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Anayopeleton 1 aviiypagn, amolixeucn xou dlavopr| Tng mapoloog epyaotag, €& ohoxAfipou 1
TUAUATOG QUTHG, YL EUTOPLXG oxomod. Emtpéneton 1 avatinwor, anodfxeuon xat diovour yio
OXOTO U1 XEEOOOKOTIXS, EXTIUDEUTIXTS 1) EPELYNTIXAE PUOTG, LTS TNV TEOUTOVEDT) Vo avapépeTon
1 TNYN TEoEAEUCTC 1o Vo BtaTneeiton To TaEoY uvups. Epwthuata tou agopolv 1 yeriomn e
gpyaoiog Yoo x€pB0OXOTUXO OXOTO TEETEL VoL AMELVUVOVTOL TPOS TOV CUYYRUPEX.
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IToAuteyveiov.



ITepiindm

Ta tedeutada ypovia, pe Ty dvodo twv eqoupuoymy ML nmou anoutodv mohd evepyela, oL TuT-
OUEVOL UTOAOYIOTEG LXAVOTIOLOUY TIG ONOUTACELS XOOTOUG, GUUUORPWONG XL [N TOLIXOTNTAG,
omou ot tumxol unohoyiotéc mou PociCoviar oe mupitio gofveton vor uoTEEoUV. O mTUyEC
TOU YOoUNAOU XOGTOUC XUTACKEUNEC Xl TNG OLVATOTNTIC ATOEELPNE TOU TUEEYOUV Ol TUTWUEVES
teYvoroYieg Tanptdlouy xoAd Ue Tig avdyxec wag mowxihiog egopuoywy ML. Emmiéoyv, 1 yerion
TUTWUEVGDY UXPOETEEEQYACTMOY ETUTEETEL TOV TROYPUUHUATIONO Xol GUVETKS TNy cuehilion ota
popTla epyaciog TOL UToPoLY Vo EXTEAEGTOUY, GE GUYXQELOT UE TO UALXO Tou efvan eCEBXEUPEVO
yioo xde epapuoytr) xan telvel va elvon mo evepyofopo.  Ou meploplopol yiar T TUTWUEVES
TEYVOLOYiEC UTOPEl Var lvon Tar e€oUEETING UEYTAN PEYEDT YopoxTNEto TV Yoll Ue TNV TEpLop-
LIOUEVN LTOO THELEN Loy VOG amd UixEES TUTWHEVES UTaTapleg. (2¢ ex ToUTOU, UTdEYEL QUEAVOUEVT)
avayxn Yo BEATIOOELS GTOUC TOUEIC TNG ETUPAVELNG XaL TNG LoYVOC, TEOXEWEVOU Vo Y WEEGOLY
mohUmhoxol enelepyactéc. Mia mpooéyyion og autd to {ATnua lvon oL TeyVixég Yeltaong LhixoU,
ol omoieg €youv amodeyVel yoviueg xar amapoltnTeg 6Tay e€etdlovTon TUTWHEVOL ETEEERY AT TES
TOL TEETEL VoL TANPOLY TEELOPIOUOUS. LTNY Topoloa Slatelfr) SLEpEUVOUUE TIC DUVATOTNTES Yid
Behtiwon tng empdvelag xow NG Lo} V0 TV TUTOUEVOY UXPOETELEQYUCTWY UE TN YPHOoN TNG
BBAodme Turomomnuévey xehwv EGFET yia v teyvoloyio extinwone youuniric tdong,
6cov agopd to popTio pyaciog unyavixrg udinong xar to TuTwuéva optior epyaciog. Luv-
Vétouue xan ovahOoUUE UETENOELC LAV Yot évar 0UVORO e€eTalOUEVWY ETEEEQYAT TRV, ECTIG-
Covtog xupltg O dEYLTEXTOVIXEC YaUNAoU aprduod TUAMY ot YaunAfc toyvoc. Xuviétouue
TIC UETPNOELS AVOPORAS X0l TEOCOUOWWVOUPE TOUG EMECERYAOTEG UE Tpocopounoels RTL xou
netlist yio TNV e€aywyh TV LY VOV EXTEAEONC YENOHOTOLWOVTOS T1 couita epyakeinvy Tng Syn-
opsys xat Tov mpocopolwTh Modelsim. Avalbouue Ta [y v EXTEAEGTC TWV POPTMY EQYACIAC YL
VOL EVTOTIOOUPE XAl YOI APOLEEGOUNE oY ENOLOTOIMNTO OAOXANEA GTOLYElO X0 TLO GUYXEXPUIEVES
hoywéc hertovpyieg Tou ISA Twv enelepyaoT®V YA, UE OTOYO TNV XATACKEUT] ECELOIXEVUEVHDVY
enelepyaoTOV YE PEATIOUEVES TEOBLOYPUPES UAIXOU. LTN GUVEYELD, EVOWUATOVOUUE HOVADES
MAC nou BeATidvouy anoTEAEGUATIXG TNV ATOBOGCT) Xl TNV XATAVIAWGCT) EWOIXA Yol POETOUS EQ-
yaotioc ML, 6newe MLP xaw SVM, pe uvhniy| yerion MAC. Téhog, dicpeuvolue to o@éhn and tnv
eloaywyY| TS xAdxwong axpifelog oTig véeg povadeg MAC, petpwvtag 1o ouufifacud petald
e addnong g TodTNToC Xt TN amwAelog oxpifBetag. O TEOTEWVOUEVES HOVEDES Hog XaL Ot
TEOGUPUOOUEVES TPOTIOTIOLAOELS ETLTUY Y Avouy amd 22.2%, 23.6% xat 33.79% Peltdoeic otny
ETMQPAVELD, TNV oY) xaL TNV EMTAYUVOT OTaY OeV emPBdrlovTon amdAeleg oxplBetag, péyet 29.
3%, 28.7% nou 41.73% %épdn oe emgdvera, Loyl xou emtdyuvon, pe uohc 0.5% peiwon tne
uéone axpiBelac mou extdtan o 3 oUVOAA BEGOUEVWY Yiol Tov xOpto Zero-Riscy enelepyaoty).
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Aeeig-xAedid —  Tunwpéva Hiextpovind, Tunwuévn Trohoyiotuer, Mryovixr Mdidnon,
EDA, Khdxwon AxpiBeloc, Ipocapuoouévolr Enelepyaotéc



