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Abstract 
This diploma thesis focuses on the simulation of a robotic manipulator with machine 

vision to grasp objects in occlusion environments. Specifically, the robotic arm in use 

is the Stäubli RX90L with 6 degrees of freedom, equipped with a gripper. The study 

delves into the assessment of inverse kinematics and trajectory control during 

grasping operations. A crucial augmentation to the system involves the incorporation 

of machine vision systems for object detection. The machine vision component 

encompasses the calibration of Kinect V2 RGB and depth images, along with the 

mapping of RGB images to depth images. Subsequently, the theoretical underpinnings 

of Convolutional Neural Networks are elucidated, with the chosen network for this 

thesis being the Mask RCNN. The methodology for training the network is explicated, 

followed by comprehensive testing in diverse occlusion environments. 

A paramount aspect of this work involves addressing the occlusion problem in the 

grasping methodology, determining which objects are occluded, by implementing 

neural networks that utilize features extracted from the Mask RCNN network and 

depth images. The acquired occlusion data undergoes a logic-based algorithm, 

delineating the item to be grasped and generating an effective grasping strategy. The 

entire process is simulated within the integrated MATLAB-Simulink Unreal Engine 

environment, providing a holistic evaluation of the proposed methodologies. This 

comprehensive exploration encompasses robotic arm control, machine vision 

implementation, advanced neural network training, occlusion problem resolution, 

and subsequent simulation within a virtual environment. 
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Περίληψη  
Η παρούσα διπλωματική εργασία εστιάζει στην προσομοίωση ενός ρομποτικού 

βραχίονα με μηχανική όραση για την σύλληψη αντικειμένων σε περιβάλλοντα 

αλληλοεπικάλυψης. Πιο συγκεκριμένα, ο ρομποτικός βραχίονας που χρησιμοποιείται 

είναι ο Stäubli RX90L με 6 βαθμούς ελευθερίας, εξοπλισμένος με αρπάγη. Η μελέτη 

εμβαθύνει στην υλοποίηση της αντίστροφης κινηματικής και του ελέγχου της τροχιάς 

κατά τη σύλληψη των αντικειμένων. Κρίσιμη είναι η ενσωμάτωση του συστήματος 

μηχανικής όρασης για την ανίχνευση των αντικειμένων. Το κεφάλαιο της μηχανικής 

όρασης περιλαμβάνει τη βαθμονόμηση και την αντιστοίχιση των εικόνων RGB στις 

εικόνες βάθους του Kinect V2. Στη συνέχεια, γίνεται μία αναφορά στην θεωρία των 

συνελικτικών νευρωνικών δικτύων, με το δίκτυο που επιλέχθηκε για τη διατριβή 

αυτή, να είναι το Mask RCNN. Έπειτα ακολουθείται η  μεθοδολογία για την 

εκπαίδευση του δικτύου, με την δοκιμή του σε διάφορα περιβάλλοντα 

αλληλοεπικάλυψης. 

Μια πρωταρχική πτυχή της εργασίας περιλαμβάνει την αντιμετώπιση του 

προβλήματος αλληλοεπικάλυψης των αντικειμένων. Για τον προσδιορισμό των 

αντικειμένων που επικαλύπτονται, χρησιμοποιήθηκαν νευρωνικά δίκτυα με είσοδο 

χαρακτηριστικά που εξάγονται από το δίκτυο Mask RCNN και τις εικόνες βάθους. Η 

έξοδος από τα νευρωνικά δίκτυα χρησιμοποιείται  από αλγόριθμο, ο οποίος 

οριοθετεί το αντικείμενο που πρέπει να συλληφθεί και δημιουργεί την στρατηγική 

σύλληψης. Η όλη διαδικασία προσομοιώνεται στο περιβάλλον του MATLAB-Simulink-

Unreal Engine, παρέχοντας μια ολική εικόνα των προτεινόμενων μεθοδολογιών. 

Δηλαδή η διπλωματική αυτή  περιλαμβάνει τον έλεγχο ρομποτικού βραχίονα, την 

εφαρμογή του συστήματος μηχανικής όρασης, την εκπαίδευση των νευρωνικών 

δικτύων, την επίλυση των προβλημάτων αλληλοεπικάλυψης και την επακόλουθη 

προσομοίωση σε εικονικό περιβάλλον.  
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1. Introduction 
Automation has become a cornerstone in modern industry and daily life, playing a 

pivotal role in enhancing efficiency, precision, and safety. One of the primary 

advantages is the substantial increase in efficiency through the reduction of manual 

labor, as robots excel at performing repetitive tasks with unwavering precision and 

speed. The quest for precision and accuracy in various applications is addressed 

adeptly by robots, which can achieve levels of intricacy challenging for human 

operators. 

Moreover, the economic landscape benefits significantly from automation, as robots 

contribute to cost reduction in the long term. Operating 24/7 with minimal 

maintenance needs, robots streamline production processes, resulting in increased 

productivity and reduced operational costs. The integration of automation fosters 

safer working environments by assigning hazardous or physically demanding tasks to 

robots, mitigating the risks of accidents and injuries to human workers, especially in 

industries such as manufacturing and logistics. 

Machine vision alongside advanced grasping techniques in robotic manipulators finds 

widespread application in scenarios characterized by dynamic and varied 

environments. This utility extends across diverse domains, ranging from the sorting of 

objects in different environments [5] to the agricultural industry [6]. Consequently, 

the incorporation of machine vision techniques in modern robotics applications 

assumes substantial significance, facilitating adaptability and precision in addressing 

the evolving demands of dynamic operational settings. 

The challenge of occlusion remains a focal point of research for numerous institutions 

and researchers globally. This persistent focus stems from the profound implications 

of solving the occlusion problem, which could propel humanity towards realizing a 

machine vision-robotic system with human-like perception. Such a breakthrough 

holds the potential to revolutionize various sectors, particularly by significantly 

enhancing the deployment of robotic manipulators in manufacturing facilities and 

everyday environments. By mitigating occlusion issues, these advanced systems 

would operate with heightened efficiency and adaptability, ushering in a new era of 

automation and integration into daily life. As a result, the pursuit of solutions to 

occlusion represents a crucial step forward in advancing the capabilities and impact of 

machine vision and robotics technologies. 

While significant research is conducted in this domain, the implementation of findings 

often lacks clear methodologies, leaving uncertainty regarding practical application. 

Moreover, when methods are identified, they are typically tested on small-scale 

robotic arms in real-world settings to mitigate potential damages resulting from errors 

in the developed methodology and code. However, this approach suggests that 

simulating the system within a virtual environment could enhance the applicability of 

such methods and expedite the testing process. By leveraging simulation, researchers 
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can iterate more rapidly, accelerating the development and validation of 

methodologies while minimizing risks associated with real-world experimentation. 

This shift toward virtual simulation promises to streamline the advancement of 

robotics technologies and facilitate the translation of research into practical solutions. 

This thesis endeavors to both replicate and build upon concepts introduced by 

previous researchers to handle the occlusion problem in a machine vision – robotic 

manipulator environment. To be more specific, a system is built from the ground up 

to simulate in a virtual environment the whole process of detecting the objects, 

selecting the correct one to be grasped and then simulating the whole procedure 

demonstrating a real-world scenario.   

The implementation of this system is conducted within MATLAB-Unreal Engine 

environment. The methodology for training machine vision system with real world 

data is also illustrated with the same network being able to detect objects within the 

virtual setting. Additionally, the occlusion problem is handled by implementing Neural 

Networks and the grasping methodology is generated based on the occlusion 

detection and depth data. A simple but yet effective angle based grasping technique 

was used to grasp the objects detected.  

In the realm of practical implementation, the necessary steps for calibrating and 

utilizing the Kinect V2 camera is outlined. This involves mapping the RGB image frame 

to the Depth frame using real-world data and polynomial regression. Finally, a tangible 

example is provided, demonstrating how this methodology can be effectively applied 

to a robotic arm equipped with a gripper and a Kinect V2 camera. 
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2. Related Work 
Robotic arms have been around for decades, therefore most fundamental problems 

like the inverse kinematics or the trajectory to follow in restrained spaces, have been 

solved. In contrast, the field of machine vision, while benefiting from modern 

detectors, still faces substantial hurdles in achieving a level of sophistication 

comparable to human vision. Despite notable progress, the intricacies of interpreting 

visual data in diverse environments and adapting to dynamic scenarios remain areas 

where further developments are crucial. Bridging this gap in machine vision holds the 

key to unlocking enhanced robotic capabilities and expanding their applications in 

various sectors. 

In 2013, Ramisa A. et al. [4] pioneered a model focused on garment part detection, 

particularly for items such as t-shirts. They extended the Bag-of-Words model, 

employing a sliding window technique to thoroughly analyze the entire image and 

extract features from each region. To enhance robustness, they incorporated rotation 

and scaling invariant techniques, effectively addressing variations in orientations and 

sizes. Notably, this approach bears similarities to the methods employed by CNNs for 

classification purposes. 

Additionally, Răileanu S. et al. [12] developed an open-source machine vision platform 

tailored for manufacturing robotics. Their work involved integrating robotics, 

including grasping, with visual platforms in a user-friendly manner. This platform 

simplifies the implementation of basic machine vision algorithms, providing a 

comprehensive solution that bridges the gap between robotics and visual processing 

in manufacturing contexts. 

In 2014, the introduction of R-CNN [7] marked a significant advancement in object 

detection, resulting in a notable 30% improvement over the prior best result on Pascal 

VOC 2012. This innovation enabled the detection of multiple objects within an image, 

reigniting interest in the integration of robotic manipulators with machine vision. 

Furthermore, the emergence of affordable depth sensors, such as the Microsoft Kinect 

in 2010 followed by Asus Xtion in 2011, prompted a surge in research focused on 

feature-based methods and point cloud data. 

Aarth R. and Rishma G. explored the capabilities of Mask R-CNN in detecting waste 

objects on the ground. Their findings indicated superior performance compared to 

other networks, achieving an impressive accuracy of 97%. In a separate study, Zhen Li 

et al. [11] investigated the utilization of YOLO for object detection in a mobile robot 

equipped with a robotic arm and an RGB-D camera. They proposed a convolutional-

based neural network for grasping, generating two "images" – one depicting grasp 

quality across the entire image and the other indicating the grasp angle. This example 

underscores the versatility of convolutional networks beyond classification, 

showcasing their efficacy in diverse tasks, such as object detection and robotic 

grasping. 
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Tuan-Tang Le et al. [8] used a similar method that is used in this diploma thesis where 

Mask RCNN was deployed to segment the objects for grasping, combined with a point 

pair feature voting approach to estimate the pose of the robotic arm. They showed 

that in real world scenarios the system can achieve a 90% accuracy. Ziyad Tareq N. 

conducted a comprehensive investigation into the efficacy of mask RCNN in detecting 

occlusion segments within heavily occluded environments. In his study, the network 

was trained using augmented images featuring objects, ensuring complete masks for 

each object. Notably, rather than distinguishing between masks for occluded and non-

occluded objects, he opted to employ the full masks of all objects for network training. 

This approach aimed to assess the network's performance in handling occlusion 

scenarios without segregating mask information, achieving close to the same results 

if it had.  To expand on that Yusuke Inagaki et al. [9] proposed a new dataset to 

evaluate the performance of Segmentation networks with respect to occlusion 

percentage.  

Lastly Hongkun Tian et al [10] gathered all the data driven grasping methodologies for 

unknown objects, deviating from the typical analytical solutions or methods and 

assessed their performances on different datasets. This is substantially useful when 

the object detectors used has a substantial amount of object classes and there is no 

dataset for the grasping strategy of each one.  
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3. Methodology 
The methodological framework pursued in this diploma thesis can be delineated into 

three distinct categories, each concurrently addressed to synergistically guide the 

progress of the others. A visual representation of this interwoven approach is 

presented in Figure 3-1, where a comprehensive flow chart illustrates the concurrent 

implementation of these methodologies. The concurrent nature of their development 

reflects the interdependence and mutual influence of each category in shaping the 

overarching methodology employed in this research. 

 
Figure 3-1: Methodology flow chart. 

• Robotic Arm CAD Files to URDF 

In SOLIDWORKS, assemble the robotic components only with concentric and 

coincident mates, ensuring accurate alignment. Subsequently, utilize an internal 

SOLIDWORKS add-on to export the assembled components as a URDF file.  

• Scene Generation 

In SOLIDWORKS, generate each component individually, and subsequently 

integrate them into a comprehensive assembly. Import this assembly into Blender 

to construct the simulation environment, carefully arranging the components 

within the scene. Following the scene creation, export the entirety as an FBX file 

format, facilitating its incorporation into the Unreal Engine environment for 

simulation purposes.  
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• UE Scene 

Within the MATLAB-Simulink model, commence the scene setup using Simulation 

3D building blocks. Integrate the robotic arm into the model by importing it as a 

URDF and establish a distinct transformation function to facilitate conversion 

between coordinate systems. Additionally, incorporate an RGB-D camera into the 

model, adjusting its parameters to align with those of a real-world camera. 

• Kinect Calibration 

To calibrate the RGB camera, employ a calibration paper and leverage the image 

calibration tool within MATLAB. Utilize this tool in conjunction with the calibration 

paper to ascertain and refine intrinsic camera parameters. Subsequently, perform 

the extrinsic calibration by capturing multiple images of known objects at various 

depths. This process involves associating RGB image frames with corresponding 

depth frames, establishing a mapping that facilitates accurate spatial referencing 

within the calibrated RGB-D camera system. 

• Images for labeling 

Configure the Kinect device to capture images of the parts from various 

orientations. Integrate lighting fixtures strategically to mitigate pronounced 

shadowing effects, thereby enhancing the quality and clarity of the captured 

images. Establish a connection between the Kinect device and a custom-written 

code designed to process the captured data and generate mapped images. 

• Ground Truth labeling  

Generate ground truth data for network training, specifically labels for Mask RCNN 

and occlusion Artificial Neural Networks, utilizing the MATLAB Image Labeler App. 

Subsequently, generate annotations and a datastore for training Mask R-CNN 

through the COCO API, ensuring compatibility and adherence to standard 

practices. Undertake preprocessing of labels and depth images to create input 

data for the occlusion ANNs. 

• Data augmentation 

Create augmented data and images featuring diverse backgrounds and item 

orientations derived from the original dataset, employing a custom-written code. 

This code is specifically designed to introduce variations in the visual context and 

object orientations, thereby enriching the training dataset for the Mask R-CNN 

network. 

• Train the Networks 

Employ stochastic gradient descent with momentum as the optimization 

algorithm for training the Mask RCNN network and resilient back propagation for 

training the occlusion ANNs, leveraging the computational capabilities of GPU 
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acceleration. This approach harnesses the parallel processing power of a GPU to 

expedite the training process, significantly reducing the computation time 

compared to traditional CPU-based implementations. 

• Robotic Arm Inverse Kinematics 

Generate the solution for inverse kinematics utilizing the 

analyticalinversekinematics() function within MATLAB, strategically selecting the 

appropriate joints that inherently align with the methodology's prerequisites. 

• Control Law 

Determine the end configuration for grasping by integrating machine vision data, 

camera information, and the inverse kinematics of the robotic arm. 

• Trajectory Planning 

Employ a polynomial trajectory within the joint space to expedite the 

implementation, capitalizing on the fact that precise positioning of the robotic arm 

during motion is not imperative. This strategic use of polynomial trajectories 

facilitates a rapid and efficient trajectory planning process. To determine the 

optimal end configuration, initiate the search from the initial configuration of the 

robotic arm joints, aiming to minimize the sum of the squared angle deltas 

required for the trajectory. 

• Grasping Technique  

Leverage occlusion ANNs in conjunction with depth data to formulate the grasping 

strategy for the robotic arm. Implement a strategy where each item is grasped 

from its shorter length while traversing through the center of area. 

• Simulation 

Integrate all the networks and generated data to simulate the entire process 

within the Simulink and Unreal Engine environment. Develop a comprehensive 

loop within the simulation framework to facilitate the robotic arm's grasping 

actions iteratively until there are no remaining items within the scene. 
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4. System Parameters 
In the context of this diploma thesis, our primary focus will be on the utilization of the 

"Stäubli RX90L" robotic arm, complemented by a gripper developed in a preceding 

diploma thesis within the laboratory setting. This robotic arm is distinguished by its six 

joints, driven by brushless motors coupled to resolvers, thereby facilitating precise 

and versatile movements. The ensuing precision, speed, and limitations of each joint 

are meticulously detailed in Table 4-1. The repeatability of the system is notably 

specified as ±0.025mm under constant temperature conditions, underscoring its 

efficacy in repetitive tasks.  Given the long-arm configuration denoted by the 

appended letter "L" in its name, the "Stäubli RX90L" robotic arm is characterized by a 

total mass of 113 kg. Notably, the load capacity of the end effector is constrained to 

3.5 kg at nominal speeds and 6 kg at reduced speeds. The delineation of the robot's 

working area, elucidated as the reachability map, is visually represented in Figure 4-1 

while an actual image of the robotic arm is shown in Figure 4-2. 

Table 4-1: Joint parameters for the Stäubli RX90L robotic arm. 

 

  
Figure 4-1: Dexterous workspace of the Stäubli RX 90L robotic arm. 

𝑅. 𝑀 = 1100𝑚𝑚 
𝑅. 𝑚 = 401𝑚𝑚 
𝑅. 𝑏 = 650𝑚𝑚 



Diploma Thesis – Pavlos Chionidis 

19 | P a g e  
 
 

 
Figure 4-2:  Image of the Stäubli RX 90L robotic arm taken from the lab. 

Moreover, an additional component, the "Kinect v2" as show in Figure 4-3, has been 

incorporated into the system to serve as an RGB-D camera. The low relative cost of 

this module combined with the high amount of information it provides, is of great 

significance in the machine vision system that was developed, but also in the grasping 

strategy by utilizing the RGB the Depth information respectively.   

 

Figure 4-3: Image of the Kinect V2. 
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5. Robotics 

5.1 Theory 

5.1.1 Kinematics 
In most robotics applications, the objective is to position the robot precisely relative 

to its base. The coordinates of a specific position are typically expressed in Cartesian 

space using a translation vector of size three (x, y, z). However, in robotics, defining 

the position alone does not fully characterize the end effector pose, an additional 

description for orientation is essential. Consequently, a 3x3 rotation matrix (as shown 

in Equation 5-1) is employed for this purpose, requiring a minimum of three angles for 

complete specification. 

𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟21

𝑟31 𝑟31 𝑟33

] 5-1 

Various methods exist for creating rotation matrices, and the selection depends on 

specific requirements and conventions within the given robotics application. One 

common and intuitive approach involves using Euler angles, such as 'roll, pitch, yaw' 

or 'ZYX', where three angles are specified as show in Figure 5-1. For each angle, a 

corresponding "2D" rotation matrix is associated, and by multiplying these three 

rotation matrices together, the overall rotation matrix is derived as shown in Equation 

5-2  [16]. 

𝑅𝑍𝑌𝑋 = 𝑅𝑍(𝛼) ∙ 𝑅𝑌′(𝛽) ∙ 𝑅𝑋′′(𝛾) 5-2 

 

Figure 5-1: Euler Angle rotations in the form of Z-Y-X [16]. 
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Despite the intuitiveness of Euler angles, they can encounter issues like gimbal lock 

(singularities). As a result, more often than not, four-parameter methods are 

employed to describe the end effector pose of robotic manipulators. Two prominent 

representations in this category are the Axis-Angle Representation and the 

Quaternion Representation. The former utilizes three angles to define a rotation axis 

and an additional angle to specify the rotation around that axis. The latter, although 

less intuitive, utilizes Euler parameters (𝜀𝑖) to describe the direction of the end pose 

that are considered more robust in mitigating the singularities. The definitions of 

those parameters are provided in Equation 5-3. 

𝑅 = (2 ∙ 𝜀4
2 − 1) ∙ 𝛪3 + 2 ∙ 𝜀4 ∙ 𝜺× + 2 ∙ 𝜺 ∙ 𝜺𝛵 

Where: 

First three Euler parameters: 𝜺 = [

𝜀1

𝜀2

𝜀3

] = �̂� ∙ sin (
𝜃

2
) =

1

4∙𝜀4
[

𝑟32 − 𝑟23

𝑟13 − 𝑟31

𝑟21 − 𝑟12

] 

Fourth Euler parameter: 𝜀4 = cos (
𝜃

2
) = 0.5 ∙ √1 + 𝑟11 + 𝑟22 + 𝑟33 

Skew Symmetric Matrix:  𝜀× = [
0 −𝜀3 𝜀2

𝜀3 0 −𝜀1

−𝜀2 𝜀1 0
] 

 

5-3 

Τhe rotation matrix (𝑅3𝑥3) and the translation vector (𝑃3𝑥1) can derive fully the end 

effector position and orientation by using a homogeneous transformation matrix as 

described in Equation 5-4. 

𝑇 = [
𝑅3𝑥3 𝑃3𝑥1

01𝑥3 1
] = [

𝑟11 𝑟12 𝑟13 𝑝𝑥

𝑟21 𝑟22 𝑟23 𝑝𝑦

𝑟31 𝑟32 𝑟33 𝑝𝑧

0 0 0 1

] 5-4 

However, moving the end effector to a specific position and orientation is not a 

straightforward task, it necessitates knowledge of the inverse kinematics of the robot 

or, at the very least, an approximation of it. This complexity arises from the fact that, 

in general, the controller of a given robotic system can only interpret angle rotations. 

Consequently, achieving a desired pose for the end effector requires specific rotations 

of all joints from the base up to that point. This is evident in the transformation matrix 

shown in Equation 5-5  concerning the end effector from the coordinate system of the 

base (0) up to it (e).  

𝑇𝑒
0 = 𝑇1

0 ⋅ 𝑇2
1 ⋅ … ⋅ 𝑇𝑒

6  
Where: 
Transformation matrix of coordinate system i with respect to coordinate 

system j: 𝛵𝑖
𝑗  

5-5 
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Figure 5-2: Coordinate transformation in an open kinematic chain [17]. 

