
 

 

 
 

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ 

ΠΟΛΥΤΕΧΝΕΙΟ 

 

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ 

ΜΑΘΗΜΑΤΙΚΩΝ 

ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 

 

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ 

ΜΗΧΑΝΙΚΩΝ 

ΕΚΕΦΕ  «ΔΗΜΟΚΡΙΤΟΣ» 
 

ΙΝΣΤΙΤΟΥΤΟ ΝΑΝΟΕΠΙΣΤΗΜΗΣ 

ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑΣ 

 

ΙΝΣΤΙΤΟΥΤΟ ΠΥΡΗΝΙΚΗΣ ΚΑΙ 

ΣΩΜΑΤΙΔΙΑΚΗΣ ΦΥΣΙΚΗΣ 

 

 

 

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών 

«Φυσική και Τεχνολογικές Εφαρμογές» 

 

 

Magnetic monopoles in the Standard Model 

 

 

 

 

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 

του Κωνσταντίνου Κόλλια 

 

 

Επιβλέπων: Νίκος Μαυρόματος  

 

 

 

Αθήνα, Μάρτιος, 2024 



Magnetic Monopoles in the Standard Model

Kollias Konstantinosa
aNational Technical University of Athens, School of Applied Mathematical and Physical Sciences,

Department of Physics, Zografou Campus GR157 80, Athens, Greece

The goal of this thesis is to present a thorough introduction to Magnetic Monopoles in Field
Theories, ultimately leading to examining the Standard Model and its topological structure. We
start by showing the classical mechanics of a magnetic monopole and its basic quantum mechanical
properties inducing a quantization condition on the electric charges allowed. Next, after clarifying
the necessary formalism needed in terms of Homotopy groups and Spontaneous Symmetry Breaking
Mechanism, we present the ’t Hooft-Polyakov monopole and its generalization the Julia-Zee dyon
that live in the SU(2) gauge theory with an adjoint Higgs. The last part involves the discussion of
a new and unexpected kind of monopole- the Cho-Maison monopole- that is supposed to live in the
Standard Model. Emphasis is given on the fine details and ambiguities of the Cho-Maison monopole
that have not yet been clarified by theory.
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I. INTRODUCTION

The magnetic monopole is an eluding and fascinating entity that has troubled physicists from long ago. In fact,
the first reference to such objects comes way back from 1269 (unbelievable, yet true!) when Peter Peregrinus shared
in his letter [2] his observations on magnets including two poles and that bisections of magnets fail to isolate them.
Centuries later, when Electromagnetism was a well formulated theory and it was understood that it need not contain
any magnetic monopoles, theoretical calculations were made based on their hypothetical existence, clarifying concepts
that could be tested by experiment [13].

However, the subject merely started taking the form it has today, when Dirac announced [9] in 1931 that the
consistency of quantum mechanics mandated that if an isolated magnetic pole exists, then all electric charges in
nature must be quantized. This shook the world and magnetic monopoles were a really discussed topic at that time.
But, the complete lack of evidence for their existence, by subsequent and even today’s experiments has shook some of
the interest away. Moreover, the quantization condition for the electric charges is acquired today by means of Grand
Unified Theories whose Spontaneous Symmetry Breaking generates the Electromagnetic U(1) group.

So, magnetic monopoles have not been observed in nature and they are no longer that needed to predict the
quantization conditions for the electric charges. Why are we even bothered with them? It is because the formalism of
field theories allows topological excitations and Spontaneous Symmetry Breaking of some Unified Theories generates
magnetic monopoles as topological particles! It turns out that the two methods of acquiring quantization conditions
are, in fact, closely related!

This bring us to the structure of this thesis. In the first chapter (II), we discuss the properties of a monopole
in classical mechanics. More explicitly, we examine its non relativistic scattering and take a look at a potential
for the field of a monopole. We discuss about the Dirac string and how it can be manipulated using gauge
transformations and lastly we talk about the Dual invariance of Maxwell’s electromagnetism, which is one of
the key ideas that inspired the craft of a magnetic monopole. Indeed, one can show that the O(2) symmetry in
electric and magnetic fields is carried on to the sources if one allows magnetic singularities. In chapter (III), we
prove the Dirac quantization condition in the context of quantum mechanics by mandating the Dirac string is not
observable. After that, we elaborate on a formalism by Wu and Yang that allows us to describe the magnetic
monopole without having to deal with the peculiarities of the Dirac string at all and still predicts the Dirac
quantization condition. Chapter (IV) is a mathematical interlude introducing us to the concept of Homotopy groups,
giving the necessary definitions and properties while highlighting results that will be of great use and importance later.

Chapters (V),(VI),(VII) serve us introductory chapters to the formalism needed to present the ’t Hooft-Polyakov
monopole of the SU(2) theory. Specifically, Gauge Field theories are elaborated, firstly in the Abelian case and
secondly in the non-Abelian case. The analysis is followed by the marvellous mechanism of Spontaneous Symmetry
Breaking in various theories, ultimately leading to the Higgs mechanism in gauge theories. Chapter (VII) is the
second ”topological” discussion. This time we are involved with what we call solitons and represent a new class of
solutions of the classical equations of motion for certain theories. We present the one dimensional case where we
meet the kink. The two dimensional case brings us against the vortex whose stabilization requires Derrick’s theorem
and notions from Symmetry Breaking patterns.

Chapter (VIII) is the quintessence of this project, presenting the ’t Hooft-Polyakov monopole, a time-independent,
stable topological excitation with unit magnetic charge. This monopole lives in the SU(2) Georgi-Glashow model, a
predecessor to the Weinberg-Salam model invented as an attempt to unify the weak interaction and electromagnetism.
It can be shown via the second homotopy group of the vacuum configuration that there can be non trivial maps
between those two, discritized by a winding number. This means that one can now determine a whole new class of
solutions to the classical equations characterized by their different winding numbers. It, also, turns out that those
winding numbers (that are integers) describe the magnetic charge carried by each solution.

Chapter (IX) introduce us to the Winding Numbers in a more formal way. They are manifestations of the properties
of some Homotopy groups corresponding to the Field theories examined. We also give various examples of different
cases where winding numbers appearing, ending with the case describing the Georgi-Glashow model. Chapter (X)
concludes the discussion on the ’t Hooft-Polyakov monopole, giving each place to the grand finale, the Cho-Maison
monopole in chapter (XI). Here, we extract the differential equations that the functions of the ’t Hooft-Polyakov
ansatz need to satisfy and we also present a twist to the monopole problem with the Julia-Zee ansatz, describing a dyon.
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In this chapter, we present the Cho-Maison monopole in the Standard Model, which is in the frontier of research
even today, especially with the MoEDAL experiment running and its soon to be implemented upgrades and
extensions. We start from a brief presentation of the SU(2) × U(1) Weinberg-Salam model and we introduce the
Cho-Maison ansatz. The procedure follows much that of the ’t Hooft-Polyakov ansatz, that means we derive the
system of O.D.E.’s for the ansatz and we show the magnetic charge of the dyon. There are some fine lines and
ambiguities on the existence of an electroweak monopole, since topological arguments had discouraged physicists to
search them. Cho and Maison [6] dodge those problems, but complications with gauge fixing and energy functional
divergences arise, which we discuss in a more informal way.

The style of this presentation is not rigorous, but I try to leave no blind spots and no stones unturned. This means
I present all the calculations in the simplest and most complete way possible, while elaborating ideas and critical
points in a more intuitive manner that I personally enjoy and understand. I give lots of attention on the physical
meaning and cultivation of a physical instinct is an important consideration of the way I am presenting certain
subjects besides raw mathematical calculations which , despite their inherent beauty, are rendered useless without
the physical context implemented.

A quick note on the formalism, I am using normal letters for quantities representing numbers (not necessarily
scalar quantities) and bold ones for matrices of any dimensions (including 1×n and their transpose). This means that
A shall be a number, and A a non-number quantity that I will be specifying in each occasion. Let’s say for now, it
represents 4-vector. Since, each component of that 4-vector is itself a number (but not a scalar!), I will be denoting
them as Aµ, where µ = 0, 1, 2, 3. Also, note that I use lowercase letters of the Greek alphabet for Minkowski indices
and lowercase letters of the English alphabet for Euclidean ones. For cases, when I need to deal with a vector whose
components are themselves matrices, I shall resort to omitting the index when referring to the vector itself, while
including it to specify which one of its components I am referring to and retaining the bold-symbol since we are
talking for non-number quantities. For example, consider an array

(
τ 1, τ 2, τ3

)
, where τ a are the Pauli matrices. In

these cases, if I want to refer to the whole vector, I will simply write τ .

As a last word, the concept of magnetic monopoles is indeed a fascinating and beautiful one and I hope you come
to believe the same. I also hope this thesis contributes even the slightest to that feat.

Now, with all the introductory out of the way, let us embark on a long, wild and magical journey.
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II. THE MAGNETIC MONOPOLE IN CLASSICAL MECHANICS

In classical mechanics, it is sufficient to define the magnetic monopole as a point-like particle with a radial Coulomb
magnetic field, then all the peculiarities of such a particle will be manifest in the interactions between electrically
charged matter and the magnetic monopole[31].

A. Nonrelativistic Scattering

We consider a magnetic charge g as the source of a static Coulomb-like magnetic field, sitting at the origin.

B = g
r

r3
. (1)

Then, we suppose an electrically charged particle of charge e moves towards the monopole. The equations of motion
for the moving particle are given by the Lorentz force1

m
d2r

dt2
= e[v ×B] =

eg

r3

[
dr

dt
× r

]
. (2)

To proceed we seek the integrals of motion.
Scalar multiplication with the vector velocity v yields the conservation of kinetic energy.

mv · d
2r

dt2
= ev · [v ×B] = 0 (3)

The LHS upon noticing v = dr
dt can be written as

m

2

d

dt
[v · v] = 0 (4)

So the kinetic energy is constant

E =
1

2
m|v|2 = constant (5)

Now scalar multiplication of (2) with r yields

r · d
2r

dt2
= r · d

dt
[
dr

dt
] =

d

dt
[r · dr

dt
]− [

dr

dt
]2 = 0 (6)

because RHS of (2) times r vanishes trivially.

Equation (6) can be integrated twice yielding

r =
√
v2t2 + b2 (7)

and

r · dr
dt

=
1

2

dr2

dt
= v2t (8)

where v is the norm of v.
From the form of (7) we come to the conclusion that there is no closed orbit in the charge-monopole system.

1 We will be working in c=1 units.
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The electrically charged particle comes from infinity up to a minimum distance b, which we call impact parame-
ter, and returns to infinity. This property of the ”reflection” of the electric charge is called the magnetic mirror effect2.

A very interesting feature of the system is that ordinary angular momentum is not conserved, which at first glance
might appear surprising due to the rotational invariance of the problem3. Being a bit more careful, we notice,
however, that the force field is not central and therefore mechanical angular momentum should not be conserved.
However, one can deduce a similar quantity that is indeed conserved4.

To proceed ordinary angular momentum is defined as

L̃ = r×mv (9)

and we recall the cross-product identity

a× (b× c) = b(c · a)− c(a · b) (10)

which we will be of great use very shortly.

So, we now take the cross product of r with (2)

mr× d2r

dt2
=
eg

r3
(r× L̃).

d

dt

(
r× dr

dt

)
− dr

dt
× dr

dt
= − eg

mr3
(L̃× r)

dL̃

dt
=

eg

mr3
(L̃× r)

(11)

Now it is evident that (9) is not conserved. Its norm is, however, as it can be easily seen from scalar product of (11)

with L̃.

L̃ ≡ |L̃| = mvb (12)

Now if only we could write the RHS of (11) as a total time derivative then we would define a modified conserved
angular momentum!

We need to establish some relations for this first. Notice that

d

dt

r√
r · r

=

dr
dt

√
r · r−

dr
dt ·r√
r·r

r · r

=
r2 dr

dt −
(
dr
dt · r

)
r

r3

(13)

While this expression might seem to have appeared out of the blue, revisiting (11) RHS will reveal something quite
comforting.

eg

mr3
(L̃× r) =

eg

mr3

[(
r×mdr

dt

)
× r

]
=
eg

r3

[
dr

dt
r2 − r

(
dr

dt
· r
)]

(14)

We have at last managed to prove that RHS of (11) is a total time derivative, so now we can define

L = L̃− egr̂ (15)

2 This magnetic mirror effect manifests itself in Earth’s dipole field when charged cosmic particles get trapped in it and oscillate between
poles creating the aurora. While the ’trapping’ effect cannot be explained with our monopole analysis, the reflection of a cosmic particle
when it comes to close to one of the Earth’s poles is completely analogous to the mirroring of a charged particle that moves towards a
magnetic monopole.

3 Remember that Noether’s theorem states that rotational invariance is associated with a conserved angular momentum.
4 Noether would never disappoint us like this.
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FIG. 1: Motion of electrically charged particle in a magnetic monopole field[31]

where r̂ is a unit vector in the direction of r.

Its norm is

L2 = L̃2 + (eg)2 = (mub)2 + (eg)2 (16)

Now this new term that joined in the definition of angular momentum seems a little peculiar at first. It turns out
though that it originates from a non-trivial field contribution to the mechanical angular momentum.

Indeed the electromagnetic angular momentum for the system is given by

L̃eg =
1

4π

∫
d3r′ [r′ × (E×B)] (17)

For our smooth proceeding we mention the following identity

E− (E · r)r
r

= (E ·∇)r (18)

which holds for an arbitrary vector E.

Now using (10) on (18) we get

L̃eg =
1

4π

∫
d3r′ [E (r′ ·B)−B (r′ ·E)]

=
1

4π

∫
d3r′

[
E · g r

′ · r′

r3
− g r′

r′3
(E · r′)

]
=
g

4π

∫
(E ·∇′)r̂′d3r′.

=
g

4π

∮
r̂′(E · da)−

∫ (
∇′ ·E

)
r̂′d3r′

(19)

Now the surface integral vanishes since we can make the surface approach infinity where the electric field approaches 0.

As for the volume integral we will invoke Gauss’ Law
(
∇′ ·E

)
= 4πeδ(3) (r− r′) And we end up with

L̃eg = − g

4π

∫
4πeδ(3) (r − r′) d3r′ = −egr̂ (20)

So it turns out that the conserved angular momentum is the sum of the mechanical angular momentum with the
Electromagnetic field angular momentum!
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Now that we have calculated all the needed quantities, we are able to describe qualitatively and quantitavely the
charged particle’s trajectory in the magnetic monopole field.
Note that

|L · r̂| = eg = const. (21)

from which we can conclude that the trajectory lies on the surface of a cone whose symmetry axis is −L, as seen
from FIG.1.

The cone’s angle can be deduced from simple geometrical arguments yielding

cot θ =
eg

|L̃|
=

eg

mub
(22)

In much the same way the ordinary angular momentum L̃ is precessing on the surface of a different cone with the
same axis.

L · L̃ = L̃2 = (mub)2 = const. (23)

We sum up the most important results from this section in the from of norms and scalar products:

B g r
r3

r
√
v2t2 + b2

L̃ mub

Leg eg

L
√

(mub)2 + (eg)2

L · r −eg

L · L̃ (mub)2

TABLE I: Some important results from this chapter
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B. Potential of a Monopole Field

We have sufficiently described the classical physics of a monopole, but if we want ourselves to have a consistent
theory and taking into consideration that it should, at some point, be quantized, then the next step in our analysis
should be the search of a potential for such a field.

Considering the Helmholtz decomposition theorem which states that any sufficiently smooth, rapidly decaying vector
field in three dimensions can be resolved into the sum of an irrotational (curl-free) vector field and a solenoidal
(divergence-free) vector field, and also writing down the Maxwell equations in the presence only of a static magnetic
monopole field source g

∇×B = 0

∇ ·B = 4πρm

ρm = gδ(3)(r).

(24)

one could think that since B is no longer divergentless but its curl vanishes, a scalar potential ,whose gradient returns
the magnetic field, could be of use [15]. Indeed, such a potential can be constructed as

Φ =
g

r2
(25)

However, remembering that the interaction Lagrangian of an electric charge in an external magnetic field is

L =
1

2
mṙ2 + eṙ ·A (26)

we realize that (25) is of no use.

It seems our only way out is to brute force a vector potential5 so our goal is finding a vector potential A satisfying

∇×A = g
r

r3
(27)

Before setting on our journey to constructing such a potential, we are going on a small interlude trip proving (26)
yields the correct equations of motion.

The Euler-Lagrange equations in vector notation are:

∂L

∂r
− d

dt

(
∂L

∂ṙ

)
= 0 (28)

Calculating the first term:

∂L

∂r
= ∇(eṙ ·A) = e(ṙ× (∇×A) + (ṙ ·∇)A)

The second partial derivative:

∂L

∂ṙ
= mṙ+ eA

The total time derivative:

d

dt
(mṙ+ eA) = mr̈+ e

dA

dt
= mr̈+ e

∂A

∂t
+ e(ṙ ·∇)A

5 It is not actually so much of a brute force technique rather than a consequence of the mathematics of fibre bundles on gauge groups
which we will not demonstrate.
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Substituting in E-L (28):

m
d2r

dt2
= eṙ× (∇×A) + e(ṙ ·∇)A− e(ṙ ·∇)A

⇒md2r

dt2
= eṙ×B.

Now that we have proved our Lagrangian yields the correct E.o.M. we can return to the search of a vector potential
for the monopole problem.

Employing the spherical symmetry of the problem we can deduce that the vector potential should be written as6

A(r) = A(θ)∇φ (29)

Now it is time to choose the function A(θ).
Dirac was first in this task with A(θ) = −g(1 + cos θ). After some straightforward calculations we arrive at

∇φ =
(
− sinφ

r sin θ ,
cosφ
r sin θ , 0

)
,

A(r) =
(
g 1+cos θ

r sin θ sinφ, −g 1+cos θ
r sin θ cosφ, 0

) (30)

The vector potential can be written also in covariant form

A(r) =
g

r

[r× n]

r − (r · n)
(31)

where n is the unit vector in the z axis.
The vector potential (31) is named the Dirac Potential.

Now for a quick test of our newly acquired potential, the magnetic field B in x direction, for example, turns out to
be

Bx = ∂z

(
gx

r(r − z)

)
= gx∂z

(
1

x2 + y2 + z2 − z
√
x2 + y2 + z2

)

= −gx
2z −

√
x2 + y2 + z2 − z z√

x2+y2+z2

r2 (r − z)2

= −gx
2zr−r2−z2

r

r2(r − z)2
=
gx

r3

(32)

Everything seems to be working perfectly, until we notice that (31) is singular along the whole positive z
axis! Our forceful requirement of the existence of a vector potenital seems to be punching back. Indeed in the
vicinity of that area the potential takes values A ∼ −2g∇φ, which is the potential of a singular string of magnetic flux.

The potential (31) can actually be written in the form of a pure gauge.

A(r) = −g(1 + cos θ)∇φ = (1 + cos θ)
i

e
U−1∇U (33)

where U = e−iegφ is the U(1) group element. This gauge transformation however is singular.

It is recommended for our calculations to use a regularized potential

AR(r, ε) =
g

R

[r× n]

R− (r · n)
(34)

6 Plugging (29) into the curl operator ∇×A = ∇A(θ)×∇φ+A(θ)∇× φ the first term is in the r̂ direction while the second vanishes.
That’s definitely a good sign for the imposed spherical symmetry of the problem.
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FIG. 2: Graphical interpretation of the field lines of the Dirac potential

where R =
√
x2 + y2 + z2 + ε2.

The magnetic field from such an expression is

BR(r, ε) = g
r

R3
− gε2

(
n

R3[R− (r · n)]
+

n

R2[R− (r · n)]2

)
(35)

and using cartesian coordinates while taking the limit of ε2 → 0

BR(r, ε) ∼ g
r

r3
− 2gε2nθ(z)

(
1

r2 (x2 + y2 + ε2)
+

2

(x2 + y2 + ε2)
2

)
(36)

which upon the limiting procedure yields

B(r) = Bg +Bsing = g
r

r3
− 4gπnθ(z)δ(x)δ(y) (37)

The second term yielding the delta function can be seen from integrating

f(x, y)|ϵ≪ =
1

r2 (x2 + y2 + ϵ2)
+

2

(x2 + y2 + ϵ2)
2 (38)

on the whole xy plane. ∫∫
R2

dxdy

[
1

(x2 + y2 + z2) (x2 + y2 + ε2)
+

2

(x2 + y2 + ε2)
2

]

Polar
=

∫ 2ρ

0

dϕ

∫ ∞

0

ρdρ

[
1

(ρ2 + z2) (p2 + ε2)
+

2

(ρ2 + ε2)
2

]

w=ρ2

= 2π

[
1

2 (z2 − ε2)

∫ ∞

0

(
1

w + ε2
− 1

w + z2

)
dw +

∫ ∞

0

1

(w + ε2)
2 dw

]

=
π

z2 − ε2
ln

(
w + ε2

w + z2

)∣∣∣∣∞
0

− 2π
1

w + ε2

∣∣∣∣∞
0

= π
ln
(
ε
z

)
z2 − ε2

+ 2π
1

ε2
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Taking the limit

lim
ε2→0

ε2
∫∫

R2

f(x, y)dxdy =

[
2πε2

(
ln ε− ln z

z2− ε2

)
+ 2π

]∣∣∣∣
ε→0

= 2π.

But

lim
ε2→0

ε2f(x, y) = lim
ε2→0

ε2

r2 (x2 + y2 + ε2)
+

2ε2

(x2 + y2 + ε2)
2

So it has to be

lim
ε→0

ε2f(x, y) = 2πδ(x)δ(y)

Thereby proving (37) from (36).

Using the magnetic field from (37) to calculate the magnetic flux, the flux paradox is now resolved.

Φtot =

∮
dσB = g

(∮
dσ

r

r3
− 4π

∮
dσnθ(z)δ(x)δ(y)

)
= 4gπ − 4gπ = 0.

(39)

So our potential (34) corresponds in fact to an infinitely thin magnetic rod with its one pole at the origin and the
other at a point in infinity, rather than a single magnetic pole.

We can cast the vector potential (34) in another form with a rather interesting physical interpretation. That is A
can be written as:

A =
1

4π

∫
d3x′

[
∇ 1

|r− r′|
×Bsing (r)

]
= g

∫
(r− r′)× dr′

|r− r′|3
, (40)

where the integral in the RHS is taken along the Dirac string.7 The proof of this assertion follows:

A = g

∫
r× dr′

|r− r′|3
= g

∫
(x̂i+ ŷj+ zk̂)× dz′k̂

|r− z′|3

= g(r× n̂)

∫ ∞

0

dz′

|r− z′|3
= g(r× n̂)

∫ ∞

0

dz′[
x2 + y2 + (z − z′)2

]3/2
For the calculation of

∫∞
0

dz′

[x2+y2+(z−z′)2]
3/2 , just substitute u = z−z′√

x2+y2

7 That is the line segment that A is singular.
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∫ ∞

0

dz′

(x2 + y2)
3/2
[
1 + (z−z′)2

x2+y2

]3/2
=

1

x2 + y2

∫ ∞

− z√
x2+y2

du

(1 + u2)
3/2

=
1

x2 + y2
u√

u2 + 1

∣∣∣∣+∞

− z√
x2+y2

=
1

x2 + y2

1 +
1√

1 + z2

x2+y2


=

1

x2 + y2

(
1 +

z√
x2 + y2 + z2

)
=

=

(
z +

√
x2 + y2 + z2

)
√
x2 + y2 + z2 (x2 + y2)

× z −
√
x2 + y2 + z2

z −
√
x2 + y2 + z2

=
1

r[r− (r · n̂)]

Substituting back to A calculation retrieved the Dirac potential (31), finishing or proof.

We have yet to decipher the physical meaning of (40). In fact, it can be seen as the infinite sum of magnetic dipoles
gdr′ located along the string.

C. Gauge transformations and the Dirac string

Previously, we encountered Dirac’s potential which upon taking its curl yielded the monopole magnetic field
along with a mysterious extra field along its singularity. So what is this Dirac string? It certainly isn’t something
we expected and the goal of this chapter is to present the conditions to render it unobservable and therefore unphysical.

At this point we recall that A is not uniquely defined. It is actually defined up to a gradient or in group theory
terms up to a U(1) gauge transformation U(r) = eieλ(r).

A→ A′ = A− i

e
U−1∇U = A+∇λ(r) (41)

The question that arises here is if any function λ(r) is eligible to take part in a gauge transformation. Well, usually we
use single valued functions, but nothing prevents us from using multi-valued ones. The gradient of such a function is
single-valued itself except of a line of singularity along the line that separates the different sheets of the multi-valued
function. Thus such a function would generate new singular terms of the potential A. Indeed the change in magnetic
flux from the gauge transformation can be calculated as follows:

∆Φ =

∫
σ

d2Sn̂S · (B′ −B) =

∫
σ

d2Sn̂S · [∇× (∇λ)] =

∮
dl ·∇λ (42)

which assures us that only single valued gauge transformations do not affect the magnetic flux.

Experimenting a little with the power of multi-valued gauge transformations, it is tempting to try U = exp{2iegφ}.

Then the Dirac potential (31) changes as follows:

AS → AS − i

e
e−2iegφ∇e2iegφ = −g

r

1 + cos θ

sin θ
êφ +

2g

r sin θ
êφ

=
g

r

1− cos θ

sin θ
êφ ≡ AN .

(43)
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Potential Name Equation Gauge transformation from Dirac (South)

Dirac (South) − g
r

1−cos θ
sin θ

êϕ

Dirac (North) g
r

1+cos θ
sin θ

êϕ λ = 2iegϕ

Schwinger g
r

cos θ
sin θ

êϕ λ = iegϕ

Banderet − g
r
ϕ sin θêϕ λ = −ieg(1 + cos θ)ϕ

TABLE II: Equivalent Magnetic Monopole Potentials

The gauge transformation we considered results in the appearance of a 4πg flux along the z axis. Therefore the new
potential has its positive z singularity cancelled but a new one on the negative z axis arises.

Thus the string itself is as it has been rotated. Indeed we can construct more elaborate gauge transformations that
rotate the string on to an arbitrary direction unit vector n̂.

Concluding this short chapter, we showed that gauge transformations which by definition leave the physics of
electromagnetism invariant rotate the Dirac string. So the Dirac string has to be unphysical.

In TABLE II, we present some of the most known potentials to describe the magnetic monopole and their rela-
tionships between them. The last one (the Banderet potential) is really an exotic one, since it is easy to see that its
singularity does not resemble a string anymore, but rather a part of a plane!

D. Dual Invariance in Classical Electromagnetism

One of the key ideas that led to the magnetic monopole theory is the dual invariance of Maxwell’s equation. Indeed
in vacuum the 4 equations:

∇ ·E = 0

∇×B− ∂E

∂t
= 0

∇ ·B = 0

∇×E+
∂B

∂t
= 0

(44)

exhibit invariance under O(2) symmetry group transformations:

G :

{
E→ E cos θ −B sin θ

B→ E sin θ +B cos θ
(45)

The parameter-angle θ in these transformations is named dual.

In covariant form these equations are written as:

∂µF
µν = 0, ∂µF̃

µν = 0 (46)

where the electromagnetic field strength tensor and its dual are

Fµν = ∂µAν − ∂νAµ

F̃µν =
1

2
εµνρσF

ρσ = εµνρσ∂
ρAσ

(47)

and the electric and magnetic fields are to be found from

Ei = Ei = F0i = −F 0i = −1

2
ε0ijkF̃

jk =
1

2
ε0ijkF̃jk

Bi = Bi = F̃0i = −F̃ 0i =
1

2
ε0ijkF

jk = −1

2
ε0ijkFjk

(48)
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It is evident that the set of equations (46) exhibit the exact same O(2) symmetry

G :

{
Fµν → Fµν cos θ − F̃µν sin θ

F̃µν → Fµν sin θ + F̃µν cos θ
(49)

In the advent of magnetic monopoles this O(2) symmetry would be manifest even when not in vacuum provided the
corresponding 4-currents are rotated as well.

The generalised Maxwell equations are:

∇ ·E = ρe

∇×B− ∂E

∂t
= je

∇ ·B = ρm

∇×E+
∂B

∂t
= −jm

(50)

The sources are transformed similarly to the fields. That is:

ρe → ρe cos θ − ρm sin θ

ρm → ρe sin θ + ρm cos θ
. (51)

and their currents

je → je cos θ − jm sin θ

jm → je sin θ + jm cos θ
. (52)

The invariance of the equations of electrodynamics under duality transformations shows that it is a matter of con-
vention to speak of a particle possessing an electric charge, but not magnetic charge. The only meaningful question
is whether all particles have the same ratio of magnetic to electric charge. If they do, we can perform a duality
transformation and choose a suitable dual angle so that ρm = 0 and jm = 0, returning the equations to their usual form.

As for the transformation properties of ρm and jm under rotations, spatial inversion and time reversal, from the
known behavior of E and B from (50) we can deduce that[17]:

• ρm is a pseudoscalar density, odd under time reversal, and

• jm is a pseudovector density, even under time reversal.

Since the symmetries of ρm are opposite to those of ρe, it is a necessary consequence of the existence of a particle
with both magnetic and electric charges8 that space inversion and time reversal are no longer valid symmetries of
the laws of physics.

One last thing left to explore on dual transformations is of course the behaviour of the electromagnetic lagrangian
under it.

L0 = − 1

4e2
FµνF

µν (53)

L0 → −
1

4e2

(
Fµν cos θ + F̃µν sin θ

)(
Fµν cos θ + F̃µν sin θ

)
=− 1

4e2

(
FµνF

µν cos2 θ + F̃µν F̃µν sin
2 θ + 2Fµν F̃

µν sin θ cos θ
)

=− 1

4e2
FµνF

µν
(
cos2 θ − sin2 θ

)
− 1

4e2
Fµν F̃

µν sin(2θ)

=− 1

4e2

(
FµνF

µν cos(2θ)− Fµν F̃
µν sin(2θ)

)
.

(54)

8 A dyon to be specific.
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where we have used

F̃µν F̃
µν =

1

4
εµνρσF

µσεµναβFαβ =
1

4
(−2)

(
δαρ δ

β
σ − δβρ δασ

)
F ρσFαβ

= −F ρσFρσ.

At first glance (53) seems to be non-invariant under dual transformations. However, further calculation of the second
terms reveals that it is a total divergence and therefore does not contribute to the equations of motion.

Fµν F̃
µν =

1

2
Fµνε

µναβFαβ =
1

2
εµναβ (∂µAν − ∂νAµ) (∂αAβ − ∂βAα)

= 2εµναβ∂µAν∂αAβ = 2εµναβ [∂µ (Aν∂αAβ)−Aν∂µ∂αAβ ]

= 2εµναβ∂µ (Aν∂αAβ)

where we took advantage of the total antisymmetry of the indices and the commutativity of partial derivatives.
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III. THE MAGNETIC MONOPOLE IN QUANTUM MECHANICS

A. Charge Quantization Condition

In the quantum mechanical scheme of things, the fundamental quantity of the gauge theory of electromagnetism
that defines the interactions is the potential A. This is described by the action of the covariant derivative9 on the
wave function as:

Dψ(r) ≡ [∇− ieA(r)]ψ(r) (55)

Under U(1) transformations the wave function changes as: ψ(r)→ Uψ(r) = eieλ(r)ψ(r) while the covariant derivative:

Dψ(r)→ [∇− ieA(r)− ie∇λ(r)]eieλ(r)ψ(r)

= eieλ(r)∇ψ(r) + ie∇λ(r)ψ(r)− ieA(r)eieλ(r)ψ(r)− ie∇λ(r)eieλ(r)ψ(r)

= eieλ(r)[∇− ieA(r)]ψ(r) = eieλ(r)Dψ(r)

(56)

The Lagrangian (26) changes under a gauge transformation as:

L→ 1

2
mṙ2 + eṙA+ eṙ∇λ(r).

