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Abstract 
Clustering is commonly used in various fields such as statistics, geospatial analysis, and 

machine learning. In supply chain modelling, clustering is applied when the number of 

potential origins and/or destinations exceeds the solvable problem size. Related methods 

allow the reduction of the models’ dimensionality, hence facilitating their solution in 

acceptable timeframes for business applications. The weighted minimum sum-of-square 

distances clustering problem (Weighted MSSC) is a typical problem encountered in many 

biomass supply chain management applications, where large numbers of fields exist. This task 

is usually approached with the weighted K-means heuristic algorithm. This study proposes a 

novel, more efficient algorithm for solving the occurring weighted sum-of-squared distances 

minimization problem in 2-dimensional Euclidean surface. The problem is formulated as a set-

partitioning problem, and a column-generation inspired approach is applied, finding better 

solutions than the ones obtained from the weighted version of the K-means heuristic. Results 

from both benchmark datasets and a biomass supply chain case show that even for large 

values of K, the proposed approach consistently finds better solutions than the best solutions 

found by other heuristic algorithms. Ultimately, this study can contribute to more efficient 

clustering, which can lead to more realistic outcomes in supply chain optimization. 

Keywords: Clustering, Weighted MSSC, Supply Chain, Biomass, Heuristics. 

1.Introduction 
Biomass is established as an important alternative to fossil fuels in the quest for renewable 

energy sources. Biomass plays a versatile role in energy systems, contributing not only to 
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power and heat generation [1] but also serving as a source for biofuels with widespread 

applications, particularly in the transportation sector. Currently, biomass accounts for over 

70% of the renewable energy production globally, while it contributes to a 4% on the fuel 

demand in road transport. According to the European Union’s (EU) long-term strategy, the 

objective is to achieve a climate-neutral EU by 2050 [2]. To this end, sustainable biofuels have 

the potential to play a decisive role in decarbonizing the transport sector (road, aviation, 

maritime etc.), while ensuring a high level of affordable and accessible transport connectivity 

[3]. The emphasis is especially on second-generation biofuels (known as advanced biofuels), 

which originate from dispersed sources, such as agricultural residues, biomass fractions from 

mixed municipal and industrial wastes, animal manure, wastes and residues from forestry, 

etc. According to the EU Renewable Energy Directive 2018/2001, advanced biofuels and 

biogas production are expected to increase at least to 1% of the final energy consumption in 

the transport sector in 2025 and at least to 3.5% in 2030 [4]. 

However, the economic viability of using biomass as a renewable energy source is affected by 

various factors, like uncertainty in feedstock availability, seasonal fluctuations in biomass 

production, and widespread geographical dispersion [5],[6]. Considering also the volatile and 

competitive global energy market, the continuous technological developments and the more 

stringent standards and commitments on promoting Sustainable Development Goals, the 

design of robust biomass supply chains becomes a highly demanding procedure needing a 

comprehensive system analysis. The overall challenge is to develop a decision-making 

framework able to amalgamate a multiplicity of factors, manage uncertainty and provide 

valuable key performance indicators [7].  

A commonly applied approach to support decision-making in such complex supply chain 

schemes is optimization. Optimization is tightly coupled with studying, modeling and solving 

a multiplicity of industrial and energy problems at any functional level: short-, medium- and 

long-term planning [8]. Supply chain optimization models help the decision makers and 

interested stakeholders make the right strategic and tactical decisions across the upstream, 

midstream and downstream stages, in order to generate a considerable profit and preserve 

overall efficiency and sustainability [7]. Mathematical Programming provides the framework 

to construct such optimization models able to include a variety of feedstock types and sources, 

intermediate and final products, energy forms and product streams, technologies, and 

processes, while incorporating economic, environmental, and social aspects related to a 

typical biomass supply chain. These models can also consider various cost categories 

(harvesting, processing, transportation etc.) and special constraints while they can express the 

necessary conditions such as biomass availability and geographical dispersion. Furthermore, 

these models can have interoperability with Geographical Information Systems (GIS) which 

provide rich spatial data (e.g., physical locations of fields, warehouses, conversion facilities, 

roads, etc.) and are equipped with analytical capabilities (e.g. K-means clustering) [9].  

The study and analysis of real-life biomass supply chains often includes large numbers of 

biomass fields and entails the expression of many series and types of variables and 

mathematical relationships, leading to the construction of detailed and large-scale models. 

When computational complexity increases, the commonly used exact solution algorithms, can 

become insufficient to obtain solutions in reasonable timeframes [10]. In such cases, a 

reduction of the size of the optimization problem, achieved by the reduction of the number 

of decision variables is required. This can be achieved by employing clustering and aggregation 

techniques, to formulate manageable and solvable biomass supply chain models [11].  



 

 

Clustering is a technique commonly used in various fields beyond the biomass supply chain 

field, such as statistics, geospatial analysis, and machine learning, being tightly linked with the 

optimization concept. Specifically in supply chain modelling, clustering is naturally required 

when the number of potential origins and/or destinations is quite large and the native routing 

assignment significantly enhances the overall combinatorial optimization load and the 

solvability of the cost/distance minimization problem [12]. Transforming the initial depiction 

of supply chain nodes to an equivalent partitioned representation can expand the applicability 

and suitability spectrum in supply chain management gaining benefits in model generation 

and solution times. 

