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Zdvoyn

2YNOWH

2TV Topovca O180KTOPIKT JlaTPIPn TpoteiveTal Eva mANnpeg neBodoroykd TAaic1o Kot pio
GUVOOEVTIKN €PYOAELOONKN HEBOd®V Kol evvoldy Yo TV PBpayvrpdecun mwpoPreyn g
KuKAoQopiog oe aoTiKG 0dkd dikTtva, oL GTOY0 £Yovv va ovénoovy Ty axpifela, v
alomolotio KOl TN EPAPUOCILOTNTA TV HovTéAwv Babidg Mdabnong oty Swayépion
KukAopopiog Bacilopeva o€ YOPUKINPLOTIKE OTMG 1| TOAVTPOTIKOTITO KO 1] OLTIOTNTO KOl OE
ototyeia g Bewpiag g Kukhlogopiaxng Porg.

ZUYKEKPUEVA OVATTTOGOETAL £V TOAVTPOTIKO TANIG10 TPOPAEYNG fOCIOUEVO GTIV £VVOlo TV
IMolveninedwv Awtdowv (Multiplex Networks) yio v wpofieyn o€ aoTikd 0dkd oktda
Aappdvovtag VoY YOPOYPOVIKEG oxéoels Hetafh Tov dvo efetalopevov pécwov (0dkn
KuKAlogopia kot {itnon tov petpo). Ipog v katevBuvon tng diedpuveong tng Tpofreyng o€
EMMESO SIKTVOV, AVAMTOGGOVTOL VELPMVIKA SIKTVO TOAAATAGY £E60®V, BAGIGUEVA OTIG APYEC
g Mdabnong [olhamAiodv Alepyacidv, ta onoia eivat g 0o va Tapéyouy TpoALyelg xpovav
S1adpopng yio ToALamAES O100poUEG G€ OAO TO OTKTLO, YPNOLOTOIMVTOC VA EVIOIO LLOVTEAO
Kol OEOOUEVO OO TOANATEG TNYEC KUKAOPOPLOKADV dedopévev. AKOUa, Yio va evioyvbel n
a&lomiotion TG Sndikaciog TpoPreync, epopuoletar n mpocsappoy Babidg Mabnong g
ortdtrog Granger, to povtélo Nevpovikoh Granger, Yo TV oVOKIALYT dUTIwOOV GYECEDY
petalld v Bécemv Tov 081KoD diktvov. EmmAéov, evompatovovtol ttuyég g Bewmpiog g
KUKAOQOPLOKTG POTG OE £Va. UTIDOES KO TOAAATADY JEPYUTIDY LOVTELO TTPOPAEYTG LE Bdion
M ®vown (Physics-Informed Neural Network), ypnoionoidvtog Uio, Kavotopuo cuvaptnon
ATOAEIOV eumvevcuévn omd ) Beswpia g Kukhogoprokng Pong, m omoia, ektog omd 10
opdipo mpdPreync, Aopupdver voyn TV amodcTOCN TOV TPOPAEYE®Y omd TO OVTIGTOL(O
Oeperindeg duaypappa. To mopondve mTAdicto epapuoletal o SESOUEVO TPOYLDY TUNUATOV
omd v oA Xi’an g Kivog kot og kukhopoplakd dedopéva Kot dedopéva (nong péowv
Lotk g LeTapOopas amd Ty evphtepn mTeployn TV ABNvov.

To amoteAéopoTo AMOKOADTTOUY ONUOVTIKG KuKAOQOplaKd potifo mov meptypdgovv
UIYOVIKT TOL 001KOD SIKTOLOL Kot £XOVV T dSUVATOTNTA VO AuENCOVY TV TPOPAEYILOTNTO TOV
KUKAOQOPLOKAOV CLVONK®OV, OTMG LTOJEIKVIETOL OO TO OVTIOTOLO, TEPAUATA. AKOUO, T
avioyevon oYEGEMV OITIOTNTOG KOL 1] EVOMUATOCT factk®dv yvaoemv T KukAopopiakrg Pong
OTNV GLVAPTNON OTOAEDV OVEAVEL CUAVTIKA TOcOo TNV axpifela kot v aflomiotio TV
BpoyvmpdBecuwv mpoPfréyewv, 660 Kot TV avBexTikOTNTA TOL HOVTELOL o BopvPddn
dedopéva.

H peddovtikn épguva Ba emkevipmbel oty a&lohdynon tng SuvaTOTNTOS HETOPOPAS TOV
TOPATAVD dOU®mV o€ AALEC TomoBeGieg TOV 1010V 0J1KOV OIKTVOV Ko 6€ GAAM 00K dikTva,
KkaBdg ka1 ot ypnon mo cvvhetov dopmv kal Texvikav Babiig Mdabnong, mpokeiévov va
BeAtimBel mepartépm 1 amddoon wpdPreyns. Téhog, Ba emyelpndei o cuvdvacuds dAWV TV
TOPATAVD OOUDV GE €vo, BE@PNTIKE EVNUEPOUEVO, QUTIDOES, TOAVTPOMIKO KOl O EMIMEDO
SKTVOV TAAiC10 TPOPAEYNG.

Aé&Earc-Kherdna: Tpofreyn kukhoeopiog, EQAPUOGIOTNTO LOVTELOV, TOAVTPOTTIKN TPOPAEYN,
puéOnon moAlamhmv diepyaciav, ortidtnto katd Granger, vevpwvikd diktova pe Pdorn m euoeikn



Abstract

ABSTRACT

In this doctoral dissertation, a complete methodological framework and an associative toolkit
of methods and concepts are proposed for the problem of short term urban traffic forecasting
that aim to increase the accuracy, trustworthiness and actionability of deep learning models for
traffic management based on features such as multimodality and causality and on aspects of
Traffic Flow Theory.

Specifically, a multimodal forecasting framework based on the concept of Multiplex Networks
is developed for urban road networks, taking into account spatio-temporal relationships
between the two considered modes (road traffic and metro demand). Towards the extension to
network-level forecasting, multiplex neural networks based on the principles of Multitask
Learning are being developed, which are able to provide travel time forecasts for multiple routes
across the network, using a single model and data from multiple traffic data sources. Moreover,
to enhance the trustworthiness of the prediction process, the Granger Causality Deep Learning
adaptation, Neural Granger, is applied to detect causal relationships between road network
locations. In addition, aspects of traffic flow theory are incorporated into a causal and multitask
Physics-Informed Neural Network forecasting model, using an innovative loss function derived
from Traffic Flow Theory, which, in addition to the prediction error, takes into account the
distance of the forecasts from the corresponding fundamental diagram. The above framework
is applied to segment trajectory data from the city of Xi'an, China, and to traffic and public
transport demand data from the greater area of Athens.

The results reveal important traffic patterns that describe the mechanics of the road network
and have the potential to increase the predictability of traffic conditions, as indicated by the
corresponding experiments. Furthermore, the detection of causal relations and the incorporation
of basic knowledge of Traffic Flow into the loss function significantly increases both the
accuracy and trustworthiness of the short-term predictions and the robustness of the model to
noisy data.

Future research will focus on evaluating the feasibility of transferring these structures to other
locations on the same road network and other road networks, as well as using more complex
structures and Deep Learning techniques to further improve the prediction performance.
Finally, an attempt will be made to combine all the above structures into a theoretically
informed, causal, multimodal and network-level prediction framework.

Keywords: traffic forecasting, model actionability, multimodal forecasting, multitask learning,
Granger causality, physics-informed neural networks
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EKTENHZ NMEPIAHWH

Ewayoyn

H évodog tmv deiktdv 1010KTNGiog oxNUATOV Kot, YevikdTepa, TG {TNONG Y10 LETAPOPES TIC
TEAEVTOIEG OEKAETIEC, (OC AMOTEAEGHLA TG ADENONG TOL TANOLGHOD KOl TNG OOTIKOTOINGNG, EXEL
gvieivel o onpovTikd Padud v wieon mTov aoKEITOL GTO OGTIKG GUGTLOTO LETAPOPAOV. G
OTOTEAECUO TV TOPATAV®, 1 GLYVOTNTA EUEAVIONG, KOOBDC Kol 1 €vIooT, (QOIVOUEVOV
KUKAOQOPIOKNG GUUPOPNONG EXEL AVENDEL, LE ONUOVTIKEG GUECEG KOl EULECEG CUVETEIEG OTNV
VYElD TOV TOMTOV, TNV O1KOVOLio, TNV 001K ac@dAELn KoL TO TEPPAALOV. ZE avTd TO TANIG1O,
N Gupiloven T@V QOIVOUEVOV CLUEOPNONG €YEL KOTOOTEL Hiol OONTNTIKY Kol TOAODTAOKN
amootol). Ta tedevtaio 20 ypovia, 1 avantuén EEuvov cvotnudtonv petapopov (Intelligent
Transportation Systems — ITS) éxet avaderybei o¢ to To amoTeAecaTIKO epyoieio TPog ovTn
v katevboven. H 6g mpdodog tng Teyvntig Nonpoosvvng, TV DTOAOYIGTIKOV GUGTNUATOV
KOU TOV TNAETIKOWVOVIOV TPOCQOEPEL VEEG TPOONTIKEG OTINV AMOOOTIKN dloxeipton g
KUKAOPOpPIOGC.

H oaxppnig Bpoayvrpdbeoun mpofreyn g kvkAopopiag Bewpeiton kabopiotikn yio v
amotelecpatiky epappoyn tov ITS, dedopévov OTL emTpénel v £ykaipn avTidpacn o1
OVOUEVOLEVEC CLUVONKEC KUKAOPOPLOG, OTIMG 1 EPAPLLOYT KATOAANA®Y CTPATNYIKOV OTOTPOTNG
NG ELPAVIONS KVKAOPOPLOKTG cLuppopnone. H avénuévn {ftnon ywo axpiPeic mpofréyelc o
ouoTHHoTa dtoyeiplong KukAo@opiog £xel VENGEL TO EVOLPEPOV BTNV EPEVVITIKT TEPLOYN TNG
TPOPAEYMC TV KUKAOQOPLOK®Y cuvOnK®y. MEMoTa, 11 AVEL TPOTYOLUEVOD SLOBEGLOTNTO.
KUKAOQOPIOK®V OES0UEV®V, MG ATOTEAEGLOL TNG PAYOOIOG OVATTVUENG TNG TEXVOLOYIOG Kol TV
TNAETIKOIVOVIDV OTIG HEPEG HOC, E0TPEYE TNV TPOGOYN TOV EPELVNTAOV TPOS UeBOSOLE
001 YOV LEVEG OO TOL dEdOUEVA Kat, Kupimg, Tnv Babid Mnyavik) Mabnon (Deep Learning). Ta
povtéla wpOPAEYNC TOL OVIAKOLY GE OVTH TNV Kotnyopia Bewpoldvial ¢ avtd pe v
peyardtepn okpifeld KoBMG HmOpoLV VO TPOGOUOIOCOLV e oKpifela omoladnmote
poOnpotiKn oxéon, ave&apTNT®MG TS TOATAOKOTNTAG TG, OTWMG 01 YMPOYPOVIKEG GLUCYETICELS
UETOED TV KUKAOPOPLAK®DY GLVONKOV TV 0E5EmV VO 001KOV OIKTVLOL Kol LAACTO YOpic va
amorteiton Waitepn Tpoomdbeia amd Tov YpNHoT.

Amo v GAAN pEPLY, TO CLYKEKPIUEVO LOVTEAN OTAITOOV HUEYAAO OYKO OEOOUEVOV Kol
oVENUEVN VTTOAOYIOTIKT 1OYY Y10 VO EKTOLOEVTOVV OMOTEAEGHATIKA, VA €lvol SVGYEPNC M
KOTOVONOT TOL UNYOVIGHOD T®V TPOPAEYE®V Kol 1 EPUNVEIN TOV OTOTELECUATMV TOLG,
YEYOVOG TTOL UEMVEL TV a&lomIoTio Kot T d1apaveld toug. Ot mapamdvem Adyot mepropilovv o
peyéio Babpd tn xpnoonoinon auTtdv TOV HOVIEA®V Y100 TOVG OKOTOVG TG oluyeiptong
KUKAOQOPIOG O€ TPAYUATIKEG GLVONKES, 1 OTTOl0l TAPAUEVEL OVTIGTPOPOS AVAAOYT) TOL HEYGAOV
EPELVNTIKOV EVOLAPEPOVTOG KOl TOL OYKOV TMV ONHOCIEVGEMV GTNV GUYKEKPLUEVT EPEVVITIKN
neployn. [IpokdmTEl GLVERMOC M| AVAYKT Y10 EXAVOTPOSIOPUO TOV KPITNPIwV 0EI0AOYNONG TOV
HovtéLV TpoPreymc, Balovtog og KeVIPKO poAo Oyl LOVO TNV akpifela Twv TpoPfAéywv adlAd
Kot v a&lomiotio, TNV atidTNTO, THY EXEENYNGILOTNTA KOL TV OTOd0TIKOTNTA, O GUVIVAGIOC
TV omoimv kabopilel TNV EPUPUOGIUOTNTO EVOG LOVTELOL.
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210)01

O «0p1og otdYo¢ ™G Tapovoag SaTpPig elval N avaTTLEN €VOC EPUPUOGILOL TAUIGIOV
TPOPAEYNS NG KLKAOPOPIOG TOAMITAGDV YPOVIKOV Kol YOPWKOV KMUAKOV Yo TNV
TPOYVAOOTIKN Sloyeipion TG KuKAo@opiog, TO Onoio EKMOIOEVETOL GE TOAVTPOTIKA
nmepBarirovta (Aapavovtog vroyn meplocdTEPO TOL VO PECO LETAKIVIONC), 0ELOTOUDVTOG
OITIDOELS YWPOYPOVIKEG GYECELS Kol TTVYES TG Oempiog Tng Kuihopoprakng Porg.

lNo tov oxond awtd, mpoteivetol pa epyarelonkr Asttovpyik®dv povadmv, Kabepio and Tig
omoieg pmopel vo a&lomonBel amd Tig apyég droyeiptong e KukAoQopiog VIO SOPOPETIKES
GULVONKEG Y10 TNV TPAYLLOTOTTOINGOT] TOAAATADY EPYACIOV TPOPAEYNG OO STUPOPETIKES OTTIKES
yovieg, Y. TPOPAeyn moAlOTAGV peTafAntOv €£050V, TOAVTPOTIKAOV 1 HEUOVOUEVOV
gpyacimVv, TpOPAeYN o€ OAO TO OIKTVLO N CNUEIKA Kot PpayvmpdOecec 1 LOKPOTPODEGES
TpoPArdyelc (Ue xpNion dESOUEVEOV DYNANG 1 YOUNANG avaAVGONG, OvTioTO ).

IIpog v xatevBuvon avty, N daTpPn BETEL TOVG TOPUKAT® EMUEPOVS GTOYOVG:

1. [Ipocdlopilopog YOPIKMY GLCYETICEMV GTA 001KE dTKTLA, LE TN XPT O™ SOYYPOVAOV HeBddmV
omd TV €PAPUOCUEVT] OTATIOTIKY] Kol T Bewpia g TAnpogopiag, kot aflohdynon g
enMidpacng Toug otV axpifela g TpoPreync.

2. Agpevvnon mhovOV CNUOVTIKOV OAANAETIOPACE®V HETOED TOV GUVONK®OV O0J01KNG
KukAoopiog katl e {RTnong Yoo GAAOVG TPOTOVG LETOKIVIONG Kot 0EImoinen Tovg Yo
TNV TOPUYWOYT TOAVTPOTIK®OV TPOPAEWEDV.

3. A&omoinon pag e00ToYNG KOl OVGLAGTIKNG OVATUPAGTACTC TOL 00KOD SIKTVOV Y10l THV
OTOTEAECUATIKY] LOVTIEAOTOINGT], TOGO TOV YWOPIKDV, OGO KOl TMV YPOVIKOV GYEGEDMV TOV
GLGTHNOTOG HETAPOP®Y ({NTNON Y10 SL0POPETIKG LECT).

4. Aviyvevorn CNUOVTIKOV OITIOOMV CYEGEMV UETOED TOV KUVKAOPOPLOKDV GLVONK®OV GE
duapopeg BEEIG TOV 0O1KOD JIKTHOL KoL TV KUKAOPOPLUK®Y LOTIPOV TOL 0VOSEKVOOUV
o€ eMimedo TOANC, T060 PpayvmpdOesio 0G0 Kol LoKPOTPODEGLAL.

5. Ategpgvvnon g ETIOPUCTC TOV UITIOOMV GYECEMV GTNV EVIGYLON TNG TPOPAEYILOTNTOG
TOV KUKAOPOPLOKOV cuvONKdV oe emimedo Owktvov, KaODG Kol TV a&lomIoTio TV
TpoPAEyE®V.

6. Ewoaymnyn otoyeinv and ) Beopio tg Kukhopopiaxnig Pong 6to 6tddio ekmaidevong tov
HOVTELOL pE TNV OvATTUEN LG GUVEPTNONG OTOAELOV CLUUPBATAG UE TN QUGT TNG
KUKAOQOPIOKNG ponG Kot TG EEEMENC TNG 0€ YDPO Kat xpodvo. Algpedvnon e ENiOPAcNS
NG otV amdd00T Kol TNV 0SI0TIoTIO TOV TANLGI0L TPOPAEYTC.

7. A&loAdynon ¢ emidpacng e mpocéyyiong mov kabodnyeitor amd T Bewpia OGOV agopd
ot Svvatotnro aflomoinong tov TANIGIoL g Tmpaypotikég ovvinkeg (amddoon,
Omod0TIKOTNTO KOl 0EI0MIOTIO).

[poxioelc Yoo TNV avantocn £Qoppiocilp®v povréiov mpoPfrleyns e
KUKAOQOpiog

Xe anth TV evotTo, Topovctdloviol ol CNUAVTIKOTEPEC TPOKANCELG Tov oyeTilovTal e
dvvatotnto o&lomoinong poviédwv Babudg Mdabnong ommv mpoyveotikn Owoyeipton g
KuKAogopiag, cOpPoVA e TV Tpoceatn PiAoypaeio, KoOMG KOl TO EPEVVNTIKG EPOTHLOTO
OTO OTTOL0L EMLYELPEL VO OTTAVTINGEL 1) TOPOVGA A TPLP.

X
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Tlpoxinon 1: Hepropiopoi s Babiog Mabnong

TTopd v adopeiofritnn arnoteiecpatikdtnra g Babidc Mabnong oty akpipn mpopieyn
TOV UEAAOVTIKG®V GLUVONKOV, DIAPYOVY OPIGHEVE EUTOSIO VIO TNV EQPOPUOYT TOV CYETIKOV
HOVTEL®OV GE TPOYLLOTIKEG GUVONKEG:

® Amaitnon HeyiAov OYKOV dESOUEVAV, LIE ETAPKT YEWYPOUPLKT KAADYT] TOL 051KOD S1KTOOV,
KOOMG Kol OVTITPOSHOTEVTIKOTNTOS TV OEO0UEVOV OVTMV.

o XpovoPopa dSadkacio ekmaidevong kabdg xor Padpovounong e doung Kot Tomv
VIEPTOPAUETPOV TOV LOVTEAWDV.

o Amauteitol VYNAN VTOAOYIGTIKY 10Y0UE Y0 TNV EKTOIOEVOT) KOl GUVTHPTOT] TOL HOVTEAOD,
KaOMG Kot Yo TNV oo KeLGT Kal xpron TV avtioTorywv PAcewny dedoUEVOV.

e XoaunAn oOvvatoétnTo EPUNVEING TMV OMOTEAECUATOV, 1 Omoio &ival omapoitntn
TPOKEWEVOL Vo dkooAoynOel 1 dwadikacioo Ayng amoedoenv kot vo avénbel m
a&10TIoTiOL TOV CLYKEKPIUEVOD HOVTEAOD.

o [legpropiopévn duvaTdTNTA LETAPOPAS KUl YEVIKEVOTG T®V LOVTEA®V GE AL diKTVLO 1] OE
dAAa onpeia Tov 1010V SIKTOOV.

Hpoxinon 2: Avamopaotach Tov 001K0D OIKTOOD Kol TWV GEO0UEVV E1GOOOD

H gbotoym avamopdotaot) Tov 001KoL SIKTVOV KAl TOV YOPOYPOVIKOV GUCYETICEWMV LETUED TV
TEPLOYDV TOV SVVATAL VO EVIGYVGEL TNV omOGS00T TOL HOVTEAOL, KOOMG Kol TV guyEPELD
epunveiag tov. Eniong, og avtifeon pe v mo cuvnbicpévn npaxtikn g fipAoypagiog, 6wov
TO HOVTEAO TPOPOOOTEITOL e OAEC TIC O10BECIES AKOTEPYAOTES TANPOPOPIEC YWPIC KapLiol
TPONYOVUEVT] OVOAALGN M ETAOY] TOV TO OYETIKAOV YOUPOUKTNPIOTIKOV, 1 okpipng
OVOTTOPACTACT TV GLOYETICE®MV PETAED TV OESOUEVOV EIGO0V LEIDMVEL TIV TOAVTAOKOTNTO
K01 TN LG TATIKOTNTO TOL YOPOL E16000L TOL POVTELOV. O1 10 S100E00UEVES AVATUPOGTACELG
glvar o1 €€Ng:

o >710ifa Savvoudrov (Stacked Vector): Ot xpovocelpég ToV KOKAOQPOPLOK®DY LETPTICEMV
omd TIG SAPOPEG TEPLOYEC TOV OIKTVOV (oL Umopovy vo BewpnBodv w¢g dtavdcuaTo)
otolfdlovioan og €va ddvoopa OSavvoudtov. Avt) givor n mo omAin  péBodog
AVATOPACTACNC, WOTOCO Elval KATAAANAN, KOTA KOPLo AOYO0, Yo A 0d1Kd dikTvo UE
Alyeg Boeig pétpnong.

o Ewova 1 miéypa (Image or Grid): Opiletan éva teTpaymvikd TAéypo pe to péyebog tov
001K00 d1KTOOV Kot o€ KABE g1KovooToryEio (Ti&eL) Tov TAEYHOTOC amodideTaL Lid T TTOV
OVTITPOCHOTEVEL TIC GLVONKEG KLKAOPOPING 6TO €0MTEPIKO TOV, TO O0mOoio £ivorl axpPdg
avéioyn pe pio euova og KATpaka Tov Yrpt. To pelovéxtnua avtg g pebodov givar ott,
oLVNBmG, TO 0J1KO SIKTVO KOADTTEL £val LIKPO UEPOG TOL TAEYUATOG, APIVOVTOG KEVA TO
MEPLGGOTEPO EIKOVOCTOLYEIDL. ZVVETMC, TO LOVTELO TPOPODOTEITAL LIE EVAV GYETIKA LEYAAO
YDPO €1GOS0V, 0 0TOI0C OUMG TEPLEYEL TEPLOPIOUEVT] TTATPOPOPIQL.

o ['pdpog: O ypapol UTopodV va ypNOLUOTOINB0VV Y10, VL EKPPAGOLV TTIO0 GUVOETEC GYETELS
HETOED TV OedOUEVDV €16000V OO SloPOPETIKEG BEGEIC TOV 001KOD S1KTOOV, Ol OTOLEC
ATOPPEOLY OO T GUVOEGIHOTNTO TOV TUNHAT®Y TOV 031KV S1KTOOV, TNV EMIOPUCT] TV
SLOCTAVPDOCEMY KOl TOV POTEWVAV GNUOTOS0TOV Kol To, LOTiRo KukAopopiog/cupedpnong
HETOED UN-YEITOVIKOV 0EcE@V. AVTOL TOL €100VG 01 CLGYETIGELS eKPPALOVTOL HECH TNG
GUVOEGIHOTNTOG TMV KOUP®V TOL YPAPOL KUl EVOG GUVTEAESTN POopOTNTC TOV OVTIGTOUYEL
o€g KGO ovvoeon. Ymapyovuv tpelg Pacikoi TOTOL cUVTEAESTAOV PapdTNTag: 0VTOl TOL
exepalovy TV TPayUaTiKn (Ye@ypapikn) cuvdeotudTTe TV KOUPoV, avtol mov givat
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avaAoyol TG amoOcTACTG TOV KOUP®V KOl 0uTol ToL EKPPALovV TNV HTAPEN GTATIGTIKNG
GLOYETIONG HETAED T®V KUKAOPOPLOKDV CUVONKOV TV avTioTorywv KOpPwv.

LHpoxinon 3: Zvoyétion kot Aitiotnto

Ytov emoTUOVIKO KAGOGO 1Tng TpOPAeyng Tng kukioeopiog, mapd TO YEYOVOG OTL Ol
TEPIOCOTEPOL EPEVVNTES CLUPOVOLV GYETIKA LE TNV VAAPEN CTUAVTIKOV OITIOODV CYECEDV
HETOED SLOPOPETIKAOV BécewV €vOg 0d1koD dktHov, cuvinBwg Pacilovior oe poviéla Pabidg
puabnong yuw evtomiopd cvoyeticev PeTa&d TOV PEYGAOVL OYKOL TV OE00UEVOV E1GOO0V.
Q6T000, Ol GLYKEKPLLEVES CLGYETIOELS OgV ival cLVNOMC SLUPAVEIC Kot KOTAVONTES Y10 TOVG
YPNOTEG, EVD Ogv givar eyyunuévo 0Tt givarl otimdels. Katd ) povielomoinon onolovdnmote
(QOVOLEVOD, Ol OITIDOEIS OYECEIC LETOED TV HETOPANTOV €16000V Kot €600V TTailovv TOAD
ONUOVTIKO pOAO. Xg avTifEDT LE TN OTATIOTIKN GLOYETION OV UTopel va Tapatnpndel oe éva
GUYKEKPIUEVO GOVOAO OEDOUEVMV, T EVVOLL TNG OITIOTNTOGC OVOQEPETOL GE TO ONUOVTIKEG
oyéoelg petald TV peTafAnTdv, pe v €vvola OTL, Y., N TR UG 1| TEPLOGOTEPWV
petafAntov €ico6dov Ba "mpokoarécel' v €000 vo AdPet por cvykekpuévn . o
GUYKEKPIUEVO, 1 UEAETT] TOV AITIOO®MV OYECEMV €lval TOAD OMUOVTIKY Yo TPELS Poctkods
AOYOLG:

o  Xpnon LetaPAntadv 16600V TOL GYETILOVTOL OITIMIMG LLE TO UVALEVOIEVO ATOTEAEGLOL
KOl T®V OTO1mMV 0 OVTIKTLUTOG € aWTd Tapapével otabepog Kat sivar aveEaptntog and Tig
UETOPOAES TV TIUDV TOV HETAPANTOV.

e XuvNnowg, 0 ¥®dPog 16600V TEPIAAUPAVEL TOGO UTIMOELS OGO KOl LT ALTUDOELG
UETOPANTES KO, KOTE TN XPNON TEYVIKMOV ENEENYNONG TOV OMOTEAECGUATOV, OEV UTOPOVV
va, Sl PLoTovV, YEYOVOC TOL 00N Yel o€ avaidmioteg enelnynoelc.

e Otov ¥pMoLoTolovvTol T060 aITidO 0G0 KOt U oLTidOn YOPUKTPLOTIKA 6TV
TPOPAEYM, 1 S1UCTOTIKOTITO TOV YDPOV E1GOO0V AVEAVETOL OTUAVTIKE, VTOVOUEDOVTUG
TNV amdd00T) TOL LOVIEAOL, EVA 1] PO LOVO OITIOIMY YOPUKTNPIOTIKOV Bo T
EMOPKTG.

Otav mpoxetrtar yio dedopEva YPOVOCELPDY, 1) TTO KATAAANAN Kot ONUOPIANG péBodog Yo TV
aviyvevon aTiwdmv oxécewv gival o EAeyyog arttotnTog Kotd Granger. Me anAd Adyia, AEue
OTL oL ypovooelpd "x" mpokodel katd Granger tn ypovosepd "y", otav n "y" tpoPArénetan pe
peyoAnTepn axpifeia amd Evo LOVTEAD, EAV TPOTYOVUEVEG TILEC TG "X" meptlapufavovTol 6To
YDPO €16000V. TNV KAAGIKN a1TidTNTo KOTd Granger, T0 LOVTELO TTOL YPTGLUOTOLEITOL Y1OL TNV
a&todoynon g VIOPENG ATIVOMY GYEcEMV ival TO ALVUCoUATIKO AVTOTOAIVOPOLO LOVTELD
(Vector Autoregressive - VAR). T'iveton dnAadn 1 mopadoyn OTL VIAPYOLY HOVO YPOLUIKESG
oY€0ELG LETAED TV dedoUEV@V, KATL TOV UITOPEL VoL EIVAL VIEPATAOVGTEVUEVO Y10, CLGTHLATO

TOV TTPOYHOTIKOD KOOV, T.Y. V1o 0eO0UEVH KUKAOPOPLNG

To onpavtikoétepo TAEOVEKTNHE TG orToTNTog Granger, ®GTOG0, vl OTL TPOKELTOL Yl LidL
moivpetafAntn péBodo, onradn oaloAoyel v Vmopén aTiddoVE oYEoNG HETAED dVO
HETOPANTOV AapBavovTog vITOYT Kol TV ETOPACT] OAOV TOV AAA®V LETARANTOV €160J0V, G
avtifeon pe TG meplocoTEPEg GAleG pneBddovg Tov eetdlovv povo Tig oyécelg ava (eoym.
Zoppova pe to poétuono VAR, 1 petafint e£600v v ivat £vog YpOoUUKOS cuVOLAGOC TV
TPONYOVLEVOV YPOVIK®V PNUATOV TOV LETARANTOV E1GOS0V Xi -i:

T T T
Ve = Z aq X161 + Z Ay Xz + oo+ Z A1 Xn,t—1 )
=1 =1 =1

xi
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omov T eivor 0 péyiotog aplBuds YpoviK@V VGTEPNCEMV TOL AdpPBAvovTal VITOYT, n gival o
GUVOAMKOG aplOUdg TV YPOVOCEPOV €600V Kol aii €ivol O GUVTIEAESTNG TNG 1-0GTNC
yPOovocelpdg Tov oyetileTan e To xpovikd Prpa t-1. Ot Tipég TV ovvieleoT®V TPocsdiopiloviat
€101 MOTE VA EAYIOTOTOEITOL 1] alkOAOVON TOGOTNTOL:

%(i Ve~ Zn: i ap1Xie-1) + Azn: ilau| (an

i=11=1 i=11=1

omov N &ivol 0 GUVOAMKOS 0PIOLOS TOV TOPATNPTCEMV.

TlpoxAnon 4: Ereénynoiuotyro kot xawpoypovikn oaveivon

H epunvevoipdmra 1 TeEnynodTnTO OVOQEPOVTAL GTI OOPAVELL EVOG HOVTEALOL, 1 omoia
GUVETAYETOL OTL TO OEOOUEVA 1 O OAYOPIOLOG KOl O UNYOVIGHOC TOL TTapEYEL TIC TPOPAEYELC
glvar Tpoofdoipa og kKamowo Pabud amd Tov ¥pNoTh, Y®PIc Vo amatteital TANPNG KATovonom
NG OOUNG TOV LOVTEAOL KOl TOV HaBnpaTikod Tov vtofdfpov amd tnv TAgvpd Tov.

H ene&nynodmnra kot 0 EVIOTIGUOG TV YOPIKOV Kol YPOVIKMOV GYECEWV LETAED TV BécemV
TOV 001KOV JIKTVOV, LLE COPTVELD KOl SIOUPAVELD, EVOL TOAD OTUAVTIKEG Y10, TOVG GKOTOVE TNG
dlyelpong e KuKAOQOpPIaG, TPOKELUEVOL:

e No dikaloloyeitor 1 SLdKAGIo ANYNG TOPACE®Y Kol VO OVEAVETAL 1) EUTIGTOGVUVN
OTO GUYKEKPIUEVO LOVTEAD, TPAYLLOL ATTOPAITITO Y10, T CLUUOPPOGCT] TMV YPTCTMYV TOV
OKTOOV.

o No e€oybel véa eTOTNUOVIKT] YVOGOT GXETIKA LLE TN UNYAVIKT] TOL SIKTOLOV.

o No fertiobel n amdd061 TOV HOVTELOL TPOPAEYNC KOL 1) LETAPEPSIUOTNTA TOL.

H efoyoyn 1oV Yopoxpovik@Vv cyECEmV KOl 1| EPUNVEIN TOV OTOTEAECUATOV TOV HOVTEAWDV
Babidc Mdabnong yiveron pe pebddovg ot omoieg dev €xouv 1oyvpd poabnpatikd vrdpadpo Ko
eEoptavtor €& ohokAnpov and ta Srabécia dEdOUEVA - KATO GUVETELD, ElvaL TOAD EVAAMTES
o BopuvPmon cOvolo dedouévev Kot gvOEYETAL VO TAPEXOLY OVOEIOTIOTO OTOTEAEGLOTA.
EmmAéov, vmodnAmvouy HOVO GTATIOTIKEG Kot Oyl oITIMOELS GYECELS. 1o TNV avIETOTIoN
avTov TOL {NTAUATOG, Ol EpeuvNTEG Ba mPEmel vo AGBovv VITOYN TOLG OPEVOG TN YVAOCT| TOV
nmpoépyetal amd tn Bewpio g Kukhopoprokng Pong oyetikd e ) xopoypoviki d1ddoon Kot
TOV SLVOUIKOV TNEG KUKAOQOPLOG KoL TS CUUPOPNONG Kol apeTEPOL LeBOOOVE Yo TNV e€€taon
KQLL TV TOGOTIKOTOINGT TOV TIOIMV GYECEDV 0TO S1OESILN OEQOUEVAL.

LHpoxinon 5: Mabnon mollamiwv diepyaoiav: H avéyrn yio moivustafintéc mpofléyeig

H évvola Tov povtéAmv moALOTADV S1EpYacI®V 1 TOAUETARANTOV TPOPAEYEDY OVOPEPETAL
otV avamtuoén evog poviélov mov pmopel vo mpoPAdyel mepiocdtepa TOV €vOC eyEOn
(depyacieg) tavtdypova, SNAadN €xel TOALEC petafAntéc e£6060v. Ztov Topéa TG TPOPAEYNC
NG KUKAOQOPIOG, £vO. LOVTEAO TOAAMTAMVY OlEPYACI®Y UTOPEl va ypnoiuoronbetl yuo v
TpOPAeYM TEPIGGHTEP®V TOV EVOG KLKAOPOPLAK®DY HEYEODY (POPTOC, TayDTNTA, TUKVOTNTA 1
katddnyn). To Pacikd TAeovEKTHA TG TG LEBOdOV GE GYéom pe TN (PNon HOVTEA®V Yio
v wpoPreyn piog petafinthg eival 0T, oOUPOVO pe TIC OgueMddelg oyéoelg Tng
Kvkhopopraxnic Teyviknig, yperdloviar TovAdylotov 600 PETUPANTES Y10 TOV YOPOKTPIOUO TV
KUKAOQOPIOK®V GuVONKOV ¢ cupgopnuéveg i un. o mopdaderypa, pio T Tov eOpTOoL
oavtiototyel og dvo mbavég kotactdoels. [lapéyovtag oto HOVTEAD TV TIUN LUOG ETTAEOV
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UETAPANTAG, avTd dvvaTal vo dtoywpiletl TIg dV0 KUTUOTAGELS KOl TIC SIUPOPETIKES SUVOUIKES
OV OVTIGTOLYOVV GTNV Kabeud.

Mia S10popeTIKN TPOGEYYIoT TOAUETOPANTOV TpoPAEYemV TNV TPOPAEYN TNG KVKAOPOPLag
glval o1 TOATPOTIKEG TPOPAEYELG, ONAAOT 1| TPOPAEYN TG KUKAOPOPING GTO 0d1KO dIKTVLO GE
ouvovooud pe tn {Atnon yw aAlo péca PETOPOpPAc, .. Méoa Malwng Metagopdc. ‘Eva
oYeTkd mapdaderypo mopovotdletar oto Kepdiato 5 ¢ mapovoag datpifnrc. Ipémer va
TovioTtel OTL, 1010iTEPA OE QLT TNV TEPINTOOT, €KTOG ONO TOV EKTETOUEVO Ydpo €EOO0VL,
OVEAVETOL GNLLOVTIKA KOIL 1] TOAVTAOKOTNTA TOL YMPOL €160S0V. LVVETMC, CLLTY 1| TPOGEYYIoN
TPEMEL VO EMAEYETOL OTAV VAAPYEL OMNUOVTIKY] CLUCYETION TOV UETAPANTOV €060V Ko
avapévetol va ovénbel n cuvolikn akpifeia TpdPreyng yio OAeC.

LHpoxinon 6: Evicyouévn aliomartio ue Nevpwvika Aiktoa Bootouévo, 2ty @ooikn

H mpdopatn Piproypaeio oty tpofreyn g kukhoeopiog Paciletar kupimg otnv Babud
Mabnon, mopafAEnoviag TNV EMICTNUOVIKY YVOON Tov Tpoépyeton omd T Bewpio g
Kvkhopopraxnic Texvikng. To yeyovog avtd HeldVEL TEPETAIP® TV 0EOTIOTIO TOV HOVTEA®Y
K0l, G€ GUVOLOOUO WE TOVG TEPIOPICUOVG 7OV OvVAPEPONKOV VOPITEPO, ULEIDVEL KO TIG
TPOOTTIKEG AE10TOINGNG TOVE GE TPAYHOTIKEG CUVONKES. ATO TNV AAAN Heptd, TA avOALTIKA (1)
GTOTIOTIKA) KUKAOQOPLOKA LOVTELD 001YOUV OE OVOKPIPEIG EKTIUNCELS Y10 TECOEPIG KOPLOVG
AOYOVG: LTOPOVV VO, ITOTVTTMCOVY UOVO EVA TEPLOPIGLEVO VITOGHVOLO T®V THAVAOV cLVON KOV
KUKAOQOPIOG KOl TNG SVVOUIKNG TOVG, avaGEPOVTAL GE 10aVIKEG cLVONKeEC, TEPAUUPavouy
OPKETEG TTOPAUETPOVS OV TPEMEL VO, KBOPloTOouV amd TOV ¥PpNoTn Kot givol vA®TO GE
BopuPmon odedopéva. Qotdcso, aVToOV TOL €100VE TO. HOVTEAM €lval epunvedoILO Kot Ogv
OTOLTOVV HEYAAEG TOGOTNTEG OEGOUEVMV.

O cuvdLOo O TV TOPATEVE TpoceyYicemVy vioBeteital amd Ta Nevpwvikd Aiktvo Baciopéva
ot ®vown (Physics-Informed Neural Networks) mov givarl moAd amodotikd 660V apopd Tig
OTOLTAHOELG OEOOUEVMV, EMITLYYAVOVTOC TOPOLOIES 1] KO KOAVTEPES EMOOGELS OO TA KAUCIKA
povtéha Babid Mdabnong. Mdlota 1 glcaymyn ototyeiov and T Oewpla avapévetor va
UEIDGEL TNV TOATAOKOTNTO TOV LOVTEAOD, VO BEATIOOEL TNV 0rdd00N Kol TV 0EL0TIeTIO Ko,
Kupimg, va 0dNynoel o€ ykvpeg TpoPAdyelg kot opBoroyikn Aqwn aropdoewv. H évvola tng
Evnuepopévng amd  Osmpio Babidg Mdbnong otoyedel 6To va, GuVOLAGEL TO TAEOVEKTILLOTO.
TOV dV0 TOPATAVE TPOGEYYICEWDV LOVTEAOTOINONG. XvyKeEKPLUEVA, epapuoletal otav &va
HOVTELO 001 YOUUEVO OO Ta dedopEVA TEPIAAUPAvEL, G €ic0d0 1 €£000, pia 1 TEPIoGOTEPES
UETAPANTEG Y10 TIG OTTOIEG EIVOL YVOGTN [0l VOAVTIKN/ Lo UaTiKy oxéon amd T0 avTicToryo
emotnuoviko medio. H oyéon avtn cuvnbmg eVoOUATOVETOL GTN GUVAPTNOT ATOAELDY TOV
HOVTEAOVL 1] XPTCLLUOTOLEITOL GE Uiot aveEAPTNTN OVIOTNTO KOl OTOCKOTEL GTNV TPOGUPLOYN
wwitepa AavBoaouévov, mopdroyov mpoPAéyewv Tov HOVTEAOL, TPOg TIS "BewpnTikd
OVOLLEVOLLEVEC.

LHpoxinon 7: Ipofléyeic oc emimedo O1kTHOD

H avantoén evoc mhaisiov poviglomoinong mov o mapéyel mpoPréwelg yio €va oAOKANpO
001KO OIKTLO TAVTOYPOVE, TOPUUEVEL OVETOPKMG OEPEVVIEVT], OV Kot UTopel va ovénoet
ONUOVTIKA TN SuvaTOTNTO, 0ELOTOINOTG OTOLOVONTTOTE LOVTEAOV. 2TV TPpdoath PiAtoypaeia,
TO TEPLGCOTEPO, LOVTELD TTAPEXOLV ££000 Yol pia ovo BEom Kot Oyt Yoo OAES TOVTOYPOVA., TOV
SUVNO®G aVaPEPETUL OC BEG-0TOYOC, KOl EKUETAAAEVOVTAL LOVO EVO, GYETIKA LUKPS TN L0 TOV
001KOU OKTVOV ¢ €i60d0. Ot AdYol mov cvpfaivel avtd TEPIAAUPAVOLY TNV AVETOPKN
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SobectudtTnTe KoL TOOTNTO SEDOUEVOV, TIG VYNAEG LTOAOYIOTIKEG OMOLTHOES KOl TNV
TOATAOKOTNTA EVOG TETOLOV LOVTELOV.

To v avIYETOTION TOV TOPATAVEO TEPLOPICUDV, Ol EPELVNTEG CTPEPOVIOL KLPIMG OE
alyopiBpovg ko peBodovg e YmoAoywotikng Emiotmiung mov eugaviotnkov oyetucd
wpoceota. H mo onpoavtikn amd avtég eivar n Yroroyiotwkn [apveav (Edge Computing),
GTNV OTOi0l 01 VITOAOYICTIKEG EPYUGIEG EKTEAOVVTOL GTIG TOPLPES TOL SIKTVOV, ONANON EKEL TOL
GLAAEYOVTOL TO. Oed0OUEVA, KOl OYL GE EVOL KEVTIPIKO DITOAOYIGTIKO VEQOG 1] KEVTPO JEOOUEVAV.
T'a mapddetyua, n Ymoroyiotikn I[Hapvedv pmopet va ypnoonombet yio v enelepyacio
UEYOA®V TOGOTNT®V OEOUEVOV KLUKAOQOPIaG Tov mapdyovtol omd oicOntnipeg, kdpepec,
ovokevég GPS kat dAdeg TYEG TOTTIKA, TPOKEUEVOL VO TAPEYOVTAL TPOPAEYELS TOV GUVONK®V
KUKAOQOPIOC GYEGOV GE TPAYLOTIKO YPOVO.

Baoiopévo otic apyéc g Ymoloyiotikng Iapvedv, 1 Opocmovolaxny Mdadnorn (Federated
Learning), etvat éva mpdTLTO PNYOVIKAG LAONOTG TTOL EMTPENEL GE TOAAATAOVG GUUUETEYOVTEC,
OTMC OLOKEVEG N KOUPOLG okUdV, Vo pobaivovy cuvepyatikd éva HOVIEAO yopic va
popdloviol To aKOTEPYNOTO OEJOUEVO, TOVG MHE MO KEVIPIKY OvIOTNTA. AVT 0vTOv,
aVTOAAGGOOUY  UETAED TOVUG EVNUEPMOEIS TOL HOVIEAOL UE OMOKEVIPOUEVO TPOTO,
emTpémovtag T PEATIOON TOL GUVOAIKOD LOVTELOL HECH TOV GLAAOYIKMY GUVEICPOPHOV OAWMV
TOV GUUUETEYOVTOV. AVTY| 1] TPOGEYYIOT| EXEL TO, TAEOVEKTILLOTO TG dSUVATOTNTAG KAUAK®ONC,
oA TO QOPTIO TOL VTOAOYIOTIKOD £PYOL KOTUVEUETOL OTIG CUUUETEXOVGES GLOKEVEC,
EMTPEMOVTOG TNV KAUAK®OT og TpofAnuata mov 6o HTav avEéEIKTo v emAvBovy pe o
KEVTPIKT TPOGEYYIOT, Kot TNG aviekTikotnTag, Kabmg to cvotnua Ba eivar oe 0éom va cuveyioet
v Aettovpyel, aKOUN KOl OV KOO0l CUUUETEXOVTIES TOPOVGIACOVY OMOOVONTOTE EI00VE
aotoyia.

