
National Technical University of Athens

School of Mechanical Engineering

Section of Manufacturing Technology

Robotic Arm Manipulation for Object Detection 

& Grasping in Occlusion Environments Using 

Machine Vision & Neural Networks

Diploma Thesis 

Pavlos Chionidis

Supervisor: Prof. Panorios Benardos (NTUA)



Table of Contents

Trajectory Planning

2

National Technical University of Athens

Robotic Arm Manipulation for Object Detection 



01 Introduction

3

System Parameters & The ProblemTable of Contents



System Parameters & The Problem

4

Stäubli RX90L

• Six Degrees of Freedom.

• Maximum carrying capacity: 6 kg.

• Equipped with inhouse gripper.

Kinect V2

• RGB Camera 1920,1080 𝑤,ℎ.

• Depth Camera 512,424 𝑤,ℎ.

Why simulate on 3D environment?

Use additional sensors.
Implement logic to drive the system.

How to implement an automated robotic system?

Low-cost solution.
Dense information from a single unit.

Why use an RGB-D camera?

Wider span of item identification.
Highly adaptable.
More robust in diverse environments.
Can handle the occlusion problem.

Why use CNNs rather than typical image processing?

Easily adaptable.
Cost and worry free.

01 Introduction
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Methodology
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Robotic Arm Manipulation

➢ How much to move?

➢ Where to move?

➢ How to move?

Machine Vision & Logic

➢ How to calibrate the Kinect?

➢ How to label images?

➢ How to train the networks?

Visualization

➢ How to visualize the robotic arm?

➢ How to visualize the scene?

➢ How to simulate the model?
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Transformations
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Description of a Body in Cartesian Space.

➢ Position: [x,y,z]

➢ Orientation: 𝑅 =

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

Transformation Matrix: 𝑇 =

𝑟11 𝑟12 𝑟13 𝑥
𝑟21 𝑟22 𝑟23 𝑦
𝑟31 𝑟32 𝑟33 𝑧
0 0 0 1

Rotation Matrix

➢ Euler Angles (More Intuitive): Three angles.

➢ Euler Parameters (More Robust): Four Parameters

Open Kinematic Chain

0𝑇𝑛 = 0𝑇1 ⋅
1𝑇2 ⋅ … ⋅ 𝑛−1𝑇𝑛

Kinematics & Inverse Kinematics

Open Kinematic Chain.Euler Angles “ΧΥΖ”.



Wrist Configuration

Robotic Manipulator with wrist 
configuration.

Transformations
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Kinematics

Transformation Matrices 

➢ Denavit & Hartenberg Parameters

➢ Included inside the URDF File.

➢ Are dependent on rotation angles of 

the joints. 

Forward Kinematics

Inverse Kinematics

➢ What is the pose of the robotic arm for a 

specified joint rotation?

➢ Computed using transformation matrices. 

➢ What are the required joint

rotations for a specific end effector

configuration?

➢ Hard to Calculate:
0𝑇𝑒,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑋(𝑞1, 𝑞2, … . , 𝑞𝑛)

➢ More than one solution may exist.

Pieper Method
✓ Split the problem in two different 3DoFs Robotic arms.

✓ MATLAB: analyticalinversekinematics()

Joint frames between a link.
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Convolutional Neural Networks

10

Feature Extractor (Backbone)

Classifier (Head)

1. Convolution Operation

2. Activation Function (ReLU)

3. Pooling (Max Pooling)

➢ Extracts features to identify each class

➢ Consist of many convolutional blocks

Convolutional Block

➢ Flattens the Feature Map 

➢ Passes through Fully Connected Layers

➢ SoftMax Function to Extract Probabilities of Classes  

Example of a convolutional block.

Schematic representation of a CNN.



Object Detectors - Faster RCNN
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Convolutional Neural Networks

Region Proposal Network

Classifier (cls) Box Regressor (reg)

Faster RCNN

➢ Feature Extractor (Backbone)

➢ Region Proposal Network (Object Detector)

➢ RoI Pooling Layer

➢ Classifier with Box Regressor (Head)

Backbone

➢ Detects whether an

object is within the

anchor box.

➢ Binary output.

➢ Generates coordinates

deltas for each anchor

box [x,y,w,h]

Anchor Boxes are set in the initiation stage of the network and remain constant. 

