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Abstract

This thesis focuses on the computational solution and validation of a sophisticated numeri-

cal model for simulating the tumor microenvironment (TME), emphasizing the interactions

among cancer cell proliferation, oxygen transport phenomena, and the mechanical behavior

of both tumor and host tissues. The primary objective is to develop and validate a reliable

tool for understanding tumor dynamics, providing insights that can inform the design of more

effective patient-specific treatments.

The mathematical model accounts for the biphasic nature of tumor tissues and their complex

interactions with surrounding healthy tissues. The mechanical behavior is modeled using both

linear and hyperelastic constitutive laws, while the transport phenomena are governed by

coupled convection-diffusion-reaction partial differential equations for oxygen concentration

and cancer cell population. These formulations include detailed representations of interstitial

fluid flow, solid stress states, and the influence of tumor growth on tissue deformation. Spatial

discretization is achieved using the Finite Element Method, while temporal discretization is

performed with methods such as Newmark and Generalized-α. Coupling of the linear systems

is accomplished with an advanced iterative solver. The methods developed are implemented

in msolve and benchmarked against COMSOL to ensure accuracy and reliability.

The results highlight significant differences in mechanical responses and transport phenomena

between tumor and host tissues, influenced by their inherent heterogeneity. Detailed simula-

tions provide valuable information on growth patterns, stress distributions, and oxygenation

levels within the Tumor Micro Environment (TME), contributing to a deeper understanding

of the mechanisms driving cancer progression.

Overall, this thesis underscores the crucial role of computational modeling in medical re-

search and serves as a foundation for refining clinical research parameters for patient-specific

treatments. Future integration with stochastic and AI tools, along with the utilization of

MRI data and advanced HPC platforms, will further improve the accuracy and applicability

of these simulations in personalized cancer therapy.



Chapter 1

Introduction

Cancer is a complex and multifaceted disease that arises from the abnormal growth and

division of cells in the body. It occurs in any tissue or organ of the body and can spread

to other parts of the body through the bloodstream or lymphatic system. There are many

different types of cancer, each with its own set of symptoms, risk factors, and treatment

options. Cancer remains a major global health concern. In 2020, approximately 19.3 million

new cancer cases and almost 10 million cancer deaths were reported worldwide [15, 36].

Looking ahead, the number of new cancer cases and deaths is expected to rise significantly.

By 2030, the World Health Organization predicts a 69% increase in new cancer cases, reaching

21 million, and a 72% increase in cancer deaths, reaching 13 million [5]. Another projection

estimates around 26 million new cancer cases and 17 million cancer deaths per year by 2030.

This increase is attributed largely to population growth and aging, with the most significant

impacts expected in low- and medium-resource countries [35].

1.1 Etiology of Cancer

Cancer is a complex disease with multiple etiological factors that interact to initiate and pro-

mote tumor development. While the specific cause remains unknown, it is widely accepted

that cancer arises from a combination of genetic and environmental factors. Advances in

molecular and genetic technologies have provided a better understanding of the genetic alter-

ations that occur in tumor cells, but the precise interplay between genetic and environmental

factors that lead to cancer development is not yet fully understood.

1.1.1 Genetic & Environmental Factors

Cancer arises from a complex mix of genetic mutations and environmental factors. Genetic

changes disrupt normal cell growth, leading to cancer, with these mutations varying widely
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across different cancers [34, 14, 1]. Environmental factors, including lifestyle, occupational

hazards, and exposure to substances like tobacco and radiation, significantly increase cancer

risk [7, 19, 28]. Social determinants like socio-economic status also play a crucial role, with

lower-income groups facing higher exposure to carcinogens and limited access to healthcare

[12, 19]. Additionally, non-social elements like chronic inflammation, certain viruses, and

psychological stress contribute to cancer development, underlining the disease’s multifaceted

nature [7, 28].

1.2 Tumor Growth Modeling

Tumor growth is a multifaceted phenomenon that involves interactions among tumor cells,

surrounding tissues, and the micro-environment. Traditional experimental and clinical meth-

ods for studying tumor growth are often limited by various factors such as ethical concerns,

cost, and practical feasibility. Mathematical modeling offers a complementary approach that

allows for a systematic investigation of tumor growth dynamics in a controlled and quantita-

tive manner. By developing a numerical model that simulates tumor growth, we aim to gain

insights into the underlying mechanisms and interactions involved in tumor growth, which

can inform the design of more effective cancer therapies. It is obvious that cancer treatment

as well as prediction is a major challenge for the human race and significant effort from a

wide range of scientific domains is needed. Mathematical modeling offers a complementary

approach that allows for a systematic investigation of tumor growth dynamics in a controlled

and quantitative manner. In the era of hexa-scale computing and artificial intelligence, a

rigorous, high-fidelity mathematical model can be solved for huge sets of parameters and

various useful stochastic insights can be provided.

1.3 Objective of the Thesis

The primary objective of this thesis is to document the development and validation of a

sophisticated numerical model designed to simulate the microenvironment and growth of a

biphasic tumor. This model, developed within MSolve, focuses on capturing the intricate

dynamics of tumor growth and interaction within its microenvironment. MSolve, an open-

source, multiphysics platform, has been developed by the MGroup Lab at the ISAAR School

of Civil Engineering, NTUA.

Central to this objective is the advancement of the mathematical modeling aspects of tumor

growth. The model incorporates a comprehensive approach, accounting for the biphasic
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nature of tumor tissue and the complex interactions within the tumor microenvironment.

This includes detailed simulations of mechanical and transport phenomena on tumor growth

and development.

Ultimately, the thesis aims to contribute to the field of cancer research by offering a reliable

and comprehensive tool for understanding tumor dynamics. The insights gained from this

research are expected to inform the development of novel cancer therapies, enhancing the

efficacy of treatment approaches and improving patient outcomes. This research underscores

the crucial role of advanced computational modeling in deciphering the complexities of cancer

and paves the way for future innovations in cancer therapy.
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Chapter 2

Mathematical Modeling

2.1 Introduction

The microenvironment is modeled as a quartersphere tumor tissue embedded in a cube

representing the healthy tissue. Both tissue types are biphasic consisting of a solid and

a fluid phase with different material properties. Due to this type of solid-fluid interaction

the medium is considered as porous. By appplying properly manipulated mathematical

formulations, such as augmented versions of the well established mass/energy/momentum

flux equations that respect the domain physics and heterogeneities, the transport phenomena

and the kinematics of the system break down to a coupled system of partial and differential

equations which can be affected by various parameters. Healthy and tumor tissues are well

known to be heterogeneous, leading to variations in mechanical properties like porosity and

permeability, that can cause non-uniform flows between regions. The aforementioned non-

uniform mechanical properties of the system are accounted for with varying equation forms

and constant values. In the following sections of this chapter a thorough description of the

mathematical model is presented containing all the equations involved, their parameters and

the ways they infer with each other.

2.2 Mechanical Behaviour of Biphasic Tumor

2.2.1 Fluid Phase

The motion of the interstitial fluid, that fills the spaces between the cells, provides a medium

for the dialution and exchange of nutrients, treatment agents, and various molecules. In the

following subsections the phenomena resulting from the fluid flux within the porous matrix

are examined.
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2.2.1.1 Fluid Pressure - p

The accurate description of the pressure field p of the TME is of major importance as it affects

the interstitial fluid flow as well as the stress state of the solid phase by adding hydrostatic

components to the stress tensor. Darcy’s law for porous media describes the fluid velocity

vector vf as a function of the gradient of pi [6], the hydraulic conductivity of the interstitial

space [32] and the velocity of the solid phase vs and is expressed as follows:

vf = −kth∇pi + vs (2.1)

The generalized differential form of the steady-state continuity equation for a locally non

conserved quantity is deduced by the divergence theorem :

∇ · uf = Q (2.2)

while Q denotes the flux entering from the blood vessels into the tissue minus the fluid flux

exiting through lymphatic vessels [31]:

Q = LpSv(pv − pi)− LplSvl(pi − pl) (2.3)

After some routine mathematical manipulation the synthesis of the principles of porous fluid

flow (2.1), and mass conservation (2.2) yield the steady-state fluid transport equation:

−kth∇2pi = Q−∇ · (vs) (2.4)

The Laplacian (diffusion) operator quantifies the curvature of the pressure field and represents

the driving force of flow due to pressure gradients. In areas where there are sharp pressure

changes, for example near a growing tumor, the term becomes significant and vice versa.

The ∇· vector operator is the divergence of a vector field and quantifies the net outflow

(or inflow) of a vector field from an infinitesimal volume around a given point. A positive

divergence indicates a source (or outflow) behavior, while a negative divergence signifies a

sink (or inflow) behavior. In the context of the TME, this equation captures how fluid is

conserved as it moves through the porous tissue. The divergence of the solid phase velocity

captures the influence of the solid phase (cells, extracellular matrix etc) onto the fluid motion,

since mechanical deformations exert pressure onto the surroundings. :

All the model constants involved in Equation(2.4) that capture the heterogenous / non- het-

erogenous hydraulic properties of the tissue and the pressures in the vascular and lymphatic

systems.
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Variable Unit Description

pi kPa Fluid Phase Pressure (Dependent Variable)

vs m/s
Solid Phase Velocity (Communicated Dependent Variable Deriva-
tive)

kth m2/(kPa·s) Fluid Phase Hydraulic Conductivity

Q 1/s
Source due to flow between blood vessels and the tissue and
drainage through lymphatic vessels.

Lp m/(kPa·s) Blood Vessel Walls Hydraulic Conductivity

Sv 1/m Vascular Density (Blood vessels per unit volume of tissue).

pv kPa Vascular Pressure.

pl kPa Lymphatic Pressure

LplSvl 1/(kPa·s) Lymphatic vessel permeability

Table 2.1: Fluid Transport Equation Variables and Parameters

2.2.1.2 Hydrostatic Pressure

Consider a stress state where the stress tensor σ is described as follows:

σ =

p p

p

 = pδ ⇒ σij = pδij

By transforming the second order tensor to a coordinate system OX
′
1, OX

′
1, OX

′
1 :

σ
′

ij = QikQjlσkl = QikQjl(pδkl) = QikQjkp = pδij

it can be easily observed that the normal components of the stress tensor σ remain the same,

while the shear components are equal to 0 for any arbitrarily chosen coordinate system.