[Ipog to mapdv, n a&lonoinon Tov Tapondve nedddmwv otny Tpofreyn g Kuklopopiag, Kabmg
Ko yevikotepo g TpdPAeyNC o€ emimedo SKTOOL, PPICKETOL GE TOAD TPOLO GTAILO.

TlpoxAnon 8: AmodotikotnTo ka1 ETEKTACIUOTHTO, € TOAVTPOTIKG TEPIPalLlovTo,

H mtpopreyn g ong tov pécmv Padikng LETAPOPAS, KOOMG Kol GAL®VY TPOT®V UETAPOPAG
(m.y. ta&i, vinpeoieg petakivnong, TodNANTA K.AT.), GTOTEAOVV TAPUALAYEC TOV TTPOPANUATOC
NG TPOPAEYNC TNG KLKAOPOPING, TOV EMIGTG ULTOPOVV VO, VTIUETOTIGTOVV LIE TAPOLOL0 TPOTO.
Mo ohokAnpouévn Tpocéyyion, mov Ba Aapupdvel vidym Oia to péca petapopds, Ba Epepve
EMOVAGTOOT 0N OlaYEIPLOT TNEG KUKAOPOPLOG KOl GTN ANYT ATOPACE®Y GE EMITEGO TOANG Kt
0o mopeiye otic apyég éva epyaieio mov Ba emétpeme TN PeAtioTomOiNoN TOV GLVONK®V
KUKAOQOpPioG o€ OAOKANPO TO 001KO dikTvo. To mapamdve gival Suvatd e TV ETEKTAON TNG
£VVoL0g TNG TPOPAEYNC TOAMAATAGDY SIEPYACIDV GTIV TPOPAEYT TOAVTPOTIKNG KLKAOQOPIaG.

Edv avénbei n dobeoypuotto dedopévemv TOAAATA®Y TNYy®V, avouévetal va avéndel Ko n
OMUOTIKOTNTO TNG TOAVTPOTIKNG TPOPAEYNG KuKAopopioc. TIpokeévou va avartuydel Eva
HOVTELO IKOVOTOUTIKA YOUNANG TOAVTAOKATITOC TTOV Oa givor amodoTikd, Tapd To YeYovog OTL
€xeL €vov TOGO LEYALO YDPO E1IGOS0V, EIVOL OTAPAITNTN L0 AKPPG OVATOPACTACT] TOV YOPWOV
€10000V Kol TOV PETAED TOVG GYECEWDV.
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Epevvyuixa Epwtiuato

ZOoppovo pe To gvphuata TG PpAoypa@ikng avacKOmnong Kol TI TPOKANGEIS TOL
EVIOTMIOTNKAY, KOl OGOV 0(QOPA GTOVG GTOYOVG TNG TApovGOS OTPPig, HUTOPOUV va
dTutBoV To akdAoLOA EpELYNTIKA EPOTHUATOL

El: Mmopolhv va €vtomioTtodV ONUOVTIKG Y0poypovikd HoTifo kukAopopiag oe €va 0d1Ko
diktvo; 1660 gvaioOnta eival avtd ot dwudkasio e&oywyng; ITotog eitvar o avtikTuTog OV TOV
TV potifov ot Bpoyvrpodecun duvatdtnta TpoPAEYNS TG KUKAOPOPING;

E2: [log pmopodv vo enektafodv 01 TUTIKEG OVOTOPUCTAGELS TOL 0OKOD SIKTOOV KOl TV
YDOPOYPOVIKOV CLUGYETICEDV DGTE VO CLUTEPIAAPOVY TANPOPOPIEC Amd TOALATAOVS TPOTOVE
petaxivinong Kot wo1og Oa eival 0 avTikTVTOC 6TV TPOPAEYIUOTITA TG KUKAOPOPING;

E3: Mo Ba ftav N katdAinin SoTOT®GCT TOV TPOPANUATOS Kot 1) dOUN| LOVTEAOTOINGNG
TOALATADV EPYUCLOV DGTE VO KOTAGTEL SUVATH 1] ATOTEAEGLOTIKY] KOl KPS TPOPAeYN TG
KUKAOQOpPiOG 6€ eMimedo SIKTHOV;

E4: Mropei va kataptiotel Eva TAIo10 aitiddovg TpoPAeyng mov Ba 00 yNcEL TNV aviyvevon
GNUOVTIK®V TPOTOTI®V KVKAOPOPIOG, EVIGYDOVTAG TOPAAANA TV aSlomioTio kot TV aKpifeia
TV TPOPAEYEDV;

E5: Tlog Ba pumopovcay vo evemouatmBodv mTuyés TG HOVIEAOTMOINoNG LE EMIyVOOT NG
Bewpiag ot Sadkacio TpoOPAeYNG Yo vo BEATIOGOVV TNV 0Sl0TTIoTio KO T EQOPLOCIUOTITA
TOV LOVTEA®DV TPOPAEYNG;

E&opvén I'poppikav kor Mn 'poppik@v Xopoypovik@v XopaKTpLoTiKOV
o€ AoTikd Aiktvo

Zoppova pe 6ca £yovv oN ocvlnmoei, éva mpoeavég TpdTo PriLa TPOG TV AVATTVEN evOg
EQUPUOCIHOL HOVTEAOL TPOPAeyNs eivar vo efetaotel KOTO TOGOV VLRAPYOVV YMPIKEG
eEapTNoElg LETOED TOV KUKAOPOPLOKOV cLVONK®OV 0TS d1dpopec BEGELS EVOC 001KOD SIKTOOL
KOl TOLEG €lval Ol EMMTOGELS TOVG o011 PpayvmpdOeoun mpdPreyn g kvkhopopiac. [ to
OKOTO avTd, epapuoloviot Tpelg HEHoSOL Yo TOV EVIOMIGUO TOLG: ZLoYETIoN Kotd Pearson,
ApoiBaio [TAnpogopia (Mutual Information) kou Avvapkr Xpovikn [apapopewon (Dynamic
Time Warping). H mpotetvopevn pebodoroyikn tpocéyyion epappuoletol 6To 0dtkd SikTvo g
woAng Xi'an g Kivag, ypnowonoidvtag dedopéva tpoyldc mov mapéyovior amd tnv Didi
Chuxing Technology Co, o kwve(xn gtoupeion moapoyng vmnpeostdv ta&l KvnTikdTNToc, Ta!
omoio a&lomo KAy yio TNV EKTIUNON TNG XPOVOCELPAG TNG LECTIG TAYVTNTOS Yo KAOE TUN o
Tov 00wov Oiktoov. Il ocvykekpyéva, mTpaypotomoleital eviomiopods twv 20 mo
OLOYETIOUEVOV Bécewv pe T 0éon-01dx0 ovppmve pe kaBe péBodo cvoyétiong kot
ovykpivovtor ot axpifeleg  mwPOPAEYNG OTOV  YPNOCILOTOOVVIOL  OTOKAEICTIKA Ol
mpoavapepbeicec B¢ce1c g 16000¢ 6e €va LovTéLD KaTnyoplonoinone Mrebloavol diktHov.

Tpoemeepyooio dedouévarv

To dedopéva oL YPNCUOTOLOVVTAL GE QLTI TNV EVOTNTO ATOTELOVVTOL 0Td 3,2 EKATOLUDPLN
dadpopés GPS twv oynudtov g Didi 6to 001kd diktvo tng Xi'an, Tov mpaypatomolonKoy
peta&d 2 ko 30 Nogpppiov 2016. Kabe tpoyid avtiotoyel otnv axpipn 0éomn tov oynuoatog
k@B 2 éwg 4 devtepoienta, KAODG Kol TV ToydTNTE TOV, TOV €ivol KoL 1 LETAPANTH TOL
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ypnowonomnke vy v TPOPAEYN. ZTN GULVEXEID, EQOPUOCTNKE £€vag OAyOPOpog
OVTIOTOlY1OMG TV oNUEl®mV 0To 00KA TUNIOTO TOV SIKTVOL KoL, OLLOOOTOLOVTOS TO OEOOLEV
KGO TUUOTOC ava pio OPO, TPOEKLYAV Ol MPLOIEC YPOVOCEIPEG WECTG TOYVTNTOS TV
TUNUaTOV.

Evrormioudg yowpixwv oveyeticewv

Xpnoponoidvog Tig Tpelg Tpoavapepbeioeg pebodovg, vroroyiletal 1 GVGYETION OA®V TOV
00KV TUNUATOV HE TO TUAUO-OTOYOG. ¢ TUNUO-0TOY0G emhéyxdnke éva amd To MO
molvcOyvaota TUqpato mov  Pploketor oto kévipo g Xi'an. Ilapotnpovtoc To
OTOTEAECUATO, POIVETOL OTL Ol TPELS TPOCEYYIGELG AMOTVIMVOLV SLOPOPETIKE YOPUKH HOTIfa
670 1010 GVVOAD dedopévav. [To GVYKEKPIUEVE, GOUE®VA LLE TOVE DTOAOYIGHOVG TG apoaiog
TANpoeopiag kol NG cvoyétiong Pearson, ta kovtivd kdBeto 0dKd TUNHOTO GLuoyeTi{ovTon
MEPIGGOTEPO UE TO EMAEYHEVO, KAODC Kot Oplopéva avavtn Kol Kotévin ootk THHOTL.
EmmAéov, yia v apofaio mAnpogopia, evromiloviar OploHEVO TOPEAANAC TLMLOTOL.
Avtifeta, pe v DTW, dev aviyvevetal kavéva kAOeTo 0d1kO TUpa, oAAG ovtiBeTa Kdmolo
YELToVIKA TapIAANAa (Ta omoia dev aviyvebovTat amod Tig AAAEC LeBdO0VG). O aVTIKTLTOG AVTHOV
TV dpopnv Ba Tpénel va diepevuvn el mepaitépm 660V apopd TNy akpifela tpoPfreyns. To
TUAHO-0TOY0G KoOmG Ko TaL 20 T0 GUGYETICUEVE E AVTO TUAUOTO, COUPOVO, LE KaOE néBodo,
nmapovctdlovtol otnv Ewkova, 1.

(a) (b) (©

Ewova 1. Ta 20 o ocvoyeTiopéva 001ka TUROTO (KOKKIVO) PE TO EMAEYPEVO TU RO (UTAE), 0O
v droyn (o) T Lvoyétiong Pearson, (B) ™g Aporpaiog IIinpoopiog kat (7) TS Avvaptknig
Xpoviknig Mapapdpemong.

Amoteléouara mpofleyns kou ovyrpion uedodwv

IIpoxeywévov va ouykptBovv Tao omoteAéouato TV UHEBOd®V, AVOUTTOGGOVTOL LOVTEAN
TPOPAEYNC NG TOXOTNTAG TOL OOKOV TUAUOTOC-0TOYoL. Ta povtéda eivor Mmebliavol
ta&vopntég mov mPoPAETOVY TV TAXVTNTO TOV TUNHOTOS GE TPELS 1COPPOTNUEVEG KAAGELC:
<20, 20-26, >26 km/h. Zvvolikd avortiyOnkav Tpio pHoviéAa: To, dVO TPMTO dEXOVTIOL GOV
€10000 TIG TWEC TNG TaLTNTOG 0T 20 O GLUCYETICUEVO TUAUATO COLPOVA LE TIG HeBOOOVC
™m¢ ApotPaiag ITAnpoeopiag kot Tng Avvapukng Xpovikng Iapapodpewong, aviictoyo, Vo To
Tpito amod ola To Tpupata. H axpifeia tov tpiov poviédmv mapovoidletor otov [ivakag 1.
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Mivakag 1. MeTpikég TaSIvOuNoNns TOV TPLOV HOVTELMY

) Model 1 Model 2 Model 3 (all
Metrics .
(Mutual Info) (DTW) locations)
Accuracy 89% 86% 84%
Recall (Sensitivity) 89% 86% 84%
Precision 89% 86% 85%
F1 - score 89% 86% 85%

Amd TOV mMopomave Tivake HmOopel Kavelg va copmepdver OTL M xpnon g opolPaiog
TANpoPopiog etvatl 1 IO KATAAANAN ETIAOYN Y10 TNV TEPLYPOAPT TOV YWOPIKDYV CLUCYETICEMV,
TOVAQYIGTOV Y10 TNV GUYKEKPIUEVN EPAPUOYN. AQETEPOL, T dVO TPATO LOVTEAD EYOVV GOPDG
KoAVTEPN omddoon amd 1o Tpito. To amoTEAESHA QLTO OVAOEIKVOEL TN YPNOILOTNTO NG
EKTEALEOTC KON KO OGS OTTATC YOPOYPOVIKNG AVAADGNG Y10l TV ETIAOYN TOV TTO KATAAANA®Y
dedopévov €16000v. Emumiéov, 1 mopamdve oadikaoio PEI®VEL T Ol00TATIKOTNTO TOV
wpoPAquatog, n omoia eivar €va mOAD cvvnOicpévo (RTUo Katd Tt ypnon oAyopifuwmv
UNYOVIKNG pabnong. v mapovoa mepintmon, Mrav dubéoyeg 283 petaPintég (odwkd
TUAHOTA), TTOV Elval Lol VYNAN TN, 0ALA ev TEAEL NTOV omapaitnta povo 20, HEldvVoVTaG Kot
TOVG OTTALTOVLLEVOVG DTTOAOYLIGTIKOVE TOPOLGE, KATL TOV givar €£I60V ONUAVTIKO.

[popreyn Kvkrogopiog pe Xpion Iinpogoprdv Ioiraming Xpoviknig
Avaivong pe Agoopévov Tpoytds Oynpatov Xe Eningdo Awktvov

H avdlvon mov mopovsidoTnKE GTO TPOTNYOULUEVO KEQPAAOLO KATESEIEE OTL, TPAYLOTL, VTAPYOLY
ONUOVTIKEG YOPIKEG OYECELG LETAED T®V KUKAOQOPIOK®V GUVONK®V €vOG 001KOL SIKTVOV, Ol
OTOIEC LWITOPOVV VO, EVIOTIOTOVV UE TN XPNON KATOAANA®V HeBOS®V amd TN GTOTICTIKY Kot TN
Oeswpia ™ TAnpoeopioc. EmumAéov, mpoékvye OTL M emidpacn tovg otV axkpifelo g
mpdPAeyMc elvar a&loonpeim. v Tapodco evoTNnTa, SiveTal EUPUCT GTIC YPOVIKEG OYECELS,
YPNOUOTOIMVTAG M0 TO KOTAAANAN doun poviehomoinong, oniadn €va poviého Boabidg
Md&Bnong, Tov omoiov 0 YMPog €16650V amoteAeitan and ypovooepés. EmmAiéov, Ta dedouéva
GUYKEVIPMVOVTOL GE DYNAOTEPT YPOVIKI OVAALOT Kol, O avTIOEST LE TNV TPONYOVLEVN
evotnta, Tapéyoviol fpayvurpdbecpeg TpoPAEweLg, KATL TOVL ATOTELEL TO SVGKOAO EYYEIpMLLOL.

Movrtelomoinon advBetwv ypovikwy potifwv

H molvmAokdtnTa TOv 001KOL TEPPAAAOVTOC, TOV UNYAVICUDV EAEYYOV, KOOMDS Kol TO TAN00¢
TAOV 0ONYIKOV GUUTEPLPOPADV KOL TV U1 EXLAVIAAUPAVOLEVOV GUVONKMV, 0811YOUV GE GUVEXDG
UETOPAAAOUEVEC YPOVIKEG dVVAUIKES TTOV KABIGTOOV €EALPETIKA SVGKOAN TNV HOVTELOTTOINGN
ToVg amo o amAn doun. o mopddetypa, oto Avadpopkd Nevpwvikd Aiktva (Recurrent
Neural Networks), mov Bewpovvtor ta Mo KatdAAnAo Ko akpifn povtéda oty aviivon
YPOVOGEPDV, 08V TPOPAETETAL 1] XPNION OESOUEVMV E1IGO0V UE LETAPANTH YPOVIKT] GLYVOTNTA.

X€ 0UTN TNV EVOTNTA, EMLYEPEITAL 1] ATOTVTOOCT TOV PPayvmpdOecUOY KOl LoKPOTPOBEGL®Y
EMOPACEDV TOL TAPATNPOVVTOL GTIV KUKAOQOPIa, 1) E6MTEPTIKEVGT] TOV {NTAUATOG TV XPOVIKA
UETOPAAAOUEVOV YPOVIKDV €EUPTNCEDY TTOV TOAPATNPOVVIOL GTN PON KLKAOQOPiag oTn
Swdikacio pabnong ko mn Peitioon g wovotnta TPOPAEYNG o€ oY€oT UE TO KAUGIKG
Avadpopkd Nevpovikd Alktvo, Pe TNV EQOPUOYT TPONYUEV®V YPOVIKA UETUROAAOUEVOV
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EMOVOLOUPOAVOUEVOV — VEVPOVIKGOV  OOUMV.  LUYKEKPWEVO, T  OPYITEKTOVIKY  TOV
Awoteddpevov Avadpoukmv Aiktowv (Dilated Neural Networks) eivar por molveninedn
OPYLTEKTOVIKT] VELPOVIKOL OIKTOOL TOL &ival TOAD OmAY OTNV KOTOVONGN TNG, OAAG
OTOTEAECUATIKY] KOl 0T0d0TIKY| Kot facileTor ota amAd Avadpopkd diktvo. Xopaktnpileton
emiong omd TIC SLUCTUAUEVEC EMAVALAUPAVOLEVEC GUVOEGELC TOPAAELYNG KOl TN YPNOT) EKOETIKA
av&avopevng 8106ToANG, N omtoia arnewoviletal oty Ewova 2.

Output O

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2 .

Hidden Layer
Dilation =1

Input .

Ewova 2. H apyrtektovikn Tov Atooteriopevov Avadpopik®v Atktomyv (Dilated Neural
Networks)

Tlpoeroiuaaoio dedouevav

To dedopEVA TTOV YPNCIUOTOIOVVTOL GE VTN TNV EVOTNTA EIvol AVTE TOV PLEGHOV TOYVTHTOV TOL
001K0D O1KTVOV TNG Xi’an OV Y¥PNCIUOTOONKE KO GTNV TPOTYOVLEVT] EVOTNTA, LE T1| SLAPOPE
OTL Ol YPOVOGEPEG ONAOOTOOVVTOL oVl Tevtdiento. O ydpog €10600v TeptAapPdvel Tig
YPOVOGEIPEG OA®V TOV 00IKAOV TUNUATOV (497 cuvolikd), Yo 12 ypovikd Pripoto (Lo dpa)
v TOPOTNPON, Ol OTTOIES YPNGLOTOLOVVTAL Y10, TNV TPOPAEYN TNG TAYVTNTOS TOL TUNUOTOG-
oTOYOL 5 AemTd LETAL.

Amopoaciotnke OTL Ol TOYOTNTEG TOL TUNHATOG-GTOYOV Ba mpémel vo Talvounbovv ce 600
Katnyopieg, omote, Kol TAAL, EXovpe €va TpoPAnua ta&vounong. Ot dvo Katnyopieg sivat
Myotepo and 33 km/h kou Tepiocdtepo amd 33 km/h, Tov givar 1 S1GUECOC TOV TOYLTHTOY TOV
TUAHOTOC Yo TIG 29 Muépeg TV dedopuévav. Me autdv tov Tpdmo, VITOBETOVE KOKES £mG
UETPLEG GUVONKEC KUKAOPOPING OTAV 1 KATNYOpilo TAXVTNTOG EivaLl 1| TPOTN Ko PETPLES £MG
KOaAEC ouVONKeg dTav etvar 1 devTEPN.

Amoteléouozo

T'a v TpdPreyn TV TayLTMTOV Ypnoiponoteitan £va AlaoTeEAAOUEVO dikTVo oL Paciletan
GUYKEKPIUEVO GTNV apPYLTEKTOVIKY] Tov Atktoov Moakpdg BpoyvrpodOeoung Mviung (Long
Short-Term Memory — LSTM). Ztov Ilivakag 2 mwopovctdlovtal ol LETPIKEG KOTIYOPLOTOINGoNG
Y10 TO TPOOVOPEPHEY dLOGTEAAOLEVO SIKTVO GE GVYKPLoT KE Eva amhd dikTvo 1010V TOTTOL.

To omoteAéopata tng ovykplong MHETaEd evog Atootehlopevov diktoov LSTM kot evog
KLOGKOD 6TV TPOPAEYT HEAAOVTIKGV GLUVONK®GY KUKAOPOpPIaG LE Yp1oT OESOUEVMY OO OAO
70 dikTLO €015V OTL TO dlooTEAAOLEVO Umopel va BerTidoel Ty akpifeta TpdPrewng, ympic
va glodyel vepPoAtkr] ToAvTAoKITNTO 0T dradikacio. H apylttektovikn Tov mpotevouevon
OKTOOV €ivol OpKETA amAn Ko €miong €0KoAd oavTiAnmt]. To KOplo TAEOVEKTNUA TG
TPOTEWOUEVIC APYLTEKTOVIKNG o€ oVYKPlon pe 1o omAd LSTM givon 6Tl amoTumdvel Kot
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EKUETOAAEVETAL TIG LOKPOTPODEGILEC CLGYETICELG TOV UTOPEL VO EXNPEAGOVV TIG LEALOVTIKES
oVVONKeg KuKAOPOpiag o KaBoploTIKG 6e GVYKPLON LE TIG Bpoyvumpoeciieg

Mivakag 2. Z0yKkplon amoTEAECPUATOV ALOGTEALOPEVOV KUl KLUGGIKOD AV POUIKOD SIKTVOV

Dilated LSTM  Simple LSTM

Precision 0.85 0.83

Recall 0.85 0.82
F1 score 0.85 0.82
Accuracy 0.85 0.819

Holvtpomukn [IpoPreyn o Eninedo Aiktvov

IIpoywpovtag éva PAua Topokdto omd Ty omin €mAoyn HETAPANT®OV €16050V Kol TNV
LOVTEAOTOINOT) TV Y®POYPOVIKMV GUCYETIGEMV UE fACT] KATO0 LETPIKT), GE QTN TIV EVOTNTA
npoteivetal n vioBénomn tov [Todveninedov Awtoov (Multiplex Network) omd tnv epgvvntikn
mepLoyn e Avaivong Kovovik®dv AKTomv Yoo TNV ovorTapdcTacT TOV HETOPOPLKOD dIKTHOL
g ABMvog kot Tov aviictolywv cvoyeticewv. Emiong, ypnowonoteital évag aiyopiduog
Evtomopod Kowottwv oto TloAveninedo AlKTvo yio TOV TPOGOIOPICUO TOV MO GYETIKMV
GTOLYEI®V TOV YOPOV EIGOSOV YOl TOL LOVTELD TPOPAEYNG TOL OVATTOGGOVTOL GTY] GUVEYELXL.

MdéMoTa, 68 AT TNV EEOPUOYT, GKOAOVOEITOL L0 TPOGEYYION TOAVTPOTIK®DV KOl TOAAUTADY
YOV OedOUEV@YV, KaOMDG, Ol LOVO TPOPAETETOL O PEAAOVTIKOG POPTOG KLKAOQOPING Kot M
peArovtikny {inon tov petpd, aArd a&lomotobvtal ETion MG YOPAKTNPIOTIKA LGOS0V Y10, TNV
TPOPAEYN TOL €VOG aO TO AAAO. AVTY 1 TPOGEYYIOT EVOG TOAVTPOTIKOD TANLGIOV, TO 0010
evtomilel oNUOVTIKEG GUOYETICEIS LETAED TMV JOPOP®V UEGHOV LETOPOPAG (Kot pmopel emiong
va enektobel o meplocoTEPE amd dV0 PEGA), O Exel TOAD ONUAVTIKEG TPOEKTAGEIS GE £val
O0MOTIKO GOGTNHO dlayElpIong TG KukAopopiog.

Tolverinedo dixtva

Ta [MoAvenineda Alktvo givol TOAOTAOKEG SOUEG YPAP®Y TTOL O100ETOVY GTPMUATO EKTOG OO
KOUPBoLG Ko aKpEC, Ta omoia dtaféTovy ot amiol ypdgot. ‘Eva molveninedo diktvo amoteleiton
omd 600 N TEPLOCOTEPOVG OLOGVVIEIEUEVOVE ATAOVG YPAPOLS TOV BpicKovTal GE d1POPETIKA
otpopato. Kdbe otpopa £xel d0popeTikn dour cuVOESIUOTNTAG EVTOG TOV. AVTO TO €100G
OIKTHOL EMITPEMEL O TO PECAICTIKY] TPOGEYYION OTN HEAETN NG aAANAEmidpoon
UTOUOV/TPUKTOPMOV, TO, OTOI0L UTOPOVV VO ETKOVOVOVDY HECH JLAPOPETIKAOV TOTWOV KUVAADV.
H moapobdoa epyacio viobetel tov opiopd evog TOAVETIMESOL SIKTVOV MG £va OIKTVLO TOL
omoteAeiTOL 0O TOAAG OTPOLOTA, OTTOV £VOC KOUPOC dev cuvdéetal Le KOpBoug mov Bpiokoviot
G€ JOPOPETIKO GTPDOO, AAAG LOVO EVTOG TOV 1010V GTPMUOTOG,.

Evrormiouoc korvoryrwv

To wpoaypatikd diktuo Topovcldlovy LEYAAES OVOLOIOYEVELEG, OMANOT KOPLOEG UE YOUNAO
Babuod cuvdeootntog (Aiyeg cUVOEGELG) GLUVLTAPYOLY UE KATOIEC KOPLOES LE LYNAO PoOUO.
‘Etot, n katavop] TV oKUOV €lval GLUVOMKE KOl TOTIKO OVOLOLOYEVIC. AOUIKES O1a(pOpPES
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Uropovv va Tapatnpniodyv eViog CUYKEKPIUEVOY OUAO®MV KOPLPAOV, OTTMG VYNAES 1| YOUNAES
GUYKEVTPMOELS OKUAOV HETOED AVTAOV TOV OUAOWV. AVTO TO YOPUKTIPICTIKO TV TPOYUATIKOV
SkTov ovopdleTor dour kowotntog 1 opadomoinon. ‘Etol, ot kowdtnrteg, or omoieg
OTOKOAOVVTOL EMICNG GLOTASEG 1 EVOTNTES, €IVl OUAOEG KOPLO®Y TTOV UOLPALOVTOL KOWVES
1010TNTEC KoM Tailovv TapdUolo poro HEGH GTOV YPAQO.

TI'o tovg oxomolg g mopovoag epyaciag, ypnouomotleitor o aAydpipoc Louvain. O
alyopipog aviyvevorng kowotntov Louvain Paciletor ot Pektiotomoinon g
apBpwoipotnrog (modularity) katd v tpdodo tov aryopibuov. H apbpwcipudtnta sivorl pia
T KA poxog peta&d -0,5 (un apbpwt opadoroinon) kot 1 (tAnpog apbpwtr opadoroinon)
OV UETPE TN GYETIKN TLKVOTNTO TOV OKUOV EVIOC KOWVOTNTOV GE GYECT LE TIG AKUEG EKTOC
KOWOTHT®V Kol 1 BEATIGTOTOINGN ALTNG TNG TG 00NYEL 6TV KAADTEPT) dSLVOTYH OpLOdOTOINGT
TOV KOUPOV EVOG GUYKEKPILEVOL JTKTVLOV.

INo oAvenineda Alktoa, 1 apBpociUdTTa SIVETOL A0 TV TAPUKATO GYECT):

1 kiskjs ..
Qm = 2_ 2 [(aijs - )(5(5, T‘) + w@(l,])] 6(]’1‘5: er) (”I)
A 2mg
i,jsr

oMoV 1, j efvon o1 TPAKTOPES, S, T £lval TA GTPOUATA, Ojjs tvar 1 av i, j elval yertovikd 610 oTpd oL
s, kis elvat o fabuodg tov TpdKTopa i 6TO GTPMUA S, [ Eval 0 aptBpdg TV LELYDY KOPLO®Y TOL
glte elvat YEITOVIKEG GTO OTPOUN O EITE OVTIOTOLYOVV GTOV 1010 TPAKTOPQ, Ms £ivol 0 aptOpdc
TOV OKUAOV GTO GTPAOUO S, Yis Elval 1 kowdtnta oty omoia €xel avarebel o mpdxTopag i 6To
oTpOUa S, 0 glvar 10 déATa Kronecker xon @ givon éva Bapoc: 6tav o 1010¢ TPAKTOPOG OVIKEL
otV 010 Koot 68 dVO SUPOPETIKAE oTPpOUATA, TOTE TO Qm avEdveTan Kotd ®. To opéya
glvar ol Topapetpog mov maipvel Tipég amd 0 €wg 1. O Kabopiopdg VYNAGTEP®Y TIUOV TOV
opéyo Ba £yel og amoTéAecA KOWVOTNTEG TOL B0l EKTEIVOVTOL G TOAAATAG GTPMUOTO Kol O
omoTeAOHVTAL OO TOVG 1010VC TPAKTOPES, APOV LE AVTOV TOV TPOTO OEAVETOL 1) TIUN TNG
apBpooipndtntoc. ATd TV AAAN TALLPE, av To ®UEYa optotel ico pe 0, n vmapén TV BV
TPAKTOP®V OE  OOPOPETIKA OTPAOMOTO oIV 1010 KOwoTnta Oev  GUUPAAAEL oTHV
apBpooipotnro.

Awabéoiuo dedouevo.

T'a v avdmruén tov poviédov TpdPreyns e Kukloeopiag ypnooromnkay dedopéva
KUKAOQOPIOKNG poNg Kot (ATNoTMG TOL UETPO, TO OMOiC OVIIGTOLYOLV OTOV aplBud TV
SepYOLEVOV OYMNUATOV KOL TOV ETPATOV, OVTIGTOLYN, 0O d1APOPa GNUEIN TOV 0S1KOV SIKTHOL
Yo TEPTI0d0 PG DPAG. ZVYKEKPLUEVA, ypnoomoOnkay dedopuéva 10 unvav (Iavovdplog wg
Oxtdpprog Tov 2021) amd 113 amd aviyvevtég Ppoyov mov Ppickovial YOp® omd To KEVIPO TNG
oM g ABNvag, kabmg kot 1 {Nnon 6Awv Tov 63 otabumv tov petpod. Xty Ewdva 3
eatvetor 1 akpipng Béon TV aviyveunt®v Ppoyov He TPAGIVO YPOUL KOl TOV CTOOUMV TOV
UETPO LE KOKKIVO YPDLLOL.
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Ewova 3. Feaypoa@iki] Katavopn aviyventov (Tpdoivo) Kot 6Todpd@y Tov petpod (KOKKivo)

To dixrvo s AGnvag wg Hoiverinedos [ papos kot eVIOmouos KOIVOTHTWY

To ovykowoviokd Oiktvo g AOMvag (aviyvevtég kot otobpol peTpd) pmopel va
avamopaotadel g €vo TOAVETITESO YPAPNUO TOV YWOPOYPOVIKOV GYECEDMV TOV KOUPWV,
TPOKELLEVOL VoL aviyveuBohv KowvdTNTEG Kot Vo ovTAnBobv TOADTILEG TANPOPOPIES Yo TIC
YOPIKES KAl YPOVIKEG OYECELG OV TO d1€movy. H kataokevn Tov ypapnuatoc facictnke oty
10éa 011 kAP eminedo Oa avticTol el o€ KAOE Dpa TNG NUEPAS, OTOTE TO YPAPN O OTOTEAEITOL
ond 24 emineda. Kabe otpodpo amoteAeitor and 176 kduPove, kabévag amd Tovg omoiovg
OVTITPOCHOTEVEL £VAV aVIXVELTN Ppoyov N €évav oTobud Tov HETPO. XTN CULVEXELW, Yo VO
KaBop1oTOHV 01 OKUEG KADE GTPOUATOC, OYNHATIOTNKE 1 ¥POVOcELPd NG {lTnomng kabe KoOpPov
™V avtiotoyn dpa KaOe nuépag (m.y. kabe pépa oTig 9 .. Y10 T0 90 GTPMLLN) KOl GTN GLVEXELL
voAoyicTnKe N apoiPaio TANpoeopio LETAED TOV YPOVOGEIPOV OA®V TV KOUP®V Yio TNV 1010
opo. Edv n apoBaio mAnpogopia petald dvo kdppov sivor peyorvtepn and 0,5, yeyovoc mov
VTOONAMVEL GNUAVTIKT] GLOYETION, dNpovpyeitan o axpn petaé&d Toug. Me avtdv Tov Tpdmo
HOVTEAOTOMONKE M YOPOYPOVIKT] GLOYETION WeTaEd Tov kOpPov. Xpnowomombnke 1
TOPATAVE® TEXVIKT Y10l VO SNUovpynBobv ot aKUES TV YPOPNUAT®V, OVTL Y10 TIC TPOYHOTIKES
GUVOEGELS, EMEWDN, O€ eMMed0 dIKTVLOV, dOev givol WITEPA EVYXEPNG O TPOGOOPIGUOG TNG
oVVOECIUOTNTOS TV KOUPwV, 18img petald etepoyevav kOUPwv (otabuoi tov petpd Kot
aviveuTég Bpoywv) ko, Kupimg, n uéBodog avutn 0dnyel oe Eeywplotn doun YpoenuUiT®V GE
K60 emimedo, 1 omoia ovTiKaTomTpilel T SLVOUIKT PVOT] TOV YOPIKMDY CYECEDV.

MEeTa TNV KOTAGKELT TOV TOAVETITESOV YPOPTLOTOG AKOAOVOEL 1] AVIXVELGT] KOIVOTHT®V YMPO-
YPOVIKA GLoYETIGUEVODV KOUPoV. Epapuolovtag tov alyoplBuo aviyvevons KowoTHT®V ToL
Louvain, evtomilovtor 7 KkowoOtnteg, OMOL Ol KOUPOl  OlOPOPETIKMOV  GTPOUATOV
avtiototyilovion oty 01 kowvdtnta, €dv Sadpapatilovy tov 1010 poAo, 0 KBEVOC GTO
avTioTOYO OTPMUO Kol, 0£dOUEVOL OTL Ol KOUPOl GVTITPOGMOTELOVY YPOVOOCEIPEG KOl Ol
GUVOEGEIC TOVG OVTIOTOLOUV GE GTOTICTIKEG OYECELG, Ol KOUPOlL Tov oviKouv otnv idwa
KowdTTO £Y0LV TTAPOUOLN TPOTLTIA KukAopopiag Kot {itnong. Emmiéov, Adyw g dmapéng
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KOUPOV 0o SOQOPETIKA CTPOUNTO OTIG 101Eg KOWoTNTES, Umopel kaveic va vroBéoetl ot
ovodElKVOovTaL Ol HOVO YOPIKES, OAAE KOl YPOVIKEG OYECEIS KOL MO GLYKEKPLUEVA,
VIOSEIKVOETAL 1) VTOPEN ONUOVTIKNG OTOTIOTIKNG GLOYETIONG METOED ToV KOUP®V of
SLOPOPETIKEG DPEG TNG NUEPUS, 1 OTTOl UTOPEL VO 0mod00el og TapOOLL TPOTLTTA KUKAOPOPIOG
oL ePPavioviol 6TOVG GLYKEKPLUEVOLS KOUPOVG KOTA TIG JPOPETIKEC MPEG TNES NUEPG,
OT®G M ELPAVICT GLVOTKOV CLUEOPNOTG.

Averroln poviedwv mpoflewns kot amoteléouato

T'a v Tpaypatonoinon TpoPAEyewv, avantOcceToL Eva LOVTELOD Y10 kKGO KOO Kat Yo kdBe
oOpa TG MUEPOS Yo TNV TPOPAeyn tng {NTNONG GTOV OVTIGTOLYO OviXveLTN 1| GTAOUO,
YPNOUOTOIDVTAS WG YOPUKTNPIOTIKA IGO0V TIG TEAEVTAIEG TILES TG (TNONE TOV VITOAOIT®Y
KOpUPV Tov avikovy otny id1a kowvotnta. ETot, 0 aptBpog tov yopaktnpioTikdv 160000 Kabe
povtélov eivan icog pe 1o péyebog g KovotnTag oty omoia avikel to {nrovpevo Levyog
(képPog, dpa) Kot 1 T KEOE YopaKTNPIOTIKOD OVTICTOLYEL 0TI LETPNOELS TV TPOTYOOUEV®V
24 wpov. Ta mopamdveo dedopéva aglomolovvtol Yo TV TPOPAEYT T®V KUKAOPOPLOK®DV
ouvOnkodv N ¢ {Tnong (Yo Toug KOpPovg TV oTabudy Tov HETPO) pe opilovta TPOPAeYNC
1 dpa. Xg ovTd TO KEPAANLO, Ol TIEC TOV UETAPANTAOV-GTOY®V OEV KOATITYOPLOTOLOVVTOL, ALY
TPOPAETETAL 1] AKPIP1G TN TOVG.

21 ovvéyela, yia kébe (evyog kdppov-ypdvov, va povtéo maivopounong Gradient Boosting
OVOTTTOGOETOL, TO Omoilo €ival éva povtéAo Mnyovikng Mdadnong pe onuaviikd pukpotepn
ToAvTAOKOTNTA G€ oYéon pe To Babid Nevpovikd Aiktva. To arotelécpata cuykpivovtol He
éva povtého LSTM yia kéBe oviyveutn katl otabud petpd, 1o omoio epaploleTol oTo apyika
dedopéva, yopig vo AapBAveTal VTOYN 1 SOUT TOV TOAVETITESOL YPAPOL KOl O EVIOMIGUOG TOV
KOWOTNT®V.

O péoog 6pog TV GEUAUATOV TMOV HOVTEA®V TTOV avamtdydnkov pe TG dV0 TapOmTdve
otpatnykéc mapovotaletal otov Iivakag 3. apatnpodpe 4Tt Y100 TO TPOTEWOUEVO LOVTEAO,
EMTUYYAVETOL Uio IKOVOTTOMTIKG UiKkpn T Tov Mécov Amoivtov [locootiaiov ZpaApoatog
(MAPE) 9,5%, evad ot koppot aviyvevtdv Bpodyov mpofAénovtor pe peyoidtepn axpifeia oe
ox€0M UE TOVG 6TOOOVE TOV PeTPO. EmmAov, | IPOTEWVOLEVT OVATOPAGTACT) KOl ETIAOYT TOV
O GYETIKOV UETUPANTAOV €16000V 08 GLVOLAGUO LE EVa ATAOVGTEPO LOVIEAO 0ONYOLV OF
ONUOVTIKA KOAOTEPT amOO0CN ¢ TPOG TO GPUALN TPOPAeYNC o oYéon e €vo LOVIEAO
VYNAOTEP®V SUVATOTHTOV Ko, BE@PNTIKE, 70 KOTAAANAO Y1 T1 GUYKEKPLUEVT EPYACIAL.

Mivakag 3. ZUYKpLon HETPIKAOV COOANATOV TOV HOVTELQOV

Metrics Multiplex-Gradient Boosting LSTM
Traffic Transit Traffic Transit
MAE 91.28 30.81 133.14 52.02
MAPE 9.0% 11.3% 16.8% 23.0%
Overall MAPE 9.5% 18.8%
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poPreyn og Eminedo Awktvov

To povtélo mov €0V TOPOVCIACTEL LEYPL GTIYUNG, YPNOILOTOOVY HETAPANTEG €16000L 0md
0éoeig oe OA0 TO dikTvo. ExpeTaAlevoOpEVO TIC YOPOYPOVIKEG GYECELS TOVG, TOPEYOVLV
TPOPAEYEIC TOV PEALOVTIKOV GuVONK®OV KuKAopOpiag o€ cuykekpiuéveg Béoeic-otdyong. T
k@B BEon-otdy0 amarteitor Eva EeywploTd LOVTELOD, LE TIC avTioTor eg LETAPANTES E16O00V Kot
TpEG vepmopapéTpov. ‘Eva poviédo tpdPreyng mov Ba eivar o 0éom va mapéyel mpofréyelg
yio 6A0 10 OiKTLO € TEPPAALOV TOAMAUTADY dlEPYaCLDY, dNANOT Vo TPOPAETEL TIC CLUVONKE
KuKAoQopioc o OAeG TIg eEeTalOpeveg BEGEIC TAVTOYPOVO, YPTCLUOTOIDOVTAG i EVIaio SOUN
Kol 0&lOTOIDVTOG TEPICCOTEPEG OO Uia TNYEG OESOUEVAV, TTOV OVTIGTOLYOVV o€ Kabe BEom O
glye TOAD ONUAVTIKEG EMMTAOGELS 6T dloyeipion ¢ KukAopopiog, kabmg Ba mapeiye OAeC TIC
amopaitnteg TAnpopopieg. EmmAiéov, yia va givarl epapudcipo, to poviélo avtd o mpémnet va
glvor axkpiPéc kol tavtdéHxpova omodoTIKO, 000V aPopd Tov YPOVO EKTAIOELONG KO TIC
OTOLTAOELS O VTOAOYIOTIKY 10Y0 Kot d€00UEVA, KATL TOV Ogv umopel va eEacpaMatel akdun
0071e Yo povtéda piog 0éong.

Xe auTIV TNV EVOTNTO, TOPOLGLALETAL it OO TIG TPMTEG TPOooTadeieg otn Pifloypapio yio
™V TouToOYpOoVn TPOPAEYN TV ¥pOvev dtadpoung v T déievon 30 onUavVTIKOV 00IKOV
TUNUATOV YOP® amd TO KEVTPO TNG ABNvag, XPNOLUOTOIOVTAG ¢ OedoUEVH E1GO0V dedouéval
KUKAOQOPLOKOD QpOPTOL omtd aviyveutés Ppoyov. o v a&loAdynomn Tov amoTteAecUATOV TG
mpOPAeYMC, €KTOG OmMd TIG KANOIKEG WETPIKEC COAAUATOC, TapEyovtol emeENYNOES T®V
amoteleopdtov, pe Paon v extipnon tov Tywav Shapley (1 SHAP).

Awabéouo dedouévo.

lNo mv avartoén tov poviélov mpoPreyng, cvvovalovial To ded0UEVE KUKAOPOPLAKOD
QOPTOL TV AVIYVELT®V PPOYOL amd TNV TOAN TG ABnvog pe dedopéva ypovov Ta&dtod Tov
avakthnkoy omd ™ dNUoeIAn vanpecio yaptov kol TAonynong Google Maps. Ot ypdvot
o000 avapépovial 6to ypodvo (oe devtepOrenta) yio TN SiéAevon 30 amd TO. TO
TOAGUYVOCTA Kol KPIGILO 00K TUNLOTO KOTH TIC TPMIVES KOl OTOYEVLATIVEG DPEG OLYLNG,
onAadn amod Tig 8 w.p. g Tig 10 7. Ko amd Tig 12 P g T1g 7 WL, Yio Kabe nuépa petad
Iovviov ko Aekepfpiov tov 2021. O cuvolkdg aplBpdc TV Kataypapov eivar 1110. Ot
QOOPATEG Kot 01 SLodPOoLES oL AMeOnKay vTdym eaivovior otnyv Ewodva 4.

