EoNIKO METTYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTIOAOTIESTON
TOMEAS TEXNOAOTIAY IIAHPOSOPIKHE KAI YTIOAOTISTON

Story Visualization via Masked Generative Transformers
with Character Guidance and Caption Augmentation

AIITAOMATIKH EPTAYIA

TOoL

Xpnotou Ilanadnuntelou

EnBAEnwyv: Tedpyiog Stdypou
Kodnyntic E.M.IL

Adhva, Mdptioc 2024

Edvixé Metodfio Ilohuteyvelo

Yyon| Hhextpohdywv Mryavixddv xan Mnyoavixodv Troloylotdv
Tougoc Teyvohroyioc IIAnpogopiniic xar YTrohoylotddv
Eeyoaothplo Yuotnudtewy Teywntrig Nonuooivng xow Mddnong

Story Visualization via Masked Generative Transformers
with Character Guidance and Caption Augmentation

AIIAOMATIKH EPTrAYIA

ToL

Xerotou Ilanadnuntelou

EnBAenwyv: Tedpyiog Stduou
Kodnyntic E.M.IL

Evxpldnxe and v tewedr) e€etaotin emitponr) v 11 Maptiou, 2024.

Tedpyloc Ltduou Adavdocioc Bouhddnuoc Stégavoc KéMag
Koadnyntic E.M.IL En. Kodnyntic E.M.IL. Koadnyntic E.M.IL

Adhva, Mdptioc 2024

XPHETOX ITAITAAHMHTPIOY
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mnyovixog Trohoyiotov E.M.IIL

Copyright (©) — All rights reserved Xphotoc Homadnunteiou, 2024.
Me em@OIaEn TOVTOS BLXAUDOUATOC.

Arnayopebeton n aviypagt, anodrixeuon xou Slovopr] Tne tapovoag epyactag, €€ oAoxhipou Y TUAUITOS AUTAS, Yid
eunopd oxond. Emtpéneton 1 avatinwot), amodixeuct) xou Siovour| Yol oxomd U xepdooxomuxd, EXTOUEVTIXAC
1) EEELYNTXAC PUOTC, UTO TNY TEoUTOVEST Vo avapépeTal 1) TYY) TPOEAEUOTC %ol VL BLTNEELTOL TO THPOV UAVUUAL.
Epwtiuata mou agopolv 1t yerion tne epyaociog yio xepdooxomxd oxond npénel vo aneudivoviol Teog Tov
CLUYYPAPEA.

Ou amderc xa o CUUTEPAOUATO TTOU TEPLEYOVTOL GE AUTO TO EYYRUPO EXPRELOUY TOV CUYYEAUPEX Xou EV TRETEL
va epunvevdel 6Tt avuinpoownedouy Ti¢ enionueg Yéocig Tou Edvixod Metodfiou IToduteyvelou.

ITepiindm

H Ontxonolon Iotopioc (OI) elvon plor amawtnuixd epyasio oty Teymnth Nonuooivn, 1 onola eynintel otny
topn petaln Enelepyactiac Puownc I'oooog xaw ‘Opaone YTrohoyiotwv. H epyasia auth ocuvictata otnv
napaywYY) Wdc axohoudog exbOvwY Tou amoteAolv onTixonolnoy wac axohloudiog meotdoewy. O mpotdoelg
oynuatilouyv o cuvextixy aghynon xou to Blo mpénet va oupPaiver pe Tic exoves. H Ol eworydel yia npdn
(popd to 2019[18] xou ano téte Exel avtipetoTOoTE! Ye didpopes TEXVIXES, ouunepthaufBavopévou Twv GANS [18,
36, 20, 19], twv Metaocynuatiotody (Transformers)[5, 1] xaw tov peddédwv Awdyvone (Diffusion)|25, 33].

Ye auth v Simhepoatixnd entyelpolue va tpooeyyioouue tnv Ontixonolon lotoploc Paciopévol oe pla apyLtex-
tovixn tov Aéyeton MaskGIT. To MaskGIT][3] eivon pior oyetind xouvovpyia npocéyyion, Tonou Metaoynuatiot,
mou mpotdinxe ota mhaiowr tne ovvdeone Ewxodvoe and Kelpevo. Elpacte ol mpddtol mou yenoiwonotoue plo
tétota pédodo yio tnv OL. Xuyxexpiévoa, oynuatiloupe to Booixd pog poviého TpocVETovias 6T0 TPWTOTUTO
MaskGIT emnhéov uno-otpdpota Etépo-Ilpocoyrc (Cross-Attention), mou Tou EMTEETOUY VAL EVOWUOTOVEL
TAneopopia and TEOTYOVUEVES Xl UEAAOVTIXES TEQLYPAPES EXOVLV, OTaY ToRdYEL Wia BEBOUEVT EOVAL.

Xtilouye ndvew og aUTH TNV TEOCEYYLON UE BLdpopoug TedToue, ot avalhtnon xatevdivoewy tou BEATIVOUY TNy
entdoon. Kdnola and to neipdpatd pog, 6mne 1 ¥pron Teo-eXTUdEVUEVOLU XWBXOTONTH XEWEVOL, N TPooTdUELo
AMOTAEENS YOPAXTNELOTIXGY GTOV Xpupd Yo, 1 Yerhon Keith XuuBéiwy (Token-Critic) xou n adinon g
EUXELVELX TOL XEUPOV YWEOU YUEAXTNELOTLXWY, BEV €80aay XUNITEP AMOTEAECUOTAL.

And v dAAY), evtonicope tpewc xateudivoelg mou amodelytnray weéhipec. Bprxaue 6TL 1 mpootxn SV-
Ytpwudtwy otov Metaoynuation] BeAtidvel Ty enidoon oe dheg Tic petpwéc. Emmiéov, mpoteivoupe pla
ETUTUYMUEVT LEDOBO0 ETAVENONE TV YAWOOIXDY TEPLYPAPHOY TwV EOVKY (captions), péow Meydhou I'hwooxol
Movtéhou (LLM), 1 onola eivon tugphh we mpog Tic emdvee. Téhog, n pédodoc Kadodhynone Xopaxtipwy mou
Tpotelvouye, Baclpévn 1600 ot VeTixég OGO XAl OTIC APYNTIXEG UTODEIEELS, EMNEEALEL GUECH TNV TUPAYWYT) TNV
Baowdv Xapaxtipwy oTic edveS xal odnyel oe ueydAn Bertinon, we mpog dheg T ueTpéc. Xuvdudlouye Tig
utooyopeves eBdBouc yia va @Tdcoupe oty xohUTepn apyttextovixd poac: MaskGST-CGy w/ aug. captions.

AZiohoyolpe tny mpooéyyiot, pac pe Pdon to Pororo-SV[18], nou eivon to ntlo diadedouévo alvoro dedopévev
v auth TV gpyacia. Xenowonowlue T To xuplapyec HETPWES otny Tponyoluevy Bihoypapla, cuunee-
opPovouévou twv FID, Char-Acc, Char-F1 xaw BLEU-2/3. To xolUtepo povtého pag netuyaiver Béltiota
anoteréopata (SOTA) oto Char-F1, Char-Acc xau BLEU-2/3, ta onoio avodetxviouy Wiodtepo tnv adior tne
pedodou Kadodrynone Xapaxthpwy. Emmiéov, To poviého pog Eenepvd GAEC TIC TEONYOUUEVES UPYLTEXTOVIXES
GAN xouw Metaoynpotiot, éowv agopd to FID.

A€Zeig-xhedtd — Ontxonoinon Iotoplag, Teyvnt Nonuoolvn, ‘Opaon Trohoyiotwhyv, Enegepyacio
Quow I'hdocog, Metaoynuatiotég, Enadénon yhwoowwy dedopévwy, Kadodrynon Xapoxthpwy

vii

Abstract

Story Visualization (SV) is a challenging Artificial Intelligence task that falls in the intersection of Natural
Language Processing (NLP) and Computer Vision. The task consists of generating a sequence of images
that serve as a visualization of a given sequence of sentences. The sentences form a coherent narrative and
so should the images. It was introduced in 2019[18] and has since been approached in multiple manners,
including GANs [18, 36, 20, 19], Transformers[5, 1] and Diffusers[25, 33].

In this thesis we attempt to tackle the task based on an architecture called MaskGIT. MaskGIT[3] is a
relatively recent Transformer-based approach, proposed for Text-to-Image synthesis. We are the first to
employ this method for SV. Specifically, we form our baseline model by enhancing the original MaskGIT
architecture with additional Cross-Attention sub-layers, that allow the model to integrate information from
past and future captions, while generating an image.

We build on top of our baseline model in several different ways, in search of directions that improve per-
formance. Some of our experiments, like leveraging a pre-trained text-encoder, attempting disentanglement
in the latent space, using a Token-Critic and performing super-resolution in the latent space, do not yield
better results.

On the other hand, we manage to detect three directions that prove beneficial. We find that adding SV-Layers
to the Transformer improves its performance in all metrics. Additionally, we propose a successful, image-
agnostic caption augmentation technique, that uses an LLM. Finally, our Character Guidance method, based
on both positive and negative prompting, directly affects the generation of main Characters in the images
and results in major improvements across all metrics. We combine promising approaches to arrive at our
top-performing architecture; MaskGST-CGy+ w/ aug. captions.

We test our approach on Pororo-SV[18], which is the most widely adopted dataset for the task. We evaluate
our models using the most prominent metrics in previous literature (including FID, Char-F1, Char-Acc and
BLEU-2/3). Our best model achieves SOTA results in terms of Char-F1, Char-Acc and BLEU-2/3, which
speaks of the merit of our Character Guidance approach. Additionally, it outperforms all previous GAN and
Transformer approaches in terms of FID.

Keywords — Story Visualization, Artificial Intelligence, Computer Vision, NLP, Transformers, Caption
Augmentation, Character Guidance

ix

Euyaplotieg

Ipdtov, Yo Hdela vo evyoplothon Tov emBAémovia xadnynth Yo, tov x0plo XTAUoU ToU Yo EUTLOTEOTNXE
™V EXTOVNON auThc TN Simhwyatxhc epyooioc. ISaditepa, Véhw va euyaplothow v Mapla Avurepoiouv xou
Tov I'dpyo Puhavdplavd yiar Ty uTogovy Toug, TNV cuvepyaoio xou TNV xadodAyNnoy) Touc oe OAN ALTH TNV
dradxacion. Enlong, euyopiotdd v xupla TColBeln, mou pou diédece, péow Tou Aoydplacuol tng mpdoBaon
GTOUC UTOAOYLOTIX0UE Ttopoue Tou cuathpatoc ARIS (GRNET).

Yto o mpoowmxd, YEAW Vo ELYAPLOTACK TNV OLXOYEVELH HOU Xdl Toug @ihoug wou mou ftay dimha pou Gha Ta
YEOVIAL TV OTIOUBMOY Lo, xdmotot €€ auTdY xou Tohd ety and autd. H cuunopactact toug oy anapaitnt yio
Vo Taow wg €8¢. Téhog, Bélw va euyoplothow tov Bcd Tou emtpénel va xheloel aolng xan autd To xeEQIAALO.

Xprfiotog Iaradnuntelou, Mdptiog 2024

xi

Contents

Contents
List of Figures
Katdhoyoc ITivéxwy

1 Exztetopévn Ilepiindn ota EAANvIxd

1.1 Ewoayoyh . . oo
1.1.1 Iopaywyh Ewovag and Kelpevo . . . oo oo 00000000
1.1.2 Omuxomoinon Iotoplag oL Lo
113 BUVEIGQORS . . o o o

1.2 Iponyotueveg Teyvixéc otny Ontwonoinon Iotoplago 0oL

1.3 Oewenmnd TrOBodpo L
1.3.1 METUOYNUOTIOTES « « « o o v v v v e e e e e e e e e e
1.3.2 Avtoxwdixomointic Hapahhayov ye Awavuopatixé KBovtiopdo o 0oL .
1.3.3 Metaoynuatiotég wg Hpdtepeg Katavopée . . o o o oo 00000000
1.3.4 Eratinon Kewevixdv Aedopévov ye Xpdon LLMo 0000000

1.4 Tlpotewvodueveg Teyvixéco o
1.41 Kodwonolnon tov Ewdvevo
1.4.2 Kodwonoinon twv Nhwoowoy Hepiypapay . ..o o oo oo
1.4.3 MaskGST o
1.4.4 Enduinon twv Aedopénv péow Meydhov Nhdoomody Movtéhwy Lo L L.
1.4.5 Kpitie Yuuférwv Baoloyévog otoug XopaXThARES .+« v v v v v v oo
1.4.6 Al&non tng uxpivelag tov Kpupod Xdpou XapoxtneioTixdy o o oo L.
1.4.7 Anomhedn Xopoxtnelotxdy otov Kpupd Xdpoo oo

1.5 Iewpopotind MEROC o
1.5.1 Opydvwon tov Hepoudtey oo oo o
1.5.2 IMepdpota ApYLTEXTOVIXAC « « « o v v v v v i e e e e
1.5.3 Iewdyota YTrep-Topopétowy o oo oo oo o
1.5.4 X0yxpon pe Iponyolduevee Teyvixéeo oo
1.5.5 IIooTd AMOTEAEGUOTO .+« v v v v v v v e et
1.5.6 Avlpdmvn AZohOYNom
1.5.7 Avdhvon Xpnowornowlpevey Idpwyo oo oo

1.6 Xupnepdopoto xou MeMovtixéc Kateuddvoeis o oo oo
1.6.1 MUUREQAOUATO .« v v v v
1.6.2 Meihoviiréc KateuOOVoelc . . . o o o o o

2 Introduction

2.1 Text-to-Image generation e
2.2 Story Visualization L e
2.3 Contribution L e

3 Previous Work on Story Visualization

xiii

xiii

xvil

xviii

TUR W W NN~ = -

O W W W RN N NN N NN = o e e e
E O S ORI AN R R g — 00O ®

33
33
33
34

35

Contents

3.1 StoryGAN . o L
3.1.1 Story Encoder e
3.1.2 RNN Context Encoder o
3.1.3 Image Generator
3.1.4 Image Discriminatoro
3.1.5 Story Discriminator

3.2 CP-CSV . . . e e

3.3 DUCO-StoryGAN
3.3.1 Mart Context Encoder
3.3.2 Dual learning via Video Redescription L 0oL
3.3.3 Sequentially Consistent Story Visualization: Copy-Transform

3.4 VLC-StoryGAN o e
3.4.1 Memory-Augmented Recurrent Tree Transformer
3.4.2 Commonsense Knowledge L
3.4.3 Contrastive Loss e

3.5 VP-CSV . e e e
3.5.1 VQ-VAE . . . e e e
3.5.2 Visual Planning (VP)
3.5.3 Token Level Character Alignment

3.6 CMOTA . . . e e
3.6.1 Base Model
3.6.2 Context Memory e
3.6.3 Online Text Augmentation

3.7 AR-LDM . . e e
3.7.1 Diffusion Models e
3.7.2 The architecture of AR-LDM

3.8 ACM-VSG . . o e e

3.9 Causal-Story

3.10 Story-LDM . . . L e
3.10.1 Latent Diffusion Backbone
3.10.2 Story Latent Diffusion Model L o
3.10.3 Memory-Attention Module oo
3.10.4 Network Architecture

3.11 StoryGPT-V . . o e
3.11.1 Character-Aware LDM with attention control
3.11.2 Aligning LLM for reference resolution

4 The Transformer

4.1 Original Architecture L e
4.1.1 Encoder e e e e
4.1.2 Decoder e e e e e e e
4.1.3 Attention Mechanisms

5 VQ-VAE

5.1 Original Architecture e
5.1.1 Discrete Latent Space
5.1.2 Encoder and Decoder
5.1.3 Training o L e e
5.1.4 Prior Distribution

5.2 VQ-GAN . . . e

6 Transformers as powerful Prior Distributions

6.1 DALL-E e e
6.1.1 dVAE . . . e e
6.1.2 BPE-encoding e
6.1.3 Transformer e

Contents

6.2 MaskGIT e 67
6.2.1 Method e 67
6.2.2 First Stage 67
6.2.3 Second Stage e 68
6.2.4 Token-Critic e 69

6.3 DMuseo e 71
6.3.1 Model e 71

Caption Augmentation using LLMs 75

Masked Generative Story Transformer 77

8.1 TImage Tokenization L e 77
8.1.1 VQ-GAN . . e 77

8.2 Text Encoding e 77
8.2.1 Custom Text Embeddings 78
8.2.2 Usingan LLM e e 78

8.3 Transformer Priors e 78
8.3.1 Input e 78
8.3.2 Types of Transformer Layers 79
8.3.3 Proposed Transformer Models, 81
8.3.4 Character Guidance« . . L 83

8.4 Caption Set Augmentation 84

8.5 Character-Attentive Token-Critic L 85

8.6 Latent Super-Resolution Model L 85
8.6.1 Base Transformer 85
8.6.2 Super-Resolution Transformer L o 86

8.7 Latent Space Disentanglement 86
8.7.1 VQ-GAN Encoder and Decoder 87
8.7.2 Quantization with two Libraries of Latent Vectors 87
8.7.3 Foreground-Background Segmentation 88
8.7.4 Modifications in the Transformer L oL 88

Experimental Section 91

9.1 Experimental Setup 91
9.1.1 Codebase e 91
9.1.2 Training Environment oL e 91
9.1.3 Story Visualization Datasets oL oo 91
9.1.4 Story Visualization Metrics L Lo 92

9.2 Architectural Experiments Lo 93
9.2.1 TImage Tokenizer e 93
9.2.2 MaskGST e 93
9.2.3 MaskGST-SV e 93
9.24 THh-XXL asa Text Encoder L 95
9.2.5 Caption Set Augmentation via ChatGPT, . 95
9.2.6 Character Guidance L L 96
9.2.7 Negative Prompting 96
9.2.8 Character-Attentive Token Critic 97
9.2.9 Latent Super-Resolution Model o oo 97
9.2.10 Latent Space Disentanglement L L. 98
9.2.11 Combining Methods L 99

9.3 Experiments on Hyper-Parameters oL o 101
9.3.1 Transformer Hyper-Parameters 101
9.3.2 Study on Character Guidanceo 102

9.4 Comparison With Previous Baselines 0. 103
9.4.1 MaskGST-CGy w/ aug. captions (d =1024) 104
9.4.2 MaskGST-CG1 w/ aug. captions (d =2048) 104

XV

Contents

9.4.3 Comparison with Diffusion models 0o, 104

9.4.4 Story Continuation L 104

9.5 Qualitative Results e 105
9.5.1 Image Quality e 105

9.5.2 Temporal Consistency e 106

9.5.3 Semantic Relevance 106

9.6 Human Evaluation e 106
9.7 Resource Usage Analysis 106
9.7.1 Recources at Training L 106

9.7.2 Recources at Inference 107

9.8 More Qualitative Examples L 107
10 Conclusion and Future Directions 111
10.1 Conclusion e e e 111
10.2 Future Directions o L e 111
11 Bibliography 113

xvi

List of Figures

1.3.1 H apyrtextovind) Tou Metooynpottoth[42] o o oL 3

1.3.2 Khpoxouévn Ipocoyr) Eowtepinot T'ivopévou (apiotepd) xau pocoyn Iodamhév Kepohodv
(Be&id) [42] . . o o 4
1.3.3 H apyrtextovindy Tou VQ-VAE[39]o 5
1.3.4 O tpdmoc hertovpyloc tou MaskGIT[3] oo o 6
1.3.5 Autoavagopindc Suprepaoudc vs Hapddinroc Enavehdrtinde Supnepaoudc (MaskGIT) [3] . . 8
1.3.6 X0yxplon Yuvapthoewy Hpoypouuotiopod Mdoxaco 8
0

1.4.1 H dertoupyio tov VQ-GAN L L L L L oo o 1
1.4.2 O tpotéoeig pLac totoplag undxetvto xwdixonoinon BPE[32] yio va avticTolyiotody ot Saxpltd
Yhwoowd oOufoha (tokens) 10
1.4.3 H €loodog Tou METUGYNUOTIOTY « « v v v v o ittt e e e e e 11
1.4.4 Ta x0plal GTEMUATA OV YENOWOTOLOUVTOL 6TOUC METAOYNUATIOTEG UAC .+« v v v v o o o o o e 12
1.4.5 Eneepyaota 8eB0UEVOY Y10l TO SV-ETPOU « « o v v v v v v oo 13
146 SV-ETeOUO . o o v o e 13
1.4.7To MaskGST 14
1.4.8 MaskGST-SV oo e 15
1.4.9 H Swduxaocio exnaldevone tou MaskGSTo oo 15
1.4.1(Eicodoc Touv Movtéhou Super-Res L 18
1.4.1TTponomoinuévo VQ-GAN yior amdmAedn YopaxXTNELOTIMGY .« . o v v v v v v e oo e e 19
1.5.1Study on f . . . o e e 27
1.5.2 Towotixn, alyxplon petod tou povtéhou poc(MaskGST-CGi w/ aug. captions) xat tou
CMOTAJ1] oc téooepa TUpaBElYHATA LOTOPLOV. « « « v v v e v i e et e e et e e e 29
3.1.1 An overview of the architecture of StoryGAN [18] L. 36
3.1.2 The Story Discriminator [18] e 37
3.2.1 An overview of the architecture of CP-CSV [36] 37
3.3.1 An overview of the architecture of DUCO-StoryGAN [20] 39
3.4.1 An overview of the architecture of VLC-StoryGAN [19] 41
3.4.2 Example of a constituency parse tree [19]o 41
3.5.1 Overview of the VQ-VAE architecture [39] 43
3.5.2 Overview of the architecture of VP-CSV [5] L. 43
3.6.1 CMOTA’s Bidirectional Transformer [1] 45
3.6.2 CMOTA’s memory module [1] o 45
3.6.3 Comparison between the traditional memory connection scheme and CMOTA’s [1] 46
3.7.1 Overview of AR-LDM’s architecture [22] o 49
3.10.00verview of Story-LDM’s architecture[25] Lo 51
3.10.Dverview of Story-LDM’s memory-attention module[25] 52
3.11.10verview of StoryGPT-V’s architecture[33] L. 54
4.1.1 The original Transformer architecture [42] 58
4.1.2 Scaled Dot-Product Attention (left) and Multi-Head Attention (right) [42] 58
5.1.1 The Original VQ-VAE architecture [39] 62

List of Figures

6.1.1 Types of attention masks used in DALL-E 66
6.2.1 Overview of the MaskGIT architecture [3] 67
6.2.2 Autoregressive Inference vs Parallel Iterative Decoding used in MaskGIT [3] 69
6.2.3 Comparison of Mask Scheduling Functions 70
6.3.1 Overview of Muse’s architecture 71
6.3.2 Muse’s super-resolution model [4] Lo Lo 72
8.1.1 VQ-GAN encoder and decoder e 7
8.2.1 The sentences of a story are BPE-encoded to obtain text tokens 78
8.3.1 The input of the Transformer 78
8.3.2 Basic Transformer Layers e 79
8.3.3 Data Processing for the SV-Layer 80
8.3.4SV-Layer e 80
8.3.5 MaskGST model e 81
8.3.6 MaskGST-SV e 82
8.3.7 Overview of MaskGST’s training procedure, 82
8.6.1 Super-Resolution Model Input L 86
8.7.1 Modified VQ-GAN for feature disentanglement 87
9.1.1 Main characters featured in Pororo-SV oL o 91
9.2.1 Alternative MaskGST-SV architectures 94
9.2.2 Token-Critic o o e e e 97
9.2.3 Examples of our disentanglement test L oL oL 100
9.3.1Study on f . . L e 103
9.5.1 Qualitative Comparison between our model (MaskGST-CGL w/ aug. captions) and
CMOTA[1] across 4 story examples. it 105
9.8.1 More Story Generation Examples using our model MaskGST-CGy /w aug. captions. 108
9.8.2 More Story Generation Examples using our model MaskGST-CG+ /w aug. captions. 109

xviii

List of Tables

1.1

9.1
9.3
9.2
9.4
9.5
9.6
9.7
9.8

To amoteréopota TNE ovle®mYNG GELOAOYNONG « « « v v v v o o 30
Experimental Results for MaskGST-SV oo 95
Experimental Resultso 101
Combining Different Methods o 101
Experiments on the Transformer Length of MaskGST-CGL 102
Experiments on the Transformer Dimension of MaskGST-CGy 102
Comparison with previous architectures L oo 103
Story Continuation results 104
Results of our human survey L 106

Xix

List of Tables

Chapter 1

Extetapevn Ilepiindn oto EAAN VX

1.1 Ewcaywyn

Méoa oty teheutaio dexaetio, 1 eEEMEN 6TO UAXS XL TO AOYIOWXS TMV UTOAOYLO TV, 1) CUCCOPEUCT] HEY ALY
TOCOTAHTWY DEBOUEVWY, ahAd o 1) €peuva oTov Topéa TS Pathde uddnong €youv odnynoeL oe Uio AVETAVIANTTY
avdmtuén xan vodétnon cuoTnudtwy TEXVNTAC vonuooivne (Al). Elwxd, to 2023 éyve gavepd 6T autd to
pouvouevo dixaiwe yopaxtnelletan we 1 enduevn ueYdhn teyvoroyu enavdctaoy. H xuxhogopio tng, didonung
miéov, egappoyhc ChatGPT ota téAn tou 2022 xou 1 tayltaty Gvodde tou oe dnuogiiia, Theoy TV TeYV-
Nt Vonuoolvy amd Tov xoopd ETOTNUOVIXG XOGUO xou TNV €gepay oty dnudota oxnvh. H eqopuoyy auth
€yive pépog TNV XadNUeEpVOTNTAS, PUVOUEVO TNG POP XOUATOVpG o avTxelpevo moktxwy oulnthcewy. To
ChatGPT, avdyeca oe ddhoe LLMs (Meydha I'hwoowd Movtéla) (n.y. [13, 37]) éxel emdellet avemavdinmra
ATOTEAEOUATA, OOV APORE. TNV XATAVONTT) TNG PUOXTC YAWOOUS, OhAG oL TNV TOEAY WY TNG, HEPES POopEC
oe eninedo mou cuvaywvileton Tou avdpdTouc.

1.1.1 TITopaywyr Ewxévag and Kelpevo

Extéc and v guon) YA®ooo, ol eixdveg elval piot and T onuavTixdtepes teployés tne avipdmivne euneiplag,
EVG AMOTEAOVY TEOTO ETUXOLVWVIANS XU EXPEAoNC. XE AUTO TO TAAOLO, 1) XUTAVONOT| TV EXOVLY, 0OANE xou T1
TopaywyR toug elvan e&loov onuavuxés npoxhioeis yia v Teyvnt) Nonuoolvy, xodde auth tinodler otnv
évvola Tou anoxaloluol vonuoouyvn, yio Toug avipnnous. ‘Ocov agopd TNy mopaywyy| emdvag and xeluevo,
€youve yivel o€loonueinteg tpoondielc ta mponyolueva Ypovia, pe agetneio to Ievvnted Avtidetind Abctua
(GANS) mou epgaviotnray 1o 2014 [11] xou xvpldpymooay oty Topay YT Exdvag Yio xdrota ypdvio [45, 46]. Iho
npdogata, ot Metaosynuatiotée (Transformers) [26, 3, 4], ahh& xon o0 Movtéha Awdyvone (Diffusion Models)
[27, 30, 28] éxouv @épel enavdoToon otV Tapay WY Exdvas, BEATIOVOVTAUS TNV ToldTHTa, oAAd xou To €0pog
TV ONTIXWOY VEUETOV ToU Unopoly va tapoydoiv.

1.1.2 Omntwxornoinon Iotopiag

Ye auth v dmhopatxd epyasia eotidloupe oty Ontionoinom Istoploc (Story Visulization - SV). O oxondc
otnv SV elvon 1 mapary oy wag axolovdiog and emdveg, xdde wid omd Tic onoleg AVTIGTOLYEl GE Wal TROTIOT),
and yia axohouvdo dedopévwy mpotdoewy. Ot npotdoele, autés oynuatiCouv wa eviala agrynon. To avtéiuevo
auT6 TPoTdUNKE TEMTN Yopd to 2019 and toug cuyypapeic Tou [18], ot onolol TpdTevay xou o StoryGAN, to
TEAOTO WOVTEAD Yol QUTH) TNV EpYaoiaL.

Kot plo évvola, umogolue vo dodue v SV oav enéxtaon tng Hapaywyric Ewdvag and Kelyevo, ue mpoodixn
plag ypovixic ddotoong oto mpofBinua. Evedlaxtind umopolue vo tny 8éupe w¢ evdldueco Bua mpog v
IMaporywy Bivteo yeydhou urixoue, and xelpevo, agpold n SV aoyohelton pe pixpéc axohoudie exdévwy (cuviduwe
4-5), eved pior tanvior xovixol pixoug éxel YIAddes oxnvéc.

Trdpyouv 800 peydies mpoxinoeic otny SV. Hpdtov, otny nopayduevn oaxolouvdia edvwy, xdde exdva npénel
VoL TEPLEYEL TOL AVTIXE{UEVOL TTOU TIEPLEYOVTOL OTNV avT{oTOLY N TEPLY POpT| xou Vot ToL amexovilel euxpivdde. Aeltepov,

1

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

uTdpyEeL 1 apnynuaTer Thevpd: Avtixelueva mou eugavilovion ot Téve omd Wwa Eova TEETEL VO TUEOUEVOUV
CUVETY] W¢ TEOC TNV EPQPAVION, WOTE Vo efvon avaryvewpiowo we to Blo avtixeiyevo. To mo onuavtxd tétola
avtixelyeva etvon ol Baouxol yapoxtripes mou eygoavilovion oTic lotoplec.

1.1.3 Xuvelcpopd

H x0pwa cuvelopopd pog etvar 1 viodétnon evée poviéhou tonov MaskGIT [3] v tnv Ontixonoinon Iotoploc.
Elgoote oL mpodTol ou Souxdloude duTh TNV 0EYLTEXTOVIXTY YL TNV CUYXEXQIEVT epyacia. Mdlota xpivouue
OTL 1) CUYXEXPLEVY] AEYLTEXTOVIXT| EXEL AEPBEL DUCUVENOY O UELWPEVY] TIpOCOY T OE OY€oT UE Tal povtéha Aldyvone
(Diffusion), axbya xou 6TV cLYYEVA epyacia TNe mapoy Wy EEVIC And XEWEVO.

Xernotpomololyue yia ehappetd mopodhay) tne apyttextovixic MaskGIT we tov mupriva tng douletds pag. Ilepo-
patll oo T Ue TOIAES TPOTIOTIOLACELS OE SLAPOPO XOUUATIA TNE AEYITEXTOVIXNS, TROOTAdOVTOS Vo XATOANEOUUE
ot epeuvNTIXEC xaTteLHOVoElS Tou BEATIOVOUY TNG TOLOTNTA TWV ANOTEAECUATWY oG,

1.2 IIponyolpeveg Teyvixég otnv Ontixonoinon Iotoplag

Trdgyouv apxetéc nponyolueves dovkeléc mou ecTidlouv oty Onuxonoinon lotoplac.

To StoryGAN[18] yenowwonoiel évav Kwdixonomth Iotopioc, évac Avadpopxd Kwdixoromts Kewévou, yia
vo Blatnpeel ouyxeiuevo and mponyolueva Bridata, xodng xou 800 Eeywplotols deuxpiotés: Euovag xa Io-
toplag. Atdgpopa GANs yetd and autd ytillouv néve oe auth TV tpocéyylon pe Sapopetxols tpomous. To
CP-CSV[36] npootéter évav emnhéov Iapoywyd mou mopdyel ydoxes Soywplopol npooxnviou-topacxnviou,
yio v Bonioel pe v mapayey oy Xapoxtiponyv. to DUCO-StoryGAN|[20] npoodéter Auwr; Mddnon (Dual
Learning) péow enavo-neptypaghic Pivieo xon évay unyoviopd Avtrypagphc-Metooynuatiopod Tou ypnotuonotel
exoveg ou maprynooy oTa TeonyoUUeva Buate, yiot va eviuepdoet TNy ewdva oto teéyov Brpa. To VLC-
StoryGAN[19] evowpatdver ontxd-ywelxh TAnpogopla, Yenoylotoudvtas tuxvd urotithiopd (dense captioning)
%o Ypnouonolel Yvohon xowvrc hoywrc, Héow Yedpwy YVaoTng.

‘Ooov agopd toug Metaoynuatiotée, éyouv dnuooteudel d0o npooeyyioec. To VP-CSVI5] npoteivel pia mpocéy-
yion 800 emmédwy. Xto mpwTo eninedo, €vag Metaoynotiotic mpofiénetl ontixd cUYBoAa Ylo TEPLOYES NG
ELXOVAC TIOU AVTIO TOLYOVY OF YORUXTARES, EVE) 0T0 BedTEPO EMUNEDO, EVag dANOS MeTaoy NUATIO THG, CUUTATEWVEL
Tor udhoLo, onTixd clpPola Tou avtioTolyovy oto Topacxivio. To CMOTA [1] yenotwonotel povédec puviung
yia vo evioyOoeL TNV cuvdgeta JeTol emdvev tne Blag totoplag. Enlong npoteivel pla tpocéyyion 80o xateu-
Yovoewv (Keiyevo-npoc-Ewdva xou Ewdvo-npoc-Keluevo) nou tou emitpénel vo mpoypatornotel enadinom twy
XEWEVIXODV TIEQPLYQAPOY TOEEAANAAL PE TNV EXTOUBEVOT).

Avagopixd pe ta Lovtéha Sdyuone, UTdpyouv TEELS TEOCPUTES TEYVIXES TIOU YPNOLOTOL00Y TO TEOEXTUULBEUUEVO
LDM][28]. To AR-LDM][22| povtehonoiel v mopaywyy oxolovac exdvmv pe auto-tpogodotixd (auto-
regressive) TeOmO. BUYXEXPUIEVA, OL EIXOVEC Topdyovtal amd €va povtého didyuone xpupol yweou (Latent
Diffusion Model - LDM)[28], plo-pio, ané tny npcdty, uéyet v tehevtaio. H diabixasio Sidyvone, yenowonotel
0¢ ouvdrixes TY YAwoow Teptypagt| TNS Teéyoucas Yeovixic otyuhc, xadoe xar tohutpomixés (multi-modal)
avonapactdoelc ond Lebyn Aeldvtoc xou TUeNYREVNS EXOVAC, TRONYOUUEVWY Ypovixdy oTiyuoy. H tpéyouvoa
heldvta xwduonotelton péow tov CLIP[23], evdd tor TOANUTROTIXG YOpax TP TIXG, TWY TEoNYOUREVKDY (EUYOVY
ewédvac-heldvrae oynuatiCovioa péow tou BLIP[17]. To ACM-VSG[10] nopdpola Lovielomolel Tov napayoyT
TOVY EOVWY UE AUTO-TEOPODOTIXG TEOTO, YENOWOTOLVTUC (¢ CUVITXY TOAUTEOTIXG YAPAXTNELOTIXA Ond TRO-
nyovuevo Bruota, woli pe v teéyovoa Aeldvta. 2oTt600, elodyel évay EMTAEOV UNYAVIOUS TEOGUQUOC TIXHC
xadodhynone (adaptive guidance) mou anooxonel oty eZdInomn exdvwy mou €xouv TaEOUOIES TEPLYPAPES, VoL
elvan x owtée ontixd napdpoec. To Causal-Story[35] Pertidver To AR-LDM ewodyovtog pior tomxs| outiont,
pdoxa npocoyfc mou meplopilel To péyeloc TwV AVATUEUC TICEWY TOU aQoEOLY To TEoNYoUueva BAudta oTny
o Toplal, YLol VoL UETELAOEL TO TEOBANUO TOU SNULOVEYELTOL OO CUYXPOVOUEVES TIEQLYPUPES.

Télog, undpyouvv dVo axdua texvixéc Tou Booilovton oe povtéha didyuone. To StoryLDM[25] tpononote
xan mpooapuélet (fine-tune) to Stable Diffusion dote va ypnowonowmdel ye avto-tpogodotind tpdTo, Yiow THY
Onuxonoinon Iotoploc. ITo npdogata, to StoryGPT-V([33] tpononoiel to Stable Diffusion dote va eotidlet
oTNV TapAYWYT TV Yapaxthowy. Enione to evduypauuilel ye éva LLM, to onolo Bonddel otnyv anocagprivion
avapoptyy XapaxThpwy o DLUPORETIXEC Teplypapes NS (Blag oToplag. Xnuewdvoupe 6Tl ol dlo teheutaleg

2

1.3. Bewpnuxd TndBadeo

Output
Probabilities

Add & Norm
Feed
Forward

Add & Norm

AGE1@ Ny Multi-Head
Feed Attention
Forward g Nx
Nx | Add & Norm
Add & Norm NVasked
Multi-Head Multi-Head
Attention Attention
At At
_ J .)
Positional ® Positional
Encodin: & i
9 Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1.3.1: H oapyttextovixf Tou Metaoynuotioth[42]

pédodol epapuolovtar oe pio mapodayuévn, mo 80oxoAn €xdoon g SV, OTou eRAVONUBAUVOUEVES OVOPORES
TWV OVOUdTwY Twv Xapoxthemy aviixadiotavton ye aviovuples (t.y. autde, aut, autol).

1.3 Oewentixd YTroBadeo

1.3.1 Ms‘cocox‘qpocuc‘cég

‘Evat and ta Paond potvéla mou cuvdudlel 1 ntpocéyylot| wog elvar o Metaoynuatiothc. Ov Metaoynuatiotée
(Transformers) mpoépyovion w¢ yovtéda and to medlo e EneZepyacioc Puowhc T'hdooas. H mpwtdtumn
apyrtextovixn atvetar oty ewdva 1.3.1. To 8o Baoixd xoppdtior Tng apyttextovixic elvar o Kwdxonomtic
(Encoder) xat 0 Anoxwdixornowmnthc (Decoder).

Kwduxorowntnc

O Kodworomthc (Encoder, Exéva 1.3.1 (apiotepd)) anotelelton and 6 axohovthaxd, duota otpmpata. Kéde
oTpdua anoteheiton and 8o utootpdpata. To Tedto eivar éva éva unootpdpa Auto-Tlpocoytc (Self-Attention)
pe molhomhéc xeparéc. To Beltepo elvon éva IIipwe Luvdedepévo Ipoc-to-Eumpde dixtuo (fully connected
feed-forward network). Yndpyer Yrokewpotind X0vdeor (Residual Connection) ylpw and xdde unootphdya,
axohovdolyevn and Kavovixonoinon Ltpduoatoc (Layer Normalization). H é€08oc xdde vnootpmuatos unopet
va ypoptel we LayerNorm(xz 4+ Sublayer(z)), 6nouv Sublayer(x) eivar 1 Aertoupyio TOU GUYXEXPWEVOU UT-
00 TPOUATOG.

AnoxwdixonolnThig

O Anoxwdixonowntic (Decoder, Ewéva 1.3.1 (8e€id)) anoteheiton xt autds and 6 oxorovdiaxd, Suola 6 TemUoToL.
Kadévo and autd éyer 3 unootpdpota. To 8o elvan Bio e tou Kwdixonomth) (Auto-Tpocoy xou IIipwe
Yuvdedepévo Hpoc-ta-Eunpde Alxtuo). Avduecoo oe autd ta 800, elodyetar éva unootpdpa Etepo-Tlpocoyhc
Koduomounth-Avtoxwdixonomnt. Twodetodvton xan mdht Trolewpatixég Luvdéoelg xou Kavovixonoinon Xtpwm-
poatoc. Emmiéov, o unyoviopédc Auto-Tlpocoyhc eunodileton and 1o vo aoxioel tpocoyy| oc endueves (LEANOV-
Tixéc) Véoelc.

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Linear

MathMul

T
Scaled Dot-Product
Attention

1l) 7l
L1 L1 L1
[Linear],][Linear]J[Linear],]

Q

Ol

L —
<

W K Q

Figure 1.3.2: Khypaxouévn Ilpocoyh Ecwtepixol Iivopévou (apiotepd) xou Ilpocoy Ilodamhdv Kepahodv
(Betidr) [42]

Mrnyavicpol ITpocoyrc

KAipaxwwévr Ipocoyh Ecwtepixod I'ivopévou H Kiwoxwuévn Hpocoyr Ecwtepixol (Scaled
Dot-Product Attention) efvar o unyoaviopéc mpocoyfc mou yenoiwonoleiton 6ty tpwtdTuny dnuocicucy. O
umohoylopbde yivetow yio éva oet ond Epwthuata (Queries) noxetapiopévo oe évayv mivoxa . Ernlone yenot-
ponolovtan évoc nivaxog Kiewduov K xon Tweon V. H Swdixacio aneixovileton oty etxdva 1.3.2. O Iivoxac Q
rnolamhaotdleton pe tov Hivoxa K. To anotéheopo xMUOXDOVETOL Xt eEvdeyopévewe utdxerto oe Mdoxa (m.y.
yio vor eunodicoupe o 9éom va aoxfoel llpocoyh oe yedhovtinf $éom). To anotéheopo nepvdet and Softmax
oote vo MPoupe Bagoloyiee TuyBatdtnroc twv Epwtnudtwy (Q) ye to Khewdd (K). To tehixd anotéheoua
hofdvetan todamhaotdloviac Tov Teheutdio mtivaxa cupfofotntoc pe tov mivaxo Tav (V). Ouctaotixd, To
%80e Advuopa-Twd (nivoxog V') Cuyiletan and vy cuBatdtnta xdde epwthpatog e to Khedi tou avtiotouyel
670 ouyxexpiuévo Aidvuoua-Tum.

