*®

NEIG

|2
< N,

L

e
M5

o
)
v
Bl

T50
“T\Eb B
@ pf

A

. .
! \i_
NPOMHDBEVS -
qjvl'lﬂ\l.lﬁ.v'VCW:)}

E®NIKO METZOBIO IIOAYTEXNEIO

> XOAH HAEKTPOAOI'ON MHXANIKQN
KAI MHXANIKON YTIOAOTIZTON

TOMEAZX 2HMATQN, EAEFXOY KAl POMMOTIKHE

£y

‘i’

Development of a Framework for 3D Reconstruction
and Inspection of Vineyards

AITIAQMATIKH EPT'AXIA

lwavvng X. Zappag

Emprénov : Kovotavtivog T agpéotag

Avominpotg Kadnynmce, E.M.IL

AbMva, Mdaptiog 2024

E®NIKO METZOBIO IIOAYTEXNEIO

> XOAH HAEKTPOAOI'ON MHXANIKQN
KAI MHXANIKON YTIOAOTIZTON

TOMEAZX XHMATQN, EAErX0OY KAl POMMOTIKHE

$

‘AQI\E bz
R
g -"\,
[t
NPOMHBEVS .
ASh=a(E>
nVP$opos

Development of a Framework for 3D Reconstruction
and Inspection of Vineyards

AITIAQMATIKH EPT'AXIA

lwavvng X. Zappag

Emprénov : Kovotavtivog TCapéotag

Avaminpotg Kadnynme, E.M.IL.

EykpiOnke amd v tpuein egetaotikn emrponn v 27" Maptiov 2024.

KwvoTtavTivog T{agpéaTag Eudyyehog Matraddtrourog MéTpog Mapaykoég
AvatrAnpwTig Kabnyntnig, KaBényntig, E.M.T. KaBnyntig, E.M.T.
E.M.IM.

AOnva, Mdaptiog 2024

lwavvng X. Zdppag
ArmmAwpatouxog HAekTpoAdyog Mnxavikdg kal Mnxavikog YtroAoyiotwy E.M.T1.

Copyright © lwéavvng Zdappag, 2024
Me em@uAa&n TTavtog dikaiwparog. All rights reserved.

Amayopevetal n aviypaor], amodnKevon Kot Slavoun TG Tapovcas epyaciog, €5 oAOKANpov N
TUAUOTOC OVTNG, Yo EUTOpkd okomd. Emtpémeton avotdnmon, amobfikevorn Kot dtavour yo
oKOTO U1 KEPOOGKOTIKO, EKTALEVTIKNG 1) EPEVVNTIKNG GUONG, VIO TNV TPolmdOeon va avaeépeTat
N YN TPoEAELONG KOl Vo dtatnpeital To mapov uivope. Epotipata mov agopovv) xpnom e
£PYOOING Y10 KEPOOGKOTIKO GKOTO TPENEL VO, AmeLBVVOVTOL TPOG TOV GLYYPAPEQ.

Ol amOYELS KOl TO CUUTEPAGLOT TOV TEPEXOVTUL GE QVTO TO £YYPAPO EKPPALOVY TOV GLYYPOPEN

Kot 0gv TTPEMEL va, epunvevdel 0Tl avtimpocwrevovy Tig enionueg Béoeig tov EOvikod Metoofiov
ITohvteyveiov.

21NV OIKOYEVEId LIoU

5/156

6/156

MepiAnyn

H tpiodidoTatn ammeikdvion xwpou cival Eva 1Ioxupd epyalcio TTou @épvel ON PICIKEG aANayEG
OoTOV TOMEQ TNG Yewpyiag. XpnOIUOTTOIEITAI YIa TNV OTTONOKPUOHEVN TTapakoAouBnon Tng
QvATITUENG TWV KAAAIEPYEIWY, TNV TOUTOTTOINON TTAPAGCITWY KAl A0BevVEIWY, aKOUa Kal TNV
QUTOMATOTTOINCN TWV £pyaciwyv atov aypd. QoTtdéoo, ammoTeAei TTPOKANCON N dlacPAAIoN TNG
QTTOPAITNTNG OTITIKAG TTOIOTNTAG TNG ATTEIKOVIONG WOTE va PTTOPEl 0 aypdTng va dIaKpPIVEl
€UKOAQO AETTTOUEPEIEG OTA QUTA.

H trapouca SITTAWMPATIKN €pyacia ETTIKEVTPWVETAI OTO OXedIAOUO Kal TNV UAoTToinon
€vOG aT1Tod0TIKOU CUCTAMATOG avTiANWNG YIa TETPATTO0A POUTTOT, IKAVOU VO AVOKATAOKEUAOEI
ME akpiBela éva autTéNl TTapdyoviag oagég OTITIKO TTePIEXOMEVO yia Tov Xpnotn. To
QVTIKEIYEVO TNG Trapoucag epyaciag eivar Ox1 Wovo n €peuva Kal n avarmTuén Tou
QTTOPAITNTOU AOYIOUIKOU YIQ TNV €TTITEUEN TOU TTaPATTAVW OTOXOU, GAAG Kal n avaokoTTnon
Tou O100¢01uou UNIKOU yia auTév Tov OKOTTO Kol TEAIK& n ekTéEAeon evog TTEIPAUATOS O€
TIPOCOMOIWON AAAG Kal hE TTPAYHATIKO POUTTOT OE TTPAYUATIKEG CUVOAKEG.

ApxIKG eEeTGlovTal UTTAPXOVTA TTAKETO AOYIOMIKOU yia TPIOOIAOTATN AVAKOATAOKEUN Kal
XWPIKA XapTtoypdenon. H ouykpion mTapdyel TTOAUTIMEG TTANPOPOPIEG OXETIKA PE TA OPEAN
Kal TO MEIOVEKTAUATO TTPWTOTTOPIAKWY HEBOdWY aAVOKATAOKEUAG Ywpou. Ta TTakéTa
dokiuagovtal oto ROS noetic kai epapudletal emtaxuvon ulikou CUDA, o6tav auto egival
eQIKTO. ETAEyeTal TEAIKG TO gpyaleio xwpIkAG xapToypdaenong ZED ue uttohoyiopd Bdaboug
ME veupwvikd SiKTud, yIa va CUPTTANPWOEI TOV TTPOCOPUOOHEVO aAyépiBuo TpIcdIdoTATNG
QVOKATOOKEUNG TTOU OXeBIACETAI OTO TEAOG AUTAG TNG £PYaATiag.

2T0 TPITO KEQAAQIO TNG TTAPOUCAG OITTAWMATIKAG €pyaciag HEAETWVTAl aAyopiBuol
TTAoNyNong Kai oxediaopou TpoxIas. O aAyépiBuog TTAORynoNg TOU POMPTIOT TTOU €V TEAE
€QAPUOOTNKE BACICETAI O TTPONYOUUEVEG HEAETEG VIO OTITIKI) ODOUETPIO e DUO KAUEPES TTOU
mpaydaTtoTromenkav amré Tnv Opdda Tetpdmmodwyv Poutrdt tou Epyactnpiou Zuotnudtwy
EAéyxou Tou EMI, o€ évav TTPpWTOTUTTO aAYOPIBUO ATTOQUYAG EPTTOdIWY TTOU ATTOCUVBETE
TOV XWpPO o€ TTOAUywva, KaBwg kal o€ évav PID eAeykTA TTapakoAouBnong TpoxIag.

21N ouvéxela eEetddetal N €mMAOY TWV UANIKOTEXVIKWYV OTOIXEiwWv TTou Ba
XpnoipotroinBouv yia Tnv UAOTToiNON Tou cuaTAPATOS avtiAnwng. Mia ouykpion aicOnTipwv
KAl HovAdwyv TTEEEPYATiag, KaBWg Kal P eEepelivnon Twv TPOTTIWV UE TOUG OTTOIOUG auTd
MTTOpOUV va ouvOuaoToUv Kal va ToTroBeTnBolv o€ €va TETPATTOO0 POPTIOT, 0drynoe O€
KOAQ TEKUNPIWMPEVEG OTTOPACEIC OXETIKA WE TNV TeAIK Sopn Tou cuoTthAuatog. lMNa Tnv
ETMTEUEN TWV OUYKPIOEWV avaTTTUXOnKe €va epyaleio TPIOdIAOTATNG OTTEIKOVIONG TTEdioU
B¢aong kal avdAuong lidar (FoVaLiRa) otnv mAar@éppa avarrugns Unity.

To TeAeuTaio KEQPAAAIO ETTIKEVIPWVETAI OTNV QVATITUEN Tou aAyopiBuou Vinymap yia
QVTIKEIMEVIKA agloAdynon tToidtnTag point cloud, TpiodidoTatn ammeikovion AUTTEAILOV Kal
aglohéynon TukvotnTag QUAAWPaTog. To Vinymap eivar pia Kaivotopog diepyacia Kai
OOKIUAOTNKE OE KIVATO POPTIOT TTOU QEPEl TO oUCTNPAO avTiAnwng TTou dnuioupyAbnke oTa
TAdicla aut¢ TnG epyaciag. Eival ypaupévo oe python3, pe xprion dUO yvwWOTWV Kal
KaBiepwuévwy BIBAIOBNKWYV avoixTou Kwdika, Twv Open3D kai OpenCV.

Aégeig KAeidid - Tlewpyikd Poptmdér, Poptrotik AvtiAngn, TpiodidoTartn

Avakataokeurp Xwpou, MAoRynon kai ‘EAeyxog Kivoupevwv Poptrdr, Zxediaouog
Tpoxidg

7/156

Abstract

3D spatial mapping is a powerful tool that is revolutionizing the field of agriculture. By
creating detailed digital representations of fields, farmers can gain insights into their land
that were previously unattainable. This technology can be used to remotely monitor crop
growth, identify pests and diseases, optimize irrigation and fertilizer applications, and even
automate field operations. However, it is a challenge to ensure the necessary optical quality
so that the farmer can easily distinguish details in the plants.

The present thesis focuses on the design and implementation of an effective perception
system capable of accurately reconstructing a vineyard while producing clear and
comprehensive visual content for the user. The subject of the present work is not only the
research and development of the necessary software to achieve the above goal, but also a
review of the available hardware for that purpose and ultimately the execution of an
experiment in simulation, as well as with a real robot in realistic conditions.

First, the available software on 3D reconstruction and spatial mapping is reviewed.
Comparing four different packages produces valuable insight regarding the benefits and
drawbacks of various state-of-the-art reconstruction methods. The packages are tested on
ROS noetic and CUDA hardware acceleration is enabled to speed up the process. The ZED
spatial mapping tool with neural depth capabilities is chosen to complement the custom 3D
reconstruction algorithm that is ultimately implemented in this work.

Navigation and path planning algorithms are studied in the third chapter of the present
thesis. The final design of the high-level planner which is utilized in both the simulation and
the real-life experiments is based on prior studies on dual camera visual odometry
conducted by the Legged Robots Team of the Control Systems Lab in NTUA, as well as on
a novel obstacle avoidance algorithm which leverages polytopic decomposition and a stable
trajectory tracking PID controller.

Deciding which hardware components to utilize for the implementation of the perception
system is next addressed in this work. A comparison of sensors and processing units, as
well as an exploration of the ways in which they can be combined and placed on a
guadruped robot, led to well-argued decisions about the final structure of the perception
system. To justify and visualize these comparisons, a three-dimensional field of view
visualization and lidar resolution analysis tool (FoValLiRa) was developed in the Unity
Development platform.

The final chapter focuses on the development of the Vinymap Objective Quality
Assessment, Canopy Inspection and 3D Reconstruction Algorithm. Vinymap is a novel
approach to reconstructing a real vineyard while maintaining the visual features of the
leaves, the grapes, and the trunk intact. It also assesses the vineyard’s canopy density and
provides valuable quantitative indexes to the farmers. Vinymap was tested on a mobile
robotic platform with the perception system developed in this work. It is written in python3
and utilizes open3D and openCV, two well-known and well-established open-source
libraries.

Keywords — Agricultural Robots, Robotic Perception, 3D Reconstruction, Robotic
Navigation and Control, Path Planning

8/156

Acknowledgements

First and foremost, | would like to express my gratitude to God, for staying with me through
the thick and thin.

I would like to express my deep gratitude to Professor Evangelos Papadopoulos for opening
the door to the world of robotics. His guidance, expertise, and insightful advice were
instrumental in shaping this thesis. | am also incredibly grateful to PhD candidate Athanasios
Mastrogeorgiou for sharing his knowledge right from the outset and being a mentor
throughout this journey. My sincere thanks to PhD candidates Konstantinos Koutsoukis and
Konstantinos Machairas for their encouragement and support. Their ability to foster a
welcoming lab environment made this experience even more enriching. | would like to
acknowledge the significant contributions of Christos Kokkas. His valuable work played a
crucial role in this research. | would like to thank Dimitrios Zarras, my brother and colleague,
for being a constant source of guidance and support as | navigated unfamiliar territory. | am
deeply grateful to Nikoletta Papageorgiou. Her selfless assistance and insightful remarks
improved the quality of my work, while her encouragement made it easier.

Finally, | would like to thank my family. Their encouragement, love and support will always
be unique and irreplaceable.

loannis Zarras
March 2024

9/156

Table of Contents

FTEPIANIN oo e ea 7

ADSTIACT ...t 8

ACKNOWIEAGEMENTS ... e e eee 9

Table of CONENTS ... e 10

NIOTA EIKOVWIV ... e 14

LISt Of FIQUIES e 15

LisSt Of TADIES...coeeee e 19

List of ADDreviations ... 20

1 EkTeTapévn EAANVIKA MEPIANWN ..., 22

It I T {0 A 001 o PP 22
1.2 '‘Epeuva kai AgloAoynon [MakéTwv AoyiopikoUu Xaptoypdenong Kal

AVOKATAOKEUNG XUWPOU ..vvuiieiiiiieeeeiitineeeeesaiseesesssneessessnsesssssnneeesssnnaeseesnnns 24

O T =1 o] 0 1 = o PP 24

1.2.2 Robot-Centric Elevation Mappingeeuuueeummmueunieeiiieniiiiennnnenninnnnenneeens 24

2 B 1 - To £ F= o P 25

1.2.4 ZED Spatial MAPPINGeueeueumeneenunnneninennnnennnenenenennneeeeesenneeeeneeeeeeeeeeeeee 25

1.2.5 EmAoyr Tou KaTtGAANAOU TMAKETOU AOYIOHIKOUceivvieeeeiiieeeeaie e eeeaiiaeeeeens 26

RSN I VVo1 9 \VgToj o W' Co (I9:25¢:Xo] o (o7 ¥ Lo TaAN o (oY o Yo U o [26

I 0 T I .Y Y g o o P 26

RS 17202 €1 Lo (o 1 U To TaAN (o 1o o To T ¥ o TP 27

1.4 2xedia0on ZUCTAPOATOG AVTIANWNG wevvniieeeeeeeeeeiiies e e e e e e e et e e e e e e e e eeenann s 28
1.4.1 Field of View Visualization and Lidar Resolution Analysis Tool

(FOVALIRA) ... it e e e e e e 28

IR 3228V o)V ToTo =4 1 £t 101 Yo (o1 To Ul 29

1.5 Avarmrtuén tou Vinymap yia BeAtiwpévn Avakataokeur kal Emlswpnon.... 29

1.5.1 A&ioAéynon kai BeAtiwon Moiétntag Népoug Znueiwv (point cloud).............. 30

1.5.2 ExTignon MNukvotnTag QUAAWPATOG AUTTEAIWV .evvveieiiiiieiiiiieeeeeneennenennnnnnnnnnes 31

1.5.3 ®wT0-peaNIOTIK-) AVOKOTOOKEUR AUTTEAWVQ ... vvvieiiieiiiieeiiieeeeeeeennnnnnnnnnnnnnnnnes 31

I I P ToTo {8 o't 1 g J7AN o § (o o PSSO 32

VAN 1 (o) £o7 o 1§ o § [o U 33

1.7.1 A&ioAéynon kai BeAtiwon Moidtntag Point Cloudevvevvveiviiiiiviiiiiiiinns 33

1.7.2 A&loAéynon AAyopiBuou EkTipnong MukvotnTag UAAWPOTOG ..veeevevveeeennnnnss 33

1.7.3 A&ioAdynon AAyopiBuou ®wTo-peaAioTIKAG AVOKATAOKEUNG APTTEAWVA....... 34

1.8 XupTtrepdopata Kal MEANOVTIKA EPYACIQcovvvviiiiiiiiieei e, 35

2 INTrOAUCTION .ot eeaa e e eees 37

10/156

2 1Y (01 11772 1[0 o [T 37

2.2 LILErature REVIEW......uiiiie ettt ettt e e e e e ee s b e e e e e 37
2.2.1 AQIiCUUIrE RODOLS.....coviiiiiii i e e e e 37
2.2.2 Path Planning.........ooouuiiiiiii st e e 39
2.2.3 SLAM and 3D reCONSIIUCTION.......uuuuuuuuiiniiiiiiiiiiiiiiisanesiebbebbababneebebbenneaeeeeeenenes 40

3 Reconstruction SOftWareooveviiiiiiiiiec e 43

Bl S A e 43
10 700 000 I o o= 11 72 11 o] o S 43
TN 2 V= o] o o [P 44
.13 SLAM Lttt a e e e e et e e e e e e raaae s 45
I S L | SRR 46

3.2 SOTA PACKAQESuuuiiiieeiieeeeie ettt e e e 49
0 R = 7Y = B - o I SRR OPOPPP 49
3.2.2 Robot-Centric Elevation Mappingcccovuuiiiieiiieeeeeeeeiiee et 50
3.2.3 GradSlam ..o 53
3.2.4 Zed Spatial Mappingcooeeeeieeeeeeeeeeee e 54

3.3 Comparison and DECISIONS.........ciiieiieiiiiieiiie e 56
G0 70 R O] 1o o 1= T =Yoo 1R 56
.32 DEBCISIONS ..o 57

4 Path Planningoooooiiii e 59

4.1 Taxonomy Of PIANNEIS........uuuiiiiiiiiiiiiiiiiiiiiiii e 59
4.1.1 Global and Local path planners..........ccoovveeiiiiiiieeeee e 59
4.1.2 Obstacle RepresSentation..............uiiiieeeiiiieiiiieis e eee et e e e e e e 60
4.1.3 Exploratory Path PIanners............ccooiiiiiiiiieici e 62

S T @ B AN - 1o €= T [RSP 64
i R LYo o o T 64
4.2.2 Sequential MPC Reactive Planning using Safe Corridors...............cceeeeen. 68
4.2.3 Graph-based exploration planner (GB-planner)..........cccccceeeiieiiiiiiiiiiieeneeee, 72

4.3 Comparison and DECISIONS.........uuuuuuuuiiiiiiiiiiiiiiiiiiiiiieb e 75

5 VISION SYSTEM ..uuiiiiiii e e 76

SR RS Y= 1S T R 76
R N I I o P T ST =T o o] S 76
5.1.2 DEPLN CABMEIAS ...ttt 78
5.1.3 PNOTOGIAMMEIIYttt 79
5.1.4 Comparison and DECISIONS.........cuuuuiiiie e et e e e e e e 79

S e (0Tt T 1] [T AL | N 80
5.2.1 Performance MELHCSuuuii it e e e e e e 81
IV Y, (ol (o 100 o1 £] |[= 81
5.2.3 Single-Board Computers (SBCS)ot 82
5.2.4 MINIEPCS oottt e et e e e e e e et a e e e e e e et aaaaae e e e 84
A ST - T] (0] o 1SR 86

11/156

5.2.6 Comparison and DECISIONuuuuuuuumiiiiiiiiiiiiiii e 86

5.3 Field of View Visualization and Lidar Resolution Analysis Tool
(0= LT - | RPN 87
5.3.1 THE SCENE ... e 88
5.3.2 CONFIQUIALION ...t 90
5.3.3 The FoVaLiRa development ProCESScuuviiieiiieeeiieiiiiiee e 92
5.3.4 FOrming @ 3D MESh......uuuiiii e 96
5.3.5 Detecting Visible Targets......... ... 98

5.4 The Lealaps Perception SYSteM........coccuvviiiiiiieeiiieeeieis e 100
5.4.1 Perception System ReqUINEMENTSccceeeeeiiiiiiiiiie e eeeeeeetieee e e e evaaans 100
5.4.2 Discussing possible sensor configurationscccoevvvviiiiiii e, 100
5.4.3 Deciding on a near optimal sensor configuration for Laelaps...................... 103

6 Simulation EXperiments.........cccooiiiiiiiiiiiiii e 105

6.1 Simulated WOIIcooi e 105

6.2 Simulated RObOtIC Platformccoooviiiiiii e 107

6.3 Simulation Software arChiteCtureuuvvuueiiiiiiiiiiiiii, 109
6.3.1 TracCKiNg PID ... e e e 109
6.3.2 April Tags and LOOP CIOSUIEcuuuiiiiii et 110
6.3.3 Simulation Experiment Pipeling ... 111

7 Laboratory EXPerimentsccoooeiieiiiii i 114

7.1 The synthetiC VINEYArd SETUPuuuuuuurrriiiiiiiiiiiiiiiiiiiiiieiieibeebeeeeeeeeeeeaees 114

7.2 The RoDOtIC Platform........cooeeiiiiie e e 116

7.3 Laboratory Experiment Software Architecturecccceeveieeiiiiiiiiiien e, 117

8 The Vinymap Quality Assessment and Reconstruction

AlGOTTENM Lo e 120

8.1 CUSIOM SOPCQA ...t 120
8.1.1 Sparsity Index CalCUlAtioNuuuuuuiiiiiiiiiiiii e 120
8.1.2 HOIE DEEECTION. ... 122
8.1.3 Cluster Outlier DEtECLIONuuuuuuiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeenennanneeenene 125
8.1.4 Final SOPCQA Algorithm ..o 126

8.2 Point Cloud Quality Improvement and Registrationccccccevvvveeeennnn. 127
8.2.1 Quality IMPrOVEIMENTuuiiiiiiiiiiiiiiiiitiii b eeeeeeeee 127
8.2.2 REQISTIALION ... 128

8.3 Canopy Density ASSESSMENT.........uuuuuuuiirirriiiiiiieiiiieenieeeeeeeeeeeeee e 131

8.4 Mesh Generation and Filteringuueuuuiiiiiiiiiiiiiiiiiiiiiiieees 132
8.4.1 AIPNA SNAPES ... 133
8.4.2 The Ball Pivoting AlQOrtNMuuiiiiiiiiiiiiiiii e 133
8.4.3 Chosen methodology and Filtering ..o 134

8.5 RGB Image Projection and Texture Generationccccceeevevevvvvvnnnneeeenn. 135
8.5.1 Vertex Coloring and 2D TEXIUIESuuuuuuummmmmmiiiiiiiiiiiiiiiiieiiniininannnnnnnnenn 135
8.5.2 Texture APPlICALION........uueeii e e e e e 136

12/156

8.5.3 Projective TexXture MapPinguuuuuumummmmuunninniiiniiinniinnnnnnnennenennnnnnneeneeeees 137

8.5.4 Triangle Visibility and Ray Castinguuummmmmimmmiiiiiiiiiiiiiiiiiiiiiiineinenens 141

8.5.5 Photo-Realistic Vineyard Reconstruction.................cccevvevvviiiiiiieeeeccciiiinnn. 141

8.6 EXperimental RESUILS...........uuuiiiiiiiiiiiiiiiiiii e 143
8.6.1 Simple Objective Paoint Cloud Quality Assessment Evaluation 143

8.6.2 Canopy Density Assessment Evaluationcccccccuvmmiiiiiiiiiiiiiiiiiiiiinnns 144

8.6.3 Reconstruction QUAIILYcceeeiiiiiiiiiiii e 145

8.6.4 Real Time Viability..........uuiiiiiiieiice e 146

9 Conclusions and Future WorkK........cccccoiiiiiiiiiiiii 148
LOREIEIENCES ... e e e e 150

13/156

Aiota EikOvwyv

Eikéva 1-1: (a) Mia TTAat@éppa TToU iTrTaTal, o€ TTepIBaAAov TTpocopoiwong Gazebo. (b)
H ameikévion NG TAATQOPUAG Kal TOu yUpw XWPOU HE Tn Xprion Tou

Robot-Centric Elevation Mapping.ccovvivuiiiiiiiieee it 25
Eikéva 1-2: (a) H meipapaTtiki diatagn yia Tnv eUpeon Tng 10aVIKNG ywviag Béaong Kai

(o quroTon o (o] g Tailo 1 £ T (o TN PSSR 27
Eikéva 1-3: To Ttetpdmmodo poutrdT Lealaps I, ye tnv TeAIKn didtagn aiobnthpwv

OVTIANWING OTTUIG « ettt eeee ettt e s e e e e e e eeeaete e e e e e aeeeeeeeanaaeeeeaeeneenennaaaeenaeeesnnes 29
Eikéva 1-4: EGpeon TrepIoXwv XapNAAG TTUKVOTNTAG OTO point cloud..............cceeeeeieeeenennnn, 30
Eikéva 1-5: AAYOPIOUOG eUPEONG KEVWDV TTEPIOXWY OTO point cloud.coevvviiiinieerenieene 30
Eikéva 1-6: EvToToudg cuoTadwV TTOU ATTOTEAOUV BOPURO.cevvviiiiei e 31
Eikéva 1-7: ANYOPIOUOG EKTINONG TTUKVOTNTAG QUAAWPATOG OUTTEAIWV. oovvveeeiiiiiee e eeeeeeeees 31
Eikéva 1-8: AAyOpIOUOC @uTO-peAAIOTIKIG QVAKATAGKEUNG AUTTEAWVO. .coevvviiiiiiee e eeeeeeenes 32
Eikéva 1-9: H poutroTik) TTAAT@OpUa Kal To cUCTNPA avTiAnyng TTou avaTrTuxOkav oTo

EpyaoTpIO AUTORGTOU EAEYXOU. .uveuiiiieiiiiieiiiiiee et 32
Eikéva 1-10: MeipapaTtikn) diataén ouvBeTikoU autmeAwva oto Epyactrpio Autoudrtou

R Yo 11 SR 33
Eikéva 1-11: AgioAdynon TTukvOTNTAG QUAAWMPATOG. Me KOKKIVO XpwHa: Keva OTO

QUAAWHA TWV APTTEAWIVUIV. ertieeieiieeeeeitseee et e e s eats e e s eatn s e s eeenreeeeseaaeeeenenns 34
Eikéva 1-12: Z0yKpIon TTOIOTATOG AVOKATOOKEUNG. ..evvvvvrrennseeeereeereennnasseeeeeeenssennnaaaaeaaeeennnes 35

14/156

List of Figures

Figure 2-1: Robots designed for various agricultural Tasks.ccevvvviiiiiiiiiiiiiiiiiiiiiiiieee, 38
Figure 2-2: Path planning Strat@gi€S.ccuuiiuiiiiie e e e e e et eaeeeaaaee 40

Figure 2-3: (a) Subjective quality assessment of a point cloud of a plant [40]. Left: parts
of plant have not been reconstructed. Right: view planning improves

=ToT0] 01511 4011 o] o PO PP PPPPPPPPPPPP 42
Figure 3-1: Robotic Platform Localization HUustration.ccevvvvviiiiiiiiiiiiiiiiiiiiiiiiieieeeeee 43
Figure 3-2: ANYmal robot mapping terrain (staircase) using a stereo camera [64].............. 44
Figure 3-3: 2D and 3D Occupancy Grid Maps built using 2D and 3D Lidar SLAM utilizing
MATLAB's Navigation TOoIDOX [65].cccviiiiiiiiiiiiieeeeeeece e 45
Figure 3-4: Loop Closure HUSTratioN.covviviiiiiiiiiiiiiiiiiiiieeeeeeeeeeee ettt 47
Figure 3-5: (a) One camera's lenses are obstructed resulting in very low number of
deteCted fEAUIES.uiiiiiiiiiiiiiii b nannsnnnnnes 48
Figure 3-6: April Tags used for research purposes in April Laboratory, University of
MICHIQaN [B9]. .. . i 48
Figure 3-7: A 3D map of an office building constructed with RTAB-Map iOS application
2 PSPPI 50
Figure 3-8: (a) A floating platform in Gazebo. (b) The elevation map constructed with
O =11 =T o] o] 1o T PP PP PPPPPPPPPPP 52

Figure 3-9: A rectangular obstacle was moved from right to left. The visibility is checked
with ray tracing and the previous map (red) is accordingly updated
resulting in an updated map (blue) [13]. ...coovviiiiiiiiiiii 52

Figure 3-10: Gradslam provides differentiable building blocks for simultaneous
localization and mapping (SLAM) systems. The four main blocks it offers
are Differentiable Visual Odometry, Differentiable Registration using least-

squares, Differentiable Mapping and Ray differentials [14]...........cccccccvvvnnnne 53
Figure 3-11: Small office scene reconstructed using Gradslam [14]...........cccccviiiiiiiiiniiininnn, 54
Figure 3-12: Mesh Generation (a) and Point Cloud Generation (b) with ZED Spatial

=T o] o1 o TR USSR 54
Figure 3-13: Successful Monocular Depth EStimation [75].ccovvvvviiiiiiiiiiiiiiiiiiiiiiiiiiieeee 56
Figure 4-1: Combination of Global and Local Planner lllustrated.cccccciiiinieeinninnns 59

Figure 4-2: Grid-based free space (white squares) and obstacle (dark squares)
representation and viable path from starting position (green circle) to
target position (red CirCle).o e 60

Figure 4-3: Rapidly-exploring Random Tree* (RRT*), a common sampling-based path
planner that builds a tree of potential paths by randomly sampling points
in the environment and checking for colliSions [78]ccvvvviiiiiiiiiiiiiinnnnn. 61

Figure 4-4: Potential Field Planner Visualization. Environment with 10 obstacles [79]......... 61

Figure 4-5: Goals (Views) planned using view planning lead to less 3D reconstruction
error and greater object completeness percentage than regular views [81].. 62

Figure 4-6: Solution for a UAV coverage path planning problem in Matlab.......................... 63

15/156

Figure 4-7: Information-Theoretic Exploratory Planner illustration [84].covvvvvviiivvinnne. 64

Figure 4-8: MAV dynamically planning its path while moving through a simulated forest
using the Ewok Planner [18].......coovviiiiiiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeee 64

Figure 4-9: A cubic parametric polynomial spline[86]. P denotes control points. The first
and third polynomic parts of the curve are painted blue, while the second
orange. Single knots at 1/3 and 2/3 of the curve establish a spline of three
cubic polynomials meeting with €2 parametric continuity. Triple knots at
both ends of the interval ensure that the curve interpolates the end points... 65

Figure 4-10: Example of online trajectory replanning using the ewok planner [18]. The
plot shows a global trajectory computed by fitting a polynomial spline
through fixed waypoints (red), voxels within 0.5 m of the obstacle (blue),
computed B-spline trajectory with fixed (cyan) and still optimized (green)
segments and CONLrol POINTS.uuuuuuuiiiiiiiii e 68

Figure 4-11: Example environments and paths generated by the MPC-safe corridors
controller [19]. The successively connected polytopes (blue) represent
safe corridors. (a) Polygonal obstacles (b) Rotated rectangular obstacles.... 69

Figure 4-12: RRT* logical flow diagram.ccoooeeiiiiiiiiiiiii i e e 69
Figure 4-13: Model Predictive Control SChematiC..............covvvviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 71

Figure 4-14: A graph representation is used to describe free space [20]. Frontiers and
Home Location affect the robot's (blue triangle) decision making process. ... 73

Figure 5-1: 3D arrangement of a typical LIDAR SENSOr [91].......cccuvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee 77

Figure 5-2: (a) A flash LIDAR with diffused light; (b) The principle of an optical phased
array (OPA) scanner; (c) A LIDAR motorized spinning scanner; (d) A

microelectromechanical mirrors (MEMS) laser scanner [94].........cccevvvvveeeen. 78
Figure 5-3: Stereo Depth Estimation. Objects further away from the stereo camera pair
produce larger disparity [95].covviiiiiiiiiiiiiiiiiiiii 78
Figure 5-4: Structured Light projected on a sphere [96]..........covivviiiiiiiiiii e, 79
Figure 5-5: Radar Graph illustrating each sensor's strengths and weaknesses................... 80
Figure 5-6: Some of the most popular Microcontrollers.oviiiiiiieeiiiiiiiiee e, 82
Figure 5-7: Some of the most popular SBCS.ouviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 83
Figure 5-8: Bar graph illustrating the relationship between performance and other
features for the top platform of each category.ccoovivveiiiiiiie e, 87
Figure 5-9: The default starting scene in UNIty.cooiiiiiiiiiiiiii e e e e e e e eenens 89
Figure 5-10: Activating and Deactivating an ObjecCt...........ccoov i 89
Figure 5-11: The scene while running the visualization................ccoiiiiiiiiiiiini e 90
Figure 5-12: Raycasting visualization. The sensor is the white capsule.cccccccvvvvvennne. 93
Figure 5-13:A continuous 2D mesh in light blue color. ... 93
Figure 5-14:The edge problem can be clearly seen if the mesh resolution is lowered. 94
Figure 5-15: Solving the edge problem with 5 binary search iterations.oooeeeeeee 95
Figure 5-16:The binary search is not triggered and thus a falsely shaped triangle is
formed in the MESh ...oeee e 95
Figure 5-17:Smooth mesh after applying the edge problem solution.ccccccceeiieiiinnnees 96

Figure 5-18: Creating a 3D Mesh by rotating multiple 2D meshes around the sensor’s x
oD {1 T TR 97

16/156

Figure 5-19: (a) Creating a 3D Mesh by rotating multiple 2D meshes by the vertical y-

oD {1 TR 97
Figure 5-20:3D meshes formed by rotating horizontal and vertical meshes......................... 98
Figure 5-21: Capsule target is positioned in the effective field of view but is too small to

be detected by the sensor. Thus, it is not colored red.cccoeviiiiiiiiiiiiiinnnns 99
Figure 5-22: Using the field of view locus method to determine if a target is visible............. 99
Figure 5-23: Lealaps with 2x Zed2 Cameras and a Velarray M1600 Lidar. (a) Top view.

L(0) RS0 L= 1= R 101
Figure 5-24: Lealaps with 4x Intel Realsense D435 depth Cameras. (a) Top view. (b)

I [0 LSV = 101
Figure 5-25: Lealaps with 5x Intel Realsense D435 depth Cameras. (a) Top view. (b)

I [0 LIV =P 102
Figure 5-26: Laelaps with 4xD435 + Velodyne Ultra Puck Surround View Lidar. (a) Top

VIEW. (D) SIAE VIEW. ... 103
Figure 5-27:Top view of Lealaps with 4x Intel Realsense D435 depth Cameras and an

EXITA D43 . 103
Figure 5-28: Top view of Lealaps with 4x ZED2 depth Cameras and a Velarray M1600

SOlid State Lidar........uuiiiii e 104
Figure 6-1:The simulated world in Gazebo.c.ooeviiiiiii e 105
Figure 6-2: The RP and the April Tag in the Simulated Environment.............cccccccvvvvvvvennen. 106
Figure 6-3: RP’s trajectory and simulated environment map as seen from foxglove studio.

... 106
Figure 6-4: (a) A pair of mecanum wheels used onthe RP. ... 107
Figure 6-5: Kinematics 0f the RP........ccoo i 108
Figure 6-6: The simulated robotiC platform. ... 109
Figure 6-7: Tracking PID: Carrot tracking strategy [131].......cccoviiiiiiiiiiiieeeiieiiiieee e 109
Figure 6-8: Tracking PID: Base_link tracking strategy [131].ccccevviiiiiiiiiiiiiiiiiiiiiiiiieeeen, 110
Figure 6-9: Simulation Experiment Pipeline. ..o 112
Figure 7-1: (a) Synthetic vineyard in CSL. (b) Natural Vineyard located in the Blue Ridge

MOUNTAINS, US A, ittt 114
Figure 7-2: (a) Aerial Photography of the Laboratory Experiment Setup taken by the

QUATCOPTET. .. 115
Figure 7-3: Indoor testing environment with artificial lighting and PhaseSpace system. 116
Figure 7-4:(a) The Robotic Platform without its perception system. (b) The perception

system of the RobOtiC PIatform.cccooiiiiiiiiiiiii 117
Figure 7-5: Laboratory Experiments Pipeline. ..o 119
Figure 8-1: Sparse Area estimation. Areas away from the depth camera are less dense

and of lower quality, as expected from such a Sensor.ccccccvvieeeeeennn. 121
Figure 8-2: Erosion, Dilation & Opening performed on a 2D image.ccevvvvveeevveeiennnnn. 124
Figure 8-3: The hole detection algorithm visualized...............coooiiiii e 125
Figure 8-4: Cluster Outlier Detection. The noise clusters are pictured in red. 126
Figure 8-5: The Point Cloud Quality Enhancement Pipeline. ... 128

17/156

Figure 8-6: a) Data association (b) Target point cloud transformation. Result after first

iteration (c) Final point cloud registration after four iterations...................... 129
Figure 8-7: Point-to-Plane correspondence illustration in 2D [146].........cccevvviiiiiiiiiieenennnn. 130
Figure 8-8: Point Cloud Registration in the synthetic vineyard............cccccccvvvvviiiiiiiiiinnnnnnn. 131
Figure 8-9: Canopy Density Assessment lllustrated.coovvvviiiiiiiiii e 132
Figure 8-10: Reconstructed mesh objects from dense point clouds [149]...........cccevvvvveeee. 133
Figure 8-11: (a) a bunny shaped source point cloud. (b) mesh generated with alpha

shapes (c) mesh generated with BPA [151]..........cuuuiiiiiiiimiiiiiiiiiiiiiiiiiiiinees 134
Figure 8-12: (a) noisy mesh (b) mesh after 1 iteration of average filtering......................... 134

Figure 8-13: (a) With the vertex colors method, only vertex colors (blue) are used to color
THANGIE. 135

Figure 8-14: (a) Simple cube mesh colored with simple vertex colors (b) cube colored
with vertex colors and linear filtering (contouring) (c) cube colored using a

2D texture (image) of a Stone Walll.euvviiiiiiiiiiiiiiiiiiiiiiiiiieines 136
Figure 8-15: Texturing a 3D model of the Earth using a typical sphere UV map................ 137
Figure 8-16: Projective Texture MapPiNg.........ueeueeeriiiiiiiiiiiiiiiiiiieiieieeee e e e 138
Figure 8-17: The pinhole camera MOdel..........cccoooiiiiiiiiiiii e 139
Figure 8-18: A simplified pinhole camera model. ... 140
Figure 8-19: Vinymap Photo-Realistic Vineyard Reconstruction Pipeline. 142
Figure 8-20: Canopy Density ASSESSMENt SCENANIOS.cvvvviiiiiiiiiiiiiiiiieiiiieieeeeeeeeeeeeeeeee 145
Figure 8-21: 3D Reconstruction COMPArISON.cuuuuiiiiiieeeeeieiiiiie s e e e e e e e eaariee e e eaaeeennne 146

18/156

List of Tables

Table 3-1: A comprehensive comparison of four SLAM software packages. 56
Table 5-1: Popular SBCs currently in the market..............ccoi 84
Table 5-2: Popular Mini-PCs currently inthe marketccccoooiiiiiiiiiii e, 85
Table 5-3: Summary of 3D perception System requIreMeNts.cooeeeeeeeeeeeeeeeeeeeeeeeeeeen 100
Table 8-1: SOPCQA EVAIUALIONuuiiiiiiiie ettt e et e e e e bt e e e s eabn e e e eabanaeeeens 143
Table 8-2: Canopy Density INAdeX OULPUL..........coeiiiiiiieeeeeeeee e 144

19/156

List of Abbreviations

Abbreviation

Definition

API
BPA
CDI
CPU
CSL
CPP
CUDA
CVPR

DBSCAN

FLOPS
FOV
GMSL2
GPS
GPU
HDMI
ICP
IEEE
IMU
LSTM
MATLAB
MAV
MCD
MEMS
MPC
NTUA
NUC
(ON)

Application Programming Interface
Ball Pivoting Algorithm

Canopy Density Index

Central Processing Unit

Control Systems Laboratory
Coverage Path Planning

Compute Unified Device Architecture

Computer Vision and Pattern Recognition
Density-Based Spatial Clustering of Applications with
Noise

Floating-point Operations per Second
Field Of View

Gigabit Multimedia Serial Link 2

Global Positioning System

Graphics Processing Unit
High-Definition Multimedia Interface
Iterative Closest Point

Institute of Electrical and Electronics Engineers
Inertial Measurement Unit

Long Short-Term Memory Model
Matrix Laboratory

Micro air vehicle

Maximum Correspondence Distance
Microelectromechanical Systems
Model Predictive Controller

National Technical University of Athens
Next Unit of Computing

Operating System

20/156

PCQA
PID

QR
RAM
RGB
ROS
RP
RRT
RTAB-map
SBC
SLAM
SOPCQA
SOTA
TFLOP
TOPS
TPU
UAV
USB
uv
VRAM
VSLAM

Point Cloud Quality Assessment Algorithm
Proportional Integral Derivative (Controller)
Quick Response (Code)

Random Access Memory

Red, Green, Blue

Robot Operating System

Robotic Platform

Rapidly exploring Random Tree

Real-Time Appearance-Based Mapping
Single Board Computer

Simultaneous Localization and Mapping
Simple Objective Point Cloud Quality Assessment
State of the Art

Trillion Floating-point Operations per Second
Trillions of Operations per Second

Tensor Processing Unit

Unmanned Aerial Vehicle

Universal Serial Bus

Ultra-Violet

Video Random Access Memory

Visual Simultaneous Localization and Mapping

21/156

1 EkTtetrapévn EAAnvIKNA MepiAnyn
1.1 Eiocaywyn

O autavéuevog TANBuopOg TNG NG Kai n ouvexns KAIPATIKA aAAayr aTroteAolv
oNPavTiK TTPOKANON yia TN O1a0eciydTNTA TPOYINWY TTAYKOOMIWG. O TTPAKTIKEG TNG
vewpyiag akpifeiag (Precision Agriculture) kai n autouyartotroinuévn €mMBewpnon Twv
KAAAIEPYEIWV €XOUV avadelxBei w¢ PBAOIKEG OTPATNYIKEG YIO VO KOTAOTE N yewpyia TTo
atmodoTIkr Kal Biwaiun. ‘Evag kpioiyog Topéag civalr ol aptreAwveg, Adyw NG dounpévng
OIATAENAG TOUG KAl TNG UWNANG Agiag TWV TTAPAYOPEVWY TTPOIOVTWYV [1].

