
Ιωάννης Χ. Ζάρρας

Development of a Framework for 3D Reconstruction
and Inspection of Vineyards

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Κωνσταντίνος Τζαφέστας

Αναπληρωτής Καθηγητής, Ε.Μ.Π.

Αθήνα, Μάρτιος 2024

Ιωάννης Χ. Ζάρρας

Development of a Framework for 3D Reconstruction
and Inspection of Vineyards

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Κωνσταντίνος Τζαφέστας

Αναπληρωτής Καθηγητής, Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 27η Μαρτίου 2024.

Αθήνα, Μάρτιος 2024

............................
Κωνσταντίνος Τζαφέστας
Αναπληρωτής Καθηγητής,
Ε.Μ.Π.

............................
Ευάγγελος Παπαδόπουλος
Καθηγητής, Ε.Μ.Π.

............................
Πέτρος Μαραγκός
Καθηγητής, Ε.Μ.Π.

...................................
Ιωάννης Χ. Ζάρρας

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Ιωάννης Ζάρρας, 2024
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται

η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της

εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα

και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου

Πολυτεχνείου.

5/156

Στην οικογένειά μου

6/156

7/156

Περίληψη

Η τρισδιάστατη απεικόνιση χώρου είναι ένα ισχυρό εργαλείο που φέρνει ήδη ριζικές αλλαγές

στον τομέα της γεωργίας. Χρησιμοποιείται για την απομακρυσμένη παρακολούθηση της

ανάπτυξης των καλλιεργειών, την ταυτοποίηση παρασίτων και ασθενειών, ακόμα και την

αυτοματοποίηση των εργασιών στον αγρό. Ωστόσο, αποτελεί πρόκληση η διασφάλιση της

απαραίτητης οπτικής ποιότητας της απεικόνισης ώστε να μπορεί ο αγρότης να διακρίνει

εύκολα λεπτομέρειες στα φυτά.

Η παρούσα διπλωματική εργασία επικεντρώνεται στο σχεδιασμό και την υλοποίηση

ενός αποδοτικού συστήματος αντίληψης για τετράποδα ρομπότ, ικανού να ανακατασκευάσει

με ακρίβεια ένα αμπέλι παράγοντας σαφές οπτικό περιεχόμενο για τον χρήστη. Το

αντικείμενο της παρούσας εργασίας είναι όχι μόνο η έρευνα και η ανάπτυξη του

απαραίτητου λογισμικού για την επίτευξη του παραπάνω στόχου, αλλά και η ανασκόπηση

του διαθέσιμου υλικού για αυτόν τον σκοπό και τελικά η εκτέλεση ενός πειράματος σε

προσομοίωση αλλά και με πραγματικό ρομπότ σε πραγματικές συνθήκες.

Αρχικά εξετάζονται υπάρχοντα πακέτα λογισμικού για τρισδιάστατη ανακατασκευή και

χωρική χαρτογράφηση. Η σύγκριση παράγει πολύτιμες πληροφορίες σχετικά με τα οφέλη

και τα μειονεκτήματα πρωτοποριακών μεθόδων ανακατασκευής χώρου. Τα πακέτα

δοκιμάζονται στο ROS noetic και εφαρμόζεται επιτάχυνση υλικού CUDA, όταν αυτό είναι

εφικτό. Επιλέγεται τελικά το εργαλείο χωρικής χαρτογράφησης ZED με υπολογισμό βάθους

με νευρωνικά δίκτυα, για να συμπληρώσει τον προσαρμοσμένο αλγόριθμο τρισδιάστατης

ανακατασκευής που σχεδιάζεται στο τέλος αυτής της εργασίας.

Στο τρίτο κεφάλαιο της παρούσας διπλωματικής εργασίας μελετώνται αλγόριθμοι

πλοήγησης και σχεδιασμού τροχιάς. Ο αλγόριθμος πλοήγησης του ρομπότ που εν τέλει

εφαρμόστηκε βασίζεται σε προηγούμενες μελέτες για οπτική οδομετρία με δύο κάμερες που

πραγματοποιήθηκαν από την Ομάδα Τετράποδων Ρομπότ του Εργαστηρίου Συστημάτων

Ελέγχου του ΕΜΠ, σε έναν πρωτότυπο αλγόριθμο αποφυγής εμποδίων που αποσυνθέτει

τον χώρο σε πολύγωνα, καθώς και σε έναν PID ελεγκτή παρακολούθησης τροχιάς.

Στη συνέχεια εξετάζεται η επιλογή των υλικοτεχνικών στοιχείων που θα

χρησιμοποιηθούν για την υλοποίηση του συστήματος αντίληψης. Μια σύγκριση αισθητήρων

και μονάδων επεξεργασίας, καθώς και μια εξερεύνηση των τρόπων με τους οποίους αυτά

μπορούν να συνδυαστούν και να τοποθετηθούν σε ένα τετράποδο ρομπότ, οδήγησε σε

καλά τεκμηριωμένες αποφάσεις σχετικά με την τελική δομή του συστήματος. Για την

επίτευξη των συγκρίσεων αναπτύχθηκε ένα εργαλείο τρισδιάστατης απεικόνισης πεδίου

θέασης και ανάλυσης lidar (FoVaLiRa) στην πλατφόρμα ανάπτυξης Unity.

Το τελευταίο κεφάλαιο επικεντρώνεται στην ανάπτυξη του αλγορίθμου Vinymap για

αντικειμενική αξιολόγηση ποιότητας point cloud, τρισδιάστατη απεικόνιση αμπελιών και

αξιολόγηση πυκνότητας φυλλώματος. Το Vinymap είναι μια καινοτόμος διεργασία και

δοκιμάστηκε σε κινητό ρομπότ που φέρει το σύστημα αντίληψης που δημιουργήθηκε στα

πλαίσια αυτής της εργασίας. Είναι γραμμένο σε python3, με χρήση δύο γνωστών και

καθιερωμένων βιβλιοθηκών ανοιχτού κώδικα, των Open3D και OpenCV.

Λέξεις Κλειδιά – Γεωργικά Ρομπότ, Ρομποτική Αντίληψη, Τρισδιάστατη

Ανακατασκευή Χώρου, Πλοήγηση και Έλεγχος Κινούμενων Ρομπότ, Σχεδιασμός

Τροχιάς

8/156

Abstract

3D spatial mapping is a powerful tool that is revolutionizing the field of agriculture. By

creating detailed digital representations of fields, farmers can gain insights into their land

that were previously unattainable. This technology can be used to remotely monitor crop

growth, identify pests and diseases, optimize irrigation and fertilizer applications, and even

automate field operations. However, it is a challenge to ensure the necessary optical quality

so that the farmer can easily distinguish details in the plants.

The present thesis focuses on the design and implementation of an effective perception

system capable of accurately reconstructing a vineyard while producing clear and

comprehensive visual content for the user. The subject of the present work is not only the

research and development of the necessary software to achieve the above goal, but also a

review of the available hardware for that purpose and ultimately the execution of an

experiment in simulation, as well as with a real robot in realistic conditions.

First, the available software on 3D reconstruction and spatial mapping is reviewed.

Comparing four different packages produces valuable insight regarding the benefits and

drawbacks of various state-of-the-art reconstruction methods. The packages are tested on

ROS noetic and CUDA hardware acceleration is enabled to speed up the process. The ZED

spatial mapping tool with neural depth capabilities is chosen to complement the custom 3D

reconstruction algorithm that is ultimately implemented in this work.

Navigation and path planning algorithms are studied in the third chapter of the present

thesis. The final design of the high-level planner which is utilized in both the simulation and

the real-life experiments is based on prior studies on dual camera visual odometry

conducted by the Legged Robots Team of the Control Systems Lab in NTUA, as well as on

a novel obstacle avoidance algorithm which leverages polytopic decomposition and a stable

trajectory tracking PID controller.

Deciding which hardware components to utilize for the implementation of the perception

system is next addressed in this work. A comparison of sensors and processing units, as

well as an exploration of the ways in which they can be combined and placed on a

quadruped robot, led to well-argued decisions about the final structure of the perception

system. To justify and visualize these comparisons, a three-dimensional field of view

visualization and lidar resolution analysis tool (FoVaLiRa) was developed in the Unity

Development platform.

The final chapter focuses on the development of the Vinymap Objective Quality

Assessment, Canopy Inspection and 3D Reconstruction Algorithm. Vinymap is a novel

approach to reconstructing a real vineyard while maintaining the visual features of the

leaves, the grapes, and the trunk intact. It also assesses the vineyard’s canopy density and

provides valuable quantitative indexes to the farmers. Vinymap was tested on a mobile

robotic platform with the perception system developed in this work. It is written in python3

and utilizes open3D and openCV, two well-known and well-established open-source

libraries.

Keywords – Agricultural Robots, Robotic Perception, 3D Reconstruction, Robotic

Navigation and Control, Path Planning

9/156

Acknowledgements

First and foremost, I would like to express my gratitude to God, for staying with me through

the thick and thin.

I would like to express my deep gratitude to Professor Evangelos Papadopoulos for opening

the door to the world of robotics. His guidance, expertise, and insightful advice were

instrumental in shaping this thesis. I am also incredibly grateful to PhD candidate Athanasios

Mastrogeorgiou for sharing his knowledge right from the outset and being a mentor

throughout this journey. My sincere thanks to PhD candidates Konstantinos Koutsoukis and

Konstantinos Machairas for their encouragement and support. Their ability to foster a

welcoming lab environment made this experience even more enriching. I would like to

acknowledge the significant contributions of Christos Kokkas. His valuable work played a

crucial role in this research. I would like to thank Dimitrios Zarras, my brother and colleague,

for being a constant source of guidance and support as I navigated unfamiliar territory. I am

deeply grateful to Nikoletta Papageorgiou. Her selfless assistance and insightful remarks

improved the quality of my work, while her encouragement made it easier.

Finally, I would like to thank my family. Their encouragement, love and support will always

be unique and irreplaceable.

Ioannis Zarras

March 2024

10/156

Table of Contents

Περίληψη ... 7

Abstract ... 8

Acknowledgements .. 9

Table of Contents ... 10

Λίστα Εικόνων .. 14

List of Figures ... 15

List of Tables ... 19

List of Abbreviations .. 20

1 Εκτεταμένη Ελληνική Περίληψη .. 22

1.1 Εισαγωγή ... 22

1.2 Έρευνα και Αξιολόγηση Πακέτων Λογισμικού Χαρτογράφησης και
Ανακατασκευής Χώρου ... 24

1.2.1 Rtabmap .. 24

1.2.2 Robot-Centric Elevation Mapping ... 24

1.2.3 Gradslam ... 25

1.2.4 ZED Spatial Mapping ... 25

1.2.5 Επιλογή του Κατάλληλου Πακέτου Λογισμικού ... 26

1.3 Πλοήγηση και Σχεδιασμός Διαδρομής ... 26

1.3.1 Πλοήγηση ... 26

1.3.2 Σχεδιασμός Διαδρομής ... 27

1.4 Σχεδίαση Συστήματος Αντίληψης .. 28

1.4.1 Field of View Visualization and Lidar Resolution Analysis Tool
(FoVaLiRa) ... 28

1.4.2 Μονάδα Επεξεργασίας ... 29

1.5 Ανάπτυξη του Vinymap για Βελτιωμένη Ανακατασκευή και Επιθεώρηση 29

1.5.1 Αξιολόγηση και Βελτίωση Ποιότητας Νέφους Σημείων (point cloud) 30

1.5.2 Εκτίμηση Πυκνότητας Φυλλώματος Αμπελιών ... 31

1.5.3 Φωτο-ρεαλιστική Ανακατασκευή Αμπελώνα ... 31

1.6 Πειραματική Διάταξη .. 32

1.7 Αποτελέσματα ... 33

1.7.1 Αξιολόγηση και Βελτίωση Ποιότητας Point Cloud ... 33

1.7.2 Αξιολόγηση Αλγορίθμου Εκτίμησης Πυκνότητας Φυλλώματος 33

1.7.3 Αξιολόγηση Αλγορίθμου Φωτο-ρεαλιστικής Ανακατασκευής Αμπελώνα 34

1.8 Συμπεράσματα και Μελλοντική Εργασία ... 35

2 Introduction .. 37

11/156

2.1 Motivation .. 37

2.2 Literature Review ... 37

2.2.1 Agriculture Robots .. 37

2.2.2 Path Planning ... 39

2.2.3 SLAM and 3D reconstruction .. 40

3 Reconstruction Software ... 43

3.1 SLAM ... 43

3.1.1 Localization .. 43

3.1.2 Mapping ... 44

3.1.3 SLAM ... 45

3.1.4 VSLAM ... 46

3.2 SOTA Packages .. 49

3.2.1 RTAB-Map ... 49

3.2.2 Robot-Centric Elevation Mapping ... 50

3.2.3 Gradslam ... 53

3.2.4 Zed Spatial Mapping .. 54

3.3 Comparison and Decisions .. 56

3.3.1 Comparison .. 56

3.3.2 Decisions ... 57

4 Path Planning ... 59

4.1 Taxonomy of Planners ... 59

4.1.1 Global and Local path planners .. 59

4.1.2 Obstacle Representation .. 60

4.1.3 Exploratory Path Planners .. 62

4.2 SOTA Packages .. 64

4.2.1 Ewok Planner ... 64

4.2.2 Sequential MPC Reactive Planning using Safe Corridors 68

4.2.3 Graph-based exploration planner (GB-planner) .. 72

4.3 Comparison and Decisions .. 75

5 Vision System ... 76

5.1 Sensing.. 76

5.1.1 Lidar Sensors ... 76

5.1.2 Depth Cameras .. 78

5.1.3 Photogrammetry ... 79

5.1.4 Comparison and Decisions ... 79

5.2 Processing Unit ... 80

5.2.1 Performance Metrics .. 81

5.2.2 MicroControllers ... 81

5.2.3 Single-Board Computers (SBCs) .. 82

5.2.4 Mini-PCs .. 84

5.2.5 Laptops .. 86

12/156

5.2.6 Comparison and Decision .. 86

5.3 Field of View Visualization and Lidar Resolution Analysis Tool
(FoVaLiRa) .. 87

5.3.1 The Scene .. 88

5.3.2 Configuration .. 90

5.3.3 The FoVaLiRa development process ... 92

5.3.4 Forming a 3D Mesh .. 96

5.3.5 Detecting Visible Targets.. 98

5.4 The Lealaps Perception System .. 100

5.4.1 Perception System Requirements .. 100

5.4.2 Discussing possible sensor configurations ... 100

5.4.3 Deciding on a near optimal sensor configuration for Laelaps 103

6 Simulation Experiments ... 105

6.1 Simulated World .. 105

6.2 Simulated Robotic Platform ... 107

6.3 Simulation Software architecture ... 109

6.3.1 Tracking PID .. 109

6.3.2 April Tags and Loop Closure .. 110

6.3.3 Simulation Experiment Pipeline .. 111

7 Laboratory Experiments .. 114

7.1 The synthetic vineyard setup ... 114

7.2 The Robotic Platform ... 116

7.3 Laboratory Experiment Software Architecture ... 117

8 The Vinymap Quality Assessment and Reconstruction
Algorithm ... 120

8.1 Custom SOPCQA .. 120

8.1.1 Sparsity Index Calculation .. 120

8.1.2 Hole Detection .. 122

8.1.3 Cluster Outlier Detection .. 125

8.1.4 Final SOPCQA Algorithm ... 126

8.2 Point Cloud Quality Improvement and Registration 127

8.2.1 Quality Improvement .. 127

8.2.2 Registration .. 128

8.3 Canopy Density Assessment ... 131

8.4 Mesh Generation and Filtering .. 132

8.4.1 Alpha shapes ... 133

8.4.2 The Ball Pivoting Algorithm .. 133

8.4.3 Chosen methodology and Filtering ... 134

8.5 RGB Image Projection and Texture Generation .. 135

8.5.1 Vertex Coloring and 2D Textures ... 135

8.5.2 Texture Application... 136

13/156

8.5.3 Projective Texture Mapping .. 137

8.5.4 Triangle Visibility and Ray Casting ... 141

8.5.5 Photo-Realistic Vineyard Reconstruction .. 141

8.6 Experimental Results ... 143

8.6.1 Simple Objective Point Cloud Quality Assessment Evaluation 143

8.6.2 Canopy Density Assessment Evaluation .. 144

8.6.3 Reconstruction Quality ... 145

8.6.4 Real Time Viability.. 146

9 Conclusions and Future Work ... 148

10 References .. 150

14/156

Λίστα Εικόνων

Εικόνα 1-1: (a) Μια πλατφόρμα που ίπταται, σε περιβάλλον προσομοίωσης Gazebo. (b)
Η απεικόνιση της πλατφόρμας και του γύρω χώρου με τη χρήση του
Robot-Centric Elevation Mapping. .. 25

Εικόνα 1-2: (a) Η πειραματική διάταξη για την εύρεση της ιδανικής γωνίας θέασης και
απόστασης από το ... 27

Εικόνα 1-3: Το τετράποδο ρομπότ Lealaps II, με την τελική διάταξη αισθητήρων
αντίληψης όπως ... 29

Εικόνα 1-4: Εύρεση περιοχών χαμηλής πυκνότητας στο point cloud................................... 30

Εικόνα 1-5: Αλγόριθμος εύρεσης κενών περιοχών στο point cloud. 30

Εικόνα 1-6: Εντοπισμός συστάδων που αποτελούν θόρυβο. .. 31

Εικόνα 1-7: Αλγόριθμος εκτίμησης πυκνότητας φυλλώματος αμπελιών. 31

Εικόνα 1-8: Αλγόριθμος φωτό-ρεαλιστικής ανακατασκευής Αμπελώνα. 32

Εικόνα 1-9: Η ρομποτική πλατφόρμα και το σύστημα αντίληψης που αναπτύχθκαν στο
Εργαστήριο Αυτομάτου Ελέγχου. ... 32

Εικόνα 1-10: Πειραματική διάταξη συνθετικού αμπελώνα στο Εργαστήριο Αυτομάτου
Ελέγχου. ... 33

Εικόνα 1-11: Αξιολόγηση πυκνότητας φυλλώματος. Με κόκκινο χρώμα: κενά στο
φύλλωμα των αμπελώνων. .. 34

Εικόνα 1-12: Σύγκριση ποιότητας ανακατασκευής... 35

15/156

List of Figures

Figure 2-1: Robots designed for various agricultural Tasks. .. 38

Figure 2-2: Path planning strategies. ... 40

Figure 2-3: (a) Subjective quality assessment of a point cloud of a plant [40]. Left: parts
of plant have not been reconstructed. Right: view planning improves
reconstruction. .. 42

Figure 3-1: Robotic Platform Localization Illustration. .. 43

Figure 3-2: ANYmal robot mapping terrain (staircase) using a stereo camera [64]. 44

Figure 3-3: 2D and 3D Occupancy Grid Maps built using 2D and 3D Lidar SLAM utilizing
MATLAB's Navigation Toolbox [65]. ... 45

Figure 3-4: Loop Closure Illustration. .. 47

Figure 3-5: (a) One camera's lenses are obstructed resulting in very low number of
detected features. .. 48

Figure 3-6: April Tags used for research purposes in April Laboratory, University of
Michigan [69]. ... 48

Figure 3-7: A 3D map of an office building constructed with RTAB-Map iOS application
[12]. .. 50

Figure 3-8: (a) A floating platform in Gazebo. (b) The elevation map constructed with
RCEMapping. ... 52

Figure 3-9: A rectangular obstacle was moved from right to left. The visibility is checked
with ray tracing and the previous map (red) is accordingly updated
resulting in an updated map (blue) [13]. ... 52

Figure 3-10: Gradslam provides differentiable building blocks for simultaneous
localization and mapping (SLAM) systems. The four main blocks it offers
are Differentiable Visual Odometry, Differentiable Registration using least-
squares, Differentiable Mapping and Ray differentials [14]. 53

Figure 3-11: Small office scene reconstructed using Gradslam [14]. 54

Figure 3-12: Mesh Generation (a) and Point Cloud Generation (b) with ZED Spatial
Mapping. .. 54

Figure 3-13: Successful Monocular Depth Estimation [75]. ... 56

Figure 4-1: Combination of Global and Local Planner Illustrated. .. 59

Figure 4-2: Grid-based free space (white squares) and obstacle (dark squares)
representation and viable path from starting position (green circle) to
target position (red circle). .. 60

Figure 4-3: Rapidly-exploring Random Tree* (RRT*), a common sampling-based path

planner that builds a tree of potential paths by randomly sampling points
in the environment and checking for collisions [78] 61

Figure 4-4: Potential Field Planner Visualization. Environment with 10 obstacles [79]......... 61

Figure 4-5: Goals (Views) planned using view planning lead to less 3D reconstruction
error and greater object completeness percentage than regular views [81]. . 62

Figure 4-6: Solution for a UAV coverage path planning problem in Matlab 63

16/156

Figure 4-7: Information-Theoretic Exploratory Planner illustration [84]. 64

Figure 4-8: MAV dynamically planning its path while moving through a simulated forest
using the Ewok Planner [18]. .. 64

Figure 4-9: A cubic parametric polynomial spline[86]. P denotes control points. The first
and third polynomic parts of the curve are painted blue, while the second
orange. Single knots at 1/3 and 2/3 of the curve establish a spline of three
cubic polynomials meeting with 𝑪𝟐 parametric continuity. Triple knots at
both ends of the interval ensure that the curve interpolates the end points. .. 65

Figure 4-10: Example of online trajectory replanning using the ewok planner [18]. The
plot shows a global trajectory computed by fitting a polynomial spline
through fixed waypoints (red), voxels within 0.5 m of the obstacle (blue),
computed B-spline trajectory with fixed (cyan) and still optimized (green)
segments and control points. .. 68

Figure 4-11: Example environments and paths generated by the MPC-safe corridors
controller [19]. The successively connected polytopes (blue) represent
safe corridors. (a) Polygonal obstacles (b) Rotated rectangular obstacles. ... 69

Figure 4-12: RRT* logical flow diagram. .. 69

Figure 4-13: Model Predictive Control Schematic. ... 71

Figure 4-14: A graph representation is used to describe free space [20]. Frontiers and
Home Location affect the robot's (blue triangle) decision making process. ... 73

Figure 5-1: 3D arrangement of a typical LiDAR sensor [91]... 77

Figure 5-2: (a) A flash LiDAR with diffused light; (b) The principle of an optical phased
array (OPA) scanner; (c) A LiDAR motorized spinning scanner; (d) A
microelectromechanical mirrors (MEMS) laser scanner [94]. 78

Figure 5-3: Stereo Depth Estimation. Objects further away from the stereo camera pair
produce larger disparity [95]. .. 78

Figure 5-4: Structured Light projected on a sphere [96]. .. 79

Figure 5-5: Radar Graph illustrating each sensor's strengths and weaknesses. 80

Figure 5-6: Some of the most popular Microcontrollers. .. 82

Figure 5-7: Some of the most popular SBCs. .. 83

Figure 5-8: Bar graph illustrating the relationship between performance and other
features for the top platform of each category. ... 87

Figure 5-9: The default starting scene in Unity. ... 89

Figure 5-10: Activating and Deactivating an Object ... 89

Figure 5-11: The scene while running the visualization. .. 90

Figure 5-12: Raycasting visualization. The sensor is the white capsule. 93

Figure 5-13:A continuous 2D mesh in light blue color. ... 93

Figure 5-14:The edge problem can be clearly seen if the mesh resolution is lowered. 94

Figure 5-15: Solving the edge problem with 5 binary search iterations. 95

Figure 5-16:The binary search is not triggered and thus a falsely shaped triangle is
formed in the mesh .. 95

Figure 5-17:Smooth mesh after applying the edge problem solution. 96

Figure 5-18: Creating a 3D Mesh by rotating multiple 2D meshes around the sensor’s x
axis. ... 97

17/156

Figure 5-19: (a) Creating a 3D Mesh by rotating multiple 2D meshes by the vertical y-
axis. ... 97

Figure 5-20:3D meshes formed by rotating horizontal and vertical meshes. 98

Figure 5-21: Capsule target is positioned in the effective field of view but is too small to
be detected by the sensor. Thus, it is not colored red. .. 99

Figure 5-22: Using the field of view locus method to determine if a target is visible. 99

Figure 5-23: Lealaps with 2x Zed2 Cameras and a Velarray M1600 Lidar. (a) Top view.
(b) Side view. ... 101

Figure 5-24: Lealaps with 4x Intel Realsense D435 depth Cameras. (a) Top view. (b)
Side view. ... 101

Figure 5-25: Lealaps with 5x Intel Realsense D435 depth Cameras. (a) Top view. (b)
Side view .. 102

Figure 5-26: Laelaps with 4xD435 + Velodyne Ultra Puck Surround View Lidar. (a) Top
view. (b) Side view. .. 103

Figure 5-27:Top view of Lealaps with 4x Intel Realsense D435 depth Cameras and an
extra D435 ... 103

Figure 5-28: Top view of Lealaps with 4x ZED2 depth Cameras and a Velarray M1600
Solid State Lidar ... 104

Figure 6-1:The simulated world in Gazebo. ... 105

Figure 6-2: The RP and the April Tag in the Simulated Environment 106

Figure 6-3: RP’s trajectory and simulated environment map as seen from foxglove studio.
 ... 106

Figure 6-4: (a) A pair of mecanum wheels used on the RP. .. 107

Figure 6-5: Kinematics of the RP... 108

Figure 6-6: The simulated robotic platform. ... 109

Figure 6-7: Tracking PID: Carrot tracking strategy [131]. ... 109

Figure 6-8: Tracking PID: Base_link tracking strategy [131]. ... 110

Figure 6-9: Simulation Experiment Pipeline. .. 112

Figure 7-1: (a) Synthetic vineyard in CSL. (b) Natural Vineyard located in the Blue Ridge
Mountains, USA. .. 114

Figure 7-2: (a) Aerial Photography of the Laboratory Experiment Setup taken by the
quadcopter. .. 115

Figure 7-3: Indoor testing environment with artificial lighting and PhaseSpace system. 116

Figure 7-4:(a) The Robotic Platform without its perception system. (b) The perception
system of the Robotic Platform. .. 117

Figure 7-5: Laboratory Experiments Pipeline. ... 119

Figure 8-1: Sparse Area estimation. Areas away from the depth camera are less dense
and of lower quality, as expected from such a sensor. 121

Figure 8-2: Erosion, Dilation & Opening performed on a 2D image. 124

Figure 8-3: The hole detection algorithm visualized... 125

Figure 8-4: Cluster Outlier Detection. The noise clusters are pictured in red. 126

Figure 8-5: The Point Cloud Quality Enhancement Pipeline. ... 128

18/156

Figure 8-6: a) Data association (b) Target point cloud transformation. Result after first
iteration (c) Final point cloud registration after four iterations. 129

Figure 8-7: Point-to-Plane correspondence illustration in 2D [146]. 130

Figure 8-8: Point Cloud Registration in the synthetic vineyard. .. 131

Figure 8-9: Canopy Density Assessment Illustrated. ... 132

Figure 8-10: Reconstructed mesh objects from dense point clouds [149]. 133

Figure 8-11: (a) a bunny shaped source point cloud. (b) mesh generated with alpha
shapes (c) mesh generated with BPA [151]. ... 134

Figure 8-12: (a) noisy mesh (b) mesh after 1 iteration of average filtering 134

Figure 8-13: (a) With the vertex colors method, only vertex colors (blue) are used to color
triangle. .. 135

Figure 8-14: (a) Simple cube mesh colored with simple vertex colors (b) cube colored
with vertex colors and linear filtering (contouring) (c) cube colored using a
2D texture (image) of a stone wall. ... 136

Figure 8-15: Texturing a 3D model of the Earth using a typical sphere UV map. 137

Figure 8-16: Projective Texture Mapping... 138

Figure 8-17: The pinhole camera model. ... 139

Figure 8-18: A simplified pinhole camera model. ... 140

Figure 8-19: Vinymap Photo-Realistic Vineyard Reconstruction Pipeline. 142

Figure 8-20: Canopy Density Assessment Scenarios. ... 145

Figure 8-21: 3D Reconstruction Comparison. ... 146

19/156

List of Tables
Table 3-1: A comprehensive comparison of four SLAM software packages. 56

Table 5-1: Popular SBCs currently in the market. .. 84

Table 5-2: Popular Mini-PCs currently in the market ... 85

Table 5-3: Summary of 3D perception system requirements. .. 100

Table 8-1: SOPCQA Evaluation .. 143

Table 8-2: Canopy Density Index Output... 144

20/156

List of Abbreviations

Abbreviation Definition

 API Application Programming Interface

 BPA Ball Pivoting Algorithm

 CDI Canopy Density Index

 CPU Central Processing Unit

 CSL Control Systems Laboratory

 CPP Coverage Path Planning

 CUDA Compute Unified Device Architecture

 CVPR Computer Vision and Pattern Recognition

 DBSCAN
Density-Based Spatial Clustering of Applications with
Noise

 FLOPS Floating-point Operations per Second

 FOV Field Of View

 GMSL2 Gigabit Multimedia Serial Link 2

 GPS Global Positioning System

 GPU Graphics Processing Unit

 HDMI High-Definition Multimedia Interface

 ICP Iterative Closest Point

 IEEE Institute of Electrical and Electronics Engineers

 IMU Inertial Measurement Unit

 LSTM Long Short-Term Memory Model

 MATLAB Matrix Laboratory

 MAV Micro air vehicle

 MCD Maximum Correspondence Distance

 MEMS Microelectromechanical Systems

 MPC Model Predictive Controller

 NTUA National Technical University of Athens

 NUC Next Unit of Computing

 OS Operating System

21/156

 PCQA Point Cloud Quality Assessment Algorithm

 PID Proportional Integral Derivative (Controller)

 QR Quick Response (Code)

 RAM Random Access Memory

 RGB Red, Green, Blue

 ROS Robot Operating System

 RP Robotic Platform

 RRT Rapidly exploring Random Tree

 RTAB-map Real-Time Appearance-Based Mapping

 SBC Single Board Computer

 SLAM Simultaneous Localization and Mapping

 SOPCQA Simple Objective Point Cloud Quality Assessment

 SOTA State of the Art

 TFLOP Trillion Floating-point Operations per Second

 TOPS Trillions of Operations per Second

 TPU Tensor Processing Unit

 UAV Unmanned Aerial Vehicle

 USB Universal Serial Bus

 UV Ultra-Violet

 VRAM Video Random Access Memory

 VSLAM Visual Simultaneous Localization and Mapping

22/156

1 Εκτεταμένη Ελληνική Περίληψη

1.1 Εισαγωγή

Ο αυξανόμενος πληθυσμός της Γης και η συνεχής κλιματική αλλαγή αποτελούν

σημαντική πρόκληση για τη διαθεσιμότητα τροφίμων παγκοσμίως. Οι πρακτικές της

γεωργίας ακριβείας (Precision Agriculture) και η αυτοματοποιημένη επιθεώρηση των

καλλιεργειών έχουν αναδειχθεί ως βασικές στρατηγικές για να καταστεί η γεωργία πιο

αποδοτική και βιώσιμη. Ένας κρίσιμος τομέας είναι οι αμπελώνες, λόγω της δομημένης

διάταξής τους και της υψηλής αξίας των παραγόμενων προϊόντων [1].

Ωστόσο, πρέπει να αντιμετωπιστούν αρκετές προκλήσεις πριν μπορέσουν τα ρομπότ

να ενσωματωθούν πλήρως στη διαχείριση των αμπελώνων. Ένα σημαντικό εμπόδιο είναι το

ασθενές δορυφορικό σήμα στις ορεινές περιοχές με αμπελώνες. Αυτό καθιστά αναξιόπιστα

τα Παγκόσμια Συστήματα Στιγματοθέτησης (GPS), ένα ουσιαστικό στοιχείο για την

πλοήγηση των ρομπότ. Πολλές υπάρχουσες λύσεις βασίζονται σε μεγάλο βαθμό στο GPS

[2], καθιστώντας τις αναποτελεσματικές σε περιβάλλοντα χωρίς ευκρινές σήμα [3].

Μια επιπλέον πρόκληση δημιουργεί το ανώμαλο έδαφος μέσα στους αμπελώνες αλλά

και τα εμπόδια όπως βράχοι, εξοπλισμός άρδευσης και εργαζόμενοι. Αυτά καθιστούν

αναγκαία την ανάπτυξη αποδοτικών και ευέλικτων λύσεων σχεδιασμού διαδρομών.

Επιπλέον, η αποδοτικότητα κόστους παραμένει κρίσιμο ζήτημα όσον αφορά την ευρεία

υιοθέτηση τέτοιων συστημάτων από γεωργούς.

Πολλές υπάρχουσες λύσεις αντιμετωπίζουν συγκεκριμένες πτυχές του αυτοματισμού,

όπως ο ψεκασμός [4], η καταμέτρηση σταφυλιών [5] ή η ανίχνευση ασθενειών [6],

στερούμενες μιας ολιστικής προσέγγισης. Οι τελευταίες δεν προσφέρουν μια ολοκληρωμένη

τρισδιάστατη απεικόνιση των αμπελιών, η οποία είναι πολύτιμη για τον έλεγχο των

καλλιεργειών. Επίσης, η έρευνα συχνά παραμελεί τα κρίσιμα ζητήματα της αυτόνομης

πλοήγησης και της αποφυγής εμποδίων μέσα στον αμπελώνα [7], [8]. Αυτός ο

κατακερματισμός περιορίζει την αποτελεσματικότητά τους στο να παρέχουν μια πλήρη

εικόνα στον αγρότη.

Πρόσφατη έρευνα καταδεικνύει τη δυνατότητα δημιουργίας φωτο-ρεαλιστικών

τρισδιάστατων χαρτών που χρησιμοποιούν τρισδιάστατες Γκαουσσιανές [9]. Ενώ είναι

πολύτιμες, τέτοιες λύσεις απαιτούν συνήθως τεράστια υπολογιστική ισχύ, καθιστώντας τες

απαγορευτικά ακριβές για πολλούς καλλιεργητές και εμποδίζοντας την ικανότητα εκτέλεσης

σε πραγματικό χρόνο, η οποία είναι ουσιαστική καθώς η γρήγορη λήψη αποφάσεων είναι

ζωτικής σημασίας για τους αγρότες προκειμένου να αντιδράσουν σε ξαφνικά καιρικά

φαινόμενα ή καταστροφές [10].

Δεδομένων αυτών των περιορισμών, η παρούσα διπλωματική παρουσιάζει μια ολιστική

λύση για το πρόβλημα της επιθεώρησης αμπελώνων με κινητά ρομπότ. Στα πλαίσιά της

αναπτύχθηκε λογισμικό και υλικό και εφαρμόστηκε σε προσομοίωση αλλά και σε

πραγματικές συνθήκες με την τροποποίηση και χρήση μιας ρομποτικής πλατφόρμας.

Αρχικά πραγματοποιήθηκε εις βάθος έρευνα και αξιολόγηση υφιστάμενων πακέτων

λογισμικού, με έμφαση στις δυνατότητες τρισδιάστατης ανακατασκευής και χωρικής

χαρτογράφησης. Η σύγκριση εστίασε στην αποσαφήνιση των πλεονεκτημάτων και

23/156

μειονεκτημάτων κάθε μεθόδου, λαμβάνοντας υπόψη κριτήρια όπως η ακρίβεια, η ταχύτητα,

η ευκολία χρήσης και η συμβατότητα με το σύστημα ROS.

Επιπρόσθετα, αξιοποιήθηκε η τεχνολογία CUDA για την επιτάχυνση της επεξεργασίας,

όπου αυτό ήταν εφικτό. Η λεπτομερής αξιολόγηση κατέληξε στην επιλογή του εργαλείου

ZED spatial mapping για χωρική χαρτογράφηση και υπολογισμό βάθους με νευρωνικά

δίκτυα. Ο αλγόριθμος αυτός κρίθηκε ως η πλέον κατάλληλη λύση για την ενίσχυση του

προσαρμοσμένου αλγορίθμου τρισδιάστατης ανακατασκευής που αναπτύχθηκε στα πλαίσια

της παρούσας εργασίας.

Για την πλοήγηση της ρομποτικής πλατφόρμας στον χώρο χρησιμοποιείται ένα

σύστημα οπτικής οδομετρίας με διπλή κάμερα, σχεδιασμένο ειδικά για περιβάλλοντα χωρίς

σήμα GPS αλλά και περιβάλλοντα με οπτική ομοιομορφία που σημαίνει την έλλειψη

πληθώρας διαθέσιμων οπτικών χαρακτηριστικών. Η οπτική οδομετρία με διπλή κάμερα

εξασφαλίζει τη συνεχή λειτουργία της πλοήγησης ακόμα και όταν η μία κάμερα τυφλώνεται

από το ηλιακό φως ή ένα εμπόδιο κρύβει το οπτικό της πεδίο. Η αποτελεσματικότητα του

αλγορίθμου βελτιώθηκε με τροποποίηση του κλεισίματος βρόχου με την ανίχνευση ετικετών

April Tag, προσθέτοντας έναν αλγόριθμο οπτικού σερβο-ελέγχου που εξασφαλίζει την

βέλτιστη ευθυγράμμιση του ρομπότ με την ετικέτα April Tag πριν αυτό ξεκινήσει τις

διορθώσεις κλεισίματος βρόχου. Επιπλέον, μελετήθηκε και αξιοποιήθηκε ένας αλγόριθμος

σχεδιασμού διαδρομών που χρησιμοποιεί αποσύνθεση του χώρου σε πολύγωνα για να

εντοπίσει διαδρόμους χωρίς εμπόδια. Αυτή η προσέγγιση, που εφαρμόζεται για πρώτη φορά

σε πραγματικό ρομπότ, επωφελείται από τη διάταξη του αμπελώνα που εκ φύσεως

σχηματίζει παράλληλους διαδρόμους.

Εν συνεχεία σχεδιάστηκε το σύστημα αντίληψης με στόχο να φιλοξενήσει τους

επιλεγμένους αλγορίθμους τρισδιάστατης χαρτογράφησης, πλοήγησης και σχεδιασμού

τροχιάς. Η υλοποίηση του συστήματος αντίληψης προϋποθέτει την επιλογή κατάλληλων

υλικοτεχνικών στοιχείων. Πραγματοποιήθηκε λεπτομερής σύγκριση αισθητήρων (κάμερες,

LiDAR, GPS) και μονάδων επεξεργασίας, λαμβάνοντας υπόψη κριτήρια όπως η ακρίβεια, η

εμβέλεια, η ανάλυση, το κόστος, η ισχύς επεξεργασίας και η κατανάλωση ενέργειας.