The motivation for dealing with the clustering problem in biomass supply chains originated 

from the research and modeling objectives of the Horizon 2020 CERESiS project [13], which 

aims to produce sustainable liquid biofuels through the cultivation of suitable energy crops 

for the remediation and management of contaminated land. The optimization of the 

respective biomass supply chain is significantly affected by the inherent geographical 

dispersion of the biomass sources and the fluctuation of the feedstock supply. Common 

clustering approaches in the literature either employ the standard K-means algorithm or 

spatially divide the map into a grid, arbitrarily placing the coordinates of the aggregated field 

in the center. Both approaches overlook the total hectarage of each field, potentially leading 

to significantly inaccurate transportation cost estimates, hence affecting the accuracy of the 

whole supply chain modeling. This happens because these algorithms assume equal-sized 

clusters, while in real-world applications, biomass fields often have varying hectarage. It 

should be noted that similar issues exist in many other supply chain optimization contexts 

where a large number of upstream supply nodes/origins exist, such as recycling, waste 

collection, agri-food etc. 

To address this issue, the present study introduces a novel weighted K-means algorithm 

accounting for both field coordinates as well as field size, resulting in a more accurate 

representation of transportation costs. Incorporating this innovative approach, the aim is to 

render large biomass supply chain models computationally feasible while also mitigating any 

inaccuracy linked to traditional and arbitrary clustering. The overall modeling improvement 

facilitates the end goal of drawing robust and economically viable biofuel or bioenergy 

production plans based on energy crops cultivated in geographically dispersed land parcels. 

The methodological novelty lies in the development of a new heuristic approach to solve the 

weighted sum-of-squared distances minimization problem, that considers field size in the 

clustering process, thus leading to more accurate clustering results in respect to the real 

system compared to the weighted version of the well-known K-means heuristic, when the size 

of each field/origin is important. The application novelty lies in applying a heuristics approach 

for clustering that can consider the field size specifically in the biomass supply chain context. 

The proposed approach can be equally applied in other supply chain contexts, where the 

weight of each origin could denote quantities of materials available or other values, instead 

of the field size of the biomass supply chain problem. 

This paper is structured as follows: Section 2 presents the literature review. Section 3 

introduces the model formulation. Section 4 describes the column generation approach. 

Section 5 analyses the results of the computation experiments. Finally, section 6 concludes 

the study and discusses future research perspectives. 



 

 

2. Literature Review 
Numerous studies deal with the optimization of biomass supply chains considering various 

logistics and processing stages involved, from the energy crops cultivation or feedstock supply 

up to biofuel or bioenergy production. For example, Fattahi and Govindan [14] presented a 

multi-stage stochastic program that minimizes the cost of a biofuel supply chain to satisfy the 

demand, accounting for seasonal and stochastic biomass availability, and incorporating 

environmental and social impact. In a study by Momenitabar et al. [15] the biofuel supply 

chain was optimized with a focus on sustainability criteria to determine the optimal siting of 

the conversion facilities. Sosa et al. [16] developed a linear programming tool taking into 

account moisture in biomass, showing its impact on harvest area timeline and storage, as well 

as transportation elements within the supply chain, including strategies to optimize truckloads 

within legal weight and volume constraints. In the abovementioned studies as well as in much 

of the relevant literature, a detailed record of biomass/feedstock field data is often lacking or 

unavailable due to the inherent difficulty of gathering input from dispersed biomass fields. 

This is the reason that detailed data from biomass supply hubs’ location (e.g. fields) is usually 

consolidated or assumed to be available in a single geographical point, hence limiting the 

accuracy of the modeling process outcomes. However, in instances where this abundance of 

information is available and is used as the starting point for the biomass supply chain 

modeling, a method of field aggregation may become necessary for grouping the fields, to 

reduce the overall model complexity and allow its solution in reasonable times using 

mathematical optimization. 

For this purpose, clustering algorithms are important and inextricably linked with biomass 

supply chain design, management and optimization. A common approach in the biomass 

supply chain literature lies in treating the substantial volume of data from supply hubs, which 

renders the supply chain optimization problem complex and in certain cases unsolvable. For 

example, O’Neill et al. [17] developed a stochastic mixed-integer linear programming (MILP) 

biofuel supply chain model, aiming simultaneously at the maximization of economic 

performance and the minimization of the environmental impact. Their dataset contained over 

40,000 fields, which rendered the problem unsolvable with exact optimization methods. To 

reduce computational cost, clustering was employed at resolutions of 25 km2, 100 km2, 225 

km2, 400 km2, 625 km2 and county level. Uen and Rodríguez [18] presented a MILP model 

maximizing the net present value of a food waste supply chain for renewable energy 

generation. The model involved a large dataset with 102 food waste sources and 621 

candidate conversion facilities sites (anaerobic digestion and co-digestion), resulting in high 

computational cost. To address this issue, they used the K-means algorithm to create more 

representative centroids based on spatial proximity; the final cluster selection consisted of 9 

clusters for 291 aerobic digestion candidate sites and 12 clusters for the 330 co-digestion 

candidates. Psathas et al. [6] developed a biomass-to-biofuel supply chain that integrated 

large-scale centralized, smaller-scale decentralized as well as mobile processing facilities. The 

complex MILP model, applied to a use case involving over 3,000 biomass fields, showcased 

the inability to achieve a solution for such a high-dimension optimization problem, prompting 

the need for clustering the fields in a more manageable group of 16 clusters using the K-means 

algorithm. 

The application of clustering algorithms in the context of biomass and bioenergy is also 

apparent in Vehicle Routing Problems (VRPs). Ayoub et al. [19] developed a bioenergy decision 

support system which combined optimization and simulation for the design of bioenergy 



 

 

production. In their system, they employed fuzzy C-means clustering to define the location 

and optimal size of storage and bioenergy conversion facilities based on biomass collection 

points, with the end goal being the minimization of transportation costs, CO2 emissions and 

number of workers. Zamar et al. [20] applied near-neighborhood search and a modified K-

means clustering technique for the route optimization in the bale collection problem, aiming 

to minimize travel time and fuel consumption. The constraint of this new K-means algorithm 

limited the temporary storage sites to valid locations. Zamar et al. [21] presented a stochastic 

VRP model for the biomass residue collection from a set of sawmills to identify the optimal 

routing schedule. Due to variations in biomass quality, the aim was to maximize the ratio of 

energy returned on energy invested. This combination of uncertainty added into the 

simulation for the VRP required large computational effort. To make the problem more 

computationally manageable, the 25 sawmills were spatially clustered based on the travel 

distance matrix using the K-medoids technique into 4 distinct groups and the itinerary was 

then rerouted to the center of each cluster.  

