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Abstract

In the realm of Federated Learning (FL), the presumption of uniform processing capacity among
participating clients overlooks the reality of diverse client hardware. This diversity introduces sys-
tem heterogeneity, leading to disparities in computational resources that ultimately compromise
the efficient utilization of distributed data, thus hindering optimal learning outcomes. Addressing
this challenge, this thesis introduces HarmoniFL, an open-source initiative engineered to navigate
the complexities of resource heterogeneity within federated learning frameworks. By focusing on
enhancing efficiency and inclusivity, HarmoniFL employs a dynamic client selection protocol that
leverages real-time metrics such as CPU load, memory availability, and network bandwidth to op-
timize device participation in learning tasks. Adaptive strategies—ranging from data sampling
adjustments to epoch reduction and batch size optimization for high-demand devices—address the
challenges posed by resource diversity. Our experimental analysis aims at two primary goals: min-
imizing training duration for less capable devices and improving the accuracy of the aggregated
global model. Results demonstrate that HarmoniFL effectively reduces training times and enhances
model performance, underscoring its potential to foster more equitable device participation in fed-
erated learning tasks without sacrificing learning quality. The code repository can be found at
https://github.com/NikosVlachakis/harmoni-fl.git.

Keywords and Phrases: Federated Learning, Device Heterogeneity, Resource-Adaptive, Flower,
Prometheus, MLflow, Open-Source Tool Development
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Εκτεταμένη Περίληψη

Στη σύγχρονη σφαίρα της μηχανικής μάθησης, η άνοδος της ιδιωτικότητας των δεδομένων ως κε-

ντρικής σημασίας ζήτημα έχει προκαλέσει την επανεκτίμηση των συμβατικών πλαισίων, τοποθετώντας

την ομοσπονδιακή μάθηση ως ένα καινοτόμο παράδειγμα που κυριαρχεί σήμερα στις συζητήσεις εντός

του κλάδου. Βαθιά ριζωμένη στην αποκέντρωση της επεξεργασίας δεδομένων και της εκπαίδευσης

μοντέλων, στοχεύει στην προστασία της ιδιωτικής ζωής του ατόμου, ενώ αξιοποιεί συλλογικά τους κα-

τανεμημένους πόρους δεδομένων, αντιπροσωπεύοντας έτσι μια πρωτοποριακή προσέγγιση που διευρύνει

τα όρια του πεδίου. Παρά τις δυνατότητές του, αυτό το πολλά υποσχόμενο πεδίο αντιμετωπίζει πολυ-

άριθμες σημαντικές προκλήσεις που εμποδίζουν τη βέλτιστη εφαρμογή και αποτελεσματικότητά του,

περιλαμβάνοντας προκαταλήψεις που απορρέουν από μεθόδους δειγματοληψίας δεδομένων, αλγοριθμι-

κούς σχεδιασμούς και διαφοροποιήσεις στις δυνατότητες των συσκευών, οι οποίες ασκούν αξιοσημείωτη

επίδραση στη δικαιοσύνη και την ακρίβεια των μοντέλων. Επιπλέον, οι περιπλοκές που σχετίζονται με

την ετερογένεια των δεδομένων, η οποία χαρακτηρίζεται από διαφορές στους τύπους και τους όγκους

δεδομένων μεταξύ των κόμβων, εισάγουν πολυπλοκότητες που εμποδίζουν τη διαδικασία μάθησης δη-

μιουργώντας εμπόδια που απαιτούν προσεκτική πλοήγηση.

Ταυτόχρονα, οι γνωστικές προκαταλήψεις περιπλέκουν περαιτέρω την κατάσταση εισάγοντας αν-

θρώπινα σφάλματα στις διαδικασίες λήψης αποφάσεων και στο σχεδιασμό του συστήματος, θέτοντας

έτσι πρόσθετα εμπόδια στην επιτυχή ανάπτυξη του. Επιπλέον, η εγγενής ποικιλομορφία στις ικανότητες

των συσκευών εντός των δικτύων αποτελεί πρόκληση, εμποδίζοντας την πλήρη αξιοποίηση των δυνα-

τοτήτων κάθε συσκευής. Οι ανισότητες στην υπολογιστική ισχύ, την αποθηκευτική ικανότητα και τις

δυνατότητες δικτύωσης μεταξύ αυτών δεν δημιουργούν μόνο τεχνικά εμπόδια, αλλά εγείρουν και ηθικά

διλήμματα σχετικά με την ισότιμη πρόσβαση και συμμετοχή. Μέσα σε αυτή τη συνεχιζόμενη συζήτηση,

το HarmoniFL αποτελεί μια λύση προσαρμοσμένη να ξεπεράσει τις πολυπλοκότητες που συνδέονται
με την ετερογένεια των συσκευών. Η προσέγγιση που ακολουθούμε εξασφαλίζει μια πιο περιεκτική

συμμετοχή σε όλο το ευρύ φάσμα των συσκευών που συμμετέχουν στην διαδικάσια της εκπαίδευσης

του τελικού μοντέλου.

Οι κυρίαρχες μεθοδολογίες συχνά αγνοούν την ετερογένεια ανάμεσα στις συσκευές, υποθέτοντας

λανθασμένα ότι όλες έχουν παρόμοιες ικανότητες, και κατ΄ επέκταση αντιμετωπίζουν αναποτελεσματικά

τις σχετικές προκλήσεις. Ως απάντηση σε αυτό το πρόβλημα, αναπτύχθηκαν καινοτόμες μεθοδολογίες

που προσαρμόζονται δυναμικά στη διαφορετικότητα των συσκευών. Αυτές οι προσεγγίσεις εκμεταλλε-

ύονται με ευελιξία το εύρος των υπολογιστικών δυνατοτήτων που υφίστανται στον σύγχρονο τεχνο-

λογικό κόσμο. Μέσω της εφαρμογής εξελιγμένων τεχνικών όπως η προσαρμοστική μοντελοποίηση,

η δομημένη εγκατάλειψη και η διαμόρφωση ευέλικτων τοπικών κύκλων εκπαίδευσης, ανοίγει ο δρόμος

έτσι ώστε κόμβοι με ελάχιστους υπολογιστικούς πόρους να μπορούν να συμμετέχουν στην διαδικασία

εκπαίδευσης του μοντέλου.

Εμπνευσμένοι από τις τελευταίες εξελίξεις, αναπτύξαμε ένα σύστημα που αναγνωρίζει και αξιο-

ποιεί την ποικιλία δυνατοτήτων στο οικοσύστημα των συσκευών. Το σύστημά μας εφαρμόζει έναν

μηχανισμό επιλογής κόμβων, ο οποίος βασίζεται σε πραγματικού χρόνου μετρήσεις απόδοσης για κάθε
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συσκευή, όπως υπολογιστική ισχύς, κατάσταση μνήμης και δικτυακή απόδοση. Χρησιμοποιώντας αυτά

τα δεδομένα σε συνδυασμό με ειδικούς κανόνες ορισμένους από τον διαχειριστή του συστήματος, το

σύστημα μας προσαρμόζει τις παραμέτρους του μοντέλου για κάθε συσκευή ξεχωριστά, έτσι ώστε να

ενσωματώσει επιτυχώς όλες τις συσκευές στην μαθησιακή διαδικασία.

Στο βασικό του επίπεδο, το HarmoniFL ενσωματώνει τρία κρίσιμα στοιχεία - τον Επιλογέα Πε-
λατών, τον Εξαγωγέα Μετρήσεων και τον Ελεγκτή Στρατηγικής - τα οποία συνεργάζονται για να

επιβλέπουν δυναμικά την επιλογή και τη ρύθμιση των συσκευών, ενισχύοντας τελικά τη συμμετοχή

στη διαδικασία της εκπαίδευσης. Ο Επιλογέας Πελατών αξιολογεί την ετοιμότητα των πελατών και,

καθοδηγούμενος από τον Ελεγκτή Στρατηγικής, εξάγει στρατηγικά κριτήρια που ειναι ορσιμένα από

τον διαχειριστή της εκπαίδευσης, για να επιτρέψει την ενδελεχή αξιολόγηση της καταλληλότητας των

πελατών με βάση μετρήσεις σε πραγματικό χρόνο που παρέχονται από τον Εξαγωγέα Μετρήσεων.

Η αρχιτεκτονική του HarmoniFL ενισχύεται περαιτέρω μέσω της ενσωμάτωσής του με το Flower,
το Prometheus, το Grafana και το MLflow. Το Flower μας παρέχει την υποδομή για αποκεντρωμένη
εκπαίδευση μοντέλων μηχανικής μάθησης, ενσωματώνοντας εκεί τη λογική επιλογής πελατών. Το

Prometheus και το Grafana διαδραματίζουν κρίσιμο ρόλο στην παρακολούθηση και την οπτικοποίηση
των δεδομένων, συλλέγοντας και παρουσιάζοντας μετρήσεις σε πραγματικό χρόνο δίνοντας αναλυτικές

πληροφορίες σχετικά με τις αποδόσεις και την κατάσταση που βρίσκονται όλες οι συσκευές, όσον

αφορά τις μετρήσεις σε επίπεδο υλικού. Με την ενσωμάτωση του MLflow, το HarmoniFL ενισχύει
τη διαχείριση του κύκλου ζωής της διαδικασίας εκπαίδευσης, προωθώντας την ιχνηλασιμότητα και την

αναπαραγωγιμότητα σε όλα τα πειράματα μάθησης.

Στην πράξη, το HarmoniFL εφαρμόζει μια διαδοχική και κυκλική μεθοδολογία κατά τη διάρκεια
κάθε γύρου εκπαίδευσης. Αυτή η διαδικασία ξεκινά με τη συλλογή δεδομένων από τις συνδεδεμένες

συσκευές, ακολουθούμενη από την εξατομικευμένη προσαρμογή των παραμέτρων του μοντέλου για

κάθε συσκευή ξεχωριστά. Ακολούθως, κάθε συσκευή προχωρά στην εκπαίδευση του δικού της τοπι-

κού μοντέλου, χρησιμοποιώντας τις ειδικά προσαρμοσμένες παραμέτρους. Μετά την ολοκλήρωση της

εκπαίδευσης, οι παράμετροι του κάθε τοπικού μοντέλου αποστέλλονται πίσω στον κεντρικό διακομιστή,

όπου πραγματοποιείται η συνάθροιση τους. Αυτή η διαδικασία επαναλαμβάνεται, μέχρι να επιτευχθεί

ένα εκ των προτέρων καθορισμένο κριτήριο σύγκλισης ή ένας συγκεκριμένος αριθμός γύρων εκπαίδευ-

σης. Το κριτήριο σύγκλισης ή ο αριθμός των γύρων μπορεί να καθοριστεί από τον διαχειριστή του

συστήματος εκπαίδευσης με βάση τους στόχους απόδοσης και ακρίβειας που επιθυμεί να επιτύχει.

Η έρευνα που διεξήχθη αναδικνύει την σημαντική επίδραση του HarmoniFL στην ενίσχυση της
συνολικής ακρίβειας και στη μείωση των χρόνων εκπαίδευσης. Με την ευέλικτη προσαρμογή σε διαφο-

ρετικές συσκευές, το HarmoniFL ξεπερνά τις συνήθεις υπολογιστικές προκλήσεις, όπως οι περιορισμοί
μνήμης σε λιγότερο ισχυρές συσκευές, διασφαλίζοντας έτσι ότι όλες οι συσκευές μπορούν να συμμε-

τέχουν στη διαδικασία μάθησης. Τα πειράματα, τα οποία χρησιμοποίησαν ένα ποικίλο σύνολο συσκευών

και ένα προσεκτικά επιμελημένο σύνολο δεδομένων, επιβεβαιώνουν την αποτελεσματικότητα του Har-
moniFL στη δυναμική προσαρμογή των παραμέτρων μάθησης.
Με βάση αυτά τα ευρήματα, μπορεί κανείς να συμπεράνει ότι η ενίσχυση των περιβαλλόντων ομο-

σπονδιακής μάθησης μέσω προσαρμογής ώστε να ταιριάζει με τις προδιαγραφές των συσκευών μπορεί

να οδηγήσει σε σημαντική βελτίωση της ακρίβειας των μοντέλων και μείωση της διάρκειας των περι-

όδων εκπαίδευσης, ιδιαίτερα για συσκευές με περιορισμένες υπολογιστικές ικανότητες. Αυτή η έρευ-

να υπογραμμίζει την κεντρική σημασία της προσαρμοστικότητας στην προώθηση της ένταξης και τη

βελτιστοποίηση της ακρίβειας εντός των ομοσπονδιακών δικτύων, διασφαλίζοντας ότι κάθε συσκευή,

ανεξάρτητα από τις δυνατότητές της, μπορεί να συμβάλλει σημαντικά στην κοινή προσπάθεια μάθησης.

Στο άμεσο μέλλον, προτείνονται μελλοντικές κατευθύνσεις που στοχεύουν στην ενίσχυση της προ-

σαρμοστικότητας του συστήματος μέσω της επέκτασης των κριτηρίων που χρησιμοποιούνται για την

προσαρμογή των παραμέτρων μάθησης, όπως και η βελτίωση του αλγορίθμου επιλογής πελατών ενσωμα-



τώνοντας πιο εξελιγμένες τεχνικές ομαδοποίησης, εξαλείφοντας έτσι την ανάγκη συλλογής μετρήσεων

για κάθε πελάτη σε κάθε γύρο. Επιπλέον, μια αξιόλογη κατεύθυνση είναι η επέκταση του μηχανισμού

συνάθροισης ώστε να εντάσσει τις τοπικές παραμέτρους εκπαίδευσης για κάθε χρήστη, διευκολύνοντας

έτσι την προσαρμογή στις αλλαγές που επιφέρει κάθε χρήστης στο μοντέλο του. Αυτές οι πρωτο-

βουλίες επιδιώκουν κυρίως να αυξήσουν την αποδοτικότητα και να εμπλουτίσουν τις λειτουργίες του

HarmoniFL, βελτιστοποιώντας τη συνολική απόδοση και την αξιοποίηση των δεδομένων.
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Chapter 1

Introduction

1.1 Purpose of the Thesis
The genesis of this thesis is rooted in addressing a pivotal challenge within the sphere of federated

learning (FL): the issue of resource heterogeneity among participating devices. Such heterogeneity,
marked by diverse computational capabilities, network conditions, and memory availabilities, poses
a substantial barrier to the fair and efficient operation of FL systems. The principal objective of
this thesis is to forge a novel pathway through this challenge, making a substantial contribution to
the federated learning domain.