Figure 5-2 shows an open kinematic chain, the different coordinate systems with in it 

and how they relate to each other using homogeneous transformations. The 

derivation of the transformation matrices comes from the mechanical drawing (the 

structure) of the robotic arm. More specifically how the joints are connected between 

the links of the robotic manipulator. By knowing those parameters, the homogeneous 

transformations ( 𝑇𝑖
𝑖−1 ) between two consecutive joints (𝑖 − 1 𝑎𝑛𝑑 𝑖) can be derived 

using various methods like the Denavit Hardenberg method explained in more 

detailed in [16][17].  It is noted that for rotational joints the transformation matrix is 

dependent on the angle of rotation of the joint (𝑇𝑖(𝜃)) where for a translational joint 

the transformation matrix is dependent on the translation of the joint (𝛵𝜄(𝑑)).  

 
Figure 5-3: Joint frames (coordinate systems) between a link [16]. 

In the case of this diploma thesis, as the complete model exists in CAD files, the 

relations between joints as shown in Figure 5-3 (the homogeneous transformations) 

are automatically generated and saved in a “.urdf” file as it is described in more detail 

in the virtual environment implementation section.  

𝑇𝑛
0  
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From the aforementioned, it is derived that the objective to move the end effector to 

a desired position and orientation ( 𝑇𝑒,𝑑𝑒𝑠𝑖𝑟𝑒𝑑
0 ), requires a solution as show in 

Equation 5-6. 

𝑇𝑒,𝑑𝑒𝑠𝑖𝑟𝑒𝑑
0 = 𝑋(𝑞1, 𝑞2, … . , 𝑞𝑛) 

Where: 
Rotations or translation of the joints: 𝑞𝑖 

5-6 

The problem becomes even harder when there are joint limitations as shown in Table 

4-1. Therefore, analytical solutions involve creating a solution tree for all possible 

configurations (where many solutions may exist for a specific configuration), while 

numerical methods, such as "BFGS Gradient Projection" or the "Levenberg-

Marquardt" method, can be employed when an analytical solution is hard to find. 

As of 2022, MATLAB has introduced a function named analyticalinversekinematics(), 

which the inputs are the rigid body tree of the manipulator and the desired base and 

end effector configuration. This function creates an object-function containing the 

analytical solution of the manipulator. It's crucial to specify the desired configuration, 

since the end effector can be defined as either the camera or the gripper center, 

allowing for separate control of their positions. The function is applicable to robotic 

arms with configurations consisting only of revolute joints, with the last three joints in 

a "wrist" configuration (perpendicular to each other) as shown in Figure 5-4. This is 

due to MATLAB using the Pieper method [18] where the problem can be split in two 

different three joint manipulators, which is much easier to solve analytically.   

Fortunately, the robotic arm utilized in this diploma thesis, the Stäubli RX90L, 

conforms to the conditions required for the analyticalinversekinematics() function, 

enabling the calculation of its inverse kinematics with no additional inputs. 

 
Figure 5-4: Robotic manipulator with a wrist configuration in the last three joints[16]. 
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5.1.1 Image Based Visual Servoing 
Image-based visual servoing (IBVS) is a control approach used in robotics, specifically 

in the field of visual servo control, where the control of a robot is based on the 

information extracted from images. In IBVS, cameras are used as sensors to provide 

visual feedback to control the robot's motion. The primary goal of image-based visual 

servoing is to manipulate the robot to achieve a desired visual goal or configuration, 

often specified in terms of features observed in the images.  

In general, there are two subdivisions in a visual servoing system, the first one is the 

Image processing and feature recognition and the second one is the control law which 

moves the robot-the camera to the desired image frame. This diploma thesis handles 

both problems separately and joints them in the implementation process, meaning 

that in any case the control law or the feature recognition can be swapped for a 

different approach.   

5.2 Implementation 

5.2.1 Robot Control Law 
The implemented control law in this study leverages the features (points) derived from 

the integrated machine vision and grasping strategy. Ensuring precise depth readings 

from the camera is imperative for the effectiveness of the control system. This control 

scheme, integral to the thesis, is intricately woven around the foundational framework 

of the robot's inverse kinematics. To elaborate the methodology is initiated by 

calculating the translation of a point in the image frame into real-world coordinates 

by using Equation 5-7 [19]. 

𝑋𝑃 =
𝑢𝑥 − 𝑐𝑥

𝑓𝑥
∙ 𝑍𝑃 

𝑌𝑃 =
𝑢𝑦 − 𝑐𝑦

𝑓𝑦
∙ 𝑍𝑃 

Where: 
𝑢𝑥, 𝑢𝑦: Are the x and y point coordinates in the image frame in pixels. 

𝑐𝑥, 𝑐𝑦: Are the camera centroid x and y position in pixels. 

𝑓𝑥, 𝑓𝑦: Are the focal lengths of the sensor in millimeters 

𝑋𝑃, 𝑌𝑃 , 𝑍𝑃: Are the real world coordinates of the point observed by the camera 
relative to the camera frame. 

5-7 

Incorporating a depth sensor facilitates the assessment of the distance from the 

camera to the observed point, consequently establishing the value of 𝑍𝑃. Thus, the 

coordinates 𝑋𝑃 and 𝑌𝑃 can be evaluated, providing the position of the observed point. 

Figure 5-5 shows an example of how the coordinates of an object are evaluated. 
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(a) 

 
(b) 

Figure 5-5:Example of coordinates, of distance from the camera 𝑍𝑃(a) and object location in image frame (b). 

Therefore, a simple method can be implemented to create the homogeneous 

transformation between the object to be grasped and the camera ( 𝑇𝑜𝑏𝑗
𝑐 ), by using 

the coordinates vector [𝑋𝑃, 𝑌𝑃 , 𝑍𝑃] and a predefined orientation (eg. Vertical from the 

ground plane, looking down). and use the inverse kinematics to move the robot to 

that exact pose. Then the transformation matrix of the object ( 𝑇𝑏
𝑜𝑏𝑗)  can be 

computed if the robotic arm – camera transformation is known, using Equation 5-8. 

Thus, by using the analytical inverse kinematics, the configuration of the robotic arm 

can be evaluated. 

𝑇𝑏
𝑜𝑏𝑗 = 𝑇𝑐

𝑏 ∙ 𝑇𝑐
𝑜𝑏𝑗 

Where: 
The homogeneous transformation between the base of the robotic arm 

and the camera relative to the base frame: 𝑇𝑐
𝑏  

5-8 

The methodology employed in this diploma thesis is chosen for its efficacy and 

simplicity. Notably, this approach accommodates the generation of a trajectory both 

when the camera is affixed to the robotic arm (Eye in hand system) and when it is 

positioned statically above the robot's operational workspace (separate eye and hand 

system). The sole divergence in the method's implementation pertains to the 

transformation matrix of the camera with respect to the manipulator's base. In this 

thesis, the adoption of a stationary camera was favored for its practical ease of 

implementation in real-world scenarios. Figure 5-6 shows the differences between 

three different camera-robotic arm configurations.  

 
(a) 

 
(b) 

 
(c) 

Figure 5-6: Eye-in-hand system (a), Eye-to-hand system (b), Separate eye and hand system (c). 
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Importantly, the stationary configuration ensures the universality of applicability 

across diverse robotic arms, particularly those lacking specialized mounts for camera 

attachment. It is noted that for the implementation to be possible the camera has to 

move away from the working area of the robot (Position 2) as depicted in Figure 5-8. 

However, the term stationary still applies because every time a picture is required, the 

camera moves to the capturing position (Position 1) as depicted in Figure 5-7.  

 
Figure 5-7: Camera position right above the table (Position 1). 

 
Figure 5-8: Camera position away from the table (Position 2). 

It is imperative to underscore that while the adoption of this method is characterized 

by its ease of implementation, a meticulous understanding of the transformation 

matrix of the camera in relation to the manipulator's base is requisite. This 

necessitates employing an eye-to-hand system and obtaining measurements from 
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known objects in conjunction with the manipulator's orientation. Notably, this 

approach demands a precise calibration process to ascertain accurate results in real 

world scenarios. Additionally, it is pertinent to acknowledge the existence of 

alternative visual servoing methods that circumvent reliance on inverse kinematics, 

opting instead for the utilization of the manipulator's Jacobian matrix. [19]. 

5.2.2 Trajectory Control 
The trajectory of a robotic arm is a fundamental aspect of its motion planning, defining 

the path and sequence of positions that the end-effector traverses over time. In the 

realm of robotics, crafting an effective trajectory is crucial for achieving precise and 

efficient manipulation of objects in diverse applications, ranging from industrial 

automation to research and development. The trajectory planning process involves 

the careful consideration of factors such as kinematics, dynamics, and workspace 

constraints, with the goal of optimizing the movement of the robotic arm to fulfill 

specific tasks.  

Robotic arms exhibit two primary types of trajectories: Cartesian trajectory control 

and joint trajectory control. In Cartesian trajectory control, the emphasis is on 

regulating the end-effector's motion through specified positions and orientations in 

the Cartesian space. This approach provides a more intuitive means of commanding 

the robot, particularly in applications where precise positioning in a global coordinate 

system is critical. On the other hand, joint trajectory control focuses on managing the 

movement of individual joints to attain desired positions. This method allows for a 

more direct influence over the robot's configuration, often proving advantageous in 

tasks that demand intricate joint-level coordination. It is also noted that in joint 

trajectory control, there are no possibilities of falling into gimbal lock configurations. 

The difference between those two types of control is show in Figure 5-9.   

 

(a) 

 

(b) 
Figure 5-9: Cartesian trajectory control (a) and Joint trajectory control (b). 

In this dissertation, joint space control is adopted, primarily driven by the absence of 

a stringent requirement for precise end-effector positioning throughout the robotic 

arm's motion. The adoption of joint space control offers notable advantages, including 
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reduced computational demands, as it necessitates the calculation of inverse 

kinematics solely for the terminal solution rather than the entire trajectory. 

Furthermore, this approach enables a reduction in the overall joint rotation time. This 

efficiency arises from the fact that joints only need to traverse the angular delta from 

the initial to the final configuration, minimizing the rotational distance covered. In 

contrast, cartesian trajectory control may result in joint overshooting or deviations 

from predefined speed profiles during the robotic arm's motion. Despite such 

nuances, both control approaches are ultimately directed toward reaching the same 

endpoint, potentially incurring comparable total joint angle rotations under optimal 

conditions. 

Within the context of path planning, an essential consideration arises from the fact 

that numerous potential solutions often exist for a given end effector configuration as 

shown in Figure 5-10. The selection among these alternative solutions is of paramount 

significance, as it influences the operational speed and the energy efficiency of the 

robotic system. In this thesis, a trajectory prioritizing speed is adopted, with 

preference given to the end configuration characterized by the minimal angular 

deltas. Equation Figure 5-8 shows the loss function to be minimized which is known as 

the “Summed Squared Error” function. 

𝑚𝑖𝑛{𝐿𝑗} = min { ∑(𝑞𝑖,𝑒𝑛𝑑 − 𝑞𝑖,𝑖𝑛𝑖𝑡)
2

6

𝑖=1

}  

Where: 
𝑞𝑖,𝑒𝑛𝑑: Is the end configuration joint angle. 
𝑞𝑖,𝑖𝑛𝑖𝑡: Is the initial joint angle. 

𝑖: Denotes the 𝑖𝑡ℎ joint. 
𝑗: Denotes the 𝑗𝑡ℎ end configuration 

5-9 

This selection process is automated through a dedicated function, which 

systematically calculates the angular deltas for various configurations and 

automatically identifies the configuration which minimizes the loss function. The 

meticulous choice of a speed-oriented trajectory underscores the commitment to 

optimizing the robotic arm's performance by minimizing angular deviations and, 

consequently, enhancing speed. 

 
(a) 

 
(b) 

Figure 5-10: Same end effector position and orientation with two configurations. 
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In this thesis, third-degree polynomials were utilized in the control strategy employed 

for the articulation of robotic arm joints. The decision to incorporate third-degree 

polynomials is rooted in their inherent capacity to facilitate smooth and continuous 

joint motion. By leveraging cubic polynomial functions with time as the parameter, 

the trajectories are adeptly defined, allowing for control over the joints. The four 

essential parameters—initial position, initial angular velocity, final position, and final 

angular velocity—shape the trajectory, enabling a tailored approach to achieve 

specific movement requirements. In all cases the angular velocity was set to 0 in all 

the joints for every single arm configuration to avoid any overshooting’s. The 

mathematical model of those trajectories is described in Figure 5-11. 

 
(a) 

 
(b) 

 
(c) 

Figure 5-11: Example of polynomial trajectory of third degree, position (a), velocity (b), acceleration (c). 
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6. Machine Vision System 

6.1 RGB-D Camera Calibration  
As previously stated, image capture for object detection involved the use of the Kinect 

V2, an RGB-D camera. The RGB sensor in the Kinect V2 can capture images with a 

resolution of up to [1920x1080 pixels], while the separate Depth sensor has a 

resolution of [512x424 pixels]1. The disparity in resolution, sensor positioning, and 

aspect ratio presented a challenge in mapping both sensors to a single image frame. 

Figure 6-1 shows a visual example of this disparity.  

 
Figure 6-1: Example (not to actual scale) of sensors misalignment on the Kinect V2. 

 Consequently, a calibration procedure was executed to align the RGB image with the 

depth image. It's crucial to highlight that this mapping approach was chosen because 

the depth sensor has a lower resolution, which acts as a limiting factor. Mapping the 

depth sensor on the RGB sensor's image frame would have introduced errors in the 

calculated depth, requiring an additional calibration step. 

The calibration started by calculating the pixel size – focal length of each sensor. 

Firstly, for the RGB sensor the focal length was calculated using MATLAB automatic 

 
 

1 In this thesis the phrases “depth pixels” and “depth image” are implemented rather than the most 
common term in the bibliography “point cloud”. This is done intentionally due to the way the depth 
data are handle, mimicking the way the image data are handled. 
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calibration tool, where 15 photos of a calibration paper were taken from different 

angles that were fed through the calibration tool. 

 
Figure 6-2: Calibration pattern with squares of size 25x25mm. 

Another important parameter to determine was the distance of the sensor center 

from the center of the Kinect in the x direction. This measurement was accomplished 

by placing an object in a tripod with a mark on its center with a known and 

predetermined distance (𝑍 = 72𝑐𝑚) from the kinect. This object was a Rubik’s cube 

6x6 where there are lines passing through its center, the tripod was leveled as well as 

the Kinect with a leveling apparatus, the tripod was raised to bring the center of the 

cube as close to the center of the Kinect in the y direction and the tripod was moved 

to the center of the Kinect in the x direction using a marked right angle ruler (length 

72cm) ensuring that the Kinect and the face of the cube are parallel as shown in Figure 

6-3. Then by taking a photo and tracing the center of the Rubik’s cube, the physical 

distance of the sensor to the center of the Kinect can be evaluated using the formula 

shown in Equation 6-1. 

𝑋 =
(𝑢𝑥 − 𝑐𝑥) ∙ 𝑍

𝑓𝑥
 

Where 
Distance of the point in the x direction: 𝑋[𝑚] 
Focal length in the x direction: 𝑓𝑥  [𝑚] 
Distance from sensor to the point: 𝑍 [𝑚] 
Distance from center of the image: 𝑢𝑥 − 𝑐𝑥 [𝑝𝑖𝑥𝑒𝑙𝑠] 

6-1 

 

 
(a) 

 
(b) 

Figure 6-3: Calibration setup (a) and right-angle ruler (b). 
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The computed distance aligns precisely with the distance derived from the CAD 

measurements of the Kinect, specifically X=95mm. Subsequently, the pixel ratio 

between the depth and RGB sensors was determined by selecting two points 

representing the identical physical position from images captured by both sensors. By 

calculating the pixel distance in both images and utilizing the Equation 6-2, the pixel 

aspect ratio was computed equal to 𝑃𝐴𝑅 = 3.05. Noteworthy is the observation that 

the aspect ratio was calculated independently for both the x and y axes, and the 

results indicated equal values. This equivalence implies that both sensors exhibit 

square pixels in their respective imaging systems. 

𝑃𝐴𝑅 =
𝑝𝑖𝑥𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑅𝐺𝐵 𝑖𝑚𝑎𝑔𝑒

𝑝𝑖𝑥𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝐷𝑒𝑝𝑡ℎ 𝑖𝑚𝑎𝑔𝑒
 6-2 

Then the mapping of RGB image frame to the depth image frame ensued by taking 

photos from different ‘Z’ distances of a specific object inside an operating range of 

[500,1400] mm of depth and calculating the distance between the same point in the 

two image frames. In this case the object was a Rubik’s cube 6x6. This operating range 

was chosen because in the physical world the camera will not be placed further or 

closer to the table where the items will lie on, than those bounding values. Table 6-1 

shows the calculated delta’s where the in general dy is constant with a value of 𝑑𝑦 =

−15 (depth image) depth pixels which means that the RGB image needs to be 

translated 15 depth pixels upwards. In contrast dx was not constant, therefore 

polynomial regression of second order was generated from those points, the result of 

which is shown in Equation 6-3. 

Table 6-1: Delta’s in x and y direction between RGB and Depth sensor of the Kinect V2. 

Depth Value [mm] dx [pixels] dy [pixels] 

543 25 -15 

561 24 -15 

622 20 -15 

764 15 -15 

855 13 -14 
949 12 -15 

1036 10 -15 

1355 6 -15 
 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 − 5 ∙ 10−5 ∙ 𝑑2 + 0.1078 ∙ 𝑑 + 68.46 
Where the depth value in [mm] at the specified position (𝑥𝑜𝑙𝑑 , 𝑦): 𝑑 

6-3 

Consequently, code was written to map the pixels according to their depth. Then the 

images are cropped by 25 pixels from the left side to avoid areas of where there are 

no depth values. Therefore, the resultant resolution of the images is [417,340] (width, 

height). A significant factor to note is that the RGB image can be mapped to the depth 

image with a resolution of [1273,1038] where each depth pixel is equal to 3.05 RGB 
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pixels. This mapping technique utilizes the high resolution of the RGB sensor which 

was eventually needed for increasing the performance of training the Mask RCNN 

network.  

Figure 6-4 and Figure 6-5 show the initial and the final images. For the depth images a 

custom function was created to convert the depth data (uint16) to grayscale (uint8), 

thus the difference in brightness is due to the conversion function and not to actual 

change in depth values.  

Table 6-2: RGB camera parameters 

Resolution Principal Point Focal Length Radial Distortion2 
[1920,1080]𝑤,ℎ [945,557] [1053,1053]𝑥,𝑦 𝐾1 = 0.04 

Table 6-3: Depth camera parameters. 

Resolution Principal Point Focal Length Radial Distortion  
[512,424]𝑤,ℎ [256,212] [365,365]𝑥,𝑦 𝐾1 = 0.2 

 

 
(a) 

 
(b) 

Figure 6-4:Initial Images, RGB image (a) and point cloud visualization (b). 

 
 

2 Parameter of Brown-Conrady model as described in: https://en.wikipedia.org/wiki/Distortion_(optics) . 
All other parameters are set to 0 (no tangential distortion). 

https://en.wikipedia.org/wiki/Distortion_(optics)


Diploma Thesis – Pavlos Chionidis 

34 | P a g e  
 
 

 
(a) 

 
(b) 

Figure 6-5:Mapped Images, RGB image (a) and point cloud visualization (b). 

6.2 Convolutional Neural Networks Theory 

6.2.1 Image Classifier 
A CNN is a specialized type of artificial neural network designed for processing and 

analyzing visual data. CNNs have become a fundamental technology in computer 

vision applications, excelling at tasks such as image classification, object detection, 

and image segmentation. They are inspired by the visual processing capabilities of the 

human brain and are particularly effective in capturing spatial hierarchies of features. 

A schematic representation of a simple CNN is shown in Figure 6-6. 

 
Figure 6-6: Schematic representation of a CNN. 

As the name suggests the main feature of a convolutional neural networks are the 

convolutional layers. A CNN has to contain at least one convolutional layer to be called 

a CNN. These layers apply convolution operations to the input data, allowing the 

network to automatically learn spatial hierarchies of features by changing the weights 

of those filters. Convolution involves sliding a small filter (also known as a kernel) 

across the input data to extract local patterns. A simple example of a convolution 

operation is show in Figure 6-7. 
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Figure 6-7: Example of a convolution with a kernel size of 3x3. 

In case of an RGB image convolution occurs for every different channel of the image 

where the “kernel”- filter is a 3 dimensional matrix that applies convolution for every 

channel, outputting a two dimensional matrix (feature map) as show in Figure 6-8.  

 
Figure 6-8: Example of convolutional filter applied to an Image. 

CNN’s expand on that idea to extract even more features, they use more than one 

filter (matrix of 2D kernels) for each set of channels, generating additional feature 

maps. It is noted that the weights of these filters are learned during the training 

process to extract the desired features. The results of the convolution operation are 

passed through an activation function. The activation function is applied elementwise 

to the output of the convolutional layer as shown in Figure 6-10. The most common 

activation function is the ReLU function or used more recently Leaky ReLU. The 

mathematical model of those functions is depicted in Equations 6-4 & 6-5. 

𝑅𝑒𝐿𝑈: 𝑓(𝑥) = max(0, 𝑥) 6-4 
𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈: 𝑓(𝑥) = max(𝑎𝑥, 𝑥) , 𝑎 ≤ 0.01 6-5 

In simple terms, if the input to a ReLU neuron is positive, it outputs the same value, if 

the input is negative, it outputs zero. The idea behind this step, is to introduce non 

linearities to the model, which in turns enables the network to learn complex 

relationships in the data. The main advantage of ReLU is its simplicity and 

effectiveness in training deep neural networks. It also helps address the vanishing 
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gradient problem, where gradients become very small during backpropagation, by 

allowing the flow of information for positive inputs. Therefore, after the activation 

map a pooling layer follows. The main purpose of the pooling layer is to down sample 

the spatial dimensions of the input volume, reducing the computational complexity of 

the network. Max pooling is a common pooling operation, where the maximum value 

in a local region is retained, helping to preserve the most important features while 

discarding less relevant information. It must be noted that in this way some 

information is always lost. Figure 6-9 depicts a simple example of applying max pooling 

to a 2D feature map. 