Moardnuatind o uvrohoyloude eivon o e€hc:

Attention(Q, K,V) = softmax(QKT
o Vi,

W (1.3.1)

ITeoocoy® IMorhanhodv Kegorodv H Ilpocoyd HoManiadv Kegpardv (Multi-Head Attention, Ewéva
1.3.2 (Bel1dr)) emexteivel Ty déa TN Tpocoyc, anewxovilovtac toug Tivaxee @, K, V ye nodanholc ypouuixoic
HETAOY NHATIONOUE, OOTE va dwdélL mepiocdtepn ehcuieplor 6To wovTéAOD Yol Vo pddel TOANATAES BLopOpETIXES
OVUTOPAUCTIOELS, OE BlapopeTixols unoyweous. Ol unoloylouol TpononololvTol 6¢ e€nfg:

MultiHead(Q, K,V) = Concat(heads, heads, ..., head),)W © (1.3.2)

‘Omovu:

head; = Attention(QWE, KWK, vw)) (1.3.3)

K3

‘Omov ol petacynuatiouol elvon mivaxeg: WiQ € Rimoderxde WK ¢ Rdmederxdi 7V g RidmoderXdv yq WO €
R4 Xdmodet |

1.3.2 Avtoxwdwonowntrc Ilaparhaywy pe Atavuopatind KBaviiowd

To déutepo Baowd poviého mou ypnowonolel N mpocéyyiot| poc elvon o Autoxwdixomomntic Hapodhoydv pe
Auwavuopatxéd KBavtiousd (VQ-VAE: Vector Quantization Variational AutoEncoder).

4

1.3. Bewpnuxd TndBadeo

e1 9293 eK
Embedding
Space
D
v,L
m 91 ////

q(zlx) €3 - CNN

CNN INECE] p(xiz,)
1 e 4
3 H 53
z,(x) 7 2 zq(x)

53

Encoder Decoder

Figure 1.3.3: H apyttextovin} Tou VQ-VAE[39]

Kwdixonowntngc xow Anoxwdixonointhg

O VQ-VAE yenowponotel évav Kwdixonomnt (p(ze|z)) xou évay Anoxwdixonomnt (p(&]z,)) o ot 800 ex tev

onolev elvar Tuvehurtind Nevpwvixd Abxtua (CNNs). O Kwdixonownthc anewxovilet plo Exévo x € R3XNVXN ge
NyN | , . . ;

wa xpuoe (latent) avamapdotaon z, € RP*T*7 | émou to f elvon nopdyovrag oupnieone. Metd tov xBavtiopo

ToU 2o (Bh. embuevn Evétnta) o Amoxwdixomonthc ameixovilel Ty xBovTiopévn xpugh avanapdotoon z, €

NN , ,
RPXTXT xiow otov YOO TWV EXOVLV: R3XNXN

Avoxpitoc Kpugpog YTroyweog

O Awpitoc Kpugpde Troydpog (Discrete Latent Space) oplleton oav évag unoydpog dlavuopdtony e € REXDP
omou K elvon to mhidog tev xatnyopldv piog xatnyopixric xotavouns xou D 1 Sl tamindtnta TV SlvuspaTLy.

‘Onwe ewnddnxe otny TeonyolUevn utoevotnta, 1 €€odoc tou Kwdwonomnti, z. € RP*FXF rPBavtileta. Xuy-
xexpluéva, xdde évo and to D-didotata Slaviopota ((%)2 0 TAdog) avtixadiotavton and To xovTvoTERS TOU
oty BPhodixn Swavuopdtwy e, pe Bdorn avalitnomn xoviwvotepou yeltova (Egioworn 1.3.4). H xPoavtiopévn
exdoy) NS xpuPnc avandpdotacng diveton and v E&lowon 1.3.5. YXnuewdvoupe dti ol e€lodoelc autég ov-
TIGTOL 00V GE %EUYPY| AVATUEACTACY) EVOC UOVODIXOU BlavOoUATOS, EVE VLo TIC EWOVES Ypnowonoleltal évag
2-D mivoxag and tétota dlaviopata. And Tig e€lo®oelc TeoxUTTEL 6Tl 1) XBavTlopévn avandpdoTaoT, Uropel vo
yeapTel xan oo vag Tivoxag BTV, 6Tou xdlte delxtng avTtioTolyel o Eva povadind didvuoua otny BiBAlotxn
dlavuoudtev e. H ohoxhnpwpévn Aettovpyia Tou wovtélou aiveton enontxd otny Ewdva 1.3.3.

_ | 1 for k= argmin,||ze(x) — e;|2
q(z =k,z) = { 0 otherwise (1.3.4)

zq(x) = e, where k = argmin;||z.(x) — ;|2 (1.3.5)

IMebtepn Koatavoun

Metd v ohoxhnpwon tng exnoideuong tou VQ-VAE, o epeuvntéc Tou mpwtdtunou Yoviélou e@apuolouy
plor autoavagopix, (autoregressive) xotoavops|, p(z), Tévw oTic dloxpltéc PeTUBANTES 2z, (BoTE Vo unopel va
yenothonomndel ooy rapaywyd poviéro. T auto Tov oxond yenoworotolv éva PixelCNN [41, 40].

1.3.3 Metaocynuatiotég wg [lpdtepeg Katavouég

‘Onweg 7dN avagépaue otnv evotnta 1.3.2, umopolue va yenotwomoificouue évay VQ-VAE cov moapoywywnd
HOVTENO, OV TOU TPOOUECOUUE WMol TEOTERY XUTAVOUN, Ve GTOV xpupd yweo. To teheutaio ypdvia ey-
pavioTnxay TexVxéc Tou yenotdonotoly Metaoynuatiotéc oav Hpdtepec Katavouéc. Apyixd yenotponoldnxoy

5

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

Input Visual Tokens Reconstruction

¥ ¥
Tokenization i

Encoder
VQ
L
i,

Decoder

Masked Visual Token . I Bidirectional
Modeling (MVTM) Transformer

Figure 1.3.4: O tpdnoc hertovpyioc tou MaskGIT[3]

autoavapopixol (autoregressive) petacynuatiotés (t.y [26, 7, 8]). Ilo mpbdopata eupoavic Tnxay mo anodoTixés
ey vixée mou Bacilovtal oe enavolnnTnols, mopdhhnhoue Metooynuotiotés (3, 4].

MaskGIT

To MaskGIT[3] (Masked Generative Image Transformer - ITapoywywdc Metaoynuatiotic Ewxdvov pe
Mdoxec) eiofyaye vée texVixéc 1600 GTNV EXTUUDEUOY), GO0 XL GTOV CLUUTEPACUS EVOS METUoYNUATIO T Yidt
TAUEAY YY) EXOVWV.

IMewto Eninedo Xe mpdhrto eninedo, to MaskGIT uviodetel to VQ-GAN [8], évav VQ-VAE pe xdmotec
TEUAAAYES 60wV APopd. TNV eXTAUBEVCT), Yia PEATIOUEVH AMOTENECUATA. LUYHEXQUIEVY, YENOHLOoTOoLE(TAL EVal
VQ-GAN e BiBiodrixn 1024 diavuoudtwy. O napdyovtoc cupnieong elvan f = 16, dnhadi wia euxxdvo avdhuong
256 x 256 anewxoviletar oe €va TAEYHO avdAUONG % X % =16 x 16, and davioyota.

AcUtepo Eninedo X1o deltepo eninedo, exnoudevetan évag Metaoynuatiotrie, we Hpotepn Katavour| ndve
oTo onuxd GUPBOAA TOU XpUPOL YWEou, utd cuviixn xewévou. H véa teyvixn mou ypnoiwwonoleiton ooV
Transformer Aéyetaw MVTM (Masked Visual Token Modelling - Movtehomoinon Mdoxac Ontixod Suudiov).

MVTM xatd tnv exnaideuon Ac ovopdoouvue Y = [y;]N | 1o oOuPola (Slaviopata) Tou xpupol xtheou
nou opdyovtan and Tov Kedixomounty xou tov KBavtiot| tov VQ-GAN, ue wa euxdva we elcodo. ‘Eotw, enlong
M = [m;| Y| o duodied pdoxa (0/1) yio Ghat ta o0pBora. Ye xde Prua exnaidevong, Setopoutohetttolye éval
UTOGUVORO TV CUPBOALY xat ta avixadioTolue pe éva eldxd obuBoro [MASK]. m; = 1 avuotouyel ot
ocluBolo mou €yel avtixataoTadel Ye udoxa, eved yio m; = 0 o cbpPBoro nopopével (Blo. H mpoypauuationds
TV pooxey yiveton wéow plag cuvdptnone y(r) € (0,1]. H Swdixacia hettovpyel we e€hg:

e 'Eva nocootd petadd 0 xan 1 devypotornnieiton péon tne v(r)
o [y(r)- N oUpPola emhéyovTo opolbpop@a xat TouS e@oapudleTal 1 udoxa
e 'Eotw Yy o nivoxag cuuBéiny mou mpoxUntel HeTd Ty eQoppoYn tng udoxoc M mévw oto Y

e To povtéro exnaudedetar yio vor ehaytotonofioet Ty Apvntxh Aoyopduxn davopdvewa (Negative Log-
Likelihood):

Loask = *E[Z Ing(yi|Y1\7[)] (136)
Vie[1,N],mi=1

Yy mpaypotidTnta, of mdavétntee p(yi|Yir) € RYXE nooBrénovia and tov Transformer. To K avtiotouyel
oto péyedoc e BPBMoUNe dlavuoudtwy tov VQ-GAN. Autd ta K Suavioyata elvan ol emhoyéc and tig onoleg

6

1.3. Bewpnuxd TndBadeo

o Transformer xoheiton vo dtohéZet yia xdde ontixd cOYolro. Ltnv cuvéyela 1 eTepo-eviponio (cross-entropy)
HETOED TRV TEOBAETOUEVLV XATAVOUMY ol TwV ahndivedy one-hot Stavuoudtev utohoyileton yio TNy exmaldevon
TOU HOVTENOL.

Enavainntixde Yuunepacnoc Kotd tov cuunepaoud yenowonotelton plar xouvoleylo puédodog, mou
TepthopfBdver évay uxpd aprdud Prudtey, ot avtideon pe tov napadootoxd, autoavagopixd (autoregressive)
oupnepaoldd Twv MeTaoyNUATIoTOY Tou anartoloe T Bruata 600 elvar To TARYOC TwV ONTXOY CUUBOAWY
OTNV AVATOEACTUCT] TNV EXOVOS, GTOV XpUPo YGeo. Mia ontixy) clyxpLon Twv BU0 TEYVIXWY QAlVETOL GTNV
eodva 1.3.5.

‘Onwe npoxdnTeL xou ond Ty Teptypapy| tne dadixacioe exnaidevong, dev neptopiloupe tnv Ilpocoyn (Attention)
TWY ONTUXGY GUPPBOALY wévo ot tapehdoviixd couBola oty axohoudia, evide Tou Metaoynuatioti (Metaoyn-
patiothc Avo Kateudivoewy (Bidirectional)). Xdpn oe autd, Yewpnuixd Yo propolcoue va tpofAédouue Gha
Tat OmTIXd GOPBONAL YiaL Wiot EXOVAL UE Eval, HOVOdIXS TEpaouo oo Tov Metaoynuatio). Xty npdln, duwe auto
dev €yel xohd amoteréopata. Avtl autol, ot dnuoveyol Tou MaskGIT npotelvouv o teyvixr mou Eexvd and

évav "&ypago mivaxa" (6ho ta omtixd oOuBola €youv avtotas tadel ye pdoxa oto YJE—?)). O ahyobprduoc otny
enavaindm ¢ teéyet wg e&hc:

o Acdouévwv twv Onuxmdv Lupfohwy Ue eQUpUOCUEVT UEoXI, OTNV GUYXEXPWEVT EmaveAndm, YA(;), oL
mdavétnree p € RVXK yig o to olufoha mou elyov aviixatactodsl ye udoxa tpoBhémovia péow

Tou Metaoynuatiot.
o Ye xdde Véomn i dmou €yel epapuootel pdoxa, éva cbuforo y(t)

?
Yoavotnteg pl(.t) € RE (avtetwnilovroc 1o p(t)

1
devyporrohndia, 1 mdavotnTa pz(-;) Tou oupforou (j) mou emhéydnxe, yenowonoteiton we Padude eumio-
TooUVNe Tou Béuyvel thoo BéRato eivon to povtéro Yo awthAv Ty TedBredn. Ta tic Véoec drouv dev elye

epappootel udoxa, o Podude euniotoclvng thietan oto 1.

= j dewypatoinmrelton ye Bdon Tic mi-
oav nohuwvuwxy| (multinomial) xotavopr). Metd tnv

e O apiude v oupBéhwy ot omola Yo ZavaepappooTel pdoxa vtoroyileta wc: n = [y(%)N], énov v
elvon 1 cuVdETNON TEOYEaUUATIONOD udoxac, N elvar 0 cuvolixdg aprdude and obuBora xoa T to cuvoxd
Tidog Twv enavakiewy.

o To clpuPoha, ue TNV VEo UAOXKA EPUPUOCUEVY), YLOL TNV ENOUEVY ETAVEANYT, YJ\(—;H) unohoyilovton eqopud-
Zovtag T véa pdoxa MPHD | oy Siveton amd tov e&hc tHno:

(D

7

{ 1 if ¢; < sorted;(c;)[n] (1.3.7)

0 otherwise
6mou 1o ¢; elvon o Badude eymiotocivng yia To i-00T6 clufolo.

IIo ocuvontixd, To wovtého mopdyel W exova oe T emevahfdeic. e xdde emavdindm, mpoPBiémel dha ta
ontxd oOUPBola xan xpatdel autd Yo Tar omolor Exel udmAdTtepo Podud BeBardtnTag xon Eovaepapudlel udoxa
oTa undlowna, HoTe vo T TeoPAédel oe xdmota emouevy emavdAndm. To mocootd twv cuPPolwy oTa onola
eapudleton pdoxa @divel oe xdie emavdhndn, uéyet tou dha ta cbuPBora mpofrénovian oe T enovarrdels.

IMpovypappatiomds Twv Maoxov ‘Onwg avagépaue, 0 TROYROUUUATIONOS TWV HooX®V YiveTow uéow uiog
ouvdptnone (.). Katd twv exnaideuon, avth nalpver cav dpiopa éva tuyaio tocostd 1 € (0, 1], eved xoatd tov
ouunepaopd nalpvel oz 0/T,1/T, ..., (T — 1)/T, avéhoyo pe tnv enavdindn otnv onofo PeroxduooTe.
H 7 npénel va €xet Tic e€nc WLoTnTeS:

o mpénel vo elvan ouveyhc pe Twéc € [0, 1], yio oplopota r € [0, 1].

o Ilpémer av eivar yvnolwe @divovoa we npog to r, pe v Widtto: ¥(0) — 1 and (1) — 0. Auté elvou

anapalTnTo Yiot var cLYXALveEL 0 ahyopldog cupnepaoiol, tpoBAénovtac 6o to oluBola.

O epeuvntéc tou [3] mepopatiCovion e tpeic owoyévies ouvaptioewy: Ipappikés, Koles (t.y. Tuvnuitovo)
and Kuptés (m.x. Tetpaywvunr). Hopadelypata gaivovton oty exévo 1.3.6. O gpeuvntéc avagépouy ot
xohOtepa anotehéopata divel To Luvnuitovo.

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

Sequential
Decoding

with Autoregressive
Transformers

t=120 t=200 t=255

Scheduled
Parallel
Decoding
with MaskGIT

Figure 1.3.5: Autooavagopixds Zuunepooude vs Hopdhinhoc Enavarinuxde Zuunepoouds (MaskGIT) [3]

Comparison of Mask Scheduling Functions

1.0 1

< o o
+ h o]
I I I

Scheduling function y

(=}
hJ
1

0.0

Figure 1.3.6: X0yxpion Xuvapticewv Ilpoypopuotiouod Mdoxog

1.4. Ilpotewvébpevee Teyxvinée

ApwOudc Enavarfidewy Xyetxd pe tov BEATIoTo aprdpd enavoliPewy oTov GUUTERUOUOS, OL EPEUVNTES
avapeEOLY OTL TEPTEL AVEUESH OTIC 8 o Tig 12.

Kewthc ZupBorwy O Keitie ZupPorwv [16] (Token-Critic) éyer npotadel cav Pehtiouévn texvixt yio
delypatolndla Ty cLUPBOAY xatd Twy enavarTTixd cuunepacpd Tou MaskGIT. Aettovpyel cav Borndntind pov-
Tého mou etvon uedBuvo Yo TV extipnomn tou Boduol epmiotootvng ota cUPBoia Tou Teofiénel to MaskGIT,
ooy evorhaxtixr) oo va yenotponototvtan ol mdavétntee tov MaskGIT coav Bodpol epmiotocivne.

O Kpithc YuuPorwyv ebvon évae Metaoynuatiotic mou exnandedete ool ohoxhnpwiel 1 exmoldeuvorn Tou
MaskGIT. Katd v exnaidevon Y = [y;]N, evu 1o obuPora Tou %pupol ¥hpou xwdixonomuéve and
10 VQ-GAN. M = [m;]¥, elvou oL duadinéc pdoxec vl 6ha 1o oOuPora. Yy ebvon to Sidvuoua cuuPorwy,
apol epapuocTel 1 udoxa oto Y. Aedouyéwv Tou Yy, SelylaTtoAelnToVUE TO Y b v p(y:|Yiz) (outh ebvon
1 xaTavour, mou topaueteonotel o MaskGTI). Lty cuvéyeia, oynuatilovye 10 Y =Y © (1 — M) +Y © M.
To Y eivou 10080vopo pe 1o Yy, 6mou dha ta [MASK] olufola éxouv avixatactodel and to oluBoro mou
npdPrede to MaskGIT oe exéivn tnv Véon O Kertric ZugBorenv exmoudedeton yiol Vo EAAYLO TOTOLOEL TO:

N
L= E[Z BCE(mj,py(m;|Y, c))] (1.3.8)

Jj=1

‘Onou 1 pg(.) elvan 1 xatavour tov tapauetponotel 0 Ketthe ZupBohewv. Anhady o Keirtic ZupPdiov padaivel
vo TeoPBAEneL TNV duadxr udoxa, ue cuvixn To Y xau To ¢, omol To ¢ unopel vo elvan omoldninote cuVixM
(mt.y. ocuvdinn xewévou).

Katd tov ouurepoaoud ypnowonoieitan n emavainmtixy Aoy touv MaskGIT, pe pio uixpy| tponomolon. Zex-
wape pe évav "xevd mivoa" ng)l) (6hat tar cUpPola elvar avTxatEoTNUEVE and TNy pdoxa). Ltnv enavdhndn ¢

Serypoatolrrotue to Y uéow tou MaskGIT, dnhodn:
y® o pe(Y(t)|Y]g;1),C) (1.3.9)

6mou 1 xatovopn pe(.) elvan auth mou €yet udder to MaskGIT.

Topa, avtl va yenotwonojocoupe tic mbavdtnteg nou €dwoe to MaskGIT cav Baduolc euniotocbvne, e Bdon
Toug omofoug Yo Eavaepapudoouye Udoxeg yio TV endpevn emavdindn, yenotwonototue tov Keith Lupfoiwy.
Actypoatohnmrotue 10 My ~ pg(Miy1]Y D ¢) (py(.) eivor n xotavous mou éyet udder o Korthic SuuBorwv).
To M1 € RY nepiéyer N tpée, dhec petod 0 xon 1 mou avtiotoLyolv otouc Baduolc eumotootvre yio xdde
oluBoro. Aedopévou 6t o Kprthe Zupfohev eivon Metaoynuatiotic, yenowonotel pocoyy, (Attention) yio
vor MBel unody Ty cuoyétion uetaln Ty cuPBoiwy dtav TpofBiénel Toug Paduolc EUTOTOCUVNG, XTI TOL
avoéveton var BEATLOVEL TNV ToldTNTAL TG andpoong, o€ oyéon ue TNy ave€dptnty derypatondioa tou MaskGIT.

1.3.4 Enalinorn Kewpevixwv Acsdopévwy pe Xpron LLM

O eZoupetinée duvatdtniee twv Meydhowv Ihwoowxdv Movtédwv (Large Language Models - LLMs) éyouv
afomondel oto napeddéy, oto mhaiolo Swpdpwv epyououdv(38, 43, 6, 44, 9]. Xto [9] npoteiveton pin pédodog
enadinoneg TEpLYpaPmy ExOvmy, ot Lelyn Aeldvtoac-exxdvae Ta oTolo YENoLLoTololvToL Yia TNV EXTUBEUCT] EVOC
povtéhou CLIP[23]. Apywd, nopdyovton evodhoxtixée Aeldvtee yio évay uixpd aptdud Leuyopdv heldvtag -
EOVOS, UECW Dlapopwy Yedddwy, cunepthauBavouévou avlpdmvng epyaciag xou chatbots. H npwtdtuneg xou
oL evahhotixée meplypapéc ouvdudlovton Yo v dnmovpyndoly peta-evydpla eloddou-e£6dou (meta-input-
output pairs). Xtnv cuvéyew, yenowonoteiton to LLaMA[37] yio va mapoyolv evahhoxtxée Aeldviee yia
Oha tor Selypato Tou ouvohou dedouévwy. To peto-Levydpla e10680V-£680U YENOLLOTOLOUVTOL OE QUTY TNV
dodixacio cav ouyxeluevo (context), wote 1o LLM va xatovorioel xohUtepo Ty epyaoctia.

9

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

VQ-GAN
Encoder

#H-L

(a) O eidveg plog totoplac aneixovilovio
OTOV XPUPO YWpo péow Tou Kwdixoronty tou
VQ-GAN

" VG-GAN
| Decoder

R —

(b) H »xBavtiouévn avomapdotaon tne exovas
GTOV XPUPO YDEO UTOREL VO UETATEATE! GE
edvo Uéow tou AToxwdixononth Tou
VQ-GAN

Quantization

Latent Embedding Space

el e2 e3 e4 e5 ek

VG-GAN

Encoder _

Decoder

(¢) MetaZl tou Kwdonownth xar Tou Anoxwdixomoumnty ol xpugéc avandpactdoeis xBavtilovion péow prog
Birodnung Sravuoudtwy

Figure 1.4.1: H heirtovpyia tou VQ-GAN

BPE - Encoder —_— E

Figure 1.4.2: O\ npotdoeic wog totoplag undxevton xwdxonoinon BPE[32] yia vo avtiotoyiotoly ot Saxpltd
Yhwoowd cvuBoha (tokens)

eddy found something in the book.

eddy is sitting at the table drinking warm tea.

pororo and petty are coming to eddy's house.

all the friends came to eddy's house.

pororo and other friends are calling eddy.

1.4 Ilpozewdueveg Teyvixég

1.4.1 Kwodwonoinon tov Ewxdéveyv
VQ-GAN

It tov xPavtioyd tov emdvev yenowonootue 10 VQ-GAN [8]. Aedouévwy twv exdvev tig otoplag: X =
{X1, X2, ..., X, }, unopolye va Tic nepdooupe and tov Kwdixonounti tou VQ-GAN (Ewéva 1.4.1a) xou va Tic
xPBavticouye yia va tapoydolv ta avtioTouya dxpltd ontuxd cOpPolo Z = {Z1, Za, ..., Zy }. BTNy cUVEYEL EVog
Metaoynuatiotic exnoudedeton yia va TpoPAEnet To onTixd cOUBoAa, uTo cuvdfxn xewwévou (Bh. Evétnra 1.4.3).
Agob mpofiegplolv ta omtind cUUBola, UTOPOVY VO UETAPEACTOUV GE EXOVES, €L TOU ATOXWAXOTONTY TOU
VQ-GAN (Ewévoa 1.4.1b).

1.4.2 Kwodwonoinon tov Nwcowowy Iepiypapny

Q¢ mpog TNV %xWAXOTONoY YAWGOIXWY TEpLYpapwY TelpapatiopocTte Ye S0 uedddouc: €& opyrc exmaldevon
dlovuopdtwy AéEewy (word embeddings) 7 ypron Stavuoudtwy AEewv mou €youv eloylel and xdmoio LLM.
AveZdptnta and v pédodo, xdle uio yYAwoouy| neptypapn wiog totoplag avtiotolyiletar oe wior oxohoudior omod
draviopata. BupBohilovye Tic xwdixonoinpéves teprypopéc wog totoplog pe T = {11, Ts, ..., Ty, } .

EZ Apy7c exnaidsuon Atavuopdtwv AEZeny

‘Otav exnawdedouye diaviopata Aéewy yenotponololue xwdonolnon BPE, nou anewoviCel xdde yAwoouw
Teptypapt| ot pior oxoroudio Stoxprtdv cupPéiev (Figure 1.4.2). Katd tnv xwdwonoinon BPE yenowonoloue
heZhdyio 2500 cuuBorwy.

10

1.4. Ilpotewvébpevee Teyxvinée

Xeron LLM

Avti va extoudedoouye Staviopoato AEEEwY and TNV dpy 1|, UTOPOUKE VOl XENOLOTOGOUUE Tol SlavioaTo and €val
npo-exnoudevpévo LLM. Eunveduevol and to MUSE[4], nepapatilépacte pe to TH-XXL [24]. T vo nopdryoupe
dlaviouaTa omd T YAWOOIXES TEPLYPAPES, Toupviue xdie meplypapy) and to TH xau aroonolye to SloavOouoTta
TI¢ TEAEUTALAC XPUPTIC XATACTAONE TOU UOVTENOU. TNV CUVEYELX TA YPNOULOTOLOVUE GOV OVAUTOQUCTAOELS YLot
TIC YAWOOWES TEQLYPOPES, 6TOV METAOYNUATIOTY] LOC.

1.4.3 MaskGST

Eilcodoc

Text Tokens

v,

Transformer Input

Image Tokens

' m
. | L [| :
Tm Flatten ' Random LA Concat
H | | h Masking "

Figure 1.4.3: H eloodo¢ ToU UETACYNUATIOTH EIVAL 1) CUVEVMOT] TWV OTTIXWY X0l TWV YAWOOLX®Y cLUUBOAwY
(tokens) yio xdde éva and ta Leuydpla etdvag/neplypagric oty wotopio (5). Lo ontxd oluBola
emnedovovtan (flatten) xou Toug eqapudletar pdoxo (pe Tuyalo TEOTO) TELY TNV CUVEVWO UE Ta YAWOOIXS
cLpfoha.

AcBopévev oV ontixdy cuuPorwy Z = {Z1, Zay ... Zn} (Z; € R™*™MX) yai tv yAwoowdy oLUBOAGY
T = {11, Ty, ..., T} (T; € RX), yio wa wotopla, oynuatiloupe Ty elcodo tov MeTaoyNuatiotdy woc 6mewe
goiveton otny Endva 1.4.3. To ontixd olpBora Z € R™*m*mxd soneddvovion (flatten) oe wo axohoudio
7' € Rx(mm)xd - sirpy guvéyeln toug epopudloupe tuyaia udoxec, 6nwe axpte oto MaskGIT yio va
népoupe o Z € R mmIXd - Téhoc, xéie avomapdotaoT ebvoc OUVEVOVETOL Pe TV aviloTolyn YAwoouxd
TEpLYPapH 1ol vaL oynuatiotody T Input; = (Z;; T;). H eioodoc tov Metaoynuatiotdy unogel vo ypouoptel oc:

Input = {Inputy, ..., Input,} € RX (mmtl)xd (1.4.1)
omou pe | cupPolileton To UAX0C TS YAWGGOIXAC AVOTORIoTAGNS, M X M EVOL 1) OVIAUGT] TV XEUPMY oVo-
TORUC TACEWY TV EwdVLY, N elvan 0 aptiuog Ty ewmdvov wag wotoplag xou d elvar 1 xpuen SldoTtacn Tou
Metaoynuotio .

Eidn Ytpoudtwyv MetaoyniatioTtody
Iopaxdte meprypdpouue Ta €ldn and Mtpoduoto METACY NUATIOTOV TOU YENOWOTOLOUUE GTA LOVTEAN UAC.
IM\veec Xvtpoupa To Iipes Yrpopa 1.4.4a ebvan éva nopadootaxd otpwua evdg Anoxwdxonountr

Metooynuatioty, aroteholuevo and tela utoeninedo: Auto-Ipocoyy (Self-Attention), Etepo-Ilpocoyy (Cross-
Attention) xou IIMipwe Luvdedepévo Hpoc-to-Eunpéde Eninedo (Fully Connected Feed Forward Layer). Ae-

11

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Contex
| Self-Layer

FulliLayer
°
c E E .8 s

S b £ z Inbut T e S - output
Input 2§ ° S 2 Output P =Y I
8 o8 13 : :
§ w
(a) IMApec Ltpdpo (b) Avuté-Etpdua

Figure 1.4.4: Ta x0plot 6TpMUATE TOU YeNOLHoTOol0UVTHL 6ToUG MeTaoynuatiotés pag

dopévne tne ewobdou I € R™ X4 yq1 ydmowo cuyxeipevo (context) C € R™*¢X4 y ¢Z0doc Tou GTpOUaTAC
Avto-Ilpocoyhc xaw Etepo-Ilpocoyre, aviiotoiya, uropel vo unohoyiotel o e€nig:

Self — Attention(I) = MultiHead,(Q =1, K =1,V =1)

142
Cross — Attention(I,C) = MultiHeadz(Q = I, K = C,V = C) ()

To Feed-Forward unootpmua anotelelton and €vol Yeuuwixs HETACY NUATIOUOS, 0x0hOLIOVUEVO amtd Ul GUVAETNOT
evepyonoinong, axolouvdoduevn ané Kavovixonoinon Ttpduatoc (Layer Normalization). Onwe goivetar otny
Ewéva, undpyet vnokewgpatixy (residual) oOvdeor yipw and xdde unoeninedo.

Avuto-Etpoupa ‘Onwg galvetar otny ewxéva 1.4.4b, to Auto-Eninedo eivon dpoto pe to Iinfpec Eninedo, pe
Ny dlapopd 6Tl Tapakeinel To unootehua Etepo-Ilpocoyfc xou cuvende dev yenoiwonolel cuyxeiuevo.

SV-3tpopa To SV-Etpopa (Story Visualization Tpdpo) goiveton otnv exdva 1.4.6. Amoteheiton ond
éva Auto-Xtpmua, tou omolou mponyeiton évo unootpdue Ilpoeneepyaoioc xou éneton évo otpodua Meta-
eneepyaoiog.

To Yrooctpdua MpoeneEepyaciog naipvel oav cicodo wa déoun dedopévewv (batch) € R7*(mmFxd

mou avtiotolyel oe ot n Leuydpla exovoc-teptypapnc ot wo totoplo. Metaoynuatiler tnv elcodo oe wa
avonapdoTtaoy € RIX((mm)+nl)xd rorodetdvtoc Tor onTIXG obuPoia vl 6hec Ti¢ ewdveg Tne Lotoplag, To
éva BlmAal 0To GANO o GUVEVOVOVTAC Ta UE TNV axoloudlo OAwV Twv YAwoowwy cuufBolwy tng totoplag,
torodetnuéva to éva ditha oto dAho (Ewdva 1.4.5a).

To YTrootpwua Meta-enegepyaciog éxel Ty axpde avtiotpopn Aettovpyia. Iaipver po eloodo €
RIX((mem)dn-l)xd Ty yetaoynuatiler oe wa é€0d0 € R (M m+Dxd 4roy yadewa and tic ((m-m+1) x d)-
peyédelc axohovdlec otny déoun yeyédoug n avtiotolyel ota onTd GUUBOAA HLAS EXOVAS, CUVEVWUEVA YE TU
avtiotorya YAwoowd cUpfora (Ewxdva 1.4.5b).

Ye SucnTixd entnedo, to unootpwua Ilpoenelepyasiog pépvel TNy avamapdso taor g Lo toplag omd Eva PopudT
ELXOVA-EXOVAL OE EVaL PopUdT ot eninedo Lo Toplog, dTou OAN 1) o Toplal AVTIHETWTIETOL GOV Lol GUVEYNHS AXONOU-
Blo oLPBOAWY, TOL AVTICTOLYOVY OTIC EXOVESC XU T Teplypapéc. Me autdv tov TpéTo, oTo Auto-MNTpdua
mou axohouvlel, Ta clyfora, and onolodrnote amd Tic n VYEoelg otV toTopla UmopoUv va aoxfcouv Ilpocoym
(Attention) oe cluPola onotacdinote dAkng Yéone xou Vo EVowUATHooUY oyeTt) Thnpogopio. Axoholing,
pépvoupe ta oOUPola tlow 6To apyInd EMOVO-EUOVO POPUdT YE To UToo Teou Meto-enelepyaoiog.

ITpotewvopeva poviéla TOTOL MeTaoYNUATIOTY

MaskGST Ovopdloupe tnv mpotewvouevr apyttextovixf, poc MaskGST (Masked Generative Story Trans-
former - Hopoywywdc Metaoynuatiothc Iotopudv ye Mdoxec) yio va tovicoupe 61t Bacileton oto MaskGIT.

12

1.4. Ipotewoueveg Teyvixég

Input

/

SV-Layer Preprocessing

HEAN
}-}_J_i.}_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a) Ipoeneepyasia yia To SV-Ltpdua

SV-Layer Postprocessing

1 —— = ——

(b) Metdreneiepyasia yio to SV-Etpdua

Figure 1.4.5: EncZepyoaoio dedopévwy yio to SV-Etpoua

Figure 1.4.6: SV-Xtpdua

> Output

13

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Global Story Context

MaskGST

Transformer Input Full-iLayer Self-Layer

Self:
Attention
Feed-Forward

Attention
Attention
Feed-Forward

Figure 1.4.7: To MaskGST

To MaskGST anotekeiton and 80o [Iiren Ltpwuata, tou axorovdolvtal and xdmoa Auto-Xtpouata. H Exdva
1.4.7 Betyvel pla éxdoon tou povtéhov pe 4 Auto-Etpoyata (6 oTpduata CUVOAXE).

To ouyxelyevo mou ypenowonoteiton amd to unoctewuoata Etepo-Ilpocoyrc anoteleiton and dheg Ti¢ YAWOOINES
neplypapéc otny Lotopla. Anhady, yio vo tpofiédouue Tor omTixd cOuBoia yio xdde exovaL, TEOYUATOTOLOUUOL
Erepo-Ilpocoyy| ue Ohec ¢ GAAEC YAWOOWES Teplypapés TG totoplag. Me autdv TOV TpOTO, EMTEENOUUE OTO
povtého va LloUeThoel ypnotun), OYETIX TANPOGopla and TEOTYOUUEVA ol ETOUEVA YEOVIXY onuela TNy LoToplo.

MaskGST-SV To MaskGST-SV (MaskGST Story Visualization) yenowonotei d0o IIhAen Ltpduota otny
apyY) TN mopaywywhc dladxaoiag. Autd axoloudolvion mpooupeTixd and pepixd Auto-Xtpduota. XNTnv
cLVEyEw, Exoupe dVo SV-Etpduata, Ta onola unopoly mtpomupeTid va axohovolvton and xdrota axdpa Avto-
Yrpdpota. o mapdderypa, oty Ewdva 1.4.8 gaivetar éva MaskGST-SV mou tonodety| 8Vo Auto-Ytpidyata
avdueoo ato IIAen Etpduata xou to SV-Erpopata. Enlong tonodetel 800 Auto-Etpduota xor petd tor SV-
Srpdpata (8 Ltpoduata cuVONXE).

Exnaidcuon Ola oL TpOTEWOUEVOL UETUOYNUATIOTEG, METOEETOUY TNV €eloodd touc: Input =
{Inputy, ..., Input, } € R**(mm+Dxd ge yiy ¢Z030, Buwy dlaotdoewy:

Output = {Outputy, ..., Output, } € R mm+i)xd (1.4.3)

Tt x&de avtixeipevo oty n-8éoun (n-batch), agprvouye ta I cOUBora TOU AVTIOTOLYOUY GTNV XEWEVIXT TEQL-
YOOPH XAl XQUTAUE ToL M - M OTTiXd CUUBOAA. LUVETMS, EYOUUE:

Output = {Outputy, ..., Output, } € R (mm)xd (1.4.4)
H £€0bog auth nepvdel and éval Yeuupxd UETACYNUATIONS Yiol VoL THPOLUE TAVOTNTES:

y = Lin(Output) € R™*(mm)xK (1.4.5)

‘Onov K elvar to mAdog tewv Slavuoudtey mou dardétel 1 St BiBhiotrxn tou VQ-GAN. Téhog, ol napandve
TdovOTNTEG UopOVY VAL YeNoloTotdoly yio Vo EXTABEVCOUUE TO HOVTEND, CUXPIVOVTAC TEC UE TOL TEAYULOTIXG.

14

1.4. Tlpotewodpeveg Teyvixée

Global Story Context

SV-Transformer

SV-Layer

v Self-Layer

Transformer Input Full- Layer Self-Layer

Self-Layer

o i
| S— > 5l .5 § L5 | ¢ SV-Layer £ H | SvLayer s §
sEl08) 8 S5 8 Preprocessing —] b Postprocessing 3
M8 EM ¢ g 2 3 2 £
2175 | 3 <% & |8
(2x) (2x) (2x)
2x)
Figure 1.4.8: MaskGST-SV
Global Story Context
OOOOEOOOEOOEET
v
Transformer Input Transformer Output Predicted Image Tokens
MaskGST |
SR T — heesseenned P -
i *
E Cross-Entropy
v

Ground-Truth Image Tokens

"

Figure 1.4.9: H dudixocia exnaidevone tov MaskGST

15

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

(ground-truth) SwxvOopata mou aviioToryolv oto mpaypatixd ontxd cluBora. T v exnaidevon, yenol-
pomnotovue v texvix) MVTM (Masked Visual Token Modeling) mou mpoteiveton oto MaskGIT (Evétnra
1.3.3).

Yuunepaocpode ‘Onwe otny exnaldeuo, €10l xal 6Tov cUUTEPACUS UlodeTolUe TOV THEdAANAO, ETOVOANTTIXG
ohyoprdpo mou tpoteiveton oto MaskGIT (Evétnra 1.3.3).

Koadodnynon Xagpoaxthpwy

Ipoteivouye pior véa Te) VX Yia VoL BEATIOCOUPE TNV TPy WY N TV YopaxThewy oTic totopleg. Ilpoc¥étoupe
oto povtého i PBhodxn ond 2 - C), emiéov Awviopota (Embeddings) Xopaxtipwvy, 6nou C), eivar o
aprdude Tev Bacay yapaxthpwy Tou elvar tapdvtes oto Dataset (' to Pororo-SV éyouue Cp, = 9). T xdide
yopoxthpa €xouye éva Oetind Aldvuoua (0 YopoxTHENS AVopERETAL OTNY YAWOOIXN TEpLYpapr|) Xou Evar ApvnTind
Audvuopa (o yapoxtipac dev avagépetan). ‘Otay yenotponotolue auth Ty Texvixs, cuvevivouue Cy, Slavioporta
oty eloodo tou Metaoynuatioty, éva yia xade yopoxthpa. Oetxd AlvioPata YENCHLOTOLOUVTOL Y TOUG
YOEUXTHPES Kol TTOU Elvol TOPOVTES GTNY TREXOLCN YAWOOIXY TEpLYpapy| Xou Apyntixd Yot Toug utdloltous. e
auth TNV mepintwon, 1 elcodog Tou Metaoynuatiot| yivetow:

Input = {Inputy, ..., Input, } € R (m:m+i+Cn)xd (1.4.6)

émou: Input; = (Z;; Ty; C;) xon C; = {p0Schar }ehareT; U{negchar fehargT, - TO POSchar AVTITPOCLTEVEL TO OETING
Aldvuopa yior Tov Yopoxthpo char, EVE T0 Negehar OVIITPOOWTEVEL TO ApyNTiXG ALEVUCUO YLol TOV YOEOXTHROL.
To {poSchar fchareT; EVOL TO GUVOAO TWV OETIXOY ALVUSUETWY VLo TOUS YUPUXTAPES TOU OVAPEPOVTOL GTNY
Tpéyovoa mepiypapr| (T;) xon {negehar feharg, TO GUVORO TV ApWNTiXGY ALVUCUATWY YL TOUC YOQUXTNPES
TOL BEV avVaPEPOVTAL.

Exnaidcsvon Ilpoxewévou va evioybooupe v eotiaon tou goviéhou ota Alaviopota Xopaxthewy, onop-
plrTouue EVIENDC TIC YAWOOIXES TEPLYPOPES YIol €val Too0oTé deryudtnv exnaidevone oe x&de déopn (batch)
xou Xpatdpe wévo ta Araviopata Xopoxtheny we xadodiynon. Koatd ta dhha, 1 Swodixacio extaidevone pévn
ATOEENOLY TT).

Yvpnepacuwoe Koatd tov Tupnepooud, unoroyiloupe 80o ouddeg ond mdavétnree (logits) yia vor napdZouye
wa etxxéva. H mpddtn opddo () unoloyileton diexnepantdvovtag Ty mapoywyxr| diadixacio, uto cuvifixn twv
Yhwoowov neptypapoy. H dedtepn ouddo (Lepgr) unohoyileton und ouvdinn twv Awvuopdtov Xopaxthpwy,
anoxheloxd. ‘Onng xatd v exnaldeuct ypnouylonototye Oetixo AlvOoUTA Yol TOUS YAPUXTHPES TOL ERPOLV-
Covtan otny meptypopr) xon Apynuixd yia tou dhhous. Ou tehixéc mdavdtntee (logits) mpoximtouv we xvpTédS
GLVBLACUOE TWY B0 ETUEEOUS OUEBLY THAVOTHTWLY:

(= (1 - f)gtc + fgchara f € [07]-) (147)
Avutog o ouvbuaoude vnoloyiletan oe xde Briwa tTng enavaknmTinic mopoywyic dtadixaciog cuunepaouon.

