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Abstract: Elastin is an extracellular matrix protein, providing elasticity to the organs, such as skin,
blood vessels, lungs and elastic ligaments, presenting self-assembling ability to form elastic fibers. The
elastin protein, as a component of elastin fibers, is one of the major proteins found in connective tissue
and is responsible for the elasticity of tissues. It provides resilience to the human body, assembled
as a continuous mesh of fibers that require to be deformed repetitively and reversibly. Thus, it is
of great importance to investigate the development of the nanostructural surface of elastin-based
biomaterials. The purpose of this research was to image the self-assembling process of elastin fiber
structure under different experimental parameters such as suspension medium, elastin concentration,
temperature of stock suspension and time interval after the preparation of the stock suspension.
atomic force microscopy (AFM) was applied in order to investigate how different experimental
parameters affected fiber development and morphology. The results demonstrated that through
altering a number of experimental parameters, it was possible to affect the self-assembly procedure
of elastin fibers from nanofibers and the formation of elastin nanostructured mesh consisting of
naturally occurring fibers. Further clarification of the contribution of different parameters on fibril
formation will enable the design and control of elastin-based nanobiomaterials with predetermined
characteristics.

Keywords: elastin fibrils; atomic force microscopy; nanoscale imaging; self-assembly; nanobiomaterials;
tissue engineering

1. Introduction

Tissue engineering is an outgrowth of the biomaterials field, which involves the
development of tissue substitutes to create target tissue whose structural characteristics
and function need to be restored. The extracellular matrix (ECM) component of tissues is a
complex structure surrounding and supporting the tissues. It is composed of major classes
of biomolecules, such as elastin. The natural ECM has been a source of inspiration for the
design and the production of biomaterials of potential interest in tissue engineering [1,2].
Elastin is an ECM protein responsible for the elastic properties of organs and tissues. As a
result, it is of great importance in the perspective of producing biomaterials of potential
interest in the nanotechnology and biotechnology fields [3].

One of the families of protein polymers obtained through genetic engineering attract-
ing growing attention is elastin-like polypeptides (ELPs). Kowalczyk et al. [4] have analyzed
selected applications of ELPs in medicine, therapeutic peptide delivery, drug delivery and
tissue engineering. Creating biomaterials made of ELPs means that tissue engineering is
achieved via several methods, such as creating coacervates and cross-linking [5–7].
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The development of advanced biomaterials is often inspired by biological self-assembling
modules, where simple building blocks are able to form complex natural systems. Bochic-
chio et al. [8] have demonstrated the self-assembly of a peptide in aqueous solution into
elastin-like fibers at room temperature, examined using TEM. Elastin produces well-defined
fibrils and fibers with specific mechanical and supramolecular properties [9]. Among
proteins which are able to self-assemble, elastin has characteristics with repetitive se-
quences of small size and complexity responsible for self-assembly as well as for its elastic
properties [10].

Self-assembly, known as a ‘bottom-up’ method, yields fibers with small diameters, and
it offers novel properties and functionalities which cannot be achieved through conventional
organic synthesis. Self-assembly of fibers refers to the build-up of nanoscale fibers from
smaller molecules. The main disadvantage of the method is that it is an extremely complex
and time-consuming technique. The ELP aggregation mechanism, modified by Rodriguez-
Cabello et al. [11], resulted in fibrils that had a width in the nanometer range, which
then increased to the micrometer range after aggregation. The coacervation process is
reminiscent of elastin-derived peptides where the spontaneous self-assembly of monomers
is induced via a temperature increase depending on protein and salt concentration [12].
Analysis of fibers via transmission electron microscopy revealed bundles of linear fibers in
the nanometer range reflecting the common filamentous nature of elastomeric proteins [13].

The complexity of elastic fibers, combined with the unique physical properties of its
component proteins, has made the understanding of elastin assembly process one of the
most difficult problems. Although the structure of elastin has not been fully investigated,
the way that structure relates to its properties is an area of intensive research. In this paper,
the self-assembly process of elastin fibers under different conditions including suspension
medium, elastin concentration, temperature of stock suspensions and time interval after the
preparation of the stock suspension were investigated. The effect of different experimental
parameters on elastin structure was investigated using atomic force microscopy.