For p < 0 or p > 0 the state is described as hydrostatic tension and hydrostatic pressure

correspondingly.

In the case of tumor modeling the hydrostatic pressure is a product of the fluid flow as

described by Equation(2.4) and the fluid pressure stress tensor is [2]:

σf
ij = −piδij = −piI (2.5)
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2.2.2 Solid Phase

2.2.2.1 Solid Phase Deformation

The kinematic description of the solid phase is governed by the laws of classical mechanics.

The description of the deformation of a solid body requires the use of a ”reference geometry”

or ”reference state.” In this context, a reference state refers to the initial or undeformed

state of a material body or system and serves as a fundamental framework for measuring

and describing subsequent deformations and changes in the solid body. It provides a fixed

point of reference from which all deformations are evaluated and enables the formulation of

mathematical models and analysis techniques to study the behavior of the material under

various loading and boundary conditions.

Consider a random point within the material body, characterized by its unique initial

position vector X and its final position vector x = x(X, t). Here, x(X) represents the

mapping of the field that describes the final state of the solid body relative to its initial

state.

The final position vector x(X) function is assumed to be continuous and differentiable,

enabling a complete description of the motion and deformation of the solid body. By com-

paring the initial and final positions, we can quantify and analyze the extent and nature of

deformation experienced by the material. The displacement of the point is given by :

u(X, t) = x(X, t)−X (2.6)

The elastic deformation gradient tensor is :

F =
∂x(X, t)

∂X
= x∇ (2.7)

while the kinematic description of a solid tumor in terms of deformation can be decomposed

into two components, a local, non-stress-generating, volumetric growth component Fg that

accounts for the growth of the tumor with respect to the initial undeformed state and the

elastic component Fe that accounts for the mechanical interactions of the tumor with the

surrounding normal tissue [30] :

F = FeFg (2.8)

The growth component is set to be homogeneous and isotropic [29]

Fg = λgI (2.9)
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where λg is the growth stretch ratio, which accounts for cancer cell proliferation, as defined

in Equation(2.24). The elastic component of the deformation gradient tensor is :

Fe = FF−1
g (2.10)

The Cauchy - Green strain tensor Ce is :

Ce = Fe
TFe (2.11)

while the Green-Lagrange strain tensor ϵ can be written in terms of Ce:

ϵ =
1

2
(Ce − I) (2.12)

It should be noted that the definition of the Green-Lagrange strain tensor is based on deriva-

tives with respect with the initial, undeformed coordinates of the particles.

2.2.2.2 Solid Phase Stress

Heterogenous mechanical stresses developed during tumor growth play a central role in cancer

proliferation since they lead to non-uniform compression of the intratumoral blood vessels,

drastically reducing the supply of nutrients and treatment[9][20][21] and leading to hypoxia

and necrosis [16][27][31]. The stress state of the solid phase will be described based on the

continuum mechanics laws. The Momentum Conservation Law states that the total sum of

forces applied to a solid body is equal to the spatial integral of the product of the body’s

density and its acceleration within the spatial domain it occupies. In other words, when

external forces act on a solid body, the combined effect of these forces can be determined by

calculating the integral of the density-acceleration product across the entire volume of the

body. This principle highlights the fundamental relationship between forces, density, and

acceleration and for an aribitarily chosen part of the solid body B′ with boundary ∂B′ takes

the form [2]: ∫
B′
tdS +

∫
B′
ρ(b− a)dV = 0 (2.13)

where a is the acceleration, b is the vector of field forces (gravity, electromagnetic etc), ρ is

the density. After some routine mathematical manipulation the partial differential equations

of motion are derived:

∇ · σ + ρb = ρa (2.14)
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In the case of the tumor micro-environment, the rate of change of the velocity and the effect of

body forces are neglected. The equation of motion describing a solid tumor can be expressed

as follows:

∇ · σ = 0 (2.15)

According to the biphasic theory for soft tissues[24] The isotropic hydrostatic fluid pressure

components described in Equation((2.5)) acts on the solid stress tensor, producing an equal

force in all normal directions and contributes directly to the total stress state of the solid

phase.Combining Equations (2.15) and (2.4) produces the final strong form of the solid

phase stress state where the intricate coupling of the fluid pressure and solid stresses can be

observed:

∇ · (σs − σf ) = ∇ · (σs − piI) = 0 (2.16)

The mechanical behavior of the tissue is simulated with a hyper-elastic material while the

Cauchy stress tensor σs is given by[33]:

σs = J−1
e F e

∂W

∂F T
e

(2.17)

where Je = detFe and W is the modified neo-Hookean strain energy density function for a

nearly incompressible hyper-elastic material[37][38][39]:

W =
1

2
µ(−3 + II1)− p(Je − 1)− p

2k
(2.18)

with µ, k being the shear and bulk moduli of the material, II1 = I1J
−2/3
e , I1 = trCe the first

and second invariants of the elastic Cauchy-Green deformation tensor while p is Lagrange

multiplier enforcing material constraints.

Since the material is non-liner the second Piola-Kirchhoff tensor is introduced that relates

the stress state of the current configuration to the current stress-state:

S = JF−1 · σ · F−T (2.19)

Sil = J
∂Xi

∂xk

∂Xl

∂xm

σkm (2.20)
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2.2.3 Growth Stretch Ratio

In the study of tumor progression, understanding the volumetric growth stretch ratio λg, is

of paramount importance. It represents the relative change in the tumor volume over time

and various mathematical formulations have been developed, all of whom take into account

the oxygen concentration and the proliferation of one or more cancer cell types. The affect

of λg in the deformation of the solid matrix can be seen in (2.9) as it appears in the diagonal

of the elastic non-stress- deformation gradient tensor Fg adding external strains.

The following formulation considers the ratio of the population of normal TSC , stem-cell-like

TI and induced TCC cancer cells over the total population oc cancer cells Ttot, as well as their

corresponding proliferation / degradation rates Sc
T , S

C
I , S

c
CSC

:

dλg

dt
=

1

3

(
TCC

Ttot

Sc
T +

CSC

Ttot

Sc
CSC

+
I

Ttot

SC
I

)
λg (2.21)

Another model for λg is proposed in [25] where the direct effect of solid stresses on reducing

cancer cell proliferation and the effect of drug delivery are also considered. The dependence

of the growth rate on the local oxygen concentration G is measured experimentally as [8] as

follows:

G =
k1cox

k2 + cox
(2.22)

Equations like (2.22) are known Michaelis - Menten equations in enzyme kinetics and they

represent the saturation curve. In the context of the TME it implies that the tumor growth

rate increases with oxygen concentration initially but plateaus as the oxygen concentration

continues to rise. O2 plays a crucial role in tumor growth, as it fuels cellular metabolism and

proliferation. Higher concentration values promote faster growth rates while low (hypoxic

conditions) lead to slower growth rates even cellular death.

The mathematical formulation for λg is [30][22][23][37]:

dλg

dt
=

1

3
G(1− βσ̄s)SfΦ

C(1− ΦC)λg (2.23)

where σ̄s = trσs/3 = (σrr+σθθ+σϕϕ)/3 is the average of the Cauchy stress tensor of the solid

phase, ΦC is the volume fraction of the solid tumor phase and β is a constant that describes

the dependence of growth on solid stress. It is further assumed that only compressive solid

stress inhibits tumor growth [10][17] therefore, the term (1 − βσ̄s) is positive but less than

unity when the bulk stress is compressive and equal to unity when the bulk stress is tensile.

Finally, to account for the effect of drug delivery, the fraction of survived cells Sf is included,
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so that in the absence of drugs it is equal to unity.

In the context of this thesis the development of the a simplified version of (2.23) is imple-

mented. The equation considers only normal cancer cells TCC and G:

dλg

dt
=

1

3

k1cox
k2 + cox

TCC (2.24)

Its should be noted that (2.24) is solved explicitly in the tumor domain, while λ = 1 for the

healthy domain.

Variable Unit Description

λg 1 Growth Stretch Ratio (Dependent Variable)

cox mol/m3 Oxygen Concentration (Communicated Dependent Variable)

TCC 1 Cancer Cell Population (Communicated Dependent Variable)

k1 1/s Growth rate parameter

k2 mol/m3 Growth rate parameter

Table 2.2: Growth Stretch Ratio Variables and Parameters

2.3 Nutrients & Cell Transport Phenomena

Understanding the balance, interplay, and spatial/temporal evolution of the cellular and

nutrient transport phenomena provides insights into how cells and nutrients dynamically in-

teract and navigate through the heterogeneous tumor micro-environment (TME). It allows

for the exploration and prediction of phenomena like nutrient depletion zones, cell migration,

and the emergence of concentration gradients, which are crucial in investigating tumor pro-

gression, cellular behavior, and response to treatments in a spatiotemporally evolving system.

These phenomena are modeled with the general form of the Convection-Diffusion-Reaction

Equation :

α(x)
∂Φ(x, t)

∂t
= β(x)∇2Φ(x, t)− γ(x)∇ · [v(x, t)Φ(x, t)] + δ(x)Φ(x, t) + ϵ(x) (2.25)

• α(x), β(x), γ(x), δ(x), ϵ(x) are the spatially varying coefficients of the PDE that account

for the heterogeneities in the different regions of the TME. From now on they will be

denoted as: α, β, γ, δ, ϵ.

• The temporal derivative term represents the rate of change ofΦ over time, accounting for

the transient behavior of the system and significantly influencing the numerical stability
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of the numerical scheme. In the context of the current mathematical model α is set

equal to 1.