The Box Regressor outputs deltas of the Anchor Boxes coordinates to match the 

object sizes. The RoI Pooling Layer is responsible for creating fixed sized features 

(pooling operation of variable size) for the classifier. 

Faster RCNN schematic representation.
RPN schematic representation.



Object Segmentors - Mask RCNN
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Object Detectors

Mask RCNN

➢ Feature Extractor (Backbone)

➢ Region Proposal Network (Object Detector)

➢ RoI Align Layer

➢ Classifier with Box Regressor (Head)

➢ Segmentation Network (Mask RCNN Head)

Segmentation Network

➢ Consists of convolution blocks

➢ Output is a binary feature map (mask)

Mask RCNN Builds upon the Faster RCNN network and facilitates 

segmentation of objects by using the Segmentation Network.

Mask RCNN schematic representation.

Segmentation Layers.

Trajectory Control
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Trajectory Control
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Object Segmentors - Mask RCNN



Control Law & Grasping Logic
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Camera Transformations

➢ Transformation Matrix from Base to Camera: b𝑇𝑐
➢ Transformation Matrix from Camera to Object: 𝑐𝑇𝑜

Position of the object is calculated

using the following equations:

𝑋𝑃 =
𝑢𝑥 − 𝑐𝑥

𝑓𝑥
∙ 𝑍𝑃

𝑌𝑃 =
𝑢𝑦 − 𝑐𝑦

𝑓𝑦
∙ 𝑍𝑃

Inverse Kinematics

Required Configuration: 𝑏𝑇𝑜 =
b𝑇𝑐 ∙

𝑐𝑇𝑜
✓ Use of the inverse Kinematics solution 

to calculate the required joint rotations.
𝑏𝑇𝑜 = 𝑋(𝑞1, 𝑞2, … . , 𝑞𝑛)

Stationary eye & hand system

Example of calculated distances.

➢ Grab the highest object that is not 

occluded.

Grab configuration:

➢ Vertical to table

➢ Grab from the shortest axis passing

through the center of area.

Grasping Logic



Trajectory Control
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Type of Control

Cartesian Space Joint Space

✓ Precise Trajectory

× Computation Intensive

× May lead to gimbal locks

✓ Easy to Compute

✓ No gimbal locks

× Not Precise Trajectory

Pose Selection

➢ One end effector configuration, 

many possible robot poses.

✓ Sum of squared difference of 

joint rotation between initial 

pose and end pose.

✓ Use Polynomial joint trajectory.

Difference between cartesian space control and joint space control.

Example of same position and orientation but with 
different configurations.
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Machine Vision



Kinect Calibration & Mapping
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Problems

➢ Different resolution

➢ Different  radial distortion 

➢ Different  Physical position 

Mapped Images

Mapped Images, Final Resolution of: 417,340 𝑤,ℎ.

Calibration Procedure

✓ Use known objects for 

evaluation of camera properties 

✓ Fix radial distortion.

✓ Calculate PAR = 3.05.

✓ Map images in y direction. 
𝑦𝑚𝑎𝑝𝑝𝑒𝑑 = −15 𝑑𝑒𝑝𝑡ℎ 𝑝𝑖𝑥𝑒𝑙𝑠

✓ Map images in x direction. 

𝑥𝑚𝑎𝑝𝑝𝑒𝑑(𝑑𝑒𝑝𝑡ℎ)

Example of sensors misalignment on the Kinect V2.



Image Labeling & Data Augmentation

18

Image Labeler App

➢ Three Item Classes

➢ Polygon Shaped Masks

➢ Occlusion Parameter: Logical

➢ Item Parameter: Integer
Why Data Augmentation?

✓ Increase the data size by 10-fold

✓ Generalize the model 

× Cannot be used in Occlusion ANNs

Methodology

➢ Pool of 10 different backgrounds

➢ Random rotation and translation



Mask RCNN Training
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Training Parameters

➢ Augmented Images: 1140

➢ Real Images:114

➢ Training Algorithm: SGDM

➢ Positive IoU: [0.75,1]

➢ Anchor Boxes: 15

➢ Minibatch: 2

Total Loss 0.0223

RPN Loss 0.0016

RMSE 0.0004

Mask Loss 0.0153

Pre-Trained Network

➢ Mask RCNN pretrained with

COCO dataset.

➢ COCO: 200k labeled images, 80

object categories.

✓ Faster convergence of the Feature

extractor & the RPN.