Xenon Apvntix®y YTrodeifewy Me oxond v nepoutépn evioyuon tng Topouciog Tou 6wGToL UTo-
GUVOAOU TWV YoEAXTHEWY o€ Xxdde edva, mpotelvouue Ty yerion apvnuxic xadodhynone (negative prompting)
XU TOV GUUTEPAOHO. LUYXEXPWEVY, EXTOC omd Tic 800 opddec and logits (€1 and Lepar), ELodyouue mia tpitn
oudda, ta fo—. I'a Tov unohoyloud TwV o — amopEEiTTOUUE EVIEAMS TIC YAWOOIXES TEpLYpapéc and TNy elcodo
TOU UETAOYNUATIOTY), OTWE XAVOUUE YL T Lepar. Opwe, avti va yenowwonotjoouye Oetind Awvioyato yio
Toug emiuunTolc Yopoxtrhpes xot ApynTixd yio Toug UTOAOLTOUG, XAVOUUE TO avdmodo. Apvntixd Atavioporta
Yenouonolotvtal Yo toug emtduuntols yopaxthipeg xat Oetd Yo Toug undloitous. Aniady, ta Alaviopota
Xopoxthewy oty eloodo eivon: C; = {negehar fenaret; U{POSchar feharg,- Koatd xdmolov tpéno ta fg— un-
ohoytlovtan yenoionowdvtac o "Aoyixd ocuumipwua” tng €l0680L TOL YeMoldonolelTal Yol TOV UTOAOYLOUS

TV Lepar. O teEdéc mbavitnree (logits) urohoyilovton téhpa we e&hc:

t= (1 - f)gtc + 2f€char - f€W7 f € [07 1) (148)
16

1.4. Ilpotewvébpevee Teyxvinée

1.4.4 Enduinorn twv Acdopény péow Meydhwyv 'hdocowxwy MoviéAwy

Tt Vo TpooTateVoOUPE TO HOVTERO evdvTi oty unepnpocopuoyy| (overfitting) mewopatilépocte pe v
ENALENOT TWV XEWEVIXDY Teptypapddv. Lo autév Tov oxomd yenoyromoolye éva LLM, anéd to onoto {ntdyue
EVOAAAXTIXES TIEPLYPOUPES, DEDOUEVOV TWV TEAYUATINOV.

Kotd tny exnoidevon, emhéyouyue tuyaia elte TNy npwtoTURY TEplypa@n elte TNy evaAloxtixy, yio xdde edva,
oe x&e enoyr). 'Etol, napéyouue oto YOVTENO BLopopeTIXES TEQLYRAUPES Yol TNV (Blal EdVA, OE BLOPORETIXES
enoyée. Ilepiévouue autd vo Bondvioet To povtéro va eotidoet otor Aloviopato Aé€ewy Tou elvor mo oyeTixd,
XOTA TNV TORAYWYT TV EMOVLY, aAAd xaL Vo amo@OYEL ot PeYahOTERO Bardud TNV UTEPTEOCUPUOYT).

1.4.5 Kputric Yuuoiwyv Baociopevog otoug Xopaxtripeg

Ennpeacpévor and v déa tou Keitd) TupBéiwy (Token-Critic) nepopotilouacte pe évav Keitd) Supfdiov
Booweévo otoug Xapaxthpee (Character Attentive Token Critic). H Aertoupyia tou eivon (Bt pe awthiv mou
neptypddope oty Evotnra 1.3.3. Ta tnv Suer) pog epyooio, emAéyoude 1 cuviixn xdtw and tnyv omola yivovtos
ot mpoPrédeic va eivon AtavOoparto Xapoxthipwy. Luyxexpwéva, o Kettic Xupforwy éxel C,, diaviopato, éva
yioo xdde Paowd yopaxthea (Cp elvon o mARlog twv yopaxthewy tou Dataset). Exnaudedouue tov Kot
YuuBérwy, pe TapoéTeous ¢ Yio TNV ehaylotonolnon Tou:

N
L =E[Y_ BCE(mj,ps(m;|Y,c))] (1.4.9)

Jj=1

1.4.6 A¥&nom tng suxpivelag Touv Kpugpold Xopou XapaxtneloTixmy

Epnveuopévol and to MUSE[4], nepopatilbpacte e v yperon evoc Metaoynuoatioti adinone euxpivelog
(Super-Resolution), mou Aettoupyel ot xpupd xHpo LPnidTtepnc euxpivelas, o onolog mapdyel anoTENEGUOTA UE
ouvdiun TV yaunhéteenc euxpivelas ¢é£odo evog Baowéd Metaoynuatiot (Base Transformer). T autdv tov
oxornd yeetdlovtan 80o VQ-GAN, mou Aettoupyolv oe xpupolc Ymeouc UE SLapopeTinés avaAboELS: my X My
xoL ma X mo (Mg < ma).

Baoixbég Metaoynuoatiotic O Boaowdc Metaoynuatiotic (Base Transformer) eivon éva MaskGST,
omwe To Teptypddopue otny evétnta 1.4.3. Aettovpyel otov xpupd ydeo tou VQ-GAN ue avdhuon mq X my (1
YOUUNAOTERT avdhuon).

Super-Resolution Metacynpatictic Kotd v exnoldevon tou Super-Resolution Metaoynuatiot
€xel ohoxhnpwitel 1 exnaidevon tou Baowold Metaoynuoatiot. O Super-Resolution Metaoynuatiotrg eivon
éva MaskGST, ye avdluorn ma X ma oTov xpupd Yweo. Enlong undpyel wo tpononoinen otny eicodo.

Acdopévev tov ontixdy cuuPérev upnihc avéduone (HR) Z = {Z1,Z2,..., 2y} (Z; € RmM2xm2xd) " noy
xwdomoouvTUL Pécw Tou avtiotoyou VQ-GAN, tov yhwoowds cupBorwy T = {11, Ty, ..., T, } (T; € R*?)
xoL TRV OTTXGY oUPIBOAY Younhhc avéhuone (LR), ZLE = {ZER ZLR | ZLRY (ZLR ¢ Rmaixmixd) " gyp.
patiloupe v eloodo tou Super-Res Metaoynuatioth énwe gaivetar oty Ewdva 1.4.10. To ontind oduBoha
Z € Rxmexmzxd goneddvovion oe wo axohoudio Z/ € R (m2m2)xd - Siany guvéyela, Touc epopuoleto
Tuyoia udoxa, 6mwe oto MaskGIT, Gote va petatpooly ota Z € RPX(m2m2)xd Ty yguniiec avéhuone ontxd
oOUPola ooneddvovtal xatd Ty Blo TPOTO Xxou ToupVAvE omd Yio oelpd AuTto-Etpwudtev (6nee yiveton xou
oto MUSE[4]). Téhoc, ta HR ontxd ocluBolo nou Toug el e@aplootel pdoxa, ta YAwootxd cOpfola xou to
napaydévia LR ontixd olpBola cuvevdvovion yla va oynuaticouy to Input; = (Z;Ty; ZER). H eloodoc tou
Metaoynpatiot) propel vo yeagptel wg e€ig:

Input = {Inputy, ..., Input,} € R (marmatltmam)xd (1.4.10)

6mou | elvon 1o uAxog TV YAWoowo)Y cUUBOAwY xou d 1 xpuen dldctacy Tou MetaoynuaTioT.

17

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

Text Tokens

Transformer Input

Predicted
Text LRimage
Tokens _ Tokens

Predicted Low-Res Image Tokens. 4 Y i
Processed Low-Res Image Tokens | H Masked HR Image Tokens

Base
"m

2
|
| ;
Transformer ——- By Faten 'y i'.
(Pretrained) i | = L L
(I H
| ;
|

Self-Layers

]
i
i L, F] e TEMLILIML
(Trainable) | [{ o
| -
I H

High Res Image Tokens

5 £ Random

Flatten
I Masking

s GO Gat

Figure 1.4.10: H elcodoc tou Movtéhou Super-ResThe oynuotiletar cuvevivovtac to High-Resolution(HR)
ontixd oOpPola pe o Yhwoowd obuBoha o ta Low-Resolution(LR) ontixd oOpfola, mou éyet npofiédel to
Boaoixd poviého

1.4.7 Arnéniedrn Xapaxtnpeiotixwy ctov Kpugpd Xwpeo

Me oxond v Behtinon e napaywyhc TOV YOQUXTARMY TPOTEIVOUUE ULol TEYVIXY) TOU eMLYElel Vo amoTAEEEL
TOL YOPOUXTNEIO TIXE TOU AVTIO TOLYOLY OE YopaXTARES amd Tl UTOAOLTA, OTOV xpupd ydpeo. H teyvixt| yag nepth-
opfdver Tnv tpononoinon tov VQ-GAN yia va tpoctedel pio emmiéov Soxplthy Bihodixn Stavuopdtwmy.

Kwdixonointig xow Anoxwdixonowntrg tov VQ-GAN

‘Onwg déuyvouv ol exxévee 1.4.11a and 1.4.11b, o Kwdixonointic xou o Amoxwdixonointic napauévouy (Biot,
onwe oto nopadoatond VQ-GAN.

KBavtiopog pe 80o BiBAtod7rxec Stavuocudtwv Kevgpod Xbeou

Avti va ypnowonomicouye pio BiBAod7xm Slavuoudtey otov Kpupd Xpo, dnwe oto VQ-GAN, yenoiuonolotye
doo: ebackground ¢ REXD yq echar ¢ REXD " groy e K oupBolileton o apidudc Te:v Sloxplidv Blavuoudtey
oe x&e BPBMot N xou ye D 7 Slootatixdtnta Towv Slovuoudtwy. H dictnon tlow and autr ty 1déa elvar 6Tu
o ebackground y\Fixonowel yopoxtneiotind (features) mou avTloTOLYOVY GTO PEVIO TGV EXOVEV Xou To erer
YOEAUXTNELGTIXE TTOL AVTLETOLY 00V oToug yopoxthpeg. H Sadixacio xBavtionol gaiveton otny Ewdva 1.4.11c.

, , . . , Lo L PLAVE A
Mio eévo © € RXNXN meovder npdta and tov Kodomointd ¢dote vo petatpamél 610 29 € RP* 77,

Egapuélouye évo D-8udotato QAo foackground OTO 20 YLOL VO THPOUPE TO 21 = fpackground (20). BTNV CUVEYEL
xPavtiloupe To 21 olPPvVa e To ePackIround | gyriyafictdvTac xodéva and To (% X %) Sravoparta (xodéva Eyel

D Swotdoeic) pe 1o xovuvdtepd tou oty Pighodfixn. To anotéhecua tov xBovtiopold eiVol TO Zbackground €
RDPx Tx L

IMapodyota, yenotponotodyat éva Ao D-8idotato @iltpo fenar Yiot Vo Tdpoupe 0 22 = fenar(20). MeTtd xPBorv-

char

NN
tilouye T0 29 Ue Bdom to € XU TOUEVOUUE TO Zehar € RP*FX7T .

LUvBUGLOLUE TU Zehar XU Zbackground XENOWOTOWOVTAG wat Mdoxo ®évtou (background mask). Eotw M €
NyN , ,
R7 X7 n Mdoxa ®évtou ye:

background { 0 if the (i,j) region in the original image belongs to the foreground (1.4.11)

J 1 if the (i,j) region in the original image belongs to the background

18

1.4. Tlpotewodpeveg Teyvixée

"=..|.—‘—

(b) O Anoxwdornonthc Tou VQ-GAN péve,
enlong (Blog

(a) O Kwdwonomnthc tou VQ-GAN pével (dlog

Quantization
(Background Features)
Background Latent Space | | I
1 e2 e3 e4 e5 k —— ‘
Features encoded by the VQ- L ec s e e © '
GAN Encoder | I8 1 ENEERY BNl | ﬁ Input for the VQ-GAN Decoder

] / g
R o
-h \ (Character Features) I‘I

Character Latent Space u u
= — -
el e2 e3 e4 eb ek —_ Comblnek
Using Mas
[8 | BECERY Bl | .i.l

Q0000 0006000
Single Layer Classifier
000000000
HAnn @
Pooro Eddy Crong loppy Mamy Pawy powy Tongtong Rody

08 09 01 03 02 05 04 01 03

(¢) Teonorotolue 10 c18dL0 TOU XBavTiouol, TEOSTAIDOVTAC Vo TETOYOVUE ATOTAEEN YoPUXTNELGTIXMDY

Figure 1.4.11: Tpononownuévo VQ-GAN yiot andmhedn yopoxtnetotidy

19

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

‘Onou meptoyéc war exévog Ye yopaxthpes Yewpelton 6TL avijxouv oto tpooxfvio (foreground), eved meptoyéc

2

, NN
yowplc yapoxthpec avixouv 6to pévto (background). TlpoBdhoupe to MPackground gne prbackground ¢ Ry
Y i , . / / / , .
o Mbackground ¢ REXFXF H tehneh avanopdotaon tne emdévac otov Keupd Xdpo oynuatiletos wg effc:

2 = Zpackground © MPOFITOUnd o5 4o © Mbackground (1.4.12)

Anhadt), Yyl TIC TEPLOYES TOU aviAXOLY OTO PAVTO, YENOUWOTOLOUHE TA BLVOOUATO TOU Zpackground, EVE YL
TEPLOYEC TIOU OVIXOUY GTO TEOGXAVLO TO SLOVUCHOTO TOU Zeper. L0 2z umopel av 8odel otov Anoxwdixomownts
Y10 VO TORGEEL TNV OVUXATACKEVAGUEVT] ELXOVAL.

‘Onwe gaivetoan oty Exodva 1.4.11c, 10 Zepar mepVE xat and evo Nevpwvind Alxtuo evéde emnédou. Autd to
dixtuo malpvel TNV LOOTEBWUEVT EXBOGN TOV Zehar, Zchar € RPFF xau Siver Tig TAVOTNTES XAACEWY YLo
6houg toug Pootxole yapoxtipes tou Dataset (9 yia to Pororo-SV). Exnawdetdouye to uixpd autd dixtuo ue
plo ouvdixm Tagivéunone mohhamhodv etxetoy (multi-label classification loss), ypnowomoldvtog Tic avapopés
OTOUC YOPAXTARES OTIC YAWOOWXEC Teplypoapéc we ground-truth etxéteg. O oxomdg autod tou duxtlou elvon
va ddoeL emmhéov gpédiopa otny e xatd Ty exmoideuon. Emléyoupe éva pnyd dixtuo, eamiloviag 6t
autéd Yo eZoavaryxdoer v BBhotxn Swavuoudtev vo anomhéZel (disentangle) to xpupd YopaxTNEIGTIXE TOU
XWOKOTOLOUY BLAPORETINOUE YUPUXTHEES.

Alaywetowd Ilpooxnviov-Poévrou

T tov Suaywpetopd Mpooxnviou-Pévtou yenowonotolue to GradCAM [31], ye tov tpdRo Tou npotelveT 61O
[5]-

Teononowioelg cTov MeTaoyNUATIOTA

O MetaoynUatioTAC TOU XPNOWOTOLOVUE O GLUVBLACUS Ue auTh TNV Yédodo elvar TOAD moEdUolog UE aUTOUE

Tou €youue culnTion N, UE AATOLEG PIXEEC TEOTOTOLNTELS.

Exnaidcvor Onwc einaye oty Evotnra 1.4.3, agod anoppifoupe to xewwevind xopypdtt and v €€odo tou
Metaoynuatiots nafpvouye to e€rc anotéleopar

Output = {Outputy, ..., Output, } € R (mm)xd (1.4.13)

Méypt thpo YpNoLLoTOLOVGUUE €Val LOVODLXO YR PETAOYNHOTIONS, Yo var uetatpédet T e€bdoug oe mi-
Yavétntee (logits), mou frav apxetd yia vo mpoPrédouye Tor onTind GOUBOAAL GTOV XELYPS YDEO TOL TEWTOTUTOU

VQ-GAN.

Qotéoo, yenowonowwvtas to tpomononuévo VQ-GAN, pe 8Vo Bihodnxec, ypeidleton vo npoBAédouue tne
ndavdtniee yioo Toug yopaxthpee (Character Logits), tic mbavétntee v 1o @évto (Background logits) xou
v Mdoxa ®évtou (Background Mask)

Ilpoxewévou va t0 TETOYOULME GUTO YENOWOTOWUUE TEELC YEOUUXOUS UETOOYNUATIONOVC:
To Char Logits, To Background Logits, To Mask. 'Onou:

y°"" = To_Char_Logits(Output) € R™*(mm+)xK
ybackground — o Background Logits(Output) € RM<(mmDxK (1.4.14)
ymask _ TO_Mask(Wput) c Rnx(m'm—i-l)xl

H cuvipn exnaidevong elvou:

L= ﬁchar + Ebackgraund + Emaska (1415)

6Tou:

20

1.5. Iewapotxd Mépoc

Lonar = —E > logp(y" " [Yr)]

Vi€([1,N],m;=1,m}**F9round=g

Lbackground = —E[> logp(yPeckoround |y) (1.4.16)
Vi€[1,N],mi=1,m}**rennd=1

mask background
£mask - ‘CCE(y) M g)

To Y toug deixtec (indices) yia to dravdopota 6To 2, 61ov 0 2 divetar omd v e&lowon Equation 1.4.12, eved
Yy elvon to (Blo uetd Ty e@appoyy| paoxey, odugwva ue To tpdyeapua tou MaskGIT. Enueidvoupe 6Tu 1) Tuyala
wéoxa M elvon drapopetin| amd Ty Mdoxa ®dvtou, Mbackground - f o eivon 1 Suvdnn tonou-MaskGIT vyio
Tig meployég ue XapaxThpeg oTIC EWMOVES. Lpackground EVOL 1) AVTIOTOLYN CUVIAXN Yo TS TEQLOYES POVTOU.
Lomask €lvon 1 etepoevtpotnia petald tne npofAenduevne xan tng ground-truth Mdoxoc ®ovtou.

Katd ta dhhat o povtého pével (Blo pe to apyxd poc MaskGST.

Yvunepaocwods Kotd tov ouunepaoud ypetdleton va npoBiedoupe v Mdoxa Pévtou, ta logits twv Xapox-
Thewv xou to logits Tou ®dvtou. Eexwdye nopdyoviag Ty Mdoxa ®évtou. Autd to xdvoupe ye éva Lovadixd
népaopa and Tov Metaoynuotiotd. o autd to mépaopa, dha Ta ontixd cbufoia otny elcodo elvon avtixat-
eotnuéva pe Mdoxa. Ialpvoupe tny é€od0 6mwe neprypdpetar and tnv eiowon 1.4.13. Téhog, oynuotiCovpe
10 0(To_Mask(Output)) € R™*™*™ 4rou 1o cbuforo o(.) avanaplotd tny olypoid] (sigmoid) cuvdptnon.
H Mdoxa ®évtou npoPiénetar wg e€ng:

“rbackground __ { 1 if U(TO_MaSk(OUtpU‘t))iJ»k > 0.5 (1.4.17)

B3k | 0 if o(To_Mask(Output)); ;i < 0.5

Agol mpoPAédoupye v Mdoxa Péviou, xdvouye Emavornmuxd, Iopddinho Suunepacud, déupoid ye To
MaskGIT. H uévrn diagopd ewvon 61t oe xdde Briuo mpoBiémouue ta logits twv Xopaxthpwy xan to logits tou
pévtou. Lynuatiloupe ta eviala logits o awtéd to Bripa cov:

., Backgr .o vrbackgr
Louit LOthSZ- j(_zzkmound if Mibtjl_cljgn)und -1 (1 A 18)
0gits; j.; = 2> b 4.
I Logztslcﬁgr if Mf‘;clfgmu”d =0

1.5 Ileipopotind Meégpog

1.5.1 Opydvwon twyv Ieipapdtwy
Koduoc

‘Ohoc 0 x@dwog pog éyel avantuydel oe PyTorch. O xddixac vy to MaskGIT Baoclotnxe oe wa vAonolon
avotytol xOdxa Yoo to MUSE!L T 10 VQ-GAN yprnotponololye v tpwtétunsn vhonoinon and to Taming
Transformers [8], mou datideton oto github?. T tov xwdinomnth BPE yenowonothoope tny xhdorn Tokenizer
Tou Topéyetor omé to Hugging Faces.

ITegBdrrov Exnaidsvong

‘Oha poc tar metpdpato npaypatonoidnxay otnv doury ARIS, tou GRNET. Yuyxexpiéva, yio xdde nelpapo
yenowdonoioaye pio povadinr) xdpta yeapixwyv NVIDIA V100-16GB.

Thttps://github.com/lucidrains /muse-maskgit-pytorch
2https://github.com/CompVis/taming-transformers
3https://huggingface.co/learn/nlp-course/chapter6

21

https://github.com/lucidrains/muse-maskgit-pytorch
https://github.com/CompVis/taming-transformers
https://huggingface.co/learn/nlp-course/chapter6/8?fw=pt

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Y0Ovolo Acdouévmv

Pororo-SV To Baocixé Lovoro Aedopévwv (Dataset) yia tnv Ontixonoinon Iotoplag, otnyv BiBhoypagpia ivan
70 Pororo-SV, mou npotdidnxe oto [18]. Baoileton otny moudnr| oetpd xvoupévev oyediev "Pororo the Little
Penguin". Ilepiéyet 15,336 iotopleg cuvohixd. Kde otopla anoteheiton and 5 eixdveg ue g avtiotoyeg nepl-
yoopéc. Axohouvddvrac toug [20], viodetolpe éva ywploud pe 10191/2334/2208 wotopiec train/validate/test
(exnaidevone/emixipwone/egétaonc). To Dataset nepiéyet 9 enavahopPoavépevoue Xapoxthpec.

Mezpwxeég yia Tnv OnTixonoinor Iotoplog
Axohovddvrac Toug [20], uiodetolue Tic o Swadopéves petpwés yio Ty Ontixonoinon Iotopioc. Eivaw ou e€fc:

e FID nou cuxpivel Ty xatavour Ty yoapaxtneio tixdv (features) petald twyv ground-truth xon twv topoyd-
HEVLY EXOVLY. T Ty e€aywy TV YopaxTnelo oy yenotdoroteiton éva mpoexnoudeupévo Inception
v3.

e Character-F1 nou nocotxonolel xatd néco to poviého mapdyel toug emtduuntolc XopaxTHeeS OIS
exoveg. XpnowOTOOVUE EVay TROEXTIOUOEVUEVD TAEWVOUNTY ToU avaryVepellel Ty mopousion Twv yopax-
Thewv oTIC edvee xou unoroyilouue to F1-Score avdueso ota anoteAéouoto ToUg THEWVOUNTY VLol Tig
EXOVES Uoc X oTig ground-truth avoapopés Twv neplypapy.

e Character-Accuracy nou Aetyovpyel énwe to Character-F1, anhodc unohoyilet tnv axpifBeta (Accuracy).

e BLEU-2/3 nou ypnowomnotel éva poviého urtotithopod (captioning) Bivieo yio vor mopdEet o YAWooxn
TepLypapr Yo xdVe noporyouevn totoplar (Tevtdda exdvmv) xou yiow TV avtiotouyn npoypatixf (ground-
truch) mevtdda. Ltnv cuvéyelo cuyxpivel Tic teplypagéc pe Bdomn v petpu BLEU.

1.5.2 Ileipdpoto ApYLTEXTOVIXNG
Kwdwxonoinon Exxévev: VQ-GAN

Yo apywd otddia nelpopatiopod doxpdoope VQ-GANs me nopdyovteg ouunieone: f =4, f =8 and f = 16,
TOU AVTLOTOLYOUV OF OVATUPUCTACEL OTOV XpUQPO YWEo UE avdAiuvon 16 x 16, 8 x 8 and 4 x 4 respectively
(6hec oL embvee €youv avdhuon 64 x 64). Ou dotdoeic e BiProtiune dravuopdtwy Keugpold Xdpou mov
yenowonololue éwvan 128 x 256, Anhadr 128 Sroxpitd Stovboporta pe didotaon 256 to xadéva. ‘Olo to povtéia
€youv ~ 35M mapoauéTpou.

KotohiZope 6Tt yetald TV TUdY TERITTHOOEWY oUTH ToU XoAUTEpa cuvdualdtay Ue toug Metaoynuatiotés
fray auth pe f = 8 (avdhuon 8 X 8 yia v xpueh avarapdotoon). H urnepoyh) authc tne mepintwong oe
oYEom HE TIC GAAEC Moy onpavTiny oe OAeg Tic PeTpixé xau Wiwe oto FID. Trodétouye 6tL autd €yel va xdvel
HE TNV AETTOUEQEL TWV XPUPMY AVATHPUCTICEWY, OVIAOYO UE TNV CLUTIEST, Tou umdxelvtan. Ilpdyuatt, oo
HEYOAUTEPOC Elvan 0 TapdyovTac cupTieone, T6oo o "yovipoxoppéva Yo elvar To yopoxtneiotxd (features)
oL xWdWOTOLOUV Ta Sloxettd ontixd oluBoia Tou VQ-GAN, agpol yeyahdtepo uépog tne exdvag Yo Tpémel va
xwdxomondel and éva povo cbpPoro. Trnodétouue 61t to VQ-GAN pe f = 8 netuyaivel tnv Wavixt| looppomia
600V apopd Ta onTXd cVUBoAA, MoTe va elvor xatdAAnha yio var to teoPBAédel o Metaoynuatiotic ond xeluevo.
Ané €86 xou mépa, ota mewpdpata yenothonotovye VQ-GAN pe avdluon 8 X 8 otny xpuen avanopdotaot).

MaskGST

‘Onwe avagéenxe oty Evétnta 1.4.3 to MaskGST anotehelton and 80o IIiren Ltpmuata, oaxoloudolueva
and xdnow Auto-Ntpodpata. o awtd to nelpopa, emhéyouue 4 Avto-Ltpodpota (6 cuvolxd otpduata yiol
tov Metaoynuatioth). To poviéro elvon dpolo pe to mopddetypo e Ewdvoe 1.4.7. H xpupy didotacy elvan
d = 1024. To péyedog tou hedhoyiov xatd Ty BPE-xwdixomoinom nyecay = 2500. O aptdude twv xe@oldv
IIpocoyhc elva Npeads = 8. O petaoynuatiotic €xer 7T0M napauetpoug xaL To0 GUVOAXS wovtého, uall e to
VQ-GAN éyel 106M parameters. Exnoudetouye yio 200 Enoyéc pe pudud uddnone Ir = 5e—3. 'Onwg delyvel o
nivaag 9.6, to MaskGST Eemepvd nponyolueveg apyttextovinéc GAN oe dheg Tic yetpixéc. Enlong minoidlel
Tic Tponyolueves dovielés e Metaoynuatiotéc Eenepvivtog teg oe Character Accuracy.

Xpnowonololpe auTtéd 10 HOVTERO Gov TNV Yeouun avagopds pac (baseline). ‘Ola ta endueva nepdyuato ytilouy
TV OE QUTH TNV WEX UE BLAPORETIXO0E TEOTOUC. LNUELOVOUUE, ETONG OTL v BEV OVOPERETOL DLUPOPETING OL

22

1.5. Iewapotxd Mépoc

UTEQTOPAUETEOL TIOPOUEVOLY (BLEC X0 GTO EMOUEVA TELPHUATOL.

MaskGST-SV

Yy Evémnra 1.4.3 nepiypdape 1o MaskGST-SV wq éva povtého mou Eexwd pe 80o IIhAen Ytpoduarte, mou
TpooEETXXE oxohovdolvtal and xdmota Auto-Xtpwpota, ta onofo axohovdolvial ano xdmolo SV-Xtpduotd,
Tov, Tého¢ axoloudolvTal TpoatpeTXd and xdmota oxouo Avto-Stpoduota. Iepapotiléuacte pe teelg dlapope-
Tixég Blatdéelg mou atvovtar oty Ewdva 9.2.1.

H dutein (a) (Ewdva 9.2.1a) anotereiton ond 2 IIhipn Ltpdpata, oxoloudodueva and 2 SV-Etpouota,
oxohoudolyeva ané 4 Auto-Etpduata. H Sdtaln (b) (Figure 9.2.1b) oanoteleiton anéd 2 IIfon Ltpodyata,
axohoutolyeva and 2 Auto Ttpoyata, axoloudodyevo and 2 SV-Etpduata, axohovdolpeva and 2 Auvto-
Trpodyaro. Télog, n didtaln (¢) (Figure 9.2.1c) Bdlel oty oepd 2 Iien Ltpduarta, 4 Auto-Etpodypata, o 2
SV-Ytpouata. Elvar gavepd 6t xan ol tpelg evahhaxtixég yenotponooly 2 IIiAen Ytpoduata, 4 Auvto-Etpduota
xan 2 SV-Ytpouata. AMNGECel 1 9€on twv SV-Stpoudtov. Eexivaviag and tny mentn neog e Teltn Sudtaln,
To SV-X1p0Uata HETOXIVOUVTOL oo TNV 0py 1) TEOE To TEAOC NS TopaywyixAe dladixactiog.

O howée umepnapdyetpol pévouy dieg pue tov MaskGST (d = 1024, nyocar = 2500, Npeads = 8. Ir = be — 3,
Nepochs = 200).

To mepdpatd pag deiyvouy 6Tt ol datdielc (a) xou (b) Behtidvouy ta anotehéopata ot oyéon Ye To cUPPuTind
MaskGST. Avtideta, n Sidtaln (c) diver onuavuxd yewdtepa anotedéopata, axdua xou and to MaskGST.
Aentopepy anoteréopota @aivovton otov Iivaxa 9.1. Xuunepaivoupe 6tu 1 yeron SV-Etpwudtwy unopel va
evioyloeL Ty anddoon tou Yovtélou, oAl mailel onuovtind péro mol Vo tomodetnioldv otV mopoywYIXH
oladxacion. To anotehéopatd yag unodeixviouy 6T dev mpénel vo tonodetniolv 6to Téhog Tou MeTaoy NUaTioT.

To T5-XXL wg ®xedixonoinTthAs XEWWEVOU

Tt v wetpopatiotolpe pe 1o TH-XXL[24] we xwdixonomntd xewévou yenotponootpe o MaskGST, ywpic o
droviopota MEewv (text embeddings). Avti autdyv, naipvoupe pia xwdixonoinon yia xdle Yhwooinh teplypapt,
TEEVOVTAC TNV péoa and €va npo-exmoudeupévo Yovtého TH-XXL xal ypnollonoldvTog Ti TEAEUTANES XPUPES
XAUTAOTAOELS VTl Btavuopdtwy Aéewy yio tov Metaoynuatiot poac. ‘Onwe goiveton otov Iivaxa 9.3 (MaskGST
w/ T5-XXL), auth) n npocéyyion dev Bektiddver onuavtind xopla uetpixr oe oyéon ue to ouuPatxd MaskGST.
IMioteboupe bTL autd ogelheton 610 Yeyovde bt to TH-XXL dev éyel exnoudeutel oto obdua xewévwy (corpus)
TV teptypapdy Tou Dataset mou ypnowonototye. Autd to corpus €yel SUwS WOLUTEPOTNTES, OTWE TOL OVOUOTOL
Ty Xapaxthpwy ntou dev anoteholv npoypatixée Ayyhxée Aégeic (n.y. Pororo, Crong xin). YTnodétovtoac,
ot yio tétole Mé€ewg to TH dev xotagépvel vo cUVDIETEL EXPEACTIXES OVATAUPAOTATELS, €lvon hoyixd To dTL Bev
elvan xoAd tar amotehéopara, apod autés ol AEEelg elvar oL onuavTIXdTERES Yot TNV cUVIEST TRV EMOVLV, TNV
TeplnTeoy pog.

Enduinon 'hwoowxdv Acdouéveyv péow tou ChatGPT

Xenowomnololue to ChatGPT 3.5 péow tou API nou napéyel 1 OpenAl yia va enowérioovue T YAWoOWég
Teptypapéc tou Dataset. T xade wotopla (oelpd and 5 meprypawés), divoupe oto ChatGPT tnv neprypogpy| Tou
pdhou tou w¢ Bondold yia Ty enadénon dedouévev, oxoroutoduevn and Tic 5 neptypapéc. To axplBéc urvuua
pérou nou Bivouye oTo povtého (yio o Pororo-SV) napatideton oty Evétnra 9.2.5. O npetdtunes neplypopéc
e LoToplag Sivovtol 0TO HOVTENO GTNY TOEOXATEL Lo

{nepLypagn 1}
{nepLypaey 2}
{neprypogn 3}
{neprypogn 4}
5. {mepiypagn 5}

W N e

To povtého mouv yenowonololue yia to melpopa elvar dpoto pe to MaskGST tou apyixol nelpduatoc. H udvn
Blapopd elva OTL XoTd TNV eEXTA(BELCT) EMAEYOLUE TUY LN AVEUECI OTNY TEWTOTUTY TEPLYPAUPY) X0 AUTT) TOU EYEL
naparydel ano To ChatGPT yuo xdie delypa exnaidevone, o xdde enoyr. Katd tov cupnepaoud yenoiponototye
HOVO TIC TPWTOTUTEG TEPLYPAUPES.

23

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

‘Onwe gaiveton otov niivaxa 9.3, autd to nelpapa (MaskGST w/ aug. captions) tetuyaivel edtiopéva anotehéo-
pota oe oyéon pe to ouufatixd MaskGST oe dhec tig uetpinée, ue e€aipeon tic petpixéc BLEU, av xau exel
oev elvon ueydhn n Slapopd. Yrovétouue 6Tl autd To anotéheoya emiPBeBalcdvel OTL 1 ENAOENCT) TV XEWEVIXOY
dedopévmy exnaidevone npootatelel To poviého and TNy utep-Tpocdppoyy (overfitting) xou to Bonddel va eo-
TIEOEL TEPIOOGTEPO OE ONUOVTIXES EVVoles (). ovluato XopaxThHowY), TUPEYOVTAG EVUNNIXTIXES TEPLYPOPES
i xde ewdva.

Kadodhynon Xapaxtrpwy

T va diegdryoupe autéd o melpapo yenowtoroolpe to MaskGST (6nwe oto apynd nelpopa) xon npocdétoupe
2C, Awwviopata Xapoxthpwy (éva Oetnd xou éva Apvntid v xdde Xapoxthpa), 6nwe avehdooue otny
Evétnra 1.4.3.

Katé v exnoidevon, détoupe v mdavétnta andpeudmne e xewevinic neptypaghic ot 20%, dnhady anop-
pintoupe tekelne v meptypaph oto 20% Twv delypdtwy exnoidevong, ot xdle emoy) o Ta avtixaho ToUue
pe éva ddvuopat [NULL]. T autd ta Selypoato, o Metaoynuoatiotic mpoPBiénel o ontixd obufoia ota onolo
€yl epopuootel udoxa Baclouevog povo otnv Auto-Ilpocoyn uetald ontixdv cuuBdrwy xar ota Alaviouota
Xapoxtipwy. To vndhomo 80% twv delypdtwy extaldeucne, ¥pNoULomolodvTol TEG0 0L YAWOOIXES TEPLYPUPES,
600 xau to. Awaviopato Xopoxtheny o cuvinxec.

Kotd tov oupnepacpd oynuatilouyue logits, uno cuviixn xewévou, f. xou logits, und cuvinum Alovuoudtev
Xopax thpwV Lepar. To tehixd logits divovtar and tov tono £ = (1 — f)lic + flenar- Xpnowonotobuon f = 0.2,
nov elavt cLVERES e TNV VO TNTA AndEELPNC YAWCOIXOY TEPLYPAPMY GTNY eXTUUSEVOT).

To anoteréopata yia autd o nelpapa atvovtar otov nivoxa 9.3 (MaskGST-CG). Eyoupe onuavtixd Bektinon
TWV ATOTEAEOUATOV OE oyéon Ue To apyixo melpopo. H vnddeon) pag 611 1 yeron Eeyweiotdyv logits yia toug
Xopaxtripeg Yo Behtidon tny mapoywyr) Twv Xopaxthpny emBeformveton and tny onuavixy feitiwon twv Char-
F1 xou Char-Acc. Emnpéodeta, napatnpolue Bertiowon xou otic unéhownes petpxée (FID xou BLEU-score).

Xenon Apvntixoy Yrodeiewy

Ye autd 1o melpopa Yenotuonoloue To Bto poviého pe to nponyoluevo (Kadodhynon Xapuxthipwv). Enopévec,
dev aAAdlel TinoTa 600V APOPd TNV APYITEXTOVIXY Xal TNV exTaldevor. Autd mou Tpomomnolelton elvon To oy
ouumepacUol. Xe xdde enoavdindn e Swdixaciag cupnepaopol, urtohoyiCouvpe ta logits, und cuvdrinn yYiwo-
oGV TERLYEAPMY Xan To Apwynuixd logits Xapoxtrhpwy (f—), onwe epiypdpouue otny Evétnra 1.4.3. Ta
tehxd logits (¢) oe xdde Brua vnohoyilovtan wg e€ic: £ = (1 + f)lie — flog

To anoteléopota auTol Tou TEwduato gaivovtar otov Hivaxa 9.3 (MaskGST-CG_). Eivou gavepd 611 1
Xoehon Apynuxddv Todeilewv éyet Yetind anotehéopota 08 OAES TIC UETPIXEC.

‘Evoc mo mAfenc Tedmog Vo YenoWoTolAcoupe Ty Wed twv Apvntixedy Trodelewy elvor oe cuvduaoud ue
(@etixn) Kododhynon Xopuxthpwy, pe oxond va onpdioupe ta logits npog toug emdupntole Xapoxtipes
X poxptd and avemdiuntoue, oe xdde emdva. Ta va to metdyoupe avtd oynuatilovue Tao logits (¢) oe
xde enavdindm Tou GUUNERACHOU GAY GUVBLACUSG TELOY aVEEAETNTWY ouddwy and logits: lic, Lepar XU bo—.
Xernowponololue tov ToNO:

l= (1_f)€tc+2f£char_fgw (151)
6mov f=0.2. Enuewdvoupe 6Tt to ddpotopa Twv cuvieestdv yio to logits elvon (1 — f) +2f — f = 1.

To anotehéopato autic e pedodou elvon otov Iivaxa 9.3 (MaskGST-CGL). Iapatnpeodue 6Tt 0 cuvduaoude
e Kadodrynone Xopaxthpwy e tnv Apvntue Kadodrynon elvan npdypatt w@éhpog. Palvetan éti ot dbo
uédodol evioybouv 1 wla TNV GAAN xan GEpvouv PEpVouY OAEC TIC YETPIXES OTO XAAUTERO eninedo oe oyéon ue
OOl TOL TIPONYOUHPEVOL TELOGUATAL.

KetthAc Zuppoérnv Baciopévog otoug Xopaxtriees

‘Onowc neprypddape oty Evétnra 1.4.5, o Kerthe ZugPdhwy (Token Critic) eivon évae Bondntindc Metaoynuo-
TIo TS ou yenowponoiel Auto-Ilpocoy uetald Twv ontedv cuuBéiwy xar Etepo-Ilpocoyn pe exnadevopeva

24

1.5. Iewapotxd Mépoc

Awavioparta Xopaxthewy vl vo Bydher wc é€0do Bodpolc Eumotooivne yia ta Ontixd Xoufola, oe xdlde
enavdindn v diadixaciog cuprepacuol. O Metaoynuatiotic mou yenotponoloue amotelelton ano 4 dadoyixd
IMen Ertpdporo (goivetar oty Ewdva 9.2.2). Talpver oav eloodo v é€odo tou MaskGST xau Bydlet oty
€€000 évay aptiud petald 0 xou 1 yio xdde ontnd cvuforo (o Padude epmiotoolvng Tou). Extoudedoupe évav
Keutr) Zupforwy pe didotaon d = 512 xou optdd XEPUADY Nheqds = 8. O mapaywyxds Metaoynuatiotig
nou yenotponotovpe elavt éva MaskGST duoto pe exéivo tou apyixol melpdpotoc. To ohoxhnpwuévo Lovtého
(VQ-GAN, MaskGST xon Keithc Zupfdrwv) éxer 139M mopopétpous.

To anoteléopata Tou mewpduotoc gaivovton otov mivaxo 9.3 (MaskGST w/ Char-Attn T.C.). Biénoupe ou-
oo TN TTOOY TV emBdoEWY 0TI PETEXES, and TNy Yeron Tou Keith XuuBorwy oe oyéorn ue to apyixd
nelpapo. Mio mdovh e€iynon elvon 611 1 yprion Aoavuoudtony Xopaxtipwy we povodixd cuyxeiyevo (context)
yioe Tov Keitd) Yuuohwy eivon avemopxhc yia va mpofiédel Baduole euniotoclvne anoteAeouatixg.

AOEnon tneg suxpiveiag Tou Kpugpold Xwpou XapaxtneloTixwy

Xpnowonototpor To MaskGST oné to mpirto melpapa ooy Pacnd Metooynuatiot (base Transformer). Auvto
o MaskGST npoPiénetl ontixd obyPola oe avdhuon 8 X 8, yeNoonolwvTac Tov xpupd yweo evéc VQ-GAN ue
f = 8. Exnoudetouye évav Metaoynuatiot nou npofiénel ontixd cUyfora oe avdiuvorn 16 X 16, und cuvinum
Awovuopdtenv AéZewy (text embeddings), o xon Twv younhotepne avéiuone (Low Resolution - LR) ontixddv
oupBéiwy mou TpoPAénel To Baoctxd poviéro.

O Super-Res Metaoynuatiotrc éyet (Bleg unepropapétpous pe to apyixd pag MaskGST (2 IIhien Etpdpora,
axohovdolueve and 4 Auvtod-Etpopata, d = 1024, nyocap = 2500, Npeads = 8, Ir = Be — 3, Nepochs = 200).
Erlone, 6nwe éyouye nel, ta LR ontixd obuBola nepvdve and pid oelpd Auto-XTpnudtoy Telv Yenolonolnoiy
ané tov Super-Res Metaoynuatiot. T autd twv oxond yenowonotobvta 4 Auto-Erpduata ye d = 1024 xou
Nheads = 8. O oLUVOAXOC opiude Tapapétpwy, ocuunepthaufdvovtoc to VQ-GAN, adhd 6yt to Baowxd poviého
elvon 139M.