AFM is a powerful imaging and characterization technique that enables the visu-
alization and analysis of materials at the nano scale [14,15]. Unlike traditional optical
microscopes that use light to observe samples, AFM operates through scanning a sharp
probe over the surface of a material to measure the interactions between the probe and the
surface [14,15]. The acquisition of high-resolution images and the precise measurements
of various physical properties, such as topography [16], roughness [16] and mechanical
stiffness [17,18], is carried out with atomic force microscopy (AFM) at sub-molecular res-
olution. AFM has proven to be a versatile tool for studying a wide range of materials,
from biological molecules [19–21] and cells [22,23] to advanced materials and surfaces [24]
and has played a significant role in advancing research in fields such as nanotechnology,
materials science and biophysics.

2. Materials and Methods
2.1. Preparing Elastin Samples
2.1.1. Preparation of Stock Suspensions

Elastin from bovine neck ligament (E1625, Sigma-Aldrich, Merck KGaA, Darmstadt,
Germany) was dissolved in three different solvents, including Dulbecco’s phosphate-
buffered saline (PBS) Gibco 14190, acetic acid (0.25 M) and ultrapure water, in three different
concentrations (0.5% w/v, 1% w/v, 2% w/v), stored at four different temperatures (5 ◦C,
10 ◦C, 20 ◦C, 37 ◦C) and measured at different times (1 day, 1 week, 2 weeks, 1 month,
6 months) after the preparation of each stock suspension.

All the experiments were carried out during the same time period including all possible
combinations of the different parameters. At each experiment, one parameter was changed
and the other three were kept stable.
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2.1.2. Elastin Sample Preparation

Part of each elastin suspension (10–20 µL) was flushed on the substrate consisting of
fresh cleaved mica discs (Product No: 50, Pelco, 9.9 mm diameter, Ted Pella, Inc., Redding,
CA, USA). Subsequently, a washing step with ultrapure water was performed and samples
were then air-dried in ambient conditions (room temperature) and used for AFM imaging.
The same procedure was repeated for each experiment.

2.2. Atomic Force Microscopy
2.2.1. AFM Imaging

AFM images of the elastin fibers were obtained in the air using a commercial micro-
scope (Veeco Instruments, model: CP II). All the images were obtained at room temperature
in a tapping mode at a scanning rate of 1 Hz, using an anisotropic AFM probe (MPP-11123-
10, Bruker, Innova, Camarillo, CA, USA) having a spring constant of 40N /m and a tip
radius of 8nm, operating at a resonance frequency of 300kHz. The image processing and the
quantitative measurements, including the average values of fibers dimensions (diameters
and heights), were made using the image analysis software (Digital Instruments-Scanning
Probe Microscopy (DI-SPM) Lab ver.60.2, Veeco). Five images from each sample were taken
from several locations (512 × 512 points per image) and with different image sizes (from
50 × 50 µm to 200 × 200 nm).

The samples were mounted directly on AFM metal specimen discs (12 mm diameter,
Product No.16208, Ted Pella, Inc. Redding, CA, USA) with adhesive carbon tabs (12 mm
diameter, model: G3347N, Agar Scientific, Essex, United Kingdom) in order to be more
stable. Under each substrate, a copper finder grid (G2761C, 200 mesh, F1, Agar Scientific,
Essex, United Kingdom) was glued in order to map the film surface and to ensure that the
same area was sampled when multiple images were demanded [25–28]. The topographic
AFM images are presented in a two-dimensional (2D) or three-dimensional (3D) color scale.

2.2.2. Image Processing

The image processing and the quantitative measurements were made using the image
analysis software that accompanied the AFM system DI SPM Lab ver.60.2, IP-image pro-
cessing and data analysis ver.2.1.15 (Veeco) and the freeware scanning probe microscopy
software WSxM 5.0 dev.9.1 [29]. The AFM quantitative measurements include a number of
parameters such as height, profile, plot and distance measurements.