Abstract

In recent years with the rise of power-hungry ML applications, Printed Computing serves
to meet the requirements for cost, conformity, and non-toxicity where standard silicon-based
computing seems to be lacking. The aspects of low manufacturing costs and disposability
that printed technologies provide, fit well with a variety of ML applications’ needs. On top
of that, using printed microprocessors allows for programability and thus flexibility to the
workloads that can be run, compared to application specific hardware that tends to be more
power hungry. Limitations for printed technologies can be extremely large feature sizes along
with limited power support from small printed batteries. Hence there is a rising need for
improvements in the domains of area and power, in order to fit complex processors. One
approach to this issue is hardware reduction techniques, that have shown to be fruitful and
necessary when considering printed processors that need to meet constraints. In this thesis
we explore the possibilities for area and power gains of printed microprocessors using the
EGFET standard cell library for low voltage printing technology, regarding machine learning
workloads and printed workloads. We synthesize and analyse hardware measurements for a
set of examined processors, focusing mostly on low gate-count and low power architectures.
We compile the benchmarks and simulate the processors with RTL and netlist simulations
to extract the execution traces using the Synopsys EDA suite and Modelsim simulator. We
analyse the execution traces of the workloads to locate and remove unused whole compo-
nents and more specific logic functionalities of the ISA of our processors, with the aim of
building bespoke processors with improved hardware specs. We then incorporate MAC units
that efficiently improve the performance and consumption specifically for ML, workloads like
MLPs and SVMs with high MAC usage. Finally, we explore the benefits of introducing
precision-scaling in our new MAC units, measuring the speedup and accuracy loss tradeoff.
Our proposed units and bespoke modifications achieve from 22.2%, 23.6% and 33.79%
improvements in area, power and speedup when imposing no accuracy loss, up to 29.3%,
28.7% and 41.73% gains in area, power and speedup, with just a 0.5% decrease in average
accuracy estimated over 3 datasets for the main Zero-Riscy Core.

Keywords — Printed Electronics, Printed Computing, Machine Learning, EDA, Precision
Scaling, Bespoke Processors
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Euyaplotieg

Oa Hleha vor eLyaEIG THCK TOV EMBAETOVTS You, x. Anurteio Lolvten Yo TNy euxotpio GUVER-
yaotog xar exndvnone authc TS dtmhwuatxhc epyaciac. Euyoeiotd tov utodrglo diddxTtopa
[Nwpyo Apuevidxo Yy ) xadodhynon oe OAn TN Sipxeta Tng dtmhwpatixc. Euyaplotd toug
pihoug Uou Ue Toug omoloug mepdooue Yol TOAG uydploTo xon amouTnTixd onuela TS Ot-
adixaciog v omoudwy. TEhog, euyaplo T TOUS YOVELC xou TOV UBERPS LoV YLaL TNV TOAVETH
unooThpEn o€ OAN T didpxetla TS (whE xou EXTAUOEUTIXTC oL TopElag.