Ytov Ilivaxa 9.3 (MaskGST w/ Latent Super Res.) gaivovta ta amotehéopota Tou netpduatoc. Auti 1 pédodoc
divel yewpdtepa anotedéopata o Ohec Tic YeTpixéc oe oyéon pe To baseline MaskGST (npdto melpopa). Iio-
TeVOLUE OTL QUTS TO EVENUA ATOTENEL ETUTAEOY ATOBELE T YLol TIC TOPATNENOELS TTOU XAVOUE OYETXE LUE T TELPGOTAL
o710 VQ-GAN oty Evémta 1.5.2. Onwg elyoue napatneriost, n avdluon 8 X 8, atny xpuen avanopdotact elye
HE Blapopd To XUADTEQO AMOTEAEOUATA, XYTL IOV ELYUUE AMOBOCEL GTO TOCO AEMTOUERT] EfVAL TA YUEAXTNELO TIX
(features) twv davuoudtwy Tou xpuPoL yoeou. Trodétovue, 6T 1 vhnhdtepn avdivon (16 x 16) tou yenot-
pornotel To Super-Res poviého yivetow unepBolnd AenTouepnc, XWOIXOTOLWVTAG AETTA YAUEUXTNELO TIXE oL efval
BUOGXONO VO AVTLO TOLYLO TOUY UMOTEAEGUATIXG OE TILO YOVOPIXEC YAWOOWES €vvoleg and To MeTaoynuatio).

Anoéniedn XopaxtnpioTixwy ctov Kpugpd Xobeo

Iot autd o melpopor exmoudetoupe éva tpomonoinuévo VQ-GAN pe 500 BiBAodrixes Sloxpttédv Sloavuoudtewy 6Tov
xpLPb YOpO, echar gbackground ¢ RIZEXZS6 Greye neorypddoye oty Evétnra 1.4.7. To VQ-GAN xwdixonoel
o ewcdva pe Baon v Bihodixn Xoapoxthpwy xow POVTOU xon GUVBUALEL TIC XWOLXOTIOIAGELS YENOULOTOLOVTOC
v Mdoxa ®bvtou.

Yuvdudloupe to VQ-GAN pe tic 800 Pifhodxes pe évay Metaoynuatioty, énws neptypdgeton otny Evétnta
1.4.7. Ou unepnopduetpol tou Metaoynuotiot| pévouy Bieg pe tou apyixold MaskGST. H Suwgpopd eivon dtt
€YOUV TEELC YPUUUIXOUC PETOOYNUATIONOV GTNy €£000, Yio var avtioTtolyilouv tnv €€0do tou Metaoynpotiot)
oe logits Xapaxtipwy, logits ®évtou xouw Mdoxa Povtou.

To anotehéopata yia avtd to nelpopo (ivoxac 9.3 - MaskGST w/ latent space disentanglement) eivor aroyo-
nrevtxd oe 6Aec Tig uetewéc. To FID avePaivel, eved ot undhoineg puetpunée eAhatwdvovtal, o€ cOYXQELOT UE TO
npwtétuno MaskGST (baseline). Trodétovye 6Tt auTd €xEL Vo XAVEL UE TNV TOAUTAOXOTNTOL TNS LOVTEAOTIOIMOTS
yioo Tov Metaoynuotiotd. Suyxexpiéva, autde xoheltor vo mopauetponoioel 1660 TV Po(Zehar|T), 660 xou
™MV P (Zbackground|T) (T0 O avomapioté Tic TapopéTeous Touc Metaoymuatioth xau 0 T TNy avomopdo Toon Twy
XEWEVIXDV TEPLYPAPAOV). AEBOYEVOU OTL TU Zehar X Zbackground HLOVIEAOTOLOUVTOL UEGE) BLOPORETIXMV YWEWY
avamapdotaons (drapopetinéc Piphotixes Siavuopdtenv) etvor, iome avépxto yio évay Metaoynuatio] va pdde
%o TLG 800 HATAVOUES TAUTOYPOVOL.

25

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Yuvdvacpol MeBd6dwv

Méow TV TpoNYOUUEVWY TEIROUATWY EVTOTIOOUE XATOIES UTOOYOUEVES 1OEEC. g aUTA TNV eVOTNTA, 0ELOAOYOVUE
av ot pédodot mou dolheday xahd aveldptnta unopolv vo cuYSUACTOOY Yia Vo EVoy0ooLY 1) Uict TNV GAAT XoL Vot
pépouy TepauTépw Behtinon. Xuyxexpiuévo undpyouy Teelg uédodol tou Bedtiwoay Ta anoTteAéouaTa o€ Gyéon
ue to baseline MaskGST:

e MaskGST-SV (config b)
o MaskGST pe enadinom yYAwoowxdy Sedouévey
e MaskGST-CG1 (Kadodhynon Xapoxthpwy xou yeRon Apvnuixav Trodellewmv)

Yuvdudloupe Tig mapamdve yedodoug oe Leuydpta xou oheg poli. Xtov Hivaxa 9.2 cuyxevtpdvouue To oamoteléo-
HOLTOL Y10t OUTA TOL TELRAUATOL LUUTERLAAUBAVOUUE XOlL TOL ATOTEAECUOTO TWYV ETUELOUS TELQOUATWY Yot EUXONL
olyxpione. Hpoximtel Tt 0 xahltepoc cuvdlaopde eivon: MaskGST-CG-1 w/ aug. captions. Luyxexpyéva,
Behtidver To FID yia nepiocdtepeg and 3 povddeg xau to Char-F1 yio oyedov 1 yovdda, oe obyxplon ue 1o
MaskGST-CGy.. To Char-Acc yéver 8ro. A&ilel va onpewwdel 61t to BLEU-score eivon ehappe yewpdtepo and
tov MaskGST-CGx.

1.5.3 IIewpdpata Yrep-Ilapauétpwy
Yrep-Ilapduetpor Tou MeTACYNUATIOTY

'Exovtoc @tdoel otny xohOtepn apyttextovind pac: MaskGST-CG-1 w/ aug. captions, tporyuatonoloUye xdmota
un e€avTANTXd TELRGUATO GO0V APOPd TLC UTERTIOROUETPOUC. LUYXEXPWEVA, EEEPEUVOUUE TNV ETUBEAUOT) dAAAY WV
ot0 WAxog (Mhidoc otpwpdtwy) xo to TA&TOoS (xpueY SldoTaon) Tou MeTaoyNUATIOTH, 0T ATOTEAECUATAL.

O IIivoxag 9.4 delyvel To anoteAéoUaTA TWV TEWRUUATWY, GOV apopd To unixog Tou Metaoynuatiot. Kpoatdue
T unbloineg unep-TopapETeoue otalepéc (1 ddotaon elvon d = 1024) xou xhpoaxdvoupe To uixog and ta 4
uéypet ta 16 otpwuara. Iapatneoliye 6tL 1 duEnom Twv oTpwpdtwy odNYel ot BeATiwoT OAWY TWV UETEIXMY.

Ytov Iivaxa 9.5, cUYXEVTEMOVOUUE To ATOTEAECUATA , OOWY OPOEd T TELRAUATA Yl TNV dido taor Tou Metaoyn-
pattoth. Tot autd to netpdyuato xpatdue OAeg Tic GAAES LTEp-TaPAUETEOUE (Bleg xat Toihovpe TNV xeupY| Bldo-
Toom) TOL povtéhou and d = 768 to d = 2048. O apidude twv oTpwudtey eivon o pe 6 (2 TIMpn Ltpoduota
axohoudolyeva and 4 Auto-Etpduota). H abinon e ddotaone tou poviéhou cuvdéetan pe Peltinon ot bheg
TIC METEWES. Buyxexpwéva, o Metaoynuatiotic ue d = 2048 eivon 10 xoh0Tepo POVTEND poag.

Melrétn yia Ty Kadodhyrnon Xapaxthpwy

Xenowomodviag 1o xo\OTtepo poviého poac, MaskGST-CGy w/ aug.captions (d=2048), npoypatonowodue pio
perétn v otov moapdyovta (f) e Kadodhynone Xopaxthpwv (Egicworn 8.3.8). Ta anoteléopota cuvodi-
Cotow otnv Ewdva 1.5.1. Ou xomiieg mou avtinpocwrebouy Tic Metpixég mou oyetilovton pe tou Xapoxthpeg
éyouv To Blo axpBie oyfua. Etvon ad&ovoeg péypl to f = 0.6, eved pewdvovtar ehagede yia to f = 0.8. To
FID, and tnv dhAn, pewdveton (Behtiddvetan) péypl to f = 0.4 xou otny cuvéyela auEdvetar yior g d00 ENOUEVES
nepinToelc. 2e Slnodntixd eninedo, Brénoupe 6T pe Ty adZnom tou f BeATihvouue TNV mopay YT Twv Xopax-
Thewv. AuTtd elvot aVaUEVOUEVO, aQou UE TNV duEnon auty, To HOVTENO Bivel GAo xou TEPLOGOTEPY TPOCOY T 0T
logits tev Xopaxtrhipwy oe oyéon ue ta logits mou Pacilovton oty xeeviny nepypopy. Bektidvoviag toug
Xopaxthipeg, BEATIOVOUUE XoL TNV GUVORXT TOLOTNTA TWV EXOVKY, UEYEL xdnolov Badud, apod autol anoteAoly
Baoxd xOPPdTL TV TEPIOOOTEPWY EXOVWY. Autd eényel To yeyovoe 6t i quénom tou f péyel xdmolo ornueio
(f = 0.4) Behuddver xou to FID (nowdtnta twv exdvonv). Qotdoo, n mepoutépw adinomn tou f, éxel apynuxd
AVTIXTUTIO OTNV GUYOALXY| TOLOTNTA TWY EOVKY, xoig dUvoupe ducavdhoya ToAl Bdpoc ota logits Twv Xopox-
ThewV ot Tapopelolue ta logits mou Baotlovton otic teptypopéc. Tote 1o LoVTENO AMOTUYYEVEL VO XOTUOXEVAOEL
XOUPATIOL SRR XOUUATIH OTNY EXOVAL, ToL BeV oyeTi{ovTton pe Toug XapaxTreeg.

INa f = 0.4 naipvoupe tov BértioTo cuvduaoud petpixdy (68.32, 41.40 xou 42.49 vy ta Char-F1, Char-Acc
and FID, avtiotoya). Qotéc0, oty mpdln, Beloxoupe 6t oxdpa xou to f = 0.4 x&vel 10 HoVTENO VoL APIEPOTEL
unepBoAd TEOCOY Y GTNY ToEAYWYT TV XapoXTARWY, UE dEVNTIXE ATOTEAECUATO OTNY CUVOAXT TOLOTNTA TNV
otoplag, AOYw TN AMMAEL TNG CUVOYHC TwV exdvwy. Kplvouue 6tu pe f = 0.2 emtuyydvetow o xaAOTEROCG

26

1.5. Iewapotxd Mépoc

Study on Character Guidance

67.5 - —— Char-F1

65.0
62.5
60.0 -

0.0 0.2 0.4 0.6 0.8

—— Char-Acc
40

35

0.0 0.2 0.4 0.6 0.8

f
FID
50 |
45
0.0 0.2 0.4 0.6 0.8
f

Figure 1.5.1: MeAétn tou mopdyovta f otnv Kadodrynon Xopaxthpnv.

ouuPBiPaopdc (trade-off) petald naporywyhc tev Xopaxthewy ot cuvolixdy towdtnta tne Iotoplac, ot ToloTnd
eninedo.

1.5.4 X0yxpion pe Ilponyodueveg Teyvixég

Ye auto to onuelo ouyxpivouue Ta povtéla Yoc pe tponyolueves teyvixéc. ‘Ocov agopd too GANS, cuyxplvouue
pe ta StoryGAN [18], CP-CSV[36], DUCO-StoryGAN|[20] xou VLC-StoryGAN(19]. Enione cuyxpivoupe pe Tic
d0o apyttextovixée tonou Metaoynuatior: VP-CSV [5] xouw CMOTA[L]. Avagopixd pe to povtélo didyuong,
uTdipyouy Teel; Tponyolueves texvixés: AR-LDM[22], ACM-VSGI10] xou Causal-Story[35]. H dueorn obyxpion
HE T Tar povtéla Bev elvan dixoun, Sedouévou 6t Basilovton oto LDM[28], tou elvon npo-exnandeupévo oe éva
TepdoTIo cUVOLO Bedouévwy Ue dploveg unoloylotxée unodouéc. Emmiéov, anatolv tohd axpBé efonhoud
yioe Ty ovdmtuén toug. Evdewtind, 1o AR-LDM ypenowwornotel [40x] tnv vRAM nou ypnotpornoteiton otny dixn
ag SovAeld. 20T600, Yo AoYOUS TANEOTNTAS, CUUTERLAOUBAVOUUE QUTH To LOVTENX OTNV OOYXELOT| TOU XAVOUUE.
Avagepoypaote oe autd Zeywplotd otnv unoevétnta 1.5.4.

O nivoxac 9.6 cuyxevtpdvel Ta anoTeAEoPATA TV TEONYOVUEVKDY PeVEdwY pall e To Paoxd pac LOVTENO
(baseline) MaskGST, xoda¢ xou to xahbtepo povtého pac MaskGST-CG4, with d = 1024 and d = 2048.

‘Onwe €youpe 1N avagépet, To StoryLDM xou to StoryGPT-V egapuolovtar oe ploa napoloyuévn éxdoyn tng
SV, 6mou enaveltAnuUEVES oVaPORES GTOUC YAPaxTHEES, avTxadlotdvTal Ue aviwvuuies. To autdv Tov AoYo, 1
Gueon oUyxpton woll Toug dev elvor e@opuodaLun.

MaskGST-CG. w/ aug. captions (d = 1024) To povtéro poc pe d = 1024 anodidet xohltepa ond
6hec e mponyolpevee npooeyyloeic pe GANs 1 Metaoynuatiotéc, o dhec tic petpixée (yopunhotepo FID xou
udniétepa Char-F1, Char-Acc, BLEU-2/3). EwWbixd oTic petpinéc mou agopolv Toug YapaxThpges, 1 Beltinon
elvon onpavtxr. Buyxexpwéva, to Char-F1 avgdvetar yio 3.6 xou to Char-Acc yw 7.7 povédec, oe oyéon ue
10 TpoNYoLpevo xohUtepo (VP-CSV). Ocwpolpe otL 1 utepoy ToU HOVTENOUL UOC OE AUTEC TIC HETEXES UTopEL
va anodolel, oe peydho Badud oty teyvin Kadodrynone Xopoxthpewy tou tpotelvoupe.

MaskGST-CG. w/ aug. captions (d = 2048) H dumhaciaoude tne xpueric ddotoone ot d = 2048
BeAtidvel Ta amotehéouotd Yo o OAeC TiC YeTewég. Idwidtepo onpavtiny eivan 1 uelwon touv FID, to omolo
HELOVETAL XaTd 8.8 UoVABES CUYXELTIXG Ue TNV €xDooT) Tou woviéhou pe d = 1024. YTrodétouue 6Tl 0 dimhaciao-

27

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

HOC TNG %pLEPTC DIACTAONS APTVEL TEQIGCOTERO YPO GTO UOVTEAO Yial VoL uddel mo TOAOTAOXES Xl AETTOUERE(S
avTioTolyloele YeTald AEEEwY XUl OTTIXDY YOPUXTNRIOTIXWY, TOU EYOUV WG ANOTENECUA EXOVES LPNAOTERNC
ToLOTNTAC e TEploabTepeg Aemtopépetec. H ixavétnta tou govtélou vo yddel mo mohOTAOXES oVOTapas TECELS
X0l VoL TpdyEL Tlo AemTOoUEpElc emoveg umopel va e€nyroel Tic Pehtidoeic xan oTic dAheg uetpixés. Ewduxdtepa,
oL exoves uPnAfc motdtntog Vo aneovilouv BehTiwpéves exdoyéc TwV YapaxThpwy xat Yo Tapdyouv xoA)TERH
oxop BLEU, yéow tou unoTitAlloyod TeV TopayOUEVMY ELXOVMV.

YOyxpion pe Movtéra Adyvone ‘Onwe yivetoa govepd and tov Hivaxa 9.6, uiodetodv uévo to FID
ocov petexh. Autd dev elvan emopxéc yioo tnv Ontixonoinoy Iotoplag, Sedopévou 6t hopfdver unddy puévo
TV oot xde emépoug emdvas. Oowv agopd to FID, ta tpla povtéha didyvong elvon acuvayovlota o
oUYxelon Ye OAeC T undhoineg mpooeyyioelg. (dotdoo autd umopel vo anododei-tovidoioTtov ot évay Porduo-
OTNV EXTETOUUEVY TPOEXTAUBEUCT] TOUG, XS Xl OTol UEYSAS TAHUY] TOpOUETEWY.

1.5.5 IIoltoTtixd anoTeAECUATA
PororoSV

Yty Ewdva 1.5.2 napéyouue téooepa nopadelypata and LoTopleg exévwy, and to chvoho enaideuons Tou
Pororo-SV. TN x&e totopia topovoidloupe tic AelAvTes, TIC TEWTOTUTES EXOVES, TIC EXOVES TOU TIOR3y OVTOL
and to CMOTAJL] xou tic emdvee and 1o poviéro poc (MaskGST-CGy w/ aug. captions (d = 2048)). T'a
auTéY TOV 6%0TH, YenouLomotoluat o npo-exnondeupévo CMOTA rou éyel dnpooteudel edi?. Tlpaypatomotouo
plo toloTiny) olyxplon ye Bdon ouUTd T TOLOTLXE OTOTEAEGUATAL.

Orntixy ITowotntar 'Ocov agopd Ty ontixy ToloTnTa, elvol EUGVES and To Tapadely ot 6TL TO HOVTEAD UaC
elvon avdtepo and to CMOTA. Tt nopddetypo, 6T0 Tave-aptoTepd TAA{CLO, 1) TE(TN Xat 1) TEAEUTHA ELXOVA, TOU
xataoxevdotnxay and to CMOTA elvar Yorég xan avenapxde xotavontés. Avtideta, otn S pag neplntwon,
xaL oL 800 ewxdves TeptEyouv avaryvoploa avtxelueva (yopaxthpees). ‘Ocov agopd Ti¢ TEElG EVOIAUETES ELXOVES,
autég mou mapdyer To CMOTA nrepiéyouv pepinole avayvwpiowoug yapoxtipes. 20tdc0, oaxdua xal oe oUTH
Ny neplntwor, ol edveg Yoc elvon mohd UPNAOTEENC TOLOTNTOC, UE TOUC YOQUXTHRES VoL €YOLV CIUAVTIXG TILO
Aemtopepelc epgavioeis (T.y. o wdtia Tou Crong (tou mpdovou detvooalpou) xau To pdugos tou Pororo (tou
Ty xovivou)).

Xpovixry Yuveneia ‘Ocov agopd otV Ypovixl CUVETELR, TApATNEOUUE OTL ol exoveg tou CMOTA
duoxoheovtal va dlatneroouy otaldepd @ovto xar ota 4 mopadelypota. Ewbwdtepa, emdveg and eEwtepind
YWEO EVUAAICOVTOL UE EXOVEC amd E0WTEPIXO YWpo. Lo mopddelypa, 6To mdvw Be&l mavel, 1 mEdTN xoL 1
TeheuTdua etxdva pafveTan vor Belyvouy Eval YLOVIOUEVO POVTO, EVE Ol GAAES TEELS (patveTal Vo efval and ecwTERIXS
Y0po. Avtideta, to yovtého pac xatapépvel vo dlatnerioel €vay OYETIXA GUVEXTIXG (QOVTO OTIC TEPLOCOTERES
nepinTioelc. Eldnd oto ndve de&l ndvel, 1 eppdvion tou Swpatiou dlatneeiton e€onpetind cuvenric. Na onueidd>-
COUUE, OTL 6TO Xdtw Je&l Mavel, To wovtého pac avtyetonilel dBuoxohiec otn cuvénela xou EWd oTNY TETAPTN
ELXOVA TIOL EYEL AOYETO POVTO, 0 GlYXPLON UE TIC YELTOVIXES.

Ynuaoctoloyixry Luvdpeia O dpog Ynuaciodoyixn) Xvvdgeia avapEpeTal GTO oV OL TUPAYOUEVES EXOVES
elvon oyetnéc pe tic avtiotoiyes Aeldvtec. ‘Ocov agopd autd, o CMOTA gaiveton vo avtipetonilet Wiaitepa
TEOPBAUATA OTIC TEPLTTWOELS OTOL avapépovton ToAol yapoxthpes. L'l mopdderyua, 010 *dtw-8egLd mdveh,
N mewtn Aeldvta avagpéper Toug Petty xou Loopy, ohhd Snuoupyeiton pévo o Petty. Xtn deltepn Aeldvta,
omou avapépovto todhol yopaxthpee, N ewmdva tou CMOTA elvon oxatovonTn. XTIC EMOUEVES TEELC EXOVEC,
10 CMOTA xotagépvel vo SNUOVEYNOEL TOUS TEPLOOOTEROUG AVUPEROUEVOUS YOPUXTARES, oV Xa UE YOoUNAA
nototnto. Avtideta, To HOVTENO Hog xaTapépvel Vo dNuoupYHoeL GAOUC TOUG GYETIXOUS YUPAXTARES OTIC TEPLO-
COTEPEC TEPINTWOOELS. XT0 X3tw-0eld mavel, autd toylel yia 6hec Tic Aeldvtec. Ebvou eniong ofioonueiwto
oL, 6TY) Se0TERPT EXOVAL, XATAPEPVEL VO SNULOVPYHOEL TOAROUC YUPUXTHRES UE EEUPETIXT TOLOTNTA, XM XoL TO
xOXHVo oUTOXVTO ToL avapépeTon oty AeldvTa

4https://github.com/yonseivnl/cmota

28

https://github.com/yonseivnl/cmota

1.5. Iewpapotind Mépog

CMOTA Original

Ours

Frame 1: Crong eats meat. Loopy gave a dish of vegetables.

Frame 2: Crong doesn't like vegetables. Crong pushed the
dish of vegetables.

Frame 3: Both Pororo and Crong look at the meat in the
dish.

Frame 4: Crong picked up the last meat.

Frame 5: Pororo told that Crong is so greedy.

CMOTA Original

Ours

Frame 1: Petty asks if Crong really okay is.

Frame 2: Loopy says Crong looks not that good.

Frame 3: Crong trying to pretend to be okay waves Crong
head.

Frame 4: Crong pretends to do some freehand exercise.
Frame 5: Pororo laughs at Crong calling Crong as a regular

! N8
-

1 ’ :
,) | ¢ Y g o'F
BV el TR T
P s] . v ’ v , L
e e e g e ey P ™
e T e | e S
Frame 1: Loopy is back with Poby.
Frame 2: Loopy and Poby notice that chair is not broken.
Frame 3: Poby and Loopy thinks the chair is very strange.

Frame 4: Loopy is looking at chair with question.
Frame 5: Loopy thanks Poby for coming.

Frame 1: Loopy talks and spreads Petty arms. Petty
looks at Loopy smiles and nods.

Frame 2: Poby gathers red car hands and talks. Loopy
Petty and Harry are looking at Poby.

Frame 3: Loopy Poby and Petty walk stop and turn back.
Frame 4: Harry looks angry and talks.

pooping machine.

Frame 5: Harry looks at Poby and turns red car head.

Figure 1.5.2: ITowotixn oUyxpion petadd tou poviéhou poc(MaskGST-CGL w/ aug. captions) xat tou
CMOTAJ1] oc téooepa napadelyuoto LoTOPLOY.

1.5.6 AvOpwmvry ASiohéynon

T v mepantépe SLEPEUVNON TWV TOLOTXWY ATOTEAECUETWY Yag, dle&dyoue wa épeuva, Bactouévn oe avipmdmivn
a&lohéynom, ue Bdom teio xprthpta Tou éyouv uioVetniel xau ot mponyolueves Souketéc[20, 19, 1], ouyxpivovtag
70 povtého pog pe o CMOTA [1]. Ta tplo xpithpio elvon tar e€hg:

e H Ontixr ITotdtnTo, ToU avopépetol 6To XoTd TOG0 oL edveg elvon ontixd euydptoteg, oe avtideon
ue to va elvar Yoréc xan duovonteg.

e H XpovixA Suvéneia oyetileton ue T0 av oL emdvee eivon cUVETELS HETAE) TOUC, XPATOVTAC EVOL XOLVO
Véua xan oynuatilovrac pio totopia, avtl vo yotdlouy cav mévie Eexmplotés oxnvéc.

o H Ynuacioroyixn Tuvdgeia avopépetor 010 Xatd t6co ol emdveg aviixatonteilouvy Tig avtioTtolyeg
AeCAVTES %Al TOUG YUPUXTNPES TIOU AVOPEQOVTAL OE AUTES, Ue axpifela.

H aglohdynon yivetow pe Bdon 100 wotopleg and to cbvoro enarfdevone tou Pororo-SV. Kdde otopla aloho-
yeltow and dvo Boxpitole yprotes. To amoteréopata tne épeuvoe (Table 1.1) d€uvouv 6T To yoviéro pog
unepéyel pe Bdomn 6hat T xpLThpLa, X&TL ToU Lo TNRIEL XU TO TOCOTIXG YOG ATOTEAECUATA.

29

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Keithplo Ours (%) | CMOTA (%) | Tie(%)
Ontue TlowdtnTa 78% 3% 19%
Xpovuxh) Yuvéneta 66% 8% 26%
Yruactohoyxh Luvdgelo | 64% 9% 27%

Table 1.1: Ta anoteréopota e avdpdmvne allohdynone. Luyxplvoupe to poviéro poc MaskGST-CGy w/
aug. caption (d=2048) (Ours) ye to CMOTA, pe Bdon tpia xpithpta. to Our(%) xou to CMOTA(%)
AVTLOTOLYOVUY GTO TOGOOTH TWV TEPLTTMOEWY TOU TO XAVE YUOoVTEAO eTAEYETOL XaL omd TOUg B0 YPNOTES, EVEK
7o Tie(%) avtiotolyel oTic UTONOLTES TEPLTTMOELS.

1.5.7 Avdivorn Xenowronorolpevwy ITopwy
ITépor xatd tnv Exndudeuon

Xenotponolotye nepinou 36 xou 107 dpec avtiotorya yio va exnardeboouye toug Metaoynuatiotéc e d = 1024
and d = 2048, avtiotouya o pio NVIDIA V100 (16GB). Auté avtiotoiyel og (36 hours) - (16GB) = 576 (GB -
hours) xou (107 hours)- (16GB) = 1712 (GB - hours) ypfionc GPU, avtictouya. o odyxpion, vy to VP-CSV
[5] avagépeton 6TL yenowwonootvtow 4 NVIDIA A100 (40GB) yio 12 dpec. Autd avuotowyel oe (12 hours) -
(4-40 GB) = 1920 (GB - hours) yefione GPU, ywelc vo MBoupe vnddiy bt 1 A100 elvon mo obyypewvn GPU
ond v V100. To CMOTA [1] dev avagépet xpfion tépwv xatd v exnaidevon.

ITopol xatd Tov JUUREPACUO

AeBouévou OTL TEAYUUTOTOCOUE GUUTERAUCUS TOGO Yiol ToL HOVTEAD oG, 660 xou yia to CMOTA, oty (B
GPU, urmopolye vo xdvoupe ulo dixawn obyxpiorn. To yovtéda poc pe d = 1024 xou d = 2048 ypetdlovto
34 hentd xou 94 Aemtd, avtioTolya Yol VO TEAYHATOTOCOLY GUUTEPAoUS Yo Ti¢ 2208 toTopiec Tou cuvohou
enohfdevone. Autd avuotouyel oe 0.92 sec/story xou 2.55 sec/story. T v B epyooio, to CMOTA Zodelel
228 hemtd, mou avtiotoyel ot 6.19 sec/story. Eivaw @ovepd 6t tor povtéda pog elvon onuavTind mo anodotixd
an6 to CMOTA. Auté umopel, o peydhro Baduod vo anodolel 6to oynpa cupnepacpol twv Metaoynuatiotdy,
torou MaskGIT, nou moagdyouv modld ontixd clpfoha avd Bruc, oe avtideon ye TOUC AUTO-TPOPOBOTIXOUS
Metaoynuatiotés, 6mwe 1o CMOTA, nou npoPiénouv ta ontixd cOuBola, éva-éva.

1.6 2vunepdopota xou MeAhovtixeg Katevdivoeig

1.6.1 Xvunepdopato

Ye auth v epyacia diepeuviicaue v xenon Metaoynuatiotdv tonmou MaskGIT, v tnv Onticonoinon Io-
Toplag, yia et Qopd. To anotehéoporta pog, Tou elvor To XHAUTERA TOU €y 0ouv eTlteLyUel, ot BIAPOPES HETPIXES
anoteholy amddelén yio ol NS TPOoEyYYlong pag, 60ov agopd TV SV. ANwote, avadetxviouv 6Tl TETolEG
apyrtextovixée alilel vo diepeuvnioly mepoutépw 0TO TANOLO TORUYWYIXOV EPYUOLOY UTOROYIOTIXAS Gpaong,
YEVIXOTEROL.

Yuyxexpiuéva, dnuovpyfoaue To Paoind yag wovtéro MaskGST, Baoiouévo oto MaskGIT, pe emniéov unyavio-
polg Etépo-Ilpocoyrc, npoxewévou ot dnuiovpynieioeg exodveg oe xdlde otddio tng loToplag vo ennpedlovtol omod
TUAUOTEPES o UEANOVTIXEG ExxOVeS. TlelpopaTioThixope Ye BLAPOPES TPOTOTOINTELS TNG AEYIXNG ORYLITEXTOVIXNC.

Apxetd and outd o TelpdpaTa AméTUY Y Vo Tpoc@épouy BeATIOoEl; ot alyxplor Ue To Boaoixd yovtého. H yeron
tou TH-XXL w¢ xwdixonomtic xewévou mdavoy dev elvar BEltiotn Aoyw Twv e€oupetind e€eldixeupévmy mept-
YROUPWOY XEWEVOU TOU GUVOAOU BEBOPEVLV aC, TwY oTtolwy oL ovouaoieg yapoxthpwy elvar Witepa acuvihoTee.
Trodralopaote 6t 1 npoomddeld pog va exterécouue avénomn evpxivelag otov Kpupd Xdpo Xapaxtnpio iy
anéTuye, SLOTL Ta Stoxpltixd ewxovoolpfoha LUPMAe avdiuone elvar TOAD Aemtouepn yia Tov Metooynuotiot
vo tpofBAéder Bdoel anhodv mpotpomdv xewévou. ‘Ocov agopd tov Keith YuuBoiwv Baciopévo oe Xapaxtripeg
ToU oyedldoaUE, TOTEVOUUE OTL AMETUYE eNEWdN 1 oLV XN Povo e Saviouota XopoxThHEnY dev elval dpxetd
exgppactixd. Téhog, unodalduacte 6Tl 1 TEooTAPELd UAC VO TEAYATOTO\COUUE TNV ANOTAEEY) TOU YMEOL TV
YUEOUXTNPLO TIXWY TV YUPUXTHPWY Amd To YUPOUXTNPLO TIXG TOU QPOVTOU anéTuye, eneldn xatéAnie va elvon TohD
TOAUTAOXO Ylot TOV METAOYNUATIO T VO TO LOVIEAOTIOLAOEL.

30

1.6. Xuvunepdoporto xou Mehhovuxéc Kateudivoelg

And v dAAn mheupd, pepxd omd To mEWRdUTd wag Edwoav eAudopopa anotehéopata. H evowudtwon SV-
oTPWUTWY oTov Metaoynuatiot weekfinoe Oheg Tig PETEIXES, UE TO VoL avTWETWRICEL OAa Ta ExtovocuBoha
xon T xefpeva plog otoplag we plo cuvey | axoloudla, yio o peplda e dnutovpyxrc dladixactac. Aebtepov,
npotelvae plor omAr) TEY VX Yial TNV eNAOENOT HEWEVIXDY BEBOUEVW, aveEdpTnTa and TIC EXOVES, YPTOLLOTOLWY-
tag éva LLM. Auty| 7 18éa Behtiwoe Ta anoTeAEoUAT Hog HELVOVTAS TOV xiVOUVO UTEp-TpocppoY g xat Bonddv-
TOC TO UOVTEAO Vo ETXEVTRWIEl o€ onuoavTinég YAwaowxés évvoles. Téhog, n uédodog Koadodrynone Xapouxtripwy
Tou oyedidoope enédelle ta mo eAmbopdpa anoteléopata. Me to vo dnuioupyel tela Eeywplotd cuvoa logits,
éva Bdoel cuvinxody xelévou, éva e Bdomn to Yetind olvoro Xopaxthpwy xal éva ue Bdom to apvntind clvolo
XopoxXTHRMY XAl GTY) GUVEYELOL VoL ToL GLVOVALEL, xaTapépvel var xododnyel To wovtého tpog TNV LPNAHC ToldTNTaC
onuovpyia yopaxthpwy, BlaTNEOVTIC TALTOYPOVA Xou SAAeC TANEoQOopleg and T AeldvTec.

Yuvdudlovtag ehmidopdpec UeUOBOUC XoU TEOCUPHUOYT| UTERTOQUUETEWY, PTACOHUE OTO XUAVTEPO WIS UOVTENO,
MaskGST-CG+ w/ aug. captions (d=2048). Auté 1o povtédo, vrepPaivel to mponyoluevo povtého Metooyr-
pattot xatd 9,3, 11,8 xaun 12,8 povddec oe oyéon e ta FID, Char-F1 xou Char-Acc avtiotowyo. Ilopd to
yeyovog 6Tl elvan peyalltepo and toug mponyoLuevoue Metaoynuatiotée, elvon mo anodotixd ypeovixd tdéco
oTNY eXTOUBEVOY) OGO KoL GTOV GUUTEQUCUO.

1.6.2 Meihovtixéc Kateuddvoelc

ITiotebouye 6Tl To AMOTEAECUOTE LOC UTOBELXYOOUY LOY VP TNV OVTAYWVIG TIXOTNTA TV MeTaoynuatiotedy TOTou
MaskGIT vy v gpyaocio tng Ontixonoinone Iotopidv. To €pyo pog avolyel To Bpduo Yio TEpULTERL TELROO-
TIOUOUC UE TETOLEG UPYITEXTOVIXES, ELTE UE TNV adENOT TOL YEYEVOUC TWV UOVTENWY Uag, elte ye tny e€epedvnon
MV Suvatev Tpomonoioenwy. Eminkéov, ot apyitextovixéc tou MaskGIT éyouv e€etaotel oyetixd Ayo axdya
%o oToV YWeo e dnuovpyiag Ewévac and Kelyevo (Text-to-Image). Einiloupe 6 to épyo pog unopel va
eviopplvel Ty e€epelvNon TOUC Xou 6€ AUTO TOV ToUE.

Emuniéov, n pédodog pag yia v emduinom YAWCOoMY Teplypapny apéyel éva edxolo ot yeNon mhoicto
Yo TNV EUTAOUTIONS GUVOAWY Bedopévwy mou mepthapfBdvouv xelyevo, cuumepthopuBavouévng, ahid oyt Teplop-
lotxd, e Ontxonoinone Iotopidy xan tne Anwoveyloc Kewévou mpog Exéva. Emniéov, xadoe to Meydia
IMwoowd Movtéha yivovton neplocdtepo dordéowa, 1 uédodog yoc Yo prnopoltoe va enextadel ye tny e€oywym
evahhaxTixedv Aeldvtwy, yenowonowvtag molharmAd LLMs, yio va emitiyel ueyohltepn eTEpOYEVELN WS TPOS TG
TEQLYPAPES HEWEVOL.

'‘Ocov agopd) pédodo Kadodrynone Xapaxtipwy, Yewpolue 6t afilel nepartépn épeuva. Ané tn wla TAevpd,
unopel va doxipaotel oe Slopopetind thalola, yia tny epyacio tne Ontixonoinone Iotopuodv. ‘Evac nidavédg tpdmog
va yiver autd elvan vo evowpatwiel o (ueydha) npo-exnadevpéva povtéha, eite Paotouéva oe Sudyuon eite o
Mertooynuatiotéc. Auté Yo nepihopBdvel Ty npooten Jetinol xou apyntxol Stoviouatog yio xdde yopoxthpa
OTO UOVTENO X0l TNV EXTAUBEVCY| TOU UE TO Oy AU eXTUUBEUONC Hag, OOV Ol GUVIAXES XELWEVOU amoEE(MTOVTAL
yior puor Yepldo twv detypdtwy exnaideuong. Aedouévou 6T 0 aptiudg TwV ETTALOV TUPUUETEWY ElvoL Uixpog,
oawtd Yo pmopoloe va AettoupYroel pe oyetxd Alyn emniéov exnaidevon (fine-tuning). Yrodétoupe 6T o
SLVBVLAOPOEC HANDTEPNC HATAVONONG TWV YAWOOIXOY TEptypapdy (prompts), ANoyw uoaxpdc npoexnaidevong, e
TNV anotereouaTXy hoc wédodo xadodrynong yopoxthpwy Yo unopolce Vo TORdYeL EVIUTWGLOXY ATOTENECUOTO
Yo TV gpyooia.

Téhog, pla dhhn mdavr epeuvnixy mopeio Yo unopoloe va eivon 1 yevixeuon tng uevodouv Kadodnynong Xopax-
Thewv ot dhAec epyaoieg. Ewldxdtepa, omoladnrote yevvnuxy epyocic 6ToU EVOLUQEPOUICTE PNTE Yiol TNV
dnurovpyia evée ouyxexpévou cuvéhou évvolwy (Xapoxthpes oty mepintworn e SV) Yo unopoloe evde-
Youévwe va emwgekniel and tny viodétnon wog Tétotag uetddou.

31

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

32

Chapter 2

Introduction

Over the past decade, the advancement in hardware and software engineering, the accumulation of vast
amounts of data as well as the rigorous research in deep learning have snowballed into a unprecedented
growth and adoption of Al systems. Especially in 2023, it has been made clear that this phenomenon is justly
considered to be the next great technological revolution. The release of - the now famous - ChatGPT in late
2022 and its blistering rise to fame, brought Al from the scientific domain out into the public spotlight. It
became part of our everyday lives, a pop-culture phenomenon and a subject of political discourse. ChatGPT,
among other LLMs (Large Language Models) (e.g. [13, 37]) has shown exceptional results in terms of language
understanding and generation, sometimes even being indistinguishable from humans in such tasks.

2.1 Text-to-Image generation

Apart from language, images are one of the most prominent areas of human experience that serve as a
means of communication and expression. In this context, image understanding, as well as generation are
equally important challenges for Artificial Intelligence to tackle, in order to come closer to what constitutes
Intelligence, for human beings. In terms of Image Generation, there has been notable progress in the past
years starting with GANs that where introduced in 2014 [11] and dominated the image-generation scene for
several years [45, 46]. More recently, transformers [26, 3, 4], as well as diffusion models [27, 30, 28] have
revolutionalized image generation, by improving the visual quality and the range of visual themes that can
be generated.

2.2 Story Visualization

In this thesis, we focus on the task of Story Visualization (SV). The task consists of generating a sequence of
images, each one of which corresponds to a sentence in a given sequence of sentences. The sentences form a
coherent textual narrative. It was introduced in 2019 by the authors of [18], who also proposed StoryGAN,
the first model to tackle the task.

In a sense, SV can be seen as an extension of Text-to-Image generation, by addition of a temporal aspect
in the task. Alternatively, one could think of it as a stepping stone that will eventually lead to long-range
Text-to-Video generation, since SV is concerned with small sequences of images (typically 4-5), in contrast
to movies that include thousands of frames.

There are two main challenges in SV. Firstly, the sequence of generated images must include the objects and
actions referenced in the corresponding sentences and depict them with high quality. Secondly, there is the
story aspect of the task; objects that appear in more than one picture must hold a consistent appearance, so
that they can be recognised as the same object across the sequence. The most prominent such objects are
the actors (main characters) in the stories.

33

Chapter 2. Introduction

2.3

Contribution

Our main contribution is the adoption of a MaskGIT [3] model for the task of SV, which we enhance with
Cross-Attention sub-layers. We are the first to use this architecture for this specific task, which is arguably
under-explored compared to Diffusers, even in the task of Text-to-Image generation.

Using this modified MaskGIT as our core model, we also experiment with modifications on various components
of the initial architecture, in search of reasearch directions that can improve the quality of the generated
stories. Through our experiments, we arrive at our top-performing architecture, MaskGST-CG+ w/ aug
captions, that adopts an LLM-driven caption augmentation technique and a Character Guidance mechanism,
that we propose for the first time. This model achieves SOTA results over several metrics, on the most
prominent SV Dataset, Pororo-SV.

The outline of this thesis is as follows:

In Chapter 3 we discuss previous works for the task of Story Visualization, from the introduction of
the task until recently.

In Chapter 4 we describe the original Transformer framework, since the Transformer is a core component
in our approach.

Subsequently, Chapter 5 is concerned with the original VQ-VAE architecture. The VQ-VAE is the
second main component in our approach.

Chapter 6 is dedicated to some notable works in Text-to-Image generation that pair Transformers with
VQ-VAEgs, including [3] and [4], from which we are greatly influenced.

Chapter 7 provides a brief overview of a caption augmentation technique that is closely related to the
one we use.

In Chapter 8 we provide a detailed review of our approach for the task of Story Visuazation.
In Chapter 9 we present the experiments that we conducted and comment on the results.

Finally, in Chapter 10 we review our results as a whole and discuss possible future directions, based on
them.

34

Chapter 3

Previous Work on Story Visualization

In this Chapter we discuss Previous Works on Story Visualization. Since the introduction of the task in
2019, several papers have been published, proposing various ideas and achitectures (GANs, Transformers
and Diffusion models) on how to improve the quality and consistency of the generated sequences. Bellow we
will elaborate on some notable approaches.

3.1 StoryGAN

StoryGAN was the first model to be proposed for the task of Story Visualization. An overview of the model
can be seen Figure 3.1.1. In terms of notation, let us denote S = [s1, s9, ..., s7] the sequence of sentences
that form a story, X = [z1, 22, ..., 27| the corresponding ground-truth images and X = [41, @a, ..., 7] the
corresponding generated images.

As the name implies, StoryGAN is implemented as a GAN. The main components of the model are:

e A Story Encoder

A two-layer Recurrent Neural Network (RNN) based Context Encoder

An Image Generator

e An Image Discriminator

A Story Discriminator

3.1.1 Story Encoder

The Story Encoder is represented by the dashed pink box in Figure 3.1.1. It learns a mapping from Story S to
a low dimensional embedding vector hg, which serves as the initial hidden state of the RNN Context Encoder.
The Story Encoder E(.) samples the vector hg from a normal distribution hg ~ E(S) = N (u(S), 2(S)). Both
p(.) and (.) are implemented as Multi-Layer Perceptrons. (S) = diag(c?(S)) is restricted to a diagonal
matrix. The Story Encoding can then be written as ho = u(S) + 02(5)2 © eg, where es ~ N(0,1).