Εξετάστηκαν διάφορες διατάξεις τοποθέτησης των αισθητήρων σε τετράποδα ρομπότ,

λαμβάνοντας υπόψη παράγοντες όπως το πεδίο θέασης, το βάρος και την προστασία από

κρούσεις.

Για την υποστήριξη της λήψης τεκμηριωμένων αποφάσεων, αναπτύχθηκε το FoVaLiRa

(Field of View and LiDAR Analysis), ένα εργαλείο τρισδιάστατης απεικόνισης στην

πλατφόρμα Unity. Το FoVaLiRa βοήθησε στην οπτικοποίηση του πεδίου θέασης κάθε

αισθητήρα, στην αξιολόγηση της επικάλυψης πεδίων θέασης και στην εξέταση της ανάλυσης

LiDAR σε διάφορες αποστάσεις.

Τέλος, αναπτύχηκε το καινοτόμο λογισμικό Vinymap. Το Vinymap παρέχει

ολοκληρωμένη επιθεώρηση του αμπελώνα μέσω δύο βασικών αλγορίθμων: 1) Έναν

αλγόριθμο φωτορεαλιστικής 3D χαρτογράφησης που δημιουργεί σαφείς οπτικές

απεικονίσεις του αμπελώνα. 2) Έναν αλγόριθμο αξιολόγησης της πυκνότητας του

φυλλώματος που παρέχει ζωτικής σημασίας πληροφορίες που σχετίζονται με την υγεία και

την ποιότητα των σταφυλιών, καθώς το πυκνό φύλλωμα μπορεί να περιορίσει το ηλιακό φως

και τον αερισμό γύρω από τα τσαμπιά σταφυλιών [11]. Η αποτελεσματικότητα του Vinymap

αξιολογήθηκε αρχικά σε προσομοιώσεις. Στη συνέχεια, κατασκευάσαμε έναν συνθετικό

αμπελώνα στο Εργαστήριο Αυτομάτου Ελέγχου της Σχολής Μηχανολόγων Μηχανικών του

24/156

Ε.Μ.Π. για να δοκιμάσουμε εκτενώς το πλαίσιο, εφαρμοσμένο πλέον σε μια πραγματική

ρομποτική πλατφόρμα υπό ρεαλιστικές συνθήκες.

1.2 Έρευνα και Αξιολόγηση Πακέτων Λογισμικού
Χαρτογράφησης και Ανακατασκευής Χώρου

Εξετάστηκαν τέσσερα λογισμικά ανακατασκευής χώρου πρώτο ήταν το RTAB-Map [12] το

οποίο εκτελεί τρισδιάστατη απεικόνιση χώρου σε πραγματικό χρόνο εφαρμόζοντας

αλγορίθμους SLAM. Το δεύτερο ήταν το Robot-Centric Elevation Mapping [13], ανεπτυγμένο

από την εταιρεία Anybotics που εδρεύει στο ETH της Ζυρίχης και το οποίο εκτελεί 2.5D

mapping ή αλλιώς ψευδό-τρισδιάστατη απεικόνιση χώρου. Και αυτό το πακέτο λειτουργεί σε

πραγματικό χρόνο αλλά δεν αποτελεί μια εφαρμογή SLAM καθώς εκτελεί μόνο

χαρτογράφηση του περιβάλλοντος χώρου χωρίς να επιτυγχάνει εντοπισμό ή πλοήγηση. Το

τρίτο πακέτο είναι το Gradslam [14] το οποίο πραγματοποιεί τρισδιάστατη απεικόνιση χώρου

και εφαρμόζει αλγόριθμους SLAM. Το τέταρτο πακέτο είναι το ZED Spatial Mapping [15] το

οποίο επίσης εκτελεί τρισδιάστατη απεικόνιση χώρου σε πραγματικό χρόνο όντας μια

εφαρμογή SLAM.

1.2.1 Rtabmap

Το Rtabmap εφαρμόζει οπτική οδομετρία σε πραγματικό χρόνο, δηλαδή λαμβάνει διαδοχικές

εικόνες καθώς το ρομπότ που το χρησιμοποιεί κινείται στο χώρο και συγκρίνοντας τα οπτικά

χαρακτηριστικά μεταξύ διαδοχικών εικόνων εκτιμάει την κατεύθυνση και το μέτρο της

κίνησης του ρομπότ. Αξιοποιώντας τα δεδομένα της οπτικής οδομετρίας, το ρομπότ εκτιμάει

τη θέση του στο χώρο και αξιοποιώντας έναν αισθητήρα τρισδιάστατης απεικόνισης που

επιλέγει ο χρήστης, καταφέρνει να ανακατασκευάσει τον χώρο γύρω του δίδοντας ως έξοδο

ένα τρισδιάστατο νέφος σημείων (3D point cloud). Ιδιαίτερο χαρακτηριστικό του RTAB-Map

αποτελεί η προσέγγιση Bag-of-Words για την επίτευξη κλεισίματος βρόχου (loop closure).

Αυτή η διαδικασία λειτουργεί ως εξής: ανά προκαθορισμένα χρονικά διαστήματα το ρομπότ

αξιοποιεί κάποιες εικόνες και αποθηκεύει τα οπτικά χαρακτηριστικά τους σε μια βάση

δεδομένων με τη μορφή μιας τσάντας (bag) για να τα χρησιμοποιήσει μελλοντικά. Καθώς το

ρομπότ συλλέγει πληθώρα τέτοιων τσαντών, ελέγχει για κάθε μία από τις τσάντες που

βρίσκει αν εμφανίζει έντονη ομοιότητα με κάποια που έχει συλλέξει παλιότερα. Αν πράγματι

βρει μεγάλη ομοιότητα μεταξύ της τρέχοντος τσάντας και μιας παλιότερης, τότε θεωρεί ότι

βρίσκεται σε ένα σημείο που έχει ξανά επισκεφθεί και με τον τρόπο αυτό αν η εκτίμηση της

θέσης του εμφανίζει απόκλιση, τότε την διορθώνει αναδρομικά μειώνοντας έτσι τα σφάλματα

των μετρήσεων που συσσωρεύονται κατά την διάρκεια της κίνησής του.

1.2.2 Robot-Centric Elevation Mapping

Το Robot-Centric Elevation Mapping έχει ως σκοπό τη χαρτογράφηση του περιβάλλοντος

χώρου γύρω από το ρομπότ. Καθώς το ρομπότ προχωράει στο χώρο, μέρη του χάρτη που

έχει επισκεφθεί προηγουμένως διαγράφονται και ο χάρτης ουσιαστικά ακολουθεί το ρομπότ.

Η προσέγγιση αυτή είναι γνωστή ως robot-centric mapping kαι συμβάλλει στην

εξοικονόμηση μνήμης του υπολογιστή του ρομπότ, ενώ διευκολύνει την εκτέλεση του

αλγορίθμου σε πραγματικό χρόνο.

25/156

Το Robot-Centric Elevation Mapping φτιάχνει έναν ψευδό-τρισδιάστατο χάρτη δηλαδή δεν

έχει ως έξοδο ένα νέφος με σημεία στις τρεις διαστάσεις, αλλά έναν δισδιάστατο χάρτη όπου

για κάθε σημείο αυτού του χάρτη δίνει μια τιμή ύψους (elevation map). Αυτό έχει ως

αποτέλεσμα εμπόδια τα οποία βρίσκονται σε κάποιο ύψος και απέχουν από το έδαφος, να

καταχωρούνται ως συμπαγή εμπόδια που εκτείνονται από το έδαφος μέχρι το μέγιστο ύψος

στο οποίο φτάνουν. Αυτό δεν αποτελεί μια αντικειμενική απεικόνιση του χώρου και

δημιουργεί ιδιαίτερο πρόβλημα σε περιβάλλοντα αμπελώνων όπου τα κλαδιά των αμπελιών

συχνά βρίσκονται σε ύψος μεγαλύτερο από το ρομπότ οπότε θεωρητικά επιτρέπουν την

κίνηση του ρομπότ κάτω από αυτά. Στην περίπτωση του Robot-Centric Elevation Mapping

θα καταχωρούνταν ως απροσπέλαστα εμπόδια πράγμα που δεν είναι αληθές.

Εικόνα 1-1: (a) Μια πλατφόρμα που ίπταται, σε περιβάλλον προσομοίωσης Gazebo. (b) Η απεικόνιση

της πλατφόρμας και του γύρω χώρου με τη χρήση του Robot-Centric Elevation Mapping.

Ιδιαίτερο χαρακτηριστικό αυτού του πακέτου αποτελεί η δυναμική αναπροσαρμογή του

χάρτη. Aν ένα εμπόδιο που έχει καταχωρηθεί στο χάρτη είναι κινούμενο και άλλαξε η θέση

του, ο χάρτης αναπροσαρμόζεται καθώς γίνεται χρήση ray casting για να γίνει αντιληπτό ότι

η θέση που καταλάμβανε προηγουμένως το εμπόδιο είναι πλέον κενή και το ίδιο έχει κινηθεί

σε μια νέα θέση.

1.2.3 Gradslam

Το Gradslam είναι ένα πακέτο το οποίο δημιουργήθηκε με σκοπό να τροποποιήσει

γνωστούς και καλά εδραιωμένους αλγορίθμους που εφαρμόζονται στη διαδικασία του

SLAM, έτσι ώστε να μπορούν να εισαχθούν σε μοντέλα μηχανικής μάθησης και να γίνει

εκπαίδευση αυτών των μοντέλων απευθείας με δεδομένα εφαρμογών SLAM. Όλο το πακέτο

λοφισμικού Gradslam αποτελεί ένα διαφορίσιμο υπολογιστικό γράφο. Ωστόσο το πακέτο

αυτό απαιτεί μεγάλη υπολογιστική ισχύ (το ελάχιστο 8GB μνήμης RAM) ακόμα και για την

ανακατασκευή μικρών χώρων. Επιπλέον η ικανότητα του για εκτέλεση πραγματικό χρόνο

είναι περιορισμένη.

1.2.4 ZED Spatial Mapping

Το ZED Spatial Mapping εφαρμόζει οπτική οδομετρία όπως και το RTAB-Map, αλλά

βελτιώνει τα αποτελέσματα της αξιοποιώντας τις μετρήσεις αισθητήρων αδράνειας (IMU),

τοποθετημένων πάνω στο ρομπότ ή ενσωματωμένων στην κάμερα η οποία εκτελεί την

οπτική οδομετρία (visual-inertial odometry).

26/156

Το ZED Spatial Mapping απαιτεί αισθητήρα εκτίμησης βάθους για να εκτελεσθεί και

συγκεκριμένα εφαρμόζεται σε κάμερες ZED [16], οι οποίες επιτελούν στερεοσκοπική

εκτίμηση βάθους. Παρ’ όλα αυτά για ακόμα καλύτερα αποτελέσματα εκτίμησης βάθους

χρησιμοποιούνται πλέον νευρωνικά δίκτυα και ο τελικός χάρτης βάθους προκύπτει από τη

στατιστική ένωση του στερεοσκοπικού βάθους με το βάθος που προέκυψε μέσω των

νευρωνικών δικτύων.

1.2.5 Επιλογή του Κατάλληλου Πακέτου Λογισμικού

Για την αρχική φάση των πειραμάτων που αφορούν το πλαίσιο που αναπτύχθηκε στην

παρούσα διπλωματική εργασία χρησιμοποιήθηκε το πακέτο ανακατασκευής RTAB-Map.

Αυτό έγινε λόγω της απλότητας που το χαρακτηρίζει, της ικανότητας εκτέλεσης σε

πραγματικό χρόνο, της ευελιξίας και πολυχρηστικότητας του, καθώς και της ενεργής

κοινότητας χρηστών και ερευνητών που διευκολύνουν την ανάπτυξη λογισμικού με τη χρήση

του. Ωστόσο στα τελικά στάδια των πειραμάτων χρησιμοποιήθηκε το ZED Spatial Mapping

λόγω της εντυπωσιακής ποιότητας ανακατασκευής που προσφέρει αλλά και των καινοτόμων

τεχνολογιών που χρησιμοποιεί.

1.3 Πλοήγηση και Σχεδιασμός Διαδρομής

1.3.1 Πλοήγηση

Για να επιτευχθεί πλοήγηση για τη ρομποτική πλατφόρμα η οποία χρησιμοποιήθηκε κατά τη

φάση πειραμάτων, αξιοποιήθηκε ένας αλγόριθμος οπτικής οδομετρίας ο οποίος αξιοποιεί

δύο κάμερες [17]. Το γεγονός αυτό προσδίδει ευρωστία στο σύστημα καθώς ακόμα και αν

μια κάμερα δεν είναι ικανή να εντοπίσει οπτικά χαρακτηριστικά για κάποιον λόγο - όπως για

παράδειγμα λόγω τύφλωσης από άμεση ηλιακή ακτινοβολία - τότε η άλλη κάμερα

αναλαμβάνει την επίτευξη οπτικής οδομετρίας. Ο αλγόριθμος αυτός αναπτύχθηκε στα

πλαίσια του Εργαστηρίου Αυτομάτου Ελέγχου της σχολής των Μηχανολόγων Μηχανικών

του Εθνικού Μετσοβίου Πολυτεχνείου. Επιπλέον, ο ίδιος έχει την ιδιαιτερότητα ότι

καταφέρνει κλείσιμο βρόχου με τη χρήση ετικέτων April Tags. April Tags είναι σύμβολα

εντοπισμού όπως τα γνωστά QR-Codes με τη διαφορά ότι έχουν σχεδιαστεί έτσι ώστε να

διευκολύνουν την κάμερα που τα εντοπίζει να αντιλαμβάνεται τον προσανατολισμό τους

στον χώρο και επομένως να εκτιμά το δικό της προσανατολισμό σε σχέση με αυτά. Αυτό

ακριβώς επιτυγχάνεται και στην περίπτωση του αλγορίθμου που αξιοποιήθηκε.

Συγκεκριμένα όταν το ρομπότ εντοπίζει μια ετικέτα, η οποία φέρει ένα μοναδικό

αναγνωριστικό, τότε την αποθηκεύει στη μνήμη του. Εάν εντοπίσει ξανά το April Tag με το

ίδιο αναγνωριστικό τότε καταλαβαίνει ότι βρίσκεται σε σημείο το οποίο έχει ξαναεπισκεφθεί

και αν η εκτίμηση της οδομετρίας του έχει διαφορές από την νέα εκτίμηση με βάση το April

Tag τότε αναπροσαρμόζει την τροχιά του και μειώνει το σφάλμα (κλείσιμο βρόχου – loop

closure).

Παρατηρήθηκε ότι από πλάγιες γωνίες θέασης και από μεγάλη απόσταση το κλείσιμο

βρόχου με χρήση April Tag εισήγαγε σφάλματα στην εκτίμηση οδομετρίας. Για να επιλυθεί

το πρόβλημα αυτό κατασκευάστηκε ένας αλγόριθμος οπτικής ευθυγράμμισης της

ρομποτικής πλατφόρμας με το April Tag. Η ευθυγράμμιση αυτή λαμβάνει χώρα πριν να

ενεργοποιηθεί ο αλγόριθμος κλεισίματος βρόχου και εξασφαλίζει ότι η κάμερα της

ρομποτικής πλατφόρμας βλέπει το April Tag από γωνία θέασης 90 μοιρών και απόσταση

30cm. Αφού η ρομποτική πλατφόρμα ευθυγραμμιστεί με το April Tag, τότε και μόνο τότε

27/156

ενεργοποιείται ο αλγόριθμος κλεισίματος βρόχου με βάση τον εντοπισμό April Tag. Το

σφάλμα από γωνία θέασης 90 μοιρών και απόσταση 30cm βρέθηκε μηδενικό.

Εικόνα 1-2: (a) Η πειραματική διάταξη για την εύρεση της ιδανικής γωνίας θέασης και απόστασης από το
April Tag πριν το κλείσιμο βρόχου. (b) Σφάλμα εκτίμησης απόστασης και γωνίας από το April Tag για

διάφορες γωνίες και αποστάσεις θέασης.

1.3.2 Σχεδιασμός Διαδρομής

Για την επίτευξη του σχεδιασμού διαδρομής του ρομπότ μέσα στον αμπελώνα εξετάστηκαν

τρεις διαφορετικοί αλγόριθμοι: To Ewok Planner [18], το Safe Corridors Planner [19] και το

GB-Planner [20].

Ewok Planner

Το Ewok Planner είναι ένας αλγόριθμος σχεδιασμού διαδρομής ο οποίος εστιάζει στην

ταχύτητα εκτέλεσης του σε πραγματικό χρόνο και την ομαλότητα της τροχιάς που

υπολογίζει. Χρησιμοποιεί B-Splines για τον υπολογισμό ομαλών τροχιών και αναπαριστά

τον χώρο γύρω από το ρομπότ με ένα Voxel Grid για την επίτευξη αποφυγής εμποδίων.

Απαιτεί την είσοδο ενός μονοπατιού από την αρχική θέση του ρομπότ έως τη θέση-στόχο

και εστιάζει στην ακολούθηση αυτού του μονοπατιού με τον βέλτιστο τρόπο ενώ

ταυτοχρόνως επιτυγχάνει αποφυγή εμποδίων.

Safe Corridors Planner

O Safe Corridors Planner αξιοποιεί τον αλγόριθμο RRT* για τον υπολογισμό ενός αρχικού

μονοπατιού από την αρχική θέση του ρομπότ έως τη θέση-στόχο. Δεν απαιτεί αυτή την

πληροφορία σαν είσοδο. Ακολούθως αξιοποιεί το μονοπάτι που υπολογίστηκε αρχικά για να

αποσυνθέσει τον χώρο γύρω από το μονοπάτι σε πολύτοπα που αντιπροσωπεύουν

ελεύθερο χώρο και δημιουργούν διαδρόμους χωρίς εμπόδια. Ο αλγόριθμος ολοκληρώνεται

σε αρκετά μικρό χρονικό διάστημα ώστε να μπορεί να εκτελείται κατ’ επανάληψη και

επομένως να παρέχει στο ρομπότ δυναμική αποφυγή εμποδίων, δεδομένου ότι ταχύτητα

κίνησης του ρομπότ είναι εντός συγκεκριμένων ορίων.

28/156

GB-Planner

To GB-Planner είναι ένας εξερευνητικός αλγόριθμος σχεδιασμού διαδρομής. Αυτό σημαίνει

ότι ο αλγόριθμος δεν απαιτεί μια τελική θέση-στόχο ως είσοδο. Αντιθέτως ο σχεδιασμός

διαδρομής εκτελείται σε βήματα με σκοπό το ρομπότ να εξερευνήσει τον χώρο γύρω του με

μια προεπιλεγμένη στρατηγική. Ο ελεύθερος χώρος γύρω από το ρομπότ αναπαρίσταται σε

αυτήν την περίπτωση ως ένας γράφος με κόμβους. Σε κάθε κόμβο αποδίδεται μια

εξερευνητική αξία. Το ρομπότ επιλέγει σε κάθε βήμα να επισκεφθεί τον κόμβο με τη

μεγαλύτερη εξερευνητική αξία. Στην περίπτωση του GB-Planner, προστίθενται επιπλέον

επίπεδα σχεδιασμού που εξασφαλίζουν ότι το ρομπότ θα επισκεφθεί όλους τους κόμβους

υψηλού ενδιαφέροντος, καθώς και ότι η εξερεύνηση δεν θα θέσει το ρομπότ εκτός κάποιων

στόχων (χρονικών ή εξοικονόμησης ενέργειας).

Επιλογή του Κατάλληλου Πακέτου Σχεδιασμού Διαδρομής

Επιλέχθηκε τελικά η χρήση του Free Corridors Planner, καθώς η τοπολογία των αμπελώνων

δημιουργεί εκ φύσεως ελεύθερους διαδρόμους μεταξύ των σειρών του αμπελιού και αυτό

διευκολύνει και επιταχύνει την εκτέλεση του αλγορίθμου. Επιπλέον, οι ρομποτικές εργασίες

στον χώρο του αμπελιού συνήθως δεν επιβάλλουν υψηλές ταχύτητες κίνησης των ρομπότ

με αποτέλεσμα η εκτέλεση σε πραγματικό χρόνο να είναι εφικτή ακόμα και με υψηλές

αλγοριθμικές πολυπλοκότητες. Τέλος, το αμπέλι χαρτογραφείται εύκολα και ο εξαγόμενος

χάρτης δεν αλλάζει συχνά, πράγμα που καθιστά περιττή την χρήση αλγορίθμων

εξερεύνησης, μιας και είναι εύκολο να δοθεί μια θέση-στόχος πριν τον σχεδιασμό διαδρομής

με βάση έναν υφιστάμενο χάρτη του αμπελιού.

1.4 Σχεδίαση Συστήματος Αντίληψης

Στα πλαίσια της παρούσας εργασίας δημιουργήθηκε ένα σύστημα αντίληψης πάνω στο

οποίο εκτελέστηκαν οι αλγόριθμοι ανακατασκευής χώρου καθώς και οι αλγόριθμοι

σχεδιασμού τροχιάς που επιλέχθηκαν. Για το σκοπό αυτό ερευνήθηκε το είδος των

αισθητήρων του συστήματος αντίληψης (LiDAR, Depth Cameras, Structured Light

Projectors), το πλήθος των αισθητήρων, καθώς και o τρόπος τοποθέτησής τους πάνω στη

ρομποτική πλατφόρμα που χρησιμοποιήθηκε σε πειράματα σε προσομοίωση αλλά και σε

πραγματικό χώρο. Εκτός αυτού, το σύστημα αντίληψης περιλαμβάνει και μια μονάδα

επεξεργασίας για την επιλογή της οποίας εξετάστηκαν οι εξής κατηγορίες: Μικροελεγκτές,

Υπολογιστές μίας πλακέτας (Single Board Computers), Mini PCs και Laptops.

1.4.1 Field of View Visualization and Lidar Resolution Analysis Tool (FoVaLiRa)

Για την διευκόλυνση του προσδιορισμού του είδους αλλά και του τρόπου τοποθέτησης των

αισθητήρων του συστήματος αντίληψης πάνω στη ρομποτική πλατφόρμα αναπτύχθηκε το

εργαλείο FoVaLiRa με τη βοήθεια του Unity. Το εργαλείο αυτό χρησιμοποιεί ray casting για

να προσομοιώσει αισθητήρες λέιζερ αλλά και κάμερες βάθους. Επιτρέπει την εύκολη και

γρήγορη σύγκριση πολλών διατάξεων σε διαφορετικές ρομποτικές πλατφόρμες. Με αφορμή

τη δημιουργία του εργαλείου επιτεύχθηκε επιπλέον η πρώτη φάση της προσομοίωσης του

αμπελιού σε Unity.

Το εργαλείο FoVaLiRa επιτρέπει την εισαγωγή στόχων οι οποίοι στην περίπτωση μας

είναι τα τσαμπιά του αμπελιού. Επιτρέπει οπτικοποίηση της επικάλυψης του οπτικού πεδίου

29/156

δύο ή περισσοτέρων αισθητήρων πάνω στην ρομποτική πλατφόρμα, καθώς και την

εισαγωγή παραμέτρων από .csv αρχείο για την εύκολη παραμετροποίηση της

προσομοίωσης.

Η τελική διάταξη που επιλέχθηκε αποτελείται από τέσσερις κάμερες βάθους και έναν

αισθητήρα LiDar για επιπλέον ευρωστία. Ο τελευταίος είναι προαιρετικός και το οπτικό του

πεδίο επικαλύπτεται με το οπτικό πεδίο της μπροστινής κάμερας του ρομπότ. Η διάταξη

αυτή εφαρμόστηκε σε τετράποδο ρομπότ κατά τα πειράματα προσομοίωσης αλλά και στην

πραγματική ρομποτική πλατφόρμα κατά τα πειράματα στο εργαστήριο.

Εικόνα 1-3: Το τετράποδο ρομπότ Lealaps II, με την τελική διάταξη αισθητήρων αντίληψης όπως

φαίνεται εντός του εργαλείου οπτικοποίησης FoVaLiRa.

1.4.2 Μονάδα Επεξεργασίας

Οι μικροελεγκτές ήταν η κατηγορία που εξετάστηκε πρώτη ως υποψήφια μονάδα

επεξεργασίας για το σύστημα αντίληψης που αναπτύχθηκε. Οι μικροελεγκτές προσφέρουν

εντυπωσιακή αποδοτικότητα ισχύος αλλά υστερούν σημαντικά σε πολυχρηστικότητα και

ευκολία προγραμματισμού. Για το λόγο αυτό εξετάστηκαν έπειτα τα Laptops και τα Mini PCs.

Αυτές οι επιλογές διέπονται από σημαντική πολυχρηστικότητα και ευκολία χρήσης αλλά

υστερούν σημαντικά σε αποδοτικότητα ισχύος και βάρους. Αυτό οδήγησε στο να εξεταστούν

τελικά οι υπολογιστές μιας πλακέτας (Single Board Computers) οι οποίοι όπως αποδείχθηκε

προσφέρουν μια ισορροπία μεταξύ πολυχρηστικότητας, βάρους και αποδοτικότητας ισχύος.

Αυτά τα χαρακτηριστικά είναι τα ιδανικά για την εφαρμογή που εξετάζουμε στα πλαίσια της

παρούσας διπλωματικής εργασίας και έτσι οι υπολογιστές μιας πλακέτας επιλέχθηκαν για τη

συνέχεια των πειραμάτων.

1.5 Ανάπτυξη του Vinymap για Βελτιωμένη Ανακατασκευή και
Επιθεώρηση

Το Vinymap είναι ένας αλγόριθμος που αναπτύχθηκε για να πετύχει τρεις στόχους: τη

βελτίωση της ποιότητας των δεδομένων point cloud που λαμβάνονται από τις κάμερες

βάθους, την εκτίμηση της πυκνότητας του φυλλώματος των αμπελιών και την παραγωγή

ενός δείκτη ο οποίος ερμηνεύεται εύκολα από τους αγρότες και, τέλος, την φωτο-ρεαλιστική

ανακατασκευή του αμπελώνα με σκοπό ο αγρότης να έχει ένα τρισδιάστατο αντίγραφο του

αμπελιού του και να το επιθεωρεί σε δεύτερο χρόνο.

30/156

1.5.1 Αξιολόγηση και Βελτίωση Ποιότητας Νέφους Σημείων (point cloud)

Το Vinymap επιτυγχάνει την αξιολόγηση και βελτίωση ποιότητας του point cloud με τρεις

τρόπους: μετράει τα points τα οποία γειτνιάζουν με λιγότερα points από τον μέσο όρο. Τα

αφαιρεί από το αρχικό point cloud διότι είναι πιθανό να αποτελούν θόρυβο. Έπειτα

υπολογίζει τον όγκο που αυτά καταλαμβάνουν και παράγει έναν δείκτη που εκφράζει την

αραιότητα του point cloud (sparsity index).

Εικόνα 1-4: Εύρεση περιοχών χαμηλής πυκνότητας στο point cloud.

Κατά δεύτερον εντοπίζει κενά μέσα στο point cloud. Αυτό επιτυγχάνεται γεμίζοντας τον χώρο

ομοιόμορφα με points, αφαιρώντας το αρχικό point cloud από την ομοιόμορφη κατανομή

points και εφαρμόζοντας opening [21] στο εναπομείναν point cloud. Το αποτέλεσμα είναι η

εφάνιση κενών περιοχών του point cloud ως νέα νέφη. Αυτές ερμηνεύονται ως

αχαρτογράφητοι χώροι - τρύπες - και μέσω αυτών παράγεται ένας δείκτης ποιότητας σε

σχέση με τον αριθμό και τον όγκο που καταλαμβάνουν οι τρύπες στο αρχικό point cloud.

Εικόνα 1-5: Αλγόριθμος εύρεσης κενών περιοχών στο point cloud.

Κατά τρίτον, το Vinymap χωρίζει το αρχικό point cloud σε συστάδες (clusters) και από αυτές

αφαιρεί τις απομακρυσμένες και μικρές σε όγκο καθώς αυτές είναι πιθανό να αποτελούν

θόρυβο. Παράλληλα μετράει τον όγκο που αυτές καταλαμβάνουν και παράγει έναν ακόμα

δείκτη ποιότητας. Συνδυάζοντας τους δείκτες που υπολογίστηκαν σε ένα τελικό δείκτη, το

Vinymap δίνει τη δυνατότητα αντικειμενικής αξιολόγησης του point cloud. Παράλληλα, με τις

ενέργειες αφαίρεσης θορύβου βελτιώνεται η ποιότητα των αρχικών νεφών σημείων.

31/156

Εικόνα 1-6: Εντοπισμός συστάδων που αποτελούν θόρυβο.

1.5.2 Εκτίμηση Πυκνότητας Φυλλώματος Αμπελιών

Το Vinymap επιτελεί επιπλέον εκτίμηση της πυκνότητας του φυλλώματος των αμπελιών.

Αυτό επιτυγχάνεται με τη συνένωση των διαδοχικών λαμβανομένων point clouds

(registration) με τη χρήση του αλγορίθμου KISS-ICP [22]. Ακολουθεί ο διαχωρισμός του

φυλλώματος με βάση το χρώμα. Η διαδικασία ολοκληρώνεται με την εκτίμηση του πλήρους

φυλλώματος μέσω της χρήσης των τοπολογικών ιδιοτήτων των alpha shapes [23]. Η

συσχέτιση του πλήρους, γεμάτου φυλλώματος με το κανονικό φύλλωμα προσδίδει έναν

δείκτη της πυκνότητας του φυλλώματος του αμπελιού.

Εικόνα 1-7: Αλγόριθμος εκτίμησης πυκνότητας φυλλώματος αμπελιών.

1.5.3 Φωτο-ρεαλιστική Ανακατασκευή Αμπελώνα

Τέλος το Vinymap επιτυγχάνει φωτο-ρεαλιστική ανακατασκευή αμπελώνα χάρη στη

σύγχρονη αποθήκευση έγχρωμων εικόνων μαζί με τα διαδοχικά λαμβανόμενα point cloud.

Οι εικόνες αυτές προβάλλονται πάνω σε ένα ανακατασκευασμένο πλέγμα που προκύπτει

από την συνένωση των point clouds. Για την επίτευξη της διαδικασίας αυτής απαιτείται η

γνώση των εσωτερικών και εξωτερικών παραμέτρων της κάμερας που λαμβάνει τα point

cloud αλλά και της έγχρωμες εικόνες. Ο αλγόριθμος αυτός μπορεί να χρησιμοποιηθεί και σε

συστήματα που αξιοποιούν ένα LiDAR και μια έγχρωμη κάμερα RGB.

32/156

Εικόνα 1-8: Αλγόριθμος φωτό-ρεαλιστικής ανακατασκευής Αμπελώνα.

1.6 Πειραματική Διάταξη

Σε πρώτο στάδιο το πλαίσιο λογισμικού αναπτύχθηκε με τη βοήθεια του προσομοιωτή

Gazebo [24]. Εκεί κατασκευάστηκε ένα ψηφιακό ανάλογο ενός μικρού αμπελώνα με ιδανικές

συνθήκες φωτισμού εσωτερικού χώρου. Στη συνέχεια όλοι οι αλγόριθμοι εφαρμόστηκαν στο

ανεπτυγμένο σύστημα αντίληψης, το οποίο αναρτήθηκε πάνω σε μία ρομποτική πλατφόρμα

κατασκευασμένη στο Eργαστήριο Aυτόματου Eλέγχου. Ιδιαίτερο χαρακτηριστικό της

ρομποτικής πλατφόρμας αυτής αποτελεί ικανότητα της για κάθετη και οριζόντια κίνηση αλλά

και αυτο-περιστροφή χάρη στους τροχούς τύπου mecanum [25] που φέρει.

Εικόνα 1-9: Η ρομποτική πλατφόρμα και το σύστημα αντίληψης που αναπτύχθκαν στο Εργαστήριο

Αυτομάτου Ελέγχου.

Η ρομποτική αυτή πλατφόρμα εκτέλεσε πειράματα σε έναν συνθετικό αμπελώνα ο

οποίος κατασκευάστηκε στο ίδιο εργαστήριο με σκοπό να αποτελεί ένα πιστό αντίγραφο

ενός πραγματικού αμπελιού αναφορικά με τα οπτικά του χαρακτηριστικά αλλά και τις

διαστάσεις του.

33/156

Εικόνα 1-10: Πειραματική διάταξη συνθετικού αμπελώνα στο Εργαστήριο Αυτομάτου Ελέγχου.

1.7 Αποτελέσματα

1.7.1 Αξιολόγηση και Βελτίωση Ποιότητας Point Cloud

Αρχικά, η αξιολόγηση του αλγορίθμου πραγματοποιήθηκε με υποκειμενική μεθοδολογία.

Συγκρίθηκαν τα νέφη σημείων που προέρχονταν απευθείας από την κάμερα με τα

αντίστοιχα επεξεργασμένα και βελτιωμένα. Στη συνέχεια, υλοποιήθηκε ποσοτική ανάλυση

των αποτελεσμάτων, αξιοποιώντας τους δείκτες αξιολόγησης του Vinymap.

Στα αρχικά νέφη σημείων προστέθηκε τεχνητά θόρυβος, με σκοπό να αξιολογηθεί η

ικανότητα του αλγορίθμου Vinymap να τον ανιχνεύει και να τον απομακρύνει. Η ανάλυση

επιβεβαίωσε την επιτυχή ανίχνευση και απομάκρυνση του θορύβου

1.7.2 Αξιολόγηση Αλγορίθμου Εκτίμησης Πυκνότητας Φυλλώματος

Με στόχο να αξιολογηθεί η απόδοση του αλγορίθμου μας για την εκτίμηση της πυκνότητας

του φυλλώματος των φυτών, διεξήχθησαν πειράματα σε δύο περιβάλλοντα: έναν

προσομοιωμένο και συνθετικό αμπελώνα. Η προσομοίωση παρείχε ένα περιβάλλον με

υψηλό επίπεδο ελέγχου, σχεδόν χωρίς διακυμάνσεις στην πυκνότητα του φυλλώματος. Το

περιβάλλον του συνθετικού αμπελιού ήταν πιο ρεαλιστικό, αλλά και πάλι ελεγχόμενο. Αρχικά

δοκιμάσαμε τον αλγόριθμο σε πυκνά, τέλεια φυλλώματα, λαμβάνοντας πολύ υψηλές τιμές

στον δείκτη πυκνότητας, όπως αναμενόταν. Έπειτα δοκιμάσαμε δύο διαφορετικά σενάρια: 1)

Κανονικό Φύλλωμα: Ο αλγόριθμος επέστρεψε έναν δείκτη πυκνότητας εντός των

αναμενόμενων ορίων, σύμφωνα με την οπτική εκτίμηση του φυλλώματος. 2) Αραιό

Φύλλωμα: Η παρουσία κενών οδήγησε σε σημαντικά χαμηλότερο δείκτη πυκνότητας,

επικυρώνοντας την ικανότητα του αλγορίθμου να ανιχνεύει και να ποσοτικοποιεί τις

ανωμαλίες της βλάστησης.

Στο εργαστήριο, επαναλάβαμε τους ελέγχους κάτω από φυσικό και τεχνητό φωτισμό.

Όλες οι δοκιμές παρείχαν ακριβή και εύχρηστα αποτελέσματα, αποδεικνύοντας την

απλότητα και την αποτελεσματικότητα του αλγορίθμου στην εκτίμηση της πυκνότητας του

φυλλώματος των φυτών.

34/156

Εικόνα 1-11: Αξιολόγηση πυκνότητας φυλλώματος. Με κόκκινο χρώμα: κενά στο φύλλωμα των

αμπελώνων.

1.7.3 Αξιολόγηση Αλγορίθμου Φωτο-ρεαλιστικής Ανακατασκευής Αμπελώνα

Ο αλγόριθμος Φωτο-ρεαλιστικής Ανακατασκευής Αμπελώνα συγκρίθηκε με τα μη

επεξεργασμένα δεδομένα νέφους σημείων και τον αλγόριθμο χαρτογράφησης χώρου ZED

Spatial Mapping της Stereolabs όσον αφορά την οπτική πιστότητα και τον πλούτο οπτικής

πληροφορίας.

Η άμεση σύγκριση με τα μη επεξεργασμένα δεδομένα point cloud αποκαλύπτει τη

διαφορά. Ενώ τα μη επεξεργασμένα δεδομένα παρέχουν μια βασική αναπαράσταση, το

ανακατασκευασμένο πλέγμα μας προσφέρει μια σημαντικά πιο ευκρινή απεικόνιση του

αμπελώνα. Όπως φαίνεται στην Εικόνα 1-12, η ετικέτα April Tag παρουσιάζει βελτιωμένη

ευκρίνεια και τα μεμονωμένα σταφύλια μέσα στα τσαμπιά διακρίνονται πιο εύκολα.

35/156

Εικόνα 1-12: Σύγκριση ποιότητας ανακατασκευής.

Σε σύγκριση με την υψηλής ποιότητας ανακατασκευή του αλγορίθμου χαρτογράφησης

χώρου ZED Spatial Mapping της Stereolabs στις υψηλότερες ρυθμίσεις του, η

ανακατασκευή μας αναδεικνύεται ως η ανώτερη λύση. Η προσέγγιση προβολής εικόνας σε

πλέγμα δημιουργεί πλέγματα με σημαντικά μεγαλύτερη οπτική λεπτομέρεια, επιτρέποντας

στους αγρότες να επιθεωρήσουν με μεγαλύτερη άνεση μεμονωμένα φύλλα και σταφύλια.

Αυτή η βελτιωμένη υφή διευκολύνει τη λήψη πιο ενημερωμένων αποφάσεων στην

απομακρυσμένη γεωργία ακριβείας.

1.8 Συμπεράσματα και Μελλοντική Εργασία

Η παρούσα διπλωματική εργασία παρουσιάζει ένα νέο πλαίσιο για την τρισδιάστατη

ανακατασκευή και ανάλυση αμπελώνων. Εξετάζοντας την προσέγγισή αυτή σε συνθετικό

αμπελώνα, επιτεύχθηκε βελτιωμένη πλοήγηση με οπτική οδομετρία μέσω ετικετών

AprilTags και οπτικής ευθυγράμμισης πριν την έναρξη βελτιστοποίησης κλεισίματος βρόχου.

