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Περίληψη 

Η τρισδιάστατη απεικόνιση χώρου είναι ένα ισχυρό εργαλείο που φέρνει ήδη ριζικές αλλαγές 

στον τομέα της γεωργίας. Χρησιμοποιείται για την απομακρυσμένη παρακολούθηση της 

ανάπτυξης των καλλιεργειών, την ταυτοποίηση παρασίτων και ασθενειών, ακόμα και την 

αυτοματοποίηση των εργασιών στον αγρό. Ωστόσο, αποτελεί πρόκληση η διασφάλιση της 

απαραίτητης οπτικής ποιότητας της απεικόνισης ώστε να μπορεί ο αγρότης να διακρίνει 

εύκολα λεπτομέρειες στα φυτά. 

Η παρούσα διπλωματική εργασία επικεντρώνεται στο σχεδιασμό και την υλοποίηση 

ενός αποδοτικού συστήματος αντίληψης για τετράποδα ρομπότ, ικανού να ανακατασκευάσει 

με ακρίβεια ένα αμπέλι παράγοντας σαφές οπτικό περιεχόμενο για τον χρήστη. Το 

αντικείμενο της παρούσας εργασίας είναι όχι μόνο η έρευνα και η ανάπτυξη του 

απαραίτητου λογισμικού για την επίτευξη του παραπάνω στόχου, αλλά και η ανασκόπηση 

του διαθέσιμου υλικού για αυτόν τον σκοπό και τελικά η εκτέλεση ενός πειράματος σε 

προσομοίωση αλλά και με πραγματικό ρομπότ σε πραγματικές συνθήκες. 

Αρχικά εξετάζονται υπάρχοντα πακέτα λογισμικού για τρισδιάστατη ανακατασκευή και 

χωρική χαρτογράφηση. Η σύγκριση παράγει πολύτιμες πληροφορίες σχετικά με τα οφέλη 

και τα μειονεκτήματα πρωτοποριακών μεθόδων ανακατασκευής χώρου. Τα πακέτα 

δοκιμάζονται στο ROS noetic και εφαρμόζεται επιτάχυνση υλικού CUDA, όταν αυτό είναι 

εφικτό. Επιλέγεται τελικά το εργαλείο χωρικής χαρτογράφησης ZED με υπολογισμό βάθους 

με νευρωνικά δίκτυα, για να συμπληρώσει τον προσαρμοσμένο αλγόριθμο τρισδιάστατης 

ανακατασκευής που σχεδιάζεται στο τέλος αυτής της εργασίας. 

Στο τρίτο κεφάλαιο της παρούσας διπλωματικής εργασίας μελετώνται αλγόριθμοι 

πλοήγησης και σχεδιασμού τροχιάς. Ο αλγόριθμος πλοήγησης του ρομπότ που εν τέλει 

εφαρμόστηκε βασίζεται σε προηγούμενες μελέτες για οπτική οδομετρία με δύο κάμερες που 

πραγματοποιήθηκαν από την Ομάδα Τετράποδων Ρομπότ του Εργαστηρίου Συστημάτων 

Ελέγχου του ΕΜΠ, σε έναν πρωτότυπο αλγόριθμο αποφυγής εμποδίων που αποσυνθέτει 

τον χώρο σε πολύγωνα, καθώς και σε έναν PID ελεγκτή παρακολούθησης τροχιάς. 

Στη συνέχεια εξετάζεται η επιλογή των υλικοτεχνικών στοιχείων που θα 

χρησιμοποιηθούν για την υλοποίηση του συστήματος αντίληψης. Μια σύγκριση αισθητήρων 

και μονάδων επεξεργασίας, καθώς και μια εξερεύνηση των τρόπων με τους οποίους αυτά 

μπορούν να συνδυαστούν και να τοποθετηθούν σε ένα τετράποδο ρομπότ, οδήγησε σε 

καλά τεκμηριωμένες αποφάσεις σχετικά με την τελική δομή του συστήματος. Για την 

επίτευξη των συγκρίσεων αναπτύχθηκε ένα εργαλείο τρισδιάστατης απεικόνισης πεδίου 

θέασης και ανάλυσης lidar (FoVaLiRa) στην πλατφόρμα ανάπτυξης Unity. 

Το τελευταίο κεφάλαιο επικεντρώνεται στην ανάπτυξη του αλγορίθμου Vinymap για 

αντικειμενική αξιολόγηση ποιότητας point cloud, τρισδιάστατη απεικόνιση αμπελιών και 

αξιολόγηση πυκνότητας φυλλώματος. Το Vinymap είναι μια καινοτόμος διεργασία και 

δοκιμάστηκε σε κινητό ρομπότ που φέρει το σύστημα αντίληψης που δημιουργήθηκε στα 

πλαίσια αυτής της εργασίας. Είναι γραμμένο σε python3, με χρήση δύο γνωστών και 

καθιερωμένων βιβλιοθηκών ανοιχτού κώδικα, των Open3D και OpenCV.  

 

Λέξεις Κλειδιά – Γεωργικά Ρομπότ, Ρομποτική Αντίληψη, Τρισδιάστατη 

Ανακατασκευή Χώρου, Πλοήγηση και Έλεγχος Κινούμενων Ρομπότ, Σχεδιασμός 

Τροχιάς 
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Abstract 

3D spatial mapping is a powerful tool that is revolutionizing the field of agriculture. By 

creating detailed digital representations of fields, farmers can gain insights into their land 

that were previously unattainable. This technology can be used to remotely monitor crop 

growth, identify pests and diseases, optimize irrigation and fertilizer applications, and even 

automate field operations. However, it is a challenge to ensure the necessary optical quality 

so that the farmer can easily distinguish details in the plants.  

The present thesis focuses on the design and implementation of an effective perception 

system capable of accurately reconstructing a vineyard while producing clear and 

comprehensive visual content for the user. The subject of the present work is not only the 

research and development of the necessary software to achieve the above goal, but also a 

review of the available hardware for that purpose and ultimately the execution of an 

experiment in simulation, as well as with a real robot in realistic conditions. 

First, the available software on 3D reconstruction and spatial mapping is reviewed. 

Comparing four different packages produces valuable insight regarding the benefits and 

drawbacks of various state-of-the-art reconstruction methods. The packages are tested on 

ROS noetic and CUDA hardware acceleration is enabled to speed up the process. The ZED 

spatial mapping tool with neural depth capabilities is chosen to complement the custom 3D 

reconstruction algorithm that is ultimately implemented in this work. 

Navigation and path planning algorithms are studied in the third chapter of the present 

thesis. The final design of the high-level planner which is utilized in both the simulation and 

the real-life experiments is based on prior studies on dual camera visual odometry 

conducted by the Legged Robots Team of the Control Systems Lab in NTUA, as well as on 

a novel obstacle avoidance algorithm which leverages polytopic decomposition and a stable 

trajectory tracking PID controller.  

Deciding which hardware components to utilize for the implementation of the perception 

system is next addressed in this work. A comparison of sensors and processing units, as 

well as an exploration of the ways in which they can be combined and placed on a 

quadruped robot, led to well-argued decisions about the final structure of the perception 

system. To justify and visualize these comparisons, a three-dimensional field of view 

visualization and lidar resolution analysis tool (FoVaLiRa) was developed in the Unity 

Development platform. 

The final chapter focuses on the development of the Vinymap Objective Quality 

Assessment, Canopy Inspection and 3D Reconstruction Algorithm. Vinymap is a novel 

approach to reconstructing a real vineyard while maintaining the visual features of the 

leaves, the grapes, and the trunk intact. It also assesses the vineyard’s canopy density and 

provides valuable quantitative indexes to the farmers. Vinymap was tested on a mobile 

robotic platform with the perception system developed in this work. It is written in python3 

and utilizes open3D and openCV, two well-known and well-established open-source 

libraries. 

 

Keywords – Agricultural Robots, Robotic Perception, 3D Reconstruction, Robotic 

Navigation and Control, Path Planning  
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1 Εκτεταμένη Ελληνική Περίληψη 

1.1 Εισαγωγή 

 

Ο αυξανόμενος πληθυσμός της Γης και η συνεχής κλιματική αλλαγή αποτελούν 

σημαντική πρόκληση για τη διαθεσιμότητα τροφίμων παγκοσμίως. Οι πρακτικές της 

γεωργίας ακριβείας (Precision Agriculture) και η αυτοματοποιημένη επιθεώρηση των 

καλλιεργειών έχουν αναδειχθεί ως βασικές στρατηγικές για να καταστεί η γεωργία πιο 

αποδοτική και βιώσιμη. Ένας κρίσιμος τομέας είναι οι αμπελώνες, λόγω της δομημένης 

διάταξής τους και της υψηλής αξίας των παραγόμενων προϊόντων [1].  

Ωστόσο, πρέπει να αντιμετωπιστούν αρκετές προκλήσεις πριν μπορέσουν τα ρομπότ 

να ενσωματωθούν πλήρως στη διαχείριση των αμπελώνων. Ένα σημαντικό εμπόδιο είναι το 

ασθενές δορυφορικό σήμα στις ορεινές περιοχές με αμπελώνες. Αυτό καθιστά αναξιόπιστα 

τα Παγκόσμια Συστήματα Στιγματοθέτησης (GPS), ένα ουσιαστικό στοιχείο για την 

πλοήγηση των ρομπότ. Πολλές υπάρχουσες λύσεις βασίζονται σε μεγάλο βαθμό στο GPS 

[2], καθιστώντας τις αναποτελεσματικές σε περιβάλλοντα χωρίς ευκρινές σήμα [3].  

Μια επιπλέον πρόκληση δημιουργεί το ανώμαλο έδαφος μέσα στους αμπελώνες αλλά 

και τα εμπόδια όπως βράχοι, εξοπλισμός άρδευσης και εργαζόμενοι. Αυτά καθιστούν 

αναγκαία την ανάπτυξη αποδοτικών και ευέλικτων λύσεων σχεδιασμού διαδρομών. 

Επιπλέον, η αποδοτικότητα κόστους παραμένει κρίσιμο ζήτημα όσον αφορά την ευρεία 

υιοθέτηση τέτοιων συστημάτων από γεωργούς.  

Πολλές υπάρχουσες λύσεις αντιμετωπίζουν συγκεκριμένες πτυχές του αυτοματισμού, 

όπως ο ψεκασμός [4], η καταμέτρηση σταφυλιών [5] ή η ανίχνευση ασθενειών [6], 

στερούμενες μιας ολιστικής προσέγγισης. Οι τελευταίες δεν προσφέρουν μια ολοκληρωμένη 

τρισδιάστατη απεικόνιση των αμπελιών, η οποία είναι πολύτιμη για τον έλεγχο των 

καλλιεργειών. Επίσης, η έρευνα συχνά παραμελεί τα κρίσιμα ζητήματα της αυτόνομης 

πλοήγησης και της αποφυγής εμποδίων μέσα στον αμπελώνα [7], [8]. Αυτός ο 

κατακερματισμός περιορίζει την αποτελεσματικότητά τους στο να παρέχουν μια πλήρη 

εικόνα στον αγρότη. 

Πρόσφατη έρευνα καταδεικνύει τη δυνατότητα δημιουργίας φωτο-ρεαλιστικών 

τρισδιάστατων χαρτών που χρησιμοποιούν τρισδιάστατες Γκαουσσιανές [9]. Ενώ είναι 

πολύτιμες, τέτοιες λύσεις απαιτούν συνήθως τεράστια υπολογιστική ισχύ, καθιστώντας τες 

απαγορευτικά ακριβές για πολλούς καλλιεργητές και εμποδίζοντας την ικανότητα εκτέλεσης 

σε πραγματικό χρόνο, η οποία είναι ουσιαστική καθώς η γρήγορη λήψη αποφάσεων είναι 

ζωτικής σημασίας για τους αγρότες προκειμένου να αντιδράσουν σε ξαφνικά καιρικά 

φαινόμενα ή καταστροφές [10]. 

Δεδομένων αυτών των περιορισμών, η παρούσα διπλωματική παρουσιάζει μια ολιστική 

λύση για το πρόβλημα της επιθεώρησης αμπελώνων με κινητά ρομπότ. Στα πλαίσιά της 

αναπτύχθηκε λογισμικό και υλικό και εφαρμόστηκε σε προσομοίωση αλλά και σε 

πραγματικές συνθήκες με την τροποποίηση και χρήση μιας ρομποτικής πλατφόρμας.   

Αρχικά πραγματοποιήθηκε εις βάθος έρευνα και αξιολόγηση υφιστάμενων πακέτων 

λογισμικού, με έμφαση στις δυνατότητες τρισδιάστατης ανακατασκευής και χωρικής 

χαρτογράφησης. Η σύγκριση εστίασε στην αποσαφήνιση των πλεονεκτημάτων και 
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μειονεκτημάτων κάθε μεθόδου, λαμβάνοντας υπόψη κριτήρια όπως η ακρίβεια, η ταχύτητα, 

η ευκολία χρήσης και η συμβατότητα με το σύστημα ROS. 

Επιπρόσθετα, αξιοποιήθηκε η τεχνολογία CUDA για την επιτάχυνση της επεξεργασίας, 

όπου αυτό ήταν εφικτό. Η λεπτομερής αξιολόγηση κατέληξε στην επιλογή του εργαλείου 

ZED spatial mapping για χωρική χαρτογράφηση και υπολογισμό βάθους με νευρωνικά 

δίκτυα. Ο αλγόριθμος αυτός κρίθηκε ως η πλέον κατάλληλη λύση για την ενίσχυση του 

προσαρμοσμένου αλγορίθμου τρισδιάστατης ανακατασκευής που αναπτύχθηκε στα πλαίσια 

της παρούσας εργασίας. 

Για την πλοήγηση της ρομποτικής πλατφόρμας στον χώρο χρησιμοποιείται ένα 

σύστημα οπτικής οδομετρίας με διπλή κάμερα, σχεδιασμένο ειδικά για περιβάλλοντα χωρίς 

σήμα GPS αλλά και περιβάλλοντα με οπτική ομοιομορφία που σημαίνει την έλλειψη 

πληθώρας διαθέσιμων οπτικών χαρακτηριστικών. Η οπτική οδομετρία με διπλή κάμερα 

εξασφαλίζει τη συνεχή λειτουργία της πλοήγησης ακόμα και όταν η μία κάμερα τυφλώνεται 

από το ηλιακό φως ή ένα εμπόδιο κρύβει το οπτικό της πεδίο. Η αποτελεσματικότητα του 

αλγορίθμου βελτιώθηκε με τροποποίηση του κλεισίματος βρόχου με την ανίχνευση ετικετών 

April Tag, προσθέτοντας έναν αλγόριθμο οπτικού σερβο-ελέγχου που εξασφαλίζει την 

βέλτιστη ευθυγράμμιση του ρομπότ με την ετικέτα April Tag πριν αυτό ξεκινήσει τις 

διορθώσεις κλεισίματος βρόχου. Επιπλέον, μελετήθηκε και αξιοποιήθηκε ένας αλγόριθμος 

σχεδιασμού διαδρομών που χρησιμοποιεί αποσύνθεση του χώρου σε πολύγωνα για να 

εντοπίσει διαδρόμους χωρίς εμπόδια. Αυτή η προσέγγιση, που εφαρμόζεται για πρώτη φορά 

σε πραγματικό ρομπότ, επωφελείται από τη διάταξη του αμπελώνα που εκ φύσεως 

σχηματίζει παράλληλους διαδρόμους. 

Εν συνεχεία σχεδιάστηκε το σύστημα αντίληψης με στόχο να φιλοξενήσει τους 

επιλεγμένους αλγορίθμους τρισδιάστατης χαρτογράφησης, πλοήγησης και σχεδιασμού 

τροχιάς. Η υλοποίηση του συστήματος αντίληψης προϋποθέτει την επιλογή κατάλληλων 

υλικοτεχνικών στοιχείων. Πραγματοποιήθηκε λεπτομερής σύγκριση αισθητήρων (κάμερες, 

LiDAR, GPS) και μονάδων επεξεργασίας, λαμβάνοντας υπόψη κριτήρια όπως η ακρίβεια, η 

εμβέλεια, η ανάλυση, το κόστος, η ισχύς επεξεργασίας και η κατανάλωση ενέργειας. 

Εξετάστηκαν διάφορες διατάξεις τοποθέτησης των αισθητήρων σε τετράποδα ρομπότ, 

λαμβάνοντας υπόψη παράγοντες όπως το πεδίο θέασης, το βάρος και την προστασία από 

κρούσεις. 

Για την υποστήριξη της λήψης τεκμηριωμένων αποφάσεων, αναπτύχθηκε το FoVaLiRa 

(Field of View and LiDAR Analysis), ένα εργαλείο τρισδιάστατης απεικόνισης στην 

πλατφόρμα Unity. Το FoVaLiRa βοήθησε στην οπτικοποίηση του πεδίου θέασης κάθε 

αισθητήρα, στην αξιολόγηση της επικάλυψης πεδίων θέασης και στην εξέταση της ανάλυσης 

LiDAR σε διάφορες αποστάσεις. 

Τέλος, αναπτύχηκε το καινοτόμο λογισμικό Vinymap. Το Vinymap παρέχει 

ολοκληρωμένη επιθεώρηση του αμπελώνα μέσω δύο βασικών αλγορίθμων: 1) Έναν 

αλγόριθμο φωτορεαλιστικής 3D χαρτογράφησης που δημιουργεί σαφείς οπτικές 

απεικονίσεις του αμπελώνα. 2) Έναν αλγόριθμο αξιολόγησης της πυκνότητας του 

φυλλώματος που παρέχει ζωτικής σημασίας πληροφορίες που σχετίζονται με την υγεία και 

την ποιότητα των σταφυλιών, καθώς το πυκνό φύλλωμα μπορεί να περιορίσει το ηλιακό φως 

και τον αερισμό γύρω από τα τσαμπιά σταφυλιών [11]. Η αποτελεσματικότητα του Vinymap 

αξιολογήθηκε αρχικά σε  προσομοιώσεις. Στη συνέχεια, κατασκευάσαμε έναν συνθετικό 

αμπελώνα στο Εργαστήριο Αυτομάτου Ελέγχου της Σχολής Μηχανολόγων Μηχανικών του 



 
 

 
24/156 

Ε.Μ.Π. για να δοκιμάσουμε εκτενώς το πλαίσιο, εφαρμοσμένο πλέον σε μια πραγματική 

ρομποτική πλατφόρμα υπό ρεαλιστικές συνθήκες. 

 

1.2 Έρευνα και Αξιολόγηση Πακέτων Λογισμικού 
Χαρτογράφησης και Ανακατασκευής Χώρου 

Εξετάστηκαν τέσσερα λογισμικά ανακατασκευής χώρου πρώτο ήταν το RTAB-Map [12] το 

οποίο εκτελεί τρισδιάστατη απεικόνιση χώρου σε πραγματικό χρόνο εφαρμόζοντας 

αλγορίθμους SLAM. Το δεύτερο ήταν το Robot-Centric Elevation Mapping [13], ανεπτυγμένο 

από την εταιρεία Anybotics που εδρεύει στο ETH της Ζυρίχης και το οποίο εκτελεί 2.5D 

mapping ή αλλιώς ψευδό-τρισδιάστατη απεικόνιση χώρου. Και αυτό το πακέτο λειτουργεί σε 

πραγματικό χρόνο αλλά δεν αποτελεί μια εφαρμογή SLAM καθώς εκτελεί μόνο 

χαρτογράφηση του περιβάλλοντος χώρου χωρίς να επιτυγχάνει εντοπισμό ή πλοήγηση. Το 

τρίτο πακέτο είναι το Gradslam [14] το οποίο πραγματοποιεί τρισδιάστατη απεικόνιση χώρου 

και εφαρμόζει αλγόριθμους SLAM. Το τέταρτο πακέτο είναι το ZED Spatial Mapping [15] το 

οποίο επίσης εκτελεί τρισδιάστατη απεικόνιση χώρου σε πραγματικό χρόνο όντας μια 

εφαρμογή SLAM. 

1.2.1 Rtabmap 

Το Rtabmap εφαρμόζει οπτική οδομετρία σε πραγματικό χρόνο, δηλαδή λαμβάνει διαδοχικές 

εικόνες καθώς το ρομπότ που το χρησιμοποιεί κινείται στο χώρο και συγκρίνοντας τα οπτικά 

χαρακτηριστικά μεταξύ διαδοχικών εικόνων εκτιμάει την κατεύθυνση και το μέτρο της 

κίνησης του ρομπότ. Αξιοποιώντας τα δεδομένα της οπτικής οδομετρίας, το ρομπότ εκτιμάει 

τη θέση του στο χώρο και αξιοποιώντας έναν αισθητήρα τρισδιάστατης απεικόνισης που 

επιλέγει ο χρήστης, καταφέρνει να ανακατασκευάσει τον χώρο γύρω του δίδοντας ως έξοδο 

ένα τρισδιάστατο νέφος σημείων (3D point cloud). Ιδιαίτερο χαρακτηριστικό του RTAB-Map 

αποτελεί η προσέγγιση Bag-of-Words για την επίτευξη κλεισίματος βρόχου (loop closure). 

Αυτή η διαδικασία λειτουργεί ως εξής: ανά προκαθορισμένα χρονικά διαστήματα το ρομπότ 

αξιοποιεί κάποιες εικόνες και αποθηκεύει τα οπτικά χαρακτηριστικά τους σε μια βάση 

δεδομένων με τη μορφή μιας τσάντας  (bag) για να τα χρησιμοποιήσει μελλοντικά. Καθώς το 

ρομπότ συλλέγει πληθώρα τέτοιων τσαντών, ελέγχει για κάθε μία από τις τσάντες που 

βρίσκει αν εμφανίζει έντονη ομοιότητα με κάποια που έχει συλλέξει παλιότερα. Αν πράγματι 

βρει μεγάλη ομοιότητα μεταξύ της τρέχοντος τσάντας και μιας παλιότερης, τότε θεωρεί ότι 

βρίσκεται σε ένα σημείο που έχει ξανά επισκεφθεί και με τον τρόπο αυτό αν η εκτίμηση της 

θέσης του εμφανίζει απόκλιση, τότε την διορθώνει αναδρομικά μειώνοντας έτσι τα σφάλματα 

των μετρήσεων που συσσωρεύονται κατά την διάρκεια της κίνησής του. 

1.2.2 Robot-Centric Elevation Mapping 

Το Robot-Centric Elevation Mapping έχει ως σκοπό τη χαρτογράφηση του περιβάλλοντος 

χώρου γύρω από το ρομπότ. Καθώς το ρομπότ προχωράει στο χώρο, μέρη του χάρτη που 

έχει επισκεφθεί προηγουμένως διαγράφονται και ο χάρτης ουσιαστικά ακολουθεί το ρομπότ. 

Η προσέγγιση αυτή είναι γνωστή ως robot-centric mapping kαι συμβάλλει στην 

εξοικονόμηση μνήμης του υπολογιστή του ρομπότ, ενώ διευκολύνει την εκτέλεση του 

αλγορίθμου σε πραγματικό χρόνο. 
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Το Robot-Centric Elevation Mapping φτιάχνει έναν ψευδό-τρισδιάστατο χάρτη δηλαδή δεν 

έχει ως έξοδο ένα νέφος με σημεία στις τρεις διαστάσεις, αλλά έναν δισδιάστατο χάρτη όπου 

για κάθε σημείο αυτού του χάρτη δίνει μια τιμή ύψους (elevation map). Αυτό έχει ως 

αποτέλεσμα εμπόδια τα οποία βρίσκονται σε κάποιο ύψος και απέχουν από το έδαφος, να 

καταχωρούνται ως συμπαγή εμπόδια που εκτείνονται από το έδαφος μέχρι το μέγιστο ύψος 

στο οποίο φτάνουν. Αυτό δεν αποτελεί μια αντικειμενική απεικόνιση του χώρου και 

δημιουργεί ιδιαίτερο πρόβλημα σε περιβάλλοντα αμπελώνων όπου τα κλαδιά των αμπελιών 

συχνά βρίσκονται σε ύψος μεγαλύτερο από το ρομπότ οπότε θεωρητικά επιτρέπουν την 

κίνηση του ρομπότ κάτω από αυτά. Στην περίπτωση του Robot-Centric Elevation Mapping 

θα καταχωρούνταν ως απροσπέλαστα εμπόδια πράγμα που δεν είναι αληθές. 

 
Εικόνα 1-1: (a) Μια πλατφόρμα που ίπταται, σε περιβάλλον προσομοίωσης Gazebo.  (b) Η απεικόνιση 

της πλατφόρμας και του γύρω χώρου με τη χρήση του Robot-Centric Elevation Mapping. 

Ιδιαίτερο χαρακτηριστικό αυτού του πακέτου αποτελεί η δυναμική αναπροσαρμογή του 

χάρτη. Aν ένα εμπόδιο που έχει καταχωρηθεί στο χάρτη είναι κινούμενο και άλλαξε η θέση 

του, ο χάρτης αναπροσαρμόζεται καθώς γίνεται χρήση ray casting για να γίνει αντιληπτό ότι 

η θέση που καταλάμβανε προηγουμένως το εμπόδιο είναι πλέον κενή και το ίδιο έχει κινηθεί 

σε μια νέα θέση. 

1.2.3 Gradslam 

Το Gradslam είναι ένα πακέτο το οποίο δημιουργήθηκε με σκοπό να τροποποιήσει 

γνωστούς και καλά εδραιωμένους αλγορίθμους που εφαρμόζονται στη διαδικασία του 

SLAM, έτσι ώστε να μπορούν να εισαχθούν σε μοντέλα μηχανικής μάθησης και να γίνει 

εκπαίδευση αυτών των μοντέλων απευθείας με δεδομένα εφαρμογών SLAM. Όλο το πακέτο 

λοφισμικού Gradslam αποτελεί ένα διαφορίσιμο υπολογιστικό γράφο. Ωστόσο το πακέτο 

αυτό απαιτεί μεγάλη υπολογιστική ισχύ (το ελάχιστο 8GB μνήμης RAM) ακόμα και για την 

ανακατασκευή μικρών χώρων. Επιπλέον η ικανότητα του για εκτέλεση πραγματικό χρόνο 

είναι περιορισμένη. 

1.2.4 ZED Spatial Mapping 

Το ZED Spatial Mapping εφαρμόζει οπτική οδομετρία όπως και το RTAB-Map, αλλά 

βελτιώνει τα αποτελέσματα της αξιοποιώντας τις μετρήσεις αισθητήρων αδράνειας (IMU), 

τοποθετημένων πάνω στο ρομπότ ή ενσωματωμένων στην κάμερα η οποία εκτελεί την 

οπτική οδομετρία (visual-inertial odometry).  
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Το ZED Spatial Mapping απαιτεί αισθητήρα εκτίμησης βάθους για να εκτελεσθεί και 

συγκεκριμένα εφαρμόζεται σε κάμερες ZED [16], οι οποίες επιτελούν στερεοσκοπική 

εκτίμηση βάθους. Παρ’ όλα αυτά για ακόμα καλύτερα αποτελέσματα εκτίμησης βάθους 

χρησιμοποιούνται πλέον νευρωνικά δίκτυα και ο τελικός χάρτης βάθους προκύπτει από τη 

στατιστική ένωση του στερεοσκοπικού βάθους με το βάθος που προέκυψε μέσω των 

νευρωνικών δικτύων. 

1.2.5 Επιλογή του Κατάλληλου Πακέτου Λογισμικού 

Για την αρχική φάση των πειραμάτων που αφορούν το πλαίσιο που αναπτύχθηκε στην 

παρούσα διπλωματική εργασία χρησιμοποιήθηκε το πακέτο ανακατασκευής RTAB-Map. 

Αυτό έγινε λόγω της απλότητας που το χαρακτηρίζει, της ικανότητας εκτέλεσης σε 

πραγματικό χρόνο, της ευελιξίας και πολυχρηστικότητας του, καθώς και της ενεργής 

κοινότητας χρηστών και ερευνητών που διευκολύνουν την ανάπτυξη λογισμικού με τη χρήση 

του. Ωστόσο στα τελικά στάδια των πειραμάτων χρησιμοποιήθηκε το ZED Spatial Mapping 

λόγω της εντυπωσιακής ποιότητας ανακατασκευής που προσφέρει αλλά και των καινοτόμων 

τεχνολογιών που χρησιμοποιεί. 

1.3 Πλοήγηση και Σχεδιασμός Διαδρομής 

1.3.1 Πλοήγηση 

Για να επιτευχθεί πλοήγηση για τη ρομποτική πλατφόρμα η οποία χρησιμοποιήθηκε κατά τη 

φάση πειραμάτων, αξιοποιήθηκε ένας αλγόριθμος οπτικής οδομετρίας ο οποίος αξιοποιεί 

δύο κάμερες [17]. Το γεγονός αυτό προσδίδει ευρωστία στο σύστημα καθώς ακόμα και αν 

μια κάμερα δεν είναι ικανή να εντοπίσει οπτικά χαρακτηριστικά για κάποιον λόγο - όπως για 

παράδειγμα λόγω τύφλωσης από άμεση ηλιακή ακτινοβολία - τότε η άλλη κάμερα 

αναλαμβάνει την επίτευξη οπτικής οδομετρίας. Ο αλγόριθμος αυτός αναπτύχθηκε στα 

πλαίσια του Εργαστηρίου Αυτομάτου Ελέγχου της σχολής των Μηχανολόγων Μηχανικών 

του Εθνικού Μετσοβίου Πολυτεχνείου. Επιπλέον, ο ίδιος έχει την ιδιαιτερότητα ότι 

καταφέρνει κλείσιμο βρόχου με τη χρήση ετικέτων April Tags. April Tags είναι σύμβολα 

εντοπισμού όπως τα γνωστά QR-Codes με τη διαφορά ότι έχουν σχεδιαστεί έτσι ώστε να 

διευκολύνουν την κάμερα που τα εντοπίζει να αντιλαμβάνεται τον προσανατολισμό τους 

στον χώρο και επομένως να εκτιμά το δικό της προσανατολισμό σε σχέση με αυτά. Αυτό 

ακριβώς επιτυγχάνεται και στην περίπτωση του αλγορίθμου που αξιοποιήθηκε. 

Συγκεκριμένα όταν το ρομπότ εντοπίζει μια ετικέτα, η οποία φέρει ένα μοναδικό 

αναγνωριστικό, τότε την αποθηκεύει στη μνήμη του. Εάν εντοπίσει ξανά το April Tag με το 

ίδιο αναγνωριστικό τότε καταλαβαίνει ότι βρίσκεται σε σημείο το οποίο έχει ξαναεπισκεφθεί 

και αν η εκτίμηση της οδομετρίας του έχει διαφορές από την νέα εκτίμηση με βάση το April 

Tag τότε αναπροσαρμόζει την τροχιά του και μειώνει το σφάλμα (κλείσιμο βρόχου – loop 

closure). 

Παρατηρήθηκε ότι από πλάγιες γωνίες θέασης και από μεγάλη απόσταση το κλείσιμο 

βρόχου με χρήση April Tag εισήγαγε σφάλματα στην εκτίμηση οδομετρίας. Για να επιλυθεί 

το πρόβλημα αυτό κατασκευάστηκε ένας αλγόριθμος οπτικής ευθυγράμμισης της 

ρομποτικής πλατφόρμας με το April Tag. Η ευθυγράμμιση αυτή λαμβάνει χώρα πριν να 

ενεργοποιηθεί ο αλγόριθμος κλεισίματος βρόχου και εξασφαλίζει ότι η κάμερα της 

ρομποτικής πλατφόρμας βλέπει το April Tag από γωνία θέασης 90 μοιρών και απόσταση 

30cm. Αφού η ρομποτική πλατφόρμα ευθυγραμμιστεί με το April Tag, τότε και μόνο τότε 
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ενεργοποιείται ο αλγόριθμος κλεισίματος βρόχου με βάση τον εντοπισμό April Tag. Το 

σφάλμα από γωνία θέασης 90 μοιρών και απόσταση 30cm βρέθηκε μηδενικό. 

 

Εικόνα 1-2: (a) Η πειραματική διάταξη για την εύρεση της ιδανικής γωνίας θέασης και απόστασης από το 
April Tag πριν το κλείσιμο βρόχου. (b) Σφάλμα εκτίμησης απόστασης και γωνίας  από το April Tag για 

διάφορες γωνίες και αποστάσεις θέασης. 

