National Technical University of Athens
Department of Electrical and Computer Engineering
Computer Science Division

ME

Technical University of Denmark
Department of Space Research and Technology

Microarchitectural Approaches to Fault Tolerance in
Spaceborne Processors

Diploma Thesis

Konstantinos-Nikolaos Papadopoulos, 03118220

Advisors: Dionisios N. Pnevmatikatos, Professor,
School of Electrical and Computer Engineering, NTUA

José M.G. Merayo, Professor,
Department of Space Research and Technology, DTU

April, 2024

National Technical University of Athens
Department of Electrical and Computer Engineering
Computer Science Division

ME

Technical University of Denmark
Department of Space Research and Technology

Microarchitectural Approaches to Fault Tolerance in
Spaceborne Processors

Diploma Thesis

Konstantinos-Nikolaos Papadopoulos, 03118220

Advisors: Dionisios N. Pnevmatikatos, Professor,
School of Electrical and Computer Engineering, NTUA

José M.G. Merayo, Professor,
Department of Space Research and Technology, DTU

Approved by the examination committees on April 2nd, 2024 and October 30th, 2023, respectively:

From NTUA: Dionisios N. Pnevmatikatos, Professor,
School of Electrical and Computer Engineering, NTUA

Nektarios Koziris, Professor,
School of Electrical and Computer Engineering, NTUA

Georgios Goumas, Associate Professor,
School of Electrical and Computer Engineering, NTUA

From DTU: José M.G. Merayo, Professor,
Department of Space Research and Technology, DTU

Juan Jose Vegas Olmos, Principal Engineer - Research Program Coordinator,
NVIDIA

April, 2024

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors

Diploma Thesis
April, 2024

Konstantinos-Nikolaos Papadopoulos, Electrical and Computer Engineering Graduate

Copyright © Konstantinos-Nikolaos Papadopoulos, 2024

All rights reserved.

Reproduction of this publication in whole or in part must include the customary biblio-
graphic citation, including author attribution, report title, etc.

All views and conclusions contained in this document express the author and should not
be interpreted as representing the official positions of the National Technical University of
Athens or the Technical University of Denmark.

Cover photo: Vibeke Hempler, 2012

Published by: DTU, Department of Space Research and Technology, Elektrovej, Build-
ing 327, 2800 Kgs. Lyngby Denmark
www.space.dtu.dk

ISSN: [0000-0000] (electronic version)
ISBN: [000-00-0000-000-0] (electronic version)
ISSN: [0000-0000] (printed version)

ISBN: [000-00-0000-000-0] (printed version)

www.space.dtu.dk

Approval

This thesis has been jointly supervised by Technical University of Denmark -where it was
conducted during an Erasmus exchange program- and National Technical University of
Athens, author’s home institution. The work has been undertaken in partial fulfillment of
the requirements for the Electrical and Computer Engineering Integrated MSc and BSc
diploma awarded by National Technical Univesity of Athens and in accordance with the
Erasmus agreement between the two institutions.

Konstantinos-Nikolaos Papadopoulos

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 4

Abstract

On-board computer systems in space applications -such as satellites or spacecraft- are
prone to errors caused by the effects of radiation and thus require increased robustness
against faults in order to successfully complete their critical and costly missions. The
majority of existing and conventional approaches to fault tolerance use space or time re-
dundancy, resulting in robust designs with high fault coverage. Nevertheless, in these
methods, robustness comes at the cost of sacrificing performance, area, and power ef-
ficiency, since excessive hardware or execution are duplicated. This thesis examines
approaches to fault tolerance that leverage microarchitectural insights by comparing 3
methods in various axes. By implementing and evaluating all techniques on a cycle ac-
curate computer system simulator we demonstrate that novel ideas from computer archi-
tecture can be utilized to produce more efficient solutions for fault tolerance which also
meet the unique requirements of spaceborne systems.

Keywords: fault-tolerance, microarchitecture, space

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 5

Acknowledgements

| would like to sincerely thank my supervisor from DTU, José M.G. Merayo, first of all
for giving me the opportunity to work in the DTU Space department, as well as for his
invaluable guidance in a new for me subject, his support in a new for me country, and his
trust in myself from the very beginning.

| also want to express my great appreciation to my supervisor from NTUA, Dionisios N.
Pnevmatikatos, who inspired me through his teaching and his distinct way of thinking to
work and pursue a PhD in the field of computer architecture. | am grateful for his patience
and for all the time he devoted providing valuable ideas, corrections, and experience.

| owe many thanks to Christina Giannoula and Nikolaos Papadopoulos for their advice,
constant encouragement, and genuine interest in the project. | want to also thank Geor-
gios Papadimitriou for his technical advice and insightful research suggestions.

| would also like to thank my friends, new and old ones. My stay in Denmark was made
more enjoyable and fascinating by people like Mario, Sara, Alex, Dénes, Luanna, and
Tjorven who made me feel like | had known them for years. At the same time, | am
happy | spent the last years with long-lasting friends like Giorgos, Elli, Simos, Apostolis,
Evangelia, Thanassis, and many more. | am glad we have traveled this path together and
| am looking forward to the next ones.

Lastly, | would like to thank my parents for the values they passed on to me, and most
importantly, for being always by my side.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 6

Contents

Preface e
Abstract e
Acknowledgements

0 EkteTapévn EAAnvikA MepiAnyn

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Bloaywyn
YT1oAoyIoTIKA ZuoTAuata o€ AlooTnNUIKEG EQapuoyég
2@AaApaTta MpokaAhoupeva atmrd AKTIVOBOAI

‘Evvoleg APXITEKTOVIKAG YTTOAOYIOTWY v v v o e e e e e e e e

Mepiypaen Twv UuTTd MeAETN Texvikwy Avixveuong ZQOAPATWY
MeBodoAoyia e
ATTOTEAEOUOTA KOI AVAAUGN o e e e e e e e e e e e
SUVOWN o o o e e e e e e e e e e e

1 Introduction

1.1

Project Requirements

2 Spaceborne Computer Systems

2.1
2.2
23
24
2.5

Applications of Onboard Computing
Spaceborne Computer Systems Requirements
Technologies used in Space Computer Systems
Real-World Examples of Fault Tolerance in Space Missions
Summary ... e

3 Radiation-induced Errors on Electronics

3.1
3.2
3.3
3.4

Sources of RadiationinSpace
Radiation Effects on Electronics
Interaction Mechanisms o
Summary ... e e

4 Computer Architecture Primer

41
4.2
4.3
4.4

Superscalar and out-of-order pipelines
Branch Hazards, prediction & speculation
Simultaneous Multithreading
SuMmMary

5 Description of the Studied Error Detection Techniques

5.1
5.2
5.3
5.4

Dual Modular Redundancy
Redundant Multithreading
Parallel Heterogenous Error Detection
SumMmary . ..o

6 Design and Implementation of the Studied Error Detection Techniques

6.1
6.2
6.3
6.4

The gemb Simulator
Implementation of Dual Modular Redundancy
Implementation of Redundant Multithreading (R-SMT)
Parallel Error Detection Code Artifact

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors

6.5 False Positives
6.6 FaultInjection.
6.7 The MiBench Benchmark Suite

7 Results and Analysis
7.1 Methodology
7.2 Experimentalresults L
7.3 Analysisanddiscussion

8 Conclusion
8.1 Finalremarks
8.2 Futurework

Bibliography

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors

0 EkteTrapévn EAAnvIKA MepiAnyn

0.1 Eicaywyn

To didoTnua atroTeAei Eva exOpikd TTEPIBAAAOV yia T NAEKTPOVIKA. Adyw NG EAAEIYNS a-
THOOPAIPAG KAl TNG TTAPOUGiag TTANBWPAS TTNYWYV AKTIVOBOAIAG, OTTWG 01 KOOMIKEG OKTIVEG
1 0 AAIOG, T UTTOAOYIOTIKA CUCTHUATA O€ OTIG DIAOTNMIKEG ATTOOTOAEG €ival eudAwTa o€
o@AaAuaTta TTou TTPoKaAoUVTal atTd TN augnuévn akTivoBoAia TTou evuttdpxel oto dIdoTn-
Ma. 1916TnTEG O6TTWG N aloToTia Kal N avoxh o€ OQAAUATA, €ival TTPWTAPXIKAS CNUAGI-
aG, KABWG UTTOAOYIOTIKA OUCTHHOTO EKTEAOUV KPIOIPES Epyaaieg Kal OTTOIadNTTOTE SUCAEI-
Toupyia uTTopei va atmodeixBei mKivouvn Kal KATaoTPOo@IKA. ATTO Ta TTPWTA dIACTNUIKA
TTPOYPAPMOTA HEXPI ONUEPQ, £XOUV XpnoluoTToinBei didopeg PéBodol avoxrg oQAAUdTwyY
TTOU JEIVOUV JE ETTITUXIO TOV KiVOUVO KOl ATTOTPETTOUV TIG ATTOTUXIEG. a TO UTTOAOYIOTIKA
OUCTHHATA, Ol TEXVIKEG AQUTEC aVIXVEUOUV CQAAUOTA, ATTOUOVWVOUV Ta EAATTWHATIKA £¢0p-
TAMATA KAl ATTOKABIOTOUV Tn OWOTH AEITOUPYiO TOU CUCTAPATOG. TNV TTapoUca £pyaaia,
eaTmidloupe oe PeBOdOUG TToU £¢aaPalifouv avoxn o€ OQAAUATA OTNV KEVTPIKY JovAada
emmegepyaoiag (CPU) otroioudnmoTte UTTOAOYIOTIKOU GUCTANATOG O€ Tpoxia. AKOUN Kai av
N TTAEIOVOTNTA TWV CUPBATIKWY TEXVIKWY VoS oaAudtwy yia CPUs trapouaiddouv u-
WNAEG IKAVOTNTEG OTNV AViXveEUON OQAAUATWY TTOU TTPOKAAOUVTal ATTO akTIVOBoAia, augd-
VOUV ONUAVTIKA TNV KATAVOAIOKWEVN EVEPYEIQ KAl TN CUVOAIKN €TTIQAVEIQ TOU TOITT. AUuTO
oQeiAeTal OTO YeEYovOG OTI 01 cUPBATIKEG PEBOSOI auVrBWG TTOANATTAACIAZOUV XWPIKE HE-
YOAQ TUARMATa ToUu UAIKOU 1) TNG EKTEAEONG YIA VO dNuIoupyroouv TTAEovAZovTa avTiypaga.
H katavdAwon evépyelag atmoTeAel onuavTikd TTEPIOPICUS yia Ta SIACTNUIKA TEXVOAOYI-
K& ouoThuarta, dedopévou OTI Ta OIACTNUIKG OXAMOTA £XOUV TTEPIOPICHEVN XWPENTIKOTNTA
pTTatapiwy. H emedveia Tou TOITT €ival €TTiONG onuavTikr, 0edopévou 0TI UNIKO JEYaAUTE-
PNG ETTIPAVEIAG KATAVOAWVEI TTEPICCOTEPN EVEPYEIQ KAI Eival ETTIONG TTI0 EUAAWTO, KABWG
£XEl eyaAUTepn BavVOTNTA va XTUTINBEI attd ocwaTidla akTivopoAiag. lNa Toug Adyoug
auToug, ival emBUUNTEG O TTpooeyyioelg avoxhg o@aAudaTwy oe CPUs tmou cuvdudlouv
ATTOOOTIKOTNTA QAViIXVEUCONG OPAAUATWY PE XOUNAG KOOTOG O€ TTPOCTIBEUEVN I0XU KAl ETTI-
Qaveia.

H UIKpOOPXITEKTOVIKF €ival €VAG UTTOTOMEAG TNG APXITEKTOVIKIG UTTOAOYIOTWYV UE QVTIKEIUE-
VO JEAETNG TNV ECWTEPIKT OPYAVWAN KAl UANOTTOINGN VOGS £TTECEPYATTH, TTOU TTAPASOTIAKA
TTPOOCPEPEI OXEDIAOTIKEG AUCEIG TTOU £EI00PPOTTOUV DIAPOPETIKOUG TTEPIOPICHOUG, OTTWG N
atroédoaon Kal 0 pUBUOG peTddoaong, N KatavaAwon evEPYEING, TO KOOTOG K.ATT. QG €K TOU-
TOU, VEEG 10€€G aTTO QUTOV TOV TOMEQ UTTOPOUV va XpnolpoTroinBouv yia Tn BeATioToTToINON
TIPOCEYYIOEWY AVOXAG OCPAANATWY Kal Tr dnuIoupyia EUPWOTWY ETTEEEPYOCTWY TTOU IKA-
VOTTOIOUV ETTIONG TIG AUCTNPES ATTAITAOEIS KATAVAAWONG EVEPYEIOG KAl EKTAoNG. Nponyou-
MEVEG EpYATieg TNV APXITEKTOVIKI) UTTOAOYIOTWYV £XOUV TTPAYUATI AdN TTOPOUCIACE! TETOIEG
Tpooeyyioelg. QoTd00, AUTEG Ol UTTAPXOUCES TTPOCEYYIOEIG DeV £XOUV PEAETNOEI APKETA
WaoTe va atrodelxOei Ot gival KATAAANAEG yia TTPAYUATIKEG EQAPUOYEG OTO OIACTNUA, Ka-
BW¢g o€ TTOAAEG TTEPITTTWOEIG BeV €xEl alloAoynBei n avixveuon oQAAPATwWY, VW o€ GAAEG
TTEPITITWOEIG YiVOVTAI N TEKUMNPIWUEVES UTTOBETEIC yia TO dIAOTNUIKO TTEPIBAAAOY, | dev
£XOUV Yivel KaTavonTEG O1 IDIAITEPEG ATTAITACEIG TWV CUCTNUATWY £V TPOXIA.

21NV Tapouaa epyacia eMIOIWKOUME VO YEQUPWOOUE TO XATHA METAEU SIAOTAMIKWY OU-
OTNUATWY KAl TWV TTPOCEYYICEWY AVOXNG OPAAUATWY TTOU EKPETAAAEUOVTAI TIG TAOEIG KAl
I0€€C TNG MIKPOAPXITEKTOVIKNG, OEIXVOVTAG OTI Ol TEAEUTAIEG ITTOPOUV VO au&AoouV Thv a-
&I0ToTIO TWV UTTOAOYIOTIKWY CUCTANATWY KOl VO PEIWOOUV TNV KATAVAAWGON eVEPYEIAG

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 9

Kal TNV €TTIQAvEIa UAIKOU, O OUYKPION WE TIG CUMPATIKEG HEBOSOUG TTOU XPNOIKOTToIoUVTal
ornuepa aTo didoTnua.

21NV TTapouca PEAETN, ouykpivouue 3 peBOdOUG:

» Dual Modular Redundancy, n otroia xpnoIJOTIOIEITAI EUPEWGS OTA dIACTANIKA CUOTA-
pata, aAAG eTIQEPEl UYPNAEG augAOEIC o€ UANIKO Kal EVEPYEIQD.

* Redundant Execution with Simultaneous Multithreading [1], n otroia aglotrolei utro-
OXOUEVEG TEXVIKEG ATTO TNV OPXITEKTOVIKA UTTOAOYIOTWY, OAAG &ev €xel aglohoynBei
ETTAPKWG OO0V AQOPA TNV AVIXVEUOT CPAAUATWV.

 Parallel Detection with Heterogenous Cores [2], n oTroia avTIiTTpoowTTelEl TNV TPE-
xouoa BEATIOTN TEXVIKI 600V agopd Tnv empdpuvon oTnv ammédoaon Kal oTnv €TTI-
paveia.

YAotroioUpe Kal agloAoyoUue OAEG TIG TEXVIKEG O€ €vav TTPOCOWNOIOUNEVO ETTEEEPYAOTH, €-
TTEKTEIVOVTOG £vav TTPOCOUOIWTH) AVOIKTOU KWOIKA TTOU XPNOIUOTTOIEITaI EUPEWG OTNV €-
PEUVA OPXITEKTOVIKNG UTTOAOYIOTWY. 2TN OUVEXEIQ, DIEEAYOUE JIa CUYKPITIKN agloAdynan
QAUTWY TWV TEXVIKWY, UE KPITHAPIA TNV ATTOTEAEGUATIKOTATA TOU EVTOTTIONOU GQAAUATWY, TV
KaBuaTépnaon aTnVv avixveuon o@aAuaTwy, TNV eMPBAPUVON TTOU £I0AYETAl OTNV aTTdéd00N
TOU €TTECEPYAOTA Kal TNV au&non Tng mM@AveIag oTo TOITT, ONAAdH KPITHPIa EUBUYpaI-
OMEVA PE TIG OVADIKES ATTAITACEIG TWV CUCTAPATWY SIGOTNMIKWY OKAQWY. a To OKOTTO
auTo, oXedlaloupe Kal UAOTTOIOUUE TTPOCOMOIOUMEVN €yXUuan O@AAUATWY, ATOI EI0AYOUE
TEXVNTA OQAALOTO OTOV ETTEEEPYQOTTH).

Oewpoupe 6T N €peuvd pag cival eTTikaipn, KABWG BpiokeTal 0TO ONUEIO TOPNAG KPIoIWY
TEXVOAOYIKWY aAAaywyv (auénuéva TTo000Td OAAPATWY AOGYWw CUppIiKvwong Twv TPav-
CioTop, dicioducn Tou UTTOAOYIOTIKOU VEQOUG OTO SIACTNUA) KAl YTTOPEI EVOEXOUEVWG VO
TTPOCQYEPEI AUCEIG OTIG TPEXOUOEG KAl HEAAOVTIKEG TTPOKARCEIG OTOV TOMEQ TWV dIAOTNUI-
KWV UTTOAOYIOTWV.

0.2 YTroAoylioTika ZuoTApaTa o€ AlaoTnHIKEG EQapuoyég

To 1961, n dlaoTnuIKA KAWouAa Mercury Tou TTPWTOU ETTAVOPWHEVOU BIACTNUIKOU TTPO-
ypaupaTtog Twv Hvwpévwy MoAiITeiwy, Asitoupyouoe xwpig kavévav uttohoyioTh [3]. Ol
KEVTPIKOI UTTOAOYIOTEG 0TN N ekTEAOUC AV GAOUG TOUG aTTAPAITNTOUG UTTOAOYIOHOUG VIO TOV
€AEYXO0 TNG TPOXIAG, Ol OTTOIOI 0T CUVEXEID PETadIdoVTAV YETW PadloPuwVvou OTo dI00TN-
poTtTAolo. To idio ioxue Kal yia Ta TTpWTa 15 xpdvia NG Pn €mavopwuévng £¢epelivnong
Tou dlaCTANATOG, KaBwWwG Kai yia TN ZofieTikA ‘Evwon. Qotéoo, 8 xpodvia apydtepa, TO
1969, n Tpoceddion oTn ZeAjvn Ba ATAV aKATOPBWTN XWPIG TN XPAON EVOWNATWHEVWY
UTTOAOYIOTIKWY cuoTnudTtwy. MNa Tnv akpiBeia, n épeuva kal avaTtugn yia Ta UTTOAOYIOTIKG
ouoThiuaTta Twyv attooToAwv Apollo atmmd 1o 1962 £wg 10 1968 katavadAwoe Ta dUo TpiTa
NG TTAYKOOMIAG TTPOMNBEIaG OAOKANPWHEVWY KUKAWUATWY [4]. ZAMEPQ, Ol UTTOAOYIOTEG
aTTOTEAOUV QVATTOOTIOOTA OTOIXEIO OAWV TWV SIACTANIKWY OKAPWY KAl TWV CUCTANATWY
o€ TPOYIG, HEPOG KABE UTTOOUGTHATOG, UTTOOTNPICOVTOG OAEG TIG AEITOUPYIEG.

EmmAéov, agiCel va onueiwBei 611 TpOo@aTeG TAOEIG, OTTWG TO UTTOAOYIOTIKO VEQPOG (cloud
computing) A n uttoAoyIoTIKA aixung (edge computing), diEiIcdUouV oTa BOPUPOPIKA GU-
otAuata [5], 1diwg dedouévng TNG augavopevng TTPOCPATNG avAaTTTUENG SOPUPOPIKWY a-
oTepiopwy (satellite constellations). Autd Ta uttoAOyIOTIKA TTAPAdEYUATA, ETTITPETTOUV TV
ETTECEPYQOia DEDOUEVWV TTIO KOVTA OTIG TINYES TTAPAYWYNG TOUG Kal, WG €K TOUTOU, UTTO-
poUV va PEIWOOUV CNPAVTIKA TIG ATTAITACEIS TOU €UPOUG {vng 0T KOTEPXOHEVN CeUin
(downlink) ka1 va augfioouv 1n diaBeciuéTnTa. QOTOCO, HETAOXNMATICOUV TO OKNVIKO TWV
ATTAITACEWY TWV UTTOAOYIOTIKWY CUCTNUATWY TToU BpiokovTal o€ TpoxId, agou ataitouv

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 10

OUCTAMATO e uWnASTEPEG duvVaTOTNTEG £TTECEPYOTiag. Qg €k TOUTOU, TTIOTEUOUME OTI N
TTapouoa epyacia, n otoia eEeTAlel TNV avoxr o€ o@aApara AaudvovTag uttoywn Kai aA-
AEG aTTAITACEIG, OTTWG N ATTOdO0N, gival eTTiKalpn, 0edopévou OTI Ta dIACTNMIKA CUCTANOTA
UTTOAOYIOTWV YivovTal OAO Kai TTI0 TTOAUTTAOKQ Kail IoXUPA.