Προέκυψε πιο ευκρινή τρισδιάστατη ανακατασκευή αμπελώνα σε σύγκριση με την

προσέγγιση χαρτογράφησης χώρου ZED (ZED Spatial Mapping). Αναπτύχθηκε επίσης μια

ολοκληρωμένη λύση επιθεώρησης που ενσωματώνει προσεγγίσεις σχεδιασμού διαδρομής

με βάση την αποσύνθεση πολύτοπων, μια μέθοδο εφαρμοζόμενη για πρώτη φορά σε

πραγματική ρομποτική πλατφόρμα. Το σύστημα αντίληψης προσαρμόστηκε ειδικά στην

36/156

εφαρμογή μας με τη βοήθεια του FoVaLiRA, ενός εργαλείου ανάλυσης πεδίου όρασης και

ανάλυσης LiDar και καμερών βάθους, αναπτυγμένο στο Unity.

Κοιτάζοντας προς το μέλλον, η ενσωμάτωση τεχνολογιών βαθιάς μάθησης και

αυτοματοποιημένων τεχνικών ανάλυσης θα μπορούσε να επιτρέψει πολύπλοκες εργασίες

επιθεώρησης, όπως η ανίχνευση ασθενειών ή η επισήμανση πιθανών κινδύνων για

περαιτέρω εξέταση από τον οινοποιό. Επιπλέον, η επέκταση της αυτόνομης επιθεώρησης

θα μπορούσε να οδηγήσει σε πλήρη κάλυψη και παρακολούθηση του αμπελώνα, χωρίς να

απαιτούνται προκαθορισμένα σημεία έναρξης και λήξης διαδρομής. Πιστεύουμε ωστόσο ότι

αυτό το πλαίσιο αποτελεί ένα ισχυρό πρώτο βήμα προς μια ολοκληρωμένη λύση για την

γεωργία ακριβείας σε αμπελώνες.

37/156

2 Introduction

2.1 Motivation

The agricultural sector is facing numerous challenges, including climate change, resource

scarcity, and the need to increase productivity while minimizing environmental impact.

Traditional agricultural practices often rely on manual observation and data collection, which

can be time-consuming, labor-intensive, and error prone. This limits farmers' ability to make

informed decisions and optimize crop yields. 3D reconstruction technology offers a

transformative solution to these challenges; measuring crop height, canopy density, and

other phenotypic parameters, as well as detecting weeds and mapping field topography and

soil conditions are only some of the possibilities.

The Legged Robots Team of the Control Systems Lab (CSL) in NTUA has designed

and manufactured quadruped robots which utilize sophisticated and in-house-developed

mechanical and electrical subsystems. Lealaps II and its successor, Argos, are two optimally

designed quadruped robots, well suited for agricultural use. They were lacking, however, a

robotic perception system which would empower them to perceive, understand, and interact

with their surroundings autonomously.

The objective of the present thesis is to design and implement a perception system for

agriculture quadruped robots with 3D reconstruction of vineyards as the main focus. The

design considers both software and hardware. It features a novel spatial mapping algorithm

which preserves the visual detail required for a reconstruction to be useful for crop and field

analysis. A navigation and path-planning stack which enables the robot to traverse a real-life

vineyard effectively and safely is also proposed in this work. It utilizes a state-of-the-art

Model Predictive Control (MPC) planner, an in-house dual-camera visual odometry algorithm

and a robust PID trajectory tracking controller. A thorough review of relevant literature is

crucial for narrowing down design decisions.

2.2 Literature Review

2.2.1 Agriculture Robots

Human population has grown rapidly in recent years and will continue to do so for several

more. The need for food is a global concern for governments and scientists. However, the

way to increase food production should not be to expand cultivated land at the expense of

forests, but to increase the productivity of the soil and plants that are already established. As

a result, the interest in Agriculture Robots has been increasing the last few years.

There are three main factors that heavily influence the design of agriculture robots and

differentiate it from the design of other task-specific robots: agriculture-specific navigation,

agriculture-specific image processing and Handling Rough Terrain [26]. Focusing on these

aspects, researchers have come up with various solutions in the recent past.

The authors in [27] have designed a wheeled robotic platform which utilizes a

monocular downward facing RGB camera primarily used for classification of crop and weed

plants and for visual odometry. The robot uses machine vision to detect weeds within the

crop rows and treats the weeds by high precision drop-on-demand application of herbicide.

38/156

Researchers in [28] have developed the VineRobot, a multi-million euro project robot

designed to autonomously and non-intrusively traverse vineyards utilizing ultrasonic sensors

and RGB camera visual feedback, while providing the farmers with useable real time data

regarding the state of the vineyard it explores. The authors in [29] have developed an

autonomous pruning robot. Their pruning setup consists of a Universal Robots UR5e robot

mounted on a linear axis. The end effector consists of a set of electric bypass pruners along

with a RealSense D435 RGBD camera. For field trials, the robot was installed on the back of

a remote-controlled utility vehicle and powered with a portable generator.

It is evident that the world of agriculture is complex enough to allow for the development

of a large variety of robotic solutions that differ according to the problem that they are called

to solve. The present thesis focuses on the mediterranean vineyard, which is often

characterized by mountainous and rocky terrain, unsymmetrical rows as well as erratic

canopy at the late vegetative state. The mobility advantage and agility that a legged robot

presents cannot be replicated by a simple wheel layout. This is one of the reasons why legs

are the main locomotion mechanism in nature and the reason why the perception system

described in this work is mounted on and designed for a quadruped robot. Finally, the rich

and irregular canopy of vine trees calls for innovative machine vision solutions.

Figure 2-1: Robots designed for various agricultural Tasks.

(a) wheeled weed detection robot designed by the authors in [27]
(b) VineRobot (c) pruning robot designed by the authors in [29]

(d) Lealaps II quadruped robot designed at CSL NTUA.

39/156

2.2.2 Path Planning

Although path planning has been studied extensively for applications in indoor

environments, there is still much room for development and research for optimization in

agricultural environments. In fact, most recent relative research has focused on Coverage

Path Planning (CPP) algorithms [30]; these solve the problem of determining a path that

passes over all points of an area or volume while avoiding obstacles [31]. Point-to-point path

planning i.e.: determining an optimal and collision-free path from a starting point to a

destination point, which is more useful in precision agriculture applications, is not as

common in the literature. There are, however, several interesting publications.

Recently, researchers have designed a path planning and obstacle avoidance package

which enables their custom rover to either move along the middle of a row of a mountainous

vineyard or move through a row according a received path line [32]. To achieve this, their

software represents three-dimensional space as a two-dimensional occupancy gird map i.e.

a grid where cells with obstacles are labeled as occupied. This map is then heuristically

subdivided into regions based on the robot’s maneuvering capability and fed into a decision-

making algorithm. This is a simple and effective approach. The software, however, is closely

linked to the robot’s kinematic characteristics and cannot be generalized. In a more recent

work researchers introduce a new path planning algorithm that utilizes a topological map

and extends the A* search based planning algorithm , to ensure a safe path and a maximum

distance from the vine trees of a steep slope vineyard [33].

The authors in [34] propose a hybrid Voronoi-based ant colony optimization (V-ACO)

path planning algorithm to solve an adaptive ocean sampling problem. Ant Colony

Optimization is a metaheuristic algorithm inspired by the foraging behavior of ants. Ants

communicate with each other by laying down pheromone trails, which they use to guide

others to food sources. ACO algorithms use this same concept to search for solutions to

optimization problems.

The algorithm works by having a population of artificial ants, each of which starts at a

random location in the search space. The ants then follow a probabilistic path through the

search space, using pheromone trails to guide their way. The pheromone trails evaporate

over time, so the ants are more likely to follow trails that have been recently laid. If a

simulated ant finds a short path to the target, it will execute more routes to and from the

target. Thus, the short path will have less evaporated pheromones than other paths and will

be preferred as closer to optimal. The Voronoi based scheme utilizes Voronoi partition to

highlight high interest areas. The V-ACO algorithm could be altered to suit an agricultural

setting, although vineyards have a distinct and special topology of corridors and rows that

this scheme does not capitalize on.

Finally, machine learning is often used as a solution to path planning problems that

involve multiple agents or take place in complex, dynamic environments. The authors in [35]

present deep reinforcement learning as a framework to model the complex interactions and

cooperation required by robots that navigate among pedestrians. They utilize an LSTM

neural network that enables the algorithm to use observations of an arbitrary number of

agents. The algorithm learns collision avoidance among a variety of types of dynamic agents

without assuming they follow any particular behavior rules. The authors in [36] propose a

Bezier curve based approach for the path planning in a dynamic field using a Modified

Genetic Algorithm (MGA). The robot's path is dynamically decided based on the obstacles’

locations. With the goal of optimizing the distance between the start point and the target

40/156

point, the MGA is employed to search for the most suitable points as the control points of the

Bezier curve. Using the chosen control points, the optimum smooth path that minimizes the

total distance between the start and the end points is selected.

Figure 2-2: Path planning strategies.

(a) Ant Colony Optimization Visualized [34] (b) Local occupation grid map generated in [30]. On the left
sensor observation, on the right the produced grid map.

2.2.3 SLAM and 3D reconstruction

Simultaneous Localization and Mapping (SLAM), as the name implies, is the problem of

simultaneously estimating a robot's position and the 3D structure of the environment it is

traversing. 3D reconstruction, on the other hand, focuses solely on building a detailed 3D

representation of the scene, independently of the robot's motion. Most active SLAM

approaches provide estimations of the environment in the form of geometric representations

(e.g., OG maps, Octomaps). However, when we explore new environments as humans, we

are not just interested in the shape of the environment, but also in the textures and materials

of the world around us, as well as in semantic elements of the environment (e.g., presence

of objects, rooms) [37]. Achieving SLAM while capturing high- and low-level semantics is

commonly referred to as Spatial Perception or Spatial Mapping. In this case, 3D space is

represented as a 3D mesh or a 3D point cloud. Determining the quality of the representation

is of outmost importance, especially for agricultural applications, where the output data must

be reliable enough to aid with tasks such as crop inspection.

Point Cloud Quality Assessment

Point cloud quality assessment (PCQA) is a crucial task for evaluating the integrity and

usability of point clouds, which are collections of data points that represent three-

dimensional objects or environments. PCQA metrics aim to quantify the degradation or

distortion introduced during acquisition, processing, compression, transmission, or rendering

processes. This information is essential for optimizing point cloud processing algorithms,

ensuring data consistency, and maintaining visual quality for applications in various

domains. Two main categories of PCQA metrics exist: full-reference (FR) and no-reference

(NR).

FR metrics require access to a reference point cloud of the same scene or object to

compare with the distorted version. The reference point clouds are usually of very high

41/156

quality and together formulate a dataset that is considered a ground truth dataset. The

ground truth dataset can be synthetic as in [38] and [39], or include point clouds that are

captured with a high quality and expensive scanner as in [40] [41].

NR metrics, on the other hand, operate solely on the distorted point cloud itself, making

them more versatile for applications where reliable reference point clouds data may not be

readily available [42]. Recent advancements in PCQA have focused on learning-based

approaches, which utilize deep neural networks to extract discriminative features from point

clouds and predict quality scores. These methods have shown promising results in capturing

subtle distortions and generalizing to diverse datasets [43] [44]. Simpler NR quality metrics

like point cloud density, point confidence and Local outlier factor (LOF) [45] [46], as well as

mathematical methods [47] have also been used successfully throughout literature.

There is yet another common method of assessing 3D point cloud quality: Subjective

point cloud quality assessment. Humans visually review and effectively assign quality scores

to 3D data. Occlusions, unregistered objects and visible distortion in the reviewed point

cloud or mesh are often mentioned [48] [49]. Subjective point cloud quality assessment is

often used to evaluate objective quality assessment metrics [50].

Canopy Quality Assessment

The quest to objectively assess canopy quality and predict crop yield has long

enthralled precision agriculture researchers. Early efforts relied on laborious and destructive

chemical processes like leaf nitrogen analysis [51], offering limited insights and heavily

impacting plant health.

As technology evolved, non-destructive alternatives emerged. Hyperspectral imaging

[52], while promising, brought its own challenges: complexity, expensive equipment, and

specific technical knowledge requirements from the farmers.

Recently, computer vision techniques have gained popularity [53], offering optical

assessment methods with potential for real-time insights. Approaches like machine learning-

based leaf area estimation are effective [54], but often wrestle with training data

requirements, computational demands, and susceptibility to varying lighting and weather

conditions, potentially hindering their practical application.

Our approach in Vinymap sought a different path. Driven by the need for simplicity, real-

time applicability, and robustness under diverse environmental conditions, we designed a

canopy assessment algorithm that is non-destructive, preserving precious vine health for

optimal yield, simple, real-time viable and robust, performing reliably across diverse lighting

conditions.

Spatial Mapping

Spatial mapping or 3D reconstruction is the ability to create a digital representation of

physical space while maintaining semantic information. The three most common methods to

achieve 3D reconstruction are Structure from Motion (SfM), Stereopsis and Light Detection

and Ranging (LiDar) [55]. The implementation of each method, however, presents great

diversity in the literature and depends on the purpose for which spatial mapping is used, but

also on the hardware and computational power that is available.

Researchers in [49] leverage 2D thermal images to reconstruct 3D buildings using SfM.

They create point clouds from RGB images and thermal images separately and then

42/156

successfully align them to create a high-resolution output point cloud. The authors in [48]

utilize the COLMAP pipeline [56] [57] and propose a novel view planning method effectively

deciding the placement of a set of available RGB cameras in the 3D space in order to

optimally reconstruct noisy 3D corn plants using SfM.

Recently, a novel scene representation based on Gaussian splatting [9] has been

shown to deliver on-par or even better rendering and reconstruction performance than other

state-of-the-art reconstruction methods. Researchers in [58] and the authors in [59] have

used this representation to implement monocular camera SLAM frameworks that achieve

impressive performance in camera pose estimation, map construction, and novel-view

synthesis, while allowing real-time rendering of a high-resolution dense 3D map.

3D reconstruction using Stereo cameras and LiDars is also frequently encountered in

the literature and has established its position in this research field in recent years. The

authors in [60] propose a fusion of LiDar and Stereo camera data to effectively map 3D

space without missing out on texture or volumetric details. The authors in [61] recently

proposed a feature-based approach that enables fast and dense mapping of crop fields

observed by a vehicle-mounted stereo camera. They leveraged Bayesian inference to tackle

the feature matching ambiguity problem that is common in crop field mapping where

uncertainties due to repetitive textures and uneven lighting are induced.

Figure 2-3: (a) Subjective quality assessment of a point cloud of a plant [40]. Left: parts of plant have not

been reconstructed. Right: view planning improves reconstruction.
(b) Depth Camera on a combine harvester machine [62].

43/156

3 Reconstruction Software

3.1 SLAM

3.1.1 Localization

Robot localization, a fundamental aspect of robotics, refers to the process of determining a

robot's position and orientation (pose) within a specified, known environment. With an

accurate map of the environment, the robot can utilize sensor measurements (observations)

to acquire knowledge about its distance from objects around it (landmarks) and use this

knowledge to estimate its position and orientation in the known map. Sensors include

cameras, lasers, and inertial measurement units (IMUs) which gather information about the

robot's surroundings, while the map serves as a reference frame for interpreting these

sensory inputs.

Figure 3-1: Robotic Platform Localization Illustration.

Conventional robot localization techniques often employ a probabilistic approach, where the

robot's location is represented by a probability distribution, capturing the uncertainty inherent

in sensor measurements. This probabilistic framework allows the robot to continuously refine

its estimate of its position as it acquires new sensory data, ensuring robustness against

noise and errors. Various localization algorithms have been developed, each tailored to

specific sensor modalities and environmental conditions. For instance, visual odometry,

relying on camera imagery, excels in indoor environments, while laser-based techniques are

well-suited for outdoor scenarios due to range superiority [63].

44/156

The success of robot localization hinges on the accuracy and reliability of both sensor

data and the underlying map representation. Sensor noise and environmental clutter can

introduce significant challenges, requiring robust algorithms and filtering techniques to

mitigate these effects. Moreover, the map itself must be adequately detailed and up to date

with the environment it represents, in order to provide accurate localization information. As

robotics technology advances, the pursuit of more efficient, accurate, and robust localization

algorithms remains a critical area of research, paving the way for increasingly sophisticated

autonomous robots capable of navigating complex and dynamic environments.

3.1.2 Mapping

In the context of robotics, mapping refers to the process of creating a comprehensive

representation of an environment, typically represented as a 2D or 3D map. This

representation, often referred to as a reconstruction, captures the spatial layout, objects, and

other relevant features of the surroundings. Mapping is a fundamental capability for robots to

navigate and operate autonomously in their environment. By constructing a map, a robot can

gain a detailed understanding of its surroundings, enabling it to perform tasks such as path

planning, object recognition and manipulation and environmental monitoring.

Figure 3-2: ANYmal robot mapping terrain (staircase) using a stereo camera [64].

Making a 2D or 3D reconstruction of the surrounding environment works a lot like connecting
pieces of a puzzle; the robot gathers information about its surroundings using its sensors
and saves that information in an appropriate file format. It then moves and repeats this
process to acquire new data. Provided that it knows its position and orientation in space at
any given time, i.e. it always successfully localizes itself in the environment, then it can
create a map of its surroundings by appropriately stitching the newly acquired information, at
its new pose, with its older representation of the environment.

45/156

3.1.3 SLAM

As discussed in sections 2.1.1 and 2.1.1, for a robot to successfully perform localization, an

accurate map of the environment must be available. In addition, for a robot to successfully

perform mapping of the environment, it must be successfully localized in it. Enabling a robot

to perform both of these tasks simultaneously appears at first glance like a chicken-and-egg

problem. SLAM stands for Simultaneous Localization and Mapping. It is the name for the

solution to this very problem. It is a fundamental technique in robotics that allows a robot to

build a map of its surroundings while simultaneously determining its own location within that

map. This capability is essential for robots to operate autonomously in unknown

environments without the need for a-priori information about the trajectory they are following

or a priorly constructed map of their surroundings.

Figure 3-3: 2D and 3D Occupancy Grid Maps built using 2D and 3D Lidar SLAM utilizing MATLAB's

Navigation Toolbox [65].

The key to performing SLAM is the knowledge of the relationship between two consecutive

poses of a moving robot. This is otherwise known as odometry. The robot gathers

information about its surroundings using its sensors and saves that information in an

appropriate file format. It then moves and repeats this process to acquire new data. The

robot does not know its position and orientation in space at the time of gathering the old or

the new data; absolute localization is not a given. It estimates, however, its motion

(transformation) from the old to the new pose. Then it can create a map of its surroundings

by appropriately stitching the newly acquired information, at its new pose, with the

information gathered at its old pose. There are a lot of ways to estimate the transformation

from a previous to a new pose (odometry estimation). Odometry estimation is commonly

achieved in the following ways:

• Wheel odometry: This method relies on measuring the rotation of the robot's wheels. The

robot's position and orientation can then be estimated by tracking the cumulative rotation

of each wheel.

• Inertial odometry: This method uses an inertial measurement unit (IMU) to measure the

robot's acceleration and angular velocity. The robot's position and orientation can then

be estimated by integrating these measurements over time.

• Visual odometry uses a camera to track features in the environment. The robot's position

and orientation can then be estimated by matching the features in the camera's images

to landmarks in the map.

46/156

• Laser odometry uses a laser scanner to measure distances to surrounding objects. The

robot's position and orientation can then be estimated by tracking the changes in the

laser scans over time.

Wheel odometry is a simple and reliable method that is well-suited for robots that have

wheels or tracks. However, it is susceptible to errors due to wheel slippage and non-

linearities in the robot's motion. Inertial odometry is a more accurate method that is not

affected by wheel slippage. However, it is also prone to errors due to drift, which is the

accumulation of IMU measurement errors over time. Visual and Laser odometry accuracy

results are largely dependent on the amount of complexity of the environment of the robot,

i.e. the amount of features or the shape variability of the surrounding space. To improve the

accuracy of odometry estimation the above methods are often combined and statistically

reinforce the total odometry accuracy with the usage of Kallman Filters.

3.1.4 VSLAM

Visual simultaneous localization and mapping (vSLAM) is a type of SLAM that utilizes visual

data, typically from cameras, to determine the robot's position and orientation within an

environment (visual odometry), while simultaneously building a map of that environment.

build a map of an environment while simultaneously. VSLAM algorithms typically involve

three main components:

• Feature extraction: This involves identifying and extracting distinctive features from the

camera images. These features can be points, lines, or other geometric shapes or

structures that are relatively invariant to changes in lighting and viewpoint.

• Correspondence matching: This involves matching features from subsequent images to

features in the existing map. This is typically done by calculating the distance or angle

between features in different images.

• Optical flow and ego-motion estimation: Optical flow, is the pattern of apparent motion of

features in a visual scene caused by the relative motion between an observer and a

scene. Optical flow can be used to estimate ego-motion. Ego-motion, in the field of

computer vision, refers to estimating a camera's motion relative to a rigid scene [66]. An

example of ego-motion estimation would be estimating a car's moving position relative to

lines on the road or street signs being observed from the car itself.

VSLAM algorithms face several challenges, including:

• Illumination variations. Changes in lighting can make it difficult to extract features and

match them across images.

• Occlusions: Objects in the environment can block the view of features, making it difficult

to track enough of them to accurately estimate ego-motion.

• Sensor noise: Image sensors are not perfect -especially in low-light conditions- and their

measurements can contain noise that can corrupt the localization estimates and

accumulate over time.

Loop Closure

Loop closure is a crucial aspect of Simultaneous Localization and Mapping (SLAM) that

refers to the ability of a robot to recognize previously visited places and use this knowledge

to improve its localization and map estimation. This mechanism plays a critical role in

47/156

correcting the accumulated errors in the robot's pose estimation and ensuring the accuracy

of the map. Without loop closure, the robot's pose estimation would gradually drift away from

its actual position due to the accumulation of odometry errors. With loop closure, the robot

identifies a location in space, usually by saving special visual features characteristic to this

location. If it detects these features again while it is moving, then it assumes that it is in that

location once more. If the odometry data state otherwise, then they are corrected

accordingly and recursively along the whole trajectory of the robot. This correction is known

as bundle adjustment.

Figure 3-4: Loop Closure Illustration.

Saving visual features for a specific location in the scene and assuming they are unique to

this location is not a faultless assumption. The problem that arises is called perceptual

aliasing. This occurs when two different places can be perceived as the same. For example,

in a texture-wise monotonous and empty building, it is nearly impossible to determine a

location solely with the visual information, because all the corridors or rooms may look the

same [67]. In that case, a lot of false-positive loop closure detections would disrupt the

odometry data.

Multi-Camera Visual SLAM For Vineyard Inspection

A novel approach to enhancing the robustness of vSLAM has been developed in CSL,

specifically tailored for vineyard inspection applications [68]. The proposed VSLAM method

utilizes multiple cameras which increases the available Field of View (FoV) resulting in more

features available to track. Moreover, in situations in which one or more of the cameras is

obscured by the sun or leaves, the other cameras will still be able to identify useful features

in the environment and thus the visual odometry estimation will not be hindered.

48/156

Figure 3-5: (a) One camera's lenses are obstructed resulting in very low number of detected features.

(b) A different camera is not obstructed and continues to produce accurate visual odometry [17].

The proposed approach offers yet another novelty to add more robustness to VSLAM: It

does not utilize visual features to detect loop closures, as in vineyards, the crop is organized

in parallel rows and agricultural robots move in the open corridors between them. There, a

purely feature based approach would result in incorrect loop detection due to the high

similarity between images (perceptual aliasing). Instead, the developed method leverages

AprilTags, which are placed in fixed positions in the vineyard in order to assist with loop

closure detection.

AprilTags are a type of fiducial marker, similar to QR codes [69]. AprilTag markers can

be easily printed and embedded in any environment. The open-source AprilTag detection

software accurately determines the 3D location and orientation of each marker relative to the

camera, as well as its unique identifier. The AprilTag library is written in C and requires no

external libraries. It is designed to be seamlessly integrated into existing applications and

can run efficiently on embedded devices. AprilTags are designed to encode far smaller data

payloads than QR codes (between 4 and 12 bits), allowing them to be detected more

robustly and from longer ranges. They are also designed for high localization accuracy,

unlike QR codes which are mainly designed for saving data in a visual format.

Figure 3-6: April Tags used for research purposes in April Laboratory, University of Michigan [69].

49/156

A robot that uses Multi-Camera Visual SLAM For Vineyard Inspection will assume that it has

reached a position that it has also visited in the past only if it registers an AprilTag for the

second time. Knowing its relative position to the AprilTag using the respective open-source

code, while also knowing the fixed positions of all the AprilTags inside the vineyard allows

the robot to accurately re-localize and perform bundle adjustment every time it sees an

AprilTag, instead of relying on loop closure detection based on visual features.

3.2 SOTA Packages

3.2.1 RTAB-Map

RTAB-Map (Real-Time Appearance-Based Mapping) is a state-of-the-art graph-based

Simultaneous Localization and Mapping (SLAM) algorithm that utilizes RGB-D, stereo, and

lidar data to construct a comprehensive representation of an environment in real-time [12].

Its core strength lies in its efficient loop closure detection mechanism, which effectively

identifies previously visited locations and integrates them into the evolving map.

Loop closure Detector

The loop closure detector in RTAB-Map uses a bag-of-words (BoW) approach to determine

how likely it is that a new image comes from a previously visited location. That means that

each newly acquired image is dissected into so-called visual words. This is similar to how a

text can be dissected into words. For example, in the common classification problem of

labeling an email as spam or not spam, each email can be parsed into words. Building a

histogram of the frequency of the appearance of each word in the mail and checking if

spam-related words appear often can very accurately lead to a characterization of the mail

as spam or not spam. For instance, if the word “money” appeared more frequently in the

reviewed mail than in an average non-spam email, then the likelihood that the reviewed mail

is spam is increased. Similarly, RTAB-Map parses each new acquired image frame into

small homogenous pieces known as visual words. It creates a Bag of Words. It then

compares the BoW from the newly acquired frame to older BoW which are saved in a

constantly updating database of Bags. If the newly acquired BoW consists of similar visual

words to a previously saved BoW, then RTAB-Map concludes that the new image comes

from a location that has been visited before. This is known as accepting a loop closure

hypothesis. When a loop closure hypothesis is accepted, a graph-based optimization is

performed.

Graph-based optimization loop closure is a commonly used approach that represents

the robot's trajectory as a connected graph, where nodes represent poses and edges

represent constraints between poses. This graph-based representation allows for efficient

and robust loop closure detection and correction. Pose graph optimization involves refining

the poses of all nodes in the graph to minimize the overall error in the odometry data. This

process considers the constraints between poses, including odometry measurements and

loop closure constraints. Upon accepting a loop closure hypothesis, RTAB-Map adds a new

constraint to the odometry data and the map’s graph, then a graph optimizer minimizes the

errors in the map.

Performance and Integration

50/156

A memory management approach is used to limit the number of locations used for loop

closure detection and graph optimization, so that real-time constraints on large-scale

environments are always respected. This mainly involves map caching and map pruning

[70]. Map caching is the method of storing frequently accessed map elements, such as

poses and landmarks, in a separate cache memory. This reduces the need to repeatedly

load these elements from disk, which can significantly improve performance. Map pruning

involves periodically removing less relevant map elements, such as old poses or landmarks

that are no longer considered important. This helps to keep the map size manageable and

free up memory for new data.

RTAB-Map’s algorithmic pipeline ensures consistent and accurate localization even in

complex and dynamic environments. Its versatility extends beyond indoor mapping, as it can

effectively handle outdoor environments with varying lighting conditions and challenging

terrains. Its open-source nature and modular architecture make it a valuable tool for

researchers and developers in robotics, autonomous vehicles, and augmented reality.

Recently, a version of the package for iOS devices has been released and produces high

quality results paving the way for wider commercial use of the software [12].

Figure 3-7: A 3D map of an office building constructed with RTAB-Map iOS application [12].

3.2.2 Robot-Centric Elevation Mapping

Robot-Centric Elevation Mapping (RCEMapping) is a ROS package developed by Anybotics

as part of ANYmal Research [13]. The mapping process involves fusing range

measurements from a sensor, such as a laser or structured light scanner, with the robot's

pose estimation, typically obtained from an inertial measurement unit (IMU) and odometry.

The integration of range data and pose information enables the construction of a consistent

and reliable elevation map of the terrain around the robot.

Robot-Centric Approach

51/156

RCEMapping adopts a robot-centric perspective, constructing a local elevation map

centered around the robot. This approach aligns with the inherent limitations of onboard

sensors, ensuring that the map reflects the robot's direct field of view and the associated

pose uncertainty. Namely, at any time, the robot-centric elevation map is a local

representation of the surrounding terrain, meaning that the observed regions close to the

robot - which have the highest accuracy – are registered in the map, while older, previously

seen parts of the map are considered inaccurate and are deleted. Thus, uncertainty that is

aggregated through the motion of the robot due to sensor noise does not result in an

accumulated drift of the pose of the constructed map.

2.5D Mapping

The core data structure that RCEMapping utilizes is a voxel grid, which partitions the

mapping environment into a regular grid of voxels. Each voxel represents a small volume of

space, and its occupancy is determined based on the accumulated range measurements

from the robot's sensor. To further manage the uncertainty associated with range

measurements and pose estimation, RCEMapping employs a probabilistic voxel

representation. Each voxel is assigned a probability distribution reflecting the likelihood of

different terrain heights at that location. This probabilistic representation enables

RCEMapping to provide meaningful estimates of terrain elevation and its associated

uncertainty. To make the algorithm more computationally efficient, the OctoMap 3D

occupancy mapping library which implements an octree data representation is utilized [71].

Importantly, the map constructed with Anybotics Elevation Mapping is not a 3D map of

the environment, but rather a 2.5D map (two-and-a-half dimensional, alternatively pseudo-

3D or three-quarter map): For every point in the plane on which the robot moves, the

elevation of this point is saved and the result is plotted in 3D space. This simplifies the data

but also creates problems with modelling multiple surfaces that are stacked along the z-axis.

For example, if an obstacle object is placed 2 meters over a point in the robot’s field of view,

then the software will assume that the elevation at that specific area is equal to the height at

which this object is. It is however possible that there is enough room under the obstacle for

the robot to pass through. Nevertheless, this software will render the area under the obstacle

as part of the obstacle itself.

To demonstrate the above issue, a floating horizontal platform was placed in front of a

turtlebot robot in a simulated demo of RCEMapping. There was enough space under the

platform for the simulated robot to get through as can be seen in figure 20. However, in the

elevation map the floating platform was interpreted as ground elevation and therefore as a

high obstacle.

52/156

Figure 3-8: (a) A floating platform in Gazebo. (b) The elevation map constructed with RCEMapping.

Dynamic map adjustment

It is worth mentioning that the map can also adapt to dynamic environments. Namely, the

map remains consistent even if objects inside the mapped environment are being moved

during the mapping process. To achieve this, a visibility check is performed using ray

tracing. Virtual rays are casted from the robot’s sensors towards the environment. A visibility

map is constructed from the points that are collected from the collision of the rays with the

surface constructed from the height measurements. This map reflects the maximal height

that each cell can have based on the visibility constraint. Namely, if a cell is registered as

being high enough to block the sensor’s visibility, but the visibility is not being blocked, then

that cell violates the visibility constraint and is removed. As this visibility check is

computationally intensive, it is only performed at a lower rate (e.g., 1 Hz).

Figure 3-9: A rectangular obstacle was moved from right to left. The visibility is checked with ray tracing

and the previous map (red) is accordingly updated resulting in an updated map (blue) [13].

53/156

3.2.3 Gradslam

Gradslam emerges as a novel approach to SLAM by employing differentiable optimization

techniques, aiming to enable the integration of deep learning into the SLAM process. This

change opens up new avenues for improving SLAM performance and adaptability.

In conventional SLAM systems, the mapping and pose estimation processes are

typically decoupled, relying on individual algorithms for each task. This separation limits the

ability to optimize both processes simultaneously and hinders the integration of deep

learning techniques. Gradslam breaks down this barrier by representing the entire SLAM

pipeline as a differentiable computational graph. This allows gradients to flow from the

outputs of the system (map, trajectory) back to the inputs (raw sensor data, parameters,

calibration, etc.), enabling the optimization of both mapping and pose estimation using

gradient-based methods [14].

Figure 3-10: Gradslam provides differentiable building blocks for simultaneous localization and mapping
(SLAM) systems. The four main blocks it offers are Differentiable Visual Odometry,

Differentiable Registration using least-squares, Differentiable Mapping and Ray
differentials [14].

Gradslam performs similarly to other state-of-the-art dense mapping algorithms, while

offering enhanced flexibility by allowing the integration of various deep learning architectures

and loss functions. However, the current implementation of dense SLAM in Gradslam

requires a large amount of memory to store the produced computational graph. For instance,

running the KinectFusion algorithm with a voxel resolution of 128 × 128 × 128 consumes

approximately 6GB of GPU memory. This memory consumption significantly limits the size

of scenes that can be reconstructed within this framework. The team that designed

Gradslam [14], are currently working on improving the memory efficiency of this

implementation. Additionally, they are developing more robust filters for various stages of the

pipeline, such as Iterative Closest Point (ICP) registration, photometric warping, and

optimization routines.

54/156

Figure 3-11: Small office scene reconstructed using Gradslam [14].

3.2.4 Zed Spatial Mapping

ZED cameras, developed by Stereolabs, are renowned for their ability to capture high-quality

3D data and perform real-time spatial mapping. Zed spatial mapping is the dedicated

software developed to optimally perform SLAM by fully utilizing the camera hardware. At the

heart of Stereolabs’ technology lies a combination of stereo vision and inertial measurement

unit (IMU) data [72].

Figure 3-12: Mesh Generation (a) and Point Cloud Generation (b) with ZED Spatial Mapping.

Visual-Inertial Odometry

Visual-inertial odometry (VIO) is a technique for determining the precise position and

movement of an agent, such as an aerial or ground robot, without relying on GPS or lidar. It

leverages the combined power of cameras and inertial measurement units (IMUs) to achieve

exceptional accuracy and robustness [73].

While stereo vision provides depth data and visual odometry, the IMU complements it

by tracking the camera's movement and orientation in space. This information is essential for

registering subsequent depth maps and maintaining the spatial consistency of the 3D world.

The IMU captures acceleration, angular velocity, and orientation data. Those data are

statistically combined (usually with the use of extended or unscented Kalman filters [74])

with visual odometry allowing the software to precisely track the camera's trajectory through

space.

55/156

Neural Depth Sensing

Using deep learning algorithms to estimate depth from a single image or a sequence of
images, a technique known as Neural Depth Sensing, is a rapidly growing field with the
potential to revolutionize many applications. The main reason is that it allows for monocular
depth estimation i.e. estimating depth using a single image. This is a challenging task, but
recent advances in deep learning have made it possible to achieve relatively good results
[75]. The Zed Spatial Mapping software allows the user to choose between performance-
oriented, simple algorithmic stereo depth estimation techniques and neural depth estimation,
which is a sophisticated approach that combines stereo and neural depth estimates. In
recent software update releases, enabling the neural depth estimation while using Zed
Spatial Mapping produced faster and cleaner results.

The Multi-Step Process of Building the Spatial Map

The spatial mapping process encompasses several key steps [15]:

• Feature Detection and Matching: The software identifies distinctive features in each

depth map, such as corners or edges. These features are then matched across

subsequent images, creating a network of correspondences that stitch together the

individual depth maps.

• Planar Segmentation: The software identifies and segments planar surfaces in the

scene, such as walls, floors, or ceilings. This process simplifies the representation of the

environment and reduces computational complexity.

• Mesh Generation: The software constructs a 3D mesh from the depth data, representing

the reconstructed environment as a collection of interconnected triangles. This mesh

provides a polygonal approximation of the scene, allowing for efficient visualization and

interaction.

• If area memory is enabled, a database that stores information about the environment

that the ZED camera has already mapped is created. This information includes a point

cloud representation of the environment, as well as information about the camera's pose

(position and orientation) at different points in time. When the tracking detects an already-

visited area by searching in the database, it will perform a loop closure and compute an

updated position estimation that cancels eventual drifts.

56/156

Figure 3-13: Successful Monocular Depth Estimation [75].

3.3 Comparison and Decisions

3.3.1 Comparison

Overall, Rtabmap is a good choice for robotics applications that require high accuracy,

robustness, and flexibility. Anybotics Elevation Mapping is well-suited for vineyard mapping

due to its efficiency in handling elevation changes which are commonly encountered in

mountainous vineyards but fails to capture critical details in the canopy and fruit. Gradslam

is a good choice for research and development purposes, especially for machine learning

SLAM applications. Nevertheless, it significantly lacks real time performance and memory

management, as well as integration and ease of use. Zed Spatial Mapping is an excellent

software for prototyping due to its and real-time performance and high-quality Application

Programming Interface (API). However, it can only be used with Stereolabs hardware and is

not open-source.

Table 3-1 shows a detailed comparison of the four SLAM software packages for

vineyard mapping.

Table 3-1: A comprehensive comparison of four SLAM software packages.

Feature RTAB-map

Robot-Centric

Elevation

Mapping

Gradslam
ZED Spatial

Mapping

Active

development

 Actively

developed,

maintained, and

upgraded by a

large community

Maintained by

Anybotics

Maintained by a

community of

researchers

Actively

developed,

maintained, with

frequent, major

updates

57/156

Community

support

Large and active

community with

extensive

documentation

and support

forums

Smaller

community with

good support

forums

Community with

limited activity in

recent years

Dedicated

community with

extensive

documentation

and good

support forums

Real Time

Performance

Performs well in

real-time

applications.

High memory

requirements for

loop closure

Very efficient for

mapping

environments

with elevation

changes

Slow in real-time

applications.

Very high

memory

requirements

Very efficient for

real-time

applications with

Zed Stereo

cameras

Reconstruction

Quality

High quality 3D

reconstruction

with accurate

feature matching

and mapping

Can only

produce 2.5D,

undetailed

reconstruction.

High quality

reconstruction for

simple

environments

High quality 3D

reconstruction

with a variety of

output data

representation.

Specific

Features

Supports a wide

range of sensors,

including LiDAR

and depth

cameras

Designed

specifically for

2.5D terrain

mapping with

Octomap

representation.

Great memory

management

Fully

differentiable

Graph-based

SLAM system.

Specifically

designed for Zed

Stereo cameras.

Easy integration.

3.3.2 Decisions

Robot-Centric Elevation Mapping by Anybotics will encounter challenges in vineyards due to

the presence of dense vegetation and other dynamic obstacles that cannot be accurately

rendered with a 2.5D map representation. It also fails to capture texture and minor details

which are crucial for crop inspection applications.

