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Anoryopeleton 1 avtiypagn, amobrixeuon xou dtavour| Tng mopoloug epyaciog, e& ONOXNHEOU
1) TWAUATOS QUTAC, YL euntopixd oxond. Emrtpéneton 1 avatinwot, anodixeuon xa dioavour
Yl OXOTO Un AEEBOOXOTUXS, EXTAUDELTIXNAS 1) EpELVNTIXAC QOONG, UTd TNV TEolnddeon
VOU OVOLPERETOL 1) TUNYY| TEOENEUCTS Xou var Blatnpeitar To ooy urRvuua. EpotAuata mou
apopoLY TN yeNoN NG epyaciag Yol xepdooxomixd OxOTd TEETEL Vo ameLdivovTal TEOg
Tov ouyypagéa. Ou andelc xaL To CUUTEPAOUNTA TOU TEQLEYOVTOL GE QUTO TO £YYEUPO
expdlouv Tov cuyypapéa xou dev TEENEL Vo epunveLbel 6Tl avTimpocwnebouy TG eniomnueg
Bgoeic Tou Ebvixol Metoofiou Tlohuteyveiou.



ITepiAndm

To avtixeiuevo Tng oUCTAONE TUVLOY EYEL CUYXEVTPWOEL TOMAY| TEOCOYY| And TNV ETL-
OTNUOVIXT XoWoTNTa, Wiaitepa 6T adyyeovn Pneloxy| etoyn 6mou Paclléuacte 6ho xal
TepLoa6TeEpo ot gpyalelor yiar TN Sladicacion AMdng amogdoewy. To clyypova cucThuaTa
CUCTAGEWY YENOLLOTOLY XUpltg Yedodoug cuvepyatixod @uktpapiopatog, yweic va agto-
mol0V TNV Thovoia TAnpogopla mou elvan diardéoiun ot Touviee. H ouveyric Pehtinon twv
Meydhwv Movtéhwv I'hdoooc (LLMs) éyel emtpédel TNy mo EUTERIO TATOUEVY avdhuo
xeWévou, divovtoag pag véeg duvatotnTee. Auth 1 Bimhwuatixy epyaocio dlepeuvd T Yeron
ouyypedvwy texvixey Enelepyacioc Puowrc [haooac (NLP) v tnv e€aywy? yprowwy
TANEOPORELOY oo TEPLANPELS TAVLDY, PE GTOYO TN BEATIWOT TV CUCTNUATWY CGUCTACEWY.
I tov Aoyo auto, e€etdlouye Tic BLdpopes HeYEBoUC G TN GUCTAOY AVTIXEWEVKY, XL O)E-
014lOVPUE CUCTAUATA TOU UTOROLY VoL YENOLWOTOLACOLY TNV TANEOQOopid TOU EUTEQIEYETAL
ot ouvolec. Emniéov, xataoxeudooue €vo eEelBIXeUUEVO GUVONO BEBOUEVLV, TROXELUE-
VOU VoL BlEUXOALVIEL 1) BleEary wY N TELRUUATWY oL aELOAOYOUV TNV ETBEACT TWV TEPLAPEWY
TV ot dladaoio Tng olotaong. Iopatnerooue uio uixer) ahhd onuovtixny Beitiwon
oTNV AnddOCT) TOCO TWY CLUCTNUATKY BACICUEVWY GTO TEPLEYOUEVO OGO XAl TKV UBELOLXWY
CLCTNUATWY OTaY evowuatwvovial tepthidel. Autd ta anotehéopata ToviCouv TG TEoo-
TTXES IOV €Y0LV OL GUYYPOVES TEYVIXES AVAAUGTC XEWEVOUL, Wlaltepa o€ LoVTERA uddnomng
ue Abya delyparto (few-shot learning), 6mou xhudxwon twv Lovtédny Yo unopoloe vo Bek-
Twwoel tepantépn TG Yetewés. H epyaoia dnuovpyel wa Bdon yia uehhovtinég €peuveg otny
a&lomolnom xewevixic TAnpoopiag Yo T BEATIwON TwWV CUCTNUATOY CUCTUCNS TAUVLKY.

A€Csig-xAELOLA

Yuothuata Yuotdoewy, Enelepyaoia Puoiric I'hwoocog, Yuvepyatind Puktpdpiopa, Meydha
IMwoowd Movténa, Mdabnon ye Alyo Aelypata






Abstract

The domain of movie recommendation has garnered significant attention from the scien-
tific community, especially in the digital age where we increasingly rely on tools in the
decision-making processes. Modern recommendation systems predominantly use collab-
orative filtering methods, which do not utilize the rich textual information available in
movies. The development of ever advancing Large Language Models (LLMs) has en-
abled us to analyze text more comprehensively. This thesis investigates the integration
of modern Natural Language Processing (NLP) techniques to extract valuable insights
from movie synopses, aiming to improve the capabilities of existing recommendation
frameworks. By examining the various recommendation methods, we design systems
that can use the nuanced information within synopses. A specialized dataset is con-
structed to facilitate comprehensive experiments that assess the impact of movie plot
information on the recommendation process. The empirical findings indicate a modest
yet significant enhancement in the performance of both content-based and hybrid rec-
ommendation systems when synopses are incorporated. These results underscore the
potential of employing advanced text analysis techniques, particularly in few-shot learn-
ing models where further scaling could amplify the improvements we observed. Our
work lays a foundational groundwork for future research into the utilization of textual
data for refined movie recommendation, making a step forward in the advancement of
personalized recommendation systems.

Keywords

Recommender Systems, Natural Language Processing, Collaborative Filtering, Large
Language Models, Few-shot Learning






Euyapiotieg

Apyixd, Ba HBeka va euyaplotiow tov x. INidpyo Xtduou v tny enifiedn tne mopololag
OLmAwUATIXC epyaoiag, xou TV guxotplol Tou You €0woe Vo Ao OANBG e €va Béua mou
HE poryVATIOE amd TNy menTn otiyur. Enlong, suxapiotd nohd ) Mapioa Auvurepaiou, tov
Idpyo Puravdplavd, xou tov Kovotavtivo Ooud, yio Ty xafodrynon nou pou édncav oe
ONN TN Oudipxela exnovnong g epyaciac. H Borbeia toug Atay moXbTiun xou pou €dwoe
1) BUVATOTNTOL VAL EVTIPUPNICK TEXYUATIXE 6TO BEUa TG CUCTUONEC TOUVLLDY XOL VL ToEoLy Sy w
€va €pyo vl To omolo elpan meprpavoc.

Elgou Babud euyviduwy otoug yovelc pou yia T cuveyr othplll Toug oe xdle Priwa xan
Vv auéploTn aydmn mou wou divouv. Euyapiote eniong Padid tov adehgd pou, I'idpyo,
yia T0 Td00C TOU UOU EYEL UETAPEREL YL TOUG UTONOYLOTES, XAl YLoL TNV ATEPUOVY o T o€
eUEVA Xl TIC IXaVOTNTES Hou. Euyopiote Bepud tov Belo you, yia tnv arydmn mou uetépepe
yia Tar padnuotixd, 1 onola e€axoloulel vo pe xabodryel péypet xan orjuepa.

KXelvovtag, 08X vo euyoploThom GAOUC HOU TIC GINOUC YIal TIC UTEQOYES OTLYHES TTOU
uou €youv yoploet. Idaltepa, euyoaploted Tov Oodwey|, Tov 1ldvo, tov Aauvpévtn, tnv Tiva,
tov Kpig, xau tov Ioavaryudtn, ye toug onoloug polpdotnxa to oaxodnuoixd pou To&ldL xat
KoL Ydplooy a€EYACTA POLTNTIXS YEOVLAL.
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Chapter 1

Extetapevn Ilepidndn octa
EXAnvixd

1.1 Ewcayoyviq

Y abyypeovn dngLoxn etoyn, cuyva BELoXOUNC TE AVTIUETHOTOL UE AUTH TOU OVOoudeTal
ToEAB0E0 TN ETMAOYHAC. LNAUEPA €YOUUE TEQLOCOTERES ETMAOYEC MO TOTE, OAAd QUTY 1|
agpUovia tepimAéxel Tn Bradixactia AMdng aro@doemy pog. Atoteheouotixd, Ta epyaheio ToU
wog Bontody var xdvouue EVNUERWUEVES ETLAOYES YivovTo OAO Xal To ONUaVTIXd 0TI (wéS
wog. H obotaon avixeévwy we epeuvntind Héua EYelL GUYXEVTRPOOEL TOAY TEOGOY Y| and
TV oaXONUoxY) XOWVOTNTA, (VP AOY® TOU TERPATTIOU eunopxol evdilagépovtoc. Towe To
To peEAeTNUEVO avTixelyevo clotaong elval 1) 60CTACT TUVLGY, 1) OTtolol UE TNV &VOBO TOU
TAATQOPUGY streaming €yel yivel xoufBixy yia TNV eUTELplol TV YENOTOV.

Ta cbyypova cucThuata cbotaone cuvidwe Pacilovion oe TEXYVIXES GUVERYATIXOD
PUATEP{OUATOC TTOU YENOLOTOL0Y BEBOUEVA ATO TIG IAANAETULORACELS YPNO TV Xl AVTLXEL-
HEVWY, 1) UETABESOUEVA YIal VoL XAVOUY GUCTACELS. (26TOC0, auTH 1) TeocéyYLlon Bev alloTolel
NV TANEoYopia TOU eUTERLEYETOL OE BEBOUEV XEWEVOU, OTWS Elval oL TEPLAAPELS TLVY Tou-
viov. Tautdypova, 1 avdnTuEn TEONYUEVKY TEYVIXWY TNV enelepyacior QUOXNS YADCOUC
xan 1) dnuroupyio Meydhwv I'woowmdv Movtéhwy (LLMs) nopouctdlet pa evilapépouca
euxatpior yioo T Bedtiwon twv cuotudtwy cbotaong. H mapoloa epyaoio e€epeuvd Tig
TEOOTTUXES TNG YENONS HOVTERVWV TEYVIXMY UNyovixic Wdinong yiot tnv e€aywyr Yerowung
Tnpogopiog amd TEpAAPELS TAVLODY, xodS XaL TN XEHOT TOUC OE GUC THRATA GUC TAONS.

I awtrv Ty epyaoio, Yétouye dVo epeuvnud epwthpata. To xbplo epddytnua e€etdlel
70 av oL TEPLAAPELS TOUVIOY UopolV VoL BEATIOCOLY TNV amdd0CT TV CUCTNUATWY GUCTA-
oNe TUVLOV. Xe TeplnTwon mou mpdypatt urnopel vo Behtiwdel 1 dadixacio cbotaone, tote
Yo mpémel vo eEeTdooUPE ToUS XUAUTEPOLS TEdTIOUG adlotoinong g emtmhéov TAnpopoplog,
xadog xan Tov Badud otov onolo Behtidvovion ol yetpixés. To deltepo epwtnua oyetiletan
UE T BUVOTOTNTA OVTLXATAC TAONG TWV TUTILXMY UETAOESOUEVRY aTtd TG TERLAPELS TOUVLEDY
oto ouoThuata oVoTaong. To YeTadedouéva YenoLoToUVIaL CUY VA GTo UOVTEQV CU-
O THUATO GUCTACEWY, OTOTE 1) EVPEDTY] TEQLTTWV BE0OUEVKY Vol uTopoLce Vo BEATIOOEL TNV
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amodoTixdTNTA Tou cuoThHaToS. Ernlong, ol nopatnerioeic pag etvon widtepa onuoavTtixég oe
TEYVIXEC TIOU YENOUWOTOOUY EAYLOTOL BEdOUEVa, OTwS N uddnon pe Ay delypata.
[Nt vou amatyTioouUe 0T TOEATEVG EQWTARATA, XAVOUE TIC 0XOAOLVES CUVELCQOREC:

Anuovpylo evog eZedixeudévou guVOhou dedouévwy mou cuvdLalel TepAfelc Tau-
VIOV, UETODEDOUEVA, XU XPLTIXES YENOTWV.

AvanTun HOVTEAWY TIOU aViXOUV OE BLPORETIXES XUTNYORIEC CUCTNUATKY GUCTA-
omne.

YyedlaoUOC oL 1) EXTEAEDT) TELQOUATWY TWV UOVIEAWY YENOLLOTOUIVTNS CUYXEXQL-
MEVEC UETPLXEC.

Avdhuon xou cLlATNOT TWY ATOTEAECUATOV, ECTIALOVTAS TNV ATOTEAECUATIXOTN T
TV TEPMPEWY Ty ot BeATnon TV cUCTNUATWY GUC TAOYS.

exteTopévn Teplindm aroteheiton and Tig €€rg evoOTNTES:

Evotnra 1 - Ewoaywy?: HepthauBdvovtar ta xivitea mlow and v epyacio, xodog
X0l TOL EQELVNTING EPWTHUATOL.

Evotna 2 - Oewentind Trofodpo: E&nyolvton tic Yepyehcddels €vvoleg mou oyeti-
Covton pe o TEdlo NG oUCTUONG AVTLXEWUEVOV.

Evéotnta 3 - Bifhoypagpinhy Avaoxénnon: EEetdlovtan tic undpyel tic oy ypoveg
uevodohoyleg 0T UG TUOT] AVTLXEWEVGY, XU To EPYARELN TEXYVNTAC VONUOCUYNE TTOU
Yo YeNOLOTOLACOUUE.

Evotnra 4 - Médodog: Ieptypdpovtar T0 GUVOAO BEBOUEVWY TTOU BNULOLEYHUNKE, XoL
TNV OPYLTEXTOVIXT] TWV HOVTEAWY ToU avantUyUnxay. E&nyolvton ta nelpduoto mou
TEOY LU TOTOL UMM OLY.

Evotnta 5 - Anoteréopata: HapouoidlovTon tar anoTeEAEoUATA TV TELROUATLY, pall
ME TNV avdAuor xon TNV Tavy) epunvelo Toug.

Evétnta 6 - Xuurépaoua: Xuvodllovion To EVpAUATA TNG ERYACIAS, AMAVTWMVTAL 0T
gpw Tt ToL TEVMXAY, Xat divovTal TEOTACELS Yot LEAAOVTIXES EpYaTlES.

1.2 Oeswpntixd YnolBadeo

Ta cuothuata cuoTdoewy opllovion WS EPYUAELN XL TEYVIXES TIOU TROCYEQOUY TEO-
Tdoelg avTXeévmy Tou divouv adlo oe xdmoov yerotn |6, 36]. Autéc ol mpotdoelc yag
Bontolv ot ddixacia AfPng anopdoewy 6w To ol TEOIOVTA VAl oy O0pACOUUE, oL
HoLOLXT VoL 0x0VUCOUUE, 1 Tolal Touviar vor Bolue. Awapépouy and dhho GUC THUATA AVAXTNONG
TANEOQPOopElag OTKS Ol uNyaveES avalHTNomg ENELDT TEPLAAUBAVOUY To XEITHRLA TNS <YEVOWNT»
XL KTPOCWTOTOMNUEVNCY CUCTACTG.
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ITpoxewévou va mpotelvel avTixelyeva 6Tov Yo Tr, €Vo GUCTNUN CUC TUCEWY TEETEL VAL
unopel va tpocdloploet av éva avtixelpevo agiCel vo mpotadel. YUVETDS, TEENEL VoL ExEL TNV
IXOVOTNTOL VAL EXTUNCEL TN KYENOOTNTOY XAVE AVTIXEWEVOU, 1 VO GUYXPEIVEL TN OYETIXY
«ENOWOTNTAY B0 avTixeévwy. T'iar Vo expdooupe TN YenooTnTo EVOS AVTUXELUEVOL 1
Yo évay Yot u, Yenotponotolue tov oupPBoliowd R(u,i) [1]. "Eve cbotnua cuotdoenmy
npoonael Vo TEOGEYYIOEL AUTHY T CUVAETNOT UE TO EAAYLOTO BUVATO CQIAUL.