0.2.1 ATTaITAOEIG YIa SIOCTNHIKA UTTOAOYIOTIKG CUCTAMATA

Ta dIaoTAPIKA UTTOAOYIOTIKG CUCTAMOTA £XOUV £€Va OUVOAO IBIQITEPWY ATTAITHOEWY AdYW
1600 TNG PUONG Tou SlaoTNIKOU TTEPIBAAAOVTOG OC0 Kal TNG KPIGIWOTNTAG KAl TOU KOGTOUG
NG dlaoTNMIKAG €€epelivnong. Ta eEwyniva TepIBAAAovTa gival a@iAdEeva OxI HOVO yia Ta
NAEKTPOVIKA Kal UTTOAOYIOTIKA CUCTHANAOTA aAAG Kal yia Ta TTEPICOOTEPA £EAPTAMATA EVOG
OlaOTNUIKOU OKAPOoUG. H diaoTnuikA TEXVOAOYia TTRETTEI VO AVTEXEI OE OKPAiEG OUVANEIG
Kal dOVAOEIG, o€ éva eupU Aoa BEpUOKPATIWY Kal € aKTIVOBOAia. ETTITTAéoV, Ta CUOTH-
paTa TTPETTEN VA AEITOUPYOUV KATAVOAWVOVTAG EAAXIOTN evEpyEla, OEDOPEVOU OTI OI TTNYEG
eVEPYEIAG O0TO dIGoTNUA gival TTeEpIOPIoPEVES. TOUTOI OI TTEPIOPICHOI gival TTAPOVTEC TOOO
OTO oXedIAOPO 600 Kal 0TN AEIToupyia Twv dIACTNUIKWY UTTOAOYIOTIKWY CUCTNPATWY, HE
TN d106e01udTNTA Kal TV A&IOTTIOTIA va gival ol dU0 BePENIWDEIC IBIOTNTES TTOU TTPETTEI VA
IKAVOTTOIOUV T CUCTHHATA UTTOAOYIOTWY 0TO didoTnua. ‘ETol, atrd Toug KevTpikoug agoveg
TOU OXEQIAOUOU TWV UTTOAOYIOTIKWY CUCTANATWY TTou Ba Agitoupyouyv oTo didoThua gival
n eAaxiototroinon Tou Kivduvou. Madi ye autd, Ta CUCTANATO TTPETTEN va gival o€ Béon va
avixveuouv ypriyopa moavda c@dAuara. EmiTAéov, Ta NAEKTPOVIKG GUCTAUATA TTPETTEI VO
KATAVOAWVOUV EAAXIOTN EVEPYEIQ.

H akTivoBoAia gival woTéoo Jia atTod TIG KUPIES TTNYEG o@aAudTwy. Ta ouoTriuata oTo dId-
oTnua dev TTpooTaTelOVTal ATTO TV ATHOC@AIPA KAl OVTAG eKTEDEINEVA O€ UWNAG eTTITTEDO
aKTIVOBOAIag €ival eUAAWTA o€ COAAUATA TTOU TTPOKAAOUVTAI ATTO AUTAV. 2ThV TTapoucda
epyaocia, e0TIAlOUPE OTA CPAAUATA TTOU TTPOKAAOUVTAI OTOUG ETTECEPYAOTEG UTTOAOYIOTWV
OTTOKAEIOTIKA aTTO aKTIVOBOAIQ.

0.3 ZodaAparta lNpokaAoUpeva atrd AKTIVOBOAia

Mia a1rd TIG TTI0 agloonueiwTeG dlaPopES ETAEU TNG 'NG Kal Tou AlACTAPATOG €ival Ta U-
WnAoTepa eTTiTeda akTivoBoAiag Trou uttdpxouv o1o AidoTtnua. Av kai n I'n TTpooTarteveTal
atré TNV atuéoPaIpPa Kal To PayvnTIKO TTedio Kal £€Ta1 dlaTnpEi TIG XaUNAEG OUVOAKES aKTI-
vOBoAiag TTou gival atTapaitnTES YIa TNV avBpwTTivn wry, &gV 10X0EI TO id10 yia Ta eEwynRIva
TTEPIBAAAOVTA, OTTOU N AKTIVOPBOAIa aTToTEAEI ONUAvTIKG KivOuvo TOCO Yia TOUG aoTpovau-
TEG TTOU TAEIOEUOUV O€ ETTAVOPWHEVES ATTOOTOAEG, OGO Kal YIA TOV EEOTTAICHO Kal Ta Opyava
TWV dl100TNMOTTACIWY.

H akTivoBoAia o1o didoTnua Tpoépxetal ammo 3 TTNYEG: TIG KOOUIKEG AKTIVEG, TNV TTEPIOXN
akTivoBoAiag Van Allen kai Ta nAlokd cwuatidla. Zwuatidia ammd OAeG auTéG TIG TTNYEG
OKTIVOPBOAIag, 6Tav aAANAETTIOPOUV HE Ta NAEKTPOVIKA, TTPOKAAOUV OAANAETIOPAOEIG TTOU
MTTOpOUV va KaTnyoplotroinBolv we £EAG:

2uvoAikn 1ovTiouca d6on (Total lonizing Dose): ava@épetal OTIG JOKPOXPOVIES ETTI-
TITWOEIG AKTIVOBOAIAG TTOU TTPOKAAOUVTAI OTTO TNV EVEPYEIA TTOU UETAPEPETAI JOVO PECW
IOVIOHOU, aTTé TO TTPOCTTITITOVIA CWHATIOIO OTNV NAEKTPOVIKI cuoKkeur. Eival eTTopévwg
€va aBpoIoTIKO ATTOTEAECUA TTOU O€ ATOMIKO ETTITTEDO PETAKIVEN T NAEKTPOVIO O€ UWPNASTE-
PEG EVEPYEIAKEG KATAOTAOEIG.

Adéon perarémiong (Displacement Dose): €1riong €éva aBpoloTIKO aTTOTEAECUA TG a-
KTIVOBOAiag Katd To O110i0 Ta UYNAAG EVEPYEIQG TTPOCTTITITOVTA CwaTidla dev digyeipouv
TA 16VTA TOU TTUPNTIOU TOU UAIKOU aAAd auTh TN @opd YETATOTTICOUV OAOKANPAO ATOMA TOU
UAIKOU, OnUIoUpYWVTAG KEVA OTO KPUOTAAAIKO TTAEYHO TOU NIaywyou.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 1"

AtroteAéopaTa pepovwpévou yeyovorog (AMID) (Single Event Effects): Kdartw amé
auTév Tov 6po (SEE), ouvdudloupe OAeG TIG eMOPACEIS TTOU TTPOKAAOUVTAl aTTé TN PO
OwHaTIdiwV akTIVOBOAIaG HEoW PIAg NAEKTPOVIKAG oUoKeUNG. MeTagl Twv diagdpwv AMI,
1a Single Event Upsets (SEU) eivai petafatikd o@dApara mmou epgeavifovral wg TTapodIKoi
TTaAPOi o€ ouvduaOTIKA KUKAwPaTa 1 wg aAAayég otnv katdoTaon evog bit (bitflips) o€

oToIxXEia YvAunG.

0.3.1 Mnxaviopoi aAAnAetTidpaong pe 1o UAIKO

Auvapiki pvAun Tuxaiog rpoomédaong (DRAM): H diatripnon Tng TAnpogopiag ota
KeNId pvripng DRAM cival TTadnTikA Kal auto €Xel U0 ETITITWOEIG OTN CUPTTEPIPOPA TWV
olatadéewv DRAM utrd SEEs. MpwTtov, autd anuaivel 0TI dev UTTAPXEI EYYEVAS MNXAVIGHOG
oTn AsiToupyia Tou KeAIOU pvhung Tmou Ba ptropouoe va odnyAoel o€ autépaTtn di6pwoaon
katrolou SEE (61Twg ptropei va oupBei o€ opiopéveg mepImTwaoelg otnv SRAM). Aedtepoy,
€TTEION KAl TTAAI TO OO aTTOONKEUETAI OTO POPTIO TOU TTUKVWTH TOU KEAIOU, pia SEU ptro-
pEi va gppaviaTei 01 JOvo AOyw TnG PeTARaong atmd yia oTabepn KatdoTaon o€ Yo GAAN
aAAd Kal Adyw TNG UTTORABICNG TOU ATTOBNKEUPEVOU OATOS EKTOG KATTOIWY TTEPIBWPIWV
BopuBou [6].

ZTaTIKR VAN TuXaiag pootréAaong (SRAM): H suaioBnaoia Twv diatdgewv SRAM og
SEEs eCaptatal og peyadAo Babud atd 1n Béon mpooTITWwoNng Tou cwiaTidiou HEoa OTO
KUKAwMa Tou KeAIOU, dnAadn To ouykeKpiuEvo TpavlioTop Tou KeAIoU [7]. Ta cwuartidia
TNG aKTIVOPBOAIaG Ba cuCCWPEUCOUV QOPTIO 0€ £vav aTTO TOUG AKPOOEKTEG TOU KTUTTNE-
vou TpavlioTop TTPOKAAWVTAG, UE TN OEIpd TOUG, pon PEUPATOG METAEU Twv 2 TpaviioTop
NG NUIYEQUPAG, 0dNYWVTAG O€ JeTaBaTIKA TAon. AUTO TO PETABATIKO peUUA TAONG, ETTEIONA
ouviBw¢ ouupaivel OTOV OKPOBEKTN ATTAYWYOU (drain) Tou TpavioTop, UTTOPEI va AEIToup-
YNOE€l WG TTAAUOG eyYPaQrG, AAAGZOVTAG TNV EYYEYPAMPEVN TIKNA TNG ETTNPEAOMEVOU KEAIOU
atrobnikeuong.

MAoyikd KukAwpara: MNa 1a Aoyikd KUKAwpata, Ta (UeTaBaTiké) OQAAPATA TTOU TTPOKAAOU-
vTal amd SEEs ekdnAwvovTtal 6tav £va JeETaRATIKO peUPA TAONS ATTO MIA YPOUMI OANOTOG
ouMAauBaveTal o€ kKAtTolo pavoaAwTn [7]. TNa va cuufei autd, £va ocwuaTidlo akTivofo-
ANiag eTTapkoUG evEPYEIOG TTPETTEI VO XTUTTHOEI JIA EVEPYH YPOAUMI TOU KUKAWMOTOG, EVW
TTPETTEl VA UTTAPXEI Kal evepyr) dladpopur atrd Tnv TTayIdeupévn YPAUU O€ KATTOIOV Jav-
OOaAWTH PEOoW GAAWYV YPAUHWY A/KAI OTOIXEIWV TOU KUKAWMOTOG (OTTWG TTUAEG KATT.). Mg
QUTOV TOV TPOTTO N AoYIKA TIKA Tou pavdaAwTr Ba YeTaBAnOei kKal To HETARATIKO OCQAAUQ
Ba ekdnAwbei 0TO KUKAWUQ.

Ma 6Aoug Toug TTapaTTdvw AOYoUGs, o€ auTr Tn HEAETN Ba povTeAoTToIRoOUE OAa TO CQAA-
MaTa oTn Aoyikn Tou eTregepyaanTr) wg bitflips o€ oToixeia pavdaAwaoewv.

0.4 'Evvoiegg ApXITEKTOVIKAG YTTOAOYIOTWYV

‘Eva Baoikd Béua o€ auth TN MEAETN gival N PIKPOAPXITEKTOVIKY. H HIKPOOPXITEKTOVIKI)
MEAETG TOV OXEDIAOUO Kal TNV UAOTTOINON €VOG ETTECEPYAOTH TTEQIYPAPOVTAG PETAEU AA-
Awv Tnv dloxéTeuan Kail Ta didgopa aTadia auTthg A TNV IEpapXia TNG KpUPAg uvAung. E-
VaG aTTd TOUG CNUAVTIKOTEPOUG OXEBIOOTIKOUG OTOXOUG KATA TNV AVATITUEN VEWV HIKPO-
QPXITEKTOVIKWYV Eival N atrddoan Tou eTeEepyaaTr], dedouEvou OTI N £peuva Kal 0 oxedia-
OMOG VEWV ETTEEEPYAOTWV OTTOOKOTIEI 0TN BEATIWON TNG aTTdd00NG KAl TG puBPaTTédOONG
(throughput). MNa 1o Adyo auTd, TG TeAeuTaieg OekacTieg €xel avaTTuxXBei éva eupU Qacua
TEXVIKWV PE OTOXO Tn BeATioTOTTOINON TNG ATTOd0O0NG TWV CWANVWOEWY ETTEEEPYACTWV.
Opiopéveg atrd autég aglotroloUvTal atmod TIG TEXVIKEG avoXNG OQOAUATWY TNng TTapolcag
MEAETNG KAl Ba TIG TTOPOUCIACOUE £DW.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 12

YmrepBabpwroi ere§epyaocTtég: Mia onuavTikA 1016TNTA TTOU £TTNPEEACElI O PEYAAO Bab-
MO Tnv atrédoon ival 0 HECOG PUBUOG eKTEAEONG EVTOAWY TOU ETTECEPYAOTH, O OTTOIOG
MTTOPEI VO TTOOOTIKOTTOINBEI e TN PETPIKA TwV evTOAWVY avd KUkAo (IPC). O1 cwAnvwoeig
TTOU UTTOPOUV VA EKKIVOUV Kal va EKTEAOUV POVO 1 evTOAr avd KUKAO poAoyioU, utropouv
va €MTUXOUV TNV KaAUTepn duvarr ammédoon 1 evioAng avd kukAo (IPC<=1).lNa va au-
&nBei mepaitépw n ammédoon, Exouv oXedIOOTEl UTTEPPABUWTOI ETTEEEPYATTEG, Ol OTTOIOI
éxouv IPC>1. O1 uttepBaBuwToi eTTeepyaoTég eival o BEan va ekTeAOUV TauTOXpOVA TTE-
PI000TEPES aTTO 1 EVTOAN 0€ OAQ T OTAdIA TNG CWARVWONG, TTPOXWPWVTAG TAUTOXPOVA
TTOMATTAEG EVTOAEG O€ KABE OTADIO.

Auvapiki 8popoAdynon: AKOPN Kal PE UTTEPPABUWTOUC ETTECEPYQOTEG, OV N EKTEAEDN
YiveTal CUP@QWVA PE TNV ApXIKr CEIPA TOU TTPOYPANMATOS (OTaTIK SPOPOASGYNON) Kail HIa
€VTOAN TTPOKaAETEl KOBUOTEPNON OTN OIOXETEUCT, OAEG OI ETTOUEVEG EVTOAEG OEV UTTOPOUV
va TTPOXWPAOOUV, 0dNywvTag o€ Peiwaon Tng amodoong g dioxéTeuong. Or eTegepya-
OTEG EKTOG OEIPAG MTTOPOUV VA EKTEAOUV EVTOAEG E DIAPOPETIKN OEIpd ATTO AUTH TTOU EU-
@avifovTtal oTo TTPOYPAPHa (duvauik dpouoAdynan), ol otroieg ekdidovTal auEows POAIG
Ta TEAOUPEVA TOUg Yivouv d1aB£aiua Kal pia KaTAAANAN AsiToupyik govada eival eAeUBe-
pn. Me autdv Tov TPOTTO, 01 ETTOPEVEG EVTOAEG UTTOPOUV VA TTAPAKAUWOUV UIa EVTOAR] TTOU
KaBuaTepei- 0 SUVANIKOG TTPOYPAPUATIONOG dnuioupyei TTapaAAnAioud TTou dev eival dia-
Béoipog katd mn petayAwtTion (TTapaAAnAiopédg o€ etitredo evioAwv (ILP)). Qotdéoo, oTig
OCWANVWOEIG EKTOG TEIPAG, N EKKIVNON Kal N OAOKANPWON TWV EVTOAWYV YivovTal o€ O€Ipd.

Tautéxpovn TTOAUVNUATWON: AKOUN KAl JE OAEG QUTEG TIG BEATIOTOTTOINCEIG, UTTAPXOUV
TEPITITWOEIG OTTOU Oev agloTToIEiTal OAOG 0 BIaBECIUOG TTAPAAANAICUOG O€ €TTITTEDO EVTO-
Awv. Oplopéveg AeITOUPYIKEG HOVADEG adpavoTToIoUVTal ETTEIBN TO YiyUO EVTOAWY TOU TTPO-
YPAUHaTOG TTEPIEXEI TTOAAEG EVTOAEG TOU iBI0U TUTTOU A €TTEION 01 EEAPTHOEIS EVTOAWY ATTa-
yopeUouv TNV ekTEAEDT €KTOG oeipdg. Mia Auon og auTto givail n Tautdxpovn MNMoAuvnudé-
Twon (Simultaneous Multithreading (SMT)) [8], pia TexviKA 6TToU 0 £TTECEPYAOTAG EKTEAEI
TauTOXpPOVva TTEPICOOTEPA ATTO £va VAPATA O€ Evav TTUPAVA, AEIOTTOILVTAG PE QUTOV TOV
TPOTIO OAEG TIG DIABECIUEG AEITOUPYIKEG HOVADEG, ETITPETTOVTOG TNV ETTITEUEN UYWNAOTEPNG
aTTéd0o0NG ToU €TTEEEPYATTH.

0.5 Meprypa@n Twv utré MeAéTn Texvikwyv Avixveuong
2ZPAApATWYV
MeTagu Twv 3 ueBOdWV avixveuong QAANATWY TToU HEAETHBNKAV OTHV TTApOUCa £pyaaia,
n mpwtn NEBodog (Dual Modular Redundancy) éxel xpnoipgotroinBei eupéwg og TTANBwpa
TTPAYMATIKWY SIACTANIKWY ATTOOTOAWY KAl EVW TTAPOUCIAlEl TNV KAAUTEPN IKAVOTNTA QVvi-
XVEUONG OQPOAPATWY, ATTAITE EKTETAPEVA PEYAAN ETTIQAVEIA TOITT KAI KATAVAAWON 10XU0G.
O1 dAAeg 2 péBodol (Redundant Multithreading kai Parallel Error Detection) éxouv 1rpo-
TaBei aTTd £PEUVNTEG UTTOAOYIOTIKWY CUOTAUATWY KAl TTAPOAO TTOU Bev €XOUV OOKIUQOTEI
o€ DIA0TNUIKEG ETTIXEIPNOEIG, BewpnTIKA BEATILOVOUV TO KOGTOG I0XUOG KAl ETTIPAVEIAG, EVW
utroaBuifouv péTpia TNV ATTOBO0N TOU CUCTAUATOG, HEOW TNG XPAONG MIKPOAPXITEKTO-
VIKWV TEXVIKWY ATTO TV £PEUVA APXITEKTOVIKAG UTToOAOYIoTWY. H IkavoTnTa avixveuong
OQOAPATWY TWV BUO TeAeuTaiwv PNEBODWY gival Eva aTTd TA AVAUEVOUEVA ATTOTEAETUOTA
QUTAG TNG MEAETNG.
Kai o1 3 pé6odol eTTikevTpwvovTal JOVO OTNV AViXVEUOH CQOAPATWY PE TEXVIKEG BAOIOUE-
VEG 0TO UAIKO Kal ac@aAifouv puoévo Tn AoyiKA TNG BIOXETEUON TOU ETTEEEPYATTI, UTTOBETO-
vTag 6Tl N pvrAun TTpooTateleTal pe AANeG peBSdOUG, OTTWG o1 KWAIKES BIOPBWONG oPah-
MATWV.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 13

0.5.1 Dual Modular Redundancy

To Dual Modular Redundancy (DMR) gival pia Texvikr Xwpikou TTAcovacouou (redundancy)
O1T0U KABE OTOIXEIO UAIKOU avTiypd@eTal dU0 QOopEG Kal O UTTOAOYIoNOG eTTavaAapBaveral
Kal oTa dUO avTiypa@a Tou CUCTAUATOG, Yia va auénBsi n aglommoTia. Eivail etriong n mpwrn
MEBOSOG TTou Ba peAeTACOUNE OTNV TTapouca epyaaia. MNa éva uttoAoyioTiké ouoTnua, TO
DMR TrpayUaTOTIOIEITAI UE TO OXNUATIOPO EVOC CUCTANOTOG UE 2 ETTECEPYOAOTEG AVTI yia
1 ka1 TNV ekTEAEDN TOU TTPOYPANMOTOG OToV KaBéva. Me autd 1o ouoTnua, Ta o@AAuaTa
€VTOTTICOVTAI CUYKPIVOVTAG TA ATTOTEAECUATA TNG EKTEAEONG ATTO TOUG 2 eTTeCepyaoTég. H
MVAUN TTPETTEI €iTE Va gival TTIONG OITTAA €iTE va TTpooTaTelETAl, TT.X. ME KWOIKES d16pBwang
OQOAUATWV.

To DMR vyevika gival pia TeXVIK TTou heTadidel uwnAn eupwaoTia 0To oUCTANA, KABWG O-
TTOI0OATTOTE OPAAUA TTOU TTPOKAAEiITaI aTTO aKTIVOPBOAiIa Ba TTARgEl udvo Tov Evav aTrd Toug
OUO0 eTTeCepyaoTEG KAl OUVETTWG Ba aAAGgel Ta atroTeAéouaTa HOvo Tou €vog, KATI TToU Ba
avixveuBei otn ouvéxela. Kavoupe tnv (Aoyikr) utrdéBeon 611 N TBavOTNTA VA XTUTTIIOOUV
OU0 OWWATIdIa KOl VO TIPOKAAEOOUV OQAAUA KAl GTOUG BUO £TTEEEPYATTEG (ETTITPETTOVTAG
o€ éva OQAAUQ va TTOPAEIVEl aTTaPATHPNTO KAl VA TTPOKAAETEI ATTOTUXIG TOU GUCTAUATOG)
gival apeAntéa. Qotooo, Ta cuaTriyata DMR éxouv 2 onuavTika pelovekTriiuara. MNpwrov,
10 DMR atrairei dImmAaciacué 6Awv Twv Jovadwyv UAIKoU, eicdyovTag SITTAGoIa eTTIBGpUv-
on o€ em@avela. H auénuévn emmeavela ival 1diaitepa avemOuunTn o€ 6Aa Ta CUCTAUOTA
UAIKOU, €TT€10R ouvodeUeTal aTTd auénuévn KatavaAwaon evépyeiag Kabwg Kai atmd augnué-
VO KOOTOG KaTaokeung/ouokeuaoiag (packaging). Eidikd otnv TTepimTwon Twv cuoTnud-
TWV JE avoxA aTnVv akTIvoBoAia, n algnan Tng mM@AVEIAg TOU UAIKOU CUVETTAYETAI ETTIONG
aug¢non TnG mMOaveTNTAG EUPAVIONG OPOANATWY. AUTO cuupaivel TTEId T CUCTAUOTA
TTOU KaTaAQUBAvouv PeyaAUTePn ETTIQPAVEIQ EXOUV MEYOAUTEPN TTIBAVOTNTA va TTPOCRAN-
Bouv at1rd cwpaTidia akTIVOBoAiag, e CUYKPION UE CUCTAUATA PIKPOTEPNG ETTIPAVEIQG.
AguTepov, Ta ouotripata DMR xpeidlovTal pia govada yneogopiag (voter) TTou avixveuel
Ta OQPAAUATA OUYKPIVOVTAG TG ATTOTEAETUATA ATTO TIG AVTIVPAMUEVESG Jovadeg (T1.x. CPU).
E¢ opiopoU, autd 10 OToIXEiO TTPETTEl Va €ival povadikd Kal CUVETTWG €ival EUAAWTO Kal
ATTPOOTATEUTO. KaTA CUVETTEIR, N EKONAWON VOGS OPAAUATOS OTOV WNPOPOPO UTTOPEI va
00NYAOEl O€ ATTOTUXIO TOU CUOTHPOTOG KAl YIO VO PETPIOOTEI QuTO, TTPETTEI va XPNOIUO-
TToINB0oUYV £€apTAMATA AVOEKTIKA OTNV AKTIVOBOAIQ OTN OUYKEKPIYEVN PovAda, aufdvovTag
TTEPATEPW TO KOOTOG KATAOKEUAG. To TEAEUTAIO onueio €xel eyaAn onuaocia, dedouévou
0TI, Ol KOTAOKEUOOTEG EAPTANATWY AVOEKTIKWY OTNV AKTIVOBOAIa PEIVOVTal.