To surmount this hurdle, we have developed a Resource-Adaptive Federated Learning Tool. The
tool is devised with a dual-purpose strategy: firstly, to optimize the learning process by dynamically
adapting to the fluctuating resource profiles of participating devices, thereby ensuring seamless and
efficient learning engagements; and secondly, to bolster the inclusivity and efficacy of FL networks
by facilitating equitable participation across a spectrum of devices.

Central to achieving these aims is the implementation of a sophisticated dynamic client selection
mechanism. This strategy is grounded in the utilization of real-time resource metrics—such as
processing power, memory usage, and network bandwidth—enabling the adaptive tool to fine-tune
the learning protocol to the specificities of each device’s resource landscape. Through this approach,
the thesis introduces a solution to the perennial challenge of resource diversity in federated learning,
thereby paving the way for more resilient, efficient, and inclusive FL ecosystems.

1.2 Structure of the Thesis
This thesis is organized into several chapters, each focusing on a different aspect of managing

device heterogeneity in federated learning environments. The structure is as follows:

• Chapter 1: Introduction - This chapter introduces the thesis, outlining its purpose and
structure.

• Chapter 2: Background - Provides an overview of federated learning, including its defini-
tion, key characteristics, and importance.

• Chapter 3: Challenges in Federated Learning - Discusses the various challenges faced
in federated learning.
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• Chapter 4: Adaptivity in Federated Learning: A Review - Offers a critical exami-
nation of existing adaptivity mechanisms within federated learning, setting the stage for the
proposed system.

• Chapter 5: Proposal for an Adaptive Federated Learning Tool - Delivers a compre-
hensive description of the proposed adaptive federated learning system. It details the system’s
architecture, the integration of tools and frameworks, and the design strategies that enhance
adaptivity and efficiency.

• Chapter 6: Experiment Results - Details the experimental setup, describes the method-
ologies employed to evaluate the proposed system, and analyzes the results, demonstrating
the system’s effectiveness.

• Chapter 7: Conclusion - Summarizes the key findings, discusses the contributions and
implications of the research, and suggests directions for future exploration and enhancement.

Each chapter builds upon the previous one, culminating in a comprehensive understanding of
the challenges, solutions, and implications of managing device heterogeneity in federated learning
environments.
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Chapter 2

Background

2.1 Definition of Federated Learning
Federated Learning (FL) is a groundbreaking approach in machine learning that deviates from

the traditional centralized paradigm. In a stark contrast to methods where data is gathered and
processed centrally, FL empowers model training directly on decentralized data sources, primarily
located on users’ devices. This shift is not just a technical leap but also a stride towards enhancing
data privacy, utilizing the distributed computing power available across numerous devices.

The core of FL lies in its unique ability to train algorithms across a multitude of decentralized
devices, like smartphones or IoT devices, without centralizing the data. This approach is a departure
from traditional methods, presenting both opportunities and challenges. In FL, each device in the
network, acting as a client, trains a model on its local data and computes updates to this model.
These updates, rather than the raw data, are then transmitted to a central server.

This server plays a crucial role in the FL process. It aggregates the updates from various
clients, using sophisticated algorithms such as Federated Averaging, as conceptualized by McMahan
et al. [25]. The central server then updates the global model based on these aggregated insights. Such
a process ensures that the sensitive data remains within its original location, effectively upholding
user privacy.

The workflow and actors involved in this federated learning process are succinctly depicted in
Figure 2.1. This figure illustrates the cyclical nature of FL, where each participating device trains
the model on local data and sends only the model updates to the server. These updates are then
synthesized by the server to refine the global model, which is subsequently shared back with the
devices. This iterative process allows for continuous improvement of the model, leveraging the
distributed nature of the data while maintaining its confidentiality.

One of the landmark contributions to this field by Bonawitz et al. [8] delineates a compre-
hensive system design tailored for federated learning, especially focusing on mobile devices. Their
pioneering work addresses the practical challenges associated with FL, such as the variability in
device availability, issues of connectivity, and limitations inherent to on-device resources. This work
underscores the feasibility and scalability of FL in real-world scenarios.

In summary, FL heralds a significant evolution in the field of machine learning. It offers a
framework that is not only privacy-preserving and efficient but also decentralized, aligning with the
increasing concerns over data privacy and the widespread presence of edge computing devices.
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Figure 2.1: The lifecycle of an FL-trained model and the various actors in a federated learning
system [20]

2.2 Key Characteristics of Federated Learning
Federated Learning (FL) revolutionizes the traditional machine learning landscape with its

unique characteristics. These features address pivotal challenges in data privacy, decentralized pro-
cessing, and collaborative model training, making FL an essential paradigm in today’s data-driven
world.

Decentralized Data Training Decentralization is the cornerstone of FL. In this model, train-
ing occurs directly on users’ devices, a stark contrast to the traditional data-centralized approaches.
Each participant in the FL network utilizes its local data to train an independent model. These local
models are then synthesized into a global model through a process that involves sending only the
model updates, not the data itself, to a centralized server. This process effectively addresses privacy
concerns, as sensitive user data never leaves its original location. Bonawitz et al. [8] explore the intri-
cate system designs necessary to facilitate this decentralized training, addressing challenges such as
device availability, connectivity reliability, and computational constraints inherent in device-based
model training.

Collaborative Model Building Collaboration is a defining feature of FL. It allows for the
collective contribution of a diverse array of devices, each enriching the global model with its unique
dataset. This process leads to a more robust and inclusive model that benefits from an expansive
range of data characteristics, such as varying distributions and modalities. Konečnỳ et al. [18] delve
into the collaborative nature of FL, highlighting how it leverages the strengths of distributed datasets
while maintaining the privacy and security of user data. Their work underlines the effectiveness of
FL in environments where data cannot be centralized due to privacy or logistical constraints.

Privacy by Design Privacy is not just a feature but a fundamental principle of FL. The
architecture of FL inherently supports data privacy by training models on local devices without
transferring raw data to external servers. This design philosophy aligns with the increasing global
emphasis on data privacy and security, making FL an attractive approach for applications handling
sensitive information. McMahan et al. [25] emphasize this aspect of FL, presenting it as a solution
to the growing need for privacy-preserving data analysis in the digital age. Their work illustrates
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how FL can be utilized in scenarios where traditional data sharing and centralized processing are
not feasible or desired.

Scalability and Flexibility The scalability of FL is a critical attribute that allows it to
handle a large number of participants efficiently. This scalability is complemented by the system’s
flexibility to work with various data structures and types. Sattler et al. [30] examine these aspects,
discussing how FL can be scaled to accommodate the growing number of devices and data sources in
modern networks. They also explore the adaptability of FL to different domains and applications,
highlighting its potential to transform various sectors by providing scalable and flexible machine
learning solutions.

Asynchronous Updates and Fault Tolerance Asynchronous updates represent a significant
advantage in FL, enabling the system to manage updates from various devices that might not always
be simultaneously connected to the network. This feature ensures the system’s robustness, particu-
larly in environments with unreliable or intermittent device connectivity. Bonawitz et al. [8] address
the challenges and solutions related to asynchronous communication in FL systems. They discuss
how FL can maintain consistency and reliability in the learning process despite the asynchronous
nature of client updates and the potential for device dropouts.

Model Personalization Personalization is another hallmark of FL. Leveraging local datasets
allows FL to tailor models to the specific characteristics and preferences of individual users or
groups. This ability to customize models based on local data nuances enhances the relevance and
effectiveness of the model for end-users. Kairouz et al. [17] explore the personalization potential
within FL frameworks, illustrating how local training can lead to models that are finely tuned to
the needs and contexts of specific user groups.

These characteristics collectively underscore the transformative potential of federated learning,
making it a pivotal approach in the evolving landscape of machine learning.

2.3 Importance of Federated Learning
Federated Learning (FL) stands as a beacon in the realm of machine learning, reshaping how

data intelligence is harnessed while safeguarding privacy and efficiency. Its significance in the con-
temporary technological landscape extends far beyond the conventional boundaries of data analysis,
influencing a multitude of sectors and application areas.

Revolutionizing Privacy-Preserving Data Analysis FL represents a paradigm shift in the
approach to data privacy. It inherently preserves user data confidentiality by allowing the data to
stay where it is generated – on the user’s devices. This methodology is crucial in today’s world,
where data breaches and privacy concerns are increasingly becoming a public issue. By processing
data locally and only sharing model updates, FL provides a pathway to leverage data insights while
adhering to stringent privacy standards. This characteristic is particularly valuable in areas where
data sensitivity is paramount, such as in medical records analysis or personal finance management.
McMahan et al. [25] delve into this aspect, illustrating how FL aligns with and enhances privacy
preservation in machine learning.

Empowering AI in Edge Computing As computing continues to shift towards the edge,
FL emerges as a key player in this transition. It capitalizes on the computational power available
in modern edge devices, enabling localized AI processing. This not only reduces latency in AI
applications but also minimizes the dependency on cloud computing infrastructures, leading to
more efficient and responsive systems. Bonawitz et al. [8] discuss the synergy between FL and
edge computing, highlighting its potential to transform the landscape of local data processing and
real-time decision-making.
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Diverse Applications Across Various Domains The adaptability of FL to various fields is
one of its most compelling attributes. The methodology has been successfully applied in numerous
domains, each benefiting from its decentralized, privacy-preserving nature. For instance: - Health-
care: FL enables the development of predictive models for disease diagnosis by leveraging data
from various hospitals while maintaining patient confidentiality. - Financial Services: In banking
and finance, FL aids in fraud detection and risk management by learning from transactional data
across different branches without centralizing sensitive financial information. - Smart Cities: FL is
utilized in smart city initiatives, optimizing traffic flow, and public safety by processing data from
various urban sensors and devices. - Retail and E-commerce: It helps in personalizing customer
experiences by analyzing shopping patterns directly on users’ devices. - Telecommunications: FL
enhances network optimization and predictive maintenance by learning from distributed network
data. Kairouz et al. [17] provide a comprehensive overview of these applications, showcasing the
versatility and widespread impact of FL.

Future Prospects and Technological Evolution The trajectory of FL points towards a
future rich with innovation and enhanced capabilities. As technological advancements continue,
particularly in the realms of IoT, 5G networks, and edge computing, the potential applications and
effectiveness of FL are poised to expand exponentially. This evolution positions FL as a cornerstone
technology in the future landscape of AI and machine learning, driving forward new frontiers in
data-driven decision-making and intelligent system design.

In sum, the importance of Federated Learning in the current and future technological era is
profound. It stands as a critical solution to privacy concerns, a facilitator of edge AI, and a versatile
tool in a wide array of applications. Its continued development and adoption are set to redefine the
paradigms of data analysis and machine learning.
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Chapter 3

Challenges in Federated Learning

3.1 Bias
In the rapidly evolving domain of Federated Learning (FL), a profound understanding of bias

becomes vital. Bias—systematic discrepancies leading to a deviation of model predictions from
actual values—can permeate FL processes through various avenues, subsequently affecting model
performance, fairness, and utility [12, 17].

Bias within FL proves to be multifaceted, originating from diverse elements including sampling
techniques, heterogeneity in data and systems, fusion algorithm design, and cognitive aspects [12,
17, 23, 22]. Identifying these biases necessitates an exploration into complex factors like device
selection criteria, connectivity logistics, computational capacity, data volume, and the impact of
human decision-making [17, 8, 22]. Unchecked, these biases can significantly affect the global model,
skewing predictions, enabling unequal representation, and reducing overall model applicability [12,
17, 23, 30].

The ensuing analysis is committed to elucidating these intricate aspects of bias in FL, scruti-
nizing its origins, manifestations, and implications.

3.1.1 Sampling Bias
In the domain of federated learning, sampling bias emerges as a significant and complex issue

influencing the generation and performance of the global model. The complex web of factors con-
tributing to this form of bias encompasses not only the volume and diversity of data nodes but also
the intricate logistics of device connectivity, computational performance, and data availability.

Sampling bias materializes when the data nodes (or devices) utilized for model training do not
uniformly represent the wider population of interest. This lack of representativeness can skew the
learning process and exert disproportionate influence on the final model, potentially undermining
its predictive power for underrepresented groups [12, 17, 30].

A notable facet of sampling bias in federated learning systems pertains to node selection. Nodes
are often chosen for model updates based on their availability or charge status, resulting in a tem-
poral dimension of bias. Specifically, if model updates predominantly occur at specific times, an
unintentional correlation could form with factors like day-shift versus night-shift work schedules.
Such correlations, though seemingly subtle, can result in the overrepresentation or underrepresen-
tation of certain user groups in the aggregated model, thereby impacting its overall performance
[17, 8, 23].
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An additional contributing factor to sampling bias is the timing and frequency of device connec-
tivity. As federated learning relies on real-time data from connected devices, those that maintain
connectivity during off-peak times could potentially have a higher chance of selection due to lower
network competition. This dynamic could lead to an overrepresentation of these off-peak devices in
the aggregated output, thereby subtly influencing the characteristics of the global model [12, 17, 8].