Avdloyo e TO WS TAPAYOLY TG TEOTAGELS AVTLXEWEVWY GTOUS YENOTNG, To CUC THUATA
ovotdoewy ywellovta otic e€hc xatnyopies |2, 10]:

e YuoThuata Baciopéva oo tepieyduevo: To ohotnua tpoteivel avtixelpeva nopduoLa
ue Ta avTixelyeva mou dpecav otov YeNotn oto mopehdov. H ouowdtnta yetalld
aVTIXEWEVWY LToAOY(CeTan e BAon ToL YoEUXTNELO TIXA TOUC.

o Yuothuata cuvepyotixol @uktpopiopatog: To clotnua mpdta avayvwellel yerioTteg
UE TOPOUOLEC TPOTIUACELS UE EVOY CUYXEXPUEVO YENOTY), XU VO TEPA TEOTEIVEL OVTL-
xelyeva mou toug dpecav. H opowdtnta yetalld yenotdv vnoloyiletoun ye Bdorn to
YORUXTNELO TIXA TWVY AVTIXEWEVWY TIOU €Y 0UV 101 BOXUIACEL.

o TBpwixd cuothuata: To clotnua cuvdudlel Teyvixéc Baciouéves GTO TEPLEYOUEVO
xaL TEYVXEC CUVERYATIXOU QLhTpopiopatog.

INo vo ymopéoel va unoloyioUel 1 yENoWOTNTA EVOC AVTIXEWEVOL, TEENEL Vo Bladé-
TOLPE TANEopopleg oyetnd ue autd. Kdde avtixeiyevo €yel éva ohvolo and yvwployota 1)
YUEAXTNELO TIXE TOU TO TEPLYPAPOLY Xou TO dloywpllouy amd Tor umdroira avTixeiueva. Xo-
POXTNELO TIXA OIS 1 OLdpxeta Touviag, To €ld0g, 1} To €10 mopaywYNS, Aéyovtal Sounuéva
eneldn) €youv xadoplopévo péyedog xou ebpog Ty [31]. Ta dounuéva yopoxtneloTixd etvan
ToAU €0x0l0 Vo yenotpornoinioly and ahyopiduous tng teyvnTrg vonuoovvne. o autdv
Aoyo, cuvniilouye Vo UETATEETOVUE Tl U1 BOUNUEVOL YoRUXTNELO TIXE, oL CLVHTWS €YouV
N Loppn) eheiepou xeWévou, ot dounuéva. Autd umopel va emiteuy Vel ue TEYVIXES OTWE TO
Term Frequency-Inverse Document Frequency (TF-IDF), ¥ tnv mopoywy? Stoavuoudtwy
(embeddings).

H enidoon evoc cuotiuoatoc cuctdoewy unopel vo atohoyndel pue ™ yeron petel-
xwv. X1 Bihoypagla €youv npotadel TOAES BlopopeTixée HETEWXES, Kol OEV UTIAOYEL ULdL
aVTIXEWEVIXS xahOTeR emhoyn. Ou neplocdtepeg Yehétec emAEYOUY PETEXEC 0pUOTNTAS
(accuracy metrics), xuplwe eneldn elvon amhéc, edxohe 6NV xoTUVONOY, XA BIEUXOAIVOUV
™ olyxpton petadl ocvotnudtwy [7]. Mepiwéc and Tic mo onuovTnée petpixés opdoTn-
TG, o AUTES Tou Vot YENOWOTOLAOOVUE, elva uéoo andhuto opdhua (mean average error
f MAE), 1o péoo tetpaywviouévo opdiue (mean squared error i MSE), n opdétnta
(accuracy), n avéxhnon (recall), xaw to Fy score.

BéBoua, oL yetpuég opotnTog Sev apxolVy Yo Vo Tpocdlopto Tel TAHpnE 1) ETd0CT) EVOC
cuoThuatoc. I'a autdv Tov Adyo €youv mpotadel xan EVOAAAXTIXES UETEIXES YLOL TTUYES TOU
OLC TAUATOS oL TLTUXG Elvar BVox0Ao Vo TocoTxorooly [16]. Mia and autéc etvar 1 xou-
votopio (novelty), Tou TEPLYPAPEL TV IXAVOTNTO TOU CUC TAUATOS VoL TROTELVEL oV TLXEIMEVYL
TIoL oL YpeNoTeg BEV YVOEL oY Teonyouuévws. Puoixd, undpyouv xaL GANS TOU GUYVE oy Vo-
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oOvToL amd TN HEAETN TWV CUCTNUITOV UG TICEWY, OTwe 1) X paxwoudtnta (scalability)
TOU aAYORlUUOU X0 1) ACPUAELN TOV TEOCWTLXWY OEBOUEVKY TWV YENOTWYV.

1.3 BiBAoyeapixr] Avaocxonnom
1.3.1 MeJdodow Baociwoueéveg oto Ilepiepyousvo

H pé9odoc cuctdoewy Pociouéves 610 TEplEYOUEVO oL Vol ETLAEEOUNE TRETEL VOL LXAVO-
notel 800 Baouxd xpitrhpla. Ipwrtov, ot obotaon Baciopévn 6To tepleyduevo, To oOoTNUA
dev umopel va Bacileton oc cuoTdoeic | TAnpogopleg and dANOUC YO TES, OTOTE 1) TOGO-
TNTA TV 0E00PEVKY ToU unopel va yenoworoinVel yia xdle ypeRoTn elvon TEQLOPLOUEVT.
Enopévwg, 1 pédodog mou Yo SLoAEEOUUE TEETEL Vo AELTOURYEL UE TEQLOPLOUEVOL DEBOUEVA,
Tedypa Tou amoxAelel nepimhoxeg peVddouC TS To VELUpmVIXA dixTua. Aecltepov, N uédo-
00¢ Vo TEEMEL VoL UTOPEL VAL EVOOUATMOEL EUXOAA ETUTEOCVETES TANPOPOPIES, OIS OL GUVO-
Jelg Taviadv, yoplc vor ahhdEel 1 apyltexTovixt Tou povtéhou. Mia uédodog mou ixavomolel
xat T 000 awTéc ouVInXES, avdueca o€ dhha TheovexTiuata, ovoudletar K-IIinowéotepol
Ieitovec (K-Nearest Neighbors 4 KNN).

Ot pédodor KNN xatnyopionoloty éva avtixelyevo y Beioxovtog o k xovtivotepa avi-
xelUeva o€ €val GUVONO BEBOUEVMYV, Xou AVOIETOVTAS GTNY XAAGCT TOU €YOLUY To TEQLOGOTERX
ond autd ta k avuxelyeva [13].. YuvAdog yenowomoobviar yia xatnyoplonoinor dedoué-
VOV, 0AAG umtopolv xou edxoka va enextoadoly o TNy TedBAedm Tiuhc talpvovtog o Todulouévo
HECO 6p0 TV k XOVTLVOTEPWY YELTOVWV.

H ebpeon twv k xovtvotepwy YEITOVRDVY Yivetow ouyxpivovtoag xdie (ebyog oToiyelnv
ue Bdon ue ouvdptnon ouotdtntog (similarity function). I'a Sounuévo Sedouéva 6mwe autd
Tou Yol YENOWOTOAOOVUE, TROTWETOL 1 OUOLOTNTO CUVNUITOVOL (cosine similarity):

> AB;

=1

n n
S a2\ B
=1 =1

cosine similarity = Sc (A, B) =

It vor umopéoouye var EVEOUATOCOUUE Tic cLVOelg Tty ot uédodo KNN, neénel
TeTA 1 TANpogopla va petatponel oe dounuévn. Do va meplypddouue wa AEEN 1B Eva
XEUEVO WS BLEVUOUA, UTOPOUUE VA YENOULOTOLCOUUE ULl aQatt] 1 Lol TVXVY) OVUTOEAC TAOT).
M yvwot apafy avanapdotaot ovoudleton Tivaxas pou-6pou (term-term matrix). Xe
évo oOVOho xeWévwy (corpus), xdle xehl tou mivaxo delyvel méoeS Popéc o EMAEYUEVN
AEEN eppaviletan xovtd oe po dAAT A€En. H évvola tou «xovtdy cuvidwe onpaiver éva
Topddupo Aéewv YOpw amd T AEEN, yio mopdderyuo 4 Aéelc aptotepd xou 4 Aéeig Selid.
‘Etol oynuotiletar évag 8lodidotatog tivoxac, 6Tou AEEelg Tou Hotdlouy VONUATIXE TEVOUY
va €youv mapduota dwaviopata. H ewxdva 1.1 delyvel éva mopddelypo mivoxo 6pou-6pou.
Y10 VO TOGOTIXOTIOLACOUIE TNV OHOLOTNTA 800 MEEEWY, UTOPOVUE VOl YENOLLOTOL|COUUE [ULdt
GUVEETNOT OTWS 1) OUOLOTNTO CUVNULTOVOU.
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aardvark ... computer data result pie sugar

cherry 0 2 8 9 442 25
strawberry 0 0 0 | 60 19

digital (o 1670 1683 85 5 4)
information 0 3325 3982 378 5 13

SxAuo 1.1: Toapdderypa evog mivoxa 6pou-6pou amd €vo GOVOAO XEWEVLY TOU
Wikipedia. ‘Eva xehi pe peydhec tiwée onuaiver 6tL oL dUo avtiotoiyec Aé€elc eu-
poviletan oLy vé xovtd petald Toug. IInyA: [20].

Mo o 6Oy yeovr BlavuopaTixy avamapdo Taor AEENG 1 xetuévou ovoudletow embeddings.
Ta embeddings eivon o Tuxvi avamoedo taocy), ue Slac tdoelc oto ebpog 50-100, xan ot avti-
Yeon e tov mivaxa 6pou-6pou, oL EMITEENTES TWES elvon Vetixol xou opvnTixol mporypatixol
apduol, eved ol meplocdTepol dpot elvan U undevixol. To muxvd dlavucpatixd telvouv va
€youv xohltepeg emdooel; ot tasks enelepyaoiog uoic YAdooag, Yo AoYoug oy dev
elvan axopa TAHewe xatavontol [20]. Evac mbdavég Aoyog elvon 6t 1 yaunhy diao tatixdtnta
HELOVEL TNV UTepTpooapupoy T (overfitting), eved €xel tpotodel xon dTL 1 Younh dao TorTind-
TNt SleuxoAvel To va Beloxovton Tapduolee vonuatixd AEeC xovtd uetagh Toug.

To 2013 npotddnxe Wwia VEo apyttextovixn Ue TNV ovouocia «word2vecy, 1 omolo emLtd-
YUVE onuoavTixd T dnuovpyia Aextixev embeddings and €éva 0nolodHmote GUVORO XEWEVELY
[26]. O odybprduoc pe v xohtepn enidoon héyetan «skip-gramy, xau Aettovpyel exnou-
devovtag évay tadvounth hoyiotxic moAwdpdunone (logistic regression classifier) mou
TpoPAénel Ty mdavotnTa W AEN cuyxelévou «c» (context word) va Bploxetar xovtd oe
wa Aé€n-otoy0 «wy (target word). Kotd tn didpxeior tng exnaideuong, to yoviého anodn-
xeveL 800 embeddings yio xd0e AéT, Eva yio GTov elvan cLUYXEUEVO, xou Eva YLor GToy ebvan
AEEN-0TOY0c. AV 6ho 10 he&ihbyio €yer uixoc |V | xau 1 xpupy| Sidotoon twv embeddings
elvan d, t6tE cuvohxd éxoupe 2|V - d Bden.
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aardvark [@e8] | \
apricot (@99

r W target words

9 _ zebra [@89 |V )

aardvark V|+ \

apricot [@ag

r C context & noise
words

zebra (@88 2V )

ExHua 1.2: To yoviého skip-gram amodnxedel 80o embeddings yio xdde AéEn,.
O ayopriuoc podaiver v moapduetpo 6, mou eivan mivoxac 2| V| davuoudtov, pe
ddotoom daviopatoc d. IInyA: [20].

H apyttextovixry tou Word2Vec enextdinxe to 2014 dote va pnopel vo mopdlel xau
embeddings yio ohoxhnpa xelpeva. ‘Etol, mpotdinxe o akyodprduoc Doc2Vec, o omnolog
extog o6 Tto embeddings yio xdde AT, amodnxedel xou éva Bidvuoua topayedpou D mou
TEPLYPAPEL TO VOMUa TN Toparypdpou cuvolxd [23]. To Doc2Vec unopel vo e@oppootel
o€ xelyeva omoloLBNTOTE UrXoLC, XL €xel oTalepd XaAUTERES EMBOOELC ot tasks TexvNnThg
vonuoaolvng and Tov Yéco 6po twv embeddings OAwv TV AEEewVv.

Ou mopamdve teyvixée mou meplypddaue Topdyouy otated embeddings, 6mou uio AEEN
€yel mavto TNV Blor avamapdotaoy aveldptnTa and TNV TeoTacT oTnyv onola BploxeTo.
‘Eyouv avantuydel mo olyypoveg texvixég, oL onoleg nopdyouv Svvamxd embeddings. Yo
ouvouxd embeddings, n (Bl AEEN umopel var €xel BlaPoEETING SLaviopATL oy EYEL BLapO-
PETIXG VoMU avdhoyo ye To ouyxelpevo (context). To duvauixd embeddings uropolv va
nepLypdouv xahiTepa To VoMU TwV AEEEWY, ot TAEOV TEOTWOVTHL 6To TeplocdTepa tasks
eneepyaoiac PUOIXAC YAWOOOUS.

‘Evot omé tot ToA) Yvwo té wovtéla mou mapdyel duvouixd embeddings and xelyevo ovo-
néletow BERT (Bidirectional Encoder Representations from Transformers ) [8]. H cpyite-
xtovxt, tou BERT Baoiletar oe Souéc mou ovoudlovta uetaoynuariotés (transformers). Ou
UETAOYNUATIOTES Efval Un-ovadpouixd dixTuc Tou a€LoToloVUY TNV €VVOLaL TNG aVTOTQO00YTS
(self-attention). H autonpocoyt enitpénel oe éva bixtuo va nepvdel dueca TAnpogoplio ond
T0 éval ETUNESO G0TO A0, Ywelc TN YenoTn EVOLIUECKY CUVBECEWY OTWS YIVETAUL OE JAAES
apyrtextovxés. Eva block yetaoynuotiot) arotedelton and éva eninedo autonpocoyNg,
xou éva eninedo npdotog tpopoddtnone (feed-forward layer), ye eninedo xavovixonoinong
AVAUEGE TOUC.
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BxApa 1.3: Anexdvior evog block petaoynuotiot) xot tov emnédny tou. Inyy:
[20].