2.2.3. Tip Geometry

AFM images are always affected by artifacts arising from tip convolution effects [30,31].
In this paper, the Canet-Ferrer et al. approach was used to minimize the effects of such
errors in the quantitative analysis of the results [31]. The resulting errors can be significant
for the case of nanofibrils. For the case that the tip radius is bigger than the effective height
of the sample (i.e., rtip > he f f ), the Canet-Ferrer et al. model is provided below:

1
2

wexp = ∆ +
1
2

we f f (1)

and,
∆ = rtip cos

[
arcsin

((
rtip − he f f

)
/rtip

)]
(2)

In Equation (1), wexp and we f f are the expected and the effective width of the sample,
respectively [31]. In addition, if rtip < he f f ,

1
2

wexp = rtip + ∆ +
1
2

we f f (3)

and
∆ = (he f f − rtip)tanγ (4)
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In Equation (4), γ is the tip to face angle [31].

3. Results
3.1. Elastin in Different Solvents

Elastin was suspended in ultrapure water at concentrations of 0.5% w/v, 1% w/v and
2% w/v. The resulting stock suspensions were stored at temperatures of 5 ◦C, 10 ◦C, 20 ◦C
and 37 ◦C. After a time period of 1 day, 1 week and 1 month, 10–20 µL from each elastin
suspension was flushed over the mica substrate discs. The samples were then air-dried
and ready for imaging via AFM. The same procedure was repeated for acetic acid (0.25 M)
and PBS medium. For each concentration/temperature and time interval, five images were
obtained. In terms of measuring the diameters and heights of fibers, fibrils and nanofibrils,
ten measurements were conducted for each fiber, fibril or nanofibril.

The initial experiments to investigate the appropriate suspension medium for elastin
were conducted one day after preparing the stock suspension. The AFM images revealed
the presence of globular coacervations (z-axis scale: 0–60 nm) in the elastin–PBS suspensions
(Figure 1a), large and amorphous aggregations (z-axis scale: 0–100 nm) in the elastin–acetic
acid suspensions (Figure 1b) and linearly formed coacervations (z-axis scale: 0–15 nm) in
the elastin/ultrapure water suspension (Figure 1c). All the experiments were performed
using various combinations of different parameters such as solvent, elastin concentra-
tion, temperature and time. Due to the large number of images obtained, only the most
representative images from the three suspensions are presented.
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ter suspension. 

  

Figure 1. 2 × 2 µm AFM topographic images taken one day after developing the stock elastin
suspension with a concentration of 1% w/v at a temperature of 20 ◦C: (a) PBS, (b) Acetic acid,
(c) Ultrapure water.

Figure 1 presents 2 × 2 µm AFM topographic images taken on the first day after
developing the stock elastin in water with a concentration of 1% w/v at 20 ◦C. It was
observed that the elastin/ultrapure water suspension had fewer aggregations compared to
the suspensions in PBS and acetic acid.

All experiments were conducted for each of the three suspensions, and it was observed
that the most promising results for creating elastin fibrils were obtained in ultrapure water.
Therefore, the following results are presented for the elastin–ultrapure water suspension.

3.2. Elastin Observed at Different Concentrations

The optimal concentration for elastin in the ultrapure water suspension was deter-
mined. Specifically, suspensions with three different elastin concentrations (0.5% w/v, 1%
w/v, 2% w/v) in water were stored at various temperatures and observed at different time
intervals.

The AFM figures depict the imaging of suspensions with different concentrations of
elastin/water at 20 ◦C. As observed from the three AFM images, elastin nanofibrils were
not formed even one week after the preparation of the stock suspensions. In the samples
with elastin/ultrapure water 0.5% w/v (Figure 2a), a few low-height (z-axis scale: 0–4 nm)
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aggregations were observed. The suspension of elastin/ultrapure water 1% w/v (Figure 2b)
exhibited numerous thin and long coacervations (z-axis scale: 0–20 nm). On the other
hand, the samples with elastin/ultrapure water 2% w/v (Figure 2c) displayed very large
aggregations (z-axis scale: 0–80 nm).
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suspension at a temperature of 20 ◦C are shown: (a) 0.5% w/v (4 × 4 µm), (b) 1% w/v (4 × 4 µm),
(c) 2% w/v (4 × 4 µm).