• The diffusion of Φ is described by the Laplace operator and describes the passive trans-

port due to spatial gradients. Diffusion is linked with the molecular properties of the

medium and occurs due to the natural tendency of systems to equilibrate to high entropy

states which correspond to a uniform, more probable, distribution of Φ. It is associated

with the random motion of particles (Brownian motion) and creates fluxes from regions

of higher values of the dependent variable to those of lower until an equilibrium state is

achieved. In biological and physical systems, diffusion is a pivotal transport mechanism,

particularly apparent in cellular environments where nutrient, mechanical properties or

cell gradients occur.

• The convection term (−γ(x)∇· [v(x, t)Φ(x, t)]) involves the bulk movement, potentially

driven by pressure gradients, flow fields, or other macroscopic transport mechanisms.

In the case of the TME convective transport occurs due to the bulk motion of the solid

matrix and the interstitial fluid as described in previous sections. Convection dominated

flows are well known to cause numerical instabilities for (Pe > 1), where P = (UL) /β

is the Pecklet number of the flow and depends on the ratio of the characteristic length

L and velocity U of the flow over the diffusion coefficient β.

• The reaction term R(Φ) = δΦ + ϵ represents the internal sources, sinks, or any other

interactions of the quantity Φ, abstracting various possible physical or biological phe-

nomena. In diverse contexts, this might encapsulate aspects such as decay, generation,

or transformation of Φ due to intrinsic properties of the medium or external inputs.

The specific form of this term is often dictated by the nature of the processes being

modeled, and it might embody a range of kinetics, from linear to nonlinear forms, each

with its own implications and interpretational nuances. This term serves as a crucial

connector, linking the transport processes described by the other terms in the equation

with the local behavior and properties of the system, thereby enriching the model with

the capability to simulate a spectrum of scenarios and behaviors.

2.3.1 Oxygen Transport

Oxygen transport phenomena are paramount in the TME. Impaired blood perfusion in the tu-

mor region limits the delivery of drugs, immune cells, and oxygen. Reduced oxygen concentra-

tion, known as hypoxia, is considered a hallmark of the abnormal tumor micro-environment,
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inducing immunosuppression. Conversely, high oxygen supply can fuel tumor growth and

proliferation. Thus, precise modeling of oxygen transport phenomena is vital for understand-

ing and predicting the spatial-temporal evolution of oxygen concentration within tumor and

host tissues, enabling insightful predictions of hypoxic regions, influencing therapeutic re-

sponse, and tumor progression. Further incorporation of factors like angiogenesis, necrosis,

and therapeutic intervention can augment the model, enhancing its predictive capabilities

and biological fidelity.

The mathematical modeling of O2 concentration is achieved by the transient convection-

diffusion-reaction equation[30][22]. Oxygen diffusion through the interstitial pores of the

medium, due to concentration gradients, is described by Fick’s law. Diffusivity varies be-

tween healthy and tumor tissues, with the latter being less diffusive. Additionally, a convec-

tive transport of oxygen occurs due to the bulk motion of the interstitial fluid. As described

above in Equation (2.1), the flow velocity is affected by the fluid pressure gradients and the

divergence of the solid matrix velocity field. The consumption of O2 due to cancer cell prolif-

eration is localized to the tumor region and is modeled using a non-linear Michaelis-Menten

kinetics-type equation. This model regulates the rate of oxygen consumption, ensuring it

adheres to saturation limits and illustrates the competitive uptake of oxygen by tumor cells

in an environment deprived of nutrients. Both tumor and host regions utilize a shared source

term to describe the exchange of oxygen between blood vessels and tissues, encapsulating the

process of oxygen delivery and leakage from the vasculature to the interstitial space, which

is influenced by both the permeability of vessel walls and vascular density. The modified

versions of Equation (2.25), describing the aforementioned processes, are as follows:

∂cox
∂t

+∇ · (coxvf ) = Dox∇2cox −
Aoxcox
cox + kox

TCC + PerSv(ciox − cox) (2.26)

∂cox
∂t

+∇ · (coxvf ) = Dox∇2cox + PerSv(ciox − cox) (2.27)

The dependent variables and coefficients involved in the above equations are:

2.3.2 Cancer Cell Proliferation

The accurate modeling and analysis of cancer cell proliferation within the tumor microenvi-

ronment (TME) stand as pivotal in comprehending tumor evolution and progression. Pro-

liferation of cancer cells tends to decrease vessel diameter due to the compression of tumor

vessels, thereby not only physically modifying the TME but also impacting nutrient and

oxygen supply, which subsequently influences further tumor development. The functional
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Variable Unit Description

cox mol/m3s Oxygen concentration (dependent variable)

TCC 1 Concentration of tumor cells

vf m/s Velocity vector of the fluid phase

Dox m2/s Diffusion coefficient of oxygen

Aox mol/m3s Maximal oxygen uptake rate by the tumor cells

Per m/s Permeability of oxygen across tumor vessel walls

Sv m2/s Vascular Density

ciox mol/m3 Initial Oxygen Concentration in the blood vessels

k1 1/s Growth rate parameter

k2 mol/m3 Growth rate parameter

Table 2.3: Oxygen Concentration Equation Variables And Parameters

vascular density within the TME is determined by several variables: the hyper-permeability

of blood vessels, the compression of vessels by proliferating cancer cells, prevailing solid stress

levels, and the endothelial cell density.

The population balance of Cancer Cells (CCs) is intricately linked to tumor perfusion and

oxygenation, augmenting with an elevation in the oxygen level. The mathematical modeling

of cancer cell proliferation is expressible through a Partial Differential Equation (PDE),

exemplified below:

∂TCC

∂t
+∇ · (TCCvs) =

k1cox
k2 + cox

TCCλg (2.28)

The involved dependent variables and parameters are presented in Table 2.4

This PDE establishes a relationship amidst local oxygen concentration, the velocity field

of the solid phase (comprising cancer cells), and the proliferation rate of the cancer cells.

It enables exploration of how fluctuations in oxygen concentration, mediated via both con-

vective and diffusive transport, can impact the spatial-temporal evolution of the tumor cell

population within the TME. This modeling can act as a foundational component for the de-

velopment of comprehensive, bio-physically detailed tumor models, and provides a platform

to probe therapeutic strategies targeting tumor growth and proliferation.
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Variable Unit Description

TCC 1 Concentration of tumor cells (Dependent Variable)

cox mol/m3s Oxygen concentration (Communicated Dependent Variable)

λg 1 Growth Stretch Ratio (Communicated Dependent Variable)

vs m/s Solid Phase Velocity (Communicated Dependent Variable Deriva-
tive)

k1 1/s Growth rate parameter

k2 mol/m3 Growth rate parameter

Table 2.4: Cancer Cell Population Equation Variables And Parameters

2.4 Summary

The mathematical model described in the previous sections has strong coupling connections

between the 5 differential equations, which can be described as follows : The interstitial fluid

pressure is affected by the divergence of the solid phase velocity field and affects the solid

phase by adding hydrostatic components to the stress state. The divergence of the velocity

fields of the solid and fluid phases are responsible for the convective flows of cancer cells

and oxygen correspondingly. Cancer cell transport is included in the growth stretch ratio

equation and the non-linear source term of oxygen transport, while oxygen supply plays a

major role in the genesis of cancer cells since it is included in the source. The effect of oxygen

is also very important in the growth stretch ratio of the solid phase, which affects the elastic

deformation gradient tensor F .

Figure 2.1: Equation Coupling Flow Chart
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Chapter 3

Discretization in the Physical Space
Domain

3.1 Introduction

This chapter aims to present the spatial discretization of equations (2.16), (2.4), (2.27), (2.26)

and (2.28) as shown in Chapter 3 with the implementation of the Finite Element Method.

This section contains information regarding the weak form formulations of the hyperelastic

solid phase and the variations of the Convection-Diffusion-Production equation, as well as

information about the discrete computational domain that represents the TME and the

elements used.

3.2 Finite Element Discretization

The spatial discretization of the equations that govern the TME is achieved by the Finite El-

ement Method, a powerfull numerical method, applicable to a vast array of physical problems

that involve complicated physics, geometry and boundary conditions. The continous physical

space is viewed as a collection of smaller sumbdomains (finite elements), consisted by dis-

crete points (nodes). Each element is viewed as an independent domain by itself and it must

satisfy the differential equation. The governing differential equation is approximated by the

Galerkin variational method and it is viewed as a collection of simple algebraic polynomials,

that are continous at the connecting nodes of neighbouring elements.

The basis of the displacement-based finite element analysis performed to calculate the re-

sponse of the solid phase is the principle of virtual work. This principle states that the

equilibrium of a solid body requires that for any compatible small virtual displacements im-

posed on the body while in equilibrium, the total internal virtual work is equal to the total

external virtual work. In the examined case there is absence of external, body and inertial
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forces so the corresponding virtual work of the first two should be zero, but for completness

purposes they will be included in the following mathematical formulations. Consider any

arbitrarily chosen continuus virtual displacements ûi satisfying ûi = 0 at the boundaries of a

solid body B′. The governing equilibrium equation is:

σij,j + fB
i = 0 (3.1)

3.2.1 Elastic solid phase

All the formulations that will be shown in this subsection are based on the assumption of

linear elastic material, small displacements and small strains. Calculate the virtual work by

multiplying (3.1) with the virtual displacements and integrate over the initial body volume:∫
V

(
σij,j + fB

i

)
ûidV = 0 (3.2)

where fB
i is the applied body force field. In order for the above equation to be satisfied, for

any arbitrarily chosen ûi the quantity in the parentheses should be equal to 0. Integrate by

parts: ∫
V

[
(σijûi),j − σijûi,j + fB

i ûi

]
dV = 0 (3.3)

Apply Gauss theorem to convert body integral to surface and explicitly introduced natural

(Neumann) boundary conditions to the principle of virtual displacements:∫
V

(
−σijûi,j + fB

i ûi

)
dV +

∫
Sf

fS
i û

S
i = 0 (3.4)

Since σij = σji:

σijûi,j = σij

[
1

2
(ûi,j + ûj,i)

]
= σij ϵ̂ij (3.5)

we finally obtain the weak form of the steady state momentum equation:∫
V

σij ϵ̂ijdV =

∫
V

fB
i ûidV +

∫
Sf

fS
i û

S
i dS = 0 (3.6)

In Finite Method Analysis B′ is approximated as the assemblage ofM discrete finite elements.