H é€obo¢ tou BERT eivou piot oxoroudior amd Stoviopata, Ue xdde Bldvuouo var avTio ToL-
xel oe wa Ae&uoypapinh povdda (token). To npdto otoryeio g oxohoudiog avtioTouyel
oe éva eldwd ovuforo [CLS], mou Aettovpyel W avamopdotacT) GAOU TOU XEWEVOL. BTa
HovTEND pag ot YeNOLLOTOLOUUE UTO TO BIAVUGHA YLOL VO TERLYPAPOLUE TIG TEPLATPELS Tou-
VIOV

Mot Toh) onpavTiny apyltextovixy 6To tedlo tng encéepyaciag Quoxic YAOooog etval
T Generative Pre-trained Transformers (GPTs). To mo yvwotd poviéha GPT éyouv
avantuydel and v OpenAl, ye 1o npdto va dnuooiedetar to 2018 [33]. Ta GPTs éyouv
TopouoLa apyttextovixn ue ta wovtéha BERT, ye tn Sagopd 611 yenowonololv diko el-
00¢ EMUTMEDWY AUTOTEOGOYE, TOU TA XAVEL THO XATIAANAL Yo Tapary WY xewwévou. BéPoua,
umopoly va yenowomonoly xan yia TNV Topaywyr) Suvaixoy embeddings, xdt mou Yo
XAVOUPE GTa HOoVTERA Ttou Vo eEETACOUYE.

H olotaon avixeipévev yenowonowwvtae embeddings AMEewv €yl e€etaotel epeuvn-
wd [30]. Ov ouyypagpeic nporypatonoinooy telpduoto yenoulotolmvtas o tatixd embeddings
Tou dnuovpeyHUNxay and to Word2Vec yio va tpoteivouy tawvies, onuelddvovtag BEATIOUEVN
enldooT o8 OAEC TIC UETEXESC OLUYXELTIXA UE CUC TAUNTO TTIOU YETOULOTIOLOUCUY TUAUOTEQRA
povtéha 6w to bag-of-words xou to TF-IDF. Tt tor 0uxdt paig ovtéra, Yo axohovdficouue
TopouoLs P€V0do, BoXALoVTaS TEPLIOCOTERT, TANEOYORIA UE TN LORPT) CUVOPEMDY TOUVLELY,
xaL yenowlonownvrog duvauxd embeddings mou mapdyovion and dudpopa poviéha BERT
xon GPT.
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1.3.2 Nevpwvixd Xuvepyatixo PiAtpdpiopa

Mo WBradtepa emituynuévn uédodog 6To medlo Tne VO TACTG AVTLXEWEVGLY AéyeTon Neu-
pwvixd Luvepyoatind Prtpdpeioua (Neural Collaborative Filtering ¥y NCF) [15]. To veupw-
VIXO CUVERYATIXO QLATEdPIoUA efvon €val YEVIXO TAX(CLO YLoL GUVERYUTIXO PLATEAQLOUA TTOU
cuvBLALeL TNV TapayovToTonon TVEXWY PE Bardld veLpwVixd BixTua. X TNV TaEoyovTonoi-
Mo TWVAXWY, O TVaXaG GAANAETLORACEWY HETAE) YENOTWY X0 AVTIXEWEVKY anocuvTieTtal
o€ 5V0 0pYoYOVIOUS TVAXES WXEOTERNS DLUC TATIXOTNTAS, £TOL (O TE TO YWVOUEVO TOUC Vo
elva X0\ TpOGEYYLoN TOU apyxol Tivaxa [22]. 1o VEUpWVIXG GUVERYUTIXG PINTEAPIOU,
0 TVOXAC-YIVOUEVO TiEpVEEL amd TOANG TARpwe cuvdedeuéva eminedo doTe vor TEoxUPEL 1
el tpdPredmn e Baduoroyiag evog yerotn. H edva 1.4 Belyvel to yevind mhaioto mou
TEOTAUNXE.

Training =

Output Layer

T
Neural CF Layers Lay::r 2 ‘

i

\ Layer 1 \
- 7 ~ 4
Embedding Layer User Latent Vector ‘ Item Latent Vector ‘
T Py = {Puk}\ / T Qi {qik}\
Input Layer (Sparse) \0\0\0“0\0\ ...... | [ofofo|ofa] o] - |
User (u) Item (i)

Exhua 1.4: To mialolo Tou veupwvixol cuvepyotixol @uAteapioyatog. IInyy:
[15].

Yty eyt epyaocia, 1 elcodog Tou wovtéhou elvon PdVo o yeNRoTNG XL TO AVTIXE(UEVO
v mpotaoy. Enextelvouye to mialoo petafdAloviag tny £lcodo Tou poviéAlou WoTE Vo
0Eyeton oTatxd 1) duvouixd embeddings we emnpdovetn mAnpogoplo. Lt SixY| Yog mepl-
ntwon, Yo tpoxintouy and v enelepyacio cuvdPewy Tavidy. Etot, Yo dnuovpyioouue
OrapopeTind LBELOWE LoVTERA TTOU aELoToL00Y TOMAATAS £(0T) BEGOUEVLV.
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1.3.3 Moadnon pe Aya delypota

H pddnon ye Ayo delypato (few-shot learning) etvon pior uédodog unyovixhc udinone
Tou Aoy oAeltaL UE HOVTEA TTOLU UTOPOVY VAL YEVIXEUGOULY antd ToAD Alya dedouéva. H pédo-
00¢ yiveton divovTag 6To UOVTEND pEpIXd TapadElYUaToL TOU cUYXEXPWEVOL task, ywelg
duvatodtTa var ahhdEouv ta Bden. To povtého mpénet vo pddel and autd tor TopadelypoTal
Tov oxond Tou task, xou var yevixeUoel xatdhinio. Mia epyacia to 2020 €deile oTL apxetd
HEYSAS LOVTEND UTOPOVY VO CUELICOLY EVIUTIWOLOXA anoTteréouata ywel fine-tuning twv
Topapétewy [5]. Mio onuavtixy napatienon eivar 6tL 1 enidoon goiveton vor auEdveTal Ye To
uéyevog Tou YovTEAOU.

Yy napovoa epyacta, Yo e€etdoouue T udinomn pe Alya delyuota oto nedio tng mpo-
TUONS TOUVLOV YETOLWLOTOLWVTAS HOVTEA BlagopeTixol aptdpol mapauétewy. Emmiéoy, da
EVOWUATOOOUUE GUVOELS TOUVLWDY G TOL TOEADElYHATA TTOL Yot OIVOUUE GTO HOVTEAO, TEOXEL-
Hévou va eEETACOUPE oV apXoUV OO TE va Topaydoly xolég cuctdoec. Méyol tn atiyun
e dnuoaievone autol Tou detpou, auTh 1 TEocEYYLom Bev €xel Tpotalel 1) doxwaoTel oe
Shhec €peuvec.

1.4 Mée<£9o0o0oc

Do tnv exmaideuon xou T 00X OAWY TV LOVTEAWY TOU XATACHEUACUUE, ONULOVEYT-
oopE €va VEO 6UVONO Bedouévwy cuvdudlovtag dUo olvola dedopévmy Tou NN LTdEY oLV,
t0 «MovieLens 20M» xou o « Wikimedia Movie Plotsy [29, 40]. KpotAoope pdvo tic touviee
mou ep@avilovtan xan 5T 800 GUVOR BESOUEVKV, ot CUYYWVEDCOUE OAES TIC TANEOPOPLES
oe éva xouvolplo dataframe mou ovoudoope «df moviesy. And 1o ratings xpotrooue TiC
TEWTES VAL EXATOUHOPLO XPLTXES AOY W TEQLOPLOUGY o1 dlordéaiun uviun. Oin n npoene-
Eepyoaoia éyve otn Yhwooo Python pe tn Bifhiodrixn Pandas.

It tn Sie€ory wyn Telpaud TV, oyedLdoaue dlapopeTxd wovTéla Tou yweiletal oTic e€hg
xatnyoplec:

o Movtéha Paclouévo 610 Tepieyouevo: Autd ta poviéha Tpotelvouy tawvieg ue Bdon tig
TpoTiunoel Tou xdlde yenotn Eeyxwplotd. Xenowonotoly puevddouc K-Kovtvdtepou
Ieitova (KNN) xou 8ev yenowponolovy dedopéva amd dAloug yeoTes.

o TBoduwd povtého: Autd tar HOVTEAN GUVOLALOLY T YUEUXTNELO TIXE TWV TOUVLKV X0k
Vdg xou Oheg ahhnhemdpdoel Yetadh yenotwy xou tawiev. Baoilovta 6to yevixo
mhadoto Tou TepLypdgeTon oo [15].

o Movtéha pdidnone e Ayo delyporta: Autd to poviéha a€lomololy Yeydha YAWooLXd
MOVTERX YLOL VO XAVOUY GUCTACELS UE EAY Lo T Bedouéva. Ol TPOTACES TV HOVTEAWY
Baollovtan wdvo oe dedopéva tou oyetilovian Ye xde yeHotn ey wpeloTd.

INo o povtéha Boaoctopéva 6to mepieydpevo, ywpilouue 10 cUvolo dedouévey oe coU-

Voho Yo exmafdevon xon cUVOho doxylhg. XToyog ebvon va extiuniel ocwotd 1 Paduoroyia
mou Balouv ol ypRoteg oe Touvieg and 1o chvoho doxuhc. To povtéha Aettovpyolv oe xdie
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Tawvia Beloxovtag toug k xovTivotepoug yeltoveg ue Bdon Wia cuVEETNOT OUOLOTNTAC, XAl
unoloy(louv Tov G TadUIoPEVO HEGO OpO OAWY TWV YELTOVWY. Kdle povtélo allomolel Evay
OLAPOPETIXO TVAXOL OUOLOTNTOG, TTOU TEOXVTTEL GLUYXEIVOVTOC DLOPORETING Y ALUXTNELO TLXAL.
O mivaxog «genre_simy detyvel Ty ogolotnta pe Bdon ta genres, o nivaxog «director _simy
TNV opolOTNToL UE BAoT) TOUG OXNVOVETES, EVE OL UTOAOLTIOL THVIXES CUYXEIVOUV TIC TOUVIES
ue Bdon ta Slovbopata Tou Topdyovial and wovtéda onwg to BERT 7 to GPT. O ni-
voxag 1.1 cuvodiler Oha tar OVTEAX TTOU BOXUUACOUE. LNUELVOUUE OTL OL UETPIXES TOU
xenowomotinxay eivar 1o H€co AmOAUTO CQIAUL XU TO UECO TETPAYWVIOUEVO GPIAUAL.

ITivaxag 1.1: Movtéha Bacloyéva 610 TEPLEYOUEVO

‘Ovoua Movtéhou [Tivoxag OporétnTog

Content-genre genre sim

Content-genre-director genre sim + director sim

Content-bert-base bert base sim

Content-bert-imdb bert imdb sim

Content-distilbert-imdb distilbert imdb_sim

Content-gpt2s gpt2 s sim

Content-gpt2m gpt2 m_sim

Content-gpt2] gpt2 1 sim

Content-gpt2xl gpt2 xl sim

Content-bert-base-g-d bert base sim + genre sim + director sim
Content-bert-imdb-g-d bert imdb sim -+ genre sim + director sim
Content-distilbert-imdb-g-d | distilbert imdb sim + genre sim + director sim
Content-gpt2s-g-d gpt2 s sim + genre sim + director sim
Content-gpt2m-g-d gpt2 m_ sim + genre sim + director sim
Content-gpt21-g-d gpt2 1 sim + genre sim + director sim
Content-gpt2xl-g-d gpt2 xl sim + genre sim + director sim

Do o UPEdWwd povtéda, oxohoUYOUUE TNV OPYLTEXTOVIXY TIOU TUQOUCLAGTNXE GTNV
apy x| epyacia Tou VEUpVIXO) cuvepYaToU @ihtpaplopatos. Ta pyoviéha aroteholvTan
ané enineda embeddings yio Toug yprioTeC xan oL avTixelpeva, xon Tela TAHEWS CUVOEDEUEVA
enineda, ye ouvdptnon evepyonoinone ReLU. H é€odoc nepvdel and orypoeldy| cuvdptnon
EVEPYOTONONG Xl XALUAXOVETAL Yot Vo Bploxetal 6T0 0waTé €VPOC TWOY. ¢ UETEXES
XENOWOTOL00OVTOL TO HEGO ATONUTO GPIAUA Xl TO UECO TETEAYWVIOUEVO GHAAUL.

H elcodoc tou povtéhou elvan €va user id xon €va item _id TOU AVTIOTOLYOLY GE GU-
YHEXQUIEVO YV O T X0 CUYXEXEWEVT] Touvia avTioToL ol LUUTANEOUXTIXG, XATOL LOVTENX
unopel va hauPdvel emmpodcdetn mAnpogopio and TN cUVOYN TOU XEWEVOL UE TN UOPPT
embeddings. Apyixd xataoxeudooue to wovtého Hybrid-baseline mou mpotdinxe otny op-
) epyooia xou Yo ypnowonowmnel w¢ baseline. Ytov nivoxa 1.2 cuvodilovton to povtéia
Tou e€ETACUE.
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ITivaxag 1.2: TPRpdwd povtéla

‘Ovoua Movtérou | Emnpécietn IIAnpogopia
Hybrid-baseline -
Hybrid-doc2vec Doc2Vec embeddings

Hybrid-bert-base | BERTgasg embeddings
Hybrid-bert-imdb | BERTpg embeddings

Hybrid-gpt2-s GPT2-small embeddings
Hybrid-gpt2-m GPT2-medium embeddings
Hybrid-gpt2-1 GPT2-large embeddings

Hybrid-gpt2-x1 GPT2-xl embeddings

I toe povtéha pdinong pe Aiya delypota, to task elvon duadxn tagivounon. Ou ue-
Tewéc Tou Yenowonoidnxay eivon 1 opddtnta (accuracy), n avéxinon (recall), xou to
F score. Xapaxtnploope Oheg Tic alloloyhoelc xdtw amd 3.5 wg «Aev Ipoteivetouy 1)
«Not Recommendy, xou 6hec tic adloloyroec and 3.5 xau mévew e «Ilpoteivetouy %
«Recommendy, pe Bdon tn oluPacn mou €yel ypnowonoinlel oe TEONYOUUEVES UEAETES
[16].

‘Oha o epwthAyarta (queries) mpog To LoVTENO €xouy TNV axdhoudn doun:

Recommend movies with Yes or No.
[Evo mthidog and napadelypoty]
plot: [IThox# touvioc mou e&etdloupe]
recommend:

To povtéla mou e€eTdoope Xou oL TUPdUETEOL Toug QalvovTto GTov Tivoxa 1.3.
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ITivaxag 1.3: Movtéha pddnong ue Alyo delyporto

‘Ovopa Movtélou Ipocapuoyn Topadetypota | Xepd IM\woowd Movtého
Fewshot-trunc-2ex-s-125M | Truncation 2 P-N GPT-Neo 125M
Fewshot-trunc-2ex-r-125M | Truncation 2 N-P GPT-Neo 125M
Fewshot-2ex-s-125M Summarization 2 P-N GPT-Neo 125M
Fewshot-2ex-r-125M Summarization 2 P-N GPT-Neo 125M
Fewshot-3ex-s-125M Summarization 3 P-N-P GPT-Neo 125M
Fewshot-3ex-r-125M Summarization 3 N-P-N GPT-Neo 125M
Fewshot-4ex-s-125M Summarization 4 P-N-P-N | GPT-Neo 125M
Fewshot-4ex-r-125M Summarization 4 N-P-N-P | GPT-Neo 125M
Fewshot-2ex-s-1.3B Summarization 2 P-N GPT-Neo 1.3B
Fewshot-2ex-r-1.3B Summarization 2 N-P GPT-Neo 1.3B
Fewshot-2ex-s-2.7B* Summarization 2 P-N GPT-Neo 2.7B
Fewshot-2ex-r-2.7B* Summarization 2 N-P GPT-Neo 2.7B
Fewshot-3ex-s-2.7B* Summarization 3 P-N-P GPT-Neo 2.7B
Fewshot-3ex-r-2.7B* Summarization 3 N-P-N GPT-Neo 2.7B
Fewshot-2ex-s-6B* Summarization 2 P-N GPT-Neo 6B
Fewshot-2ex-r-6B* Summarization 2 N-P GPT-Neo 6B
Fewshot-2ex-s-20B** Summarization 2 P-N GPT-NeoX 20B
Fewshot-2ex-r-20B** Summarization 2 N-P GPT-NeoX 20B

* To mepduarta €yvay yenodonoldvias oxpifela tecodpwy bit Adyw POy anathoewy ot
puviun. H xBovtonoinomn tewv goviéhwv éywve ypnowonowdvtae t P3hodvxn bitsandbytes [24].