Avarroén poviélov kot arwoteléouaro mpofieyng

To povtého TpoPreyng mov atlomoteital givor Eva oyetikd pnyod Nevpwviko Aiktvo pe 3 kpued
otpouato. H glcodog tov povtélov glval ol wplaieg LETPNOELS TOV EMAEYUEVOV OVIYVELTOV
Bpoywv (Mo pétpnon ovd oviyvevtn), evad n €£odog mephapfdvel kot tovg 30 xpodvovg
S100pOUNG TOV AVTIGTOLYOLV GTNV EMOUEVT DPA OO aVTH TV dedoUEVDV €16000V. TTapdio
7OV TO POVTELO TTOV YPNCIHOTOLEITOL EIVOL OTAO GE GUYKPLOT LE TNV TOAVTAOKOTITA TOL YDPOV
€EGO0V, EKTOUOEVETAL OMOTEAECHOTIKG KOL OVOUEVETAL VO €XEl OPKETH KAAEG EMOOGELC.
E&&Ahov, emAéyOnke va ypnopomoleitol og l0000¢ LOVO 1) TeELevTaia HETPNOT KAOE aviyveuTt
Bpoyov kot Oy1 xpovocepEéc LeETPGEWDVY, Ol oToieg Ba avéavay, yopig va gival amapaitnto, Tnv
TOAVTAOKATNTO.
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Ewova 4. Toro0eoicg 9mpat@v Kot O10.0pOp@dV

To povtého amodidel oe YEVIKEG YPOUUEG TKOVOTOMTIKA, €mTuyydvoviag éva péco Méco
Amoivto lTlocootwaio Xediua (MAPE) 12,3%, evd vmbpyer évog onuavtikdg apBpog
Sdpopmv tv omoimv ot ypovor Ta&dod mpoPiémoviar pe MAPE pikpotepo and 9%
(teTaptnuopio 25%). EmmAéov, ot vyniotepeg mapatnpovpeves tinéc MAPE etvar 20,4% o
19,4%, evad to tetaptnuoplo 75% tov MAPE eivan 15,8%, 10 onoio Bswpeiton amodextd. H
HEGM TY TOV HEGOL ATOALTOV GPAaApaTog ival 23,1 s/km. To cpdipato TpdPreyng yio OAeg
T1¢ Sradpopég mapovsialovtal avaAivtikd otov Iivakag 4.

EmmAéov, and tov vmohoyiopd tov tiudv SHAP, napotnpeitor évoa otabepd potifo yio
oxéom HETaED TOV XPOVEOV SLOOPOUNG KAl TMV GOPTMVY TOL KOTUYPAPNKAV GTOVS POPATEG: OTOV
TOPOTNPEITAL YOUNAT] T TOL KUKAOQOPLOKOD (OPTOV, T OTOiC VITOOMAMDVEL GLVOTNKEG
ovueopnong, N tinn SHAP tov ypdvov Stadpopng avEAveTal GTLOVTIKE, dNANOT OVOUEVOVTOL
VynAOTEPOL YpOVOL dradpopng. Edikotepa yia Tic d1adpopéc mov Ppickovial To Kovid 6To
KEVTPO NG TOANG (m.y. Xtadiov kot Bac. Zoeiag) mapatnpodvtal eniong vynAoTeEPES TILEG
SHAP yevikd, ot omoieg elval emiong eVOSIKTIKEG TNG LEYOADTEPTG SIOKOLOVONG TOV YPOVEOV
SLdPOUNG TOVG KOl TNG CNUOVTIKOTNTAG TNG EMIOPAONS NG EUPAVIONG GLUPOPNONG. AVO
evdeIKTIKd mapadetypata mopovotdlovior oty Ewkdva 5.
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Mivoxog 4. Aroteréopata Tpofreyns ypovov dradpopdv

Awadpopn MAPE MAE
Panepistimiou (Vas. Sofias - Patision) 9.8% 19.8
Akadimias (Patision - Vas. Sofias) 11.3% 26.4
Stadiou (Aiolou - Vas. Georgiou) 15.9% 53.5
Athinas (Ermou - Stadiou) 9.4% 25.2
Athinas (Stadiou - Ermou) 8.6% 21.8
Vas. Sofias (Vas. Konstantinou - Panepistimiou) 19.4% 56.4
Vas. Amalias (Ath. Diakou - Panepistimiou) 17.0% 44.7
Patision (Alexandras - Stadiou) 8.3% 16.6
Pireos (Kolokinthous - Omonoia Sq.) 15.8% 51.3
Syngrou Av. (Vas. Amalias - Frantzi) 6.3% 9.1
Pireos (Kolokinthous - Iera Odo) 17.3% 41.5
Syngrou Av. (Frantzi - Vas. Amalias) 20.4% 44.8
Alexandras (Kifisias - Patision) 11.1% 21.7
Kallirois (Petmeza - Ardittou) 10.3% 32.0
Patision (Ioulianou - Chalkokondili) 9.2% 13.0
Patision (Stournari - loulianou) 10.4% 22.9
Kifisias (Alexandras - Panormou) 16.0% 24.5
Kifisias (Panormou - Alexandras) 13.4% 21.7
Mesogion (Katechaki - Kiprou) 13.9% 16.1
Vouliagmenis (Arditou - Ilia [liou) 12.9% 15.1
Vouliagmenis (Ag. Konstantinou - Pirronos) 4.9% 1.9
Vouliagmenis (Pirronos - Ag. Konstantinou) 5.8% 1.7
Ilioupoleos (Ilia Iliou - Arditou) 15.2% 322
Cephissus (Posidonos - Pireos) 15.0% 11.7
Cephissus (Pireos - Posidonos) 13.7% 6.3
Cephissus (Athinon - Moudrou) 8.0% 1.3
Cephissus (Moudrou - Athinon) 17.3% 24.7
Posidonos (Niarchos - Cephissus) 5.7% 0.4
Posidonos (Amfitheas - Alimou) 13.8% 14.4
Posidonos (Alimou - Amfitheas) 14.0% 21.0
M¢éoog 6pog 12.3 23.1
. : . wso{ | ¢
% .‘!'—;'3‘%_;! . E 1500
E 1500 . E 1250 4
%_ \ ig_ 1000
2 1000 4 e, E s
H k7Y Z
;:;. i * % 500
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SHAP value (+/- travel time (s/km)) for route
Vas. Sofias (Vas. Konstantinou - Panepistimiou)

SHAP value (+/(- travel time (s/km)) for route

Stadiou (Aiolou - Vas. Georgiou)

Ewéva 5. Typég SHAP £VOSIKTIKOV 0100 pORAY.
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Aoppavovtog vroyrn v auénuévn amodoTIKOTNTO EVOG LOVTEAOL OV UTOPEL Vo TapEXEL
€ykovpeg mpoPAEyeEl 6 OO TO O1KTLO, 1| GNUOGINL TOV GTNV TPOYVOOTIKY SLXEIPLON TNG
KuKAOQOpiaG Kot 6T Ay amo@acemy gival Heydin kai 1 EAAENYT TOPOUOL®Y TPOCEYYIGEDY
glye mponyovpEvag emonpavOel ¢ pio amd T KOPLEG OVOIKTEG TPOKANGELS Y10 TNV OVATTLEN
HOVTEL®V TOV UTOPOVV va, ¥pnoonombovy oe mpaypatikés cuvinkes. Ta omoteAéouato
delyvouv emiong OTL LVEAPYOLV CMUAVTIKEG Ppayvmpdbecpeg kol pokpompdbeoueg oyéoelg
HETOED TV KUKAOPOPLOKAOY CLUVONK®OV KOl TOV ¥pOveV OdpOUNG TOV ETIAEYUEVOV
ddpoudv- £€tol, Hol TPOGEYYon HAOnong moAAAmMA®MV dlepyocidv, Om®E OVTH OV
TOPOVGIALETAL, LTOPEL VO TIG EKUETAAAEVTEL ATOTEAEGLOTIKG KOl OTOSOTIKAL.

Artioong Ba0wd Madnon ywo Bpayvapdo0eopun Ipopireyn g Kvkrhogopiog

H pébodog g Bewpiag g minpoopiog (apoifaio mAnpogopic), kabdg kot ot GAAEg
OTATIOTIKEG LEDOOOL OV YPNGLLOTOMONKOY CE TPONYOVLEVEC EVOTNTEG YO TNV OViYVELON
YOPOYPOVIKOV oYECEMV LETOED TV BEcemV TOL 001KOD d1kTVOV, Tapovctdlovy Eva coPapd
UELOVEKTNO: DTOVOOUV TNV VIopén MG OTOTIOTIKNG OYECNG, 1 Omoio pmopel vo gival
ONUOVTIKT, 0ALG dev gyyvatal v artidtnto. Kotd cuvénela, ot oyéoelg mov aviyvehovion
Umopel vo apopodV OTOKAEIGTIKA TO GUYKEKPIUEVO GUVOLO OedopEV@Y, dnAadn dev eivan
YEVIKEVGIUEG KOt TOAVOV Vo unv 1oxDoVV Yo aKpaiec cuvOnkeg /Kot HEALOVTIKA OESOUEVAL.
Q¢ gk TOUTOVL, TTEPLOpilovy TV a&lomoTio Kat TV EXEENYNGIUOTITO TOL LOVTELOL.

v Topovoo eVvOTNTA, TAPOLGLALETOL EVO TANICIO Y10, TOV TPOGILOPIGUO TNG OLTLOSOVS OOUNG
€VOG GUVOAOL KUKAOPOPLOKADV OEO0UEVMV TTOV OTMOTEAEITOL OO UETPNOEIS OE OLOPOPETIKES
0éoe1c Tov 00OV dikTHOL, TO omoio pmopel emiong va €QappooTel 68 AAAO TPOoPANLOT
ypovocePpaV, pe Pdon 1o vevpovikd poviélo Granger (Neural Granger). A&omotovvion
OgdOpEVO  KUKAOQOPLOKOL (@OpTOov amd meplocdtepovg omd 300 owpotéc mov  sivon
EYKATEGTNUEVOL 6TO 001KO diKTVLO TG ABNVOC KOl TO TPOTEWVOUEVO TANIGLO €QapUOLETOL TOGO
v TV €€Nynon T®V OTOTEAECUATMOV TOL HOVTEAOD OGO KO Y10 TNV ETAOYN OPAKTIPIOTIKOV.
2 ovvéyeln, ovomtucostal &va PdAAov omAd povtého Nevpovikod Awktoov Mokpdg
Bpoayvnpdbeoung Mviung (LSTM) yio v wpdfreym Tov KOKAOQOPLOK®OV GLUVONKOV o€
TOALEG oNUaVTIKEG ToToBeGiEg Kat, 0EL0TOIMVTAG TO OMOTEAECUATO TOV TAUIGIO, EMITVYYAVEL
TOAD 1KOVOTIOINTIKEG EMIOOCELC.

Nevpwviko Movtélo Artiotyrog Granger

IIpoxeyévou va EemepasTOVY 0L AOVVAIES TG KAOGIKNG TPOGEYYIoNG KOL KUPIMC 1) TOPAO0Y
NG YPOLLUKNG GYECNC, OVOTTTUGGOVUE EVA VELPWVIKO diKTLO Kot cvuykekpluéva éva LSTM yia
TNV TPOCOUOIGT) TNG GYEoNS LETAED TV PETOPANTOV 16660V Kot €£000v, Ue Pdon Tig apyég
Tov Nevpwvikod Movtélov Granger.

To povtého ekmandeveTan e TNV aKOA0LOT GLVAPTNOT ATOAEIDV:

N n
1
5D G = hGre)? +2 ) WD (v
i=1

O pmTOg OPOG Elval TO UEGO TETPAYOVIKO GOUAUN TNG ekTiunong tov Granger LSTM, evd o
deutepog eival 1o abpowcpo TV Poapdv €10660v (BAPOc TOL CTPOUATOG €1GOG0V) TOV
ouvdEovTaL e KABE ypovoseElpd Tov ydpov €160d0v. H mapdpetpog A mailel Tov id10 poro Ommg
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Kol OTNV KAQGIKT, YPOUUKT TPOGEYYIoT], ONAadN EAEYXEL TN OMUOVTIKOTNTA TOV OELTEPOV
opov. AvticTolya, OTaV I YPOVOCEIPA OV EXEL GNLOVTIKY] CLUVEIGPOPE GTOV TPAOTO OpO
(ONAodn dev peIdVEL ONUOVTIKA TO OPAAUN EKTIUNGNC), TO BAPOG E1GOJ0V TG CLPPIKVAOVETOL
6T0 Undév (0e0TEPOG OPOC) Kol OEV EICEPYETAL OTO HOVTEAO. XTO TEAOG TG O001K0ciog
EKTOIOEVONG, Ol YPOVOGEIPES He PN Undevikd Papn e16ddov Bewpeitan T TPOKaAOHY KOTA
Granger v ££0d0.

Yloroinon

2NV TPOTEWVOLEVT TPOGEYYIOT, APYIKA a&lomoleiTat To vevpwvikd povtéro atidtntac Granger
Y VO KOTOOKELOOTEL O YPAPOG ouTiOTNTOG TOV 001KoV dkTvoL NG ABNvag, o omoiog
amoteleitan and meptocoTePES 0md 330 0Ecelc/PmPuTEC OV EivVO EYKOTEGTNUEVOL GE OAOKAT PO
0 0016 diktvo. To Neural Granger, vAomomuévo g diktvo LSTM, emdéybnke wg m
KOTOAANAOTEPT HEBODOC Yo Vo XeIploTel Eva TOGO LeYAAO OTKTVO Le TOADTAOKES EEQPTNOELS
peto&y tov Bécemv. Katd cuvémela, avantdoooeTtol Eva [UKPOTEPO KOl AMAOVGTEPO OIKTLO
LSTM y1a v extéheon Tov Epyov TpoPAeEYTS, TO 0oio avapépeTol eniong og "Apoid LSTM",
KaBMG 0 YDOPOG 10000V TOV TEPIAALUPAVEL LOVO TIC XPOVOCELPEG TTOL PPEBnKY Vo TPOKAAOVY
Kkatd Granger Tn YpPOVOGEPA-GTOXO KATA TO TPMTO Prilo TOV TPOTEWVOUEVOL TTAOLGIoL. Ba
TPENEL VO KOTooTeEL capég OTL Yo kdBe Béon-ctoY0 O Tpémetl va avamtvyBovv éva Granger
LSTM «au éva Sparse LSTM. H Bdon dedopévmv mov ypnoionomonke eival auth e ¥poviKn
avéAvon piog mpug TOL TAPOVCIAGTNKE KOl GE TPONYOVUEVO KEPAAOLO.

Evrormiouos outiwdwv cyéoewv

H exnaidevon tov Neural Granger LSTM kataAyel 6Tov auticdddn ypaeo Tov 081KoD SIKTOOL,
ONAadn o€ Vo GOVOAO EVIOTIGUEVOV AITIOO®V oxEcemv. Katd uéco 6po, Eva [ikpo TUML0 TOV
001K0V dkTvoVL, TTepimov 10 7,3% TtV ypovocelpmv (nepimov 25 Béoeig), Ppébnke va mpokokel
katd Granger ke ypovocelpd-o1oxo. To mopamdved gbpnpa deiyvel 0TI G€ £va TOGO PEYAAO
001k6 dikTvo, Ba Tpémet vo koTaPfAnOel coPapn TPooTABELD GTNV EMIAOYN YUPUKTNPIOTIKDV,
KaODG 01 TPAYLOTIKEG AUTIMOELS OYECELS Elval TOAD Alyeg Kot 1 SLOGTATIKOTITA TOL YDPOL
€10600v pmopel va pewwbel dpapatikd, yopig vo Bvolactel n amddoon wPoOPAeync Tov
HovtéLov.

v Ewodva 6 tapovctdlovtal eVOSIKTIKG 01 TEPLOYES TOL SIKTVOV oL Ppédnke OTL TPOKAAOVY
katd Granger kdmolo onpeio GT0 KEVTPO TNG TOANC.

Evduepépov mapovoidlet to yeyovag 0Tt Tapatnpove £ve ToAD 1o}vpo, Koo HoTifo yio OAeg
TIC 0€5€1C-0TOYOVE: Ol OVIYVELTES PpOY®V TToL BpioKoVTOL GTO KEVTPO TNG TOANE TPOKAAOVVTOL
katd Granger omd aviyveLTEG TOL PPIoKOVTOL GE GTUOVTIKG TULOTO TOL 001KOD SIKTHOL GTNV
TePIUETPO TNG TWOANG TG ADBMvag, Tov AEIToVPYOLV (G €160001 GTO KEVTPO TG TOANG KO, G
eni to mheioTov, Oyl TOAD KOVTA GTO KEVTPO NG TOANC. EmumAéov, éva GAAO o1HovTiKO 0pLa
glvar 011 vapyovv Alyor (3 N1 4) SLYKEKPIUEVOL AVIXVELTEG PPOY®V TOL TPOKOAOLY KATH
Granger oyeddv OAOVC TOVG aVIXVELTEG PPOY®V TOL KEVIPOL TNG TOANG- OTOJEIKVOETAL OTL OL
TEAEVTOIOL OVIYVELTEG UTOPOVY VO TaPEYOLV (MTIKNG ONUACIOG TAPOPOPIEC CYETIKA LE TIG
UEALOVTIKEG KUKAOPOPLOKEG GUVONKEC GTO KEVIPO TNG TOANG, OTOTE Ol UPYES O EIPIONG TNG
KuKAOQOpiog Kot dAAoL emayyehpatiec Oa mpémel mwhvTa v AapuBavovy voy TIC LETPNGELS
TOVG Y10 GKOTTOUG TPOPAEYNC KOl ANYNG omo@acewy. TEL0g, Umopel Kavelg va Tapatnproet 0Tt
01 OLTLOOELS OYEGELS TOV EVIOTIOTNKAY EIVAL HETOED TV OVIYVELTOV PPOY®OV-GTOX®OV Kol GAAWDY
OVLYVELTMV OV dgV PpickovTtal TOAD KOVTIA G AVTOVG.
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Ewova 6. Ileproyég mov mpokarovv katd Granger Tig mePLOyES-6TOY0VG

Aroteléouota mpofieyne

T'a v a&oroynon g axpifelag tov mpotevouevov Apoatod LSTM yia kdéBe tomobeoia,
TPUYUATOTOOVVTOL ovyKpioelg pe Pdon éva diktvo LSTM mov AapuPdver wg gicodo
¥POVocEPE LoVo amd TV Tomobecia~-otdyo (Single-point LSTM) kot éva diktvo LSTM mov
AapPaver glcodo amd Oiec Tic tomobeoieg (Inclusive LSTM), 6cov agopd v akpifeta
TPOPAEYNS Kot TV VTOAOYIOTIKN amodoTikoTtnTa. [Tio cuykekpipéva, yio kKdbe éva amd ta 334
povtéla petpndnkav ot Tipnéc MAPE kar o ypdvog exmaidgvong.

Onoc paiveron EgkdBapo otov ITivakog 5, Ta TpoTevOUEVa aptd LOVTELN, EKUETAAAEVOUEVOL
TN GTPUTNYIKY EMAOYNG YOPAKTNPIOTIKAOV OV EPApPUOLETOL e Pdon TV aviyveuon oiTimdovg
doung, emTuyydvouy KaAvtepn enidoon TpoPAreyng amd Ta d00 AALA, EVO £ival GNUOVTIKA TTO
omodotikd omd 1o Inclusive poviého, KaBOC 1 0PYLITEKTOVIKTY TOVG €ival o amAr], Ady® TN
UELOUEVIC SLOCTOTIKOTNTAG TOL YDPOL E1GOJ0V.

Mivoxog 5. A&okoynon povrélov tpofreyng (péon Tipr] 6LV TOV TOT00ECLOV)

Model Average MAPE Efficiency (time to
(and deviation) train per model)
Inclusive LSTM 12.6% + 3.1% 104s
Single-point LSTM 13.3% + 3.7% 27s
Sparse LSTM 9.1% £ 1.8% 46s
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‘Eva Osopntikd svnpepopévo, molvpetofintd, ortiwdeg mAaiclo yio
BpoayvmpdBeopnec mpofréyerg kukropopiog

Xe auth TV evOTNnTa, EVEOUATOVOVTOL TPOcHETES TTLYEC OV oyeTilovtal pe T Bewpia TG
POTG TNG KUKAOPOPING KoL TPOTEIVETOL L0 OAMGTIKT TPOGEYYLoT (ammd TNV TpoeneEepyacia Tmv
dedouévav Em¢ TNV ekTaidevomn Kol TV aEloA0YNoN TV LOVTEL®V) Ya. £vo, TAaic1o TPOPAEYNC
g KuKAogopiog mov Paciletar otn Bempia, glvar aiTiddeg Ko TOAVUETAPANTO, LE GTOYO VO
glvol emiong €@apuocio. XTov Tupnva. NG mpotevouevng nebodoroyiog, vmapyel éva
KOWOTOUO VEVPWOVIKO OikTvo ToAlamA®MY depyacidv mov Paciletor otn Bewpla g
KUKAOQOPIOKNG POTG, TO OTTOI0 YPTCILOTOIEITAL Y10 TV At KOWoU Ppayvrpodecun Tpofieyn
500 peTafAntadv TG KuKA0POopiog ( KUKAOQOPLHKOS POPTOC KO TAYVTNTA), Ol OTTOIEC GLVIGTOVV
o Kotdotaon kvkioeopioc. T tnv  exmaidevon Tov  pOVTELOVL, TPOTEivETOL
TPOGUPUOGLEVT GLVAPTNOT ATWOAELDV, 1] OTOL0 EVOMUATMVEL TV OTOGTACT) TNG TPOKVTTOVG UG
molvpetafAntie mpoPreymg (Levyn KukAoEoOploK®V UETOPANTOV) ond TO TPOYUUTIKO
Oespedeg Sdypappo g ovtiotoyng 0éonc. o vo evioyvBel m omddoon wor 1
EPUNVEVCIUOTITO TOV HOVTELOV, EMAEYOVTOL TANPOPOPIEC E16OO0L KuKAOPOopiag oe eminedo
SIKTVOV A0 TIG O CYETIKEG BECELS, YPNOIUOTOIMVTAG TO VELPOVIKO povtélo Granger. [o ta
TEPAUATA TOV TAPOLGIALOVTAL GTNV TOPOVCH EPYACIN, OVOTTOOGETAL £vVa OlkTvO MOKpdg
Bpayvrpobeounc Mviung (LSTM), @ot6c0, ohdkAnpn 1 Lebodoroyia (cuumeptrapavoprévng
NG GLVAPTNONG OTWOAEIDV) Elvar cuuPath pe omotadnTote doun Pabidg pdbnong. OAdKANPN
N nebodoroyio epappoletor oe dedopEVA VYNNG OVAAVCTG TOL TPOEPYOVTOL GO TO OOKO
dikTvo g AbMvac.

2ovaptnon arwleiwy ue faon tm Bewpio pons KKA0YopIiag

H exnaidevon evdg poviéhov Pabidg pabnong sivor éva mpoPAnua Bertictomoinong mov
OTOCKOTEL GTOV TPOGOLOPICUO TV PEATIOTOV TIHOV T®V BApdV TOV Y10 TNV EAOYIGTOTOINGT
HLAG CLUVAPTNONG OTOAEIDV, OTWG TO LEGO TETPAYOVIKO piipa (MSE) 1 10 péco teTpaymvikod
ocpdipo (RMSE). Aappavovtag vmoyn tny mepintmon g Kowng tpdPAeync KukAopoplakon
@OPTOL KO TOYVTNTOG, OF MU0 OlITaEN LOVIEAOTOINONG TOAAMTA®MY OlEPYOUCIDV, M TLO
OMUOPIANG TpoGEyyIon Ba TV 1) EKTIUNGN LLOG TIUNG OTMAELNS (LETPIKT COAAUATOG) Y10 KAOE
pio amod TG TPoPAEYELG POPTOL Kol TayVTNTOG o€ kabe emoyn| eknaidevonc. Oco yaunAidtepn
glvol m amdAEL0 TO0O KOAVTEPES €ivar o1 EMUEPOVS TPOPAEWELS. 2GTOGO, EKTOC OO L0l YOUNAY
T 6QdApaToC, Bo mpémel va mepipévovpe 0Tl dAa Ta mpoPiemoueva Cevyn TIdY Ba Tpémet
va Bpickovtar kovtd otnv avtictotryn BepeAmon Kaumoin TaydtnTac-eoptov. To tehevtaio dev
eCacparileton omd o YounAn TR GEAALOTOC- GTNV TPOYLOTIKOTNTO, Mo AS10TPETC
OTOUIKT] HEOT) TIUN GEAANOTOC Yio KAOe peToPAnt) pmopel va koddmtel {nripoto 0nmg o
wpoavapepBéva.

T'a va AneBodv voyn o1 Tapamdve TPOKANGELS, TPOTEIVETAL 1] CUVAPTNOT aNdAELS (e Bdon
1 Bswpia ponc kukAopopiag (Traffic flow theory-informed loss function - TFTI loss), 1 onoia
ouvovalel o MSE tav 600 empépovg peTofintadv pe v andotacn e TpoPAEyng amd 10
TANGLESTEPO ONEID 6TO eXTIUDUEVO BepeAiddeg didypappa. To tedevtaio opileton yio kdbe
Oéon/Tunpa Tov 0d1kod SIKTVOL 7OV TopakoAlovOeiTal Kol UTOPEL VA €€l GUYKEKPIUEVT
ocuvaptnolakh popen. Eoto 9; = (U;, §;) n tpdPreyn yio éva mpaypatikd Cevyogy; = (v;, Si)
Ko gj = (vje,sje) T0 TANGCIESTEPO ONUEID OTO EKTIUDOUEVO OEUEMMDOEG SIAYPOLLO TOV

yapoktnpilel t 6éom evdlopépovtog, n ool TFTT opiletan wg e€ng:
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1
TFTI loss = a * E\/[MSE,, + MSEg]+ (1 —a) * d(}A/i,gj) )

omov MSE,,, MSE, eivol 10 p€co TeTpayvikd c@dipo tov TpoPfAEweny Tov GYKOV Kol TNG
TavTnTOag avtiotoyo, d (¥, g;) etvar n gukAeideia omdcTaon Tov Tpofienopevav Levydv Ko
TOL TANGIECTEPOV CNUEIOV TOL BEUEMMDIOVE S0y PALLATOS TNV OVTIGTOLYN TPOYUOTIKT TIY.
O mapdyovtag a eAéyyel T onuacio Tov deHTEPOL TAPAYOVTO EVOVTL TOL TPMOTOL, a € [0,1].

Aobéaiua dedouévo, kou d1aTaln povielomoinong

T'a Tovg okomovg ¢ mapovoog epyaciac, téOnkav otn didbeon pag petpnoelg and 420
QOPOTEC TOV SIKTVOL TNG ABMVaC, Ol 0Toleg AMOTEAOVVTIOL OO TOV KLUKAOQOPLOKO POPTO
(oynuata/dpa), ™ péomn toyvtnta (km/h) ko v kotdinyn (%). H ypovikn avédivon tov
dedopévav etvar 6 Aemtd, oniadn ta dedouéva mov aviyvevovtolr cvvabpoilovior oe
SLCTNUOTO TV 6 AENTAOV, GUVERMOC €ival KOTAAANAQ Yo Bpayvrpobecuec mpofréyels. Ta
dedopéva apopotv 40 nuépeg petpnoewv, petacy 20 Maptiov kot 30 Awpidiov 2023.

Eivaw onuavtikd vo toviotel 6tL 1 cuvdptnon anwieidv mov Paciletor ot OBesmpio g
KUKAOQOPIOKNG POTS, KAOMS Kot 0OAOKANPO TO TANIG1O TTOL TAPOLGIALETOL GE QLTY| TNV EVOTNTA,
glvar copPatd pe omotodnmote povtéro Pabidg pabnong. Xtnv napovoa epyacia, TpoTIUnOnKE
va ypnotpomoinfel o pdAAov amAn apyltekToviKy, dnAadn| Eva diktvo LSTM, ywo va toviotel
OTL TO TPOTEWVOUEVO TAOIGLO MUTOPEl v EMITOYEL KOPLOOIEG EMOOCGEIS GKOUN KOl OTOV
ypnowomoteiton o amiovotepn doun. Ot 600 mpooeyyicelg mov cuvykpivovral givor 1
ekmaidgvon tov povtédov pe (i) amdd ocedipo MSE «kat (ii) tnv mpotevopevn cuvaptnon
anoieiwv TFTI, pe napdpetpo a=0,7. Extog amd tn cvvdptnon anmAeimv, ta 600 HovIEAa
glvol amoAT®mG Opoto LETOED TOVC.

Evromioudg artiwdav ovoyeticewv

Metd v epappoyn g nebddov vevpovikov Granger 6to 01006610 GUVOAD OedOUEVDV,
TPoEKLY AV o1 Tonobeciec mov mpokaiobv katd Granger Tig Tomobeciegc-otoyovs. O LEGOC
apBpdc Tov eviomicpévav Bécewv NTav 6,6 and Tig 420 Bécelg, yeyovog mov deiyvel OTL M
106 TATIKOTNTO TOL YMPOL £16000V Y10 KAOE LoVTEAD TPOPAEYN S Umopel va petmBel Katd mod,
Y®Pig ®aTOG0 Vo YooV onuavtikég TAnpoeopies. Ot tomobecieg mov Ppébrniay va Tpokaiody
katd Granger kamoleg evOEIKTIKEG TOT0OEGIEC-0TOYOVG TapovatalovTal oty Ewdva 7.

Ewova 7. Oéoeis (umhe) mov mpokaroVv katd Granger Tig 0£0€15-6T0)0VG (KOKKLVO)
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Aroteléouota mpofieyne

Ytov Ilivaxkag 6 mopovoidlovtior to péco amdAvto oceaipa (MAE) ko to péco amdAvto
mocootwnio opdipa (MAPE) tov mpofAéyemv yia TG VO CUVOPTHOELS OTOAEIDY GUVOAIKA
Kol yio K60e petafAntn Eexwplotd Yo OpIoHEVEG EVOEIKTIKEG BEGELG OTOY®V.

Mivakag 6. Zvykpion anotehespdtmv Tpopfieyng

MSE TFTI MSE TFTI

loss loss loss loss
Location MS106 MS230
Volume MAE 40.6 62.3 354 39.5
Volume MAPE 6.8% 9.1% 9.2% 10.5%
Speed MAE 8.0 33 3.9 2.1

Speed MAPE 17.3% 6.4% 23.0% 9.4%
Overall MAPE | 12.0% 7.8% 15.6% 9.9%

Location MS443 MS634
Volume MAE 40.4 49.2 29.5 31.0
Volume MAPE 9.6% 13.0% 8.6% 9.7%
Speed MAE 4.3 2.8 32 1.8

Speed MAPE 17.0% 9.3% 11.1% 6.7%
Overall MAPE | 13.3% 11.1% 9.8% 8.2%

Onoc pmopel koaveilg va mapatnpnoet, 1 TFTI cvvdptnon anwieidv Bondd 1o povtédo va
EMTOYEL YAUNAOTEPO GLVOAKO oAApa Yo Ti¢ eeTalopevec Tonobeoiec. To péco MAPE yia
mv anorelo TFTT etvan 10,9%, évavtt 13,0% yia v andAieio MSE yia 116 12 6éoe15-otdH006.
To tehevtaio opeileTon Kupimg 6TO YEYOVOC OTL TO POVTELD pe TV amdAelo, MSE amotuyydvet
oY€00V GE OAEC TIC MEPMTMOELS Vo TPoPAEWYEL Ue akpifela TG TIHEG TNG TAYVTNTOC, OV KOl
0TT0d10EL IKOWOTOMTIKA GTNV TPOPAEYT TOL POPTOL KuKAOEOpPiag. Mia mBovi eEnynon yi' avtd
glvar 0TL T0 oOVoAo dedouévev eivarl Wwitepa avicoPfapéc, dNAadn Ta TEPIGCOTEPO, oMuEin
VKOV GTOV KAGOO 0PI KUKAOPOPLOKT) CUUGOPTOT), YEYOVOS TOV TPOGHETEL LepOANYia 6TO
HOVTELDO WG TTPOG TNV TPOPAEYN VYNAOTEPMOV TILAOV TaDTNTAG. ATO TNV GAAN TTAgvpd, 1 TFTI
loss evoopatovel Tnv TAnpoeopio oYETIKA e ToV KAAG0 6ToV omoio Oa £mpeme va aviKeL TO
onueio (dNradn v amdotaon and to Oepelmoeg ddypappo) kot dtatnpel pio a&lompenn
OmOd00N KOl Y10, TOV GUULPOPTNUEVO KAASO.

A&oloynon aliomortiog

‘Evag amhoc, aAld akpipig optopog evog a&lomioTov poviélov givarl 0Tt mpdkettal yio Eva,
HOVTELO TTOV SATNPEL U0 COGTH CUUTEPIPOPE TOL GUVADEL LIE TO HESOUEVE EKTOUOELONC KO,
YEVIKQ, LLE TNV KATOVONOT| TWV EWOIKOV TOV OVTIKELEVOL Y10 TOVG TAPAYOVTEC TOL EMNPEGlovV
TO OMOTEAEG LA TOV TPOPAEYEWV. ¢ £K TOVTOV, KoBioTaTUL caPEC OTL Eva aKPIPES LOVTELO OV
glvan mévta a&lomoTo.

INo va e€etdoovpe v a&lomiotio Tov HOVTELOL, TOPUOETOVE To OEPEAM MDA SLOYPAULATO TTOV
TPOKLITOVV O TIG TPOPAEYELG GE GVYKPION LLE TO TPOLYLLUTIKO SLAYPOLLLLY EVOEIKTIKOV OEcemV
otV Ewoéva 8. Ta ypagnuata deiyvouv 0Tt ot TpoPAéyelg mov yivovtal omd To, LovTEAN Tov
exmadevovtal pe v TFTI loss eivor mo a&lomotee, KabdG 1 KOTOVOUN TOV GNUEimV
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TPOPAEYNS Elval TLO KOVTA GTNV TPOYUATIKT KOl GTO avTIoTOW(0 OgpeAiddeg d1dypapiia, Ve
ta, povtéra pe v MSE amotuyydvouv cuatnuatikd va tpofAEyouy Tov KAAS0 GUUGOPNONG.
Emumiéov, n TFTI givor Aydtepo evdhwtn o€ BopuPddn dedopéva kot oKpaieg TIES, T.Y.
onueio Tov Ppickovror petadd TV dV0 KAGO®Y TOV avoueEVOUEVODL BEUeM®O0VG S1oy PAUUATOG.

MSE loss TFTI loss
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120 120

actual actual
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Ewova 8. IlpoPrendpeva Ocpeiion owaypappato o€ 6yéon e Ta TpaypnoTikd yio vy MSE
(aprotepa) ko v TFTI (6e&16)

Té\og, mpoywpdue oTnNV EKTIUNGCT NG OKPIPELOG TOV LOVTEA®DY OTNV TPOPAEYT TNG CWGTNG
Katnyopiag cuvOnKav, aveEaptnta and Tig akpiPeic TéC Tov petafintav. Asdopévov 6Tt ot
ouvinKeg GLUEOPNONG avTITpoc®REVOVY Tepimov 10 11% ToL GUVOAOL dedouévev, o
avtiktomog tov Aavloouéva taSvopmpéveov cuvOnkov cougopnong oev  givar 1060
ONUOVTIKOG 6TN cLVOMKT akpifetla. Etot, extipovpe emmAéov o cuvoikod Fl-score kot o F1-
score NG KAdomng pe oupeopnon. Ot avtiotolyeg HEoEG TIUEG Yio OAEG TIG BEGEIG-0TOYOLG givarn
v v MSE: Axpifeia = 0,92, Fl-score (cvupopnuévn kidon) = 0,43, Overall Fl-score =
0,69, evo yio v TFTI: Axpifela = 0,96, Fl-score (kAdon cvpeopnonc) = 0,74, Overall F1-
score = 0,86. Eppoavac, To povtéda mov exmodevovtor pe v TETI loss mapéyovv Peitiopévn
onddoon oe cOykplon pe ekelva mov exkmadevovtal pe v MSE. Zvykekpiéva, 66ov apopd
ta anoteAéopato F1, vaepéyovv onuavtikd, e1d1kd yio Tnv KAGoT cupeopnone. Aappfdavovtog
VTOYT OAN TO TOPUTAV®, TO LOVTEAQ, TTOL EKTOLOEVTNKAY LE TNV cuvapTnonn anmAisidv TFTI
eaiveral va givor To a&omoTa, KTo¢ amd o akpPi.
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Yopunepaopato

Tevika

2y mopovca dTpiPn], TOPOVCIACTNKE Lo EpYorEl0dNKn epapudciuov peEBOdV Kot
TEYVIKOV YlO. TNV EKTEAECT] OLOPOPETIKMV EPYOCIOV TPOPAEYNC, KOL GUYKEKPLUEVO
TOATPOTIKEG TPOPAEYELC, TPOPAEYELS TOALATADY EPYACIDV G€ OAO TO diKTLO, TPOPAEWELS LE
Baon tn Bewpio KUKAOPOPIOG, AVIXVELCT] CTATIOTIKAOV KOl OUTIOOMV CYECEWY, KAOMDG KoL £val
mAaicto yio v agloddynon g aglomiotiog Tov mpoPréyewny. ExTdc amd Tic S1opopeTikéc
YOPIKEG KMUOKEG, Ol TPOTEWOUEVEC OOUEG UTOPOVV VO 0EL0TOBo0V Yo dlopOPETIKODS
ypovikovg opilovteg mpoPreync (Bpoyvmpodbecues xor  poaxponpobdecuec mpoPrEvels),
YPNOUOTOIOVTAG OedOUEVO VYNAOTEPNG I YAUNAOTEPNS avdivons. EmumAéov, dtamotdbnke
OTL, YPNOLUOTOIMVTOS TIC TOPAUTAVD HEBOSOVG, UTopel Kavelg Vo EMLTOYEL KOPLOAIEG EMIOOCELS
TPOPAEYMC, KON KOL LE OYETIKE ATAEG OPYLITEKTOVIKEG LLOVTEAOTOINOTG, OV KOl TO OAO TANIC10
glvol cupPato pe omotodnmote povtélo Babidc Mdabnonc. ‘Etot, pia apuodia yio ) dtoyeipion
Mg KuKAopopiag apyn, eEOMAMGUEVN e TNV Topomdve epyoielobnkr, Ba eivar e Béon va
EQUPUOGEL TPOYVMOTIKY SLOYEIPLOT TG KLKAOPOPINC, TPOYPUULATIOUO KoL AW OTOPACEDY
Yo TOV YEPIOUO GXEOOV OTOLOCONTOTE KOTAGTOONG OE EMIMESO TOANG KOl VIO OTOIEGONTOTE
ouvonKeG.

2VVELTPOPO. KO KAIVOTOULO.

H dplo cuvelspopd e mopodcos epyaciog ivat £vo VEO TANIG10 TOAAATA®DY SIEPYUCIHV TOV
Bacileton otn Bempio TG KLUKAOPOPLAIKNG POTC, TO OTTOI0 PN CLLOTTOLEITAL Y10 TNV OO KOLVOD
BpayvmpoBeoun mpdPreyn dvo petafintov kvkioeopiag. EmmAéov, mpoteivetal po véa
TPOGEYYIOT Y10 TOV GUVOLOCUO TOAVTPOTIK®Y SedOUEV@V (001KNG Kukhopopiog Kot {RTnong
MUOCIOV HETAPOPDV), MOOTE Vo, avENBel N TpoPAreytdtnTo TOV LEAAOVTIKOV TIUOV KoL TOV
000 HEC®V KOl GUYKEKPIUEVD, W10 KOVOTOHOG OVOTOPAGTOOT] TOL 001KoD S1KTOOV Kol TMV
dedouévav €16000V Y10, TOALTPOTIKEG dlaTdEels, PacIGUEV OTNV EVVOL0 TV TOAVETITEOWV
dwctvov (Multiplex Networks) amd tnv pguvnTIKN TEPLOYN TS AVAALON G KOVOVIKMDV SIKTOWMV,
N omoia a&loToIEITOL Yo TPAOTN POPA oTNV TPOPAEYT TG KuKAOPOPiaG.

Axoun, TOpPOVGIAGTNKE [0 0T TIC TPDOTEG TPOSTADELEG Yo TPOPAeyYN og OAO TO diKTVO, LE
™V évvola 0TL, 61 LOVO 1M €10000G TOL POVTEAOL TTeptlapPdvel TANpopopieg amd TOAAEC 1| OAEC
T1g B€ce1g TOL 001KOD SIKTOOV, AAAG ETIONG, KOL TO TO OTUOVTIKO, 1] ££000G TOV OVOIPEPETAL
emiong oe Oheg TG B€oelg, o1 omoiec mpoPAcmovtol TaVTOYPOVA LE TN YPNOT €VOC EVioiov
uovtéhov, e Paomn tnv Evvota tng moAvdiepyactokng padnong (Multitask Learning).

Mo GAAN GNUOVTIKY] GUVEIGPOPE TNG TAPOLCUS EPYACIOG EVOL OTL TPOTEIVETAL EVal VEO TAXIG1O
a&loAdynong mov alodoyel v a&lomoTtion Ko TNV avOeKTIKOTNTA TOV LOVTELOL o€ BopuPddn
Kot avicoPoapn] dedopéva. Téog, To mAaicto mov avamthydnke etval oxedlacUEVO OGTE Vo, UV
Baciletar vrepPoiikd oe moAdTAoKeg dopég Babidg Mdabnong, eved mopdAinia emttuyyavel
IKOVOTIOLNTIKY] ETIO00T).

Tepropiouor kot uellovuixy Epevva

Ol oNUAVTIKOTEPOL TEPLOPIGHOL TNG TOPOLCOS €PYAcing oxetiloviol HE TNV GYETIKA
TEPLOPLCUEVT] SLOOEGILOTNTA KUKAOQOPLAK®Y 0E00UEVMV VYNANG XPOVIKNG GUYVOTNTOS, KAODS
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Kol 0eS0UEVAVY YpOvaV dtadpoung kot {itnong Méowv Malikng Metapopdg mov dev emETpeyov
™V avanTtuén avtiotoymv LovTEA®Y Bpayumpofeoimv TpoPfAEyewy.

H peidoviikny €pevva Ba meptapfdver tn ypnon mo ocvvletmv apyitektovik®dv Babidg
MdéOnong, dote va eéetaotel 1) Tepetaipw Pertimon g akpifelog Twv poviélmy. Eniong Oa
a&loAo0yn0el 1 SuvaTOTNTO PHETOPOPAS TMV EKTOLOEVUEVOV LOVTEL®V G GAAa diKTLO 1 GE GAADL
onueia tov 1010V diktvov. Térog, Ba emtyelpnBel 0 GLVIVACUOG TOV CNUAVTIKOTEPWOV EPYAAEIWV
7OV avaTTOHYONKAV Yo TN dNUovpYyic EVOG TOALTPOTIKOD Kot Paciopévon otr Bempio TAacion
oL Ba TapEyel TpoPALyelg Yoo OA0 TO d1KTLO.
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Introduction

1 INTRODUCTION

1.1 Background and Motivation

The increase of private vehicle ownership rates and the growing demand for public and private
transport services during the last decades, as a consequence of population growth and
urbanization, has put significant pressure on urban transportation systems (X. Yin et al., 2021a).
As a result, congested conditions can be more frequently observed and last for longer, having
significant direct or indirect effects on public health, society, economy, road safety and the
environment (Lana et al., 2018). Within this framework, mitigating the effects of traffic
congestion has become a very complex and challenging task for traffic managers. The most
prominent tool for alleviating traffic congesting has been the implementation of Intelligent
Transportation Systems (ITS) for more than 20 years. The recent surge of Artificial Intelligence
algorithms and cutting-edge information and communication technologies has revealed new
opportunities but also severe challenges for the efficient management of flows (Boukerche &
Wang, 2020; Ye et al., 2022).

Accurate short-term traffic forecasting is considered key for efficient ITS implementation, since
— at least conceptually — it enables the early response to the anticipated traffic conditions, such
as the initiation of proper mitigation strategies to prevent congestion from occurring (Jiang &
Luo, 2021; Kumar & Raubal, 2021). The most important implications of traffic forecasting, as
a vital part of ITS, include traffic management and control of traffic flow, user information and
travel time estimation and traffic light control, aiming at optimizing the network’s conditions
and level of service (Vlahogianni et al., 2014; Yao et al., 2019; Boukerche & Wang, 2020).The
growing need for traffic forecasts embedded in real-time Connected and Cooperative Intelligent
Transportation Systems (C-ITS) has also increased the interest in the research area of traffic
forecasting, which has been blooming for the last three decades (Vlahogianni et al., 2004, 2014;
Lana et al., 2018; X. Yin et al., 2021a).