The influence of device performance and data volume on sampling bias presents another crit-
ical dimension to consider. Devices endowed with faster processors or possessing smaller datasets
may complete computations more rapidly, potentially leading to their overrepresentation in the
aggregated model updates. Consequently, the global model could be skewed towards these higher-
performance devices or those with fewer data, leading to an unintentional form of sampling bias
[12, 17].

In sum, the nuanced nature of sampling bias in federated learning highlights the intricacy of
attaining fair and representative learning in a decentralized environment [12, 17, 23]. This neces-
sitates meticulous attention and mitigation strategies to ensure the federated learning process and
the resultant global model genuinely represent the user population’s diversity, thereby augmenting
the model’s predictive accuracy and fairness [12, 17, 8, 30].

3.1.2 Data Heterogeneity
Heterogeneity in data represents a formidable challenge within the context of federated learning

systems. In these decentralized networks, participating nodes (clients) - each reflecting a distinct
user or group of users - are characterized by diverse behaviors, preferences, and traits. As a conse-
quence, the data harbored at each node can significantly differ, leading to a substantial degree of
heterogeneity across the network. This disparity can stem from varying data types, volumes, and
qualities across clients, and critically influences the effectiveness and fairness of federated learning
implementations [23].

To elucidate, one can consider a healthcare scenario where multiple hospitals participate in
a federated learning network to develop a predictive model for patient outcomes. Each hospital,
located in a unique geographical setting, serves a distinct patient demographic, leading to disparities
in data regarding age, ethnicity, and lifestyle diseases. Furthermore, hospitals specializing in certain
medical domains will have an overrepresentation of data corresponding to those domains. Such
inter-hospital variations culminate in a heterogeneous dataset across the federated learning network
[17].

Similarly, variations in user engagement levels can cause data volumes to differ across nodes.
In a federated learning setup involving a mobile application, for example, power users will generate
larger volumes of data than casual users due to their higher interaction levels. This disparity in
data volume contributes further to the overall data heterogeneity [20].

The inherent data heterogeneity has significant repercussions on the global model developed
through federated learning. A common practice in fusion algorithms is to weigh node contributions
proportional to their data volume. However, this might result in a global model unduly skewed by
nodes with larger data volumes, compromising its generalizability [12, 17, 8, 23, 25]. For instance, in
the earlier hospital scenario, if the fusion algorithm assigns more weight to a cardiology-specializing
hospital, the resultant model might disproportionately reflect cardiac patient characteristics, poten-
tially undermining its effectiveness for different ailments.

Further, sparse or infrequent data from certain nodes might deprive the global model of adequate
training for corresponding user groups. Using the mobile application example, the model might
underperform for infrequent users if their data isn’t adequately represented during training [20, 22].
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In light of these implications, it is vital that federated learning systems are designed with metic-
ulous consideration of data heterogeneity. Ensuring the equitable representation of various data
distributions in the global model is imperative for achieving optimal performance and fairness in
these systems. Moreover, understanding the sources of this heterogeneity, whether from user behav-
ior, geographic factors, specialized data collections, or variations in data volumes, is fundamental
to its effective management in federated learning.

3.1.3 Device Heterogeneity
In the federated learning context, device heterogeneity refers to the variability in the computa-

tional, communication, and power capabilities of the devices participating in the learning process.
This analysis involves understanding how these device-specific characteristics influence the feder-
ated learning process, potentially introducing bias and affecting the global model’s performance
[12, 17, 25].

Computationally, devices in a federated network may vary extensively in their hardware at-
tributes, including processing speed and memory capacity. These variations dictate the rate at
which devices can conduct model training and updating. More computationally potent devices
might compute updates quicker, possibly leading to overrepresentation if faster updates are favored
during the aggregation process. Conversely, devices with less computational power might lag, creat-
ing disparities in the timeline of contributions, and possibly causing their updates to be overlooked
or undervalued [12, 17, 23].

Communication capabilities, determined by network connectivity (3G, 4G, 5G, WiFi, etc.), can
significantly influence the federated learning process. Devices with more robust or reliable network
connections might transmit updates more efficiently, leading to potential favoritism or prioritization
of their updates. Conversely, devices with weaker or less reliable connections may face challenges
transmitting updates, resulting in potential delays or data losses that could disproportionately
impact their representation in the learning process [17, 20].

Power constraints, including battery life, are equally critical. Devices with longer battery life or
access to a constant power supply might be more readily available for participation in the federated
learning process, leading to more frequent or timely updates. Conversely, devices with shorter
battery life or infrequent access to a power source might face interruptions or be less available,
potentially reducing their contribution frequency or timeliness [8, 23].

Lastly, a variety of device-related constraints, often determined by network size and inherent
device limitations, may exist. Given the vast scale of typical federated networks, potentially in-
volving millions of devices, only a small fraction might be active at any given moment. This low
participation rate, coupled with the unpredictability of device dropout due to connectivity or energy
constraints, can further complicate the federated learning process [17, 22].

In sum, these elements collectively contribute to the overall system heterogeneity in federated
learning, each presenting unique challenges and potential biases. A comprehensive understanding
of device heterogeneity and its implications is fundamental for fair and efficient federated learning
implementations [25, 18, 30].

3.1.4 Fusion Algorithm Bias
Fusion algorithms are the backbone of federated learning systems, acting as the central mecha-

nism to merge updates from individual models into a comprehensive global model. The intricacies
of these algorithms are pivotal in shaping the learning and prediction capabilities of the model, yet
can simultaneously serve as a conduit for bias [12, 8, 25].
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The main purpose of a fusion algorithm is the aggregation of diverse local updates. The manner
in which these updates are weighted and amalgamated can foster disparities across nodes, which
can subsequently transpire as bias in the resulting model. Consider, for instance, the case of
unweighted aggregation. This approach treats all local model updates equivalently, regardless of
their originating devices’ unique attributes such as data volume, data diversity, or usage frequency.
A node with sparse or low-quality data is awarded equal influence over the global model as a node
with extensive, high-quality data, potentially diluting the accuracy of the overall model [12, 8, 23].

To illustrate, consider a federated learning ecosystem implementing an equal average fusion
algorithm. This method affords equal weightage to all participating nodes, irrespective of the
quality or volume of their data contributions. Consequently, the global model could be unduly
influenced by nodes possessing poor-quality or unrepresentative data, leading to a decrease in the
model performance or prediction accuracy [23].

On the other side of the spectrum lies the weighted average fusion algorithm, a technique that
assigns weights to local model updates commensurate with their data volume or frequency of use.
This approach seems to reward nodes that are more active or data-rich, theoretically driving the
global model toward higher accuracy. However, this method bears its own set of complications. By
disproportionately weighing data-rich nodes, the global model could develop a bias towards these
nodes. This could result in a model that is well-tuned for a particular subset of nodes but falls short
in generalizing to the wider network [17, 20].

This discussion highlights the potential for fusion algorithms to act as conduits for bias in
federated learning. The selection and deployment of these algorithms demand careful consideration,
taking into account their potential implications on the fairness and performance of the global model.
Future advancements in federated learning should endeavor to tackle these challenges, devising
strategies that ensure fair representation in the global model while preserving the overarching goal
of model accuracy [8, 18, 30].

3.1.5 Human-Centric Biases
Cognitive Bias Cognitive bias arises from systematic errors in human decision-making, which

can occur during the formulation of data collection procedures, the design of federated learning
algorithms, and even in the process of selecting which nodes are eligible for participation. Such
biases could implicitly seep into the federated learning process through the design of the applica-
tions generating the data, shaping the nature and range of data collected, and thus affecting the
subsequent machine learning model. While the degree and impact of cognitive bias can be difficult
to quantify due to its inherent human element, it remains a crucial factor to consider in the design
and deployment of federated learning systems [17].

Reporting Bias Reporting bias in federated learning systems is primarily a consequence of
differential data availability across user groups. For instance, populations that do not own devices
due to socioeconomic constraints may not contribute data to the training dataset. This lack of
representation in the dataset and subsequent model training and evaluation presents a form of
reporting bias [17]. The system’s ability to generalize and make accurate predictions for these
underrepresented or unrepresented populations may be compromised as a result.

Confirmation Bias Confirmation bias could play a role in the interpretation and evaluation of
federated learning outcomes. As an example, if there are pre-existing beliefs or assumptions about
the behaviors of certain device owners or populations, these might influence the interpretation
of results derived from the federated learning process [17]. Analysts may unconsciously seek out
outcomes that confirm their preconceived notions, potentially overlooking evidence to the contrary.
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3.2 Communication Efficiency
Efficient communication underpins the success of Federated Learning (FL) systems. This section

explores the multifaceted aspects of communication efficiency, focusing on how network bandwidth
and latency impact the performance and scalability of FL. These factors are crucial for the synchro-
nization and timely exchange of data across distributed networks, directly influencing the learning
process and model accuracy. The following subsections delve into specific challenges related to
network bandwidth and latency, providing a comprehensive understanding of their individual and
combined effects on FL efficiency.

3.2.1 Latency
The influence of network latency manifests in several challenges in Federated Learning. Notably,

latency introduces a consequential delay in the convergence of the global model. In the distributed
learning framework that FL adopts, rapid communication between the server and the participating
clients is a crucial component of the learning process. Increased latency obstructs this commu-
nication, extending the time required for the global model to achieve convergence. This impact
is particularly significant when the learning model necessitates a large number of communication
rounds, thereby highlighting how latency can considerably decelerate the process [17, 8].

Furthermore, latency may precipitate a condition of asynchronous updates. In high-latency
environments, updates originating from different clients are likely to reach the central server at
varied intervals. This inconsistency in time can introduce irregularities in the global model as
the server attempts to reconcile updates received at different time frames. This latency-induced
asynchronicity has the potential to disrupt the orderly learning process and can contribute to a
degradation in the overall performance of the global model [17, 25].

Another challenge in the context of latency is the potential increase in device dropout rates.
For instance, in a high-latency environment, there is an increased risk that a device may disconnect
before successfully communicating its update to the server, due to reasons such as user interference
or power loss. Such disruptions in communication can lead to the transmission of irregular updates,
impeding the continuity of the learning process [17, 22].

Lastly, scalability represents a significant challenge in the presence of network latency in Fed-
erated Learning. As the number of participating devices in FL increases, the system becomes
increasingly susceptible to the impacts of latency-induced delays and asynchronous updates. There-
fore, effective management of latency becomes an increasingly critical consideration as the system
scales to accommodate a larger number of clients. In larger systems, high latency can introduce sub-
stantial delays in the transmission of model updates, thereby affecting the efficiency and operational
speed of FL systems [8, 25].

In conclusion, network latency in Federated Learning introduces a range of challenges, including
the delay in convergence of the global model, asynchronous updates, increased device dropouts,
and scalability issues. These challenges highlight the importance of effectively managing network
latency to ensure the operational efficiency and robustness of FL systems.

3.2.2 Network Bandwidth
In Federated Learning, the communication between the server and clients necessitates the trans-

fer of a substantial volume of data. This data primarily comprises model parameters and gradient
updates, which can significantly increase in number when handling intricate models such as deep
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learning networks. As such, high network bandwidth becomes an integral requirement to efficiently
facilitate this data exchange [8, 25].

In practice, FL systems typically involve a large number of clients, potentially reaching into
the thousands or millions. Given that each client must transmit and receive updates, the overall
demand for network bandwidth escalates proportionally with the count of participating clients.
Hence, network bandwidth becomes a substantial bottleneck, posing a challenge to the scalability
of FL systems [8, 25].

The requirement for network bandwidth is further intensified by the frequency of communica-
tion rounds. Each round involves clients sending local updates to the server, followed by the server
disseminating the updated global model back to the clients. Therefore, in scenarios necessitating nu-
merous communication rounds for model convergence, the demand for network bandwidth increases
considerably [8, 25].

Additionally, the diverse network conditions in a real-world FL implementation introduce further
complexity to the bandwidth challenge. Devices participating in the FL process may range from
those with high-speed internet connectivity to those restrained by limited bandwidth networks.
This heterogeneity may result in slower devices constraining the overall learning process due to
their extended time to send or receive updates, attributable to their limited network bandwidth [8].

Network bandwidth challenges in FL are also magnified when considering data transfer costs,
particularly in regions or circumstances where these costs are substantial. The consistent interchange
of updates between the server and clients in FL systems can culminate in high data transfer costs.
This could impose a financial burden on the clients, potentially making participation in FL unfeasible
for some [25].

In conclusion, the high-dimensional nature of models, the large number of participants, the
frequency of communication, and the diversity in network conditions among clients collectively
contribute to network bandwidth being a significant challenge in FL. The ramifications on scalability
and data transfer costs pose considerable obstacles to the practical implementation of FL systems.

3.3 Privacy Concerns
Federated Learning (FL) has gained significant attention as a privacy-preserving approach to

collaborative machine learning. However, FL brings forth inherent privacy challenges that need to
be addressed. The following analysis delves into the privacy challenges encountered in FL, aiming
to identify and analyze the key obstacles to data privacy. By understanding these challenges,
effective privacy-enhancing mechanisms can be developed to ensure the confidentiality and integrity
of participant data in FL systems.

3.3.1 Data Leakage
Data Leakage is a critical challenge in Federated Learning (FL) which can compromise the

privacy-preservation premise of the learning process. This form of leakage can surface in distinct yet
interconnected ways, mainly through Membership Inference Attacks and Model Inversion Attacks.
The analysis of each category can provide a nuanced understanding of the mechanisms of data
leakage and the associated risks.

Membership Inference Attacks Membership inference attacks pose a significant risk to pri-
vacy in Federated Learning (FL) systems. An adversary during such an attack attempts to determine
if a specific data point was part of the model’s training set. This inference is possible by leveraging
model predictions or shared updates during federated learning [17]. Real-world data distribution
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among clients, often imbalanced and non-IID (Independent and Identically Distributed), contributes
to the susceptibility of such attacks. Unique characteristics from skewed data or classes present with
few participants could be reflected in the global model, enabling an adversary to make educated
guesses about data point membership [30]. The risk of these attacks increases in Vertical Federated
Learning scenarios where different entities own different features of the same sample. Consequently,
shared model updates may reveal sensitive information about local data [22].