Hovoryidtng Xdudog, Anplitog 2024
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Extetopévn EXinvuer Heplindn

Eiwcaywyn

Ou gopeTég, yaunhol x66TOUC UTOAOYIOTIXES TAUTPORUES EYOUV EEETUCTEL TPOCPUTA VLot TOAAES
TEQLTTWOELS YPNOMG, WIS PE TNV dvodO TOU UTOAOYIOUOU OTO GXQEO XUl TWV EQPUPUOYMY TOU
AettovpyoLy Ue pnatopio. Ev yéow TV augavouevmy avnouyLoy Yo THY XA odhoryr) xou
™ BLcoTTY, 1) lEEdeyNon TS U To&xng, youniic toybog utoloyioTixic eutuypouuileton
UE EVPUTERPES TEMTOBOVAIEC TOU AmOOXOTOUY 0T UElWGT] TWY EXTOUTGY BLo&eldlou Tou dvipoxa
X GTNY TEoMINOT TEYVOAOYLOY QPUAX®Y Teog To ept3diloy. To Tunwuéva nAextpovind eivor
CUOXEVEC TIOU EXTUTIWVOVTOL GE EOXOUTTO UAXE avTl TV TUpadOCLaX®Y XUXAOUATOY TupLTiou,
AMOTEAMVTAC ULt TOAL YanAol x6GToug o U Tolixy| Abor ota Ttpoavapepévta TpoBAY|UoTa.

Emunicov, dedopévou 6TL oL popToL epyaciog unyavixic uddnong galvetor va amoTterolyv Tov
TURTVOL TV TEPLOCOTEQMY CUYYPOVOY EQPUQUOYMY, T TROCUPUOYT TNG Te)Vohoylug exTimwong
meog TNV %xatedYUVOT TNG YUUNAC XATAVIAWMCTG EVEQYELIS Xl TNG ATODOTIXNAG EXTEAEOTG TE-
TOLWY PORTWY epyacioc gaiveton edxvotiny. H cuvAing emioyr| uToAoyIo TIXWY TUPUBELYUATOVY
Yoo TV ouyxexpyévn tepintworn uropet va etvon tae ASIC xon or mhfipelg enelepyactég, xoéva
UE Tor SuvarTd xon Tor adUvorTol onugior Tou.  MTNV TEPIMTWOY| Yog, Ol TUTWHEVOL EMEEERYUOTES
UTOPOLY Vo ECUTNEETHOOLY TOAAATAOUS 0%0To0S, ETTEETOLY eVEAEla OTIC UTOC TNELLOUEVES
EQUPUOYES Xall CUVETWE VEWEoUVTAL XUAUTEROL VLol EUToELXT Yenion, ot oUyxplon pe Ta ASIC tou
eZedietovTton Yo €va uovo (evYog eQupUoYG-CUVOAOU BEBOUEVKY, BEV UTOPOVY VOl ETAVUTRO-
YEOUUUATIOTOOY Xoi £Y0LY UYNAOTERO GUVOAIXG XOGTOG ToRaY WY NS xou oy edlaouoU. Tpoxeuévou
va a&tomotnoly Gha Tor 0PENT TwV EMELEQYACTMV xou Vo datnendoly younhol mépot LALXOU,
elvol UTOYPEWTIXT 1) BlEEELYNOT TV BUVITOTATWY UElONS TOL LAXOU, TpocupuolovTag xdie
enelep Yo T AUOTNEA OTIC EQPUPUOYES TTOU TEOXELTAL VO EXTEAEG TOUV.




Ocswpentixd YTroRadeo
Tunwuéva HAextpovixd

H teyvoloyio TV TUTOUEVODY NAEXTEOVIXGY EVOL EVOC OVATTUGCOUEVOS TOUENS TNG NAEXTEOV-
S Uy evixnc, Tou yenoulomolel Sladixacieg TEocVeTIXC XUTAGKEUNE YooV xOGTOUS, OTKS
1 EXTUTWON UE YEAGVL, 1 000VN 1) 1] PAECOYpuUPIXT] EXTUTKOT O BLAPOEA UTOC TEMUATA Yiol T1)
ONULOLEY Lol NAEXTEOVIXGY GUOXEUGY, Yo TN OTOYEUOT) Blapdpwy egapuoyoy 0.0.1.
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Figure 0.0.1: 1Iedlo egapuoyov xar txavottwy Tunwuéveoy Hiextpovinmy

