard model and some of its extensions. The lack of experimental verification is a strong evidence
that electroweak monopoles are only theoretical. In addition to this the theoretical description of electroweak monopole
is also problematic, since it has infinity energy. It is possible that these facts could conclude the research around the
topological sector of the standard model. Of course we have not discussed any dynamics of electroweak monopoles,
which are very important for the experimental research in colliders. Although it seems that electroweak monopole
is a speculation, it will still have a theoretical relevance, since they can be found in standard model extensions such
as GUT’s and other models in modern theoretical physics. This will hopefully continue to fuel physicists for further
research.

Appendix

Appendix A: Homotopy theory

In this section we are going to introduce some aspects of homotopy theory. Homotopy theory in general studies
continuous deformations between spaces. These deformations are maps between spaces and in physics we focus more
on maps rather than spaces. In particular we will study maps between n-dimensional sphere and the vacuum manifold
M ,

ϕ : Sn →M (A.1)

Maps are passing through a base point m ∈M .
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The set of maps that can be continuously deformed to the map ϕ is denoted as [ϕ]. This is known as homotopy
class.

Let ϕ, ξ : Sn → M two continuous maps. If ∃ a continuous map F : Sn × I → M with I = [0, 1], such that
F (p, t = 0) = ϕ(p) and F (p, t = 1) = ξ(p) ∀ p ∈ Sn, then we say ϕ ∼ ξ, meaning that ϕ is homotopic to ξ. We call
F (p, t) homotopy between ϕ and ξ. The map F (p, t) is simply a way to continuously10 deform ϕ to ξ and ϕ, ξ ∈ [ϕ]
Two different homotopy maps ϕ, ξ passing through a base point m ∈M can be multiplied via the operation:

ϕ ◦ ξ =

{
ϕ(x) x ∈ Sn

+

ξ(x) x ∈ Sn
−

(A.2)

Where Sn
+ stands for north hemisphere and Sn

− stands for the south hemisphere of the n dimensional sphere. The
two maps are equal to the equator and whole equator is mapped to m. We can generalise this operation to homotopy
classes [ϕ] and [ξ]. It can shown that this operation respects all the requirements of an abelian group and we call this
group nth homotopy group πn(M). Group elements of πn(M) are homotopy classes.

One very important homotopy group is the first homotopy group of U(1) ∼= S1. It can be proved that:

π1(S
1) = Z (A.3)

Each homotopy class is associated with a different integer. We can think the classes as rubber bands that fit n rounds
a circle. For example one that fits two rounds can not deformed into another that fits one round.
This idea can generalize to higher homotopy groups of higher dimensional spheres:

πn(S
n) = Z (A.4)

The first homotopy group of Sn now it can proven that is trivial:

π1(S
n) = ∅ (A.5)

Since Sn is a simply connected space. This means that it has no holes and can be continuously contracted to a point,
making every rubber band equivalent.
The generalization of this idea is for m > n :

πn(S
m) = ∅ (A.6)

Appendix B: Soliton Theory

In this section we are going to introduce the idea of solitons. Solitons or solitary waves are stable field configurations
of finite energy.

Our starting point is the one dimensional Sine-Gordon equation:

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+

1

b2
sin(bϕ) = 0 (B.1)

This is a wave equation with a non linear term, thus the superposition principle does not hold. Consider the moving
solution ϕ(x, t) = f(x− ut) = f(ξ). We transform (B.1) by letting ξ = x− ut:

∂2

∂t2
= u2

∂2

∂ξ2
∂2

∂x2
=

∂2

∂ξ2

And (B.1) becomes:

∂2ϕ

∂ξ2
(1− u2) =

1

b2
sin(bϕ) (B.2)

10 This is achieved via the variable t ∈ I
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FIG. 12: Soliton wave moves in space without changing its size or shape.

This equation is solved by:

f(ξ) =
4

b
tan−1(e

± γξ√
b ), γ =

1√
1− u2

(B.3)

Now let’s investigate constant solutions. This means ∂2ϕ
∂t2 = ∂2ϕ

∂x2 = 0 and (B.1) gives:

sin(bϕ) = 0 ⇒ ϕ =
2π

b
n, n ∈ Z (B.4)

Sine-Gordon equation has a degenerate vacuum in a classical sense. It’s easy to show that (B.1) can be obtained from
the Lagrangian:

L =
1

2
[(
∂ϕ

∂t
)2 − (

∂ϕ

∂x
)2]− 1

b2
[1− cos(bϕ)] (B.5)

Where the potential V (ϕ) = 1
b2 (1− cos(bϕ)) has chosen such that is equal zero for ϕ = 2πn

b . We can approximate the
potential near the vacuum as:

V (ϕ) ≈ 1

b2
(1− 1 + b2

ϕ2

2
− b4

ϕ4

4!
) =

ϕ2

2
− b2ϕ4

4!