QoT1600, TIPETTEI VO QVTIMETWTTIOTOUV OPKETEC TTPOKAACEIC TTPIV UTTOPECOUV TA POMTTOT
Va EVOWNOTWOOUV TTANPWS oTN dlaxeipion Twyv autreAwvwy. ‘Eva onuavTikd eutrédio givail 1o
00BevEC DOPUPOPIKO GO OTIG OPEIVEG TTEPIOXEG UE auTTEAWVEG. AUuTO KaBIoTd avagidmmoTa
Ta Maykéouia Zuotiuata ZTiypatoBétnong (GPS), éva ouclaoTIKO OToIXEio yia Tnv
mAofynon Twv poptoT. MNMoAAéG uttdpxouoeg AUoeig BaaiovTal o€ peydAo Babud oto GPS
[2], KaBIoTWVTOG TIC AVOTTOTEAEOUATIKEG O€ TTEPIBAANOVTA XWPIG EUKPIVES anpa [3].

Mia emmitTAéov TTPOKANCN dnNUIOUPYEI TO avWPAAo £Da@og HECA OTOUG AUTTEAWVES AAAG
Kal Ta gutmédia OmTwg PBpdxol, €EommAiIopds dpdeuong kai gpyalouevol. Autd KaBioTouv
avaykaia Tnv avamTtuén atmmodoTIKWV Kal €UEAIKTWY AUCEwv OXeOIOoHOU OladpOuWV.
EmmmAéov, n ammodoTIKOTNTA KOOTOUG TTapPAaMéVEl KPioIWo ¢ATNHA 600V agopd Tnv gupcia
uI08€TNoN TETOIWVY CUCTNPATWY ATTO YEWPYOUG.

MoAAéEG uTTGpxoUoEG AUCEIG QVTIMETWTTICOUV CUYKEKPIMEVEG TITUXEG TOU QUTOMATIOUOU,
OTTwG O Wekaouog [4], n katauéTpnon otagulhiwv [5] 1 n avixveuon acBeveiwv [6],
OTEPOUNEVEG PIag ONIOTIKAG TTPooEyyiong. O1 TeEAeuTaieg dev TTPOCPEPOUV HIA OAOKANPWHEVN
TPIOOIAOTATN OTTEIKOVION TWV APTTEAIWV, N OTToia €ival TTOAUTIUN YIO TOV €AEYXO TwvV
KaAAigpyeiwv. ETriong, n épeuva ouxvd TTapapeAei Ta Kpioiga ¢nTAPOTA TNG QUTOVOWNG
TAONYNONG Kal TNG ammoQuyng eutmodiwv péoa oTtov aumeAwva [7], [8]. Autég o
KATOKEPUATIONOG TTEPIOPICEl TNV QTTOTEAEOUATIKOTNTA TOUG OTO VA TIAPEXOUV MIa TTANEN
€IKOVA OTOV aypoTn.

Mpdoparn €peuva katadelkvuel Tn duvatdTNTa dnuIoUPYiaG QWTO-PEAAICTIKWV
TPIOOIAOTATWY XAPTWV TTOU XpPNnoihoTrololv TpiodidoTtateg kaouooiavég [9]. Evw eivai
TTOAUTIMEG, TETOIEG AUCEIC atTaITouv ouviBwg TEPAOTIa UTTOAOYIOTIKN 10XU, KOBIOTWVTAG TEG
OTTAYOPEUTIKA aKPIBEG yIa TTOAAOUG KaANIEPYNTEG Kal EPTTOBICOVTAG TNV IKAVOTNTA EKTEAEONG
o€ TIpayuatikd XpOvo, n oTroia €ival oucIaoTIK) KaBWg n ypriyopn Anywn amo@doewv eival
(WTIKAG OnNuUaCiag yia Toug aypOTeEG TTPOKEINEVOU va avTIOpAoOUV O€ LAPVIKA KalpIKa
QaIVOUEVA I KOTAOTPOPEG [10].

AeOOPEVWV AUTWV TWV TTEPIOPICUWY, N TTApoUCa JITTAWUATIKA TTAPOUCIACEl YIO ONICTIKI)
AUon yia 170 TTPORANUA TNG £MIBEWPNONG QUTTEAWVWY HE KIVNTA popTTOT. ZTa TTACiod Tng
avatTuxonke AOYyIOUIKO Kal UNIKO Kal €QApUOOTNKE O TIPOCOMOIWON OANG Kal o€
TIPAYMOTIKEG CUVOAKEG [E TNV TPOTTOTTOINGN KaI XPAON MIAG POUTTOTIKAG TTAATQOPUAG.

Apxik& Trpayuatotroindnke €1 BABog €peuva Kal afloAdynon UQICTAPEVWY TTOKETWY
AOYIOUIKOU, ME €ugacn OTIGC duvatdTnTeEG TPIOOIACTOTNG OVOKATOOKEUNG KOl XWPIKAG
xaptoypaonong. H ouUykpion €0Tidoe OTNV OTTOCOPAVION TWV TTAEOVEKTNPATWY Kal

22/156

MEIOVEKTNUATWY KABe peBGOoU, AapBdavovTtag utrown KpITHpIa OTTWG N akpiBeia, n taxuTtnta,
N €UKoAia xpriong kail n cupBaroéTtnTa pe 1o ouoTnua ROS.

EmmpbdoBeta, aglommoifdnke n texvoAloyia CUDA yia Tnv €mMITAXUVON TNG £TTEEEPYATIAG,
OTToU auTo ATav €QIKTO. H Aemrtopepng agloAdynon KatéAnge otnv €TmIAoyr Tou €pyaAciou
ZED spatial mapping yia XwpIKA Xaptoypdenon Kal UTToAoyIohO BABOUG PE VEUPWVIKA
oikTua. O aAy6piBuog autdg KpPiBnke wg n TTAéov KATGAANANn Alon yia Tnv evioxuon Tou
TTPOCAPUOCHEVOU aAyopiBuou TPIoBIAOTATNG AVAKATAOKEURG TTOU avaTrTUXOnke oTa TTAciola
TNG TTapoUcag £pyaciag.

MNa Ttnv TAOAYNON TNG POUTIOTIKAG TTAATOOPHOG OTOV XWPO XPNnoIdoTTolEiTal éva
ouoTnua oTTIKAG odouETpiag pe OITTAN KAPEPA, OXeOIOOUEVO EIDIKA YIa TTEPIBAAAOVTA XWPIG
onpa GPS aAAG kai TTepIBAAAOVTO PE OTITIKA] OMOIOPOP@Ia TTOU onuaivel TNV €AAEIWn
TTANBWpPAG dIABECINWY OTITIKWY XAPAKTNPIOTIKWY. H OTITIK odoueTpia pe SITTAN KAPEPaQ
eEao@aAiel TN ouvexn Asitoupyia TG TTAOAYNONG akOua Kal OTav N Hid KAPEPA TUPAWVETAI
a1rd T0 NAIAKG QWG N éva €uTTOdIO KPUREl TO OTIMIKG TNG TTedio. H ammoTteAeopaTikOTNTA TOU
aAyopiBuou BEATIWOBNKE PE TPOTTOTTOINON TOU KAEICIUATOG BPOXOU HUE TNV QVIXVEUON ETIKETWVY
April Tag, TTpocBétovrag évav aAyopiBuo oTmikoU oepPo-eAéyxou TTou eEaa@aAilel Tnv
BEATIOTN €UBUYPAUMION TOU POMTIOT Me TNV eTIKETA April Tag Tpiv autd Eekivhoel TIg
OlopBbwoelg KAsioiyaTog Bpoxou. EmimTAéov, yeAetiBnke kai afiotroinOnke €vag aiyopiBuog
oxedlaguoU BOladpoPWY TTOU XPNOIMOTTOIEl aTTooUvBEon TOU XWPOU O€ TTOAUYwva yia va
evToTTioel D10dPOUOUG XWPIG EUTTOdIA. AUTH N TTPOCEYYIOT], TTOU EQAPPOCETAI VIO TTPWTN GOPA
ot TPAYUATIKG POPTTOT, emmw@eAeital ammd T dIATAEN TOU APTTEAWVA TTOU €K QUOEWG
oxnuarticel TrapaAAnAoug d1adpduouG.

Ev ouvexeia oxedlidotnke 1O oUCTAMO QvTiANWNG HE OTOXO va QIAOEEVNOEI TOUG
emAeypévoug alyopiBuoug TpIodIGOTATNG XOPTOYPA®nong, TTAoynong Kai oxediacuou
TPOXIGG. H uAotroinon Tou CUCTAPATOG avTiAnWNnG TTPOUTTOBETEI TNV €TTIAOYR KATAAANAWY
UNIKOTEXVIKWV OToIXEiwv. MMpayuatotroidnke AeTTTouEPnS oUykpIion aiodntApwy (KAUEPEG,
LIDAR, GPS) kal povadwyv emregepyaciag, Aappavovtag utrdyn KpIitipia 0TTwg n akpipeia, n
eMBéAeIa, n avAdAuon, TO KOOTOG, n 10XUG eTeCepyaciag Kai n KoTavaAwon EeVEPYEIQG.
E&etdotnkav did@opeg diaTdgelg TOTTOBETNONG Twy aIoBNTAPWY O€ TETPATTOdA POUTTOT,
AapBavovTtag uttdyn mapdyovteg 6TTwg 10 TEdio B€aong, To BAPOG Kal TNV TTpooTaCia aTTo
KPOUOEIG.

MNa Tnv uTTooTAPIEN TNG ANWNG TEKUNPIWPEVWY OTTOPACEWY, avaTTuxdnke 1o FoVaLliRa
(Field of View and LiIDAR Analysis), éva epyaAeio TpIodidoTatng ameikoviong ortnv
mAaT@Opua Unity. To FoValLiRa Bori®noe otnv ommikotroinon Tou Trediou Béaong KaBe
aiocbntpa, oTnv agloAdynon g mmKGAUYWnNG TTediwyv B€aong Kal oTnv EETa0N TNG avaAuong
LiDAR o€ d1a¢popeg aTmooTACEIG.

TéNOG, avamTUxNKe TO KaIVOTOMO Aoyiopiké Vinymap. To Vinymap Trapéxel
oAoKANpwévn €mMOewpPNon Tou ouTTeEAWvVa pEow OUO0 Pacikwyv aAyopibuwv: 1) ‘Evav
oAyopIBuo @wTopeaNioTIKAG 3D xaptoypdenong Trou OnMIOUPYEl CaQeEiG OTTTIKEG
aTTeEIKOVioeIG Tou aptreAwva. 2) ‘Evav aAyoépiBuo afloAdynong Tng TTUKVOTNTOG TOU
QUAAWPATOG TTOU TTAPEXEl CWTIKAG ONPOCiag TTANPo@opieg TTou oxeTiCovTal e TNV UYEIa Kal
TNV TTOIOTNTA TWV OTAPUAILV, KOBWG TO TTUKVO QUAAWUA UTTOPET va TTEPIOPIOEI TO NAIAKO WG
KAl TOV agPIOUO yUpw atrd Ta ToAaPTIA oTa@uAiwy [11]. H atroteAeopaTikoTnTa ToU Vinymap
aglohoyrbnke apxIKd O€ TTPOCOUOIWCEIG. 2T OUVEXEIQ, KOTAOKEUAOAUE €vav OUVOETIKO
autreAwva oto Epyaotripio Autopdtou EAéyxou NG ZxoAAG MnyxavoAdywv Mnxavikwyv Tou

23/156

E.M.IN. yia va BOKIJACOUNE EKTEVWG TO TTAQICIO, €QAPHOCHEVO TTAEOV O HIO TTPAYMOTIKN
POUTTOTIKN TTAATQOPUA UTTO PEANICTIKEG CUVONKEG.

1.2 ‘Epeuva Kal AgloAbéynon MakéTwyv AoyioHIKoU
Xaproypd@nong Kal AvakaTaoKeung Xwpou

E€etdotnkav 1€00€pa AOYIOUIKA AVOKATAOKEUAG XWpou TTpwTo Atav 1o RTAB-Map [12] 10
OTToi0 eKTEAEl TPIODIACTATN ATTEIKOVION XWPEOU OE TIPAYHATIKO XPOVO €QAPUOlOVTaG
aAyopiBuoug SLAM. To deuTepo ATav To Robot-Centric Elevation Mapping [13], aveTTTuyuévo
atmo Tnv etaipgia Anybotics tmou £dpelel oto ETH TnG Zupixng Kal To oTToio €KTEAE 2.5D
mapping 1 aAMIWG WPeudo-TPIodIACTATN ATTEIKOVION XWPEOouU. Kal autd To TTaKETO AEITOUPYEi O€
TIPAYHOTIKO XpOvo OAMG dev atroteAei pia epappoyi SLAM koBwg ekTeAei pédvo
XapToypaenaon Tou TTEPIBAAAOVTOC XWPEOU XWPIG va ETTITUYXAVEl EVTOTTIONO) TTAoriynon. To
TPiTO TTOKETO €ival TO Gradslam [14] TO OTTOIO TTPAYHATOTTOIEI TPICOIACTATN ATTEIKOVION XWPEOU
Kal e@appolel aAyopiBuoug SLAM. To TétapTto TTakéTo €ivan To ZED Spatial Mapping [15] 10
OTTOi0 €TTIONG €KTEAEI TPICOIAOTATN ATTEIKOVION XWPEOU O€ TTPAYHUATIKO XPOVO OvVTag Mid
epappoyn SLAM.

1.2.1 Rtabmap

To Rtabmap e@apudler oTITIK) 0S0UETPIO O€ TTPAYUATIKO XpOvo, dnAadr Aaupdavel S1adoxXIKES
EIKOVEG KOBWG TO POUTTOT TTOU TO XPNOIUOTIOIEN KIVEITAI OTO XWPO KAl CUYKPIVOVTAG TO OTTTIKA
XOPAKTNPEIOTIKA PETAEU OI1adoxIKWY €IKOVWY eKTIHAEl TNV KOTEUBUVON KAl TO WETPO TNG
Kivnong Tou pouTroT. AGIOTTOIWVTAG Ta OEBOUEVA TNG OTTTIKAG ODOUETPIOG, TO POUTTIOT EKTIMAEI
TN 6€0n TOU OTO XWPO Kal a&loTrolwvTag évav alodnTipa TPIodIAoTATNG ATTEIKOVIONG TTOU
eMAEYEl O XPAOTNG, KATOPEPVEI VO AVOKATAOKEUAOEI TOV XWPEO YUpw Tou SidovTag wg €000
éva TpIodidoTaTo vEQog aonueiwv (3D point cloud). 18iaiTepo xapakTnpioTikd Tou RTAB-Map
atroteAei n TTpooéyyion Bag-of-Words yia tnv emiteugn kAsigipatog Bpdyou (loop closure).
AutA n dlodikaoia AsiToupyei wg €€N1G: avd TTPOKABOPIoUEVA XPOVIKA SIACTAUATA TO POPTIOT
aglotroiei KATToIEG €IKOVEG Kal aTTOONKEUEl TA OTITIKA XOPAKTNEIOTIKG TOUG 0€ pia Bdon
o0edopévwy e TN yopen piag Todvrag (bag) yia va Ta xpnoigoTroinoel HEAAOVTIKG. Kabwg 1o
POUTTOT CUAAEyEl TTANBWPA TETOIWV TOAVTWY, €AEYXEl yIa KABe pia amd TIg TOAvVTEG TTOU
Bpiokel av gu@aviel Evtovn opoidTATA PE KATTOIA TTOU £XEl CUAAEEEI TTaAIOTEPA. AV TTPAyUATI
Bpel peydAn opoidTNTA WETALU TNG TPEXOVTOG TOAVTAG KAl PIOG TTANIOTEPNG, TOTE Bewpei O
BpiokeTal o€ éva onueio TTou €Xel Eava eMOKEPOEN Kal Pe TOV TPOTTO QUTO AV N EKTIUNON TNG
Béong Tou gu@aviCel atrokAion, T61e TNV d10PBWVEI AVODPOMIKA PEIWVOVTAG £T01 TO OQAAUATO
TWV PETPMOEWV TTOU CUCOWPEUOVTAI KATA TNV dIAPKEI TNG KiVNOAG Tou.

1.2.2 Robot-Centric Elevation Mapping

To Robot-Centric Elevation Mapping éxel wg okotrd Tn xaptoypdenon Tou TrePIBAAAOVTOG
XWPOU yUpw atrd To0 POUTTOT. KaBWG TO pOUTTOT TTPOXWPAEI OTO XWPEO, PEPN Tou XAPTN TTOU
EXEl ETMOKEPOET TTpoNyoUPévWG diaypd@ovTtal Kai 0 XApTng oualaoTIKA aKOAOUBEI TO POUTTOT.
H Tmpooéyyion auti e€ival yvwoT wg robot-centric mapping kai cuuBdAAer oTnv
€€oikovounon MvAUNG TOU UTTOAOYIOTH] TOU POMTIOT, €vw OIEUKOAUVEI TNV €KTEAEON TOU
aAyopiBuou o€ TTpayuaTikd Xpovo.

24/156

To Robot-Centric Elevation Mapping ¢Tidxvel évav weudd-1picdidoTato XAaptn dnAadrh dev
£XEl WG £€000 €va VEPOG PE onueia oTIg TpeIg dlaoTdoelg, aAAd évav diodiaoTaTo XapTtn OTTou
yla K&Be onueio autou Tou XApTn Oivel pia TiW Uywoug (elevation map). Autd €xel wg
atroTéAeopa euTTddIa Ta OTToia BpiokovTal 0€ KATTOIO UWOGS Kal aTTéXouV atrd 1o £€6a¢og, va
KATAXWPEOUVTAI WG CUUPTIAYN EUTTODIA TTOU EKTEIVOVTAI ATTO TO £DAPOG PEXPI TO MEYIOTO UYOG
o710 oTroio @TAvouv. AuTO Oev QTTOTEAE MIO QVTIKEIMEVIKN ATTEIKOVION TOU XWPEOU Kal
onuioupyei 1I010iTEPO TTPORANUA a€ TTEPIBAAAOVTA AUTTEAWVWY OTTOU Ta KAADIA TWV AUTTEAIV
ouxva Bpiokovtal o€ UWoG PEYOAUTEPO ATTO TO POUTTOT OTTOTE BeWPNTIKA ETTITPETTOUV TNV
Kivnon Tou pouTroT KATW atmd auTd. ZTnv TTEPITTTwon Tou Robot-Centric Elevation Mapping
Ba kKaTaxwpouvTav wg ammpooTTEAaaTa eUTTOdIa TTPAY A TToU dev gival aAnBEg.

(a) (b)
Eikéva 1-1: (a) Mia TrTAat@éppa 1Tou irraral, o wepIBaAAov mpooopoiwong Gazebo. (b) H ameikévion
TNG TAATPOPHAG KAl TOU YUpW XWPOoU ME TN XpARon Tou Robot-Centric Elevation Mapping.

I181aiTEPO XOPAKTNPIOTIKO auToU TOU TTOKETOU QTTOTEAEl N SUVAUIKA AvOTTPOCAPHOYH Tou
XapTn. Av éva guTTOdIO TTOU £XEI KaTaXwpnOei oTo XapTn €ival KivoUupevo Kal GAAage n Béon
TOU, 0 XAPTNG AvaTTPOCapPOeTal KABWG yiveTal Xprjon ray casting yia va yivel avTIAnTito o1
n 8éon 1Tou KaTaAduBavE TTPONYOUUEVWG TO EPTTOIO €ival TTAEOV KEVA Kal TO idI0 €x€EI KIvnOEei
o€ Jia véa Béon.

1.2.3 Gradslam

To Gradslam eivar éva TTOKETO TO OTTOI0 ONMIOUPYNBNKE WE OKOTTO va TPOTTOTTOINCEI
YVWOTOUG Kal KOAG edpaiwpévousg aAyopiBuoug tou epappolovtal otn Sladikaoia Tou
SLAM, €101 WOTE va PTTOpoUV va eloaxBouv o€ PovTéAa PnXavikAg pdénong kai va yivel
EKTTAIOEUON QUTWYV TWV POVTEAWV atTeuBeiag pe dedopéva epappoywv SLAM. OAo 1O TTOKETO
AogiopikoU Gradslam arroteAei éva dla@opioigo UTToAoyIoTIKO ypd@o. QOTOGO TO TTAKETO
auTd atraiTei PeydAn uttoAoyIoTIKA 10XV (TO eAdxioTo 8GB pvung RAM) akdpa Kal yia Tnv
QVOKOTAOKEUR MIKPWY XWPwV. ETITTAEOV N IKAvOTNTA TOU YIa EKTEAEDN TTPAYMUATIKO XPOVO
gival TTEPIOPICHEVN.

1.2.4 ZED Spatial Mapping

To ZED Spatial Mapping e@apudlel ommikr) odopetpia 6Twg kal 10 RTAB-Map, aAAé
BeATIWVEI TO ATTOTEAEOPATA TNG QIOTTOIWVTAG TIG PETPROEIS aioBnTApwy adpdveiag (IMU),
TOTTOBETNUEVWY TTAVW OTO POMTIOT 1 EVOWUATWHEVWY OTNV KAPEPA N OTTOIa €KTEAEI TNV
oTITIKA 0dopeTpia (visual-inertial odometry).

25/156

To ZED Spatial Mapping atraitei aio0nTipa ekTipnong Baoug yia va ekTeAeoBEi Kal
OUYKEKPIUEVO €QapuoleTal o kauepeg ZED [16], o1 oTroieg €miTEAOUV OTEPEOOKOTTIKA
ekTiynon Bdboug. Map’ 6Aa autd yia aKOPa KAAUTEPA ATTOTEAEOUATA EKTiNONG BAaBoug
XPNOoIuoTToIoUVTal TTAEOV VEUPWVIKA BiKTUG Kal 0 TEAIKOG XAPTNG BABOUC TTPOKUTITEI ATTO TN
OTATIOTIKA €vWon TOU OTEPEOOKOTTIKOU BABoUG Pe To PABOG TTOU TTPOEKUYE PECW TWV
VEUPWVIKWYV BIKTUWV.

1.2.5 EmAoyn Tou KardAAnAou Makérou AoyiouIKOU

MNa v apxIKA @Aacn TwWvV TTEIPAPATWY TTOU aQOpPoUV TO TTAQICIO TTOU avaTTTUXOnke OTnv
TTapoUuoa JITTAWMATIKA €pyacia XpnoIKoTToINONKE To TTAKETO avakataokeung RTAB-Map.
AuTO €éyive AOYyw TnG ammAOTNTAG TTOU TO XAPAKTNPICEl, TNG IKAVOTNTAG EKTEAEONG OfF
TIPAYMATIKO XPOvVo, TnG e€ueAiiaog Kal TTOAUXPNOTIKOTNTAG TOU, KABWCS Kal TNG eVEPYNS
KOIVOTNTAG XPNOTWV KAl EPEUVNTWV TTOU BIEUKOAUVOUV TNV avATITUEN AOYIOUIKOU JE Th XPAON
Tou. QoTé00 oTa TeAIKG oTddIa Twyv TTEIPaudTwyY XpnoidoTtroindnke To ZED Spatial Mapping
AGYW TNG EVTUTTWOIAKKG TTOIOTNTAG OVAKATACKEUNG TTOU TTPOCPEPEI AAAG KAl TWV KAIVOTORWY
TEXVOAOYIWV TTOU XPNOIUOTTOIE.

1.3 TMAonynon kai Zxed1aopudg Aladpoung

1.3.1 TMAoRynon

lMNa va emTeuxBei TTAOAYNON YIa TN POUTTOTIK TTAATPOPUG N OTToia XPNOIMOTTOINONKE KATA TN
@aon TeipaudTwy, aglotroindnke évag aAyopiBuog OTITIKNAG ODOUETPIOG O OTT0I0G QgIOTTOIE
OUo Kapepes [17]. To yeyovog autd TTPoodidel eupwaoTia 0TO OUCTNHA KABWG akéua Kal av
MIa KAuepa Oev ival IKAvVH va EVTOTTIOE! OTTTIKG XOPAKTNPIOTIKA yia KATTOIOV AGYO - OTTWG yia
Tapddelyua Adyw TOQAWONG atmmd dAueon nNAIGKAR akTIivoBoAia - TOTE n AGAAN KAPepa
avaAauBdvelr Tnv eTiteugn ommIKAG odopeTpiag. O aAydpiBuog autdg avamTuxOnke ota
TAdiola Tou EpyaoTtnpiou Autopdrou EAEyxou Tng oXoAng Twv MnxavoAdywv Mnxavikwy
Tou EBvikou Metoofiou [MoAutexveiou. EmmAéov, o idlog €xel Tnv 101uTEPOTNTA OTI
Kata@épvel KAgiouo Bpoxou pe TN Xpnon emkétwv April Tags. April Tags civar oUuBoAa
EVTOTTIONOU OTTWG Ta yvwoTd QR-Codes pe Tn dlagopd o1 €xouv oxedIOOTEI £T01 WOTE va
OIEUKOAUVOUV TNV KAPEPA TTOU T €VTOTTICEl va AVTIAQUBAVETAI TOV TTPOCAVATOAIOUS TOUG
OTOV XWPEO KAl ETTOMEVWG VA EKTING TO OIKO TNG TTPOCAVATONICUO O¢ ox€on PE autd. Autd
OKPIBWG ETMTUYXAVETOI KAl OTNV TTEPITITWON TOUu aAyopiBuou TTOU Q&IOTTOIRBNKE.
Juykekpipyéva OTav TO POMPTIOT €VTOTTICEl MIa €TIKETA, N OToid @Epel €va Povadiko
QvVaYVWPEIOTIKG, TOTE TNV atmmobnkelel oTn PvhAun Tou. Edv evromioer {avda 1o April Tag pe 10
id10 avayvwploTIKG TOTE KataAaBaivel 0TI BPIOKETAI O€ ONUEIO TO OTTOIO £XEI AVAETTIOKEPOEI
KAl av n €KTignon TnG odopeTpiag Tou €xel lIaQopEéG aTTd TNV vEa eKTiunon Pe Baon 1o April
Tag 10TE AVOTTPOCOPUOLEl TNV TPOXIA TOU KAl PEIWVEI TO 0@AAua (KAgioino Bpdxou — loop
closure).

MapatnpRBnke o1 amd TAdyIEG ywvieg B€aong kal ammd PeyaAn amdéoTacn TO KAEiOIUo
Bpdxou pe xpnon April Tag cionyaye c@dApata otnv ekTipnon odouetpiag. MNa va emAuBEi
T0 TIPOPBANMO QUTO KATOOKEUAOTNKE €vag OAyOpPIBUOG OTITIKAG €UBUYypAUMIONS TNG
POUTTOTIKNAG TTAaT@OpPaG pe To April Tag. H guBuypduuion auti AauBdver xwpa Tpiv va
evepyotroinBei 0 aAyoépiBuog KAcioipatog Bpoxou kal €Eao@aAifel 6T n KAuepa TNG
POMTTOTIKNG TTAATQOPPOG BAETTEl TO April Tag amd ywvia 8éaong 90 poipwv Kal atrdéoToon
30cm. A@ou n poutroTik TTAATQOpPa euBuypauuioTel e 1o April Tag, T0TE KOl pOvo TOTE

26/156

evepyoTrolgiTal 0 aAydpiBuog kAsigipatog Bpdxou pe Bdon Tov eviomopo April Tag. To
o@aApa atrd ywvia B£aong 90 poipwyv kal atréoTacn 30cm BpEBnke undevIKO.
Distance Error

— 50cm
—— 30cm

A

Distance Error in cm
o [N
-

or

15 30 45 60 75 90
View Angle in Degrees

Angle Error)
—— 50cm

\j- —— 30cm
\\x
/

15 30 45 60 75 90
View Angle in Degrees

(b)

Eikéva 1-2: (a) H reipapatikn Sidragn yia Tnv e0peon TnG 1I8aviKNG ywviag B£€aong Kail arécTacng amo 1o
April Tag piv To KAgioipo Bpoxou. (b) Z@dApa ekTiunong awécTAdong Kal ywviag omé 1o April Tag yia
d1a@popeg ywvieg Kal atrooTdoelg Béaong.

7

N

Angle Error in Degrees

(=]

o

1.3.2 Zxediaouog Aladpoung

MNa TNV €TmiTeuén Tou oxedlaoPoU SIadPONNG TOU POUTTOT HECT OTOV AUTTEAWVA EEETACTNKAV
TpeIg dlaopeTiKoi aAyopiBuol: To Ewok Planner [18], o Safe Corridors Planner [19] kai TO
GB-Planner [20].

Ewok Planner

To Ewok Planner civai évag aiyépiBuog oxediacpou S1adpouAg 0 oTroiog €oTidlel oTnv
TaXUTNTO EKTEAEONG TOU O€ TIPAYMOTIKO XPOVO KOl TNV OPAAOTNTA TNG TPOXIAG TTou
uttoAoyiCel. Xpnoipotrolei B-Splines yia Tov UTTOAOYIOHO OUJOAWY TPOXIWV KAl avaTTapIoTd
TOV XWPO yUpw amd 1o poutroT pe éva Voxel Grid yia tnv €Tmiteuén ammo@uyng eutrodiwv.
AtrauTei TNV €icod0 evog povotTaTiou atmd TNV ApxIKr B€0n Tou PoPTTéT €wg TN BE0N-0TOXO
Kal €0Tiddel oTnv akoAoubnon auTtoUu Tou povoTraTtiol JeE Tov PBEATIOTO TPOTIO EVW
TAUTOXPOVWG ETTITUYXAVEI ATTOPUYNA EUTTODIWV.

Safe Corridors Planner

O Safe Corridors Planner aglotroiei Tov aAyépiBuo RRT* yia Tov UTTOAOYIOHO €vOG apxIKoU
MovoTTaTioU ammd Tnv apxikf B€on Tou pouTttoT €wg Tn Béon-o1dxo. Aev atraitei auth Tnv
TAnpo@opia cav €icodo. AKOAOUBWG QEIOTTOIEI TO JOVOTTATI TTOU UTTOAOYIOTNKE apXIKd yia va
QTTOCUVBEDEl TOV XWpPOo YyUpw atrd TO MOVOTIATI 0€ TTOAUTOTIA TTOU QVTITIPOCWTTEUOUV
€AEUBEPO XWPO Kai dnuioupyolv d1adpOuoug Xwpig euTTddia. O aAyopiBuog oAokKANpwVETal
O OPKETA MIKPO XPOVIKO OIA0TNUA WOTE VO WTTOPEI va eKTEAEITal KAT E€TTAVAANWN KOl
ETTOMEVWIG VA TTAPEXEI OTO POPTTOT SUVAUIKA aTtToQuyr] euTTOdiwyY, dedopuévou OTI TaxUuTnTa
Kivnong TOU pOUTTOT €ival EVTOG OUYKEKPIUEVWV OPiwV.

27/156

GB-Planner

To GB-Planner civail évag egepeuvnTiKOG aAyopiBuog oxedlaopou diadpoung. Autd onuaivel
OTI 0 aAyOpIBPoG dev atraiTel PIa TEAIKT BE0N-0TOXO WG €i0000. AVTIBETWG O OXEBIAONOG
O1adPOUNAG eKTEAEITAI O€ BAUATA E OKOTTO TO POUTTOT Va £EEPEUVAOEI TOV XWPO YUPW TOU HE
Hia TTPOETTIAEYHEVN OTPATNYIKA. O €AeUBEPOG XWPOG YUPW OTTO TO POPTTOT avaTTapioTaTaAl O
QUTAV TNV TIEPITITWON WG £vag ypaPog MHe KOPPoug. Ze KABe KOpPBo atrodidetal pia
ecepeuvnTikn adia. To popttOT eTMAéyel 0 KABe Bripa va emoke@Oei Tov KOUBO PE Tn
MeyaAUTepn e€epeuvnTik agia. Ztnv TepimTtwon Tou GB-Planner, mmpooTiBevral emimTAéov
ETTITTEdA OXEDIAOUOU TTOU £€a0@aAiCouV OTI TO POPTTOT Ba €MIOKEPOEi GAOUG TOUG KOUBOUG
uwnAoU evdla@EpovTog, KaBWwG Kal 0TI N e€epelvnon dev Ba BECEl TO POUTTOT EKTOG KATTOIWV
OTOXWV (XPOVIKWV I £E0IKOVOUNONG EVEPYEING).

EmiAoyR Tou KardAAnAou Makétou Zxediaouou Aladpopig

EmAEXONKe TEAIKA N xprion Tou Free Corridors Planner, kaBwg n TOTTOAOYIO TWV AUTTEAWVWY
OnNUIoUPYEi €K QUOEWS €AeUBepPOUG BIadPOPOUG PETAEU TwV CEIPWY TOU APTTEAIOU Kal auTd
OIEUKOAUVEI Kal TTITaXUVEI TNV eKTEAEON TOU aAyopiBuou. ETTITTAEOV, OI POUTTOTIKEG EPYAOTIES
OTOV XWPOo Tou autreAIoU ouvhBwg dev emPBAAAOUV UPNAES TaXUTNTEG KivnONG TWV POUTIOT
ME aTTOTEAEOUA N €KTEAEON O TTPAYMATIKO XPOVO va €ival €QIKTA AKOUA Kal PE UWNAEG
OAYOPIOUIKEC TTOAUTTAOKOTNTEG. TEAOG, TO AUTTEAI XapToypageiTal EUKOAa Kal 0 ££ayOUEVOC
XapTng 0ev aAAGlel ouxvd, TIPdyda TToU KABIoOTA TTEPITTA TNV XPAon oAyopiBuwv
eCepelivnong, WIag Kai gival eEUKOAO va 0Bei pia B€0n-0TOXOG TTPIV TOV OXEOIOOHO dIadPOUnS
pE Bdon évav UPIOTAUEVO XAPTN TOU APTTEAIOU.

1.4 ZXxediaon Zuothpartog AvtiAnyng

210 TAdiola Tng TTapoucag egpyaciag dnuioupyRbnke éva cUoTnUa avTiAnwng TTAvw OTO
OTTOI0 €KTEAEOTNKOV O AAyOpIOUOI AVOKOTOOKEUNG XWPOU KaBwG Kal ol aAyoépiBuol
oxedlaopol TpoxIdG Tou eTMAEXONKav. A 10 OKOTTO autd €peuvABNKeE TO €idOG Twv
aionmpwyv TOU ouoTipaTog avtilnyng (LIDAR, Depth Cameras, Structured Light
Projectors), 1o TTAB0¢ Twv aiodnTApWY, KABWS Kal 0 TPOTTOG TOTTOBETNOTG TOUG TTAVW OTN
POUTTOTIKI TTAATQOPUA TTOU XPNOIMOTIOINONKE O€ TTEIPANOTA GE TTPOCOMOIWCN aAA& Kal O€
TIPAYHATIKO XWwpo. EKTOC auTtou, 10 ouoTtnua avtiAnwng teplAaufdver kar pia povdada
emeepyaaoiag yia Tnv €AoY NG otroiag €6eTAOTNKAV O €EAG KATNYOopPiEG: MIKPOEAEYKTEG,
YTroAoyioTég piag TAakéTag (Single Board Computers), Mini PCs kai Laptops.

1.4.1 Field of View Visualization and Lidar Resolution Analysis Tool (FoVaLiRa)

MNa tnv dieukdAuvan Tou TTPOCdIoPICHOU TOU €i60UG OAAG Kal TOU TPOTTOU TOTTOBETNONG TWV
aIoONTAPWY TOU CUCTAUATOG avTiAnwng TTAvw OTN POMTTOTIKI TTAATEOPHA avaTITUXONKE TO
epyaAeio FoValiRa pe tn BorBeia Tou Unity. To epyaleio autd XpnoiyoTrolei ray casting yia
va TTpogopoiwoel aiodntApeg Aéilep aANd kai kauepeg BdBoug. EmTpétrel Tnv €UKOAN Kai
ypryopn cUykpion TTOAwWYV S10TAgEWV € DIAPOPETIKEG POUTTOTIKEG TTAATPOPPES. Me agpopun
TN dnuioupyia Tou epyalciou emmTEUXONKE €MITTAEOV N TTPWTN @ACH TNG TTPOCONO0IWONG TOU
apTreAIoU o€ Unity.

To epyaAcio FoVaLiRa emTpéTTel TNV €l0Qywyr] OTOXWVY Ol OTToi0l OTNV TTEPITITWON HOG
€ival To TOAPTTIA TOU aUTTEAIOU. ETTITPETTEI OTTTIKOTTOINCN TNG ETTIKAAUWNG TOU OTITIKOU TTEdioU

28/156

000 1 TEPICCOTEPWY QIOONTAPWY TIAVW OTNV POMTTIOTIKN TTAAT@OPMA, KABWGS Kal Tnv
€I0aywyr TTOPAUETPWY OTTd .CSV apXeEio yia Tnv €UKOAnN TTAPAUETPOTIOINCN TNG
TTPOCON0IWOoNG.

H teAikr) diaTagn 1Tou emMAEXONKE atToTeAciTal aTTd TEOOEPIG KANEPES PABOUG Kal Evav
aio0nTpa LiDar yia emimrAéov eupwoTia. O TeAeuTaiog gival TTPOQIPETIKOG KAl TO OTITIKO TOU
medio EMKOAUTITETAI PJE TO OTITIKO TTESIO TNG UTTPOCTIVAG KAPEPAG TOU POUTTOT. H didTagn
QUTA £QAPPOOTNKE O€ TETPATTODO POUTTOT KATA TA TTEIPANATA TTPOCOMOIWONG AAAd Kal OTnNV
TTPAYMOTIKF) POUTTOTIKI TTAQTQOPUA KATA TO TTEIPAUATA OTO EQYACTHPIO.

Eikéva 1-3: To teTpdrodo poputor Lealaps Il, pe Tnv TeAIKA didTagn aiobnTApwv avriAnyng 61mwg
@aiveTal evTog Tou epyaAgiou omrTikotroinong FoValiRa.

1.4.2 Movada Emre§epyaciag

O1 UIKPOEAEYKTEG NATAV N KATNyopia TToU €EETAOTNKE TTIPWTN WG UTTOWN@IO POovAda
eTTegepyaaciag yia 1o cUoTNPA avTiAnwng TTou avatrTuxdnke. O1 PIKPOEAEYKTEG TTPOCPEPOUV
EVTUTTWOIAKN atrodoTiKOTNTA 10XU0G aAAG UuoTEPOUV ONUAVTIKA O TTOAUXPNOTIKOTNTA Kal
€UKOAia TTpoypapuaTiopou. MNa 1o Adyo auto egetdoTnkav £rTeiTa Ta Laptops kai Ta Mini PCs.
AuTEG o1 €TTIAOYEG BIETTOVTOI OTTO ONUAVTIKA TTOAUXPNOTIKOTATA KAl EUKOAIa Xpriong aAAd
UOTEPOUV ONUAVTIKA O ATTODOTIKOTNTA I0XU0G Kal BApous. AuTd 0drjynoe OTO VO £EETAOTOUV
TEAIKA oI UTTOAOYIOTEG pIag TTAaKETAG (Single Board Computers) ol o1roiol OTTwg atrodeixOnke
TTPOCQEPOUV HIO I00pPOTTIA JETAEU TTOAUXPNOTIKOTNTAG, BAPOUS Kal atTodoTIKOTNTAG I0XUOG.
AuTd Ta XOpOKTNPIOTIKA €ival Ta 18aVIKA yIa TNV €Qapuoyr) TTou EeTdfoupe oTa TTAQICIa TNG
TTapoUoag SITTAWHATIKAG EPYACiag Kal £€T01 01 UTTOAOYIOTEG WIAG TTAAKETOG ETTIAEXBNKAV yIa TN
OUVEXEID TWV TTEIPANATWY.

1.5 Avdarmrrtuén tou Vinymap yia BeAtiwpévn AVOKATOOKEUR KOl
Emlswpnon

To Vinymap ecivalr évag aAyépiBuog 1Tou avamtuxOnke yia va TTETUXEI TPEIS OTOXOUG: TN
BeAtiwon NG ToidéTNTag Twv dedopévwy point cloud tmou AauBdavovtal atrd TIG KAUEPES
BaBoug, TNV €KTiPNON TNG TTUKVOTNTAG TOU QUAAWMOTOG TWV APTTEAIWV Kal TNV TTApAywyn
€VOG OEIKTN O OTT0I0G EPUNVEUETAI EUKOAQ aTTO TOUG aypOTEG Kal, TEAOG, TNV QWTO-PEANICTIKA
OVOKATOOKEUN TOU QUTTEAWVA JE OKOTTO 0 aypoTng va £XEl éva TPIoOIA0TATO avTiypago Tou
auTTeAIOU TOU Kal va TO €MIBswpei o€ deUTEPO XPOVO.