35

Chapter 3. Previous Work on Story Visualization

Image Discriminator Story Discriminator
<r <

Generated Sequence of
Images @ @ @ @
> ir r <
Image ‘| Image Image ']
Generator Generator Generator wes Generator
ﬁ iy ﬁ o

A2

C;-;'Q. _______ . ; h ﬁoi & ﬁ‘aT
{2 hgt Y il 3 N . o i s
- UE; —5! Text2Gist}————— Text2Gist} AText2Gistt—> ewe —— ¥ Text2Gist]
()l .';C:I __-i_i._; !____*E__; L I__, | J— _i__‘

s 1 r 3 4

[_‘_'H gz gr

GRU 15! Gru ! GRU GRU

E;/ > GRU L) L

KL (W (pe05), dingla (S1))1| V(0. 11) 5 & £y 53 & £g sz & ey e sy & Ep

Figure 3.1.1: An overview of the architecture of StoryGAN [18]

3.1.2 RNN Context Encoder

The Context Encoder is depicted in red dashed box in Figure 3.1.1. The word context here refers to any
information in the story that is useful for the image that is currently generated. The RNN Context Encoder
consists of two layers. The lower layer used standard GRU cells. The second layer employs a variant of the
standard GRU, named Text2Gist, that was proposed in the paper.

At time step t, the GRU layer takes in the sentence s; concatenated with isometric Gaussian noise €;, and
outputs the vector 4;. Then, the Text2Gist takes in é; and combines it with the story context h; (initialized
by Story Encoder) to generate o; that will serve as input to the image generator. h; is updated by the
Text2Gist cell to reflect the change of potential context information. In contrast to standard GRU cells that
output a vector, Text2Gist transforms 4; into the multi-channel filter o; of size Cyyy X 1 X 1 X len(hy), where
Cout is the number of channels. This is suitable to be used as input to the Convolutional Image Generator.

3.1.3 Image Generator

The Image Generator is a fully Convolutional Network, of no particular interest. It employs a cascade of
convolutional blocks, each of them followed by an upsampling block, in order to transform the Cy,¢ x 1 x 1 X
len(hy)-sized input into a 3 x 64 x 64 image.

3.1.4 Image Discriminator

The Image Discriminator is responsible for local consistency. It measures whether the generated image Z;
matches the corresponding sentence s;. It does so by learning to discriminate between fake triplets {s, ho, &4}
and real triplets {s¢, ho, x:}. The image Discriminator is implemented as a Convolutional Neural Network

3.1.5 Story Discriminator

The Story Discriminator is responsible for the global consistency of the generated sequence of images. Its
architecture can be seen in Figure 3.1.2. The left part is an image encoder that encodes images (either real
or generated) into a sequence of vectors, that are concatenated into a single big vector (depicted in blue).
Similarly, the right part is a text encoder that maps the sentences is story S into a sequence of vectors that
are then concatenated into the red vector. The red and the blue vector are then multiplied element-wise
and the result is used to obtain a score between 0 and 1 that represents the text-image compatibility. The
discriminator is, of course trained to distinguish between real and fake image-text sequences.

36

3.2. CP-CSV

Text <ZI “Pororo and Crong
E> <::I Encoder fishing together.”

S
S

E> ® <:I Tox <::| Parf.lra hqs a fish
on his fishing rod.”

<
<

E> <::I e <:I Crong is fonokmg at
Encoder the bucket.

<
Real / Fake?

S

Figure 3.1.2: The Story Discriminator [18]

3.2 CP-CSV

An overview of the architecture of CP-CSV (Character Preserving Coherent Story Visualization) can be seen
in Figure 3.2.1. Heavily influenced by storyGAN, CP-CSV adopts the exact same architecture for the Story
Encoder, that implements a Normal Distribution by learning its Mean and Variance as two seperate Neural
Networks, contitioned on the Story input. The model also adopts StoryGAN’s Text Encoder, based on a
two-level RNN, utilizing the tailor-made Text2Gist cells in the second layer.

hs Partial connection
y 4o 2
. EStoLy N © s 2 3 4 frofr frofr
ncoder
—I ' z Figure-Ground
— Z — - e -~
. 5] Discriminator
S1 Io lm
_— — Qo1
Pororo stands beside l
Crong on the land Sy o P ,T conv conv
covered by snow. l 2
Story
S3 -
—_ —»I ﬂs Discriminator

: E —‘ 7 Image
Sr B l _,IoT | -' _’@_’ ’ ‘ '_'Z_'wl Discriminator ‘_g

Context X1 e X7
Encoder

Figure 3.2.1: An overview of the architecture of CP-CSV [36]

The most notable idea introduced in CP-CSV is the utilization of Foreground-Background segmentation for
Story Visualization. Specifically, the authors of the paper argue that a logical path to image quality improve-
ment is through the improvement of the appearance of specific characters that appear in the images, and their
actions. These characters usually appear on the foreground of most images. Based on this observation, they
add an auxiliary foreground-segmentation module, to the network, which learns to predict the foreground
(character region) of the image vs its background.

The foreground module is implemented as an extra Image Generator, additional to the one used in StoryGAN.
The conventional Image Generator that predicts the images of the story can be seen in the lower half of the
green region in Figure 3.2.1, while the image foreground generator can be seen in the upper-half. Both
Generators are conditioned on the outputs of the RNN Text-Encoder, exactly as in StoryGAN.

In order to utilize the Foreground-Background information of the auxiliary module, during the image gener-
ation process of the primary Generator, CP-CSV exploits Partial Connections between the two Generators
(they can be seen inside the green box in Figure 3.2.1, in the space between the Foreground Generator and

37

Chapter 3. Previous Work on Story Visualization

the Image Generator). Specifically, features from the Foreground Segmentation model are in the k —th layer

denoted as l,J: are first projected to the space of image features (denoted as [f) in the corresponding layer
through a Convolution Fy. Then they are multiplied with the image features to aid with image generation:

pl. = Fy(l) (3.2.1)

=1 wpl 417 (3.2.2)

Naturally, since the whole model operates withing a GAN framework, an extra Foreground-Background
Discriminator is needed to help the corresponding generator learn to predict Foreground-Background maps.
Similarly, to the Image Discriminator in StoryGAN, this module learns to distinguish between real and fake
segmentation maps based on the sentence and story input.

The Image Discriminator and Story Discriminator are held the same as in StoryGAN.

38

3.3. DUCO-StoryGAN

3.3 DUCO-StoryGAN

DUCO-StoryGAN (Dual Learning, Copy-Transform StoryGAN) [20], adopts StoryGAN as its backbone,
leaving several components untouched. Specifically, it adopts the Story Encoder, the Image Discriminator
and the Story Discriminator. The full arhitecture of the model can be seen in Figure 3.3.1. The main
contributions are the following:

e The introduction of Dual Learning through video redescription for better alignment of the generated
images with the input story.

e The introduction of a Copy-Transform mechanism for improved sequential consistency between images.

e Utilization of a Transformer model for more expressive text encoding.

Captions

U 2
1 Image Discriminantor 1

| |

: 2D Convolution | el
Prediction

| }

{ - [Fon comectd]

]

.

Captions

Fully Connected :
_________ ————z---- a

Figure 3.3.1: An overview of the architecture of DUCO-StoryGAN [20]

3.3.1 Mart Context Encoder

The authors of the paper design a Recurrent Context Encoder, in order to maintain consistent background
imagery and character appearances throughout the stories. The central module in the Context Encoder is
the Memory Augmented Recurrent Transformer (MART) [15]. The memory is initiliazed with the vector hg
from the Story Encoder. MART takes in word embeddings Wy = [wg1, wka, ..., wir], corresponding to the
image caption at each timestep k. It outputs contextualized embeddings, that are then pooled into a single
weighted representation c; using an attention mechanism. This procedure is supposed to let the encoder
capture interactions between words in an expressive way. The output ¢ is then passed into a GRU layer and
transformed into a filter to be passed into the Image Generator.

3.3.2 Dual learning via Video Redescription

Dual Learning adds an extra learning signal, based on the following observation, about the duality of out
task: if the story captions S can be used to produce the story images X, then X can be used to produce
S. The forward task is Story Visualization, while the reverse one can be referred to as Video Rediscription.
The authors of the paper leverage a Video Captioning Network that they train on ground truth data and
then freeze its weights. This is then used when training DUCO; the generated images are fed into the Video
Captioning Network to produce captions. The produced captions are then compared to the ground truth
ones to provide extra feedback for the image generation process.

3.3.3 Sequentially Consistent Story Visualization: Copy-Transform

The authors of the paper point out that several components of images such as background and character
appearances are largely preserved between frames of the same story. To take advantage of this observation,
a Copy-Transform mechanism is introduced. The Copy-Transform module performs word-image attention
between text features of the current timestep and image-features of the previous timestep. The generated
attention scores are used to produce a weighted version of image features from the previous timestep, to

39

Chapter 3. Previous Work on Story Visualization

concatenate with the current image features. The combined image features are used by the Image Generator
to produce a context-aware image at every timestep.

40

3.4. VLC-StoryGAN

3.4 VLC-StoryGAN

As its name implies, VLC-StoryGAN (Visuo-spatial, Linguistic and Commonsense StoryGAN) [19] is yet
another GAN developed for Story Visualization based on the Original StoryGAN architecture. The new
ideas proposed in the VLC-StoryGAN paper can be summarized as follows:

e Using constituency parse trees and commonsense knowledge to improve language encoding

e Leveraging extra additional semantic and positional feedback through a pretrained dense captioning
model

e Aiding the model to recognise subtle intra-story changes by training with intra-story constrastive loss.

An overview of the model’s architecture can be seen in Figure 3.4.1. Subsequently we will analyze its
components, that differ from its StoryGAN-based predecessors.

L1 Loss for Bounding
Box Regression

Commonsense |y ! Norm & Add

Graph

1

1

1

1

Upsampling :
1

1

1

1

o .

g ¥ |
1

Graph Attention
I

Cross-Entropy Loss
for Captions

.~ Memory-Augmented Recurrent Tree Transformer * “,V Intra-Story Contrastive Loss

L / .

! Captions ! Pororo says hi and smiles : [between Word and Region

| S Iy IO I ['

: '&) * ¥) Sub-ree masking : .“" : Context representations m;

I Layer0 e Nk - - »restricts attention |/ |

| I l A7 agdninduces :-"‘ : Image sub-regions ;%

! M, - hier:rca;‘"::l‘prior pot from all frames & i

: Layer 1 | ----- e M i p h : I

! ‘ l . [Contrastive Loss |—— . Suw(b, Syl o). .

: Layer 2 Lo ‘."‘ : -~

! =y § : / e e L L L L L L L L Do
1 Memory Units """ 'W Pooling / ! - >
! I/ / Dual Learning via Dense Captioning *
: Graph E" : _.| Alignment & Refinement L,/ :

. ; i L Region Proposal RNN Box Describer

. Encoder : ‘ Network

! :

1 '

1 '

1

1

1

1

1

\

\
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 3.4.1: An overview of the architecture of VLC-StoryGAN [19]

S

OO,
@ () o)
@ (v (e2)

_
Pororo says hi and smiles !

Cumulative Weight
Averaged Node

Embedding for says
VP VP VBZ

S ninin!
-

Figure 3.4.2: Example of a constituency parse tree [19]

3.4.1 Memory-Augmented Recurrent Tree Transformer

For Text Encoding, a novel module is proposed by the authors of the paper, named Memory-Augmented
recurrent Tree Transformer (MARTT). Based on the original MART, it used constituency parse trees to
better take into account the hierarchical structure of sentences. Constituency Parse trees are grammatical

41

Chapter 3. Previous Work on Story Visualization

structures that analyze a sentence in a tree-like manner consisting of different types of nodes. Specifically, a
Sentence S is recursively broken into Noun Phrases (N P) and Verb Phrases (V' P) until each node represents
a single word. An example of such a Tree can be seen in Figure 3.4.2.

When encoding a sentence S of length n (an image caption), it is first passed through a parser to produce its
constituency parse tree G(S). T(S) denotes the ordered sequence of n terminal nodes (or leaves) of the tree
and N(S) denotes the set of non-terminal nodes (or simply nodes), each of which has a phrase label (e.g.,
NP, VP) and spans over a sequence of terminal nodes. The embeddings of leaf nodes are the concatenation of
a word embedding and the corresponding node embedding. Node embeddings are computed as the upward
cumulative average over the nodes that the respective non-terminal leaf token is a child of. For example,
as we can see in Figure 3.4.2, the Node embedding for says is the average of all non-terminal nodes in the
upward path from says to the root. None Representations are learned during training.

The resulting leaf embeddings for a sentence are used as input for the Transformer (MARTT). Inside the
Transformer, in the self-attention layers, sub-tree masking is employed instead of standard causal masking.
Specifically, for each word-query, the attention mechanism only has access to the other members of the
sub tree (of the sentences constituency parse tree) at that layer. For example, in Figure 3.4.1, in the first
Transformer layer, every token only attends to itself. In the second layer, says and hi can attend to each
other, since they belong to the same sub-tree at that level and so forth.

This complicated bottom-up approach in the Text Encoding process is supposed to let the model better
understand and encode the hierachical structure of language and the relationships between words.

3.4.2 Commonsense Knowledge

The authors of the paper point out that the image captions in popular Story Visualization datasets frequently
omit information that can be considered to be redundant and commonsense for humans. For example, in a
scene where the characters are standing outside on a sunny day, the blue sky, the bright sun and the type
of lighting is not necessarily described in the caption. However, such information should not be considered
redundant for a neural network. In order to enrich the descriptions with such knowledge, the researchers
extract commonsense concepts relevant to each frame using a entity-relationship method [2] on ConceptNet.
The commonsense knowledge paths are combined into a subgraph and encoded using a Graph Transformer.
Finally, the resulting encodings are combined with the outputs of MARTT, as we can see in the leftmost
dashed box in Figure 3.4.1.

Dual Learning with Dense Captioning

A pretrained Network is used as a reference for dual learning, similarly to what was done in DUCO-StoryGAN.
However, here, a dense captioning model is used. The model takes in images and outputs multiple bounding
boxes and corresponding descriptions of what is taking place inside each box. By comparing the outputs for
ground-truth and generated images, an extra visuo-spatial (bounding boxes) and semantic (bbox descriptions)
feedback is provided to the model.

3.4.3 Contrastive Loss

At first, a pairwise cosine similarity between all image-subregions and word tokens at the current timesteps
is computed and based on them, a word-context vector a; is computed for the j** subregion of the image.
Then, an alignment score between all subregions hy, if image x and all words in the caption s is computed as
follows: Syord(Tk, k) = log(g:é\[:1 exp(cos(hjk, ajx))), where N is the number of image subregions. Finally,
the intra-story contrastive loss is given by the following formula:

Swor 3
‘Cword = —log Texp(d(xk Sk))

(3.4.1)
> m—1€TP(Sword(Tm, Tk))

where T is the number of images in the story. This loss term attempts to force the model to take into account
subtle differences between frames in the same story, by penalizing similarity between captions and generated
images from different timesteps.

42

3.5. VP-CSV

3.5 VP-CSV

VP-CSV (Visual Planning for Character-Centric Story Visualization) [5] is the first work on Story Visual-
ization to depart from the GAN framework. VP-CSV is based on text-to-image framework that has shown
promising results, consisting of a VQ-VAE that learns a mapping to a discrete latent space for images and
a Language Transformer that learns to predict the image latents conditioning on text inputs. The original
text-to-image technique is analyzed in depth in the later sections of this thesis. The authors of the paper
adapt the method to the task of Story Visualization by breaking the Language Transformer stage into two
separate stages. The first one uses a Transformer to predict visual tokens that correspond to the characters
in the stories, thus focusing on Character Generation. The final stage employs a second Transformers that
completes the latent representations from the previous stage with missing background tokens. The final
tokens can then be decoded into an image, using the VQ-VAE’s decoder.

3.5.1 VQ-VAE

The VQ-VAE [39] can be viewed as an Encoder-Decoder architecture. The Encoder and the Decoder, are
both Convolutional Neural Networks (CNNs). In between the two networks a Vector Quantization (VQ)
layer is introduced.

The Encoder learns to map an N x N X 3 image
into a latent representation € % X % x D, where
f is the downsampling factor and D is the number
of channels. The VQ layer has an vector library
of D-dimensional embeddings e € RX*P where K
is the size of the library (number of embeddings).
When passed through the VQ layer, the output of
W the Encoder is Quantized in the following manner:
every one of the (% x &) D-dimensional vectors in
the latent representation is substituted by its clos-
est vector in the embedding library according to the
euclidean distance. Finally, the Decoder learns to

map the (% X % x D)-sized quantized latent repre-

Embedding
Space

Encoder Decoder

Figure 3.5.1: Overview of the VQ-VAE architecture
[39]

sentation that is outputed by the VQ layer back into RY*N*3 je. back into image space.

A much more detailed description of VQ-VAE’s architecture can be found in Chapter 5.

(

(a) character region extraction

multi-label
classification

Poby
Crong
Pororo

. P Grad-cam
Eddy

visual
tokenizer

(b) stage 1: character token planning

(c) stage 2: visual token completion

Input story

N

characters

text to visual token

Input story op

token-level
character

()

<

alignment

text to visual token

J

Figure 3.5.2: Overview of the architecture of VP-CSV [5]

43

Chapter 3. Previous Work on Story Visualization

3.5.2 Visual Planning (VP)

As we have already hinted, the Visual Planning stage attempts to generate a character visual plan, to
determine where the main characters should be placed in each image, before filling in background information.
Since there are no annotations for character regions in the task’s datasets, the researchers use an image
segmentation technique to extract these regions.

Character Region Extraction

At first, a multilabel classifier CNN is trained to recognize the presence of the 9 main characters in images.
GradCAM [31] is then used to extract heatmaps that highlight image regions that are highly attended by
the classifier when deciding whether a character is present in the image. For each image, the heatmaps for
all characters that are present in the caption are merged into one. If an image region is not activated in any
of the heatmaps, it is considered to be part of the background and therefore masked out. A visual example
of this process can be seen on the upper half of Figure 3.5.2.

Character Token Planning (First Stage)

A GPT-2 model is trained to produce the Character Visual Tokens. Specifically, it conditions on the input
story captions S = {s1, $2, ..., S, } and learns to predict the Character Tokens R = {rq,r2,...,7,}, that have
been computed offline for the training set, as described in the previous section (n is the number of frames
per story). The loss function under which the Transformer is trained is:

Ly = —logp(r|s,0) (3.5.1)
where 6 represents the Transformer’s parameters.

Visual Token Completion (Second Stage)

In the second stage, another GPT-2 model is trained to predict all tokens conditioning both the input stories
and the Character Tokens produced in the previous stage. The loss function for this stage can be expressed
as follows:

Ly = —logp(z|s,r,0) (3.5.2)

where z represents the complete latent representation (all visual tokens). The Transformer model in this
stage is initialized with the weights of the previous stage, to reinforce attention to the character tokens.

3.5.3 Token Level Character Alignment

The authors of the paper propose an additional way to improve character generation. At first they compute
the visual token distribution for each character (The distribution of latent visual tokens when encoding the
character). Then, they extract the 10 most frequent tokens t. for each character. The utilization of these
tokens is then reinforced, by using an extra semantic loss term that biases the model towards adopting them
when generating the corresponding character.

44

3.6. CMOTA

3.6 CMOTA

CMOTA (Context Memory and Ounline Text Augmentation) [1] builds on the text-to-image VQ-
VAE/Transformer architecture, like VP-CSV. In short, the paper makes the following contributions:

e Using a special memory module to encode and propagate context between different frames in the same
story

e Training the Transformer model to predict either Image from Text (i2t) or Text from Image (t2i). This
way pseudo-texts can be generated as extra descriptions for images, to enrich the training dataset with
additional captions

3.6.1 Base Model

The Transformer iteratively generates images and
texts in both ways. The image tokens are predicted

‘& 3 sequentially from input text. In the "reverse" man-
: ‘%% : T —ka ner, the text tokens are sequentially predicted from

=5

Memory
Transformer

the input image tokens. A positional embedding is
Pl : Transformet used, to indicate absolute position in the sequence.
: | Additionally, a segment embedding is introduced to
distinguish between source and target modality. De-

Segment Segment 3 — —
‘",m“g"' "f;'i’e‘“"g+ noting t = {t1,t9, ..., 1, } and z = {21, 29, ..., 2, }, the

text and image tokens respectively, the loss function

Figure 3.6.1: CMOTA’s Bidirectional Transformer [1] L; can be written as follows:

n
L=y —Inp;(zxltr, oo tm, 21, ., 25-1)
k=1

n (3.6.1)
Ljior = Z —Inp; (te|z1, ..o Zns t1, ooy tho1)

=1
L; = Lj12: +MLj ot

3.6.2 Context Memory

Memory update

Memory - M, Memory Attn. mask
Transformer 4~ -

v
v

3

.
Si: Cross-attention feature “
H,: Hidden-state feature calculatdd
from previous transformer layex
\

My Memory at time ¢ \
A

=l
w
=
5]
E
5]
E

T

Cell: filter mask value (0: whte
1: blue) for each modality

Figure 3.6.2: CMOTA’s memory module [1]

Figure 3.6.2 shows how the memory state at timestep ¢ (M;) is obtained. At first, cross-attention is computed
between the current hidden state, H! € R7<X¢ and the previous memory state M; ; € RT=*4, (T.: number
of Tokens, Ths: number of memory states, d: hidden state dimension). Specifically, the calculation made is:
St = attn(M;_1, Hy, H,t), where attn(.) stands for the standard Scaled Dot-Product attention. As Figure
3.6.2 shows, a special attention mask is used that only allows attention over the text tokens and prohibits
attention over image tokens. This choice is made to disallow strong constraint that could be caused by image
token attention.

45

Chapter 3. Previous Work on Story Visualization

(a) Conventional memory connection (Daietal., ACL19/Leietal., ACL20)

Layer #
Memory Memaory Memaory Memaory Memory
Last |Transformer Transformer| Transformer| [Transformer Transformer|
Memory Memory} {Memory} Memory} {Memoryl
[} Ly £ L -
H : : : :
H : H H .
a L $.
Memaory Memory Memary Memaory Memaory
=2 |Transformer Transformer] Transformer Transformer Transformer
Nemory| Memory} {Memory} [Memary} {Memary
-
Memory Memaory Memory Memaory Memaory
—1 |Transformer Transformen Transformer] Transformer| Transformer|
] I 1 |Mem0 1 I 1 I
Memaory Memory 1 ¥l Memory Memol

Sentence #1 Sentence #2 Sentence #3 Sentence #4 Sentence #5

(b) Proposed memory connection

Layer #
Memory Memory - Memory Memory Memary
Transformer] JV lr1 Transformer| J} 1,2 Transforme ~_ |Transformer Transformer
Last ' Y
Memory| M, Memory
I‘I tl
L + , 3 +
. a) A H
- Mem-less Mem-less Mem-less Mem-less Mem-less
- Transforme Transformer Transformer Transformer Transforme
— — A R — —
=1 Mem-less Mem-less Mem-less Mem-less Mem-less
Transformel Transformer| Transformer Transformer] Transformer]

Sentence #1 Sentence#2 Sentence #3 Sentence #4 Sentence #5

Figure 3.6.3: Comparison between the traditional memory connection scheme and CMOTA’s [1]

Figure 3.6.3 (a) shows the traditional memory connection scheme in Transformer models, where there are
memory connections in all Transformer layers and only from each timestep to the immediately next one.
The researchers behind CMOTA opt for an alternative scheme, where memory is used only in the final
Transformer layer. Additionally, the memory module in each timestep has access to all previous memory
states, instead of only accessing the immediately previous one (3.6.3 (b)). In addition, the researchers agrue
that not all historic information matters equally and therefore adjust the computations to attentively weigh
past information as follows:

My, 4—1y = Attn(M_1y, Mp:—2)), Mpase—2)))
M1y = [My—1; My.o—1)], (3 < t < 5) (3.6.2)
Htl = Attn(H1£7 [Hév M(t—l)]: [Hév M(t—l)])

M4y is the memory at time (t-1) and [1:(t-2)] refers to the concatenation from time 1 to (t-2). At t=2 M
is used instead of M, since the latter cannot be computed.

3.6.3 Online Text Augmentation

The idea behind text augmentation is to address language variations in captions and to bridge this gap during
inference. The multi-modal Transformer that works in two directions (text-to-image and image-to-text) offers
a natural way to integrate text augmentation in the training process. Specifically, the pseudo-texts that can
be generated using the image-to-text direction of the Transformer are adopted as supplementary descriptions
for the images. Then, they can be used as input to train the Transformer in the text-to-image direction. In
early epochs, less meaningful sentences are generated, but with the progress of training much better-aligned

46

3.6. CMOTA

descriptions are provided by the model. To address this, a pseudo-text is tested online, during training to
check if it contains a certain percentage of character name references compared to the ground-truth. If it
does, it can be used as a caption during training. When using pseudo-texts, the loss function is adjusted as
follows:

n
Ej7pt2i = Z _lnpj(zklfla ceey fma By eeny Zk?*l)
k=1
L= L2 + MLjsoe + XLl peoi

(3.6.3)

where L; ,42; represents the additional loss with the augmented pseudo-texts and t represents a pseudo-text.

47

Chapter 3. Previous Work on Story Visualization

3.7 AR-LDM

AR-LDM (Auto-Regressive Latent Diffusion Model) [22] is-to our knowledge-the first work to use a diffusion
model for Story Visualization. Specifically, it enriches a text-to-image diffusion model, with a history-aware
module, that helps maintain story context.

3.7.1 Diffusion Models

For the shake of completeness, we deem it necessary to make a brief reference on how Diffusion works, before
moving on. Diffusion Models [34] define a Stochastic Process (Markov Chain) ¢ that gradually adds Gaussian
Noise to a sample of real data zy ~ ¢(z) in T steps. The data, we are sampling (z) could be images. However,
in the case of Latent Diffusion, z denotes a latent representation of an image obtained from a VAE (VAEs
are extensively covered in Chapter 5). The forward process at each step can be defined as follows:

q(zt)z-1) = N (25 v/ 1 = Brzi—1, Bid)

T 3.7.1
q(z1:7120) = [[a(zel2-1) BTy

t=1

where 8; € (0,1) is the step size.

Diffusion Models (usually UNets [29]) are trained to learn a step-by-step reversion of the forward process
described above. This way they can derive real world Data (e.g. images) from noise. We define the following:

o =1-0
¢

3.7.2

= H (677 ()

i=1
Then the denoising process p(.) can be parameterized as follows:
po(zi—1l2t) = N(zt—1; o (21, 1), Lo (21, 1))

(3.7.3)

where pg(z¢,t) €o(zt,1))

_ 1 (Zt o ﬂt
\/ Ot V1— a;
Specifically, the UNet is trained to learn ey.

3.7.2 The architecture of AR-LDM

An overview of the model’s architecture can be seen in Figure 3.7.1. The yellow boxes represent the Diffusion
Model. The green and purple boxes (BLIP and CLIP models) form the history conditioning model. Finally,
the blue boxes marked with £ and D represent the Encoder and the Decoder of the VQ-VAE (see Chapter
5) that allows the model to work in a latent space, instead of the pixel space.

48

3.7. AR-LDM

—

Frame #2
Generated Image

t
[Diﬁuswo]n Model]

D Time embedding

! \ I Position embedding
CLIP BLIP
t
Frame #2 Frame #1 Frame £1
Caption Caption Image
Cross
CLIP Text Model BLIP Text Model yr BLIP Visual Model
Frame #3
Generated Image
t
[Diffusion Model J
|
I l CLIP Text Embedding BLIP Text Embedding BLIP Image Embedding
(CLIP I BLIP I BLIP

1
) o | 1 | 2 | 3 | 0 | 1 | 2 | 3 |
t 1 T t
Frame#3 Frame#1 Frame#1 Frame #2 Wilma looks at Fred Fred is eating steak 4
Caption Caption Image Caption

(a) Auto-regression process. (b) Model Archi[ec[ure.

Figure 3.7.1: Overview of AR-LDM’s architecture [22]

Auto-Regressive Latent Diffusion Model

A standard diffusion approach for text-to-image would condition the diffusion process on a single caption
to generate the image. AR-LDM departs from this approach by conditioning the generation of a frame on
all previous captions and all previously generated frames, in a auto-regressive manner. This is supposed to
help generate a more coherent storyboard or images. For a story of length L we denote C = [cy,...,cL],
X = [z1,...,2r] and X = [Z1, ..., 2] the captions, ground-truth images and generated images. The model,
then estimates the posterior probability as follows:

~

Par(X]C) :H (zjl2<;,0)

P(xj|to(2<j, c<j)) (3.7.4)

|
.Eh

<
Il
—

po (=5 o (D5, <))

Il
-

1

<.
Il

where pg is the reverse diffusion process, described in the previous section and 7y is the history-aware condi-
tioning network.

Generative Network

As we have already mentioned, the generative model performs the forward and backward diffusion processes
in a latent space instead of the pixel space, following [28]. This is done for the sake of efficiency, since the
latent space is more compressed. In order to work in the latent space, an Autoencoder, consisting of an
Encoder € and a Decoder D) is used. The Autoencoder is trained to reach a point where D(€(x)) ~ x holds,
for an image . Diffusion works with representations z = £(x).

History-Aware Conditioning Network

The Conditioning Network encodes historical information from captions and previously generated frames into
a multimodal condition ¢; = 79(Z<;, c<;). Based on this, P(x;|Z«;,C) in Equation 3.7.4 can be rewritten as
Do (z([)]]|¢j). The Conditioning Network leverages CLIP [23] and BLIP [17]. CLIP is charge of encoding the
current caption in a unimodal way. On the other hand, BLIP uses cross-attention between text and vision
modalities to integrate text and visual features from previously generated frames and the corresponding
captions. The multimodal condition can be written as follows:

49

Chapter 3. Previous Work on Story Visualization

¢; = CLIP(c;)
M<j = [BLIP(c1,21), ..., BLIP(c;_1,%; 1)] (3.7.5)

¢j = [¢j + P + M+ mTe]
where m; denotes multimodal encoded features from previous captions and frames. ¢'¥?¢ and m'¥P¢ are
text and multimodal type embeddings, respectively. m‘™¢ is the time embedding.

Experimental Settings

It is reported in the paper that the diffusion model is initialized with the weights of stable diffusion [28], a
model that has been trained on the LAION-5B dataset. AR-LDM is reportedly trained for 50 epochs on 8
NVIDIA A100 GPUs (80 GB each) for 2 days.

3.8 ACM-VSG

ACM-VSGJ10] is a diffusion-based approach similar to AR-LDM. It leverages pre-trained Stable-Diffusion|28§]
as its base and enhances it with cross-attention mechanisms. As in AR-LDM, the image sequence generation
is modeled in an auto-regressive manner. Cross-attention allows the model to integrate multi-modal features
from previous caption-frame pairs into the currently generated frame, to improve consistency. Additionaly,
an Adaptive Guidance mechanism is introduced, that explicitly pushes frames that have similar captions, to
be similar as well.

3.9 Causal-Story

Causal-Story[35] is closely related to the the two previous diffusion approaches and especially AR-LDM. It
improves the cross-attention mechanism used in AR-LDM, by introducing a Local Causal Attention Mask.
This way, it limits the size of historical context tokens, thus eliminating confusion, caused by interfering
captions.

50

3.10. Story-LDM

3.10 Story-LDM

Story-LDM (Story Latent Diffusion Model) [25] is the second work on Story Visualization to leverage diffusion
models. In fact, the approach proposed in the paper is quite similar to the one of AR-LDM. It leverages a
pretrained diffusion model [28], which is the exact same one that was used for AR-LDM. The diffusion model
is enhanced with a special memory attention mechanism. This mechanism makes it possible to condition on
the current caption as well as the previous captions and previously generated frames, whilst only keeping
information relevant to the current timestep. In order to use this attention mechanism that conditions on
past information, the model has to work in an autoregressive manner, where the frames are generated one at
a time and the output of the generation process for one frame is fed back into the system, as input for the
generation of the next frames.

'Dlﬂusion Process T-Steps

Frame L
Encoder

Forward Diffusion J

Eml;r:cﬁing Text:
S ™m Transformer MLP

Figure 3.10.1: Overview of Story-LDM’s architecture[25]

3.10.1 Latent Diffusion Backbone

As we have already mentioned, the pretrained Diffusion model [28] leveraged by Story-LDM is the exact
same one that was used for AR-LDM. A brief account of how it works is given in Section 3.7.1. It trains a
UNet to learn €y, which parameterizes the reverse diffusion process:

po(zi—1]2t) = N(ze—1; o2, 1), Ee(zt, t))

(2) (3.10.1)

1
where pg(z¢,t) = €0
(201) = e~
zp, which we want to obtain through the reversal of the diffusion process is the latent representation of an
image. The latent space learned by a VQ-VAE.

3.10.2 Story Latent Diffusion Model

For Story Visualization, the researchers extend the vanilla Diffusion Model to function auto-regressively. The
auto-regressive approach conditions on the current caption as well as previous captions and generated frames
through cross-attention layers. Using a condition y, the cross-attention layer (scaled dot-product attention)
is formulated as follows:

QK"

Attn(Q, K, V) = softmax(Nz

WV (3.10.2)

o1

Chapter 3. Previous Work on Story Visualization

where Q = Wo - f(Z), K = Wi - f(y) and V = Wy - f(y). f(Z) is an intermediate, flattened representation
of Z withing the diffusion model (Z is the VQ-VAE encoding of the image). f(y) is the feature representation
of the condition y. Story-LDM uses cross-attention layers, where the condition y is the text description of
the frame that is being generated.

There is a more complete account of how Attention works in Chapter 4.

3.10.3 Memory-Attention Module

Memory
—
g0 s 75
§ e
5 :
s
5% |
ggsy 8° |I=» S o
T g e i
Fy - -
8 . .
n . .

sH 80 J,zﬂ,‘ st L st]|l

Figure 3.10.2: Overview of Story-LDM’s memory-attention module[25]

The Memory-Attention module allows the model to condition on all past descriptions S and previously
generated frames Z*, where ¢ € {0,...,m — 1}, when generating the m-th frame. To achieve this, another
attention mechanism Attn(Q, K, V) is used where:

K=Wkgk- f(5<m, (3.10.3)
V =Wy f(Z5m)

where f aligns the dimensions of values with keys. The Memory-Attention modules weighs the relevance of @,
which depends on the current text description against K, that depends on previous descriptions and applies
this on the previous image representation Z<m_ This mechanism is supposed to effectively fuse relevant
visuo-textual information from previous timesteps into the generation process, in the current timestep.

3.10.4 Network Architecture

As we mentioned, Story-LDM leverages the UNet from [28]. The approach is modified to work in an auto-
regressive setting. On overview of the generation process can be seen in Figure 3.10.1. The latent repre-
sentation of a frame Z™ is obtained using a the Frame Decoder (of a VQ-VAE). A transformer is used to
obtain a representation of the text description S™. The UNet is then used to model the diffusion process,
in T steps. All layers of the UNet are augmented with attention. In an attention sub-layer Cross-Attention

R m—1__
Coatin = Y. F(Z™),f(S™); is performed followed by Memory-Attention Mgz, = >, S f(Z5): f(S*)i f(S™);
. P

K3 = K3
and the results are aggregated. So, the output of the Attention sub-layer is Cusn + Mytsn. Starting from the
noise sample Z7' the output of the reverse diffusion process Zy* is reconstructed using the frame decoder.

We should note that Story-LDM is applied to a modified version of the original task, where repeated references
to Character Names are substituted by pronouns (e.g. he, she, they).

52

3.11. StoryGPT-V

3.11 StoryGPT-V

StoryGPT-V [33] is - to our knowledge - the latest work on Story Visualization. It leverages a pretrained
Diffusion Model and a pretrained LLM, which are arguably the most prominent model families in Text-to-
Image Generation and NLP, respectively, at the moment. StoryGPT-V is devised as a two-stage approach.
The first state modifies the pretrained Diffusion Model, to specifically focus on Character Generation. At the
second stage, the pretrained LLM is aligned with the Diffuser, to help with the consistency of the generated
image-stories.

3.11.1 Character-Aware LDM with attention control
Integrating Visual Features with text conditions

In order to improve character generation, the text descriptions are enhanced with visual features of corre-
sponding characters, and the attention of text conditions is guided, to strongly focus on characters. Let s be
a text description, which references K characters that should be present in image #, {z,...,2X} be images
of those characters and {i},...,i} be the list of token indices that show the position of each character name
in the description.

CLIP’s [23] text (CLIPr) and image (CLIP;) encoders, are used to extract textual and visual features
respectively. Then, the text tokens that represent a character’s name are augmented with visual information.
Specifically, these text tokens are concatenated with the visual features of the corresponding character and
processed by an MLP layer. An augmented token in the augmented embedding ¢ of a description s is formed
as follows:

¢y = MLP(CLIPy(S[i¥); CLIP;(2%))) (3.11.1)

For token’s in c¢ that are not related to characters Vanilla CLIP embeddings are used, whereas for tokens
that reference characters, we use token embeddings given by Equation 3.11.1.

Controlling Attention of Text Tokens

In vanilla LDMs (Latent Diffusion Models), there are no restrictions as to whether a latent pixel can be
influenced by a text token. The researchers behind StoryGPT-V choose to introduce such restrictions, in
order to guide certain pixels to be more influenced by tokens representing character names. To achieve this,
they first obtain segmentation masks for each character present in the caption denoted as {Mjy,..., Mk}.
Then, a regularization loss term is introduced to encourage the cross-attention map Ay for character k at
the token position ¥, to follow the segmentation mask M} and avoid the region outlined by M}, which is
irrelevant to the character:

K
1 _
Lreg =1 > (A - A (3.11.2)
k=1
where:
Ar = 2 OMe -y A O M, (3.11.3)

Zi,j(Mk)z‘j 7 Zi,j(Mk)ij

The minimization of this loss term supposedly reinforces the models attention to relevant areas for each
character and discourages the attention to irrelevant areas. The modified LDM’s (Char-LDM) function is
visualized in Figure 3.11.1 (a).

53

Chapter 3. Previous Work on Story Visualization

Char-LDM

.

Image encoder

c:
Fred and Barney are having i Fuseemb Gen emb

Fred and Wilma are

Fuse emb . LDM Mapper
e A

Char-LDMﬂ S/ Fred and Wilma | are [IMG,] [IMG,]...[IMGR]

Cross-attention maps

Large Language Model
Wgenih)
veo LM Mapper & Fred and Wilma =+ They are s
& Segmentation
> masks i~1 S Si1 S

(a) Stage-1: Char-LDM with cross-attenion control (b) Stage-2: Aligning LLM for reference resolution

Figure 3.11.1: (a) In the first stage, a fused embedding is created by integrating character visuals with text
embeddings, serving as the Char-LDM’s conditional input, and the cross-attention maps of Char-LDM will
be guided by corresponding character segmentation mask for accurate and high-quality character
generation. (b) In the second stage, the LLM takes the interleaved image and text context as input and
generates R [IMG] tokens. These tokens are then projected by LDM Mapper into an intermediate output,
which will be encouraged to align with fused embedding as Char-LDM’s input. The figure intuitively shows
how the character-augmented fused embedding and the casual language modeling aid LLM for reference
resolution. [33]

3.11.2 Aligning LLM for reference resolution

The first stage, that was described above deals with every caption-image pair on its own, not accounting
for the narrative aspect of Story Visualization. StoryGPT-V tackles this challenge by aligning a pretrained
LLM, to aid with image coherence and with the disambiguation of referential terms (e.g. he, she, they) that
refer to characters. The LLM is trained to autoregressively generate the fused language-visual embeddings
that serve as input to the LDM.

Training

The LLM input comprises of interleaved text-descriptions and images. When generating the n-th image, the
input is: (21,81, ey Tn—1,8n—1,5n), 2 < n < N. For the images, visual embeddings are extracted via CLIP:
CLIP;(z;) € R% and mapped into the LLM input space using a linear transformation W,q; € R4>m¢ A
visual embedding is mapped into m e-dimensional embeddings, where e is the dimension of the LLM input
space. In order to represent visual outputs, R additional tokens [IMG4],...,[IMGg] are introduced, along
with a trainable matrix Wy, € Rf*€ The rest of the LLM’s parameters are frozen during training.

The training objective that is minimized is:

R
Lgen =— Y logp([IMG,] | Tyrev, IMG_,]) (3.11.4)
r=1
where:
Torev = { OLIPr(x<;)"Wot, CLIPr(s1,) }, i € [2,7] (3.11.5)

54

3.11. StoryGPT-V

To align the [IMG] tokens produced by the LLM with the LDM input space, a transformer-based function,
Mapperypar is used. An additional loss is computed here, to minimize the distance between the generated
embeddings and the augmented text representations that serve as input to the LDM:

Latign = || Mapperrpar(hivc,.n) — ¢i |l3 (3.11.6)

Inference

Inference is performed autoregressively. At first, the initial description s; is processed. R [IMG] tokens are
produced by the LLM and utilized by the Char-LDM to produce the first image &;. Subsequently, the LLM
uses s and # as input, along with the second caption sz to generate the [IMG] tokens for the second frame.
This is repeated until all frames are generated.

As in Story-LDM, StoryGPT-V is applied to a more challenging version of the task, with pronouns in place
of repeated Character name references.

55

Chapter 3. Previous Work on Story Visualization

56

Chapter 4

The Transformer

The Transformer is currently the most prominent architecture in the field of NLP. Previous models like RNNs
encoded text in a serial fashion, where every text token is produced using a hidden state generated in the
previous step. On the contrary, Transformers follow a parallel architecture consisting of cascading blocks that
employ attention, a feed-forward network and layer normalization. The original architecture was proposed
in 2017 [42] and it has since shown a lot of success first in NLP and more recently in vision as well.