** To mepdpota éywvay oty thatpdpua Google Colab Adyw uPnhodv anctioewy ot wvAun [12].

Emmiéov, puiddaye tor mopoxdte LovTERR Yio var yenotpornoinioly we baseline:

e Fewshot-baseline-dummy: Anhdc tadivountic mou emhéyel v mo cuvhouévn
xAdom yio xde YeHoTn.

e Fewshot-baseline-genre: Tagivountic KNN nou yenowonoiel oyotdtnta ye Bdor ta
genres (k = 20).

1.5 AmnoteAécpata

To anotehéopota yior To OVTEL BUCLOUEVO GTO TEPLEYOUEVO ToROLCLAloVTaL O TIC El-
x6veg 1.5 xou 1.6. Xnpewwvouye 6ti to baseline povtéla epgaviCovton xon otig 800 euxoves
yia euxohior ot cUYXELON.
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Content-based model metrics (1/2)

Metric value
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YxAra 1.5: Anoteléopota yia o povieha Bactopéva oo tepteyouevo (1/2).
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Content-based model metrics (2/2)

m MAE
[ MSE
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EyAupo 1.6: Anotehéopota yio T HOVTENA Boctopéva 0To TEpLEYOPEVO (2/2).

Ané ta anoteléopata nopatneolue o eERC:

o Yuyxpivovtag Tig 800 exdveg HETAEY Toug, BAénouue OTL Oha ToL wovTéha €xouv Beh-
TIWPEVT ETBOOT OTAY YENOUWOTOOLY TEQLOGOTERT] TANEOGOEIO UE T1| LOoP®T) HETAOE-
BouEVWY OTIKC ToL genres 1) oL oxNVOUETeS.

o And oha ta povtéra mou e€etdooue, To Wovtého «content-bert-imdb-g-dy» Eeywpellet
w¢ To x0A0TEPO oE endooN TOCO 010 PECO AMOAUTO GPIAUA 6GO %o OTO YECO
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TETPAYWVIOUEVO o@dhua. To cuyxexpiévo poviého €xel po Bedtioon and 1.11%
éwe xou 4.62% oe oyéomn pe ta baselines.

e To povtého «content-bert-imdby €yel xohltepn enidoon and 1o poviélo «content-
bert-base», yeyovdg mou anodidouue oty e€edixeuon mou €xel to fine-tuned po-
viého BERT otnv xoatavénor nepleyouévou oYeTind Ue ToUVIES.

e To povtého «content-distilbert-imdby €yel napduoiec Twwéc yetpinv ye To «content-
bert-imdb» 1o yéoo teTpayWVIGUEVO TN, IANS BLUPORETIXES OTO YETO AMOAUTO
o@diua. Auto elvan €var ONUOVTIXG ATOTENEOUA YO DELYVEL TS UTOEOUY VoL TROTIUT-
Youv distilled povtéha mou elvon To Uixpd xan TO YEHYOREX, AVIAOYA UE TN UETEIXT).

e Ooov agopd ta yovtéra GPT, ta yeyahitepa povtéda dev elvon xahiTepa and ta
mo wxpd. Autéd pnopel va cuttohoynidel and v giivouca anddoon mou €xel N ad-
&non tou yeyédoug Twv wovtéhwy, 1 Ty miavy| unepmpocapuoyt (overfitting) twv
MEYUAUTEQWY UOVTEAWY GTA OEDOUEVAL.

Ta anoteréopata yior Tor UBEWOWXE povtéha tapouctdloviol oTny exova 1.7.
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Metric value

Hybrid model metrics
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EyxAua 1.7: Anoteléopota yio Tor UBELOLXE povTENL.

Ano ta anoTteAéoUATA ONUELOVOUUE To EENG:

o Oha to povtéha mou oyedidooue Eemepvolv T Bacixr LVAOTONCY TOLU VEURKVIXOV
GUVERYUTIXO) PIATEORICUATOS IOV YENOWOTOLUNXE WG ONUELD oVaPORUS.

o To xahitepo povtéro amd autd mou agloroyRinxay eivon to «hybrid-bert-imdby, xa-
Torypdpovtog Bedtioels 2.16% xau 3.76% otic petpinés évavt tou <hybrid-baseliney.

e H evowpdtworn embeddings and tov ahyoprduo Doc2Vec gaiveton va BeAtimver Ti
METEWES, ahAd o oyeTnd wxed Badud. H noapathenomn autr emBeBaucyvel Toug Teplo-
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plopolg Twv otatixwy embeddings 6To Vo UTOEOUY VoL ATOTUTHCOUY UE TANEOTN T
TO TEPLEYOUEVO TWV GUVOPEWV Yla TOV GXOT6 NG U0 TUONG.

e To povtéro <hybrid-bert-imdby, nou Boacileton o yYAwoowxd yoviého mou €yel mpo-
oopuooTel 0To TEdlo TV TV, utepEyel tou «hybrid-bert-basey. To yeyovég
auté emPBefoudvel Ty o&ia Tou fine-tuning TV HOVTEAWY GTO TMEQIEYOUEVO TOU GU-
yxexpévou task mou eetdleton.

o Onwg xau oo povtéda Baclopéva 6To TepleXOUevo, 1 adEnoT TV TopoUETEMOY 0 Ta
novtéha GPT 8ev e€aopoilel Bedtiwpévn anddoon. Autd to anotéheoya aupioBnTel
NV xowY) unddeon OTL Tar UEYAROTERA LOVTERA €Y OUV TEVTO XAADTERO ATOTEAEGUATOL.

To amotehéopata yio ta povtéra udinong ue Alya delypota mapoucldlovion o TNy elxova
1.8.

Fewshot model metrics

fewshot-baseline-dummy B Accuracy

[ Recall
. Fl

fewshot-baseline-genre

fewshot-trunc-2ex-s-125M

fewshot-trunc-2ex-r-125M

fewshot-2ex-s-125M

fewshot-2ex-r-125M

fewshot-3ex-s-125M

fewshot-3ex-r-125M

fewshot-4ex-s-125M

fewshot-4ex-r-125M
fewshot-2ex-s-1.3B
fewshot-2ex-r-1.3B
fewshot-2ex-s-2.7B
fewshot-2ex-r-2.7B
fewshot-3ex-s-2.7B
fewshot-3ex-r-2.7B
fewshot-2ex-s-6B
fewshot-2ex-r-6B
fewshot-2ex-s-20B

fewshot-2ex-r-20B

0.0 0.2 0.4 0.6 0.8
Metric Value

Sxhuo 1.8: Anoteréoyota yia ta povtéda udinong pe Alyo delypato.

Kdvouye tic €€r¢ napatnerioeic:

o Tndpyel cuoyétion aviueoo 6To uéyedog Tou HOVTENOL XoL TNV AmddOCT GTIC Ue-
Tewéc. Mropolye vo cuumepdvoupe OTL Tol HEYOADTEQO LOVTEAD UTOPOUY VO XOTA-
VO |OOLY XUADTERA TO XEUEVO TOL BIVETAL XAl VO YEVIXEUCOULY amtd Tol Tapadely T,
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BAémouye eniong 6Tl Bev €oUUE PTACEL EVOL AVAOTATO HELO ATHBOCTNG, OTOTE TEQUTEQ
ab&non tou peyédoug Tou povtélou Umopel vo cuveyilel va BEATIOOEL TIC HETPUXES.

o O Bérnotog apuiudg moapaderyudtwy o xdle epwtnua @aiveton vo lvon dVo. Ta
HOVTERA TTOU eXTLOELTNXAY UE Tplo XaL TECCEPA TUPUDELYUATO EYOLVY UELWUEVY] ATO-
doom, pe To Técoepa TapadelypaTar var 6ivouy ta YelpdTepa anotehéoparta. Mia vy
e&nynom elvan 6TL Toe emimA€ov Topadelyuota elodyouy Vopufo 6To Lovtéro xar oy
TO UOVTEAO GTO VAl TROTWS ULal CUYXEXQUIEVT] XAAOT).

o M neplepyn nopatrienon ebvor 6Tl ol UixpdTERA LOVTERX TTOU BOXUACTNXAY, EWBLXA
autd pe 125M nopopétpoug, €xouv yewpdTeERN anddoot axdua xon and To baseline
HOVTEAQ TTOU YENOWLOTOLOUY TOAD amAES TeEXVIXES. AuTo Belyvel Ot To xped YAWwooixd.
povTéRa dev SLrd€TOLY TNV ATUEALTNTY TOAUTAOXOTTA Yiat Vo Uddouv and to Alyo
TapadelyUoTo ToL BlvovTal.

o ‘Ocov agopd T oelpd TV TaEASELYUATWY, 1) OELRd «opVNTIXO-0eTindy Exel xahiTepa
arotehéopata and TN oelpd «eTnd-apvNTIXdy, BelyvovTog OTL 1) oelpd encéepyaciag
and To YAwoowxd poviéha umopel vor ahAdEel TNy anoteAeouaTixdTNTd Toug. H da-
@opd. unopel enlong vo anodoVel otV avicoppeoTiol ToU GUVOROU BEBOUEVLY, Xadm]
Tawvieg €youv neplocdTepeg VETIXES And dpVNTIXES XEITIXEG.

o Téloc, n avaxepadaiwon (summarization) twv xeévwy BEATIOVEL TS HETELXES €V
vl e pedodou e amoxonfc (truncation). To yeyovoc autd delyver 6t m ova-
xepaaiwon ebvar xavh va teplypdder To vonua Twv cuvoPEwy, TOUAAYIGTOV GTO
ouyxexpLevo task.

Yuvoilouye Oheg og TG TapATNENOES GTo EEAC:

® YUVOAIXA, 1) EVOWUATWOT GUVOPEWY TV QoiveETol VoL BEATIOVEL TIC ETUBOCELS TWY
CUCTNUATWY VO TAONS TUVLAY, Tovilovtag Ty ol Tng emmpdodetng TAnpoopiag
o1 oladuaoio Tng choTaoNg.

e Y11 0UoTUoT BACLOUEVT) OTO TEPLEYOUEVO, T XAAVTEQU ATOTEAECUATA TEOXVITTOLY
an6 TOV GUVBLUCUO TWV CUVOPENY UE TUTILXG UETAUOEDOUEVY, OIS Ta genres, To cast,

N TNV Mooy Y.

o Blénouye 6Tl UTdEYEL Vo HPLO GTNY ATOTEAECUATIXOTNTAL XAVE TEYVIXNS, TO 0Tol0 OEV
unopet va Eemepac el ye TN Teoc 1 CUUTANEWUATIXGDY TANEOPOELAOY. JE TEQLTTH-
OELC TOU E(UICTE XOVTA G aUTO TO 6plo, AAAAYY) TNV AEYLTEXTOVIXY TOU UOVTEAOU
umopel vo pépel XAAVTEPA ATOTEAEGUATAL.

o Ou teyvixéc obotaong e Alya delypata delyvouv TOAES TEOOTTIXES, Aol Teplopi-
Covtar wévo amd tov aptdud TapaléTenmy Tou woviélou 1 to uéyedoc Tou context
window.

31



1.6 XvunEpaocpa

Yy noapovoa gpyacio, e€etdoauye oy UTopolv oL TEQAAPELS TUVLOY Vo BEATLOCOUY
v axpeifeia Twv cUCTNUATWY GUCTAONS TUVLKOY. AVAADCUUE TOUS BLAPORETIXOUS TUTOUS
CUCTNUATWY 0UCTACNS XL TROTEIVUUE UPYLITEXTOVIXES OTIS OTOIEC UTOPOVY VO EVOWUATO-
Yolv mAnpogopieg TN Thoxng. LN CUVEYEL, ONUIOVEYNoUUE BLdpopa LoVTENN BacLouéva
OTO TEPLEYOUEVO ol LB HOVTERA, TIOU YENOUWOTOOUY GUYYPOVES TEYVIXES UNYAVIXNG
uddnong, xoadodg xan €va GUVOLo Bedougvwy Yl Vo Bondfoel otn dladixacio oo Taomg.
Enlong, doxwdooue ) yprion tov nepidewy touvidy ot pdinon ue Alya delypato. Xu-
yxplvovtag to baseline povtéla ye autd mou oyedldoaue, 1) EEEUVA HAC OElYVEL Wial ULxE)
MG peTprion avénon oty enidoon uetd and v npociixn Twv tepthideny. Autd ta
anoteAéopata ToviCouy TN onuacio Tou TEplEouEVoU 61N BEATIWOT TwV HOT LUTUEYOVTWY
CUCTNUATWY VO TACTG.

Anavtoviog oty x0pla epmTNoN NG gpyaciog, cuutepaivoupue 6Tl oL Tepthielg Tou-
VIOV Umopoly OvIee va BEATIOC0LY TNV enidooT Ty cuoTudtwy cbotaons. Anodidouue
™ Behtinon oty XovOTNTA TOV YAWCOIXOY UOVTEAWY Vo eEAYOLY TEPLOGOTERT YENOWT
Thneogoplo mou dev Peloxetan oo TUTLXG YeTadedouéva. BéBoua, 1 Bedtiwon elvan pixen,
xon xqie Teyvxn @abveTon vau €xel Eval Bixd g dvw 6plo enidoomng. ‘Ocov agopd T deltepn
EPWTNOT OYETUA UE TNV AVTIXATACTACY) TWV UETAOEOOUEVLY, eV UTopolue Vo Bydhouue
éva Eexdiopo ouumépaoua. XTa UOVTEAA BUCIOUEVA OTO TEPLEYOUEVO, 1) AVTLXATAGC TUCT)
Twv yetadedopévey pe T embeddings nepdewy Bev €xel mavToL Tol XAAVTEQO AMOTENE-
opatol. YUVETAOGS, Yewpolue 0Tl Tar HeTodedoUEva axdua Slodpopatilouy onuavtixd pdho o
auTOV TOV TUTO CLUGTNUATLWY. Ao TNV GAAY, T cuoTHUATH Pddnong ue Alya Selypora el
YOV EVIUTIOOLOXA AMOTEAEOUATA Ywelg TN YeY|oT UETAOEDOUEVKY. YE QUTAHY TNV XaTrnyoplo
CUC TNUATWY, OL GUVOPELS TOUVLLDY 0EXOLY Yid VoL Topay Yol XoAE GUOTATELS.