Loss Functions

➢ Box regressor (Head): Root Mean Squared 

Error.

➢ RPN: Binary Cross Entropy (cls) + Smooth L1 

Loss (reg).

➢ Mask: Binary Cross Entropy (pixelwise).  



Mask RCNN Testing
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No Occlusion Mild Occlusion High Occlusion

➢ No occlusion between 

parts.

➢ 15.7% increase in total 

loss.

➢ Up to 25% of part area 

may be occluded.

➢ 57.8% increase  in total 

loss.

➢ More than 25% of part 

area is occluded.

➢ 133% increase in total 

loss.

Total Loss 0.0258

RPN Loss 0.0022

RMSE 0.0005

Mask Loss 0.0179

Total Loss 0.0352

RPN Loss 0.0031

RMSE 0.0005

Mask Loss 0.0251

Total Loss 0.0520

RPN Loss 0.0032

RMSE 0.0009

Mask Loss 0.0381
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Occlusion ANN



Occlusion Features
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Background Height

➢ Average height of the 

background.

Opened Perimeter

➢ Mask perimeter divided 

by Background Height.

Opened Area

➢ Mask area divided by

Background Height.

Object Height

➢ Average height 

of the mask.

Distance Between 

Closest Object

➢ Distance in pixels

between the mask of

the inspected object

to the mask of the

closest object.

Height Difference 

Between Closest Object

➢ Height Difference between

those two objects in a

region around the closest

points.



Occlusion ANNs
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Parameters

➢ Six inputs (no normalization).

➢ One network for each object class.

➢ One “binary” output.

Training

➢ Training/Validation/Testing: 

80/10/10%

➢ Algorithm: Resilient 

Backpropagation

➢ Activation Functions: “tansig”

➢ Evaluation criterion: MSE

Object Class Hidden Layers Training Validation Testing

PT1 [50,50,25,25,10,10,5,5] 2 1 1

PT2 [100,100,50,50,25,25,10,10,5,5] 0 0 2

PT3 [100,100,50,50,25,25,10,10,5,5] 4 1 1

Table: Training & Testing Results.

Object Class False Positive False Negative

PT1 1 3

PT2 0 2

PT3 1 5

The networks underestimate the likelihood

of occlusion. Parameters like “Closest

Object Distance” and “Height Difference

Between Closest Objects” give misleading

inputs. Correction occurs in the grasping

logic.

Table: Type of error of Occlusion ANNs.

Occlusion ANNs are dependent on the performance of

Mask RCNN and on the quality of the depth data.

Total Testing Performance: 90.5%
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Virtual World Simulation
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Unreal Engine

➢ Photorealistic

➢ RGB-D Cameras

➢ Includes Events & Collisions

Robotic Arm Model

➢ Assembly in SOLIDWORKS

➢ SW URDF Exporter add on.

➢ MATLAB to UE coordinate system.

Coordinate Systems: Unreal Engine (a), MATLAB (b).

(a) (b)

Grasping

➢ Lock the transformation matrix of 

end effector and the object:
𝑒𝑇𝑜𝑏𝑗 =

𝑒𝑇𝑏 ∙
𝑏𝑇𝑜𝑏𝑗

➢ Use collision events to visualize 

grasping – gripper closing. 

MATLAB-Simulink

➢ Use MATLAB for the logic.

➢ Use Simulink – Unreal Engine for 

the visualization. 

Example of grasping visualization.



Simulation
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Conclusions & Future Work
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Conclusions
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Implementation of the Control Law involving the

inverse kinematics & features from the machine

vision system. Usage of joint space trajectory and

an angle based grasping method.

Robotics

Successful employment of Mask RCNN to handle 

the occlusion problem with a testing loss of 0.038. 

Machine Vision

Implementation and evaluation of a Neural

Networks to handle the occlusion problem.

Performance in testing 90.5%.

Occlusion Problem

Full system simulation in a virtual setting inside

the MATLAB - Unreal Engine Framework.

Visualization

Future Work
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Future Work

Real-World Implementation

➢ Serial Communication

➢ Control with V+ Language

➢ System Calibration

➢ Simulation

Computer – Generated Images

Image

Processing

➢ Physics Engine: Blender/UE

✓ Increase productivity

Mask RCNN with RGB-D images

Mask RCNN

➢ Python - MATLAB

✓ Increase Performance

Conclusions
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Thank you for your time!