4.1 Original Architecture

The Original Transformer Architecture can be seen in Figure 4.1.1. It consists of two separate networks:
the Encoder and the Decoder. the encoder maps an input sequence of symbol representations (x1, ...,)
to a sequence of continuous representations z = (21, ..., z,). Given z, the decoder then generates an output
sequence (y1, ..., Ym) of symbols one element at a time.

4.1.1 Encoder

The Encoder is composed of 6 cascading identical layers. Each layer comprises of 2 sublayers. The first
is a multi-head self-attention layer. The second one is a fully connected feed-forward network. There is a
residual connection arround each sublayer, followed by layer normalization. The output of each sublayer can
be written as LayerNorm(z + Sublayer(x)), where Sublayer(x) is the core function implemented by the
corresponding sublayer.

4.1.2 Decoder

The Decoder comprises of 6 identical layers, similarly to the encoder. Each layer has 3 sublayers. The
two of them are same as in the encoder (self-attention and feed-forward network). In between these two
sublayers, the decoder inserts an encoder-decoder cross-attention sublayer. Residual connections followed
by layer-normalization are used around each sublayer, as in the encoder. Additionally, the self-attention
mechanism is modified in order to prevent positions from attending to subequent positions.

4.1.3 Attention Mechanisms
Attention

Attention can be described as a function that maps a query against a set of key-value pairs to produce an
output, similarly to what is done in traditional databases. The queries, keys, values and outputs are all
vectors. The output is the result of a matrix-vector multiplication. The matrix is computed in way that
intuitively represents the compatibility between the query and the corresponding key. This matrix is then
multiplied with the corresponding value-vector.

o7

Chapter 4. The Transformer

Output
Probabilities

()
Add & Norm
Feed
Forward
e ~\ Add & Norm
r—>— :
Al NI Multi-Head
Feed Attention
Forward JED) Nx
—
Nix Add & Norm
Add & Norm Maskod
Multi-Head Multi-Head
Attention Attention
4t 1
_ J _ —)
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 4.1.1: The original Transformer architecture [42]

Scale

Mathul
1
=) =T
Mask (opt.) Scaled Dot-Product h
i Attention

S E—1

L ! Ll Ll
Linear P Linear pPr{ Linear
Q v
v K Q

Figure 4.1.2: Scaled Dot-Product Attention (left) and Multi-Head Attention (right) [42]

L —

58

4.1. Original Architecture

Scaled Dot-Product Attention

Scaled Dot-Product Attention is the mechanism proposed in the original paper. The computation of the
attention function is done for a set of queries packed together in a matrix). The keys and values are
also packed into matrices K and V, accordingly. The procedure is visually displayed in Figure 4.1.2 (left).
As we can see The Query matrix (Q) is multiplied with the Key matrix (K). The output is then scaled and
optionally masked (e.g. to prevent a location from attending to future (subsequent) locations). The output is
then passed through softmax to essentially obtain a compatibility score matrix. This matrix can be regarded
as a stack of vectors, where each vector corresponds to a single Query and represents its compatibility with
each Key. The final result is obtained by multiplying this compatibility matrix with the Value matrix (V).

The outputs are formally computed as follows:

T

Attention(Q, K, V') = softmaz(QK

VA W (4.1.1)

Multi-Head Attention

Multi-Head Attention (Figure 4.1.2 (right)) essentially extends the idea of the simple attention, in order to
compute multiple attention functions in parallel. The queries, keys and values are linearly projected h times,
with different learned linear projections. On each one of these projected version of queries and key-value
pairs we compute the attention function, in parallel. The results are then concatenated and and projected
once again to get the final result. Multi-head attention allows the model to jointly attend to information
from different representation subspaces at different positions.

MultiHead(Q, K, V) = Concat(heady, heads, ..., heady,)W© (4.1.2)
where:
head; = Attention(QWZ, KWK vwY) (4.1.3)

where the projections are matrices WZ-Q € Ridmoderxdi K ¢ Rdmoderxdi WV ¢ RdmoderXdo and WO €
R4 Xdmodet |

59

Chapter 4. The Transformer

60

Chapter 5

VQ-VAE

The VQ-VAE (Vector-Quantization Variational Autoencoder) [39] was first introduced in 2018. Like most
VAEs, it comprises of two subnetworks: the encoder and the decoder. The encoder is trained to map the
original data (images in our case) into a latent representation space (a sequence of vectors). At the same
time the decoder learns to reconstuct the original data, based solely on the latent representation provided
by the encoder. Thus, the VQ-VAE attempts to learn a compact and expressive representation space for the
modality at hand. What sets VQ-VAEs apart from simple VAEs is the fact that their latent representation
space is discrete. That is, the sequence of vectors that is outputed by the encoder is quantized based on an
embedding library, with a set number of embeddings, before being fed into the decoder. The parameters of
the library are learned during training. The discrete nature of the latent space means that we can interpet
each vector of the latent representation as a discrete visual token, or interchangeably as the token’s index in
the embedding library. That makes it possible to then train a transformer to predict the visual tokens with
cross-entropy loss.

Intuitively, one can think of a VQ-VAE that learns to encode images as a kind of visual memory mechanism,
similar to the one developed by a human artist. Given an image, on the one side, the encoder can map it
into an internally meaningful representation using a compact and expressive library of visual tokens, as the
eyes of the artist could do. Then, based only on this compact visual memory (representation) the decoder
can reconstruct the image preserving most high level features, as an artist could do, drawing an image out
of memory.

5.1 Original Architecture

In this section we will take a more formal look at the original VQ-VAE architecture. Traditional VAEs consist
of three main parts. The first one is the encoder network that parameterises a posterior distribution ¢(z|z) of
latent random variables z, given the input data (image) x. The second one is a prior distribution p(z). The
final one is the decoder network that learns a distribution p(z|z). In the VQ-VAE a discrete latent variable
space is used, paired with an idea from the traditional Vector Quantization (VQ) algorithm, during training.
Additionally, the posterior and prior distributions are considered to be categorical.

5.1.1 Discrete Latent Space

The Discrete Latent Space is defined as an embedding space e € RE*P where K is the number of

categories in the categorical distribution and D is the dimensionality of each embedding vector e;. As we can
see in Figure 5.1.1 the input x (an image) is passed through the encoder to produce z.(x). The discrete latent
variables can then be calcuted through a nearest neighbour lookup on the embedding library (equation 5.1.1).
After the quantization process, the now-discretized output of the encoder, z, is passed on to the decoder as
its input. We can calculate z, as shown in equation 5.1.2. Note that although we represent the latents with
a single random variable z, when dealing with images we extract a 2-D latent representation when encoding

61

Chapter 5. VQ-VAE

616283 eK
Embedding
Space
/’l\
// \
D / VL ™~
z
¥ \ EEEC
q(z|x) 3
o~ - [[& p(xiz,)
_ 3 ! / oss
z,(x) z 2 z,(x)
53
. J “ J
Y Y
Encoder Decoder

Figure 5.1.1: The Original VQ-VAE architecture [39]

a single image, where each D-dimensional vector in the 2-D representation is quantized according to the
embedding library.

_ | 1 for k= argmin,||ze(x) — ;]2
q(z =k,) = { 0 otherwise (5.1.1)

z¢(x) = e, where k = argmin;||z.(x) — €j]|2 (5.1.2)

5.1.2 Encoder and Decoder

The Encoder and the Decoder are both Convolutional Neural Networks (CNNs). The Encoder comprises
of several downsampling blocks and several resnet blocks, that transform the input image tensor 2 € R3*XN*N
into the latent representation z, € R “FXF where f is the downsampling factor. This latent vector can
then be interpreted as a 2-D grid of D-dimensional vectors, so that each of these vectors can be quantized
according to the library of embeddings e € RE*P. Symmectically, the decoder takes in the result of the
quantization process z; € RP*¥*¥ and passes it through of sequence of upsampling blocks in order to map
it into the image space: R3*V*N_ The decoder also employs resnet blocks, just as the encoder.

5.1.3 Training

During Training we use the loss function specified in Equation 5.1.3. Each one of its three parts is used to
optimize a different component of the architecture. The first term, known as the reconstruction loss optimizes
the encoder and the decoder. As the name implies it helps the model learn to effectively reconstruct a given
image. As the authors of [39] point out, there is no gradient defined for equation 5.1.2, so the propose to just
copy the gradients from the decoder to the encoder during backpropagation, in order to promote learning in
the encoder as well.

L = logp(z|zg(w)) + ||sglze(@)] — el[5 + Bl|ze (=) — sgle][[3 (5.1.3)

Since there is no gradient defined for equation 5.1.2, the library of embedding vectors e; does not receive any
information from the reconstruction loss term. Hence, the second loss term is introduced. This term borrows
the idea of the Vector Quantization (VQ) algorithm, to move the embedding vectors e; towards the encoder
outputs z.(z) according to a squared error loss.

Finally, in order to prevent the volume of the latent space from growing arbitrarily, pushing the embeddings
away from each other, the third loss term is introduced. This term essentially discourages encoder outputs

62

5.2. VQ-GAN

from growing and forces the encoder to "commit" to certain embeddings. This is why it is called commitment
loss.

sg[.] in equation 5.1.3 symbolizes the stop gradient operator. It essentially constraints its operand to be a
non-updated constant during backpropagation. As it follows from all of the above, the encoder optimizes the
first loss terms, the decoder optimizes the first and last loss term and the embedding library only optimizes
the middle loss term.

5.1.4 Prior Distribution

The Prior Distribution is kept constant during training. After training the VQ-VAE, the authors of the
paper fit an autoregressive distribution over z, p(z). For this purpose, they use a PixelCNN [41, 40|, over the
discrete latent space.

52 VQ-GAN

[8] proposes VQ-GAN;, a variation of the original VQ-VAE, that employs a slightly different training approach.
The authors of the paper attempt to improve the efficiency of the latent encoding, by promoting learning of
perceptually rich latent representations in a more compressed space.

VQ-GAN departs from the original VQ-VAE framework in two main ways. Firstly, it replaces the recon-
struction loss (first loss term in equation 5.1.3) with a perceptual loss [47]. Secondly, it introduces a patch
discriminator and adds auxiliary GAN-style feedback during training. The GAN-style loss function is the
traditional one [11]:

Lean({E, G, Z}, D) = [logD(z) + log(1 — D(2))] (5.2.1)

where E, G, Z and D symbolize the Encoder, Decoder, latent space Codebook and Discriminator respectively.

The complete model is then optimized under the following objective:

ming ¢ zmaxpE,) [Lvo-vae[E,G, Z] + \Laan({E, G, Z}, D)] (5.2.2)

where Ly g_v ag represents the VQ-VAE’s loss function described by equation 5.1.3, where the reconstruction
loss is replaced by the perceptual loss as mentioned earlier.

63

Chapter 5. VQ-VAE

64

Chapter 6

Transformers as powerful Prior
Distributions

As we have already discussed in Chapter 5, in order to use a VQ-VAE as a generative model we need a prior
distribution, whether static or learned. For example the authors of [39] used a pixelCNN network to learn
an autoregressive prior over the discrete latents. As the prevalence of Transformers models has risen in the
previous years, several papers emerged investigating the use of Transformer decoders as priors, paired with
VQ-VAEs for conditional image generation. This approach has shown promising results with autoregressive
transformers [26, 7, 8] and recently with more efficient, bidirectional, iterative transformers [3, 4].

6.1 DALL-E

Amongst the various works that employ an autoregressive transformer to learn the prior distribution over
the image latents, conditioned on text, perhaps DALL-E [26] is the most well known. The authors of the
paper scaled up both the size of the model (12 billions parameters) and the size of the training set (250
million text-image pairs from the internet) compared to previous approaches. DALL-E managed to produce
high-fidelity images and notably achieved high-quality zero-shot image generation on the MS-COCO dataset,
even compared to previous models that where trained on the dataset.

6.1.1 dVAE

The high-level approach that is followed is similar to the one of the original VQ-VAE described in Chapter 5.
At first a Discrete VAE (dVAE) is trained. A dVAE is a Variational Autoencoder with a discrete latent space,
just like the VQ-VAE. There exist some technical differences between the models that fall out of the scope
of this thesis. The dVAE learns to map 256 x 256 images into a 32 x 32 grid, whilst training an embedding
library of 8192 distinct vectors, that function as the discrete latent space.

6.1.2 BPE-encoding

BPE-encoding is the form of text-encoding used in DALL-E. In order to train a BPE-encoder on a corpus,
we first initialize its token vocabulary with all the distinct characters present in the corpus. Then, we repeat
the procedure bellow, iteratively, until we reach the desired vocabulary size:

e We find the most frequent pair of tokens in the corpus
e We introduce a new token to the vocabulary that represents this pair of tokens
e We substitute all instances of the pair, in the corpus with the new token

65

Chapter 6. Transformers as powerful Prior Distributions

(a) Row attention mask. (b) Column attention mask. (c) Column attention mask with (d) Convolutional attention mask.
transposed image states.

Figure 6.1.1: Types of attention masks as described in [26]. The illustration corresponds to a hypothetical
version of the transformer with a maximum text length of 6 tokens and image length of 16 tokens (i.e.,
corresponding to a 4 x 4 grid). Mask (a) corresponds to row attention in which each image token attends
to the previous 5 image tokens. The extent is chosen to be 5, so that the last token being attended to is the
one in the same column of the previous row. To obtain better GPU utilization, we transpose the row and
column dimensions of the image states when applying column attention, so that we can use mask (c)
instead of mask (b). Mask (d) corresponds to a causal convolutional attention pattern with wraparound
behavior (similar to the row attention) and a 3 x 3 kernel. The model proposed by the paper actually uses
a mask corresponding to an 11 x 11 kernel.

6.1.3 Transformer

After the dVAE has been trained, a Transformer Decoder is used to learn the prior distribution over the
joined text and image tokens. A text-image pair is encoded as follows: the lowercased text is BPE-encoded
[32] into a sequence of at most 256 text tokens, using a vocabulary of 16,384 tokens. The image is mapped
into a 32 x 32 grid of latent tokens, that can the be flattened into a 1-D vector of size 1024. The text and
image tokens are then concatenated into a single vector of joint text and image tokens.

The model that is used is a Transformer decoder, that operates autoregressively. For text tokens, causal
attention is used. On the other hand, each image token is allowed to attend to all text tokens. Additionally
there are three different attention modes used for image-to-image attention (attention between different image
tokens). Either a row, column or convolutional attention mask is used. The model employs 64 self-attention
layers, each one of them following one of the attention modes mentioned above. All 64 layers have 62 attention
heads. The transformer is trained to minimize the cross entropy loss for both the image and text tokens,
putting more weight on the loss produced by the image tokens.

As we have already stated, the final model is a 12 billion parameter transformer. The training set used consists
of 250 million text-image pairs. It incorporates Conceptual Captions, text-image pairs from Wikipedia and
a filtered subset of YFCC100M. The model was reportedly trained on 1024 Nvidia V100 GPUs (16 GB of
memory each) .

66

6.2. MaskGIT

6.2 MaskGIT

As we have already discussed, DALL-E and other similar approaches (e.g. [8]) successfully used transformers
to learn the prior distribution over image latents, conditioning on text. However, these approaches model
the image generation task in a completely autoregressive way, i.e. the tokens are produced one by one, with
successive passes through the transformer model, from the top left token, to the botton right one. Every
token can then attend only to its past tokens during inference. This is obvious from the attention masks in
Figure 6.1.1, where all future tokens are masked (The upper right half of the matrix is all masked out). This
is an idea that stems from the use of Transformers for text modeling. It is a reasonable idea when thinking
about textual data, where words tend to have a sequential ordering and each word mostly depends to the
past ones to take meaning.

However, the researchers behind MaskGIT (Masked Generative Image Transformer) [3| argue that this tech-
nique is neither optimal, nor efficient for the task of image generation. As they point out, a human artist
doesn’t necessarily paint an image starting from the top left corner and ending in the bottom right. In fact,
he is most likely to start with a small sketch somewhere in the midle of the canvas and progressively refine
it, whilst adding more details. Additionally, in contrary to what happens in text, autoregressive modeling
scales quadradically for images, due to their inherent matrix-like nature. This deems autoregression quite
inefficient, even for relatively small latent image representations, especially since attention mechanisms are
already computationally costly. Based on the above observations, MaskGIT is trained to predict all image
tokens with a single pass through the transformer model. The tokens are then refined with a small number
of iterations, conditioned on the previous generation.

6.2.1 Method

The higher-level approach followed by MaskGIT can be seen in Figure 6.2.1 . It very similar to the two-stage
approach employed by VQ-VAE and DALL-E, both of which, we have already discussed in the previous
chapters. In the first stage, a discrete latent space, to which we can map images and then reconstruct them
from the mapping, is learned. In the second stage, a Bidirectional Transformer (tokens can attend to both
directions) is trained to learn the prior distribution of image tokens, conditioned on text captions. In order
to train the transformer, the authors of the paper propose a novel training scheme, named Masked Visual
Token Modeling (MVTM), where a number of randomly selected image tokens are masked and predicted in
each training step.

Input Visual Tokens Reconstruction

Y~ ¥

Tokenization

Encoder
vVQ
L
i,

Decoder

Masked Tokens Predicted Tokens

i ' - ".
Masked Visual Token Bidirectional .i

Modeling (MVTM) : Transformer ?g‘._rg.
J |

Figure 6.2.1: Overview of the MaskGIT architecture [3]

6.2.2 First Stage

For the first stage, VQ-GAN [8] is employed without any changes. We have already discussed VQ-GAN in
Chapter 5. The codebook used in the paper has 1024 tokens and the compression factor is f = 16, that is a

67

Chapter 6. Transformers as powerful Prior Distributions

256 x 256 image is mapped into a % X %56 =16 x 16 grid of latent embeddings.

6.2.3 Second Stage

As we have already hinted, a bidirectional transformer is used on the second stage, through a procedure
called MVTM. The transformer that is used has 24 layers, 8 attention heads, 768 embedding dimensions and
3072 hidden dimensions.

MVTM during training

Let Y = [y;]Y; be the latent tokens produced by the VQ-encoder with an image as input and M = [m;]¥,

be the binary masks for all tokens. In each training step, we sample a subset of tokens and replace them
with a special token ([MASK]). m; = 1 denotes a masked token, while tokens with m; = 0 are not changed.
The sampling procedure uses a scheduling function v(r) € (0,1]. The procedure works as follows:

e A sampling ratio between 0 and 1 is sampled through ~(r)

[v(r) - N tokens are uniformly selected and masked

Let Yj; be the resulting token vector after applying mask M over Y

The model is trained to minimize the negative log-likelihood of the masked tokens:

Emask = 7E[Z logp(yz|YJ\7I)] (621)
Vi€[l,N],m;=1

Essentially, the probabilities p(y;|Yy;) € RV*X are predicted by the transformer. K here denotes the size of
the codebook.Then the cross-entropy between them and the ground-truth one-hot token is computed.

Iterative Inference

During Inference a novel parallel decoding method is used, that includes a small number of steps, contrary
to the traditional autoregressive decoding in transformers that requires as many steps as the length of the
image sequence (e.g. 256 or 1024). A visual comparison of the two methods can be seen in Figure 6.2.2.

Due to the bidirectional nature of the Transformer, the model can theoretically infer all tokens in a single
pass. However, the authors of the paper find this challenging, since it is quite different from the training task.
Instead they propose a inference method that starts from a "blank canvas", that is all tokens are masked out
in Y]\%O). Then the algorithm in iteration ¢ runs as follows:

e Given the masked tokens YJ\(—;) at the current iteration, the probabilities p(t) € RN*K for all masked
tokens are predicted using the transformer.

e At each masked location i, a token y(t)

K3
(treating pz(»t) as a multinomial distribution). After sampling, the probability pgt) of the token that
was sampled is now used as a "confidence" score, showing how "confident" the model is about this

prediction. For the unmasked positions, the confidence scores are set to 1.0.

is sampled based on the prediction probabilities pl(-t) € RX

e The number of tokens to (re)mask is computed as n = [y(#)N]|, where v is the mask scheduling

function, N is the total number of tokens and T is the total number of iterations.

e We obtain the masked tokens for the next iteration YI\(7;+1)7 by applying the new mask M*1 that is
derived by the following formula:

mE—tH) _ { 1 ifeg < sortedj((:j)[n} (622)

0 otherwise

where ¢; denotes the confidence score for the i-ith token.

68

6.2. MaskGIT

Sequential
Decoding

with Autoregressive
Transformers

t=0 t=1 t=120 t=200 t=255

Scheduled
Parallel
Decoding
with MaskGIT

Figure 6.2.2: Autoregressive Inference vs Parallel Iterative Decoding used in MaskGIT [3]

In short the model generates an image in T iterations. In each iteration, it keeps the predicted tokens that
it is most confident about and remasks the rest of them, so as to predict them in future iterations. The
masking ratio is descreased till all tokens are predicted within T iterations.

Masking Design

The authors of the paper report that the way they model masking has a significant impact on the quality
of the generated images. As we saw, masking is scheduled by a function v(.), that is used in both training
and inference. During training it takes a random ration r € (0, 1] as input, while at Inference Time, it takes
0/T,1/T,...,(T —1)/T depending on the timestep we are at.

~ needs to have the following properties:
e It should be a continuous function € [0, 1], for inputs r € [0, 1].

e It needs to be monotonically decreasing with respect to r, with the property v(0) — 1 and (1) — 0.
This is essential for the inference algorithm to converge.

In the paper, three families of functions are tested: Linear, Concave (including cosine, square and exponential)
and Convex (including square root and logarithmic) functions. Some examples of such functions can be seen
in Figure 6.2.3. The authors report that the Cosine function performs the best in all of their experiments.

Number of Iterations

Concerning the number of iterations during inference, the researchers report that the optimal number falls
between 8 and 12. Intuitively one might think that more iterations would yield a finer result. However,
it is hypothesized that such a sweet spot exists because too many iterations would statistically eliminate
less confident tokens and lead the generation process to collapse to a subset of very likely tokens, hindering
diversity.

6.2.4 Token-Critic

Token-Critic [16] is proposed as a method to improve the token sampling procedure of non-autoregressive
Transformer models, like MaskGIT. As we have already discussed, during inference, MaskGIT follows an
iterative parallel decoding scheme where subsets of the full token set are predicted over a number of steps.
At each step, the most confident tokens are kept. In order to make this decision, we view the logits, based
on which we sampled the tokens, as their confidence scores. Instead of reusing logits as confidence scores,
Token-Critic can be trained as an auxiliary model, whose purpose is to estimate the confidence scores for the
predicted tokens.

69

Chapter 6. Transformers as powerful Prior Distributions

Comparison of Mask Scheduling Functions

1.0 4

e o o
A h o]
I 1 1

Scheduling function y

0.0

0.0 0.2 0.4 0.6 0.8 1.0

T

Figure 6.2.3: Comparison of Mask Scheduling Functions

Training

Token-Critic is a transformer, typically of smaller size than MaskGIT’s generative transformer. First, we
assume that we already have a trained MaskGIT. At training time, Y = [y;], are the latent tokens produced
by the VQ-encoder, from an image. M = [m;])¥; are the binary masks for all tokens. Y;; be the resulting
token vector after applying mask M over Y. Given the masked tokens, we sample ¥ from p(y:|Yyr) (this is
the distribution parameterized by MaskGIT). Then, we foom Y =Y ® (1 — M) +Y ® M. Y is essentially
equivalent to substituting each one of the [MASK] tokens in Yj; with the corresponding token predicted by
MaskGIT. Token-Critic is trained to minimize:

N
£ =E[Y BCE(my, ps(m;|V,c))] (6.2.3)
j=1

Where pg(.) is parameterized by the Token-Critic. That is, Token-Critic is trained to predict the binary
Mask, by conditioning on Y and ¢, where ¢ is a condition (e.g. text condition).

Inference

For inference, the iterative design from MaskGIT is used, with a small modification. At first, we start with
a "blank canvas" Y]\(/%) (all tokens masked). At step ¢, we sample Y®) using MaskGIT, i.e.:
t—1
YO ~pp(Y Oy Y o) (6.2.4)

where pg(.) is the distribution learned by MaskGIT.

Now, instead of using the logits that we used to sample Y (*) (logits that where produced by MaskGIT) as
confidence scores, based on which we will remask the least confident tokens, we employ the Token-Critic. We
sample My 1 ~ pg(M; 1Y) ¢) (pg(.) is parameterized by the Token-Critic). M;,; € RY contains N values,
all of them between 0 and 1, corresponding to the confidence scores for each one of the predicted tokens.

70

6.3. Muse

Text Embeddi
Text Prompt: “A cat .

looking af a dog” —> TextEncoder —-EENE ~
Input Masked Reconstructed
_Image Tokens Tokens
3 | | | [[}
3 = 1 Base EEEE____
VQ Tokenizer { B T Transformer _>J.=E

v

Cross Entropy
Loss

i
256x256

[Masked Reconstructed
"PU mage High-Res Tokens HighRes Tokens
EEEEE EEECE
EEEEE "ECE mmm
" % EEEE ‘ SuperRes [| B
¢ —> VQ Tokenizer L Transformer |~ HENENEN
| I | EEEEEE
5 BN N EEE
G EEEEEE HOEE EEE
o L v
512x512
X Cross Entropy
Loss

Figure 6.3.1: Overview of Muse’s architecture: The T5-XXL pre-trained text encoder, the base model and
the super-resolution model are depicted on the three rows. The text encoder generates a text embedding
that is used for cross-attention with image tokens for both base and super-res Transformer layers. The base
model uses a VQ Tokenizer that is pre-trained on lower resolution (256 x 256) images and generates a 16 X
16 latent space of tokens. This sequence is masked at a variable rate per sample and then the cross-entropy
loss learns to predict the masked image tokens. Once the base model is trained, the reconstructed
lower-resolution tokens and text tokens are passed into the super-res model that then learns to predict
masked tokens at a higher resolution. [4]

Since Token-Critic is a transformer, it uses attention to take into account correlation between tokens when
predicting the confidence scores, which improves the quality of this decision, compared to the independent
sampling originally used by MaskGIT.

6.3 Muse

More recently (January 2023), another paper [4] was published by Google researchers, building on the same
philosophy as MaskGIT, whilst proposing several improvements. The new model, named Muse, employs a
three-stage approach instead of the two-stage approaches we have discussed in the previous chapters, includ-
ing image tokenization (VQ-GAN) a base-resolution Transformer and a super-resolution Transformer. The
Transformers are Bidirectional and follow the same random masking training scheme and iterative, parallel
decoding tactic that was used in MaskGIT. The model also leverages text embeddings from a pretrained
LLM (Large Language Model), instead of learning text representations from scratch.

6.3.1 Model

An overview of the Model can be seen in Figure 6.3.1. In the following section we analyze the most important
components of the architecture.

Pre-Trained Text Encoder

The encoded text input that is fed into the model is extracted using a T5-XXL [24] model, which belongs to
the LLM category. The embeddings from the LLM are supposed to encode rich information about objects,
actions, visual properties, spatial relationships and other properties. Muse is then expected to map this
information into the generated images.

In terms of method, an input text caption is passed through a frozen T5-XXL encoder resulting in sequence
of 4096 dimensional language embeddings, which are then projected to the hidden size of the transformer
and used for cross-attention.

71

Chapter 6. Transformers as powerful Prior Distributions

Text Embedding - Tet) . .
3] A bear riding a bicycle, A high contrast portrait photo
| [[o with a bird perched on of a fluffy hamster wearing an
o the handlebars. orange beanie and sunglasses
Low-Res a holding a sign that says
ette
Tokens 8x LowRes 256x256
=i (3 [.] (3
-__ oL |GE|lJ|— ¢
|| | £ B3 = 3
— ;=1 (@)
| - <
16x16
Masked Predicted
High-Res Tokens K|V High-Res Tokens
.. || 32 | [[|
| [
EEEEE (5 25 Q48 N EEN
| [] — o L g*f:’ o —
HEE E 52 58 EEEEN
| [| < |+ < [+ 1| ||
| [| H N TN
ENEEEE ENEN EEn
64x64 64x64

Figure 6.3.2: Muse’s super-resolution model [4]

Image Tokenization: VQ-GAN

For image tokenization, VQ-GAN is used here, as in the case of MaskGIT. In fact two separate VQ-GAN
models are trained. The first one is trained on 256 x 256 images with a downsampling factor =16, resulting
in a 16 x 16 latent representation. This one is used for the base model. The second VQ-GAN, that is used
to train the super-res model, operates on 512 x 512 images, with a downsampling factor f=8, resulting in a
64 x 64 latent representation. Both of them have a library of 8192 embeddings.

Base Model

As we have already mentioned, the base model is a Bidirectional Transformer. Essentially, it operates in an
identical way to MaskGIT. It takes as input the TH text embeddings and the image tokens. The Base Model
uses the image tokens outputed by the first VQ-GAN model, that encodes 256 x 256 images into a 16 x 16
grid of latents. During training a random fraction of the image tokens is masked and predicted. At inference,
Iterative Parallel Decoding is employed, as in MaskGIT (6.2.3).

Super-Resolution Model

An overview of the Super-Resolution Transformer can be seen in Figure 6.3.2. This part of the model is
trained, with a pre-trained frozen base model. The Super-Resolution model takes in as input the t5 text
embeddings, the Low-Resolution image tokens, i.e. the 16 x 16 grid predicted from the base model. These
tokens are passed through a simple, short Transformer Network, only employing Self-Attention and MLP
layers. The Super-Res Transformer is a Bidirectional Transformer, just like the base model, that operates on
the high resolution latent space of the second VQ-GAN model, i.e the 64 x 64 grid produced by 512 x 512
images. Apart from the different representation spaces, the only other difference between the base and the
Super-Res model, is that the second one cross-attends to the low resolution tokens produced by the base
model in addition to the text embeddings.

Intuitively, the Super-Res model learns a mapping between the Low-Res representation vectors and the High-
Res ones. The researchers reported finding that directly predicting high resolution images (512 x 512) lead
the model to focus on fine details and ignore large scale semantics. Therefore, they went for this gradual
approach to capture both high-level and low-level features.

Inference: Iterative Parallel Decoding

Decoding follows the tactic that was introduced in MaskGIT. A cosine Masking Schedule is employed, to
decide the fraction of tokens that are to be predicted in each step. Then, at each timestep the most "confident"
tokens that fill up this fraction are kept and the rest of the tokens are re-masked and left to be predicted in
the next steps. The Base model predicts its output over 24 steps vs 8 steps for the Super-Res model, for a
total of 32 timesteps.

72

6.3. Muse

Classifier Free Guidance

The model reportedly employs a technique called Classifier Free Guidance [12]. At training time, a fraction
(10%) of samples is chosen randomly and the text condition is completely dropped for them (thus attention
reduces to image token self-attention). At inference time, two seperate logits are computed for each image
token: a conditional logit £. (using text condition) and an unconditional logit £, (not using text condition).
the fianl logits are computed as follows:

0= (14t)l. —tl, (6.3.1)

where t is the guidance scale. Classifier Free Guidance intuitively trades of diversity for fidelity. Specifically,
a higher value of ¢ promotes higher fidelity, but also lower diversity, by increasing the focus of the model on
the conditional logits.

The mechanism is also used to enable Negative Prompting. Specifically, by replacing the unconditional logits
with logits conditioned on a Negative Prompt, Equation 6.3.1 can be used to push the final logits towards
features encouraged by the positive prompt (f.) and away from the features encouraged by the negative
prompt (¢,), thus effectively disabling unwanted features.

73

Chapter 6. Transformers as powerful Prior Distributions

74

Chapter 7

Caption Augmentation using LLMs

The outstanding capabilities of LLMs have been previously leveraged to perform text augmentation in the
context of various tasks [38, 43, 6, 44, 9]. [9] proposes a method for augmenting captions of text-image
pairs that are used to train a CLIP[23] model. At first, alternative captions are generated for a small
number of text-image pairs, through various methods, including human annotation and chatbots. Original
and generated captions are paired to form meta-input-output pairs. Subsequently, LLaMA[37] is used to
produce alternative captions for all samples in the training data. The meta-input-output pairs are used as
context for the LLM to better understand the task.

75

Chapter 7. Caption Augmentation using LLMs

76

Chapter 8

Masked Generative Story Transformer

In this Chapter we introduce our approach for the task of Story Visualization, analyzing each main component
independently.

8.1 Image Tokenization

8.1.1 VQ-GAN

"m VG-GAN

|
VG-GAN 5 ? — Decoder —
r

Encoder
7 b

(b) The latent image tokens can be decoded
(a) The images of a story are tokenized by the into the image space using the VQ-GAN
VQ-GAN encoder decoder

Quantization

Latent Embedding Space

| |
VQ-GAN =.u el e2 3 ed €5 ek |- VG-GAN
Encoder | EEEE --EHUNE oy Decoder

(¢) VQ-GAN’s function

Figure 8.1.1: VQ-GAN encoder and decoder

For Tmage tokenization we leverage VQ-GAN [8]. Given the images of a story: X = {X;, X, ..., X;, }, we pass
them through the VQ-GAN encoder to produce the corresponding discrete latent tokens: Z = {Z, Za, ..., Zp },
as show in Figure 8.1.1a. A Transformer is trained to predict the image tokens based on text (see Section
8.3). After the image tokens have been predicted, we can decode them back into the image space, using the
VQ-GAN decoder (Figure 8.1.1b).

8.2 Text Encoding

For Text-Encoding we experiment with two alternative methods: training text-embeddings from scratch or
using text embeddings extracted from an LLM. Regardless of the method, each input caption in a story is

7

Chapter 8. Masked Generative Story Transformer

encoded into sequence of embeddings. We denote the encoded texts of a story as T = {11, Ts, ..., Tn} .

8.2.1 Custom Text Embeddings

eddy found something in the book.

eddy is sitting at the table drinking warm tea. n
pororo and petty are coming to eddy's house. — BPE - Encoder —
all the friends came to eddy's house.
pororo and other friends are calling eddy.

Figure 8.2.1: The sentences of a story are BPE-encoded to obtain text tokens

When training text embeddings, we use a BPE-encoder that maps each text-description into a sequence of
image tokens (Figure 8.2.1). For the BPE-encoder we use a vocabulary of size 2500.

8.2.2 Using an LLM

Instead of training our own text embeddings, we can use the embeddings from a pretrained LLM. Inspired
by MUSE [4], we experiment with T5-XXL [24]. To produce embeddings from a text caption, we pass the
caption through the LLM and extract the embeddings from the final hidden layer. Then, we use them as the
text representations that serve as input to our transformer.

8.3 Transformer Priors

8.3.1 Input

Text Tokens

v,

Transformer Input

Image Tokens

u i -
b Flatten ' Random LA Concat
- —_— — H
| | h Masking m

Figure 8.3.1: The input of the Transformer is the concatenation of the image and text tokens for each one
of the five image/sentence pairs in the story. The Image Tokens are flattened and randomly masked before
being concatenated with the text tokens.

Given the image tokens Z = {Z1, Za, ..., Z,} (Z; € R™*™*d) and text tokens T = {T1,Ts, ..., Tn,} (T; € R*4),
for a story, we form the transformer’s input as shown in Figure 8.3.1. The image tokens Z € Rn*mxmxd
are flattened into a sequence Z’ € R"*(mm)xd Then they are randomly masked, as in MaskGIT to obtain
Z € R (mm)xd Fipally, each image representation is concatenated with the text representation of the same
index to form Input; = (Z;; T;). The Transformer’s input can be written as :

Input = {Inputy, ..., Input,} € R m-m+l)xd (8.3.1)

78

8.3. Transformer Priors

where [is the length of a captions text representation, m x m is the resolution of the images’ latent repre-
sentations, n is the number of images in a story and d is the Transformer’s hidden dimension.

8.3.2 Types of Transformer Layers

Below, we describe the different types of Layers we use in out transformer models.

Contex

Self-Layer

FulllLayer

Output

Self-
Attention
S

Input

Input & Output

g
Feed-Forward

Self-
Attention
Cross-
Attention

Feed-Forward

(a) Full-Layer (b) Self-Layer

Figure 8.3.2: Basic Transformer Layers

Full-Layer

The Full-Layer 8.3.2a is the traditional Transformer Decoder Layer, consisting of three sub-layers: Self-
Attention, Cross-Attention and Feed-Forward. Given an input I € R™"***? and a context C' € R"*°*?_ the
output a Self-Attention sub-layer and a Cross-Attention sub-layer can be calculated, respectively as follows:

Self — Attention(I) = MultiHead1(Q =1, K =1,V =1)

8.3.2
Cross — Attention(I,C) = MultiHead2(Q = I, K = C,V = C) ()

The Feed-Forward sub-layer consists of a Linear Layer, followed by an activation, followed by Layer Normal-
ization. As it it shown in the Figure, there is a residual connection around each sub-layer.

Self-Layer

As one can see in Figure 8.3.2b, the Self-Layer is identical to the Full-Layer, except for the fact that it omits
the Cross-Attention sub-layer. It, therefore does not utilize any context.

SV-Layer

The SV-Layer (Story Visualization Layer) is shown in Figure 8.3.4. It comprises of a Self-Layer, preceded by
a preprocessing sub-layer and followed by a postprocessing sub-layer.

79

Chapter 8. Masked Generative Story Transformer

SV-Layer Preprocessing

T '-\- : 2

IR
[| lllék } tl'_'l:l:-:li'_'-:i] » Output

(a) SV-Layer Preprocessing

SV-Layer Postprocessing

> Output

(b) SV-Layer Postprocessing

Figure 8.3.3: Data Processing for the SV-Layer

SV-Layer

Self-Layer

SV-Layer
———> Preprocessing —

SV-Layer
Postprocessing e E——

Self-

Attention
Feed-Forward

Figure 8.3.4: SV-Layer

The preprocessing sub-layer takes in an n-sized batch of tokens € R**(mm+0)xd that corresponds to the
n image-caption pairs in a story. It reshapes its input into a representation € RIx(n(mem)tn-h)xd by stacking
the image tokens for all images in the story, one next to the other and concatenating them with the sequence
of all text tokens in the story stacked in the same way (Figure 8.3.3a).

The postprocessing sub-layer has the exact opposite function. It takes in a representation €
RIX (n(m-m)+nl)xd Tt reshapes it into an output € R**(mm+0xd wwhere each one of the ((m-m41) x d)-sized
sequences in the n-batch corresponds to the image tokens of an image, concatenated with the text tokens of
its caption (Figure 8.3.3b).

At a conceptual level, the preprocessing sub-layer brings the story representation from an image-by-image
format into a story-level format, where the whole story is viewed as a continuous sequence of tokens that
correspond to all images and captions. This way, in the Self-Layer that follows, tokens from any one of the

80

8.3. Transformer Priors

n positions in the story can attend to tokens from any other position, and integrate relevant information.
Subsequently, we bring the tokens back to their image-by-image format with the postprocessing sub-layer.

8.3.3 Proposed Transformer Models

MaskGST

Global Story Context

MaskGST

Transformer Input Layer Self-Layer

Self:
Attention
Feed-Forward

Self:
Attention
Attention

Feed-Forward

Figure 8.3.5: MaskGST model

We name our proposed Transformer Architecture MaskGST (Masked Generative Story Transformer) to
highlight its heavy influence from MaskGIT. MaskGST consists of two Full-Layers, followed by several Self-
Layers. Figure 8.3.5 shows a version of the model that employs 4 Self-Layers, for a total of 6 Layers.

The context that is utilized in the cross-attention sub-layers is composed of all the text descriptions in a
story. That is, to predict the image tokens for each image in the story, we perform cross-attention with all of
the text descriptions in the story. This way, we allow the model to adopt useful, relevant information from
previous and following timesteps in the story. For example a character could be referenced by his name (e.g.
Pororo) in one caption and then be referenced using a pronoun (e.g. he) in the next caption. By employing
cross-attention with all other captions in the story, we allow the model to learn how to infer the name of the
character (or other relevant information) in such cases.

81

Chapter 8. Masked Generative Story Transformer

MaskGST-SV

Global Story Context

SV-Transformer

SV-Layer

Self-Layer

Transformer Input Full- Layer Self-Layer

fﬁﬁiﬁm ,

Self-Layer

SV-Layer
Preprocessing —

SV-Layer
O~ Postprocessing

Self- I

Attention

Feed-

8
L2
S
R

2

2
§
H
&
B
3
&

)
5
=
i
5
8

(2x) (2x)

(2x)

Figure 8.3.6: MaskGST-SV

MaskGST-SV (MaskGST Story Visualization) includes two Full-Layers in the beggining of the generative
process. The first two layers can be optionally followed by several Self-Layers. Then, we have two SV-Layers,
that can be optionally followed by several Self-Layers, as well. For example, Figure 8.3.6 shows a MaskGST-SV
model that stacks two Self-Layers between the Full-Layers and the SV-Layers and two additional Self-Layers
after the SV-Layers, for a total of 8 layers. We conduct experiments with several different configurations.

o e
Training
Global Story Context
OOOOEOOOEOOREOT
OOODEOOOEOCEETT
OO0
v
Transformer Input Transformer Output Predicted Image Tokens
- MaskGST |)
" w un D R > Transformer Feessssessssses > | B - R SO > -
E Cross-Entropy
v

Ground-Truth Image Tokens

e T8

Figure 8.3.7: Overview of MaskGST’s training procedure

All of the proposed models transform their input: Input = {Inputy, ..., Input,} € R**(mm+Dxd into an
output of the shame shape:

Output = {Outputy, ..., Output, } € R mm+i)xd (8.3.3)

82

8.3. Transformer Priors

For each item in the n-batch, we drop the [tokens that correspond to the text description and keep the m-m
image tokens. Thus, we obtain:

Output = {Outputy, ..., Output, } € R (mm)xd (8.3.4)
The output then undergoes a linear transformation to obtain logits:

y = Lin(Output) € R™*(mm)xK (8.3.5)

where K is the number of embeddings in the embedding library of the VQ-GAN. Finally, the logits can be
used to train the model against the ground-truth image tokens that are obtained through the VQ-GAN. For
training, we use the masking scheme proposed in MaskGIT, that is presented in Section 6.2.3.

If we are working with a VQ-GAN, that uses more than one latent space, we employ as many linear trans-
formations as the latent spaces and use each one of them to predict the tokens of one latent space.