Based on the above, clustering algorithms play a vital role in addressing challenges associated 

with upstream, midstream and downstream supply chain stages in biomass supply chain 

optimization, where typically a large number of distinct locations are involved in real-life 

systems. They can identify potential processing hubs and deal with large datasets in MILP 

models with high complexity. Clustering algorithms, such as GIS proximity-based clustering, K-

means, K-medoids, C-means prove to be essential in creating manageable data subsets, 

enabling the reduction of computational burden and ensuring reasonable solution times, 

allowing the construction and use of decision support systems suitable for business 

applications.  

Very limited applications of the Weighted-MSSC problem can be found; one of them 

presenting the weighted version of the classical K-means algorithm for a use-case regarding 

locating distribution centers for COVID-19 vaccines throughout the US [36]. We use the 

related dataset in our computational results section. Similarly, the query “weighted MSSC 

clustering” returns a number of papers on clustering ensembles where different clusters have 

different weights, but individual data points have no weights assigned to them as in our case. 

Overall, even though there have been a number of papers advancing the state-of-the-art in 

MSSC, with the exception of the article [36] none have studied the weighted version of the 

problem. In the next three paragraphs therefore, we revisit a number of papers on the MSSC 

problem instead. 

In [22], the authors present the well-known “K-Means++” heuristic for initializing the centers 

of the K-means algorithm, by modifying another popular heuristic, the so-called “farthest 

centers” heuristic, which works by selecting at random one point from the dataset as first 

center, and then repeatedly chooses the point that is “the furthest distance” away from the 

current set of centers as the next center. Because this heuristic was prone to choosing outliers 

in the dataset as the initial centers, the K-Means++ algorithm works by selecting at random 

but with probability proportional to the shortest distance of any point from the currently 

selected centers the next point to be selected as the next center. This randomization 

procedure guarantees theoretical good properties of the initial clustering for the K-means 

algorithm. Then, in [23], the authors remove the serial bottleneck of the above-described 

procedure by fully parallelizing it to allow utilizing as many CPU cores as there are available in 

a cluster, and therefore allow much larger datasets than was possible before to be clustered 

efficiently; this K-Means variation is denoted as the “K-Means ||”. 



 

 

Aloise et al. in [24] presented an improved column generation method for the MSSC that was 

able to solve to optimality problems with up to 2400 points in 2-D Euclidean space and K taking 

values up to 400. Very recently, the authors of [25] presented a Semi-Definite Programming 

approach (SDP) to the MSSC, that allows them to solve to provable optimality a number of 

problems that were not solvable before. In [26], Burgard et al. use advanced mixed integer 

programming techniques such as cutting planes (including cardinality cuts, outer 

approximation cuts and bary-center propagation) to enhance the performance of the Open-

Source solver SCIP.  

In [27], Peng and Xia present a “convexity cut method” to solve to global optimality the MSSC 

problem. They use CPLEX for solving their corresponding cutting plane problem; they report 

results for problems up to 4600 data points, but they only work with very small values of K. 

Finally, in a Master’s thesis [28], the author presents a number of clustering algorithms for 

forest harvesting, mentioning the classical K-means algorithm as one possible method for 

solving their (unweighted) problem.  

According to the literature review, clustering is not fully exploited under the concept of 

comprehensive biomass supply chain management. In the upstream level, where typically 

biomass fields of varying size exist, the existing clustering approaches are employed only to 

treat the location dimensionality while the hectarage (area) factor is ignored. The absence of 

incorporating hectarage in the cluster calculation may result in forming groups that don’t 

adequately represent the initial set of fields, diminishing accuracy and affecting many aspects 

of the design and optimization of the whole biomass supply chain such as the transportation 

costs, the location and capacity of midstream processing facilities etc. The present study aims 

to fill this methodological gap and develop an effective clustering algorithm that allows more 

precise representation of clustered sites considering both their size and location. Enhancing 

and improving the clustering process facilitates the management of more complex problems 

without increasing solution times, while preserving accuracy and generating robust results 

which support a more informed decision-making. 

3.Model Formulation  
The clustering problem dealt in this study is the Weighted MSSC problem, which generalizes 

the well-known MSSC problem [29-30] as follows: consider a finite set of 𝑛 points 𝑆 =

{𝑠1, … , 𝑠𝑛} in 𝑑-dimensional plane, with associated positive weights 𝑤1, …𝑤𝑛 .The problem is 

to find 𝐾 > 1 “centers” in the plane that will minimize the total weighted sum of square 

distances of each of the 𝑛 points to their closest center multiplied by the point’s corresponding 

weight. It is worth noting that when all the points have equal weights, the problem reduces 

to the well-known minimization of sum of square errors problem that appears in many 

problems in signal processing (code-book design), unsupervised learning (K-Means clustering), 

supply chain design, and so on. 