Typically, short term traffic forecasting research has been governed by two schools of thought;
the statistical thinking and the connectionists, both sharing similarities, but also a lot of
differences (Karlaftis & Vlahogianni, 2011). Recently, the unprecedented data availability,
which emerged as the result of vast advancements in telecommunications and sensing
technology (e.g., smartphones, seamless connectivity, 5G networks, connected vehicles, etc.),
combined with the reignited interest in Machine Learning and Deep Learning, shifted
researchers’ attention, from statistical, parametric and analytical traffic flow models, towards
data-driven ones (K. Lee et al., 2021; Mantouka et al., 2021).

Deep Learning methods are commonly acknowledged as having the best performance in terms
of forecasting errors, compared to previous approaches, which is also mentioned as their main
advantage (Y. Wang et al., 2019). The main reason behind that is their potential, at least
theoretically, to approximate almost any function, regardless of its degree of non-linearity and
model underlying, complex temporal and spatial relations, such as those in network-wide traffic
data (Ye et al., 2022). Additionally, Deep Learning models can extract features from large-scale
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raw data automatically and, thus, the demanding tasks of feature engineering and selection,
which require much effort and, especially, domain knowledge, are not always necessary (Z. Liu
etal., 2018; Ye et al., 2022).

However, due to the complexity of their structures and the number of hyperparameters involved,
deep learning models require increased resources for training, in terms of data availability and
computational power. Also, they tend to be very difficult to interpret and understand the
reasoning behind their outcomes, which is the main factor that limits the exploitation of these
models in decision- and policy-making, for example for traffic management (Lipton, 2018;
Pavlyuk, 2019; Y. Wang et al., 2019; X. Yin et al., 2021a; Fafoutellis & Vlahogianni, 2023a).
According to recent literature, the highest-performing methods, namely complex deep learning
structures, can be the least explainable, while less accurate models illustrate increased
explainability (Gunning et al., 2019). Model explainability refers to models whose outcome is
understandable to a human, without requiring the complete understanding of its structure and
the algorithm used to train it, but also includes the proof of developing an interpretable model,
e.g., by selecting an appropriate structure and input variables (Ribera & Lapedriza, 2019).
Furthermore, it relates the model’s transparency, trustworthiness and fairness; explainable
outcome mechanisms can be used for the evaluation of a system, as well as for improving it
and extracting knowledge from it (Ribera & Lapedriza, 2019; Manibardo et al., 2021; Lafia et
al., 2021).

Interestingly, despite the very high research interest in traffic forecasting, indicated by the big
volume of research works getting published, the exploitation of Deep Learning forecasting
modules as part of a traffic management scheme remains, disproportionally, low. This fact has
raised reasonable considerations about the usability and actionability of Deep Learning in
traffic forecasting, as well as the direction towards which researchers are moving and the
approach they follow (Lafia et al., 2021; Manibardo et al., 2021). Therefore, without
underestimating the effectiveness of the more complex deep learning structures on the
forecasting task, lately, several researchers propose focusing on other properties of the
forecasting models, such as explainability, efficiency, trustworthiness and transferability, and
not exclusively on their performance in terms of error metrics. The above are expected to
increase the models’ actionability in real-world conditions and adoption by traffic management
authorities (Manibardo et al., 2021).

In this dissertation, it is attempted to develop a fully actionable traffic forecasting framework,
that would be trustworthy and robust, as the developed modules will be enhanced with aspects
from traffic flow theory and Granger causality and the results will be evaluated on this basis as
well. Thus, the framework would not be deployed as a black box, but would be transparent and
suitable for traffic management, decision-making and planning. Moreover, the complexity of
the input space and the modeling structure will be kept as low as possible, in order for the
framework to be efficient in terms of training time and computational resources requirements.
Besides, we argue that by incorporating theory aspects and causal features it is possible to use
a less complex modeling architecture without sacrificing the model’s performance.

1.2 Problem Overview

Traffic forecasting at a network level is the process of estimating the traffic conditions at a
future time, in one or more locations of the network, given their past traffic conditions (i.e.,
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historical data). More formally, let’s assume that there are n locations whose traffic conditions
are observed in a specific road network (e.g. road sections, sensors or intersections) during 7
time periods; so the observed data can be represented by an n X T matrix, let X.
Correspondingly, let ¥ be an m X ¢ matrix containing the traffic conditions of the m target
locations for ¢ timesteps ahead of T (7+1, T+2, ..., T+f). The task of traffic forecasting is the
determination of a function/model £, such that ¥ = f(X).

The most common indicators of traffic conditions are traffic volume and mean vehicle speed,
which are the easiest and most straightforward to collect. Traffic volume refers to the number
of passing vehicles from a certain point or road section aggregated in a certain period of time
(usually one hour). The mean speed can be expressed both as time mean vehicle speed, which
refers to the average speed of all vehicles when passing from a certain point or a road section
(where a sensor is installed) over a period of time, or as space mean speed, which is the average
speed of all vehicles over a certain distance or road section at a specific moment.

The traffic conditions at a road section can as well be expressed as the travel time for passing
the specific segment. Also, the travel times of predetermined routes within the road network
can serve as traffic conditions indicators. Finally, the occupancy of specific points of the road
network can be used, which is defined as the percentage of time that the point is occupied by a
vehicle.

Traffic data are an example of spatial time series data, i.e. they have emerged in a successive
temporal order and exhibit both temporal and spatial dependencies. Traffic time series are
usually non-stationary, especially when examined in high temporal resolutions (Boukerche &
Wang, 2020). Moreover, the influence of traffic patterns in different locations of the road
network on the target locations is complex, highly non-linear and varying over time (X. Yin et
al., 2021a). The existence of dependencies between the traffic conditions at different locations
is also supported by traffic flow theory (Pavlyuk, 2019).

The spatiotemporal dependencies are not limited by the connectivity and the proximity of the
locations in space and time; the traffic states of road sections that are close to the target section
are not necessarily the most correlated to its traffic state, while the same applies with the traffic
states of far time steps, which sometimes are more correlated with the predicted time step than
more recent ones (Do, Taherifar, et al., 2019; Jiang & Luo, 2021; X. Yin et al., 2021a).
Therefore, the selection of the most relevant historical observations for the prediction remains
a challenging, yet vital, task. The identification of the spatiotemporal dependencies is
considered an instance of the feature selection problem, whose aim is to identify a subset of the
input space that would lead to predictions of decent accuracy, while simplifying the model’s
structure and its fitting procedure (Pavlyuk, 2019).

Except for the above, traffic forecasting is more challenging than other time series prediction
problems, because it incorporates various external natural and human factors that should be
taken into account, such as the weather conditions, traffic accidents and special events, and
whose effect on the traffic conditions is difficult to be modeled, due to their unpredictable nature
(Boukerche & Wang, 2020; Jiang & Luo, 2021; Ye et al., 2022).
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1.3 Objectives

The main objective of the present dissertation is to develop an actionable multi-scale traffic
forecasting framework for predictive traffic management, also applicable to multimodal
settings, by exploiting causal spatiotemporal relations and traffic flow theory aspects.

For this purpose, a toolkit of modules for various forecasting tasks is proposed, each of which
can be exploited by traffic management authorities under different conditions to accomplish
different forecasting tasks from different perspectives, e.g., multitask, multimodal or single task
prediction, network-wide or point prediction and short- or longer-term predictions (using high
or low-resolution data).

Some more specific objectives towards this direction are the following:

1. Identify spatial relations in road networks, using state-of-the-art methods from applied
statistical modeling and information theory, and evaluate their effect on forecasting
accuracy.

2. Investigate potential significant interrelations between road traffic conditions and the
demand for other modes of transport and how they can be utilized for multimodal
forecasting.

3. Use a meaningful representation of the road network to efficiently model both the spatial
and temporal relations of the transportation system (demand for different modes).

4. Investigate the efficiency and effectiveness of a multitask (multi-output) model to deliver
network-wide predictions.

5. Detect significant causal relations between the traffic conditions at different locations of
the road network and the traffic patterns they reveal at a city level, both in the short and
long term.

6. Examine the effect of causal relations on enhancing the predictability of the traffic
conditions in network-level forecasting, as well as the trustworthiness of the predictions.

7. Introduce theory aspects in the model’s training stage by deploying a loss function that
evaluates the outcomes of the model and steers them towards a theory-compatible direction.
Examine its effect on the performance and trustworthiness of the modeling framework.

8. Evaluate the effect of the theory-guided approach in terms of actionability (performance,
efficiency, and trustworthiness) using a dedicated evaluation framework.

1.4 Structure

The remainder of this dissertation is structured as follows: In the next section, several
challenges related to the development of actionable traffic forecasting models are presented
according to the findings of a thorough literature review. Moreover, relevant research questions
are raised. In Section 3, three statistical and information-theoretic metrics are used to detect
spatial relations in a road network and are compared to each other, while in Section 4 temporal
relations are considered as well, by using a multi-resolution version of the LSTM network. In
Section 5, we present a novel representation of the spatiotemporal relations between multimodal
data based on the concept of Multiplex Networks. Section 6 includes an explainable, multitask
(multioutput) framework for network-wide predictions and in Section 7 we present an
adaptation of the Granger causality test for extracting causal relations between different
locations of the road network. In Section 8, we develop a theory-informed, causal framework
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for short-term traffic forecasting with increased trustworthiness. Finally, Section 9 includes the
most important conclusions of this work, as well as identified limitations and proposed
directions for future research. In Figure 1, the structure of the dissertation is presented, along
with the relation of each section with one or more objectives, as well as the motivation for
developing each corresponding module.

Motivation

Effect of Statistical and Information-theoretic methods for spatial
relations detection on forecasting accuracy

Account for temporal patterns

Traffic forecasting using multiresolution information with a

Seetion 4 Dilated LSTM network

Information-theoretic relational multiplex network representation
for multimodal traffic flow and demand forecasting

Network-wide travel time prediction with Multitask learning
(single model, multiple outputs)

L‘ Detect causal relations for more trustworthy results and generalized

Effect of Granger causality on detecting significant causal relations
between locations and forecasting accuracy

k’ Introduce theory aspects at all stages (data preparation, training and
1

Traffic state prediction (multivariate output) using Traffic Flow ‘
theory-informed loss function and causal relations

Figure 1. Structure overview and relation with objectives
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2 TOWARDS ACTIONABLE TRAFFIC FORECASTING:
CURRENT PRACTICE AND FUTURE CHALLENGES

In this section, several challenges that are related to a Deep Learning model’s actionability in
predictive traffic management are discussed, according to recent literature. Moreover, the
research questions that the present dissertation attempts to answer are presented.

2.1 Models’ Taxonomy

Traffic forecasting has been a very popular research area for, at least, the last four decades.
Departing from the first naive forecasting models, such as Historical Average that had very low
complexity, but poor forecasting performance in most cases, a large variety of methodologies
have been exploited to model traffic time series, spanning from simpler statistical and
parametric models to Deep Learning, which is state-of-the-art right now. The different
methodologies have been analyzed in detail in the numerous review papers that have been
published during the last few years and, thus, presenting the specifications of each method is
out of the scope of this work. Instead, in this section, the most prevailing taxonomies of the
methods are presented and, as far as it concerns Deep Learning, a critical view of the main
characteristics of the most popular architectures is provided, as well as some comments on their
applicability.

The first separation that is found in recent literature is between parametric and non-parametric
models (Vlahogianni et al., 2004; Polson & Sokolov, 2017; Do, Taherifar, et al., 2019). The
main difference between the two approaches is that in the non-parametric, there is typically a
very large number of parameters, with no physical interpretation, while in parametric methods
most of the parameters have some physical interpretation.

More specifically, the parametric methods rely on assumptions about the population (data)
distribution and their mathematical formulation includes parameters that should be a priori
determined. The determination of the parameters requires good domain knowledge, as well as
intuition about the mathematical foundations of the method and modeling experience. For
traffic forecasting problems, such a model would exploit traffic flow theory and the
inputs/parameters may include the road network’s demand, route choice, road capacity, etc.
Some examples of this class of models are the family of Linear Models (linear and logistic
regression), Naive Bayes, Kalman filtering methods, exponential smoothing, Autoregressive
Integrated Moving Average (ARIMA) and others.

Non-parametric methods rely on a flexible mathematical formulation and structure and have
adjustable parameters. The exact structure and parameters’ values are learned from the data,
during the fitting of the model and have the potential to simulate more complex and non-linear
relations. Neural Networks and some Machine Learning models (e.g., Support Vector
Machines) belong to this category.
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The methods that have been applied to traffic forecasting can also be divided into Statistical,
Machine Learning and Deep Learning. Correspondingly to the order they are mentioned, there
has been a trend towards higher accuracy and lower interpretability between the three
categories.

Statistical models are also parametric models. They have widely accepted and strong
mathematical foundations, that allow getting insights into the mechanisms creating the
estimations (Karlaftis & Vlahogianni, 2010). On the other hand, their input data are subjected
to various assumptions, such as linearity and stationarity, which are over-simplifications for
traffic data (Ryu et al., 2021). Although they offer a straightforward interpretation of the results
and require less data for their fitting, their performance is relatively low because of the above
assumptions, which are prerequisites for their implementation. Thus, such models can be
exploited to understand the relations between the input features and the predictions (Karlaftis
& Vlahogianni, 2010; Tedjopurnomo et al., 2020). In other words, statistical models can be
used to explain a phenomenon and not to precisely predict the future.

Statistical models tend to disappear and are considered deprecated in recent literature, despite
the advantages of the strong mathematical foundation and high interpretability, because they
cannot handle the large amounts of data, that incorporate high complexity and dimensionality
(especially for network-level prediction), and the complex and strongly non-linear
spatiotemporal relations effectively and provide predictions of satisfying accuracy. However,
models of this category are those that are more often adopted in real-world conditions and,
especially, the most naive ones, mainly due to issues that are discussed in the next section (J. J.
Q. Yuetal., 2021).

Unlike statistical methods, Machine Learning models are focused on making accurate
predictions. They can deal with complex and non-linear relations more effectively, compared
with statistical models, and that is the main reason they reach better performance, in general
(Ermagun & Levinson, 2018). The user interference is also reduced, as the models of this
category adjust (learn) the values of their hyperparameters based on the input data. On the other
hand, due to their shallow architecture and the manual feature selection, their prediction
performance remains limited, especially in cases of large input spaces (Ma et al., 2017). Most
Machine Learning models are non-parametric.

Deep Learning is, actually, a sub-category of Machine Learning models, which are based on
the concepts of Neural Networks and multi-layer architecture. However, due to their popularity
and different characteristics compared to the rest of Machine Learning techniques, they are
usually mentioned as a separate category. They are, as well, non-parametric and with Machine
Learning models, they are also often referred to as data-driven models. As already mentioned
in a previous section, Deep Learning models reach high prediction accuracy, thanks to their
capability of handling vast amounts of data and simulating complex, non-linear relations, but
they have the disadvantages of high computation power and data requirements, as well as
limited interpretability (Ma et al., 2017; Manibardo et al., 2021).

Deep Learning models belong to the broader family of Machine learning and all related
techniques are based on the Artificial Neural Network (ANN) paradigm, which was first
proposed by (McCulloch & Pitts, 1943). An ANN is an abstract mathematical model that can
be defined as a complex linear system based on a collection of connected units or nodes called
artificial neurons, which loosely resemble the neurons in a biological brain. ANNs have a multi-
layer architecture, which is used to progressively extract higher-level features from the input
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data, with each layer consisting of Neurons (or Perceptrons) (LeCun et al., 2015). An ANN does
not require any empirical formulas to obtain the inherent relationship of the data from the
dataset. By observing many input and output samples, the ANN model automatically adjusts
and establishes the input and output map model during its training phase.

Although quite an old concept, ANNs were not given a lot of attention when first presented, at
least in the field of traffic forecasting, due to shortcomings that could not be overcome 20 or 30
years ago, such as the high computational power and data requirements. The most vital step
towards the rise of Deep Learning has been the evolution of sensing technology and the
exploitation of novel data-collection tools, such as smartphones, which made the collection of
an unprecedented amount of traffic and mobility data possible (Z. Liu et al., 2018). Moreover,
other aspects that supported the development and implementation of Deep Learning models are
(Geron, 2017a; Zhao et al., 2017):

e The unprecedented development of telecommunication and computing systems, which
as well contributed to the collection of big amounts of data, their manipulation and
storage. Also, the tremendous increase in computing power and the faster hardware
(e.g., GPU) make the efficient (in a reasonable amount of time) training of Deep
Learning models possible.

e The training algorithms have been, at least slightly, improved, making the convergence
of the algorithms easier. Also, some theoretical limitations of ANNs have not been
proven to be so serious in practice, such as the training algorithms stucking in local
optima.

e The development of user-friendly software and libraries (e.g. Tensorflow, Keras), that
do not require high levels of expertise to implement very complex models.

e Research on Deep Learning techniques and applications has attracted significant
funding.

The numerous variations of Deep Learning algorithms have been applied to various scientific
fields, with significantly successful outcomes. Deep Learning has been an obvious direction for
researchers and practitioners in traffic forecasting, too, during the last decades. The intense
work and high research interest have constituted traffic forecasting as a domain for testing,
benchmarking, and comparing new modeling structures and techniques. Deep Learning
methods are commonly acknowledged as the methods with the most accurate performance in
terms of prediction errors, compared to previous approaches, which is also mentioned as their
main advantage (Y. Wang et al., 2019). The main reason behind that is their potential to
approximate almost any function, regardless of its degree of non-linearity and model
underlying, complex temporal and spatial relations, such as those in network-wide traffic data
(Ye et al., 2022).

Additionally, Deep Learning models can extract features from large-scale raw data
automatically and, thus, the difficult tasks of feature engineering and selection, which require
much effort and, especially, domain knowledge, are not always necessary (Z. Liu et al., 2018; Ye
et al., 2022). However, the aforementioned processes can improve the model’s performance,
facilitate and speed up the learning process and, most importantly, reduce the model complexity
and the computational resources required, so it is recommended not to disregard its importance.

All variations of the ANN model have been widely and successfully used in traffic forecasting.
Among them, the most relevant categories are the Recurrent Neural Networks (RNN), the
Convolutional Neural Networks (CNN) and the Graph Convolutional Neural Networks
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(GCNN). Each category includes several alternative architectures, while there are also
approaches that include aspects (layers) from more than one category. The most important
specifications of each category are described below.

RNN are developed to model time series and other sequence data, such as text. In contrast to
other structures that consider each input as independent, they can perceive the existence of a
temporal relationship between the input data, exploiting the memory (or internal state) unit that
is included in their architecture (Geron, 2017a). Long Short-Term Memory (LSTM) networks
are the most popular RNN architecture. Their structure is more complex than simple RNN’s, as
it allows the interaction between the Internal state of the current and all previous timesteps,
while in RNN only with the exact previous. LSTM’s memory unit can be anticipated as a pipe,
connecting all inputs, emphasizing those of the previous that relate the most with the current
and weakening those that don’t (Gulli & Pal, 2017). LSTM are considered one of the most
powerful methodologies for time series prediction and are used a lot in traffic flow forecasting
(Zhao et al., 2017; Bogaerts et al., 2020; Fafoutellis et al., 2020).

One drawback of RNN (and, especially, LSTM) is that when processing long sequences, the
effect of the first (oldest) timesteps may decline as the training phase proceeds to later ones,
also known as the “vanishing gradient” issue (X. Yin et al., 2021a). Another equally important
issue when dealing with traffic data is that RNN, although they are suitable for time series data,
they cannot capture the spatial relations among them (Boukerche & Wang, 2020).

On the other hand, Convolution Neural Networks (CNN), have been applied to traffic
forecasting problems in order to exploit spatial relations (X. Yin et al., 2021a). CNN’s main
application areas are image recognition and computer vision. The input data should be modeled
as a 2- (or 3-) dimensional grid before being fed to the CNN or, equivalently, as an image. The
most significant drawback of this method is that the CNN operation is performed in neighboring
grids, i.e. road sections that are close to each other are processed together, and, thus, relations
with further sections are ignored, which is not desirable for traffic forecasting (Jiang & Luo,
2021). CNN are often combined with RNN, so that both spatial and temporal correlations are
deployed (Dai et al., 2019; Ma et al., 2017).

Moreover, CNN are limited to data and spatial relations on the Euclidean domain. However,
road networks can be intuitively represented as a graph, where, e.g., the road sections can be
thought of as the edges and intersections as the nodes (Jiang & Luo, 2021). Consequently, Graph
Convolutional Neural Networks (GCNN) are more suitable for traffic forecasting, as they can
capture spatial dependencies in non-Euclidean structures, namely graphs. The input of this
model is the adjacency matrix of the graph, which reflects the connectivity or other relations of
the nodes, e.g. statistical correlation of traffic measurements, and, additionally, a set of features
for each node (Cui, Ke, Pu, Ma, et al., 2020; Leiser & Yildirimoglu, 2021; J. J. Q. Yu et al.,
2021). As traffic forecasting is a time series prediction problem, a variation of GCNN, the
Spatial-Temporal Graph Neural Networks (STGNN), is also very often employed. In STGNN,
the features of each node change dynamically over time. However, correlations between
different nodes at different time steps are not explicitly modeled (Zheng et al., 2021).

There are many alternatives to how to represent a road network and the traffic data in a graph.
For example, as both nodes and edges can have their own attributes, a road section or a detector
(point of the road network where there are traffic measurements) can be correspondingly
represented as a node or as an edge. These attributes should include one or more traffic state
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indicators, such as traffic volume, speed, etc. The alternative representations are described in
detail in a following section (Section 2.3).

2.2 Challenge 1: Limitations of Deep Learning

There is currently a disconnection between Deep Learning and traffic management mostly due
to the low interpretability of the models and, also, the lack of a proper and straightforward way
of identifying the spatial and temporal relations (Lana et al., 2018; Manibardo et al., 2021). In
addition, the intensive data and computational requirements significantly limit the probability
of using the models for network-wide predictions; although predicting the traffic conditions of
a single road section is technically feasible, developing models for large road networks has not
been adequately explored. Moreover, most of the recent studies focus on one-step prediction,
while each step usually corresponds to 5 to 15 minutes. The latter period is usually relatively
short for the purposes of traffic management, planning, and decision-making. However, the
research on multistep forecasting is considerably lower, while the prediction accuracy
deteriorates rapidly with the increase in the number of steps.

So, despite the unquestionable effectiveness of Deep Learning in predicting very accurately
future traffic conditions (at least for a limited number of road sections), compared to previous
approaches, several obstacles have been identified in recent literature, concerning the
applicability of Deep Learning in network-wide traffic management. The most important of
them are presented below.

Data requirements: As has been already mentioned, Deep Learning models require vast
amounts of data, that cover all possible traffic states, in order to train and converge (X. Yin et
al., 2021a). The amount of data needed increases with the model’s complexity, as well as the
input space’s size (dimensionality), i.e., the number of road sections there are traffic
measurements from. Such data are rarely available for all the road sections of a network and,
especially, for an adequately long time in the past.

Long training time: Even with today’s technology and powerful hardware, training a complex
Deep Learning model for network-wide predictions, using the data volume described above, is
a very time-consuming task that may last for hours or even days (Do, Taherifar, et al., 2019).
Furthermore, the model should be re-calibrated and its parameters need to be updated regularly
and as soon as new data become available, which is also a time-consuming and demanding
process. On the other hand, Statistical and simpler Machine Learning models have a simpler
and shallow architecture that does not include so many learnable parameters and, thus, their
training time is extremely lower (up to some hundreds of times lower), facilitating their
exploitation in traffic management (Boukerche & Wang, 2020).

Low interpretability: Due to their “black-box” nature, as it is often referred to, Deep Learning
models lack the simple and straightforward interpretability of other models, such as
Multinomial Regression (Do, Taherifar, et al., 2019; Karlaftis & Vlahogianni, 2010). With Deep
Learning, it is difficult to understand the reasoning behind the predictions provided by the
model, i.e. the type and magnitude of the effect of each input feature, which limits the
exploitation of the model in policy-making (Y. Wang et al., 2019). Understanding the model's
mechanisms of producing its output, would also reveal information about the spatiotemporal
dynamics of the road network, which is vital for traffic management. Moreover, interpretability
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is essential in order to justify the decision-making process and increase the trustworthiness of
the specific model, extract new scientific knowledge regarding the network’s mechanics, but
also to find ways to improve its performance and its transferability (Barredo Arrieta et al.,
2020).

Hyperparameter selection: As there is no recognized methodology for determining the
optimal architecture, i.e., number of hidden layers, values of hyperparameters to use, etc., of a
Deep Learning model, usually it is determined by experience or by following a trial-and-error
approach. Alternatively, one may apply a grid search procedure, the required time for which
increases exponentially with the complexity of the model (K. Lee et al., 2021). Moreover, given
that a relatively simple structure does not ensure the good performance of the model, especially
when dealing with a big input space, using a shallower structure is not a possible direction.

Computational power requirements: Along with all the above, one should not neglect the
high computational power required to train and maintain the model and to store and use the
corresponding datasets (Boukerche & Wang, 2020; Manibardo et al., 2021). On many
occasions, traffic management authorities do not own modern and so powerful computers and
servers and, thus, must turn to other models.

Transferability: A trained model is fitted and optimized for predicting the traffic conditions at
specific points or road sections. Therefore, it cannot provide reliable outcomes for any other
point, not even of the same network (J. Li et al., 2022). Given the time and effort required to
develop a complex Deep Learning model, the limited transferability and generalizability of the
methods is a major drawback (Barredo Arrieta et al., 2020). Model transferability in traffic
forecasting still remains an under-researched topic (X. Yin et al., 2021a).

Except for the above issues, one of the fundamental principles of Machine Learning is the
assumption that the data are independent and identically distributed (i.i.d.) to achieve
statistically significant results and good forecasting accuracy. The latter implies that the test set,
as well as other future unseen input, should follow the same distribution as the training set, or
else the i.i.d. assumption will be violated, and the model would perform poorly (Kaddour et al.,
2022). The above is almost impossible for a large urban road network with hundreds of sections
(J. Li et al., 2022). In practice, when abnormal conditions occur, e.g., due to a road accident,
and new congestion patterns appear, the i.i.d. assumption gets violated, at least for some of the
road sections. If these models are exclusively relying on data and not on relations from traffic
flow theory, they are restricted to specific regions and periods and is most likely that they will
get outdated and their performance will drop significantly, as soon as the i.i.d. assumption no
longer holds.

2.2.1 Challenges Using Deep Learning for Traffic Forecasting

From the discussion provided in the previous chapter, it becomes clear that several open issues
should be mitigated to enable the deployment of Deep Learning in traffic forecasting, at a larger
scale. Several review papers have been working on extracting future research paths from the
abundant existing literature on traffic forecasting. These are summarized in Table 1 and
critically discussed in the following sections.

11
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Table 1. Identified challenges in traffic forecasting literature.

Research Work

Identified Challenges

Fafoutellis &
Vlahogianni
(2023b)

Need for network-wide predictions
Consider multiple modes (multimodal predictions)
Causality, explainability and spatiotemporal analysis

Manibardo et

Focus on other properties of the model than performance (faster training
time, requirement of less computational resources and easier
interpretability)

al. (2021) Consider explainability and actionability when developing forecasting
models
Generation of “standard” data testbeds for model testing
oo s s b nd i
Wang (2020) . .. .. . .
Efficient training and retraining with the rate of arrival of new data
Lack of sufficient available data at a city level
X. Yin et al. Focus on efficient and lightweight models for real-time prediction
(2021a) applications.
Design of interpretable and transparent Deep Learning models.
Tedjopurnomo High requirements of data and computing resources

et al. (2020)

Develop responsive prediction schemes (e.g., to unexpected changes in
traffic)

High data and computing resources requirements

Y. Wang etal.  Develop methods to address the limited capability of interpreting the
(2019) outcomes

Exploitation of different data sources
Jiang & Luo Data of insufficient quality and quantity N
2021) Inclu.de externz.ll factors (e.g., weather conditions)

Multitask prediction models

Addressing the high complexity of road network topologies in relation
Do, Taherifar, to the deployment of Deep Learning structures

et al. (2019)

Focus on theory-driven training (non-recurrent events, traffic flow
fundamental diagrams)

Extract spatiotemporal features to increase the models’ performance,

Pavlyuk (2019) interpretability and efficiency
K. Lee et al. Focus on selecting the proper representations of the network and
(2021) spatiotemporal dependencies
Consider the context of forecasting, from point based to network-based
predictions.
Lana et al. Extend the prediction horizon, towards long-term estimation approaches
2018) that boost the actionability of predictive models

Include different data sources to prediction, applying data fusion
techniques.
Big Data implementations and distributed computing.
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Looking closer at the recent literature, researchers take, almost exclusively, the models’
accuracy into account when comparing different approaches and deciding on the most effective,
disregarding issues such as computational efficiency and ignoring shortcomings such as limited
interpretability and explanatory power. The latter leads to implementing Deep Learning models
as “black boxes” (Karlaftis & Vlahogianni, 2010). Therefore, a balance should be found
between the complexity of the model that is developed and the time and resources it requires,
if they are going to be applied in real-world conditions (Boukerche & Wang, 2020). In this
chapter, the future challenges of traffic forecasting are presented, as discussed in the most
significant recent review papers, concerning the implementation of Deep Learning techniques
in traffic forecasting.

In a recent study, Manibardo et al. (2021) showed that the performance of complex Deep
Learning structures is only slightly better (and sometimes the same or worse) than that of
shallow methods and ensembles, after following a well-established benchmarking process,
using different traffic datasets on several predicting horizons. They state that such slight
performance improvements do not translate into practical advantages in real-world applications.
Thus, the authors suggest that simpler methods should be as well considered by researchers and
practitioners, as they offer several practical advantages, which are translated into increased
actionability of the model. As a future direction, the authors recommend that model
actionability should be the goal for works in the field, which has not exclusively to do with the
precision of the forecasts. In traffic management, the interpretation of the outcome, to make
informed decisions, is considered more important than slightly better performance. The authors
also highlight the need for a benchmarking datasets repository.

Boukerche & Wang (2020) provide a comparison of the performance of different Machine
Learning and Deep Learning models in traffic prediction tasks, as observed in recent literature.
As far as it concerns the applicability of this kind of models in traffic management, the authors
focus on the prompt availability of data of high temporal resolution and computers of high
computational power, in order to deal with the requirements of a complex, network-wide
prediction model. X. Yin et al., (2021a) also provide a benchmarking of different prediction
models, spanning from classical statistical methods to state-of-the-art Deep Learning, using
several public datasets. Furthermore, they proceed to propose the following directions for future
research: As there are not sufficiently big datasets available in most cities, researchers should
focus on transfer learning, but also on designing more interpretable and transparent models,
which are important for management purposes. Moreover, an efficient and lightweight model
is vital for real-time applications, as well as the use of multi-source data.

Tedjopurnomo et al. (2020) have also highlighted the issues of the large data requirements, long
and computationally expensive training and difficulty to interpret, due to the large number of
input features and the trainable parameter values. The authors proposed the development of
prediction schemes that are responsive (e.g., to unexpected changes in traffic) by incorporating
external data (weather, accidents), highlighting existing spatiotemporal correlations, and can be
efficiently updated and operate in real-time. Y. Wang et al. (2019) mention the high accuracy
of the predictions as the main advantage of Deep Learning methods. However, they as well
highlight the high requirements of data and computing resources, as well as the limited
capability of interpreting the outcomes. Furthermore, the authors recommend the exploitation
of different data sources to improve efficiency and applicability.

13
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In (Jiang & Luo, 2021), the authors review Graph Neural Networks application in traffic
forecasting, along with the most widespread traffic data sources. Moreover, they mention the
most important challenges of traffic forecasting, in terms of data quality and availability.
Firstly, crowdsourced and GPS data are sometimes of doubtful quality and suffer from sparsity,
high missing data ratios and noise. Also, external factors should be taken into account, such as
weather conditions and special events, when modeling network-wide traffic conditions. Finally,
the authors recommend focusing on multi-task prediction (e.g., predicting traffic conditions at
multiple road sections with the same model.

In a recent work, Do, Taherifar, et al. (2019) conclude that the high complexity of road network
topologies does not favor the deployment of Deep Learning structures. They propose that the
use of effective representations of the network would increase the chance of the models being
used in real-time applications. Moreover, training the models at non-recurrent events and
incorporating basic theoretical knowledge, such as the fundamental relationships, is also
expected to increase performance and interpretability. Pavlyuk (2019) reviews the methods of
spatiotemporal features extraction and their exploitation in Machine Learning and Deep
Learning models. The author highlights the importance of the above features in increasing the
models’ performance, interpretability and efficiency, as well. K. Lee et al. (2021) reviewed the
different representations of road networks and spatial-temporal dependencies, as well as Deep
Learning methods. The authors conclude that accurate representation is equally important with
the selection of the appropriate modeling technique.

Finally, Lana et al. (2018) discuss some considerations regarding urban and network-wide
predictions, as well as hybrid models and evaluation metrics and comparison. As the most
important future challenges, they mention going to a larger, network scale and longer predicting
horizons and using techniques for efficient handling of Big Data, such as parallel computing.
Moreover, they highlight the importance of an efficient input representation and data fusion
techniques for incorporating heterogeneous data.

2.3 Challenge 2: Road Network and Input Space Representation

In theory, Deep Neural Networks can simulate any relation between the input data, regardless
of its complexity or the size of the input space. In practice, however, the performance of the
model heavily depends on the representation of the input data, and the amount of supplementary
information they provide about the spatial relations (Manibardo et al., 2021). This valuable
information enhances the performance of the model, as well as its interpretability. For example,
by using an image representation, the proximity of the locations is implied, as well as the
geometry of the road network. In traffic forecasting, an accurate and meaningful representation
can also reduce uncertainty and is considered equally important with the modeling technique
that is used (Barredo Arrieta et al., 2020; K. Lee et al., 2021).

However, in numerous recent studies, a data-intensive approach is followed by feeding the
model with all the available raw information, without any prior analysis or feature selection,
which adds complexity to the model and increases the dimensionality of the input space,
undermining the model’s performance. The complex Deep Learning structure required to
successfully handle such input spaces will eventually lack the properties of actionability and
interpretability and would be very demanding in terms of training time and computational
resources. In these cases, the complex Deep Learning structure may achieve good prediction
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accuracy, but only by just implying the existence of correlation, and disregarding any causal
features that could be useful in traffic management.

In recent years, a large variety of road network and input data representations have been
proposed in the research area of traffic forecasting, depending on the task of the prediction
(single point or network level) and the kind of input that is compatible with the corresponding
prediction model. In general, they can be classified into three categories: stacked vectors, grid-
(or image-) based and graph.

Stacked Vector

The first class of representations is the stacked vector, where the road network data are
organized into a single vector. More precisely, the time series of the measurements of each
location (e.g., loop detector, road section, intersection, region, etc.), which can already be
considered as vectors, are simply stacked in a vector of vectors, which can also be thought of
as a two-dimensional matrix of dimensions (number of locations) x (number of timesteps). This
representation still remains the most popular one and was already proposed by the initial
network-wide traffic forecasting works (K. Lee et al., 2021).

There is no predefined way of stacking the vectors of the input data into a single vector, but it
depends on the researcher’s or practitioner’s intuition, domain knowledge or personal
preference. The order in which each location’s vector appears plays an important role,
especially in cases where a model that takes account of locality and/or proximity is exploited,
such as a Convolutional Neural Network (Modi et al., 2022). Thus, although this kind of
representation is simple, the user should not disregard organizing the input data in a suitable
way. When the entire road network and the corresponding data locations have a simple
geometry, the order in which the input data are organized is rather straightforward. For example,
when a circular road network or a corridor is represented (Figure 2), the vectors of each location
can be stacked in a clockwise or connection/proximity order, respectively. According to Figure
2, the input data would be represented as follows:

X = {V(Ll)lV( LZ): L V(L6)} (1)

where L; is the location and V(L) is the value of the traffic variable considered, e.g., mean
speed or flow.

L, Ly

L
L

Figure 2. Examples of road networks that can be represented as a stacked vector.
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The main disadvantage of this method is that there is no effective way to represent even slightly
more complex road network geometries. For example, if an additional location that does not
follow the same pattern is added to the above examples, as shown in Figure 3, the stacked vector
representation is not easily applied. Moreover, when a more complex network with a large
number of locations should be modeled, it is unclear which locations are close or adjacent and
in which order they should appear. In such cases, the location vectors can also be stacked
randomly and, thus, the spatial relations between the locations are not at all provided to the
prediction model. In order to mitigate the effect of this issue, it is recommended to follow a
feature selection strategy to reduce the dimensionality of the input space and utilize only the
locations that are most correlated with the target one. A very naive and straightforward
approach for feature selection is by calculating a correlation metric (e.g. Pearson’s correlation)
between the target location and all other locations and including in the input data only a subset
of the most correlated locations with the target location (Ermagun & Levinson, 2018). Of
course, more complex approaches, taking into account proximity or other properties can also
be followed (Cai et al., 2015; Ryu et al., 2018).

5%

L,,. .

Figure 3. Examples of low efficiency of the stacked vector representation.

Stacked vector representation has been very popular, due to its simplicity and flexibility (Ye et
al.,, 2022). However, it can only pass a limited amount of information about the spatial
dependencies and the road network’s geometry to the prediction model. Finally, it can be used
for any road network and is compatible with all prediction models, although it is not very
suitable for road networks with complex geometry and relationships between the locations.

Grid or Image

The second representation method is the grid or image-like representation. The data are
organized into a two-dimensional grid, which is a very intuitive choice for 2-dimensional,
Euclidean, spatial data from locations with latitude and longitude. More specifically, a square
grid with the size of the road network is defined and a value that represents the traffic conditions
inside it is assigned to each square of the grid, which is exactly proportional to a greyscale
image. Thus, the input data can directly be passed to the prediction model, without any
modification. As Convolutional Neural Networks (CNN) is the most proper technique to handle
image data, any hybrid Deep Learning model is compatible with the grid representation, as long
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as it includes a CNN layer. Other techniques, e.g. Statistical and Machine Learning, cannot be
used in this case (K. Lee et al., 2021).

An example of grid representation is given in Figure 4. The value of each pixel (square) of the
grid is equal to the value of the respective traffic variable measured at the road section that lies
inside it, and is sometimes represented by a color scale. Moreover, one may also witness in
Figure 4 the first drawback of this kind of representation, which is its inefficiency. First, the
majority of the pixels do not usually match any road section, so their values are zero (black
color). Consequently, the model is fed with a larger input space, which increases the complexity
of the computations needed and the time they require, while it only contains a relatively low
amount of useful information. The latter issue is even more noteworthy when the input data
consist of measurements from single points (e.g. loop detectors) that occupy only one pixel and
not road sections as in the example of Figure 4.

(a) Example road network (b) Grid representation

Figure 4. Grid representation of indicative road network

Second, as is also obvious in Figure 4, each road section of the network is contained in more
than one squares, but the corresponding traffic variable value is the same along its entire length.
As a result, the same value is passed multiple times to the model (all pixels have the same
value), which increases the input’s size, without increasing the amount of useful information
correspondingly.

Another issue that should be considered is the size of the pixels or, equivalently, the resolution
of the grid. A higher resolution (more pixels with smaller dimensions) may provide more
detailed information about the traffic conditions, but it also intensifies the two drawbacks
described earlier; the smaller the pixels, the more possible it is that a road section occupies more
pixels and the more pixels will remain empty. On the other hand, when a lower resolution is
selected, a significant number of pixels may contain two or more different locations, e.g., road
sections, as shown in Figure 5. In this case, as each pixel can have only one representative
value, the average of all road sections may be calculated. The latter is usually undesirable, as
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the two or more sections may not have a very significant correlation (e.g., when heading in
opposite directions) and, by this aggregation, a significant amount of information may be lost.

N

7

JENE'S

Figure 5. Road network represented as low-resolution grid.

Despite the aforementioned issues, the image or grid representation has been very popular so
far because it very accurately depicts the road network’s geometry and the relations and
proximity of the locations. However, its dependence on the method of CNN brings with it all
its drawbacks, the most important of which being that they only take into account relationships
between pixels that are close to each other in the Euclidean domain (local dependencies) which
may not be sufficient for road networks, where dependencies between distant locations are often
stronger (Ermagun & Levinson, 2018). Finally, the grid representation, although it can be used
to extract spatial information, does not express all the properties of a road network, which is
physically organized as a graph (Ye et al., 2022).

Graph

The third main class of representations is the graph. Compared to images, graphs can be used
to express more complex relations between the input data from different locations of the road
network, which cannot be explained only by (Euclidean) proximity information, stemming from
the connectivity of the sections of the road network, the impact of intersections and traffic lights
and traffic/congestion patterns of distant locations.

In general, a graph is a mathematical structure that is used to model pairwise relationships
between different objects and can be represented as G = (V, E), where V = {vy,v,, ..., v, } is
the set of vertices or nodes and E is the set of edges, consisting of pairs of nodes that are
connected to each other, (v;, v)), and I <7, j <'n. Anedge (vi, v;)) may be directed, i.e. connecting
the nodes asymmetrically with direction from v; to v; or undirected, i.e. connecting the two
nodes symmetrically in both directions. A graph consisting exclusively of undirected edges is
also called undirected; otherwise, it is called directed.

The most efficient way of representing a graph is with an adjacency matrix 4 € R"*"1. The
simplest definition of the adjacency matrix is the following: A = (a;;), where a; =1, if (vi, v))
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is an edge of G and 0 otherwise. Moreover, a weight can be assigned to each edge, representing
usually the strength of the connections or a cost, depending on the specific occasion. In this
case, the values of the elements of the adjacency matrix are equal to the value of the
corresponding weight.

Graph Convolutional Neural Networks (GCNN), as well as their variation Spatio-Temporal
GCNN, are the only modeling technique that can handle input data organized in a graph. Except
for the adjacency matrix, the input also includes vectors of features for each node, e.g., the time
series of the traffic variables measurements.

In traffic forecasting literature, several approaches to how exactly to represent the road network
as a graph have been proposed. Firstly, depending on the type of locations that are exploited
and data availability, the nodes of the graph can be defined as the intersections of the road
network (which are the “physical” nodes as well), loop detectors that are installed at the network
or its road sections (Jiang & Luo, 2021). Furthermore, the connections between them may be
their physical ones or connections that express some kind of similarity or statistical relationship
between the nodes, which can also be weighted (Ye et al., 2022).

Figure 6 displays various ways to depict the same road network. Among them, the
representation where intersections are utilized as nodes (Figure 6(b)), closely resembles the
actual network visually. In this representation, the adjacency matrix includes the information
about the traffic variable measurements at the road sections (weights of the adjacency matrix),
which are the edges of the graph. However, this representation is not ideal as the most important
input, which is also the output of the model, i.e., traffic conditions, should typically correspond
to the nodes and not the edges of the graph, according to the architecture of the Graph
Convolutional Networks.

The two other representations are quite similar to each other. In the first one, each node of the
graph corresponds to a road section of the network (Figure 6(c)), while in the second (Figure
6(d)) to the exact point the measurements refer to (where a loop detector or other sensor is
installed). Often the two approaches may result in the same graph, except for the case that two
or more detectors are installed at the same road section, which is very possible for long road
sections. In this case, for the road section graph, an average value of all the corresponding
detectors' measurements should be calculated as representative for the section, which may not
be desirable, as it decreases the level of detail that the input data have.
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(a) Example road network (b) Intersection-based graph

(¢) Road section-based graph (d) Detector (sensor)-based graph

Figure 6. Examples of graph representations considering different node types.

The most important aspect for defining the spatial relations between the locations of the road
network, which are key to enhancing the prediction model’s performance, is the adjacency
matrix, which contains their pairwise relationships (connectivity or traffic conditions pattern
similarity) (Ye et al., 2022). In recent literature, a variety of approaches have been proposed to
the definition of the adjacency matrix, which are presented below:

Physical connectivity matrix

This type of adjacency matrix reflects the actual connectivity of the road network, e.g.,
consecutive road sections. This approach is quite intuitive and the values of the elements of the
matrix are 1 if the corresponding nodes are connected and 0 otherwise. In the examples of
Figure 6, the connections are determined based on the connectivity of the nodes. Although this
representation is simple and suitable for smaller networks, in complex networks it is not always
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clear which nodes are directly connected, and, especially, when only a relatively small part of
the network is covered by sensors. An example of the latter is given in Figure 7; the road
sections with loop detectors are far apart and cannot be considered adjacent. In this case, one
of the following approaches should be considered.

