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ITepirndm

Y obyyeovn emoyn e dmgloxrc emavdctaong, He TNy exdeting adinon tou
TepLEOUEVOL OE BivTeo, elvol TAEOV ETLTAXTIXY 1) VALY XY YLOL ATOTEAECUATIXY XU TAVONOT)
xou gpunvela Twv Bivieo, xdt Lwtixrg onpasiog yia Tolég egapuoyéc. H andvnon
epwthoewy ot Bivieo (Video Question Answering) eivon éva moldmhoxo mpdBinua
mou amoutel Podid xaTAVONCT TOGO TOU OTTIXOU TEPLEYOUEVOU OGO X0k TWOV QPUOIXGY
YAOGOXGY epwThoewy. Tapdho mou épeuveg Tapouaidlouv GuVEYT TEO0K0, Ol TEPLO-
06Tepeg Bouleléc uéypl ofuepa €youv emixevtpnwiel oe pedodoug mou Pasilovto oe
govoototyela (pixel), eve cuyvd BUOXOAEDOVTAUL VoL AMOTUTIIGOUY OTOTENECUATIXG
TIC TOAUTAOXES OYETELC Xou BUVOIXES EVTOS Tou PBivieo. H mapathpnon tne cuumnept-
(POPAC TWV UOVTEAWY QUTWV €YEL aVadEiZel aUTOV TOV TEQLOPLOUO XL TNV VXY YL
TNV AVATTUEY THO OMOTEAECUOTIXGY XL UE ETY VWO TOU TEPLEYOUEVOU GUC TNUATOY
Video Question Answering.

H napoloo epyacio mapovotdlel yla véa mpocéyylomn npog autr Ty xatebiuvorn
HE TNV EVOWUATOON TOV YRUPWY oxnviAc Ue Wla lEQupy X TEOCEYYIoN Yol TNV TLO
OTOTEAECUATIXT AMAVTNOY cpwThoewy ot Bivieo. Ou ypdgol oxnvic mapéyouv Ui
BOUNUEVT] OVATUEACTAUCY) TWV OTTIXWY oTolyelwy Yéoo ot éva Blvteo xou Twv yetodd
TOUG GYECEWY, TROCPEPOVTAS iot TAOUGCLA ONUACIOAOYIXT BAOT Ylol TNV XATAVONON
obvietwy Bivico. Metatpénovtag tny avdiuon Bivico and Tov yheo twv Tilek oTov
YOEO TWV YEAP®Y, 6{VOUUE TN BUVATOTNTO ATOTEAECUATIXOTERNC O OTUACLONOYLXS
mhovotag enelepyaotac Bivteo.

Ipotelvouye pio apyttextovix mou aflomolel Toug YRapous oxnvic, YeNoUOTOLOY-
tac Nevpwvixd Aixtuva I'edgwyv (GNNs) yio tny enelepyacio twv ypdpwy oxnvic,
pall e éva tepapyixd povtého Tou Aettoupyel oe BlopopeTixd eninedo Tou Bivteo, and
HEUOVOUEVEL XN, €0C xol OAOXATEO TO PBIVTEO Yiol Vo EMITEEPEL O OAOXANPWHEVN
xatovonon tou Bivieo. H evowudtwon twv GNNs emtpénel tnv e€aywyn ornuoyv-
TIXWY TANPOPORLMY YLoL TOUG YEAPOUS, OTOTUTWVOVTAS TLC OYECELS Xal TA YoQUXTNPLo-
X TV onTey otolyelwy. To tepapyind poviého, mou Aettovpyel GE BLUPOPETIXG
enineda, dac@aiilel 6TL AopfdvovTar LTOYY TOCO OL AETTOPEREIEC OO0 XAk TO EUPUTEQO
TEPLEYOUEVO, 00N YwVTaS ot Baditepn xatavonon Tou Bivieo.

"Etot, nopouoidlouye pla pédodo mou(l) Zextvd pe tnv eoywyn yedpwy oxnvic
ond emheypévo xAr Bivieo (2) Anuioupyel SlavioUaTo YopoxXTNRIOTIXOY YE TN YeYion
GNN s xou (3) Evowpotdver tor Stoavhouata YopoxTneloTixy o€ £va LEpapynd LOVTENO

Aohoyolpe ) puédodd poc oto Action Genome Question Answering Dataset
[14], éva obvoho Bedouévwy mpaypatixol x6ouou o anexovilel avipwroug ot xo-
Onuepwvéc dpaotneotnteg. Ta anotedéopatd pog delyvouv OTL 1 TEOGEYYICT M
elvor peto€l Twyv state-of-the-art uedddwy, eved udhioTta LUTEPTEREL OE CUYXEXPIEVES
xatnyopleg epwthoewy. H mpocéyyion pag etvar €va Briuo mpog mo amodoTixd xou ue
enlyvwon tou tepieyouévou cuothuata Video Question Answering, emtpénovtag mo
oxpUBelc xou pe oucio AmaVTHOES OE EQOTATELS PUOLXAC YAWOGCOS COYETIXA UE PBivTeo.

Ev xotoheldt, n mapodoo epyacio tapoustdlel uio véa Tpocéyyion Yl TNy andvTnon
epWTHOEWY o€ BIVTEOD, 1 OTOlOl ETUXEVTPWVETOL OTNV AMOTEAECUATIXY] XATAVONCT| Xl



epunveia Twv Bivteo. H mpooéyyior yoc elvon 1 mpdtn, €& dowv yvopeilouue, mou
xenotonolel ypdpoug oxnvig uall Ue Lepopyxr] TEOcEYYIoN Yl To TEOBANU TOL
Video Question Answering, eve axoua Tol ATOTEAEGUATY UG ATOBELXVIOLY TNV ATOTE-
AECUATIXOTNTA TNE TPOGEYYLONG Uag o€ aevdpta Tparydatikol xoouou. Ilepopatlo-
HUOTE OXOUOL UE OLopOpETIXES HEVOB0OUE ETEEERYATIOC TV YRAPWY OXNVAC dhAd ol
enimeda ToU LEPUEY KOV LOVTENOL, TIUREYOVTUS TANPOPORIEC CYETIXY UE TNV ATOTEAED-
HOTIXOTNTO DLOUPORETIXV ARYLTEXTOVIXOV.

Aggeic KAewdia Boabded Madnon, Avtépotn andvinon epnthoewy ot Bivieo,
Fedpor Exnvie, Topaywyy Tedpwy Exnvic, Nevpwvixd Aixtua I'edgwv, Action
Genome Question Answering Dataset, Kotavénorn Bivteo



Abstract

In the digital era, with the exponential growth in video content, efficiently
understanding and interpreting videos has become crucial for numerous applica-
tions. Video Question Answering (VQA) is a complex task that requires deep
understanding of both visual content and natural language queries.While works
have continually shown progress, most of the advances to date have focused on
pixel-based methods, often struggling to capture the intricate relationships and
dynamics within video content effectively. Observing the behavior of state-of-
the-art models has underscored this limitation and the necessity to develop more
efficient and context-aware Video Question Answering systems.

This thesis presents a novel approach towards this direction by integrating
Scene Graphs with a Hierarchical Conditional Approach to efficiently answer ques-
tions about Videos. Scene graphs provide a structured representation of the visual
elements within a video and their interrelations, offering a rich semantic founda-
tion for understanding complex video data. By transforming the video analysis
from pixel to graph space we enable more efficient and semantically rich video
processing.

We propose an architecture that leverages scene graphs, utilizes Graph Neural
Networks (GNNs) for processing scene graphs, alongside a hierarchical model that
operates at different levels of video granularity, from individual clips to the entire
video, to enable a comprehensive understanding of video content. The integration
of GNNs allows for the extraction of meaningful graph embeddings that capture
the relationships and attributes of the visual elements, leading to a deeper under-
standing of the video content. The hierarchical model, operating at different levels,
ensures that both the details and the broader context are considered, leading to a
more holistic understanding of the video content.

So, we introduce a methodology that (1) Begins with the extraction of scene
graphs from selected video frames, (2) Generates graph embeddings using GNNs
and (3) Incorporates the graph embeddings into a hierarchical model

We evaluate our method on the Action Genome Question Answering Dataset
[14], a real-world dataset consisting of videos depicting humans in everyday activi-
ties. Our results demonstrate that our approach is among state-of-the-art methods,
and even outperforms them in several question categories. Our approach is a step
towards more efficient and context-aware Video Question Answering systems, en-
abling more accurate and meaningful responses to natural language queries about
videos.

In conclusion, this study presents a novel approach to Video Question An-
swering, focusing on the efficient understanding and interpretation of videos. Our
approach is the first to our knowledge to use scene graphs along with a hierarchical
conditional approach for Video Question Answering, and our results demonstrate
the effectiveness of our approach in real-world scenarios. We also experiment with
different graph processing methods and levels of the hierarchical model, providing



insights into the effectiveness of different architectures.

Keywords Deep Learning, Video Question Answering, Scene Graphs, Scene
Graph Generation, Graph Neural Networks, Hierarchical Conditional Relation
Networks, Action Genome Question Answering Dataset, Video Understanding
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0 Extetapevn Iepiindn ota EAANvIxd
0.1 Ewayowyn

Y1 obyypeovn dngloxy| emoyn, n Lwn pac elvar cuvugoacuévn ue dedouéva, amd TNy
gneproy xotorypapry e xadnuepvoTNTdE Yo and To smartphones, péyer tig mAot-
(POPUES XOWVWVIXNG OIXTUWONE TOU XOTAYRAPOUY TIG OXEPELS XAl TS AAANAETULOPAOELS
poc [3]. Ou mnyée mhnpogopioc molhamhootdlovtol GUVEYGMS, oUEAVOVTOS ONUAVTIXS
TOV OYX0 TV PnpLoxey SedoPévmwy ToL TapdYOoUUE xal xatovainvoupe. Kdade pépa
Tapdryovta tepinou 328 exatopulpia Terrabyte dedouévwy, evey ta Blvieo anoteholy
Téve omd To Pod tne Toryxdoutos xivnone dedouévwy [11]! Méoa oe auth v éxenén
0EBOUEVLY, 1) TEOXANCT TN eMEEEpYUoiog XAl XUTAVONONE TERUOTUWY CUVOAWY Oe-
OopEVWY YiveTon OhoEva xou To BUOXOAY, xadde Tor cusTAUATA Tou elvon oe VEoT v
TOL XATAVOOOLY OeV €youv e€ehiyVel ue Tov (Blo puiuo.

Iot v ahknAenidpaon ye auTh TNV onTixr Thnpogopia, T eodva xat To Bivteo, elvou
amopaktnTy N e€EMEN cvatnudtey Teyvntic Nonuooivng xovd vor Ty Xotovoricouy.
Yuyxexpuéva, otny mpoonddeta xdhuhng authc Tne avdyxne €yl avaduiel o Topéag
tou Video Question Answering (Video QA), cuvdudlovtag tny enclepyaocia QuUoXhc
Yhwooog (natural language processing) pe v 6poon unohoylotédv (computer vi-
sion) [1]. Aedopévou evog Bivieo xou piog ep@TNONG OYETIXE UE UTO, TO TEOBANUL TOU
Video Question Answering @opd tnv 6o TH andvTnom tng eprTnong Ue Bdorn Tig dlo-
Véowec tohutumixée (multimodal) mAnpogopieg Tou Bivteo. IIhéov éxel dnuiovpyniet
TAnIOea cUVOLLY dedouévwy yio To Video Question Answering, yetald tov onolwy
to ActivityNet-QA [54], MovieQA [41], KnowIT VQA [13], TGIF-QA [24], AGQA
[14] o mohAS A [58].To Video Question Answering urnopel vo €yel egopuoyéc oe
TOAOUG TOUELS, OTWE OTNY EXTUBEUCT), TNV Puyarywylo, TNV acpdiela, TNy vYEeid, TNV
ETUOTNHOVIXT] EQEUVAL, TNV AUTOVOUT OBHYNOT), TNV avdAucT Bivieo xon TOAAG GAAaL.

Q: How does E.T. show his happiness Q: Why do Joy and Jack get married that first Q: Why does Forrest undertake a three-  Q: How does Patrick start winning Kat over?
that he is finally returning home? night they meet in Las Vegas? year marathon?

A: His heart lights up A: They are both vulnerable and totally drunk  A: Because he is upset that Jenny left him +F BY getting personal information about

her likes and dislikes

Figure 0.1: INopadeiypota Video Question Answering oné to dataset MovieQA.
Anewovietan éva uévo otnywotuno (frame), evdd xavovixd ke ov epwthoelc-
AMAUVTAHCELS AVTIGTOLYOVY Ot UeyollTepns Odpxetag Bivico . H exdva elvon and
To [41].

To Video QA etvon éva ohvieto nedio, xadmg anattel TNV avoryvmpelon Twy Spdcewy,
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NV Ypovixy| TontolEéTnot| Toug Yéoa ato BIVIED, TNV XUTAVONCT QPUOIXAC YAWMOGOS Xol
TNV GUALOYLO TIXT| IXAVOTNTA YIoL TNV OmAVTNOT TV epwThoewy. To cuothpata Video
Question Answering Aotnév avTpeTOTILOUY CNUAVTIXEC UTOAOYLOTIXEC TEOXANOELS,
xodde enelepydlovial PEYAAES TOCOTNTEG OTTIXWY OEBOUEVKVY X0l EQUNVEVOUY TOAD-
TAOXEC OYETELS UETAEY TwV oToyelwy. Ot tapadoctoxéc uédodol encéepyaatog Bivieo
AertouvpyoLy oe eninedo pixel, ondte telvouv vo eaTdlouy e OTTIXEC AETTOUERELES,
OUY VA TOPUAEITOVTAC TNV XATOVONOT TOU EVEVTEPOL TAULGIOU, ATOUTWMVTNS TOANOUC
unohoYloTixolg mopouc. EmmAicov, ta Bivteo mowdhouv oe yeydho Padud we mpog
™V avdhuor, Ty derypatolndio, eve TEpLEyouv TOMES DLUPOPETIXES TTANPOYORIES UE
LOVOBIXE Y AEUXTNELO TLXG.

Ot mpoxhfioeic auTég apopoly xuplwe TNy teptmioxn gLoT TwV dedouévwy Bivieo Tou
YopoxtneilovTon amd Tov adounTo xou Tuxvo YHeo twv TEeh. To Bivteo eivor Wiaitepa
OTOULTNTIXG GE UTOAOYLO TIXOUE TOPOUE, XoiOC TEPLEYOUY PEYEAO aptdud G TLYULOTOTWY
(frames), odnydvtac ToAES Qopéc oe peydha peyédn apyceinv xou dUoxoln enciep-
yooto. Axdun, Slopopéc GTNY avaAUoT UTOREL VoL ELGEYOUV AOYETEC AETTOUEREIES )
VoL OTULOVEYICOLY TOURUUORPWOELS, EVE BIVTEO UTOPEL Vo TEPLEYOUY HOVAOLXEL YoEuX-
TNELO TIXA.

Mo v avTipetOnon autey Tov INTNUATeY, 1 Tapoloa epyacia elodyel pio véa
TEOGEYYLON Yoo TNV evioyuon tng anddoone Tou Video Question Answering ue
™ Xenon yYedpwy oxnvic xo plag lepapyic apyttextovixic. O ypdgol oxnvig
amoTeAolV Uio Bounuévn avamopdotacy Tou Tepleyopévou evog PBivieo, mapéyoviag
mo onuovtxés (salient) mAnpogopieg yia to onTiXd oToLyEla xon TIC YETAUED) TOUC Oyé-
oeig. Ilpotetvoupe Aowmov tn yetdfoaon and Ty avdhuon Twou Yweou Twv pixel otny
AVIAUGT] TOL Y GEoL TwY YEdwy. TTapdAnha yerion ulag tepapyinfc TeocEyYIong Uag
ETUTEETEL VO AELTOVPYOUUE o€ BVo emineda, oe eminedo cUvTopou BIVIEO XM Xou GE
eninedo ohdxAneou (ivTeo, AmOTUTWMVOVTUC XUAVTEQU TIG YWPOYEOVIXEC OYETELC OTO
Bivteo.

Aopop@eVouUEe AotmdV TNV TEOGEYYIoT LoC YOpw amtd TO axdA0UTY0 EQEUVITIXG EQWTNUAL

"Mrnopolue va avolbcoupe ta Bivieo e SounUéVOUS YRAPOUS XaL VoL
ATAUVTACOUUE OF EPWTHOELS BIVIEO YPNOWOTOWMVTOS AUTOUE TOUG
Yedpoug avti yia to Bivteo?”

Me autr v epyaocia TeootoolUE Vo AMAVTACOUUE GTNY TORAUTEVE ERWTNOT), EGTIS-
Covtac oto video question answering ue Bdon touc ypdpous (graph-based Video
QA). O ouvelo@opéc pog tepthopBavouy:

e Eluoote ol mpotol -an’ 660 yvwpellouue- Tmou yenoiponotoly entols Yedpoug
oxNVAg w¢ evlduesT) avamapdotacy yio To Video QA, petafaivovtoc and to
X®EOo TwV pixel 0To YOEO TWV YEAPHY Yo TWO CNUACLOAOY X TAOUGIES AVa-
TUEAC TACELC.
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o Ilewpopatnotixoue ue didpopes puedddous e€aywyhc BlAVUOUATLY YoEoXTNELo-
v (embeddings) yio Toug Ypdpwy oxnvhc, doxiudlovtac TOAMES opyLTEX-
tovixéc Graph Neural Networks (GNNs), yia tv xah0tepn anotinmon twy
OYECEWY XL TWV YUQUXTNPIOTIXMY TWV OTTIXWY OTOLYElWY.

o Evoouatohoaue To Topamdve UE EVa YPoViXO VELpWVIXG d{xTU0. XONCLLOTOLNCOUE
ula apyttextovixd| transformer, nopohay Tou tepapytxod dixtiou HCRN [26]
Tou Aettovpyel ot 800 enineda, oe eninedo clvtouou Bivieo xMn xou oe eninedo
ohdxhnpou [ivteo, emitpémoviag TNV XoADTERT XATAVONOY TOU TEQIEYOUEVOU
Tou fivteo.

o AZioloyrooue tn pédodo pac oto Action Genome Question Answering Dataset
[14], Selyvovtag 6Tt 1) TPOGEY YL Hog Efvat avToywVo T e Ti¢ state-of-the-
art uedodoug, CEMEPVOVTUC TEC OE UPXETEC XATNYOPIEC EPWTACEWY.

0.2 YréBadeo

H Mnyovuerp Mddnon etvon évag xhddog tng Teyvntic Nonpoolvng, mou emxev-
TPWVETOL OTNV oVATTUEN CUCTNUATLY TOU UTopoLY va podolvouv péva Toug, omod
Ny eunetplo, OTWS 0 dvipnTog. Xxondg TNg elvol Vol Y e1NoYLOTOLNCEL BEGOUEVAL YId VO
punvel Tov Teono mou podatvouv ol davdpwmol, evtonilovtag wotifa xou hauldvovtog
amogdoelg. Me tn ypron OLapopETIX®Y UEVODWY, APYITEXTOVIXWOY XUl TOQUUETEMY,
oUyypoveg mpooeyyloeic Tng Mnyavixrc Mdidnong uropolv va emhdcouy Tohdmhoxa
TpofAfuata, uéoo and T dradixacto Tng exnaidevong. o tnv exnaldevon alomoteiton
€val EUPY PACUA TOTIWY BEBOUEVWY, Ad aELIUNTIXE OEBOUEVA WS TLO CUVUETES LOPYEC,
omwe xelpevo, fyoc 1 Bivieo. To xadéva and autd napouctdlel povadixés TpoxAfoeLs
xou euxotpleg Yoo TNV avanTugn VEWY HOVTEA®WY. XTo emixevipo tng uedodoloylug
e Mnyoavixic Mdinone Beloxovtar teelc Boaoixol tomol udidnong: n emBAendpevn
udinon (supervised learning), n un emBrenduevn uddnon (unsupervised learning)
xou M evioyutixy udinon (reinforcement learning), [34] 6nwe gaiveton xat oto Lyfua
0.2.

Boowr apy) tne Mnyoavixic Mddnong etvan o veupdvag - perceptron. Amnotelel
Evay BUUBO TaVOUNTH), O OTOLOC YENOULOTOLETOL Yiot YEoULXd dloyweiotua TeoP-
Muato oty emBAenoyevn uddnon. Mmropel vo xatnyoplonofcel Tic ElGOBOUC UE
Bdomn to Bdpn, To omolo xan Tpocupuolel xoTd TN BidpXELd TNG EXTUUBEVCTE CUUPLVAL
pe to opdipata TeoBAiedne. Ta mo moAbmhoxa, un yeouuxd Sy welowo TeoBAT-
poTaL, YenoonololvTo TOAATAO! VEUPWYVES, G TOAATAY entineda, oynuotiovtog To
Nevpwvixd Aixtua (Neural Networks § Multi Layer Perceptron - MLP).

H Boded pddnon (deep learning) eivon pior unoxatnyopior tne Mnyoavixic Mdidnong,

mou yenowonotel akyopliuoug eumvevouévoug amd TN dour| xou TN AcTovpyid TeV
VELPWVIXWY OXTUOY Tou eyxepdiov. Ileploufdver tn yerion yeyohltepwy veup-
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Figure 0.2: O x0ptot tinot pddnone. Lyfua ond 1o [34].

WVIXOV BIXTUWY, UE TEPLOCOTERN EMUMEDN, TOU UTOPOoUY Vo Udtouy ToAOTAOXES ovo-

ToPUo TAoELS Xat oLVdeTa potifBa ot ueydheg mocoTnTeg dedouévey. To mo Poaoixd

wovtéro, FeedForward Neural Network (FFNN), amotekeiton and morhd eminedo

VEUPOVOY, OTIOU XGVE VEURKOVAC CGUVOEETAL PE OAOUC TOUC VEUPWVES TOU ETOUEVOU

emmédou. Xe avilieon ye dAeg apyrtextovixée, Ta FFNN elvon avodhoiwta ot peto-

Véoeic (permutation invariant), xahotdvroag To avixd yia TpoBiiuata pe aveldptnto
ornueior GEBOUEVLV.

To ouvehixtxd vevpwvixd dixtuo (CNNs), to omola mapouctdoTnxay Yot TEWTN
@opd to 1998 [8], unepéyouv oty enclepyaoia EOVLY, YENOHLOTOLOVTAC TRAEELS
oLVENENE Tou BlaTnEolY TG Ywewég oyéocelc Yetadl Twy pixel. Autd emituyydveto
ue TNV oAloOnon GIATewY VL GTNY EXOVA ELGOBOU YioL TNV TURAYWYY| YoQAXTNELo-
TIXWV Lo TV Avory VepLoT eovey xou Ty e€aywyr mhnpogoplac. To ResNet, mou
mpotdinxe to 2015 [18], eivan pio EexwploTh Tpocéy Yo, oL yenotLonotel Ty évvola
TWV CLYTOPOBOTOUUEVKY GUVOEGEMY X0l TKV UTOAEWPaTXdY purhox (residual blocks)
Yior TNV eXTUOELOT TOAD Bardicdy VEURWVIXWY BLXTOWY.

To avadpouxd veupwvixd dixtua (RNN) Zeywpilouv otny enclepyaocia oxolouhcv
0edopévey, Omwe xeluevo, fyog xou Bivteo. Avtwetonilovv Béfota mpoxAfoe Ue
TIC Yaxpompdeoues e€apTAOELS, TNV ATWAEL TANEOQOpiag Xxon TNV aduvaio TNg ex-
TalBEVOTG UEYAAWY BIXTOWY, Ol oToleg UETELACOVTOL A TEONYUEVES TURUAAAYES OTIWS
ta LSTM [20] xou GRU [6] mou ewodryouv pnyoaviopolc eEAEYy 0L yia Ty anotiixevon
X0l TNV AVAXANCT TANPOQOoploC.

‘Eneita, ot unyovioyol tpocoync €xouv e€eMEel Ta LOVTERNL VEURPMVIXDY BLXTUMY,
EMTEENOVTAG TNV E0TIOOT OE GUYXEXPUEVO OTOLYEl TNG EIGOBOVL, AvVAAOYA UE TNV
avayxrn. To povtéha autd elvon WLaltepa Yeroo 6 TEOBAAUAUTO UE UEYAAES AXONOU-
Vleg, omwe xelpevo 1 outhlo. Auty 1 xawvotopia, pe mopdderyuo o poviého Trans-
former [47] yenowomnoel v autonpocoyn (self-attention) xou €yer xortagéper va
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Behtidoel Ty amddoom oe ToAG TpofrAuata etelepyaoiag guoxic YAwooac. MdAiota,
vedtepa povtéha, 6mwe to BERT [10] xar to GPT [52], éyouv emitiyel eviunwotaxés
emBOoELC YETE amd exTaAIBELOT g YeydAo GOVOAO BECOUEVMYV.

Puowd, n avtiAndn tou xéouou anoutel TNV enelepyacio TOAMATAGY TOTWY SEGOUEVWY,
6mee xelyevo, emdveg, Hyo xou Bivieo. H nohutumixn enclepyaocia dedopéverv (multi-
modal machine learning) otoyelel 0Ty EVOWUATWOT X0 EpUNVELL TANPOPOELHOY oTd
TOMATAES TINYES, TROXEWEVOL VO TROGPEREL TLO TATIRT] X0 GUVEXTIXY| XATAVONOT) TOU
mepleyouévou. Mdiota, 1 aAANAeTdpaon UETAED HpaoNne Xal YAWCOUS, 1) ool EYEL
XEVTEIXO pOho ot TOMAEC avipndTiveg epyaoies, odnyel TNy €peuva oe TOUELS OTLE 1|
Teptypapt| exdvwy (image captioning), n ontix| andvinon epwtioewy (visual ques-
tion answering) [1] xou ToMG dAAaL.

