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Abstract

Recent advances in deep learning for sequential data have given rise to fast and powerful models
that produce realistic videos of talking humans, creating a new era of lifelike virtual experiences.
These endeavors not only push the boundaries of audiovisual synthesis but also hold immense
potential for applications spanning entertainment, communication, and education. The state of
the art in talking face generation focuses mainly on audio-driven methods, which are conditioned
on either real or synthetic audios. However, having the ability to directly synthesize talking hu-
mans from text transcriptions is particularly beneficial for many applications and is expected to
receive more and more attention, following the recent breakthroughs in large language models.
A text-driven system can provide an animated avatar that utters a conversational agent’s re-
sponse, paving the way towards a more natural mode of human-machine interaction. Regarding
text-driven generation, the predominant approach has been to employ a cascaded 2-stage archi-
tecture of a text-to-speech module followed by an audio-driven talking face generator. However
this ignores the highly complex interplay between audio and visual streams that occurs during
speaking.

In this Diploma Thesis, we construct a text-driven audiovisual speech synthesizer that uses
transformers for sequence modeling and does not follow the aforementioned cascaded approach.
Instead, our method, which we call NEUral Text to ARticulate Talk (NEUTART), uses joint au-
diovisual modeling, as well as speech-informed 3D facial reconstructions and various perceptual
losses for visual supervision. Notably, we incorporate a lipreading loss which adds realism to the
speaker’s mouth movements. The proposed model incorporates an audiovisual module that can
generate 3D talking head videos with human-like articulation and synced audiovisual streams
by design. Then, a photorealistic module leverages the power of generative adversarial networks
to convert the 3D talking head into an RGB video. Our experiments on audiovisual datasets as
well as in-the-wild videos reveal state-of-the-art generation quality both in terms of objective
metrics and human evaluation, especially when assessing the realism of lip articulation. We also
showcase the effectiveness of visual supervision for speech synthesis, since our experiments reveal
that NEUTART produces more intelligible speech than a similar text-to-speech architecture.

Keywords: Talking Face Generation, Audiovisual Speech Synthesis, Text-to-Visual Speech,
Photorealistic Talking Faces, Portrait Videos, Avatars, Multimodal Learning
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Euyaplotieg

Oo Rieha va guyoptothow Vepud tov Koadnynty Ilétpo Mopayxd mou pou €dwoe tnv suxoupla
va exnovion TN Atmhwyatixy pou gpyosia oto Epyaotriplo ‘Opaone Troloyiotdv, Emxoltvwvicg
Adbyou xan Eneepyaoiac Lnpdtwy, deiyvovtde pou eumotoocivn xotd T Sidpxeta tne avdmtuéng
xan ouyyeapnc tne. H mapoxorolinon twv padnudtwy tou xuplou Mopayxol ue evénveuoe va
oToYeloW GTNY EVACYOANOY Ue Tov Topéa Tne enclepyaciog onudtny, pe Wioltepn Eupoacr otny
enelepyaoio Aoyou xou exdvog.

Emniéov, Yo fleha vo euyopiothow eyxdpedia tov Ap. Avactdoio Poloco xou tov Ap. Iavayudtn
Quhvtion vy Ty moAlTun Bordeld Toug we cuvemPBiénovtes e Amhwyatixhc epyooios. Kotd
1) OLdpXELd TNG OTEVAC CUVERYUGSIAS S, HOU PETEDWOOY EVaL Uil XoupdTt and Tic Batiéc emotr-
HOVIXES %Ol TEYVIXEC TOUC YVWOELS, EVE Topdhhnha wou mapeiyay avextiuntn guyohoyuer xon oy
unoothpEn. O cuvemPBrénwy Havayidtng, woli ue to undhoina uéAn tou Epyaotnpiou, afiCouy
€vaL LOLATEPO ELYUPLO T TOL PE PLAOEEVNOAY OTO YO ERYACIAC TOUG Yl EVal GUVTOUO, oA ToXD
EUYAELOTO XAl TOPAY WYX BLdaTNUL.

Toltn n epyaocia, dTwe xa 1 0AoXAPWST Twv oToLd®Y Hou oto Ilohuteyvelo, dev Vo HTay dBuvatéc
ywelc ™ ouveyn ot TS oIXoYEVELdG Hou, otny omolo ogeile ta péytota. Téhog, aucddvopo
Bardd evyvwpootvy yia xdde @uAla Tou pwou xpdtnoe xan xpatd cuvtpopid. ISwaltepes euyaptotiee
Yo Hdeho vo expedon mpog tov Améotoho xan tov I'dpyo, agevoc yioo Ty €viovn axodnuoixn
OAOY A, AAAG XUPIKS YL TO OXOUO EVTOVOTERO YLOUHUOP TOUC.

Feddpyroc Mikng
MdeTtiog 2024
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Extetopevn EAAnvixn TTeplindn

1 Euwoaywyn

H ocOvieon guvrg anooxonel otn dnwoveyia avipmmivng opiiog ye Bdon éva xeluevo eicddov,
xa €xel eloéhdel ot oYy eovn xadnueptvoTnTa XUplw PEow GuVNTXGY Bonddv. Tobtn n Athe-
pater) Epyoaota emxevip@dveton 610 ToAUTEOTIXG TEOBANU TNE TORaY WY G OAOUVTWY TEOCHOTMY,
OnhadY) TNV omTX00XoLG TIXY oOVIEST] OACUVTWY TEOCOTWY, 1 oTold TEPLAUBAVEL TNV TopaY WYY
Qvhg xat Bivteo evdg avipdmivou yopoxtipa ToU Uhd Ue peahlo TxéS xvhoele yethidv. Ta Po-
V1d Toporywyixd LOVTEND UmopolV Vo AVTWHETWTICOUY oUTd TO TEOBANUY, HOVIEAOTOLOVIAS TNV
xaTovout] Tev dlapdpwy Bivieo outhlog mou avTiotolyoly oe plo dedouévr elcodo xewwévou.

Badid Madnon

To feedforward 7 ypouuixoé dixtuo elvar wa Baoixr] VEUPWVIXT dEyLTEXTOVIXY TOU amoTeheltal and
anholg petacynuatiodols Bactouévoug oe Behtio Tononuéveg napauétpous. Mmropel va aneixovio-
el oe éva dixtuo and vevpves, 6mou xdle veuphvac ToAaThacldlel TIC ELGGBOUC TOU UE XYoL
Bdpn, mtpocVétel plor otodepr) T, xou eQopUOlEL W U1 YROUUIXT cUVEPTNoN EvepyoTolnong.

Zj = h (Z WjiTs + U.)j()) (1)

Me v ad&nom Twv emmEdnY XL TV VELPOYWY avd eninedo, To dixTuo pnopel vo povielonoiroel
6o xau o mepinhoxeg xotavopée (Bishop and Nasrabadi 2006).

Ot mopdpetpol Tou dxTLoU BEATIOTOTOLOVYTUL ENUVUANTTIXG UE TNV ENOYLOTONOINOT CUVAPTHOEWY
opdipatog. O alyobprduog tng xatdBaong xAlong, EVIUERDOVEL TIC TUPUUETEOUS TOU BIXTUOU OXONOU-
VOVTOC TO HOVOTETL OTOV YOEO TApopéTewy Tov aviioTolel otn uéylot tomx xhion (LeCun
et al. 2015). 'Etot, ol nopduetpot Tou dixtiou avavedvovton Ue Bdon tn oyéon:
OL(w)
t+1 ot
wtt =w' — 2
e (2)
O ahyodpriuog tne avtiotpopng dddoorne uroroyilel Tic xhioelc TwV oQPUAUdTLY e@apuolovTag
TOV Xavova TG aAUGIBAg 6TOV UTOAOYLOTIXG Yedpo. Aoyiouxd Baddc uddinone 6nwe to PyTorch
UToEOoUV Vo EXTEAEGOUV BEATIOTOTOCELS UTOAOYIOTIXG, XS LUAOTIOLOUV ouTOUATY Slapdplom
GUVOPTACEWY %o DLABOCT TWV XAlCEWY.

IMapdha autd, dedouéva pe ypovixy dldotaoT onwe 1 avipdmivn opiia, dev propolv va enclep-
Yoo TOOV AmOdOTIXG Ao OTATIXS VEURWVIXE dixTud, AANE povielonololvTtal and axohoudoxés op-
yrrextovxéc (Goodfellow et al. 2016). Ta avadpound vevpwvixd dixtua (RNNs) éyouv yvwploel
emtuyla o€ eQopuoYés 6mwe 1 eneepyaoia ophiog xot YAOCGG, dAAd oBUVATOLY Vo SLITNEHCOUY
oxetin| TAnpogopla yiar ToAd paxpée axoroudiec. Ta dixtua Long-Term Short-Term Memory
(LSTM) emuyewpolv vo avtyetonioovy autd to medBinua eAéyyovias 0 poY) TAnpogoplac oto
YEOVO.

Ané v 4NN mheupd, ov petaoynuatiotés (Vaswani et al. 2017) eivor oautoxmdixonomntée mov
eneepydlovtar axohouthaxés oG0S HOVTEAOTOLOVTASC TIC OYECELC LETOEY TV OTOLYEIWY TOUS



Extetauévn Exnvo Iegihndn
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Yo 1: H apyrtextoviny| xwdononth-anoxmdxonolnty| Tou yetaoynuatiot. 'Evag nolvenine-
Bo¢ xwdxonowthc enedepydleton v axoloudla €LlGOB0L YENOLULOTOUOVTIS TEOCOY Y TOMAWY XE-
POV XalL YEoUIXd eNENEDA, SNULOVEYDOVTOS Lol EVOLBUEST) AVITOEAs TAoT), 1) ool Tpopodoteiton oe
xdde eninedo Tou anoxwdononth. H un enavainmtixy ¢Oon Twv YETOOY NUATIO TGV amottel TNy €x-
peaon g dladoy e Twv atolyelwy Tne axorovdiag, 1 omolo LAOTOLELTAL TEOGVETOVTAS XWBLXOTOLN-
oelc Véone ot x&e otoiyeio. IInyh: Vaswani et al. (2017).

ue unyaviopod npocoyfc. H npocoyr| anooxomnel 6o va avadewpel 0 por| Tng mAnpogopiog oe xdie
eninedo, YENoOTOUOVTAS OTUVUOUEVO HEGO 6p0 UE xotdhhnha Bden Tou ex@edlouy T cUaYETION
Tou TEEYOVTOC aToLyelou Ue Ta utdioita atolyela Tng axorovdlog. Hapadétouue Ty apyLtexTOVIXY
TOV YETACYNUATIOTOY 0TO Lyhua 1.

IMapaywyixd Moviéla
GANs

To moparywyixd dixtua ye avtaywvioud (Generative Adversarial Netowrks 4 GANs) anotelolv
onuoyTer Tpdodo ot Padid topaywyxr povtelonoinon, xou Bacilovtal oe éva cevdplo tng Yew-
plac tov naryviwy. To GANSs neplopBdvouy 800 avTory VLG TIXG LOVTEAN VEUROVIXMY BIXTOWV: éva
yevwntxd dixtuo G mou poviehonotel TNy xotavopr Twy dedouévev p(x) o éva Siaxprtind dixtuo
D mou extpd Ty mdavotnTa 6Tl évar Selypa Tpogpyeton and to dedouéva exmaidevone avti yio
o G. H Swdwacio exnaidevone otoyelel oto vo exmatdeuvtel 10 G apxetd xaAd OoTte Vo Unopel
“eanatioel” 1o D, napdyoviac peahloTind delypata.

Acedopévou 6Tl 10 D elvan toomiBavo va det delypata and tov yevvrtopa ¥ 1o cOVOAO Sedopévey,
7 wopponia Nash tou mouywiBlol avtiotoel oto onueio 6mov G(z) = p(z) xu D(z) = 0.5,
6moL 0 YevVATopag €xel anoxtroel TéAela Tn dlavoun exnaldevone. H Swoducascio exnaideuonc toug



1. Ewaywyh

D tries to make
D(G(z)) near 0,
G tries to make

D(x) tries to be
near 1

D(G(z)) near 1

Differentiable
function D

. z sampled from z sampled from
.- data model
Differentiable
function G

Eyfua 2: Ontxonoinon tng dSodixociog exnoldeuong UE AVTAYWVIOUS O €Vl GUVONO BEBOPEVWLV
avlpdmvey tpocorwy. H Swduacio nepihopfBdvel 500 avtimdhoug mou avtoywvilovtal uetagld Toug
oe éva oy vidL mou Stadpapatiletar oe Vo oeVdpLo. L TO TPWTO GEVAPLO, THPAUDE(YUATI TEOCWTWY X
emhéyovton Uy and To GUVORO EXTULBEVCTC XAl YENOLOTOLOUVTUL WS E(00BOE VLol TOV EXTIUNTA
D. O ot6yoc tou D elvon va extigioel v mdavotnta 6Tl 1) €lood6¢ Tou Elval TEoyHaTiXy, TO
ornolo onpaiver 6Tt to D(x) elvon xovtd oto 1. Xto deltepo oevdplo, tuyada z ELGEpYOVTOL GTOV
yYevhtopa, xat ouvtideton éva mhootéd delypa G(z). Etn ouvéyela, o extiuntic AaufBdvel elcodo
G(z) nou e&dyeton T0 xb6oToC Tou vnoloyileton ye D(G(z)) = 0 we emduunt é€odo, evd o G
emotpépel avtiotolyo o@dipe mov unoloyiletaw ye D(G(2)) = 1 o emdupnti é€odo. IIny¥:
Goodfellow (2016).

e

eneényeltan oto Lyfua 2.

Ta GANs éyouv yenotpomoimnel eupéwe yia T odvideon exdvwyv. To Deep Convolutional GAN
(Radford et al. 2015) ypnowwonolel amoxhels Txd GUVENZEELS YLal Th LETATPOTH EVOS TUY OV dlavio-
porog YopPou oe wa eévo. Ta StyleGAN xou StyleGAN2 (Karras et al. 2020; Karras et al.
2020) YenoWomololy TO avToyWwVoTixd Thalolo yior audolpetn YETAPOPE GTUA O ELXOVES, ELOG-
YOVTOG OPYLTEXTOVIXEC XUUVOTOULEC TOU TTROGPEEOLY XANITERO BLoYWELOUS TRV UDPOUEPMY Xl AET-
TOUEPWY YOPUXTNPLO TV, EVG eTlong Tpocpépouy otoyaoTixy| mowahio. Ta GANs €youv eniong
emdeilel unohoyio T amodoTIXOTNTA 0N GUVIEST) EXOVELY OO WL ETILY PAPT] XEWEVOU, TORAYOVTOG
eoveg LPnhic avdluong oe ToAd Aydtepo yedvo and ta povtéra didyvone. To Generative In-
terpretable Faces etvou éva povtého Poaoiopévo oto StyleGAN2 nou dnulovpyel puwtopeahlotixée
ELXOVEC TIPOOKOTWY PE EAEYYO TNS YEWUETEIOC XL TOU GTUA TOU TEOCMTOU.

IMopd tnv emituyia toug, Ta GANs €youv petovextiuata, cupnepthauBavopévne e mdavic xatde-
pevong NG xatavourc e€6dou toug, 1 omola unopel vo meplopioel TNy mowhion TV delyUdTwY, 1
e aotddelag xatd TNV exmaldeuct) mou unopel vo odnyHoel o un BEATIOTH GlYXALOY 1| andxAo.

Movtéla Aldyvong

Ou Sohl-Dickstein et al. (2015) xou Ho et al. (2020) npdtetvay évay véo tpdmo pdinone xatavoudy,
EUTVELGUEVO omd TN O TATIO T QuUOLXT. Alatinwooy TNy WEa Tl tLot XaTtavour| Sedopévey Unopel
vo pardeutel pe oy xataoTeoy Tng doprg e péow Wag dodixactag YopuPBomoinong twv Se-
BouévwY, xal exmaldeucng evog HovTélou pe atoyo tnv anovopufonoinon toug. Ta Aeydueva pov-
téla Bidyvong éyouv yenowonomdel evpbtata (Yang et al. 2022) v odvdeon ¥ ocuuniipwon
EXOVWLY, amoTEAOVTOC TN Bdom yia poviéha obvieong edvnv e elcodo xeluevo.
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Yyua 3: Anewcdvion g yeovinhc evduypdupionc HETAED Ui NYNTIXNS XUPATOROPPNS, TOU XELUE-
VOU QTOUOY VITOQWVNONHC TNS, X TN puvnTxng axoloudlac. To delypa fyou mpoépyeton and to
oOvoro dedopévwy TCD-TIMIT (Harte and Gillen 2015).

2 XdOvieon Pwvig

PwvnTixy) Movtehonoinon

‘Eva cbotnua obvieone govhc (text-to-speech § TTS) haufBdvel we eloodo éva andomooya xelué-
vou 0¢ axoloutia yapoxthpwy, eve 1 emdupnTy Tou €€080¢ elvol 1 XUPATORORRT| EVOS NYNTIXOY
oAUoToC oL poldlel Ue TNV amdd00T Tou apytxol Xewwévou and évay dvipwno (Rabiner and Schafer
2010). Ipoxewévou va emtevyVel autd, To xelyevo npénel va eneepyoaotel xou va éndel o popen
XATEAANAY TTEOC UTOAOYLOUO.

To xelyevo ypeidleton xavovixomoinom, medyua mouv onpalvel 6tL 1 xegodaio Ypopt, to obuBoia,
xan 1) otlén elte agpopovTal, eite avtixadiotavton xatdhinha. 1N cuvéyela, To xelyevo npénel va
avtloTolyloTel og o axorovdio pwvnudtwy, Tou elval oL UXPOTEPES BLaXELTES HOVABES YAWMOTUS
Tou umopoly va yenotdornondoly v T olvieon Aéewyv. e autiv T Awmdopotin Epyacio
yenowdomolinxe to evpéwg Sladedouévo puvnTixd helixd tou Iavemotnulou Carnegie Mellon, to
omnolo nepthapPdvel nédve amd 134.000 ayyAiée AEeic xou Tig Tpoopéc toug ato clvolo ARPAbet
nou anoteAeltar and 39 puviuoTa.

Evduypdppion

H exmaideuon twv wovtéhwv TTS yiveton pe ) xehon nynTxedy XUUATORopOOY avlp®OTvng QWVAC,
pall pe Tig anouayvnTogpwvhoelg toug. Kdde orpa you meénel va euduypopuiotel ypovixd pe
povTXY axoloudio NG amoOPAYYNTOPOYNONG, TEAYUO TOU ONudivel OTL TO UOVTENO TRENEL Vol
Yvwellel axpiBoe Toto Tufua Hyou mepLEyel xdde eovnua. Eva napdderypo evduypduuiong petagd
EVOC ONUATOC HYOL Xa TNG PVNTLXAC Tou axoloudiag diveton oto Xynua 3.

To Pacuatoypdpnua

To @aouatoypdpnua TEPLEYEL TANEOPOPIEC CYETIXA UE TO TEPLEYOUEVO GLUYVOTHTWY EVOS CHUAUTOC
xardwe ahhdler pe tov ypovo. Mnopel, vo utohoyiotel egapudélovtac tn petaoynuatioud Fourier oe
€va XLYoLUPEVO TapdBupo Téve 6To ofua, XL 0T cuvEYELd oToBAlovToC TiC EEaYOUEVES GUYVOTIXES
oVATOEAOTIOELS OE ot etxova. Tumixd, to @acpatoypdpnua F evoe dngroxd Sevypotornntnuévou
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3. Movtehonoinon Ilpocwnwy

ofuatoc z[n], 6mwe éva ofa ophiog, elvar To pétpo tou petaoynpatiopod Fourier Bpoayéog ypdvou
(Short-Time Fourier Transform 4 STFT).

F(m,w) = |[STFT(m,w)|? (3)

O STFT uropel vo UTOAOYLOTEL YPNOLOTOLMVTAC EVal XYOUPEVO Topddupo w[n] Tou anopovaVvel
TO TIEPLEYOUEVO TOU GNUOTOC OE EVOL GUYXEXPLUEVO YPOoViXd Thaiolo.

STFT{z[n]}(m,w) = Z x[njw[n — m)e 7" (4)

n

Avtl vo exppdoouye TO QUCUATOYRAPNUA O QUOLXT XA LA CUYVOTNTOC, UTOPOUUE VO UETACY Y-
paticouye TNV cuvyvotixy avanapdotaon and ta Hertz otny xiiyoxa mel, n omola elvon xotodAn-
Aotepn yioo Ty avlpdmivy avtiindm. H xipoxa mel eivon wior avihnmoued xhigoxa Twv tévey mou
xplvovtan and oxpoaTté wg toanéyouy Yetald Toug, xou €xel edaydel uéoa and PuyouxovusTixd
Tepdpata (Stevens et al. 1937). Ilpoxintel nwe oL cuyvotntes e xhipaxag mel auldvouv hoyo-
prduxd oe oyéon Ue TiC Quoxéc ouyvotntec oe Hertz.

3 Movtelornoinon llpocwnwy

‘Evag e&oupetixd evilagpépwy TOUENS TG 6paone UTOAOYLOTAOVY Elvol 1) LOVTEAOTIOMGT TROCHOTWY.
Ta povtéha Tpoc®Tou elvor YVOOTd Ylo TG EPAPUOYES TOUg oTny Puyorywyla, xuplne ota eldXd
EQE XAl TOL YRAPXE UTONOYLOTAOV Yl Touy VISl 1) Tanviee. 201600, oL yeHoELS Toug eEXTElVOVTOL XAl
oe dhhoug Topeic. T'ar mopddelypa, 1 ovaryvdelon TEOCMNWY YECK TWV TELOOACTATWY UOVTEAWY
XENOWOTOLE(TAL OE GUOTARATA BLOUETEIXAC AGPAAELNC 1 Yiot EYXANUOTOAOYWXH avdAuoT. Edixéc
EQPAPUOYESC UOVTEAOTIOINONG HEPAAWY TEPLAAUBEVOUV LATEIXY| ATELXOVLOT] VLo YEWROLEYLXT Xpaviou,
Yvwoloxn emothun, xal veupoemothues. 1o mpdogpateg epapuoyéc evionilovton atoug Topelg tng
alAnhentlSpaong avip®drou-unyavic, TS POUTOTIXNAC, XAl TNG EXOVIXNAC TEAYUATIXOTNTOC.

ITAEypota

Ta mhéypato anotelodvion and N x0pUPEC GTOV TELOBLACTATO Y(OEO, TOU GUVBEOVTAL YLol Vo
ONuLovEYNooLY XLETEC TOALYWVIXEC Thevpéc. Tao Terywvixd TAéypata elvar o mo xowvog Tednog
vou avamapao tardel 1) emipdvela tou derypatohnnreiton and Tic xopupés. H yewuetpio evéoe tpiodido-
Tatou TAéyuatog xadop{leton amd Tov Ve TWV X0pUEEY, EVEK 1) ToToAoYia xwdxonoteltar ot
AMota Tplddwy xopupny Tou aynuotiouy xdde theupd. H ddxacio yetatponic evog agnenuévou
3A ypopixol avTxelévou ot exxdva ovoudletal rasterization xou tepthauPdver 5o Briuata. Ipdta
e@apuoleTal £VOC PETATYNUATIOUOS W TEOS TNV OTTIXY Ywvio TNS xduepac, xou énelta o 3A oyfua
aneixoviletan oTo eninedo TNE exoVog

Teiodidotata Mopgonowoipua Movtéla

To 8A Mopgornoijoiua Movtéda (SAMM) eivor 6T1atioTixd HOVTERN TELGOEO TATWY GYNUATWY TOU
Braywpllouy N wopph and TV ep@dvion Twv dedopévwy. To mpwdto 3AMM ewohydn and toug
Blanz and Vetter (1999), ou ornoiol ypnowonoinoay uhnifc todtnrac 3A copdoelc TEOCHTWY
yioe var e€dyouy Tig xlpleg ouvioTtioeg dlagoponoinong toug. Ta xatayeypopuéva 3A TAéypota ei-
vou UPMAG cuoyeTIoUEVYL, XoOC TA XUEUXTNELO TIXE TKV avIpOTIVWY TEOCHTWY Efval dEXETE OUOLA.
XeNOWOoTOoUVTOL 0TV ETULCTAUYN TNE OPACTIC UTOAOYLIO TOV XUk TWV YRAUPIXWY, X0 ETUTEETOLY 1)
derypotohnla Toug yia T poviehomolnon oynudtwy, xodoe xar T duvatdTnTa dnwovpyias Véwy
mdavev oyxnudteov. Me diha Aoy, ta SAMM elvon wia toyuer xatovopy mdavétntog méve ot
HOP(@Y| o TN YEWUATIX TANEO(Oopla TWV TELOBIC TATWY TEOCHTWY, 1) ool UToEEL VoL YeNoLoToL-
noel oe ahySpLIUOUE YLol TNV OVUXATUOKELY) TELGOLAO TATWY LOVTEAWY TPOCMTWY ond EAMTE Tnyég
dedouévev. Emmiéov, napéyouy éva unyaviogs yia Tov xwdlxonolnon onoloudnroTe Tplodldo TaTtou
TPOOWMTOU GE £VOL YOUNAODLACTATO YWOPO YORUXTNEIC TIXWY, YEYOVOC To onolo Ja aflonoliocouue
ot ouvéyewa e Amwpatixic Epyaotac.
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Eyfua 4: Atoywplopds Twv cuVoTeo®y YetoBolfc xepaiwy oo woviého FLAME ¢ mpog to
o e, TNV Exgpac), xou Ty Ttola. Areixovilovion ol Teelg TPWTES XVPLEC CUVIGTMOES TOU O NUATOS

%o TNG Exgpaone o £3 Tumixég amoxhioelg, eve TopdAnha gatveton xou 1 xivnomn twv apdenoewy
7oL povteroTololy Ty téla Tou Aoupol xat tou cayoviol. IInyh: Li et al. (2017).

To SAMM padaivovton and vPnirg nowdtntag 3A copnoelg Tou evduypouuilovton oe €va x0vo6
TAGLOLO OVOPOREE, (OTE Tol OTUElN TV TPOCOTWY Vo éhdouy oe avtiototyio. H avtiotouyio nepiioy-
Bavel TNV ENOVITORUUETEOTOMOT) TWV TAEYUITWY OF AVATURAC TACT UE TOV (BLo aptdud xopuPKOY X
(Bl Tprywvornoinon. ‘Eneita, to avTloToylouéva TAEYRATH oVOADOVTOL GTOTIGTIXA YEYCLLOTOL)V-
g Ty Avdhuon Kopiwv Suvietwony (PCA), dnuovpydvrag éva 3A yovtého we ypouwxn Bdon
oxNudTwy yio xdie cuvicTwoa YetoBolnc. Extoc and to oyfud, 1 EXPeAc TIXGTNTO TOU TPOGMTOU
unopel va evowpatwdel oto poviého npocdétovtag wia Yeouuixy Bdor expedoewy. Anewovilouue
TNV anocOVIEST] TV CUVICTWOWY UETUBONC TWV TROCOTWY YE EVO TOREBELYUA Otd TO UOVTEAO
FLAME oto LyAuo 4.