Distance-based matrix

In this approach, two nodes the distance between which is below a threshold that is decided by
the model developer are considered as connected (adjacency matrix value equals 1).
Alternatively, the order of neighboring can be used and compared to a threshold: if a node v; is
reachable from node v; with m steps, based on the natural connectivity of the nodes, or,
equivalently, v; is an m-order neighbor of v;, the two nodes are adjacent. In order to provide the
model with more detailed information, weights that are equal to the distance or the neighbor
order, respectively, can be assigned to the corresponding edges.

Similarity/Correlation-based matrix

The two above representations suffer from two main disadvantages: first they are static, i.e.
remain the same over time and during different periods, and, secondly, they take into account
only local dependencies, e.g. they consider that the traffic conditions at a location are only
related with and affected exclusively by nearby locations, which is not accurate (Jiang & Luo,
2021; Zheng et al., 2021). On the other hand, when using a correlation-based matrix, a statistical
metric of the similarity between the time series (e.g. Pearson or Spearman correlation) of the
traffic conditions of each pair of nodes or a similar metric from Information theory (e.g. Mutual
Information) is estimated; if their correlation is significant (higher than a threshold), which
implies that they have similar behavior in terms of the emergence of certain traffic patterns at
the same time during the day, the two nodes are considered adjacent (Ermagun & Levinson,
2019; Ryu et al., 2018). Of course, the value of the correlation metric can be utilized as the
edge’s weight. In general, this approach can theoretically represent more complex
spatiotemporal relations, as it captures the dependencies between pairs of distant and nearby
nodes the same way and, in addition, it is dynamic, as the connectivity of the nodes can change
over time, depending on the similarity of traffic conditions, and the corresponding prediction
model would be fed with an adjacency matrix that is not fixed.

Combined methods

In this case, a function that includes the distance of two nodes, the existence of a physical
connection and a correlation metric is used to estimate the weights of the adjacency matrix.
Examples of this approach from recent literature are presented in the next section.

The graph representation is currently the state-of-the-art and the most popular in traffic
forecasting, because it is a simple and intuitive, yet efficient way to represent any network. In
addition, by incorporating novel correlation concepts, the spatial and temporal relations, which
are vital for the interpretability and actionability of the model, are extracted. The graph
representation is compatible with GCNNs and their variations, as well as hybrid Deep Learning
models. An example of how the same road network would be represented according to each
one is provided in Figure 8. V; denotes the traffic variable value at section i.
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Figure 7. Network that cannot be effectively represented with physical connectivity matrix.
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Figure 8. Comparison between the three representation methods.
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2.3.1 Spatiotemporal Representations Modeling in Recent Literature

In this section, a selection of the most significant and interesting papers of recent literature, in
terms of representation approach, are presented and discussed. Emphasis is given to the details
of the method of modeling the spatial and temporal relations between the road network’s
locations. An overview of the aforementioned papers is given in Table 2, Table 3, Table 4 and
Table 5, for stacked vectors, grid, and graph representations respectively. The modeling
technique that was exploited in each paper is mentioned in the second column (if it is based on
a well-known model, the latter is mentioned inside a parenthesis). In the next column, the
technique used to determine the spatial and temporal correlations or other strategies of feature
selection are described. Finally, some implementation details are presented, namely the traffic
variable that is predicted, the input data resolution (separated with a comma if more than one
datasets of different resolutions are exploited) and the performance of the model, in terms of
the Mean Absolute Percentage Error (MAPE) or Mean Absolute Error (MAE), in case MAPE
is not estimated. As in most papers more than one experiments are conducted or more than one
datasets may be exploited, various error values are presented separated with a comma, which
refer to different datasets, or a range of values, which refer to one- and multi-step forecasting
(first value to one-step and last to longest-step).
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Table 2. Overview of significant recent literature works using stacked vector representation

Research Work Base Model* Spatial relation/feature selection method v;::;?; N Re(s:l)]liunt)lon Pe{;;;‘?;?ce
Zhu et al. (2023) Bayes%an clustering ensemble Clustering of detectors'b.ased on traffic Volume 5 (MAE 5.3-6.4)
Gaussian process (BCEGP) measurements and position

Sun et al. (2022) KNN-GRU Cluster tfafﬁc pa.ltterns with Kmeans, detect most Volume 5 10.2%
relevant input with kNN

Afrin & Yodo (2022)  LSTM Spatial trend, temporal trend Z;:elng) 60, 10 (MAﬂfo'g’

Lin et al. (2022) Support Vector Regression- ~ Maximum i'nforrnat%on coefﬁcient (MIC) betwegn Volume 5 R.6%

kNN lagged versions of time series for feature selection

Modi et al. (2022) Autoencoder Distance, Pearson correlation between sensors Speed 5 4.4%-8.4%

Fang et al. (2022) Attention LSTM Temporal Attention Volume 10 10%-12%

X. Shi et al. (2021) Attention Neural Network Short- and long-term spatial-temporal attention Volume 5 8%-11%

Hu et al. (2021) LSTM Spatial attention, temporal attention Volume 5 (MAE 2-3.5)

Cheng et al. (2021) kNN traffic clustering by partitioning time periods Speed(t) 5 13.5%

S. Guo et al. (2019) CNN Sort vectors based on coordinates Volume 6 4%-11%

Z. Li et al. (2019) Gradient Boosting Partial correlation Volume 60, 10, 3 6%, 9%, 16%

L. Li et al. (2019) Deep Belief Network Corridor, vectors stacked based on connectivity Volume 10 10%

Y. Gu et al. (2019) LSTM-GRU F eaturs: selection with entropy-based grey relation Speed ) 6%
analysis

Ermagun & Levinson . Networl'c weight matrix (based on proximity,

(2019) Linear correlat.lon and network structure, after temporal Volume 1 17%-39%
detrending)

Ryu et al. (2018) kNN Mutual information Volume 5 7%-10%

*abbreviations: LSTM-Long Short Term Memory, kNN-k Nearest Neighbors, CNN-Convolutional Neural Network, GRU-Gated Recurrent Unit, GCNN-Graph Convolutional Neural Network, STGCNN-
SpatioTemporal Graph Convolutional Neural Network
**4 “t” next to the traffic variable indicates that its values are extracted from a trajectory dataset; else, they were measured with road sensors or loop detectors
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Table 3. Overview of significant recent literature works using grid/image representation

B Traffi Resoluti Perf
Research Work Ma(fdeel N Spatial relation/feature selection method v ar::bllec** ez::l;l)mn e(l'lvtl):;::l)lce

3-dimensional grid representation (X,y are .
g P (Y Not estimated

J. Guo et al. (2021) CNN-RNN C(.)ord.inates, z is time and the colour of each Speed(t) 5 (RMSE 0.08)
pixel is speed)
-LSTM-
) CNN-LS Image with colorscale, retrieved from website Accuracy (0.87-
Ranjan et al. (2020) Transpose service Speed 5 0.83)
CNN ’
R i that ith high
Dai et al. (2019) CNN carrange grid so that sensors with hig Volume 5 10%-12%

correlation (Spearman) are placed closer

Spatio-temporal feature selection algorithm
W. Zhang et al. (2019) CNN (STFSA) based on Pearson correlation between Volume 5 5%-8.7%
locations, spatial-temporal grid (x-axis is time)

Images depicting the temporal evolution of Speed(t) ) Not estimated
traffic conditions (x-axis is time) P (MSE 22-39)
H. Yu et al. (2017) CNN-LSTM  Color-scale for traffic conditions Speed(t) 2 20%, 35%

*abbreviations: LSTM-Long Short Term Memory, kNN-k Nearest Neighbors, CNN-Convolutional Neural Network, GRU-Gated Recurrent Unit, GCNN-Graph Convolutional Neural Network, STGCNN-
SpatioTemporal Graph Convolutional Neural Network

Ma et al. (2017) CNN

**4 “t” next to the traffic variable indicates that its values are extracted from a trajectory dataset; else , they were measured with road sensors or loop detectors
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Table 4. Overview of significant recent literature works using graph representation (from 2022)

Traffic Resolution

Research Work Base Model* Node type  Spatial relation/feature selection method . . Performance (MAPE)
variable** (min)
Multipl twork hl t
Fafoutellis & ‘ ‘ ultiplex networ (ea? ayer corre.sponds 0
.. Gradient Boosting detectors an hour of the day), adjacency matrix based Volume 60 9.5%
Vlahogianni (2023a) . . . .
on mutual information, community detection
GCNN-T 1 Adj trix based on dist d MAE 4.7-5.1, 15.3-
J. Gu et al. (2023) 'empora detectors Jacency ma I‘I'X ased on distance an Volume 5 (
Convolution Pearson correlation 22.1)
R. Huang et al Cross-approximation entropy matrix and 12.9%-16.2%, 8.7%-
( 2023) getak STGCNN detectors - Sicaflc’onnectivit matrilly Volume 5 12.9%, 6.9%-9.2%,
Py Y 6.7%-10.2%
GCNN-GRU- Proximity adj trix, attenti
H. Liu et al. (2023) ) detectors rox1mily acgjacehcy matrix, atiention Volume 5 10.4%
Attention mechanism
STGCNN- Two Deep Learni dules to extract long-
Huo et al. (2023) detectors 0 ccp LCANING MOCUIES 10 EXUACLIONE= ), e 5 2.7%-4.5%, 5%-8.6%
Transformer and short- term spatiotemporal relations
. . . 2.7%-4.5%, 7%-9.9%,
Shin & Yoon (2022) Progressive detectors'and Progressive graph: cognectlons between Volume, 5 9. 3(:) ] 1‘02 %, 07 6% _0
GCNN road sections nodes changing over time and learnable Speed 11.9%
. 0
Rah t al. . . Travel dist j , time, tri
ahman et a GCNN-LSTM intersections vl distance adjacency (day, time, trip Volume 60 (MAE 23.07)
(2022) attraction and production, land use)
W. Zhang et al. . S .
2022) GCNN, attention detectors Traffic state similarity matrix Volume 5 9%-15%
J. J. Q. Yu (2022) GCNN detectors ilz{[?:;oi)l:leg;i)pf aﬁiﬁégﬁ?ﬁjﬁ;‘iﬁency Speed 5 9-3%-12.4%, 9.7%-
B P 12.4%, 2.2%-4.9%
outcomes
S. Wang et al. GCNN detectors Node aggregation with community detection, Volume 5 (MAE 10.4-11.3, 7.4-

(2022) clustering of nodes based on traffic flow 9.2)
*abbreviations: LSTM-Long Short Term Memory, kNN-k Nearest Neighbors, CNN-Convolutional Neural Network, GRU-Gated Recurrent Unit, GCNN-Graph Convolutional Neural Network, STGCNN-
SpatioTemporal Graph Convolutional Neural Network
**4 “t” next to the traffic variable indicates that its values are extracted from a trajectory dataset; else, they were measured with road sensors or loop detectors
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Table 5. Overview of significant recent literature works using graph representation (until 2021)

Traffi Resoluti Perf
Research Work Base Model* Node type  Spatial relation/feature selection method var::bllec* " e(s:;il:l)mn ezl\z;l;;?ce
Bai et al. (2021) GCNN-GRU road sections Connectivity adjacency matrix Speed(t) 15 (MAE 2.7-4.2)
Leiser & . . Congestion pattern-based clustering, data of the (MAE 2-3.65, 2.63-
GCNN-LSTM t t Speed 10, 60
Yildirimoglu (2021) HHeISeetions same cluster are used as features pee 3.65)
X. Yin et al. (2021b) STGCNN detectors Neighboring order-based attention mechanism Volume 5 7.6%-10.3%
Z. Zhang et al. Temporal . Fusion of spatial proximity, cosine similarity
d sect . . Speed(t 5 MAE 10.6-12.7
(2021) GCNN roag sectlons  nd graph betweenness adjacency matrices peed(t ( )
K.Zh t al. . Physical tivity adj , spatial
angeta GCNN road sections 2o CONMECHVILy acjacency, spatia Speed(t) 5 10%-18%, 6%-10%
(2021) attention
Ye et al. (2021) STGCNN detectors Include external factors, temporal attention Speed 5 6%-10%
J.J. Q. Yuetal. . : . . .
20 23 ueta STGCNN road sections Physical (geographical) connections matrix Speed(t) 5 7.3%-9.5%
Bogaerts et al. . Connectivity adjacency matrix, sorted based on
NN-LSTM t t 12%-149
(2020) Ge 5 road sections latitude and longitude of nodes Speed(t) 5 o-1d%
Edge-wi dj tri t
Chen et al. (2020) GCNN road sections £e W%Sf.: acjacency ma rix (stream Speed 5 3%-10%
connectivity or competitive)
.Zh t al. Structu . oL 5.2%-8.2%, 3%-
g 02 O)ang eta Ler;lrcnirf; Conv. detectors Graphs structure (adjacency matrix) is learnable Volume 15,20 4 8%0, 6. 70/: 9 7?) .
Dist -based adj tial and t 1 Vol
Zheng et al. (2020) GCNN detectors  _rancerbaseqagjacenicy, spatiatand empora oume, 5 15%, 4%
attention Speed
Y. Zhang et al. GONN-LSTM detectors.and Ne'ighboring or'der and similarity-based Volume, 5. 10 9%, 9.2%
(2020) road sections adjacency matrix Speed
Do, Vu, et al. (2019) GCNN road sections Neigboring order-based adjacency Volume 5 14%-19%
M. W t al. Dist ffinity) adj trix, based
angeta GCNN road sections s anc'e (affinity) adjacency matrix, based on Volume 5,30 7%-10%, 12%-14%
(2018) travel times between nodes

*abbreviations: LSTM-Long Short Term Memory, kNN-k Nearest Neighbors, CNN-Convolutional Neural Network, GRU-Gated Recurrent Unit, GCNN-Graph Convolutional Neural Network, STGCNN-
SpatioTemporal Graph Convolutional Neural Network
**4 “t” next to the traffic variable indicates that its values are extracted from a trajectory dataset; else, they were measured with road sensors
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From Tables 2-5, one may observe the popularity of Deep Learning models in recent literature.
It is also clear that, apart from the hybrid Deep Learning structures, such as those including
GCNN, RNN or CNN layers, a significant number of works adopt the exploitation of an
Attention mechanism, which assigns learnable weights to the input data based on their influence
on the expected output, to detect the most important spatial and temporal features (Fang et al.,
2022). Besides, evidence from recent literature shows that an Attention mechanism can
significantly improve a model’s performance, especially for long-term (multistep) forecasting
(X.Yinetal., 2021a).

Regarding the accuracy achieved by different models, the MAPE metric ranges around 10%
and can be even lower in some cases. The values presented in the above Tables cannot be
directly compared to each other, as they refer to different experimental setups and also different
target variables (e.g., speed, traffic volume). Moreover, according to recent literature,
forecasting accuracy is site-specific, meaning that it depends on the specific dataset that is used,
the size and geometry of the corresponding road networks and the length of the prediction
horizon; thus models evaluated in different datasets and forecasting tasks cannot be directly
compared to each other (Manibardo et al., 2021). When using the same benchmarking datasets,
it is evident that, in general, the graph representation and the GCNN-based structures are more
effective in modeling bigger and more complex road networks, compared to simpler
representations and structures. The latter is also reflected in the comparisons between the
aforementioned models and simpler baselines in most research papers listed above, indicatively
(Chen et al., 2020; Y. Zhang et al., 2020; Ye et al., 2021). X. Yin et al. (2021a), who provide a
benchmarking of different forecasting models, spanning from classical statistical methods to
state-of-the-art Deep Learning, using several public datasets, come also to the same conclusion.
However, simpler representation and modeling methods perform equally well on simpler tasks
(e.g. less complex network, fewer locations) and their deployment should be as well considered,
taking into account other advantages of these models, such as interpretability, actionability, and
simplicity (Nair & Dekusar, 2020; Manibardo et al., 2021).

Finally, regarding the prediction horizon, it is evident that multi-step forecasting is associated
with significantly higher error values when compared to one-step ahead forecasting, which is
mostly ought to the way the models are trained, i.e., for one-step forecasting. More specifically,
for performing multi-step (or long-term) forecasting, the one-step model is used recursively to
provide the expected values for each future step, taking as input the forecasted values of the
previous ones. That way, each additional step’s forecasting (after the first step) incorporates the
forecasting errors of all the previous steps and, thus, naturally, the performance metrics
gradually drop after each step.

Furthermore, for stacked vector representation, most studies also include a feature selection
process, which is vital for reducing the input space’s dimensionality and the model’s
complexity, as well as for introducing the spatial-temporal relations to the model. The simplest
approaches include the estimation of a statistical metric to determine the most significant input,
such as Pearson and Partial correlation (Z. Li et al., 2019). However, such metrics are subject
to several assumptions, such as normality of the distributions of the data, linearity of their
relations and independence that are not usually met for traffic data. Thus, the emerging
dependencies may not be accurate. Another equally straightforward approach is to select
features based on the distance or the neighboring order. But as long as distant locations may be
equally or even more correlated than closer ones, the suitability of this method is also
questionable. Approaches combining both methods are also popular in recent literature. For
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example, in (Modi et al., 2022), the authors use a combination of distance and statistical
correlation measures to determine the most relevant sensors, while Cai et al. (2015) also include
the neighboring order.

In order to overcome the limitations of the aforementioned approaches, metrics from the area
of Information theory, such as Mutual Information, have also been exploited (Ryu et al., 2018),
while Lin et al. (2022) estimate the maximum information coefficient between the target
location’s time series and lagged versions of the time series of the rest locations. On the other
hand, Cheng et al. (2021) perform K-Means clustering to detect locations with similar traffic
patterns. In contrast to the Attention mechanism, the latter correlation metrics and feature
selection approaches are not learnable (not learned during the training phase of the model) but
are predetermined. For this reason, selecting the most appropriate method is a very important
task.

A typical example of image representation is presented by H. Yu et al. (2017), where a color
scale is used to represent traffic conditions. The grid values are assigned as the mean value of
the corresponding road sections that lie inside them. Ranjan et al. (2020) use a similar
representation and image data that are retrieved from a map service’s website. In order to
increase the efficiency of the classic image representation, Dai et al. (2019) estimate the
Spearman correlation between the traffic conditions of all pairs of locations and developed an
algorithm to rearrange the grid, so that the most correlated locations are placed closer, while
Ma et al. (2017) model a single road section as an image, with the x-axis corresponding to the
evolution of traffic conditions over time and y-axis to the traffic conditions across the road
section. W. Zhang et al. (2019) use also a grid where the x-axis corresponds to time, but the y-
axis contains the traffic measurements of different locations. Additionally, the authors propose
a feature selection algorithm, based on the Pearson correlation between the road network’s
locations. In (J. Guo et al., 2021), the road network and the evolution of traffic conditions are
represented as a 3-dimensional grid, where the x- and y-axes correspond to the coordinates of
the locations and the z-axis to time. Moreover, a value is assigned to each pixel of the grid,
corresponding to the location’s speed at the specific timestamp.

For the graph representations, it should be noted, additionally, that there is a variation of node
types and hybrid Deep Learning models that are utilized with graph road network
representations. Considering the papers that are examined, which can be considered indicative
of the works of recent literature, intersection nodes are the less common, mainly due to their
lower compatibility with GCNN, which is also mentioned before. Road section and detector
nodes, which are very similar in most cases, seem to be equally popular and the choice between
the two depends mainly on the available dataset. The most usual modeling approach is a
combination of GCNN and a model from the Recurrent Neural Networks family (LSTM or
GRU), to take account of both the spatial and temporal relations.

The spatial relations, which are expressed through the adjacency matrix, are most of the times
based on the physical connectivity, the distance (or the neighboring order or travel time)
between the nodes or a correlation metric. Y. Zhang et al. (2020) use a combined similarity and
neighboring order-based adjacency matrix, while Bai et al. (2021) a connectivity-based one,
and S. Wang et al. (2022) construct an affinity matrix based on travel times. The more
sophisticated approaches, which include a function that combines the latter aspects, lead to
more accurate detection of the dependencies. For example, Z. Zhang et al. (2021) use a matrix
that includes physical proximity information fused with cosine similarity and graph
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betweenness metrics. Furthermore, in (Q. Zhang et al., 2020) a Structure Learning Convolution
(SLC) framework is proposed, which is able to learn the adjacency matrix during the model’s
training phase, given the nodes of the graph. J. J. Q. Yu (2022) follows a similar approach,
using a learnable adjacency matrix, based on the outcomes of an attention mechanism. In
(Leiser & Yildirimoglu, 2021) and in (S. Wang et al., 2022), the authors utilize two different
clustering methods in order to enrich the spatiotemporal dependencies information.

Lastly, the typical temporal resolution for traffic data is 5 minutes, but higher resolutions are
becoming increasingly popular. Forecasting with a shorter-term horizon of 1-3 minutes poses
a significant scientific challenge and is also deemed important for near real-time traffic
management incorporated into Intelligent Transportation Systems. In general, data with higher
resolution contain higher variability as well, even between consecutive timesteps, which makes
the forecasting task harder and more complicated. In this case, an effective representation and
an accurate spatiotemporal analysis are crucial to achieving decent forecasting accuracy. On
the other hand, data with a lower temporal resolution are smoother due to aggregating traffic
measurements of a relatively longer horizon; as a result, simpler and less sophisticated models
may perform very satisfactorily.

2.4 Challenge 3: Correlation Versus Causation

2.4.1 A Historical Perspective

In contrast to most time series data, traffic data evolve with both space and time as highlighted
in research for the past 30 years. The first spatiotemporal representations either in
autoregressive models or neural networks were linear in nature and introduced the influence of
upstream data, which varies during different periods of the day, in order to increase the accuracy
of the model (Tebaldi et al., 2002; Stathopoulos & Karlaftis, 2003; Vlahogianni et al., 2005).
Since then, a series of papers showed evidence that the influence of traffic patterns in different
locations of the road network on the target locations is complex, highly non-linear and varying
over time and, thus, difficult to model (Vlahogianni et al., 2004, 2014; Ermagun & Levinson,
2018; X. Yin et al., 2021a; K. Lee et al., 2021). The existence of dependencies between the
traffic conditions (traffic flow or volume, speed, etc.) at different locations is also supported by
traffic flow theory for both signalized and unsignalized road networks (Vlahogianni et al., 2008,
2014; Pavlyuk, 2019).

Interestingly, a clearcut literature finding is that the spatiotemporal dependencies are not limited
by the connectivity and the proximity of the locations in space and time; the traffic states of
road sections that are close to the target section are not necessarily the most correlated to its
traffic state, while the same applies to the traffic states of far time steps, which sometimes are
more correlated with the predicted time step than more recent onesAttt (Ma et al., 2015; Do,
Taherifar, et al., 2019; X. Yin et al., 2021a; Jiang & Luo, 2021). The selection of the most
relevant historical observations for the forecasting task remains a challenging, yet vital, task for
modeling, understanding and decision-making.

The effect of the spatiotemporal analysis on traffic forecasting was mainly limited to the feature
selection process, until recently. Except from the simplest approach of using the direct upstream
and downstream links or higher-order neighboring links, researchers have also considered more
sophisticated strategies. The first one is based on the distance of the locations: it was assumed
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that closer locations would have similar traffic conditions patterns, especially in the short term.
The distance could also be defined as the travel time between the locations, instead of its actual
(Euclidean) value (Pavlyuk, 2019). Alternatively, a correlation coefficient was estimated
between the time series of traffic conditions of different locations, in order to detect the most
correlated ones. A variety of metrics and methods can be used for this purpose, with the most
popular being Pearson’s correlation, cross-correlation, mutual information and custom metrics
proposed by the corresponding authors (Ermagun & Levinson, 2018; Fafoutellis et al., 2020).
The latter methods allowed researchers to come to the conclusion that not only near, but also
distant locations have high (sometimes higher) correlation coefficients. From a traffic theory
perspective, this, intuitively, depends on the size and geometry of the road network, as well as
the time resolution of the examined data.

These techniques were very popular before the emergence of Machine Learning and, especially,
Deep Learning and were very suitable and efficient for models that cannot cope with a very
large and complex input space and, although more sophisticated inputs and methods have been
proposed, they are still utilized.

2.4.2  Causality for Time Series Data: Granger Causality Test

In the field of traffic forecasting, despite most researchers agree about the existence of
significant causal relationships between different locations of a road network, they usually
depend on deep learning models to cope with large datasets and find correlations between the
data. The specific correlations are not usually transparent and understandable for human users,
while it is not guaranteed that they are causal. Thus, to account for the spatiotemporal evolution
of traffic in a consistent manner that is interpretable and not spurious, causal traffic patterns
should be detected.

When modeling any phenomenon, causal relationships between input and output variables play
a very important role. In contrast to statistical correlation which may be observed at a specific
dataset, the notion of causality refers to more significant relations between the variables, in a
sense that, e.g., the value of one or more input variables will “cause” the output to take a specific
value (Miller, 2019). However, detecting the causal relations between variables is not a
straightforward task, especially when the input space is extensive, and may rely completely on
expert knowledge on the specific field.

Taking the above into account, studying the causal relations of a dataset is very important for
three main reasons:

e To use input features that are causally related to the expected outcome and whose
impact on it remains constant and is independent of the variations of the features’
values.

e Usually, the input space includes both causal and non-causal variables and, using
explainability techniques, they cannot be separated, which leads to unreliable
explanations.

e When both causal and non-causal features are used for the prediction task, the
dimensionality of the input space is significantly increased, undermining the model’s
performance; using only causal features should be adequate.

Causal relations are usually represented as a directed acyclic graph (causal DAG), whose nodes
are the variables that are considered and there exist directed connections between nodes that
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have causal relations (from the variable that has a causal effect on the other to the second). The
causal DAG is created based on probabilistic relations, namely estimation of the conditional
probability as proposed by Bayes and the relevant graphical model, called a Bayesian Network
(Kaddour et al., 2022).

When dealing with time series data, the most appropriate and popular method for detecting
causal relations is the Granger causality test (L. Li et al., 2015). Simply put, we say that a time
series “x” Granger-causes time series “y”, when “y” is more accurately predicted by a model if
previous values of “x” are included in the input space (Schwab & Karlen, 2019). In classic
Granger causality, the model that is used to evaluate the existence of causal relations is the
Vector Autoregressive model (VAR), i.e., only linear relations are assumed between the data,

which may be oversimplified for real-world systems, e.g., for traffic data (Tank et al., 2021).

The most important advantage of Granger causality, though, is that it is a multivariate method,
i.e., evaluates the existence of causal relations between two variables taking into account the
effect of all other input variables as well, in contrast to most other methods that consider only
pairwise relations (Tank et al., 2021). More formally, according to the VAR model, the output
variable y: is a linear combination of the previous time steps of the input variables X;..i:

T T T
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where T is the maximum number of time lags considered, n is the total number of input time
series and a; ; is the coefficient of the ith time series related with t-1 time step. The coefficients
values are determined to minimize the following quantity:
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where N is the total number of observations. The above quantity has two terms: the first one
expresses the estimation error of the VAR model, while the second is the sum of the coefficients
multiplied by a factor A. For the above quantity to be minimized, when including a specific time
step of a time series in the input space does not contribute enough to reducing the estimation
error (first term), its corresponding coefficient’s value becomes zero and, thus, it is excluded
from the model. The parameter A is set by the user and controls the significance of the second
term over the first. At the end of the process, the time series with at least one non-zero
coefficient are considered to Granger-cause y.

Due to the difficulties in detecting causal relations in complex datasets, causality concepts
remain under-utilized in traffic forecasting literature, despite their significance in developing
more stable and interpretable models. Most state-of-the-art approaches rely on fixed graph
representations of the input space, representing the spatial dependencies between different
locations of the road network based on their Euclidean distance, their neighboring order or the
estimation of a statistical correlation metric, most of which are not a very suitable choice for
time series data (Ye et al., 2022). However, as long as causal relations of traffic conditions are
not sufficiently considered, the above methods are vulnerable to spurious correlation, as a
moderate correlation between locations may be the result of confounding variables and biased
data (L. Zhang et al., 2022).
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Regarding the use of the concept of Granger causality in recent traffic forecasting literature, the
authors of (L. Li et al., 2015) have adopted the Lasso method-based Granger causality model
to perform feature selection, which quickly filters out irrelevant data. The method was found to
enhance the model’s performance but does not cope with the linearity assumption of Granger
causality. In (Y. Wu & Tan, 2016) Granger causality is used to interpret the outcomes of a
developed model, while the authors of (He et al., 2022) use simple linear Granger causality as
a component of a deep learning framework, in order to incorporate causal spatiotemporal
relations. Finally, Zhang et al. developed a deep learning framework which first learns the
causal relations and then performs graph convolution on the causal graph (L. Zhang et al.,
2022).

2.5 Challenge 4: Explainability and Spatiotemporal Analysis

In general, interpretability and explainability refer to a model's transparency, which implies that
the data or algorithm and the mechanism that provides the outcomes are accessible to some
extent (Miller, 2019). Models such as Linear Regression, Decision Trees, and rule-based
models are considered easy to interpret; linear models offer explanations for predictions
generated by the signs and magnitude of the coefficients, while Decision Trees and rule-based
models, on the other hand, have a certain degree of interpretability due to their reliance on
decision rules. Tree-like models, in particular, can provide immediate information on the most
relevant attributes of a specific rule because of their hierarchical structure.

Explainability aims to make complex Machine Learning and Deep Learning models
explainable using dedicated tools and methods after their development. It is a broader concept
that encompasses the development of Al systems that are understandable, fair, accountable,
trustworthy, and transparent, allowing the end-user to comprehend the "what," "why," and
"how" of the models (Gunning et al., 2019). Explainability aims to provide customized and
relevant information to different stakeholders, taking into account their goals, privacy, and
adaptability to human understandability (Barredo Arrieta et al., 2020).

Explainability and identification of the spatial and temporal relations between the locations of
the road network, clearly and transparently, are very important for traffic management purposes
(Vlahogianni et al., 2014). Specifically, it is essential in order to (Barredo Arrieta et al., 2020):

o Justify the decision-making process and increase the trust in the specific model, which
is necessary for the compliance of the network users.

e Extract new scientific knowledge regarding the network’s mechanics

¢ Find ways to improve the prediction model’s performance and its transferability

Inducing knowledge on the spatial and temporal relations of the forecasting process, via the
road network and input data representation, as well as the detection of causal relations, enhances
the model’s performance, but also increases its actionability, as it allows the usage of less
complex and more interpretable models.

Moreover, understanding the spatial and temporal relations is important for coping with non-
recurrent conditions: when extreme conditions (heavy congestion) emerge, e.g., due to an
accident, a Deep Learning prediction model would not be able to predict the evolution of the
phenomenon and the locations that would be affected, because these models are dependent on
the input training data, which most probably would not include a sufficient number of non-
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recurrent events emerging at all the locations of the road network. Thus, they would not be able
to predict future conditions that are not observed in the input data. As a result, a network
management authority would not be able to timely implement corrective measures to prevent
the spread of congestion. On the other hand, if the spatiotemporal dependencies have been
identified, either before the development of the model (for the representation of the input data
or the detection of causal relations) or after (for interpreting the results), it would be clear which
locations are going to be directly affected and the corresponding measures would be enforced.

Extracting the spatiotemporal relations and interpreting the outcomes of Deep Learning models
is not a straightforward task and is usually performed post hoc, using model agnostic methods,
such as LIME (Local Interpretable Model-Agnostic Explanations), SHAP (SHapley Additive
exPlanations) and Partial Dependence Plots (Molnar, 2019). However, these methods do not
have a strong mathematical foundation and depend entirely on the available data; consequently,
they are very vulnerable to noisy datasets and may provide unreliable outcomes. Moreover,
they only imply statistical and not causal relations. To address this issue, researchers should
take into consideration the knowledge coming from traffic flow theory concerning traffic
spatiotemporal propagation and congestion dynamics, so that the noisy information can be
translated into important and potentially causal features that can reduce the dimensionality of
the forecasting problem and improve its reliability. Along the same line, the emerging field of
Causal Machine Learning proposes a variety of methods to examine and quantify the causal
relationships in the available data (Y. Zhao & Liu, 2023). The exploitation of such methods for
short-term traffic forecasting remains to be researched.

Finally, in recent literature, it is very common to observe researchers developing a very
sophisticated model, evaluating its performance, and indicating its superiority compared to
baselines, but, at the same time, not elaborating on analyzing, understanding and presenting the
spatial and temporal dependencies (Manibardo et al., 2021; X. Yin et al., 2021a). However, for
a forecasting process to be actionable in real-world traffic management scenarios, it should be
assessed not only based on the values of error metrics, but also on the statistical properties of
the error and the error bias that affect its trustworthiness as well (Karlaftis & Vlahogianni, 2011;
Vlahogianni & Karlaftis, 2013b). Understanding the effect of bias on the model’s
trustworthiness in the presence of extensive network-level spatiotemporal information is at an
early stage, especially in relation to real-world applications.

2.6 Challenge 5: Multitask Learning: The Need for Multivariate
Predictions

2.6.1 Fundamental Relations of Traffic Variables

The three fundamental variables are the most popular traffic conditions indicators as well, are
the following: traffic flow rate or traffic volume (vehicles/hour), velocity/speed (km/h) and
density (vehicles/km), which can also be expressed as occupancy (% of the time that a car is on
a detector). Measurements of the above variables at different locations of a road network (i.e.
network-level data) are an instance of spatiotemporal correlated time series data, as there exist
strong and complex dependencies between them, that are also varying over time (X. Yin et al.,
2021a).
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For the case of a single road section, the three most common indicator variables of traffic
congestion mentioned above are related to each other according to the fundamental equation
(Bramich et al., 2022):

q=kv (4

where q is the traffic flow, k is the vehicle density and v is the mean speed of the vehicles. The
graphical presentation of the above relationship for each pair of variables constitute the
fundamental diagrams of traffic flow theory (Koch et al., 2022). The fundamental diagrams
have several properties, that are very important in various traffic engineering tasks, e.g., traffic
management, calculations using theoretical concepts such as shockwave theory, etc. (Knoop &
Daamen, 2017). More specifically, the q versus k diagram has a triangle-like shape. An
indicative example is illustrated in Figure 9. The point that is at the top of the triangle represents
the capacity (or maximum flow) of the specific road section, while the corresponding density
is called critical density. For densities higher than the critical density, the vehicles’ flow
becomes congested and starts decreasing. On the other hand, for lower density values the flow
is uncongested. Most traffic management methods are implemented with the objective to keep
flow at the uncongested area (Bramich et al., 2022).
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Figure 9. Indicative traffic flow — density fundamental diagram

Several approaches to the exact way of fitting the fundamental diagram to available
measurements and the shape and number of the curves to use have been proposed in the
literature. Starting from the 1930s, Grienshields et al. proposed the use of one curve per
fundamental diagram (Greenshields et al., 1935). The relation between speed and flow is
parabolic and the one between speed and density is linear. Another univariate model (use of one
curve) with similar characteristics is Drake’s, where, however, the relation between speed and
density is exponential (Drake et al., 1967).

Alternative approaches propose the use of two different curves to describe the congested and
uncongested branches (two-variate models). These models allow a more detailed illustration of
the fundamental relation and are considered more accurate (Knoop & Daamen, 2017). The most
naive of them is the triangular, where the two branches of the flow versus density diagram are
straight lines (linear relation) and, more specifically, the slope of the congested branch is equal
to the shockwave speed and the one of the uncongested to the free flow speed (Knoop &
Daamen, 2017). Daganzo introduced the truncated triangular flow-density diagram, where, for
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a range of densities close to the critical value, the flow retains its maximum value (is constant)
(Daganzo, 1997). According to the above models, the speed when traffic is at the uncongested

branch remains constant.

More recently, researchers argue that a discontinuous fundamental diagram, taking capacity
drop into account, might be more accurate. Here, the uncongested branch does not start at the
maximum flow (capacity) but at a lower level (Knoop & Daamen, 2017). Moreover, it was also
suggested that it should not be assumed that the relation between flow and speed is linear and
that speed during uncongested conditions is constant (N. Wu, 2002). The most significant of
the above-described models are presented in Figure 10.

g
3 =
Density Density
(a) Triangular fundamental diagram (b) Parabolic fundamental diagram
(Grienshields)
z 2
B 5
Density Density
(¢) Truncated triangular fundamental (d) Inverse lambda fundamental diagram
diagram (Wu) — capacity drop

Figure 10. Most significant fundamental diagram models.

It should be noted that the aforementioned approaches require the knowledge of various
parameters, such as the free flow speed, the wave speed, the free flow capacity and the
corresponding capacity drop, as well as the functional form of the curve or curves used to
describe the fundamental diagram, i.e., they are deterministic.

2.6.2  Multivariate Forecasting Schemes

Producing multivariate predictions, meaning using multiple variables in the input but also in
the output space, using classical time series approaches or neural networks has been a common
approach in traffic forecasting since the early 2000s (Vlahogianni et al., 2004; Vlahogianni,
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2009a; Dunne & Ghosh, 2012; Vlahogianni et al., 2014; Y. Yin & Shang, 2016; K. Zhang et al.,
2020).

In traffic forecasting, the concept of multitask prediction can be implemented by exploiting
more than one traffic variables (volume, speed, occupancy/density), whose dependence on each
other can be described with the fundamental relations (and fundamental diagrams), as discussed
in the previous section. The main advantage of this approach can be explained with the
following example: although the same traffic volume measurement may correspond to
extremely different traffic conditions, namely congested and uncongested traffic respectively,
a single-task model would interpret them the same way. On the other hand, the knowledge of
the value of an additional variable would allow the model to distinguish and learn the different
dynamics of the two states and, probably, estimate their evolvement more accurately. An
example of the above is depicted in Figure 11.

Speed

Volume

Figure 11. Example of the advantage of a multitask model: in a single-task model with traffic
volume data, points A and B would be considered identical.

Two representative examples of this approach are the work of (Du et al., 2019), where the
authors use all three fundamental variables and also include travel times and of (Liao et al.,
2022), which, in addition, takes into account weather and special events data to predict taxi
demand. It is to be noted that the output can include multiple stream data coming from the same
generation mechanism or coming from correlated generation mechanisms. To illustrate the
above, (Liang et al., 2022) identified correlations between ride-hailing and subway demand,
while (Z. Liu & Chen, 2022) developed a multitask model that takes as input taxi and metro
demand data. (Fafoutellis & Vlahogianni, 2023a) used a combination of data from different
travel modes, e.g., public transport demand and traffic data in a multi-task, deep learning
framework enhanced with a multiplex network representation to forecast traffic volume and
metro (subway) demand.

Regardless of whether the outputs are produced by the same mechanisms or by multiple ones,
the main characteristic of a multitask model is that, in addition to the extended output space, its
input space includes the input spaces of all tasks (e.g., in the case of time series, the past values
of all variables), allowing for data exchange between the tasks. The output variables should be
(significantly) correlated; in this case, it is expected that feeding all input spaces to the model
would increase the overall prediction accuracy, while, otherwise, it would unnecessarily
increase the dimensionality, decreasing the model’s efficiency and adding noise to the input.
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2.7 Challenge 6: Enhanced Trustworthiness with Physics-Informed
Neural Networks

The state of the art in short-term traffic forecasting relies almost exclusively on advancements
in deep learning and performance-driven modeling, disregarding the knowledge stemming from
empirical and analytical investigations of traffic flow. This leads to forecasting constructs that
are usually extremely complex, difficult to understand and hard to generalize on unseen events,
and, eventually, of limited trustworthiness (Lafia et al., 2021). Several researchers argue that
deep learning models can hardly claim applicability in large-scale scenarios (city-level traffic
management), due to significant computational resources requirements and the inability to
generalize well since there is a need for large amounts of data that should be also representative
of the phenomenon they intend to model (Di et al., 2023). On the other hand, physics-based
traffic models, when applied in real-world conditions, lead to inaccurate estimations for four
main reasons (R. Shi et al., 2021; Usama et al., 2022): they can only capture a limited subset of
the possible traffic conditions and related dynamics, they refer to ideal conditions, they include
several parameters that should be defined by the user and they are vulnerable to noisy data.
However, this kind of models are interpretable and do not require massive amounts of data (Di
et al., 2023).

Combining the above approaches leads to models that are very efficient in terms of data
demands, achieving similar or even better performance than classic Deep Learning models
(Usama et al., 2022). (Lafia et al., 2021) argue that considering theoretical concepts in data-
driven modeling at all phases, including preprocessing, modeling, and evaluating, can reduce
model complexity, improve performance and trustworthiness and, most importantly, lead to
feasible predictions and rational decision-making.

The concept of Physics- (or Theory-) Informed Deep Learning combines the advantages of the
two main modeling approaches, namely analytical or physics-based and data-driven, in order
to achieve better generalizability and higher accuracy (Di et al., 2023). Specifically, it can be
deployed when a data-driven model includes, as input or output, one or more variables for
which an analytical/mathematical relation is known from the corresponding scientific field.
This relation is usually incorporated into the model’s loss function or is used in an independent
module and aims to adjust highly erroneous, unreasonable predictions of the model, towards
what is “in theory” expected. In this case, the model’s outcomes are assessed based on their
distance from the observed (actual) outcome and the one expected by the relevant physics law
(Usama et al., 2022).

Combining analytical and data-driven models has been previously followed by many
researchers. For example, combinations of analytical traffic models with unsupervised learning
methods have been used for queue profile estimation at signalized intersections (Ramezani &
Geroliminis, 2015). (X. Wu et al., 2018) introduced a data-driven computational graph that
implements the traditional 4-step process on a road network and uses the back-propagation
algorithm to refine the estimated travel demand. Other approaches include combinations of
analytical traffic models with neural networks for queue estimation (Lu et al., 2023), and for
the development of new car-following models (Mo et al., 2021).

Regarding using theory-driven knowledge for training, (R. Shi et al., 2021) proposed a
framework where a physics-informed neural network, which encodes analytical equations of
either macroscopic or microscopic traffic flow models, is used for regularizing the predictions
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of a simple one. (Usama et al., 2022) incorporate the residuals of traffic flow continuity and
flow conservation equations into the loss function. For their experiments, they use a small
circular simulated road network. Recently, (A. J. Huang & Agarwal, 2023) also used analytical
equations relating speed and density and incorporated them in the cost function. The above
approaches documented improved accuracy and decreased computational time.

It is without doubt that both empirical and analytical investigations can provide valuable
insights into the mechanics of network traffic and, when combined with powerful modeling
techniques, they can enhance their actionability, resilience and efficiency, as well as reduce
prediction error. In the case of short-term traffic forecasting, inducing knowledge from theory
to the forecasting process is not a straightforward process, but should be done holistically,
ranging from issues of model structure, learning, as well as possible insights extraction from
the trained models.

2.8 Challenge 7: Network-Wide Forecasting

Developing a modeling framework that would provide predictions for an entire road network,
at once, remains under-researched, although it can increase significantly the actionability of
any model. In recent literature, there are very few network-wide approaches (Cui, Ke, Pu, &
Wang, 2020); most models provide output for a single location and not all of them
simultaneously, usually referred to as target location, and/or only exploit a relatively small part
of the road network as input. The reason for this is that there are several limitations to network-
wide traffic prediction, including the following:

e Data availability and quality: Network-wide traffic prediction requires access to large
amounts of traffic data, whose quality and reliability can vary greatly, limiting the
accuracy of traffic predictions.

e Computational requirements: Deep Learning traffic prediction models can be
computationally expensive, especially when they are applied at a so large scale, which
limits the ability to deploy these algorithms in real time.

e  Model complexity: Traffic prediction models can be highly complex, especially when
they incorporate additional factors, such as road geometry and traffic flow dynamics.
These models can be difficult to interpret and validate, which prevents them from being
applied effectively in practice.