The governing equation (3.1) must be satisfied at all elements and the coordinate system can

be chosen conviniently. We assume that the displacement field of every element e can be

approximated as follows:

ue = N eûe (3.7)
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where N e is a matrix that contains the displacement interpolation polynomials, the so-called

shape functions and ûe is the vector containing the degrees of freedom of all n element nodes:

ûi(x, y, z) =


ux,i(x, y, z)

uy,i(x, y, z)

uz,i(x, y, z)

 ⇒ û =


ux,i

uy,i

uz,i

 ⇒ ûe



û0

...

ûi

...

ûn


, i ∈ [0, n] (3.8)

Strains are calculated based on the assumption of Equation (3.7) by properly calculating the

gradients of N :

ϵ = Beûe

while stresses are calculated according to the constitutive matrix C as follows:

σ = Ceûe (3.9)

The response of the system is calculated by assembling the sum of all elements as follows:

ˆ̄uT

[ ∑
e=0,M

∫
V e

BeTCeBedV e

]
û = ˆ̄uT

[{ ∑
e=0,M

∫
V e

N eTfBe
dV e

}
+

{ ∑
e=0,M

∫
Se

N eTfSe
dV e

}]
(3.10)

To obtain the system of equations of the response, we apply the principle of virtual

displacements n times imposing unit virtual displacements in turn for all components of

ˆ̄ue = e1...en and finally Equation (3.10) can be expressed in the following form :

KU = F (3.11)

The fact that the displacements must be small has affected the calculations of K and F since

integrations are performed in the initial element volume and the strain-displacement matrix

B is independent of displacements while C is constant.

3.2.2 Hyperelastic Solid Phase

As presented in Chapter 2 the stress state of the solid phase leads to large displacements and

large strains while the material is defined by non-linear constitutive formulations. In such

cases the deformation state is described either by Total or Upgraded Lagrangian description.

Total Lagrangian (TL) description refers to all deformations with respect to the initial con-

figuration, which is fixed in space while Updated Lagrangian (UL) description tracks material
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points through the deformation process.

The aforementioned geometric and material non-linearities of the solid phase of the tissues

impose a basic problem and that is to find the state of equilibrium of a body corresponding

to the applied loads. This is achieved by an iterative procedure where the external load

F is applied incrementaly between two successive time steps. Note that time-steps do not

refer to the time domain rather than the pseudo time between two succesive applications of

the incremental load.Suppose that the state of the system is known at time t and solution is

seeken at t+1. Define the virtual displacement field δtui that are assumed to be the variation

of the current displacement and correspond to the current Green-Lagrange (δtϵij) and small

strain (δteij) tensors components[3]:

δϵtij = xt
m,ix

t
n,jδe

t
mn (3.12)

δetij =
1

2

(
∂δum

∂xt
n

+
∂δun

∂xt
m

)
xt
m,ix

t
n,jδe

t
mn (3.13)

Equation (3.1) becomes: ∫
V 0

St+1
ij δϵt+1

ij dV 0 = Rt+1 (3.14)

while by considering incremental decompositions it takes the following form:∫
V t

St
ijδϵ

t
ijdV

t +

∫
V t

σt
ijδη

t
ijdV

t = Rt+1 −
∫
V t

σt
ijδϵ

t
ijdV

t (3.15)

with the incremental stress and strain tensors defined as follows:

St+1
ij = St

ij + S0
ij (3.16)

ϵt+1
ij = ϵtij + ϵ0ij = ϵtij + e0ij + η0ij =

1

2
(u0

i,j + u0
j,i) +

1

2
(u0

k,i + u0
k,j)r4 (3.17)

By assuming that the second Piola-Kirchhoff stress tensor can be expressed as:

S0
ij =

∫
V 0

Cijrse
0
rsdV

0 (3.18)

while:

δϵ0ij = δϵ0ij (3.19)

the equilibrium equation becomes:∫
V 0

Cijrse
0
rsdV

0 +

∫
V 0

St
ijδη

0
ijdV

0 = Rt+1 −
∫
V 0

Sijδe
0
rsdV

0 (3.20)
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F t+1 = F t + F (3.21)

F is the increment in nodal point forces correspondent to the increment in element displace-

ments and stresses from t to t+ 1 and can be approximated using a tangent stiffness matrix

Kt which corresponds to the geometric and material conditions at time t [3]:

F = KtU (3.22)

where U is a vector of incremental nodal displacements so:

K =
∂F t

∂U t (3.23)

It can be seen that:

KtU = Rt+1 − F t ⇒ U t+1 = U t +U (3.24)

By solving for U the displacements at t+ 1 are calculated as follows:

U t+1 = U t +U (3.25)

The calculations are performed by implementing the widely used Newton-Raphson method

that is an extension of the simple incremental technique. The Newton-Raphson algorithm,

having calculated an increment in the nodal point displacements, which defines a new total

displacement vector, repeats the incremental solution presented above using the currently

known total displacements instead of the displacements at time t. For i = 1, ... the Newton

Raphson iteration is[3]:

Kt+1
(i−1)∆U (i) = Rt+1 − F t+1

(i−1) (3.26)

U t+1
(i) = Rt+1

(i−1) +∆U (i) (3.27)

with initial conditions:

U t+1
(0) = U t, Kt+1

(0) = Kt, F t+1
(0) = F t (3.28)

More about the formulations in element base can be found in [3]

3.2.3 Convection-Diffusion-Production Equation

Consider the general form of the Convection Diffusion Equation :

α(x)
∂Φ(x, t)

∂t
= β(x)∇2Φ(x, t)− γ(x)∇ · (vΦ(x, t)) + δ(x)Φ(x, t) + ϵ(x) (3.29)
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The physical space is discretized in N elements with M nodes each. We assume that the

solution takes the form:

Φ ∼= Nϕ = [N1, ..., NM ]


ϕ1

...

ϕM

 = Niϕi (3.30)

where Ni are the weight functions and ϕi are the nodal parameters.

α
∂

∂t
Nϕ = β∇2Nϕ− γv∇Nϕ+ δNϕ+ ϵ (3.31)

Multiply with weight functions vector and integrate over the element volume:

α

∫
V

NT ∂

∂t
NϕdV = β

∫
V

NT∇2NϕdV − γu

∫
V

NT∇NϕdV

+ δ

∫
V

NTNϕdV + ϵ

∫
V

NT dV

(3.32)

Nodal parameter ϕi is independent of space and time so by integrating by parts and ignoring

the boundary integrals (3.32) can be written as:

α
∂ϕ

∂t

∫
V

NTNdV = −βϕ

∫
V

∇(NT )∇NdV − γvϕ

∫
V

NT∇NdV

+ δϕ

∫
V

NTNϕdV + ϵ

∫
V

NT dV

(3.33)

(3.33) can be simplified to:

Cϕ̇+Kϕ = F (3.34)

where:
K = X

′′
+X

′ −X,

C = α

∫
V

NTN dV, X
′
= β

∫
V

NT∇N dV,

X
′′
= γ

∫
V

∇NT∇N dV, X = δ

∫
V

NTN dV,

F = ϵf

∫
V

NT dV
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3.3 Mesh

As previously mentioned, the computational domain portraying the TME comprises a quarter-

sphere encased within a cube at the axis origin. Both the size and the characteristic length

of the tumor domain mesh are significantly smaller compared to those of the host domain.

This is attributed to the notorious heterogeneity between the two regions, where the intricate

interactions within the tumor domain, as well as those occurring at the interface between the

tumor and host domains, demand a higher resolution for precise modeling. By opting for a

smaller domain size and a locally refined mesh for the tumor along with the adjacent area,

a detailed portrayal of these interactions is achieved with significantly less computational

resources.

Figure 3.1: Mesh and zoom in tumor domain (change this!)

3.3.1 Finite Elements

The computational mesh is assembled with M tetrahedra finite elements e, with 4 nodes each

and a single Gauss point in the center of mass as it can be seen in Figure 3.2.

Figure 3.2: Tetrahedron element with four nodes in an orthonormal Cartesian coordinate system
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A three dimensional vector field ϕ(x, y, z) can be expressed at each node i as follows: [13]

ϕi(x, y, z) =


ϕx,i(x, y, z)

ϕy,i(x, y, z)

ϕz,i(x, y, z)

 ⇒ ϕi =


ϕx,i

ϕy,i

ϕz,i

 , i ∈ [0, 3] (3.35)

The state of a vector field in a tetreahedron element is described by 12 degrees of freedom

(DoF) and can be described in matrix form as follows:

ϕe =


ϕ0

ϕ1

ϕ2

ϕ3

 (3.36)

The calculation of the unknown variables is achieved by a linear polynomial :

ϕ(x, y, z) = a+ bx+ cy + dz (3.37)

and for each degree of freedom with index k ∈ [0, 11] the unknown values are expressed in

matrix form as follows:

ϕe(x, y, z) =


ϕx(x, y, z)

ϕy(x, y, z)

ϕz(x, y, z)

 =

1 x y z 0 0 0 0 0 0 0 0

0 0 0 0 1 x y z 0 0 0 0

0 0 0 0 0 0 0 0 1 x y z




α0

...

αi

...

α11


= M (x, y, z)α (3.38)

Substitute the nodal coordinates in (3.38) and the expression for all the degrees of freedom

of the element becomes:

ϕx,0

ϕy,0

ϕz,0

...