3AMM Médodou

To Large Scale Facial Model (Booth et al. 2018) eivon évot SAMM rou Swrywpilel to oyfua, Ty
Exppao, TN YEon Tou xeQUAloy, xaL TNV LT, Eyoviag exnaudeutel ot yio peYding xAlyoxag Bdomn
dedopévamv. Xenowornotel tov ohydprduo Non-rigid Iterative Closest Point (NICP) ot va omogpiyet
Vv evduypduuion ue BAom Ta ETLPAVELIXE YoEOXTNELOTIXE TOU SEPUATOC Xal Vo ETLTUYEL euuypdy-
wom we Teog to avortouxd yapoxtneiotxd. To FLAME (Li et al. 2017) avtiototy{lel Swavdoporto
yia To oyfua, Ty tola xa v éxgpact oe 3A yetatonicelg evog mpotinou mhéyuatog. To yovtéro
ETMUTUYYAVEL XUAOTEPES AVUPOTIVES EXPEAOELS LOVTIEAOTIOWOVTOG TECTEPLS aplpwoels pe 3A mept-
G TEOYEC: TOV Ao, To corydvL, xan Tal 800 udtio. Ol TapdueTeol Tou HOVTEAOU EXTTALBEDOVTOL Yid VOl
ENOYLO TOTOLAGOLY TO 3A GQAAU avaxATAGKEVS, EVE Yenotdotolovvta Bdpn ot YopuBndels tepto-
xéc (6mwe 1 xbun) yio Behtiwpévn oxp{Beio. To MICA (Zielonka et al. 2022) eotidlel oto {htnua
e ueTpwic axpifeloc otn povielomoinom avipdmivwY TEOCKHTWY, YENOLOTOWIVTAS XATIAANA
emoNUELUEVE cOVORa dedopévev. Ta cuvehtind veupwvixd dixtua (CNNs) anoteholv piot GAAN
Tpocéy Yo mou dev Bacileton ot xpuPols UToYWEOUS Xau Yenotworoidnxay and Toug Jackson et
al. (2017). Xty xotnyopla twv molutpomxdy povtéhwy, To AVFace (Chatziagapi and Samaras
2023) evowuatdver Ty axovo T TAnpogopla otot SAMM, yENOLLOTOLOVTAG OTTIXOAXOUC TIX
yoeaxtnelo txd yia tig napauétpouc FLAME avé xopé and Bivieo npoconwy.

Avoxataoxeui

To DECA (Feng et al. 2021) elvon évo povtého TELOBIACTATAC OVAXUTUOXEVHS XEQPOUMDY UE EY-
(acT) OTNV ANOTUTWOTN AeTTOPERELDY oty éxgpact.. To EMOCA (Danécek et al. 2022) Booiletou
oto DECA, alAd divel éupoon otny xoAiTepn anoTinwon Twy avipnmvey eEXQEICEWY TOU OYETI-
Covtan pe ouvaotuata. Ané v dn to SPECTRE (Filntisis et al. 2023) anooxonel otnv
TUOTY AVAXATOCXEUN TWV XIVACEWY TOU GTOUATOC XATd TNV olAla evoe atépou. H yédodoc yenot-
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4. Owrolvta Ipbowna
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Yy 5: H opyrtextoviny xou n Swodicacio exnaidevone touv SPECTRE. Eva apywd Biveo
Tpopodotelton oto dixtuo 3A avaxaTaoxeLHC, OTou €vae oTadepdc xwdxonontrc Poaciopévog
oto DECA oviyveltel nopopétpouc FLAME xou oxnvic (xduepa, putiopds). TN cUVEYELd, EVag
XWOLXOTIONTAHSC GTOUATOC TEOBAETEL TG EVNUERWUEVES TAUPUUETRPOUE EXPROONS Xt TTOL0G TOU CaYo-
vioV, eve évag renderer omotundvel To Tpofienduevo 3A oyfua ot exova. H teployr) Tou otoua-
To¢ TepixoOTTETAL TOG0 GTNY El0OBO 6CO oL GTIC AVaUXATAOXEVAOUEVES axoloudies, xou epapudletal
e€ay WYY YOEUXTNELOTIXOV antd €va BIXTUO AVAY VKOS YELNOY, TEOXEWEVOU Vo exTiundel 1 amdx-
Ao petald toug. To (Blo yivetow pe éva avtioTolyo diXTUO Yiot TNV AVOYVORION NS EXPEACTG
TOV TPOCWTOV, TEOXEWWEVOL Vo eXTUNIEL 1 AmdOOTAOT GTOV AVTIANTTIXG Y MPO AVATUPEC TACTS EX-
pedoewv mou éyel udler to e€wtepd povtého. Inyy: Filntisis et al. (2023).

potolel voy XWBXOTONTY] Yid VoL EXTILHCEL TOPUPUETEOUS TOU GTOUATOS, CUUTERLAUBAVOUEVNS TNS
Exgppaong xar e Yéong Tou coryoviol, xou Vol TEOEXTAUBEVUEVO BIXTUO aVaYVWoNe YELMGOY aTo
ocUvoho dedouévev LRS3 yio va e€dryer Staviopota Yapaxtnelo Tixoy mov oyetilovton Ye TG XV
oelc xotd TNV opthia, to omolo tpoomadel var TanptdEer peTalld opyxol PIVIEO XaL oVOXATUOKEVHC.
Hapadétovye v apyrtextovinr) Tou SPECTRE oto Eyfua 5, xadoe Yo to oflonoiooupe ot
CUVEYELL.

4 OpthoVvta llpbowna

H o0vieon ouholvieny Tpoo®dnemy anooxonel aTo vo nopdyel BiVIEo ue GuYYPEOVIOUS Xl GUVETELD
HETOEY TNG PWVAC XAl TWV Xapé Tou outholvTog atouou. H oivieon unopel vo eivou eite Pooiouévn
oTov o, dnhadh clvieon Bivieo dote vo touptdlel e éva dedouévo xoppdtt opiiog, eite Bacto-
uévn oto xelyevo, 6mou ol poég Yyou xai Bivteo npénel va dnutovpyndoly and éva TUNUA GUOLXAC
YAdoooag. Ye auth ) Amhwpatixny) Epyaocio, avantiloue évo povtého Baclopévo 6To xeluevo mou
yenowlonolel pio evoldueon Tplodldo Tatn avanoedotaoy. Mo Yevixh eTLXOTNOY TWY CUCTNUATWY
dnulovpyiog oAoUVTWY TEOCMTWY Tapouctdleton oto Ly fua 6.

Movtéla pe Eicodo "Hyovu

H ocOvieorn ophobviwy mpoo®nwy and Yyo anooxomnel ot dnulovpyia evdg peoliotixol Bivieo
evog atopov Tou cuyypeovilel Ty ophia Tou pe to eloepydpevo ofua pwvic. Ta meplocdtepa
SUY YOV HOVTEAN OUAOOVTWY TEOCMTWY BEYOVTAL NYO0 WS el00BO, EVOEYOUEVKS ETEWDT] lval TLo
anhd and Ta yovtéla e elcodo xeyévou, eved xohimTouv éva e&icou evph QACUA EQPUPUOYOV.
Qotbo0, avoyxdlovton vo yenotponototy pa eEwtepixn pédodo TTS mpoxewwévou va elvon oe Véon
va dnovpyRoouvy Thipwe tpocappocuéva Bivieo pe avdaipetes Tpotdoeic, xdtt To omoio Teplopilet
TNV EXPEACTIXOTNTAL.

To Neural Voice Puppetry (Thies et al. 2020) eivat éva deepfake povtélo nov dnuovpyel pwrtope-
ahloTind Bivteo. Xpnowonotel évay mpoextaudeupévo dixtuo yio eory YN YaeaxTneto Tixwy outhlog,
évay yevvhtopa SAMM avd xoapé xan évay veupwvixé renderer. To VOCA (Cudeiro et al. 2019)
e€dryel yopoxtnelo Txd owiiag and to DeepSpeech xou yenowonolel ypovixéc ocuvehielc yio va
Ta petatpédel oe petatonioeic 3A mhéypotoc. Avtictoya, o povtéha twv Fan et al. (2022) and
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Syfuo 6: Mo yevin anewxdvion tne dadixaciac olvieone owhodvtog npoctmou. Ta eloepydueva
Oedopéva elvan éva dTopo avopopde, xardmg o ot TNYN yia TNy oAl elte auth elvan Myog,
elte xelyevo. T ) obvieorn guwtopeohiotixod PBivieo unopel va yenowlomoindel pla eviidueon
TOPAUUETEIXY avomopdoTacT) Tpochnmy. IInyR: Sheng et al. (2022).

Xing et al. (2023) emtuyydvouv mohl xohd anoteréopato oty TEdBredn 3A mAeyudtwy and fyo.
To Neural Emotion Director (Paraperas Papantoniou et al. 2022) enelepydleton Tic EXPEACELS
eVOC atépou ot Bivieo und puoixéc cuvixe, pe eloodo xdnola cuvalodnuatixn entypay| ¥y xdmolo
Bivteo avaopdc, and to onolo e&dyel To 6TUA TLV expdoewy. H evowudtwon tou cuvaoifuotog
T OUA0UVT TEOCWTA ATOTEREL EVay EVERYH TOUEN EPELVOC, DIEUXOAUVOUEVT) Ad HEYAA GOVOAL
dedopévwy énwe to MEAD (Wang et al. 2020).

IToAkéc pédodol cuviétouv puwtopealoTixd Bivieo yenotwomowdvtog GANs, 6nwe to Head2Head
(Doukas et al. 2021b). To Wav2Lip (Prajwal et al. 2020) avtuipetonilet to npdfinue tne ouvieong
OUAOUVTWY TPOCOTWY ©¢ 800 LTOTEOBAAUATA: TN SOVIEST) EXOVLY GTOUATOS, XOL TO CUYXPOVICUO
Toug e v eloodo fyou. Iopouoiwe, ta SadTalker (Zhang et al. 2022c) xou VideoReTalking
(Cheng et al. 2022) emtuyydvouy gwtopeohiotix few-shot clhvileon tpoodTwy pe xahd cuyypo-
VIou6 GToVv fyo.

Movtéla pe Eicodo Kelpévou

H oivieon ouhodviny npoc®rwy pe xelpevo oq elcodo anartel T dnuiovpyio nyntixmc xat ontixnig
PONC Yl EVal TPOOWTO WE Bdomn TNy elcodo XeWévou, YEYOVOS Tou TNV XoioTd To S0GXOAY and
v mpocéyyion pe eloodo fyou. Oplouéveg xowvée mpooeyyioelc mepthopfdvouy T yeron evoc
povtéhou TTS ev cepd e xdmowar uédodo odnyoluevn and Hyo, dénwe autés mou meptypddope
Topondve. Mopadelyuata tétowwy apyrtextovix®y elvar to ObamaNet (Kumar et al. 2017) xou
7o AnyoneNet (Wang et al. 2022). H evehi&io tng olvbeong 800 cuotnudtewy mou dayweilouv
10 xeluevo, Tov o, xou To Bivico €xel odnyNoel o aEXETE LOVTEAN UE TUPOUOLNL OPYLTEXTOVIXY.
Evdewtind, to povtéha twv Obradovié et al. (2022), Song et al. (2022), and Ye et al. (2023)
oaxolouBoly TNV €V GELRY aEYLTEXTOVLXY.

‘Evo ontixoaxouctixd poviého mpotddnxe and toug Abdelaziz et al. (2021), o onolol emextel-
vouv 10 TTS poviého Tacotron 2 yiu cOvdeon owhioc (Shen et al. 2018) yio va nepihdBer xou
ot mAnpogopla, meotelvovtag To poviého AVTacotron2. H pédodoc toug mapdyel cuvoucsvr-
HaTL) oA YENOULOTIOLOVTOS BLYOGUATO CUVALGUNUATWY YO VO XWOXOTIOLAGEL TNV OTALTOVUEVY
npoowdia. To avtioTorya 3A TAEYUATO XOU QPUCUATOYPSUULOTA SNULOLEYOVVTOL UE AVIBPOUIXG TEOTO.
ArnewoviCoupe v apyLtextovixy| Tou cucTRUATOE 6T0 Lyfua 7.

Mapobyota, To DurlTAN (Yu et al. 2019) npoocapudlet 1o woviého WaveRNN (Kalchbrenner et al.
2018) yio TV TEdBAeN onueiny evliagépovtog Yipw and to tpéowno. To UniFLG (Mitsui et al.
2023) pordoiver yior xouvr avamapdoTaor XELWEVOU xou iy o, EntTpénovTas £Tol T obvieon T6c0 e
xelyevo 660 xou Ye yo. To ontind anotéheoyo xou Twv dVo povTéhwy elvon pio oxoloudla onuelny
eVOLAPEEOVTOC YUPW amtd TO TPOCWTO ol T0 6TopA. 26Tdo0, AUty 1) anhoixy| woviehonolnon dev
elvon xatdhAnAn avanopdotao yio Ty teplnioxn dedpnon Twy xelklwy, obte urnopel va yevixeudel
o€ VEU TPOCWTOL.
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Eyfua 7: To povtého AVTacotron2 yua avodpouixy) omtxooxouvstixt] clvieon and xeluevo.
Mot opyITEXTOVIXT] XWOIXOTIONTH-AMOXWOLXOTOWNTH eEQYEL AVATOPUCTAOES ONTIXAC oWkl TTou
anetxovilovtal AQeEVOC GTO QUCUATOYRAPNUA, OPETEPOV OE TUPUUETEOUE 3A TPOCMTOU, EVE UT-
Gpyel emione n Suvatdtnta cuvasnuatixol eéyyou. IInyh: Abdelaziz et al. (2021).

Emotion embeddings

5 Ilpoztewvouevn Médodog

Yxonde tng nopovoag Aimhwpoatixnc Epyaclog etvon va mpoteiver éva yoviého Badidc udidnone vy
T Snuiovpylo Bivieo opAolvVIwY TEOCHTWY TOU eXPEEOLY PEUMO TN Xdmola elcodo xeluévou.
Evdewtinéc eapuoyéc eivon 1 dnpiovpyia yopaxthewy yio exxovixols Bondoic, exnondeutind Piv-
Te0, epyaheia TpocBaciudTnTag Xou dienape avipdmou-unyavic. ‘Etot, To wovtélo emxevtpmveta
OTO PEAAOHS NG XVNONG TWV YEAWDY, XS XA TO CUYYPOVICUS TWY AXOUCTIXWY 0L OTTIXMV
POV, ANOYL TN UeYdANg onuociog Toug Yo To peaiioid tou cuvietixot Bivieo. ' tov (Blo Adyo
Yenolonolelton WUia TPLOOLIC TATY) AVATOPIo TUOY) TOU avIpmTVOU TPOooWNou, Kote va emteuydel
N ®oAUTERT BuVOTH exPpaoTixdTNTa. EmnAéov, ye to oyedlaoud tou YoviEAOU MOTE Vo TOPdYEL
TowTOYEOVA TNV OpLA{ol xou To Buvouxd TpLoBLEoTATO TEOOWTO, TO omolo OBNYEL Eval VELEWVLXO
povtého renderer, £YOUUE €X XUTAOXEUNC CUYYPOVICHEVN MyNTLXY) XoL OTTIXY pOY. LUVETWS, TO
oUotnud pag Syweilel ™ obvieon QPwTopeahloTixol ouAolVTOE TPOoKTOL Ue elcodo xeiuevo
oe 800 umoepyaoieg: ontxouxouo T TopaywY othiog xou 3A TEOGHOTOU, XL ATELXOVLGT, TOU
3A Bivteo npocwnou ot Eyypwuo, Thpec Bivieo. Kdde unoepyaoio extelelton amd pla povédo tou
Lo THUATOE Hag. Ot HOVABES AUTES, OTTLXOUXOUC TIXY| XAl PWTOREUMO TLxY, EXTtaLdebOV T EEY WELO TA
oto (Blar Bedopévar, xou AetToupYolv eV oelpd xatd TN Sladxacio odvieonc.

ITpoeneiepyacia Acdopevwy

To chvola BeBopéveyv Tou YeNnotdonololvTaL Yo cUVIESY) OUAOOVTWY TEOCOTWY ATOTEAOVYTOL
oo Bivieo atouwy mou expépouy mpotdoelg, wall Ue T amopoyvntogwvhcels touc. Hpoxeiuévou
Vo exXToudelooVUE T0 GUGTNUA pog, exteholue wo tpoeneepyaoia ota dedouéva, Mote vo e&d-
Youpe anopaitnteg TANEoPoplec TS N eVHUYEAUUIOY) XEWEVOU-PWVAC X0 1) A oVaXUTACHELY
TOV TPOCWTOV.

Apywd eneepyalbpoote to xapé Tou Bivieo. Xenowonowolue to poviého MTCNN (Zhang et al.
2016) yio v aviy veboouue T Véom Tou Tpootnou oe x3Ve xopé xat va tepxdPouue TV Eixbvo o€
avéiuor 256 %256 yOpw and To npdowno tou atégov. Emmiéov, yenolponolobue 1o cuveRXTind
povtého FSGAN (Nirkin et al. 2019) yior vor e€8youde T Hdoxa TOU EGKHTEPIXOV TOU TPOCHOTOV.
O oxomdeg elvon var exmoudedooupe €va LOVTEAD TUpAYWOYNS EOVWY HOVO TOU €0WTERPLXOU TOU
Tpoctnou, Kote N uéYodoc pag vo elvan aveEdetntn and adloyés ato undBadpo Tou xapé. Ilpay-
HATOTIOLOVUE A OVOXOTUOXEVT) TOU XEPAUALOU TOU atépou aflomowwvtoag T wédodo SPECTRE
(Filntisis et al. 2023), n onola éyel exnaudeutel ue 6T6Y0 THY XN ATOTUTHON UIVACEWY TOU GT-
HATOG, YPNOULOTOLMVTAS YORUXTNELO TE avdy viaong yellwy. ‘Etot, urtopolye va xataoxeudcouye
Tic exdvee tou 3A oyfuatog, xau v edéva Normalized Mean Face Coordinate (NMFC), i
ONUACLONOY XY AVAAEAC TAOT 1) 0Ttola XwdiXoToLEl YpwuaTixd 0 ¥éon Twv onuelwy tou 3A TAéy-
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Face
Detection

Face

Segmentation
Landmark _
Detection — - == Alignment

Eyfua 8: Awdixacior npoeneepyaciac twv Bivieo tou cuvdlou BeBouévev, Ue mapddelyud
evoc xoapé. To mpbowno aviyveletol Xol TEQIXOMTETOL OF €Vl TETPAYWVIXO mAololo. Xt
ouvéyela, dnuoupyeltal Wa pdoxa yia vo anoyovwidel To cowtepd Tou npocwnou. To xepdit
avaxortaoxevdletan oe 3A, eved enlone mpoPfAémovton 2A onueio avapopdc TOU TEOGHTOU, TOUL
TEPLAOUBAVOUY TLC AXPES TV LTIV Xou Tou otdpatoc. Téhog, urtohoyileta o BEATIOTOC YETAOY T
patiopde mou avtio tolyilel T onpelor avopopds ue éva tedTuno. Autdg 0 UETACYNUATIONOS EQap-
uoletal o€ OAEC TLC TOPOYOUEVES ELXOVEC.

Head ||
Reconstruction

|




5. Ipotewvépevn Médobdoc

patog oto yweo. Téhog, aviyvebouue ta onueia avapopds Tou TEOSOTOoL UE TN Xprion ToU LoVTEAOU
FAN (Bulat and Tzimiropoulos 2017), xou To YpNOWOTOLOVUE Yot VoL EXTIWHCOLUE TOV BEATIOTO
UETACY NUATIOUO OTELXOVICHC TOUC O o TeoTuUTn Yewuetelo. Me autd tov 1pémo pnopolue vo
HETAOYNUATICOUUE OAEC TIC TUPAYOUEVES EXOVES DOTE TO TPOCWTO Vo elvan oxplBie 6To xEvtpo
NG EOVOC, XL VO EYEL XATE TOV BUVATOV TAVOUOLOTUTIO Uéyettog xou mpocavatohloud. Autdg o
peTooy NpaTioddc anooxonel 6To va BehTidoel T duvatoThTa Yevixevong tou renderer. H npoenes-
gpyooia Twv xopé anexovileton 6to LyAua 8.

Y1 ouvéyela, enelepyalbuacte Tov o tou Bivieo. Xenowonowlue to povieho MFA (McAuliffe
et al. 2017) yiot Ty eVIUYPSUULOT TNS XVUATOLOPPNC HYOU UE TN PLVNTXTH oxohoudiot ToU XELgé-
vou. Emniéov, unoroyiCoupe 1 Geuehlcddn cuyvoTnTo TOU CHUATOC avd axoUC TS TAa(olo, To
(PACUATOYRAPTUAL, XD XL TNV EVERYELY TOU.

Ontixoaxouvoctixy Movada

H ontixoaxouo tiny| povida eTEXTEVEL THY ARYITEXTOVLXY| EVOC LOVTEAOU GOVIEDTC YWVAC, TEOXELUE-
VOU VO EVOOUATOGEL Xt TNy alvieon omtixrg tAnpogopiog. Xuyxexpiuéva, axohovdolue to Fast-
Speech 2 (Ren et al. 2020), to onolo YENOWOTOLEl YETUCYNUATIOTES YioL VoL UETATEEPEL POV
pator oe yapaxtneloTixd mel. Enextelvoupe autiv v apyltextovixt] TpoBAedne Qaouatoypay-
pdtwv mpoPAénovtag éva ddvuoua cuvtereot®v 3AMM avd xapé ryou, mopdyovTtag cuyYyeo-
VIOUEVO NYNTXE xou OomTd yopoxtnelo Tixd. H apyttextoviny) Tou cuctAdoatoc nepthopBdvel Evoy
BEVTEPO AMOXWINOTONTY Yia TNV TPy WY Twv cuvteheatdv FLAME 3AMM, o onolog howfdvet,
pall pe Tov NYNTd amoxwmdxononth, Ty €€000 Tou xwdonoinTh xewwévou. Auth 1 TEocEY-
YO OmOQEVYEL TNV TEELTTY EMAVAANYM, Ty mdoavy] avavTtiotolyla cuVOAWY BEBOUEVWY, oL T
CUCOWREEVCT) CQUNIITWY TOU UTopel Vo UTdEY oLV ot eV oelpd Tpooeyyioelg. Xpnowonotolue to
SPECTRE vyt v 3A avoxatooXeut] TOU TEOGMTOU, X0l LOVIEAOTOWMVTOG TNV EXPEAUCT) Xl TLS
YVAOELC TOU TPOOoOTOL Xatd TN Sudpxela Tng outhloc. H ontixouxovo x| povdda mepuhopuBdver Tig
e€fc uno-uovddec:

o Avoluthic @uvnudteyv: H uto-yovdda autf] HETATEENEL TO XEUEVO OTNV XATAAANAN
oxohovdia PuVNUATLY, YeNotwomoudvtag To guvntixd Aelixd tou CMU. INa dyvwotes AEE-
elc, yenowonotel éva mpoexmaudeupévo dixtuo tpdBredne Twv puvnudtwy e Bdon v opdo-
yeaplo tne Aé&ne (Park and Kim 2019).

o Kwduxonointhg: O xwdixomointhc hauBdvel wg elcodo v oaxoloudio guvnudtwy ot tny
METATEENEL OE Lol XPUGPY| AVATUPAOTACT| UECWL EVOS UETACYNUATIOTH 4 EMTEDWV.

¢ ITpocapuoyeac (Variance Adaptor): O mpocappoyéas eyyéet axovotixy Thnpogopio
OTNV XPUPY| AVATARACTACT] TWV POVARATKY, TEOCYETOVTAS BLUVOCUITA TOLU XKBXOTOL00V TN
Yeuehloddn ocuyvotnTa xou Ty evépyela Tne ovic. Hapdhinia, yenowwonolel tny tAnpogopla
e Sudipxetag xdide puvApatog Kote v enextelvel TNy axohoutia, 1 omolo opyxd elye urixog
OO0 XAl TAL PWVARATE TOU XEWEVOU ELGODOU, TEOXEWEVOU VO YTACEL GTO XATIAANAO Urxog.
T mapdidetypa, yior povAuato Ue UEYAADTERY DLdpXELd, OTWC TO PWVAEVTA, TA OLVOCUOTO
e xpuene axoloudiag emavolopfdvovTon xdmoleg Popés, HaTe Vo Taeldlouy Ye T Bidpxela
TOU QPWVAUITOG.

o Hyntixdc anoxwdixonointic: 'Evac yetaoynuotiotic 6 emnédwv, oaxolovdoluevog
amd éva ypopuuxo eninedo. H Aettoupyio Tou elvan va petaoynuatiler tnv xpugn oxohouvdio
OTO PACUATOYRAPNUA TN POVAC.

o Kwduonowmthc pwvAc (Vocoder): Xpnotponowolue to mpo-exnaudevuévo HiFi-GAN
dixtuo (Kong et al. 2020a) hote var LETATPEPOVUE TO PASUATOYPAPNUL GE XVUATOROPPN.

e Ontixog anoxwdixonownths: Ilopdpolo pe tov MynTxd amoxwdixomownty), Yenoi-
pomolelton €vag PETUOYNUATIOTAC 4 emnédwy xal €vo Ypouuxd eninedo ylo TN UETATEOTY
TRV XPUODY YOROXTNRLOTIXOY OE Yeovooelpés cuvteheotdv SAMM. Ot 800 amoxwdxonot-
ntéc emhéyovian va €youv SopopeTnd Bddn Aoyw TN BlapopeTixic SlUC TATIXOTNTAS TGV
dedopévwy mou mpénet vo povtehonoioouy. O mpdtog mpénet vo tpoPAédel yio T o 80
ouyvotixég LOVES, eV o BelTepog Tpénel Vo TpoPAédel 53 avedptntes cuviotwoes SAMM.
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/

Audio

Audio > HIFi-GAN [—>iisiind
, decador HiFi-GAN

Variance

jext Adaptor

Phonemizer Encoder

A

Visual FLAI\_nIE
decoder rasterizer

v

Unalignment &
Renderer —b?——' Blending

Eyua 9: H Srodixactia obvieong outhodviwy npocthnny péow tou wovtéhov NEUTART. Exovev-
TG A6 PLol PEAOT) XEWEVOL, 1 OTTLXO0XOUC TIXY) LOVADA (Gved XOUUETL) TN HETATEENEL OE PWVNTIXY
axoloudia, 1 OTolo HETATEENETOL TAUTOYEOVO GE QPUCHATOYEAPTUIL Yo 3A TUPUUETEOUEC TEOCHOTOV.
H gwvr) cuvtideton and to gacpatoypdenua yéow tov HiF-GAN, evd ou 3A cuvieheotég yeto-
tpénovton ot 3A Bivteo péow tou FLAME. H gputopeahio tx| povddo (xdte xopudtt) yenoitonotel
To Bivteo tou 3A npoc®nou yia va tpoBAédel to yypwpo Bivieo, to onolo Yo avtixatac ThoeL To
TpdowTo and xdrolo Bivieo avapopdc. o amhdtnrto, anewcoviloupe povdya éva xapé. To veupwvixd
dixtua mou Behtiotonololpe anewovilovtal pe pol yewua, eve Tpoexmadeupéva dixtuo amelxovi-
Covton pe Yohdllo Ypouo.

e FLAME rasterizer: Xpnoonololue ToV anoxwdixomolnty oL rasterizer tou povtélou
FLAME ®ote va yetatpédouye toug ouvteheotéc SAMM oe 3A miéyua, xou énetto vo To
AMELXOVICOUYE.

H apyttextovinf] Tng ontxoaxousTixic povadag omeixovileton oto dve wod tou Xyruotoc 9.
ITpoxewévou var TNy eEXTUBEUCOLUE, YENOLLOTOLOUKE amd XAl TEdTUCT TOU GUVONOU BEBOUEVLV:

o Trv axoroutia uVNUATWY p1.1..
o Tm péon Vepehiddn cuyvoTnTa avd POVNUA fiL.
o Tm péon evépyelo avd PWOVNUA €. 1.