0.5.2 TMAegovalwyv NMoAuvnuatiopog (Redundant Multithreading)

O MAegovalwv MoAuvnuaTtiopdg (Redundant Multithreading) [9]-[11] €ival pia KA&Gon TeEXVI-
KWV avoxrg o€ a@aAuara pe TTAeovacuo Xpoévou (time redundancy), 61rou n TTAcovadouca
EKTENEOT CUMPAiVEl OE APXITEKTOVIKO ETTITTEQO KAI UAOTTOIEITAI UE BIAQPOPETIKA VAUATA TTOU
ekTeAoUvTal oTov eTTe€epyacTry. Me Tnv TTAcovadovta TToOAUVNPaTIoONO, KABe eVIOAA €TTO-
voAapBaveral Ox1 o€ EexwplioTous TTUprveg TNG CPU (0TTwg oTnVv TTEPITITWOTN TOU XWPIKOU
DMR) aAAG o€ BIaQOPETIKA VIOTA TOU TTPOoYpPAauuaTog aTtov idio TTupfva Tng CPU, kaBéva
atrd Ta OTToia EKTEAEI TIG iDIEC EVTOAEC TTAEOVACTIKA KAl OTN CUVEXEIQ ETTIKUPWVEI OTI OAEG
01 eKTEAETEIG TTaPryayav Ta idia atmoteAéopaTa, apa dev gixav oupfei opaAuara.

H mrapaAAayry Tou MAgovéalovtog MoAuvnuatiopgou oTnv otroia Ba 1TIKEVTPwWOOoUUE OVOud-
Cetai MAgovalwv MoAuvnuatiopog pe Tautdxpovn MoAuvnudartwon (Redundant Multithreading
with Simultaneous Multithreading (R-SMT)) [1]. H TTpocéyyion auTh XpnoIyoTToIEi TN JiI-
KPOOPXITEKTOVIKF TEXVIKI TNG TAUTOXPOVNG TTOAUVNUATWONG TTPOKEIPNEVOU VA EKTEAEITAI A-
TTOOOTIKA TO TTAEOVAlWY VAPa, dnuioupywvTag 2 vipata SMT kal avaBETovTag oTo KaBéva
1o QUTA TNV EKTEAECN EVOG avTIyPAPOU ToU idIou TTPOYPANHATOG. Z€ auTo TO OXAMA, TO
TTPWTO VAMA (TTPWTEUOV VAUA) EKTEAEI TIC EVTOAEG TOU TTPOYPAPMATOG, EVW TO OEUTEPO

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 14

(TTAeovadlov viua) TIG EKTEAEI EK VEOU Kal ETTIKUPWVEI Ta attoteAécpaTta. Eivar xprioiyo va
dlatnpeital To éva VAP EAAQPWG TTPOTTOPEUBHEVO OTNV KTEAEOT aTTO TO GANO. AUTO, £TTI-
TPETTEI pIa O€IPd aTTO BEATIOTOTTOINCEIG ETMIOOCEWY, Ol OTTOIEG ETTIKEVTPWVOVTAI OTNV IOEQ
OTI, €pdoOoV Kal Ta dUO VAPATA EKTEAOUV TIG iDIEG EVTOAEG Kal avapévouv va TTapdéouv Ta
idla aTTOoTEAECPATA, TO TTPOTTOPEUOUEVO (TTPWTEUOV) VANA UTTOPE va BonBraoel oTnv ekTE-
Aeon Tou oupayou (TTAeovAlovTog) VAUATOG, ETTITPETTOVTAG OTO TTAEOVAJOV VA EKTEAEOTEI
MO ATTOTEAEOUATIKG, XWPIG va eTTavaAdBel TNV eKTEAEGN EVTOAWY TTOU £XOUV AN OAOKAN-
PWOEI atTd TO TTPWTEUOV.

Mo cuykekpiuéva, TETOIEG BEATIOTOTTOINOEIG TTOU KaBioTavTal EQIKTEG aTTd TNV UTTAPEn Tou
TTPOTTOPEUGHNEVOU Kal oupayoU VIUATOG a@opouV TTpoavAakAnaon, TTpoRAswn diakAadwoe-
WV Kal TTPORBAEWN TEAECTWV TWV EVTOAWV.

0.5.3 MapdAAnAn Avixveuon Z@aApdatwyv pe xpion Etepoyevwy MupRvwy
H T1piTn TTpocéyyion avoxng OQaAUdTwy TToU CUPTTEPIAAPBAVOUNE OE AUTH TN CUYKPITI-
KA avaiuon cival n MapdAAnAn Avixveuon Z@aApdtwy pe Xprion Etepoyevwv Muprnvwv
(Parallel Error Detection using Heterogeneous Cores) [2]. 216x0¢ auTtri¢ TG PEBOGdOU
gival n avixveuon 1600 PETARATIKWY 600 Kal JOVIMWY GEAAUGTWY, dIaTNPWVTAS TTApAaA-
AnAa xapnAd K6oTOG O€ TTPOCTIOEUEVN ETTIQAVEIA, 10XU KAl £TTIO00T, KABWG Kal EAdXIOTN
ETTEPPRATIKOTATA OTNV OPXIKI MIKPOAPXITEKTOVIKA. Baoikr 10éa yia va emiTeuxbouv autd
oUuewva Pe TouTn TNV TTPOCEYYIon eival N TTapaAAnAoTroinon Tng avixveuong o@aiud-
Twv. AiTTAa oTov KUpIO €TTEEEPYAOTN EKTOG CGEIPAG, OTOV OTT0I0 EKTEAOUVTAI Ol EVTOAEG,
BpiokovTal BonBNTIKOI TTUPAVEG ETTECEPYQTTWYV TTOU ETTAVAAANPBAVOUV TIG iDIEC EVTOAEG, €-
TTUYXAVOVTOG TOV XWPIKO TTAEOVAO UG TTOU aTTAITEITAI YIa TNV avixveuon oc@aApdaTwy. Ol
BonOnTikoi TTuprveg gival XapnARg 1I0XU0G, EKTEAOUV € OEIpd Kal KATOAAPPBAvVOUV JIKpOTE-
pn EMEAVEIQ, ETITPETTOVTOG TNV ETTITEUEN TWV ETTIBUPNTWY XAUNAWY ETIBApUVOEWY 1I0XU0G
Kal eTTiQpavelag. H ekTéAeon oTov KUPIO TTUPAVA XwEICeTal o€ TUAMATA TTOU aTToTEAOUVTAI
atrd opICPEVO apIBUO BIadoXIKWY EVTOAWY Kal KABE TUAUO YETA TNV EKTEAECH TOU OTOV
KUPIO TTUPHVO EKQOPTWVETAI 0€ Evav aTrd Toug BondnTikoUg TTUPAVEG YIa ETTAVEKTEAEDN
Kal eTTaArBeucn. QoTdo0, eeIdn o1 BondNnTIKoI TTUPAVEG Eival HIKPOTEPOI gival ETTIONG TTIO
apyoi Kal auTté onpaivel 0TI N ETTAVEKTEAEON KABE TUAPATOG BIAPKEI TTEPICOOTEPO aTTO TNV
apxIKnA ekTéAean oTov KUpIo TTuprva. Eaitiag autou, kaBwg o kKUPIoG TTUPAVAS TTpoXwPd
oTnV eKTEAECT TOU TTPOYPAUHATOG, TTOAAOI BonBnTIKOI TTUPAVEG EVOEXETAI VO £EaKOAOUBOUV
va eTTaAnBevouy TTponyoulueva TUAKATA.

Ma va eravekTeAéoouv ol BondnTikoi TTUPrVES KABE TUAUA DIadOXIKWY EVIOAWYV aTTaITEITAI
n avtiypa@n TG apXITeKTovikig kartdoTtaong (architectural state) amd Tov kUpio TTupriva
o€ KGBe BondnTIKG, KATI TTOU KOBUOTEPET TOV KUPIO ETTEEEPYQOTH YA PEPIKOUG KUKAOUG.
Etriong, kaBuwg o1 BondnTiKoi TTUPAVESG UCTEPOUV OTNV EKTEAEDN O€ OXEON ME TOV KUPIO
TTUPAVA, Ta OEQOUEVA OTN PVAMN EVOEXETAI VA TTAVWYPOEPOUV aTTd ToV KUPIO TTUPAVA TTPIV
dlaBacTouv atrd Toug FonBnTIKOUG TTUPHVEG, ME ATTOTEAECHA Ol KUPIOI KAl Ol TTUPHVEG €-
Aéyxou va £xouv diafdoel SIaPopeTIKEG TINEG. Ta TO AOyO auTd, o1 TTUPAVEG EAEYXOU TTE-
piopifovTal atrod Tnv TPoécRacn oTnv KUpIa Pvrun Kal kB Tpdoaacn Tou KUpIou TTUpfva
oTnV KUpIa PvAun avatrapdyetal Kal atrobnkeveTal o€ £vav atmouovwTr) UAIkou (hardware
buffer) mou ovouddleTtal apyeio kataypagnig eopTwong-amobnkeuong (load-store log). E-
dv auTo To apxeio Kartaypagnig eOpTwonG-atmobAkeuong eival yeudTo, 6Aol ol BondnTikoi
TTUPRAVEG €ival EVEPYOI ETTAVEKTEAWVTAG KATTOIO TUAMA TOU TTPOYPAUUATOS KOl O€ QUTH TNV
TTEPITITWON, O KUPIOG TTUPHVOG TTPETTEI VA OTAPOTACEI TNV TTEPAITEPW EKTEAEDN KaI VO KA-
BuoTepnoel pExpl va atteAeuBepwBei £vag BondnTikdg TTUPHVaG.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 15

0.6 MeBodoAoyia

O1wg €xel yivel cagég aTo UTTOAOITTO KEiEVO, 0 KUPIOG OKOTTOG AUTHG TNG MEAETNG €ival
va ouykpivel TIg 3 peBddoUG avoxrg OQPOAPATWY o€ TECOEPIG AEOVEG: TNV IKAVOTNTA Avi-
XVEUONG OQAAUATWY, TNV KaBuoTépnon avixveuong, Tnv empdpuvan oTnv amdédoaon Tou
ETTEEEPYAOTH KAl OTO TTPOCTIBEPEVO KOOTOG 0€ UAIKO. TNa va TO ETMITUXOUHE aUTO, dIECAYOU-
ME éva TTEipaua £yXuong OQAAUATWY, TTPOCOMNOIWVOVTAG TNV TTAPOUTia OPAAUATWY o€ 3
OUCTHHATG -TO KaBEva atrd Ta OTToia XPENOIMOTIOIED Mia aTrd TIG UTTO JEAETN TEXVIKEG Qvi-
XVEUONG OQAAUATWV- EVW EKTEAOUME HIA TTOIKIAIG ATTO HETPOTTPOYPANPATA aTTd TN COUiTa
MiBench [12].

Ta Teipduarta Tou oxediadouue £xouv TNV €EAG dOUN: O€ KABE eKTEAEON TTPOYPANMATOG,
€10dyou e Eva OQPAAa o€ Evav TUXQIO KATaXwenTH O€ JIa TUXaia ETTIAEYUEVN XPOVIKH OTIY-
MA. Tia va yTTop€0oupe va CUyKpivoule TTIo dikala Ta atroTeAéouaTa HETAgU Twv 3 PeBO-
Owv, d1aTNPOUHE TOUG KATAXWPNTES TTOU EI0AYOVTAI KAl TOV XPOVO £yXUonG TOU OQAAUATOG
id1a peTagl KABe PeBOdoU. ExTEAOUUE TTAVEIANUMEVA UEYAAO apIBuS eKTEAETEWY, EYXED-
VTOG O€ OIAPOPETIKOUG KATAXWPNTES KAl O€ DIAYOPETIKOUG XPOVOUG, KAl KATAYPAPOUE TIG
METPIKEG TTOU HAG EVOIAPEPOUV.

Ma TRV aviXVeUoINOTNTA, KATaypa@ouue TNV €KBacn TG ekTéAeong, dSnAadn av To eyxXuo-
MEVO o@AAua odnyei o€ €va aTTd TA TTAPAKATW:

» ouvTpIBn (crash), yia TTapddelyua oe c@adAua Tunuartotroinong (segmentation fault),
ASyw TTapdvopung TTpocTréAaong VARG

* OKIVNTOTTOINON TOU ETTECEPYAOTA O€ Un avakrrioiun karaoraon (hang), n otmoia avi-
XVEUETAI HETA TNV TTAPEAEUCN OPICUEVOU XPOVIKOU dIACTHATOG.

* KavoVIK 0AokAnpwan 1ng ektéAeong (masked) xwpig TNV ekOAAWGON OTTOIOUDATTOTE
O@AAuaTog 0TO CUCTNUA

» oAokAnpwan NS ektéAeanc (silent data corruption (SDC)) xwpig Tnv ekdRAwon o-
TTOIOUBATTOTE OPAAUATOG OTO oUATNUA AAAG £xovTag TTapdgel AavBaouéva aTToTENE-
ouata

* EMITUXAG aviyveuon ato Tn PéBodo avixveuong o@AAaTog

MNa Tnv KaBuoTépnon avixveuong CQAANATWY PETPAUE TO XPOVO TTOU PeCOAQRBE peTagu
NG €1I0aYWYAS OQAAUATOG KAl TNG £TMTUXOUG avixveuong evog OQAAUATOG Kal yIa TNV €-
mpapuvan TNG amdédoong UETPAME TN METPIKN Twv EVTOAWV avd KUkAo (Instructions per
Cycle - IPC).

0.7 ATtroteAéopara kal AvaAuon

0.7.1 KaBuoTtépnon avixveuong c@aApdTwy

KaBuoTtépnon vnudtwy oto R-SMT

210 R-SMT, n kaBuaTtépnon oTnv oAoKARpwaon PIag eVIOARG aTTd To TTPWTEUOV VAUA Kal
TO TTAgovadov viAua, ovouddletal slack. Agdouévou 611 oto R-SMT n avixveuon a@aAud-
TWV TTPOYMOTOTTOIEITAI KATA TN CUYKPION TWV GTTOTEAECUATWY TNG KABE eVTIOAAC KaTA TNV
oAokAfpwar] Tng, To slack eival évag onuavTikdg TTapayovTag TTou CUPBAAAEI oTnv Kabu-
oTépnon avixveuong. 210 ZXAMa 1, digpeuvoue TTwg To slack peTaBdaAAeTal avaloya ue
T0 HEyeBog Tou atmopovwTh ouykpiong (buffer) oTov oTToio TO TTPWTEUOV VUG OTTOBNKEUEI
TA QTTOTEAECUATA TWV EVTOADV TTPOKEINEVOU va Ta aglotrolfoel To TTAeovadov yia Tn ouU-
yKkpion. AlamoTwvouue OTI, MIKPOTEPO PeEYEDBN TouTou TOU buffer odnyolv og PIKPOTEPO
slack. AuTo €ival avapevouevo, KaBwg 6tav To TTPWTEUOV VAA £XEl TOTTOBETHOEI TTEPIO-
00TepeG evIOAEG oTO buffer, ammd doeg €xel katavalwaoel To TTAcovadov, 1o buffer yepicel

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 16

60
max: 106 max: 745 max: 138 max: 611 max: 1000 Comparisan
q3: 300 g3 248 g3: 632 buffer size
50 1 med: 368 1
- e
wn -
g 40 3 100
a-, 30 =3 inf
I max: 206
9] q3:177
=204 med: 162
gi: 157
10 4 min: 129
0- - x = = = = = = Eas==c]

dijkstra djpeg fft ffti patricia gsort sha susane susans

Zxnua 1: AvamapdoTtaon pe Bnkdypauua TNG KavoviKAG KATavoung NG KabuoTtépnaong
vNudatwy oto R-SMT étav petaBdAAetal To péyebog Tou atmmopyovwth ouykpiong. Kdbe
opBoywvio TTEPIOPICETal TTPOG Ta KATW ATTO TO TTPWTO TETAPTNUOPIO (quartile) kal TTpog
Ta TTAVW atro TO TPITO TETAPTNUOPIO. H dlIduecog euTTiTITEl EVTOG TOU opBoywviou. To
evdoTeTapTNHUOPIOKS €UPOG (inter-quartile range) ival N atréoTaoN HETAEU TOU TTPWTOU KAl
TOU TpiTOU TETapTNHOpiou (dnA. To UWog Tou opBoywviou). O oupiTaEg eKTEIVOVTAI OTIG
ENAXIOTEG KAl PEYIOTEG TIMEG TwV Onueiwv dedopévwy ekaTépwBev kKGBe opBoywviou.

method
8000 1 mmm DMR
’g [R-SMT
26000 I ParDet
O
3 4000 I +
C
: T g
< 2000 4 * +
= = an &5 B
dijkstra djpeg fft ﬁ"ti patrlaa qsort susane susans

ZxNua 2: AvatrapdoTaon KAvoVIKRG KOTAVOMNG TNG KaBuaTépnong avixveuong yia Tig 3
pEBOBOUC.

TTAAPWG Kal TO TTPWTEUOV VAUQ TTPETTEI VO OTOUATACEI TNV EKTEAEDT, KOBWG dEV UTTAPXOUV
OIABE0IUEG KATAXWPNOEIG YIa TNV aTTOBAKEUCN TWV ATTOTEAECUATWY TWV ETTOUEVWV EVTO-
Awv. Q¢ atroTéAeopa, To TTAeoVAloV VA EKTEAEI avTi auTOU, TTPOXWPWVTAS TTEPAITEPW
OTNnV €KTEAEON KAI CUYKAIVOVTAG PE TO TTPpwTEUOV, Apa heIvovTag To slack. Asdopévou 6Tl
ME MIKpOTEPQ PEYEDN buffer, To TTpwTEUOV VUG KABUOTEPEI CUXVOTEPQ, MIKPOTEPO WEYEDN
buffer odnyouv TeAikd o€ PIkpOTEPO slack PeTAEU Twv VNPATWY.

Mérpnon Tng kaBuoTépnong avixveuong

Ooov agopd TNV KABUCTEPNON AViXVEUONG, TTOU ATTEIKOVICETAlI OTO ZXAMA 2 yIa OAEG TIG
pEBODOUG, £¢AyoulE Ta akOAoUBa ouuTTEPAOHATA:

» To DMR Trapouciddel TiIg XaunASTEPES EAAXIOTEG (O€ OAA TO HETPOTTPOYPAUHUATA) KAl
péoeg (o€ 8 atrd Ta 9 PETPOTTPOYPANUATA) TIUEG OE OUYKPION WE TIG AANEG 2 ueBO-
doug. AuTO gival avauevouevo a@ou o1 2 €TTECEPYAOTEG EKTEAOUV TAUTOXPOVA TIG
id1eG evioAéG. Q¢ ek TOUTOU, N KaBuoTépnon yia To DMR gival poévo o xpovog petagu
Twv oTadiwv atrokwdikoTroinong (decode) kai OAOKARpwong (commit).

* [a 1o R-SMT, o1 eAa@pwg uPnAdTEPES TINEC aTTodidovTal OTO slack PeTAgU Twv 2
VNUATWV.

» TéAog, To ParDet epgavicel otaBepd uwnAdtepn eAGXIOTN KaI p€on KaBuaTépnon avi-

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 17

XVeuong, Adyw Tou yeyovoTog OTI Ol BonBnTIKOI TTUPKVES gival TTIO apyoi (agou givai
MIKPOTEPOI KOl O€ O€IPA) Kal 0 KUPIOG TTUPRVAG TTPOOSEUEI TTEPIOCATEPO OTNV EKTEAE-
an.

0.7.2 Avixveuoiyornra

MNa va aloAoyAooupe TNV aviXVEUOIUOTNTA KABe ueBodou, ekTeAoUE DUO OEIPEG TTEIPO-
MATWY OTTWG TTEPIYPAPETAI TTAPATTAVW, Mia YE METAPRATIKG Kal Hid PE MOVIMO OQAAUaTa.
MpayuaTtoTroloUue €TTioNg TIG iBIEG eyXUOEIG OQOAUATWY O¢ £va ouoTnua Xwpeig duvaTto-
TNTA AviXVEUONG GQAAUATWY, YId VA TO XPNOIMOTIOINCOUNE wg Bacn. ATé 10 ZxAua 3
OXETIKA JE TO TTEIPAPA TWV PETARBATIKWY COAAUGTWY avayvwpilouue Ta ENAG:

* 2TO QTTPOCTATEUTO CUCTNMA, TTAPATNPOULE OTI OAEG O1 EyXUOEIS OQAAUATWY 0dnyouv
€ite o€ crashes, eite o€ masked, €ite o€ hangs. O1 masked ekTeAéoeig opeilovTal 0TO
YEYOVOG OTI N £€yXUOTN OTOV OUYKEKPIUEVO KaTaxwpnTr v odnyei oe Kauia aAhayn
oTa aTToTEAEOPATA TNG EVIOAAG. Ma TTapddeyua, autd Ptropei va cupPei edv n Ti-
MR Tou €TTNEEAOPEVOU KATAXWPENTA TTAVWYPAQETAI OTTO UIO JETAYEVEDTEPN EVTOAN
(6TTwg pia pagn AND pe 0).

» To ParDet avixveuel Tov HEYOAUTEPO QPIOUO CPAAPATWY. AUTO OQEIAETAI OTO YEYOVOG
611 n uhotroinon Tou ParDet yia Tnv aUyKpIon apXITEKTOVIKWY KATAOTACEWY YIA TNV
avixveuon o@aAudtwy (o€ avtiBean Pe TN GUYKPION ATTOTEAETUATWY) XOPaKTNPICEl
wg avixveupéva o@aiparta Ta otroia yia 1ig DMR kal R-SMT Ba tagivopouvtay cwoTtd
w¢ masked.