Model Inversion Attacks Model inversion attacks present another avenue for data leakage in
FL systems. In these attacks, adversaries strive to reconstruct original data inputs from the model’s
outputs or shared updates. The decentralized nature of FL models exacerbates the potential impact
of these attacks. Shared model parameters or gradients during aggregation may carry information
about data distribution, indirectly revealing information if the client’s data has unique statistical
properties [23]. Both Vertical and Horizontal Federated Learning scenarios face the risk of model
inversion attacks. In Vertical FL, despite entities possessing only a subset of features for each data
point, shared model updates could provide sufficient information for an adversary to reconstruct
original data points [22]. Similarly, in Horizontal FL, model inversion attacks are feasible based on
shared model updates, even when each entity holds different samples of the same set of features
[23].

Both of these attack vectors highlight the complexity and nuances of the data leakage chal-
lenge in FL. While these learning systems are designed with privacy as a priority, the potential
for data leakage through these methods continues to pose substantial privacy threats. Addressing
this requires the development of more sophisticated and privacy-preserving FL models and proto-
cols, which can safeguard against these forms of data leakage without hampering the efficacy of the
learning process.

3.3.2 Colluding Participants
Federated Learning (FL), despite its data privacy advantages, faces a significant challenge from

colluding participants, who can pool their shared knowledge to infringe upon the privacy safeguards
of the federated system [17]. Collusion among participants can enable them to aggregate and
analyze more information than what is conventionally shared during the model update process,
thereby posing a substantial threat to the privacy of data.

In FL, there are two primary models: Vertical Federated Learning (VFL) and Horizontal Feder-
ated Learning (HFL). VFL involves scenarios where different entities possess different features for
the same set of samples, while HFL involves scenarios where each entity holds different samples of
the same set of features. Each model faces unique challenges regarding collusion among participants.

For instance, in a VFL scenario, shared model updates amongst colluding entities could poten-
tially help infer sensitive information about local data [23]. This is particularly concerning in VFL
due to the diverse nature of the data features held by different entities, which, when combined, can
reveal comprehensive information about the data.

Similarly, in an HFL scenario, shared model parameters amongst colluding entities might leak
information about the unique statistical properties of a client’s data, thereby revealing information
about the data distribution [17]. In HFL, the risk lies in the potential for colluding participants to
reconstruct the data distributions of other clients based on shared updates, thus compromising the
privacy of the data.

The potential risk of colluding participants also expands beyond the realm of data leakage to
include the risk of model poisoning, where colluding entities could manipulate their local updates
in a coordinated manner to skew the global model towards their preferred outcomes.
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Chapter 4

Adaptivity in Federated Learning: A
Review

The landscape of federated learning (FL) has rapidly evolved to address the challenge of device
heterogeneity, with several pioneering works laying the groundwork for adaptive and efficient FL
frameworks. This chapter delves into key contributions that have significantly advanced the domain
of resource-adaptive federated learning.

4.1 All-In-One Neural Composition for Enhanced Resource
Adaptivity

Mei et al. [26] tackle federated learning’s system heterogeneity challenge through the "All-In-One
Neural Composition" mechanism. This approach diverges from conventional model adjustments by
enabling the dynamic adaptation of model complexities to fit the computational resources available
across different client devices. Utilizing a unified neural basis, it allows for the efficient construction
of diverse model complexities, effectively managing the balance between model sophistication and
the computational capabilities of client devices. However, FLANC assumes that all clients can
support at least the neural basis, and thus its adaptivity is bounded by the size of this pre-defined
unified neural basis.

A distinctive feature of this methodology is its leverage of orthogonal regularization to enhance
the representational capacity of the neural basis, ensuring a broader encapsulation of knowledge.
This is pivotal in federated settings, where the goal is to enrich the collective intelligence of the
network through the aggregation of diverse local updates.

Empirically validated across various benchmarks, the All-In-One Neural Composition demon-
strates superior performance against existing approaches, showcasing its ability to address the trade-
offs inherent in federated learning systems due to device heterogeneity. By fostering a more inclusive
federated learning environment, Mei et al.’s work significantly advances the field towards achieving
efficient and equitable learning across a heterogeneous array of devices.
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4.2 ScaleFL: Resource-Adaptive Federated Learning with
Heterogeneous Clients

Ilhan et al. [16] introduce ScaleFL, an innovative framework designed to navigate the com-
plexities of device heterogeneity in Federated Learning (FL). ScaleFL uniquely adapts Deep Neural
Networks (DNNs) to the computational constraints of varied clients through two-dimensional model
adjustments, optimizing both the width and depth of the model. This optimization, facilitated by
the strategic use of early exits, allows for the creation of client-specific models that efficiently balance
the extraction of basic and complex features.

A cornerstone of ScaleFL’s approach is the implementation of self-distillation techniques during
the training phase, where predictions from the final exit act as soft labels to enhance the training
of earlier exits. This process not only improves the flow of knowledge across the network but also
ensures a more cohesive and effective integration of diverse model updates into the global model.
The efficacy of ScaleFL is underscored by its performance enhancements and inference efficiency
gains demonstrated across a suite of benchmark datasets in computer vision and natural language
processing.

Through its novel methodology, ScaleFL significantly advances the federated learning field by
offering a scalable and inclusive solution that accommodates a broad spectrum of device capabilities,
thereby fostering a more equitable federated learning ecosystem.

4.3 FjORD: Fair-and-Accurate Federated Learning un-
der Heterogeneous Targets with Ordered Dropout

Horváth et al. [10] present FjORD, a framework innovatively addressing client heterogeneity
in Federated Learning (FL) through the Ordered Dropout (OD) mechanism. Unlike traditional
dropout methods, OD allows for the efficient creation of nested submodels of varying complexities
from a single master model, without the need for retraining. This capability significantly enhances
the inclusivity of FL by accommodating the computational diversity of client devices.

Key to FjORD’s approach is the integration of self-distillation, where knowledge from more
complex models is used to enrich the training of simpler submodels. This technique ensures that
devices of all capabilities can meaningfully contribute to the learning process, improving both the
performance and fairness of the federated model.

Evaluated across diverse datasets and network architectures, FjORD has shown to outperform
baseline methods, demonstrating its ability to adaptively scale models during inference to meet the
specific needs of each device. Such adaptability is crucial for real-world FL applications, underscor-
ing FjORD’s role in advancing federated learning towards more equitable and efficient deployments
across heterogeneous devices.

4.4 HETEROFL: Tailoring Federated Learning to Device
Capabilities

HETEROFL, conceptualized by Diao, Tarokh, and Ding (2021) [5], addresses client heterogene-
ity in Federated Learning (FL) by innovatively adjusting the model’s width without altering its
depth. This approach enables the inclusion of devices with varying computational resources by cus-

26



tomizing the width split ratio for each client, thus significantly reducing the computational burden
without compromising the model’s performance.

Key to HETEROFL’s strategy is the use of static Batch Normalization (sBN), which facilitates
the training of privacy-sensitive models across devices with different capabilities. This technique is
crucial for optimizing performance and ensuring data privacy in constrained environments.

Empirical tests of HETEROFL across diverse datasets and architectures have demonstrated
its efficacy, particularly in non-IID data scenarios, showcasing its potential to improve learning
efficiency and model accuracy in real-world federated networks. HETEROFL’s approach of width-
adjustable models presents a scalable solution to the challenges of device diversity in FL, marking
a significant step towards a more adaptable and inclusive federated learning framework.

4.5 Federated Optimizations in Heterogeneous Networks
The FedProx algorithm, introduced by Tian Li et al. [21], marks a significant advancement

in federated learning by addressing the challenge of device heterogeneity. This method permits
variable amounts of local training iterations, effectively allowing each client to participate in the
training process according to their computing power. Such adaptability is essential for including a
broader array of devices in federated learning networks, especially those with limited computational
resources.

FedProx enhances the conventional federated learning approach by introducing a mechanism
that accounts for system heterogeneity, making the learning process more inclusive and efficient.
However, it operates under the premise that all clients can support the same model architecture,
focusing on optimizing the participation level of each device rather than modifying the model itself
to fit the device capabilities.

This approach significantly contributes to the federated learning field by offering a practical
solution to manage the variances in computational capabilities among participating devices, ensuring
that each can contribute to the collective learning effort within their operational constraints.
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Chapter 5

Proposal for an Adaptive Federated
Learning Tool

5.1 System Overview
Addressing the complexities of device heterogeneity in the rapidly evolving domain of federated

learning (FL) necessitates innovative and adaptive solutions. This thesis introduces a sophisticated
tool that rises to this challenge. Central to its strategy is a dynamic client selection mechanism,
which intelligently assesses and responds to the diverse capabilities of devices based on device-specific
metrics.

A pivotal element of our system is the integration and extension of Flower, a flexible and robust
framework for federated learning[7]. By extending key methods within Flower, we implement a
bespoke client selection logic, allowing for a more nuanced and efficient orchestration of the federated
learning process. This tailored approach ensures that the system is not just accommodating the
diversity of devices but is actively optimizing the learning process based on their varied capabilities.

The user-configurable nature of the system empowers practitioners to precisely define operational
criteria through a configuration file, ensuring that the system aligns with the specific needs of
varying federated learning scenarios. This customization extends to setting specific parameters and
thresholds that control the participation and contribution of devices in the learning network, making
the system highly adaptable to different operational environments.

Integral to the system’s functionality is the strategic utilization of Prometheus and cAdvisor,
which are instrumental in sourcing both real-time and historical device metrics. These metrics play a
crucial role in shaping our sophisticated client selection logic. By integrating these metrics with the
user-defined parameters in the configuration file, the system orchestrates an informed and strategic
client selection process for each learning iteration. The synergy between these device metrics and
user configurations allows for a more responsive and intelligently adaptive approach to managing
the diverse capabilities of devices in the federated learning network.

In addition to these capabilities, the system’s proficiency is further augmented by integrating
with MLflow and Grafana. This combination offers a comprehensive suite for tracking, managing,
and visualizing both the machine learning lifecycle and the federated learning process. The use of
MLflow and Grafana ensures an optimized and effective federated learning environment by providing
detailed insights into the learning process and the performance of the federated network, thereby
facilitating continuous improvement and effective decision-making.

Designed with extendability and modular architecture at its core, the system’s codebase is
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primed for scalability and future enhancements. This foresight allows for the seamless integration
of additional features or criteria for client selection, positioning the system as a versatile and evolving
solution for the challenge of device heterogeneity in federated learning.

The subsequent sections of this chapter will provide a detailed exploration of the various com-
ponents and the unique functionalities of our system.

5.2 Integration with Existing Tools and Frameworks

5.2.1 Flower Framework
Introduction and Rationale for Choosing Flower

Flower stands out in the federated learning (FL) landscape, particularly for its adept handling
of heterogeneous client environments, a key challenge in FL systems. Unlike other FL frameworks,
Flower is uniquely capable of supporting workloads involving clients running on different platforms
and using various languages, all within the same workload. This feature is vital in scenarios targeting
edge devices, where a client pool might include a diverse array of devices such as smartphones,
tablets, and embedded systems [7].

Flower’s support for heterogeneous clients is enabled through its communication-agnostic and
language-agnostic client-side integration points. This is a distinguishing factor from other frame-
works like TensorFlow Federated (TFF) and PySyft, which typically expect a framework-provided
client runtime. In contrast, frameworks like FedScale and LEAF primarily focus on Python-based
simulations, limiting their applicability in diverse real-world scenarios. Flower’s ability to integrate
with a multitude of device types and programming languages makes it unparalleled in the federated
learning domain for practical, large-scale deployments [7].

Moreover, Flower’s design facilitates large-scale and heterogeneous client management, crucial in
a landscape where devices vary significantly in terms of computational power, memory capacity, and
network connectivity. Its framework-agnostic nature allows for seamless integration with a variety
of machine learning frameworks, enhancing its suitability for diverse and evolving FL scenarios. The
scalability of Flower, capable of managing experiments with millions of clients, further demonstrates
its practical applicability in real-world scenarios [7].

In summary, Flower’s unique combination of scalability, flexibility, framework and communication-
agnosticism, and its unparalleled ability to handle heterogeneous clients in real-world applications
make it an ideal choice for our federated learning system, setting it apart from other available FL
frameworks [7].

Flower’s Architecture and Core Concepts

Flower’s architecture is designed to efficiently manage the complexities of federated learning.
Key aspects of its architecture and core concepts include:

• Server-Client Structure Central to Flower is a server-client model where the server orches-
trates the FL process, and clients, ranging from smartphones to powerful computers, perform
model training using their local data.

• Federated Learning Rounds In these rounds, selected clients train models on their data
and send updates back to the server, where they are aggregated to refine the global model.
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• Strategy The strategy component is pivotal in the federated learning process within Flower,
responsible for critical operations like client selection, model aggregation methods, and model
evaluation. Flower comes equipped with ready-made strategies, including the Federated Av-
eraging (FedAvg) algorithm introduced by McMahan et al.[25], which serves as a solid founda-
tion for many FL tasks. In addition to these built-in strategies, Flower’s strategy abstraction
empowers the implementation of custom strategies, crucial for adapting to diverse FL envi-
ronments and enhancing client selection logic. This abstraction encompasses several methods
that are integral to the federated learning process.

Within Flower, the configure_fit method is primarily responsible for selecting which clients
will participate in the current round of federated learning. This selection process is central
to the efficacy and efficiency of the federated learning system, as it directly influences the
diversity and representativeness of the data used in model training. In our proposed tool, we
have extended the configure_fit method to further refine this selection process, tailoring it
to our specific federated learning needs. The details and implications of this extension will
be elaborated upon in the later sections.