1.3.2 Σχεδιασμός Διαδρομής 

Για την επίτευξη του σχεδιασμού διαδρομής του ρομπότ μέσα στον αμπελώνα εξετάστηκαν 

τρεις διαφορετικοί αλγόριθμοι: To Ewok Planner [18], το Safe Corridors Planner [19] και το 

GB-Planner [20].  

Ewok Planner 

Το Ewok Planner είναι ένας αλγόριθμος σχεδιασμού διαδρομής ο οποίος εστιάζει στην 

ταχύτητα εκτέλεσης του σε πραγματικό χρόνο και την ομαλότητα της τροχιάς που 

υπολογίζει. Χρησιμοποιεί B-Splines για τον υπολογισμό ομαλών τροχιών και αναπαριστά 

τον χώρο γύρω από το ρομπότ με ένα Voxel Grid για την επίτευξη αποφυγής εμποδίων. 

Απαιτεί την είσοδο ενός μονοπατιού από την αρχική θέση του ρομπότ έως τη θέση-στόχο 

και εστιάζει στην ακολούθηση αυτού του μονοπατιού με τον βέλτιστο τρόπο ενώ 

ταυτοχρόνως επιτυγχάνει αποφυγή εμποδίων.  

Safe Corridors Planner  

O Safe Corridors Planner αξιοποιεί τον αλγόριθμο RRT* για τον υπολογισμό ενός αρχικού 

μονοπατιού από την αρχική θέση του ρομπότ έως τη θέση-στόχο. Δεν απαιτεί αυτή την 

πληροφορία σαν είσοδο. Ακολούθως αξιοποιεί το μονοπάτι που υπολογίστηκε αρχικά για να 

αποσυνθέσει τον χώρο γύρω από το μονοπάτι σε πολύτοπα που αντιπροσωπεύουν 

ελεύθερο χώρο και δημιουργούν διαδρόμους χωρίς εμπόδια. Ο αλγόριθμος ολοκληρώνεται 

σε αρκετά μικρό χρονικό διάστημα ώστε να μπορεί να εκτελείται κατ’ επανάληψη και 

επομένως να παρέχει στο ρομπότ δυναμική αποφυγή εμποδίων, δεδομένου ότι ταχύτητα 

κίνησης του ρομπότ είναι εντός συγκεκριμένων ορίων. 
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GB-Planner 

To GB-Planner είναι ένας εξερευνητικός αλγόριθμος σχεδιασμού διαδρομής. Αυτό σημαίνει 

ότι ο αλγόριθμος δεν απαιτεί μια τελική θέση-στόχο ως είσοδο. Αντιθέτως ο σχεδιασμός 

διαδρομής εκτελείται σε βήματα με σκοπό το ρομπότ να εξερευνήσει τον χώρο γύρω του με 

μια προεπιλεγμένη στρατηγική. Ο ελεύθερος χώρος γύρω από το ρομπότ αναπαρίσταται σε 

αυτήν την περίπτωση ως ένας γράφος με κόμβους. Σε κάθε κόμβο αποδίδεται μια 

εξερευνητική αξία. Το ρομπότ επιλέγει σε κάθε βήμα να επισκεφθεί τον κόμβο με τη 

μεγαλύτερη εξερευνητική αξία. Στην περίπτωση του GB-Planner, προστίθενται επιπλέον 

επίπεδα σχεδιασμού που εξασφαλίζουν ότι το ρομπότ θα επισκεφθεί όλους τους κόμβους 

υψηλού ενδιαφέροντος, καθώς και ότι η εξερεύνηση δεν θα θέσει το ρομπότ εκτός κάποιων 

στόχων (χρονικών ή εξοικονόμησης ενέργειας).  

Επιλογή του Κατάλληλου Πακέτου Σχεδιασμού Διαδρομής 

Επιλέχθηκε τελικά η χρήση του Free Corridors Planner, καθώς η τοπολογία των αμπελώνων 

δημιουργεί εκ φύσεως ελεύθερους διαδρόμους μεταξύ των σειρών του αμπελιού και αυτό 

διευκολύνει και επιταχύνει την εκτέλεση του αλγορίθμου. Επιπλέον, οι ρομποτικές εργασίες 

στον χώρο του αμπελιού συνήθως δεν επιβάλλουν υψηλές ταχύτητες κίνησης των ρομπότ 

με αποτέλεσμα η εκτέλεση σε πραγματικό χρόνο να είναι εφικτή ακόμα και με υψηλές 

αλγοριθμικές πολυπλοκότητες. Τέλος, το αμπέλι χαρτογραφείται εύκολα και ο εξαγόμενος 

χάρτης δεν αλλάζει συχνά, πράγμα που καθιστά περιττή την χρήση αλγορίθμων 

εξερεύνησης, μιας και είναι εύκολο να δοθεί μια θέση-στόχος πριν τον σχεδιασμό διαδρομής 

με βάση έναν υφιστάμενο χάρτη του αμπελιού. 

1.4 Σχεδίαση Συστήματος Αντίληψης 

Στα πλαίσια της παρούσας εργασίας δημιουργήθηκε ένα σύστημα αντίληψης πάνω στο 

οποίο εκτελέστηκαν οι αλγόριθμοι ανακατασκευής χώρου καθώς και οι αλγόριθμοι 

σχεδιασμού τροχιάς που επιλέχθηκαν. Για το σκοπό αυτό ερευνήθηκε το είδος των 

αισθητήρων του συστήματος αντίληψης (LiDAR, Depth Cameras, Structured Light 

Projectors), το πλήθος των αισθητήρων, καθώς και o τρόπος τοποθέτησής τους πάνω στη 

ρομποτική πλατφόρμα που χρησιμοποιήθηκε σε πειράματα σε προσομοίωση αλλά και σε 

πραγματικό χώρο. Εκτός αυτού, το σύστημα αντίληψης περιλαμβάνει και μια μονάδα 

επεξεργασίας για την επιλογή της οποίας εξετάστηκαν οι εξής κατηγορίες: Μικροελεγκτές, 

Υπολογιστές μίας πλακέτας (Single Board Computers), Mini PCs και Laptops. 

1.4.1 Field of View Visualization and Lidar Resolution Analysis Tool (FoVaLiRa)  

Για την διευκόλυνση του προσδιορισμού του είδους αλλά και του τρόπου τοποθέτησης των 

αισθητήρων του συστήματος αντίληψης πάνω στη ρομποτική πλατφόρμα αναπτύχθηκε το 

εργαλείο FoVaLiRa με τη βοήθεια του Unity. Το εργαλείο αυτό χρησιμοποιεί ray casting για 

να προσομοιώσει αισθητήρες λέιζερ αλλά και κάμερες βάθους. Επιτρέπει την εύκολη και 

γρήγορη σύγκριση πολλών διατάξεων σε διαφορετικές ρομποτικές πλατφόρμες. Με αφορμή 

τη δημιουργία του εργαλείου επιτεύχθηκε επιπλέον η πρώτη φάση της προσομοίωσης του 

αμπελιού σε Unity. 

Το εργαλείο FoVaLiRa επιτρέπει την εισαγωγή στόχων οι οποίοι στην περίπτωση μας 

είναι τα τσαμπιά του αμπελιού. Επιτρέπει οπτικοποίηση της επικάλυψης του οπτικού πεδίου 
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δύο ή περισσοτέρων αισθητήρων πάνω στην ρομποτική πλατφόρμα, καθώς και την 

εισαγωγή παραμέτρων από .csv αρχείο για την εύκολη παραμετροποίηση της 

προσομοίωσης.  

Η τελική διάταξη που επιλέχθηκε αποτελείται από τέσσερις κάμερες βάθους και έναν 

αισθητήρα LiDar για επιπλέον ευρωστία. Ο τελευταίος είναι προαιρετικός και το οπτικό του 

πεδίο επικαλύπτεται με το οπτικό πεδίο της μπροστινής κάμερας του ρομπότ. Η διάταξη 

αυτή εφαρμόστηκε σε τετράποδο ρομπότ κατά τα πειράματα προσομοίωσης αλλά και στην 

πραγματική ρομποτική πλατφόρμα κατά τα πειράματα στο εργαστήριο. 

 

 
Εικόνα 1-3: Το τετράποδο ρομπότ Lealaps II, με την τελική διάταξη αισθητήρων αντίληψης όπως 

φαίνεται εντός του εργαλείου οπτικοποίησης FoVaLiRa. 

1.4.2 Μονάδα Επεξεργασίας 

Οι μικροελεγκτές ήταν η κατηγορία που εξετάστηκε πρώτη ως υποψήφια μονάδα 

επεξεργασίας για το σύστημα αντίληψης που αναπτύχθηκε. Οι μικροελεγκτές προσφέρουν 

εντυπωσιακή αποδοτικότητα ισχύος αλλά υστερούν σημαντικά σε πολυχρηστικότητα και 

ευκολία προγραμματισμού. Για το λόγο αυτό εξετάστηκαν έπειτα τα Laptops και τα Mini PCs. 

Αυτές οι επιλογές διέπονται από σημαντική πολυχρηστικότητα και ευκολία χρήσης αλλά 

υστερούν σημαντικά σε αποδοτικότητα ισχύος και βάρους. Αυτό οδήγησε στο να εξεταστούν 

τελικά οι υπολογιστές μιας πλακέτας (Single Board Computers) οι οποίοι όπως αποδείχθηκε 

προσφέρουν μια ισορροπία μεταξύ πολυχρηστικότητας, βάρους και αποδοτικότητας ισχύος. 

Αυτά τα χαρακτηριστικά είναι τα ιδανικά για την εφαρμογή που εξετάζουμε στα πλαίσια της 

παρούσας διπλωματικής εργασίας και έτσι οι υπολογιστές μιας πλακέτας επιλέχθηκαν για τη 

συνέχεια των πειραμάτων. 

1.5 Ανάπτυξη του Vinymap για Βελτιωμένη Ανακατασκευή και 
Επιθεώρηση 

Το Vinymap είναι ένας αλγόριθμος που αναπτύχθηκε για να πετύχει τρεις στόχους: τη 

βελτίωση της ποιότητας των δεδομένων point cloud που λαμβάνονται από τις κάμερες 

βάθους, την εκτίμηση της πυκνότητας του φυλλώματος των αμπελιών και την παραγωγή 

ενός δείκτη ο οποίος ερμηνεύεται εύκολα από τους αγρότες και, τέλος, την φωτο-ρεαλιστική 

ανακατασκευή του αμπελώνα με σκοπό ο αγρότης να έχει ένα τρισδιάστατο αντίγραφο του 

αμπελιού του και να το επιθεωρεί σε δεύτερο χρόνο. 
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1.5.1 Αξιολόγηση και Βελτίωση Ποιότητας Νέφους Σημείων (point cloud) 

Το Vinymap επιτυγχάνει την αξιολόγηση και βελτίωση ποιότητας του point cloud με τρεις 

τρόπους: μετράει τα points τα οποία γειτνιάζουν με λιγότερα points από τον μέσο όρο. Τα 

αφαιρεί από το αρχικό point cloud διότι είναι πιθανό να αποτελούν θόρυβο. Έπειτα 

υπολογίζει τον όγκο που αυτά καταλαμβάνουν και παράγει έναν δείκτη που εκφράζει την 

αραιότητα του point cloud (sparsity index).   

 

Εικόνα 1-4: Εύρεση περιοχών χαμηλής πυκνότητας στο point cloud. 

Κατά δεύτερον εντοπίζει κενά μέσα στο point cloud. Αυτό επιτυγχάνεται γεμίζοντας τον χώρο 

ομοιόμορφα με points, αφαιρώντας το αρχικό point cloud από την ομοιόμορφη κατανομή 

points και εφαρμόζοντας opening [21] στο εναπομείναν point cloud. Το αποτέλεσμα είναι η 

εφάνιση κενών περιοχών του point cloud ως νέα νέφη. Αυτές ερμηνεύονται ως 

αχαρτογράφητοι χώροι - τρύπες - και μέσω αυτών παράγεται ένας δείκτης ποιότητας σε 

σχέση με τον αριθμό και τον όγκο που καταλαμβάνουν οι τρύπες στο αρχικό point cloud.  

 

Εικόνα 1-5: Αλγόριθμος εύρεσης κενών περιοχών στο point cloud. 

Κατά τρίτον, το Vinymap χωρίζει το αρχικό point cloud σε συστάδες (clusters) και από αυτές 

αφαιρεί τις απομακρυσμένες και μικρές σε όγκο καθώς αυτές είναι πιθανό να αποτελούν 

θόρυβο. Παράλληλα μετράει τον όγκο που αυτές καταλαμβάνουν και παράγει έναν ακόμα 

δείκτη ποιότητας. Συνδυάζοντας τους δείκτες που υπολογίστηκαν σε ένα τελικό δείκτη, το 

Vinymap δίνει τη δυνατότητα αντικειμενικής αξιολόγησης του point cloud. Παράλληλα, με τις 

ενέργειες αφαίρεσης θορύβου βελτιώνεται η ποιότητα των αρχικών νεφών σημείων. 
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Εικόνα 1-6: Εντοπισμός συστάδων που αποτελούν θόρυβο. 

1.5.2 Εκτίμηση Πυκνότητας Φυλλώματος Αμπελιών 

Το Vinymap επιτελεί επιπλέον εκτίμηση της πυκνότητας του φυλλώματος των αμπελιών. 

Αυτό επιτυγχάνεται με τη συνένωση των διαδοχικών λαμβανομένων point clouds 

(registration) με τη χρήση του αλγορίθμου KISS-ICP [22]. Ακολουθεί ο διαχωρισμός του 

φυλλώματος με βάση το χρώμα. Η διαδικασία ολοκληρώνεται με την εκτίμηση του πλήρους 

φυλλώματος μέσω της χρήσης των τοπολογικών ιδιοτήτων των alpha shapes [23]. Η 

συσχέτιση του πλήρους, γεμάτου φυλλώματος με το κανονικό φύλλωμα προσδίδει έναν 

δείκτη της πυκνότητας του φυλλώματος του αμπελιού. 

 

Εικόνα 1-7: Αλγόριθμος εκτίμησης πυκνότητας φυλλώματος αμπελιών. 

1.5.3 Φωτο-ρεαλιστική Ανακατασκευή Αμπελώνα 

Τέλος το Vinymap επιτυγχάνει φωτο-ρεαλιστική ανακατασκευή αμπελώνα χάρη στη 

σύγχρονη αποθήκευση έγχρωμων εικόνων μαζί με τα διαδοχικά λαμβανόμενα point cloud. 

Οι εικόνες αυτές προβάλλονται πάνω σε ένα ανακατασκευασμένο πλέγμα που προκύπτει 

από την συνένωση των point clouds. Για την επίτευξη της διαδικασίας αυτής απαιτείται η 

γνώση των εσωτερικών και εξωτερικών παραμέτρων της κάμερας που λαμβάνει τα point 

cloud αλλά και της έγχρωμες εικόνες. Ο αλγόριθμος αυτός μπορεί να χρησιμοποιηθεί και σε 

συστήματα που αξιοποιούν ένα LiDAR και μια έγχρωμη κάμερα RGB. 
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Εικόνα 1-8: Αλγόριθμος φωτό-ρεαλιστικής ανακατασκευής Αμπελώνα. 

1.6 Πειραματική Διάταξη 

Σε πρώτο στάδιο το πλαίσιο λογισμικού αναπτύχθηκε με τη βοήθεια του προσομοιωτή 

Gazebo [24]. Εκεί κατασκευάστηκε ένα ψηφιακό ανάλογο ενός μικρού αμπελώνα με ιδανικές 

συνθήκες φωτισμού εσωτερικού χώρου. Στη συνέχεια όλοι οι αλγόριθμοι εφαρμόστηκαν στο 

ανεπτυγμένο σύστημα αντίληψης, το οποίο αναρτήθηκε πάνω σε μία ρομποτική πλατφόρμα 

κατασκευασμένη στο Eργαστήριο Aυτόματου Eλέγχου. Ιδιαίτερο χαρακτηριστικό της 

ρομποτικής πλατφόρμας αυτής αποτελεί ικανότητα της για κάθετη και οριζόντια κίνηση αλλά 

και αυτο-περιστροφή χάρη στους τροχούς τύπου mecanum [25] που φέρει.  

 
Εικόνα 1-9: Η ρομποτική πλατφόρμα και το σύστημα αντίληψης που αναπτύχθκαν στο Εργαστήριο 

Αυτομάτου Ελέγχου. 

Η ρομποτική αυτή πλατφόρμα εκτέλεσε πειράματα σε έναν συνθετικό αμπελώνα ο 

οποίος κατασκευάστηκε στο ίδιο εργαστήριο με σκοπό να αποτελεί ένα πιστό αντίγραφο 

ενός πραγματικού αμπελιού αναφορικά με τα οπτικά του χαρακτηριστικά αλλά και τις 

διαστάσεις του. 
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Εικόνα 1-10: Πειραματική διάταξη συνθετικού αμπελώνα στο Εργαστήριο Αυτομάτου Ελέγχου. 

1.7 Αποτελέσματα 

1.7.1 Αξιολόγηση και Βελτίωση Ποιότητας Point Cloud 

Αρχικά, η αξιολόγηση του αλγορίθμου πραγματοποιήθηκε με υποκειμενική μεθοδολογία. 

Συγκρίθηκαν τα νέφη σημείων που προέρχονταν απευθείας από την κάμερα με τα 

αντίστοιχα επεξεργασμένα και βελτιωμένα. Στη συνέχεια, υλοποιήθηκε ποσοτική ανάλυση 

των αποτελεσμάτων, αξιοποιώντας τους δείκτες αξιολόγησης του Vinymap. 

Στα αρχικά νέφη σημείων προστέθηκε τεχνητά θόρυβος, με σκοπό να αξιολογηθεί η 

ικανότητα του αλγορίθμου Vinymap να τον ανιχνεύει και να τον απομακρύνει. Η ανάλυση 

επιβεβαίωσε την επιτυχή ανίχνευση και απομάκρυνση του θορύβου 

1.7.2 Αξιολόγηση Αλγορίθμου Εκτίμησης Πυκνότητας Φυλλώματος 

Με στόχο να αξιολογηθεί η απόδοση του αλγορίθμου μας για την εκτίμηση της πυκνότητας 

του φυλλώματος των φυτών, διεξήχθησαν πειράματα σε δύο περιβάλλοντα: έναν 

προσομοιωμένο και συνθετικό αμπελώνα. Η προσομοίωση παρείχε ένα περιβάλλον με 

υψηλό επίπεδο ελέγχου, σχεδόν χωρίς διακυμάνσεις στην πυκνότητα του φυλλώματος. Το 

περιβάλλον του συνθετικού αμπελιού ήταν πιο ρεαλιστικό, αλλά και πάλι ελεγχόμενο. Αρχικά 

δοκιμάσαμε τον αλγόριθμο σε πυκνά, τέλεια φυλλώματα, λαμβάνοντας πολύ υψηλές τιμές 

στον δείκτη πυκνότητας, όπως αναμενόταν. Έπειτα δοκιμάσαμε δύο διαφορετικά σενάρια: 1) 

Κανονικό Φύλλωμα: Ο αλγόριθμος επέστρεψε έναν δείκτη πυκνότητας εντός των 

αναμενόμενων ορίων, σύμφωνα με την οπτική εκτίμηση του φυλλώματος. 2) Αραιό 

Φύλλωμα: Η παρουσία κενών οδήγησε σε σημαντικά χαμηλότερο δείκτη πυκνότητας, 

επικυρώνοντας την ικανότητα του αλγορίθμου να ανιχνεύει και να ποσοτικοποιεί τις 

ανωμαλίες της βλάστησης. 

Στο εργαστήριο, επαναλάβαμε τους ελέγχους κάτω από φυσικό και τεχνητό φωτισμό. 

Όλες οι δοκιμές παρείχαν ακριβή και εύχρηστα αποτελέσματα, αποδεικνύοντας την 

απλότητα και την αποτελεσματικότητα του αλγορίθμου στην εκτίμηση της πυκνότητας του 

φυλλώματος των φυτών. 
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Εικόνα 1-11: Αξιολόγηση πυκνότητας φυλλώματος. Με κόκκινο χρώμα: κενά στο φύλλωμα των 

αμπελώνων. 

1.7.3 Αξιολόγηση Αλγορίθμου Φωτο-ρεαλιστικής Ανακατασκευής Αμπελώνα 

Ο αλγόριθμος Φωτο-ρεαλιστικής Ανακατασκευής Αμπελώνα συγκρίθηκε με τα μη 

επεξεργασμένα δεδομένα νέφους σημείων και τον αλγόριθμο χαρτογράφησης χώρου ZED 

Spatial Mapping της Stereolabs όσον αφορά την οπτική πιστότητα και τον πλούτο οπτικής 

πληροφορίας. 

Η άμεση σύγκριση με τα μη επεξεργασμένα δεδομένα point cloud αποκαλύπτει τη 

διαφορά. Ενώ τα μη επεξεργασμένα δεδομένα παρέχουν μια βασική αναπαράσταση, το 

ανακατασκευασμένο πλέγμα μας προσφέρει μια σημαντικά πιο ευκρινή απεικόνιση του 

αμπελώνα. Όπως φαίνεται στην Εικόνα 1-12, η ετικέτα April Tag παρουσιάζει βελτιωμένη 

ευκρίνεια και τα μεμονωμένα σταφύλια μέσα στα τσαμπιά διακρίνονται πιο εύκολα. 
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Εικόνα 1-12: Σύγκριση ποιότητας ανακατασκευής. 

Σε σύγκριση με την υψηλής ποιότητας ανακατασκευή του αλγορίθμου χαρτογράφησης 

χώρου ZED Spatial Mapping της Stereolabs στις υψηλότερες ρυθμίσεις του, η 

ανακατασκευή μας αναδεικνύεται ως η ανώτερη λύση. Η προσέγγιση προβολής εικόνας σε 

πλέγμα δημιουργεί πλέγματα με σημαντικά μεγαλύτερη οπτική λεπτομέρεια, επιτρέποντας 

στους αγρότες να επιθεωρήσουν με μεγαλύτερη άνεση μεμονωμένα φύλλα και σταφύλια. 

Αυτή η βελτιωμένη υφή διευκολύνει τη λήψη πιο ενημερωμένων αποφάσεων στην 

απομακρυσμένη γεωργία ακριβείας. 

1.8 Συμπεράσματα και Μελλοντική Εργασία 

Η παρούσα διπλωματική εργασία παρουσιάζει ένα νέο πλαίσιο για την τρισδιάστατη 

ανακατασκευή και ανάλυση  αμπελώνων. Εξετάζοντας την προσέγγισή αυτή σε συνθετικό 

αμπελώνα, επιτεύχθηκε βελτιωμένη πλοήγηση με οπτική οδομετρία μέσω ετικετών 

AprilTags και οπτικής ευθυγράμμισης πριν την έναρξη βελτιστοποίησης κλεισίματος βρόχου. 

Προέκυψε πιο ευκρινή τρισδιάστατη ανακατασκευή αμπελώνα σε σύγκριση με την 

προσέγγιση χαρτογράφησης χώρου ZED (ZED Spatial Mapping). Αναπτύχθηκε επίσης μια 

ολοκληρωμένη λύση επιθεώρησης που ενσωματώνει προσεγγίσεις σχεδιασμού διαδρομής 

με βάση την αποσύνθεση πολύτοπων, μια μέθοδο εφαρμοζόμενη για πρώτη φορά σε 

πραγματική ρομποτική πλατφόρμα. Το σύστημα αντίληψης προσαρμόστηκε ειδικά στην 
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εφαρμογή μας με τη βοήθεια του FoVaLiRA, ενός εργαλείου ανάλυσης πεδίου όρασης και 

ανάλυσης LiDar και καμερών βάθους, αναπτυγμένο στο Unity. 

Κοιτάζοντας προς το μέλλον, η ενσωμάτωση τεχνολογιών βαθιάς μάθησης και 

αυτοματοποιημένων τεχνικών ανάλυσης θα μπορούσε να επιτρέψει πολύπλοκες εργασίες 

επιθεώρησης, όπως η ανίχνευση ασθενειών ή η επισήμανση πιθανών κινδύνων για 

περαιτέρω εξέταση από τον οινοποιό. Επιπλέον, η επέκταση της αυτόνομης επιθεώρησης 

θα μπορούσε να οδηγήσει σε πλήρη κάλυψη και παρακολούθηση του αμπελώνα, χωρίς να 

απαιτούνται προκαθορισμένα σημεία έναρξης και λήξης διαδρομής. Πιστεύουμε ωστόσο ότι 

αυτό το πλαίσιο αποτελεί ένα ισχυρό πρώτο βήμα προς μια ολοκληρωμένη λύση για την 

γεωργία ακριβείας σε αμπελώνες. 
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2 Introduction 

2.1 Motivation 

The agricultural sector is facing numerous challenges, including climate change, resource 

scarcity, and the need to increase productivity while minimizing environmental impact. 

Traditional agricultural practices often rely on manual observation and data collection, which 

can be time-consuming, labor-intensive, and error prone. This limits farmers' ability to make 

informed decisions and optimize crop yields. 3D reconstruction technology offers a 

transformative solution to these challenges; measuring crop height, canopy density, and 

other phenotypic parameters, as well as detecting weeds and mapping field topography and 

soil conditions are only some of the possibilities.  

The Legged Robots Team of the Control Systems Lab (CSL) in NTUA has designed 

and manufactured quadruped robots which utilize sophisticated and in-house-developed 

mechanical and electrical subsystems. Lealaps II and its successor, Argos, are two optimally 

designed quadruped robots, well suited for agricultural use. They were lacking, however, a 

robotic perception system which would empower them to perceive, understand, and interact 

with their surroundings autonomously. 

The objective of the present thesis is to design and implement a perception system for 

agriculture quadruped robots with 3D reconstruction of vineyards as the main focus. The 

design considers both software and hardware. It features a novel spatial mapping algorithm 

which preserves the visual detail required for a reconstruction to be useful for crop and field 

analysis. A navigation and path-planning stack which enables the robot to traverse a real-life 

vineyard effectively and safely is also proposed in this work. It utilizes a state-of-the-art 

Model Predictive Control (MPC) planner, an in-house dual-camera visual odometry algorithm 

and a robust PID trajectory tracking controller. A thorough review of relevant literature is 

crucial for narrowing down design decisions. 

2.2 Literature Review 

2.2.1 Agriculture Robots 

Human population has grown rapidly in recent years and will continue to do so for several 

more. The need for food is a global concern for governments and scientists. However, the 

way to increase food production should not be to expand cultivated land at the expense of 

forests, but to increase the productivity of the soil and plants that are already established. As 

a result, the interest in Agriculture Robots has been increasing the last few years.  

There are three main factors that heavily influence the design of agriculture robots and 

differentiate it from the design of other task-specific robots: agriculture-specific navigation, 

agriculture-specific image processing and Handling Rough Terrain [26]. Focusing on these 

aspects, researchers have come up with various solutions in the recent past.  

The authors in [27] have designed a wheeled robotic platform which utilizes a 

monocular downward facing RGB camera primarily used for classification of crop and weed 

plants and for visual odometry. The robot uses machine vision to detect weeds within the 

crop rows and treats the weeds by high precision drop-on-demand application of herbicide. 
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Researchers in [28] have developed the VineRobot, a multi-million euro project robot 

designed to autonomously and non-intrusively traverse vineyards utilizing ultrasonic sensors 

and RGB camera visual feedback, while providing the farmers with useable real time data 

regarding the state of the vineyard it explores. The authors in [29] have developed an 

autonomous pruning robot. Their pruning setup consists of a Universal Robots UR5e robot 

mounted on a linear axis. The end effector consists of a set of electric bypass pruners along 

with a RealSense D435 RGBD camera. For field trials, the robot was installed on the back of 

a remote-controlled utility vehicle and powered with a portable generator.  

It is evident that the world of agriculture is complex enough to allow for the development 

of a large variety of robotic solutions that differ according to the problem that they are called 

to solve. The present thesis focuses on the mediterranean vineyard, which is often 

characterized by mountainous and rocky terrain, unsymmetrical rows as well as erratic 

canopy at the late vegetative state. The mobility advantage and agility that a legged robot 

presents cannot be replicated by a simple wheel layout. This is one of the reasons why legs 

are the main locomotion mechanism in nature and the reason why the perception system 

described in this work is mounted on and designed for a quadruped robot. Finally, the rich 

and irregular canopy of vine trees calls for innovative machine vision solutions. 

 
Figure 2-1: Robots designed for various agricultural Tasks. 

(a) wheeled weed detection robot designed by the authors in [27] 
(b) VineRobot (c) pruning robot designed by the authors in [29] 

(d) Lealaps II quadruped robot designed at CSL NTUA. 
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2.2.2 Path Planning  

Although path planning has been studied extensively for applications in indoor 

environments, there is still much room for development and research for optimization in 

agricultural environments. In fact, most recent relative research has focused on Coverage 

Path Planning (CPP) algorithms [30]; these solve the problem of determining a path that 

passes over all points of an area or volume while avoiding obstacles [31]. Point-to-point path 

planning i.e.: determining an optimal and collision-free path from a starting point to a 

destination point, which is more useful in precision agriculture applications, is not as 

common in the literature. There are, however, several interesting publications. 

Recently, researchers have designed a path planning and obstacle avoidance package 

which enables their custom rover to either move along the middle of a row of a mountainous 

vineyard or move through a row according a received path line [32].  To achieve this, their 

software represents three-dimensional space as a two-dimensional occupancy gird map i.e. 

a grid where cells with obstacles are labeled as occupied. This map is then heuristically 

subdivided into regions based on the robot’s maneuvering capability and fed into a decision-

making algorithm. This is a simple and effective approach. The software, however, is closely 

linked to the robot’s kinematic characteristics and cannot be generalized. In a more recent 

work researchers introduce a new path planning algorithm that utilizes a topological map 

and extends the A* search based planning algorithm , to ensure a safe path and a maximum 

distance from the vine trees of a steep slope vineyard [33]. 

The authors in [34] propose a hybrid Voronoi-based ant colony optimization (V-ACO) 

path planning algorithm to solve an adaptive ocean sampling problem. Ant Colony 

Optimization is a metaheuristic algorithm inspired by the foraging behavior of ants. Ants 

communicate with each other by laying down pheromone trails, which they use to guide 

others to food sources. ACO algorithms use this same concept to search for solutions to 

optimization problems. 

The algorithm works by having a population of artificial ants, each of which starts at a 

random location in the search space. The ants then follow a probabilistic path through the 

search space, using pheromone trails to guide their way. The pheromone trails evaporate 

over time, so the ants are more likely to follow trails that have been recently laid. If a 

simulated ant finds a short path to the target, it will execute more routes to and from the 

target. Thus, the short path will have less evaporated pheromones than other paths and will 

be preferred as closer to optimal. The Voronoi based scheme utilizes Voronoi partition to 

highlight high interest areas. The V-ACO algorithm could be altered to suit an agricultural 

setting, although vineyards have a distinct and special topology of corridors and rows that 

this scheme does not capitalize on.  

Finally, machine learning is often used as a solution to path planning problems that 

involve multiple agents or take place in complex, dynamic environments. The authors in [35] 

present deep reinforcement learning as a framework to model the complex interactions and 

cooperation required by robots that navigate among pedestrians. They utilize an LSTM 

neural network that enables the algorithm to use observations of an arbitrary number of 

agents. The algorithm learns collision avoidance among a variety of types of dynamic agents 

without assuming they follow any particular behavior rules. The authors in [36] propose a 

Bezier curve based approach for the path planning in a dynamic field using a Modified 

Genetic Algorithm (MGA). The robot's path is dynamically decided based on the obstacles’ 

locations. With the goal of optimizing the distance between the start point and the target 
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point, the MGA is employed to search for the most suitable points as the control points of the 

Bezier curve. Using the chosen control points, the optimum smooth path that minimizes the 

total distance between the start and the end points is selected.  

 
Figure 2-2: Path planning strategies.  

(a) Ant Colony Optimization Visualized [34] (b) Local occupation grid map generated in [30]. On the left 
sensor observation, on the right the produced grid map.  