Tr Sdpxewo xdde povigortoc dy.r.

e To gacpatoypdpnua F.
e Touc cuvtelectéc SAMM a:fn
o To opyxd Bivieo nepixoypévo Yipw and To GTOUA TOU ATOUOU i{VIN
o Tic mopopétpoue xduepac €1. .
Behtiotonololue 11 cuvdptnon x6otoug Lg,, 1 onola anotehelton ond:
o JPAAUATA CUYVOTNTAG, EVERYELAS, xou Otdpxeiac: Axolouddvtag to Fast-

Speech 2, Behtiotonololye Tic TEOPAEPELS TOU TPOGUPUOYEN YENOULOTOUOVTAS HEGO TETROY-

12
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Spectrogram loss

Pitch loss
Energy loss
Duration loss Audi
. udio
: -
: decoder
Variance . .
Phonemes Adaptor — Lipreading loss
4 R
Pitch, Visual FLAME - :' Lip feature
Energy, decoder rasterizer - extractor
Duration

3DMM loss
Flow loss
Gradient loss

Yyhuo 10: H Swdixacio exmaldevone tng ontixoaxoustixic povddoag omoutel tnv axoloudla
POVNUATOY WoE TEOTACTE, xodmdS Xou TN UECT VEUEAMDN cUYVOTNTA, EVEPYELO, XOL DLAEXELL ovEL
povnuo. O mpocapuoyéoc exmoudedeton Vo TEoBAETEL TIC Tpoavagpepleloeg axoVoTIXEC TOCHTNTES
YONOWOTOLOVTOG TI TRUYRATIXES TWES Ylot TNV eXTaideuoT), xal TS TEOPAETOUEVES TWMES XoTd
v medPredn. H €€odoc tou nyntnod amoxwdixomont elval To Qoacuotoypdenua mel, to onolo
YeNnolonoleltol yio ToV UTOAOYLoUS Tou oyetxol opdiuatos. Eniong, n é€odoc tou ontixol anox-
wdixomonty eivon 1 axohovdio SAMM, 1) onolor aneixovileton o éva 3D TAEYUA YENOLHOTOLOVTAC
1o FLAME, xou otn ouvéyeta npoBdhheton o xopé Bivteo, amd to onolo unopolv va e€ayvoly
YOPOXTNELO TS avdyVwang yethdy. Emonualvoupe 6Tl untdpyel 1660 axoucTixyy 660 ol OTTIXY
eniBAedr, HOVIEAOTOLOVTAC THY OTTIX00XOUG TWXT GUVIEST PWVAC WS ToAuTpOTLXY Sladuxasio.

wvixd o@diyo otic mocdtntee mou xoheltor va mpoPAédet. Io mopdderypo, To o@dhua
oLy vOTNTIC LToAOY(CETou:

Lyiten = Eal||fr = fill3] (5)
ME fi TNV TEoPBAendUEVY CUYVOTNTA.
® JPAAAO PACUATOY PAPHUATOG: XpNOWOTOOVUE TO HEGO ATOAUTO GQAAUOL YLOL TO (PAO-
HOTOY P UL
Lonel = ||F7F||1 (6)
o MpdApo SAMM: Méoo tetpaywvind odhyo npéliedng twv cuvteheotwyv SAMM.

o Mpdipa xAlong: Iowixonolobye Tic amdTopeg ahhayés oTiC Ypovooelpés Twv SAMM
CUVTEAECTOY, Yo Vo e€ac@ahicovye mo opard anotéheoua npoBAedne, Ye Tov 6po:

ﬁgrad = En[”‘fnle - fﬂ”%] (7)

o Jpdhpa poYg: XpnolomoloUue To a@dhpa Ypovixwy dlapopny Baclouevol otouc Hussen
Abdelaziz et al. (2020):

L f1ow = Eu[||(Zni1 — &n) — (Fngr — T3] (8)

67ou T, elvon 1 TearypaTer T Tou dlaviopatog 1oy FLAME, xou &, elvar 1) mpoBhenduevn
T YLl TO XOPE N

o JpdApa avdyvwong xethiwv: Axolouvddvtag tny exnaidevon tou SPECTRE, yernot-
HOTIOLOVUE €var HoVTENO avdryvwore ety (Ma et al. 2022) yio vo eEdyoupe YopoxTnpto Tixd
oto 3A Bivteo, xaw unohoyiloupe Ty andotacr Toug and To AVTIoTOLY A YOEAXTNELO TIXE TOL
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Tpaypotiol Pivieo (Uetd amd mepxony| yOpw and to otdua). Q¢ YETpo andoTAONS YENot-
HOTIOLOUKE TNV AMOCTAGT] CUVIULTOVOU, xoi¢ efvan xatahhnhdtepn amd v Euxkeldia ando-
TUON YO TOV UTOAOYLOUO GQUAIATeY ot LPNAAC SldoTtaong xhpeoug. Troloyilouye:

fo i

Ligp =Ep |1 - —% —
[l {1 fn]]

(9)

6mou fn, fn € R51? elvon ol yopotnploTixd avdyveoms Yethicv 6To xapé n, Y10l To Teory-
potxd xou to mpoPiendpevo 3A Bivieo, avtioTolya.

o JpdApa xavovixonoinorng expedoeswv: Onwe napatneovy ol Filntisis et al. (2023),
TO GQPIAYAL OVEYVWONE YELMMY UTOPEl VO TEOXAUAECEL TOAGVTWOT, OTIC YPOVOCELRES TWV
exgppdoewy. Emouéveg, yenowonoolue To Topuxdte) GQAAIA XAVOVLXOTOoNS Ylol Vo
TOLVIXOTIOLICOVUE TO YETEO TWV TPOPAETOUEVWY GUVTEAEG TV EXPEAUOTC U

Lreg = 1073En[wn”1;n||§] (10)

YENOWOTOUOVTOC Ta eUnelpixd xardoplouéva Bden:

72
wn—{ 1 I3 < 40 (1)
2, |[nll3 > 40

PwropeaiioTiny Movdda

To Baowd otouyeio authc e Hovddog eivon évac GAN renderer R, o onolog exmoudedeton vo
TpofAénel ewdveg TpoodTou Ypnoulonotwvtas Tic 3A anexovicelg Toug we elcodo. Axoloudolue
v apyrtextovixy tou Head2Head++ (Doukas et al. 2021b) mou npocopudotnxe yior Tic avdyxes
tou Neural Emotion Director (Paraperas Papantoniou et al. 2022), n onola poc enitpénet vo
TEOTIOTIOLACOUPE TO OTTIXG TMEQIEYOUEVO EVOC PBlvieo avapopds pe éva owholy dtouo. O renderer
VAOTIOLE(TAL UE ot CUVENXTIXY) apyLTeEXTOVIXT) oL emitehel Wa epyooia peTdppaone and euxdéva e
exova, Boaotopévn oe GANS.

RWXHXZ% ]RWXHXS

Tumixd, o renderer npoPAénel éva xopé Bivieo I, € , Ue Bdom Ty exodva S, €
v 3D oynudtwy, Ty exdéve NMFC N, € RWVXHX3 1ty eixéva tov potidy E, € RV XHX3,
xodede xot Tar 8o mponyoLpeva xopé. Lo amhdtnra, Yo ONUELDCOLUE TN GUVEVLIOT] HOVORLDY TWV
(Sn, N, Ep) ¢ X, € RWXHX9,

Q¢ apynéc ouvinixeg, yenowonototue Iy =11 = Iy. H cuvévwon tne axohoudiog twv mopayo-
HEVWYV Xapé xoTd UX0C TNS BLdoTaong Tou Ypdvou odnyel oto Bivieo Tou mpoodnov 1. x, To onolo
VoY VOETOL PE XATOLo BIVIED avapopdc Yiol Vo CUUTANpwUEl To OVTO.

H Siobixaota exnaideuong pe to avtaywwiotixd oyfua GAN anoteleiton and tov mpoavogepdévta
yvevwnhtopa R, xadde xan and €vav extiunth ewdvoc D xon évay edind extuntr) otopoatog Dy,
ue otéyo N Bektiwon tou peakiogod oy teployy) Tou otéuatoc. Axolovdwvtac tTny vlonoinon
twv Paraperas Papantoniou et al. (2022), o yevvrtopac xatooxevdleton ue TopdUolo TpdTo e
to Vid2Vid (Wang et al. 2018a), evéd ot extipntéc uodeToldy TIC UPYLTEXTOVIXEC TOUC Od TO
Pix2PixHD (Wang et al. 2018b).

H gpwtopeahlotixn] Lovado exnatdeleTol UE TI TUPAXETL CUVHPTHOELS GQPAAUNTOC.

o AvtaywvioTixd opdipa: o Ty aviayoviotxry exnoldeucr, yenoyonoolue Tty
anoheor Tov Least Squares GAN mou mpotelveton and tov Mao et al. (2017), n onola
Behtwdvel ) otadepdnta e exnaideuonc. O otdyog Tou yevvitopa R elval vo xdvel tov
exTNTA Vo teoPAémel e udhnAh mdavodtnTa OTL Eval ThaoTO Belypa efvan TEoyUATIXO:

LBy = 5EAl(D(X0 1) — 12+ (D (X)L TY) — 177 (12

no’Tn
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\ 4

R - - - - - VGG loss

‘ Feature
1 /] matching
A loss

\ 4

Generator

Y

Discriminator —> P(image is real)

: GAN

losses

~

. k =

Discriminator > Rimoushilsireal

Syfue 11: Eva otiypdtuno tng diadixaolag eXTaldeucne TS QWTOPEAAOTIXNAC HOVADAS Yiol EVal
xapé. H exnaldevon axohoudel 1o avtaywviotind tpwtdxorro twv GANSs, yenoonowdvtog évoy
vevvhtopo. (renderer R) xan 0o extipntés. O eloodor tou renderer eivar 1o euduypouuiopévo
oo, NMFC, xou 1 exdva paticdv, xadde xou 1o tpdownto oand to 800 TpoNyoUUEVH XUpE, TOU
aneixovilovtow ye évav anhé Bedyo avddeaons. Ltny é€obo tou renderer eqopubdleTal 1) Hdoxa, X
TO EVATOPEVOY ECWTEPIXO TOL TPOGHTOL AELTOLEYEL ¢ €lc080¢ GToUG BV0 EXTUNTES.

émou I, etvou 1 tpéyouca é€0doc Tou yevvhtopa, xau IM elvon 1 (Bia etxdvar, mepieoppévn Yopw
and to otopa. Avtideta, xdde extiuntic teénel va tpoAénet younhy mdovodtTnTa Yiot TAAoTd
dedopéva xat VPNAY yiow mporypatind dedopéva. Iot mopdderyuoe, o extiuntic mou BAénel To
oUVoAo Tou cLVIETIXO) TEOCMTOU XAAE(TAL VoL BEATIOTOTOLOEL:

£Ban = 5EAl(D(X,, 1) — 12 + DX, L) (13

o Mpdipa VGG: Auth 1 avthnnixr ouvdetnor ogdiyoatog yenouylonotlel to dixtuo Visual
Geometry Group (Simonyan and Zisserman 2015) yiot vat eE4yeL 0OTTUXE YoROXTNELOTNG Kol
vo. Bpel v andotact uetal touc. Mropel va exgpootel we:

1 A
Lvae =E, ZMH]:Z'(In)_}—i(In)”l (14)
K2
o6mou F; elvou 1o i-001t6 eninedo tou dixthou VGG.
o JPAAUO TAURLACUATOS YAPAXKTNELOTIXWV: Axouo €vo avTIANmTXd GQIAUL ToU
TOWVIXOTIOLEL TIC BLAPOREC UETAEY YOPOXTNPLO TIXEY YLOL TTROYOTIXES XAl TTUPAY OUEVES EIXOVEC.

Mmnogel va ex@pactel e nopduoto teéno pe to opdiua VGG, aAld yenowonotel Tig e€6doug
TWVY OTpWUdTRY D; Tou exTiunt:

Loa =By |3 57 IDi(E) — DTl (15)

%

2UVORLXd, 1 CUVAETNOT CYANIATOS TTIOU YENOWOTOLOVUE Yia TNV exnaideuct Tou renderer R elvou:
Lon = LE4N +10Lyvee + 10Lpy (16)

Ta Bdpn emhéydnxay ye Bdor Tic npoavagepdeioeg nponyolueveg epyaotec. H cuvolixy| Swobixacio
exnaideuone tne pwtopeakloTixic wovidag Tapouctdletar oto Nynuo 11.
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Extetauévn Exnvo Iegihndn

6 Ileipdpoto

Y0Ovoha Acdopevwy

Koalde anooxonobye oty avdntudn evoc poviéhou ontxouxoustixic obvieons ogthodviwy
TEOCWTWY amd XelPevo, YpelaloUaoTe XATIAANAN GUVONA BESOUEVKY, Tol OTIOl0 APEVOS EYOUV KON
TOLOTNTA Y0V, APETEPOL TEPLAOMUBAVOLY oL TIC AMOPAYVNTOPWVACELS TwV detypdtwv Bivieo. To
oUVoAo onTixoaxoucTixmy dedouévwy TCD-TIMIT (Harte and Gillen 2015), to onoio anoteheiton
and vPmAAg ToldTnTag Selypota 62 owANTHY Yuplouéva o cuvifixeg epyactnelou, elvon To Théoy
XAUTEAANAO Yia TNV eXTOUBEVOY) AUTOU TOU HOVTENOL.

Qo61600, YeNOLWLOTOLOVUE ot To cOVORO NYNTXKY dedouévwv LISpeech (Ito and Johnson 2017), to
omolo anoteleiton amd Ny oYpaPRoeLs plag oA TeLas Tou dtafdlet anoondopata and BiBhio. Apyixd,
exnoudetouye éva TTS clotnua mou €xel (Blot dpyLTEXTOVIXT UE TNY OTTIXOUXOVGTIXY) LOVADA, OAAS
¥wplc ToV ontnd anoxwdixomolnth. Me autd Tov Tp6T0, UTOpOUUE VL opYIXOTOLIcoVUE To Bden TwY
UTOAOLTWY UTO-UoVadwY ota Bden mou Behtiotonotidnxay yia T obvieon gwvic oto LISpeech,
exteNdvTac petagopd uddnone (Yosinski et al. 2014). Etol, n peténeita exnaideuorn oto TCD-
TIMIT emtuyydvel xoahOtepn olyxhion. H guwtopeahiotiny Lovddo exmoudeleTol YpNoULOTOWNYTIC
Ta xopé and ta Bl Bivteo Tov TCD-TIMIT.

Emunhéov, extelolvtal telpduote oto wxpd cuvolo dedopévwy LIPS2008 (Theobald et al. 2008),
xardw¢ xan oe xdmota Blvteo “in-the-wild”, Snhadn pe Quowéc ouvifxeg xvnuatoyedenong, OTee
xdmoua Setyparto and to oVvoro dedouévwy HDTF (Zhang et al. 2021) xon pepd dnubdoia Bivteo
ané to YouTube.

AZloNoymon

Apywd exnoudeboaue TNV OTTIXOOXOLOTIXY HoVAda ue molholc owhntéc andé to TCD-TIMIT,
axolouddvTac TNV ToAvouk T apyLTeEXTOVIXT Tou FastSpeech 2, npoxeiuévou va enwperniolue
and TNy TAndopa dedopévwy oAdxAneou Tou cuvorou. H didpxeia UNxob avd onTe elvan Atydtepn
an6é 10 Aentd, to omolo elvar mOAD Ayo yio Ty exnofdeuoy evdg yoviéhou clvideong opthiog
ané v opyY. Emmiéoyv, yia va Beltiddocoupe mepontépw TNV TOLOTNTA TOU TUPAYOUEVOU M)YOU,
QP YLXOTIOLICOHE TOV XWOLXOTOLNTH Xl TOV NYNTXS amoxwdixononty ue to Bden evéc dpotouv TTS
povtéhou exmoudevyévo oto LISpeech. O ontixde amoxwdixonontic apyixomomdnxe tuyalo, xou
Ohat T povTéha exroudedtnxay yio 50.000 emavolfideis oe xdde nelpopo. H ontixooxouvatixy| povédo
unopel va yenowonoiniel dnng elvar, ¥ v Yivel avampocoployy| og Evay GUYXEXEWEVO OANTY Yot
Ayec emavohidels, TEOXEWEVOL VoL BNULOVPYHOOUIE TPOCWTOTONUEVA LOVTERA.

H o€loAdynomn tov ohodviwy Tpocthnemy anoTeAel TedXANoT), Xl 0L G TUTIOTIES UETEIXES OQAA-
patog 8e ouvddouy mdvta pe e avdpdmvee adlohoyfoelc (Chen et al. 2020a). Enopyévoe, aloh-
OYOUUE AVTIXEWWEVIXS TO UOVTENO UG YPMOUWOTOLOVTAS TOOO CTUATIOTINES G0 ol AVTIANTTLXES
METPXES, Xl ETUTAEOY OELONOYOUUE UTOXELIEVIXG UE (L0l UEAETT] YENOTOV.

©éloupe vo aflohoyhoouue To wovtého pag Poaotldpevo oty Nyt xoL PwTopeolotixy €006
Tov, YU’ aUT6 cuYXElvouue pE Tpdogates uedddoug tou napdyouv RGB Bivteo. )¢ anotéheoya, dev
ouyxpivouue To wovtého pac pe to AVTacotron2 (Abdelaziz et al. 2021) A to UniFLG (Mitsui
et al. 2023), 1o onola extelolv ontxoaxovotixf cbvieon, eneldr n €€0d6c Toug eivan ol un
pwtopeoklotxr] 3A anewodvior. Emmiéoyv, xou to 0o elvan 1816 TNTEC LAOTIOWTELS, £V euelc Yo
VENOPE VoL TELOPATIOTOVUE UE AVOLXTOV XMOXA £pYO, (OTE VoL UTHPYEL BUVATOTNTO VATOEOY WY NS
xan emPBefaleIong TV TEROUATOLY.

H épeuva mou die&dryeton otnyv napoloa Aimhwpatixr) Egyacio otoyebel ot dnuiovpyia ontoux-
ovo TiC opMag and xetuevo. Qot600, Bedouévou 6T Bev UTdEYoLY TEdcPaTeS dnudota dlardéoiueg
pédodol mou va Aettoupyoly e Bdon to xelyevo, 1 dixoun emhoyr) Yo HTav vo cuyxplvouue pe
povtéha mov Bacilovton oTov 1o xou mapdyouy pwtopeahioTixd Bivieo, ahhd yenolLoToLdvTaC
ouvleTnd fyo yio va o derypatolnnticovpe. Eméaue va cuyxpivouyue to povtého pag (NT) e
Tat ox6hovda SNuoihy un tpocwronomuéva (few-shot) povtéla cuyyEOVIOHOD YELMMY.

o Wav2Lip (W2L), twv Prajwal et al. (2020)
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6. Ilewpdparta

e SadTalker (ST), ané touc Zhang et al. (2022¢)
e VideoReTalking (VRT), twv Cheng et al. (2022)

H Sevypatorndio and avtd ta povtéha mpaypoatononiinxe ypnowonowwvtog Yyo and to Fast-
Speech 2, ye v (Blar dpYLTEXTOVIXH XOLXOTONTY %ol NYNTLXOU ATOXWOXOTONTY OTWE OTNV OT-
Tixooxouo T pog Hovdda. To yeyovée 6Tl ol mapandve uédodol dev elvol TPOCWTOTONUEVES
onualvel TS €youv elvol OYEBLUCUEVES VoL €YOUV XUAUTERY XAVOTNTO YEVIXEUOTS, WOTOCO €VOE-
YOUEVKS Vo uny ebval tot Théov xatdAAnAa yioe cOvieon e LPnho peaioud.

Avtixeipevixr AZloldyrom

H avtixewevin aflohdynon dievepyeitoan oe tpla tuyola emdeypéva dropo ané to TCD-TIMIT,
e delyporta Tou e€dyovTon omd TEOCWTOTOINUEVES EXBOYES TOU LOVTENOL Hog. ALdPOpES UETPXES
yenotponoovvTal, cupnepthopfovouévng tne uéone andotacnc mel cepstrum (MCD), tou nocoo-
100 opdhgatoc yapoxtipwy péow avayvopone euvic (ACER), tou ogpdhipatoc ota onueia ev-
dapépovtoc YUpw and to otdpa xodde xou v TayvTnTde toug (LMD xoa LLVE). Emmiéov
aVTIATTIXS opdhpota eEGyovTon HEGL vy veons ety ue to povtého AV-HuBERT (Shi et al.
2022a; Shi et al. 2022b), to onolo pog emitpénel Vo EGYOVUE TO TOCOGTO CPINIAUTOS YOPUXTHPWY
(VCER) xou 10 10000t opdhyatos ontixwdv govnudtey (VER). O gutopeahioude aiohoyelitan
yenowonowvtog v anéotaon Fréchet (FID). Ou ocuyxpwdpevee axohoutdice suduypapuilovto
YXENOWOTOLOVTAS TN duvaix| oTEEBAWST Yeévou Yo var agatpedel 1 aouppwvia Tou TeoxaAeital
and Tic Tomxée ypovixée petatomioes. To anotedéopata tne adlohdynone nopouctdlovian oTov
IMivaor 1, ye 6AeC TIC HETEWES VAL LTOBELXVOOLY XUAUTERT, Om6B0CY 6TAY 1) THY) TOUC elvol YT
Aotepn.

Ta anotedéopato unodewviouv 6t to NEUTART pnopel va mopdyet peahiotixd opthodvta
Tpbdowna Pe TOAD xohY) dplpwon Adyou, T600 axoUCTIXd 600 xou OTTLXd. Xuyxplvouue emnlong
v anédoon tou NEUTART oty obvideon flyou oe olyxpion pe to aviiotoryo cbotnua TTS,
Onhady) To povtého FastSpeech 2 mou ypnowonomooye yia va SetypatoAnnTiooupe Tig hedodoug
ouyypoviopol yeuhwyv. Iopovoidlovpe Tig petpnée xodophc obvieone pwvhc otov Ilivaxa 2. Ta
anoteAéopata UTOBEYOOLY OTL 1 cuunepthndn ontixrg eniBAedng umopel vo Behtidoetl Ty noldTnTa
TOU TAPAYOUEVOL M0V, EWBLXA 60OV aopd TNV xatavonoy Tou Adyou, unoctneilovtag €tol tTny
ATMOTEAECUATIXOTNTA TG TOUTOYPOVNS Udinone.

Meiétn Xenotov

Ipaypatonoioaye eniong wa HEAETN YeNoTAY, cuyxpivovtog T pédodo pag e to FastSpeech 2 w¢
TREOG TOV PEAALOUO TOU 1Y 0L, XS XL TOV TEOAVAPECIEVTLY UEVHBMY TPOE TOV OMTIXOUXOVCTINS
peaopns. Anuiovpyioade €vol cOVORO amd PuVNTIXG TAOVUGLEG TPOTAGELS TOU YENOULOTOL UMY
yioo T dnwovpyia Twv derypdtwv amd xdde pédodo, yenowwomoldvtag 800 Tuyaio ETAEYUEVOUC
OWANTES.

Me autd to Selypota xataoxcudooye évo epwTnuatohéyio pe Leuydpta mpotiunone. T xdide
gpwtnom nou PBaocileton oTtov fyo, mapoucidlovtay dvo NynTxd opyeioa xan {nrodvtay omd Tov
oot va emhéEouv autéd mou axolyeTon o peakloTixd. ['ia To omtuxoaxous Txd Pépog, TopoLaLd-
Covtav dUo cuvietxd Bivieo (évo and tn uédodo pac, xou €vo amd xAmolo X TV dhAwY) xat ol
yenotee xhiinxay Eavd vo emAéEouy auTtéd Tou Vewpoly To PEAMGTIXG. LNUELOVOUUE OTL ot Xdle
EPATNCT TORELYOHUE OTOUG YPHOTES TNV ATOUAYVNTOPOYNCT TNE TEOTAONS, xS xaL plol exdval
TOU OANTY 6Tay emPoXELTO Yia 0lohoynor Bivieo. H emhoyn tng dAANG ouyxpvouevng uedddou
xau 1 oelpd Ty Bivieo oto Lebyog Arav Tuyaieg oe xdde epwtnon. Kdde ypRotne andvinoe cuvo-
Axd oe 4 gpwthoeig ue Bdomn tov fxo xan 15 epwthoec ye Bdomn To Bivteo. Xuvohxd, 21 yehoteg
CUUTAPWOUY TO ELMOTNUATOASYLO Xl ToL amoTeAéopata gatvovtar otov Ilivona 3.

Iopatnpotye dti 1 pédodoc pog altoroyelton otadepd we 1 o peodiotixr. To SadTalker a&ioho-
yelton wg o delTepo xaAUTEPO HOVTERD, XL 6TY cLUVEYela axohoudel To VideoReTalking. Eniong,
avadevietan 1 anoteheopatxdTnta e tolvtpomxhc eniBAedne yio T olvdeon pwvrc, pdcoV
TO OTTIXOOXOUCTIXG LOVTENO Ttapdyet ohio Tou mpotwdta évavtt Tne e€680u evédg amhod cLCTH-
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Extetauévn Exnvo Iegihndn

D MCD (dB) ACER (%) LMD LMVE FID VCER (%) VER (%)
Gold - [6.06] - - - [84.45] [75.96]
W2L 4421 12.94 1.3125  0.3238 18.36 76.78 68.30
38F ST 44.21 12.04  14.3464 04238 22149  79.82 73.33
VRT — 44.21 12.94 1.6474  0.3150  37.32 80.76 75.48
Ows  43.41 10.94  1.1813 0.2889 38.14 74.70 68.78
Gold - [29.64] - - - [88.68] [78.52]
WL 4258 25.01  1.0609 0.2805 18.45 82.21 73.81
42M ST 42.58 25.01 7.0019 04010 167.47  80.42 73.09
VRT 4258 25.01 15036 0.2753  25.34 78.97 71.38
Ours  42.36 32.50 1.2073  0.2867 2291 78.64 71.15
Gold - [7.36] - - - [88.53] [79.42]
W2L  43.50 18.07 1.9305 0.4479 17.73 87.62 81.75
49F ST 43.50 18.07 53592 05820 139.10  83.79 77.41
VRT  43.50 18.07 1.9215 04347  29.47 84.76 78.15
Ours  43.64 16.93 1.9576  0.4132  25.06 76.88 72.02
Gold - [14.35] - - - [87.22] [77.97]
W2L 4343 18.67  1.4346 0.3507 18.18 82.20 74.62
Mean ST 43.43 18.67 8.9025 04689 176.02  81.34 74.61
VRT  43.43 18.67 1.6908  0.3417  30.71 81.50 75.00
Ows  43.14 20.12 1.449  0.3296 28.70 76.74 70.65

IMivoxag 1: Metpixéc moldtntog Twv ouvieTedy fywv xo Bivieo oe 3 tuyaio drouo andé to TCD-
TIMIT. H pé90od6¢ pog mapousctdlel tohd xohd anoteAéouato 660V apopd TLe UETELXES TKY ONUEiwY
evolapépovtog xou 1o FID. To Wav2Lip unopel va éyel youniotepo FID, adhd napousidlel onuayv-
T YElpOTEPX anoTeAéoUaTo and dAAec uedodoug ooV agopd TNV aviewnvn agloAdYNoT), oY
Tou opatol mhauotouv oto oTéu Tou atéuou. Télog, 1 uédodde poc elvar otadepd avatepn 6cov
AUPOEAL TNV AVAYVWOT] TV YELALOV.

Method MCD (dB) ACER (%)
Gold - [16.21]
FastSpeech 2 40.13 27.04
Ours 40.24 24.85

ITivoxag 2: opotnpolye 6TL 1 TOAUTEOTIXOTNTA ELVOEL TN oOVIEST POVAC WS TEOC TNV xadapoTNTA
Tou Adyou. H oupihion mou ouvtideton and tn pédodd pog, mou €xel exnoudeutel Ue axoLOTIXY oL
ontt| en{BAedr, elvon mo evxoha xatavonTh o oyéon pe TNV opthia mou cuvtiletan and duola
apyrtextovixry TTS.