29/156

1.5.1 Ag&ioAéynon kai BeAtiwon Moiétntag Népoug Znueiwv (point cloud)

To Vinymap emituyxdvel Tnv agloAdynon kai BeAtiwon 1moidtnTag Tou point cloud pe Tpeig
TPOTTOUG: PETPAEI T points Ta oTToia YeITvIadouv pe AiyoTepa points atrd tov péco 6po. Ta
agaipei amé 10 apxiké point cloud &i6T civar mMBavd va amorehouv B6pufo. ‘ETeita
uttoAoyiCel Tov GyKO TTOoU auTd KaTaAauBdavouv Kal TTapdayel Evav OEikTn TTou EKQPACEl TNV
apaidéTnTa Tou point cloud (sparsity index).

g =
s %

Point Cloud & Spérse)

= =

Original P

oIn!

Sparse Area (Front View)

Point Cloud & Sparse
Area in red (Top View)

Original Point Cloud (Top View)

Eikéva 1-4: EOpeon meploXwyv XaUNARg TTUKVOTNTAG OTO point cloud.

Katé deltepov evtoTiCel kevd péoa oTo point cloud. AuTo €TTITUYXAVETAI YEPICOVTAG TOV XWPO
OMOIOPOPPa HE points, agalpwvTag To apxIkd point cloud amd Tnv opoiduop®n Katavoun
points kal e@apuofovTag opening [21] oTo evatropeivav point cloud. To atrotéAeopa gival n
€EQAVION KeVWV TIEPIOXWV Tou point cloud wg véa véen. AUTEG eppnvelovTal WG
axapToyPA@NTOl XWEOI - TPUTTEG - KAl JEOW QUTWV TTaPAyYETal £vag dEiKTNG TToIOTNTAG OF
oxéon Ye Tov apiBuo Kai Tov OyKo TTou KaTaAapBavouy ol TpUTTEG 0TO apxIko point cloud.

Source Point Cloud Free_Space_Point_Cloud

t‘ PR S ¥
< T R
v § o

Holes Detected

remové large cluster
&

too small cluster:

Source Point Cloud & All_Space_Point_Cloud Holes & Large Cluster

Eikéva 1-5: AAy6piBpog e0peong KeVwYV TTEPIOXWV oTO point cloud.

Kara tpitov, 10 Vinymap xwpilel 1o apyikd point cloud oe ouotadeg (clusters) kar atrd auTég
QQAIPEl TIC OTTOPOKPUOUEVEG Kal MIKPEG 0 OYKO KOBWG autég gival Bavd va atmoteAouv
B86pupo. MapdAAnAa peTpdel Tov OyKO TTOU QUTEG KATaAauBdavouv Kal TTapdyel évav akopa
OcikTn ToI6TNTOG. ZUVvOUAlovTag Toug OEiKTEG TToU UTTOAOYioTNKAV O¢ £va TEAIKG OEikTn, TO
Vinymap 8ivel Tn duvatdtnTa AVTIKEIYEVIKNG agloAdynong Tou point cloud. MapdAAnAa, e Tig
EVEPYEIEG apaipeang Bopuou BEATIWVETAI N TTOIOTNTA TWV GPXIKWY VEQWY CNHEIWV.

30/156

Clustered Point Cloud Noise Clusters Identified

. Front View : * Front View

Initial Point Cloud

Eikéva 1-6: Evromiopog ouoTddwyv 1rou armroteAolv 86pufo.

1.5.2 EkTtignon Mukvétntag QuAAwpatog APTTEAIWV

To Vinymap emiTeAei €MITTAEOV EKTINON TNG TTUKVOTNTOG TOU QUAAWMOTOG TWV OPTTEAIWV.
AuTO emTUyXAvETOl WE TN Ouvévwon Twv dladoxikwy AaupBavouévwy point clouds
(registration) pe TN Xprion Tou aAyopiBuou KISS-ICP [22]. AkohouBei o diaxwpiopdg Tou
QUAAWPATOG e BAon To XpwHa. H diadikacia oAOKANPWVETAI PE TNV EKTIUNOTN TOU TTARPOUG
QUAAWPOTOG PEOW TNG XPAONG Twv TOTTOAOYIKWYV 18I0TATWY Twv alpha shapes [23]. H
OuOoXETION TOU TTARPOUG, YEUATOU QUAAWMOTOG WE TO KAVOVIKO QUAAwUa TTpocdidel évav
O€iKTN TNG TTUKVOTNTAG TOU QUAAWMPATOG TOU OUTTEAIOU.

FullCanopyEstimation

Al
PointCloudRegistration

Eikéva 1-7: AAyO6pIOuOG eKTIUNONG TTUKVOTNTAG QUAAWHATOG AUTTEAIWV.

1.5.3 O®wrto-peaAioTIKi) AVOKATOOKEUR AuTrEAWVA

TéAog TO Vinymap emTuyXdvel @WTO-pEAAIOTIKI) OVAKOTOOKEUN OuTTEAWvVO XApn OTn
ouyxpovn amobnikeuon EyxpwHwy eIKOVwyY padi pe Ta diadoxikd Aaufavoueva point cloud.
O1 eikdveg auTég TTPORAAOVTaI TTAVW O€ €VO AVOKATAOKEUAOWEVO TTAEYMO TTOU TTPOKUTTTEI
atmé TNV ouvévworn Twv point clouds. MNa Tnv emiteugn NG diadikaoiag auTrig aTTAITEITAI N
YVWON TWV ECWTEPIKWV KAl ECWTEPIKWV TTAPAPETPWY TNG KAPEPAS TTou Aaufdvel Ta point
cloud aAAG kai TNG €yXpwueg €IkOveS. O ahyOpIBUog autdg UTTOPE va XpnalydoTToindei kal o€
ouoTAPaTa TTou aglotrolouv éva LIDAR kai pia €yxpwun kapepa RGB.

31/156

Repeat for all Point Clouds

.....

R e R = s il 2 g
Mesh Vertices Projected on 2D RGB Image Fused Meshes & Photo-Realistic Reconstruction

Eikova 1-8: AAy6pI18pog @uTO-peaAIOTIKAG AVAKATAOKEUNG AUTTEAWVA.

1.6 MNeaipapartiki Aidragn

2€ TTPWTO OTAdIO TO TTAQICIO AOYIOUIKOU QvaTrTuxenke Pe Tn PorBeia Tou TTPOCOUOIWTH
Gazebo [24]. Ekei KaTaoKeudoTnKE Eva YnPIako avaloyo evog JIKPOU QUTTEAWVA HE IDAVIKES
OUVONRKES QWTICHOU ECWTEPIKOU XWPOU. ZTN uvéXela Aol oI aAyOpIBUol EQAapPOoTNKAY OTO
QVETTTUYMEVO oUCTNUA avTiAnwng, To oTToio avapTABNKE TTAvw € Wi POUTTOTIKA TTAATQOPUa
Kataokeuoopévn oTto EpyaoTtipio Autopatou EAEyxou. IDIaiTEPO XAPAKTNPIOTIKO TNG
POUTTOTIKNG TTAATQOPPAG QUTHG aTTOTEAEI IKaVOTNTA TNG yia KABeTN Kal opidvTia Kivnon aAAd
KAl QUTO-TTEPIOTPOPN XApn 0TOUG TPOoXoUG TUTTOU mecanum [25] TTou QEpEl.

NVIDIA Jetson AGX Orin

-

RoboClaw Motor Controllers

Sy .
|
]

Eikéva 1-9: H poptroTtiki) TAaT@Oppa kal To oUoTnua avtiAngng mwou avamtux6kav oto EpyacTtipio
AuTtopdrou EAéyyxou.

H popTtroTik autr] TTAATQOPUO €KTEAECE TTEIPAUATA OE £vaV CUVBETIKO QUTTEAWVA O
OTT0I0G KATAOKEUAOTNKE OTO idIO EPYOOTHPIO PE OKOTTO va aTToTeAE €va ToTd avTiypago
evOG TTPOYHATIKOU AUTTEAIOU AVOQOPIKA HE TA OTITIKA TOU XAPAKTNEIOTIKG aAAd Kal TIg
OI00TACEIG TOU.

32/156

’
/
/
/
/
/
/
/
/
/
/

/

K
DJIAIr 28

Eikéva 1-10: Neipapartiki didragn ouvOeTikoU apmreAwva oto EpyacTtipio Autopdrou EAéyyou.

1.7 AmoteAéopara

1.7.1 A8&ioAéynon kai BeAtiwon Moiétntag Point Cloud

ApxIKA, n agloAdynon Tou aAyopiBuou TTPayUATOTTOINONKE HPE UTTOKEIMEVIKY pEBodoAoyia.
2UyKpiBnkav Ta VvEQPN onueEiwv TTOU TTPOEPXOVTAV OTTeudeiag amd Tnv KAPEPA MPE TA
avTiOTOIXa ETTECEPYOOMEVA Kal BEATIWPEVA. TN OUVEXEID, UAOTTOINBNKE TTOCOTIKI avaAuon
TWV OTTOTEAEOPATWY, A&IOTTOILVTAG TOUG OEIKTEG agloAdynong Tou Vinymap.

2TA apPXIKA VEQN Onueiwv TTPooTEONKE TeEXVNTA BOPUBOG, HE OKOTTO va aglohoynBei n
IKavoTNTa Tou aAyopiBuou Vinymap va Tov avixveUegl Kol va TOV OTTOMOaKPUVEL. H avaAuon
emMBeRaiwoe TNV EMMITUXH avixveuon Kal aTTopdKkpuvon Tou Bopufou

1.7.2 A%ioAéynon AAyopiBuou EkTipnong Mukvotntag ®uAAwparog

Me o16x0 va agiohoynBei n amrdédoon Tou aAyopiBuou Pag yia TNV €KTiPNON TNG TTUKVOTNTOG
TOU QUAAWPATOG TwV QuUTWY, dIegnxdBnoav Treipduara o€ Ouo TepIB&AAovTa: évav
TIPOCOMUOIWKEVO KOl OUVOETIKO auTtreAwva. H TTpocopoiwon Trapeixe éva TTepiBAAAov pe
UWnAG eTTiTTedo eAéyxou, oxedov Xwpig SIOKUPAVOEIS OTNV TTUKVOTNTA TOU QUAAWMPATOG. To
TTEPIBAAANOV TOU OUVOETIKOU auTTEAIOU ATAV TTIO PEANIOTIKO, OAAG Kai TTAAI EAeyXOpEVO. ApXIKA
OoKIudoaue Tov aAyopIBuo oe TTUKvd, TEAEIO QUAAWNATA, AauBAavovTag TTOAU UWNAEG TIPEG
oToV OEIKTN TTUKVOTNTOG, OTTWG avauevoTay. ETreita dokipdoaue dU0 dIapopeTIKA aevapia: 1)
Kavoviké @PUAwpa: O aAyopiBuog eméoTpewe €vav O€iKTn TTUKVOTNTOG EVTIOG TWwV
QVAPEVOPEVWY Opiwv, CUPGWVO WE TNV OTITIKA €KTIUNONn Tou @QUAAWPaTog. 2) Apaid
@®UMwpa: H mapoucia kevwv 00rfynoe O ONUAVTIKA XaunAGTEPO O€iKTN TTUKVOTNTAG,
ETMKUPWVOVTAG TNV IKAVOTNTA TOU OAyOpiBuou va avixveUel Kal va TTOOOTIKOTTOIEI TIG
avwuaAieg TnG BAdoTnong.

210 €PYOOTHPIO, ETTAVOAGRBAPE TOUG EAEYXOUG KATW ATTO QUOIKO Kal TEXVNTO QWTIOUO.
OAeg o1 dokipég Trapeixav akpifrp kalr €oxpnoTa otroteAéopara, armmodeikvioviag Tnv
aTTAOTNTA KOl TNV OTTOTEAECUATIKOTATA TOU AAYOpPiOuouU OTnVv €KTINNON TNG TTUKVOTNTOG TOU
QUAAWATOG TWV QUTWV.

33/156

Dense,
Simulated
Canopy

Moderately
Dense
Canopy

(control)

i N e s

e T -
Eikéva 1-11: A§ioA6ynon TTukvoeTnTag UAAWHATOG. Me KOKKIVO XpWHA: KEVA OTO @UAAWUO TwV
AUTTEAWVWV.

1.7.3 AZioA6ynon AAyopiBpou PwTto-peaAioTIKAG AVOKATAOKEUNG AUTTEAWVA

O aAyopiBuog PwTo-peOAIOTIKAG AVOKATAOKEUNG APTTEAWVO OUYKPIBNKE ME TA N
eTTECEPYATUEVA DEDOUEVA VEPOUG ONUEIWY KAl TOV aAyopIBuo xapToypdenong xwpou ZED
Spatial Mapping Tng Stereolabs 6cov agopd Tnv OTITIKN TOTOTNTA KAl TOV TTAOUTO OTTITIKAG
TTANPOPOpPIag.

H dueon oulykpion pe Ta pn emegepyacpéva dedopéva point cloud oTTOKAAUTITEN TN
olapopd. Evw T1a un emeepyaopéva dedopéva TTapEXOUV HiIa BaCiKr avaTtapdoTacr, TO
OVOKATOOKEUOOPEVO TTAEYUA PAG TTPOOQEPEI PIO ONUAVTIKA TTIO EUKPIVI] ATTEIKOVION TOU
autreAwva. Ommwg @aivetal otnv Eikéva 1-12, n eTikéta April Tag mmapouciadel BeATiwpévn
EUKPIVEIO KAI TA JEUOVWHEVA OTAQUAIO JECO OTA TOAUTTIA DIAKPIVOVTAI TTIO EUKOAQ.

34/156

RGB image
(for reference)

Raw Point Cloud @
Data

ZED
Spatial
Mapping

Eikéva 1-12: ZUyKpIion TOI6TNTAG OVOKOTAOOKEUNG.

g ouykpion ME TNV UWnAAG TTOIOTNTAG QAVOKATAOKEUN TOU aAyopiBuou xaptoypdenong
xwpou ZED Spatial Mapping Tng Stereolabs 0TI uwnAdTEPEG pubuicelc Tou, n
OVAKOTOOKEUN pag avadelkvUETal wg N avwTtepn Auon. H 1Tpooéyyion TpoBoAig eikévag o€
TTAEYHa dnuioupyei TTAEyUAT JE ONUAVTIKA PEYAAUTEPN OTITIKA AETTTOUEPEIA, ETTITPETTOVTOG
OTOUG aypOTEG Va ETTIBEWPNOOUV PE PEYOAUTEPN Aveon PePOVwUEVA QUAAA Kal OTagUAIQ.
Autil n BeATiwpévn u@n OlEUKOAUVEL TN AAWN TTIO EVNUEPWHEVWY ATTOPACEWY CTNV
OTTOPAKPUOUEVN YEwpyia akpieiag.

1.8 Zuptrepdaopata kai MeAAovTikn Epyacia

H mapouca &immAwpuaTikr epyacia Trapouciadel €va véo TTAqiclo yia Tnv TpIodidoTaTn
QVAKOTOOKEUN Kal avaAuon autreAwvwy. EEeTdlovrag Tnv TPooEyyior auTr) 0€ CUVOETIKO
QUTTEAWVA, €TTEUXONKE BeATiwpévn TTAOAYNON MHE OTTIKA OOOMETPIA PECW ETIKETWV
AprilTags kai oTITIKAG euBuypdauuIong TTpIV TNV évapén BEATIOTOTTOINONG KAEICiuaTog Bpoxou.
Mpoékuwe TTI0 €UKPIVh TPIOBIAOTATN AVOKOTOOKEUR QUTTEAWVO o€ OUyKpiIon ME TNV
TTpooéyyion xaptoypapnong xwpou ZED (ZED Spatial Mapping). Avamtuxbnke €TTiong pia
oAokAnpwuévn AUon €TTIBEWPNONG TTOU EVOWMATWVEI TTPOCEYYIoEIG oXeOIOoUOoU dIadPOUnS
ME Bdon Tnv amoouvBeon TTOAUTOTTWY, MO PEBOSO e@apUOlOPEVN YIa TTPWTN QPOPA OF
TIPAYMATIKA POUTTIOTIKN TTAAT@OpHa. To cloTnua avriAnwng TTPOCAPUOOTNKE EIBIKA OTNnV

35/156

epapuoyn pag pe TN BonBeia tou FoVaLiRA, evdg epyalsiou avaiuong trediou dpaong Kal
avaAuong LiDar kai kapepwy BaBoug, avatrtuyuévo oto Unity.

Koirdfovtag Tpog 1O MPEANOV, N evOwpdtwon TeXVoAoyiwv Babidg pddnong kai
QUTOMOTOTTOINUEVWY TEXVIKWY avdAuong Ba ptropolcoe va emITPEWEl TTOAUTTAOKESG £PYACTiES
emMBewpnong, OTwG n avixveuon acBevelwv 1 n €monuavon moéavwy Kivouvwy Yia
TEPAITEPW €EETAON ATTO TOV OIVOTTOIO. ETTITTAéOV, N €1TEKTACN TNG AUTOVOUNG £TMIBEWPNONG
Ba ptropouce va odnynoel oc TTARPN KAAUWN Kal TTaOPaKOAoUBNoN Tou aUTTEAWVA, XWPIG va
atraitouvTal TrpokaBopicuéva onueia évapeng kal AnEng diadpopng. Maotevoupe woTdoo OTI
auTtd 1O TTAQiOI0 atToTeAEl Eva IoXUPO TTPWTO Brua TTPOG Pia oAokAnpwuévn Auon yia Tnv
YeEwpyia akpIBeiag o auTTEAWVEG.

36/156

2 Introduction

2.1 Motivation

The agricultural sector is facing numerous challenges, including climate change, resource
scarcity, and the need to increase productivity while minimizing environmental impact.
Traditional agricultural practices often rely on manual observation and data collection, which
can be time-consuming, labor-intensive, and error prone. This limits farmers' ability to make
informed decisions and optimize crop vyields. 3D reconstruction technology offers a
transformative solution to these challenges; measuring crop height, canopy density, and
other phenotypic parameters, as well as detecting weeds and mapping field topography and
soil conditions are only some of the possibilities.

The Legged Robots Team of the Control Systems Lab (CSL) in NTUA has designed
and manufactured quadruped robots which utilize sophisticated and in-house-developed
mechanical and electrical subsystems. Lealaps Il and its successor, Argos, are two optimally
designed quadruped robots, well suited for agricultural use. They were lacking, however, a
robotic perception system which would empower them to perceive, understand, and interact
with their surroundings autonomously.

The objective of the present thesis is to design and implement a perception system for
agriculture quadruped robots with 3D reconstruction of vineyards as the main focus. The
design considers both software and hardware. It features a novel spatial mapping algorithm
which preserves the visual detail required for a reconstruction to be useful for crop and field
analysis. A navigation and path-planning stack which enables the robot to traverse a real-life
vineyard effectively and safely is also proposed in this work. It utilizes a state-of-the-art
Model Predictive Control (MPC) planner, an in-house dual-camera visual odometry algorithm
and a robust PID trajectory tracking controller. A thorough review of relevant literature is
crucial for narrowing down design decisions.

2.2 Literature Review

2.2.1 Agriculture Robots

Human population has grown rapidly in recent years and will continue to do so for several
more. The need for food is a global concern for governments and scientists. However, the
way to increase food production should not be to expand cultivated land at the expense of
forests, but to increase the productivity of the soil and plants that are already established. As
a result, the interest in Agriculture Robots has been increasing the last few years.

There are three main factors that heavily influence the design of agriculture robots and
differentiate it from the design of other task-specific robots: agriculture-specific navigation,
agriculture-specific image processing and Handling Rough Terrain [26]. Focusing on these
aspects, researchers have come up with various solutions in the recent past.

The authors in [27] have designed a wheeled robotic platform which utilizes a
monocular downward facing RGB camera primarily used for classification of crop and weed
plants and for visual odometry. The robot uses machine vision to detect weeds within the
crop rows and treats the weeds by high precision drop-on-demand application of herbicide.

37/156

Researchers in [28] have developed the VineRobot, a multi-million euro project robot
designed to autonomously and non-intrusively traverse vineyards utilizing ultrasonic sensors
and RGB camera visual feedback, while providing the farmers with useable real time data
regarding the state of the vineyard it explores. The authors in [29] have developed an
autonomous pruning robot. Their pruning setup consists of a Universal Robots UR5e robot
mounted on a linear axis. The end effector consists of a set of electric bypass pruners along
with a RealSense D435 RGBD camera. For field trials, the robot was installed on the back of
a remote-controlled utility vehicle and powered with a portable generator.

It is evident that the world of agriculture is complex enough to allow for the development
of a large variety of robotic solutions that differ according to the problem that they are called
to solve. The present thesis focuses on the mediterranean vineyard, which is often
characterized by mountainous and rocky terrain, unsymmetrical rows as well as erratic
canopy at the late vegetative state. The mobility advantage and agility that a legged robot
presents cannot be replicated by a simple wheel layout. This is one of the reasons why legs
are the main locomotion mechanism in nature and the reason why the perception system
described in this work is mounted on and designed for a quadruped robot. Finally, the rich
and irregular canopy of vine trees calls for innovative machine vision solutions.

C AR LA
Realsense!D435)

RGB-D Camera

e .
et ECTTICIBYDASS

— Pruners

(d)

Figure 2-1: Robots designed for various agricultural Tasks.
(a) wheeled weed detection robot designed by the authors in [27]
(b) VineRobot (c) pruning robot designed by the authors in [29]
(d) Lealaps Il quadruped robot designed at CSL NTUA.

38/156

2.2.2 Path Planning

Although path planning has been studied extensively for applications in indoor
environments, there is still much room for development and research for optimization in
agricultural environments. In fact, most recent relative research has focused on Coverage
Path Planning (CPP) algorithms [30]; these solve the problem of determining a path that
passes over all points of an area or volume while avoiding obstacles [31]. Point-to-point path
planning i.e.: determining an optimal and collision-free path from a starting point to a
destination point, which is more useful in precision agriculture applications, is not as
common in the literature. There are, however, several interesting publications.

Recently, researchers have designed a path planning and obstacle avoidance package
which enables their custom rover to either move along the middle of a row of a mountainous
vineyard or move through a row according a received path line [32]. To achieve this, their
software represents three-dimensional space as a two-dimensional occupancy gird map i.e.
a grid where cells with obstacles are labeled as occupied. This map is then heuristically
subdivided into regions based on the robot’s maneuvering capability and fed into a decision-
making algorithm. This is a simple and effective approach. The software, however, is closely
linked to the robot’'s kinematic characteristics and cannot be generalized. In a more recent
work researchers introduce a new path planning algorithm that utilizes a topological map
and extends the A* search based planning algorithm , to ensure a safe path and a maximum
distance from the vine trees of a steep slope vineyard [33].

The authors in [34] propose a hybrid Voronoi-based ant colony optimization (V-ACO)

path planning algorithm to solve an adaptive ocean sampling problem. Ant Colony
Optimization is a metaheuristic algorithm inspired by the foraging behavior of ants. Ants
communicate with each other by laying down pheromone trails, which they use to guide
others to food sources. ACO algorithms use this same concept to search for solutions to
optimization problems.
The algorithm works by having a population of artificial ants, each of which starts at a
random location in the search space. The ants then follow a probabilistic path through the
search space, using pheromone trails to guide their way. The pheromone trails evaporate
over time, so the ants are more likely to follow trails that have been recently laid. If a
simulated ant finds a short path to the target, it will execute more routes to and from the
target. Thus, the short path will have less evaporated pheromones than other paths and will
be preferred as closer to optimal. The Voronoi based scheme utilizes Voronoi partition to
highlight high interest areas. The V-ACO algorithm could be altered to suit an agricultural
setting, although vineyards have a distinct and special topology of corridors and rows that
this scheme does not capitalize on.

Finally, machine learning is often used as a solution to path planning problems that
involve multiple agents or take place in complex, dynamic environments. The authors in [35]
present deep reinforcement learning as a framework to model the complex interactions and
cooperation required by robots that navigate among pedestrians. They utilize an LSTM
neural network that enables the algorithm to use observations of an arbitrary number of
agents. The algorithm learns collision avoidance among a variety of types of dynamic agents
without assuming they follow any particular behavior rules. The authors in [36] propose a
Bezier curve based approach for the path planning in a dynamic field using a Modified
Genetic Algorithm (MGA). The robot's path is dynamically decided based on the obstacles’
locations. With the goal of optimizing the distance between the start point and the target

39/156

point, the MGA is employed to search for the most suitable points as the control points of the
Bezier curve. Using the chosen control points, the optimum smooth path that minimizes the
total distance between the start and the end points is selected.

Ant Colony Optimization

Figure 2-2: Path planning strategies.
(a) Ant Colony Optimization Visualized [34] (b) Local occupation grid map generated in [30]. On the left
sensor observation, on the right the produced grid map.

2.2.3 SLAM and 3D reconstruction

Simultaneous Localization and Mapping (SLAM), as the name implies, is the problem of
simultaneously estimating a robot's position and the 3D structure of the environment it is
traversing. 3D reconstruction, on the other hand, focuses solely on building a detailed 3D
representation of the scene, independently of the robot's motion. Most active SLAM
approaches provide estimations of the environment in the form of geometric representations
(e.g., OG maps, Octomaps). However, when we explore new environments as humans, we
are not just interested in the shape of the environment, but also in the textures and materials
of the world around us, as well as in semantic elements of the environment (e.g., presence
of objects, rooms) [37]. Achieving SLAM while capturing high- and low-level semantics is
commonly referred to as Spatial Perception or Spatial Mapping. In this case, 3D space is
represented as a 3D mesh or a 3D point cloud. Determining the quality of the representation
is of outmost importance, especially for agricultural applications, where the output data must
be reliable enough to aid with tasks such as crop inspection.

Point Cloud Quality Assessment

Point cloud quality assessment (PCQA) is a crucial task for evaluating the integrity and
usability of point clouds, which are collections of data points that represent three-
dimensional objects or environments. PCQA metrics aim to quantify the degradation or
distortion introduced during acquisition, processing, compression, transmission, or rendering
processes. This information is essential for optimizing point cloud processing algorithms,
ensuring data consistency, and maintaining visual quality for applications in various
domains. Two main categories of PCQA metrics exist: full-reference (FR) and no-reference
(NR).

FR metrics require access to a reference point cloud of the same scene or object to
compare with the distorted version. The reference point clouds are usually of very high

40/156

quality and together formulate a dataset that is considered a ground truth dataset. The
ground truth dataset can be synthetic as in [38] and [39], or include point clouds that are
captured with a high quality and expensive scanner as in [40] [41].

NR metrics, on the other hand, operate solely on the distorted point cloud itself, making
them more versatile for applications where reliable reference point clouds data may not be
readily available [42]. Recent advancements in PCQA have focused on learning-based
approaches, which utilize deep neural networks to extract discriminative features from point
clouds and predict quality scores. These methods have shown promising results in capturing
subtle distortions and generalizing to diverse datasets [43] [44]. Simpler NR quality metrics
like point cloud density, point confidence and Local outlier factor (LOF) [45] [46], as well as
mathematical methods [47] have also been used successfully throughout literature.

There is yet another common method of assessing 3D point cloud quality: Subjective
point cloud quality assessment. Humans visually review and effectively assign quality scores
to 3D data. Occlusions, unregistered objects and visible distortion in the reviewed point
cloud or mesh are often mentioned [48] [49]. Subjective point cloud quality assessment is
often used to evaluate objective quality assessment metrics [50].

Canopy Quality Assessment

The quest to objectively assess canopy quality and predict crop yield has long
enthralled precision agriculture researchers. Early efforts relied on laborious and destructive
chemical processes like leaf nitrogen analysis [51], offering limited insights and heavily
impacting plant health.

As technology evolved, non-destructive alternatives emerged. Hyperspectral imaging
[52], while promising, brought its own challenges: complexity, expensive equipment, and
specific technical knowledge requirements from the farmers.

Recently, computer vision techniques have gained popularity [53], offering optical
assessment methods with potential for real-time insights. Approaches like machine learning-
based leaf area estimation are effective [54], but often wrestle with training data
requirements, computational demands, and susceptibility to varying lighting and weather
conditions, potentially hindering their practical application.

Our approach in Vinymap sought a different path. Driven by the need for simplicity, real-
time applicability, and robustness under diverse environmental conditions, we designed a
canopy assessment algorithm that is non-destructive, preserving precious vine health for
optimal yield, simple, real-time viable and robust, performing reliably across diverse lighting
conditions.

Spatial Mapping

Spatial mapping or 3D reconstruction is the ability to create a digital representation of
physical space while maintaining semantic information. The three most common methods to
achieve 3D reconstruction are Structure from Motion (SfM), Stereopsis and Light Detection
and Ranging (LiDar) [55]. The implementation of each method, however, presents great
diversity in the literature and depends on the purpose for which spatial mapping is used, but
also on the hardware and computational power that is available.

Researchers in [49] leverage 2D thermal images to reconstruct 3D buildings using SfM.
They create point clouds from RGB images and thermal images separately and then

41/156

successfully align them to create a high-resolution output point cloud. The authors in [48]
utilize the COLMAP pipeline [56] [57] and propose a novel view planning method effectively
deciding the placement of a set of available RGB cameras in the 3D space in order to
optimally reconstruct noisy 3D corn plants using SfM.

Recently, a novel scene representation based on Gaussian splatting [9] has been
shown to deliver on-par or even better rendering and reconstruction performance than other
state-of-the-art reconstruction methods. Researchers in [58] and the authors in [59] have
used this representation to implement monocular camera SLAM frameworks that achieve
impressive performance in camera pose estimation, map construction, and novel-view
synthesis, while allowing real-time rendering of a high-resolution dense 3D map.

3D reconstruction using Stereo cameras and LiDars is also frequently encountered in
the literature and has established its position in this research field in recent years. The
authors in [60] propose a fusion of LiDar and Stereo camera data to effectively map 3D
space without missing out on texture or volumetric details. The authors in [61] recently
proposed a feature-based approach that enables fast and dense mapping of crop fields
observed by a vehicle-mounted stereo camera. They leveraged Bayesian inference to tackle
the feature matching ambiguity problem that is common in crop field mapping where
uncertainties due to repetitive textures and uneven lighting are induced.

(@) (b)
Figure 2-3: (a) Subjective quality assessment of a point cloud of a plant [40]. Left: parts of plant have not

been reconstructed. Right: view planning improves reconstruction.
(b) Depth Camera on a combine harvester machine [62].

42/156

3 Reconstruction Software

3.1 SLAM

3.1.1 Localization

Robot localization, a fundamental aspect of robotics, refers to the process of determining a
robot's position and orientation (pose) within a specified, known environment. With an
accurate map of the environment, the robot can utilize sensor measurements (observations)
to acquire knowledge about its distance from objects around it (landmarks) and use this
knowledge to estimate its position and orientation in the known map. Sensors include
cameras, lasers, and inertial measurement units (IMUs) which gather information about the
robot's surroundings, while the map serves as a reference frame for interpreting these
sensory inputs.

Sensor Measurements
AL

=

ap Coordinate Framé

Figure 3-1: Robotic Platform Localization Illustration.

Conventional robot localization techniques often employ a probabilistic approach, where the
robot's location is represented by a probability distribution, capturing the uncertainty inherent
in sensor measurements. This probabilistic framework allows the robot to continuously refine
its estimate of its position as it acquires new sensory data, ensuring robustness against
noise and errors. Various localization algorithms have been developed, each tailored to
specific sensor modalities and environmental conditions. For instance, visual odometry,
relying on camera imagery, excels in indoor environments, while laser-based techniques are
well-suited for outdoor scenarios due to range superiority [63].

43/156

The success of robot localization hinges on the accuracy and reliability of both sensor
data and the underlying map representation. Sensor noise and environmental clutter can
introduce significant challenges, requiring robust algorithms and filtering techniques to
mitigate these effects. Moreover, the map itself must be adequately detailed and up to date
with the environment it represents, in order to provide accurate localization information. As
robotics technology advances, the pursuit of more efficient, accurate, and robust localization
algorithms remains a critical area of research, paving the way for increasingly sophisticated
autonomous robots capable of navigating complex and dynamic environments.

3.1.2 Mapping

In the context of robotics, mapping refers to the process of creating a comprehensive
representation of an environment, typically represented as a 2D or 3D map. This
representation, often referred to as a reconstruction, captures the spatial layout, objects, and
other relevant features of the surroundings. Mapping is a fundamental capability for robots to
navigate and operate autonomously in their environment. By constructing a map, a robot can
gain a detailed understanding of its surroundings, enabling it to perform tasks such as path
planning, object recognition and manipulation and environmental monitoring.

[\ T,y

V4
A"'Y"nal

ReStang,,

Upper confidence bound

Estimated terrain
Lower confidence bound

Stereo camera
field of fiew

Confidence interval

Ocm 25 cm

Figure 3-2: ANYmal robot mapping terrain (staircase) using a stereo camera [64].

Making a 2D or 3D reconstruction of the surrounding environment works a lot like connecting
pieces of a puzzle; the robot gathers information about its surroundings using its sensors
and saves that information in an appropriate file format. It then moves and repeats this
process to acquire new data. Provided that it knows its position and orientation in space at
any given time, i.e. it always successfully localizes itself in the environment, then it can
create a map of its surroundings by appropriately stitching the newly acquired information, at
its new pose, with its older representation of the environment.

44/156

3.1.3 SLAM

As discussed in sections 2.1.1 and 2.1.1, for a robot to successfully perform localization, an
accurate map of the environment must be available. In addition, for a robot to successfully
perform mapping of the environment, it must be successfully localized in it. Enabling a robot
to perform both of these tasks simultaneously appears at first glance like a chicken-and-egg
problem. SLAM stands for Simultaneous Localization and Mapping. It is the name for the
solution to this very problem. It is a fundamental technique in robotics that allows a robot to
build a map of its surroundings while simultaneously determining its own location within that
map. This capability is essential for robots to operate autonomously in unknown
environments without the need for a-priori information about the trajectory they are following
or a priorly constructed map of their surroundings.

Occupancy Map

Occupancy Grid Map Built Using Lidar SLAM

Y [meters]

40

Z [meters]
(=]

Y [meters]

%0 40
X [meters] 50

X [meters]

Figure 3-3: 2D and 3D Occupancy Grid Maps built using 2D and 3D Lidar SLAM utilizing MATLAB's
Navigation Toolbox [65].

The key to performing SLAM is the knowledge of the relationship between two consecutive
poses of a moving robot. This is otherwise known as odometry. The robot gathers
information about its surroundings using its sensors and saves that information in an
appropriate file format. It then moves and repeats this process to acquire new data. The
robot does not know its position and orientation in space at the time of gathering the old or
the new data; absolute localization is not a given. It estimates, however, its motion
(transformation) from the old to the new pose. Then it can create a map of its surroundings
by appropriately stitching the newly acquired information, at its new pose, with the
information gathered at its old pose. There are a lot of ways to estimate the transformation
from a previous to a new pose (odometry estimation). Odometry estimation is commonly
achieved in the following ways:

o Wheel odometry: This method relies on measuring the rotation of the robot's wheels. The
robot's position and orientation can then be estimated by tracking the cumulative rotation
of each wheel.

¢ Inertial odometry: This method uses an inertial measurement unit (IMU) to measure the
robot's acceleration and angular velocity. The robot's position and orientation can then
be estimated by integrating these measurements over time.

¢ Visual odometry uses a camera to track features in the environment. The robot's position
and orientation can then be estimated by matching the features in the camera's images
to landmarks in the map.

45/156

e Laser odometry uses a laser scanner to measure distances to surrounding objects. The
robot's position and orientation can then be estimated by tracking the changes in the
laser scans over time.

Wheel odometry is a simple and reliable method that is well-suited for robots that have

wheels or tracks. However, it is susceptible to errors due to wheel slippage and non-

linearities in the robot's motion. Inertial odometry is a more accurate method that is not
affected by wheel slippage. However, it is also prone to errors due to drift, which is the
accumulation of IMU measurement errors over time. Visual and Laser odometry accuracy
results are largely dependent on the amount of complexity of the environment of the robot,

i.e. the amount of features or the shape variability of the surrounding space. To improve the

accuracy of odometry estimation the above methods are often combined and statistically

reinforce the total odometry accuracy with the usage of Kallman Filters.

3.1.4 VSLAM

Visual simultaneous localization and mapping (vSLAM) is a type of SLAM that utilizes visual
data, typically from cameras, to determine the robot's position and orientation within an
environment (visual odometry), while simultaneously building a map of that environment.
build a map of an environment while simultaneously. VSLAM algorithms typically involve
three main components:

o Feature extraction: This involves identifying and extracting distinctive features from the
camera images. These features can be points, lines, or other geometric shapes or
structures that are relatively invariant to changes in lighting and viewpoint.

e Correspondence matching: This involves matching features from subsequent images to
features in the existing map. This is typically done by calculating the distance or angle
between features in different images.

e Optical flow and ego-motion estimation: Optical flow, is the pattern of apparent motion of
features in a visual scene caused by the relative motion between an observer and a
scene. Optical flow can be used to estimate ego-motion. Ego-motion, in the field of
computer vision, refers to estimating a camera's motion relative to a rigid scene [66]. An
example of ego-motion estimation would be estimating a car's moving position relative to
lines on the road or street signs being observed from the car itself.

VSLAM algorithms face several challenges, including:

¢ lllumination variations. Changes in lighting can make it difficult to extract features and
match them across images.

e Occlusions: Objects in the environment can block the view of features, making it difficult
to track enough of them to accurately estimate ego-motion.

e Sensor noise: Image sensors are not perfect -especially in low-light conditions- and their
measurements can contain noise that can corrupt the localization estimates and
accumulate over time.

Loop Closure

Loop closure is a crucial aspect of Simultaneous Localization and Mapping (SLAM) that
refers to the ability of a robot to recognize previously visited places and use this knowledge
to improve its localization and map estimation. This mechanism plays a critical role in

46/156

correcting the accumulated errors in the robot's pose estimation and ensuring the accuracy
of the map. Without loop closure, the robot's pose estimation would gradually drift away from
its actual position due to the accumulation of odometry errors. With loop closure, the robot
identifies a location in space, usually by saving special visual features characteristic to this
location. If it detects these features again while it is moving, then it assumes that it is in that
location once more. If the odometry data state otherwise, then they are corrected
accordingly and recursively along the whole trajectory of the robot. This correction is known
as bundle adjustment.

Estimated pose

* loop closure correction

@ Real pose
///
5

Figure 3-4: Loop Closure lllustration.

Saving visual features for a specific location in the scene and assuming they are unique to
this location is not a faultless assumption. The problem that arises is called perceptual
aliasing. This occurs when two different places can be perceived as the same. For example,
in a texture-wise monotonous and empty building, it is nearly impossible to determine a
location solely with the visual information, because all the corridors or rooms may look the
same [67]. In that case, a lot of false-positive loop closure detections would disrupt the
odometry data.

Multi-Camera Visual SLAM For Vineyard Inspection

A novel approach to enhancing the robustness of vSLAM has been developed in CSL,
specifically tailored for vineyard inspection applications [68]. The proposed VSLAM method
utilizes multiple cameras which increases the available Field of View (FoV) resulting in more
features available to track. Moreover, in situations in which one or more of the cameras is
obscured by the sun or leaves, the other cameras will still be able to identify useful features
in the environment and thus the visual odometry estimation will not be hindered.

47/156

(a) (b)
Figure 3-5: (a) One camera's lenses are obstructed resulting in very low number of detected features.
(b) A different camera is not obstructed and continues to produce accurate visual odometry [17].

The proposed approach offers yet another novelty to add more robustness to VSLAM: It
does not utilize visual features to detect loop closures, as in vineyards, the crop is organized
in parallel rows and agricultural robots move in the open corridors between them. There, a
purely feature based approach would result in incorrect loop detection due to the high
similarity between images (perceptual aliasing). Instead, the developed method leverages
AprilTags, which are placed in fixed positions in the vineyard in order to assist with loop
closure detection.

AprilTags are a type of fiducial marker, similar to QR codes [69]. AprilTag markers can
be easily printed and embedded in any environment. The open-source AprilTag detection
software accurately determines the 3D location and orientation of each marker relative to the
camera, as well as its unique identifier. The AprilTag library is written in C and requires no
external libraries. It is designed to be seamlessly integrated into existing applications and
can run efficiently on embedded devices. AprilTags are designed to encode far smaller data
payloads than QR codes (between 4 and 12 bits), allowing them to be detected more
robustly and from longer ranges. They are also designed for high localization accuracy,
unlike QR codes which are mainly designed for saving data in a visual format.

208

T

Figure 3-6: April Tags used for research purposes in April Laboratory, University of Michigan [69].

48/156

A robot that uses Multi-Camera Visual SLAM For Vineyard Inspection will assume that it has
reached a position that it has also visited in the past only if it registers an AprilTag for the
second time. Knowing its relative position to the AprilTag using the respective open-source
code, while also knowing the fixed positions of all the AprilTags inside the vineyard allows
the robot to accurately re-localize and perform bundle adjustment every time it sees an
AprilTag, instead of relying on loop closure detection based on visual features.

3.2 SOTA Packages

3.21 RTAB-Map

RTAB-Map (Real-Time Appearance-Based Mapping) is a state-of-the-art graph-based
Simultaneous Localization and Mapping (SLAM) algorithm that utilizes RGB-D, stereo, and
lidar data to construct a comprehensive representation of an environment in real-time [12].
Its core strength lies in its efficient loop closure detection mechanism, which effectively
identifies previously visited locations and integrates them into the evolving map.