Puowd, 10 cuyxexplévo Véua Tou efeTtdooue elvol EXTEVES xan TONOTAELEO, OTOTE
oev unopel va xahugdel TAfpwe and war dimhwuatixy epyaoto. o autd, mpotelvouue Tig
axdrovieg xatevdivoele Yoo UEAAOVTLIXY Epeuvar

o Evoopdtwon dlapopeTindy 18wV XELUEVOU Xal LETABESOREVELYV: Ou
UTOEOVCAY VAL BOXLUACTOVY DLUPORETING XEUEVA TTOU TEQLYPAPOLY Wil Touvia, OTWS
xELTIXES 1) oevdpla antd trailers. H avdluom BlagopeTintdy GUVOLACUMY UETADEDOUE VLY
umopel vor BAOOEL YLt TANEESTERT EXOVAL Yol TOV BEATIOTO GUVOLACUO.

o Aoxly SLapopeTiX®wY REVOdwY A alyoplduwyv: To 1edio Twv cuctdoewy
AVTIXEWEVWY EYEL ol TANUOEA amd TEYVIXEC TOU YENOWOTOLOUVTAL XAl €YOUY XAUAL
anoteléopata. Ilpoteivoupe uetddoug 6mwe ta dBEvTpa amoPdcewY 1 TOUG TAEVOUNTES
dixtOou Bayes mou eugavilovtar cuyvd ot Biloypopio.

o AZwonoinomn cevopinwv touviwyv: To ceviplo uiag tawviog Teoopépel AenTouE-
PELEC OTNV TAOXY| TTOU BEV UTOPOLY VoL TERLYpapolV and o abvolr. BéBoua, to pe-
YEAO uix0g TV GeVapltY EMBAAAEL TN YNOT) TEYVIXOV VLo VO YWeEGOLY GTo context
window Twv YAwoowwy povtéhwy. Enlong, n avdntudn véwv uedodoloylodvy yio Ty
avoxeaaiwon xeyévey Yo dleuxollvel onuavtixd tnv oflonoinorn dedopévwy oo
CUCTHUATA CUCTAUOTC.
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o XpAom LEYAAVTER®Y YAWOOIX®Y ROVIEA®Y YLl TN wddnon and Ayo
Seiypator: H epyacio pog €deile Tic mpoontixée tng uddnone ue Aiya delypato oo
task cOoTaong Touviwv. Mehhovtiny €peuva Yo umopoloe vo EGTIACEL G TN DOXUT
oo UEYONDTEPWY HOVTEAWY XAk TNV ACLOAGYNOT] TNS XAWUIXWOWOTNTAS TN CUYXE-
xpwévne texvinic. Tautdypova, Yo uropoloe vo yehetniel 1 enidpoor tou context
window otV amoTEAEoUATIXOTNTA TNS HEVOOOU.

o Aoxiuf o dAho avtixeipwevo: H enéxtaon twv uedddnv mou avortvéaue oe
ShAo avTixetpeva ebvan piar eVOLAEQROLCU TEOTAOT Ylor UEANOVTIXY| Epeuva. Tor Topd-
OELYUQL, 1) AVEALUOT TV O TV TEAYOUdLWY Yo UToEoUCE Vo BEATIOCEL T GUC THUATI
clLoTaoNG Lovoxng AaufBdvovtoag uTodn To Yeyatind TEpLEOUEVO NG pouoixhc. H
e€epelVNOT DLUPORETIXY AVTIXEWEVWY urtopel vo emPBefoucdoet Ty eveh&la tTng Tpo-
GEYYIONG Hog, Xt Yoo oUVEBUE GTNV avamTUEY O EEEALYUEVWV TEYVIXDYV GE GANOUS
Topelc.
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Chapter 2

Introduction

2.1 Overview and Motivations

In today’s digital era, we are often faced with what is called the paradox of choice. While
we now have more choices than ever before, granting us unprecedented agency and au-
tonomy, this abundance also complicates our decision-making process. This phenomenon
becomes increasingly prevalent in the realm of entertainment. Modern streaming plat-
forms have transformed how we access our entertainment, offering an unprecedented
selection of movies, series, and other content at our fingertips. Navigating these count-
less choices of daily life requires us to make decisions without sufficient knowledge of the
alternatives. Consequently, tools or systems that help us make decisions are becoming
more and more important.

Movie recommendation, in particular, has attracted significant attention as a research
topic, not only because of its direct impact on consumer satisfaction but also due to the
immense commercial interest it attracts. Its significance has grown with the evolution of
streaming platforms, where personalized recommendations have become central to the
user experience. Combined with the abundance of quality data available for analysis, this
task presents vast potential for exploring diverse recommendation techniques. Moreover,
there are other often neglected aspects such as designing for scalability and ensuring user
privacy, which add a layer of complexity and make the task an area for innovation. Given
these unique dynamics, movie recommendation systems have emerged as a central focus
for both academic and industry experts.

Recommendation systems have become an essential tool for navigating digital con-
text, guiding users towards content tailored to their preferences. These systems usually
rely on collaborative filtering techniques such as matrix factorization, which primarily
utilizes user interaction data and content metadata for generating recommendations.
However, this approach overlooks the rich information that is embedded within textual
data such as movie synopses.

The emergence of advanced Natural Language Processing (NLP) techniques and
Large Language Models (LLMs) presents a novel and interesting opportunity to enhance
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recommender systems. These advancements have enabled us to analyze textual content
more comprehensively, unlocking new possibilities in data analysis and enhancing per-
sonalized recommendations. This thesis explores the potential of using these modern
tools to extract useful information from movie synopses.

2.2 Problem Statement

This study is driven by two research questions. The primary question investigates the
impact of movie synopsis data on the performance of movie recommendation systems.
It seeks to determine whether incorporating synopses into the recommendation process
can improve the accuracy and relevance of recommendations provided to users. If movie
synopsis data can indeed enhance the recommendation process, then we should examine
the best ways to utilize that additional information, and the extent to which the metrics
improve.

The secondary question examines the possibility of utilizing movie synopsis data as
a substitute for traditional metadata in recommendation systems. This is important for
two reasons. Firstly, modern recommendation systems often rely on traditional metadata
to provide meaningful recommendations, so identifying potentially redundant data can
improve the system’s overall efficiency. Secondly, as state-of-the-art techniques such as
few-shot learning operate with minimal data, the question of how much data is truly
necessary to make good recommendations becomes intriguing.

We made the following contributions in order to address these two questions:

e The creation of a specialized dataset that combines movie synopsis, metadata, and
user reviews.

e The development and evaluation of various models across different classes of rec-
ommendation systems.

e The design and execution of experiments to assess the models using selected per-
formance metrics.

e The analysis and discussion of the experimental results, focusing on the efficacy
of movie synopses in improving recommender systems.

2.3 Thesis Structure

This thesis is organized into the following chapters:

e Chapter 1 - Introduction: Outlines the motivations behind the study, and the
research questions and objectives.

e Chapter 2 - Theoretical Background: Provides the foundational concepts and
theories that are relevant to the task of item recommendation.
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Chapter 3 - Literature Review: Reviews the existing methodologies in item rec-
ommendation, the current state-of-the-art, and the possible gaps in knowledge.

Chapter 4 - Method: Describes the dataset that was created, and the architecture
of the models that were developed. The experiments that were carried out are are
also explained.

Chapter 5 - Results: Presents the findings of the experiments, including analysis
and interpretations of the results.

Chapter 6 - Conclusion: Summarizes the study’s findings, implications, and sug-
gestions for future work.
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Chapter 3

Theoretical Background

3.1 Recommender Systems

3.1.1 Basic Concepts

Recommender systems are tools and techniques that provide suggestions for items that
are valuable to a user [6, 36]. These recommendations assist in various decision-making
processes, such as what products to purchase, what music to listen to, or what movies to
watch. Recommender systems become especially useful in situations where an individual
must select an item from a potentially overwhelming set of options a service may offer
[34].

The distinguishing factors that set recommender systems apart from information
retrieval systems or search engines are the criteria of "interesting and useful” and ”in-
dividualized” [6]. While non-personalized recommendations exist and may be useful in
specific contexts, they are generally not the focus of academic research.

3.1.2 Knowledge Sources

In order to build their recommendations, recommender systems gather and process var-
ious kinds of data. As a general classification, data used by recommender systems can
refer to three kinds of objects: items, users, and the interactions between users and
items, which are named transactions [36].

Items are the objects that are recommended, and can be characterized by their
complexity and their utility to the users. Items have a range of properties and features
with variable complexity that recommender systems must take into account. Items
with greater complexity might contain more information than is necessary for decision-
making. This makes an effective information filtering method crucial [27]. Users of a
recommender system usually have varied goals and characteristics. Information about
users is utilized in order to fulfill the "personalized” criterion of recommender systems.
The selection of what information to consider depends on the recommendation technique.
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Transactions are defined as recorded interactions between users and the recommender
systems [36]. They are log-like data that store information exchanged between users and
the system and are useful to the recommendation algorithm. The most common forms
of transaction data are ratings and item tags [39].

3.1.3 Recommendation Techniques

To fulfill its core function of identifying items for the user, a recommender system must
predict that an item merits a recommendation. To accomplish this, the system must
be able to evaluate the usefulness of certain items, or compare their relative utility, and
then make decisions regarding which items to suggest. A model for the prediction step
used by all recommendation algorithms has been suggested in [1]. The utility of the
user u for the item 7 is modeled as a real valued function R(u,). The recommender
system creates predictions for the value of R over pairs of users and items. We denote
the estimation of the utility of the pair u, ¢ with R(u, i). After calculating the estimation
R for a specific user on a set of items, the system recommends a small number of them
with the highest predicted utility.

In recommender systems, the utility function is usually represented by a rating that
indicates how much a particular user likes an item. Utility can be any arbitrary function
that depends on the application. For instance, the function may be Boolean, i.e., an
indication of whether the user likes the item or not, or a profit function.

Depending on how recommendations are generated, recommender systems are clas-
sified into the following categories |2, 10]:

e Content-based recommenders: The system recommends items that are similar to
the ones that the user liked in the past. The similarity of items is calculated based
on the features of the compared items.

e Collaborative Filtering recommenders: The system identifies users with tastes that
are similar to a specific user and then suggests item they like. The similarity in
taste is calculated based on the items they have already rated.

e Hybrid recommenders: The system uses methods that combine both content-based
and collaborative approaches.

3.2 Item Representation

3.2.1 Structured and Unstructured Data

Content-based and hybrid recommender systems use the features of a dataset’s items to
predict the utility for a user based on his profile. Candidate items for recommendation
are described by a set of features, also called attributes, properties, or values. When each
item is represented by the same set of attributes, and there is a known set of values for
each attribute, we say that the item is represented with structured data [31]. In the
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case of movie recommendation, examples of structured data are duration, genres, or the
release year. Such data can be easily incorporated to a machine learning algorithm that
creates a user profile.

Unstructured data are defined as data with no attribute names with well-defined
values. Examples of unstructured data are unrestricted texts such as news articles or
movie reviews. This type of data introduces various challenges when constructing a user
profile, primarily stemming from the inherent ambiguity of natural language [36]. As
a result, recommendation systems utilize different techniques that convert unstructured
data to a structured representation, usually a vector of restricted values.

3.2.2 Representation of Textual Data

Most recommender systems use the Vector Space Model (VSM) to represent text doc-
uments. In VSM, each document is represented by a n-dimensional vector, where each
dimension represents a term from the total vocabulary of the document set. Each el-
ement of the vector has a weight that indicates how much the corresponding term is
associated to that specific document. Before the weighting method is applied, the docu-
ment set or corpus undergoes a series of processing operations such as stop-word removal
and stemming.

The most commonly used method for weighting is Term Frequency-Inverse Document
Frequency (TF-IDF) weighting. TF-IDF satisfies both the precision and recall functions
of information retrieval, since it assigns higher scores to terms that occur frequently in
individual documents but infrequently in the remainder of the document corpus [38].
The term frequency (TF) of term ¢ in the document d; is defined as:

Jrj

TF(tkvdj) = maz, f»
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where fy ; is the frequency of term ?; in document d;, and max. f. ; is the maximum
computer over the frequencies f, ; of all terms ¢, in the document. Inverse Document
Frequency is defined as:

N

IDF(ty, dj) = log —

N
where N is the number of documents in the corpus, and ny is the number of documents
in the corpus where ¢, occurs at least once. TF-IDF is then defined as:

TF-IDF(ty,d;) = TF(ty,d;) - IDF (t;, d;)

Additionally, the resulting weights are usually normalized so as to fall in the [0, 1]
interval:

TF-IDF(ty, d;)
wk,j = e
\/ S TR IDF(t,, d;)?

After the weights for all documents have been calculated, the semantic proximity
between two documents is calculated using a similarity measure. When the vector space
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model is used, the cosine similarity measure is a popular option [38]:
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Despite its simplicity, it is still widely used and performs competitively with newer and

more complex algorithms [31]. More advanced methods of producing weights that utilize
machine learning models will be discussed in the next chapter.

sim(di, dj

3.3 Metrics

The quality of a recommender system can be evaluated by comparing the produced rec-
ommendations to a set of known user ratings. Several different metrics have been pro-
posed to evaluate a system’s performance [16]. The majority of published evaluations of
recommender systems have adopted a system’s accuracy as a measure of its effectiveness.
An accuracy metric quantifies the difference between the system’s predicted item rank-
ing and the user’s actual preference order. Recommendation accuracy metrics can be
broadly classified into three classes: predictive accuracy metrics, classification accuracy
metrics, and rank accuracy metrics.

3.3.1 Predictive Accuracy Metrics

Predictive accuracy metrics evaluate the proximity between the predicted ratings and the
actual ratings given by users. This type of measure is most appropriate for scenarios in
which an accurate prediction of the ratings for all items is of high importance. Predictive
accuracy has been used to evaluate some of the earliest recommendation systems in
literature [35].

The simplest such metric is the mean absolute error (often referred to as MAE),
which measures the average absolute deviation between the predicted and user ratings:

vy lpi — il
MAE = &i=11r
N

where N is the number of items, p; is the predicted rating of an item, and r; is its actual
rating. Besides its relative simplicity, mean absolute error has thoroughly examined
statistical properties that facilitate comparison between systems.

Two important measures related to mean absolute error are mean squared error
(MSE) and root mean squared error (RMSE), which square each error before summing
them: ZN | .

_24=11Pi T
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N
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N
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Both of these metrics put more emphasis on large errors, which makes them more fre-
quently used in the context of recommender systems [36].

3.3.2 Classification Accuracy Metrics

Classification metrics measure the frequency with which a system correctly or incorrectly
determines whether an item is favorable. Therefore, they are suitable for tasks where
users have definite binary preferences. These types of metrics do not directly assess an
algorithm’s ability to accurately predict ratings. Variations from the user ratings are
acceptable, provided they do not result in classification errors.

Precision and recall were introduced the 1966 as metrics for evaluating information
retrieval systems and have remained popular ever since [7]. They are also commonly
used in item recommendation [16]. In order to calculate precision and recall, the item
set must be separated into two classes — relevant (V) and not relevant (N,,). The
item set must also be divided into the items that were selected for recommendation (Nj),
and the items that were not (N,s). Precision is the proportion of relevant items chosen
(Nys) out of the total items selected:

Conversely, recall is the proportion of relevant items chosen out of all available relevant
items. It indicates the probability that a relevant item will be selected:

NT‘S
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Recall is often impractical to measure in a recommender system, since it requires
knowing the relevance of each item for all users. A common way to approximate the
true values of recall and precision is splitting the dataset of user ratings into a training
set and test set, and predict the top N items for which ratings exist.

A useful metric that is often used in binary item recommendation studies is accuracy,
which describes the ratio of “correct” predictions out of all predictions. The true positives
are the relevant items that were selected IV,,5, and the true negatives are the not relevant
items that were not selected N,,,ns. Accuracy is defined as::

— N’I"S +Nnrns

A
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It is important to note that the definition of "relevance” is nontrivial and a subject of
discourse in the field of information retrieval, especially in the context of recommender
systems [14]. If a dataset has a rating scale that is not already binary, it must be
converted into a binary one, and the threshold for item relevance may vary significantly
between users.