e avtideon pe Tic Topadoctoaxés YEVOOOUS, TA TUTWUEVA NAEXTEOVIXA TPOGPECOUY Tay UTEQT
xou UNVOTERT TapaYwYT|, AAAS UTOREL VO OONYHOOLY GE THO 0P XUXAWUATO Kol UEYOAITEQX
eCopTApaTa. ASITOURYIXE LAXE OTWE oy (YL, DINAEXTEIXG O MLy WYX LEAGVIOL ETITRETOULY
NV Toryela SnuLovpYio TEWTOTUTLY X TNV TEOGUPUOYY|, XOG TMVTAS TA OLXOVOUXE ATOd0TIXE
XoU EMEXTAOWN GE GUYXELOT PE Tor xUxhopota Tou Bactloviar oto mupltio. Tapd to Theovex T
HOITOL, TO UELOVEXTHUATO TEQLAOUPBAVOUY YoUNAOTERES ETLOOCELS, TEPLOPLOUEVES ETUAOYES LAXGDY
xou TeoPAuata o TadepdTnTag AdYW TERBahhovTinwy Tapaydviny. H Behtictonoinon twv tut-
OUEVWY NAEXTEOVIXMY Yl o Tadept| anddoon amantel Teooex TNy eZETUOT TwV OLOBIXACLOY EX-
Tonwong 0.0.2, Twv cuvilécewy HEAUVION %ol TV WOLOTATWY TOU UTOC TRMUATOC.

Teyvoloyioo EGFET

H teyvohoyio twv tpavlictop mediou pe nhextpohutixs) mOAn (EGFET) anotelel onuovtixy
TEOO00 GTOL EUXAUTTA NAEXTEOVIXA, TEOCPEQOVTASC YUUNAES TAOCEIC AetToupylag xou BeATiwévn
BrooupPatétnra. e avtiVeon pe ta oupPBatixd FETs, ta EGFETS ypnotuonotolv éva SidAuuo
NAEXTEOADTN G HOVOLTY) TOANG, EMTEETOVTOC TOV BLVUUIXG EAEYy0 NS Odtalng Yéow tng
HETOVAC TEUONG OVTWY.  Eivon elonpetind ory@ytuor xan xatdAAn oL yior BLonAeXTEOVIXES EQop-
HoYéc, emTpénoviac TNy Gueon dtacvvdeon pe Proloyixd cuothpotoa. Emmiéov, to [8] etodyel
war oyedlaon pvAung xou par BBA0UAXN Yo TUTOUEVOUS UXPOETEEEQYACTEC TOU LAOTIOLOUY
apyttextovixéc ROM xoaw RAM onwe meprypdpovton oto oyrua 0.0.3.
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Ou pvrpec ROM eivon tayOtepes, uxpdTepes xat evepyelaxd anodotixdtepes and ) RAM, xo-
Yo TOVTUC TEOTIHOTERES TI¢ oyedidoelg ue Ayotepry RAM.Ot ROM noAhamAcyv bit auédvouy tny
TUXVOTNTOL UVAUNG amoUnuelovTaC TOMATAES TWES UE EVO UOVO Ay YO XEAL, YENOWOTOLWMY-
TG OLAUPOPETIXES YEWUETPIES Y DYUYLOU UALXOU YIO TNV XWOLXOTONOT TEQLOGOTERMY UTO BUADIXES
Twée. 2otéc0, autéd anoutel Evay npocveto ADC yia TNV avdy VwoT) TwY ovahoYIX®Y ETTESCY
Tdong.

Epyaheia Xyedlaong EDA

To epyaheior avtopatiopod niextpovixic oyedlaone (EDA) Beltudvouv ) oyedioon xuxh-
OUETLY TEOGPELOVTAS Do UNTIXES Blemapéc ot Loy LpoLs alyoplduoug yio T dnwovpyio, Ty
Tpocouoiwon xat TN BeATioTonolnon. Emitpénouy 6toug oyedlac TEC VoL DLEEEUVAGOUY EVUAAAX-
Tiég hooelg, va tpofBhédouy e axpifelo TNY amdd00T TOU XUXAOUATOS XAl VO TOGOTIXOTOLACOUY
TI¢ mpodlarypagéc Tou LAxoU. Ta epyoheion EDA Sieuxohlivouv Tov anoteheouatind oyedlaouo,
TNV avBAUGT]) Xt TNV ETXVEWOT NAEXTEOVIXMY CUC TNUATWY, EVOWUATOVOVTAS DUVATOTNTEG TEO-
COUOIWOTNG %o UETENOTG.

Ov tunomomnuévee BiBhodrxeg xehwv  ebvon Jepshioddelg oty EDA, mopéyovtag mpo-
yopoxtnelopéva hoywd xeld yio obvieon 0.0.4. Metagedlovv meprypapés LAXOU upniol
EMTEDOU OE AVATUPUO TAOELS OE eNinedo TOANG, e€aopoAilovToag CUUBATOTNTA Xal IXUAVOTIOLVTOG
TEQPLOPLOUOUE GYEDLACUOU.