Inference

As in training, for inference we also adopt the parallel decoding procedure proposed in MaskGIT, that is
detailed in Section 6.2.3

8.3.4 Character Guidance

We propose a new technique to improve the generation of characters in the stories. We add to our model,
a library of 2 - C), extra Character Embeddings, where C), is the number of main characters present in the
dataset (e.g. for Pororo-SV C,, = 9). For each character, we have a positive embedding (the character is
referenced in the caption) and a negative one (the character is not referenced in the caption). When using this
technique, we concatenate C),, embeddings to the input of the transformer, one for each character. Positive
embeddings are used for the characters that are present in the current text description and negative ones for
the rest of the characters. In that case the input of the transformer becomes:

Input = {Inputy, ..., Input,} € R"*(mm+i+Cn)xd (8.3.6)

where: Input; = (Z;;T;;C;) and C; = {poschar fehareT; U{M€Gchar }chargT,- POSchar represents the posi-
tive embedding for character char, whereas neg.nq, represents the negative embedding for the character.
{poschar }chareT; is the set of positive embeddings for the characters that are present in the current descrip-
tion (T;) and {negchar }chargr; is the set of negative embeddings for the characters that are not present in
the description.

Training

In order to reinforce the model’s focus on these Character Embeddings, we completely drop the text descrip-
tions for a percentage of training samples in each batch and only keep the Character Embeddings. Other
than that, the training process remains intact.

Inference

During inference, we compute two sets of logits when generating an image. The first set of logits ()
is computed conditioning the generative process on text descriptions. The second set of logits ({epar) is
computed using only Character Embeddings and completely dropping the captions. As in training, we use
positive embeddings for characters that are present in the current caption and negative ones for the remaining
characters. The final logits (¢) are computed as a convex combination of the text-conditional logits and the
character logits:

= (1— e+ flenar, f€10,1) (8.3.7)

This combination is computed at every step of the iterative parallel decoding process.

83

Chapter 8. Masked Generative Story Transformer

The intuition behind this approach is that the text-conditional logits encode the specific information regarding
the generation of an image from its descriptions, whereas the character logits encapsulate information solely
regarding the presence of main characters in the image. By combining the two sets of logits we attempt
to produce images that remain faithful to the corresponding descriptions, whilst being specifically biased
towards the generation of characters that need to be present.

Negative Prompting

In order to further reinforce the presence of the correct subset of the main characters in each image, we employ
negative prompting, during inference. Specifically, except for the two sets of logits (¢;. and £.pq,), We intro-
duced earlier, we compute a third set of logits ¢;—. To compute ¢ we completely drop text descriptions
from the transformer’s input, as we do when computing £.,. However, instead of using positive embeddings
for characters present in the description and negative ones for absent characters, we do the opposite. Negative
embeddings are used for characters present in the description and positive embeddings for characters absent in
the description. That is, the character embeddings in the input are: C; = {negchar feharer; U{POSchar }charg T, -
In a sense {_;— is computed using the "complement" of the input that is used to generate {.q,. The final
logits are now computed as follows:

L= (1 - f)gtc + 2f€char - f£m7 f € [0,]-) (838)

The intuition behind this idea is that if the addition of f.pq, pushes the logits towards generating the
characters present in the description, the subtraction of /_— actively pushes the logits away from the

generation of characters that are not in the current description.

The whole idea behind Character Guidance is akin to the way Classifier Free Guidance [12] is used in MUSE.
However, in our approach we introduce Character Embeddings and use the technique to simultaneously focus
on the text condition and on the the characters to be generated, instead of trading off diversity for fidelity.

8.4 Caption Set Augmentation

In order to shield our model against overfitting we experiment with augmentation of the text descriptions
(image captions). To that end, we employ an LLM. The LLM is instructed to generate alternative captions,
given the original one for each story.

We use ChatGPT 3.5 through the API provided by OpenAl to augment our training captions. For each
story (set of 5 captions) we give ChatGPT a description of its role, as a caption-augmenting assistant, along
with information about the characters in the dataset. Subsequently, we provide it with the five captions of
the story, that it needs to rephrase. This technique is closely related to the one adopted in [9]. However in
[9] examples of input-output caption pairs are provided as context, whereas we choose to provide domain
specific knowledge about the dataset as context. Additionally, we use the alternative captions while training
a generative model, where caption accuracy is of grater importance than contrastive language-image training,
which is the task in [9].

The role message is the following (Pororo Dataset):

"You are helping me generate more descriptive captions from the given text descriptiomns.
I want short, simple, visual captions to train a text to image model. Five consecutive
descriptions form a coherent story. The main characters in the descriptions are the
following: Pororo is a Penguin. Loopy is a pink Beaver. Crong is a green Dinosaur.
Eddy is a brown fox. Poby is a polar Bear. Petty is a blue female Penguin. Tongtong is
an Orange Dragon. Rody is a yellow Robot. Harry is a pink Bird."

The original story captions are given in the following form:

1. {caption 1}
2. A{caption 2}
3. A{caption 3}

84

8.5. Character-Attentive Token-Critic

4. {caption 4}
5. {caption 5}

ChatGPT returns the alternative captions:

{alt. caption 1}
{alt. caption 2}
{alt. caption 3}
{alt. caption 4}
{alt. caption 5}

O W N

This technique is closely related to the one emloyed in [9]. However in our case, domain specific knowledge
about the dateset is given as context, instead of providing ChatGPT with examples of input-output caption
pairs. Furthermore, in [9] the captions are used to train a contrastive language-image model[23|, while we
use the captions to train a generative model, where caption accuracy is of greater importance.

During training, we randomly pick either the original or the alternative caption for each image, on every epoch.
This way, we essentially provide different text descriptions for the same image on different epochs. On the
one hand, we expect this to help our model focus more on the word embeddings that are more important
and more relevant to the visual concepts in the image (e.g. the names of the characters). Additionally, we
hypothesise that this technique could improve the models understanding of the variance of language and help
it avoid overfitting to the expressions used in the original training corpus.

8.5 Character-Attentive Token-Critic

Based on the original idea of the Token-Critic we experiment with a Character-Attentive Token-Critic. Its
function is identical to the one described in Section 6.2.4. For our task, we choose to condition the predictions
of the token-critic using Character Embeddings. Specifically, the Token-Critic has C,, embeddings, one for
each main character(C), is the number of characters in the dataset). We train an auxiliary Transformer
(Token-Critic) that parameterizes py(.) under:

L= E[Z BCE(mj,py(m;|Y,)] (8.5.1)

j=1

where [mj}év:l is the binary mask, used in the MaskGIT training process, Y =Y ® (1-M)+YOM and ¢
(the condition) is formed by concatenating the Character Embeddings of the characters that are present in
the current caption. Conditioning is implemented through Cross-Attention.

During inference, the Character-Attentive Token Critic is used to predict confidence scores for the generated
image tokens, at each inference step, whilst attending to Character Embeddings.

8.6 Latent Super-Resolution Model

Inspired by MUSE, we experiment with the idea of using a Super-Resolution Transformer Model, with a
higher latent resolution, that conditions on outputs of a Base Transformer model, with a more compact
latent space. For this idea to work, we assume that we have two VQ-GAN models, operating at two different
resolutions: m; X my and ma X mg (my < ma).

8.6.1 Base Transformer

The Base Transformer model is MaskGST, like the one described in Section 8.3.3 and trained as we describe
in that Section, using MaskGIT’s formula. This Transformer uses the latent space of the VQ-GAN with
resolution my x my (latent space with higher compression factor).

85

Chapter 8. Masked Generative Story Transformer

8.6.2 Super-Resolution Transformer

When training the Super-Resolution Transformer, we assume that we have already completed the Base
Transformer’s training. The Super-Res Transformer is a MaskGST (Section 8.3.3), like the Base Model, but
with a higher resolution latent space (mg x ms). What is different in this model is its input.

Text Tokens H

oncat

*
Transformer Input

Predicted

Predicted Low-Res Image Tokens
Text Tokens redt . o

| Processed Low-Res Image Tokens |

Base
iy Self-Layers

; i

H HE H H

Transformer ——- By Faten i b h - i +Concat»;
(Pretrained) = L Hh i QL) i H ".'l‘
i i : ;

i oA ; :

High Res Image Tokens

= Random
Randoy

Flatten
I Masking

s CONCAL

Figure 8.6.1: The Super-Resolution Model’s input is formed by concatenating the Masked
High-Resolution(HR) image tokens, with the text tokens and the Low-Resolution(LR) image tokens,
predicted by the Base Model

Given the High Resolution image tokens Z = {Z1, Zs, ..., Z,} (Z; € R™2Xm2Xd) predicted by the respective
VQ-GAN, the text tokens T = {T},Ts,...,T,,} (T; € R™*?) and the Low Resolution image Tokens, ZF# =
{ZER ZER | ZLRY (ZER ¢ Rmixmixd) we form the transformer’s input as shown in Figure 8.6.1. The
image tokens Z € R™"*™m2xm2%d are flattened into a sequence Z' € R™*(m2m2)xd Then they are randomly
masked, as in MaskGIT to obtain Z € R™*(m2m2)xd The predicted Low Resolution Tokens are likewise
flattened and passed through a series of Self-Layers (following MUSE). Finally, the Masked HR image tokens,
the text tokens and the predicted LR image tokens are concatenated to form: Input; = (Z;; Ti; ZER). The
Transformer’s input can be written as :

Input = {Inputy, ..., Input,} € R (marmatltmam)xd (8.6.1)

where [is the length of a captions text representation and d is the Transformer’s hidden dimension.

8.7 Latent Space Disentanglement

With the improvement of character generation in mind, we propose a technique that attempts to disentangle
the latent features that map to characters from the rest. To that end, we modify the VQ-GAN architecture,
to add a second library of discrete latent vectors.

86

8.7. Latent Space Disentanglement

im Va-GAN

u
VQ-GAN 5 ? Decoder
—_

Encoder k l
-

(b) The VQ-GAN decoder remains the same,
(a) The VQ-GAN encoder remains untouched as well

Quantization

(Background Features)

Background Latent Space | | I
el e2 e3 e4 e5 ek E— 1.
Features encoded by the VQ-
GAN Encoder ENEN ---H | ‘ Input for the VQ-GAN Decoder
/ .
| u] -
e =
Ll | B >
‘. (Character Features)
u n
Character Latent Space L |]
e o
el e2 e3 e4 e5 ek —_ | | B Combine
Using Mask
ENEN ..-HH .|
am
||
)

Single Layer Classifier

Ve M = e :
A AnRnm D

08 09 01 03 02 05 04 01 03

(¢) We modify the quantization stage, trying to achieve feature disentanglement

Figure 8.7.1: Modified VQ-GAN for feature disentanglement

8.7.1 VQ-GAN Encoder and Decoder

As Figures 8.7.1a and 8.7.1b show, the Encoder and the Decoder of the VQ-GAN remain the same. As
we have described previously, they are both CNNs. the Encoder maps an image to a latent space: z €

R3XNXN > ¢ RDX%X%, where D is the dimensionality of the Latent Space and f is a compression
factor. Symmetrically, the Decoder maps a point in latent space to a point in pixel space (image): z €

N N
RDX 7 XF T GRSXNXN

8.7.2 Quantization with two Libraries of Latent Vectors

Instead of using a single library of latent vectors, as in the original VQ-GAN architecture, we use two:
gbackground ¢ REXD and echar ¢ REXP where K is number of discrete embeddings in each library and D
is dimensionality of the Latent Embeddings. The high-level idea is that e?®¢*97°und encodes features that
correspond to the background of an image, whereas e“"®" is concerned with character features. An overview
of the Quantization process can be seen in Figure 8.7.1c.

An image x € R¥*NXN s first passed through the encoder to obtain z, € RPOXFXF . We apply a D-

dimensional filter fyockground t0 2o and obtain z1 = fiackground(20). Then we quantize z; according to
gbackground "1y syubstituting each one of the (% X %) vectors (each vector has D dimensions) by their closest

N N
one in the library. The result of the quantization is zpackground € RP*7>T .

87

Chapter 8. Masked Generative Story Transformer

Similarly, we use another D-dimensional filter f.pq, to obtain zo = fepaer(20). Then we quantize z5 according
N N
to e and obtain zpe. € RPX7XF.

We combine zcpqr and 2packground Using a background mask. Let M € R%X T be the background mask, with:

1 if the (i,j) region in the original image belongs to the background (8.7.1)

background _ { 0 if the (i,j) region in the original image belongs to the foreground
2% -
Where regions with Characters are considered to belong to the foreground, whereas regions without characters
N N
are considered to belong to the background. We broadcast MPackoround from ppbackground ¢ RFXT to

Srbackground Dx & x & : : : .
M € R¥*7 77 . The final latent representation of the image if formed as follows:

2 = Zpackground © MPOFITOUnd oy 4o © Mbackground (8.7.2)

That is, for the regions that belong to the background, zysckground’s embeddings are used, whereas for regions
of the foreground (character regions) zcpqr-’s embeddings are used. z can be fed into the Decoder to produce
the reconstructed image.

As Figure 8.7.1c shows, the character latents z.,q, are also passed through a single-layer Neural Network. This
network takes in a flattened version of zenar, Zehar € RD'%% and outputs class probabilities for all the main
Characters in the dataset (9 for Pororo-SV). We train this simple network under a Multi-Label classification
loss, using character references in the corresponding captions as ground-truth. The purpose of this network
is to provide further feedback to the character latent library e“*" during training. By using a single layer
Neural-Network for classification we hope that the model will be forced to promote disentanglement in the
latent embeddings that encode different characters, themselves, because the classifier is supposedly too short
to perform the disentanglement in its entirety.

8.7.3 Foreground-Background Segmentation

In order to obtain the background Masks we follow the approach of [5], that we briefly outlined in Section
3.5.2. We use a pretrained convolutional classifier, fine-tuned to detect Characters in our dataset’s images.
We apply GradCAM [31], using the classifier, to produce a heatmap for each image. GradCAM provides
heatmaps that highlight image areas that are highly attended to when the image is passed through the
classifier. In our case, these areas are the Character regions in the image. The "relevance" of an image region
when taking the Classification decision is given as a real number. Therefore, GradCAM outputs a heatmap:
H € R¥*N where image regions that are highly attended to, during classification typically have greater
values. By choosing an activation threshold h, we can easily obtain a background mask, from H as follows:

i P>
Ml_b;ckground — { 0 if HZ:J = h (873)

1 ifH;; <h
where a mask value of 1 (masked out) corresponds to areas that do not contain Characters.

8.7.4 Modifications in the Transformer

The Transformer used for this method is very similar to the ones we have already discussed, with some small
modifications.

Training

As we described in Section 8.3.3, after dropping the text part of the transformer’s output we get the following
result:

Output = {Outputy, ..., Output, } € R™*(mm)xd (8.7.4)

Originally, we use one linear transformation, to turn these outputs into logits, which are enough to predict
the image tokens in the latent space of the original VQ-GAN.

88

8.7. Latent Space Disentanglement

However, when using a VQ-GAN with two Latent Libraries, as we described above, we need the transformer
to predict the following, in order to generate an image:

e Character logits (and thus Character Tokens)
e Background logits (and thus Background Tokens)
e Background mask.

In order to achieve this, we introduce three linear transformations in the Transformer (instead of one):
To Char_ Logits, To Background Logits, To Mask. Where:

y°"*" = To_Char_Logits(Output) € R™* (mm+)xK
ybackground — o Background _Logits(Output) € R (mmH+DxK (8.7.5)
y™k = To Mask(Output) € R (mm+D)x1

The loss function is a slightly modified version of MaskGIT’s loss:

L= ‘Cchar + ‘Cbackground + £mask:a (876)
where:
Echar = *E[Z logp(y;':har|YM)]
Vie[1,N],mizl,m?“k-‘?m“"‘izo
Ebackground = 7]E[Z logp(yfackgrounﬂYM)] (877)

Vie[l,N] 7mi:17m:ackgro1Lﬂ,d:1

['mask _ »CCE(ymaSk; Mbackground)

Y stands for the indices of the embeddings in z, where z is given by Equation 8.7.2, whereas Yj; is the masked
version of the indices, according to MaskGIT’s masking schedule. Note that the random mask M that is used
here is not to be confused with the Background mask Mbaeckground —p . is the MaskGIT style loss for the
character logits, in Character regions of the image. Lygckground is the MaskGIT style loss for the background
logits, in background regions of the image. L,,qsx is the cross-entropy loss between the ground-truth and
predicted Background mask.

Except for the changes described above, the rest of the model is identical to our initial MaskGST.

Inference

During inference we need to generate the Background Mask, the Character Logits and the Background Logits.
We start by generating the Background Mask. We do this with a single pass through the transformer. For
this pass, all visual tokens in the input are masked. We get an output as described by Equation 8.7.4. Finally,
we form o(To_Mask(Output)) € R™*™*™ where o(.) stands for the sigmoid function. The Background
Mask can be predicted as:

crbackground _ { 1 if O—(TO_MaSk(OUtpU‘t))iJ»k 205 (878)

b3k 0 if o(To_Mask(OQutput)); jr < 0.5

After predicting the Background Mask, we perform iterative parallel decoding as in MaskGIT. The only
difference is that at each step we predict Character Logits and Background Logits. Then the logits are
formed as :

Lo LogitsPaskaround jp yybackaround _ 579
0gULsi 5k = " Char .p 2 rbackground -
Logits; ;' if M5 =0

89

Chapter 8. Masked Generative Story Transformer

90

Chapter 9

Experimental Section

9.1 Experimental Setup
9.1.1 Codebase

Our entire codebase is developed in PyTorch. The code for the MaskGIT models is adapted from an open
source implementation of MUSE!. For image tokenization, we use the original VQ-GAN implementation
from Taming Transformers [8], that is available on github?. All experimental modifications of the VQ-
GAN architecture are also based on this implementation. The BPE tokenizer that we use is built using the
Tokenizer class from Hugging Face?.

9.1.2 Training Environment

All experiments are performed on the training environment provided by GRNET on ARIS. Specifically, we
perform all training and inference on a sinlge NVIDIA V100-16GB GPU.

9.1.3 Story Visualization Datasets
Pororo-SV

The main dataset used in literature, for Story Visu-
alization is Pororo-SV, proposed in [18]. It is based
on a cartoon series names "Pororo the Little Pen-
guin". Pororo-SV was, in fact adapted from a Video-
QA dataset [14] based on this series. The original
Loppy Harry QA dataset comprised of short videos that where
e T associated with text descriptions. In order to adapt

.0 the dataset for story visualization, the text descrip-
;. 4y$ tions are used as the text input for stories. Addi-
£ tionaly, a frame is sampled from each short video
Petty Poby Tongtong Rody and is associated with the corresponding text de-
scription, as its ground-truth image. Five contin-
uous text-image pairs form a story. The Pororo-
SV dataset contains 15,336 stories in total. The
split used in the original StoryGAN paper contained
13,000/2,336 train/test stories. However, there was overlap between the images used in the training and test
sets, that is not considered good practice. Therefore, we adopt the split proposed in [20], which comprises

Pororo

Figure 9.1.1: Main characters featured in Pororo-SV

Thttps://github.com/lucidrains /muse-maskgit-pytorch
2https://github.com/CompVis/taming-transformers
3https://huggingface.co/learn/nlp-course/chapter6

91

https://github.com/lucidrains/muse-maskgit-pytorch
https://github.com/CompVis/taming-transformers
https://huggingface.co/learn/nlp-course/chapter6/8?fw=pt

Chapter 9. Experimental Section

of 10191/2334/2208 train/validate/test stories. There is no overlap between the train and test sets in this
split. The dataset features 9 recurring characters that can be seen in Figure 9.1.1

Flintstones-SV

The Flintstones-SV dataset was proposed in [19]. It was adapted from a Text-to-Video Dataset. A single
frame is sampled from each video clip and frames from adjacent clips are gathered into 5-frame stories, similar
to what we have in Pororo-SV. Flintstones-SV features 7 major recurring characters and has 20132,/2071/2309
training/validation/test samples.

9.1.4 Story Visualization Metrics
FID

We evaluate the quality of the generated images using FID. To compute FID we use an pretrained Inception
v3 (a CNN) to extract features from images. After extracting the features of the generated images and the
ground truth ones, we compares their means and standard deviations. Deep level features extracted from
a CNN are expected to correspond to high-level real-world concepts and are, therefore considered to be a
better ground for comparison, compared to straight comparison of image pixels.

Character-F1

Character-F1 score is proposed as a metric in [20]. They fine-tune a pretrained Inception v3 model with
multi-label classification loss, to identify the presence of main characters in images. This model is then used
to predict the presence of characters in generated images. Using the reference of the characters’ names in
captions as ground-truth we can calculate a models F1-score on character generation. Since we have multiple
characters, a micro-average F1l-score is calculated. For the sake of consistency we use the same fine-tuned
Inception v3, that is publicly available.

Character Accuracy

Similarly to Character-F1, [20] proposes to use the fine-tuned model that was mentioned above, to calculate a
models character generation accuracy (Character-Accuracy). The three metrics mentioned above have been
widely adopted by papers that study the Task of Story Visualization.

BLEU-2/3

In [20] additional evaluation method is proposed to better capture the narrative element of the task. Specifi-
cally, they fine-tune a video captioning model and use it to produce a single text-description for an image-story.
They produce story captions using the generated image-stories as well as the ground-truth ones. Finally,
BLEU evaluation is performed between the generated and ground-truth descriptions. This method is not as
widely adopted as the previous ones, while several different video captioning models have been used in differ-
ent works. However, we choose to adopt the original video captioning model from [20] and report BLEU-2/3
scores as a supplementary evaluation metric.

92

9.2. Architectural Experiments

9.2 Architectural Experiments

9.2.1 Image Tokenizer
VQ-GAN

During early experimentation we test the following compression factors for VQ-GAN’s latent space: f =4,
f =8and f = 16, that correspond to latent resolutions of sizes 16 x 16, 8 x 8 and 4 x 4 respectively (all
images in the dataset are of size 64 x 64). The size of the Latent Space is set to 128 x 256, i.e. 128 discrete
latent embeddings, with 256 features each, for all models. All models have ~ 35M parameters.

As our intuition would suggest, we found that lower compression factors lead to better image reconstruction
when training the VQ-GAN model. That is, for f = 4 we obtain better reconstruction FID compared to
f =8 and f = 8 achieves better reconstructions than f = 16. However, when combining VQ-GAN with our
transformer models to predict image tokens from text, we found that this is not the case. When paired with
a transformer, the VQ-GAN with f = 8 yields the best results, by far, across all metrics.

The above observation might seem counter-intuitive, but we make the following hypothesis: When predicting
image tokens from text, our model will find it difficult to reproduce very fine details in the image based on
a small text description, that might not even contain these details. Therefore, using a very expressive latent
space (low compression factor) might not be beneficial, since the latent tokens will represent finer details in
the image and our model will fail to effectively map text into them. On the other hand, a more compressed
latent space will be composed of tokens that encode "coarser" characteristics in the images. We hypothesise,
that such tokens are more suitable to predict from text descriptions that lack fine details. This could explain
why a more compact latent space (f = 8) might outperform a more expressive one (f = 16) when predicting
images from text. Of course, if we choose to use too high a compression factor, there will unavoidably be a
decline in the generated image quality at some point, as the features encoded in the latent space will get too
"coarse". This could explain why our VQ-GAN with f = 8 performs better that the one with f = 16.

9.2.2 MaskGST

As we mentioned in Section 8.3.3 the vanilla MaskGST is composed of two Full-Layers followed by several
Self-Layers. For our experiment, we choose the number of Self-Layers to be equal to 4, which translates into 6
layers in total for the Transformer. The model is identical to example shown in Figure 8.3.5. The Transformer
Dimension is set to d = 1024. The Vocabulary Size for the text embeddings is set to Nyocap = 2500. We
use Scaled Dot-Product Attention and the number of attention heads is set to npeqads = 8. The Transformer
has 70M parameters and the entire MaskGIT model (including the VQ-GAN) has 105M parameters. We
train the model for 200 Epochs with a learning rate of Ir = 5e — 3. As we can see in Table 9.6, MaskGST
outperforms previous GAN architectures in all metrics. It also, closely approaches previous Transformer
Architectures, even surpassing them in terms of Character Accuracy and BLEU scores.

We use this model as our baseline architecture. All next experiments build on this baseline in different ways,
in search of ideas that can improve the quality of the generated stories.

9.2.3 MaskGST-SV

In Section 8.3.3 we described MaskGST-SV as a model that starts with two full-layers, optionally followed by
several self-layers, followed by two SV-layers, optionally followed by several extra self-layers. We experiment
with three alternative configurations that follow these rules. They can be seen in Figure 9.2.1

93

Chapter 9. Experimental Section

SV-Transformer

SV-Layer

Self-Layer

Full- Layer Self-Layer
SV-Layer

Preprocessing —

SV-Layer
T~ Postprocessing

—

Self-
ntion

Atte

-Forward I

Self-

Feed-Forward

<
S
s E
]
L]
<

Cross-
Attention
Feed-Forward

=
S
=
3
£
<

Feed:

(2x) (4x)

(2x)

(a) MaskGST-SV with the SV-layers positioned early in the generative process

SV-Transformer

SV-Layer

Self-Layer

Gl Ly Self-Layer Self-Layer
SV-Layer
Preprocessing —7

SV-Layer
P~ Postprocessing X

Self
Attention

Feed-Forward I

Feed-Forwar

<
Iar
&2
33
2 g
Z

Feed-Forward

1
5
£
i
B
3
fid

(2x) (2x)

(2x)

(b) MaskGST-SV with the SV-layers positioned in the middle of the generative process

SV-Transformer

SV-Layer

Self-Layer

Full- Layer Self-Layer

ntion |
P

Attel

SV-Layer
Preprocessing —

SV-Layer
[~ Postprocessing

-Forward I
®

Self-

c
L
L
5
B
£

Self-

Cross:
Attention
Feed-Forward

c
&

2
2
<

Feed-Forward
Feed

(2x) (4x)

(2x)

(c) MaskGST-SV with the SV-layers positioned in the end of the generative process

Figure 9.2.1: Alternative MaskGST-SV architectures

Configuration (a) (Figure 9.2.1a) consists of 2 Full-Layers, followed by 2 SV-Layers, followed by 4 Self-Layers.
Configuration (b) (Figure 9.2.1b) consists of 2 Full-Layers, followed by 2 Self-Layers, followed by 2 SV-Layers,
followed by 2 Self-Layers. Finally, configuration (c¢) (Figure 9.2.1¢) is comprised of 2 Full-Layers, followed by
4 Self-Layers, followed by 2 SV-Layers. One can easily observe that all three alternatives utilize 2 Full-layers,
4 Self-Layers and 2 SV-Layers, for a total of 8 layers. What changes is the position where the SV-Layers
are inserted. Starting from the first configuration and moving towards the third one, the SV-Layers are
progressively moved from an early stage in the generative process to later ones.

All hyperparameters are kept the same as in MaskGST (d = 1024, nyocap = 2500, Npeads = 8. Ir = e — 3,
Nepochs = 2001).

94

9.2. Architectural Experiments

Model FID Char-F1 Char-Acc BLEU-2/3
MaskGST 66.12 50.48 26.12 4.68/2.01
MaskGST-SV (a) | 63.73 51.83 26.50 4.83/2.17
MaskGST-SV (b) | 62.60 52.48 26.65 4.74/1.96
MaskGST-SV (c) | 76.34 42.68 18.94 4.27/1.84

Table 9.1: Experimental Results for MaskGST-SV

In Table 9.1 we gather the results for all three configurations. We also include the vanilla MaskGST’s results
as a reference. We observe that configurations (a) and (b) bring improvement across all metrics compared to
the vanilla version. Specifically, configuration (b) achieves the largest improvement upon FID, Char-F1 and
Char-Acc, which we consider our principal metrics (in terms of BLEU scores, config (a) is slightly better).
Configuration (a) places the SV-Layers immediately after the first 2 Full-Layers, compared to (b) that places
them later on the generative process, by inserting 2 Self-Layer between the Full-Layers and the SV-Layers.
Full-Layers and Self-Layers treat the visual tokens of each image separately. Therefore, (b) that employs more
such layers before the SV-Layers allows the visual tokens to be formed by there local context in a deeper
way, before the SV-layers that treat all tokens from the story as a continuous sequence. We hypothesize that
letting image tokens be forged by local attention through more layers, before getting into the SV part of the
Transformer in configuration (b) is what makes it prevail compared to (a).

Contrary to configurations (a) and (b), configuration (c) yields significantly worst results (higher FID and
lower Char-F1, Char-Acc and BLEU scores) compared to the other configurations and even compared to the
vanilla MaskGST. Our results point out that SV-Layers should definitely not be placed last in the generative
process. That is, they should be followed by several other layers that deal with visual tokens of each image
separately (Self-Layers).

In general, our results make it evident that the inclusion of SV-Layers in the generative process for the task
of Story Visualization can be beneficial. However, the position of these layers is of great importance and
should be subject to careful tuning for a specific model.

9.2.4 T5-XXL as a Text Encoder

To experiment with T5-XXL as a Text Encoder, we use MaskGST, without its text embeddings. Instead
of using them, we get an encoding for each caption by passing it through a pretrained T5-XXL model and
using its last hidden states as input text embeddings for our Transformer. In Table 9.3 we can see that
this approach (MaskGST w/ T5-XXL) does not significantly improve any metric compared to the vanilla
MaskGST. In fact, FID is slightly raised, while Char-Acc and BLEU scores are reduced. Only Char-F1

improves by a small margin.

This comes against the intuition that a strong text encoder will provide the model with more expressive
text embeddings, that will supposedly lead to an improvement in image token generation. However, we
argue that this is to be expected because the language corpus of our datasets significantly differs from the
everyday language that is supposed ot be best understood and encoded by a text model. Specifically, the
most significant words in our corpus are arguably the names of the Characters (e.g. Pororo, Crong etc),
most of which are not "real" words of the English Language. It follows that a text model, like T5-XXL, will
probably not be primed to encode them with deep meaning, since they belong to a very niche type of corpus.
On the contrary, training text embeddings from scratch, as we do in our original MaskGST, allows to form a
specific embedding for each one of the Character names (and any other significant word in our dataset) and
forge it in a way that is precisely beneficial for our image generation objective.

9.2.5 Caption Set Augmentation via ChatGPT

The model used in this experiment is identical to the MaskGST that is used in our initial experiment.
The only thing that changes is that during training we randomly pick between the original caption and
the ChatGPT-generated one for each training sample, at each epoch. During inference we use the original
captions of the dataset.

95

Chapter 9. Experimental Section

As we can see in Table 9.3, this experiment (MaskGST w/ aug. captions) yields significantly improved
compared to the vanilla MaskGST (initial experiment), across all metrics (except for BLEU scores, that
are slightly lower). It is of essence to point out the fact that these improvements are solely a result of
the augmented training captions, since the model is exactly the same in both cases. We presume that our
results confirm our hypothesis, that using multiple captions for each image helps the model focus on the most
important concepts (e.g. Character names) and shields against overfitting.

This experiment showcases the ability of LLM’s to assist with tasks that they have not been directly optimized
for, with remarkable skill. Especially in our case, carrying out text data augmentation following specific
instructions, is a very useful automation, since it is a tedious task to ask human annotators to carry out, at
a large scale.

9.2.6 Character Guidance

In order to conduct this experiment we use MaskGST and add 2C,, Character Embeddings (one positive and
one negative per character) as we detailed in Section 8.3.4 (C,, = 9 for Pororo-SV). The hyperparameters
of the model are the same as in previous experiments (d = 1024, nyocap = 2500, Npeads = 8. Ir = He — 3,
Nepochs = 200).

When training, we set the text condition drop probability to 20%, that is we completely drop the text
embeddings for 20% of the training samples, at each epoch and replace them with a [NULL] embedding. For
these samples, the Transformer predicts the masked image tokens solely relying on image token self-attention
and the Character Embeddings. For the remaining 80% of the training samples, we condition on both text
embeddings and Character Embeddings.

At inference time we form text-conditioned logits ¢;. and character conditioned logits .14, as we described
in Section 8.3.4. The final logits are given by: ¢ = (1 — f)lie + flehar- We choose f = 0.2, which is
consistent with the text-condition drop probability at training time and is also is proven to be a good choice
experimentally.

The results for this experiment can be seen in Table 9.3 (MaskGST-CG,). We observe that this variation
of the original architecture has a significant positive impact on all metrics. Our assumption that using
explicit character logits, together with the text-conditioned logits will improve Character Generation is clearly
confirmed by the significant improvement of both Char-F1 and Char-Acc. It is also important to point out
that by doing so we get the added benefit of a surprisingly reduced FID score (66.12 for the Baseline
MaskGST vs. 56.78 when adding Character Guidance). BLEU scores are raised as well. It is also worth
mentioning that these improvements are achieved without any significant increase in model size. Specifically,
the Character Embeddings that we add to the original architecture only have several thousand parameters,
which is negligible when added to a model of size in the orders of ~ 100M parameters.

9.2.7 Negative Prompting

For this experiment we use the same model as in the previous one (Character Guidance). Therefore, nothing
changes architecture-wise and training-wise. What we modify is the inference scheme. At each iteration of
the inference process, we calculate the text-conditional logits and the "logical complement" of the character
logits (¢;—), as we detail in Section 8.3.4. The logits (¢) at the current step are then calculated as: ¢ =

L+ e — flg

The results for this experiment can be seen in Table 9.3 (MaskGST-CG_). It is evident that Negative
Prompting is beneficial for all metrics. Specifically, in terms of Char-F1 and Char-Acc the improvement is
of the same magnitude as in Character Guidance. In terms of FID, we can still see an improvement, albeit
more modest than the one achieved by Character Guidance, while BLEU scores deteriorate slightly.

A fuller and more natural way to use Negative Prompting is to combine it with Character Guidance, in order
to push the logits towards Characters that need to be present in an image and away from Characters we
that need to be absent. To achieve this, we form the logits (¢) at each iteration of the inference process as a
combination of three independent sets of logits: text-conditional logits (¢;.), character logits (£cpqr) and the

96

9.2. Architectural Experiments

"logical complement" of the character logits (/-—). We obtain £ as follows:

t= (1 7f)€tc+2f€char 7f£m (921)
with f = 0.2. Note that the sum of logit coefficients is (1 — f) +2f — f = 1.

The results for this method are in Table 9.3 (MaskGST-CG.). We observe that the combination of Character
Guidance and Negative Prompting is indeed beneficial. The two methods seem to reinforce and complement
each other in order to improve the results even more, across the four metrics. This combination of methods

yields the best results compared to all previous Architectural experiments (lowest FID and highest Char-F1,
Char-Acc and BLEU).

9.2.8 Character-Attentive Token Critic

As we described in Section 8.5, the token Critic is an auxiliary Transformer that utilizes self-attention
between visual tokens and cross-attention with trained Character Embeddings to output confidence scores
for the visual tokens at each iteration of the inference process. The confidence scores are then used to decide
which tokens to keep and which to remask for the next iteration. The transformer that we experiment with
can be seen in Figure 9.2.2. It comprises of 4 consecutive Full-Layers. It takes in the output of the generative
(MaskGST) Transformer and outputs a number between 0 and 1 for each visual token (its confidence score).
We train a Token-Critic with the Transformer Dimension set to d = 512. We use Scaled Dot-Product
Attention and the number of attention heads is set to npeqads = 8. The entire model (including the generative
Transformer and the VQ-GAN) contains 139M parameters. We train the Generative Transformer (MaskGST)
and the Token-Critic jointly, for 200 Epochs with a learning rate of Ir = 5e — 3. The Generative Transformer
used for this experiment is the vanilla MaskGST.

Character Embeddings
-
-
-
e

Token|Critic

Full—;Layer

!

Predicted Image Tokens

—

Token Scores

0.3 08 0.4 07
03 0.9 04 06
07 02 08 07
05 04 02 01

Self-
Attention
Cross:
Attention

—

Feed-Forward

0.5 07 09 02

(4%)

Figure 9.2.2: The Token-Critic takes in the predicted image tokens and uses cross-attention with Character
Embeddings to output more informed confidence scores for each visual token in the sequence.

The results for this experiment can be seen in Table 9.3 (MaskGST w/ Char-Attn T.C.). We observe that
by using the Token-Critic during inference we face a substantial performance decline across all metrics. One
possible explanation for this result is that solely using trained Character Embeddings as a condition for
the Token-Critic to predict image token confidence scores is not expressive enough. This could explain why
the model fails to distinguish the more suitable tokens from the less suitable ones and therefore leads to a
disappointing result.

9.2.9 Latent Super-Resolution Model

We use the vanilla MaskGST that we have already trained for our first experiment as the base Transformer
for our Super-Resolution experiment. Our original MaskGST predicts image tokens of an 8 x 8 resolution,
using the latent space of a VQ-GAN with f = 8. We train a second Transformer that predicts image tokens

97

Chapter 9. Experimental Section

conditioning on text embeddings as well as the low-resolution image tokens predicted by the base model,
as we have already described in Section 8.6. This Super-Res Transformer operates in the latent space of a
VQ-GAN with f =4 (16 x 16 resolution).

The Super-Res Transformer that we use is the exact same as our original MaskGST, i.e. 2 Full-Layers,
followed by 4 Self-Layers. The Transformer Dimension is d = 1024. The Vocabulary Size is nyocapr = 2500.
The number of attention heads is set to npeqqs = 8. The number of training epochs is 200 and the learning
rate is set to Ir = 5e — 3. As Figure 8.6.1 shows, the low-resolution image tokens go through a series of
Self-Layers before being used as input to the Super-Res Transformer. We use 4 Self-Layers with d = 1024
and Npeqqs = 8. The total number of parameters for this model, including the VQ-GAN and excluding the
base model is 139M.

In Table 9.3 (MaskGST w/ Latent Super Res.) we can see the results for this experiment. This method yields
worst results, in all metrics, even compared to the baseline MaskGST, whose tokens it uses for condition-
ing. We believe that these findings are further evidence for the remarks we made concerning the VQ-GAN
experiments in Section 9.2.1. Specifically, we had made the hypotheses that a Transformer finds it hard to
operate in a high-resolution latent space (16 x 16) because of its fine features that cannot be easily mapped
to text-features, using our datasets. We believe this to be - at least in part - the explanation for the failure of
this approach as well, since our Transformer performs subpar at a HR latent space, even when conditioning
on the LR image tokens of our relatively better (vanilla) MaskGST.

9.2.10 Latent Space Disentanglement

For this experiment we train a modified VQ-GAN with two latent spaces, echer, egbackground o R128x256 59

we described in Section 8.7. Using these spaces, the VQ-GAN encodes an image according to the Character
Space and the Background Space and combines these encoding according to a Background Mask to form
the final latent representation. This representation can be decoded through the Decoder to reconstruct the
initial image.

We obtain the Background Mask by applying GradCAM on a classifier that is trained to identify all Characters
in the dataset. To that end, we fine-tune a pretrained resnet-50 with a multi-label classification loss on our
dataset’s training images.

Qualitative Test of Disentanglement

We formulate a qualitative test to get an idea of whether the VQ-GAN achieves the disentanglement it was
designed for to some extend.

Let &(.),D(.), Qhar(.), Qbackground() denote the Encoder, Decoder, Character Latent Quantization and
Background Latent Quantization functions respectively. As we described in Section 8.7, an image x
is encoded into an initial latent representation zg = &(z). zp is then mapped into two separate la-
tent spaces (using filters f; and f3) and quantized according to the respective quantization functions:
Zbackground — Qbackground(fl(ZO)) and Rchar = QchaT(fl(ZO))' The final latent representation is formed
as:

“rback d Y
z = Zbackground @ M acrgroun + Zchar @ Mbackground (922)

where Mbackground ig the Background Mask. The image can be reconstructed using the decoder: & = D(z)

As we already detailed, the idea behind our method is to push the model towards disentangling high level
features of the Characters (e.g. color, shape) from those of the Background of the scenes (e.g. trees, snow).
We want character features to be encoded in zcpq, and background features in zpackground. We check whether
that is the case, by reconstructing images, only using one of the latent representations. That is, we produce
Zehar = D(2char) and Zpackground = D(Zbackground). Presumably, Zepqr uses the "character features" of the
original image, whereas Zpqckgrouna uses the "background features" of the original image. Thus we would
expect the former to reconstruct Character regions in the image much better that Background regions and
vice versa for the later one.

98

9.2. Architectural Experiments

Figure 9.2.3 shows some examples of our test:

e The first example, in Figure 9.2.3a is relatively successful in terms of what we would expect. Zcpqr
recreates the characters much better than Tyackground, especially Eddy (the fox that appears in most
of the images). On the contrary, Tpackground does not capture Eddy very well, but it reconstruct the
background much more loyally (e.g. trees, color of the sunset).

e In Example 2 (Figure 9.2.3b), we observe that x4, captures the Characters fairly well. It also gets the
main features of the background right (e.g. color of the snow, trees in the third and fourth image). On
the other hand Tyackgrouna mostly fails to recreate the characters. Especially in the third and fourth
panel, it almost removes them. Additionally, if we look closely, it reconstructs the background more
faithfully than z.pq,-. Specifically, the shape of the clouds in the sky, in the first two panels is more
accurate and the mountains behind the trees in images 3 and 4 are present, whereas in x.p4., they have
disappeared.

e Example 3 (Figure 9.2.3¢) is less successful. We observe that Poby (the white bear) appears in .pq, as
well as Zpqckground- The background is similar in both reconstructions, although the color of the wall
in the fourth and fifth image is captured more accurately in Zpqckground. Finally, we can see that loopy
(the pink beaver in the first image) is reconstructed in xz.har, while Tpackgrouna fails to get the color
right.

Story Visualization Results

We pair the double-latent-space VQ-GAN with a transformer as described in Section 8.7. The hyperpa-
rameters of the Transformer remain the same as in the initial MaskGST. The only difference is that we
use three linear projections, instead of one, in order to map the transformer’s output into Character Logits,
Background Logits and Background Mask.