Researchers are developing algorithms and methods that can address these challenges and
enable the deployment of network-wide traffic prediction, including new concepts of
Computational Science that emerged relatively recently. The most important of them is Edge
Computing, in which the computational tasks are performed at the edge of the network, where
the data are generated, rather than in a centralized cloud or data center. The main advantages
of Edge Computing over traditional cloud computing are (W. Shi et al., 2016; Cao et al., 2020):

e Latency and bandwidth reduction: By processing the data closer to where they are
generated, reduced amounts of data need to be transmitted to a centralized location and,
thus, the related latency and bandwidth requirements are reduced, while the efficiency
of the network is improved.

e Privacy and security: The local processing of data, as well as the reduced amount of
them that has to be transmitted, reduces the risk of leaking of sensitive data.
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By processing traffic data at the edge of the road network, Edge Computing can enable real-
time, low-latency traffic forecasting that can provide valuable information to traffic
management authorities. The combination of local data processing, real-time analytics and
deployment of machine learning models on edge devices with optimized decentralized
coordination (edge nodes exchange necessary information and data without the need for a
central entity), there is no need for transmitting large amounts of data to process them in a
centralized way, which empowers transportation systems to respond quickly to changing traffic
conditions and enables timely decision-making for traffic management, route optimization, and
congestion mitigation. For example, Edge Computing can be used to process large amounts of
traffic data generated by sensors, cameras, GPS devices and other sources, in order to provide
near real-time predictions of traffic conditions.

Based on the principles of Edge Computing, Federated Learning, is a machine learning
paradigm that allows multiple participants, such as devices or edge nodes, to collaboratively
learn a model without sharing their raw data with a central entity. Instead, the participants train
their local models based on their own data and then exchange model updates with each other in
a decentralized manner, allowing the overall model to be improved through the collective
contributions of all participants (Bonawitz et al., 2019). This approach has the advantages of
scalability, i.e. the load of the computational task is distributed across the participating devices,
enabling scaling up to problems that would be infeasible to solve with a centralized approach,
and robustness, as the system would be able to continue to operate, even if some participants
experience any kind of failure (T. Li et al., 2020).

Additionally, Federated Learning can enable the deployment of traffic forecasting algorithms
that would be impractical or impossible to run in a centralized cloud or data center due to their
computational requirements or the large amounts of data they generate. For example, by
distributing the data analysis and model training tasks to various devices close to where the data
are collected, the deployment of sophisticated Deep Learning algorithms, that would be able to
learn from network-wide traffic data in real-time and provide highly accurate predictions of
future traffic conditions, and in a scalable and efficient manner would be made possible. These
devices constitute the nodes of a real-world graph. So, representing the relationships between
them becomes even more vital for both the training of the local models and, most importantly,
for defining the contribution of each of them to the overall model.

For the time being, the exploitation of Federated Learning in traffic forecasting is at a very early
stage, with only a few works taking advantage of its potential (Xia et al., 2022). (Y. Liu et al.,
2020) propose the “Federated GRU”, which uses a safe data aggregation mechanism, based on
a federated averaging algorithm, which prevents sharing private data among, e.g., different
organizations. On the other hand, (Zeng et al., 2021) developed a framework for traffic
forecasting using data from different traffic stations, without the need for sharing the data
between them. The method depends on partitioning the data into different clusters, based on a
hierarchical clustering approach. Moreover, (Zhou et al., 2022) have exploited federated
learning for vehicle trajectory prediction in order to preserve the drivers’ privacy. In the near
future, with the penetration of connected and automated vehicles in traffic and the wider
development of C-ITS, it is expected that massive amounts of network-wide data would be
made available, making technologies such as Edge computing and Federated learning an
essential part of real-time traffic forecasting and management.
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2.9 Challenge 8: Efficiency and Scalability to Multimodal Environments

Demand prediction of public transport, as well as other modes (e.g. taxi, ride-hailing services,
bicycles, etc.), are all instances of variations of the traffic forecasting problem, that also can be
addressed similarly. An inclusive approach, considering all modes, would revolutionize traffic
management and decision-making at a city level, and provide authorities with a tool that would
enable the optimization of traffic conditions across the entire road network. The above is
possible with the extension of the concept of multi-task prediction in traffic forecasting. As
discussed earlier, multi-task prediction is a novel machine learning technique where multiple
related tasks are learned and predicted simultaneously (by the same model), in contrast to
single-task prediction, where each task is learned and predicted separately (Jiang & Luo, 2021).
In multi-task prediction, the model gets as input shared representations for the tasks, allowing
for knowledge transfer between the tasks and improving the overall performance. This is
particularly useful when there is limited data available for each task and the tasks are related,
as the shared representations can help the model generalize better to new data. Multi-task
prediction has already been applied in various domains with great success (Kendall et al., 2018;
X. Liu et al., 2019).

In traffic forecasting, multi-task prediction can be associated with multimodal prediction, i.e.
predicting the traffic demand of different modes, e.g. volume of private cars, passengers of
buses, subway, trains, etc. As it is widely assumed, but also indicated by recent works, there
have to be very significant correlations between road traffic and the demand for public
transport, which can be utilized to increase the predictability of each individual variable
(Fafoutellis & Vlahogianni, 2023a). Moreover, this type of prediction would have a very
significant impact and implications on traffic management, and is vital for model actionability,
as it constitutes an integrated, multimodal tool for city-level traffic management. If the
availability of such multi-source data increases, the popularity of multi-task traffic prediction
is expected to increase as well. Such a model would require more than one input dataset and
network representations (one for each mode/variable), or, equivalently, a multi-layer graph
structure. In order to develop a model of satisfyingly low complexity that would be efficient,
despite having a so large input space, an accurate representation of the input spaces and the
interrelations between them is necessary.

2.10 Research Questions

According to the literature review findings and the identified challenges, and concerning the
objectives of the present dissertation, the following research questions can be formulated:

Q1: Can significant spatiotemporal traffic patterns be identified in a road network? How
sensitive are they to the extraction process? What is the impact of those patterns on
traffic’s short-term predictability?

A variety of correlation concepts, spanning from statistical to information-theoretic, are utilized
to detect significant relations between locations of a road network. We showcase that different
methodologies may lead to different results in terms of spatiotemporal data evolution, affecting
the predictability of traffic conditions differently.
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Q2: How can the typical graph-based representations of the road network and the
spatiotemporal relations be extended to include information from multiple transport
modes and what will the impact be on traffic’s predictability?

We investigate the use of the novel multiplex network representation, adapted from the field of
Social Networks Analysis, to model the relations between road traffic and public transport
demand. More specifically, the daily multimodal traffic patterns are represented as a 24-layer
graph (one per hour) and a community detection algorithm is used to identify significant
spatiotemporal relations between the two modes which leads to increased predictability for both
modes.

Q3: What will the proper problem setup and multitask modeling structure be to enable
efficient and accurate network-level traffic forecasting?

We use traffic volume data from loop detectors to forecast travel times of multiple routes
simultaneously, using a single multi-output model. Within this multitask context, the model is
capable of learning significant relations between the travel times of routes and traffic volumes
at neighboring and distant locations, despite using a simple yet efficient model structure,
achieving decent forecasting accuracy and leading to a resilient and sustainable network-level
prediction schema.

Q4: Can we establish a causal forecasting framework that would lead to the detection of
meaningful traffic patterns enhancing the trustworthiness and the accuracy of the
forecasts?

In order to detect causal relationships between different locations of the road network, we utilize
the innovative Neural Granger concept, the Deep Learning adaptation of the classic Granger
causality test, which reveals generalizable (not dataset-specific) traffic patterns at a city level.
Moreover, using the aforementioned concept for feature selection purposes, we were able to
increase the forecasting accuracy, while reducing the dimensionality of the input space and the
forecasting model’s complexity.

QS: How can theory-aware modeling aspects be incorporated into the forecasting process
and improve the trustworthiness and actionability of the prediction models?

We introduce traffic flow theory aspects at all modeling stages, from the data preparation and
fitting process to the evaluation of the outcomes, that lead, as results indicate, to increased
performance and trustworthiness. More specifically, we use a multivariate input and output
space (instead of a single variable), which correspond to certain traffic states and train the model
with a novel loss function based on the fundamental relations of traffic flow, according to the
concept of Physics-Informed Neural Networks. Moreover, we propose a dedicated evaluation
framework that assesses the model’s trustworthiness by comparing the distribution of the
predictions with the actual and accounting for the accurate classification of the traffic state as
congested or uncongested, instead of just the values of common error metrics.
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3 LINEAR AND NON-LINEAR SPATIOTEMPORAL
PATTERNS OF NETWORK TRAFFIC

According to what is already discussed, an obvious first step towards the development of an
actionable forecasting model is to examine whether spatial dependencies exist between the
traffic conditions at different locations of a road network and what their impact on short-term
traffic forecasting is. The present section attempts to introduce a sober analysis of
spatiotemporal dependencies disengaged from Deep Learning, aiming to increase the
understanding of the above topics.

To this end, we implement concepts spanning from classical correlation analysis to Information
Theory, Time Series Analysis and Bayesian Networks. The proposed methodological approach
is implemented on the road network of the city of Xi’an, China using trajectory data provided
by Didi Chuxing Technology Co, a Chinese taxi and private car-hailing company, which were
exploited to estimate the time series of mean speed for each section of the road network. More
specifically, we proceed to detect the 20 most correlated locations to the target location
according to each correlation concept and compare the forecasting accuracies when using
exclusively the aforementioned locations as input to a low-complexity model.

3.1 Linear Correlation and Mutual Information

To investigate whether there are road sections that are significantly correlated in terms of travel
speed, we apply the concept of Mutual Information (MI) and compare the results with the
classical correlation analysis (Pearson’s correlation). Based on information theory, MI of two
random variables or stochastic processes (e.g., time series) is a metric that quantifies the amount
of information obtained for one random variable when observing the other. Unlike the classical
correlation analysis, the mutual information takes into account nonlinear correlations as well,
because the computed measure is not connected to the linear or non-linear evolution rules of
the quantities involved, but to Shannon Entropy (Abarbanel, 2012; Kantz & Schreiber, 2004).
Let x, and y, be two equally spaced sets of random variables with joint probability density p(Xn,
yn) and individual probability densities p(xn) and p(yn). The MI I(Xs, yn), which quantifies the
expected information gained about x, when observing y, is given by:

p(Xns )

p(xn) () )

1(Xn, yn) = — Z p(xn, yu)log,

Xn,Yn

For the case of traffic time series, this approach exhibits two main limitations: first, it is static
in the sense that time is not introduced in the analysis of travel speed interrelations between
different network locations. Second, interrelations are assessed in a pairwise manner without
providing an understanding of how information from multiple locations may interact with each
other and affect predictability.
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3.2 Distance-Based Time Series Similarity

To address the first limitation mentioned above, the present work implements the fast dynamic
time warping (Fast DTW) algorithm. Dynamic time warping (DTW) is a dynamic programming
technique to find an optimal alignment between two given time series with the objective of
minimizing a specific distance measure (Berndt & Clifford, 1994). For the time series X =
X1,X2,...,Xn and Y = y1,ya,...,yn, DTW distance is given by the following recurrent equation to
the matrix y(i...n, j...n) using dynamic programming (M. Lee et al., 2017):

y(i,j) = dist(x;,y;) +min [y(i — 1,/ — 1),y - Lj),y(G,j—1)  (6)

The path that provides the optimum, namely minimum, distance is the warping path. The DTW
distance pTw (X ,Y) = y(n,n) 1is the Euclidean distance along the warping path. DTW has a

quadratic time and space complexity that limits its use to only short time series data sets.

To alleviate this limitation, an extension on classical DTW may be used, which first transforms
high high-dimensional time series to low dimensional time series and then obtains DTW
distances on the low-dimensional time series. This extension known as Fast DTW operates in
three steps (Salvador & Chan, 2007): coarsening to reduce the dimensionality, projection to
calculate DTW distance in the lowest time series resolution, and refinement to project the
warping path to an incrementally higher resolution. The last two steps repeat until the path is
projected to the original time series’ resolution.

3.3 Bayesian Classifier

Finally, to address the limitation of pairwise time series comparison, we develop a Bayesian
Network, which presents the relations between all the road sections and is based on the
calculation of conditional probability between their speeds’ distributions. A Bayesian Network
(BN) is a directed acyclic graph whose nodes represent variables. The weights of the
connections of the nodes are proportional to the relationship between the variables of the
corresponding nodes. With the above model, it is possible to calculate the conditional
probability of a variable getting a certain value when knowing the values of all the variables
that are connected to it (child nodes) (Pearl, 2000).

The BN for a set of variables X; = {Xj, ..., Xu} also consists of a set P; = {Py, ..., Pn} of local
conditional probability distributions associated with each node and its parents. BN’s causal
interpretation is as follows: a directed edge from one variable to another Y, represents the claim
that X is a direct cause of Y with respect to other variables in the DAG (Friedman et al., 1997).
The joint distribution p can be factorized as a product of conditional probabilities, by specifying
the distribution of each node conditional on its parents. For a given structure B of a BN, the
joint probability distribution p(x ) for X can be written as:

P = [Pttilbad -
i=1

where pa; denotes the set of parents for x . The BN can be used as a classifier of y inputs to

a set of classes, in our case, the travel speed classes (C), by the rule (Friedman et al., 1997):
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n
classify(xq,...,x,) = argmax, p (R) np(Xi =x|C) (8)

=1

By the BN classification task, the influence of each variable can be determined with respect to
the prevailing speed class C. The selection of influential spatio-temporal relations of travel
speeds will be based on the mutual information criterion. Mutual information quantifies the
amount of information flow between a node X; and the knowledge of traffic speed levels C. The
mutual information I(X,C) between a variable X and a class C measures the expected
information gained about C, after observing the value of the variable X:

P(X|C)
Ycec PX|C)P(c)

I(X,C) = Z P(X|C)P(C) log ©)
X,C

3.4 Implementation and Findings

3.4.1 Data Preprocessing

Data preprocessing is an essential procedure when conducting statistical analysis or applying
machine learning techniques. Well-prepared input data lead to better performing and easier
trained and tuned prediction models. The data used in this section consist of 3.2 million GPS
trajectories of Didi’s vehicles in the road network of Xi’an, conducted between the 2nd and
30th of November 2016. Each trajectory consists of the exact position of the vehicle every 2 to
4 seconds, which corresponds to about 250 points per trajectory or 750 million points in total.
More specifically, the attributes of each point are: longitude and latitude, a unique ID specifying
the ride, a second unique ID specifying the driver and the timestamp that corresponds to the
exact time and date that the vehicle was at the particular position. The data were granted by the
company to be used for research purposes.

Xi’an is the 12th biggest city of China with population of about 6.5 million residents and is
located in central China. The road network of the city center of Xi’an consists of 498 primary
and secondary road sections(Figure 12).

The present work employs a data preprocessing strategy as follows: First, the coordinates of
the points had to be transformed from the Chinese State Bureau of Surveying and Mapping
coordinate system — GCJ-02 to the World Geodetic System — WGS-84. In this way it was
possible to depict them accurately on the most popular map web services, OpenStreetMap for
example, as well as further processing.

Next, each one of the points was snapped to the road section where it is most likely that it
belongs, using a Nearest Neighbor based algorithm (Tveite, 2014). The road network of Xi’an
was retrieved from OpenStreetMap and the above procedure was implemented using QGIS,
which is an open-source software for editing geographical data. The algorithm’s complexity is
O(nxm), where n is the number of points and m is the number of sections. At the end of this
process, our database was enriched with another ID number, which refers uniquely to the road
section each point belongs to.
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Figure 12. Xi’an’s road network.

For the purposes of this work, an aggregation time period of 1 hour was used; as already
mentioned, a rather simple modeling structure will be used for the forecasting task which would
not be able to handle a higher time resolution and, consequently, a shorter term prediction,
which is a more difficult task. Besides, the focus of this section is on the methods used for
detecting the relationship between the locations, and secondarily on the method and accuracy
of the forecasts.

It is also worth mentioning that road sections that did not have any record on any of the twenty-
nine chosen days were excluded from further analysis, as it is clear that they do not play an
important role in Xi’an’s transportation system. The same applies to road sections that do not
have any record for more than an hour on any of the twenty-nine days. Figure 13 and Figure 14
show the available full-length time series and one day time series of a specific road section
respectively; although a daily seasonality is evident, there seem to be also some short-term
features during the day that may significantly affect the magnitude and evolution of speed and,
consequently, the prediction accuracy.
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Figure 13. Sample 30-days time series
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Figure 14. Sample 1-day time series

3.4.2  Detecting Spatial Correlations

To detect significant spatial correlations, Pearson’s correlation coefficient between each pair of
time series was calculated and is presented as a heatmap in Figure 15. This heatmap gives a
clear indication of which sections are related to each other. In addition, the mutual information
of each pair of the series was calculated. The results are also presented below as a heatmap in
Figure 16. In both heatmaps, the lighter the color bands the stronger the relationship between
road sections. In the two heatmaps, some common patterns are noticeable in identifying similar
correlations between the time series of the same locations. The MI criterion seems to produce
lower values in terms of the strength of the identified spatial patterns in general (fewer areas
with light color). However, both methods detect locations with almost perfect correlation (close
to 1), which indicates the existence of very significant spatial patterns in the road network. By
examining each column (or row) separately, one can observe which sections are mostly related
to that of the column (or row, respectively).
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Figure 16. Mutual Information heatmap of time series

Further, the implementation results of the Fast DTW algorithm on the available 1-h times series,
which gives an indication of which road sections’ speeds are related to each other in terms of
temporal evolution is seen in Figure 17. A smaller value (darker color) means a higher
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correlation in this case. Again, we may observe that a significant number of highly correlated
pairs can be detected.
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Figure 17. Dynamic Time Warping heatmap of time series

In order to compare the three metrics to each other in terms of predictability enhancement, the
road section with ID number 28258922 on Open Street Map was selected as the target road
section. The above road section is one of the most crowded road sections in Xi’an at the center
of the city. The exact position of the road section is shown in Figure 18.
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Figure 18. Selected road section (green) on Xi’an City map.
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Figure 19 depicts the 20 most related road sections (red) to the selected section, in terms of
Pearson’s Correlation Mutual Information and DTW. It seems that the three approaches capture
different spatial patterns on the same dataset. More specifically, according to the mutual
information and Pearson correlation calculations, close perpendicular road sections are the most
correlated to the selected one, as well as some upstream and downstream road sections. In
addition, for mutual information, some further parallel sections are also detected. In contrast,
with DTW, no perpendicular road section is detected, but instead some neighboring parallel
ones (which are not detected by the other methods). The impact of these differences should be
further investigated in terms of prediction accuracy.
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Figure 19. The 20 most related road sections (red) to the selected section (blue), in terms of (a)
Pearson’s Correlation, (b) Mutual Information and (¢) Dynamic Time Warping
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3.4.3  Comparison Between Mutual Information and Dynamic Time Warping

In order to compare each method’s results, we proceed to develop two prediction models of the
speed of the target road section. Both models are Bayesian Network Classifiers that assign the
section’s speed to three balanced classes: <20, 20-26, >26 km/h, which is a reasonable choice
for signalized road sections, especially when we refer to travel speeds that include possible
stops (e.g. upstream of a signalized intersection), as in our case. The choice to set up this
problem as a classification one (and not regression) was made because the Bayesian model is
only compatible with categorical data. The first model uses only input data from the twenty
road sections with the highest Mutual Information value, while the second uses only the twenty
road sections with the smaller values of DTW distance. The exact input space of each model
consists of the speeds of the corresponding road sections the time step (one hour) before the
one it is predicted.

As can be clearly seen in Table 6, the model using Mutual Information as the metric to select
features outperforms the second one. The accuracy of the two models is 89.1% and 85.6%
respectively. Hence, one can assume that using Mutual Information is a more accurate choice
for the present application. This can be explained by considering again the definitions of the
two metrics. Dynamic Time Warping is a measure of similarity between two time series, which
is highly affected by the absolute size of the section’s speed and only slightly by the time series’
pattern. On the other hand, the estimation of Mutual Information considers the trend of the time
series and the proportional variation of speeds rather than their absolute values.

Table 6. Classification metrics of the two models developed

Metrics Model 1 Model 2
(Mutual Info) (DTW)
Accuracy 89% 86%
Recall (Sensitivity) 89% 86%
Precision 89% 86%
F1 - score 89% 86%

3.4.4  The Impact of Spatiotemporal Dependencies in Short-Term Traffic Forecasting

In order to identify if the analysis conducted in the previous chapters is relevant and improves
the prediction task, we evaluate the findings by comparing them to the performance of a
Bayesian classifier that is “free” to make predictions using data from any road section, i.e., data
from all road sections are provided as input to the model. In this case, each road section’s
contribution to forecasting is proportionate to its probabilistic relationship with the selected
one. The classification results are summarized in Table 7. The accuracy of this model is 84.4%.

Table 7. Classification metrics of Naive Bayes model

. Model 3
Metrics (Naive Bayes)
Accuracy 84%
Recall (Sensitivity) 84%
Precision 85%
F1 - score 85%
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Results indicate that the models presented in the previous chapter produce obviously better
predictions. The first one, which uses the sections with the highest Mutual Information to the
selected one, is performing noticeably better, while the second only slightly, but still better. This
result highlights the usefulness of performing even a simple spatiotemporal analysis in order to
select the most relevant input.

Moreover, the above procedure decreases the dimensionality of the problem, which is a very
common issue when using Machine Learning algorithms. In the current case, we originally had
283 features (road sections), which is a significant high value. After performing spatiotemporal
analysis feature selection, we used only the 20 most related. Furthermore, the above procedure
reduces the computational resources needed, which is equally important.

3.5 Summary of Findings

According to the results presented earlier, analyzing large-scale spatiotemporal characteristics
of a road network before proceeding to the development of prediction models is essential to
produce accurate predictions. In addition, they provide better interpretation of the model’s
outcomes.

General use metrics, such as Pearson’s Correlation, as well as more specific time series metrics
such as Dynamic Time Warping distance and Mutual Information, provide a clear insight into
the spatiotemporal relationships of the road sections of an urban road network. These
relationships occur from the relative position of the road sections and the traffic flow each one
serves; therefore, they provide explainable results.

In order to underline the importance of identifying spatiotemporal traffic patterns, a Bayesian
Classifier was developed to classify speeds taking advantage of the identified spatiotemporal
relations. Although the model that was used is not the best-suited choice for time series data
and is relatively simple-structured, the improved performance by introducing the network-level
spatiotemporal data is noticeable and important from the standpoint of accuracy and
computational efficiency.
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4 EFFICIENT TRAFFIC FORECASTING USING
MULTI-RESOLUTION INFORMATION AND
NETWORK-WIDE VEHICLE TRAJECTORY DATA

The analysis presented in the previous chapter revealed that, indeed, there are significant spatial
relations between the traffic conditions of a road network, which can be detected by using
suitable concepts from statistics and information theory. Moreover, it was shown that their
impact on the forecasting accuracy is noteworthy. In this section, we focus on the temporal
relations, by using a more suitable modeling structure, i.e. a Deep Learning model, whose input
space consists of time series. Moreover, the data are aggregated in a higher temporal resolution
and, in contrast with the previous section, we provide shorter-term predictions, which is a more
challenging task.

4.1 Deep Learning and Deeper Understanding of Traffic Dynamics

Traffic temporal patterns are not easily recognized, especially when studying traffic’s short-
term behavior. Moreover, the relatively frequent shifts to boundary conditions, such as the onset
of congestion, pose a difficult modeling problem to solve. To some extent, the key issue in
traffic forecasting has always been the decoding of this complex behavior in order to improve
its predictability. The complexity of the road environment, the control mechanisms, as well as
the plurality of driving behaviors and non-recurrent conditions, lead to continuously changing
temporal dynamics that make it extremely difficult for a single simple modeling structure to
answer the critical question: How far back in time should the model look in order to accurately
predict the future traffic conditions?

Ideally, to answer this question one should produce a time-variant environment to incorporate
the evolving temporal dynamics of traffic flow and produce accurate short-term traffic
forecasts. Time variance, if not induced externally to the process of prediction, can be internally
represented in modern Deep Learning recurrent networks (Lafia et al., 2019; Vlahogianni,
2009b). Time variant multi-scale designs of recurrent neural networks can exhibit increased
efficiency in learning various scales of dynamics across multiple steps in time.

By applying advanced time-variant recurrent neural structures to short-term traffic flow we aim
to capture the short and long-memory effects observed in traffic (Karlaftis & Vlahogianni,
2009; Yuan & Lin, 2017), internalize the issue of time varying temporal dependencies observed
in traffic flow to the learning process and improve the prediction power over the classical
recurrent neural networks.

The variation of Deep Neural Networks that is most often used in traffic forecasting is the
Recurrent Neural Networks (RNN). Recurrent Neural Networks’ main characteristic is the use
of an internal memory, which holds an output from the previously processed input, that is used
alongside the current input in order to produce a new output (Geron, 2017b). Consequently,
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unlike other Deep Neural Networks, RNN do not consider each input as independent of any
other. This makes them suitable for input data that are temporally related, e.g. time series. From
that point of view, RNNs are the most appropriate methodology to use in traffic flow prediction
problems.

One of the most famous RNN architectures is the Long Short-Term Memory Networks
(LSTM). Their structure is more complex than RNN’s, allowing interaction between current
and all previous inputs, and not only the last one like RNNs do (Olah, 2015). More details on
the structure of the above type of models can be found in a previous section. LSTMs encompass
certain limitations, namely not capturing long-term dependencies in favor of short-term and
vanishing or exploding gradients during the training phase, that prevent the network from
converging, especially when processing long time series.

The aim of this section is to evaluate the implementation of Dilated Recurrent Neural Networks
introduced by Chang et al. (Chang et al., 2017) to the problem of short-term travel speed
forecasting in order to overcome the quite common issues of LSTM, referred to earlier and
investigate the impact of temporal relations in the forecasting accuracy.

4.2 Dilated Recurrent Neural Networks

Dilated RNN is a neural network architecture that is very simple, yet effective and efficient. It
was developed in order to alleviate three major issues of classic RNN and LSTM networks
(Chang et al., 2017):

e Vanishing and exploding gradients, which occur during the training phase of the model,
not allowing the algorithm to converge and produce accurate results, especially when
time series are long

e Capture of long-term dependencies

e Time-consuming training phase

Dilated RNN’s architecture is independent of the type of the cells (RNN, LSTM and GRU cells
can be used) and multi-layer. It is also characterized by its dilated recurrent skip connections
and its use of exponentially increasing dilation, which are proven to perform better (Oord et al.,
2016). The described architecture can be better understood by observing Figure 20, which
illustrates the architecture with dilation or skip length equal to 4.

Output O

]

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2 .

Hidden Layer
Dilation = 1

Input .

Figure 20. Dilated RNN architecture
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More formally, let ¢ be the cell in layer 1 at time t. The dilated skip connection can be
represented as:

(P =f(xPcly) o)

where s is the skip length or dilation of layer I, x!) is the input to layer 1 at time t and (")
denotes any RNN cell and output operation, e.g. simple RNN, LSTM, GRU.

4.3 Data Preparation

In this paper, we perform traffic conditions forecasting of a single road section using a Dilated
LSTM Network, exploiting the speed’s timeseries of the road sections of Xi’an’s road network.
The temporal resolution of the time series used for this application is 5 minutes.

In order for the data to be fed to the Dilated LSTM Network model, they were organized as a
three-dimensional array, in which the first dimension is the total number of the available
instances (5568 in our case), the second is the number of timesteps per time series (12 in our
case, which multiplied by 5 minutes equals to 1 hour) and the third dimension is the number of
attributes of each timestep (number of road sections, 497). More specifically we use a rolling
window of one hour in order to match the speed of each timestep of the target section to the
speeds of the rest sections from 5 minutes to 65 minutes before (the length of the rolling window
is equal to 1 hour). This is the reason why each time series has 12 timesteps with a 5-minute
duration each. The above practice results in 192 one-hour time series per section and per day
(or 5568 in total per section), each of them assigned to a target value.

A network’s discrete input is the time series of the speeds of the 497 road sections for one
window. The output is the predicted category of the target section’s speed.

Due to the existence of many missing values between 00:00 and 07:00, only data from 07:00
to 23:59 of each day were used in the following steps. In addition, the small number of missing
values of the above period were imputed as the mean of the previous and the next timestep.

The road section with ID number 152428518 was chosen in order to perform predictions of its
traffic conditions for a horizon of 5 minutes (one timestep). It belongs to the second ring of
Xi’an city’s center and serves hundreds of thousands of vehicles every day. The exact position
of section 152428518 is shown in Figure 21.

It was decided that the target section’s speeds should be classified into two categories, so, again,
we have a classification problem. The two categories are less than 33 km/h and more than 33
km/h, which is the median of the section’s speeds for the 29 days of the data. That way, we
assume bad to moderate traffic conditions when the speed category is the first and moderate to
good conditions when it is the second.

Regarding the Network’s architecture, each LSTM cell has 256 neurons, the batch size we used
is 160 and we trained the model for just 20 training epochs to avoid overfitting. The Adam
optimizer was used and the Softmax cross-entropy with logits as the cost function. The learning
rate was set to 0.0001. Finally, we selected three different dilations, 1, 2 and 4 timesteps,
following the advice of (Oord et al., 2016), who have shown that the length of the dilations should
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be a power of 2. We could also use a dilation of 8 timesteps, as our time series have 12 timesteps,
but the above scheme was proven to perform better.
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Figure 21. Position of the target section in Xi’an’s road network

4.4 Results

The first 22 days of our data were used for training the model, while the rest 7 (about 25%)
constitute the test set. The evaluation of the model on the test set indicated that it achieves about
85.0% accuracy on unseen data, which is a decent result for data of that temporal resolution.
The first category (<33 km/h) is in general predicted more accurately. Evaluation results are
summarized below. Table 8 is the confusion matrix of the predictions and in Table 9 some
metrics are presented.

Table 8. Confusion matrix of Dilated LSTM network

Predicted
<33 km/h >33 km/h
@ 2 <33 km/h 630 89
: —
= g >33 km/h 113 512

Table 9. Classification report of Dilated LSTM network

Category
<33 km/h >33 km/h  Average
Precision 0.85 0.85 0.85
Recall 0.88 0.82 0.85
F1 score 0.86 0.84 0.85
Accuracy 0.85
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Next, we compared the efficiency of the proposed Dilated LSTM Network in predicting the
future traffic conditions of the selected road section to the performance of a simple LSTM
network. A Dilated LSTM with a single dilation is practically, as already described, the classic
implementation of an LSTM Network.

The classic LSTM Network hyperparameters were selected after performing an extensive Grid
search. The LSTM cell consists of 120 neurons, the Adam optimizer was once again used and
the Binary cross-entropy as the loss function. The batch size was 128 samples and the model
was trained for 20 epochs. The accuracy of the second model was 81.9%, significantly lower
than the Dilated LSTM’s. The rest of the metrics also show that the use of Dilated LSTM
Network instead of the classic architecture indeed produces more accurate results. In Table 10
below the metrics of the LSTM Network are presented.

Table 10. Classification report of vanilla LSTM network

Category
<33 km/h >33 km/h Average
Precision 0.88 0.77 0.83
Recall 0.75 0.89 0.82
F1 score 0.81 0.83 0.82
Accuracy 0.819

4.5 Summary of Findings

The results of the comparison between a Dilated LSTM Network and a classic LSTM Network
in predicting future traffic conditions using network-wide data have shown that the Dilated one
can enhance the predicting accuracy, without introducing extreme complexity to the process.
The architecture of the proposed network is simple enough and easily anticipated as well. The
main advantage of the proposed architecture compared to the simple LSTM is that it captures
and exploits long-term dependencies that may influence future traffic conditions more
significantly compared to shorter-term ones. In addition, it prevents the appearance of
exploding or vanishing gradients, which is often when training Recurrent Neural Networks.

For the application presented in this section, it was attempted to exploit just the temporal
relationship between the locations of the road network using a suitable Deep Learning structure,
so no feature selection was conducted by determining the spatial relationship between the
locations of the road network, as presented in the previous section. The predicting accuracy of
85.0% is decent, taking into account the complexity of the problem and the high dimensionality
of the input space (497 road sections). However, it is assumed that the model has the potential
to perform better on this problem if only relevant features were introduced in the input space.
Therefore, in the next section, a novel spatiotemporal representation is proposed in order to
enhance the predictability of the phenomenon.
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5 MULTIMODAL NETWORK-LEVEL FORECASTING

Departing from simple feature selection, a meaningful and accurate representation of the road
network, which refers to detecting and modeling the spatial and temporal relations between
different locations, as well as to how they will be incorporated into the model’s input space and
learning process, is an efficient way to pass vital information to the forecasting model and
improve its interpretability, while also decreasing the required complexity. Although most early
studies assume that it is sufficient to deal with the traffic variables at different locations of the
road network as independent features, it has now become widely understood that there do exist
significant spatial and temporal relations, which, in addition, are dynamic, complex and
nonlinear (K. Lee et al., 2021). While various approaches have been proposed for modeling the
temporal dimension of the problem (i.e. statistical and data-driven time series analysis
methods), capturing the spatiotemporal relations between different locations is a more complex
and under-researched task.

Taking into account the above, in this section, we adopt the concept of Multiplex Networks
(Magnani, Rossi, et al., 2021) from the research area of Social Network analysis to model the
spatiotemporal relationships of the transportation network of the city of Athens, Greece and
develop an innovative framework of feature selection based on Community Detection, a
clustering concept from graph theory, on multilayer graphs. The transportation network is
defined by loop detectors and metro stations, where measurements of traffic volume and ticket
validations, respectively, are available.

The Multiplex Network proposed consists of 24 layers, each representing an hour of the day.
Each layer is a graph, whose nodes are the loop detectors and the metro stations. A connection
between two nodes of the same layer is established if they are statistically significantly
correlated. So, similarly to social network analysis, two nodes are connected only if they are
correlated, and not when they are geographically close or adjacent to each other. By
representing the road network in this way, spatio-temporal correlations can emerge after
performing community detection.

Thus, in this application, a multimodal and multisource data approach is followed, as, not only
future traffic volume and subway (metro) demand are both predicted but are also exploited as
features to predict one another. This approach of a multimodal framework, which identifies
significant relations between the different modes and can also be extended to more than two
modes, would have very important implications in a holistic traffic management scheme.
Moreover, since the complexity of the models that are widely proposed and used in recent
literature is high, this kind of feature selection allows the use of a simpler model, namely a
Gradient Boosting Regressor with a simple input space, which is more suitable for a real-time
application, as it can be efficiently retrained and calibrated even in real-time, if necessary, and
does not require high computational power, making it suitable to operate on devices with
limited resources, such as smartphones.
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5.1 Theoretical Background

In this section, we aim to develop a forecasting framework that can operate in real-time, so a
lightweight predictive model is necessary, supported by an accurate and meaningful
representation of the spatial and temporal relations and an effective feature selection strategy.
Besides, the representation of the transportation network and the input data is considered
equally important to the modeling technique (K. Lee et al., 2021).

In order to extract spatio-temporal correlations, traffic and transit demand data can be modeled
as a Multiplex Network. Specifically, in the Multiplex Graph, each layer corresponds to each
hour of the day and has as many nodes as the total number of the detectors and the metro
stations. The nodes’ connection for each layer was based on the mutual information of the
corresponding time series, which emerged as the most suitable metric according to the analysis
presented in a previous section.

Afterward, by performing community detection, spatio-temporal correlations can emerge, since
the algorithm searches for groups of vertices that share common properties. In this work,
community detection is used for feature selection, by using as input features of the prediction
model the measurements of the nodes which belong to the same community as the target node.

For the prediction task, a Gradient Boosting Regressor is used due to its relatively simple and
shallow architecture, compared with Deep Learning models. Gradient Boosting is an ensemble
algorithm, i.e. fits a predefined number of simpler predictors to the training set. In contrast to
other ensembles, which use a simple or weighted average of the predictors’ outputs, it integrates
a greedy criterion, according to which each predictor is fitted on the residuals of its predecessor
rather than the training set and the predictors are then added sequentially (Fafoutellis et al.,
2022; Geron, 2017b). Although the predictors usually exploited are Decision Trees, other
Machine Learning algorithms can be used as well. A prediction is, therefore, given according
to the following equation:

N
g=Y axd® (1)
i=1

where N is the number of predictors, d; (X) is the output of each predictor and a; is a weight that
is assigned to each predictor during the training phase of the model (Bonaccorso, 2017).
Gradient Boosting is considered one of the most powerful Machine Learning models and
remains very popular despite the rise of more complex deep learning structures, because it
offers the advantages of more straightforward interpretability, efficiency and does not require
as big amounts of data to get trained. Thus, a real-time traffic forecasting model that is based
on spatiotemporal correlation can be built.

In this section, we will present some basic definitions of graph theory, which is a branch of
mathematics useful for describing systems that are organized in graphs, such as transportation
networks. Then, Multiplex Networks will be described, which consist of two or more graphs
organized in distinct layers, used to represent different types of relations of the same agents. In
network analysis, community detection is one of the fundamental problems, where the goal is
to find groups of nodes that are, in some sense, more similar to each other than to the other
nodes (H. Zhang et al., 2022). This concept and the corresponding algorithms are extended for
Multiplex Graphs.
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5.1.1 Graph Definitions

The central object of study in graph theory is the graph, which is a mathematical structure used
to model relationships between objects and its definition is presented below.

Definition 1 (Graph): A graph G = (V, E) is given by its vertices i € V, where V = {v1, ...,
vn}, and its edgesi,j € E,where E & V X V. The edges e € E are pairs of 2 vertices viand

viwhere 1 < 1,j < n.

A distinction is made between undirected edges, the ends of which connect two vertices
symmetrically, and directed edges, the ends of which connect two vertices asymmetrically with
an arrow. When the graph consists exclusively of undirected edges it is called undirected,
otherwise, it is called directed (Hartmann & Weigt, 2005).

An efficient way to mathematically represent a graph G = (V, E) is the adjacency matrix. The

latter is a square matrix A € RIV*M which is defined as: A = (@i); aij=1, if (i, j) is an edge of

G and 0 otherwise (Harary, 1962).

There are occasions where a cost should be assigned to the connections between nodes. In this
case, a weighted graph is used, where a numerical weight wi;;is assigned to the corresponding
edge and usually represents a cost. In the adjacency matrix of a weighted graph, the values in

position (i, j) are equal to the weight of the edge (i, j).

5.1.2  Multiplex Networks

Multiplex Networks are complex graph structures that have layers in addition to nodes and
edges, which simple graphs have. A Multiplex Network consists of two or more interconnected
graphs lying in distinct layers. Each layer has a different connectivity structure within it. This
kind of network allows for a more realistic approach to the study of the interaction of
individuals, who can communicate through different types of channels (Amato et al., 2017).
This kind of structure is widely used in public transportation systems, social network analysis
and research on infectious diseases (Kivela et al., 2014). Graph theory is suitable for studying
these topics, as individual agents (e.g. locations of the city) can be represented as nodes and the
relationships between them as edges.

This work adopts the definition of a Multiplex Network as a network consisting of many layers
where a node does not connect to another node across layers, but only within layers and its
definition is below (Magnani, Rossi, et al., 2021):

Definition 2 (Multiplex Network): A Multiplex Network is a tuple (A, L, V, E) where A is a
set of actors, L is a set of layers, V € AXL and E € VXV where V(a1 li, 02, L) EE : 11 =12,

In this kind of network, E is restricted to intra-layer edges, that is, an edge is allowed only if its
nodes are at the same layer. An example of a Multiplex Network is shown in Figure 22, where
L=h, b, A=a, .., a5 and (al, b, az, h) is an example of an edge in E. The definition of the

Multiplex Network allows some of the nodes not to be present in some layers. In some cases,
when the term multiplex is used, it is assumed that all nodes are present in all layers. To avoid
confusion, in this work, we explicitly refer to a kind of graph that is defined as the node-aligned
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Multiplex Network. In this most strict form of a Multiplex Graph, all nodes will be present at
all layers. More formally (Brdodka et al., 2018):

Definition 3 (Node-aligned Multiplex Network): A node-aligned Multiplex Network is a
Multiplex Network (A, L, V, E) where vn € A,l€L: (n,]) € V.

Figure 22. Node-aligned Multiplex Network

5.1.3  Community Detection

Real networks display big inhomogeneities, i.e. vertices having low degrees (few connections)
coexist with some vertices with high degrees. So, the distribution of edges is globally and
locally inhomogeneous. Structural differences may be observed within special groups of
vertices such as high or low concentrations of edges between these groups. This feature of real
networks is called community structure, or clustering. So, communities, which are as well
called clusters or modules, are groups of vertices that share common properties and/or play
similar roles within the graph (Magnani, Hanteer, et al., 2021).

In the case of Multiplex Graphs, we distinguish the community detection algorithms into actor-
overlapping or actor-disjoint. That is, if there is at least one actor belonging to more than one
clusters, then we call the clustering actor-overlapping, otherwise, it is called actor-disjoint.
Also, we distinguish the methods into semi-pillar and pillar. A multiplex community is called
semi-pillar on layers L’ € L if for each actor a € A in the community all nodes in (o, 1) €V : 1
€ L' are included in the community. When L' = L, we have a pillar community.

Community detection algorithms for Multiplex Networks can be grouped into three typical
main classes, described below:

» Flattening: The first approach consists of simplifying the Multiplex Network into a
graph by merging its layers, using a so-called flattening algorithm, and then applying
a community detection algorithm for simple graphs. The algorithms in this class are
only able to identify pillar communities, and some communities may emerge because
of edges spread on different layers that would not constitute a community on an
individual layer, because of the flattening process.

= Layer by Layer: This kind of methods first process each layer and merge the results of
the processing. As a consequence of the layer-by-layer community detection step, these
methods include actors in the same community only when they are part of the same
community in at least one layer. Also, due to the merging of layer-specific
communities, these methods can in principle only identify pillar communities.

= Multilayer: The third class of algorithms operates directly on the Multiplex Network.
These methods can detect non-pillar and actor-overlapping communities, unlike the
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previous 2 classes. That is, they will span on multiple layers and will not have the same
actors on different layers necessarily in the same community (Magnani, Hanteer, et al.,
2021). Instances of these methods are the Multi-Layer Clique Percolation Method (ML-
CPM), Infomap, Locally Adaptive Random Transitions (LART), Louvain and Multi-
Dimensional Label Propagation (MDLPA) (Brodka et al., 2018; Magnani, Hanteer, et
al., 2021).

For the purposes of this work, the Louvain algorithm is exploited. The Louvain community
detection algorithm is based on the optimization of modularity as the algorithm progresses.
Modularity is a scale value between —0.5 (non-modular clustering) and 1 (fully modular
clustering) that measures the relative density of edges inside communities to edges outside
communities and optimizing this value results in the best possible grouping of the nodes of a
given network (Nguyen et al., 2008).

In this community detection algorithm, communities are found by optimizing modularity
locally on all nodes, then each small community is grouped into one node and the process is
repeated. For a weighted graph, modularity is defined as:

1 kik;
Q= %IZ: [Aij —m]ﬂci»cj) (12)

where Aj; represents the edge weight between nodes i and j, ki and k; are the sums of the weights
of the edges attached to nodes i and j respectively, m is the sum of all of the edge weights in the
graph, ¢ and c; are the communities of the nodes and & is the Kronecker delta function where
d(x,y) =l if x =y, 0 otherwise (Newman, 2006).

The goal is to maximize this value efficiently, using the algorithm’s two phases that are repeated
iteratively. In the first phase, each node in the network is assigned to its own community. Then,
for each node 1, the change in modularity is calculated for removing it from its own community
and moving it into the community of each one of its neighbors j. This value is calculated for all
communities to which node i is connected, and it is placed into the community that resulted in
the greatest modularity increase. If no increase is possible, i remains in its original community.
This process is applied repeatedly and sequentially to all nodes until no modularity increase can
occur.

In the second phase of the Louvain algorithm, the nodes of each community are grouped and a
new network where nodes of the previous phase are the communities is built. The links between
nodes of the same community are now represented by self-loops on the new community node
and links from multiple nodes in the same community to a node in a different community are
represented by weighted edges between communities. Once the new network is created, the
first phase can be re-applied to the new network (Nguyen et al., 2008).