<[>

o

Cell Operating
Conditions/Constraints

N
N

Standard
Cell
<> Library <>
P —
1T W]
L
Cell Functional Cell Electrical
Description Characteristics

Figure 0.0.4: Boowd otoiyela Tunomoinuévewy BiSaodnxwmy Kelby

To Synopsys Design Compiler eivon éva eupéwe yenowonoouevo gpyouleio civieong mou




Extetopévn EXinvuer Heplindn

Behtiotornotel Tig netlists yio UYAEXPIEVES TEYVOAOYIEC-GTOYOUC, TEOCPELOVTUC YUPAUXTNPLO-
Tixd diepevnorng oyediaone. To Synopsys Power Compiler, evowuatwuévo oto Design Com-
piler, avtanoxpiveton ot {ATNOT Yo NAEXTEOVIXG GUC TAUATO YUUNAAC XATUVIAWONS EVERYELOC.
Avoldel, Behtiotomotel xan droyetplletan TNV XaTavaAnoT) oy bog xod’ 6N TN Odexela Tng Ot-
adxaciog oyediaone, Pondoviag oty pelworn g XATAVIAWOTNG, DITNEOVTUSC ToUESAANAN TNV
axepanotnTo TNe oyedloone. Ta epyaiela autd elvon Cwtinhc onuacioc yior Ty avdmTudn €v-
EQYELXY ATOBOTIXWY NAEXTEOVIXGY CUC TNUATWY, EWOWXA OE TUTWHUEVES EPUPUOYES.

Egoappoyec Mryavixrg Mdadnong

H unyovixy péinon etvan €vog xAddog Tne TEYVNTAC VONUOGUYNC TTOU ETUXEVTRMVETAL OTNV OVAT-
TUEN AAYORIIUMY X CTATIOTIXWDY YOVTEAWY TIOU EMTEPETOLY OTOUG UTOAOYIOTEC Vo pordofvouy
xou VoL xdvouv TpofBiéelc 1 arnodoels ue Bdor Bedopéva, ywelc Vo lval p1TE TROYEUUUATIOUEVOL
yioe xde epyacio. O yevixde otodY0¢ TNG Unyovixhc udinong elvon va emiteédet otor cuo THUATY
Vol BEATIOVOUY QUTOUATO TNV amddOoT| TOUg o€ o OEdopEVY epyacio péow Tng euneplog M
e éxdeong oe 6edouéva. H exnaideuon xo 1 eCaywyr ouuncpaoudtwy eivor 500 Yeuehiddel
otadwacieg mou cupfatvouy xotd T didpxeior Tou XOxAou (WA EVOS HOVTELOU.

H exnaidevuon mephopfdver ™ uddnon tou uoviéhou amd To (eyn €16680U-e£O00U UE TNV
TEOGUPUOYY| ECOTEPIXMY TUPUUETEMY 0TS Ta Bdpn xan T bias yio Ty ehoytotomolnoy pog
TEOXIOPIOUEVNG CLUVEETNONG AMWAEWDY. AUTH 1 emavoknmTixny Sldacio, Tou cuy Ve Yenot-
uorotel back propagation 0.0.1, puduiel Tic TapauéTEOoUS TOU HOVTEAOU Yia VoL BEATIO TOTIOLOEL
NV am6d00T 6T BEBOPEVA EXTUBEVOTS, amOPElYOVTUS TURdAANAN TNV utepTpocapuoyY. H e&-
Y WYT) CUUTERAUCUATOY TEUYUATOTOLELTOL HETS TNV EXTIU(OEUGT), OTIOU TO LOVTEAD YENOLWOTOLEL TIg
TOPAUUETEOUC oL €yel pdlet yiar v xdvel Tpofiédelc oe véa Bedopéva ywplc Tepautépwy TEOCU-
wovéc. H amoteheopatindtnia Tou poviéhou olloloyeltar xotd Tn) OLIEXELN TNG CUUTEQUOUO-
TONOYIUG YENOYLOTOLOVTUC UETEWXES OTWS 1) axEifElal 1) TO PECO TETEUYWVIXG GQAAUNL, OOXUYIY-
Covtag TNV avotnTa yevixeuong Tou. H exnaidevon xau 1 ouunepacpatoroyio eivor cuUTANEW-
HOTIXEC DLUOWAGIES TTOU ETUTEETOLY GTA LOVTER UMy ovixig Udinong vo pordafvouy xat var xévouy
TeoPBAEYEC amoTEAEOUATIXG.