Loop closure Detector

The loop closure detector in RTAB-Map uses a bag-of-words (BoW) approach to determine
how likely it is that a new image comes from a previously visited location. That means that
each newly acquired image is dissected into so-called visual words. This is similar to how a
text can be dissected into words. For example, in the common classification problem of
labeling an email as spam or not spam, each email can be parsed into words. Building a
histogram of the frequency of the appearance of each word in the mail and checking if
spam-related words appear often can very accurately lead to a characterization of the mail
as spam or not spam. For instance, if the word “money” appeared more frequently in the
reviewed mail than in an average non-spam email, then the likelihood that the reviewed mail
is spam is increased. Similarly, RTAB-Map parses each new acquired image frame into
small homogenous pieces known as visual words. It creates a Bag of Words. It then
compares the BoW from the newly acquired frame to older BoWw which are saved in a
constantly updating database of Bags. If the newly acquired BoW consists of similar visual
words to a previously saved BoW, then RTAB-Map concludes that the new image comes
from a location that has been visited before. This is known as accepting a loop closure
hypothesis. When a loop closure hypothesis is accepted, a graph-based optimization is
performed.

Graph-based optimization loop closure is a commonly used approach that represents
the robot's trajectory as a connected graph, where nodes represent poses and edges
represent constraints between poses. This graph-based representation allows for efficient
and robust loop closure detection and correction. Pose graph optimization involves refining
the poses of all nodes in the graph to minimize the overall error in the odometry data. This
process considers the constraints between poses, including odometry measurements and
loop closure constraints. Upon accepting a loop closure hypothesis, RTAB-Map adds a new
constraint to the odometry data and the map’s graph, then a graph optimizer minimizes the
errors in the map.

Performance and Integration

49/156

A memory management approach is used to limit the number of locations used for loop
closure detection and graph optimization, so that real-time constraints on large-scale
environments are always respected. This mainly involves map caching and map pruning
[70]. Map caching is the method of storing frequently accessed map elements, such as
poses and landmarks, in a separate cache memory. This reduces the need to repeatedly
load these elements from disk, which can significantly improve performance. Map pruning
involves periodically removing less relevant map elements, such as old poses or landmarks
that are no longer considered important. This helps to keep the map size manageable and
free up memory for new data.

RTAB-Map’s algorithmic pipeline ensures consistent and accurate localization even in
complex and dynamic environments. Its versatility extends beyond indoor mapping, as it can
effectively handle outdoor environments with varying lighting conditions and challenging
terrains. Its open-source nature and modular architecture make it a valuable tool for
researchers and developers in robotics, autonomous vehicles, and augmented reality.
Recently, a version of the package for iOS devices has been released and produces high
guality results paving the way for wider commercial use of the software [12].

' Real-Time Appearance-Based Mapping

Figure 3-7: A 3D map of an office building constructed with RTAB-Map iOS application [12].

3.2.2 Robot-Centric Elevation Mapping

Robot-Centric Elevation Mapping (RCEMapping) is a ROS package developed by Anybotics
as part of ANYmal Research [13]. The mapping process involves fusing range
measurements from a sensor, such as a laser or structured light scanner, with the robot's
pose estimation, typically obtained from an inertial measurement unit (IMU) and odometry.
The integration of range data and pose information enables the construction of a consistent
and reliable elevation map of the terrain around the robot.

Robot-Centric Approach

50/156

RCEMapping adopts a robot-centric perspective, constructing a local elevation map
centered around the robot. This approach aligns with the inherent limitations of onboard
sensors, ensuring that the map reflects the robot's direct field of view and the associated
pose uncertainty. Namely, at any time, the robot-centric elevation map is a local
representation of the surrounding terrain, meaning that the observed regions close to the
robot - which have the highest accuracy — are registered in the map, while older, previously
seen parts of the map are considered inaccurate and are deleted. Thus, uncertainty that is
aggregated through the motion of the robot due to sensor noise does not result in an
accumulated drift of the pose of the constructed map.

2.5D Mapping

The core data structure that RCEMapping utilizes is a voxel grid, which partitions the
mapping environment into a regular grid of voxels. Each voxel represents a small volume of
space, and its occupancy is determined based on the accumulated range measurements
from the robot's sensor. To further manage the uncertainty associated with range
measurements and pose estimation, RCEMapping employs a probabilistic voxel
representation. Each voxel is assigned a probability distribution reflecting the likelihood of
different terrain heights at that location. This probabilistic representation enables
RCEMapping to provide meaningful estimates of terrain elevation and its associated
uncertainty. To make the algorithm more computationally efficient, the OctoMap 3D
occupancy mapping library which implements an octree data representation is utilized [71].

Importantly, the map constructed with Anybotics Elevation Mapping is not a 3D map of
the environment, but rather a 2.5D map (two-and-a-half dimensional, alternatively pseudo-
3D or three-quarter map): For every point in the plane on which the robot moves, the
elevation of this point is saved and the result is plotted in 3D space. This simplifies the data
but also creates problems with modelling multiple surfaces that are stacked along the z-axis.
For example, if an obstacle object is placed 2 meters over a point in the robot’s field of view,
then the software will assume that the elevation at that specific area is equal to the height at
which this object is. It is however possible that there is enough room under the obstacle for
the robot to pass through. Nevertheless, this software will render the area under the obstacle
as part of the obstacle itself.

To demonstrate the above issue, a floating horizontal platform was placed in front of a
turtlebot robot in a simulated demo of RCEMapping. There was enough space under the
platform for the simulated robot to get through as can be seen in figure 20. However, in the
elevation map the floating platform was interpreted as ground elevation and therefore as a
high obstacle.

51/156

(a) (b)

Figure 3-8: (a) A floating platform in Gazebo. (b) The elevation map constructed with RCEMapping.

Dynamic map adjustment

It is worth mentioning that the map can also adapt to dynamic environments. Namely, the
map remains consistent even if objects inside the mapped environment are being moved
during the mapping process. To achieve this, a visibility check is performed using ray
tracing. Virtual rays are casted from the robot’s sensors towards the environment. A visibility
map is constructed from the points that are collected from the collision of the rays with the
surface constructed from the height measurements. This map reflects the maximal height
that each cell can have based on the visibility constraint. Namely, if a cell is registered as
being high enough to block the sensor’s visibility, but the visibility is not being blocked, then
that cell violates the visibility constraint and is removed. As this visibility check is
computationally intensive, it is only performed at a lower rate (e.g., 1 Hz).

Sensor
measurement rays

Removed by
visibility check

Moved
obstacle

Updated to
new values

Figure 3-9: A rectangular obstacle was moved from right to left. The visibility is checked with ray tracing
and the previous map (red) is accordingly updated resulting in an updated map (blue) [13].

52/156

3.2.3 Gradslam

Gradslam emerges as a novel approach to SLAM by employing differentiable optimization
techniques, aiming to enable the integration of deep learning into the SLAM process. This
change opens up new avenues for improving SLAM performance and adaptability.

In conventional SLAM systems, the mapping and pose estimation processes are
typically decoupled, relying on individual algorithms for each task. This separation limits the
ability to optimize both processes simultaneously and hinders the integration of deep
learning techniques. Gradslam breaks down this barrier by representing the entire SLAM
pipeline as a differentiable computational graph. This allows gradients to flow from the
outputs of the system (map, trajectory) back to the inputs (raw sensor data, parameters,
calibration, etc.), enabling the optimization of both mapping and pose estimation using
gradient-based methods [14].

[1atas) = utatatn= v K. o). KO | =

L L

Jacobian I—-|:|

(a) Differentiable Visual Odometry

- (e @ i @

8 A@ A\ E /\

../

Iy (d) Ray differentials

soft association exp — i’g}li)]—‘[updau surface measurement]
l
Pratid

(b) Differentiable Nonlinear least-squares (¢) Differentiable Dense Mapping

Figure 3-10: Gradslam provides differentiable building blocks for simultaneous localization and mapping
(SLAM) systems. The four main blocks it offers are Differentiable Visual Odometry,
Differentiable Registration using least-squares, Differentiable Mapping and Ray
differentials [14].

Gradslam performs similarly to other state-of-the-art dense mapping algorithms, while
offering enhanced flexibility by allowing the integration of various deep learning architectures
and loss functions. However, the current implementation of dense SLAM in Gradslam
requires a large amount of memory to store the produced computational graph. For instance,
running the KinectFusion algorithm with a voxel resolution of 128 x 128 x 128 consumes
approximately 6GB of GPU memory. This memory consumption significantly limits the size
of scenes that can be reconstructed within this framework. The team that designed
Gradslam [14], are currently working on improving the memory efficiency of this
implementation. Additionally, they are developing more robust filters for various stages of the
pipeline, such as Iterative Closest Point (ICP) registration, photometric warping, and
optimization routines.

53/156

Figure 3-11: Small office scene reconstructed using Gradslam [14].

3.2.4 Zed Spatial Mapping

ZED cameras, developed by Stereolabs, are renowned for their ability to capture high-quality
3D data and perform real-time spatial mapping. Zed spatial mapping is the dedicated
software developed to optimally perform SLAM by fully utilizing the camera hardware. At the
heart of Stereolabs’ technology lies a combination of stereo vision and inertial measurement
unit (IMU) data [72].

(a) (b)

Figure 3-12: Mesh Generation (a) and Point Cloud Generation (b) with ZED Spatial Mapping.
Visual-Inertial Odometry

Visual-inertial odometry (VIO) is a technique for determining the precise position and
movement of an agent, such as an aerial or ground robot, without relying on GPS or lidar. It
leverages the combined power of cameras and inertial measurement units (IMUS) to achieve
exceptional accuracy and robustness [73].

While stereo vision provides depth data and visual odometry, the IMU complements it
by tracking the camera's movement and orientation in space. This information is essential for
registering subsequent depth maps and maintaining the spatial consistency of the 3D world.
The IMU captures acceleration, angular velocity, and orientation data. Those data are
statistically combined (usually with the use of extended or unscented Kalman filters [74])
with visual odometry allowing the software to precisely track the camera's trajectory through
space.

54/156

Neural Depth Sensing

Using deep learning algorithms to estimate depth from a single image or a sequence of
images, a technique known as Neural Depth Sensing, is a rapidly growing field with the
potential to revolutionize many applications. The main reason is that it allows for monocular
depth estimation i.e. estimating depth using a single image. This is a challenging task, but
recent advances in deep learning have made it possible to achieve relatively good results
[75]. The Zed Spatial Mapping software allows the user to choose between performance-
oriented, simple algorithmic stereo depth estimation techniques and neural depth estimation,
which is a sophisticated approach that combines stereo and neural depth estimates. In
recent software update releases, enabling the neural depth estimation while using Zed
Spatial Mapping produced faster and cleaner results.

The Multi-Step Process of Building the Spatial Map

The spatial mapping process encompasses several key steps [15]:

o Feature Detection and Matching: The software identifies distinctive features in each
depth map, such as corners or edges. These features are then matched across
subsequent images, creating a network of correspondences that stitch together the
individual depth maps.

e Planar Segmentation: The software identifies and segments planar surfaces in the
scene, such as walls, floors, or ceilings. This process simplifies the representation of the
environment and reduces computational complexity.

e Mesh Generation: The software constructs a 3D mesh from the depth data, representing
the reconstructed environment as a collection of interconnected triangles. This mesh
provides a polygonal approximation of the scene, allowing for efficient visualization and
interaction.

e |f area memory is enabled, a database that stores information about the environment
that the ZED camera has already mapped is created. This information includes a point
cloud representation of the environment, as well as information about the camera's pose
(position and orientation) at different points in time. When the tracking detects an already-
visited area by searching in the database, it will perform a loop closure and compute an
updated position estimation that cancels eventual drifts.

55/156

Figure 3-13: Successful Monocular Depth Estimation [75].

3.3 Comparison and Decisions

3.3.1 Comparison

Overall, Rtabmap is a good choice for robotics applications that require high accuracy,
robustness, and flexibility. Anybotics Elevation Mapping is well-suited for vineyard mapping
due to its efficiency in handling elevation changes which are commonly encountered in
mountainous vineyards but fails to capture critical details in the canopy and fruit. Gradslam
is a good choice for research and development purposes, especially for machine learning
SLAM applications. Nevertheless, it significantly lacks real time performance and memory
management, as well as integration and ease of use. Zed Spatial Mapping is an excellent
software for prototyping due to its and real-time performance and high-quality Application
Programming Interface (API). However, it can only be used with Stereolabs hardware and is
not open-source.

Table 3-1 shows a detailed comparison of the four SLAM software packages for
vineyard mapping.

Table 3-1: A comprehensive comparison of four SLAM software packages.

Robot-Centric

. ZED Spatial
Feature RTAB-map Elevation Gradslam p
. Mapping
Mapping
Actively Actively
. developed, I Maintained b developed,
Active .evej ope Maintained by ain ame. ya .EV? ope .
maintained, and . community of maintained, with
development Anybotics .
upgraded by a researchers frequent, major
large community updates

56/156

Large and active .
. . Dedicated
community with . .
; Smaller . . community with
. extensive . . Community with ;
Community . community with . C extensive
documentation limited activity in .
support good support documentation
and support recent years
forums and good
forums
support forums
Performs well in
real-time Very efficient for ~ Slow in real-time Very efficient for
. applications. mappin applications. real-time
Real Time pp _ Pping PP . o .
High memory environments Very high applications with
Performance : . .
requirements for with elevation memory Zed Stereo
loop closure changes requirements cameras
High quality 3D . .
gnd y- . . High quality 3D
reconstruction Can only High quality .
. _ . reconstruction
Reconstruction with accurate produce 2.5D, reconstruction for))
. . . . with a variety of
Quality feature matching undetailed simple
. . . output data
and mapping reconstruction. environments .
representation.
Designed
specifically for
Supports a wide 2.5D terrain o
range of sensors mapping with Fully Specifically
Specific . g . . ' pping differentiable designed for Zed
including LIDAR Octomap
Features . Graph-based Stereo cameras.
and depth representation.) i
SLAM system. Easy integration.
cameras Great memory
management

3.3.2 Decisions

Robot-Centric Elevation Mapping by Anybotics will encounter challenges in vineyards due to
the presence of dense vegetation and other dynamic obstacles that cannot be accurately
rendered with a 2.5D map representation. It also fails to capture texture and minor details
which are crucial for crop inspection applications.

Gradslam's flexible mathematical structure comes at the expense of real-time
performance in vineyard mapping applications. Real-time 3D mapping is often crucial in
vineyard mapping tasks, such as navigation and obstacle avoidance. Gradslam's potential
for lower real-time performance limits its suitability for these applications. It is also the
software that enjoys the least active development, maintenance, and support.

In the context of vineyard mapping, Rtabmap emerges as the preferred choice if a ZED
Stereo camera is not available. Its versatility, robustness, and accuracy make it well-suited
for the challenging conditions often encountered in vineyards. In addition, it comes with
extensive documentation, frequent updates and active support forums. Conversely, if a ZED
Stereo camera is available, ZED Spatial Mapping provides a compelling alternative. Its

57/156

streamlined integration and real-time 3D mapping capabilities make it efficient for rapid
prototyping and applications where real-time feedback is desired. ZED Spatial Mapping is
actively maintained and supported and it is regularly updated with state-of-the-art algorithmic
integration.

58/156

4 Path Planning

Path planning stands as a fundamental cornerstone of robotics, enabling autonomous robots
to navigate complex and dynamic environments with precision and efficiency. It is the
process of determining a collision-free trajectory for a robot to move from a starting point to a
designated goal while adhering to various constraints, such as obstacle avoidance, terrain
features, and kinematic limitations [76].

Path planning remains a highly active area of research, with ongoing efforts to develop
more efficient, robust, and versatile algorithms that can handle increasingly complex and
challenging environments. The advancements in path planning algorithms hold immense
promise for the future of robotics, paving the way for autonomous robots that can seamlessly
integrate into our everyday lives.

4.1 Taxonomy of Planners

4.1.1 Global and Local path planners

Path planning algorithms can be broadly classified into two categories: global and local.
Global path planning algorithms, also known as off-line planning algorithms, generate an
entire path from the start to the goal before the robot begins its movement. These algorithms
excel in open and predictable environments. However, they struggle in dynamic
environments with rapidly changing obstacles or unpredictable terrain disturbances.

Static OQstacles

7z -~
-~ \\

= R Target Point

Dynamic Obstacle

/
7/

/7
Predefined
Global Path
-
o -
-
i
-
y 2
~

LocaIR/ Planned
Path

-~
— :
Start Point
Figure 4-1: Combination of Global and Local Planner lllustrated.

59/156

In contrast, local path planning algorithms, also known as on-line planning algorithms,
generate paths in real-time as the robot navigates the environment. These algorithms
continuously update the map of the environment and adapt the path to avoid obstacles
encountered along the way. The predicted path in a local path planner is in principle much
shorter than that of a global path planner and concerns the robot’s vicinity. They are well-
suited for dynamic environments, where obstacles may move or appear unexpectedly and
are usually combined with global path planners to enable robots to reach a designated goal
avoiding collisions along the way.

4.1.2 Obstacle Representation

Based on how free space and obstacles are mathematically represented, path planning

algorithms are further categorized in four main categories:

o Grid-based or Search Based planners: These planners discretize the environment into a
grid and use search algorithms like A* or Dijkstra's to find a path through the grid. They
are efficient for simple environments but can be computationally expensive for complex
environments, as the map on which the robot operates must be extensively subdivided to
form a grid which effectively models the operating space [77].

Figure 4-2: Grid-based free space (white squares) and obstacle (dark squares) representation and viable
path from starting position (green circle) to target position (red circle).

e Sampling-based planners: These planners build a tree of possible paths in the
environment by randomly sampling free space, creating a network that connects the
samples (nodes) and checking for collisions in the paths between the samples (edges).
They can handle complex environments with obstacles but may not always find the
optimal path to the target.

60/156

Path
Tree
Start

|
K Goal

X [meters]

checking for collisions [78] .

Uniform Samples

Start

X [meters]
builds a tree of potential paths by randomly sampling points in the environment and

[

efficient but may not be suitable for all environments. Inherent problems to potential field
path planners include local minimum traps and unwanted oscillations around obstacles

moves along the gradient of the potential field to reach the goal. They are simple and
[79].

Potential field planners: These planners create a potential field that represents the
attractive force towards the goal and the repulsive force from obstacles. The robot

Figure 4-3: Rapidly-exploring Random Tree* (RRT*), a common sampling-based path planner that

'YIrrY YT FYPrrrreees - 5l
ANAA S 4 ssanann
A44ssssanetn

_—A
4 b i aawEEE AT

AARARSEE R P RN
1L L ISSTRNYY))
LEErEEe 9,

"nN‘\

m

tlllllb.‘iﬂﬂf
4 d A A
ddddA A A A A

SR EEEREL "

K EREEEEL e e b
l.” _.Jldl..dil..j“\“ .\..‘“_I.I.lgf
rEE Y ddd;ddlli\\.\\“ﬁ%&iiii/f’
FEFT Wy dJJJg\NNHiHilniif/
rfey AN Jddjl\\ﬁhhﬂiltll;lj
cedd AN ol ﬁﬁfl(d! Yy YR sasssaaaawey v vew ity 5
._.-_‘_.-_mmt E&nrfi(dfi WAAALETTTEEFEELEREREL L =
FTEEELL L™

((xﬁflffrpp :444444‘;44444144#!!!#&1
,..qum.-.:‘_{h ”/J. u& 4(44444..444..41145\1%

TN LYY H# HWiavvrvvvryvarrvsvvmmmanszy
feiaid BELYY

Y YR YY Y Y Y Y Y Y Y Y Y Y Y Y Yy

EE R b e s s v vy vy v v vy Yy Yy Yy Y Yy Yy

b e P P T Y Y T IR YYRNYYY
EEE R e ey y vy vy Yy ¥ Y Y Y Y Y Y YIYIYYYYYY
B R R r e R T R P R P F R T N YRR YYY
B R e b e e ey vy vy vy v vy ey ey u Yy
EE b R e AR R P T P R Y R Y Y Y YT Y Y
(i
el
i
i
]
1
]
1
i
]
i
)
i

] \AAARAARARARRLARLL P F VY]
) AAARRAARARERRREERLL EF Y]
" A A AR AR AR AR AR RRL T TFT]
et Y v v 3 ¥y r e e sy s s v s v s v R Y YNy
EE R r b r r y R v Y v v Yy Y YN Y Y Y YNNI YT Y Y YT Y Y
Bl b P PR T TR T PR TPV YRRYNY
i

A N R A R R R R A AN A AR AR AR AR AR
RN N A AR A AN IR 2 SRR
[A R AR AR AR R
AR AR RIS RN 022
R ah by ey yya vy v ey
EEEE R R R R e F P v vy ¥ ¥ v vy Yy
AR R RN A A AR AR AR AN AR RN
TR L S T, Ry
TR Maveaianrunny
bbb

Y
Y

b

b

\ AN)
YY"

L

kb

,..rv//f '
bbbk \
r—.—fll AN

\ AR AALEA R A A DT
Naruafnnnny
L SR, e
v rnnnainny
*’rf:tr(¥y
diEb v v n vy

L

\

A R E

-

- g
e e e e e

b
3
b
3
b
3
1
3
b
b
1
3

]
!
b
|}
b
b
b
b
b
b
b
)

-

]
b
b
b
b
b
b
b
3
b
b
b

=]

50
40

61/156

iﬂ
4: Potential Field Planner Visualization. Environment with 10 obstacles [79].

10

Figure 4

o Hybrid planners: These planners combine elements of the first three planners utilizing
sophisticated algorithms to alternate between approaches and achieve considerable
flexibility.

4.1.3 Exploratory Path Planners

Exploratory path planning is a branch of path planning that aims to navigate a robot
effectively through an unknown or partially known environment to collect information about
its surroundings. The goal of an exploratory path planning agent is not to reach a single
specific goal efficiently, but rather to maximize the amount of information gathered by
exploring the environment. Hence the name, exploratory path planning.

In this context, computing an optimal path before starting the exploration is often not a
viable option as there is not enough useful information about the operating environment for
a-priori waypoint or goal setting. It is therefore common for explorational path planners to
employ complex and automated goal setting schemes. Based on their goal setting scheme,
explorational path planners can be categorized as follows:

o Next-best-view (NBV) planners: NBV planners select goals based on the robot's current
perception of a specific target in the environment. They identify locations that will provide
the robot with more information about that target, such as locations that will provide them
with higher visibility or locations that will allow the robot to see new, so far obscured
parts of the target. For example, the authors in [80] created an NBV planner to enable a
robotic arm to calculate the optimal trajectory around fruits to effectively reconstruct their
complete shape. The algorithm predicts fruit shapes prior to mapping them and
computes targeted viewpoints to enable the robot to observe yet unobserved parts of the
fruits.

2 j .'-,. e 3
. ?4‘ < - ‘-4£ cf?l‘itg

16 Planned Views 32 Planned Views 48 Regular Views
(0.87mm. , 93.5%) (0.74mm. , 95.4%) (0.94mm. , 91.1%)

Figure 4-5: Goals (Views) planned using view planning lead to less 3D reconstruction error and greater
object completeness percentage than regular views [81].

62/156

Coverage-based planners (CPP): Coverage-based planners aim to maximize the amount
of useful area covered by a part of the robot or scanned by a sensor of the robot. It is a
particularly important task in the context of agriculture robotics, especially for automated
harvesters and watering robots. CPP is however an integral algorithm for a plethora of
applications including cleaning robots, underwater vehicles creating image mosaics,
demining robots and more [31].

40 Minimum Traversal Solver Algorithm

T

® Landing
Path

0T

- \ :

20

151 2

| ~~\~-/

] 5 10 15 20 25 30 35 40

Figure 4-6: Solution for a UAV coverage path planning problem in Matlab
calculated using Matlab’s UAV Toolbox [82].

Information-theoretic planners: Information-theoretic planners use information theory to
guantify the amount of information gathered by the robot. They plan paths that maximize
the expected information gain from each new candidate waypoint, which is the amount of
information the robot can expect to gather by visiting it [83]. Waypoints that hold
significant exploratory value are often called frontiers. Such planners are commonly used
in search and rescue or other time-sensitive applications.

63/156

Occupied Space Robot Current Position

Frontier
Open Space
Frontier
Centroid
Unknown Space Path to Frontier

Figure 4-7: Information-Theoretic Exploratory Planner illustration [84].

4.2 SOTA Packages

42.1 Ewok Planner

In their work, Ewok: Real-Time Trajectory Replanning for MAVs using Uniform B-splines and
3D Circular Buffer [18], the authors present a real-time approach for local trajectory
replanning specifically designed for agile robots such as Micro Aerial Vehicles (MAVS).
Unlike traditional methods that assume static environments and prior map knowledge, Ewok
thrives in dynamic scenarios, efficiently adapting trajectories on-the-fly to navigate cluttered
and unpredictable surroundings. This makes it particularly valuable for applications like
search and rescue, autonomous exploration, and spatial mapping in unknown environments.

Figure 4-8: MAV dynamically planning its path while moving through a simulated forest using the Ewok
Planner [18].

64/156

Uniform B-splines

Ewok represents trajectories as smooth and flexible curves using uniform B-splines.

Formally, a spline is a piecewise polynomial function defined over a set of intervals [85]. The

places where the polynomial pieces meet are known as knots. Splines are a powerful tool when

there is a need to represent smooth curves that pass through or interpolate given data points

due to the following attributes:

o Continuity: Splines have continuity of at least order k at each knot point, meaning both
the function value and its derivatives up to order k match across intervals.

o Locality: Each polynomial piece only affects the curve in its corresponding interval,
allowing for local control of the shape.

The degree of the polynomial pieces determines the spline's smoothness and flexibility. For

example, a cubic spline (k=2) will have continuous first and second derivatives, creating

smooth and visually appealing curves.

B-splines (basis splines) are a specific type of spline representation. B-splines of order n
are basis functions for spline functions of the same order defined over the same knots,
meaning that all possible spline functions can be built from a linear combination of B-splines,
and there is only one unique combination for each spline function. They have several
desirable properties:

e Each B-spline is non-zero only over a specific interval defined by its corresponding
knots.

o The sum of all B-splines associated with a given knot sequence is always 1.

e B-splines can be defined recursively based on lower-degree B-splines, simplifying
calculations.

[0.333, 0.667, 1]

P

[0, 0.333, 0.667]

P[D.BS?: 1,1]

P

[0, 0,0.333]

[1.1,1]

P[O, 0,0]

Figure 4-9: A cubic parametric polynomial spline[86]. P denotes control points. The first and third
polynomic parts of the curve are painted blue, while the second orange. Single knots at 1/3
and 2/3 of the curve establish a spline of three cubic polynomials meeting with €?
parametric continuity. Triple knots at both ends of the interval ensure that the curve
interpolates the end points.

65/156

The value of a B-spline of degree k — 1 can be evaluated using the following equation:
p®) = ZpiBi,k(t): (4-1)
i=0

where p; € R™ are control points at times ¢;,i € [0, ...,n] and B;,(t) are basis functions that
can be computed using the De Boor — Cox recursive formula [87]. Uniform B-splines are a
special case where the knots are equally spaced within the time domain. This simplifies
calculations and offers predictable control over the curve's shape. In the context of the Ewok
planner, uniform B-splines are utilized for calculating an initial global path.

Leveraging splines allows the ewok planner to produce smooth paths, preventing abrupt
changes in velocity and acceleration, essential for safe and comfortable agile robot
maneuvers. Furthermore, modifying a global trajectory defined with splines is not
complicated, as modifications to individual control points affect only a specific segment of
the trajectory, allowing for targeted adjustments without impacting the entire path. The
authors of the Ewok planner have specifically employed a real-time trajectory modification
applied on the global path computed with B-splines. This is achieved through a local planner
which solves an optimization problem and is triggered when the robot detects an obstacle in
its vicinity and on its computed trajectory. Eq. (4-2) describes the cost function which must
be minimized when the local planner is triggered:

Etotat = Eep + Ec + Eg + Ey, (4-2)

where E., (endpoint position) is a cost function that expresses position and velocity deviation
from the optimal values that are imposed by the global trajectory; E. (collision) is a cost
function that heavily penalizes collision with obstacles; and E, and E; are cost functions that
ensure continuous and smooth derivatives (cost of integral and limit on the norm,
respectively), preventing abrupt changes in velocity and acceleration, essential for safe and
comfortable MAV maneuvers.

B-splines guarantee continuous position and its derivatives up to the degree of the
spline minus one at any given control point and the basis functions simplify calculations,
enabling real-time replanning within onboard computational constraints. However, B-splines
do not naturally interpolate control points, hindering imposition of arbitrary boundary
conditions. Only static constraints (zero-time derivatives) can be guaranteed by duplicating a
control point (k + 1 times, where k is the spline degree). Non-zero time derivative constraints
necessitate iterative optimization. Other trajectory representations, such as Polynomial
Splines allow direct enforcement of boundary conditions, including non-zero time derivatives,
at the expense of increased complexity.

When control points originate only from planning algorithms (RRT, PRM) requiring
collision-free paths, adhering to these points is crucial. Therefore, representations such as
polynomial splines are more suitable. Local replanning employed in Ewok deals with
unexpected obstacles not considered in initial planning and changes the control points in
real-time. Here, strict adherence to control points becomes less critical, and the inherent
smoothness and computational efficiency of B-splines make them preferable.

66/156

3D Circular Buffer

To maintain real-time environmental awareness, Ewok employs a 3D circular buffer that
moves along with the MAV. This buffer stores occupancy grid information, essentially
representing a dynamic map of the surrounding obstacles within a defined range. Sensors
like LIDAR or cameras continuously update the buffer, reflecting changes in the environment
as the MAV navigates. By querying the buffer during replanning, Ewok identifies potential
collisions and modifies the trajectory accordingly. The buffer is implemented by employing
the following strategies:

Discretization: The environmental volume is discretized into voxels of size r. This
establishes a mapping between points in 3D space p and integer-valued indices x that
uniquely identify individual voxels. The inverse operation allows retrieval of the voxel center
point given its index. A continuous array of size N represents the 3D environment. An offset
index o defines the location of the buffer's coordinate system relative to the MAV. Given the
index and offset, the following functions can be defined to check if a voxel lies within the
represented volume and determine its address within the stored array:

insideVolume(x) =0<x—-0 <N, (4-3)

address(x) = (x — o)modN. (4-4)

Robotcentric Update: To maintain the buffer centered around the MAV's camera, the
offset (0) is simply updated based on the vehicle's movement. The newly incorporated part
of the volume is cleared, eliminating the need for large data copies during movement. This
way, the size of the array can be restricted to N = 2P and the above functions can be
altered to use cheap bitwise operations instead of divisions:

insideVolume(x) = ! ((x — 0)&(~(27 — 1))), (4-5)

address(x) = (x — 0)&(2P — 1), (4-6)

where & is a “bitwise and”, ~ is a “bitwise negation” and ! is a “boolean not”.

If a collision is imminent, the local planner identifies the point of conflict and generates
alternative segments using B-splines. These segments prioritize obstacle avoidance while
adhering to constraints like minimum altitude, maneuverability limits and proximity to the
original trajectory. The new segments are seamlessly connected to the existing trajectory,
ensuring a smooth and continuous path.

67/156

b

—

T

9

L]
T
LT
LLITT]
L[]
e

Figure 4-10: Example of online trajectory replanning using the ewok planner [18]. The plot shows a
global trajectory computed by fitting a polynomial spline through fixed waypoints (red),
voxels within 0.5 m of the obstacle (blue), computed B-spline trajectory with fixed (cyan)

and still optimized (green) segments and control points.

Ewok presents a valuable approach for real-time trajectory replanning in dynamic
environments for agile robots. One of its limitations is the planning horizon: The 3D circular
buffer limits the planning scope to the immediate surroundings. Long-range planning might
require additional techniques. In addition, a smooth curved trajectory is especially useful
when dealing with fast-moving robots, like MAVs. In the case of a quadruped agriculture
robot, a trajectory with angles and sharp turns is perfectly acceptable and can even be
optimal.

4.2.2 Sequential MPC Reactive Planning using Safe Corridors

In their work, A Sequential MPC Approach to Reactive Planning for Bipedal Robots [19], the
authors delve into a path planning solution that leverages the power of Sequential Model
Predictive Control (MPC) and offline polytopic decomposition to enable robust and reactive
motion for legged robots in complex and dynamic scenarios.

68/156

(a) (b)

Figure 4-11: Example environments and paths generated by the MPC-safe corridors controller [19]. The
successively connected polytopes (blue) represent safe corridors. (a) Polygonal obstacles
(b) Rotated rectangular obstacles.

Safe Corridors

The authors leverage RRT* to efficiently explore the environment and identify obstacle-free
regions. RRT* iteratively expands a tree-like structure in the configuration space, prioritizing
exploration towards the goal while respecting robot constraints. Figure illustrates the logical
flow diagram for RRT*, given a set state space X, in which the robot operates, a start point
Xstart and a goal point Xgoal.

Set state space X, start point Xstart
and goal point Xgoal. Initialize
the random tree.

i Traverse all nodes in Extend a step of
o random tree to find node| | determined length from s the path between Add node
Is there a node of the iree within
Select Xrandom from X—* Xnearestwiththe [—»node Xnearest o node Xnearest and Xnew Xnearest to the
accepted distance of Xgoal? -
shortest distance from Xrandom to get node colision free? random tree
node Xrandom Xnew

¥

Backtrack from
.| node Xgoal to free optimization | |
"I node Xstart to get through rewiring

the planned path

Figure 4-12: RRT* logical flow diagram.

It should be noted that RRT* is the same algorithm as RRT with the added optimization
routine after each new node addition. This is a three-step routine that employs the following

functions:
Local Search: Starting from the newly created node, its neighboring nodes are checked

within a specific radius.

69/156

Cost Comparison: For each neighbor, the routine checks if connecting to the new node
would create a lower cost path compared to its current connection. Cost can represent
distance, time, or any other relevant metric. Algorithms like Dijkstra’s or Kruskal’'s are
employed for path cost calculation.

Rewiring: If a lower-cost path is found, the routine rewires the connections of the affected
neighbors to connect them through the new node.

The resulting tree is a near-optimal path solution.

Instead of directly using the complex free space identified by RRT*, the authors
decompose it into simpler, convex shapes called polytopes. This decomposition leverages
computational geometry technigues to ensure safe and tractable representation of free
space. The individual polytopes are then carefully connected through a recursive process
that uses their Chebyshev centers, to form a continuous and collision-free "corridor" that
guides the robot towards its goal. This corridor prioritizes directness while adhering to safety
constraints and robot limitations. The algorithm follows the below structure:

Obstacle Inflation: The static workspace, denoted as Ws, is first augmented to account for
the physical dimensions of the mobile robot. Obstacles are inflated by a specified radius,
assuming the robot can be represented by a disc of that size.

Convexity Assumption: All obstacles in Ws are assumed to be convex. While not
universally true, this simplification allows for efficient computation of free space regions for
motion planning.

Sampling-Based Planning: A sequence of points, I = {py,...,px}, IS generated within the
free space of the workspace (dynamic and static), denoted by W\Ws. This sequence
connects the initial location with the desired goal position and is generated using RRT*.
Initial Polytope Generation and Waypoint Extraction: An initial polytope H, is created
and saved within the free space W\Ws containing the initial robot position y,. This is done

using a convex optimization process [88]. y, is saved as the initial waypoint w,. The
algorithm checks if the goal position wy lies within Hy. If not, the algorithm iterates through

the points p; € I starting from j = 1. It finds the first point p;; not contained in H,.
Intersecting Polytopes Guarantee: The algorithm takes the current polytope H, and the
waypoint p;; as input. It generates a new polytope Hy,, around p;;. It then performs two
operations:

Intersection Check: It checks if the current polytope and the polytope H,.,, generated around
pj1 have a non-empty intersection (Hy N Hyey, # @).

Intersection Guarantee: If an intersection exists, the algorithm saves H,,,, as a new polytope
H; and a waypoint w, representing the Chebyshev center of the intersection Hy N H,,,. If
there is no intersection, the algorithm generates a sequence of intersecting polytopes and
waypoints G connecting H, and H,,,, by iteratively creating polytopes using points on the
straight line that connects y, with w;. The generated polytopes and waypoints are saved.
The algorithm repeats this process for each point p € II.

Final Output: The algorithm outputs a sequence of pairwise intersecting free polytopes
{Hy, Hy,..., Hy_1} containing the initial position and a set of waypoints {w,,...,wy} such
that:

Wi € Hi—l n Hi for i = 1, ,M -1 (4'7)

and wy = w, € Hy_,. These waypoints and polytopes Oare to be utilized in subsequent

Model Predictive Control (MPC) algorithms for robot motion.

70/156

Sequential Model Predictive Control (MPC)

Model Predictive Control (MPC) is an advanced control technique widely used in various
industries, from chemical plants and refineries to autonomous vehicles. It offers a powerful
framework for controlling complex systems while incorporating constraints and optimizing
performance goals [89].

At the heart of MPC lies a mathematical model representing the dynamics of the system
being controlled. This model can be linear, nonlinear, or a combination, depending on the
system's complexity. MPC operates over a finite time window called the receding horizon. At
each time step, it predicts the system's future behavior based on the current state and
potential control inputs. An optimization problem is formulated with a cost function that
penalizes deviations from desired outputs and control effort. By minimizing this cost function,
MPC determines the optimal control sequence for the receding horizon. Only the first control
input in the sequence is applied to the actual system. At the next time step, the horizon
moves forward, incorporating new sensor measurements to update the model and repeat
the optimization process. This is what the sequential aspect of this approach implies. In their
work [19], the authors leverage MPC to optimize a rough initial trajectory created by the
RRT* algorithm. The MPC controller optimizes a cost function that considers factors like
trajectory smoothness, control effort, and distance to the goal. This ensures efficient and
goal-oriented navigation within the created safe corridors.

Measured
Disturbances

Measured
Outputs

References
—

Control
Moves

Figure 4-13: Model Predictive Control Schematic.

The core concept behind the planning and control approach in the work by the authors in
[19] lies in the following equation for the i — th MPC (MPC (i)):

h;j(Ax; + Buy) = (A —pYh(x), j=1,...1;, (4-8)

where x;, represents the current state of the robot model (in [19] it is a 3D-LIP robot model)
at time step k. The state encompasses its position (x,y), orientation 6, and velocities (x, ¥),
u, denotes the control input applied to the robot model at time step k. This input directly
influences the acceleration and subsequent trajectory of the robot. h;; represents a
collection of smooth scalar-valued functions. Each function h;; corresponds to a specific
half-space within a polytope C;. It acts as a measure of how far the robot state x;, is from the

71/156

boundary of that half-space. The polyhedra C; define safe regions within the workspace. The
robot's state and trajectory must remain within these polyhedra throughout its motion to
guarantee collision-free navigation. Each polytope C; is formed by the intersection of multiple
half-spaces. Each half-space is defined by a linear inequality represented by the function h; ;.
l; represents the number of half-spaces that contribute to defining a specific polyhedron C;.
The core constraint utilizes the functions h;; associated with a polytope so that if
h;j(x;) = 0 for all j, the robot's state lies within the safe region C;.
The constraint enforces that the control input u, steers the robot's predicted next state
Xr+1 = Axy + Buy, further into the polytope region or at least keeps it within the boundaries.
This ensures collision avoidance with static obstacles, while respecting the robot model’s
constraints.

Reactive Planning

While the robot follows the current safe corridor segment, the MPC controller continuously
replans the subsequent segments in the sequence. This allows for real-time adjustments
based on dynamic obstacles or changes in the environment, ensuring reactive collision
avoidance and smooth trajectory adaptation. Additionally, the authors propose incorporating
a "reactivity layer" within the Safe Corridor generation itself, making the corridors themselves
adaptable to moving obstacles without complete replanning, by incorporating sensor input in
the corridor formation process. This is because a new polytopic decomposition can be
performed in less than a second, even in complex and cluttered environments.

4.2.3 Graph-based exploration planner (GB-planner)

In their work, Graph-based Subterranean Exploration Path Planning using Aerial and
Legged Robots [20], the authors propose an approach employing path planning specifically
designed for robotic exploration in large-scale, tunnel-like, underground networks, enabling
efficient and safe navigation. GBPlanner 2.0 is an extension of their previous work on a
Graph-Based Exploration Planner. The new planner presents improved computational
performance and better handling of positive and negative obstacles for ground robots. The
planner does not require any prior knowledge of the environment other than the general
bounds of the volume to be explored.

Graph Representation

Much like in RRT* graph nodes are placed in random locations of the subterranean
environment, in close vicinity to the robot which is performing the exploration. Nodes that are
placed on obscured locations or on obstacles are discarded, while the rest of the nodes are
connected to form a tree-like structure which depicts potential paths from the robot to each
node. Ground traversability is also considered as a constraint during this process. The graph
representation simplifies the complex 3D environment into a structured and easily
analyzable format.

Exploration Gain Metrics

To guide the robot's decision-making, various metrics are assigned to graph nodes. These
metrics quantify the potential information gain associated with exploring a specific node.

72/156

Nodes that lie near uncharted territories are ranked higher in terms of explorational value.
Metrics reflecting terrain difficulty, narrow passages, or potential hazards are also introduced
to influence path selection for safe navigation. The robot iteratively calculates the
explorational value of all the nodes in the so-far explored map. It then decides which node to
visit next, based on its explorational value and the length of the path it must take to get
there.

Global Planner Frontiers

Home
location

Frontiers

Figure 4-14: A graph representation is used to describe free space [20]. Frontiers and Home Location
affect the robot's (blue triangle) decision making process.

Nodes that held great explorational value but have not been visited due to their distance
from the robot are saved as frontiers. A frontier in explorational path planning is defined as
the boundary between known and unknown space in a map. It can be visualized as the edge
of the explored area, where information about the environment is still missing. The robot
knows the path from its position to all explored frontiers at any moment. It decides to visit
nodes close to a frontier if there are no new nodes in its vicinity with a high enough
explorational value.