To Video Question Answering (Video QA) eivou évac oyetind véoc Topéas, mov 610-
YEVEL OTNY avdmTUE Y CUCTNUATOY TOU UTOEOVY VoL ATAUVTHOOLY OE EPWTHCELS OYETIXA
pe To mepleyopevo evog PBivieo. To Video QA amoutel Ty xatotvonon Twv OnTXOY
OTOLYELWY, TOV EVERYELDY, TV OXNVMY X TV AAANAETLORAGEWY HETAUEY TOUS, xodg
XL TNV avdhuon Tou ypeovixol mepteyouévou. Ta tnv alohdynon Twy cUCTNUATKY
Video QA, yenotuonoleito 1 UETEWXT TOU accuracy, To onoio oplleTon we T0 T0G0GTH
TOV CWOTOV ATAVTACEWY ATO OAEC TIC ANAVTACELS - Yo Ti¢ multi-choice - xau w¢ To
TOC00TH GLOTOV AEEWY TN AMAVTNONS amtd OAN TNV amdvTNno - yio Tig open-ended
cpwthoelg. oty exnaidevon Twv cuotnudtwy Video QA, yenowonotodvion ueydha
olvola dedopévemy, 6mwe to MovieQA [41], to TGIF-QA [24], to Knowlt VQA [13]
xou to Action Genome Question Answering [14].

0.3 BBAoypapixry Avacxonnon

To Video Question Answering €yet avantuydel Ta teheutoda yeovia, UE TNV EUPAVIOT
TOAAGY GNUAVTIXDY EPELVAY XL CUCTNUATKLY. Ot Tpoceyyloelg auTé Topouctdlouv
HEY AN TowAopopgio, ahhd UTopoLY Vo yweloTolv o 3 x0pleg xatnyopiec: Memory
Networks, Transformers, Graph-Based npoceyyloeic.

Ta Memory Networks etvon uio xatnyopla LovTéA®mY TOU YENOWOTOO0V UVAUES YLl
TNV AnoVAXEVCT TANPOPOEING XoL TNV AVAXANCT) TNS XATA TNV ANAVINOT OE EPWTHOELS.
Auto ta xahoTd Wavixd Yo Ty xatovénon Bivieo ueyding Sidpxetag xon oOVIETwY
apnyhoewy. To mo oyetind ye 0 douvieid pog eivon to Heterogeneous Memory En-
hanced Multimodal Attention Model (HME) [5], to onoio ypnoiponotel uviues yio
TNV AVOTAEAO TAUOT) TWV OTTIXWY X YAWOOIXWY OTOLYEIWY, To ontola xat enegepydleTon
pe ) yenon LSTMs, énwe Brénovpe oto Lyhua 3.1. H nopdhinin enclepyaoio tng
YAWOOoUS Xou TNG OTTiXE TANEoopioc, uall UE TNV EVOWUATOON UVNUGDY, BEATIOVEL
v anédoor oto Video QA.
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Please see Fig 3 for detalls. Please see Fig 4 for details. Please see Fig 5 for detalls.

——— —— — e e ——— ——

‘Guestion Mamory ~ Multi-modal Fusion

Figure 0.3: H apyitextovixf) tou HME. YXyfuo and to [5].

Ou Transformers efvan évog Toh) LoyLEOS UNYAVIOUOS Yiot TNV encéepyacio axolouti-
oy dedopévemyv. O Baode pnyaviopde Touc elvon 1 avtonpocoyy (self-attention),
ue tnv onola Eeywpellouv meployég TNE E6GB0U oL elvorl ONUAVTIXES Yot TNV avahuoT
e epwtnone. H mo oyetnd) nocéyyion ye 0 doviewd pag eivon to Hierarchical
Conditional Relation Network (HCRN) [26], to onolo anotélece xou éumvevon yio
eude. Tnv opyitextovinn tou BAémouye oto Nyrua 0.4. Me tn yerion vevpwvwy Con-
ditional Relational Neurons (CRNs), yia v avanapdotoon twy oyéoewy petall
Twv ontixwy otolyeiwy, To HCRN emituyydver e€oupetind anoteréopata oto Video
QA. TTapdhhnha, elvon TO TEOTO UOVTIENO TIOU EVOWUATWOVEL TNV LEQUEYIXT| BOUTH TWY
Bivteo, ye tn yeron 600 emmédwy, o€ eninedo cUvToUoL Bivieo xMT xou o€ eninedo
ohOXhnpou Bivieo, yio TNV XaAhOTERT XATAVONOT TOU TEPIEYOUEVOL Tou [Bivteo.

1 1
‘ ‘CRN Unit |

H - B
e /\ ii‘F
- uestion:
.
- I N WLM‘ ‘\ video level
innnil |
et O!_. ‘__
L& .
Ciolewl clip level
raion

Figure 0.4: H apyitextovixs) tou HCRN. YyAuo and to [26].
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Mior oxopor onpoavtind xatnyopta etvon ol tpoceyyioelc ye Bdon toug yedpoug, graph-
based approaches. Ot ypdpor xar tor Nevpowvixd Aixtua Tpdgpov (GNNs) €youv
TNV IXAVOTNTOL VO AVATOELoTOUY TIC oyéoelc PeTald Twv otolyeiwy, va evtomilouy
Ta oNUAVTIXG oTotyela xan var e€dyouv TAneogopia and TNV Sour TV SedouEvmy.
To mo oyetxd ye 0 SovLAeld pog elvon To Situation Hyper-Graph based Video
Question Answering [46], to onolo yenowomnolel dwaviouato unep-yedpwy (hyper-
graphs embeddings). To eviiagpépov ye auth tn Tpocéyylon eivar 1 expdinon twv
OYE0EWV UETAEY TWY OMTXWOY OTOLYEIWY, Oyl PE TN YPNOTN PNTOY YRAPKY oxnvig,
OANG UE TNV YPNOTN EVOLIUECTC DLVUCHATIXAC AVATURACTAOTC.

Lyga[ Answer:
put down

MLP

[ =]
o N
Transformer
DI Loer Situation Hyper-Graph Decoder L/ 3
’ ] H : I T I
TSN EDEDEDEDED i [ Action Prediction Relationship i
1 flatten : Prediction Head S —
videotokensj (5 [ e eaee %e0d
t 1 iannd t spectal I
N token [CLS]
N — Decoder Decoder | | o t :
backbone What did the person do with |
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3 i) e 0: put down. 1: washed. 2: took. |
. 3ate :

Figure 0.5: H apyitextovinr) tov SHG. Eyruo and to [46].

0.4 H pyedodocg poc
0.4.1 Emoxonnom

Yy nopoloa epyacia, avtwetwnilovpe to Video QA w¢ éva mpdfBinue Ta&vounonc.
Yuyxexpuléva, oedopévou evog Bivteo V, dnhady| uiag axohoudiag amd K otiyuotuna
-frames V' = [fo, f1, f2, s fis oy J] @ou ploc epdnong, g, o otoéy0c poc elvon va
TeoPiédouue TNV cWOTH amdvinom, a*, and To GUVOAO TKV THUVKY ATAVTHCELY, A.
Anhady), opllouue éva dataset, X = (ui,qi,qi)i]\il, mou anoteAeltan and N Piveo,
omou u; 1 oy €lcodog amd Tar GTLYULOTUTA Tou Bivieo, ¢;eQ 1 cpwtnon xou a;eA
n owoth (ground truth) amdvinon. O otdyoc pog howmdv eivan va pddouye v
ouvdptnon f @ Q@ x X — A, mou mpoPAiénel tnv xotavour mdavotitoy P(A) twv
TAVOY ATAVTHOEWY.

Me ) pédodd pag ewodyouue éva axopa modality, Toug ywpoypovixols yedpoug
OXNVAG, KE OXOTO TNV TLO DOUNUEVT] XL TUXVT] OVATOQREGC TACT, TOU TEPLEYOUEVOL TOU
Bivteo. T xdde otrywdTuno Tou PBivieo, fi, T0 avVamAPLOTOVUE WS EVa YRAPO gi, O
omolog AMOTEAELTOL OO T AVTIXEIUEVO TOU CTLYUOTUTIOU OC XOUPoUS xou TIg HETAED
Toug oyéoelg we axpés. OAdxAneo To Bivieo avamuplo TdTaL ¢ Vo GUVORO YRAPOY
G =[g1, ..., 97]. X1 ovvéyewa eZdyouue draviopata yopaxtneloTixdy (embeddings)
v xde ypdpo (graph embeddings), dote va ypnoipwonoimndoly poli ye o Slovio-
HOLTOL YOpaX TNRLo TIXWY TNe epwtnone (question embeddings), yio tnv npdBredn tne
ATAVTINOTC.
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Figure 0.6: H apyttextovixr} tng yedodou pog. Zexwvdue ye v emhoyr frames,
TIPSy OUUE TOUG Yedpoug oxnvig xdle emheypévo frame xoun e€dyoude T yopoxTneLo-
TIXA TOUC. 2T1) CUVEYELY, eNEeRYAlOUUCTE TOL YUPAXTNELO TIXE QUTA UE TN YEHOT EVOS
lEpaEY 00 HOVTENOL oL AetToupYel ot 6LOo emtineda, To eninedo Tou chviopou PBivico
XN xou To eminedo ohdxhnpou tou Bivteo. Télog, To poviého pag mpoPAénel TNy
ATAVTNOY OTNY EPWTNOT ATO TO GUVOAO TWV THIUVOV OTAVTHCEWY.

H pédodoc pag, howmdyv, Zexwvdel ye tnv emhoyy| (sampling) xdnowwv frames. 3uy-
xexpuéva, yweilouue to Bivteo oe 5 Pivieo xMn (ong Bldpxelog, EVE 0T CUVEYELL
emAéyoupe Tuyala 3 frames and To xodévo. Xtn cuvEyEL, EEAYOUUE TO YEAPO OXNVIG
gi Y xade frame f;. O ypdgor auvtol Siépyovton amd éva GNN yio vor amotumwiel 1
Tomohoyla xou 1 dour) Tou xdde YEAPOU, g;, O EVOL DLEAVUCUA YOQUXTNELOTIXDY, €g;.
To Srovboparto autd cuVELALoVTaL UE EVaL BLEVUOUA YUPUXTNRLC TIXWY Yo TNV EpMTNOT),
€qi, XU UE TN YENOT EVOC LERUEYXOU LOVTENOL, TROBAETOUYE TNV ATAVTNOTY, G;.

Baoiopévol atov enavaypnotponototuevo veupmva CRN [26], ewodyoupe éva veupdva
mpocoyn¢ Yy to graph embeddings, ye Bdon v cpwtnon. Xenoiwomolotue autolg
TOUG VEUPWVES Yl Vo yTiooupe wla mo Boadhid apyrtextoviny, ue Bdon Ty Lepoapyint
oopn Twv Bivieo, 6mwe BAémouye xou 6To Ly hua 0.6. Suyxexpuuéva, YenoHLOTOLOVUE
0Vo emineda, to eninedo Tou clvtopou PBivieo AT xou To eNineEdo OAOXANEOL TOU
Bivteo. Ye xde eninedo epapylag, yenowonoolue éva otddoio CRN vevpwvwy, ol
omofot eivar eZoptduevol (conditioned) otnv epwtnon. And doo yvwpilouye, auth
elvan 1 TEOTN Qopd Tou yenotwomollvIo enTol Yed(poL oXNVAC OE GUVOLAOUO UE
tepapy ) dour yia To Video QA.
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not looking at /not contacting Jbehind

\_ person

Figure 0.7: H dnuovpyla Twv yedgpwy oxnvrc and ta frames tou Bivteo.

0.4.2 Elaywyrn XapaxtnploTixwy

Y¥to Video Question Answering, éva sample anoteheitor and plo epdTNoN *ou
éva Bivteo. T v enelepyaoctia tou PBivieo ye ta baseline yovtéla pog, e&dyouue
BLoVOOUOTOL OTITIXWY YopaxTNelo Tixy (appearance features) xou Staviopoto xivnong
(motion features) ye v yperon mpoexnudevpévmy poviéhwy CNN, xau edixdtepa
tou ResNeXt-101 [17] yia tv xivnomn xou tou ResNet-101 [18] yia tor ontind yopax-
TnetoTwd. o Ty avamoapdo tacT TNe EpwTNoNg, TepVape TNy cpwtnor and to BERT
[10] xau yenowomnotolpe to C'LS token tng eZ660ou Tou.

0.4.3 Anpovpyia I'edpwy Xxnvrc

e ouvEyEeld NG ETAOYHC cUYXEXEEVLY frames and To Bivieo, dnuioupyolue Toug

YEAUPOUS OHNVAC YPTOULOTOLWVTAS EVal TPOEXTOUOELUEVO novtého Scene Graph Gen-

eration (SGG). H Siobixacio oautr mepthopfBdver tnv aviyveuon avixeiévey ot uia

EXOVOL X0l GTY) GUVEYELXL TNV EVPEDT TwV UETAED TOUC OYECEMY UE T1| LOPPY| TEITAETOY
”W”

9% avdpag xpatder mothet” , < man — holding — glass >, "mdto névw o€
teanéll”, < dish — ontopof — table >. H Swduxacia teprypdpeton oto Xyrua 0.7.

Yy epyoaoio poag yenotponotolue to npoexnatdeuévo povtého MOTIFES [56] yio tnyv
onuoupyio TV Yedpwy oxnvig, ahhd UTOPOLUE VA YENOWOTO COUUE OTOLOOYTOTE
Ao SGG povtéro otn éon Tou. Luyxexpuyéva, emhéyoupe plo e€elyuévn Lopy
tou MOTIF'S, ye t yprion e pedddou tou [39] yia tnv ehaytotonoinon tou bias. To
HOVTENO aUTO, UE TNV €000 Wiag EmdVOg EEAYEL EXATOVTABES TRITAETES AVTIXEUEVWY
%ot Twv PETady Toug oYEoewy, wall ue To avtioTolyo T0c0ooTd alyoupldc. Ao autéc,

26



eMAEYOUUE TIC O GlyYOoUpES TRITAETES, XaTahfyovTog o AyodTtepeg and 50 avd frame.
Me autég tig TeimAéteg dnuLovpyolue Eva Yedo, g;, yia xdde frame, f;, 6nwg galveton
oto Uyfua 0.7.

0.4.4 Graph Neural Networks (GNNs)

Tt Tov 0ptopd ToL Ypdpou g; YeNoHOoTOLO0UE Ta avTXelueva k¢ xOuPouc (nodes) xou
Tic UeToD Toug oyéoelc e oxpés (edges). Kdle avtixelyevo # oyéon avanaplotato
oo €vol BLAVUOUA YUEAXTNELOTIXGY, To onolo elvor To 1-hot vector tng xatnyoplog
Toug, ONAadY| éval SLEVUCUN UNXOUC OOEC xa oL xatnyopleg pe Ty Ty 1 otny Yéon
e xatnyoplac Toug xou 0 oAro0.

Ot ypdgot autol otn cuvéyewa enelepydlovtar amd éva GNN, to onolo pordalver tnv
OVATAUEAC TACT, TWY XOUPV xaL TwV axuody tou yedgou. ‘Etol, 1o GNN napdyet
1WOLUTERA TANPOPOELUXS YUPOXTNEIG TS Yo XAUE Ypd(POo,Tar OTolal XAl ETTEETOUY TNV
xatovonon e oxnvic xou tou Bivieo. O oxomog twv GNN eivon vo e€dryouy yopox-
TNELOTIXE YUUNAGOY BlaoTdoewy, Ta omolo cuvoilouy Ty dour) xou TNV TAnpooplo
Tou Ypdpou. Autd to xatagépvouv pe uio pop@h petddoone unvupdtoy (message
passing), 6mou xdde xOUoc avavEMVEL TNV ovanapdoTaoH TOU PE BAoT TV ovo-
TUEAC TACT) TWV YELTOVKDVY TOU.

Y10 mhaioto g epyaciag perethHUNaY ToAAES apyitextovixéc GNN, onwe ta Graph
Attention Networks [48], Graph Isomorphism Networks [22], oAA& xou state-of-
the-art pédodor xwdixonoinone oxnvoy, énwe 1o SCENE [31]. Xe xdde pio and
QUTES TIC XOTNYOpPlES apylTEXTOVIXOY eMAEYUNXE LovTéLo Tou enelepydleton TGO
TOUg %OUPoUC 6GO XL TIC OXUES TOU YEAPOU, XIS Ol YRAPOL UoS TERLAUBAVOLY
onuavTX Thneogopla o oTa 5Vo.

0.4.5 Iepapyixd Movtéro & Andvinon Epwinong

To tekeutalo oTddl0 NG YeVOBOU og TEPLAAUPBAVEL Ulol LEPUEYIXT) CEYLTEXTOVIXT] Yot
NV TeOBAEYN TNE amdVINONG. LUYEXPUEV, YENOLWOTOLOVUUE 500 eTtineda, Eva yio TO
olUvtouo Bivteo xhm xou €val Yot To oAoxAneo Bivieo. Kdde éva and autd to enineda
amoteheiton and éva 6tddto CRN vevphvwy, ol omofot eivon e€aptpevol (conditioned)
otnyv epdnon. Ot CRN veupdveg elvor €vog TOTOC VELRPOVLY TEOGOYHC, oL oTtoloL elvan
o€ Y€om VoL E0TIIC0UY OE GUYXEXELEVA GTOLYElN TNG ELGOB0L, e Bdon TNy epotnon. H
LEQROPYIXT) CEYLTEXTOVIXT] Lo ETUTEETEL VO EEQYOUUE TLO TAOUGCLAL YORUXTNEIOTIXG Yid
10 Bivteo, xadde autd eneepydleton ot 600 emuépoug enineda. ‘Onwg BAénovye oto
Eyfua 0.6, to younhotepo eninedo, clip level, enelepydleton tar graph embeddings
e Bdomn Ty epdtNoT, €E8YOVTaC EVal BLEVUOUA YAUEAXTNELOTIXGY Yia xdde Blvteo xhur.
Y10 endpevo eninedo, video level, ta Swaviopata Twv Bivieo xhn enelepydlovton and
évay veupwva CRN, o onolog e€dryel €éva GUVOAMXS BIAVUGHOL YOEAUXTNELOTIXWY YId TO

27



oloxhnpo Bivteo (video-graph embedding, ev;). To Sudvuopo autd cuvdudletar pe
TO BLAVUCUO TNE EPWTNONG €g; oL UE TN YeNor evog Tollvounty|, TeofAénoupe TNy
omAVTNON ;.

0.4.6 Awduacio Exnaldevong

H Suwidixacio exnoidevong tou yovtéhou pog nepthaBavel Ty yenorn neo-eCoyUévey
Yedpwv oxnvic. To povtého upac oeiptoxd enelepydleton tufuato (batches) de-
dopévwy and to dataset, 6mou xdde batch anoteieiton amd Toug Ypdpous TwV ETAEY-
pévwyv frames, pla epdtnon xou v avtiotoryn andvinon. To GNN enc€epydleton
Toug Ypdpoug xou e&dyet Ta graph embeddings, to omola ye TN oelpd Toug ElGEpyovToL
OTO LEQUPYIXO HOG HOVTEND Yia TNV TEOBAEdN TNE andvTnomng.

To optimization mpayuatomoteiton pe yerion tou CrossEntropyLoss xat tou AdamW
optimizer, eve) oL uetpixég accuracy xat loss xotayedpovTal oTNY TAATPOPUN AVIAUCTC
nepoudtonv Weights and Biases [2]. Metal) 8o enoymy exnoideuone (train epochs)
nepthopPBdveton pior Stadixaoior emoddevone (validation). H emhoyy tou xolitepou
povtéhou yivetan ye Bdom tnv petpuxn accuracy oto Prjua validation.

0.4.7 IlpoxAnoeig xou Ilepropiopol

H oamédoon tne uetddou yoc eloptdtor and Ty TOLOTNTA TWV YRIPWY GXNVAC, TNV
aviyveuon avTXeWéveny xo TNV eEaywyr Tov oyéoewy petald toug. To yoviého
SGG nou emhé€aye, anoTtelel €va TOAALOTERO LOVTENO, TO OTOLO EVOL EXTALBEVUEVO
o€ dAho clvolo dedopévey. Mropolue ebxola va A\OGOUUE auTO TO TEOBANUA, YETOL-
pomolvrtog éva state-of-the-art povtého ye eAdyioteg arhoryéc otn pédodod o, eved 1
epappoY fine-tuning 6to GUVOAO BEBOUEVHDV O AVAUEVETOL VAL EVICYVOEL ONUOVTLIXS.
TNV an6d0GT| YaC.

To c)voho BEBOUEVLY TIOU YENOWOTOWUUE Yia Vo a€loAoYoouue TN uéYodo yag, To
Action Genome Question Answering anoteheiton and tepdoTio aprlud dedouévwy,
nepinou 3 exatopulpla epwTthAoEL; ot 9.5 yLAddeg Bivieo. Autd to péyedog Bedouévey
omouTEL UEYIAT UTOROYLOTIXY Loy ¥, xoddS xat PEYIAN ywentixdtnta uviunc. [
VO OVTHIETWTICOVUE aUTO TO TEOPBANUA, YENOWOTOOUUE UIXPOTEQO UTOGUVOAX OE-
dopévwy, Blatnevtas Tig (Bleg xatavouéc pe to opyixd dataset. 'Etol, umopolue
VO EXTIULOEUGOUUE TO HOVTEAO HOG OE ULXPOTERY) XAUOXAL, EVE TAUTOY POV SLUTNEOVUUE
TNV OVOTOEOO TOUTIXT LXAVOTNTOL TOU.

Elvar onuovtind va avapépoupe TNV oveyxr YLol TEPAULTERK UEAETN TN XAVOTNTOG
yevixevong g uevodou pag. H uédoddg poag umodetel 6Tl oL EpwTACELS UTOPOUY Vi
amovTUo0Y HOVO UE TN YeHOoT YRAPWY. 2T0 GUVOAO BEBOUEVLY TIOL Y ETOULOTIOLOVUE,
AGQA, o epwthoelg e€dyovton amd Toug Yedpoug oxnvig, ondte 1 unddeon auth
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elvar Aoy, Qot600, oE TMEAYHATIXE CEVApLY, Ol EpWTACELS UTopel Vo amoutody
TANEOYopleg oL BV LUTdEYOLY GTOUS Yedpous. Mo mapdderyua, 1 YEV0OOC pag Bev
umopel vor amavTAoEL o epwThHoELS Omwe " T ypdhua elvor To polyo Tou dvdpa;” 1
"IIéca mothpta we Buoctvddo undpyouy oto Teaméll;”.

0.5 Ileipdpoto & AmoteAéopoto

Ye auTh TNV LToEVOTNTA Vot TUPOUCLIGOUNE T TELRHUNTA TTOU TR UATOTOLACOUE
yioo Ty o&lohdynon tne Yedodou pac. H alohdynon outy| mpaypatonoidnxe oto
olvoho dedopévewv Action Genome Question Answering (AGQA) [14], to mpdto
dataset peydine xhipaxac (large-scale) yio To Video Question Answering. ye emon-
pewwpévoug yedpoug oxnvic. Metd tnv nopouciacn tou dataset, meptypdgpoupe Tig
AEMTOUEQELEC TNC VAOTIOMNOHC HAS, TROYWEWVTAS UE TIC APYITEXTOVIXES TwV baseline
HOVTERWY TOL avomTOZoUE YLor TNV cuyxeLtxt| aglohdynon (benchmarking) tng pedo-
oou pag. To baseline povtéla pog €lodyovion Ye ox0omd TNV GTadlXY| TEOGUHXN
rohumhoxdtnTog péoa and véa modalities. Yuyxexpiuéva, elodyouye:

e Language Bias Baseline
¢ Language-Vision Baseline

e Language & Scene Graphs Baseline

Boowlopevol oe autd ta baseline povtéla, napouctdlouue TNV apyLTEXTOVIXT TNG
uedéd0uL pog, N onola TEPLAUUBAVEL piot LEPUPYIXT| AEYLTEXTOVIXT] UE IXAVOTNTO YPOVIXNC
povtelomoinomg, Tpoywehvtac oty allohdynon tng. Ilpayuyatonooue cuyxpltixt
avdAuoT e pedodou pag anévavtt otig state-of-the-art ueddoug Tou tedlou, Tapouotd-
Covtag Ta AmOTEAEOUATO TWYV TEWUUATOVY pag. Téhog, mapouatdlouye pla chvodn Twy
TELRAUOTIXDV O ATOTEAECUATOV.

0.5.1 Action Genome Question Answering

To oOvoro dedouévwv Action Genome Question Answering (AGQA) [14] anotehel
éva Video Question Answering dataset yeydinc xAlgoxag, ue oyeddv 4 exotoy-
uopta epwtioelg oe 9.5 yhddee Bivieo. To AGQA enexteivel To 6Ovoho Bedouévmv
Charades [55], to onolo nepthaufhdvel Bivieo and xadnueptvéc Spaotnetdtntes o
E0WTEPIXOUE YWPOUS, TEOCVETOVTNG ETULOTUELWUEVOUS YEAPOUS GUNVAG XAl EQWTACELS
Baoloyéveg oe autolc. Ot epwTACELS, AOLOY, EVOL ETUIXEVTPWUEVES OTO OVTLXELUEVY,
Tig weTagd Toug oyéoelg xau Ti¢ evépyeleg mou amewxovilovta oto Bivteo. Tlopdderyuo
gpwthoeny Tou AGQA unopolue va dolpe oto Lyruo 0.8.
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lo-temporal  holding leftof  hold twist behind hold  leftof hold
scene graph: phone pht_ihe bof_tle b&_fle bottle
picking up phone taking a picture putting a phone down ) holding a bottle

Example compositional spatio-temporal questions:

Q: What did the person hold after ? A: bottle
Q: Were they or for longer? A

Q: Did they before or after they did ?  A:before
Generalization to novel compositions:

Q: Did the person twist the bottle after ? Aryes
Generalization to indirect references:

Q: Did the person twist the bottle? A:yes

Q: Did the person twist the object they were holding last? A:yes
Generalization to more compositional steps:

Q: What did they touch last before and after A: phone

,aphone or abottle ?