The above description of the Louvain algorithm applies to the case of simple graphs and it is
useful to generalize this process to Multiplex Networks that are studied in the present work.
Multiplex Network nodes are in the same community when they have similarities and tend to
share common properties. Therefore, revealing the community structure in a Multiplex Graph
can provide a better understanding of the overall functioning of the network (Magnani, Hanteer,
et al., 2021).

Using R programming language and the multinet package (Magnani, Hanteer, et al., 2021),
community detection can be implemented. The goal is to find community structures across
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layers, where vertices in different layers can belong to the same or a different community
despite corresponding to the same actor. This community detection algorithm is also based on
modularity optimization. Multiplex modularity is a quality metric function that takes higher
values if most of the edges are between vertices in the same community and if vertices
corresponding to the same actors are also often in the same community. Modularity for
Multiplex Networks is defined as:

_ 1 kiskjs 5 ..

Qm - z 2 [(aijs - st ) (S, T') + (1)8(1'])] 6(Vis'yjr) (13)
i,jsr

where 1, j are actors, s, r are layers, ojjs is 1 if 1, j are adjacent on layer s, k;s is the degree of actor

i on layer s, p is the number of pairs of vertices either adjacent on a layer or corresponding to

the same actor, ms is the number of edges in layer s, vis is the community to which actor i on

layer s is assigned to, 0 is the Kronecker delta, and ® is a weight; when the same actor belongs

to the same community on two different layers, then Qy, is increased by .

Omega is a parameter that takes values from 0 to 1. Setting higher values of omega will result
in communities that will span on multiple layers and will consist of the same actors, since this
way the value of modularity increases. On the other hand, with omega set to 0, having the same
actors on different layers in the same community does not contribute to modularity (Brodka et
al., 2018).

5.2 Implementation and Results

5.2.1 The Dataset

To develop the traffic forecasting model, traffic flow and transit demand data were used, which
stand for the number of passing vehicles and passengers, respectively, from different points of
the road network over a period of one hour. The data were collected from an open-source
database that was developed by the Greek Government and the Region of Attica and includes
the hourly traffic volume passing from more than 400 loop detectors and the number of
passengers embarking on the subway (metro) train at each of the 63 stations. The data are
available for download for academic purposes. For this paper, we used data from 10 months
(January to October of 2021) from 113 of the most significant loop detectors that are located
around the center of the city of Athens, as well as the demand of all the metro stations. Figure
23 shows the exact location of the loop detectors in green and the metro stations in red.

In addition to traffic flow data, in this paper, it was decided to include public transport data, and
especially metro stations demand, which is a means of public transport that serves a large part
of the population daily. It is widely understood that the two datasets have significant
correlations with each other, which can be exploited to provide more accurate predictions.
Moreover, the latter has not been extensively studied in recent literature and only a few studies
exploit such heterogeneous data.
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Figure 23. Geographic distribution of loop detectors (green) and metro stations (red)

To gain a better understanding of the data, indicative boxplots of the measured flow and demand
per hour are presented for the loop detector on Kyfisos Avenue, and Panepistimio metro station,
which are two of the most crowded, in Figure 24. Considering the values from all detectors,
high values arise in the morning until the afternoon, and from 7 PM onwards there is a gradual
decrease in the number of passing vehicles. In most locations the maximum values are observed
at 8-9 o’clock, then there is a slight reduction of passing vehicles early in the afternoon but at
5 PM we observe higher values again. A similar trend is observed in the metro data where most
passengers use public transportation between 10-11 AM and 5-6 PM.
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Figure 24. Hourly Boxplots for passing vehicles and number of ticket validations at indicative
locations

5.2.2  Multiplex Network of Athens Transportation System

The transportation network of Athens (detectors and metro stations) can be represented as a
Multiplex Graph of the spatiotemporal relations of the nodes, in order to detect communities
and obtain valuable insights into the spatial and temporal relations that define it. The
construction of the graph was based on the idea that each layer would correspond to each hour
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of the day, so the graph consists of 24 layers. Each layer consists of 176 nodes, each of which
represents a loop detector or a metro station. Next, to define the edges of each of the layers, we
got the time series of the demand of each node at the corresponding time of each day (e.g. every
day at 9 a.m. for the 9" layer) and calculated the mutual information between the time series of
all nodes for the same hour. If the mutual information between two nodes is higher than 0.5,
which indicates a significant correlation, an edge is created between them. Of course, we scaled
the 2 types of data in order to place them in the same structure, as they refer to different
measurements. That way we model the spatio-temporal correlation between the nodes. We use
the above technique to create the edges of the graphs, instead of the actual connections, because,
at a network level, it is not very straightforward to determine the connectivity of the nodes,
especially between heterogeneous nodes (metro stations and loop detectors) and, most
importantly, this method leads to distinct graph structure at each layer, that reflects the dynamic
nature of spatial relations.

Next, a comparative analysis of the 24 layers is conducted, where each layer corresponds to an
hour of the day, to better understand the data and the structure of the multiplex graph that
emerged from them. We can compare these layers using several different approaches and
concepts from graph theory. Firstly, the dissimilarity between degree distributions is computed
using the Jeffrey dissimilarity function, where the higher the values, the more dissimilar the
two layers are (Brodka et al., 2018). Figure 25 shows the heatmap of Jeffrey dissimilarity of
the layers (darker color indicates higher dissimilarity). One may observe that the graphs
corresponding to the early morning hours are quite different from those corresponding to the
evening and late evening hours. Furthermore, we observe that the degree distributions of 7 AM
until 3 PM are similar, pointing at similar network structures and, thus, similar traffic
conditions.
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Figure 25. Heatmap with Jeffrey dissimilarity of the layers
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Moreover, to assess layer similarity, the correlation between the degrees of the nodes is
computed. For this task, the Pearson (or linear) correlation between the degrees of actors in
each couple of layers is estimated. This value ranges between 1 and —1, where values close to
-1 and 1 indicate a high negative and positive correlation, respectively, and values close to 0
low correlation. It is important to note that the correlation only depends on the number of
existing edges for each node at each layer, and not on which actors are adjacent; they can be
the same or different actors (Brodka et al., 2018; Magnani, Rossi, et al., 2021). Figure 26 shows
with dark color the layers with high correlation. Indicatively, some of the layers which
correspond to 10:00, 11:00, and 12:00 have a high correlation as well as those which correspond
to 4:00 and 5:00.
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Figure 26. Heatmap with Pearson Correlation of the layers

Finally, it is interesting to evaluate to what extent actors are adjacent to the same other actors
in different layers, by checking the amount of overlapping between edges in the two layers,
which will be 0 if no actors that are adjacent in one layer are also adjacent in the other and 1 if
all pairs of actors are either adjacent in both layers or in none, which is expressed by the Jaccard
metric and the corresponding heatmap is presented in Figure 27. Practically, by looking at
Jaccard overlapping on the actors we see which couples of layers share many edges. The latter
answers the question of whether the spatial relations between nodes change over time. By
observing the heatmap, and comparing it to Figure 26, we can see that, in most cases, layers
with a similar number of connections actually have the exact same connections, since the two
figures are quite similar. This indicates that the specific couples of layers that have several edges
in common are also organized according to similar dynamics (Magnani, Rossi, et al., 2021).
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Figure 27. Heatmap with Jaccard overlapping of the edges

5.2.3  Detecting Communities

After the construction of the multiplex graph, and the exploration of some spatial and temporal
properties, we proceed to detect communities of spatially and temporally related nodes. It
should be reminded that the existence of an edge between two nodes is very important when
estimating the modularity metric and detecting communities of nodes. It is desirable that each
community contains different nodes at each time of the day (i.e. layer) and each instance of a
node does not necessarily belong to the same community, in order to capture the temporal
relations as well.

The community detection algorithm that was selected is Louvain. The parameter omega’s value
was set to 0.001. It is reminded that this parameter takes values from 0 to 1 and setting higher
values of omega will result in communities that will span on multiple layers and all instances
of each actor would belong to the same community, since this way the value of modularity
increases (Brodka et al., 2018). In contrast, if the parameter is selected as 0 the communities
will contain nodes from different layers. We have chosen a rather low value of omega, so that
different actors from different layers are included in the same community, in order to extract
more accurately the spatiotemporal relations.

From the different groups that were created, since the nodes that belong to the same community
have many structural similarities and common characteristics, it is deduced that the number of
passing vehicles or validated tickets in one area of Athens at a specific hour may be affected or
significantly related with other areas at the same or different hour. This is a useful feature and
is used later to build a forecasting model.

By applying the Louvain community detection algorithm, we end up with 7 communities which
are presented in Figure 28.
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Figure 28. Detected communities
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Different colors correspond to different communities. As long as nodes of different layers
belong to the same community, it can be assumed that they have similar structural properties,
i.e. they are connected to instances of the same nodes. Therefore, nodes of different layers are
assigned to the same community if they play the same role, each at the corresponding layer and,
since the nodes represent time series and their connections correspond to statistical relations,
nodes belonging to the same community illustrate similar traffic and demand patterns, so it is
reasonable to use them as features in a prediction model. Moreover, due to the existence of
nodes from different layers in the same communities, we may assume that not only spatial, but
also temporal relations are highlighted. Actually, it indicates the existence of a significant
statistical correlation between nodes at different times of the day, which can be attributed to
similar traffic patterns emerging at the specific nodes during different times of the day, such as
the occurrence of congested conditions. In the case the graphs and the connections between the
nodes were generated based on the geographical proximity of the nodes, we would end up with
clusters of nodes that do not have common spatial and temporal demand characteristics, which
is not desired in the present study, where the community detection is performed to detect the
most relevant features to use as the prediction model’s input.

5.2.4 Model Development

After detecting the 7 communities presented earlier, a model for each node and for each time
of the day can be developed to predict the demand at the corresponding detector or station,
using as features the latest values of demand of the rest of the nodes that belong to the same
community. For example, the demand at node i at 9:00 can be predicted from the demands of
nodes j at 7:00 and k at 22:00 (of the previous day) if these three nodes belong to the same
community. So, the number of features of each model is equal to the size of the community to
which the requested pair (device, hour) belongs, and the value of each feature corresponds to
the measurements of the previous 24 hours. The above data are exploited to predict the traffic
conditions or the demand (for metro station nodes) with a predicting horizon of 1 hour.

Then, for each device-time pair, a Gradient Boosting Regressor was developed with the
following values of hyperparameters: the number of estimators (decision trees) for each
ensemble is 100, the learning rate 0.1 and the maximum depth of each decision tree is 3, with
a minimum number of 2 samples required to split an internal node and 1 for a leaf node. The
train-test data split was random in which the test set consisted of 33% of the records. When
adjusting the hyperparameters of the model, the validation set consisted of 20% of the training
set. Finally, a total number of 4224 models were trained, which is the number of the node-hour
pairs.

5.2.5 Baseline

Since the available dataset consists of long (10 months) and heterogeneous (traffic and transit)
time series, a reasonable and suitable direction is the development of LSTM models that are
able to handle and exploit such a large amount of data. LSTM networks are the state-of-the-art
in modeling time series data, especially heterogeneous ones, and, thus, it is preferred compared
to other Deep Learning models. Therefore, as a baseline, an LSTM network is developed for
each target point (loop detectors and metro stations respectively). The exact architecture of the
networks includes an LSTM layer followed by two fully connected (dense) layers. The
hyperparameters of each model were defined after an extensive grid search process, where each
model architecture was evaluated on the cross-validation set and are as follows: The LSTM
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layer consists of 32 to 64 neurons and the first dense layer of 4 to 16 neurons (different for each
point), while the second dense layer, which gives the output of the model, of 1 neuron. The
ReLU activation was selected for the two dense layers and the Adam optimizer with a learning
rate of 0.0001. The Mean Squared Error was the loss function, the models were trained for 100
epochs and the batch size was 32. The optimal “look back period” (previous timesteps
exploited) was 12 steps, which corresponds to 12 hours as well. In contrast with the previous
sections, the output variables have continuous values, so we have a regression problem.

5.3 Results

Following the above strategy, predictions on the test sets for all pairs (device, hour) were
produced. For the sake of brevity, we selected to present in more detail an evaluation of the
Gradient Boosting Regressors corresponding to 9:00 and 17:00, as these are the peak hours for
the road network of Athens. So, from now on, the results of the models for the entire transport
network (all detectors and stations) corresponding to these hours are presented. The models
were evaluated by the calculation of the Mean Absolute Error (MAE) and the Mean Absolute
Percentage Error (MAPE) of the test set. As it is presented in Table 11, the models achieve a
satisfying overall accuracy, which justifies the use of the proposed methodology. The MAE and
MAPE values refer to the average error of the predictions concerning each node and are
presented separately for traffic flow and transit demand prediction, as well as for the two
different time periods. The overall MAPE value, which is about 0.095 (9.5%), refers to all
predictions.

It is evident from the table that traffic demand can be predicted more accurately from the
models, which may be because the majority of the data refer to loop detectors. We can also
observe that both variables are better predicted for the afternoon peak (17:00), achieving a
significantly improved MAPE. The reason for this may be that there is a higher deviation of the
data values during the morning hours.

Table 11. Accuracy metrics of trained models

Hour of the day Metric Traffic Transit
9:00 MAE 83.11 30.10
) MAPE 10.4% 13.1%
MAE 99.45 31.51
17:00
MAPE 7.5% 9.5%
Overall MAPE 9.5%

Moreover, in Figure 29 the scatter plots of the predicted and actual values of two indicative
nodes (one loop detector and a metro station) are presented. One may observe that the points
are close to the x = y line and no systematic error can be detected.
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Figure 29. Predicted versus Actual values scatter plots of indicative nodes

Concerning the baseline model, it also achieves a good performance, especially for predicting
future traffic conditions. However, the overall MAPE value is about 0.188 (18.8%), which is
significantly higher than the proposed model’s. In Table 12 the detailed error metrics of the
LSTM network are presented. Again, the MAPE and MAE values refer to the average value for
all loop detectors and metro stations, respectively, as a different model for each of them was
developed.

Table 12. Baseline LSTM model evaluation metrics

Metric Traffic Transit

MAE 133.14 52.02

MAPE 16.8% 23.0%
Overall MAPE 18.8%

Furthermore, the overall MAPE distribution for both approaches and for all nodes is presented
in Figure 30 below. It is evident that the values of the MAPE have a relatively high variation,
which is reasonable, due to the high number of different models developed for the entire
network (176 detectors and metro stations). The median value of the errors for the proposed
Multiplex-Gradient Boosting model is 0.08, meaning that half of the models have even lower
error, and 25% of the models have a MAPE value lower than 0.06, with the minimum error
being 0.03. Interestingly, the maximum error is 0.18 for the specific approach, which is lower
than the average error of the state-of-the-art LSTM approach. Also, the superiority of the
proposed approach is established by the fact that the minimum error of an LSTM model (0.12)
is also higher than the average error of the first one. As is usually the case with Deep Learning
models, if higher amounts of data become available, the LSTM networks may achieve
improved performance, however, the latter fact can be also thought of as an additional drawback
of the specific method.
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Figure 30. Box plot of overall MAPE for traffic and transit demand for both modeling
applications and for all nodes

Finally, it is very important to mention that the training time and the computational resources
needed for the development of the LSTM networks are incomparably higher than those of the
Multiplex-Gradient Boosting. Indicatively, the grid search and training process for the LSTM
models of each of the 176 detectors and stations lasted for about half an hour (80 hours in total),
while for all the Gradient Boosting Regressors for all detectors-hours and stations-hours pairs,
respectively, the same processes took 1 hour in total.

5.4 Summary of findings

In this section, a Multiplex Network representation of a road network is proposed along with a
novel feature selection framework, that is adopted from the research area of Social Network
analysis. More specifically, the road network is represented as a multilayer graph, by connecting
nodes that are statistically correlated, instead of geographically close. By modeling the data in
this way, the spatial and temporal relations of its nodes can be highlighted. Also, a community
detection algorithm provided an efficient feature selection framework that enhanced the
models’ performance, by significantly decreasing the input space’s dimensionality. Moreover,
a multimodal and multisource dataset was exploited, including traffic flow and public transport
demand data. Significant correlations have been discovered between the two datasets and the
data were fused to provide accurate predictions of all kinds of nodes. The implications of such
a multimodal forecasting framework in an inclusive and unified urban traffic management
scheme are significant. Also, the findings indicated that the resulting shallow Machine Learning
model is more suitable for providing accurate predictions compared to a Deep Learning model.

The entire methodology is suitable for real-time applications, as the feature selection process
can be executed offline and the model development for specific nodes is extremely lightweight,
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as well as efficient in terms of time and computational resources required and can even be
trained in real-time in cases that the latter is necessary, e.g. extreme traffic conditions, and,
moreover, on devices with limited computational and memory resources, such as smartphones.
It should be noted that the real-time operation of the model would be necessary for a lower
predicting horizon (e.g. a few minutes). Due to the unavailability of such data, we use a 1-hour
horizon, but the methodology can be applied, as it is, for shorter horizons. Therefore, an
effective representation and feature selection strategy, such as the proposed, can improve the
prediction accuracy, while reducing complexity and computational and time resources
requirements.

In this work we attempted to showcase the importance of the goals of the analysis instead of
the tools used, especially when driven by domain-specific theory. We showed that there are
always (implicit) assumptions in all modeling approaches, and that complex, nonlinear Deep
Learning structures have both advantages and limitations and frequently simpler models
facilitated by domain-specific representations and feature selection strategies give as good
results as complex ones. However, many unanswered questions still remain. The first relates to
the data characteristics used and, especially, the temporal granularity and how it may affect the
spatial dependence and, further, the accuracy of the model. Research on unimodal and
univariate analysis thus far indicates that aggregation eliminates long memory characteristics
and variance heterogeneity; which leads to smoothing traffic variation and creating a time series
structure that has reduced sensitivity to changes in traffic (Vlahogianni & Karlaftis, 2013). It is
of interest to understand how data granularity may affect multimodal correlations and their
evolution in space and time.

Next, we believe that testing complex or less complex modeling structures has been
systematically neglected, leading to inconclusive modeling procedures and biased predictions.
Interestingly, in recent years, there has been an obvious trend in traffic modeling of researchers
departing from simpler, linear, low-dimensional and turning to complex, nonlinear, high
dimensional systems, largely because of significant increases in computing power, but still not
necessarily justified by logic or fundamental research needs. The synergy with statistics is
deemed necessary to achieve actionable forecasting models that retain the properties of
transferability and interpretability.
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6 EXPLAINABLE NETWORK-WIDE TRAVEL TIMES
PREDICTION

The modules presented so far, use network-wide input. Taking advantage of the spatiotemporal
relations between the locations of the road network, they provide predictions of the future traffic
conditions at specific target locations. For each target location, a separate model is required,
with its corresponding input and hyperparameters’ values.

One of the identified issues of recent literature in traffic forecasting that remains open is a
forecasting model that would be able to provide network-wide forecasts in a multitask
environment, i.e., predict the traffic conditions at all examined locations simultaneously, using
a single model and leveraging more than one data sources, corresponding to each location. Such
a model would have very significant implications in traffic management, as it would provide
all the necessary information at once. Moreover, in order to be actionable, this model should be
both accurate and efficient, in terms of training time and computational and data requirements,
which cannot be guaranteed even for single-location models.

In this chapter, we present one of the first efforts in the literature to predict simultaneously the
travel times for crossing 30 significant road sections around the city center of Athens, using as
input traffic volume data from loop detectors. As discussed in Section 2.8, most attempts from
recent literature propose the solution of using innovative computing schemes (e.g., Edge
Computing and Federated Learning), which focus on reducing the complexity and data and
computational requirements of the forecasting models, to the task of network-wide forecasting.
However, in this case, one model is needed for each location of interest, which, regardless of
their low complexity, require different input data and frequent fine-tuning and calibration. In
contrast, the approach presented in this section exploits one forecasting model, which is also
relatively simple, to forecast 30 outputs at once, being significantly more efficient than using
30 separate models.

6.1 Methodological Approach

We develop a prediction framework of the travel times, using loop detector data that correspond
to the average flow of the hour before each travel time measurement. For example, hourly traffic
volumes recorded between 8am and 9am will be used to predict the average travel times
recorded between 9am and 10am. The above problem is treated as an instance of multitask
prediction, i.e., instead of using the corresponding (e.g., nearest) loop detectors for predicting
each travel time separately, we provide the input data of all loop detectors to the model and
allow it to learn more complex relations between each target variable (route travel time) and
neighboring or distant detectors and expect the future travel times of all routes as output. In
order to evaluate the forecasting results, in addition to classic error metrics, we provide
explanations of the output, based on the estimation of the Shapley (or SHAP) values.
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6.1.1 Model Explainability with SHAP Values

For the better understanding of the effect that each input variable has on the output variables,
the estimation of the SHapley Additive exPlanations (SHAP) values takes place. The SHAP
value is computed by carefully perturbing input features and seeing how changes to the input
features correspond to the final model prediction. The main advantage of SHAP values is that
the difference between the prediction and the average prediction is fairly distributed among the
feature values of the instance. More specifically, the SHAP value is the average expected
marginal contribution of one input feature after all possible combinations have been considered.
SHAP value closer to zero means the feature contributes little to the prediction whereas SHAP
value away from zero indicates the feature contributes more. Concerning the mathematical
definition, the Shapley value for the i input variable is:

1 .
$i(v) = WZ[”(“R U —v(PR)]  (14)

where the sum ranges over all [N|! orders R of the input variables, and PiF® is the set of input
variables that precede input variable i in the order R. Here, we can imagine that there are |N|!
different ways of adding input variables to the coalition one at a time; the SHAP value is just
the mean of the additional payout input variable i brings across all these different ways (Aas et
al., 2021).

For example, for each given instance of the test set, a positive or negative SHAP value is
assigned to each input variable, reflecting the effect of the specific variable on the output. By
adding the SHAP values of all input variables for a specific instance to the average value of the
output, the exact value of the output for the specific instance emerges.

6.1.2 Data

We combine the traffic volume data of the loop detectors from the city of Athens with travel
time data retrieved from the popular maps and navigation service Google Maps. The travel
times refer to the time (in seconds) for crossing 30 of the most crowded and critical road
sections during the morning and afternoon peak hours, namely from 8 am to 10 am and 12pm
to 7pm, for each day between June and December of 2021. The main specifications of the routes
and descriptive statistics of the travel times are presented in Table 13.

As the routes do not have the same length, their travel times were divided with their length, so
that they are comparable and reflect the prevailing traffic conditions (congested or
uncongested). The total number of records is 1110. As one may observe, most routes have an
average crossing time around 4-5 minutes per kilometer for those close to the city center and 2
minutes per kilometer for sections at highways of the perimeter that serve as entrances or exits
to the city center. Moreover, the first category also have higher deviation of their travel times
and maximum values, spanning around 1000 s/km in some cases, indicating their varying nature
and the extremely high intensity of congestion at the specific locations. In Figure 31, we present
the considered routes.
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Table 13. Main routes’ specifications and travel time descriptive statistics

a/a Street name and direction (from-to) Length (m) Mean (:;l?::)l time (Slg::;?;: Maximum (s/km)
1 Panepistimiou (Vas. Sofias - Patision) 1001 181.2 63.7 753.9
2 Akadimias (Patision - Vas. Sofias) 1339 235.0 91.7 622.1
3 Stadiou (Aiolou - Vas. Georgiou) 862 343.8 175.7 829.9
4 Athinas (Ermou - Stadiou) 667 273.2 66.0 595.7
5 Athinas (Stadiou - Ermou) 666 260.8 47.2 469.0
6 Vas. Sofias (Vas. Konstantinou - Panepistimiou) 1214 350.8 166.3 887.3
7 Vas. Amalias (Ath. Diakou - Panepistimiou) 969 229.2 113.7 688.3
8 Patision (Alexandras - Stadiou) 980 205.4 49.7 448.0
9 Pireos (Kolokinthous - Omonoia Sq.) 600 290.1 137.7 962.6
10 Syngrou Av. (Vas. Amalias - Frantzi) 850 149.8 28.7 422.1
11 Pireos (Kolokinthous - Iera Odo) 500 219.7 139.5 1067.2
12 Syngrou Av. (Frantzi - Vas. Amalias) 817 222.0 155.5 1108.9
13 Alexandras (Kifisias - Patision) 2667 2143 74.5 473.2
14 Kallirois (Petmeza - Ardittou) 350 280.3 101.8 819.2
15 Patision (Ioulianou - Chalkokondili) 600 149.9 37.9 525.3
16 Patision (Stournari - Ioulianou) 400 217.7 54.7 545.6
17 Kifisias (Alexandras - Panormou) 850 167.6 81.6 502.9
18 Kifisias (Panormou - Alexandras) 850 173.3 67.6 663.9
19 Mesogion (Katechaki - Kiprou) 950 124.5 60.2 544.7

20 Vouliagmenis (Arditou - Ilia Iliou) 900 112.4 68.9 910.7

21 Vouliagmenis (Ag. Konstantinou - Pirronos) 900 87.4 14.1 193.7

22 Vouliagmenis (Pirronos - Ag. Konstantinou) 900 77.3 11.0 189.3

23 Ilioupoleos (Ilia Iliou - Arditou) 850 185.3 123.0 923.8

24 Cephissus (Posidonos - Pireos) 1000 58.8 75.3 918.7

25 Cephissus (Pireos - Posidonos) 1000 51.8 26.9 406.7

26 Cephissus (Athinon - Moudrou) 1000 50.9 10.6 164.4

27 Cephissus (Moudrou - Athinon) 950 100.3 95.5 868.4

28 Posidonos (Niarchos - Cephissus) 1300 52.0 9.9 196.7

29 Posidonos (Amfitheas - Alimou) 1200 116.0 36.8 545.0

30 Posidonos (Alimou - Amfitheas) 1200 179.8 63.8 508.3
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Figure 31. Geographical distribution of routes

The traffic dataset used in this application is the one with the hourly Athens loop detectors
measurements presented in the previous section as well, from which 190 locations that
geographically cover the broader area of the city of Athens were selected. Similarly to travel
time data, the traffic volume data were also scaled between their minimum and maximum
values. The measurements of all 190 loop detectors are passed to the model as input in order to
implement a network input — network output scheme, without the need for any data
preprocessing step. The 190 considered loop detectors are presented in Figure 32.
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Figure 32. Actual locations of loop detectors
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6.2 Implementation and Results

6.2.1 Problem Setup and Modeling

A multivariate input and output framework is utilized in this section for the prediction of travel
times for crossing 30 road sections at the broader area of the Athens city center. The forecasting
model that is exploited is a relatively shallow Feed Forward Neural Network with 3 hidden
layers, consisting of 128,128 and 64 neurons respectively. The activation function that was used
is the Relu (Rectified linear unit) and Mean Squared Error (MSE) as the loss function, while
the learning rate was set to 0.001 and the batch size 8. The above architecture and the values of
the hyperparameters have emerged after an extensive grid search process.

The input of the model is the hourly measurements of the selected loop detectors (one
measurement per detector), while the output includes all 30 travel times that correspond to the
next hour of that of the input. Although the model that is used is a rather simple one compared
to the complexity of the output space, it is trained efficiently and it is expected to perform
sufficiently well. Besides, it was selected to use as input only the latest measurement of each
loop detector and not time series of measurements, which would, unnecessarily, increase the
complexity and the data and computational resources requirements.

The available dataset was separated into training and test sets, with 25% of the available data
corresponding to the test set. The model was trained for 300 epochs.

6.2.2  Forecasting Results and Explanations

In this section, the model’s accuracy is assessed and the corresponding error metrics are
presented. The Mean Absolute Error’s mean value is 23.1 s/km. The prediction errors for all
routes are presented in detail in Table 14.

The model performs quite decent, in general, achieving an average Mean Absolute Percentage
Error (MAPE) of 12.3%, while there is a significant number of routes whose travel times are
predicted with a MAPE lower than 9% (25% quartile). Moreover, the highest observed MAPE
values are 20.4% and 19.4%, while the 75% quartile of the MAPE is 15.8%, which is considered
acceptable.

Regarding the model’s training efficiency, it should be noted that the fitting process lasted for
less than 6 minutes, while relatively simple, typical single output RNN models (like those
presented in the following sections) may require more than 15 minutes (450 minutes for all 30
locations) and more complex Deep Learning models from recent literature may be trained for
hours. Besides, the proposed model does not require very large amounts of data, e.g., long
sequences of traffic measurements, which also accelerates the training process. In addition, the
proposed model exhibits increased efficiency during operation as well, as it provides all
required output at once, while the alternative approach requires several models, with different
input variables and calibration to run.
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Table 14. Forecasting accuracy for each route (test set).

Route MAPE
Panepistimiou (Vas. Sofias - Patision) 9.8%
Akadimias (Patision - Vas. Sofias) 11.3%
Stadiou (Aiolou - Vas. Georgiou) 15.9%
Athinas (Ermou - Stadiou)/ (Stadiou - Ermou) 9.4%/ 8.6%
Vas. Sofias (Vas. Konstantinou - Panepistimiou) 19.4%
Vas. Amalias (Ath. Diakou - Panepistimiou) 17.0%
Patision (Alexandras - Stadiou) 8.3%
Pireos (Kolokinthous - Omonoia Sq.) 15.8%
Syngrou Av. (Vas. Amalias - Frantzi) 6.3%
Pireos (Kolokinthous - Iera Odo) 17.3%
Syngrou Av. (Frantzi - Vas. Amalias) 20.4%
Alexandras (Kifisias - Patision) 11.1%
Kallirois (Petmeza - Ardittou) 10.3%
Patision (Ioulianou - Chalkokondili) 9.2%
Patision (Stournari - Ioulianou) 10.4%
Kifisias (Alexandras - Panormou) / (Panormou - Alexandras) 16.0%/ 13.4%
Mesogion (Katechaki - Kiprou) 13.9%
Vouliagmenis (Arditou - Ilia Iliou) 12.9%
Vouliagmenis (Ag. Konstantinou - Pirronos) / (Pirronos - Ag. Konstantinou) 4.9%/5.8%
Ilioupoleos (Ilia Iliou - Arditou) 15.2%
Cephissus (Posidonos - Pireos) / (Pireos - Posidonos) 15.0%/ 13.7%
Cephissus (Athinon - Moudrou) / (Moudrou - Athinon) 8.0%/17.3%
Posidonos (Niarchos - Cephissus) 5.7%
Posidonos (Amfitheas - Alimou) / (Alimou - Amfitheas) 13.8% / 14.0%
OVERALL AVERAGE 12.3

In order to gain some insights into the predictions, we first plotted the time series of the
predicted travel times and the measurements of the loop detectors that are installed at the same
road section (closest to the middle of the route) for 4 indicative routes (Figure 33). As one may
see, higher values of travel time are expected right after significant and abrupt drops in the
traffic flow, which correspond to the emergence of congested conditions. In contrast, the lower
values of travel time coincide, most of the time, with higher values of traffic volume. This
outcome seems reasonable and indicates the suitability of the model for the specific task and
its good fit.

SHAP values are a model-agnostic interpretation method that can be effectively used for Deep
Learning model. Its outcomes provide useful insights into the model and the prediction
mechanisms, but they can also be used to assess the trustworthiness of the model: explanations
that are consistent with what is in theory expected are a sign of a well-fitted model. In addition,
this kind of explanation can be utilized to provide, at least, a rough estimation of future travel
times in cases where no data are available or extreme and non-recurrent conditions occur.
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Figure 33. Time series of traffic volumes and travel times for indicative locations
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For the purposes of this work, we estimate the effect of the traffic conditions at neighboring
and distant locations on the travel times. More specifically, the SHAP values of all locations
for each route are calculated and, for the sake of brevity, we present the results for the four
routes and their two corresponding loop detectors with the highest average SHAP values that
are depicted in Figure 34.
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Figure 34. Selected indicative routes and most influential loop detectors

In Figure 35 we present the relation between the traffic flow at specific locations and the
estimated travel time, i.e., the scatter plot of the SHAP values associated with the estimated
travel time of the indicative routes and the traffic flow of the two locations that emerged as the
most influential. As one may observe, for most pairs of routes-locations, there is a common
pattern: when a low value of traffic volume is observed, which indicates congested conditions,
the SHAP value of travel time increases significantly, i.e., higher travel times are expected.
Especially for routes that are closer to the city center (e.g., Stadiou and Vas. Sofias), there are
also higher SHAP values observed in general, which are also indicative of the higher deviation
in their travel times and the significance of the effect of congestion’s emergence. For example,
depending on the traffic volume passing from specific locations, the travel time for the specific
road sections may be increased or decreased by 100 s/km, which is a significant contribution.
Moreover, the relation between the SHAP values and the traffic volume is almost linear in most
cases. Finally, a very interesting finding is that in some cases, the SHAP values associated with
more distant locations are higher than those of locations inside the corresponding route, which
implies a significant relation between them, the knowledge of which is also essential for traffic
management purposes. Therefore, it is indicated by the results that the utilization of a multitask
setup is beneficial for the model’s accuracy, as such traffic patterns can be detected. More
specifically, it seems that, despite the multivariate output, which would raise concerns about
the model’s fitting and accuracy, there are significant correlations between the travel times and
several loop detectors, and not only those that are close to each route, indicating important
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short- and long-term traffic patterns, which allow the model to achieve an acceptable
performance.
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6.3 Summary of Findings

In this section a first attempt is presented to forecast multiple travel times at a network level,
using a single multitask model. The neural network that was employed achieves a very good
performance, while being efficient in terms of data requirements and training time. The
explanations of the results that were extracted using SHAP analysis give meaningful insights
that are very useful for traffic management purposes and indicate the trustworthiness of the
predictions. The results also indicate that there are significant short- and longer-term relations
between the traffic conditions and the travel times of the selected routes; thus, a multitask
learning approach such as the one presented can take advantage of them effectively and
efficiently.

The model that was used, as well as the input space, are deliberately selected to be relatively
simple compared to the output space, which consists of the travel time of all the selected routes,
to keep the approach efficient, explainable and actionable. However, more complex models and
representations of the input space may lead to more accurate predictions, and their exploitation
is left to future research.

Considering the increased efficiency of a model that can provide valid network-wide
predictions, its importance in predictive traffic management and decision-making is high and
the lack of similar approaches was previously highlighted as one of the main open challenges
for developing actionable models. The present approach is a first step towards this direction.
Other implications of the proposed framework include user information systems and data
generation, e.g., when travel time data from third-party services are not available. Finally, the
model can be incorporated into a traffic simulation platform and be used to efficiently and
effectively estimate the travel times of the network’s road sections, which are essential for the
path assignment process.
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7 CAUSAL DEEP LEARNING FOR SHORT-TERM
TRAFFIC FORECASTING

7.1 The Need for Causal Relations

The information-theoretic method (mutual information), as well as the other statistical methods
that were utilized in previous sections to detect spatiotemporal relations between the locations
of the road network, suffer from a serious drawback: they imply the existence of a statistical
relation, which may be significant, but do not guarantee causality. Consequently, the relations
detected may just exist in the specific dataset, i.e., they are not generalizable and may not apply
to extreme conditions or/and future data. Therefore, they limit the model’s trustworthiness and
explainability.

Model explainability refers to models whose outcome is understandable to a human, but also
includes the proof of developing an interpretable model, e.g., by selecting an appropriate
structure and input variables (Ribera & Lapedriza, 2019). Furthermore, it is related to the
model’s transparency, trustworthiness, and fairness. Due to the complexity of their structures
and the number of hyperparameters involved, Deep Learning models are very difficult to
interpret and understand the reasoning behind their outcomes, which is the main factor that
limits the exploitation of the model in decision and policy making (Lipton, 2018; Y. Wang et
al., 2019; Fafoutellis & Vlahogianni, 2023a).

In order to enhance Deep Learning models’ explainability, the concept of Explainable Al (xAl)
has emerged recently. More specifically, XAl proposes a set of methods that enable the
representation of the outcomes of a model and the impact of the input features on the outcome,
in a human-understandable way, without requiring a complete understanding of its structure or
the algorithm for training and processing the data (Barredo Arrieta et al., 2020). Based on the
above concept, the most widespread explainability methods are model-agnostic, i.e. they do not
depend on the model’s structure, namely permutation feature importance, Shapley values and
partial dependence plots (Frye et al., 2020; Molnar, 2019; Parr et al., 2020).

Despite being very useful in providing meaningful explanations of the outcomes of very
complex models, XAl methods have been accused of being entirely dependent on the specific
dataset that the model was trained with and, thus, the outcomes are not generalizable, in a sense
that the explanations provided may not be representative of the phenomenon that is studied but
apply only to the specific dataset. Also, they are vulnerable to noisy and distorted datasets and
may provide unreliable outcomes. For example, it was observed that even slight permutations
of the input data may result in significant differences in the explanations, while the outcome of
the model remains unchanged (Schwab & Karlen, 2019).

The most important issue of XAl techniques, however, is that they tend to ignore the causal
structure of the input and output data, i.e. causal relations between them (Heskes et al., 2020).
Causality is not just a statistical relation that is observed in a specific dataset; it is proof or
indication that an “event”, e.g. the value of a variable, has a significant impact on the outcome
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and “causes” it to take a specific value (Miller, 2019). As described earlier, XAl techniques
depend on mathematical methods to simulate a model’s output and explain its relationship with
the input and are dataset-specific.

For example, Shapley values, which attribute the deviation of the model’s output from an
average (baseline) value to each input variable, assume that all input variables are independent,
ignoring all causal interrelations between the input variables and between input and output
variables. The above often leads to counterintuitive and misleading explanations of a model’s
operation. Lately, variations of the original method have been proposed, such as Causal Shapley
and Asymmetric Shapley values, which provide explanations that also take account of the
causal relations between the data (Frye et al., 2020; Heskes et al., 2020). The drawback of these
techniques is that they require a priori knowledge of the causal structure, which should be
provided by the user. However, detecting the causal relations in complex datasets, such as
traffic-related ones, is not a straightforward task and requires expert knowledge, especially for
high-dimensional datasets.

In this section, we present a framework for determining the causal structure of a traffic dataset
consisting of measurements at different locations of the road network, which may also be
applied in other time series problems, based on Neural Granger proposed by (Tank et al., 2021).
Traffic volume data of more than 300 loop detectors installed in the road network of Athens,
Greece, are exploited and the proposed framework is applied for both explaining the model’s
outcomes and for feature selection, which is an equally important task, if not a more important
one. Then, a rather simple Long Short Term Memory (LSTM) Neural Network model is
developed to forecast the traffic conditions in multiple significant locations and, taking
advantage of the outcomes of the framework, achieves a very satisfying performance.

7.2 Neural Granger

In order to overcome the shortcomings of the classic approach and mainly the linear relation
assumption, we develop a neural network and, specifically, an LSTM to simulate the relation
between the input and output variables, based on the Neural Granger concept proposed by (Tank
et al., 2021).

The Granger LSTM is trained with the following objective (loss function):

N n
1
5D Ge—hd?+2) Wi as)
i=1

The loss function is very similar to the corresponding of the classic Granger causality test: The
first term is the Mean Squared Error of the Granger LSTM’s estimation, while the second is the
sum of the input weights (weight of the input layer) connected to each time series of the input
space. The parameter A plays the same role as in the classic, linear approach, i.e., controls the
significance of the second term. Correspondingly, when a time series does not have a significant
contribution to the first term (i.e., reduce the estimation error), its input weight shrinks to zero
(second term) and is not passed to the model. At the end of the training process, time series with
non-zero input weights are considered to Granger-cause the output.

It should be noted that the above neural network is only deployed to detect the time series that
Granger-cause the target, by observing the values of the corresponding input layer weights. Due
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to its architecture and loss function, it is not recommended to use it for forecasting tasks. It can
be therefore thought of as a feature selection mechanism that, additionally, has the advantage
that is learnable and does not rely on the calculation of a metric.

7.3 Implementation

By utilizing sophisticated Deep Learning models, one can accurately forecast the future traffic
conditions using network-wide data. The major drawback of this type of models is that they are
not explainable, at least at a satisfactory level, and when too many time series are used as input,
there are too many hyperparameters involved, which make the training process of the model
difficult and data demanding. Granger causality is a concept that may respond to both
challenges; it can be used as a feature selection method, in order to reduce the dimensionality
of the input space by keeping input that is causally related to the output, which at the same time
enhances the explainability, stability and trustworthiness of the model.

In our proposed approach, we firstly exploit the Neural Granger causality model in order to
construct the causal graph of the road network of Athens, Greece, which consists of more than
330 locations/loop detectors that are installed in the entire road network. Neural Granger
implemented as an LSTM network, was selected as the most appropriate method to handle a so
large network with complex dependencies between the locations. Consequently, a smaller and
simpler LSTM network is developed as the model to perform the forecasting task, which is also
referred to as “Sparse LSTM”, as its input space includes only the time series that were found
to Granger cause the target time series during the first step of the proposed framework. It should
be made clear that one Granger LSTM and one Sparse LSTM should be developed for each
target location.

For the purposes of this work, a dataset of low temporal resolution (1 hour) was preferred,
compared to data of higher resolution, that are more popular in recent literature, e.g. 5 minutes.
The reason is that the aim of this paper is to identify significant city-level traffic patterns and
spatiotemporal causal relations between the locations of the road network; by using time series
with a few minutes resolution the Granger LSTM network would most probably detect relations
that are local in space, due to high correlation between consecutive locations and temporally
close, due to the high similarity between consecutive timesteps and the inability of most models
to handle long time series and their tendency to underestimate the effect of distant time steps.

After an extensive ablation study, the time series length (look back period) that was selected as
the most appropriate is 8 time steps (8 hours) which was found to lead to the Granger LSTM
with the lower loss value during training, but also is suitable and long enough in order to detect
generalized traffic patterns. Moreover, the value of parameter A was set to 100 and the learning
rate 0.01 for the Granger LSTM. The other hyperparameters vary for each loop detector (a
different model is trained for each detector). The input data were arranged in 8-step time series
using a rolling window process and each LSTM takes as input the data from all locations. The
output of this model is the set of the other time series that Granger cause each one.

The sparse LSTMs (also one model corresponds to each location) have the same look-back
period of 8 hours and their learning rate is 0.01 as well. Their loss function is the Root Mean
Squared Error of the predictions. Their architecture also includes a small number of Dense
layers (2 or 3), which were necessary in order to achieve more stable performance. The number
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of neurons of each layer varied between 8 and 32, depending on the detector. The sparse LSTMs
take as input the time series that were found to Granger cause the corresponding target time
series and are used to forecast their future hourly traffic volume.

7.4 Results

7.4.1 Detected Causal Relations

The training of the Neural Granger LSTM results to the causal graph of the road network, i.e.
to a set of detected causal relationships. On average, a small part of the road network,
approximately 7.3% of the time series (about 25 locations) are found to Granger cause each
target time series. The latter value may be a little misleading, as there are only a few time series
that are affected by such a high number of others; the corresponding median value is 3.8%,
which is more representative of the actual case. The above outcome indicates that in such a
large road network, a serious effort should be put in feature selection, as the actual causal
relations are very few and the input space’s dimensionality can be dramatically decreased,
without sacrificing the model’s forecasting performance.

The average final value of the loss function of the 334 trained models is 423.8, which is a fairly
good value that implies that the models are reliable to extract the causal relations. The loss
function, as described in the previous subsection, consists of two terms that account for the
accuracy in estimating the target time series’ value and the number of time series considered,
respectively. Consequently, the values of the loss function are not indicative of the forecasting
errors, and, as already discussed, these models should not be used for forecasting, but only for
extracting the causal structure; however, their Mean Absolute Percentage Error (MAPE) for
forecasting the target values has been estimated, as they are also indicative of the validity of
the models. The average MAPE is 21.1%, which indicates a relatively good fit of the causal
LSTM networks.

Below, for the sake of brevity, the locations that Granger cause 6 loop detectors that are installed
in some of the most significant and crowded locations of the road network are presented. The
6 indicative locations were selected to be around the historical city center of Athens, which is
the most critical part of the road network and faces severe congestion problems, especially
during the morning and afternoon peak hours. Also, it attracts most of the business and
commercial activity, as well as government authorities and organizations buildings. The
detected causal parents of the selected loop detectors are illustrated in Figure 36.