The problem can be stated then as follows: 

We seek to find a partition 𝐶 of the set 𝑆 into 𝐾 disjoint sets 𝐶𝑖 , 𝑖 = 1,…𝐾:𝐶𝑖 ∩ 𝐶𝑗 = ∅  ∀𝑖 ≠

𝑗, 𝑖, 𝑗 = 1…𝐾, ⋃ 𝐶𝑖
𝐾
𝑖=1 = 𝑆 that minimizes the function 𝑓(𝐶) = ∑ ∑ 𝑤𝑚‖𝑠𝑚 − 𝑠𝑖̅‖

2
𝑠𝑚∈𝐶𝑖

𝐾
𝑖=1  

where the point 𝑠𝑖̅ is such that it minimizes the sum of weighted distances of each point in the 

cluster 𝐶𝑖  to it. 



 

 

Lemma 1: Given the points 𝑠𝑚  in a partition cluster 𝐶𝑖, with accompanying weights 𝑤𝑚, the 

optimal point in the plane that minimizes the sum of weighted distances of the points in the 

partition cluster to it, is the (weighted) barycenter 𝑠𝑖̅ =
∑ 𝑤𝑚𝑠𝑚𝑠𝑚∈𝐶𝑖

∑ 𝑤𝑚𝑚:𝑠𝑚∈𝐶𝑖

. 

Proof: It is enough to show that for the function  

𝑓(𝐶𝑖 , 𝑥) = ∑ 𝑤𝑚‖𝑠𝑚 − 𝑥‖
2

𝑠𝑚∈𝐶𝑖                                                                                                        (1) 

the gradient ∇𝑥𝑓(𝐶𝑖 , 𝑠̅𝑖) = 0. The gradient of the function at any point 𝑥 is  

∇𝑥𝑓(𝐶𝑖 , 𝑥) = −2∑ 𝑤𝑚(𝑠𝑚 − 𝑥)𝑠𝑚∈𝐶𝑖                                                                                                (2) 

Setting the above expression to zero, we obtain as the only solution the vector  

𝑥∗ = 𝑠𝑖̅ =
∑ 𝑤𝑚𝑠𝑚𝑠𝑚∈𝐶𝑖

∑ 𝑤𝑚𝑚:𝑠𝑚∈𝐶𝑖

                                                                                                                          (3) 

QED. 

Therefore, mathematically, we seek to optimize the following problem (P): 

min
𝐶
∑ ∑ 𝑤𝑚‖𝑠𝑚 − 𝑠𝑖̅‖

2
𝑠𝑚∈𝐶𝑖

𝐾
𝑖=1                                                                                                         (P) 

subject to:  

{
 

 𝑠𝑖̅ =
∑ 𝑤𝑚𝑠𝑚𝑠𝑚∈𝐶𝑖

∑ 𝑤𝑚𝑚:𝑠𝑚∈𝐶𝑖

, 𝑖 = 1…𝐾

𝐶𝑖 ∩ 𝐶𝑗 = ∅, ∀𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1…𝐾

⋃ 𝐶𝑖
𝐾
𝑖=1 = 𝑆

  

 

4.A Column Generation Approach to Solving the Weighted MSSC 

Problem 
The minimum sum of square errors clustering problem (MSSC) has been the subject of intense 

study for many decades [29]. It is a combinatorial problem by nature: given a finite set 𝑆 =

{𝑠1, 𝑠2, … 𝑠𝑛} ∈ ℝ
𝑑of 𝑛 data points in some vector space, the problem is to find a partition of 

the data points in exactly 𝐾 > 1 disjoint partition clusters so that the sum of the square 

distances of each point to its closest center (cluster mean point) is minimized. The problem is 

known to be NP-Hard [31]. The MSSC problem is clearly a special case of the weighted MSSC 

problem where the weight of each data point is set to 1.  

The most known and frequently used algorithm for solving the standard MSSC problem is the 

K-Means algorithm [24, 26, 27, 28], an expectation-maximization (EM) type algorithm that 

works by iterating two major phases: an expectation step that assigns points to their closest 

current centroid (mean), and a maximization step that re-computes the centroids as the mean 

vector of every data point in a cluster, optimizing the objective function under the current 

assignments. The algorithm iterates until some convergence criteria is met, or -for very large 

problems- for a fixed number of iterations. For most problems, the initial choice of cluster 

centers is a major factor that can determine the quality of the final solution as well as the 

speed of convergence [22, 23]. 



 

 

K-means is a heuristic algorithm that does not guarantee the optimal solution of an MSSC 

problem, even though it often finds high quality solutions, at least for modest values of 𝐾. As 

described above, the K-means algorithm does not solve the weighted MSSC problem, however 

it is not difficult to state a variant that attempts to. Essentially, the only modification to the K-

means algorithm that is needed, is in the M-step (step 2) where we compute the new cluster 

centers. Given Lemma 1 in section 2, we see that the modification needed to be done to the 

original K-means algorithm to result in a weighted K-means algorithm is to compute the center 

of each cluster in step 2 according to eq. (3). 

However, whereas the K-means algorithm, and the modified weighted K-means algorithm 

usually provide acceptable results for problems with small number of partitions required (say, 

up to a few tens), the same is not usually the case for larger number of partitions [33]. For 

such problem instances, we propose a column-generation type approach to a set covering 

formulation of the problem, in a spirit similar to the approach described in [34] for the 

standard MSSC problem. 