2.2.3 SLAM and 3D reconstruction 

Simultaneous Localization and Mapping (SLAM), as the name implies, is the problem of 

simultaneously estimating a robot's position and the 3D structure of the environment it is 

traversing. 3D reconstruction, on the other hand, focuses solely on building a detailed 3D 

representation of the scene, independently of the robot's motion. Most active SLAM 

approaches provide estimations of the environment in the form of geometric representations 

(e.g., OG maps, Octomaps). However, when we explore new environments as humans, we 

are not just interested in the shape of the environment, but also in the textures and materials 

of the world around us, as well as in semantic elements of the environment (e.g., presence 

of objects, rooms) [37]. Achieving SLAM while capturing high- and low-level semantics is 

commonly referred to as Spatial Perception or Spatial Mapping.  In this case, 3D space is 

represented as a 3D mesh or a 3D point cloud. Determining the quality of the representation 

is of outmost importance, especially for agricultural applications, where the output data must 

be reliable enough to aid with tasks such as crop inspection. 

Point Cloud Quality Assessment 

Point cloud quality assessment (PCQA) is a crucial task for evaluating the integrity and 

usability of point clouds, which are collections of data points that represent three-

dimensional objects or environments. PCQA metrics aim to quantify the degradation or 

distortion introduced during acquisition, processing, compression, transmission, or rendering 

processes. This information is essential for optimizing point cloud processing algorithms, 

ensuring data consistency, and maintaining visual quality for applications in various 

domains. Two main categories of PCQA metrics exist: full-reference (FR) and no-reference 

(NR). 

FR metrics require access to a reference point cloud of the same scene or object to 

compare with the distorted version. The reference point clouds are usually of very high 
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quality and together formulate a dataset that is considered a ground truth dataset. The 

ground truth dataset can be synthetic as in [38] and [39], or include point clouds that are 

captured with a high quality and expensive scanner as in [40] [41].  

NR metrics, on the other hand, operate solely on the distorted point cloud itself, making 

them more versatile for applications where reliable reference point clouds data may not be 

readily available [42]. Recent advancements in PCQA have focused on learning-based 

approaches, which utilize deep neural networks to extract discriminative features from point 

clouds and predict quality scores. These methods have shown promising results in capturing 

subtle distortions and generalizing to diverse datasets [43] [44]. Simpler NR quality metrics 

like point cloud density, point confidence and Local outlier factor (LOF) [45] [46], as well as 

mathematical methods [47] have also been used successfully throughout literature. 

There is yet another common method of assessing 3D point cloud quality: Subjective 

point cloud quality assessment. Humans visually review and effectively assign quality scores 

to 3D data. Occlusions, unregistered objects and visible distortion in the reviewed point 

cloud or mesh are often mentioned [48] [49]. Subjective point cloud quality assessment is 

often used to evaluate objective quality assessment metrics [50]. 

Canopy Quality Assessment 

The quest to objectively assess canopy quality and predict crop yield has long 

enthralled precision agriculture researchers. Early efforts relied on laborious and destructive 

chemical processes like leaf nitrogen analysis [51], offering limited insights and heavily 

impacting plant health. 

As technology evolved, non-destructive alternatives emerged. Hyperspectral imaging 

[52], while promising, brought its own challenges: complexity, expensive equipment, and 

specific technical knowledge requirements from the farmers. 

Recently, computer vision techniques have gained popularity [53], offering optical 

assessment methods with potential for real-time insights. Approaches like machine learning-

based leaf area estimation are effective [54], but often wrestle with training data 

requirements, computational demands, and susceptibility to varying lighting and weather 

conditions, potentially hindering their practical application. 

Our approach in Vinymap sought a different path. Driven by the need for simplicity, real-

time applicability, and robustness under diverse environmental conditions, we designed a 

canopy assessment algorithm that is non-destructive, preserving precious vine health for 

optimal yield, simple, real-time viable and robust,  performing reliably across diverse lighting 

conditions. 

Spatial Mapping 

Spatial mapping or 3D reconstruction is the ability to create a digital representation of 

physical space while maintaining semantic information.  The three most common methods to 

achieve 3D reconstruction are Structure from Motion (SfM), Stereopsis and Light Detection 

and Ranging (LiDar)  [55]. The implementation of each method, however, presents great 

diversity in the literature and depends on the purpose for which spatial mapping is used, but 

also on the hardware and computational power that is available. 

Researchers in [49] leverage 2D thermal images to reconstruct 3D buildings using SfM. 

They create point clouds from RGB images and thermal images separately and then 
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successfully align them to create a high-resolution output point cloud. The authors in [48] 

utilize the COLMAP pipeline [56] [57] and propose a novel view planning method effectively 

deciding the placement of a set of available RGB cameras in the 3D space in order to 

optimally reconstruct noisy 3D corn plants using SfM.  

Recently, a novel scene representation based on Gaussian splatting [9] has been 

shown to deliver on-par or even better rendering and reconstruction performance than other 

state-of-the-art reconstruction methods. Researchers in [58] and the authors in [59] have 

used this representation to implement monocular camera SLAM frameworks that achieve 

impressive performance in camera pose estimation, map construction, and novel-view 

synthesis, while allowing real-time rendering of a high-resolution dense 3D map. 

3D reconstruction using Stereo cameras and LiDars is also frequently encountered in 

the literature and has established its position in this research field in recent years. The 

authors in [60] propose a fusion of LiDar and Stereo camera data to effectively map 3D 

space without missing out on texture or volumetric details. The authors in [61] recently 

proposed a feature-based approach that enables fast and dense mapping of crop fields 

observed by a vehicle-mounted stereo camera. They leveraged Bayesian inference to tackle 

the feature matching ambiguity problem that is common in crop field mapping where 

uncertainties due to repetitive textures and uneven lighting are induced. 

 
Figure 2-3: (a) Subjective quality assessment of a point cloud of a plant [40]. Left: parts of plant have not 

been reconstructed. Right: view planning improves reconstruction.   
(b) Depth Camera on a combine harvester machine [62].
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3 Reconstruction Software 

3.1 SLAM 

3.1.1 Localization 

Robot localization, a fundamental aspect of robotics, refers to the process of determining a 

robot's position and orientation (pose) within a specified, known environment. With an 

accurate map of the environment, the robot can utilize sensor measurements (observations) 

to acquire knowledge about its distance from objects around it (landmarks) and use this 

knowledge to estimate its position and orientation in the known map. Sensors include 

cameras, lasers, and inertial measurement units (IMUs) which gather information about the 

robot's surroundings, while the map serves as a reference frame for interpreting these 

sensory inputs. 

 

Figure 3-1: Robotic Platform Localization Illustration. 

Conventional robot localization techniques often employ a probabilistic approach, where the 

robot's location is represented by a probability distribution, capturing the uncertainty inherent 

in sensor measurements. This probabilistic framework allows the robot to continuously refine 

its estimate of its position as it acquires new sensory data, ensuring robustness against 

noise and errors. Various localization algorithms have been developed, each tailored to 

specific sensor modalities and environmental conditions. For instance, visual odometry, 

relying on camera imagery, excels in indoor environments, while laser-based techniques are 

well-suited for outdoor scenarios due to range superiority [63]. 
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The success of robot localization hinges on the accuracy and reliability of both sensor 

data and the underlying map representation. Sensor noise and environmental clutter can 

introduce significant challenges, requiring robust algorithms and filtering techniques to 

mitigate these effects. Moreover, the map itself must be adequately detailed and up to date  

with the environment it represents, in order to provide accurate localization information. As 

robotics technology advances, the pursuit of more efficient, accurate, and robust localization 

algorithms remains a critical area of research, paving the way for increasingly sophisticated 

autonomous robots capable of navigating complex and dynamic environments. 

3.1.2 Mapping 

In the context of robotics, mapping refers to the process of creating a comprehensive 

representation of an environment, typically represented as a 2D or 3D map. This 

representation, often referred to as a reconstruction, captures the spatial layout, objects, and 

other relevant features of the surroundings. Mapping is a fundamental capability for robots to 

navigate and operate autonomously in their environment. By constructing a map, a robot can 

gain a detailed understanding of its surroundings, enabling it to perform tasks such as path 

planning, object recognition and manipulation and environmental monitoring. 

 
Figure 3-2: ANYmal robot mapping terrain (staircase) using a stereo camera [64]. 

Making a 2D or 3D reconstruction of the surrounding environment works a lot like connecting 
pieces of a puzzle; the robot gathers information about its surroundings using its sensors 
and saves that information in an appropriate file format. It then moves and repeats this 
process to acquire new data. Provided that it knows its position and orientation in space at 
any given time, i.e. it always successfully localizes itself in the environment, then it can 
create a map of its surroundings by appropriately stitching the newly acquired information, at 
its new pose, with its older representation of the environment.  



 

 
45/156 

3.1.3 SLAM 

As discussed in sections 2.1.1 and 2.1.1, for a robot to successfully perform localization, an 

accurate map of the environment must be available. In addition, for a robot to successfully 

perform mapping of the environment, it must be successfully localized in it. Enabling a robot 

to perform both of these tasks simultaneously appears at first glance like a chicken-and-egg 

problem. SLAM stands for Simultaneous Localization and Mapping. It is the name for the 

solution to this very problem. It is a fundamental technique in robotics that allows a robot to 

build a map of its surroundings while simultaneously determining its own location within that 

map. This capability is essential for robots to operate autonomously in unknown 

environments without the need for a-priori information about the trajectory they are following 

or a priorly constructed map of their surroundings. 

 
Figure 3-3: 2D and 3D Occupancy Grid Maps built using 2D and 3D Lidar SLAM utilizing MATLAB's 

Navigation Toolbox [65]. 

The key to performing SLAM is the knowledge of the relationship between two consecutive 

poses of a moving robot. This is otherwise known as odometry. The robot gathers 

information about its surroundings using its sensors and saves that information in an 

appropriate file format. It then moves and repeats this process to acquire new data. The 

robot does not know its position and orientation in space at the time of gathering the old or 

the new data; absolute localization is not a given. It estimates, however, its motion 

(transformation) from the old to the new pose. Then it can create a map of its surroundings 

by appropriately stitching the newly acquired information, at its new pose, with the 

information gathered at its old pose. There are a lot of ways to estimate the transformation 

from a previous to a new pose (odometry estimation). Odometry estimation is commonly 

achieved in the following ways:  

• Wheel odometry: This method relies on measuring the rotation of the robot's wheels. The 

robot's position and orientation can then be estimated by tracking the cumulative rotation 

of each wheel. 

• Inertial odometry: This method uses an inertial measurement unit (IMU) to measure the 

robot's acceleration and angular velocity. The robot's position and orientation can then 

be estimated by integrating these measurements over time. 

• Visual odometry uses a camera to track features in the environment. The robot's position 

and orientation can then be estimated by matching the features in the camera's images 

to landmarks in the map. 
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• Laser odometry uses a laser scanner to measure distances to surrounding objects. The 

robot's position and orientation can then be estimated by tracking the changes in the 

laser scans over time. 

Wheel odometry is a simple and reliable method that is well-suited for robots that have 

wheels or tracks. However, it is susceptible to errors due to wheel slippage and non-

linearities in the robot's motion. Inertial odometry is a more accurate method that is not 

affected by wheel slippage. However, it is also prone to errors due to drift, which is the 

accumulation of IMU measurement errors over time. Visual and Laser odometry accuracy 

results are largely dependent on the amount of complexity of the environment of the robot, 

i.e. the amount of features or the shape variability of the surrounding space. To improve the 

accuracy of odometry estimation the above methods are often combined and statistically 

reinforce the total odometry accuracy with the usage of Kallman Filters. 

3.1.4 VSLAM 

Visual simultaneous localization and mapping (vSLAM) is a type of SLAM that utilizes visual 

data, typically from cameras, to determine the robot's position and orientation within an 

environment (visual odometry), while simultaneously building a map of that environment. 

build a map of an environment while simultaneously. VSLAM algorithms typically involve 

three main components: 

• Feature extraction: This involves identifying and extracting distinctive features from the 

camera images. These features can be points, lines, or other geometric shapes or 

structures that are relatively invariant to changes in lighting and viewpoint. 

• Correspondence matching: This involves matching features from subsequent images to 

features in the existing map. This is typically done by calculating the distance or angle 

between features in different images. 

• Optical flow and ego-motion estimation: Optical flow, is the pattern of apparent motion of 

features in a visual scene caused by the relative motion between an observer and a 

scene. Optical flow can be used to estimate ego-motion. Ego-motion, in the field of 

computer vision, refers to estimating a camera's motion relative to a rigid scene [66]. An 

example of ego-motion estimation would be estimating a car's moving position relative to 

lines on the road or street signs being observed from the car itself. 

 

VSLAM algorithms face several challenges, including: 

• Illumination variations. Changes in lighting can make it difficult to extract features and 

match them across images. 

• Occlusions: Objects in the environment can block the view of features, making it difficult 

to track enough of them to accurately estimate ego-motion. 

• Sensor noise: Image sensors are not perfect -especially in low-light conditions-  and their 

measurements can contain noise that can corrupt the localization estimates and 

accumulate over time. 

Loop Closure 

Loop closure is a crucial aspect of Simultaneous Localization and Mapping (SLAM) that 

refers to the ability of a robot to recognize previously visited places and use this knowledge 

to improve its localization and map estimation. This mechanism plays a critical role in 
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correcting the accumulated errors in the robot's pose estimation and ensuring the accuracy 

of the map. Without loop closure, the robot's pose estimation would gradually drift away from 

its actual position due to the accumulation of odometry errors. With loop closure, the robot 

identifies a location in space, usually by saving special visual features characteristic to this 

location. If it detects these features again while it is moving, then it assumes that it is in that 

location once more. If the odometry data state otherwise, then they are corrected 

accordingly and recursively along the whole trajectory of the robot. This correction is known 

as bundle adjustment.  

 
Figure 3-4: Loop Closure Illustration. 

Saving visual features for a specific location in the scene and assuming they are unique to 

this location is not a faultless assumption. The problem that arises is called perceptual 

aliasing. This occurs when two different places can be perceived as the same. For example, 

in a texture-wise monotonous and empty building, it is nearly impossible to determine a 

location solely with the visual information, because all the corridors or rooms may look the 

same [67]. In that case, a lot of false-positive loop closure detections would disrupt the 

odometry data.  

Multi-Camera Visual SLAM For Vineyard Inspection 

A novel approach to enhancing the robustness of vSLAM has been developed in CSL, 

specifically tailored for vineyard inspection applications [68]. The proposed VSLAM method 

utilizes multiple cameras which increases the available Field of View (FoV) resulting in more 

features available to track. Moreover, in situations in which one or more of the cameras is 

obscured by the sun or leaves, the other cameras will still be able to identify useful features 

in the environment and thus the visual odometry estimation will not be hindered.  
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Figure 3-5: (a) One camera's lenses are obstructed resulting in very low number of detected features. 

(b) A different camera is not obstructed and continues to produce accurate visual odometry [17]. 

The proposed approach offers yet another novelty to add more robustness to VSLAM: It 

does not utilize visual features to detect loop closures, as in vineyards, the crop is organized 

in parallel rows and agricultural robots move in the open corridors between them. There, a 

purely feature based approach would result in incorrect loop detection due to the high 

similarity between images (perceptual aliasing). Instead, the developed method leverages 

AprilTags, which are placed in fixed positions in the vineyard in order to assist with loop 

closure detection.  

AprilTags are a type of fiducial marker, similar to QR codes [69]. AprilTag markers can 

be easily printed and embedded in any environment. The open-source AprilTag detection 

software accurately determines the 3D location and orientation of each marker relative to the 

camera, as well as its unique identifier. The AprilTag library is written in C and requires no 

external libraries. It is designed to be seamlessly integrated into existing applications and 

can run efficiently on embedded devices. AprilTags are designed to encode far smaller data 

payloads than QR codes (between 4 and 12 bits), allowing them to be detected more 

robustly and from longer ranges. They are also designed for high localization accuracy, 

unlike QR codes which are mainly designed for saving data in a visual format.  

 

Figure 3-6: April Tags used for research purposes in April Laboratory, University of Michigan [69]. 
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A robot that uses Multi-Camera Visual SLAM For Vineyard Inspection will assume that it has 

reached a position that it has also visited in the past only if it registers an AprilTag for the 

second time. Knowing its relative position to the AprilTag using the respective open-source 

code, while also knowing the fixed positions of all the AprilTags inside the vineyard allows 

the robot to accurately re-localize and perform bundle adjustment every time it sees an 

AprilTag, instead of relying on loop closure detection based on visual features. 

3.2 SOTA Packages 

3.2.1  RTAB-Map 

RTAB-Map (Real-Time Appearance-Based Mapping) is a state-of-the-art graph-based 

Simultaneous Localization and Mapping (SLAM) algorithm that utilizes RGB-D, stereo, and 

lidar data to construct a comprehensive representation of an environment in real-time [12]. 

Its core strength lies in its efficient loop closure detection mechanism, which effectively 

identifies previously visited locations and integrates them into the evolving map.  

Loop closure Detector 

The loop closure detector in RTAB-Map uses a bag-of-words (BoW) approach to determine 

how likely it is that a new image comes from a previously visited location. That means that 

each newly acquired image is dissected into so-called visual words. This is similar to how a 

text can be dissected into words. For example, in the common classification problem of 

labeling an email as spam or not spam, each email can be parsed into words. Building a 

histogram of the frequency of the appearance of each word in the mail and checking if 

spam-related words appear often can very accurately lead to a characterization of the mail 

as spam or not spam. For instance, if the word “money” appeared more frequently in the 

reviewed mail than in an average non-spam email, then the likelihood that the reviewed mail 

is spam is increased. Similarly, RTAB-Map parses each new acquired image frame into 

small homogenous pieces known as visual words. It creates a Bag of Words. It then 

compares the BoW from the newly acquired frame to older BoW which are saved in a 

constantly updating database of Bags. If the newly acquired BoW consists of similar visual 

words to a previously saved BoW, then RTAB-Map concludes that the new image comes 

from a location that has been visited before. This is known as accepting a loop closure 

hypothesis. When a loop closure hypothesis is accepted, a graph-based optimization is 

performed.  

Graph-based optimization loop closure is a commonly used approach that represents 

the robot's trajectory as a connected graph, where nodes represent poses and edges 

represent constraints between poses. This graph-based representation allows for efficient 

and robust loop closure detection and correction. Pose graph optimization involves refining 

the poses of all nodes in the graph to minimize the overall error in the odometry data. This 

process considers the constraints between poses, including odometry measurements and 

loop closure constraints. Upon accepting a loop closure hypothesis, RTAB-Map adds a new 

constraint to the odometry data and the map’s graph, then a graph optimizer minimizes the 

errors in the map.  

Performance and Integration 
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A memory management approach is used to limit the number of locations used for loop 

closure detection and graph optimization, so that real-time constraints on large-scale 

environments are always respected. This mainly involves map caching and map pruning 

[70]. Map caching is the method of storing frequently accessed map elements, such as 

poses and landmarks, in a separate cache memory. This reduces the need to repeatedly 

load these elements from disk, which can significantly improve performance. Map pruning 

involves periodically removing less relevant map elements, such as old poses or landmarks 

that are no longer considered important. This helps to keep the map size manageable and 

free up memory for new data. 

RTAB-Map’s algorithmic pipeline ensures consistent and accurate localization even in 

complex and dynamic environments. Its versatility extends beyond indoor mapping, as it can 

effectively handle outdoor environments with varying lighting conditions and challenging 

terrains. Its open-source nature and modular architecture make it a valuable tool for 

researchers and developers in robotics, autonomous vehicles, and augmented reality. 

Recently, a version of the package for iOS devices has been released and produces high 

quality results paving the way for wider commercial use of the software [12]. 

 

Figure 3-7: A 3D map of an office building constructed with RTAB-Map iOS application [12].  

3.2.2 Robot-Centric Elevation Mapping 

Robot-Centric Elevation Mapping (RCEMapping) is a ROS package developed by Anybotics 

as part of ANYmal Research [13]. The mapping process involves fusing range 

measurements from a sensor, such as a laser or structured light scanner, with the robot's 

pose estimation, typically obtained from an inertial measurement unit (IMU) and odometry. 

The integration of range data and pose information enables the construction of a consistent 

and reliable elevation map of the terrain around the robot. 

Robot-Centric Approach 
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RCEMapping adopts a robot-centric perspective, constructing a local elevation map 

centered around the robot. This approach aligns with the inherent limitations of onboard 

sensors, ensuring that the map reflects the robot's direct field of view and the associated 

pose uncertainty. Namely, at any time, the robot-centric elevation map is a local 

representation of the surrounding terrain, meaning that the observed regions close to the 

robot - which have the highest accuracy – are registered in the map, while older, previously 

seen parts of the map are considered inaccurate and are deleted. Thus, uncertainty that is 

aggregated through the motion of the robot due to sensor noise does not result in an 

accumulated drift of the pose of the constructed map.  

2.5D Mapping 

The core data structure that RCEMapping utilizes is a voxel grid, which partitions the 

mapping environment into a regular grid of voxels. Each voxel represents a small volume of 

space, and its occupancy is determined based on the accumulated range measurements 

from the robot's sensor. To further manage the uncertainty associated with range 

measurements and pose estimation, RCEMapping employs a probabilistic voxel 

representation. Each voxel is assigned a probability distribution reflecting the likelihood of 

different terrain heights at that location. This probabilistic representation enables 

RCEMapping to provide meaningful estimates of terrain elevation and its associated 

uncertainty. To make the algorithm more computationally efficient, the OctoMap 3D 

occupancy mapping library which implements an octree data representation is utilized [71]. 

Importantly, the map constructed with Anybotics Elevation Mapping is not a 3D map of 

the environment, but rather a 2.5D map (two-and-a-half dimensional, alternatively pseudo-

3D or three-quarter map): For every point in the plane on which the robot moves, the 

elevation of this point is saved and the result is plotted in 3D space. This simplifies the data 

but also creates problems with modelling multiple surfaces that are stacked along the z-axis. 

For example, if an obstacle object is placed 2 meters over a point in the robot’s field of view, 

then the software will assume that the elevation at that specific area is equal to the height at 

which this object is. It is however possible that there is enough room under the obstacle for 

the robot to pass through. Nevertheless, this software will render the area under the obstacle 

as part of the obstacle itself.  

To demonstrate the above issue, a floating horizontal platform was placed in front of a 

turtlebot robot in a simulated demo of RCEMapping. There was enough space under the 

platform for the simulated robot to get through as can be seen in figure 20. However, in the 

elevation map the floating platform was interpreted as ground elevation and therefore as a 

high obstacle. 
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Figure 3-8: (a) A floating platform in Gazebo. (b) The elevation map constructed with RCEMapping. 

Dynamic map adjustment 

It is worth mentioning that the map can also adapt to dynamic environments. Namely, the 

map remains consistent even if objects inside the mapped environment are being moved 

during the mapping process. To achieve this, a visibility check is performed using ray 

tracing. Virtual rays are casted from the robot’s sensors towards the environment. A visibility 

map is constructed from the points that are collected from the collision of the rays with the 

surface constructed from the height measurements. This map reflects the maximal height 

that each cell can have based on the visibility constraint. Namely, if a cell is registered as 

being high enough to block the sensor’s visibility, but the visibility is not being blocked, then 

that cell violates the visibility constraint and is removed. As this visibility check is 

computationally intensive, it is only performed at a lower rate (e.g., 1 Hz). 

 
Figure 3-9: A rectangular obstacle was moved from right to left. The visibility is checked with ray tracing 

and the previous map (red) is accordingly updated resulting in an updated map (blue) [13]. 



 

 
53/156 

3.2.3 Gradslam 

Gradslam emerges as a novel approach to SLAM by employing differentiable optimization 

techniques, aiming to enable the integration of deep learning into the SLAM process. This 

change opens up new avenues for improving SLAM performance and adaptability. 

In conventional SLAM systems, the mapping and pose estimation processes are 

typically decoupled, relying on individual algorithms for each task. This separation limits the 

ability to optimize both processes simultaneously and hinders the integration of deep 

learning techniques. Gradslam breaks down this barrier by representing the entire SLAM 

pipeline as a differentiable computational graph. This allows gradients to flow from the 

outputs of the system (map, trajectory) back to the inputs (raw sensor data, parameters, 

calibration, etc.), enabling the optimization of both mapping and pose estimation using 

gradient-based methods [14]. 

 

Figure 3-10: Gradslam provides differentiable building blocks for simultaneous localization and mapping 
(SLAM) systems. The four main blocks it offers are Differentiable Visual Odometry, 

Differentiable Registration using least-squares, Differentiable Mapping and Ray 
differentials [14]. 

Gradslam performs similarly to other state-of-the-art dense mapping algorithms, while 

offering enhanced flexibility by allowing the integration of various deep learning architectures 

and loss functions. However, the current implementation of dense SLAM in Gradslam 

requires a large amount of memory to store the produced computational graph. For instance, 

running the KinectFusion algorithm with a voxel resolution of 128 × 128 × 128 consumes 

approximately 6GB of GPU memory. This memory consumption significantly limits the size 

of scenes that can be reconstructed within this framework. The team that designed 

Gradslam [14], are currently working on improving the memory efficiency of this 

implementation. Additionally, they are developing more robust filters for various stages of the 

pipeline, such as Iterative Closest Point (ICP) registration, photometric warping, and 

optimization routines.  
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Figure 3-11: Small office scene reconstructed using Gradslam [14]. 

3.2.4 Zed Spatial Mapping 

ZED cameras, developed by Stereolabs, are renowned for their ability to capture high-quality 

3D data and perform real-time spatial mapping. Zed spatial mapping is the dedicated 

software developed to optimally perform SLAM by fully utilizing the camera hardware. At the 

heart of Stereolabs’ technology lies a combination of stereo vision and inertial measurement 

unit (IMU) data [72]. 

 
Figure 3-12: Mesh Generation (a) and Point Cloud Generation (b) with ZED Spatial Mapping. 

Visual-Inertial Odometry 

Visual-inertial odometry (VIO) is a technique for determining the precise position and 

movement of an agent, such as an aerial or ground robot, without relying on GPS or lidar. It 

leverages the combined power of cameras and inertial measurement units (IMUs) to achieve 

exceptional accuracy and robustness [73]. 

While stereo vision provides depth data and visual odometry, the IMU complements it 

by tracking the camera's movement and orientation in space. This information is essential for 

registering subsequent depth maps and maintaining the spatial consistency of the 3D world. 

The IMU captures acceleration, angular velocity, and orientation data. Those data are 

statistically combined (usually with the use of extended or unscented Kalman filters [74]) 

with visual odometry allowing the software to precisely track the camera's trajectory through 

space. 
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Neural Depth Sensing 

Using deep learning algorithms to estimate depth from a single image or a sequence of 
images, a technique known as Neural Depth Sensing, is a rapidly growing field with the 
potential to revolutionize many applications. The main reason is that it allows for monocular 
depth estimation i.e. estimating depth using a single image. This is a challenging task, but 
recent advances in deep learning have made it possible to achieve relatively good results 
[75]. The Zed Spatial Mapping software allows the user to choose between performance-
oriented, simple algorithmic stereo depth estimation techniques and neural depth estimation, 
which is a sophisticated approach that combines stereo and neural depth estimates. In 
recent software update releases, enabling the neural depth estimation while using Zed 
Spatial Mapping produced faster and cleaner results.  

The Multi-Step Process of Building the Spatial Map 

The spatial mapping process encompasses several key steps [15]: 

• Feature Detection and Matching: The software identifies distinctive features in each 

depth map, such as corners or edges. These features are then matched across 

subsequent images, creating a network of correspondences that stitch together the 

individual depth maps. 

• Planar Segmentation: The software identifies and segments planar surfaces in the 

scene, such as walls, floors, or ceilings. This process simplifies the representation of the 

environment and reduces computational complexity. 

• Mesh Generation: The software constructs a 3D mesh from the depth data, representing 

the reconstructed environment as a collection of interconnected triangles. This mesh 

provides a polygonal approximation of the scene, allowing for efficient visualization and 

interaction. 

• If area memory is enabled, a database that stores information about the environment 

that the ZED camera has already mapped is created. This information includes a point 

cloud representation of the environment, as well as information about the camera's pose 

(position and orientation) at different points in time. When the tracking detects an already-

visited area by searching in the database, it will perform a loop closure and compute an 

updated position estimation that cancels eventual drifts. 
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Figure 3-13: Successful Monocular Depth Estimation [75]. 

3.3 Comparison and Decisions 

3.3.1 Comparison 

Overall, Rtabmap is a good choice for robotics applications that require high accuracy, 

robustness, and flexibility. Anybotics Elevation Mapping is well-suited for vineyard mapping 

due to its efficiency in handling elevation changes which are commonly encountered in 

mountainous vineyards but fails to capture critical details in the canopy and fruit. Gradslam 

is a good choice for research and development purposes, especially for machine learning 

SLAM applications. Nevertheless, it significantly lacks real time performance and memory 

management, as well as integration and ease of use. Zed Spatial Mapping is an excellent 

software for prototyping due to its and real-time performance and high-quality Application 

Programming Interface (API). However, it can only be used with Stereolabs hardware and is 

not open-source. 

Table 3-1 shows a detailed comparison of the four SLAM software packages for 

vineyard mapping. 

Table 3-1: A comprehensive comparison of four SLAM software packages. 
 

Feature RTAB-map 

Robot-Centric 

Elevation 

Mapping 

Gradslam 
ZED Spatial 

Mapping 

Active 

development 

 Actively 

developed, 

maintained, and 

upgraded by a 

large community 

Maintained by 

Anybotics 

Maintained by a 

community of 

researchers 

Actively 

developed, 

maintained, with 

frequent, major 

updates 
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Community 

support 

Large and active 

community with 

extensive 

documentation 

and support 

forums 

 

Smaller 

community with 

good support 

forums 

Community with 

limited activity in 

recent years 

Dedicated 

community with 

extensive 

documentation 

and good 

support forums 

Real Time 

Performance 

Performs well in 

real-time 

applications. 

High memory 

requirements for 

loop closure 

 

Very efficient for 

mapping 

environments 

with elevation 

changes 

Slow in real-time 

applications. 

Very high 

memory 

requirements 

Very efficient for 

real-time 

applications with 

Zed Stereo 

cameras 

Reconstruction 

Quality 

High quality 3D 

reconstruction 

with accurate 

feature matching 

and mapping 

 

Can only 

produce 2.5D, 

undetailed 

reconstruction. 

High quality 

reconstruction for 

simple 

environments 

High quality 3D 

reconstruction 

with a variety of 

output data 

representation. 

Specific 

Features 

Supports a wide 

range of sensors, 

including LiDAR 

and depth 

cameras 

Designed 

specifically for 

2.5D terrain 

mapping with 

Octomap 

representation. 

Great memory 

management 

 

Fully 

differentiable 

Graph-based 

SLAM system. 

Specifically 

designed for Zed 

Stereo cameras. 

Easy integration. 

3.3.2 Decisions 

Robot-Centric Elevation Mapping by Anybotics will encounter challenges in vineyards due to 

the presence of dense vegetation and other dynamic obstacles that cannot be accurately 

rendered with a 2.5D map representation. It also fails to capture texture and minor details 

which are crucial for crop inspection applications.  

Gradslam's flexible mathematical structure comes at the expense of real-time 

performance in vineyard mapping applications. Real-time 3D mapping is often crucial in 

vineyard mapping tasks, such as navigation and obstacle avoidance. Gradslam's potential 

for lower real-time performance limits its suitability for these applications. It is also the 

software that enjoys the least active development, maintenance, and support. 

In the context of vineyard mapping, Rtabmap emerges as the preferred choice if a ZED 

Stereo camera is not available. Its versatility, robustness, and accuracy make it well-suited 

for the challenging conditions often encountered in vineyards. In addition, it comes with 

extensive documentation, frequent updates and active support forums. Conversely, if a ZED 

Stereo camera is available, ZED Spatial Mapping provides a compelling alternative. Its 
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streamlined integration and real-time 3D mapping capabilities make it efficient for rapid 

prototyping and applications where real-time feedback is desired. ZED Spatial Mapping is 

actively maintained and supported and it is regularly updated with state-of-the-art algorithmic 

integration.  



 

 
59/156 

4 Path Planning 

Path planning stands as a fundamental cornerstone of robotics, enabling autonomous robots 

to navigate complex and dynamic environments with precision and efficiency. It is the 

process of determining a collision-free trajectory for a robot to move from a starting point to a 

designated goal while adhering to various constraints, such as obstacle avoidance, terrain 

features, and kinematic limitations [76].  