= L+ eṙ∇λ(r) = L+
d

dt
[eλ(r)]

(57)

and the corresponding action:

S =

∫ T

0

dL⇒ S + eλ(r)|T0 (58)

We want eiS to be a gauge invariant quantity. Therefore, the change in action should be an integer multiple of 2π.
So choosing λ(r) = 2gϕ we arrive at:

Sint = e

∫ T

0

ṙ ·∇λdt = e

∮
l

dx ·∇λ

δSint = e

∮
dx ·∇(2gϕ) = 4πge

(59)

So mandating the change in action is 2πn we get

eg =
n

2
(60)

which is the famous Dirac quantization condition[9].

This is one of the most fascinating relations in monopole theory. That is because it explains why the electric
charge is quantized. If just one magnetic monopole was found in the universe then all electric charges would have to
be integer multiples of the smallest charge.

Another interesting thing to note is that, unlike most other cases of quantization which we are familiar with, (60)
has nothing to do with the eigenvalues of a quantum mechanical operator. The reasoning behind this is that this
mysterious quantization is of topological origin10.

9 The form of the covariant derivative shouldn’t be that surprising to us, considering the conjugate momentum is π = ∂L
∂ṙ

= mṙ + eA
and we replace mṙ with −i∇

10 More on that later.
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Dirac’s quantization condition can be derived in many ways, the simplest of which stems from (20).

The total angular momentum of the system is given by:

L = [r× π]− egr̂ = [r× (p− eA)]− egr̂ = L̃− e[r×A]− egr̂ (61)

Demanding the total angular momentum components satisfy standard commutation relations, the electromagnetic
angular momentum has to take half integer values. One other interesting take on (60) is that upon taking both
charges (electric and magnetic) to be minimum, corresponding to n = 1, and bringing back the constants we have set
to 1 we get:

g

e
=

ℏc
2e2

=
1

2α
≈ 137

2
(62)

That is the Coulomb force between two magnetic monopoles would be approximately
(
137
2

)2 ≈ 4700 stronger than the
exact same force between two electrons, making their detection less likely. Moreover, the coupling constant g grows
too large and perturbation theory becomes unusable.

B. Abelian Wu-Yang Monopole

We recall that vector potential A comes together with a tormenting line singularity that can be oriented in different
directions with suitable gauge transformations. The field strength tensor is defined everywhere with no singularities11.
Hence, we speculate that there is a mathematical description that is free from non-physical singularities of any kind.

There is in fact an idea from T.T. Wu and C.N. Yang in 1975 that manages to accomplish just that[34]. Two
basic observation are needed beforehand to come up with such an idea. Firstly, notice the Dirac string can be set to
an arbitrary direction of our choice. And secondly, we are not obligated by any means to use a single potential to
describe the whole space.

We therefore separate R3/{0} into two hemispheres RN and RS and we assign each one of them a vector potential
that its Dirac string is located on the direction of the other hemisphere, thereby making the strings undetectable in
our formalism.

In terms of expressions: {
AN = g 1−cos θ

r sin θ êφ =⇒ 0 ≤ θ < π
2 + ε

2 : RN

AS = −g 1+cos θ
r sin θ êφ =⇒ π

2 −
ε
2 < θ ≤ π : RS

(63)

We can take ε to be arbitrarily small so the intersection region RN ∩ RS of the two potentials becomes the equator.
The potentials we used of course did not come out of the blue. The Southern hemisphere potential is the Dirac
potential itself while the Northern one is the same with its string reflected just as we showed in (43).

From this setup we can derive (again) the Dirac quantization condition in a more elegant way.

Let us consider a charged particle moving along the equator. The quantum mechanical wave function picks up a
phase factor

e

∫ T

0

dtṙ ·A(r) = e

∮
l

dr ·A(r)

11 Apart from the obvious physical singularity where the monopole is placed. So for the sake of brevity we say that our manifold is R3/{0},
i.e. the whole space apart from a point we have extracted. This is going to be relevant later since it drastically changes the topology of
the space.
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In the above expression both vector potentials A are equally applicable, since they are both valid in this region!
Calculating the exact same quantity for each one yields:

e

∮
l

dr ·AN (r) = e

∫
RN

ds ·
[
∇×AN

]
= e

∫
RN

ds ·B,

e

∮
l

dr ·AS(r) = −e
∫
RS

ds ·
[
∇×AS

]
= −e

∫
RS

ds ·B,

where the minus sign stems from the different orientation of the differential surface elements ds after the application
of Stoke’s theorem.

Thus in the overlap region the action is defined up to a term:

∆S = e

∫
RN∩RS

ds ·B = e

∫
V

d3r∇ ·B = 4πeg (64)

where we applied Gauss’ theorem in collaboration with Maxwell’s equation for the divergence of B. That ambiguity
must be unobservable and therefore an integer multiple of 2π, since the physical amplitude depends on ∼ exp{iS}.
Therefore we arrive at (60) again:

∆S = 4πeg = 2πn, eg =
n

2
, n ∈ Z

The same equation can be extracted by noticing that in the overlap region the wavefunction are connected via a U(1)
transformation as

ψS = UψN = e2iegφψN

After a complete rotation along the equator the azimuthal angle increases from 0 to 2π.

φS(0) = φN (0), φS(2π) = e4πiegφN (2π)

However, because of the single-valuedness of the wave function the exponential in the RHS must be an integer multiple
of 2π, thereby yielding the Dirac quantization condition once more.
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IV. TOPOLOGICAL CONSIDERATIONS I: HOMOTOPY THEORY

We mentioned earlier that (60), namely the Dirac quantization condition is of topological origin. It turns out that
this integer n is a winding number and it represents the number of times U(ϕ) (our gauge transformation) covers the
group U(1)em. It is the fact that the winding number must be an integer that makes the magnetic and electric charge
quantized. That winding number is strongly related with a group named the 1st homotopy group or fundamental
group of S1 which is the equivalent manifold of the U(1) group. In the following chapter we present the basics of the
homotopy groups of relevance to our discussion[23].

A. Fundamental Definitions

1. Paths and Loops

The general idea of homotopy groups is to set the fundamentals of characterising topological spaces with respect
to the contractibility or not of loops.

We define a path as a map from α : I = [0, 1]→ X with an initial point x0 and an end point x1 if a(0) = x0 and
a(1) = x1. Now if the initial point and the end point are the same we got ourselves a loop.

The constant path is defined as cx : I → X with cx(s) = x, s ∈ I.

We can endow now the set of paths with some algebraic structure. We define the product of two paths as follows:
Let α, β : I → X be paths with α(1) = β(0). Their product is denoted as α ∗ β is a path in X and is defined as

α ∗ β(s) =

{
α(2s) 0 ≤ s ≤ 1

2

β(2s− 1) 1
2 ≤ s ≤ 1

(65)

We note that the parameter s runs twice as fast and covers the path α meeting its endpoint and immediately after
traces path β.

Now to define the inverse path: Let α : I → X be a path from x0 to x1. The inverse path is defined as:

α−1(s) ≡ α(1− s) s ∈ I (66)

We notice that the inverse path is just α just traced backwards. One may be tempted to assume that we have
ourselves a group structure now, but it is easy to see that α ∗ α−1 ̸= cx.

We need the concept of homotopy12 to define just that group structure needed.

2. Homotopy: An equivalence relation

The algebraic structure of paths and loops is not as useful as it is. For example the product of a path and its
inverse is not the constant path. For that reason we are inspired to define an equivalence relation that identifies
paths that can be continuously deformed to one another and those exact equivalence classes formed will be proved
to admit a group structure.

From now own we will be referring to close paths (i.e. loops) since they are of more interest to us.

Now let α, β be loops atx0, α, β : I → X. They are said to be homotopic, written α ∼ β, if there exists a
continuous map F : I × I → X such that

F (s, 0) = α(s), F (s, 1) = β(s) ∀s ∈ I
F (0, t) = F (1, t) = x0 ∀t ∈ I.

(67)

12 A special kind of equivalence relation
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FIG. 3: The product of two paths

FIG. 4: ((a)Homotopy F interoplating between α and β, (b) Continuous deformation of one loop to anothen

The connecting map F is called a homotopy between α and β ”Homotopic to” is an equivalence relation. This
means it enjoys the properties of symmetry (If α ∼ β then β ∼ α), reflectivity (α ∼ α) and transitivity (If α ∼ β and
β ∼ γ then α ∼ γ).

3. Fundamental Groups

The equivalence class of loops is denoted [a] and is called the homotopy class of α.

The product between homotopy classes is defined very naturally as

[α] ∗ [β] = [α ∗ β]. (68)

Let X be a topological space. The set of homotopy classes of loops at x0 ∈ X is denoted by π1 (X,x0) and is called
the fundamental group (or the first homotopy group) of X at x0.
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It can be proven that the fundamental group has a group structure. Moreover, if X is an arcwise connected
topological space (which all of the topological spaces to our interest are) then the fundamental group at a point of the
topological space is isomorphic to every other point in space and therefore we can omit referring to a certain point.

B. Homotopic invariance of fundamental groups

We define homotopy equivalence and state afterwards that topological spaces of the same homotopy type share
their fundamental groups, a remarkable property making them one of the most important topological invariants that
characterise topological spaces.

Let X and Y be topological spaces. X and Y are of the same homotopy type, written as X ≃ Y , if there exist
continuous maps f : X → Y and g : Y → X such that f ◦g ∼ idY and g ◦f ∼ idX . The map f is called the homotopy
equivalence and g, its homotopy inverse.

If a topological space is homotopic to a point, we say it is contractible and its fundamental group is trivial.

For example, Rn is contractible and therefore this means its fundamental group is trivial. We can also understand
this by noting that every loop in Rn is contractible to a point and therefore we have only one equivalence class of
loops that can only play the role of the identity element in the fundamental group. So,

π1 (Rn) ∼= {e} (69)

Without getting ourselves more involved, we present with no rigorous proof the fundamental or higher homotopy
groups of spaces which are of interest to us.

π1
(
S1
) ∼= Z (70)

Although the proof of such claim is certainly not trivial, the intuition needed is easily acquired. Suppose we encircle
a cylinder with a plastic band. If it encircles the cylinder m times, it cannot be continuously deformed to encircle it
n ̸= m times. If an elastic band encircles the cylinder first n times and then m times, it encircles it n +m times in
total. A generalisation of this relation in higher homotopy groups is

π1 (S
n) = 0 (71)

which is easy to understand since any closed loop is deformable to a point in every n-sphere except the circle.

For higher homotopy groups we get:

πn (S
n, x0) ∼= Z (72)

This will be of very big significance to us, especially since the group SU(2) is identified with a 3-sphere.

That is easy to see since SU(2) is the group that consists of 2× 2 unitary matrices with detU = 1. Now written in
the basis of Pauli matrices13:

U = b0 + ibiσ
i

b20 + b21 + b22 + b23 = 1
(73)

As for the Special Orthogonal groups SO(n), they are identified with Real Projective planes RPn.

The Real Projective plane RPn can be understood as Sn with its antipodal points identified. We can further
understand why this space corresponds to SO(n), since the latter describes rotations of a vector n̂ in Rn, but a

13 We will prove this decomposition later in equation (261) on page 59
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FIG. 5: (a)α is a trivial loop, while β cannot be shrunk to a point, (b)β ∗ β however, with the help of the identification of the
antipodal points of the circle can indeed be shrunk to a point. Hence, we have two equivalence classes and our fundamental
group is Z2

rotation of π degrees and one of −π yields the same result. For higher homotopy groups (n > 1) it can be shown that
they share the same with the corresponding n-sphere:

πn (RPm) ∼= πn (S
m) (74)

But as for the fundamental groups, we have

π1
(
RP 3

) ∼= Z2 (75)

and

π1
(
RP 2

) ∼= (x;x2) ∼= Z2 (76)

for the lowest dimensional real projective planes. Z2 is the cyclic group consisting of only two elements. The
explanation to (76) is better understood via FIG.5

In physics, we should state though that we do not use homotopy groups to classify topological spaces in general.
On the contrary, they are most usually employed on the classification of maps from the sphere at infinity to some
vacuum manifold

{f : Sn →M | f (p0) = m0}

We identify functions that are homotopically equivalent and then the set of equivalent classes produces a group. This
group turns out to be πn (M).

V. GAUGE FIELD THEORIES

A. Abelian Gauge Field Theory

One usually meets a Gauge theory when attempting to upgrade a global symmetry of the Lagrangian into a local
one. The simplest example is Dirac’s Lagrangian

LD = iΨ̄γµ∂µΨ−mΨ̄Ψ (77)

This Lagrangian obviously possesses a global U(1) symmetry, with the field transformations given as:

Ψ→ Ψ′ = e−iqϕΨ

Ψ̄→ Ψ̄′ = Ψ̄eiqϕ
(78)
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The associated conserved Noether current can be found as:

jµ =
∂L

∂(∂µΨ)

∂(δΨ)

∂ϕ
= iΨ̄γµ(−iq)Ψ = qΨ̄γµΨ (79)

Upon trying to employ a local U(1) transformation, namely eiqϕ(x), the mass term stays invariant while the kinetic
term is not, because of

[
∂µ, e

iqϕ(x)
]
̸= 0 In fact the Lagrangian (77) changes as:

LD → L′
D = iΨ̄e+iqϕ(x)γµ∂µ

[
e−iqϕ(x)Ψ

]
−mΨ̄e+iqϕ(x)e−iqϕ(x)ψ

=iΨ̄γµ∂µΨ+ q∂µϕ(x)Ψ̄Ψ−mΨ̄Ψ.
(80)

We could effectively cancel the extra term in the Lagrangian by introducing a new field that interacts with the fermions
as

Vphoton-electron = −qΨ̄γµAµΨ (81)

and postulating its transformation properties under U(1) local transformations to be:

Aµ → Aµ + ∂µϕ(x) (82)

This can also be interpreted as the substitution of the partial derivative by a covariant derivative:

∂µ → Dµ ≡ ∂µ + iqAµ (83)

that is the suitable object to define the canonically conjugate momentum and reminds us of (55)14

Including finally the electromagnetic term in the Lagrangian we arrive at the QED Lagrangian:

LQED = iΨ̄γµ∂µΨ− qΨ̄γµAµΨ−mΨ̄Ψ− 1

4
FµνF

µν = iΨ̄D/Ψ− 1

4
FµνF

µν (84)

An interesting note to take is that upon applying the Euler-Lagrange equations (147) for the electromagnetic potential
yields a source term:

∂νF
µν = jµ (85)

which is precisely the conserved Noether current (79)!

That is, (79) plays a dual role, both as a conserved Noether current and also as our familiar electromagnetic current.

B. Non-Abelian Gauge Field theories

We can generalize all the above for non-Abelian gauge groups.

Guided from the Abelian group case, we define the non-Abelian covariant derivative as:

Dµ ≡ ∂µ1− igAi
µT

i ≡ ∂µ1− igAµ (86)

where we defined Aµ = Ai
µT

i and Ti are the dim(G) independent generators of the non-Abelian Lie group.

The generators satisfy these expressions:[
Ti,Tj

]
= if ijkTk, Tr

(
TiTj

)
=

1

2
δij (87)

where f ijk are the group structure constants and the second relation serves as a normalization for the generators.

14 That is, quantum mechanically following the minimal coupling perscription, it reproduces the correct Lorentz force as we shown earlier.
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The gauge transformation is defined as:

U = eigθ
iTi

(88)

with i = 1, 2, ..., dim(G).

We postulate the transformation law of the covariant derivative15

Dµ → D′
µ = U ·Dµ ·U−1, U = eigθ

iT i

,U† = U−1 (89)

Now we attempt to find Aµ’s transformation properties.
Starting from the postulate that DµΨ transforms in the same way as Ψ, where Ψ is an arbitrary test function16,we
get:

(DµΨ)
′
= U (∂µ1− igAµ)Ψ(

∂µ − igA′
µ

)
UΨ = U (∂µ − igAµ)Ψ

U∂µΨ+ (∂µU)Ψ− igA′
µUΨ = U∂µΨ− igUAµΨ

Aµ = U†A′
µU+

i

g
U†∂µU

A′
µ = − i

g
(∂µU)U† +UAµU

†.

(90)

The next step is to define a field strength tensor.

For the Abelian case, we have:

i

q
([Dµ, Dν ]) Ψ = − (Fµν)Ψ (91)

and relying on this fact again, we are going to calculate the commutator of the non-Abelian covariant derivatives
and postulate the result be proportional to the non-Abelian field strength tensor.

[Dµ,Dν ]Ψ = [(∂µ + iqAµ) (∂ν + iqAν)− (∂ν + iqAν) (∂µ + iqAµ)]Ψ

= ∂µ∂νΨ+ iq(∂µAν)Ψ + iqAν∂µΨ+ iqAµ∂νΨ− q2AµAνΨ− [µ←→ ν]

iq [∂µAν − ∂νAµ + iq [Aµ,Aν ]]

(92)

So we define the field strength tensor in non-Abelian gauge theories as:

Fµν = ∂µAν − ∂νAµ + iq [Aµ,Aν ] (93)

or in component form:

Fα
µνT

a = ∂µA
α
νT

α − ∂νAα
µT

α + iq
[
Ab

µT
b, Ac

νT
c
]

Fα
µν = ∂µA

α
ν − ∂νAα

µ − qfabcAb
µA

c
ν

(94)

As a result the gauge part of the Lagrangian is written as:

Lgauge = −1

4
F a
µνF

aµν (95)

15 Inspired from the Abelian case, of course.
16 For ease of calculations, we suppose Ψ is in the fundamental representation.
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or using the properties of the generators (87) :

Lgauge = −1

2
Tr (FµνF

µν) (96)

We take a moment now to prove that this term is, of course, gauge invariant. We start from the form (96) and use
(92) so that upon transformation (89) we get:

Lgauge → +
1

2q2
Tr
[
D′

µ,D
′
ν

]
[Dν′,Dµ′]

= +
1

2q2
Tr
[
UDµU

−1,UDνU
−1
] [

UDµU−1,UDνU−1
]

= +
1

2q2
Tr
[
U [Dµ,Dν ]U

−1U [Dµ,Dν ]U−1
]

=
1

2q2
Tr
[
U [Dµ,Dν ] [D

µ,Dν ]U−1
]
= −1

2
Tr [FµνF

µν ]

(97)

where in the last step we used the cyclic property of the Tr trace operator.

Last but not least, it is useful to see how the covariant derivative acts on a test function on the adjoint representation.
In fact we will prove that if Ψ = ΨaT a then

DµΨ = ∂µΨ+ iq [Aµ,Ψ] (98)

or in component form

DµΨ
a = ∂µΨ

a − qfabcAb
µΨ

c (99)

Our motivation will be that the result of the covariant derivative when acted upon a test function in adjoint
representation will have to retain the transformation properties of the adjoint representation.

i.e. If Ψ′ = UΨU−1 then (DµΨ)′ = UDµΨU−1. We will now explore the various transformation properties of
RHS of (98) and prove it is the right expression to satisfy the aforementioned relationship.

For the first term:

∂µΨ→ ∂µ
(
UΨU−1

)
= (∂µU)ΨU−1 +U (∂µΨ)U−1 +UΦ

(
∂µU

−1
)

= U (∂µΨ)U−1 + (∂µU)U−1
(
UΨU−1

)
+
(
UΨU−1

)
U
(
∂µU

−1
)

= U (∂µΨ)U−1 + (∂µU)U−1
(
UΨU−1

)
−
(
UΨU−1

)
(∂µU)U−1

= U∂µΨU−1 +
[
(∂µU)U−1,UΨU−1

] (100)

where we used

U∂µU
−1 = ∂µ(UU−1)− (∂µU)U−1 = −(∂µU)U−1 (101)

The second term yields:

iq [Aµ,Ψ]→ iq
[
UAµU

−1,UΨU−1
]
−
[
(∂µ)U

†,UΨU†] (102)

where we used (90).

We note now that by adding this to terms we get some cancellations, explicitely:

DµΨ = DµΨ+ iq [Aµ,Ψ] = U (DµΨ)U−1 + iqU [Aµ,Ψ]U−1 = U (DµΨ)U−1 (103)

Thereby, validating (98).
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VI. SPONTANEOUS SYMMETRY BREAKING

A. A Z2 symmetric Lagrangian

All these seemingly discrete independent topics from homotopy groups to gauge field theories really set the stage
for the t’Hooft-Polyakov Monopole, which we are going to present later. For now, there is one piece left to be put
into the puzzle and that is the discussion of Spontaneous Symmetry Breaking (or SSB for short) and the Higgs
Mechanism, which we move forward to introduce following Blundell and Lancaster [19].

We consider a real scalar field Lagrangian density.

L =
1

2
(∂µϕ)

2 − U(ϕ) (104)

where U(ϕ) is the potential energy density.

Now we consider that the potential is given by:

U(ϕ) =
µ2

2
ϕ2 +

λ

4!
ϕ4 (105)

The potential has a manifest symmetry ϕ(x) → −ϕ(x). Assuming µ2 is positive, the potential has a minimum at
ϕ = 0, which corresponds to the vacuum state.
That is, because its Hamiltonian obtained by the Legendre transformation on (104)

H =
1

2
(∂0ϕ) (∂0ϕ) +

1

2
(∂iϕ) (∂iϕ) + U(ϕ) (106)

is minimised only if the field is constant on a minimum of the potential17 U . The excitations of such field with µ2 > 0
are massive phions with mass m = µ.

We, now, turn to a very interesting possibility. What if the sign of the µ2 term in the potential was swapped? Then
the minimization of the potential

U(ϕ) = −µ
2

2
ϕ2 +

λ

4!
ϕ4 (107)

would yield:

∂U

∂ϕ
= 0

0 = −µ2ϕ+
λ

3!
ϕ3

(108)

The solutions to (108) are of course (0,±
√

6µ2

λ ). A simple check of the sign of the second derivative for these points:

∂2U

∂ϕ2
= −µ2 +

λϕ2

2
(109)

yields −µ2 for ϕ0 = 0 and +2µ2 for ϕ0 = ±
√

6µ2

λ . So we end up with two new minima of the potential. The system

will spontaneously choose one and the symmetry ϕ→ −ϕ is spontaneously broken.

17 Because its kinetic terms are positive definite
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FIG. 6: (a)U(ϕ) for µ2 > 0, (b)U(ϕ) for µ2 < 0 exhibiting minima at ±
√

6µ2/λ

To find the new vacuum we Taylor-expand the potential (let’s say around +ϕ0):

U (ϕ− ϕ0) = U (ϕ0) +

(
∂U

∂ϕ

)
ϕ0

(ϕ− ϕ0) +
1

2!

(
∂2U

∂ϕ2

)
ϕ0

(ϕ− ϕ0)2 + . . .

= U (ϕ0) + µ2 (ϕ− ϕ0)2 + . . . ,

(110)

So we can write the Lagrangian in terms of ϕ′ = ϕ− ϕ0:

L =
1

2
(∂ϕ′)2 − µ2ϕ′2 +O(ϕ′3) (111)

We conclude this example by noticing that the breaking of symmetry is a property of the ground state of the system
acquiring a non-trivial vacuum expectation value18 (VEV from now on) and that the excitation ϕ′ is characterised by

mass m′ =
√
2µ.

B. A SO(2) symmetric Lagrangian

Let us now consider the effects of spontaneous symmetry breaking on a Lagrangian with a continuous global
symmetry.

L =
1

2

[
(∂µϕ1)

2
+ (∂µϕ2)

2
]
+
µ2

2

(
ϕ21 + ϕ22

)
− λ

4!

(
ϕ21 + ϕ22

)2
(112)

The Lagrangian (112) exhibits, of course, an internal global SO(2) symmetry of spacetime independent rotations
around the ϕ1 − ϕ2 plane. The minima of the potential this time are located on a circle on the ϕ1 − ϕ2 plane

with radius19 6µ2

λ . Let’s break the symmetry by choosing a particular vacuum. The easiest for our calculations is

(ϕ1, ϕ2) =

(
+
√

6µ2

λ , 0

)
but any other point in the circle would be equivalent. Now expanding with ϕ′1 = ϕ1 −

√
6µ2

λ

and ϕ′2 = ϕ2 yields:

L =
1

2

[
(∂ϕ′1)

2
+ (∂ϕ′2)

2
]
− µ2 (ϕ′1)

2
+O

(
ϕ′3
)

(113)

because ∂2U/∂ϕ21 = 2µ2 and ∂2U/∂ϕ22 = 0. We end up with the usual m =
√
2µ mass for the field ϕ1 but it seems

ϕ2 is completely massless! This can be explained since excitations in the ϕ1 direction cost energy, while an in-
finitesimal displacement in ϕ2 directions is free of charge, which perfectly suits the explanation of a massless excitation.

18 In this case ϕ0 = ( 6µ
2

λ
)1/2

19 To verify set x = ϕ2
1 + ϕ2

2 and differentiate with respect to x
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Perhaps more illuminating is the case of a complex scalar field with internal U(1) symmetry20. The Lagrangian of
the theory is:

L = (∂µψ)
†
(∂µψ) + µ2ψ†ψ − λ

(
ψ†ψ

)2
(114)

which is of course invariant to transformations ψ → ψeiα.

It convenient to express the ψ field in a ”polar” form ψ(x) = ϱ(x)eiθ(x). Substituting into (114) we end up with:

L = (∂µϱ)
2
+ ϱ2 (∂µθ)

2
+ µ2ϱ2 − λϱ4 (115)

And now the equivalent U(1) transformation is ϱ → ϱ and θ → θ + α. Let us break the symmetry by choosing
a preferred vacuum state (arbitrarily, but with ease of calculations eluding in mind). The set of minima is on the

complex circle of radius ϱ =
√

µ2

2λ and arbitrary θ. We proceed to choose ϱ0 =
√

µ2

2λ and θ0 = 0 and express our new

fields as ϱ′ = ϱ− ϱ0 and θ′ = θ − θ0. Warning! Serious algebraic massacre to follow:

L = (∂µϱ)
2
+ ϱ2 (∂µθ)

2
+ µ2ϱ2 − λϱ4

= (∂µϱ
′)
2
+

(
ϱ′ +

√
µ2

2λ

)2

(∂µθ
′)
2
+ µ2

(
ϱ′ +

√
µ2

2λ

)2

= (∂µϱ
′)
2
+

[
ϱ′2 + 2

(
µ2

2λ

)
ϱ′
]
(∂µθ

′)
2
+
µ2

2λ
(∂µθ

′)
2

+ µ2ϱ′2 +
µ4

2λ
+ 2

µ3

√
2λ
ϱ′ − λ

(
ϱ′ +

√
µ2

2λ

)4

= (∂µϱ
′)
2
+

[
ϱ′2 + 2

(
µ2

2λ

)
ϱ′
]
(∂µθ

′)
2
+
µ2

2λ
(∂µθ

′)
2

+ µ2ϱ′2 +
µ4

2λ
+ 2

µ3

√
2λ
ϱ′

− λϱ′4 − λ µ
4

4λ2
− 4λϱ′

µ2

2λ

√
µ2

2λ
− 4λϱ′3

√
µ2

2λ

− 6λϱ′2
µ2

2λ

(116)

We notice that terms in the first power of ϱ′ vanish and that θ′ field is massless while ϱ′ is massive with m =
√
2µ.

The Lagrangian (116) after some cleaning and tidying21 can be cast into

L =
(

µ2

2λ

)
(∂µθ

′)
2

(θ′-field terms )

+ (∂µϱ
′)
2 − 2µ2ϱ′2 − 4

(
µ2λ
2

) 1
2

ϱ′3 − λϱ′4 (ϱ′-field terms )

+

[
ϱ′2 +

(
2µ2

λ

) 1
2

ϱ′
]
(∂µθ

′)
2
+ . . . ( interaction terms )

(117)

The occurance of a massless excitation θ is a manifestation of the Goldstone theorem which says: For every generator
of the continuous symmetry group that undergoes spontaneous symmetry breaking there exists a massless excitation
in the spectrum called Goldstone boson.

20 Of course U(1) is isomorphic to SO(2), so the physics will remain the same.
21 Ignoring constant terms, interactions and grouping same field terms.
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C. Gauge Theory Symmetry Breaking - Higgs Mechanism

An extraordinary feature emerges when breaking a symmetry in a gauge theory and to showcase this we limit
ourselves to the simplest example: the gauged complex scalar field theory.

The theory’s Lagrangian is:

L =
(
∂µψ† − iqAµψ†) (∂µψ + iqAµψ) + µ2ψ†ψ − λ

(
ψ†ψ

)2 − 1

4
FµνF

µν (118)

which is symmetric under local U(1) transformations via ψ → ψeiα(x) as long as we transform also Aµ → Aµ− 1
q∂µα(x).

We will explore what happens when we break symmetry. Working in polars, the ground state take a unique phase
angle θ(x) = θ0 for all x. We are no longer permitted to change the phase of the ground state at different values of
x (local symmetry), neither the phase of the ground state for the entire system (global symmetry). Now we are to
determine the excitations. The Lagrangian is gauge invariant, so we will be able to perform gauge transformations
to simplify the physics if needed.

The lagrangian (118) is much like (115). The most serious change is the inclusion of the covariant derivative.
Writing the field ψ in polars as before, we get:

∂µψ + iqAµψ = (∂µϱ) e
iθ + i (∂µθ + qAµ) ϱe

iθ (119)

Notice now that Aµ appears as:

Aµ +
1

q
∂µθ ≡ Cµ (120)

So it is better to start working with Cµ, to simplify some expressions for example the first term in the Lagrangian
(118) becomes: (

∂µψ† − iqAµψ
)
(∂µψ + iqAµ) =[(

∂µϱ ϱe
−iθ − iCµe−iθ

] [
(∂µϱ) e

iθ + iCµϱe
iθ
]
=

∂µϱ∂µϱ+ ϱ2CµCµ

(121)

Of course the replacement (120) is a gauge invariant one since the field strength tensor remains the same.

Fµν = ∂µAν − ∂νAµ = ∂µCν − ∂νCµ (122)

Lagrangian (118) is now cast into22:

L = (∂µϱ)
2
+ ϱ2q2C2 + µ2ϱ2 − λϱ4 − 1

4
FµνFµν (123)

Comparing with (115) we notice that field θ has vanished into thin air. Breaking the symmetry, we consider again

the minimum on ϱ0 =
√

µ2

2λ and θ0 = 0. Now to reveal the excitations above the ground state we expand in terms of
χ√
2
= ϱ− ϱ0 and we obtain the same way as before:

L =
1

2
(∂µχ)

2 − µ2χ2 −
√
λµχ3 − λ

4
χ4

− 1

4
FµνF

µν +
M2

2
C2

+ q2
(
µ2

λ

) 1
2

χC2 +
1

2
q2χ2C2 + . . . ,

(124)

22 Note we have not yet broken the symmetry.
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where M = q
√

µ2

λ and we ignored constants and interaction terms.

The massive scalar excitation ϱ is called a Higgs Boson.

The big surprise here apart from the complete disappearance of the θ field is that the theory now contains a
massive vector field Cµ. It is as the Goldstone boson has been eaten by the gauge field and grown massive.

It is important to note however that the degrees of freedom have remained the same:(
2× massive scalar particles

2× massless photon particles

)
→

(
1× massive scalar particles

3× massive vector particles

)

since the mass term breaks the gauge invariance (which reduces the d.o.f. by two) but the equations of motion from
a Proca Lagrangian23 introduce one constaint24 leaving us with the three vector particles.

The disappearance of the θ Goldstone boson is attributed to the substitution (126) which is in fact a gauge
transformation. The Goldstone boson entered the Lagrangian in a way that with a suitable gauge transformation
could be removed. It must have been then, what we call a pure gauge.