In particular, notice first that the weighted MSSC problem, being also a combinatorial 

optimization problem, can be written as a set partitioning problem. Consider all possible 

subsets of the set 𝑆 and denote by 𝐴 the 𝑛 × 2𝑛  matrix containing ones and zeros, whose 

columns represent all those possible subsets: every column of the matrix has exactly 𝑛 

components, and the 𝑖-th component indicates whether the data point 𝑠𝑖  is contained or not 

in the subset. Given this (rather big) matrix, the weighted MSSC problem can be written down 

as the set-partitioning problem. 

min
𝑥
𝑐𝑇𝑥                                                                                                                                              (SPP) 

subject to: {
𝐴𝑥 = 𝑒
𝑒𝑇𝑥 = 𝐾
𝑥 ∈ {0,1}𝑛

 

where the column vector 𝑒 ∈ ℝ𝑛 ≡ [1,1, …1]𝑇 and the cost-vector 𝑐 = [𝑐1, 𝑐2, … 𝑐2𝑛]
𝑇 ∈ ℝ2

𝑛
 

contains the (weighted) costs of all subsets of the set 𝑆. The set-partition problem formulation 

(SPP) asks to pick exactly 𝐾 subsets of the set 𝑆 (constraint 𝑒𝑇𝑥 = 𝐾 and 𝑥𝑖 ∈

{0,1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,… 2𝑛) such that they completely cover the set 𝑆 without any overlap 

(constraints 𝐴𝑥 = 𝑒) and minimize the total weighted cost of each selected subset. 

Solving the problem (SPP) is not any easier than solving the problem (P), and both problems 

are NP-Hard. Even further, just writing down the initial model formulation of the problem 

(SPP) requires explicitly enumerating and storing all 2𝑛 possible subsets of 𝑆 which is clearly 

infeasible for even small values of 𝑛. We therefore resort to a column-generation approach 

(originally described in [34] for the standard MSSC problem) whereby we begin with a base 

matrix 𝐵 that contains only a few of the columns of the full matrix 𝐴, and afterwards we solve 

the following variant of the initial problem (SPP), called (SCPR): 

min
𝑥
𝑐𝑇𝑥                                                                                                                                          (SCPR) 

subject to: {
𝐵𝑥 ≥ 𝑒
𝑒𝑇𝑥 = 𝐾
𝑥 ∈ {0,1}𝑛

  

The components of the column-vector 𝑐 again correspond to the weighted clustering cost of 

the corresponding subsets described in the columns of the reduced matrix 𝐵, only now we 



 

 

seek to solve the set covering version of the problem (constraints 𝐵𝑥 ≥ 𝑒) which means we 

don’t care if some data points appear in more than one subsets selected in the final solution, 

as long as each point appears in at least one selected subset. 

In case there exists at least one data point 𝑠𝑑𝑢𝑝  that appears in more than one selected subset 

in the solution of (SCPR), we remove it from every selected subset in which it appears except 

the subset from which if we removed 𝑠𝑑𝑢𝑝  the weighted cluster cost increase would be the 

smallest among all other selected subsets that contain it; ties are arbitrarily broken. It is easy 

to see that such a procedure results in strictly lowering the objective function value of the 

weighted MSSC problem. 

Given the new clusters that represent a valid clustering solution to the weighted MSSC, though 

it may or may not be optimal, we generate more columns to add to our base matrix 𝐵 by 

adding the new subsets that we created in the conversion process described above (if any), 

and then by running the weighted K-means algorithm on the solution found by the previous 

step, and adding all new clusters created during the run of the weighted K-means algorithm 

to the new base matrix 𝐵. We then solve the new problem (SCPR) with the new base matrix 𝐵 

again, and repeat this process until in one full iteration we no longer improve on the final 

objective value of the problem. 

The entire algorithm, called W-EXAMCE, is a variant of the EXAMCE algorithm specified in [34] 

adapted to work with weighted clustering, is specified in Fig. 1 and is available from 

https://www.github.com/ioannischristou/weighted_clustering. 

 

<Insert Figure 1 here> 

 

The procedure Expand(C,τ) expands the set of available solutions to consider in step 5 by 

producing a (possibly empty) set of clusters that are perturbations of the input cluster C. We 

use a simple heuristic whereby we choose the τ closest neighbors to the center of C that are 

not in C, as well as the τ members of C that are farthest from the center of C, with τ being a 

small user-defined parameter (set after experimentation equal to 5). Distances here are 

weighted, meaning that the distance between a cluster center 𝑐 and a data point 𝑠𝑖  with 

associated weight 𝑤𝑖  is the quantity √𝑤𝑖‖𝑐 − 𝑠𝑖‖. We create and return a sequence of 2τ new 

clusters 𝑁1
+ ⊂ 𝑁2

+… ⊂ 𝑁𝜏
+ , 𝑁1

− ⊃ 𝑁2
−… ⊃ 𝑁𝜏

− where each of the 𝑁𝑖
+ clusters contains all 

points in C plus up to the 𝑖-th closest non-member neighbor of C, and each of the 𝑁𝑖
− clusters 

contains all points in C except up to the 𝑖-th farthest member of C. 

It is easy to see that in every iteration in steps 3-10 of the W-EXAMCE algorithm, the solution 

C’’ that is found is at least as good as the corresponding solution from the previous iteration: 

Lemma 2: The solutions C’’ found in step 7 of the W-EXAMCE algorithm are non-increasing. 

Proof: Notice that the columns of the matrix B in problem (SCPR) to be solved at each iteration 

always form a super-set of the columns of the same matrix in the previous iteration, even 

after that previous matrix is augmented by the solution found in the previous execution of 

step 7. Therefore, the solution of the problem in step 5 is always at least as good as the 

solution of step 7 found in the previous iteration. And since both the Rm_Dup(.) procedure in 

step 6 by design can only further reduce the objective value of the problem, and the same is 

https://www.github.com/ioannischristou/weighted_clustering


 

 

true for the application of the W-K-Means algorithm in step 7, the solution C’’ found in step 7 

at each iteration is always monotonically decreasing. QED. 

Because of the above monotone convergence of the algorithm (convergence is guaranteed 

since the solution sequence is monotonically decreasing, and is bounded from below by zero), 

we have the following: 

Corollary 3: The W-EXAMCE algorithm converges in a finite number of iterations. 