The authors of GBplanner2.0 specifically employ two separate exploration gain metrics;
one for the local planner and one for the global planner. Both approaches utilize a volumetric
gain calculation algorithm. The proposed method for calculating volumetric gain leverages
ray casting. Given the robot's current pose and a specific 3D sensor model, the algorithm
identifies:

Unknown space: The unmapped portion of the environment.

Sensor frustum: This represents the cone-shaped volume which represents the sensor’s
field of view.

Voxels: The environment is discretized into small, 3D cubes called voxels.

The algorithm then performs the following steps:

Ray Casting: For each direction within the sensor frustum, a ray is cast from the robot's
position into the unknown space.

Voxel Intersection: Each ray is checked for intersections with voxels in the unknown space.
Traversable Voxels: The number of intersected voxels is identified, representing the

potentially traversable volume within the sensor's field of view.
This approach provides a computational and efficient estimation of the unmapped volume

accessible to the robot, aiding in exploration gain estimation. In particular, given a path g; €
X;,i=1,..,n, - where 2; is the set of all shortest path in the map- , with number of vertices

73/156

m; and a set of vertices v}' € 0;,j = 1,...,m; along the path, the equation that describes the
exploration gain estimation process for the local planner is the following:

m;
ExplorationGain(a;) = e V55 i%exp) z VolumetricGain(v]’:)e_y"D @) (4-9)
j=1

where S(oy, 0exp), D(vi, vf) are weight functions with tunable factors ys,ys > 0. In addition,
D(v{,v}) is the cumulative Euclidean distance from a vertex v}i- to the root v} along the path
o;. This promotes efficient exploration by prioritizing paths that require minimal robot travel
distance but at the same time maximize the anticipated information gain (e.g., unmapped
space coverage) per unit travel distance, leading to a faster exploration rate. Similarly, the
equation that describes the exploration gain estimation process for the global exploration
planner is:

GlobalExplorationGaing(v§;)

F
= T(Vg cur VE))VolumetricGain(vE) e 2pP(Voeurv6i), (4-10)

where F symbolizes a frontier, G symbolizes the combination and clustering of all graphs on
the map, called the global graph and T(vg ey v§;) is the estimated remaining exploration
time if the planner chooses to go from the current vertex (“cur”) to the frontier vertex vé_,-.
The T parameter is derived by approximating the robot's Remaining Endurance Time (RET)
and subtracting the Estimated Time of Arrival (ETA) required for the two following traversals:

1. Travel from the current vertex to the designated vertex (v‘é’,-).

2. Return travel from the designated vertex (vg,i) back to the home location (vs nome)-
Thus, the above becomes:

T(Vgcur Vi) = RET — ETA(Vg cur Vi) — ETA(VE 1, V6 home) (4-11)

Conceptually, this value represents the tentative volumetric gain achievable within the
remaining time T if the exploration planner decides to explore frontier vﬁ_i. This gain is an

estimate of the unmapped space the robot can potentially cover during this timeframe, given
its energy consumption constraints.

Search Algorithms & Multi-level Planning

Efficient algorithms traverse the graph, selecting paths that optimize a combination of these
exploration gain metrics while adhering to robot constraints like battery life, maneuverability,
and communication range. To address large-scale environments, hierarchical planning
approaches are often employed. A high-level planner creates a coarse roadmap in the
formed graph using simplified models, while a lower-level planner refines the path within
specific regions based on detailed sensor data for safe and efficient exploration. This
technique is known as multi-level planning. In their work, the authors of GB-planner 2.0
utilize multi-level planning not only by employing both a global and a local planner but also

74/156

by employing a different exploration gain metric for each planning level, as shown in the
previous paragraph.

4.3 Comparison and Decisions

For robot navigation within a vineyard, path planning approaches must address the unique
spatial structure and constraints of this environment. A spline-based planner, like the ewok
planner, while efficient for simple trajectories, is unsuitable for navigating across multiple
vineyard rows due to its limited global planning capabilities. Obtaining a path that allows for
multi-row scanning with a mobile robot, while simultaneously avoiding obstacles is a process
that demands using both a global and local planner.

An exploration-based planner designed for dynamic environments, such as GB-planner,
would work in most environments, complex or simple. However, it becomes redundant in the
mostly static context of a vineyard. Pre-mapping the vineyard allows for a more efficient
approach, eliminating the need for re-exploring the vineyard every time the robot is tasked
with a new inspection procedure. Creating an accurate 2D representation of the vineyard
and providing it as input for the utilized planner is the most efficient approach. In addition,
finding the optimal path through the entire explored environment can be computationally
expensive for large-scale scenarios, when using GB-planner.

Therefore, after evaluating various path planning packages, the Sequential MPC
Reactive Planning using Safe Corridors was selected based on its suitability for our specific
use case. Unlike the Ewok planner or the GB-planner, this planner combines the ability of
planning trajectories that allow the robot to traverse multiple rows, with the addition of
efficient optimal path estimation and dynamic obstacle avoidance. The free corridors aspect
matches the inherent corridor-like structure of vineyard rows, enabling fast and reliable
polytope calculation and free space estimation, leading to safe robot movement.

75/156

5 Vision System

For agricultural robots tasked with vineyard inspection, the hardware comprising the
perception system is crucial. This system enables the robot to navigate, identify obstacles,
and accurately assess vine health. Its importance stems from the inherent complexity of the
vineyard environment: dense foliage, varying lighting conditions, and potential presence of
pests and diseases demand precise and reliable data acquisition. However, the
effectiveness of this system hinges not just on the choice of sensors, but also on their
optimal positioning on the robot and their integration with the computing platform. Carefully
selecting sensors tailored to the specific inspection needs, strategically placing them for
comprehensive coverage, and ensuring compatibility with the processing power of the
embedded platform are all essential for a successful vineyard inspection robot. Only through
a meticulously designed perception system can an agricultural robot achieve the level of
awareness and adaptability required to navigate and analyze the dynamic tapestry of the
vineyard.

5.1 Sensing

Standard digital cameras output images as a 2D grid of pixels. Each pixel has values
associated with it —Red, Green, and Blue, or RGB. Each attribute has a number from 0 to
255, so black, for example, is (0,0,0) and a pure bright red would be (255,0,0). Thousands to
millions of pixels together create the kind of photographs we are all very familiar with. To
produce a 3D reconstruction of the surrounding environment, on the other hand, pixels
which have a different numerical value associated with them are needed. That number is the
distance from the camera, or depth. The three most prominent technologies that are
commonly utilized for capturing depth are lidar sensors, depth camera sensors and standard
digital cameras utilized for photogrammetry. It was necessary to carefully consider the
strengths and weaknesses of each technology to reach an informed decision about the
perception system for our robot.

5.1.1 Lidar Sensors

LiDAR, an acronym for Light Detection and Ranging, operates like an echolocation
system for light. It emits pulsed laser beams and measures the time it takes for the reflection
to return, calculating the distance to objects in its environment. This precise method creates
highly detailed 3D point clouds, offering valuable insights for diverse applications. Currently,
two main types of LIDAR sensors dominate the scene: mechanical and solid-state.

Mechanical LiDAR sensors

Mechanical LIDARs utilize laser beams guided by rotating mirrors to scan their surroundings,
offering high accuracy but require moving parts which can cause potential wear and demand
energy to move. In addition, mechanical LIDARs scan the visible scene point by point,
gradually building a 3D reconstruction. This can lead to "jitter" if the scene or sensor moves
during a single scan. A LIDAR ego-motion correction method must be used to mitigate this
error [90].

76/156

MIRROR

OBIJECT

EMITTER |

Figure 5-1: 3D arrangement of a typical LiDAR sensor [91].
Solid-state LiDAR sensors

Solid-state LIiDARs, on the other hand, eliminate moving parts and promise increased
reliability, durability, and energy efficiency. The three most prominent types of Solid-state
LiDARs are Flash LiDARs, MEMS-based LIiDARS and optical phased array LiDARSs.

Flash LIDAR is a technology that illuminates the entire scene in a single pulse by
diverging a laser beam, unlike conventional LIDAR's point-by-point scanning. Both
technologies use time-of-flight sensors to measure how long the laser takes to bounce back,
revealing distances. But while conventional LiDAR uses a single point sensor, Flash LiDAR
employs an array of pixels, each recording distance and intensity. The result can be
described as taking a 3D photo, not with color, but with distance as the detail. The utilization
of an instantaneous pulse (flash) means that these LIDARs can capture high-resolution 3D
images smoothly, without jitter, even in dynamic scenes. However, the powerful burst must
be eye-safe, limiting wavelengths and driving up costs. Standard image sensors can't easily
read these wavelengths, demanding expensive gallium-arsenide alternatives [92].

While not entirely solid-state due to rapidly spinning silica-based mirrors,
Microelectromechanical Mirrors (MEMS) LIDARS offer benefits in size and cost that are
comparable to Flash LIDARS. They employ a single laser directed at a tiny, rapidly rotating
mirror that scans the scene like a high-speed kaleidoscope. However, MEMS scanners
primarily operate in one direction (left-to-right). Creating a 2D scan typically requires an
additional mirror moving up-down or another laser at a different angle. Also, vibrations and
shocks can disrupt the delicate MEMS mirror, potentially requiring recalibration [93].

The third family of solid-state LIDARS, phased array LIDARS, can illuminate any
direction by using a microscopic array of individual antennas. Controlling the timing (phase)
of each antenna steers a cohesive signal in a specific direction. This technology has been
employed in conventional radars since the 1940s. The same technique can be used with
light and promises lower cost and higher efficiency than mechanical LIDAR sensors without
sacrificing robustness or 3D data quality.

77/156

MEMS Mirror

(a) (b) (c) (d)
Figure 5-2: (a) A flash LiDAR with diffused light; (b) The principle of an optical phased array (OPA)
scanner; (c) A LiDAR motorized spinning scanner; (d) A microelectromechanical mirrors
(MEMS) laser scanner [94].

5.1.2 Depth Cameras

Depth cameras play a crucial role in perceiving the 3D world, offering valuable insights for
various applications. Two main technologies dominate this field: stereo depth cameras and
structured light depth cameras.

Stereo cameras, inspired by human binocular vision, employ two lenses capturing
slightly offset images. Sophisticated algorithms analyze these images and detect specified
geometric features within them. They calculate depth based on the parallax shift between
corresponding features. This process is known as triangulation. Stereo cameras excel in
good lighting conditions and provide rich texture information, but accuracy can be sensitive
to image quality and object texture.

Left W K% Right Left ; X Y\ Right
- . \
Disparity Disparity
= r— — \
\._ H 1| [ST \ H El :
1 4 > 1 [l '
¥ i I YA : k! - |
) ' : ' v :
' ' !
I) Il "y i
' 3! 5 "
I3] v W
w w - . 4
Stereo camera pair Stereo camera pair

Figure 5-3: Stereo Depth Estimation. Objects further away from the stereo camera pair produce larger
disparity [95].

Structured light depth cameras project a known pattern (e.g., infrared dots) onto the
scene. The camera then analyzes the deformation of the pattern on objects to calculate
depth. This method shines in low-light situations and works reliably on featureless surfaces
but struggles with specular reflections and suffers lower overall accuracy compared to high-
end stereo depth cameras or LIDAR sensors. Another drawback of structured light cameras
is that, contrary to stereo cameras, there are limits to how many of them you can use in a
particular space — the cameras might interfere with each other by projecting light into one
another’s field of view.

78/156

Figure 5-4: Structured Light projected on a sphere [96].

5.1.3 Photogrammetry

Photogrammetry is a well-established 3D reconstruction technique [97]. It utilizes sets of
overlapping images to reconstruct 3D models. This process also hinges on the geometric
principle of triangulation, where corresponding points in multiple images are identified and
used to calculate the 3D position of those points. Unlike stereo depth estimation, however,
where the baseline distance between the two camera lenses is known, in photogrammetry a
virtual baseline distance regarding two consecutive images is not known, but it is rather
estimated based on optical flow computer vision techniques.

Photogrammetry is a broader term encompassing the entire process of creating 3D
models from images. It includes not only the geometric reconstruction of the scene but also
calibration of the cameras, texture mapping, and other post-processing steps. A term closely
related to photogrammetry is Structure from Motion (SfM). SfM focuses specifically on the
geometric reconstruction aspect. It relates to the algorithms that receive a set of images as
input and automatically estimate the 3D structure of the scene and the camera poses
(positions and orientations) without requiring any prior knowledge about the cameras or the
scene geometry.

5.1.4 Comparison and Decisions

Each 3D sensing technology boasts unique strengths and weaknesses tailored to specific
applications. LIDARS are so far unrivaled in accuracy and range, and they offer precise 3D
representation, even over long distances. However, its high cost, high energy demands, as
well as the inability to apply texture or color to the 3D models it produces, create significant
hurdles for resource-constrained projects that require photo-realistic reconstruction.

Depth Cameras offer a balance between affordability and performance and provide real-
time depth information at a significantly lower cost than LiDAR. While accuracy and range
might be lower, they excel in compactness and weight, making them ideal for mobile
platforms like legged or wheeled robots. They also produce colored point clouds and capture
RGB images that can be used to add realism to the reconstructed depth map. Nevertheless,

79/156

their performance can be affected by lighting conditions, target surface reflectivity and lack
of visual features in the environment.

Photogrammetry leverages conventional cameras and boasts exceptional texture and
color capture, enriching 3D models beyond just depth. Additionally, its scalability allows for
capturing objects of varying sizes. However, reconstruction accuracy can be lower, and
computational demands are significant. Additionally, good lighting and texture variations are
crucial for accurate results. Poor lighting and texture conditions can lead to both coloring
errors and errors in the reconstructed geometry.

w)

Q

aylight Independence

J

C

Affordability Texture Quality

Figure 5-5: Radar Graph illustrating each sensor's strengths and weaknesses.

For our vineyard inspection robot, depth cameras emerged as the optimal choice. Cost
effectiveness was an important factor. Depth cameras are more affordable than LIiDAR
sensors, allowing us to place more sensors on the robot and achieve greater coverage for
the same budget. In addition, color information is crucial for analyzing vine and grape health,
and depth cameras provide sufficient detail for this purpose. Also, as the robot operates
within proximity to the vines, the limited range of depth cameras didn't pose a significant
challenge. Lastly, real-time processing requirements, as well as varying light conditions and
robotic ego-motion would significantly affect photogrammetry accuracy.

As the project evolves, future iterations may explore integrating other technologies like
LiDAR if the need for higher precision 3D models arises. However, for the current stage of
vineyard inspection, depth cameras offer a powerful and cost-effective solution.

5.2 Processing Unit

The selection of an appropriate computing platform to host perception systems for
agricultural robots presents a critical challenge, as the optimal choice hinges on a delicate
balance between various factors. Five distinct categories of platforms have been evaluated
for the proposed system: microcontrollers, single-board computers (SBCs), mini computers,
and workstations. Each platform has been assessed based on a comprehensive set of

80/156

criteria crucial for mobile robot applications: performance, interface, power consumption,
weight, and price. This analysis has drawn upon established benchmarks, technical
specifications, and relevant research findings to ensure an objective and data-driven
evaluation.

5.2.1 Performance Metrics

Evaluating the performance of a computing platform is not a simple task. Computers perform
differently across different applications, even under the perception umbrella. It is, however,
essential to define specific metrics for performance to employ a scientific lens and culminate
in a well-reasoned recommendation for the most suitable solution. In the context of this
analysis, the following quantities have been utilized to measure performance:

e CUDA (Compute Unified Device Architecture) Cores: These specialized cores, found in
NVIDIA GPUs, excel at parallel processing tasks, making them well-suited for deep
learning algorithms employed in perception systems. Their efficiency in handling multiple
calculations simultaneously translates to faster processing and real-time performance.
CUDA Cores are the Nvidia GPU equivalent of CPU cores [98].

e Tensor Cores: These newer cores, also found in NVIDIA GPUs, specifically enhance the
speed of Al training by enabling mixed-precision calculations. This means they can
handle lower-precision data formats (e.g., FP16) alongside high-precision data while
maintaining accuracy, significantly accelerating the training process for your perception
system's neural networks [99].

o FLOPs/TOPS: These metrics directly quantify the processing power of a platform.
FLOPs (Floating-point Operations Per Second) measure the number of floating-point
calculations, while TOPS (Total Operations Per Second) encompass a wider range
including integers and other data types. While FLOPs were traditionally used, the advent
of Tensor Cores has shifted the focus to TOPS, as mixed-precision training often
benefits from lower-precision operations [100], [101].

¢ VRAM (Video RAM): This specialized memory holds graphics data crucial for real-time
graphics processing applications. In the context of a perception system, it stores
information like depth maps, shadow maps, texture maps and other intermediate results
generated by the processing units. Having sufficient VRAM ensures smooth and efficient
processing of visual data.

Beyond the Numbers:

5.2.2 MicroControllers

While microcontrollers boast undeniable advantages in terms of power consumption, weight,
and price, their suitability for a mobile robot's perception system demands careful evaluation.
This subchapter dives into the key characteristics of microcontrollers, highlighting their
strengths and limitations in the context of perception tasks.

o Performance: Microcontrollers are champions of efficiency, specializing in dedicated,
real-time tasks with minimal computational overhead. However, this very strength
presents a significant hurdle for perception systems. They usually lack dedicated
floating-point math units which renders them incapable of handling the complex
computations required for algorithms like convolutional neural networks or spatial
mapping. The resulting performance limitations can make them unsuitable for the
demanding requirements of perception systems in mobile robots.

81/156

e Memory: Microcontrollers prioritize compact footprints, resulting in severely limited
memory resources. Typically offering only a few megabytes of RAM, they fall far short of
the memory requirements for processing visual data and constructing spatial maps. This
constraint effectively bars them from consideration for perception applications.

e Interface: The miniature size of microcontrollers comes at the cost of standard
interfaces. USB ports, often used for camera and LIDAR connections, are scarce,
requiring custom solutions using serial communication pins. Additionally, their
programming often demands specialized tools and knowledge, deviating from common
operating systems used in perception systems.

e Power Consumption: Microcontrollers excel in minimizing power draw, consuming
mere milliwatts. This makes them ideal for applications where battery life is paramount.
However, the computational platform of a mobile robot is often one the least power
consuming modules on the robot accounting for only a small portion of its total power
usage.

o Weight: Microcontrollers reign supreme in the weight category, typically weighing only a
few grams. This minimal footprint makes them attractive for robots prioritizing agility and
maneuverability, like UAVs or small rovers.

e Price: Microcontrollers boast affordability, with most models costing under $100. This
price advantage makes them attractive for cost-sensitive projects. However, the trade-off
in performance and capabilities must be carefully considered before deciding.

Arduino Nano 33 Arduino Nano Every Arduino Nano 33 Ble

ESP32 Particle Argon

Figure 5-6: Some of the most popular Microcontrollers.

5.2.3 Single-Board Computers (SBCs)

Single-Board Computers (SBCs) offer an intriguing proposition for a mobile robot's
perception system, balancing compact size with significant performance gains over
microcontrollers. This subchapter delves into their key characteristics.

82/156

Performance: The advantage of SBCs lies in their diversity. Performance varies greatly,
with some SBCs exceeding microcontrollers by orders of magnitude and others
approaching the capabilities of mini-computers. Options capable of processing several
TFLOPs (Trillion Floating-point Operations Per Second) are widely available, while high-
end SBCs harness Tensor Cores to reach impressive 275 TOPS (Total Operations Per
Second) [102].

Interface: Despite their compact size, SBCs are surprisingly well-equipped. They boast
multiple USB ports, Ethernet connections, and often HDMI outputs, enabling
compatibility with diverse cameras, LIDAR sensors, and displays. Furthermore, their
support for common operating systems like Linux and Windows allows for leveraging
existing software packages or developing custom solutions with relative ease. While
some hardware-specific tweaks might be necessary depending on the chosen SBC
architecture, the level of flexibility they offer far surpasses microcontrollers.

Power Consumption: One of the key strengths of SBCs is their power efficiency. Even
the most powerful options typically consume only tens of watts, significantly less than
mini-computers or workstations. This translates to longer battery life for the agricultural
robot, a crucial factor for extended operation. However, higher performance often comes
at the cost of slightly increased power draw, so specific workloads must be carefully
considered before selecting.

Weight: While not as light as microcontrollers, SBCs remain relatively lightweight,
typically ranging from 100 grams to slightly over 1 kilogram. This balance between
portability and processing power makes them ideal for robots where maneuverability and
computational capabilities are equally important, like legged robots or rovers.

Price: Simple SBCs catering to basic tasks can be found for under $100, making them
an attractive option for budget-conscious projects. However, as performance and
processing power increase, so does the price tag. SBCs capable of handling Al and
vision applications typically range from $100 to $3,000, requiring careful consideration of
budget and performance requirements.

Pty =

Orange Pi Rock Pi 4 HiKey970 Coral.ai

Figure 5-7: Some of the most popular SBCs.

83/156

Table 4-1 presents three popular SBCs compared to an Nvidia GeForce RTX 3070 mobile
graphics card for intuition purposes, as a standalone graphics card cannot support common
operating systems. For that, a motherboard hosting a CPU, RAM and the graphics card

must be used.

Specification

Al performance

Cuda Cores

Tensor Cores

Memory

Storage

Power

oS

Weight

Price

5.2.4 Mini-PCs

Table 5-1: Popular SBCs currently in the market.

Google Coral Dev Board
(4GB) [103]

4 TOPS

n/a

n/a (dedicated TPU)

4 GB RAM

8 GB
expandable

eMMC + 64GB

5W

Linux Mendel

250g

~175€

Jetson
AGX Xavier
(64GB)
[104]

32 TOPS

512

64

64GB
shared

64GBeMMC

10W-30W

Ubuntu
based

6309 (with
fan)

~1600

Jetson
AGX Orin
(64 GB)
[102]

275 TOPS

2048

64

64 GB
shared

64GBeMMC

15W-60W

Ubuntu
based

15809 (with
fan)

~2400

Nvidia
GeForce
RTX
3070 [10
5]

~ 200
TOPS

5888

184

8GB
VRAM

n/a

115W
(Laptop)

any

~1kg
(with fan)

~500€

Mini PCs offer an alternative path, bridging the gap between compact SBCs and powerful
workstations. This subchapter explores their key capabilities and limitations.
e Performance: Mini PCs occupy the middle ground in terms of processing power. They
harness components typically found in laptops or even desktops, albeit in compact
versions often lacking dedicated cooling systems. While this grants them significant
performance gains over SBCs, thermal limitations can emerge under sustained

84/156

workloads. The thermal management capabilities of any mini-PC must be evaluated
carefully to ensure it can deliver consistent performance for the perception system's
demands.

o Interface: One of the key advantages of mini-PCs lies in their seamless integration with
existing infrastructure. They function like traditional PCs, supporting common operating
systems and software packages out of the box. This minimizes the need for extensive
hardware or software modifications, allowing the usage of established tools and
development environments. Additionally, they typically offer a wide range of ports similar
to full-sized PCs, ensuring compatibility with diverse sensors and devices.

e Power Consumption: Compared to full-sized desktops, mini-PCs boast improved power
efficiency. However, they are significantly less power-efficient than SBCs. The presence
of dedicated graphics cards, often crucial for Al and vision applications, alone pushes
power consumption above 100 watts. Including separate RAM and CPU units can raise
total consumption under load to over 200 watts. The robot's battery life and operating
environment must be carefully considered when evaluating this trade-off.

o Weight: While not bulky, mini-PCs are heavier than SBCs, typically ranging from 1.5 to
slightly over 2 kilograms. This increased weight might impose limitations on robots
prioritizing maximum agility or operating on weight-sensitive platforms.

e Price: Basic mini-PCs, lacking dedicated GPUs, offer attractive affordability, readily
available for under 900€. However, for Al and vision applications requiring hardware
acceleration, the costs escalate. Integrating an external graphics card or opting for a
mini-PC with a built-in laptop GPU pushes the price closer to 2000€.

Table 4-2 presents three popular mini-PCs compared to an Nvidia GeForce RTX 3070

mobile graphics card for intuition purposes.

Table 5-2: Popular Mini-PCs currently in the market

MinisForum 11th Gen Intel NUC Mi(()stlilltJS GI\Ie\I/:Ing?e
Specification | UM700 (16GB) | + Nvidia 3070 EGPU
[106] (64GB) [107] EN173070C RTX 3070
[108] [105]
Al 1 <150TOPS(usbc ~ 200
performance 3 TFLOPS bottleneck) >200 TOPS TOPS
Cuda Cores n/a 5888 5888 5888
Tensor Cores n/a 184 184 184
16 GB RAM 64 GB/8 GB
Memaory (max 32GB) 64GB shared VRAM 8GB VRAM
Storage 256 GB 64GBeMMC 2 SSDdSISItS n/a
(expandable) expandable

85/156

60W -

Power 65W 10W-30W + 90w 150W-220W 115W
(Laptop)
oS Any Ubuntu based any any
Weight 500g 504g + 4kg 1.8kg ~1kfgrf‘)""th
Price ~430€ ~1100€ (NUC ~2000€ ~500%€

barebone is 460€)

5.2.5 Laptops

While laptops share many similarities with mini-PCs in terms of performance, interface, and
price, their inherent form factor presents both advantages and disadvantages for mobile
robot applications. On the positive side, laptops offer readily available hardware
configurations, diverse port options, and familiar operating systems, streamlining integration
and development. Additionally, their built-in batteries provide some level of independent
operation, potentially beneficial for short-term deployments.

However, their larger size and weight significantly impact a mobile robot's
maneuverability and energy efficiency. The constant demand for external power limits their
operational range, and heat dissipation becomes a critical concern, often requiring active
cooling systems that further increase weight and power consumption. Furthermore, their
ruggedness and protection against environmental elements might require additional
modifications, adding complexity and cost. Last, their screen accounts for a great part of
their total power consumption.

5.2.6 Comparison and Decision

Having analyzed various computing platforms for our mobile robot's perception system, we
arrived at a compelling choice: the NVIDIA Jetson AGX Orin, an SBC (Single-Board
Computer).

Microcontrollers, while boasting exceptional power efficiency and minimal weight, were
ultimately disqualified by their limited performance and memory, rendering them incapable of
handling the complex computations required for real-time perception applications. Mini PCs,
while offering increased performance and familiar interfaces, presented challenges in terms
of power consumption and weight, potentially hindering the robot's agility and operational
range. Laptops, despite their versatility, were deemed unsuitable due to their inherent bulk
and limited battery life, compromising the robot's portability and independence.

SBCs emerged as the ideal compromise, balancing performance with portability and
efficiency. Their diverse range allows for tailored selection based on specific needs, and
their compact size minimizes weight concerns. The NVIDIA Jetson AGX Orin, specifically,
stood out amongst SBCs due to its exceptional capabilities. Figure 5-8 illustrates a
comparative analysis which underscores the Orin's suitability for real-time applications. Orin
features both NVIDIA cores and Tensor Cores, delivering exceptional processing power for
demanding perception and machine learning tasks. Despite its impressive performance it

86/156

maintains moderate power consumption, ensuring longer operation and compatibility with
battery-powered robots. The SBC's small form factor and light weight minimize its impact on

TOPS TOPS/WATT

for the best contenders from each category

300
200
m I
0 -
3 ® $ e
& oF &
¥ & i &

for the best contenders from each category

75
5
2.5 I I
> © s $ @ o
& & \(Jq' Cd & & & &
o o @ & K. o o §
; & & < O \ \F
$ & o £

¥ & R e oF ¥ < & .0’
& y ;.‘d \“\\.\;5' ® \\A‘é ___}\-Q" & ‘&\;\\‘O& & ° & 'ﬁhlf'c
¢
TOPS/100*EURO TOPS/KG
for the best contenders from each category for the best contenders from each category

20

10 I
5
0 .
4 &

200
150
‘:(I I I .
| I I
. 0
§ 4\\;\" & & .<‘$D & & &
& iy o % . & 3 o ox F
& O e) oF s o i & & . N

$ ¥ S J &
ko) & & & & & o
& & ¥ ¢ & § &
&

B
%,
>

s

T,

&
o

e y.
& ¥

Figure 5-8: Bar graph illustrating the relationship between performahce and other features for the top
platform of each category.

the robot's mobility and agility. The Orin offers a wide range of ports and connectivity
options, enabling seamless integration with various sensors and devices. It can not only host
all ZED depth cameras, but it also allows for connectivity with the ZED X mini depth camera,
one of Stereolabs latest additions to its plethora of cameras. Additionally, the NVIDIA
ecosystem provides extensive development tools and resources, streamlining the
implementation and optimization of perception and machine learning algorithms.

By leveraging the NVIDIA Jetson AGX Orin's strengths, any mobile robot can be
efficiently empowered with a perception system capable of real-time obstacle detection,
navigation, and environment understanding.

5.3 Field of View Visualization and Lidar Resolution Analysis Tool
(FoVaLiRa)

The process of designing a perception system for a robot involves deciding not only what
sensors are going to be used but also what their position and rotation on the robot will be.
The ability to visualize the combined field of view produced by camera and lidar sensors on
the robot in simulation assists with such design decisions. While several online tools

87/156

visualize field of view (FOV), they lack the detail, realism, and versatility necessary for
effectively comparing diverse 3D perception system designs. Consequently, we opted to
develop our custom FOV visualization tool within the Unity game engine. This tool facilitates
informed design decisions regarding blind spots, coverage, and resolution for both depth
cameras and LiDARs, commonly employed for 3D mapping on mobile robots.

5.3.1 The Scene
Unity

The Unity Development Platform was used to create the 3D simulated environment and
code the behavior of the sensors in it. Unity was chosen over other simulators for several
reasons:

e Unity currently supports over 25 different platforms making it a cross-platform engine.
[109]

e As of 2020, Unity-made applications were used by 2 billion monthly active users, with 1.5
million monthly creators [110]. The vast community behind Unity enables developers to
ask questions and quickly find solutions to their issues.

e Unity is lately transitioning to Robotics, Al and simulation applications with new and
actively supported packages [111].

e Unity provides a visually intuitive and user-friendly development environment, allowing
researchers and developers with varying levels of programming expertise to create and
interact with simulations. This can be particularly beneficial for future projects in CSL
requiring rapid prototyping and iterative design, where quick visualization and
modification of the simulated environment are crucial.

e Unity offers a vast library of pre-built 3D assets and environments, encompassing
various objects and scenarios relevant to agriculture and mobile robotics. Additionally, its
robust physics engine enables realistic simulation of object interactions, force dynamics,
and sensor responses within the virtual environment, further enhancing the validity and
reliability of the simulation for research purposes.

Simulated Vineyard

Within the Unity platform, we constructed a 3D simulated vineyard scene reflecting typical
viticulture practices in Greece. The scene incorporates essential vineyard row parameters,
including an inter-plant spacing of approximately 1 meter and a minimum grape height of
0.60 meters. Virtual grape clusters are modeled as capsules, while the vine canopy exhibits
a realistic density, leading to diverse visibility conditions. Specifically, a portion of the grapes
are partially obscured by leaves, while others are situated in the foreground plane. The
vineyard layout comprises two parallel rows, each measuring 4 meters in length, situated on
even terrain.

Figure 5-9 illustrates the scene that a user views after downloading, installing, and launching
the developed Unity Project. To the left of the scene tab, on the Hierarchy tab, the user can
see that the vines are registered as Vine Trees under the Obstacles object category. On the
scene tab, within the branches of the vines, the user can observe the blue capsules that
represent grape clusters and are registered as targets on the Hierarchy tab, as those are the
objects of interest for the robot.

88/156

File Edit Assets GameObject Component Window Help

Figure 5-9: The default starting scene in Unity.

In the Hierarchy tab, some object names can be seen in fainted white color. These
objects are also present in the scene but they are deactivated. The user can select any of
these from the Hierarchy tab. Thus, the Inspector tab on the right side of the window will
display information about the selected object. To activate the selected object, the user can
check the checkbox near the name of the selected object in the Inspector tab.

& Inspector Services

Spot Static -

-

Tag uUntagged = L ayer Default -

Transform
:ition X 4.01
'otation X 0

Scale 1

Add Component

Figure 5-10: Activating and Deactivating an Object

The objects that are deactivated by default are the Spot robot model and three objects
labeled as Sensors. The Spot robot model can be used as an alternative to the Laelaps
robot model. The Sensors represent lidar (or camera) sensors and are by default placed on

89/156

the sides and on the front face of the Lealaps robot model. Activating the three objects
labeled as Sensor, Sensor (1) and Sensor (2) and clicking on play to run the simulation - the
play and pause buttons are on the middle of the Unity toolbar on the top of the screen - will
start the visualization of each sensor’s field of view. Figure 4-11 illustrates the running
visualization for this configuration.

(a) (b)

Figure 5-11: The scene while running the visualization.

5.3.2 Configuration

The user can configure several parameters to simulate different sensor setups. The list of
parameters that can be configured for each sensor is as follows:
position(x,y,z) : The position of the sensor in the scene, relative to the laelaps robot
transform. Values are in decimeters.
rotation(x,y,z) : The rotation of the sensor in the scene, relative to its own transform. Values
are in degrees.
View Radius: The range of the lidar while scanning horizontally (or max range for camera).
View Angle: The horizontal view angle of the lidar (or camera).
Vertical View Radius: The range of the lidar while scanning vertically (or max range for
camera).
Vertical View Angle: The vertical view angle of the lidar (or camera).
Mesh Resolution: Number of rays cast for each horizontal mesh divided by the horizontal
view angle in degrees (See section "How it was made" for more intuition).
Horizontal Offset Resolution: Number of horizontal meshes to be cast, divided by the
vertical view angle in degrees (See section "How it was made" for more intuition).
Vertical Mesh Resolution: Number of rays cast for each vertical mesh divided by vertical
view angle in degrees (See section "How it was made" for more intuition).
Vertical Offset Resolution: Number of vertical meshes to be cast, divided by the horizontal
view angle in degrees. (See section "How it was made" for more intuition).
Edge Resolve lterations: Binary search iterations to resolve the "edge problem" (See
section "How it was made" for more intuition).
Edge Distance Threshold: Minimum distance at which an obstacle would be considered to
be too far to be accounted for the resolution of the "edge problem" (See section "How it was
made" for more intuition).

There are two ways to easily set the position and rotation of the sensors on the scene
as well as to configure the sensor parameters: One is through modifying the instantiation.txt

90/156

file located in the project folder. The other is using the Unity Editor to directly edit the scene
and the sensor parameters.

Configuration using the instantiation file

The "instantiation.txt" file is located inside the project folder. Essentially, the instantiation file
represents an array. The elements of the array inside each row are separated by commas
as the file is in csv format. The first row contains the headers of each column. Each row
added after the first will cause the instantiation of a new sensor on the scene. The new
sensor’s parameters will be the elements of the new row in correspondence with the
headers. As an example, the "typical_instantiation.txt" can be used to instantiate three
sensors on the lealaps robot, at predefined positions and rotations. These sensors are also
parameterized arbitrarily. To try the instantiation file, the user can copy the contents of
"typical_instantiation.txt" inside the "instantiation.txt" file, deactivate the preexisting sensors
in the scene and run the simulation. If the "instantiation.txt" file cannot be edited while the
Unity Development Platform is open, then the user might need to close it when editing and
then open it again to run the simulation.

Configuration using the Unity Editor

In the unity editor, the user can activate, deactivate, or duplicate the preexisting sensors
Sensor, Sensor (1), Sensor (2), Sensor (3) and Sensor (4) which can be found in the object
Hierarchy. Clicking on a sensor object triggers the inspector to show information about that
object. The user can configure all the parameters by editing the field of view script for each
sensor directly in the Inspector. In this case, the "instantiation.txt" file should be empty
except for the first row (except, of course, if the user desires to both have sensors
preexisting in the scene and instantiate some more sensors when starting the simulation).
To change the position and rotation of the sensors on the scene, the user can use the move
and rotate tools that the Unity Editor offers. To duplicate a sensor, the user can hold the ‘alt’
key while translating a sensor in the scene. That will leave the old sensor object in place and
instantiate a new one.

Configuring the robot’s animation

Locating the Lealaps object - which is a child of the Lealapsll object - in the object Hierarchy
and clicking on it will open the inspector tab. The animator component which controls the
animation of the body of the lealaps robot will be active in this tab. To deactivate it, the user
can simply click on the checkbox next to its name. The same can be done for the robot’s
legs: Each leg has two child objects named TopLeg and BottomLeg. Both have animator
components which can be deactivated from the Inspector tab. To access the animator
controller for the body or any of the legs of the robot, the user can open the inspector of the
desired object by clicking on it. Then the user can click on the name box near the controller
variable in the animator component. An Animator window will appear. The sequence and the
transition between animations can be controlled in this window. For now, the body executes
a single translation animation. Each part of each leg executes a translation-rotation
animation. The right hind and front left legs of the robot execute an idle animation before
executing the translation-rotation animation to simulate a phase difference. To edit an

91/156

animation individually, the user can open the animation window (Ctrl+6 hotkey). In there,
animations can be created and edited via the Dopesheet or the Curves tab. More
information on creating and editing animations in the Unity Development Platform are
provided in online documentation [112].

5.3.3 The FoVaLiRa development process
Ray casting

In the domain of computer graphics, ray casting represents a foundational technique for
rendering three-dimensional environments onto a two-dimensional display. It simulates light
rays originating from a specific viewpoint, typically the camera, and calculates their
intersections with objects within the scene [113]. The closest intersection determines the
visible portion of an object rendered onto a particular pixel. While computationally efficient
and particularly effective in early 3D games, ray casting inherently struggles with intricate
lighting effects and smooth object curvature. Modern rendering techniques, such as ray
tracing, have emerged to address these imitations: Ray tracing builds upon the principles of
ray casting but goes further by simulating the full path of light, including reflections and
refractions, leading to superior visual fidelity [114]. However, this enhanced realism comes
at the cost of significantly increased processing power [115]. Within the Unity game engine,
ray casting remains a valuable tool for tasks like object selection and collision detection due
to its efficient nature.

FoVaLiRa employs a ray casting approach, where rays are emitted from the modeled
LIiDAR or depth camera sensors towards the simulated environment. These rays are
organized into a grid-like structure composed of individual meshes, each representing a
circular sector within the sensor's FOV. The user-defined grid size directly corresponds to
the desired FOV of the LIDAR. Upon encountering a target object (e.g. grape cluster) within
the environment, a ray triggers the extraction and return of information regarding the target's
location. This information can be subsequently utilized for further analysis or visualization
purposes.

Forming a single horizontal mesh

To understand the formation of the grid of meshes, it is simpler to first study how a single
horizontal 2D mesh is made: Several rays are cast from the center of the sensor radially
inside the horizontal view angles determined by the user. Figure 5-12 illustrates this from a
top view.

92/156

Figure 5-12: Raycasting visualization. The sensor is the white capsule.
Rays are in red color. Targets are blue capsules. Obstacles are orange rectangular cuboids.

The number of rays for a given field of view angle is determined by the mesh resolution
parameter which can be configured by the user. This parameter simulates a lidar’s resolution
and corresponds to the modelled sensor’s ability to capture detail in the part of the scene it
covers. The rays do not pass through obstacles. The starting and ending point of each ray
are sequentially saved in a list as 3D points. This list is then used with Unity’s Mesh class to
form a flat mesh. Figure 5-13 presents the formed colored mesh, cast from a sensor
modelled with a capsule. The higher the mesh resolution parameter is set to, the denser the
formed mesh.

Figure 5-13:A continuous 2D mesh in light blue color.

93/156

The edge artifact

The distance that an unobstructed ray travels, is a user-defined parameter called view
radius. It models the sensor’s range. An edge artifact appears when the edge of an obstacle
lies between any two cast rays. Thus, one ray hits an obstacle and the next one misses,
ending naturally on the view radius. The two endpoints of the rays that are used to form the
colored mesh by the mesh renderer are now forming a triangle (artifact) that passes through
the obstacle. Figure 5-14 demonstrates that the resulting, colored mesh does not represent
the actual field of view correctly.

Figure 5-14:The edge problem can be clearly seen if the mesh resolution is lowered.

To solve the problem, a binary search process is performed. Angles in the domain that is
formed by the rays that cause the artifact are checked, until an angle, namely a ray direction,
that passes closely enough to the edge, is found. Then a ray is cast in that direction. The
more the iterations of the performed binary search, the closer the new ray will be at the real
edge. The number of iterations can be adjusted by the user by modifying the
EdgeResolvelterations parameter. Figure 5-15 illustrates the result.

94/156

Figure 5-15: Solving the edge problem with 5 binary search iterations.

There is however a problem regarding the condition which triggers the solution of the edge
problem. Currently, the condition is that when one ray hits an obstacle and the next one
does not hit an obstacle, ending on the view radius, the solution of the edge problem is
triggered. The problem is that when both rays hit, but the hit points are a large distance
apart, the solution should be triggered, but it does not. Figure 5-16 demonstrates this issue.

Figure 5-16:The binary search is not triggered and thus a falsely shaped triangle is formed in the mesh

To solve the problem, the condition which triggers the solution of the edge problem was
changed so that the process is triggered either when a ray hits and the next one misses
ending on the view radius, or two consecutive rays hit and the hit points are a distance apart
greater than the EdgeDstThreshold (parameter set by the user). Figure 5-17 shows the
result. The produced mesh is smooth and continuous. Algorithm 4-1 contains the pseudo-
code for the edge artifact problem solution.

95/156

Figure 5-17:Smooth mesh after applying the edge problem solution.