ϕx,4

ϕy,4

ϕz,4


=



1 x1 y1 z1 0 0 0 0 0 0 0 0

0 0 0 0 1 x1 y1 z1 0 0 0 0

0 0 0 0 0 0 0 0 1 x1 y1 z1

. . .

1 x4 y4 z4 0 0 0 0 0 0 0 0

0 0 0 0 1 x4 y4 z4 0 0 0 0

0 0 0 0 0 0 0 0 1 x y4 z4





α0

α1

α2

...

α9

α10

α11


⇒ ϕe = Aα (3.39)

23



Solve (3.39) and substitute a in (3.38) the shape functions Ni are obtained :

ϕ =


ϕx

ϕy

ϕz

 = MA−1ϕe = Nϕe = [N 0,N 1,N 2,N 3]ϕ
e (3.40)

with:

N i =

νi 0 0

0 νi 0

0 0 νi

 = νiδij (3.41)

and

νi =
s1 + b1x+ c1y + d1z

6V
(3.42)

The coefficients for the components of the shape functions are calculated in a circular manner

:

s0 =

∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣ , b0 = −

∣∣∣∣∣∣∣
1 y1 z1

1 y2 z2

1 y3 z3

∣∣∣∣∣∣∣ , (3.43)

c0 =

∣∣∣∣∣∣∣
x1 1 z1

x2 1 z2

x3 1 z3

∣∣∣∣∣∣∣ , d0 = −

∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣ (3.44)

while the volume of the tetrahedral finite element is:

6V =

∣∣∣∣∣∣∣∣∣∣
1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

∣∣∣∣∣∣∣∣∣∣
(3.45)

It is obvious that tr(N ) = 1. For scalar fields the number of DoF for the element is reduced

to 4. The manipulations in the above relations can be performed with ease.
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Chapter 4

Discretization in the Time Domain

4.1 Introduction

In this section, the time integration schemes implemented for the transient analysis of the tu-

mor micro-environment are presented. These methods are Backward Differentiation Formula,

Newmark and Generalized-α. Each section contains the mathematical formulations as well

as the corresponding algorithm for each integration method. The aforementioned methods

are implemented in MSolve as Transient IParentNumericalAnalyzers. These analyzers are

responsible for the orchestration of time-dependent finite element analyses, by managing time

marching, creating data structures with respect to the methods coefficients and managing

the state of the system. More information regarding MSolve Numerical Analyzers and their

integration of into the simulation of the tumor micro-environment is provided in Chapter 5.

Consider the equations of equilibrium governing the linear, transient response of a scalar or

vector field ϕ (x, t):

Mϕ̈+Cϕ̇+Kϕ = F (4.1)

ϕ̇ and ϕ̈ are the first and second temporal derivatives, respectively. K, C, M are the

corresponding coefficient matrices defined by the constitutive properties of the medium cor-

responding to the second first and zeroth time derivative vectors. All methods presented are

direct methods meaning that that they operate directly on (4.1) without transforming it.

One core idea behind this methods is that instead of trying to satisfy (4.1) at any time t of

the continuous time domain, they satisfy it at discrete time intervals ∆t assuming local equi-

librium. In addition to that all methods presented in this chapter are implicit, meaning that

they make use of both current and previous time step information to advance the solution.

This implicit nature allows for greater stability, especially for stiff equations
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4.2 Newmark Integration Scheme

The Newmark-beta method is a numerical algorithm for solving second-order differential

equations, commonly used in structural dynamics and other areas requiring the integration

of motion equations. The method hinges on two key parameters, which are adjustable to

control the numerical stability and accuracy of the integration. These parameters enable

the method to be fine-tuned for conditional or unconditional stability, making it suitable for

various applications. Its implicit nature allows for larger time steps than explicit methods,

but this comes with increased computational demands due to the iterative solution of the

resulting equations at each time step.

4.2.1 Mathematical Formulations

The Newmark integration method is based on the following assumptions for the calculation

of the first and second derivatives of the solution [4], [26]:

ϕ̇
t+1

= ϕ̇
t
+
[
(1− δ) ϕ̈

t
+ δϕ̈

t+1
]
∆t (4.2)

ϕt+1 = ϕt + ϕ̇
t
∆t+

[(
1

2
− α

)
ϕ̈

t
+ αϕ̈

t+1
]
∆t2 (4.3)

where the superscripts t and t + 1 denote the current and next time-step correspondingly

while α and δ are determined to obtain the desired integration accuracy and stability. For

α = 1/2 and δ = 1/6 the algorithm is called Linear Acceleration Method. For α = 1/2 and

δ = 1/4, the algorithm is called Constant Average Acceleration Method (Trapezoidal Rule)

and is unconditionally stable, meaning convergence is granted for any time-step.

Considering the trapezoidal rule, and solving for the primary variable at the next time in-

crement t+ 1, Equation(4.1) becomes:

(
4

∆t2
M +

2

∆t
C +K

)
ϕt+1 = Rt+1+M

(
4

∆t2
ϕt +

4

∆t
ϕ̇t + ϕ̈t

)
+C

(
2

∆t
ϕt + ϕ̇t

)
(4.4)

The computations for the first and second derivatives at t+ 1 based on ϕt+1 are performed

based on the Newmark integration coefficients presented in Table4.1:

4.2.2 Algorithm

The complete solution procedure using the Newmark method is summarized as follows:

A. Initial calculations:
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a0
1

α∆t2

a1
δ

α∆t

a2
1

α∆t

a3
1

2α
− 1

a4
∆t

α
− 1

a5
∆t

2

(
δ

α
− 2

)
a6 ∆t(1− δ)

a7 δ∆t

Table 4.1: Newmark Method integration constants

1. Form matrices M 0, C0, K0.

2. Initialize solution vector ϕ0.

3. Select time step ∆t and parameters α and δ. Calculate integration constants:

δ ≥ 0.5

α ≥ 0.25(0.5 + δ)2

4. Calculate integration constants of Table(4.1)

5. Form effective matrix K̂
0
= K0 + a0M

0 + a1C0.

B. For each time step:

1. Form matrices M t, Ct, Kt. If the medium properties do not change over time skip this

step.

2. Form effective matrix K̂
t
= Kt+a0M

t+a1Ct. If the medium properties do not change

over time skip this step.
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3. Calculate effective RHS vector R̂
t+1

at time t+∆t.

R̂
t+1

= Rt+1 +M t
(
a0ϕ

t + a2ϕ̇
t + a3ϕ̈

t
)
+Ct

(
a1ϕ

t + a4ϕ̇
t + a5ϕ̈

t
)
+Ktαfϕ

t (4.5)

4. Solve K̂ϕt+1 = R̂
t+1

5. Calculate the first and second derivatives at time t+∆t.

ϕ̈t+1 = a0
(
ϕt+1 − ϕt

)
− a2ϕ̇

t − a3ϕ̈
t, (4.6)

ϕ̇t+1 = ϕ̇t + a6ϕ̈
t − a7ϕ̈

t+1. (4.7)

4.2.3 MSolve Implementation

4.3 Generalized - α Integration Scheme

The generalized-α integration scheme extends the Newmark Algorithm. It is a direct-time

integration method that enhances stability by dissipating high-energy oscillations, often aris-

ing as numerical artifacts from discretization or approximations. In transient computational

mechanics, these oscillations, not always inherent to the physical system, are effectively man-

aged by selecting appropriate parameters, while preserving essential low-energy components.

4.3.1 Mathematical Formulations

The generalized-α method is based on the following assumptions [18], [11]:

ϕt+1 = ϕt + ϕ̇
t
∆t+

[(
1

2
− β

)
∆t2at + β∆t2αt+1

]
(4.8)

ϕ̇
t+1

= ϕ̇
t
+

1

∆t

[
(1− γ)∆t2at + γ∆t2αt+1

]
(4.9)

where β and γ are determined to obtain the desired integration accuracy and stability. The

algorithm implements algorithmic accelerations, αt, αt+1, which are related to the actual

accelerations of the system through the following recurrance relationship :

(1− αm)a
t+1 + αma

t = (1− αf )ϕ̈
t+1 + (αf )ϕ̈

t (4.10)

with αm, αf chosen to achieve the desirable stability and accuracy. Consider the spec-

tral radius of the amplification matrix ρ∞, as a function of the non-dimensional natural
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period of the system: ∆̂t = ∆t/T . The algorithm becomes unconditionally stable for

ρ∞ = ρ( ˆ∆t → ∞) ∈ [0, 1] where parameters αm, αf are selected as follows:

αm =
2ρ∞

ρ∞ + 1
(4.11)

αm =
ρ∞

ρ∞ + 1
(4.12)

If ρ∞ vanishes for ∆̂t → ∞, asymptotic annihilation is achieved and parameters γ, β are:

γ =
1

2
− αm + αf (4.13)

β =
1

4
(1− αm + αf )

2 (4.14)

The integration constants of the Generalized-α method are presented in 4.2:

4.3.2 Algorithm

The algorithm for the Generalized-α can be summarized as follows:

A. Initial calculations:

1. Form matrices M 0, C0, K0.

2. Initialize solution vector ϕ0.

3. Select time step ∆t, spectral radius ρ∞ and calculate αm, αf .

4. If ρ∞ vanishes calculate γ, β.

5. Calculate integration constants of Table(4.2)

6. Form effective matrix K̂
0
= K0 + a0M

0 + a1C0.

B. For each time step:

1. Form matrices M t, Ct, Kt. If the medium properties do not change over time skip this

step.

2. Form effective matrix K̂
t
= +a0M

t + a1Ct + (1−αf )K
t. If the medium properties do

not change over time skip this step.

3. Calculate effective RHS vector R̂
t+1

at time t+∆t.