The results for this experiment (Table 9.3 - MaskGST w/ latent space disentanglement) are underwhelming
across all metrics. FID is raised and Char-F1 and Char-Acc are lowered compared to the initial MaskGST.
We assume that the Transformer’s failure could be explained by the complexity of its modeling task. Specifi-
cally, in this experiment, we expect it to model both pg(zchar|T) and po(2background|T’), where 6 represents the
Transformer parameters and 7" represents the text inputs. Since Zepar a0d Zpgckground are, in this case, mod-
elled in different latent spaces, maybe it becomes infeasible for the Transformer to learn the two distributions
jointly.

9.2.11 Combining Methods
Through the previous experiments we identified several ideas that brought promising results. In this section,
we test whether methods that worked well independently can be combined to reinforce each other and

further improve our results. Specifically, there are three methods that achieved improvements compared to
our baseline MaskGST:

e MaskGST-SV (config b)
e MaskGST with caption augmentation
e MaskGST-CG. (Character Guidance and Negative Prompting)
We combine the above methods, in pairs and then all three together. In Table 9.2 we gather the results for

these experiments. We also include the results for the Baseline MaskGST and the independent experiments
for ease of comparison.

99

Chapter 9. Experimental Section

X (original

(b) Example 2
x (original)

(c) Example 3

Figure 9.2.3: Examples of our disentanglement test

100

9.3. Experiments on Hyper-Parameters

Model N-params FID Char-F1 Char-Acc BLEU-2/3
(baseline) MaskGST 105M 66.12 50.48 26.12 4.68/2.01
MaskGST-SV (config b) 127M 62.60 52.48 26.65 4.74/1.96
MaskGST w/ T5-XXL 105M (+t5-xx1=770M) | 66.63 51.18 25.86 4.55/1.85
MaskGST w/ aug. captions 105M 59.91 54.64 28.67 4.45/1.81
MaskGST-CG 4+ 105M 56.78 55.35 29.80 4.91/2.06
MaskGST-CG_ 105M 62.33 55.27 30.06 4.53/1.89
MaskGST-CG+ 105M 54.95 59.55 33.64 4.96/2.10
MaskGST w/ Latent Super Res. 136M 87.55 48.04 23.17 4.21/1.64
MaskGST w/ Char-Attn T.C. 139M 77.98 42.20 19.12 3.51/1.39
MaskGST w/ latent space disentanglement 1056M 68.42 43.28 20.67 3.90/1.59
Table 9.3: Experimental Results
Comment Model N-params | FID Char-F1 Char-Acc BLEU-2/3
Initial baseline Baseline MaskGST 106M 66.12 50.48 26.12 4.68/2.01
Individual MaskGST-SV (config b) 127M 62.60 52.48 26.65 4.74/1.96
Experiments MaskGST w/ aug. captions 1056M 59.91 54.64 28.67 4.45/1.81
MaskGST-CG- 105M 54.95 59.55 33.64 4.96/2.10
Pairing MaskGST-SV + aug. captions 127TM 58.54 54.31 28.17 4.83/2.04
Individual MaskGST-SV-CG. 127TM 60.40 57.75 32.26 4.82/1.97
Experiments MaskGST-CG-1 w/ aug. captions 105M 51.65 60.46 33.62 4.82/2.00
Combining
Ind{éilllual MaskGST-SV-CGy w/ aug. captions 127TM 56.89 60.05 33.54 4.83/1.98
Experiments

Table 9.2: Combining Different Methods

We observe that the best combination is MaskGST-CG-+ w/ aug. captions. Specifically, it improves FID by
more than 3 units and Char-F1 by almost one unit, compared to MaskGST-CG-,. Char-Acc remains the
same.

It turns out that combining the MaskGST-SV with character guidance & negative prompting is not benefi-
cial. We assume that this is the case because the later method explicitly encodes the presence or absence
(Positive and Negative Embeddings) of Characters in the input that corresponds to each image. However,
the MaskGST-SV allows the visual tokens of an image to attend to the inputs for all images in the story (not
just their own). Since a Character might be present in an input caption and absent in another caption of the
same story, the visual tokens of an image inside MaskGST-SV will, thus end up attending to both Positive
and Negative Embeddings for this Character, which is probably confusing for the model.

9.3 Experiments on Hyper-Parameters

9.3.1 Transformer Hyper-Parameters

After having arrived at our best Architecture: MaskGST-CG-1 w/ aug. captions, we perform two non-
exhaustive experiments on its Hyper-Parameters. Namely, we explore the effect of the length (number of
layers) and width (hidden dimension) of the Transformer, on our results.

Table 9.4 shows the results for the experiments in terms of length. We keep the other hyper-parameters
unchanged (Transformer dimension is d = 1024) and scale its length from 4 layers up to 16 layers. We
observe that increasing the length of the model results in improvement in all metrics.

In Table 9.5, we gather the results regarding the Transformer’s dimension (width). For these experiments we
keep all other hyper-parameters constant and vary the dimension from d = 768 to d = 2048. The number

101

Chapter 9. Experimental Section

Transformer Length N-params | FID Char-F1 Char-Acc BLEU-2/3
{2 Full-Layers} + {2 Self-Layers} 85M 56.40 57.88 31.01 4.80/2.00
{2 Full-Layers} + {4 Self-Layers} 105M 51.65 60.46 33.62 4.96/2.10
{2 Full-Layers} + {14 Self-Layers} | 210M | 47.76 63.37 34.92 5.03/2.13

Table 9.4: Experiments on the Transformer Length of MaskGST-CG4

Transformer Dimension | N-params | FID Char-F1 Char-Acc BLEU-2/3
768 79M 54.90 58.21 31.65 4.90/2.05
1024 106M 51.65 60.46 33.62 4.96/2.10
2048 276M 42.86 65.10 37.50 5.13/2.26

Table 9.5: Experiments on the Transformer Dimension of MaskGST-CG+

of layers in these models is 6 (2 Full-Layers followed by 2 Self-Layers). Increasing the width of the model is
beneficial across all metrics. In fact, the Transformer with d = 2048 is our top-performing model.

9.3.2 Study on Character Guidance

Using our top model, MaskGST-CGy+ w/ aug.captions (d=2048), we perform a study, on the Character
Guidance factor (f) (Equation 8.3.8). Our results are summarized in Figure 9.3.1. The curves that represent
the Character Metrics have the exact same shape. They are increasing, up until f = 0.6 and decrease slightly
for f = 0.8. FID, on other hand decreases (improves) until f = 0.4 and then it increases for the next
two experiments. At an intuitive level, what we see is that by increasing f we improve the generation of
Characters. This is to be expected, since, by increasing f, we pay more attention to the Character logits
vs the text-conditional logits, when forming the images. By improving the generation of Characters, we
also improve the overall quality of the images, to a certain extend, since Characters are a significant part
of them. This is why the increase of f up until the value of 0.4 improves FID (image quality). However
increasing f more than that has an adverse effect on overall image quality, since we weigh Character logits
disproportionately highly and neglect text-conditional logits, which leads the model to fail in creating other
aspects of images, except for Characters.

For f = 0.4 we get the optimal combination of metrics (68.32, 41.40 and 42.49 for Char-F1, Char-Acc and
FID, respectively). However, in practice, we find that even f = 0.4 makes the model focus too much on
Character generation and has an adverse effect on the overall quality of the image-story, by impairing the
coherence between images. We find f = 0.2 to achieve the best trade-off between Character Generation and
Story Quality, at a qualitative level.

102

9.4. Comparison With Previous Baselines
Model Family Model N-params | FID Char-F1 Char-Acc BLEU-2/3
StoryGAN - 158.06 18.59 9.34 3.24/1.22
GAN CP-CSV - 149.29 21.78 10.03 3.25/1.22
DUCO 101M 96.51 38.01 13.97 3.68/1.34
VLC 100M 84.96 43.02 17.36 3.80/1.44
Auto-Regressive Transformers VP-CSV - 65.51 56.84 25.87 4.45/1.80
CMOTA 97TM 52.13 53.25 24.72 4.58/1.90
AR-LDM 1.5B 16.59 - - -
Diffusion Models ACM-VSG 850M 15.48 - - -
Causal-Story - 16.28 - - -
(baseline) MaskGST 105M 66.12 50.48 26.12 4.68/2.01
MaskGIT Transformers MaskGST-CG4
(1=6,d—1024) 105M 51.65 60.46 33.62 4.96/2.10
MaskGST-CG4
(1=6,d—2048) 276M 42.86 65.10 37.50 5.13/2.26

Table 9.6: Comparison with previous architectures

Study on Character Guidance

67.5
65.0
62.5
60.0 -

—— Char-Fl

0.0

0.2 0.4

0.8

40 1

35 1

—#— Char-Acc

0.0

0.2 0.4

0.8

FID
50 1

45

0.0

0.2 0.4

0.8

Figure 9.3.1: Study on the Character Guidance factor f.

9.4 Comparison With Previous Baselines

We compare our models to several previous arts.

In terms of GAN models, we compare to StoryGAN

[18], CP-CSV][36], DUCO-StoryGAN][20] and VLC-StoryGANJ[19]. We also compare with two Transformer
Architectures; VP-CSV [5] and CMOTAJ1]. Regarding Diffusion models, there are three previous arts: AR~
LDM]22], ACM-VSG[10] and Causal-Story[35]. Direct comparison with these models is not fair, since they
are based on LDM]28], that is pre-trained on a massive dataset with huge compute. Additionally, they
use excessively expensive hardware for development. For reference, AR-LDM uses [40x] the vRAM we use.
Having said that, we still include these three models in our main comparison, for the sake of completeness.
We refer to them separately in Subsection 9.4.3.

Table 9.6 gathers the results of all previous arts, together with our baseline MaskGST and our top-performing

103

Chapter 9. Experimental Section

model MaskGST-CG, with d = 1024 and d = 2048.

As we have already mentioned, StoryLDM and StoryGPT-V are applied to a slightly altered version of the
task, where repeated mentions of Character names in a story are substituted by pronouns. For this reason,
a direct comparison with these models is not applicable.

9.4.1 MaskGST-CG. w/ aug. captions (d = 1024)

Our model with d = 1024 performs better than all previous GAN and Transformer Architectures, in all
metrics (lowest FID and highest Char-F1, Char-Acc, BLEU-2/3). Especially Character metrics are raised
significantly. Specifically, in Char-F1 there is a 3.6 point improvement, while in Char-Acc we achieve an
improvement of 7.7 points, compared to the previous best (VP-CSV). We largely attribute our models
superiority in terms of character generation, to our Character Guidance mechanism.

9.4.2 MaskGST-CG. w/ aug. captions (d = 2048)

Doubling the hidden dimension to d = 2048 improves our results across all metrics. Most notably, there is
a major improvement in terms of FID, which decreases by 8.8 points compared to the d = 1024 version of
the model. We assume, that doubling the hidden dimension leaves more room to the model to learn more
complex and fine mappings between words and visual features, that result in higher quality images with
more details. The model’s ability to learn more complex representations and produce more detailed images
can account for the improvements in the other metrics as well. Specifically, high quality images will depict
improved versions of the characters and produce better BLEU scores, through video captioning.

9.4.3 Comparison with Diffusion models

As it is evident from Table 9.6, all diffusion models only use FID as an evaluation metric. This is insufficient
for SV, since it solely takes into account image quality. In terms of FID, all three diffusers are unparalleled,
compared to all our models, as well as other previous arts. However this can be attributed-at least to some
extend-to their extensive pre-training and large parameter counts.

9.4.4 Story Continuation

[22, 10, 35| also report results for the task of Story Continuation|[21]. Story Continuation (SC) is similar
to SV. However, in SC the first frame is considered to be given as input and the rest of the frames need
to be generated. In Table 9.7 we report SC results for our model (d = 2048), as well as AR-LDM][22],
ACM-VSGJ10] and Causal-Story[35]. Additionally, we include results for StoryDALLE (fine-tune)[21] and
Mega-StoryDALLE[21] that are both based on pre-trained auto-regressive transformers. These where the
first models applied to the task of SC. We observe that although our model has the lowest parameter count,
by far, it outperforms all the other large, extensively pre-trained models in terms of Char-F1 and Char-Acc.
This speaks of the remarkable merit of our Character Guidance method. In terms of FID, large pre-trained
models remain unparalleled, as in SV. Since our model is trained for SV, in order to evaluate it for SC, we
just discard the first generated frame and evaluate it using the remaining four frames.

Model #param | FID(|{) Char-F1 Char-Acc
StoryDALLE(fine-tune)[21] | 1.3B 25.90 36.97 17.26
Mega-StoryDALLE[21] 2.8B 23.48 39.91 18.01
AR-LDM]|22] 1.5B 1740 - _
ACM-VSG/[10] 850M | 15.36 45.71 22.62
Causal-Story[35] - 16.98 - -

Ours (d=2048) 276M 43.31 65.32 37.38

Table 9.7: Story Continuation results on the test set of Pororo-SV, for large pre-trained models, as well as
MaskGST-CG4 w/ aug. captions (d=2048) . We report scores for FID (lower is better), as well as
Char-F1, Char-Acc (higher is better).

104

9.5. Qualitative Results

CMOTA Original

Ours

Frame 1: Crong eats meat. Loopy gave a dish of vegetables.

Frame 2: Crong doesn't like vegetables. Crong pushed the
dish of vegetables.

Frame 3: Both Pororo and Crong look at the meat in the
dish.

Frame 4: Crong picked up the last meat.

Frame 5: Pororo told that Crong is so greedy.

CMOTA Original

Ours

Frame 1: Petty asks if Crong really okay is.

Frame 2: Loopy says Crong looks not that good.

Frame 3: Crong trying to pretend to be okay waves Crong
head.

Frame 4: Crong pretends to do some freehand exercise.
Frame 5: Pororo laughs at Crong calling Crong as a regular

"M'?‘

“-‘ o “n-‘ Sl

13\ B

Frame 1: Loopy is back with Poby.

Frame 2: Loopy and Poby notice that chair is not broken.
Frame 3: Poby and Loopy thinks the chair is very strange.
Frame 4: Loopy is looking at chair with question.

Frame 5: Loopy thanks Poby for coming.

Frame 1: Loopy talks and spreads Petty arms. Petty
looks at Loopy smiles and nods.

Frame 2: Poby gathers red car hands and talks. Loopy
Petty and Harry are looking at Poby.

Frame 3: Loopy Poby and Petty walk stop and turn back.
Frame 4: Harry looks angry and talks.

Frame 5: Harry looks at Poby and turns red car head.

pooping machine.

Figure 9.5.1: Qualitative Comparison between our model (MaskGST-CGy w/ aug. captions) and
CMOTAJ1] across 4 story examples.

9.5 Qualitative Results

In Figure 9.5.1 we provide four examples of image-stories from the Pororo-SV test set. For each story, we
provide its captions, the ground-truth images (Original), the image sequence generated by CMOTA [1| and
the one generated by our model (MaskGST-CGy w/ aug. captions (d = 2048)). To that end, we used the
pre-trained CMOTA model that has been released here?. We carry out a qualitative comparison based on
these examples.

9.5.1 Image Quality

In terms of image quality, it is evident from the examples that our model is superior to CMOTA. For example,
in the top-left panel, the first and final images, constructed by CMOTA are blurry and incomprehensible. On
the contrary, in our case both images contain discernible objects (characters). In the three middle images,
CMOTA’s images contain some recognizable characters. However, even in that case, our images are of much
higher quality, with the characters having significantly more detailed appearances (e.g. Crong’s (the green
dinosaur’s) eyes and Pororo’s (the penguin’s) beak).

4https://github.com/yonseivnl/cmota

105

https://github.com/yonseivnl/cmota

Chapter 9. Experimental Section

Criterion Ours (%) | CMOTA (%) | Tie(%)
Visual Quality 78% 3% 19%
Temporal Consistency | 66% 8% 26%
Semantic Relevance 64% 9% 27%

Table 9.8: Results of our human survey. We compare the results of our model MaskGST-CG+ w/ aug.

caption (d=2048) (Ours) against CMOTA’s, across three criteria. Our(%) and CMOTA (%) indicate the

percentage of cases where each model was chosen by both annotators, whereas Tie(%) accounts for the
remaining cases.

9.5.2 Temporal Consistency

In terms of temporal consistency, we observe that CMOTA’s images struggle to hold a consistent background
in all 4 examples. Specifically, images from outside are repeatedly interleaved with indoor images. For
example, in the top-right panel, the first and final images seem to show a snowy background, whereas the
other three look like they are from an indoor space. On the contrary, our model manages to hold a relatively
consistent background in most cases. Especially in the top-right panel, the appearance of the room is held
exceptionally consistent. We should note, that in the bottom-right panel, our model struggles to be consistent,
especially in the fourth image that has an irrelevant background, compared to the adjacent ones.

9.5.3 Semantic Relevance

The term Semantic Relevance refers to whether the generated image is relevant to the corresponding caption.
With regards to this, CMOTA seems to struggle especially in cases where multiple characters are referenced.
For example in the bottom-right panel, the first caption metions Petty and Loopy, but only Petty is generated.
In the second caption, where multiple characters are mentioned, CMOTA’s image is incomprehensible. In
the next three images, CMOTA manages to generate most mentioned characters, albeit with low quality. In
contrast, our model manages to generate all relevant characters in most cases. In the bottom-right panel,
this is true for all captions. Most notably, in the second image, it manages to generate multiple characters,
with remarkable quality, as well as the red car that is mentioned in the caption.

9.6 Human Evaluation

In order to further investigate our qualitative results, we conducted a human survey across three criteria
which were also adopted by previous works [20, 19, 1|, comparing our model with CMOTA [1]. The three
adopted criteria are the following:

e Visual Quality refers to whether the images are visually appealing, rather than blurry and difficult
to understand.

e Temporal Consistency measures whether the images are consistent with each other, having a common
topic and naturally forming a story, rather than looking like 5 independent images.

e Semantic Relevance refers to whether the images accurately reflect the captions and the characters
mentioned in them.

The evaluation is done over 100 stories from the test set of Pororo-SV. Each story is evaluated by 2 distinct
annotators. The results of the study (Table 9.8) indicate that our model is superior across all 3 criteria, thus
supporting our quantitative results.

9.7 Resource Usage Analysis

9.7.1 Recources at Training

We approximately spend 36 and 107 hours to train our Transformers with d = 1024 and d = 2048, respectively,
on a single NVIDIA V100 (16GB). This is equivalent to (36 hours) - (16GB) = 576 (GB - hours) and (107

106

9.8. More Qualitative Examples

hours)- (16GB) = 1712 (GB - hours) of GPU usage, respectively. For reference, VP-CSV [5] reportedly uses
4 NVIDIA A100 (40GB) for 12 hours. This is equivalent to (12 hours) - (4-40 GB) = 1920 (GB - hours) of
GPU usage, without taking into account that A100 is a more modern GPU than V100. CMOTA [1] does

not report training resource usage.

9.7.2 Recources at Inference

Since we performed inference for our models, as well as CMOTA, on the same GPU, we can carry out a
fair comparison. Our models with d = 1024 and d = 2048 need 34 minutes and 94 minutes, respectively
to perform inference for the 2208 stories of the test set. This is equivalent to 0.92 sec/story and 2.55
sec/story. For the same task, CMOTA spent 228 minutes, which translates to 6.19 sec/story. It is evident
that our method is significantly more time-efficient compared to CMOTA. It is interesting that even our larger
model (d = 2048), which has more than double the parameter count of CMOTA, is more that [2X] faster,
during inference compared to it. This can be largely attributed to the inference scheme of MaskGIT-style
transformers, that produce multiple visual tokens per step, compared to auto-regressive transformers, like
CMOTA, that infer visual tokens one at a time.

9.8 More Qualitative Examples

Images 9.8.1 and 9.8.2 show more Story Generation examples using our MaskGST-CG+ /w aug. captions.
For each example we provide the images generated by our model, the input captions and the ground-truth
images (original) that correspond to these captions.

107

Chapter 9. Experimental Section

Original

Ours

Frame 1: Pororo notices the batter on the table.

Frame 2: Pororo picks up cookie cutter.
Frame 3: Pororo bakes cookies for loopy.

Frame 4: Pororo is finished with baking cookies.

Frame 5: Loopy has come back home.

Original

Ours

Frame 1: Pororo and Crong are very curious
about what the Robot is. they are curiously
watching it.

Frame 2: The robot asks Pororo and Crong
what he can do for them.

Frame 3: Pororo and Crong are very surprised
to hear the robot talking.

Frame 4: The robot asks again what can he do
for Pororo and Crong.

Frame 5: Pororo decides to examine the robot
with Crong.

Original

Ours

Frame 1: Pororo makes the snowman's legs.
then Pororo makes the arm of the snowman.
Frame 2: Pororo makes arm of the snowman.
then Pororo puts goggles to snowman's face.
Frame 3: Pororo puts mouth to the snowman's
face. then Pororo puts buttons to the
snowman's face to make the snowman's eyes.
Frame 4: Pororo finishes making his own
snowman.

Frame 5: Poby is walking on the snow. Poby is
waving.

Original

Ours

Frame 1: the mean magician Eddy had to keep
singing. the story ends.

Frame 2: Poby is holding a book. Poby says the
story is done.

Frame 3: Pororo is telling the lesson with the
example of Pororo and Harry.

Frame 4: Roby suggests to help friends.

Frame 5: Poby shook his hand saying good bye.

Original

Ours

Frame 1. Petty and Loopy are talklng in Loopy
house.

Frame 2: Loopy points Loopy broken chair.
Frame 3: Poby makes an excuse for Pororo.
Loopy is angry.

Frame 4: Loopy explains why Petty is mad at
Pororo.

Frame 5: Petty and Poby understands why
Loopy is so mad at Pororo.

Original

Ours

Frame 1: Poby is contmually in the air. Harry is
now with Poby. Harry says that Harry will make
Poby put down.

Frame 2: Harry and Poby are talking each other
in the air. Harry tries to make Poby put down.
Frame 3: Harry and Poby are talking each other
in the air. Poby has long been on the sky so
Poby seems to be tired.

Frame 4: Harry and Poby are talking each other
in the air. Harry tries to make Poby happy and
make Poby put down. suddenly Harry jumps
high and stops on top of Poby's head.

Frame 5: Harry is now on top of Poby's head.
harry says that Harry will sing a song for Poby
therefore Harry asks to Poby to hang in there.

Figure 9.8.1: More Story Generation Examples using our model MaskGST-CGy /w aug. captions.

108

9.8. More Qualitative Examples

Original

Ours

Frame 1: Eddy Loopy and Petty don't want to listen
Harry's song. they just want to eat cake.

Frame 2: Harry stands up on the balustrade. Harry
tries to sing a song to her friends in spite of the
friends' dissuading.

Frame 3: Harry starts to sing a song on the
balustrade.

Frame 4: Pororo and his friends looks disgusted.
they really don't want to listen harry's song.

Frame 5: Loopy petty and Crong also don't want to
listen Harry's song.

Original

Ours

Original

Ours

Frame 1: Pororo's friends are shaking their heads
because they don't know what Pororo asked.
Frame 2: Harry flies to Pororo and say something.
Frame 3: Pororo ponders something for a moment
and Eddy and Petty also walk to Pororo.

Frame 4: Petty and Eddy stand in a row. Eddy says
something to Pororo.

Frame 5: Petty and Eddy stand in a row. Petty says
something to Pororo and eddy glances at Petty and
smiles.

Original

Ours

Frame 1: Eddy has something with his right hands.
that looks like a small fan. its color is light blue. Eddy
looks happy.

Frame 2: the front side of the cannon is uncovered
with snow. Eddy is walking by following the path
which was covered with snow.

Frame 3: Eddy is walking through the path which was
covered with snow. Eddy maybe thinks that Eddy
will show Pororo what Eddy can do.

Frame 4: while walking Eddy sees that Pororo is
coming to him. Eddy stops after watching Pororo.
Frame 5: Eddy is murmuring about something which
is related to Pororo. Pororo is coming to Eddy with
someone.

: 6 ¥ a3l

Original

Ours

O

¥

Frame 1: Petty would like to give warm tea to Eddy.
Frame 2: Eddy gives a cup of tea to Eddy.

Frame 3: Petty smiles. Eddy said thanks to Petty.
Frame 4: the tea was too salty for Eddy.

Frame 5: Eddy was surprised to hear that there is
salt in the tea.

Frame 1: now Pororo is preparing to hit Eddy. Pororo
throws snowballs to Eddy. Eddy tries to avoid
snowballs.

Frame 2: Eddy looks happy with his eyes wavy
shaped. however Eddy is struck snowballs from
Pororo.

Frame 3: Pororo seems happy with his successful
hitting to Eddy. Pororo is playing snowballs with his
right hands. after struck Eddy looks angry.

Frame 4: Eddy is walking toward Pororo. Pororo is
looking Eddy with his curious feeling. Pororo is
touching the mouth with his right hands.

Frame 5: Pororo seems depressed with his bulging
mouth. Pororo is muttering with unsatisfied gesture.

Original

Ours

Frame 1: Eddy orders the robot to stop singing and
dancing. the robot stops singing and dancing.
Frame 2: Eddy is so happy and proud that Eddy
made the robot.

Frame 3: Eddy is imagining how surprised all his
friends would be to see the robot Eddy made. Eddy
seems really excited.

Frame 4: Eddy runs out to show his robot to his
friends.

Frame 5: Pororo and Crong is calling Eddy and
getting into Eddy's house.

Figure 9.8.2: More Story Generation Examples using our model MaskGST-CG+ /w aug. captions.

109

Chapter 9. Experimental Section

110

Chapter 10

Conclusion and Future Directions

10.1 Conclusion

In this thesis we investigated the use of MaskGIT-style Transformers for the Task of Story Visualization,
for the first time. The SOTA results, we achieved in various metrics provide evidence for the merit of our
approach in the task of SV. Additionally, they indicate that such architectures should be further investigated
for generative vision tasks, in general.

Specifically, we devised our baseline MaskGST model, based on MaskGIT, with additional cross-attention
mechanisms, to allow the generated images at each stage in the story, to be influenced by past and future
images. We experimented with various modifications of the initial architecture.

Several of those experiments failed to yield improvements compared to the baseline. Using T5-XXL as a
text encoder is probably not optimal because of the niche text descriptions of our dataset, that are heavily
dominated by unusual character names. We suspect that our attempt to perform Latent Super Resolution
failed, because the higher resolution image tokens are too detailed for the Transformer to predict based on
simple text prompts. Regarding the Character-Attentive Token-Critic that we devised, we believe that it fell
short because conditioning solely on character embeddings is not expressive enough. Finally, we suspect that
our attempt to perform latent space disentanglement of character features, from background features failed
because it ended up being too confusing for the Transformer to model.

On the other hand, some of our experiments gave promising results. Integrating SV-layers into the Trans-
former benefited all metrics, by treating all the image and text tokens of a story as a continuous sequence,
for a portion of the generative process. Secondly, we proposed a simple technique for image-agnostic caption
augmentation, using an LLM. This idea improved our results by reducing the risk for over-fitting and helping
the model focus on important textual concepts. Finally, the Character Guidance method we devised showed
the most promising results. By forming three separate sets of logits based on text-conditions, the positive
Character set and the negative Character set and then combining them, it succeeds in specifically guiding the
model towards high quality character generation, whilst maintaining other information from the captions.

By combining promising methods and tuning hyper-parameters we arrived at our best model, MaskGST-CG
w/ aug. captions (d=2048). This model, ourperforms the previous SOTA transformer by 9.3, 11.8 and 12.8
points in terms of FID, Char-F1 and Char-Acc, respectively. Despite being larger than previous Transformers
it is more time-efficient both at training and inference.

10.2 Future Directions

We believe that our results strongly indicate the competence of MaskGIT-style transformers for the Task
of Story Visualization. Our work paves the way for further experimentation with such architectures, either
by scaling up the size of our Models, or by exploring other possible modifications. Besides, MaskGIT

111

Chapter 10. Conclusion and Future Directions

architectures have seen relatively scarcely studied even in Text-to-Image generation settings. We hope that
our work can encourage their exploration, in that realm as well.

Moreover, our caption augmentation method, provides an easy-to-use setting for enriching datasets that
include text, including, but not limited to Story Visualization and Text-to-Image Generation. Besides, as
Large Language Models become more available, our method could be extended by extracting alternative
captions, using multiple LLMs, to achieve higher heterogeneity in terms of text descriptions.

Regarding our Character Guidance method, we maintain that it deserves further investigation. On the one
hand, it can be tested in different settings, for the task of Story Visualization. One possible way of doing this
would be to integrate it into (large) pre-trained models, either diffusion or Transformer based. This would
include adding a positive and a negative embedding for each character, to the model and fine-tuning it, using
our training scheme, where the text conditions are discarded for a portion of the training samples. Since the
number of additional parameters is small, this could work with relatively little extra training. We presume
that combining better prompt understanding, due to long pre-training, with our effective character guidance
method could yield impressive results for the task.

Finally, another possible research path would be the generalization of our Character Guidance method to
other tasks. Specifically, any generative task where we are explicitly interested in the generation of a specific
set of concepts (Characters in the case of SV) could possibly be benefited by the adoption of such a method.

112

Chapter 11

Bibliography

(1]
2]
3]
4]
5]

16]
7]
18]

19]

[10]

[11]
[12]

[13]
[14]

[15]

[16]

[17]

Ahn, D. et al. “Story visualization by online text augmentation with context memory”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2023, pp. 3125-3135.

Bauer, L., Wang, Y., and Bansal, M. Commonsense for Generative Multi-Hop Question Answering
Tasks. 2019. arXiv: 1809.06309 [cs.CL].

Chang, H. et al. “Maskgit: Masked generative image transformer”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 11315-11325.

Chang, H. et al. “Muse: Text-to-image generation via masked generative transformers”. In: arXiv
preprint arXiv:2301.00704 (2023).

Chen, H. et al. “Character-centric Story Visualization via Visual Planning and Token Alignment”.
In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. 2022,
pp- 8259-8272.

Dai, H. et al. AugGPT: Leveraging ChatGPT for Text Data Augmentation. 2023. arXiv: 2302 .13007
[cs.CL].

Ding, M. et al. “Cogview: Mastering text-to-image generation via transformers”. In: Advances in Neural
Information Processing Systems 34 (2021), pp. 19822-19835.

Esser, P., Rombach, R., and Ommer, B. “Taming transformers for high-resolution image synthesis”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, pp. 12873—
12883.

Fan, L. et al. “Improving clip training with language rewrites”. In: Advances in Neural Information
Processing Systems 36 (2024).

Feng, Z. et al. “Improved Visual Story Generation with Adaptive Context Modeling”. In: Findings of
the Association for Computational Linguistics: ACL 2023. Ed. by A. Rogers, J. Boyd-Graber, and N.
Okazaki. Toronto, Canada: Association for Computational Linguistics, July 2023, pp. 4939-4955. DOTI:
10.18653/v1/2023.findings-acl.305. URL:

Goodfellow, I. et al. “Generative adversarial nets”. In: Advances in neural information processing systems
27 (2014).

Ho, J. and Salimans, T. “Classifier-Free Diffusion Guidance”. In: NeurIPS 2021 Workshop on Deep
Generative Models and Downstream Applications. 2021.

Jiang, A. Q. et al. Mistral 7B. 2023. arXiv: 2310.06825 [cs.CL].

Kim, K.-M. et al. DeepStory: Video Story QA by Deep Embedded Memory Networks. 2017. arXiv:
1707.00836 [cs.CV].

Lei, J. et al. “MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Cap-
tioning”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
2020, pp. 2603—-2614.

Lezama, J. et al. “Improved masked image generation with token-critic”. In: Furopean Conference on
Computer Vision. Springer. 2022, pp. 70-86.

Li, J. et al. “Blip: Bootstrapping language-image pre-training for unified vision-language understanding
and generation”. In: International conference on machine learning. PMLR. 2022, pp. 12888-12900.

113

https://arxiv.org/abs/1809.06309
https://arxiv.org/abs/2302.13007
https://arxiv.org/abs/2302.13007
https://doi.org/10.18653/v1/2023.findings-acl.305
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1707.00836

Chapter 11. Bibliography

[18]

[19]

[20]

[21]
[22]
23]
[24]

[25]

[26]
[27]
28]
[29]
[30]

[31]

32]
33]
34
35]
36]
37]
38]
30]
40}
1)

[42]

Li, Y. et al. “Storygan: A sequential conditional gan for story visualization”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 6329-6338.
Maharana, A. and Bansal, M. “Integrating Visuospatial, Linguistic, and Commonsense Structure into
Story Visualization”. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. 2021, pp. 6772-6786.

Maharana, A., Hannan, D., and Bansal, M. “Improving Generation and Evaluation of Visual Stories
via Semantic Consistency”. In: Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies. 2021, pp. 2427-2442.
Maharana, A., Hannan, D., and Bansal, M. StoryDALL-E: Adapting Pretrained Text-to-Image Trans-
formers for Story Continuation. 2022. arXiv: 2209.06192 [cs.CV].

Pan, X. et al. “Synthesizing coherent story with auto-regressive latent diffusion models”. In: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2024, pp. 2920-2930.
Radford, A. et al. “Learning transferable visual models from natural language supervision”. In: Inter-
national conference on machine learning. PMLR. 2021, pp. 8748-8763.

Raffel, C. et al. “Exploring the limits of transfer learning with a unified text-to-text transformer”. In:
Journal of machine learning research 21.140 (2020), pp. 1-67.

Rahman, T. et al. “Make-a-story: Visual memory conditioned consistent story generation”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, pp. 2493—
2502.

Ramesh, A. et al. “Zero-shot text-to-image generation”. In: International conference on machine learn-
ing. Pmlr. 2021, pp. 8821-8831.

Ramesh, A. et al. Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022. arXiv:
2204.06125 [cs.CV].

Rombach, R. et al. “High-resolution image synthesis with latent diffusion models”. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2022, pp. 10684-10695.
Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolutional Networks for Biomedical Image Seg-
mentation. 2015. arXiv: 1505.04597 [cs.CV].

Saharia, C. et al. “Photorealistic text-to-image diffusion models with deep language understanding”. In:
Advances in neural information processing systems 35 (2022), pp. 36479-36494.

Selvaraju, R. R. et al. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization”. In: International Journal of Computer Vision 128.2 (Oct. 2019), pp. 336-359. DOI: 10.
1007/s11263-019-01228-7. URL:

Sennrich, R., Haddow, B., and Birch, A. “Neural machine translation of rare words with subword units”.
In: arXiv preprint arXiv:1508.07909 (2015).

Shen, X. and Elhoseiny, M. StoryGPT-V: Large Language Models as Consistent Story Visualizers. 2023.
arXiv: 2312.02252 [cs.CV].

Sohl-Dickstein, J. et al. “Deep unsupervised learning using nonequilibrium thermodynamics”. In: Inter-
national conference on machine learning. PMLR. 2015, pp. 2256-2265.

Song, T. et al. Causal-Story: Local Causal Attention Utilizing Parameter-Efficient Tuning For Visual
Story Synthesis. 2023. arXiv: 2309.09553 [cs.CV].

Song, Y.-Z. et al. “Character-Preserving Coherent Story Visualization”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2020.

Touvron, H. et al. LLaMA: Open and Efficient Foundation Language Models. 2023. arXiv: 2302.13971
[cs.CL].

Ubani, S., Polat, S. O., and Nielsen, R. ZeroShotDataAug: Generating and Augmenting Training Data
with ChatGPT. 2023. arXiv: 2304.14334 [cs.AI].

Van Den Oord, A., Vinyals, O., et al. “Neural discrete representation learning”. In: Advances in neural
information processing systems 30 (2017).

Van den Oord, A. et al. “Conditional image generation with pixelcnn decoders”. In: Advances in neural
information processing systems 29 (2016).

Van Den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. “Pixel recurrent neural networks”. In:
International conference on machine learning. PMLR. 2016, pp. 1747-1756.

Vaswani, A. et al. “Attention is all you need”. In: Advances in neural information processing systems
30 (2017).

114

https://arxiv.org/abs/2209.06192
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/1505.04597
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://arxiv.org/abs/2312.02252
https://arxiv.org/abs/2309.09553
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2304.14334

[43]

[44]

[45]

[46]

[47]

Whitehouse, C., Choudhury, M., and Aji, A. F. LLM-powered Data Augmentation for Enhanced Cross-
lingual Performance. 2023. arXiv: 2305.14288 [cs.CL].

Wozniak, S. and Kocon, J. “From Big to Small Without Losing It All: Text Augmentation with Chat-
GPT for Efficient Sentiment Analysis”. In: 2028 IEEE International Conference on Data Mining Work-
shops (ICDMW). Los Alamitos, CA, USA: IEEE Computer Society, Dec. 2023, pp. 799-808. DOI:
10.1109/ICDMW60847.2023.00108. URL:

Xu, T. et al. “Attngan: Fine-grained text to image generation with attentional generative adversarial
networks”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 1316-1324.

Zhang, H. et al. “Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial
networks”. In: Proceedings of the IEEE international conference on computer vision. 2017, pp. 5907—
5915.

Zhang, R. et al. “The unreasonable effectiveness of deep features as a perceptual metric”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018, pp. 586-595.

115

https://arxiv.org/abs/2305.14288
https://doi.org/10.1109/ICDMW60847.2023.00108

	Contents
	List of Figures
	Κατάλογος Πινάκων
	Εκτεταμένη Περίληψη στα Ελληνικά
	Εισαγωγή
	Παραγωγή Εικόνας από Κείμενο
	Οπτικοποίηση Ιστορίας
	Συνεισφορά

	Προηγούμενες Τεχνικές στην Οπτικοποίηση Ιστορίας
	Θεωρητικό Υπόβαθρο
	Mετασχηματιστές
	Αυτοκωδικοποιητής Παραλλαγών με Διανυσματικό Κβαντισμό
	Μετασχηματιστές ως Πρότερες Κατανομές
	Επαύξηση Κειμενικών Δεδομένων με Χρήση LLM

	Προτεινόμενες Τεχνικές
	Κωδικοποίηση των Εικόνων
	Κωδικοποίηση των Γλωσσικών Περιγραφών
	MaskGST
	Επάυξηση των Δεδομέων μέσω Μεγάλων Γλώσσικών Μοντέλων
	Κριτής Συμβόλων Βασισμένος στους Χαρακτήρες
	Αύξηση της ευκρίνειας του Κρυφού Χώρου Χαρακτηριστικών
	Απόπλεξη Χαρακτηριστικών στον Κρυφό Χώρο

	Πειραματικό Μέρος
	Οργάνωση των Πειραμάτων
	Πειράματα Αρχιτεκτονικής
	Πειράματα Υπερ-Παραμέτρων
	Σύγκριση με Προηγούμενες Τεχνικές
	Ποιοτικά αποτελέσματα
	Ανθρώπινη Αξιολόγηση
	Ανάλυση Χρησιμοποιούμενων Πόρων

	Συμπεράσματα και Μελλοντικές Κατευθύνσεις
	Συμπεράσματα
	Μελλοντικές Κατευθύνσεις

	Introduction
	Text-to-Image generation
	Story Visualization
	Contribution

	Previous Work on Story Visualization
	StoryGAN
	Story Encoder
	RNN Context Encoder
	Image Generator
	Image Discriminator
	Story Discriminator

	CP-CSV
	DUCO-StoryGAN
	Mart Context Encoder
	Dual learning via Video Redescription
	Sequentially Consistent Story Visualization: Copy-Transform

	VLC-StoryGAN
	Memory-Augmented Recurrent Tree Transformer
	Commonsense Knowledge
	Contrastive Loss

	VP-CSV
	VQ-VAE
	Visual Planning (VP)
	Token Level Character Alignment

	CMOTA
	Base Model
	Context Memory
	Online Text Augmentation

	AR-LDM
	Diffusion Models
	The architecture of AR-LDM

	ACM-VSG
	Causal-Story
	Story-LDM
	Latent Diffusion Backbone
	Story Latent Diffusion Model
	Memory-Attention Module
	Network Architecture

	StoryGPT-V
	Character-Aware LDM with attention control
	Aligning LLM for reference resolution

	The Transformer
	Original Architecture
	Encoder
	Decoder
	Attention Mechanisms

	VQ-VAE
	Original Architecture
	Discrete Latent Space
	Encoder and Decoder
	Training
	Prior Distribution

	VQ-GAN

	Transformers as powerful Prior Distributions
	DALL-E
	dVAE
	BPE-encoding
	Transformer

	MaskGIT
	Method
	First Stage
	Second Stage
	Token-Critic

	Muse
	Model

	Caption Augmentation using LLMs
	Masked Generative Story Transformer
	Image Tokenization
	VQ-GAN

	Text Encoding
	Custom Text Embeddings
	Using an LLM

	Transformer Priors
	Input
	Types of Transformer Layers
	Proposed Transformer Models
	Character Guidance

	Caption Set Augmentation
	Character-Attentive Token-Critic
	Latent Super-Resolution Model
	Base Transformer
	Super-Resolution Transformer

	Latent Space Disentanglement
	VQ-GAN Encoder and Decoder
	Quantization with two Libraries of Latent Vectors
	Foreground-Background Segmentation
	Modifications in the Transformer

	Experimental Section
	Experimental Setup
	Codebase
	Training Environment
	Story Visualization Datasets
	Story Visualization Metrics

	Architectural Experiments
	Image Tokenizer
	MaskGST
	MaskGST-SV
	T5-XXL as a Text Encoder
	Caption Set Augmentation via ChatGPT
	Character Guidance
	Negative Prompting
	Character-Attentive Token Critic
	Latent Super-Resolution Model
	Latent Space Disentanglement
	Combining Methods

	Experiments on Hyper-Parameters
	Transformer Hyper-Parameters
	Study on Character Guidance

	Comparison With Previous Baselines
	MaskGST-CG w/ aug. captions (d=1024)
	MaskGST-CG w/ aug. captions (d=2048)
	Comparison with Diffusion models
	Story Continuation

	Qualitative Results
	Image Quality
	Temporal Consistency
	Semantic Relevance

	Human Evaluation
	Resource Usage Analysis
	Recources at Training
	Recources at Inference

	More Qualitative Examples

	Conclusion and Future Directions
	Conclusion
	Future Directions

	Bibliography