Figure 2 presents 4 × 4 µm AFM topographic images taken one week after developing
the stock elastin/ultrapure water suspension at a temperature of 20 ◦C. It was observed that
the elastin/ultrapure water suspension with a concentration of 1% w/v exhibited thin and
long coacervations (unlike the globular ones observed in the other cases, i.e., concentrations
of 0.5% w/v and 2% w/v). Therefore, it demonstrated suitable potential for creating elastin
nanofibrils. Therefore, only the AFM images obtained from the elastin/ultrapure water
suspension with a concentration of 1% w/v are presented in the following experiments.

3.3. Elastin Observed at Different Temperatures

In this section, the effect of temperature on the self-assembly of elastin in 1% w/v aque-
ous suspensions is investigated. The experiments were conducted at various combinations
of temperature and time

Specifically, the aforementioned suspensions were stored at four different temper-
atures: 5 ◦C, 10 ◦C, 20 ◦C and 37 ◦C, and observed at various time periods. The AFM
topographic images revealed that at 5 ◦C (Figure 3a), 10 ◦C (Figure 3b) and 37 ◦C (Figure 3d),
there were only a few aggregations and one or two nanofibrils present in the samples of 1%
w/v elastin/water. However, at 20 ◦C (Figure 3c), the first complete elastin mesh with fully
formed nanofibrils was observed in the 1% w/v aqueous elastin stock suspension, with a
z-axis scale of 0–25 nm.

Figure 3 presents representative 5 × 5 µm AFM topographic images from the stock of
elastin/ultrapure water suspension with a concentration of 1% w/v, taken after one month
of its preparation. It was observed that the 1% w/v elastin/ultrapure water suspension
at 20 ◦C exhibited elastin nanofibrils with only a few aggregations. On the other hand,
nanofibrils were not formed at 5 ◦C and 10 ◦C. For the case of 37 ◦C, one month after the
creation of the stock solution, two to four nanofibrils were observed. The same number of
fibers was observed from two months after the creation of the stock solution and onwards.
No further increase in the number of fibers was determined for longer time intervals. It is
worth noting that elastin consists of hydrophobic regions interspersed with cross-linking
domains. At specific temperatures, such as those around physiological conditions, the
hydrophobic regions of elastin interact with each other, resulting in protein aggregation
and coacervation. These aggregations were more prominent at temperatures of 5 ◦C, 10 ◦C
and 37 ◦C, as depicted in Figure 3a,b,d, respectively.
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3.4. Elastin Observed at Different Periods of Time

The stock aqueous elastin suspension with a concentration of 1% w/v was stored at
20 ◦C and measured and observed via AFM at different time intervals: one day, two weeks,
one month and six months. The AFM images reveal that one week after the preparation
of the 1% w/v aqueous elastin stock suspension at 20 ◦C, no formation of elastin fibrils
was observed, but numerous aggregations were present (Figures 1c and 2b). The first
elastin nanofibrils were observed two weeks after the development of the stock suspension
(Figures 4a and 5a), and as time progressed, reaching one month, the first fully formed
elastin mesh of nanofibrils was observed (Figures 4c and 5c). This dense mesh of fibrils
continued to extend over time, as observed in the AFM images taken six months later
(Figures 4d,e and 5d,e).
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Figure 5. 2 × 2 µm AFM topographic images taken after (a) two weeks, (b) three weeks, (c) one
month, (d) four months and (e) six months from the preparation of the stock suspension of elastin in
ultrapure water with a concentration of 1% w/v, stored at 20 ◦C.

After six months, differences in the number of fibrils were observed. As a result, the
increasing formation of nanofibrils over time demonstrated qualitatively in this research.
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A statistical study was also conducted to determine the increase in the number of
fibrils formed under different conditions. Specifically, AFM images with a size of 5 × 5 µm
(using the sample with a 0.1% w/v elastin-ultrapure water solution at 20 ◦C) were tested
at various time intervals (five images per time interval). After two weeks, one or two
individual nanofibrils of finite length were observed in each image. After one month, five
to seven very long nanofibrils tangled together were recorded. From two months to six
months, approximately fifteen entangled and long nanofibrils were observed. Additionally,
at two months, the self-assembly from nanofibril to fibril and then to fiber was observed
for the first time and thoroughly investigated.