Path planning remains a highly active area of research, with ongoing efforts to develop 

more efficient, robust, and versatile algorithms that can handle increasingly complex and 

challenging environments. The advancements in path planning algorithms hold immense 

promise for the future of robotics, paving the way for autonomous robots that can seamlessly 

integrate into our everyday lives. 

4.1 Taxonomy of Planners 

4.1.1 Global and Local path planners 

Path planning algorithms can be broadly classified into two categories: global and local. 

Global path planning algorithms, also known as off-line planning algorithms, generate an 

entire path from the start to the goal before the robot begins its movement. These algorithms 

excel in open and predictable environments. However, they struggle in dynamic 

environments with rapidly changing obstacles or unpredictable terrain disturbances. 

 
Figure 4-1: Combination of Global and Local Planner Illustrated. 
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In contrast, local path planning algorithms, also known as on-line planning algorithms, 

generate paths in real-time as the robot navigates the environment. These algorithms 

continuously update the map of the environment and adapt the path to avoid obstacles 

encountered along the way. The predicted path in a local path planner is in principle much 

shorter than that of a global path planner and concerns the robot’s vicinity. They are well-

suited for dynamic environments, where obstacles may move or appear unexpectedly and 

are usually combined with global path planners to enable robots to reach a designated goal 

avoiding collisions along the way. 

4.1.2 Obstacle Representation 

Based on how free space and obstacles are mathematically represented, path planning 

algorithms are further categorized in four main categories: 

• Grid-based or Search Based planners: These planners discretize the environment into a 

grid and use search algorithms like A* or Dijkstra's to find a path through the grid. They 

are efficient for simple environments but can be computationally expensive for complex 

environments, as the map on which the robot operates must be extensively subdivided to 

form a grid which effectively models the operating space [77]. 

 
Figure 4-2: Grid-based free space (white squares) and obstacle (dark squares) representation and viable 

path from starting position (green circle) to target position (red circle). 

• Sampling-based planners: These planners build a tree of possible paths in the 

environment by randomly sampling free space, creating a network that connects the 

samples (nodes) and checking for collisions in the paths between the samples (edges). 

They can handle complex environments with obstacles but may not always find the 

optimal path to the target. 
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Figure 4-3: Rapidly-exploring Random Tree* (RRT*), a common sampling-based path planner that 

builds a tree of potential paths by randomly sampling points in the environment and 
checking for collisions [78] . 

• Potential field planners: These planners create a potential field that represents the 

attractive force towards the goal and the repulsive force from obstacles. The robot 

moves along the gradient of the potential field to reach the goal. They are simple and 

efficient but may not be suitable for all environments. Inherent problems to potential field 

path planners include local minimum traps and unwanted oscillations around obstacles 

[79]. 

 
Figure 4-4: Potential Field Planner Visualization. Environment with 10 obstacles [79]. 
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• Hybrid planners: These planners combine elements of the first three planners utilizing 

sophisticated algorithms to alternate between approaches and achieve considerable 

flexibility. 

4.1.3 Exploratory Path Planners 

Exploratory path planning is a branch of path planning that aims to navigate a robot 

effectively through an unknown or partially known environment to collect information about 

its surroundings. The goal of an exploratory path planning agent is not to reach a single 

specific goal efficiently, but rather to maximize the amount of information gathered by 

exploring the environment. Hence the name, exploratory path planning. 

In this context, computing an optimal path before starting the exploration is often not a 

viable option as there is not enough useful information about the operating environment for 

a-priori waypoint or goal setting. It is therefore common for explorational path planners to 

employ complex and automated goal setting schemes. Based on their goal setting scheme, 

explorational path planners can be categorized as follows: 

• Next-best-view (NBV) planners: NBV planners select goals based on the robot's current 

perception of a specific target in the environment. They identify locations that will provide 

the robot with more information about that target, such as locations that will provide them 

with higher visibility or locations that will allow the robot to see new, so far obscured 

parts of the target. For example, the authors in [80] created an NBV planner to enable a 

robotic arm to calculate the optimal trajectory around fruits to effectively reconstruct their 

complete shape. The algorithm predicts fruit shapes prior to mapping them and 

computes targeted viewpoints to enable the robot to observe yet unobserved parts of the 

fruits. 

 
Figure 4-5: Goals (Views) planned using view planning lead to less 3D reconstruction error and greater 

object completeness percentage than regular views [81].  
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• Coverage-based planners (CPP): Coverage-based planners aim to maximize the amount 

of useful area covered by a part of the robot or scanned by a sensor of the robot. It is a 

particularly important task in the context of agriculture robotics, especially for automated 

harvesters and watering robots. CPP is however an integral algorithm for a plethora of 

applications including cleaning robots, underwater vehicles creating image mosaics, 

demining robots and more [31].  

 
Figure 4-6: Solution for a UAV coverage path planning problem in Matlab  

calculated using Matlab’s UAV Toolbox [82]. 

• Information-theoretic planners: Information-theoretic planners use information theory to 

quantify the amount of information gathered by the robot. They plan paths that maximize 

the expected information gain from each new candidate waypoint, which is the amount of 

information the robot can expect to gather by visiting it [83]. Waypoints that hold 

significant exploratory value are often called frontiers. Such planners are commonly used 

in search and rescue or other time-sensitive applications.  
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Figure 4-7: Information-Theoretic Exploratory Planner illustration [84]. 

4.2 SOTA Packages 

4.2.1 Ewok Planner 

In their work, Ewok: Real-Time Trajectory Replanning for MAVs using Uniform B-splines and 

3D Circular Buffer [18], the authors present a real-time approach for local trajectory 

replanning specifically designed for agile robots such as Micro Aerial Vehicles (MAVs). 

Unlike traditional methods that assume static environments and prior map knowledge, Ewok 

thrives in dynamic scenarios, efficiently adapting trajectories on-the-fly to navigate cluttered 

and unpredictable surroundings. This makes it particularly valuable for applications like 

search and rescue, autonomous exploration, and spatial mapping in unknown environments. 

 
Figure 4-8: MAV dynamically planning its path while moving through a simulated forest using the Ewok 

Planner [18]. 
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Uniform B-splines 

Ewok represents trajectories as smooth and flexible curves using uniform B-splines. 

Formally, a spline is a piecewise polynomial function defined over a set of intervals [85]. The 

places where the polynomial pieces meet are known as knots. Splines are a powerful tool when 

there is a need to represent smooth curves that pass through or interpolate given data points 

due to the following attributes: 

• Continuity: Splines have continuity of at least order 𝑘 at each knot point, meaning both 

the function value and its derivatives up to order 𝑘 match across intervals. 

• Locality: Each polynomial piece only affects the curve in its corresponding interval, 

allowing for local control of the shape. 

The degree of the polynomial pieces determines the spline's smoothness and flexibility. For 

example, a cubic spline (k=2) will have continuous first and second derivatives, creating 

smooth and visually appealing curves. 

B-splines (basis splines) are a specific type of spline representation. B-splines of order 𝑛 

are basis functions for spline functions of the same order defined over the same knots, 

meaning that all possible spline functions can be built from a linear combination of B-splines, 

and there is only one unique combination for each spline function. They have several 

desirable properties: 

• Each B-spline is non-zero only over a specific interval defined by its corresponding 

knots. 

• The sum of all B-splines associated with a given knot sequence is always 1. 

• B-splines can be defined recursively based on lower-degree B-splines, simplifying 

calculations. 

 
Figure 4-9: A cubic parametric polynomial spline[86]. P denotes control points. The first and third 

polynomic parts of the curve are painted blue, while the second orange. Single knots at 1/3 

and 2/3 of the curve establish a spline of three cubic polynomials meeting with 𝑪𝟐 
parametric continuity. Triple knots at both ends of the interval ensure that the curve 

interpolates the end points. 
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The value of a B-spline of degree 𝑘 −  1 can be evaluated using the following equation: 

 
𝒑(𝒕) =  ∑ 𝒑𝒊𝑩𝒊,𝒌(𝒕) ,

𝒏

𝒊=𝟎

 (4-1) 

where 𝑝𝑖 ∈ 𝑅𝑛 are control points at times 𝑡𝑖, 𝑖 ∈ [0, … , 𝑛] and 𝐵𝑖,𝑘(𝑡) are basis functions that 

can be computed using the De Boor – Cox recursive formula [87]. Uniform B-splines are a 

special case where the knots are equally spaced within the time domain. This simplifies 

calculations and offers predictable control over the curve's shape. In the context of the Ewok 

planner, uniform B-splines are utilized for calculating an initial global path. 

Leveraging splines allows the ewok planner to produce smooth paths, preventing abrupt 

changes in velocity and acceleration, essential for safe and comfortable agile robot 

maneuvers. Furthermore, modifying a global trajectory defined with splines is not 

complicated, as modifications to individual control points affect only a specific segment of 

the trajectory, allowing for targeted adjustments without impacting the entire path. The 

authors of the Ewok planner have specifically employed a real-time trajectory modification 

applied on the global path computed with B-splines. This is achieved through a local planner 

which solves an optimization problem and is triggered when the robot detects an obstacle in 

its vicinity and on its computed trajectory. Eq. (4-2) describes the cost function which must 

be minimized when the local planner is triggered:  

 𝑬𝒕𝒐𝒕𝒂𝒍 = 𝑬𝒆𝒑 + 𝑬𝒄 + 𝑬𝒒 + 𝑬𝒍 , (4-2) 

where 𝐸𝑒𝑝 (endpoint position) is a cost function that expresses position and velocity deviation 

from the optimal values that are imposed by the global trajectory; 𝐸𝑐 (collision) is a cost 

function that heavily penalizes collision with obstacles; and 𝐸𝑞 and 𝐸𝑙 are cost functions that 

ensure continuous and smooth derivatives (cost of integral and limit on the norm, 

respectively), preventing abrupt changes in velocity and acceleration, essential for safe and 

comfortable MAV maneuvers.  

B-splines guarantee continuous position and its derivatives up to the degree of the 

spline minus one at any given control point and the basis functions simplify calculations, 

enabling real-time replanning within onboard computational constraints. However, B-splines 

do not naturally interpolate control points, hindering imposition of arbitrary boundary 

conditions. Only static constraints (zero-time derivatives) can be guaranteed by duplicating a 

control point (𝑘 + 1 times, where 𝑘 is the spline degree). Non-zero time derivative constraints 

necessitate iterative optimization. Other trajectory representations, such as Polynomial 

Splines allow direct enforcement of boundary conditions, including non-zero time derivatives, 

at the expense of increased complexity.   

When control points originate only from planning algorithms (RRT, PRM) requiring 

collision-free paths, adhering to these points is crucial. Therefore, representations such as 

polynomial splines are more suitable. Local replanning employed in Ewok deals with 

unexpected obstacles not considered in initial planning and changes the control points in 

real-time. Here, strict adherence to control points becomes less critical, and the inherent 

smoothness and computational efficiency of B-splines make them preferable. 
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3D Circular Buffer 

To maintain real-time environmental awareness, Ewok employs a 3D circular buffer that 

moves along with the MAV. This buffer stores occupancy grid information, essentially 

representing a dynamic map of the surrounding obstacles within a defined range. Sensors 

like LiDAR or cameras continuously update the buffer, reflecting changes in the environment 

as the MAV navigates. By querying the buffer during replanning, Ewok identifies potential 

collisions and modifies the trajectory accordingly. The buffer is implemented by employing 

the following strategies: 

Discretization: The environmental volume is discretized into voxels of size 𝑟 . This 

establishes a mapping between points in 3D space 𝑝  and integer-valued indices 𝑥  that 

uniquely identify individual voxels. The inverse operation allows retrieval of the voxel center 

point given its index. A continuous array of size N represents the 3D environment. An offset 

index 𝑜 defines the location of the buffer's coordinate system relative to the MAV. Given the 

index and offset, the following functions can be defined to check if a voxel lies within the 

represented volume and determine its address within the stored array:  

 𝒊𝒏𝒔𝒊𝒅𝒆𝑽𝒐𝒍𝒖𝒎𝒆(𝒙) = 𝟎 ≤ 𝒙 − 𝒐 < 𝑵, (4-3) 

 𝒂𝒅𝒅𝒓𝒆𝒔𝒔(𝒙) = (𝒙 − 𝒐)𝒎𝒐𝒅𝑵. (4-4) 

Robotcentric Update: To maintain the buffer centered around the MAV's camera, the 

offset (o) is simply updated based on the vehicle's movement. The newly incorporated part 

of the volume is cleared, eliminating the need for large data copies during movement. This 

way, the size of the array can be restricted to 𝑁 =  2𝑝  and the above functions can be 

altered to use cheap bitwise operations instead of divisions: 

 𝒊𝒏𝒔𝒊𝒅𝒆𝑽𝒐𝒍𝒖𝒎𝒆(𝒙) = ! ((𝒙 − 𝒐)&(~(𝟐𝒑 − 𝟏))), 
(4-5) 

 𝒂𝒅𝒅𝒓𝒆𝒔𝒔(𝒙) = (𝒙 − 𝒐)&(𝟐𝒑 − 𝟏) , (4-6) 

where & is a “bitwise and”, ~ is a “bitwise negation” and ! is a “boolean not”. 

If a collision is imminent, the local planner identifies the point of conflict and generates 

alternative segments using B-splines. These segments prioritize obstacle avoidance while 

adhering to constraints like minimum altitude, maneuverability limits and proximity to the 

original trajectory. The new segments are seamlessly connected to the existing trajectory, 

ensuring a smooth and continuous path. 
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Figure 4-10:  Example of online trajectory replanning using the ewok planner [18]. The plot shows a 

global trajectory computed by fitting a polynomial spline through fixed waypoints (red), 
voxels within 0.5 m of the obstacle (blue), computed B-spline trajectory with fixed (cyan) 

and still optimized (green) segments and control points.  

Ewok presents a valuable approach for real-time trajectory replanning in dynamic 

environments for agile robots. One of its limitations is the planning horizon: The 3D circular 

buffer limits the planning scope to the immediate surroundings. Long-range planning might 

require additional techniques. In addition, a smooth curved trajectory is especially useful 

when dealing with fast-moving robots, like MAVs. In the case of a quadruped agriculture 

robot, a trajectory with angles and sharp turns is perfectly acceptable and can even be 

optimal. 

4.2.2 Sequential MPC Reactive Planning using Safe Corridors 

In their work, A Sequential MPC Approach to Reactive Planning for Bipedal Robots [19], the 

authors delve into a path planning solution that leverages the power of Sequential Model 

Predictive Control (MPC) and offline polytopic decomposition to enable robust and reactive 

motion for legged robots in complex and dynamic scenarios. 
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Figure 4-11: Example environments and paths generated by the MPC-safe corridors controller [19].  The 

successively connected polytopes (blue) represent safe corridors. (a) Polygonal obstacles 
(b) Rotated rectangular obstacles. 

Safe Corridors  

The authors leverage RRT* to efficiently explore the environment and identify obstacle-free 

regions. RRT* iteratively expands a tree-like structure in the configuration space, prioritizing 

exploration towards the goal while respecting robot constraints. Figure illustrates the logical 

flow diagram for RRT*, given a set state space 𝑋, in which the robot operates, a start point 

𝑋𝑠𝑡𝑎𝑟𝑡 and a goal point 𝑋𝑔𝑜𝑎𝑙.  

 

Figure 4-12: RRT* logical flow diagram. 

It should be noted that RRT* is the same algorithm as RRT with the added optimization 

routine after each new node addition. This is a three-step routine that employs the following 

functions: 

Local Search: Starting from the newly created node, its neighboring nodes are checked 

within a specific radius. 
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Cost Comparison: For each neighbor, the routine checks if connecting to the new node 

would create a lower cost path compared to its current connection. Cost can represent 

distance, time, or any other relevant metric. Algorithms like Dijkstra’s or Kruskal’s are 

employed for  path cost calculation. 

Rewiring: If a lower-cost path is found, the routine rewires the connections of the affected 

neighbors to connect them through the new node. 

The resulting tree is a near-optimal path solution. 

Instead of directly using the complex free space identified by RRT*, the authors 

decompose it into simpler, convex shapes called polytopes. This decomposition leverages 

computational geometry techniques to ensure safe and tractable representation of free 

space. The individual polytopes are then carefully connected through a recursive process 

that uses their Chebyshev centers, to form a continuous and collision-free "corridor" that 

guides the robot towards its goal. This corridor prioritizes directness while adhering to safety 

constraints and robot limitations. The algorithm follows the below structure: 

Obstacle Inflation: The static workspace, denoted as 𝑊𝑠, is first augmented to account for 

the physical dimensions of the mobile robot. Obstacles are inflated by a specified radius, 

assuming the robot can be represented by a disc of that size. 

Convexity Assumption: All obstacles in 𝑊𝑠 are assumed to be convex. While not 

universally true, this simplification allows for efficient computation of free space regions for 

motion planning. 

Sampling-Based Planning: A sequence of points, 𝛱 =  {𝑝1, . . . , 𝑝𝑘}, is generated within the 

free space of the workspace (dynamic and static), denoted by 𝑊\𝑊𝑠 . This sequence 

connects the initial location with the desired goal position and is generated using RRT*. 

Initial Polytope Generation and Waypoint Extraction: An initial polytope 𝐻0 is created 
and saved within the free space 𝑊\𝑊𝑠 containing the initial robot position 𝑦0. This is done 

using a convex optimization process [88]. 𝑦0  is saved as the initial waypoint 𝑤0.  The 
algorithm checks if the goal position 𝑤𝑔 lies within 𝐻0. If not, the algorithm iterates through 

the points 𝑝𝑗 ∈  𝛱 starting from j = 1. It finds the first point 𝑝𝑗1 not contained in 𝐻0. 

Intersecting Polytopes Guarantee: The algorithm takes the current polytope 𝐻0 and the 

waypoint 𝑝𝑗1 as input. It generates a new polytope 𝐻𝑛𝑒𝑤 around 𝑝𝑗1. It then performs two 

operations: 

Intersection Check: It checks if the current polytope and the polytope 𝐻𝑛𝑒𝑤 generated around 

𝑝𝑗1 have a non-empty intersection (𝐻0 ∩ 𝐻𝑛𝑒𝑤 ≠ ∅ ). 

Intersection Guarantee: If an intersection exists, the algorithm saves 𝐻𝑛𝑒𝑤 as a new polytope 

𝐻1 and a waypoint 𝑤1 representing the Chebyshev center of the intersection 𝐻0 ∩ 𝐻𝑛𝑒𝑤. If 

there is no intersection, the algorithm generates a sequence of intersecting polytopes and 

waypoints 𝐺̅  connecting 𝐻0 and 𝐻𝑛𝑒𝑤  by iteratively creating polytopes using points on the 

straight line that connects 𝑦0 with 𝑤1. The generated polytopes and waypoints are saved. 

The algorithm repeats this process for each point 𝑝 ∈  𝛱. 

Final Output: The algorithm outputs a sequence of pairwise intersecting free polytopes 

{𝐻0,  𝐻1, . . . ,  𝐻𝑀−1} containing the initial position and a set of waypoints {𝑤1, . . . , 𝑤𝑀} such 

that:  

 𝑤𝒊 ∈  𝐻𝒊−𝟏 ∩  𝐻𝒊    for    𝑖 = 1, … , 𝑀 − 1 (4-7) 

and 𝑤𝑴 = 𝑤𝑔 ∈  𝐻𝑀−1. These waypoints and polytopes 0are to be utilized in subsequent 

Model Predictive Control (MPC) algorithms for robot motion. 
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Sequential Model Predictive Control (MPC) 

Model Predictive Control (MPC) is an advanced control technique widely used in various 

industries, from chemical plants and refineries to autonomous vehicles. It offers a powerful 

framework for controlling complex systems while incorporating constraints and optimizing 

performance goals [89].  

At the heart of MPC lies a mathematical model representing the dynamics of the system 

being controlled. This model can be linear, nonlinear, or a combination, depending on the 

system's complexity. MPC operates over a finite time window called the receding horizon. At 

each time step, it predicts the system's future behavior based on the current state and 

potential control inputs. An optimization problem is formulated with a cost function that 

penalizes deviations from desired outputs and control effort. By minimizing this cost function, 

MPC determines the optimal control sequence for the receding horizon. Only the first control 

input in the sequence is applied to the actual system. At the next time step, the horizon 

moves forward, incorporating new sensor measurements to update the model and repeat 

the optimization process. This is what the sequential aspect of this approach implies. In their 

work [19], the authors leverage MPC to optimize a rough initial trajectory created by the 

RRT* algorithm. The MPC controller optimizes a cost function that considers factors like 

trajectory smoothness, control effort, and distance to the goal. This ensures efficient and 

goal-oriented navigation within the created safe corridors. 

 
Figure 4-13: Model Predictive Control Schematic. 

The core concept behind the planning and control approach in the work by the authors in 

[19] lies in the following equation for the 𝑖 − 𝑡ℎ MPC (𝑀𝑃𝐶(𝑖)): 

 𝒉𝒊,𝒋(𝑨𝒙𝒌 + 𝑩𝒖𝒌) ≥ (𝟏 − 𝜸)𝒉𝒊,𝒋(𝒙𝒌),    𝒋 = 𝟏, … , 𝒍𝒊 ,  (4-8) 

where 𝑥𝑘 represents the current state of the robot model (in [19] it is a 3D-LIP robot model) 

at time step 𝑘. The state encompasses its position (𝑥, 𝑦), orientation 𝜃, and velocities (𝑥̇,  𝑦̇), 

𝑢𝑘 denotes the control input applied to the robot model at time step 𝑘. This input directly 

influences the acceleration and subsequent trajectory of the robot. ℎ𝑖,𝑗  represents a 

collection of smooth scalar-valued functions. Each function ℎ𝑖,𝑗  corresponds to a specific 

half-space within a polytope 𝐶𝑖. It acts as a measure of how far the robot state 𝑥𝑘 is from the 
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boundary of that half-space. The polyhedra 𝐶𝑖 define safe regions within the workspace. The 

robot's state and trajectory must remain within these polyhedra throughout its motion to 

guarantee collision-free navigation. Each polytope 𝐶𝑖 is formed by the intersection of multiple 

half-spaces. Each half-space is defined by a linear inequality represented by the function ℎ𝑖,𝑗. 

𝑙𝑖 represents the number of half-spaces that contribute to defining a specific polyhedron 𝐶𝑖. 

The core constraint utilizes the functions ℎ𝑖,𝑗  associated with a polytope so that if 

ℎ𝑖,𝑗(𝑥𝑘) ≥ 0 for all j, the robot's state lies within the safe region 𝐶𝑖. 

The constraint enforces that the control input 𝑢𝑘  steers the robot's predicted next state 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 further into the polytope region or at least keeps it within the boundaries. 

This ensures collision avoidance with static obstacles, while respecting the robot model’s 

constraints. 

Reactive Planning 

While the robot follows the current safe corridor segment, the MPC controller continuously 

replans the subsequent segments in the sequence. This allows for real-time adjustments 

based on dynamic obstacles or changes in the environment, ensuring reactive collision 

avoidance and smooth trajectory adaptation. Additionally, the authors propose incorporating 

a "reactivity layer" within the Safe Corridor generation itself, making the corridors themselves 

adaptable to moving obstacles without complete replanning, by incorporating sensor input in 

the corridor formation process. This is because a new polytopic decomposition can be 

performed in less than a second, even in complex and cluttered environments. 

4.2.3 Graph-based exploration planner (GB-planner) 

In their work, Graph-based Subterranean Exploration Path Planning using Aerial and 

Legged Robots [20], the authors propose an approach employing path planning specifically 

designed for robotic exploration in large-scale, tunnel-like, underground networks, enabling 

efficient and safe navigation. GBPlanner 2.0 is an extension of their previous work on a 

Graph-Based Exploration Planner. The new planner presents improved computational 

performance and better handling of positive and negative obstacles for ground robots. The 

planner does not require any prior knowledge of the environment other than the general 

bounds of the volume to be explored. 

Graph Representation 

Much like in RRT*, graph nodes are placed in random locations of the subterranean 

environment, in close vicinity to the robot which is performing the exploration. Nodes that are 

placed on obscured locations or on obstacles are discarded, while the rest of the nodes are 

connected to form a tree-like structure which depicts potential paths from the robot to each 

node. Ground traversability is also considered as a constraint during this process. The graph 

representation simplifies the complex 3D environment into a structured and easily 

analyzable format. 

Exploration Gain Metrics 

To guide the robot's decision-making, various metrics are assigned to graph nodes. These 

metrics quantify the potential information gain associated with exploring a specific node. 
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Nodes that lie near uncharted territories are ranked higher in terms of explorational value. 

Metrics reflecting terrain difficulty, narrow passages, or potential hazards are also introduced 

to influence path selection for safe navigation. The robot iteratively calculates the 

explorational value of all the nodes in the so-far explored map. It then decides which node to 

visit next, based on its explorational value and the length of the path it must take to get 

there.  

 
Figure 4-14: A graph representation is used to describe free space [20]. Frontiers and Home Location 

affect the robot's (blue triangle) decision making process. 

Nodes that held great explorational value but have not been visited due to their distance 

from the robot are saved as frontiers. A frontier in explorational path planning is defined as 

the boundary between known and unknown space in a map. It can be visualized as the edge 

of the explored area, where information about the environment is still missing. The robot 

knows the path from its position to all explored frontiers at any moment. It decides to visit 

nodes close to a frontier if there are no new nodes in its vicinity with a high enough 

explorational value. 

The authors of GBplanner2.0 specifically employ two separate exploration gain metrics; 

one for the local planner and one for the global planner. Both approaches utilize a volumetric 

gain calculation algorithm. The proposed method for calculating volumetric gain leverages 

ray casting. Given the robot's current pose and a specific 3D sensor model, the algorithm 

identifies: 

Unknown space: The unmapped portion of the environment. 

Sensor frustum: This represents the cone-shaped volume which represents the sensor’s 

field of view. 

Voxels: The environment is discretized into small, 3D cubes called voxels. 

The algorithm then performs the following steps: 

Ray Casting: For each direction within the sensor frustum, a ray is cast from the robot's 

position into the unknown space. 

Voxel Intersection: Each ray is checked for intersections with voxels in the unknown space. 

Traversable Voxels: The number of intersected voxels is identified, representing the 

potentially traversable volume within the sensor's field of view. 

This approach provides a computational and efficient estimation of the unmapped volume 

accessible to the robot, aiding in exploration gain estimation. In particular, given a path 𝜎𝑖 ∈

𝛴𝑖 , 𝑖 = 1, … , 𝑛, - where 𝛴𝑖 is the set of all shortest path in the map- , with number of vertices 
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𝑚𝑖 and a set of vertices 𝑣𝑗
𝑖 ∈ 𝜎𝑖 , 𝑗 = 1, … , 𝑚𝑖 along the path, the equation that describes the 

exploration gain estimation process for the local planner is the following: 

 
𝑬𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏𝑮𝒂𝒊𝒏(𝝈𝒊) =  𝒆−𝜸𝑺𝑺(𝝈𝒊,𝝈𝒆𝒙𝒑) ∑ 𝑽𝒐𝒍𝒖𝒎𝒆𝒕𝒓𝒊𝒄𝑮𝒂𝒊𝒏(𝒗𝒋

𝒊)𝒆−𝜸𝑫𝑫(𝒗𝟏
𝒊 ,𝒗𝒋

𝒊)

𝒎𝒊

𝒋=𝟏

 , (4-9) 

where 𝑆(𝜎𝑖, 𝜎𝑒𝑥𝑝), 𝐷(𝑣1
𝑖 , 𝑣𝑗

𝑖) are weight functions with tunable factors 𝛾𝑆, 𝛾𝑆 > 0. In addition, 

𝐷(𝑣1
𝑖 , 𝑣𝑗

𝑖) is the cumulative Euclidean distance from a vertex 𝑣𝑗
𝑖 to the root 𝑣1

𝑖  along the path 

𝜎𝑖. This promotes efficient exploration by prioritizing paths that require minimal robot travel 

distance but at the same time maximize the anticipated information gain (e.g., unmapped 

space coverage) per unit travel distance, leading to a faster exploration rate. Similarly, the 

equation that describes the exploration gain estimation process for the global exploration 

planner is: 

 𝑮𝒍𝒐𝒃𝒂𝒍𝑬𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏𝑮𝒂𝒊𝒏𝑮(𝒗𝑮,𝒊
𝑭 )

= 𝑻(𝒗𝑮,𝒄𝒖𝒓, 𝒗𝑮,𝒊
𝑭 )𝑽𝒐𝒍𝒖𝒎𝒆𝒕𝒓𝒊𝒄𝑮𝒂𝒊𝒏(𝒗𝑮,𝒊

𝑭 )𝒆−𝜺𝑫𝑫(𝒗𝑮,𝒄𝒖𝒓,𝒗𝑮,𝒊
𝑭 ),  (4-10) 

where 𝐹 symbolizes a frontier, 𝐺 symbolizes the combination and clustering of all graphs on 

the map, called the global graph and 𝑻(𝒗𝑮,𝒄𝒖𝒓, 𝒗𝑮,𝒊
𝑭 ) is the estimated remaining exploration 

time if the planner chooses to go from the current vertex (“cur”) to the frontier vertex 𝒗𝑮,𝒊
𝑭 . 

The 𝑇 parameter is derived by approximating the robot's Remaining Endurance Time (RET) 

and subtracting the Estimated Time of Arrival (ETA) required for the two following traversals:  

1. Travel from the current vertex to the designated vertex (𝒗𝑮,𝒊
𝑭 ). 

2. Return travel from the designated vertex (𝒗𝑮,𝒊
𝑭 ) back to the home location (𝑣𝐺,ℎ𝑜𝑚𝑒). 

Thus, the above becomes: 

 𝑻(𝒗𝑮,𝒄𝒖𝒓, 𝒗𝑮,𝒊
𝑭 ) = 𝑹𝑬𝑻 − 𝑬𝑻𝑨(𝒗𝑮,𝒄𝒖𝒓, 𝒗𝑮,𝒊

𝑭 ) − 𝑬𝑻𝑨(𝒗𝑮,𝒊
𝑭 , 𝒗𝑮,𝒉𝒐𝒎𝒆) (4-11) 

 

Conceptually, this value represents the tentative volumetric gain achievable within the 

remaining time 𝑇 if the exploration planner decides to explore frontier 𝒗𝑮,𝒊
𝑭 . This gain is an 

estimate of the unmapped space the robot can potentially cover during this timeframe, given 

its energy consumption constraints. 

Search Algorithms & Multi-level Planning 

Efficient algorithms traverse the graph, selecting paths that optimize a combination of these 

exploration gain metrics while adhering to robot constraints like battery life, maneuverability, 

and communication range. To address large-scale environments, hierarchical planning 

approaches are often employed. A high-level planner creates a coarse roadmap in the 

formed graph using simplified models, while a lower-level planner refines the path within 

specific regions based on detailed sensor data for safe and efficient exploration. This 

technique is known as multi-level planning. In their work, the authors of GB-planner 2.0 

utilize multi-level planning not only by employing both a global and a local planner but also 
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by employing a different exploration gain metric for each planning level, as shown in the 

previous paragraph. 

4.3 Comparison and Decisions 

For robot navigation within a vineyard, path planning approaches must address the unique 

spatial structure and constraints of this environment. A spline-based planner, like the ewok 

planner, while efficient for simple trajectories, is unsuitable for navigating across multiple 

vineyard rows due to its limited global planning capabilities. Obtaining a path that allows for 

multi-row scanning with a mobile robot, while simultaneously avoiding obstacles is a process 

that demands using both a global and local planner.  

An exploration-based planner designed for dynamic environments, such as GB-planner, 

would work in most environments, complex or simple. However, it becomes redundant in the 

mostly static context of a vineyard. Pre-mapping the vineyard allows for a more efficient 

approach, eliminating the need for re-exploring the vineyard every time the robot is tasked 

with a new inspection procedure. Creating an accurate 2D representation of the vineyard 

and providing it as input for the utilized planner is the most efficient approach. In addition, 

finding the optimal path through the entire explored environment can be computationally 

expensive for large-scale scenarios, when using GB-planner. 