Measuring precision alone may be suitable if the user does not need a comprehensive
list of all potentially relevant items. However, if the objective is to identify all relevant
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items, Precision and recall both must be considered. These two metrics are inversely
related, so an approach to combine them into a single metric is usually needed. A popular
metric that attempts to summarize the precision and recall into a single value is the Fj
metric:

_ 2PR
~ P+R

Metrics based on the Receiver Operating Characteristic (ROC) curve are an alterna-
tive to precision and recall. The ROC model seeks to evaluate how well an information
system can differentiate between signal (relevance) and noise. It operates under the
assumption that the system will assign a predicted level of relevance to every potential
item. ROC-based metrics work best on datasets where there is a clear binary relevance
relationship, so they are not ideal for the task of movie recommendation.

I

3.3.3 Rank Accuracy Metrics

Rank accuracy metrics assess how well a recommendation system can generate an item
ranking that aligns with how the user would have ordered the same items. These metrics
are more appropriate than classification metrics in systems that present ranked recom-
mendation lists, especially when user preferences are not binary [16]. Rank accuracy
metrics also distinguish between the "best” and “good” choices and are best suited to
domains where that distinction is important. However, if a recommender system will
be displaying the projected rating values, then it should be evaluated using predictive
accuracy metrics like those examined in the previous sections.

An important factor to consider when choosing an appropriate rank accuracy metric
is that of partial ordering. A system’s reference ranking (i.e. the ranking based on the
user’s ratings) may have items with the same ratings. This is more common in contexts
like movie recommendation where the user’s ratings are usually in the form of a five-
star system. In those cases, rank correlation metrics like Spearman’s p or Kendall’s 7
might not be the best choice, since they are designed to handle complete orderings. The
Normalized Distance-based Performance Measure (NDPM) is suitable for such cases [41]:

200 +C"

2C"
In the above equation, C'~ is the number of pairs that the system ranking asserts incor-
rectly. C" is the number of pairs where the system ranking ties but the reference ranking
does not tie, and C? is the number of pairs of items for which the reference ranking has
a preference. NDPM is not affected for different orderings when the user rankings are

tied. However, it shares the same issue as other rank correlation metrics, where ranking
changes at the top of the ranking are weighted the same as those at the bottom.

NDPM =

3.3.4 Metrics Beyond Accuracy

While in this section we have focused on accuracy-based metrics, accuracy alone does not
ensure an effective and satisfying user experience in recommender systems. For example,
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a system might attain high accuracy by only recommending popular items similarly to a
simple popularity list, or make predictions only for items that are more easy to predict.
In both these cases, the criterion of "interesting and useful” that we have used for the
definition of a recommender system is not satisfied. Therefore, we must also consider
other measures that enhance a system’s ability to recommend in less obvious ways.

Coverage is a measure of the proportion of items that the system can recommend.
If a recommender system has low coverage, then it might be less helpful to some users
as it inherently limits their options [36]. The simplest way to measure coverage is by
calculating the percentage of all items for which predictions can be made. Another
measure named catalog coverage expresses the percentage of items that are recommended
to at least one user during a specific period.

Novelty describes a recommender system’s ability to introduce users to items they
were previously unaware of [16]. It has been suggested that when it comes to providing
"value” to users, novelty was as important as accuracy [21]. If a user study can be
conducted, a system’s novelty can be measured by asking users if they already familiar
with an item that was recommended. When doing an online experiment, the dataset
could be split based on time, so that the training dataset only has user ratings before
a specific point in time. Then, the system loses novelty whenever it recommends items
that were rated before that point, and gains novelty whenever it recommends items that
were rated after that point.

A similar but distinct metric is serendipity. A recommendation is considered serendip-
itous when it helps a user find a surprisingly interesting item that might not have been
discovered otherwise [16]. To distinguish between novelty and serendipity, consider a
user that likes movies of a certain director. If a system recommends the director’s latest
movie, the recommendation is novel, but not surprising. Providing serendipitous recom-
mendations is nontrivial, since the best and most accurate recommendations are usually
not surprising.

Of course, metrics apart from those explained above do exist. A recommender system
should be designed for scalability when dealing with large collections of items, adhere to
contemporary privacy standards, and foster confidence and trust it its users.

A common aspect that most non-accuracy metrics share is that they are generally
harder to measure accurately [16]. Additionally, a standard way to measure them has
not been developed. This makes it more challenging to rely on them when evaluating
recommender systems in academic research.
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Chapter 4

Literature Review

4.1 Movie recommendation in literature

The domain of movies is frequently used in the research field of recommendation systems
[32]. A systematic review of 26 recommender systems in literature has found that the
movie domain is the most common domain with 10 occurrences [32]. This is partly
because movies as items come with a wealth of data, much of which is stored in text.
This textual data can be easily processed and manipulated, thanks to the development
of numerous algorithms designed to extract useful information from such sources.

Another important reason for the popularity of movies in case studies is that quality
data in the movie domain is plentiful and easily available. GroupLens Research, a
human-computer interaction research lab at the University of Minnesota, has created a
dataset named MovieLens with several movie ratings that can be used in recommendation
research. The latest update of the dataset contains 25 million ratings and 1 million tag
applied to 62000 movies by 162000 users, which can be used for both content-based and
collaborative filtering recommendations [28]. The MovieLens research lab created a web-
based recommender system in 1997 also named MovieLens, which garnered significant
media and research attention. IMDDb, an online database of movie information, also
produces a dataset that contains movie titles along with ratings that have been submitted
by users of the site [19].

In Fall 2009, the recommender systems field reached a significant milestone with
the completion of the $ 1,000,000 Netflix Prize competition. The competition began in
2006 and annually awarded the algorithm that most accurately predicted user ratings
for movies, using the root mean squared error as a metric [3].

4.2 History of the State of the Art

Item recommendation has been studied in literature since the 1990s with the intro-
duction of Tapestry, an automatic filtering system designed to recommend documents
drawn from newsgroups [11]. The first recommender systems relied on basic correlation
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statistics and predictive modeling, without fully utilizing the broader technique in statis-
tics and machine learning [4]. The task of collaborative filtering was then treated as a
classification problem, which allows the application of various algorithms from machine
learning literature.

As discussed above, the availability of public datasets and their significance to e-
commerce fueled additional research. The Netflix Prize in 2006 initiated a competition
for the best collaborative filtering algorithm, and Matrix Factorization, based on nu-
merical linear algebra and statistical matrix analysis, became the state-of-the-art in the
recommendation domain.

Modern recommendation systems rely on various techniques adopted from the field
of Artificial Intelligence (AI) such as deep learning, natural language processing, and
reinforcement learning [42].

4.3 Content-based Methods

This section presents a range of machine learning techniques that serve as the foundation
for the content-based models discussed in this paper.

The content-based recommendation method we choose should satisfy two key criteria.
First, in content-based recommendation, the system cannot rely on recommendations or
information from other users, so the amount of data that can be used for each user is
limited. Therefore, the chosen method must be efficient even with limited data, which
excludes complex methods like neural networks due to their high data requirements.
Second, the method needs the flexibility to incorporate additional information, such as
movie synopses, which we aim to test. A method that satisfies both of these conditions
and has several other advantages is called K-Nearest Neighbors.

4.3.1 K-Nearest Neighbors Algorithm

The K-Nearest Neighbors (KNN) method is a simple and effective non-parametric method
for classification [13]. It classifies a new object with input vector y by looking at the
k nearest points in the training dataset and assigning it to the majority class among
these k£ points. The KNN method can also be used for estimating continuous variables
by calculating a weighted average of the k£ nearest neighbors.

Nearest neighbor methods require choosing a value k, as well as defining the prox-
imity or similarity of each pair of vectors. The simplest form of KNN sets k£ = 1, which
creates a classifier with high variance and sensitivity to data. Increasing k makes pre-
dictions more consistent but increases the bias of the method since more averaging is
introduced [13]. Techniques for finding the best k& without testing do exist, but they are
not consistent and heavily depend on the data at hand. The best k can be determined
by testing various values of k in the training dataset, and selecting the one with the
lowest error or highest accuracy.

The nearest neighbor algorithm’s similarity function between two data points A and
B varies with data type. For structured data, the Euclidean distance is common, while
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in vectors space models the cosine similarity is favored:
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In the Euclidean distance function, two data points with small values in a specific
feature are considered equivalent to two data points with large values. In contrast, the
cosine similarity function yields a lower value when the data points both have small
values. This makes cosine similarity better suited for text, ensuring that documents are
considered similar when they are about the same topic, and not when they are both not
about the same topic [31].

The nearest neighbor method boasts several appealing features. It’s simple to un-
derstand and to implement, requires no training or optimization, and often rivals more
complex methods like neural networks in accuracy [31]. Additionally, it requires a rela-
tively small amount of data, and it can be easily adapted to multiple classes. We will
use KNN techniques to build the content-based models that are presented in the next
chapter.

It should be noted that KNN has a non-negligible computational cost during the
classification of new instances. This is primarily because the majority of the calculations
occur during classification and not when the training dataset is initially processed. Some
techniques have been developed that minimize the computation at query time, but they
are out of scope for this paper.

cosine similarity = Sc (A, B) =

4.3.2 Word and Document Embeddings

Sparse Representation

In the previous chapter we discussed that documents can be represented as a vector of
term counts. A similar idea can be applied to words, where each word is represented as
a vector of term counts. In the term-term matriz, each cell shows how many times the
row (target) word occurs in the same context as the column (context) word [20]. The
context is a window around the word, for example 4 words to the left and 4 words to
the right, but can extended to the whole document.

Figure 4.1 shows a subset of the term-term co-occurence matrix in a specific doc-
ument corpus. Similar words have similar vectors since they tend to appear in similar
documents. Thus, we can use determine how similar two words are by comparing their
vectors. The most common similarity metric used to compare vectors is the cosine of
the angle between the vectors.
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aardvark ... computer data result pie sugar

cherry 0 2 8 9 442 25
strawberry 0 0 0 | 60 19

digital (o 1670 1683 85 5 4)
information 0 3325 3982 378 5 13

Figure 4.1: An example of a term-term matrix from a corpus of Wikipedia
documents. A cell with high counts means that the two corresponding words
often appear together in a context. Retrieved from [20)].

In a corpus with vocabulary size |V|, the resulting matrix has dimensions |V| x [V].
|V is usually between 10000 and 50000 words, after stopwords and very infrequent words
are discarded. It should be noted that this word representation is sparse, since most of
the cells are zero.

Word2Vec

A more advanced word representation that uses short dense vectors is called embeddings.
Embeddings represent words in a short format, with a number of dimensions in the
range 50-1000. In contrast to the term-term matrix, embeddings have both positive and
negative real-valued numbers, and most of the values are non-zero.

Dense vectors generally outperform sparse ones in NLP tasks. The reasons behind
this are not fully understood [20]. The low-dimensionality of embeddings may help with
generalization and reduce overfitting when training classifiers or other models. Another
possible explanation is that dense vectors might better capture the concept of synonymy,
as they can better represent similar words like boat and ship more closely than disjoint,
unrelated dimensions in sparse representations.

In 2013, a new architecture named word2vec was introduced that greatly increased
the speed of creating word embeddings for a corpus [26]. The best performing algorithm
of word2vec is named skip-gram. Skip-gram trains a logistic regression classifier that
predicts the probability that a word c¢ is a real context word for a target word w. This
probability is calculated by getting the dot product of the embeddings of the target word
and the context word. The sigmoid function o(x) is then applied:

B 1
147

o(x)

While training, two embeddings are stored for every word, a matrix W that is used
when that word is a target, and a matrix C' for when it is used as a context. Each
element in the embeddings has a dimension of d that is selected beforehand. Thus, the
algorithm has to learn 2|V| - d weights.
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Figure 4.2: The skip-gram model stores two embeddings for each word, the
target embedding and the context embedding. The algorithm learns a parameter
6, which is matrix of 2|V| vectors, each of dimension d. Retrieved from [20].

Before the training has begun, the corpus of documents is processed in order to
produce positive and negative examples. Each example consists of a word w and a
context word c. Positive examples are created by taking a context word that exists in
the corpus, while negative examples are created by choosing a random word from the
total vocabulary. The algorithm starts with randomly initialized W and C matrices,
and adjust those embeddings to [20]:

e Maximize the similarity of pairs (w, ¢p0s) drawn from the positive examples
e Minimize the similarity of pairs (w, c,eq) drawn from the negative examples.

For a target word w, correct context word c,o0s, and incorrect context word cpeg, the
loss function is calculated as:

Leg = —(log 0(cpos - w) +1og 0(—Cpeg - w))

The final representations for each word is created by adding the target embedding
w and the context embedding c. This creates one vector of size d for each word in the
vocabulary.

Doc2Vec

In 2014, an architecture that applies the principles of Word2Vec to create fixed-length
feature vectors for texts was proposed [23]. The paper introduces the Doc2Vec algorithm,
which can be applied to text of any length and outperform simple-average of Word2Vec
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vectors. For each document, Doc2Vec stores word embeddings for every word called W,
as well as a unique paragraph vector D that represents the document’s context.

There are two implementations presented in the paper: Paragraph Vector - Dis-
tributed Memory (PV-DM), and Paragraph Vector - Distributed Bag of Words (PV-
DBOW). In PV-DM, the paragraph vector D and the word embeddings W are concate-
nated, and then used in order to predict the next word. The prediction task is done via
a multiclass classifier, such as softmax:

U(Z)i = Z]K:I €%
Classifier on
Average/Concatenate EEERIRE
/7 | \
[TTIIT] OOIIImn O¢ OITIIT
) ) 1
Paragraph Matrix----- > W W W
| | |
Paragraph the cat sat

id

Figure 4.3: A representation of Doc2vec using the Distributed Memory imple-
mentation. In order to predict the next word, the paragraph’s matrix with a
context of three words is used. Retrieved from [23].

Given a sequence of words wi,wq, ws, ..., wr, and a document d, the probability p
for a word w; to exist in a given context is:

ewt

p(wt’wt—ka cee 7wt+k) = W
The variable y; is the log-probability for each output word, computed as:
y=b+Uh(wig,..., ;W)
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where U, b are the softmax parameters, and h is the concatenation of the paragraph
vector D and the word embeddings W as described above.

In PV-DBOW, the only input is the paragraph vector, the models tries to predict
words randomly sampled from the paragraph. This implementation is simpler and less
performant than PV-DM. However, it requires less data as it only uses the softmax
weights as input, and not the word vectors that were used by PD-DM. The Doc2Vec
architecture produces paragraph vectors that is a combination of the 2 implementation
described above.

Classifier t

Paragraph Matrix

Paragraph
id
Figure 4.4: A representation of doc2vec using the Distributed Bag of Words

implementation. Here, the paragraph matrix is trained to predict all words in
the context window. Retrieved from [23].

Both Word2Vec and Doc2Vec embeddings are static embeddings, meaning that the
algorithm learns one fixed embedding for each word in the vocabulary [20]. Static em-
beddings are not able to capture the different contexts in which a specific word might
be used.

Transformers and BERT

In contrast to static embeddings that essentially represent vocabulary entries, contextual
embeddings represent instances of words in a particular context. For example, the word
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“left” in the sentence "I left my phone in the left side of the table” will have a single
vector representation if static embeddings are used, but contextual embeddings produce
two distinct vectors that better capture the word’s context. Contextual embeddings can
be used for assessing the semantic similarity of words within their specific context, and
are preferred in linguistic tasks that necessitate understanding of word semantics.