To illustrate how the configure_fit method currently operates, we provide a sequence dia-
gram. This diagram offers a detailed visual representation of the method’s workflow, demon-
strating the interactions between the server and clients and the extended logic for client
selection:

Figure 5.1: Sequence diagram showing the workflow of the configure_fit method in Flower,
illustrating the client selection process and server-client interactions.[13]
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The sequence diagram in Figure 5.1 provides a clear visualization of the configure_fit
method’s operation within the Flower federated learning workflow. The diagram begins with
the Strategy module, which initiates the federated training process. It first retrieves the
initial model parameters through the initialize_parameters call. These parameters are
then passed on to the federated training sequence where the configure_fit method comes
into play.

During the configure_fit phase, the Strategy module generates a list of tuples, each con-
taining a ClientProxy and FitIns (fit instructions), which are sent to the selected Flower
Clients. Each client processes these instructions, performs local model training, and then
returns a FitRes (fit results) object. The server, upon receiving all FitRes objects from the
participating clients, passes them to the aggregate_fit method. This method aggregates the
updates to form the new global model parameters, which then become the starting point for
the next round of training. This cyclical process is at the heart of Flower’s federated learning
approach, ensuring that the global model iteratively improves with inputs from a diverse set
of clients.

The architecture diagram depicted in Figure 5.2 illustrates the structure of the Flower federated
learning framework. At the highest level sits the Strategy module, which is responsible for over-
arching decisions in the federated learning process, such as client coordination and global model
updates.

Figure 5.2: The Flower framework’s architecture showcases the interaction between the
Strategy module, the Client Manager, and the clients themselves, which are categorized into
Edge and Virtual Client Proxies.[7]

Below the Strategy module, we see the Client Manager, acting as the intermediary between
the Strategy and the clients. It manages the Client Proxies, which represent the connected clients
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within the system. The Client Manager utilizes RPC (Remote Procedure Call) to facilitate secure
and efficient communication between the server and the edge clients. RPC allows programs on edge
devices to request services from the central server program, despite being on separate computers
across the network, which is a cornerstone of Flower’s federated learning process.

The diagram differentiates between Edge Client Proxies, which communicate directly with Edge
Clients via RPC, and Virtual Client Proxies, which represent clients that are not actively partici-
pating in the current learning round.

The Edge Client section at the bottom left of the diagram represents actual devices, such as
smartphones or embedded systems, which hold the training data and execute the training pipeline.
These clients are the workhorses of the federated learning process, performing computations on their
local data and communicating results back to the server through their respective proxies.

On the other hand, the Virtual Client, shown at the bottom right of the diagram, stays in an
inactive state when not in use, conserving resources. It activates and loads data into memory only
when selected for training or evaluation, demonstrating the efficient utilization of computational
resources in Flower’s design.

This architecture enables Flower to manage a federated learning process with a diverse set of
clients, balancing the demands of active and inactive clients while ensuring a robust and scalable
learning environment.

5.2.2 Utilizing Prometheus and Grafana for Monitoring
Prometheus, an open-source monitoring solution, plays a crucial role in the proposed advanced

federated learning system. It is adept at scraping and storing metrics from a multitude of sources,
making it an invaluable tool for tracking and analyzing the performance of federated learning work-
loads [27].

To visualize Prometheus’s role in the system, Figure 5.3 showcases its architecture:

Figure 5.3: Architecture of Prometheus illustrating its ecosystem components and the process
of metric collection, storage, and alerting.[27]

In the architecture (Figure 5.3), at the foundation, we have the Prometheus targets, which
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could be any instrumented jobs or services that expose metrics. These targets are monitored by
Prometheus, which pulls metrics at regular intervals. Prometheus can scrape metrics directly from
these jobs or via an intermediary such as the Pushgateway, which is particularly useful for short-lived
jobs.

At the core of Prometheus is the server, which consists of several components including the
retrieval logic, the time-series database (TSDB), and the HTTP server. The retrieval component
is responsible for fetching the metrics, the TSDB is where the metrics are stored, and the HTTP
server provides an API for queries.

For alerting, Prometheus includes the Alertmanager, which handles alerts sent by the Prometheus
server and takes care of deduplicating, grouping, and routing them to the correct receiver, such as
an email, PagerDuty, or other notification systems.

Grafana excels not only in data visualization but also in its ability to create comprehensive
dashboards that can be customized to the needs of federated learning monitoring. Its user-friendly
interface allows system administrators and data scientists to create complex queries without deep
knowledge of the datasources’s query language. Grafana’s dashboards are dynamic and interactive,
offering drill-down features that enable users to pinpoint the exact source of issues in real-time.
This makes Grafana an indispensable tool for immediate analysis and response [19].

Furthermore, Grafana supports alerts that can notify the team of any anomalies or threshold
breaches in the federated learning process. This proactive alerting mechanism ensures that potential
issues can be identified and remedied promptly, minimizing downtime and maintaining the continuity
of model training across the distributed network [19].

The synergy between Prometheus and Grafana provides a powerful monitoring solution that
enhances visibility into the federated learning process, allowing for proactive management of the
system’s health and performance.

5.2.3 Leveraging MLflow for Tracking
MLflow emerges as an open-source platform designed to streamline the entire machine learning

lifecycle. It encapsulates the intricate processes involved in machine learning development into a
cohesive system that enhances productivity, fosters collaboration, and maintains consistency across
different stages of model training, evaluation, and deployment. In the context of federated learning,
MLflow’s tracking capabilities are particularly valuable, offering a systematic approach to record
and analyze the distributed training process [1].

The MLflow Tracking Server stands out as a centralized repository that meticulously logs every
aspect of the machine learning experiments, from parameters and metrics to models and artifacts.
This facilitates a comprehensive understanding of each training session, which is paramount in the
collaborative and diverse environment of federated learning. By capturing a detailed snapshot of
the training iterations, MLflow enables practitioners to monitor, compare, and iterate upon their
models with precision and control [1].

The tracking system within MLflow not only documents the quantitative metrics but also pro-
vides qualitative insights, thereby enhancing the decision-making process in the iterative develop-
ment of federated models [1]. This level of detail and traceability is instrumental in validating the
models and ensuring their robustness before deployment.

MLflow’s suite of tools is adeptly designed to manage and streamline the machine learning
lifecycle. In the domain of federated learning, where collaboration and distributed training are key,
MLflow’s capabilities shine by providing a centralized and scalable approach to experiment logging.
This enables practitioners to record, compare, and analyze models across various devices and data
distributions.
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The reproducibility of experiments is another crucial advantage offered by MLflow. It meticu-
lously logs all aspects of the machine learning process, from initial data processing to final model
deployment [1]. This level of documentation is pivotal in federated learning environments, where
numerous iterations and model versions are generated across a network of participants.

Moreover, MLflow’s modular design affords data scientists and developers the flexibility to cus-
tomize their workflows. This adaptability is invaluable in federated learning, where diverse compu-
tational resources and data privacy considerations necessitate a flexible approach to model training
and evaluation.

By leveraging these and other advantages, MLflow positions itself as a fundamental asset in the
federated learning toolkit, enabling efficient management and robust development of distributed
machine learning models.

5.3 Adaptive Criteria for Managing Device Diversity
In this section, we investigate a comprehensive set of adaptive standards that have been metic-

ulously devised to enhance the optimization of the federated learning system in the midst of device
heterogeneity. These standards play a crucial role in ensuring that participation in the system is
both efficient and equitable across various devices, and they can be easily managed through a config-
uration file. Users are afforded the flexibility to exercise control and establish specific thresholds and
rates of adjustment for each standard, thereby tailoring the system’s response to the unique capa-
bilities and limitations of each participating device. This customization enables a nuanced approach
to federated learning, which permits precise adaptation to the varied computational, memory, and
network attributes that exist within the learning network.

5.3.1 Leveraging Sparsification for Low Network Bandwidth
Sparsification is a technique in federated learning that targets the reduction of communication

overhead, particularly vital for devices with limited network bandwidth. It does this by compressing
the data exchanged during training, focusing on transmitting only the most critical parameters and
gradients. This method addresses the challenges of slow network speeds and bandwidth constraints,
allowing devices to participate effectively in the learning process with reduced data transmission
requirements [6].

When network bandwidth drops below a predetermined threshold, the strategy of sparsification
is activated. This technique involves calculating a threshold value, below which a specified percentile
of the absolute values of the model’s weights fall, as set by the user in the configuration file. For
instance, if the user sets the percentile to 50% in the configuration file, it signifies that during
sparsification, half of the data elements will be masked, effectively setting them to zero. This
approach significantly reduces the amount of data needing communication over the network, focusing
on transmitting only the most essential model updates. Such a selective method ensures efficient
data transmission while maintaining the integrity and effectiveness of the learning process, even
under constrained bandwidth conditions.

The adoption of sparsification highlights the tools’s versatility in accommodating a range of
network environments. It ensures that devices, irrespective of their bandwidth constraints, can
contribute effectively to the training process.
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5.3.2 Selective Participation based on Similar Device Resources
Clustering similar devices in federated learning is a technique used to group devices with similar

computing and communication performance. By doing this we can accelerate the convergence of
the federated learning model, especially in scenarios with heterogeneous clients [35].

The strategic implementation of this criterion involves a nuanced assessment of each device’s
performance metrics, particularly focusing on memory and CPU utilization. By analyzing these
metrics, the system can identify devices that exhibit similar utilization levels. The key is to select
devices that neither exceed nor fall significantly short of a defined utilization range. For example,
if the set range is between 40% to 60% CPU utilization and a similar bracket for memory usage,
devices operating within these parameters are selected for participation in the upcoming training
rounds.

This approach ensures a fair representation of diverse devices in training rounds, promoting
equality in model contribution. It specifically targets the integration of devices that might have
been underrepresented in previous rounds due to their resource capabilities, thereby enriching the
model with a broader data spectrum. This tactic not only democratizes the learning process but
also enhances the model’s generalizability by incorporating diverse insights and data patterns.

5.3.3 Adaptive Data Sampling on Memory Utilization
Data sampling in machine learning pertains to the intricate process of choosing a smaller portion

of data from an extensive dataset with the intention of employing it for training or analysis objec-
tives. This technique is widely employed in the realm of machine learning in order to mitigate the
computational burden that is associated with the execution of machine learning algorithms when
confronted with copious amounts of data [28].

The cornerstone of this strategy is the dynamic adjustment of data sample size, fine-tuned
according to the real-time memory utilization of each device. This approach is vital for devices
with constrained RAM, as it helps them manage their resources more effectively. For instance, if a
device’s memory usage reaches a user-set threshold, say 70%, the strategy modifies the data sample
size for the next round of training. This modification is determined by a user-specified adjustment
factor, which could, for example, reduce the sample size by a particular percentage to accommodate
the device’s memory capacity.

This method of adapting data sampling based on memory utilization plays a crucial role in
enhancing the training efficiency of devices with limited memory. It ensures that these devices
maintain active participation in the federated learning process, balancing data volumes with their
memory capacities, and contributing to a more diverse and effective learning network.

5.3.4 Learning Rate Adjustment for High CPU Utilization
In the domain of neural network training, the learning rate emerges as a pivotal hyperparameter,

dictating the pace at which a model adjusts its weights during the learning process. The choice of
learning rate holds significant implications for the training dynamics; a smaller rate leads to gradual
weight updates requiring extensive training epochs, while a larger rate promises rapid adjustments
at the cost of potential stability issues. The intricacies of selecting an optimal learning rate lie in
balancing the trade-offs between training stability, speed, and the ability to converge to an effective
solution [4].

This strategy advocates for adjusting the learning rate based on the CPU utilization of de-
vices participating in a federated learning network. Recognizing that high CPU utilization reflects
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a device’s extensive computational demand, the proposal is to increase the learning rate for such
devices. This adjustment aims to accelerate the training process, enabling the model to converge in
fewer epochs. By doing so, the strategy seeks to optimize the use of computational resources, espe-
cially for devices under heavy load, thereby reducing the overall training time without significantly
burdening the device further.

For devices with low CPU utilization, the learning rate can be adjusted more conservatively.
Since these devices have more available computational capacity, the risk of negatively impacting
their performance with a slightly higher learning rate is reduced. However, the primary focus of
this adjustment strategy is on devices with high CPU utilization, where managing the learning rate
more aggressively can lead to more efficient training sessions.

Implementing learning rate adjustments in response to CPU utilization highlights the adaptive
and inclusive nature of our tool. It allows the system to accommodate a wide range of device
capabilities, ensuring that all devices, regardless of their current computational load, contribute
effectively to the training process.

5.3.5 Epoch Reduction for Devices with High CPU Utilization
In the context of machine learning, epochs play a crucial role in shaping the model’s learning

trajectory. Each epoch represents a complete cycle where the model is exposed to the entire dataset,
making iterative adjustments to its parameters. The number of epochs directly influences the
model’s ability to generalize or fit the data, with a higher count offering more opportunities for
learning, yet also carrying the risk of overfitting beyond a certain point. In scenarios involving
complex tasks like computer vision, deep neural networks (DNNs) benefit significantly from multiple
epochs, especially when leveraging advanced techniques such as pre-trained architectures and GPU
acceleration [3].

In federated learning environments with devices showcasing high CPU utilization, reducing the
number of epochs is a strategic approach to balance computational demand and learning efficacy.
This adjustment is made in real-time, considering the current CPU load of the devices and predefined
user settings. For example, a device operating at 80% CPU utilization may have its training epochs
reduced to alleviate the computational burden. Such a reduction is proportionate and ensures that
the device remains an active participant in the learning process without being overwhelmed by the
computational requirements.