R̂
t+1

= Rt+1+M t
(
a0ϕ

t + a0ϕ̇
t + a3ϕ̈

t
)
+Ct

(
a0ϕ

t + a4ϕ̇
t + a5ϕ̈

t
)
+Ktαfϕ

t (4.15)
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a0
1− αm

β∆t2

a1
γ(1− αf )

β∆t

a2
1− αm

β∆t

a3
1− αm − 2β

2β

a4
γ − γαf − β

β

a5
(γ − 2β)(1− αf )∆t

2β

a6
γ

β∆t

a7
γ − β

β

a8
(γ − 2β)∆t

2β

a9
1

β∆t2

a10
1

β∆t

a11
1− 2β

2β

Table 4.2: Generalized-α Method integration constants

4. Solve K̂ϕt+1 = R̂
t+1

5. Calculate the first and second derivatives at time t+∆t.

ϕ̇t+1 = a6

(
ϕt+1 − a7ϕ̇

t − a8ϕ̈
t
)

(4.16)

ϕ̈t+1 = a9

(
ϕt+1 − a10ϕ̇

t − a11ϕ̈
t
)

(4.17)

(4.18)
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4.4 Backward Differentiation Formula Time Integration Scheme

The Backward Differentiation Formula (BDF) method is a widely used numerical technique

for solving stiff ordinary differential equations (ODEs) and partial differential equations

(PDEs) in transient simulations. Belonging to the category of linear multistep methods,

BDF approximates derivatives by employing implicit differentiation formulas and integrates

equations over specified time intervals. Mathematically, the method constructs a linear com-

bination of current and previous solutions to predict future values, with the precision of

approximations being dependent on the step size. Noteworthy for its numerical stability,

especially in the context of stiff equations, BDF also possesses the capability to accommo-

date variable time-stepping, a feature that is especially advantageous in scenarios where

the solution experiences rapid transitions. This method, substantiated by its mathematical

robustness, finds extensive application across various scientific and engineering domains, illus-

trating its crucial role in facilitating accurate and efficient numerical simulations in temporal

analyses. In the scope of this thesis, the BDF method is implemented for solving first-order

ordinary differential equations (ODEs) with a consistent timestep.

4.4.1 Mathematical Formulations

BDF is classified as an implicit method meaning it determines the system’s state at a current

time, denoted Φ(tn+N), by utilizing both the current and preceding time states, Φ(tn−(N−1)),

. . . , Φ(tn), where N signifies the maximum number of previous time states involved in the

calculations. Enhancing the numerical scheme by reducing the cut-off error becomes possible

by increasing the count of considered previous states (N). The numerical schemes are deduced

by evaluating Taylor’s series expansions around Φ(tn+λ) as expressed below:

inf∑
n=0

Φ(k)(tn+λ)

k!
∆tn = Φ(tn+λ)− ∂Φ(tn+λ)

∂t
∆t+

∂2Φ(tn+λ)

∂t2
∆t2 +O(∆t3)

where λ = 1...N is the number of previous time states, k is the order of the derivative, which

for our case is 1 or 2 and ∆t = tn+λ− tn. After some routine mathematical manipulation the

expressions for the first backward derivative (N = 5) are :

∂Φ

∂t
=

Φn+1 − Φn

∆t
+O(∆t) (4.19)

∂Φ

∂t
=

3Φn+2 − 4Φn+1 + Φn

2∆t
+O(∆t2) (4.20)
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∂Φ

∂t
=

11Φn+3 − 18Φn+2 + 9Φn+1 − 2Φn

6∆t
+O(∆t3) (4.21)

∂Φ

∂t
=

25Φn+4 − 48Φn+3 + 36Φn+2 − 16Φn+1 + 3Φn

12∆t
+O(∆t4) (4.22)

∂Φ

∂t
=

137Φn+5 − 300Φn+4 + 30Φn+3 − 200Φn+2 + 75Φn+1 + 12Φn

60∆t
+O(∆t5) (4.23)

Since the second derivative terms are not considered in this scheme (M = 0) equation (4.1)

takes the form :

Cϕ̇+Kϕ = F (4.24)

The genreral form of the numerical scheme takes the form:

C
cNϕ

n+N + ...+ c1ϕ
n

ct∆t
+Kϕn+1 = F ⇒

(
cN
ct∆t

C +K

)
ϕn+N = F +

1

∆t
C

(
−cn+N−1

ct
ϕn+N−1...− cn

ct
ϕn

)
⇒

K̂
(N)

ϕn+N = R̂
(N)

(4.25)

BDF 1 (N=1)

K̂(1) =
1

∆t
C +K

R̂(1) = F +
1

∆t
Cϕn

BDF 2 (N=2)

K̂(2) =
3

2∆t
C +K

R̂(2) = F +
1

∆t
C

(
4

2
ϕn+1 − 1

2
ϕn

)
BDF 3 (N=3)

K̂(3) =
11

6∆t
C +K

R̂(3) = F +
1

∆t
C

(
18

6
ϕn+2 − 9

6
ϕn+1 +

2

6
ϕn

)
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BDF 4 (N=4)

K̂(4) =
25

12∆t
C +K

R̂(4) = F +
1

∆t
C

(
48

12
ϕn+3 − 36

12
ϕn+2 − 16

12
ϕn+1 − 3

12
ϕn

)
BDF 5 (N=5)

K̂(5) =
137

60∆t
C +K

R̂(5) = F +
1

∆t
C

(
300

60
ϕn+4 − 300

60
ϕn+3 +

200

60
ϕn+2 − 75

60
ϕn+1 +

12

60
ϕn

)
4.4.2 Algorithm

The complete solution procedure using the Backward Differentiation Formula method is

summarized as follows:

A. Initial calculations:

1. Form matrices C0, K0.

2. Initialize solution vector ϕ0.

3. Select time step ∆t and method order N = 1...5

4. Form K̂
1
F̂

1
. If there is no special treatment for the initial step the cut-off error will

be of order 1 and the solution will be based on the initial value.

B. For each time step:

1. Form matrices Ct, Kt.

2. Form K̂
N

F̂
N
. If the current step index it is smaller than the method order N then

select the BDF(it)

3. Solve K̂
N
ϕt+1 = R̂

N

4. Calculate derivative ϕ̇
t+1

if needed.
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Chapter 5

Solution Strategy

5.1 Intoduction

The coupled system of equations described in the preceding chapters is numerically solved

using the Bio-mechanics module of MSolve. For validation, results are compared against those

from COMSOL to ensure the robustness and accuracy of the implemented solution strategy.

The challenges presented by the coupling of these equations necessitate a meticulous and

adaptable approach.

Central to this strategy is a modular setup. Each partial differential equation, representing

distinct physical phenomena, is formulated independently. Once these individual models are

delineated, they are systematically integrated into a cohesive coupling framework, ensuring

the interactions and dependencies between them are adequately addressed.

Given the inherent coupling between the equations, a staggered methodology is adopted

for the solution. In this approach, equations are solved sequentially within each time step.

This process is repeated iteratively until convergence criteria are met for all equations within

the time-step. Following this, shared properties are updated and the simulation advances to

the next time-step, and the iterative process is initiated once more.

This design choice empowers users with extensive flexibility in manipulating model param-

eters and coupling mechanisms. Users can isolate the one-way or two-way communication

between equations and prescribe the shared properties to specific values. Additionally, the

analysis can be finely tuned by adjusting the tolerances of each iterative process and by

choosing from a variety of solvers and time integration methods.
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5.2 Finite Elements Models Setup and Coupling

The framework offers a streamlined, templated format for creating distinct finite element

models for any combination of the five equations described in Chapter 3, while it simplifies

the integration of more equations. Each provider class is responsible for setting up the

essential components needed to solve a specific equation. The core utilities of these classes

can be summarized in the following paragraphs.

Initially model providers initialize the finite element model of the corresponding equation

based on the input mesh, boudary and initial conditions. Appropriate field and material

properties are assigned to each element, considering any possible coupled quantities from

other equations of the system. Another basic task of the equation model provider is to set up

the appropriate numerical solver, parent (transient) and child (equilibrium) analyzers, ensur-

ing that the model is solved implementing the most suitable numerical methods. Additionally

model providers perform the necessary calculations of the derivative quantities calculated at

the Gauss points of each elements by leveraging the isoparametric interpolations and quadra-

ture techniques, a pivotal step since these values often serve as shared quantities between

equations. Last but not least providers are responsible for logging by facilitating the storage

of values for the monitored degrees of freedom.

The coupled model provider orchestrates the integration and synchronization of the afore-

mentioned equation model providers within the analysis. It plays a major role in initializing

models, managing boundary conditions, updating shared quantities, and ensuring consistent

advancements across all models at each simulation time step. Additionally, it handles the

initialization and updating of analyzers and solvers, facilitates state saving, and updates time

parameters, ensuring a harmonious and efficient simulation progression.

5.3 MSolve Analyzers

5.3.1 Transient (Parent) Analyzers

MSolve IParentAnalyzer, in the case of tumor modeling facilitate the management and

coordination of transient analyses, acting as a hierarchical overseer to child analyzers. By

establishing a hierarchical structure, parent analyzers ensure the integration of specialized

child analyzers, each addressing distinct aspects of simulations. Parent analyzers manage the

evolving state of simulations and provide mechanisms for creating linear algebra data struc-

tures, tracking progress, updating and storing states between steps. The construction of a

parent analyzer involves initializing the algorithm and setting up the physical model, time pa-
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rameters, and any additional method-specific parameters. For example, in algorithms of the

Newmark family, this would include calculating integration constants that are subsequently

used in various steps of the algorithm. The parent analyzer is responsible for constructing the

effective system matrices, incorporating contributions from various coefficient matrices each

scaled by the integration specific constants. Furthermore, parent analyzers manage the com-

putation of the effective right-hand side (RHS) vectors, integrating contributions, external

forces and internal force vectors derived from initial conditions and computed solutions of the

primary variables and their derivatives. This ensures the maintenance of system equilibrium

at each time step.

By establishing a clear hierarchy and delineating responsibilities, parent analyzers in MSolve

bring order and efficiency to complex simulations, ensuring that each component of the

system is addressed appropriately and that the overall solution is achieved in a systematic

and reliable manner.