Legend: objects relationships time

Figure 0.8: Ilapadeiypota cpwthcewy and 1o cOvoho dedouévov AGQA. Yyrua
ard To [14].

0.5.2 Aentopépeieg YTAonoinong

Moty vloTnoinom twv telpapdtony yag yenoponooope tn Piiodfxn PyTorch [33]
Yoo TV ovATTUEN XU EXTAEBEVOT TV UOVTEAWY Jog, TN BiBiodxn Deep Graph
Library (DGL) [49] v tn popgonoinon xou enelepyaocio Twv Ypdpomv, xodde xou o
GNNes.

It Ty exnaideucm TV LOVTEA®Y LAC YENOWOTONGOHE U0 UnyovAUoTa, EEOTALOUEVL
pe xdptec ypapixwv NVIDIA RTX 3090 xou GTX 1080 Ti avtiotovya. Avth n
urodour| enétpede TNV TopoAAnAonoinoy TG EXTABEUCNC TWV UOVTEAWY UG XL TNV
anodoTixy| eEaywyr| OEQOUEVLY.

IMoe v Slayelplon TV UTOAOYIOTIX®OY TOEWY, ONUIoVEYACUUE Teld UTOGUVOAL TOU
ouvohou dedouévy AGQA, to tiny, to small xau To medium, onwe goiveton oTov
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ivaxa 0.1. To tiny anoteheitar and 10k Seiypato exnoideuone (train samples) xou
2k Oelypara test (test samples) xou to small amoteheitor and 100k train samples xou
20k test samples. Kot tae 600 unocivola Blatnpoly Tic (BIEC XATAVOUES UE TO dpyInd
dataset, xodog emAéydnxay pe Tuyalo TeoTO amd To aEyixd cUVOAO train, eve axdud
dlopakiotnxe 1 yeron SlaupopeTix®y Bivieo ota utocUvola train xou test, Mote va
UMV UTIEEYEL OLapEOY| DEBOUEVKV.

TrocUvoha Acdouévwy
Split | Train Size | Test Size
tiny 10.000 2.000
small | 100.000 20.000

Table 0.1: Troolvola dedouévev Tou dnutovpyrioaue oto AGQA yia tnyv drayeipion
TOU OYXOU TOU.

Iot Ty vhoTolnon TV TEWUUATOY Uag, YeEdoTnxe 1 eayw Y Twv frames xdde Biv-
€0, x4Tt oL mparypatotoidnxe ue ) xerion tou FFmpeg [44]. xou éva napeyduevo
TpOYpouUa omd Toug cuyyeapelc Tou AGQA.

0.5.3 Baseline MovtéAa
0.5.3.1 Language Bias Baseline

Y10 mp®TOo pag TElpaua, ECTIACOUE OTNY AELOAGYNON TNG LXAVOTNTIC TV UOVIEAWY
HOS VoL OOV THCOUY OE EpWTAHCELS UOVO UE Bdom To xeluevo Tng epwtnong, ywelc xdmota
mhnpogopla yia to Bivteo, omwg BAérnouvue xan oto Ilivaxa 0.2. Xpnowonowooue o
CLS token ané to poviého BERT, to onolo eicépyetan og éva poviého MLP v tnv
TeoPBhedn Tne amdvinong, onwe galveton oto Lyruo 0.9. Exnadedooye to yoviéro
poc ota uTooUVoAX tiny xou small, 6Tou o tapouctdlouye Ta ATOTENECUATA OIS OTO
ITivoxo 0.3. To oxop tou povtéhou pog 6To uTtooUvolo tiny avépyetor oto 21.5%,
eved oto unoolvolo small avépyetaw oto 34.1%. Me autd 1o melpopa, UTOPOUUE
VO EXTIUNOCOVUE TIC CUOYETIOEIC UETUEY TWV EPWTHOEMY X0l TWV ATUVINOEWY, Yweic
v mapoucta Thnpogoplac yio To Bivteo. Mdlota, state-of-the-art mpoceyyioeig
UTOpOUY Vo EXUETAAAEUTOVY TO Yhwoowd bias xou va emttdyouv péyptl xou 47% accu-
racy PAénovtog povo Ty pwTNno.

Model Language Vision Scene Graphs Temporal Processing

Lang MLP v - - -

Table 0.2: Modalities & Ixavétntec Tou Language Bias Baseline.
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(s
Question BERT MLP Answer

Figure 0.9: Apyitextoviny) Tou Language Bias Baseline ye oxoné tnv andvtnon
EPWTNOEWY POVO UE BAon TNV €pOTNOM.

T roocOvoAo | Accuracy
tiny 21.5%
small 34.1%

Table 0.3: Anoteréoyata otn yetpiny| accuracy tou Language Bias Baseline ota
utocUvoha Tou AGQA.

0.5.3.2 Language-Vision Baseline

Y10 deltepo Yog melpaya, emexteivoue To non-temporal poviého yog npocVétoviag
NV exdva ToL Bivieo, ywelc T ¥eHom TV YEAPeY oxnvic, OTWS QUivETol 0TO Ny fud
0.10. Epeuvrioaue to mwe n tpocdrixn appearance features twv frames Sehtiovel tny
am60007 Tou WovTéAou yag, e to modalities mou gaivovton otov Ilivoxa 0.4. Xenot-
ponowooue appearance features ané éva ResNet-101 xon yhwoouxd features, 6mog
xou mponyouuévee, to CLS token tou BERT. T v avtiotaduloouue tnv €nhewdn
YEOVIXNC TANEOGORLAC, YENOWOTOLCOUE TOV UEGO Opo Twv appearance features twv
frames yia v npéPAiedn e andvnone.

Model Language Vision Scene Graphs Temporal Processing
Lang MLP v - - -
Lang_Vision v v - -

Table 0.4: Modalities & Ixavétntec Tou Language-Vision Baseline.
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Question BERT s

@ MLP Answer

Mean Appearance Features
per clip & then per video

Video dlip selection ResNeXt-101

Figure 0.10: Apyttextovixy| tou Language-Vision Baseline ye oxoné tnyv andvtnon
epWTHOEWY PE Pdomn TNy epndTnon xou to Blvteo pe non-temporal poviého.

Ta anoteréopota yoc oto Ilivaxo 0.5 delyvouv 6T 1 mpoc¥rixn Twv appearance
features PeAtidvel TNV andd0GT TOL UOVTIENOL UAS, UE TO OXOQ TOU VA OVEQYETOL OTO
24.3% oto unoclvolo tiny xat oto 38.2%. Mnopolue va UETEPHOOUPE TNV TOLOTIXT
Behtlwon Tou povtélou yag, 6mws gaiveton otov Iivaxa 0.6, émou nopouvoidlovton
To anoTeEAEopATa OE dLdpopa eldN epwTAoEwY. Tapatneodue 6Tl To povtého pag etvou
%xh0TEPO 0TI EpwTHoELS TOTOL exists, obj-act xou rel-act, eve) ypetdleton Behtiwon
OTLC EPWTHOELS IOV ATAULTOUY YeoVIXT TANRoQOopia, OTwS ot epwThoelg TOtou duration-
comparison xot action-recognition.

Experiments | lang | lang-+tvid
tiny 21.5% 26.1%
small 24.1% 25.8%

Table 0.5: Anoteréopata ot yetpiny| accuracy tou Language-Vision Baseline ota
vroocvola Tou AGQA.

0.5.3.3 AvwTato 6pro non-temporal baseline

Me auté to neipoya, e€etdloupe To avdTATO 6pL0 TOu non-temporal poviéhou npocié-
TOVTOC TOUG YRAPOUS OXNVAS OTNV AEYLITEXTOVIXT| TOU LOVTEAOU OGS, XAVOVTOG TORIAATAA
éva. Proof of Concept (PoC) tne pedddou poc dnwe avorypdpeton xar otov Iivoxa
0.7. Me 1 yefion TV Ypdpwy oxnvig YEAOUUE VoL BOCOUPE GTO UOVTEAO UG TILO
SouNUEVT TANPOQORia YLol TO TEPLEYOUEVO ToU [Bivieo, Omwe avTXelueva, EVEQYEIES
xou oyéoelg UeTall Toug. XpEMOoUWOTOWUUE TOUS ETONUEIWUEVOUS YRAPOUS oXNVIG
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question-type accuracy

exists 32.8%

obj-rel 18.5%
obj-act 24%

sequencing 24.62%
duration-comparison 12%
rel-act 22%
action-recognition 0%

Table 0.6: Arnoteiéopota tou Language-Vision Baseline otoa 8idpopo €ldn
gpwtoeny Tou AGQA.

mou mopéyovtan and 1o AGQA, 6w gaivetar oto Uyrua 0.11. Ta xdde emdey-
pévo frame Snhadn, €youpe Tov avTioTOLYO YEAPOo oxNVAC, 0 omolog anoteel elcodo
oto GNN povtéro pag. H apyitextovixry GNN nou ypnowonotolye €8¢ elvon to
Graph Attention Network pe edge features. Kdde frame, hoindv, yetatpénetan oe
Yedpo oxnvic xan xwoixoroleito ue To GNN o€ éva graph embedding. I tnyv npdB-
Aedm tng andvinong, cuvoudlovpe to embeddings 6 Awv Twv Yedpwy, Beioxovtag Tov
uéoo 6po toug ot éva video-graph embedding, kote va avtio taduicovye Ty Enherdn
yeovixic thnpogoplag. To video graph embedding otn cuvéyeia cuvbudletar pe tTnv
epndTNoT xau ewodyovton oe éva MLP vy tny medfiedn tng amdvinong.

Question BERT s

@ MLP Answer

Mean Graph Embeddings
per video

(T - 50s

Video clip selection GNN

Figure 0.11: Apyitextovixry tou Proof of Concept baseline pe yerion twv emon-
petouévey yedpwy oxnvic (GT - SGs) xou evéc non-temporal povtéhov MLP.

Ta amoteréopota pog otov Iivaxa 0.8 delyvouv 6TL 1 Tpoc¥xn TV YEdpwY oxNVhg
BEATIOVEL ONUAVTIXG TNV AmOB00Y) TOU HOVTIEAOU UAC, UE TO OXOP TOU VO OVEQYETOL
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Model Language Vision Scene Graphs Temporal Processing

Lang MLP v - - ,
Vid_Lang MLP v v - -
PoC v v v -

Table 0.7: Modalities & Ixavétntec Tou Proof of Concept Baseline.

010 49.1% o710 utosivoho tiny. Mropolue va petpricoupe Ty tototixh BeAtinoT Tou
HovTéNoL poag, 6mwg gaiveton atov Iivoxa 0.9, étou napovcidlovta To anoteréouato
o€ dLdpopa €0 EpTACEWY, Tar oTolo Elvorn BEATIWUEVA GYEDOV OE OAEC TIC XATIYORIEC.
[Topatnpolue 6Tt To HOVTERD Pog Elvor XUAUTERO OTIC EpWTNOELC TUTOU exists, obj-act
xaL obj-rel, eve) ypewdleton BeATiwon OTIC EPWTACELS TOU AMAUTOUYV YEOVIXT TANEO-
popla, 6Twe oL epwTroelg TuTou duration-comparison xau action-recognition, 6meg
X0l TEQUIEVOUE. JUUTEPUUVOUUE, AOLTOV, OTL Toed TNV EAAELT) YeoVIXTC TANpoOopRiag,
1 mpoc¥rxn tou video-graph embedding umopel va dwoel yla 7 7ypovixR” oido-
TAOY), EMTEETOVTAS OTO UOVTEAO Vo XATAAdBeEL To TEpiEyOuevo Tou Bivieo. Axoun,
1 Teooxn TwV Yedpwv Uag delyvel OTL 1) ueTatpon| Twv frames oe mo Sounuévn
OVOTOEAC TAGT, UToREl Vo BEATUOOEL TNV AmddOCT) TOU UOVTEAOU UOC.

Experiments Lang MLP Vid Lang MLP PoC
tiny 21.5% 26.1% 49.1%

Table 0.8: Ileopotind anoTeAéopato e TNV TEOCUXY ETULONUELOUEVLY YEAPWY
oxnvhc oto Proof of Concept baseline poc.

question type accuracy

superlative 22.6%

obj - rel 27.72%
exists 32.8%
obj-act 36%
sequencing 30.8%
duration-comparison 6%
rel-act 0.3%
action-recognition 0%

Table 0.9: Anoteréopata tou non-temporal Proof of Concept baseline pog ovd
xaTnyoplo EpWTNONG.

0.5.4 H teluwxr| pog mpoocéyyion

0.5.4.1 Non-Temporal Movtélo
Apywd, mpwtn pog doxn Ytav 1 e&éhén tou PoC povtélou pog ye tnv yerion
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TEOBAETOUEVWY YRAPWY OXNVAC AvTl Yol TOUS ETUONUELOUEVOUS, OTIWS UTOPOVUE Vol
000uE xon 0To Myfua 0.12.

Question BERT (s

@ MLP Answer

Mean Graph Embeddings
per video

Video tlip selection 500 Model GNN

Figure 0.12: Apytextovixf] tng non-temporal mpocéyylone pog Ue 0 yenon
Yedpwy oxnvic mou tpoBiédaye.

‘Onwg mapatneodue and to anoteréoyata Tou [ivaxa 0.10, n anédoor tou Lovtélou
pog elvon apxetd uPnioTEEN amd Ta TewTa dVo baselines, votepel duwe olyovpa ot
oyéon ue to Proof of Concept baseline. Autd fitay avauevouevo, xadde to povtého
SGG pog Sev eivan puduiopévo yio 1o AGQA, ontdte 1 moldTNTa TV Yedpwy olyoupa
elvan YELpOTEPT OmO TOUG ETLOTUELWUEVOUC.

Experiments Lang MLP Vid Lang MLP PoC SG_MLP
tiny 21.5% 26.1% 49.1% 31.6%

Table 0.10: Ilewpopotind aroteréoyata ye TNy Tpoc¥ixn Yedpwy oxnvic oto Proof
of Concept baseline yoc.

0.5.4.2 Temporal Movtého
Y1 ouvvéyeta, aviAfioope éumvevon and to HCRN xou xotoAhoue otny TeAiny| yog
apyrtextovxr, mou gaiveton oto MUyrua 0.6. Iapatnerooue 6T T0 wovtéro autd
oMU TEL TEPLOGOTERES ETOYES Yiot GOYXALOT) OE OYECT) UE TOL TEONYOVUEVA, xadwe elvan
mo oOvieTn xou PBardid apytTexTOVXH.

Mmopolue vo 8olue OTL To YOVTERO pog €yel TOAD XA ambB00T), EEMEQVMVTIS TA
mponyoLueva baseline povtéla, omwe gatveton otov Ilivoxa 0.12. Eivon mopdhautd
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Model Language Vision Scene Graphs Temporal Processing

Lang MLP v - - -
Vid_Lang MLP v v - -
PoC v v v -
SG-MLP v v v -
SG-HCRNx v v v v

Table 0.11: Modalities & Ixavdtnteg TV HoVTEA®Y Uog.

Ayo mo yaunAd oe cuvolxd accuracy anéd 1o PoC yovtého pog, xdtt mou ogeileton
OTNY TOLOTNTA TV YEAPLY oxnvAg Tou yenotuoroolue. Mdhiota, and tov Ilivoxa
0.13 pnopolue va BoVUE OTL TO UOVTENO UAC TA TNYULVEL XOUAGL OTNY VALY VORLOY) TGV
AVTIXEWEVOY Xl TV OANAETOpdoewY Toug péoa 6To Bivieo, xodng €yel uPnho
Oo%0p OTIC XaTNYoplec obj-act xau obj-rel. Axéur, onwe gatvetar otov Iivaxa 0.14, 7
u€V086¢ Uac TopoLCLAEl ATOTEAEOUATA AVTAYWOVIOTIXG UE TI¢ state-of-the-art pedo-
ooug, onws To PSAC, to HME xaw to HCRN, evo) Bploxeton dedtepn cuvolxd, uetd
om6 to SHG-VQA. H pédod6c¢ pac pdhiota netuyaivel xopugaio anoteAécpota and
OhEC T UEVOOOUC OE UEPXEC XATNYORIEC EpWTACEWY, OTw To obj-rel xou to su-
perlative, delyvovtag €Tol TNV xavoTNTE TOu HOVTEAOU pag Vo avTiAngiel Tig oyéoelg
HETOEY TV avTIXEWEVWY 0TO Bivieo xou v xatavorioet Boditepa To TEPLEYOUEVO TOU.
To povtého pag, oxoua, Epyeton BedTERO OTIC XATNYORIES XATNYOPlEC EPWTHTEWY, TEPAL
omd To exists, xdtL Tou lowe opeileTal oToL SLaPOEETING AEEIAOYLOL TV YRAUPWY OXNVIG
XL TWV ETUCHUELWUEVWY YRAPWY, XD X0k TN UELWUEVT IXAVOTNTO YEVIXEUGTC TOU
HOVTEAOU UOC.

Experiments Lang MLP Vid Lang MLP PoC SG_MLP SG_HCRNx
tiny 21.5% 26.1% 49.1% 31.6% 42.5%

Table 0.12: Ilepapotixd anoteréopata Tng wedodouL yag oe olyxplon ue Ta baseline
HOVTEAD UaC.

question type accuracy
superlative 55.1&
obj - rel 49.8%
exists 53.7%
obj-act 56.3%
sequencing 50.4%
duration-comparison 25.5%
rel-act 40.9%
action-recognition 7.4%

Table 0.13: Anoteréopata oe accuracy tng Hedodou Yag v xotnyopio Ep®TNONC.
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Method obj-rel rel-action obj-action superlative sequencing exists duration activity | Overall
PSAC [30] 37.84 49.95 50.00 33.20 49.78 49.94 45.21 4.14 40.18
HME [5] 37.42 49.90 49.97 33.21 49.77 49.96  47.03 5.43 39.89
HCRN [20] 40.33 49.86 49.85 33.55 49.70 50.01 43.84 5.52 42.11
SHG-VQA [46] 46.42 60.67 64.63 38.83 62.17 56.06 48.15 10.12 | 49.20
SG_HCRNx(ours) 49.8 53.7 55.1 40.9 50.4 56.3 25.5 74 42.5

Table 0.14: XOyxeion g pedodou yag pe state-of-the-art pedodoug oto tiny
dataset.

0.5.5 MeAéxec

Mépoc tng mopoloog epyaciag amoTtehoLY xal XATOIES ETUTAEOV UEAETEG TIOU TEAY-
patonotooue 6To TAACL0 TN TEOCEYYLoNG wog. Apyxd, uehethoaue Ty enidpaon
TV dlpopeTixy modalities cto HCRN, 6mou emBeBardooye ta telpopotind anoteAéo-
porter Tou avopépovtal oto [26]. Ltn ouvéyela, HEAETHOUUE TNV ETBpaon TwY dtapope-
Ty opyrtextovxewy GNN otnv anddoon twv graph embeddings, 6mou mepouo-
TIC TAXAUE UE OLUPORETIXES TPOTEYYIOELS, TOMATAES O TEWOELS XAl DIUPOPETIXOUE GUV-
ovacuolg emmEdwy. Téhog, yehetoaue TNV eNiOPUCT TV BLAPOPETIXMY GTABIWY TNG
LEPUPY NG OEYLTEXTOVIXNC TPOCUETOVTOG €Val GTADIO UEGH OE XAe ENIMESO Hou XAVOV-
Tag TNV apyLtextovixy o Badd.

0.5.6 Iletpopratind LUUTELACUAT

H rmapoloa perétn ewodyel plo véa mpocéyyion oto medPinua tou Video Question
Answering, yenolLOTOLOVTOS YEAPOUS OXNVAG OE GUVOLICUO UE LEXQUQOYIXT OOYLTEX-
Tovt|. H mpocéyyior| pog elvon mpwtoTumn xon Topouctdlel avTaywvio Tixd anoTtehéo-
pato o oyéon ue Ti¢ state-of-the-art uedddoug. Puownd, undpyouy TOANS medla yio
pEAROVTIXY €pEuval, OIS 1) BEATIWOT TNE TOLOTNTOC TV YRAPWY oXNVAS, 1 XeNioT To
TeoNYUEVLY YovTEAwY GNN 7 1 yeror Sla@opeTinmy TOTKY Yedpwy.

0.6 Xvunepdopoto

H napotoa epyacio epeuvd to visual-relation driven Video QA péow twv ypdgpwy
oxnvic. IlapovodCoupe pio véa mpooéyyion, tnv onola atohoyolue oto AGQA,
€0 TILOVTOG OE OEVAQLA TEAYHATIXOU XOCHOU ot xadnuepvée dpaotneiotntes. H
pedodoroyior pog otnelleton oty vnddeorn dTL oL Ypd@polL oXNVAC TAREYOUY OUGL-
00 TIXES TANPOPORIES YIaL TNV XATAVONOT| TOU TEPLEYOUEVOL VOC BIVTED, EVE 1) Lepap-
Y1) QEYLTEXTOVIXY) UE VEURWVES TEOGOY NG LG ETULTRETEL VO AMAVTACOUUE O GUVIETA
epwtiota. To mewpopatind pog armoteréopota Setyvouv OTL 1 TEOGEYYLoY Uog elvan
avToy WVIo T PE Ti¢ state-of-the-art uedodouc, evad napovsidlel Tov avtixtumo Twy
olapopeTixwy modalities 6Ty TOLOTNTA TWV ATMAVTAGEWY.
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H uvio¥étnon scene-graph-driven uedédwv oto Video QA evioyler tnv xatavonon
TOAUTAOXOU TEQLEYOUEVOL TwV Bivieo, ahhd avTetoilel TEOXAHoELS, Wiwe 600V
opopd TNV €AETNON Ao TNV TOLOTATA TWV eEXYOUEVLY YRApnY oxnvigc. Eivow Ojiotng
ONUAGIAS O GWOTOC EVIOTUOUOC TWV AVTIXEWEVWY X0 TWV OYETEWY TOUC, XAIOS TUY OV
avoxp(Beteg umopel vo odnyioouv oe Aavdacuéveg amavtrioels. Emmiéoy, 1 ixavotnTa
TOU GUOTHUATOC VoL YEVIXEVEL GE BLApopous TOUELS TepLoplleTal amd TNV Tohouoppia
TOU TERLEYOUEVOU X0l TIG UTOAOYIGTIXES AmouTHOELS TNg enedepyaoiaug Twy Bivieo, xdt
TIOU BUGXOAEVEL EQUPUOYES TEAYUATIXOU YEOVOU.

Axépa, €youvpe xataypddel pehhovuxd PBriwata yioo xoAOTEEN ombdoon Ttng pedo-
dou poc . H Beitioon tne mowdtntag towv yYedpwy oxnvic urtopel va eacpoloTel
ME TNV mepeTaipw exmaldevor evog poviéhou SGG oto cuyxexpyévo dataset yia
v evioyuon tou accuracy. Mio exnoideuon end-to-end Yo ymopoloe vo Bornd-
o€l 0TV €VPECT XAAVTEPWY AVATUPAC TACEWY TWV YRAUPWY, EVK 1| ¥ENOT Neurosym-
bolic npooeyyioewy, 6nwe to Neural State Machine [23] ¥ olyypovwy transform-
ers Yeydhne xhipoxog 6mwe to CLIP-BERT [29] umopel va odnyfoel oe mo amote-
Aeopatixr udinorn. Téhog, 1 yehHomn BPORETIXWY YRAPWY OXNVAC, N EVOWUATKOON
OTTIXOV TANROPORLOY 1) YWELXMY TANEOPORLLY, OTWE CUVTETAYUEVES TIEQLOY OV EVOL-
APEEOVTWS UTOPEL VoL ETUTEEPEL GTO UOVTENO UAC VO AMAVTHOEL EPWTHCELS TOU GYETI-
Covton ye omtiny) TAnpogopia axoud XoahoTeQRa.
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1 Introduction

1.1 Introduction

We live in the age of digital information, where everything around us is connected
to a data source, and everything in our lives is digitally recorded [3]. With our
surroundings and daily activities becoming more and more digitalized, our smart-
phones capturing our everyday routines, and social media platforms documenting
everything, from our thoughts to our interactions with our friends, we are con-
stantly generating and consuming digital data. Our lives are surrounded by data
sources, like our smartphones and tablets, wearable devices, smart home systems,
online shopping and transactions, entertainment platforms and many more.

The volume of data, particularly from videos, has fundamentally changed the way
we interact with the world. Video platforms and streaming services offer access to
a vast diversity of content, while video data has also revolutionized communica-
tion. Videos have shaped education, marketing, and entertainment, democratizing
information sharing, and shifting our lives into a more video-centric world. To give
a quantitative overview of this, approximately 328.77 million terabytes of data are
created each day, while video content is responsible for over half of all global data
traffic [11]. However, while data generation grows rapidly, as seen in Figure 1.1
[43], it is becoming more and more difficult to process and understand it, since
systems able to understand it have not shown the same progress yet. This is why
the integration of Machine Learning (ML) in our lives becomes critical. Machine
Learning Systems have the capability to navigate through large datasets, identify
patterns and trends that the human mind could not process. Especially in video
content, we need systems that are able to understand videos, extract meaningful
insights, crucial for human interactions.

In this study, we focus on efficiently understanding and interpreting videos for more
accurate Video Question Answering performance. Our approach takes a novel path
in this direction, using scene graphs along with a hierarchical conditional approach.
Scene graphs offer a structured representation of video content, while providing
an insightful overview of visual elements and the relations between them. Using a
hierarchical approach allows us to operate at two levels, clip level and video level,
capturing spatial relationships, actions and interactions in different contexts. The
above lead us to a more salient understanding of the video content.
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Data volume in zetabytes

2010 2011 2012 2013 2014 2015 2016 2017 2018* 2019 2020 2021 2022* 2023* 2024+ 2025*

Figure 1.1: Volume of data/information created, captured, copied and consumed
from 2010 to 2020, with forecasts from 2021 to 2025 (in zettabytes). Figure from
[43].