This method of dynamically adjusting epochs based on CPU utilization exemplifies the flexible
and inclusive nature of federated learning. It allows for the seamless integration of devices with
diverse processing powers into the learning network, ensuring that high CPU utilization does not
impede their ability to contribute meaningfully to the model’s development. By adapting to the
computational environments of individual devices, this strategy enhances the overall efficiency and
effectiveness of the learning process.

5.3.6 Adaptive Batch Size Based on Memory Utilization
Batch size, in the context of machine learning, is a fundamental parameter that defines the

number of data samples processed in a single iteration during model training. It’s a key factor
that influences both the speed and stability of the learning process. In federated learning scenarios,
particularly those involving a diverse array of devices, managing batch size becomes crucial due to
varying memory capacities. Adaptive batch size is a technique tailored to address this variability,
ensuring efficient and effective model training across devices with different memory constraints [24].
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The strategy focuses on enhancing the capability of devices with restricted RAM to handle
the model training workload. By dynamically regulating the training batch size, it aims to match
the memory capacity of each device, thus minimizing the risk of memory-related interruptions and
ensuring smoother operation. The adaptive mechanism is triggered when a device’s RAM usage
approaches or exceeds a user-defined threshold. In such cases, the strategy automatically scales
down the batch size to a level that is manageable for the device, effectively balancing the training
workload with the available memory resources.

This adaptive batch size strategy is crucial for maintaining the continuity and effectiveness of
the federated learning process across a spectrum of devices. It allows for greater participation of
memory-limited devices in the network, contributing to a more diverse and representative model
training process.

5.3.7 Layer Freezing for Devices with High CPU Utilization
Layer freezing in machine learning refers to the technique of selectively freezing certain layers of

a deep neural network (DNN) during the training process. This is based on the observation that the
training progress of internal DNN layers differs significantly, with front layers often becoming well-
trained much earlier than deep layers. By freezing the converged layers, the backward computation
and communication associated with them can be skipped, resulting in significant training speedup
without sacrificing accuracy [33]. Layer freezing has been shown to be effective in accelerating
training for different types of neural networks, including VGG nets, ResNets, and DenseNets [34].

The adaptive layer freezing method involves calculating a certain percentage of the model’s
layers to freeze, based on user input. Once identified, the strategy entails systematically halting the
update process of these layers during training. The freezing process begins with the early layers
of the neural network, as these layers tend to converge quicker than the deeper layers [14]. By
preventing updates in these initial layers, the computational demand for each training iteration is
substantially reduced, thereby alleviating the strain on devices with high CPU usage.

Upon completion of the intensive training phase, the frozen layers can be reactivated or "un-
frozen". This reinstates their ability to update weights during subsequent training sessions. Such
dynamic freezing and unfreezing of layers based on real-time CPU utilization ensure that the model
adapts to the device’s current processing capacity, allowing for efficient utilization of computational
resources.

This criterion strikes a balance between maintaining model complexity and adapting to the
computational realities of diverse devices, thereby enhancing the effective participation of devices
with varied computational capabilities.

5.3.8 Gradient Clipping for Devices with Limited Computational
Resources

Gradient clipping is a popular technique used in neural networks to limit the norm of the gradient
during training. It is commonly employed to stabilize the training process and address issues such
as exploding gradients. However, this technique can also be used to reduce computation load in
deep learning applications such as large-scale language modeling [29].

To ensure a uniform and efficient training experience, particularly for devices with limited com-
putational resources, the strategy of gradient clipping is employed. This approach involves inde-
pendently clipping each component of the gradient vector to a pre-defined maximum size, thus
reducing the computational intensity of backpropagation. By preventing large updates that can
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be computationally expensive, gradient clipping ensures that these devices can handle the gradient
computations without undue stress on their processors.

This constraint on gradient size also reduces the likelihood of numerical instability, which can
be a significant concern in lower-capacity devices. As a result, even with reduced processing power,
these devices can maintain steady progress in training, contributing efficiently to the model’s devel-
opment.

Through this technique, all devices, irrespective of their hardware capabilities, can contribute
effectively and efficiently to the training process, thereby enriching the collaborative learning expe-
rience and enhancing the overall performance of the federated model.

5.4 Architecture of the Proposed System
In this section, we present the architecture of the proposed federated learning system, which

is designed to cater to a heterogeneous environment of client devices. At the heart of our system
lies the Client Selector, a sophisticated component responsible for orchestrating the client selec-
tion logic which extends the configure_fit method intrinsic to the Flower framework (see Figure
5.4). The Client Selector’s decision-making process is informed by a comprehensive set of criteria
defined within the configuration file, which is meticulously crafted by the Strategy Auditor. This
configuration file encapsulates all the strategic criteria necessary to guide the federated learning
process.

Figure 5.4: The architecture of the proposed tool, highlighting the central role of the Client
Selector in coordinating client participation in the learning process.

Further complementing the Client Selector’s role is the Metric Extractor, which harnesses the
power of PromQL to access and assimilate essential system data from all clients. This data informs
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the Client Selector in the tailoring of individualized configuration files that are disseminated to each
client for the upcoming training round. These configuration files are instrumental in calibrating
each client’s training process in accordance with its capabilities and previous performance.

Additionally, our system integrates MLflow for meticulous logging purposes. Each client, through
this framework, records various metrics that provide insights into performance, as well as the pri-
vacy budget expended in each iteration. This granular logging is vital for monitoring the system’s
efficacy and ensuring the privacy-preserving aspects of the federated learning process.

As we delve into the subsequent sections, we will explore each component’s unique contributions
to the architecture, illustrating how they collectively contribute to a federated learning ecosystem
that is both resilient and finely tuned to the nuances of device diversity.

5.4.1 Client Selector
The Client Selector is a critical component of the federated learning system, designed to dynam-

ically orchestrate the selection and configuration of client devices to optimize the training process.
This subsection outlines the operational steps undertaken by the Client Selector:

1. Client Availability Assessment The Client Selector identifies all available clients for the
specific training round. This step involves assessing the current pool of clients and determining
their readiness to participate in the upcoming training cycle.

2. Criteria Retrieval Each training round commences with the Client Selector retrieving
strategic criteria from the criteria.yaml file, crafted by the Strategy Auditor. This file
defines each criterion with a unique identifier, thresholds, and adjustment rates for a compre-
hensive evaluation of client suitability.

3. Querying Performance Metrics Working in sync with the Metric Extractor, the Client
Selector leverages PromQL to query and retrieve historical performance metrics of clients from
the timeframe of the previous training round. This process involves correlating each criterion
defined in the criteria.yaml file with a specific set of queries. This targeted querying
approach allows the Client Selector to accurately assess the operational status of each client,
ensuring they align with the strategic selection criteria.

4. Client Evaluation and Configuration Adaptation Client Selector engages in a compre-
hensive assessment of every client, closely examining them based on the established metrics
and criteria. In the event that a client fails to meet the standards of a particular criterion,
the Selector modifies the associated training parameters in accordance with predetermined
adjustment rates. This evaluation not only determines the appropriateness of clients for the
present training cycle, but also prompts the generation of personalized configuration files.

5. Dispatching Fit Configurations After updating the configuration files, the Client Selector
proceeds with dispatching the fit configurations to each selected client. This critical step en-
sures the communication and application of the personalized training parameters within the
clients’ training environments. The dispatch of these configurations is a fundamental compo-
nent of the training cycle, aligning with the operational sequence in the Flower framework’s
sequence diagram (referenced in Figure 5.1).

This structured approach enables the Client Selector to ensure that the federated learning pro-
cess is resilient, efficient, and responsive to the varied computational capabilities of the participating
devices.
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5.4.2 Metric Extractor
The Metric Extractor is an integral component of our architecture, tasked with acquiring and

processing performance metrics from client devices. This subsection outlines the functionalities and
operations of the Metric Extractor within the system:

1. Data Collection and Storage The Metric Extractor capitalizes on Prometheus that collects
and stores data in a time series format. Prometheus continuously gathers a vast array of
performance metrics from each client device, ensuring a rich dataset that accurately reflects
the operational state and capabilities of the clients over time.

2. Query Generation and Execution In synergy with the Client Selector, the Metric Extrac-
tor plays a pivotal role in formulating and executing queries to extract relevant performance
metrics. The Client Selector, equipped with strategic criteria from the criteria.yaml file,
generates specific PromQL queries tailored to assess each client’s performance based on his-
torical data.

3. Prometheus API Interaction Upon generation of these queries, the Metric Extractor
interfaces with the Prometheus API to retrieve the required data. It sends the PromQL queries
to Prometheus, which then processes these queries and returns the corresponding results. This
interaction facilitates the acquisition of precise and timely data for each individual client,
essential for informed decision-making in the client selection process.

Through these structured operations, the Metric Extractor establishes itself as a crucial link
in the architecture, providing the necessary data foundation for optimizing client selection and
configuration, thereby contributing to a resilient and adaptive learning network.

5.4.3 Strategy Auditor
The Strategy Auditor plays a pivotal role, particularly in shaping the selection and optimization

strategies for client devices. This subsection details the various aspects and operations of the
Strategy Auditor:

1. Criteria Identification and Justification The Strategy Auditor leverages Grafana dash-
boards and MLflow logs to identify the bottlenecks in each client’s system (such as CPU,
memory, and network bandwidth). By analyzing these metrics, the auditor gains insights into
which system parameters critically impact the performance and reliability of client devices.
This analysis guides the Strategy Auditor in selecting relevant criteria from criteria.yaml
file, ensuring that the chosen metrics align with the overall objectives of the federated learning
system and address specific bottlenecks.

2. Threshold Setting and Adjustment Factors The initial thresholds for each criterion in
the criteria.yaml file can be determined based on a combination of past data, expert input,
and specific system requirements. The Strategy Auditor sets these thresholds to define the
acceptable performance range for each criterion. Alongside, the auditor defines adjustment
factors, which are crucial in fine-tuning client participation in subsequent training rounds.
These factors allow for the dynamic adjustment of thresholds based on the evolving conditions
and performance of the federated learning network.

Through these activities, the Strategy Auditor significantly enhances the system’s efficiency and
adaptability. The continual refinement of criteria and thresholds ensures the federated learning
network remains responsive and aligned with the diverse capabilities of participating devices.
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5.5 Implementation Methodology

5.5.1 Development Technologies
This subsection outlines the core technologies utilized in the implementation. Each technology

was selected for its specific strengths and capabilities, contributing significantly to the system’s
robustness and efficiency.

Docker and Docker Compose

Docker, a widely-adopted containerization platform, is a cornerstone of the development en-
vironment for the federated learning tool. At its core, Docker allows the creation of containers,
which are lightweight, standalone, and executable packages. These containers encapsulate software,
libraries, dependencies, and runtime environments, ensuring applications run consistently across
different computing environments.

Containers, as facilitated by Docker, offer several advantages for the project:

• Isolation Each container operates independently, providing a segregated environment for in-
dividual components of the federated learning system. This isolation reduces conflicts between
components and enhances the system’s reliability.

• Portability Containers can be easily transferred and deployed across various systems, from
development to production, ensuring consistency in behavior regardless of the underlying
infrastructure.

• Efficiency Containers are more resource-efficient than traditional virtual machines, as they
share the host system’s kernel and do not require a separate operating system for each instance.

Docker Compose, an extension of Docker, is utilized to define and run multi-container Docker
applications. The ‘docker-compose.yml‘ file, a key component of the project, specifies the configura-
tion of services, networks, and volumes. This orchestration tool simplifies the process of launching,
linking, and managing multiple containers, which is essential for handling the various components
of the federated learning system, such as client nodes, server, and monitoring tools.

By leveraging Docker and Docker Compose, the project achieves a harmonized and scalable ar-
chitecture. This setup allows for streamlined development, testing, and deployment phases, ensuring
the federated learning tool operates effectively across diverse environments [11].

Python

The implementation of the tool heavily relies on Python as the primary programming language.
Python is renowned for its simplicity, readability, and a vast ecosystem of libraries and tools.
The project leverages Python’s extensive range of libraries and packages available through the
Python Package Index (PyPI), facilitating the integration of advanced functionalities and third-
party modules with ease.

All our key technologies are easily accessible via PyPI, ensuring smooth installation and compat-
ibility with the Python environment specified in the Dockerfile. This approach allows for streamlined
deployment and execution of the federated learning system across various infrastructures. The uti-
lization of PyPI also simplifies the management of dependencies and version control, making the
development process more efficient and reliable.
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TensorFlow

TensorFlow, an esteemed open-source machine learning library developed by Google, is integral
to our federated learning tool. Known for its versatility and extensive library, TensorFlow supports
a wide range of machine learning and deep learning applications [31].

The utilization of TensorFlow in this project is characterized by:

• Model Building and Training TensorFlow’s comprehensive suite of tools and functions
facilitates the construction and training of complex deep learning models. Its flexible structure
allows seamless computation across various platforms, including CPUs and GPUs, essential
for diverse client devices in federated learning [31].

• Keras API Alongside TensorFlow, Keras, a high-level neural networks API, is used for de-
signing and experimenting with deep learning models. Keras simplifies the process of creating
complex neural network architectures, making it an ideal choice for rapidly developing and
iterating on models in a federated learning context.

• TensorFlow Privacy To uphold the privacy-centric nature of federated learning, TensorFlow
Privacy, an extension of TensorFlow, is employed. This library offers mechanisms for training
machine learning models with differential privacy, a crucial aspect in maintaining user privacy
in federated settings [32].

TensorFlow serves as the backbone of our tool, providing robust support for model develop-
ment, training, and privacy assurance, thereby playing a pivotal role in the tool’s functionality and
effectiveness.

cAdvisor

cAdvisor (Container Advisor) plays a pivotal role in our federated learning tool, serving as the
primary source for monitoring container performance. As a daemon process, it specializes in gath-
ering, processing, aggregating, and exporting comprehensive information about running containers.
This functionality is key to understanding and managing the dynamic nature of containers in a
federated learning environment.

cAdvisor meticulously tracks a wide array of metrics for each container, such as resource isolation
parameters, historical resource usage, network statistics, and more. These metrics are critical for
providing deep insights into the behavior and performance of each container within our system.
With native support for Docker containers and compatibility with other container types, cAdvisor
stands as a versatile and essential tool for our containerized setup.