In addition, a statistical study was conducted to quantify the nanofibrils using AFM
images (5 µm × 5 µm) after the creation of the 0.1% w/v elastin-ultrapure water solution at
37 ◦C over time. For each time interval, five images were analyzed. After one month from
the creation of the stock solution, two to four nanofibrils were observed. The same number
of fibers was observed from two months after the creation of the stock solution onwards.

Additional experiments were conducted using the 0.1% w/v elastin–ultrapure water
solution at 5 ◦C and 10 ◦C, with different solvents (PBS, acetic acid) and with elastin con-
centrations of 0.5% w/v and 2% w/v. These experiments were carried out for a period of up
to 3 months from the creation of the stock solution. In these cases, no fibrils were observed.

This was the reason why the experiments were focused both qualitatively and quanti-
tatively on the 0.1% w/v elastin–ultrapure water solution at 20 ◦C.

3.5. Geometrical Characteristics of Elastin Nanofibrils

AFM topographic 2D images (Figure 6) and corresponding 3D images (Figure 7) of the
elastin samples in ultrapure water at 1% w/v concentration stored at 20 ◦C were obtained
at higher magnifications ranging from 2 × 2 µm to 0.5 × 0.5 µm. These images, obtained
six months after the preparation of the stock suspension, further confirmed the presence of
elastin nanofibrils.
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preparation of the stock suspension of elastin in ultrapure water at 1% w/v concentration, stored at
20 ◦C: (a) 500 × 500 × 6.6 nm, (b) 200 × 200 × 6.2 nm.

The geometrical characteristics of the nanofibrils were measured using the appropriate
AFM software program. The average values of the diameters and heights of the elastin
nanofibrils were (134.5 ± 23.3) nm and (4.5 ± 0.7) nm, respectively.

However, it is important to consider the errors resulting from the tip geometry. The
tip radius used in all cases was approximately 8 nm. Assuming an effective height of 4 nm
for the nanofibrils, Equation (2) yields ∆ ≈ 7 nm. In addition, according to Equation (1),

wexp − we f f = 2∆ ≈ 14 nm
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Thus, the convolution error reduction is 1.75rtip as expected in [31]. Thus, for the
case of nanofibrils, the error is approximately 10%. Therefore, the real diameters of the
nanofibrils are smaller and equal to (121± 21) nm.

The error for the case of fibers and fibrils is even smaller. In particular, through
considering approximately γ = 15

◦
, and he f f ≈ 25 nm for the case of fibrils, according to

Equation (4), ∆ ≈ 4.6 nm and according to Equation (3):

wexp − we f f = 2
(
∆ + rtip

)
≈ 25.2 nm

Thus, the error is approximately 7%.
For the case of fibers, assuming he f f = 80 nm, ∆ ≈ 19.44 nm and

wexp − we f f = 2
(
∆ + rtip

)
≈ 54 nm

the error is approximately 9%. Thus, the results should be revised. After accounting for the
tip geometry corrections, the diameters of the fibrils are (321.3 ± 21.0) nm. Similarly, for
the fibers, the corrected diameters are (549.64 ± 25.4) nm.

Representative images are demonstrated for 160 nanofibrils (Figure 8a,b). It is impor-
tant to note that the statistical analysis of protein size and shape was conducted using im-
ages such as Figures 5 and 6, which had dimensions ranging from 2× 2 µm to 0.5 × 0.5 µm.
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Figure 8. Measurements of the geometrical characteristics of 160 elastin nanofibrils: (a) diameter
(nm), (b) height (nm). Histogram for the same measurements of (c) diameter values and (d) height
values. The diameters, in terms of mean value ± standard deviation, resulted in 121 ± 21 nm. The
heights, in terms of mean value ± standard deviation, resulted in 4.5 ± 0.7 nm.

In Figure 8c,d, histograms that present the diameters and the heights for 160 nanofibrils
are shown. The data were fitted to Gaussian functions. For the case of fibril diameters,

f (d) =
1

21
√

2π
e−

1
2 (

d−121
21 )

2
(5)

In addition, for fibril heights,

f (h) =
1

0.7
√

2π
e−

1
2 (

h−4.5
0.7 )

2
(6)

It is interesting to investigate whether there is a pattern that can describe the geometric
characteristics of the fibrils/fibers that are formed using the aforementioned protocol.
Assuming an elliptical cross-sectional area of the fibril/fiber (where the cross-sectional area
can be calculated as A = πRh, where R is the radius and h is the height of the fibril), it has
been found that there is a linear relationship between the area and diameter.