Therefore, after evaluating various path planning packages, the Sequential MPC 

Reactive Planning using Safe Corridors was selected based on its suitability for our specific 

use case. Unlike the Ewok planner or the GB-planner, this planner combines the ability of 

planning trajectories that allow the robot to traverse multiple rows, with the addition of 

efficient optimal path estimation and dynamic obstacle avoidance. The free corridors aspect 

matches the inherent corridor-like structure of vineyard rows, enabling fast and reliable 

polytope calculation and free space estimation, leading to safe robot movement. 
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5 Vision System 

For agricultural robots tasked with vineyard inspection, the hardware comprising the 

perception system is crucial. This system enables the robot to navigate, identify obstacles, 

and accurately assess vine health. Its importance stems from the inherent complexity of the 

vineyard environment: dense foliage, varying lighting conditions, and potential presence of 

pests and diseases demand precise and reliable data acquisition. However, the 

effectiveness of this system hinges not just on the choice of sensors, but also on their 

optimal positioning on the robot and their integration with the computing platform. Carefully 

selecting sensors tailored to the specific inspection needs, strategically placing them for 

comprehensive coverage, and ensuring compatibility with the processing power of the 

embedded platform are all essential for a successful vineyard inspection robot. Only through 

a meticulously designed perception system can an agricultural robot achieve the level of 

awareness and adaptability required to navigate and analyze the dynamic tapestry of the 

vineyard. 

5.1 Sensing 

Standard digital cameras output images as a 2D grid of pixels. Each pixel has values 

associated with it –Red, Green, and Blue, or RGB. Each attribute has a number from 0 to 

255, so black, for example, is (0,0,0) and a pure bright red would be (255,0,0). Thousands to 

millions of pixels together create the kind of photographs we are all very familiar with. To 

produce a 3D reconstruction of the surrounding environment, on the other hand, pixels 

which have a different numerical value associated with them are needed. That number is the 

distance from the camera, or depth. The three most prominent technologies that are 

commonly utilized for capturing depth are lidar sensors, depth camera sensors and standard 

digital cameras utilized for photogrammetry. It was necessary to carefully consider the 

strengths and weaknesses of each technology to reach an informed decision about the 

perception system for our robot. 

5.1.1 Lidar Sensors 

LiDAR, an acronym for Light Detection and Ranging, operates like an echolocation 

system for light. It emits pulsed laser beams and measures the time it takes for the reflection 

to return, calculating the distance to objects in its environment. This precise method creates 

highly detailed 3D point clouds, offering valuable insights for diverse applications. Currently, 

two main types of LiDAR sensors dominate the scene: mechanical and solid-state.  

Mechanical LiDAR sensors 

Mechanical LiDARs utilize laser beams guided by rotating mirrors to scan their surroundings, 

offering high accuracy but require moving parts which can cause potential wear and demand 

energy to move. In addition, mechanical LiDARs scan the visible scene point by point, 

gradually building a 3D reconstruction. This can lead to "jitter" if the scene or sensor moves 

during a single scan. A LiDAR ego-motion correction method must be used to mitigate this 

error [90].  
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Figure 5-1: 3D arrangement of a typical LiDAR sensor [91]. 

Solid-state LiDAR sensors 

Solid-state LiDARs, on the other hand, eliminate moving parts and promise increased 

reliability, durability, and energy efficiency. The three most prominent types of Solid-state 

LiDARs are Flash LiDARs, MEMS-based LiDARS and optical phased array LiDARs. 

Flash LiDAR is a technology that illuminates the entire scene in a single pulse by 

diverging a laser beam, unlike conventional LiDAR's point-by-point scanning. Both 

technologies use time-of-flight sensors to measure how long the laser takes to bounce back, 

revealing distances. But while conventional LiDAR uses a single point sensor, Flash LiDAR 

employs an array of pixels, each recording distance and intensity. The result can be 

described as taking a 3D photo, not with color, but with distance as the detail. The utilization 

of an instantaneous pulse (flash) means that these LiDARs can capture high-resolution 3D 

images smoothly, without jitter, even in dynamic scenes. However, the powerful burst must 

be eye-safe, limiting wavelengths and driving up costs. Standard image sensors can't easily 

read these wavelengths, demanding expensive gallium-arsenide alternatives [92]. 

While not entirely solid-state due to rapidly spinning silica-based mirrors, 

Microelectromechanical Mirrors (MEMS) LiDARS offer benefits in size and cost that are 

comparable to Flash LiDARS. They employ a single laser directed at a tiny, rapidly rotating 

mirror that scans the scene like a high-speed kaleidoscope. However, MEMS scanners 

primarily operate in one direction (left-to-right). Creating a 2D scan typically requires an 

additional mirror moving up-down or another laser at a different angle. Also, vibrations and 

shocks can disrupt the delicate MEMS mirror, potentially requiring recalibration [93]. 

The third family of solid-state LiDARS, phased array LiDARS, can illuminate any 

direction by using a microscopic array of individual antennas. Controlling the timing (phase) 

of each antenna steers a cohesive signal in a specific direction. This technology has been 

employed in conventional radars since the 1940s. The same technique can be used with 

light and promises lower cost and higher efficiency than mechanical LiDAR sensors without 

sacrificing robustness or 3D data quality.  
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Figure 5-2: (a) A flash LiDAR with diffused light; (b) The principle of an optical phased array (OPA) 

scanner; (c) A LiDAR motorized spinning scanner; (d) A microelectromechanical mirrors 
(MEMS) laser scanner [94]. 

5.1.2 Depth Cameras 

Depth cameras play a crucial role in perceiving the 3D world, offering valuable insights for 

various applications. Two main technologies dominate this field: stereo depth cameras and 

structured light depth cameras.  

Stereo cameras, inspired by human binocular vision, employ two lenses capturing 

slightly offset images. Sophisticated algorithms analyze these images and detect specified 

geometric features within them. They calculate depth based on the parallax shift between 

corresponding features. This process is known as triangulation. Stereo cameras excel in 

good lighting conditions and provide rich texture information, but accuracy can be sensitive 

to image quality and object texture.  

 
Figure 5-3: Stereo Depth Estimation. Objects further away from the stereo camera pair produce larger 

disparity [95]. 

Structured light depth cameras project a known pattern (e.g., infrared dots) onto the 

scene. The camera then analyzes the deformation of the pattern on objects to calculate 

depth. This method shines in low-light situations and works reliably on featureless surfaces 

but struggles with specular reflections and suffers lower overall accuracy compared to high-

end stereo depth cameras or LiDAR sensors. Another drawback of structured light cameras 

is that, contrary to stereo cameras, there are limits to how many of them you can use in a 

particular space – the cameras might interfere with each other by projecting light into one 

another’s field of view.  
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Figure 5-4: Structured Light projected on a sphere [96]. 

5.1.3 Photogrammetry 

Photogrammetry is a well-established 3D reconstruction technique [97]. It utilizes sets of 

overlapping images to reconstruct 3D models. This process also hinges on the geometric 

principle of triangulation, where corresponding points in multiple images are identified and 

used to calculate the 3D position of those points. Unlike stereo depth estimation, however, 

where the baseline distance between the two camera lenses is known, in photogrammetry a 

virtual baseline distance regarding two consecutive images is not known, but it is rather 

estimated based on optical flow computer vision techniques.  

Photogrammetry is a broader term encompassing the entire process of creating 3D 

models from images. It includes not only the geometric reconstruction of the scene but also 

calibration of the cameras, texture mapping, and other post-processing steps. A term closely 

related to photogrammetry is Structure from Motion (SfM). SfM focuses specifically on the 

geometric reconstruction aspect. It relates to the algorithms that receive a set of images as 

input and automatically estimate the 3D structure of the scene and the camera poses 

(positions and orientations) without requiring any prior knowledge about the cameras or the 

scene geometry.  

5.1.4 Comparison and Decisions 

Each 3D sensing technology boasts unique strengths and weaknesses tailored to specific 

applications. LiDARS are so far unrivaled in accuracy and range, and they offer precise 3D 

representation, even over long distances. However, its high cost, high energy demands, as 

well as the inability to apply texture or color to the 3D models it produces, create significant 

hurdles for resource-constrained projects that require photo-realistic reconstruction.  

Depth Cameras offer a balance between affordability and performance and provide real-

time depth information at a significantly lower cost than LiDAR. While accuracy and range 

might be lower, they excel in compactness and weight, making them ideal for mobile 

platforms like legged or wheeled robots. They also produce colored point clouds and capture 

RGB images that can be used to add realism to the reconstructed depth map. Nevertheless, 
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their performance can be affected by lighting conditions, target surface reflectivity and lack 

of visual features in the environment. 

Photogrammetry leverages conventional cameras and boasts exceptional texture and 

color capture, enriching 3D models beyond just depth. Additionally, its scalability allows for 

capturing objects of varying sizes. However, reconstruction accuracy can be lower, and 

computational demands are significant. Additionally, good lighting and texture variations are 

crucial for accurate results. Poor lighting and texture conditions can lead to both coloring 

errors and errors in the reconstructed geometry. 

 
Figure 5-5: Radar Graph illustrating each sensor's strengths and weaknesses. 

For our vineyard inspection robot, depth cameras emerged as the optimal choice. Cost 

effectiveness was an important factor. Depth cameras are more affordable than LiDAR 

sensors, allowing us to place more sensors on the robot and achieve greater coverage for 

the same budget. In addition, color information is crucial for analyzing vine and grape health, 

and depth cameras provide sufficient detail for this purpose. Also, as the robot operates 

within proximity to the vines, the limited range of depth cameras didn't pose a significant 

challenge. Lastly, real-time processing requirements, as well as varying light conditions and 

robotic ego-motion would significantly affect photogrammetry accuracy.  

As the project evolves, future iterations may explore integrating other technologies like 

LiDAR if the need for higher precision 3D models arises. However, for the current stage of 

vineyard inspection, depth cameras offer a powerful and cost-effective solution. 

5.2 Processing Unit 

The selection of an appropriate computing platform to host perception systems for 

agricultural robots presents a critical challenge, as the optimal choice hinges on a delicate 

balance between various factors. Five distinct categories of platforms have been evaluated 

for the proposed system: microcontrollers, single-board computers (SBCs), mini computers, 

and workstations. Each platform has been assessed based on a comprehensive set of 
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criteria crucial for mobile robot applications: performance, interface, power consumption, 

weight, and price. This analysis has drawn upon established benchmarks, technical 

specifications, and relevant research findings to ensure an objective and data-driven 

evaluation.  

5.2.1 Performance Metrics 

Evaluating the performance of a computing platform is not a simple task. Computers perform 

differently across different applications, even under the perception umbrella. It is, however, 

essential to define specific metrics for performance to employ a scientific lens and culminate 

in a well-reasoned recommendation for the most suitable solution. In the context of this 

analysis, the following quantities have been utilized to measure performance: 

• CUDA (Compute Unified Device Architecture) Cores: These specialized cores, found in 

NVIDIA GPUs, excel at parallel processing tasks, making them well-suited for deep 

learning algorithms employed in perception systems. Their efficiency in handling multiple 

calculations simultaneously translates to faster processing and real-time performance. 

CUDA Cores are the Nvidia GPU equivalent of CPU cores [98]. 

• Tensor Cores: These newer cores, also found in NVIDIA GPUs, specifically enhance the 

speed of AI training by enabling mixed-precision calculations. This means they can 

handle lower-precision data formats (e.g., FP16) alongside high-precision data while 

maintaining accuracy, significantly accelerating the training process for your perception 

system's neural networks [99]. 

• FLOPs/TOPS: These metrics directly quantify the processing power of a platform. 

FLOPs (Floating-point Operations Per Second) measure the number of floating-point 

calculations, while TOPS (Total Operations Per Second) encompass a wider range 

including integers and other data types. While FLOPs were traditionally used, the advent 

of Tensor Cores has shifted the focus to TOPS, as mixed-precision training often 

benefits from lower-precision operations [100], [101]. 

• VRAM (Video RAM): This specialized memory holds graphics data crucial for real-time 

graphics processing applications. In the context of a perception system, it stores 

information like depth maps, shadow maps, texture maps and other intermediate results 

generated by the processing units. Having sufficient VRAM ensures smooth and efficient 

processing of visual data. 

Beyond the Numbers: 

5.2.2 MicroControllers 

While microcontrollers boast undeniable advantages in terms of power consumption, weight, 

and price, their suitability for a mobile robot's perception system demands careful evaluation. 

This subchapter dives into the key characteristics of microcontrollers, highlighting their 

strengths and limitations in the context of perception tasks. 

• Performance: Microcontrollers are champions of efficiency, specializing in dedicated, 

real-time tasks with minimal computational overhead. However, this very strength 

presents a significant hurdle for perception systems. They usually lack dedicated 

floating-point math units which renders them incapable of handling the complex 

computations required for algorithms like convolutional neural networks or spatial 

mapping. The resulting performance limitations can make them unsuitable for the 

demanding requirements of perception systems in mobile robots. 
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• Memory: Microcontrollers prioritize compact footprints, resulting in severely limited 

memory resources. Typically offering only a few megabytes of RAM, they fall far short of 

the memory requirements for processing visual data and constructing spatial maps. This 

constraint effectively bars them from consideration for perception applications. 

• Interface: The miniature size of microcontrollers comes at the cost of standard 

interfaces. USB ports, often used for camera and LiDAR connections, are scarce, 

requiring custom solutions using serial communication pins. Additionally, their 

programming often demands specialized tools and knowledge, deviating from common 

operating systems used in perception systems. 

• Power Consumption: Microcontrollers excel in minimizing power draw, consuming 

mere milliwatts. This makes them ideal for applications where battery life is paramount. 

However, the computational platform of a mobile robot is often one the least power 

consuming modules on the robot accounting for only a small portion of its total power 

usage. 

• Weight: Microcontrollers reign supreme in the weight category, typically weighing only a 

few grams. This minimal footprint makes them attractive for robots prioritizing agility and 

maneuverability, like UAVs or small rovers. 

• Price: Microcontrollers boast affordability, with most models costing under $100. This 

price advantage makes them attractive for cost-sensitive projects. However, the trade-off 

in performance and capabilities must be carefully considered before deciding. 

 
Figure 5-6: Some of the most popular Microcontrollers. 

5.2.3 Single-Board Computers (SBCs) 

Single-Board Computers (SBCs) offer an intriguing proposition for a mobile robot's 

perception system, balancing compact size with significant performance gains over 

microcontrollers. This subchapter delves into their key characteristics. 
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• Performance: The advantage of SBCs lies in their diversity. Performance varies greatly, 

with some SBCs exceeding microcontrollers by orders of magnitude and others 

approaching the capabilities of mini-computers. Options capable of processing several 

TFLOPs (Trillion Floating-point Operations Per Second) are widely available, while high-

end SBCs harness Tensor Cores to reach impressive 275 TOPS (Total Operations Per 

Second) [102].  

• Interface: Despite their compact size, SBCs are surprisingly well-equipped. They boast 

multiple USB ports, Ethernet connections, and often HDMI outputs, enabling 

compatibility with diverse cameras, LiDAR sensors, and displays. Furthermore, their 

support for common operating systems like Linux and Windows allows for leveraging 

existing software packages or developing custom solutions with relative ease. While 

some hardware-specific tweaks might be necessary depending on the chosen SBC 

architecture, the level of flexibility they offer far surpasses microcontrollers. 

• Power Consumption: One of the key strengths of SBCs is their power efficiency. Even 

the most powerful options typically consume only tens of watts, significantly less than 

mini-computers or workstations. This translates to longer battery life for the agricultural 

robot, a crucial factor for extended operation. However, higher performance often comes 

at the cost of slightly increased power draw, so specific workloads must be carefully 

considered before selecting. 

• Weight: While not as light as microcontrollers, SBCs remain relatively lightweight, 

typically ranging from 100 grams to slightly over 1 kilogram. This balance between 

portability and processing power makes them ideal for robots where maneuverability and 

computational capabilities are equally important, like legged robots or rovers. 

• Price: Simple SBCs catering to basic tasks can be found for under $100, making them 

an attractive option for budget-conscious projects. However, as performance and 

processing power increase, so does the price tag. SBCs capable of handling AI and 

vision applications typically range from $100 to $3,000, requiring careful consideration of 

budget and performance requirements. 

 

 
Figure 5-7: Some of the most popular SBCs. 
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Table 4-1 presents three popular SBCs compared to an Nvidia GeForce RTX 3070 mobile 

graphics card for intuition purposes, as a standalone graphics card cannot support common 

operating systems. For that, a motherboard hosting a CPU, RAM and the graphics card 

must be used. 

Table 5-1: Popular SBCs currently in the market. 

Specification 
Google Coral Dev Board 

(4GB) [103] 

Jetson 
AGX Xavier 

(64GB) 
[104] 

Jetson 
AGX Orin 
(64 GB) 

[102]  

Nvidia 
GeForce 

RTX 
3070 [10

5] 

AI performance 4 TOPS 32 TOPS 275 TOPS 
~ 200 
TOPS 

Cuda Cores n/a 512 2048 5888 

Tensor Cores n/a (dedicated TPU) 64 64 184 

Memory 4 GB RAM 
64GB 
shared 

64 GB 
shared 

8GB 
VRAM 

Storage 8 GB eMMC + 64GB 
expandable 

64GBeMMC 64GBeMMC n/a 

Power 5W 10W-30W 15W-60W 
115W 

(Laptop) 

OS Linux Mendel 
Ubuntu 
based 

Ubuntu 
based 

any 

Weight 250g 
630g (with 

fan) 
1580g (with 

fan) 
~1kg 

(with fan) 

Price ~175€ ~1600  ~2400  ~500€  

5.2.4 Mini-PCs 

Mini PCs offer an alternative path, bridging the gap between compact SBCs and powerful 

workstations. This subchapter explores their key capabilities and limitations. 

• Performance: Mini PCs occupy the middle ground in terms of processing power. They 

harness components typically found in laptops or even desktops, albeit in compact 

versions often lacking dedicated cooling systems. While this grants them significant 

performance gains over SBCs, thermal limitations can emerge under sustained 
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workloads. The thermal management capabilities of any mini-PC must be evaluated 

carefully to ensure it can deliver consistent performance for the perception system's 

demands. 

• Interface: One of the key advantages of mini-PCs lies in their seamless integration with 

existing infrastructure. They function like traditional PCs, supporting common operating 

systems and software packages out of the box. This minimizes the need for extensive 

hardware or software modifications, allowing the usage of established tools and 

development environments. Additionally, they typically offer a wide range of ports similar 

to full-sized PCs, ensuring compatibility with diverse sensors and devices. 

• Power Consumption: Compared to full-sized desktops, mini-PCs boast improved power 

efficiency. However, they are significantly less power-efficient than SBCs. The presence 

of dedicated graphics cards, often crucial for AI and vision applications, alone pushes 

power consumption above 100 watts. Including separate RAM and CPU units can raise 

total consumption under load to over 200 watts. The robot's battery life and operating 

environment must be carefully considered when evaluating this trade-off. 

• Weight: While not bulky, mini-PCs are heavier than SBCs, typically ranging from 1.5 to 

slightly over 2 kilograms. This increased weight might impose limitations on robots 

prioritizing maximum agility or operating on weight-sensitive platforms. 

• Price: Basic mini-PCs, lacking dedicated GPUs, offer attractive affordability, readily 

available for under 900€. However, for AI and vision applications requiring hardware 

acceleration, the costs escalate. Integrating an external graphics card or opting for a 

mini-PC with a built-in laptop GPU pushes the price closer to 2000€.  

Table 4-2 presents three popular mini-PCs compared to an Nvidia GeForce RTX 3070 

mobile graphics card for intuition purposes. 

Table 5-2: Popular Mini-PCs currently in the market 

Specification  

MinisForum 
UM700 (16GB) 

[106] 

11th Gen Intel NUC 
+ Nvidia 3070 EGPU 

(64GB) [107] 

Zotac 
MAGNUS 

EN173070C 
[108] 

Nvidia 
GeForce 
RTX 3070 

[105] 

AI 
performance 

3 TFLOPS1 
<150TOPS(usbc 

bottleneck) 
>200 TOPS 

~ 200 
TOPS 

Cuda Cores n/a 5888 5888 5888 

Tensor Cores n/a 184 184 184 

Memory 
16 GB RAM 
(max 32GB) 

64GB shared 
64 GB/8 GB 

VRAM 
8GB VRAM 

Storage 256 GB 
(expandable) 

64GBeMMC 
2 SSD slots 
expandable 

n/a 
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Power 65W 10W-30W + 90W 150W-220W 
60W - 
115W 

(Laptop) 

OS Any Ubuntu based any any 

Weight 500g 504g + 4kg 1.8kg 
~1kg (with 

fan) 

Price ~430€ 
~1100€ (NUC 

barebone is 460€) 
~2000€ ~500*€ 

5.2.5 Laptops 

While laptops share many similarities with mini-PCs in terms of performance, interface, and 

price, their inherent form factor presents both advantages and disadvantages for mobile 

robot applications. On the positive side, laptops offer readily available hardware 

configurations, diverse port options, and familiar operating systems, streamlining integration 

and development. Additionally, their built-in batteries provide some level of independent 

operation, potentially beneficial for short-term deployments. 

However, their larger size and weight significantly impact a mobile robot's 

maneuverability and energy efficiency. The constant demand for external power limits their 

operational range, and heat dissipation becomes a critical concern, often requiring active 

cooling systems that further increase weight and power consumption. Furthermore, their 

ruggedness and protection against environmental elements might require additional 

modifications, adding complexity and cost. Last, their screen accounts for a great part of 

their total power consumption. 

5.2.6 Comparison and Decision 

Having analyzed various computing platforms for our mobile robot's perception system, we 

arrived at a compelling choice: the NVIDIA Jetson AGX Orin, an SBC (Single-Board 

Computer).  

Microcontrollers, while boasting exceptional power efficiency and minimal weight, were 

ultimately disqualified by their limited performance and memory, rendering them incapable of 

handling the complex computations required for real-time perception applications. Mini PCs, 

while offering increased performance and familiar interfaces, presented challenges in terms 

of power consumption and weight, potentially hindering the robot's agility and operational 

range. Laptops, despite their versatility, were deemed unsuitable due to their inherent bulk 

and limited battery life, compromising the robot's portability and independence. 

SBCs emerged as the ideal compromise, balancing performance with portability and 

efficiency. Their diverse range allows for tailored selection based on specific needs, and 

their compact size minimizes weight concerns. The NVIDIA Jetson AGX Orin, specifically, 

stood out amongst SBCs due to its exceptional capabilities. Figure 5-8 illustrates a 

comparative analysis which underscores the Orin's suitability for real-time applications. Orin 

features both NVIDIA cores and Tensor Cores, delivering exceptional processing power for 

demanding perception and machine learning tasks. Despite its impressive performance it 
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maintains moderate power consumption, ensuring longer operation and compatibility with 

battery-powered robots. The SBC's small form factor and light weight minimize its impact on 

 
Figure 5-8: Bar graph illustrating the relationship between performance and other features for the top 

platform of each category. 

the robot's mobility and agility. The Orin offers a wide range of ports and connectivity 

options, enabling seamless integration with various sensors and devices. It can not only host 

all ZED depth cameras, but it also allows for connectivity with the ZED X mini depth camera, 

one of Stereolabs latest additions to its plethora of cameras. Additionally, the NVIDIA 

ecosystem provides extensive development tools and resources, streamlining the 

implementation and optimization of perception and machine learning algorithms.  

By leveraging the NVIDIA Jetson AGX Orin's strengths, any mobile robot can be 

efficiently empowered with a perception system capable of real-time obstacle detection, 

navigation, and environment understanding.  

5.3 Field of View Visualization and Lidar Resolution Analysis Tool 
(FoVaLiRa) 

The process of designing a perception system for a robot involves deciding not only what 

sensors are going to be used but also what their position and rotation on the robot will be. 

The ability to visualize the combined field of view produced by camera and lidar sensors on 

the robot in simulation assists with such design decisions. While several online tools 
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visualize field of view (FOV), they lack the detail, realism, and versatility necessary for 

effectively comparing diverse 3D perception system designs. Consequently, we opted to 

develop our custom FOV visualization tool within the Unity game engine. This tool facilitates 

informed design decisions regarding blind spots, coverage, and resolution for both depth 

cameras and LiDARs, commonly employed for 3D mapping on mobile robots. 

5.3.1 The Scene 

Unity 

The Unity Development Platform was used to create the 3D simulated environment and 

code the behavior of the sensors in it. Unity was chosen over other simulators for several 

reasons: 

•  Unity currently supports over 25 different platforms making it a cross-platform engine. 

[109] 

• As of 2020, Unity-made applications were used by 2 billion monthly active users, with 1.5 

million monthly creators [110]. The vast community behind Unity enables developers to 

ask questions and quickly find solutions to their issues. 

• Unity is lately transitioning to Robotics, AI and simulation applications with new and 

actively supported packages [111]. 

• Unity provides a visually intuitive and user-friendly development environment, allowing 

researchers and developers with varying levels of programming expertise to create and 

interact with simulations. This can be particularly beneficial for future projects in CSL 

requiring rapid prototyping and iterative design, where quick visualization and 

modification of the simulated environment are crucial. 

• Unity offers a vast library of pre-built 3D assets and environments, encompassing 

various objects and scenarios relevant to agriculture and mobile robotics. Additionally, its 

robust physics engine enables realistic simulation of object interactions, force dynamics, 

and sensor responses within the virtual environment, further enhancing the validity and 

reliability of the simulation for research purposes. 

Simulated Vineyard 

Within the Unity platform, we constructed a 3D simulated vineyard scene reflecting typical 

viticulture practices in Greece. The scene incorporates essential vineyard row parameters, 

including an inter-plant spacing of approximately 1 meter and a minimum grape height of 

0.60 meters. Virtual grape clusters are modeled as capsules, while the vine canopy exhibits 

a realistic density, leading to diverse visibility conditions. Specifically, a portion of the grapes 

are partially obscured by leaves, while others are situated in the foreground plane. The 

vineyard layout comprises two parallel rows, each measuring 4 meters in length, situated on 

even terrain. 

Figure 5-9 illustrates the scene that a user views after downloading, installing, and launching 

the developed Unity Project. To the left of the scene tab, on the Hierarchy tab, the user can 

see that the vines are registered as Vine Trees under the Obstacles object category. On the 

scene tab, within the branches of the vines, the user can observe the blue capsules that 

represent grape clusters and are registered as targets on the Hierarchy tab, as those are the 

objects of interest for the robot. 
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Figure 5-9: The default starting scene in Unity. 

In the Hierarchy tab, some object names can be seen in fainted white color. These 

objects are also present in the scene but they are deactivated. The user can select any of 

these from the Hierarchy tab. Thus, the Inspector tab on the right side of the window will 

display information about the selected object. To activate the selected object, the user can 

check the checkbox near the name of the selected object in the Inspector tab. 

 
Figure 5-10: Activating and Deactivating an Object 

The objects that are deactivated by default are the Spot robot model and three objects 

labeled as Sensors. The Spot robot model can be used as an alternative to the Laelaps 

robot model. The Sensors represent lidar (or camera) sensors and are by default placed on 
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the sides and on the front face of the Lealaps robot model. Activating the three objects 

labeled as Sensor, Sensor (1) and Sensor (2) and clicking on play to run the simulation - the 

play and pause buttons are on the middle of the Unity toolbar on the top of the screen - will 

start the visualization of each sensor’s field of view. Figure 4-11 illustrates the running 

visualization for this configuration.  

     
Figure 5-11: The scene while running the visualization. 

5.3.2 Configuration 

The user can configure several parameters to simulate different sensor setups. The list of 

parameters that can be configured for each sensor is as follows: 

position(x,y,z) : The position of the sensor in the scene, relative to the laelaps robot 

transform. Values are in decimeters. 

rotation(x,y,z) : The rotation of the sensor in the scene, relative to its own transform. Values 

are in degrees. 

View Radius: The range of the lidar while scanning horizontally (or max range for camera). 

View Angle: The horizontal view angle of the lidar (or camera). 

Vertical View Radius: The range of the lidar while scanning vertically (or max range for 

camera). 

Vertical View Angle: The vertical view angle of the lidar (or camera). 

Mesh Resolution: Number of rays cast for each horizontal mesh divided by the horizontal 

view angle in degrees (See section "How it was made" for more intuition). 

Horizontal Offset Resolution: Number of horizontal meshes to be cast, divided by the 

vertical view angle in degrees (See section "How it was made" for more intuition). 

Vertical Mesh Resolution: Number of rays cast for each vertical mesh divided by vertical 

view angle in degrees (See section "How it was made" for more intuition). 

Vertical Offset Resolution: Number of vertical meshes to be cast, divided by the horizontal 

view angle in degrees. (See section "How it was made" for more intuition). 

Edge Resolve Iterations: Binary search iterations to resolve the "edge problem" (See 

section "How it was made" for more intuition). 

Edge Distance Threshold: Minimum distance at which an obstacle would be considered to 

be too far to be accounted for the resolution of the "edge problem" (See section "How it was 

made" for more intuition). 

There are two ways to easily set the position and rotation of the sensors on the scene 

as well as to configure the sensor parameters: One is through modifying the instantiation.txt 
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file located in the project folder. The other is using the Unity Editor to directly edit the scene 

and the sensor parameters. 

Configuration using the instantiation file 

The "instantiation.txt" file is located inside the project folder. Essentially, the instantiation file 

represents an array. The elements of the array inside each row are separated by commas 

as the file is in csv format. The first row contains the headers of each column. Each row 

added after the first will cause the instantiation of a new sensor on the scene. The new 

sensor’s parameters will be the elements of the new row in correspondence with the 

headers. As an example, the "typical_instantiation.txt" can be used to instantiate three 

sensors on the lealaps robot, at predefined positions and rotations. These sensors are also 

parameterized arbitrarily. To try the instantiation file, the user can copy the contents of 

"typical_instantiation.txt" inside the "instantiation.txt" file, deactivate the preexisting sensors 

in the scene and run the simulation. If the "instantiation.txt" file cannot be edited while the 

Unity Development Platform is open, then the user might need to close it when editing and 

then open it again to run the simulation. 

Configuration using the Unity Editor 

In the unity editor, the user can activate, deactivate, or duplicate the preexisting sensors 

Sensor, Sensor (1), Sensor (2), Sensor (3) and Sensor (4) which can be found in the object 

Hierarchy. Clicking on a sensor object triggers the inspector to show information about that 

object. The user can configure all the parameters by editing the field of view script for each 

sensor directly in the Inspector. In this case, the "instantiation.txt" file should be empty 

except for the first row (except, of course, if the user desires to both have sensors 

preexisting in the scene and instantiate some more sensors when starting the simulation). 

To change the position and rotation of the sensors on the scene, the user can use the move 

and rotate tools that the Unity Editor offers. To duplicate a sensor, the user can hold the ‘alt’ 

key while translating a sensor in the scene. That will leave the old sensor object in place and 

instantiate a new one. 

Configuring the robot’s animation 

Locating the Lealaps object - which is a child of the LealapsII object - in the object Hierarchy 

and clicking on it will open the inspector tab. The animator component which controls the 

animation of the body of the lealaps robot will be active in this tab. To deactivate it, the user 

can simply click on the checkbox next to its name. The same can be done for the robot’s 

legs: Each leg has two child objects named TopLeg and BottomLeg. Both have animator 

components which can be deactivated from the Inspector tab. To access the animator 

controller for the body or any of the legs of the robot, the user can open the inspector of the 

desired object by clicking on it. Then the user can click on the name box near the controller 

variable in the animator component. An Animator window will appear. The sequence and the 

transition between animations can be controlled in this window. For now, the body executes 

a single translation animation. Each part of each leg executes a translation-rotation 

animation. The right hind and front left legs of the robot execute an idle animation before 

executing the translation-rotation animation to simulate a phase difference. To edit an 
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animation individually, the user can open the animation window (Ctrl+6 hotkey). In there, 

animations can be created and edited via the Dopesheet or the Curves tab. More 

information on creating and editing animations in the Unity Development Platform are 

provided in online documentation [112]. 