Proof: The convergence of the algorithm is already established. The finiteness of the number 

of steps follows from the fact that there are only finitely many different partitions to partition 

the data, and the algorithm stops as soon as no progress is made in two consecutive iterations. 

QED. 

A small worked example of the W-EXAMCE algorithm is presented in Appendix A. 

5.Computational Results 
In all experiments below, we use the GUROBI optimizer (v. 11) to solve the SCP problem in 

step 5 of the W-EXAMCE algorithm in fig. 1. We use a PC with an Intel Core i9-10920X CPU 

running at 4.5GHz, equipped with 64GB RAM, running Windows 11. Both the standard K-

means and the scalable K-Means|| algorithm implementations are fully parallelized using Java 

threads and utilize all 24 virtual CPU cores that the CPU offers. All algorithms are written in 

Java.  

In Table 1, the meta-data for the major datasets used for our experiments are presented. All 

datasets represent points in Euclidean 2-dimensional plane. Due to the lack of publicly 

available biomass-related land plot datasets, several more datasets from well-known libraries 

and other sector applications were used to demonstrate the performance of the proposed 

method. In Table 2 we present the results obtained from 4 datasets in the TSPLIB that are 

commonly used to benchmark algorithms for the standard MSSC problem (see [30, 33, 34]), 

with attached random positive weights for each data point. We compare results from applying 

standard K-means with 100 restarts, with the scalable K-means|| algorithm with 100 restarts, 

and the W-EXAMCE algorithm that uses the clusters obtained from 10 restarts of the standard 

K-means algorithm as base clusters. The column labeled “Soln Improvement%” under the W-

EXAMCE results columns lists the percentage improvement of W-EXAMCE over the baseline 

K-means algorithm. As can be seen from the results, W-EXAMCE is always the clear winner of 

the three algorithms even though it takes a little more time to complete. 

In Table 3, we present results from one large-scale use-case for phyto-remediation-based 

supply chain management, with real land plot data from the Scottish Vacant and Derelict Land 

Register [30]: the dataset contains the coordinates of 3,398 previously-developed brownfield 

land plots, in the British National Grid Coordinate system, a plane coordinate system that is 

based upon a Transverse Mercator projection. The dataset also contains the area that each 

plot covers that serves as the weight of each data point for our clustering purposes. This 

dataset refers to one of the phytoremediation use cases of the project CERESiS, where the 

objective was to optimise the respective supply chain of energy crops grown in potentially 

contaminated land to produce biofuels, while at the same time decontaminating the soil. The 

dataset is visualized in fig. 2, however the size of each land plot is not drawn to scale. 

Finally, to assess the algorithm on another real-life large dataset, in Table 4 we present results 

using the public (weighted) dataset created for determining the best locations for placing 



 

 

distribution and vaccination centers for the COVID-19 pandemic in the USA. This dataset 

contains 4478 data points in 2D. We have converted the original standard lat-lon coordinates 

of the dataset into a flat grid using Mercator Projection (UTM), and normalized the weights of 

the original dataset to sum up to 1 (otherwise, the sum of the weighted square distances 

would lead to arithmetic overflows due to resulting large numbers.) 

<Insert Figure 2 here> 

<Insert Table 1 here> 

<Insert Table 2 here>  

In Fig. 3 we show the percentage gap in solution quality between the proposed W-EXAMCE 

and the weighted K-means with 100 restarts on the Scotland Vacant and Derelict Land Register 

data; as can be seen clearly both from Fig. 3 and from Tables 2, 3 and 4, the solution found by 

W-EXAMCE is always superior to that found by  100  restarts of the K-means or the scalable K-

Means|| algorithms. It can also be observed that the superiority of the W-EXAMCE algorithm 

is greatly enhanced when the number of partitions increases, while it requires more time to 

be solved; however, the time needed is reasonable for practical applications. By employing 

the proposed algorithm, a more efficient clustering is achieved, in order to support the supply 

chain optimization process that uses the clusters as input. 

<Insert Figure 3 here> 

<Insert Table 3 here> 

<Insert Table 4 here> 

 

6. Conclusions and Future Directions  
This study proposed a novel, more effective clustering method for use within biomass supply 

chain optimization modeling, as well as for any other case where clustering is required within 

supply chain analysis and optimization context. In the context of biomass supply chain 

analysis, clustering is not often utilized; instead, clustering primarily finds applications in VRP 

problems (such as the “cluster-first-route-second” heuristic by Fisher and Jaikumar [37]), 

where weights are not usually taken into account. 

The proposed algorithm (W-EXAMCE) for the weighted MSSC problem proved to be very 

effective in identifying more representative clusters of biomass fields than the commonly used 

technique of the weighted K-means and the scalable K-Means II. The solution quality gap 

between the proposed algorithm against the weighted K-means increases significantly as the 

number of partitions increases. Therefore, when more refined supply chain analysis is 

required, the proposed algorithm can offer more accurate clusters, leading to more accurate 

transportation cost estimates, hence more accurate supply chain optimization outcomes. 

The applicability of the proposed algorithm for the weighted MSSC problem (W-EXAMCE) in 

biomass supply chain modeling, where exact locations of fields or biomass hubs are known, 

has been demonstrated for the Scottish Vacant and Derelict Land Register dataset (used as a 

use case in the CERESiS project [13]), the US COVID-19 cases dataset [36], and several TSPLIB 

datasets (with random weights). The proposed algorithm offers a viable option for increasing 

the optimization results’ accuracy. Given the spatial dispersion, typically low availability of 



 

 

biomass feedstock, and diverse land hectarage of the fields under analysis, a refined approach 

is necessary, since simple aggregation and clustering techniques may introduce inaccuracies 

in the results. Here, the weighted K-Means algorithm provides robust solutions for typical 

biomass to biofuels or bioenergy supply chains, offering a detailed grouped view of the fields 

based on hectarage that is essential for effective decision-making.  