 
Figure 6-9: Example of a convolution and a max pooling layer with a kernel size of 2x2. 

 
Figure 6-10: Example of a convolutional block. 

All the above steps compose a convolutional block as shown in Figure 6-10. By 

connecting many of those convolutional blocks together the feature extractor or the 

“Backbone” of the network is created as shown in Figure 6-6.  For the classification to 

be possible a classifier or a “Head” must be added. The head consist of fully connected 

layers, that are able to combine high-level features learned by the backbone. These 

layers connect every neuron in one layer to every neuron in the next layer, allowing 

the network to make predictions or classifications based on the learned features. 

Lastly the results of the classifier are passed through a SoftMax function to convert 

the results of the network to probabilities for each class. Figure 6-11 shows a simple 

example of the SoftMax function in use. 



Diploma Thesis – Pavlos Chionidis 

37 | P a g e  
 
 

 
Figure 6-11: SoftMax Function. 

The training process of the Convolutional Neural Network (CNN) involves a form of 

backpropagation akin to traditional neural networks. In this iterative process, an 

image is passed through the network, and the output is observed in the last layer. A 

loss function then quantifies the disparity between the model's predictions and the 

actual target values. Subsequently, a backward pass is initiated to calculate the 

gradient of the loss with respect to each parameter in the network. These gradients 

serve as guides for updating the network's parameters through optimization 

algorithms, such as the stochastic gradient descent with momentum (SGDM) [1] that 

is depicted in Equation 6-6. 

𝑢𝑖+1 = 𝑢𝑖 − 𝑎𝛻𝐿(𝑢𝑖) + 𝛾(𝑢𝑖 − 𝑢𝑖−1) 
Where: 
Updated value of the Parameter: 𝑢𝑖+1 
Previous value of the Parameter: 𝑢𝑖 
Gradient of the Loss Function: 𝛻𝐿 
Momentum value: 𝛾 
Learning rate: 𝑎 

6-6 

The objective is to iteratively adjust the parameters in the opposite direction of the 

gradient to minimize the loss. A typical loss function used in those type of networks is 

the Categorical Cross-Entropy loss function that is described in Equation 6-7. 

𝐿 = − ∑ 𝑦𝑖 ∙ log2 �̂�𝑖  
𝑛

𝑖
 

Where: 
Loss Function: 𝐿 
The true probability (ground truth) of class i: 𝑦𝑖 
The predicted probability of class i from the CNN: �̂�𝑖 
The number of classes: 𝑛 

6-7 

Key parameters subject to modification during training include the convolutional 

filters (kernels), where the weight of each filter is adjusted. Additionally, the weights 

and biases of the fully connected layers are adjusted. It is worth noting that while this 

encapsulates the fundamental premise of the model, more advanced architectures 

may involve the adjustment of additional parameters during the backpropagation 

process. 
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6.2.2 Object Recognition 
A CNN with the features as described above performs feature recognition to the whole 

image thus outputting in the last layer (of the fully connected layers) the probability 

of an object to exist in that image. However, it is not specified where the objects might 

be located within the image. For this reason, more advanced methods where created, 

building upon the existing CNNs.  The additional capability is prediction of the position 

of each item in a scene (object detection) by using labeled bounding boxes 

(rectangles). Each rectangle is denoted with a specific label for the item contained 

inside it as shown in Figure 6-12. 

 
Figure 6-12: Example of image object segmentation and labeling with bounding boxes. 

These networks, notably exemplified by models such as YOLO v4, RCNN, Fast RCNN, 

and Faster RCNN, are referred to as object detectors, distinguished by their enhanced 

capabilities. In this section focuses more on the implementation of the Faster RCNN 

network as the network used in this thesis (Mask RCNN) builds upon it. The typical 

architecture of these networks includes a backbone network, often based on a pre-

trained CNN (such as VGG16 or ResNet in the case of Faster RCNN). This backbone 

network is employed to extract features from the input image as it was explained in 

the previous section. Those features form the foundation for subsequent region 

proposal and object detection stages. Figure 6-13 shows a schematic representation 

of the Fast RCNN network. 

 
Figure 6-13: Faster RCNN schematic representation. 

Backbone 
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The process initiates with the passage of features through a Region Proposal Network 

(RPN), responsible for generating region proposals (bounding boxes) indicating 

potential object locations. Essentially, the RPN guides the classifier on where to focus 

its attention within the image. These proposals are generated by employing two 

compact networks that “slide” across the feature maps produced by the Backbone. 

These networks are fully connected with a sliding window (kernel) of size n×n (where 

in the case of Faster RCNN n=3). At each position of the sliding window k anchors 

boxes (reference boxes) of different sizes and aspect ratios are used for proposing 

multiple bounding box regions of objects (for example in Faster RCNN 3 different 

aspect ratios of anchor boxes were used with 3 different sizes totaling k=9 anchor 

boxes). It is noted that the anchor boxes are constant and are set by the user in the 

creation of the CNN. The networks connected to the sliding window is the box 

classifier (cls) that has an output of 2∙k representing the probabilities of an item to be 

located inside the anchor box or not and the box regressor (reg) that has an output of 

4∙k that represent the adjusted coordinates of the anchor boxes [2]. Subsequently, the 

RoI Pooling layer or RoI Align layer takes these region proposals from the RPN and 

extracts fixed-size feature maps from the features produced by the backbone network 

by using a max pooling operation of varying size.  This crucial step ensures that 

subsequent layers receive inputs of uniform size that is needed for the fully connected 

layers. Figure 6-14 shows a schematic representation of how the RPN network is 

structured. 

 
Figure 6-14: Schematic representation of the RPN structure [2]. 

The RoI Align layer's output undergoes processing through a series of fully connected 

layers, culminating in the generation of two distinct types of outputs, constituting a 

total size of 5∙C∙N. Here, C denotes the number of classes or detectable objects within 

the network, and N signifies the region proposals detected by the network for a given 

image. The initial N∙C outputs correspond to the probabilities assigned to each class 

for every region proposal, while the subsequent 4∙C∙N outputs are specifically 

designated for bounding box coordinates. Notably, this implies that the RPN is 

independently trained to generate region proposals based on bounding boxes and 

their associated ground truth labels. An intriguing implication of this standalone 

training approach is that in scenarios where a pretrained network exhibits objects 

(classes) akin in size and shape to those intended for use by a user, a resource-
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conserving strategy can be employed. Specifically, the user has the flexibility to 

exclusively train the classifier component of the network, opting to "freeze" the 

backbone CNN and RPN networks. This strategic freezing of certain components 

enables the preservation of computational resources while tailoring the model to 

specific classification objectives. 

It is crucial to emphasize that the loss functions for the regression head and the 

classification head exhibit distinct formulations. To elaborate, the regression loss is 

computed through the application of the Smooth L1 Loss function, as delineated in 

Equation 6-8 while the classification loss is determined using the Binary Cross-Entropy 

Loss, as outlined in Equation 6-9. This differentiation underscores the tailored nature 

of the loss functions, each catering to the specific requirements of its respective task 

within the model. 

𝐿𝑟𝑒𝑔 = ∑ 𝑃𝑖 ∙ 𝑙𝑖

𝑖

 

With: 𝑙𝑖 = {
∑

0.5(𝑦𝑗−�̂�𝑗)
2

𝛽

4
𝑗  𝑖𝑓 |𝑦𝑗 − �̂�𝑗| < 𝛽

|𝑦𝑗 − �̂�𝑗| − 0.5 ∙ 𝛽
 

Where: 
Smooth L1 Loss Function: 𝐿 

Anchor value (0 or 1): 𝑃𝑖
3 

The predicted anchor parameters (center coordinates, width and height): �̂�𝑗 

The ground truth parameters (center coordinates, width and height): 𝑦𝑗 

6-8 

 

𝐿𝑐𝑙𝑠 = ∑ 𝑦𝑖 ∙ log 𝑦�̂� +(1 − 𝑦𝑖) ∙ log (1 − 𝑦�̂�)

𝑖=1

 

Where: 
Binary Cross-Entropy Loss Function: 𝐿 
The true label (0 or 1) for the region i: 𝑦𝑖 
The predicted probability from the cls (between 0-1) for the region i: 𝑦�̂� 

6-9 

The total RPN Loss is calculated by the following equation. 

𝑅𝑃𝑁 𝐿𝑜𝑠𝑠 =
𝐿𝑐𝑙𝑠

𝑁𝑐𝑙𝑠
+ 𝜆 ∙

𝐿𝑟𝑒𝑔

𝛮𝑟𝑒𝑔
  

Where (in this work): 
Normalizing factor: 𝜆 = 10 
Mini batch size: 𝑁𝑐𝑙𝑠 = 128 
Anchor boxes locations: 𝑁𝑟𝑒𝑔 = 1250 

6-10 

 
 

3 𝑃𝑖 = 1 : if the IoU is higher than 0.7 or if the specified anchor has the highest value of IoU in terms of 
all the other anchors and has an IoU higher than 0.3. For all the other cases 𝑃𝑖 = 0.  



Diploma Thesis – Pavlos Chionidis 

41 | P a g e  
 
 

6.2.1 Object Masks & Segmentation Methods 
While bounding boxes serve to indicate the general position of an object, they fall 

short of providing a more comprehensive description. Essentially, a bounding box 

delineates an area where an object is likely located, yet for a more precise 

characterization, a finer delineation is essential. This nuanced representation is 

achieved through the creation of pixel-wise masks for each object in an image. A mask, 

in essence, is a binary image wherein ones (1) correspond to the region occupied by 

the object, and zeros (0) denote areas where the object is absent. This binary 

segmentation allows for a more granular understanding of the object's spatial extent, 

enabling the extraction of valuable information such as its area, perimeter, centroid, 

among other metrics. Consequently, the utilization of masks enhances the accuracy 

and efficacy of object comprehension and facilitates more sophisticated grasping 

techniques. 

To address the intricate challenge of precise mask generation in image analysis, more 

sophisticated methods and CNNs have been developed. Notable examples include 

Mask R-CNN and YOLO v8, both representing advancements in the realm of CNNs 

dedicated to predicting masks for objects within an image. In essence, these CNNs 

extend the capabilities of traditional Object Recognition CNNs by incorporating an 

additional network (head) known as the Segmentation CNN. This augmented 

architecture empowers these networks with the ability to perform segmentation 

tasks, producing detailed masks for identified objects. 

In general, there are two types of object segmentation methods in an image: instance 

segmentation and semantic segmentation. Instance segmentation involves labeling 

and outlining individual objects within an image, providing a detailed understanding 

of their boundaries. This is important in applications like medical imaging and robotics. 

On the other hand, semantic segmentation classifies pixels into predefined categories, 

giving an overall view of the scene. It is used in tasks such as scene understanding and 

augmented reality. The key difference lies in granularity: instance segmentation 

focuses on specific instances, while semantic segmentation provides a general 

classification of pixels, as shown in Figure 6-15. For this diploma thesis, instance 

segmentation was chosen for its more object-specific segmentation. 

 
(a) 

 
(b) 

Figure 6-15: Schematic segmentation (a) and instance segmentation (b) [20]. 
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As mentioned in previous sections the network used in this work is the Mask RCNN 

that extends the foundation of the Faster RCNN. Specifically, the Mask RCNN network 

introduces a supplementary branch dedicated to predicting segmentation masks for 

each Region of Interest generated by the Region Proposal Network. The mask 

segmentation network (head) as depicted in Figure 6-16 is characterized by a CNN 

structure, exclusively comprised of convolution layers. This network operates 

concurrently with the classifier network and the bounding box regressor network, 

enhancing the comprehensive capabilities of the model. The incorporation of the 

mask segmentation branch facilitates the precise delineation of object boundaries 

within identified regions, contributing significantly to the network's capacity for 

detailed instance segmentation in object detection tasks. This parallel architecture 

demonstrates the versatility and adaptability of the Mask RCNN in simultaneously 

addressing classification, bounding box regression, and pixel-wise segmentation tasks. 

A simplified schematic representation of the Mask RCNN network is shown in Figure 

6-17. 

 
Figure 6-16: Mask R-CNN segmentation layers [3]. 

 
Figure 6-17: Schematic representation of Mask R-CNN [20].  

The Loss function of the mask network is the already discussed binary cross-entropy 

loss function denoted in Equation 6-9. The sum of all the loss functions discussed so 

far (Box regression- Classification, RPN and Mask loss) is equivalent to the total loss of 

the network.  
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6.3 Mask RCNN Implementation 
In this diploma thesis Mask R-CNN pretrained with the MS COCO dataset was 

employed for the machine vision part of the robotic system [20]. The focus was on 

predicting bounding box coordinates and segmentation masks to achieve object 

delineation. A common problem that arouses in those type of applications (robotic 

grasping of items) is the occlusion that occurs during object stacking. In simpler terms, 

occlusion refers to the situation where one object is in front of another, partially or 

completely hiding it from view. This creates a challenge in the grasping strategy that 

the robot has to follow due to uncertainties of the position of the objects. However, 

many researchers have suggested methods for predicting the masks of the occluded 

objects, others by training the network with the full shape masks (incorporating and 

the occluded areas) [14] whereas others predicting the non-occluded masks [8]. Figure 

6-18 show the difference between those two methods. In this work the non-occluded 

masks are adopted, as in practice it isn’t easy obtain clean ground truth data for the 

occluded parts. The full shaped masks can be created from computer generated 

images (from CAD etc). 

   
(a) 

 
(b) 

 
(c) 

Figure 6-18: Example image (a) full shaped masks (b) and non-occluded masks (c). 

6.3.1 Data generation-Image Labeling  
As described and in the beginning of this diploma thesis, in order to train the Mask 

RCNN model there needs to be data. There are three types of objects used in this work 

shown in Figure 6-19. 

 
(a) 

 
(b) 

 
(c) 

Figure 6-19: Objects used in this work. “PT1” (a), “PT2” (b), “PT3” (c). 
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Due to the uniqueness of the objects used for detection these data needed to be 

generated by hand. For this reason, 114 images were taken containing these objects 

in different configurations. Those images are then cut to match the depth images 

however they are not resized to match their resolution. To elaborate as mentioned 

and in the calibration section of the Kinect, the images resolution is cropped from 

[1920,1080] to [1273,1038] which if scaled down by the PAR (=3.05), gives (if rounded) 

[417,340] which is the depth image resolution. This was done to increase the 

performance of the network during training as higher resolution incorporates more 

data to process. Figure 6-20 depicts the setup used to take the required pictures.  

 
Figure 6-20: Camera setup for acquiring images. 

 Consequently, using the “Image Labeler” app in MATLAB, polygon shaped masks are 

created by hand for each object class, where for each polygon mask there are two 

additional variables to be set: 

• Item (Integer) 

This variable denotes the designated object identifier within a particular class. Its 

purpose is to facilitate the subsequent consolidation of masks pertaining to a 

singular object that may be occluded, resulting in the generation of two distinct 

masks. As illustrated in Figure 6-21 “PT3” has three distinct masks. Consequently, 

the item variable is assigned a value of 1 for all the masks corresponding to the 

class “PT3”, signifying that the masks collectively represent a singular object. 

• Occlusion (Boolean) 

This variable serves as an indicator for the occlusion status of the object, assuming 

a value of “true” if the object is occluded and “false” if it is not. Subsequently, this 
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information is harnessed for the training of occlusion networks. As depicted in 

Figure 6-21, the object labeled “PT3” is occluded, leading to the assignment of the 

occlusion property as “true” for all the masks representing the identical 

component. Additionally, “PT2” is occluded by “PT1” in the bottom edge thus the 

occlusion property is set to “True”. 

 
Figure 6-21:Example of occluded object “PT3” and “PT2” with labeling variables. 

Then by exporting the masks and the variables as a table, the annotation for each 

image is created from a custom made MATLAB code that does the following: 

• Transformation of the polygon points to binary images of size [1273,1038] that 

are then concatenated to a 3D matrix of size [1273, 1038, n] where n is the 

number of objects in the image to represent the masks. 

• Generation of the bounding boxes [x,y,w,h] from the polygon points by taking 

the maximum distance in y and x direction. 

• Export one annotation (.m) file containing the image name with its labels, 

bounding boxes and masks in the form of cell arrays. The naming of the cell 

arrays must be kept the same as described in the coco API for the generation 

of the file datastore used in training. 

An “annotation.m” file is exported for every image into a folder containing only the 

annotation files for the training. Then a file datastore is created using the coco API 

function, for the folder containing the annotation files. This datastore is then used to 

train the Mask RCNN object. It is noted that in this way memory is preserved, because 

only the data for one image is loaded at a time rather than the whole datastore. Figure 

6-22 shows some examples of ground truth labeled data.  
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Figure 6-22: Ground Truth data for training and validation purposes. 

Although there are only 3 types of objects, they share similar characteristics, like color 

and geometries making it harder to distinguish from each other. Adding more objects 

(classes) would not change the general procedure of labeling and training, however it 

would require a larger amount of training data to be generated, increasing the 

manhours required for this step. For context on average 2 minutes where needed to 

generate the labels for each image.  

6.3.2 Data augmentation 
In general data augmentation is employed in image segmentation networks to 

enhance model generalization, robustness, and performance. By artificially expanding 

the training dataset through transformations like rotation, flipping, and scaling, data 

augmentation addresses the challenges of limited labeled data, improves the model's 

resistance to variations in lighting, orientation, and scale, and reduces overfitting. This 

regularization technique fosters the learning of generalized features, making 

segmentation models more adept at handling diverse object shapes, sizes, and 

orientations.  

In the context of this diploma thesis, given the limited quantity of training images, a 

data augmentation algorithm was devised to increase the training dataset by a factor 

of 10. This algorithm utilizes pre-annotated images for the generation of new 

instances through random rotations, translations, and the incorporation of diverse 

backgrounds selected from a pool of 10 options. The random rotations and 

translations are independently applied to each object using the rand() function in 

MATLAB, and the resultant images are merged with their respective masks. 

Importantly, the concatenation order is randomized, leading to random object 

occlusion in the augmented images. This randomness introduces complexities in the 

masks and bounding boxes of the objects within an image, necessitating adjustments. 

Consequently, all bounding boxes are modified to encompass solely the non-occluded 

regions of the corresponding objects. If an object is significantly occluded (area < 100 

pixels), its mask and bounding box are excluded from the annotation file. 

Subsequently, following the same procedure as before, annotation files are generated 

for each augmented image, and a new datastore for training is constructed. Figure 

6-23 shows some examples of the augmented images. 
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Figure 6-23: Augmented images generated for training. 

6.3.3 Training 
In the initiation of the network the anchor boxes (15 in total) remained the same as 

the pretrained network. Training encompassed the entire network, including the 

backbone, Region Proposal Network (RPN), and classifier, as superior outcomes were 

observed with this comprehensive approach. The training process was bifurcated into 

two stages: the initial stage involved augmented images and annotations (1140 cases), 

while the subsequent stage utilized real-world images (114 cases). The training was 

executed on a personal computer equipped with a GPU (RTX 3090), leveraging a 

minimum of 20GB of VRAM during the training process. Detailed specifications of the 

training algorithm options are provided in Table 6-4, while the Mask R-CNN training 

options are comprehensively outlined in Table 6-5. 

Table 6-4: Training algorithm options. 

Parameters Value 
Training Algorithm Stochastic Gradient Decent with Momentum 

Initial Learn Rate 0.001 

Momentum 0.9 

Learn Rate Schedule Piecewise 

Learn Rate Drop Period 1 

Lear Rate Drop Factor 0.95 

Max Epochs 10 

Mini Batch Size 2 
Bach Normalization Statistics Moving 

 

Table 6-5: Mask R-CNN additional options. 

Parameters Value 
Number of Regions to Sample 128 

Number of Strongest Regions 1300 

Positive Overlap Range [0.75, 1] 

Negative Overlap Range [0, 0.75] 
Number of Anchor Boxes 15 

Each parameter significantly influences both the training time and the overall 

performance of the network, with MATLAB and various sources providing valuable 
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insights into the purpose of each [8]. However, among these parameters, two prove 

particularly pivotal in achieving optimal regression for the network: the Positive 

Overlap Range and the Negative Overlap Range. Essentially, these values dictate 

whether an anchor is selected as positive sample or as negative one based on the 

Intersection over Union (IoU) value with the training data. To elaborate, the Positive 

Overlap Range determines the acceptable range of IoU values with the training data, 

while the Negative Overlap Range serves the opposite purpose. By elevating the 

threshold from 0.5 to 0.75, the network exhibited accelerated regression, 

accompanied by a notable reduction in total training errors from 0.7 to 0.02. 

Furthermore, this adjustment successfully addressed issues associated with multiple 

bounding boxes per item. In Table 6-6 the training performances are shown, where 

the RPN Loss is calculated as described in Equation 6-10, the RMSE is the mean 

squared error for the box regressor of the head, the Mask loss is described with 6-9 

(binary cross entropy) and lastly the Total Loss is the sum of those three errors. Figure 

6-24 depicts a diagram of the training process after training with the augmented data 

was applied.  

 
Figure 6-24: Mask RCNN training diagram. 

Table 6-6: Mask RCNN training performance. 

RPN Loss RMSE Mask Loss Total Loss 

0.0016 0.0004 0.0153 0.0223 
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6.3.4 Testing & Results 
To assess the network's performance, three distinct datasets were curated, each 

comprising a total of 15 ground truth-labeled images, following the creation process 

of the training datasets. The initial dataset encompasses all objects within each image, 

without any inter-object occlusion. The second dataset introduces mild occlusion 

(<25% maximum area of an object is occluded) between objects, while the third 

dataset features images characterized by substantial occlusion (>25% minimum area 

of an object is occluded) between objects. This varied testing methodology aims to 

evaluate the model's accuracy across diverse scenarios and discern the impact of 

occlusion on the overall network performance. By systematically testing the model 

under different levels of occlusion, valuable insights into its robustness and 

adaptability to varying conditions are gained, contributing to a comprehensive 

assessment of its capabilities. Table 6-7 show the performances for each dataset while 

Figure 6-25, Figure 6-26 and Figure 6-27 show one example for each dataset 

respectively. 