1.2 Video Question Answering

With the exponential increase in visual content, particularly in videos and images,
it is becoming more critical to manage and interpret it. So, the need to interact
with digital content, including querying and understanding visual data has become
a necessity. Especially since our world works with dynamic multi-modal data, un-
derstanding videos is a crucial next step to developing intelligent machines and Al
agents. Visual and Video Question Answering fields have emerged to address this
need. Being an interesting intersection of computer vision and natural language
processing, they allow the user to ask questions about an image or a video and
receive accurate answers. So, given a video clip and a language query about it,
Video Question Answering aims to accurately respond to that question, grounded
on the multi-modal information available.

Before Video Question Answering, Image Question Answering has achieved many
advancements, due to the development of deep neural networks. Mirroring real-
world scenarios, such as helping the visually impaired, the task is to provide an
accurate natural language processing answer based on an image and a natural
language question about the image.[1]. The development of Video Question An-
swering systems began with the need to extract meaningful information from the
rapidly growing volume of video content. This task was first introduced in 2015
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with the publishing of MovieQA[41], the first Video Question Answering (Video
QA) Dataset. The goal of this dataset is to understand complex narratives and in-
formation presented in videos and thus push the boundaries of machine learning in
interpreting not just visual elements, but also the temporal domain. Video Ques-
tion Answering involves a Machine Learning system recognizing and understanding
various elements within a video, such as objects, actions, scenes, and even human
interactions and emotions. As questions are potentially unconstrained, Video QA
requires deep modeling capacity to encode and represent crucial visual proper-
ties.[26]

What color are her eyes? How many slices of pizza are there?
What is the mustache made of? Is this a vegetarian pizza?

Is this person expecting company? Does it appear to be rainy?
Whatis just under the tree? Does this person have 20/20 vision?

Figure 1.2: Examples of free-form, open-ended questions from Visual Question
Answering (VQA) Dataset. Figure from [1].

In this short period of time, a variety of Video Question Answering Datatasets
have emerged, each to test different aspects of video understanding. Datasets like
MSVD-QA [51], MSRVTT-QA [51], ActivityNet-QA [54], and EgoVQA[12], using
mostly web videos, focus on description-type questions, where the Al system needs
to identify and explain visual content. MovieQA[42], TVQA [28], and TVQA+
[28] use movies and TV show clips, testing the system’s capability to understand
complex narratives using both the visual and auditory modalities.

42



Synthetic video datasets, including CLEVRER [53] push AT models logical under-
standing and spatiotemporal reasoning, while there are knowledge-based datasets,
like KnowIT VQA [13] and NEWSKVQA[16] that consist mainly of TV shows and
news videos and require the Al system to integrate external knowledge. Finally,
there are Video QA Datasets, like TGIF-QA[24], AGQA[14], and NExT-QA[50]
that emphasize causal relationships, event understanding, and action sequences.

Q: How does ET. show his happiness Q: Why do Joy and Jack get married that first: Q: Why does Forrest undertake a three-  Q: How does Patrick start winning Kat over?
that he is finally returning home? night they meet in Las Vegas? year marathon?

A: By getting personal information about

A: His heart lights up A: They are both vulnerable and totally drunk ~ A: Because he is upset that Jenny left him | S50 P S0F

Figure 1.3: Examples from the MovieQA dataset. For illustration we show a
single frame, however, all these questions/answers are timestamped to a much
longer clip in the movie. Figure from [41].

To address these datasets, Video Question Answering approaches have evolved
from simple recognition to more complex reasoning. Initially, approaches utilized
neural networks to recognize objects and actions within videos to answer simple
”what is” questions. In the past years, the field has shifted into a more in-depth
analysis of videos, trying to capture complex causal and temporal relationships
between objects, actions, and events, focusing not only on the ”what” but also on

” ” o bR

"why”, "when”, ”who”, ”after what” etc.

Many research efforts have focused on cross-modal interaction, aiming to under-
stand videos under the guidance of questions. General trends in Video QA are
deep learning based, often utilizing Transformers [47] and other attention mech-
anisms cross-modal learning, and external knowledge integration. Deep learning
techniques often use Convolutional Neural Networks (CNNs) [27] to encode the
visual data in videos, effectively identifying visual elements. The processed visual
information is often forwarded to a sequence model, like Recurrent Neural Net-
works (RNNs) [6] or Long Short-Term Memory (LSTM) [20] models, to capture the
temporal dynamics. Transformer models, having revolutionized natural language
processing, are also adapted for the Video Question Answering task, use their at-
tention mechanisms to focus on specific parts of the video relevant to the question.
Cross-modal algorithms integrate visual and textual data, building correlations
between these domains. Knowledge integration models use external knowledge,
linking with databases, or knowledge graphs to enrich the information available
from the video.
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1.2.1 Applications

Video Question Answering has a lot of diverse applications across multiple sectors.
Firstly, in the field of education, Video Question Answering can allow students to
interact with educational videos through queries, answering their questions and
enabling a more personalized learning experience. The entertainment industry
can benefit from Video Question Answering by providing users with the ability to
learn about scenes or characters in movies and TV shows, or get more personalized
and accurate recommendations.

In the security sector, Video Question Answering can help identify events and
activities, while enhancing safety. Video Question Answering can provide driver
assistance systems with information about road conditions or the surrounding en-
vironment while also analyzing experimental videos for research and development
across multiple fields, including Physics, Biology, or Engineering.

Video QA systems can also help in dealing with large video databases, and orga-
nizing and retrieving videos more efficiently. Video Question Answering systems
can also enable efficient extraction of information from long-form video content,
like videos from Youtube, documentaries, thus performing information search not
only across text sources, or image sources, but also video ones.

Another aspect of Video Question Answering applications lies in assisting visually
impaired individuals. This application is particularly impactful in addressing the
challenges faced by visually impaired individuals in interpreting and interacting
with video content or even real-life data. Video QA can play a vital role in so-
cial inclusion by providing these individuals with better access to videos, enabling
their independence, and helping them navigate and understand their environment.
Finally, Video Question Answering Systems can lead to the development of aug-
mented reality assistants, supporting humans, not just the visually impaired, in
daily activities.

1.3 Challenges

The complexity of VQA lies in its multimodal nature, requiring the integration of
diverse and very different in nature data forms, specifically video and text. This
task is further complicated by the need to understand both spatial elements, like
objects and scenes within the video, and temporal dynamics, which involve actions
and events unfolding over time.

An accurate Video-Question Answering system should be able to reason on:
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e Action Recognition
A critical part of VQA is action recognition, where the goal is to identify
and categorize actions within video sequences. This task faces challenges
such as varying camera angles, occlusions, and the diversity in how actions
are performed.

e Temporal Localization
Temporal localization is another vital aspect, focusing on pinpointing the
specific time frames in a video that are relevant to the question. This task
becomes particularly challenging with lengthy videos or those featuring sub-
tle or overlapping actions.

e Natural Language Processing (NLP)
In VQA, Natural Language Processing (NLP) plays a crucial role in inter-
preting the questions and processing the language-based information.

e Contextual Reasoning
Lastly, contextual reasoning is fundamental to VQA, as it involves drawing
inferences and understanding the broader context of both the video content
and the question posed. This requires an advanced level of Al that can
not only recognize elements within a video but also understand their inter-
relations and the overall narrative or message of the video concerning the
question asked.

Figure 1.4: A Video Question Answering model should be able to reason about
actions, their duration and localization, understand the linguistic cues of the ques-
tion and perform contextual reasoning.

The field of Video Question Answering is filled with intricate challenges, centered
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around advancing from simple object recognition to understanding the complex
relationships between visual elements in videos, as seen in Figure 1.4.

A significant challenge lies in the computational demand of Video Question An-
swering systems. The models are typically large and resource-intensive since they
need to process extensive visual data, identify relevant elements, and decode the
relations between them. They must handle both the visual and linguistic aspects,
interpreting the video content while understanding and responding to language-
based queries

At the same time, traditional video processing methods mainly operate at the
pixel space and are thus inefficient for Video QA tasks. While these methods are
effective for certain tasks, like object detection or basic action recognition, they
can be limiting for Video Question Answering. Pixel-level analysis often lacks
the capability to understand the broader context or story of a video. It focuses
mostly on the visual details, having difficulty capturing the relationships between
different elements in the scene. Apart from that, processing videos at the pixel
level can be extremely resource-intensive. Videos consist of a sequence of frames,
each containing a large number of pixels. Analyzing each pixel or small pixel
groups across all these frames requires significant computational power and time,
making it inefficient for real-time or large-scale applications.

Also, videos can vary widely in resolution, frame rate, and overall quality. High-
quality videos present more clear visual data, but many real-world videos can be of
lower quality with blurry frames, poor lighting, or artifacts from the compression.
Apart from that, videos can come in a lot of different styles and genres, each with
different characteristics. For example, a documentary has a different visual style
than an animated movie, but the Video QA system should be able to understand
visual elements and their interactions in both cases. Also, even in the same video
styles, scenes can vary greatly, with very different topics, rapid scene changes,
variant camera angles, and directing styles.

1.4 Graph Based Video Question Answering

Videos are the most direct and convenient media to record and reflect our physical
world, while the sensory input we receive is multimodal. In the near future, Al
agents will be able to assist humans in their everyday lives and daily activities
by generating meaningful responses based on their understanding of our dynamic
visual world.

Vision and language are two of the most fundamental activities of the human
mind, allowing us to gain an understanding of our world, form intricate concepts,
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reason, and generate ideas. The combination of vision and language has emerged
as a captivating research field, gaining more and more interest. Multimodality
is critical for intelligence. To go beyond language models and build more aware,
capable, and useful systems, the next crucial step will come from vision. So, our
goal is to make more efficient multimodal models that can see and understand,
show and explain, and eventually interact with our world.

The process of VQA requires transforming both images and questions into feature
representations and embeddings, respectively. These features are then combined
to generate accurate answers. This process requires a sophisticated interplay be-
tween image processing and natural language processing technologies. VideoQA
extends VQA’s principles to the dynamic and temporally rich domain of videos.
The temporal aspect of videos adds a layer of complexity, necessitating an under-
standing of not just static scenes but also the progression and dynamics within
the videos.

1.4.1 Motivation

Video Question Answering presents a set of challenges that stem primarily from
the nature of video data. At the core of these challenges is the unstructured
and non-salient pixel space of video frames, a characteristic that complicates the
extraction of meaningful information. Videos, being highly data-intensive repre-
sentations, consist of thousands of frames. This not only results in large file sizes
but also poses significant difficulties in processing. Additionally, the variation in
video resolutions can lead to inconsistencies such as distortions or the inclusion
of unnecessary details, complicating the task of analysis and interpretation across
different datasets. Another major hurdle is the difficulty of generalization, which
is enhanced by domain-specific visual characteristics that videos often possess.

In response to these challenges, our thesis proposes a novel approach, using scene
graphs to transform the way videos are processed and understood. Scene graphs of-
fer a structured representation of video content and provide an insightful overview
of visual elements and the relations between them. By transitioning from pixel-
based analysis to a graph-based representation, we aim to achieve more efficient
and equally semantically rich video processing.

We form our approach around the following research question:

”Can we decompose videos into structured graphs and perform video
questions answering using these graphs instead of the video?”
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1.5 Contributions

This study is a work towards answering this research question, focusing on graph-
based video question answering. Our contributions include:

e We are the first to explore the use of explicit scene graphs as an intermediate
representation for Video Question Answering. Scene graphs are a structured
and informative representation of the video content, capturing essential in-
formation about the visual elements and the relations between them. By
transitioning from pixel space to graph space, we have more efficient and
semantically rich representations, reducing the computational load and en-
hancing the model’s ability to understand complex visual scenes.

e We experiment with different types of architectures for the extraction of
graph embeddings, providing insights into the effectiveness of different Graph
Neural Networks. GNNs enable us to capture the relationships and at-
tributes of the visual elements in a very efficient way. These embeddings
provide a deeper understanding of the video content.

e We combine it with a temporal neural network. The graph embeddings
are processed by a transformer architecture, specifically a variation of the
Hierarchical Conditional Relation Network (HCRN), operating at two levels:
clip level and video level. The clip-level processing allows the model to
capture spatial relationships focusing on actions and interactions, whereas
the video-level processing focuses on understanding the broader context.
This hierarchical approach ensures that both the details and the broader
context are considered

e We evaluate our method on the Action Genome Question Answering [14]
dataset, a real-world dataset consisting of videos depicting humans in every-
day activities. Our results demonstrate that our approach is among state-of-
the-art methods, and even outperforms them in several question categories.
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2 Background

2.1 Introduction

Machine Learning is a branch of Artificial Intelligence (AI), focusing on the concept
of enabling computers to learn from experience, much like humans. The history
of Machine Learning is marked by a lot of key developments over the last decades.
It all started with the development of statistical methods in 1940s, leading to the
use of simple statistical ML algorithms in 1950s. Then, Bayesian methods were
introduced in 1960, but were followed by a period of pessimism, named the ’Al
winter’. In the 1980s, the rediscovery of backpropagation awakened ML research,
and in the 1990s a lot of data-driven approaches were born, including SVMs and
RNNs. The 2010s focused on Support Vector Clustering and unsupervised meth-
ods, while Deep Learning was born in 2010s, allowing the emergence of a lot of
ML applications. Recently, in the 2020s, generative Al has captivated research
attention, and ML has gained its position in a lot of industrial and commercial
fields.

2.2 Machine Learning

Machine Learning is a branch of Artificial Intelligence (AI) that focuses on the
use of data to mimic the way humans learn. Its goal is for computers to learn by
identifying patterns in data and thus making decisions with minimal to no human
intervention. In Machine Learning, computers learn to program themselves, using
statistical models and optimization algorithms. To do that, they need to observe a
specific set of data, named the train set or training data, and the process in which
they learn is called training. However, data can be interpreted in a lot of different
ways, using different architectures and parameters, describing different machine
learning models. Using different sets of parameters on the same architecture can
lead to vastly different behaviors and performances, so adjusting parameters allows
for the fine-tuning of models to specific tasks or datasets

To intelligently analyze these data and develop the corresponding smart and au-
tomated applications, the knowledge of artificial intelligence (AI), particularly
machine learning (ML) is the key [36]. In the past decades, Machine Learning
has evolved significantly, from rule-based systems to sophisticated data-driven ap-
proaches. This shift has enabled systems to perform complex tasks, like object
detection, natural language processing, video understanding and generative tasks
that find applications across various fields, like healthcare, finance, recommenda-
tion systems, etc [25].
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2.2.1 Types of Data

In Machine Learning, a wide variety of data types can be used for training and
model development, including numerical, categorical, text, audio, image, time se-
ries, or even video data. Numerical data, consisting of discrete or continuous
numbers, are used for statistical analyses and quantitative modeling. Categorical
data includes distinct categories and labels for classification tasks. Text data is
used for Natural Language Processing, and to analyze written language. Image
data is used in computer vision and encodes pixel-based information and features
necessary for tasks like object detection. Audio data is used in tasks like speech
recognition and consists of sound signals. Time-series data contains sequential and
time-stamped data points that are used for forecasting and trend analysis. Video
data combines visual and temporal elements, essential for understanding dynamic
scenes and has application in fields like Action Recognition, Video Understand-
ing and Video Question Answering. Finally, each data type comes with its own
challenges and opportunities, leading to the development of such diverse fields in
Machine Learning.

2.2.2 Types of Learning

ML approaches can be generally divided into three types: supervised, unsuper-
vised, and reinforcement learning. [34]

Supervised Learning involves training models on labeled data. The model learns
to predict outputs from inputs, where each data point is an input-output pair.
Supervised learning is used in regression and classification tasks, for applications
like image captioning, speech recognition, and visual relationship detection.

Unsupervised Learning, by contrast, deals with unlabeled data. This type of learn-
ing discovers hidden patterns and structures from data without any instructions
on what to predict. Unsupervised Learning is most commonly used for clustering,
dimensionality reduction, and association.

Finally, Reinforcement Learning, is about learning through interacting with an
environment. The model makes decisions, gets feedback in the form of reward or
punishment, and updates the decision-making policy, thus learning. This type of
learning is used in gaming, navigation, and real-time decisions, where the model
adjusts its strategies dynamically based on its experiences.
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Figure 2.1: The main types of machine learning. Figure from [34].
2.2.3 Perceptrons

A perception is the simplest form of an artificial neural network. It is a single-
layer binary classifier, used in supervised learning to categorize inputs into one
class. Each perceptron consists of input nodes, weights, a bias, and an activation
function, typically a step function. Each input feature, represented as z;, is mul-
tiplied by a corresponding weight parameter w;. The neuron then aggregates the
weighted inputs, sums them and compares the result to a threshold, known as bias
b to reach the final output, 0 or 1 [35]. The decision algorithm can also be seen
below:

Output — {1 if S (w;-a) +b>0

0 otherwise
Since the decision is made, we can evaluate its output compared to the correct
output, to update the values of w; and b. The parameters s; and b are updated
through an iterative algorithm trying to map the most inputs to the correct output,
going through every sample in the training set, until the perceptron converges.

Since the single neuron models the input to w; - x; + b, it essentially models a linear
function, drawing a straight line through the data. This line is used to separate
the data into two classes, and the decision for each data point is based on which
side of the line it is.

This model is limited to problems where classes are linearly separable. In many
real-world scenarios, data can’t be separated by a single line, since there are very
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complex relations between input variables and classes. To address this limitation,
more layers of neurons are introduced, leading to the architecture known as multi-
layer Perceptron (MLP), or simply, Neural Network [32].

2.2.4 Neural Networks

The Neural Network, or Multi-Layer Perceptron, is an advancement from the basic
perceptron and can be considered its descendant. It addresses the limitations of
the single perceptron by handling non-linearly separatable data. The structure of
the Multi-Layer Perceptron consists of multiple layers of neurons, as opposed to
the single neuron of perceptron.

The Multi-Layer Perceptron introduces hidden layers, each consisting of a set of
neurons. Each neuron takes in as input the output of all previous layer neurons,
processes it with a weighted sum and passes the result to the next layer. This
allows the MLP to capture more complex relationships in the data and learn non-
linear relationships.

FEach hidden layer, necessarily has an activation function. Without a non-linear
transformation, the stacking of two hidden layers would lead to a more complex,
but still linear transformation, making it equivalent to a single layer. Some com-
mon activation functions used in MLPs are:

e Sigmoid: This function transforms the input values within the range of 0
and 1. It is more commonly used for binary classification tasks.

e ReLU: This function outputs the input directly if it is positive, otherwise
it outputs zero. It’s very computationally efficient and allows models to
converge faster.

e Tanh: This function transforms the input values within the range of -1 and
1. It is similar to sigmoid, but with a broader output range.

e Softmax Used primarily in the output layer for multi-class classification
tasks, this function converges the output scores from the neurons into prob-
ability distribution.
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Figure 2.2: The most common activation functions used in MLPs.

2.3 Deep Learning

Deep learning is a machine learning concept based on artificial neural networks.
For many applications, deep learning models outperform shallow machine learning
models and traditional data analysis approaches [25].

2.3.1 Feed-Forward Neural Networks

Many Deep Learning approarches are based on a variety of neural network archi-
tectures. The basic, ”vanilla” neural network is often referred to as FeedForward
Neural Network (FFNN), or a Fully Connected Neural Network (FCNN). This
term is used to distinguish it from other types of neural networks, like Recurrent
Neural Networks (RNNs). The key characteristic of an FFNN is that the infor-
mation only moves in one direction - forward - from the input nodes, through the
hidden nodes, to finally the output nodes. Each neuron in a layer is connected to
all neurons in the subsequent layer, which is why it is called ”fully-connected”.

The interesting thing about feed-forward neural networks is the permutation in-
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variance of the inputs in the neuron operations. This means that the relative
position of the input features does not influence the output of the neuron oper-
ation. Due to this characteristic, FFNNs are suited for independent data, like
separate measurement values.

2.3.2 Convolutional Neural Networks

When dealing with images, FFNNs would not be a good fit, since they would
require too many parameters and they also can’t factor in pixel relative positions,
so the spatial information of the pixels in an image would be lost. However, vision
tasks also require positional invariance, meaning that the same object should be
able to be recognized regardless on where it is placed in an image. The operation
that manages to solve all of the above requirements, is convolution. The first paper
to introduce Convolutional Neural Networks originated in 1998 [27].

The convolution operation involves sliding a filter (named kernel) K over the input
image I and computing the dot product between the filter and the local region
of the image to produce a feature map. The feature map represents a processed
version of the input image where certain features have been highlighted. Mathe-
matically, this operation for a pixel in position (i,j) is represented as:

(I*K)(i,j):ZZI(i+m,j+n)K(m,n)

The convolution process extracts local features from the input image by applying
the filter to small patches of the image, step by step. This means that the CNN
only considers a small portion of the input-image at a time.

CNNs have proven to be very effective for tasks like image recognition, where
it is crucial to recognize local patterns like edges, textures and specific objects

We pass an image through multiple learnable filters - each of which extracts
different kind of information - this information is much lower in dimension and
higher in information density than the pure image pixels. To reduce computational
complexity, CNNs use pooling layers to reduce the spatial dimensions of the feature
maps. CNNs have become a fundamental tool in many computer vision tasks and
have significantly advanced the field of image recognition and processing.
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Figure 2.3: Convolution Layer [7] and Convolutional Neural Networks [8]. Figure
from [21].

ResNet

ResNet is a type of Convolutional Neural Network (CNN) that was introduced in
2015 and has significantly influenced the landscape of deep learning [19]. As net-
works grow deeper, they tend to suffer from vanishing gradients, making training
less effective. To address this problem, ResNet introduced residual blocks with
skip connections, allowing the network to learn identity mappings and ensuring
that deeper layers can propagate signals back to earlier layers without loss.

2.3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) stand out in the realm of neural networks for
their distinctive ability to process sequential data, making them particularly adept
at tasks involving text, speech, and time series data. Unlike their counterparts,
RNNs possess an internal memory that captures information about previous in-
puts, allowing them to maintain context and make informed predictions based on
the sequence of data they receive. This feature is crucial in scenarios where the
sequence and context of data points are essential for accurate interpretation, such
as language processing or stock market prediction. However, RNNs are not with-
out challenges. They are notoriously known for issues related to vanishing and
exploding gradients, which can hinder the network’s ability to learn from data, es-
pecially when dealing with long sequences. The gradients used during training can
become exceedingly small or large, making it difficult for the network to converge
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and learn the long-range dependencies within the data.

To address these issues, advanced variants like Long Short-Term Memory (LSTM)
networks [20] and Gated Recurrent Units (GRUs) [6] were introduced. These
architectures incorporate gating mechanisms to control the flow of information, ef-
fectively capturing long-term dependencies and mitigating the issues of vanishing
and exploding gradients. Consequently, LSTMs and GRUs have become a staple
in tasks requiring the understanding of complex, sequential patterns in data, such
as machine translation, speech recognition, and text generation. In essence, RNNs,
with their unique structure and internal memory, have been pivotal in advancing
the field of sequential data analysis. Despite their challenges, the evolution of
RNNs into more robust architectures like LSTMs and GRUs showcases the adapt-
ability and potential of neural networks in handling the intricacies and nuances of
sequential data.
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Figure 2.4: Recurrent Neural Network Architecture. Figure from [9].

2.3.4 Attention Mechanisms

Attention mechanisms [47] have emerged as a transformative force in the field of
neural networks, particularly enhancing the performance of models dealing with
sequential data like text and speech. The core idea behind attention is to allow
models to focus on the most relevant parts of the input when performing a task,
akin to how human attention works when we concentrate on specific aspects of our
environment while ignoring others. In traditional neural network architectures,
such as Recurrent Neural Networks (RNNs), each input or word in a sequence
is processed in a fixed order, and each step depends on the previous one. While
effective, this approach can struggle with long sequences, where distant elements
in the input might be relevant to each other. Attention mechanisms address this
limitation by enabling the model to weigh the significance of each part of the input
data dynamically. This approach allows the model to create a context-sensitive
representation of the input sequence, focusing on the most salient parts as needed
for the task at hand.

The transformative impact of attention mechanisms became particularly evident
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with the introduction of the Transformer model, which relies entirely on attention
mechanisms, dispensing with the sequential processing inherent to RNNs. Trans-
formers use self-attention to weigh the importance of different words in a sentence,
allowing for parallel processing of the sequence and significantly improving the
efficiency and performance in tasks like language translation, text generation, and
many others. Attention mechanisms have also facilitated the handling of multi-
modal data, enabling models to attend to different types of input, such as a com-
bination of visual and textual information. This capacity has been instrumental
in advancing fields like image captioning and visual question answering, where the
interplay between visual elements and textual context is crucial.

In summary, attention mechanisms represent a significant leap forward in the
design of neural networks, offering a more flexible and context-aware approach to
processing sequential data. By mimicking the selective focus of human attention
and allowing models to dynamically prioritize different parts of the input, attention
mechanisms have unlocked new possibilities and set new standards in the field of
artificial intelligence.
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Figure 2.5: Attention Mechanism. Figure from [47].

2.3.5 Trasformers

Transformers have revolutionized the landscape of natural language processing and
beyond, marking a significant departure from previous neural network architec-
tures. Introduced in the paper ” Attention is All You Need” [47], the Transformer
model stands out for its unique use of attention mechanisms, eschewing the sequen-
tial processing typical of Recurrent Neural Networks (RNNs) in favor of parallel
processing of sequences. This shift has not only led to substantial improvements
in computational efficiency but also set new benchmarks in a wide array of tasks.

At the heart of the Transformer is the self-attention mechanism, which allows the
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model to weigh the importance of each part of the input data, irrespective of their
positions in the sequence. This means that for any given word in a sentence, the
Transformer can directly attend to any other word, capturing their relationships
and dependencies, regardless of their distance from each other. Such an architec-
ture is particularly powerful in understanding the context and nuances of language,
as it can process and relate all words in a sentence simultaneously.