Now construct a static configuration where ϕ approaches one of the zeros of V (ϕ) as ϕ→ −∞ and different one as

ϕ→ ∞. Let’s say n = 0 for −∞ and n = 1 for ∞. As for the intermediate region it holds that ∂ϕ
∂x ̸= 0 and ϕ ̸= 2πn

b .
For static configurations (B.1) gives:

−∂
2ϕ

∂x2
+
∂V

∂ϕ
= 0 ⇒ ∂ϕ

∂x

∂

∂ϕ

∂ϕ

∂x
=
∂V

∂ϕ
⇒ 1

2
(
∂ϕ

∂x
)2 = V (ϕ)

The energy of the static configuration is give by:

E =

∫
dxH = −

∫
dxL = −

∫
[
1

2
(
∂ϕ

∂x
)2 + V (ϕ)]dx =

∫
2V (ϕ)dx = 2

∫ 2π/b

0

V
dx

dϕ
dϕ

E =

∫ 2π
b

0

√
2V dϕ =

∫ 2π
b

0

dϕ

√
2

b2
(1− cos(bϕ))

E =
8

b2
(B.6)

Thus this configuration has finite energy that is inversely proportional to the coupling constant b2. We can visualise
such configuration as an infinite horizontal string with pegs attached to it at equally spaced intervals, and connect each
peg to it’s neighbour with spring (coupling). The ground corresponds to the peg hanging vertically. The configuration
n = 0 → n = 1 described above can be seen in figure 13. From this figure we observe that such a configuration is
stable and can not decay to a configuration with E = 0. This means for example to continuously deform n = 1
to n = 0 and obtain a configuration n = 0 → n = 0. The reason for this is that it involves an infinity number of
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FIG. 13: Soliton solution visualisation.

pegs turning over across the horizontal line, requiring infinity energy. Thus there is infinity energy barrier between
configurations with different end points. For these reason solitons are topological objects, since their stability is
earned from topological properties of the space (boundary conditions).

We can try to generalise this idea to two spatial dimensions with polar coordinates (r, θ). Now the boundary of
configurations is not the end points of a horizontal line, but a circle at infinity:

ϕ = aeinθ, r → ∞ (B.7)

Where n ∈ Z is fixed and chosen such that ϕ is single valued. We write the potential in such a way that at the
boundary (B.7) is equal to zero:

V (ϕ∗ϕ) = (a2 − ϕ∗ϕ)2 (B.8)

And the Lagrangian is:

L =
1

2
∂µϕ

∗∂µϕ− V (ϕ∗ϕ) (B.9)

Now for a static configuration the energy density of the system at r → ∞:

H = −L =
1

2
∇ϕ · ∇ϕ+ V (|ϕ|2) = ∇ϕ · ∇ϕ =

n2a2

2r2

And the energy is

E =
n2a2

2

∫ ∞ dr

r
→ ∞

Such configuration has infinity energy and we can not generalise to two dimensions. In fact we can not generalise to
d > 2. This fact is described by Derricks theorem [9]. In particular it states that any scalar field theory that respects
dilation symmetry can not have stable solutions for dimension d > 2. It’s easy to check that our one dimensional
Lagrangian (B.5) is indeed invariant under dilation transformations x→ λx.

To stabilize the configuration we add an abelian gauge field Aµ and getting the langragian:

L = −1

4
FµνFµν + |(∂µ + ieAµ)ϕ|2 − V (ϕ∗ϕ) (B.10)

The energy momentum tensor is:

Tµν = −F µ
σ Fσν +Dµϕ∗Dνϕ− gµνL (B.11)

And the energy of the static system for gauge where A0 = 0 is:

E =

∫
d3x[

1

4
F ijFij +

1

2
Diϕ

∗Diϕ+ (a2 − |ϕ|2)2] (B.12)

Then at r → ∞ energy becomes finite if:

Diϕ = 0 |ϕ| = a Fij = 0 (B.13)

Thus finite energy configuration is possible since at the boundary E = 0. We can find the form of the vector field at
r → ∞, by substituting (B.7) to (B.13) and we get:

Diϕ = 0 ⇒ 1

r
inθ + ieAθ = 0 ⇒
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At = 0 Ar = 0 Aθ = − n

er
= − i

e
∇θ(ϕ) (B.14)

And since A is a pure gauge Fij = 0. We can add a third dimension z such that the fields does not depend from it.
Then the configuration becomes a vortex line. This configuration is stable if the boundary condition (B.7) can not
continuously deformed to the vacuum value |ϕ| = a. Note that vacuum manifold is S1

vac since the vacuum condition

is described by any element on the unit circle ϕ̂ = ϕ/a. So for the configuration to be stable means finding a map
ϕ : S1

∞ → S1
vac which is non-trivial. Indeed from homotopy theory it holds that π1(U(1)) = π1(S

1) = Z. From this
discussion we see that in a field theory topology provides existence argument for soliton solution.
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