» To R-SMT avixvelel mepioodtepa opaApaTa o oUuykpion pe 1o DMR, yeyovog mrou
atrodideTal aTn dour TOU TTEIPAPATOG £yXUONG OQAANATWY. a va eEac@AAIOTEN HIa
dikain ouykpion, o€ OAEG TIG HEBODOUG, £yXEOUNE TOUG IBIOUG KATAXWPNTEG APOU
TTapEABEI TO id10 XpOoVIKO dIaoTnua (TTou HETPATAI aTTd TNV £vapén TNG EKTEAEGNG TOU
TTpoypAuMaTog). Q¢ atroTéAeopa, Ta idia o@AApaTa eyxéovtal vwpitepa oTtn ocipd
TOU TTpoypdauuartog yia Tnv R-SMT, oe ouykpion pe Tnv DMR. 'ETol, Ta o@dApata
TTOU €KONAWVOVTAI VWPITEPA €XOUV PJeyaAUTEPN TTIBaVOTNTA va dladoBoulv o€ TTEPIo-
00TEPOUG KATaXWPNTEG HECW €EapTACEWY OEDOUEVWYV KaI, KATG CUVETTEID, VO AA-
AOILHOOUV EVOEXOMEVWG TTEPICTOTEPES EVTOAEG, KAl WG €K TOUTOU gival TTIBavOTEPO
Va EVTOTTIOTOUV.

* Mapd 10 yeyovog 611 To DMR gival n pébodog pe 1o XapNASGTEPO TTOOOOTO EVTOTTIOE-
VWV OQOAPATWY, TTAPOUCIAlEl €TTioNG TIG AlyOTEPEG aTTOTUXIEG (crashes kal hangs).
AuTo gival avapevouevo, dedouévou o1 otnv DMR, 10 o@daApa evtoTrifeTal TO Ou-
VTOMOTEPO OUvVaTO XPOvo, OTav €KONAWVETAI YIa TTPWTN YOPA& OTA ATTOTEAEOUATA
TWV EVTOAWY TOU TTPOYPAUUATOG, BEDOUEVOU OTI, ETTEION OI 2 ETTECEPYAOTEG EKTEAOUV
TAvTa TNV idIa EVTOAN, oTToladATTOTE dlapopd Ba eVTOTTIOTEI OTAV N TTPWTN ETTNPEA-
(Ouevn evToAn Ba oAokAnpwOei. AuTo dev I0XUEI OTNV TTEPITITWON To R-SMT, étT0U,
OTTWG avaAUETal TTAPAKATW, €Vva OQAAPO UTTOPE va EVTOTTIOTEI ETA T OAOKAApWON
€VOG apIBuoU eTTnpealddpevwY evToAwyY, Adyw Tou slack peTalu Twv vnudtwy. ETro-
MEVWG, N £yKaipn aviXveuon ATTOTPETTEI TNV TTEPAITEPW BIAS00T TWV CPAAPATWY OTO
ouoTnua, K&t TTou Ba putTopouoe va odnyroel o€ crashes i hangs. AnAadn, n HIKpA
kaBuoTépnon avixveuong Tou DMR (n otroia emmiBeBaiwBnke Kai Ye To TTpOoNyoUEVO
Treipapua) cupBAAAEl oTa XaunAd TTOOOOTA ATTOTUXIAG.

* O JIKPOG apIBPdG crashes TTou ep@avioTnke oe opiopéva benchmarks (1r.x. sha)
o1o DMR, ptropei va atrodoB¢ei otn 81ad00N TOu OPAANATOS KATA TNV TTEPIOO0 PETAEU
aTTOKWAIKOTTOINONG Kal déopeuong (avixveuon o@AAPaTog).

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 18

B ES B ES BET BE® BED BES BEL B EL B EL
SxSQn SxSA SxSn SExSA SxSA SxSA SxSA SxSQ SxsSA
ES0s5 25us 25us 8505 25Y5 S5V5 8595 exds esds
SOQxa SQca SOxra SQca SOxn SQca SOxo SOca SQxn

100 -

80 A

60

X

40 A

20 A

0.
dijkstra djpeg fft ffti patricia gsort sha susane susans

B masked HEE sdcs B detected BN crashes HE hangs

ZxNua 3: ATroteAéopata TNG £yXuong HETARATIKWY CQOAPATWY yia TIg 3 yebBddoug.

100 7
80 A

60 A

%

40

20 A

dijkstra djpeg fft ffti patricia qgsort sha susane susans
mm masked BN sdcs B detected B crashes HEl hangs

>xAua 4: AmroteAéopata TNG £yxuong HOVIHWY COAAUATWY yia TIg 3 neBGdOUG.

Ooov agopd 10 TTEIPAA TWV MOVIHWY COAAUATWY, aTTO TO ZXH A 4 YTTOPOUNE VA CUMTTE-
PAVOULE:

* Mg Tnv TTapoucia JOVINWY OEAAPATWY, TO ATTPOCTATEUTO CUCTANA EPUPaViCel TTOAU
TEPICOOTEPQA crashes o€ OAa Ta PETPOTTPOYPAPUATA, ETTEION £TTEION T CQAAUATA
gival yévipa kai diadidovral TTEPICCATEPO 0T POI TOU TTPOYPAUHPATOG O GUYKPIO
ME Ta YeTaBaTikd, KaBioTwvTag 1o TTPOYPAP KA TTIo TTIBavO va KaTappeUoEl.

» To uwnAGTEPO TTOCOCTH avixveuong TTou epgavifouv Tooo Ta cuoTiuara DMR éco
Kal Ta cuoTAuaTta R-SMT o€ 6Aa 1a JETPOTTPOYPAUUATA O GUYKPION ME TIG EyXUCEIG
METAROTIKWY OPAAUATWY UTTOPEI va atrodoB¢ei Kal TTaAI aTov id1o Adyo, dnAadn oTa
MOvipa o@dApaTa TTou diadidovTal TTEPICCOTEPO OTO GUOTNUA, AAAOIWVOUV TTEPIO-
OOTEPA OTTOTEAECPATA EVTOAWY KAl CUVETTWG €ival TTIo TTIBavo va avixveuBouv.

* TéNog, To ParDet €xel TO HIKPOTEPO TTOCOOTO EVTIOTTIOPEVWY TQAAUATWY, YEYOVOG
TTOU aTTOdIdETAI OTNV AUENUEVN KABUOTEPNON aviXveuonG.

0.7.3 EmBdapuvon amrdédoong
» Ooov agopd Tnv empdpuvon amédoang (ZxApa 5) Tou DMR, yttopoUue va Trapa-
TNPAOOUNE OTI auTh €ival n eAaxIoTn oTig 3 peBddoUG, KaBwg diatnpei ouolaoTIKA
TNV idla amdédoon Pe TNV Kavovikh (Un TTpooTateupévn) ekTéAeon. OTTwg €Xoupe
egnynoel autn n péBodog dev elodyel ETIPPAdUVON OTOUG ETTECEPYAOTEG.

* H mapdAAnAn avixveuan éxel (apeAntéa) xapunAotepeg TiuéG IPC, Adyw Tng emidpa-
oNG TNG AvTIYPAPNG TG APXITEKTOVIKNG KATAOTAONG TTOU KaBUoTEPE TOV KUPIO TTU-
priva.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 19

~ 2.4 s DMR
g _20- R-SMT
82 1.6+ Emm ParDet
ST
§§ 1.2 1
g (9] 08 -
& 04

0.0-

dijkstra djpeg fft ffti patricia gsort sha susane susans

2xNua 5: EmpBdpuvon amoédoong (slowdown) pe Tn petpikn IPC yia 1ig 3 pebddouc.

» TéNog, T0 R-SMT éxe1 Tn Xe1pdTepn atmdédoaon. MtmopouUpe va 1o e€nyfooupe pe Bdon
Toug akdAouBoug 2 Adyoug:

— OTO KOTANEPIOHO OPICHEVWYV OTOIXEIWV TNG MIKPOOAPXITEKTOVIKAG HETAEU TWV Vn)-
paTwyv SMT -i1diaitepa TNG povdadag avaktnong (fetch)- eummodilel Tnv atrédoon
Kal dnuIoupyei guupopnan.

— oTnv ammwAela emddoewv AOYw Twv KABUOTEPHOEWY TTOU TTPOKAAOUVTaI ATTO
TOV YEPATWY OTTOPOVWTA CUuyKpioewv (comparison buffer)

0.7.4 Ko6oT10G 0€ UAIKO

Ztov [Mivaka 1, ekTipoUue 10 KOOTOG O€ emPAveia KGBe ueBOdou, ae cuykpion Pe éva O-
TPOCTATEUTO oUoTNUA. YTToBéToupe 6T To DMR avTiypd@el oAOKANpo Tov TTUprjva Tou
emmegepyaoTr], pue amoréAeopa 100% empBdapuvon. MNa v R-SMT, n em@dveia augdve-
Tal Adyw OUO0 cuvicTwowv: Tou SMT Kal Tou aTTodovwTr oUykpIiong. ocoTikoTTolouuE
TNV MITTAOV emM@AveEIa TTou aTTauTel TOo SMT pe Bdon Tn oxeTikh BiBAoypagia [13]-[15],
TOTTOBETWVTAG TNV O€ AlyOTEPO ATTO 6% TNG TTEPIOKNG TOU TTUPKVA, PE BACN TTPAYUATIKES
oxedidoeig. To k6oToG Tou buffer ouykpiong (10 kataxwpAoewy), UTToAoyileTal € OUYKPI-
on e TNV Kpu®A pvAun L1: O atropovwTtig 10 kataxwpriocwy avTigTtoixei 1o 0,125% Tng
Kpueng pvnung L1 kai cupBdaAAel og TpOoBeTn augnon Tng em@eaveiog katd 0,04% [16].
Ma v MNapdAAnAn Avixveuon, n em@aveia auédveral TO00 Adyw Twv BondnTiKwy TTUpr-
VWV 600 Kal Tou apxeiou kataypa®ng. Kal yia Ti¢ U0 CUVICTWOEG ETTAVAXPNOCIUOTTOIOUE
Ta amoteAéoparta aTmo Tnv apxikr dnuoacicuon [2], KaBwg JovTeAOTTOIoUUE £TTIONG TNV id1a
MIKPOOPXITEKTOVIKI).

Mivakag 1: KéoTog o€ UAIKO

. EmBdpuvon o€ UAIk6 avd e§dpTnpa . .
MéBodog E¢dprnua EmBapuvon 2UVOAIKA ETIQAVEIX
Unprotected - - 1x
DMR MAgovadwy TTuprvag 100% 2X
KdéoTog Tou SMT 6%
RSMT A ronovwTiic cuykpioewv (10 BE0ewY) 0.04% 1.0604x
Bon@ntikoi rupfveg (12) 20.2%
ParDet Apxeio KaTaypagRc (36 KiB) 3.8% 1.24x
0.8 Xuovoyn

2TV TTapoUloa epyacia YeAeTACOUE PEBOSOUG avoxAG OPAANATWY TTOU AEIOTTOIOUV TEXVI-
KEG MIKPOOPXITEKTOVIKNG, KATAAANAEG yIA ETTECEPYAOTEG OE OIOOTNHIKEG EQAPHOYEG. ZU-
ykpivape 3 pebddoug, Dual Modular Redundancy, n otroia xpnoIOTIoIEiTAl EUPEWG O€
TTPAYMATIKES BlaoTNMIKES aTTooTOAEG, Redundant Multithreading with Simultaneous Multi-

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 20

threading, n otroia xpnoigotroigi vijuata SMT yia va auroel Tnv ammédoon TNG ETTAVEKTEAE-
ong, kai Parallel Error Detection with Heterogenous Cores, n otroia €ivai n mmo ouyxpovn
MEBOOOG avoxAG OPAAUATWY WE MIKPOOPXITEKTOVIKN utrooThpIEn. O1 3 péBodol cuykpi-
Onkav og 4 Ggoveg: i) TRV IKAVOTNTA avixveuong o@aApdTwy, ii) Tnv kaBuoTtépnon avi-
XVEUONG, iii) To KOGTOG 0€ UAIKG (eTTIQAVEIR), TA OTTOIO €ival TIPWTAPXIKNAG ONUACiag yia Tig
OlOOTNUIKES EQAPUOYEG, Kal iv) TNV emBdpuvon o€ atrédoar, To OTToio TTIOTEUOUE OTI Ol
avadudpeveg e€eNiCEIC aToV TOPE TOU SIOCTAUATOG Ba KATAOTACOUY ££i00U GNUAVTIKO TO
ETTOPEVA XPOVIA. AVOKOAUTITOUWE OTI TO R-SMT €xel oxedov ion IKavoTnTa avixveuong Kai
kaBuoTtépnon e 1o DMR, evw diatnpei eAAXIoTo TO mMITTAEOV KOOTOG G€ UAIKO Kal UTTO-
BaBuilel eAdxioTa TNV amédoaon Tou eTTegepyaaTr. ATTO TNV AAAN TTAEUpd, eTTaAnBeUoue
Ot n NMapdAAnAn Avixveuon TTapouciadel JIKPOTEPO KOOTOG O€ UAIKO OAAG UTTOAEITTETAI O€
IKAvOTNTA KAl KABUOTEPNON QViXVEUONG, TA OTToIa €ival Un EAKUCTIKA XAPAKTNPIOTIKA yia
UTTOAOYIOTIKA oUuCTAuATA OTO dIACTNUA.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 21

1 Introduction

Space is a hostile environment for electronics. Due to the lack of atmosphere and the
presence of a plethora of radiation sources, such as cosmic rays or the Sun, spaceborne
computer systems are susceptible to failures caused by the natural radiation of the space
environment. Reliability and fault tolerance, are of primary importance as computer sys-
tems execute mission-critical tasks and any malfunction can turn out dangerous and de-
structive. From the earliest space programs until today, a variety of fault tolerance meth-
ods have been employed and successfully reduce risk and prevent failures. For computer
systems, such techniques detect failures, isolate defective components, and restore the
correct function of the system. In this work, we focus on methods that secure the Cen-
tral Processing Unit (CPU) of any computer system in spaceflight. Even if the maijority of
the conventional fault tolerance techniques for CPUs exhibit high capabilities in detecting
radiation-caused errors, they greatly increase the power consumption of the design and
the overall chip area. That is because conventional methods usually duplicate large parts
of the system to create redundant copies. Energy consumption is a significant constraint
for space electronics since space vehicles have limited battery capacity. Chip area is
also important since larger designs consume more power and are also more vulnerable
because they have a higher probability of getting hit by a radiation particle. For these
reasons, approaches of CPU fault tolerance which combine fault detection efficiency with
low power and area overheads are desirable.

Computer architecture is a subdiscipline of computer engineering with microarchitecture
being the internal organization and implementation of a processor. Both are tradition-
ally offering design solutions that balance different constraints such as performance and
throughput, energy consumption, cost, etc. Therefore, novel ideas from that domain can
be utilized to optimize fault tolerance approaches and create robust CPUs that also satisfy
the tight energy consumption and area requirements. Prior work in computer architecture
has indeed already presented such approaches. However, these existing approaches
have not been studied enough to be proven suitable for real-world applications in space,
since in many cases, fault detection has not been evaluated, whether in other cases,
uninformed assumptions about the space environment are being made, or the unique
requirements of on-orbit systems are misunderstood.

In this work we seek to bridge the gap between real-world space systems and fault tol-
erance approaches that exploit microarchitectural trends, showing the latter can increase
the reliability of computer systems and reducing energy consumption and area, compared
to the conventional methods used in space today.

In this study, we compare 3 methods to demonstrate that claim:

» Dual Modular Redundancy, which is broadly used in space systems, but features
high overheads in area and power.

* Redundant Execution with Simultaneous Multithreading [1], which leverages promis-
ing techniques from computer architecture but has not been adequately evaluated
regarding error detection.

» Parallel Detection with Heterogenous Cores [2], which represents the state of the
art regarding performance and area overheads.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 22

We implement and evaluate all techniques in a simulated processor core, extending an
open-source simulator that is widespread used in computer-system architecture research.
Subsequently, we conduct a comparative assessment of these techniques, with criteria
the effectiveness of error mitigation, the latency associated with error detection, the over-
head introduced on processor performance and the area overhead introduced to the de-
sign, namely criteria aligned with the unique demands of spacecraft systems. For doing
so, we design and employ a fault injection campaign, inserting errors into the processor.

We believe our research is timely, as it stands at the intersection of critical technological
shifts (increased error rates due to transistor shrinking, penetration of cloud computing in
space) and can potentially offer solutions to the current and future challenges in space-
borne computing.

1.1 Project Requirements
While designing this master thesis project, the following requirements and goals had been
set:

1. The broader goal of the project is to examine techniques for enhancing the reliability
of processors under the effect of radiation in space environments.

2. The methods are desired to be at the microarchitectural level and to exhibit low
power overhead to the original design, minimal modifications/extensions to the ex-
isting architecture, and small additional area footprint.

3. The criteria on which the analyzed methods should be evaluated are both the impact
on the performance of the processor/system and the fault coverage of the design.

4. For this, selected methods will be implemented in a simulator environment.
5. The implementation should allow the measurement of the proposed metrics.

6. More specifically, the implementation should allow error induction in the system un-
der test, to be used for the characterization of the efficiency in error detection and/or
correction and the calculation of the relevant metric.

7. The implementation should be close to reality for specific aspects related to the
above metrics, producing rational results. Where the designed system diverges
from real conditions, sensible and acceptable assumptions should be made.

8. The system on which the proposed methods will be realized in the implementation
should also be indicative of the ones used in real space applications/missions.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 23

The rest of the text is organized as follows: In Chapter 2, we describe typical applications
of computing systems in space missions, along with the unique requirements the space
environment imposes on such systems. We also present examples from real-world sys-
tems and fault tolerance methods used in recent space programs. In Chapter 3, the effect
of radiation on electronics is analyzed. We describe the sources of radiation in space, the
effects of radiation on electronics, and the interaction mechanisms of radiation particles
with digital systems, specifically SRAM devices, DRAM devices, and logic. In Chapter 4
we give an overview and background knowledge of computer architecture concepts useful
for the understanding of the remaining text and necessary for the explanation and analy-
sis of the microarchitectural techniques we will be implementing. In Chapter 5 we present
and discuss the 3 fault tolerance methods implemented, evaluated, and compared in this
study. Chapter 6 describes the simulator tool used in this study, the design choices and
implementation of the studied fault tolerance techniques and the implementation of the
fault injection. In Chapter 7 we present the methodology behind the conducted evalua-
tion experiments, the obtained results, and the conclusions drawn. Finally, in Chapter 8
we give some conclusions and ideas for future research directions.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 24

2 Spaceborne Computer Systems

In this chapter, we discuss computer systems operating in spaceflight missions. We start
by describing the tasks and applications computer systems perform inside a spacecraft.
Next, we analyze the requirements of these systems emphasizing their differences from
terrestrial computers, mainly the need for fault tolerance. We continue by describing key
technologies used in space computing systems to highlight that the need for energy ef-
ficiency conflicts with systems of high computing capabilities. Based on that, we claim
that in the future, more performant systems will be in increasing demand and hence solu-
tions that combine low power consumption with performance are important. Last, we give
real-world examples of fault mitigation techniques used in space and avionics programs.

21 Applications of Onboard Computing

In 1961, the Mercury spacecraft of the first manned spaceflight program of the United
States, operated without any on-board computer [3]. Computer mainframes on Earth
performed all the necessary calculations for orbit control and re-entry, which were then
transmitted over radio to the spacecraft. The same thing was also true for the first 15
years of unmanned space exploration as well as for the Soviet Union’s counterefforts.
However, 8 years later, in 1969, the moon landing would have been inevitable without the
use of onboard computer systems. As a matter of fact, the computer system prototypes
for the Apollo missions from 1962 to 1968 consumed two-thirds of the global supply of
integrated circuits [4]. Nowadays, computers are integral components of all spacecraft
and on-orbit systems, part of every mission subsystem, and support all operations.

More specifically, some examples [17], [18] of such subsystems are:

+ Altitude and orbit control, with computer systems acting as intelligent controllers in
the navigation subsystems, calculating and adjusting the trajectory in both nomi-
nal flight conditions and non-nominal cases (such as emergency situations). Such
control tasks are math-intensive, require high numerical accuracy in the produced
results, and impose tight timing constraints.

» Telecommands execution, that is remote system control and monitoring, allowing
the remote issue of commands from the mission control stations on Earth.

» Data Acquisition and Telemetry, by gathering the required data for determining the
vehicle’s position, formatting and compressing data in order to reduce the downlink
bandwidth and transmitting them to the ground stations or saving them on local
storage. Since the collected data needs to be manipulated and compressed before
transmission, hardware systems for telemetry often include specific architectures
such as signal processors, hardware accelerators, etc.

» Time synchronization, for ensuring that all spacecraft subsystems are synchronized
with respect to Universal Time Coordinated (UTC). This is crucial for orbit determi-
nation and continuous knowledge of position as well as high timing precision.

* Failure detection, revealing faults or anomalies in subsystems by implementing error
detection mechanisms.

* Isolation and Recovery, isolating faulty components, recovering from failures, and
maintaining sound functionality.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 25

* Power Monitoring, securing reliable, ongoing power supply to all subsystem mod-
ules, coordinating the storage, distribution, and conversion of power in the space-
craft, and orchestrating the transition between the various reserve power sources
(i.e. electrochemical/batteries and solar generated)

» Thermal control, measuring the characteristics of the outer environment and main-
taining all components within acceptable operational temperature margins.

* Payload. Computer systems are present also in the payload, in the management
of scientific experiments, i.e. for processing collected data from scientific instru-
ments. The cases of high-rate payloads, such as in the imaging of communication
applications, impose the need for higher bandwidth data busses and also increase
the requirements of computer systems performance and usually include complex
operations such as Fast Fourier Transforms or image processing.

Lastly, it is worth noting that recent trends such as cloud or edge computing are pene-
trating into satellite systems [5], especially given the increasing recent deployments of
satellite constellations. These computing paradigms, enable computation closer to data
sources, and as a result, can significantly reduce the requirements of downlink bandwidth
and increase availability. However, they alter the scenery of orbital computer system re-
quirements, since require systems with higher processing capabilities. As a result, we
believe that this work, which examines fault tolerance while also taking into account other
requirements such as performance, is timely since spaceborne computer systems are
becoming increasingly complex and potent.