Table 6-7: Mask RCNN testing performances. 

 
Figure 6-25: Model testing in no occlusion environment. 

Case RPN Loss RMSE Mask Loss Total Loss 
No Occlusion 0.0022 0.0005 0.0179 0.0258 

Mild Occlusion 0.0031 0.0005 0.0251 0.0352 

High Occlusion 0.0032 0.0009 0.0381 0.0520 
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Figure 6-26: Model testing in mild occlusion environment. 

 
Figure 6-27: Model testing in heavy occlusion environments. 
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The obtained results reveal consistent values comparable to those witnessed during 

the network training phase, underscoring the network's capacity for generalization 

across diverse environments in segmentation tasks. It is essential to highlight that as 

the occlusion percentage increases, an increase in error occurs, indicating the 

heightened challenge for the network to generate precise masks. This escalation in 

error is predominantly attributed to the amplified mask loss in instances of increased 

occlusion. Notwithstanding this, the outcomes achieved in this thesis surpass those 

reported by [8] (total loss of 0.08), wherein depth data was also incorporated for 

network training. It is pertinent to acknowledge the disparity in dataset 

characteristics, as [8] incorporated a significantly higher number of object classes and 

objects per image, that should result in higher errors. In summary, the network's 

performance, as demonstrated in this study, proves to be sufficiently adept in 

addressing occlusion problems even in demanding scenarios. 
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7. Occlusion Detection 

7.1 Parameters 
In this dissertation, the implementation of feedforward neural networks is employed 

to address the occlusion problem. Fundamentally, these networks are designed to 

ascertain whether a detected object is subject to occlusion. This process facilitates the 

development of a straightforward algorithm that utilizes occlusion data to determine 

the selection of objects for manipulation. To elaborate, if an object is identified as 

occluded, it is precluded from being chosen. Each distinct object type is addressed by 

a separate artificial neural network. Although this thesis focuses on three specific 

object classes, a generalized approach could be devised to train k networks for k 

classes. The uniformity of inputs across all networks is maintained, comprising the 

following: 

• Background Height 

Background height refers to the vertical distance between the background and 

the depth sensor of the Kinect device. The initial step involves the generation 

of a background mask through a logical "or" operation applied to the masks of 

the objects corresponding to the specific image and by taking its inverse. 

Subsequently, the derived mask is spatially aligned with the depth image, 

enabling the computation of the average depth value associated with the 

background mask. 

• Opened Perimeter  

The opened perimeter is defined as the ratio of the mask perimeter of the 

object by the background height. This approach enables the network's 

applicability across varying distances of the background from the camera, 

accommodating different aspect ratios of the object. Consequently, this 

adaptability enhances the robustness of the system to changes in its 

configuration. 

• Opened Area 

The opened area is defined as the ratio of the mask area of the object by the 

square of the background height. This approach enables the network's 

applicability across varying distances of the background from the camera, 

accommodating different aspect ratios of the object. Consequently, this 

adaptability enhances the robustness of the system to changes in its 

configuration. 

• Object Height 

This is the difference between background height and object height, where the 

object height is the average distance between the object from the camera that 

is calculated by mapping the masks to the depth values and taking their 

average.  
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• Distance Between Closest Object 

This metric denotes the distance, expressed in meters and calculated through 

the utilization of background height and focal length parameters, between the 

closest object in proximity to the object under inspection, as illustrated in 

Figure 7-1. This deliberate incorporation of distance information enables the 

network to assimilate an additional discerning feature that may serve as an 

indicative factor for occlusion. In instances of occlusion, this distance is 

anticipated to be minimal, theoretically approaching zero. 

• Height Difference Between Closest Object  

This parameter represents the disparity in height, measured in distance from 

the camera, between the nearest point of the closest object and the closest 

point to the same object within the inspected region. To mitigate the impact 

of potentially erroneous depth values, the average height of the respective 

areas of both objects at the specified points is calculated. Figure 7-1 provides 

an illustrative example of this procedure. The integration of this input, coupled 

with the distance information for these objects, empowers the network to 

acquire an additional reference for discerning occlusion. In practical terms, a 

negative value may suggest occlusion of the inspected part, while a positive 

value may imply potential occlusion of the nearest object. 

 
Figure 7-1: Visual representation of closest distance between objects, and areas to calculate the height difference 

between the objects. 

The input data for the networks necessitates the inclusion of labels to discern the 

appropriate network, alongside the masks and the depth image. Extensive 

preprocessing techniques are applied to extract the specified features. The network's 

output is a singular Boolean value, where a result of 1 denotes occlusion of the object, 

and 0 signifies its absence. It is imperative to note that in scenes featuring only a 

solitary object, the evaluation for occlusion becomes redundant; thus, the 

aforementioned procedures necessitate the presence of at least two objects within an 

image. During the training phase, output values are derived from the ground truth 

table outlined in the data generation section of the Mask R-CNN, utilizing an additional 

variable specifically dedicated to occlusion.  
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7.2 Training process  
For the training of the networks a total of 114 images were used that were annotated 

during the Mask RCNN data creation process. However, a new datastore needed to be 

generated, with resized masks, bounding boxes and images to match the resolution of 

the depth images. Furthermore, no data augmentation was applied, because the 

depth data are more susceptible to errors thus augmenting the errors would results 

in a less valid approach, making the networks less reliable in real world scenarios. The 

data for training each network is split automatically from specially written code 

exporting three different tables (for each object class) with each one containing the 

inputs and the output as described in the previous section.  

The idea behind the training process was to implement as many hidden layers are 

needed to be able to learn the complexity of the problem. Increasing the hidden layers 

did not severely increase the training time as GPU computing was used (RTX 3090), 

utilizing thousands of cores to complete the operations. The optimization method that 

was used, was the resilient back propagation (RP) because from a selection of few it 

registered the best results. It is noted that while Levenberg-Marquardt (LM) method 

seems to get the same results as RP with less hidden layers, the implementation of 

the optimization algorithm is based on CPU computing increasing the computational 

time substantially.  

Upon delineating the system's inputs and output, the data are categorized into distinct 

subsets to facilitate the training and assessment of the neural network. The chosen 

categories adhered to the training/validation/testing paradigm, with an associated 

allocation of 80/10/10 (%) respectively. The inclusion of the "Validation" category was 

deemed imperative due to its role in mitigating overfitting, notwithstanding the 

reduction in available data for the training phase. The deliberate selection of a specific 

percentage for testing and validation, was driven by the limited amount of data 

acquired, however they are deemed enough to reduce the possibility of a “lucky” 

network that cannot handle generalized cases. 

The network's performance evaluation criterion is defined by the selection of the 

mean squared error (MSE), a method chosen for its capability to magnify substantial 

deviations, consequently imposing a more pronounced penalty on the model. It’ s 

emphasized that although it’ s common to use cross entropy for the evaluation, it was 

found that MSE performs better in this case (one binary output). It is imperative to 

note that the errors are calculated for all three subcategories separately and are 

summed in the end to create the total error of the network. To elaborate, all three 

categories have the same amount of influence in the final selection, even though the 

training subcategory category is containing 80% of the data. By this implementation, 

the chosen network would be able to handle generalized inputs, but it should also be 

able to handle similar cases with the ones it was trained.  



Diploma Thesis – Pavlos Chionidis 

55 | P a g e  
 
 

Consequently, the hidden layers where set manually (increasing them in size) until no 

increase in performance was observed. Additionally, for each set of hidden layers a 

loop was generated, comprising of 100 iterations, undertaking the estimation of 100 

neural networks sharing identical structures but initialized with different weights. This 

meticulous process ensures the preservation of the network ability, by taking the most 

favorable performance, as indicated by the lowest MSE. Such an approach not only 

enhances the statistical accuracy of the results but also serves as a guiding mechanism, 

enabling us to make well-informed decisions pertaining to the performance of each 

parameter set. 

 
Figure 7-2: Schematic representation of the Neural Networks implemented in this work. 

The activation function employed between neurons is the hyperbolic tangent 

function, denoted as "tansig", with a subsequent rounding function applied in the 

output layer. Specifically, if the output is greater than or equal to 0.5, it is assigned a 

value of 1; otherwise, if it is less than 0.5, it is set to 0. It is pertinent to acknowledge 

that an alternative activation function, namely the Rectified Linear Unit (ReLU), was 

also investigated as a substitution for the “tansig” function to assess potential 

performance improvements. However, the empirical results indicated a decrease in 

performance. Table 7-1 delineate the parameters for each network during both the 

training. Table 7-2 elucidates the results of the training and testing process.  

Table 7-1: Training parameters for occlusion networks. 

Maximum 
Epochs 

Maximum 
Validation 
Increases 

Regularization Normalization 
Training 

algorithm 

1000 20 false false 
Resilient 

backpropagation 

Table 7-2: Hidden layers and errors of each network. 

Object 
Class 

Hidden Layers Training Validation Testing 

PT1 [50,50,25,25,10,10,5,5] 2 1 1 
PT2 [100,100,50,50,25,25,10,10,5,5] 0 0 2 

PT3 [100,100,50,50,25,25,10,10,5,5] 4 1 1 
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7.3 Testing Results 
Upon scrutiny of the network parameters, it becomes evident that the rationale 

guiding the design of the hidden layers was to commence with a substantial number 

of neurons and progressively reduce this count with each subsequent layer, 

culminating in the final layer. The writer's experiential insights suggest that such an 

implementation proves efficacious in networks where the number of inputs exceeds 

that of the outputs. Furthermore, this approach simplifies the strategy employed to 

enhance performance-namely, augmenting the number of layers and their respective 

sizes. In contrast, for other network architectures, the means to improve performance 

may be less straightforward, potentially introducing ambiguity concerning how 

alterations in structure could positively impact performance.  

The overall performance of the networks appears commendable and aligns - surpasses 

other networks documented where the obtained performances achieved was 68.3% 

[14] whereas in this thesis the combined accuracy in testing was 90.5%. It is imperative 

to underscore, nonetheless, the discrepancy between data type used for training, 

were in [14] more objects and more object classes exist in a single image, increasing 

the difficulty of the problem. Additionally, the training data for the network comprises 

ground truth labels, wherein the implementation phase, both masks and labels are 

derived from the Mask R-CNN network. This underscores a critical dependency, where 

the efficacy of the entire model is substantially contingent on the segmentation 

performance of the Mask R-CNN network.  Table 7-3 shows in more details the type 

of error found from during training and testing.  

Table 7-3: Type of error of Occlusion ANNs. 

Object Class  False Positive False Negative 
PT1 1 3 

PT2 0 2 

PT3 1 5 

Although the testing results indicate an overall "good" performance, it's essential to 

acknowledge that the networks may underestimate the likelihood of occlusion. The 

disparity observed in false positive and false negative results can be attributed to the 

nature of inputs provided to the networks. Specifically, in instances where significant 

occlusion occurs between objects, and multiple object masks intersect closely or 

overlap, the parameters "Closest Object Distance" and "Height Difference Between 

Closest Objects" may not accurately identify the object responsible for occlusion. 

Consequently, these parameters might erroneously refer to another occluded object 

with a lower height than the inspected part, leading to the incorrect conclusion that 

the inspected part is unobstructed. 

From a simple logical perspective, it's preferable for networks to err on the side of 

overestimating occlusion, thereby producing false positive results. This approach 

ensures that even in the absence of occlusion, the network would still detect parts as 
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occluded. Consequently, a logic-based grasping technique would disregard grasping 

the specific object affected by the occlusion, opting to grasp another. However, with 

networks that underestimate occlusion, the opposite scenario may occur. In such 

cases, if the networks fail to recognize the correct occlusion properties of an object, 

the grasping logic might lead to attempting to grasp the occluded object, potentially 

risking collisions with other objects obstructing it. Non the less the possibility of the 

later is counteracted by implementing a highest first logic in the grasping technique. 
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8. Grasping Technique 
Within this study, the robotic arm has been outfitted with a proprietary gripper. 

Consequently, the present investigation will adopt a strategy centered around a 

gripper device, as opposed to a suction apparatus. The rationale underpinning the 

grasping technique is derived from the way humans naturally manipulate and secure 

objects. More precisely, human tendencies involve grasping items at two points 

situated proximate to the center of mass, positioned in close proximity to each other, 

as illustrated in Figure 8-1. 

 
Figure 8-1: Center of areas (red crosses), Grab axis (green lines), Long Axis (blue lines). 

Henceforth, an algorithm has been devised to facilitate the precise grasping of a 

designated object. Initial computations involve the determination of the center of 

area for the specified object mask, a point generally proximal to the center of mass. 

Subsequently, the angle of rotation of the object part is ascertained by considering 

the angle of its largest axis. Concurrently, the average height of the object is calculated 

utilizing both the mask and depth data, and a constant value of 10mm has been 

established below this average height to determine the optimal grasping position for 

each object. 

Importantly, a preventive mechanism has been implemented to safeguard against 

potential collisions with the tabletop. Specifically, if the calculated height falls below 

the table surface, the grasping height is automatically adjusted to be 10mm above the 

table. Furthermore, within the scope of this investigation, the challenge of occlusion 

is addressed. A dedicated methodology has been incorporated to discern and exclude 

occluded objects while prioritizing those that remain visible. In instances where 

multiple fully visible objects are present, the algorithm is designed to make discerning 

choices among them. To achieve this, the occlusion predicament is distinctly managed 

in a preceding section, and here, the outcomes from occlusion neural networks are 

utilized as inputs. 

The underlying rationale guiding the grasping strategy involves refraining from 

grasping occluded objects until they transition to a fully visible state. Subsequently, 
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among the fully visible objects, the algorithm is programmed to prioritize and grasp 

the object with the greatest height, signifying its proximity to the camera. 

Derived from the aforementioned considerations, it becomes evident that for the 

successful implementation of this strategy, it is imperative to capture an image each 

time an object is extracted from the scene. Subsequently, the acquired image 

undergoes processing through both the segmentation network and the occlusion 

networks to identify and select an object for grasping. This procedural choice is 

motivated by its inherent resilience compared to formulating the entire grasping 

strategy based on a solitary image. 

The efficacy of this approach is particularly pronounced in scenarios involving 

occlusion, where certain objects may not be initially visible within the scene. However, 

it is imperative to acknowledge that this method amplifies computational time by a 

factor of N, corresponding to the number of objects present in the scene. Despite the 

computational trade-off, the enhanced robustness achieved, especially in occlusion 

scenarios, justifies this strategic decision. 
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9. Virtual World Implementation 

9.1 Virtual world initialization strategy 
As emphasized in the introduction, the establishment of a virtual environment that 

faithfully replicates the real-world context holds paramount significance for the in-

depth examination of control methodologies governing the robotic arm, computer 

vision, and object grasping. At this juncture, various approaches are available for 

simulation within a virtual environment with seamless integration with "MATLAB-

Simulink," each offering distinct advantages and drawbacks. This work delves into 

three such approaches, placing particular emphasis on the selected one. 

The first method initially employed involved the option provided within "Simulink," 

specifically the Virtual Reality package found within the Simulink 3D Animation 

blockset. The primary advantage of this package lies in its ease of integration, allowing 

the robotic arm to be effortlessly inserted into the 3D world by importing its rigid body 

tree and configuration (joint rotations). Additional benefits include extensive 

documentation due to its longer history in the realm of 3D animation. However, 

notable disadvantages include the inability to incorporate an RGB-D camera into the 

model, and the graphics may appear outdated. 

The second option entails creating the environment in the external program "Gazebo" 

and utilizing the "Simulink-Gazebo" blockset for communication between programs. 

Gazebo is a well-established program in the field of robotics, offering diverse 

functionalities and simulations, including RGB-D cameras, sensors, and fully integrated 

robotic systems. However, this approach introduces an additional step in the 

simulation process and increases the system's complexity especially in the windows 

operating system. Moreover, the graphics are not superior to those of the previous 

method. 

A more recent and advanced approach involves MATLAB's collaboration with Unreal 

Engine to create virtual environments for simulation within Simulink. MATLAB offers 

ready-to-use airspace, drone, and automotive applications in the Unreal Engine 

environment, with corresponding blocks available in the aforementioned categories 

and the 3D animation toolbox. A significant advantage of this 3D environment lies in 

its realistic lighting, shading, and color representation of objects within the scene. 

Additionally, it enables the insertion and movement of RGB-D cameras, a feature 

crucial for the real-world application. The primary drawback is the absence of a 

straightforward method for modeling robotic arm movements using a single ready-to-

use block. Furthermore, for optimal scene representation, the file type must be ".fbx," 

which is not supported by SOLIDWORKS. However, Blender was utilized for configuring 

lighting and object color due to its more advanced visualization techniques, and it can 

output files in the ".fbx" format. 



Diploma Thesis – Pavlos Chionidis 

61 | P a g e  
 
 

9.2 Robotic Arm Modeling 
Initially, the work begins with importing graphic files of the ".step" type, which 

represent each segment - element of the robotic arm, into SOLIDWORKS for the 

assembly construction. The way in which the components of the robotic arm are 

defined is crucial, where the reference point (origin) of each component must be 

located at the corresponding joint that rotates it and have the correct orientation (z-

axis in the direction of rotation, according to the right-hand rule). 

In addition to incorporating the arm files, one supplementary assembly was 

introduced into the model: the arm's gripper (end effector). It is imperative to 

meticulously oversee and position the reference point, ensuring that the z-axis 

extends outward up to the location of grabbing. Figure 9-1 shows the robotic arm 

assembly within SOLIDWORKS. 

 

Figure 9-1: Stäubli RX90L Assembly with all joints in zero position. 

A crucial step involves converting the graphical assembly into a format compatible 

with the control software, specifically MATLAB. Two alternatives are at one's disposal: 

the "multibody link" add-on designed for MATLAB, seamlessly integrated into 

SOLIDWORKS, and the more versatile “SW urdf exporter”, capable of producing a 

robot arm file in the ".urdf" format, universally readable by programs within this 

domain. It is imperative to emphasize that, in both instances, the arm must be 

positioned at its "zero" position, characterized by all joints possessing a value of zero, 

prior to the conversion process. Additionally, the mates between the manipulators 

links should be exclusively done with contact (coincident) and rotation (concentric) 

constraints. 

The initial approach involved the application of the first method to introduce the robot 

into the MATLAB environment. Nevertheless, complications emerged during the 

transfer of graphic elements in the ".stl" format, as well as in the accurate positioning 

of the robot in Simulink. These challenges were effectively mitigated through the 
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utilization of the "SW urdf exporter". Facilitating a streamlined procedure, the "SW 

urdf exporter" delineates joint types, their constraints concerning torque and rotation 

and reference points for each "link" element. It must be noted that it is better to name 

the base of the robot as “base” and the end effector (gripper) of the robot as “tool0” 

to avoid problems during the inverse kinematics in MATLAB. It is pertinent to observe 

that solely constraints pertaining to rotation and angular velocity were specified due 

to the unavailability of precise motor torques. However, this limitation remains 

inconsequential for the present undertaking, as the intricacies of the arm's dynamics, 

particularly with respect to the application, are of nominal significance.  

 Following this, the option is presented for the exportation of the ".urdf" file 

concomitant with the graphical elements (meshes). These elements are organized 

within a directory encompassing comprehensive information pertaining to the 

generated robotic arm. It is imperative to highlight that MATLAB treats each arm as 

an object of the "rigidbodytree" type and not as ".urdf". Nevertheless, the transition 

between these two formats is seamlessly executed through the utilization of the 

"importrobot()" command. 

9.3 Establishing 3d Environment Within Simulink 
In any scenario requiring the incorporation of a 3D scene into Simulink using Unreal 

Engine, a "Simulation 3D Scene Configuration" block is essential to establish the initial 

parameters of the scene. At the time of writing, the scene must be configured as an 

Empty scene, and the Scene Source should be set to "Default Scenes." This 

configuration is chosen to enable the creation of the simulation within MATLAB rather 

than running an already preconfigured simulation. Subsequently, all the elements of 

the scene (except from the robotic arm), are exported from Blender, and are 

introduced using the "Simulation 3D Actor" block. 

During this phase, two primary methodologies were assessed. The initial approach 

involved the importation of objects designated for grasping as individual ".stl" files. A 

random position and orientation generator were then employed to situate these 

objects above a specified region on the table. Subsequently, utilizing the physics 

engine inherent in the Unreal Engine, the items would descend and orient themselves 

in a randomized manner, enabling comprehensive testing of the network under 

diverse scenarios. However, despite the initial implementation, the rendering quality 

of surfaces proved suboptimal, even for high-quality ".stl" files. This issue adversely 

impacted the detection accuracy of objects by the Mask RCNN network, upon which 

the remainder of the system relies. 

Subsequently, an alternative approach was adopted, entailing the insertion of objects 

into the scene as ".fbx" files. However, a notable limitation of this method is the 

inability to utilize the physics engine on a per-part basis within the ".fbx" file. 

Consequently, the initial method involving falling objects could not be implemented. 

To overcome this limitation, a combination of Blender based animation with a manual 
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placement strategy within the Simulink model was employed. To elaborate, the 

placement of the objects was completed inside Blender by using the physics engine 

and letting the objects fall from a distance above the table. Then the positions and 

orientation of the objects was captured, and it was inserted inside the model.  

For simulating the camera, a "Simulation 3D Camera" block is incorporated with 

characteristics mirroring those of a real-world camera, such as the "Kinect v2"(Image 

Resolution = [417,340], Focal Length = [315,315]). Additionally, in the Ground Truth 

tab, "Output Depth" is enabled.  

The pivotal element in the simulation was the 3D representation of the robotic arm. 