aﬁwE =0;y; where 0, = g—ZE -0’ (net;) (0.0.1)
1] J

H to€wvounon xon 1 mokvdpdunor etvor dladedouéveg epyaoiec unyovixhc pdidnone. H tol-
wounon TEoPBAETEL TNV XuTyopio TG €10600U BACEL YoRoXTNEOTXGY, UE UETBANTES €600U
TOU oV X0LY GE TROXAVOPLOEVES xaTnYoplES (T.y. aviyveuor avemlunTwy UNVUUETODY, ovory-
VORION EMOVWY). LNy nahvdpounom, 1 etaBAnth e€680u etvan aprduntixy, emttpénovtog Sud-
(POPES TLIEC (TE.X. TWES xoTOXLDY, TEOBAEdN ﬂappoxpaoiug). Ko ov 600 epyaoieg mephop-
Bdvouv TNV exTaUBEUCT) HOVTEAWY OF ETUCTIHAOUEVO DEDOUEVA Yior TNV ExpdUnom mpotinwy. Ot
ueTpwéc allohbynone tepthauBdvouy Ty axplBeta, TNy axpeiBeta, Ty avdxinor, to Fl-score (yio
To&VoUNo), TO YEGO TETPUYWVIXG GOEAUA XoL TO PECO andhuto opdhua (Yl Takvdpdunon),
UETEOVTAC T1) YEVIXEUOT) TOU HovTEROU Gt VEu dedopéva. Kou ot 800 epyaoieg e€etdotnxay otny
TELQOUUTLXY) EVOTNTAL.

To Multi Layer Perceptrons (MLPs) 0.0.5{vor teyvnté veupmvixd dixtua mou yenollonotody-




ToL EUPEMS OTN Wy ovixy| UGinon xar TNy avory vaelon TeoTtimev. AladéTouy Blaouvoedeéva
CTEWUATA XOUBWY, CUUTEQLAUUBAVOUEVRDY TWV CTEWHUATWY ELGOBOV, TMV XPUPKOY CTEWUATOV
XL TV OTPOUATOY €€60ou. Xpnotuonotiooue HovTEAX Pe €val 1 5U0 xpUPE CTEOUITH OE Oid-
popeg egopuoyés. Ta MLP yenowonowldy tny mpog ta eumpdg 61ddoon yio Ty eneéepyacio Tev
OEDOUEVMV ELOODOV, UETATEENOVTAC Tol 6 TPOBAEYEIC EE600L UEGL TWY XELPWY GTEWHUATWY. O
oniohiog TOAATAAGLACUOS BIEUXOADVEL TNV EXUAINGT, COVIETWY UN YEUUUIXMDY CYECENDY XATd
TN OLdpxEL TNS EXTAUBEUOTS, TEOCUPUOLOVTAS TIC ECWTEPXES TUPUUETEOUC. T TOAOYIOTIXG,
Ta dedopéva 16600V TEEVOUY and Ta oTpwUaTta, utoloyilovtag otadulopéva adpoioyoto xou
eQopu6lovTag CUVUPTNOELS EvepYOTOnoNg Yiar Un Yeouuxotnta. Ou mpoPiédec e€6dou PBooi-
Covtan o€ peydho Bodud oe otoduiouéva adpoiouata, Tou TERLAUBAVOLY TOANATAAGIACUOUS
xou mpooVéoeic (MAC), yeyovoc mou amoutel emtoyuvtéc pe molhamhéc povideg MAC yuo
amodoTxd mapdhinho umoloyioud. H exmoldevon mepihopfBdvel emavalnmTES TEOGUPUOYES
TOEUUETEMY Yol TNV EAAYLOTOTOIMGT) TOU GQAAINTOC UETUE)D TEOBAETOUEVGY O TEAYMATIXGDY
e€60wVY péow ahyopliuwy BehtioTonolnong.

Input Layer

Input Data— ~— Output

.
-

R

Output layer

Hidden Layers

Figure 0.0.5: Am\y Apyttextovixy MLP [1]