FastSpeech 2
(audio only)

66 / 54 74 / 46 87 / 33 59 / 37
55.0% / 45.0% 61.7% / 38.3% 72.5% / 27.5% 61.5% / 38.5%

SadTalker VideoRetalking Wav2Lip

NEUTART

ivaxag 3: Anotehéoporto eAéTng Yenotov ue oyfua tpotiunone A/B. To anoteréopata detyvouy
6t to NEUTART (opiotepd) npotuidnxe A gopéc, eved n aviaywvio iy wédodoc (8elid) mpo-
Tuhdnxe B gopéc, ue cuvolxd A + B Leuydpia aglordynone. Iopovoidleton eniong 1 aviiotoyn
nocooctafa avaroyio. Ou yeroteg adloldynoay otadepd T u€dodd Yo we To pEaAo T and TLC
AVTAY VIO TIXES, TOCO 600V aopd TNy cbvieon guviAc 600 xal T TATen clvieon Bivieo.
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6. Ilewpduarta

W2L

ST

VRT

Ours

Syfua 12: Xoyxeion g uedddou pog EVavtl TwV TEONYOUUEVWY, OF ERYUC TNRLUXES OUVITXES.
To Wav2Lip éyel younih avdiuon xou eugoaviler éva opdoymvio (Peddepyo yYlpw and To GTOU
(emonuacuévo pe padpo). To SadTalker o to VideoReTalking mopdyouv xapé pe mohd xohUtepn
avdAua, apol YEeNOWOTOLY XoTdAAnho dixTuo evioyuong TOU TEOCKOTOV, KGTOCO oUTH N
Behtiwon npoxahel Peddepya mov ahhdlouy Ty TauTéTHTA TOL aTdpov. T opdderyya, n emdepuido
e ophitelag eivon LTEPBOAXG Aela, EVE TO YPMUO TWY HATLOV TOL OWANTH aAldlel (emonuoo-
pévo e xitptvo). Ko ou tpeic uédodol mopdyouv xdmola xopé Pe Wn pEAAOTIXG ECWTERIXSG TOL
OTOUATOC, eV QuveTon Twe oAElouy xou Tor dévTiar Tou atdpou (emonuoouévo ue xoxxwvo). H
uEH0BOC Lo TORAYEL XOPE PE HUNOTYNUATIOUEVA YEIAT), BOVTLA, XL ECWTERIXO TOU GTOUATOC, Y Wpeig
VoL OnpLovpYel OToLBNTOTE AAAAYT) OTO TPOCKTO TWV ATOUWY.

patog obvieone gwvic. To mpdto delyua and xdde owhnti nopouvcidletar otov mivoxa 12, 6mou
oY OMALOUUE TOLOTIXE To OTTIXG AMOTEAEGUATOL.

Mekétn Agaipeonc

Mehetdue v enintwon xdde emnpdodetou ONTKOD CPIAUATOC TEAYUATOTOUOVTAUC UENETT
agoipeone oto TCD-TIMIT. A&ohoyolue ta cuvdetind Bivieo TN ONTXOOXOVGTIXTG HOVADAG,
ME Tl omTixéc Uetpixéc va umoloyilovtal and TIC EOVES TWV TELOOLEO TOTWY OVOXATOUGKEVDY.
IMopousialovye to anotehéopota otov Iivaxa 4. Ou nteplocdtepeg petpinés, Wiaitepa ol UeTEXéC
AVAYVWONE YELMDY, elvol YOUNAOTEREC GTAV TO LOVTERO EXTIUDEVETOL YPTOULOTOLWVTAS OAOL TOL OT-
TS GPIAHATAL.

Lip Lgrad Ljow MCD (dB) ACER (%) LMD LMVE VCER (%) VER (%)

X X v 41.98 21.91 0.5053  0.3502 82.40 77.90
X 4 X 4191 22.88 0.6856  0.3602 85.66 80.00
X 4 4 40.31 25.05 0.4318 0.3261 77.15 70.99
v v v 40.31 25.40 0.5063  0.4203 77.05 70.66

IIivoxag 4: Mehetodue v anoteAeopotixdtnta xde emniéov 6pou TOU ELGEYOUUE Yio OTTIXN
eniBredn oty ontixooxous Tt wovdda. To opdiua avdyvwong yethdy oaugdvel To pEXAMOUO TNG
dpdpwong, omwg fTay avouevouevo. Emniéov, to opdhuato xhiong xou porg BeAticdvouy tny npoB-
hedm onuelowv evdlogépovtog, Tou onuaivel dTL ATOTUTWVETOL TILO TLOTA 1) YEWUETEIO TOU TEOGKOTOoL.
LUVETAS, XPNOWOTOLOUHE Xol TG TEELS CUVAPTAOELS o@dhuatoc, woli ue To amhd o@dhua tedBiedne
Twv 3AMM cuvteheotév.
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Extetauévn Exinvo Hepthndn

SadTalker VideoRetalking Wav2Lip

135 / 21 65 / 91 107 / 49
86.54% / 13.46% 41.67% | 58.33% 68.59% | 31.41%

NEUTART

Iivacog 5: Mehétn ypnotwy oe Bivieo amd un epyaotnelonés cuviixeg. To anotehéouarta delyvouy
6t to NEUTART (opiotepd) npotiphidnxe A @opéc, evedd 1 avtoywviotixy| pédodoc npotiuidnxe
B qopéc, ye cuvohxd A+ B Levydplo a&iohdynone. Axodpa xou untd puoxés ouvifxes, 1 wédodoc
o mopdyel Tohd eviupeuvTixd anoteAéopata, £@O6cov oL Yeioteg tpotiunoay onpovtixd To NEU-
TART évavtt touv Wav2Lip xou tou SadTalker.

Eyhua 13: Xuyxploeic oe un epyaotplaxéc ouvirxes. O mponyoluevee uédodol napovoidlouvy
Tig (Bleg aduvaplee, epdoov dev ennpedlovton and TN dlapoponoinor YeTadd epyaoTNELOXMY Y Un
ouvinxay. To ontind anotéheoyo g Yedddou pog mapauével TOAD PEAMOTING X0 GUYYPOVIGUEVO
ue Tov fyo. Hapdha autd, n totdtnta Tou fyou dev elvon e€loou xohf o GOYRELON UE TWV SELYUATWY
Tou TpogpyovTal and exnaldeuon ot epyaoTNELIXéc cuVITXEC.

IMewpdpota o M1 Epyoaotneraxég TuvOhxeg

Ipaypoatonowoaye eniong neipdpota Ye Bivieo and un epyoo tneloxés cuvinixes xou Sie&hyaue uuo
eTTAEOV UEAETT YENOTWYV P 25 cuppetéyovieg. Auth T @opd, a&lohoyfooue HOVO TOV OTTIXO
peahlold, AOYw TV TEoavIPepIEVTOVY TEQLOPIOUWY. XONOLLOTOOOUE 2 OUANTES and To 6UVOAO
dedopévev HDTF, axolouddvtoag tov Blo mpwtdxorho omwe mpwv. Ilagovoidloupe ta anotehéo-
paTo TS HEAETNG Yenotey otov Iivaxa 5, xau Tig avtloTtolyeg ouyxploec oto LyHua 6.4.

O ypriotec mpotiunooy onuavtixd to NEUTART évovt tou Wav2Lip xou tou SadTalker. ITapoha
autd to VideoReTalking npotuhinxe évavtt tov NEUTART, av xou to povtého yog Selyvel vo divel
unooydueva anoteAéopota. ‘Eva nolotind cuunépacya mouv unopel va cuvaydel and to mapamdve
newpdpota etvon 6Tt to NEUTART elvan oe 9€on vo dnplovpynoel eCoupetixd peahiotixd Bivteo,
otay exnandeveTan oe dedopéva xatdAANAne nototntoc. Avtideta, ol ouyxprdeloee few-shot pédodol
Yuotdlouv xdmota TTUY A TS TOLETNTAS ToEaY WY NG TPOXEWEVOU Vo elvan oe VEom Vo AetToupyRoouv
o€ U1 TEPLOPLoPEVES SUVIXES.
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7. YuumepdopaTa

7 Yuunepdopota
YOvodm

H napotoo Atmhopotind Epyacio tapadétel tn oyetind BiBAoypapio and tic neployée ) ocvvdeone
POV, TG LOVTEAOTOINONE TROCHOTWY, X TNG cOVUEOTC OUIAOVVTWY TEOCMTWY, GUVBLALoVTIG
EMUEEOUG LOVTENA TEOXEWEVOL Vo TpoTelvel pal xawvotopa pédodo omtixoaxovctxnc cuvieong
outhioc. H npotewvduevn pédodoc yenoiponolel UETAOYNUATIOTES Yid Vo HETATEEPEL TO XElUEVO OF
(POOUATOYEAPNHUA Xt 3A TUPUUETPOUE TEOTMTOV, YENOULOTOWOVTAS ToAUTEOTXY exnaidevon. To
3A Bivteo Tou opAoGVTOE TPOGKOTOL EMELTA UETUTPETETOL OE €YY PWHIO XAl EVOWUATOVETAL GE XATOLO
Bivteo avagopds, napdyoviag €tol éva puwtopeaiioixd anotéheoua. H yerion axovotindy xa on-
TIXWY CUVAPTHCEWY GPIAUATOC, X0l LWIALTEPN Ol GUVIPTNOELC OTWS TO GPINIA AVAYVWOTNE YELALOY,
yoellouv 670 Yovtélo T Suvatdtnta obvieong Bivieo ye uPnho peoliopd, Wiwe we tpog Ty dpde-
»OT) TOU 0TOPATOC Xatd TNV oAio. Tor melpduator xon oL PEAETEC TOU EXTENECTNXAY ATOBEXVIOLY
TNV UTEEOYT) TOU LOVTEAOL UaC OTAY EXTIOUOEVETAL O XATAAANAAL GUVONL BEDOUEVWYV.

MeAhovrtixéc Enextdoesic

To povtého pag Bev XATUPERVEL TAVTA VoL TOPAEEL TOLOTXG AmOTENEGUATO OTAY EXTALOEVETOL OE
dedoyuéva o elte BeV €Y 0LV XATAAANAT TOLOTNTA Y)Y OU, EITE €YOUY AUTOUATES UTOUNY VN TOPWVACELS,
oL onolec elodyouv Addn otn Swdixacio uddnong yia to cbotnua chvieons Qovic. BUVERKOS, N
a€rlomoinomn xdmolog edpWoTNG AEYLTEXTOVIXAC XAwVoTroinong ewvhAc evdeyouévwe va Bektiwve tny
XOVOTNTA TPOCUPUOYHC Tou ot YopuPwdr dedouéva. Emmiéov Behtidoeic unopolv va emiteuy oy
pe ) Bedtiotonoinomn e TayTNTAC TS POTOREXNOTIXAC HovEadag. Axdur, 1 exnaideuon and
dxpo o€ dxpo xaL TKV BUO HOVABKY UTOEEL VoL EVIGYVOEL TEPLGGOTEPO TO PEAMGUS TWY GUVIETIXGDY
Bivteo.

HY9wxd Zntrpoata

Oo YENAUE VoL ETLONUAVOUIE TG 0V X0l TOL CUC THUATA YLl PWTORENALO TIXT| cUVUEST) ol utopoly
voL €xouv ToA) Jetnd anotehéopata o SLAPOPES EPAPUOYES, OTWE 1 Puyarywyio, ol exovixol Bo-
nool, i ta epyareior npoosPacydTnroac, undpyer o xivduvog xoxdBoulne yehone toug (Chesney
and Citron 2019; Diakopoulos and Johnson 2021; Yadlin-Segal and Oppenheim 2021). ‘Evag
xaxofBouvhog yeotne umopel va cuvidéael Bivieo atduwy ywelc T cuvalvesr toug, pe oxond va
TapanAneogopnoel ¥ va ntpocfBdiel. Ilioteboupe nwe oL epeuVNTEC TOU XAABOL TEETEL VoL Elvor EU-
awo¥nroToinuévol wg Tpog Tal oYeTixd Nhixd {nthAuate, xadodg xou vor GUPBIAOLY GTNY AVAmTUEN
CUCTNUATKVY aviyVevone TAACTOV ToAUPécwy. AT pepldc pac, dnUootelouUe Tov Tnyaio xMIx
TOU CLUCTAUNTOC LTS ol der ddeta, emitpénovtag Ty eheliepn yprion e Tny npolnddeor thenong
e e deovroroyiag.

21



Extetauévn Exnvo Iegihndn

22



Chapter 1

Introduction

Contents
1.1 Deeplearning . . . . . . . . . o 0 i i i i i e e e e e e e e e e e 24
1.1.1 Feedforward Neural Networks . . . . . . ... ... ... ........ 25
1.1.2 Neural Network Training . . . . . ... .. ... . ... ... ... 25
1.1.3  Sequential Architectures . . . . . . . . ... oo 26
1.2 Generative Modeling . . . . . . . . . . i ittt e e e e 29
1.2.1 Generative Adversarial Networks . . . . . . .. ... ... ... .... 29
1.2.2 Diffusion Models . . . . . . . . .. .. .. 31
1.3 Contributions . . . . . . ¢ v v i i i i e e e e e e e e e e e e e e e 33
1.4 Organization . . . . . . . ¢ o v i v it i vt vttt ottt et e 33
1.5 Notation . . . . . . . . o i i i i e e e e e e e e e 34

23



Chapter 1. Introduction

Preface

In the early days of artificial intelligence, most models were focused on simple data analysis,
performing either classification or regression. However, both the vast availability of data and the
progress of accelerated hardware computing platforms has given rise to deep learning (LeCun et
al. 2015). Deep learning consists of trainable models that have many processing layers, and has
revolutionized data modeling. Nowadays, generative Al has demonstrated impressive capabilities
in creating text, images, sound, and even entire 3D scenes. Countless software products that use
such models are deployed to the cloud and have quickly gained thousands, or even millions of
users (Zhang et al. 2023). Apart from its mainstream success in generating media, generative
modeling is also useful in data augmentation, manipulation of high-dimensional distributions,
model-based reinforcement learning, and semi-supervised learning.

Speech synthesis has been one of the pronounced successes of generative Al In general, speech
synthesis is the process of generating human-like speech, usually from a text input. It has cap-
tured the interest of researchers for decades, and nowadays it is even more popular, with the
ubiquity of natural language conditional models. Text-to-Speech synthesis sits at the crossroads
of linguistics, acoustics, and engineering, and has successfully adapted to the advent of deep
learning and generative modeling. The first TTS attempts used simple concatenation of sounds
in order to form the spoken text (Sagisaka et al. 1992). Obviously, the generated speech lacked
naturalness and correct prosody. Since then, neural models have revolutionized speech genera-
tion. State-of-the-art TTS systems’ output is almost indistinguishable from real human speech
(Tan et al. 2021).

While the sound of speech is its most important aspect, the visual component is equally essential
for conveying tone, emotion, and meaning. In this Diploma Thesis, we are targeting text-driven
talking face generation, which is the process of generating the audio and video of a talking
human character, with realistic and synchronized lip movements. Talking face generation aims
at synthesizing videos of talking humans, with consistent and synced audio and visual streams.
The field has many applications in entertainment, education, and virtual assistants.

The problem we are targeting is by definition multimodal and requires alignments between at
least two modalities (text, audio, and video). Extending plain speech synthesis to audiovisual
speech requires a deep understanding of the speech generation pipeline. Speech synthesis is
inherently a one-to-many mapping, because a natural language phrase can be uttered in many
ways, with different prosody, speed, intensity, and emotion. Of course, multi-speaker T'TS is even
more challenging, and needs to incorporate information about each speaker’s distinct speaking
style. The visual aspect of talking face generation is also one-to-many, as each phrase can be
uttered with various facial expressions. Deep generative models can address the one-to-many
problem by modeling the distribution of outputs that correspond to a given input. Thus, we
present a short introduction of deep learning and generative modeling before addressing the
main topic of this Thesis.

1.1 Deep learning

Machine learning models can be classified into two major categories based on their approach of
describing the learned data. On the one hand, there are discriminative models, which describe
the distribution py(y|z), that is to say the distribution that predicts a label or value y based
on some dataset instance x, and using parameters 6. On the other hand, generative models
can either describe py(x,y) or pg(x), and can be sampled to generate new data that could be
instances of the training dataset (Goodfellow et al. 2016). In this Section we present the most
prominent generative models and some of their applications.

To illustrate more clearly the discrepancy between the two approaches, let us consider a dataset
of speech recordings x, along with their text transcriptions y. We can use this dataset to train
models for two different tasks:
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1.1. Deep learning

hidden units

YK

outputs

Figure 1.1: Diagram for a neural network of two layers. The input, hidden (intermediate), and
output variables are represented by nodes, while the weight parameters are represented by links
between the nodes. Also, the bias parameters are denoted by links coming from additional
input and hidden variables zy and zy. Arrows denote the direction of information flow through
the network during computation of the outputs (inference). Figure from Bishop and Nasrabadi
(2006).

e A discriminative model for Automatic Speech Recognition, whose goal is to predict:
po(text|speech)

e A generative model for Text-to-Speech, thus modeling the conditional distribution:
po(speech|text)

1.1.1 Feedforward Neural Networks

The feedforward neural network is the simplest neural architecture, consisting of a series of
functional transformations. Each transformation depends on learnable parameters and can be
modeled as a neuron in a graphical model such as the one presented in Figure 1.1. Suppose a
network input & = [z1, ..., zp]T. Each input neuron j multiplies its input x; with a weight Wi,
adds a bias wjp and performs a (usually nonlinear) activation function h to the result (Bishop
and Nasrabadi 2006). Formally, each neuron’s transformation can be written as:

By using multiple neurons in a layer and chaining more layers of different depths, we can build
parametric models that can be trained to model some output quantity based on the network
input. Increasing the number of parameters improves the network’s ability to model complex
distributions. Such networks with many layers are called deep, thus giving the name to the field
of deep learning.

1.1.2 Neural Network Training

A network’s learnable parameters are iteratively optimized by gradually minimizing some error
or loss function. During training, the inputs are processed by the network, producing the outputs.
Then, the outputs are compared with the desired outputs in order to calculate the error gradients,
which are used to optimize the trainable parameters. The gradient descent algorithm can be

25



Chapter 1. Introduction

Figure 1.2: An computational graph example for the operation L(y,wxz + b), where L is the
cross-entropy loss function (CE). The network parameters that need to optimized are the weight
w and bias b. The PyTorch framework stores the gradients required for the loss optimization,

Parameters

0z 0
for instance — = x and —, which is a predefined closed form expression, derived by directly

w
differentiating the cross-entropy loss.

used to update the network parameters by following the path in the parameter space which
corresponds to the maximum local steepness. A commonly used version of the algorithm is
Stochastic Gradient Descent (SGD), which is superior in terms of computational efficiency,
since it operates on mini-batches of data instead of the entire dataset. SGD iteratively adjusts
model parameters in the direction of the gradient estimated from each mini-batch, allowing for
faster convergence and often escaping from local minima. The weight update expression can be
written, for a time step t and a learned parameter w:

w=wt =7 (1.2)

where L is a differentiable loss function controlled by a set of parameters, and 7 is the learning
rate. This equation can be easily generalized and written in vector or matrix notation for more
complex network parameters.

The backpropagation algorithm (LeCun et al. 2015) calculates the aforementioned error gradi-
ents by efficiently applying the differentiation chain rule. Thus, backpropagation and gradient
descent work together in order to optimize a network’s parameters. The former facilitates ef-
ficient computation of gradients, enabling the latter to iteratively update model parameters,
driving the network towards convergence.

Deep learning software like PyTorch (Paszke et al. 2019), which was extensively used in this
Diploma Thesis, can perform optimization using gradient descent thanks to their implemen-
tation of automatic differentiation in computational graphs. We provide an illustration of a
computational graph in Figure 1.2.

1.1.3 Sequential Architectures

Apart from neural networks that operate on instances of data without a temporal dimension, like
vectors or images, data such as speech or natural language can be processed by neural networks
that need to model their sequential nature. Formally, the problem of processing sequential data
can be formulated as finding a function F to map a sequence of inputs z1.ny to a sequence of
outputs yi.ps:

Yi:Mm :-/—:(xl:N) (13)

Notice that the input and output sequences do not need to have the same length. For instance,
a machine translation task needs to map sentences from one language to another, most likely
using a different numbers of words in each one.

26



1.1. Deep learning
® ®
f f
A

A

(h) hy @
s n IS S

b b &

Figure 1.3: A neural network with a feedback loop (left), unrolled in time for visualization of the
parameter sharing mechanism (right). Once unrolled, we can clearly see that each input x; is
processed by the same network parameters A. This particular network processes the sequential
inputs and outputs a value h; in each time step, while also keeping information about previous
inputs.
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Recurrent Neural Networks

One approach to sequential modeling would be to add a feedback loop into a neural network,
thus converting it to a dynamical system (LeCun et al. 2015). The recurrence is essential for the
ability to model sequential data, since the feedback loop would provide information about past
inputs at each time step. While such Recurrent Neural Networks (RNNs) have been successful
in applications such as speech and language processing (Yao et al. 2013), their main drawback
is evident once we look at the example RNN of Figure 1.3.

Namely, the feedback loop in the computation graph acts as a bottleneck for information. Thus,
recurrent models suffer from the long-term context problem, since they are not able to effectively
retain all the relevant information that they have been presented with.

Long-Short Term Memory (LSTM) networks (Hochreiter and Schmidhuber 1997) attempt to
mitigate the long-term context problem of RNNs, by carefully gating the information flow across

time steps. For more details on recurrent models, we refer to the detailed article by Sherstinsky
(2020).

The Transformer

Vaswani et al. (2017) proposed the very successful transformer architecture for sequence model-
ing, which tackles the long-term context problem by eliminating recurrence. In contrast, trans-
formers are autoencoders that process sequential inputs by modeling relationships between ele-
ments via scaled dot-product attention or self-attention. Residual connections are also utilized
(He et al. 2016), meaning that the input of each network’s layer is added back to the output.

The mechanism of self-attention aims at attending on the inputs according to their importance.
For that, the vector inputs are projected to learned low-dimensional query, key, and value sub-
spaces, with the query and key subspaces being of dimensionality p. Formally, each input #; € R?
is projected to the vectors ¢; = W, EZ = Wga;, and ; = Wy ;, with Wg, Wk € Rp*d
and Wy, € R"™*?, The three W matrices are trainable parameters that learn the projection to
the aforementioned spaces. The attention score g; € R" is then calculated as:

" Loz
7 = Zsoftmax (\/ﬁqiTkj) U (1.4)

Intuitively, the self-attention’s output at each position is a weighted sum of all input transfor-
mations (values), interpolated using a similarity measure between the current input (query) and
the other items in the sequence (keys). By combining all these vectors into matrices, for instance
X = [#T,...,7%]T € RVX4, the attention output matrix Y € RV*X" can be neatly calculated
using the matrices Q, K € RV*4 and V € RV*" of concatenated vectors:

Y = softmax (\}ﬁQKT) A% (1.5)
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Figure 1.4: The transformer encoder-decoder architecture. An encoder stack processes the input
sequence using multi-head attention and feedforward layers, creating an intermediate represen-
tation, which is fed into each decode module. Notice the residual connections at the output of
each sublayer, before normalization. The non-recurrent nature of transformers requires the ex-
plicit integration of temporal information, which is implemented by adding positional encodings
to each sequence item. Figure from Vaswani et al. (2017).
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Figure 1.5: Visualization of the scaled dot-product attention computational pipeline (left), di-
rectly implementing Equation (1.5), as well as the multi-head attention (right). Multi-head
attention is performed by first projecting the queries, keys, and values into different learned
subspaces for each head. Figure from Vaswani et al. (2017).
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1.2. Generative Modeling

Instead of performing a single attention computation, the authors propose multi-head attention,
which performs the computation of Equation (1.5) h times, in order to model different types of
dependencies. The block diagram of a transformer model, as well as the multi-head attention
mechanism, are presented in Figures 1.4 and 1.5.

1.2 Generative Modeling

1.2.1 Generative Adversarial Networks

One major breakthrough in deep generative modeling came with Generative Adversarial Net-
works (GANSs) (Goodfellow et al. 2014), which are devised from the game theory scenario of a
minimax game. Such a game is played by two players and in all states the reward of one player
is the negative of reward of the other. In GANs, the players are two competing neural network
models that are trained jointly: a generative network G that models the data distribution p(z),
and a discriminative network D that estimates the probability that a sample came from the
training data rather than G. The training procedure aims at G learning the data distribution
well enough to “deceive” D.

More formally, the discriminator and the generator play a two-player minimax game with value
function V(G, D). A prior p(z) is defined on noise variables z, which act as the the generator
inputs. The probability that a sample x comes from the data distribution rather than the
generator is D(x). Thus, the value function can be written as:

ngin mgx V(D7 g) = EINp(w) UOgD(I)] + Ez~p(z) [lOg(l - D(g(z)))]

Adversarial training is done in two steps. First, random samples x from the training set are passed
through the discriminator, whose goal is for D(x) to be near 1, meaning that it recognizes the
samples as real. Then, the generator generates a fake sample using an input z randomly sampled
from p(z). The discriminator aims to make D(G(z)) approach 0, while the generator strives to
make the same quantity approach 1. See Figure 1.6 for an overview of the training process.

However, Goodfellow (2016) notices that early in learning, when G is untrained, D can easily
reject generated samples because they are clearly different from the training data, thus not
providing strong gradients to optimize G. In order to have stronger gradients early in learning,
G can be trained with the equivalent objective of maximizing log D(G(z)), which leads to the
same fixed point of the game dynamics. Since the discriminator operates under the assumption
that half of the inputs are real and half are fake, the Nash equilibrium of the game corresponds
the point where G(z) = p(z) and D(z) = 0.5, for any x. This means that the generator has
perfectly captured the training distribution, and the discriminator randomly decides if a sample
is real or fake with equal probability.

Of course, unconditional models are useful for general sampling from a distribution. In order
to obtain specific examples, we need to add some kind of conditioning (Mirza and Osindero
2014). All of the above definitions can be easily augmented for the conditional case, where the
conditioning can be anything from a text representation to an image.

The original authors claim that since the generator never actually processes the training data,
GANSs are not prone to overfitting. Nevertheless, they exhibit a number of drawbacks, including
mode collapse, where the generator maps several different noise inputs to the same output,
severely limiting the sampling diversity. Instability in training is also very common, where the
optimizer can either achieve a poor local minimum, reach no minimum at all, or completely
diverge (Goodfellow 2016; Oussidi and Elhassouny 2018).

Applications

While difficult to train, GANs have been successfully used for generative modeling since their
invention. In the case of image generation, they produce much sharper images than previous
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Figure 1.6: Visualization of GAN training process on a dataset of human faces. In this Figure,
the generator and discriminator are symbolized as G and D, respectively, while the dataset
images are symbolized as x. The GAN framework pits two adversaries against each other in a
game which plays out in two scenarios. In one scenario, example face images = are randomly
sampled from the training set and used as input for the discriminator D. The goal of D is to
output the probability that its input is real, which translates to D(x) being near 1. In the second
scenario, inputs z to the generator are randomly sampled. Then, the discriminator then receives
input G(z), a fake face image created by the generator. In this scenario, both players participate.
D backpropagates a loss computed with D(G(z)) = 0 as a target value, while G backpropagates
a loss computed with D(G(z)) =1 as ground truth. Figure from Goodfellow (2016).

approaches. One seminal adaptation of the GAN architecture for image synthesis is Deep Con-
volutional GAN (DCGAN), by Radford et al. (2015), which uses solely convolutions to convert
a random noise vector into an image. The information flow during the generator’s inference is
presented in Figure 1.7.

Other notable works are StyleGAN and StyleGAN2 (Karras et al. 2019; Karras et al. 2020), that
use the adversarial framework for arbitrary style transfer in images. Their proposed method
differs from the original GAN and DCGAN, due to the architectural innovations that they
introduced. These innovations allow the model to separate the high-level features as well as
offer stochastic variation. The generation does not start from a random noise sample, but rather
from a learned constant input, which is processed by convolutional and normalization layers to
generate an image. The stochastic variation of detail is generated by introducing uncorrelated
Gaussian noise inputs that are infused into the feature maps.

More recently, the unprecedented success of text-conditioned image synthesis has highlighted
one of the neglected advantages of GANs, which is their computational efficiency. While diffusion
models (Sohl-Dickstein et al. 2015; Ho et al. 2020) have dominated the area of image synthesis
due to their ability to generate incredibly realistic samples, the diffusion process requires iterative
forward passes through neural networks, often in the order of hundreds of iterations. On the
other hand, an adversarially trained network is able to generate samples in only one forward
pass. Kang et al. (2023) leverage a pretrained vision-language model (Radford et al. 2021) and
follow a progressive upsampling approach to produce high-resolution images, generated in orders
of magnitude less time than the state-of-the-art diffusion image generators.

In the context of human faces, Generative Interpretable Faces (Ghosh et al. 2020) is a
StyleGAN2-based framework that generates photorealistic face images with explicit control over
face geometry and style parameters. It uses 3D parameters as the face geometry and expression
conditioning, and a style vector for other factors such as hairstyle and background. They authors
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Figure 1.7: The generator’s inference process in the Deep Convolutional GAN architecture. A
noise vector Z € R190 is sampled from a uniform distribution and projected to a small spatial
extent convolutional representation with many feature maps. Then, a series of four strided con-
volutions convert this high level representation into a colored pixel image. Figure from Radford
et al. (2015).

also highlight the issue of condition cross-talk, meaning that conditions that are presumed to
be independent tend to influence each other.