The STL files delineating the robot links are automatically incorporated into the scene 

through the introduction of a "Simulation 3D Actor," with its input specified as the 

".urdf" file representing the robotic arm. The configurations, denoting the joint 

rotations of the robotic arm, are subsequently converted into homogeneous matrices, 

encapsulating the positional and orientational attributes of the links. However, a 

notable challenge arises from the incongruity between the coordinate systems 

employed by MATLAB and Unreal Engine. To address this incongruence, a specialized 

function was developed within Simulink to effectuate the conversion of MATLAB 

coordinates and orientations into the corresponding representations within the 

Unreal Engine framework. Figure 9-2 show the disparity between the coordinate 

system of MATLAB and UE, whereas Figure 9-3 shows the Simulink model that 

converts the MATLAB coordinates to UE coordinates for the visualization of the 

robotic arm.  

 
(a) 

 
(b) 

Figure 9-2: Unreal Engine coordinate system (a), MATLAB coordinate system(b). 
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Figure 9-3:MATLAB to Unreal Engine robotic arm modeling and transformation of coordinate systems. 

9.4 Grasping Simulation 
To accurately represent the entire process visually, it became imperative to visualize 

and simulate the grasping aspect as well. While the concept of grasping an object is 

straightforward and easily comprehensible in the physical realm, it presents certain 

challenges within the 3D environment. In the pursuit of a solution to this issue, two 

methods were deliberated upon. 

The initial approach involved leveraging the physics engine within the Unreal Engine 

environment to simulate the act of "grasping" through collision detection and friction, 

mirroring real-world mechanics. However, this approach was swiftly discarded due to 

its potential interference with the movements of the robotic arm joints. To elucidate, 

the Unreal Engine does not directly manage the forces generated in the 3D 

environment in conjunction with the joint movements orchestrated by MATLAB. 

Consequently, issues such as clipping between components or non-functionality 

emerged. 

Subsequently, a second option was conceptualized. This alternative approach is as 

follows: While the grasping maneuver is computed by the system's logic, the actual 

coordinates of the items are retained to initialize their positions. Thus, when the logic 

identifies an object and calculates the end configuration of the manipulator for 
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grasping, we can concurrently determine the homogeneous transformation between 

the end effector and the object using the following expression:  

𝑇𝑒
𝑜𝑏𝑗 = 𝑇𝑏

𝑒 ∙ 𝑇𝑏
𝑜𝑏𝑗 

Where: 
The homogeneous transformation between the end effector and the 

base relative to the end effectors frame: 𝑇𝑏
𝑒 = ( 𝑇𝑒

𝑏 )
−1

 

The homogeneous transformation between the base and the object 

relative to the base frame: 𝑇𝑏
𝑜𝑏𝑗 

9-1 

Hence, to facilitate the grasping process, it is essential to temporarily fix both the 

position and orientation of the object in relation to the end effector during the 

duration of the grasping operation. This entails maintaining a consistent 

homogeneous transformation between the end effector and the grasped object. We 

note that in order for this to be possible in all cases the homogeneous transformation 

is converted between the coordinate systems of MATLAB and Simulink. 

To implement this, a specialized function within Simulink was devised to address this 

specific challenge. This function incorporates a loop mechanism designed to sustain 

the objects' positions (initial positions) as constant until they are designated as 

"grabbed" by the logical system. In this manner, the custom Simulink function ensures 

the stability and fixation of the object's location and orientation during the grasping 

phase. Lastly when the object is no longer grasped it retains in its last position  by 

utilizing the looped coordinates.  

To simulate the closing position of the gripper, primarily for visualization purposes, 

the development of another tailored function became imperative. The rationale 

behind this additional step draws from real-world scenarios where, upon grasping an 

item, the gripper and the objects come into contact.   

To emulate this process within the simulation, a custom-made function was created. 

It operates by utilizing the "Hit" event as an output on the gripper hands. 

Consequently, when the gripper reaches the grasping position, both the left and right 

"fingers" of the gripper commence closing with linear velocity. By doing so, the closing 

of each finger can be independently halted when a hit event is registered. This method 

effectively achieves a visual representation of the gripping mechanism in action. 

Figure 9-4 shows an example of the grasping visualization. 

 
Figure 9-4: Grasping Visualization. 
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9.5 Full model Simulation 
The final stage in the virtual world implementation involves simulating the entire 

process from initiation to conclusion. The significance of this simulation lies primarily 

in two aspects: firstly, it serves as a comprehensive demonstration of the entire 

process that would transpire in the real world, thereby validating the models 

developed; and secondly, it provides an opportunity to rectify any errors in the logic 

or the code. A flow diagram of the entire process is presented in Figure 9-5, illustrating 

how the simulation integrates all the models generated throughout this study. 

 
Figure 9-5: Flow diagram of the simulation model implemented. 

To provide a more detailed insight into the procedural intricacies, a 

comprehensive delineation of each step is presented below: 

True 

False 
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• Initialization of All Parameters and Networks 

This initial step involves loading essential parameters, the robot assembly, 

function directories, as well as the Mask RCNN and occlusion neural networks. The 

completion of this step requires approximately 5 seconds. 

• Capture Image from Simulink 

Opening the Simulink model for a mere 0.1 seconds facilitates the capture of an 

image using the virtual camera, storing both depth and RGB data. However, this 

step extends to around 8 seconds due to the initiation and opening of the Unreal 

Engine world. 

(a) 
 

(b) 

Figure 9-6: Initial Pictures taken from both sensors. 

• Mask RCNN 

Employing the RGB image obtained from the virtual camera, the Mask RCNN 

network generates labels, bounding boxes, and masks for detected objects. 

Notably, a pop-up window displays the results. 

 
Figure 9-7: Object Detection & Segmentation by Mask RCNN. 
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• Occlusion ANN 

Utilizing the masks and labels from Mask RCNN along with the depth image from 

the Kinect, features are created for each object, and then the Occlusion ANN 

generates binary indicators of occlusion for the specified objects. This step occurs 

nearly instantaneously (less than 0.5 seconds). 

• Grasping Technique 

Combining masks, depth image, and the output from the Occlusion ANNs, this step 

involves the automatic selection of objects to grasp. Subsequently, positions and 

orientations for grasping are generated using the most efficient path to the end 

solution, requiring approximately 1 second. 

• Grasp and Move Out of the Scene 

Generating robot configurations, including approach, grab, depart, approach end 

position, detach, depart, and initial position, is achieved through inverse 

kinematics, depth data, and masks. Additionally, binary indicators for grasping 

validity are supplied for each configuration. The simulation duration is around 20 

seconds, contingent on the configured times for the robot to reach each 

configuration. This process repeats until no objects are detected by the Mask 

RCNN network, concluding the simulation with a notification to the user. Lastly it 

is noted that the simulation was completed on my own personal computer with 

characteristics depicted in the appendix.  In the following Figures the procedure 

for one loop of the simulation is elucidated where “PT3” was selected. 

 
Figure 9-8: Approach position. 
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Figure 9-9: Grab Position. 

 
Figure 9-10: Gripper Closed. 

 
Figure 9-11: Detach Position. 

A video of the simulation example can be found at the following link: https://ntuagr-

my.sharepoint.com/:v:/g/personal/mc19098_ntua_gr/ET8tc6sprSdJvt_Ezgmybm8BIF

P8IXQMy33FBxDUm-

ZB4A?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c

2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZ

XciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=SmhL6m  

https://ntuagr-my.sharepoint.com/:v:/g/personal/mc19098_ntua_gr/ET8tc6sprSdJvt_Ezgmybm8BIFP8IXQMy33FBxDUm-ZB4A?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=SmhL6m
https://ntuagr-my.sharepoint.com/:v:/g/personal/mc19098_ntua_gr/ET8tc6sprSdJvt_Ezgmybm8BIFP8IXQMy33FBxDUm-ZB4A?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=SmhL6m
https://ntuagr-my.sharepoint.com/:v:/g/personal/mc19098_ntua_gr/ET8tc6sprSdJvt_Ezgmybm8BIFP8IXQMy33FBxDUm-ZB4A?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=SmhL6m
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10. Discussion  
The culmination of this work necessitated expertise spanning three distinct domains: 

Robotic Systems, Visualization Methods, and Machine Vision. While the foundational 

knowledge in these domains was acquired during my academic tenure in the School 

of Mechanical Engineering, the completion of this diploma thesis demanded 

additional insights and specialized understanding acquired during its progression. It is 

crucial to underscore that while the developed system exhibits commendable 

performance, there remains room for refinement. Notably, challenges are most 

prominent in scenarios involving occlusion within the scene-a subject currently under 

global investigation by numerous researchers. The occlusion problem poses significant 

implications for robotics in various industries and addressing it with human-like 

accuracy could pave the way for a fully automated future. 

As delineated in the related work section, some researchers integrate depth data with 

RGB images using the Mask RCNN network to enhance segmentation capabilities. 

Unfortunately, within MATLAB, such fusion of depth data through the network is not 

feasible, potentially resulting in a loss of performance. To mitigate this limitation, 

alternative implementations in environments like Python, where pre-existing code for 

these network types is available, or the creation of a custom Mask RCNN within 

MATLAB, were considered. However, both approaches would entail substantial 

implementation efforts, with uncertain performance improvements as showcased in 

the section testing the network.  

Regarding occlusion-handling methods, while other approaches exist within the Mask 

RCNN network and involve additional CNNs, the method emphasized in this thesis 

stands out for its simplicity, directness, and speed. However, its performance is 

coupled with the performance of the Mask RCNN network which in turn may result in 

bad prediction if masking is not accurate enough. Avenue for potential enhancement 

(of this method) lies in incorporating additional inputs or changing the existing ones.   
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11. Conclusions 
In conclusion, this diploma thesis presents a comprehensive methodology for 

constructing a robotic arm–machine vision system capable of addressing challenges 

related to occlusion and incorporating a sophisticated grasping technique. The entire 

process, from data generation for training to the implementation within MATLAB-

Simulink and the Unreal Engine environment, is elucidated. By implementing both 

augmented and real world ground truth images a relatively high segmentation 

performance is achieved compared to [8], where in the presented model a total loss 

of 0.025 is achieved where as in [8] a total loss of 0.08 was achieved. Furthermore, a 

completely different approach to handling occlusion was used, were features 

extracted from the depth images and the masks are used as inputs to the occlusion 

ANNs. The performance in testing showed a success rate of 90.5% in finding occlusion 

occurrences compared to 68.3% managed by [14]. The grasping of the objects is 

handled by a logic-based method that is fast and effective. The same can be said about 

the control and the trajectory planning of the robotic arm, utilizing the depth data 

acquired from the depth sensor. Lastly the whole process is simulated in a virtual 

environment utilizing the high graphics capabilities of the Unreal Engine showcasing 

the system’s ability in actual scenarios.  

Therefore, this work contributes to democratizing access to advanced machine vision 

techniques coupled with robotic systems, fostering further exploration by the broader 

research community. A notable aspect of this thesis is the explicit demonstration of a 

systematic approach to training advanced neural networks, filling a potential gap in 

documentation for generating data required by segmentation networks. Emphasis is 

placed on the efficiency gained through GPU-accelerated training. The methodology 

for calibrating the Kinect camera and mapping RGB images to depth images is detailed, 

underscoring precision in the process. Importantly, the adaptability of the trained 

network is highlighted, as it can successfully segment both real-world and simulated 

images. This flexibility opens avenues for bidirectional applications, allowing a 

network trained with computer-generated images to identify objects in real-world 

images. 
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12. Future Work 
Numerous avenues exist for extending the scope of the work presented in this diploma 

thesis, starting with the utilization of depth data within the Mask RCNN network to 

augment its performance. This approach is elaborated upon in the discussion section, 

where Python emerges as the preferred tool for network generation. While Mask 

RCNN has been widely employed by researchers for segmentation tasks, recent 

advancements in networks like YOLO V5 & V8 have demonstrated exceptional 

capabilities in similar tasks. Consequently, integrating these networks into the 

framework could potentially enhance segmentation performance further. Expanding 

the thesis to explore these possibilities could yield valuable insights and contribute to 

advancing the field of machine vision and segmentation methodologies. 

Another aspect not addressed pertains to the generation of computer-generated 

images for training the Mask RCNN and occlusion networks. Based on the writer's 

limited knowledge of the subject, this objective could potentially be achieved within 

the Unreal Engine environment. Specifically, if the random position generator, as 

outlined in the Virtual World Implementation section, were operational (which may 

be the case in future iterations), or if the physics engine of Blender were utilized to 

generate random positions, different colors could be assigned to individual objects. 

Consequently, employing a color segmentation technique would enable the creation 

of masks. By capturing two images per object setup—one depicting the actual colors 

of the objects and another featuring distinct colors—masks (and consequently 

bounding boxes) could be generated from the latter, while the former would provide 

RGB and depth images for training the networks. 

 
(a) 

 
(b) 

 
(c) 

Figure 12-1: Computer Generated Images, Image for training (a), Segmentation image (b), Labeled image (c). 

Another pivotal facet of this diploma thesis would have involved the practical 

simulation of the methodologies elucidated in a real-world scenario. Regrettably, 

technical constraints precluded the utilization of the robotic arm for this purpose. To 

provide a comprehensive overview of the prospective implementation, a simplified 

outline of the methodology required for this endeavor is presented below: 

1. Serial Communication 

Establish a serial communication link between MATLAB and the CS7 module 

situated near the robotic arm but beyond its physical reach for control purposes. 
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Leveraging serial communication within MATLAB, as successfully demonstrated in 

prior works within the manufacturing department, is crucial for interfacing with 

the specific robotic arm in question. 

2. Control of the Arm 

Given that the Stäubli RX90L employs the V+ language for operation, control of the 

robotic arm can be achieved by transmitting desired coordinates in V+ code. This 

language facilitates the manipulation of the robotic arm in a manner analogous to 

its behavior within the simulation environment. 

3. System Calibration 

A fundamental prerequisite is the calibration of the camera-robotic arm system to 

determine the homogeneous transformation between them. Employing an eye-in-

hand system, an object of known dimensions is positioned at the robotic arm, and 

a series of measurements are conducted in various robotic arm configurations to 

facilitate accurate calibration. 

4. Implementation 

After completing the aforementioned steps, the Simulink model can seamlessly 

transition from the virtual environment to the real-world counterpart with 

minimal reconfiguration. The same methodology developed in simulation can be 

applied to the physical robotic arm setup. 
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Appendix  

I. MATLAB .m Files 

Matlab_Simulink_Control.m 
clc; 
clear; 
%% INPUTS 
%add chp funcitons 
addpath('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\CHP_Functions'); 
%Insert the urdf file of the robotic arm 
robot_urdf_dir ="B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\Cad 
Models\URDF\Staubli RX90.SLDASM\urdf\Staubli RX90.SLDASM.urdf"; 
%Insert the initial position of the robotic arm 
Initial_Config = zeros(1,8); 
%Insert Detector directory (TrainedDetector) 
load('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\TrainedDetectors\test7.2.mat'); 
imageSize = [346 512 3]; %height-width (needed for detection purposes) [346 
512 3] 
%Depth sensor resolution 
D_res = [340,417]; 
%Insert Simulink 3d World Directory File 
simulink_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Testing_Images\SIMULATION.slx'; 
%Insert ANNS 
load('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\Best1_occlusion_net.mat'); 
net1 = best_net; 
load('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\Best2_occlusion_net.mat'); 
net2 = best_net; 
load('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\Best3_occlusion_net.mat'); 
net3 = best_net; 
addpath('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect'); 
%Insert Kinect (camera) position and orientation, 
%additional camera parameters are set inside simulink make sure to change 
%them if needed! 
%Destances from base to camera 
xcamera = 0.75; 
ycamera = -0.0; 
zcamera = 0.4; 
%camera Rotation, vector outwards from camera 
Camera_Rotation = [180,90,0]; 
%Camera Transformation 
Rcamera = eul2rotm(Camera_Rotation*pi/180,"YZX"); %YXZ 
Camera_Position = [xcamera,ycamera,zcamera]; 
T_base_camera= eye(4); 
T_base_camera(1:3,1:3) = Rcamera; 
T_base_camera(1:3,4)=(Camera_Position)'; 
 
f = 345; %focal length of D_camera fx = fy (almost); 
cx = D_res(2)/2; %center point of depth camera; 
cy = D_res(1)/2; %center point of depth camera; 
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% Be carful optical center is in form of [x,y] while image resolution is in 
% form of [h,w] in simulink camera parameters. 
 
%% Connect to the kinect 
% colorDevice = imaq.VideoDevice('kinect',1); 
% depthDevice = imaq.VideoDevice('kinect',2); 
%% Take a Picture with Kinect 
% [im_rgb,im_d]=KinectPicture(colorDevice,depthDevice); 
% [rgb,d]=Kinect_RGBtoDepthMap(im_rgb,im_d); 
% d_show = uint16_to_uint8(d); 
% figure(1) 
% montage({rgb,d_show}); 
 
%% Initialize robot  
%Use simulink for the 3d world representation 
%Use matlab to solve the problem 
 
%import the robotic arm 
Staubli_RX90L=importrobot(robot_urdf_dir,"urdf"); 
% Set the kinematic groop to the specified links 
Kinematic_group = 
struct(convertStringsToChars('BaseName'),'base_link',convertStringsToChars(
'EndEffectorBodyName'),'tool0'); 
% Solve the inverse kinematics by creating the robotIK function 
% 
https://www.mathworks.com/help/robotics/ref/analyticalinversekinematics.htm
l 
invkin = 
analyticalInverseKinematics(Staubli_RX90L,"KinematicGroup",Kinematic_group)
; 
analsol = generateIKFunction(invkin,'robotIK');  
% Set the data format to row manualy due to matlab restrictions 
Staubli_RX90L.DataFormat='row'; 
%% Initialize Item Locations 
%In UE coordinate system: 
Item_Initial_Locs=[0.8,-0.2,-0.227; %item 1 [x,y,z] 
    0.65,0.0,-0.227; %item 2 
    0.75,0.15,-0.228];%item 3 
Item_Initial_Rots = zeros(3); 
Item_End_Locs=[-0.2,0.7,-0.227; %item 1 [x,y,z] 
    0,0.7,-0.227; %item 2 
    0.2,0.7,-0.228];%item 3 
Item_End_Rots = zeros(3); 
 
%% Parameters for simultion initialization  
%(these do not matter for the initialization but are needed to use the 
simulink model) 
Item_to_grab=1; 
end_effector_part_transform=zeros(4); 
Gripper_Position2=0; 
Gripper_Position1=0; 
 
%% Parameters for simulation 
VEL_BC = zeros(8,2); % velocity of robot at each configuration 
Grab_time=30; 
Letgo_time = 70; 
Configs_Time=[0,20,Grab_time,40,60,Letgo_time,80,100]; 
%Camera Positions for Visulization 
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Camera_take_picture_loc = [1.699,0,-0.3581]; 
Camera_Hide_Loc = Camera_take_picture_loc+[0.75,0,0]; 
Camera_Locations_Visulization = 
[Camera_take_picture_loc;Camera_Hide_Loc;Camera_Hide_Loc;Camera_take_pictur
e_loc]'; 
Camera_Speed_Visulization = zeros(3,size(Camera_Locations_Visulization,2)); 
Camera_Times_Visulization = [5,10,90,95]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
 
%% Robot Controll with matlab - simulink  
 
%% Take a Picture with simulink 
% Robot conficurations 
Robot_Configs = [zeros(1,8);zeros(1,8)]';  
%Velocity at each configuration 
VEL_BC = zeros(8,2); %2 extra prismatic joints for grippers 
%Time stamps to achieve the configurations 
Configs_Time = [0,20]; 
% run the simulation for 0.1 sec to just get a picture 
out = sim(simulink_dir,0.1); 
%RGB image: 
rgb = out.Image.signals.values; 
%Depth image: 
d = out.Depth.signals.values; % in this way we get distance in doubles 
which is giving a value of meters 
d=imresize(d,D_res); %change to actual depth resolution 
%visualize images 
figure(1) 
montage({rgb,d}) 
% [x,y] =ginput(1) 
d=d*1000; %to get the depth values in mm 
%% Detection (mask RCNN) 
[masks,labels, scores, bboxes] = segmentObjects(TrainedDetector,rgb); 
%% visualize Detection 
overlayeredImage = insertObjectMask(rgb,masks); 
figure(3) 
imshow(overlayeredImage) 
hold on 
showShape("rectangle",bboxes,"Label",labels,'LineColor',[1,0,0]) 
itemsonimage=size(labels,1); 
% Change to match depth image resolution 
[rgb,masks,bboxes]=ResizeImageMasksBoxes(rgb,masks,bboxes,D_res); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
while itemsonimage>0 %% Initiation of the loop 
 
    %% Matlab coodrinate system transforms 
    totalnumberofitems=size(Item_Initial_Locs,1); 
    T_items_initial = zeros(4,4,totalnumberofitems); 
    T_items_end = zeros(4,4,totalnumberofitems); 
    for i=1:totalnumberofitems 
        
T_items_initial(:,:,i)=UEtoMATLABtransform(Item_Initial_Locs(i,:),Item_Init
ial_Rots(i,:)); 
        
T_items_end(:,:,i)=UEtoMATLABtransform(Item_End_Locs(i,:),Item_End_Rots(i,:
)); 
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    end 
    %% Grasping Teqnique 
    %%Gennerate Occlusion detection for all objects 
    occlusion=Occlusion_Detector(net1,net2,net3,d,masks,labels); 
    %Gennerate the grasping information for the object to be grabbed next 
    
[itemcenter,itemorientation,itemz_grab,Item_to_grab,Gripper_Position2,Gripp
er_Position1] = Grab_Selection(masks,d,occlusion,f); 
    %The name of the object to be grabbed next 
    Item_to_grab_name = labels(Item_to_grab) 
    %set the index for the simulation 
    if Item_to_grab_name=="PT1" 
        Item_to_grab=1; 
    elseif Item_to_grab_name=="PT2" 
        Item_to_grab=2; 
    elseif Item_to_grab_name=="PT3" 
        Item_to_grab=3; 
    end 
 