2.2 Spaceborne Computer Systems Requirements

Spaceborne computing systems have a set of unique requirements due to both the na-
ture of the space environment and the criticality and cost of space exploration. Extrater-
restrial environments are harsh not only for electronics and computing systems but for
most components of a spacecraft. Space-grade technology needs to withstand extreme
forces and vibrational sock, a wide range of temperatures ranging from decades below
zero Celsius to hundreds of Celsius, and radiation. Additionally, systems need to operate
by consuming minimal power, since energy sources in space are limited: the cost and
weight of batteries make impossible the abundance of stored energy and solar energy
might not always be available, especially in planetary exploration where clouds or dust
particles might shield solar panels from solar rays. On top of all of these, for a lot of inter-
planetary or space exploration programs, missions take years to reach their destination.
This requires the long-term operation of all subsystems which need to function correctly
and autonomously for long periods of time, unattended, without human intervention, su-
pervision, or frequent attention from the ground stations, and without the capability of
extended repairs. All these constraints are present also in the design and operation of
spaceborne computer systems. It is clear that availability and reliability are the two fun-
damental properties computer systems in space need to satisfy, combined with the cost
of manufacturing and design, testing capability, and development time. The central part
of the design of computing systems that will operate in space is the minimization of risk.
Along with this, systems must be able to detect failures quickly. Additionally, electronics
need to have low mass and volume and consume minimal power. Especially given the
recent trend of electronic components shrinking, space technology shifts towards more
dense and integrated systems, reducing power even further. [19]

When it comes to minimisation of risk, robust systems are a priority. Electronic systems
need to be fault tolerant against failures not only attributed to radiation but also i.e. due

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 26

to extreme vibration (important for Printed Circuit Boards), hardware malfunctions due to
component aging, and software bugs. For example, in one of the training simulations
for the flight of NASA's Space Shuttle, all 4 redundant flight controllers simultaneously
become unresponsive because of a software bug (involving the use of a GOTO instruction)
[20].

Radiation is nevertheless one of the main sources of failures. Systems in space are not
protected by the atmosphere and being exposed to radiation is vulnerable to radiation-
induced errors. In this work, we are focusing on errors solely caused by radiation on
computer processors. However, space is not a homogenous environment with respect to
radiation. Radiation environment is defined by the orbit of the spacecraft.

2.3 Technologies used in Space Computer Systems

All the embedded computer systems used in space, are real-time systems, under power
and timing constraints. Real-Time Operating Systems are being used to schedule the
various tasks for execution into the CPU and secondarily to run diagnostic tests to verify
the correct function of the system and manage memory fault detection and correction.

Firmware -namely software loaded in Read Only Memories (ROMs)- is typically used for
critical processes, since it is not susceptible to hard faults, since ROMs are more robust
and less vulnerable. Along with firmware, ROMs might also store subsystem parameters
but have the drawback that cannot be modified after launch.

Regarding hardware selection, space agencies often seek and use components behind
the state-of-the-art time of flight. The reason behind that choice is that proven equipment
and mature techniques are more thoroughly tested and safe. The same goes for design
simplicity since complex designs introduce a greater risk of errors or bugs. Regarding
processors, all CPUs used by NASA by 2012 [21] are simpler designs and hence less
performant compared to the ones used at that time in high-performance systems or even
desktop/mobile systems on Earth. Nonetheless, there are various computationally inten-
sive operations in both manned and unmanned space applications that require potent
CPUs, such as systems with high fidelity or autonomous operation, especially when it
involves rapid transitions between orbits and travel to distant targets. Accurate altitude
knowledge and control demands accurate sensors with complex drivers which in turn
also demand potent CPUs. To give an example, to satisfy the high calculating capabili-
ties needed for the Space Shuttle operations, the computers of the Space Shuttle were
extremely energy-consuming compared i.e. to the power supply of a deep space probe

[3].

To conclude, in conventional spaceborne CPUs, performance requirements are increas-
ing, both due to the penetration of cloud computing in space as we showed before, as well
as due to inherently computationally demanding tasks. There exists a tradeoff between
performance (which requires more power) and energy constraints (which aim to reduce
power consumption), thus this is another reason we find this study current.

Lastly, during the last few years, there has been a shift in the space industry from custom
parts designed specifically for space to commercial products. Commercial-Of-The-Self-
Components (COTS) are appealing since require less testing, are cheaper, and cut down
time-to-market nearly to zero. Are, however, more vulnerable to radiation errors.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 27

2.4 Real-World Examples of Fault Tolerance in Space

Missions

In 1961, rocket-borne processors had an average Mean-Time-to-Failure of just 15 hours
and by the flight of the Apollo program, this has been increased by over to orders of
magnitude. [22]. It has been made clear that computer systems play a critical role in the
success of modern space missions, enabling and ensuring proper function, data collection
and transmission, and the execution of the scientific experiments of each mission. For
these reasons, fault tolerance is of great importance.

At the system architecture level, space programs had been using either redundancy or
distribution of processing, to mitigate faults. Redundancy replicates the computations
whether distributed processing alienates single points of failure. Usually, for flight-critical
components, redundancy is preferred [18]. Other methods of fault mitigation are watchdog
timers with which system hangs are identified, power cycling, or (for hard faults) switching
to redundant hardware. Memory is usually protected by Error Detection And Correction
codes (EDAC), such as Hamming. Nevertheless, this is not a panacea, since too long
scrubbing times leave the system vulnerable to errors, whether short ones consume ex-
tensive processing time.

At the hardware level, radiation hardening has been the method of choice. Radiation-
hardened electronics are manufactured with processes that make them resistant to radiation-
induced malfunctions. However, during the last years, an increasing number of radiation-
hardened manufacturers are ceasing operations [23] which makes other approaches like
the ones evaluated in this work much needed.

2.5 Summary

This chapter centered around spaceborne computing systems. We described the applica-
tions of such systems, present in every spacecraft component, from telemetry to payload
experiments or power management. We tried to highlight the vastly different requirements
space computer systems have, compared to systems operating on Earth, with most im-
portantly the need for high reliability and safety. We also referred to the computing tech-
nologies used in space, that is real-time embedded systems often of previous generation,
but with increasing demands for performance. Finally, we presented real examples of
fault-tolerant computer systems from space and avionics flights.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 28

3 Radiation-induced Errors on
Electronics

One of the most notable differences between Earth and space is the higher radiation
levels present in the latter. Although Earth is protected by the atmosphere and magnetic
field and thus maintains the low radiation conditions necessary for human life, the same
does not hold for extraterrestrial environments, where radiation poses a significant risk
both for astronauts traveling in manned missions, as well as for spacecraft equipment
and instruments.

In this chapter, we give an introduction to the origins of radiation in space and the effect
it has on electronics. We structure the following analysis by differentiating between i)
the sources of radiation in space, ii) the effects on electronics, and iii) the underlying
mechanisms in the interaction of radiation particles with digital circuits specifically.

3.1 Sources of Radiation in Space

Radiation in space originates from 3 sources: Galactic cosmic rays, Trapped radiation,
and Solar particle events.

3.1.1 Galactic Cosmic Rays

Galactic cosmic rays (GCRs) are charged particles originating outside of our solar system,
traveling through space with speeds close to the speed of light. The Austrian astrophysi-
cist Victor Hess was honored with the Nobel prize in 1936 for their discovery with high
altitude balloon experiments in 1912 [24] and today it has been established that cosmic
rays are emitted during supernovae eruptions within our galaxy, with the main evidence
supporting this being their particle composition. GCRs consist of electrons and ionized
nuclei with the latter of a mix of 90% protons (hydrogen nuclei), 9% alpha particles (helium
nuclei), and 1% heavier nuclei [25]. Within that 1% (heavier particles with Z > 2), certain
elements are found in abundance in cosmic rays but are absent in solar system mate-
rial (and vice-versa). Moreover, other groups of elements that are present in the particle
mix are considered to be the product of collisions with the interstellar matter [26]. Those
2 observations confirm that GSRs have traveled through the interstellar medium before
reaching our solar system and are not emitted from bodies within that.

Regarding the radiation hazard of GCRs, it is worth noting that the nuclei heavier than
He, have a significant impact on both astronauts and instrumentation equipment [27],
despite their scarcity in the particle mix, because these particles occur typically with higher
energies.

Lastly, as all charged particles, GCRs are affected by magnetic fields. This means that
they are affected both by solar activity as well as Earth’s magnetic field. Due to both the
interplanetary magnetic field produced by the Sun’s activity and the solar wind, GCR flux
is varying with an anti-correlation with solar activity. Moreover, flux intensity increases
with distance from the Sun, since the magnetic field is preventing from rays penetrating
the inner solar system. From a mission design perspective, this means that spacecraft in
the outer solar system or during low solar activity periods, are more exposed to galactic
cosmic radiation and gives a first hint on the fact that radiation in space fluctuates both de-
pending on the region and time, something which is of crucial importance and will become
clearer in the rest of the discussion too.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 29

Energies and rates of the cosmic-ray pariicles

T T
Grigorov
o Akeno
- protons only MSU
KASCADE =
- Tibat
* KASCADE-Grande +—e—
lceTop7d =

all-particle HiRes1&2
TA2013

electrons Auger2013

- Model Hia ——
% CREAM all particle
o pogitrons
E -4

1
> ‘ A~
0] .
=2 A\ Galactic

\

w |/ b
£ 10® [antiprotons
=
bl
o
w

Fixed target \
HERA
RHIC TEVATRON

LB

10° 10° 10* 10° 10° 10'° 10'%
E (GeV/ particle)

Figure 3.1: On the left, IC-443 the remnant nebula of a supernova erupted 3.000-30.000
years ago. On the right, the energy spectrum of cosmic ray data is gathered by the Ice-
Cube neutrino observatory, located deep in the South Pole ice.

3.1.2 Trapped Radiation

By the term trapped radiation, we are referring to the radiation inside the Van Allen belts,
which are zones appearing around planets (in our solar system around Earth and Jupiter),
consisting of charged particles being captured by the planet’s magnetic field. Discovered
by James Van Allen in 1958 using the Explorer satellites [28], it is today well understood
that Van Allen belts are shielding Earth’s atmosphere, preventing it from destruction by
impacting particles, as well as protecting also the terrestrial environment from radiation,
by deflecting charged particles across the magnetic field lines of belts. At the same time,
since Van Allen belts surround Earth and every space vehicle needs to pass through them
to get into orbit or travel in the solar system, they consist a major hazard for spacecraft,
instrumentation, and astronauts, given the presence of high radiation levels. For example,
for an unprotected human, the radiation dose they would be exposed traversing through
the Van Allen belts is higher up to an order of magnitude than the full body dose that is
considered lethal [29], however in all missions, shielding practices are employed resulting
in safe radiation conditions and bringing down the radiation doses to acceptable levels.

Earth’s Van Allen belts form 2 distinct regions: the inner and the outer belt [30], both
consisting of trapped particles captured by Earth’s magnetic field, but of different origin.
The inner belt is composed mainly of protons and electrons, which are the results of
collisions of neutrons from cosmic rays with particles of the outer atmosphere and are
decayed into protons and electrons while bouncing back. The outer belt is composed
mainly of helium ions, protons, and electrons originating from the solar wind but with
substantially lower energies, which do not allow further penetration into the inner belt or
the atmosphere.

3.1.3 Solar Particle Events

The Sun contributes to a significant extent to the radiation emission within the solar sys-
tem, through 2 different effects: solar wind and solar flares. The solar wind is a natural
phenomenon taking place in the Sun’s outer atmosphere (called corona), where charged
particles are projecting away from the Sun. The cause of solar wind is heated plasma
from the corona layer which is energized to the extent it cannot be contained from the

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 30

Rotational

ST

Inner L7
Radiation S4auund
Belt '. Emm ..‘
ynsEEry

Figure 3.2: Diagram with the outer and inner Van Allen Belts

gravitational field of the Sun, and eventually erupts, and travels along the Sun’s magnetic
field lines. This creates a stream of low-energy electrons and protons, which traverse
the solar system. Since they are of low energy, they pose a significant threat only to the
components mounted on the exterior of the spacecraft. Solar flares on the other hand are
more intense disruptions of the Sun’s upper layers (mainly the photosphere) which emit
highly energised protons and heavy ions.

3.2 Radiation Effects on Electronics

Particles from all these radiation sources when interacting with electronics cause effects
which can be categorized as follows:

3.2.1 Total lonizing Dose

Total ionizing dose refers to long-term radiation effects caused by energy transferred
through ionization only, from the incident particles to the electronic device. It is hence
a cumulative effect that in an atomic level moves electrons into higher energy states. As
a result, macroscopically, this can cause increased leakage currents or threshold shifts in
the affected devices.

3.2.2 Displacement Dose

Displacement dose is also a cumulative effect of radiation in which the highly energetic
incident particles are not exciting the ions of the device -as in the case of TID- but this
time are displacing whole atoms of the material, creating vacancies in the semiconductor
crystalline lattice. This results in changed conducting properties of the semiconductor and
leads, from a device operational perspective, to increased leakage currents or decreased
conduction. For example, under long-term radiation exposure (and hence due to DD
effects), diodes are becoming less conductive, and solar cells (which are essentially a
diode) are becoming less efficient, again for the same reasons [31].

3.2.3 Single Event Effects

Under the term Single Event Effects, we combine all the effects caused by the flow of
striking particles through an electronic device. Regardless of how these effects are ex-
plained with particle interactions at an atomic level, their effects can range from having no
impact at all, to transient disruptions in circuits, or permanent damage to the IC device. It
is really important and interesting that SEE appears not only in devices in space due to the
presence of extra-terrestrial radiation but also in terrestrial ones, due to the higher transis-
tor densities, which make devices more susceptible to these kinds of effects. Among the

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 31

Erase Voltage vs. Total Dose for 128-Mb
Samsung Flash Memory

—

oON A O ®ON A
o .

Failed to erase

Voltage During Erase Function

2 4 6 8 10
Total Dose [krad(Si}]

Figure 3.3: Effect of TID on a flash memory device.

various SEEs, Single Event Upsets are transient errors that appear as transient pulses in
combinatorial circuits or as bitflips in memory elements.

3.3 Interaction Mechanisms

There are two technologies broadly used in storage systems: Dynamic Random Access
Memory (DRAM) and Static Random Access Memory (SRAM). We will briefly analyze
how radiation, and specifically Single Event Effects, are interacting with each of these
types of memory cells in addition to digital logic circuits.

3.3.1 DRAMs

DRAM is usually used in main memory since it is cheaper but also slower. The simplest
DRAM cell design consists of a capacitor and a transistor and is holding 1 bit of information
in the charge of the capacitor. However, due to leakage current of the memory cell’s
transistor, the capacitor is discharging, and therefore DRAM cells need to be refreshed in
order to retain their data. This -namely the fact that the information retention in DRAM cells
is passive- has two implications for the behavior of DRAM devices under SEEs. Firstly,
this means that there is no inherent mechanism in the operation of the memory cell which
could lead to auto-correction of some SEE (as can happen in some cases with SRAM).
Secondly, because again, the signal is stored in the charge of the cell’s capacitor, a SEU
can appear not only due to a transition from one stable state to another but also due to
the degradation of the stored signal outside of some noise margins [6].

3.3.2 SRAMs

SRAM-type memory is typically used in caches as well as in most microarchitectural stor-
age units (such as the architectural register file), due to the advantage of being faster
than DRAM. Its cell (also known as 6T cell) is composed of 2 cross-coupled transistor in-
verters which form a feedback path, enabling data to persist on memory without the need
of refreshing, as long as power is supplied. From this perspective, the key difference
with DRAM cells is that in the SRAM cell, binary information is encoded not by holding
a charge (as in the DRAM cell’s capacitor) but by switching the current direction in the
coupled transistor bridges.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 32

o0 Hitachi 1M:Altitude:650km - 750km Hitachi 1M:Altilude:1750km - 1850km

Latitude

Latitude

oy SR s I . . ! ‘ =
-180 -180 -120 -90 -60 .30 o 30 60 20 120 150 180 -180 180 -120 -0 .60 30 o 30 60 00 120 150 180

Longitude Longitude

Figure 3.4: SRAM failure rates at two different altitudes inside the Van Allen zones. In
lower altitudes (left diagram) most upsets occur over the south Atlantic, in the South At-
lantic Anomaly (SAA). SAA is a region where the Earth’s magnetic field is stronger (due
to the misalignment between the magnetic and rotational axis) and their ionizing radiation
is increased, penetrating into lower altitudes. From NASA APEX experiment.

The susceptibility of SRAM devices in SEEs depends heavily on the strike location of the
particle within the cell circuit, that is the specific transistor of the 6T cell (actually whether
it is turned on or off at the time of the strike) [7] and in general, radiation particles will
accumulate charge in one of the struck transistor’s terminals causing, in turn, current
flow between the 2 transistors of the semibridge, leading to a voltage transient. This
voltage transient because it typically occurs in the drain of the transistor can act as a
write pulse, changing the written value of the affected storage cell. Also, faster SRAMs
are more vulnerable to these transient errors, something which has serious implications
for future technologies. Lastly, it is worth noting that since most reconfigurable systems
such as FPGAs are based on SRAM technology, and given their recent wide adoption
in spaceborne applications, the study of SEE interaction with SRAMs is of significant
importance.

3.3.3 Logic circuits

For combinatorial logic circuits, (transient) errors caused by SEEs are manifested when a
voltage transient from a signal line is being captured in some latch [7]. For this to happen
the following 2 conditions must be met: a radiation particle of sufficient energy must hit
an active line of the circuit, and an active path must exist from the staked line to some
latch though other lines and/or circuit elements (such as gates, etc). The particle must
transfer enough energy via the interaction with the device’s substrate, in order to generate
a voltage transient which will exceed the error margins of all the circuit elements between
the struck location and the latch. This way the logic value of the latch is going to be altered
and the transient error is going to manifest into the circuit.

Regarding sequential circuits, because flip flops and latches operate similarly to SRAM
cells, the same principles apply, with the difference that usually larger transistor sizes are
being used for the former [32], attributing to higher robustness compared to SRAMs.

For these reasons, in this study we will model all errors in processor logic as bitflips in
latch elements.

3.4 Summary

In this chapter, we dived into the natural radiation present in space, with emphasis on the
interaction with electronics leading to faults. We briefly described that radiation originates

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 33

SET
w0 Y 0 5 N

I
0 |
| | fl\
0
— v
—_—
¥ Combinational logic ¥
sequential logic sequential logic

Figure 3.5: Propagation of a single event upset transient pulse to a latch element in a
circuit.

from outside the solar system as cosmic rays, from interactions with Earth’s magnetic
field and atmosphere, and from the Sun. We tried to highlight that each of these sources
is more prominent in different regions of space and hence, regarding where a mission
is going to operate, different hardening measures must be employed, depending on the
radiation level of that region. We discussed the effects it can have in electronics, both
cumulative such as Total lonization Dose and Displacement Dose as well as transient
as Single Event Effects. For the latter, we analyzed the interaction processes with digital
electronics -DRAM and SRAM memories and combinatorial and sequential circuits- where
in both DRAM and SRAM technologies radiation can alter directly the stored bits, whether
in logical circuits transient errors are manifesting by propagating to some latch element.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 34

4 Computer Architecture Primer

This chapter presents the essential background information on computer architecture and
microarchitecture, necessary for the understanding of the rest of the text.

A key topic in this study is microarchitecture. The architecture of a processor describes
it's function, defining the interaction between hardware and software by specifying the
Instruction Set Architecture (ISA), registers set, execution and exception and memory
models, etc. Microarchitecture on the other hand studies the design and implementation
of a processor by describing among others, the pipeline and the various pipeline stages
or the cache hierarchy. One of the most important design objectives in the development
of new microarchitectures is processor performance since research and design of new
processors aim to improve performance and efficiency. For this reason, during the last
decades, a wide range of techniques has been developed, aiming at optimizing the per-
formance of processor pipelines. Some of them are being exploited by the fault tolerance
techniques of this study and we are going to present them here.

4.1 Superscalar and out-of-order pipelines

4.1.1 Superscalar processors

An important property that greatly impacts performance is the average instruction through-
put of the processor, which can be quantified by the metric of Instructions Per Cycle (IPC).
Pipelines that can fetch and issue only 1 instruction per cycle can achieve the best pos-
sible throughput of 1 instruction per cycle (IPC<=1). To further increase performance,
superscalar processors have been designed, which have IPC>1. Superscalar proces-
sors are able to execute more than 1 instruction at the same time in all pipeline stages by
simultaneously advancing multiple instructions through the pipeline. The exact number of
instructions being able to be processed simultaneously by a pipeline stage is called width
of that stage.

Maximum four-instruction fetch

Fetch | per clock cycle

BPU

Maximum three-instruction dispatch
per clock cycle (includes one branch
instruction)

‘ Decode/Dispatch |

Execute Stage

FPU1

FPU2 Lsut

[s] FPU3 ’ 1 | ‘ U2 ‘ LSU2

{ ! ! !

Maximum two -instruction

‘ Complete (Write-back) | completion per clock cycle

Figure 4.1: Pipeline schematic of the superscalar IBM PowerPC 750 processor, showing
the widths of various pipeline stages and multiple functional units. A hardened version of
that CPU was used in NASA's Curiosity rover [33].

4.1.2 Dynamic scheduling
Even with superscalar CPUs, pipeline performance can be hindered by frequent pipeline
stalls. With in-order pipelines that execute instructions according to the original program

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 35

order (static scheduling), if an instruction causes the pipeline to stall, all subsequent in-
structions need to also stall and cannot proceed, even if they could. Out-of-order CPUs
can execute instructions in a different order than the one they appear in the program (dy-
namic scheduling), being issued as soon as source operants become available and a
suitable functional unit is free. This way, subsequent instructions can bypass a stalled
instruction; dynamic scheduling creates parallelism not available at compile time (Instruc-
tion Level Parallelism (ILP)). However, in out-of-order pipelines, fetch and commit of in-
structions happen in-order. For accommodating in-order commit, a hardware unit called
Reorder Buffer (ROB) is used. The details of dynamic scheduling implementation are out
of the scope of this introduction, but the ROB assists in maintaining correct dependencies
between the in-flight instructions, for example by providing instruction results as the op-
erants to other instructions before the producer instructions are committed and written to
the register file.

4.2 Branch Hazards, prediction & speculation

As we saw, in dynamically scheduled processors instruction fetch happens in-order. There-
fore the throughput of the whole pipeline is restricted by the fetch bandwidth. To sustain
maximum fetch throughput fetch must happen continuously and from sequential locations
in the program memory (to avoid Icache accesses and misses). However, this is not pos-
sible when the next instruction is not known beforehand, such as in the case of control
flow (branch) instructions which potentially alter the next fetch address. For unconditional
branches, the next fetch address will be calculated in the decode stage with the decode
target address, and for conditional branches in the execute stage, with the evaluation of
the branch condition. This imposes stalling the pipeline in each control instruction and
again negatively impacts performance. To circumvent this, a processor-specific mecha-
nism implemented in hardware is employed, called branch prediction.

Register
indirect

g

Registes
indirect

with
offset

P - 1 |

I B o
e
=

Figure 4.2: Penalty cycles (cycles spend stalling the pipeline) in the calculation of branch
target address for different branch instructions.