1.2.2 Diffusion Models

Sohl-Dickstein et al. (2015) and Ho et al. (2020) proposed a new way of learning distributions,
inspired by non-equilibrium statistical physics. They devised the idea that a data distribution
can be learned by slowly destroying its structure through a diffusion process (called forward
process), and learning how to reverse it. Their experiments produced models that were successful
at generating data, most notably for image generation and image inpainting.

Suppose a generative model aiming to learn the distribution of Z € R%. A raw sample from that
distribution would be &y, which is corrupted with noise and apply noise corruption in 7" steps.
The sample after the ¢-th noise addition is denoted as ;. The noise addition is governed by the
forward Gaussian process ¢ with schedule (3, satisfying the Markovian structure:

Q@) Te—1) = N(Z45 /1 — Bedi—1, Bid)

The denoising distribution is ¢(&;_1|#;), which is intractable. However, provided that 8; is small,
it can be approximated by a Gaussian distribution. We can now define the reverse process p,
with p(Zr) = N (Zr;0,I), since after T noising steps the original data is lost, leaving only
random noise.

T
Po(Ti1|Ey) = N (Zy_1; po(Th,1),071) = po(For) = p(@r) [ [ po(Fi-171)
t=1

The function for the mean, pg(Z,t), is computed by a trainable network, while the standard
deviation can either be trainable or constant. In the original formulation, o2 is set equal to j3;.

See Figure 1.8 for a visualization of the process.

Applications

Rombach et al. (2022) leveraged the powerful encoder-decoder architecture in order to perform
the diffusion process in a compact and computationally efficient latent space. Popular text-to-
image generative models such as DALL-E and Stable Diffusion are implemented in a latent space.
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q(x[xi-1) = N (x¢; /1 — Bixe-1, Be])

Data Noise

Py(x¢—1]x1) = N (x¢—1: pg(x, 1), 071)

Figure 1.8: Visualization of diffusion on an image sample. The forward diffusion is a Gaussian
process that slowly corrupts the image with noise, until nothing but a random sample from a
normal distribution is left. The reverse process performs iterative denoising by estimating the
mean value of the noise at that particular time step and subtracting it. Figure from Kreis et al.
(2022).

Learning consists of two stages: a perceptual compression stage maps the image into the latent
space, then a generative model learns the semantic and conceptual composition of the data.
The model is realized as a time-conditional U-Net (Ronneberger et al. 2015). For conditional
generation, an intermediate representation of the condition is mapped into the U-Net via a
cross-attention layer.

We note once again that sampling from a diffusion model requires 1" denoising operations, which
is obviously computationally expensive, as T is usually in the order of 103. Denoising Diffusion
GANSs (Xiao et al. 2021) attempt to combine diffusion models’ high quality samples with GANs’
sampling speed, constructing a network that leverages the generative abilities of GANSs to denoise
images in only 4 steps. Many other approaches have been attempted to accelerate inference on
diffusion models. For instance, Denoising Diffusion Implicit Models (Song et al. 2020) modify
the Markovian structure of diffusion models, by modeling the forward process as q(Z¢|%i—1,Z0).
This leads to the same training objective, but allows for accelerated sampling. We refer to Yang
et al. (2022) for a complete survey of diffusion models’ theory and applications.

Kim et al. (2022) successfully use diffusion to implement face swapping framework that uses
facial guidance from external models, to synthesize images with a given source identity, while
preserving the target image’s attributes. Video diffusion models, by Ho et al. (2022) extend the
2D convolutions into 3D space-only convolutions for videos. In order to decouple the space and
time dimensions, the time axis is treated as batch axis in spatial convolutions, and spatial axes
are treated as batch the temporal attention blocks. The authors claim that this disentanglement
is useful for also applying the model to images.

One aspect of generative modeling that is related to audiovisual speech synthesis is the genera-
tion of human motion sequences, mostly used for entertainment, gaming or robotics control. The
produced motions must be both lifelike and temporally coherent. Zhang et al. (2022a) and Tevet
et al. (2022) proposed the first text-driven motion generation frameworks that use diffusion. The
former offers body-part time-dependent control over the sequence, while the latter incorporates
geometric losses and is more lightweight. Both approaches model the human motion as a se-
quence of geometric pose states, and use the transformer architecture (Vaswani et al. 2017)
instead of the U-Net that is almost ubiquitous in image generation. The conditioning mecha-
nism is similar to image generation, since the text describes the whole motion sequence, so the
frameworks use CLIP (Radford et al. 2021) in order to extract text features for the generation
guidance. Chen et al. (2022) use diffusion on a latent space to perform the same task.

Nair et al. (2022) explore image generation with multi-modal conditioning. They experiment
with combined conditions such as text, image masks, and image sketches. Assuming indepen-
dent modalities, they derive an expression for performing exact sampling through a score-based
approach. In the context of audiovisual works, MM-Diffusion, by Ruan et al. (2022) generates
aligned audio-video pairs. They use independent forward processes for each modality, with a
shared schedule, and a coupled U-Net for denoising. Since they experiment mostly with land-
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scape and dancing datasets, they argue that data is temporally redundant, thus they propose
Random-Shift based multi-modal attention for efficiency.

1.3 Contributions

As already mentioned, the main topic of this Diploma Thesis is talking face generation. Our
work aims to leverage the advancements in deep learning that were outlined in this introductory
Chapter, and use them in the context of photorealistic audiovisual speech synthesis. Towards
that end, we build upon both speech synthesis and face modeling techniques, which is thoroughly
explored in the following Chapters. Our contributions to the field of photorealistic talking head
generation can be briefly summarized as follows:

e We introduce the first, to the best of our knowledge, text-driven, photorealistic audiovisual
speech synthesizer that is genuinely bimodal and avoids the cascaded 2-stage approaches
for audio and video synthesis adopted by previous methods.

e We propose a novel joint modeling of acoustic and 3D visual elements in a learned fea-
ture space, which captures the complex interplay between audio and visual streams. Our
experiments show that this can increase the perceived realism and plausibility of the final
synthetic result.

e We adopt an accurate 3D representation for the synthesis of visual speech and combine
it with state-of-the-art photorealistic video synthesis based on conditional generative ad-
versarial networks. This allows us to blend the synthesized facial motions that match the
input text with various scenes in a photorealistic manner, paving the way for a multitude
of extended capabilities for Al-based video synthesis.

e We conduct qualitative and quantitative experiments, as well as user and ablation studies
to evaluate our method and compare it with recent state-of-the-art methods. The ex-
periments demonstrate the effectiveness and advantages of our method, which surpasses
previous methods using lab-recorded datasets, and also achieves particularly promising
results in challenging in-the-wild scenes.

e We make the source code of our method publicly available at the project’s website, under
an ethical license: Milis (2023).

1.4 Organization

Having already introduced the reader to the concept of audiovisual speech, the field of deep
learning, as well as some aspects of generative modeling, the rest of this Diploma Thesis is
organized as follows:

e In Chapter 2 we analyze the mechanism and related work on of speech synthesis.
e In Chapter 3 we present the background and related work in human face modeling.

e In Chapter 4, we build on the previous two Chapters and explore the related bibliography
on talking face generation.

e Chapter 5 thoroughly analyzes our proposed text-driven audiovisual model for talking face
generation.

e Chapter 6 presents the experiments we conducted with the proposed model.

e Finally, Chapter 7 offers a short overview of our results, discusses potential future work,
and raises some relevant ethical considerations.
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Chapter 1. Introduction

1.5 Notation

In this Section, we briefly outline the notation to which we adhere when presenting mathematical
expressions, unless specified otherwise.

e We represent scalars with lowercase letters, for example a certain frequency f € R.
e Vectors are represented with arrows, such as a feature vector & € R?.

o We denote images, matrices, or tensors with bold capital letters, such as an RGB image
Ic RWXHX?)'

e Sequences and their items are written with subscripts indicating their indexing, for instance
a sequence of N feature vectors would be #1.y, with its n-th element being #,, € R%.

e Finally, neural networks and loss functions are written with calligraphic capital letters, for
example a trainable network F.
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Chapter 2. Speech Synthesis

Preface

In this Chapter we explore the area of Text-to-Speech (T'TS) technology, which maps plain text
to realistic and dynamic voices. TTS sits at the crossroads of linguistics, machine learning,
and digital synthesis. Its applications are numerous, from enhancing accessibility for visually
impaired individuals, to virtual assistants and audiobook narration. We first cover some of the
theoretical background behind speech synthesis technology, focusing on the preliminaries of the
system that we used in this Diploma Thesis. Then, we present some relevant works, showcasing
the evolution of the field from simple methods to neural networks.

2.1 Preliminaries

In this Section we cover the preliminaries of TTS synthesis. Let us consider a TTS system. Its
input would be raw text as a sequence of characters, while the desired output would be the
waveform of an audio signal that resembles a person uttering the input text. What differentiates
TTS models from other systems is that their input is not a signal in itself, it has to be processed
and then converted to a form suitable for computation.

2.1.1 Phonetic Modeling

As Rabiner and Schafer (2010) describe, the text needs to be normalized, meaning that capi-
talization, symbols and punctuation are either removed or appropriately replaced. For instance,
numbers or symbols are spelled out. Then, the text has to be mapped to a sequence of phonemes,
which are the smallest distinct units of language that can be used to compose words. This pho-
netic mapping can be done via a phonetic dictionary for known words, or use some predefined or
learned mapping for unknown pronunciations. In this thesis, the Carnegie Mellon Pronouncing
Dictionary (CMUdict) was used, which is both widely used and open-source.

The CMUdict is a pronunciation dictionary for North American English that contains over
134,000 words and their pronunciations in the ARPAbet phoneme set. Stress in vowels is denoted
by the lexical stress markers 0-2:

e 0: No stress
e 1: Primary stress
e 2: Secondary stress

The phoneme set has 39 phonemes, not counting the variations due to lexical stress. For instance,
the phrase “a pronunciation example” would be transcribed to:

AHO P R OWO N AH2 N S IYO EY1 SH AHO N IHO G Z AE1 M P AHO L
The entire ARPAbet phoneme set with example transcriptions is presented in Table 2.1.

However, we should note that the phonetic split is not always trivial. While some languages’
pronunciation can be easily inferred from their spelling, this is not the case for English. The
phoneme mapping step should take into account the cases of homographs (different words that
are spelled out the same), as well as out-of-vocabulary (OOV) words. In the case of homographs,
they can be disambiguated using their part-of-speech in most cases. In contrast, OOVs require
a phoneme sequence prediction, which can be done with a learned mapping.

2.1.2 Alignment

The training of TTS models requires paired audio waveforms with text transcriptions. Each au-
dio sequence has to be aligned with the text’s phoneme sequence, meaning that the model has
to know exactly which audio segment contains each particular item of the phoneme sequence.
See Figure 2.1 for a visualization of such a sequence alignment. Many TTS frameworks use the
spectrogram as an intermediate representation, from which a vocoder can then synthesize the
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Phoneme Example Transcription
AA odd AAD
AE at AET
AH hut HH AH T
AO ought AOT
AW CcoOw K AW
AY hide HH AY D

B be BIY
CH cheese CHIY Z
D dee DIY
DH thee DHIY
EH Ed EH D
ER hurt HH ER T
EY ate EYT
F fee FIY
G green GRIYN
HH he HH IY
IH it IHT
IY eat IYT
JH gee JHIY
K key KIY
L lee LIY
M me MIY
N knee NIY
NG ping P IH NG
oW oat OW T
004 toy T OY
P pee PIY
R read RIYD
S sea, STY
SH she SHIY
T tea TIY
TH theta THEY T AH
UH hood HH UH D
UW two T UW
A% vee VIY
\W% we WIY
Y yield YIYLD
V4 zee 7Z1Y
ZH seizure SIY ZH ER

Table 2.1: Examples for each of the 39 phonemes of ARPAbet, spelled out in the CMU pro-
nunciation dictionary. Vocal stress is ignored. Table from the Carnegie Mellon Speech Group
website: http://www.speech.cs.cmu.edu/.
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we’re here to transact business

WERHH IYl [R| T AHOT RAEO|N|Z| AE1 |K| T B/ IHl | Z INNAHO| S

Figure 2.1: A visualization of alignment between audio, text, and phonemes from a sample
of the TCD-TIMIT dataset (Harte and Gillen 2015). The alignment was performed using the
Montreal Forced Aligner (McAuliffe et al. 2017) and the visualization is made in Praat (Boersma
and Weenink 2009). Notice the high amplitude in vowels, especially those with primary stress.

speech waveform. The spectrogram contains information about the signal’s frequency compo-
nents and is usually represented in mel scale. Alternatively, an end-to-end system can be trained
to directly map phoneme sequences to waveforms, without utilizing a vocoder. Deep learning-
based TTS models initially tackled generation in an autoregressive manner, implying that they
suffered from slow inference speed. In addition, they weren’t robust enough and used to skip or
repeat words. However, parallel approaches tackle both the speed and robustness problems.

2.1.3 The Spectrogram

The spectrogram contains information about the frequency content of a signal as it varies over
time. Thus, it can be calculated by applying the Fourier transform to a sliding window over
the signal, then concatenating the extracted frequency representations over time as a heatmap
image. Formally, the spectrogram F of a digitally sampled signal z[n], such as a speech waveform,
is the magnitude of its Short-Time Fourier Transform (STFT).

F(m,w) = |[STFT(m,w)? (2.1)

The STFT can be calculated using a window w|n] that isolates the signal’s content to a particular
time frame.

STFT{z[n]}(m,w) = Z x[njwln — mle™7«" (2.2)

n

An example of a speech signal’s spectrogram is presented in Figure 2.2.
Instead of expressing the spectrogram in physical frequency scale, we can transform the repre-
sentation from Hertz to the mel scale, which is more suitable for human perception. The mel
scale m is a perceptual scale of pitches judged by listeners to be equal in distance from one

another, extracted via experiments (Stevens et al. 1937), and can be expressed as a logarithmic
transform of the standard frequency scale f.

f
= 25951 1+ —=— 2.3
m 0810 ( + 700 (2.3)
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Frequency (Hz)

Time (s)
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Figure 2.2: The spectrogram of the utterance “She had your dark suit in greasy wash water
all year”, spoken by a female subject. The speech waveform is also shown at the bottom. The
sentence’s vowels correspond to high amplitude in the waveform and high energy (darker) regions
in lower frequencies. Again, the audio is from a sample of the TCD-TIMIT dataset, and the
image is made in Praat.

While the STFT is an invertible transformation, the phase information is lost in the spectro-
gram. Thus, applying inverse Fourier transform in temporal windows of a spectrogram cannot
reliably retrieve the original signal. This led to the development of neural models that perform
spectrogram to waveform mapping. In the context of speech, this type of networks are referred
to as vocoders.

The increasing presence of intelligent voice agents in everyday life has led to extensive research
in the area of speech synthesis. In the next Section we explore the history as well as the most
prominent recent TTS systems, which are useful for the development of our audiovisual talking
face generation system.

2.2 Models

2.2.1 Older Approaches

The ideal approach to speech synthesis would be to simulate the human articulation mechanism
such as the geometry and movement of the lips, tongue, glottis, and vocal tract. However, it is
very difficult to model these articulation behaviors in practice, mainly due to difficulties in data
collection. Therefore, approaches in articulatory synthesis such as the ones by Coker (1976) or
Shadle and Damper (2002), did not prevail due to low quality generation.

Concatenative synthesis relies on the concatenation of speech units stored in a database. Those
units may range from whole sentence to syllables that are recorded by voice actors. Moulines
and Charpentier (1989) used diphones for effective concatenative synthesis. During inference,
the concatenative TTS system searches speech units to match the given input text, and produces
the speech waveform by concatenating these units together. Generally speaking, concatenative
TTS can generate audio with high intelligibility and authentic timbre close to the original voice
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actor (Sagisaka et al. 1992; Dutoit 1997). However, concatenative TTS requires huge recording
database in order to cover all possible combinations of speech units for spoken words. Another
drawback is that the generated voice is less natural and emotional, since concatenation can
result in less smoothness in stress, emotion, or prosody. Nevertheless, such methods remained
prominent until recently (Chalamandaris et al. 2010).

Later, TTS models employed a statistical parametric approach (Tokuda et al. 2000; Yoshimura
2002) to alleviate the drawbacks of unit concatenation, by first generating the necessary acoustic
parameters, then recovering the speech waveform using a vocoder. It usually consists of a text
analysis module, an acoustic model for parameter prediction, and a vocoder. The text analysis
module first processes the text and extracts the linguistic features, such as phonemes, duration,
and part-of-speech tags. The acoustic models, most notably hidden Markov models (Yamagishi et
al. 2009) are trained with the paired linguistic features and acoustic features extracted from the
speech. The vocoders synthesize speech from the predicted acoustic features. These approaches
are superior to over previous TTS systems in terms of audio naturalness and controllability,
while also requiring less recordings than concatenative synthesis. However, the generated speech
has lower intelligibility due to artifacts, and the generated voice is perceived as robotic.

With the development of deep learning, neural network-based TTS has risen to prominence (Tan
et al. 2021). We analyze some prominent neural TTS architectures in the next Subsection.

2.2.2 Neural Methods

WaveNet (Oord et al. 2016) can be regarded as the first modern neural TTS model, trained to
directly generate audio waveforms from linguistic features. WaveNet is an autoregressive gen-
erative model for audio synthesis that uses dilated convolutions (Yu and Koltun 2015), with
the predictive distribution for each audio sample conditioned on all previous ones. Its generated
speech was more natural sounding than the state-of-the-art parametric and concatenative sys-
tems of the time. Following a similar autoregressive approach, Tacotron 2 (Shen et al. 2018) was
proposed for realistic TTS, using spectrogram prediction followed a neural vocoder. The spec-
trogram prediction network is a recurrent, sequence-to-sequence model with encoder-decoder
architecture that maps character sequences to mel spectrograms. The intermediate mel repre-
sentation allows for separate training and is more compact than waveform samples, while being
easier to train with squared loss due to phase invariance. Tacotron 2 still used WaveNet as the
neural vocoder system.

Tachibana et al. (2018) were the first to use temporal convolutions for TTS, resulting in high
parallelizability. The first fully parallel end-to-end architecture was proposed by Ma et al. (2020),
and further improved inference speed in TTS. They tackled speech synthesis as a sequence-to-
sequence mapping problem, using a modified U-Net architecture (Ronneberger et al. 2015).
HiFi-GAN (Kong et al. 2020a) generates raw waveforms from the mel spectrogram, serving as
an acoustic feature generator and a neural vocoder, respectively. It is a purely convolutional
architecture that has demonstrated high-fidelity denoising and dereverberation in speech.

TTS is a multimodal alignment task, which many researchers attempt to guide with various
attention methods. Badlani et al. (2022) introduce a diagonal static 2D prior distribution over
the phoneme to acoustic feature mapping, thus accelerating learning. A similar prior is used in
RAD-TTS (Shih et al. 2021), which is a flow-based parallel TTS model that resolves the output
diversity issue by stochastically modeling the phoneme durations with a separate flow.

FastSpeech (Ren et al. 2019) and the improved FastSpeech 2 (Ren et al. 2020) tackle the one-
to-many mapping problem in TTS by including a variance adaptor, offering control over the
duration, energy, and pitch of the generated speech. Robust computational algorithms from
traditional signal processing such as the short-time Fourier transform are incorporated in order to
extract the speech parameters modeled by the variance adaptor. The model uses a transformer-
based architecture and is thus able to predict the spectrogram significantly faster than older
models. Ren et al. (2020) also propose FastSpeech 2s, a text-to-waveform model that does not
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Figure 2.3: The FastSpeech 2 architecture and components, from Ren et al. (2020). Namely,
from left to right:

e (a) FastSpeech 2 (text-to-spectrogram, left) and FastSpeech 2s (text-to-waveform, right)
architectures. The encoder processes the phoneme embedding sequence, then the variance
adaptor adds different variance information such as duration, pitch and energy into the
hidden sequence. The FastSpeech 2 decoder predicts the mel spectrogram in parallel from
the adapted hidden sequence into a mel spectrogram sequence. In contrast, FastSpeech 2s
directly produces the speech waveform from the intermediate hidden representation.

e (b) The variance adaptor consists of duration, pitch, and energy predictors. They are
trained using the corresponding ground truth values, so that they can predict those param-
eters during inference. The durations are used to expand the encoded phoneme sequence
to match the length of the generated speech.

e (c) The internal architecture of a predictor submodule, using convolutions and layer nor-
malization (Ba et al. 2016).

e (d) The waveform decoder of FastSpeech 2s, consisting of many convolutional layers that
expand the encoded sequence in order to match the very large sequence length of the
waveform.

use the intermediate spectrogram representation, achieving even faster inference. An overview
of the architecture of FastSpeech 2 is presented in Figure 2.3.

Kim et al. (2020) propose Glow-TTS, a parallel flow-based generative model that uses a hard
monotonic alignment search algorithm for robust TTS. Unlike FastSpeech, it doesn’t require
an external aligner, as the alignment search is incorporated inside the model, thus simplifying
the training procedure. Wang et al. (2023) propose VALL-E, a model that uses residual vector
quantization in order to treat TTS as a language modeling task. It has zero-shot and in-context
learning capabilities, and can be used to synthesize high-quality personalized speech with only
a 3-second recording of an unseen speaker as an acoustic prompt.

The unprecedented success of diffusion models quickly inspired works in speech synthesis. The
first such attempts were by Chen et al. (2020b) and Kong et al. (2020b). The authors of the
former achieved high-fidelity sampling in just six denoising steps, while the latter used fewer
model parameters. Popov et al. (2021) propose Grad-TTS, a TTS system that includes an
internal monotonic alignment search heavily based on Glow-TTS (Kim et al. 2020), but with a
diffusion-based decoder.
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Style Prompting

While the concept of style control has been widely explored in text or image generation, the
introduction of explicit style controls in speech generation is still limited. Style guidance in
TTS allows for more expressive speech and alleviates the one-to-many mapping problem. The
most intuitive and interpretable method would be using natural language prompts. The first
such attempt was by Kim et al. (2021b), who presented style tags as a novel style interface
for expressive TTS. Style tags are short phrases or words, from which a linguistic embedding
is extracted using a pretrained language model. Thus, the non-autoregressive TTS system can
learn the relationship between linguistic embedding and style embedding space, and generalize
well to unseen tags due to the generalization capabilities of the language model. Also, a reference
style from an existing audio can be used as guidance. The audio-driven style encoder is trained
to minimize the MSE between the linguistic embedding and the audio encoding vector.

PromptTTS (Guo et al. 2023) is a similar work that synthesizes expressive speech from a text
prompt. The input prompt consists of a style prompt and a content prompt, formatted with a
semicolon in between. The TTS system is a transformer-based encoder-decoder, infused with
style information from the style encoder. A very recent approach on this subject that does not
apply any constraints on the form of the natural language style prompts is InstructTTS (Yang
et al. 2023). This method uses vector quantization in order to model acoustic features in discrete
latent space, thus casting speech synthesis as a language modeling task. The vector-quantized
acoustic features are predicted using a discrete diffusion model (Austin et al. 2021), while a
cross-modal representation metric loss is also employed.

All the aforementioned works use variations of BERT (Devlin et al. 2018) to extract the style
representations from the prompts. Regarding the available data, the three research teams used
custom collected and annotated datasets. However, only PromptTTS’s dataset (PromptSpeech)
is both publicly available and is in English. Another interesting approach that does not accept
text prompts but is purely conditioned on images is FACE-TTS (Lee et al. 2023). The proposed
method extracts biometric features from a face image and uses them a condition to train a TTS
model with diffusion. The model synthesizes speech whose pitch, rhythm and style matches the
input face. A speaker feature binding loss is introduced in order to maintain speaker consistency
between synthesized and reference speech.
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Figure 3.1: Triangular 3D geometric meshes of the same object, in different vertex resolutions.
Figure from Novakovi¢ et al. (2017).

Preface

In the vast landscape of computer vision and graphics, one area that continually captivates
researchers is face modeling, due to its numerous applications in entertainment, most notably
in visual effects and computer generated imagery for games, films, or animations. More recent
applications are in the areas of human-machine interaction, robotics, and virtual reality. Effec-
tive modeling of the human face is essential for realistic talking face generators. However, it is
important to note that face models cover a much broader area of human endeavors. For instance,
face identification through 3D models is used in biometric security systems or for forensic anal-
ysis. Specialized head modeling applications include medical imaging for craniofacial surgery,
cognitive science and neuroscience.

3.1 Meshes

One of the most notable ways to represent 3-dimensional objects in graphics, is to encode them
in meshes. Meshes are collections of N points in 3D space, called vertices, that are connected
forming convex polygon faces. Triangular faces are the simplest and most widely-used way to
represent the surface sampled by the vertices. In a triangular mesh, the vertices are organized in
M triplets, producing the triangulated surface. Formally, the geometry of a 3D mesh is defined
by the vertices table:

V = [0, ..., Un] € RV (3.1)

where each element U; = [z;, y;, zi]T € R? describes the spatial coordinates of the i-th vertex.
The topology is encoded in the triangle list of vertex triplets that encode the faces:

F=[f1,.. fu] € R*>M (3.2)

where each element f; = (f}, f2, f?) is a triplet of indices f/ that correspond to the vertices of

the mesh. The mesh M = (V,F) is a purely geometric representation, meaning that it doesn’t
involve any texture. An example of such a mesh is presented in Figure 3.1. Similarly, a textured
mesh is represented by M = (V| F, C), with the texture C encoded as a per-vertex color vector
of & = [ri, gi, bi]T € R3:

C=1[a,..cy] e RN (3.3)

The process of converting an abstract graphics object to an image is called rasterization. A 3D
mesh can be rasterized in two steps. First, a rigid transformation relative to the camera shifts
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and rotates the object. Then, a projection to the image plane each vertex to the pixel space.
The projection may be perspective, weak perspective, or orthographic (Hartley and Zisserman
2003).

3.2 3D Morphable Models

One approach to 3D facial modeling would be to encode the facial geometry and color directly
into a mesh. However, this does not take into account the high correlation of human faces,
nor does it offer any statistical priors that can be sampled for generating new plausible faces.
This is where morphable models come into play. The motivation behind them is to devise a
way to express faces in a vector space. It is easy to see why, for instance, face images do not
form a vector space. Assume two face images 11,15 € I, where I is the field of all facial images.
Averaging the two samples results in an image I with artifacts and blurred edges, which is not
a plausible facial image. This is bound to happen no matter how well-centered the face is in the
frame, since pixels from different positions on the two faces are averaged to generate the a new
pixel value. Therefore, the need to separate the face shape and appearance arises, so that the
faces can be linearly combined. This requires establishing establishing correspondence between
the face representations.

3D Morphable Models (3DMMs) are statistical models of 3D shapes that separate shape from
appearance variation, produced from datasets of 3D meshes. Typically, SDMMs are used as prior
probability distributions in computer graphics and vision, meaning that they can be sampled
to render plausible shapes. The first 3DMM was pioneered by Blanz and Vetter (1999). The
authors introduced a statistical model of human faces that could capture the variability of faces
in a dataset.

The captured 3D meshes in such a dataset are highly correlated, since the characteristics of hu-
man faces are very similar. For instance, they all share the same rough geometry and attributes,
which are similarly positioned on the head’s surface. Factoring out all the shared characteristics,
the true sources of variation in faces can be described with significantly fewer parameters. More
formally, the data can be decorrelated and projected into compact feature spaces. Once built,
the 3DMM serves two functions:

e It is a powerful prior on 3D face shape and texture, that can be leveraged in fitting
algorithms to reconstruct accurate and complete 3D reconstructions of faces from data
deficient sources, like in-the-wild 2D images, or noisy 3D depth scans.

e It provides a mechanism to encode any 3D face in a low dimensional feature space, a
compact representation that makes tractable many 3D facial analysis problems.