For instance, it was observed that in the case of nanofibrils (based on the 160 measure-
ments presented in Figure 7), the following equation can be applied (Figure 9):

A = 7.088(nm)d, whereA is calculated in nm2

In conclusion, the formation of nanofibrils over different conditions including suspen-
sion medium, elastin concentration, temperature of stock suspensions and time interval
after the preparation of the stock suspension were demonstrated qualitatively and quanti-
tatively in this research.

3.6. Self-Assembly Imaging of Elastin

It was observed, even from the initial experiments, that the self-assembly process
of elastin proceeded from nanofibrils to fibrils and eventually to fibers. The formation
of the first nanofibrils required a minimum of two weeks after the preparation of the
stock suspension of elastin in ultrapure water 1% w/v at 20 ◦C (Figure 10d). After almost
two weeks, these nanofibrils underwent self-assembly to form fibrils (Figure 10c). Finally,
approximately six weeks after the preparation of the stock aqueous suspension, elastin
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fibers were produced from the self-assembled fibrils (Figure 10b). Hence, in Figure 10a, an
AFM topographic image of size 10 × 10 µm captures the presence of one elastin fiber and
four fibrils (three located at the top left and one on the right side of the fiber). Although
there were several faint nanofibrils, their observation was challenging due to the significant
difference in height between the fibers (88.8 ± 5.7 nm) and the nanofibrils (4.5 ± 0.7 nm).
Figure 10b presents a higher-magnification AFM topographic image (5 × 5 µm) of the same
elastin fiber.
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Figure 10. AFM topographic images of elastin self-assembly (a): (b) fiber→ (c, d) fibrils→ (e) nanofibrils.
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In Figure 10c,d, two AFM topographic images (5 × 5 µm) showcase the four fibrils
(c: three from the top left and d: one on the right side of the observed fiber), while
Figure 10e displays an AFM topographic image (2 × 2 µm) of the nanofibrils, supporting
the assumption of a self-assembly process.

In Figure 11a, an illustrative height and diameter profile plot of a fiber is displayed.
The height of a fiber, fibril or nanofibril was determined through measuring the vertical
distance between blue markers (blue triangles), while the diameter was measured through
calculating the horizontal distance between green markers (green triangles). Corrections
due to the tip geometry were also made, as already mentioned. In Figure 11b, a red line
is highlighted as an example of an AFM measurement during the data processing of the
aforementioned profile plot. The average values of diameters and heights for a significant
number of elastin nanofibrils, fibrils and fibers are presented in Table 1.

Materials 2023, 16, x FOR PEER REVIEW 15 of 19 
 

 

 
(a) 

 
(b) 

Figure 11. (a) Example of AFM measurement during data processing [the height of a fiber was meas-
ured through calculating the vertical distance between blue markers (blue triangles) and the diam-
eter through the horizontal distance between green markers (green triangles)], (b) Indicative height 
and diameter profile plot of a fiber. [Red line of (a) match with red line of (b)]. 

Table 1. Average values of diameter and height of fiber, fibril and nanofibril. 

 Diameter (nm) 
(Average Value ± Standard Deviation) 

Height (nm) 
(Average Value ± Standard Deviation) 

Fiber 549.64 ± 25.4 88.8 ± 5.7 
Fibril 321.3 ± 21.0 27.7 ± 3.3 

Nanofibril 121 ± 21.0 4.5 ± 0.7 

4. Discussion 
Numerous techniques have been described for obtaining fibers and fibrous scaffolds 

from elastin-based materials, including self-assembly processes and electrospinning [32]. 
Towards this direction, this paper focuses on the investigation of the self-assembly process 
of elastin fiber structures using AFM imaging, with various experimental parameters be-
ing studied, including suspension medium, elastin concentration, temperature of stock 
suspensions and time interval after preparation. Elastin is a promising biomaterial due to 
its low inflammatory response [33], and as it is a major protein found in connective tissue, 
this research prioritizes the investigation of its self-assembly procedure at the nano scale. 