Gradslam's flexible mathematical structure comes at the expense of real-time

performance in vineyard mapping applications. Real-time 3D mapping is often crucial in

vineyard mapping tasks, such as navigation and obstacle avoidance. Gradslam's potential

for lower real-time performance limits its suitability for these applications. It is also the

software that enjoys the least active development, maintenance, and support.

In the context of vineyard mapping, Rtabmap emerges as the preferred choice if a ZED

Stereo camera is not available. Its versatility, robustness, and accuracy make it well-suited

for the challenging conditions often encountered in vineyards. In addition, it comes with

extensive documentation, frequent updates and active support forums. Conversely, if a ZED

Stereo camera is available, ZED Spatial Mapping provides a compelling alternative. Its

58/156

streamlined integration and real-time 3D mapping capabilities make it efficient for rapid

prototyping and applications where real-time feedback is desired. ZED Spatial Mapping is

actively maintained and supported and it is regularly updated with state-of-the-art algorithmic

integration.

59/156

4 Path Planning

Path planning stands as a fundamental cornerstone of robotics, enabling autonomous robots

to navigate complex and dynamic environments with precision and efficiency. It is the

process of determining a collision-free trajectory for a robot to move from a starting point to a

designated goal while adhering to various constraints, such as obstacle avoidance, terrain

features, and kinematic limitations [76].

Path planning remains a highly active area of research, with ongoing efforts to develop

more efficient, robust, and versatile algorithms that can handle increasingly complex and

challenging environments. The advancements in path planning algorithms hold immense

promise for the future of robotics, paving the way for autonomous robots that can seamlessly

integrate into our everyday lives.

4.1 Taxonomy of Planners

4.1.1 Global and Local path planners

Path planning algorithms can be broadly classified into two categories: global and local.

Global path planning algorithms, also known as off-line planning algorithms, generate an

entire path from the start to the goal before the robot begins its movement. These algorithms

excel in open and predictable environments. However, they struggle in dynamic

environments with rapidly changing obstacles or unpredictable terrain disturbances.

Figure 4-1: Combination of Global and Local Planner Illustrated.

60/156

In contrast, local path planning algorithms, also known as on-line planning algorithms,

generate paths in real-time as the robot navigates the environment. These algorithms

continuously update the map of the environment and adapt the path to avoid obstacles

encountered along the way. The predicted path in a local path planner is in principle much

shorter than that of a global path planner and concerns the robot’s vicinity. They are well-

suited for dynamic environments, where obstacles may move or appear unexpectedly and

are usually combined with global path planners to enable robots to reach a designated goal

avoiding collisions along the way.

4.1.2 Obstacle Representation

Based on how free space and obstacles are mathematically represented, path planning

algorithms are further categorized in four main categories:

• Grid-based or Search Based planners: These planners discretize the environment into a

grid and use search algorithms like A* or Dijkstra's to find a path through the grid. They

are efficient for simple environments but can be computationally expensive for complex

environments, as the map on which the robot operates must be extensively subdivided to

form a grid which effectively models the operating space [77].

Figure 4-2: Grid-based free space (white squares) and obstacle (dark squares) representation and viable

path from starting position (green circle) to target position (red circle).

• Sampling-based planners: These planners build a tree of possible paths in the

environment by randomly sampling free space, creating a network that connects the

samples (nodes) and checking for collisions in the paths between the samples (edges).

They can handle complex environments with obstacles but may not always find the

optimal path to the target.

61/156

Figure 4-3: Rapidly-exploring Random Tree* (RRT*), a common sampling-based path planner that

builds a tree of potential paths by randomly sampling points in the environment and
checking for collisions [78] .

• Potential field planners: These planners create a potential field that represents the

attractive force towards the goal and the repulsive force from obstacles. The robot

moves along the gradient of the potential field to reach the goal. They are simple and

efficient but may not be suitable for all environments. Inherent problems to potential field

path planners include local minimum traps and unwanted oscillations around obstacles

[79].

Figure 4-4: Potential Field Planner Visualization. Environment with 10 obstacles [79].

62/156

• Hybrid planners: These planners combine elements of the first three planners utilizing

sophisticated algorithms to alternate between approaches and achieve considerable

flexibility.

4.1.3 Exploratory Path Planners

Exploratory path planning is a branch of path planning that aims to navigate a robot

effectively through an unknown or partially known environment to collect information about

its surroundings. The goal of an exploratory path planning agent is not to reach a single

specific goal efficiently, but rather to maximize the amount of information gathered by

exploring the environment. Hence the name, exploratory path planning.

In this context, computing an optimal path before starting the exploration is often not a

viable option as there is not enough useful information about the operating environment for

a-priori waypoint or goal setting. It is therefore common for explorational path planners to

employ complex and automated goal setting schemes. Based on their goal setting scheme,

explorational path planners can be categorized as follows:

• Next-best-view (NBV) planners: NBV planners select goals based on the robot's current

perception of a specific target in the environment. They identify locations that will provide

the robot with more information about that target, such as locations that will provide them

with higher visibility or locations that will allow the robot to see new, so far obscured

parts of the target. For example, the authors in [80] created an NBV planner to enable a

robotic arm to calculate the optimal trajectory around fruits to effectively reconstruct their

complete shape. The algorithm predicts fruit shapes prior to mapping them and

computes targeted viewpoints to enable the robot to observe yet unobserved parts of the

fruits.

Figure 4-5: Goals (Views) planned using view planning lead to less 3D reconstruction error and greater

object completeness percentage than regular views [81].

63/156

• Coverage-based planners (CPP): Coverage-based planners aim to maximize the amount

of useful area covered by a part of the robot or scanned by a sensor of the robot. It is a

particularly important task in the context of agriculture robotics, especially for automated

harvesters and watering robots. CPP is however an integral algorithm for a plethora of

applications including cleaning robots, underwater vehicles creating image mosaics,

demining robots and more [31].

Figure 4-6: Solution for a UAV coverage path planning problem in Matlab

calculated using Matlab’s UAV Toolbox [82].

• Information-theoretic planners: Information-theoretic planners use information theory to

quantify the amount of information gathered by the robot. They plan paths that maximize

the expected information gain from each new candidate waypoint, which is the amount of

information the robot can expect to gather by visiting it [83]. Waypoints that hold

significant exploratory value are often called frontiers. Such planners are commonly used

in search and rescue or other time-sensitive applications.

64/156

Figure 4-7: Information-Theoretic Exploratory Planner illustration [84].

4.2 SOTA Packages

4.2.1 Ewok Planner

In their work, Ewok: Real-Time Trajectory Replanning for MAVs using Uniform B-splines and

3D Circular Buffer [18], the authors present a real-time approach for local trajectory

replanning specifically designed for agile robots such as Micro Aerial Vehicles (MAVs).

Unlike traditional methods that assume static environments and prior map knowledge, Ewok

thrives in dynamic scenarios, efficiently adapting trajectories on-the-fly to navigate cluttered

and unpredictable surroundings. This makes it particularly valuable for applications like

search and rescue, autonomous exploration, and spatial mapping in unknown environments.

Figure 4-8: MAV dynamically planning its path while moving through a simulated forest using the Ewok

Planner [18].

65/156

Uniform B-splines

Ewok represents trajectories as smooth and flexible curves using uniform B-splines.

Formally, a spline is a piecewise polynomial function defined over a set of intervals [85]. The

places where the polynomial pieces meet are known as knots. Splines are a powerful tool when

there is a need to represent smooth curves that pass through or interpolate given data points

due to the following attributes:

• Continuity: Splines have continuity of at least order 𝑘 at each knot point, meaning both

the function value and its derivatives up to order 𝑘 match across intervals.

• Locality: Each polynomial piece only affects the curve in its corresponding interval,

allowing for local control of the shape.

The degree of the polynomial pieces determines the spline's smoothness and flexibility. For

example, a cubic spline (k=2) will have continuous first and second derivatives, creating

smooth and visually appealing curves.

B-splines (basis splines) are a specific type of spline representation. B-splines of order 𝑛

are basis functions for spline functions of the same order defined over the same knots,

meaning that all possible spline functions can be built from a linear combination of B-splines,

and there is only one unique combination for each spline function. They have several

desirable properties:

• Each B-spline is non-zero only over a specific interval defined by its corresponding

knots.

• The sum of all B-splines associated with a given knot sequence is always 1.

• B-splines can be defined recursively based on lower-degree B-splines, simplifying

calculations.

Figure 4-9: A cubic parametric polynomial spline[86]. P denotes control points. The first and third

polynomic parts of the curve are painted blue, while the second orange. Single knots at 1/3

and 2/3 of the curve establish a spline of three cubic polynomials meeting with 𝑪𝟐
parametric continuity. Triple knots at both ends of the interval ensure that the curve

interpolates the end points.

66/156

The value of a B-spline of degree 𝑘 − 1 can be evaluated using the following equation:

𝒑(𝒕) = ∑ 𝒑𝒊𝑩𝒊,𝒌(𝒕) ,

𝒏

𝒊=𝟎

 (4-1)

where 𝑝𝑖 ∈ 𝑅𝑛 are control points at times 𝑡𝑖, 𝑖 ∈ [0, … , 𝑛] and 𝐵𝑖,𝑘(𝑡) are basis functions that

can be computed using the De Boor – Cox recursive formula [87]. Uniform B-splines are a

special case where the knots are equally spaced within the time domain. This simplifies

calculations and offers predictable control over the curve's shape. In the context of the Ewok

planner, uniform B-splines are utilized for calculating an initial global path.

Leveraging splines allows the ewok planner to produce smooth paths, preventing abrupt

changes in velocity and acceleration, essential for safe and comfortable agile robot

maneuvers. Furthermore, modifying a global trajectory defined with splines is not

complicated, as modifications to individual control points affect only a specific segment of

the trajectory, allowing for targeted adjustments without impacting the entire path. The

authors of the Ewok planner have specifically employed a real-time trajectory modification

applied on the global path computed with B-splines. This is achieved through a local planner

which solves an optimization problem and is triggered when the robot detects an obstacle in

its vicinity and on its computed trajectory. Eq. (4-2) describes the cost function which must

be minimized when the local planner is triggered:

 𝑬𝒕𝒐𝒕𝒂𝒍 = 𝑬𝒆𝒑 + 𝑬𝒄 + 𝑬𝒒 + 𝑬𝒍 , (4-2)

where 𝐸𝑒𝑝 (endpoint position) is a cost function that expresses position and velocity deviation

from the optimal values that are imposed by the global trajectory; 𝐸𝑐 (collision) is a cost

function that heavily penalizes collision with obstacles; and 𝐸𝑞 and 𝐸𝑙 are cost functions that

ensure continuous and smooth derivatives (cost of integral and limit on the norm,

respectively), preventing abrupt changes in velocity and acceleration, essential for safe and

comfortable MAV maneuvers.

B-splines guarantee continuous position and its derivatives up to the degree of the

spline minus one at any given control point and the basis functions simplify calculations,

enabling real-time replanning within onboard computational constraints. However, B-splines

do not naturally interpolate control points, hindering imposition of arbitrary boundary

conditions. Only static constraints (zero-time derivatives) can be guaranteed by duplicating a

control point (𝑘 + 1 times, where 𝑘 is the spline degree). Non-zero time derivative constraints

necessitate iterative optimization. Other trajectory representations, such as Polynomial

Splines allow direct enforcement of boundary conditions, including non-zero time derivatives,

at the expense of increased complexity.

When control points originate only from planning algorithms (RRT, PRM) requiring

collision-free paths, adhering to these points is crucial. Therefore, representations such as

polynomial splines are more suitable. Local replanning employed in Ewok deals with

unexpected obstacles not considered in initial planning and changes the control points in

real-time. Here, strict adherence to control points becomes less critical, and the inherent

smoothness and computational efficiency of B-splines make them preferable.

67/156

3D Circular Buffer

To maintain real-time environmental awareness, Ewok employs a 3D circular buffer that

moves along with the MAV. This buffer stores occupancy grid information, essentially

representing a dynamic map of the surrounding obstacles within a defined range. Sensors

like LiDAR or cameras continuously update the buffer, reflecting changes in the environment

as the MAV navigates. By querying the buffer during replanning, Ewok identifies potential

collisions and modifies the trajectory accordingly. The buffer is implemented by employing

the following strategies:

Discretization: The environmental volume is discretized into voxels of size 𝑟 . This

establishes a mapping between points in 3D space 𝑝 and integer-valued indices 𝑥 that

uniquely identify individual voxels. The inverse operation allows retrieval of the voxel center

point given its index. A continuous array of size N represents the 3D environment. An offset

index 𝑜 defines the location of the buffer's coordinate system relative to the MAV. Given the

index and offset, the following functions can be defined to check if a voxel lies within the

represented volume and determine its address within the stored array:

 𝒊𝒏𝒔𝒊𝒅𝒆𝑽𝒐𝒍𝒖𝒎𝒆(𝒙) = 𝟎 ≤ 𝒙 − 𝒐 < 𝑵, (4-3)

 𝒂𝒅𝒅𝒓𝒆𝒔𝒔(𝒙) = (𝒙 − 𝒐)𝒎𝒐𝒅𝑵. (4-4)

Robotcentric Update: To maintain the buffer centered around the MAV's camera, the

offset (o) is simply updated based on the vehicle's movement. The newly incorporated part

of the volume is cleared, eliminating the need for large data copies during movement. This

way, the size of the array can be restricted to 𝑁 = 2𝑝 and the above functions can be

altered to use cheap bitwise operations instead of divisions:

 𝒊𝒏𝒔𝒊𝒅𝒆𝑽𝒐𝒍𝒖𝒎𝒆(𝒙) = ! ((𝒙 − 𝒐)&(~(𝟐𝒑 − 𝟏))),
(4-5)

 𝒂𝒅𝒅𝒓𝒆𝒔𝒔(𝒙) = (𝒙 − 𝒐)&(𝟐𝒑 − 𝟏) , (4-6)

where & is a “bitwise and”, ~ is a “bitwise negation” and ! is a “boolean not”.

If a collision is imminent, the local planner identifies the point of conflict and generates

alternative segments using B-splines. These segments prioritize obstacle avoidance while

adhering to constraints like minimum altitude, maneuverability limits and proximity to the

original trajectory. The new segments are seamlessly connected to the existing trajectory,

ensuring a smooth and continuous path.

68/156

Figure 4-10: Example of online trajectory replanning using the ewok planner [18]. The plot shows a

global trajectory computed by fitting a polynomial spline through fixed waypoints (red),
voxels within 0.5 m of the obstacle (blue), computed B-spline trajectory with fixed (cyan)

and still optimized (green) segments and control points.

Ewok presents a valuable approach for real-time trajectory replanning in dynamic

environments for agile robots. One of its limitations is the planning horizon: The 3D circular

buffer limits the planning scope to the immediate surroundings. Long-range planning might

require additional techniques. In addition, a smooth curved trajectory is especially useful

when dealing with fast-moving robots, like MAVs. In the case of a quadruped agriculture

robot, a trajectory with angles and sharp turns is perfectly acceptable and can even be

optimal.

4.2.2 Sequential MPC Reactive Planning using Safe Corridors

In their work, A Sequential MPC Approach to Reactive Planning for Bipedal Robots [19], the

authors delve into a path planning solution that leverages the power of Sequential Model

Predictive Control (MPC) and offline polytopic decomposition to enable robust and reactive

motion for legged robots in complex and dynamic scenarios.

69/156

Figure 4-11: Example environments and paths generated by the MPC-safe corridors controller [19]. The

successively connected polytopes (blue) represent safe corridors. (a) Polygonal obstacles
(b) Rotated rectangular obstacles.

Safe Corridors

The authors leverage RRT* to efficiently explore the environment and identify obstacle-free

regions. RRT* iteratively expands a tree-like structure in the configuration space, prioritizing

exploration towards the goal while respecting robot constraints. Figure illustrates the logical

flow diagram for RRT*, given a set state space 𝑋, in which the robot operates, a start point

𝑋𝑠𝑡𝑎𝑟𝑡 and a goal point 𝑋𝑔𝑜𝑎𝑙.

Figure 4-12: RRT* logical flow diagram.

It should be noted that RRT* is the same algorithm as RRT with the added optimization

routine after each new node addition. This is a three-step routine that employs the following

functions:

Local Search: Starting from the newly created node, its neighboring nodes are checked

within a specific radius.

70/156

Cost Comparison: For each neighbor, the routine checks if connecting to the new node

would create a lower cost path compared to its current connection. Cost can represent

distance, time, or any other relevant metric. Algorithms like Dijkstra’s or Kruskal’s are

employed for path cost calculation.

Rewiring: If a lower-cost path is found, the routine rewires the connections of the affected

neighbors to connect them through the new node.

The resulting tree is a near-optimal path solution.

Instead of directly using the complex free space identified by RRT*, the authors

decompose it into simpler, convex shapes called polytopes. This decomposition leverages

computational geometry techniques to ensure safe and tractable representation of free

space. The individual polytopes are then carefully connected through a recursive process

that uses their Chebyshev centers, to form a continuous and collision-free "corridor" that

guides the robot towards its goal. This corridor prioritizes directness while adhering to safety

constraints and robot limitations. The algorithm follows the below structure:

Obstacle Inflation: The static workspace, denoted as 𝑊𝑠, is first augmented to account for

the physical dimensions of the mobile robot. Obstacles are inflated by a specified radius,

assuming the robot can be represented by a disc of that size.

Convexity Assumption: All obstacles in 𝑊𝑠 are assumed to be convex. While not

universally true, this simplification allows for efficient computation of free space regions for

motion planning.

Sampling-Based Planning: A sequence of points, 𝛱 = {𝑝1, . . . , 𝑝𝑘}, is generated within the

free space of the workspace (dynamic and static), denoted by 𝑊\𝑊𝑠 . This sequence

connects the initial location with the desired goal position and is generated using RRT*.

Initial Polytope Generation and Waypoint Extraction: An initial polytope 𝐻0 is created
and saved within the free space 𝑊\𝑊𝑠 containing the initial robot position 𝑦0. This is done

using a convex optimization process [88]. 𝑦0 is saved as the initial waypoint 𝑤0. The
algorithm checks if the goal position 𝑤𝑔 lies within 𝐻0. If not, the algorithm iterates through

the points 𝑝𝑗 ∈ 𝛱 starting from j = 1. It finds the first point 𝑝𝑗1 not contained in 𝐻0.

Intersecting Polytopes Guarantee: The algorithm takes the current polytope 𝐻0 and the

waypoint 𝑝𝑗1 as input. It generates a new polytope 𝐻𝑛𝑒𝑤 around 𝑝𝑗1. It then performs two

operations:

Intersection Check: It checks if the current polytope and the polytope 𝐻𝑛𝑒𝑤 generated around

𝑝𝑗1 have a non-empty intersection (𝐻0 ∩ 𝐻𝑛𝑒𝑤 ≠ ∅).

Intersection Guarantee: If an intersection exists, the algorithm saves 𝐻𝑛𝑒𝑤 as a new polytope

𝐻1 and a waypoint 𝑤1 representing the Chebyshev center of the intersection 𝐻0 ∩ 𝐻𝑛𝑒𝑤. If

there is no intersection, the algorithm generates a sequence of intersecting polytopes and

waypoints 𝐺̅ connecting 𝐻0 and 𝐻𝑛𝑒𝑤 by iteratively creating polytopes using points on the

straight line that connects 𝑦0 with 𝑤1. The generated polytopes and waypoints are saved.

The algorithm repeats this process for each point 𝑝 ∈ 𝛱.

Final Output: The algorithm outputs a sequence of pairwise intersecting free polytopes

{𝐻0, 𝐻1, . . . , 𝐻𝑀−1} containing the initial position and a set of waypoints {𝑤1, . . . , 𝑤𝑀} such

that:

 𝑤𝒊 ∈ 𝐻𝒊−𝟏 ∩ 𝐻𝒊 for 𝑖 = 1, … , 𝑀 − 1 (4-7)

and 𝑤𝑴 = 𝑤𝑔 ∈ 𝐻𝑀−1. These waypoints and polytopes 0are to be utilized in subsequent

Model Predictive Control (MPC) algorithms for robot motion.

71/156

Sequential Model Predictive Control (MPC)

Model Predictive Control (MPC) is an advanced control technique widely used in various

industries, from chemical plants and refineries to autonomous vehicles. It offers a powerful

framework for controlling complex systems while incorporating constraints and optimizing

performance goals [89].

At the heart of MPC lies a mathematical model representing the dynamics of the system

being controlled. This model can be linear, nonlinear, or a combination, depending on the

system's complexity. MPC operates over a finite time window called the receding horizon. At

each time step, it predicts the system's future behavior based on the current state and

potential control inputs. An optimization problem is formulated with a cost function that

penalizes deviations from desired outputs and control effort. By minimizing this cost function,

MPC determines the optimal control sequence for the receding horizon. Only the first control

input in the sequence is applied to the actual system. At the next time step, the horizon

moves forward, incorporating new sensor measurements to update the model and repeat

the optimization process. This is what the sequential aspect of this approach implies. In their

work [19], the authors leverage MPC to optimize a rough initial trajectory created by the

RRT* algorithm. The MPC controller optimizes a cost function that considers factors like

trajectory smoothness, control effort, and distance to the goal. This ensures efficient and

goal-oriented navigation within the created safe corridors.

Figure 4-13: Model Predictive Control Schematic.

The core concept behind the planning and control approach in the work by the authors in

[19] lies in the following equation for the 𝑖 − 𝑡ℎ MPC (𝑀𝑃𝐶(𝑖)):

 𝒉𝒊,𝒋(𝑨𝒙𝒌 + 𝑩𝒖𝒌) ≥ (𝟏 − 𝜸)𝒉𝒊,𝒋(𝒙𝒌), 𝒋 = 𝟏, … , 𝒍𝒊 , (4-8)

where 𝑥𝑘 represents the current state of the robot model (in [19] it is a 3D-LIP robot model)

at time step 𝑘. The state encompasses its position (𝑥, 𝑦), orientation 𝜃, and velocities (𝑥̇, 𝑦̇),

𝑢𝑘 denotes the control input applied to the robot model at time step 𝑘. This input directly

influences the acceleration and subsequent trajectory of the robot. ℎ𝑖,𝑗 represents a

collection of smooth scalar-valued functions. Each function ℎ𝑖,𝑗 corresponds to a specific

half-space within a polytope 𝐶𝑖. It acts as a measure of how far the robot state 𝑥𝑘 is from the

72/156

boundary of that half-space. The polyhedra 𝐶𝑖 define safe regions within the workspace. The

robot's state and trajectory must remain within these polyhedra throughout its motion to

guarantee collision-free navigation. Each polytope 𝐶𝑖 is formed by the intersection of multiple

half-spaces. Each half-space is defined by a linear inequality represented by the function ℎ𝑖,𝑗.

𝑙𝑖 represents the number of half-spaces that contribute to defining a specific polyhedron 𝐶𝑖.

The core constraint utilizes the functions ℎ𝑖,𝑗 associated with a polytope so that if

ℎ𝑖,𝑗(𝑥𝑘) ≥ 0 for all j, the robot's state lies within the safe region 𝐶𝑖.

The constraint enforces that the control input 𝑢𝑘 steers the robot's predicted next state

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 further into the polytope region or at least keeps it within the boundaries.

This ensures collision avoidance with static obstacles, while respecting the robot model’s

constraints.

Reactive Planning

While the robot follows the current safe corridor segment, the MPC controller continuously

replans the subsequent segments in the sequence. This allows for real-time adjustments

based on dynamic obstacles or changes in the environment, ensuring reactive collision

avoidance and smooth trajectory adaptation. Additionally, the authors propose incorporating

a "reactivity layer" within the Safe Corridor generation itself, making the corridors themselves

adaptable to moving obstacles without complete replanning, by incorporating sensor input in

the corridor formation process. This is because a new polytopic decomposition can be

performed in less than a second, even in complex and cluttered environments.

4.2.3 Graph-based exploration planner (GB-planner)

In their work, Graph-based Subterranean Exploration Path Planning using Aerial and

Legged Robots [20], the authors propose an approach employing path planning specifically

designed for robotic exploration in large-scale, tunnel-like, underground networks, enabling

efficient and safe navigation. GBPlanner 2.0 is an extension of their previous work on a

Graph-Based Exploration Planner. The new planner presents improved computational

performance and better handling of positive and negative obstacles for ground robots. The

planner does not require any prior knowledge of the environment other than the general

bounds of the volume to be explored.

Graph Representation

Much like in RRT*, graph nodes are placed in random locations of the subterranean

environment, in close vicinity to the robot which is performing the exploration. Nodes that are

placed on obscured locations or on obstacles are discarded, while the rest of the nodes are

connected to form a tree-like structure which depicts potential paths from the robot to each

node. Ground traversability is also considered as a constraint during this process. The graph

representation simplifies the complex 3D environment into a structured and easily

analyzable format.

Exploration Gain Metrics

To guide the robot's decision-making, various metrics are assigned to graph nodes. These

metrics quantify the potential information gain associated with exploring a specific node.

73/156

Nodes that lie near uncharted territories are ranked higher in terms of explorational value.

Metrics reflecting terrain difficulty, narrow passages, or potential hazards are also introduced

to influence path selection for safe navigation. The robot iteratively calculates the

explorational value of all the nodes in the so-far explored map. It then decides which node to

visit next, based on its explorational value and the length of the path it must take to get

there.

Figure 4-14: A graph representation is used to describe free space [20]. Frontiers and Home Location

affect the robot's (blue triangle) decision making process.

Nodes that held great explorational value but have not been visited due to their distance

from the robot are saved as frontiers. A frontier in explorational path planning is defined as

the boundary between known and unknown space in a map. It can be visualized as the edge

of the explored area, where information about the environment is still missing. The robot

knows the path from its position to all explored frontiers at any moment. It decides to visit

nodes close to a frontier if there are no new nodes in its vicinity with a high enough

explorational value.

The authors of GBplanner2.0 specifically employ two separate exploration gain metrics;

one for the local planner and one for the global planner. Both approaches utilize a volumetric

gain calculation algorithm. The proposed method for calculating volumetric gain leverages

ray casting. Given the robot's current pose and a specific 3D sensor model, the algorithm

identifies:

Unknown space: The unmapped portion of the environment.

Sensor frustum: This represents the cone-shaped volume which represents the sensor’s

field of view.

Voxels: The environment is discretized into small, 3D cubes called voxels.

The algorithm then performs the following steps:

Ray Casting: For each direction within the sensor frustum, a ray is cast from the robot's

position into the unknown space.

Voxel Intersection: Each ray is checked for intersections with voxels in the unknown space.

Traversable Voxels: The number of intersected voxels is identified, representing the

potentially traversable volume within the sensor's field of view.

This approach provides a computational and efficient estimation of the unmapped volume

accessible to the robot, aiding in exploration gain estimation. In particular, given a path 𝜎𝑖 ∈

𝛴𝑖 , 𝑖 = 1, … , 𝑛, - where 𝛴𝑖 is the set of all shortest path in the map- , with number of vertices

74/156

𝑚𝑖 and a set of vertices 𝑣𝑗
𝑖 ∈ 𝜎𝑖 , 𝑗 = 1, … , 𝑚𝑖 along the path, the equation that describes the

exploration gain estimation process for the local planner is the following:

𝑬𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏𝑮𝒂𝒊𝒏(𝝈𝒊) = 𝒆−𝜸𝑺𝑺(𝝈𝒊,𝝈𝒆𝒙𝒑) ∑ 𝑽𝒐𝒍𝒖𝒎𝒆𝒕𝒓𝒊𝒄𝑮𝒂𝒊𝒏(𝒗𝒋

𝒊)𝒆−𝜸𝑫𝑫(𝒗𝟏
𝒊 ,𝒗𝒋

𝒊)

𝒎𝒊

𝒋=𝟏

 , (4-9)

where 𝑆(𝜎𝑖, 𝜎𝑒𝑥𝑝), 𝐷(𝑣1
𝑖 , 𝑣𝑗

𝑖) are weight functions with tunable factors 𝛾𝑆, 𝛾𝑆 > 0. In addition,

𝐷(𝑣1
𝑖 , 𝑣𝑗

𝑖) is the cumulative Euclidean distance from a vertex 𝑣𝑗
𝑖 to the root 𝑣1

𝑖 along the path

𝜎𝑖. This promotes efficient exploration by prioritizing paths that require minimal robot travel

distance but at the same time maximize the anticipated information gain (e.g., unmapped

space coverage) per unit travel distance, leading to a faster exploration rate. Similarly, the

equation that describes the exploration gain estimation process for the global exploration

planner is:

 𝑮𝒍𝒐𝒃𝒂𝒍𝑬𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏𝑮𝒂𝒊𝒏𝑮(𝒗𝑮,𝒊
𝑭)

= 𝑻(𝒗𝑮,𝒄𝒖𝒓, 𝒗𝑮,𝒊
𝑭)𝑽𝒐𝒍𝒖𝒎𝒆𝒕𝒓𝒊𝒄𝑮𝒂𝒊𝒏(𝒗𝑮,𝒊

𝑭)𝒆−𝜺𝑫𝑫(𝒗𝑮,𝒄𝒖𝒓,𝒗𝑮,𝒊
𝑭), (4-10)

where 𝐹 symbolizes a frontier, 𝐺 symbolizes the combination and clustering of all graphs on

the map, called the global graph and 𝑻(𝒗𝑮,𝒄𝒖𝒓, 𝒗𝑮,𝒊
𝑭) is the estimated remaining exploration

time if the planner chooses to go from the current vertex (“cur”) to the frontier vertex 𝒗𝑮,𝒊
𝑭 .

The 𝑇 parameter is derived by approximating the robot's Remaining Endurance Time (RET)

and subtracting the Estimated Time of Arrival (ETA) required for the two following traversals:

1. Travel from the current vertex to the designated vertex (𝒗𝑮,𝒊
𝑭).

2. Return travel from the designated vertex (𝒗𝑮,𝒊
𝑭) back to the home location (𝑣𝐺,ℎ𝑜𝑚𝑒).

Thus, the above becomes:

 𝑻(𝒗𝑮,𝒄𝒖𝒓, 𝒗𝑮,𝒊
𝑭) = 𝑹𝑬𝑻 − 𝑬𝑻𝑨(𝒗𝑮,𝒄𝒖𝒓, 𝒗𝑮,𝒊

𝑭) − 𝑬𝑻𝑨(𝒗𝑮,𝒊
𝑭 , 𝒗𝑮,𝒉𝒐𝒎𝒆) (4-11)

Conceptually, this value represents the tentative volumetric gain achievable within the

remaining time 𝑇 if the exploration planner decides to explore frontier 𝒗𝑮,𝒊
𝑭 . This gain is an

estimate of the unmapped space the robot can potentially cover during this timeframe, given

its energy consumption constraints.

Search Algorithms & Multi-level Planning

Efficient algorithms traverse the graph, selecting paths that optimize a combination of these

exploration gain metrics while adhering to robot constraints like battery life, maneuverability,

and communication range. To address large-scale environments, hierarchical planning

approaches are often employed. A high-level planner creates a coarse roadmap in the

formed graph using simplified models, while a lower-level planner refines the path within

specific regions based on detailed sensor data for safe and efficient exploration. This

technique is known as multi-level planning. In their work, the authors of GB-planner 2.0

utilize multi-level planning not only by employing both a global and a local planner but also

75/156

by employing a different exploration gain metric for each planning level, as shown in the

previous paragraph.

4.3 Comparison and Decisions

For robot navigation within a vineyard, path planning approaches must address the unique

spatial structure and constraints of this environment. A spline-based planner, like the ewok

planner, while efficient for simple trajectories, is unsuitable for navigating across multiple

vineyard rows due to its limited global planning capabilities. Obtaining a path that allows for

multi-row scanning with a mobile robot, while simultaneously avoiding obstacles is a process

that demands using both a global and local planner.

An exploration-based planner designed for dynamic environments, such as GB-planner,

would work in most environments, complex or simple. However, it becomes redundant in the

mostly static context of a vineyard. Pre-mapping the vineyard allows for a more efficient

approach, eliminating the need for re-exploring the vineyard every time the robot is tasked

with a new inspection procedure. Creating an accurate 2D representation of the vineyard

and providing it as input for the utilized planner is the most efficient approach. In addition,

finding the optimal path through the entire explored environment can be computationally

expensive for large-scale scenarios, when using GB-planner.

Therefore, after evaluating various path planning packages, the Sequential MPC

Reactive Planning using Safe Corridors was selected based on its suitability for our specific

use case. Unlike the Ewok planner or the GB-planner, this planner combines the ability of

planning trajectories that allow the robot to traverse multiple rows, with the addition of

efficient optimal path estimation and dynamic obstacle avoidance. The free corridors aspect

matches the inherent corridor-like structure of vineyard rows, enabling fast and reliable

polytope calculation and free space estimation, leading to safe robot movement.

76/156

5 Vision System

For agricultural robots tasked with vineyard inspection, the hardware comprising the

perception system is crucial. This system enables the robot to navigate, identify obstacles,

and accurately assess vine health. Its importance stems from the inherent complexity of the

vineyard environment: dense foliage, varying lighting conditions, and potential presence of

pests and diseases demand precise and reliable data acquisition. However, the

effectiveness of this system hinges not just on the choice of sensors, but also on their

optimal positioning on the robot and their integration with the computing platform. Carefully

selecting sensors tailored to the specific inspection needs, strategically placing them for

comprehensive coverage, and ensuring compatibility with the processing power of the

embedded platform are all essential for a successful vineyard inspection robot. Only through

a meticulously designed perception system can an agricultural robot achieve the level of

awareness and adaptability required to navigate and analyze the dynamic tapestry of the

vineyard.

5.1 Sensing

Standard digital cameras output images as a 2D grid of pixels. Each pixel has values

associated with it –Red, Green, and Blue, or RGB. Each attribute has a number from 0 to

255, so black, for example, is (0,0,0) and a pure bright red would be (255,0,0). Thousands to

millions of pixels together create the kind of photographs we are all very familiar with. To

produce a 3D reconstruction of the surrounding environment, on the other hand, pixels

which have a different numerical value associated with them are needed. That number is the

distance from the camera, or depth. The three most prominent technologies that are

commonly utilized for capturing depth are lidar sensors, depth camera sensors and standard

digital cameras utilized for photogrammetry. It was necessary to carefully consider the

strengths and weaknesses of each technology to reach an informed decision about the

perception system for our robot.

5.1.1 Lidar Sensors

LiDAR, an acronym for Light Detection and Ranging, operates like an echolocation

system for light. It emits pulsed laser beams and measures the time it takes for the reflection

to return, calculating the distance to objects in its environment. This precise method creates

highly detailed 3D point clouds, offering valuable insights for diverse applications. Currently,

two main types of LiDAR sensors dominate the scene: mechanical and solid-state.

Mechanical LiDAR sensors

Mechanical LiDARs utilize laser beams guided by rotating mirrors to scan their surroundings,

offering high accuracy but require moving parts which can cause potential wear and demand

energy to move. In addition, mechanical LiDARs scan the visible scene point by point,

gradually building a 3D reconstruction. This can lead to "jitter" if the scene or sensor moves

during a single scan. A LiDAR ego-motion correction method must be used to mitigate this

error [90].

77/156

Figure 5-1: 3D arrangement of a typical LiDAR sensor [91].

Solid-state LiDAR sensors

Solid-state LiDARs, on the other hand, eliminate moving parts and promise increased

reliability, durability, and energy efficiency. The three most prominent types of Solid-state

LiDARs are Flash LiDARs, MEMS-based LiDARS and optical phased array LiDARs.

Flash LiDAR is a technology that illuminates the entire scene in a single pulse by

diverging a laser beam, unlike conventional LiDAR's point-by-point scanning. Both

technologies use time-of-flight sensors to measure how long the laser takes to bounce back,

revealing distances. But while conventional LiDAR uses a single point sensor, Flash LiDAR

employs an array of pixels, each recording distance and intensity. The result can be

described as taking a 3D photo, not with color, but with distance as the detail. The utilization

of an instantaneous pulse (flash) means that these LiDARs can capture high-resolution 3D

images smoothly, without jitter, even in dynamic scenes. However, the powerful burst must

be eye-safe, limiting wavelengths and driving up costs. Standard image sensors can't easily

read these wavelengths, demanding expensive gallium-arsenide alternatives [92].

While not entirely solid-state due to rapidly spinning silica-based mirrors,

Microelectromechanical Mirrors (MEMS) LiDARS offer benefits in size and cost that are

comparable to Flash LiDARS. They employ a single laser directed at a tiny, rapidly rotating

mirror that scans the scene like a high-speed kaleidoscope. However, MEMS scanners

primarily operate in one direction (left-to-right). Creating a 2D scan typically requires an

additional mirror moving up-down or another laser at a different angle. Also, vibrations and

shocks can disrupt the delicate MEMS mirror, potentially requiring recalibration [93].

The third family of solid-state LiDARS, phased array LiDARS, can illuminate any

direction by using a microscopic array of individual antennas. Controlling the timing (phase)

of each antenna steers a cohesive signal in a specific direction. This technology has been

employed in conventional radars since the 1940s. The same technique can be used with

light and promises lower cost and higher efficiency than mechanical LiDAR sensors without

sacrificing robustness or 3D data quality.

78/156

Figure 5-2: (a) A flash LiDAR with diffused light; (b) The principle of an optical phased array (OPA)

scanner; (c) A LiDAR motorized spinning scanner; (d) A microelectromechanical mirrors
(MEMS) laser scanner [94].

5.1.2 Depth Cameras

Depth cameras play a crucial role in perceiving the 3D world, offering valuable insights for

various applications. Two main technologies dominate this field: stereo depth cameras and

structured light depth cameras.

Stereo cameras, inspired by human binocular vision, employ two lenses capturing

slightly offset images. Sophisticated algorithms analyze these images and detect specified

geometric features within them. They calculate depth based on the parallax shift between

corresponding features. This process is known as triangulation. Stereo cameras excel in

good lighting conditions and provide rich texture information, but accuracy can be sensitive

to image quality and object texture.

Figure 5-3: Stereo Depth Estimation. Objects further away from the stereo camera pair produce larger

disparity [95].

Structured light depth cameras project a known pattern (e.g., infrared dots) onto the

scene. The camera then analyzes the deformation of the pattern on objects to calculate

depth. This method shines in low-light situations and works reliably on featureless surfaces

but struggles with specular reflections and suffers lower overall accuracy compared to high-

end stereo depth cameras or LiDAR sensors. Another drawback of structured light cameras

is that, contrary to stereo cameras, there are limits to how many of them you can use in a

particular space – the cameras might interfere with each other by projecting light into one

another’s field of view.