The Transformer model is also inherently scalable and parallelizable, a feature
that stands in stark contrast to the inherently sequential nature of RNNs. This
characteristic has not only expedited training times but also paved the way for
the development of much larger and more powerful models, such as GPT[52] and
BERT [10]. These models, pre-trained on vast corpora of text, have demonstrated
remarkable capabilities, from generating coherent and contextually relevant text to
understanding and answering complex questions with a nuanced grasp of language.

Furthermore, the versatility of the Transformer architecture has transcended the
realm of text, finding applications in other domains such as computer vision and
multi-modal tasks, where the model’s ability to handle sequences can be applied
to pixels or combinations of different data types.

In essence, the Transformer model represents a paradigm shift in neural network
design, offering a highly effective and flexible architecture that has not only ad-
vanced the state of the art in natural language processing but also opened new
horizons across the broader field of artificial intelligence. Its influence continues
to grow, shaping the future of how machines understand and generate human
language.
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mechanisms. Figure from [47].

2.4 Multimodal Machine Learning

Human understanding and perception of the world are guided by diverse sensory
experiences, including vision, hearing, smell, taste, and touch. Compared to hu-
man learning and perception, multimodal machine learning tries to mimic the way
humans process and interpret information from their senses to understand and in-
teract with the world. In machine learning, multimodal learning refers to the use
of algorithms and models that can proces s and interpret information from mul-
tiple different data sources, such as text, images, audio, video etc. This approach
is based on the assumption that combining information leads to more accurate,
robust, and comprehensive understanding and reasoning.

Vision and Language
Vision and language are two of the most fundamental capabilities of the human
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mind, capturing a lot of sensory experience required for reasoning and understand-
ing the world. The majority of everyday tasks we do revolves around vision and
language, often requiring their interaction.

The interaction of vision and language has motivated researchers for the last
decade, with great efforts to identify the relations between these two modalities,
combine them, and reason about them. Language has proven to be an easier
modality to deal with than vision since language is a more structured form of
data, shaped by well-defined rules of grammar and syntax, making it easier to
parse and analyze. Visual data also presents higher dimensionality compared to
textual data since an image is composed of pixels, each with color values and
spatial relationships, whereas language is represented as lower-dimensional word
embeddings. Also, language tends to have less redundancy and noise since each
word or phrase normally carries specific information, while in visual data, multiple
pixels often depict the same feature or contain misleading visual information.

Vision and language tasks represent a fascinating intersection in the field of ma-
chine learning, where the goal is to develop models that can understand and in-
terpret both visual and textual information. Some common vision-language tasks
include visual question answering, captioning, image retrieval, text-to-image gen-
eration, and many more. Vision and language tasks can be categorized into three
major areas. (A) Generation tasks, for example in image captioning text descrip-
tions are generated for a given visual input, and in text-image generation visual
output is generated from a textual input. (B) Classification tasks, for example
in multiple-choice Visual Question Answering the correct answer to a question is
chosen given a visual input, and in Visual Entailment statements regarding a vi-
sual input are classified as correct or incorrect. (C) Retrieval tasks, for example in
image retrieval images are retrieved based on a textual description. These tasks
challenge systems to understand a wide range of detailed semantics of an image,
including objects, attributes, spatial relationships, actions, and intentions, and
how all of these concepts are referred to and grounded in natural language.

2.5 Visual Question Answering

Visual Question Answering (VQA) is a typical vision-language task that requires
the models to jointly reason about both the vision and text data. Given a question
written in natural language and a visual object relating to the question, the goal
of VQA is to give a correct answer based on the comprehension of the multimodal
inputs. It is a very challenging tasks, since it requires a comprehensive under-
standing of both textual information and visual information independently, but
also find the semantic connections between the two [15].
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Visual Question Answering [1] was first introduced in 2015 inspiring many datasets
focusing on different aspects of the task. Some of the initial steps in most VQA
approaches involved extracting features using methods like Bag-of-Words (BOW)
or Long-Short-Term Memory (LSTM) encoders for text inputs and Convolutional
Neural Networks (CNNs) pre-trained on datasets like ImageNet for visual inputs.

The intriguing part of VQA lies in the way the features are extracted and then
combined. An initial approach would be to concatenate the features and then
process them through a linear classifier. However, more complex approaches, like
attention-based mechanisms have recently emerged and have dominated the field
due to their ability to focus on the most relevant segments of the input. For
example, in questions about specific objects in an image, attention mechanisms
enable the model to concentrate mostly on the relevant image regions and thus
enhance the answer accuracy.

The use of pre-trained models like Inception V3 [38] has become a norm in the
field. These models are selected for their refined image recognition capabilities,
extracting more accurate features from images, which is pivotal for enhancing the
performance of VQA systems. About the answer generation, VQA can be split
into binary or multiple-choice questions and open-ended questions. For binary
or multiple-choice questions, layers like sigmoid or softmax activation functions
are used following fully connected layers. For open-ended questions, recurrent
networks like LSTMs are employed to generate the answer word by word.

2.6 Video Question Answering

While Visual QA has advanced a lot and developed many impactful works, the
questions that can be answered about static images are quite limited as they don’t
include the temporal dimension found in videos. Video Question Answering can
be seen as a natural extension of image QA and consists of a list of temporal
image sequences. It is a more challenging task compared to image QA due to the
additional complexity of the temporal structure [15].

Visual events are a composition of temporal actions involving actors spatially in-
teracting with objects[14].

Problem Formulation
VideoQA is a task to predict the correct answer a* based on a question ¢ and a

video V. There are mainly two types of tasks in VideoQA: multi-choice QA and
open-ended QA.

For multi-choice QA, the models are presented with several candidate answers
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Apme = {a1, a2, ..., ay} for each question and chose the correct answer a* = Py(alq, V, Ape)
where 6 are the model parameters.

For open-ended QA, the problem can be translated into classification, word-by-
word generation, and regression (mainly used for counting tasks). The most popu-
lar approach is to treat the open-ended QA problem as a multi-class classification
problem, where the model classifies a video-question pair into a pre-defined global
answer set Ao.. The correct answer is picked as a* = F(alq, V'), where a € Age.
Open-ended VideoQA can also be treated as a generation problem, where the
answer is a = (ay, a,...,apr), of length M, given a pre-defined vocabulary set.

2.7 Metrics

For the evaluation of VideoQA models, the key metric used is accuracy. Accuracy
is measured as the percentage of correct answers in the entire test set. For multi-
choice QA and open-ended QA (treated as classification), accuracy is defined as:

1
acc = @ZI[a* = al,
qeQ

where @ represents the number of QA pairs and I is an indicator function (1 only
if a* = a and 0 otherwise).

Similarly, for open-ended QA treated as word-by-word generation, accuracy is de-
fined as:

1 1 &K,
acc:@ZMZI[ai = a;]

qeQ i=1

In this context, accuracy (acc) is calculated as the average number of correct words
generated across all questions in the set ). For each question ¢ in the set @, the
equation iterates over the words in the generated answer sequence of length L,
where L is the length of the ground truth answer for that question [58].

2.8 Datasets

Video Question Answering can include questions generated from very different
perspectives since the goal is to gain a holistic understanding of videos, guided by
specific questions [58].
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Q: Why did the woman bend down
and run towards the baby ?
0. to jump over him

1. exercises
2. entertain the baby
23 Pt 3. for fun
NExT-QA (Xiao ef al. 2021) 4. the dog bit her hand
MM-VideoQA: QA invokes visual, audio, subtitles, plots.
01:10.131 = 01:12.292 Q: What was behind Meredith when
(Meredith) T was swimming.  she said she was swimming ?
01:12.367 = 01:14.358 0. A painting
(Meredith) I was fighting. 1. A couch
01:15.670—>01:18.138 2. A metal shelf
: (Meredith) And thenI 3. A file cabinet
TVQA (Lei et al. 2018) thought, just for a second. 4. A car

KB-VideoQA: QA invokes external information outside video clip.

PEl'll'IY was angry at

ﬁ Leonard in this (Howard) Grab a napkin, Q: What girlfriend is Sheldon talk
episode. homey, you just got served. ~ about?
(Leonard) It's fine. You win. 0. Priya
(Howard) What's his problem? 1. Amy
(Sheldon) His imaginary 2. Bernadette

girlfriend broke up with him. 3. Penny

KnowIT(Garcia et. al, 2020)

Figure 2.7: Examples of normal VideoQA, Multimodal VideoQA (MM VideoQA)
and Knowledge-based VideoQA (KB VideoQA). Figure from [58].

We can classify the datasets according to the data modalities invoked in the ques-
tion and answers into normal VideoQA, multi-modal VideoQA (MM VideoQA)
and knowledge VideoQA (KB VideoQA). Normal VideoQA only invokes visual
resources to understand the question and derive the answer, MM VideoQA in-
volves other resources, like subtitles - transcripts and text plots, while knowledge
VideoQA demands external knowledge and commonsense reasoning, as seen in
Figure 2.7.

Factoid VideoQA

* VideoQAIFiB): the first VideoQA dataset usang Inference VideoQA

question form of “fll-in-the-blank ™ - NEXT-QA: the first VideoQA
* VideoQA: the first VideoQA dataset focus on datacet for causal and temporal
answering free-form natural language questions. adtion_measoning of real world
* TGIF-QA:an important dataset in the early stage, " looper explanation.
addressing three characteristic VideoQA tasks = ActivityNk o videoQA dataset  + CLERVER: the first dataset to - an  automatically
which requires spatiaktemparal reasoning, derived from the popular  leam temporal and causal g dataset 1o reason
+ MSVD-QA, MSRVIT-QA: two populas and Activity dataset for the long-  Structures behind objects with  aboul compositional  spatio-
important automatically genezated datasets. term spatio-temporal reasoning,  simple appearance temporal events.
1 ' ' '
2016 2017 ¢ 2008 2019 o 20204 2021 &
Ld b A4 bl L d b
i H i H | '

* MovieQA: the first VideoQA * MovicFIB: early MM VideoQA = TVQA: manually annotated TV = Soci 1 * HowToVOASIM: an
dataset for visual and text story  datase for story understanding,  dataset towards subtitle and L the knon automatically generated million-
understanding is used in the fill-in-theblank  concept comprehension questions in VideoQA et Ve [tk oty

track of LSMDC. ing, with why and pretraining

questions starting with w
how, which requines  causal
ressoning,

Figure 2.8: Historical evolution of Video QA Datasets through the time. Blue
and red colors represent datasets focused on Factoid VideoQA and Inference
VideoQA. Figure from [58].
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As we can see in Figure 2.8, several datasets have been developed to train and
evaluate Video QA systems, each with unique characteristics and challenges.

2.8.1 MovieQA

MovieQA is the first Video QA dataset and it revolves around the domain of
movies, leveraging rich, multi-modal content including videos, subtitles, scripts,
and plot synopses. The core of the dataset is the set of question-answer pairs that
focus on story-related queries, requiring an understanding of complex narrative
elements, character motivations, and plot developments [41].

Q: What does Forrest do just
after his graduation?

A He starts a shrimping business
A: He marries Jenny

A e joins the United States Army

BE2

movie?
At Yes, very much
A: Yes, he is happy
A No, he 13 not happy

for Christmas?

Ar A bieyele

A A pink stulled elephant
A A train set

Q:How does Talia die? Q: What does the Weasley twins
do during an exam?

A: Use magic

A Cheat on the exam

A Set oft fireowrks

Q: Where was Forrest shot?

A In his chesl.
A In his arm

A In his bottom

A She 1s stabbed by Fox
A She is killed by Batman
A Ina car crash

Figure 2.9: Examples of multiple-choice QA from the MovieQA dataset. Each
question has 5 multiple-choice answers. Figure from [41].

2.8.2 TGIF-QA

TGIF-QA [24] is the first Video QA Dataset that requires video-level spatial-
temporal reasoning. It consists of a collection of GIFs, mostly sourced from
Tumblr, paired with multiple-choice and open-ended questions. The questions
are specifically crafted to test a model’s ability to understand and interpret the
dynamic and often subtle visual cues within these short, looped videos. Unlike
traditional video QA datasets that may involve longer sequences and more com-
plex scenes, TGIF-QA focuses on the comprehension of concise, repetitive actions
and temporal dynamics within GIFs. The dataset challenges models to not only
recognize visual patterns but also to understand the sequence of events, repetitive
actions, and the transformation of objects over time.
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Video QA Frame QA
(a) Repetition Count (b) Repeating Action (c) State Transition (d) Object / Number / Color / Location

R _ 4
Q) How many times does the Q) What does the duck do Q) What does the bear on right Q) What is dancing in the cup?
man wrap string? A) 5 times 3 times? A) Shake head do after sitting? A) Stand A) Tree

Figure 2.10: Examples of multiple-choice QA from the TGIF-QA dataset. Figure
from [24].

2.8.3 KnowlIT VQA

KnowlIT VQA [13] is a specialized dataset aimed at pushing the boundaries in the
domain of video understanding, specifically focusing on the integration of visual
content with external knowledge. It consists of video clips from popular TV shows
paired with question-answer pairs that require not just an understanding of the
visual content and dialogue but also the incorporation of external, common-sense
knowledge to provide accurate answers. This unique aspect of KnowIT VQA sets
it apart, as it demands a deeper level of reasoning and understanding from Al
models. The questions are designed to be complex, often requiring the models to
infer emotions, motives, and intentions of characters, or to predict consequences
and outcomes based on the given context. KnowIT VQA serves as a critical
benchmark for evaluating the ability of Video QA systems to perform high-level
reasoning, understand narratives, and effectively integrate visual information with
broader world knowledge.

Leonard: Have you noticed that Howard can take any topic and use it to remind
you that he went to space?

Sheldon: Interesting hypothesis. Let’s apply the scientific method.

Leonard: Okay. Hey, Howard, any thoughts on where we should get dinner?
Howard: Anywhere but the Space Station. On a good day, dinner was a bag full
of meat loaf. But, hey, you don’t go there for the food, you go there for the view.

Visual: [How many people are there wearing glasses? One ]

Textual: | Who has been to the space? Howard

Temporal: [How do they finish the conversation? Shaking hands ]

Knowledge: | Who owns the place where they are standing? Stuart

Figure 2.11: Examples from the KnowIT QA dataset. Figure from [13].
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2.84 AGQA

Action Genome Question Answering [14] is the first large-scale Video QA dataset
to include scene graphs to reason about compositional spatio-temporal events.
Action Genome Question Answering focuses on understanding of complex actions
and interactions within videos. AGQA is built upon the richly annotated Charades
dataset and extends it by incorporating a diverse set of question-answer pairs that
probe the understanding of sequential actions, the interaction between multiple
actors, and the manipulation of objects in various scenes.

The distinctive feature of AGQA lies in its emphasis on the temporal and causal
relationships of actions within videos. The Action Genome Question Answering
(AGQA) dataset stands out for its incorporation of scene graphs, a feature that sig-
nificantly enriches its complexity and utility. Scene graphs in AGQA are structured
representations of the objects, attributes, and relationships within each frame of
the video content. These graphs provide a detailed, structured semantic under-
standing of the visual elements, going beyond mere object detection to encapsulate
the interactions and relations among different objects within the scenes.

The inclusion of scene graphs in AGQA allows for a deeper level of analysis and
understanding. It enables models to not only recognize individual elements within
the video but also to understand the intricate web of relationships and interactions
that define the context and narrative of the scenes.
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atio-temporal  holding leftof  hold twist behind  hold leftof  hold

scene graph: phc::ne pﬁi_:ne bof_tle bottle bottle
picking up phone taking a picture putting a phone down _ holding a bottle

f : ? : Time
ieiirtiale e rioluialiivit g lubrliolalinifiefits Et e iniie e st ioilialidietrlog  potoioleilifeete -

Example compositional spatio-temporal questions:

Q: What did the person hold after ? A: bottle
Q: Were they or for longer? A

Q: Did they before or after they did ?  A:before
Generalization to novel compositions:

Q: Did the person twist the bottle after ? A:yes
Generalization to indirect references:

Q: Did the person twist the bottle? A:yes

Q: Did the person twist the object they were holding last? A:yes

Generalization to more compositional steps:
Q: What did they touch last before and after A: phone
,a phone or abottle ?

Legend: objects relationships time

Figure 2.12: Examples from the AGQA dataset. Figure from [14].
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3 Literature Review

Video Question Answering (Video QA) is an area of research that focuses on
answering questions about the content within a video. Video Question Answering
approaches showcase great diversity, while the main types of approaches include
Memory Networks, Transformers and Graph Neural Networks.

3.1 Memory Networks

Memory Networks are a class of models designed to enhance the capability of
neural networks by providing them with an explicit memory component. This
memory component allows the networks to store and access information over long
periods, making them particularly suitable for tasks that require understanding
and reasoning over complex and sequential data, such as Video Question Answer-
ing (VideoQA). In the context of Video QA, Memory Networks help in storing
information about different frames or segments of the video, enabling the model
to refer back to this stored information when answering questions. This approach
is beneficial for questions that require understanding sequences or events that hap-
pened at different times in the video. For instance, a Memory Network can help
answer a question like ”What happened to the man after he left the room?” by
recalling the relevant video segments stored in its memory.

¢ End-to-End Memory Networks

The first end-to-end trainable memory network, introduced in 2015, can read
and write to an external memory matrix, allowing the network to store past
states and later access them to make decisions. This approach is beneficial
in VideoQA for storing features or representations of video frames and sub-
titles. For instance, an approach of a memory network for VideoQA to store
video and subtitle features, enabling the model to refer back to earlier parts
of the video or dialogue when answering questions about the content.

e Co-Memory Attention Models

CoMem, proposed in 2018, is a two-stream framework, which deals with mo-
tion and appearance information separately but in a co-ordinated manner.
The co-memory attention module in this framework introduces multi-level
contextual information, enabling dynamic fact ensembles for diverse ques-
tions. This approach helps synchronize the attention mechanisms across
different modalities, such as appearance and motion, leading to a more nu-
anced understanding of the video content.

e Heterogeneous External Memory (HME) Models
To address the limitations of earlier memory networks that might generate
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incorrect attentions by synchronizing appearance and motion features, the
HME model was introduced in 2019. The HME model uses attentional read
and write operations to integrate motion and appearance features, learn-
ing the spatio-temporal attention simultaneously. This model represents a
significant advancement in the capacity of memory networks to handle the
complexities of video data, particularly in capturing the spatial and tempo-
ral dimensions of videos.

e Progressive Attention Memory Network

In 2019, a memory network that utilizes a progressive attention mechanism
was introduced. This network progressively prunes out irrelevant tempo-
ral parts in the memory bank for each modality and adaptively integrates
outputs of each memory. This approach is particularly useful in long video
story understanding, such as movies or TV shows, where the model needs to
focus on specific parts of the video that are relevant to the question, despite
the presence of a large amount of visual information and a long narrative
structure.

In summary, Memory Networks in VideoQA are designed to enhance the model’s
ability to store, access, and integrate information over long sequences, making them
particularly adept at understanding complex video content and narratives. The
versatility of Memory Networks, as demonstrated by these examples, underlines
their significant role in advancing the field of VideoQA by enabling more nuanced
and contextually aware models.

3.1.1 Heterogeneous Memory Enhanced Multimodal Attention
Model

The most relevant Memory Network to our research is the Heterogeneous
Memory Enhanced (HME) [5] architecture. The HME integrates various types
of data, particularly video content and associated questions, through a series of
well-orchestrated components and processes.
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Please see Fig 3 for detalls. Please see Fig 4 for details. Please see Fig 5 for detalls.
!, - Visual Memory - ~\ -— Guesiion Memary ™~ Multi-modal Fusion

Figure 3.1: HME architecture. Figure from [5].

At its core, the HME architecture employs LSTM (Long Short-Term Memory)
encoders for processing both video features and question embeddings. This in-
cludes the extraction of appearance features from video frames using pre-trained
networks like ResNet [18] or VGG [37], and motion features using a C3D [45] net-
work. What sets this architecture apart is its heterogeneous video memory, which
is distinct from standard external memory. This component is designed to accept
multiple inputs, including encoded motion and appearance features, and utilizes
multiple write heads for determining the content written into memory slots. These
memory slots comprise read and write heads, along with three hidden states, en-
hancing the model’s capacity to handle complex video data.

A pivotal aspect of the HME architecture is its multimodal fusion layer. This
layer is adept at attending simultaneously to visual and question hints, aligning
relevant visual content with key question words. This simultaneous processing of
visual and textual data is essential for answering intricate questions that necessi-
tate an understanding of both the video’s visual content and the semantics of the
question.

The HME model distinguishes itself from existing frameworks by integrating
a heterogeneous external memory module with attentional read and write oper-
ations, allowing for an efficient combination of motion and appearance features.
Furthermore, it enables the interaction of visual and question features with mem-
ory contents to construct context-aware features globally. The model’s multimodal
fusion layer adeptly combines visual and question features with softly assigned at-
tentional weights, facilitating multi-step reasoning.

The HME architecture features two-layer LSTMs for both video and question
encoders, with a specified hidden size and memory slot dimension. The memory
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sizes for video and question components are carefully calibrated to align with the
maximum lengths of the videos and questions. Overall, the HME architecture
represents a sophisticated approach to processing and integrating diverse data
types, particularly suited for applications that require deep interpretation and
integration of visual and textual information, as is the case in VideoQA.

3.2 Transformer based Video QA

Transformers have revolutionized the field of natural language processing and ex-
tended their influence to Video Question Answering (VideoQA) by providing pow-
erful mechanisms for modeling sequences and relationships within data. Their core
mechanism, the self-attention, allows the model to weigh and focus on different
parts of the input, making it particularly adept at handling long-range dependen-
cies and varied input lengths. Some more detailed examples and applications of
Transformers in the context of VideoQA include:

e Positional Self-Attention for VideoQA

PSAC was introduced in 2019 as an architecture that employs the Trans-
former without pre-training specifically for VideoQA. This architecture re-
places traditional LSTM units with two positional self-attention blocks, en-
abling the model to capture the intricate relationships within the video con-
tent and between the video and the question. A video-question co-attention
block is also used to simultaneously attend to both visual and textual in-
formation, showcasing the Transformer’s ability to handle multi-modal data
effectively.

e Incorporation of Pre-trained Language Models

Recognizing the power of pre-trained language models, the pre-trained language-
based Transformer, BERT, was incorporated into the domain of VideoQA.
These adaptations focus on understanding movies and stories, which require
extensive language modeling, like processing subtitles and dialogues. By
processing each input modality (video, subtitles) with the question and can-
didate answers, and then fusing several streams for the final answer, these
models demonstrate the adaptability and effectiveness of Transformers in
complex, multi-modal understanding tasks.

e Cross-modal Pre-training and Fine-tuning
The potential of Transformers is further unlocked through cross-modal pre-
training and fine-tuning. Some approaches applied image-text pre-trained
Transformers for cross-modal pre-training, and then fine-tuned them for
downstream video-text tasks like VideoQA. Similarly, other VideoQA mod-
els have been trained on a large-scale dataset using contrastive learning
between a multi-modal video-question Transformer and an answer Trans-
former, demonstrating the benefits of task-specific pre-training for target
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VideoQA tasks. The MERLOT and VIOLET models, which are cross-modal
Transformer models trained in a self-supervised manner, further exemplify
this approach by leveraging vast amounts of unlabeled data to understand
and generate answers based on video content.

In summary, Transformers in VideoQA represent a significant advancement in the
field, offering a flexible, powerful, and efficient framework for understanding and
integrating information across modalities. The ability of Transformers to handle
complex, sequential data and their adaptability to multi-modal tasks have made
them a cornerstone in the ongoing evolution of models for VideoQA.

3.2.1 Positional Self-Attention with Co-Attention

One of the most relevant approaches to our work is the Positional Self-Attention
with Co-Attention (PSAC) [30]. PSAC aims to overcome the limitations of recur-
rent neural networks (RNNs), particularly their inefficiency in handling long-range
dependencies and sequential data processing.

Video Frames Frame Featres Self-Attended Visual Featres
Positianal . (€] comLayer
._’ Self-Attention " | | e
Block P [©) rully Connected Layer
Videa-Question |~

Co-Agtention i @ Sobmax Layer

Block
What does  — {0 —*{_Concate } T " [[05C] Depthwise seperable came
the man do N
((osc} Self-Attention Softmax
before laugh? — LRI (c] Black Cumkmabe

Question (a) Our Framework Self-Atended Texmual Features

Visml
Feature

Trilinear Affinity
Function Matrix
Queestion
Feature
(b) Positional Self-Attention Block (c) Video-Question Co-Attention Block

Figure 3.2: PSAC architecture. Figure from [30].

PSAC consists of two key components: Positional Self-Attention blocks (for
both video and question processing) and a Video-Question Co-Attention block.
The Positional Self-Attention blocks utilize a self-attention mechanism to process
video and question data in parallel, capturing global dependencies without the need
for RNNs. This is achieved by computing responses at each position in a sequence
by attending to all positions within the sequence, along with representations of
absolute positions.

The Video-Question Co-Attention block simultaneously models attention on
both video and question features, helping to focus on relevant information for

72



accurate answer prediction. This co-attention mechanism is crucial for filtering
out irrelevant data and ensuring the generation of precise answers.

3.2.2 Hierarchical Conditional Relational Network

The second most relevant and motivational approach to our work is Hierarchical
Conditional Relational Network (HCRN) [26]. HCRN is a hierarchical architecture
that processes video data for question answering (VideoQA). This architecture is
designed to encode and represent crucial video properties such as object perma-
nence, motion profiles, prolonged actions, and varying-length temporal relations
in a hierarchical manner.

tr 4
| CRN Unit |
» wee  [pacd

M /N

! i::".‘”% g

Answer decoder

video level

Cliplevel | oW AN clip level
*

clip 1 clip2

Figure 3.3: HCRN architecture and CRN unit architecture on the top left. Figure
from [26].