5.3.2 Staggered Analyzer

The StepwiseStaggeredAnalyzer class in MSolve is employed for addressing coupled prob-

lems through a staggered, iterative approach. This analyzer introduces functionalities to

ensure seamless integration with analyzers that operate on a per-step basis, accommodating

an array of nested parent analyzers each assigned with the manipulation for handling and

solving specific equations of the coupled system. It orchestrates the step-by-step analysis,

iteratively invoking each nested analyzer to solve its respective part of the problem for the

current step before proceeding to the next. This ensures that interactions between different

physical phenomena are captured and iteratively adjusted until the solution converges or the

maximum number of staggered steps is reached, catering to both steady-state and transient

systems.

The computational process is summarized as follows: At the beginning of each time step or

set of staggered steps, all shared properties are communicated, with communications blocked

until the beginning of the subsequent step. The staggered analyzer then sequentially calls

the parent analyzers to solve the corresponding equations, calculates the norm between two

successive solutions, and iteratively performs the process until convergence is achieved or the

maximum iteration limit is reached. Upon convergence, the solution advances to the next

temporal increment.

Inheriting state management and error tracking capabilities from StaggeredAnalyzerBase,

the StepwiseStaggeredAnalyzer builds upon this foundation to perform necessary state

updates, error computations, and convergence checks accurately, maintaining a record of
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current solutions and corrections at each staggered step to facilitate error computation and

assess convergence.

Figure 5.1: Step-wise Transient
Analysis Flow Chart.

Figure 5.2: Coupled Finite Element Setup In Msolve.

5.3.3 Equilibrium (Child) Analyzers

The IChildAnalyzer interface provides the foundational blueprint for the analysis. It is de-

signed to grapple linear as well as non-linear problems where equilibrium is assumed. They

are operated and initialized by the parent analyzer and by providing Linear algebra intrica-

cies, combined with the specific mechanics of the problem, they necessitate the appropriate
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procedures to achieve an accurate solution. Every IChildAnalyzer utilizes the assigned

ISolver to perform the numerical solution and provide the corresponding solution vector.

5.3.3.1 Load Control Analyzer

The LoadControlAnalyzer MSolve class adopts a load control strategy tailored to address

the complexities of material and geometric non-linearities. The external load is applied incre-

mentally, breaking down the problem into smaller, more manageable segments and allowing

for a detailed evaluation of the system’s response at each stage. This methodical approach

aids in navigating through the non-linearities, aiming to enhance the stability and reliability

of the solution process.

The design of the LoadControlAnalyzer encompasses several key functionalities. The incre-

mental loading feature ensures that the external load is divided into well-defined increments,

facilitating a step-by-step adjustment of the system’s state vector, which encapsulates pri-

mary variables such as displacements. These adjustments are closely tied to linear algebraic

operations, ensuring a level of precision necessary for iterative refinement.

In managing the iterations within each load increment, the class plays a pivotal role in

ensuring that the computational process is efficient and accurate. It oversees the coordination

of linear algebra operations, including matrix manipulations and solutions to linear systems,

and ensures that the iterative process is kept within prescribed limits. In scenarios where

convergence is not attained within these limits, the class has the capability to halt the

analysis, prompting a reassessment of the situation.

Furthermore, the class is responsible for updating the system’s state once convergence is

achieved for a particular load increment. This involves refreshing not just the primary vari-

ables, such as displacements, but also derived quantities like strains and stresses, ensuring

that all aspects of the system are accurately represented and up to date.

In summary, the LoadControlAnalyzer provides a structured and incremental approach to

handling nonlinearities in material and geometric aspects of the problem. Through its careful

management of load increments, iterative processes, and state updates, it aims to deliver a

stable and reliable solution, contributing to the overall robustness of MSolve

5.3.3.2 Linear Analyzer

The Linear IChildAnalyzer is responsible for the treatment of linear mechanical systems in

equilibrium. It is utilized by the parent analyzer to solve the system of equations derived
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by the considered equilibrium state between two successive time-steps, or in the context of a

steady state analysis.

5.4 Solver

ISolver is an MSolve interface that lies in the heart of every computational analysis. MSolve

has a plethora of direct, point and stationary iterative solvers implemented each designed to

tackle the specific needs of the problem with efficiency and accuracy. Child Analyzers provide

solvers with the linear system representing the physical problem and the latter proceed to the

solution. In the context of this research all matrices are non-symmetric due to the convection

terms at Equations 2.27, 2.26, 2.28 or the non-symmetric nature of the mololithic coupling of

Equations 2.16, 2.4. As a result all linear systems are solved with the LU solver of SuiteSparse

for C#.
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Chapter 6

Numerical Application and Results

6.1 Applications Description

In this chapter the results of the computational analyses performed are presented. The

mathematical model consists of four partial and one ordinary differential equations and aims

to simulate the tumor microenvironment by considering the interactions between cancer

cells and oxygen tranpsort phenomena and the stress state due the tumor growth and the

hydrostatic pressure of the interstitial fluid flow. By designing and implementing the proper

Analyzers and data structures of the MSolve framework, as shown in Chapter 5, the coupled

system of transient differential equations presented in Chapter2 are properly discretized in

the space and time domains as shown in Chapter3 and solved in a seggregated way for the

examined time period.

The stress flows in the porous tissues due to the interstitial fluid pressure (2.4) and the stresses

of the solid matrix (2.16) are treated and solved as a single equation while O2 concentration

in the host region (2.27), the population of cancer cells (2.28) as well as the growth stretch

ratio (2.24) are described by a linear convection-diffusion-reaction equation. O2 concentra-

tion in the tumor region (2.26) is modeled with a convection-diffusion-reaction equtaion with

a non-linear source term. The response of the solid phase is examined under two different

constitutive laws. One that allows small strains and the influence of the growth in the strain

field is neglected and a second where the tissues are considered as hyperelastic with large

displacements, large strains and non-linear stress-strain relation with tumor growth influ-

ence included in the deformation gradient tensor. Healty and tumor regions are notoriously

heterogenous. The aformentioned heterogenity is captured by varying model coefficients and

equation forms across the two domains. Clinical data has shown that tumor tissues are orders

of magnitude stiffer than healthy tissues while the same pattern can be seen in the hydraylic

conductivity. This leads to significantly different stress states hence signifficantly different
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TME responses. All model coefficients are presented in Table 6.1.

Parameter Tumor Value Host Value Units

µ 22.44 5 kPa

k 216.7 6.667 kPa

kth 7.52E-11 7.52E-13 m2/kPa·s
Sv 7E3 7E3 m−1

ciox 0.2 0.2 mol/m3

Dox 1.79E-9 1.79E-9 m3/s

Per 3.55E-4 3.55E-4 m/s

Aox 2.55E-2 - mol/m3s

kox 4.64E-3 - mol/m3

k1 1.74E-6 - 1/s

k2 8.3E-3 - mol/m3

pv 4 4 kPa

pl 0 0 kPa

Lp 2.794E-9 2.794E-9 m2/kPa·s
LplSvl 3.75E-1 3.75E-1 1/kPa·s

Table 6.1: Model Parameters

The computational domain consists of two regions. The tumor region is represented by an

eighth of a sphere with radious r = 5E − 4[m] embeded in an eighth of a cube with edge

a = 0.1[m] representing the host tissue. The domain is discretized with 733 nodes and 2815

linear tetrahedra elements each with one Gauss Point positioned in the elemental center of

mass. The mesh inside and close to the tumor regions are significantly more refined since all

the phenomena of interest take place there. All spatial discretization parameters are shown

in Table 6.2.

Domain Edge Size 1E-1 [m]

Initial Tumor Radius 5E-4 [m]

Nodes 733

Elements 2815

Nodes 733

Gauss Points / Element 1

Element Type Tetrahedron

Table 6.2: Discrete Computational Domain Parameters

The computational solution has been performed using the Bio-Mechanics module of MSolve,
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and the results are validated with COMSOL. To simulate a complex, multi-physics model

such as that of the TME, our team at MGroup is actively developing and validating a

new Bio-Mechanics sub-module for MSolve. The development process includes integrating

and benchmarking new Convection-Diffusion-Reaction finite elements, hyper-elastic material

constitutive laws, BDF, and Generalized-α transient analyzers, as well as the staggered step-

wise analyzer. The analysis process can be summarized as follows: Each equation of the

coupled system is represented by a model provider, and the corresponding transient response

at each time-step is calculated by a pair of case-specific child and parent analyzers. The

coupling between the equations, in terms of shared property communication, is performed by

the coupled model provider. Meanwhile, the coupled solution at each time-step is achieved

by the staggered analyzer, which orchestrates the analyzers, and each equation is solved

iteratively until convergence is achieved.

Equation Parent Analyzer Child Analyzer Solver

u, pi Generalized-α Load Control Dense LU

cox Generalized-α Load Control Dense LU

Tcc Generalized-α Linear Dense LU

λg Generalized-α Linear Dense LU

Table 6.3: Msolve Analysis components

Total Time 30 [d]

Step Size 3600 [s]

Total Steps 720

Table 6.4: Time Discretization Parameters for linear and elastic material analysis

Total Time 3 [d]

Step Size variable [s]

Total Steps 448

Table 6.5: Time Discretization Parameters for hyperelastic material analysis
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6.2 Numerical Results - Linear & Elastic Material

Figure 6.1: Solid Phase Displacement in x-direction over time at the specified nodal coordinates for linear
and elastic solid phase tissues.

Figure 6.2: Absolute Relative Error (%) of the Solid Phase Displacement in x-direction over time at the
specified nodal coordinates for linear and elastic solid phase tissues.
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Figure 6.3: Solid Phase Displacement in y-direction over time at the specified nodal coordinates for linear
and elastic solid phase tissues.

Figure 6.4: Absolute Relative Error (%) of the Solid Phase Displacement in y-direction over time at the
specified nodal coordinates for linear and elastic solid phase tissues.
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Figure 6.5: Solid Phase Displacement in z-direction over time at the specified nodal coordinates for linear
and elastic solid phase tissues.