In a previous study, Srokowski and Woodhouse [34] used AFM 2D imaging to ana-
lyze the surface topography of ELP-coated surfaces in PBS buffer. They found no discern-
able difference in surface features between uncoated and ELP-coated surfaces, indicating 
that each of the ELPs adhered to the underlying substrate and formed a conformal coating. 
However, in this particular research, suspensions of elastin were prepared using PBS and 
spherical aggregations were observed. When ultra-pure water was used as a suspension 
medium instead, 3D fibrils and fibers of elastin were imaged. 

Figure 11. (a) Example of AFM measurement during data processing [the height of a fiber was
measured through calculating the vertical distance between blue markers (blue triangles) and the
diameter through the horizontal distance between green markers (green triangles)], (b) Indicative
height and diameter profile plot of a fiber. [Red line of (a) match with red line of (b)].

Table 1. Average values of diameter and height of fiber, fibril and nanofibril.

Diameter (nm)
(Average Value ± Standard Deviation)

Height (nm)
(Average Value ± Standard Deviation)

Fiber 549.64± 25.4 88.8± 5.7

Fibril 321.3± 21.0 27.7± 3.3

Nanofibril 121± 21.0 4.5± 0.7
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4. Discussion

Numerous techniques have been described for obtaining fibers and fibrous scaffolds
from elastin-based materials, including self-assembly processes and electrospinning [32].
Towards this direction, this paper focuses on the investigation of the self-assembly process
of elastin fiber structures using AFM imaging, with various experimental parameters
being studied, including suspension medium, elastin concentration, temperature of stock
suspensions and time interval after preparation. Elastin is a promising biomaterial due to
its low inflammatory response [33], and as it is a major protein found in connective tissue,
this research prioritizes the investigation of its self-assembly procedure at the nano scale.

In a previous study, Srokowski and Woodhouse [34] used AFM 2D imaging to analyze
the surface topography of ELP-coated surfaces in PBS buffer. They found no discernable
difference in surface features between uncoated and ELP-coated surfaces, indicating that
each of the ELPs adhered to the underlying substrate and formed a conformal coating.
However, in this particular research, suspensions of elastin were prepared using PBS and
spherical aggregations were observed. When ultra-pure water was used as a suspension
medium instead, 3D fibrils and fibers of elastin were imaged.

In earlier research, Dandurand et al. [35] conducted a comparison of the thermal behav-
ior of water in solutions containing different peptides from elastin, which either coacervate
or form structures, in order to better understand the role of water in the mechanism of
aggregation. Additionally, Koga et al. [36] created ELP segment layers on a hydrophobic
glass surface which were then immersed in an aqueous solution at 37 ◦C, but no elastin
fiber formation was observed. Similarly, in the present study, experiments carried out at
temperatures of 5 ◦C, 10 ◦C and 37 ◦C did not reveal any elastin fibers. As a result, further
investigations were conducted using the stock elastin/ultrapure water suspension at a
temperature of 20 ◦C, where 3D elastin fibers were successfully imaged.

Pepe et al. [37] conducted previous research focused on investigating the morphology
of formed aggregates, with S4 peptide samples without TBS solvent exhibiting the forma-
tion of long and flexible fibers. AFM images obtained from these samples only showed
highly aggregated globular structures, indicating that the solvent had an inhibitory effect
on the formation of the peptide. In a separate study by del Mercato et al. [38], synthetic
peptide fibrils were characterized structurally via self-assembly. To generate these fibrils,
the peptide was suspended in water and incubated in a vial tube for a period of several
weeks, typically ranging from 3 to 5 weeks, to allow for the formation of mature fibrils.