A notable feature of cAdvisor is its hierarchical container abstraction, allowing for nested and
detailed structuring of containers. This design enhances the monitoring capabilities, offering a
refined granularity in data analysis and system evaluation.

In our federated learning tool, cAdvisor acts as the foundational element for acquiring source
data from each container. By integrating cAdvisor, we ensure a robust mechanism for tracking and
evaluating container performance. This, in turn, significantly aids in optimizing resource allocation
and enhancing the overall efficiency of our system [15].

Prometheus

Prometheus stands as a cornerstone within the architecture of our federated learning system,
leveraging its sophisticated time-series database (TSDB) and the powerful PromQL query language.
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This combination enables Prometheus to perform complex data handling and analysis, which is
fundamental to the efficacy of our federated learning tool.

• Time-Series Database (TSDB) Central to Prometheus’s functionality is its time-series
database, a specialized storage system optimized for handling time-stamped data sequences.
Time-series data is vital in monitoring contexts, where tracking and analyzing changes over
time is critical. The TSDB within Prometheus is designed for high write and read throughput,
ensuring consistent performance even when dealing with large-scale data.

• PromQL PromQL, the Prometheus Query Language, is an integral feature of Prometheus,
offering advanced capabilities for querying time-series data. This functional query language
enables users to intricately select and aggregate time series data in real-time, which is cru-
cial for the dynamic environment of federated learning. PromQL facilitates comprehensive
analysis by allowing the system to derive detailed insights and identify trends from the perfor-
mance metrics of participating devices. Its versatility extends to presenting results in various
formats, including graphical visualizations, tabular data in Prometheus’s expression browser,
and external systems via the HTTP API. This multi-faceted approach provided by PromQL
enhances the system’s ability to monitor, analyze, and adapt to the needs of a federated
learning network effectively.

Together, the time-series database and PromQL of Prometheus significantly contribute to the
system’s capability to monitor, analyze, and adaptively respond to the complex dynamics of the
federated learning network [27].

5.5.2 Implementation Details
System Set Up and Configurations

The implementation of the system is a multi-stage process that begins with the set up of the
Docker environment and configuration files for each service.

Docker Compose Configuration The Docker Compose file orchestrates the various services
required for the federated learning system, ensuring each component operates efficiently and in iso-
lation. Notably, all services except for the client service utilize official Docker images, guaranteeing
reliability and standardization across the system’s infrastructure.

Client Services Each client is encapsulated in its dedicated Docker service. These services
are based on custom Docker images that include a Python environment with all the necessary
dependencies pre-installed. This setup ensures that each client node can operate independently,
with its computational resources and environment isolated from others. The Docker Compose file
specifies these services, defining the build context (pointing to the Dockerfile) and any volumes for
persistent storage or configuration files that the client might need.

cAdvisor cAdvisor is deployed to collect detailed container metrics, such as CPU, memory
usage, and network IO. It runs in privileged mode to have access to all containers’ metrics, with
specific volumes mounted to read the host’s Docker socket and system directories. This allows
cAdvisor to provide comprehensive insights into the resource usage of each container.
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Prometheus It is configured with a volume that mounts its configuration file, defining the
scraping targets and intervals. This setup enables Prometheus to store and query time-series data
efficiently, serving as the backbone for system monitoring.

Grafana It is configured to persist its data and dashboards through Docker volumes, ensuring
that any customizations or created dashboards remain intact across service restarts. Grafana’s
dependency on Prometheus is explicitly defined to ensure it starts only after Prometheus is up and
running, facilitating seamless data visualization from the get-go.

MLflow Server The MLflow Server service centralizes the tracking of machine learning
experiments, including parameters, metrics, and model artifacts. It is set up with volumes for
persistent storage, ensuring that experiment data is not lost between restarts.

Dockerfile The Dockerfile provided here serves as the blueprint for building a consistent envi-
ronment for our client-server services.

Listing 5.1: Dockerfile for Federated Learning System
1 FROM python :3.9-slim -buster
2 WORKDIR /app
3 COPY ./ /app
4 RUN apt -get update && apt -get install -y \
5 gcc \
6 libgomp1 \
7 python3 -dev && \
8 rm -rf /var/lib/apt/lists /*
9 RUN pip install --upgrade pip -r requirements.txt

It starts with a minimal Python 3.9 base image, sets the working directory to /app, and copies
application files into the container. Key dependencies like gcc, libgomp1, and python3-dev are in-
stalled, and Python packages listed in requirements.txt are added. This Dockerfile ensures that both
server and client components of our federated learning system operate in a uniform environment,
promoting compatibility and optimal performance.

Prometheus and Grafana Configuration This section explores the configuration files for
Prometheus and Grafana, crucial for monitoring the federated learning system.

Prometheus This file configures Prometheus for metric collection:

Listing 5.2: Prometheus Configuration
1 global:
2 scrape_interval: 1s
3 evaluation_interval: 1s
4

5 rule_files:
6 scrape_configs:
7 - job_name: ’cadvisor ’
8 scrape_interval: 1s
9 metrics_path: ’/metrics ’

10 static_configs:
11 - targets: [’cadvisor :8080 ’]
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12 labels:
13 group: ’cadvisor ’
14 - job_name: ’server_metrics ’
15 scrape_interval: 1s
16 metrics_path: ’/metrics ’
17 static_configs:
18 - targets: [’server :8000 ’]

This file specifies two primary components: global configurations and scrape configurations.

• Global Configuration These settings apply universally to the Prometheus instance. Here,
both the scrape_interval and evaluation_interval are set to 1 second. This implies that
Prometheus will query or "scrape" metrics from its targets every second and evaluate rules
at the same frequency.

• Scrape Configurations This section defines the specific metrics collection jobs. Each
job_name represents a set of metrics to scrape.

– cAdvisor Job: This job scrapes metrics from a container advisor service, typically run-
ning at the specified endpoint cadvisor:8080. These metrics are vital for monitoring
and understanding container performance and resource usage.

– Server Metrics Job: Similarly, the server metrics job is configured to scrape data from
an endpoint identified as server:8000. This could be any server configured to expose
Prometheus metrics, and is crucial for gaining insights into server performance.

Grafana’s Datasource This file integrates Prometheus as a datasource for Grafana:

Listing 5.3: Prometheus Datasource for Grafana
1 apiVersion: 1
2

3 datasources:
4 - name: Prometheus
5 type: prometheus
6 access: proxy
7 uid: db69454e -e558 -479e-b4fc -80 db52bf91da
8 url: http :// host.docker.internal :9090
9 isDefault: true

The above file provides the necessary identification, connectivity, and configuration details that
enable Grafana to seamlessly interact with Prometheus. In essence, they act as the bridge that
allows Grafana to access, visualize, and analyze data from Prometheus.

Integration with Flower Framework

Client The client script (client.py) is responsible for the local training of models and commu-
nication with the FL server. It defines a Client class extending the fl.client.NumPyClient from
the Flower framework, which implements methods like get_parameters, fit, and evaluate to in-
teract with the server. The client retrieves training and evaluation tasks from the server, performs
computations, and sends back the results.
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Server The server script (server.py) is central to orchestrating the federated learning process. It
initializes the FL server and manages client interactions. Crucial functions within this script include
configure_fit, aggregate_fit, configure_evaluate, and aggregate_evaluate. These functions
are pivotal in determining how clients are chosen for training and evaluation, how their results are
combined, and how the overall evaluation of the federated model is conducted. The strategy,
customized for this project, employs the Federated Averaging (FedAvg) algorithm as conceptualized
by McMahan et al.[25], adapting it to meet specific system requirements and ensuring efficient and
tailored federated learning operations.

Establishing Connections In the federated learning system, the server and client scripts
are crucial for establishing connections via the Flower framework. The server initiates a listening
endpoint for federated learning communication, while the client connects to this server endpoint.
The following code snippets illustrate these processes.

Listing 5.4: Server Connection Initialization
1 fl.server.start_server(
2 server_address=SERVER_ADDRESS ,
3 config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
4 strategy=STRATEGY
5 )

Listing 5.5: Client Connection Initialization
1 fl.client.start_numpy_client(
2 server_address=SERVER_ADDRESS ,
3 client=CLIENT_INSTANCE
4 )

Query Construction and Analysis

In this section, we delve into the construction and analysis of queries, which are pivotal for
extracting and processing data in our environment. These queries play a critical role in gathering
device metrics from each client, enabling us to evaluate their performance and determine optimal
configurations for the upcoming federated round. It’s noteworthy that the metrics utilized in the
following queries are efficiently exposed through cAdvisor [9].

Container CPU Usage Percentage The query for calculating the CPU usage percentage of
a container over a specified time period is constructed as follows:

Listing 5.6: CPU Utilization Query
sum(rate(container_cpu_usage_seconds_total{name=" CONTAINER_NAME "}[

DURATIONs] @{END_TIMESTAMP })) /
sum(container_spec_cpu_quota{name=" CONTAINER_NAME "} /

container_spec_cpu_period{name=" CONTAINER_NAME "}) * 100

This query computes the average CPU usage of the specified container, normalized by the CPU
quota and period, to provide a percentage value. The key metrics used in this query are:

• container_cpu_usage_seconds_total: A counter metric representing the cumulative CPU
time consumed by the container, measured in seconds.
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• container_spec_cpu_quota: A gauge metric that specifies the CPU quota for the container.
This metric represents the maximum amount of CPU resources that the container is allowed
to use, often defined in terms of CPU units or time slices.

• container_spec_cpu_period: A gauge metric indicating the CPU period of the container.
It defines the time frame for measuring CPU usage, enabling the calculation of CPU resource
allocation in relation to the quota. Essentially, it helps in managing and restricting the CPU
cycles a container can utilize within a specific period.

Container Memory Usage Percentage The query to determine the memory usage per-
centage of a container over a defined time interval is outlined below:

Listing 5.7: Memory Utilization Query
avg_over_time(container_memory_working_set_bytes{name=" CONTAINER_NAME "}[

DURATIONs] @{END_TIMESTAMP }) /
avg_over_time(container_spec_memory_limit_bytes{name=" CONTAINER_NAME "}[

DURATIONs] @{END_TIMESTAMP }) * 100

This query calculates the average memory usage of the specified container, normalized by the
container’s memory limit, yielding a percentage value. The primary metrics involved in this query
are:

• container_memory_working_set_bytes: A gauge metric that indicates the current memory
usage of the container.

• container_spec_memory_limit_bytes: A gauge metric representing the maximum allowable
memory usage for the container.

Container Incoming Bandwidth Query The query for determining the incoming band-
width of a container over a specified time interval is as follows:

Listing 5.8: Incoming Bandwidth Query
rate(container_network_receive_bytes_total{name=" CONTAINER_NAME",

interface =" NETWORK_INTERFACE "}[ DURATIONs] @{END_TIMESTAMP }) / 1024^2

This query measures the rate of incoming network traffic to a specific container, represented as
bandwidth in megabytes per second. The key metrics and parameters used in this query include:

• container_network_receive_bytes_total: A counter metric that tracks the total bytes
received by the container.

• NETWORK_INTERFACE: The network interface on the container (default is ’eth0’).

Container Outgoing Bandwidth Query The query to determine the outgoing bandwidth
of a container within a specific time interval is as follows:

Listing 5.9: Outgoing Bandwidth Query
rate(container_network_transmit_bytes_total{name=" CONTAINER_NAME",

interface =" NETWORK_INTERFACE "}[ DURATIONs] @{END_TIMESTAMP }) / 1024^2

This query calculates the rate of outgoing network traffic from a given container, expressed in
megabytes per second. The key components of this query include:
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• container_network_transmit_bytes_total: A counter metric that measures the total bytes
transmitted by the container.

• NETWORK_INTERFACE: Specifies the network interface of the container (default ’eth0’).

Each query utilizes the @ modifier to ensure a consistent and accurate evaluation across the
specified time range. The CONTAINER_NAME variable denotes the name of the container, DURATION
specifies the time window in seconds, and END_TIMESTAMP is the end timestamp of the query interval.

Client Selector

The Client Selector stands as an intelligent entity within our system, engineered to dynamically
orchestrate the inclusion of clients in the training process, based on a suite of real-time performance
metrics alongside predefined selection criteria.

This mechanism springs into action with the commencement of each training cycle, where the
configure_fit method within the strategy module is invoked. This action sets the stage for the
Client Selector’s in-depth evaluation and filtration process. Through a sophisticated interaction
with the Prometheus monitoring system, the Client Selector efficiently evaluates each potential
participant against a series of carefully delineated benchmarks.

In preparation for this selection ballet, the system preloads criteria from the criteria.yaml
configuration, clearly demarcating the non-negotiable (blocking) and negotiable (non-blocking) con-
ditions for client participation. Engaging with the PrometheusService, the ClientSelector metic-
ulously gathers and parses metrics for each client, utilizing the robust PromQL querying language
to extract the necessary data.

Upon fulfilling all blocking conditions, clients are then meticulously appraised against the non-
blocking criteria, a step that ensures each participant is configured to contribute optimally to the
model’s training. It is this rigorous evaluative mechanism rooted in a comprehensive matrix of
checks and balances that assures each training round is not only tailored but also runs at peak
efficiency, mirroring the Client Selector’s discerning nature.

The decision matrix culminates in the judicious finalization of client selection, which may also
involve strategic configuration refinements. These bespoke adjustments, informed by the subtle
variances in performance metrics, are designed to maximize each client’s input into the federated
learning process.