In Chapter 5, we leverage the first function to reliably obtain accurate 3D reconstructions of
subjects while speaking, in order to train our audiovisual speech model. We also make use of
the 3DMM'’s low dimensionality in order to efficiently predict 3D talking heads from a text
encoding.

3.2.1 Construction

3DMMs are learned from high-quality 3D scans that must be aligned and brought to a common
reference, where the geometry and topology are consistent across all meshes, thus achieving dense
correspondence. Sparse correspondences have also been used Egger et al. (2020), extracted via
landmarks or local image descriptors like Scale-Invariant Feature Transform (SIFT) features
(Lowe 2004).

In order to establish dense correspondence, all the training meshes need to be reparameterized
into a representation where each of them has the same number of vertices, and all of them share
the same triangulation. Dense correspondence algorithms rely on a template mesh onto which
the target meshes need to be mapped to. This mapping can be done in two ways:
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uv

/

Figure 3.2: Establishing facial mesh correspondence using either a UV projection (top) or NICP
(bottom). In the former, the cylindrical projection of the 3D mesh is deformed in 2D to match
the vertices of the 2D template. In the latter, the template 3D surface is manipulated with in
order to match the sample. Figure from Booth et al. (2018).

1. Using an intermediate 2D UV space, can be thought of as a flattened atlas where the
3D face surface has been projected. By assuming accurate representation of the 3D facial
structure into the UV space, the problem is reduced to an image alignment task. In Blanz
and Vetter (1999), the authors used optical flow estimation in order to align UV maps.

2. Using Non-rigid Iterative Closest Point (NICP), an algorithm that estimates affine trans-
formations for each vertex of the template, so that the transformed vertices form a mesh
that is as close as possible to the target.

The collection of meshes in dense correspondence are statistically analyzed, typically with Prin-
cipal Component Analysis (PCA), generating a 3D deformable model as a linear basis of shapes.
After performing PCA, linear models are obtained for each source of variation. The resulting
shapes and textures are described by vectors of 3NV elements. For instance, the shape mesh S is

flattened to a vector S , consisting of the mean shape S plus a linear combination of eigenshapes:

dshape
i=1

where U = [[71, e [jd € R3N*dsnape js the orthonormal basis matrix whose columns contain
the shape eigenvectors U? and E € Ré%nare is the shape vector. Thus, any 3D face mesh can be
efficiently compacted into a vector representation E that contains only a few parameters. The
eigenvectors do not coincide with attributes that humans would use to describe a face, since they
are extracted via mathematical analysis. It is also interesting to note that the components of the
shape vector tend to be small. As the coefficients grow, the face becomes more characteristic,
eventually leading to a caricature. The magnitude of the shape vector is indicative of failure
cases, if it exceeds a certain threshold (Booth et al. 2018). This implies that each coeflicient
vector needs an assigned probability of describing a realistic face. The probability distribution
is typically assumed to be Gaussian with a block diagonal matrix, which assumes that shape
and texture are decorrelated.

shape]
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Figure 3.3: Separation of sources of variation in the FLAME model. The figure shows the activa-

tion of the first three principal components of shape and expression at +3 standard deviations,
as well as pose parameters actuating neck and jaw joints. Figure from (Li et al. 2017).

Facial expression can be incorporated to the model by adding the expression variation:
S=S+Uf+Vy (3.5)

with V € R3V Xdexe heing the orthonormal basis matrix of expression eigenvectors, and ¢ € R%x»
being the expression coefficients vector.

Similarly, a mesh’s texture can be expressed as the mean texture T with the addition of weighted
orthoromal texture components, extracted as described above:

T=T+cCe (3.6)

with C € R3N*diex the orthonormal basis matrix whose columns contain texture eigenvector,
and ¢ € R%ex the vector of texture coefficients.

3.2.2 Prominent Models
Large-Scale Facial Model

Booth et al. (2018) propose the Large-Scale Facial Model (LSFM), which is constructed from a
large and diverse database of face scans. The authors establish correspondence using the NICP
algorithm, focusing on the anatomical structure of the face. Thus, they avoid any alignment
based on “skin-deep” facial features like eyebrows. They find that the manifold of plausible faces
is clustered by demographics and exhibits an age-related structure.

FLAME

In this Thesis, we make use of the FLAME 3DMM (Li et al. 2017), a statistical face model that
separates shape, expression, head pose, and texture. It is trained on sequences of 3D scans and
is able to capture correlations across the face, and capturing realistic blendshapes, which are
approximate semantic parameterizations of facial expression. The FLAME 3DMM is described
as a function L

M(B,0,8) = (V,F) (3.7)

- — -,

that maps the vectors for shape (3), pose (6) and expression (¢) to a 3D displacements of the
template mesh. See Figure 3.3 for a visualization of the different sources of variation in the
FLAME model.

Shape and expression are modeled linearly, using orthonormal eigenvectors. However, pose is

—

a non-linear function R(#) that maps the pose vector to a vector of concatenated elements of
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rotation matrices, which are the reason for the mapping’s non-linear nature. Then, the pose
blendshape is defined as a linear combination of pose blendshape components, with the offsets
from the rest pose as weights. The integration of pose is what allows FLAME to achieve better
human expressions, by modeling four joints with 3D rotations: the neck, the jaw, and the two
eyeballs. A non-linear function is used to map the pose vector to the elements of each rotation
matrix. The computation of joint locations from mesh vertices is done by a learned sparse matrix.
The model parameters are trained with the objective of minimizing the 3D reconstruction error.

Weighting is used for improved accuracy, especially in regions that tend to be noisy in the scans,
such as the hair, the eyeballs and the back of the head. Coupling weights prevent the vertices
from leaving the model space, while Laplacian weights add smoothness while allowing tangential
motion to be captured.

3.3 Facial Reconstruction Methods

In this Thesis, since we are interested in audiovisual speech synthesis, we use 3DMMs as a tool
for face modeling. However, we cannot expect to train our models with audiovisual 3D scans of
high quality audio and transcriptions of the uttered speech, since they are expensive to capture
and cannot generalize to other subjects outside the dataset. We need to leverage the already
existing video datasets, which is the motivation behind using 3DMMs as a prior for in-the-wild
accurate head reconstruction in 3D space.

Originally, Blanz and Vetter (1999) reconstructed human faces from images by estimating the
3DMM parameters for shape and appearance, as well as camera and illumination parameters.
They did this by performing stochastic gradient descent for minimizing the L2 distance between
the original image, and the image with the rendered 3DMM on top. However, estimating a 3D
shape from an image is an ill-posed problem and may yield non-face solutions. In order to deal
with this issue, they restricted the shape and texture vectors to the vector space spanned by
the 3D database.

Since then, there have been many approaches to facial reconstruction from images (Zollhofer et
al. 2018). A natural limitation that audiovisual speech enforces is that it needs to be expressive
in order to convey meaning. Thus, in the next Subsections, we analyze some recent models.

3.3.1 Detailed and Emotional Reconstruction
DECA

DECA, a model for Detailed Expression Capture and Animation (Feng et al. 2021) is a 3D
reconstruction method with a FLAME prior that emphasizes fine-grained details in expression.
It is trained on in-the-wild images, achieving better robustness and more realism in animation
than previous approaches. DECA regresses 3D face shape and animatable details like pores and
wrinkles that are specific to an individual subject, but change with expression, all from from a
single image of the subject.

The method reconstructs face images in two scales, a coarse one and a detailed one. The coarse
reconstruction employs a ResNet50 (He et al. 2016) encoder followed by a fully connected layer
in order to predict FLAME and environment parameters for an input image. Formally, given an
image I, the coarse encoder &. outputs the parameters:

Ec(T) = (B,0,4,1,¢ A) (3.8)

with l_; ¢, and A being the lighting parameters, camera parameters, and albedo image, respec-
tively. On the other hand, the detail reconstruction extends the coarse geometry by superim-
posing a higher-frequency UV displacement map. The 2D displacement map is decoded from a
detail code predicted by an encoder &; similar to the coarse one:

-

Ea(I) =3 (3.9)
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Figure 3.4: Architecture and training procedure of EMOCA, an extension of DECA. The input
image is fed to a frozen DECA coarse shape encoder and a trainable expression encoder. A
textured 3D mesh is rendered by a differentiable renderer with the regressed camera and spher-
ical harmonics lighting. A novel emotion consistency loss penalizes the difference between the
emotion features of the input and the rendered coarse shape, after passing both images through
a fixed emotion recognition network. By factoring out the separate expression encoder and the
emotion recognition network, the architecture effectively becomes identical to DECA. Figure
from Danécek et al. (2022).

In order to disentangle person-specific details like skin wrinkles, from expression-dependent
ones, a detail consistency loss is employed. This loss is devised as the distance between two
reconstructions, one using the detail code of the original image, and the other using the detail
code of another image of the same subject. The intuition behind this is that the detail codes
of the two images should yield the same rendering. This allows the detail vector to capture all
person-specific higher-frequency attributes and leave out the expression-dependent details which
vary from image to image.

EMOCA

Similarly, EMOCA is a model for Emotional Capture and Animation (Danécek et al. 2022) that
builds on DECA, aiming to better capture the human expressions associated with emotions.
The authors augment DECA’s architecture by using a separate encoder to estimate the expres-
sion vector and using out-of-the box DECA estimations for the remaining FLAME and scene
parameters. They also introduce a deep perceptual emotion consistency loss, using a pretrained
emotion regressor to find the distance between the reconstructed 3D expression, and the input
image in the emotional feature space. This is expressed as:

Lemo = ||gl - E0R||2 (310)

where €7 and € are the emotion feature vectors of the original and rendered images, respectively,
predicted by the pretrained emotion recognition network. We present EMOCA’s architecture in
Figure 3.4.

3.3.2 Speech-Informed Perceptual Reconstruction

In this Subsection we present SPECTRE (Filntisis et al. 2023), a method for perceptual 3D
reconstruction of human face videos focusing on lip articulation, without the need for text
transcriptions of the corresponding speech. A lipreading loss is devised to add more realism to
the mouth region, improving the perceived quality of the utterance.

49



Chapter 3. Face Modeling

perceptual lip
reading loss

Lip Readlng Lip Reading
mouth Network Network
cropping

“ o
cropping

Inference 3D Reconstruction s ey geometric |
t: t: L.
constraints
Identity/Scene
Encoder .
@g-. TR ] e
enderer
Perceptual . a ™ y -

input video Encoder

) output
}

| f Emotion Recognition Emotion Recognilion]
X Network Network y
'
\
perceptual

expression loss ™

Figure 3.5: Architecture and training procedure of SPECTRE. The input video is fed into the
3D reconstruction component, where a fixed encoder detects the scene and FLAME parameters.
Then, a mouth encoder predicts the refined facial expression parameters and jaw pose, while a
differentiable renderer renders the predicted 3D shape. The mouth area is cropped in both the
input and rendered image sequences and a lip reader is applied on both in order to estimate the
perceptual lip reading loss between them. The same is done for the facial expression recognizer,
in order to estimate the perceptual expression loss. Figure from Filntisis et al. (2023).

The pipeline is similar to EMOCA, but the focus is shifted on the realism of lip reconstruction.
SPECTRE uses a perceptual encoder to estimate the mouth parameters, which consist of the
expression and jaw pose. This encoder is built with a MobileNetV2 (Sandler et al. 2018) back-
bone followed by a temporal convolution, in order to capture the temporal dynamics of mouth
movements and facial expressions. The MobileNetV2 encoder was consciously chosen in order to
mitigate the heavy computational requirements of the ResNet50 encoder used by EMOCA. A
perceptual expression loss is applied between emotional feature vectors of the input video and
the reconstructed 3D mesh.

Furthermore, a pretrained lipreading network on the LRS3 dataset (Afouras et al. 2018b) ex-
tracts speech-informed feature vectors which are used to calculate the lipreading loss as the
cosine distance of feature vectors from the original and the reconstructed video.

Geometric constraints are also applied on the magnitude of the mouth parameters using L2 norm,
to avoid any artifacts that perceptual losses may create due to the domain mismatch between
the original and the rendered images. We present SPECTRE’s architecture in Figure 3.5.

3.3.3 Other Approaches

An issue with the modeling of human faces, already pointed out by Booth et al. (2018), is the
metric accuracy of the reconstructed face. A wide area of applications in medicine and augmented
or virtual reality rely on the metrically correct prediction of the subject’s face. MICA (Zielonka
et al. 2022) tackles this problem by training a face shape estimator in a supervised fashion, using
annotated medium-scale datasets and data from a large-scale 2D image database, processed by
a pretrained face estimation network.

Another approach that doesn’t rely on latent subspaces is the use of Convolutional Neural
Networks (CNNs). In Jackson et al. (2017), a CNN performs direct regression of a volumetric
representation of the 3D facial geometry from a single 2D image. Later, in Abrevaya et al.
(2018), they employ an autoencoder architecture, using a CNN encoder that operates on depth
images. Ranjan et al. (2018) use spectral convolutions on the mesh, represented as a graph. In
Zhou et al. (2020) they advance this idea by using a fully convolutional mesh autoencoder for
arbitrary registered mesh data, outperforming previous state-of-the-art methods.

Chatziagapi and Samaras (2023) incorporate the audio modality into 3DMMs by proposing
AVFace, a method for 4D facial reconstruction using audiovisual information. In their model, a
coarse stage estimates the per-frame FLAME parameters using AV features. Then, an implicit
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representation of the lip shape conditioned on speech is learned. Finally, a fine stage recovers
facial geometric details guided by pseudo-ground truth face normals. Due to the multimodal
features, AVFace is robust in cases when either modality is insufficient, for instance in cases
where face is occluded.
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Neutral b: as in “bee” k: asin ¢ cap i: asin “tree

f: as in “fee” i as 1n “shin” 0: as in “th1ef” ): asin “ hang

S: as in “see” v: as in “vet”

I: as in “leaf” B: as in “bat”
Figure 4.1: A few viseme examples. This Figure is from Parke and Waters (2008) and uses
the International Phonetic Alphabet instead of the ARPAbet notation which we presented in
Table 2.1. Nevertheless, it showcases the variety of visemes when it comes to the relative positions
of the lips, tongue, and teeth during articulation.

4.1 Introduction

Talking face generation aims at synthesizing videos of talking humans, with consistent and
synced audio and visual streams. Its applications are numerous, including virtual assistants,
educational programs, accessibility tools, and human-machine interfaces (Toshpulatov et al.
2023). Other notable applications lie in the field of entertainment, where it is used for avatar
creation in movies and video games, or re-dubbing movies in foreign languages. Furthermore, it
has been used for teleconferencing applications, such as compressing video calls (Agarwal et al.
2022).

In order to produce realistic results, face representations are usually adopted in order to guide the
generation process. Those representations may be photorealistic, 3D mesh-based, or parametric,
by using an intermediate representation. Examples of parametric modeling approaches are the
image-based active appearance models (Cootes et al. 2001), or the prominent 3DMMs presented
in Section 3.2. 3D methods offer increased accuracy and realism, since they are robust to pose
and lighting changes. Unlike traditional 2D images, which capture only surface appearance,
3D models encapsulate the underlying geometry of facial structures, including shape, depth,
and spatial relationships. Also, by treating faces as 3D objects, we gain the ability to simulate
realistic lighting effects and intricate facial movements. Nevertheless, in pure 3D-based works,
the absence of teeth and tongue is important, since they play a large role in the realism of
specific types of visemes. Visemes are visual analogs to phonemes, but the phoneme to viseme
mapping is many-to-one, implying that the uttering of some phonemes is visually the same. Such
examples include the phonemes B, M, and P. We present a few viseme examples in Figure 4.1.

Human perception has evolved to be very sensitive to changes in facial characteristics, and can
effortlessly distinguish between similar faces or recognize whether a face looks unnatural (Mori
et al. 2012). Thus, face models need to be as accurate as possible. Apart from realistic head
modeling, talking face generation needs to produce videos with coherent and consistent audio
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Figure 4.2: A general depiction of a talking face generation pipeline. The inputs are a reference
identity for the talking subject, as well as a driving source for the utterance, be it audio or text.
The synthetic video result can either use an intermediate parametric representation of human
faces, or be directly computed from the input features. Figure from Sheng et al. (2022).

and visual streams. The generation can either be audio-driven, meaning that a talking face video
is synthesized to match an input audio clip, or text-driven, where both audio and video streams
have to generated from a piece of natural language text. In this Diploma Thesis, we developed a
text-driven model that uses an intermediate 3D representation. A general overview of generative
talking face systems is presented in Figure 4.2.

4.2 Audio-driven Methods

Audio-driven audiovisual speech synthesis aims to produce a realistic visual output of a talking
head that is accurately synced with the input audio. Most cutting-edge approaches are audio-
driven, since one can argue that they are more manageable than text-driven frameworks in
terms of data requirements, while still covering a wide array of applications (Sheng et al. 2022).
Nevertheless, they need to employ an external TTS method in order to be able to create fully
customized talking face videos, with arbitrary utterances.

Neural Voice Puppetry, by Thies et al. (2020) is a deepfake pipeline that generates a photore-
alistic output video of a target person, in sync with some source audio input. The system uses
a pretrained speech feature extractor (Hannun et al. 2014), a per-frame blendshape generator
whose output spans a latent expression space, and a neural renderer. The expression interpolator
and the renderer have to be trained on each specific output target, as shown in Figure 4.3. Fan
et al. (2022) proposed a model that generates a sequence of 3D meshes that match an audio
input, however they tackled the long-term context limitations of recurrent models by using the
transformer architecture. CodeTalker (Xing et al. 2023) is a similar model that achieves the
current state-of-the-art in audio-driven 3D mesh generation.

Accurate, human-like 3D reconstruction of a talking face is an open problem. A video of a talking
person contains rich dynamic information about pose and expression, especially in the mouth
region, which needs to be explicitly modeled. Attempts like VOCA (Cudeiro et al. 2019) extract
speech features from the well established speech recognition RNN DeepSpeech (Hannun et al.
2014) and use time convolutions to convert them to 3D mesh displacements with an encoder-
decoder architecture. Bao et al. (2023) take this approach one step further by using audio
features, LSTMSs and phoneme guidance to produce viseme curves, suitable for facial animation.
Their method supports multilingual speech inputs and generalizes well to unseen speakers.

Wav2Lip (Prajwal et al. 2020) generates synchronized lip movements from an input speech
signal. The model consists of a visual feature extractor, a lip motion generator, and a temporal
alignment module. The visual feature extractor encodes the visual features of the input video
frames, while the lip motion generator produces lip movements corresponding to the input
audio signal. These components are trained jointly to optimize the synchronization between the
generated lip movements and the audio. To achieve accurate temporal alignment between the
audio and visual modalities, the model employs a temporal alignment module that leverages
dynamic time warping techniques. This module helps mitigate discrepancies in the temporal
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Figure 4.3: The architecture of Neural Voice Puppetry. Given an audio signal, the DeepSpeech
RNN (Hannun et al. 2014) predicts speech features that are fed into a generalized expression
prediction network, which predicts coefficients that drive a person-specific expression blendshape
basis. The target face is rendered with the new expressions using a light-weight rendering network
based on the U-Net architecture. A similar pipeline is common across audio-driven works. Note
that this work combines a generalized and a person-specific stage. Figure from Thies et al.
(2020).

dynamics of speech and lip movements, resulting in more natural and coherent output.

Other few-shot lip-syncing methods include SadTalker (Zhang et al. 2022¢) and VideoReTalking
(Cheng et al. 2022). The former extends Wav2Lip’s architecture with a 3DMM face representa-
tion, achieving better control of facial expressions. The latter achieves state-of-the-art results in
audio-driven photorealistic talking head generation. Its architecture is presented in Figure 4.4.

4.2.1 GAN-based Models

Neural Emotion Director, from Paraperas Papantoniou et al. (2022), is a deepfake generator
that can manipulate in-the-wild videos conditioned on either an emotional label or a reference
video, while preserving the speech-related mouth movements. The emotion translation problem
is mapped from the image space to the space of 3D model parameters using DECA (Feng et al.
2021). The expressions are altered with a recurrent model trained in an adversarial manner, then
a neural renderer is used to create the new cropped face video. Several recent methods synthesize
photorealistic facial videos using conditional GANs. Methods like Deep Video Portraits (Kim
et al. 2018), Head2HeadKim et al. (2018), Doukas et al. (2021a), and Doukas et al. (2021c) use
conditional GANs to render the target subject under the given conditions (expressions, pose,
eye-gaze).

However, these methods need a driving video of an actor’s face and do not offer any semantic
control over the generated video. This is partly overcome by methods that offer control in terms
of facial expressions (Tripathy et al. 2020; Tripathy et al. 2021; Groth et al. 2020; Solanki and
Roussos 2021), without however having any control or constraints on the speech-related facial
motions. Kim et al. (2019) presented a style-preserving solution to film dubbing, where the
expression parameters of the dubber pass through a style-translation network before driving
the performance of the foreign actor. Their method preserves the dubber’s speech, but can only
translate between a pair of speaking-styles (dubber-to-actor).

4.2.2 Diffusion-based Models

In Diffused Heads, from Stypultkowski et al. (2023), realistic talking head videos are produced
with one identity frame and a speech recording, employing a U-Net architecture with several
conditioning mechanisms. The authors concatenate the identity frame along with the two previ-
ous video frames and the current noisy frame channel-wise, and perform the denoising process,
conditioned on a speech window. The conditioning is done with group normalization (Wu and
He 2018), injecting information from a pretrained audio encoder. For improved realism, they
incorporate a lip-sync loss defined as the MSE in the cropped mouth region, in addition to the
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Figure 4.4: VideoReTalking alters the speaker’s expression using a semantic expression editing
network, resulting in a video with the neutral expression, which will serve as the reference for
lip syncing. This video, together with the given audio, is then fed into the lip-sync network
to generate the lip-syncing video. Finally, the photorealism of synthesized faces is improved
through an identity-aware face enhancement network and post-processing. Figure from Cheng
et al. (2022).

simple diffusion loss. A similar, concurrent work is DiffTalk (Shen et al. 2023). The authors
employ a U-Net with cross attention for the video generation. They also downsample the frames
for the diffusion process, while Diffused Heads use full resolution end-to-end. Apart from au-
dio conditioning, they concatenate a facial landmark embedding along the axis of the audio
conditioning vector.

Diffusion-Autoencoder-Talker, by Du et al. (2023), is another diffusion-based work that utilizes
a different approach. An image encoder is trained to extract a latent representation of talking
head frames, with a DDIM decoder to reconstruct them. Then, a convolutional transformer
(Gulati et al. 2020) is trained to extract the same latent representation from a corresponding
speech window. Inference is performed by denoising the same initial image for each frame with
the DDIM decoder, conditioned on the audio window from the speech input.

Yu et al. (2022) perform one-shot audio-driven talking head generation with diverse facial mo-
tions, by disentangling the lip and non-lip facial representations. They use a diffusion prior
trained to model the mapping between audio and non-lip features, thus enabling diverse sam-
pling. This mitigates the lack of expressiveness and head motions often encountered in synthe-
sized talking heads. Hwang et al. (2023) propose a model that disentangles head motion from
facial expressions, using a geometric transformation as a bottleneck for the head motion. The
framework synthesizes a talking head video based on a source video, a reference head motion
and a driving audio. A motion-aware encoder captures the input talking head video, along with
the motion of a head driving video, using either optical flow or neural features. Then, the inter-
mediate representation is manipulated by convolution layers whose weights are modulated with
audio features from the driving audio.

In contrast, Bigioi et al. (2023) explicitly edit an input video to incorporate a target audio.
They use a diffusion model with U-Net architecture, conditioned on the masked video frame
and corresponding speech features. Yao et al. (2021) present a text-based tool for iterative
editing, where users can edit the wording of the speech, further refine mouth motions, insert
mouth gestures and change the performance style. Their method uses a fast phoneme search
algorithm that can identify phonemes from the source video to match a desired edit. They can
also transfer the mouth motions of the source actor to the target actor with neural retargeting.
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4.2.3 Emotional Talking Faces

Audio-driven emotional talking head generation has been also tackled by Ji et al. (2022), with
a self-supervised model that generates emotional talking heads using an input audio and a
reference emotional video. A recurrent network models neutral expressions, while a dynamic
part predicts keypoint displacements from the input audio. EmoTalk (Peng et al. 2023) explicitly
disentangles emotion from audio content. It uses an emotion disentangling encoder trained with
cross-reconstruction loss, using pairs of the same content with different emotion and vice-versa.
Then, a blendshape decoder predicts the head coefficients which are rendered using FLAME (Li
et al. 2017).

It is important to note that audio-driven emotional talking head generation lacks control of the
input audio, which is naturally correlated with the emotion. Emotional manipulation is still an
active area of research, facilitated by large datasets like MEAD (Wang et al. 2020), a multi-
view audiovisual dataset with diverse subjects and emotion annotations, suitable for emotional
talking-face generation. A text-annotated version of the MEAD dataset is used in TalkCLIP (Ma
et al. 2023), a framework for audio-driven talking head generation with explicit style control
either from a reference video or a natural language prompt.

4.3 Text-driven Methods

Text-driven audiovisual speech synthesis involves the generation of both audio and visual outputs
for a talking face, based on a text input. It is thus more challenging than the audio-driven
approach, but has broader applications. One of the first attempts in the field was by Ezzat
and Poggio (2000), who mapped text to visemes, creating a photorealistic viseme sequence
from recorded frames. The transition between frames was smoothed using optical flow methods.
Another approach by Filntisis et al. (2017a) uses active appearance models for the generated face
image textures, and hidden Markov models for the generation of audiovisual features, focusing
on the photorealism and the expressiveness of the output video.

Filntisis et al. (2017b) perform a comparison of deep learning, HMMs, and concatenative models
for audiovisual speech synthesis with active appearance models, focusing on the expressiveness of
the generated speech. They conclude that deep learning approaches outperform the traditional
ones. They also show that realistic interpolation of emotions is possible with HMMs, allowing
for both intermediate emotions and lower intensity of a particular emotion, by interpolating
with a neutral speaking style.

4.3.1 Cascaded or Unimodal Methods

A common approach for text-driven models is to use a cascaded architecture of a TTS module
connected in series with audio-driven talking face generator. Such models include ObamaNet
(Kumar et al. 2017) and AnyoneNet (Wang et al. 2022). The former can be fine-tuned to
one speaker identity, while the latter can perform one-shot talking head generation given an
input portrait, while the generated audio matches the facial attributes of the person. A similar
approach is proposed by Obradovié et al. (2022), who use Wav2Lip (Prajwal et al. 2020) on top
of a TTS framework. Zhang et al. (2022b) use TTS to generate speech from an input text, apply
forced alignment to obtain phoneme timestamps, and lookup phoneme poses in a phoneme-pose
dictionary. The poses are then interpolated and rendered with a GAN. A similar pipeline is used
by Song et al. (2022) for multilingual talking face generation, and Ye et al. (2023) who propose
a talking face generator that follows a voice cloning TTS module.

While the abundance of TTS and audio-driven models make this approach quite promising,
the information flow is not as efficient. The intermediate representations that are extracted
in the TTS system are then interpolated with redundant information in order to synthesize
realistic speech, which then has to be compactly encoded once more. Furthermore, this approach
doesn’t consider the correlation of audio and visual streams in human speech, which is inherently
bimodal.
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Figure 4.5: The AVTacotron2 model for autoregressive text-driven audiovisual speech synthesis.
An autoregressive encoder-decoder architecture generates audiovisual representations which are
jointly mapped to a spectrogram and 3D face parameters. Emotional embeddings offer explicit
control using predefined emotion labels. Figure from Abdelaziz et al. (2021).

Emotion embeddings

A few research works focus on text-to-lip generation. For instance, Liu et al. (2022) propose
a parallel model for fast generation of cropped lip image sequences from an input text. Using
structural similarity index loss and adversarial learning, they significantly improve the sharpness
and perceptual quality of generated lip frames. Write-a-Speaker (Li et al. 2021) generates pho-
torealistic talking head videos with realistic facial expressions and head motions in accordance
with speech context and rhythm. A speaker-independent stage includes three disentangled net-
works that use the input text to generate animation parameters of the mouth, upper face, and
head, drives the speaker-specific stage, which synthesizes videos tailored for different individ-
uals. The three disentangled networks are trained with specific losses for each task, including
adversarial loss for improved diversity. However, by not including the audio modality, the corre-
lation of speech with lips is disregarded, which doesn’t make text-to-lip models flexible enough
to be used alongside a TTS system. Regarding 3D-based approaches, most authors note that
the non-parameterization of the mouth interior naturally leads to less lifelike viseme results.
Medina et al. (2022) directly address this limitation by providing an inner mouth dataset and
model. Another interesting work that incorporates text is a tool for iterative editing is presented
by Yao et al. (2021). Its users can edit the wording of the speech, further refine mouth motions,
insert mouth gestures and change the performance style.