    %% Object world Transformation 
    %Calculating X and Y diff from center of camera to the center of the 
object  
    X_item = (itemz_grab)*(itemcenter(1)-cx)/f;  
    Y_item = (itemz_grab)*(itemcenter(2)-cy)/f; 
    Z_item = itemz_grab; 
    R_item = R_z(-itemorientation); % - sign is to change from image frame 
to world frame  
    % Item homogeneous transform from camera world frame to item world 
frame 
    T_camera_item = eye(4);  
    T_camera_item(1:3,1:3)=R_item; 
    T_camera_item(1:3,4)=[X_item;Y_item;Z_item]; 
    % Homogeneous transfrom from base to item 
    T_base_item = T_base_camera*T_camera_item;  
 
    %% Inverse Kinematics & Trajectories 
    %Approach Transformation from end solution (z=10cm) 
    T_approach_diff = [0,0,0,0;0,0,0,0;0,0,0,0.1;0,0,0,0]; 
 
    %Grab Approach  
    T_base_item_approach=T_base_item+T_approach_diff; 
    ikConfig = robotIK(T_base_item_approach);  
    Robot_approach = best_sol(Initial_Config(1:6),ikConfig); 
 
    %Grab  
    clear ikConfig 
    ikConfig = robotIK(T_base_item); 
    Robot_Grab = best_sol(Robot_approach(1:6),ikConfig); 
    end_effector_part_transform = 
inv(T_base_item)*T_items_initial(:,:,Item_to_grab);% transform between the 
grabbing point and the part coordinate system 
%getTransform(Staubli_RX90L,Robot_Grab,'base_link','tool0') 
 
    %Detach Approach 
    clear ikConfig 
    
T_base_letgo=T_items_end(:,:,Item_to_grab)*inv(end_effector_part_transform)
; % to get the letgo position 
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    T_base_letgo_approach =T_base_letgo+T_approach_diff; 
    ikConfig = robotIK(T_base_letgo_approach); 
    Robot_letgo_approach = best_sol(Robot_Grab(1:6),ikConfig); 
     
    %Detach 
    clear ikConfig 
    ikConfig = robotIK(T_base_letgo); 
    Robot_letgo = best_sol(Robot_letgo_approach(1:6),ikConfig); 
 
    %Set the configurations and timings for simulation 
    Robot_Configs = 
[Initial_Config;Robot_approach;Robot_Grab;Robot_Grab;Robot_approach;Robot_l
etgo_approach;Robot_letgo;Robot_letgo_approach;Initial_Config]'; % Robot 
configuration 
    VEL_BC = zeros(8,size(Robot_Configs,2)); 
    Configs_Time= [0,20,Grab_time,40,50,60,Letgo_time,80,100]; 
 
    %Simulate 
    out = sim(simulink_dir,100); 
    I_rgb = out.Image.signals.values; 
    I_d = out.Depth.signals.values;  
     
    %Set new locations for items 
    Item_Initial_Locs(Item_to_grab,:)=Item_End_Locs(Item_to_grab,:); 
    Item_Initial_Rots(Item_to_grab,:)=Item_End_Rots(Item_to_grab,:); 
 
    %% Take a Picture with simulink 
    % Robot conficurations 
    Robot_Configs = [zeros(1,8);zeros(1,8)]';  
    %Velocity at each configuration 
    VEL_BC = zeros(8,2); %2 extra prismatic joints for grippers 
    %Time stamps to achieve the configurations 
    Configs_Time = [0,20]; 
    %Run the simulation for 0.1 sec to just get a picture 
    out = sim(simulink_dir,0.1); 
    %RGB image: 
    rgb = out.Image.signals.values; 
    %Depth image: 
    d = out.Depth.signals.values; % in this way we get distance in doubles 
which is giving a value of meters 
    d=imresize(d,D_res); %change to actual depth resolution 
    %visualize images 
    figure(1) 
    montage({rgb,d}) 
    % [x,y] =ginput(1) 
    d=d*1000; %to get the depth values in mm 
    %% Detection (mask RCNN) 
    [masks,labels, scores, bboxes] = segmentObjects(TrainedDetector,rgb); 
    %% visualize Detection 
    overlayeredImage = insertObjectMask(rgb,masks); 
    figure(3) 
    imshow(overlayeredImage) 
    hold on 
    showShape("rectangle",bboxes,"Label",labels,'LineColor',[1,0,0]) 
    itemsonimage=size(labels,1); 
    % Change to match depth image resolution 
    [rgb,masks,bboxes]=ResizeImageMasksBoxes(rgb,masks,bboxes,D_res); 
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end 
 
Reply = 'No more objects where Found by the detector' 
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Kinect_Photos.m 
%% INITIALIZATION (Run once) 
% clc; 
% clear; 
%Directory to store High quallity mapped images 
RGBHighQuallity_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. 
Diplomatikh\matlab code\Kinect\Testing\RGBHigh Mapped'; 
%Directory to store mapped RGB images with the same resolution as depth 
images 
RGBFolder_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\RGB Mapped'; 
%Directory to store mapped depth images 
DepthFolder_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\Depth Mapped'; 
%Directory to store raw images 
RGB_RAW_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\RGB RAW'; 
%Directory to store raw depth images 
Depth_RAW_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\Depth RAW'; 
%Directory to store visulization of depth images 
Depth_Images_RAW_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. 
Diplomatikh\matlab code\Kinect\Testing\Depth Images RAW'; 
Depth_Images_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\Depth Images Mapped'; 
%Initialization of kinect sensors  
colorDevice = imaq.VideoDevice('kinect',1); 
depthDevice = imaq.VideoDevice('kinect',2); 
 
%% Get Images 
[img_rgb,img_d]=KinectPicture(colorDevice,depthDevice); 
[rgb_c,d_c]=Kinect_RGBtoDepthMap(img_rgb,img_d); 
%high resolution mapped image: 
rgb = imcrop(img_rgb,[285,39,1272,1037]); 
 
%% Display images 
d_show =uint16_to_uint8(d_c); 
figure(1) 
title('Montage') 
montage({rgb_c,d_show}); 
figure(2) 
imshow(rgb) 
dr_show = uint16_to_uint8(img_d); 
figure(3) 
montage({img_rgb,dr_show}) 
 
%% Save images 
rgbh_dir = strcat(RGBHighQuallity_dir,'\',num2str(i),'.jpg'); 
imwrite(rgb,rgbh_dir); 
rgb_dir = strcat(RGBFolder_dir,'\',num2str(i),'.jpg'); 
imwrite(rgb_c,rgb_dir); 
d_dir = strcat(DepthFolder_dir,'\',num2str(i)); 
save(d_dir,"d_c") 
rgbr_dir = [RGB_RAW_dir,'\',num2str(i),'.jpg']; 
imwrite(img_rgb,rgbr_dir); 
dr_dir = [Depth_RAW_dir,'\',num2str(i)]; 
save(dr_dir,"img_d") 
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di_dir = [Depth_Images_dir,'\',num2str(i),'.jpg']; 
imwrite(d_show,di_dir) 
dir_dir = [Depth_Images_RAW_dir,'\',num2str(i),'.jpg']; 
imwrite(dr_show,dir_dir) 
i=i+1; 
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Dataset_Creation_With_Occlusion.m 
clc; 
clear; 
% imageLabeler; 
 
% Use the imageLabeler app to create polygon shaped masks and the bounding  
% boxes will be created with the code bellow. export the gTrouth as "table" 
% with the name "gTruth".  
 
% In the image labler app you need to specify for each label 2 attributes: 
 
%Item attribute with the name "Item", is a numeric value that identifies 
%what number of object is the label for the same class of objects. This is 
%needed in case one object was two or more polygon shaped masks (due to 
%occlusion). So is two areas are fo the same object then both areas should 
%have the same value for the attribute item. Eg 1,2,3,4.... 
 
% Occlusion Attribute with the name "Occlusion", is a logical value that 
% specifies occlusion of the spesific object if an object is occluded then 
% this value should be true, if it is not (or if it occludes other object) 
% this value should be falase. If an object has multiple areas it should 
% you should manually set the occlusion to all the areas (set to value 
"true" 
% because an item that is not occluded should not have many areas) 
%% INPUTS 
% Add path to custom made CHP Functions 
addpath('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\CHP_Functions') 
% Add the source directory to the path (add maskrcnn main functions) 
addpath('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\mask-rcnn-main\src') 
% Set the root directory for COCO API: 
cocoAPIDir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Mask CNN\MatlabAPI'; 
%Set the Image Training Folder (needs to contain images as described in 
imageFile above): 
trainImgFolder = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\RGBHigh Mapped'; % where the images are stored 
%load the groud truth data 
load("B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\OCCLUSION CLASSES\gTruth_High_Occlusion.mat");%load the 
gTruth table 
h= 1037; %height of the images 
w=1272; %width of the images 
%Set the annotation folder where all the .mat files will be stored  
AnnotationFolder = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\OCCLUSION CLASSES\Anottations_High_Occlusion'; 
%Set the occlison annotation folder where all the .mmat files will be 
%stored 
OcclusionFolder = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\OCCLUSION CLASSES\Anottations_High_Occlusion - 
Occlusion'; 
% Set image size for training (you can change that if you need to lower the 
res for faster training) 
imageSize = [h w 3]; %height-width 
mask_image_save_location = "B:\OneDrive - CHP\Σχολή μαθήματα\10. 
Diplomatikh\matlab code\Kinect\Testing\OCCLUSION CLASSES\Masks_HO\"; 



Diploma Thesis – Pavlos Chionidis 

88 | P a g e  
 
 

%% Data Manipulation 
Image_Number = size(gTruth,1); % number of images in the table 
Object_Number =size(gTruth,2); % number of objects in the table 
 
varnames = gTruth.Properties.VariableNames; % the names are set in the 
gTrouth table 
varnames= varnames(1,2:end); 
blds_cell = cell(Image_Number,1); % Bounding box cell array. Working with 
cell is easier (at least for me) 
mask_cell = cell(Image_Number,1); 
variable_names_cell=cell(Image_Number,1); 
occlusion_cell = cell(Image_Number,1); 
% the image cell is not needed for the datastore it is only cept in here 
% for legacy reasons. The datastore needs only the image file names. 
%image_cell = cell(Image_Number,1); %open images inside matlab and store 
them inside image_cell for concatenation later 
for n=1:Image_Number 
    i=1; %goes from [1 to Total_items] 
    clear masks_on_image var_name_categorical% delete the last atempts  
    Total_items=0; 
    for ni=2:Object_Number 
        if isempty(gTruth{n,ni}{1,1})==0 
            Total_items=Total_items+gTruth{n,ni}{1,1}(end).Item; 
        end 
    end 
    masks_on_image=false([h,w,Total_items]); 
    %total_var_names = 1:Total_items; %to create a categorical array of 
size Total_items 
    var_name_categorical = 
cell(1,Total_items);%categorical(total_var_names); 
    occlusion_property = false(1,Total_items); 
    bboxes = zeros(Total_items,4); 
    for nn=2:Object_Number% object classes are Object_Number - 1  
        num_of_object_segments = size(gTruth{n,nn}{1,1},2); 
        if isempty(gTruth{n,nn}{1,1})==0 
            Objects_in_Image = gTruth{n,nn}{1,1}(end).Item;% find how many 
objects of a specific type exist (e.g 2 rubiks cubes) 
        else 
            Objects_in_Image=0; 
        end 
        if Objects_in_Image > 0 
            BD= zeros(Objects_in_Image,4); %zero-out the matrix and change 
it's dimensions per iteration 
            % 
            Item=1; % to distinguish items of the same type [1 - 
Objects_in_Image] 
            nnn=1; 
            while nnn<=num_of_object_segments 
                 
                    mask = false([h,w]); % create the mask for the specific 
object 
                    if gTruth{n,nn}{1,1}(nnn).Item==Item % every object has 
1 or more segments (because of occlusion) therefore we have to create one 
mask for all the segments together (of that item) 
                        gT_polygon = gTruth{n,nn}{1,1}(nnn).Position; % 
find the polygon coordinates inside the ground truth table 
                        x = gT_polygon(:,1); % find the x coordinates of 
the polygon points 



Diploma Thesis – Pavlos Chionidis 

89 | P a g e  
 
 

                        y =gT_polygon(:,2); %find the y coordinates of the 
polygon points 
                        mask=poly2mask(x,y,h,w); % crete the polygon by 
inserting ones (1) where there is an object 
                        masks_on_image(:,:,i)=mask+masks_on_image(:,:,i); 
                        
occlusion_property(i)=gTruth{n,nn}{1,1}(nnn).Occlusion; 
                    end 
                    if nnn<num_of_object_segments %generate for every 
objects its properties 
                        if gTruth{n,nn}{1,1}(nnn+1).Item ~= Item  
                            var_name_categorical(i) = varnames(nn-1); 
                            bboxes(i,:) =  
BoundingBox_From_Mask(masks_on_image(:,:,i)); %Create the vertical 
rectangle (Bounding box) that encapsulates all the polygon points 
                            
occlusion_property(i)=gTruth{n,nn}{1,1}(nnn).Occlusion; 
                            
imwrite(masks_on_image(:,:,i),strcat(mask_image_save_location,num2str(n),nu
m2str(nn-1),num2str(nnn),'.png')) % write the image to a file 
                            Item=Item+1; 
                            i=i+1; 
                        end 
                    else %nnn==num_of_object_segments 
                            var_name_categorical(i) = varnames(nn-1); 
                            bboxes(i,:) =  
BoundingBox_From_Mask(masks_on_image(:,:,i)); %Create the vertical 
rectangle (Bounding box) that encapsulates all the polygon points 
                            
occlusion_property(i)=gTruth{n,nn}{1,1}(nnn).Occlusion; 
                            
imwrite(masks_on_image(:,:,i),strcat(mask_image_save_location,num2str(n),'_
',num2str(nn-1),'_',num2str(nnn),'.png')) % write the image to a file 
                            Item=Item+1; 
                            i=i+1; 
                    end 
                    nnn=nnn+1; 
 
            end 
             
            %blds_cell{n,nn-1} = BD; % instert bounding boxes in the 
bounding box cell array 
        end 
    end 
    %image_cell{n}= imread(gTruth{n,1}{1,1}); 
    occlusion_cell{n} = occlusion_property; 
    blds_cell{n}=bboxes; 
    mask_cell{n}=masks_on_image; 
    variable_names_cell{n}=var_name_categorical'; 
end 
 
 
[~,image_names,ext] = fileparts(gTruth{:,1}); 
image_names = strcat(image_names,ext);%get the name and the type (.jpg) 
 
TrainingData = [image_names,blds_cell,variable_names_cell,mask_cell]; 
 
%% Create a different .mat file for every image  
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%In the annotation folder there need to be only .mat files the names does 
%not matter but in this case we save them as 1.mat,2.mat,3.mat,4.mat.. etc 
%for mask rccn training: 
for n=1:Image_Number 
 mat_to_save = TrainingData(n,:); 
 %save averything in a different variable so as when the mat files are 
 %loaded the open up 4 different variables with the names specified in the 
 %save function:  
 imageFile = mat_to_save{1}; % it is the image file name eg. '0001.png' 
(string) 
 boxes = mat_to_save{2}; % it is a 2d array (double) containing bounding 
boxes in the form of: Mx4 (where M is the objects in image '0001.png') 
 labels = categorical(mat_to_save{3}); % its is a categorical array 
containing the categories for each bounding box Mx1 
 masks = mat_to_save{4};% its a 3d array containing the masks as 
HeightxWidthxM (logical) for each object 
 
save(strcat(AnnotationFolder,'\',num2str(n)),"imageFile","boxes","labels","
masks"); % the names play a very big role check: cocoAnnotationMatReader.m 
and put the correct names there 
 occlusion= occlusion_cell{n}; 
 save(strcat(OcclusionFolder,'\',num2str(n)),"occlusion"); 
end 
 
 
%% Save Variable Names 
item_names = varnames(1:end); 
save('item_names','item_names'); 
%% Using the coco api to create the datastores (because matlab 
imagedatastore does not support multi image masks) 
%% Using code from MaskRCNNTrainingExample.mlx 
% COCO-MATLABAPI: https://github.com/cocodataset/cocoapi 
% Add the API directory to the path 
addpath(cocoAPIDir); 
% Create the training datastore to read image and ground truth data from 
% the unpacked annotation MAT file 
ds = 
fileDatastore(AnnotationFolder,'ReadFcn',@(x)helper.cocoAnnotationMATReader
(x, trainImgFolder)); 
%% OUTPUT 
trainDS = transform(ds, @(x)helper.preprocessData(x, imageSize));  
save('trainDS','trainDS'); % save the training datastore to use for the 
training m file 
%% Test the datastore! 
trainDS.shuffle(); 
%preview the datastore needs to be in form of 1x4 cell array like this: 
%{512×512×3 uint8}    {7×4 double}    {7×1 categorical}    {512×512×7 
logical} 
data = preview(trainDS) % done 
%% visualise an image with its bounding box 
%load("1.mat") 
% overlayeredImage = insertObjectMask(test_img,masks); 
% figure(2) 
% imshow(overlayeredImage) 
% hold on 
% showShape("rectangle",boxes,"Label",labels,'LineColor',[1,0,0]) 
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Image_Augmentation.m 
 
clc; 
clear; 
%% INPUT 
addpath('CHP_Functions') %Add the custom made functions 
% Add the source directory to the path (add maskrcnn main functions) 
addpath('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\mask-rcnn-main\src') 
% Set the root directory for COCO API: 
cocoAPIDir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Mask CNN\MatlabAPI'; 
% Set the directory where the images to be augmented are located 
Images_location = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\RGBHigh\'; 
% Set the location of the initial dataset to be augmented 
DS_location = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\trainDS.mat'; % insert the Dataset 
created with Datase_Creation.m file 
%Set all the item names contained in the images  
Item_Names = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Item images\v2\Testing\item_names.mat'; 
%Set the directory to save the augmented images 
trainImgFolder= 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\Augmented\Images'; % location where 
the images will be saved  
%Set the directory where the annotatios are going to be stored 
Augmented_Images_Annotation_Folder = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. 
Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\Augmented\Annotations'; % location 
where the annotations will be saved  
%Set the directory where the Backround images are stored 
Background_Images_Location = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. 
Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\Augmented\Background\JPEG'; % location 
of imagedatastore containing the backround images for the augmentation 
%Set the ammount of augmented images created from 1 image. 
Augmentation_Number = 10; %Ammount of images to create with random 
rotations and translations of the Items per image using a random backround 
%Set the image  sizes 
h= 1042; %height of the images 
w=1353; %width of the images 
Image_Size = [w,h];%width,height 
imageSize=[h,w,3];%height,width 
% Set the directory for intermediate images to be stored. 
Augmented_Images_Intermediate_Location= 'B:\OneDrive - CHP\Σχολή 
μαθήματα\10. Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\Augmented\Intemediate\'; 
 
%%  
% Find the image center 
Image_Center= Image_Size/2; 
% Create an imagedatastore for the backround images (just to get their 
names) 
Background_IMDS = imageDatastore(Background_Images_Location); 
% Number_of_Backround_Images = size(Background_IMDS,1); 
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DS = load(DS_location); % Load the datastore to be augmented 
DS=DS.trainDS; % the datastore name should be trainDS for this to work 
 
Number_of_Images = size(DS.UnderlyingDatastores{1,1}.Files,1); % Number of 
images in the datastore 
 
for n =1:Number_of_Images % for every image 
load(DS.UnderlyingDatastores{1,1}.Files{n,1}) % load masks, 
labels,boundingboxes and image name orresponding to an image from the 
annotation folder 
image_location = strcat(Images_location,imageFile); % directory of the 
image 
image = imread(image_location); %load the image to be augmented 
%save the initial parameters of the annotations corresponding to the image 
labels_n=labels;  
boxes_n = boxes; 
imageFile_n = imageFile; 
masks_n=masks; 
num_of_items_in_image = size(labels,1); %number of items in the image 
 
 
    for nn=1:Augmentation_Number 
        clear msk mask img boxes labels % clear the anotation parameters 
for the augmented images 
        masks = masks_n; 
        boxes=boxes_n; 
        labels=labels_n; 
        imageFile = imageFile_n; 
        number_of_bg_images = size(Background_IMDS.Files,1); % number of 
backround images 
        bg_image=floor(rand*number_of_bg_images+1); %pick a random 
background image 
        IMG = imread(Background_IMDS.Files{bg_image}); %initiate the 
backround image 
        
        %i is like nnn but it has randomly sorted the number (for random 
occlusion purposes) 
        i = 1:num_of_items_in_image; 
        i = i(randperm(length(i))); %create an array of length num of items 
in image but to have randomly distributed numbers. This number indicates 
the occlusion order the i(end) item occludes all the others the i(1) is 
occluded by all the other (it is placed first in the image) 
            
            for nnn=1:num_of_items_in_image 
                props = regionprops(masks(:,:,i(nnn)),'Centroid'); % find 
the centroid of the mask (masks need to have only 1 region) 
                centroid= props.Centroid; 
                img = image;  
                msk = masks(:,:,i(nnn)); 
                Translation = Image_Center - centroid; 
                img = imtranslate(img,Translation,'FillValues',[0,0,0]); 
                msk=imtranslate(msk,Translation,'FillValues',0); 
                %image augmentation part 
                theta = rand*360; 
                img=imrotate(img,theta,"bilinear","crop"); 
                msk=imrotate(msk,theta,"bilinear","crop"); 
                translate= (rand*Image_Center-rand*Image_Center);  %random 
translation 
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                img = imtranslate(img,translate,'FillValues',[0,0,0]); 
                msk=imtranslate(msk,translate,'FillValues',0); 
                saveloc = strcat(Augmented_Images_Intermediate_Location, 
num2str(n),'_',num2str(nn),'_',num2str(nnn),'.png'); 
                Alpha = double(msk); 
                imwrite(img,saveloc,'alpha',Alpha) 
                masks(:,:,i(nnn)) = msk; 
                img_intermediate = imread(saveloc); 
                IMG = CHP_Blend(IMG,img_intermediate,msk); 
                props=regionprops(masks(:,:,i(nnn)),'BoundingBox'); 
                boxes(i(nnn),:)=props.BoundingBox;% wrong 
            end 
        imageFile = strcat(num2str(n),'_',num2str(nn),'.jpg');%mask rcnn 
does not support png! 
        save_loc = strcat(trainImgFolder,'\',imageFile); 
        imwrite(IMG,save_loc); 
 