The most well-known model that creates contextual embeddings for textual data
is called Bidirectional Encoder Representations from Transformers, or most commonly
BERT |[8]. BERT’s model architecture is a multi-layer bidirectional transformer encoder
and is based on the transformer block.

Transformers are non-recurrent networks that utilize the concept of self-attention.
Self-attention enables a network to directly access and utilize information from arbitrarily
large contexts, bypassing the need to pass it through intermediate connections as other
architectures like Recurrent Neural Networks do [20]. A self-attention layer maps an
input sequence (z1,...,x,) to an output sequence of the same length (y1,...,yn).

In self-attention, the outputs y; are based on a set of comparison operations between
elements of the sequence. Depending on the flow of information, self-attentions layers
are classified into the following categories:

e Causal self-attention layers, where in each element of the sequence, the model
takes into account all inputs up to, and including, the current one.

e Bidirectional self-attention layers, where in each element of the sequence, the
model takes into account all inputs, both before and after the current one.

Figures 4.5 and 4.6 illustrate the structure and the information flow in causal and
bidirectional self-attention layers respectively.

,‘ A
Self-Attention [‘::’ /’_

Layer

Figure 4.5: A visual representation of a causal self-attention layer. Retrieved
from [20].
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Figure 4.6: A visual representation of a bidirectional self-attention layer. Re-
trieved from [20].

The transformer block consists of a self-attention layer followed by a feed-forward
layer, with residual connections and layer normalizations following each. The calculations
for each items can be conducted independently from all other computations, meaning
that training and inference can be parallelized.
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Figure 4.7: A visual representation of a transformer block and its layers. Re-
trieved from [20].

The original paper that proposed BERT described the following architectures [8]:
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o BERTpasg: Consists of 12 transformer blocks, each of size 768, with a total
110M parameters

o BERT;arcEr: Consists of 24 transformer blocks, each of size 1024, with a total
340M parameters

The BERT model’s output is a sequence of vectors, with each element in the sequence
corresponding to one token of the input. The first token of every sequence is a special
classification token, denoted as "|[CLS|”. The model can be fine-tuned to a specific task
by selecting the appropriate tokens. For the purpose of item recommendation, we can
use the final hidden state corresponding to the ”[CLS]” token as a vector representation
of the entire sequence.

BERT can be efficiently compressed with little impact on accuracy, a valuable feature
for practical applications [37]. The main techniques that have been used are knowledge
distillation, quantization, and pruning. For example, DistilBERT, a compression of
BERT based on knowledge distillation, retains 97% of BERT performance, while reduc-
ing its size by 40% and operating 60% faster.

Generative pre-trained transformers

Generative Pre-trained Transformers (GPTs) have become a widely popular architecture
in the field of artificial intelligence for their advanced capabilities in language understand-
ing and generation. GPTs are language models (LM) that are based on the transformer
architecture.

The most influential GPT models have been developed by OpenAl, with its first
model GPT-1 releasing in 2018. GPT-1 and its successors have an architecture that is
similar to BERT. However, they differ in the type of self-attention that they utilize. GPT
models use causal self-attention layers, where every token can only attend to previous
tokens [33]. This makes them more suitable for tasks like text generation. However, GPT
models are also able to produce sentence-level or paragraph-level contextual embeddings,
used in tasks like item recommendation.
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OpenAl GPT

Figure 4.8: A comparison of the architectures of BERT and GPT models.
BERT uses bidirectional transformer blocks, while GPT uses left-to-right trans-
former blocks. Retrieved from [8].

Research has been done to test content-based item recommendation using word em-
beddings [30]. The authors carried out experiments with using static embeddings gener-
ated from Word2Vec to recommend movies based on similarity, demonstrating improved
performance across all metrics compared to baseline systems utilizing traditional models
like bag-of-words and TF-IDF. For content-based recommendation, we adopt this model
as a baseline and enhance the method by incorporating movie plots as additional textual
information, and using more advanced contextual embeddings from various BERT and
GPT models.

4.4 Neural Collaborative Filtering

The most prominent class of collaborative filtering algorithms used in item recommen-
dation is matriz factorization. Matrix factorization algorithms work by approximating
the user-item interaction matrix through decomposition [22|. Users and items are rep-
resented in a lower dimensional latent space, with weights such that the dot product
of these matrices provides good approximation of the original user-item interaction ma-
trix. Gaining widespread recognition through the Netflix Prize, matrix factorization
has become the standard in model-based recommendation systems. Since then, various
techniques directed at improving matrix factorization have been introduced.
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Figure 4.9: A visualization of matrix factorization. The model learns a user
embedding matrix and an item embedding matrix such that their product is a
good approximation of the user-item interaction matrix. Retrieved from [25].

A method that has been highly successful and improved on the state-of-the-art results
in item recommendation achieved is neural collaborative filtering. Neural collaborative
filtering (NCF) is a general framework for collaborative filtering based on the combina-
tion of matrix factorization with deep neural networks [15]. The original paper proposes
a multi-layer model, as shown in the figure below. The model’s input is two feature
vectors v, and v;i which describe a specific user and a specific item. The next layer is
an embedding layer, where the sparse representation of the input vectors are mapped
to a dense vector. Then, the model consists of several layers named neural collaborative
filtering layers. The original paper used a standard multilayer perceptron (MLP) to
build the neural collaborative filtering layers. The final layer simply output a predicted
rating @, that user u will give to item ¢. Training is done by trying to minimize the
loss between the predictions g, ; and the actual ratings y, ; with a method lie stochastic
gradient descent. Figure 4.10 shows the architecture of the neural collaborative filtering
framework.
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Figure 4.10: The neural collaborative filtering framework. Retrieved from [15].

The original paper focused on pure collaborative filtering, meaning only user and
item identities were utilized as input. We build upon this model by modifying the
model’s input to accept static or contextual embeddings as additional data. In our case,
these embeddings will be created by processing movie plots. We thus create a hybrid
recommender system that uses both item information and information from other users.

4.5 Few-Shot Learning

Few-shot learning is a machine learning method that focuses on models that can un-
derstand or generalize from a very limited amount of data. While traditional machine
learning models often require large datasets to achieve high accuracy, few-shot learning
models are designed to learn to perform tasks with only a few examples. In few-shot
learning, the model is given a few demonstrations of the task at inference time, but
without the ability to update any weights. In cases where the number of examples is
one or zero, the method is called one-shot learning and zero-shot learning respectively.

A paper in 2020 demonstrated that relatively large language models can achieve
impressive performance in few-shot learning without fine-tuning [5]. The researchers
used pretrained language models like GPT-3 to perform common NLP tasks like question
answering or translation. The number of examples for each query depends on how many
examples can fit in the model’s context window.

The bigger models like GPT-3 showed competitive results with state-of-the-art tech-
niques that used fine-tuned models. An important observation is that the difference in
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performance in zero-shot, one-shot, and few-shot learning typically increases with the size
of the model. This suggests that larger models may be more effective at meta-learning.

In the original work, several common NLP tasks such as question answering, transla-
tion, and a superset of tasks referred to as SuperGlue, were examined [5]. In our study,
we evaluate few-shot learning for the task of movie recommendation using language
models of various sizes. Additionally, we incorporate movie synopses in each query to
test whether the models can capture the movies’ plots the and provide good recommen-
dations. As of the time of release of this paper, this approach has not been proposed or
tested in other research.
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Chapter 5
Method

This paper’s main objective is to test whether additional information in the form of
a movie’s synopsis can provide more accurate recommendations. For the purposes of
this task, various models have been created. They can be classified into the following
categories:

e Content-based models: These models recommend movies based only on the user’s
preferences. They use KNN methods and do not rely on data from other users.

e Hybrid models: These models leverage both the content features of the movies
and the user-item interactions. They are based on the framework as described in
[15].

e Few-shot learning models: These models use large language models to make ac-
curate recommendations with minimal user data. The model’s recommendations
are based solely on the data specific to an individual user.

5.1 Dataset

To train and test the models described above, we developed a new dataset by integrating
two distinct datasets named MovieLens 20M and Wikimedia Movie Plots [29, 40].

5.1.1 MovieLens 20M

MovieLens 20M is a dataset of ratings and tags from MovieLens, a movie recommenda-
tion service. It contains 20,000,263 ratings and 465,564 tags across 27,278 movies. The
dataset was created on October 17, 2016 and includes data that were created by 138,493
users between January 09, 1995 and March 31, 2015.

The dataset is split into six files, of which the following two were used for our new
dataset:

e movie.csv: Contains movie information, 27,278 items.
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e rating.csv: Contains ratings of movies by users. In total, there are 20,0000,263
ratings that range from 0.5 to 5, with increments of 0.5.

Figure 5.1 shows the number of each rating value that exists in the MovieLens 20M
dataset. Note that it is clear that users tend to give favorable review score more often
than note, with an average rating of 3.49. The median and mode score are 3.5 and 4.0
respectively.
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Figure 5.1: Counts of each rating value from 0.5 to 5, based on user reviews
from the dataset.

5.1.2 Wikipedia Movie Plots

Wikipedia Movie Plots contains plot summary descriptions that were scraped from
Wikipedia. It contains metadata and descriptions on 34,886 movies. It includes only
one file with information on the release year, country of origin, director, actors, genres,
and a long form description on the movie plot.

5.1.3 Preprocessing

The two datasets described above are preprocessed in order to create the dataset that
will be used as the training data for our models. The preprocessing part consists of the
following steps:
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e The files filesmovie.csv and rating.csv from MovieLens, and wiki\_movie\
_plots\_deduped.csv from Wikimedia Movies Plot, are parsed into dataframes
using the Python library Pandas.

e The two dataframes are merged into a new dataframe named "df movies”, only
keeping the rows with entries in both dataframes.

e All ratings about movies that are not present in df movies are deleted, and the
first one million ratings are kept in order to fit storage constraints.

e New indexes named "user id” and "movie id” are created.

The few-shot learning models create prompts that include movie plots and them feed
them to a large language model. In order to have prompts that always fit the language
model’s context window, we create a modified version of the "df movies” was created.
The dataframe is named "df movies2” and contains movies where the size of the movie
plot after tokenization is applied is less than 500 tokens.

5.2 Content-based Models

For all content-based models, the task is to perform regression on the movie ratings.
The dataset is split into a training and a test dataset. All models utilize the training
dataset to try and predict the rating a specific user will give to a specific movie. The
metrics used are mean absolute error (MAE) and mean squared error (MSE).

We have chosen to use KNN method for all content-based models. While other
machine learning methods like neural networks require large datasets to learn and make
accurate predictions, KNN can work effectively with the data of a single user. All models
work by finding the k closest neighbors from the training dataset based on a similarity
metric, and then calculating the weighted average from those neighbors.

FEach model’s differentiating factor is the similarity matrix they are using. In order
to test whether movie plot information can improve the models’ accuracy, we create
various similarity matrices that use different movie metadata. The similarity matrices
created are:

e genre sim: The similarity based on each movie’s genres.
e director sim: The similarity based on each movie’s directors.

e bert base sim: The similarity based on the vectors that were created by passing
the movie’s plot to BERTgagg

e bert imdb sim: The similarity based on the vectors that were created by passing
the movie’s plot to a fine-tuned version of BERT on the IMDB dataset.

o distilbert imdb sim: The similarity based on the vectors that were created by
passing the movie’s plot to a fine-tuned version of DistilBERT on the IMDB
dataset.
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e gpt2 s sim: The similarity based on the vectors that were extracted after passing
the movie’s plot to GPT-2-small.

e gpt2_m_sim: The similarity based on the vectors that were extracted after pass-
ing the movie’s plot to GPT-2-medium.

e gpt2 1 sim: The similarity based on the vectors that were extracted after passing
the movie’s plot to GPT-2-large.

e gpt2 xl sim: The similarity based on the vectors that were extracted after pass-
ing the movie’s plot to GPT-2-xl.

The fine-tuned versions of BERT and DistilBERT were imported to our workspace
using the transformers Python library [18, 17]. From the combination of these similarity
matrices, the following models were created:

Table 5.1: Content-based models and their configuration

Model Name

Similarity Matrix

Content-genre

genre sim

Content-genre-director

genre sim + director sim

Content-bert-base

bert base sim

Content-bert-imdb

bert imdb sim

Content-distilbert-imdb

distilbert imdb sim

Content-gpt2s gpt2 s sim
Content-gpt2m gpt2 m_sim
Content-gpt2l gpt2 1 sim
Content-gpt2xl1 gpt2 x| sim

Content-bert-base-g-d

bert base sim + genre sim + director sim

Content-bert-imdb-g-d

bert imdb sim + genre sim + director sim

Content-distilbert-imdb-g-d

distilbert imdb sim + genre sim + director sim

Content-gpt2s-g-d

gpt2 s sim + genre sim + director sim

Content-gpt2m-g-d

gpt2_ m_sim + genre sim + director sim

Content-gpt2l-g-d

gpt2 1 sim + genre sim + director sim

Content-gpt2xl-g-d

gpt2 xl sim + genre sim + director sim

For each model, grid search was performed in order to find the best value of the
hyperparameter k in a set of 12 possible values from 1 to 100.
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5.3 Hybrid Models

For the hybrid models, the task is to perform regression on the movie ratings. All models
follow the architecture that was suggested in the original neural collaborative filtering
paper [15]. The models are comprised of embedding layer for users and items, and three
multi-layer perceptron (MLP) layers, with the ReLU activation function. The model’s
output is passed through a sigmoid function, and scaled in order to fit the range of
possible ratings. The metrics used are mean absolute error (MAE) and mean squared
error (MSE).

The model’s input is an item id and a user id. Additionally, each model may
receive additional input in the form of document embeddings of the movie’s plot. The
document embeddings have a predetermined size denoted as embeddingsg;.e-

In more detail, each model consists of:

e An embedding layer for the users and the items, with a hidden dimension of 768

A layer that concatenates the two embeddings, as well as the plot embeddings
that may be passed as additional input

e An MLP layer with input size 2 * 768 + embeddingss;,. and output size 64

An MLP layer with input size 64 and output size 32

An MLP layer with input size 32 and output size 1

A sigmoid activation function that scales the output to the range [0, 5]

The following three models were initially created:

e Hybrid-baseline: The model does not receive any additional embeddings as input,
and thus is used as baseline.

e Hybrid-doc2vec: The model receives Doc2Vec embeddings as input. The Doc2Vec
embeddings were created using the Gensim library with parameters vector size =
100, window = 5, epochs = 10 [9].

e Hybrid-bert: The model receives BERT embeddings as input.

In order to determine the best hyperpameters, grid search on the learning rate and
batch size was performed for all three models. After the best hyperpameters for Hybrid-
bert were found, additional models that use embeddings from pre-trained large language
models were created. In total, the following configurations were tested:
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Table 5.2: Hybrid models and their configuration

Model Name Supplemental information used
Hybrid-baseline -
Hybrid-doc2vec Doc2Vec embeddings

Hybrid-bert-base | BERTgasg embeddings
Hybrid-bert-imdb | BERTpg embeddings

Hybrid-gpt2-s GPT2-small embeddings
Hybrid-gpt2-m GPT2-medium embeddings
Hybrid-gpt2-1 GPT2-large embeddings

Hybrid-gpt2-x1 GPT2-xl embeddings

5.4 Few-shot Learning Models

For this section, the task is changed from regression to binary classification. As a result,
the metrics used here are accuracy, recall, and F; score. All ratings below 3.5 were
converted to "Not Recommend”, and all ratings from 3.5 and above were converted to
"Recommend”. This follows the convention that has been used in previous studies that
use the MovieLens dataset [16]. Figure 5.2 shows the number of "Recommend” and "Not
Recommend” labels in the dataset. Note that there is an imbalance in the dataset in
favor of the "Recommend” label.
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Figure 5.2: The number of "Recommend” and "Not Recommend” labels in the
dataset used for this section.