The architecture, as seen in Figure 3.3, named Hierarchical Conditional Relation
Networks (HCRN), is tailored to model videos for QA by integrating different sub-
systems each designed for specific purposes or data modalities. This hierarchical
structure allows the CRNs to encode relations between frame appearances in a
clip, integrate clip motion as context, and then progressively integrate linguistic
context. This hierarchical stacking supports modeling of structures in video and
relational reasoning, enabling multimodal fusion and multi-step reasoning.

The visual representation of a video is divided into equal length clips, each rep-

resented by frame-wise appearance feature vectors and clip-level motion feature
vectors. For instance, in the case of a video V' of L frames divided into N clips,
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each clip C; of length T' = L%J is represented by frame-wise appearance features
v;; and motion feature vector f;. Linguistic representation includes embedding
vectors for words in questions and answers, processed through a bi-directional
LSTM (biLSTM), forming a combined question representation.

The HCRN architecture operates by first computing frame-wise appearance feature
vectors and clip-level motion feature vectors. These vectors are then used to form
an input array at clip level, further conditioned on motion features and linguistic
cues. The model’s loss functions include cross-entropy for general tasks and Mean
Squared Error (MSE) for repetition count tasks. For multi-choice question types,
the model processes each answer candidate in a similar manner, using shared
parameter HCRN .

The results on various Video QA datasets demonstrate that the HCRN model
achieves favorable accuracy across various VideoQA tasks, outperforming or com-
peting well with state-of-the-art models. This underscores the significance of con-
sidering temporal relations, motion, and hierarchy in video modeling for question
answering.

3.3 Graph Based Video QA

Graph Neural Networks (GNNs) have emerged as a powerful tool in the realm of
Video Question Answering (VideoQA), particularly due to their ability to model
complex relationships and interactions within data. By representing videos as
graphs, GNNs can capture the intricate structure of scenes, including the rela-
tionships between different objects and the evolution of these relationships over
time. Here are more detailed examples and applications of GNNs in the context

of VideoQA:

3.3.1 Situation Hyper-Graph

SHG-VQA (Situation Hyper-Graph based Video Question Answering) [46],
includes a situation hyper-graph decoder that identifies graph representations en-
capsulating actions and object/human-object relationships within video clips. The
architecture employs cross-attention mechanisms between these predicted situa-
tion hyper-graphs and the question embeddings to accurately predict answers to
video-related questions.
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Figure 3.4: SHG-VQA architecture

The SHG-VQA method is trained end-to-end and optimized through a VQA
loss function that uses the cross-entropy method, as well as a Hungarian matching
loss for the situation graph prediction. This dual loss strategy ensures that the
situation hyper-graphs are accurately predicted and aligned with the video content
and the questions posed.

An essential aspect of the SHG-VQA architecture is that it focuses less on
generating the most accurate scene graph and more on learning a representation
of the scene that best facilitates the question answering process. This means that
the architecture aims to capture the essence of the scenes and their transitions,
optimizing not only for graph accuracy but also for VQA performance.

The SHG-VQA architecture was evaluated on two challenging benchmarks: the
STAR dataset, which features various question types and is based on a subset of
the Charades dataset, and the Action Genome QA (AGQA) dataset, which tests
vision-focused reasoning skills. These datasets are particularly suitable for the
SHG-VQA method as they provide dense ground truth hyper-graph information
for each video, enabling the architecture to learn the embeddings necessary for
answering questions effectively. The results demonstrated that the hyper-graph
encoding significantly boosts VQA performance by allowing the system to infer
correct answers from spatio-temporal graphs derived from the input video. Fur-
thermore, ablation studies revealed that the quality of the graphs is crucial for
VQA performance, underscoring the importance of the SHG-VQA architecture’s
ability to generate high-quality situation hyper-graphs.
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4 Methodology

4.1 Overview of the approach

In this study, we treat Video QA as a classification problem. Specifically, given
a video V, meaning a sequence of K frames V = [fo, f1, fo, ..., fi, .../K]| and a
question ¢, our aim is to predict the correct answer a* from the answer vocabu-
lary set. The two typical QA formats are multi-choice QA, where each question
is presented with several candidate answers, and open-ended QA, where no an-
swers are provided. Action Genome Question Answering is an open-ended Video
QA Dataset, so we follow previous works and set it as a multi-class classification
problem. This means that we need to classify the video-question pair into a glob-
ally predefined answer set, containing all possible answers. So, we define given a
dataset X' = {(u;,q;, a;, ;) }, consisting of N video clips, where u; € V represents
the visual input from a sequence of frames, ¢; € Q is the corresponding question,
and a; € A is the ground truth answer for each clip. The objective is to learn a
mapping function f : Q@ x V — A that predicts a probability distribution P(.A)
over the set of possible answers in A.

In our approach, we include another modality, spatio-temporal scene graphs, in
order to present our model with a more structured and condensed form of in-
formation, trying to achieve a higher-order understanding of the visual content.
We represent the given video as a ’hypergraph’, describing relationships between
objects across the length of the video clip. For each time step in the video, we
represent the corresponding frame as a graph, g, that captures the entities (ob-
jects, actors) and the relationships present in it. The hypergraph for one video is
represented by the set of graphs G = {g1,...,gr}. For each hypergraph, we con-
struct graph embeddings in order to be used with question embeddings for video
question answering.

As seen in Figure 4.1, we first sample several frames, extract the scene graph g; for
each frame f;. These graphs are then processed through a Graph Neural Network
(GNN) to capture their topology and structure and produce graph embeddings,
eq - The graph embeddings are then passed through a model to infer answers. We
have experimented with several model architectures, leading to our final approach,
a hierarchical conditional scene graph model.

Based on the CRN unit [26], we introduce a query-conditioned attention unit for
graph embeddings, designed to direct focus within the scene graph embeddings
based on the specific queries. We use these blocks to build a deep network ar-
chitecture to support reasoning guided by linguistic questions on the hierarchy
of video structure. We set up two different granularities, one on clip level and
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one on the entire video level. At each hierarchy level, we use one adjusted CRN
unit, conditioned on linguistic cues. The input array at the clip level consists of
the video hypergraph, while at the video level is the output of the clip level. To
our knowledge, this is the first hierarchical approach using scene graphs for more
accurate Video Question Answering.

Frame 1 Stene Graph Generation

Frame ¢ - )
raph Aggregation to o

Video Single Hypergraph

Frame k Stenie Graph Generation

Graph Embeddings

Answer Model Question

Possible Answers

Figure 4.1: Hierarchical conditional approach for Video Question Answering
with the use of Scene Graphs architecture. The adjusted CRN units are stacked
in hierarchy, processing the hypergraph in different granularities conditioned on
linguistic cues. The final output is joined with the question and fed into an output
classifier for prediction.

So, our approach consists mainly of 5 steps:
1. Sample frames from the clip
2. Extract scene graph for each sampled frame
3. Aggregate graphs
4. Pass graphs through GNN to extract video-level graph embeddings

5. Classify the answer based on the question and graph embeddings

We will further analyze each of the above steps in this chapter.

77



4.2 Data Processing and Feature Extraction

In Video Question Answering, each sample consists of a video and a question.

4.2.1 Video

We extract a video at p frames per second and then partition it into K clips of
length N. For each clip C, we maintain a dense stream of N frames to obtain
the clip-level motion feature and a sparse stream of vV frames (ve(0, 1)) to obtain
the region and frame appearance features. In our baselines implementation, the
motion features and frame appearance features are extracted from pre-trained
CNNs, specifically ResNeXt-101 [17] for motion and ResNet-101 [18] for frame
appearance.

Appearance Features

For ResNet-101 [18], an image is passed through a deep network consisting of 101
layers, each consisting of residual blocks. Each block has convolutional layers,
batch normalization, and ReLLU activations, but the key element is the shortcut
connection that skips layers. This design ensures that the signal can propagate
effectively through the network without the vanishing gradient problem, allowing
the model to learn even from very deep layers. As the data progresses through
these layers, ResNet-101 efficiently extracts appearance features from the image,
identifying and learning from complex patterns and textures. This deep and in-
tricate processing enables the model to recognize and classify images with high
accuracy. We can describe the process of obtaining the appearance features as
Af = g4(fi), where Af is the appearance feature vector, f; is the ith frame and g
is the ResNet-101 model.

The resulting appearance features are high-level representations of visual content
captured by ResNet-101. These features encode rich information about the ap-
pearance of objects, colors, textures and spatial arrangements within images.

Appearance Features enhance the model’s understanding by providing detailed
information about the visual content of the video. These features are crucial for
recognizing objects, actions and general visual patterns in the video frames.

Motion Features

ResNeXt-101 [17] takes a slightly different approach, focusing on handling multi-
ple feature representations within its structure. When data enters a ResNeXt-101
model, it is subjected to group convolutions within the residual blocks, where
the input is divided into smaller subsets, each processed in parallel paths. This
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methodology allows the model to capture a diverse range of features simultane-
ously, making it particularly adept at extracting motion features from sequences of
images, like frames in a video. By analyzing these frames collectively, ResNeXt-101
can detect and interpret subtle changes and movements, effectively understand-
ing the temporal dynamics of the visual data. Thus, while ResNet-101 excels in
extracting detailed appearance features from static images, ResNeXt-101 is more
attuned to capturing and analyzing motion features in dynamic, sequential data.
We can describe the process of obtaining the motion features as M f = ¢,,,(C)
where M f is the motion feature vector, C' = [f;, fj, .., fn] is the clip of N sparsely
sampled frames and gy, is the ResNeXt-101 model.
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Figure 4.2: Left: ResNet block[18] and Right: ResNeXt architecture [17]. Figures
from [18] and [17] respectively.

Motion features are essential for capturing the temporal dynamics and changes in
the video content. These features enhance the model’s ability to detect and inter-
pret human activities, object interactions, and other dynamic scene interactions.

4.2.2 Question

To obtain a well-contextualized word representation, we extract the token-wise
sentence embeddings from the penultimate layer of a BERT model [10]. In BERT,
the data journey begins with tokenizing the input text, including a special CLS to-
ken at the start. This tokenization is essential for capturing the sentence’s overall
context. As the tokens pass through BERT’s layers, they are analyzed in a bidirec-
tional context, allowing the model to understand each word in relation to the entire
sentence. The penultimate layer is crucial for extracting embeddings, particularly
the CLS token embedding. This layer provides a rich, balanced representation
of the sentence, encapsulating the contextual nuances and relationships between
words. The CLS token embedding from this layer offers a comprehensive view of
the sentence, crucial for tasks like classification or sentiment analysis, highlight-
ing BERT’s capability to deliver deep, context-aware word representations. We
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can describe the process of obtaining the question features as Qf = g4(q)[CLS]
where Q) f is the question feature vector, ¢ is the question, g, is the BERT model
and [CLS] represents the selection of only the CLS token embedding from BERT’s

output.
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Figure 4.3: Overview of BERT architecture demonstrating the process of ex-
tracting CLS question embeddings. Figure from [10].

4.3 Scene Graph Generation

After dividing the video into clips C and sampling frames from them, we generate
their scene graphs using a pre-trained SGG model. This process can be summed

up in the Figure 4.4.

not looking at_/not contacting Jbehind

L person

Figure 4.4: The ground truth scene graph for this frame including major inter-
actions of the person with objects in the room.
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Scene graphs are generated from an image using a process called Scene Graph
Generation (SGG). SGG involves detecting objects and their relationships in an
image. To generate scene graphs:

1. Input Image (f;): The process begins with an input image f; containing
various objects and their visual features. The image is fed into a pre-trained
and frozen Faster R-CNN model, which outputs a set of bounding boxes and
a feature map.

2. Object Detection: The bounding boxes obtained from the Faster R-CNN
model represent the detected objects in the image. Each object is assigned
a unique identifier and its corresponding visual features.

3. Relationship Detection: Once the objects are detected, the next step is
to determine their relationships. This involves identifying the interactions
between different objects in the image. The triplets describing the objects
and their interrelations make up the scene graph of the input image, g;.
Various SGG methods, such as VTransE [57], MOTIFS [56], and VC-Tree
[40], can be applied to infer these relationships.

In summary, scene graphs are generated from an image by first detecting objects
and then referring the relationships between objects pairs in the form of triplets.
Triplets provide a structured and consise representation of relationships between
entities in a scene. They also encompass linguistic aspects, comprising subject -
predicate - object relationships. This format facilitates efficient storage, retrieval
and processing of information about the scene.

In our study, we use MOTIFS [56] to extract scene graphs for our video frames,
but any other scene graph generation model can be used in its place.

MOTIFS

MOTIFS [56] stands for “Multimodal Online Temporal Fusion for Image-to-Sentence
Matching.” It is a method used for the task of image-to-sentence matching, specif-
ically in the context of multimodal retrieval, where the goal is to find relevant
sentences given an input image.

The key idea behind MOTIFS is to temporally fuse multiple modalities (such as
images and sentences) in an online manner. It takes into account the sequential
nature of multimodal inputs and learns to align the modalities at different time
steps. This fusion process allows the model to capture fine-grained temporal rela-
tionships between the modalities, leading to improved matching performance.
MOTIFS utilizes a recurrent neural network (RNN) to model the temporal dy-
namics of sentences and employs a convolutional neural network (CNN) to capture
visual features from images. These two networks are jointly trained to learn the
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cross-modal alignments and capture the semantic relationships between images
and sentences.

Overall, MOTIFS is a method that effectively combines image and sentence modal-
ities, taking into account their temporal relationships, to enhance the task of
image-to-sentence matching in multimodal retrieval scenarios.

‘ <dog has head> | | <dog has eye> | | <background> |

3
[N

edge context

object context

Figure 4.5: A diagram of MOTIFS architecture. Figure from [56].

Motifs is wrapped in ’Scene Graph Benchmark’ Github Repository [39], so we
use it to extract the scene graphs. It processes the input image f; and returns
hundreds of triplets, along with their confidence score and each object’s bounding
box coordinates and confidence. We implement a post-processing filtering, keeping
only the most confident objects and relationships, resulting in less than 50 triplets
per frame. We thhen use these triplets to form the graph g; for each frame f;.

Figure 4.6: An example of object detection used in MOTIFS, filtered by confi-
dence score more than 10%.
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Figure 4.7: An example of the extracted scene graph used in MOTIFS, after the
post-processing for the frame of Figure 4.6.

4.4 Graph Neural Networks (GNNs)

The next step in our process is to generate graph embeddings, ge i, for each sampled
frame’s scene graph, g;.

Scene graphs are by definition graphs, where objects - nodes are connected with
the relationships between them as edges. Graphs are fundamental structures in
mathematics and computer science, used to model a wide array of complex systems.
Formally, a graph is defined as a set of nodes (or vertices) and a set of edges
connecting these nodes. Mathematically, this can be represented as G = (V, E),
where G stands for a graph, V is the set of vertices, and E is the set of edges.

Graphs can be classified into various types, such as directed and undirected graphs,
depending on the nature of the relationships between the nodes. In a directed
graph, each edge has a direction, indicating a one-way relationship, while in an
undirected graph, the edges represent a two-way, reciprocal relationship. Graphs
are also characterized by their vertices (or nodes) and edges. The edges can repre-
sent various types of relationships or interactions between the vertices. An impor-
tant concept in graph theory is the adjacency of vertices, which can be represented
mathematically through an adjacency matrix A. In an adjacency matrix, each el-
ement A;; indicates whether there is an edge from vertex i to vertex j. Another
key aspect is the degree of a vertex, which is the number of edges connected to
it. In directed graphs, the degree is often split into the in-degree and out-degree,
representing incoming and outgoing edges, respectively.

Scene graphs represent a specialized application of graph theory in the field of
computer vision. A scene graph for an image is a graph where nodes correspond
to objects within the image, and edges represent the relationships or interactions
between these objects. Generating a graph from a scene graph is modeled very
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naturally. Each object identified becomes a node in the graph. The relation-
ships between these objects are then analyzed and represented as edges, forming
a comprehensive graph that encapsulates the dynamics of the scene.

4.4.1 Graph Formulation

Scene graphs, a structured representation of the elements within an image and their
relationships, can be by definition modeled into graphs for Graph Neural Networks
(GNNs) to process. In a scene graph, nodes typically represent objects within the
image, and edges represent the relationships or interactions between these objects.
For example, in an image depicting a park, the nodes could represent entities like
”tree,” "bench,” or "person,” while the edges could describe relationships such as
"next to” or "sitting on.”

To integrate scene graphs into GNNs, each node in the scene graph is encoded with
features that describe the basic property of the corresponding object, meaning
its type. The edges are also encoded with features that describe the type of
relationship between the nodes they connect. Both features, node and edge ones,
are formulated as 1-hot vectors of their category.

The GNN processes this information by aggregating features from neighboring
nodes and edges, learning to identify patterns and interactions within the graph
structure. This enables the GNN to produce informative graph features that enable
complex reasoning about the frame by understanding the relationships and context
provided by the scene graph.

4.4.2 GNN Architectures

The goal of a Graph Neural Network can be to encode nodes and edges as low-
dimensional vectors that summarize their graph position and the structure of their
local graph neighborhood, as well as the features they may have. The defining
feature of a GNN is that it uses a form of neural message passing in which vector
messages are exchanged between nodes and updated using neural networks.

hgﬁl) at iteration k + 1 is calculated as follows:

For a node u, its updated state
m® () = AGGREGATE({h{® : v e N(u)}) (1)

where N (u) represents the set of neighbors of node u, and m®*) (u) is the aggregated
message for node u at iteration k.
The update rule for the node’s state is then given by:

KD = UPDATE(LP, m® (v)) @)
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In this, UPDATEF is a function that combines the node’s current state and the
aggregated message to produce the new state.

A Graph Neural Network (GNN) can produce a graph representation by updating
the features of each node based on the features of its neighboring nodes. This is
achieved through the message-passing mechanism, where nodes exchange informa-
tion with their neighbors. The process involves aggregating these messages and
updating each node’s state iteratively. Over multiple iterations, each node’s fea-
tures become a representation that reflects not only its own attributes but also
the collective information of its local graph neighborhood. This results in a graph
where the representation of each node encapsulates both individual and contextual
information from its surroundings.

For example, if we had a scene graph comprising of the objects ”person”, "tree”,
and ”"bench”, with relationships

person - sitting on - bench,
person - next to - tree,
tree - next to - bench

the GNN would pass messages between the nodes and their neighboring nodes to
update node embeddings based on the local graph structure. At each iteration
the nodes would aggregate information from their neighbors, updating their own
embeddings to reflect the relationships and context. For example, the person node
would receive information about the tree node, being next to the bench. After
multiple message-passing iterations, each node would have a final representation
that captures both the attributes of the node itself and the relationships with the
other nodes.

In order to get graph representations for each frame scene-graph, we used different
GNN architectures from the broader literature, used in various applications. The
selected architecture should be able to capture not only the nodes position and
graph structure, but also the node and edge features, that represented the object
and relationship class respectively.

4.4.3 Graph Attention Network

GAT [48] (Graph Attention Networks) operates by learning to assign different
weights or importance to the nodes and edges in a given graph. GAT can be used
for various tasks including node classification, link prediction, and graph classi-
fication. The core idea behind GAT is the attention mechanism, which enables
the model to focus on different parts of the graph when computing embeddings.
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Instead of treating all nodes equally, GAT assigns attention coefficients to each
node based on its neighbor nodes and the features associated with them.

The process of producing graph embeddings using GAT involves the following
steps:

1. Input Graph: The initial input to the GAT model is a graph represented
by nodes and edges, along with associated features or attributes for each
node.

2. Node Embeddings: GAT starts by transforming the initial node features
using a shared linear transformation, producing node embeddings. These
embeddings capture the information about individual nodes.

3. Attention Mechanism: GAT employs the attention mechanism to com-
pute the edge weights or attention coefficients for each node and its neigh-
bors. The attention coefficients are learned during training and represent
the importance or relevance of each neighbor node for a given node.

4. Aggregation and Weights: Once the attention coefficients are computed,
GAT performs a weighted aggregation of the neighbor node embeddings
based on these coefficients. This aggregation step takes into account the
importance of each neighbor when calculating the representation of a node.

5. Non-Linearity and Output: After aggregation, a non-linear activation
function (e.g., ReLU) is applied to the aggregated features, enhancing the
expressive power of the model. Finally, the output is generated, which may
be in the form of node labels, graph properties, or embeddings.

The Graph Attention Layer can be described as:

h=o| Y afwrph!
JEN;
where hf represents the output feature representation of node ¢ in the k-th atten-
tion head, o denotes the activation function, IN; represents the neighborhood of
node 1, afj are the attention coefficients computed by the k-th attention mecha-
nism, W* is the weight matrix, and h;‘?_l represents the input feature representa-
tion of node j in the k-th attention head.

In summary, the data flow in GAT involves passing information between connected
nodes in the graph through the attention mechanism. The attention coefficients de-
termine the importance of each node’s neighbors, allowing the model to selectively
focus on relevant nodes during computation. This attention-based information
flow helps GAT capture the structural and relational dependencies present in the
graph, resulting in rich and meaningful graph embeddings.
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Edge-Featured Graph Attention Network
Graph Attention Network takes into consideration node features, but ignores edge
features, that in our case play a similarly important role. So, Edge-featured Graph

Attention Networks [4] (EGATSs) were born, as an extension to Graph Attention
Networks (GATS).

A single EGAT layer contains two different blocks: node attention block and edge
attention block. Each EGAT layer is designed in a symmetrical scheme; thus, the
node and edge features can update themselves in a parallel and equivalent way.

Hy

(_rransiorm

H E EGAT Layer 1 EGAT Layer 2 EGAT Layer L. Merge Layer
(a) structure of EGAT layer (b) EGAT architecture

Figure 4.8: (a) the structure of one EGAT layer. Produces 2 mapping matrices,
one for nodes and one for edges respectively. (b) the architecture of EGAT, con-
structed of several EGAT layers and a merge layer. Both figures from [4].

Each EGAT layer accepts a set of node features, H = {ﬁl,flg, .. .,EN}, with
h; € RF#H | as well as a set of edge features, E = {&1,8&s,..., 8}, with €, € RfE
as inputs. Here, N and M represent the number of nodes and edges, while Fig
and Fgp symbolize the number of their respective features. After processing, the
layer will produce high-level outputs, which include a new set of node features,

= {h}, ~’2,...,ﬁ’N}, with fl; € RFr, and a new set of edge features, B/ =
(81,8, ...,&),}, with & € R

The Node Attention Block processes node features H and edge features E, out-
putting a new set of node features H’'. Edge features in E, organized in a specific
order, do not directly show their connections to adjacent nodes. A mapping trans-
formation converts E into E*, where each element ¢;; is related to nodes ¢ and
j. This transformation employs an edge mapping matrix Mg, a N x N x M
tensor, reshaped to N2 x M for matrix multiplication with E, and then back to
N x N x Fy,, transforming E into an adjacency-like structure. Mg is unique for
each graph and is determined in preprocessing.

In this model, thanks to its adjacency-based structure, identifying edges between

specific nodes is efficient. The edge-integrated attention mechanism focuses on
each node, considering not only the features of neighboring nodes but also the

87



connecting edges. For a given node 4, attention weights w;; are calculated for all
nodes j in NV, the set of first-order neighbors of 7, including ¢ itself. Features are
concatenated and processed through a LeakyReLU activation function, parame-
terized by a weight vector a. Normalization of these weights is performed using a
softmax function across all j in V;. This process, including the node’s own features
and those of its neighbors, is mathematically represented as:

_ exp(LeakyReLU(a” [hfh%e;;]))
> keN; exp(LeakyReLU(aZ [h¥hké;x)))

Oéij

This approach allows the model to effectively integrate edge features, enhancing
the representation of each node’s context.

In EGAT, node features are periodically updated in node attention blocks to ac-
quire high-level features. However, reusing the original low-level edge features
for weight computation is not optimal. To address this and maintain a balance
between nodes and edges, edge attention blocks are introduced. These blocks
take node features H and edge features F, and output updated edge features E’.
The update process involves aggregating adjacent edges’ features. In undirected
graphs, adjacency is defined by sharing a common vertex. The method involves
transforming the graph, swapping the roles of nodes and edges. This concept,
also applied in directed graphs for community detection, involves creating a new
graph where the original graph’s nodes and edges are interchanged. The attention
mechanism is then easily applied on this new graph, using a node mapping matrix
M. The normalized attention weight for an edge p in relation to edge g is given
by:

_ exp(LeakyReLU(B” [€préqnhpg)))
Y ken, exp(LeakyReLU (BT [Epépnhpn]))

ﬁpq

Here, N, is the first-order neighbor set of edge p and bis a weight vector.

4.4.4 Graph Isomorphism Network

The Graph Isomorphism Network (GIN) is a type of Graph Neural Network archi-
tecture designed for graph representation learning. It operates on a neighborhood
aggregation scheme to compute each node’s representation vector in a graph. GIN
is known for its expressive power, making it a highly capable GNN architecture.
The node embeddings in GIN are updated iteratively based on neighborhood in-
formation, following the update equation:
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R (v) = MLP [ (14 €®) - n® () + >~ hW(w)
u€N (v)

In this equation, h(¥)(v) is the representation vector of node v at iteration k, N (v)
is the set of neighboring nodes of v, and MLP} is a multi-layer perceptron. The
term (14 e(k)) scales the node’s own representation, enhancing the model’s ability
to capture complex graph structures.

Graph Isomorphism Network with Edge Features
GINE was introduced in 2021, extending the GIN architecture with some minor
modifications to include edge features, as well as center node information in the
protein ego-networks. GINE was used for molecular property detection. In molec-
ular property prediction, node and edge features are initially 2-dimensional cate-
gorical vectors. Unique categories are used for masked nodes/edges and self-loops.
For input to GNNs, these vectors undergo embedding:

h(®) = EmbNodel (4,1 ) + EmbNode2(i, )

h*) = EmbEdge{" (ji,1) + EmbEdge" (je.2) for k =0,1,...,K — 1

In GINE, embedding operations convert integer indices to d-dimensional vectors.
Node representations are updated at the k-th GNN layer:

hF) = ReLU | MLP®) > w4 > A1)
u€EN (v)U{v} e=(v,u):ueN (v)U{v}

Graph-level representation h¢ is the average of node embeddings at the final layer,
used for label prediction:

he = MEAN({h{®)|v € G})

This approach allows for comprehensive feature integration and graph-level infer-
ence.