Ou pnyavég Stavuopdtwy utootipEne (SVM) 0.0.6 eivon povtého pdinong e en{BAedm yio gp-
Yaoleg TagvVOUNoNG X TAAVOPOUNOTG. LTOYEVOUY OTNY EVPEDT TOU BEATIOTOU UTEPETITEDOU
ToL SLory wEIlEL TIC XAAOEC GTO YWEO TV SEGOUEVKV EIGHBOU UEYLOTOTOWOVTAS TO TEPLIWELO.
Auté To unepeninedo mpoodloptleton Ye TNV €VPECT BLAVUCHATWY UTOCTHELENG, T omtola etvor
onueta dedouévwy Tou Peioxovial Thnoléotepa oTo dplo andgacng. O SVM petaocynuotiCouy
Tor BEBOPEVOL ELCOBOU OE €VaY YWEO YARUXTNELO TIXOY UPNAOTERNS OLICTACNC YETOLLOTOLVTOG
CLVAPTACELS TUEHVYL, XAHNOTOVTUC TIC XAUCES To dlaywpeloues ywpelc enth aviioTolylon Twv
ornuelowy dedopévewy. H dwdixaoia Beitiotonoinong nepthoufBdver Ty emthucn evog TERLOPLO-
uévou TEoBAAuATOS Yo TOV TPoadloplold Tou Béhtiotou umepemmédou. Ou SVM yeiilovton
™V TavounoT aflohoyOviag Tig VEOEIC TV VEWY ONUElwy GE00UEVWY O OYEoT UE TO UT-
gpeninedo.  Trmoloywotind, to SVM mepriopfdvouy molhamhaclooud xow npdcdeon elcodwy,
bias xou Bopwyv, mapduola ye T MLP, oahhd ywpic cuvapthoelc evepyomoinone. Ilaupd Tic 61
apogéc, oL SVM mpocpépouy TAEOVEXTAUNTA OTIKE O YEIRLOPOS OEBOUEVLY UPMAGY BLac TIoEWY,
1 avT{oTUOT OTNY UTEPTPOCUPUOY T XOU 1) OTOTEAECUATIXT| AVTETOTLON UN YRUUUXDY 0pltV
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Extetopévn EXinvuer Heplindn

ATOPAOTG HECE XATIAANAWY TUEAVGY.

Margin
Hyperplane

r 3

® -

Support
Vectors

Figure 0.0.6: Ontixonoinon evéc SVM Classifier [23]

KAhpdxwon Axpifeiag

H »dapdxwon oxeiBeloag, pa teyvixt| tpooéyylong, mpocupudlel Ty oxpeifBeio Twv aprdunTtixdy
OVATUPAC THOEWY WOTE VoL EELO0PPOTNACEL TNV UTOAOYICTIXY| amod0TIXOTNTA ot TNV oxEifelo.
Xprnowornoteiton evpéwe o€ Touelc 6Twe 1) YngLondr emelepyacia GHUNTOS Xal 1) unyovixr udinon,
Behtiotonotel TV amédooT xaL TN YEHON UVAUNG UELOVOVTAS To onuovTixd bits otoug um-
oloylopols. 201600, ELdYEL GPIAIATO TROCEYYIONG AOYW ATMOXOTNS 1 OTEOYYUAoTOlNoNC,
ennpedlovtog duvnTixd T cuvohxr) axpifewo. H alloAdynon tou cuvokol cEAAATOS Xou
TWV XEEOWY GE ETUPAVELN, YPOVIOUO xal Loy GUVOBEVEL TIG ATMOPACELS XAUAXwWoNS axpifetag,
%S 1 TOAUTAOXOTNTAL TOU VALXOU XL 1) XATOVIAWGCT VEQYELaS UewwvovTon. H xatavonon
TWV EWBLXWY ATOUTACEWY XU TEQLOPLOUWY TN gpyaciog xadodnyel Tnv andgaon yia TNV €Qop-
woy e xhdxwong oxetfBeiog, hopfdvovtag unddn TNV AmOOEXTH avoyr) CQPIAUATOC. LT
unyovix udinom, 1 xAudxwon axeiBeiog petatpénel Ty unepBohixy oxplBela o UTOAOYLOTIXN
ATOBOTIXOTNTA, WPEAWVTAS TOL GUC THUNTA TEXYUATIXO) YeOVOU Xal TI EpYaoieg ouunicong mou
GTOYEVOUY OE YoUUNAG YPOVO UTOAOYLOUOL ot amoTOTwUA UWAUNG. Ta xplowa yia v acpdheia
xou TNV axEifela CUG TARATA, OTWS OL LATELXOL UTOAOYLOTES Xou 1) xpuTTOYEapia, amontoly LUPNAN
axplBetar xou oxp{Belor mapd To aunuévo uToAOYIGTIXG XOGTOG.

ITecooopuoopévn Avdiuon xaw Melworn TAuxo)

Enelepyactég und Eltao

H pot| xataoxeuiic xat 1 couito eQupuoydy SoXUAoTNXAY UE BLAPOPOUS ETEEEQRY UG TEC TROCUQ-
HOOUEVOUC Yo TEYVOAOYiES TUTLPEVKDY NhexTpovixwy. Avo enelepyactéc atohoyRinxay e
Bdon T YoEUXTNELG TIXG TOU LALXOU Xal YENOWOTOWINXAY Y10l TPOCOUOLOCELS EQUOUOYMYV.
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e O Zero-riscy etvon wa apyrtextovint) RISC-V ye aywyd 2 otadiwy 32 bit, n onola uropet
VoL OLOLOPPWUEL UE PELWUEVO UEYELD XATUYWENTWY, YWEIC CUUTIECUEVES EVTOAES oL UE 1)
Ywelc vtoothpln eviohwy mult-div. Iopd Tic ehdytoTteg dlapoppotl, o Zero-riscy eivou
OYETXE UEYANOC AOYW TWV TOAATAGY 6Tadlnwy pipeline xou Tou ToAbTAoxou ISA.