The proposed W-EXAMCE algorithm could have wider applicability in all supply chain modeling 

contexts where many upstream, midstream or downstream nodes are involved, provided that 

each node of the physical system carries a different weight. In this case, using the proposed 

algorithm would lead to more accurate clustering compared to the typical K-means algorithm, 

ultimately leading to supply chain optimization outputs that are more relevant and based on 

more accurate inputs.  

In the future, the W-EXAMCE algorithm could be applied in more diverse datasets of biomass 

supply chains, to understand its performance gap and expected benefits in a wider set of 

conditions. Its applicability could also be tested in other supply chain contexts to demonstrate 

its potential for generalization. 
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Appendix A 
 

For a better understanding of the workings of the W-EXAMCE Algorithm described in Fig. 1, 

we demonstrate its application with a small example. 

In Fig. 4 below, we show a dataset of 10 points in 2 dimensions. Each data-point has an 

associated weight according to Table 5 below, and the “X” that is used to draw each point in 

Fig. 4 is drawn approximately according to the scale shown in Table 5. 

 

Figure 1: Toy dataset with 10 Points in 2D to trace the steps of algorithm W-EXAMCE 



 

 

 

  



 

 

Table 5: Toy dataset weights 

Point Index Weight 

1 0.01 
2 0.01 
3 0.01 
4 0.45 
5 0.45 
6 0.02 
7 0.01 
8 0.01 
9 0.02 

10 0.01 

 

We are going to trace the execution of the algorithm W-EXAMCE with k=4. For simplicity, we 

also set τ=0 for our procedure 𝐸𝑥𝑝𝑎𝑛𝑑(𝐶, 𝜏) so that in essence the procedure does not do 

anything. We produce the initial matrix 𝐴𝐵 by executing the clusterers in the set Ba = (W-

KMeans(4), W-KMeans(4), W-KMeans(4), W-KMeans(3), W-KMeans(3), W-KMeans(5), W-

KMeans(5)); this means that we apply 3 times the W-KMeans algorithm with k=4 (starting 

from a different random initial solution each time), and then we apply 2 times the W-KMeans 

algorithm with k=3, and with k=5 (step 1). This results in a total of 28 clusters whose members 

and total weighted costs are shown in Table 6 below. The clustering solutions are color-coded 

in Table 6 below, so that the first clustering solution comprises of the clusters 1-4 (inclusive), 

the second solution comprises of clusters 5-8 and so on. 

 

Table 6: Results of applying clusterers in the set Ba to the dataset. 

Cluster Index Cluster Members Weighted Cluster Cost 

1 2, 4, 6, 10 5.73E-04 

2 1, 5, 7 9.79E-05 

3 9 0 

4 3, 8 5.00E-05 

5 3, 5, 7 1.00E-04 

6 8, 9 1.33E-04 

7 2, 4, 6, 10 5.73E-04 

8 1 0 

9 1, 2, 4 9.79E-05 

10 6, 10 1.33E-04 

11 3, 5, 7 1.00E-04 

12 8, 9 1.33E-04 

13 1, 3, 5, 7 1.49E-04 

14 8, 9 1.33E-04 

15 2, 4, 6, 10 5.73E-04 

16 1, 2, 3, 4, 5, 6, 7, 8 5.30E-03 

17 10 0 

18 9 0 

19 2, 4, 6 1.45E-04 

20 10 0 



 

 

21 5, 7 4.89E-05 

22 8, 9 1.33E-04 

23 1, 3 5.00E-05 

24 10 0 

25 3 0 

26 1, 5, 7 9.79E-05 

27 2, 4, 6 1.45E-04 

28 8, 9 1.33E-04 

 

The best W-KMeans(4) solution found in this step has value 4.65E-04, calculated as the sum 

of the values in the column “Weighted Cluster Cost” for rows 9-12. 

Given the data in the 2nd column of Table 6, the constraints of the problem in step 5 are then 

as follows: 

 

Figure 2: Matrix representation of the set covering problem formulation constraints 

Where we have only written the matrix 𝐴𝐵 as the LHS and the values of the RHS vector of the 

constraints. 

When the MIP solver solves the SCP problem with the above data, the best solution it finds 

picks the columns 6, 13, 17 and 19 which represent the following clusters: 

{8, 9} 

{1, 3, 5, 7} 

{10} 

{2, 4, 6} 

This solution has total weighted cost equal to 4.27E-04 (=1.33E-04 + 1.49E-04 + 0 + 1.45E-04) 

which happens to be less than any cost found by the application of the base clusterers for 𝑘 =

4. Because the solution found is also a solution to the set partitioning problem (SPP), the step 

6 is a no-op (does not do anything). Similarly, step 7 (applying W-KMeans(4) from the solution 

just found) does not create any new clusters because the new solution found is already a local 

optimum for the W-MSSC problem. Therefore (given that τ=0) steps 8-10 are also no-ops, and 

no new columns are added to the matrix 𝐴𝐵. Therefore, in the next iteration of steps 3-10, no 

improvement will occur, and the algorithm stops after two iterations of its main loop. The best 

solution found by applying the W-EXAMCE algorithm is shown in Fig. 6 below. 



 

 

 

 

Figure 6: Best clustering solution found by W-EXAMCE on toy dataset 
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Figure 3: W-EXAMCE algorithm 



 

 

 

Figure 4: Locations of Vacant and Derelict Land Register Sites in Scotland in the British Coordinate Grid. The size of 
each plot is not drawn to scale. 