5.3.3 The FoVaLiRa development process 

Ray casting 

In the domain of computer graphics, ray casting represents a foundational technique for 

rendering three-dimensional environments onto a two-dimensional display. It simulates light 

rays originating from a specific viewpoint, typically the camera, and calculates their 

intersections with objects within the scene [113]. The closest intersection determines the 

visible portion of an object rendered onto a particular pixel. While computationally efficient 

and particularly effective in early 3D games, ray casting inherently struggles with intricate 

lighting effects and smooth object curvature. Modern rendering techniques, such as ray 

tracing, have emerged to address these imitations: Ray tracing builds upon the principles of 

ray casting but goes further by simulating the full path of light, including reflections and 

refractions, leading to superior visual fidelity [114]. However, this enhanced realism comes 

at the cost of significantly increased processing power [115]. Within the Unity game engine, 

ray casting remains a valuable tool for tasks like object selection and collision detection due 

to its efficient nature. 

FoVaLiRa employs a ray casting approach, where rays are emitted from the modeled 

LiDAR or depth camera sensors towards the simulated environment. These rays are 

organized into a grid-like structure composed of individual meshes, each representing a 

circular sector within the sensor's FOV. The user-defined grid size directly corresponds to 

the desired FOV of the LiDAR. Upon encountering a target object (e.g. grape cluster) within 

the environment, a ray triggers the extraction and return of information regarding the target's 

location. This information can be subsequently utilized for further analysis or visualization 

purposes. 

Forming a single horizontal mesh 

To understand the formation of the grid of meshes, it is simpler to first study how a single 

horizontal 2D mesh is made: Several rays are cast from the center of the sensor radially 

inside the horizontal view angles determined by the user. Figure 5-12 illustrates this from a 

top view.  
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Figure 5-12: Raycasting visualization. The sensor is the white capsule.  

Rays are in red color. Targets are blue capsules. Obstacles are orange rectangular cuboids. 

The number of rays for a given field of view angle is determined by the mesh resolution 

parameter which can be configured by the user. This parameter simulates a lidar’s resolution 

and corresponds to the modelled sensor’s ability to capture detail in the part of the scene it 

covers. The rays do not pass through obstacles. The starting and ending point of each ray 

are sequentially saved in a list as 3D points. This list is then used with Unity’s Mesh class to 

form a flat mesh. Figure 5-13 presents the formed colored mesh, cast from a sensor 

modelled with a capsule. The higher the mesh resolution parameter is set to, the denser the 

formed mesh. 

 
Figure 5-13:A continuous 2D mesh in light blue color. 
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The edge artifact 

The distance that an unobstructed ray travels, is a user-defined parameter called view 

radius. It models the sensor’s range. An edge artifact appears when the edge of an obstacle 

lies between any two cast rays. Thus, one ray hits an obstacle and the next one misses, 

ending naturally on the view radius. The two endpoints of the rays that are used to form the 

colored mesh by the mesh renderer are now forming a triangle (artifact) that passes through 

the obstacle. Figure 5-14 demonstrates that the resulting, colored mesh does not represent 

the actual field of view correctly. 

 
Figure 5-14:The edge problem can be clearly seen if the mesh resolution is lowered. 

To solve the problem, a binary search process is performed. Angles in the domain that is 

formed by the rays that cause the artifact are checked, until an angle, namely a ray direction, 

that passes closely enough to the edge, is found. Then a ray is cast in that direction. The 

more the iterations of the performed binary search, the closer the new ray will be at the real 

edge. The number of iterations can be adjusted by the user by modifying the 

EdgeResolveIterations parameter. Figure 5-15 illustrates the result. 
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Figure 5-15: Solving the edge problem with 5 binary search iterations. 

There is however a problem regarding the condition which triggers the solution of the edge 

problem. Currently, the condition is that when one ray hits an obstacle and the next one 

does not hit an obstacle, ending on the view radius, the solution of the edge problem is 

triggered. The problem is that when both rays hit, but the hit points are a large distance 

apart, the solution should be triggered, but it does not. Figure 5-16 demonstrates this issue. 

 
Figure 5-16:The binary search is not triggered and thus a falsely shaped triangle is formed in the mesh 

To solve the problem, the condition which triggers the solution of the edge problem was 

changed so that the process is triggered either when a ray hits and the next one misses 

ending on the view radius, or two consecutive rays hit and the hit points are a distance apart 

greater than the EdgeDstThreshold (parameter set by the user). Figure 5-17 shows the 

result. The produced mesh is smooth and continuous. Algorithm 4-1 contains the pseudo-

code for the edge artifact problem solution. 
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Figure 5-17:Smooth mesh after applying the edge problem solution. 

ALGORITHM 4-1 EDGEARTIFACTPROBLEMSOLUTION 

Require: (previous ray hits and next ray does not hit) or (previous ray hits and next ray 

hits and next ray endpoint distance > EdgeDstThreshold) 

Ensure: There exists a ray that passes close enough to the obstacle edge. 

  min ← angleOfRayThatHit  

  max ← angleOfRayThatMissed 

  i ← 1 

  while i ≤ EdgeResolveIterations do 

  angle ← (𝑚𝑖𝑛 +
𝑚𝑎𝑥−𝑚𝑖𝑛

2
) 

  Cast newRay with angle, min < angle < max 

  angleOfNewRay ← newRay.angle 

  if newRay hits then 

  min ← angleOfNewRay 

  else 

  max ← angleOfNewRay 

  end if 

  end while 

Add newRay.endpoint to the mesh 

5.3.4 Forming a 3D Mesh 

To form a 3D Mesh, multiple 2D Meshes, rotated around a determined sensor axis were 

utilized. Figure 5-19 demonstrates how rotating horizontal meshes around the sensor’s x-

axis by a specific angle (horizontal offset) simulates a lidar’s scanning slices created by the 

laser’s horizontal motion. The rotated 2D meshes are saved as a single object, a 3D mesh. 
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Figure 5-18: Creating a 3D Mesh by rotating multiple 2D meshes around the sensor’s x axis. 

To make such a 3D mesh denser, the HorizontalOffsetResolution parameter can be 

increased. Similarly, rotating vertical meshes around the sensor’s y-axis by a specific angle 

(vertical offset) simulates a lidar’s scanning slices created by the laser’s vertical motion. To 

make the 3D mesh denser, the VerticalOffsetResolution parameter can be increased. Figure 

5-19 demonstrates this. 

The rotation of each mesh is achieved by rotating the rays that are cast to create it. The 

rays need to be rotated relative to the sensor’s transformation. For each ray there is a 

vector3 variable that determines its direction. It is easier to use rotation matrices to rotate 

each vector around the desired sensor axis [116]. The matrix of a proper rotation 𝑅 by angle 

𝜃 around the axis 𝑢 = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧), a unit vector with 𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2 = 1 is given by: 

 

[

cos 𝜃 + 𝑢𝑥
2(1 − cos 𝜃) 𝑢𝑥𝑢𝑦(1 − cos 𝜃) − 𝑢𝑧 sin 𝜃 𝑢𝑥𝑢𝑧(1 − cos 𝜃) + 𝑢𝑦 sin 𝜃

𝑢𝑦𝑢𝑥(1 − cos 𝜃) + 𝑢𝑧 sin 𝜃 cos 𝜃 + 𝑢𝑦
2(1 − cos 𝜃) 𝑢𝑦𝑢𝑧(1 − cos 𝜃) + 𝑢𝑥 sin 𝜃

𝑢𝑧𝑢𝑥(1 − cos 𝜃) − 𝑢𝑦 sin 𝜃 𝑢𝑧𝑢𝑦(1 − cos 𝜃) + 𝑢𝑥 sin 𝜃 cos 𝜃 + 𝑢𝑧
2(1 − cos 𝜃)

] 

 
Figure 5-19: (a) Creating a 3D Mesh by rotating multiple 2D meshes by the vertical y-axis.  

(b) Increasing the mesh resolution. 

To form a denser and uniform 3D mesh, the rotation of both vertical and horizontal 2D 

meshes is necessary. Rotating horizontal meshes around the sensor’s x-axis by a specific 

angle (horizontal offset) and vertical meshes around the sensor’s y-axis by a specific angle 

(vertical offset) simulates a lidar’s scanning slices created by the laser’s horizontal and 
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vertical motion. Figure 5-20a demonstrates that the resulting field of view closely resembles 

the geometry of a depth camera or lidar field of view. Figure 5-20b Illustrates a denser 3D 

mesh. To make a uniform 3D mesh denser, the VerticalOffsetResolution parameter, the 

HorizontalOffsetResolution parameter or both parameters can be increased. This type of 

field of view visualization is the most accurate of those discussed so far and was extensively 

used to assist with decisions regarding a robot’s perception system. 

 
Figure 5-20:3D meshes formed by rotating horizontal and vertical meshes. 

5.3.5 Detecting Visible Targets 

The blue capsules in the scene represent targets. Targets that are in the overall field of view 

of the robot’s perception system are marked with red color instead of blue. The information 

that a target is inside the overall field of view can be acquired in two ways: The first one is 

utilizing the rays that are cast to form the 2D meshes. A check can be run for each ray to 

determine if the ray hits a target or not. If a target is hit, it can then be marked as visible, and 

it can be added to a list containing all the visible targets. In an editor script, the red color can 

be assigned to every target in the list with the visible targets. This method simulates a lidar’s 

visibility constraints, attributed to its resolution. This method can test a lidar’s both vertical 

and horizontal resolution. Namely, as Figure 5-21 illustrates, if a target’s dimensions are 

smaller than the dimension of a single cell in the 3D mesh grid formed by the rays, then the 

target could remain undetected even if its position is in the sensor’s effective field of view. 

This test case simulates a lidar that is unable to map a small object or detail despite the 

latter being inside the lidar’s declared field of view.  
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Figure 5-21: Capsule target is positioned in the effective field of view but is too small to be detected by 

the sensor. Thus, it is not colored red. 

The second way to acquire the information that a target is inside the overall field of view, is 

to simply use math to check if the center of the target lies within the field of view locus. For 

that to be true, three conditions must be met.  

• The distance between the sensor’s center and the target’s center must be smaller than 

the view radius. 

• The angle α formed by the sensor’s z transform vector (front vector) and the projection 

of the target’s relative position vector to the sensor’s 𝑦⃗ plane, must be smaller than the 

horizontalViewAngle (HOVA). Figure 5-22a illustrates this constraint. 

• The angle β formed by the sensor’s z transform vector (front vector) and the projection 

of the target’s relative position vector to the sensor’s 𝑥⃗ plane, must be smaller than the 

verticalViewAngle (VEVA). Figure 5-22b illustrates this constraint. 

This method simulates a depth camera’s visibility effectiveness, if it is assumed that the 

camera has no blind spots within its FOV. 

         
Figure 5-22: Using the field of view locus method to determine if a target is visible. 
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5.4 The Lealaps Perception System 

5.4.1 Perception System Requirements 

To determine the ideal position and rotation of the sensors on the lealaps robot, a list of 

specific requirements was considered. These requirements resulted from the intended use 

of the robot, namely in outdoor agricultural environments and more specifically in vineyards 

for grape and vine inspection. Naturally, each of these requirements cannot always be 

fulfilled and therefore, trade-offs play an essential role when designing the lealaps 3D 

perception system. In summary, the 3D perception system requirements for the lealaps 

robot are shown in Error! Reference source not found.. 

Table 5-3: Summary of 3D perception system requirements. 

index Requirement 

1 The 3D perception system should have the best possible observation area and the least possible blind 
spots. 

2 The 3D perception system should be energy efficient. 

3 The view radius of the robot should be large enough for the robot to detect obstacles early enough to 
avoid them. 

4 The vision of the robot should not be heavily impaired under adverse weather or lighting conditions. 

5 The 3D perception system should be capable of distinguishing visual features and areas of interest in 
ranges of at least up to two meters. 

6 The update rate of the sensors of the perception system should be high enough to allow for fast 
perception in all directions. 

7 The 3D perception system should be capable of mapping whole vines and similar plants which can 
reach a little more than a meter in height. 

5.4.2 Discussing possible sensor configurations 

With these requirements in mind, seven different sensor configurations for the laelaps 3D 

perception system were tested using the Field of view visualization tool in unity.  

1. Laelaps with 2x Zed2 Depth Cameras [16] and a Velarray M1600 Lidar [117]. The 

FOVALIRA tool in unity was used to check for blind spots and overall visibility constraints 

for this configuration. Figure 5-23 illustrates that this option offers a large observation 

area covering the whole front and sides of the robot, with small and not substantial blind 

spots. However, there is no view from the back of the robot, which could be useful in 

case the quadruped performs maneuvers which require it to move backwards. An extra 

Zed2 stereo camera could be added at the back of the robot providing the setup with a 

near 360◦ field of view. In terms of energy efficiency, this setup is lightweight and 

efficient. The ZED2 cameras consume a mere 1.9W each [118] while the Velarray 

M1600 Lidar, being a solid state lidar with no moving parts, needs 15 W [119] at most to 

be fully operational. In addition, the update rate of solid state lidars is typically higher 

than that of conventional lidars. Conventional lidars are sometimes slow when it comes 

to coverage in all directions. The limitations are clear in state-of-the-art robot platforms 

such as those that participated in the DARPA Robotics Challenge in 2017 (DRC 2017), 

which had slow update rate as reported by some of the teams [120]. The M1600 can 

manage a 25Hz refresh rate which is higher than its conventional lidar counterparts. 

Furthermore, combining lidars and depth cameras allows for versatility even in adverse 

weather or lighting conditions. Lidars do not require external light sources to operate, 

and their functionality is not affected by changes in lighting conditions. Cameras on the 
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other hand are generally not as susceptible to rain, fog, or dust as lidars. They can also 

map reflective surfaces with more accuracy than lidars. However, given that the field of 

view of the cameras does not overlap with the field of view of the lidar, if a sensor 

underperforms then the whole system is affected. 

 
Figure 5-23: Lealaps with 2x Zed2 Cameras and a Velarray M1600 Lidar. (a) Top view. (b) Side view. 

2. Laelaps with 4x Intel Realsense D435 depth Cameras [121]. This option also offers a 

large observation area covering the whole front, sides and back of the robot, with small 

although not negligible blind spots. Figure 5-24 illustrates this configuration. In addition, 

the D435 depth cameras offer a large vertical field of view angle (58◦), which allows the 

robot to easily obtain depth images of tall plants, even when standing close to them. In 

terms of energy efficiency, this setup is lightweight and very efficient. The maximum 

power draw of the Vision Processor D4 Board, which handles power for both the Vision 

Processor D4 and the Depth Module of the D435 camera, is rated at 700 mA [122]. With 

a nominal supply voltage of 5V, each camera consumes a mere 3.5W for a total of 14W 

for the whole setup. Nevertheless, this setup utilizes only depth cameras. The absence 

of a lidar means that the field of view radius or the effective range of the perception 

sensors is smaller, while the point cloud quality at the front side of the robot would be 

inferior as lidars do produce higher quality and relatively artifact-free depth-clouds. 

 
Figure 5-24: Lealaps with 4x Intel Realsense D435 depth Cameras. (a) Top view. (b) Side view. 
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3. Laelaps with 5x Intel Realsense D435 depth Cameras. An interesting approach to 

keeping the simplicity and energy efficiency of the second setup, while raising the depth-

cloud quality at the same time is adding a fifth Intel Realsense D435 sensor. Since most 

obstacles and points/areas of interest will appear in front of the robot, the extra camera 

should be placed on the front side of the robot, alongside the preexisting front depth 

camera. In this particular approach, the two front cameras are rotated around the y-axis, 

which in unity is the vertical axis, at 20◦ inward so that their field of views overlap. Figure 

5-25 illustrates this configuration. This creates information redundancy but yields a 

higher quality depth-cloud overall, since a single underperforming front sensor (for 

example due to dust or strong direct light on the lenses) will not affect the generated 

front depth map. This setup, nevertheless, does not increase the effective range of the 

robot’s perception. It does, however, reduce the size of the blind spots on the front side 

of the overall field of view. Boston Dynamic’s spot robot utilizes a similar perception 

system [123].  

 
Figure 5-25: Lealaps with 5x Intel Realsense D435 depth Cameras. (a) Top view. (b) Side view 

4. Laelaps with 4xD435 + Velodyne Ultra Puck Surround View Lidar [124]. 

Informational redundancy can lead to a more robust perception system. This approach 

utilizes overlapping 3D fields of view to accomplish just that. On the center top of the 

robot, a Velodyne Ultra Puck Surround View Lidar offers a 360◦ field of view with high 

resolution. To refine the resulting point cloud, 4xD435 depth cameras, one in every side 

of the robot, provide additional depth images. Figure 5-26 clearly shows that there are no 

blind spots with this setup and an underperforming sensor will not significantly affect the 

produced point cloud. A major drawback of this system is the weight and the limited 

energy efficiency. The lidar alone is around 1kg heavy. It consumes 10W of power at 

typical operating conditions [125]. The cameras combined weigh 1kg and consume a 

total of 14W. Thus, the setup weighs 2kg and consumes 24W of power. This makes this 

perception system the heaviest and most energy-consuming system discussed so far. In 

addition, it is not focused on one side of the robot. The field of view expands evenly 

away from the robot. This is usually not desired, as four legged robots are generally 

more agile when moving forwards and thus it is a preferable design choice for the 

perception system to be focused on the front side of the robot. Anybotics Anymal C robot 

utilizes a similar perception system [126].  
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Figure 5-26: Laelaps with 4xD435 + Velodyne Ultra Puck Surround View Lidar. (a) Top view. (b) Side view. 

5. Laelaps with 4xD435 and an extra D435 at the front, rotated around the x-axis. This 

configuration aims to improve the robot’s perception in the front, while also improving the 

overall vertical field of view. Robots that will commonly encounter obstacles (e.g. 

branches) high above their body height or need to gather visual information from tall 

objects and structures will benefit from a design like this. Figure 5-27vdemonstrates that 

several -though not significant -blind spots appear when visualizing the overall field of 

view of this perception system. The small overlap between the two front camera’s field of 

view will yield slightly better point cloud quality in the fused map shaped in the front of 

the robot. The system is very energy efficient and lightweight since it only utilizes 

lightweight depth cameras with low consumption (typically 3.5W). Xiaomi’s Cyberdog 2 

utilizes a similar setup, due to its need to have visual contact with human faces and 

gestures [127]. 

 

 
Figure 5-27:Top view of Lealaps with 4x Intel Realsense D435 depth Cameras and an extra D435  

at the front, rotated around the x-axis. 

5.4.3 Deciding on a near optimal sensor configuration for Laelaps 

The Laelaps robot, being optimally designed using a combination of criteria related to 

forward speed, would benefit from a perception system that is focused on the field of view in 

front of the robot. However, in agricultural environments, the robot will encounter difficult 

terrain, dead-ends and obstacles that cannot be easily avoided. In such conditions, the 
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quadruped will be required to rotate, turn and even walk backwards. Therefore, the robot 

should be equipped with a setup that produces a near 360◦ field of view. Considering this, as 

well as the summary of 3D perception system requirements presented in Table 1, the 

Laelaps sensor configuration would benefit from 4x ZED2 Stereo Depth cameras and one 

Velarray M1600 Solid State Lidar. Combining a Lidar with depth cameras will provide 

versatility and robustness even in adverse weather or lighting conditions. Placing the lidar on 

the front side of the robot and overlapping its field of view with that of the front depth camera 

will add to the valuable point cloud quality in front of the robot. 

Capitalizing on the increased range of the lidar, the lidar is placed at a subtler downward 

angle than the front depth camera. Figure 5-28 illustrates the setup. Thus, the camera 

mainly maps the ground close and in front of the robot, while the lidar captures information 

about terrain and obstacles further ahead. This system is both lightweight and energy 

efficient. The lidar consumes at most 15W of power while all the depth cameras combined 

consume an average of 6W of power. Each depth camera weighs about 125g while the solid 

state lidar weighs well below 1kg. The lidar offers premium quality mapping at distances 

from 0.1m to 30m while the depth cameras have depth ranges of up to 20m. 

For the initial laboratory experiments involving the robotic rover, a simplified sensor 

configuration was utilized due to budgetary and accessibility constraints. This temporary 

setup consisted of three ZED depth cameras: one ZED2 facing forward, one ZED2 facing 

backward, and one ZED X mini with a wide field of view positioned on the side of the rover. 

This configuration provided adequate view coverage for the current research phase, which 

focused on single-row vineyard mapping without complex obstacle detection requirements. 

However, in future deployments involving the quadruped robot and potentially more 

challenging environments, the sensor configuration encompassing four ZED2 cameras and 

the Velarray M1600 LiDAR will be implemented. 

 
Figure 5-28: Top view of Lealaps with 4x ZED2 depth Cameras and a Velarray M1600 Solid State Lidar  

at the front, placed at an angle. 
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6 Simulation Experiments 

6.1 Simulated World 

The vineyard inspection and 3D reconstruction framework proposed in this work was 

extensively tested in simulation. To thoroughly evaluate the framework, a comprehensive 

simulation environment was established using Gazebo [128]. This simulated environment 

closely mirrored the real-world testing compartment located within the Control Systems 

Laboratory. This room comprises a synthetic vineyard designed specifically for agricultural 

robot experimentation. The controlled lighting conditions within the laboratory are replicated 

in the simulation. The vineyard layout features three equally spaced vine rows, forming 1-

meter-wide corridors for robot navigation. The ground texture replicates a mosaic pattern, 

and the inclusion of three cast iron radiators near the walls further enhances the realism of 

the simulation. A high-fidelity robotic platform (RP) model was designed and integrated 

within the simulated environment. This model meticulously replicates the actual RP intended 

for deployment in subsequent real-world experiments.  

 
Figure 6-1:The simulated world in Gazebo. 

An April Tag was placed at the beginning of the second row. Its purpose is to facilitate the 

loop closure process which takes place as soon as the robot effectively aligns its left camera 

with the April Tag. April Tags and their significant impact on correcting accumulated 

odometry errors in the context of the developed framework are thoroughly described in 
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section 2.1.4 of this thesis. Finally, a two-dimensional map of the simulated world was 

designed for visualization purposes. The map reflects the real-world dimensions of the 

development space with high-fidelity. Rviz [129] and foxglove studio [130] are the two 

software platforms that were utilized to visualize RP’s movement through the simulated 

vineyard, as well as to monitor valuable data.  

 
Figure 6-2: The RP and the April Tag in the Simulated Environment 

 
Figure 6-3: RP’s trajectory and simulated environment map as seen from foxglove studio. 
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6.2 Simulated Robotic Platform 

The simulated Robotic Platform’s design closely follows that of the real robotic platform that 

is deployed at the Control Systems Laboratory in subsequent experiments. Its motion 

system features four mecanum wheels to provide the robot with omnidirectional motion 

capabilities. Mecanum wheels are a type of wheeled drive system that allows land-based 

vehicles to move in any direction. They are commonly used in mobile machines, such as 

forklifts and industrial or research robots. Mecanum wheels consist of a series of rollers with 

an axis of rotation at 45° to the wheel plane and at 45° to the axle line. This allows the wheel 

to produce both longitudinal and transverse forces, which enables the vehicle to move 

sideways, diagonally, and even spin in place [25]. Mecanum wheels are used in situations 

where a small turning radius, high maneuverability and movement on difficult terrain are 

desired. In the experiments conducted for the purposes of developing the vineyard 

inspection and reconstruction framework, these wheels were especially valuable for aligning 

the robot’s side camera with the April Tag before performing loop closure. 

 
Figure 6-4: (a) A pair of mecanum wheels used on the RP.  

(b) Utilizing mecanum wheels to move in various directions: 
blue: wheel drive direction, red: vehicle moving direction, red dot: center of rotation. 

For a comprehensive understanding of the proposed robotic platform's behavior and 

effective control strategy development, it is crucial to analyze its kinematic properties. If we 

consider a 𝑥𝑠𝑂𝑠𝑦𝑠 frame attached to the center of the robot’s chassis, we can write the body 

speed equations as follows: 
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where R is the wheel radius,  𝜔𝑖  is the angular velocity of the wheel 𝑖  and 𝑙1, 𝑙2  are the 

distances between wheel axis and body center. If the speed of the robot is imposed, we 

have to compute the angular speed of each wheel (inverse velocity solution): 
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to acquire for the RP: 

 
𝑣𝑥(𝑡) = (𝜔1 + 𝜔2 + 𝜔3 + 𝜔4) ∙

𝑟

4
, 

𝑣𝑦(𝑡) = (−𝜔1 + 𝜔2 + 𝜔3 − 𝜔4) ∙
𝑟

4
, 

𝜔𝑧(𝑡) = (−𝜔1 + 𝜔2 − 𝜔3 + 𝜔4) ∙
𝑟

4(𝑙𝑥+𝑙𝑦)
, 

(6-3) 

where  𝑣𝑥(𝑡) is the longitudinal velocity, 𝑣𝑦(𝑡) is the transversal velocity and 𝜔𝑧(𝑡) is the 

angular velocity of the RP. 

 
Figure 6-5: Kinematics of the RP. 

The robotic platform was fitted with four simulated stereo depth cameras each facing in a 

different direction. The appropriate ZED sensor plugins and STL CAD descriptions were 

used so that the simulated cameras closely resemble real ZED cameras.  

The design of the perception system mounted on the simulated robotic platform (RP) 

aligns demonstrably with the theoretical optimal perception system identified through our 

FOVALIRA evaluations. Future iterations of the RP perception system may incorporate a 

LiDAR sensor to further enhance its capabilities and achieve even closer alignment with the 

theoretical optimal system. 

A 3D Position Interface for Ground Truth (P3D) was applied on the base of the RP 

platform. P3D broadcasts the inertial pose of the RP’s base link in simulation over ROS via 

an odometry msg. This is necessary to evaluate the accuracy of the Multi-camera visual 

odometry by comparing it to the ground-truth odometry produced by P3D.  
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Figure 6-6: The simulated robotic platform. 

6.3 Simulation Software architecture 

6.3.1 Tracking PID 

The robotic platform is tasked with traversing the first and second rows of the simulated 

vineyard by following a strict trajectory designated to it by the path planning algorithm 

described in [19]. A trajectory tracking proportional-integral-derivative (PID) controller named 

tracking_pid ROS [131] is leveraged to enable it to closely follow the designated trajectory. 

Tracking PID is a versatile and flexible ROS package that comprises two main components: 

an interpolator and a controller. The interpolator takes a nav_msgs/Path message containing 

a sequence of waypoints and generates a reference global point (GP) that moves along the 

path at a specified velocity. This GP serves as the target for the controller, which employs 

three separate PID loops – longitudinal, lateral, and angular – to track the GP precisely. 

Tracking PID offers numerous advantages for trajectory tracking applications. It is highly 

customizable, allowing for adjustment of various parameters, such as controller gains, 

acceleration and deceleration limits, and desired velocity. Additionally, it supports various 

types of ROS path representations, including nav_msgs/Path, geometry_msgs/PoseArray, 

and moveit_msgs/RobotTrajectory. One of Tracking PID's key features is its ability to 

accurately track trajectories without compromising velocity smoothness. This is achieved by 

implementing a carrot tracking strategy, where the GP always lies in front of the robot and 

the controller keeps the robot at a constant distance 𝑙 from GP. 

 
Figure 6-7: Tracking PID: Carrot tracking strategy [131]. 
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 𝒆𝒙, 𝒆𝒚, 𝒆𝜽: 𝒆𝒓𝒓𝒐𝒓𝒔.  𝑪𝑷: 𝑪𝒐𝒏𝒕𝒓𝒐𝒍 𝑷𝒐𝒊𝒏𝒕. 

Another notable aspect of Tracking PID is its capability to track trajectories relative to the 

robot's base_link frame. When enabled, the controller utilizes a Projected Global Point 

(PGP) that is projected onto the robot's base_link frame. This allows the robot to follow the 

path in a stricter manner.  

 
Figure 6-8: Tracking PID: Base_link tracking strategy [131]. 

 𝒆𝒙, 𝒆𝒚, 𝒆𝜽: 𝒆𝒓𝒓𝒐𝒓𝒔.  𝑷𝑮𝑷: 𝑷𝒓𝒐𝒋𝒆𝒄𝒕𝒆𝒅 𝑮𝒍𝒐𝒃𝒂𝒍 𝑷𝒐𝒊𝒏𝒕. 

6.3.2 April Tags and Loop Closure 

An AprilTag is placed before the first grapevine of the second row of the simulated vineyard. 

It can be detected using the ZED camera at the right side of the Robotic Platform (RP) by 

using the apriltag_ros package [132]. The apriltag_ros package outputs the transformation 

from the camera frame to the detected AprilTag frame. The position and orientation of the 

April Tag in the map is fixed and accurately known. When the April Tag is detected, the RP 

can acquire an accurate estimation of its position relative to the April Tag and -because the 

pose of the April Tag is known- an accurate estimation of its position in the map. The latter 

pose estimation is compared to the pose estimation acquired from the RP’s dual-camera 

visual odometry. Then, a loop closure thread initiates global bundle adjustment to refine all 

the previously estimated poses and 3D landmarks, therefore correcting the whole estimated 

trajectory of the robot. Many state-of-the-art vSLAM algorithms leverage a Bag of Words 

image representation to detect a loop closure and perform bundle adjustment, as explained 

in 2.2.1. Using April Tags to initiate bundle adjustment is superior to Bag of Words (BoW) 

loop closure approaches in a vineyard setting. This is because the crop is organized in 

parallel and similarly sized rows. There, the bag-of-word approach could result in incorrect 

loop detection due to the high similarity between images. As a result, such vSLAM 

approaches are prone to false positive loop detection in homogeneous environments like 

vineyards. 

The pose of the April Tag relative to that of the robot can be accurately estimated from 

great distances and from various view angles. However, it was observed that the best 

results were produced when the robot detected the April Tag when it was close to it and with 

a view angle of around 90𝑜. Thus, to amplify the valuable odometry corrections of the bundle 

adjustment process, an alignment node was implemented. The alignment node is active 

throughout the experiment but only influences the RP after it has detected the April Tag. It 

then takes over control of the RP and aligns it with the April Tag before registering the April 

Tag pose. More specifically, as soon as the right camera of the RP completely aligns its left 
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lens with the April Tag, its pose is registered, and the bundle adjustment node corrects the 

so-far trajectory of the RP. 

6.3.3 Simulation Experiment Pipeline 

There are many processes running to facilitate the simulation experiments, mainly in the 

form of ROS nodes. The main modules are:  

• The free corridors path planning algorithm that runs in Matlab utilizes polytopic 

decomposition and calculates a viable and non-obstructed path through the first two 

rows of the vineyard, using the 2D vineyard map and producing a dense series of 

waypoints for the RP to pass through. This is the trajectory planning module. 

• The Gazebo simulated world that loads with the synthetic_vineyard.launch launch file. 

This launch file loads the synthetic vineyard world and spawns the Robotic Platform in a 

designated position in the vineyard. It also loads the 2D map for visualization purposes 

and broadcasts necessary static transform messages. 

• The dual-camera, real-time (RT) visual odometry node (visual tracking module) that is 

launched with the DualCamRTAT.launch launch file. This launch file also launches the 

April Tag (AT) Continuous Detection node. Those functions comprise the Real Time 

Localization Module. 

• The April Tag Continuous Detection node publishes over the ROS network whenever a 

Tag is detected. It calculates the transformation between the April Tag and the camera 

that detects it, by analyzing the visual footprint of the April Tag on the camera RGB 

video.  

• The tracking_pid node that controls the RP and ensures that it smoothly tracks the 

trajectory that is defined by the waypoints produced by Kunal’s path planning algorithm. 

This node comprises the Precise Velocity Control module. 

• The view_planning node, which ensures that the robot aligns with the April Tag after 

detecting it. After the robot is properly aligned, the DualCamRT node will register the 

April Tag and perform bundle adjustment to correct the so-far obtained odometry data. 

The view_planning node is also launched by the synthetic_vineyard.launch launch file. 
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Figure 6-9: Simulation Experiment Pipeline. 

Secondary nodes add more functionality to the experiment: 

• The position_to_velocity node takes position and rotation data about the RP from the 

DualCamRTAT visual tracking node and calculates the derivative to output the velocity of 

the RP in real time. 

• The point_cloud_to_pcd node takes point clouds from the right ZED depth camera of the 

RP in real time and saves them in “.pcd” format in the specified folder. These “.pcd” files 

are to be used by the Vinymap quality assessment and reconstruction algorithm for 

canopy density estimation and projective texture mapping. It should be noted that this 

node simultaneously and synchronously saves RGB images in the specified folder. 

These are used in the projective texture mapping process of the Vinymap algorithm. 