79/156

Figure 5-4: Structured Light projected on a sphere [96].

5.1.3 Photogrammetry

Photogrammetry is a well-established 3D reconstruction technique [97]. It utilizes sets of

overlapping images to reconstruct 3D models. This process also hinges on the geometric

principle of triangulation, where corresponding points in multiple images are identified and

used to calculate the 3D position of those points. Unlike stereo depth estimation, however,

where the baseline distance between the two camera lenses is known, in photogrammetry a

virtual baseline distance regarding two consecutive images is not known, but it is rather

estimated based on optical flow computer vision techniques.

Photogrammetry is a broader term encompassing the entire process of creating 3D

models from images. It includes not only the geometric reconstruction of the scene but also

calibration of the cameras, texture mapping, and other post-processing steps. A term closely

related to photogrammetry is Structure from Motion (SfM). SfM focuses specifically on the

geometric reconstruction aspect. It relates to the algorithms that receive a set of images as

input and automatically estimate the 3D structure of the scene and the camera poses

(positions and orientations) without requiring any prior knowledge about the cameras or the

scene geometry.

5.1.4 Comparison and Decisions

Each 3D sensing technology boasts unique strengths and weaknesses tailored to specific

applications. LiDARS are so far unrivaled in accuracy and range, and they offer precise 3D

representation, even over long distances. However, its high cost, high energy demands, as

well as the inability to apply texture or color to the 3D models it produces, create significant

hurdles for resource-constrained projects that require photo-realistic reconstruction.

Depth Cameras offer a balance between affordability and performance and provide real-

time depth information at a significantly lower cost than LiDAR. While accuracy and range

might be lower, they excel in compactness and weight, making them ideal for mobile

platforms like legged or wheeled robots. They also produce colored point clouds and capture

RGB images that can be used to add realism to the reconstructed depth map. Nevertheless,

80/156

their performance can be affected by lighting conditions, target surface reflectivity and lack

of visual features in the environment.

Photogrammetry leverages conventional cameras and boasts exceptional texture and

color capture, enriching 3D models beyond just depth. Additionally, its scalability allows for

capturing objects of varying sizes. However, reconstruction accuracy can be lower, and

computational demands are significant. Additionally, good lighting and texture variations are

crucial for accurate results. Poor lighting and texture conditions can lead to both coloring

errors and errors in the reconstructed geometry.

Figure 5-5: Radar Graph illustrating each sensor's strengths and weaknesses.

For our vineyard inspection robot, depth cameras emerged as the optimal choice. Cost

effectiveness was an important factor. Depth cameras are more affordable than LiDAR

sensors, allowing us to place more sensors on the robot and achieve greater coverage for

the same budget. In addition, color information is crucial for analyzing vine and grape health,

and depth cameras provide sufficient detail for this purpose. Also, as the robot operates

within proximity to the vines, the limited range of depth cameras didn't pose a significant

challenge. Lastly, real-time processing requirements, as well as varying light conditions and

robotic ego-motion would significantly affect photogrammetry accuracy.

As the project evolves, future iterations may explore integrating other technologies like

LiDAR if the need for higher precision 3D models arises. However, for the current stage of

vineyard inspection, depth cameras offer a powerful and cost-effective solution.

5.2 Processing Unit

The selection of an appropriate computing platform to host perception systems for

agricultural robots presents a critical challenge, as the optimal choice hinges on a delicate

balance between various factors. Five distinct categories of platforms have been evaluated

for the proposed system: microcontrollers, single-board computers (SBCs), mini computers,

and workstations. Each platform has been assessed based on a comprehensive set of

81/156

criteria crucial for mobile robot applications: performance, interface, power consumption,

weight, and price. This analysis has drawn upon established benchmarks, technical

specifications, and relevant research findings to ensure an objective and data-driven

evaluation.

5.2.1 Performance Metrics

Evaluating the performance of a computing platform is not a simple task. Computers perform

differently across different applications, even under the perception umbrella. It is, however,

essential to define specific metrics for performance to employ a scientific lens and culminate

in a well-reasoned recommendation for the most suitable solution. In the context of this

analysis, the following quantities have been utilized to measure performance:

• CUDA (Compute Unified Device Architecture) Cores: These specialized cores, found in

NVIDIA GPUs, excel at parallel processing tasks, making them well-suited for deep

learning algorithms employed in perception systems. Their efficiency in handling multiple

calculations simultaneously translates to faster processing and real-time performance.

CUDA Cores are the Nvidia GPU equivalent of CPU cores [98].

• Tensor Cores: These newer cores, also found in NVIDIA GPUs, specifically enhance the

speed of AI training by enabling mixed-precision calculations. This means they can

handle lower-precision data formats (e.g., FP16) alongside high-precision data while

maintaining accuracy, significantly accelerating the training process for your perception

system's neural networks [99].

• FLOPs/TOPS: These metrics directly quantify the processing power of a platform.

FLOPs (Floating-point Operations Per Second) measure the number of floating-point

calculations, while TOPS (Total Operations Per Second) encompass a wider range

including integers and other data types. While FLOPs were traditionally used, the advent

of Tensor Cores has shifted the focus to TOPS, as mixed-precision training often

benefits from lower-precision operations [100], [101].

• VRAM (Video RAM): This specialized memory holds graphics data crucial for real-time

graphics processing applications. In the context of a perception system, it stores

information like depth maps, shadow maps, texture maps and other intermediate results

generated by the processing units. Having sufficient VRAM ensures smooth and efficient

processing of visual data.

Beyond the Numbers:

5.2.2 MicroControllers

While microcontrollers boast undeniable advantages in terms of power consumption, weight,

and price, their suitability for a mobile robot's perception system demands careful evaluation.

This subchapter dives into the key characteristics of microcontrollers, highlighting their

strengths and limitations in the context of perception tasks.

• Performance: Microcontrollers are champions of efficiency, specializing in dedicated,

real-time tasks with minimal computational overhead. However, this very strength

presents a significant hurdle for perception systems. They usually lack dedicated

floating-point math units which renders them incapable of handling the complex

computations required for algorithms like convolutional neural networks or spatial

mapping. The resulting performance limitations can make them unsuitable for the

demanding requirements of perception systems in mobile robots.

82/156

• Memory: Microcontrollers prioritize compact footprints, resulting in severely limited

memory resources. Typically offering only a few megabytes of RAM, they fall far short of

the memory requirements for processing visual data and constructing spatial maps. This

constraint effectively bars them from consideration for perception applications.

• Interface: The miniature size of microcontrollers comes at the cost of standard

interfaces. USB ports, often used for camera and LiDAR connections, are scarce,

requiring custom solutions using serial communication pins. Additionally, their

programming often demands specialized tools and knowledge, deviating from common

operating systems used in perception systems.

• Power Consumption: Microcontrollers excel in minimizing power draw, consuming

mere milliwatts. This makes them ideal for applications where battery life is paramount.

However, the computational platform of a mobile robot is often one the least power

consuming modules on the robot accounting for only a small portion of its total power

usage.

• Weight: Microcontrollers reign supreme in the weight category, typically weighing only a

few grams. This minimal footprint makes them attractive for robots prioritizing agility and

maneuverability, like UAVs or small rovers.

• Price: Microcontrollers boast affordability, with most models costing under $100. This

price advantage makes them attractive for cost-sensitive projects. However, the trade-off

in performance and capabilities must be carefully considered before deciding.

Figure 5-6: Some of the most popular Microcontrollers.

5.2.3 Single-Board Computers (SBCs)

Single-Board Computers (SBCs) offer an intriguing proposition for a mobile robot's

perception system, balancing compact size with significant performance gains over

microcontrollers. This subchapter delves into their key characteristics.

83/156

• Performance: The advantage of SBCs lies in their diversity. Performance varies greatly,

with some SBCs exceeding microcontrollers by orders of magnitude and others

approaching the capabilities of mini-computers. Options capable of processing several

TFLOPs (Trillion Floating-point Operations Per Second) are widely available, while high-

end SBCs harness Tensor Cores to reach impressive 275 TOPS (Total Operations Per

Second) [102].

• Interface: Despite their compact size, SBCs are surprisingly well-equipped. They boast

multiple USB ports, Ethernet connections, and often HDMI outputs, enabling

compatibility with diverse cameras, LiDAR sensors, and displays. Furthermore, their

support for common operating systems like Linux and Windows allows for leveraging

existing software packages or developing custom solutions with relative ease. While

some hardware-specific tweaks might be necessary depending on the chosen SBC

architecture, the level of flexibility they offer far surpasses microcontrollers.

• Power Consumption: One of the key strengths of SBCs is their power efficiency. Even

the most powerful options typically consume only tens of watts, significantly less than

mini-computers or workstations. This translates to longer battery life for the agricultural

robot, a crucial factor for extended operation. However, higher performance often comes

at the cost of slightly increased power draw, so specific workloads must be carefully

considered before selecting.

• Weight: While not as light as microcontrollers, SBCs remain relatively lightweight,

typically ranging from 100 grams to slightly over 1 kilogram. This balance between

portability and processing power makes them ideal for robots where maneuverability and

computational capabilities are equally important, like legged robots or rovers.

• Price: Simple SBCs catering to basic tasks can be found for under $100, making them

an attractive option for budget-conscious projects. However, as performance and

processing power increase, so does the price tag. SBCs capable of handling AI and

vision applications typically range from $100 to $3,000, requiring careful consideration of

budget and performance requirements.

Figure 5-7: Some of the most popular SBCs.

84/156

Table 4-1 presents three popular SBCs compared to an Nvidia GeForce RTX 3070 mobile

graphics card for intuition purposes, as a standalone graphics card cannot support common

operating systems. For that, a motherboard hosting a CPU, RAM and the graphics card

must be used.

Table 5-1: Popular SBCs currently in the market.

Specification
Google Coral Dev Board

(4GB) [103]

Jetson
AGX Xavier

(64GB)
[104]

Jetson
AGX Orin
(64 GB)

[102]

Nvidia
GeForce

RTX
3070 [10

5]

AI performance 4 TOPS 32 TOPS 275 TOPS
~ 200
TOPS

Cuda Cores n/a 512 2048 5888

Tensor Cores n/a (dedicated TPU) 64 64 184

Memory 4 GB RAM
64GB
shared

64 GB
shared

8GB
VRAM

Storage 8 GB eMMC + 64GB
expandable

64GBeMMC 64GBeMMC n/a

Power 5W 10W-30W 15W-60W
115W

(Laptop)

OS Linux Mendel
Ubuntu
based

Ubuntu
based

any

Weight 250g
630g (with

fan)
1580g (with

fan)
~1kg

(with fan)

Price ~175€ ~1600 ~2400 ~500€

5.2.4 Mini-PCs

Mini PCs offer an alternative path, bridging the gap between compact SBCs and powerful

workstations. This subchapter explores their key capabilities and limitations.

• Performance: Mini PCs occupy the middle ground in terms of processing power. They

harness components typically found in laptops or even desktops, albeit in compact

versions often lacking dedicated cooling systems. While this grants them significant

performance gains over SBCs, thermal limitations can emerge under sustained

85/156

workloads. The thermal management capabilities of any mini-PC must be evaluated

carefully to ensure it can deliver consistent performance for the perception system's

demands.

• Interface: One of the key advantages of mini-PCs lies in their seamless integration with

existing infrastructure. They function like traditional PCs, supporting common operating

systems and software packages out of the box. This minimizes the need for extensive

hardware or software modifications, allowing the usage of established tools and

development environments. Additionally, they typically offer a wide range of ports similar

to full-sized PCs, ensuring compatibility with diverse sensors and devices.

• Power Consumption: Compared to full-sized desktops, mini-PCs boast improved power

efficiency. However, they are significantly less power-efficient than SBCs. The presence

of dedicated graphics cards, often crucial for AI and vision applications, alone pushes

power consumption above 100 watts. Including separate RAM and CPU units can raise

total consumption under load to over 200 watts. The robot's battery life and operating

environment must be carefully considered when evaluating this trade-off.

• Weight: While not bulky, mini-PCs are heavier than SBCs, typically ranging from 1.5 to

slightly over 2 kilograms. This increased weight might impose limitations on robots

prioritizing maximum agility or operating on weight-sensitive platforms.

• Price: Basic mini-PCs, lacking dedicated GPUs, offer attractive affordability, readily

available for under 900€. However, for AI and vision applications requiring hardware

acceleration, the costs escalate. Integrating an external graphics card or opting for a

mini-PC with a built-in laptop GPU pushes the price closer to 2000€.

Table 4-2 presents three popular mini-PCs compared to an Nvidia GeForce RTX 3070

mobile graphics card for intuition purposes.

Table 5-2: Popular Mini-PCs currently in the market

Specification

MinisForum
UM700 (16GB)

[106]

11th Gen Intel NUC
+ Nvidia 3070 EGPU

(64GB) [107]

Zotac
MAGNUS

EN173070C
[108]

Nvidia
GeForce
RTX 3070

[105]

AI
performance

3 TFLOPS1
<150TOPS(usbc

bottleneck)
>200 TOPS

~ 200
TOPS

Cuda Cores n/a 5888 5888 5888

Tensor Cores n/a 184 184 184

Memory
16 GB RAM
(max 32GB)

64GB shared
64 GB/8 GB

VRAM
8GB VRAM

Storage 256 GB
(expandable)

64GBeMMC
2 SSD slots
expandable

n/a

86/156

Power 65W 10W-30W + 90W 150W-220W
60W -
115W

(Laptop)

OS Any Ubuntu based any any

Weight 500g 504g + 4kg 1.8kg
~1kg (with

fan)

Price ~430€
~1100€ (NUC

barebone is 460€)
~2000€ ~500*€

5.2.5 Laptops

While laptops share many similarities with mini-PCs in terms of performance, interface, and

price, their inherent form factor presents both advantages and disadvantages for mobile

robot applications. On the positive side, laptops offer readily available hardware

configurations, diverse port options, and familiar operating systems, streamlining integration

and development. Additionally, their built-in batteries provide some level of independent

operation, potentially beneficial for short-term deployments.

However, their larger size and weight significantly impact a mobile robot's

maneuverability and energy efficiency. The constant demand for external power limits their

operational range, and heat dissipation becomes a critical concern, often requiring active

cooling systems that further increase weight and power consumption. Furthermore, their

ruggedness and protection against environmental elements might require additional

modifications, adding complexity and cost. Last, their screen accounts for a great part of

their total power consumption.

5.2.6 Comparison and Decision

Having analyzed various computing platforms for our mobile robot's perception system, we

arrived at a compelling choice: the NVIDIA Jetson AGX Orin, an SBC (Single-Board

Computer).

Microcontrollers, while boasting exceptional power efficiency and minimal weight, were

ultimately disqualified by their limited performance and memory, rendering them incapable of

handling the complex computations required for real-time perception applications. Mini PCs,

while offering increased performance and familiar interfaces, presented challenges in terms

of power consumption and weight, potentially hindering the robot's agility and operational

range. Laptops, despite their versatility, were deemed unsuitable due to their inherent bulk

and limited battery life, compromising the robot's portability and independence.

SBCs emerged as the ideal compromise, balancing performance with portability and

efficiency. Their diverse range allows for tailored selection based on specific needs, and

their compact size minimizes weight concerns. The NVIDIA Jetson AGX Orin, specifically,

stood out amongst SBCs due to its exceptional capabilities. Figure 5-8 illustrates a

comparative analysis which underscores the Orin's suitability for real-time applications. Orin

features both NVIDIA cores and Tensor Cores, delivering exceptional processing power for

demanding perception and machine learning tasks. Despite its impressive performance it

87/156

maintains moderate power consumption, ensuring longer operation and compatibility with

battery-powered robots. The SBC's small form factor and light weight minimize its impact on

Figure 5-8: Bar graph illustrating the relationship between performance and other features for the top

platform of each category.

the robot's mobility and agility. The Orin offers a wide range of ports and connectivity

options, enabling seamless integration with various sensors and devices. It can not only host

all ZED depth cameras, but it also allows for connectivity with the ZED X mini depth camera,

one of Stereolabs latest additions to its plethora of cameras. Additionally, the NVIDIA

ecosystem provides extensive development tools and resources, streamlining the

implementation and optimization of perception and machine learning algorithms.

By leveraging the NVIDIA Jetson AGX Orin's strengths, any mobile robot can be

efficiently empowered with a perception system capable of real-time obstacle detection,

navigation, and environment understanding.

5.3 Field of View Visualization and Lidar Resolution Analysis Tool
(FoVaLiRa)

The process of designing a perception system for a robot involves deciding not only what

sensors are going to be used but also what their position and rotation on the robot will be.

The ability to visualize the combined field of view produced by camera and lidar sensors on

the robot in simulation assists with such design decisions. While several online tools

88/156

visualize field of view (FOV), they lack the detail, realism, and versatility necessary for

effectively comparing diverse 3D perception system designs. Consequently, we opted to

develop our custom FOV visualization tool within the Unity game engine. This tool facilitates

informed design decisions regarding blind spots, coverage, and resolution for both depth

cameras and LiDARs, commonly employed for 3D mapping on mobile robots.

5.3.1 The Scene

Unity

The Unity Development Platform was used to create the 3D simulated environment and

code the behavior of the sensors in it. Unity was chosen over other simulators for several

reasons:

• Unity currently supports over 25 different platforms making it a cross-platform engine.

[109]

• As of 2020, Unity-made applications were used by 2 billion monthly active users, with 1.5

million monthly creators [110]. The vast community behind Unity enables developers to

ask questions and quickly find solutions to their issues.

• Unity is lately transitioning to Robotics, AI and simulation applications with new and

actively supported packages [111].

• Unity provides a visually intuitive and user-friendly development environment, allowing

researchers and developers with varying levels of programming expertise to create and

interact with simulations. This can be particularly beneficial for future projects in CSL

requiring rapid prototyping and iterative design, where quick visualization and

modification of the simulated environment are crucial.

• Unity offers a vast library of pre-built 3D assets and environments, encompassing

various objects and scenarios relevant to agriculture and mobile robotics. Additionally, its

robust physics engine enables realistic simulation of object interactions, force dynamics,

and sensor responses within the virtual environment, further enhancing the validity and

reliability of the simulation for research purposes.

Simulated Vineyard

Within the Unity platform, we constructed a 3D simulated vineyard scene reflecting typical

viticulture practices in Greece. The scene incorporates essential vineyard row parameters,

including an inter-plant spacing of approximately 1 meter and a minimum grape height of

0.60 meters. Virtual grape clusters are modeled as capsules, while the vine canopy exhibits

a realistic density, leading to diverse visibility conditions. Specifically, a portion of the grapes

are partially obscured by leaves, while others are situated in the foreground plane. The

vineyard layout comprises two parallel rows, each measuring 4 meters in length, situated on

even terrain.

Figure 5-9 illustrates the scene that a user views after downloading, installing, and launching

the developed Unity Project. To the left of the scene tab, on the Hierarchy tab, the user can

see that the vines are registered as Vine Trees under the Obstacles object category. On the

scene tab, within the branches of the vines, the user can observe the blue capsules that

represent grape clusters and are registered as targets on the Hierarchy tab, as those are the

objects of interest for the robot.

89/156

Figure 5-9: The default starting scene in Unity.

In the Hierarchy tab, some object names can be seen in fainted white color. These

objects are also present in the scene but they are deactivated. The user can select any of

these from the Hierarchy tab. Thus, the Inspector tab on the right side of the window will

display information about the selected object. To activate the selected object, the user can

check the checkbox near the name of the selected object in the Inspector tab.

Figure 5-10: Activating and Deactivating an Object

The objects that are deactivated by default are the Spot robot model and three objects

labeled as Sensors. The Spot robot model can be used as an alternative to the Laelaps

robot model. The Sensors represent lidar (or camera) sensors and are by default placed on

90/156

the sides and on the front face of the Lealaps robot model. Activating the three objects

labeled as Sensor, Sensor (1) and Sensor (2) and clicking on play to run the simulation - the

play and pause buttons are on the middle of the Unity toolbar on the top of the screen - will

start the visualization of each sensor’s field of view. Figure 4-11 illustrates the running

visualization for this configuration.

Figure 5-11: The scene while running the visualization.

5.3.2 Configuration

The user can configure several parameters to simulate different sensor setups. The list of

parameters that can be configured for each sensor is as follows:

position(x,y,z) : The position of the sensor in the scene, relative to the laelaps robot

transform. Values are in decimeters.

rotation(x,y,z) : The rotation of the sensor in the scene, relative to its own transform. Values

are in degrees.

View Radius: The range of the lidar while scanning horizontally (or max range for camera).

View Angle: The horizontal view angle of the lidar (or camera).

Vertical View Radius: The range of the lidar while scanning vertically (or max range for

camera).

Vertical View Angle: The vertical view angle of the lidar (or camera).

Mesh Resolution: Number of rays cast for each horizontal mesh divided by the horizontal

view angle in degrees (See section "How it was made" for more intuition).

Horizontal Offset Resolution: Number of horizontal meshes to be cast, divided by the

vertical view angle in degrees (See section "How it was made" for more intuition).

Vertical Mesh Resolution: Number of rays cast for each vertical mesh divided by vertical

view angle in degrees (See section "How it was made" for more intuition).

Vertical Offset Resolution: Number of vertical meshes to be cast, divided by the horizontal

view angle in degrees. (See section "How it was made" for more intuition).

Edge Resolve Iterations: Binary search iterations to resolve the "edge problem" (See

section "How it was made" for more intuition).

Edge Distance Threshold: Minimum distance at which an obstacle would be considered to

be too far to be accounted for the resolution of the "edge problem" (See section "How it was

made" for more intuition).

There are two ways to easily set the position and rotation of the sensors on the scene

as well as to configure the sensor parameters: One is through modifying the instantiation.txt

91/156

file located in the project folder. The other is using the Unity Editor to directly edit the scene

and the sensor parameters.

Configuration using the instantiation file

The "instantiation.txt" file is located inside the project folder. Essentially, the instantiation file

represents an array. The elements of the array inside each row are separated by commas

as the file is in csv format. The first row contains the headers of each column. Each row

added after the first will cause the instantiation of a new sensor on the scene. The new

sensor’s parameters will be the elements of the new row in correspondence with the

headers. As an example, the "typical_instantiation.txt" can be used to instantiate three

sensors on the lealaps robot, at predefined positions and rotations. These sensors are also

parameterized arbitrarily. To try the instantiation file, the user can copy the contents of

"typical_instantiation.txt" inside the "instantiation.txt" file, deactivate the preexisting sensors

in the scene and run the simulation. If the "instantiation.txt" file cannot be edited while the

Unity Development Platform is open, then the user might need to close it when editing and

then open it again to run the simulation.

Configuration using the Unity Editor

In the unity editor, the user can activate, deactivate, or duplicate the preexisting sensors

Sensor, Sensor (1), Sensor (2), Sensor (3) and Sensor (4) which can be found in the object

Hierarchy. Clicking on a sensor object triggers the inspector to show information about that

object. The user can configure all the parameters by editing the field of view script for each

sensor directly in the Inspector. In this case, the "instantiation.txt" file should be empty

except for the first row (except, of course, if the user desires to both have sensors

preexisting in the scene and instantiate some more sensors when starting the simulation).

To change the position and rotation of the sensors on the scene, the user can use the move

and rotate tools that the Unity Editor offers. To duplicate a sensor, the user can hold the ‘alt’

key while translating a sensor in the scene. That will leave the old sensor object in place and

instantiate a new one.

Configuring the robot’s animation

Locating the Lealaps object - which is a child of the LealapsII object - in the object Hierarchy

and clicking on it will open the inspector tab. The animator component which controls the

animation of the body of the lealaps robot will be active in this tab. To deactivate it, the user

can simply click on the checkbox next to its name. The same can be done for the robot’s

legs: Each leg has two child objects named TopLeg and BottomLeg. Both have animator

components which can be deactivated from the Inspector tab. To access the animator

controller for the body or any of the legs of the robot, the user can open the inspector of the

desired object by clicking on it. Then the user can click on the name box near the controller

variable in the animator component. An Animator window will appear. The sequence and the

transition between animations can be controlled in this window. For now, the body executes

a single translation animation. Each part of each leg executes a translation-rotation

animation. The right hind and front left legs of the robot execute an idle animation before

executing the translation-rotation animation to simulate a phase difference. To edit an

92/156

animation individually, the user can open the animation window (Ctrl+6 hotkey). In there,

animations can be created and edited via the Dopesheet or the Curves tab. More

information on creating and editing animations in the Unity Development Platform are

provided in online documentation [112].

5.3.3 The FoVaLiRa development process

Ray casting

In the domain of computer graphics, ray casting represents a foundational technique for

rendering three-dimensional environments onto a two-dimensional display. It simulates light

rays originating from a specific viewpoint, typically the camera, and calculates their

intersections with objects within the scene [113]. The closest intersection determines the

visible portion of an object rendered onto a particular pixel. While computationally efficient

and particularly effective in early 3D games, ray casting inherently struggles with intricate

lighting effects and smooth object curvature. Modern rendering techniques, such as ray

tracing, have emerged to address these imitations: Ray tracing builds upon the principles of

ray casting but goes further by simulating the full path of light, including reflections and

refractions, leading to superior visual fidelity [114]. However, this enhanced realism comes

at the cost of significantly increased processing power [115]. Within the Unity game engine,

ray casting remains a valuable tool for tasks like object selection and collision detection due

to its efficient nature.

FoVaLiRa employs a ray casting approach, where rays are emitted from the modeled

LiDAR or depth camera sensors towards the simulated environment. These rays are

organized into a grid-like structure composed of individual meshes, each representing a

circular sector within the sensor's FOV. The user-defined grid size directly corresponds to

the desired FOV of the LiDAR. Upon encountering a target object (e.g. grape cluster) within

the environment, a ray triggers the extraction and return of information regarding the target's

location. This information can be subsequently utilized for further analysis or visualization

purposes.

Forming a single horizontal mesh

To understand the formation of the grid of meshes, it is simpler to first study how a single

horizontal 2D mesh is made: Several rays are cast from the center of the sensor radially

inside the horizontal view angles determined by the user. Figure 5-12 illustrates this from a

top view.

93/156

Figure 5-12: Raycasting visualization. The sensor is the white capsule.

Rays are in red color. Targets are blue capsules. Obstacles are orange rectangular cuboids.

The number of rays for a given field of view angle is determined by the mesh resolution

parameter which can be configured by the user. This parameter simulates a lidar’s resolution

and corresponds to the modelled sensor’s ability to capture detail in the part of the scene it

covers. The rays do not pass through obstacles. The starting and ending point of each ray

are sequentially saved in a list as 3D points. This list is then used with Unity’s Mesh class to

form a flat mesh. Figure 5-13 presents the formed colored mesh, cast from a sensor

modelled with a capsule. The higher the mesh resolution parameter is set to, the denser the

formed mesh.

Figure 5-13:A continuous 2D mesh in light blue color.

94/156

The edge artifact

The distance that an unobstructed ray travels, is a user-defined parameter called view

radius. It models the sensor’s range. An edge artifact appears when the edge of an obstacle

lies between any two cast rays. Thus, one ray hits an obstacle and the next one misses,

ending naturally on the view radius. The two endpoints of the rays that are used to form the

colored mesh by the mesh renderer are now forming a triangle (artifact) that passes through

the obstacle. Figure 5-14 demonstrates that the resulting, colored mesh does not represent

the actual field of view correctly.

Figure 5-14:The edge problem can be clearly seen if the mesh resolution is lowered.

To solve the problem, a binary search process is performed. Angles in the domain that is

formed by the rays that cause the artifact are checked, until an angle, namely a ray direction,

that passes closely enough to the edge, is found. Then a ray is cast in that direction. The

more the iterations of the performed binary search, the closer the new ray will be at the real

edge. The number of iterations can be adjusted by the user by modifying the

EdgeResolveIterations parameter. Figure 5-15 illustrates the result.

95/156

Figure 5-15: Solving the edge problem with 5 binary search iterations.

There is however a problem regarding the condition which triggers the solution of the edge

problem. Currently, the condition is that when one ray hits an obstacle and the next one

does not hit an obstacle, ending on the view radius, the solution of the edge problem is

triggered. The problem is that when both rays hit, but the hit points are a large distance

apart, the solution should be triggered, but it does not. Figure 5-16 demonstrates this issue.

Figure 5-16:The binary search is not triggered and thus a falsely shaped triangle is formed in the mesh

To solve the problem, the condition which triggers the solution of the edge problem was

changed so that the process is triggered either when a ray hits and the next one misses

ending on the view radius, or two consecutive rays hit and the hit points are a distance apart

greater than the EdgeDstThreshold (parameter set by the user). Figure 5-17 shows the

result. The produced mesh is smooth and continuous. Algorithm 4-1 contains the pseudo-

code for the edge artifact problem solution.

96/156

Figure 5-17:Smooth mesh after applying the edge problem solution.

ALGORITHM 4-1 EDGEARTIFACTPROBLEMSOLUTION

Require: (previous ray hits and next ray does not hit) or (previous ray hits and next ray

hits and next ray endpoint distance > EdgeDstThreshold)

Ensure: There exists a ray that passes close enough to the obstacle edge.

 min ← angleOfRayThatHit

 max ← angleOfRayThatMissed

 i ← 1

 while i ≤ EdgeResolveIterations do

 angle ← (𝑚𝑖𝑛 +
𝑚𝑎𝑥−𝑚𝑖𝑛

2
)

 Cast newRay with angle, min < angle < max

 angleOfNewRay ← newRay.angle

 if newRay hits then

 min ← angleOfNewRay

 else

 max ← angleOfNewRay

 end if

 end while

Add newRay.endpoint to the mesh

5.3.4 Forming a 3D Mesh

To form a 3D Mesh, multiple 2D Meshes, rotated around a determined sensor axis were

utilized. Figure 5-19 demonstrates how rotating horizontal meshes around the sensor’s x-

axis by a specific angle (horizontal offset) simulates a lidar’s scanning slices created by the

laser’s horizontal motion. The rotated 2D meshes are saved as a single object, a 3D mesh.

97/156

Figure 5-18: Creating a 3D Mesh by rotating multiple 2D meshes around the sensor’s x axis.

To make such a 3D mesh denser, the HorizontalOffsetResolution parameter can be

increased. Similarly, rotating vertical meshes around the sensor’s y-axis by a specific angle

(vertical offset) simulates a lidar’s scanning slices created by the laser’s vertical motion. To

make the 3D mesh denser, the VerticalOffsetResolution parameter can be increased. Figure

5-19 demonstrates this.

The rotation of each mesh is achieved by rotating the rays that are cast to create it. The

rays need to be rotated relative to the sensor’s transformation. For each ray there is a

vector3 variable that determines its direction. It is easier to use rotation matrices to rotate

each vector around the desired sensor axis [116]. The matrix of a proper rotation 𝑅 by angle

𝜃 around the axis 𝑢 = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧), a unit vector with 𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2 = 1 is given by:

[

cos 𝜃 + 𝑢𝑥
2(1 − cos 𝜃) 𝑢𝑥𝑢𝑦(1 − cos 𝜃) − 𝑢𝑧 sin 𝜃 𝑢𝑥𝑢𝑧(1 − cos 𝜃) + 𝑢𝑦 sin 𝜃

𝑢𝑦𝑢𝑥(1 − cos 𝜃) + 𝑢𝑧 sin 𝜃 cos 𝜃 + 𝑢𝑦
2(1 − cos 𝜃) 𝑢𝑦𝑢𝑧(1 − cos 𝜃) + 𝑢𝑥 sin 𝜃

𝑢𝑧𝑢𝑥(1 − cos 𝜃) − 𝑢𝑦 sin 𝜃 𝑢𝑧𝑢𝑦(1 − cos 𝜃) + 𝑢𝑥 sin 𝜃 cos 𝜃 + 𝑢𝑧
2(1 − cos 𝜃)

]

Figure 5-19: (a) Creating a 3D Mesh by rotating multiple 2D meshes by the vertical y-axis.

(b) Increasing the mesh resolution.

To form a denser and uniform 3D mesh, the rotation of both vertical and horizontal 2D

meshes is necessary. Rotating horizontal meshes around the sensor’s x-axis by a specific

angle (horizontal offset) and vertical meshes around the sensor’s y-axis by a specific angle

(vertical offset) simulates a lidar’s scanning slices created by the laser’s horizontal and

98/156

vertical motion. Figure 5-20a demonstrates that the resulting field of view closely resembles

the geometry of a depth camera or lidar field of view. Figure 5-20b Illustrates a denser 3D

mesh. To make a uniform 3D mesh denser, the VerticalOffsetResolution parameter, the

HorizontalOffsetResolution parameter or both parameters can be increased. This type of

field of view visualization is the most accurate of those discussed so far and was extensively

used to assist with decisions regarding a robot’s perception system.

Figure 5-20:3D meshes formed by rotating horizontal and vertical meshes.

5.3.5 Detecting Visible Targets

The blue capsules in the scene represent targets. Targets that are in the overall field of view

of the robot’s perception system are marked with red color instead of blue. The information

that a target is inside the overall field of view can be acquired in two ways: The first one is

utilizing the rays that are cast to form the 2D meshes. A check can be run for each ray to

determine if the ray hits a target or not. If a target is hit, it can then be marked as visible, and

it can be added to a list containing all the visible targets. In an editor script, the red color can

be assigned to every target in the list with the visible targets. This method simulates a lidar’s

visibility constraints, attributed to its resolution. This method can test a lidar’s both vertical

and horizontal resolution. Namely, as Figure 5-21 illustrates, if a target’s dimensions are

smaller than the dimension of a single cell in the 3D mesh grid formed by the rays, then the

target could remain undetected even if its position is in the sensor’s effective field of view.

This test case simulates a lidar that is unable to map a small object or detail despite the

latter being inside the lidar’s declared field of view.

99/156

Figure 5-21: Capsule target is positioned in the effective field of view but is too small to be detected by

the sensor. Thus, it is not colored red.

The second way to acquire the information that a target is inside the overall field of view, is

to simply use math to check if the center of the target lies within the field of view locus. For

that to be true, three conditions must be met.

• The distance between the sensor’s center and the target’s center must be smaller than

the view radius.

• The angle α formed by the sensor’s z transform vector (front vector) and the projection

of the target’s relative position vector to the sensor’s 𝑦⃗ plane, must be smaller than the

horizontalViewAngle (HOVA). Figure 5-22a illustrates this constraint.

• The angle β formed by the sensor’s z transform vector (front vector) and the projection

of the target’s relative position vector to the sensor’s 𝑥⃗ plane, must be smaller than the

verticalViewAngle (VEVA). Figure 5-22b illustrates this constraint.

This method simulates a depth camera’s visibility effectiveness, if it is assumed that the

camera has no blind spots within its FOV.

Figure 5-22: Using the field of view locus method to determine if a target is visible.

100/156

5.4 The Lealaps Perception System

5.4.1 Perception System Requirements

To determine the ideal position and rotation of the sensors on the lealaps robot, a list of

specific requirements was considered. These requirements resulted from the intended use

of the robot, namely in outdoor agricultural environments and more specifically in vineyards

for grape and vine inspection. Naturally, each of these requirements cannot always be

fulfilled and therefore, trade-offs play an essential role when designing the lealaps 3D

perception system. In summary, the 3D perception system requirements for the lealaps

robot are shown in Error! Reference source not found..

Table 5-3: Summary of 3D perception system requirements.

index Requirement

1 The 3D perception system should have the best possible observation area and the least possible blind
spots.

2 The 3D perception system should be energy efficient.

3 The view radius of the robot should be large enough for the robot to detect obstacles early enough to
avoid them.

4 The vision of the robot should not be heavily impaired under adverse weather or lighting conditions.

5 The 3D perception system should be capable of distinguishing visual features and areas of interest in
ranges of at least up to two meters.

6 The update rate of the sensors of the perception system should be high enough to allow for fast
perception in all directions.

7 The 3D perception system should be capable of mapping whole vines and similar plants which can
reach a little more than a meter in height.

5.4.2 Discussing possible sensor configurations

With these requirements in mind, seven different sensor configurations for the laelaps 3D

perception system were tested using the Field of view visualization tool in unity.

1. Laelaps with 2x Zed2 Depth Cameras [16] and a Velarray M1600 Lidar [117]. The

FOVALIRA tool in unity was used to check for blind spots and overall visibility constraints

for this configuration. Figure 5-23 illustrates that this option offers a large observation

area covering the whole front and sides of the robot, with small and not substantial blind

spots. However, there is no view from the back of the robot, which could be useful in

case the quadruped performs maneuvers which require it to move backwards. An extra

Zed2 stereo camera could be added at the back of the robot providing the setup with a

near 360◦ field of view. In terms of energy efficiency, this setup is lightweight and

efficient. The ZED2 cameras consume a mere 1.9W each [118] while the Velarray

M1600 Lidar, being a solid state lidar with no moving parts, needs 15 W [119] at most to

be fully operational. In addition, the update rate of solid state lidars is typically higher

than that of conventional lidars. Conventional lidars are sometimes slow when it comes

to coverage in all directions. The limitations are clear in state-of-the-art robot platforms

such as those that participated in the DARPA Robotics Challenge in 2017 (DRC 2017),

which had slow update rate as reported by some of the teams [120]. The M1600 can

manage a 25Hz refresh rate which is higher than its conventional lidar counterparts.

Furthermore, combining lidars and depth cameras allows for versatility even in adverse

weather or lighting conditions. Lidars do not require external light sources to operate,

and their functionality is not affected by changes in lighting conditions. Cameras on the

101/156

other hand are generally not as susceptible to rain, fog, or dust as lidars. They can also

map reflective surfaces with more accuracy than lidars. However, given that the field of

view of the cameras does not overlap with the field of view of the lidar, if a sensor

underperforms then the whole system is affected.

Figure 5-23: Lealaps with 2x Zed2 Cameras and a Velarray M1600 Lidar. (a) Top view. (b) Side view.