4.3.2 Audiovisual Methods

A true text-driven neural model for audiovisual speech synthesis was proposed by Abdelaziz et
al. (2021), who expanded the Tacotron 2 TTS framework (Shen et al. 2018) to include a visual
modality, and proposed the AVTacotron2 model. It produces emotional speech by using emotion
embeddings to encode the required prosody. The corresponding blendshapes and spectrograms
are generated in an autoregressive manner, conditioned on the text’s phoneme encodings. A
diagram depicting the system’s architecture is depicted in Figure 4.5.

Similarly, DurTAN (Yu et al. 2019) adapts the WaveRNN model (Kalchbrenner et al. 2018) to
generate facial animation parameters. UniFLG (Mitsui et al. 2023) learns a joint representation
of text and audio, thus enabling both text-driven and audio-driven synthesis. Either way, the
model’s output is a sequence of facial landmarks, as well as an audio clip in text-driven inference.
The facial modeling using landmarks, however, is not a suitable representation for high-detail
lip articulation and cannot generalize to new faces. The inference process of UniFLG is depicted
in Figure 4.6.
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Figure 4.6: UniFLG consists of two components: a TTS based on the end-to-end VITS framework
(Kim et al. 2021a), and a landmark decoder, which generates facial landmarks from the common
representation of text and speech. UniFLG simultaneously generates speech and facial landmarks
during text-driven inference, and it generates facial landmarks without using textual information
during speech-driven inference. Figure from Mitsui et al. (2023).

4.4 Evaluation Approaches

For image generators, the quality of the generated output is usually assessed with the incep-
tion score, a metric that matches human perception and captures both diversity and realism.
However, the Fréchet Inception Distance (FID), introduced by Heusel et al. (2017), has become
much more prevalent. In time series, such as sound, Dynamic Time Warping (DTW) is a metric
that can be used to measure similarity (Miiller 2007). In the context of TTS, we can use DTW
to judge the distance between the ground truth and the generated waveform. DTW is ideal for
speech processing because it isn’t affected by misalignment or variability in speed.

The sources of variation in talking head videos are highly coupled and can either be intrinsic
(subject-related) or extrinsic (due to a moving camera or background). Thus evaluation is a
challenging task, which is why most published research that involves speech synthesis resorts to
subjective qualitative metrics to evaluate synthesized results, like Mean Opinion Score (MOS) or
grader preference. These evaluations are often tedious and unreproducible. Quantitative metrics
are usually error estimations using the ground-truth signal, like Mean Square Error (MSE)
and other statistical measures. However, they may not be able to clearly specify whether the
scores are meaningful and may not correspond to how humans perceive and judge generated
video frames. For example, a slight misalignment between two frames may be unnoticeable to
a human, but results in very large MSE between them. It is clear that perceptual metrics are
necessary in order to benchmark such models. TTS also suffers from the one-to-many mapping
problem, since the same text can be uttered in many different ways. Speaker identity, prosody
and emotion are just some of the few sources of variation that can completely change the speech
waveform. Consequently, waveform generation is uncertain and its evaluation is even trickier.
Talking head videos need to be evaluated on four important aspects:

e Identity preservation of the reference person
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e Visual quality
e Lip synchronization with the reference audio
e Natural and spontaneous motion of the head

Chen et al. (2020a) perform an extensive survey on talking head evaluation and provide several
quantitative metrics for each of the aforementioned aspects. For instance, the distance of identity
vectors extracted between frames is an index of identity preservation. Regarding visual quality,
metrics like SSIM (Wang et al. 2004), SNR, and inception score are examined. A contrastive loss
between audio and visual features can evaluate the lip synchronization. Finally, similar distances
that measure perceptual quantities like emotional expression and blinking are introduced.
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Chapter 5. Proposed Method: Neural Text to Articulate Talk

5.1 Motivation

The goal of this Diploma Thesis is to propose a novel deep learning model that creates talking
face videos based on a text transcription. The model was conceived as a system for creating
animated avatars to be used in virtual assistants, educational videos, accessibility tools, and
human-machine interfaces. Thus, its development, architecture, and training data are all tar-
geted towards producing videos with neutral facial expression and speech intonation. Such a
model would be ideal for extending existing conversational agents that have recently exploded
in popularity, due to the success of large language models (Zhang et al. 2023). Our system
can provide an animated avatar that utters the conversational agent’s response, paving the
way towards a more natural mode of human-machine interaction (Lan et al. 2023). It can also
contribute to building simpler animation pipelines for digital media professionals.

Since we aim to develop a neural network model that can generate a lifelike conversational avatar
uttering natural language text, our main focus is on the realism of lip articulation, as well as the
synchronization and naturalness of audio and visual streams. We decided to name our model
“Neural Text to Articulate Talk”, which we abbreviate to NEUTART.

As was established in Chapter 3, modeling the human face as a three-dimensional object instead
of an two-dimensional image can better capture its variability, which is crucial for the perception
of realism. Hence, a generative model of human faces that uses a three-dimensional representation
can achieve better expressiveness in the generated output than a similar model operating directly
on images. The mapping from the rendered 3D representation to a photorealistic image can be
viewed as an image-to-image translation task, which is a well-studied problem (Isola et al. 2017).

The synchronization of facial movements and the uttered speech is equally essential for the
talking head’s realism. Of course, the natural language text, while being a sequence of characters,
is not really a temporal signal. As a result, synchronization does not need to be enforced between
the input and output of the system, only between the audio and visual modalities of the output.
As we described in the previous Chapter, many models employ a pipelined approach of a TTS
generator and an audio-driven video generator, which may introduce a temporal lag between the
speech waveform and the talking video. This is why works like SyncNet (Chung and Zisserman
2017) focus on lip-syncing audio and visual streams of people speaking. Similarly, talking head
generators like Prajwal et al. (2020), Cheng et al. (2022), Park et al. (2022), and Guan et al.
(2023) formulate the video generation process as a lip-sync task. We can completely avoid this
pitfall by generating the video and speech in parallel, instead of sequentially.

From the above analysis, we can extract two major requirements that shape our system’s ar-
chitecture. First of all, we would like our model to internally use three-dimensional modeling of
the human face, which can be leveraged as an intermediate representation for creating photo-
realistic videos. Secondly, we would like to generate the audio and visual elements in a parallel
way, without enforcing synchronization at the output.

These two requirements naturally lead us to a simple, but powerful design concept. The si-
multaneous generation of speech and a dynamic 3D talking head, with the latter being used
to drive a conditional rendering model that synthesizes colored video frames. This architecture
separates the task of text-driven photorealistic talking face generation into two subtasks: au-
diovisual 3D talking face generation and 3D-based photorealistic generation. We can leverage
the speech-informed 3D reconstructions by SPECTRE (Filntisis et al. 2023) in order to train
the audiovisual component with highly accurate talking head reconstructions, which can allow
us to achieve unparalleled realism of lip movements. An abstract, high-level depiction of the
architecture is depicted in Figure 5.1. It consists of an audiovisual module and a photorealistic
module, which are thoroughly analyzed in the following Subsections.
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Figure 5.1: Our model uses text features to simultaneously generate the audio and visual streams
of a talking face. The audio stream generates the speech waveform. The visual stream predicts
the 3D reconstruction of the talking face, which is used as a condition to render the photo-
realistic video. Since the audio and visual generation streams are driven by the same input,
synchronization and coherence between them is implicitly enforced.

5.2 Data Preprocessing

Audiovisual speech synthesis datasets consist of talking head video clips accompanied by text
transcriptions. In order to train each module, we need to preprocess the data in order to extract
the information that each module requires. For instance, we need to perform text-to-audio
alignment between the text transcription and the audio of the talking head clip. We also need to
isolate the subject’s face and perform 3D reconstruction of their head. We explain the different
datasets used for our experiments in the next Chapter. For now, we present an overview of the
preprocessing steps.

Face Detection

We begin by processing the visual stream. First of all, we perform face detection using a publicly
available implementation of MTCNN (Zhang et al. 2016). This work uses a cascaded architecture
with three stages of convolutional networks to predict the faces in a coarse-to-fine manner,
by quickly rejecting the background regions in the fast low resolution stages, while carefully
evaluating a small number of candidates in the last high resolution stage. We use this method to
obtain a square bounding box of the face region in each frame of the video. We slightly enlarge
the detected bounding box to account for the whole head, crop the image around it, and resize
the interior to 256 x256 pixels. For in-the-wild videos, face detection may return false positives
in the background, which we can avoid by simply selecting the largest bounding box.

Face Segmentation

To make our method background-agnostic, we constrain the renderer to predict only the face
interior. To this end, we employ a face segmentation network that predicts a mask, which we use
to remove the non-face areas of the image. We employ the FSGAN (Nirkin et al. 2019), a simple
convolutional architecture based on the U-Net image segmenter (Ronneberger et al. 2015). We
obtain a binary mask of the face and we softly erode it to smooth its boundary. Thus, we can
only keep the face interior by element-wise multiplying the given cropped image with this face
mask.
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Head Reconstruction

We use the SPECTRE method introduced by Filntisis et al. (2023), and presented more thor-
oughly in Subsection 3.3.2, to encode the face images in the FLAME 3DMM (Li et al. 2017), as
well as estimate the scene parameters. We then render the 3D head mesh into an image, which
is used to condition the renderer. The input to the conditional neural renderer consists of the
concatenation of the rendered 3D face geometry image, as well as the Normalized Mean Face
Coordinate (NMFC) rendering, introduced by Doukas et al. (2021b). The NMFC is a semantic
representation of the head. It depends not only on the 3D head reconstruction and camera pa-
rameters of the current frame, but also on the 3DMM template. The 3D spatial coordinates of
the normalized template are used as constant color values, adding texture to the rendered head
which is reconstructed from the current frame.

Landmark Detection

We use the popular FAN detector (Bulat and Tzimiropoulos 2017), to obtain 68 facial landmarks
for each frame. The need for detecting these 2D landmarks is threefold.

1. We use the eye-specific landmarks to locate the two eye pupils.

2. We perform 2D face alignment based on a template set of 68 landmarks that are centered
in a square frame.

3. We use the mouth-specific landmarks to crop the subject’s face around the mouth.

Following the implementation of NED (Paraperas Papantoniou et al. 2022), we estimate the
eye centers as additional landmarks, by taking the weighted center of mass of pixel coordinates
enclosed in each polygon of eye landmarks. The weights are simply the inverse of pixel intensities,
thus biasing the center towards the actual eye pupil, which is expected to be darker than the
rest of the eye (Saragih et al. 2011). We then create eye images that provide the face renderer
with information about the eye gaze. These consist of merely two red circles that are drawn on
the pupil locations.

Face Alignment

We perform face alignment order to boost the renderer’s generalization ability, by bringing all
faces to a common reference. This is similar to correspondence establishment in 3DMMs, which
was shown in Figure 3.2. Aligning all faces facilitates the learning process of this network, by
removing any bias that might occur from the different poses or positions. To this end, we use the
Umeyama least-squares estimation (Umeyama 1991) of the optimal 2D similarity transformation
matrix between the 68 extracted landmarks and the corresponding landmarks of a mean face
template, per video frame. The masked face images, as well as the NMFC, shape, and eye-gaze
images are then warped according to this transformation, since they are used as input to the
renderer during training.

We present the video processing pipeline with one frame from our experiments in Figure 5.2.

Text-to-Audio Alignment

Having processed the visual stream, we move on to the audio stream. As we saw in Subsec-
tion 2.1.2, the audio waveform has to be aligned with the text’s phoneme sequence. We use the
Montreal Forced Aligner (McAuliffe et al. 2017), which converts a plain text transcription to the
corresponding sequence of phonemes paired with their start and end timestamps in the audio.
Thus, we can also extract the duration of each phoneme, which is crucial for accurate duration
prediction, since the phoneme sequence needs to be appropriately expanded before it is mapped
to a spectrogram.
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Figure 5.2: Visualization of the video preprocessing pipeline for one frame. The face is detected
and the original frame is cropped around it. Then, a mask image is created to isolate the
face interior. The head is reconstructed in 3D, while 2D landmarks are predicted from the face
image, spanning borders of the eyes and mouth, visualized at the bottom of the figure. Finally, a
transformation is calculated in order to bring the landmarks in correspondence with a landmark
template. This transformation is applied to all extracted images.
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Audio Parameters Calculation

We use the established WORLD framework (Morise et al. 2016) to calculate the fundamental
frequency of the speech signal per audio frame. Furthermore, the spectrogram is calculated by
projecting the STFT of the speech signal onto mel frequency bins. We also calculate the L2 norm
of each STFT frame as the signal’s energy. For more information about the mel spectrogram,
please revisit Subsection 2.1.3.

5.3 Audiovisual Module

5.3.1 Architecture

The task of speech generation has been tackled quite successfully by TTS systems, as we saw in
Chapter 2. To build the audiovisual module, we choose to leverage a robust TTS architecture
and extend it to incorporate a 3DMM generation component. One prominent TTS system that
is frequently used in recent publications such as the ones by Lancucki (2021) and Min et al.
(2021) is FastSpeech 2 (Ren et al. 2020). This system uses transformers (Vaswani et al. 2017)
to convert a sequence of phonemes into a sequence of mel characteristics, from which any pre-
trained vocoder can produce the speech waveform. The architecture of FastSpeech 2 is depicted
in Figure 2.3, showing the encoder-decoder transformer scheme. We extend this spectrogram
prediction architecture by also predicting a vector of SDMM coefficients per audio frame. Thus,
not only are the vector sequences of audio and visual characteristics synchronized by design,
but also TTS is converted to a bimodal task.

To be precise, our own system’s architecture follows the encoder-decoder scheme of FastSpeech 2,
but adds a second decoder for the generation of FLAME 3DMM coefficients. Both the audio
decoder and the wvisual decoder are jointly driven by the output of the text encoder, which is
advantageous in the following ways:

1. The correlation and highly complex interplay between audio and visual streams that occurs
during speaking is built into the network.

2. We construct a direct mapping of linguistic features into uttered speech, which essentially
models the process of a human reading out loud a piece of written text. Thus, the model’s
learned feature space is a neural representation of audiovisual speech.

3. We model the one-to-many mapping from audio to video during speech, by implicitly con-
sidering the joint distribution p(audio, video|text) instead of the rougher approximation
by chaining p(audio|text) and p(video|audio).

4. We avoid the redundancy of 2-stage architectures that drive the talking face generator with
features from an audio feature extractor. This feature extractor encodes the TTS system’s
synthesized speech into another speech-related representation, whereas the TTS system
already used intermediate speech features extracted from the text. Encoding the speech
signal twice is computationally redundant and does not offer any advantage in terms of
generation quality.

5. We also avoid the potential dataset mismatch and unavoidable error accumulation of cas-
caded approaches, especially those that do not retrain the TTS component. The utilization
of out-of-the-box TTS audios for driving a talking face generator is likely to introduce arti-
facts, since the latter has to be trained with real audios from video samples. Regardless of
whether the training of the two stages is performed with the same data, TTS artifacts are
amplified in the speech-to-talking-head inference. The two speech feature spaces learned
by each stage may have completely different dimensionality and topology, so the learned
projection between them is bound to introduce errors.

Since we use SPECTRE for the 3D reconstructions, the faces are modeled with the FLAME
3DMM (Li et al. 2017), which decouples a 3D head mesh of 5023 vertices into vectors of shape 3,

expression 1/7 and pose g parameters. We have introduced the FLAME formalism in Section 3.2.2.
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5.3. Audiovisual Module

The pose vector includes the 3 jaw articulation parameters @aw, modeling the jaw as a spherical
joint with 3 degrees of freedom in space (Craig 2021). Using the FLAME representation, we
model the facial expression and movements during speech using the 3 jaw pose and 50 expression
parameters, concatenated to a vector & € R53.

Formally, the audiovisual module is a neural network .4 the learns the transformation from an
input sequence py.7, to the output sequences 1.5 and F = 4. 5.

A(p1.z) = (F,71.n) (5.1)

The sequence p1.;, = (p1,...,PL), i € P contains L lexically stressed items from the ARPA-
bet phoneme set P described in Table 2.1. We also need to use an additional phoneme that
corresponds to silence. Regarding the outputs, 71.x = (#1,...,9n), ¥n € R80 is the sequence
of mel characteristic vectors that makes up the spectrogram F when concatenated. Similarly,
F1.n = (%1, ..., TN), Tn € R is the sequence of 3DMM coefficient vectors. The length N of the
predicted sequences is longer than the length L of the input, since each phoneme can span more
than one audio frame.

The outputs of the audiovisual module are converted to audio and visual elements through
pretrained models. The vocoder V creates the continuous speech signal s(t) € R.

V(F) — s(t) (5.2)

Obviously, the signal is digitally sampled, but we find that denoting it as continuous is more
intuitive in this context, since the audio samples are vastly larger in number than the video
frames.

Similarly, FLAME converts each 3DMM vector &, into a 3D mesh which is used as input to
the photorealistic module. Since we only model speech-related variation, we use the prediction
Z, along with the ground truth parameters for shape and head pose as input to the FLAME
model, whose formulation was described in Equation 3.7.

Overall, the audiovisual module needs to predict 80 mel channels and 53 3DMM channels per
audio frame. The module consists of the following submodules:

e Phonemizer: This first submodule takes a plain English text as input and converts it to
phoneme sequences according to the CMU pronunciation dictionary. For OOV words, it
uses a simple prediction network to infer their phonetic spelling (Park and Kim 2019). Note
that this component is used only for inference, since the plain text needs to be converted
to phonemes. For training, this has been already done during preprocessing.

e Encoder: The encoder projects the sequence of phoneme indices into a sequence of
phoneme embeddings, which is processed by a 4-layer transformer.

e Variance Adaptor: This submodule is used to add variance to the text encodings. The in-
formation modeled consists of three audio features, namely pitch (fundamental frequency),
spectrogram energy, and phoneme duration. The variance adaptor expands each phoneme
encoding according to its duration in mel frames, then adds pitch and energy embeddings
to the phoneme encodings.

e Audio Decoder: This submodule consists of a 6-layer transformer and a linear layer,
which project the intermediate features into the spectrogram.

e Vocoder: We use the pretrained HiFi-GAN universal generator (Kong et al. 2020a) in
order to convert the mel spectrogram into a speech timeseries.

e Visual Decoder: Similar to the audio decoder, a 4-layer transformer and a linear layer
to convert the intermediate features into timeseries of pose and expression coefficients.
The audio and visual decoders were chosen to have different depths due to the different
dimensionality of the data they need to model. The former needs to predict a value for 80
mel bands, while the latter needs to predict 53 independent 3SDMM components.
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Figure 5.3: An overview of the inference process of NEUTART, starting from a plain text
transcription, and producing a photorealistic talking head video. The audiovisual module (top
half) converts the text to a phoneme sequence, which is jointly mapped to the spectrogram and
3D head parameters, which are respectively converted to audio and 3D head by the HiFi-GAN
vocoder and FLAME rasterizer. Then, the 3D head video is used by the photorealistic module
(bottom half) to generate the subject’s face, which is swapped with the face from a reference
video (for simplicity, we only show one video frame, despite depicting the entire spectrogram
and audio sequence above). The networks that our method needs to optimize are shown in pink,
while frozen components and deterministic processing stages are shown in light blue. Note that
only the background from the reference video is used.

¢ FLAME rasterizer: A FLAME decoder projects the vector x,, of pose and expression
coeflicients to a 3D mesh, per video frame of index n. From each 3D mesh, a shape as well
a NMFC image are rasterized, which are used to drive the renderer.

The above components and the information flow among them are depicted in the top half of
Figure 5.3.

5.3.2 Training

Each training sample consists of the following information from the dataset, per utterance:
e The phoneme sequence p;.r,.
e The average pitch per phoneme flz L-
e The average energy per phoneme é;.j,.

The duration of each phoneme (fl: L.

The ground truth mel spectrogram F.
e The 3DMM coefficient vectors of the SPECTRE reconstruction ft’n

A crop of the original video around the mouth i{WN
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5.3. Audiovisual Module

The ground truth camera parameters per video frame ¢j.p.

The overall loss function L, is defined as the sum of the following loss terms, per utterance:

Pitch, Energy and Duration losses: Following FastSpeech 2, these losses aim to adjust
the predictions of the variance adaptor. They are defined as the MSE between the ground
truth value and the predicted one. For instance, we formulate the pitch loss:

Lyiten = Eall| fi = fill3] (5.3)
where f; is the predicted pitch value for the phoneme at index [.

Spectrogram loss: Again, we follow FastSpeech 2 and optimize the audio decoder’s
output, which is the spectrogram, using their L1 distance. Formally:

Lomer = ||F — F|1 (5.4)

where F is predicted spectrogram. Equation 5.4 slightly abuses the notation of L1 norm,
since it refers to images. In practice, the distance is computed on flattened versions of the
spectrograms, so that they are vector-shaped.

3DMM loss: A simple MSE between the predicted and the ground truth 3SDMM param-
eters.

Gradient loss: We penalize the temporal gradient of the 3DMM coefficient vectors, in
order to enforce smoothness on the prediction, with the loss term:

Lyrad = En[l|Tnt1 = Znlf3] (5.5)

Flow loss: We also use the temporal differences loss that Hussen Abdelaziz et al. (2020)
use in their multimodal taking face generator. We prefer to call it flow loss, to avoid
confusion with the aforementioned gradient loss, and formulate it as:

ACflow - Enm('%n+1 - :%n) - (f’rﬂrl - fﬂ)”%] (56)

where :?n is the actual target value for the FLAME vector and Z,, is the predicted vector
at frame n, for a total of N frames.

Lipreading loss: Following the speech-informed training of SPECTRE, we use the inter-
mediate features from a pretrained lipreading model (Ma et al. 2022) in order to capture
the patterns of lip movements while speaking. The ground truth video and the generated
3D mesh video are cropped around the mouth, then feature vectors are extracted for each
of their frames. We use their cosine distance as:

e

Elip:E7z 1- z .
[l 11wl

(5.7)

where f,,, fn € R5!2 are the feature vectors at frame n for the ground truth and predicted
video, respectively. The inputs to the lipreading network are visualized in 5.4.

Expression regularization loss: As Filntisis et al. (2023) note, the lipreading loss needs
an additional constraint on the magnitude of the expression coefficients, otherwise they
are prone to oscillations. Thus, along with £;;,, we use the following L2 regularization
loss:

Ereg = 1073En [wn‘|1ﬁn| |g] (58)
with w,, empirically found by SPECTRE’s authors to yield better results for:
7112
wo =4 b lnllz <40 (5.9)
2, |lehnllz > 40
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Figure 5.4: Example frames from the video of an utterance cropped around the mouth, which
are used as input to the pretrained lipreader. The first row depicts real frames from the training
video, while the bottom row shows the predicted 3D textured head’s mouth for that utterance,
during training. The lipreading loss aims to make these mouth positions as similar as possible,
contributing positively to the realism of the synthetic output. We chose to present four random
frames, instead of consecutive, so that we visualize a wider variety of visemes. The videos are
cropped to 88x88 resolution, in order to match the training of the lipreading model.

Overall, the loss function that we use to optimize the audiovisual module can be written as
follows.

£av = L:pitch + ['energy + Edur + [’mel + ESDMM + ﬁgrad + Eflow + ﬁlip + £reg (510)

We have incorporated any scaling weights into each constituent loss, for cleaner notation, thus
the losses are added without any weights in the above expression. The overall training procedure
of the audiovisual module, highlighting the network inputs, outputs, and losses, is presented in
Figure 5.5.

One implementation detail is that the 3DMM and mel sequences have different temporal reso-
lutions. The 3DMM vectors are extracted per frame, at 25 frames per second (fps), while the
latter are extracted per mel frame. The audios are sampled at 22.05 kHz, and we use a temporal
window of 1024 samples, with a hop length of 256 samples. This corresponds to % ~ 86.13
mel frames per second. In order to preserve audio quality, we upsample the 3DMM sequences to
match the audio fps, so that the two decoders can jointly learn to generate the audio and visual
streams. After the visual decoding, the predicted 3DMM vector sequences are downsampled
back to 25 fps, since loss calculation requires them to match the ground truth lengths. Both

resampling operations are performed using linear interpolation.

5.4 Photorealistic Module
5.4.1 Architecture

This module’s main component is a GAN renderer R which is trained to predict face crops using
the rendered 3D meshes as input. We follow the face renderer architecture that was proposed
in Head2Head++ (Doukas et al. 2021b) and adapted in Neural Emotion Director (Paraperas
Papantoniou et al. 2022). This approach allows us to modify the visual content of an input
video featuring a speaking person. The neural renderer is implemented with a convolutional
architecture that tackles an image-to-image translation task based on GANs.
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Figure 5.5: The training procedure of the audiovisual module requires the phoneme sequence
corresponding to an utterance’s transcription, as well as the average pitch, energy, and duration
for each phoneme in the sequence. The variance adaptor is trained to predict the pitch, energy,
and duration per phoneme, using the ground truth values for training and predicted values for
inference. The output of the audio decoder is the mel spectrogram, which is used to calculate
the spectrogram loss. Similarly, the output of the visual decoder is the 3DMM sequence, which
is mapped to a 3D mesh using FLAME, then rasterized in an image, from which lipreading
features can be computed. The ground truth values required by some of the losses are implied
inputs and not shown in this diagram. Trainable components are shown in pink color, frozen
ones in light blue. Notice that there is both audio and visual supervision, treating visual speech
synthesis as a bimodal task.

Formally, the renderer predicts a video frame I,, € RW*H*3 based on the image S,, € RW*Hx3
of the 3D shape, the NMFC image N,, € RW*H*3 the eye image E,, € RV*H#*3 a5 well as the
previous two frames. For simplicity, we denote the channel-wise concatenation of (S,,, N, E,)
as X,, € RW*XHx9 Ag we described in Section 5.2, both the width W and the height H are 256.
Thus, the renderer learns the following mapping, per video frame:

R(XnaIn—hIn—Z) - In (511)

For the start of the generation, we simply use I_o = I_; = Ij. Concatenating the sequence of
generated frames along the time dimension yields the output video I;.5, which is blended with
some reference video of the subject in order to fill the background.

The GAN training setup consists of the aforementioned convolutional generator R, as well as
an image discriminator D and a dedicated mouth discriminator Dy, aiming to enhance realism
in the mouth area. Since we are only interested in synthesizing the face region, the generator’s
output is masked with the extracted face mask M,, € {0, 1}">*# Following the implementation
of Paraperas Papantoniou et al. (2022), the generator is built similarly to Vid2Vid (Wang et al.
2018a), while the discriminators adopt their architectures from Pix2PixHD (Wang et al. 2018b).

5.4.2 Training

The renderer is trained to reconstruct the masked face from the original RGB frame, conditioned
on the shape and NMFC images. It employs a GAN-based adversarial loss (Goodfellow et al.
2014), as well as a specialized mouth discriminator for improved realism in the lip area.

As already mentioned, we present the datasets used for our experiments in the next Chapter,
but we now present an overview of the preprocessed training data. The photorealistic module is
also trained per utterance video clip. Thus, each training data instance consists of the following
items:
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» Generator » Discriminator —> P(image is real)
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Figure 5.6: A snapshot of the training procedure of the photorealistic module for one video
frame. The training follows the adversarial protocol employed in GANs, using a conditional
generator (renderer R) and two discriminators. The conditional inputs to the generator are the
aligned shape, NMFC, and eye images, as well as the two previous faces, depicted with a simple
feedback loop. Its output is masked using the ground truth face mask, and serves as the input
to the two discriminators. Mouth cropping before the mouth discriminator is implied, and so
are the ground truth faces which are used to calculate the losses.