An example has the following structure, with ##+# signifying the EOS token:

plot: [Movie plot]
recommend: [Yes/No|

HHH

All models use the following prompt in queries:

Recommend movies with Yes or No.
[Any number of examples|

plot: [Movie plot of query]
recommend:

The configurations tested and their properties are presented in the following table:
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Table 5.3: Few-shot learning models and their configuration

Model Name Fitting method | No. of examples | Order LLM used
Fewshot-trunc-2ex-s-125M | Truncation 2 P-N GPT-Neo 125M
Fewshot-trunc-2ex-r-125M | Truncation 2 N-P GPT-Neo 125M
Fewshot-2ex-s-125M Summarization 2 P-N GPT-Neo 125M
Fewshot-2ex-r-125M Summarization 2 P-N GPT-Neo 125M
Fewshot-3ex-s-125M Summarization 3 P-N-P GPT-Neo 125M
Fewshot-3ex-r-125M Summarization 3 N-P-N GPT-Neo 125M
Fewshot-4ex-s-125M Summarization 4 P-N-P-N | GPT-Neo 125M
Fewshot-4ex-r-125M Summarization 4 N-P-N-P | GPT-Neo 125M
Fewshot-2ex-s-1.3B Summarization 2 P-N GPT-Neo 1.3B
Fewshot-2ex-r-1.3B Summarization 2 N-P GPT-Neo 1.3B
Fewshot-2ex-s-2.7B* Summarization 2 P-N GPT-Neo 2.7B
Fewshot-2ex-r-2.7B* Summarization 2 N-P GPT-Neo 2.7B
Fewshot-3ex-s-2.7B* Summarization 3 P-N-P GPT-Neo 2.7B
Fewshot-3ex-r-2.7B* Summarization 3 N-P-N GPT-Neo 2.7B
Fewshot-2ex-s-6B* Summarization 2 P-N GPT-Neo 6B
Fewshot-2ex-r-6B* Summarization 2 N-P GPT-Neo 6B
Fewshot-2ex-s-20B** Summarization 2 P-N GPT-NeoX 20B
Fewshot-2ex-r-20B** Summarization 2 N-P GPT-NeoX 20B

* These models were loaded and run using 4-bit precision in order to accommodate the available
memory constraints. This quantization was achieved using the bitsandbytes library [24].
** These models were loaded and run on the Google Colab platform due to memory constraints

Additionally, the following baseline models were created:

[12].

e Fewshot-baseline-dummy: Dummy classifier that selects the most frequent class

for each user.

e Fewshot-baseline-genre: KNN classifier based on genre similarity (k = 20).
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Chapter 6

Results

In this chapter we present the results of our experiments as mentioned in the previous

chapter.

6.1 Results of Content-based Models

The following two graphs show the results of all content-based models. Figure 6.1 shows
models that use only one similarity matrix, while figure 6.2 show models that use a
combination of multiple similarity matrices. Note that the two baseline models ”content-
genre” and “content-genre-director” appear on both graphs for comparison purposes.
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Figure 6.1: The results of the content-based models (1/2).
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Content-based model metrics (2/2)
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Figure 6.2: The results of the content-based models (2/2).

The baselines set by the first model "content-genre” are 0.716 for MAE and 0.844
for MSE. The second baseline model “content-genre-directors,” which uses additional
information about the movie’s directors, achieves a MAFE value of 0.703 and an MSE
value of 0.814. Among all the models we evaluated, the “content-bert-imdb-g-d” model
stands out as the best performer in terms of both MAE and MSE, with values of 0.695
and 0.805 respectively. When compared to the two baseline models, this represents an
improvement of 2.93% and 1.14% in MAE, and an improvement of 4.62% and 1.11% in
MSE.
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The better performance of "content-bert-imdb” over the standard "content-bert-base”
model can be attributed to its specialized adaptation to the nuances of movie-related
content. This demonstrates the value of fine-tuning pre-trained models on specialized
datasets to enhance their effectiveness in domain-specific applications.

While the model "content-distilbert-imdb” has performance metrics that are compa-
rable in terms of MSE to those of ”content-bert-imdb”, it achieves a distinct MAE. This
divergence suggests that while DistiIBERT models are generally consistent in minimizing
squared errors, they might not be as effective in reducing the absolute differences across
all predictions. Given that DistilBERT is a lighter, distilled version of BERT, this could
reflect a trade-off between model complexity and precision in capturing the nuances of
the data.

An intriguing observation emerges when considering the performance of models based
on the GPT architecture. Contrary to what might be expected, increasing the size
of GPT models does not necessarily translate into improved performance. This phe-
nomenon could be attributed to several factors, including the diminishing returns of
model complexity on certain tasks or the potential for larger models to overfit to the
training data, thereby decreasing their generalization capabilities.

When comparing the first and the second graphs, all models show improved perfor-
mance when they integrate document embeddings with additional metadata, such as a
movie’s director and genres. This finding indicates that a movie’s synopsis should not
be considered a substitute for standard movie metadata, but rather as supplementary
information that contributes to a more comprehensive description of a movie.

6.2 Results of Hybrid Models

Tables 6.1, 6.2, and 6.3 show the results of the grid search done on the models "hybrid-
baseline”, "hybrid-doc2vec”, and "hybrid-bert-base”.

Table 6.1: MAE and MSE of grid search on "hybrid-baseline”. Values in bold
show the best result for each metric.

Learning Rate
0.01 0.001 0.0001
Batch Size | MAE | MSE | MAE | MSE | MAE | MSE
16 0.679 | 0.778 | 0.649 | 0.718 | 0.669 | 0.755
32 0.647 | 0.735 | 0.656 | 0.735 | 0.671 | 0.760
64 0.645 | 0.732 | 0.654 | 0.736 | 0.674 | 0.766
128 0.654 | 0.734 | 0.661 | 0.744 | 0.678 | 0.774
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Table 6.2: MAE and MSE of grid search on "hybrid-doc2vec”. Values in bold

show the best result for each metric.

Learning Rate
0.01 0.001 0.0001
Batch Size | MAE | MSE | MAE | MSE | MAE | MSE
16 0.678 | 0.751 | 0.645 | 0.711 | 0.663 | 0.750
32 0.645 | 0.720 | 0.649 | 0.716 | 0.670 | 0.758
64 0.658 | 0.718 | 0.653 | 0.727 | 0.672 | 0.763
128 0.647 | 0.710 | 0.652 | 0.743 | 0.676 | 0.772

Table 6.3: MAE and MSE of grid search on "hybrid-bert-base”. Values in bold

show the best result for each metric.

Learning Rate
0.01 0.001 0.0001
Batch Size | MAE | MSE | MAE | MSE | MAE | MSE
16 0.659 | 0.747 | 0.635 | 0.701 | 0.656 | 0.735
32 0.673 | 0.752 | 0.636 | 0.698 | 0.662 | 0.742
64 0.662 | 0.742 | 0.639 | 0.696 | 0.664 | 0.748
128 0.658 | 0.723 | 0.639 | 0.700 | 0.671 | 0.760

Figure 6.3 shows the results of the experiments we carried on all hybrid models.
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Figure 6.3: The results of the hybrid models.

The analysis of hybrid models reveals several key observations that underscore the
effectiveness of combining different approaches and data representations in enhancing
model performance. Notably, all hybrid models surpass the standard Neural Collabo-
rative Filtering (NCF) implementation that was used as a baseline. This improvement
indicates the value of integrating additional features and methodologies beyond just
conventional collaborative filtering techniques.

The best performer among the evaluated models is "hybrid-bert-imdb”, registering
the lowest MAE and MSE, with values of 0.634 and 0.691 respectively. This represents
an improvement of 2.16% and 3.76% over the “hybrid-baseline” model. The model’s
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superior performance underscores the effectiveness of combining textual data with the
standard collaborative filtering techniques.

The incorporation of information from Doc2Vec is observed to enhance performance,
albeit modestly. This highlights the potential limitations of static embeddings in cap-
turing the full complexity or all the relevant nuances that might be beneficial for the
task of movie recommendation.

Similarly to the content-based models, “hybrid-bert-imdb”, which has been adapted
to the movie recommendation context by utilizing a language model that has been fine-
tuned on the IMDb dataset, outperforms “hybrid-bert-base”. This further supports the
value of tailoring models to the specific characteristics and requirements of their appli-
cation domain.

Furthermore, out findings show that simply increasing the size of GPT models does
not guarantee better performance. This follows a similar observation we made on the
results of the content-based models. This outcome challenges the common assumption
that larger models will always perform better. It appears that there is a point of dimin-
ishing returns or that other factors, such as the quality of data or the specificity of the
model to the task, play a more significant role in determining performance.

6.3 Results of Few-shot Learning Models

Figure 6.4 shows the results of the experiments we carried out in all few-shot learning
models.
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Figure 6.4: The results of the few-shot learning models.

The analysis of model performance across various configurations yields insightful
observations. First of all, an increase in model size correlates with improved performance,
indicating that larger models have a greater capacity to capture and generalize from the
data provided. It also seems that we have not yet reached an upper limit of performance,
suggesting that further scaling up model size may continue to enhance the accuracy
metrics.

The optimal amount of examples in each query seems to be two. Models trained with
two examples in each query consistently outperform those trained with three, and the
performance deteriorates further when four examples are used. The explanation might
be that additional examples may introduce noise to the model, or bias the model to a
specific label.

An unexpected observation is that, among the models tested, smaller ones, specif-
ically those with a size of 125M parameters, underperform not only in comparison to
larger counterparts but also against baselines and even dummy models. This underlines
the importance of model capacity in achieving competitive performance, where small
models lack the necessary complexity to effectively learn from the examples.

In general, ordering examples in a "reverse” order, where inputs are presented from
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negative to positive, tends to outperform the standard order of positive to negative.
This suggests that the sequence in which information is processed can impact model
effectiveness, potentially due to how models prioritize or weight the first-seen data. The
difference may also be attributed to the imbalance in the rating data, as movies tend to
be more frequently recommended than not recommended.

Lastly, incorporating summarization as a preprocessing step yields a slight improve-
ment in performance over simple truncation. This indicates that summarization is able
to capture the essential aspects of the input. Summarization may perform even better
if more sophisticated summarization models are utilized.

6.4 Overview of Results

Overall, the inclusion of plot synopsis information has proven to improve the accuracy of
movie recommendation systems. Our findings underscore the value of leveraging detailed
content descriptions to increase the predictive capabilities of these systems.

In content-based recommendation, it is clear that integrating plot synopsis with tra-
ditional metadata, such as genres, cast, and director information, yields the best results.
The combination of different kinds of data allows for a more nuanced understanding of
movies, thus facilitating more accurate and relevant recommendations.

There appears to be an inherent limit to the effectiveness of each technique, where the
addition of supplemental information alone cannot fully overcome these barriers. This
limitation suggests that while augmenting recommendation systems with additional data
is beneficial, there are diminishing returns to such enhancements beyond a certain point.
In those cases, exploring changes in the model’s architecture or the techniques used may
be more effective strategies for improving performance.

On a promising note, few-shot recommendation techniques have showed great po-
tential, seemingly constrained only by the model’s number of parameters or the context
window size. This approach is particularly exciting as it hints at the scalability of
recommendation systems with advancements in model architecture and computational
capacity.
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Chapter 7

Conclusion

7.1 Synopsis

In this work, we explored the potential of leveraging movie synopsis information to
enhance the accuracy and relevance of movie recommendation systems. We analyzed
the different types of recommendation systems and suggested various architectures in
which movie plot information can be integrated. Next, we created various content-based
and hybrid models that utilize modern machine learning techniques, as well as a new
dataset to include textual data of movie synopses in the recommendation process. We
also experimented with using movie synopses in a few-shot learning environment in order
to provide more accurate recommendations. By comparing models that solely relied
on traditional user-item interaction data against those enriched with synopsis-derived
information, our research demonstrates a slight but measurable advantage in adding
movie synopsis information to the recommendation process. The successful application
of movie synopsis data also highlights the broader potential of content-based approaches
in enhancing the sophistication and user relevance of recommendation systems across
various domains.

The primary question of the thesis is whether movie synopsis data can improve
movie recommendation systems. The experiments that we executed have demonstrated
a positive impact. The integration of detailed synopsis data into the recommendation
methods we examined enhanced the accuracy and relevance of the suggestions provided
to users. We attribute this improvement to the ability of LLMs to deeply analyze a
movie’s content beyond what traditional metadata can convey. However, the improve-
ment of recommendation quality is modest, with an upper limit that is determined by
the specific technique that is used.

Regarding the secondary question of whether movie synopsis data can substitute
for traditional metadata in providing accurate recommendations, the findings suggest
a more nuanced outcome. In content-based models, completely substituting traditional
metadata with synopses does not always yield better results. Traditional metadata,
such as genre, cast, or production details, still plays a crucial role in the recommenda-
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tion ecosystem. It provides essential, structured information that, when combined with
supplemental textual data from movie synopses, creates a comprehensive dataset. On
the other hand, few-shot learning has shown impressive results when using sufficiently
large LMs. In those cases, standard metadata is not necessary to provide accurate rec-
ommendations.

7.2 Future work

The exploration of leveraging textual data through modern Large Language Models
(LLMs) to enhance recommender systems is a vast and multifaceted subject, far too
extensive to be comprehensively covered by a single diploma thesis. In this work, we
have showed promising results that underscore the necessity for further investigation.
We propose the following directions for future research:

e Incorporate other textual information and metadata: A possible direction
for future work involves incorporating different textual information about movies,
such as critic reviews or scripts from movie trailers. Furthermore, exploring the
integration of all types of movie metadata, such as the cast, crew, or production
details, could provide a more holistic view of each movie. Analyzing different
combinations of textual data and metadata will be crucial in identifying the most
effective mix for enhancing recommendation accuracy.

e Testing different methods or algorithms: Although our research has explored
various methods in content-based and hybrid recommendation systems, they are
far from the only methods that are studied in this field. Future studies should
consider experimenting with other popular machine learning methods like decision
trees and Bayesian network classifiers to understand their efficacy in this domain.

e Utilizing movie scripts: Investigating whether movie scripts can be used as an
additional textual source for improving recommendation is an interesting research
opportunity. Movie scripts offer a detailed narrative and dialogue context that
cannot be described by a synopsis that is orders of magnitude shorter. However,
the script’s length necessitates the development of techniques to fit it within the
specified context windows. Developing new methodologies for summarizing texts
can open new pathways for leveraging more data in recommendation systems.

o Exploring few-shot learning with larger models: Our work showed the po-
tential of few-shot learning in recommendation tasks. Future research could focus
on testing even larger models to assess the scalability of performance improve-
ments in recommendation accuracy. Additionally, experimenting with the model’s
context window could provide insights into how LLMs process textual data for
recommendation purposes.

e Testing in other domains: Expanding the application of textual data analysis
with LLMs to other domains represents an exciting frontier for future research.
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For instance, analyzing the lyrics of songs could enhance music recommendation
systems by tapping into the emotional and thematic content of music. Exploring
these different domains would not only validate the versatility of the approach
but also contribute to the development of more sophisticated and context-aware
recommendation systems across various fields.
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