2. Laelaps with 4x Intel Realsense D435 depth Cameras [121]. This option also offers a

large observation area covering the whole front, sides and back of the robot, with small

although not negligible blind spots. Figure 5-24 illustrates this configuration. In addition,

the D435 depth cameras offer a large vertical field of view angle (58◦), which allows the

robot to easily obtain depth images of tall plants, even when standing close to them. In

terms of energy efficiency, this setup is lightweight and very efficient. The maximum

power draw of the Vision Processor D4 Board, which handles power for both the Vision

Processor D4 and the Depth Module of the D435 camera, is rated at 700 mA [122]. With

a nominal supply voltage of 5V, each camera consumes a mere 3.5W for a total of 14W

for the whole setup. Nevertheless, this setup utilizes only depth cameras. The absence

of a lidar means that the field of view radius or the effective range of the perception

sensors is smaller, while the point cloud quality at the front side of the robot would be

inferior as lidars do produce higher quality and relatively artifact-free depth-clouds.

Figure 5-24: Lealaps with 4x Intel Realsense D435 depth Cameras. (a) Top view. (b) Side view.

102/156

3. Laelaps with 5x Intel Realsense D435 depth Cameras. An interesting approach to

keeping the simplicity and energy efficiency of the second setup, while raising the depth-

cloud quality at the same time is adding a fifth Intel Realsense D435 sensor. Since most

obstacles and points/areas of interest will appear in front of the robot, the extra camera

should be placed on the front side of the robot, alongside the preexisting front depth

camera. In this particular approach, the two front cameras are rotated around the y-axis,

which in unity is the vertical axis, at 20◦ inward so that their field of views overlap. Figure

5-25 illustrates this configuration. This creates information redundancy but yields a

higher quality depth-cloud overall, since a single underperforming front sensor (for

example due to dust or strong direct light on the lenses) will not affect the generated

front depth map. This setup, nevertheless, does not increase the effective range of the

robot’s perception. It does, however, reduce the size of the blind spots on the front side

of the overall field of view. Boston Dynamic’s spot robot utilizes a similar perception

system [123].

Figure 5-25: Lealaps with 5x Intel Realsense D435 depth Cameras. (a) Top view. (b) Side view

4. Laelaps with 4xD435 + Velodyne Ultra Puck Surround View Lidar [124].

Informational redundancy can lead to a more robust perception system. This approach

utilizes overlapping 3D fields of view to accomplish just that. On the center top of the

robot, a Velodyne Ultra Puck Surround View Lidar offers a 360◦ field of view with high

resolution. To refine the resulting point cloud, 4xD435 depth cameras, one in every side

of the robot, provide additional depth images. Figure 5-26 clearly shows that there are no

blind spots with this setup and an underperforming sensor will not significantly affect the

produced point cloud. A major drawback of this system is the weight and the limited

energy efficiency. The lidar alone is around 1kg heavy. It consumes 10W of power at

typical operating conditions [125]. The cameras combined weigh 1kg and consume a

total of 14W. Thus, the setup weighs 2kg and consumes 24W of power. This makes this

perception system the heaviest and most energy-consuming system discussed so far. In

addition, it is not focused on one side of the robot. The field of view expands evenly

away from the robot. This is usually not desired, as four legged robots are generally

more agile when moving forwards and thus it is a preferable design choice for the

perception system to be focused on the front side of the robot. Anybotics Anymal C robot

utilizes a similar perception system [126].

103/156

Figure 5-26: Laelaps with 4xD435 + Velodyne Ultra Puck Surround View Lidar. (a) Top view. (b) Side view.

5. Laelaps with 4xD435 and an extra D435 at the front, rotated around the x-axis. This

configuration aims to improve the robot’s perception in the front, while also improving the

overall vertical field of view. Robots that will commonly encounter obstacles (e.g.

branches) high above their body height or need to gather visual information from tall

objects and structures will benefit from a design like this. Figure 5-27vdemonstrates that

several -though not significant -blind spots appear when visualizing the overall field of

view of this perception system. The small overlap between the two front camera’s field of

view will yield slightly better point cloud quality in the fused map shaped in the front of

the robot. The system is very energy efficient and lightweight since it only utilizes

lightweight depth cameras with low consumption (typically 3.5W). Xiaomi’s Cyberdog 2

utilizes a similar setup, due to its need to have visual contact with human faces and

gestures [127].

Figure 5-27:Top view of Lealaps with 4x Intel Realsense D435 depth Cameras and an extra D435

at the front, rotated around the x-axis.

5.4.3 Deciding on a near optimal sensor configuration for Laelaps

The Laelaps robot, being optimally designed using a combination of criteria related to

forward speed, would benefit from a perception system that is focused on the field of view in

front of the robot. However, in agricultural environments, the robot will encounter difficult

terrain, dead-ends and obstacles that cannot be easily avoided. In such conditions, the

104/156

quadruped will be required to rotate, turn and even walk backwards. Therefore, the robot

should be equipped with a setup that produces a near 360◦ field of view. Considering this, as

well as the summary of 3D perception system requirements presented in Table 1, the

Laelaps sensor configuration would benefit from 4x ZED2 Stereo Depth cameras and one

Velarray M1600 Solid State Lidar. Combining a Lidar with depth cameras will provide

versatility and robustness even in adverse weather or lighting conditions. Placing the lidar on

the front side of the robot and overlapping its field of view with that of the front depth camera

will add to the valuable point cloud quality in front of the robot.

Capitalizing on the increased range of the lidar, the lidar is placed at a subtler downward

angle than the front depth camera. Figure 5-28 illustrates the setup. Thus, the camera

mainly maps the ground close and in front of the robot, while the lidar captures information

about terrain and obstacles further ahead. This system is both lightweight and energy

efficient. The lidar consumes at most 15W of power while all the depth cameras combined

consume an average of 6W of power. Each depth camera weighs about 125g while the solid

state lidar weighs well below 1kg. The lidar offers premium quality mapping at distances

from 0.1m to 30m while the depth cameras have depth ranges of up to 20m.

For the initial laboratory experiments involving the robotic rover, a simplified sensor

configuration was utilized due to budgetary and accessibility constraints. This temporary

setup consisted of three ZED depth cameras: one ZED2 facing forward, one ZED2 facing

backward, and one ZED X mini with a wide field of view positioned on the side of the rover.

This configuration provided adequate view coverage for the current research phase, which

focused on single-row vineyard mapping without complex obstacle detection requirements.

However, in future deployments involving the quadruped robot and potentially more

challenging environments, the sensor configuration encompassing four ZED2 cameras and

the Velarray M1600 LiDAR will be implemented.

Figure 5-28: Top view of Lealaps with 4x ZED2 depth Cameras and a Velarray M1600 Solid State Lidar

at the front, placed at an angle.

105/156

6 Simulation Experiments

6.1 Simulated World

The vineyard inspection and 3D reconstruction framework proposed in this work was

extensively tested in simulation. To thoroughly evaluate the framework, a comprehensive

simulation environment was established using Gazebo [128]. This simulated environment

closely mirrored the real-world testing compartment located within the Control Systems

Laboratory. This room comprises a synthetic vineyard designed specifically for agricultural

robot experimentation. The controlled lighting conditions within the laboratory are replicated

in the simulation. The vineyard layout features three equally spaced vine rows, forming 1-

meter-wide corridors for robot navigation. The ground texture replicates a mosaic pattern,

and the inclusion of three cast iron radiators near the walls further enhances the realism of

the simulation. A high-fidelity robotic platform (RP) model was designed and integrated

within the simulated environment. This model meticulously replicates the actual RP intended

for deployment in subsequent real-world experiments.

Figure 6-1:The simulated world in Gazebo.

An April Tag was placed at the beginning of the second row. Its purpose is to facilitate the

loop closure process which takes place as soon as the robot effectively aligns its left camera

with the April Tag. April Tags and their significant impact on correcting accumulated

odometry errors in the context of the developed framework are thoroughly described in

106/156

section 2.1.4 of this thesis. Finally, a two-dimensional map of the simulated world was

designed for visualization purposes. The map reflects the real-world dimensions of the

development space with high-fidelity. Rviz [129] and foxglove studio [130] are the two

software platforms that were utilized to visualize RP’s movement through the simulated

vineyard, as well as to monitor valuable data.

Figure 6-2: The RP and the April Tag in the Simulated Environment

Figure 6-3: RP’s trajectory and simulated environment map as seen from foxglove studio.

107/156

6.2 Simulated Robotic Platform

The simulated Robotic Platform’s design closely follows that of the real robotic platform that

is deployed at the Control Systems Laboratory in subsequent experiments. Its motion

system features four mecanum wheels to provide the robot with omnidirectional motion

capabilities. Mecanum wheels are a type of wheeled drive system that allows land-based

vehicles to move in any direction. They are commonly used in mobile machines, such as

forklifts and industrial or research robots. Mecanum wheels consist of a series of rollers with

an axis of rotation at 45° to the wheel plane and at 45° to the axle line. This allows the wheel

to produce both longitudinal and transverse forces, which enables the vehicle to move

sideways, diagonally, and even spin in place [25]. Mecanum wheels are used in situations

where a small turning radius, high maneuverability and movement on difficult terrain are

desired. In the experiments conducted for the purposes of developing the vineyard

inspection and reconstruction framework, these wheels were especially valuable for aligning

the robot’s side camera with the April Tag before performing loop closure.

Figure 6-4: (a) A pair of mecanum wheels used on the RP.

(b) Utilizing mecanum wheels to move in various directions:
blue: wheel drive direction, red: vehicle moving direction, red dot: center of rotation.

For a comprehensive understanding of the proposed robotic platform's behavior and

effective control strategy development, it is crucial to analyze its kinematic properties. If we

consider a 𝑥𝑠𝑂𝑠𝑦𝑠 frame attached to the center of the robot’s chassis, we can write the body

speed equations as follows:

 [

𝑣𝑥

𝑣𝑦

𝜔𝑧

] =
𝑅

4
[

1 1
1 −1

−
1

𝑙1+𝑙2

1

𝑙1+𝑙2

1 1
−1 1

−
1

𝑙1+𝑙2

1

𝑙1+𝑙2

] ∙ [

𝜔1
𝜔2
𝜔3

𝜔4

], (6-1)

where R is the wheel radius, 𝜔𝑖 is the angular velocity of the wheel 𝑖 and 𝑙1, 𝑙2 are the

distances between wheel axis and body center. If the speed of the robot is imposed, we

have to compute the angular speed of each wheel (inverse velocity solution):

[

𝜔1
𝜔2
𝜔3

𝜔4

] =
1

𝑅
[

1
1
1
1

1
−1
−1
1

−(𝑙1 + 𝑙2)
𝑙1 + 𝑙2

−(𝑙1 + 𝑙2)
𝑙1 + 𝑙2

] ∙ [

𝑣𝑥

𝑣𝑦

𝜔𝑧

], (6-2)

108/156

to acquire for the RP:

𝑣𝑥(𝑡) = (𝜔1 + 𝜔2 + 𝜔3 + 𝜔4) ∙

𝑟

4
,

𝑣𝑦(𝑡) = (−𝜔1 + 𝜔2 + 𝜔3 − 𝜔4) ∙
𝑟

4
,

𝜔𝑧(𝑡) = (−𝜔1 + 𝜔2 − 𝜔3 + 𝜔4) ∙
𝑟

4(𝑙𝑥+𝑙𝑦)
,

(6-3)

where 𝑣𝑥(𝑡) is the longitudinal velocity, 𝑣𝑦(𝑡) is the transversal velocity and 𝜔𝑧(𝑡) is the

angular velocity of the RP.

Figure 6-5: Kinematics of the RP.

The robotic platform was fitted with four simulated stereo depth cameras each facing in a

different direction. The appropriate ZED sensor plugins and STL CAD descriptions were

used so that the simulated cameras closely resemble real ZED cameras.

The design of the perception system mounted on the simulated robotic platform (RP)

aligns demonstrably with the theoretical optimal perception system identified through our

FOVALIRA evaluations. Future iterations of the RP perception system may incorporate a

LiDAR sensor to further enhance its capabilities and achieve even closer alignment with the

theoretical optimal system.

A 3D Position Interface for Ground Truth (P3D) was applied on the base of the RP

platform. P3D broadcasts the inertial pose of the RP’s base link in simulation over ROS via

an odometry msg. This is necessary to evaluate the accuracy of the Multi-camera visual

odometry by comparing it to the ground-truth odometry produced by P3D.

109/156

Figure 6-6: The simulated robotic platform.

6.3 Simulation Software architecture

6.3.1 Tracking PID

The robotic platform is tasked with traversing the first and second rows of the simulated

vineyard by following a strict trajectory designated to it by the path planning algorithm

described in [19]. A trajectory tracking proportional-integral-derivative (PID) controller named

tracking_pid ROS [131] is leveraged to enable it to closely follow the designated trajectory.

Tracking PID is a versatile and flexible ROS package that comprises two main components:

an interpolator and a controller. The interpolator takes a nav_msgs/Path message containing

a sequence of waypoints and generates a reference global point (GP) that moves along the

path at a specified velocity. This GP serves as the target for the controller, which employs

three separate PID loops – longitudinal, lateral, and angular – to track the GP precisely.

Tracking PID offers numerous advantages for trajectory tracking applications. It is highly

customizable, allowing for adjustment of various parameters, such as controller gains,

acceleration and deceleration limits, and desired velocity. Additionally, it supports various

types of ROS path representations, including nav_msgs/Path, geometry_msgs/PoseArray,

and moveit_msgs/RobotTrajectory. One of Tracking PID's key features is its ability to

accurately track trajectories without compromising velocity smoothness. This is achieved by

implementing a carrot tracking strategy, where the GP always lies in front of the robot and

the controller keeps the robot at a constant distance 𝑙 from GP.

Figure 6-7: Tracking PID: Carrot tracking strategy [131].

110/156

 𝒆𝒙, 𝒆𝒚, 𝒆𝜽: 𝒆𝒓𝒓𝒐𝒓𝒔. 𝑪𝑷: 𝑪𝒐𝒏𝒕𝒓𝒐𝒍 𝑷𝒐𝒊𝒏𝒕.

Another notable aspect of Tracking PID is its capability to track trajectories relative to the

robot's base_link frame. When enabled, the controller utilizes a Projected Global Point

(PGP) that is projected onto the robot's base_link frame. This allows the robot to follow the

path in a stricter manner.

Figure 6-8: Tracking PID: Base_link tracking strategy [131].

 𝒆𝒙, 𝒆𝒚, 𝒆𝜽: 𝒆𝒓𝒓𝒐𝒓𝒔. 𝑷𝑮𝑷: 𝑷𝒓𝒐𝒋𝒆𝒄𝒕𝒆𝒅 𝑮𝒍𝒐𝒃𝒂𝒍 𝑷𝒐𝒊𝒏𝒕.

6.3.2 April Tags and Loop Closure

An AprilTag is placed before the first grapevine of the second row of the simulated vineyard.

It can be detected using the ZED camera at the right side of the Robotic Platform (RP) by

using the apriltag_ros package [132]. The apriltag_ros package outputs the transformation

from the camera frame to the detected AprilTag frame. The position and orientation of the

April Tag in the map is fixed and accurately known. When the April Tag is detected, the RP

can acquire an accurate estimation of its position relative to the April Tag and -because the

pose of the April Tag is known- an accurate estimation of its position in the map. The latter

pose estimation is compared to the pose estimation acquired from the RP’s dual-camera

visual odometry. Then, a loop closure thread initiates global bundle adjustment to refine all

the previously estimated poses and 3D landmarks, therefore correcting the whole estimated

trajectory of the robot. Many state-of-the-art vSLAM algorithms leverage a Bag of Words

image representation to detect a loop closure and perform bundle adjustment, as explained

in 2.2.1. Using April Tags to initiate bundle adjustment is superior to Bag of Words (BoW)

loop closure approaches in a vineyard setting. This is because the crop is organized in

parallel and similarly sized rows. There, the bag-of-word approach could result in incorrect

loop detection due to the high similarity between images. As a result, such vSLAM

approaches are prone to false positive loop detection in homogeneous environments like

vineyards.

The pose of the April Tag relative to that of the robot can be accurately estimated from

great distances and from various view angles. However, it was observed that the best

results were produced when the robot detected the April Tag when it was close to it and with

a view angle of around 90𝑜. Thus, to amplify the valuable odometry corrections of the bundle

adjustment process, an alignment node was implemented. The alignment node is active

throughout the experiment but only influences the RP after it has detected the April Tag. It

then takes over control of the RP and aligns it with the April Tag before registering the April

Tag pose. More specifically, as soon as the right camera of the RP completely aligns its left

111/156

lens with the April Tag, its pose is registered, and the bundle adjustment node corrects the

so-far trajectory of the RP.

6.3.3 Simulation Experiment Pipeline

There are many processes running to facilitate the simulation experiments, mainly in the

form of ROS nodes. The main modules are:

• The free corridors path planning algorithm that runs in Matlab utilizes polytopic

decomposition and calculates a viable and non-obstructed path through the first two

rows of the vineyard, using the 2D vineyard map and producing a dense series of

waypoints for the RP to pass through. This is the trajectory planning module.

• The Gazebo simulated world that loads with the synthetic_vineyard.launch launch file.

This launch file loads the synthetic vineyard world and spawns the Robotic Platform in a

designated position in the vineyard. It also loads the 2D map for visualization purposes

and broadcasts necessary static transform messages.

• The dual-camera, real-time (RT) visual odometry node (visual tracking module) that is

launched with the DualCamRTAT.launch launch file. This launch file also launches the

April Tag (AT) Continuous Detection node. Those functions comprise the Real Time

Localization Module.

• The April Tag Continuous Detection node publishes over the ROS network whenever a

Tag is detected. It calculates the transformation between the April Tag and the camera

that detects it, by analyzing the visual footprint of the April Tag on the camera RGB

video.

• The tracking_pid node that controls the RP and ensures that it smoothly tracks the

trajectory that is defined by the waypoints produced by Kunal’s path planning algorithm.

This node comprises the Precise Velocity Control module.

• The view_planning node, which ensures that the robot aligns with the April Tag after

detecting it. After the robot is properly aligned, the DualCamRT node will register the

April Tag and perform bundle adjustment to correct the so-far obtained odometry data.

The view_planning node is also launched by the synthetic_vineyard.launch launch file.

112/156

Figure 6-9: Simulation Experiment Pipeline.

Secondary nodes add more functionality to the experiment:

• The position_to_velocity node takes position and rotation data about the RP from the

DualCamRTAT visual tracking node and calculates the derivative to output the velocity of

the RP in real time.

• The point_cloud_to_pcd node takes point clouds from the right ZED depth camera of the

RP in real time and saves them in “.pcd” format in the specified folder. These “.pcd” files

are to be used by the Vinymap quality assessment and reconstruction algorithm for

canopy density estimation and projective texture mapping. It should be noted that this

node simultaneously and synchronously saves RGB images in the specified folder.

These are used in the projective texture mapping process of the Vinymap algorithm.

• Rosbag record is a command-line tool used to record ROS messages to a file called a

bagfile. Bagfiles are a flexible format that can store a wide variety of ROS messages,

including sensor data, actuator commands, and user interactions. They can be used to

replay recorded data, analyze data offline, and share data across platforms. Valuable

113/156

messages that are broadcasted across a variety of topics are recorded during the

experiment to be studied and visualized later in Rviz or Foxglove Studio.

• The P3D gazebo navigation plugin broadcasts ground truth odometry data about the

position of the RP in the vineyard. These can be fed into the view_planning node to allow

for best alignment with the April Tag for development and testing purposes. They are

also used to compare the DualCamRTAT’s odometry data accuracy to ground truth data

accuracy. When conducting finalized simulation experiments or real-world laboratory

experiments, all odometry data used during the experiments are taken from the

DualCamRTAT visual tracking node which provides the visual odometry of the RP.

During laboratory experiments, a PhaseSpace Impulse X2E [133] motion capture system

was used to substitute ground truth data, replacing the P3D gazebo plugin.

114/156

7 Laboratory Experiments

7.1 The synthetic vineyard setup

After extensively testing the proposed vineyard inspection and 3D reconstruction framework

in a simulation environment, to conduct controlled and repeatable experiments with varying

light conditions, a vineyard with artificial grapes and leaves was built at CSL. Each row

consists of multiple plants on a trellis system so that the vegetation form resembles a natural

canopy. The basic vineyard row parameters, such as the distance between plants (∼1m)

and grapes’ minimum height (0.60m) is based on common viticulture practices in Greece.

The artificial grapes’ grid features varying density, grape size, creating different visibility

conditions since some grapes are partly covered with leaves, whereas others lie on the front

plane. The vineyard consists of three 3-meter-long rows on even terrain.

Figure 7-1: (a) Synthetic vineyard in CSL. (b) Natural Vineyard located in the Blue Ridge Mountains, USA.

An April Tag was placed at the start of the second row, at a fixed position, behind the pole of

the first vine tree of the second row. To guarantee controlled and repeatable performance of

our custom dual-camera visual odometry (VO) algorithm, we opted for a two-pronged testing

approach. Firstly, we aimed to acquire ultra-high-quality, near-faultless odometry data to fuel

our algorithm development without concerns about erroneous measurements. Secondly, we

sought to verify our algorithm's performance in a real-world scenario.

For the first objective, we leveraged the PhaseSpace Impulse X2E [133] motion capture

system. This state-of-the-art system employs active LED markers attached to the robot,

enabling high-precision tracking within a defined capture space. Unlike camera-based

systems susceptible to lighting variations and feature quality, the PhaseSpace system

delivers robust motion tracking independent of ambient conditions. This allowed us to

acquire highly accurate and reliable ground truth odometry data for meticulous algorithm

development and evaluation.

In the second phase, we transitioned to real-world testing settings. Our robotic platform

navigated two distinct environments: a naturally lit garage (Figure 6-2) and a variably lit room

(Figure 6-3). The PhaseSpace system was deployed in the second location for continuous

performance validation. Additionally, during the garage experiments, a DJI Air 2S [134]

quadcopter captured aerial photographs and videos, providing valuable supplementary data

for multi-angle analysis. This multifaceted approach enabled us to assess our VO algorithm's

115/156

efficacy in diverse operational scenarios, bridging the gap between controlled testing and

real-world deployment.

Figure 7-2: (a) Aerial Photography of the Laboratory Experiment Setup taken by the quadcopter.

(b) 2D graphical representation of the Laboratory Experiment Setup.

A Robotic Platform developed for research purposes and altered to host the software

developed in this work was tasked with traversing the first and second corridors formed by

the rows of the vineyard. Its trajectory ends near the April Tag. There, the RP was tasked

with aligning the left lens of its right ZED Depth Camera with the stationary April Tag, exactly

how it performed in the simulation experiment pipeline. With the knowledge of the position of

the stationary April Tag, as well as the knowledge of its relative position of its camera to the

April Tag, the RP can recalculate its pose at the time of registering the April Tag and then

perform bundle adjustment to correct the so-far odometry data which it collected using the

dual camera visual slam node.

116/156

Figure 7-3: Indoor testing environment with artificial lighting and PhaseSpace system.

7.2 The Robotic Platform

CSL’s Robotic Platform (RP) was used to validate and test the proposed software

framework. The RP is designed and constructed for research purposes, comprising custom

built in-house parts as well as off-the-shelf parts (e.g. aluminum profiles, bearing units etc.).

Its motion system features four mecanum wheels [25] to provide the robot with

omnidirectional motion capabilities. The wheels are powered by four Maxon DC motors (RE

35) combined with planetary gearboxes (GP 42) and incremental encoders (HEDL 5540),

providing 5 Nm of continuous torque per wheel. GT2 timing belts and pulleys are used to

protect actuator shafts from increased robot payloads and to transmit power to the wheels.

Two RoboClaw [135] 2x30A motor controllers are used to drive the actuators, since each

controller can drive two DC brushed motors. The encoders attached to the motors are read

by the controllers, which run local PID control schemes that can precisely follow speed

commands for all wheels. The two motor controllers are connected via USB to the system’s

master computer, which is a Raspberry Pi 2 model B [136] (RPi) running the Raspbian OS.

The operator can connect to the RPi using WiFi and Secure Shell (SSH) Network Protocol to

run a Python script that establishes two serial connections with the motor controllers and

sends the desired motion commands. The system is powered by two Wild Scorpion 6S

22.2v 4200mAh 60C LiPo batteries [137] for the RoboClaw controllers and a power bank for

the master computer (RPi).

The perception system of the RP was designed according to the guidelines defined in

Chapter 4 of this thesis. Although the form factor of a rover differs a lot from that of a

quadruped robot such as Lealaps or Argos, the hardware which best suits the application of

vineyard inspection stays, in principle, the same. Thus, the RP was fitted with 3 ZED Depth

cameras – one at the front of the RP, one at the rear and one at the right side. Due to the

117/156

lower height of the RP, the cameras were not tilted downwards; This would be beneficial for

a legged robot with a larger form factor as described in section 4.4 of this work, but this is

not the case for the CSL RP since doing so would move most of the vineyard out of the

camera field of view. The front and rear cameras are ZED 2 Depth cameras, while the right

side camera is a ZED X Mini Depth Camera with a 2.2 mm focal length [138]. A shorter focal

length implies a larger field of view which is desired in this configuration, as a larger area of

the grapevines can be inspected with a single traversal of the rows. The ZED X Mini Depth

Camera is also fitted with polarizing lens, which increases the RP’s ability to operate under

diverse lighting conditions.

Figure 7-4:(a) The Robotic Platform without its perception system. (b) The perception system of the

Robotic Platform.

The software framework runs on the Nvidia Jetson AGX Orin which is the processing

platform purposefully chosen for the perception system proposed in this thesis, as described

in section 4.2. All three depth cameras are connected to Orin. The ZED 2 cameras are

connected via USB 3.0, while the ZED X Mini is connected via a GMSL2 Fakra Cable. To

support this connection, the Nvidia Jetson Orin is fitted with a GMSL2 Capture Card. To

power the Orin, an Antigravity Micro-Start battery [139] was chosen to provide it with 12V at

3.5A DC.

7.3 Laboratory Experiment Software Architecture

There are many processes running to facilitate the experiments conducted at the synthetic

vineyard in the laboratory, mainly in the form of ROS nodes. The main modules are:

• The free corridors path planning algorithm that runs in Matlab utilizes polytopic

decomposition and calculates a viable and non-obstructed path through the first two

rows of the vineyard, using the 2D vineyard map and producing a dense series of

waypoints for the RP to pass through. This is the trajectory planning module.

• The v-slam.launch launch file which is the file that contains the main software

functionality. It includes the DualCamRTAT.launch visual tracking module file and

launches the map loading node, the zed_multicamera_nodelet node, the tracking_pid

node, the view_planning node, several static tf_publisher nodes and three nodes that

offer extra functionality; the position_to_velocity, point_cloud_to_pcd and rosbag record

nodes.

118/156

• The zed_multicamera_nodelet is launched by the v-slam.launch file and activates all

three cameras connected to the Jetson AGX Orin. It launches the cameras one by one

using their serial numbers and sets up their output video feed.

• The map loading node which publishes a static 2D vineyard map of the fixed laboratory

environment over ROS, mainly for visualization purposes.

• The dual-camera, real-time (RT) visual odometry node that is launched with the

DualCamRTAT.launch launch file. This launch file also launches the April Tag (AT)

Continuous Detection node. These nodes are part of the Real Time Localization module.

• The April Tag Continuous Detection node publishes over the ROS network whenever a

Tag is detected. It calculates the transformation between the April Tag and the camera

that detects it – in this case the ZED X Mini - by analyzing the visual footprint of the April

Tag on the camera RGB video.

• The tracking_pid node that controls the RP and ensures that it smoothly tracks the

trajectory that is defined by the waypoints produced by Kunal’s path planning algorithm.

• The view_planning node, which ensures that the robot aligns with the April Tag after

detecting it. After the robot is properly aligned, the DualCamRT node will register the

April Tag and perform bundle adjustment to correct the so-far obtained odometry data.

• The udp_client node which receives velocity messages from the tracking_pid node and

sends them via udp to Raspberry Pi. This node is part of the Command Execution and

Movement module.

• The RPi python script running on the RPi computer receives messages from the

udp_client node and sends the respective velocity commands to the RoboClaw Motor

Controllers over serial communication protocol. The RP’s motors are then powered

accordingly.

119/156

Figure 7-5: Laboratory Experiments Pipeline.

Secondary nodes add more functionality to the experiment:

• The position_to_velocity node takes position and rotation data about the RP from the

DualCamRTAT visual tracking node and calculates the derivative to output the velocity of

the RP in real time.

• The point_cloud_to_pcd node takes point clouds from the right ZED depth camera of the

RP in real time and saves them in “.pcd” format in the specified folder. These “.pcd” files

are used by the Vinymap quality assessment and reconstruction algorithm. It should be

noted that this node simultaneously and synchronously saves RGB images in the

specified folder. These are used in the projective texture mapping process of the

Vinymap algorithm.

• Rosbag record is a command-line tool used to record ROS messages to a file called a

bagfile. Bagfiles are a flexible format that can store a wide variety of ROS messages,

including sensor data, actuator commands, and user interactions. They can be used to

replay recorded data, analyze data offline, and share data across platforms. Valuable

messages that are broadcasted across a variety of topics are recorded during the

experiment to be studied and visualized later in Rviz or Foxglove Studio.

• During experiments within the room with artificial lighting, a PhaseSpace Impulse X2E

motion capture system was used to substitute ground truth data. The data from this

setup were captured and saved separately to aid with post-experimental analysis and

review.

120/156

8 The Vinymap Quality Assessment and
Reconstruction Algorithm

8.1 Custom SOPCQA

Recent literature has witnessed advancements in PCQA methodologies, with both full-

reference (FR) and no-reference (NR) metrics being developed. However, there is room for

improvement as most no-reference PCQA methods do not yet statistically correlate well with
subjective quality assessments [140]. In addition, most recent studies propose learning based
methods that come with greater complexity and are harder to interpret and improve. As a
result, the development of a Simple Objective Point Cloud Quality Assessment algorithm was
deemed valuable for a perception system focused on vineyard inspection. The proposed in-

house SOPCQA algorithm can be subdivided into three parts:

(a) Sparsity Index Calculation

(b) Hole Detection

(c) Cluster Outlier Detection.

8.1.1 Sparsity Index Calculation

One way humans use to realize if a 3D point cloud is of low quality or not is to observe the

density of the point cloud. Point clouds of higher quality are homogenous in terms of density

and do not include low density sub-clouds.

The calculation of a point cloud’s (pcd) sparsity index comes down to detecting sparse

areas in the assessed point cloud i.e. areas where the points of the point cloud have on

average a small number of neighbors. The volume that these areas take up is the sparse

volume of the point cloud. The sparse volume of the point cloud is calculated by leveraging

Open3D’s mesh creation and volume calculation functions. It is then divided by the total

point cloud volume (sparse and dense). The result of this division is the sparsity index of the

point cloud. The higher the sparsity index, the sparser the point cloud and consequently the

noisier the sensor measurements that created it and the lower its quality. Algorithm 7-1

presents the process in greater detail. Figure 7-1 provides an intuitive illustration. To find

sparse areas in the point cloud, a sparsity metric for each point must be defined. The

number of the neighbors of each point in its vicinity epsilon was used.

ALGORITHM 7-1 SPARSITYINDEXCALCULATION

Require: pcd, epsilon, sparsity_threshold

Output: sparcity_index, remapping_recommendation

 pcd.remove_non_finite_points()

 sum_of_neighbours = 0

 sparse_points = []

 for point in pcd:

 point.neighbours = find_neighbours_using_kdtree(point, epsilon)

121/156

 sum_of_neighbours = sum_of_neighbours + point.neighbours

 end for

 pcd_mean_density = sum_of_neighbours / len(pcd)

 for point in pcd:

 if point.neighbours < pcd_mean_density then:

 sparse_points.append(point)

 end if

 end for

 sparse_pcd = pcd_from_points(sparse_points)

 sparse_mesh = BPA(sparse_pcd)

 total_mesh = BPA(pcd)

 sparse_area = sparse_mesh.calculate_surface_area

 total_area = total_mesh.calculate_surface_area

 sparsity_index = sparse_area / total_area

 remapping_recommendation = (sparsity_index > sparsity_threshold)

output sparsity index, remapping_recommendation

The problem of efficiently finding the close neighbours for each point of the point cloud is

formulated as follows: Given a point cloud (a set of points in a multidimensional space) and

a radius epsilon, identify all neighboring points within a radius epsilon for each individual

point in the cloud. K-d Trees were utilized to speed up the process.

Figure 8-1: Sparse Area estimation. Areas away from the depth camera are less dense and of lower

quality, as expected from such a sensor.

A k-d tree (k-dimensional tree) is a space-partitioning data structure that recursively

subdivides the point cloud along different axes. The subdivision process creates a tree-like

hierarchy where each node represents a region of space, enabling efficient spatial searches

[141]. To find neighbors within radius epsilon of a query point q, the point cloud k-d tree

122/156

needs to be traversed; Starting at the root, q is compared with the division value at the

current node. The process continues with the corresponding child node (left or right) based

on the comparison. This process is repeated along successive dimensions until reaching a

leaf node. Then the distance between q and points within the leaf node is calculated. If the

distance is less than epsilon, the points are added as neighbors. Finally, the region in the

opposite branch of the previous division is checked, as it might contain points closer than the

current radius. Any subtrees whose bounding regions are fully beyond the epsilon distance

from q are pruned.

The Ball Pivoting Algorithm (BPA) [142] is used for mesh creation. The resulting sparsity

index comes from the division of the surface area of the sparse point cloud by that of the

whole point cloud and if it is found to be more than a user-defined threshold, then the

program outputs a remapping recommendation, as the assessed point cloud is found to

contain a large sparse area.

8.1.2 Hole Detection

Hole detection refers to the identification of vacant spaces inside the cloud. Oftentimes,

when a reflective object (like a mirror or a pc monitor) is placed in the reconstructed scene,

the sensor cannot accurately reconstruct the object and void space, or noise is registered in

its place. This can also happen when the sensor’s view is obstructed in some way and a

blind spot is created. This results in holes in the point cloud. It is intuitive to consider that in a

3D reconstruction of a vineyard there should not be any holes of large volume in the ground

or in the vegetation of the vine trees, especially in the dense vegetative states of the

vineyard. Nevertheless, the presence of holes could indicate a real problem in the vegetation

and not a loss of point cloud quality. Therefore, this algorithm’s parameters should be tuned

carefully to match the intended use case and conditions. The purpose of this procedure is to

identify abnormal holes in the point cloud and not physical holes in the vegetation. The latter

is dealt with by the canopy density assessment algorithm which is extensively analyzed in

section 7.5.

The hole detection algorithm works by filling the whole 3D workspace with a

homogenous dense point cloud (HMDpcd). The assessed source point cloud is then

subtracted by the HMDpcd. The resulting point cloud mask is then clustered using DBSCAN

clustering. Of the resulting clusters the larger ones do not represent holes and are thrown

away. The remaining smaller clusters represent holes (void spaces) of the assessed point

cloud and are saved. Depending on their size and quantity, the user can infer the assessed

point cloud’s quality. To make the algorithm’s output more objective, the clusters that

represent holes are turned into meshes via surface reconstruction with BPA. Their combined

surface area is divided by the total surface area of the initial point cloud and the result is the

hole index, the output of the algorithm. Algorithm 7-2 presents the hole detection algorithm in

greater detail. Figure 7-3 illustrates the process.

ALGORITHM 7-2 HOLEDETECTION

Require: pcd, clustering_parameters, hole_size_threshold

Output: hole_index

 bbox = pcd.get_bounding_box()

 all_space_pcd = bbox.fill_with_points()

123/156

 free_space_pcd = all_space_pcd.remove(pcd)

 free_space_pcd.erode()

 free_space_pcd.dilate()

 free_space_pcd.cluster(DBSCAN, clustering_parameters)

 free_space_pcd.remove_largest_cluster()

 holes = []

 for hole in free_space_pcd.clusters:

 if hole.size > hole_size_threshold then:

 holes.append(hole)

 end if

 end for

 hole_area = 0

 total_hole_area = 0

 for hole in holes:

 hole_mesh = BPA(hole)

 hole_area = hole_mesh.calculate_surface_area

 total_hole_area = total_hole_area + hole_area

 end for

 pcd_mesh = BPA(pcd)

 pcd_area = pcd_mesh.calculate_surface_area

 hole_index = total_hole_area / pcd_area

output hole_index

The get_bounding_box() function returns the bounding polygon of the point cloud it is

applied on. The fill_with_points() function fills this polygon with random points and returns a

uniform pointcloud that covers all the space inside the polygon with a specified point density.

The remove() function, when applied on a point cloud receives as arguments another point

cloud and removes all points from the first point cloud that are closer than a specified

threshold to the second point cloud. Finally, the erode() and dilate() functions operate on a

point cloud similarly to how erosion and dilation effect a 2D image. Figure 7-2 illustrates the

process of dilation after erosion on a 2D image.

124/156

Figure 8-2: Erosion, Dilation & Opening performed on a 2D image.

This operation is also known as opening in image processing. The free_space_pcd

represents all the space around the source point cloud. After eroding and dilating the

free_space_pcd, groups of points of the free_space_pcd that were isolated inside crevices

and holes of the source point cloud are completely separated from the other points of the

free_space_pcd. Thus, where there were once holes of the source point cloud, now there

are points of the free_space_pcd. These points represent the holes of the source point

cloud. The algorithm then clusters the free_space_pcd, so that the holes become separate

point clouds. The largest cluster, however, does not represent a hole but the rest of the free

space. So, it is removed. In addition, the algorithm discards holes that are too small. Finally,

the algorithm calculates the area that the holes and the source point cloud occupy and it

produces and outputs the hole index, which is a valuable quantity for objective point cloud

quality assessment.

125/156

Figure 8-3: The hole detection algorithm visualized.

8.1.3 Cluster Outlier Detection

Detecting small and isolated clusters is referred to as cluster outlier detection in this work.

When creating a point cloud of a vineyard, these clusters are intuitively considered as noise

because they do not match any existing object in the scene. The quantity and size of these

noise clusters is therefore a valuable and simple metric of point cloud quality. The assessed

point cloud is clustered using DBSCAN. The user heuristically defines a cluster size

threshold; clusters that are smaller than this threshold are considered as noise and their

aggregated surface area and quantity is calculated. These two metrics are used in the final

quality assessment step. Algorithm 7-3 presents the cluster outlier detection algorithm in

greater detail. Figure 7-4 illustrates the process.