23 That is the Lagrangian of a massive vector field.
24 From L = − 1

4
FµνFµν + M2

2
CµCµ Euler-Lagrange equations yield ∂µFµν +M2Cν = 0. Taking the partial derivative ∂ν of the above

yields the non-trivial constaint ∂µCµ = 0, which is a forced Lorentz-gauge condition.
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VII. TOPOLOGICAL CONSIDERATIONS II: SOLITONS

In conventional Quantum Field Theory, we expand around the classical field vacuum assuming the fields are
independent of space and time. While this is true for the majority of the effects we consider, there are some excited
states which stem from the non-trivial topology of the unperturbed state. Such effects turn out to be proportional
to the coupling constant in some negative power and thus no perturbative technique would ever reveal such things.

A crucial aspect of all these solutions is going to be the manifold of vacua for the theory. If there is no non-linear
term, there is nothing non-trivial and therefore we have to take the interaction term seriously and add it to the action.

Consider the Φ4 theory in (1 + 1) dimensions:

L =
1

2
∂µΦ∂

µΦ− 1

4
λΦ4 (125)

The equations of motion are:

□Φ+ λΦ3 = 0 (126)

where □ = ∂µ∂
µ.

Our goal in the search of topological excitations is finding solutions to the equations of motion with finite energy.
Let’s check the energy functional.

The energy momentum tensor is:

Tµ
ν =

∂L
∂ (∂µΦ)

(∂νΦ)− gµνL

= ∂µΦ∂νΦ−
1

2
(∂µΦ)

2
δµν +

λ

4
Φ4δµν

(127)

The (0,0)-component gives the energy density, so the energy functional is

E[Φ] =

∫ ∞

−∞
dx

(
1

2
(∂1Φ)

2
+

1

2
(∂0Φ)

2
+
λ

4
Φ4

)
(128)

The energy is clearly positive definite. The energy is zero only if Φ = 0, which corresponds to our classical vacuum.
In this case, we have only one classical vacuum and while we can find other solution apart from Φ = 0, they are all
deformable to the trivial one. If we want to find topological excitations in our theory, we have to change our strategy.

A. The Kink

This time we consider the Lagrangian (1 + 1):

L =
1

2
∂µΦ∂µΦ− V (Φ) (129)

with

V (Φ) =
1

4
λ
(
Φ2 − u2

)2
(130)

where we recognize our symmetry breaking potential from equation (107) with a constant to lift up the minima of
the potential to coincide with 0 and some different coefficients which do not change the physics of course.

This theory has two vacua which we can diagrammatically see from FIG.6. These correspond to the classical field
configurations Φ = u and Φ = −u. After expanding around one of the minima, we easily find that the particle’s mass

is m = (2λ)
1/2

u. However, the whole point of this chapter is to illustrate that other objects can live in the potential
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other than particles. These are stationary configurations25 of the field whose energy density goes to 0 at the spatial
infinities but does something non-trivial in between.

In (1 + 1) dimensions, Φ and u are dimensionless and λ has dimensions of mass squared. In the weak coupling
regime of the quantum theory, we have λ≪ m2.

The case of one spatial dimension is interesting because the boundary consists of two points x = −∞ and x = +∞.
This topology of the spatial boundary is mirrored by the topology of the space of vacuum field configurations, which
also consists of two points Φ = −v and Φ = v. In each vacuum, both spatial boundary points are mapped onto the
same field value (either −v or +v). This we recognize as a trivial map. More interesting for our searches is the
identity map, where x = −∞ is mapped to Φ = −u and x = +∞ to Φ = +u. The field must smoothly interpolate
between Φ = −u at x = −∞ and Φ = u at x = ∞ and this requires energy. We might say that the fields at ±∞
live in different vacua. If we are lucky enough and such configuration costs a finite amount of energy, then we have
ourselves a topological excitation.

To introduce some notation, we write down our boundary conditions

lim
x→±∞

Φ(x) = ±u (131)

The energy functional can be extracted from (128) substituting the Φ4 term with our new potential (130).

E =

∫ +∞

−∞
dx

[
1

2
Φ̇2 +

1

2
Φ′2 + V (Φ)

]
(132)

where primes denote a spatial differentiation and dots a temporal one.

We rewrite now the energy functional (132) with a malicious trick

E =

∫ +∞

−∞
dx

[
1

2

(
Φ′ −

√
2V (Φ)

)2
+
√
2V (Φ)Φ′

]
(133)

where we ignored time derivatives, since we seek time independent solutions.

The calculation can be carried out easily up to:

E =

∫ +∞

−∞
dx

1

2

(
Φ′ −

√
2V (Φ)

)2
+

∫ +v

−v

√
2V (Φ)dΦ

=

∫ +∞

−∞
dx

1

2

(
Φ′ −

√
2V (Φ)

)2
+

2

3

(
m2/λ

)
m

(134)

The minimum possible energy is evidently

M =
2

3

(
m2/λ

)
m (135)

which is much heavier than the particle excitation of the weakly coupled theory. Notice, also, its mass is inverse
proportional to the coupling constant verifying that perturbation theory would fail to reveal such solutions.

We can require the first term to vanish in the energy functional and find the minimum energy solution by solving:

Φ′ =
√

2V (Φ) (136)

This is rather trivial but we should point out that this equation is compatible with the equations of motion for the
field which can be seen by differentiation:

25 That is ∂0Φ = 0
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1

2

(
∂Φ

∂x

)2

= V

⇒1

2
2
∂Φ

∂x

(
∂x

∂Φ

∂

∂x

)
∂Φ

∂x
=
∂V

∂Φ

⇒∂Φ

∂x

∂x

∂Φ

∂2Φ

∂x2
=
∂V

∂Φ

⇒∂2Φ

∂x2
=
∂V

∂Φ

(137)

We proceed in solving (136):

dΦ√
2V (Φ)

= dx

⇒
√

2

λ

dΦ

u2 − Φ2
= dx

⇒ d(Φ/u)

1−
(
Φ
u

)2 =

√
λ

2
udx

⇒
∫

dY

1− Y 2
=
u (x− x0)

2

⇒dY

2

(
1

1− Y
+

1

1 + Y

)
=
m (x− x0)

2

⇒ ln

(
1 + Y

|1− Y |

)
= m (x− x0)

(138)

Before we start solving for Y , we point that we remove the absolute value leaving the signs unchanged. The rigorous
method would be to solve for each case of the sign separately. Doing so would yield in the case of changing the signs of
the absolute value that the solution has a singularity which we ultimately want to avoid for the sake of finite energy.

⇒ 1 + Y

1− Y
= em(x−x0) ⇒ 1 + Y = em(x−x0)(1− Y )

⇒ Y
(
1 + eu(x−x0)

)
= em(x−x0) − 1

⇒ Φ = u
eu(x−x0) − 1

eu(x−x0) + 1
= u tanh

(m
2
(x− x0)

)
.

(139)

where x0 is just a constant of integration and acts as a point where the energy is localised around.

This solution is what we call a soliton. It might seem to stretch a little too much in the field space to exhibit
particle properties, but nobody actually cares about the localization of the field configuration. It is the energy
configuration that matters in that aspect.

The energy density is given again by:

E(x) = 1

2
ϕ′2 + U(ϕ)

=
m2u2

8 cosh4
(
m
2 (x− x0)

) + λ

4

(
u2 − u2 tanh2

(m
2
(x− x0)

))2
=

m2u2

8 cosh4
(
m
2 (x− x0)

) + λu4

4

(
1− tanh2

(m
2
(x− x0)

)2)
=

2λu4

8 cosh4
(
m
2 (x− x0)

) + λu4

4
cosh−4

(m
2
(x− x0)

)2
=
λu4

2
cosh−4

(m
2
(x− x0)

)

(140)
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To get the solution for all times can boost this solution,

x− x0 → γ (x− x0 − vt) ,

where γ ≡
(
1− v2

)−1/2

Boosting the field

Φ→ ±u tanh
[γm

2
(x− x0 − vt)

]
with an energy density

E =
γλu2

2
sech4

[γm
2

(x− x0 − vt)
]

Now for a quick check that everything is okay, we will be integrating the boosted energy density over space expecting
to return γ times (135).

E =

∫ +∞

−∞
Edx =

∫ +∞

−∞
γ
λu4

2
sech4

(m
2
(x− x0)

)
dx

Substituting y = m
2 (x− x0)

= γ
λu4

2

2

m

∫ +∞

−∞
sech4 ydy = γ

λu4

m

∫ +∞

−∞
sech2 y

(
1− tanh2 y

)
dy

We are also prepared for substitution tanh y = w

= γ
λu4

m

∫ +1

−1

(
1− w2

)
dw = γ

λu4

m

4

3
= γ

2

3

m2

λ
m (141)

Exactly as expected!

The kink is of finite energy, can be boosted to an arbitrary velocity and transferred to an arbitrary point. It, thus,
behaves very much like a particle. In addition, the kink is stable: any attempt to remove the kink involves lifting a
(semi)infinite length of field from one potential minima to another and that would cost an infinite amount of energy.
More mathematically, we say that the kink is not deformable. One way to remove the kink, would be via annihilation
with an antikink (that corresponds to minus the solution we found previously for the kink).

We say two solutions are topologically equivalent if there exists a continuous transformation from one to another
without passing through a barrier of infinite action.

For two solutions, f1(x) and f2(x), a continuous deformation, parameterized by w ∈ [0, 1], between the two
solutions is a continuous function, F (w, x), such that F (0, x) = f1(x) and F (1, x) = f2(x).

We will check if the kink and antikink solutions are topologically equivalent26.

We introduce a generic transformation from one to the other

Φ (w, x) = F (w)u tanh
(m
2
(x− x0)

)
(142)

with F (0) = −1 and F (1) = 1.

26 Of course, we expect they are not.
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The action functional is given

S(w) =

∫
dx

1

2
Φ′2 +

λ

4

(
Φ2 − m2

λ

)2

=
m4

4λ

∫
dxF 2 1

cosh4 y
+
(
(F 2 tanh2

(m
2
(x− x0)

)
− 1
)2 (143)

While the first term is convergent, the second one is divergent if F 2 ̸= 1. However, since F (0) = −1 and F (1) = 1
and F is continuous, there is at least one w ∈ (0, 1) with F ̸= 1 and so we conclude that the kink and antikink
solutions are topologically inequivalent.

To distinguish between those two we endow them with conserved quantity we call kink-charge. A single kink should
carry QT = 1 and a single antikink Q= − 1. In order to come up with a sensible recipe for finding the kink, we define
the kink-current27:

Jµ
T =

1

2u
εµν∂νΦ, (144)

Notice that this current is conserved by construction. The expression for the charge of the kink is via the usual trick

QT =

∫ ∞

−∞
dxJ0 =

1

2u

∫ ∞

−∞
dx
∂Φ

∂x

=
1

2u
[Φ(∞)− Φ(−∞)] = 1,

(145)

whereas for the antikink we have QT = −1. We call the kink-charge a topological charge, explaining the subscript.
Its existence is independent of the geometry of spacetime. That geometry is encoded in gµν which makes no appearance
in our current. In contrast, our current has its indices summed via the antisymmetric symbol Levi-Civita εµν , which
turns out to be a general feature of topological objects.

B. Derrick’s theorem

This discussion will follow the lecture notes from [10]. Such theorem prohibits stable time-independent topological
excitations for scalar fields depending on the spatial dimensionality of the manifold.

Consider the Lagrangian L of an N -component scalar field, ϕ (xi, t) in n spatial dimensions:

L =
1

2
∂µΦ

i∂µΦi − U
(
Φi
)

(146)

Applying the Euler-Lagrange equations, we acquire:

∂µ
∂L

∂ (∂µΦi)
− ∂L

∂Φi
= 0

∂µ∂
µΦi =

∂U

∂Φi

(147)

The Hamiltonian of the system, considering time-independent solution is:

E =

∫
dnx

1

2
∂jΦ

i∂jΦ
i︸ ︷︷ ︸

≡E1[Φi]

+

∫
dnxU

(
Φi
)

︸ ︷︷ ︸
≡E2[Φi]

(148)

where the j summation implies only spatial indices.

27 Note that this current is different to Noether currents since it owes nothing to the existence of a symmetry in the Lagrangian. We will
meet a same kind of current later, when examining the t’Hooft-Polyakov monopole!
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Applying a rescaling to the spatial components of the field, we get:

Φi
λ(x) ≡ Φi

1(λx) (149)

which are not in general solutions of (147).

The total energy for these configurations is:

E(λ) =

∫
dnx

(
1

2
∂jΦ

i
1(λx)∂jΦ

i
1(λx) + U

[
Φi

1(λx)
])

=

∫
dnyλ−n

(
1

2
λ2

∂

∂ya
Φi(y)

∂

∂ya
Φi(y) + U [Φ1(y)]

)
=
(
λ2−nE1 + λ−nE2

)
(150)

Now Derrick’s argument is that (150) must exhibit an extremum at λ = 1

dE(λ)

dλ
= (2− n)λ1−nE1 − nλ−n−1E2 = 0⇒ E2 =

2− n
n

E1 (151)

For n = 1, we find that E1 = E2, which is a virial theorem analogue.

For n > 1, we get E2 ≤ 0, which is certainly not physical and therefore we conclude that stable scalar topological
excitation can be exhibited with only one spatial dimension.

It would certainly be really uninteresting, if we could not have topological excitations in more than one spatial
dimensions. The problems lies in the divergent kinetic term as we will showcase next. We will also consider ways to
dodge the limitations imposed from Derrick’s theorem taking advantage that it only refers to scalar fields.

C. The Vortex

Having found a soliton that is localised in one spatial dimension, we turn our attention to (2 + 1) spacetime.
However, Derrick and his theorem guarantee us that not everything will go as smoothly as before. The spatial
boundary in two dimensions has the topology of circle S1. There is no nontrivial map from a circle to two points,
since continuity of the map requires the whole circle to be mapped to one of the two points, so the real scalar field
will not do the job this time. There do exist, though, nontrivial maps from a circle to a circle and they are in fact
labeled by an integer representing the structure of the first homotopy group28 of S1 (70).

We consider a complex scalar field Φ(x):

L = ∂µΦ†∂µΦ− V (Φ) (152)

with our usual symmetry breaking potential

V (Φ) =
1

4
λ
(
Φ†Φ− u2

)2
(153)

The vacuum field configuration at spatial infinity is:

Φ = ueinφ (154)

where is the integer endowed by the first homotopy group of S1 or as is commonly known, the winding number29.

28 For more, visit chapter IVB.
29 More on that in chapter IXA.
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To search for a finite energy solution with nonzero winding number, we start with the ansatz

Φ (r, φ) = uh(r)einφ (155)

where h(r) is a real-valued function with h(∞) = 1. We also have h(0) = 0 so that we avoid divergences of the
gradient at r = 0.

∇Φ = u
[
h′(r)r̂+ inr−1h(r)ϕ̂

]
einφ (156)

The kinetic energy is proportional to ∫
d2x|∇Φ|2 ∼ 2πn2u2

∫ ∞ dr

r
(157)

which unfortunately diverges logarithmically30.

It’s time to get a little sneaky though and outmaneuver Derrick’s theorem. You see, Derrick’s theorem involves only
scalar fields, but nobody forbids us to introduce gauge ones too. Note that the Lagrangian (152) posseses a global
U (1) symmetry, so gauging it yields

L = (DµΦ)
†
DµΦ− V (Φ)− 1

4
FµνFµν (158)

where

DµΦ = ∂µΦ− ieAµΦ (159)

and V (Φ) still given by (153). The gauge symmetry is spontaneously broken and we end up with a massive scalar

particle of ms =
√
λu and a massive vector particle of mV = eu in complete analogy with chapter VIC.

The gradient energy density of the scalar field is now

|DΦ|2 = |(∇− ieA)Φ|2 (160)

Here, we are presented with the chance to choose wisely the vector potential A so that we cancel the badly behaved
term of the kinetic energy.

We know that for Φ = u, there is no divergence, since it does not depend on the azimuthal angle φ. We should
also have Aµ = 0 in this vacuum. Now we notice that to go from Φ = u to Φ = ueinφ we are no more than a gauge
transformation away. We have to transform Aµ, however, via (90).
For r →∞,

lim
r→∞

A(r, ϕ) =
i

e
U∇U†

=
n

er
ϕ̂

(161)

Before the transformation, we had DµΦ = 0. This is also true in our new gauge (since 0 cannot be altered by a
multiplicative transformation).

For n ̸= 0, the gauge transformation U = einφ is large. This means that it cannot be smoothly deformed to U = 1.
This implies that we also cannot extend it from r =∞ to the interior of space without meeting an obstruction, a point
where U(r, φ) is ill-defined31. Near the obstruction, the fields Φ and A must deviate from a gauge transformation of

30 This is something we ultimately expected as it was predicted by Derrick’s theorem from the previous chapter.
31 In this case, r = 0 does exactly that job.
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a vacuum. This deviation costs energy and results in a soliton [[32]].

We expand our previous ansantz (155) to include the vector potential A too.

Φ(r, φ) = uh(r)U(φ),

A(r, φ) =
i

e
a(r)U(φ)∇U†(φ)

(162)

where U = einφ and we have the following boundary conditions:

h(0) = 0 a(0) = 0

h(∞) = 1 a(∞) = 1
(163)

to approach a large gauge transformation at r = ∞ and to avoid the blowing up of the kinetic energy at r = 0. For
n = 1, the soliton is called Nielsen-Olesen vortex [25].

The non-zero potential yields a perpendicular magnetic field

B = ∇×A

=
1

r

(
∂

∂r
(rAφ)−

∂

∂φ
Ar

)
ẑ

=
n

e

a′(r)

r
ẑ

(164)

which results in a magnetic flux

ΦM =

∫
dS ·B

= lim
r→∞

∫
dℓ ·A

=
i

e
lim
r→∞

a(r)

∫ 2π

0

dϕU∂φU
†

=
2πn

e

(165)

where we used Stoke’s theorem to transition from first to second line and next we used (161). We see that vortices
carry quantized magnetic flux!

The energy of the soliton is

E =

∫
d2x

[
|(∇− ieA)Φ|2 + V (Φ) +

1

2
B2

]
(166)

Substituting our ansatz (162), we get

E = 2πu2
∫ ∞

0

drr

[
h′2 +

n2

r2
(a− 1)2h2 +

1

4
λu2

(
h2 − 1

)2
+

n2

e2u2r2
a′2
]

(167)

We switch to a dimensionless radial variable ξ ≡ eur = mVr and define β2 ≡ λ/e2 = m2
S/m

2
V. The energy functional

reads

E = 2πu2
∫ ∞

0

dξξ

[
h′2 +

n2

ξ2
(a− 1)2h2 +

1

4
β2
(
h2 − 1

)2
+
n2

ξ2
a′2
]

(168)

Either by substituting ansatz (162) into the equations of motion, or by applying the variational principle on the
energy functional, we get the equations that h, a satisfy.

Here, we follow the variational principle:
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∂E
∂h
− d

dξ

(
∂E
∂h′

)
= 0

2
n2

ξ
(a− 1)2h+

1

2
β2
(
h2 − 1

)
2h− d

dξ
(2ξh′) = 0

h′′ +
h′

ξ
− n2h

ξ2
(1− a)2 + 1

2
β2
(
1− h2

)
h = 0

(169)

and

∂E
∂a
− d

dξ

(
∂E
∂a′

)
= 0

n2

ξ
h22(a− 1)− d

dξ

(
2n2a′

ξ

)
= 0

a′′ − a′

ξ
+ (1− a)h2 = 0

(170)

where E is the integrand in E.

Equations (169),(170) along with boundary conditions (163) do not have analytical solutions. However, we can
determine their behaviour for small and large values of ξ.

For ξ ≪ 1, a and h are small due to their boundary conditions and we can ignore them to second order. We are
left with an equation for h:

h′′ + h′/ξ − n2h/ξ2 = 0 (171)

Plugging in an ansatz h ∼ ξν (
ν2 − n2

)
ξν−2 = 0 (172)

So, we have h ∼ ξn for ξ ≪ 1 (because ν = −n does not satisfy the boundary condition at ξ = 0). As for a in the
small ξ regime

a′′ − a′/ξ = 0 (173)

Using the ansatz a ∼ ξα and substituting (
α2 − 2α

)
ξα−2 = 0 (174)

we get α = 2 (because α = 0 does not satisfy the boundary condition) and thus a ∼ ξ2 for ξ ≪ 1.

For ξ ≫ 1, let a = 1−A and h = 1−H, with A and H both ≪ 1. Then, (170) becomes

−A′′ +A = 0 (175)

and the solution that vanishes at ξ =∞ is A ∼ e−ξ.

As for H, we get

−H ′′ + β2F = 0 (176)

The solution that vanishes at ρ→∞ is H ∼ e−βξ.

However, if β > 2 then actually it is the third term in equation (169) that dominates at large ξ, since
(1 − a)2 = A2 ∼ e−2ξ while the remaining terms go like e−βξ. Hence, for β > 2, we must have H ∼ e−2ξ to achieve
appropriate cancellations at large ξ.

The next step in line is to examine a topological object localised in (3 + 1) spacetime. Remarkably, this object
turns out to be a magnetic monopole!
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VIII. THE T’HOOFT-POLYAKOV MONOPOLE

A. Georgi-Glashow Model

For this section we are going to present the SU(2) Georgi-Glashow model.

We start with a Higgs triplet in adjoint representation

Φ = ΦaTa (177)

where Ta = σa

2 are the SU(2) generators. They satisfy the Lie algebra:[
Ta,Tb

]
= iεabcT

c (178)

and the normalization condition

Tr
(
TaTb

)
=

1

2
δab (179)

Based on our previous analysis the Lagrangian with the corresponding local symmetry is

L = −1

2
Tr (FµνF

µν) + Tr (DµΦDµΦ)− V (Φ)

L = −1

4
F a
µνF

µνa +
1

2
(DµΦ

a) (DµΦa)− V (Φ)

(180)

The covariant derivative is

Dµ = ∂µI+ ieAµ (181)

with Aµ = Aa
µT

a. It acts on the scalar field like

DµΦ = ∂µΦ+ ie [Aµ,Φ]

DµΦ
a = ∂µΦ

a − eεabcAb
µΦ

c
(182)

The Higgs potential is

V (Φ) =
λ

4

(
ΦaΦa − u2

)2
(183)

and the Field strength tensor is defined

Fµν = ∂µAν − ∂νAµ + ie [Aµ,Aν ] =
1

ie
[Dµ,Dν ]

F a
µν = ∂µA

a
ν − ∂νAa

µ − eεabcAb
µA

c
ν

(184)

all of which stems directly from our analysis on Gauge field theories.

We proceed now to derive the equations of motion.

For the field Φa we have from Lagrangian (180):

∂L

∂Φa
− ∂µ

∂L

∂ (∂µΦa)
= 0

− ∂V

∂Φa
−DµΦλeελbaA

b
µ − ∂µDµΦa = 0

∂µD
µΦa + eελbaA

b
µD

µΦλ = − ∂V

∂Φa

∂µD
µΦα − eεabλAb

µD
µΦλ = −λΦa

(
ΦbΦb − u2

)
DµD

µΦa = −λΦa
(
ΦbΦb − u2

)
(185)
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where we used ελβa = −εaβλ.

Now for the gauge field Aa
µ:

∂L

∂Aa
µ

− ∂ν
∂L

∂
(
∂νAa

µ

) = 0 (186)

We are going to calculate each term separately:

∂L

∂Aa
µ

=
∂

∂Aα
µ

(
−1

4
F β
ρσF

µσβ +
1

2
DρΦ

βDρΦβ − V (Φ)

)
.

= −1

2
F ρσβ ∂

∂Aa
µ

F β
ρσ +DρΦβ ∂

∂Aa
µ

DρΦ
β

= −1

2
F ρσβ ∂

∂Aa
µ

(
∂ρA

β
σ − ∂σAβ

ρ − eεβγδAγ
ρA

δ
σ

)
+DρΦβ ∂

∂Aα
µ

(
∂ρΦ

β − eεβγδAβ
pΦ

δ
)

(187)

For the first term of (187) we have:

= −1

2
F ρσβ

(
−eεβγδδaγδρµAδ

σ − eεβγδAγ
ρδ

µ
σδ

aδ
)

= −1

2
F ρσβ

(
−eεβaδAδ

σδ
µ
ρ − eεβγaAγ

ρδ
µ
σ

)
.

= +
e

2
FµσβεβaδA

δ
σ +

e

2
εβγaA

γ
ρF

ρµβ
)

=
e

2
FµσβεβaδA

δ
σ +

e

2
εβδaA

δ
σF

σµβ

= eFµσβεβaδA
δ
σ

where we renamed some dummy indices. For the second term of (187):

DρΦβ ∂

∂Aα
ρ

(
∂ρΦ

β − eεβγδAγ
ρΦ

δ
)

= DρΦβ(−e)εβaδΦδδµρ = −eεβαδ(DµΦβ)Φδ

For the second term of E-L equations (186):

∂ν
∂L

∂(∂νAa
µ)

= −∂νF νµa

since the above calculation differs not from the procedure of extracting the equations of motion from standard
electrodynamics, which we assume the reader is familiar with.

Now substituting all the above in (186) we obtain:

∂L

∂Aa
µ

− ∂ν
∂L

∂
(
∂νAa

µ

) = 0

eFµσβεβaδA
δ
σ − eεβaδ

(
DµΦβ

)
Φδ = −∂νF νµα

∂νF
νµα + eεaδβF

µνβAδ
µ = −eεaβδ

(
DµΦβ

)
Φδ

DνF
νµa = −eεaβδ

(
DµΦβ

)
Φδ

(188)
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A second equation complements (186) and that is:

Dν F̃ a
µν ≡ 0 (189)

32 which is equivalent to a Bianchi identity:

(DµFνκ)
a
+ (DκFµν)

a
+ (DνFκµ)

a
= 0 (190)

which is also equivalent to a Jacobi identity of the covariant derivatives33, using (92):

[Dµ, [Dν , Dκ]] + [Dκ, [Dµ, Dν ]] + [Dν , [Dκ, Dµ]] = 0 (191)

where we used [Dµ, F
a
νκ] = DµF

a
νκ.

The aforementioned commutator results upon acting it on a test function as follows:

1

ie
[Dµ, [Dν , Dλ]

a
]ψ = [Dµ, F

a
νλ]ψ

= Dµ (F
a
νλψ)− F a

νλDµψ

= DµF
a
νλψ + FνλDµψ − F a

νλDµψ

= DµF
a
νλψ.

(192)

while the Jacobi identity (191) holds trivially for commutators.

The connection between (189) and (190) can be seen by taking the latter and contracting with ελµνκ:

ελµνκDµF
a
νκ + ελµνκ (DκFµν)

a
+ ελµνκ (DνFκµ)

a
= 0

3ελµνκ (DµFνκ)
a
= 0

Dµε
λµνκF a

νκ = 0

DµF̃
λµ = 0

(193)

B. SSB of the SU(2) Georgi-Glashow model

The next step towards SSB is finding solutions that minimize the energy. Thus follows the calculation of the
symmetric energy momentum tensor:

Tµν =
2√
−g

δ
√
−gL

δgµν
(194)

where g = det (gµν) is the determinant of the Minkowski metric.

Tµν =
2√
−g

δ
√
−gL

δgµν
=

2√
−g

(
δ
√
−g

δgµν
L+
√
−g δL

δgµν

)
=

2√
−g

(
−1

2

√
−ggµνL+

√
−g
(
−1

2
F a
µρF

aρ
ν +

1

2
(DµΦ

a) (DνΦ
a)

))
Substituting det(gµν) = −1 we get:

Tµν = −F a
µρF

aρ
ν + (DµΦ

a) (DνΦ
a)− gµνL (195)

32 where F̃µν = 1
2
εµνρσFρσ .

33 which is also rather funny to me, since these are two identities I always mix up the names of.
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We only really care about the T 00 component that represents the total energy density of the system. So the total
energy is given by the volume integral of T 00:

E =

∫
d3x

(
−F a

0iF
ai
0 + (D0Φ

a) (D0Φ
a)− g00L

)
(196)

Now for some algrebraic massage to put (196) in a more conventient form:

−F a
0iF

ai
0 + (D0Φ

a) (D0Φ
a) + 1

4F
a
µνF

aµν − 1
2 (DµΦ

a) (DµΦa) + V (Φ) =

−F a
0iF

ai
0 + 1

4

(
F a
0iF

a0i + F a
i0F

ai0 + F a
ijF

aij
)
+ 1

2

(
(D0Φ

a)
(
D0Φa

)
− (DiΦ

a)
(
DiΦa

))
+ V (Φ) =

− 1
2F

a
0iF

a0i + 1
4F

a
ijF

aij + 1
2

(
(D0Φ

a)
(
D0Φa

)
+ (DiΦ

a) (DiΦ
a)
)
+ V (Φ)

What we end up is:

E =

∫
d3x

(
1

2
Ea

i E
a
i +

1

2
Ba

i B
a
i +

1

2
((D0Φ

a) (D0Φ
a) + (DiΦ

a) (DiΦ
a)) + V (Φ)

)
(197)

where we defined

Ea
n ≡ F a

0n and Ba
n ≡

1

2
εnmkF

a
mk (198)

the ”color” electric and magnetic fields.

The minimization conditions for the static34 Hamiltonian are:

ΦaΦa = v2, F a
mn = 0, Dnϕ

a = 0 (199)

where the ”static” condition also implies Ea
n = 0. To determine the particle spectrum in the new vacuum, we consider

a small time independent perturbation on the scalar Higgs field. Because of the internal SU(2) symmetry we can
orient the VEV in any direction in isospace. For clarity’s sake, we choose to align the Higgs VEV with the 3-direction
in isospin space.

Φa =

 0

0

u+ ρ

 (200)

where ρ is the perturbation we considered and u the vacuum expectation value as of (199).

The Higgs potential becomes after substitution of (200):

V (Φ) =
λ

4

(
ΦaΦa − u2

)2 → λ

4

(
(u+ ρ)(u+ ρ)− u2

)2
=
λ

4

(
u2 + 2ρu+ ρ2 − u2

)2
=
λ

4

(
4u2ρ2 + 4uρ3 + ρ4

) (201)

The covariant derivative:  DµΦ
1

DµΦ
2

DµΦ
3

 =

 ∂µΦ
1 − eε1bcAb

µΦ
c

∂µΦ
2 − eε2bcAb

µΦ
c

∂µΦ
3 − eε3bcAb

µΦ
c

 =

 −eε123A2
µΦ

3

−eε213A1
µΦ

3

∂µΦ
3


 DµΦ

1

DµΦ
2

DµΦ
3

 =

 −eA2
µ(u+ ρ)

eA1
µ(u+ ρ)

∂µρ


(202)

34 That is we deny temporal dependence on the fields.
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So the kinetic term yields:

(DµΦ
a) (DµΦa) = (∂µρ) (∂

µρ) + e2(u+ ρ)2
(
A1

µA
µ1 +A2

µA
µ2
)

(203)

And the Lagrangian acquires the form:

L = −1

4
F a
µνF

µνa +
e2u2

2

(
A1

µA
µ1 +A2

µA
µ2
)
+

1

2
(∂iρ) (∂iρ)−

1

2
(
√
2λu)2ρ2 + . . . (204)

It is explicit that this Lagrangian includes two massive vector particels of MW = eu , one massive scalar with
MH =

√
2λu and one massless vector particle which we identify with the photon that corresponds to the unbroken

U(1) subgroup of SU(2). This U(1) describes the invariance of the Lagrangian with respect to rotations on the axis

defined by the VEV of Φa. Its generator is ΦaTa

u and we assign it as the electromagnetic charge operator. Thus, the
covariant derivative (135) can be written now:

L = −1

4
F a
µνF

µνa +
e2u2

2

(
A1

iA
i1 +A2

iA
i2
)
+

1

2
(∂iρ) (∂iρ)−

1

2
(
√
2λu)2ρ2 + . . . (205)

where we defined the ”electromagnetic projection” of the gauge potential.