4.2.1 Branch prediction & speculation
Branch prediction allows to minimize branch penalty and maximize instruction flow through-
put. When a control flow instruction is fetched, both the branch target addresses and

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 36

branch conditions are speculated, based on an algorithm implemented in hardware. After
the branch direction is predicted (taken or not taken), fetch proceeds down the predicted
path (which is called branch speculation). According to branch speculation, after predict-
ing the branch direction the execution continues along the predicted control flow path.
Until the actual direction of the branch is resolved, instructions are restrained from up-
dating the memory or the register files by disallowing commit. If upon the validation of
branch direction, the prediction is found correct, the speculated instructions are commit-
ted. Otherwise, if the branch predictor mispredicted the direction of that branch, all the
speculatively issued instructions need to be removed from the pipeline and the execution
needs to be restarted from the mispredicted branch, following the opposite (correct) path.

4.2.2 Squashed instructions
Squashed instructions are instructions removed (flushed) from the pipeline and ROB with-
out completing and without being committed. This can happen due to various reasons:

» Upon the discovery that a branch was misspeculated, the wrong path instructions
are flushed.

* Due to a violation of the memory order during speculative memory order disam-
biguation, the dependent load is flushed and re-issued.

» When a trap (software exception) is raised, all the subsequent speculatively issued
instructions are flushed.

4.3 Simultaneous Multithreading

Even with all these optimizations, there are cases where not all the available ILP is uti-
lized. That is, some functional units are idling because the instruction mix of the program
contains a lot of instructions of the same type or because instruction dependencies pro-
hibit out-of-order execution. One solution to this is Simultaneous Multithreading (SMT)
[8], a technique where the processor executes simultaneously more than one thread in a
single core, utilizing this way all the available functional units and allows to achieve higher
processor throughput without significantly impacting the performance of single-threaded
applications. The most important takeaway is that by utilizing this spare (wasted) ILP, in
many cases the execution of multiple threads with SMT can be peformed faster and with
higher throughput compared to the execution of the same threads alone sequentially.

Fetch =
Unit - floating point »| P fp
< instruction queue registers units
v A Data
— Cache
Instruction Cache Y
8 integer nteger [»
v instruction queue registers <
Decode [~ Reglsie}' — int/ld-store
Renaming e
° units

Figure 4.3: Pipeline of a simultaneously multithreaded processor, with the units being
accessed by multiple threads duplicated.

SMT can be implemented by either partitioning or duplicating all the processor resources
that are required to be shared by all the threads. Each thread is a separate instruction
stream and the scheduling and mixing of instructions is managed by the hardware. Be-
cause duplicating the fetch stage would require also the capability for parallel access to
the instruction caches, usually the fetch stage is time-shared (partitioned) between the

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 37

threads. However, this has the potential of creating a bottleneck, since it reduces the
fetch bandwidth of each thread and places higher demand on specific structures such as
the Translation Lookaside Buffers (TLBs), the branch predictor, the functional units, and
the register files. Thankfully, the choice of thread arbitration/scheduling mechanism can
mitigate that.

4.4 Summary

In this chapter, we presented the essential concepts for the comprehension of the rest
of the text by explaining key computer architecture and microarchitecture concepts. We
examined topics like superscalar and out-of-order processors which aim at increasing
pipeline performance and are being used by the microarchitectural fault tolerance tech-
niques which we will be analyzing in the next chapter. We showed how control flow instruc-
tions degrade performance and how prediction and speculation minimize branch penal-
ties, concepts one of the studied fault tolerance methods will build further and which will
be also needed in the implementation. Lastly, we introduced Simultaneous Multithread-
ing, a method that maximizes processor throughput and enables the execution of different
independent threads in the same processor core. SMT is also the key concept behind one
of the 3 methods analyzed in the next chapter.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 38

5 Description of the Studied Error
Detection Techniques

This chapter describes the 3 fault tolerance methods studied in this work. Among these
3, the first method has been widely used in a plethora of real space missions and while
it exhibits the best ability to detect errors, it demands extensively large chip area and
power consumption. The other 2 methods have been proposed by computer systems
researchers and even if they have not been tested in space operations, theoretically im-
prove power and area overheads, while modestly degrading the system performance,
through the use of microarchitectural novelties from computer architecture research. The
error detection capability of the latter two is one of the anticipated results of this study.

Fault tolerance techniques in computing systems can be typically categorized as software-
based or hardware-based, depending on the level the fault mitigation mechanism operates
on. At the same time, for the subset of techniques that rely on computation redundancy
for the mitigation of faults, redundancy can be achieved either spatially, by duplicating
computation in multiple parallel units, or temporally, by repeating computation in time.
Additionally, fault mitigation might be limited only to the detection of a system fault or
include error correction with the restoration of system operation.

In this study, we focus only on error detection with hardware-based techniques. Also,
we occupy ourselves with methods that secure only the processor logic and pipeline,
assuming that memory is protected by other methods such as Error Correcting Codes
(ECC).

5.1 Dual Modular Redundancy

Dual Modular Redundancy (DMR) is a spatial redundancy technique where each hard-
ware component is replicated twice and computation is repeated in both copies of the
system, to increase reliability. It is also the first method we will study in this work. For
a computer system, redundant computation is hence performed not by running multiple
repetitions of the program, but by forming a system with 2 processors instead of 1 and
executing the program on each. With this scheme, errors are detected by comparing the
results of the execution from the 2 processors. Memory needs to be either also duplicated,
or protected, i.e. with ECC.

DMR in general is a technique that transfuses high robustness to the hardened system, as
any radiation-induced error will strike only one of the two processors and hence change
the results of only the one, something that will be subsequently detected. We make the
(reasonable) assumption that the probability of two particles striking and producing an
error in both processors (allowing an error to remain undetected and produce a system
failure) is negligible. However, DMR systems have 2 important drawbacks. Firstly, DMR
requires doubling all hardware components, introducing a two-times area overhead. In-
creased area is particularly unappealing in all hardware systems because it is accom-
panied by increased energy consumption as well as increased manufacturing/packaging
costs. Especially in the case of radiation tolerant systems, increasing the area of the de-
sign entails also raising the probability of error occurrence. That is because designs that
take up more area have a higher probability of being struck by radiation particles, com-
pared to designs of smaller surface. Secondly, DMR systems need a voter component

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 39

Dual Modular Redundancy

L FLE

Figure 5.1: Schematic representation of Dual Modular Redundancy.

that detects errors by comparing the results from the duplicated modules (i.e. CPUs). By
definition, this component needs to be unique and is thus vulnerable and unprotected. As
a result, the manifestation of an error in the voter can lead to system failure and for this
to be mitigated, radiation-hardened components need to be used in that particular mod-
ule, raising the manufacturing costs and/or prohibiting the construction of DMR systems
from solely COTS components. The last point is of great importance since as it has been
previously mentioned, manufacturers of radiation-hardened components are lessening.

5.2 Redundant Multithreading

Redundant multithreading [9]-[11] is a class of time redundancy fault-tolerant techniques,
where redundant execution is happening in the architectural level and realized with differ-
ent threads running on the processor. With redundant multithreading, each computation
is repeated noti.e. in separate CPU cores (such as in the case of the spatial DMR) but on
different program threads on the same CPU core, each of them performing the same com-
putations redundantly and then validating that all executions produced the same results,
hence no errors had occurred.

The variation of redundant multithreading we are going to focus on is called redundant
multithreading via Simultaneous Multithreading (SMT) [1] (denoted as R-SMT). This ap-
proach utilizes the microarchitectural technique of SMT in order for redundant multithread-
ing to be performed efficiently, by spawning 2 SMT threads and assigning on each the ex-
ecution of a copy of the same program. In that scheme, the first thread (primary thread) ex-
ecutes the program’s instructions while the second (redundant thread) re-executes them
and validates the results. It is useful to maintain the one thread slightly further along in
its execution than the other, creating a leading thread and a trailing thread. This, en-
ables a number of performance optimizations, all centering around the idea that since
both threads are executing the same instructions and expect to form the same results,
the leading primary thread can assist in the execution of the trailing redundant one, allow-
ing the former (redundant) to be executed more efficiently, without repeating unnecessary
work already completed by the latter (primary).

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 40

Redundant multithreading

o

Figure 5.2: Schematic representation of Redundant Multithreading.

Some performance optimizations enabled by the primary leading and redundant trailing
are the following:

Prefetching. One first optimization where the primary thread can foster the execution of
the redunand one is in the case of cache misses, where essentially primary acts as a
prefetcher for the redundant thread. When the primary thread encounters a cache miss,
data (or instructions) are being fetched from the main memory and loaded into the on-
chip caches. By having the redundant thread lagging behind in the execution when the
corresponding load instruction is being re-executed, the data will already be present in the
cache, avoiding the need for stalling the thread and waiting again for the same transfer
from main memory.

Branch prediction. A second mechanism that can be improved and assisted by redun-
dant threading is the branch prediction of the redundant thread. In pipelined processors,
branch instructions pose delays, since their outcome (or direction, meaning whether the
branch is taken or not) is not computed until the execute stage (several cycles later) and
consequently, until then, the next instruction that needs to be fetched in the immediate

A-stream R-stream
—_— 7PROCESSOR 1
fetch = eeol commit

Restream ||| s

stream
DELAY BUFFER

Figure 5.3: Delay Buffer, being filled from A-thread on commit with branch and operant
predictions and popped by R-thread of fetch.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 41

cycle, remains unknown. To circumvent this, a technique called branch prediction has
been developed. According to that, one of two possible branch directions is being chosen
(predicted) and the execution continues according to that. When the real branch direction
is calculated in the execute stage, if the prediction was wrong, the execution needs to be
restarted from that branch. This introduces a performance penalty in the cases of branch
mispredictions. In the case of primary and redundant threads, the redundant thread is
re-executing the same branch instructions as the primary one and therefore, at the time
of any branch instruction fetch of the redundant thread, branch direction has been already
resolved -in the execution of that specific branch on the primary thread. By passing that
information for each branch from primary thread to the redundant one, the performance
cost of control flow mispredictions can be eliminated.

Data (operants) prediction. A third case accelerated by that “helper” thread scheme, is
called data prediction. Additionally to branch prediction, the primary thread can pass
along to the redundant thread each instruction result. The motivation for doing so stems
from instruction dependencies. A data/instruction dependency exists when consecutive
instructions use the results of the immediately preceding ones, forming chains of instruc-
tions where the results of the one (i.e. i1) are the operants of the next (i.e. i2). The
operants of i2 are not computed until the execute stage of the i1, but are required in the
decode stage of i2, which due to pipelining will happen earlier. To overcome this, the
decoding of i2 must be stalled until the execution of i1 forcing the whole pipeline to stall.
In the context of “helper” threads, data dependencies can be fully eliminated from the
redundant thread, if the instruction results of the primary thread are provided to the re-
dundant one to be used as operants. In this manner, the operants of the re-execution of
i2 will be always available from the (primary) execution of i1 instead of needing to be later
computed by the redundant instance. Emphasis must be laid on the fact that this is not
making the system more vulnerable. Even if an erroneous result is being passed between
the 2 threads, it would have been detected before, during the formation of these results,
from two (correct) operants.

As we demonstrated, optimizations require transferring branch outcomes and instruction
operants from the leading to the trailing thread. For this, a hardware buffer, called Delay
or Comparison Buffer (Figure 5.3), can be used, being filled from the primary and con-
sumed by the redundant. However, the Comparison Buffer in some cases can deteriorate
performance, since when it is full the redundant thread needs to be executed and the pri-
mary thread stalls (which we will call "full comparison buffer” stalls), and when it is empty,
the primary thread is forced to execute and the redundant thread stalls until is it filled.

5.3 Parallel Heterogenous Error Detection

The third approach to fault tolerance we are including in this comparative analysis is Par-
allel Error Detection with Heterogenous Cores. This method pertains to error correction
also at the microarchitectural level and has been recently proposed [2]. The goal of the
described method is the detection of both soft and hard errors while retaining low area,
power, and performance overheads as well as minimal invasiveness to the original mi-
croarchitecture. Key idea to achieve that according to this approach is the parallelization
of fault detection. Adjoining the main out-of-order processor, on which computation is
performed, lie auxiliary processor cores that repeat the same computations, achieving
the spatial redundancy needed for error detection. The checker cores are of low power,
in-order, and occupy less area, enabling the desired low power and area overheads. Ex-
ecution on the main core is segmented into parts consisting of a certain number of con-
secutive instructions and each part after being executed on the main core is offloaded to

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 42

one of the checker cores for re-execution and verification.

Main Core F——————— Checker Cores ———

| | | |
Fill L Wait Wait Wait

Fill | Log
Wait

T
Wait
Log
] Wait
Wait
1 Fill | Loy
J

Figure 5.4: Main core execution divided into parts and checker cores verifying each one.

Time

Fill | Lo

The verification works with the main core providing 3 elements to each auxiliary core: the
instructions to be repeated, the starting architectural state of the processor, and the ending
one. The state of the checker core is initialized to the provided starting architectural state
and if no errors have occurred, after the execution of the segment’s instructions the ending
architectural state should be identical to the provided ending state. Note that this way, the
various program segments are being verified independently and in parallel to each other.
However, because auxiliary cores are smaller are also slower and this means that the
re-execution of each segment lasts longer than the original execution on the main core.
Due to this, as the main core progresses on the execution of the program, many auxiliary
cores might be still verifying previous segments.

Therefore, a certain segment being verified as fault-free does not guarantee that the whole
program up to this point is fault-free (because previous segments might be still under
verification). Nevertheless, when the earliest segment from the ones currently verified is
found correct, then the program up to this point is indeed correct. Still, the main processor
will be further along in the execution than the point of the program up to which correctness
has been checked, but this is the price to pay for guaranteeing low performance overhead;
the main core is progressing further along before all the previous instructions have been
verified.

From an implementational perspective, a couple of points are worth noticing. Firstly, the
starting/ending architectural states are realized as register checkpoints. Yet, saving all the
registers stalls the processor for a couple of cycles (a 16-cycle checkpointing latency is
being modeled on the original paper). Secondly, as the checker cores lag behind the main
one in the execution, in-memory data might get re-written by the main core before being
read by the auxiliary cores, resulting in main and checker cores to have read different
values. For this reason, checker cores are restrained from accessing the main memory,
and each store of the main core to the main memory is being also replicated and saved
in a hardware buffer called load-store log. Checker cores are therefore not reading data
from the memory subsystem but from the load-store log. This is crucial for maintaining the
high performance of the main core (by allowing the main core to progress further than the
checkers and not stall waiting for verification) and consequently for enabling parallelism.
The load-store log itself is partitioned, and each segment -consisting of a number of en-
tries to be filled with data stored by the main core- corresponds to a particular checker
core. When each segment becomes full, a checkpoint is initiated and the corresponding
program part is being assigned to an auxiliary core for repetition. If all the segments are

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 43

Heterogenous systems

T

Figure 5.5: Schematic representation of Parallel Error Detection with Heterogenous Sys-
tems. Note that the main core is futher along in the execution compared to the slower
checkers, because by the time a segment is being re-executed on a checker, the main
core is executing subsequent program segments.

full, all the checker cores are active re-executing some program segment and in that case,
the main core must stop progressing further, and stall until one checker is freed.

It should be by now evident that checkpointing of the register files occurs when a program
segment is being offloaded to a checker core, which in turn happens after a load-store log
segment has been filled or additionally after a certain number of timeout instructions.

Inherent to the Parallel Heterogenous Error Detection is a fundamental tradeoff between
the low performance overhead of the main core and the error detection latency of the
method. As we highlighted the source of performance slowdown is checkpointing. To
keep checkpointing minimal and maintain high performance of the out-of-order core, the
size of each load-store log segment must be large, in order for the filling of each to happen
infrequently, after a lot of instructions. As a consequence, if checkpointing happens rarely
and the program segments assigned to one checker core are bigger, the detection latency
rises, since each auxiliary core needs to verify more instructions before the second ex-
ecution of a possibly compromised instruction happens in that core. At the same time,
this is also a tradeoff between area/power and detection latency, because to preserve
fast detection times, not only checkpointing must happen frequently (and create a large
number of program segments) but also to have an adequate number of checker cores
available to verify that larger number (of smaller) program segments. In other words, to

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 44

To Main Memory

Shared L2
Cache

L1 Inst L1 Data
Cache Cache

L

Inst
Cache

Load
Forwarding
Unit

[
e

Fetch
.
.
.

Commit I

Register,
Main OoO Cor Checkpoints

Checker

Load-Store Log Cores

Figure 5.6: The load-store log is divided into segments, each corresponding to 1 program
segment and 1 checker core. Each load-store log segment is getting filled during the
execution of the respective program segment and when it is filled, a checkpoint is initiated
and the re-execution on the checker core starts.

T parallelism

v

l main core’s performance < latency of error detection

T area, Tenergy

Figure 5.7: When parallelism increases, area/power also increases, the performance of
the main core degrades (due to more frequent checkpointing) and detection latency im-
proves.

achieve smaller detection latencies more segments must be verified in parallel and so,
the number of main cores need to be also increased, leading to larger area and power
consumption of the overall design.

Table 5.1: Qualitative comparison of the fault detection methods against various require-
ments. Green icons express a desired or good property such as low detection latency
and low performance/area/power overheads, red ones an unappealing property such as
high detection latency and high overheads, and yellow moderate.

| DMR R-SMT Parallel Det. | Ideal for space

Error detection latency ©
Fault coverage

Performance overhead ©
Energy consumption ®
Area overhead ®

BX®,
OOO®®
@@@@@

5.4 Summary

In this chapter, we introduced the 3 methods which will be compared in this work. The
first one, with a tradition of proven usage in space missions and critical systems, Dual
Modular Redundancy, performs all computation in parallel in two identical processors

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 45

comparing the results of each. The second, R-SMT is a form of Redundant Multithread-
ing where redundancy is achieved by executing 2 copies of the program as SMT threads
in the same processor. By exploiting the well-established microarchitectural trend of si-
multaneous multithreading, the performance overhead of both repetitions of the program
is reduced below the cost of two program executions. To further improve that, various
techniques can be employed taking advantage of the one thread being further along in
the execution compared to the second. The third compared approach to error detection
is a recent development from the computer architecture domain, Parallel Error Detection
with Heterogenous Cores. Parallel Error Detection with Heterogenous Cores proposes
coupling the main out-of-order processor with tiny auxiliary cores which repeat in parallel
parts of the main core computation. For each checker core to be able to verify only a part
of the main core execution without having executed the previous instructions requires the
checkpointing of architectural state before and verifying the instructions, and overall re-
sults in a system with low performance overheads for only a fraction more than the main
core area and energy, but nevertheless with high detection latency.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 46

6 Design and Implementation of the
Studied Error Detection Techniques

A crucial step in the first stages of research and development of new hardware system
architectures is software-based simulation. Indeed, in this work, the primary objectives are
the implementation and the following evaluation of software simulations of the proposed
architectural techniques.

6.1 The gem5 Simulator

For this work, we choose to implement the error detection methods we are studying on
gemb5 [34], an open-source simulator widely used for computer-system architecture re-
search in both academia and industry. Gem5 is a cycle-level, “execute-in-execute” simu-
lator and models many different devices and processors, enabling the simulation of both
system-level components (such as DRAM out-of-chip memories, network devices, GPUs,
etc) and CPU microarchitecture. Internally, it is structured as a simulator core combined
with parametrized models for each modeled component. For example, it contains many
processor models, ranging from simple to more accurate ones. A simple CPU model
can be used for studies where modeling CPU performance is of secondary relevance like
memory subsystem studies, allowing for faster simulation speeds. On the other hand,
high-fidelity models have longer simulation time but can provide more realistic results
when compared to real devices and are suitable for studies where the impact of the pro-
cessor microarchitecture is crucial in the overall system.

6.1.1 Workflow

A typical workflow for conducting computer architecture research with gem5 can be sum-
marised as follows. Usually, researchers will be designing a system which subsequently
they will want to evaluate by measuring some metrics such as run time, memory band-
width, or (more low level ones, like) number of committed instructions per cycle.

For that, one needs to download and build the simulator and then create their own device
models on top of the already existing ones in order to construct the designed system
mentioned earlier. Due to the modular design of the simulator, these models can then
be plugged into the rest of the simulating system, being integrated into the simulator.
After that, the user can run gemb5, -which is now simulating some modified architecture-
benchmark applications and measure the metrics of interest.

6.1.2 Software structure

In gemb5, the description and specification of each simulated component are decoupled
from the modeling of its function. This is accomplished by a synergy of Python scripts
with a C++ backend. A Python-based scripting interface is used to describe the spec-
ification of the simulated system, that is, to define all the components that the system
will contain (such as the choice of processor model, memory type, interconnection net-
work, on-chip caches, etc.), specify how these components are connected and also se-
lect the parameters of each component. The C++ backend of the simulator implements
the function of each component. The interlink between the Python specification and the
C++ implementation is SimObjects. SimObject in the gem5 terminology are model ob-
jects of components whose parameters are specified via Python and are tied with C++
classes that specify their function. For example, the processor of any simulated system is

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 47

a SimObject. Through Python one can specify the various parameters of the processor,
like the issue width, the type of branch predictor, etc., but the simulator processor logic
and function are defined in the respective C++ class.

To revisit what we were discussing earlier about the workflow of simulating a custom
system in gem5, more often than not, the researcher will need to create new SimObjects
in order to simulate new devices or components, by specifying both their parameters
as part of the Python interface as well as the implementation in the corresponding C++
class. However, there are other cases -such as the one of this project- where existing
SimObjects need to be modified. In our case, because we are simulating methods at
the microarchitectural level, this requires extensions of the microarchitecture itself of the
processor. This proved to be a much more difficult procedure than simply adding new
derived SimObjects because we had to navigate a lot of different models and understand
both the codebase related to the processor SimObject that we used as well as the core
of the simulation framework.

6.1.3 Simulation modes

After having specified or modified the system, when it comes to running an actual simula-
tion, the gem5 simulator can be used in two different modes: system call emulation and
full system simulation.

In System Emulation mode, system calls to the operating system are emulated, meaning
that only user-space code is being modeled. Binaries will be executed on the simulated
computer system but without executing the kernel-mode system calls of the operating
system. This has the effect of ignoring the timing of many system-level effects including
system calls, TLB misses, and device accesses, and as a result, lowers the fidelity in
system modeling but gives faster simulation times and is also easier to config, since many
hardware units required in a real system do not need to be instantiated.

In Full System mode, gem5 is modeling the entire hardware system, including the inter-
action with the operating system. In this mode for example, the simulator can boot a full
Linux-based operating system running an unmodified kernel, where afterwards the user
can run the application under study and gather the required statistics at cycle-level. On
the contrary, in the System Emulation mode, the simulator itself is emulating the operating
system.