4.4.5 SCENE

SCENE (SCene Encoding NEtwork), is introduced in 2023 [31] and is an innova-
tive methodology for encoding and reasoning about traffic scenes. This approach
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is centered around the use of a heterogeneous graph that effectively models var-
ious aspects of traffic scenes, including different node types and relation types.
The methodology combines a generic Graph Neural Network (GNN) architecture,
which employs cascaded layers of graph convolution, with a task-specific decoder
to predict relevant information about the scene.

In the GNN architecture of SCENE, the encoder plays a crucial role. It aggregates
information from the traffic scene into node embeddings by utilizing multiple layers
of graph convolution. This process is based on a modified version of the Graph
Attention Network (GAT) operator, which is adapted to incorporate edge features.
A significant aspect of this architecture is the HetEdgeGAT, a combination of
EdgeGAT and the aggregation of embeddings across multiple relation types, which
enhances the model’s ability to process diverse information within the graph.

On the decoding side, SCENE uses a task-specific decoder based on a Multilayer
Perceptron (MLP). This decoder is applied to the encodings of agent nodes for
binary node classification tasks, making it highly effective in interpreting the com-
plex data embedded in the traffic scene graphs.

In SCENE, the input to the system includes features representing dynamic agents
over a duration of three seconds, along with an abstract representation of static
infrastructure, like HD maps. These inputs are then encoded into a heterogeneous
scene graph. The architecture is designed to avoid over-smoothing, a common
issue in multilayer GNNs, by incorporating concatenated residual connections.
For training, the model employs a binary cross-entropy loss function and utilizes
the Adam optimizer.
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Figure 4.9: Overview of SCENE. Figure from [31].

In our study, we represent the frame-scene as an undirected heterogeneous graph

90



with objects as nodes and relationships as edges. Let G = (V, E, T, R, ¢) represent
the graph structure, where:

e V is the set of nodes, with each node v; € V having a feature vector v;.

e E is the set of edges, where an edge e;,; = (v;,r,v;) € E connects the
source node v; to the destination node v; with relation type r € R, and has
a feature vector e;j,. ;.

e T is the set of allowed node types.

e The type operator ¢ : V — T defines the type of each node v.

4.5 Hierarchical Conditional Neural Network & An-
swer Decoder

The final step in our approach is a hierarchical architecture conditioning on the
previously extracted graph embeddings, to answer the question. Drawing inspira-
tion from HCRN’s architecture, seen in Figure 3.3, we adapt the model to integrate
scene graphs, thus benefiting from the hierarchical and contextual processing of
the CRN units.

Motivated by the Hierarchical Conditional Relation Network(HCRN), we propose
a novel architecture that integrates scene graph generation (SGG) and a Graph
Neural Network (GNN) to process and reason over video data. After the scene
graph generation and post-processing, GNNs extract frame-level graph embed-
dings incorporating the relationships and interactions between objects in the scene
graphs. These features are then fed into our Hierarchical Architecture.

The core of our architecture consists of multiple CRN units arranged hierarchi-
cally. The CRN units at the lower level process data at the clip level, handling
more granular information, while CRN units at the higher level operate at video
level, gathering information from multiple clips. The hierarchical design enables
the model to consider information in different contexts. The top level CRN unit
outputs a video graph embedding, used to classify the answer. This video-graph
embedding is then aggregated with the question embeddings and the final feature
is processed by an answer decoder that generates the final output.
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Figure 4.10: Temporal approach model with predicted scene graphs architecture.

By integrating HCRN with scene graphs, the model can exploit this contextual
information to better understand the semantics and spatial arrangements of objects
within scenes, leading to more accurate scene understanding and interpretation.

4.6 Training Process

Our architecture is trained end-to-end with pre-generated scene graphs. During
training, out model sequentially processes batches of data, each comprising of
graph representations of videos, class labels, and encoded answers among other
elements. The GNN component first processes the graph data to produce embed-
dings, which are then utilized by the HCRN model along with the questions to
predict answers.

Optimization is performed using CrossEntropyLoss and the AdamW optimizer,

with accuracy and loss metrics for training sessions logged via Weights & Biases
(WandB) [2], facilitating real-time monitoring and analysis as seen in Figure 4.11.
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Validation phases in between training epochs enable the evaluation of the model’s
performance on unseen data. Saving checkpoints and the best model based on
validation accuracy ensures that progress is retained and that the most effective
model configuration is saved.

4.7 Challenges and Limitations
4.7.1 Scene Graphs Accuracy

The scene graphs generated from the video frames are essential to its overall per-
formance. This part of the pipeline is constrained due to the use of MOTIFS,
which is an older pre-trained model. The use of MOTIFS can lead to less efficient
and accurate scene graphs extraction.

Additionally, the scene graph extraction’s effectiveness is further limited because of
the lack of fine-tuning on Action Genome Question Answering. Without this step,
the model’s parameters remain optimized for the generic data distribution of the
original training set of another dataset. This way, the model may not be subjective
to the unique characteristics of AGQA potentially resulting in less precise scene
graphs;

In summary, both the architecture of the pre-trained model and the absence of fine-

tuning present limitations to our method. However, we can easily address these
issues by using a state-of-the-art methodology instead of MOTIFS with little to
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no change in our methodology and also implementing a fine-tuning phase tailored

to AGQA.

4.7.2 Dataset size

Comprising nearly 3 million question-answer pairs, with around 2 million allocated
for the training set, the dataset presents a considerable obstacle in terms of com-
putational demands for model training. To tackle the impracticality of training
a model on the entire dataset, we employ a strategy of training on smaller sub-
samples. These subsamples are carefully curated to maintain the original dataset
distributions, ensuring that the model is exposed to a representative mix of data
during training. So, this computational bottleneck imposes a significant constraint
on the iterative process of model development and evaluation.

4.7.3 Generalization

The proficiency of the model in generalizing beyond the AGQA dataset is indeed
an area of concern given the dataset’s specialized nature. The AGQA dataset is
meticulously constructed to represent daily activities, with its videos curated to en-
capsulate a spectrum of commonplace scenarios. The questions within this dataset
are systematically generated from the scene graphs and actions using predefined
scripts.

When considering the generalization of this model to other datasets, one must
acknowledge that the divergence in question generation algorithms can pose a
significant challenge. If the algorithm used to create question-answer pairs in a
new dataset diverges from the one used in AGQA, the model might struggle to
perform with the same level of accuracy. The reason lies in the model’s potential
overfitting to the patterns and distributions present in AGQA’s questions, which
are inherently tied to the scripts used for their creation.

4.8 Method overview

In conclusion, our architecture involves the following steps, as also seen in Figure
4.1:

e Frame Sampling: selecting clips and frames from video

e Scene Graph Generation (SGG): extracting scene graphs from frames,
depicting objects and their relationships

e Scene Graphs Post-Processing: filtering objects and triplets.
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e Clip-Level Features: CRN neurons process sequences of frames to under-
stand temporal and relational dynamics

e Video-level Features: CRN units process clip-level features to understand
the whole video.

e Answer Classification: Combines the video-level understanding with the
language query to predict the answer
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5 Experiments, Results & Dis-
cussion

In this chapter, we detail the experiments conducted on AGQA, a large-scale
Video Question Answering dataset, and analyze the results. Our investigation
begins with an overview of the AGQA dataset, including its scale, diversity, and
specific challenges it poses for Video QA tasks. This section provides context for
understanding the dataset’s complexity and the rationale behind our experimental
design. Following the dataset introduction, we outline the implementation details
of our approach. This includes the computational framework, hardware specifi-
cations, and considerations made to address the dataset’s challenges. We then
describe the baseline models developed to benchmark our methodology. These
baselines are structured to incrementally introduce complexity and assess the im-
pact of different data modalities and structures on performance:

e Language Bias Baseline: Focuses on the dataset’s linguistic aspects, ig-
noring visual information to evaluate performance based solely on textual
input.

e Language-Vision Baseline:Integrates visual data with textual queries to
examine the improvement over language-only models, still without temporal
analysis.

e Language and Scene Graphs Baselines: This includes two models, one
utilizing ground truth scene graphs and another with predicted scene graphs,
to explore the benefits of structured semantic information on performance,
without temporal modeling.

Building on these baselines, we introduce our main contribution: a hierarchical
conditional architecture that incorporates temporal modeling to better capture
the dynamics of scene graph sequences in relation to the questions asked. This
approach is designed to overcome the limitations identified in the baseline models
and improve accuracy by exploiting the temporal dimension. Our analysis includes
a quantitative comparison of our model against the baselines and state-of-the-art
methodologies, using standard metrics to position our results within the context
of existing research. The chapter concludes with a summary of our experimental
insights, emphasizing the significance of temporal modeling in video QA tasks and
suggesting directions for future research.

5.1 Action Genome Question Answering (AGQA)

We evaluate the proposed approach on a challenging video question answering
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benchmark, Action Genome Question Answering (AGQA). Action Genome Ques-
tion Answering is a benchmark of 3.9M balanced and 192M unbalanced question-
answer pairs associated with 9.6K videos, each 30 seconds in length.

The Action Genome Question Answering Dataset is an extension of Action Genome,
an action recognition benchmark built upon Charades[55]. Charades is composed
of videos of daily indoor activities, collected through Amazon Mechanical Turk,
which includes 267 different users. Action Genome is built on top of Charades and
offers annotated frames, uniformly sampled across the activities of each clip. We
can see an example of an AGQA video in Figure 5.6. Action Genome decomposes
actions into spatio-temporal scene-graphs, capturing the objects and how their
relationships evolve as the actions progress.

Scene graphs are a formal representation of image information in the form of a
graph. Each scene graph encodes objects as nodes, connected together by pairwise
relationships as edges. Each action in Action Genome is represented as changes to
objects and their pairwise interactions with the person performing the action. The
representation can be viewed as a temporally changing version of Visual Genome
scene-graphs, but instead of densely representing the objects in the scene, it aims
to decompose actions by annotating only those segments of videos that involves
an activity that can be decomposed.

Action Genome Question Answering provides frame-level scene graph labels for the
components of each action. Overall, there are more than 234k frames annotated,
with more than 476k bounding boxes, 35 object classes, and more than 1.7M
instances of 25 relationship classes, as seen in Table 5.1 and Table 5.2. Even
if some objects and relationships occur more frequently than others, almost all
objects have at least 10k instances, and every relationship has at least 1k instances.

Window Bag Bed Blanket Book Box

Broom Chair Closet/Cabinet Clothes ~ Cup/Glass/Bottle Dish

Door Doorknob  Doorway Floor Food Groceries
Laptop Light Medicine Mirror Paper /Notebook  Phone/Camera
Picture Pillow Refrigerator Sandwich  Shelf Shoe
Sofa/Couch Table Television Towel Vacuum

Table 5.1: AGQA Objects Types.
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Attention Spatial Contact

looking at in front of carrying

not looking at | behind covered by

unsure on the side of | drinking from
above eating

leaning on have it on the back
lying on holding

beneath

not contacting
sitting on

in

standing on
touching
twisting
wearing
wiping
writing on

Table 5.2: AGQA Relationships Types.

The questions in Action Genome Question Answering are generated using tem-
plates and scene graph information to create a diverse set of questions. Questions
are categorized as reasoning primarily about an object, relationship, or action.
In Figure 5.1 we can see some examples of Action Genome Question Answering
question-answer pairs, along with some sampled frames.
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Q1: After wall , which object were they interacting with? A1: blanket

Q2: Was a broom one of the things they were contacting while i ] the A2: Yes
: 7
Q3: While ] £ . 1 firsl, of everything they  A3: broom
went on the side of, what was the person on the side of last?
Q4: Did the person touch the thing they took before or after they ; Ad: after
?

Q1: After ] & . did they louch a table or a chair? A1: chair
Q2: Between ] S0IME and i 5, did they touch A2 No
both some food and the object they were above before starting to sit at a table?
Q3: Which did they go on the side of befare was = but after ] AJ: blanket
, @ blanket or the last thing they took?
de of before was ] sh but after « Ad: blanket

Q4. Of everything they went on (he =
: , what did they go on the side of first?

- %

Q1: What did they start to do first after SO ? Al:

Q2! In the video, did they go behind the last thing they went in or the object they AZ: laptop

were putting down last first?

Q3: Did they walch something before or after : ere A3: before
st somewhere?

Q4: Which object were they in between ] 50M¢ Ad: clothes

and £ £ £ Bre g e?

Figure 5.1: Examples of AGQA Questions. Figure from [14].
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An interesting experiment was the human study, where humans were used to vali-
date the correctness of AGQA’s questions. T'wo tasks were run, one where humans
had to verify given answers and one where they had to select the answer from a
drop-down list, as seen in Table 5.3. This represents an upper bound of accuracy
for the Video Question Answering task on AGQA.

Question Types Verification (%) Dropdown (%)

B 78.95 68.42

obj-rel (0] 90.90 63.64

. All 80.65 67.74
Reasoning

rel-action B 90.20 78.43

obj-act B 93.75 83.33

B 81.81 72.73

superlative (0] 80.77 55.77

All 81.25 63.54

B 94.73 78.94

sequencing O 85.18 59.26

All 90.77 70.77

exists B 79.80 74.03

B 91.89 70.27

duration O 92.31 69.23

All 92.00 70.00

activity recognition O 78.00 54.00

B 87.39 74.19

object (0] 90.90 60.52

. All 87.97 72.93
Semantic

relationship B 83.58 75.37

B 90.21 73.91

action (6] 80.95 57.14

All 86.45 67.10

query O 83.53 58.82

compare B 92.53 78.16
Structure

choose B 83.02 66.04

logic B 70.69 70.69

verify B 88.26 76.93

B 86.65 73.85

Overall (6] 83.53 57.93

All 86.02 71.56

Table 5.3: This table presents the human performance on two tasks per question
category. On the first one they had to verify given answers (Verification) and on
the second they had to select the correct answer from a dropdown list. For each
question type, see can see their performance on binary questions, B, open-ended
questions, O and all.
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Figure 5.2: Example of an AGQA video, depicting a young man doing daily
activities, like a man sitting at his desk and picking up a bag.

5.1.1 Dataset Statistics

The dataset comprises approximately 9.6 thousand videos, each with a duration
of 30 seconds and recorded at a frame rate of 30 frames per second (fps). This
translates to an average of around 900 frames per video. However, a notable aspect
of AGQA is the selective annotation process applied to these videos. Despite the
large number of frames available per video, on average, only 35 frames in each video
are annotated. This disparity highlights the focused nature of the annotations,
where only a fraction of the total frames are chosen for detailed labeling. This
approach underscores the dataset’s emphasis on specific, salient moments within
the videos, rather than a comprehensive frame-by-frame annotation.

We can measure the average annotated relations per video, observing a bell-shaped
distribution with an average of around 7.5 to 10 relations per video in both the
training and test sets, as seen in Figure 5.4. This indicates a common complexity
level within the dataset where most videos contain a similar range of relations.
There’s a notable decrease in frequency as the number of relations increases, sug-
gesting that fewer videos have a very high complexity in terms of relations depicted.

About the average annotated objects per video, as seen in Figure 5.4 the distribu-
tion is somewhat left-skewed, with a peak at 4 objects per video in both training
and test datasets. It shows that a majority of the videos feature a modest number
of distinct objects, with the number of videos rapidly declining as the number of
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Number of objects per video

Videos

Objects

(a) Train set

Figure 5.3: Average objects

nnnnnnnnnnnnnnnnnnnn

(a) Train set

Number of objects per video

Objects

(b) Test set

annotated per video.

o

(b) Test set

Figure 5.4: Average relations annotated per video.

objects increases. The consistency of this pattern across training and test sets
suggests that the dataset is well-balanced in terms of object variety per video.
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wacul
holding some food

arini

tidying someth

Figure 5.5: AGQA Answer Distribution.

As we can see in Figure 5.5, the distribution follows a steep descending order,
with the most frequent answer being significantly more common than the rest.
This first category towers over the others, indicating a heavily skewed distribution
where one or a few answers dominate the dataset. The two most common answers
with almost equal shares are ”yes” and "no”.

As we move from left to right along the x-axis, there is a rapid decline in the
frequency of each successive answer, demonstrating a long-tail effect. This sug-
gests that while there are a handful of very common answers, there is also a wide
variety of less common ones. This type of distribution is typical in natural lan-
guage datasets, where a small number of words or phrases are extremely common
(following Zipf’s law), and there is a long tail of rare words or phrases.

This distribution could imply that any model trained on this dataset might
become biased towards the most common answers, and thus, special consideration
might need to be given to ensure that the model does not simply learn to always
predict the most frequent categories. Techniques such as re-sampling, re-weighting,
or using sophisticated loss functions might be necessary to counteract this imbal-
ance and encourage the model to learn a more generalizable understanding of the
data.

AGQA authors run three state of the art models on their benchmark (HCRN,
HME, and PSAC), and find that the models struggle on the benchmark. If the
model only chose the most likely answer (“No”) it would achieve a 10.35% accuracy.
The highest scoring model, HME, achieved a 47.74% accuracy, which at first glance
appears to be a big improvement. However, further investigation found that much
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of the gain in accuracy comes from just exploiting linguistic biases instead of
from visual reasoning. Although HCRN achieved 47.42% accuracy overall, it still
achieved a 47% accuracy without seeing the videos. The fact that the model is
so dependent on linguistic biases instead of visual reasoning reduces the ability
of our other test splits to effectively measure visual reasoning for these particular
models.

5.2 Implementation Details

5.2.1 Framework

In our experimental setup, we utilized PyTorch [33] as the main framework for
all model training and development. For graph-related tasks, especially in Graph
Neural Networks (GNNs), we employed the Deep Graph Library (DGL)[49], which
is compatible with PyTorch and provides optimized graph data structures and
operations.

5.2.2 Operating Environment

Our computational resources were divided between two machines, each equipped
with four GPUs. The first machine contained four GeForce GTX 1080 Ti GPUs
and was used for preprocessing tasks, including motion and appearance feature
extraction, CLS feature generation, and scene graph extraction. The second ma-
chine, equipped with four NVIDIA GeForce RTX 3090 GPUs, was dedicated to
running the experiments. This setup allowed for efficient processing and task dis-
tribution, leveraging the strengths of each machine and GPU type for their specific
roles in the experimental pipeline.

5.2.3 Train-Test Sets split

We train and test our model on the large-scale AGQA dataset, which comprises a
total of 3 million questions, segmented into 1.8 million for training and 1.2 million
for testing. To accommodate various computational capacities and to facilitate
detailed analysis, we designed two distinct experimental frameworks: a tiny setup
and a small setup. The tiny setup includes a subset of 10,000 training samples
and 2,000 test samples, while the small setup expands this to 100,000 training
samples and 20,000 test samples. These subsets were carefully curated from the
original training set, ensuring that the questions in the train and test sets corre-
spond to entirely different videos to avoid any potential data leakage and to closely
mimic real-world application scenarios. Additionally, we employed random sam-
pling techniques to maintain the original dataset’s distribution, thereby ensuring
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that our experimental setups accurately reflect the diversity and complexity of the
AGQA dataset.

Train - Test Splits
Split | Train Size | Test Size
tiny 10.000 2.000
small | 100.000 20.000

Table 5.4: Train - Test Splits on AGQA Benchmark.

5.2.4 Frame Extraction

A crucial part of our preprocessing involved the extraction of individual frames
from video data, a process we accomplished using a modified script based on the
Action Genome framework. This script, written in Python, automates the frame
dumping process from video files, tailored to our specific dataset and annotation
requirements.

Using FFMPEG [44], we create a mapping of video files to the corresponding
frames to organize the grame extraction process. It’s important to note that the
frames are extracted at their original video frames per second (FPS), which may
not always be a standard rate like 24 FPS. This means that the frame indices
may differ from other datasets, such as the Charades dataset. After extracting
the frames, the script optionally deletes frames not listed, keeping only the an-
notated frames. This script handles large datasets efficiently and is flexible to
different project requirements, making it a vital tool in our preprocessing pipeline.
The use of ffmpeg ensures high compatibility with various video formats and effi-
cient processing. Moreover, the script’s ability to selectively extract frames based
on annotations significantly reduces unnecessary data storage and computational
overhead.
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Figure 5.6: Example of an AGQA video after the annotated frames extraction.
The frames are annotated as following: For each annotated action, 5 frames are
selected uniformly across the action and are annotated.

In AGQA, questions are engineered using specific templates, resulting in some
"Good’ and some "Tricky’ questions. Good questions can be better phrased, more
direct, and easier to understand, while tricky questions can have ambiguous an-
swers, can be very difficult to interpret, or have a vague meaning. Below we can
see an example of questions for the video in Figure 5.6:

*Tricky’ questions:

- What did they take while sitting in the thing they went above? bag

- In the video, what was the person on the side of? chair

- What was the person above while standing up? chair

- In the video, was a chair the last thing they held? no

- Which object were they in front of? chair

- Did they touch a bag but not the thing they tidied after taking the thing they
held from somewhere?

’Good’ questions:
- Which object did the person take while sitting at a table? bag
- In the video, which object were they taking? bag
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- Before standing up but after taking a bag from somewhere, which object were
they above? chair

- Did they hold a bag or sit in a chair for longer? sit in a chair

- Which object were they above? chair

- After taking the object they were holding from somewhere, did they interact with
a chair? yes

- Did the person hold a bag for a shorter amount of time than they spent laughing
at something? yes

- Was the person holding a bag or laughing at something for a shorter amount of
time? holding a bag

5.3 Non-Temporal Baseline Models

In this section we will discuss the baselines we built on our way to our final
methodology and discuss their performance. We experiment with a language only
experiment, a non temporal baseline with vision and two non-temporal baselines
with scene graphs, one with ground truth scene graphs and the other one with
predicted ones.

5.3.1 Language Bias Experiment

In our first baseline experiment, we focused on the simplest approach for answer
classification using only the question embeddings, trying to measure the language
bias. We utilized [CLS] token embeddings derived from BERT, a former state-
of-the-art language model, as the primary feature representation for our textual
input. The choice of BERT was motivated by its proven capability in capturing
deep contextual relationships within text, making it ideal for understanding the
nuances in the questions and answers.
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Question BERT MLP Answer

Figure 5.7: Language bias baseline architecture for question classification.

The process began with feeding the textual data into the BERT model to obtain
the CLS embeddings. In BERT’s architecture, the CLS token is a special token
added at the beginning of each input sequence, and its corresponding embedding
in the output layer is designed to capture the overall context of the sequence. This
makes the CLS embedding a comprehensive representation of the entire input text,
encapsulating its semantic essence.

Model Language Vision Scene Graphs Temporal Processing

Lang MLP v - - -

Table 5.5: Modalities & Capabilities of Models.

Once we obtained the CLS embeddings, we used them as input to a Multi-
Layer Perceptron (MLP). The MLP in our experiment was a simple feedforward
neural network with fully connected layers. It was responsible for mapping the
high-dimensional CLS embeddings to the space of our target classes. The MLP’s
architecture was kept relatively simple, with a few hidden layers, to provide a
baseline understanding of how well the CLS embeddings from BERT could perform
in a classification task with minimal additional complexity.

The objective of this baseline experiment was to classify the answers into
predefined categories. The combination of BERT’s sophisticated language un-
derstanding and the MLP’s classification capability aimed to set a foundational
performance benchmark. This would then serve as a point of comparison for more
complex models or approaches explored in subsequent experiments.

In this baseline experiment, we sought to assess the language bias on AGQA
using uniformly sampled datasets of 10k and 100k samples, meaning question-
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Experiments | Accuracy
10k samples 21.5%
100k samples 34.1%

Table 5.6: Language Bias Results on AGQA.

answer pairs. Uniform sampling ensures each data point from the dataset has an
identical probability of selection, thus eliminating sampling bias and reflecting the
true distribution of the dataset.

According to the dataset authors, if the model were to naively predict the
most frequent category, "No”, it would stand at an accuracy of 10.35%. When
analyzing the results under this light, the Language Bias model achieved 21.5%
accuracy with 10k samples, which is more than double accuracy. This indicates
that the model has learned to identify linguistic patterns between questions and
answers that go beyond mere guesswork.

Upon expanding the dataset to 100k samples, the baseline model’s accuracy
improved to 34.1%. This is a substantial increase not only over the baseline but
also over the smaller sample size, demonstrating the model’s enhanced ability to
generalize from a larger dataset. With more data, the model can discern between
different types of questions, rather than leaning on a one-size-fits-all approach.
It’s noteworthy that the increased accuracy is also comparable to accuracy that
would result from always predicting the most common answer. For object-related
questions, the accuracy for predicting the most common answer would result with
9.38% accuraacy, the relationship-based questions with 50%, and the action-related
questions with 32.91% .

That being said, through this experiment, we have assessed the existing se-
mantic connections between the question and answer pairs. As also demonstrated
in the AGQA paper, there is a strong linguistic bias that state-of-the-art models
can exploit to score up to 47% accuracy.

5.3.2 Non-Temporal Video-Language Baseline

As a next step from the previous baseline, we wanted to examine how well a
non-temporal model could use the combination of language and video data.
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@ MLP Answer

Mean Appearance Features
per clip & then per video

Video dlip selection ResNeXt-101

Figure 5.8: Non-temporal language & video architecture.