ALGORITHM 4-1 EDGEARTIFACTPROBLEMSOLUTION

Require: (previous ray hits and next ray does not hit) or (previous ray hits and next ray
hits and next ray endpoint distance > EdgeDstThreshold)
Ensure: There exists a ray that passes close enough to the obstacle edge.
min «— angleOfRayThatHit
max « angleOfRayThatMissed
i1
while i < EdgeResolvelterations do
angle — (min +22-MT)
Cast newRay with angle, min < angle < max
angleOfNewRay < newRay.angle
iIf newRay hits then
min «— angleOfNewRay
else
max < angleOfNewRay
end if
end while

Add newRay.endpoint to the mesh

5.3.4 Forming a 3D Mesh

To form a 3D Mesh, multiple 2D Meshes, rotated around a determined sensor axis were
utilized. Figure 5-19 demonstrates how rotating horizontal meshes around the sensor’s x-
axis by a specific angle (horizontal offset) simulates a lidar’'s scanning slices created by the
laser’s horizontal motion. The rotated 2D meshes are saved as a single object, a 3D mesh.

96/156

Figue 5-18: Creating a 3D Mesh by rotating multiple 2D meshes around th sensor’s x axis.

To make such a 3D mesh denser, the HorizontalOffsetResolution parameter can be
increased. Similarly, rotating vertical meshes around the sensor’s y-axis by a specific angle
(vertical offset) simulates a lidar’'s scanning slices created by the laser’s vertical motion. To
make the 3D mesh denser, the VerticalOffsetResolution parameter can be increased. Figure
5-19 demonstrates this.

The rotation of each mesh is achieved by rotating the rays that are cast to create it. The
rays need to be rotated relative to the sensor’s transformation. For each ray there is a
vector3 variable that determines its direction. It is easier to use rotation matrices to rotate
each vector around the desired sensor axis [116]. The matrix of a proper rotation R by angle
6 around the axis u = (uy,uy,u,), a unit vector with uf + uj + uZ = 1 is given by:

cos 8 + u2(1 — cos 0) UyUy (1 —cosO) —u,sin€ u,u,(1—cosf) +u,sind
UyUy(1 — cos) + u, sind cos + uf,(l —cos) UyU, (1 — cos) + uy, sin6
UUy (1 —cos) —u,sinf u,u, (1 —cosb)+u,sinb cos @ + uZ(1— cos)

(a) (b)
Figure 5-19: (a) Creating a 3D Mesh by rotating multiple 2D meshes by the vertical y-axis.
(b) Increasing the mesh resolution.

To form a denser and uniform 3D mesh, the rotation of both vertical and horizontal 2D
meshes is necessary. Rotating horizontal meshes around the sensor’s x-axis by a specific
angle (horizontal offset) and vertical meshes around the sensor’s y-axis by a specific angle
(vertical offset) simulates a lidar's scanning slices created by the laser’s horizontal and

97/156

vertical motion. Figure 5-20a demonstrates that the resulting field of view closely resembles
the geometry of a depth camera or lidar field of view. Figure 5-20b lllustrates a denser 3D
mesh. To make a uniform 3D mesh denser, the VerticalOffsetResolution parameter, the
HorizontalOffsetResolution parameter or both parameters can be increased. This type of
field of view visualization is the most accurate of those discussed so far and was extensively
used to assist with decisions regarding a robot’s perception system.

(a) (b)

Figure 5-20:3D meshes formed by rotating horizontal and vertical meshes.

5.3.5 Detecting Visible Targets

The blue capsules in the scene represent targets. Targets that are in the overall field of view
of the robot’s perception system are marked with red color instead of blue. The information
that a target is inside the overall field of view can be acquired in two ways: The first one is
utilizing the rays that are cast to form the 2D meshes. A check can be run for each ray to
determine if the ray hits a target or not. If a target is hit, it can then be marked as visible, and
it can be added to a list containing all the visible targets. In an editor script, the red color can
be assigned to every target in the list with the visible targets. This method simulates a lidar's
visibility constraints, attributed to its resolution. This method can test a lidar's both vertical
and horizontal resolution. Namely, as Figure 5-21 illustrates, if a target's dimensions are
smaller than the dimension of a single cell in the 3D mesh grid formed by the rays, then the
target could remain undetected even if its position is in the sensor’s effective field of view.
This test case simulates a lidar that is unable to map a small object or detail despite the
latter being inside the lidar’s declared field of view.

98/156

| f‘f /
Figure 5-21: Capsule target is positioned in the effective field of view but is too small to be detected by
the sensor. Thus, it is not colored red.

The second way to acquire the information that a target is inside the overall field of view, is
to simply use math to check if the center of the target lies within the field of view locus. For
that to be true, three conditions must be met.

. The distance between the sensor’s center and the target’s center must be smaller than
the view radius.

. The angle a formed by the sensor’s z transform vector (front vector) and the projection
of the target’s relative position vector to the sensor’s y plane, must be smaller than the
horizontalViewAngle (HOVA). Figure 5-22a illustrates this constraint.

e The angle B formed by the sensor’s z transform vector (front vector) and the projection
of the target’s relative position vector to the sensor’s X plane, must be smaller than the
verticalViewAngle (VEVA). Figure 5-22b illustrates this constraint.

This method simulates a depth camera’s visibility effectiveness, if it is assumed that the

camera has no blind spots within its FOV.

= angle ’

(a) (b)

Figure 5-22: Using the field of view locus method to determine if a target is visible.

99/156

5.4

The Lealaps Perception System

5.4.1 Perception System Requirements

To determine the ideal position and rotation of the sensors on the lealaps robot, a list of
specific requirements was considered. These requirements resulted from the intended use
of the robot, namely in outdoor agricultural environments and more specifically in vineyards
for grape and vine inspection. Naturally, each of these requirements cannot always be
fulfiled and therefore, trade-offs play an essential role when designing the lealaps 3D
perception system. In summary, the 3D perception system requirements for the lealaps
robot are shown in Error! Reference source not found..

Table 5-3: Summary of 3D perception system requirements.

index

Requirement

The 3D perception system should have the best possible observation area and the least possible blind
spots.

The 3D perception system should be energy efficient.

The view radius of the robot should be large enough for the robot to detect obstacles early enough to
avoid them.

The vision of the robot should not be heavily impaired under adverse weather or lighting conditions.

The 3D perception system should be capable of distinguishing visual features and areas of interest in
ranges of at least up to two meters.

The update rate of the sensors of the perception system should be high enough to allow for fast
perception in all directions.

The 3D perception system should be capable of mapping whole vines and similar plants which can
reach a little more than a meter in height.

5.4.2 Discussing possible sensor configurations

With these requirements in mind, seven different sensor configurations for the laelaps 3D
perception system were tested using the Field of view visualization tool in unity.
1. Laelaps with 2x Zed2 Depth Cameras [16] and a Velarray M1600 Lidar [117]. The

FOVALIRA tool in unity was used to check for blind spots and overall visibility constraints
for this configuration. Figure 5-23 illustrates that this option offers a large observation
area covering the whole front and sides of the robot, with small and not substantial blind
spots. However, there is no view from the back of the robot, which could be useful in
case the quadruped performs maneuvers which require it to move backwards. An extra
Zed2 stereo camera could be added at the back of the robot providing the setup with a
near 360- field of view. In terms of energy efficiency, this setup is lightweight and
efficient. The ZED2 cameras consume a mere 1.9W each [118] while the Velarray
M1600 Lidar, being a solid state lidar with no moving parts, needs 15 W [119] at most to
be fully operational. In addition, the update rate of solid state lidars is typically higher
than that of conventional lidars. Conventional lidars are sometimes slow when it comes
to coverage in all directions. The limitations are clear in state-of-the-art robot platforms
such as those that participated in the DARPA Robotics Challenge in 2017 (DRC 2017),
which had slow update rate as reported by some of the teams [120]. The M1600 can
manage a 25Hz refresh rate which is higher than its conventional lidar counterparts.
Furthermore, combining lidars and depth cameras allows for versatility even in adverse
weather or lighting conditions. Lidars do not require external light sources to operate,
and their functionality is not affected by changes in lighting conditions. Cameras on the

100/156

other hand are generally not as susceptible to rain, fog, or dust as lidars. They can also
map reflective surfaces with more accuracy than lidars. However, given that the field of
view of the cameras does not overlap with the field of view of the lidar, if a sensor
underperforms then the whole system is affected.

(a) (b)
Figure 5-23: Lealaps with 2x Zed2 Cameras and a Velarray M1600 Lidar. (a) Top view. (b) Side view.

2. Laelaps with 4x Intel Realsense D435 depth Cameras [121]. This option also offers a
large observation area covering the whole front, sides and back of the robot, with small
although not negligible blind spots. Figure 5-24 illustrates this configuration. In addition,
the D435 depth cameras offer a large vertical field of view angle (58¢), which allows the
robot to easily obtain depth images of tall plants, even when standing close to them. In
terms of energy efficiency, this setup is lightweight and very efficient. The maximum
power draw of the Vision Processor D4 Board, which handles power for both the Vision
Processor D4 and the Depth Module of the D435 camera, is rated at 700 mA [122]. With
a nominal supply voltage of 5V, each camera consumes a mere 3.5W for a total of 14W
for the whole setup. Nevertheless, this setup utilizes only depth cameras. The absence
of a lidar means that the field of view radius or the effective range of the perception
sensors is smaller, while the point cloud quality at the front side of the robot would be

inferior as lidars do produce higher quality and relatively artifact-free depth-clouds.

(a) (b)

Figure 5-24: Lealaps with 4x Intel Realsense D435 depth Cameras. (a) Top view. (b) Side view.

101/156

3. Laelaps with 5x Intel Realsense D435 depth Cameras. An interesting approach to
keeping the simplicity and energy efficiency of the second setup, while raising the depth-
cloud quality at the same time is adding a fifth Intel Realsense D435 sensor. Since most
obstacles and points/areas of interest will appear in front of the robot, the extra camera
should be placed on the front side of the robot, alongside the preexisting front depth
camera. In this particular approach, the two front cameras are rotated around the y-axis,
which in unity is the vertical axis, at 20- inward so that their field of views overlap. Figure
5-25 llustrates this configuration. This creates information redundancy but yields a
higher quality depth-cloud overall, since a single underperforming front sensor (for
example due to dust or strong direct light on the lenses) will not affect the generated
front depth map. This setup, nevertheless, does not increase the effective range of the
robot’s perception. It does, however, reduce the size of the blind spots on the front side
of the overall field of view. Boston Dynamic’s spot robot utilizes a similar perception
system [123].

(a) (b)

Figure 5-25: Lealaps with 5x Intel Realsense D435 depth Cameras. (a) Top view. (b) Side view

4. Laelaps with 4xD435 + Velodyne Ultra Puck Surround View Lidar [124].
Informational redundancy can lead to a more robust perception system. This approach
utilizes overlapping 3D fields of view to accomplish just that. On the center top of the
robot, a Velodyne Ultra Puck Surround View Lidar offers a 360- field of view with high
resolution. To refine the resulting point cloud, 4xD435 depth cameras, one in every side
of the robot, provide additional depth images. Figure 5-26 clearly shows that there are no
blind spots with this setup and an underperforming sensor will not significantly affect the
produced point cloud. A major drawback of this system is the weight and the limited
energy efficiency. The lidar alone is around 1kg heavy. It consumes 10W of power at
typical operating conditions [125]. The cameras combined weigh 1kg and consume a
total of 14W. Thus, the setup weighs 2kg and consumes 24W of power. This makes this
perception system the heaviest and most energy-consuming system discussed so far. In
addition, it is not focused on one side of the robot. The field of view expands evenly
away from the robot. This is usually not desired, as four legged robots are generally
more agile when moving forwards and thus it is a preferable design choice for the
perception system to be focused on the front side of the robot. Anybotics Anymal C robot
utilizes a similar perception system [126].

102/156

(b)

Figure 5-26: Laelaps with 4xD435 + Velodyne Ultra Puck Surround View Lidar. (a) Top view. (b) Side view.

5. Laelaps with 4xD435 and an extra D435 at the front, rotated around the x-axis. This
configuration aims to improve the robot’s perception in the front, while also improving the
overall vertical field of view. Robots that will commonly encounter obstacles (e.g.
branches) high above their body height or need to gather visual information from tall
objects and structures will benefit from a design like this. Figure 5-27vdemonstrates that
several -though not significant -blind spots appear when visualizing the overall field of
view of this perception system. The small overlap between the two front camera’s field of
view will yield slightly better point cloud quality in the fused map shaped in the front of
the robot. The system is very energy efficient and lightweight since it only utilizes
lightweight depth cameras with low consumption (typically 3.5W). Xiaomi’'s Cyberdog 2
utilizes a similar setup, due to its need to have visual contact with human faces and

gestures [127].

(a) (b)

Figure 5-27:Top view of Lealaps with 4x Intel Realsense D435 depth Cameras and an extra D435
at the front, rotated around the x-axis.

5.4.3 Deciding on a near optimal sensor configuration for Laelaps

The Laelaps robot, being optimally designed using a combination of criteria related to
forward speed, would benefit from a perception system that is focused on the field of view in
front of the robot. However, in agricultural environments, the robot will encounter difficult
terrain, dead-ends and obstacles that cannot be easily avoided. In such conditions, the

103/156

quadruped will be required to rotate, turn and even walk backwards. Therefore, the robot
should be equipped with a setup that produces a near 360 field of view. Considering this, as
well as the summary of 3D perception system requirements presented in Table 1, the
Laelaps sensor configuration would benefit from 4x ZED2 Stereo Depth cameras and one
Velarray M1600 Solid State Lidar. Combining a Lidar with depth cameras will provide
versatility and robustness even in adverse weather or lighting conditions. Placing the lidar on
the front side of the robot and overlapping its field of view with that of the front depth camera
will add to the valuable point cloud quality in front of the robot.

Capitalizing on the increased range of the lidar, the lidar is placed at a subtler downward
angle than the front depth camera. Figure 5-28 illustrates the setup. Thus, the camera
mainly maps the ground close and in front of the robot, while the lidar captures information
about terrain and obstacles further ahead. This system is both lightweight and energy
efficient. The lidar consumes at most 15W of power while all the depth cameras combined
consume an average of 6W of power. Each depth camera weighs about 125g while the solid
state lidar weighs well below 1kg. The lidar offers premium quality mapping at distances
from 0.1m to 30m while the depth cameras have depth ranges of up to 20m.

For the initial laboratory experiments involving the robotic rover, a simplified sensor
configuration was utilized due to budgetary and accessibility constraints. This temporary
setup consisted of three ZED depth cameras: one ZED?2 facing forward, one ZED2 facing
backward, and one ZED X mini with a wide field of view positioned on the side of the rover.
This configuration provided adequate view coverage for the current research phase, which
focused on single-row vineyard mapping without complex obstacle detection requirements.
However, in future deployments involving the quadruped robot and potentially more
challenging environments, the sensor configuration encompassing four ZED2 cameras and
the Velarray M1600 LiDAR will be implemented.

(b)
Figure 5-28: Top view of Lealaps with 4x ZED2 depth Cameras and a Velarray M1600 Solid State Lidar
at the front, placed at an angle.

104/156

6 Simulation Experiments

6.1 Simulated World

The vineyard inspection and 3D reconstruction framework proposed in this work was
extensively tested in simulation. To thoroughly evaluate the framework, a comprehensive
simulation environment was established using Gazebo [128]. This simulated environment
closely mirrored the real-world testing compartment located within the Control Systems
Laboratory. This room comprises a synthetic vineyard designed specifically for agricultural
robot experimentation. The controlled lighting conditions within the laboratory are replicated
in the simulation. The vineyard layout features three equally spaced vine rows, forming 1-
meter-wide corridors for robot navigation. The ground texture replicates a mosaic pattern,
and the inclusion of three cast iron radiators near the walls further enhances the realism of
the simulation. A high-fidelity robotic platform (RP) model was designed and integrated
within the simulated environment. This model meticulously replicates the actual RP intended
for deployment in subsequent real-world experiments.

Figure 6-1:The simulated world in Gazebo.

An April Tag was placed at the beginning of the second row. Its purpose is to facilitate the
loop closure process which takes place as soon as the robot effectively aligns its left camera
with the April Tag. April Tags and their significant impact on correcting accumulated
odometry errors in the context of the developed framework are thoroughly described in

105/156

section 2.1.4 of this thesis. Finally, a two-dimensional map of the simulated world was
designed for visualization purposes. The map reflects the real-world dimensions of the
development space with high-fidelity. Rviz [129] and foxglove studio [130] are the two
software platforms that were utilized to visualize RP’s movement through the simulated
vineyard, as well as to monitor valuable data.

W T

i

Figure 6-3: RP’s trajectory and simulated environment map as seen from foxglove studio.

106/156

6.2 Simulated Robotic Platform

The simulated Robotic Platform’s design closely follows that of the real robotic platform that
is deployed at the Control Systems Laboratory in subsequent experiments. Its motion
system features four mecanum wheels to provide the robot with omnidirectional motion
capabilities. Mecanum wheels are a type of wheeled drive system that allows land-based
vehicles to move in any direction. They are commonly used in mobile machines, such as
forklifts and industrial or research robots. Mecanum wheels consist of a series of rollers with
an axis of rotation at 45° to the wheel plane and at 45° to the axle line. This allows the wheel
to produce both longitudinal and transverse forces, which enables the vehicle to move
sideways, diagonally, and even spin in place [25]. Mecanum wheels are used in situations
where a small turning radius, high maneuverability and movement on difficult terrain are
desired. In the experiments conducted for the purposes of developing the vineyard
inspection and reconstruction framework, these wheels were especially valuable for aligning
the robot’s side camera with the April Tag before performing loop closure.

(a) (b)

Figure 6-4: (a) A pair of mecanum wheels used on the RP.
(b) Utilizing mecanum wheels to move in various directions:
blue: wheel drive direction, red: vehicle moving direction, red dot: center of rotation.

For a comprehensive understanding of the proposed robotic platform's behavior and
effective control strategy development, it is crucial to analyze its kinematic properties. If we
consider a x,0,y, frame attached to the center of the robot’s chassis, we can write the body
speed equations as follows:

Uy 1 1 1 1 w1

_R 1 -1 -1 1 |.|@2)
[vy]_Z 1 1 o 1 w3 |’ (6-1)
Wz Ii+1, I1+1,

L1+, l1+1,

where R is the wheel radius, w; is the angular velocity of the wheel i and [;,[, are the
distances between wheel axis and body center. If the speed of the robot is imposed, we
have to compute the angular speed of each wheel (inverse velocity solution):

w4 1 1 —511 +llz) v,

@2l _1|1 =1 L+t |y -
w3 TR(1 -1 —(,+1) [a)]’ (6-2)
@4 L1 L+, ‘

107/156

to acquire for the RP:
Ve (8) = (01 + Wy + w3 + wy) 'E,

vy () = (—w1 + Wy + w3 — Wy) 'Ea (6-3)

r

w(t) = (—w1 + Wy — w3 + wy) 'm,

where v,(t) is the longitudinal velocity, v, (¢t) is the transversal velocity and w,(t) is the
angular velocity of the RP.

y1=45° 2=-45°
L XCl1 (XC2
Al
| 1l - . -
/) ycr A ~c Yc
1P
XS
/ ! VR
. : -— OQ s
y3=-451 y4=45°
JC3 \JC4
Q\\ H XC3 . Xca

;Cb -/O‘y

Figure 6-5: Kinematics of the RP.

The robotic platform was fitted with four simulated stereo depth cameras each facing in a
different direction. The appropriate ZED sensor plugins and STL CAD descriptions were
used so that the simulated cameras closely resemble real ZED cameras.

The design of the perception system mounted on the simulated robotic platform (RP)
aligns demonstrably with the theoretical optimal perception system identified through our
FOVALIRA evaluations. Future iterations of the RP perception system may incorporate a
LiDAR sensor to further enhance its capabilities and achieve even closer alignment with the
theoretical optimal system.

A 3D Position Interface for Ground Truth (P3D) was applied on the base of the RP
platform. P3D broadcasts the inertial pose of the RP’s base link in simulation over ROS via
an odometry msg. This is necessary to evaluate the accuracy of the Multi-camera visual
odometry by comparing it to the ground-truth odometry produced by P3D.

108/156

Y’ — |

bob T e e

Figure 6-6: The simulated roboticblatform.

6.3 Simulation Software architecture

6.3.1 Tracking PID

The robotic platform is tasked with traversing the first and second rows of the simulated
vineyard by following a strict trajectory designated to it by the path planning algorithm
described in [19]. A trajectory tracking proportional-integral-derivative (PID) controller named
tracking_pid ROS [131] is leveraged to enable it to closely follow the designated trajectory.
Tracking PID is a versatile and flexible ROS package that comprises two main components:
an interpolator and a controller. The interpolator takes a nav_msgs/Path message containing
a sequence of waypoints and generates a reference global point (GP) that moves along the
path at a specified velocity. This GP serves as the target for the controller, which employs
three separate PID loops — longitudinal, lateral, and angular — to track the GP precisely.

Tracking PID offers numerous advantages for trajectory tracking applications. It is highly
customizable, allowing for adjustment of various parameters, such as controller gains,
acceleration and deceleration limits, and desired velocity. Additionally, it supports various
types of ROS path representations, including nav_msgs/Path, geometry_msgs/PoseArray,
and moveit_msgs/RobotTrajectory. One of Tracking PID's key features is its ability to
accurately track trajectories without compromising velocity smoothness. This is achieved by
implementing a carrot tracking strategy, where the GP always lies in front of the robot and
the controller keeps the robot at a constant distance [from GP.

y &

Figure 6-7: Tracking PID: Carrot tracking strategy [131].

109/156

ex ey, eg:errors. CP:Control Point.

Another notable aspect of Tracking PID is its capability to track trajectories relative to the
robot's base_link frame. When enabled, the controller utilizes a Projected Global Point
(PGP) that is projected onto the robot's base_link frame. This allows the robot to follow the
path in a stricter manner.

LY

Figure 6-8: Tracking PID: Base_link tracking strategy [131].
ey, ey, eg:errors. PGP: Projected Global Point.

6.3.2 April Tags and Loop Closure

An AprilTag is placed before the first grapevine of the second row of the simulated vineyard.
It can be detected using the ZED camera at the right side of the Robotic Platform (RP) by
using the apriltag_ros package [132]. The apriltag_ros package outputs the transformation
from the camera frame to the detected AprilTag frame. The position and orientation of the
April Tag in the map is fixed and accurately known. When the April Tag is detected, the RP
can acquire an accurate estimation of its position relative to the April Tag and -because the
pose of the April Tag is known- an accurate estimation of its position in the map. The latter
pose estimation is compared to the pose estimation acquired from the RP’s dual-camera
visual odometry. Then, a loop closure thread initiates global bundle adjustment to refine all
the previously estimated poses and 3D landmarks, therefore correcting the whole estimated
trajectory of the robot. Many state-of-the-art vSLAM algorithms leverage a Bag of Words
image representation to detect a loop closure and perform bundle adjustment, as explained
in 2.2.1. Using April Tags to initiate bundle adjustment is superior to Bag of Words (BoW)
loop closure approaches in a vineyard setting. This is because the crop is organized in
parallel and similarly sized rows. There, the bag-of-word approach could result in incorrect
loop detection due to the high similarity between images. As a result, such vSLAM
approaches are prone to false positive loop detection in homogeneous environments like
vineyards.

The pose of the April Tag relative to that of the robot can be accurately estimated from
great distances and from various view angles. However, it was observed that the best
results were produced when the robot detected the April Tag when it was close to it and with
a view angle of around 90°. Thus, to amplify the valuable odometry corrections of the bundle
adjustment process, an alignment node was implemented. The alignment node is active
throughout the experiment but only influences the RP after it has detected the April Tag. It
then takes over control of the RP and aligns it with the April Tag before registering the April
Tag pose. More specifically, as soon as the right camera of the RP completely aligns its left

110/156

lens with the April Tag, its pose is registered, and the bundle adjustment node corrects the
so-far trajectory of the RP.

6.3.3 Simulation Experiment Pipeline

There are many processes running to facilitate the simulation experiments, mainly in the
form of ROS nodes. The main modules are:

The free corridors path planning algorithm that runs in Matlab utilizes polytopic
decomposition and calculates a viable and non-obstructed path through the first two
rows of the vineyard, using the 2D vineyard map and producing a dense series of
waypoints for the RP to pass through. This is the trajectory planning module.

The Gazebo simulated world that loads with the synthetic_vineyard.launch launch file.
This launch file loads the synthetic vineyard world and spawns the Robotic Platform in a
designated position in the vineyard. It also loads the 2D map for visualization purposes
and broadcasts necessary static transform messages.

The dual-camera, real-time (RT) visual odometry node (visual tracking module) that is
launched with the DualCamRTAT.launch launch file. This launch file also launches the
April Tag (AT) Continuous Detection node. Those functions comprise the Real Time
Localization Module.

The April Tag Continuous Detection node publishes over the ROS network whenever a
Tag is detected. It calculates the transformation between the April Tag and the camera
that detects it, by analyzing the visual footprint of the April Tag on the camera RGB
video.

The tracking_pid node that controls the RP and ensures that it smoothly tracks the
trajectory that is defined by the waypoints produced by Kunal’s path planning algorithm.
This node comprises the Precise Velocity Control module.

The view_planning node, which ensures that the robot aligns with the April Tag after
detecting it. After the robot is properly aligned, the DualCamRT node will register the
April Tag and perform bundle adjustment to correct the so-far obtained odometry data.
The view_planning node is also launched by the synthetic_vineyard.launch launch file.

111/156

Continuous 3D Reconstruction & Inspection

Canopy Density
Start Synchronous Point | _—7| Estimation -
Cloud & RGB image
capturing ™" 3D Reconstruction
Trajectory Planning Precise Velocity Control
initial & final Tracking PID
posiion > Polytope g
»| Decomposition
v map Interpolator Velocity
OP]?BCFIVB free corridors Commands « |
Initiation i
Y
. Trajectory _
Initial Position Sequential MPC wayponis || controller
&
Static
Transformations Real Time Localization Command Execution & Movement
Visual Tracking AprilTag
Detection
Feature
Extraction l
L » View Planning Gazebo Movement Plugin [«
v
¥ Loop Closure
Pose Update Bundle
Adjustment
OR
Gazebo Navigation Plugin > odometry data
ground fruth

odometry data
Figure 6-9: Simulation Experiment Pipeline.

Secondary nodes add more functionality to the experiment:

e The position_to_velocity node takes position and rotation data about the RP from the
DualCamRTAT visual tracking node and calculates the derivative to output the velocity of
the RP in real time.

e The point_cloud_to_pcd node takes point clouds from the right ZED depth camera of the
RP in real time and saves them in “.pcd” format in the specified folder. These “.pcd” files
are to be used by the Vinymap quality assessment and reconstruction algorithm for
canopy density estimation and projective texture mapping. It should be noted that this
node simultaneously and synchronously saves RGB images in the specified folder.
These are used in the projective texture mapping process of the Vinymap algorithm.

e Rosbag record is a command-line tool used to record ROS messages to a file called a
bagfile. Bagfiles are a flexible format that can store a wide variety of ROS messages,
including sensor data, actuator commands, and user interactions. They can be used to
replay recorded data, analyze data offline, and share data across platforms. Valuable

112/156

messages that are broadcasted across a variety of topics are recorded during the
experiment to be studied and visualized later in Rviz or Foxglove Studio.

The P3D gazebo navigation plugin broadcasts ground truth odometry data about the
position of the RP in the vineyard. These can be fed into the view_planning node to allow
for best alignment with the April Tag for development and testing purposes. They are
also used to compare the DualCamRTAT’s odometry data accuracy to ground truth data
accuracy. When conducting finalized simulation experiments or real-world laboratory
experiments, all odometry data used during the experiments are taken from the
DualCamRTAT visual tracking node which provides the visual odometry of the RP.
During laboratory experiments, a PhaseSpace Impulse X2E [133] motion capture system
was used to substitute ground truth data, replacing the P3D gazebo plugin.

113/156

7 Laboratory Experiments

7.1 The synthetic vineyard setup

After extensively testing the proposed vineyard inspection and 3D reconstruction framework
in a simulation environment, to conduct controlled and repeatable experiments with varying
light conditions, a vineyard with artificial grapes and leaves was built at CSL. Each row
consists of multiple plants on a trellis system so that the vegetation form resembles a natural
canopy. The basic vineyard row parameters, such as the distance between plants (~1m)
and grapes’ minimum height (0.60m) is based on common viticulture practices in Greece.
The artificial grapes’ grid features varying density, grape size, creating different visibility
conditions since some grapes are partly covered with leaves, whereas others lie on the front
plane. The vineyard consists of three 3-meter-long rows on even terrain.

(b)
Figure 7-1: (a) Synthetic vineyard in CSL. (b) Natural Vineyard located in the Blue Ridge Mountains, USA.

An April Tag was placed at the start of the second row, at a fixed position, behind the pole of
the first vine tree of the second row. To guarantee controlled and repeatable performance of
our custom dual-camera visual odometry (VO) algorithm, we opted for a two-pronged testing
approach. Firstly, we aimed to acquire ultra-high-quality, near-faultless odometry data to fuel
our algorithm development without concerns about erroneous measurements. Secondly, we
sought to verify our algorithm's performance in a real-world scenario.

For the first objective, we leveraged the PhaseSpace Impulse X2E [133] motion capture
system. This state-of-the-art system employs active LED markers attached to the robot,
enabling high-precision tracking within a defined capture space. Unlike camera-based
systems susceptible to lighting variations and feature quality, the PhaseSpace system
delivers robust motion tracking independent of ambient conditions. This allowed us to
acquire highly accurate and reliable ground truth odometry data for meticulous algorithm
development and evaluation.

In the second phase, we transitioned to real-world testing settings. Our robotic platform
navigated two distinct environments: a naturally lit garage (Figure 6-2) and a variably lit room
(Figure 6-3). The PhaseSpace system was deployed in the second location for continuous
performance validation. Additionally, during the garage experiments, a DJI Air 2S [134]
guadcopter captured aerial photographs and videos, providing valuable supplementary data
for multi-angle analysis. This multifaceted approach enabled us to assess our VO algorithm's

114/156

efficacy in diverse operational scenarios, bridging the gap between controlled testing and
real-world deployment.

’
/
/
/
/
/
/
/
/

H

/
DN AIr 28

Robotic Platform
-

L) G

(a) ' (b)
Figure 7-2: (a) Aerial Photography of the Laboratory Experiment Setup taken by the quadcopter.
(b) 2D graphical representation of the Laboratory Experiment Setup.

A Robotic Platform developed for research purposes and altered to host the software
developed in this work was tasked with traversing the first and second corridors formed by
the rows of the vineyard. Its trajectory ends near the April Tag. There, the RP was tasked
with aligning the left lens of its right ZED Depth Camera with the stationary April Tag, exactly
how it performed in the simulation experiment pipeline. With the knowledge of the position of
the stationary April Tag, as well as the knowledge of its relative position of its camera to the
April Tag, the RP can recalculate its pose at the time of registering the April Tag and then
perform bundle adjustment to correct the so-far odometry data which it collected using the
dual camera visual slam node.

115/156

PhaseSpace
Cameras

Loop Closure
April Tag

7.2 The Robotic Platform

CSL’s Robotic Platform (RP) was used to validate and test the proposed software
framework. The RP is designed and constructed for research purposes, comprising custom
built in-house parts as well as off-the-shelf parts (e.g. aluminum profiles, bearing units etc.).
Its motion system features four mecanum wheels [25] to provide the robot with
omnidirectional motion capabilities. The wheels are powered by four Maxon DC motors (RE
35) combined with planetary gearboxes (GP 42) and incremental encoders (HEDL 5540),
providing 5 Nm of continuous torque per wheel. GT2 timing belts and pulleys are used to
protect actuator shafts from increased robot payloads and to transmit power to the wheels.
Two RoboClaw [135] 2x30A motor controllers are used to drive the actuators, since each
controller can drive two DC brushed motors. The encoders attached to the motors are read
by the controllers, which run local PID control schemes that can precisely follow speed
commands for all wheels. The two motor controllers are connected via USB to the system’s
master computer, which is a Raspberry Pi 2 model B [136] (RPi) running the Raspbian OS.
The operator can connect to the RPi using WiFi and Secure Shell (SSH) Network Protocol to
run a Python script that establishes two serial connections with the motor controllers and
sends the desired motion commands. The system is powered by two Wild Scorpion 6S
22.2v 4200mAh 60C LiPo batteries [137] for the RoboClaw controllers and a power bank for
the master computer (RPi).

The perception system of the RP was designed according to the guidelines defined in
Chapter 4 of this thesis. Although the form factor of a rover differs a lot from that of a
guadruped robot such as Lealaps or Argos, the hardware which best suits the application of
vineyard inspection stays, in principle, the same. Thus, the RP was fitted with 3 ZED Depth
cameras — one at the front of the RP, one at the rear and one at the right side. Due to the

116/156

lower height of the RP, the cameras were not tilted downwards; This would be beneficial for
a legged robot with a larger form factor as described in section 4.4 of this work, but this is
not the case for the CSL RP since doing so would move most of the vineyard out of the
camera field of view. The front and rear cameras are ZED 2 Depth cameras, while the right
side camera is a ZED X Mini Depth Camera with a 2.2 mm focal length [138]. A shorter focal
length implies a larger field of view which is desired in this configuration, as a larger area of
the grapevines can be inspected with a single traversal of the rows. The ZED X Mini Depth
Camera is also fitted with polarizing lens, which increases the RP’s ability to operate under
diverse lighting conditions.

RoboClaw Motor Controllers NVIDIA Jetson AGX Orin

-

Wild Scorpion LiPo Batteries
Sug

Maxon DC Motors

(a) (b)

Figure 7-4:(a) The Robotic Platform without its perception system. (b) The perception system of the
Robotic Platform.

The software framework runs on the Nvidia Jetson AGX Orin which is the processing
platform purposefully chosen for the perception system proposed in this thesis, as described
in section 4.2. All three depth cameras are connected to Orin. The ZED 2 cameras are
connected via USB 3.0, while the ZED X Mini is connected via a GMSL2 Fakra Cable. To
support this connection, the Nvidia Jetson Orin is fitted with a GMSL2 Capture Card. To
power the Orin, an Antigravity Micro-Start battery [139] was chosen to provide it with 12V at
3.5A DC.

7.3 Laboratory Experiment Software Architecture

There are many processes running to facilitate the experiments conducted at the synthetic

vineyard in the laboratory, mainly in the form of ROS nodes. The main modules are:

e The free corridors path planning algorithm that runs in Matlab utilizes polytopic
decomposition and calculates a viable and non-obstructed path through the first two
rows of the vineyard, using the 2D vineyard map and producing a dense series of
waypoints for the RP to pass through. This is the trajectory planning module.

e The v-slam.launch launch file which is the file that contains the main software
functionality. It includes the DualCamRTAT.launch visual tracking module file and
launches the map loading node, the zed_multicamera_nodelet node, the tracking_pid
node, the view_planning node, several static tf_publisher nodes and three nodes that
offer extra functionality; the position_to_velocity, point_cloud_to_pcd and rosbag record
nodes.

117/156

The zed_multicamera_nodelet is launched by the v-slam.launch file and activates all
three cameras connected to the Jetson AGX Orin. It launches the cameras one by one
using their serial numbers and sets up their output video feed.

The map loading node which publishes a static 2D vineyard map of the fixed laboratory
environment over ROS, mainly for visualization purposes.

The dual-camera, real-time (RT) visual odometry node that is launched with the
DualCamRTAT.launch launch file. This launch file also launches the April Tag (AT)
Continuous Detection node. These nodes are part of the Real Time Localization module.
The April Tag Continuous Detection node publishes over the ROS network whenever a
Tag is detected. It calculates the transformation between the April Tag and the camera
that detects it — in this case the ZED X Mini - by analyzing the visual footprint of the April
Tag on the camera RGB video.

The tracking_pid node that controls the RP and ensures that it smoothly tracks the
trajectory that is defined by the waypoints produced by Kunal’'s path planning algorithm.
The view_planning node, which ensures that the robot aligns with the April Tag after
detecting it. After the robot is properly aligned, the DualCamRT node will register the
April Tag and perform bundle adjustment to correct the so-far obtained odometry data.
The udp_client node which receives velocity messages from the tracking_pid node and
sends them via udp to Raspberry Pi. This node is part of the Command Execution and
Movement module.

The RPi python script running on the RPi computer receives messages from the
udp_client node and sends the respective velocity commands to the RoboClaw Motor
Controllers over serial communication protocol. The RP’s motors are then powered
accordingly.

118/156

Continuous 3D Reconstruction & Inspection

Canopy Density
Synchronous Point | —— Estimation
Start Cloud & RGB image a
turi
capturing 75| 3D Reconstruction
Trajectory Planning Precise Velocity Control
initial & final | Tracking PID
position | Polytope 9
»| Decomposition
v map Interpolator Velocity
Ot_ufecflve free corridors Commands -« |
Initiation i
A4
. Trajectory |
Initial Position Sequential MPC waypoints | Controller
&
Static
Transformations Real Time Localization Command Execution & Movement
Visual Tracking AprilTag
Detection
Feature
Extraction l Raspberry Pi 2 <
—> View Planning
v v
h 4 Loop Closure
RoboClaw
MicroControllers = |Maxon Motors
Pose Update Bundle lcro
Adjustmen

odometry data
Figure 7-5: Laboratory Experiments Pipeline.

Secondary nodes add more functionality to the experiment:

The position_to_velocity node takes position and rotation data about the RP from the
DualCamRTAT visual tracking node and calculates the derivative to output the velocity of
the RP in real time.

The point_cloud_to_pcd node takes point clouds from the right ZED depth camera of the
RP in real time and saves them in “.pcd” format in the specified folder. These “.pcd” files
are used by the Vinymap quality assessment and reconstruction algorithm. It should be
noted that this node simultaneously and synchronously saves RGB images in the
specified folder. These are used in the projective texture mapping process of the
Vinymap algorithm.

Rosbag record is a command-line tool used to record ROS messages to a file called a
bagfile. Bagfiles are a flexible format that can store a wide variety of ROS messages,
including sensor data, actuator commands, and user interactions. They can be used to
replay recorded data, analyze data offline, and share data across platforms. Valuable
messages that are broadcasted across a variety of topics are recorded during the
experiment to be studied and visualized later in Rviz or Foxglove Studio.

During experiments within the room with artificial lighting, a PhaseSpace Impulse X2E
motion capture system was used to substitute ground truth data. The data from this
setup were captured and saved separately to aid with post-experimental analysis and
review.

119/156

8 The Vinymap Quality Assessment and
Reconstruction Algorithm

8.1 Custom SOPCQA

Recent literature has witnessed advancements in PCQA methodologies, with both full-
reference (FR) and no-reference (NR) metrics being developed. However, there is room for
improvement as most no-reference PCQA methods do not yet statistically correlate well with
subjective quality assessments [140]. In addition, most recent studies propose learning based
methods that come with greater complexity and are harder to interpret and improve. As a
result, the development of a Simple Objective Point Cloud Quality Assessment algorithm was
deemed valuable for a perception system focused on vineyard inspection. The proposed in-
house SOPCQA algorithm can be subdivided into three parts:

(a) Sparsity Index Calculation

(b) Hole Detection

(c) Cluster Outlier Detection.

8.1.1 Sparsity Index Calculation

One way humans use to realize if a 3D point cloud is of low quality or not is to observe the
density of the point cloud. Point clouds of higher quality are homogenous in terms of density
and do not include low density sub-clouds.

The calculation of a point cloud’s (pcd) sparsity index comes down to detecting sparse
areas in the assessed point cloud i.e. areas where the points of the point cloud have on
average a small number of neighbors. The volume that these areas take up is the sparse
volume of the point cloud. The sparse volume of the point cloud is calculated by leveraging
Open3D’s mesh creation and volume calculation functions. It is then divided by the total
point cloud volume (sparse and dense). The result of this division is the sparsity index of the
point cloud. The higher the sparsity index, the sparser the point cloud and consequently the
noisier the sensor measurements that created it and the lower its quality. Algorithm 7-1
presents the process in greater detail. Figure 7-1 provides an intuitive illustration. To find
sparse areas in the point cloud, a sparsity metric for each point must be defined. The
number of the neighbors of each point in its vicinity epsilon was used.

ALGORITHM 7-1 SPARSITYINDEXCALCULATION

Require: pcd, epsilon, sparsity _threshold
Output: sparcity _index, remapping_recommendation
pcd.remove_non_finite_points()
sum_of _neighbours =0
sparse_points = []
for point in pcd:
point.neighbours = find_neighbours_using_kdtree(point, epsilon)

120/156

sum_of neighbours = sum_of_neighbours + point.neighbours
end for
pcd_mean_density = sum_of _neighbours / len(pcd)
for point in pcd:
if point.neighbours < pcd_mean_density then:
sparse_points.append(point)
end if
end for
sparse_pcd = pcd_from_points(sparse_points)
sparse_mesh = BPA(sparse_pcd)
total_mesh = BPA(pcd)
sparse_area = sparse_mesh.calculate_surface_area
total _area = total_mesh.calculate_surface area
sparsity_index = sparse_area / total_area
remapping_recommendation = (sparsity_index > sparsity_threshold)
output sparsity index, remapping_recommendation

The problem of efficiently finding the close neighbours for each point of the point cloud is
formulated as follows: Given a point cloud (a set of points in a multidimensional space) and
a radius epsilon, identify all neighboring points within a radius epsilon for each individual
point in the cloud. K-d Trees were utilized to speed up the process.

Polnt Cloud & Sparse i

(' '\- i o
Onimal Pomt Cloud (Front Vlew) Area in red iFront Vlewi I a L
: . ;o K\ o

Sparse Area (Front View)

Original Point Cloud (Top View) Poim'(’:’o’;a‘& Sparse
Area in red (Top View)
Figure 8-1: Sparse Area estimation. Areas away from the depth camera are less dense and of lower

quality, as expected from such a sensor.