Interestingly, we observe a very strong, common pattern for all target locations: loop detectors
that are in the city center are Granger caused by detectors that are at significant parts of the road
network in the perimeter of the city of Athens, acting as entrances to the city center, and, mostly,
not very close to the city center. Furthermore, another important finding is that there are a few
(3 or 4) specific loop detectors that Granger cause almost all loop detectors of the city center;
it turns out that the latter detectors can provide vital information about the future traffic
conditions at the city center, so traffic management authorities and other practitioners should
always consider their measurements for forecasting and decision-making purposes. Finally, one
can notice that the detected causal relations are between the target loop detectors and other
detectors that are not very close to them. This was one of the aims of this work and the reason
why low-resolution data and a large look-back period were used. So now, we may assume that
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the detected relations are more generalizable (not data- or time of the day- specific) and are
ought to Origin-Destination relations and significant traffic patterns.

Figure 36. Locations (blue) that Granger-cause target location (red).

7.4.2  Forecasting Results

To evaluate the accuracy of the proposed Sparse LSTM forecasting model for each location,
comparisons are established based on an LSTM network that takes as input the time series from
the target location only (Single-point LSTM) and an LSTM network that takes input from all
locations (Inclusive LSTM), in terms of forecasting accuracy and computational efficiency.
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More specifically, for each of the 334 models, the MAPE values and the time to train were
measured.

As can be clearly seen in Table 15, the proposed Sparse models, taking advantage of the causal
structure detection feature selection strategy implemented, achieve a better forecasting
performance than both baseline models, while being significantly more efficient than the
inclusive model, as their architecture is more compact, due to the reduced dimensionality of the
input space. The Single-points LSTM’s error is slightly higher than Inclusive LSTM’s, while it
is the most efficient in terms of training time.

Table 15. Forecasting models evaluation (average from of all detectors)

Model Average MAPE (and Efficiency (time to train

deviation) per model)
Inclusive LSTM 12.6% £ 3.1% 104s
Single-point LSTM 13.3% +3.7% 27s
Sparse LSTM 9.1% £1.8% 46s

7.5 Summary of Findings

In this section, the innovative Neural Granger approach for detecting causal relations between
time series was applied to the large road network of Athens. Findings show that using the
concept of Neural Granger for detecting causal features, the dimensionality of the input space
can be significantly decreased, while the emerging relations are more meaningful and
interpretable, compared to other feature selection strategies, such as proximity- and statistical
correlation-based, increasing the model’s transparency as well. Simultaneously, it is indicated
that the model’s performance is also enhanced.

Using the above methodology, except for the significant relations between its locations,
significant traffic patterns were identified. The most important of them was that the traffic
conditions at locations of the perimeter Granger cause the traffic conditions of locations at the
city center, while also specific locations at the perimeter emerged as the most significant, as
they were found to Granger cause most of the loop detectors located at the city center.
Moreover, by using the Neural Granger for feature selection, it was possible to achieve an
improved forecasting performance, while increasing the efficiency of the model as well.
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8 A THEORY-INFORMED MULTIVARIATE CAUSAL
FRAMEWORK FOR SHORT-TERM URBAN TRAFFIC
FORECASTING

In the previous section, the importance of detecting causal relations between the locations of a
road network has been highlighted both for increasing the forecasting accuracy and
trustworthiness, but also for identifying significant traffic patterns. In this section, we
incorporate additional traffic flow theory-related aspects and propose a holistic approach (from
data engineering to model training and evaluation) for a traffic forecasting framework that is
theory-driven, causal, and multivariate, aiming to be actionable as well.

At the core of our methodology, there is a novel traffic flow theory-informed multitask neural
network, which is used for the joint short-term forecasting of two traffic variables (traffic
volume and speed), that constitute a traffic state, as mentioned earlier.

For training the model, we propose a custom-made loss function, which incorporates the
distance of the emerging multivariate forecast (pairs of traffic variables) from the actual
fundamental diagram of the corresponding location. To enhance the model’s performance and
interpretability, network-level traffic information is selected from the most relevant locations,
specific to each target location, using the Neural Granger adaptation of classic Granger
causality.

For the experiments presented in this work, we deploy a Long Short-Term Memory (LSTM)
Network; nevertheless, the entire methodology (including the loss function) is compatible with
any Deep Learning structure. Furthermore, we present a reliable and exclusively data-driven
unsupervised learning method for fitting the fundamental diagram in loop detector
measurements, which is a prerequisite for using the loss function. The entire methodology is
trained and tested on data coming from the road network of Athens (Greece).

An overview of the methodological approach is given in Figure 37.
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8.1 Traffic Flow Theory-Informed Loss Function

Training a deep learning model is an optimization problem aiming to determine the optimal
values of its weights to minimize a loss function, such as the Mean Squared Error (MSE) or the
Root Mean Squared Error (RMSE). Considering the case of the joint forecasting of volume and
speed data, in a multitask modeling setup, the most popular approach would be to estimate a
loss value (error metric) for each of volume and speed predictions at every training epoch. The
lower the loss the better the individual predictions. However, except for a low error value, we
shall expect that all predicted pairs of values should lie close to the corresponding fundamental
speed-volume curve emerging by fitting a functional form to the real traffic data and constitute
valid pairs of traffic states. The latter is not guaranteed by a low error value; actually, a decent
individual mean error value for each variable may cover issues such as the aforementioned.

To account for the above challenges, we propose the Traffic Flow Theory-Informed loss
function (TFTI loss), which combines the MSE of both individual variables with the distance
of the prediction from the closest point on the estimated fundamental diagram. The latter is
defined for each location/section of the road network that is monitored and may have a specific
functional form. Let ¥; = (¥;, $;) the prediction for a real pair y; = (v;,s;) and g; = (vje,sje)
the closest point on the estimated fundamental graph which characterizes the location of
interest, TFTI loss is defined as follows:

1
TFTI loss = a * E\/ [MSE, + MSEs] + (1 — a) * d(9;, 9;) (16)

where MSE,,, MSE; are the mean square error of the predictions of volume and speed
respectively, d(J;, g;) is the Euclidean distance of the predicted pairs and the closest point of

the fundamental diagram to the corresponding actual value. The factor a controls the
significance of the second factor over the first, a € [0,1].

In addition, by observing an individual error metric for each predicted variable, three major
concerns may arise that require a special treatment. First, in multitask forecasting, one or more
of the output variables may be predicted with a significantly higher error than the other and,
thus, a loss function taking both into account in a fairer way is required. Second, when
evaluating two predictions for the same point that have the same distance from the actual point,
the distances from an estimated speed-volume graph, which reflects the validity of the one
against the other should also be examined and the two predictions should be treated differently
(Figure 38 (a)). Third, depending on the shape of the fundamental diagram, it is possible that
two points may be close enough (low anticipated error) but belong in different branches of the
diagram (congested-uncongested), i.e., although the forecasting error may be acceptable, the
prediction may suggest, for example, congested conditions, while this is not the case (Figure
38 (b)). In both cases, a mechanism that penalizes and steers the prediction closer to the
fundamental diagram, such as the proposed TFTI loss, has the potential to eliminate the above
phenomena of infeasible predictions and wrongly interpreted traffic states.
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Figure 38. Examples of challenging forecasting tasks requiring special treatment: (a) two
predictions with same error but only one suggests a valid volume-speed, (b) one prediction close
to the wrong branch of the speed-volume diagram that should be steered to the correct branch.

In simple words, the rationale of the proposed loss function is that predictions with high error
and/or predictions that constitute a non-feasible speed-volume pair should be “steered” closer
to the fundamental diagram to improve the forecasting accuracy. Moreover, in relation to the
two examples in, the loss value would be significantly higher for predictions that lie further
from the fundamental diagram and propose a traffic state that is not valid for the specific
location compared to those that are closer. At the same time, by penalizing and steering the
prediction closer to the point of the fundamental diagram that is closer to the actual point, it is
expected that the phenomenon of incorrectly anticipated traffic states will also be eliminated.

8.2 Implementation

8.2.1 Data

The data used in this section were derived from the database that is maintained by the Traffic
Management Center of the Region of Attica. For the purposes of this work, measurements from
420 detectors were made available to us, consisting of the traffic volume (veh/hour), mean
speed (km/h) and occupancy (%). The time resolution of the data is 6 minutes, i.e., the sensed
data are aggregated in 6-minute intervals. The locations of the loop detectors that are used in
this section are presented in Figure 39. As one may see, the detectors cover a large area around
the city center and their density is relatively high, especially at some very significant road
sections. The data refer to 40 days of measurements, between March 20" and April 30" of 2023.

For the sake of brevity, 12 locations that lie close to the city center and other significant
economic/business areas were selected as the target locations, i.e., models were developed to
forecast the future traffic conditions at the specific locations. It was attempted to include all
types of locations, namely loop detectors at highways and secondary roads (urban and
interurban), signalized and non-signalized, as well as uniformly distributed from a geographical
perspective. The target locations are presented in Figure 40 below, along with their unique ID
number.
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Figure 40. Target loop detectors’ locations and unique ID number

8.2.2  Fundamental Diagrams Fitting with Loop Detector Data

Loop detectors are the most popular data source in traffic forecasting literature, due to their
effectiveness and efficiency in collecting large amounts of network-wide data. This type of
sensors provides temporal measurements, i.c., traffic conditions at fixed locations over a
specific time interval. Thus, they cannot provide traffic density measurements, which are
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spatial; instead, they can measure the occupancy, which can be considered approximately
proportional. However, occupancy measurements are highly dependent on the actual location
of the sensor. For example, a sensor at the vicinity of an intersection, where vehicles move
slower, would overestimate the actual occupancy/density of the specific road section. The effect
of the sensor’s location is not so important on the two other variables (volume and speed)
(Bramich et al., 2022). For this reason, in this work, traffic volume and speed data were
preferred both for the forecasting task, but also for the fundamental diagrams.

Moreover, as far as it concerns the estimation of the fundamental diagram, loop detector data
are not considered the most suitable, as neither speed nor occupancy measurements are spatial.
Indeed, all traffic flow analytical models, including the fundamental relation, require section-
or lane-level data (Chiabaut et al., 2009). For example, mean speed should be the average value
of measurements over the section’s length (space mean speed), instead of the average over a
time period at a specific point (time mean speed) (Knoop & Daamen, 2017). Taking the above
into account, a data-driven method for fitting the fundamental diagram is, thus, more suitable
than analytical models.

To use the TFTI loss, one should first produce a functional form of the fundamental diagram
by fitting a curve to the target location’s measurements and develop a multitask prediction
model, as both traffic volume and speed variables are considered in the loss function. To account
for the discontinuities observed in the fundamental relationships of traffic variables, i.e., two-
variate model (two curves) we use an unsupervised learning approach and curve fitting (Knoop
& Daamen, 2017). First, k-means clustering is undertaken to identify groups in data that should
be considered separately in the fitting process (congested and uncongested branches), and then
polynomial curve fitting is conducted in each group.

More specifically, for the fundamental diagram of all locations (not only target locations), first,
the (traffic volume, speed) pair measurements of each location are separated into congested and
uncongested using the k-Means clustering algorithm. The emerging mean silhouette index
value is 0.57, indicating that the traffic measurements’ patterns are very strong and the points
are relatively easily distinguished by the unsupervised learning algorithm. Then, a second-order
polynomial curve was fitted at each cluster of each location, so, at each location, we have a
fundamental diagram that consists of two curves (two-variate, discontinuous diagram). The fit
of the curves was assessed by estimating the R? metric for each one. Its average value is 0.64,
which is considered a very satisfying value.

It should be noted that the above results in fitting the diagrams are partially ought to the validity
and good quality of the data that were used, as well as their adequate amount: the two branches
are clearly visible (and distinguishable) in the vast majority of the cases and there do not seem
to be erroneous and noisy data, at least to an extend that would prevent the good fitting of the
curves. Otherwise, it would have been necessary to put a significant amount of effort into data
cleaning and imputation.

In Figure 41, Figure 42 and Figure 43 twelve indicative fundamental diagrams from target
locations are presented. Points that were classified as uncongested are black in color, while the
corresponding congested points are grey. Except for the good fit that the reader can observe (R?
metric is also provided next to the location’s ID), the capacity drop, which was also detected in
a purely data-driven way, is also clearly visible and can also be attributed to the good quality
of the data.
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Figure 41. Indicative fitted fundamental diagrams for high free flow speed locations (above 60
km/h)
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Figure 42. Indicative fitted fundamental diagrams for medium free flow speed locations (between
40 and 60 km/h)
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Figure 43. Indicative fitted fundamental diagrams for low free flow speed locations (about 40
km/h)
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8.2.3 Modeling Setup

It is important to highlight that the traffic flow theory-informed loss function, as well as the
entire framework presented so far, is compatible with any Deep Learning model. In this work,
it was preferred to use a rather simple architecture, i.e., an LSTM network followed by a small
number of fully connected (dense) layers and focus on investigating the effect of using the
proposed theory-informed framework. Evidently, by using a more complex structure (e.g.,
Graph Neural Networks), or other techniques, such as an attention mechanism, we could
potentially achieve a better performance. But this falls beyond the scope of this section.
Moreover, we aim to show that the proposed framework can achieve state-of-the-art
performance even when using a simpler model structure. The forecasting horizon is 6 minutes,
which corresponds to one timestep. The experiment aims to evaluate the effectiveness of the
TFTI loss function in reducing the overall forecasting error (for both variables) but also
increasing the trustworthiness of the model.

The two approaches compared are training the model with (i)simple MSE error and (ii)proposed
TFTI loss function, with parameter a = 0.7, which corresponds to 70% weight for the first term
(MSE) and 30% for the second (distance from the fundamental diagram). The specific weights
emerged as those providing the most accurate forecasting results after an extensive ablation
study. Moreover, to have a valid and fair comparison, the two models that are developed for
each target location (MSE and TFTI loss) are identical, except for the loss function: they have
exactly the same architecture, i.e., same number and type of layers and neurons, same values
of all hyperparameters, as well as the same input space (previous measurements of locations
causally related to the target location), were trained using the same training set and evaluated
on the same test set. Moreover, the optimal architecture and hyperparameters’ values for each
target location were defined after an extensive grid search with a 5-fold cross-validation scheme
using the network with the MSE loss, which may favor it over the TFTI loss.

The main specifications of the models for the 12 target locations, as emerged from the above-
described process are the following: An LSTM layer is used with 128 or 256 units (neurons),
depending on the location, and a look-back period of 10 timesteps, which equals to 1 hour. The
models also have up to 5 additional hidden dense layers, each consisting of 8 to 64 neurons.
The Adam optimizer was used for fitting the models and the Rectified linear unit (Relu) as the
activation function of all layers. The learning rate was varying from 0.0001 to 0.0010. The
maximum number of training epochs is 200, but an early-stopping strategy was also adopted,
so most networks were trained for a lower number of epochs.

The input of each model is the time series of traffic volume and speed of the loop detectors that
were found to be causally related with the corresponding target location, while the output is the
values of both variables after 6 minutes (one-step forecasting). The data are separated randomly
into train and test sets; 67% for training and 33% for testing. Also, a 5-fold cross-validation
scheme is deployed. Finally, due to the two variables (traffic volume and speed) having very
different value ranges, they were scaled between 0 and 1.
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8.3 Results

8.3.1 Causal Relations

As described earlier, both in classic and neural Granger causality, the parameter A plays an
important role in defining the number of time series that will be considered to Granger-cause
the target time series. In our work, we use a relatively high value of A, A=500, which results in
only a few time series being causally related to the respective target time series. Therefore, we
achieve to significantly reduce the dimensionality of the input space, without sacrificing the
forecasting accuracy, as the results indicate.

After applying the Neural Granger method on the available dataset, the locations that Granger-
cause the target locations emerged. The average number of detected locations was 6.6 out of
the 420 locations, which indicates that the dimensionality of the input space for each forecasting
model can be vastly decreased, without, however, losing significant information. The locations
that were found to Granger-cause the target locations are presented in Figure 44, Figure 45 and
Figure 46.

It seems that more causal relations can be found between distant locations than between
neighboring locations. Considering that the look-back window is one hour, this is reasonable
and indicates the validity of the findings. Moreover, it also suggests that feature selection
methods based on the proximity of the locations may not be the most suitable for network-level
forecasting. Moreover, one may notice that the locations close to the city center are Granger-
caused mostly by locations at the perimeter, which serve as entrances to the city center and
significantly less by other points that are also close to the city center. On the other hand,
perimeter locations are Granger-caused by locations that are also at the perimeter and,
secondarily, by locations close to the city center, which is ought to strong patterns of cross-city
trips (e.g., commuting) that may as well last for up to an hour.

Finally, there are some locations that were found to Granger-cause most of the rest, which
indicates that significant flows of vehicles pass from them and traffic patterns, e.g., congestion,
may initiate there and propagate to the rest of the road network. These locations are very
important for traffic management purposes and should always be monitored by relevant
authorities. The specific locations in Athens lay in the western and southwestern regions
(Kifissos Avenue).

A

MS106 MS127 MS295

Figure 44. Emerging locations (blue circle) that Granger-cause the target locations (red diamond)
for high free flow speed locations
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Figure 45. Emerging locations (blue circle) that Granger-cause the target locations (red diamond)
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Figure 46. Emerging locations (blue circle) that Granger-cause the target locations (red diamond)
for low free flow speed locations
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8.3.2 Forecasting Results

In Table 16, Table 17 and Table 18 the Mean Absolute Error (MAE) and the Mean Absolute
Percentage Error (MAPE) of the predictions are presented for the two loss functions overall
and for each variable separately for the target locations.

As one may observe, the TFTI loss aids the model in achieving a lower overall error for all
locations examined. The mean MAPE for the TFTI loss is 10.9%, versus 13.0% for the MSE
loss for the 12 target locations. The latter is mainly ought to the fact that the model with the
MSE loss fails in almost all cases to accurately forecast the speed values, although it performs
satisfyingly in predicting the traffic volume. A possible explanation for this is that the dataset
is highly imbalanced, namely most of the points belong to the uncongested branch, which adds
a bias to the model towards predicting higher speed values. Moreover, the value range of traffic
volume is the same for both branches and, thus, traffic volume predictions are not affected in
the same way as speed. On the other hand, the TFTT loss incorporates the information about the
branch the point should belong to (i.e., distance from the fundamental diagram); consequently,
although the models with the TFTI loss also predict more accurately points of the uncongested
branch, they retain a decent performance for the congested branch, too, as it is discussed in
more detail in the following subsection.

Table 16. Forecasting results comparison (high free flow speed locations)

MSE TFTI MSE TFTI MSE TFTI

loss loss loss loss loss loss
Location MS106 MS127 MS295
Volume MAE 40.6 62.3 43.7 44.8 38.2 45.8
Volume MAPE 6.8% 9.1% 7.7% 8.1% 9.1% 13.2%
Speed MAE 8.0 33 4.3 2.1 5.3 33
Speed MAPE 17.3% 6.4% 7.7% 3.5% 13.5% 7.7%
Overall MAPE 12.0% 7.8% 7.7% 5.8% 11.3% 10.4%

Table 17. Forecasting results comparison (medium free flow speed locations)

MSE TFTI MSE TFTI MSE TFTI

loss loss loss loss loss loss
Location MS443 MS872 MS791
Volume MAE 40.4 49.2 42.6 58.9 41.9 55.6
Volume MAPE 9.6% 13.0% 11.1% 18.6% 8.3 14.7%
Speed MAE 4.3 2.8 7.1 3.9 4.0 2.7

Speed MAPE 17.0% 9.3% 27.5% 14.0% 15.1 9.7%
Overall MAPE 13.3% 11.1% 19.3% 16.3% 11.7% 12.2%

Location MS634 MS239 MS414
Volume MAE 29.5 31.0 39.9 44.0 31.1 31.5
Volume MAPE 8.6% 9.7% 9.6 10.4 8.8% 9.2%
Speed MAE 3.2 1.8 3.6 2.1 2.7 1.9
Speed MAPE 11.1% 6.7% 14.0 7.3 11.5% 6.7%

Overall MAPE 9.8% 8.2% 11.8% 8.9% 10.1% 7.9%
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Table 18. Forecasting results comparison (low free flow speed locations)

MSE TFTI MSE TFTI MSE TFTI

loss loss loss loss loss loss
Location MS367 MS701 MS230
Volume MAE 39.9 45.7 347 354 354 39.5
Volume MAPE 13.6% 19.2% 18.8% 21.9% 9.2% 10.5%
Speed MAE 4.1 2.6 2.8 2.0 39 2.1
Speed MAPE 21.8% 13.9% 13.4% 9.5% 23.0% 9.4%
Overall MAPE 17.7% 16.6% 16.1% 15.7% 15.6% 9.9%

Furthermore, as mentioned earlier, the models of each location are identical, except for the loss
function, of course, but may be trained for different numbers of epochs, as we used an early
stopping scheme. It was observed that the models with the TFTI loss were trained faster,
requiring about 92 epochs on average to converge, versus 129 for the MSE loss, which indicates
that the proposed loss function can increase the model’s training efficiency as well.

8.3.3  Trustworthiness Assessment

Trustworthiness is a property of a model (or a system) that goes beyond its correctness, which
can be assessed using popular error metrics; it expresses whether the model’s performance
remains reliable and stable under any circumstances (Ghobrial et al., 2023). A simple, yet
accurate, definition of a trustworthy model is that it is a model that retains a correct behavior
that is aligned with the training data and, in general, with domain experts' understanding of the
factors that affect the outcome of the predictions (de Bie et al., 2021). Therefore, it becomes
clear that an accurate model is not always trustworthy. In recent literature, however, the
respective models are almost always assessed based exclusively on their accuracy, which leads
to misleading conclusions. Besides, most models are not multivariate.

Especially in the case of imbalanced datasets, the classic error metrics can be very misleading
in assessing both the accuracy and the trustworthiness of a model. In terms of congested and
uncongested conditions, most traffic datasets are imbalanced, i.e., highly congested conditions
may occur at certain periods during the day and, usually, last for a relatively short time.
Specifically, in the dataset used in this work, on average about 11% of the measurements
correspond to congested conditions, which is about 2.5 hours per day. As mentioned previously,
indeed, the difference between the values of the error metrics of the models trained with
different loss functions is probably ought to how they handle imbalanced datasets. To examine
the above hypothesis, we provide indicative fundamental diagrams that emerge from the
predictions compared to the actual of the test set for both losses in Figure 47, Figure 48 and
Figure 49.
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Figure 47. Emerging predicted fundamental diagrams versus actual for MSE loss (left)
and TFTI loss (right) (high free flow speed locations)
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Figure 48. Emerging predicted fundamental diagrams versus actual for MSE loss (left)
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Figure 49. Emerging predicted fundamental diagrams versus actual for MSE loss (left)
and TFTI loss (right) (low free flow speed locations)

The graphs indicate that the predictions made by the models trained with the TFTI loss are more
trustworthy, as the distribution of the prediction points is closer to the actual and the
corresponding fundamental diagram, while the MSE loss models fail systematically to predict
the congested branch. Moreover, the TFTI loss is less vulnerable to noisy data and outliers, e.g.,
points that are between the two branches of the anticipated fundamental diagram. We consider
assessing these plots as a very important aspect of the present work, as for most MSE loss-
trained models the error metrics are quite decent, which can be very misleading regarding the
trustworthiness of the models.

Although being the minority class, accurately forecasting the occurrence of congested
conditions is vital for most traffic management purposes. Therefore, high accuracy in
forecasting observations of the congested branch is a prerequisite for the model’s actionability.
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Consequently, to further investigate the issue indicated by the above graphs, we visually
compare the boxplots and the density plots of the distribution of the actual values (test set) and
the predicted ones for both output variables. An indicative example is presented in Figure 50.
As one may observe, the three volume distributions are very similar, while, for the speed
distributions, the MSE-trained models fail to capture the lower values. However, as these values
are seen as “outliers”, Figure 50 does not reveal the full extent of the specific issue.

1750 0.0012 4

1500 0.0010 4

2230 0.0008

1000
0.0006

Traffic volume
Density

750
0.0004

0.0002
250

0 0.0000
Actual MSE TFT1

T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

100 -

80 1

60 -

Speed

40 A

20 1

Actual MSE TFTI 0 20 40 60 80 100 120

Figure 50. Comparison of predictions (MSE and TFTI loss models) versus actual distributions
for traffic volume (up) and speed (down) of indicative location (MS106)

To quantify the above-observed divergence between the predictions made by the models trained
with the two loss functions, we proceed to estimate the accuracy of the models in predicting the
correct class of conditions, regardless of the exact values of the indicator variables. It is
reminded that the measurements of each location were classified as congested or uncongested
based on the K-Means clustering approach followed before fitting the curves for the
fundamental diagrams.

Since congested conditions stand for about 11% of the dataset, the impact of misclassified
congested conditions is not so significant on the overall accuracy. So, we additionally estimate
the overall Fl-score and the F1-score of the congested class. The results for four indicative
locations are presented in Table 19. The corresponding mean values for the 12 target locations
are for the MSE loss: Accuracy = 0.92, Fl-score (congested class) = 0.43, Overall F1-score =
0.69, while for the TFTI loss: Accuracy = 0.96, F1-score (congested class) = 0.74, Overall F1-
score = (.86.
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Table 19. Classification metrics comparison for different indicative locations

MSE loss  TFTI loss
MS106
Accuracy 0.93 0.95
Fl-score (class: congested) 0.59 0.79
Overall Fl-score 0.77 0.88
Location MS230
Accuracy 0.91 0.95
Fl-score (class: congested) 0.19 0.73
Overall Fl-score 0.57 0.85
Location MS443
Accuracy 0.93 0.96
Fl-score (class: congested) 0.55 0.75
Overall Fl-score 0.76 0.86
Location MS634
Accuracy 0.97 0.97
Fl-score (class: congested) 0.41 0.70
Overall Fl-score 0.70 0.84

The TFTI loss-trained models provide improved performance compared to those trained with
the MSE loss. Specifically in terms of the F1-scores, the latter are outperformed, especially for
the congested class, as this metric was estimated without considering the percentage of the
instances belonging to each class. Indicatively, in most cases, the MSE loss models managed
to detect less than 1/3 of the actual congestion incidents. Taking all the above into account, the
models trained with the TFTI loss seem to be more trustworthy, in addition to being more
accurate.

Finally, it should also be noted that, according to the definitions given above, the exclusive
exploitation of causal features in the input space further increases the trustworthiness of the
proposed framework, as the significance of their impact on the output can be considered
independent of the specific dataset used in this work.

8.4 Summary of Findings

In this work, we propose a holistic approach for actionable and trustworthy short-term traffic
forecasting consisting of the following modules: a causal Granger LSTM network that is used
to detect causal relations among the traffic data and reduce the dimensionality of the input
space, a multitask LSTM network, enhanced with the novel TFTI loss function, and an inclusive
assessment framework. By using a multitask approach, the input of the forecasting model is a
traffic state, instead of a single variable, and the model can distinguish between congested and
uncongested conditions, while also learning the corresponding dynamics of each state.
According to recent literature and the outcomes of our experiments, multitask learning is very
suitable for traffic forecasting applications.

Moreover, the use of the TFTI loss, which is the most important contribution of this work, was
found to increase both the overall accuracy of the two variables and the training efficiency. In
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addition, although it is compatible with any deep learning model, we showcase that it can
achieve very satisfying performance even when using a relatively simple structure.

Finally, a deeper evaluation of the trustworthiness of the models showed that decent values of
error metrics do not always guarantee the trustworthiness of the predictions, especially in the
case of imbalanced datasets, such as traffic datasets, where congested conditions are
underrepresented. Thus, a dedicated evaluation strategy is proposed, which considers both
congested and uncongested classes equivalently. The predictions of the models that were trained
with the TFTI loss were found to be more trustworthy, as their distribution is closer to the actual
and the models succeeded in forecasting the emergence of congested conditions with a
significantly higher precision.
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9 CONCLUSIONS

9.1 Overview

In this dissertation, we presented a toolkit of actionable methods and techniques to deal with
different forecasting tasks, namely multimodal predictions, network-wide multitask
predictions, traffic theory-informed forecasting, statistical and causal relations detection, as
well as a framework for assessing the predictions’ trustworthiness. Except for the different
scales, the proposed modules can be deployed for different predicting horizons (short and long-
term predictions), using higher or lower resolution data. Moreover, it was established that, using
the above methods, one may achieve state-of-the-art forecasting performance, even with
relatively simple modeling architectures, although the entire framework is compatible with any
Deep Learning model. Thus, a traffic management authority equipped with the above toolkit
would be able to apply predictive traffic management, planning and decision-making to handle
almost any situation at a city-level and under any conditions.

To achieve its objectives, the dissertation employed a multi-stage analysis; we first provided a
thorough review of recent literature regarding the challenges that are related to the development
of actionable traffic forecasting schemes. The first challenge is linked to the limitations of state-
of-the-art Deep Learning models, including the extensive computational resources and data
requirements, which are not always available, and the low interpretability, especially for the
more complex structures. Another important aspect is the representation of the road network
and the spatiotemporal relations of the input space. The three most popular representations are
the stacked vector, the image (or grid) and the graph. Although the stacked vector representation
is the simplest one and is suitable for problems with few locations, the grid and, especially, the
graph representations allow the modeling of more complex spatial relations, based on the
connectivity, proximity and similarity of the traffic patterns of the locations of the road network.
Further analysis of the published works on short-term traffic forecasting indicated that, although
simpler representations and modeling techniques can be effective in road networks with few
locations, they are outperformed by the graph representation and the corresponding modeling
techniques in the case of bigger and more complex ones. In addition, an accurate and
meaningful representation of the road network can lead to reduced dimensionality of the input
space and, thus, to a prediction model of lower complexity. Such a representation also provides
insights into the spatial and temporal dependencies between the traffic conditions at different
locations of the network, which are vital for interpreting the results of the model and traffic
management.

Moreover, causation detection methods should be preferred compared to statistical for
modeling the spatiotemporal relations of road networks, as they provide a more accurate and
generalizable (not dataset-specific) outcome, while also increasing the trustworthiness of the
developed model. Granger causality test is a very suitable method, as it is designed for time
series data and it is multivariate, i.e., examines the existence of causal relation between two
variables considering the rest variables as well, in contrast to other methods that are pairwise.

108



Conclusions

In addition, the concept of Multitask Learning is proposed for traffic state forecasting (two
variables constitute a traffic state) instead of a single variable, which is also capable of
increasing both the accuracy and the trustworthiness of the forecasts. Multitask Learning can
also be utilized for multimodal forecasting, which has significant implications for integrated
traffic management of all means of transport at a city level. Novel Deep Learning concepts,
such as Physics-Informed Neural Networks, are also capable of increasing the forecasting
accuracy, while enhancing the trustworthiness, explainability and robustness of the model, by
incorporating aspects of traffic flow theory in the modeling process.

Finally, based on the findings of recent literature, some future directions of research in traffic
forecasting are proposed. To increase the actionability of the models, researchers should focus
on less complex and more interpretable modeling techniques. Moreover, the development of
multi-task prediction models for different traffic variables, e.g. multimodal demand, as well as
the analysis of the relations between them will be a significant breakthrough with many
implications in traffic management. The same applies also to efficient, network-wide modeling
approaches, enabled by innovative concepts of Computational Science, such as Federated
Learning, which remain a quite under-researched topic, concerning their application in the area
of traffic forecasting. Finally, methods for transparently and accurately extracting causal spatial
and temporal relations between the locations of the road network and describing their nature
and effects are deemed necessary for decision-making under extreme and non-recurrent
conditions but would also enhance the trustworthiness and actionability of the model.

To this end, the proposed toolkit of the developed modules attempted to fill the identified
literature gaps. First, using statistical and information-theoretic methods, we detected
significant spatiotemporal relations that, indeed, when used for feature selection, increase the
corresponding models’ performance. However, it is not guaranteed that these relations are
generalizable; thus, we proceeded to detect causal relations that are independent of the specific
dataset used and increase the model’s interpretability and trustworthiness, using the concept of
Neural Granger. Moreover, using these relations, we achieved enhanced prediction accuracy in
more complex and challenging tasks, e.g., network-wide short-term forecasting, while
dramatically decreasing the dimensionality of the input space. In addition, significant traffic
patterns were revealed at a city level, namely that the perimeter and distant locations are more
strongly correlated with the locations close to the city center than neighboring locations and
that certain significant locations affect most of the rest.

Then, a Multiplex Network, adapted from the research area of Social Network Analysis, is
proposed for representing the spatiotemporal relations between a multimodal input space,
consisting of measurements of traffic volume of loop detectors and ticket validations from
metro stations. A community detection approach is followed to identify significant
spatiotemporal patterns between both types of locations, resulting in a very satisfying
performance for both modes, even when using simpler, shallow Machine Learning models.

For predicting the network-level traffic conditions at the entire network or at least a subnetwork,
we proposed an efficient multitask approach (multivariate output model) based on a relatively
shallow neural network that achieved adequate accuracy in jointly forecasting the hourly travel
times of 30 routes close to the city center of Athens, using as input loop detector measurements
of hourly volume from neighboring road sections. The results of the explainability (SHAP)
analysis indicated that the model detects significant relations between not only the travel times
of the routes and loop detectors that lie within them but also with more distant detectors, which
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justifies the deployment of the multitask model. This framework can be very useful for traffic
management purposes, as it is significantly more efficient than using a separate model for each
location of interest; in practice, it provides the decision-makers or the users with all the
necessary information for the entire road network, without requiring much time or effort from
their side or extreme amounts of data that are difficult to obtain in real time.

Finally, to deal with the challenging task of short-term forecasting at specific locations, we
incorporated traffic flow theory aspects in the following ways: First, we used a multivariate
approach, i.e., the model’s output and input includes both traffic volume and speed
measurements, the pairs of which constitute a traffic state, instead of a simple measurement
and, thus, the model learns to distinguish between congested and uncongested traffic states and
their different dynamics. Secondly, we used the novel TFTI loss for training the forecasting
model, which considers the distance of the predictions from the corresponding fundamental
diagram. As indicated by the dedicated evaluation framework that was also developed for this
dissertation, the two above-mentioned approaches not only significantly increased the overall
accuracy of the forecasting model, but also led to more trustworthy predictions that are less
vulnerable to noisy data and outliers.

9.2 Main Contributions and Innovation

The main contribution of this work is a novel traffic flow theory-informed multitask framework,
which is used for the joint short-term forecasting of two traffic variables (Q4, Q5). For training
the model, we propose a custom-made loss function, which incorporates the distance of the
emerging multivariate forecast (pairs of traffic variables) from the real traffic curve of the
corresponding location. To enhance the model’s performance and interpretability, network-level
traffic information is selected from the most relevant locations, specific to each target location,
using the Neural Granger adaptation of classic Granger causality, which is also capable of
revealing significant traffic patterns at a city level. For the experiments presented in this work,
we deploy a Long Short-Term Memory (LSTM) Network; nevertheless, the entire methodology
(including the loss function) is compatible with any Deep Learning structure.

The anticipated advantages of the proposed framework compared to existing literature are the
following:

e It is more generalizable (not data-specific), i.e., it is expected to perform better with
new, previously unseen data, as it is causal and theory-driven.

e It is less vulnerable to noisy data and outliers and, thus, more resilient, as the loss
function used to train the model relies on the fundamental diagram of the corresponding
location and not only on the available measurements.

e Itis expected to have increased overall accuracy for both output variables, which is the
main advantage of multitask models, as the inputs will be traffic states and not simple
variables.

e Due to the above aspects, the model has increased trustworthiness, as indicated by the
corresponding results.

e It enables accurate predictions with less complex modeling structures.

Moreover, we proposed a novel approach for combining multimodal data (road traffic and
public transport demand), to increase the predictability of the future values of both modes (Q1,
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Q2). Indeed, it was shown that there exist significant relations between the two datasets at a
city level and the proposed framework can be used for effective multimodal traffic
management. To enable efficient and accurate forecasting, an innovative road network and input
data representation is proposed for multimodal settings, based on the concept of Multiplex
Networks from the research area of Social Network analysis, which is utilized for the first time
in traffic forecasting. Each layer corresponds to an hour of the day and, using the multi-layer
graph adaptation of the Louvain algorithm, we were able to detect inter-layer communities that
correspond to complex traffic patterns. The described feature selection strategy leads to very
accurate predictions using a shallow Machine Learning model.

Moreover, we also presented one of the first attempts for network-wide forecasting, in the sense
that, not only does the model’s input include information from several or all locations of the
road network, but also, and most importantly, its output refers to all locations as well, which
are predicted simultaneously using a single model, based on the concept of Multitask Learning
(Q3). The model that is deployed for this task is relatively simple and efficient in terms of
training time; thus, the proposed framework is also suitable for real-world operation.

Another important contribution of the present work is that we propose a novel evaluation
framework that assesses the model’s trustworthiness and robustness to noisy and imbalanced
datasets, which are related to the model’s actionability as well (Q5). The evaluation is based on
the distribution of the predictions and the corresponding traffic states and requires a multivariate
output. In contrast, in recent literature, models are only evaluated based on the classic error
metrics of a single variable, which can be very misleading in several cases, as discussed earlier.
Especially for traffic forecasting tasks, where the distinction between congested and
uncongested conditions is essential, the above framework can provide valuable insights and
lead to significant conclusions regarding a model’s properties.

Finally, the framework that we proposed is designed not to rely too much on complex Deep
Learning structures, while succeeding in achieving state-of-the-art performance. The latter is
ought to the spatiotemporal and causation analysis previously conducted, the theory aspects
incorporated and the problem representation, respectively, that enable accurate predictions.

9.3 Limitations

In this work, we attempted to develop several forecasting tools that may be used for different
traffic management and decision-making tasks, spanning from network-wide to multi-modal
settings. As with most data-driven frameworks, the main limitations of this work are related to
the data availability and quality. First, in case this approach is to be used in real-world
conditions, a long sequence of data and extended network coverage is necessary, for the
effective training of the model, the detection of meaningful causal (or statistical) correlations
and for network-level forecasting. Moreover, for the multimodal forecasting framework,
equivalently high amounts of data for other modes, e.g., public transport or other mobility
services demand, are required. Such data are often more difficult to obtain and, especially, in
high temporal resolution. More specifically, in this work we had sufficient availability of low-
resolution data (1-hour timestep), but relatively low availability of high-resolution data: The
dataset that is used in Section 8 for the theory-informed forecasting module covers a period of
40 days, which is considered relatively short. Moreover, they refer exclusively to traffic volume
measurements, not including any other modes of transportation. High-resolution data are
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necessary for shorter-term forecasting which is a more challenging and interesting task from a
research perspective, but, due to the above limitations, it was not possible to use shorter
predicting horizons for the modules of multimodal and network-wide forecasting.

Regarding the quality of the data, the proposed solutions heavily rely on the validity of the input
data and, thus, they are vulnerable to technical malfunctions of the sensing system that may
provide noisy data (or fail to collect data at all). Thus, the performance of the modules
developed may has been underestimated, due to the existence of erroneous data. Besides, for
the multitask traffic state prediction, we used traffic volume and speed pairs, instead of volume-
occupancy pairs, as there was a systematic missing rate in the occupancy measurements, at least
for the available dataset. Although the proposed framework is generalizable to any pair of traffic
variables and is expected to have similar performance, regardless of the variables used,
occupancy measurements would have been preferred over speed, as they are considered to be
more representative, especially in high-resolution datasets, where a relatively small number of
vehicles pass from the corresponding location during each timestep.

Another limitation of using the developed modules for traffic management purposes is the high
computational requirements for training the prediction models, but also for the data preparation
and feature engineering tasks, e.g., Causal Granger and development of a multiplex network
with a lot of nodes and edges. Throughout the present dissertation, we attempted to reduce
complexity as much as possible, especially for the forecasting models; however, it is still not
guaranteed that an average computer would be able to handle the framework’s complexity
efficiently. During the development of the modules, the issue of the time-consuming fitting
process prevented us from testing more complex modeling structures and, using the
corresponding datasets, training models for other cities to compare the results, which are now
left for future research.

Finally, although the methodological framework is transferable to other road networks (as soon
as the corresponding data become available), the trained models are only compatible with the
specific road network. Therefore, new models should be trained to be exploited, even at other
locations of the same road network. Given the amount of data, time and effort required to train
the models, the transferability of the already trained ones would be essential and would
significantly increase the chances of them being used. It should be noted though that the
transferability of the developed models was not assessed in the present dissertation and is
possible that with a little effort in the parameters’ calibration and fine-tuning, they may provide
decent results in other locations as well.

9.4 Future Research

For the purposes of this dissertation, several significant steps were made towards more
actionable traffic forecasting models, in terms of trustworthiness, efficiency, performance and
the way the forecasting problem is posed and handled (e.g., multimodal and network-wide
forecasting). However, several aspects of the proposed framework can be further improved and
new paths can be investigated.

Firstly, we will attempt to incorporate causality and theory-informed features into the
multimodal forecasting module. The mutual information relational graph that is used at each
layer of the multiplex network can be replaced by a causal graph, i.e., connections will be
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established between nodes that share a causal relationship. The theoretical aspects can be
incorporated via the loss function, in a similar way to the proposed in this dissertation, for each
individual mode that is considered, but also as a submodule that would provide predictions for
each mode based on an analytical or time series analysis model, which would consequently be
combined with the predictions of a Deep Learning model, in an ensemble scheme.

Furthermore, traffic flow theory aspects can be incorporated into the network-level travel time
forecasting module. For example, the Bureau of Public Roads (BPR) function is an analytic
function that expresses the travel time to cross a road section as a function of traffic volume.
The BPR function could be incorporated into the loss function of a Deep Learning model to
enhance the predictability of travel times. Moreover, according to the most often reported
advantages of Physics-Informed Neural Networks, it has the potential to improve the model’s
performance and trustworthiness.

Consequently, the most significant modules developed for this dissertation can be combined to
create a causal, multimodal, theory-informed and network-wide forecasting framework.
Although such a model would be inclusive (i.e., provides predictions for all modes and for all
locations simultaneously), it should be noted that it be very complex and its training and
operation would lack the efficiency of the separated modules; therefore, it should only be used
if the corresponding application justifies its necessity.

Our future work will also include the exploitation of more complex modeling structures, to
investigate whether even lower forecasting errors can be achieved. In the present work, we
preferred to focus on techniques to improve a forecasting framework’s actionability, which
would reach state-of-the-art performance even when utilizing simple modeling structures, in
contrast to the more common practice of constructing a complex deep learning structure and
comparing it with previous approaches from the literature, neglecting its efficiency,
trustworthiness and actionability. For example, as the road network can be effectively
represented as a single- or multi-layer graph, an obvious direction would be to use a Graph
Convolutional Neural Network instead of the simpler structures deployed in this work.
Moreover, other related techniques, such as an Attention Mechanism which is considered very
effective in cases of large input space, could also improve the forecasting accuracy, without
excessively increasing the complexity.

Another aspect that could also improve the performance of the proposed framework is the
inclusion of geometrical/physical properties of the road network, instead of just the relational
(causal or statistical) information. A combination of physical connectivity and causal
relationships could be worth examining. Moreover, we will assess the effectiveness of the
proposed approach in multi-step and longer-term forecasting. In general, long-term forecasting
requires a quite different approach both in terms of the modeling and the data preparation and
engineering methodology, which also has significant implications for planning and design
purposes.

If any module of the present framework is going to be used for traffic management or decision-
making purposes, human supervision of the outcomes, the data collection and the training
processes are considered vital; otherwise, erronecous and harmful decisions for the road
network’s conditions may be made. The same applies to the case of non-recurrent conditions,
e.g., in cases of heavy congestion due to a road accident, road closure, or a special event:
although causal models are expected to perform well even under such extreme conditions,
human supervision is also necessary as any Deep Learning model’s performance may become

113



Conclusions

unstable and unreliable when previously unseen conditions occur. Therefore, a Human-in-the-
loop framework will be considered to supervise the training process and allow the user to
intervene when there is a high risk of a highly erroneous prediction during the operation of the
model.

Finally, another interesting direction is the application of the methodology on road networks of
other cities, to examine whether similar results will emerge in terms of the forecasting
performance and the detection of causal relations and associated traffic patterns. Furthermore,
we will assess the transferability of the already trained models, by using them to forecast the
traffic conditions at other locations with similar characteristics, both in the same road network
(Athens) and in other cities where data are available.
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