  



 

 

 

Figure 5: Comparison chart of the solution gap between W-EXAMCE and weighted K-Means with 100 Restarts on 
the Scotland Land Register dataset 
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TABLES 

Table 1: Used dataset characteristics 

Dataset Library 
Studies using the 

Dataset 
Number 
of points 

Number of 
dimensions 

Weights 

u1060 TSPLIB [33, 34] 1,060 2 Random 

pcb3038 TSPLIB [33, 34] 3,038 2 Random 

pr2392 TSPLIB [24] 2,392 2 Random 

rl11849 TSPLIB [24,34] 11,849 2 Random 

Scotland 
Vacant and 

Derelict 
Land 

Register 

Land Register [6] 3,398 2 
Actual Plot 

Areas 

US COVID-19 
Cases 

N/A [36] 4,478 2 
Actual number 

of cases per 
district 

 

  



 

 

Table 2: Comparison of results of W-EXAMCE, K-Means and scalable K-Means|| w/ 100 Restarts on TSPLIB 
datasets 

Dataset k 

Best K-Means / 100 
Restarts 

Best K-Means|| / 100 
Restarts 

W-EXAMCE 

Solution 
Time 
(secs) 

Solution 
Time 
(secs) 

Solution 
Solution 

Improvement 
(%) 

Time 
(secs) 

rl11849 100 1.74E+09 7.78 1.73E+09 10.2 1.72E+09 1.5 155.0 

200 8.36E+08 8.9 8.24E+08 13.6 8.13E+08 2.8 242.0 

300 5.40E+08 9.9 5.30E+08 16.7 5.14E+08 5.2 133.0 

400 3.95E+08 10.24 3.82E+08 19.5 3.68E+08 7.4 177.0 

500 3.11E+08 10.3 2.94E+08 24 2.81E+08 10.4 707.0 

pr2392 50 4.74E+08 3.8 4.81E+08 3.98 4.70E+08 0.8 21.0 

100 2.23E+08 3.28 2.18E+08 4.06 2.02E+08 10.2 26.5 

200 9.67E+07 1.77 9.57E+07 5.45 8.43E+07 14.7 36.6 

300 6.02E+07 1.94 5.64E+07 5.41 4.73E+07 27.4 73.1 

400 4.09E+07 1.98 3.75E+07 6.19 3.01E+07 36.2 40.7 

500 2.99E+07 1.99 2.64E+07 7.94 2.08E+07 44.1 47.9 

u1060 50 2.97E+08 2.1 2.90E+08 2.62 2.72E+08 9.1 30 

100 1.32E+08 3 1.31E+08 3.5 1.05E+08 25.6 11.5 

150 8.48E+07 3 7.96E+07 4.5 6.45E+07 31.4 20.4 

200 6.14E+07 4.5 6.15E+07 4.6 4.21E+07 46.0 16.1 

250 4.42E+07 4.1 4.13E+07 4.8 3.02E+07 46.3 20.4 

300 3.41E+07 4.9 3.26E+07 5.5 2.30E+07 48.2 21.4 

pcb3038 50 1.05E+08 5.1 1.04E+08 5.5 4.94E+07 113.4 15.3 

100 5.29E+07 6 5.09E+07 6.1 2.39E+07 121.4 36 

200 2.59E+07 12 2.08E+07 12 1.06E+07 144.9 16 

300 1.65E+07 22.1 1.02E+07 23.1 6.21E+06 166.3 25.4 

400 1.25E+07 20.1 1.00E+07 22.9 4.12E+06 203.6 30.8 

500 9.84E+06 25 7.53E+06 26.2 2.87E+06 242.9 34 

 

  



 

 

Table 3: Comparison of results of W-EXAMCE, K-Means w/ 100 Restarts and Scalable K-

Means|| w/ 100 Restarts on Scotland Vacant and Derelict Land Register dataset 

Dataset k 

Best K-Means / 100 
Restarts 

Best K-Means|| / 
100 Restarts 

W-EXAMCE 

Solution 
Time 
(secs) 

Solution 
Time 
(secs) 

Solution 
Solution 

Improvement 
(%) 

Time 
(secs) 

Scotland 
Vacant 

and 
Derelict 

Land 
Register 

100 2.50E+11 4.5 2.11E+11 7.8 1.68E+11 48.8 37.8 

200 1.49E+11 19.8 1.01E+11 25.3 6.05E+10 146.3 80.9 

300 8.89E+10 16.9 9.91E+10 30.1 2.37E+10 275.1 77.9 

400 6.95E+10 21.8 4.99E+10 25.9 1.44E+10 382.6 91.8 

500 4.94E+10 24 2.51E+10 28.5 8.64E+09 471.8 126.2 

 

  



 

 

Table 4: Comparison of results of W-EXAMCE, K-Means w/ 100 Restarts and Scalable K-

Means|| w/ 100 Restarts on the US COVID-19 Cases dataset. 

Dataset k 

Best K-Means / 
100 Restarts 

Best K-Means|| / 
100 Restarts 

W-EXAMCE 

Solution 
Time 
(secs) 

Solution 
Time 
(secs) 

Solution 
Solution 

Improvement 
(%) 

Time 
(secs) 

US COVID-19 
Cases 

50 1.16E+10 8 1.06E+10 37 9.63E+09 20.1 30.6 

100 4.92E+09 7.5 4.35E+09 34.9 3.70E+09 33.0 35.7 

200 1.94E+09 9.8 2.16E+09 30.9 1.31E+09 47.7 51.3 

300 1.16E+09 9.1 1.31E+09 37 6.66E+08 74.5 71.5 

400 7.86E+08 12.7 9.00E+08 34.7 4.03E+08 94.8 99.7 

500 5.55E+08 11.6 6.31E+08 37.5 2.73E+08 103.1 103 

 