C. Topological classification of the solutions

The particle spectrum of the SU(2) Georgi-Glashow model is far richer than it may seem at first glance. And
that is because there exist stable soliton-like solutions to the classical equations of motion with a finite energy along
the spatial asymptotic[31]. All this fuss about Derrick’s theorem and how to dodge its limitations is about to pay back.

The solutions to the classical equations of motions essentially map the vacuum manifoldM = S2
vac to the boundary

of the 3-dimensional space, which, in fact, is also a sphere35. These maps are characterised by an integer winding
number n = ±0, 1, 2, ..., which describes the number of times the vacuum sphere is covered by a single turn around
the spatial sphere.

It is crucial to note that the behaviour of Φ on the spatial asymptotic could separate the solutions in different
classes. For example (200) corresponds to the trivial mapping with a winding number n = 0. We could also
consider other kinds of spatial asympotic behaviours, even ones where the isospace directions of the Φ field
are functions of the spatial directions. One could argue that since the trivial configuration corresponds to the
absolute minimum of the energy functional then other such solutions would be unstable. However, any attempt
to deform continuously the fields to the trivial vacuum, the energy functional would explode to infinity. In other
words, all the different topological sectors are separated by infinite energy barriers. So, topology saves the day again36.

To construct such non-trivial vacuum solutions, we again assign that |Φ| = u in the spatial asymptotic. This time
though, we suppose that the isovector of the scalar field is directed in isospace along the direction of the radius vector
along the spatial asymptotic.

Behold now, the mighty ”hedgehog” solution! [16],[27]

Φa −→
r→∞

vra

r
(206)

Now a single turn around the spatial boundary manifold results in a single closed path that rotates once in the
vacuum sphere and thus its winding number is n = 1. Solutions with different winding numbers belong in different
topological sectors. The winding number is a topological invariant and therefore continuous transformations cannot
connect there areas.

35 Remember the discussion on homotopy groups and their use in physics and especially equation (72).
36 and the stability of soliton solutions in our system
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To acquire a non-trivial topological excitation, we require that our solution belongs in a homotopic class other than
[I] , where the identity element belongs, has finite energy and approaches the hedgehog asymptotic conditions (206).

So apart from (206), in order to retain finite energy, we should also have

DiΦ
a → 0 (207)

in the spatial asymptotic. From the above condition we can calculate the form of the gauge potential:

∂i

(
ra

r

)
− eεabcAb

i

rc

r
= 0

δair
2 − rari
r3

= eεabcA
b
i

rc

r

(δaiδck − δakδic)
rcrk
r3

= eεabcA
b
i

rc
r

εacbεbik
rcrk
r3

= eεabcA
b
i

rc
r

yielding

Aa
i = εani

rn
er2

(208)

The ”color” magnetic field will be given by:

Ba
i =

1

2
εijkF

a
jk =

1

2
εijk

(
∂jA

a
k − ∂kAa

j − eεabcAb
jA

c
k

)
= εijk

(
∂jA

a
k −

e

2
εabcA

b
jA

c
k

)
(209)

D. Interlude: Relationship between Dirac and t’Hooft monopoles

We can convince ourselves that we are taking a step in the right direction by noticing how the Dirac potential (31)
is related to the one we ended up with now37.

Of course Dirac’s potential is a U(1) potential and to find the correspondence of it with (208) we must first submerge
it into SU(2) via:

A0 = Ar = Aθ = 0, Aϕ = T3

(
−g
r

)(1− cos θ

sin θ

)
(210)

where Aµ = Aa
µT

a. So, we have aligned the Dirac potential in the 3-direction in isospace38.

Considering , also, our scalar field with a VEV in the same direction:

Φ = uT3 (211)

we perform a SU(2) transformation of the form:

U =

(
cos θ/2 −e−iϕ sin θ/2

eiϕ sin θ/2 cos θ/2

)
(212)

where (212) is a specific case of the general SU(2) transformation parametrized with Euler angles:

U = eiαT3eiβT2eiγT3

=

(
cosβ/2ei(α+γ)/2 sinβ/2ei(−γ+α)/2

− sinβ/2ei(γ−α)/2 cosβ/2e−i(γ+α)/2

)
(213)

37 We borrow this discussion from [29]
38 Notice Aϕ has only a T3 component.
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by setting γ = −α = ϕ, β = −θ. We recall the transformation properties of Aµ from (90):

A′
µ = UAµU

−1 +
i

e
U∂µU

−1 (214)

Straightforward differentiation gives:

∂rU
−1 = 0,

∂θU
−1 =

1

2r

(
− sin θ/2 e−iϕ cos θ/2

−eiϕ cos θ/2 − sin θ/2

)
,

∂ϕU
−1 =

−i
r sin θ

(
0 e−iϕ sin θ/2

eiϕ sin θ/2 0

)
.

It is easy to see by applying the transformation (90):

A′
0 = A′

r = 0 (215)

As for the θ, ϕ components:

A′
θ =

i

e

(
cos(θ/2) −e−iϕ sin(θ/2)

+eiϕ sin(θ/2) cos(θ/2)

)
1

2r

(
− sin(θ/2) −iϕ
−eiϕ cos(θ/2) − sin(θ/2)

)

=
i

2er

(
0 e−iϕ(sin2(θ/2) + cos2(θ/2))

−eiϕ(sin2(θ/2) + cos2(θ/2)) 0

)

=
i

2er

(
0 − cosϕ− i sinϕ

− cosϕ− i sinϕ 0

)
=

1

2er

(
0 siϕ+ i cosϕ

sinϕ− i cosϕ 0

)

=
(sinϕT1 − cosϕT2)

er

(216)

Similarly for Aϕ using g = 1
e , basic trigonometric identities and a lot of patience, we get:

A′
ϕ =

(
cos θ

2 −e−iϕ sin θ
2

eiϕ sin θ
2 cos θ

2

)(
−g
r

) 1− cos θ

sin θ

(
1
2 0

0 − 1
2

)(
cos θ

2 e−iϕ sin θ
2

−eiϕ sin θ
2 cos θ

2

)

+
i(−i)
er sin θ

(
cos θ

2 −e−iϕ sin θ
2

eiϕ sin θ
2 cos θ

2

)(
0 e−iϕ sin θ

2

eiϕ sin θ
2 0

)

= − g

2r

1− cos θ

sin θ

(
cos θ

2 −e−iϕ sin θ
2

eiϕ sin θ
2 cos θ

2

)(
cos θ

2 e−iϕ sin θ
2

eiϕ sin θ
2 − cos θ

2

)

+
1

er sin θ

(
− sin2 θ

2 e−iϕ sin θ
2 cos

θ
2

eiϕ sin θ
2 cos

θ
2 sin2 θ

2

)

= − g

2r

1− cos θ

sin θ

(
cos2 θ

2 − sin2 θ
2 2 sin θ

2 cos
θ
2e

−iϕ

2 sin θ
2 cos

θ
2e

ϕ sin2 θ
2 − cos2 θ

2

)
+

g

2r sin θ

(
−2 sin2 θ

2 e−iϕ sin θ

eiϕ sin θ 2 sin2 θ
2

)

= − g

2r sin θ

(
cos θ − cos2 θ e−iϕ sin θ(1− cos θ)

eiϕ sin θ(1− cos θ) cos2 θ − cos θ

)
+

g

2r sin θ

(
−2 sin2 θ

2 e−iϕ sin θ

eiϕ sin θ 2 sin2 θ
2

)
.

=
g

2r sin θ

(
cos2 θ − cos θ − 2 sin2 θ

2 e−iϕ sin θ cos θ

eiϕ sin θ cos θ 2 sin2 θ
2 + cos θ − cos2 θ

)
=

g

2r

(
− sin θ cos θe−iϕ

cos θeiϕ +sin θ

)

=
1

er
(T1 cos θ cosϕ+T2 cos θ sinϕ−T3 sin θ)

(217)
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where we acknowledge that 2 sin2 θ − cos2 θ + cos θ is just a really weird way to say sin θ.

We are in position now to calculate the Cartesian components of A. We are going to show this only for the x
component but the rest follow similarly:

A′
x = Ar′ cosϕ sin θ +A′

θ cosϕ cos θ −A′
ϕ sinϕ

=
1

er

[
T1 sinϕ cosϕ cos θ −T2 cos

2 ϕ cos θ −T1 cos θ cosϕ sinϕ−T2 cos θ sin
2 ϕ+T3 sin θ sinϕ

]
=

1

er
[T2(− cos θ) +T3 sin θ sinϕ] =

1

er

[
T2

(
−z
r

)
+T3

(y
r

)] (218)

which is just the 1-group component of A from (208) Our efforts were not in vain. After this long calculation,
we managed to prove that a specific singular SU(2) transformation can connect the t’Hooft and Dirac potentials
by embedding the latter in the larger group of SU(2). But it doesn’t end here. Witness what the exact same
transformation has to say about the scalar field Φ:

Φ′ = UΦU−1 =

(
cos θ

2 −e−iϕ sin θ
2

eiϕ sin θ
2 cos θ

2

)(
u
2 0

0 −u
2

)(
cos θ

2 e−iϕ sin θ
2

−eiϕ sin θ
2 cos θ

2

)
=

=
u

2

(
cos θ

2 −e−iϕ sin θ
2

eiϕ sin θ
2 cos θ

2

)(
cos θ

2 e−iϕ sin θ
2

eiϕ sin θ
2 − cos θ

2

)

=
u

2

(
cos2 θ

2 − sin2 θ
2 +2 sin θ

2 cos
θ
2e

−iϕ

2 sin θ
2 cos

2 e−iϕ sin2 θ
2 − cos θ

2

)
=
u

2

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

) (219)

Decomposing it in SU(2) generators:

Φ′ = u(sin θ cosϕT1 + sin θ sinϕT2 + cos θT3) (220)

Now it is obvious that our gauge transformation changed the homotopy class of the configuration39. It is as the
transformation transferred the responsibility for the monopole from the Dirac term to the Higgs sector. Before
the transformation, the Higgs map is trivial, but the Dirac potential carries the magnetic monopole. After the
transformation, however, the ”Brouwer” degree of the ’hedgehog’ gauge changes and the gauge potential is free of
any singularities. The magnetic charge remains the same of course in all of this procedure as a topological invariant.
We can gain some better insight in this interchange between the Higgs and gauge sector soon, when we define the
generalised electromagnetic field strength tensor.

E. The Magnetic Charge

From the form of the gauge potential at spatial infinity we can calculate the ”color” magnetic field:

Ba
i =

1

2
εijkF

a
jk =

1

2
εijk

(
∂jA

a
k − ∂kAa

j − eεabcAb
jA

c
k

)
= εijk

(
∂jA

a
k −

e

2
εabcA

b
jA

c
k

)
(221)

The first term can be handled as40

εijk (∂jA
a
k) =

1

e
εijkεank∂j

(rn
r2

)
=

1

e
(δiaδjn − δinδja)

[
δjn
r2
− 2rjrn

r4

]
=

1

e

(
δia

3

r2
− δia

2

r2
− δia

1

r2
+

2rari
r4

)
⇒ εijk (∂jA

a
k) =

2rari
r4e

39 Of course that is because we used a singular transformation. A regular one could not have accomplished such a feat in any way.
40 Reminder that we have defined : ε0123 = −1, ε123 = +1
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While the second term is:

−e
2
εijkεabcA

b
jA

c
k = − 1

2e
εijkεabcεbnjεcmk

rnrm
r4

=
1

2e
εikjεjbnεabcεcmk

rnrm
r4

=
1

2e
(δibδkn − δinδkb) (δamδbk − δakδbm)

rnrm
r4

=
1

2e
(δamδin − δanδim − 3δinδam + δinδam)

rnrm
r4

=
1

2e
(2δamδin − δanδim − 3δinδam)

rnrm
r4

=
1

2e

(
2
rira
r4
− rari

r4
− 3

rira
r4

)
⇒ −e

2
εijkεabcA

b
jA

c
k = −rira

er4

where we repeatedly used

εijkε
pqk = δi

pδj
q − δiqδjp (222)

Substituting the previous results in (221):

Ba
i =

rira
er4

(223)

When the vacuum configuration is Φa = uδa3, the electromagnetic field strength tensor is given by Fµν = ∂µA
3
ν−∂νA3

µ.
We want to generalise the field strength tensor for more complicated scalar field configurations in a gauge-invariant
way so that it reduces to the regular Fµν when the Higgs vacuum configuration is trivial. Thus, we define41:

Fµν = Φ̂aF a
µν + e−1εabcΦ̂a

(
DµΦ̂

)b (
DνΦ̂

)c
(224)

where Φ̂a = Φa

|Φ| . We can, in fact, use this definition of the electromagnetic field strength everywhere in space where

|Φ| ≠ 0.42

To prove its gauge invariance it is much more convenient to use this form of (224):

Fµν = 2Tr

{
Φ̂Fµν −

i

2e
Φ̂DµΦ̂DνΦ̂

}
(225)

To prove their equivalence we just need to utilize the following relationships for the SU(2) generators:

Tr
(
TaTb

)
=

1

2
δab,Tr

(
TaTbTc

)
=
i

4
εabc (226)

and remember that Φ̂ = Φa

|Φ|T
a and similarly for Fµν . Now for the gauge invariance we invoke the transformation of

Φ̂ that is in the adjoint representation: Φ̂′ = UΦU−1 and the same for the covariant derivative: D′
µ = UDµU

−1,

F ′
µν = 2Tr

{
Φ̂′F′

µν −
i

2e
Φ̂DµΦ̂DνΦ̂

}
=2Tr

{
UΦ̂U†U

[Dµ,Dν ]

ie
U† − i

2e
UΦ̂U†UDµΦ̂U†UDνU

†
}

=2Tr

{
Φ̂ [Dµ,Dν ]−

i

2e
Φ̂DµΦ̂DνΦ̂

}
= Fµν

(227)

41 Here following [32]. Later, we will present another approach that will get us a little bit further.
42 If |Φ| = 0 the SU(2) symmetry is unbroken and there is no gauge-invariant way to pick up a component of Fa

µν in the first place.
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where we also used the cyclic property of the Tr trace operator.
Substituting (182) and (184) in (224) it is possible to rewrite it as:

Fµν = ∂µ

(
Φ̂aAa

ν

)
− ∂ν

(
Φ̂aAa

µ

)
+ e−1εabcΦ̂a∂µΦ̂

b∂νΦ̂
c (228)

We start by expanding substituting the aforementioned equations:

Fµν = Φ̂aFµν
a + e−1εabcΦ̂aDµΦ̂

bDνΦ̂
c

= Φ̂a
(
∂µA

a
ν − ∂νAa

µ − eεabcAb
µA

c
ν

)
+

Φa

e
εabc

(
∂µΦ̂

b − eεbdeAd
µΦ̂

e
)(

∂νΦ̂
c − eεcfgAf

ν Φ̂
g
)

Then we expand the terms in the brackets:

= Φ̂a∂µA
a
ν − Φ̂a∂νA

a
µ − Φ̂aeεabcAb

µA
c
ν +

Φa

e
εabc∂µΦ̂

b∂νΦ̂
c + eεabcεbdeεcfgAd

µΦ̂
eAf

ν Φ̂
gΦ̂a

− εabcεbdeAd
µΦ

e∂νΦ̂
cΦ̂a − εabcεcfgAf

ν Φ̂
g∂µΦ̂

bΦ̂a

We now employ εijkε
pqk = δi

pδj
q − δiqδjp

= Φ̂a∂µA
a
ν − Φ̂a∂νA

a
µ − eΦ̂aεabcAb

µA
c
ν +

1

e
εabc∂µΦ̂

b∂νΦ̂
cΦa

+ eεbde
(
δafδbg − δagδbf

)
Ad

µ + Φ̂eAf
ν Φ̂

gΦa + e
(
δadδce − δaeδdc

)
Ad

µ + Φ̂e∂νΦ̂
cΦa

−
(
δafδbg − δagδbf

)
Af

ν Φ̂
g∂Φ̂bΦa

Afterwards we contract the Kronecker delta’s:

=Φ̂a∂µA
a
ν − Φ̂a∂νA

a
ν − eΦ̂aεabcAb

µA
c
ν +

1

e
∂µΦ̂

b∂νΦ̂
cΦa

+ eεbde
(
Aa

νΦ̂
bAd

µΦ̂
e −Ad

µΦ̂
eAb

νΦ̂
a
)
Φa +ΦaAa

µΦ̂
c∂νΦ̂

c −Ac
µΦ̂

a∂νΦ̂
cΦa −Aa

νΦ̂
b∂µΦ̂

bΦ̂a +Ab
νΦ̂

a∂µΦ̂
bΦ̂a

First good news of the day some terms cancel due to being products between a symmetric and antisymmetric tensor.

We now group the appropriate terms and rename their indices for their manipulation to be smooth.

= Φ̂a∂µA
a
ν − Φ̂a∂νA

a
µ − eΦ̂aεabcAb

µA
c
ν +

1

e
∂µΦ̂

b∂νΦ̂
cΦ̂a

− eεbdeAd
µA

b
νΦ̂

aΦ̂aΦ̂c +Aa
mu+ ∂ν

(
Φ̂cΦ̂c

2

)
Φ̂α

a −Ac
µ

(
Φ̂αΦ̂α

)
∂νΦ̂

c

−Aa
ν∂µ

(
Φ̂bΦ̂b

2

)
Φ̂a +Ab

ν

(
Φ̂aΦ̂a

)
∂µΦ̂

b

We have also prepared ourselves to use Φ̂aΦ̂a = 1.

= Φ̂a∂µA
a
ν +Aa

ν∂µΦ̂
a − Φ̂a∂νA

a
µ −Aa

µ∂νΦ̂
a +

1

e
∂µΦ̂

b∂νΦ̂
cΦ̂a

− eΦ̂aεabcAb
µA

c
ν − eΦ̂eεebdAb

νA
d
µ

Here we are, ready to taste the victorious result of what was more of a battle than a mere calculation.

Fµν = ∂µ

(
Aa

νΦ̂
a
)
− ∂ν

(
Aa

µΦ̂
a
)
+

1

e
εabc∂µΦ̂

b∂νΦ̂
cΦ̂a. (229)
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In this form the generalised electromagnetic field strength tensor is comprised of two parts that are not separately
gauge invariant. Of course, the total tensor is trivially invariant as we have shown earlier. So it is that the two parts
transform in a way that the changes cancel each other out. Thus, a singular gauge transformation that can change
the homotopy class of the configuration and manipulate or even annihilate the Dirac string, ’transfers’ the magnetic
charge between the topological properties of the Higgs and gauge fields.

It is obvious that in the trivial topological sector43 where Φa = (0 0 u), Fµν reduces to the usual Fµν =
∂µA

3
ν − ∂νA3

µ we all now and love. In that case, the Bianchi identity is trivially satisfied and there is no place for
magnetic monopoles here. What happens when we choose a non-trivial vacuum field configuration, we shall soon see,
but first we will present another interesting way to arrive at (229) with some rather useful insight to it.

F. Generalised Electromagnetic Field Strength Tensor: An alternative approach

Returning to (229), we define the electromagnetic potential as the projection of the gauge potential on Φa as:

Aem
µ = Aa

µΦ̂
a (230)

Remembering also the condition that the covariant derivative on the spatial boundary is 0:

DµΦ
a = 0 (231)

We propose that [8]:

Aa
µ = Aem

µ Φ̂a + e−1εabcΦ̂
b∂µΦ̂

c (232)

is a general solution44 to (231) and satisfies (230). We can readily test those claims.

Multiplying both sides of (232) with Φa and making use of ΦaΦa = u2, we easily retrieve (230).

For the verification of the second equation:

∂µΦ
a − eεabc

ΦbAem
µ

u
Φc − eεabc

1

u2e
εbdeΦ

cΦd∂µΦ
e = 0

∂µΦ
a − 0 +

1

u2
(
δadδce − δaeδcd

)
ΦcΦd∂µΦ

e = 0

∂µΦ
a +

1

u2
Φa∂µΦ

cΦc − 1

u2
ΦcΦc∂µΦa = 0

(233)

Inserting our newly acquired relation for the gauge potential into the field tensor will yield:

F a
µν = ∂µA

a
ν − ∂νAa

µ − eεabcAb
µA

c
ν

F a
µν = ∂µ

(
Φa

u
Aem

ν +
1

u2e
εabcΦ

b∂νΦ
c

)
− ∂ν

(
Φa

u
Aem

µ +
1

u2e
εabcΦ

b∂µΦ
c

)
− eεabc

(
Φb

u
Aem

µ +
1

u2e
εbdeΦ

d∂µΦ
e

)(
Φc

u
Aem

ν +
1

u2e
εcfgΦ

f∂νΦ
g

)
(234)

Now that’s a lot off terms, so we better start working on them one by one45:

∂µ

(
Φ̂aAem

ν +
1

e
εabcΦ̂

b∂νΦ̂
c

)
=

1

e
εabc∂µ

(
Φ̂b∂νΦ̂

c
)
+ ∂µ

(
Φ̂aAem

ν

)
=

1

e
εabc

[(
∂µΦ̂

b
)(

∂νΦ̂
c
)
+ Φ̂b∂µ∂νΦ̂

c
]
+ ∂µ

(
Φ̂aAem

ν

)

43 with a regular gauge potential
44 In fact, Aem

µ can be an arbitrary vector potential. We just identify it with the potential of electromagnetism.
45 Meanwhile, we switch to Φ̂a notation to ease the formalism a little bit.
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Similarly for the second term:

−∂ν
(
Φ̂aAem

µ +
1

e
εabcΦ̂

b∂µΦ̂
c

)
= −1

e
εabc∂ν

(
Φ̂b∂µΦ̂

c
)
− ∂ν

(
ΦaAem

µ

)
=

1

e
εabc

[
−
(
∂νΦ̂

b
)(

∂µΦ̂
c
)
− Φ̂b∂ν∂µΦ̂

c
]
− ∂ν

(
Φ̂aAem

µ

)
=

1

e
εabc

[(
∂νΦ̂

c
)(

∂µΦ̂
b
)
− Φ̂b∂µ∂νΦ̂

c
]
− ∂ν

(
Φ̂aAem

µ

)
Gathering our first two results:

∂µ

(
Φ̂aAem

ν +
1

e
εabcΦ̂

b∂νΦ̂
c

)
− ∂ν

(
Φ̂aAem

µ +
1

e
εabcΦ̂

b∂µΦ̂
c

)
=

2

e
εabc

(
∂µΦ̂

b
)(

∂νΦ̂
c
)
+ ∂µ

(
Φ̂aAem

ν

)
− ∂ν

(
Φ̂aAem

µ

)
Antisymmetry annihilates the next term:

−eεabcΦ̂bΦ̂cAem
µ Aem

ν = 0

Proceeding:

−eεabc
1

e2
εbdeεcfgΦ̂

d∂µΦ̂
eΦ̂f∂νΦ̂

g = −1

e
εbde

[
(δafδbg − δagδbf ) Φ̂d∂µΦ̂

eΦ̂f∂νΦ̂
g
]

= −1

e
εbde

(
Φ̂d∂µΦ̂

eΦ̂a∂νΦ̂
b − Φ̂d∂µΦ̂

eΦ̂b∂νΦ̂
a
)

= −1

e
εbde

[
Φ̂d∂µΦ̂

e
(
Φ̂a∂νΦ̂

b − Φ̂b∂νΦ̂
a
)]

= −1

e
εbdeΦ̂

d∂µΦ̂
e∂νΦ̂

bΦ̂a +
1

e
εbdeΦ̂

dΦ̂b∂µΦ̂
e∂νΦ̂

a

= −1

e
εbdeΦ̂

d∂µΦ̂
e∂νΦ̂

bΦ̂a

And for the cross-terms:

−εabc
(
εbdeΦ̂

d∂µΦ̂
eΦ̂cAem

ν

)
= (δdeδac − δdaδec) Φ̂d∂µΦ̂

eΦ̂cAem
ν

=
[
Φ̂a
(
∂µΦ̂

c
)
Φ̂cAem

ν − Φ̂c
(
∂µΦ̂

a
)
Φ̂cAem

ν

]
=

[
∂µ

(
Φ̂cΦ̂c

2

)
Φ̂aAem

ν −
(
∂µΦ̂

a
)
Φ̂cΦ̂cAem

ν

]
= −

(
∂µΦ̂

a
)
Aem

ν

Similarly the last terms falls too, giving a total of the cross terms:

−εabc
(
εbdeΦ̂

d∂µΦ̂
eΦ̂cAem

ν

)
− εabc

(
εcfgΦ̂

f∂µΦ̂
gΦ̂bAem

µ

)
=(

∂νΦ̂
a
)
Aem

µ −
(
∂µΦ̂

a
)
Aem

ν

Substituting all of the above into (234)

F a
µν =

(
∂µA

em
ν − ∂νAem

µ

)
Φ̂a +

2

e
εabc∂µΦ̂

b∂νΦ̂
c − 1

e
εdbcΦ̂

d∂µΦ̂
b∂νΦ̂

cΦ̂a (235)

And so performing an ’electromagnetic’ projection by multiplying with Φ̂a we get the modified electromagnetic tensor
(again):

Fµν = F a
µνΦ̂

a = ∂µA
em
ν − ∂νAem

µ +
1

e
εabc∂µΦ̂

b∂νΦ̂
cΦ̂a (236)
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We previously calculated the ’color’ magnetic field, which gave us some good intuition about the existence of the
magnetic monopole in our model. We are now in position to calculate the magnetic field as it stems from the
definition of the field strength tensor (229) with the help of the ’hedgehog’ solution (206) and the SU(2) gauge
potential we calculated before in (208).

It is easy to see that46:

Aem
n = Aa

nΦ̂
a = εani

rnra

r2
= 0 (237)

because of the skew symmetry in n, a indices. So, only the ’Higgs’ sector contributes. We continue in the calculation
of Fjk:

Fjk =
1

e
εabc

ra

r
∂j

(
rb

r

)
∂k

(
rc

r

)
=

1

e
εabc

ra

r

r2δbj − rjrb

r3
r2δkc − rkrc

r3

=
1

e
εabc

ra

r7
(
r2δbj − rjrb

) (
r2δkc − rkrc

)
=

1

e
εabc

(
r4raδbjδkc − r2raδbjrkrc − r2raδkcrjrb + rarbrcrjrk

)
=

1

e
εabc

1

r3
raδbj∂kc = εajk

ra

er3

(238)

where we used :

∂j(
rb

r
) =

r2δbj − rjrb

r3
(239)

The magnetic field easily follows now

Bi =
1

2
εijkFjk =

ra

2er3
εijkεajk︸ ︷︷ ︸

2δai

=
ri

er3
(240)

which is exactly the field of a magnetic monopole.

G. The conserved magnetic current

We will abstain from the specific ’hedgehog’ solution and delve into the general properties of the modified E/M
tensor (229). More specifically, we are going to examine the dual tensor and its equation of motion:

∂µF̃µν = ∂µ

(
1

2
εµνρσFρσ

)
= ∂µ

[
1

2
εµνρσ

(
∂ρA

em
σ − ∂σAem

ρ

)]
+ ∂µ

[
1

2e
εµνρσεabcΦ̂

a
(
∂ρΦ̂

b
)(

∂σΦ̂
c
)]

=
1

2e
εµνρσεabc∂µ

(
Φ̂a
(
∂ρΦ̂

b
)(

∂σΦ̂
c
)) (241)

We can also write this in a more symmetrical form.47

∂µF̃µν =
1

2e
εµνρσεabc(∂µΦ̂

a)(∂ρΦ̂
b)(∂σΦ̂

c) (242)

46 Here we calculate, only the spatial components of the gauge potential, since those are relevant in the construction of the magnetic field.
We also use Φ̂a = ra

r
.

47 But it’s really just for the looks. We will be almost exclusively be using the definition (241).
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We see that the Bianchi identities are not satisfied! That’s a really solid indication of the existence of magnetic
charge in our theory. Not only that, but it is also conserved.

We define the magnetic (or toplogical) current :

kν =
1

2e
εµνρσεabc∂µ

(
Φ̂a
(
∂ρΦ̂

b
)(

∂σΦ̂
c
))

(243)

Its conservation is trivial:

∂νk
ν =

1

2e
εµνρσεabc∂ν∂µ

(
Φ̂a
(
∂ρΦ̂

b
)(

∂σΦ̂
c
))

= 0 (244)

due to the antisymmetry of Levi-Civita and the permutation of partial derivatives.

We note that this is conserved current does not originate from some internal symmetry and Noether’s theorem. It
is conserved by its very definition and its origin its strictly topological, as we shall demonstrate soon.

Of course, every conserved current comes with a conserved charge and this case is no exception.

The 0-component of the magnetic current is:

k0 = − 1

2e
ε0mnkεabc∂

m
(
Φ̂a
(
∂nΦ̂b

)(
∂kΦ̂c

))
=

1

2e
(−ε0mnk) εabc∂

m
(
Φ̂a
(
∂nΦ̂b

)(
∂kΦ̂c

))
=

1

2e
εmnkεabc∂m

(
Φ̂a
(
∂nΦ̂

b
)(

∂kΦ̂
c
)) (245)

where we took into account ε0123 = −1, ε123 = +1. The magnetic charge is, then, given by integration in the whole
space:

g =

∫
d3xk0 =

1

2e

∫
d3xεmnkεabc∂m

(
Φ̂a
(
∂nΦ̂

b
)(

∂kΦ̂
c
))

g =
1

2e

∫
dSmεmnkεabc

(
Φ̂a
(
∂nΦ̂

b
)(

∂kΦ̂
c
)) (246)

We can get some intuition on how this integral should evaluate48. For a spherically symmetric field49 each component
of the integral dS1, dS2, dS3 has no reason to differ from each other. The only change that can occur is via the
Levi-Civita symbol εmnk which will evaluate ε1nk, ε2nk and ε3nk Naively now, one could argue thatε2nk should cancel
the ε1nk because the latter will result in the same terms as the first only with different sign (due to 2 being on the
first index of the Levi-Civita tensor). So we would be left with an integral like:

g =
1

2e

∫
dS3ε3nkεabc

(
Φ̂a
(
∂nΦ̂

b
)(

∂kΦ̂
c
))

=
1

2e

∫
dSεnkεabc

(
Φ̂a
(
∂nΦ̂

b
)(

∂kΦ̂
c
))

(247)

with n, k = 1, 2.

Enough waving our hands, in order to believe anything of that blabbering we have to get a little more rigorous.