Figure 6.6: Absolute Relative Error (%) of the Solid Phase Displacement in z-direction over time at the
specified nodal coordinates for linear and elastic solid phase tissues.
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Figure 6.7: Solid Phase Velocity in z-direction over time at the specified nodal coordinates for linear and
elastic solid phase tissues.

Figure 6.8: Absolute Relative Error (%) of the Solid Phase Velocity in z-direction over time at the specified
nodal coordinates for linear and elastic solid phase tissues.
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Figure 6.9: Fluid Phase Pressure over time at the specified nodal coordinates for linear and elastic solid
phase tissues.

Figure 6.10: Absolute Relative Error (%) of the Fluid Phase Pressure at the specified nodal coordinates for
linear and elastic solid phase tissues.
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Figure 6.11: Oxygen Concentration over time at the specified nodal coordinates for linear and elastic solid
phase tissues.

Figure 6.12: Absolute Relative Error (%) of Oxygen Concentration at the specified nodal coordinates for
linear and elastic solid phase tissues.
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Figure 6.13: Cancer Cell Population over time at the specified nodal coordinates for linear and elastic solid
phase tissues.

Figure 6.14: Absolute Relative Error (%) of Cancer Cell Population at the specified nodal coordinates for
linear and elastic solid phase tissues.
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Figure 6.15: Tumor Growth Stretch Ratio over time at the specified nodal coordinates for linear and elastic
solid phase tissues.

Figure 6.16: Absolute Relative Error (%) of Tumor Growth Stretch Ratio at the specified nodal coordinates
for linear and elastic solid phase tissues.
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Figure 6.17: Tumor Growth Stretch Ratio over the first 15 days of the analysis at the specified nodal
coordinates for linear and elastic solid phase tissues.

Figure 6.18: Absolute Relative Error (%) of Tumor Growth Stretch Ratio at the specified nodal coordinates
for linear and elastic solid phase tissues for the first 20 days of the analysis.
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6.3 Numerical Results - Hyperelastic Material

Figure 6.19: Solid Phase Displacement in z-direction over time at the specified nodal coordinates for hyper-
elastic neo-Hookean solid phase tissues with material and geometry non-linearity.

Figure 6.20: Absolute Relative Error (%) of the Solid Phase Displacement in z-direction over time at the
specified nodal coordinates for hyperelastic neo-Hookean solid phase tissues with material and geometry non-
linearity.
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Figure 6.21: Fluid Phase Pressure over time at the specified nodal coordinates for hyperelastic neo-Hookean
solid phase tissues with material and geometry non-linearity.

Figure 6.22: Absolute Relative Error (%) of the Fluid Phase Pressure at the specified nodal coordinates for
hyperelastic neo-Hookean solid phase tissues with material and geometry non-linearity.
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Figure 6.23: Oxygen Concentration over time at the specified nodal coordinates for hyperelastic neo-Hookean
solid phase tissues with material and geometry non-linearity.

Figure 6.24: Absolute Relative Error (%) of Oxygen Concentration at the specified nodal coordinates for
hyperelastic neo-Hookean solid phase tissues with material and geometry non-linearity.

54



Figure 6.25: Cancer Cell Population over time at the specified nodal coordinates for hyperelastic neo-Hookean
solid phase tissues with material and geometry non-linearity.

Figure 6.26: Absolute Relative Error (%) of Cancer Cell Population at the specified nodal coordinates for
hyperelastic neo-Hookean solid phase tissues with material and geometry non-linearity.
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6.4 Discussion & Conclusions

6.4.1 Pressure

Pressure and solid displacements are solved as a single porous medium equation. Equation

(2.4) does not include temporal derivatives, but since the divergence of the solid phase velocity

is included as a source term, solid displacements over time lead to variations in the pressure

field. As it can be seen by Figure 6.10 and Figure 6.22, the solution obtained by MSolve is in

perfect agreement with COMSOL, with steady absolute errors over time reaching maximum

value around 1.55E − 11 at (x, y, z) = (5E − 4, 5E − 4, 5E − 4). The transient response of

the interstitial fluid pressure for of the linear material, reaches it’s equilibrium state during

the first day at all examined nodes. Transient phenomena seem to smooth out after some

seconds and by considering the slow evolving nature of the problem, it is safe to say that

they have very small effect. Another insight from the observation of the results is that the

contribution of the divergence of the solid velocities field is time-step dependent. In the case

of the hype-elastic material, pressure tends to increase slightly with time but there are not

sufficient data for it’s response over larger time periods like weeks and months.

6.4.2 Displacements

The response is examined under different material constitutive laws. For all cases considered

MSolve results are extremely accurate in comparison with the corresponding COMSOL re-

sults. For the linear and elastic material where the deformation due to the growth rate is

neglected it can be seen at Figures 6.1, 6.3, 6.5 that the solution reaches steady state in the

first day of the analysis leading to a zero velocity field, presented in Figure 6.7, that has no

effect in the pressure field. The solutions for the solid phase velocity have great error values

but this should not be a concern since the values are practically zero. Since pressure does not

change over time, its contribution to the stress tensor remains constant. In the case of the

hyperelastic material the displacement fields change over time during the examined period

and tends to increase since the effect of the tumor growth is considered in the calculations

of the strain tensor. The unrestricted growth of the tumor leads to large displacements that

deform and may corrupt the elements of the mesh, leading the analysis to fail, since there

is a change of sign in the determinant calculated during the isoparametric mapping of the

finite element.
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6.4.3 Oxygen Concentration & Cancer Cell Population

The results for oxygen and cancer cell population provide a deep insight in their intricate

coupling since Equation eq. (2.26) has a non-linear sink term that depends on the population

of the cancer cells, while the genesis of cancer cells is tightly associated with oxygen supply.

As it can be observed from Figures 6.11, 6.13, oxygen concentration away from the center

of the tumor region presents a slight decline that matches with a corresponding increase in

the tumor cells in contrast with the regions closer to the axis origins where the response is

completely different. The observed node at (x, y, z) = (2.9E − 4, 2.9E − 4, 2.9E − 4) has an

exponential increase in tumor cells over time fueled by an oxygen flux that leads to decrease

in the local oxygen concentration. Cancer cells increase even more rapidly at the two nodes

close to the center of the tumor region with a steep decline of oxygen concentration. During

the last 5 days of the analysis, hypoxic conditions appear in the center of the tumor where

the oxygen concentration tends to zero and the infected tissue is lead to necrosis. It should

be noted that the results for the population of the cancer cells during the last 14 days of the

analysis are heavily influenced by an extreme increase in the growth stretch ratio, where while

the calculated values are numerically valid, they do not correspond to a biological system

6.4.4 Tumor growth rate

The results for the tumor growth rate, in the case of linear elastic material, exhibit an

exponential behavior directly linked to the exponential increase in Tcc. Since the effect

of growth on the strain tensor is neglected, the displacement fields reach a steady state,

regardless of the rapid increase in growth. In the case of hyperelastic tissues, where λg is

considered in strain calculations, its effects become apparent.

6.4.5 Conclusions

This thesis presented a detailed mathematical model of tumor growth, capturing the in-

tricate dynamics of the tumor micro-environment (TME). The model’s biphasic approach,

incorporating both solid and fluid phases, reflects the complex interplay within tumor tissues.

Through a single porous medium equation, the model closely correlates pressure and solid

displacements. Its alignment with COMSOL simulations is evident.

The model adeptly simulates displacements across various material constitutive laws. In

linear and elastic materials, the impact of growth rate on deformation is not considered,

while hyperelastic materials exhibit time-dependent displacement fields affected by tumor

growth.
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A critical insight from the model is the interdependency of oxygen concentration and cancer

cell population. The non-linear dynamics within tumor regions reveal a mutual dependence,

particularly under hypoxic conditions and in areas of rapid tumor cell increase. This under-

scores the model’s biological accuracy.

The predictions on tumor growth rate, especially concerning linear elastic and hyperelastic

materials, highlight the essential role of the growth stretch ratio in tumor evolution.

The mathematical model developed in this thesis offers a comprehensive and accurate por-

trayal of tumor growth and its microenvironment. The simulations’ alignment with estab-

lished software benchmarks instills confidence in the model’s predictive capabilities. This

work significantly advances our understanding of tumor mechanics and lays a foundation for

future cancer treatment research.

6.5 Future Goals

The next phase for the computational model involves leveraging MSolve in conjunction with

AI-enhanced numerical methods, aimed at improving the simulation of transport phenom-

ena in tumor areas and refining clinical research parameters for patient-specific cancer im-

munotherapy treatments.

6.5.1 Integration with AI Tools

The integration of MSolve with AI-Solve and Korali is planned to enable more efficient

computation and simulation of complex mechanical systems across various applications. This

integration seeks to harness the capabilities of exascale computing, a significant step in

computational science.

6.5.2 Utilization of MRI Data

A key future application involves using MRI data from cancer patients to generate finite

element meshes. This process aims to provide a more accurate representation of the tumor

microenvironment, essential for patient-specific modeling. Korali will be instrumental in

optimizing input clinical research parameters, aligning the simulations more closely with

clinical realities.

6.5.3 Simulation on Advanced HPC Platforms

Simulations are proposed to be conducted on the Piz Daint supercomputer using MSolve.

This approach is expected to offer enhanced computational power and accuracy, facilitating
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more detailed and comprehensive analyses.

6.5.4 Statistical Analysis and Bayesian Inference

The computational model will be used to define constraints for surrogate model parameters.

Korali will perform statistical analysis and Bayesian inference to validate and refine the model

outputs. This step is critical in ensuring the reliability and applicability of the simulation

results.

6.5.5 Objective

The overarching goal is to improve the accuracy and applicability of simulations in cancer

research, particularly in the realm of personalized cancer treatments. This involves a careful

balance of advanced computational techniques, patient-specific data, and rigorous analytical

methods, all aimed at enhancing the understanding and treatment of cancer.
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