Bochicchio et al. [39] observed similar results not only with other elastin-related
peptides but also in the present study, where the elastin suspension was stored for two
weeks before 3D elastin fibrils could be imaged. However, this paper presents new and
detailed insights into the structural and geometrical characteristics of elastin fibers, fibrils
and nanofibrils. Therefore, the qualitative and quantitative measurements presented in
this study serve as evidence for the process of elastin self-assembly. In addition, Cao et al.
demonstrated how a temperature increase from 20 ◦C to 80 ◦C affects the self-assembly
of ELPs [40]. Tarakanova et al. used a principal component analysis to consider the
ensemble of structures accessible to tropoelastin at 37 ◦C, at which tropoelastin naturally
self-assembles into aggregated coacervates [41]. Due to the challenging nature of studying
the intrinsic properties of elastin and tropoelastin, the comprehension of crucial aspects of
the assembly process is challenging [42]. Therefore, current research in this field is regarded
as state-of-the-art [42].

In addition, an interesting work was presented by Bracalello et al. In particular, they
focused on the preparation and structural characterization of nanofibers from a chimer-ic-
polypeptide-containing resilin and elastin domain [43]. The purpose of their research was to
enhance its cell-binding ability through introducing a specific fibronectin-derived Arg-Gly-
Asp (RGD) sequence. In another recent work, Alvisi et al. investigated the self-assembly of
elastin-like polypeptide brushes on silica surfaces and nanoparticles [44].

As already mentioned, elastin is a protein that provides elasticity and resilience to
tissues in the body, such as the skin, lungs and blood vessels. Controlling elastin’s properties
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is important for various applications in the fields of tissue engineering, drug delivery and
medicine [45,46]. For example, elastin is used in tissue engineering to create artificial
tissues that have similar mechanical properties as natural tissues [47]. Elastin may be
incorporated into skin substitutes to improve the elasticity of artificial skin. In addition,
elastin-like polypeptides (ELPs) are a type of synthetic elastin that can be used as drug
carriers. ELPs have the ability to self-assemble into nanoparticles, which can be loaded
with drugs and targeted to specific tissues [48]. It should be also noted that elastin is an
essential component of blood vessels and, therefore, it is used in the production of vascular
grafts. These grafts are used to repair or replace damaged blood vessels in the body [49].
Furthermore, elastin plays a crucial role in the structural development of lungs, particularly
during the alveolar stage. Research has established that the breakdown of elastin is a
critical factor in the development of chronic obstructive pulmonary disease. Additionally,
the inability of lung cells to repair damaged elastic fibers exacerbates the disease process,
resulting in long-term degenerative illness and compromised lung function [50]. Due
to their intricate molecular composition, large size and dependence on several assisting
proteins for proper assembly, elastic fibers are considered one of the most challenging matrix
structures to restore. Regarding wound healing, elastin-like polypeptides (ELPs) may be
used as excellent materials for fabricating biocompatible scaffolds and other products for
wound management [51]. These biomolecules exhibit solubility below critical temperatures
and undergo aggregation at higher temperatures, making them a fascinating resource for
designing diverse nanobiomaterials [45].

5. Conclusions

Biomedical applications, particularly tissue engineering, can derive significant benefits
from elastin nanofibrous meshes. When constructing an engineered tissue, a biomaterial is
first designed using various processing methods such as solvent casting and self-assembly.
The biomaterials should exhibit behavior similar to that found in the body, enabling the
tissues to achieve healing. As structural characteristics play a crucial role for most cells,
the choice of biomaterial for scaffold design holds immense importance. These were some
of the reasons why it was necessary to investigate the process of self-assembly of elastin
from nanofibrils to fibrils and fibers under various experimental parameters. Imaging was
performed using atomic force microscopy (AFM) due to its high resolution at the nano scale.
It is also significant to note that appropriate corrections were made to account for the effects
of tip geometry. The error resulting from the tip geometry was in the range of 7–10%, with
the largest error observed in the case of nanofibrils. The findings indicated that the optimal
conditions for observing the self-assembly process and the formation of elastin fibrils at
the nanoscale were a 1% w/v concentration of elastin in ultra-pure water at a temperature
of 20 ◦C, with a minimum incubation period of two weeks after the preparation of the
stock suspension.

In conclusion, the above research can be a step forward towards a better understand-
ing of elastin self-assembly under various parameters. These results are anticipated to
offer viable solutions for the fabrication of protein-inspired nanostructures that possess
specific physical and chemical properties, catering to the needs of various applications in
biotechnology and tissue engineering.
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