We start with a parametrization ξu, with u = 1, 2 since that is the minimum number of coordinates needed to
describe the surface of the sphere S2:

∂nΦ̂
a =

∂ξu

∂rn
∂Φ̂a

∂ξu

dSm =
1

2
εmijεuv

∂ri

∂ξu
∂rj

∂ξv
d2ξ

(248)

48 Friendly reminder that: dSκ = dSij = dxi dxj

49 Like our beloved hedgehog.
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Then (246) becomes:

g =
1

2e

∫
dSmεmnkεabc

(
Φ̂a
(
∂nΦ̂b

)(
∂kΦ̂

c
))

=
1

2e

∫
1

2
εmijεuv

∂ri

∂ξu
∂rj

∂ξv
εmnkεabc

(
Φ̂a

(
∂ξu

′

∂rn
∂Φ̂b

∂ξu′

)(
∂ξv

′

∂rk
∂Φ̂c

∂ξv′

))
d2ξ

=
1

2e

∫
1

2
(δinδjk − δikδjn)εuv

∂ri

∂ξu
∂rj

∂ξv
εabc

(
Φ̂a

(
∂ξu

′

∂rn
∂Φ̂b

∂ξu′

)(
∂ξv

′

∂rk
∂Φ̂c

∂ξv′

))
d2ξ

=
1

2e

∫
1

2

[(
∂rn

∂ξu
∂rk

∂ξv
− ∂rk

∂ξu
∂rn

∂ξv

)
∂ξu

′

∂rn
∂ξv

′

∂rk

](
Φ̂a ∂Φ̂

b

∂ξu′

∂Φ̂c

∂ξv′

)
εabcεuvd

2ξ

=
1

2e

∫
1

2
[δuu′δvv′ − δuv′δvu′ ]

(
Φ̂a ∂Φ̂

b

∂ξu′

∂Φ̂c

∂ξv′

)
εabcεuvd

2ξ

=
1

2e

∫
1

2

(
Φ̂a ∂Φ̂

b

∂ξu
∂Φ̂c

∂ξv
− Φ̂a ∂Φ̂

b

∂ξv
∂Φ̂c

∂ξu

)
εabcεuvd

2ξ

=
1

e

∫
1

2
εabcεuvΦ̂

a∂uΦ̂
b∂vΦ̂

cd2ξ

(249)

and we successfully arrived at (247). Before we proceed, it is imminent to return to topology temporarily and talk a
little bit more specifically about winding numbers.
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IX. TOPOLOGICAL CONSIDERATIONS III: WINDING NUMBERS

Intuitively speaking, the winding number of a closed curve around a given point is the numbers of times this
certain curve travels clockwise around that point and it is represented (more often than not) by an integer number.

In topology, we use the winding number to describe the degree of a continuous mapping (also mentioned often as
Brouwer degree). Despite the existence of a general definition, it is perhaps simpler and more useful to examine the
case of an Sn to Sn map.

Let f : Sn → Sn be a continuous map. Then, f also induces a homomorphism f∗ : Hn (S
n) → Hn (S

n) where
Hn(·) is the n-th homology group50. Now considering Hn (S

n) ∼= Z (much like the n-th homotopy group51), then we
see that f∗ must be of some sort f∗ : x 7→ αx where α ∈ Z. That integer α is what we call degree or winding number
of f .
Below we are going to examine the definitions and properties of various winding numbers on certain Sn manifolds
and illustrate some some simple examples to build intuition and correspondence with what is needed in our case. The
examples are drawn almost exclusively from Srednicki’s Solitons and Instantons chapters [32].

A. S1 Winding Number

The winding number is a topological constant and sometimes it coincides with other constants of topological nature.
For example, for a circle S1, we know its first homotopy group is π1

(
S1
)
= Z. The winding number for a map between

two circles U : S1 → S1 is defined :

n =
i

2π

∫ 2π

0

dθU
dU†

dθ
=

1

2π

∫ 2π

0

dθ
dα

dθ
(250)

where U = eiα(θ).

Well, of course, we know that U is a representation of the U(1) abelian group and hence the function α has to be
of the form α(θ) = nθ + δ. and substitution in the above integral verifies it.

Although the meaning of the winding number in S1 is clear now, it is advisable that we cast the above integral in
a similar form to establish some correspondence with higher order spheres (and especially S2).

Noting that we can parametrize S1 on the R2 with a unit vector ê(r) = (cosα(θ), sinα(θ)), then we can write (250)
as:

n =
1

4π

∫ 2π

0

dθεabêa∂θ ê
b (251)

Now, the winding number of a map from S2 to S2 is given by:

n =
1

8π

∫ 2π

0

dφ

∫ π

0

dθεabcεij ê
a∂iê

b∂j ê
c (252)

which comes as no surprise52, since it is an immediate generalisation of (251).

Just for reference purposes, we give here the general definition of the winding number for a parametrization γ :
Rn ⊇ D → Rn+1 :

n =

∫
D

1

∥γ(x)∥n+1
det (∂1γ(x), . . . , ∂iγ(x), . . . , ∂nγ(x), γ(x)) dx (253)

50 Homology groups are closely related to homotopy groups we mentioned earlier in the sense that they categorize ”holes” in topological
spaces. Vaguely, they are groups that are made of n-cycles that are not n-boundaries. They will not be needed any more in our
discussion, so we will not go into any more details.

51 See (72)
52 One should also note at this point the similarity with (249), so this whole discussion is not in vain after all.
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but we are going to mess ourselves only with definitions (251) and (252).

So far we have continuously claimed that winding numbers are topological invariants, i.e. they remain the same
under continuous transformations. It is now the time to prove so.

We are going to start with the S1 winding number and study its behaviour under infinitesimal transformations.
Of course, every smooth transformation can be made by compounding infinitesimal ones, so it will also prove to be
invariant under smooth transformations. The definition of use to us will be (250) remembering that U†U = 1.

We consider an infinitesimal transformation of U : U → U + δU : then using

U†U = 1

we get

δU†U + U†δU = 0

Now solving for δU†:

δU† = −U†2δU

Next up, we consider the variation of the integrand in (250):

δ
(
U∂θU

†) = δU∂θU
† + U∂θδU

†

= δU∂θU
† + U∂θ

(
−U†2δU

)
= δU∂θU

† + U
[
−2U† (∂θU†) δU − U†2∂θδU

]
= δU∂θU

† +
[
−2
(
∂θU

†) δU − U†∂θδU
]

= −
(
∂θU

†) δU − U†∂θδU

= −∂θ
(
U†δU

)
.

We are now in position to calculate the variation of the winding number:

δn =
i

2π

∫ 2π

0

dθ∂θ
(
U†δU

)
=

i

2π
U†δU

∣∣∣∣θ=2π

θ=0

= 0 (254)

since U is continuous and θ = 0 is identified with θ = 2π which finishes the proof of our assertion.

As a next task, we are going to show that the group product of two maps Un(θ),Uk(θ) with winding number n, k
respectively is a map Un+k(θ) with a winding number n+ k.

First we deform Un(θ) so that it equals 1 in the interval θ ∈ [0, π].

Similarly we deform Uk(θ), so that it equals 1 in the interval θ ∈ [π, 2π] then their winding numbers being invariant
under such smooth transformations will retain the same value but will now be given by:

k =
i

2π

∫ π

0

dθUk∂θU
†
k

n =
i

2π

∫ 2π

π

dθUn∂θU
†
n

(255)

So the winding number of Un+k will be

n+ k =
i

2π

∫ 2π

0

dθUnUk∂θ (UnUk)
†

=
i

2π

∫ π

0

dθUk∂θU
†
k +

i

2π

∫ 2π

π

dθUn∂θU
†
k = n+ k

(256)

since in θ ∈ [0, π] we have Un = 1 and ∂θUn = 0 and similarly in θ ∈ [π, 2π] it is Uk = 1 and ∂θUk = 0.
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B. S3 Winding Number

Before involving ourselves with the S2 case, we are going to shed some light on the S3 winding number or
Pontryagin index. It is given by

n =
−1
24π2

∫
d3xεijk Tr

[(
U∂iU

†) (U∂jU†) (U∂kU†)] (257)

where U ∈ SU(2).

The group SU(2) has the topology of a 3-sphere. This can be seen by writing a general 2x2 matrix:

U =

(
a b

c d

)
(258)

Then

U† =

(
a∗ c∗

b∗ d∗

)
(259)

and its inverse is

U−1 =
1

ad− bc

(
d −b
−c a

)
(260)

Elements of our group have unit determinant so we can omit the denominator in the above relationship. Now, we
just have to identify U† = U−1 and acquire some relationships between the matrix elements. That is d = a∗ and
c = −b∗. Now, writing a, b in complex form a = a4 + ia3 and b = a2 + ia1 where aµ ∈ R, we get

U =

(
a4 + ia3 i (a1 − ia2)
i (a1 + ia2) a4 − ia3

)
= a4 + i⃗a · σ⃗ (261)

and putting the determinant to 1 yields

detU = aµaµ = 1 (262)

which is just a 3-sphere equation for the coefficients of a, b.

Now that we understand how the SU(2) group gets involved, we will prove invariance of the winding number under
infinitesimal (and therefore smooth) transformations.

Similarly to the S1 case consider

U→ U+ δU (263)

then using U†U = 1 we get δU† = −U†δUU†, where the only difference is that U’s now do not commute.

The variation of each term entering the trace of (257) is

δ
(
U∂kU

†) = δU∂kU
† +U∂kδU

†

= δU∂kU
† −U∂k

(
U†δUU†)

= δU∂kU
† −U∂kU

†δUU† −UU†∂kδUU† −UU†δU∂kU
†

= −U∂kU†δUU† −UU†∂kδUU†

= −U
(
∂kU

†δU+U†∂kδU
)
U†

= −U∂k
(
U†δU

)
U†

(264)

However, the variations of U∂iU
†,U∂jU

†, and U∂kU
† contribute equally to δn after cyclic permutations of the trace.
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We, thus, have

εijk Tr
[(
U∂iU

†) (U∂jU†) δ (U∂kU†)]
= −εijk Tr

[(
U∂iU

†) (U∂jU†)U∂k (U†δU
)
U†]

= −εijk Tr
[
∂iU

†U∂jU
†U∂k

(
U†δU

)]
.

(265)

We used the cyclic property of the trace and U†U = 1 to get the last line. After integrating ∂k by parts, terms with
two derivatives acting on a single U† vanish when contracted with εijk. The remaining terms are

− εijk Tr
[
∂iU

†U∂jU
†U∂k

(
U†δU

)]
= +εijk

(
Tr
[
∂iU

†∂kU∂jU
†δU

]
+Tr

[
∂iU

†U∂jU
†∂kUU†δU

])
,

(266)

where we usedUU† = 1 in the first term. In the second term, we now useU∂jU
† = −∂jUU† and ∂kUU† = −U∂kU†.

followed by U†U = 1, to get

− εijk Tr
[
∂iU

†U∂jU
†U∂k

(
U†δU

)]
= +εijk

(
Tr
[
∂iU

†∂kU∂jU
†δU

]
+Tr

[
∂iU

†∂jU∂kU
†δU

]) (267)

The two terms are now symmetric on j ↔ k, and so cancel when contracted with εijk and so we have

δn = 0 (268)

C. S2 Winding Number

Now we are going to prove the invariance of the winding number under smooth transformations for the S2 case.

We will use (252) for that purpose. In fact, we shall rewrite it replacing ê with Φ̂ to establish correspondence with
the t’Hooft-Polyakov monopole.

n =
1

8π

∫ 2π

0

dφ

∫ π

0

dθεabcεijΦ̂
a∂iΦ̂

b∂jΦ̂
c (269)

Using

εijεabcφ̂a∂iφ̂
b∂jφ̂

c = 2εabcφ̂a∂θφ̂
b∂ϕφ̂

c (270)

we also get the equivalent form

n =
1

4π

∫ 2π

0

dφ

∫ π

0

dθεabcΦ̂a∂1Φ̂
b∂2Φ̂

c

We follow much the same steps as before. Starting from:

Φ̂ · Φ̂ = 1

we have

δ(Φ̂ · Φ̂) = 2Φ̂ · δΦ̂ = 0

and likewise

∂i(Φ̂ · Φ̂) = 2Φ̂ · ∂iΦ̂ = 0

Since δΦ̂, ∂1Φ̂, and ∂2Φ̂ are all orthogonal to Φ̂, it is(
∂1Φ̂× ∂2Φ̂

)
· δΦ̂ = 0
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and so in tensorial form:

εabcδΦ̂a∂1Φ̂
b∂2Φ̂

c = 0

It also holds for arbitrary partial derivative indices, because if they are the same contraction with Levi-Civita vanishes
them and we have only two choices.

εabcδΦ̂a∂iΦ̂
b∂jΦ̂

c = 0

We are going to use this result right afterwards.

The variation of the integrand of (270) yields:

δ
(
Φ̂a∂iΦ̂

b∂jΦ̂
c
)
=
(
δΦ̂a

)
∂iΦ̂

b∂jΦ̂
c + Φ̂a

(
∂iδΦ̂

b
)
∂jΦ̂

c + Φ̂a∂iΦ̂
b
(
∂jδΦ̂

c
)

The first term when contracted with εabc will vanish. We manipulate the other two terms as follows:

Φ̂a
(
∂iδΦ̂

b
)
∂jΦ̂

c + Φ̂a∂iΦ̂
b∂jΦ̂

c =

∂i

(
Φ̂aδΦ̂b∂jΦ̂

c
)
− δΦ̂b∂iΦ̂

a∂jΦ̂
c − Φ̂aδΦ̂b∂i∂jΦ̂

c

+∂j

(
Φ̂a∂iΦ̂

bδΦ̂c
)
− δΦ̂c∂jΦ̂

a∂iΦ̂
b − Φ̂aδΦ̂c∂i∂jΦ̂

b

Now the total derivatives will yield 0 upon integration due to their single-valuedness and identification of the
integration points. The middle terms of each line disappear due to contraction with εabc and the last terms vanish
by contraction with εij and the commutativity of partial derivatives.

Thus, we can safely conclude that:

δn = 0

Equation (252) is useful for proving properties and stuff, but when it comes to actually calculating a winding number
given a map of some sort, the many contractions between indices make it kind of tedious. Therefore, we will try to
cast (252) in a more practical form for applications [12].

We start by an arbitrary parametrization of the sphere S2:

ê(r) = (sinα cosβ, sinα sinβ, cosα) (271)

where α(θ, ϕ) and β(θ, ϕ) are functions of the polar and azimuthal angles and we use ê insted of Φ̂ temporarily.

Before substituting (271) into (252), we first write the terms of the contractions explicitly:

n =
1

8π
εijεabc

∫
dθdϕêa∂iê

b∂j ê
c =

=
1

8π
εabc2

∫
dθdϕêa∂θ ê

b∂ϕê
c =

=
1

4π
εabc

∫
dθdϕê1

(
∂θ ê

2∂ϕê
3 − ∂θ ê3∂ϕê2

)
+ ê2

(
∂θ ê

3∂ϕê
1 − ∂θ ê1∂ϕê3

)
+ ê3

(
∂θ ê

1∂ϕê
2 − ∂ϕê1∂θ ê2

)
At this point we substitute (271), so fasten your seat belts, it’s going to be a bumpy ride.
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n =
1

4π

∫
dθdϕ sinα cosβ

(
cosα sinβ

∂α

∂θ
+ sinα cosβ

∂β

∂θ

)
(− sinα)

∂α

∂ϕ

− sinα cosβ

(
cosα sinβ

∂α

∂ϕ
+ sinα cosβ

∂β

∂ϕ

)
(− sinα)

∂α

∂ϕ

+ sinα sinβ

(
− sinα

∂α

∂θ

(
cosα cosβ

∂α

∂ϕ
− sinα sinβ

∂β

∂ϕ

)
+ sinα

∂α

∂ϕ

(
cosα cosβ

∂α

∂θ
− sinα sinβ

∂β

∂θ

))
+ cosα

((
cosα cosβ

∂α

∂θ
− sinα sinβ

∂β

∂θ

)(
cosα sinβ

∂α

∂ϕ
+ sinα cosβ

∂β

∂ϕ

)
− cosα

(
cosα cosβ

∂α

∂α
− sinα sinβ

∂β

∂ϕ

)(
cosα sinβ

∂α

∂θ
+ sinα cosβ

∂β

∂ϕ

)

n =
1

4π

∫
dθdϕ

[
− sin2 α cosα sinβ cosβ

∂α

∂θ

∂α

∂ϕ
− sin3 α cos2 β

∂β

∂θ

∂α

∂ϕ
+ sin2 α cosα sinβ cosβ

∂α

∂θ

∂α

∂ϕ

+ sin3 α cos2 β
∂α

∂θ

∂β

∂ϕ
− sin2 α cosα sinβ cosβ

∂α

∂θ

∂α

∂ϕ
+ sin3 α sin2 β

∂α

∂θ

∂β

∂ϕ
+ sin2 α cosα sinβ cosβ

∂α

∂θ

∂α

∂ϕ

− sin3 α sin2 β
∂β

∂θ

∂α

∂ϕ
+ cos3 α sinβ cosβ

∂α

∂θ

∂α

∂ϕ
− sinα cos2 α sin2 β

∂β

∂θ

∂α

∂ϕ
+ sinα cos2 α cos2 β

∂α

∂θ

∂θ

∂ϕ

− sin2 α cosα sinβ cosβ
∂β

∂θ

∂β

∂ϕ
− cos3 α sinβ cosβ

∂α

∂θ

∂α

∂ϕ
+ sinα cos2 α sin2 β

∂α

∂θ

∂β

∂ϕ
− sin2 α cos2 α cos2 β

∂β

∂θ

∂α

∂ϕ

+ sin2 α cosα sinβ cosβ
∂β

∂θ

∂β

∂ϕ

=
1

4π

∫
dθdϕ

(
− sin3 α cos2 β − sin3 α sin2 β − sinα cos2 α sin2 β − sinα cos2 α cos2 b

) ∂β
∂θ

∂α

∂ϕ

+
(
sin3 α cos2 β + sin3 α sin2 β + sin2 α cos2 α cos2 β + sinα cos2 α sin2 β

) ∂α
∂θ

∂β

∂ϕ

=
1

4π

∫
dθdϕ sin a

(
∂α

∂θ

∂β

∂ϕ
− ∂β

∂θ

∂α

∂ϕ

)
Finally, we made it! We can now shamelessly brag at the dinner table that:

n =
1

4π

∫
dθdϕ sin a

(
∂α

∂θ

∂β

∂ϕ
− ∂β

∂θ

∂α

∂ϕ

)
(272)

Let’s make use of this equation right here and now.
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X. THE T’HOOFT-POLYAKOV MONOPOLE: REVISITED

We will calculate the winding number of the following field configuration in the spatial asymptotic:

Φ̂ = (sin θ cosmϕ, sin θ sinmϕ, cos θ) (273)

with m ∈ Z. Using (272), we easily get by substituting α = θ and β = mϕ:

n =
1

4π

∫
dθdϕ sin θ

(
∂θ

∂θ

∂(mϕ)

∂ϕ
− ∂(mϕ)

∂θ

∂θ

∂ϕ

)
=

1

4π

∫
dθdϕ sin θm = m. (274)

The alert reader might have noticed that form = 1, we recover the t’Hooft-Polyakov ansatz for the symmetry breaking
pattern of the Φ field (206), since

Φ̂ =
r

r
= (sin θ cosϕ, sin θ sinϕ, cos θ) (275)

Returning now to (249) and comparing with (269), we can identify the result of the integral of the magnetic charge
as:

g =
4πn

e
(276)

which is the t’Hooft-Polyakov analogue of the Dirac quantization condition.

To make the correspondence explicit, we need to redefine g′ = 4πg, since in the Dirac case, we started with

∇ ·B = 4πgδ3(r)

Then (276) becomes:

g′ =
n

e
(277)

We notice that the t’Hooft-Polyakov monopole appears to be twice as large as the Dirac one, when comparing with (60).

While the Dirac monopole was introduced into our theory by hand, the t’Hooft-Polyakov comes up naturally after
the energy minimization condition on symmetry breaking DµΦ

a → 0. Our next step will be to find the solution for
the fields in the whole space and identify the mass of the monopole.

A. The t’Hooft-Polyakov ansatz

We showed that asympotically the conditions (206) and (207) yield a monopole magnetic field. We now proceed to
find the full field configurations. Considering static solutions, we are only left with an SO(3) spatial symmetry from
the full Poincaré group. We also have an SO(3) symmetry in Φ isospace. Thus, we can make the ansatz53 [16],[27]:

Φa = u
ra

r
H(r), Aa

n = εamn
rm

er
[1−K(r)], Aa

0 = 0 (278)

We can find the functions H and K from the equations of motion. However, it proves much simpler to exploit the
fact that the monopole configuration corresponds to a minimum in the energy functional.

We rewrite the energy functional54 (197):

M =

∫
d3x

(
1

2
Ea

i E
a
i +

1

2
Ba

i B
a
i +

1

2
(DiΦ

a) (DiΦ
a) + V (Φ)

)
(279)

53 Notice the similarities with chapter VIIC
54 which we now call M , since it corresponds to the mass of the monopole.
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We now proceed in calculating separately every term in our functional with ansatz (278).

The simplest one to rewrite is the scalar potential V :

V (Φ) =
λ

4

(
ΦaΦa − u2

)2
=
λ

4

(
u2
rara

r2
H2(r)− u2

)2

⇒ V (Φ) =
λ

4
u4
(
H2(r)− 1

)2
(280)

The covariant derivative term is:

DiΦ
a = ∂iΦ

a − eεabcAb
iΦ

c

= ∂i

(
u
ra

r
H(r)

)
− eεabcεbni

rn

r

1−K(r)

er
u
rc

r
H(r)

= u

(
δai
r
− rari

r3

)
H(r) + u

rari

r2
H ′(r) + (δanδci − δaiδnc)

rnrc

r3
[1−K(r)]H(r)

= u
δai
r
H(r) + u

rari

r2

(
H ′(r)− H(r)

r

)
+ u

rari
r3

[1−K(r)]H(r)− uδai[1−K(r)]H(r)

r

= u
δai
r
(H(r)− [1−K(r)]H(r)) + u

rari

r2

(
H ′(r)− H(r)

r
+

[1−K(r)]H(r)

r

)
⇒ DiΦ

a =
uδai
r
KH +

urari

r2

(
H ′ − KH

r

)

(281)

Now performing the contraction of two such terms:

(DiΦ
a) (DiΦ

a) =
3u2

r2
K2H2 + u2

(
H ′ − KH

r

)2

+ 2
u2

r3
r2
(
KHH ′ − K2H2

r

)
=

3u2

r2
K2H2 + u2H ′2 − 2KHH ′

r
u2 +

u2

r2
K2H2 +

2KHH ′

r
u2 − 2

u2

r2
K2H2

= 2
u2

r2
K2H2 + u2H ′2

⇒ 1

2
(DiΦ

a) (DiΦ
a) =

u2

r2
K2H2 +

u2H ′2

2

(282)
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For the ’color’ magnetic field:

Ba
i =

1

2
εijkF

a
jk

= εijk

(
∂jA

a
k −

e

2
εabcA

b
jA

c
k

)
= εijk∂j

(
εank

rn

r

1−K
er

)
− e

2
εabcεijkεbmjεclk

rmrl

r2

(
1−K
er

)2

= εijkεank

(
δnjer

2 − rne2rj

e2r4
(1−K)− rn

er2
K ′ r

j

r

)
+
e

2
(δibδmk − δimδbk) (δlaδkb − δlbδka)

rmrl

r2

(
1−K
er

)2

= (δaiδnj − δniδaj)−
[(

δnj
er2
− 2rnrj

er4

)
(1−K)− rnrj

er3
K ′
]
− e

2
(δimδal + δilδam)

rmrl

r2

(
1−K
er

)2

=

[(
3δia
er2
− 2δia
er2

)
(1−K)− δia

er
K ′ −

(
δia
er2
− 2rari

er4

)
(1−K) +

rari

er3
K ′
]
− rari

er4
(1−K)2

=
2rari

er4
(1−K) +

(
rari

er3
− δai
er

)
K ′ − rari

er4
(1−K)2

=
rari

er4
(
2− 2K + rK ′ − 1 + 2K −K2

)
− δai
er
K ′

⇒ Ba
i =

rari

er4
(
rK ′ −K2 + 1

)
− δai
er
K ′

(283)

The ’color’ magnetic field squared:

(Ba
i ) (B

a
i ) =

(
rK ′ −K2 + 1

)2
e2r4

+
3K ′2

e2r2
− 2

δai
er

rari

er4
K ′ (rK ′ −K2 + 1

)
=

(
rK ′ −K2 + 1

)2
e2r4

+
3K ′2

e2r2
− 2K ′2

e2r2
−

2
(
1−K2

)
K ′

e2r3

=
r2K ′2

e2r4
+

2rK ′ (1−K2
)

e2r4
+

(
1−K2

)2
e2r4

+
K ′2

e2r2
−

2
(
1−K2

)
K ′

e2r3

⇒ 1

2
(Ba

i ) (B
a
i ) =

K ′2

e2r2
+

(
K2 − 1

)2
2e2r4

(284)

This is a good place to sum up the boundary conditions for the functions H,K.

K(r)→ 1, H(r)→ 0 as r → 0

K(r)→ 0, H(r)→ 1 as r →∞
(285)

as for their derivatives we have

K ′(r)→ 0, H ′(r)→ 0 as r →∞ (286)

Taking now the limits of (283) and (281) for r →∞ and supposing the fields and derivatives vanish strongly enough
to cancel mononomial terms, we can establish back their spatial asymptotic forms we calculated earlier (223),(207).

Ba
i =

rari

er4
(
rK ′ −K2 + 1

)
− δai
er
K ′ −→

r→∞

rari

er4
(287)

DiΦ
a =

uδai
r
KH +

urari

r2

(
H ′ − KH

r

)
−→
r→∞

0 (288)

We can also verify the existence of magnetic charge in our system. Starting from the magnetic flux integral we have:

g =

∫
dSiBi =

∫
dSiB

a
i

Φa

u
=

∫
d3xDi

(
Ba

i

Φa

u

)
=

4π

u

∫
r2drBa

i DiΦ
a (289)



66

where we used DiB
a
i = 0. This stems from the Bianchi identity (190):

ελµνκ(DµF
a
νκ) = 0

Choosing λ = 0 forces the rest of the indices to become spatial. Thus, we are left with:

εijkDiF
a
jk = Di

(
εijkF a

jk

)
= DiB

a
i = 0 (290)

Note also that,

Dµ (E
a
i Φ

a) = Dµ (E
a
i ) Φ

a + Ea
i DµΦ

a

= (∂µE
a
i ) Φ

a − eεabcAb
µE

c
iΦ

a + Ea
i (∂µΦ

a)− eεabcAb
µΦ

cEa
i

= ∂µ (E
a
i Φ

a)− eεabcΦaAb
µE

c
i + eεcbaΦcAb

µE
a
i

= ∂µ (E
a
i Φ

a)

(291)

Here Ea
i is an arbitrary fundamental representation field, not to be confused with the color electric field. This

explains why we were able to substitute directly the covariant derivative from Stoke’s theorem instead of the normal
derivative55. So back to our integral, we substitute what we have calculated up to now, namely the covariant derivative
and the magnetic field

g =
4π

u

∫
r2drBa

i DiΦ
a

=
4π

u

∫
r2dr

[
rari

er4
(
rK ′ −K2 + 1

)
− δai
er
K ′
] [

uδai
r
KH +

urari

r2

(
H ′ − KH

r

)]
=

4π

e

∫
dr

[
KH

(
rK ′ −K2 + 1

)
r

+

(
rK ′ −K2 + 1

)
(rH ′ −KH)

r
− 3KK ′H −K ′ (rH ′ −KH)

]

=
4π

e

∫
dr

[(
rK ′ −K2 + 1

)
rH ′

r
−K ′ (2KH + rH ′)

]

=
4π

e

∫
dr
[(
1−K2

)
H ′ − 2KK ′H

]
=

4π

e

∫
dr

d

dr

[(
1−K2

)
H
]

(292)

which by virtue of the boundary conditions (285) yields the magnetic charge of our monopole:

g =
4π

e

We can also shortly check that (289) coincides with definition (246) for the magnetic charge. This can be done by
noticing:

g =

∫
dSiBi =

∫
dSiB

a
i

Φa

u
=

∫
dSi

1

2
εijkF

a
jk

Φa

u

1

2u
εijk

∫
dSi

[(
∂jA

em
k − ∂kAem

j

)
+
εabc
eu2

∂jΦ
b∂kΦ

cΦa
]

=
1

2eu3
εijkεabc

∫
dSi∂jΦ

b∂kΦ
cΦa

Substituting the above in the mass functional (279) we end up with

M = 4π

∫
r2dr

(
K ′2

e2r2
+

(
K2 − 1

)2
2e2r4

+
u2

r2
K2H2 +

u2H ′2

2
+
λ

4
u4
(
H2 − 1

)2)
(293)

55 It is required, however, that the group contracted fields are on the same representation.
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where we employed spherical coordinates. We also omitted Ea
i , since in the static regime, the fields have no temporal

dependence and Aa
0 is 0.

It is rather useful to perform a change of variables on the mass functional

ξ = uer → r =
ξ

ue

dξ = uedr → d

dr
= ue

d

dξ

r2dr → ξ2

u3e3
dξ

Then (293) becomes

M = 4π

∫
ξ2

u3e3
dξ

(
u4e2

ξ2

(
dK

dξ

)2

+
u4e2

2

(
dH

dξ

)2

+
u4e2

2ξ4
(
K2 − 1

)2
+
u4e2

ξ2
K2H2 + u4e2

β2

2

(
H2 − 1

)2)

M =
4πu

e

∫
ξ2dξ

(
K ′2

ξ2
+

1

2
H ′2 +

(
K2 − 1

)2
2ξ4

+
K2H2

ξ2
+
β2

2

(
H2 − 1

)2) (294)

where we also defined the parameter β as half of the ratio between the mass of the Higgs boson and the massive
vector bosons of our model:

β =
1

2

MH

MW
=

1

2

u
√
2λ

eu
→ β2 =

λ

2e2

where the masses have been drawn from (204).

We now apply the Euler-Lagrange equations for each of the functions K,H to minimize the mass functional:

∂M
∂K
− d

dξ

∂M
∂K ′ = 0

⇒
2
(
K2 − 1

)
2K

2ξ2
+ 2KH2 − d

dξ
(2K ′) = 0

⇒K ′′ =

(
K2 − 1

)
K

ξ2
+KH2

(295)

As for the H field:

∂M
∂H
− d

dξ

∂M
∂H ′ = 0

⇒2HK2 + β2
(
H2 − 1

)
− d

dξ

(
2H ′ξ2

)
= 0

⇒H ′′ =
2HK2

ξ2
− 2H ′

ξ
+ 2β2H

(
H2 − 1

)
(296)

whereM is the integrand in M .

The system of the coupled non-linear ordinary differential equations (295),(296) cannot in general be solved analyt-
ically56. We will take a short break now and talk about the Julia-Zee dyon, a generalization of the t’Hooft-Polyakov
monopole with a twist. It is endowed with electric charge too!

56 Yet, we will cover the β = 0 solution in due time.
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B. The Julia-Zee dyon

As we mentioned earlier a dyon is particle that possesses both magnetic and electric charges. The Georgi-Glashow
model we are currently studying admits such solutions. We just have to alter the t’Hooft-Polyakov ansatz (278) a
little bit so that we allow a non-zero temporal components for the gauge potential.
The Julia-Zee ansatz [18] we will be using for this section is

Φa = u
ra

r
H(r)

Aa
i = εani

rn

r

(
1−K(r)

er

)
Aa

0 = u
ra

r
J(r)

(297)

Not a great deal has changed from the previous section. We are just to calculate the ”color” electric field contribution
and see how this changes the equations of motion for our fields.

So,

Ea
i = F a

0i = ∂0A
a
i − ∂iAa

0 − eεabcAb
0A

c
i

= −∂i
(
u
ra

r
J(r)

)
− eεabcu

rb

r
J(r)εcni

rn

r

(
1−K(r)

er

)
= −uδair

2 − rari

r3
J − ur

a

r
J ′ r

i

r
− ueδabni

rbrn

r2
J

(
1−K
er

)
= −u

[
δai
r
J − rari

r3
J +

rari

r2
J ′ +

rari

r3
J(1−K)− δai

r
J(1−K)

]
= −u

[
rari

r2

(
J ′ − JK

r

)
+
δai
r
JK

]
(298)

Now squaring it,

(Ea
i ) (E

a
i ) = u2

[
(JK − rJ ′)

2

r2
+

3J2K2

r2
− 2 (JK − rJ ′) JK

r2

]

=
u2

r2
[
(JK − rJ ′) (JK − rJ ′ − 2JK) + 3J2K2

]
=
u2

r2
[
− (JK − rJ ′) (JK + rJ ′) + 3J2K2

]
=
u2

r2
[
2J2K2 + r2J ′2]

(299)

Of course we do not want our fields to be singular, so we impose specific boundary conditions on J to avoid such
problems.