• Rosbag record is a command-line tool used to record ROS messages to a file called a 

bagfile. Bagfiles are a flexible format that can store a wide variety of ROS messages, 

including sensor data, actuator commands, and user interactions. They can be used to 

replay recorded data, analyze data offline, and share data across platforms. Valuable 



 

 
113/156 

messages that are broadcasted across a variety of topics are recorded during the 

experiment to be studied and visualized later in Rviz or Foxglove Studio. 

• The P3D gazebo navigation plugin broadcasts ground truth odometry data about the 

position of the RP in the vineyard. These can be fed into the view_planning node to allow 

for best alignment with the April Tag for development and testing purposes. They are 

also used to compare the DualCamRTAT’s odometry data accuracy to ground truth data 

accuracy. When conducting finalized simulation  experiments or real-world laboratory 

experiments, all odometry data used during the experiments are taken from the 

DualCamRTAT visual tracking node which provides the visual odometry of the RP. 

During laboratory experiments, a PhaseSpace Impulse X2E [133] motion capture system 

was used to substitute ground truth data, replacing the P3D gazebo plugin. 
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7 Laboratory Experiments 

7.1 The synthetic vineyard setup 

After extensively testing the proposed vineyard inspection and 3D reconstruction framework 

in a simulation environment, to conduct controlled and repeatable experiments with varying 

light conditions, a vineyard with artificial grapes and leaves was built at CSL. Each row 

consists of multiple plants on a trellis system so that the vegetation form resembles a natural 

canopy. The basic vineyard row parameters, such as the distance between plants (∼1m) 

and grapes’ minimum height (0.60m) is based on common viticulture practices in Greece. 

The artificial grapes’ grid features varying density, grape size, creating different visibility 

conditions since some grapes are partly covered with leaves, whereas others lie on the front 

plane. The vineyard consists of three 3-meter-long rows on even terrain. 

 
Figure 7-1: (a) Synthetic vineyard in CSL. (b) Natural Vineyard located in the Blue Ridge Mountains, USA. 

An April Tag was placed at the start of the second row, at a fixed position, behind the pole of 

the first vine tree of the second row. To guarantee controlled and repeatable performance of 

our custom dual-camera visual odometry (VO) algorithm, we opted for a two-pronged testing 

approach. Firstly, we aimed to acquire ultra-high-quality, near-faultless odometry data to fuel 

our algorithm development without concerns about erroneous measurements. Secondly, we 

sought to verify our algorithm's performance in a real-world scenario. 

For the first objective, we leveraged the PhaseSpace Impulse X2E [133] motion capture 

system. This state-of-the-art system employs active LED markers attached to the robot, 

enabling high-precision tracking within a defined capture space. Unlike camera-based 

systems susceptible to lighting variations and feature quality, the PhaseSpace system 

delivers robust motion tracking independent of ambient conditions. This allowed us to 

acquire highly accurate and reliable ground truth odometry data for meticulous algorithm 

development and evaluation. 

In the second phase, we transitioned to real-world testing settings. Our robotic platform 

navigated two distinct environments: a naturally lit garage (Figure 6-2) and a variably lit room 

(Figure 6-3). The PhaseSpace system was deployed in the second location for continuous 

performance validation. Additionally, during the garage experiments, a DJI Air 2S [134] 

quadcopter captured aerial photographs and videos, providing valuable supplementary data 

for multi-angle analysis. This multifaceted approach enabled us to assess our VO algorithm's 
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efficacy in diverse operational scenarios, bridging the gap between controlled testing and 

real-world deployment.  

 
Figure 7-2: (a) Aerial Photography of the Laboratory Experiment Setup taken by the quadcopter.  

(b) 2D graphical representation of the Laboratory Experiment Setup. 

A Robotic Platform developed for research purposes and altered to host the software 

developed in this work was tasked with traversing the first and second corridors formed by 

the rows of the vineyard. Its trajectory ends near the April Tag. There, the RP was tasked 

with aligning the left lens of its right ZED Depth Camera with the stationary April Tag, exactly 

how it performed in the simulation experiment pipeline. With the knowledge of the position of 

the stationary April Tag, as well as the knowledge of its relative position of its camera to the 

April Tag, the RP can recalculate its pose at the time of registering the April Tag and then 

perform bundle adjustment to correct the so-far odometry data which it collected using the 

dual camera visual slam node. 



 

 
116/156 

 
Figure 7-3: Indoor testing environment with artificial lighting and PhaseSpace system. 

7.2 The Robotic Platform  

CSL’s Robotic Platform (RP) was used to validate and test the proposed software 

framework. The RP is designed and constructed for research purposes, comprising custom 

built in-house parts as well as off-the-shelf parts (e.g. aluminum profiles, bearing units etc.). 

Its motion system features four mecanum wheels [25] to provide the robot with 

omnidirectional motion capabilities. The wheels are powered by four Maxon DC motors (RE 

35) combined with planetary gearboxes (GP 42) and incremental encoders (HEDL 5540), 

providing 5 Nm of continuous torque per wheel. GT2 timing belts and pulleys are used to 

protect actuator shafts from increased robot payloads and to transmit power to the wheels. 

Two RoboClaw [135] 2x30A motor controllers are used to drive the actuators, since each 

controller can drive two DC brushed motors. The encoders attached to the motors are read 

by the controllers, which run local PID control schemes that can precisely follow speed 

commands for all wheels. The two motor controllers are connected via USB to the system’s 

master computer, which is a Raspberry Pi 2 model B [136] (RPi) running the Raspbian OS. 

The operator can connect to the RPi using WiFi and Secure Shell (SSH) Network Protocol to 

run a Python script that establishes two serial connections with the motor controllers and 

sends the desired motion commands. The system is powered by two Wild Scorpion 6S 

22.2v 4200mAh 60C LiPo batteries [137] for the RoboClaw controllers and a power bank for 

the master computer (RPi). 

The perception system of the RP was designed according to the guidelines defined in 

Chapter 4 of this thesis. Although the form factor of a rover differs a lot from that of a 

quadruped robot such as Lealaps or Argos, the hardware which best suits the application of 

vineyard inspection stays, in principle, the same. Thus, the RP was fitted with 3 ZED Depth 

cameras – one at the front of the RP, one at the rear and one at the right side. Due to the 



 

 
117/156 

lower height of the RP, the cameras were not tilted downwards; This would be beneficial for 

a legged robot with a larger form factor as described in section 4.4 of this work, but this is 

not the case for the CSL RP since doing so would move most of the vineyard out of the 

camera field of view. The front and rear cameras are ZED 2 Depth cameras, while the right 

side camera is a ZED X Mini Depth Camera with a 2.2 mm focal length [138]. A shorter focal 

length implies a larger field of view which is desired in this configuration, as a larger area of 

the grapevines can be inspected with a single traversal of the rows. The ZED X Mini Depth 

Camera is also fitted with polarizing lens, which increases the RP’s ability to operate under 

diverse lighting conditions.  

 
Figure 7-4:(a) The Robotic Platform without its perception system. (b) The perception system of the 

Robotic Platform.  

The software framework runs on the Nvidia Jetson AGX Orin which is the processing 

platform purposefully chosen for the perception system proposed in this thesis, as described 

in section 4.2. All three depth cameras are connected to Orin. The ZED 2 cameras are 

connected via USB 3.0, while the ZED X Mini is connected via a GMSL2 Fakra Cable. To 

support this connection, the Nvidia Jetson Orin is fitted with a GMSL2 Capture Card. To 

power the Orin, an Antigravity Micro-Start battery [139] was chosen to provide it with 12V at 

3.5A DC.  

7.3 Laboratory Experiment Software Architecture 

There are many processes running to facilitate the experiments conducted at the synthetic 

vineyard in the laboratory, mainly in the form of ROS nodes. The main modules are:  

• The free corridors path planning algorithm that runs in Matlab utilizes polytopic 

decomposition and calculates a viable and non-obstructed path through the first two 

rows of the vineyard, using the 2D vineyard map and producing a dense series of 

waypoints for the RP to pass through. This is the trajectory planning module. 

• The v-slam.launch launch file which is the file that contains the main software 

functionality. It includes the DualCamRTAT.launch visual tracking module file and 

launches the map loading node, the zed_multicamera_nodelet node, the tracking_pid 

node, the view_planning node, several static tf_publisher nodes and three nodes that 

offer extra functionality; the position_to_velocity, point_cloud_to_pcd and rosbag record 

nodes. 
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• The zed_multicamera_nodelet is launched by the v-slam.launch file and activates all 

three cameras connected to the Jetson AGX Orin. It launches the cameras one by one 

using their serial numbers and sets up their output video feed. 

• The map loading node which publishes a static 2D vineyard map of the fixed laboratory 

environment over ROS, mainly for visualization purposes. 

• The dual-camera, real-time (RT) visual odometry node that is launched with the 

DualCamRTAT.launch launch file. This launch file also launches the April Tag (AT) 

Continuous Detection node. These nodes are part of the Real Time Localization module. 

• The April Tag Continuous Detection node publishes over the ROS network whenever a 

Tag is detected. It calculates the transformation between the April Tag and the camera 

that detects it – in this case the ZED X Mini - by analyzing the visual footprint of the April 

Tag on the camera RGB video.  

• The tracking_pid node that controls the RP and ensures that it smoothly tracks the 

trajectory that is defined by the waypoints produced by Kunal’s path planning algorithm. 

• The view_planning node, which ensures that the robot aligns with the April Tag after 

detecting it. After the robot is properly aligned, the DualCamRT node will register the 

April Tag and perform bundle adjustment to correct the so-far obtained odometry data.  

• The udp_client node which receives velocity messages from the tracking_pid node and 

sends them via udp to Raspberry Pi. This node is part of the Command Execution and 

Movement module. 

• The RPi python script running on the RPi computer receives messages from the 

udp_client node and sends the respective velocity commands to the RoboClaw Motor 

Controllers over serial communication protocol. The RP’s motors are then powered 

accordingly. 
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Figure 7-5: Laboratory Experiments Pipeline. 

Secondary nodes add more functionality to the experiment: 

• The position_to_velocity node takes position and rotation data about the RP from the 

DualCamRTAT visual tracking node and calculates the derivative to output the velocity of 

the RP in real time. 

• The point_cloud_to_pcd node takes point clouds from the right ZED depth camera of the 

RP in real time and saves them in “.pcd” format in the specified folder. These “.pcd” files 

are used by the Vinymap quality assessment and reconstruction algorithm. It should be 

noted that this node simultaneously and synchronously saves RGB images in the 

specified folder. These are used in the projective texture mapping process of the 

Vinymap algorithm. 

• Rosbag record is a command-line tool used to record ROS messages to a file called a 

bagfile. Bagfiles are a flexible format that can store a wide variety of ROS messages, 

including sensor data, actuator commands, and user interactions. They can be used to 

replay recorded data, analyze data offline, and share data across platforms. Valuable 

messages that are broadcasted across a variety of topics are recorded during the 

experiment to be studied and visualized later in Rviz or Foxglove Studio. 

• During experiments within the room with artificial lighting, a PhaseSpace Impulse X2E 

motion capture system was used to substitute ground truth data. The data from this 

setup were captured and saved separately to aid with post-experimental analysis and 

review. 
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8 The Vinymap Quality Assessment and 
Reconstruction Algorithm 

8.1 Custom SOPCQA 

Recent literature has witnessed advancements in PCQA methodologies, with both full-

reference (FR) and no-reference (NR) metrics being developed. However, there is room for 

improvement as most no-reference PCQA methods do not yet statistically correlate well with 
subjective quality assessments [140].  In addition, most recent studies propose learning based 
methods that come with greater complexity and are harder to interpret and improve. As a 
result, the development of a Simple Objective Point Cloud Quality Assessment algorithm was 
deemed valuable for a perception system focused on vineyard inspection. The proposed in-

house SOPCQA algorithm can be subdivided into three parts:  

(a) Sparsity Index Calculation  

(b) Hole Detection  

(c) Cluster Outlier Detection. 

8.1.1 Sparsity Index Calculation 

One way humans use to realize if a 3D point cloud is of low quality or not is to observe the 

density of the point cloud. Point clouds of higher quality are homogenous in terms of density 

and do not include low density sub-clouds.  

The calculation of a point cloud’s (pcd) sparsity index comes down to detecting sparse 

areas in the assessed point cloud i.e. areas where the points of the point cloud have on 

average a small number of neighbors. The volume that these areas take up is the sparse 

volume of the point cloud. The sparse volume of the point cloud is calculated by leveraging 

Open3D’s mesh creation and volume calculation functions. It is then divided by the total 

point cloud volume (sparse and dense). The result of this division is the sparsity index of the 

point cloud. The higher the sparsity index, the sparser the point cloud and consequently the 

noisier the sensor measurements that created it and the lower its quality. Algorithm 7-1 

presents the process in greater detail. Figure 7-1 provides an intuitive illustration. To find 

sparse areas in the point cloud, a sparsity metric for each point must be defined. The 

number of the neighbors of each point in its vicinity epsilon was used.  

ALGORITHM 7-1 SPARSITYINDEXCALCULATION 

Require: pcd, epsilon, sparsity_threshold 

Output: sparcity_index, remapping_recommendation 

 pcd.remove_non_finite_points()  

 sum_of_neighbours = 0 

 sparse_points = [ ] 

 for point in pcd: 

  point.neighbours = find_neighbours_using_kdtree(point, epsilon) 
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  sum_of_neighbours = sum_of_neighbours + point.neighbours 

 end for 

 pcd_mean_density = sum_of_neighbours / len(pcd) 

 for point in pcd: 

  if point.neighbours < pcd_mean_density then: 

   sparse_points.append(point) 

  end if 

 end for  

 sparse_pcd = pcd_from_points(sparse_points) 

 sparse_mesh = BPA(sparse_pcd) 

 total_mesh = BPA(pcd) 

 sparse_area = sparse_mesh.calculate_surface_area 

 total_area = total_mesh.calculate_surface_area 

 sparsity_index = sparse_area / total_area 

 remapping_recommendation = (sparsity_index > sparsity_threshold) 

output sparsity index, remapping_recommendation 

 

The problem of efficiently finding the close neighbours for each point of the point cloud is 

formulated as follows: Given a point cloud (a set of points in a multidimensional space) and 

a radius epsilon, identify all neighboring points within a radius epsilon for each individual 

point in the cloud. K-d Trees were utilized to speed up the process.  

 
Figure 8-1: Sparse Area estimation. Areas away from the depth camera are less dense and of lower 

quality, as expected from such a sensor. 

A k-d tree (k-dimensional tree) is a space-partitioning data structure that recursively 

subdivides the point cloud along different axes. The subdivision process creates a tree-like 

hierarchy where each node represents a region of space, enabling efficient spatial searches 

[141]. To find neighbors within radius epsilon of a query point q, the point cloud k-d tree 
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needs to be traversed; Starting at the root, q is compared with the division value at the 

current node. The process continues with the corresponding child node (left or right) based 

on the comparison. This process is repeated along successive dimensions until reaching a 

leaf node. Then the distance between q and points within the leaf node is calculated. If the 

distance is less than epsilon, the points are added as neighbors.  Finally, the region in the 

opposite branch of the previous division is checked, as it might contain points closer than the 

current radius. Any subtrees whose bounding regions are fully beyond the epsilon distance 

from q are pruned. 

The Ball Pivoting Algorithm (BPA) [142] is used for mesh creation. The resulting sparsity 

index comes from the division of the surface area of the sparse point cloud by that of the 

whole point cloud and if it is found to be more than a user-defined threshold, then the 

program outputs a remapping recommendation, as the assessed point cloud is found to 

contain a large sparse area.  

8.1.2 Hole Detection 

Hole detection refers to the identification of vacant spaces inside the cloud. Oftentimes, 

when a reflective object (like a mirror or a pc monitor) is placed in the reconstructed scene, 

the sensor cannot accurately reconstruct the object and void space, or noise is registered in 

its place. This can also happen when the sensor’s view is obstructed in some way and a 

blind spot is created. This results in holes in the point cloud. It is intuitive to consider that in a 

3D reconstruction of a vineyard there should not be any holes of large volume in the ground 

or in the vegetation of the vine trees, especially in the dense vegetative states of the 

vineyard. Nevertheless, the presence of holes could indicate a real problem in the vegetation 

and not a loss of point cloud quality. Therefore, this algorithm’s parameters should be tuned 

carefully to match the intended use case and conditions. The purpose of this procedure is to 

identify abnormal holes in the point cloud and not physical holes in the vegetation. The latter 

is dealt with by the canopy density assessment algorithm which is extensively analyzed in 

section 7.5. 

The hole detection algorithm works by filling the whole 3D workspace with a 

homogenous dense point cloud (HMDpcd). The assessed source point cloud is then 

subtracted by the HMDpcd. The resulting point cloud mask is then clustered using DBSCAN 

clustering. Of the resulting clusters the larger ones do not represent holes and are thrown 

away. The remaining smaller clusters represent holes (void spaces) of the assessed point 

cloud and are saved. Depending on their size and quantity, the user can infer the assessed 

point cloud’s quality. To make the algorithm’s output more objective, the clusters that 

represent holes are turned into meshes via surface reconstruction with BPA. Their combined 

surface area is divided by the total surface area of the initial point cloud and the result is the 

hole index, the output of the algorithm. Algorithm 7-2 presents the hole detection algorithm in 

greater detail. Figure 7-3 illustrates the process. 

ALGORITHM 7-2 HOLEDETECTION 

Require: pcd, clustering_parameters, hole_size_threshold 

Output: hole_index 

 bbox = pcd.get_bounding_box()  

 all_space_pcd = bbox.fill_with_points() 
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 free_space_pcd = all_space_pcd.remove(pcd) 

 free_space_pcd.erode() 

 free_space_pcd.dilate() 

 free_space_pcd.cluster(DBSCAN, clustering_parameters) 

 free_space_pcd.remove_largest_cluster() 

 holes = [ ] 

 for hole in free_space_pcd.clusters: 

  if hole.size > hole_size_threshold then: 

   holes.append(hole) 

  end if 

 end for 

 hole_area = 0 

 total_hole_area = 0 

 for hole in holes: 

  hole_mesh = BPA(hole) 

  hole_area = hole_mesh.calculate_surface_area 

  total_hole_area = total_hole_area + hole_area 

 end for 

 pcd_mesh = BPA(pcd) 

 pcd_area = pcd_mesh.calculate_surface_area 

 hole_index = total_hole_area / pcd_area 

output hole_index 

 

The get_bounding_box() function returns the bounding polygon of the point cloud it is 

applied on. The fill_with_points() function fills this polygon with random points and returns a 

uniform pointcloud that covers all the space inside the polygon with a specified point density. 

The remove() function, when applied on a point cloud receives as arguments another point 

cloud and removes all points from the first point cloud that are closer than a specified 

threshold to the second point cloud. Finally, the erode() and dilate() functions operate on a 

point cloud similarly to how erosion and dilation effect a 2D image. Figure 7-2 illustrates the 

process of dilation after erosion on a 2D image.  
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Figure 8-2: Erosion, Dilation & Opening performed on a 2D image. 

This operation is also known as opening in image processing. The free_space_pcd 

represents all the space around the source point cloud. After eroding and dilating the 

free_space_pcd, groups of points of the free_space_pcd that were isolated inside crevices 

and holes of the source point cloud are completely separated from the other points of the 

free_space_pcd. Thus, where there were once holes of the source point cloud, now there 

are points of the free_space_pcd. These points represent the holes of the source point 

cloud. The algorithm then clusters the free_space_pcd, so that the holes become separate 

point clouds. The largest cluster, however, does not represent a hole but the rest of the free 

space. So, it is removed. In addition, the algorithm discards holes that are too small. Finally, 

the algorithm calculates the area that the holes and the source point cloud occupy and it 

produces and outputs the hole index, which is a valuable quantity for objective point cloud 

quality assessment. 
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Figure 8-3: The hole detection algorithm visualized. 

8.1.3 Cluster Outlier Detection 

Detecting small and isolated clusters is referred to as cluster outlier detection in this work. 

When creating a point cloud of a vineyard, these clusters are intuitively considered as noise 

because they do not match any existing object in the scene. The quantity and size of these 

noise clusters is therefore a valuable and simple metric of point cloud quality. The assessed 

point cloud is clustered using DBSCAN. The user heuristically defines a cluster size 

threshold; clusters that are smaller than this threshold are considered as noise and their 

aggregated surface area and quantity is calculated. These two metrics are used in the final 

quality assessment step. Algorithm 7-3 presents the cluster outlier detection algorithm in 

greater detail. Figure 7-4 illustrates the process. 

ALGORITHM 7-3 CLUSTEROUTLIERDETECTION 

Require: pcd, clustering_parameters, cluster_size_threshold 

Output: noise_clusters_quantity, total_noise_clusters_area 

 pcd.cluster(DBSCAN, clustering_parameters)  

 noise_clusters = [ ] 

 noise_clusters_quantity = 0 

 for cluster in pcd.clusters: 

  if cluster.size < cluster_size_threshold then: 

   noise_clusters.append(cluster) 

   noise_clusters_quantity++ 

  end if 

 end for 

 noise_cluster_area = 0 

 total_noise_clusters_area = 0 

 for noise_cluster in noise_clusters: 

  noise_cluster_mesh = BPA(noise_cluster) 

  noise_cluster_area = noise_cluster_mesh.calculate_surface_area() 



 

 
126/156 

  total_noise_clusters_area = total_noise_clusters_area + noise_cluster_area 

 end for 

output noise_clusters_quantity, total_noise_clusters_area 

 

 
Figure 8-4: Cluster Outlier Detection. The noise clusters are pictured in red. 

8.1.4 Final SOPCQA Algorithm 

Table 7-4 shows the final SOPCQA algorithm. This algorithm uses the previous three 

algorithms as implemented functions to objectively assess the quality of an input point cloud. 

Eq. (7-1) shows the calculation of the final quality index (𝐹𝑄𝐼). The quality threshold (𝑄𝑇) 

mentioned in the algorithm is determined heuristically by the user.  

ALGORITHM 7-3 SOPCQA 

Require: pcd, epsilon, sparsity_threshold, clustering_parameters, hole_size_threshold, 

 cluster_size_threshold, fqi_parameters, QT 

Output: final_quality_index, remapping_recommendation 

 sparsity_index = sparsityIndexCalculation(pcd, epsilon, sparsity_threshold)  

 hole_index = holeDetection(pcd, clustering_parameters, hole_size_threshold) 

 noise_clusters_quantity, total_noise_clusters_area = clusterOutlierDetection(pcd,  

  clusutering_parameters, cluster_size_threshold) 

 FQI = calculateFQI(sparsity_index, hole_index, noise_clusters_quantity, 

  total_noise_clusters_area) 

 if  FQI < QT then: 

  remapping_recommendation = True 

 else: 

  remapping_recommendation = False 

 end if 
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output FQI, remapping_recommendation 

 

The calculateFQI function in Algorithm 7-3 applies the following equation: 

 𝒇 =  𝒆−𝜷𝒔𝒔𝒆−𝜷𝒉𝒉 − 𝜷𝒏𝒒 − 𝜷𝒏𝒂 ,  

(87-
1
1
) 

, where 𝑓 is the final quality index (𝐹𝑄𝐼), (𝛽𝑠, 𝛽ℎ, 𝛽𝑛) are user-defined parameters, 𝑠 is the 

sparsity index, ℎ is the hole index, 𝑞 is the quantity of outlier clusters and 𝑎 is the total area 

of outlier clusters.  

In the current thesis, the SOPCQA algorithm is used in conjunction with a vineyard point 

cloud dataset. This dataset contains point clouds that have been successively and 

periodically captured by a ZED depth camera mounted on a moving rover robot that 

traverses a synthetic vineyard with constant linear velocity. Sections 5 and 6 describe this 

setup in greater detail.  The algorithm works by iterating through the point clouds in the 

dataset and calculating the FQI for each one of them. If the FQI is lower than the QT for an 

assessed point cloud, then the point cloud is deemed of lower quality and the user is 

prompted to recapture the point cloud from another view angle by appropriately 

maneuvering the rover. This process could be automated but this is not implemented in the 

context of this work. However, as described in section 7.2, after capturing the vineyard point 

cloud dataset and assessing each point cloud’s quality, software is used to improve each of 

the point clouds’ quality. The user can leverage SOPCQA to label point clouds of lesser 

quality and only apply improvements to them, thus saving on computational resources. 

8.2 Point Cloud Quality Improvement and Registration 

8.2.1 Quality Improvement 

Point cloud registration is the process of finding a transformation (a combination of rotation, 

translation, and scaling) that best aligns the two or more point clouds. High quality point 

clouds can be accurately registered using simple optimization-based algorithms like Iterative 

Closest Point or Point Pair Feature Descriptors (PPF) [143]. For more elaborate or lower 

quality point clouds resorting to more complex learning-based algorithms is considered 

beneficial. In the context of this work, due to the noise in the available point clouds, a 

decision had to be made between improving the point clouds’ quality to register them with 

simple methods and using the raw point cloud data to register them with more complex 

algorithms. The first option was chosen in the interests of simplicity as statistical point cloud 

quality enhancement algorithms have been thoroughly studied and efficiently implemented in 

the literature [144]. Algorithm 7-4 and Figure 7-5 present the custom pipeline developed for 

that purpose.  

ALGORITHM 7-4 POINTCLOUDQUALITYENHANCEMENT 

Require: Set of point clouds 𝑃 = {𝑝1, … ,  𝑝𝑘}, v, b, n, e, t 

Output: Set of enhanced point clouds B 

 B = LoadPointClouds(P, v)  

 for p in B: 
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  CropPointCloud(P,v) 

  CloudFilterByDensity(p,n,e) 

  CloudFilterByClusters(p,t) 

  NormalEstimation(p) 

 end for 

output B 

 

The utilized functions are described as follows: 

LoadPointClouds: Loads a batch B of point clouds out of the set of point clouds P that 

were captured by the ZED X Mini camera and formats them appropriately for processing 

with Open3D. It removes non-finite points and transforms the point clouds to align with 

Open3D’s world frame. It downsamples the point clouds utilizing voxel_downsampling with 

voxel size v for memory management purposes. 

CropPointCloud: Receives a point cloud p and a set of bounding limits b as input. 

Calculates p’s oriented bounding box and shrinks it to satisfy b. It then crops p to fit inside 

the modified bounding box. This function is utilized to ignore areas of the point cloud that lie 

in the limits of ZED X’s field of view and are particularly noisy. 

CloudFilterByDensity: Removes points of the input point cloud that have few 

neighbours n within a specified radius e. Low density areas in the point cloud are usually 

products of noise. 

CloudFilterByClusters: Separates the input point cloud in clusters using DBSCAN 

clustering [22]. Clusters that are smaller than a specified threshold t are usually products of 

noise and are removed. 

NormalEstimation: The function finds adjacent points in the input point cloud and 

calculates the principal axis of the adjacent points using covariance analysis. 

 
Figure 8-5: The Point Cloud Quality Enhancement Pipeline. 

8.2.2 Registration 

After being enhanced, the point clouds are registered in pairs using a custom variant of the 

ICP optimization algorithm. ICP works by finding the closest point in one point cloud (source) 

for each point in the other point cloud (target). This process is called data association. The 

algorithm then finds the target point cloud’s transformation (which can be represented by a 

rotation matrix and a translation vector) that minimizes the distance between the 

corresponding point pairs. After applying this transformation to the target point cloud, the 

data association changes and thus must be recomputed. The transformation matrix that 
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minimized the distance between the corresponding point pairs is also recomputed and 

applied again. This process is repeated until the overall error between the two point clouds is 

minimized. This error is typically measured using a distance metric, such as the sum of 

squared distances between corresponding point pairs. 

 
Figure 8-6: a) Data association (b) Target point cloud transformation. Result after first iteration (c) Final 

point cloud registration after four iterations. 

There exist several variants of the ICP algorithm. Estimating the data association to avoid 

convergence into a local optimal solution is the key challenge to the development of a robust 

ICP algorithm [145]. Similar to the approach followed by  the authors in [22], a simple yet 

effective ICP variant was constructed for Vinymap.  

The point-to-plane data association method was chosen. Instead of matching individual 

points, point-to-plane data ICP involves fitting a plane to a set of points in the target point 

cloud (normal estimation) and then selecting the closest point to that surface in the source 

point cloud. The distance between point and plane is calculated using the perpendicular 

distance metric. This approach is more robust to noise and outliers compared to point-to-

point data association, making it suitable for handling real-world data with imperfections. To 

further reduce the effect of existent noise and outliers, correspondences of points that are 

two far away from one another are not considered. The distance that defines how close two 

paired points must be in order to be considered is called maximum correspondence distance 

(MCD). 
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Figure 8-7: Point-to-Plane correspondence illustration in 2D [146]. 

 

The first two point clouds are read from the dataset. The initial point cloud is assigned 

the identity transformation matrix as its pose. The second point cloud must be correctly 

registered to the first one. At this point no assumptions can be made about the second point 

cloud’s pose and it is therefore also assigned the identity transformation matrix. An initial 

ICP transformation with a relatively high MCD is initiated. A second ICP transformation with 

a finer MCD follows and finishes the registration. The final transformation of the newly added 

point cloud is saved in an odometry list which is valuable for the next steps of the Vinymap 

algorithm. The newly added point cloud is then fused with the initial point cloud and the 

resulting point cloud is called a local map.  

  The third point cloud is read from the dataset and is initially transformed with the same 

matrix as the second one, but with an added 10% translation and rotation in the same 

direction. This percentage is defined heuristically and can be changed as an internal 

registration parameter. ICP is then applied to register the third point cloud with the local map 

(which is currently comprised of the first two point clouds). The resulting final transformation 

is applied to the third point cloud and saved in the odometry list. The third point cloud is then 

added to the local map.   

This process is repeated until every point cloud has been correctly registered and a 

local map comprised of all the aligned point clouds is created. It should be noted that in 

parallel to the local map, a global map is also being constructed. The global map contains 

only the point clouds whose registration yielded a registration error lower than a predefined 

threshold. This is done to ensure that misregistered point clouds will be discarded. 

Finally, for each registered point cloud, a bounding polygon is created and saved. This 

polygon is calculated by leveraging open3D’s convex hull computation function, flattening 

the hull and then extracting a bounding volume which tightly encloses the point cloud. The 

resulting bounding polygon is utilized in the mesh projection phase of Vinymap.  
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Figure 8-8: Point Cloud Registration in the synthetic vineyard. 

8.3 Canopy Density Assessment 

The Vinymap framework incorporates a novel strategy for identifying gaps within the 

vineyard canopy. This method capitalizes on the inherent color properties of the vine tree 

leaves, as well as the topological properties of surface reconstruction with alpha shapes. We 

implement Algorithm 7-5 to output a comprehensive Canopy Density Index (CDI) for each 

input point cloud batch. This novel index serves as a powerful tool for farmers to objectively 

assess the health and vigor of their vines within the mapped area of the vineyard. Algorithm 

7-5 calls the following functions: 

PointCloudQualityEnhancement: Loads a batch of point clouds and enhances their 

quality. Described in section 7-2. 

PointCloudRegistration: This function merges individual point cloud scans captured from 

successive viewpoints as the robot traverses the vineyard. It leverages the KISS-ICP [22] 

variant of the well-established Iterative Closest Point (ICP) algorithm. The function 

implements a tiered ICP approach utilizing three distinct point correspondence distances. 

This sequential strategy, employing a coarse-to-fine logic, progressively refines the 

alignment between successive scans. The function's primary output is a unified point cloud 

map 𝑓𝑚 encompassing all the input batch’s scans, stitched together through the registration 

process.  Additionally, the function provides a list of individual transformations tr. Each 

transformation corresponds to a specific input point cloud and details the precise positional 

and rotational adjustments necessary to integrate it into the overall map.  

CanopySeparation: This function operates on the fused point cloud map 𝑓𝑚 generated by 

the PointCloudRegistration function. It isolates points within the map exhibiting green hues. 

This targeted color-based segmentation effectively filters out extraneous elements, resulting 

in a distinct point cloud 𝑖𝑐 exclusively encompassing the lush green canopy of the vineyard. 

FullCanopyEstimation: Reconstructs a mesh m from the 𝑖𝑐 point cloud acquired by the 

CanopySeparation function utilizing alpha shapes. By strategically setting a relatively large 

alpha parameter, the reconstruction excludes all gaps and irregularities. 