The shape video Si.n.

The NMFC video N1.n.
The eye gaze video Eq.y.
The face mask video M.y .
The face interior video ilz N-

The mouth video I}%.

We have presented an overview of GAN training in Section 1.2. The training objectives Ly, for
the photorealistic module, following NED, Vid2Vid and Pix2PixHD, are as follows.

Adversarial loss: For the adversarial training, we employ the Least Squares GAN loss
proposed by Mao et al. (2017), which improves training stability. The game objective for
the generator R is to make the discriminator predict a high probability that a generated
sample is real:
1

L&an = Ea[(D(Xn, Tn) = 1)* + (Dur (XL T = 1)) (5.12)
where I,, is the current output of the generator as described in Equation 5.11, and IM
is the aforementioned image cropped around the mouth. In contrast, each discriminator

needs to predict low probability for fake data, and high for real data. For instance, the
discriminator seeing the entire synthesized face needs to optimize:

£Ban = FElD(Xo, 1) 1) + DX, 1Y (513)

VGG loss: This perceptual loss uses the Visual Geometry Group (VGG) network, intro-
duced by Simonyan and Zisserman (2015), to extract visual features and find the distance
between them. It can be written as:

1 .
Lvea =En Zﬁ\lﬂ(ln) = Fil)lh (5.14)

)

where F; is the i-th layer of the VGG network, with a total of M; elements.
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e Feature matching loss: This is another perceptual loss that penalizes the differences
between feature maps for real and generated images. It can be expressed similarly to
Equation 5.14, but operating on the discriminator layers D;:

1 ~
Lrv =En|) 17 1Pi(La) = Di(Lo)la (5.15)

Overall, the loss function that we use to train the generator R is:
Lon = LEsn +10Lvea + 10Lpr (5.16)

The weighting parameters were selected following the aforementioned previous works. Notice
that the discriminators are only involved in the adversarial loss, thus their training objective is
simply Equation 5.13. The overall training procedure of the photorealistic module is depicted
in Figure 5.6.

It is important to note that the renderer is unimodally trained as an image generator, similarly
to how the vocoder is pretrained with only audio supervision. Also, in contrast to NED that
used the DECA method (Feng et al. 2021) for 3D reconstruction, we have employed SPECTRE,
which focuses on visual speech-preserving 3D reconstruction. The same 3D reconstructions are
used as ground truth values for training the visual decoder in our audiovisual module, ensuring
consistency between them. The above components and the information flow among them are
depicted in the bottom half of Figure 5.3. The two modules are coupled during inference, but
are separately trained on the same data, due to the heavy computational requirements of the
neural renderer used in the photorealistic module.
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Dataset Hours Subjects Sentences Environment
TCD-TIMIT  11.1 62 6.9k Lab
LIPS2008 0.25 1 280 Lab
HDTF 15.8 300 10k In-the-wild

Table 6.1: Information about the datasets that we experimented on. The HDTF dataset is richer,
but at the same time more challenging due to the in-the-wild recording conditions. It is also
not tailored for speech synthesis, unlike the TCD-TIMIT dataset which is designed to be rich
in phoneme and viseme coverage. The LIPS2008 dataset is very low-resource, as it was released
for a visual speech synthesis challenge.

6.1 Datasets

6.1.1 Lab Conditions
TCD-TIMIT

Most large-scale audiovisual datasets are targeted towards audiovisual speech recognition
(Chung et al. 2017), or speech-driven talking face generation, often targeting emotional ex-
pression (Cao et al. 2014; Wang et al. 2020). Thus, they usually focus on the visual quality
of the recordings, their abundance, as well as the subject variability. However, for training a
text-driven audiovisual model, we need a dataset with high-quality audio as well, preferably
recorded in lab conditions. The most suitable such dataset that is publicly available is TCD-
TIMIT (Harte and Gillen 2015). It consists of high quality video and audio recordings of 62
speakers, reading sentences from the established phonetically rich TIMIT corpus. The tran-
scriptions are also available, alleviating the need for performing automatic transcription, which
is bound to introduce errors in the training data.

LJSpeech

Nevertheless, the audio recordings are still relatively noisy compared to the recordings in pure
TTS datasets. In order to mitigate this, as well as increase the robustness of speech generation, we
use transfer learning (Yosinski et al. 2014) by initializing the audiovisual module’s encoder and
audio decoder with weights from a FastSpeech 2 model trained on the LJSpeech dataset (Ito and
Johnson 2017). LJSpeech is an established dataset in speech synthesis, and consists of recordings
of a single female speaker reading passages from non-fiction books, with a total duration of
24 hours. After that initialization, we train the audiovisual module using the audios and 3-
dimensional face reconstructions of TCD-TIMIT clips. The photorealistic module is trained
using the video frames of the same TCD-TIMIT clips.

LIPS

We also experimented with the low-resource LIPS2008 dataset, recorded in lab conditions, and
presented in Theobald et al. (2008). This dataset was created to provide an evaluation benchmark
for visual speech synthesis methods.

6.1.2 In-the-wild
HDTF

Furthermore, we conducted experiments using in-the-wild videos to demonstrate the capabilities
of our method. We used clips from the High-Definition Talking Face (HDTF) dataset (Zhang
et al. 2021), which consists of high quality online videos, mostly of American politicians giving
speeches. Sample frames from each dataset are presented in Figure 6.1, while their technical
characteristics are highlighted and compared their in Table 6.1.
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Figure 6.1: Sample frames from the datasets that were used in this Thesis. The top row presents
sample clips of different subjects of the TCD-TIMIT dataset, recorded in lab conditions. The
middle row consists of frames depicting in-the-wild samples from HDTF, and is borrowed from

Zhang et al. (2021). The bottom row depicts consecutive frames from an utterance of the
LIPS2008 dataset.

YouTube videos

Finally, we experimented with completely unconstrained talking head videos that are publicly
available on YouTube. We used those videos to only train the photorealistic module, and drove
it with the audiovisual output from a TCD-TIMIT subject of the same gender, in order to
examine its generalization capabilities.

6.2 Evaluation

We chose to evaluate our model only on samples from established and well-known datasets, in
order to conduct fair and reproducible comparisons. We conducted qualitative and quantitative
evaluations of our method and comparisons with recent state-of-the-art methods. As mentioned
in the previous Section, we experimented with the large-scale, multi-speaker audiovisual dataset
TCD-TIMIT (Harte and Gillen 2015), as well as some in-the-wild videos from the HDTF dataset
(Zhang et al. 2021). The main experiments were conducted on TCD-TIMIT subjects, and those
results are thoroughly analyzed in the next Subsections.

We first trained the audiovisual module in a multispeaker setting, following the multispeaker
architecture of FastSpeech 2 (Ren et al. 2020), in order to benefit from the data abundance
of the entire train split of the dataset. The total footage per speaker is less than 10 minutes,
which is too low for training a speech synthesis model. Also, as already mentioned, we initialized
the encoder and audio decoder with pretrained weights from the LJSpeech dataset. The visual
decoder was randomly initialized, and all the models were trained for 50,000 iterations in each
experiment. The trained multi-speaker model can be used as is, or fine-tuned to a particular
identity for a few epochs, in order to create person-specific models. We observed that person-
specific models yield more realistic results, so we fine-tuned the multispeaker audiovisual module
on footage from single subjects, for 3,000 iterations. The photorealistic module is inherently
person-specific, trained on RGB videos of each identity. We show some generated samples in
Figure 6.2.
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campfire removal fortune smiles

manuscripts

Figure 6.2: We present a few frames from various samples that we generated, with subjects from
TCD-TIMIT and in-the-wild YouTube videos. Our method can produce photorealistic videos of
talking heads, with lifelike lip articulation. On the left we include the word or phrase uttered in
each set of frames. The top and bottom subjects are from TCD-TIMIT, while the middle ones
are from the speech “Tell India’s Story” and the channel “Reaction Therapy”, respectively.
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As discussed in Section 4.4, valuation for talking faces is a challenge, since statistical error
measures do not correlate very well with human assessments (Chen et al. 2020a). We objectively
evaluated our model using both statistical and perceptual metrics across different modalities,
and also conducted a user study.

6.2.1 Compared Methods

We want to evaluate our model based on its audio and photorealistic video output, therefore we
compare with recent methods that generate RGB video. As a result, we are not comparing our
model against AVTacotron2 (Abdelaziz et al. 2021) or UniFLG (Mitsui et al. 2023), which are
true audiovisual synthesizers, because their output is an untextured 3D rendering. Furthermore,
both are proprietary implementations, while we would like to experiment with open-source
works, for the sake of reproducibility.

Furthermore, the research conducted in this Diploma Thesis targets audiovisual speech genera-
tion from text. Since there are not any recent publicly available text-driven methods, the fairest
option would be to compare against audio-driven models that output photorealistic video, but
using synthetic audio to drive them. We choose to compare our model against the following
popular lip-syncing models, with our method being abbreviated as NT in some Tables and
Figures.

e Wav2Lip (Prajwal et al. 2020), abbreviated as W2L
o SadTalker (Zhang et al. 2022c), abbreviated as ST
o VideoReTalking (Cheng et al. 2022), abbreviated as VRT

These models were briefly described in Section 4.2, along with the analysis of the audio-driven lip-
syncing mechanism. We sampled these models using audios from a FastSpeech 2 TTS model, with
the same encoder and audio decoder architecture as our audiovisual module. This choice ensures
the best possible fairness, since this TTS model and our audiovisual module have the same
architecture and number of parameters, and are trained on the same data. Also, the compared
methods are either one-shot or few-shot, meaning that they are not person-specific. Rather,
they directly animate a given reference frame of the subject, or simply modify a given reference
video by changing the subject’s mouth. This offers them excellent generalization capabilities by
design, however they are not fit for personalized highly-realistic avatars. We used real videos
from TCD-TIMIT as reference during sampling from the aforementioned models.

6.2.2 Objective evaluation

The objective evaluation is performed on 3 randomly chosen subjects from the TCD-TIMIT
dataset, unseen during the training of the multispeaker model. We use person-specific audiovisual
and renderer modules and compare NEUTART’s results with the aforementioned methods. We
use a variety of metrics in our comparisons, both statistical and perceptual.

For evaluating the audio, we use the average Mel Cepstral Distance (MCD), a statistical measure
that penalizes the deviation from the ground truth spectrogram. For a predicted spectrogram
F is:

MCD = 10log,, ||F — F||? (6.1)

where F would be the ground truth spectrogram. We also perceptually evaluate the intelligi-
bility of the audio using the (audio) character error rate (ACER) from the Wav2Vec2 speech
recognition model (Baevski et al. 2020). In general, Character Error Rate (CER) is defined as
the ratio of character changes that need to happen to the transcription so that it matches the
reference (Jurafsky and Martin 2021):

#substitutions + #insertions + #deletions
Total characters in the reference

CER = (6.2)
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ID MCD (dB) ACER (%) LMD LMVE FID VCER (%) VER (%)
Gold - [6.06] - - - [84.45] [75.96]
W2L  44.21 12.94 1.3125  0.3238 18.36 76.78 68.30
38F ST 44.21 12.94  14.3464 04238 22149  79.82 73.33
VRT  44.21 12.94 1.6474  0.3150  37.32 80.76 75.48
Ows  43.41 10.94  1.1813 0.2889 38.14 74.70 68.78
Gold - [29.64] - - - [88.68] [78.52]
W2L 4258 25.01  1.0609 0.2805 18.45 82.21 73.81
42M ST 42.58 25.01 7.0019 04010 167.47  80.42 73.09
VRT 4258 25.01 15036 0.2753  25.34 78.97 71.38
Ows  42.36 32.50 1.2073  0.2867 2291 78.64 71.15
Gold - [7.36] - - - [88.53] [79.42]
W2L  43.50 18.07 1.9305  0.4479 17.73 87.62 81.75
49F ST 43.50 18.07 53592 0.5820 139.10  83.79 77.41
VRT  43.50 18.07 1.9215 04347  29.47 84.76 78.15
Ows  43.64 16.93 1.9576  0.4132  25.06 76.88 72.02
Gold - [14.35] - - - [87.22] [77.97]
WL  43.43 18.67  1.4346 0.3507 18.18 82.20 74.62
Mean ST 43.43 18.67 8.9025 04689 176.02  81.34 74.61
VRT  43.43 18.67 1.6908  0.3417  30.71 81.50 75.00
Ours  43.14 20.12 1.449  0.3296 28.70 76.74 70.65

Table 6.2: Generation quality metrics on 3 random, unseen subjects from TCD-TIMIT. We
should note that the audio evaluation of 42M does not seem comparable to the other subjects,
or with the metrics extracted from the multispeaker model, leading us to believe that it is an
outlier of the dataset. Nevertheless, our method performs very well in terms of lip landmark
metrics and FID. Wav2Lip may have a lower FID, but it performs significantly worse than other
methods in terms of human evaluation, due to the visible bounding box in the subject’s mouth.

Finally, our method is consistently superior when it comes to lipreading.
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Method MCD (dB) ACER (%)
Gold - [16.21]
FastSpeech 2 40.13 27.04
Ours 40.24 24.85

Table 6.3: The positive impact of multimodality on audio generation. The audio produced from
NEUTART is more intelligible than a plain TTS model of the same architecture, without any
significant compromise on the spectrogram quality, indicating the effectiveness of visual super-
vision for speech. We used the multispeaker models for audio sampling in this experiment, in
order to benefit from the abundance of samples.

LMD LMVE FID VCER VER

Wav2Lip 1.6516 0.3314 24.18 86.67 81.71
Ours 1.4490 0.3296 28.70 76.74 70.65

Table 6.4: We fine-tuned Wav2Lip on TCD-TIMIT in order to conduct fairer comparisons with
NEUTART, so that both compared models have been trained on the same data. Our objective
experiments on visual generation quality show similar results to the original comparisons of
Table 6.2. Notably, Wav2Lip’s generalization capability deteriorated after finetuning.

The visual articulation quality is statistically assessed by the average Lip Landmark Distance
(LMD) and the average Lip Landmark Velocity Error (LLVE) between the predicted video and
the original. The landmarks are extracted with Google’s MediaPipe framework (Kartynnik et al.
2019), to avoid any bias towards our model, had we used the same landmark detector as the
one during data preprocessing (Bulat and Tzimiropoulos 2017).

Moreover, following Filntisis et al. (2023), we perform perceptual visual evaluation by cropping
the mouth videos and using the pretrained AV-HuBERT (Shi et al. 2022a; Shi et al. 2022b) as a
lipreader. The metrics we use are the (visual) character error rate (VCER) and the viseme error
rate (VER), after mapping the phonemes into visemes using a predefined dictionary. Finally, the
photorealism is evaluated with Fréchet Inception Distance (FID) (Heusel et al. 2017), a popular
measure for evaluating generated images.

Note that calculating some of the aforementioned metrics requires the compared sequences to
be of the same length, therefore we align them using DTW (Sakoe and Chiba 1978), a method
for aligning timeseries by removing the mismatch caused by local temporal shifts. We present
the evaluation results in Table 6.2. All metrics indicate better performance when their value is
lower, since all of them are types of error measures.

The results indicate that NEUTART can produce articulate and coherent talking heads. We also
compare NEUTART’s performance on audio synthesis compared to the equivalent T'TS system,
which would be the FastSpeech 2 model that we used in order to drive the lip-sync methods.
We present the pure audio synthesis metrics in Table 6.3. The results indicate that including
a visual visual supervision can improve the generated audio’s quality, especially in terms of
intelligibility, as the lower audio CER suggests. This supports the effectiveness of multitask
learning and showcases that visual supervision is beneficial for audio synthesis.

We should note that a crucial distinction between our architecture and the compared few-shot
methods is that they use a reference face for inference. However, they have not been trained on
TCD-TIMIT, which begs the question whether they would outperform NEUTART had they been
trained on the same dataset, despite their few-shot design. In order to address that discrepancy
of training data, we repeated the objective evaluation comparisons after fine-tuning Wav2Lip on
TCD-TIMIT. Unfortunately, the other two methods have not open-sourced their training code
and setup. We present the additional comparisons in Table 6.4.

We observe the same trend as in Table 6.2, with our method prevailing in most metrics. In fact,
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FastSpeech 2
(audio only)

66 / 54 74 / 46 87 / 33 59 / 37
55.0% / 45.0% 61.7% / 38.3% 172.5% / 27.5% 61.5% / 38.5%

SadTalker VideoRetalking Wav2Lip

NEUTART

Table 6.5: User study results with A/B preference scheme. The results show that NEUTART
(left) was preferred A times, while the competing method was preferred B times, with a total of
A+ B pairs assessed. The corresponding percentage is also shown. Users consistently judged our
method as more realistic than the competing ones, both in terms of audio and video generation.

Wav2Lip’s visual performance deteriorated after fine-tuning, which can be attributed to the fact
that its original model was trained on the much larger LRS2 dataset (Afouras et al. 2018a) using
ground truth audios of in-the-wild quality. Fine-tuning on the less massive lab-recorder TCD-
TIMIT, in addition to being driven by synthetic audios, might have impacted its generalization
capability due to the mismatch of driving audios between training and inference.

6.2.3 Subjective evaluation

We also conducted a user study, comparing our method against FastSpeech 2 in terms of audio
realism, as well as all the aforementioned audio-driven methods in terms of audiovisual realism.
To do this, we first generated a set of unseen phonetically rich text transcriptions using an
appropriate prompt to a large language model. These sentences were used to generate the samples
for each method, using two randomly chosen subjects (one male and one female speaker).

For the study, we adopted a preference test design. For each audio-based question users were
presented with two audio files and were asked to select the one that sounds more realistic. For
the audiovisual part, two synthetic videos where presented and the users were asked again to
select the one that they find more realistic. Note that in each question we provided users with
the transcription of the audio or video. In the case of video we also provided users with an
image of the synthetically generated person from the original footage. Both order and position
randomization were adopted, so the selection of the other method and the videos’ order in the
pair was randomized in each question. Each user answered a total of 4 audio-based questions
and 15 video-based questions (5 questions for each audiovisual pair: NEUTART against some
another method). A total of 21 users completed the questionnaire and the results can be seen
in Table 6.5.

We see that our method is consistently perceived as more realistic by independent users.
SadTalker is evaluated as the second best method, then follows VideoReTalking. We also revisit
the effectiveness of multitask learning for TTS, by showing that the audiovisual model generates
speech that is preferable to a plain TTS system’s output. The first sample from each of the two
subjects is presented in Figure 6.3, where we annotate key shortcomings of previous methods.

6.2.4 Ablation study

In order to study the effects of each additional visual loss on the talking face generation, we
performed an ablation study on the TCD-TIMIT dataset. The audiovisual generator’s goal is
to synthesize 3D faces as accurately as possible, so we evaluated the generation in terms of
audio and 3D reconstruction, with visual metrics computed from images of 3D reconstructions.
We present the results in Table 6.6. We chose to perform the ablation on the multispeaker
audiovisual module, observing its convergence and generation results, due to the abundance
of samples. Most metrics are lower when the model is trained using all visual losses. Having
validated the effectiveness of our losses, we used them for the person-specific fine-tuning.
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W2L

ST

VRT

Ours

W2L

ST

VRT

Ours

Figure 6.3: Comparison of our method against previous ones in lab conditions. Wav2Lip has poor
resolution, and shows a bounding box artifact around the mouth (highlighted with black boxes).
SadTalker and VideoReTalking produce frames at a much better resolution, since they use a
face enhancing network, however this enhancement produces artifacts that alter the person’s
identity. For instance, the female subject’s skin is oversmoothed, while the male subject’s eye
color is changed (highlighted with yellow boxes). All three of them produce some frames with
unrealistic mouth interior, and seem to alter the subject’s teeth (highlighted with red boxes).
Our method generates frames with well-formed lips, teeth and mouth interior, without creating
any uncanny effects in the subject’s face.
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Liip Lgrad Ljow MCD (dB) ACER (%) LMD LMVE VCER (%) VER (%)

X X v/ 41.98 21.91 0.5053  0.3502 82.40 77.90
X 4 X 41.91 22.88 0.6856  0.3602 85.66 80.00
X v v 40.31 25.05 0.4318 0.3261 77.15 70.99
v v v 40.31 25.40 0.5063  0.4203 77.05 70.66

Table 6.6: Ablation study on the effectiveness of visual losses. Apart from the lipreading loss
which increases the articulation realism, the usage of gradient and flow losses ensures more
accurate landmark prediction. As a result, we include them for training the audiovisual module.

SadTalker VideoRetalking Wav2Lip

135 / 21 65 / 91 107 / 49
86.54% / 13.46% 41.67% / 58.33% 68.59% / 31.41%

NEUTART

Table 6.7: User study results on in-the-wild videos with A/B preference scheme. The results
show that NEUTART (left) was preferred A times, while the competing method was preferred
B times, with a total of A + B pairs assessed. The corresponding percentage is also shown.
Even under in-the-wild conditions, our method yields very promising results. Users significantly
preferred NEUTART over Wav2Lip and SadTalker.

6.2.5 In-the-wild experiments

We also experimented with in-the-wild videos and conducted an additional user study with 25
participants. This time, we evaluated only visual realism, due to the aforementioned limitations
of audio synthesis from poor recordings. We used 2 subjects from the HDTF dataset, following
the same protocol as before. We present the user study results in Table 6.7, and sample frames
from each method in Figure 6.4.

It is obvious that even under in-the-wild conditions, our method yields a very promising perceived
quality. Users significantly preferred NEUTART over Wav2Lip and SadTalker, with a binomial
test p-value which is less than 10™° in both cases. While VideoReTalking was preferred to
NEUTART, this result was not so statistically significant, with the corresponding value p>0.1.

We note that experimenting with in-the-wild videos is particularly challenging for two main
reasons. First of all, they are not paired with text transcriptions, which forces us to use the
state-of-the-art speech recognition system named Whisper (Radford et al. 2023) in order to
transcribe the speech. The Whisper Large V2 model has an average word error rate of 12.8%
(see Equation 6.2 for the similar character error rate), which introduces considerable noise in the
text-to-audio alignment. Secondly, they are not guaranteed to offer enough phonetic variation,
causing artifacts in some challenging phonetic sequences. Thus, the audio in samples generated
from those datasets is of poorer quality compared to lab-recorded datasets. Despite that, our
experiments show that the audio and visual streams are consistent, with realistic lip articulation.

A qualitative conclusion that can be drawn after all the above experiments is that NEUTART
is able to generate videos that achieve both audio and visual realism, when trained on data
of appropriate quality. In contrast, the compared few-shot methods sacrifice some aspect of
generation quality in order to be able to work on unconstrained scenarios. Nevertheless, the
creation of a high-quality virtual assistant or animated avatar, either for academic or commercial
purposes, would require careful data collection. In that scenario, our method would be able to
show it full potential, similarly to the TCD-TIMIT results.
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Figure 6.4: Comparison of our method against previous ones, with samples from two HDTF
subjects. The compared methods display the same shortcomings, since they do not really dif-
ferentiate between lab or in-the-wild conditions. Our method’s visual generation is still very
realistic and well-synced with the audio, despite the audio not being as intelligible compared to
training in lab recordings.
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Chapter 7. Conclusion

7.1 Summary

In this Diploma Thesis, we delved into the area of speech synthesis and talking face generation.
In the beginning, we presented the some preliminaries from the area of deep learning, especially
sequential architectures. Audiovisual speech synthesis, as the name suggests, pertains to the
modalities of audio and vision. We first visited each modality separately by exploring the tasks
of text-to-speech synthesis and 3D head modeling. Then, we moved on to the actual area of
audiovisual speech synthesis, presenting the mechanisms and the latest related work.

After presenting all the above bibliography in Chapters 1-4, we moved on the experimental part.
We developed a text-driven audiovisual talking face model, named NEUTART, that generates
photorealistic videos. Our model approaches talking face generation as a bimodal task, with a
transformer-based encoder-decoder architecture simultaneously predicting both the mel spec-
trogram and the 3D face parameters from a phoneme sequence. This allows for better capture of
the audiovisual correlation, which benefits both modalities, and also alleviates the redundancy
of extracting features from generated speech in order to create a video. The predicted 3D facial
reconstructions are used as conditional input to a GAN-based neural renderer.

The model is trained on accurate 3D facial reconstructions, employing many perceptual losses
such as a lipreading loss for visual supervision, which benefit the overall realism of the synthetic
results. Overall, our experiments comparing NEUTART with recent state-of-the-art models re-
veal the following key takeaways:

e The objective and subjective evaluation shows that our model’s samples are more realistic
than previous few-shot approaches that do not adopt an audiovisual representation for
visual speech, especially in terms of lip articulation.

e The ablation study reveals the effectiveness of visual losses in overall generation quality.

e We also showcase that treating speech synthesis as a bimodal task, by including visual
supervision, enhances audio intelligibility compared to a plain TTS system.

7.2 Future Work

Towards further improving or expanding our work, we briefly highlight a few aspects that can
be examined.

e Robustness: Our model can produce exceptional results when trained in lab-recorded
datasets, thus it is tailored for creating human avatars for virtual assistants. Nevertheless,
the machine learning community in the area of talking face generation is keen on exploring
in-the-wild scenarios. As we have already discussed, NEUTART is lacks robustness when
fine-tuned on subjects with poorer quality audio and automatic transcriptions. One possi-
ble way of tackling this shortcoming would be to research how a voice cloning architecture
(Arik et al. 2018) can be adapted for audiovisual modeling.

e Computational cost: Performance is usually disregarded in talking face generation, es-
pecially in open-source research, whereas low computational cost and inference speed are
essential for commercial applications and mobile devices. In NEUTART, the slowest com-
ponent is the neural renderer, which operates needs to render the subject’s head in 3D
using classical rendering, then use it to predict the face in the video’s pixel space. The
rendering procedure can be further optimized in order to achieve faster sampling.

e End-to-end training: Employing end-to-end training by backpropagating the image-
space error of the renderer’s output back into the audiovisual submodule, may further
improve the overall realism of the generated output.

e Controllability: It would be very interesting to pursue better guidance to the one-to-
many mapping in audiovisual TTS, by using explicit labels or extracting the style from
another reference video. A cutting-edge addition to the pipeline would be to control the
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style via a text prompt, following the recent success of promptable image generators (Gu
et al. 2023). Prompting with emotional labels, by leveraging pretrained vision-language
models, has been explored in Xu et al. (2023), but to the best of our knowledge there are
not any published works that are fully controllable.

7.3 Ethical Considerations

As already mentioned in Chapter 1, deep learning systems for photorealistic audiovisual speech
synthesis like the one developed in this Diploma Thesis can have a very positive impact in many
applications such as digital avatars, virtual assistants, accessibility tools, teleconferencing, video
games, movie dubbing, and human-machine interfaces. However, at the same time, this type of
technology has the risk of being misused towards unethical or malicious purposes. The misuse of
such models can mislead viewers, damage the reputation of subjects, and cause acute mistrust in
digital media. It may also be used produce harmful videos of individuals without their consent,
raising concerns related to human rights. We refer to the following articles about an extensive
discussion of these issues: Chesney and Citron (2019), Diakopoulos and Johnson (2021), and
Yadlin-Segal and Oppenheim (2021).

We believe that researchers and engineers working in the relevant fields need to be mindful of
these ethical concerns and contribute to raising public awareness about the capabilities of such
AT systems, improving the public’s media literacy. Other countermeasures include contributing
in the development of state-of-the-art systems that detect deepfake videos (Zhang 2022; Masood
et al. 2023). In our work, generated videos are always presented as synthetic, either explicitly
or implicitly (when clearly implied by the context), and encourage other researchers and users
to follow this practice. Notably, the code that was developed to train and sample from our
audiovisual model, was released under an ethical license (Milis 2023). The license permits free
usage of the software provided that it is used responsibly, adhering to ethical guidelines. Namely:

1. Respecting human rights, privacy, and dignity.

2. Strictly refraining from the promotion of hate speech, discrimination, violence, or any
other form of harm.

3. Strictly refraining from the creation of deepfake content with any type of malicious intent.

We strongly believe in fruitful dialogue between the research community and the public, and
anticipate that artificial intelligence continues to make progress towards pushing the boundaries
of knowledge and producing beneficial applications for humanity.
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