J → 0, r → 0

J → −C, r →∞
(300)

where C is an arbitrary constant and J has to approach 0 at least like r2.

The mass functional in the Julia-Zee case will be:

M = 4π

∫
r2dr

(
U2 J

2K2

r2
+ u2

J ′2

2
+
K ′2

e2r2
+

(
K2 − 1

)2
2e2r4

+
u2

r2
K2H2 +

u2H ′2

2
+
λ

4
u4
(
H2 − 1

)2)
(301)

Performing our usual regularising substitution: ξ = uer, we get

M =
4πu

e

∫
ξ2dξ

(
J2K2

ξ2
+
J ′2

2
+
K ′2

ξ2
+

1

2
H ′2 +

(
K2 − 1

)2
2ξ4

+
K2H2

ξ2
+
β2

2

(
H2 − 1

)2)
(302)
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Applying the Euler-Lagrange equations on each of the functions J,H,K we get

∂M
∂J
− d

dξ

(
∂M
∂J ′

)
= 0

2JK2 − J ′′ξ2 − 2J ′ξ = 0

J ′′ =
2JK2

ξ2
− 2J ′

ξ

(303)

whereM is the integrand in M . For H, we have

∂M
∂H
− d

dξ

(
∂M
∂H ′

)
= 0

2HK2 + 2β2
(
H2 − 1

)
Hξ2 −H ′′ξ2 − 2H ′ξ = 0

H ′′ =
2HK2

ξ2
− 2H ′

ξ
+ 2β2H

(
H2 − 1

) (304)

And last but not least

∂M
∂K
− d

dξ

(
∂M
∂K ′

)
= 0

2J2K +
2
(
K2 − 1

)
2K

2ξ2
+ 2KH2 − 2K ′′ = 0

K ′′ = KJ2 +

(
K2 − 1

)
K

ξ2
+KH2

(305)

The magnetic charge of the system is the same as in the t’Hooft-Polyakov ansatz. Here, we can, however, calculate
also the electric charge of the dyon.

q =

∫
dSiEi =

∫
dSiE

a
i

Φa

u
=

∫
d3xDi

(
Ea

i

Φa

u

)
=

4π

u

∫
r2drEa

i DiΦ
a (306)

Here,we invoked the Stoke’s theorem again and we used DiE
a
i = 0. We can deduce this by employing the fields’

equations of motion (188) as follows:

DiE
a
i = DiF

a
0i = −eεabcΦbD0Φ

c

= −eεabc
(
∂0Φ

c − eεcdeAd
0Φ

e
)

= e2εabcΦ
bεcdeu

2 r
dre

r2
J(r)H(r) = 0

At this point, we can calculate the electric charge contained in the system. We will use the J O.D.E.(303) and the
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relationship between the fundamental units of electric and magnetic charge in our system57

q =
4π

u

∫
r2dr

[
u

(
rari
r3

(JK − rJ ′)− δai
r
JK

)(
uδai
r
KH +

urari

r2

(
H ′ − KH

r

))]
=

4π

u

∫
u2r2dr

[
r2

r4
(JK − rJ ′)KH +

r4

r6
(rH ′ −KH) (JK − rJ ′)− 3

r2
JK2H − r2

r4
(rH ′ −KH) JK

]
= 4πu

∫
dr
[
(JK − rJ ′) (rH ′ −KH +KH)− 3JK2H − rH ′JK + JK2H

]
= 4πu

∫
dr
[
rH ′JK − r2J ′H ′ − rH ′JK − 2JK2H

]
= −4πu

∫
dr
[
2JK2H + r2J ′H ′]

= −4πu
∫

dξ

ue

[
2JK2H +

ξ2

u2e2
u2e2J ′H ′

]
= −4π

e

∫
dξ
[
2JK2H + ξ2J ′H ′]

= −4π

e

∫
dξ
[
ξ2J ′′H + 2ξJ ′H + ξ2J ′H ′]

= −4π

e

∫
dξ
[(
ξ2
)′
J ′H + ξ2 (J ′H)

′
]

= −4π

e

∫
dξ
[
ξ2 (J ′H)

]′
= −4π

e
[ξ2J ′]|ξ=+∞

(307)

We have to pay special attention to the last step. Taking the O.D.E. (303) for J we have:

J ′′ =
2JK2

ξ2
− 2J ′

ξ

⇒ ξ2J ′ + 2ξJ ′ = 2JK2

⇒
(
ξ2J ′)′ = 2JK2

⇒
∫ ∞

0

(
ξ2J ′)′ dξ = 2

∫ ∞

0

JK2dξ

⇒ ξ2J ′∣∣
ξ=+∞ = 2

∫ ∞

0

JK2dξ

(308)

We can now confidently state the final result [18]:

q = −8π

e

∫ ∞

0

JK2dξ (309)

On the classical level, there is no reason for the electric charge to be quantized, unlike the magnetic charge, so the
value of (309) remains arbitrary. At this point, we should also note the similarity between the Higgs triplet and the
0-component of the A field. In our ansatz (297) the two fields are parallel in isospace and one can consider the latter
as a second triplet field of scalars. This is called the Julia-Zee correspondence ϕa ⇌ Aa

0 .

C. The BPS limit

The Bogomolny-Prasad-Sommerfeld limit sets a minimum for the monopole or dyon mass [28]. Taking the formal
limit58 of the coupling constant λ→ 0, we have the following inequality for the mass functional (293)

M ≥ 1

2

∫
d3x [(Ea

i ) (E
a
i ) + (Ba

i ) (B
a
i ) + (DiΦ

a) (DiΦ
a)] (310)

57 That is g = 4π
e

58 The limit is formal, because we need a non-zero potential to fix the value of Φ at infinity.
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Now, we perform a little devilish trick59. We introduce an arbitrary angle θ on the mass functional

M ≥ 1

2

∫
d3x

[
(Ea

i ) (E
a
i ) + (Ba

i ) (B
a
i ) +

(
sin2 θ + cos2 θ

)
(DiΦ

a) (DiΦ
a)
]

(311)

Completing the square in each term yields:

M ≥ 1

2

∫
d3x [(Ea

i )− sin θ (DiΦ
a)]

2
+ [(Ba

i )− cos θ (DiΦ
a)]

2
+

∫
d3x [sin θ (Ea

i ) (DiΦ
a) + cos θ (Ba

i ) (DiΦ
a)] (312)

Of course, the first two terms are clearly positive and the following ones are just the electric and magnetic charge of
the system repsectively.

We, thus, get a Bogomolny bound for the mass of the dyon

M ≥
∫
d3x [sin θ (Ea

i ) (DiΦ
a) + cos θ (Ba

i ) (DiΦ
a)] = sin θ

∫
d3x (Ea

i ) (DiΦ
a) + cos θ

∫
d3x (Ba

i ) (DiΦ
a)

⇒ E ≥ uq sin θ + ug cos θ

(313)

If we want to saturate that bound, we need to set the squared terms to zero

Ea
i = sin θ (DiΦ

a)

Ba
i = cos θ (DiΦ

a)
(314)

This way, we arrive at the BPS equations. The minimum of the energy functional with respect to the parameter θ is
easily found to be

tan θ =
q

g
(315)

Rewriting the integral (309) as

q

g
= −2

∫ ∞

0

JK2dξ (316)

we realize that it is strongly connected to the duality principle, identified with the tangent of the dual angle Using
some basic trigonometric identities

θ = arctan
q

g
⇒


sin
(
arctan q

g

)
=

q
g√

1+( q
g )

2
= q√

q2+g2

cos
(
arctan q

g

)
= 1√

1+( q
g )

2
= g√

q2+g2

(317)

we arrive at the final form of the BPS bound

M ≥ u
√
q2 + g2 (318)

Let’s concentrate on the monopole configuration for now by setting q = 0 or θ = 0. Then using MW = ev and
α = e2/4π, we can write the Bogomolny bound as

M ≥ MW

α
|n| (319)

since α≪ 1 the monopole is much heavier that the W boson.

Also, in our case the BPS equations include just

Ba
i = (DiΦ

a) (320)

59 This is the same trick used earlier in chapter VIIA to find its exact solution.
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Substituting the t’Hooft-Polyakov ansatz (278) and equating same tensor components we get

−δai
er
K ′ =

uδai
r
KH

K ′ = −ueKH

ue
dK

dξ
= −ueKH

dK

dξ
= −KH

(321)

and

rari

er4
(
rK ′ −K2 + 1

)
=
urari

r2

(
H ′ − KH

r

)
(
rK ′ −K2 + 1

)
= uer (rH ′ −KH)(

ξK ′ −K2 + 1
)
= ξ (ξH ′ −KH)

ξ
dK

dξ
−K2 + 1 = ξ2

dH

dξ
− ξKH

ξ2
dH

dξ
= 1−K2

(322)

where we made use of the first differential equation to make first derivative terms of K go away in the second one.
We have arrived at a system of non-linear differential equations. This system can be solved analytically along with
the asymptotic behavior of the corresponding functions (285).

Starting from (321), we can solve60 for K.

K ′ = −KH ⇒
K ′

K
= −H ⇒

(lnK)′ = −H ⇒

K = e−
∫
Hdξ′

(323)

We have also absorbed the integration constant into the indefinite integral of H.

We now substitute (323) into (322)

ξ2H ′ = 1− e2
∫
Hdξ′ (324)

Differentiating

2ξH ′ + ξ2H ′′ = −e2
∫
Hdξ′2H (325)

Substituting (324) into the above equation

2ξH ′ + ξ2H ′′ =
(
1− ξ2H ′) 2H

H ′′ +
2

ξ
H ′ + 2HH ′ − 2

ξ2
H = 0

(326)

We have arrived at a second order non-linear differential equation in H. There is no standard method in solving these
and a little bit of luck is required. Here, we try guessing that the solution will contain an inverse mononomial of

60 where we use primes for the d
dξ

operator now.
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arbitrary order.

H = G− c

ξn

H ′ = G′ +
cn

ξn+1

H ′′ = G′′ +
Cn(n+ 1)

ξn+2

(327)

Substituting this in (326) yields

G′′ − cn(n+ 1)

ξ
+

2

ξ
G′ +

2cn

ξn+2
+ 2GG′ − 2c2n

ξ2n+1
− 2c

ξn
G′ +

2cn

ξn+1
G− 2

ξ2
G+

2c

ξn+2
= 0 (328)

At this point, we notice that the choice c = n = 1 really saves us from a lot of trouble. Indeed, the resulting differential
equation magically reduces to

G′ +G2 = C2 (329)

still nonlinear in its entirety, but integrable nevertheless.

Separating variables ∫
dG

C2 −G2
=

∫
dξ

Now, factorizing the denominator and splitting the fractions

ξ =

∫
1

2C

[
1

C −G
+

1

C +G

]
dG

Integrating

2Cξ = ln
C +G

|C −G|
+D (330)

The next step is to solve for G, which is rather trivial. There is one concern though and that is the absolute value in
the denominator. The rigorous way would be to take distinct cases for the sign of the absolute value and work that
way. However, we remember that H = G− 1

ξ and our ultimate goal is to derive a solution that minimizes the energy

functional and if our function has such a severe singularity, ain’t no way we will be achieving that. If we want to at
least have a chance, we should hope that G will induce another singularity in the same point that cancels the one we
are already burdened with. The only way at least retain some chances is choosing C ≤ G (at least this choice leaves
room for our function G to grow infinite).

After all this, solving for G gets us

G =
1 + exp(2Cξ −D)

1− exp(2Cξ −D)
= coth

(
2ξ − D

2

)
(331)

Employing the boundary conditions (285) H must go to 0 as ξ goes to 0.

Using a power series expansion for the hyperbolic cotangent

cothx =

∞∑
n=0

22nB2nx
2n−1

(2n)!

=
1

x
+
x

3
− x3

45
+

2x5

945
− x7

4725
+ · · ·

(332)

where B2n denotes the Bernoulli numbers.
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The series converges for 0 < |x| < π. So taking the limit to 0

lim
ξ→0

H = lim
ξ→0

(
coth

(
Cξ − D

2

)
− 1

ξ

)
= lim

ξ→0

(
1

Cξ − D
2

+
Cξ − D

2

3
+ . . .− 1

ξ

)
= 0. (333)

we deduce that D = 0 and C = 1.

So

H = coth ξ − 1

ξ
(334)

Now we turn our attention to K and equation (323)

K = e−
∫
ξ
Hdξ′ = e−

∫
(coth ξ′− 1

ξ )dξ
′
= e

−
∫ (

cosh ξ′
sinh ξ′ −

1
ξ′

)
dξ′

= e− ln sinh ξ+ln ξ+c = c
ξ

sinh ξ

(335)

The constant c has to be 1 for the asymptotic conditions for K to be resolved.

Note, also, that the solution of the first order BPS equations automatically satisfy the Euler-Lagrange O.D.E’s we
got earlier (295),(296) with β = 0. For example, substituting (322) into (296) yields the second order equation we
just solved (326)

H ′′ =
2H

ξ2
(
1− ξ2H ′)− 2H ′

ξ

H ′′ =
2H

ξ2
− 2HH ′ − 2H ′

ξ

H ′′ +
2H ′

ξ
+ 2HH ′ − 2H

ξ2
= 0

The compatibility of the K differential equations can be checked by direct substitution of the solution into (295).

The BPS equation along with the Bianchi identity yield:

DnΦ
a = Ba

n

DnDnΦ
a = DnB

a
n = 0

(336)

As a result

(DnΦ
a) (DnΦ

a) = Dn (Φ
aDnΦ

a) =

= ∂n (Φ
aDnΦ

a) = ∂nΦ
aDnΦ

a +Φa∂nDnΦ
a

= ∂nΦ
a∂nΦ

a − eεabcAb
nΦ

c∂nΦ
a +Φa∂n∂nΦ

a − ΦaeεabcA
b
n∂nΦ

c − eεabc∂nAb
nΦ

aΦc

= ∂nΦ
a∂nΦ

a +Φa∂n∂nΦ
a

=
1

2
∂n∂n (Φ

aΦa)

(337)

where we used the Bianchi identity (290), that the covariant derivative of a product of same representation fields is
just its partial derivative (291) and the skew symmetry of certain indices.

With this in mind we can show that the energy of the monopole in the BPS limit is independent of the properties
of the gauge field and can be calculated from the Higgs field alone.
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In the BPS limit (313) along with (314) becomes

M =

∫
d3x (DnΦ

a) (DnΦ
a) = 2π

∫
r2dr∂n∂n (Φ

aΦa)

= 2πu2
∫
r2dr

1

r2
∂

∂r

(
r2
∂

∂r
H

)
=

2πu

e

∫
dξ

∂

∂ξ

(
ξ2
∂

∂ξ
H

)
=

2πu

e
ξ2
(

1

ξ2
− 1

sinh2 ξ

)∣∣∣∣+∞

0

=
2πu

e
lim
ξ→0

ξ2

sinh2 f
=

4πu

e
.

(338)

where we used the solution for H (334), verifying the Bogomolny bound for the ’t Hooft ansatz.

Srednicki, once wrote in his book [32]: ”Alas, the Georgi-Glashow model, which has monopole solutions, is not in
accord with nature, while the Standard Model, which is in accord with nature, does not have monopole solutions.
This is because, in the Standard Model, electric charge is a linear combination of an SU(2) generator and the
U(1) hypercharge generator. Nothing prevents us from introducing an SU(2) singlet field with an arbitrarily small
hypercharge. Such a field would have an arbitrarily small electric charge (in units of e ), and then the Dirac charge
quantization condition would preclude the existence of magnetic monopoles.”

This is also the main argument -presented in an intuitive way- why no one has searched for monopole solutions in the
Weinberg-Salam model. Things have changed recently, however, when Y.M. Cho and D. Maison had the ”audacity”
to attempt constructing a soliton solution with dyon properties in the Standard Model. The solution they presented
in [7], exhibits the monopole properties, in a very much elegant way, in what appears to be a mixture of the Dirac
and ’t Hooft-Polyakov monopoles.
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XI. CHO-MAISON MONOPOLE

In this section, we proceed with a brief outline of the Weinberg-Salam model, along with the topology of the
Standard model, paving the way to eventually present the Cho-Maison solution.

A. Weinberg-Salam Model

Trying to unify the electromagnetic and weak forces, the first model to be proposed was that of Georgi and
Glashow61. However, the SSB of this model, despite exhibiting two massive gauge bosons and one massless which
one could identify with the photon, it failed to predict the existence of the neutral Z boson. So the Georgi-Glashow
model had to give its place to its successor, the Weinberg-Salam model.

This model is based on the spontaneous symmetry breaking of the gauge group SU (2)×U (1) to U(1). Rather
intuitively, we can already guess that this model has the potential to incorporate the Z boson, since the U(1) addition
to the Georgi-Glashow model, offers lavishly one more generator to work with.
To construct the Weinberg-Salam lagrangian density (ignoring the fermionic sector), we couple the SU(2)×U(1)
Yang-Mills field to a complex Higgs doublet.

L = −1

4
F a
µνF

aµν − 1

4
GµνG

µν + (DµΦ)
†
DµΦ− λ

2

(
Φ†Φ− u2

)2
(339)

where

F a
µν = ∂µW

a
ν − ∂νWa

µ + gεajkWj
µW

k
ν

Gµν = ∂µBν − ∂νBµ

Dµ = ∂µ − i
g

2
τaWa

µ − i
g′

2
Bµ

(340)

The spontaneous symmetry breaking of this model can be described by giving a non trivial vacuum expectation
value on the complex Higgs doublet62.

⟨0|Φ|0⟩ =

(
0

u

)
(341)

Exploiting the local SU(2) symmetry of the model, we can align the direction of the SU(2) internal degrees of
freedom63, by performing independent transformations in different space-time points.

An arbitrary Φ excitation can be written as:

Φ(x) = e−iθi(x) τi

2

(
0

u+ σ(x)√
2

)
(342)

The θi excitations can be gauged away via a suitable SU(2) gauge transformation

Φ→ Φ′(x) = e−igαi(x) τi

2 Φ (343)

61 See section VIIIA
62 Only scalar quantities can acquire non trivial VEV because of the Lorentz invariance that needs to be preserved
63 or ” weak isospin” as is often called
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choosing αi = − θi

g .

So we are left with

Φ(x) =

(
0

u+ σ(x)√
2

)
(344)

We say that the Goldstone bosons have been ”swallowed” by the longitudal components of the SU(2) vector bosons.
The σ excitations are called ”Higgs bosons” in a completely analogous spirit to subsection VIC.

To determine the particle spectrum in the symmetry broken phase, we substitute (344) into the Lagrangian (339).
To inspect the results qualitatively, it is useful to calculate the covariant derivative of Φ keeping terms of up to order
one in fields64.

DµΦ =
1√
2

(
0

∂µσ

)
− i

2
u

(
gW 3

µ + g′Bµ gW 1
µ − igW 2

µ

gW 1
µ + igW 2

µ gW 3
µ − g′Bµ

)(
0

u

)

=
1√
2

(
0

∂µσ

)
− i

2

(
gW 1

µ − igW 2
µ

gW 3
µ − g′Bµ

) (345)

Calculating the square of it

(DµΦ)
†
DµΦ =

[
1√
2

(
0 ∂µσ

)
+ i

2

(
gW 1

µ + igW 2
µ gW 3

µ − g′Bµ

)][ 1√
2

(
0

∂µσ

)
− i

2
u

(
gW 1

µ − igW 2
µ

gW 3
µ − g′Bµ

)]

=
1

2
∂µσ∂

µσ +
u2

4
g2
((
W 1

µ

)2
+
(
W 2

µ

)2)
+
u2

4

(
gW 3

µ − g′Bµ

)2
So, the Lagrangian (339) contains quadratic terms of the form

L =
1

2
(∂µσ) (∂

µσ)− 1

2
m2

Hσ
2 +

1

4
g2u2

(
W 1

µW
1µ +W 2

µW
2µ
)
+
u2

4

(
gW 3

µ − g′Bµ

) (
gW 3µ − g′Bµ

)
+

(higher order terms) + (kinetic terms for W,B fields)

Although the σ,W 1,W 2 have explicit mass terms in the Lagrangian, W 3, B appear mixed. To unmix them, we
perform a field rotation in field space. This rotation is described by the following field redefinition:

Aµ = cos θWBµ + sin θWW 3
µ

Zµ = − sin θWBµ + cos θWW 3
µ

(346)

with tan θW = g′

g .

The Lagrangian (without including interaction terms) now becomes

Lquadratic =
1

2
(∂µσ) (∂

µσ)− µ2σ2

− 1

4

(
∂µW

1
ν − ∂νW 1

µ

) (
∂µW 1ν − ∂νW 1µ

)
+

1

8
g2f2W 1

µW
1µ

− 1

4

(
∂µW

2
ν − ∂νW 2

µ

) (
∂µW 2ν − ∂νW 2µ

)
+

1

8
g2f2W 2

µW
2µ

− 1

4
(∂µZν − ∂νZµ) (∂

µZν − ∂νZµ) +
1

8
f2
(
g2 + g′2

)
ZµZ

µ

− 1

4
(∂µAν − ∂νAµ) (∂

µAν − ∂νAµ) .

(347)

64 This will give us the quadratic terms in the Lagrangian.
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We can now read off the masses of each boson

M1 =M2 =
fg

2
≡MW , MZ =

f

2

(
g2 + g′2

) 1
2 =

M1

cos θW
(348)

There is, also, a rather easy way to calculate the σ mass term starting from the potential with the help of (344),
keeping only quadratic terms

V = −λ
2

(
Φ†Φ− u2

)2
= −λ

2

( 0 u+ σ√
2

) ( 0

u+ σ√
2

)
− u2

)2

= −λ
2

((
u+

σ√
2

)2

− u2
)2

= −λ
2

((
u+

σ√
2
− λu

)(
u+

σ√
2
+ u

))2

= −λ
2

σ2

2

(
2u+

σ√
2

)2
second-order in σ

= −1

2
(
√
2λu)2σ2

(349)

Thus, we colnclude that the Higgs boson excitation comes equipped with a mass mH =
√
2λu, via the mechanism of

Sponaneous Symmetry Breaking.
Inspecting the form of the Lagrangian now, we can come to the following colnclusions, regarding the degrees of

freedom in the SSB of the Weinberg-Salam Model.

Before SSB D.o.F After SSB D.o.F

3 massless SU(2) gauge bosons 6 3 massive gauge bosons 9

1 massless U(1) gauge boson 2 1 massless gauge boson 2

1 compplex Higgs doublet 4 1 Higgs boson 1

TABLE III: Degrees of Freedom in the Spontaneous Symmetry Breaking of the Weinberg-Salam model

As in our previous examples of SSB the Goldstone modes of this model have been swallowed by the gauge bosons
which now acquire mass. We, also, have a massless gauge boson Aµ, which in the context of the Standard Model is
understood as the photon, the carrier of the electromagnetic force.

To understand better the symmetry breaking patterns, we observe the masslessness of Aµ comes from the choice
of our vacuum condition, which happens to be preserved by the generator 1

2

(
1 + τ 3

)
.

Explicitly

1

2

(
1 + τ 3

)
⟨0|Φ|0⟩ =

(
1 0

0 0

)(
0

u

)
=

(
0

u

)

We can write the covariant derivative from (340) using the Aµ, Zµ fields as

Dµ =

(
∂µ + ig sin θW

(
1 + τ 3

)
2

Aµ +
ig

cos θW

(
τ 3

2
− sin2 θW

(
1 + τ 3

)
2

)
Zµ + . . .

)
(350)
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We can verify this by direct substitution of the field redefinitions (346) into the covariant derivative

Dµ = ∂µ + ig sin θW
1 + τ 3

2
Aµ +

ig

cos θW

(
τ 3

2
− sin2 θW

1 + τ 3

2

)
Zµ + . . .

= ∂µ + ig sin θW
1 + τ 3

2

(
cos θWBµ + sin θWW 3

µ

)
+

ig

cos θW

(
τ 3

2
− sin2 θW

1 + τ 3

2

)(
− sin θWBµ + cos θWW 3

µ

)
+ . . .

= ∂µ + ig
1 + τ 3

2
sin θW cos θWBµ + ig

1 + τ 3

2
sin2 θWW 3

µ − ig
τ 3

2
sin θW

1

cos θW
Bµ + . . .

+ ig
τ 3

2
W 3

µ + ig
sin3 θW
cos θW

1 + τ3

2
Bµ − ig sin2 θW

1 + τ3

2
W 3

µ + . . .

= ∂µ + ig
τ 3

2
W 3

µ + ig
1 + τ 3

2

(
sin θW cos θW +

sin3 θW
cos θW

)
Bµ − ig

τ 3

2

sin θW
cos θW

Bµ + . . .

= ∂µ + ig
τ 3

2
W 3

µ + ig tan θW
1 + τ 3

2

(
cos2 θW + sin2 θW

)
Bmu− ig

τ 3

2
tan θWBµ + . . .

= ∂µ + ig
τ 3

2
W 3

µ + i
g′

2
Bµ + . . .

(351)

From (350), we can deduce that the fundamental unit of charge is

e = g sin θW (352)

Therefore, in the above example, we have the following SSB pattern

SU(2)× U(1)→ Uem(1)

B. Topological Argument

In the case of the Weinberg-Salam model, it was generally believed that there do not exist non-trivial toplogical
excitations with monopole properties. That is because the quotient space SU(2)× U(1)/Uem(1) has a trivial second
homotopy group.
Hoever, Cho and Maison argued in [7] that the Weinberg-Salam model can be viewed as a CP (1) theory, which in
fact has π2 (CP (1)) = Z.
More specifically, it is the ξ field, which is to be defined at (356), that is to be regarded as the CP (1) field.

But first things first. What is CP (1)? Well, it means Complex Projective Space of dimension 1 and is usually referred
to as the Riemann Sphere. The Riemann sphere represents the complex plane plus a point at infinity C ∪ {∞}. The
topological structure that arises is that of a sphere and can be imagined as though the complex plane is wrapped
around an S2 via a one-point compactification. Seeing, also the CP (1) as the Riemann sphere, it is very much justified
why π2 (CP (1)) = Z as we have earlier discussed in IVB.
As a sneak peak and to elaborate the topological argument better, we present that the ξ field is defined as the

normalized Higgs doublet from the Weinberg-Salam model.

Φ =
1√
2
ρξ

(
ρ2 = 2Φ†Φ, ξ†ξ = 1

)
The spherical topology of ξ might not be obvious at first site, but using ξ and with the help of Pauli matrices, we

can create a triplet field

Φ̂a = ξ†τ aξ

It can be verified using the first Fierz identity of (361)

ΦaΦa
∑
a

=
(
ξ†τ aξ

)2
=
(
ξ†ξ
)2

= 1
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FIG. 7: Image from [1]

and now it is clear that Φ̂ lives on a two-sphere.

It might also seem weird that we utterly ignored the ρ field, but as we will show in (357), the conserved currents

of the Electroweak model will prove to depend merely proportionally to ρ and all the non-trivial stuff stem from Φ̂.
This can inferred from a decomposition of the kinetic term of the Higgs field in our models’ Lagrangian using ρ and
ξ. This decomposition is presented at [20] and is as follows

L = − |DµΦ|2 +
λ

2

(
Φ†Φ− µ2

λ

)2

− 1

4
F a
µνF

aµν − 1

4
GµνG

µν

= −1

2
(∂µρ)

2 − ρ2

2
|Dµξ|2 −

λ

8

(
ρ2 − ρ20

)2 − 1

4
F a
µνF

aµν − 1

4
GµνG

µν

Here, it also ξ that retains the covariant derivatives and ρ and ρ enters multiplicatively.

C. Cho-Maison ansatz

In the following, we will present analytically the results discussed in [7].

First, consider the Lagrangian (339)

L = −
∣∣∣D̂µϕ

∣∣∣2 − λ

2

(
ϕ†ϕ− µ2

λ

)2

− 1

4
(F µν)

2 − 1

4
(Gµν)

2
,

D̂µϕ =

(
∂µ − i

g

2
τ ·Aµ − i

g′

2
Bµ

)
ϕ

=

(
Dµ − i

g′

2
Bµ

)
ϕ,

(353)

where we changed the symbol of the Higgs doublet from Φ to ϕ and W bosons to A, in order for the formalism to
match that in [7]. We also defined the SU(2)× U(1) covariant derivative and the raw SU(2) covariant derivative in
the lines above.

The equations of motion for the Weinberg-Salam model can be computed by minimizing the action functional via
the Euler-Lagrange equation on the Lagrangian.

D̂µ

(
D̂µϕ

)
= λ

(
ϕ†ϕ− µ2

λ

)
ϕ,

DµF µν = −jν = i
g

2

[
ϕ†τ

(
D̂νϕ

)
−
(
D̂νϕ

)†
τϕ

]
,

∂µGµν = −kν = i
g′

2

[
ϕ†
(
D̂νϕ

)
−
(
D̂νϕ

)†
ϕ

]
.

(354)
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Extracting the equation of ϕ

∂L
∂ϕ† − ∂µ

∂L

∂
(
∂µϕ

†
) = 0⇒

−
(
+ig

τα

2
Aα

µ + i
g′

2
Bµ

)
ϕ− λ

2
2

(
ϕ†ϕ− µ2

λ

)
ϕ

+ ∂µD̂
µϕ = 0⇒

D̂µD̂
µϕ = λ

(
ϕ†ϕ− µ2

λ

)
ϕ

For the SU(2) Yang-Mills field, we have the following:

∂F a
µν

∂
(
∂λAd

k

) = δλµδ
daδkν − δdaδλνδkµ

∂
(
D̂µϕ

)
∂Ad

k

=
∂

∂Ad
k

(
∂µ − i

g

2
τ aAa

µ − i
g′

2
Bµ

)
ϕ = −ig

2
τ aδdaδkµϕ

and

∂F a
µν

∂Ad
k

= −gεabc
(
δbdδkµA

c
ν +Ab

µδ
cdδkν

)
Using the above and the Euler-Lagrange equations, we get

∂L
∂Ad

k

− ∂λ
∂L

∂
(
∂λAd

k

) = 0

Re
{
D̂µϕ†(−i)g

2
τ dδkµϕ

}
− 1

2
Fµνa

[
−gεabc

(
δbdδkµA

c
ν +Ab

µδ
cd∂kv

)]
− ∂λ

[
−1

2
Fµνa

(
δλµδ

daδkv − δdaδλνδkµ
)]

= 0

DλF
λkd = i

g

2

(
ϕ†τ dD̂kϕ− (D̂kϕ)†τ dϕ

)
(355)

The E.o.M. for the U(1) is much similar to the one we did now, but simpler.

Now, setting

ϕ =
1√
2
ρξ

(
ρ2 = 2ϕ†ϕ, ξ†ξ = 1

)
ϕ̂ = ξ†τ ξ

Aµ = ϕ̂ ·Aµ

Cµ = iξ†∂µξ

(356)

The currents can be rewritten

jµ = −gρ
2

2

[
g

2
Aµ +

(
g′

2
Bµ + Cµ

)
ϕ̂+

1

2
ϕ̂× ∂µϕ̂

]
,

kµ = −g
′ρ2

2

(
g

2
Aµ +

g′

2
Bµ + Cµ

)
=
g′

g

(
ϕ̂ · jµ

)
.