CanopyGapExtraction: The mesh m produced from the FullCanopyEstimation is sampled 

and a point cloud fc representing the gapless full canopy is acquired. The initial canopy point 

cloud 𝑖𝑐 is subtracted from the full canopy point cloud using distance-based subtraction. The 

resulting point cloud 𝑔𝑐 represents the gaps in the canopy. 
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The algorithm then calculates the CDI by dividing the number of points of the output 

point cloud from the CanopyGapExtraction gc by the number of points of the full canopy 

point cloud fc, after downsampling both clouds using the same voxel size. Figure 7-18 

illustrates the Canopy Density Assessment process in detail.  

ALGORITHM 7-5 CANOPYDENSITYASSESSMENT 

Require: Set of point clouds 𝑃 = {𝑝1, … ,  𝑝𝑘}, v, b, n, e, t, a 

Output: CDI 

 B = PointCloudQualityEnhancement(P, v, b, n, e, t) 

 fm, tr = PointCloudRegistration(B) 

 ic = CanopySeparation(fm) 

 m = FullCanopyEstimation(ic,a) 

 fc, gc = CanopyGapExtraction(m, ic) 

 
𝐶𝐷𝐼 = 1 −  

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑜𝑖𝑛𝑡𝑠(𝑔𝑐)

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑜𝑖𝑛𝑡𝑠(𝑓𝑐)
 

output CDI 

 

 
Figure 8-9: Canopy Density Assessment Illustrated. 

8.4 Mesh Generation and Filtering 

In the context of 3D graphics, a mesh is a collection of vertices connected by edges to form 

triangles or other polygons. These polygons represent the surface of the object, and they are 

responsible for defining its shape and appearance. Textures are typically 2D images that 

contain color information. When a texture is applied to a mesh, the image is stretched or 

warped to fit the surface of the mesh object. This process is used to create a more realistic 

and visually appealing appearance by adding color and detail to the 3D mesh without 

sacrificing a lot of memory or computational resources.   

The idea behind the Vinymap reconstruction algorithm is to leverage the concept of 

mesh texturing in 3D graphics to add valuable detail to an otherwise sparse and rough 3D 

reconstruction of complex environments such as vineyards. To achieve this, the local map 

point cloud that we produced in the previous steps must be converted to a dense 3D 

geometry, a triangle mesh. This process is known as surface reconstruction. There is a 

plethora of surface reconstruction methods in the literature [147], [148]. Favoring simplicity 

over elaborate algorithms, two well tested and widely used methodologies have been 

combined to implement surface reconstruction in this work: The alpha shapes algorithm and 

the ball pivoting algorithm. 
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Figure 8-10: Reconstructed mesh objects from dense point clouds [149]. 

8.4.1 Alpha shapes 

The alpha shapes algorithm [150], conceived as a generalization of the convex hull, can be 

intuitively understood as follows: 3D space can be imagined as a large block of soft, creamy 

material containing the point cloud points S embedded in it as small, non-deformable, hard 

pieces. Using a spherical scoop, all portions of the soft material that can be reached without 

encountering the hard pieces are meticulously carved away. This process may involve 

excavating internal cavities, as some areas of the soft material may be inaccessible by 

simply maneuvering the scoop from the outside. Eventually, a piecewise-linear, non-convex 

object composed of caps, arcs, and points will be left. If all rounded surfaces are then 

flattened to form triangles and line segments, a representation of the alpha shape of S is 

produced. The alpha shapes surface reconstruction algorithm can easily produce watertight 

meshes (meshes without holes or gaps). There is, however, a significant loss in detail when 

reconstructing with this approach.  

8.4.2 The Ball Pivoting Algorithm 

The ball pivoting algorithm (BPA) [142] can be intuitively described by imagining a ball of 

user-specified radius p that rolls on the 3D point cloud. If the ball touches three points 

without containing any others, then a triangle is formed between these points. The algorithm 

starts with an initial (seed) triangle, the ball rotates (pivots) around one of its edges, 

maintaining contact with its endpoints, until it makes contact with a third point, thereby 

forging a new triangle. This process iterates until all reachable edges have been explored 

and then commences anew with a fresh seed triangle until all points have been 

incorporated. The process may be repeated with a larger radius ball to accommodate 

disparate sampling densities. The BPA has been successfully deployed on datasets 

comprising millions of points, faithfully replicating actual scans of intricate 3D objects. Its 

modest memory footprint, efficient execution speed, and high-quality outcomes stand 

favorably against existing methodologies. The ball pivoting algorithm produces detailed 

surfaces but is prone to errors related to holes and gaps in the mesh.  
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Figure 8-11: (a) a bunny shaped source point cloud. (b)  mesh generated with alpha shapes (c) mesh 
generated with BPA [151]. 

8.4.3 Chosen methodology and Filtering 

To perform surface reconstruction on the complex and unstructured vineyard point cloud, 

both aforementioned methods were combined. The local map point cloud produced by the 

quality improvement and registration processes is initially converted into a mesh using BPA. 

The radius of the pivoting ball chosen is twice as big as the average distance between points 

in the point cloud. To refine the results, several more, larger radii are used.  

The resulting BPA mesh is also filtered using a simple average filter. Thus, a given 

vertex 𝑢 𝑖 is given by the average of the adjacent vertices 𝑁 :  

 𝒖𝒊+ ∑ 𝒖𝒏𝒏∈𝑵

|𝑵|+𝟏
 ,  

(87-
2
2
) 

This filter is commonly used to denoise meshes. It can be applied to the mesh any given 

number of times, until the mesh is perfectly smooth. It comes with a non-desirable side effect 

though. The mesh shrinks after applying the filter iteratively. It was therefore used for a 

single iteration on the BPA mesh.  

 

 
 

Figure 8-12: (a) noisy mesh (b) mesh after 1 iteration of average filtering  
(c) mesh after 5 iterations of average filtering  [151]. 
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The produced BPA mesh does not completely reconstruct the complex surface of the 

vineyard vegetation. There are gaps where leaves should be and sparse structures in the 

point cloud have not been included in the mesh. The alpha shapes algorithm is the perfect 

tool for filling these gaps. It was applied to the full map point cloud and the resulting Alpha 

mesh was also filtered with a simple average filter.  

To construct the final mesh, the BPA mesh and the Alpha mesh are combined into a 

single geometry, the final full-map mesh. A function is used to merge vertices of the final 

mesh that are too close to one another. The vertex position, normal and color of the resulting 

vertices the average of the vertices. This function helps to close triangle soups caused by 

the merge, i.e. areas of the mesh where many triangles overlap. Finally, the final full-map 

mesh is also filtered with an average filter. Filtering the BPA mesh, the alpha mesh and the 

final mesh separately reduces shrinkage and yields a better result than filtering the final 

mesh three times. Using other common filtering techniques like the Laplacian filtering or the 

Taubin filtering was also tested but resulted in deformations in certain parts of the mesh. 

8.5 RGB Image Projection and Texture Generation 

8.5.1 Vertex Coloring and 2D Textures  

The way open3d and most libraries add color to a mesh is by vertex coloring. Vertex coloring 

refers to coloring a mesh triangle with the average color of the three vertices that define it. 

That means that the texture resolution (color resolution) of the resulting mesh is limited to 

the model resolution, meaning that if a mesh has few triangles per unit of volume, it will be 

colored inaccurately. When using vertex colors, the more triangle-dense a mesh is, the more 

accurate its coloring.  

There have been improvements to the concept of vertex coloring over the years. Using 

color gradients to seamlessly blend triangle colors and create a more realistic coloring is 

common among graphics libraries. In addition, extensive research in [152]  is focused on 

extending the concept of vertex coloring where color values are kept on each vertex, by also 

keeping color values on edges and faces. This approach allows higher texture resolution 

than model resolution and at the same time it guarantees one-to-one correspondence 

between the model surface and the color data while also reducing discontinuities.  

 
Figure 8-13: (a) With the vertex colors method, only vertex colors (blue) are used to color triangle. 
                    (b) With mesh colors, color positions on vertices (blue), edges (green) and faces (red)  

are all used to determine triangle color [152]. 

Nevertheless, applying 2D textures to meshes is by far the most used coloring strategy in 

both literature and commercial graphics applications. Mapping a 2D image to a mesh 

produces high quality coloring regardless of the model resolution. Even simple meshes with 

only a handful of vertices can accurately resemble real-life complex structures. As far as 

color accuracy is concerned, leveraging 2D image textures to color meshes produced from 
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depth cameras is ideal, as these meshes have a small vertex density. The challenge is 

accurately mapping 2D image textures to the newly formed full-map mesh. 

 

 

 
Figure 8-14: (a) Simple cube mesh colored with simple vertex colors (b) cube colored with vertex colors 

and linear filtering (contouring) (c) cube colored using a 2D texture (image) of a stone wall. 

8.5.2 Texture Application  

The mathematical solution to the problem of 2D texture application is well formulated and it 

comes down to computing the so-called UV coordinates of a mesh. In the realm of 3D 

modeling and computer graphics, UV coordinates and UV maps play a crucial role in 

seamlessly applying textures to intricate 3D objects and meshes. UV coordinates, also 

known as texture coordinates, serve as a bridge between the 3D geometry of an object and 

the 2D texture image that will define its surface appearance. These coordinates, represented 

by a pair of values (U, V), correspond to specific points on the 3D object's surface, allowing 

the texture image to be mapped onto the object's form accurately. UV maps, collections of 

UV coordinates arranged in a grid-like structure, provide a detailed representation of the 3D 

object's surface, enabling the texture image to be seamlessly applied across its complex 

geometry. The creation of UV maps involves unwrapping the 3D object's surface, flattening it 

onto a virtual plane, and assigning UV coordinates to each vertex. The resulting UV map 

acts as a blueprint for mapping the texture image onto the object's surface, ensuring that the 

texture adheres to the object's shape and details without distortion or seams. This process is 

essential for creating visually appealing and realistic 3D models, as it allows for the 

application of textures that accurately represent the object's surface properties and 

characteristics. 
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Figure 8-15: Texturing a 3D model of the Earth using a typical sphere UV map. 

The problem is how to generate an accurate UV map that matches the complex and intricate 

vineyard full-map mesh to a 2D image captured with the ZED camera.  

8.5.3 Projective Texture Mapping 

As described in sections 5 and 6, the ZED camera simultaneously captures and saves point 

clouds using its stereo vision capabilities and RGB images using its left lens. Thanks to 

odometry data collected during the process of point cloud registration which is described in 

7.2.2, the position of the ZED camera at the time of capturing each point cloud and image is 

accurately known. Thus, the problem transforms into the task of projecting a 2D RGB image 

to the part of the mesh that corresponds to the point cloud which was captured at the time of 

capturing the 2D image. As described in 7.2.2, a bounding polygon is saved for each 

registered point cloud. So, these polygons can be used to crop the full-map final mesh in 

pieces and each of these pieces corresponds to a 2D image captured from ZED. Therefore, 

there is a one-to-one correlation between 2D images captured and pieces of the final mesh. 

Projecting these 2D images to the pieces of the final mesh and then re-assembling the 

textured pieces to a final reconstructed mesh is what is solved next. 
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Figure 8-16: Projective Texture Mapping 

Let there be a (X,Y,Z) coordinate system in the vineyard mesh’s scene where X is width, Y is 

height and Z is depth. It is initially natural to assume that the UV coordinates of each vertex 

of the mesh would be its (X,Y) coordinates. So (u,v) = (X,Y). That means that each vertex of 

the mesh would be matched to the pixel of the corresponding 2D image which has the same 

(X,Y) coordinates as the vertex. This makes intuitive sense as a vertex of the mesh that is 

up and to the left of the scene would be assigned a texture pixel which sits up and to the left 

of the corresponding 2D image. This solution could even be viable if the lenses of the ZED 

camera captured orthographic images of the world. This is not true, however, and 

perspective must be taken into consideration.  

Due to perspective, objects that are further away from the camera appear smaller than 

objects that are closer. Intuitively, a division by the depth Z would account for this. 

Consequently, the uv coordinates would come to be: 

 

                                                                     𝑢 =  
𝑋

𝑍
                (7-3) 

and 

 

                                                                     𝑣 =  
𝑌

𝑍
                (7-4) 

Nevertheless, this projection model is inaccurate as well and defines an oversimplified 

camera model with focal length 𝑓 = 1. To understand what focal length is and obtain the 

camera model which will produce the desirable results, the pinhole camera model must be 

defined.  

The pinhole camera model provides a simplified representation of how light interacts 

with a camera to form an image. In this model, the camera is represented as a simple box 

with a tiny hole on one side and a flat image plane on the other. All rays of light are blocked 

by the walls of the box except those passing through the tiny hole. 
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When an object is placed in front of the aperture, rays of light emanating from different 

points of the object pass through the aperture and form an inverted image on the image 

plane. 

  

 

Figure 8-17: The pinhole camera model. 

 
The fundamental parameters of the pinhole camera model are as follows:  

• The center of projection is the point where the pinhole aperture is located. 

• The focal length is the distance between the center of the projection and the image 
plane. 

• The optical axis is the line perpendicular to the image plane and passing through the 
center of projection. 

• The principal point is defined as the point of intersection between the optical axis and 
the image plane. 

The projection process with the pinhole camera model involves several key factors: As 
explained, objects farther away from the camera appear smaller in the image. Secondly, due 
to the light rays intersecting at a single point (the pinhole), the resulting image on the image 
plane is inverted. Furthermore, the size of the aperture and its distance from the image 
plane (focal length) determines the field of view of the camera. A larger aperture or a shorter 
focal length result in a wider field of view, capturing more of the scene. The image size of the 
distant object is proportional to the focal length.  

We can further simplify the projection’s description by placing the image plane in front of 

the pinhole. A point in space 𝑄 = (𝑋, 𝑌, 𝑍) is projected on the image plane by tracing the line 

passing through the point 𝑄 and the center of projection. The resulting projection of 𝑄 is 

𝑞 = (𝑥, 𝑦, 𝑓). In this abstraction, the image appears right side up.  

The relation between a point 𝑄 = (𝑋, 𝑌, 𝑍) in the real space and its projection 𝑞 on the 

image plane at the pixel location (𝑥𝑠, 𝑦𝑠) is represented by the following equations: 

 

 𝑥𝑠 = 𝑓𝑥
𝑋

𝑍
+ 𝑐𝑥               (7-5) 

 

𝑦𝑠 = 𝑓𝑦
𝑋

𝑍
+ 𝑐𝑦               (7-6) 
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Figure 8-18: A simplified pinhole camera model. 

 

Thus, in the context of texture mapping:  

 

 𝑢 = 𝑓𝑥
𝑋

𝑍
+ 𝑐𝑥               (7-7) 

 

𝑣 = 𝑓𝑦
𝑋

𝑍
+ 𝑐𝑦               (7-8) 

 

Where 𝑐𝑥 and 𝑐𝑦 are two parameters that handle possible misalignment of the principal point 

with the center of the image and 𝑓𝑥 and 𝑓𝑦 are essentially separate focal lengths expressed 

in pixels that are introduced to describe digital cameras with rectangular pixels. 

It is customary to express projective transforms using the homogeneous coordinates, 

hence the equations (7-5) and (7-6) can be written in the following matrix form: 

𝑞⃗ = 𝑀𝑄⃗⃗,  where 

   

                                                                𝒒⃗⃗⃗ = [
𝒖
𝒗

] ,   𝑴 =  [
𝒇𝒙 𝟎 𝒄𝒙

𝟎 𝒇𝒚 𝒄𝒚

𝟎 𝟎 𝟏

]  and 𝑸⃗⃗⃗ = [
𝑿
𝒀
𝒁

]                                              (7-9) 

 

The 𝑀⃗⃗⃗  matrix is called the camera intrinsic matrix and it represents the internal 

parameters of a camera and it allows to project 3D points in the world onto the 2D image 

plane. The parameters of the camera intrinsic matrix are estimated by performing the 

camera calibration procedure. The latter is typically performed using a set of known 

geometric patterns (e.g., chessboard patterns) or objects with precisely measured 

dimensions, allowing for the estimation of the camera parameters through mathematical 

algorithms. 

Using Eq. (7-7), the 2D images captured with the ZED camera can be accurately 

projected as textures onto the 3D mesh. This is done by projecting the vertices of the mesh, 
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which are 3D points in the scene, onto the corresponding 2D image captured by the ZED 

camera. The resulting 3D mesh is accurately textured and offers detailed visual information.  

8.5.4 Triangle Visibility and Ray Casting 

The issue that arises with projective texture mapping on 3D meshes is that the texture is 

applied not only on the visible part of the mesh, but also on the triangles of the mesh that are 

obscured, lying behind other parts of the mesh. This is not a problem when dealing with 

meshes that are produced from individual point clouds formed at some point in time by the 

ZED camera. The problem occurs when a texture is mapped projectively on the final mesh, 

which is a product of point cloud fusion and mesh filtering. To address this, Open3D’s ray 

casting module is utilized. 

Ray casting, a fundamental technique in computer graphics, is a ray tracing-based 

rendering technique which works by simulating the propagation of light rays through a virtual 

scene. Its versatility has led to its adoption in a wide range of applications, ranging from 

early video games and architectural design to medical imaging and scientific visualization. 

At its core, ray casting involves tracing imaginary light rays from the virtual camera 

(observer’s position) into the virtual scene. As each ray encounters an object in the scene, it 

interacts with its surface, determining the distance from the observer. This process is 

repeated as many times as desired, until the scene is covered. Ray tracing and ray casting 

are computationally expensive rendering methods. In the last decade, however, hardware 

acceleration for real-time ray tracing has become standard on new commercial graphics 

cards, and graphics APIs have followed suit, allowing developers to use hybrid ray tracing 

and rasterization-based rendering in real-time applications with a lesser hit to frame render 

times [153]. 

Using Open3D’s ray casting module, rays are cast from the position of the ZED camera 

towards the final mesh. Every mesh triangle that is hit by any ray is considered a visible 

triangle while all other triangles are considered obscured. As 2D images are projected as 

textures onto the final mesh, the triangles of the mesh that are obscured for a given pose of 

the camera are temporarily removed and no texture is mapped onto them. These triangles 

receive a texture once the camera proceeds to a position from where they are visible. In the 

end, the whole mesh is correctly textured. 

8.5.5 Photo-Realistic Vineyard Reconstruction 

To generate a visually informative and spatially accurate representation of the vineyard, 

Vinymap utilizes projective texture mapping. The algorithm receives a set of point clouds P 

and a set of images I as its input. It is important that each point cloud pi ∈ P has been 

captured simultaneously with a corresponding image Ii ∈ I as the robot moves.  This is 

achieved with ROS’s synchronization policy. The algorithm effectively drapes high-resolution 

RGB images onto meshes which are reconstructed from the raw point cloud data. The 

meshes are then registered and aligned, resulting in a photo-realistic 3D representation of 

the vineyard. This process is presented in Algorithm 7-6 and illustrated in Figure 7-18.  

ALGORITHM 7-6 PHOTO-REALISTIC VINEYARD RECONSTRUCTION 

Require: Set of point clouds 𝑃 = {𝑝1, … ,  𝑝𝑘}, v, b, n, e, t 

Output: v 
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 B = PointCloudQualityEnhancement(P, v, b, n, e, t) 

 for 𝑝𝑖 in B: 

  𝑚𝑖 = SurfaceReconstruction(𝑝𝑖) 

  𝑟𝑖 = ProjectiveTextureMapping(𝑚𝑖 , 𝐼𝑖, M) 

 end for 

 fm, tr = PointCloudRegistration(B) 

 v = MeshFusion(tr) 

output v 

 

 
Figure 8-19: Vinymap Photo-Realistic Vineyard Reconstruction Pipeline. 

Algorithm 7-6 calls the following functions: 

PointCloudQualityEnhancement: Loads a batch of point clouds and enhances their 

quality. Described in section 7-2. 

SurfaceReconstruction: Creates a triangle mesh m that accurately represents a source 

point cloud p. This is achieved by leveraging the ball pivoting algorithm (BPA) and fusing its 

results with the alpha shapes reconstruction algorithm. 
ProjectiveTextureMapping: This function receives a triangle mesh mi and an RGB image Ii 
as input. For each triangle vertex Q ∈ mi, the function projects it to the 2D image plane of Ii 

and matches it with a pixel q∈ mi with coordinates (u,v) ∈ Iiq⃗⃗ = MQ⃗⃗⃗, according to Eq. 7-9. The 
M matrix is the intrinsics camera matrix of the camera that captured Ii. In our case, the ZED X 
mini camrera. The (u,v) coordinates are used to apply texture on the so-far colorless mesh 
mi. Provided that the RGB image Ii and the point cloud pi were captured simultaneously, the 
resulting texture application produces a photo-realistic 3D mesh ri.  
PointCloudRegistration: Merges individual point cloud scans captured from successive 
viewpoints as the RP traverses the vineyard. Described in section 7-2.  
MeshFusion: The output transformations tr from the PointCloudRegistration are used to 
identically transform the reconstructed meshes r. This way, the ICP cloud registration is 
leveraged to accurately register the meshes r. The aligned and registered meshes are then 
fused and the function outputs the result, which is a photo-realistic vineyard mesh v. 
It should be noted that the point cloud registration and mesh fusion steps can be applied 
before the projective texture mapping step. In that case, the textures will be applied on the 
fused mesh and not each triangle mesh separately. To avoid unwanted texture mapping on 
obscured mesh triangles, raycasting must be utilized. This method usually yields a more 
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accurate result geometrically but is prone to artifacts caused by projective texture mapping 
overlap. 

8.6 Experimental Results 

The Vinymap Quality Assessment and Vineyard Reconstruction framework, as previously 

described, comprises three core algorithms: the Simple Objective Point Cloud Quality 

Assessment Algorithm (SOPCQA), the Canopy Density Assessment Algorithm, and the 

Photo-Realistic Vineyard Reconstruction Algorithm. These algorithms were assessed in 

controlled laboratory environments utilizing a synthetic vineyard under both artificially lit and 

naturally lit conditions. 

The initial evaluation of the algorithms focused on a subjective comparison of their 

outputs by human researchers. This approach can be supplemented in future work with the 

implementation of objective, quantitative metrics to enhance the rigor of the evaluation 

process. 

The real-time viability of the Vinymap framework was evaluated objectively. Resource 

requirements were measured, and execution times were precisely recorded to assess the 

framework's suitability for real-time applications. 

8.6.1 Simple Objective Point Cloud Quality Assessment Evaluation 

The SOPCQA comprises three sub-algorithms: sparsity index calculation, hole detection, 

and cluster outlier detection. To evaluate their effectiveness,  controlled modifications were 

made to a reference point cloud to introduce specific quality degradations. 

Sparsity Index Calculation:  This sub-algorithm assesses quality based on point cloud 

density. To evaluate its effectiveness, controlled downsampling was applied to specific 

regions of the reference point cloud, resulting in sparser areas. As expected, the SOPCQA 

higher sparsity index (0.75) to the modified point cloud compared to the reference (0.52), as 

the sparse area in the modified point cloud is much larger. Figure 7-20 illustrates this. 

Hole Detection: This sub-algorithm assesses quality based on the presence of holes (areas 

completely devoid of points). To evaluate its effectiveness, random holes were introduced 

within the reference point cloud. As anticipated, the SOPCQA assigned a higher hole index 

(0.62) to the point cloud with holes compared to the reference (0.48). This indicates lower 

quality, because of the holes. 

Cluster Outlier Detection: This sub-algorithm assesses quality by identifying and removing 

point clusters too small to be considered valid data (potential noise). To evaluate its 

effectiveness, small noise clusters were artificially introduced to the reference point cloud. 

The SOPCQA, as expected, assigned a higher noise_clusters_quantity (24), as well as a 

larger total_noise_clusters_area (0.92) to the noisy point cloud compared to the reference 

point cloud which had a noise_clusters_quantity of 17 and a total_noise_clusters_area of 

0.58. Table 7-1 documents the results. 

Table 8-1: SOPCQA Evaluation 

Point Cloud 
Sparsity 

Index 
Hole 
Index 

Noise 
Clusters 
Quantity 

Total 
Noise 

Clusters 
Area 

FQI 

Reference 0.52 0.742 17 0.58 0.72 
Modified 0.75 0.62 24 0.92 0.61 
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The final SOPCQA algorithm returns a noticeably lower final quality index (FQI) for the 

intentionally modified point cloud. 

Enhanced Point Cloud Evaluation: To assess performance with a more realistic challenge, 

the SOPCQA's output was compared for a raw point cloud and a quality-enhanced version 

processed by Vinymap's dedicated enhancement function. The SOPCQA correctly assigned 

a lower quality index (0.59) to the raw point cloud compared to the enhanced one (0.75) 

8.6.2 Canopy Density Assessment Evaluation 

To test the performance of our canopy density assessment algorithm, we conducted 

experiments in both the simulated and the synthetic vineyard setting. The simulation offered 

a highly controlled environment with almost no canopy density variations. We tested the 

algorithm on dense, perfect canopies, resulting in very high-density index scores, as 

expected. The laboratory setting provided a more realistic yet controlled environment. Table 

8-2 and Figure 8-20 display the results in detail. We tested two distinct scenarios: 

• Moderately dense canopy (control): The algorithm returned a density index within 

expected range, aligning with the visual assessment of the canopy. 

• Sparse canopy: The presence of a gap resulted in a significantly lower density index, 
validating the algorithm's ability to detect and quantify vegetation irregularities. 

Laboratory tests were repeated under natural and artificial lighting. All tests yielded accurate 

and intuitively useful results, reflecting the algorithm's simplicity and effectiveness in 

assessing canopy density. 

Table 8-2: Canopy Density Index Output 

Experiment Type 
Subjective 

Canopy 
Assessment 

Output 
CDI 

Simulated Dense 0.742 

Laboratory 

Artificial 
lighting 

Control 

0.512 

Natural 
lighting 

0.569 

Laboratory 

Artificial 
lighting 

Sparse 

0.450 

Natural 
lighting 

0.461 
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Figure 8-20: Canopy Density Assessment Scenarios. 

8.6.3 Reconstruction Quality 

Our photo-realistic vineyard reconstruction algorithm is compared to the raw point cloud 

data and the Stereolabs' ZED Spatial Mapping [72] algorithm in terms of visual fidelity and 

information richness. Direct comparison with the raw point cloud data readily reveals the 

difference. While the raw data offers a basic structural representation, our reconstructed 

mesh delivers a significantly cleaned and visually enhanced depiction of the vineyard. 

Compared to the high-quality mesh output of Stereolabs' ZED Spatial Mapping 

algorithm at its highest settings, our reconstruction emerges as the superior solution. ZED 

Spatial Mapping uses its vertex coloring scheme to produce a colored mesh. Our projective 

texture mapping approach generates meshes featuring significantly greater visual detail, 

enabling farmers to meticulously inspect individual leaves and grapes. This enhanced 

texture facilitates more informed decision-making in the context of remote precision 

agriculture. Figure 8-21 depicts a visual comparison. 



 

 
146/156 

 
Figure 8-21: 3D Reconstruction Comparison. 

8.6.4 Real Time Viability 

To evaluate the real-time capabilities of our algorithm, we captured data using ROSbags and 

SVO files from ZED cameras, allowing for offline review, timing analysis, and benchmarking 

against state-of-the-art methods. This assessment was conducted on the Nvidia Jetson Orin 

platform. We compare the Vinymap framework with RTAB-map [12] and ZED Spatial 

Mapping. Our algorithm achieves real-time performance, performing on-par with the ZED 

Spatial Mapping algorithm at its high settings. While RTAB-Map exhibits faster execution, it 

occasionally experiences delay due to loop closure calculations. In contrast, our approach 

strategically triggers loop closure only upon AprilTag detection, eliminating these delays. 

All three algorithms achieve real-time viability. Notably, the desired output quality of 

each algorithm can influence the robot's operational speed. By carefully balancing robot 

speed and desired reconstruction detail, farmers can select the optimal solution for their 

specific needs. In the case of Vinymap, a 20% overlap between captured point clouds is 

required for effective ICP registration. Assuming the robot moves in a straight line 

perpendicular to the canopy, Eq. 7-10 yields the maximum speed at which the robot can 

move to effectively map a vineyard row.  

 𝒔 = 𝒇𝒑𝒔 ∗ 𝒇𝒐𝒗(𝟏 − 𝒐𝒗𝒆𝒓𝒍𝒂𝒑) ,  

(87-
1
0
3
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) 

, where 𝑠  is the maximum speed, 𝑓𝑝𝑠  is the frequency of point cloud and RGB image 

capturing, 𝑓𝑜𝑣 is the length of the visible canopy at each frame in meters and is dependent 

on the distance between the robot and the canopy, and overlap is the required overlap in 

volume percentage between the captured point clouds. With the capability of running with 

𝑓𝑝𝑠 =  2, a 𝑓𝑜𝑣 =  0.9 𝑚, and a required overlap of 0.2, Vinymap is suitable for running in 

real time on robots moving with speeds lower than 1.44 𝑚/𝑠. The RP which our framework 

was tested on was moving at about 0.12 𝑚/𝑠, comfortably within the limit. 
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9 Conclusions and Future Work 

In this thesis, we presented the development of a vineyard inspection and 3D reconstruction 

framework for mobile robots. This framework encompasses both hardware and software. We 

investigated mapping algorithms (RTAB-map, Anybotics Elevation Mapping, Zed Spatial 

Mapping) and evaluated depth camera options including ZED and RealSense depth 

cameras. Based on this evaluation, we determined that ZED depth cameras offered the 

most suitable performance for a vineyard setting and opted to use the Zed Spatial Mapping 

software. To aid in selecting the optimal hardware configuration, we developed a field-of-

view and LiDAR resolution analysis tool (FoVaLiRa) using Unity. This tool facilitated the 

exploration of various configurations and hardware placements on the robot. Through this 

analysis, we arrived at a configuration consisting of four depth cameras facing outwards in 

different directions. To further enhance the system's capabilities, we concluded that 

incorporating a LiDAR sensor, positioned at the front of the robot, would be beneficial. 

We then proceeded to evaluate path planning algorithms and methodologies, ultimately 

selecting a polytopic decomposition planner. This planner is effectively detecting free 

corridors within the vineyard environment, making it a suitable choice for our application. To 

implement autonomous navigation for the chosen planner, we leveraged a dual camera 

visual odometry algorithm developed at the Control Systems Laboratory. This algorithm 

relies on strategically placed April tags within the vineyard to trigger loop closure, a crucial 

step to mitigate visual odometry errors. To improve the accuracy of visual odometry 

localization, we incorporated a visual servoing step that aligns the robot’s camera with the 

April Tag prior to triggering loop closure optimization. 

Given the limitations of existing 3D reconstruction software, particularly the inability of Zed 

spatial mapping to achieve the desired level of detail and crispness, and the need for 

vineyard inspection functionality, we developed a novel framework named Vinymap. 

Vinymap addresses these shortcomings by offering several key functionalities. Firstly, 

Vinymap achieves real-time viability, enabling fast data collection within vineyard 

environments. Secondly, Vinymap surpasses the quality of 3D reconstruction obtained 

through Zed spatial mapping, generating more detailed models. Finally, Vinymap 

incorporates an inspection solution that includes a canopy density assessment algorithm. 

This algorithm provides valuable insights for vine-growers, as the canopy density affects the 

amount of sunlight and air reaching the grapes. Importantly, Vinymap also incorporates a 

method for objectively assessing the quality of the point cloud data it receives as input. This 

allows the framework to adapt to varying sensor performance and lighting conditions. 

To comprehensively evaluate the performance of the entire system, we conducted 

experiments on a robotic platform within a synthetic vineyard environment constructed at the 

CSL lab. This environment allowed for controlled testing of the dual camera visual odometry 

algorithm, the path planning algorithm, the perception system, and the Vinymap framework, 

under natural and synthetic lighting conditions. 

Looking towards future research directions, the integration of deep learning techniques 

holds promise for unlocking even more complex vineyard inspection tasks. Deep learning 

has the potential to enable the framework to detect grapevine diseases or highlight areas of 

potential concern that warrant further investigation by the vine-grower. Additionally, 

advancements in autonomous inspection could lead to the development of systems capable 
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of covering entire vineyards without requiring pre-defined starting and ending points. 

Furthermore, the creation of benchmark datasets specifically tailored to vineyard 

reconstruction and inspection tasks would allow for more in-depth evaluation of the Vinymap 

algorithm's capabilities. We are confident that this framework represents a significant step 

towards a comprehensive solution for precision viticulture. 
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