ALGORITHM 7-3 CLUSTEROUTLIERDETECTION

Require: pcd, clustering_parameters, cluster_size_threshold

Output: noise_clusters_quantity, total_noise_clusters_area

 pcd.cluster(DBSCAN, clustering_parameters)

 noise_clusters = []

 noise_clusters_quantity = 0

 for cluster in pcd.clusters:

 if cluster.size < cluster_size_threshold then:

 noise_clusters.append(cluster)

 noise_clusters_quantity++

 end if

 end for

 noise_cluster_area = 0

 total_noise_clusters_area = 0

 for noise_cluster in noise_clusters:

 noise_cluster_mesh = BPA(noise_cluster)

 noise_cluster_area = noise_cluster_mesh.calculate_surface_area()

126/156

 total_noise_clusters_area = total_noise_clusters_area + noise_cluster_area

 end for

output noise_clusters_quantity, total_noise_clusters_area

Figure 8-4: Cluster Outlier Detection. The noise clusters are pictured in red.

8.1.4 Final SOPCQA Algorithm

Table 7-4 shows the final SOPCQA algorithm. This algorithm uses the previous three

algorithms as implemented functions to objectively assess the quality of an input point cloud.

Eq. (7-1) shows the calculation of the final quality index (𝐹𝑄𝐼). The quality threshold (𝑄𝑇)

mentioned in the algorithm is determined heuristically by the user.

ALGORITHM 7-3 SOPCQA

Require: pcd, epsilon, sparsity_threshold, clustering_parameters, hole_size_threshold,

 cluster_size_threshold, fqi_parameters, QT

Output: final_quality_index, remapping_recommendation

 sparsity_index = sparsityIndexCalculation(pcd, epsilon, sparsity_threshold)

 hole_index = holeDetection(pcd, clustering_parameters, hole_size_threshold)

 noise_clusters_quantity, total_noise_clusters_area = clusterOutlierDetection(pcd,

 clusutering_parameters, cluster_size_threshold)

 FQI = calculateFQI(sparsity_index, hole_index, noise_clusters_quantity,

 total_noise_clusters_area)

 if FQI < QT then:

 remapping_recommendation = True

 else:

 remapping_recommendation = False

 end if

127/156

output FQI, remapping_recommendation

The calculateFQI function in Algorithm 7-3 applies the following equation:

 𝒇 = 𝒆−𝜷𝒔𝒔𝒆−𝜷𝒉𝒉 − 𝜷𝒏𝒒 − 𝜷𝒏𝒂 ,

(87-
1
1
)

, where 𝑓 is the final quality index (𝐹𝑄𝐼), (𝛽𝑠, 𝛽ℎ, 𝛽𝑛) are user-defined parameters, 𝑠 is the

sparsity index, ℎ is the hole index, 𝑞 is the quantity of outlier clusters and 𝑎 is the total area

of outlier clusters.

In the current thesis, the SOPCQA algorithm is used in conjunction with a vineyard point

cloud dataset. This dataset contains point clouds that have been successively and

periodically captured by a ZED depth camera mounted on a moving rover robot that

traverses a synthetic vineyard with constant linear velocity. Sections 5 and 6 describe this

setup in greater detail. The algorithm works by iterating through the point clouds in the

dataset and calculating the FQI for each one of them. If the FQI is lower than the QT for an

assessed point cloud, then the point cloud is deemed of lower quality and the user is

prompted to recapture the point cloud from another view angle by appropriately

maneuvering the rover. This process could be automated but this is not implemented in the

context of this work. However, as described in section 7.2, after capturing the vineyard point

cloud dataset and assessing each point cloud’s quality, software is used to improve each of

the point clouds’ quality. The user can leverage SOPCQA to label point clouds of lesser

quality and only apply improvements to them, thus saving on computational resources.

8.2 Point Cloud Quality Improvement and Registration

8.2.1 Quality Improvement

Point cloud registration is the process of finding a transformation (a combination of rotation,

translation, and scaling) that best aligns the two or more point clouds. High quality point

clouds can be accurately registered using simple optimization-based algorithms like Iterative

Closest Point or Point Pair Feature Descriptors (PPF) [143]. For more elaborate or lower

quality point clouds resorting to more complex learning-based algorithms is considered

beneficial. In the context of this work, due to the noise in the available point clouds, a

decision had to be made between improving the point clouds’ quality to register them with

simple methods and using the raw point cloud data to register them with more complex

algorithms. The first option was chosen in the interests of simplicity as statistical point cloud

quality enhancement algorithms have been thoroughly studied and efficiently implemented in

the literature [144]. Algorithm 7-4 and Figure 7-5 present the custom pipeline developed for

that purpose.

ALGORITHM 7-4 POINTCLOUDQUALITYENHANCEMENT

Require: Set of point clouds 𝑃 = {𝑝1, … , 𝑝𝑘}, v, b, n, e, t

Output: Set of enhanced point clouds B

 B = LoadPointClouds(P, v)

 for p in B:

128/156

 CropPointCloud(P,v)

 CloudFilterByDensity(p,n,e)

 CloudFilterByClusters(p,t)

 NormalEstimation(p)

 end for

output B

The utilized functions are described as follows:

LoadPointClouds: Loads a batch B of point clouds out of the set of point clouds P that

were captured by the ZED X Mini camera and formats them appropriately for processing

with Open3D. It removes non-finite points and transforms the point clouds to align with

Open3D’s world frame. It downsamples the point clouds utilizing voxel_downsampling with

voxel size v for memory management purposes.

CropPointCloud: Receives a point cloud p and a set of bounding limits b as input.

Calculates p’s oriented bounding box and shrinks it to satisfy b. It then crops p to fit inside

the modified bounding box. This function is utilized to ignore areas of the point cloud that lie

in the limits of ZED X’s field of view and are particularly noisy.

CloudFilterByDensity: Removes points of the input point cloud that have few

neighbours n within a specified radius e. Low density areas in the point cloud are usually

products of noise.

CloudFilterByClusters: Separates the input point cloud in clusters using DBSCAN

clustering [22]. Clusters that are smaller than a specified threshold t are usually products of

noise and are removed.

NormalEstimation: The function finds adjacent points in the input point cloud and

calculates the principal axis of the adjacent points using covariance analysis.

Figure 8-5: The Point Cloud Quality Enhancement Pipeline.

8.2.2 Registration

After being enhanced, the point clouds are registered in pairs using a custom variant of the

ICP optimization algorithm. ICP works by finding the closest point in one point cloud (source)

for each point in the other point cloud (target). This process is called data association. The

algorithm then finds the target point cloud’s transformation (which can be represented by a

rotation matrix and a translation vector) that minimizes the distance between the

corresponding point pairs. After applying this transformation to the target point cloud, the

data association changes and thus must be recomputed. The transformation matrix that

129/156

minimized the distance between the corresponding point pairs is also recomputed and

applied again. This process is repeated until the overall error between the two point clouds is

minimized. This error is typically measured using a distance metric, such as the sum of

squared distances between corresponding point pairs.

Figure 8-6: a) Data association (b) Target point cloud transformation. Result after first iteration (c) Final

point cloud registration after four iterations.

There exist several variants of the ICP algorithm. Estimating the data association to avoid

convergence into a local optimal solution is the key challenge to the development of a robust

ICP algorithm [145]. Similar to the approach followed by the authors in [22], a simple yet

effective ICP variant was constructed for Vinymap.

The point-to-plane data association method was chosen. Instead of matching individual

points, point-to-plane data ICP involves fitting a plane to a set of points in the target point

cloud (normal estimation) and then selecting the closest point to that surface in the source

point cloud. The distance between point and plane is calculated using the perpendicular

distance metric. This approach is more robust to noise and outliers compared to point-to-

point data association, making it suitable for handling real-world data with imperfections. To

further reduce the effect of existent noise and outliers, correspondences of points that are

two far away from one another are not considered. The distance that defines how close two

paired points must be in order to be considered is called maximum correspondence distance

(MCD).

130/156

Figure 8-7: Point-to-Plane correspondence illustration in 2D [146].

The first two point clouds are read from the dataset. The initial point cloud is assigned

the identity transformation matrix as its pose. The second point cloud must be correctly

registered to the first one. At this point no assumptions can be made about the second point

cloud’s pose and it is therefore also assigned the identity transformation matrix. An initial

ICP transformation with a relatively high MCD is initiated. A second ICP transformation with

a finer MCD follows and finishes the registration. The final transformation of the newly added

point cloud is saved in an odometry list which is valuable for the next steps of the Vinymap

algorithm. The newly added point cloud is then fused with the initial point cloud and the

resulting point cloud is called a local map.

 The third point cloud is read from the dataset and is initially transformed with the same

matrix as the second one, but with an added 10% translation and rotation in the same

direction. This percentage is defined heuristically and can be changed as an internal

registration parameter. ICP is then applied to register the third point cloud with the local map

(which is currently comprised of the first two point clouds). The resulting final transformation

is applied to the third point cloud and saved in the odometry list. The third point cloud is then

added to the local map.

This process is repeated until every point cloud has been correctly registered and a

local map comprised of all the aligned point clouds is created. It should be noted that in

parallel to the local map, a global map is also being constructed. The global map contains

only the point clouds whose registration yielded a registration error lower than a predefined

threshold. This is done to ensure that misregistered point clouds will be discarded.

Finally, for each registered point cloud, a bounding polygon is created and saved. This

polygon is calculated by leveraging open3D’s convex hull computation function, flattening

the hull and then extracting a bounding volume which tightly encloses the point cloud. The

resulting bounding polygon is utilized in the mesh projection phase of Vinymap.

131/156

Figure 8-8: Point Cloud Registration in the synthetic vineyard.

8.3 Canopy Density Assessment

The Vinymap framework incorporates a novel strategy for identifying gaps within the

vineyard canopy. This method capitalizes on the inherent color properties of the vine tree

leaves, as well as the topological properties of surface reconstruction with alpha shapes. We

implement Algorithm 7-5 to output a comprehensive Canopy Density Index (CDI) for each

input point cloud batch. This novel index serves as a powerful tool for farmers to objectively

assess the health and vigor of their vines within the mapped area of the vineyard. Algorithm

7-5 calls the following functions:

PointCloudQualityEnhancement: Loads a batch of point clouds and enhances their

quality. Described in section 7-2.

PointCloudRegistration: This function merges individual point cloud scans captured from

successive viewpoints as the robot traverses the vineyard. It leverages the KISS-ICP [22]

variant of the well-established Iterative Closest Point (ICP) algorithm. The function

implements a tiered ICP approach utilizing three distinct point correspondence distances.

This sequential strategy, employing a coarse-to-fine logic, progressively refines the

alignment between successive scans. The function's primary output is a unified point cloud

map 𝑓𝑚 encompassing all the input batch’s scans, stitched together through the registration

process. Additionally, the function provides a list of individual transformations tr. Each

transformation corresponds to a specific input point cloud and details the precise positional

and rotational adjustments necessary to integrate it into the overall map.

CanopySeparation: This function operates on the fused point cloud map 𝑓𝑚 generated by

the PointCloudRegistration function. It isolates points within the map exhibiting green hues.

This targeted color-based segmentation effectively filters out extraneous elements, resulting

in a distinct point cloud 𝑖𝑐 exclusively encompassing the lush green canopy of the vineyard.

FullCanopyEstimation: Reconstructs a mesh m from the 𝑖𝑐 point cloud acquired by the

CanopySeparation function utilizing alpha shapes. By strategically setting a relatively large

alpha parameter, the reconstruction excludes all gaps and irregularities.

CanopyGapExtraction: The mesh m produced from the FullCanopyEstimation is sampled

and a point cloud fc representing the gapless full canopy is acquired. The initial canopy point

cloud 𝑖𝑐 is subtracted from the full canopy point cloud using distance-based subtraction. The

resulting point cloud 𝑔𝑐 represents the gaps in the canopy.

132/156

The algorithm then calculates the CDI by dividing the number of points of the output

point cloud from the CanopyGapExtraction gc by the number of points of the full canopy

point cloud fc, after downsampling both clouds using the same voxel size. Figure 7-18

illustrates the Canopy Density Assessment process in detail.

ALGORITHM 7-5 CANOPYDENSITYASSESSMENT

Require: Set of point clouds 𝑃 = {𝑝1, … , 𝑝𝑘}, v, b, n, e, t, a

Output: CDI

 B = PointCloudQualityEnhancement(P, v, b, n, e, t)

 fm, tr = PointCloudRegistration(B)

 ic = CanopySeparation(fm)

 m = FullCanopyEstimation(ic,a)

 fc, gc = CanopyGapExtraction(m, ic)

𝐶𝐷𝐼 = 1 −

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑜𝑖𝑛𝑡𝑠(𝑔𝑐)

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑜𝑖𝑛𝑡𝑠(𝑓𝑐)

output CDI

Figure 8-9: Canopy Density Assessment Illustrated.

8.4 Mesh Generation and Filtering

In the context of 3D graphics, a mesh is a collection of vertices connected by edges to form

triangles or other polygons. These polygons represent the surface of the object, and they are

responsible for defining its shape and appearance. Textures are typically 2D images that

contain color information. When a texture is applied to a mesh, the image is stretched or

warped to fit the surface of the mesh object. This process is used to create a more realistic

and visually appealing appearance by adding color and detail to the 3D mesh without

sacrificing a lot of memory or computational resources.

The idea behind the Vinymap reconstruction algorithm is to leverage the concept of

mesh texturing in 3D graphics to add valuable detail to an otherwise sparse and rough 3D

reconstruction of complex environments such as vineyards. To achieve this, the local map

point cloud that we produced in the previous steps must be converted to a dense 3D

geometry, a triangle mesh. This process is known as surface reconstruction. There is a

plethora of surface reconstruction methods in the literature [147], [148]. Favoring simplicity

over elaborate algorithms, two well tested and widely used methodologies have been

combined to implement surface reconstruction in this work: The alpha shapes algorithm and

the ball pivoting algorithm.

133/156

Figure 8-10: Reconstructed mesh objects from dense point clouds [149].

8.4.1 Alpha shapes

The alpha shapes algorithm [150], conceived as a generalization of the convex hull, can be

intuitively understood as follows: 3D space can be imagined as a large block of soft, creamy

material containing the point cloud points S embedded in it as small, non-deformable, hard

pieces. Using a spherical scoop, all portions of the soft material that can be reached without

encountering the hard pieces are meticulously carved away. This process may involve

excavating internal cavities, as some areas of the soft material may be inaccessible by

simply maneuvering the scoop from the outside. Eventually, a piecewise-linear, non-convex

object composed of caps, arcs, and points will be left. If all rounded surfaces are then

flattened to form triangles and line segments, a representation of the alpha shape of S is

produced. The alpha shapes surface reconstruction algorithm can easily produce watertight

meshes (meshes without holes or gaps). There is, however, a significant loss in detail when

reconstructing with this approach.

8.4.2 The Ball Pivoting Algorithm

The ball pivoting algorithm (BPA) [142] can be intuitively described by imagining a ball of

user-specified radius p that rolls on the 3D point cloud. If the ball touches three points

without containing any others, then a triangle is formed between these points. The algorithm

starts with an initial (seed) triangle, the ball rotates (pivots) around one of its edges,

maintaining contact with its endpoints, until it makes contact with a third point, thereby

forging a new triangle. This process iterates until all reachable edges have been explored

and then commences anew with a fresh seed triangle until all points have been

incorporated. The process may be repeated with a larger radius ball to accommodate

disparate sampling densities. The BPA has been successfully deployed on datasets

comprising millions of points, faithfully replicating actual scans of intricate 3D objects. Its

modest memory footprint, efficient execution speed, and high-quality outcomes stand

favorably against existing methodologies. The ball pivoting algorithm produces detailed

surfaces but is prone to errors related to holes and gaps in the mesh.

134/156

Figure 8-11: (a) a bunny shaped source point cloud. (b) mesh generated with alpha shapes (c) mesh
generated with BPA [151].

8.4.3 Chosen methodology and Filtering

To perform surface reconstruction on the complex and unstructured vineyard point cloud,

both aforementioned methods were combined. The local map point cloud produced by the

quality improvement and registration processes is initially converted into a mesh using BPA.

The radius of the pivoting ball chosen is twice as big as the average distance between points

in the point cloud. To refine the results, several more, larger radii are used.

The resulting BPA mesh is also filtered using a simple average filter. Thus, a given

vertex 𝑢 𝑖 is given by the average of the adjacent vertices 𝑁 :

 𝒖𝒊+ ∑ 𝒖𝒏𝒏∈𝑵

|𝑵|+𝟏
 ,

(87-
2
2
)

This filter is commonly used to denoise meshes. It can be applied to the mesh any given

number of times, until the mesh is perfectly smooth. It comes with a non-desirable side effect

though. The mesh shrinks after applying the filter iteratively. It was therefore used for a

single iteration on the BPA mesh.

Figure 8-12: (a) noisy mesh (b) mesh after 1 iteration of average filtering
(c) mesh after 5 iterations of average filtering [151].

135/156

The produced BPA mesh does not completely reconstruct the complex surface of the

vineyard vegetation. There are gaps where leaves should be and sparse structures in the

point cloud have not been included in the mesh. The alpha shapes algorithm is the perfect

tool for filling these gaps. It was applied to the full map point cloud and the resulting Alpha

mesh was also filtered with a simple average filter.

To construct the final mesh, the BPA mesh and the Alpha mesh are combined into a

single geometry, the final full-map mesh. A function is used to merge vertices of the final

mesh that are too close to one another. The vertex position, normal and color of the resulting

vertices the average of the vertices. This function helps to close triangle soups caused by

the merge, i.e. areas of the mesh where many triangles overlap. Finally, the final full-map

mesh is also filtered with an average filter. Filtering the BPA mesh, the alpha mesh and the

final mesh separately reduces shrinkage and yields a better result than filtering the final

mesh three times. Using other common filtering techniques like the Laplacian filtering or the

Taubin filtering was also tested but resulted in deformations in certain parts of the mesh.

8.5 RGB Image Projection and Texture Generation

8.5.1 Vertex Coloring and 2D Textures

The way open3d and most libraries add color to a mesh is by vertex coloring. Vertex coloring

refers to coloring a mesh triangle with the average color of the three vertices that define it.

That means that the texture resolution (color resolution) of the resulting mesh is limited to

the model resolution, meaning that if a mesh has few triangles per unit of volume, it will be

colored inaccurately. When using vertex colors, the more triangle-dense a mesh is, the more

accurate its coloring.

There have been improvements to the concept of vertex coloring over the years. Using

color gradients to seamlessly blend triangle colors and create a more realistic coloring is

common among graphics libraries. In addition, extensive research in [152] is focused on

extending the concept of vertex coloring where color values are kept on each vertex, by also

keeping color values on edges and faces. This approach allows higher texture resolution

than model resolution and at the same time it guarantees one-to-one correspondence

between the model surface and the color data while also reducing discontinuities.

Figure 8-13: (a) With the vertex colors method, only vertex colors (blue) are used to color triangle.
 (b) With mesh colors, color positions on vertices (blue), edges (green) and faces (red)

are all used to determine triangle color [152].

Nevertheless, applying 2D textures to meshes is by far the most used coloring strategy in

both literature and commercial graphics applications. Mapping a 2D image to a mesh

produces high quality coloring regardless of the model resolution. Even simple meshes with

only a handful of vertices can accurately resemble real-life complex structures. As far as

color accuracy is concerned, leveraging 2D image textures to color meshes produced from

136/156

depth cameras is ideal, as these meshes have a small vertex density. The challenge is

accurately mapping 2D image textures to the newly formed full-map mesh.

Figure 8-14: (a) Simple cube mesh colored with simple vertex colors (b) cube colored with vertex colors

and linear filtering (contouring) (c) cube colored using a 2D texture (image) of a stone wall.

8.5.2 Texture Application

The mathematical solution to the problem of 2D texture application is well formulated and it

comes down to computing the so-called UV coordinates of a mesh. In the realm of 3D

modeling and computer graphics, UV coordinates and UV maps play a crucial role in

seamlessly applying textures to intricate 3D objects and meshes. UV coordinates, also

known as texture coordinates, serve as a bridge between the 3D geometry of an object and

the 2D texture image that will define its surface appearance. These coordinates, represented

by a pair of values (U, V), correspond to specific points on the 3D object's surface, allowing

the texture image to be mapped onto the object's form accurately. UV maps, collections of

UV coordinates arranged in a grid-like structure, provide a detailed representation of the 3D

object's surface, enabling the texture image to be seamlessly applied across its complex

geometry. The creation of UV maps involves unwrapping the 3D object's surface, flattening it

onto a virtual plane, and assigning UV coordinates to each vertex. The resulting UV map

acts as a blueprint for mapping the texture image onto the object's surface, ensuring that the

texture adheres to the object's shape and details without distortion or seams. This process is

essential for creating visually appealing and realistic 3D models, as it allows for the

application of textures that accurately represent the object's surface properties and

characteristics.

137/156

Figure 8-15: Texturing a 3D model of the Earth using a typical sphere UV map.

The problem is how to generate an accurate UV map that matches the complex and intricate

vineyard full-map mesh to a 2D image captured with the ZED camera.

8.5.3 Projective Texture Mapping

As described in sections 5 and 6, the ZED camera simultaneously captures and saves point

clouds using its stereo vision capabilities and RGB images using its left lens. Thanks to

odometry data collected during the process of point cloud registration which is described in

7.2.2, the position of the ZED camera at the time of capturing each point cloud and image is

accurately known. Thus, the problem transforms into the task of projecting a 2D RGB image

to the part of the mesh that corresponds to the point cloud which was captured at the time of

capturing the 2D image. As described in 7.2.2, a bounding polygon is saved for each

registered point cloud. So, these polygons can be used to crop the full-map final mesh in

pieces and each of these pieces corresponds to a 2D image captured from ZED. Therefore,

there is a one-to-one correlation between 2D images captured and pieces of the final mesh.

Projecting these 2D images to the pieces of the final mesh and then re-assembling the

textured pieces to a final reconstructed mesh is what is solved next.

138/156

Figure 8-16: Projective Texture Mapping

Let there be a (X,Y,Z) coordinate system in the vineyard mesh’s scene where X is width, Y is

height and Z is depth. It is initially natural to assume that the UV coordinates of each vertex

of the mesh would be its (X,Y) coordinates. So (u,v) = (X,Y). That means that each vertex of

the mesh would be matched to the pixel of the corresponding 2D image which has the same

(X,Y) coordinates as the vertex. This makes intuitive sense as a vertex of the mesh that is

up and to the left of the scene would be assigned a texture pixel which sits up and to the left

of the corresponding 2D image. This solution could even be viable if the lenses of the ZED

camera captured orthographic images of the world. This is not true, however, and

perspective must be taken into consideration.

Due to perspective, objects that are further away from the camera appear smaller than

objects that are closer. Intuitively, a division by the depth Z would account for this.

Consequently, the uv coordinates would come to be:

 𝑢 =
𝑋

𝑍
 (7-3)

and

 𝑣 =
𝑌

𝑍
 (7-4)

Nevertheless, this projection model is inaccurate as well and defines an oversimplified

camera model with focal length 𝑓 = 1. To understand what focal length is and obtain the

camera model which will produce the desirable results, the pinhole camera model must be

defined.

The pinhole camera model provides a simplified representation of how light interacts

with a camera to form an image. In this model, the camera is represented as a simple box

with a tiny hole on one side and a flat image plane on the other. All rays of light are blocked

by the walls of the box except those passing through the tiny hole.

139/156

When an object is placed in front of the aperture, rays of light emanating from different

points of the object pass through the aperture and form an inverted image on the image

plane.

Figure 8-17: The pinhole camera model.

The fundamental parameters of the pinhole camera model are as follows:

• The center of projection is the point where the pinhole aperture is located.

• The focal length is the distance between the center of the projection and the image
plane.

• The optical axis is the line perpendicular to the image plane and passing through the
center of projection.

• The principal point is defined as the point of intersection between the optical axis and
the image plane.

The projection process with the pinhole camera model involves several key factors: As
explained, objects farther away from the camera appear smaller in the image. Secondly, due
to the light rays intersecting at a single point (the pinhole), the resulting image on the image
plane is inverted. Furthermore, the size of the aperture and its distance from the image
plane (focal length) determines the field of view of the camera. A larger aperture or a shorter
focal length result in a wider field of view, capturing more of the scene. The image size of the
distant object is proportional to the focal length.

We can further simplify the projection’s description by placing the image plane in front of

the pinhole. A point in space 𝑄 = (𝑋, 𝑌, 𝑍) is projected on the image plane by tracing the line

passing through the point 𝑄 and the center of projection. The resulting projection of 𝑄 is

𝑞 = (𝑥, 𝑦, 𝑓). In this abstraction, the image appears right side up.

The relation between a point 𝑄 = (𝑋, 𝑌, 𝑍) in the real space and its projection 𝑞 on the

image plane at the pixel location (𝑥𝑠, 𝑦𝑠) is represented by the following equations:

 𝑥𝑠 = 𝑓𝑥
𝑋

𝑍
+ 𝑐𝑥 (7-5)

𝑦𝑠 = 𝑓𝑦
𝑋

𝑍
+ 𝑐𝑦 (7-6)

140/156

Figure 8-18: A simplified pinhole camera model.

Thus, in the context of texture mapping:

 𝑢 = 𝑓𝑥
𝑋

𝑍
+ 𝑐𝑥 (7-7)

𝑣 = 𝑓𝑦
𝑋

𝑍
+ 𝑐𝑦 (7-8)

Where 𝑐𝑥 and 𝑐𝑦 are two parameters that handle possible misalignment of the principal point

with the center of the image and 𝑓𝑥 and 𝑓𝑦 are essentially separate focal lengths expressed

in pixels that are introduced to describe digital cameras with rectangular pixels.

It is customary to express projective transforms using the homogeneous coordinates,

hence the equations (7-5) and (7-6) can be written in the following matrix form:

𝑞⃗ = 𝑀𝑄⃗⃗, where

 𝒒⃗⃗⃗ = [
𝒖
𝒗

] , 𝑴 = [
𝒇𝒙 𝟎 𝒄𝒙

𝟎 𝒇𝒚 𝒄𝒚

𝟎 𝟎 𝟏

] and 𝑸⃗⃗⃗ = [
𝑿
𝒀
𝒁

] (7-9)

The 𝑀⃗⃗⃗ matrix is called the camera intrinsic matrix and it represents the internal

parameters of a camera and it allows to project 3D points in the world onto the 2D image

plane. The parameters of the camera intrinsic matrix are estimated by performing the

camera calibration procedure. The latter is typically performed using a set of known

geometric patterns (e.g., chessboard patterns) or objects with precisely measured

dimensions, allowing for the estimation of the camera parameters through mathematical

algorithms.

Using Eq. (7-7), the 2D images captured with the ZED camera can be accurately

projected as textures onto the 3D mesh. This is done by projecting the vertices of the mesh,

141/156

which are 3D points in the scene, onto the corresponding 2D image captured by the ZED

camera. The resulting 3D mesh is accurately textured and offers detailed visual information.

8.5.4 Triangle Visibility and Ray Casting

The issue that arises with projective texture mapping on 3D meshes is that the texture is

applied not only on the visible part of the mesh, but also on the triangles of the mesh that are

obscured, lying behind other parts of the mesh. This is not a problem when dealing with

meshes that are produced from individual point clouds formed at some point in time by the

ZED camera. The problem occurs when a texture is mapped projectively on the final mesh,

which is a product of point cloud fusion and mesh filtering. To address this, Open3D’s ray

casting module is utilized.

Ray casting, a fundamental technique in computer graphics, is a ray tracing-based

rendering technique which works by simulating the propagation of light rays through a virtual

scene. Its versatility has led to its adoption in a wide range of applications, ranging from

early video games and architectural design to medical imaging and scientific visualization.

At its core, ray casting involves tracing imaginary light rays from the virtual camera

(observer’s position) into the virtual scene. As each ray encounters an object in the scene, it

interacts with its surface, determining the distance from the observer. This process is

repeated as many times as desired, until the scene is covered. Ray tracing and ray casting

are computationally expensive rendering methods. In the last decade, however, hardware

acceleration for real-time ray tracing has become standard on new commercial graphics

cards, and graphics APIs have followed suit, allowing developers to use hybrid ray tracing

and rasterization-based rendering in real-time applications with a lesser hit to frame render

times [153].

Using Open3D’s ray casting module, rays are cast from the position of the ZED camera

towards the final mesh. Every mesh triangle that is hit by any ray is considered a visible

triangle while all other triangles are considered obscured. As 2D images are projected as

textures onto the final mesh, the triangles of the mesh that are obscured for a given pose of

the camera are temporarily removed and no texture is mapped onto them. These triangles

receive a texture once the camera proceeds to a position from where they are visible. In the

end, the whole mesh is correctly textured.

8.5.5 Photo-Realistic Vineyard Reconstruction

To generate a visually informative and spatially accurate representation of the vineyard,

Vinymap utilizes projective texture mapping. The algorithm receives a set of point clouds P

and a set of images I as its input. It is important that each point cloud pi ∈ P has been

captured simultaneously with a corresponding image Ii ∈ I as the robot moves. This is

achieved with ROS’s synchronization policy. The algorithm effectively drapes high-resolution

RGB images onto meshes which are reconstructed from the raw point cloud data. The

meshes are then registered and aligned, resulting in a photo-realistic 3D representation of

the vineyard. This process is presented in Algorithm 7-6 and illustrated in Figure 7-18.

ALGORITHM 7-6 PHOTO-REALISTIC VINEYARD RECONSTRUCTION

Require: Set of point clouds 𝑃 = {𝑝1, … , 𝑝𝑘}, v, b, n, e, t

Output: v

142/156

 B = PointCloudQualityEnhancement(P, v, b, n, e, t)

 for 𝑝𝑖 in B:

 𝑚𝑖 = SurfaceReconstruction(𝑝𝑖)

 𝑟𝑖 = ProjectiveTextureMapping(𝑚𝑖 , 𝐼𝑖, M)

 end for

 fm, tr = PointCloudRegistration(B)

 v = MeshFusion(tr)

output v

Figure 8-19: Vinymap Photo-Realistic Vineyard Reconstruction Pipeline.

Algorithm 7-6 calls the following functions:

PointCloudQualityEnhancement: Loads a batch of point clouds and enhances their

quality. Described in section 7-2.

SurfaceReconstruction: Creates a triangle mesh m that accurately represents a source

point cloud p. This is achieved by leveraging the ball pivoting algorithm (BPA) and fusing its

results with the alpha shapes reconstruction algorithm.
ProjectiveTextureMapping: This function receives a triangle mesh mi and an RGB image Ii
as input. For each triangle vertex Q ∈ mi, the function projects it to the 2D image plane of Ii

and matches it with a pixel q∈ mi with coordinates (u,v) ∈ Iiq⃗⃗ = MQ⃗⃗⃗, according to Eq. 7-9. The
M matrix is the intrinsics camera matrix of the camera that captured Ii. In our case, the ZED X
mini camrera. The (u,v) coordinates are used to apply texture on the so-far colorless mesh
mi. Provided that the RGB image Ii and the point cloud pi were captured simultaneously, the
resulting texture application produces a photo-realistic 3D mesh ri.
PointCloudRegistration: Merges individual point cloud scans captured from successive
viewpoints as the RP traverses the vineyard. Described in section 7-2.
MeshFusion: The output transformations tr from the PointCloudRegistration are used to
identically transform the reconstructed meshes r. This way, the ICP cloud registration is
leveraged to accurately register the meshes r. The aligned and registered meshes are then
fused and the function outputs the result, which is a photo-realistic vineyard mesh v.
It should be noted that the point cloud registration and mesh fusion steps can be applied
before the projective texture mapping step. In that case, the textures will be applied on the
fused mesh and not each triangle mesh separately. To avoid unwanted texture mapping on
obscured mesh triangles, raycasting must be utilized. This method usually yields a more

143/156

accurate result geometrically but is prone to artifacts caused by projective texture mapping
overlap.

8.6 Experimental Results

The Vinymap Quality Assessment and Vineyard Reconstruction framework, as previously

described, comprises three core algorithms: the Simple Objective Point Cloud Quality

Assessment Algorithm (SOPCQA), the Canopy Density Assessment Algorithm, and the

Photo-Realistic Vineyard Reconstruction Algorithm. These algorithms were assessed in

controlled laboratory environments utilizing a synthetic vineyard under both artificially lit and

naturally lit conditions.

The initial evaluation of the algorithms focused on a subjective comparison of their

outputs by human researchers. This approach can be supplemented in future work with the

implementation of objective, quantitative metrics to enhance the rigor of the evaluation

process.

The real-time viability of the Vinymap framework was evaluated objectively. Resource

requirements were measured, and execution times were precisely recorded to assess the

framework's suitability for real-time applications.

8.6.1 Simple Objective Point Cloud Quality Assessment Evaluation

The SOPCQA comprises three sub-algorithms: sparsity index calculation, hole detection,

and cluster outlier detection. To evaluate their effectiveness, controlled modifications were

made to a reference point cloud to introduce specific quality degradations.

Sparsity Index Calculation: This sub-algorithm assesses quality based on point cloud

density. To evaluate its effectiveness, controlled downsampling was applied to specific

regions of the reference point cloud, resulting in sparser areas. As expected, the SOPCQA

higher sparsity index (0.75) to the modified point cloud compared to the reference (0.52), as

the sparse area in the modified point cloud is much larger. Figure 7-20 illustrates this.

Hole Detection: This sub-algorithm assesses quality based on the presence of holes (areas

completely devoid of points). To evaluate its effectiveness, random holes were introduced

within the reference point cloud. As anticipated, the SOPCQA assigned a higher hole index

(0.62) to the point cloud with holes compared to the reference (0.48). This indicates lower

quality, because of the holes.

Cluster Outlier Detection: This sub-algorithm assesses quality by identifying and removing

point clusters too small to be considered valid data (potential noise). To evaluate its

effectiveness, small noise clusters were artificially introduced to the reference point cloud.

The SOPCQA, as expected, assigned a higher noise_clusters_quantity (24), as well as a

larger total_noise_clusters_area (0.92) to the noisy point cloud compared to the reference

point cloud which had a noise_clusters_quantity of 17 and a total_noise_clusters_area of

0.58. Table 7-1 documents the results.

Table 8-1: SOPCQA Evaluation

Point Cloud
Sparsity

Index
Hole
Index

Noise
Clusters
Quantity

Total
Noise

Clusters
Area

FQI

Reference 0.52 0.742 17 0.58 0.72
Modified 0.75 0.62 24 0.92 0.61

144/156

The final SOPCQA algorithm returns a noticeably lower final quality index (FQI) for the

intentionally modified point cloud.

Enhanced Point Cloud Evaluation: To assess performance with a more realistic challenge,

the SOPCQA's output was compared for a raw point cloud and a quality-enhanced version

processed by Vinymap's dedicated enhancement function. The SOPCQA correctly assigned

a lower quality index (0.59) to the raw point cloud compared to the enhanced one (0.75)

8.6.2 Canopy Density Assessment Evaluation

To test the performance of our canopy density assessment algorithm, we conducted

experiments in both the simulated and the synthetic vineyard setting. The simulation offered

a highly controlled environment with almost no canopy density variations. We tested the

algorithm on dense, perfect canopies, resulting in very high-density index scores, as

expected. The laboratory setting provided a more realistic yet controlled environment. Table

8-2 and Figure 8-20 display the results in detail. We tested two distinct scenarios:

• Moderately dense canopy (control): The algorithm returned a density index within

expected range, aligning with the visual assessment of the canopy.

• Sparse canopy: The presence of a gap resulted in a significantly lower density index,
validating the algorithm's ability to detect and quantify vegetation irregularities.

Laboratory tests were repeated under natural and artificial lighting. All tests yielded accurate

and intuitively useful results, reflecting the algorithm's simplicity and effectiveness in

assessing canopy density.

Table 8-2: Canopy Density Index Output

Experiment Type
Subjective

Canopy
Assessment

Output
CDI

Simulated Dense 0.742

Laboratory

Artificial
lighting

Control

0.512

Natural
lighting

0.569

Laboratory

Artificial
lighting

Sparse

0.450

Natural
lighting

0.461

145/156

Figure 8-20: Canopy Density Assessment Scenarios.

8.6.3 Reconstruction Quality

Our photo-realistic vineyard reconstruction algorithm is compared to the raw point cloud

data and the Stereolabs' ZED Spatial Mapping [72] algorithm in terms of visual fidelity and

information richness. Direct comparison with the raw point cloud data readily reveals the

difference. While the raw data offers a basic structural representation, our reconstructed

mesh delivers a significantly cleaned and visually enhanced depiction of the vineyard.

Compared to the high-quality mesh output of Stereolabs' ZED Spatial Mapping

algorithm at its highest settings, our reconstruction emerges as the superior solution. ZED

Spatial Mapping uses its vertex coloring scheme to produce a colored mesh. Our projective

texture mapping approach generates meshes featuring significantly greater visual detail,

enabling farmers to meticulously inspect individual leaves and grapes. This enhanced

texture facilitates more informed decision-making in the context of remote precision

agriculture. Figure 8-21 depicts a visual comparison.

146/156

Figure 8-21: 3D Reconstruction Comparison.

8.6.4 Real Time Viability

To evaluate the real-time capabilities of our algorithm, we captured data using ROSbags and

SVO files from ZED cameras, allowing for offline review, timing analysis, and benchmarking

against state-of-the-art methods. This assessment was conducted on the Nvidia Jetson Orin

platform. We compare the Vinymap framework with RTAB-map [12] and ZED Spatial

Mapping. Our algorithm achieves real-time performance, performing on-par with the ZED

Spatial Mapping algorithm at its high settings. While RTAB-Map exhibits faster execution, it

occasionally experiences delay due to loop closure calculations. In contrast, our approach

strategically triggers loop closure only upon AprilTag detection, eliminating these delays.

All three algorithms achieve real-time viability. Notably, the desired output quality of

each algorithm can influence the robot's operational speed. By carefully balancing robot

speed and desired reconstruction detail, farmers can select the optimal solution for their

specific needs. In the case of Vinymap, a 20% overlap between captured point clouds is

required for effective ICP registration. Assuming the robot moves in a straight line

perpendicular to the canopy, Eq. 7-10 yields the maximum speed at which the robot can

move to effectively map a vineyard row.

 𝒔 = 𝒇𝒑𝒔 ∗ 𝒇𝒐𝒗(𝟏 − 𝒐𝒗𝒆𝒓𝒍𝒂𝒑) ,

(87-
1
0
3

147/156

)

, where 𝑠 is the maximum speed, 𝑓𝑝𝑠 is the frequency of point cloud and RGB image

capturing, 𝑓𝑜𝑣 is the length of the visible canopy at each frame in meters and is dependent

on the distance between the robot and the canopy, and overlap is the required overlap in

volume percentage between the captured point clouds. With the capability of running with

𝑓𝑝𝑠 = 2, a 𝑓𝑜𝑣 = 0.9 𝑚, and a required overlap of 0.2, Vinymap is suitable for running in

real time on robots moving with speeds lower than 1.44 𝑚/𝑠. The RP which our framework

was tested on was moving at about 0.12 𝑚/𝑠, comfortably within the limit.