The strategic integration and operational influence of the Client Selector on the training protocol
are visually encapsulated in the ensuing diagram. This visual representation offers a clear depiction
of the Client Selector’s methodical workflow, showcasing its pivotal role in our federated learning
tool.

For a more detailed overview of the ClientSelector’s integration within the federated learning
system, an Entity-Relationship Diagram (ERD) is provided. This diagram delves into the complex
interactions between the ClientSelector and associated components, depicting the systematic flow
from criteria definition to client evaluation.

This diagram reinforces how the ClientSelector, through a series of methodical processes,
leverages the Criteria defined in a yaml configuration file. These criteria are mapped to specific
Prometheus queries by the Mappings module, forming the basis for real-time client performance
assessments.

This visualization is particularly instructive in illustrating how new criteria can be seamlessly
integrated into the system, enhancing the ClientSelector’s functionality and adaptability. It
demonstrates the underlying modular architecture, which facilitates the customization and expan-
sion of the client selection criteria and their associated queries and evaluation logic.

48



Figure 5.5: The workflow of the Client Selector within the Federated Learning System.

By following the depicted relationships and processes, one can grasp the extensible nature of
the system and the straightforward approach to adding or modifying selection criteria and their
corresponding query functions. The ERD is shown below.

Metric Extractor

The Metric Extractor is a crucial component within our federated learning system, designed to
interface seamlessly with the underlying monitoring infrastructure. Its primary role is to extract
and process client’s performance metrics, which are essential in informing the Client Selector’s
decision-making mechanism.

Upon activation, the Metric Extractor systematically scrapes the cadvisor for each client’s
performance data. This process is facilitated by the PrometheusService, which is configured to
scrape these metrics at regular intervals. The PrometheusService then employs a sophisticated set
of PromQL queries, curated within the Prometheus Queries submodule, to extract the necessary
data points from the monitored clients.

The extracted metrics are subsequently stored in the Prometheus Time Series Database (TSDB),
where they are processed through HTTP queries. These queries are the linchpins that enable real-
time, performance-based decision-making. They ensure that the system has access to the most
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Figure 5.6: Entity-Relationship Diagram showing the Client Selector’s interaction with sys-
tem components.

current and relevant data, thereby allowing the Client Selector to make informed choices about
which clients to include in the training round.

The Metric Extractor’s operation is not only about data retrieval but also about ensuring data
quality and relevance. It performs a critical filtration role, ensuring that only the most pertinent
and accurate metrics feed into the subsequent stages of client evaluation and selection.

The following diagram illustrates the Metric Extractor’s position within our system, highlighting
its interactions with the PrometheusService, the cadvisor, and the Prometheus TSDB. This dia-
gram underscores the Metric Extractor’s pivotal role in bridging the gap between raw performance
data and actionable insights for client selection.
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Figure 5.7: The workflow of the Metric Extractor within the Federated Learning System.
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Chapter 6

Experiment Results

In this section, we present the results of our experiments designed to evaluate the performance of
our tool under two critical scenarios: adapting to Client Capabilities for Optimal Global Accuracy
and reducing training time for stragglers. These experiments are pivotal in showcasing the tool’s
capability to improve global accuracy and efficiency in federated learning environments.

6.1 Enhanced Global Accuracy
In a federated learning scenario where client devices vary significantly in their computational

capabilities, not utilizing an adaptive approach may lead to Out-Of-Memory (OOM) errors on
straggler devices. This limitation can prevent these clients from contributing their data to the model
training process, hindering the achievement of optimal global accuracy. By employing an adaptive
mechanism designed to accommodate the varying resources of client devices, we can ensure that all
clients contribute to the fullest extent possible, thereby maximizing the overall model accuracy.

6.1.1 Experimental Setup
• Client Configuration The experimental framework comprised five clients, strategically di-

versified in computational and memory capabilities to mirror real-world federated learning
conditions. Among them, two clients stood out as high-capacity devices:

– Client 1 categorized as powerful, was allocated 4 CPU cores and 6 GB of memory.

– Client 4, another robust device, received 2 CPU cores and 4 GB of memory.

The remaining clients, identified as stragglers due to their constrained resources, included:

– Clients 2, 3, and 5 each were limited to 1 CPU core and 1.4 GB of memory,
reflecting the typical computational limitations encountered in diverse federated learning
ecosystems. This varied setup, achieved through precise Docker configurations, offered
a realistic simulation of the heterogeneity inherent in federated learning networks.

• Dataset The CIFAR-10 dataset, consisting of 60,000 32x32 color images in 10 classes, with
6,000 images per class, was used. The dataset was split 80-20 for training and test, respec-
tively. To highlight the importance of utilizing all clients’ data, we partitioned the dataset
among the five clients. The two powerful clients were allocated images from five classes, and
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the remaining three stragglers received images from the other five classes, ensuring that each
client’s data was crucial for comprehensive learning.

• Model We chose MobileNetV2 for its lightweight architecture, depth, and proficiency in
classification tasks. Its design, featuring a significant number of layers(105)[2] but requiring
fewer computational resources than more extensive networks, makes it an ideal candidate for
demonstrating the tool’s capability to facilitate training on devices with varied computational
powers.

• Federated Configuration For this experiment we executed 100 rounds without encountering
any round-timeouts and we required a minimum of two clients for both training and evaluation
phases. Across 10 experiments—five without and five with our specialized tool—we leveraged
the median results to accurately plot the global model’s performance.

6.1.2 Results
Client-Specific Parameter Adaptivity Figures 6.1 and 6.2 showcase the parameter adap-
tivity for a high-capacity client and a straggler, respectively. The adaptivity mechanism effectively
adjusts the learning parameters in real-time, enhancing the model’s training progress across hetero-
geneous devices.
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Figure 6.1: Parameter adaptivity for a high-capacity client (Client 1).
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Figure 6.2: Evolution of parameter adaptivity for a straggler (Client 2) across multiple
rounds.

For high-capacity clients, such as Client 1, parameter adjustments are minimal due to their
ample computational resources. In contrast, stragglers like Client 2 undergo frequent parameter
adaptations to mitigate their limited capabilities, ensuring their effective participation in the learn-
ing process.

Global Accuracy and Client Dropout Comparison The pivotal advantage of imple-
menting our mechanism is discernibly showcased in the enhancement of global model accuracy and
a notable reduction in client dropout rates, as depicted in Figures 6.4 and 6.3. Without our tool,
the dropout rate was significantly high due to straggler clients encountering resource constraints,
adversely affecting the model’s generalizability. However, with our tool, even though complete data
utilization from stragglers was constrained, we adeptly optimized each client’s contribution, culmi-
nating in a marked improvement in global accuracy. This underscores our tool’s capacity to not just
mitigate dropout rates but also significantly bolster the training inclusivity and global accuracy of
the model.
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6.2 Reducing Total Training Time
In federated learning, addressing the challenge of stragglers—clients with constrained resources

that significantly extend the training duration—is crucial for streamlining the overall learning pro-
cess. Our experiments demonstrate the impact of our tool in mitigating stragglers’ extended training
times, thereby reducing the total training duration across the network.

6.2.1 Experimental Setup
• Client Configuration The experimental framework comprised four clients, strategically

diversified in computational and memory capabilities to mirror real-world federated learning
conditions.

– Client 1 was equipped with 4 CPU cores and 6 GB of memory, making it the most
capable device in the experiment.

– Client 4 received 2 CPU cores and 3 GB of memory, positioning it as another
high-capacity client, albeit with slightly lower resources than Client 1.

– Clients 2 and 3 were each provided with 1 CPU core and 2 GB of memory,
considered as the stragglers of the network.

• Dataset The dataset was split equally among all four clients, ensuring that each held an
identical subset. This equitable distribution aimed to eliminate data quantity and diversity
as variables, focusing solely on assessing the tool’s effectiveness in computational efficiency
and training time reduction.

• Federated Configuration The federated learning setup was designed to unfold over 10
rounds, with a keen focus on examining the effects of network stragglers on the learning
process’s duration. To thoroughly investigate the impact of our optimization tool on training
efficiency, we conducted a series of 10 experiments, divided equally between scenarios with the
tool enabled and without it. This approach aimed to provide a clear comparison of training
dynamics under varying conditions and to determine the tool’s capability in alleviating delays
caused by slower participants.

6.2.2 Results
Client-Specific Parameter Adaptivity The adaptivity of training parameters for high-
capacity clients and stragglers further underscores the tool’s efficacy. Figures 6.5 and 6.6 reveal
how the tool dynamically adjusted parameters to suit each client’s capabilities. High-capacity
clients, such as Client 1, experienced no parameter adjustments due to their robust resources.
Conversely, stragglers, represented by Client 2, saw more frequent adaptations to ensure their
effective participation in the learning process without slowing down the overall training duration.

The resource utilization graphs, detailing CPU usage percentage and average memory usage, lend
further credence to the strategic adaptivity of training parameters. For high-capacity clients, the
relatively modest resource utilization depicted in Figure 6.7 suggests that substantial adjustments to
training parameters are unnecessary. On the other hand, stragglers demonstrate elevated resource
utilization, as evidenced in Figure 6.8. This discrepancy underscores the necessity for more agile
parameter adaptations to prevent overburdening straggler devices and to sustain an efficient training
rhythm across the network.
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Figure 6.5: Parameter adaptivity observed in a high-capacity client during the training
process.
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Figure 6.6: Parameter adaptivity in a straggler during the training process.
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Figure 6.7: System resource utilization for a high-capacity client.
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Figure 6.8: System resource utilization for a straggler.

Total Training Time Comparison The analysis as revealed in the 6.9 shows a tangible
decrease in total training time, validating the tool’s utility in optimizing the involvement of strag-
glers and thereby streamlining the overall learning process. The experiments consistently showed
improved training time efficiency when the tool was employed, as compared to the baseline without
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the tool. A box plot crafted from these findings effectively underscores the significant reduction in
training durations afforded by the tool, highlighting its critical contribution to making federated
learning more scalable and performance-oriented.
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Figure 6.9: Comparison of total training times.
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Chapter 7

Conclusion

This thesis has presented a comprehensive investigation into the optimization of federated learn-
ing environments, focusing on two critical aspects: enhancing global model accuracy through adap-
tivity to client capabilities and reducing total training time for stragglers. Through a series of
meticulously designed experiments, we have demonstrated the effectiveness of our tool in address-
ing these challenges, which are pivotal for the advancement and practical application of federated
learning methodologies.

7.1 Summary of Findings
Our experimental results offer convincing evidence of our tool’s capability to significantly im-

prove global accuracy in federated learning setups. By employing an adaptive mechanism that
tailors the training process to the computational capabilities of client devices, we were able to mit-
igate issues such as Out-Of-Memory (OOM) errors on lower-capacity devices, thus ensuring their
valuable contributions to the model’s learning process. This adaptivity not only enhanced the in-
clusivity of the federated network but also maximized the overall model accuracy by leveraging the
full spectrum of available data across diverse client devices.

Furthermore, our investigations into reducing total training time have highlighted the tool’s
efficiency in mitigating the impact of stragglers—clients with constrained computational resources
that can significantly prolong the training process. By dynamically adjusting training parameters,
the tool successfully minimized the delays caused by slower clients, thereby streamlining the overall
training duration without compromising on the quality of the model.

7.2 Implications for Federated Learning
Our exploration into enhancing the efficiency and inclusivity of federated learning systems has

illuminated a significant potential for further adaptivity within the field. Despite the commendable
advancements made by existing works, our findings suggest there remains considerable scope for
innovation, particularly in tailoring learning processes to accommodate the diverse computational
landscape of client devices. This observation is not to detract from the foundational achievements
of prior research but to build upon them, highlighting the evolving nature of federated learning
challenges and the continuous need for adaptive solutions.

In contributing to the federated learning community, we aim to underscore the importance of
ongoing adaptation and refinement of learning frameworks. Industries and sectors poised to benefit
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from federated learning, such as healthcare and finance, could find additional value in approaches
that push the boundaries of adaptivity, ensuring that learning outcomes remain robust across a
spectrum of operational contexts. Our work, while a step in this direction, reveals the expansive
room for exploration and development in making federated learning more adaptable, scalable, and
universally applicable.

7.3 Future Work
Our journey into enhancing federated learning systems has uncovered several pivotal areas for

future exploration, aimed at pushing the boundaries of adaptivity and efficiency.
Firstly, we plan to significantly expand the adaptivity of our system by incorporating a broader

range of criteria to adjust learning parameters. This expansion includes both static and dynamic
factors such as CPU capacity, memory availability, and notably, dynamic factors like battery levels
and network conditions. This enhancement will enable our system to tailor learning activities more
precisely to the fluctuating state of device resources, ensuring that federated learning processes are
optimally aligned with each device’s capabilities.

Secondly, an advancement in our device management strategy is on the horizon, with a focus on
implementing clustering techniques. By organizing devices into clusters based on similar resource
profiles, we aim to alleviate the computational load associated with our client selection algorithm.
This strategic move is expected to bypass the exhaustive resource usage evaluations for each client
in every learning round, streamlining the learning process and reducing overhead.

Moreover, we envision the development of a refined algorithm that evolves the FedAvg framework
to incorporate a more nuanced aggregation strategy. This forthcoming algorithm will adjust the
weighted average calculation to include various parameters indicative of each client’s contribution
and effort, such as processed data volume and utilized computational resources. An illustrative
parameter could be the number of epochs a client has trained on its local data, shedding light on
the depth of its training efforts. By weaving these considerations into the aggregation process, our
goal is to cultivate a federated learning environment that more accurately mirrors and values the
diverse contributions of participating devices.

These targeted areas of development collectively aim to enhance the operational efficiency and
scalability of our federated learning tool. By addressing these specific challenges, we anticipate not
only mitigating potential system bottlenecks but also facilitating a smoother and more inclusive
federated learning process across an extensive array of devices.
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