A k-d tree (k-dimensional tree) is a space-partitioning data structure that recursively
subdivides the point cloud along different axes. The subdivision process creates a tree-like
hierarchy where each node represents a region of space, enabling efficient spatial searches
[141]. To find neighbors within radius epsilon of a query point g, the point cloud k-d tree

121/156

needs to be traversed; Starting at the root, q is compared with the division value at the
current node. The process continues with the corresponding child node (left or right) based
on the comparison. This process is repeated along successive dimensions until reaching a
leaf node. Then the distance between g and points within the leaf node is calculated. If the
distance is less than epsilon, the points are added as neighbors. Finally, the region in the
opposite branch of the previous division is checked, as it might contain points closer than the
current radius. Any subtrees whose bounding regions are fully beyond the epsilon distance
from g are pruned.

The Ball Pivoting Algorithm (BPA) [142] is used for mesh creation. The resulting sparsity
index comes from the division of the surface area of the sparse point cloud by that of the
whole point cloud and if it is found to be more than a user-defined threshold, then the
program outputs a remapping recommendation, as the assessed point cloud is found to
contain a large sparse area.

8.1.2 Hole Detection

Hole detection refers to the identification of vacant spaces inside the cloud. Oftentimes,
when a reflective object (like a mirror or a pc monitor) is placed in the reconstructed scene,
the sensor cannot accurately reconstruct the object and void space, or noise is registered in
its place. This can also happen when the sensor’s view is obstructed in some way and a
blind spot is created. This results in holes in the point cloud. It is intuitive to consider that in a
3D reconstruction of a vineyard there should not be any holes of large volume in the ground
or in the vegetation of the vine trees, especially in the dense vegetative states of the
vineyard. Nevertheless, the presence of holes could indicate a real problem in the vegetation
and not a loss of point cloud quality. Therefore, this algorithm’s parameters should be tuned
carefully to match the intended use case and conditions. The purpose of this procedure is to
identify abnormal holes in the point cloud and not physical holes in the vegetation. The latter
is dealt with by the canopy density assessment algorithm which is extensively analyzed in
section 7.5.

The hole detection algorithm works by filing the whole 3D workspace with a
homogenous dense point cloud (HMDpcd). The assessed source point cloud is then
subtracted by the HMDpcd. The resulting point cloud mask is then clustered using DBSCAN
clustering. Of the resulting clusters the larger ones do not represent holes and are thrown
away. The remaining smaller clusters represent holes (void spaces) of the assessed point
cloud and are saved. Depending on their size and quantity, the user can infer the assessed
point cloud’s quality. To make the algorithm’s output more objective, the clusters that
represent holes are turned into meshes via surface reconstruction with BPA. Their combined
surface area is divided by the total surface area of the initial point cloud and the result is the
hole index, the output of the algorithm. Algorithm 7-2 presents the hole detection algorithm in
greater detail. Figure 7-3 illustrates the process.

ALGORITHM 7-2 HOLEDETECTION

Require: pcd, clustering_parameters, hole_size_threshold
Output: hole_index

bbox = pcd.get_bounding_box()

all_space_pcd = bbox.fill_with_points()

122/156

free_space_pcd = all_space_pcd.remove(pcd)
free_space_pcd.erode()
free_space_pcd.dilate()
free_space_pcd.cluster(DBSCAN, clustering_parameters)
free_space_pcd.remove_largest_cluster()
holes =[]
for hole in free_space_pcd.clusters:
if hole.size > hole_size_threshold then:
holes.append(hole)
end if
end for
hole_area=0
total _hole_area=0
for hole in holes:
hole_mesh = BPA(hole)
hole_area = hole_mesh.calculate_surface_area
total _hole_area = total _hole area + hole_area
end for
pcd_mesh = BPA(pcd)
pcd_area = pcd_mesh.calculate_surface_area
hole_index = total _hole_area / pcd_area
output hole_index

The get_bounding_box() function returns the bounding polygon of the point cloud it is
applied on. The fill_with_points() function fills this polygon with random points and returns a
uniform pointcloud that covers all the space inside the polygon with a specified point density.
The remove() function, when applied on a point cloud receives as arguments another point
cloud and removes all points from the first point cloud that are closer than a specified
threshold to the second point cloud. Finally, the erode() and dilate() functions operate on a
point cloud similarly to how erosion and dilation effect a 2D image. Figure 7-2 illustrates the
process of dilation after erosion on a 2D image.

123/156

Erosion

® O
—
® O

Dilation

—

Opening

Erosion Dilation

—> —>

Figure 8-2: Erosion, Dilation & Opening performed on a 2D image.

This operation is also known as opening in image processing. The free_space_pcd
represents all the space around the source point cloud. After eroding and dilating the
free_space_pcd, groups of points of the free_space_pcd that were isolated inside crevices
and holes of the source point cloud are completely separated from the other points of the
free_space_pcd. Thus, where there were once holes of the source point cloud, now there
are points of the free_space pcd. These points represent the holes of the source point
cloud. The algorithm then clusters the free_space_pcd, so that the holes become separate
point clouds. The largest cluster, however, does not represent a hole but the rest of the free
space. So, it is removed. In addition, the algorithm discards holes that are too small. Finally,
the algorithm calculates the area that the holes and the source point cloud occupy and it
produces and outputs the hole index, which is a valuable quantity for objective point cloud
guality assessment.

124/156

Source Point Cloud Free_Space_Point_Cloud

o T¥E qu

Holes Detected

all_space_pcd.remove(pc

bbox.fill_with_points()

Source Point Cloud & All_Space_Point_Cloud Holes & Large Cluster

Figure 8-3: The hole detection algorithm visualized.

8.1.3 Cluster Outlier Detection

Detecting small and isolated clusters is referred to as cluster outlier detection in this work.
When creating a point cloud of a vineyard, these clusters are intuitively considered as noise
because they do not match any existing object in the scene. The quantity and size of these
noise clusters is therefore a valuable and simple metric of point cloud quality. The assessed
point cloud is clustered using DBSCAN. The user heuristically defines a cluster size
threshold; clusters that are smaller than this threshold are considered as noise and their
aggregated surface area and quantity is calculated. These two metrics are used in the final
quality assessment step. Algorithm 7-3 presents the cluster outlier detection algorithm in
greater detail. Figure 7-4 illustrates the process.

ALGORITHM 7-3 CLUSTEROUTLIERDETECTION

Require: pcd, clustering_parameters, cluster_size_threshold
Output: noise_clusters_quantity, total_noise_clusters_area
pcd.cluster(DBSCAN, clustering_parameters)
noise_clusters =]
noise_clusters_quantity =0
for cluster in pcd.clusters:
if cluster.size < cluster_size_threshold then:
noise_clusters.append(cluster)
noise_clusters_quantity++
end if
end for
noise_cluster _area=0
total_noise_clusters_area =0
for noise_cluster in noise_clusters:
noise_cluster_mesh = BPA(noise_cluster)

noise_cluster_area = noise_cluster_mesh.calculate_surface_area()

125/156

total_noise_clusters_area = total_noise_clusters_area + noise_cluster_area
end for
output noise_clusters_quantity, total_noise_clusters_area

Clustered Point Cloud Noise Clusters Identified

. Front View ; * Front View

Initial Point Cloud

Figure 8-4: Cluster Outlier Detection. The noise clusters are pictured in red.

8.1.4 Final SOPCQA Algorithm

Table 7-4 shows the final SOPCQA algorithm. This algorithm uses the previous three
algorithms as implemented functions to objectively assess the quality of an input point cloud.
Eq. (7-1) shows the calculation of the final quality index (FQI). The quality threshold (QT)
mentioned in the algorithm is determined heuristically by the user.

ALGORITHM 7-3 SOPCQA

Require: pcd, epsilon, sparsity _threshold, clustering_parameters, hole_size_threshold,
cluster_size threshold, fqi_parameters, QT
Output: final_quality_index, remapping_recommendation
sparsity_index = sparsitylndexCalculation(pcd, epsilon, sparsity threshold)
hole_index = holeDetection(pcd, clustering_parameters, hole_size_threshold)
noise_clusters_quantity, total_noise_clusters_area = clusterOutlierDetection(pcd,
clusutering_parameters, cluster_size_threshold)
FQI = calculateFQI(sparsity_index, hole_index, noise_clusters_quantity,
total_noise_clusters_area)
if FQI<QT then:
remapping_recommendation = True
else:
remapping_recommendation = False
end if

126/156

output FQI, remapping_recommendation

The calculateFQI function in Algorithm 7-3 applies the following equation:
(87-

f= e Fsse~Frh Bnq — Bna,

, Where f is the final quality index (FQI), (Bs, Bn, Brn) are user-defined parameters, s is the
sparsity index, h is the hole index, q is the quantity of outlier clusters and a is the total area
of outlier clusters.

In the current thesis, the SOPCQA algorithm is used in conjunction with a vineyard point
cloud dataset. This dataset contains point clouds that have been successively and
periodically captured by a ZED depth camera mounted on a moving rover robot that
traverses a synthetic vineyard with constant linear velocity. Sections 5 and 6 describe this
setup in greater detail. The algorithm works by iterating through the point clouds in the
dataset and calculating the FQI for each one of them. If the FQI is lower than the QT for an
assessed point cloud, then the point cloud is deemed of lower quality and the user is
prompted to recapture the point cloud from another view angle by appropriately
maneuvering the rover. This process could be automated but this is not implemented in the
context of this work. However, as described in section 7.2, after capturing the vineyard point
cloud dataset and assessing each point cloud’s quality, software is used to improve each of
the point clouds’ quality. The user can leverage SOPCQA to label point clouds of lesser
guality and only apply improvements to them, thus saving on computational resources.

8.2 Point Cloud Quality Improvement and Registration

8.2.1 Quality Improvement

Point cloud registration is the process of finding a transformation (a combination of rotation,
translation, and scaling) that best aligns the two or more point clouds. High quality point
clouds can be accurately registered using simple optimization-based algorithms like Iterative
Closest Point or Point Pair Feature Descriptors (PPF) [143]. For more elaborate or lower
quality point clouds resorting to more complex learning-based algorithms is considered
beneficial. In the context of this work, due to the noise in the available point clouds, a
decision had to be made between improving the point clouds’ quality to register them with
simple methods and using the raw point cloud data to register them with more complex
algorithms. The first option was chosen in the interests of simplicity as statistical point cloud
quality enhancement algorithms have been thoroughly studied and efficiently implemented in
the literature [144]. Algorithm 7-4 and Figure 7-5 present the custom pipeline developed for
that purpose.

ALGORITHM 7-4 POINTCLOUDQUALITYENHANCEMENT

Require: Set of point clouds P = {p4, ..., px}, V, b, n, e, t
Output: Set of enhanced point clouds B

B = LoadPointClouds(P, v)

for p in B:

127/156

CropPointCloud(P,v)
CloudFilterByDensity(p,n,e)
CloudFilterByClusters(p,t)
NormalEstimation(p)
end for
output B

The utilized functions are described as follows:

LoadPointClouds: Loads a batch B of point clouds out of the set of point clouds P that
were captured by the ZED X Mini camera and formats them appropriately for processing
with Open3D. It removes non-finite points and transforms the point clouds to align with
Open3D’s world frame. It downsamples the point clouds utilizing voxel_downsampling with
voxel size v for memory management purposes.

CropPointCloud: Receives a point cloud p and a set of bounding limits b as input.
Calculates p’s oriented bounding box and shrinks it to satisfy b. It then crops p to fit inside
the madified bounding box. This function is utilized to ignore areas of the point cloud that lie
in the limits of ZED X'’s field of view and are particularly noisy.

CloudFilterByDensity: Removes points of the input point cloud that have few
neighbours n within a specified radius e. Low density areas in the point cloud are usually
products of noise.

CloudFilterByClusters: Separates the input point cloud in clusters using DBSCAN
clustering [22]. Clusters that are smaller than a specified threshold t are usually products of
noise and are removed.

NormalEstimation: The function finds adjacent points in the input point cloud and
calculates the principal axis of the adjacent points using covariance analysis.

Point Cloud Quality Enhancement

\ CloudFilterByClusters
p . NormalEstimation
4 =
378 CloudFilterByDensity

»
A 8 Crop Point Cloud £ b
h e 3 i l e L. \ Clustered Point Cloud
1 j Cropped Point Cloud ’
N o | : Clustering \
-) Y B Wiy L
& 1. .':~ - L : s < il =

=

Rév& Po'irAn Cloud i:{Ite;ed pc;};;{ci(;ud i Enha.nced Fsb{nt Cloud

Figure 8-5: The Point Cloud Quality Enhancement Pipeline.

8.2.2 Registration

After being enhanced, the point clouds are registered in pairs using a custom variant of the
ICP optimization algorithm. ICP works by finding the closest point in one point cloud (source)
for each point in the other point cloud (target). This process is called data association. The
algorithm then finds the target point cloud’s transformation (which can be represented by a
rotation matrix and a translation vector) that minimizes the distance between the
corresponding point pairs. After applying this transformation to the target point cloud, the
data association changes and thus must be recomputed. The transformation matrix that

128/156

minimized the distance between the corresponding point pairs is also recomputed and
applied again. This process is repeated until the overall error between the two point clouds is
minimized. This error is typically measured using a distance metric, such as the sum of
squared distances between corresponding point pairs.

2 L
O:.~ ’
(AN] ‘.. n o .
oot N ¥ ' e B
8 ‘.' i P ...
o o....o]
o a
o! o
(a) (b)
co
.o’o ..
“..“. o .. é
.... ® o
...

(c)
Figure 8-6: a) Data association (b) Target point cloud transformation. Result after first iteration (c) Final
point cloud registration after four iterations.

There exist several variants of the ICP algorithm. Estimating the data association to avoid
convergence into a local optimal solution is the key challenge to the development of a robust
ICP algorithm [145]. Similar to the approach followed by the authors in [22], a simple yet
effective ICP variant was constructed for Vinymap.

The point-to-plane data association method was chosen. Instead of matching individual
points, point-to-plane data ICP involves fitting a plane to a set of points in the target point
cloud (normal estimation) and then selecting the closest point to that surface in the source
point cloud. The distance between point and plane is calculated using the perpendicular
distance metric. This approach is more robust to noise and outliers compared to point-to-
point data association, making it suitable for handling real-world data with imperfections. To
further reduce the effect of existent noise and outliers, correspondences of points that are
two far away from one another are not considered. The distance that defines how close two
paired points must be in order to be considered is called maximum correspondence distance
(MCD).

129/156

destination
point
(1'1

<«—__tangent

plane destination

surface

Y|
source
point

f

source
surface
Figure 8-7: Point-to-Plane correspondence illustration in 2D [146].

The first two point clouds are read from the dataset. The initial point cloud is assigned
the identity transformation matrix as its pose. The second point cloud must be correctly
registered to the first one. At this point no assumptions can be made about the second point
cloud’s pose and it is therefore also assigned the identity transformation matrix. An initial
ICP transformation with a relatively high MCD is initiated. A second ICP transformation with
a finer MCD follows and finishes the registration. The final transformation of the newly added
point cloud is saved in an odometry list which is valuable for the next steps of the Vinymap
algorithm. The newly added point cloud is then fused with the initial point cloud and the
resulting point cloud is called a local map.

The third point cloud is read from the dataset and is initially transformed with the same
matrix as the second one, but with an added 10% translation and rotation in the same
direction. This percentage is defined heuristically and can be changed as an internal
registration parameter. ICP is then applied to register the third point cloud with the local map
(which is currently comprised of the first two point clouds). The resulting final transformation
is applied to the third point cloud and saved in the odometry list. The third point cloud is then
added to the local map.

This process is repeated until every point cloud has been correctly registered and a
local map comprised of all the aligned point clouds is created. It should be noted that in
parallel to the local map, a global map is also being constructed. The global map contains
only the point clouds whose registration yielded a registration error lower than a predefined
threshold. This is done to ensure that misregistered point clouds will be discarded.

Finally, for each registered point cloud, a bounding polygon is created and saved. This
polygon is calculated by leveraging open3D’s convex hull computation function, flattening
the hull and then extracting a bounding volume which tightly encloses the point cloud. The
resulting bounding polygon is utilized in the mesh projection phase of Vinymap.

130/156

Figure 8-8: Point Cloud Registration in the synthetic vineyard.

8.3 Canopy Density Assessment

The Vinymap framework incorporates a novel strategy for identifying gaps within the
vineyard canopy. This method capitalizes on the inherent color properties of the vine tree
leaves, as well as the topological properties of surface reconstruction with alpha shapes. We
implement Algorithm 7-5 to output a comprehensive Canopy Density Index (CDI) for each
input point cloud batch. This novel index serves as a powerful tool for farmers to objectively
assess the health and vigor of their vines within the mapped area of the vineyard. Algorithm
7-5 calls the following functions:

PointCloudQualityEnhancement: Loads a batch of point clouds and enhances their
quality. Described in section 7-2.

PointCloudRegistration: This function merges individual point cloud scans captured from
successive viewpoints as the robot traverses the vineyard. It leverages the KISS-ICP [22]
variant of the well-established Iterative Closest Point (ICP) algorithm. The function
implements a tiered ICP approach utilizing three distinct point correspondence distances.
This sequential strategy, employing a coarse-to-fine logic, progressively refines the
alignment between successive scans. The function's primary output is a unified point cloud
map fm encompassing all the input batch’s scans, stitched together through the registration
process. Additionally, the function provides a list of individual transformations tr. Each
transformation corresponds to a specific input point cloud and details the precise positional
and rotational adjustments necessary to integrate it into the overall map.
CanopySeparation: This function operates on the fused point cloud map fm generated by
the PointCloudRegistration function. It isolates points within the map exhibiting green hues.
This targeted color-based segmentation effectively filters out extraneous elements, resulting
in a distinct point cloud ic exclusively encompassing the lush green canopy of the vineyard.
FullCanopyEstimation: Reconstructs a mesh m from the ic point cloud acquired by the
CanopySeparation function utilizing alpha shapes. By strategically setting a relatively large
alpha parameter, the reconstruction excludes all gaps and irregularities.
CanopyGapExtraction: The mesh m produced from the FullCanopyEstimation is sampled
and a point cloud fc representing the gapless full canopy is acquired. The initial canopy point
cloud ic is subtracted from the full canopy point cloud using distance-based subtraction. The
resulting point cloud gc represents the gaps in the canopy.

131/156

The algorithm then calculates the CDI by dividing the number of points of the output
point cloud from the CanopyGapExtraction gc by the number of points of the full canopy
point cloud fc, after downsampling both clouds using the same voxel size. Figure 7-18
illustrates the Canopy Density Assessment process in detalil.

ALGORITHM 7-5 CANOPYDENSITYASSESSMENT

Require: Set of point clouds P = {p4, ..., px}, V, b, n, e, t, a
Output: CDI

B = PointCloudQualityEnhancement(P, v, b, n, e, t)

fm, tr = PointCloudRegistration(B)

ic = CanopySeparation(fm)

m = FullCanopyEstimation(ic,a)

fc, gc = CanopyGapExtraction(m, ic)

NumberOfPoints(gc)

DI=1-
¢ NumberOfPoints(fc)

output CDI

=
T

v o o T, ——— .
PointCloudRegistration FullCanopyEstimation CanopyGapExtraction
Figure 8-9: Canopy Density Assessment lllustrated.

8.4 Mesh Generation and Filtering

In the context of 3D graphics, a mesh is a collection of vertices connected by edges to form
triangles or other polygons. These polygons represent the surface of the object, and they are
responsible for defining its shape and appearance. Textures are typically 2D images that
contain color information. When a texture is applied to a mesh, the image is stretched or
warped to fit the surface of the mesh object. This process is used to create a more realistic
and visually appealing appearance by adding color and detail to the 3D mesh without
sacrificing a lot of memory or computational resources.

The idea behind the Vinymap reconstruction algorithm is to leverage the concept of
mesh texturing in 3D graphics to add valuable detail to an otherwise sparse and rough 3D
reconstruction of complex environments such as vineyards. To achieve this, the local map
point cloud that we produced in the previous steps must be converted to a dense 3D
geometry, a triangle mesh. This process is known as surface reconstruction. There is a
plethora of surface reconstruction methods in the literature [147], [148]. Favoring simplicity
over elaborate algorithms, two well tested and widely used methodologies have been
combined to implement surface reconstruction in this work: The alpha shapes algorithm and
the ball pivoting algorithm.

132/156

Figure 8-10: Reconstructed mesh objects from dense point clouds [149].

8.4.1 Alphashapes

The alpha shapes algorithm [150], conceived as a generalization of the convex hull, can be
intuitively understood as follows: 3D space can be imagined as a large block of soft, creamy
material containing the point cloud points S embedded in it as small, non-deformable, hard
pieces. Using a spherical scoop, all portions of the soft material that can be reached without
encountering the hard pieces are meticulously carved away. This process may involve
excavating internal cavities, as some areas of the soft material may be inaccessible by
simply maneuvering the scoop from the outside. Eventually, a piecewise-linear, non-convex
object composed of caps, arcs, and points will be left. If all rounded surfaces are then
flattened to form triangles and line segments, a representation of the alpha shape of S is
produced. The alpha shapes surface reconstruction algorithm can easily produce watertight
meshes (meshes without holes or gaps). There is, however, a significant loss in detail when
reconstructing with this approach.

8.4.2 The Ball Pivoting Algorithm

The ball pivoting algorithm (BPA) [142] can be intuitively described by imagining a ball of
user-specified radius p that rolls on the 3D point cloud. If the ball touches three points
without containing any others, then a triangle is formed between these points. The algorithm
starts with an initial (seed) triangle, the ball rotates (pivots) around one of its edges,
maintaining contact with its endpoints, until it makes contact with a third point, thereby
forging a new triangle. This process iterates until all reachable edges have been explored
and then commences anew with a fresh seed triangle until all points have been
incorporated. The process may be repeated with a larger radius ball to accommodate
disparate sampling densities. The BPA has been successfully deployed on datasets
comprising millions of points, faithfully replicating actual scans of intricate 3D objects. Its
modest memory footprint, efficient execution speed, and high-quality outcomes stand
favorably against existing methodologies. The ball pivoting algorithm produces detailed
surfaces but is prone to errors related to holes and gaps in the mesh.

133/156

SR

(a) (b) (c)

Figure 8-11: (a) a bunny shaped source point cloud. (b) mesh generated with alpha shapes (c) mesh
generated with BPA [151].

8.4.3 Chosen methodology and Filtering

To perform surface reconstruction on the complex and unstructured vineyard point cloud,
both aforementioned methods were combined. The local map point cloud produced by the
quality improvement and registration processes is initially converted into a mesh using BPA.
The radius of the pivoting ball chosen is twice as big as the average distance between points
in the point cloud. To refine the results, several more, larger radii are used.
The resulting BPA mesh is also filtered using a simple average filter. Thus, a given
vertex u ; is given by the average of the adjacent vertices N :
Ui+ YneN Un 7
IN|+1

This filter is commonly used to denoise meshes. It can be applied to the mesh any given
number of times, until the mesh is perfectly smooth. It comes with a non-desirable side effect
though. The mesh shrinks after applying the filter iteratively. It was therefore used for a
single iteration on the BPA mesh.

(@) (b) (c)

Figure 8-12: (a) noisy mesh (b) mesh after 1 iteration of average filtering
(c) mesh after 5 iterations of average filtering [151].

134/156

The produced BPA mesh does not completely reconstruct the complex surface of the
vineyard vegetation. There are gaps where leaves should be and sparse structures in the
point cloud have not been included in the mesh. The alpha shapes algorithm is the perfect
tool for filling these gaps. It was applied to the full map point cloud and the resulting Alpha
mesh was also filtered with a simple average filter.

To construct the final mesh, the BPA mesh and the Alpha mesh are combined into a
single geometry, the final full-map mesh. A function is used to merge vertices of the final
mesh that are too close to one another. The vertex position, normal and color of the resulting
vertices the average of the vertices. This function helps to close triangle soups caused by
the merge, i.e. areas of the mesh where many triangles overlap. Finally, the final full-map
mesh is also filtered with an average filter. Filtering the BPA mesh, the alpha mesh and the
final mesh separately reduces shrinkage and yields a better result than filtering the final
mesh three times. Using other common filtering techniques like the Laplacian filtering or the
Taubin filtering was also tested but resulted in deformations in certain parts of the mesh.

8.5 RGB Image Projection and Texture Generation

8.5.1 Vertex Coloring and 2D Textures

The way open3d and most libraries add color to a mesh is by vertex coloring. Vertex coloring
refers to coloring a mesh triangle with the average color of the three vertices that define it.
That means that the texture resolution (color resolution) of the resulting mesh is limited to
the model resolution, meaning that if a mesh has few triangles per unit of volume, it will be
colored inaccurately. When using vertex colors, the more triangle-dense a mesh is, the more
accurate its coloring.

There have been improvements to the concept of vertex coloring over the years. Using
color gradients to seamlessly blend triangle colors and create a more realistic coloring is
common among graphics libraries. In addition, extensive research in [152] is focused on
extending the concept of vertex coloring where color values are kept on each vertex, by also
keeping color values on edges and faces. This approach allows higher texture resolution
than model resolution and at the same time it guarantees one-to-one correspondence
between the model surface and the color data while also reducing discontinuities.

¢o8

goel
feeoen
FTIYRE
- L] R)

(a) (b)

Figure 8-13: (a) With the vertex colors method, only vertex colors (blue) are used to color triangle.
(b) With mesh colors, color positions on vertices (blue), edges (green) and faces (red)
are all used to determine triangle color [152].

Nevertheless, applying 2D textures to meshes is by far the most used coloring strategy in
both literature and commercial graphics applications. Mapping a 2D image to a mesh
produces high quality coloring regardless of the model resolution. Even simple meshes with
only a handful of vertices can accurately resemble real-life complex structures. As far as
color accuracy is concerned, leveraging 2D image textures to color meshes produced from

135/156

depth cameras is ideal, as these meshes have a small vertex density. The challenge is
accurately mapping 2D image textures to the newly formed full-map mesh.

(@ (b) (c)

Figure 8-14: (a) Simple cube mesh colored with simple vertex colors (b) cube colored with vertex colors
and linear filtering (contouring) (c) cube colored using a 2D texture (image) of a stone wall.

8.5.2 Texture Application

The mathematical solution to the problem of 2D texture application is well formulated and it
comes down to computing the so-called UV coordinates of a mesh. In the realm of 3D
modeling and computer graphics, UV coordinates and UV maps play a crucial role in
seamlessly applying textures to intricate 3D objects and meshes. UV coordinates, also
known as texture coordinates, serve as a bridge between the 3D geometry of an object and
the 2D texture image that will define its surface appearance. These coordinates, represented
by a pair of values (U, V), correspond to specific points on the 3D object's surface, allowing
the texture image to be mapped onto the object's form accurately. UV maps, collections of
UV coordinates arranged in a grid-like structure, provide a detailed representation of the 3D
object's surface, enabling the texture image to be seamlessly applied across its complex
geometry. The creation of UV maps involves unwrapping the 3D object's surface, flattening it
onto a virtual plane, and assigning UV coordinates to each vertex. The resulting UV map
acts as a blueprint for mapping the texture image onto the object's surface, ensuring that the
texture adheres to the object's shape and details without distortion or seams. This process is
essential for creating visually appealing and realistic 3D models, as it allows for the
application of textures that accurately represent the object's surface properties and
characteristics.

136/156

3-D Model UV Map

Ry

\

——
bt]

=

Texture p = (uyvy) p=((xyz)

Figure 8-15: Texturing a 3D model of the Earth using a typical sphere UV map.

The problem is how to generate an accurate UV map that matches the complex and intricate
vineyard full-map mesh to a 2D image captured with the ZED camera.

8.5.3 Projective Texture Mapping

As described in sections 5 and 6, the ZED camera simultaneously captures and saves point
clouds using its stereo vision capabilities and RGB images using its left lens. Thanks to
odometry data collected during the process of point cloud registration which is described in
7.2.2, the position of the ZED camera at the time of capturing each point cloud and image is
accurately known. Thus, the problem transforms into the task of projecting a 2D RGB image
to the part of the mesh that corresponds to the point cloud which was captured at the time of
capturing the 2D image. As described in 7.2.2, a bounding polygon is saved for each
registered point cloud. So, these polygons can be used to crop the full-map final mesh in
pieces and each of these pieces corresponds to a 2D image captured from ZED. Therefore,
there is a one-to-one correlation between 2D images captured and pieces of the final mesh.
Projecting these 2D images to the pieces of the final mesh and then re-assembling the
textured pieces to a final reconstructed mesh is what is solved next.

137/156

A projector
(location and orientation)

A texture image

A view volume:
(perspective or parallel)

Projected Texture image
onto the scene

Figure 8-16: Projective Texture Mapping

Let there be a (X,Y,Z) coordinate system in the vineyard mesh’s scene where X is width, Y is
height and Z is depth. It is initially natural to assume that the UV coordinates of each vertex
of the mesh would be its (X,Y) coordinates. So (u,v) = (X,Y). That means that each vertex of
the mesh would be matched to the pixel of the corresponding 2D image which has the same
(X,Y) coordinates as the vertex. This makes intuitive sense as a vertex of the mesh that is
up and to the left of the scene would be assigned a texture pixel which sits up and to the left
of the corresponding 2D image. This solution could even be viable if the lenses of the ZED
camera captured orthographic images of the world. This is not true, however, and
perspective must be taken into consideration.

Due to perspective, objects that are further away from the camera appear smaller than
objects that are closer. Intuitively, a division by the depth Z would account for this.
Consequently, the uv coordinates would come to be:

X
u= E (7-3)
and
Y
vV = E (7-4)

Nevertheless, this projection model is inaccurate as well and defines an oversimplified
camera model with focal length f = 1. To understand what focal length is and obtain the
camera model which will produce the desirable results, the pinhole camera model must be
defined.

The pinhole camera model provides a simplified representation of how light interacts
with a camera to form an image. In this model, the camera is represented as a simple box
with a tiny hole on one side and a flat image plane on the other. All rays of light are blocked
by the walls of the box except those passing through the tiny hole.

138/156

When an object is placed in front of the aperture, rays of light emanating from different
points of the object pass through the aperture and form an inverted image on the image
plane.

Image plane Pinhole plane

Principal point

; Center of
| projection

I Focal length I z

Figure 8-17: The pinhole camera model.

The fundamental parameters of the pinhole camera model are as follows:

e The center of projection is the point where the pinhole aperture is located.

The focal length is the distance between the center of the projection and the image
plane.

e The optical axis is the line perpendicular to the image plane and passing through the

center of projection.

e The principal point is defined as the point of intersection between the optical axis and

the image plane.

The projection process with the pinhole camera model involves several key factors: As
explained, objects farther away from the camera appear smaller in the image. Secondly, due
to the light rays intersecting at a single point (the pinhole), the resulting image on the image
plane is inverted. Furthermore, the size of the aperture and its distance from the image
plane (focal length) determines the field of view of the camera. A larger aperture or a shorter
focal length result in a wider field of view, capturing more of the scene. The image size of the
distant object is proportional to the focal length.

We can further simplify the projection’s description by placing the image plane in front of
the pinhole. A point in space Q = (X,Y, Z) is projected on the image plane by tracing the line
passing through the point Q and the center of projection. The resulting projection of Q is
q = (x,y, f). In this abstraction, the image appears right side up.

The relation between a point Q = (X,Y,Z) in the real space and its projection g on the
image plane at the pixel location (xg, y;) is represented by the following equations:

X
Xs = fx 7 + Cx (7'5)

X
Ys =fy; T ¢y (7-6)

139/156

x>

A
Image plane Q=(XY,2)
e ®
q=(xyf)
4
gl P Optical axis >
Center of f Principal
projection point
Figure 8-18: A simplified pinhole camera model.
Thus, in the context of texture mapping:
X
u=fio+ox (7-7)
¢
v=Ff, Sty (7-8)

Where ¢, and c, are two parameters that handle possible misalignment of the principal point
with the center of the image and f, and f,, are essentially separate focal lengths expressed
in pixels that are introduced to describe digital cameras with rectangular pixels.

It is customary to express projective transforms using the homogeneous coordinates,
hence the equations (7-5) and (7-6) can be written in the following matrix form:

G = MQ, where

u fx 0 Cx _ X
Tj:[v], M= [0 fy cy] andQ = |y (7-9)
0 0 1 Z

The M matrix is called the camera intrinsic matrix and it represents the internal
parameters of a camera and it allows to project 3D points in the world onto the 2D image
plane. The parameters of the camera intrinsic matrix are estimated by performing the
camera calibration procedure. The latter is typically performed using a set of known
geometric patterns (e.g., chessboard patterns) or objects with precisely measured
dimensions, allowing for the estimation of the camera parameters through mathematical
algorithms.

Using Eq. (7-7), the 2D images captured with the ZED camera can be accurately
projected as textures onto the 3D mesh. This is done by projecting the vertices of the mesh,

140/156

which are 3D points in the scene, onto the corresponding 2D image captured by the ZED
camera. The resulting 3D mesh is accurately textured and offers detailed visual information.

8.5.4 Triangle Visibility and Ray Casting

The issue that arises with projective texture mapping on 3D meshes is that the texture is
applied not only on the visible part of the mesh, but also on the triangles of the mesh that are
obscured, lying behind other parts of the mesh. This is not a problem when dealing with
meshes that are produced from individual point clouds formed at some point in time by the
ZED camera. The problem occurs when a texture is mapped projectively on the final mesh,
which is a product of point cloud fusion and mesh filtering. To address this, Open3D’s ray
casting module is utilized.

Ray casting, a fundamental technique in computer graphics, is a ray tracing-based
rendering technique which works by simulating the propagation of light rays through a virtual
scene. Its versatility has led to its adoption in a wide range of applications, ranging from
early video games and architectural design to medical imaging and scientific visualization.

At its core, ray casting involves tracing imaginary light rays from the virtual camera
(observer’s position) into the virtual scene. As each ray encounters an object in the scene, it
interacts with its surface, determining the distance from the observer. This process is
repeated as many times as desired, until the scene is covered. Ray tracing and ray casting
are computationally expensive rendering methods. In the last decade, however, hardware
acceleration for real-time ray tracing has become standard on new commercial graphics
cards, and graphics APIs have followed suit, allowing developers to use hybrid ray tracing
and rasterization-based rendering in real-time applications with a lesser hit to frame render
times [153].

Using Open3D’s ray casting module, rays are cast from the position of the ZED camera
towards the final mesh. Every mesh triangle that is hit by any ray is considered a visible
triangle while all other triangles are considered obscured. As 2D images are projected as
textures onto the final mesh, the triangles of the mesh that are obscured for a given pose of
the camera are temporarily removed and no texture is mapped onto them. These triangles
receive a texture once the camera proceeds to a position from where they are visible. In the
end, the whole mesh is correctly textured.

8.5.5 Photo-Realistic Vineyard Reconstruction

To generate a visually informative and spatially accurate representation of the vineyard,
Vinymap utilizes projective texture mapping. The algorithm receives a set of point clouds P
and a set of images | as its input. It is important that each point cloud pi € P has been
captured simultaneously with a corresponding image I € / as the robot moves. This is
achieved with ROS’s synchronization policy. The algorithm effectively drapes high-resolution
RGB images onto meshes which are reconstructed from the raw point cloud data. The
meshes are then registered and aligned, resulting in a photo-realistic 3D representation of
the vineyard. This process is presented in Algorithm 7-6 and illustrated in Figure 7-18.

ALGORITHM 7-6 PHOTO-REALISTIC VINEYARD RECONSTRUCTION

Require: Set of point clouds P = {p4, ..., px}, V, b, n, e, t
Output: v

141/156

B = PointCloudQualityEnhancement(P, v, b, n, e, t)
for p; in B:
m; = SurfaceReconstruction(p;)
1; = ProjectiveTextureMapping(m;, I;, M)
end for
fm, tr = PointCloudRegistration(B)
v = MeshFusion(tr)

output v

+ Repeat for all Point Clouds I

BPA Mesh

‘,

it B
SN

= SNl

S o ey =
Fused Meshes & Photo-Realistic Reconstruction

Mesh Vertices Projected on 2D RGB Image .
Figure 8-19: Vinymap Photo-Realistic Vineyard Reconstruction Pipeline.

Algorithm 7-6 calls the following functions:

PointCloudQualityEnhancement: Loads a batch of point clouds and enhances their
guality. Described in section 7-2.

SurfaceReconstruction: Creates a triangle mesh m that accurately represents a source
point cloud p. This is achieved by leveraging the ball pivoting algorithm (BPA) and fusing its

results with the alpha shapes reconstruction algorithm.
ProjectiveTextureMapping: This function receives a triangle mesh m; and an RGB image |;
as input. For each triangle vertex Q & m;, the function projects it to the 2D image plane of |;

and matches it with a pixel g€ m; with coordinates (u,v) € liq = MQ, according to Eq. 7-9. The
M matrix is the intrinsics camera matrix of the camera that captured I;. In our case, the ZED X
mini camrera. The (u,v) coordinates are used to apply texture on the so-far colorless mesh
m;. Provided that the RGB image |; and the point cloud pi were captured simultaneously, the
resulting texture application produces a photo-realistic 3D mesh r;.

PointCloudRegistration: Merges individual point cloud scans captured from successive
viewpoints as the RP traverses the vineyard. Described in section 7-2.

MeshFusion: The output transformations tr from the PointCloudRegistration are used to
identically transform the reconstructed meshes r. This way, the ICP cloud registration is
leveraged to accurately register the meshes r. The aligned and registered meshes are then
fused and the function outputs the result, which is a photo-realistic vineyard mesh v.

It should be noted that the point cloud registration and mesh fusion steps can be applied
before the projective texture mapping step. In that case, the textures will be applied on the
fused mesh and not each triangle mesh separately. To avoid unwanted texture mapping on
obscured mesh triangles, raycasting must be utilized. This method usually yields a more

142/156

accurate result geometrically but is prone to artifacts caused by projective texture mapping
overlap.

8.6 Experimental Results

The Vinymap Quality Assessment and Vineyard Reconstruction framework, as previously
described, comprises three core algorithms: the Simple Objective Point Cloud Quality
Assessment Algorithm (SOPCQA), the Canopy Density Assessment Algorithm, and the
Photo-Realistic Vineyard Reconstruction Algorithm. These algorithms were assessed in
controlled laboratory environments utilizing a synthetic vineyard under both artificially lit and
naturally lit conditions.

The initial evaluation of the algorithms focused on a subjective comparison of their
outputs by human researchers. This approach can be supplemented in future work with the
implementation of objective, quantitative metrics to enhance the rigor of the evaluation
process.

The real-time viability of the Vinymap framework was evaluated objectively. Resource
requirements were measured, and execution times were precisely recorded to assess the
framework's suitability for real-time applications.

8.6.1 Simple Objective Point Cloud Quality Assessment Evaluation

The SOPCQA comprises three sub-algorithms: sparsity index calculation, hole detection,
and cluster outlier detection. To evaluate their effectiveness, controlled modifications were
made to a reference point cloud to introduce specific quality degradations.

Sparsity Index Calculation: This sub-algorithm assesses quality based on point cloud
density. To evaluate its effectiveness, controlled downsampling was applied to specific
regions of the reference point cloud, resulting in sparser areas. As expected, the SOPCQA
higher sparsity index (0.75) to the modified point cloud compared to the reference (0.52), as
the sparse area in the modified point cloud is much larger. Figure 7-20 illustrates this.

Hole Detection: This sub-algorithm assesses quality based on the presence of holes (areas
completely devoid of points). To evaluate its effectiveness, random holes were introduced
within the reference point cloud. As anticipated, the SOPCQA assigned a higher hole index
(0.62) to the point cloud with holes compared to the reference (0.48). This indicates lower
guality, because of the holes.

Cluster Outlier Detection: This sub-algorithm assesses quality by identifying and removing
point clusters too small to be considered valid data (potential noise). To evaluate its
effectiveness, small noise clusters were artificially introduced to the reference point cloud.
The SOPCQA, as expected, assigned a higher noise_clusters_quantity (24), as well as a
larger total_noise_clusters_area (0.92) to the noisy point cloud compared to the reference
point cloud which had a noise_clusters_quantity of 17 and a total_noise_clusters_area of
0.58. Table 7-1 documents the results.

Table 8-1: SOPCQA Evaluation

. Noise To_tal
Point Cloud Sparsity Hole Clusters Noise FQI
Index Index Quantity Clusters
Area
Reference 0.52 0.742 17 0.58 0.72
Modified 0.75 0.62 24 0.92 0.61

143/156

The final SOPCQA algorithm returns a noticeably lower final quality index (FQI) for the
intentionally modified point cloud.

Enhanced Point Cloud Evaluation: To assess performance with a more realistic challenge,
the SOPCQA's output was compared for a raw point cloud and a quality-enhanced version
processed by Vinymap's dedicated enhancement function. The SOPCQA correctly assigned
a lower quality index (0.59) to the raw point cloud compared to the enhanced one (0.75)

8.6.2 Canopy Density Assessment Evaluation

To test the performance of our canopy density assessment algorithm, we conducted
experiments in both the simulated and the synthetic vineyard setting. The simulation offered
a highly controlled environment with almost no canopy density variations. We tested the
algorithm on dense, perfect canopies, resulting in very high-density index scores, as
expected. The laboratory setting provided a more realistic yet controlled environment. Table
8-2 and Figure 8-20 display the results in detail. We tested two distinct scenarios:

e Moderately dense canopy (control): The algorithm returned a density index within
expected range, aligning with the visual assessment of the canopy.

e Sparse canopy: The presence of a gap resulted in a significantly lower density index,
validating the algorithm's ability to detect and quantify vegetation irregularities.

Laboratory tests were repeated under natural and artificial lighting. All tests yielded accurate
and intuitively useful results, reflecting the algorithm's simplicity and effectiveness in
assessing canopy density.