148/156

9 Conclusions and Future Work

In this thesis, we presented the development of a vineyard inspection and 3D reconstruction

framework for mobile robots. This framework encompasses both hardware and software. We

investigated mapping algorithms (RTAB-map, Anybotics Elevation Mapping, Zed Spatial

Mapping) and evaluated depth camera options including ZED and RealSense depth

cameras. Based on this evaluation, we determined that ZED depth cameras offered the

most suitable performance for a vineyard setting and opted to use the Zed Spatial Mapping

software. To aid in selecting the optimal hardware configuration, we developed a field-of-

view and LiDAR resolution analysis tool (FoVaLiRa) using Unity. This tool facilitated the

exploration of various configurations and hardware placements on the robot. Through this

analysis, we arrived at a configuration consisting of four depth cameras facing outwards in

different directions. To further enhance the system's capabilities, we concluded that

incorporating a LiDAR sensor, positioned at the front of the robot, would be beneficial.

We then proceeded to evaluate path planning algorithms and methodologies, ultimately

selecting a polytopic decomposition planner. This planner is effectively detecting free

corridors within the vineyard environment, making it a suitable choice for our application. To

implement autonomous navigation for the chosen planner, we leveraged a dual camera

visual odometry algorithm developed at the Control Systems Laboratory. This algorithm

relies on strategically placed April tags within the vineyard to trigger loop closure, a crucial

step to mitigate visual odometry errors. To improve the accuracy of visual odometry

localization, we incorporated a visual servoing step that aligns the robot’s camera with the

April Tag prior to triggering loop closure optimization.

Given the limitations of existing 3D reconstruction software, particularly the inability of Zed

spatial mapping to achieve the desired level of detail and crispness, and the need for

vineyard inspection functionality, we developed a novel framework named Vinymap.

Vinymap addresses these shortcomings by offering several key functionalities. Firstly,

Vinymap achieves real-time viability, enabling fast data collection within vineyard

environments. Secondly, Vinymap surpasses the quality of 3D reconstruction obtained

through Zed spatial mapping, generating more detailed models. Finally, Vinymap

incorporates an inspection solution that includes a canopy density assessment algorithm.

This algorithm provides valuable insights for vine-growers, as the canopy density affects the

amount of sunlight and air reaching the grapes. Importantly, Vinymap also incorporates a

method for objectively assessing the quality of the point cloud data it receives as input. This

allows the framework to adapt to varying sensor performance and lighting conditions.

To comprehensively evaluate the performance of the entire system, we conducted

experiments on a robotic platform within a synthetic vineyard environment constructed at the

CSL lab. This environment allowed for controlled testing of the dual camera visual odometry

algorithm, the path planning algorithm, the perception system, and the Vinymap framework,

under natural and synthetic lighting conditions.

Looking towards future research directions, the integration of deep learning techniques

holds promise for unlocking even more complex vineyard inspection tasks. Deep learning

has the potential to enable the framework to detect grapevine diseases or highlight areas of

potential concern that warrant further investigation by the vine-grower. Additionally,

advancements in autonomous inspection could lead to the development of systems capable

149/156

of covering entire vineyards without requiring pre-defined starting and ending points.

Furthermore, the creation of benchmark datasets specifically tailored to vineyard

reconstruction and inspection tasks would allow for more in-depth evaluation of the Vinymap

algorithm's capabilities. We are confident that this framework represents a significant step

towards a comprehensive solution for precision viticulture.

150/156

10 References
[1] G. Pappalardo, A. Scienza, G. Vindigni, and D. Mario, “Profitability of wine grape growing in the

EU member states,” J. Wine Res., vol. 24, Mar. 2013, doi: 10.1080/09571264.2012.724392.
[2] J. M. Bengochea-Guevara, J. Conesa-Muñoz, D. Andújar, and A. Ribeiro, “Merge Fuzzy Visual

Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-
Inspection Robot,” Sensors, vol. 16, no. 3, Art. no. 3, Mar. 2016, doi: 10.3390/s16030276.

[3] A. Costley and R. Christensen, “Landmark Aided GPS-Denied Navigation for Orchards and
Vineyards,” in 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Apr.
2020, pp. 987–995. doi: 10.1109/PLANS46316.2020.9110130.

[4] F. P. Terra, G. R. A. da Rosa, J. J. P. Prado, and P. L. J. Drews-, “A Low-Cost Prototype to

Automate Agricultural Sprayers⁎,” IFAC-Pap., vol. 53, no. 2, pp. 15835–15840, Jan. 2020, doi:
10.1016/j.ifacol.2020.12.365.

[5] L. Shen et al., “Real-time tracking and counting of grape clusters in the field based on channel
pruning with YOLOv5s,” Comput. Electron. Agric., vol. 206, p. 107662, Mar. 2023, doi:
10.1016/j.compag.2023.107662.

[6] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using Deep Learning for Image-Based Plant
Disease Detection,” Front. Plant Sci., vol. 7, 2016, Accessed: Feb. 14, 2024. [Online]. Available:
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2016.01419

[7] S. Kelly et al., “Target-Aware Implicit Mapping for Agricultural Crop Inspection,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), Feb. 2023, pp. 9608–9614. doi:
10.1109/ICRA48891.2023.10160487.

[8] L. Srinivas, A. Bharathy, S. Ramakuri, A. Sethy, and R. Kumar, “An optimized machine learning
framework for crop disease detection,” Multimed. Tools Appl., vol. 83, pp. 1–20, May 2023, doi:
10.1007/s11042-023-15446-2.

[9] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian Splatting for Real-Time
Radiance Field Rendering,” 2023, doi: 10.48550/ARXIV.2308.04079.

[10] T. Thoai, R. J. Ranola, and L. Camacho, “The Importance of Weather Forecasts and
Meteorological Information in Adaptation to Climate Change in Agricultural Production: Some
Preliminary Findings,” Philipp. Agric. Sci., vol. 101, pp. 377–392, Dec. 2018.

[11] S. E. Spayd, J. M. Tarara, D. L. Mee, and J. C. Ferguson, “Separation of Sunlight and
Temperature Effects on the Composition of Vitis vinifera cv. Merlot Berries,” Am. J. Enol. Vitic.,
vol. 53, no. 3, pp. 171–182, Jan. 2002, doi: 10.5344/ajev.2002.53.3.171.

[12] “RTAB-Map,” RTAB-Map. Accessed: Jul. 29, 2021. [Online]. Available:
http://introlab.github.io/rtabmap/

[13] “ANYbotics/elevation_mapping.” ANYbotics, Jan. 27, 2024. Accessed: Jan. 28, 2024. [Online].
Available: https://github.com/ANYbotics/elevation_mapping

[14] K. M. Jatavallabhula, S. Saryazdi, G. Iyer, and L. Paull, “gradSLAM: Automagically differentiable
SLAM,” ArXiv191010672 Cs, Nov. 2020, Accessed: Dec. 19, 2020. [Online]. Available:
http://arxiv.org/abs/1910.10672

[15] Stereolabs, “Spatial Mapping in Computer vision using ZED,” Medium. Accessed: Jan. 30, 2024.
[Online]. Available: https://stereolabs.medium.com/spatial-mapping-in-computer-vision-using-zed-
69bce43c2e7a

[16] “ZED 2 - AI Stereo Camera.” Accessed: Jul. 10, 2022. [Online]. Available:
https://www.stereolabs.com/zed-2/

[17] “csl_legged / dc-vslam-med24 — Bitbucket.” Accessed: Feb. 29, 2024. [Online]. Available:
https://bitbucket.org/csl_legged/dc-vslam-med24/src/master/

[18] V. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers, “Real-Time Trajectory Replanning
for MAVs using Uniform B-splines and a 3D Circular Buffer,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 215–222. doi:
10.1109/IROS.2017.8202160.

[19] K. S. Narkhede, A. M. Kulkarni, D. A. Thanki, and I. Poulakakis, “A Sequential MPC Approach to
Reactive Planning for Bipedal Robots.” arXiv, Apr. 30, 2022. doi: 10.48550/arXiv.2205.00156.

[20] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and M. Hutter, “Graph-based
Subterranean Exploration Path Planning using Aerial and Legged Robots,” J. Field Robot., Oct.
2020, doi: 10.1002/rob.21993.

[21] K. A. Mat Said, A. Jambek, and N. Sulaiman, “A study of image processing using morphological
opening and closing processes,” Int. J. Control Theory Appl., vol. 9, pp. 15–21, Jan. 2016.

151/156

[22] I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stachniss, “KISS-ICP: In
Defense of Point-to-Point ICP -- Simple, Accurate, and Robust Registration If Done the Right
Way,” IEEE Robot. Autom. Lett., vol. 8, no. 2, pp. 1029–1036, Feb. 2023, doi:
10.1109/LRA.2023.3236571.

[23] S. Asaeedi, F. Didehvar, and A. Mohades, “Alpha Convex Hull, a Generalization of Convex Hull,”
Sep. 2013.

[24] “Gazebo.” Accessed: Feb. 15, 2024. [Online]. Available: https://gazebosim.org/home
[25] M. A. Abd Mutalib and N. Z. Azlan, “Prototype development of mecanum wheels mobile robot: A

review,” Appl. Res. Smart Technol. ARSTech, vol. 1, no. 2, pp. 71–82, Nov. 2020, doi:
10.23917/arstech.v1i2.39.

[26] S. Hajjaj and K. Sahari, “Review of agriculture robotics: Practicality and feasibility,” Dec. 2016,
pp. 194–198. doi: 10.1109/IRIS.2016.8066090.

[27] T. Utstumo, T. Berge, and J. Gravdahl, “Non-linear Model Predictive Control for constrained robot
navigation in row crops,” Mar. 2015. doi: 10.1109/ICIT.2015.7125124.

[28] “VineRobot.” Accessed: Dec. 23, 2023. [Online]. Available: https://www.vinerobot.eu/
[29] A. You et al., “An autonomous robot for pruning modern, planar fruit trees.” arXiv, Jun. 14, 2022.

Accessed: Dec. 23, 2023. [Online]. Available: http://arxiv.org/abs/2206.07201
[30] L. Santos, F. Neves Dos Santos, E. Pires, A. Valente, P. Costa, and S. Magalhães, “Path

Planning for ground robots in agriculture: a short review,” Apr. 2020, pp. 61–66. doi:
10.1109/ICARSC49921.2020.9096177.

[31] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robot. Auton.
Syst., vol. 61, no. 12, pp. 1258–1276, Dec. 2013, doi: 10.1016/j.robot.2013.09.004.

[32] F. Neves Dos Santos, H. M. P. Sobreira, D. F. B. Campos, R. Morais, A. P. G. M. Moreira, and O.
M. S. Contente, “Towards a Reliable Monitoring Robot for Mountain Vineyards,” in 2015 IEEE
International Conference on Autonomous Robot Systems and Competitions, Vila Real: IEEE, Apr.
2015, pp. 37–43. doi: 10.1109/ICARSC.2015.21.

[33] L. Santos, F. N. Santos, S. Magalhaes, P. Costa, and R. Reis, “Path Planning approach with the
extraction of Topological Maps from Occupancy Grid Maps in steep slope vineyards,” 2019 IEEE
Int. Conf. Auton. Robot Syst. Compet. ICARSC, pp. 1–7, Apr. 2019, doi:
10.1109/ICARSC.2019.8733630.

[34] C. Xiong, D. Chen, D. Lu, Z. Zeng, and L. Lian, “Path planning of multiple autonomous marine
vehicles for adaptive sampling using Voronoi-based ant colony optimization,” Robot. Auton. Syst.,
vol. 115, pp. 90–103, May 2019, doi: 10.1016/j.robot.2019.02.002.

[35] M. Everett, Y. F. Chen, and J. P. How, “Motion Planning Among Dynamic, Decision-Making
Agents with Deep Reinforcement Learning,” 2018, doi: 10.48550/ARXIV.1805.01956.

[36] M. Elhoseny, A. Tharwat, and A. E. Hassanien, “Bezier Curve Based Path Planning in a Dynamic
Field using Modified Genetic Algorithm,” J. Comput. Sci., vol. 25, pp. 339–350, Mar. 2018, doi:
10.1016/j.jocs.2017.08.004.

[37] J. A. Placed et al., “A Survey on Active Simultaneous Localization and Mapping: State of the Art
and New Frontiers.” arXiv, Feb. 13, 2023. Accessed: Dec. 26, 2023. [Online]. Available:
http://arxiv.org/abs/2207.00254

[38] L. Morreale, A. Romanoni, M. Matteucci, and P. D. Milano, “Dense 3D Visual Mapping via
Semantic Simplification,” in 2019 International Conference on Robotics and Automation (ICRA),
Montreal, QC, Canada: IEEE, May 2019, pp. 6891–6897. doi: 10.1109/ICRA.2019.8793256.

[39] Q. Kuang, J. Wu, J. Pan, and B. Zhou, “Real-Time UAV Path Planning for Autonomous Urban
Scene Reconstruction,” in 2020 IEEE International Conference on Robotics and Automation
(ICRA), Paris, France: IEEE, May 2020, pp. 1156–1162. doi: 10.1109/ICRA40945.2020.9196558.

[40] A. Bacharis, H. J. Nelson, and N. Papanikolopoulos, “View Planning Using Discrete Optimization
for 3D Reconstruction of Row Crops,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Kyoto, Japan: IEEE, Oct. 2022, pp. 9195–9201. doi:
10.1109/IROS47612.2022.9981209.

[41] C.-Y. Chai, Y.-P. Wu, and S.-L. Tsao, “Deep Depth Fusion for Black, Transparent, Reflective and
Texture-Less Objects,” in 2020 IEEE International Conference on Robotics and Automation
(ICRA), Paris, France: IEEE, May 2020, pp. 6766–6772. doi: 10.1109/ICRA40945.2020.9196894.

[42] Y. Liu, Q. Yang, Y. Xu, and L. Yang, “Point Cloud Quality Assessment: Dataset Construction and
Learning-based No-Reference Metric.” arXiv, Jul. 22, 2022. Accessed: Dec. 29, 2023. [Online].
Available: http://arxiv.org/abs/2012.11895

[43] Z. Zhang, W. Sun, X. Min, T. Wang, W. Lu, and G. Zhai, “No-Reference Quality Assessment for
3D Colored Point Cloud and Mesh Models,” IEEE Trans. Circuits Syst. Video Technol., vol. 32,
no. 11, pp. 7618–7631, Nov. 2022, doi: 10.1109/TCSVT.2022.3186894.

152/156

[44] Z. Zhang et al., “MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality
Assessment.” arXiv, Apr. 24, 2023. Accessed: Dec. 29, 2023. [Online]. Available:
http://arxiv.org/abs/2209.00244

[45] H. Hekmatian, J. Jin, and S. Al-Stouhi, “Conf-Net: Toward High-Confidence Dense 3D Point-
Cloud with Error-Map Prediction.” arXiv, Sep. 19, 2019. Accessed: Dec. 29, 2023. [Online].
Available: http://arxiv.org/abs/1907.10148

[46] X. Yuan, H. Chen, and B. Liu, “Point cloud clustering and outlier detection based on spatial
neighbor connected region labeling,” Meas. Control, vol. 54, no. 5–6, pp. 835–844, May 2021,
doi: 10.1177/0020294020919869.

[47] A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “Joint Geometry and Color Projection-based
Point Cloud Quality Metric”.

[48] A. Bacharis, K. D. Polyzos, H. J. Nelson, G. B. Giannakis, and N. Papanikolopoulos, “3D
Reconstruction in Noisy Agricultural Environments: A Bayesian Optimization Perspective for View
Planning.” arXiv, Sep. 29, 2023. Accessed: Dec. 29, 2023. [Online]. Available:
http://arxiv.org/abs/2310.00145

[49] G. Clarkson, S. Luo, and R. Fuentes, “Thermal 3D modelling,” Jul. 2017. doi:
10.22260/ISARC2017/0068.

[50] G. Meynet, J. Digne, and G. Lavoué, “PC-MSDM: A quality metric for 3D point clouds,” in 11th
International Conference on Quality of Multimedia Experience (QoMEX 2019), Berlin, Germany,
Mar. 2019. doi: 10.1109/QoMEX.2019.8743313.

[51] N. Ziadi et al., “Determination of a Critical Nitrogen Dilution Curve for Spring Wheat,” Agron. J.,
vol. 102, no. 1, pp. 241–250, Jan. 2010, doi: 10.2134/agronj2009.0266.

[52] N. Vigneau, M. Ecarnot, G. Rabatel, and P. Roumet, “Potential of field hyperspectral imaging as a
non destructive method to assess leaf nitrogen content in Wheat,” Field Crops Res., vol. 122, no.
1, pp. 25–31, Apr. 2011, doi: 10.1016/j.fcr.2011.02.003.

[53] A. Chlingaryan, S. Sukkarieh, and B. Whelan, “Machine learning approaches for crop yield
prediction and nitrogen status estimation in precision agriculture: A review,” Comput. Electron.
Agric., vol. 151, pp. 61–69, Aug. 2018, doi: 10.1016/j.compag.2018.05.012.

[54] M. Weyrich, Y. Wang, and M. Scharf, “Quality assessment of row crop plants by using a machine
vision system,” presented at the IECON Proceedings (Industrial Electronics Conference), Nov.
2013, pp. 2466–2471. doi: 10.1109/IECON.2013.6699518.

[55] H. Ham, J. Wesley, and H. Hendra, “Computer Vision Based 3D Reconstruction : A Review,” Int.
J. Electr. Comput. Eng. IJECE, vol. 9, no. 4, p. 2394, Aug. 2019, doi: 10.11591/ijece.v9i4.pp2394-
2402.

[56] J. L. Schonberger and J.-M. Frahm, “Structure-from-Motion Revisited,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp.
4104–4113. doi: 10.1109/CVPR.2016.445.

[57] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, “Pixelwise View Selection for
Unstructured Multi-View Stereo,” in Computer Vision – ECCV 2016, vol. 9907, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds., in Lecture Notes in Computer Science, vol. 9907. , Cham:
Springer International Publishing, 2016, pp. 501–518. doi: 10.1007/978-3-319-46487-9_31.

[58] V. Yugay, Y. Li, T. Gevers, and M. R. Oswald, “Gaussian-SLAM: Photo-realistic Dense SLAM
with Gaussian Splatting,” 2023, doi: 10.48550/ARXIV.2312.10070.

[59] N. Keetha et al., “SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM,”
2023, doi: 10.48550/ARXIV.2312.02126.

[60] I. Kim and S. Singh, “Bayesian Fusion inspired 3D reconstruction via LiDAR-Stereo Camera
Pair,” Sep. 2023.

[61] “Toward real-time and accurate dense 3D mapping of crop fields for combine harvesters using a
stereo camera - Haiwen Chen, Jin Chen, Zhuohuai Guan, Yaoming Li, Kai Cheng, Zhihong Cui,
Xinxing Zhang, 2023.” Accessed: Dec. 30, 2023. [Online]. Available:
https://journals.sagepub.com/doi/full/10.1177/00368504231215974

[62] Y. Li, M. Iida, T. Suyama, M. Suguri, and R. Masuda, “Implementation of deep-learning algorithm
for obstacle detection and collision avoidance for robotic harvester,” Comput. Electron. Agric., vol.
174, p. 105499, Jul. 2020, doi: 10.1016/j.compag.2020.105499.

[63] P. K. Panigrahi and S. K. Bisoy, “Localization strategies for autonomous mobile robots: A review,”
J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, Part B, pp. 6019–6039, Sep. 2022, doi:
10.1016/j.jksuci.2021.02.015.

[64] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic Terrain Mapping for Mobile Robots With
Uncertain Localization,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3019–3026, Oct. 2018, doi:
10.1109/LRA.2018.2849506.

153/156

[65] “https://www.mathworks.com/products/navigation.html.” Accessed: Feb. 29, 2024. [Online].
Available: https://www.mathworks.com/products/navigation.html

[66] Irani, Rousso, and Peleg, “Recovery of ego-motion using image stabilization,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition CVPR-94, Seattle, WA, USA:
IEEE Comput. Soc. Press, 1994, pp. 454–460. doi: 10.1109/CVPR.1994.323866.

[67] D. Filliat and J.-A. Meyer, “Map-based navigation in mobile robots - I. A review of localisation
strategies”.

[68] “Perception – Legged Robots Team.” Accessed: Jan. 26, 2024. [Online]. Available:
https://nereus.mech.ntua.gr/legged/perception/

[69] “AprilTag.” Accessed: Jan. 26, 2024. [Online]. Available:
https://april.eecs.umich.edu/software/apriltag

[70] M. Labbé and F. Michaud, “Memory management for real-time appearance-based loop closure
detection,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep.
2011, pp. 1271–1276. doi: 10.1109/IROS.2011.6094602.

[71] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: an efficient
probabilistic 3D mapping framework based on octrees,” Auton. Robots, vol. 34, no. 3, pp. 189–
206, Apr. 2013, doi: 10.1007/s10514-012-9321-0.

[72] “Spatial Mapping Overview - Stereolabs.” Accessed: Jan. 30, 2024. [Online]. Available:
https://www.stereolabs.com/docs/spatial-mapping

[73] D. Scaramuzza and Z. Zhang, “Visual-Inertial Odometry of Aerial Robots,” 2019, doi:
10.48550/ARXIV.1906.03289.

[74] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated extended Kalman filter
based visual-inertial odometry using direct photometric feedback,” Int. J. Robot. Res., vol. 36, no.
10, pp. 1053–1072, Sep. 2017, doi: 10.1177/0278364917728574.

[75] M. S. Junayed, A. Sadeghzadeh, M. B. Islam, L.-K. Wong, and T. Aydin, “HiMODE: A Hybrid
Monocular Omnidirectional Depth Estimation Model.” arXiv, Apr. 11, 2022. doi:
10.48550/arXiv.2204.05007.

[76] J. R. Sánchez-Ibáñez, C. J. Pérez-del-Pulgar, and A. García-Cerezo, “Path Planning for
Autonomous Mobile Robots: A Review,” Sensors, vol. 21, no. 23, Art. no. 23, Jan. 2021, doi:
10.3390/s21237898.

[77] D. Ferguson and A. Stentz, “Field D*: An Interpolation-Based Path Planner and Replanner,” in
Robotics Research, vol. 28, S. Thrun, R. Brooks, and H. Durrant-Whyte, Eds., in Springer Tracts
in Advanced Robotics, vol. 28. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 239–
253. doi: 10.1007/978-3-540-48113-3_22.

[78] “Accelerate Motion Planning with Deep-Learning-Based Sampler - MATLAB & Simulink.”
Accessed: Jan. 31, 2024. [Online]. Available:
https://www.mathworks.com/help/nav/ug/accelerate-motion-planning-with-deep-learning-based-
sampler.html

[79] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for mobile robot
navigation,” in Proceedings. 1991 IEEE International Conference on Robotics and Automation,
Sacramento, CA, USA: IEEE Comput. Soc. Press, 1991, pp. 1398–1404. doi:
10.1109/ROBOT.1991.131810.

[80] R. Menon, T. Zaenker, N. Dengler, and M. Bennewitz, “NBV-SC: Next Best View Planning based
on Shape Completion for Fruit Mapping and Reconstruction.” arXiv, Aug. 30, 2023. doi:
10.48550/arXiv.2209.15376.

[81] E. Dunn and J.-M. Frahm, “Next best view planning for active model improvement,” in Procedings
of the British Machine Vision Conference 2009, London: British Machine Vision Association,
2009, p. 53.1-53.11. doi: 10.5244/C.23.53.

[82] “UAV Toolbox Documentation.” Accessed: Feb. 02, 2024. [Online]. Available:
https://www.mathworks.com/help/uav/index.html?s_tid=CRUX_lftnav

[83] A. Viseras, D. Shutin, and L. Merino, “Online information gathering using sampling-based
planners and GPs: An information theoretic approach,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 123–130. doi:
10.1109/IROS.2017.8202147.

[84] “Frontier-Based Exploration: Real-World Experiments.” Accessed: Feb. 29, 2024. [Online].
Available: https://robotfrontier.com/frontier/real.html

[85] C. de Boor, “Splines as linear combinations of B-splines,” Approx. Theory II, Jan. 1976.
[86] “File:Parametic Cubic Spline.svg - Wikipedia.” Accessed: Feb. 29, 2024. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Parametic_Cubic_Spline.svg

154/156

[87] M. G. COX, “The Numerical Evaluation of B-Splines*,” IMA J. Appl. Math., vol. 10, no. 2, pp. 134–
149, Oct. 1972, doi: 10.1093/imamat/10.2.134.

[88] R. Deits and R. Tedrake, “Computing Large Convex Regions of Obstacle-Free Space Through
Semidefinite Programming,” in Algorithmic Foundations of Robotics XI, vol. 107, H. L. Akin, N. M.
Amato, V. Isler, and A. F. Van Der Stappen, Eds., in Springer Tracts in Advanced Robotics, vol.
107. , Cham: Springer International Publishing, 2015, pp. 109–124. doi: 10.1007/978-3-319-
16595-0_7.

[89] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an engineering
perspective,” Int. J. Adv. Manuf. Technol., vol. 117, no. 5, pp. 1327–1349, Nov. 2021, doi:
10.1007/s00170-021-07682-3.

[90] M. Shan, J. S. Berrio, S. Worrall, and E. Nebot, “Probabilistic Egocentric Motion Correction of
Lidar Point Cloud and Projection to Camera Images for Moving Platforms.” arXiv, Mar. 09, 2020.
doi: 10.48550/arXiv.2003.03954.

[91] I. K. Alam Bhuiyan, LiDAR Sensor for Autonomous Vehicle. 2017. doi:
10.13140/RG.2.2.16982.34887/1.

[92] J. Lemmetti, N. Sorri, I. Kallioniemi, P. Melanen, and P. Uusimaa, “Long-range all-solid-state
flash LiDAR sensor for autonomous driving,” Mar. 2021, p. 22. doi: 10.1117/12.2578769.

[93] H. Yoo et al., “MEMS-based lidar for autonomous driving,” E Elektrotechnik Informationstechnik,
Jul. 2018, doi: 10.1007/s00502-018-0635-2.

[94] D. Wang, C. Watkins, and H. Xie, “MEMS Mirrors for LiDAR: A Review,” Micromachines, vol. 11,
no. 5, Art. no. 5, May 2020, doi: 10.3390/mi11050456.

[95] “Configuring Stereo Depth — DepthAI documentation | Luxonis.” Accessed: Feb. 21, 2024.
[Online]. Available: https://docs.luxonis.com/projects/api/en/latest/tutorials/configuring-stereo-
depth/

[96] “Object Perception — CACAO@HOME Robot documentation.” Accessed: Feb. 29, 2024.
[Online]. Available: https://gesture-detection-with-
ros2.readthedocs.io/en/latest/perception/docs/object_perception.html

[97] Ľ. Kovanič, B. Topitzer, P. Peťovský, P. Blišťan, M. B. Gergeľová, and M. Blišťanová, “Review of
Photogrammetric and Lidar Applications of UAV,” Appl. Sci., vol. 13, no. 11, Art. no. 11, Jan.
2023, doi: 10.3390/app13116732.

[98] “What are CUDA Cores?,” Trusted Reviews. Accessed: Feb. 23, 2024. [Online]. Available:
https://www.trustedreviews.com/explainer/what-are-cuda-cores-4226433

[99] “Understanding Tensor Cores,” Paperspace Blog. Accessed: Feb. 23, 2024. [Online]. Available:
https://blog.paperspace.com/understanding-tensor-cores/

[100] “What Is a Teraflop? What to Know About a GPU’s Performance,” Digital Trends. Accessed:
Feb. 23, 2024. [Online]. Available: https://www.digitaltrends.com/computing/what-is-a-teraflop/

[101] “What is TOPS of Tx2 board? - Jetson & Embedded Systems / Jetson TX2,” NVIDIA
Developer Forums. Accessed: Feb. 23, 2024. [Online]. Available:
https://forums.developer.nvidia.com/t/what-is-tops-of-tx2-board/117375

[102] “Jetson AGX Orin Developer Kit User Guide,” NVIDIA Developer. Accessed: Feb. 15, 2024.
[Online]. Available: https://developer.nvidia.com/embedded/learn/jetson-agx-orin-devkit-user-
guide/index.html

[103] “Dev Board,” Coral. Accessed: Feb. 23, 2024. [Online]. Available:
https://coral.ai/products/dev-board/

[104] “NVIDIA Jetson Xavier Series,” NVIDIA. Accessed: Feb. 23, 2024. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/

[105] “NVIDIA GeForce RTX 3070 Family,” NVIDIA. Accessed: Feb. 23, 2024. [Online]. Available:
https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3070-3070ti/

[106] “Minisforum EU,” Minisforum EU. Accessed: Feb. 23, 2024. [Online]. Available:
https://store.minisforum.de/

[107] “Search - Intel.com,” Intel. Accessed: Feb. 23, 2024. [Online]. Available:
https://www.intel.com/content/www/us/en/search.html

[108] “MAGNUS EN173070C (Barebone),” ZOTAC. Accessed: Feb. 23, 2024. [Online]. Available:
https://www.zotac.com/us/product/mini_pcs/magnus-en173070c-barebone

[109] U. Technologies, “Maximize Multiplatform Game Development | Unity.” Accessed: Feb. 26,
2024. [Online]. Available: https://unity.com/solutions/multiplatform

[110] “Unity Technologies,” Wikipedia. Apr. 17, 2022. Accessed: May 02, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Unity_Technologies&oldid=1083128423

[111] U. Technologies, “Robotics Simulation | Unity.” Accessed: Feb. 26, 2024. [Online]. Available:
https://unity.com/solutions/automotive-transportation-manufacturing/robotics

155/156

[112] How To Animate In Unity 3D, (2019). Accessed: Aug. 25, 2022. [Online Video]. Available:
https://www.youtube.com/watch?v=sgHicuJAu3g

[113] D. M. M. Sathik, “Ray Casting for 3D Rendering – A Review”.
[114] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray Tracing on Programmable Graphics

Hardware”.
[115] E. Vasiou, K. Shkurko, I. Mallett, E. Brunvand, and C. Yuksel, “A detailed study of ray tracing

performance: render time and energy cost,” Vis. Comput., vol. 34, Jun. 2018, doi:
10.1007/s00371-018-1532-8.

[116] “Rotation matrix,” Wikipedia. Apr. 22, 2022. Accessed: Jun. 17, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Rotation_matrix&oldid=1084060907

[117] The Robotics Optimized Velarray M1600 Lidar Sensor from Velodyne Lidar, (2022).
Accessed: Jul. 19, 2022. [Online Video]. Available:
https://www.youtube.com/watch?v=jo4Iza4b0LI

[118] stereolabs, “zed2-camera-datasheet.” [Online]. Available:
https://www.stereolabs.com/assets/datasheets/zed2-camera-datasheet.pdf

[119] J. Maynard, “Lidar and Power Consumption for EVs,” Velodyne Lidar. Accessed: Feb. 27,
2024. [Online]. Available: https://velodynelidar.com/blog/lidar-and-power-consumption-electric-
vehicles/

[120] M. Brandão, R. Figueiredo, K. Takagi, A. Bernardino, K. Hashimoto, and A. Takanishi,
“Placing and scheduling many depth sensors for wide coverage and efficient mapping in versatile
legged robots,” Int. J. Robot. Res., vol. 39, no. 4, pp. 431–460, Mar. 2020, doi:
10.1177/0278364919891776.

[121] “Depth Camera D435i,” Intel® RealSenseTM Depth and Tracking Cameras. Accessed: Sep.
28, 2021. [Online]. Available: https://www.intelrealsense.com/depth-camera-d435i/

[122] “Amp consumption camera d435,” Intel RealSense Help Center. Accessed: Jul. 19, 2022.
[Online]. Available: http://support.intelrealsense.com/hc/en-us/community/posts/360051256734-
Amp-consumption-camera-d435

[123] “About Spot — Spot 3.1.2.1 documentation.” Accessed: Jul. 14, 2022. [Online]. Available:
https://dev.bostondynamics.com/docs/concepts/about_spot

[124] “Ultra Puck Surround View Lidar Sensor,” Velodyne Lidar. Accessed: Jul. 16, 2022. [Online].
Available: https://velodynelidar.com/products/ultra-puck/

[125] lidar velodyne, “Ultra-Puck_Datasheet.” [Online]. Available: https://velodynelidar.com/wp-
content/uploads/2019/12/63-9378_Rev-F_Ultra-Puck_Datasheet_Web.pdf

[126] “ANYmal C – Autonomous Legged Robot,” ANYbotics. Accessed: Jul. 16, 2022. [Online].
Available: https://www.anybotics.com/anymal-legged-robot/

[127] “Xiaomi CyberDog 2.” Accessed: Feb. 27, 2024. [Online]. Available:
https://www.giztop.com/xiaomi-cyberdog-2.html

[128] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-
robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE Cat. No.04CH37566), Sendai, Japan: IEEE, 2004, pp. 2149–2154. doi:
10.1109/IROS.2004.1389727.

[129] “rviz - ROS Wiki.” Accessed: Jan. 21, 2024. [Online]. Available: http://wiki.ros.org/rviz
[130] “Foxglove - Visualizing and debugging your robotics data - Foxglove.” Accessed: Jan. 21,

2024. [Online]. Available: https://foxglove.dev/
[131] “tracking_pid - ROS Wiki.” Accessed: Jan. 21, 2024. [Online]. Available:

http://wiki.ros.org/tracking_pid
[132] “apriltag_ros - ROS Wiki.” Accessed: Jan. 21, 2024. [Online]. Available:

http://wiki.ros.org/apriltag_ros
[133] “Impulse X2E Motion Capture – PhaseSpace Motion Capture.” Accessed: Mar. 02, 2024.

[Online]. Available: https://www.phasespace.com/x2e-motion-capture/
[134] “DJI Air 2S - All In One - DJI.” Accessed: Jan. 24, 2024. [Online]. Available:

https://www.dji.com/gr/air-2s
[135] “Pololu - RoboClaw 2x30A Motor Controller (V5E).” Accessed: Jan. 24, 2024. [Online].

Available: https://www.pololu.com/product/3286
[136] “Buy a Raspberry Pi 2 Model B – Raspberry Pi.” Accessed: Jan. 24, 2024. [Online]. Available:

https://www.raspberrypi.com/products/raspberry-pi-2-model-b/
[137] “Wild Scorpion 6S 22.2v 4200mAh 60C. Hobby Hangar.” Accessed: Jan. 24, 2024. [Online].

Available: https://www.hobbyhangar.co.nz/wild-scorpion-6s-222v-4200mah-60c
[138] “ZED X Mini Stereo Camera | Stereolabs.” Accessed: Jan. 24, 2024. [Online]. Available:

https://store.stereolabs.com/en-eu/products/zed-x-mini-stereo-camera?variant=42720409780380

156/156

[139] “XP-1 MICRO-START Jump-Starter – Antigravity Batteries.” Accessed: Jan. 24, 2024.
[Online]. Available: https://antigravitybatteries.com/products/micro-starts/xp-1/

[140] H. Su, Q. Liu, Z. Duanmu, W. Liu, and Z. Wang, “Perceptual Quality Assessment of Colored
3D Point Clouds.” arXiv, Nov. 09, 2021. Accessed: Dec. 31, 2023. [Online]. Available:
http://arxiv.org/abs/2111.05474

[141] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975, doi: 10.1145/361002.361007.

[142] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The ball-pivoting
algorithm for surface reconstruction,” IEEE Trans. Vis. Comput. Graph., vol. 5, no. 4, pp. 349–
359, Oct. 1999, doi: 10.1109/2945.817351.

[143] X. Huang, G. Mei, J. Zhang, and R. Abbas, “A comprehensive survey on point cloud
registration.” arXiv, Mar. 05, 2021. Accessed: Jan. 06, 2024. [Online]. Available:
http://arxiv.org/abs/2103.02690

[144] Q. Zhao, X. Gao, J. Li, and L. Luo, “Optimization Algorithm for Point Cloud Quality
Enhancement Based on Statistical Filtering,” J. Sens., vol. 2021, pp. 1–10, Dec. 2021, doi:
10.1155/2021/7325600.

[145] P. Li, R. Wang, Y. Wang, and W. Tao, “Evaluation of the ICP Algorithm in 3D Point Cloud
Registration,” IEEE Access, vol. 8, pp. 68030–68048, 2020, doi:
10.1109/ACCESS.2020.2986470.

[146] “Figure 1: Point-to-plane error between two surfaces.,” ResearchGate. Accessed: Feb. 29,
2024. [Online]. Available: https://www.researchgate.net/figure/Point-to-plane-error-between-two-
surfaces_fig1_228571031

[147] P.-A. Langlois, A. Boulch, and R. Marlet, “Surface Reconstruction from 3D Line Segments,” in
2019 International Conference on 3D Vision (3DV), Sep. 2019, pp. 553–563. doi:
10.1109/3DV.2019.00067.

[148] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeuS: Learning Neural
Implicit Surfaces by Volume Rendering for Multi-view Reconstruction.” arXiv, Feb. 01, 2023.
Accessed: Jan. 07, 2024. [Online]. Available: http://arxiv.org/abs/2106.10689

[149] “POINT CLOUD.” Accessed: Feb. 29, 2024. [Online]. Available:
https://elmoatazbill.users.greyc.fr/point_cloud/index.html

[150] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, “On the shape of a set of points in the plane,”
IEEE Trans. Inf. Theory, vol. 29, no. 4, pp. 551–559, Jul. 1983, doi: 10.1109/TIT.1983.1056714.

[151] “Surface Reconstruction — Open3D latest (664eff5) documentation.” Accessed: Feb. 29,
2024. [Online]. Available:
https://www.open3d.org/docs/latest/tutorial/Advanced/surface_reconstruction.html

[152] C. Yuksel, J. Keyser, and D. H. House, “Mesh colors,” ACM Trans. Graph., vol. 29, no. 2, pp.
1–11, Mar. 2010, doi: 10.1145/1731047.1731053.

[153] Y. Deng, Y. Ni, Z. Li, S. Mu, and W. Zhang, “Toward Real-Time Ray Tracing: A Survey on
Hardware Acceleration and Microarchitecture Techniques,” ACM Comput. Surv., vol. 50, pp. 1–
41, Aug. 2017, doi: 10.1145/3104067.