For this study we choose to use System Emulation mode for three reasons: Firstly, the
effect of the operating system in the error manifestation and in the detection methods are
out of the scope of this work. Secondly, we can benefit from the extra performance of the
System Emulation mode, because the biggest amount of time was spent developing the
simulator extensions for supporting the studied detection methods and hence, we want to
avoid long simulation times in the development phase. Lastly, we found this mode easier
to configure and get started with, given it was the first time the author was using this tool.

6.2 Implementation of Dual Modular Redundancy

6.2.1 Voter Unit

For implementing Dual Modular Redundancy on gem5, the main component we added to
the system is a voter unit. The voter is the hardware structure responsible for comparing
instructions from the two processors in order to detect an error. Conceptually, it takes as
input the two identical instructions from the two CPUs and it produces an output signal,
signifying whether both executions were the same or if a fault had occurred.

In our implementation, given the two identical instructions from the two CPUs, an error is

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 48

detected if: a) the program counters of the instructions are different, or b) the results of
the instructions are different.

The first case, a mismatch between the 2 program counters, can happen in one of the two
following cases: if an error alters the value written in the Program Counter register (PC) of
one of the two CPUs, causing that CPU to jump to a different instruction in the next cycle
than the one in the correct program order, or if an error altered the direction of a branch,
thatis, to alter the result of a branch instruction, leading the one CPU to execute the branch
as taken and the other as not taken. Note that, actually, the detection of different PCs is
expected to never happen in this implementation of DMR, since firstly, fault injection in
the program counter is not performed in this study and thus an error will never cause a
mismatch between the 2 program counters and secondly, the different results of a branch
instruction in the 2 CPUs will never lead to divergent execution between the two CPUs in
any possible DMR implementation (unless slack between the 2 CPUs exists), since it will
have previously detected as an error, while veryfing the results of the branch instruction.
However, since we used a similar voter for the R-SMT method (where PC mismatch can
occur), we choose to share some of the voter’s attributes in both implementations. The
second case (detecting different results), of course, can happen due to the manifestation
of an injected error to the instruction result of one of the two CPUs and is the primary
detection method in the setting we are simulating.

We design the voter with the following interface in order to be easily integrable into the rest
of the system. On the commit stage of each CPU, before an instruction is retired, it is fed
into the voter unit. The voter is equipped with input buffers, storing the instructions from
each CPU. When the 2 buffers are of equal size, instructions are popped from both and
compared with each other. Practically, this happens on every cycle and the buffers never
store more than 1 instruction, but once again the same design will be used for the other
implementations. The instructions are compared by ensuring that the pc and the result of
the instructions are the same. If one of the two is found to be different, an exception is
raised and the program is halted.

—pcO—>»| 1111
—instResO—» [[[|
DMR/AR-SMT Voter —detEr—>»

—pet———>

111
—instRes1——»{ 1 [[|

Figure 6.1: Abstract schematic diagram of the the voter interface. Voter accepts PCs and
instruction results from the 2 CPUs (in the case of DMR) or from the 2 threads (in the case
of R-SMT) and can detect errors based on the mismatch of PCs or results. For DMR, an
error will never produce PCs mismatch in this implementation, but the interface was kept
common for both implementations.

Regarding the timing of the above operations, two possible approaches were examined:
the voter being simulated as a synchronous sequential circuit or as an asynchronous one.
In the former case, this means that the comparison would be performed in the next clock
edge, so 1 cycle after the commit of the instructions, whether in the latter the comparison
would be performed concurrently with the commit cycle. We chose to model the asyn-
chronous implementation since such a circuit would avoid the unnecessary delay of 1
cycle in the error detection.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 49

6.2.2 Dual CPU modelling
Apart from the voter, the DMR implementation needs to model two different program ex-
ecutions in two different CPUs.

Initial approach
The initial approach to this was to actually compose a system with 2 identical CPUs con-

nected to the same memory subsystem (with private L1 caches and shared L2) and run
the same binary on both. This however resulted in a system with slack between the 2
cores, meaning that the 2 processors were executing instructions not in sync. This is due
to the cores sharing the L2 caches, which are single-ported. As a result, only 1 processor
was able to access the memory at each time. When the first core was to access the L2
cache, the second had to stall before performing the same memory access whether when
the second was eventually performing the access, the first would continue the execution
of the next instructions without waiting to synchronize with the second. This revealed a
major drawback of DMR as a method, which is the need for addressing exactly that prob-
lem. This can be resolved by having the memory controller forward the result of each
access to both CPUs, without letting both of them access the memory, since in DMR the
same instructions are executed concurrently by both processors. In other words, DMR
requires minor modifications to the memory controller or dual-ported caches.

b waler_cache
TableWakerCache.

Figure 6.2: This component diagram is automatically produced by gem5 and reflects the
simulated architecture of the initial approach to DMR implementation, with two CPUs in
parallel. We can see that both CPUs connect to the same memory bus and L2 cache,
which is single ported. As a result, sequential accesses of the 2 CPUs to the memory
cause slack between them and render this DMR approach incorrect.

Pseudo-DMR
Because we believe that the design of DMR itself is out of the scope of this study, which

primarily focuses on error detection comparatively between different methods, we chose
to model DMR in a simpler way to alleviate the above problem, nevertheless accurate
in all aspects related to error detection. Instead of simulating two hardware CPUs in the
same system, we perform two executions of the same program in the same processor,
with each execution acting as one of the CPUs. In more detail, the first execution (“aux-
iliary” execution) is gathering the results of all the instructions and the second execution
(“simulation” execution) provided this result trace is able to detect an error. For this, we
extended the above voter implementation to either save the results trace in a file (for the
first execution) or accept a results trace from a file (for the second execution) against
which the instructions of the (single) CPU will be compared. We inject errors in only one
of the two executions and when measuring detection latency we measure the time differ-
ence between error manifestation and detection, as we would normally measure in a 2
CPUs system. For modeling the performance overhead, once again, because DMR adds
no delay in the execution, we measure the performance of the “simulation” execution, and
this approach has the same result as in the 2 CPUs approach. Therefore this approach

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 50

is equivalent to DMR as presented above for all the aspects of interest in this study (error
detection, latency, overhead).

—
_ Results
-7 trace file
-
/
/
!) 4
!
—pc———>| " ——pc0———>
—instRes0———»| | —instRes0———»|

Pseudo-DMR Voter —detErr—» Pseudo-DMR Voter —detErr—»

— > | —record = False—|
I
/
/
/
Results _ 7
" trace file
First execution, for gathering results Second execution, for performing simulation

Figure 6.3: Schematic diagram of the voter used in DMR. DMR was not simulated as
two parallel CPUs but through two executions of the same binary in the same CPU. In
the “auxiliary” execution instruction results are recorded and provided in the “simulation”
execution for comparison with the produced results. However, this approximation has the
same error detection, latency, and performance overhead with a real DMR implementa-
tion.

6.2.3 Implementation & integration

Before describing the implementation of the Voter itself, first, we need to explain how it
interacts with the rest of the pipeline. The CPU model used in all methods is the O3
Model, which models a superscalar, out-of-order CPU, based on the Alpha 21264 micro-
processor. It has 5 pipeline stages: Fetch, Decode, Rename, Issue-Execute-Writeback
(IEW), and Commit. The voter is being filled with instructions from the Commit stage. At
each stage, a tick() function is defined, which implements the logic of this stage and
updates various signals and buffers. For the commit stage, Commit: :tick() is calling
Commit::commit () which initiates the committing of completed instructions and in turn
calls Commit: : commitHead () which attempts to commit the head instruction of the ROB.
From this function, in “simulation” executions the Voter class is being provided with in-
structions to compare whether in “auxiliary” executions, the Voter writes results to trace
file.

The voteris implemented as a SimObject class. Internally, it defines a comparisonElement,
which is a class that encapsulates all instruction characteristics which are going to be
compared for detecting an error. Each comparisonElement object corresponds to one
instruction and contains the gem5 representation for the PC, result, and some other aux-
iliary info for that specific instruction.

Methods of the Voter class worth discussing are:
void Voter::compare(comparisonElement el)

Triggers a comparison between the provided comparisonElement and the corresponding
comparisonElement acquired by the results trace file.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 51

void Voter::write_to_file(comparisonElement e)
Writes that comparisonElement to the trace results file, and it is called only in the “auxil-
iary” execution.

6.3 Implementation of Redundant Multithreading (R-SMT)

In this section we are presenting the implementation of the R-SMT method. From the
optimizations described in 5.2 we are implementing only perfect branch prediction.

6.3.1 SMT fetch arbitration

By default, the O3 model is using a priority based Round-Robin fetch partitioning policy,
meaning that in each cycle, one thread is fetching as many instructions as possible (within
the fetch width), being interrupted only by two possible scenarios:

1. a branch being identified as taken in the decode or execute stage which will change
the next pc

2. exhausting the available instructions in the current I-cache line which would require
accessing the next one in the following cycle

If however for some reason one thread is unable to fetch (due for example to a long-lasting
I-cache miss), the next one will utilize this slot fetch instead. This is a sound choice of
fetch partition algorithm even for a redundant SMT for fault tolerance design like the one
implemented here, but in order to be able to better study the impact of the slack between
the 2 threads in error detection, we modify the above algorithm in order to perform the
following: each thread must fetch a constant number of instructions before the other one
is allowed to fetch. This reduces performance slightly because in any case, the fetch
stage is stalling, the whole pipeline is forced to stall too, but is the only way to create a
fixed slack of certain instructions between the threads (called SMT granularity), the effect
of which in fault detection, we believe is crucial to study. SMT granularity can be specified
in the simulation start.

Implementation
SMT fetch arbitration policies are implemented in Fetch: :getFetchingThread (), which

returns the Thread Identifier (TID) of the next fetching thread. Fetch::roundRobin()
method, as well as the conditions on which fetch is reading instructions from the Icache
block, in Fetch: :fetch() are modified. According to our policy, each thread needs to
fetch a constant number of instructions, called fetch/SMT granularity, before the next
thread is allowed to take over.

Because we are using the Oracle branch predictor and since we are not implementing
the value prediction, we do not need an actual Comparison Buffer, since no information
is passed on-the-fly between the threads. However, we need to model the effect of the
Comparison Buffer on performance, stalling primary thread when it is full and the redun-
dant thread when it is empty. To do so, we restrain the fetch arbitration algorithm such
so0, enforcing fetch from primary thread when the Comparison Buffer has less than a spe-
cific number of entries (Comparison Buffer minimum size). Also, because the redundant
thread is progressing faster than the primary thread, after the enforced primary thread
fetch, we further fetch a number of extra instructions (Comparison Buffer recovery size)
to avoid immediately emptying again the Comparison Buffer.

6.3.2 Voter Unit
The R-SMT design also uses a voter to compare the instructions between the 2 threads
and detect errors. The design of this voter is similar to the voter used for the DMR method.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 52

Note that here, the input buffers holding instructions pending to be compared are essen-
tial, because the same instruction from the 2 threads is not added to the voter at the same
time, due to the slack between the threads. However, this voter does not need to read
and write results traces as the DMR variant was able to do.

Implementation
Voter class is again being filled at Commit, but this time each thread fills the respective

input port of the voter. Similarly to the comparisonElement, the R-SMT voter class defines
the delayBufferElement class, which also contains thread information.

Methods of the Voter class worth discussing are:

void add_to_queue(delayBufferElement e)
Adds a delayBufferElement to the input buffer of the corresponding thread.

void compare_and_pop()
Compares the head instructions from the two input buffers. If no error is found the instruc-
tions are removed, otherwise a detected error exception is being raised.

6.3.3 Perfect branch prediction

As we have described, the redundant thread is utilizing an oracle/perfect predictor to pre-
dict branches, fetching the actual direction of each branch as resolved in the execute
stage of the primary thread. In order to implement that, we need to create our own “per-
fect” branch predictor for use by the redundant thread. This branch predictor will be filled
by the primary thread and used by the redundant one.

The first approach to this was to implement exactly that: on-the-fly, the primary thread
to be supplying branch outcomes to the predictor of the redundant thread which will be
using them for the prediction of its branches. However, after implementing that, it was
found that it would not be possible to operate correctly, for reasons we will explain now. In
this initial approach, the “perfect” branch predictor was supplied with the actual direction
of each committed primary thread’s branch during the execution of the 2 SMT threads (on-
the-fly). These branch directions were being stored in a FIFO buffer and the redundant
thread, was probing the branch predictor for the prediction of each branch instruction. The
issue that arose and deemed this approach problematic had to do with the following: This
unit should be able to match instructions from the primary thread with instructions from
the redundant thread, in order to pair each prediction request with its outcome. This is not
straightforward to implement, because instructions do not have any sort of unique id or
characteristic. The same instruction can appear multiple times in a program repeatedly.
Given that, the only resort for matching primary and redundant instructions is some sort
of sequential mapping (i.e. the first primary thread’s instruction to be paired with the
first redundant instruction, the second with the second, and so forth). This could work
and lead to a working on-the-fly “perfect” branch predictor if there was not a final detail:
the sequence of instructions between the 2 threads is not the same when the second
is using perfect branch prediction. That is because certain instructions fetched by the
redundant thread were never committed in the primary thread. The said instructions are
the ones that were squashed from primary thread and will subsequently be squashed
and not committed from the redundant too. Squashing is the process of removing an
instruction from the CPU pipeline after it has been fetched but before being committed,
and can happen for various reasons, as we have mentioned. To summarise, the reason
for not being able to implement an on-the-fly branch predictor correctly was due to the fact
that this would require a sequential mapping between the instructions committed primary
instructions and the fetched redundant instructions and something like that is not possible

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 53

because of the instructions squashed in the primary thread.

0x0128 0x0128
athread fetch (> () > > > > » »(()
0x0128 0x0128

delay buffer

(A thread commit) > OO

0x0128
R thread fetch there is no way to predict if 0x0128 will be flushed

O = committed inst
Q = flushed due to misprediction

= flushed due to trap or memory order violation

Figure 6.4: Why a perfect, on-the-fly branch predictor could not be created? Instruc-
tions committed by A thread enter the Comparison Buffer and redundant thread needs
to match them with redundant fetched instructions. Because of flushed instructions, this
1-to-1 mapping cannot be formed at the time of fetch, because it is not known if the cur-
rent instruction will be flushed or not. To complicate the problem even more, the same
instruction (PC) might had occurred in primary thread’s fetch order firstly as a flushed one
and then as a committed one.

Due to all these, we resorted to creating a simpler oracle branch predictor, which utilizes
a committed instructions trace from a previous execution. In other words, the simulation
is run once, and the directions of all committed branches are recorded into a file. Then,
the simulation is restarted. The oracle branch predictor of the redundant thread will read
this file and upon each prediction supply the correct entry from the file. All these leave
unaffected the primary thread’s predictor which is of course, not ideal.

6.3.4 Implementation

In gem5 new branch predictors can be created by defining classes that inherit from the
BPredUnit class. This guarantees a unified interface. This class defines the following
abstract methods (among many others) that need to be implemented by each branch pre-
dictor.

bool BPredUnit::predict(...)
Returns whether a branch was taken or not taken.

void BPredUnit::update(...)
Tells the branch predictor to update any prediction information for some specific instruc-
tion.

void BPredUnit::squash(...)
When a misspeculation squash happens, this function provides feedback to the branch
predictor about the wrong prediction that caused the misspeculation.

We create OracleBP, derived from BPredUnit. OracleBP: :predict () is realized as fol-
lows: upon initialization of an OracleBP object, the trace file with the directions of all
branches from primary thread is passed as a parameter. The file is parsed and the branch
directions are saved in a FIFO queue. Each OracleBP: :predict() call returns the pre-
diction in the head of the queue. In order for the branch directions trace file to be created,
a runtime parameter to the simulation executable indicates whether in the current exe-
cution primary thread is recording branches, or redundant thread is predicting branches.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 54

In the first case, in Commit: :commitHead (), each control flow instruction along with the
branch direction is recorded in the file.

6.4 Parallel Error Detection Code Artifact

For Parallel Error Detection we use the open-source code artifact distributed by the au-
thors [35] and augment it with our fault injection modules.

6.5 False Positives

All implementations have the ability to detect false positives. It was found that the results
of certain instructions change between executions of the same program and same inputs
and hence would trigger an error detection in cases where no error was present. For
this, we extended the voter units in order to accept a series of program counters to ignore
when detecting an error on that instruction. To identify these atypical instructions we
simply execute the same binary twice without performing any injection and compare the
results.

6.6 Fault Injection

Here, we describe the fault injection campaign from an implementational perspective. We
have chosen to employ fault injection only in the integer register file. The register file is
an important and vulnerable unit and given the available time in this project, we decided
to limit the injection to this unit only. The fault injection is realized through a fault injector
object we implement, which is an attribute of each CPU and it models both the timing
and the location of each occurring error. In our case, the location is limited to one of the
architectural integer registers, and the time of each error manifestation is specified as the
number of accesses in that register (injected access time). Each error is modeled as a
bitflip into the register value by applying a bitwise mask during the register read. Other
parameters of the fault injector are whether the error is going to be transient or permanent
and the mask which will be applied to produce the bitflips.

» Transient errors are modeled by performing the bitflips during the register access
occuring at the injected access time.

» Permanent errors are modeled by performing the bitflips during all register accesses
happening after the injected access time.

6.6.1 Implementation

The RegisterFaultInjector class, realizes fault injection. The register to be injected,
the register access during which this error will occur and all other parameters are passed
through the Python interface into the RegisterFaultInjector SimObject and can be
specified via command line arguments into the simulator executable. The interface is
based on the following function:

RegVal RegisterFaultInjector: :compromise(...)

Takes a physical register id, its register value, and the current access time and if the con-
ditions for the injection are being met (injected access time reached) returns a erroneus
value, otherwise acts as passthrough.

In order for RegisterFaultInjector: : compromise () to alter values of the integer register
file, this method is called upon each register access, namely within the integer register
file modeled in PhysRegFile class.

When RegisterFaultInjector: :compromise() actually performs a bitflip, the current
simulated time is recorded into a file, for the calculation of detection latency.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 55

6.7 The MiBench Benchmark Suite

In computer systems research, usually, concepts and designs are tested and evaluated
during the execution of certain benchmark programs. The role of a benchmark is to evalu-
ate against sets of specific, well-known programs and through that ensure that the results
are transferable in any other more specialized program, regardless of the particular char-
acteristics or irregularities of each. For the reason specified, benchmarks must represent
a wide variety of programs that are representative of all the real possible applications and
produce repeatable and measurable results.

In this study we chose to use the MiBench benchmark suite [12] for evaluating the im-
plemented methods. MiBench is a collection of commercially representative programs
targeting embedded devices. The benchmarks that MiBench contains are divided into
six suites, with each suite targeting a specific area of the embedded market. The six
categories are Automotive and Industrial Control, Consumer Devices, Office Automation,
Networking, Security, and Telecommunications.

We decided on using MiBench because we judge that this benchmark is more appropriate
for a space applications system, mainly because it combines programs from Industrial
Control, Networking, Telecommunications, and Security, domains which all will be present
in a complex in-orbit or space probe system requiring fault tolerance hardening, such as
the ones which could be utilizing the methods we are studying.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 56

7 Results and Analysis

In this section we are presenting the methodology for conducting the experiments of this
study, the obtained results and we analyse the conclusions drawn by them.

7.1 Methodology

As it has been made clear in the rest of the text, the main purpose of this study is to com-
pare the 3 fault tolerance methods in four axes: the ability to detect errors, the detection
latency, the overhead in the processor performance and the layout/area overhead. To do
so, we conduct a fault injection experiment, emulating the presence of errors in 3 systems
-each one employing one of the studied fault detection techniques- while running a variety
of benchmarks from the MiBench suite.

The experiments we design are of the following structure: in each program execution, we
inject one error in a random register. To be able to compare more fairly the results across
the 3 methods, we keep the injected registers and the time of injection the same between
each method. We perform a large number of executions repeatedly, injecting on different
registers and at different times, and record the metrics of interest.

For detectability, we record the outcome of the execution, that is if the injected error leads
to one of the following:

* a crash, for example to a segmentation fault, due to an illegal memory access

* a hang of the processor in an unrecoverable state, which is detected after a certain
timeout period has passed

+ the normal completion of execution without the manifestation of any error in the
system (masked)

+ the completion of execution without the manifestation of any error in the system but
with erroneous results (silent data corruprion (SDC))

* the successful detection by the fault detection method

For the error detection latency, we measure the time elapsed between the error injection
and the successful detection of an error and for the overhead on the performance, we
measure a metric usually used in computer architecture, Instructions per Cycle (IPC).
IPC signifies the performance of a processor in the notion that more potent processors
have higher values of IPC since they can execute more instructions in the same amount
of time. As we have mentioned, non-superscalar CPUs which cannot process more than
1 instruction per cycle, have IPC lower than 1, and superscalar ones can have IPC higher
than 1.

7.2 Experimental results

7.2.1 Detection Latency

Quantifying R-SMT slack
In R-SMT, the delay in the retirement of an instruction by the primary thread and redun-

dant thread, is called commit slack. Since in R-SMT the error detection occures when
comparing instruction results on commit, commit slack is an important factor contributing
to detection latency. In Figure 7.1, we investigate how commit slack varies depending on

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 57

Table 7.1: Experimental setup

Common options for all methods

CPU @ 03 CPU model, 4-way out of order, 2 GHz, 192-entry ROB, 64-entry
1Q, 32-entry LQ, 32-entry SQ, 256 Int registers, 256 FP registers

Branch predictor Tournament, 2048-entry local, 8192-entry global, 8192-entry
chooser, 16-entry RAS, 4096-entry BTB

L1 Dcache 32kB, 8-way, 2-cycle hit latency
L2 cache 2MB shared, 16-way, 20-cycle hit latency
Main memory DDR4 2400, 8GB

R-SMT specific options

SMT Fetch policy Round Robin
Comparison Buffer 10 entries

Parallel Det. specific options

Load store log 36 KiB
Checker CPU 16 checker CPUs, Minor CPU model, in-order, 4 stage pipeline, 1
GHz

@for Paralle Det. this refers to the main CPU

the size of the comparison buffer. We find that, smaller buffer sizes result to smaller com-
mit slack. This is expected, since when the primary thread has placed more instructions
in the comparison buffer, than the redundant has consumed, the buffer becomes fully
occupied and the primary thread must stall, since there are no available entries to store
subsequent instruction results. As a result, the redundant thread commits instead, pro-
gressing further in the execution and converging with the primary one, hence reducing the
slack. Given that with smaller buffer sizes, the primary thread is more frequently stalled,
smaller comparison buffer sizes eventually lead to smaller slack between the threads.