Specifically, the experiment investigated how the integration of appearance
embeddings, extracted from video data, would enhance the model’s performance
compared to a language-only baseline. For this purpose, two distinct sets of em-
beddings were used:

e Question BERT CLS Embeddings: These embeddings were generated
by using BERT (Bidirectional Encoder Representations from Transform-
ers), a pre-trained transformer-based model well-known for its effectiveness
in encoding a wide range of language representations. The [CLS] token
embeddings, which are designed to capture the context of the entire input
sequence, were extracted to represent the questions.

e Mean Appearance Features of 8 Clips: In addition to the language
embeddings, appearance features from the video were included. These fea-
tures were obtained by uniformly sampling 8 clips across the length of the
video, extracting their appearance features, and then taking the mean. This
process involved using a convolutional neural network pre-trained on image
data to capture visual features from each frame. The procedure for clip sam-
pling, feature extraction, and processing was consistent with the methods
used in HCRN

A Multilayer Perceptron (MLP), a type of feedforward artificial neural network,
was then trained to classify the answers using these combined embeddings. The
MLP took as input the concatenated question and video embeddings and learned
to map this high-dimensional input to the correct answers.

The results from the experiment showed an improvement over the language-
only model. With 10k samples, the language-only model (referred to as ’lang’)
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Model Language Vision Scene Graphs Temporal Processing

Lang MLP v - - -
Vid_Lang MLP v v - -

Table 5.7: Modalities & Capabilities of Models.

Experiments | lang | lang+vid
10k samples 21.5% 26.1%
100k samples | 24.1% 25.8%

Table 5.8: Accuracy of MLP model with BERT CLS embeddings and mean
appearance features.

achieved 21.5% accuracy, while the model combining language and video (referred
to as lang+vid’) achieved 26.1% accuracy. Similarly, with 100k samples, the 'lang’
model had an accuracy of 24.1%, while the ’'lang+vid’ model reached 25.8% accu-
racy. These results suggest that the additional context provided by the appearance
features from the video data contributes positively to the model’s ability to answer
AGQA questions more accurately.

question-type accuracy

exists 32.8%

obj-rel 18.5%
obj-act 24%

sequencing 24.62%
duration-comparison 12%
rel-act 22%
action-recognition 0%

Table 5.9: Non-temporal language & video results per question type.

We can measure the qualitative performance of the baseline model in the bar
graph of Table 5.9. Taking a quick look at the table, we can easily infer that the
categories the baseline model falls short of are the ones with a temporal aspect, like
"action_recognition’. The MLP used to classify the answers cannot process tempo-
ral sequences, crucial to action recognition, thus failing at some relevant categories.
However, the MLP can sometimes recognize static features from the video frames
appearance features, identifying objects and answering the ’exists’ and ’obj’ re-
lated questions. So, even if the baseline model can answer some questions based
on static image feature extraction, it is not designed to process time-dependent
information, so it lacks a lot in temporal understanding. Another weakness of this
baseline model lies in the ’obj-rel’ category, which also requires higher reasoning
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and comprehension levels.

5.3.3 Upper bound - Non-temporal baseline model

Drawing motivation from the results of the previous baseline model, our ap-
proach focuses on providing better scene comprehension and video understanding
through scene graphs. As seen in Figure 4.1, after sampling clips and frames, we
extract scene graphs, process them with a Graph Neural Network to get graph
embeddings for each frame, and use those embeddings to classify the answer for
each question. Our hypothesis is that using a richer representation of the video
content through scene graphs can lead to improved accuracy in Video Question
Answering.

Building upon the insights of the initial baseline model, our proposed method
aims to enhance scene understanding by incorporating scene graphs. Our proof
of concept involved the extraction of ground truth scene graphs from individual
frames within a video. These scene graphs are structured representations that
encapsulate the objects and relationships within a scene. By using these graphs,
we want to prove that we can capture a snapshot of the scene’s composition that
provides more contextual clues than the raw pixel data alone. So, our goal is to
see if the ground truth scene graphs can leed to better accuracy than using the
visual appearance features.

Question BERT s

@ MLP Answer

Mean Graph Embeddings
per video

(T - 50s

Video clip selection GNN

Figure 5.9: Non-temporal proof of concept architecture.

As seen in Figure 5.9, our process consists of several steps. We first extract
contextual embeddings of the question from a pre-trained large language model,
BERT. The question embeddings are the "CLS’ token embeddings, that are typi-
cally used in classification tasks.
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We then proceed to clips and frame sampling. The HCRN clip sampling strat-
egy wouldn’t be possible since it samples 8 clips of 16 sequential frames each. The
AGQA annotation process included annotating 5 frames per action in videos, uni-
formly spread across the action duration. Since the majority of videos had more
than 15 annotated frames and 35 on average, we chose 5 clips of 3 frames each.
For the clip separation, we split the video into equal parts and then sampled as
uniformly as we could across the annotated frames. We hope that this sampling
strategy will enable our graph embeddings to capture the video’s diversity.

After selecting the frames for each video, we form the ground truth graphs,
using the dataset annotations. We then use a GNN to extract features from the
scene graphs. We use a simple Graph Attention Model with edge weights to capture
the relationships and interactions between objects within a scene. This model
updates the nodes features of each node by aggregating the neighboring nodes and
edges features. In this way, each frame is encoded into a graph embedding that
encapsulates its content in a dense, informative vector.

Model Language Vision Scene Graphs Temporal Processing
Lang MLP v - - -
Vid_Lang MLP v v - -
PoC v v v -

Table 5.10: Modalities & Capabilities of Models.

To classify the answers we use a simple feedforward MLP with few hidden
layers. An MLP, by its nature, is not capable of handling temporal information, a
significant aspect of video content. To tackle this problem, we use a video-graph
embedding strategy. We take the mean of the graph embeddings from all the frames
within a video clip to form a clip-level embedding. This process aggregates the
information from multiple frames, providing a temporal aspect to the otherwise
static embeddings. We then further condense this information by taking the mean
of all such clip-level embeddings to produce a whole video graph embedding.This
final embedding represents the entire video’s content and serves as input to the
MLP for the final classification of the answer.

Experiments Lang MLP Vid Lang MLP PoC
10k samples 21.5% 26.1% 49.1%

Table 5.11: Experimental results showing the effect of adding ground truth scene
graphs to language features.

To test this architecture, we conduct an experiment with 10k samples. We can
detect a significant improvement compared to the baseline models, reporting accu-
racy of 49.1%, as also seen in Table 5.11. From that we can infer that scene graphs
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convert visual data into a structured format that can be more effectively utilized
by an MLP. Also, while MLPs inherently lack the ability to process temporal in-
formation, the mean of graph embeddings from clips can offer an approximation
of temporal dynamics by capturing changes in the scene graph over time. The
structured nature of scene graphs means that they can represent complex scenes
with relatively little data compared to raw pixels, leading to a significant accuracy
boost.

Question type Accuracy

superlative 22.6&

obj - rel 27.72%
exists 32.8%
obj-act 36%
sequencing 30.8%
duration-comparison 6%
rel-act 0.3%
action-recognition 0%

Table 5.12: Non-temporal proof of concept architecture results per answer cate-
gory.

In Table 5.12, we can see significant improvement in almost all question cat-
egories. The most impressive one is the object-relation, object-action and exists
category, where the accuracy has doubled due to the use of scene graphs, as ex-
pected.

5.4 QOur final approach

As we have already discussed in Figure 4.1, our approach proposes the use
of scene graphs to get more structured and contextual video features and lead to
improved Video Question Answering performance.

5.4.1 Graph Extraction and Filtering

To compute the scene graphs, we use the Scene Graphs Benchmark and the
pre-trained MOTIFS model. The process begins with the detection of objects
within an image. These detected objects are then used to predict the relationships
between each pair of objects. The MOTIFS model uses visual features from the
objects and the spatial information between them to predict these relationships.

The model works by first detecting objects in the image using a pre-trained
object detector. Once the objects are detected, the model computes features for
each object and the pairwise spatial features. These features are then fed into the
MOTIFS model, which includes a message-passing mechanism to refine the object
features based on their context within the image.
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Finally, the refined features are used to predict relationships by considering
the types of objects detected and their visual features. The output is a graph
structure that represents the objects as nodes and the predicted relationships as
edges, forming the scene graph.

5.4.2 Scene Graphs post-processing

As aresult of the above process, there are multiple objects detected and triplets
generated. In order to keep useful triplets, we implemented a filtering process.
Firstly, due to the large volume of detected objects, whereas only a handful of
them are accurate, we only keep objects with confidence larger than 10%. We also
remove duplicate object instances by calculating the intersection over union of the
objects bounding boxes. Then, after resulting in several filtered detected objects,
we select the triplets that only involve those. Then, we also filter the less confident
ones, gathering the triplets for our final scene graph.

Ground Truth scene graph:

Predicted scene graph:

Figure 5.10: Example of scene graph extracted from video frames compared to
the ground truth scene graphs.

5.4.3 Non-temporal Graph Model

Our first approach was to examine the proof-of-concept model’s performance
with predicted scene graphs instead of the ground truth ones.
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Figure 5.11: Non-temporal approach model with predicted scene graphs archi-
tecture.

Model Language Vision Scene Graphs Temporal Processing
Lang MLP v - - -
Vid_Lang MLP v v - -
PoC v v v -
SG-MLP v v v -

Table 5.13: Modalities & Capabilities of Models.

Experiments Lang MLP Vid Lang MLP PoC SG_MLP
10k samples 21.5% 26.1% 49.1% 31.6%

Table 5.14: Experimental results comparing the non-temporal scene graphs ap-
proach to baselines.

As seen in Figure 5.11, the architecture is very similar to the proof-of-concept
one, except for the origin of the scene graphs. In summary, we sample clips and
frames, extract scene graphs, process them with a Graph Neural Network to get
graph embeddings for each frame, and use those embeddings to classify the answer
to each question.
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Question type Accuracy
obj-rel 42.47%
exists 31.04%
obj-act 36%
sequencing 24.66%
superlative 19.5%
duration-comparison 12%
rel-act 24%
action-recognition 0%

Table 5.15: Performance per question type

As we can see in Table 5.15, there is a significant boost in accuracy in almost
every category compared to the baselines. However, if we compare this model to
the proof-of-concept model with the ground truth graphs, the latter is over 30%
more accurate in the object-relation category. This was expected since MOTIFS
is an older model, so the scene graphs may not capture the most accurate objects
and their interrelations. Also, the AGQA questions have been engineered from
the ground truth scene graphs, actions and captions, so there may be a much
higher correlation between the ground truth graphs and the answer, so the proof-
of-concept model performs a lot better.

5.4.4 Temporal Graph Model

Building on top of the previous models, we take motivation from HCRN and pro-
pose the architecture as sen in Figure 4.10. Hierarchical architecture aligns well
with the hierarchical structure of videos. It allows the model to reason about
objects and their interactions at different levels, from frame level to video level,
while also making use of CRN units, able to capture contextual information be-
tween scene graphs.

Model Language Vision Scene Graphs Temporal Processing
Lang MLP v - - -
Vid_Lang MLP v v - -
PoC v v v -
SG-MLP v v v -
SG-HCRNx v v v v

Table 5.16: Modalities & Capabilities of Models

In the training phase, we noticed that this model needed more epochs to converge
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compared to the previous models. This could be indicative of the complexity of
this architecture and the higher number of parameters needed to capture patterns
in the data.

Experiments Lang MLP Vid Lang MLP PoC SG_MLP SG_HCRNx
10k samples 21.5% 26.1% 49.1% 31.6% 42.5%

Table 5.17: Experimental results comparing our approach to baselines

After our experiments, we can see that the SG_.HCRNx model outperforms the
baseline models, demonstrating the value of integrating structured visual infor-
mation with language features. We can also notice the performance jump from
Vid_Lang MLP to SG_HCRNx underscoring the effectiveness of utilizing scene
graphs for enhancing model understanding. However, there is still a gap to fill
between PoC and SG_HCRNx, due to the accuracy of the scene graph generation.

obj-rel exists superlative rel-act sequencing obj-act duration-comparison action-recognition
49.8%  53.7% 55.1% 40.9% 50.4% 56.3% 25.5% 7.4%

Table 5.18: Accuracy of our final approach per question category

As we can see in Table 5.18, our approach presents strengths in understanding
certain types of questions better than others. The category with the highest accu-
racy is 'obj-act’ (object-action), that suggests that our model can recognize and
understand objects and their interactions in the video, supporting our hypothesis.

As we can see in Table 5.19, our approach places second in overall score among
the state-of-the-art methods. Our approach presents comparable results in almost
all question categories and even outperforms in some of them. First of all, our
approach achieves the highest accuracy in ’obj-rel’ category, meaning our model
can efficiently understand relationships between objects within the scene. We also
expect this score to increase with the use of a more contemporary SGG model that
generates more informative scene graphs. Our model also performs best in ’exists’
and ’superlative’ categories which means it can accurately identify the occurrence
of concepts and objects and their order. In the rest of the categories -except for
duration-, our model is ranked second, whereas in the duration category it is the
least accurate method. This could indicate that our clip sampling strategy is pro-
viding too little and too sparce frames to our method so as to understand actions
and their durations accurately. Our method has limitations in capturing temporal
sequences and understanding temporal events. Finally, we have to mention that
our scores are indicative, but not directly comparable to the other methods, since
we are testing on a subset of the test set, maintaining the original set’s distribu-
tions.
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Method obj-rel rel-action obj-action superlative sequencing exists duration activity | Overall
PSAC [30] 37.84 49.95 50.00 33.20 49.78 49.94  45.21 4.14 40.18
HME [5] 37.42 49.90 49.97 33.21 49.77 49.96  47.03 5.43 39.89
HCRN [20] 40.33 49.86 49.85 33.55 49.70 50.01 43.84 5.52 42.11
SHG-VQA [46) 4642  60.67 64.63 38.83 62.17  56.06 48.15  10.12 | 49.20
SG_HCRNx(ours) 49.8 53.7 55.1 40.9 50.4 56.3 25.5 74 42.5

Table 5.19: Comparison to sota approaches

toilet

n T /Avearing fivearing {haspn’ of bn

Figure 5.12: Example 1. Video sample with corresponding scene graphs. We
only demonstrate 6 out of 15 sampled frames for space efficiency.

Examples of our model’s performance on the video sample shown in Figure
5.13.

Question: Between putting a dish somewhere and putting their paper somewhere,
what was the person tidying?

Predicted answer: table

Ground truth answer: table

Question: Before putting a dish somewhere, was a table the last thing they tidied?

Predicted answer: yes
Ground truth answer: yes
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Question: Were they interacting with a closet before or after they put their paper
somewhere

Predicted answer: after

Ground truth answer: before

ook ) Cvindow>

Figure 5.13: Example 2. Video sample with corresponding scene graphs. We
only demonstrate 6 out of 15 sampled frames for space efficiency.

Question: Which object did the person go above while putting something on a
table?

Predicted answer: chair

Ground truth answer: chair

Were they interacting with the object they were in front of before or after taking
the object they were putting down from somewhere?
Predicted answer: before

Ground truth answer: after

Question: Which did they go on the side of after putting the object they were
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taking somewhere, a table or a shoe?
Predicted answer: table
Ground truth answer: shoe

5.5 Ablation Studies
5.5.1 Hierarchical Conditional Relational Network

At first, in order to explore the importance of each modality in a hierarchical
conditional network, we adjusted the code released by the dataset’s authors and
reproduced HCRN experiments and ablation studies.

Model Language Appearance Motion Accuracy
HCRN v v v 38.2%
HCRN(no motion) v v - 37.7%
HCRN(no appearance) v - v 37.4%
HCRN(blind) v - - 39.3%

Table 5.20: Ablation study of performance of different HCRN components

Ablation experiments evaluated the impact of excluding motion features alto-
gether, excluding short-term motion features (clip level), and excluding long-term
motion features (video level). The findings highlight that motion features are
critical for detecting actions and computing action counts, with long-term mo-
tion being particularly crucial for tasks requiring a global temporal context. This
demonstrates the significance of motion features in understanding the dynamics of
video content.

The model was also tested without any linguistic conditioning. The results in-
dicate that linguistic cues are essential for selecting relevant visual content, thereby
improving the model’s performance across different tasks. This emphasizes the role
of linguistic features in providing a contextual basis for interpreting video content.

5.5.2 Graph Neural Networks

In our study, we conducted an investigation into the application and optimiza-
tion of Graph Neural Networks (GNNs) . Our exploration spanned a variety of
GNN architectures, examining both the efficacy of stacking multiple GNN layers
and the impact of integrating different attention mechanisms. A key focus was on
the inclusion of edge features within these networks, assessing how they contribute
to the model’s ability to capture complex relationships and interactions within the
data. Additionally, we examined isomorphic networks with the ability to process
edge features, because of their higher understanding level of structural properties
of graphs. Beyond these configurations, our experimentation extended to more
sophisticated models characterized by an increased number of layers, like SCENE.
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This endeavor aimed to determine the optimal balance between model complexity
and performance, exploring how deeper network architectures influence learning
capacity, generalization, and computational efficiency.

Model Accuracy (%)
1-layer GINE 32.8
1-layer EdgeGAT 34.6
2-layer GINE 30.5
2-layer EdgeGAT 33.1
GINE_EdgeGAT 34.6
SCENE 33.9

Table 5.21: Accuracy comparison of our non-temporal baseline approach for
different GNN architectures

We can make several observations based on Table 5.21. Firstly, the single-layer
configurations (1-layer GINE and 1-layer EdgeGAT) outperform their two-layer
counterparts (2-layer GINE and 2-layer EdgeGAT). This suggests that adding
more layers does not necessarily lead to better performance for this specific task.
Also, the GINE_EdgeGAT model, matches the highest accuracy among the in-
dividual models. This architecture combines the strengths of both GINE and
EdgeGAT models, getting a higher understanding of the graph’s topology and
structure due to the isomorphism and also comprehension of the nodes and edges
because of the attention mechanism on both. This suggests that leveraging the
features and mechanisms of both models can effectively capture both node and
edge representations, resulting in optimal performance.

5.5.3 Temporal Graph Model

We also explored the importance of contextual integration, both at the hierar-
chical levels within the model and the features used as context. We first examined
the importance of varying stages of contextual information and hierarchical struc-
turing on the model’s performance. Specifically, we added a question-context stage
within each hierarchical level, as seen in Figure 5.14 to give our model the capacity
to understand more complex questions.
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Figure 5.14: 2-stage context on question per level ablation for SG_HCRNx.

We trained and tested this architecture on the tiny setting, consisting of 10k
train samples and 2k test samples. After studying the results, seen in Table 5.22,
we came to the conclusion that adding an extra level of linguistic cues context
doesn’t enhance the model’s ability to reason on complex questions, but rather
performs on the same level as with one question context level per hierarchy level.

Experiments Lang MLP Vid_Lang MLP PoC SG_MLP SG_HCRNx 2-stage SG_HCRNx
10k samples 21.5% 26.1% 491%  31.6% 42.5% 41.3%

Table 5.22: Experimental results showing the effect of adding a CRN stage inside
the hierarchical levels

5.6 Experimental Conclusions

In this study, we introduce a new approach to Video Question Answering
(VQA) through the development of a hierarchical architecture that enhances the
model’s ability to comprehend complex video content using scene graphs. This
architecture employs hierarchical conditional relational networks alongside scene
graphs. The utilization of scene graphs offers a structured representation of video
scenes, which, as demonstrated in our experiments, plays a crucial role in boost-
ing the model’s interpretative capabilities. The effectiveness of scene graphs is
particularly evident in the substantial accuracy gains observed when they are in-
corporated, underscoring their value in providing semantic structure to video data.
This is further highlighted by the success of the upper bound baseline model that
leverages ground truth scene graphs, achieving remarkable improvements in accu-
racy across diverse question types.
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The experiments conducted reveal that our approach is good at handling ques-
tions related to object actions and relations, showcasing its capability to discern
and interpret interactions and relationships among objects within videos. Notably,
the model exhibits exceptional performance in answering ’exists’ and ’superlative’
question categories, which points to its effectiveness in identifying objects. When
compared with current state-of-the-art methods, the SG HCRNx model demon-
strates competitive performance, securing a second-place ranking in overall effec-
tiveness. This achievement reflects the model’s strength in understanding scene
semantics and recognizing concepts and objects.

We also recognize opportunities for future work, such as refining the clip sam-
pling strategy or incorporating more advanced scene graph generation models,
which could further enhance the model’s performance. Additionally, exploring
more intricate temporal modeling techniques and the integration of multimodal
data present promising avenues for overcoming the identified limitations.

In summary, we propose an Video Question Answering architecture that lever-
ages scene graphs and hierarchical conditional relational networks to advance the
understanding of complex video content. This work achieves remarkable improve-
ments in model accuracy but also demonstrates the potential of structured seman-
tic information in improving the quality of video understanding.
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6

6.1

Conclusion

Conclusions

In this thesis, we have worked on scene-graphs guided Video Question Answer-
ing and have explored the integration of scene graphs to transform video content
into structured representations. More specifically:

Our research explores the integration of scene graphs into a hierarchical
architecture for Video Question Answering (VQA), particularly focusing on
real-world visual relations and human activities as depicted in the Action
Genome Question Answering dataset.

We hypothesize that scene graphs contain critical information for answering
questions about videos, especially those involving human activities. Actions
can be decomposed into spatio-temporal scene graphs that capture the re-
lationships between objects and their attributes

We propose a 2-stage framework: the first stage involves Scene Graph Gener-
ation (SGG) and graph formulation; the second stage focuses on training the
VQA model using a Graph Neural Network (GNN) alongside a Hierarchical
Architecture.

After scene graph extraction, GNNs are utilized to derive graph embeddings
that provide deeper insights into the video content by efficiently capturing
the relationships and attributes of visual elements.

A key component of our methodology is a query-conditioned graph attention
unit, designed to focus on relevant parts of the scene graph embeddings
based on specific queries. This unit is reusable and stackable, enhancing the
model’s flexibility and scalability.

Experimental validation on a randomly sampled subset of AGQA demon-
strates that our approach ranks among the top state-of-the-art methods,
showing superior performance in certain question types. This indicates that
transforming the video content from the pixel space to a structured sequence
of scene graphs can enable better video understanding. The effectiveness of
our approach is confirmed, though it is noted to be sensitive to the quality
of the scene graphs.

Ablation studies reveal that the SCENE GNN architecture, which incorpo-
rates attention features for heterogeneous graphs, node and edge features,
yields the best results. Our second ablation study suggests that incorporat-
ing an additional level of linguistic cues into the model does not significantly
enhance its reasoning capabilities for complex questions.
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e Our research contributes to the field of Video QA by demonstrating the
value of scene graphs and GNNs in enhancing the model’s understanding of
complex video content. Future work includes exploring the transferability of
our approach to other datasets and domains, as well as investigating more
advanced scene graph generation models to further improve the model’s
performance.

6.2 Limitations

While the adoption of scene-graph-driven approaches in Video Question An-
swering (Video QA) represents a significant advancement in understanding com-
plex video content, it is imperative to acknowledge the limitations of this method-
ology. Our approach, which leverages structured representations through scene
graphs to facilitate reasoning over video content, faces some challenges.

A principal challenge in scene-graph-driven VQA is its heavy reliance on the
quality and comprehensiveness of the generated scene graphs. The system’s ability
to accurately answer questions is directly tied to how well the scene graph rep-
resents the video’s content, including objects, attributes, and their interrelations.
An incomplete or inaccurate scene graph undermines the system’s performance,
as it may leave out crucial details required to answer the questions. Moreover, the
specificity of the graph types plays a critical role. For instance, a simple graph
focusing solely on objects and their relationships might lack the necessary detail
to answer questions regarding attributes, such as ”What color is the book?” This
limitation points to the need for generating more detailed scene graphs that not
only capture object relationships but also include visual attribute information to
accommodate a wider array of question types.

Generalizing scene-graph-driven VQA systems across different domains and
types of video content is hindered by the variability in objects, attributes, and
relationships characteristic of each domain. Additionally, the computational in-
tensity of generating and reasoning over scene graphs, particularly for lengthy and
complex videos, limits the applicability of these systems in scenarios requiring
real-time responses or where computational resources are limited.

6.3 Future Steps
6.3.1 Fine-tuned SGG

As far as quality improvements are concerned, there is much room for im-
provement, including the cases of inaccurate, not salient and uninformative scene
graphs. This problem is very common and is caused by training in a different
dataset and targeting a different application context. This can be approached
through fine-tuning in the scene graph model used specifically in Action Genome
Question Answering Dataset. Through this fine-tuning we will recalibrate the
model’s parameters to capture the specificities of the dataset. This will help us
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generate more accurate and relevant scene graphs boosting the whole system’s
performace.

6.3.2 End-to-end

An idea motivated by the analysis of the qualitative results would be to train
the whole approach, including the sgg model, end-to-end, learning better graph
representations and more meaningful graph embeddings at the same time.

As for the graph embeddings, we would like to explore a soft neurosymbolic
approach using graphs such as the Neural State Machine [23], instead of GNNs.
The Neural State Machine performs an iterative computation of a differentiable
state machine over a semantic graph, so it would possibly lead to more informative
graph embeddings.

Another idea for an alternative end-to-end approach is to fine-tune recent
promising large-scale video and language transformer models, such as CLIP-BERT
[29], which offer affordable end-to-end learning for video-and-language tasks through
methods like sparse sampling and hierarchical transformers designed and tailored
for the temporal dimension

6.3.3 Graph Augmentation

A future step would be to augment the scene graphs with visual information
and properties of the objects, such as their bounding box coordinates etc. That
way our model would be able to answer more accurately vision-related questions
with information that is not currently included in the graph. For example, in
a question like "What did the woman do before grabbing the red book and after
grabbing the green book?’, it would be impossible for our approach to differentiate
between the two books and correctly understand the video.

6.3.4 Adding Modalities

Another future step would be to add more modalities to our model. For ex-
ample, we could add audio information or even text information from the video’s
captions. Both the sound and the captions could provide very insightful and salient
information about the scene, and we could combine them with the scene graphs
embeddings using multimodal fusion techniques. This would allow our model to
have a more comprehensive understanding of the video content and thus be able
to answer more complex questions.
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