        [masks,boxes,labels]=Occlusion_Correction(masks,boxes,labels,i,50);  
        
save(strcat(Augmented_Images_Annotation_Folder,'\',num2str(n),'_',num2str(n
n)),"imageFile","boxes","labels","masks"); 
    end 
end 
 
 
%% Using the coco api to create the datastores (because matlab 
imagedatastore does not support multi image masks) 
%% Using code from MaskRCNNTrainingExample.mlx 
% COCO-MATLABAPI: https://github.com/cocodataset/cocoapi 
% Add the API directory to the path 
addpath(cocoAPIDir); 
% Create the training datastore to read image and ground truth data from 
% the unpacked annotation MAT file 
ds = 
fileDatastore(Augmented_Images_Annotation_Folder,'ReadFcn',@(x)helper.cocoA
nnotationMATReader(x, trainImgFolder)); 
trainDS = transform(ds, @(x)helper.preprocessData(x, imageSize)); 
save('trainDS','trainDS'); % save the training datastore to use for the 
training m file 
%% Test the datastore! 
trainDS.shuffle(); 
%preview the datastore needs to be in form of 1x4 cell array like this: 
%{512×512×3 uint8}    {7×4 double}    {7×1 categorical}    {512×512×7 
logical} 
data = preview(trainDS) % done 
%% visualise an image with its bounding box 
% im_pos = string(gTruth{1,1}); 
% figure(1) 
% im = imread(im_pos); 
% imshow(im) 
% hold on  
% rectangle("Position",TrainingData{1,2}) 
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Resize_Datastore.m 
clc; 
clear; 
%% Input 
% Set the resolution to resize to 
resize_res= [340,417];%height width 
% Add the source directory to the path (add maskrcnn main functions) 
addpath('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\mask-rcnn-main\src') 
% Set the root directory for COCO API 
cocoAPIDir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Mask CNN\MatlabAPI'; 
% Set the directory of the RGB images to be rescaled 
Highres_rgb_dir = "B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\UE Generated Pictures\High Res\RGB";  
%Set the directory of the datastore to be rescaled 
trainDS_dir = "B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\UE Generated Pictures\High Res\trainDS.mat"; 
%Initial Occlusion Folder 
Occlusion_dir = "B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\UE Generated Pictures\High Res\Occlusion Annotations"; 
 
%The annotation folder to save the new annotation files 
AnnotationFolder = "B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\UE Generated Pictures\Low Res\Annotations"; 
%The rescaled image dirirectory 
Rescaled_rgb_dir = "B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\UE Generated Pictures\Low Res\RGB"; 
%Occlusion Annotations resized 
Occlusion_dir_resized = "B:\OneDrive - CHP\Σχολή μαθήματα\10. 
Diplomatikh\matlab code\UE Generated Pictures\Low Res\Occlusion 
Annotations"; 
 
%% Output 
%load the datastore 
load(trainDS_dir) 
%get the file directories 
Files_dir = trainDS.UnderlyingDatastores{1,1}.Files; 
%get the number of files in the datastore 
num_of_files= size(Files_dir,1); 
 
for i=1:num_of_files 
    %load one annotation file at a time 
    load(Files_dir{i}) %masks,labels,imageFile,boxes 
    %get the directory of the image to be resized 
    rgb_dir = strcat(Highres_rgb_dir,'\',imageFile); 
    rgb=imread(rgb_dir); 
    res = size(rgb,1,2); 
    resize_ratio=resize_res./res; 
    boxes_new = boxes; 
    %find the amount of different objects in the image 
    items_on_image = size(labels,1); 
    masks_new = false([resize_res,items_on_image]); 
    %Rescale the boxes and the masks 
    for ii=1:items_on_image 
        boxes_new(ii,1)=round(boxes(ii,1)*resize_ratio(2)); 
        boxes_new(ii,3)=round(boxes(ii,3)*resize_ratio(2)); 
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        boxes_new(ii,2)=round(boxes(ii,2)*resize_ratio(1)); 
        boxes_new(ii,4)=round(boxes(ii,4)*resize_ratio(1)); 
        masks_new(:,:,ii)=imresize(masks(:,:,ii),resize_res); 
    end 
    %rescale the image 
    rgb_new = imresize(rgb,resize_res); 
    %save the data to a new annotation file 
    imageFile = strcat(num2str(i),'.jpg'); 
    rgbwrite_dir = strcat(Rescaled_rgb_dir,'\',imageFile); 
    imwrite(rgb_new,rgbwrite_dir) 
    boxes = boxes_new; 
    masks=masks_new; 
     
    
save(strcat(AnnotationFolder,'\',num2str(i)),"imageFile","boxes","labels","
masks"); % the names play a very big role check: cocoAnnotationMatReader.m 
and put the correct names there 
    %for occlusion 
    [n,name,ext]=fileparts(Files_dir{i}); 
    occlusion_dir = strcat(Occlusion_dir,'\',name,'.mat'); 
    load(occlusion_dir); 
    save(strcat(Occlusion_dir_resized,'\',num2str(i)),"occlusion") 
end 
%% Using code from MaskRCNNTrainingExample.mlx 
% COCO-MATLABAPI: https://github.com/cocodataset/cocoapi 
% Add the API directory to the path 
addpath(cocoAPIDir); 
% Create the training datastore to read image and ground truth data from 
% the unpacked annotation MAT file 
trainImgFolder=Rescaled_rgb_dir; 
clear trainDS 
ds = 
fileDatastore(AnnotationFolder,'ReadFcn',@(x)helper.cocoAnnotationMATReader
(x, trainImgFolder)); 
%% OUTPUT 
imageSize = [resize_res,3];  
trainDS = transform(ds, @(x)helper.preprocessData(x, imageSize));  
save('trainDS','trainDS'); % save the training datastore to use for the 
training m file 
%% Test the datastore! 
 trainDS.shuffle(); 
%preview the datastore needs to be in form of 1x4 cell array like this: 
%{512×512×3 uint8}    {7×4 double}    {7×1 categorical}    {512×512×7 
logical} 
 data = preview(trainDS);  
%% Visualise 
% load('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\Resized to best net\Annotations\1.mat'); 
% test_img=imread('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\Resized to best net\RGB\1.jpg'); 
% overlayeredImage = insertObjectMask(test_img,masks); 
% figure(2) 
% imshow(overlayeredImage) 
% hold on 
% showShape("rectangle",boxes,"Label",labels,'LineColor',[1,0,0]) 
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Occlusion_Data_Creation.m 

clc; 
clear; 
%% Inputs 
%Add CHP Functions 
addpath('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\CHP_Functions'); 
%load the training ds created by the dataset creation 
TrainDS_dir = "B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\Downscaled\trainDS.mat"; 
%Input the occlusion mat files for training 
Occlusion_dir = "B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\Occlusion"; 
%Input the depth images folder 
Depth_dir = "B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\Depth"; 
%load the names of the parts 
load("B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Images\Mapped\item_names") 
%give a location to visualize the intersection areas 
intersection_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\Intersection_occlusion_dir'; 
%intersection circle radius (in pixels) 
r_intersection = 10; 
%% Main 
load(TrainDS_dir); 
 
TrainDS = trainDS.UnderlyingDatastores{1,1}.Files;   
total_images = size(TrainDS,1); 
id = 1; 
 
for i=1:total_images 
    %load the masks etc from annotation folder... 
    load(TrainDS{i,1}); 
    % get the name of the annotation .mat file to open the corresponting 
    % .mat file containing the depth image and the occlusion labels 
    [folder,name,ext]=fileparts(TrainDS{i,1}); 
    load(strcat(Occlusion_dir,"\",name,'.mat')) % load the corresponding 
mat file  
    load(strcat(Depth_dir,'\',name,'.mat')); 
    if size(labels,1)>=2 
        [INPUT,lab] = Occlusion_Features(d_c,masks,labels); 
        objects =size(occlusion,2); 
        for ii=1:objects 
            DATA(id,1:6)=INPUT(ii,:); 
            DATA(id,7)=occlusion(ii); 
            DATA_labels(id,1)=lab(ii,1); 
            DATA_labels(id,2)=name; 
            id=id+1; 
        end 
    end 
end 
 
i1=1; 
i2=1; 
i3=1; 
%Split the data for each network 
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for i=1:size(DATA_labels,1) 
    if DATA_labels(i,1)=='PT1' 
        DATA1(i1,:) =DATA(i,:);  
        i1=i1+1; 
    elseif DATA_labels(i,1)=='PT2' 
        DATA2(i2,:) =DATA(i,:);  
        i2=i2+1; 
    else 
        DATA3(i3,:) =DATA(i,:);  
        i3=i3+1; 
    end 
end 
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Occlusion_ANN_Training.m 
clear; 
clc; 
%% INPUTS 
load("B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\UE 
Generated Pictures\Low Res\DATA2.mat") 
DATA = DATA2; 
%The raw that the output values are located 
output_ind = 7; 
input_ind = 4; 
datasize = size(DATA,1); 
%Set the validation and testing indicies 
validation_ind = 4:10:datasize; 
test_ind = 6:10:datasize; 
%% Input manipulation 
test_datasize = size(test_ind,2); 
input = DATA(:,1:input_ind); 
output = DATA(:,output_ind); 
%The remaining indices go to the training data = 80% 
training_ind= 1:datasize;% create a matrix with all the indices 
 
index = 1; 
for n =1:test_datasize 
    training_ind(validation_ind(n)+1-index)=[]; %remove validation indices 
    index = index+1; 
    training_ind(test_ind(n)+1-index)=[];%remove test indices 
    index = index+1; 
end 
 
% Separation of training,validation and testing data  
training_data=input(training_ind,1:input_ind); 
training_output = output(training_ind); 
 
validation_data = input(validation_ind,1:input_ind); 
validation_output = output(validation_ind); 
 
testing_data = input(test_ind,1:input_ind); 
test_output = output(test_ind); 
%% training 
HiddenSizes = [100,100,50,50,25,25,10,10,5,5]; %400,400,200,200,100,100, 
net = feedforwardnet(HiddenSizes,'trainrp');%to use gpu you have to change 
from trainlm, trainscg, trainrp 
%%Set ANN training parameters 
net.trainParam.epochs = 10000; % maximum epochs  
net.trainParam.goal = 0;  % We want 0 error  
net.trainParam.max_fail = 20; % validation failures before rejection 
net.divideFcn = 'divideind'; % User defined training/testing/validation 
data 
net.divideParam.trainInd = training_ind;  
net.divideParam.valInd = validation_ind; 
net.divideParam.testInd = test_ind; 
net.performParam.regularization = 0; 
net.performParam.normalization = 'none'; 
% net.layers{1}.transferFcn ='poslin'; 
%net.layers{end}.transferFcn ='softmax'; 
%net.performFcn = 'crossentropy';%'mse'; %Using mean absolute error  
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net.trainParam.showWindow = 0; % close window pop up for lowering 
computation time 
% net.trainFcn = 'trainscg';  
perf=1000; 
for i=1:100 
    net.trainParam.showWindow = 0; 
    [trained_net,tr] = train(net,input',output'); % train the network 
%'useParallel','yes' for cpu // 'useGPU','yes' 
    y = trained_net(input');% find the outputs for all the inputs 
    %p = crossentropy(trained_net,output',y,{1});%  %Define the error as 
described by the performace function (sse) 
    p = perform(trained_net, output', y); 
    if perf>p 
        perf=p; %best performing network 
        best_net=trained_net; %keep the best perfoming net 
        y_best=y; %keep the relative error 
        best_tr =tr; %keep matrix tr 
    end 
    i 
end 
 
 
%Check best solution 
y=best_net(input'); 
y = round(y,0); 
error = abs(y-output'); 
totalerrors = sum(error); 
 
error_validation=sum(error(validation_ind)); 
error_testing = sum(error(test_ind)); 
dif = y-output'; 
false_positive=0; 
false_negative=0; 
for i=1:datasize 
    if dif(i)>0 
        false_positive=false_positive+1; 
    elseif dif(i)<0 
        false_negative = false_negative+1; 
    end 
end 
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Mask_RCNN_Training.m 
clc; 
clear; 
%% INPUTS 
% Add the source directory to the path (add maskrcnn main functions) 
addpath('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\mask-rcnn-main\src') 
% Set the root directory for COCO API:gTruth 
cocoAPIDir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Mask CNN\MatlabAPI'; 
% Add the API directory to the path 
addpath(cocoAPIDir); 
imageSize = [1042 1353 3]; %height-width  
%load training datastore (trainDS) 
load('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\trainDS.mat') 
%load cell array with item_names 
load('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Images\Mapped\item_names.mat') 
 
%% Create the network 
detector = maskrcnn('resnet50-
coco',item_names,'InputSize',imageSize,PoolSize=[14 
14],MaskPoolSize=[14,14]);%https://www.mathworks.com/help/vision/ref/maskrc
nn.html 
 
%% Train the network 
options = trainingOptions("sgdm",  ...  
    InitialLearnRate=0.002, ...  
    Momentum=0.9, ... 
    LearnRateSchedule="piecewise", ...  
    LearnRateDropPeriod=1, ... 
    LearnRateDropFactor=0.99, ... 
    Plot="none", ... 
    MaxEpochs=12, ... 
    MiniBatchSize=2, ... 
    BatchNormalizationStatistics="moving", ... 
    ResetInputNormalization=false, ... 
    ExecutionEnvironment="gpu", ... 
    VerboseFrequency=10); 
    % GradientThresholdMethod='l2norm',... 
    % L2Regularization=10e-5,... 
     
[TrainedDetector,info] = 
trainMaskRCNN(trainDS,TrainedDetector,options,'NumRegionsToSample',128,'Num
StrongestRegions',1250,'PositiveOverlapRange',[0.75,1],'NegativeOverlapRang
e',[0  0.75]); % 
https://www.mathworks.com/help/vision/ref/trainmaskrcnn.html 
%FreezeSubNetwork="backbone" 
 
%% test network for one image 
% Read the image for inference 
test_img = imread('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\Testing\Resized to best net\RGB\19.jpg'); 
 
% Define the target size of the image for inference 
targetSize = imageSize; % same as the network image size 
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% Resize the image maintaining the aspect ratio and scaling the largest 
% dimension to the target size. 
imgSize = size(test_img); 
[~, maxDim] = max(imgSize); 
resizeSize = [NaN NaN];  
resizeSize(maxDim) = targetSize(maxDim); 
 
test_img = imresize(test_img, resizeSize); 
% detect the objects and their masks for more info: 
https://www.mathworks.com/help/vision/ref/maskrcnn.segmentobjects.html#mw_a
9899d3b-d637-4834-85c9-fe5cfae7f8af_sep_mw_c42f62bd-bea4-474a-96a3-
f99843001dde 
[masks,labels, scores, boxes] = segmentObjects(TrainedDetector,test_img); 
 
%% visualize test 
overlayeredImage = insertObjectMask(test_img,masks); 
figure(2) 
imshow(overlayeredImage) 
hold on 
showShape("rectangle",boxes,"Label",labels,'LineColor',[1,0,0]) 
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Mask_RCNN_Testing.m 
clc; 
clear; 
%this file is named validation but it is more for testing purposes of the 
%network 
%% INPUTS 
% Add the source directory to the path (add maskrcnn main functions) 
addpath('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\mask-rcnn-main\src') 
% Set the root directory for COCO API: 
cocoAPIDir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Mask CNN\MatlabAPI'; 
% Add the API directory to the path 
addpath(cocoAPIDir); 
h= 1038; %height of the images 
w=1353; %width of the images 
imageSize = [h w 3]; %height-width 
%insert trained detector directory 
Trained_detector_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. 
Diplomatikh\matlab code\Mask CNN\TrainedDetectors\test7.2.mat'; 
%inert validation datastore directory 
ValidationDS_dir ='B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Kinect\CleanImages\HighQuallity\trainDS.mat'; 
%load cell array with item_names 
load('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Item 
images\v2\Testing\item_names.mat') 
%load trained detector 
load(Trained_detector_dir); 
%load validation datastore 
load(ValidationDS_dir); 
 
% Annotations = trainDS.UnderlyingDatastores{1,1}.Files; 
% image_number = size(Annotations,1); 
 
%% Validating-Testing 
options = trainingOptions("sgdm",  ... 
%https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html % 
    InitialLearnRate=0.00000001, ... %for testing set Initial Learn Rate to 
10^-10 and epochs to 1 and verbose frequency to 1 thet take the average of 
the results 
    Momentum=0.9, ... 
    LearnRateSchedule="piecewise", ... 
    LearnRateDropPeriod=1, ... 
    LearnRateDropFactor=0.95, ... 
    Plot="none", ... 
    MaxEpochs=1, ... 
    MiniBatchSize=2, ... 
    BatchNormalizationStatistics="moving", ... 
    ResetInputNormalization=false, ... 
    ExecutionEnvironment="gpu", ... 
    VerboseFrequency=1); 
%use the same properties in trainMaskRCNN as used in actual training 
[TrainedDetector,info] = 
trainMaskRCNN(trainDS,TrainedDetector,options,'NumRegionsToSample',128,'Num
StrongestRegions',1000,'PositiveOverlapRange',[0.8,1],'NegativeOverlapRange
',[0.1  0.8]); % 
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https://www.mathworks.com/help/vision/ref/trainmaskrcnn.html 
%FreezeSubNetwork="backbone" 
%total error is the summ of errors from last epoch devided by the total 
%amount of evaluations  
TotalLoss = 0; 
RPNLoss = 0; 
RMSE = 0; 
MaskLoss = 0; 
 
testing_size = size(info,1); 
for n =1:testing_size 
 
TotalLoss=info(n).TrainingLoss/testing_size+TotalLoss; 
RPNLoss = info(n).TrainingRPNLoss/testing_size+RPNLoss; 
RMSE = info(n).TrainingRMSE/testing_size+RMSE; 
MaskLoss=info(n).TrainingMaskLoss/testing_size+MaskLoss; 
 
end 
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UE_Data_Creation.m 
clc; 
clear; 
%CHP Functions 
addpath('B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\Mask 
CNN\CHP_Functions'); 
%Initiate image numbering 
% i=1; 
%Add Simulink Path 
simulink_dir='B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\Testing_Images\UE_Pictures.slx'; 
%Initial Color of Items 
InitialColor = [0.5,0,0.009]; 
%Segmentation Color of Items 
Color1_seg =[1,0,0]; 
Color2_seg=[0,1,0]; 
Color3_seg=[0,0,1]; 
%Depth sensor resolution 
D_res = [340,417]; 
%RGB Save Location 
RGB_dir = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab code\UE 
Generated Pictures\High Res\RGB'; 
%Depth Save Location High res 
Depth_dir_H = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\UE Generated Pictures\High Res\Depth'; 
%Depth Save Location low res 
Depth_dir_L='B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\UE Generated Pictures\Low Res\Depth'; 
%Annotation Folder 
AnnotationFolder = 'B:\OneDrive - CHP\Σχολή μαθήματα\10. Diplomatikh\matlab 
code\UE Generated Pictures\High Res\Annotations'; 
 
%% Take initial Pictures to save 
Color1 = InitialColor; 
Color2= InitialColor; 
Color3= InitialColor; 
 
out = sim(simulink_dir,0.1); 
%RGB image: 
RGB = out.RGB.signals.values; 
%Depth image: 
D = out.D.signals.values*1000; 
 
% figure(1) 
% imshow(RGB); 
% figure(2) 
% imshow(D) 
imageFile = strcat(num2str(i),'.png'); 
rgb_h_dir = strcat(RGB_dir,'\',imageFile); 
imwrite(RGB,rgb_h_dir); 
 
d_c = imresize(D,D_res); 
d_l_dir = strcat(Depth_dir_L,'\',num2str(i)); 
save(d_l_dir,"d_c"); 
 
%Segmentation 
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Color1 = Color1_seg; 
Color2= Color2_seg; 
Color3= Color3_seg; 
 
out = sim(simulink_dir,0.1); 
%RGB image: 
rgb_seg = out.RGB.signals.values; 
figure(3) 
imshow(rgb_seg); 
 
Mask1 = Image_to_Mask(rgb_seg,Color1*256); 
Mask2 = Image_to_Mask(rgb_seg,Color2*256); 
Mask3 = Image_to_Mask(rgb_seg,Color3*256); 
% figure(4) 
% montage({Mask1,Mask2,Mask3}); 
 
labels = categorical(["PT1";"PT2";"PT3"]); 
masks = false([size(Mask1),3]); 
masks(:,:,1)=Mask1; 
masks(:,:,2)=Mask2; 
masks(:,:,3)=Mask3; 
boxes = zeros(3,4); 
boxes(1,:)=BoundingBox_From_Mask(Mask1); 
boxes(2,:)=BoundingBox_From_Mask(Mask2); 
boxes(3,:)=BoundingBox_From_Mask(Mask3); 
 
% visualise an image with its bounding box 
%load("1.mat") 
overlayeredImage = insertObjectMask(RGB,masks); 
figure(2) 
imshow(overlayeredImage) 
hold on 
showShape("rectangle",boxes,"Label",labels,'LineColor',[1,0,0]) 
%Save Annotation File 
save(strcat(AnnotationFolder,'\',num2str(i)),"imageFile","boxes","labels","
masks"); 
i=i+1; 
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II. MATLAB Custom Made Functions 

best_sol.m 
function [Final_Config] = best_sol(Initial_Config,Final_Configs) 
%This function finds the "best" solution for the end configuration of a 
% robotic arm based on angle rotations.  
[num_of_sol,~] = size(Final_Configs); 
minimum_movement=10000; 
for n=1:num_of_sol 
    movement = sum((Initial_Config-Final_Configs(n,:)).^2); %summed squered 
error 
    if movement<minimum_movement 
        minimum_movement=movement; 
        best_ik_sol=n; 
    end 
end 
Final_Con = Final_Configs(best_ik_sol,:); 
Final_Config = [Final_Con,0,0]; 
end 