(357)
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It is easy to verify the second equation

kµ = −2g
′

2
Im

{
1√
2
ρξ†D̂ν

(
1√
2
ρξ

)}
=
g′

2
Im

{
ρξ†

(
∂ν − i

g

2
τ aAa

ν − i
g′

2
Bν

)
ρξ

}
=
g′

2
Im

{
ρξ† (∂νρ) ξ + ρ2ξ†∂νξ − i

gρ2

2
Aa

νξ
†τ aξ − ig

′

2
Bνρ

2ξ†ξ

}
=
g′

2
Im

{
ρ∂νρ+ ρ2(−i)Cν − i

gρ2

2
Aa

νϕ̂
a
− ig

′

2
Bνρ

2

}
= −g

′

2
ρ2 Im

{
Cν + i

g

2
Aν + i

g′

2
Bν

}
= −g

′

2
ρ2
(
g

2
Aν +

g′

2
Bν + Cν

)

(358)

where we used that Cν ∈ R.
This can be seen as follows using ξ†ξ = 1

Cν = iξ†∂νξ = −i∂νξ†ξ (359)

We showed that Cν is equal to its complex conjugate and as a result it has to be real.
We can also verify that

kµ =
g′

g

(
ϕ̂ · jµ

)
=
g′

g

(
−gρ

2

2

)[
g

2
ϕ̂ ·Aµ +

(
g′

2
Bµ + Cµ

)
ϕ̂ · ϕ̂+

1

2
ϕ̂ · (ϕ̂× ∂µϕ̂)

]
=− g′ρ2

2

[
g

2
Aµ +

g′

2
Bµ + Cµ

] (360)

The verification of jµ comes as follows.
First, we need to introduce some Fierz identities [24],[26].∑

i

(
ϕ†τ iϕ

)2
=
(
ϕ†ϕ

)2
,

∑
i

(
ϕ†τ iϕ

)(
ϕ†τ i∂µϕ

)
=
(
ϕ†ϕ

)(
ϕ†←→∂µϕ

)
,(

ϕ†τ iϕ
)(
ϕ†←−→∂µϕ

)
−
(
ϕ†ϕ

)(
ϕ†τ i←−→∂µϕ

)
= i
(
ϕ†τ iϕ

)
∂µ

(
ϕ†τ kϕ

)
εijk, etc.

(361)

where

ϕ†←−→∂µϕ = ϕ†∂µϕ− (∂µϕ)
†ϕ (362)
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Then starting from the RHS of the second equation from (354), we have

i
g

2

[
ϕ†τ iD̂νϕ− (D̂ϕ)†τ iϕ

]
=

= i
g

4

[
ρξ†τ i

(
∂ν(ρξ)− i

g

2
τ jAj

νρξ
−i
g′

2
Bνρξ

)
−
(
∂ν(ρξ)− i

g

2
τ jAj

νρξ − i
g′

2
Bνρξ

)†

τ iρξ

]
= Expanding the covariant derivative

=
igρ2

4

(
ξ†τ i ∂νρ

ρ
ξ + ξ†τ i∂νξ − i

g

2
Aj

νξ
† {τ i, τ j

}
ξ − g′Bνξ

†τ iξ

)
Use anticommutator of Pauli matrices

−ξ†τ i ∂νρ

ρ
ξ − ∂νξ†τ iξ

)
=
gρ2

2

(
i

2

(
ξ†τ i∂νξ − ∂νξ†τ iξ

)
+
g

2
Ai

ν +
g′

2
Bν ϕ̂

i

)
=
gρ2

2

(
g

2
Ai

ν +
g′

2
Bν ϕ̂

i +
i

2

(
ξ†τ i
←→
∂νξ
))

Exploit ξ†ξ = 1

=
gρ2

2

(
g

2
Ai

ν +
g′

2
Bν ϕ̂

i +
i

2

(
ξ†ξ
) (
ξ†τ i←→∂νξ

))
Use 3rd Fierz identity

=
gρ2

2

(
g

2
Ai

ν +
g′

2
Bν ϕ̂

i +
1

2
εijk

(
ξ†τ jξ

)
∂ν
(
ξ†τ kξ

)
+
i

2

(
ξ†τ iξ

) (
ξ†
←→
∂νξ
))

Remember ϕ̂a = ξ†τ aξ

=
gρ2

2

(
g

2
Ai

ν +
g′

2
Bν ϕ̂

i +
1

2
ϕ̂× ∂ν ϕ̂

∣∣∣
i
+
i

2
ξ†τ iξ

(
ξ†∂νξ − ∂νξ†ξ

))
Use (359)

=
gρ2

2

(
g

2
Ai

ν +
g′

2
Bν ϕ̂

i +
1

2
ϕ̂× ∂ν ϕ̂

∣∣∣
i
+ Cν ϕ̂

i

)
.

(363)
We are now ready to introduce the Cho-Maison ansatz

ρ = ρ(r)

ξ = i

(
sin(θ/2)e−iφ

− cos(θ/2)

)
,

ϕ̂ = ξ†τ ξ = −r̂,

Aµ =
1

g
A(r)∂µtϕ̂+

1

g
(f(r)− 1)ϕ̂× ∂µϕ̂,

Bµ = − 1

g′
B(r)∂µt−

1

g′
(1− cos θ)∂µφ,

(364)

What are we to do with this ansatz? As in the ’t Hooft-Polyakov ( see section XA one or in the Julia-Zee (see
section XB), we will derive a system of differential equations for the functions of the ansatz.
This can be achieved in two equiavlent ways. We can either substitute the ansatz in the equations of motion or
calculate the energy functional in terms of the unknown functions and minimize the energy functional.
We will use the second way, as it is much easier to deal with a scalar quantity (i.e. the Hamiltonian) rather than all
those scary vectors and matrices.

However, before we get going, in order to showcase the first way, as well, we are going to see what we can get from
the U(1) gauge field E.o.M.

Substituting the ansatz (364) in the E.o.M. for the U(1) gauge field, we get

∂µGµν =
g′ρ2

2

(
g

2
Aa

µϕ̂
a +

g′

2
Bµ + Cµ

)
⇒ ∂µ∂

µBν − ∂ν∂µBµ =
g′ρ2

2

(
g

2
Aa

µ (−r̂a) +
g′

2
Bµ + Cµ

) (365)
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To proceed we need to calculate each term in (365).
For the d’Alambertian of Bν

□Bν = − 1

g′
,□B∂νt−

1

g′
□ [(1− cos θ)∂νφ]

=
1

g′
1

r2
∂

∂r

(
r2B

)
∂νt−

1

g′
∂µ (sin θ∂µθ∂νφ+ (1− cos θ)∂µ∂νφ)

(366)

where we employed the d’Alambertian operator in spherical coordinates in the first term. Doing the same for the
second term

=
1

g′
1

r2
∂

∂r

(
r2B

)
∂νt−

1

g′
[
cos θ(∇θ)2∂νφ+ sin θ∇2θ∂νφ+ sin θ∂µθ∂

µ∂νφ
]

− 1

g′
(sin θ ∂µθ ∂

µ∂νφ+ (1− cos θ)□∂νφ)

=
1

g′
1

r2
∂

∂r

(
r2B

)
∂νt−

1

g′

[
cos θ

r2
∂νφ− sin θ

1

r2 sin θ
cos θ

]
=

1

g′
1

r2
∂

∂r

(
r2B

)
∂νt

(367)

where we ignored terms of the form ∂µθ∂
µ∂νφ and □∂νφ, because they are zero, of course.

For the divergence of Bµ

∂µB
µ = −1

g
∂µB∂µt−

1

g
B∂µ∂µt−

1

g′
∂µ(1− cos θ)∂µφ−

1

g
(1− cos θ)∂µ∂µφ = 0 (368)

For the right hand side of (365)

Aa
µ

ra

r
=

1

g
A∂µt

Ct = 0, Cr = 0

Cθ = iξ†∂θξ =
i

2r
(−i)

(
sin( θ2 )e

iφ − cos θ
2 )
)(

cos
(
θ
2

)
e−iφ

sin
(
θ
2

) )
= 0.

(369)

and

Cϕ = iξ†∂φξ =
i

r sin θ
(−i)

(
sin( θ2 )e

iφ − cos θ
2 )
)(

sin
(
θ
2

)
e−iφ

0

)

=
tan

(
θ
2

)
2r

(370)

Substituting all the above equations from (367) to (370) into (365), we get

1

g′
1

r2
∂

∂r

(
r2B

)
∂vt =

g′ρ2

2

(
g

2

1

g
A∂vt−

g′

2

1

g′
B∂vt−

g′

2

1

g′
(1− cos θ) ∂νφ+ Cν

)
(371)

Now, it is easy to see that all the choices for ν lead to trivially satisfied equations65, apart from ν = t, which yields

B̈ +
2

r
Ḃ =

g′2

4
ρ2(B −A) (372)

65 Maybe ν = φ needs a little more work, but basic trigonometry suffices.
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This is how we extract equations for our ansatz functions from the equations of motion. Now, for the rest of them,
we are going to turn our attention to the Hamiltonian of the system.

We can extract the Hamiltonian density from the (00) component of the energy momentum tensor.

H = T00 = −G0ρG
0ρ − F a

0ρF
ρa
0 + 2 (D0ϕ)

†
D0ϕ− g00L (373)

The Hamiltonian of the system is just the integral over space of (373). Defining the non-Abelian electric and
magnetic fields as

Ea
i = F a

0i Ba
i =

1

2
εijkF

jka (374)

and their hypercharge counterparts

EY i = G0i BY i =
1

2
εijkG

jk (375)

We can write the full Hamiltonian as

H =

∫
d3xH =

∫
d3x

{
1

2
(Ea

i )
2
+

1

2
(Ba

i )
2
+

1

2
E2

Y i +
1

2
B2

Yi
+ (D0ϕ)

†
D0ϕ

+(Diϕ)
† (

Diϕ
)
+
λ

2

(
ϕ†ϕ− µ2

λ

)2
} (376)

The process up to now bears much resemblance to the ’t Hooft-Polyakov and Julia-Zee case,we discussed earlier.

The next step is to substitute the ansatz (364) into our Hamiltonian (376). This will prove to be a long procedure re-
quiring patience and care. To make it easier to ourselves, we are going to treat each term of the Hamiltonian separately.

Starting with what to be the simplest term to calculate, the Higgs potential.

V (ϕ) =
λ

2

(
ρ2

2
− µ2

λ

)2

(377)

Now for the UY (1) fields. We have

EYi
= G0i = ∂0Bi − ∂iB0 = −∂iB0 = −∂i

(
− 1

g′
B(r)

)
=

1

g′
∂iB(r) (378)

where temporal derivatives of Bi vanish.
Its square is

EYi
Ei

Y =
1

g′2
∂iB∂

iB =
1

g′2
(∇B)2 =

Ḃ2

g′2
(379)

where Ḃ indicated differentiation with respect to r.

Next up is the magnetic UY (1) contribution.

BY i =
1

2
εijkGjk = εijk∂jBk = − sin θ

g′
εijk∂jθ ∂mφ (380)

We know the drill now. We square it.
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BYiB
i
Y =

sin2 θ

g′2
εijkεilm∂jθ ∂kφ∂lθ ∂µφ Substituting the ansatz

=
sin2 θ

g′2
(δjlδkm − δjmδkl) ∂jθ ∂kφ∂lθ ∂mφ Using what we should have learned by heart by now (222)

=
sin2 θ

g′2

[
(∂lθ ∂mφ)

2 − (∂mθ ∂
mφ)

2
]

Contracting with the Kronecker delta’s

=
sin2 θ

g′2
(∇θ)2 (∇φ)2 The second term in the brackets above contributes nothing

=
1

g′2r4
Well, that certainly looks monopoleish

(381)
Next station, our favourite SU(2) gauge fields.

The ”color” electric field is

Ea
i = F a

0i = ∂0A
a
i − ∂iAa

0 + gεabcA
b
0A

c
i Definition

=
1

g
∂iA(r)

r̂a

r
+

1

g
A(r)∂i

(
ra

r

)
+ gεabc

1

g
A(r)

rb

r

1

g
(f − 1)εcde

rd

r
∂i

(
re

r

)
Ansatz sub

=
1

g
∂iA

r̂a

r
+

1

g
A
r2δia − rira

r3
− 1

g
(δadδbe + δaeδbd)A(f − 1)

rbrd

r2
raδie − rire

r3
Using (222),(239)

=
1

g
∂iA

ra

r
+

1

g
A
r2δia − rira

r3
− A(f − 1)

g

rari − r2δia

r3
Symmetry washed off some terms

=
1

g
∂iA

ra

r
+

1

g
A f

r2δia − rira

r3

(382)
Let’s square it now!

Ea
i E

a
i =

1

g2

[
∂iA∂

iA+
A2f2

r4

(
r4
(
δia
)2

+ r4 − 2r2δiarira
)
+ 2A∂iAf

r2ri − rir2

r2

]
=

1

g2

(
Ȧ2 + 2

A2 f2

r2

) (383)

At this point, we should notice the similarity with the Julia-Zee ”color” field contribution (299).

The stakes are higher now. We will calculate the contribution from the ”color” magnetic field.

Ba
i =

1

2
εijk

(
∂jA

a
k − ∂kAa

j + gεabcA
b
jA

c
k

)
= εijk∂jA

a
k +

g

2
εabcεijkA

b
jA

c
k

=
1

g
∂jfεijkεabc

rb

r
∂k

(
rc

r

)
+ εijkεabc

f − 1

g
∂j

(
rb

r

)
∂k

(
rc

r

)
+
g

2
εabcεijkA

b
jA

c
k

(384)

As you can see, the expressions are starting to bite. We will treat each term in (384) separately, starting from

εijkεabc
g

∂jf
rb

r
∂k

(
rc

r

)
=
εijkεabc

g
∂jf

rb

r

r2δkc − rkrc

r3

=
∂jf

gr2
εijcεabcr

b

=
∂jf

gr2
(∂ia∂jb − ∂ib∂ja) rb

=
(∂bf) r

bδia − ∂afri

gr2

(385)
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The second term is messier.

εijkεabc
f − 1

g
∂j

(
rb

r

)
∂k

(
rc

r

)
=

1

r2
εijkεabc

f − 1

g

r2δbj − rbrj

r2
r2δkc − rkrc

r2

=
1

r6
εijkεabc

f − 1

g

(
r4δbjδkc + rbrjrkrc − rbrjr2δkc − rkrcδbj

)
=

1

r2
εijkεajk

f − 1

g
− rbrj

r4
f − 1

g
εijcεabc −

rkrc

r4
f − 1

g
εijkεajc

=
1

r2
(δiaδjj − δijδaj)

f − 1

g
− 2

r

rbrj

r2
f − 1

g
(δiaδjb − δibδja)

=
2

r2
δia

f − 1

g
− 2

f − 1

g
(δia) +

2

r2
rari

r2
f − 1

g

(386)

And the last one is of course the worst.

g

2
εabcεijkA

b
jA

c
k = εabcεijk

1

2gr2
(f − 1)2

rd

r
∂j

(
re

r

)
εbde

rf

r
∂k

(
rg

r

)
εcfg

=
1

2gr2
(f − 1)2rdrf

r2
r2δje − rjre

r2
r2δkg − rkrg

r2
εabcεijkεbdeεcfg

=
1

r2
(f − 1)2

2g

rdrf

r2
εabcεijkεbdjεcfk

=
1

2gr2
(f − 1)2rdrf

r2
(δajδcd − δadδcj) (δicδjf − δifδcj)

=
1

r2
(f − 1)2

2g

rdrf

r2
(δajδcdδicδjf − δajδcdδifδcj − δadδcjδicδjf + δadδcjδifδcj)

=
(f − 1)2

2gr2

(
rira

r2
− rari

r2
− rari

r2
+ 3

rari

r2

)
=

1

r4
(f − 1)2

g
rari

(387)

After all is said and done 66, we can write for Ba
i

Ba
i =

(∂bf) r
bδia − ∂afri

gr2
+ 2

rari

r4
f − 1

g
+
rari

r4
(f − 1)2

g

=
rḟδia

gr2
− ∂afr

i

gr2
+
f2 − 1

g

rari

r4

(388)

And we square it,

Ba
i B

a
i =

(
rḟδia

gr2
− ∂afr

i

gr2
+
f2 − 1

g

rari

r4

)2

=
r2f2

(
δia
)2

g2r4
+

(∂af) (∂
af) r2

g2r4
+

(
f2 − 1

)2
g2r8

r4

= 2
rḟδia

gr2

(
f2 − 1

)
g

rari

r4
− 2

rfδia

gr2
∂afr

i

gr2
− 2

∂αfr
i

r2
f2 − 1

g

rari

r4

= 3
ḟ2

g2r2
+

ḟ2

g2r2
+

(
f2 − 1

)2
g2r4

+ 2
f
(
f2 − 1

)
g2r3

− 2
ḟ2

g2r2
− 2

f
(
f2 − 1

)
g2r3

= 2
ḟ2

g2r2
+

(
f2 − 1

)2
g2r4

(389)

66 and also substituting (385),(386),(387) into (384)
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Next up, we are going to calculate the covariant derivatives of ϕ, but, first, we are going to prepare a little.

D0ϕ =

(
∂0 − i

g

2
τaAa

0 − i
g′

2
B0

)
ϕ =

i

2
√
2
Bρξ + i

A

2
√
2
τa
ra

r
ρξ (390)

Notice now that

τa
ra

r
=

(
0 1

1 0

)
sin θ cosφ+

(
0 −1
i 0

)
sin θ sinφ+

(
1 0

0 −1

)
cos θ

=

(
cos θ sin θe−iφ

sin θeiφ − cos θ

) (391)

When this acts on ξ, we get

i

(
cos θ sin θe−iφ

sin θeiϕ − cos θ

)
·

(
sin(θ/2)e−iφ

− cos(θ/2)

)
=

[ (
cos θ sin θ

2 − sin θ cos θ
2

)
e−iφ(

sin θ sin θ
2 + cos θ cos θ

2

) ]

=

[ (
cos2 θ

2 sin
θ
2 − sin3 θ

2 − 2 sin θ
2 cos

2 θ
2

)
e−iφ

2 sin2 θ
2 cos

θ
2 + cos3 θ

2 − sin2 θ
2 cos

θ
2

]

=

[
− sin θ

2e
−iϕ

cos θ
2

]
= −ξ

(392)

Therefore,

D0ϕ =
iB

2
√
2
ρξ − iA

2
√
2
ρξ (393)

And

D0ϕ
†D0ϕ =

(
−iB
2
√
2
ρξ† +

iA

2
√
2
ρξ†
)(

iB

2
√
2
ρξ − iA

2
√
2
ρξ

)
=
B2ρ2

8
+
A2ρ2

8
− 2

ABρ2

8
=

(A−B)2ρ2

8

(394)

One last term remains and that is the spatial covariant derivative.

Diϕ =

(
∂i − i

g

2
Aa

i τ
a − ig

′

2
Bi

)
1√
2
ρξ. (395)

We also need its daggered form.

(Diϕ)
†
= ϕ†

(
←−
∂ i + i

g

2
τ aAa

i + i
g′

2
Bi

)
(396)

The contraction of the two terms yields

(Diϕ)
†
(Diϕ) =

(
∂iϕ

† + i
g

2
ϕ†τ aAa

i + i
g′

2
ϕ†Bi

)(
∂iϕ− i

g

2
τaAa

iϕ− i
g′

2
Biϕ

)
=∂iϕ

†∂iϕ− ig
2
∂iϕ

†τ aAa
iϕ− i

g′

2
Bi∂iϕ

†ϕ+ i
g

2
ϕ†τ aAa

i ∂iϕ+
g2

4
ϕ† (τ aAa

i )
2
ϕ

+
gg′

4
ϕ†τ aAa

iBiϕ+ i
g′

2
ϕ†Bi∂iϕ+

gg′

4
ϕ†τ aAa

iBiϕ+
g′2

4
B2

i ϕ
†ϕ

= ∂iϕ
†∂iϕ+ i

g

2

(
ϕ†τ aAa

i ∂iϕ− ∂iϕ
†τ aAa

iϕ
)
− ig

′

2
Bi

(
∂iϕ

†ϕ− ϕ†∂iϕ
)

+
gg′

2
ϕ†τ aAa

iBiϕ+
g2

4
ϕ† (τ aAa

i )
2
ϕ+

g′2

4
B2

i ϕ
†ϕ

(397)
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Now that is a lot of terms. Just as before we are going to treat them one by one.

∇ϕ =
∂ϕ

∂r
r̂+

1

r

∂ϕ

∂θ
θ̂ +

1

r sin θ

∂ϕ

∂φ
φ̂

=
1√
2
ξ̇r̂+

1

r
√
2
ρ
1

2

(
cos(θ/2)e−iφ

sin(θ/2)

)
+

1

r sin θ

1√
2
ρ(−i)

(
sin(θ/2)e−iφ

0

) (398)

Calculating the first term of (397)

∂iϕ
†∂iϕ = ∇ϕ†∇ϕ =

1

2
ρ̇2 +

1

8r2
ρ2
(
cos

(
θ

2

)
e+iφ sin

(
θ

2

))(
cos
(
θ
2

)
e−iφ

sin
(
θ
2

) )
+

ρ2

2r2 sin2 θ
sin2

θ

2

=
1

2
ρ̇2 +

1

8r2
ρ2
(
cos2

(
θ

2

)
+ sin2

(
θ

2

))
+

ρ2

2r2
sin2 θ/2

sin2 θ

=
1

2
ρ̇2 +

ρ2

8r2
(
1 + tan2 θ/2

)
(399)

For our next term

g′2

4
BiBiϕ†ϕ =

g2′ρ2

8

1

g2′
(1− cos θ)2(∇ϕ)2

=
ρ2

8
4 sin2

θ

2

1

r2 sin2 θ

=
ρ2

2r2
sin4 θ/2

sin2 θ

=
ρ2

8r2
tan2(θ/2)

(400)

Next up in line is

g2

4
ϕ† (τ aAa

i )
2
ϕ =

g2

4
ϕ†(τ ·A)(τ ·A)ϕ

=
g2

4
ϕ† [(A ·A) I+ i (A×A) τ ]ϕ Pauli Matrices identity

=
g2

4
Aa

iA
a
iϕ

†ϕ =
g2

8
Aa

iA
a
i ρ

2

=
g2

8

1

g2
(f − 1)2ρ2

(
r̂b∂ir̂

c
) (
r̂d∂ir̂

e
)
εabcεade

=
(f − 1)2ρ2

8
εabcεade

rb

r

r2δic − rirc

r3
rd

r

r2δie − rire

r3
S-A terms vanish

=
(f − 1)2ρ2

8
(δbdδce − δbeδcd)

rbrd

r4
δce

=
(f − 1)2ρ2

8r2
(3− 1) =

(f − 1)2ρ2

4r2

(401)

where we used the following identity of the Pauli matrices

(a · τ )(b · τ ) = (a · b)I+ i(a× b) · τ (402)

For the following term
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gg′

4
ρ2ξ†τ aAa

iBiξ =
gg′

4
ρ2ξ†τa

1

g
(f − 1)

rb

r
εabc∂i

(
rc

r

)(
− 1

g′

)
(1− cos θ)∂iφξ

= −1

4
ρ2(f − 1)

(
ξ†τ aξ

)
(1− cos θ)

rbδic

r
∂iφεabc Notice ϕ̂ definition

= − (f − 1)(1− cos θ)

4
ρ2ϕ̂

a
εabc

rb

r
∂cφ Parallel vector cross product

= 0
(403)

Bringing in the next one

i
g′

2
Bi

(
∂iϕ

†ϕ− ϕ†∂iϕ
)
= i2

g′

2
i Im

{(
− 1

g′

)
(1− cos θ)∂iφ∂

iϕ†ϕ

}
= −i(1− cos θ)i Im

{
∇φ∇ϕ†Φ

}
= (1− cos θ) Im

{
1

r sin θ
φ̂

1

r sin θ

∂ϕ†

∂φ
φ̂ϕ

}

= 1
1

2
(1− cos θ)

ρ2

r2 sin2 θ
Im

{(
∂

∂φ
ξ†
)
ξ

}
=

1

2r2
(1− cos θ)

ρ2

2 sin2 θ
Im

{(
+sin(θ/2)e−iφ 0

)( sin(θ/2)e−iφ

cos(θ/2)

)
(−i)

}

=
sin2(θ/2)

4r2 sin2(θ/2) cos2(θ/2)
ρ2
(
− sin2(θ/2)

)
= −ρ

2

r2
tan2(θ/2)

4
.

(404)

In this calculation one should notice that ∇ only contributes its azimuthal part to the Higgs field, due to the
presence of φ.

We are almost done. Proceeding, now, to the final term.

ig

2

(
ϕ†τ aAa

i ∂iϕ− ∂iϕ
†τ aAa

iϕ
)

=
ig

2
2i Im

{
ϕ†τ aAa

iϕ
}

Cleaning up with Im

= −g Im
{
1

2
ρξ†τ aAa

i (∂iρξ + ρ∂iξ)

}
Expanding the derivative

= −g 1
2
ρ∂iρ Im

{(
ξ†τ aξ

)
Aa

i

}
− ϕ Im

{
ρ2

2
ξ†τ a∂iξAa

i

}
First term here vanishes after ansatz use

= − (f − 1)ρ2

2
Im
{
ξ†τ a∂iξ†r̂b∂ir̂

cεabc
}

Ansatz

= −g
4
Im
{
(−r̂a) (f − 1)r̂b∂ir̂

cεabc
}

= − (f − 1)ρ2

2
Im

{
ξ†τ a∂iξr̂b

δic − r̂ir̂c

r
εabc

}
r̂ir̂cdoes not contribute

= − (f − 1)ρ2

2r
Im
{
ξ†τ a∂iξr̂bεabi

}
= − (f − 1)ρ2

2r
Im
{
ξ†(τ × r) ·∇ξ

}
τ denotes a vector with components τ a

(405)
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To calculate the cross product, it is advisable to use spherical coordinates in order to prepare for the dot product
with ∇ξ.

Therefore, we introduce the Pauli matrices in spherical coordinates [22].

τ r = cosφ sin θτ 1 + sin θ sinφτ 2 + cos θτ 3 =

(
cos θ sin θe−iφ

sin θe+iφ − cos θ

)

τ θ = cos θ cosφτ 1 + cos θ sinφτ2 − sin θτ 3 =

(
− sin θ cos θe−iφ

cos θeiφ sin θ

)

τφ = − sinφ sinφτ 1 + sinφ cosφτ 2 = sinφ

(
0 −ie−iφ

ieiφ 0

) (406)

With these in our weaponry, we take on (405) where we left it.

− (f − 1)ρ2

2r
Im

ξ†
∣∣∣∣∣∣∣
r̂ θ̂ φ̂

τ r τ θ τφ

1 0 0

∣∣∣∣∣∣∣
(
∂ξ

∂r
r̂+

1

r

∂ξ

∂θ
θ̂ +

1

r sin θ

∂ξ

∂φ
φ̂

)
= − (f − 1)ρ2

2r
Im

{
ξ†
(
τφθ̂ − τ θφ̂

)(1

r

∂ξ

∂θ
θ̂ +

1

r sin θ

∂ξ

∂φ
φ̂

)} (407)

= − (f − 1)ρ2

2r
Im

{
ξ†

1

r
τφ ∂ξ

∂θ
− 1

r sin θ
ξ†τ θ ∂ξ

∂φ

}
= − (f − 1)ρ2

2r
Im

{
1

2r

(
sin

θ

2
e+iφ − cos

θ

2

) (
0 −ie−iφ

ieiφ 0

)(
cos θ

2e
−iφ

sin θ
2

)

+
i

r sin θ

(
sin

θ

2
e+iφ − cos

θ

2

)(
− sin θ cos θe−iφ

cos θe+iφ sin θ

)(
sin θ

2e
−iφ

0

)}

= − (f − 1)ρ2

2r
Im

{
1

2r

(
sin

θ

2
eiφ − cos

θ

2

)(
−ie−iφ sin θ

2

i cos θ
2

)

+
i

r sin θ

(
sin

θ

2
e+iφ − cos

θ

2

)(
− sin θ sin θ

2e
−iφ

cos θ sin θ
2

)}

= − (f − 1)ρ2

2r
Im

{
i

2r

(
− sin2

θ

2
− cos2

θ

2

)
+

i

r sin θ

(
− sin θ sin2

θ

2
− cos θ

2
sin θ

)
=

(f − 1)ρ2

2r

[
1

2r
+

1

r

(
sin2

θ

2
+

cos2 θ
2 − sin2 θ

2

2

)]

=
(f − 1)ρ2

2r2
.

Adding all equations from (399) to (XIC) gives us

Diϕ
†Diϕ =

ρ̇2

2
+
f2ρ2

4r
(408)

Summing all our results up to now before plugging them into our Hamiltonian.
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V λ
2

(
ρ2

2 −
r2

λ

)2
BYi

Bi
Y

1
g′2r4

EYi
Ei

Y
Ḃ2

g2

Ba
i B

ia 2 ḟ2

g2r2 +
(f2−1)

2

g2r4

Ea
i E

ia Ȧ2

g2 + 2A2f2

g2r2

D0ϕ
†D0ϕ (A−B)2ρ2

8

Diϕ
†Diϕ ρ̇2

2 + f2ρ2

4r

At long last, our Hamiltonian (376) is

H =

∫
d3xH = 4π

∫ ∞

0

dr
r2Ȧ2

2g2
+
A2f2

g2
+
ḟ2

g2
+

(
f2 − 1

)2
2g2r2

+
Ḃ2r2

2g′2
+

1

2g′2r2

+
(A−B)2ρ2

8
r2 +

ρ̇2

2
r2 +

f2ρ2

4
+
λ

2

(
ρ2

2
− µ2

λ

)2

r2
(409)

At this point one should notice that our Hamiltonian contains an incurable diverging term 1
2g′2r2 . That term

comes from the contribution of the Hypercharge field to the Hamiltonian which possesses via the ansatz a point like
singularity at the origin. The blow up of the Hamiltonian should definitily alert us and it is urgent to find a way to
regularize it. There have been numerous attempts to construct a finite energy Electroweak dyon in the context of
Beyond the Standard Model physics. For more, see (Cho et al., 1997, [6]), (Mavromatos et al., 2018, [21]) and (Ellis
et al., 2016,[11]).

Nevertheless, we turn a blind eye on this for now and continue minimizing the Hamiltonian by applying the Euler-
Lagrange equations on each of the variable functions living in there.
This is for B.

∂H
∂B
− d

dr

∂H
∂B

= 0

⇒ (B −A)p2

4
r2 − d

dr

(
Ḃr2

g′2

)
= 0⇒

(B −A)ρ2r2

4
− 2r

Ḃ

g′2
− r2 B̈

g2
= 0⇒

B̈ +
2

r
Ḃ − (B −A)ρ2g2

4
= 0

(410)

For A, we have

∂H
∂A
− d

dr

∂H
∂A

= 0⇒

2f2

g2
A+

(A−B)ρ2r2

4
− d

dr

(
r2Ȧ

g2

)
= 0⇒

2f2

g2
A+

(A−B)ρ2r2

4
− 2r

1

g2
A− r2Ä

g2
= 0

⇒ Ä+
2

r
Ȧ− 2f2A

r2
− (A−B)ρ2g2

4
= 0.

(411)



93

Euler-Lagrange equations on f yield

∂H
∂f
− d

dr

∂H
∂f

= 0⇒

2A2

g2
f +

(
f2 − 1

)
g2r2

2f +
ρ2

2
f − d

dr

(
2f

g2

)
= 0⇒

f̈ −A2f −
(
f2 − 1

)
f

r2
− g2ρ2f

4
f = 0.