60

max: 106 max: 745 max: 138 mazx: 1000 Comparisan
q3: 300 q3: 632 buffer size
501 med: 368 1
= — e
wn -
L 40 = 100
a-, 30 =3 inf
: max: 206
9] q3:177
% 20 med: 162
gi:157
10 4 min: 129
0 = = = = = P
T T T T T L
dijkstra djpeg fft ffti patricia gsort sha susane susans

Figure 7.1: Distribution of commit slack for R-SMT, when varying the comparison buffer
size. Each box is lower-bounded by the first quartile and upper-bounded by the third
quartile. The median falls within the box. The inter-quartile range (IQR) is the distance
between the first and third quartiles (i.e., box size). Whiskers extend to the minimum and
maximum data point values on either sides of the box.

Measuring Detection Latency
Regarding the detection latency, plotted in Figure 7.2 for all methods, we draw the follow-
ing conclusions:

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 58

* DMR exhibits the lowest minimum (in all benchmarks) and mean (in 8 out of 9 bench-
marks) values compared to the other 2 methods. This is expected since the 2 pro-

cessors are concurrently executing the same instructions. Hence, the delay for DMR
is only the time between the decode and commit stages.

» For R-SMT, the slightly higher values are attributed to the slack between the 2
threads.

» Lastly, Parallel Detection consistently exhibits higher min and mean detection la-
tency, due to the fact that checker cores are smaller and in-order are slower and the
main core progresses much further along the execution.

method
80001 mmm DMR
'g EE R-SMT
26000 I ParDet
o
3 4000 + I +
C
: y
< 2000 * +
= E aE S E
dijkstra djpeg fft f'fti patr|C|a qsort susane susans

Figure 7.2: Distribution of error detection latency for the 3 methods.

7.2.2 Detectability
To evaluate the detectability of each method, we perform two series of experiments as
described above, one with transient and one with permanent errors. We also conduct

the same fault injections in a system with no fault detection capability, to use it as our
baseline.

From Figure 7.3 regarding the transient errors experiment we recognize the following:

+ On the unprotected system, we observe that all the error injections lead either to
crashes, masked, or timeouts. The masked executions are own to the fact that
the injection to that specific register is not resulting in any change to the instruction
results. For example, this can happen if the affected register value is being masked
by a later instruction (such as an AND operation with 0).

+ Parallel Error detection detects the highest number of errors. This is because ParDet’s
implementation of architectural state comparison for error detection (as opposed to

B ES BES BES BES BES BES BEL B ED BED
s7s foES fme fme fme G
Soef® Soaf Soef Soef Soaf Soef Soxf Soaf Sosd

100 A

80 A

60 -

X

40 |

20 A
dijkstra djpeg fft ffti patricia qgsort sha susane susans

B masked BN sdcs B detected B crashes HEl hangs

Figure 7.3: Results of transient error injection across the 3 methods

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 59

s} = 4 e e} = 4 e e = e} e 4 4+ 4 e 4 4+

o ko o kEFu o kEFo okFEo okEo okEeuo o EFu o EFEo o ko

X P aYa) [aXa) PaYa) [aXa) faYa) P Ya) faYa) Y

SSU5 E5YE E3Y5 e3VF c2ds exls o295 c2¥l5 £29%

SOQxa SQca SOxra SQca SOxn SQca SOxo SOca SQxn
100 -
80 A
60 A

X

40 A
20 A
0 .

dijkstra djpeg fft ffti patricia gsort sha susane susans

I masked Hl sdcs I detected Il crashes Hl hangs

Figure 7.4: Results of permanent error injection across the 3 methods.

results comparison) which classifies as detected errors which for DMR and R-SMT
would be correctly classified as masked.

R-SMT detects more errors, compared to DMR, attributed to the structure of our
fault injection experiment. To guarantee a fair comparison, in all methods, we in-
ject the same registers after the same time inteval (measured from the start of the
program execution) has elapsed. As a result, the same errors are injected earlier in
program order for R-SMT, compared to DMR. Thus, errors manifested earlier have
higher probability of propagating to more registers through data dependencies and
consequently, potentially corrupt more instructions, and as result are more likely to
be detected.

Despite DMR being the methods with the lower percentage of errors detected, it also
exhibits the fewest failures (crashes and timeouts). This is expected since in DMR,
the error is being caught at the earliest possible time, when it manifests for the first
time in the program instructions results, since, because the 2 processors are execut-
ing always the same instruction, any difference will be found when the first affected
instruction will be committed. This is not the case for R-SMT, where, as detailed be-
low, an error can be detected after a number of affected instructions commit, due to
the slack between the threads. Therefore early detection prevents errors from prop-
agating further into the system, something which could lead to crashes or hangs.
That is to say, the small detection latency of DMR (which was also confirmed with
the previous experiment) contributes to the low failure rates.

» The small amount of crashes that appeared in some benchmarks (i.e. sha) in DMR,
can be attributed to the propagation of the error in the period between decode (error
injection happens during the reading of the operant registers) and commit (error
detection). Due to the superscalar nature of the simulated processor, the value of
the corrupted register is being read by the instruction during the fetch of operant
values, and stored in the ROB. After the instruction result has been formed it is
being stored again in the ROB, from where it is being consumed by all subsequent
instructions requesting that. This way the error has a small chance to propagate
in the pipeline before committing the erroneous value to the register file and hence
can propagate without getting detected.

Regarding the the permanent errors experiment, from Figure 7.4 we can deduce:

* In the presence of permanent errors, the unprotected system displays much more
crashes than silents across all benchmarks, because since errors are permanent

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 60

~ 2.4 s DMR
g _20- R-SMT
82 1.6+ Emm ParDet
ST
§§ 1.2 1
g (9] 08 -
& 04

0.0-

dijkstra djpeg fft ffti patricia gsort sha susane susans

Figure 7.5: IPC slowdown across the 3 methods

they are propagating more in the program flow compared to transient ones, making
it more likely to crash.

» The higher detection ratio that both DMR and R-SMT systems exhibit in all bench-
marks compared to the transient error injections can be attributed again to the same
reason, that is, permanent errors propagating more into the system, altering more
instruction results and hence being more likely to be detected.

* Lastly, Parallel Detection has the smallest percentage of detected errors, attributed
to the increased detection latency.

7.2.3 Performance overhead
» Regarding the performance overhead (Figure 7.5) of DMR, we can observe that this
is the minimum across the 3 methods since it preserves effectively the same per-
formance as in normal (unprotected) execution. As we have explained this method
introduces no slowdown to the processors.

+ Parallel detection has (negligibly) lower IPC values, due to the impact of checkpoint-
ing which stalls the main core. This confirms the claims of the original publication
that the method has minimal performance overhead.

* Lastly, R-SMT is the least performant method across all. We can attribute this to the
following 2 reasons:

— the partitioning of some microarchitectural components between the SMT threads
-especially of the fetch unit- hinders performance and creates a bottleneck

— the performance loss due to the stalls caused by the full comparison buffer

7.2.4 Area overhead

In Table 7.2, we estimate the area overheads of each method, compared to an unprotected
design. We assume DMR duplicates the whole processor core, resulting 100% overhead.
For R-SMT, area is increased due to two components: the area overhead of SMT and the
comparison buffer. We quantify the area overhead of SMT by relevant literature [13]-
[15], placing the layout overhead in real designs in less than 6% of the area of the core.
The overhead of the comparison buffer (of 10 entries), is calculated by comparison with
the L1 cache: 10 entry-buffer corresponds to 0.125% of the L1 cache and contributes to
an additional 0.04% area increase [16]. For Parallel Detection, area is increased both
by the overhead of the auxiliary cores and the load-store log. For both components we
reuse the results from the original publication [2], since we are also modelling the same
microarchitecture.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 61

Table 7.2: Area overheads

Overhead per Component Total
Method Component Overhead area
Unprotected - - 1x
DMR Redundant core 100% 2x
SMT overhead 6%
R-SMT Comparison buffer (10 entries) 0.04% 1.0604x
Checker cores (12) 20.2%
ParDet Load-store log (36 KiB) 3.8% 1.24x

7.3 Analysis and discussion
Based on all the above, we can draw some important conclusions.

First of all, regarding detection latency, DMR exhibits the lowest, the next highest is R-
SMT, and then Parallel Detection, with the largest latency. As we can see in the schematic
of Figure 7.6 this is something we were expecting. DMR detects the error upon commit
so latency is minimal. In R-SMT detection latency is the slack between the 2 threads. For
Parallel Detection, auxiliary cores are slower than the main core so the detection latency
is higher. Detection latency however has an immediate impact on detectability. From our
experiments, it was found that for the 3 methods, the number of undetected errors that
lead to crashes is inversely proportional to detection latency. This is not a coincidence.
Long detection latency (such in the case of Parallel Detection) means that in the time
between any error appearance and the re-execution/verification, there is enough time for
the error to propagate and hence the possibility of a crash is increased.

Dual Modular Redundancy Redundant multithreading Heterogenous systems
R
1.0
% T
fIIIIIiIIX X
________ - X
!
,,,,,,,,,, X
,,,,,,,, - X
)|
4
X = error y
¥ = detection (correct re-execution) Y
¢ = detection latency Yoo Ll X

Figure 7.6: Schematic comparison of the different detection latencies for each method.

At the same time, R-SMT displayed very similar detection latency and detectability with
DMR. Therefore, we can safely deduce that R-SMT is a viable alternative to DMR in

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 62

terms of detection latency, while at the same time reducing both area and energy over-
heads. This is an encouraging result since it shows that microarchitectural insights can
successfully optimize fault detection methods in the metrics that are important in space
applications (such as error detectability and latency).

Finally, when it comes to Parallel Detection, we have verified the theoretical traits of this
method: small performance and area overheads with high detection latency and moder-
ate detectability. We deem that this is an unappealing feature for spaceborne computing,
where detection latency and error mitigation are more important than performance or area,
which are of secondary importance. Even more, the fundamental tradeoff of this method
(Figure 5.7), which states that high error detection latency is required to attain high per-
formance and low area is also unsuitable for space. Another significant point that makes
Parallel Detection not ideal for space is that it allows propagation of errors in main memory
or in writes outside the system.

To summarize, the key takeaway is that R-SMT is on par with DMR in regards to latency
and error detection ability while exhibiting negligible area overheads and retaining a small
overhead on performance. Parallel Detection on the other hand has different strengths,
outperforming R-SMT in performance but lacking in latency and detectability, rendering
itself unsuitable for space applications but displaying successfully how microarchitectural
insights can optimize fault tolerance methods.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 63

8 Conclusion

8.1 Final remarks

In this work, we studied fault tolerance methods that leverage microarchitectural insights,
suitable for spaceborne processors. We compared 3 methods, Dual Modular Redun-
dancy, which is widely used in real-world space missions, Redundant Multithreading with
Simultaneous Multithreading, which utilizes SMT threads to increase the performance of
re-execution, and Parallel Error Detection with Heterogenous Cores, which is the state of
the art method of microarchitecturally-assisted fault tolerance. The 3 methods were com-
pared in 4 axes: the error detection ability, detection latency and area overheads, which
are of primary importance for space applications, and performance overhead, which we
believe emerging developments in the space sector will render equally important in the
future years. We discover that R-SMT has nearly equal detection ability and latency with
DMR while retaining minimal area overheads and degrading processor performance only
slightly. On the other hand, we verify that Parallel Detection exhibits better performance
overheads but falls short in detectability and latency which are unappealing features for
computing in space.

8.2 Future work
Possible future research direction could include:

» The refinement of fault injection, by compromising more pipeline elements and thus
covering larger parts of the processor.

* The examination of more methods that exploit different microarchitectural trends,
like hashing for faster verification or reuse of cached instruction results.

» The evaluation of fault tolerance techniques in the presence of an operating system.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 64

Bibliography

[1]

[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

E. Rotenberg, “AR-SMT: A microarchitectural approach to fault tolerance in micro-
processors”, in Digest of Papers. Twenty-Ninth Annual International Symposium
on Fault-Tolerant Computing (Cat. No.99CB36352), Jun. 1999, pp. 84-91. DOI:
10.1109/FTCS.1999.781037.

S. Ainsworth and T. M. Jones, “Parallel Error Detection Using Heterogeneous Cores”,
in 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Jun. 2018, pp. 338—-349. DOI: 10.1109/DSN.2018.00044.

J. E. Tomayko, “Computers in Spaceflight: The NASA Experience”, Tech. Rep. NAS
1.26:182505, Mar. 1988.

P. Parker, Integrated circuits in the Apollo manned lunar landing program, https://-
history.nasa.gov/alsj/apollo-ic.html, Dec. 2003.

B. Denby, K. Chintalapudi, R. Chandra, B. Lucia, and S. Noghabi, “Kodan: Address-
ing the Computational Bottleneck in Space”, in Proceedings of the 28th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ser. ASPLOS 2023, New York, NY, USA: Associa-
tion for Computing Machinery, Mar. 2023, pp. 392-403, ISBN: 978-1-4503-9918-0.
DOI: 10.1145/3582016.3582043.

L. Massengill, “Cosmic and terrestrial single-event radiation effects in dynamic ran-
dom access memories”, IEEE Transactions on Nuclear Science, vol. 43, no. 2,
pp. 576-593, Apr. 1996, ISSN: 1558-1578. DOI: 10.1109/23.490902.

P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-event upset
in digital microelectronics”, IEEE Transactions on Nuclear Science, vol. 50, no. 3,
pp. 583-602, Jun. 2003, ISSN: 1558-1578. DOI: 10.1109/TNS.2003.813129.

D. Tullsen, S. Eggers, and H. Levy, “Simultaneous multithreading: Maximizing on-
chip parallelism”, in Proceedings 22nd Annual International Symposium on Com-
puter Architecture, Jun. 1995, pp. 392—403.

S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and evaluation of redun-
dant multi-threading alternatives”, in Proceedings 29th Annual International Sympo-
sium on Computer Architecture, May 2002, pp. 99-110. DOI: 10.1109/1SCA.2002.
1003566.

S. K. Reinhardt and S. S. Mukherjee, “Transient Fault Detection via Simultaneous
Multithreading”,

Y. Hua, C. Gang, and Y. Xiao-zong, “TRSTR: A fault-tolerant microprocessor ar-
chitecture based on SMT”, Wuhan University Journal of Natural Sciences, vol. 10,
no. 1, pp. 51-55, Jan. 2005, ISSN: 1993-4998. DOI: 10.1007/BF02828616.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, “Mibench:
A free, commercially representative embedded benchmark suite”, in Proceedings
of the Fourth Annual IEEE International Workshop on Workload Characterization.
WWC-4 (Cat. No.01EX538), 2001, pp. 3—14. DOI: 10.1109/WWC.2001.9907309.

D. T. Marr, F. Binns, D. L. Hill, et al., “Hyper-Threading Technology Architecture and
Microarchitecture”, en, Intel Technology Journal, vol. 6, no. 1, p. 1, Feb. 2002, ISSN:
1535-864X.

D. Koufaty and D. Marr, “Hyperthreading technology in the netburst microarchitec-
ture”, IEEE Micro, vol. 23, no. 2, pp. 56-65, Mar. 2003, ISSN: 1937-4143. DOI:
10.1109/MM.2003.1196115.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 65

https://doi.org/10.1109/FTCS.1999.781037
https://doi.org/10.1109/DSN.2018.00044
https://doi.org/10.1145/3582016.3582043
https://doi.org/10.1109/23.490902
https://doi.org/10.1109/TNS.2003.813129
https://doi.org/10.1109/ISCA.2002.1003566
https://doi.org/10.1109/ISCA.2002.1003566
https://doi.org/10.1007/BF02828616
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/MM.2003.1196115

[15] R. Preston, R. Badeau, D. Bailey, et al., “Design of an 8-wide superscalar RISC
microprocessor with simultaneous multithreading”, in 2002 IEEE International Solid-
State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315), vol. 1,
Feb. 2002, 334-472 vol.1. DOI: 10.1109/1SSCC.2002.993068.

[16] P.P. Ramon, “Caching in real-time and embedded systems: Benchmarking the arm
cortex-m3 and quark soc x1000 processors”, Bsc Thesis, University College Cork,
Ireland, Apr. 2015.

[17] V. L. Pisacane, Fundamentals of Space Systems. Oxford University Press, 2005,
ISBN: 978-0-19-516205-9.

[18] J.R.Wertzand W. J. Larson, Space Mission Analysis and Design. Springer Nether-
lands, Sep. 1999, ISBN: 978-0-7923-5901-2.

[19] Onboard Computers, https://www.esa.int/Enabling_Support/Space_Engineering_T-
echnology/Onboard_Computers_and_Data_Handling/Onboard_Computers.

[20] A. Spector and D. Gifford, “The space shuttle primary computer system”, Commu-
nications of the ACM, vol. 27, no. 9, pp. 872-900, Sep. 1984, ISSN: 0001-0782.
DOI: 10.1145/358234.358246.

[21] J. Culver, The CPUs of Spacecraft Computers in Space, https://www.cpushack.com-
/space-craft-cpu.html, Apr. 2012.

[22] M. Anderson, Just What Do You Think You’re Doing, Dave?, https://spectrum.ieee.or-
g/just-what-do-you-think-youre-doing-dave, Jun. 2008.

[23] K. A.LaBel, “Decline in Radiation Hardened Microcircuit Infrastructure”, Tech. Rep.,
May 2015.

[24] Victor Hess discovers cosmic rays | timeline.web.cern.ch, https://timeline.web.cern-
.ch/victor-hess-discovers-cosmic-rays-0.

[25] Testing at the Speed of Light: The State of U.S. Electronic Parts Space Radiation
Testing Infrastructure, in collab. with Committee on Space Radiation Effects Testing
Infrastructure for the U.S. Space Program, National Materials and Manufacturing
Board, Division on Engineering and Physical Sciences, and National Academies
of Sciences, Engineering, and Medicine. Washington, D.C.: National Academies
Press, Jun. 8, 2018, ISBN: 978-0-309-47079-7. DOI: 10.17226,/24993.

[26] T. K. Gaisser, Cosmic Rays and Particle Physics. Jan. 1, 1990.

[27] W. Schimmerling, The space radiation environment: An introduction.

[28] A. S. Teitel. “Apollo Rocketed Through the Van Allen Belts”, Popular Science. (),
[Online]. Available: https://www.popsci.com /blog- network / vintage- space / apollo-
rocketed-through-van-allen-belts/ (visited on 07/13/2023).

[29] R. A. English, R. E. Benson, J. V. Bailey, and C. M. Barnes, “Apollo experience
report: Protection against radiation”, NASA-TN-D-7080, Mar. 1, 1973.

[30] J. W. Howard, Spacecraft Environments Interactions: Space Radiation and Its Ef-
fects on Electronic Systems. NASA, 1999, 36 pp. Google Books: Wv4UAQAAIAAJ.

[31] M. Marinella and H. Barnaby, “Total lonizing Dose and Displacement Damage Ef-
fects in Embedded Memory Technologies (Tutorial Notes - Draft 1).”, Sandia Na-
tional Lab. (SNL-NM), Albuquerque, NM (United States), SAND2013-4379C, May 1,
2013.

[32] R. Baumann, “Soft errors in advanced computer systems”, IEEE Design & Test of
Computers, vol. 22, no. 3, pp. 258—-266, May 2005, ISSN: 1558-1918. DOI: 10.1109/
MDT.2005.69.

[33] IBM Microelectronics Division, IBM PowerPC 740/PowerPC 750 RISC Micropro-
cessor User’s Manual.

[34] J.Lowe-Power, A. M. Ahmad, A. Akram, et al., “The gem5 Simulator: Version 20.0+”,
2020. DOI: 10.48550/ARXIV.2007.03152.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 66

https://doi.org/10.1109/ISSCC.2002.993068
https://doi.org/10.1145/358234.358246
https://doi.org/10.17226/24993
https://www.popsci.com/blog-network/vintage-space/apollo-rocketed-through-van-allen-belts/
https://www.popsci.com/blog-network/vintage-space/apollo-rocketed-through-van-allen-belts/
http://books.google.com/books?id=Wv4UAQAAIAAJ
https://doi.org/10.1109/MDT.2005.69
https://doi.org/10.1109/MDT.2005.69
https://doi.org/10.48550/ARXIV.2007.03152

[35] S Ainsworth and T. M. Jones, “Research data supporting “parallel error detection
using heterogeneous cores”, 2018. DOI: 10.17863/CAM.21857.

Microarchitectural Approaches to Fault Tolerance in Spaceborne Processors 67

https://doi.org/10.17863/CAM.21857

Technical
University of
Denmark

Elektrovej, Building 327

2800 Kgs. Lyngby
TIf. 4525 1700

www.space.dtu.dk

www.space.dtu.dk

	Preface
	Abstract
	Acknowledgements
	0 Εκτεταμένη Ελληνική Περίληψη
	0.1 Εισαγωγή
	0.2 Υπολογιστικά Συστήματα σε Διαστημικές Εφαρμογές
	0.3 Σφάλματα Προκαλούμενα από Ακτινοβολία
	0.4 Έννοιες Aρχιτεκτονικής Yπολογιστών
	0.5 Περιγραφή των υπό Μελέτη Τεχνικών Ανίχνευσης Σφαλμάτων
	0.6 Μεθοδολογία
	0.7 Αποτελέσματα και Aνάλυση
	0.8 Σύνοψη

	1 Introduction
	1.1 Project Requirements

	2 Spaceborne Computer Systems
	2.1 Applications of Onboard Computing
	2.2 Spaceborne Computer Systems Requirements
	2.3 Technologies used in Space Computer Systems
	2.4 Real-World Examples of Fault Tolerance in Space Missions
	2.5 Summary

	3 Radiation-induced Errors on Electronics
	3.1 Sources of Radiation in Space
	3.2 Radiation Effects on Electronics
	3.3 Interaction Mechanisms
	3.4 Summary

	4 Computer Architecture Primer
	4.1 Superscalar and out-of-order pipelines
	4.2 Branch Hazards, prediction & speculation
	4.3 Simultaneous Multithreading
	4.4 Summary

	5 Description of the Studied Error Detection Techniques
	5.1 Dual Modular Redundancy
	5.2 Redundant Multithreading
	5.3 Parallel Heterogenous Error Detection
	5.4 Summary

	6 Design and Implementation of the Studied Error Detection Techniques
	6.1 The gem5 Simulator
	6.2 Implementation of Dual Modular Redundancy
	6.3 Implementation of Redundant Multithreading (R-SMT)
	6.4 Parallel Error Detection Code Artifact
	6.5 False Positives
	6.6 Fault Injection
	6.7 The MiBench Benchmark Suite

	7 Results and Analysis
	7.1 Methodology
	7.2 Experimental results
	7.3 Analysis and discussion

	8 Conclusion
	8.1 Final remarks
	8.2 Future work

	Bibliography