Table 8-2: Canopy Density Index Output

Subjective Output
Experiment Type Canopy CIIDJI
Assessment
Simulated Dense 0.742
Artlfl_clal 0512
lighting
Laboratory Control
Natural
A 0.569
lighting
Artlfl_clal 0.450
lighting
Laboratory Sparse
Natural
A 0.461
lighting

144/156

Dense,
Simulated
Canopy

Moderately
Dense
Canopy

(control)

o o e -

/—P; =

'Fiéuré 8-20: _Canopy Density Assessment Scenarios.

8.6.3 Reconstruction Quality

Our photo-realistic vineyard reconstruction algorithm is compared to the raw point cloud
data and the Stereolabs' ZED Spatial Mapping [72] algorithm in terms of visual fidelity and
information richness. Direct comparison with the raw point cloud data readily reveals the
difference. While the raw data offers a basic structural representation, our reconstructed
mesh delivers a significantly cleaned and visually enhanced depiction of the vineyard.

Compared to the high-quality mesh output of Stereolabs' ZED Spatial Mapping
algorithm at its highest settings, our reconstruction emerges as the superior solution. ZED
Spatial Mapping uses its vertex coloring scheme to produce a colored mesh. Our projective
texture mapping approach generates meshes featuring significantly greater visual detail,
enabling farmers to meticulously inspect individual leaves and grapes. This enhanced
texture facilitates more informed decision-making in the context of remote precision
agriculture. Figure 8-21 depicts a visual comparison.

145/156

RGB image
(for reference)

Raw Point Cloud @
Data

ZED
Spatial
Mapping

8.6.4 Real Time Viability

To evaluate the real-time capabilities of our algorithm, we captured data using ROSbags and
SVO files from ZED cameras, allowing for offline review, timing analysis, and benchmarking
against state-of-the-art methods. This assessment was conducted on the Nvidia Jetson Orin
platform. We compare the Vinymap framework with RTAB-map [12] and ZED Spatial
Mapping. Our algorithm achieves real-time performance, performing on-par with the ZED
Spatial Mapping algorithm at its high settings. While RTAB-Map exhibits faster execution, it
occasionally experiences delay due to loop closure calculations. In contrast, our approach
strategically triggers loop closure only upon AprilTag detection, eliminating these delays.

All three algorithms achieve real-time viability. Notably, the desired output quality of
each algorithm can influence the robot's operational speed. By carefully balancing robot
speed and desired reconstruction detail, farmers can select the optimal solution for their
specific needs. In the case of Vinymap, a 20% overlap between captured point clouds is
required for effective ICP registration. Assuming the robot moves in a straight line
perpendicular to the canopy, Eq. 7-10 yields the maximum speed at which the robot can
move to effectively map a vineyard row.

(87-

s = fps * fov(1 — overlap) ,

146/156

, Where s is the maximum speed, fps is the frequency of point cloud and RGB image
capturing, fov is the length of the visible canopy at each frame in meters and is dependent
on the distance between the robot and the canopy, and overlap is the required overlap in
volume percentage between the captured point clouds. With the capability of running with
fprs = 2, afov = 09m, and a required overlap of 0.2, Vinymap is suitable for running in
real time on robots moving with speeds lower than 1.44 m/s. The RP which our framework
was tested on was moving at about 0.12 m/s, comfortably within the limit.

147/156

9 Conclusions and Future Work

In this thesis, we presented the development of a vineyard inspection and 3D reconstruction
framework for mobile robots. This framework encompasses both hardware and software. We
investigated mapping algorithms (RTAB-map, Anybotics Elevation Mapping, Zed Spatial
Mapping) and evaluated depth camera options including ZED and RealSense depth
cameras. Based on this evaluation, we determined that ZED depth cameras offered the
most suitable performance for a vineyard setting and opted to use the Zed Spatial Mapping
software. To aid in selecting the optimal hardware configuration, we developed a field-of-
view and LiDAR resolution analysis tool (FoVaLiRa) using Unity. This tool facilitated the
exploration of various configurations and hardware placements on the robot. Through this
analysis, we arrived at a configuration consisting of four depth cameras facing outwards in
different directions. To further enhance the system's capabilities, we concluded that
incorporating a LIDAR sensor, positioned at the front of the robot, would be beneficial.

We then proceeded to evaluate path planning algorithms and methodologies, ultimately
selecting a polytopic decomposition planner. This planner is effectively detecting free
corridors within the vineyard environment, making it a suitable choice for our application. To
implement autonomous navigation for the chosen planner, we leveraged a dual camera
visual odometry algorithm developed at the Control Systems Laboratory. This algorithm
relies on strategically placed April tags within the vineyard to trigger loop closure, a crucial
step to mitigate visual odometry errors. To improve the accuracy of visual odometry
localization, we incorporated a visual servoing step that aligns the robot’s camera with the
April Tag prior to triggering loop closure optimization.
Given the limitations of existing 3D reconstruction software, particularly the inability of Zed
spatial mapping to achieve the desired level of detail and crispness, and the need for
vineyard inspection functionality, we developed a novel framework named Vinymap.
Vinymap addresses these shortcomings by offering several key functionalities. Firstly,
Vinymap achieves real-time viability, enabling fast data collection within vineyard
environments. Secondly, Vinymap surpasses the quality of 3D reconstruction obtained
through Zed spatial mapping, generating more detailed models. Finally, Vinymap
incorporates an inspection solution that includes a canopy density assessment algorithm.
This algorithm provides valuable insights for vine-growers, as the canopy density affects the
amount of sunlight and air reaching the grapes. Importantly, Vinymap also incorporates a
method for objectively assessing the quality of the point cloud data it receives as input. This
allows the framework to adapt to varying sensor performance and lighting conditions.

To comprehensively evaluate the performance of the entire system, we conducted
experiments on a robotic platform within a synthetic vineyard environment constructed at the
CSL lab. This environment allowed for controlled testing of the dual camera visual odometry
algorithm, the path planning algorithm, the perception system, and the Vinymap framework,
under natural and synthetic lighting conditions.

Looking towards future research directions, the integration of deep learning techniques
holds promise for unlocking even more complex vineyard inspection tasks. Deep learning
has the potential to enable the framework to detect grapevine diseases or highlight areas of
potential concern that warrant further investigation by the vine-grower. Additionally,
advancements in autonomous inspection could lead to the development of systems capable

148/156

of covering entire vineyards without requiring pre-defined starting and ending points.
Furthermore, the creation of benchmark datasets specifically tailored to vineyard
reconstruction and inspection tasks would allow for more in-depth evaluation of the Vinymap
algorithm's capabilities. We are confident that this framework represents a significant step
towards a comprehensive solution for precision viticulture.

149/156

10 References

[1] G. Pappalardo, A. Scienza, G. Vindigni, and D. Mario, “Profitability of wine grape growing in the
EU member states,” J. Wine Res., vol. 24, Mar. 2013, doi: 10.1080/09571264.2012.724392.

[2] J. M. Bengochea-Guevara, J. Conesa-Mufioz, D. Andujar, and A. Ribeiro, “Merge Fuzzy Visual
Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-
Inspection Robot,” Sensors, vol. 16, no. 3, Art. no. 3, Mar. 2016, doi: 10.3390/s16030276.

[3] A. Costley and R. Christensen, “Landmark Aided GPS-Denied Navigation for Orchards and
Vineyards,” in 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Apr.
2020, pp. 987-995. doi: 10.1109/PLANS46316.2020.9110130.

[4] F. P. Terra, G. R. A. da Rosa, J. J. P. Prado, and P. L. J. Drews-, “A Low-Cost Prototype to
Automate Agricultural Sprayersx,” IFAC-Pap., vol. 53, no. 2, pp. 15835-15840, Jan. 2020, doi:
10.1016/j.ifacol.2020.12.365.

[5] L. Shen et al., “Real-time tracking and counting of grape clusters in the field based on channel
pruning with YOLOv5s,” Comput. Electron. Agric., vol. 206, p. 107662, Mar. 2023, doi:
10.1016/j.compag.2023.107662.

[6] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using Deep Learning for Image-Based Plant
Disease Detection,” Front. Plant Sci., vol. 7, 2016, Accessed: Feb. 14, 2024. [Online]. Available:
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2016.01419

[7] S. Kelly et al., “Target-Aware Implicit Mapping for Agricultural Crop Inspection,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), Feb. 2023, pp. 9608-9614. doi:
10.1109/ICRA48891.2023.10160487.

[8] L. Srinivas, A. Bharathy, S. Ramakuri, A. Sethy, and R. Kumar, “An optimized machine learning
framework for crop disease detection,” Multimed. Tools Appl., vol. 83, pp. 1-20, May 2023, doi:
10.1007/s11042-023-15446-2.

[9] B. Kerbl, G. Kopanas, T. Leimkihler, and G. Drettakis, “3D Gaussian Splatting for Real-Time
Radiance Field Rendering,” 2023, doi: 10.48550/ARXIV.2308.04079.

[10] T. Thoai, R. J. Ranola, and L. Camacho, “The Importance of Weather Forecasts and
Meteorological Information in Adaptation to Climate Change in Agricultural Production: Some
Preliminary Findings,” Philipp. Agric. Sci., vol. 101, pp. 377-392, Dec. 2018.

[11] S. E. Spayd, J. M. Tarara, D. L. Mee, and J. C. Ferguson, “Separation of Sunlight and
Temperature Effects on the Composition of Vitis vinifera cv. Merlot Berries,” Am. J. Enol. Vitic.,
vol. 53, no. 3, pp. 171-182, Jan. 2002, doi: 10.5344/ajev.2002.53.3.171.

[12] “RTAB-Map,” RTAB-Map. Accessed: Jul. 29, 2021. [Online]. Available:
http://introlab.github.io/rtabmap/

[13] “ANYbotics/elevation_mapping.” ANYbotics, Jan. 27, 2024. Accessed: Jan. 28, 2024. [Online].
Available: https://github.com/ANYbotics/elevation_mapping

[14] K. M. Jatavallabhula, S. Saryazdi, G. lyer, and L. Paull, “gradSLAM: Automagically differentiable
SLAM,” ArXiv191010672 Cs, Nov. 2020, Accessed: Dec. 19, 2020. [Online]. Available:
http://arxiv.org/abs/1910.10672

[15] Stereolabs, “Spatial Mapping in Computer vision using ZED,” Medium. Accessed: Jan. 30, 2024.
[Online]. Available: https://stereolabs.medium.com/spatial-mapping-in-computer-vision-using-zed-
69bce43c2e7a

[16]“ZED 2 - Al Stereo Camera.” Accessed: Jul. 10, 2022. [Online]. Available:
https://www.stereolabs.com/zed-2/

[17] “csl_legged / dc-vslam-med24 — Bitbucket.” Accessed: Feb. 29, 2024. [Online]. Available:
https://bitbucket.org/csl_legged/dc-vslam-med24/src/master/

[18] V. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers, “Real-Time Trajectory Replanning
for MAVs using Uniform B-splines and a 3D Circular Buffer,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 215-222. doi:
10.1109/IROS.2017.8202160.

[19] K. S. Narkhede, A. M. Kulkarni, D. A. Thanki, and |. Poulakakis, “A Sequential MPC Approach to
Reactive Planning for Bipedal Robots.” arXiv, Apr. 30, 2022. doi: 10.48550/arXiv.2205.00156.

[20] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and M. Hutter, “Graph-based
Subterranean Exploration Path Planning using Aerial and Legged Robots,” J. Field Robot., Oct.
2020, doi: 10.1002/rob.21993.

[21] K. A. Mat Said, A. Jambek, and N. Sulaiman, “A study of image processing using morphological
opening and closing processes,” Int. J. Control Theory Appl., vol. 9, pp. 15-21, Jan. 2016.

150/156

[22]I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stachniss, “KISS-ICP: In
Defense of Point-to-Point ICP -- Simple, Accurate, and Robust Registration If Done the Right
Way,” |IEEE Robot. Autom. Lett., vol. 8, no. 2, pp. 1029-1036, Feb. 2023, doi:
10.1109/LRA.2023.3236571.

[23] S. Asaeedi, F. Didehvar, and A. Mohades, “Alpha Convex Hull, a Generalization of Convex Hull,”
Sep. 2013.

[24] “Gazebo.” Accessed: Feb. 15, 2024. [Online]. Available: https://gazebosim.org/home

[25] M. A. Abd Mutalib and N. Z. Azlan, “Prototype development of mecanum wheels mobile robot: A
review,” Appl. Res. Smart Technol. ARSTech, vol. 1, no. 2, pp. 71-82, Nov. 2020, doi:
10.23917/arstech.v1i2.39.

[26] S. Hajjaj and K. Sahari, “Review of agriculture robotics: Practicality and feasibility,” Dec. 2016,
pp. 194-198. doi: 10.1109/IR1S.2016.8066090.

[27] T. Utstumo, T. Berge, and J. Gravdahl, “Non-linear Model Predictive Control for constrained robot
navigation in row crops,” Mar. 2015. doi: 10.1109/ICIT.2015.7125124.

[28] “VineRobot.” Accessed: Dec. 23, 2023. [Online]. Available: https://www.vinerobot.eu/

[29] A. You et al., “An autonomous robot for pruning modern, planar fruit trees.” arXiv, Jun. 14, 2022.
Accessed: Dec. 23, 2023. [Online]. Available: http://arxiv.org/abs/2206.07201

[30] L. Santos, F. Neves Dos Santos, E. Pires, A. Valente, P. Costa, and S. Magalhaes, “Path
Planning for ground robots in agriculture: a short review,” Apr. 2020, pp. 61-66. doi:
10.1109/ICARSC49921.2020.9096177.

[31] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robot. Auton.
Syst., vol. 61, no. 12, pp. 1258-1276, Dec. 2013, doi: 10.1016/j.robot.2013.09.004.

[32] F. Neves Dos Santos, H. M. P. Sobreira, D. F. B. Campos, R. Morais, A. P. G. M. Moreira, and O.
M. S. Contente, “Towards a Reliable Monitoring Robot for Mountain Vineyards,” in 2015 IEEE
International Conference on Autonomous Robot Systems and Competitions, Vila Real: IEEE, Apr.
2015, pp. 37-43. doi: 10.1109/ICARSC.2015.21.

[33] L. Santos, F. N. Santos, S. Magalhaes, P. Costa, and R. Reis, “Path Planning approach with the
extraction of Topological Maps from Occupancy Grid Maps in steep slope vineyards,” 2019 IEEE
Int. Conf. Auton. Robot Syst. Compet. ICARSC, pp. 1-7, Apr. 2019, doi:
10.1109/ICARSC.2019.8733630.

[34] C. Xiong, D. Chen, D. Lu, Z. Zeng, and L. Lian, “Path planning of multiple autonomous marine
vehicles for adaptive sampling using Voronoi-based ant colony optimization,” Robot. Auton. Syst.,
vol. 115, pp. 90-103, May 2019, doi: 10.1016/j.robot.2019.02.002.

[35] M. Everett, Y. F. Chen, and J. P. How, “Motion Planning Among Dynamic, Decision-Making
Agents with Deep Reinforcement Learning,” 2018, doi: 10.48550/ARXIV.1805.01956.

[36] M. Elhoseny, A. Tharwat, and A. E. Hassanien, “Bezier Curve Based Path Planning in a Dynamic
Field using Modified Genetic Algorithm,” J. Comput. Sci., vol. 25, pp. 339-350, Mar. 2018, doi:
10.1016/j.jocs.2017.08.004.

[37]J. A. Placed et al., “A Survey on Active Simultaneous Localization and Mapping: State of the Art
and New Frontiers.” arXiv, Feb. 13, 2023. Accessed: Dec. 26, 2023. [Online]. Available:
http://arxiv.org/abs/2207.00254

[38] L. Morreale, A. Romanoni, M. Matteucci, and P. D. Milano, “Dense 3D Visual Mapping via
Semantic Simplification,” in 2019 International Conference on Robotics and Automation (ICRA),
Montreal, QC, Canada: IEEE, May 2019, pp. 6891-6897. doi: 10.1109/ICRA.2019.8793256.

[39] Q. Kuang, J. Wu, J. Pan, and B. Zhou, “Real-Time UAV Path Planning for Autonomous Urban
Scene Reconstruction,” in 2020 IEEE International Conference on Robotics and Automation
(ICRA), Paris, France: IEEE, May 2020, pp. 1156-1162. doi: 10.1109/ICRA40945.2020.9196558.

[40] A. Bacharis, H. J. Nelson, and N. Papanikolopoulos, “View Planning Using Discrete Optimization
for 3D Reconstruction of Row Crops,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Kyoto, Japan: IEEE, Oct. 2022, pp. 9195-9201. doi:
10.1109/IROS47612.2022.9981209.

[41] C.-Y. Chai, Y.-P. Wu, and S.-L. Tsao, “Deep Depth Fusion for Black, Transparent, Reflective and
Texture-Less Objects,” in 2020 IEEE International Conference on Robotics and Automation
(ICRA), Paris, France: IEEE, May 2020, pp. 6766—6772. doi: 10.1109/ICRA40945.2020.9196894.

[42] Y. Liu, Q. Yang, Y. Xu, and L. Yang, “Point Cloud Quality Assessment: Dataset Construction and
Learning-based No-Reference Metric.” arXiv, Jul. 22, 2022. Accessed: Dec. 29, 2023. [Online].
Available: http://arxiv.org/abs/2012.11895

[43] Z. Zhang, W. Sun, X. Min, T. Wang, W. Lu, and G. Zhai, “No-Reference Quality Assessment for
3D Colored Point Cloud and Mesh Models,” IEEE Trans. Circuits Syst. Video Technol., vol. 32,
no. 11, pp. 7618-7631, Nov. 2022, doi: 10.1109/TCSVT.2022.3186894.

151/156

[44] Zz. Zhang et al., “MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality
Assessment.” arXiv, Apr. 24, 2023. Accessed: Dec. 29, 2023. [Online]. Available:
http://arxiv.org/abs/2209.00244

[45] H. Hekmatian, J. Jin, and S. Al-Stouhi, “Conf-Net: Toward High-Confidence Dense 3D Point-
Cloud with Error-Map Prediction.” arXiv, Sep. 19, 2019. Accessed: Dec. 29, 2023. [Online].
Available: http://arxiv.org/abs/1907.10148

[46] X. Yuan, H. Chen, and B. Liu, “Point cloud clustering and outlier detection based on spatial
neighbor connected region labeling,” Meas. Control, vol. 54, no. 5-6, pp. 835-844, May 2021,
doi: 10.1177/0020294020919869.

[47] A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “Joint Geometry and Color Projection-based
Point Cloud Quality Metric”.

[48] A. Bacharis, K. D. Polyzos, H. J. Nelson, G. B. Giannakis, and N. Papanikolopoulos, “3D
Reconstruction in Noisy Agricultural Environments: A Bayesian Optimization Perspective for View
Planning.” arXiv, Sep. 29, 2023. Accessed: Dec. 29, 2023. [Online]. Available:
http://arxiv.org/abs/2310.00145

[49] G. Clarkson, S. Luo, and R. Fuentes, “Thermal 3D modelling,” Jul. 2017. doi:
10.22260/ISARC2017/0068.

[50] G. Meynet, J. Digne, and G. Lavoué, “PC-MSDM: A quality metric for 3D point clouds,” in 11th
International Conference on Quality of Multimedia Experience (QOMEX 2019), Berlin, Germany,
Mar. 2019. doi: 10.1109/QoMEX.2019.8743313.

[51] N. Ziadi et al., “Determination of a Critical Nitrogen Dilution Curve for Spring Wheat,” Agron. J.,
vol. 102, no. 1, pp. 241-250, Jan. 2010, doi: 10.2134/agronj2009.0266.

[52] N. Vigneau, M. Ecarnot, G. Rabatel, and P. Roumet, “Potential of field hyperspectral imaging as a
non destructive method to assess leaf nitrogen content in Wheat,” Field Crops Res., vol. 122, no.
1, pp. 25-31, Apr. 2011, doi: 10.1016/j.fcr.2011.02.003.

[53] A. Chlingaryan, S. Sukkarieh, and B. Whelan, “Machine learning approaches for crop yield
prediction and nitrogen status estimation in precision agriculture: A review,” Comput. Electron.
Agric., vol. 151, pp. 61-69, Aug. 2018, doi: 10.1016/j.compag.2018.05.012.

[54] M. Weyrich, Y. Wang, and M. Scharf, “Quality assessment of row crop plants by using a machine
vision system,” presented at the IECON Proceedings (Industrial Electronics Conference), Nov.
2013, pp. 2466-2471. doi: 10.1109/IECON.2013.6699518.

[55] H. Ham, J. Wesley, and H. Hendra, “Computer Vision Based 3D Reconstruction : A Review,” Int.
J. Electr. Comput. Eng. IJECE, vol. 9, no. 4, p. 2394, Aug. 2019, doi: 10.11591/ijece.v9i4.pp2394-
2402.

[56] J. L. Schonberger and J.-M. Frahm, “Structure-from-Motion Revisited,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp.
4104-4113. doi: 10.1109/CVPR.2016.445.

[57]J. L. Schénberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, “Pixelwise View Selection for
Unstructured Multi-View Stereo,” in Computer Vision — ECCV 2016, vol. 9907, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds., in Lecture Notes in Computer Science, vol. 9907. , Cham:
Springer International Publishing, 2016, pp. 501-518. doi: 10.1007/978-3-319-46487-9_31.

[58] V. Yugay, Y. Li, T. Gevers, and M. R. Oswald, “Gaussian-SLAM: Photo-realistic Dense SLAM
with Gaussian Splatting,” 2023, doi: 10.48550/ARXIV.2312.10070.

[59] N. Keetha et al., “SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM,”
2023, doi: 10.48550/ARXIV.2312.02126.

[60]1. Kim and S. Singh, “Bayesian Fusion inspired 3D reconstruction via LiDAR-Stereo Camera
Pair,” Sep. 2023.

[61] “Toward real-time and accurate dense 3D mapping of crop fields for combine harvesters using a
stereo camera - Haiwen Chen, Jin Chen, Zhuohuai Guan, Yaoming Li, Kai Cheng, Zhihong Cui,
Xinxing Zhang, 2023 Accessed: Dec. 30, 2023. [Online]. Available:
https://journals.sagepub.com/doi/full/10.1177/00368504231215974

[62] Y. Li, M. lida, T. Suyama, M. Suguri, and R. Masuda, “Implementation of deep-learning algorithm
for obstacle detection and collision avoidance for robotic harvester,” Comput. Electron. Agric., vol.
174, p. 105499, Jul. 2020, doi: 10.1016/j.compag.2020.105499.

[63] P. K. Panigrahi and S. K. Bisoy, “Localization strategies for autonomous mobile robots: A review,”
J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, Part B, pp. 6019-6039, Sep. 2022, doi:
10.1016/j.jksuci.2021.02.015.

[64] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic Terrain Mapping for Mobile Robots With
Uncertain Localization,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3019-3026, Oct. 2018, doi:
10.1109/LRA.2018.2849506.

152/156

[65] “https://www.mathworks.com/products/navigation.html.” Accessed: Feb. 29, 2024. [Online].
Available: https://www.mathworks.com/products/navigation.htmi

[66] Irani, Rousso, and Peleg, “Recovery of ego-motion using image stabilization,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition CVPR-94, Seattle, WA, USA:
IEEE Comput. Soc. Press, 1994, pp. 454-460. doi: 10.1109/CVPR.1994.323866.

[67] D. Filliat and J.-A. Meyer, “Map-based navigation in mobile robots - I. A review of localisation
strategies”.

[68] “Perception — Legged Robots Team.” Accessed: Jan. 26, 2024. [Online]. Available:
https://nereus.mech.ntua.gr/legged/perception/

[69] “AprilTag.” Accessed: Jan. 26, 2024. [Online]. Available:
https://april.eecs.umich.edu/software/apriltag

[70] M. Labbé and F. Michaud, “Memory management for real-time appearance-based loop closure
detection,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep.
2011, pp. 1271-1276. doi: 10.1109/IROS.2011.6094602.

[71] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: an efficient
probabilistic 3D mapping framework based on octrees,” Auton. Robots, vol. 34, no. 3, pp. 189—
206, Apr. 2013, doi: 10.1007/s10514-012-9321-0.

[72] “Spatial Mapping Overview - Stereolabs.” Accessed: Jan. 30, 2024. [Online]. Available:
https://www.stereolabs.com/docs/spatial-mapping

[73] D. Scaramuzza and Z. Zhang, “Visual-Inertial Odometry of Aerial Robots,” 2019, doi:
10.48550/ARXIV.1906.03289.

[74] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated extended Kalman filter
based visual-inertial odometry using direct photometric feedback,” Int. J. Robot. Res., vol. 36, no.
10, pp. 1053-1072, Sep. 2017, doi: 10.1177/0278364917728574.

[75] M. S. Junayed, A. Sadeghzadeh, M. B. Islam, L.-K. Wong, and T. Aydin, “HIMODE: A Hybrid
Monocular Omnidirectional Depth Estimation Model.” arXiv, Apr. 11, 2022. doi:
10.48550/arXiv.2204.05007.

[76]J. R. Sanchez-lbafiez, C. J. Pérez-del-Pulgar, and A. Garcia-Cerezo, “Path Planning for
Autonomous Mobile Robots: A Review,” Sensors, vol. 21, no. 23, Art. no. 23, Jan. 2021, doi:
10.3390/s21237898.

[77] D. Ferguson and A. Stentz, “Field D*: An Interpolation-Based Path Planner and Replanner,” in
Robotics Research, vol. 28, S. Thrun, R. Brooks, and H. Durrant-Whyte, Eds., in Springer Tracts
in Advanced Robotics, vol. 28. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 239—
253. doi: 10.1007/978-3-540-48113-3_22.

[78] “Accelerate Motion Planning with Deep-Learning-Based Sampler - MATLAB & Simulink.”

Accessed: Jan. 31, 2024. [Online]. Available:
https://www.mathworks.com/help/nav/ug/accelerate-motion-planning-with-deep-learning-based-
sampler.html

[79] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for mobile robot
navigation,” in Proceedings. 1991 IEEE International Conference on Robotics and Automation,
Sacramento, CA, USA: IEEE Comput. Soc. Press, 1991, pp. 1398-1404. doi:
10.1109/ROBOT.1991.131810.

[80] R. Menon, T. Zaenker, N. Dengler, and M. Bennewitz, “NBV-SC: Next Best View Planning based
on Shape Completion for Fruit Mapping and Reconstruction.” arXiv, Aug. 30, 2023. doi:
10.48550/arXiv.2209.15376.

[81] E. Dunn and J.-M. Frahm, “Next best view planning for active model improvement,” in Procedings
of the British Machine Vision Conference 2009, London: British Machine Vision Association,
2009, p. 53.1-53.11. doi: 10.5244/C.23.53.

[82] “UAV Toolbox Documentation.” Accessed: Feb. 02, 2024. [Online]. Available:
https://www.mathworks.com/help/uav/index.html?s_tid=CRUX_Ifthav

[83] A. Viseras, D. Shutin, and L. Merino, “Online information gathering using sampling-based
planners and GPs: An information theoretic approach,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 123-130. doi:
10.1109/IROS.2017.8202147.

[84] “Frontier-Based Exploration: Real-World Experiments.” Accessed: Feb. 29, 2024. [Online].
Available: https://robotfrontier.com/frontier/real.html

[85] C. de Boor, “Splines as linear combinations of B-splines,” Approx. Theory Il, Jan. 1976.

[86] “File:Parametic Cubic Spline.svg - Wikipedia.” Accessed: Feb. 29, 2024. [Online]. Available:
https://commons.wikimedia.org/wiki/File:Parametic_Cubic_Spline.svg

153/156

[87] M. G. COX, “The Numerical Evaluation of B-Splines*,” IMA J. Appl. Math., vol. 10, no. 2, pp. 134—
149, Oct. 1972, doi: 10.1093/imamat/10.2.134.

[88] R. Deits and R. Tedrake, “Computing Large Convex Regions of Obstacle-Free Space Through
Semidefinite Programming,” in Algorithmic Foundations of Robotics XI, vol. 107, H. L. Akin, N. M.
Amato, V. Isler, and A. F. Van Der Stappen, Eds., in Springer Tracts in Advanced Robatics, vol.
107. , Cham: Springer International Publishing, 2015, pp. 109-124. doi: 10.1007/978-3-319-
16595-0_7.

[89] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an engineering
perspective,” Int. J. Adv. Manuf. Technol., vol. 117, no. 5, pp. 1327-1349, Nov. 2021, doi:
10.1007/s00170-021-07682-3.

[90] M. Shan, J. S. Berrio, S. Worrall, and E. Nebot, “Probabilistic Egocentric Motion Correction of
Lidar Point Cloud and Projection to Camera Images for Moving Platforms.” arXiv, Mar. 09, 2020.
doi: 10.48550/arXiv.2003.03954.

[91]1. K. Alam Bhuiyan, LIiDAR Sensor for Autonomous Vehicle. 2017. doi:
10.13140/RG.2.2.16982.34887/1.

[92] J. Lemmetti, N. Sorri, I. Kallioniemi, P. Melanen, and P. Uusimaa, “Long-range all-solid-state
flash LIDAR sensor for autonomous driving,” Mar. 2021, p. 22. doi: 10.1117/12.2578769.

[93] H. Yoo et al., “MEMS-based lidar for autonomous driving,” E Elektrotechnik Informationstechnik,
Jul. 2018, doi: 10.1007/s00502-018-0635-2.

[94] D. Wang, C. Watkins, and H. Xie, “MEMS Mirrors for LIDAR: A Review,” Micromachines, vol. 11,
no. 5, Art. no. 5, May 2020, doi: 10.3390/mi11050456.

[95] “Configuring Stereo Depth — DepthAl documentation | Luxonis.” Accessed: Feb. 21, 2024.
[Online]. Available: https://docs.luxonis.com/projects/api/en/latest/tutorials/configuring-stereo-

depth/
[96] “Object Perception — CACAO@HOME Robot documentation.” Accessed: Feb. 29, 2024.
[Online]. Available: https://gesture-detection-with-

ros2.readthedocs.io/en/latest/perception/docs/object_perception.html

[97] L. Kovani¢, B. Topitzer, P. Petovsky, P. Blistan, M. B. Gergelova, and M. Blistanova, “Review of
Photogrammetric and Lidar Applications of UAV,” Appl. Sci., vol. 13, no. 11, Art. no. 11, Jan.
2023, doi: 10.3390/app13116732.

[98] “What are CUDA Cores?,” Trusted Reviews. Accessed: Feb. 23, 2024. [Online]. Available:
https://www.trustedreviews.com/explainer/what-are-cuda-cores-4226433

[99] “Understanding Tensor Cores,” Paperspace Blog. Accessed: Feb. 23, 2024. [Online]. Available:
https://blog.paperspace.com/understanding-tensor-cores/
[100] “What Is a Teraflop? What to Know About a GPU’s Performance,” Digital Trends. Accessed:
Feb. 23, 2024. [Online]. Available: https://www.digitaltrends.com/computing/what-is-a-teraflop/
[101] “What is TOPS of Tx2 board? - Jetson & Embedded Systems / Jetson TX2,” NVIDIA
Developer Forums. Accessed: Feb. 23, 2024. [Online]. Available:
https://forums.developer.nvidia.com/t/what-is-tops-of-tx2-board/117375

[102] “Jetson AGX Orin Developer Kit User Guide,” NVIDIA Developer. Accessed: Feb. 15, 2024.
[Online]. Available: https://developer.nvidia.com/embedded/learn/jetson-agx-orin-devkit-user-
guide/index.html

[103] “Dev Board,” Coral. Accessed: Feb. 23, 2024. [Online]. Available:
https://coral.ai/products/dev-board/
[104] “NVIDIA Jetson Xavier Series,” NVIDIA. Accessed: Feb. 23, 2024. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
[105] “NVIDIA GeForce RTX 3070 Family,” NVIDIA. Accessed: Feb. 23, 2024. [Online]. Available:
https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3070-3070ti/

[106] “Minisforum EU,” Minisforum EU. Accessed: Feb. 23, 2024. [Online]. Available:
https://store.minisforum.de/

[107] “Search - Intel.com,” Intel. Accessed: Feb. 23, 2024. [Online]. Available:
https://www.intel.com/content/www/us/en/search.html

[108] “MAGNUS EN173070C (Barebone),” ZOTAC. Accessed: Feb. 23, 2024. [Online]. Available:
https://www.zotac.com/us/product/mini_pcs/magnus-en173070c-barebone

[109] U. Technologies, “Maximize Multiplatform Game Development | Unity.” Accessed: Feb. 26,
2024. [Online]. Available: https://unity.com/solutions/multiplatform

[110] “Unity Technologies,” Wikipedia. Apr. 17, 2022. Accessed: May 02, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Unity_Technologies&oldid=1083128423

[111] U. Technologies, “Robotics Simulation | Unity.” Accessed: Feb. 26, 2024. [Online]. Available:
https://unity.com/solutions/automotive-transportation-manufacturing/robotics

154/156

[112] How To Animate In Unity 3D, (2019). Accessed: Aug. 25, 2022. [Online Video]. Available:
https://www.youtube.com/watch?v=sgHicuJAu3g

[113] D. M. M. Sathik, “Ray Casting for 3D Rendering — A Review”.

[114] T.J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray Tracing on Programmable Graphics
Hardware”.

[115] E. Vasiou, K. Shkurko, I. Mallett, E. Brunvand, and C. Yuksel, “A detailed study of ray tracing
performance: render time and energy cost,” Vis. Comput.,, vol. 34, Jun. 2018, doi:
10.1007/s00371-018-1532-8.

[116] “Rotation matrix,” Wikipedia. Apr. 22, 2022. Accessed: Jun. 17, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Rotation_matrix&oldid=1084060907

[117] The Robotics Optimized Velarray M1600 Lidar Sensor from Velodyne Lidar, (2022).

Accessed: Jul. 19, 2022. [Online Video]. Available:
https://www.youtube.com/watch?v=jo4lza4bOLl
[118] stereolabs, “zed2-camera-datasheet.” [Online]. Available:

https://www.stereolabs.com/assets/datasheets/zed2-camera-datasheet.pdf

[119] J. Maynard, “Lidar and Power Consumption for EVs,” Velodyne Lidar. Accessed: Feb. 27,
2024. [Online]. Available: https://velodynelidar.com/blog/lidar-and-power-consumption-electric-
vehicles/

[120] M. Brandédo, R. Figueiredo, K. Takagi, A. Bernardino, K. Hashimoto, and A. Takanishi,
“Placing and scheduling many depth sensors for wide coverage and efficient mapping in versatile
legged robots,” Int. J. Robot. Res., vol. 39, no. 4, pp. 431-460, Mar. 2020, doi:
10.1177/0278364919891776.

[121] “Depth Camera D435i,” Intel® RealSense™ Depth and Tracking Cameras. Accessed: Sep.
28, 2021. [Online]. Available: https://www.intelrealsense.com/depth-camera-d435i/

[122] “Amp consumption camera d435,” Intel RealSense Help Center. Accessed: Jul. 19, 2022.
[Online]. Available: http://support.intelrealsense.com/hc/en-us/community/posts/360051256734-
Amp-consumption-camera-d435

[123] “About Spot — Spot 3.1.2.1 documentation.” Accessed: Jul. 14, 2022. [Online]. Available:
https://dev.bostondynamics.com/docs/concepts/about_spot

[124] “Ultra Puck Surround View Lidar Sensor,” Velodyne Lidar. Accessed: Jul. 16, 2022. [Online].
Available: https://velodynelidar.com/products/ultra-puck/

[125] lidar velodyne, “Ultra-Puck_ Datasheet.” [Online]. Available: https://velodynelidar.com/wp-
content/uploads/2019/12/63-9378 _Rev-F_Ultra-Puck_Datasheet_Web.pdf

[126] “ANYmal C — Autonomous Legged Robot,” ANYbotics. Accessed: Jul. 16, 2022. [Online].
Available: https://www.anybotics.com/anymal-legged-robot/

[127] “Xiaomi CyberDog 2. Accessed: Feb. 27, 2024. [Online]. Available:
https://www.giztop.com/xiaomi-cyberdog-2.html

[128] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-
robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE Cat. N0.04CH37566), Sendai, Japan: IEEE, 2004, pp. 2149-2154. doi:
10.1109/IROS.2004.1389727.

[129] “rviz - ROS Wiki.” Accessed: Jan. 21, 2024. [Online]. Available: http://wiki.ros.org/rviz

[130] “Foxglove - Visualizing and debugging your robotics data - Foxglove.” Accessed: Jan. 21,
2024. [Online]. Available: https://foxglove.dev/

[131] “tracking_pid - ROS Wiki.” Accessed: Jan. 21, 2024. [Online]. Available:
http://wiki.ros.org/tracking_pid
[132] “apriltag ros - ROS Wiki.” Accessed: Jan. 21, 2024. [Online]. Available:

http://wiki.ros.org/apriltag_ros

[133] “Impulse X2E Motion Capture — PhaseSpace Motion Capture.” Accessed: Mar. 02, 2024.
[Online]. Available: https://www.phasespace.com/x2e-motion-capture/

[134] “DJI Air 2S - All In One - DJI” Accessed: Jan. 24, 2024. [Online]. Available:
https://www.dji.com/gr/air-2s

[135] “Pololu - RoboClaw 2x30A Motor Controller (V5E).” Accessed: Jan. 24, 2024. [Online].
Available: https://www.pololu.com/product/3286

[136] “Buy a Raspberry Pi 2 Model B — Raspberry Pi.” Accessed: Jan. 24, 2024. [Online]. Available:
https://www.raspberrypi.com/products/raspberry-pi-2-model-b/

[137] “Wild Scorpion 6S 22.2v 4200mAh 60C. Hobby Hangar.” Accessed: Jan. 24, 2024. [Online].
Available: https://www.hobbyhangar.co.nz/wild-scorpion-6s-222v-4200mah-60c

[138] “ZED X Mini Stereo Camera | Stereolabs.” Accessed: Jan. 24, 2024. [Online]. Available:
https://store.stereolabs.com/en-eu/products/zed-x-mini-stereo-camera?variant=42720409780380

155/156

[139] “XP-1 MICRO-START Jump-Starter — Antigravity Batteries.” Accessed: Jan. 24, 2024.
[Online]. Available: https://antigravitybatteries.com/products/micro-starts/xp-1/

[140] H. Su, Q. Liu, Z. Duanmu, W. Liu, and Z. Wang, “Perceptual Quality Assessment of Colored
3D Point Clouds.” arXiv, Nov. 09, 2021. Accessed: Dec. 31, 2023. [Online]. Available:
http://arxiv.org/abs/2111.05474

[141] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Commun. ACM, vol. 18, no. 9, pp. 509-517, Sep. 1975, doi: 10.1145/361002.361007.

[142] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The ball-pivoting
algorithm for surface reconstruction,” IEEE Trans. Vis. Comput. Graph., vol. 5, no. 4, pp. 349—
359, Oct. 1999, doi: 10.1109/2945.817351.

[143] X. Huang, G. Mei, J. Zhang, and R. Abbas, “A comprehensive survey on point cloud
registration.” arXiv, Mar. 05, 2021. Accessed: Jan. 06, 2024. [Online]. Available:
http://arxiv.org/abs/2103.02690

[144] Q. Zhao, X. Gao, J. Li, and L. Luo, “Optimization Algorithm for Point Cloud Quality
Enhancement Based on Statistical Filtering,” J. Sens., vol. 2021, pp. 1-10, Dec. 2021, doi:
10.1155/2021/7325600.

[145] P. Li, R. Wang, Y. Wang, and W. Tao, “Evaluation of the ICP Algorithm in 3D Point Cloud
Registration,” IEEE Access, vol. 8, pp. 68030-68048, 2020, doi:
10.1109/ACCESS.2020.2986470.

[146] “Figure 1: Point-to-plane error between two surfaces.,” ResearchGate. Accessed: Feb. 29,
2024. [Online]. Available: https://lwww.researchgate.net/figure/Point-to-plane-error-between-two-
surfaces_figl 228571031

[147] P.-A. Langlois, A. Boulch, and R. Marlet, “Surface Reconstruction from 3D Line Segments,” in
2019 International Conference on 3D Vision (3DV), Sep. 2019, pp. 553-563. doi:
10.1109/3DV.2019.00067.

[148] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeuS: Learning Neural
Implicit Surfaces by Volume Rendering for Multi-view Reconstruction.” arXiv, Feb. 01, 2023.
Accessed: Jan. 07, 2024. [Online]. Available: http://arxiv.org/abs/2106.10689

[149] “POINT CLOuUD.” Accessed: Feb. 29, 2024. [Online]. Available:
https://elmoatazbill.users.greyc.fr/point_cloud/index.html

[150] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, “On the shape of a set of points in the plane,”
IEEE Trans. Inf. Theory, vol. 29, no. 4, pp. 551-559, Jul. 1983, doi: 10.1109/TIT.1983.1056714.

[151] “Surface Reconstruction — Open3D latest (664eff5) documentation.” Accessed: Feb. 29,
2024. [Online]. Available:
https://www.open3d.org/docs/latest/tutorial/Advanced/surface_reconstruction.html

[152] C. Yuksel, J. Keyser, and D. H. House, “Mesh colors,” ACM Trans. Graph., vol. 29, no. 2, pp.
1-11, Mar. 2010, doi: 10.1145/1731047.1731053.

[153] Y. Deng, Y. Ni, Z. Li, S. Mu, and W. Zhang, “Toward Real-Time Ray Tracing: A Survey on
Hardware Acceleration and Microarchitecture Techniques,” ACM Comput. Surv., vol. 50, pp. 1-
41, Aug. 2017, doi: 10.1145/3104067.

156/156