 

BoundingBox_From_Mask.m 
function [Box] = BoundingBox_From_Mask(mask) 
%This function creates a bounding box from a mask 
props=regionprops(mask,'BoundingBox'); 
bboxes=cell2mat(struct2cell(props)'); 
bboxes(:,3)= bboxes(:,1)+bboxes(:,3); 
bboxes(:,4)= bboxes(:,2)+bboxes(:,4); 
x=min(bboxes(:,1)); 
y=min(bboxes(:,2)); 
w=max(bboxes(:,3))-x; 
h=max(bboxes(:,4))-y; 
Box=[x,y,w,h]; 
end 

 

BoundingBox_From_Polygon.m 
function [BD] = BoundingBox_from_Polygon(x,y) 
%This function create a bounding box from a polygon 
upper_y = floor(min(y)); %as it is in images y is from top to buttom 
lower_y = ceil(max(y)); 
left_x = floor(min(x)); 
right_x = ceil(max(x)); 
w = right_x-left_x; 
h=lower_y-upper_y; 
BD = [left_x,upper_y,w,h]; 
end 

 

BW_circle.m 
function [out] = BW_circle(c,r,res) 
% This function creates a binarry image of size res =[h,w] with a circle of 
% radius r in pixels and a center at c = [y,x] 
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out = false(res); 
for i=1:res(1) 
    for ii=1:res(2) 
        dist = sqrt((ii-c(2))^2+(i-c(1))^2); 
        if dist<=r 
            out(i,ii)=1; 
        end 
    end 
end 
end 
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CHP_Blend.m 
function [out] = CHP_Blend(Background,img,mask) 
%This function inserts an image on top of the background image as specified 
%by the mask (alpha channel).  
if size(Background)==size(img) 
    H=size(Background,1); 
    W = size(Background,2); 
    out=Background; 
 
    for n=1:H 
        for nn=1:W 
            if mask(n,nn)==1 
                out(n,nn,:)=img(n,nn,:); 
            end 
        end 
    end 
 
else 
end 
 
end 

 

DrawBW_line.m 
function [BW1] = DrawBW_line(c1,c2,res) 
%This function creates a binary image containing a line prom point c1 to 
%point c2 
%initial point c1 = [x,y] and ending point c2=[x,y]; 
%res = [h,w] the resolution of the image 
c1=[ceil(c1(1)),ceil(c1(2))]; 
c2=[ceil(c2(1)),ceil(c2(2))]; 
dp = c2-c1; 
a=dp(2)/dp(1);% dy/dx 
BW=false(res); 
x_pixels = dp(1); 
if x_pixels>=0 
for x=1:abs(x_pixels) 
    y=a*x+c1(2); 
    BW(ceil(y),x+c1(1))=1; 
end 
else 
for x=1:abs(x_pixels) 
    y=a*x+c2(2); 
    BW(ceil(y),x+c2(1))=1; 
end 
end 
se=strel('rectangle',[2,2]); 
BW1 = imdilate(BW,se); 
end 
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DrawBW_lineA.m 
function [BW] = DrawBW_lineA(c,a,res) 
% This function creates a binary images with a line  passing from point  
% c=[x,y] with an angle of a. 
 
BW=false(res); 
A=tan(a); 
 
b=c(2)-A*c(1); 
if A>1 %if the angle is greater than 45deg use the form x=(y-b)/A 
for i=1:res(1) 
    xx=round((i-b)/A); 
    if xx>0 && xx<=res(2) 
        BW(i,xx)=1; 
    end 
end 
else%if the angle is smaller than 45deg use the form y=Ax+b 
for i=1:res(2) 
    yy=round(A*i+b); 
    if yy>0 && yy<=res(1) 
        BW(yy,i)=1; 
    end 
end 
end 

 

Grab_selection.m 
function [center,orientation,simplez,Pick_Item_Index,Gripper1,Gripper2] = 
Grab_Selection(masks,depth,occlusion,f) 
 
%% Select a part (the one that is not occluded but also is the tallest) 
[height,background_height] = Height_of_Objects(masks,depth); 
items_in_image = size(masks(1,1,:),3); 
BiggestHeight =-10; 
for i =1:items_in_image 
    if occlusion(i)==0 && height(i)>BiggestHeight 
        Pick_Item_Index=i; 
        BiggestHeight=height(i); 
    end 
end 
 
%% Get orientation of the part 
mask = masks(:,:,Pick_Item_Index); 
props = regionprops(mask,"Centroid","Orientation"); 
center = props(1).Centroid; 
orientation=props(1).Orientation/180*pi; % angles in degs from x axis [-
90,90] positive with right hand rule with z towards us from the screen 
simplez = (background_height-BiggestHeight+10)/1000; % to get the z 
distance from item  
 
%% Get Grpipper positions  
res=size(mask); 
%Get the perimeter of the mask 
perim = bwperim(mask); 
se = strel('rectangle',[2,2]); 
%dilate it by 2 
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perim = imdilate(perim,se); 
%Daw a line where the gripper is going to grab the part 
Line =DrawBW_lineA(center,orientation-pi/2,res); 
%Find the two grasping positions 
Grab_BW =and(Line,perim);  
% To get the correct gripper to move we proceed with the following: 
R=R_z(pi-orientation); 
T=eye(4);% tranfrorm from image coordinate system to item coordinate system  
T(1:3,1:3)=R; 
T(1:2,4)=center'; 
%b-> image coordinate system, %c-> item coordinate system 
T_c_b = inv(T); 
Grab_props=regionprops(Grab_BW,"Centroid"); 
Grab_locs = struct2array(Grab_props); %[x1,y1,x2,y2] 
c1=Grab_locs(1:2); 
c2=Grab_locs(3:4); 
c1_new=T_c_b*[c1,0,1]'; %y coordinate indicates the distance needed to move 
from the center of the item to the grabbing location 
c2_new=T_c_b*[c2,0,1]'; 
Dist_of_gripper_from_center=0.085; 
if c1_new(2)>0 %Gripper is located in the positive direction while gripper 
2 is in the negative 
Gripper1=Dist_of_gripper_from_center-c1_new(2)/f*simplez;%distance that 
gripper needs to move for visulization 
Gripper2=Dist_of_gripper_from_center-abs(c2_new(2)/f*simplez); 
else  
Gripper1=abs(Dist_of_gripper_from_center-c2_new(2)/f*simplez);%distance 
that gripper needs to move for visulization 
Gripper2=abs(Dist_of_gripper_from_center-abs(c1_new(2)/f*simplez)); 
end 
end 
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Height_of_Objects.m 
function [height,background_height] = Height_of_Objects(masks,depth) 
%This function calculates the average height of an object specified by a 
%mask and calculates the background height (where there are no objects). 
res = size(masks(:,:,1)); 
items_in_image = size(masks,3); 
background_mask= false(res); 
 
for ii = 1:items_in_image % find backround height 
        background_mask = or(masks(:,:,ii),background_mask); 
end 
 
background_mask = imcomplement(background_mask); 
background_mask_height = double(background_mask).*double(depth); 
background_area = sum(background_mask,"all"); 
background_height = sum(background_mask_height,"all")/background_area; 
height = zeros(items_in_image,1); 
for ii =1:items_in_image 
    Area = sum(masks(:,:,ii),"all"); 
    mask_depth = double(masks(:,:,ii)).*double(depth); 
    height(ii) =background_height-sum(mask_depth,"all")/Area;  
end 
 
end 
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Occlusion_Correction.m 
function [masks,bboxes,labels] = 
Occlusion_Correction(masks,bboxes,labels,i,min_occlusion_pixel_area) 
loop = size(i,2); 
 
for n =1:(loop-1) 
    for nn=1:n 
        masks(:,:,i(end-n)) = masks(:,:,i(end-
n)).*imcomplement(masks(:,:,i(end-nn+1))); 
    end 
 
end 
ii=0; 
while n <= loop-ii 
    S = sum(masks(:,:,n),'all'); 
    if S<min_occlusion_pixel_area % it can be altered  
        masks(:,:,n)=[]; 
        labels(n)=[]; 
        bboxes(n,:)=[]; 
        n=n-1; 
        ii=ii+1; 
    else 
        stats = regionprops(masks(:,:,n),'BoundingBox'); 
        bb= stats.BoundingBox; 
        if size(bb,1)==1 
            bboxes(n,:)=bb; 
        else 
            bboxes(n,1)=min(bb(:,1)); 
            bboxes(n,2)=min(bb(:,2)); 
            % find the maximum x from all the regions that represent the 
item 
            xmax = max(bb(:,1)+bb(:,3));  
            ymax = max(bb(:,2)+bb(:,4)); 
            bboxes(n,3) = xmax-bboxes(n,1); 
            bboxes(n,4) = ymax-bboxes(n,2); 
        end 
    end 
n=n+1; 
end 
 
end 

 

  



Diploma Thesis – Pavlos Chionidis 

113 | P a g e  
 
 

Occlusion_Detector.m 
function [occlusion] = Occlusion_Detector(net1,net2,net3,d_c,masks,labels) 
%this function utilizes the occlusion networks to find occlusion properties 
num_of_objects_detected = size(labels,1);  
if num_of_objects_detected==1 
    occlusion=0; 
elseif num_of_objects_detected>1 
    [Features,Features_labels] = Occlusion_Features(d_c,masks,labels); 
    occlusion = false(num_of_objects_detected,1); 
    for i=1:num_of_objects_detected 
        if Features_labels(i,1)=='PT1' 
            occlusion(i,1)=round(net1(Features(i,:)'),0); 
        elseif Features_labels(i,1)=='PT2' 
            occlusion(i,1)=round(net2(Features(i,:)'),0); 
        else 
            occlusion(i,1)=round(net3(Features(i,:)'),0); 
        end 
    end 
else 
    occlusion = []; 
end 
 
end 

 

Occlusion_Features.m 
function [DATA,DATA_labels] = Occlusion_Features(d_c,masks,labels) 
%This functionextracts the features for the detection of occlusion 
%d_c is the depth image 
%mask is the masks on the image 
%labels are the labels of the masks 
 
%radius of intersection circle for local area height 
r_intersection = 10; 
 
%the ammount of objects-items in an image is equal to the ammount of 
%labels 
items_in_image = size(labels,1); 
% find the resolution of the images 
res = size(masks(:,:,1)); 
%% Generate the background mask and find its height 
background_mask= false(res); 
if items_in_image<=1 % if there is only one item then there is no occlusion 
    %do not create any data 
else 
    for ii = 1:items_in_image % find backround height 
        background_mask = or(masks(:,:,ii),background_mask); 
    end 
    background_mask=imcomplement(background_mask); 
    background_mask_height = double(background_mask).*double(d_c); 
    background_area = sum(background_mask,"all"); 
    background_height = sum(background_mask_height,"all")/background_area; 
    %% Calculate the distance between all the items-objects in an image 
    % Find minimum distance between objects 
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    %valuable info from: 
https://nl.mathworks.com/matlabcentral/answers/91046-how-to-find-distance-
in-binary-image 
    % gennerate a matrix with very high diagonal values  
    %(maximum distance between objects is set to 100 pixels) 
    min_distance_matrix = eye(items_in_image)*100;  
    %matrix of cells containint [x,y] coordinates of pixels, to keep track  
    %of the pixel positions that have the smallest distance between the 
objects 
    min_distance_index = cell(items_in_image);  
    %find the local height at the closest points between objects 
    local_height_matrix = eye(items_in_image)*1000;  
    pixeldistance_mask=zeros(res(1),res(2),items_in_image); 
    mask_perimeter = false(res(1),res(2),items_in_image); 
    for ii = 1:items_in_image 
        pixeldistance_mask(:,:,ii) = bwdist(masks(:,:,ii)); 
        mask_perimeter(:,:,ii) = bwperim(masks(:,:,ii)); 
         
    end 
    for ii= 1:items_in_image  
        for iii =1:items_in_image 
            if ii~=iii 
                %Distance of item iii from item ii 
                perimeter_distance_ii_iii = 
pixeldistance_mask(:,:,ii).*mask_perimeter(:,:,iii);  
                % create a matrix with very high values where there is no 
perimeter  
                % (to add it to the distance so when I take the minimum I 
take the distance and not 0) 
                perimeter_inverse = 
inverse_BW_CHP(mask_perimeter(:,:,iii))*1000000;   
                Distances_matrix = 
perimeter_distance_ii_iii+perimeter_inverse; 
                %this gets the minimum from all columns 
                [a,I]=min(Distances_matrix,[],1);  
                %this gets the mimimum from the row (gets index as well). 
                [min_distance_matrix(ii,iii),II]=min(a);  
                %get the indexes to a matrix (pixel where there is the 
closes distance) 
                min_distance_index{ii,iii} = [I(II),II];  
                % Gennerate a binary image with resolution res witch 
contains a 
                % circle with radius r and center at the closest point 
between two objects 
                circle = 
BW_circle(min_distance_index{ii,iii},r_intersection,res); 
                % find the local height of item ii in the closest point to 
item iii. 
                circle_intersection= and(masks(:,:,ii),circle); 
                %find the area of intersection 
                circle_intersection_area = sum(circle_intersection,'all'); 
                % gennerate a metrix containing the local heights between 
objects 
                local_height_matrix(ii,iii)=background_height-
sum(double(circle_intersection).*double(d_c),"all")/circle_intersection_are
a;  
 
            end 
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        end 
    end 
    local_height_difference_matrix = eye(items_in_image)*1000; 
    for ii=1:items_in_image 
        for iii=1:items_in_image 
            if iii~=ii 
                local_height_difference_matrix(ii,iii)= 
local_height_matrix(ii,iii)-local_height_matrix(iii,ii); 
            end 
        end 
    end 
    for ii = 1:items_in_image 
         
        [closest_object_distance,closest_object_index] = 
min(min_distance_matrix(ii,:)); 
        props = 
regionprops(masks(:,:,ii),'Area','MajorAxisLength','MinorAxisLength','Perim
eter'); 
 
        Area = props(1).Area; 
        Perimeter = props(1).Perimeter; 
        aspect_ratio = props(1).MajorAxisLength/props(1).MinorAxisLength; 
        mask_depth = double(masks(:,:,ii)).*double(d_c); 
 
        avg_height =background_height-sum(mask_depth,"all")/Area;  
         
        %hiest_point = background_height-min(smothed_mask_depth,[],'all'); 
        Openned_Area = Area/background_height^2; 
        Openned_Perimeter = Perimeter/background_height; 
        %find the minimum height ddifference of object ii in terms of all 
        %other objects (for occluded objects it might be negative) 
        min_height_difference = 
local_height_difference_matrix(ii,closest_object_index);%min(local_height_d
ifference_matrix(ii,:)); 
        if isnan(min_height_difference) 
            min_height_difference=0; 
        end 
        DATA(ii,:) = 
[Openned_Area,avg_height,Openned_Perimeter,aspect_ratio,closest_object_dist
ance,min_height_difference]; 
        DATA_labels(ii,1)=labels(ii,1); 
    end 
end 
end 
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R_z.m 
function [R] = R_z(t) 
%Rotation matrix when a coordinate system its rotated by t rad in the z 
%axis 
c=cos(t); 
s=sin(t); 
R=[c,-s,0; 
    s,c,0; 
    0,0,1]; 
end 

 

ResizeImageMasksBoxes.m 
function [im_new,masks_new,boxes_new] = 
ResizeImageMasksBoxes(im,masks,boxes,newres) 
%Resize the image,masks and boxes to new resolution specified by newres 
 
res=size(im,1,2); 
resize_ratio=newres./res; 
boxes_new = boxes; 
items_on_image = size(masks,3); 
masks_new = false([newres,items_on_image]); 
for ii=1:items_on_image 
    boxes_new(ii,1)=round(boxes(ii,1)*resize_ratio(2)); 
    boxes_new(ii,3)=round(boxes(ii,3)*resize_ratio(2)); 
    boxes_new(ii,2)=round(boxes(ii,2)*resize_ratio(1)); 
    boxes_new(ii,4)=round(boxes(ii,4)*resize_ratio(1)); 
    masks_new(:,:,ii)=imresize(masks(:,:,ii),newres); 
end 
    im_new = imresize(im,newres); 
end 

 

UEtoMATLABtransfrom.m 
function T = UEtoMATLABtransform(L,eul) 
%Ureal Engine to MATLAB coordinate system tranfromation 
lsgn = [1 -1 1]; 
rsgn = [1 -1 -1]; 
T=eye(4); 
T(1:3,4)=(L.*lsgn)'; 
eul=eul.*rsgn; 
T(1:3,1:3)=eul2rotm(eul,"XYZ"); 
end 
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Kinect_RGBtoDepthMap.m 
function [rgb_cropped_fix,d_cropped_fix] = 
Kinect_RGBtoDepthMap(RGB_im,D_im) 
%This function maps the rgb image to the depth image 
%resolutions 
Pixel_Ratio = 3.05; %depth pixels are 3 times larger than rgb pixels 
Scale_Ratio = 2; %How much bigger ratio should the rgb image have 
%the center distance value in the x direction changes!! 
c_x = 0; %pixels in depth image plane(move it towards the depth plane) 
c_y = -15;%pixels in depth image plane 
f = 365; %focal length of D_camera fx = fy (almost); 
cx = 256; %center point of depth camera; 
cy = 212; %center point of depth camera; 
K_depth = [f,0,cx; 
    0,f,cy; 
    0,0,1]; 
RadialDistortion_depth = [0.2,0]; % it specifies an elipse(rx ,ry) 
side_cut = 35; % is an additional cropping in pixels from each side that 
needs to be done in order to compensate for the distortion correction; 
% x = ii-0.0000500604*bg_depth^2-0.1078012098*bg_depth+68.4597461493; 
%% Fix distortion of depth image 
depth_params = 
cameraParameters('K',K_depth,'RadialDistortion',RadialDistortion_depth); 
D_im = undistortImage(D_im,depth_params); 
res_d = size(D_im); 
boundingBox = [side_cut,side_cut,floor(res_d(2)-2*side_cut),res_d(1)-
2*side_cut]; 
D_im = imcrop(D_im,boundingBox); 
res_d = size(D_im); 
 
%principal points 
% principal_rgb = res_rgb/2; 
% principal_d = res_d/2; 
%  
% res_ratio = res_rgb./res_d; 
RGB_im = imresize(RGB_im,1/Pixel_Ratio); 
 
res_rgb = size(RGB_im,[1,2]); 
RGB_im = imtranslate(RGB_im,[c_x,c_y]); % move the rgb image to the depth 
center 
boundingBox = [0,0,floor(res_rgb(2)-abs(c_x)),floor(res_rgb(1)-abs(c_y))];% 
Becarefull!!!! only if c_x and c_y are negative this works 
% Crop the translated image to remove empty areas 
RGB_im = imcrop(RGB_im, boundingBox); 
res_rgb = size(RGB_im,[1,2]); 
new_image_res = [min(res_rgb(1),res_d(1)),min(res_rgb(2),res_d(2))]; 
%355x512 
x_diff = ceil((res_rgb(2)-res_d(2))/2); 
y_diff = ceil((res_d(1)-res_rgb(1))/2); 
 
rgb_cropped = imcrop(RGB_im, [x_diff,1,new_image_res(2)-
1,new_image_res(1)]); 
d_cropped = imcrop(D_im, [1,y_diff,new_image_res(2),new_image_res(1)-1]); 
% d_cropped = imgaussfilt(d_cropped,2); 
 
%% Fix depth pixels to rgb mapping issue in x direction  
cropped_res = size(d_cropped); 
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d_cropped_f = d_cropped; 
for i=1:cropped_res(1) 
    for ii = 1:cropped_res(2) 
        if d_cropped(i,ii)==0 
            %do nothing (should probably fill the area with the average of 
the perimeter) 
        else 
            d_at_pos = double(d_cropped(i,ii)); 
            dx = (0.0000500604*d_at_pos^2 - 0.1078012098*d_at_pos + 
68.4597461493); 
            x = ii-dx; 
            if x>=1 && x<=cropped_res(2) 
                d_cropped_f(i,ceil(x))=d_cropped(i,ii); 
                d_cropped_f(i,floor(x))=d_cropped(i,ii); 
            end 
        end 
    end 
end 
%crop again both images 
rgb_cropped_fix = imcrop(rgb_cropped,[1,1,cropped_res(2)-
27,cropped_res(1)]); 
d_cropped_fix = imcrop(d_cropped_f,[1,1,cropped_res(2)-27,cropped_res(1)]); 
end 

 

KinectPicture.m 
function [img_rgb,img_d] = KinectPicture(colorDevice,depthDevice) 
%This function takes a picture using the Kinect 
step(colorDevice); 
step(depthDevice); 
step(depthDevice); 
img_rgb = step(colorDevice); 
img_d=step(depthDevice); 
img_rgb = flip(img_rgb,2); 
img_d = flip(img_d,2); 
 
end 

 

Uint16_to_uint8.m 
function [out] = uint16_to_uint8(d) 
%This function converts a depth image for visulization 
max_z = max(d,[],'all'); 
dd = d; 
dd(dd==0)= max_z; 
min_z = min(dd,[],'all'); 
 
out = uint8(ceil((double(dd-min_z))*255/double(max_z-min_z))); 
end 
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III. Simulink Model 
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IV. Mask RCNN & ANNs Training Workflow 
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V. Computer & Software Specifications 
CPU AMD Ryzen 9 5900X @4.2GHz 

RAM 64GB ddr4 @3600MHz 
GPU NVIDIA GeForce RTX 3090  

 

MATLAB Version 2023a, update 3. 

SOLIDWORKS 2023 SP3. 

Blender 2.93.4. 

 

 

 

 

 

 

 

 

 

 

 

  