(412)

and finally for ρ

∂H
∂ρ
− d

dr

∂H
∂ρ

= 0⇒

(A−B)2ρ

4
r2 +

f2ρ

2
+ λr2

(
ρ2

2
− µ2

λ

)
ρ− d

dr

(
pr2
)
= 0⇒

ρ̈+
2

r
ρ− λ

(
ρ2

2
− µ2

λ

)
ρ− f2ρ

2r2
− (A−B)2ρ

4
= 0.

(413)

This is the system of differential equations whose solution describes the Cho-Maison monopole. There is no
analytic solution for the given system and progress can by made only numerically. We show, however, as mentioned
in [7] the boundary conditions and asymptotic behaviours of the functions.

The boundary conditions ensuring a regular solutions in the SU(2) sector are

f(0) = 1, ρ(0) = 0, A(0) = 0, B(0) = b0,

f(∞) = 0, ρ(∞) = ρ0, A(∞) = A0, B(∞) = B0, (414)

The asymptotic behaviour near the origin is

f ≃ 1 + α1r
2 + · · · ,

ρ ≃ β1rδ + · · · ,
A ≃ a1r + · · · ,
B ≃ b0 + b1r + · · · ,

(415)

with δ = 1+
√
3

2 . And at infinity we have

f ≃ f1 exp(−κr) + · · · ,

ρ ≃ ρ0 + ρ1
exp(−

√
2µr)

r
+ · · · ,

A ≃ A0 +
A1

r
+ · · · ,

B ≃ A+B1
exp(−νr)

r
+ · · · ,

(416)

where ρ0 =
√

2/λµ, κ =
√
(gρ0)

2
/4−A2

0, and ν =
√
(g2 + g′2)ρ0/2.

D. Charge Properties

In this section, we are going to show that indeed the Cho-Maison ansatz (364) exhibits the magnetic properties
advertised.
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For this, we turn to the unitary gauge, which will simplify the calculations a lot, via the following gauge transfor-
mation.

ξ −→ Uξ =

(
0

1

)
,

U = −i

(
cos(θ/2) sin(θ/2)e−iφ

sin(θ/2)eiφ − cos(θ/2)

) (417)

Notice the remarkable similarity of this gauge transformation with the one in chapter VIIID!
It is easy to verify that in this gauge

ϕ̂a = δa3 (418)

But, what happens to the SU(2) gauge potential?
Well, to find out we have to perform the gauge transformation.

A′
µ = UAµU

−1 − 2i

g
(∂µU)U−1 (419)

where the factor of 2 is included because we work in a basis of Pauli matrices τ instead of τ
2
.

As always, we will work out each term separately.

Aµ = Aa
µτ

a =
1

g
A∂µt r̂

aτ a +
f − 1

g
r̂b∂µ(r̂

c)εabcτ a

=
1

g
A∂µtτ

r +
f − 1

g
r̂b
δµc − r̂µr̂c

r
εabcτ a

=
1

g
A∂µtτ

r +
f − 1

gr
τ arbεabµ

=
1

g
A∂µtτ

r +
f − 1

gr

(
−τ θδµφ + τφδµθ

)
(420)

where we used spherical coordinates, exploiting the fact that r̂a has only an r-component.

The transformation of the temporal component yields

1

g
A∂µtUτ

rU−1 =
1

g
A∂µt

(
cos θ

2 sin θ
2e

−iφ

sin θ
2e

+iφ − cos θ
2

)(
cos θ sin θe−iφ

sin θe+iφ − cos θ

)(
cos θ

2 sin θ
2e

−iφ

sin θ
2e

+iφ − cos θ
2

)

=
1

g
A∂µt

(
1 0

0 −1

)
=

1

g
A∂µtτ

3
(421)

The θ component

f − 1

gr

(
cos θ

2 sin θ
2e

−iφ

sin θ
2e

+iφ − cos θ
2

)(
− sin θ cos e−iφ

cos θe+iφ sin θ

)(
cos θ

2 sin θ
2e

−iφ

sin θ
2e

+iφ − cos θ
2

)
= −f − 1

gr

(
0 e−iφ

e+iφ 0

)
(422)

and the φ term

f − 1

gr
UτφU−1 = −f − 1

gr
τφ (423)
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The additive terms of the transformation

∂rU = 0

(∂θU)U−1 =
1

2r

(
− sin θ

2 cos θ
2e

−iφ

cos θ
2e

iφ sin θ
2

)(
cos θ

2 sin θ
2e

−iφ

sin θ
2e

iφ − cos θ
2

)

=
1

2r

(
0 −e−iφ

eiφ 0

)

(∂φU)U−1 =
1

r sin θ

(
0 −i sin θ

2e
−iφ

i sin θ
2e

iφ 0

)(
cos θ

2 sin θ
2e

−iφ

sin θ
2e

iφ − cos θ
2

)

=
i

2r

(
− tan θ

2 −e
−iφ

eiφ tan θ
2

)
(424)

And the resulting potential post-gauge transformation is

Aµ −→
1

g

 (sinφ∂µθ + sin θ cosφ∂µφ) f(r)

(− cosφ∂µθ + sin θ sinφ∂µφ) f(r)

−A(r)∂µt− (1− cos θ)∂µφ

 (425)

From this, we need

A3
µ = −1

g
A(r)∂µt−

1

g
(1− cos θ)∂µφ,

Bµ = − 1

g′
B(r)∂µt−

1

g′
(1− cos θ)∂µφ

(426)

Introducing now the electromagnetic potential Aµ and neutral potential Zµ, via the Weinberg mixing angle θW(
Aµ

Zµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Bµ

A3
µ

)

=
1√

g2 + g′2

(
g g′

−g′ g

)(
Bµ

A3
µ

) (427)

we get

Aµ = −e
(

1

g2
A+

1

g′2
B

)
∂µt−

1

e
(1− cos θ)∂µφ

Zµ =
e

gg′
(B −A)∂µt

(428)

with

e =
gg′√
g2 + g′2

. (429)

We now almost ready to calculate the electric charge of our solution.

qe =

∮
dS ·E =

∫
dSiEi =

∫
dSiF0i (430)

but

Fµν = ∂Aν − ∂νAµ = −e
[
1

g2
Ȧ+

1

g2′
Ḃ

]
(r̂µ∂νt− r̂v∂µt)−

1

e
sin θ (∂µθ ∂νφ− ∂νθ ∂µφ) (431)
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so

F0i = e

[
Ȧ

g2
+

Ḃ

g′2

]
r̂i (432)

and of course

qe = e

∮
dSir̂

i

(
Ȧ

g2
+

Ḃ

g′2

)
= 4πe

[
r2

(
Ȧ

g2
+

Ḃ

g′2

)]∣∣∣∣∣
r=∞

(433)

As for the magnetic charge

qm =

∫
dSiB

i = −1

2

∫
dSiεijkF jk =

∫
dSi r̂

i

er2
=

4π

e
(434)

appears to be twice as large as the fundamental Dirac charge from the Dirac quantization condition.

As for the corresponding charges for the neutral potential, we have

Gµν = ∂µZν − ∂νZµ =
e

gg′

(
Ḃ − Ȧ

)
(r̂µ∂νt− r̂ν∂µt) (435)

It is evident that

Gij = 0 (436)

so it does not possess a magnetic charge in the neutral sector, while its electric counterpart is

F0i = −
e

gg′

(
Ḃ − Ȧ

)
r̂i

qZe = −
4πe

gg′

(
r2Ḃ − r2Ȧ

)∣∣∣∣
r=∞

= 0

qZm = 0

(437)

by virtue of the asymptotic behaviours of the functions A,B.

E. Gauge Invariance

While everything worked smoothly, proving the charges of our construction, one cannot ignore that we fixed the
gauge to achieve our malicious goals. Proving that this method can be altered accordingly and cast in a gauge
invariant way is a whole another story that certainly deserves our attention. One such attempt is presented at [5] by
none other that Cho himself, while interesting ideas are presented by Savvidy [30].

In the following section, I shall be showing my take on the gauge invariance of the model, which admittedly
has a lot of problems, but nevertheless succeeds on reproducing the results of the Cho-Maison ansatz in another gauge.

Let’s say that we do not go into the unitary gauge, but rather stay in the radial/hedgehog gauge given by (364).
Then, it is easy to see that

ϕ̂a = ξaτ aξ = −r̂a

ϕ = ρξ

Aa
µ =

1

g
A∂µt r̂

a +
1

g
(f − 1)εabcr̂

b∂µr̂
c.

Aµ = Aa
µϕ̂

a = −1

g
A∂µt

(438)

Now for the first sketchy step. Inspired from the ’t Hooft-Polyakov tensor, we write the Abelianisation of the SU(2)
tensor as

Fµν = ∂µAν − ∂νAµ +
1

g
εabc∂µϕ̂

b∂ν ϕ̂
cϕ̂a (439)
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This seems to have come out of nowhere, but I think it grants the Abelian Fµν the gauge invariance needed.

The second sketchy step of this derivation has to do with the unmixing with the Weinberg angle. In standard
Weinberg-Salam procedures, we are used to see this implemented via a rotation on the potentials like (427). One can
see, however, that if (427) holds, so does(

Fµν

Gµν

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Gµν

Fµν

)
(440)

Here, we are using the unmodified version of the Abelian projection of course. We can verify as

Fµν = ∂µAν − ∂νAµ = By definition

∂µ
(
cos θWBν + sin θWA3

ν

)
− ∂ν

(
cos θWBµ + sin θWA3

µ

)
= By employing (427)

cos θW (∂µBν − ∂νBµ) + sin θW
(
∂µA

3
ν − ∂νA3

µ

)
= Rearranging

cos θWGµν + sin θWFµν

(441)

Similarly for Gµν

Gµν = ∂µZν − ∂νZµ = By definition

∂µ
(
− sin θWBν + cos θWA3

ν

)
− ∂ν

(
− sin θWBµ + cos θWA3

µ

)
= By employing (427)

− sin θW (∂µBν − ∂νBµ) + cos θW
(
∂µA

3
ν − ∂νA3

µ

)
= Rearranging

− sin θWGµν + cos θWFµν

(442)

Now with the modified (439), (427) does not imply in any way (440). However, the inverse is true. If (440) holds,
(427) is satisfied automatically.

Let us check how this works.(
Fµν

Gµν

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Gµν

Fµν

)
=

(
cos θWGµν + sin θWFµν

− sin θWGµν + cos θWFµν

)
(443)

=

 ∂µ (cos θWBν + sin θWAν)− ∂ν (cos θWBµ + sin θWAµ) +
g′

g
√

g2+g′2
εabc∂µϕ̂

b∂ν ϕ̂
cϕ̂a

∂µ (− sin θWBν + cos θWAν)− ∂ν (− sin θWBµ + cos θWAµ) +
1√

g2+g′2
εabc∂µϕ̂

b∂ν ϕ̂
cϕ̂a


Now,we can see that both neutral and electromagnetic tensor have been endowed with a ’topological’ kind of term
reminiscent of the topological current from the ’t Hooft-Polyakov tensor (229). Also, noticing the argument of
the partial derivatives, we see that (427) is forced automatically, which is a good thing for our trick. If (427) was
violated, we would be doing something wrong. Of course, employing indirectly via (443) is not necessarily the
right way. One could argue, for example, that only (427) holds and the tensors are obtained via direct calculation
rather than rotating. Everything involved in this calculation should be taken with great caution and critical
thinking and the physical meaning (or physical meaninglessness) of it all is subject to discussion. Having warned
you all of the imminent dangers, we proceed with our calculation and let all the brave or irrational ones follow along!67

To calculate the electric and magnetic content of Fµν ,Gµν , we need to calculate first their respective 4-potentials
and plug them in, while also not forgetting the topological current contribution.

67 The notion of the Weinberg rotation in terms of tensors is also found in [24] and [33]. The latter discusses the general independent of
gauge form of an electromagnetic tensor for the broken symmetry phase of the electroweak model.
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Aµ = cos θWBµ + sin θWAµ

= −e
(

1

g2
A+

1

g′2
B

)
∂µt−

e

g′2
(1− cos θ)∂µφ

Zµ = − sin θWBµ + cos θWAµ

=
e

gg′
(B −A)∂µt+

e

gg′
(1− cos θ)∂µφ,

(444)

Comparing with (428), we see that both potentials now have monopole like terms. This might appear as problematic,
especially for Zµ, whose field we expect to exhibit no charges, but the topological terms we added, are here to save
the day! Notice, also that electrically everything remains the same as in the unitary gauge.

We need

Fjk = ∂jAk − ∂kAj −
e

g2
εabc∂j r̂

b∂kr̂
cr̂a

= − e

g′2
sin θ (∂jθ ∂kφ− ∂kθ ∂jφ)−

e

g2
1

r2
εabcr̂

aδjbδkc

So

εijkFjk = −2 e

g′2
sin θ (∇θ ×∇φ)|i − e

g2
r̂a

r2
εajkεijk

= − e

g′2
2 sin θ

(
1

r
θ̂ × 1

r sinϕ
φ̂

)∣∣∣∣i − e

g2
r̂a

r2
(δaiδjj − δajδji)

= −2 e
r2

(
1

g2
+

1

g′2

)
r̂i = −2 e

r2

(
g′2 + g2

(gg′)
2

)
r̂i = − 2

er2
r̂i

We are now in position to calculate the magnetic charge of the electromagnetic tensor in the ’hedgehog’ gauge.

qm =

∫
−1

2
εijkF jkdSi =

4π

e
(445)

The magnetic content of Gµν can be found as

Gjk =∂jZk − ∂kZj +
1√

g2 + g′2
εabc∂j ϕ̂

b ∂kϕ̂
cϕ̂a

=
1√

g2 + g′2
sin θ (∂jθ ∂kϕ− ∂kθ ∂jϕ)−

1√
g2 + g′2

εabc∂j r̂
b ∂kr̂

cr̂a

=
1√

g2 + g′2
sin θ (∂jθ ∂kϕ− ∂kθ ∂jϕ)−

1√
g2 + g′2

ra

r2
εajk

(446)

And upon contraction with Levi-Civita,

εijkGjk =
1√

g2 + g′2
2 sin θ (∇θ ×∇ϕ)|i − 2√

g2 + g′2
r̂i

r2
= 0 (447)

Therefore, Gµν possesses no magnetic charge. We conclude that this method yields the same results in the hedgehog

gauge as well as in the unitary gauge (since derivatives of ϕ̂a vanish there.
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F. Clarifications and Discussion

This one chapter shall serve as a closure to the Cho-Maison monopole discussion. We will present some peculiar-
ities with SU(2) Yang-Mills field equation of motion in the Standard Model (354) that is seemingly not manifestly
gauge invariant. Based on this and discussions from Restricted Gauge Field theory [4], we will show the group

transformational properties of ϕ̂a and the Abelianization of the Weinberg-Salam theory [5].

1. Gauge Properties of SU(2) Yang-Mills field in Weinberg-Salam model

Remember (354) in vector form states

DµF
a
µν = −jaν = i

g

2

[
ϕ†τ a

(
D̂νϕ

)
−
(
D̂νϕ

)†
τ aϕ

]
In adjoint representation

Dµ(F
a
µντ

a) = −jν = i
g

2

[
ϕ†τ a

(
D̂νϕ

)
−
(
D̂νϕ

)†
τ aϕ

]
τ a

Now it easier to perform a gauge transformation.

UDµF
a
µντ

aU† = −jν = i
g

2

[
ϕ†U†τ aU

(
D̂νϕ

)
−
(
D̂νϕ

)†
U†τ aUϕ

]
τ a

At first glance, the two sides of our equation seem to behave differently, which would ruin our day and definitely the
Standard Model. Thankfully, this is not the case here, because we can prove that the two sides indeed transform the
same way, but closer inspection is needed. It is also helpful to work with infinitesimal gauge transformations here,
approximating U with

U = exp
(
i
g

2
θiτ i

)
≈ 1 + iθiτ i (448)

We can show for the left hand side of (354) and in general for any adjoint representation quantity that

DµF
α′
µντ

α = UDµF
α
µντ

αU† Adjoint rep transformation law

=
(
1 + iθβτβ

) (
DµF

α
µντ

α
) (

1− iθβτβ
)

Infinitesimal transform

=DµF
α
µντ

α + iθβDµF
α
µν

(
τβτ a − τατβ

)
Keeping up to second order terms

=DµF
α
µντ

α + iθβDµF
α
µν

[
τβ , τα

]
=DµF

α
µντ

α + iθβFα
µνiε

βαγτ γ Rearranging-Renaming indices

=
(
DµF

α
µν + iθβDµF

γ
µνiε

βγα
)
τα

(449)

At this point, one can notice from the first and last row of the above calculation that

DµF
α′

µν =
(
δαγ + iθβεβγα

)
DµF

γ
µν (450)

and setting (
Tβ
)
γα

= εβγα (451)

we get

DµF
α′

µν = U3×3DµF
α
µν (452)

where

U3×3 = exp
(
iθβTβ

)
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We see that adjoint representation quantities can also be transformed as ’vectors’ under the transformation generated
by the structure constants!

Now, we are going to perform a similar procedure on the R.H.S of (354), but for simplicity we are going to bother
only with the first term, since the other one has the same transformational properties.

ϕ†U†ταUDνϕτ
α Second term of (354)

=ϕ† (1− iθβτβ
)
τα
(
1 + iθβτβ

)
Dνϕτ

α Infinitesimal transform

=ϕ†τ aDνϕτ
α + iθβϕ† (τατβ − τβτα

)
Dνϕ

ατα Keeping up to second order terms

=ϕ†ταDνϕτ
α + iθβϕ† [τα, τβ

]
Dνϕτ

α

=ϕ†ταDνϕτ
α + iθβϕ†iεαβγτ γDνϕτ

α

=ϕ†ταDνϕτ
α + iθβϕ†τ γDνϕ iε

αβγτα Renaming-Rearranging

=
(
ϕ†ταDνϕ+ iθβ

(
ϕ†τ γDνϕ

)
iεαβγ

)
τα

(453)

Now comparing the last line of (453) with the last one from (449), it becomes evident that (354) holds indeed in
every gauge!

2. Transformational properties of ϕ̂

This brings us to the next topic. We remind that

ϕ̂a = ξ†τ aξ (454)

which is a triplet. Now a gauge transformation on this makes it look like

ϕ̂a′ = ξ†U†τ aUξ (455)

which is in the limbo between an adjoint triplet and just something weird. We are going to show that it is in fact an
adjoint triplet. One can notice that the structure of is the same with (453) and as a result, a similar analysis reveals
that it indeed transforms as in adjoint representation.
There is also another interesting way to deduce this and that is to check its covariant derivative.
First, we should state the following identity for fundamental representation objects ψ

Dµ

(
ψ†ψ

)
= (Dµψ)

†
ψ +ψ†Dµψ = ∂µ

(
ψ†ψ

)
(456)

which can be verified be simple calculations. The only remark here is that the covariant derivative goes under the
dagger operator when performing the multiplication rule and that is to guarantee that our quantity is a group scalar
as it should.
Inspired from this, we will calculate the covariant derivative of ϕ̂.

Dµϕ
α = (Dµξ)

†
ταξ + ξ†ταDµξ

= ∂µξ
†τ aξ + i

g

2
Aβ

µξ
†τβταξ + ξ†ταDµξ − i

g

2
Ab

µξ
†τατ bξ

= ∂µ
(
ξ†ταξ

)
− ig

2
Aβ

µξ
† [τα, τβ

]
ξ

= ∂µϕ
α − ig

2
Aβ

µiε
αβγξ†τ γξ

= ∂µϕ
α +

g

2
εαβγAβ

µϕ
γ

(457)

which is the covariant derivative of an adjoint representation quantity as we have shown in (99)!
This is indeed really, since now that we have our hands on an SU(2) triplet (which is also trivially invariant under
U(1) transformations), we can impose the condition of the vanishing covariant derivative at infinity much like in the ’t
Hooft-Polyakov case of chapter VIII F and create the modified SU(2) Abelian projection tensor in the Weinberg-Salam
model (439), instead of summoning it through the mystical arts of guessing.
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XII. FINITE ENERGY ELECTROWEAK MONOPOLE

A. Born-Infeld Regularization of the Cho-Maison Monopole

We return for now to the problem we met at (409). As you may remember the energy of the Cho-Maison monopole
has an incurable divergence because of the singular nature of the hypercharge monopole field.

We can write (409) separating the divergent part with everything else.

H = H0 +H1

H0 = 4π

∫ ∞

0

1

2g′2r2
dr

H1 =

∫
d3xH = 4π

∫ ∞

0

dr
r2Ȧ2

2g2
+
A2f2

g2
+
ḟ2

g2
+

(
f2 − 1

)2
2g2r2

+
Ḃ2r2

2g′2

+
(A−B)2ρ2

8
r2 +

ρ̇2

2
r2 +

f2ρ2

4
+
λ

2

(
ρ2

2
− µ2

λ

)2

r2

(458)

The divergence of the energy functional casts serious doubts on the existence of a consistent monopole solution
in the Weinberg-Salam theory and calls for an urgent extension of the model if one wants to acquire a finite energy
solution.

Here, we will examine the Born-Infeld extension of the hypercharge sector as proposed by Arunasalam and
Kobakhidze [3] and continued by Mavromatos and Sarkar [21]. The modification proposed requires only the sub-
stitution of the hypercharge field kinetic term with a non-linear Born-Infeld term as shown below

LBI = − (Dµϕ)
†
(Dµϕ)− λ

2

(
ϕ†ϕ− µ2

λ

)2

− 1

4
F a
µνF

µν,a + β2

(
1−

√
1 +

1

2β2
GµνGµν − 1

16β4

(
GµνG̃µν

)2)
(459)

The formalism is the same with the Lagrangian of the Weinberg-Salam model from (353). The only additions

we have to clarify are G̃µν = 1/2εµνρσG
ρσ, which the dual tensor of Gµν and the parameter β, which is generally

connected to the string mass scale68, but here it is sufficient to consider it a free parameter to be identified by the
experiment.

Having our Lagrangian, the next step is to acquire the equations of motion. As one may expect, they do not
differ that much from the ones we derived before on the Cho-Maison monopole. In fact, only the one related to
the hypercharge field is modified. We do not do the derivation here, but one can intuitively understand that upon
differentiation the square root moves to the denominator and on the numerator remains a function of Gµν .

D̂µ

(
D̂µϕ

)
= λ

(
ϕ†ϕ− µ2

λ

)
ϕ,

DµF µν = −jν = i
g

2

[
ϕ†τ

(
D̂νϕ

)
−
(
D̂νϕ

)†
τϕ

]
,

∂µ

 Gµν − 1
4β2

(
GαβG̃

αβ
)
G̃µν√

1 + 1
2β2GαβGαβ − 1

16β4

(
GαβG̃αβ

)2
 = −kν = i

g′

2

[
ϕ†
(
D̂νϕ

)
−
(
D̂νϕ

)†
ϕ

]
.

(460)

68 The Born-Infeld parameter β has dimensions of [mass]2. The ESM Lagrangian reduces formally to the SM Lagrangian for β → ∞. In
the context of microscopic string theory models, the parameter

√
β ∝ Ms, the string mass scale [21].
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And after the equations of motion are settled alright, we propose an ansatz, which in this case is very much the
same as the Cho-Maison (364).

ϕ =
1√
2
ρξ

ξ = i

(
sin(θ/2)e−iφ

− cos(θ/2)

)
,

ϕ̂ = ξ†τ ξ = −r̂,

Aµ =
1

g
A(r)∂µtϕ̂+

1

g
(f(r)− 1)ϕ̂× ∂µϕ̂,

Bµ = − 1

g′
B(r)∂µt−

1

g′
(1− cos θ)∂µφ,

(461)

The solution indeed preserves the same magnetic charge, which can be shown in a very similar manner to the
Cho-Maison case.

We can see this briefly by switching to the unitary gauge

ξ → Uξ =

(
1

0

)
, with U =

(
cos(θ/2) sin(θ/2)e−iφ

− sin(θ/2)eiφ cos(θ/2)

)
(462)

and

Aµ −→
1

g

 (sinφ∂µθ + sin θ cosφ∂µφ) f(r)

(− cosφ∂µθ + sin θ sinφ∂µφ) f(r)

−A(r)∂µt− (1− cos θ)∂µφ

 (463)

All the same as in chapter XID, nothing new to see here. Rotating to the physical fields(
Aµ

Zµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Bµ

A3
µ

)

=
1√

g2 + g′2

(
g g′

−g′ g

)(
Bµ

A3
µ

) (464)

we get

Aµ = −e
(

1

g2
A+

1

g′2
B

)
∂µt−

1

e
(1− cos θ)∂µφ

Zµ =
e

gg′
(B −A)∂µt

(465)

with

e = g sin (θW ) =
gg′√

g2 + (g′)
2

(466)

.
Now for the monopole solution, one needs to set A(r) = B(r) = 0. Then

Aµ = −1

e
(1− cos θ)∂µφ

Zµ = 0
(467)
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It is now evident that the solution represent a dressed Dirac-like monopole whose magnetic charge is twice the
fundamental Dirac charge69.

qm =
4π

e
=

4π

√
g2 + (g′)

2

gg′
(468)

Our final step here is of course to show that the solution also has a finite energy!

Before that, however, we should also take into account if the Cho-Maison ansatz (with A=B=0) still satisfies the
modified equation of motion for the hypercharge field. Thankfully, we have done the same analysis in the Cho-Maison
case70 and at least the RHS remains the same, which means that for vanishing A and B, it equals 0.

The hypercharge magnetic field is BY i =
qm
r3 r

i. Therefore Gµν has only spatial components.

Gij ∝ εijkBk
Y

We do not have an electric field, so

GαβG
αβ ∝ B2

Y i

and GαβG̃
αβ = Gαβε

αβγδGγδ but for Gαβ to be non-vanishing α, β must be spatial and so must be γ and δ. In that
case, though at least one index has to be repeated once and the term is cancelled by the Levi-Civita tensor. So the
LHS is of the form

∂i

 εijkBY k(r)√
1 + 1

2β2GαβGαβ


Considering that only differentiation with respect to r could yield a non trivial result and that only the r-component
of the magnetic field could contribute, we see that again the Levi-Civita tensor stands in the way leading a vanishing
result for the LHS as well.
For completeness, we state that the rest of the O.D.E’s from the ansatz substitution into the equations of motion
remain intact and are exactly the same as in the Cho-Maison case.
Now we are ready to tackle the energy functional. Remember that all the terms except for the kinetic one of the
hypercharge field remain unchanged. Also, since we examine a time independent solution the appearance of such term
in the Hamiltonian will be the same as in the Lagrangian with a reversed sign.

H = H0 +H1

H1 =

∫
d3xH = 4π

∫ ∞

0

dr
ḟ2

g2
+

(
f2 − 1

)2
2g2r2

+
ρ̇2

2
r2 +

f2ρ2

4
+
λ

2

(
ρ2

2
− µ2

λ

)2

r2
(469)

while the (not anymore) singular part is

H0 = 4π

∫ ∞

0

r2dr

{√
1 +

1

2β2
GµνGµν − 1

16β4

(
GµνG̃µν

)2
− β2

}

= 4π

∫ ∞

0

β2r2dr

{√
1 +

1

2β2
2BY iBi

Y − 1

}
Using results from above

= 4π

∫ ∞

0

β2r2dr

{√
1 +

1

(g)2b2r4
− 1

}
Brushing up

= 4π

(
β

g′3

)1/2 ∫ ∞

0

dx
[√

1 + x4 − x2
]

Via x =
√
g′βr substitution

(470)

69 That is qm = 2π/e
70 See equations (365)-(372).
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Now that’s an interesting integral and who are we to back away from such a challenge.

∫ ∞

0

(√
1 + x4 − x2

)
dx = Multiply with the conjugate∫ ∞

0

1√
1 + x4 + x2

dx = Set x4 = sinh2 y∫ ∞

0

dy

cosh y + sinh y

cosh y

2
√
sinh y

= Use cosh y + sinh y = e−y∫ ∞

0

dye−y(
√

sinh y)′ = Perform partial integration√
sinh ye−y

∣∣∣∞
0

+

∫ ∞

0

√
sinh ye−ydy = Both limits go to zero

lim
y→∞

√
ey +−e−y

2
e−y − 0 +

∫ ∞

0

√
sinh ye−ydy = Now substitute y = lnu

∫ ∞

1

√
u− 1

u

2
· 1

u2
du And w = 1/u

=
1√
2

∫ 1

0

dw

√
1

w
− w =

=
1√
2

∫ 1

0

dw

√
1− w2

w
= Set z = w2

1

2
√
2

∫ 1

0

√
1− z 1

z1/4
dz√
z

=
1

2
√
2

∫ 1

0

(1− z)1/2z−3/4dz Beta function definition appears

=
1

2
√
2
B

(
3

2
,
1

4

)
Expand with B (x, y) =

Γ(x)Γ(y)

Γ(x+ y)

=
Γ(3/2)Γ(1/4)

4
√
2Γ(7/4)

=
1
2Γ(1/2)Γ(1/4)

4
√
2 3
4Γ(3/4)

Use Γ(x+ 1) = xΓ(x) and Γ(1/2) =
√
π

=

√
π

6
√
2

Γ(1/4)

Γ(3/4)
Employ Legendre Duplication Formula

=

√
π sin

(
3π
4

)
Γ2(1/4)

6
√
2π

=
Γ2(1/4)

6
√
π

(471)

Solving analytically the equations for the ansatz functions one can now determine the mass of the monopoole with
respect to the free parameter β.

Using the value of g′ in the Standard Model (g′ = 0.357) the ex-singular part is calculated as

H1 ≈ 72.8
√
β

H0 is already finite readily from the Cho-Maison case and its value depends on the type of solution or approximating
method used and turns out to be of order 4-10 TeV [5],[21].

In Mavromatos and Sarkar [21] using their interpolating function solution, they obtain
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H0 = 7617 GeV

thus giving a monopole mass as a function of the parameter β in the form of

Hmono
total =

(
72.81

√
β

(GeV)2
+ 7617

)
GeV

Now, some remarks for the closure of this chapter. In our model, up until now, we have considered the β merely as a
parameter that is to be constrained by the experiment and that it refers only to the hypercharge part of the Standard
Model. However, considering low-energy field models derived from limits of string theories, we expect the non-linear
Born-Infeld behaviour to be inherited to the whole SU(2)× U(1) gauge group of the SM and that definitely calls for
further research. It is indeed reported in [14] that in an SU(2) Born-Infeld model, monopole solution stop existing
below some critical value of the Born Infeld parameter β.
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Conclusions

Finishing our discussion on the Cho-Maison monopole, it is time we drew some conclusions. We have shown
the interconnection between the existence of topological or not magnetic monopoles and the quantization of the
electric charge, thus providing a beautiful explanation of such quantization. For this reasoning to hold, however, it is
mandatory that a magnetic monopole is found in the physical world, but experimental evidence are so far non existent.
It is, therefore, evident that experiment and theory collaborate paving the way to the truth. Of course, nature - and
thus the experiment - is the one to have the last word on everything we propose, but monopole theories especially
those possibly applicable to the physical world (meaning in the SM or unified versions) must be brought under careful
consideration. The Cho-Maison monopole is one of them but the problems associated with it pose serious questions
on each existence. In this thesis, we tackled the gauge invariance of the monopole and provided a gauge invariant way
of generating solutions in contrast with the unitary gauge chosen by Cho and Maison. We also merely scratched on
ways of regularizing its infinite energy, an issue which calls for urgent resolution. Further research is also required on
Born-Infeld models incorporating the whole gauge group of the Standard Model.
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