e To OpenMSP430 eivou évac dlapoppnoutog uxeoeheyxtic 16-bit evoc otadlou e emhoyég
YL TV TEOCUQUOY Y| TEQLPERELNNWY CUC TNUATWY XL AELTOLEYIX®Y uTthox. Xernoluonotetitan
eENdLOT BLoOEPWOT), EXTOC AT TN UOVADN TOAAUTAACIACTH, 1) oTtola Umopel Vo UELWOEL
ONUOVTINE TOUG YPOVOUS EXTEAECTC OE EQUQUOYES UE UEYAAO Bdpog e TRALELS TOAUTAAGC!-
aoUoU.

e O ZPU_Small elvan évog eneéepyaotric ISA 32-bit ue Bdon tn otoifa, oyediaouévog yio
EQAPUOYES YUUNA®Y Topwy, yeauuevog oe VHDL. Elaytotonoel to dwdoyixd otovyeia
A0 TPOGPEEEL tor cLUTYY) AVoT).

o O TP-ISA eivou pLo tpocapuocLurn apyttextovixy| oyedlacuévn Yo tny teyvoroyia EGFET,
UE TORUUETEOTIOLCLIOL EYITEXTOVIXG YapoxTnoto Tid. Ilpdxertan yiar o cuumayr apyttex-
Tovur) RISC ntou €yel oyedlaotel yior var eEAayloToToLEL TNV TOAUTAOXOTNTOL X Ol TO DLAdOY I
oTolyela, BEATIOVOVTOC TNV ETLPAVELN XAl TNV XATAVIAWGT EVEPYELNG OTAY GTOYEVEL OT
BBaodhxn EGFET. Yto oyrjua 0.0.7gatvetar ohdxAneo to Xivoro Evtoddy tou TP-ISA.

Instruction Fnrmm]EEI 22 21 20 19 18 17 16 151413121110 9 B 7 6 5 4 3 2 1 0
M-Type: ape ode W C A B|R addressl 5 address2
ADD OF-ADD 1 00 0R addressl 5 address2
ADC QF-ADD 1 1 0 0R addregsl & address2
suUB QF-ADD 1 01 0R addressl 5 address2
CMP OP-ADD 001 0R addressi 5 address2
588 QF-ADD 1 11 0R addregsl 5 address2
AMD OF-AMND 1 040 0R addressl 5 address?
TEST OF-AND 0 00 o0R address1 5 address?
OR OP-0OR i 00 0R address1 5 address2
XOR OF-XOR 1 000R addressl 5 address2
MNOT OF-NOT 1 000R addressi 5 address2
RL OF-RL 1 00 0R address1 5 address2
RLC OP-RL 1 10 0R addressl 5 address2
RR OF-RR 1 00 0R address1 5 address2
RRC OP-RR 1 10 0R addregsl & address2
RRA OF-RR 1 010R addressl 5 addres 52
s-Type:] opcode |w| 0 R addressl | immediate
STORE OF-STORE 1 00 0R addressl immediate
SET-BAR OF-BAR 00 0 0x ptr address immediate
B-Type: apc ode | Ah0001 R addressl | Ah0 bimask
BR OF-BR o0 01R addressl 0000 bmask
BRM OF-BR 00 1 1R address1 0000 bmask

Figure 0.0.7: X0volo Evtohoy tou TP-ISA




Extetopévn EXinvuer Heplindn

Po7 Epyaciog twv Enciepyactwy

H St emxevtpdveTtar xuplwg oTn HETENOT TV YORAXTNELOTIXGMY TOU UAXOU UE TN yeNon
epyarelwv EDA, otn Sla0Tawpoluevn UETAYADTTION EQPUQUOYOY YL DlAPOopouUs ETEEERYUCTES
xou o1 dlegorywyn) mpocouotwoewy netlist-RTL. Ta xevtpwd otoryela authc tne porc epyaoctog
elvar To Synopsys Suite o 0 npocouountc Modelsim.

[a Tov yapaxtneioud tou VAo, xde enelepyaothc Tepthaufdvel Eva ohvoho apyelnv Tept-
Yeupric LAXOU TOL YeNOoWOTo0VTAL THEdAANAL UE TIC TUTOTONUEVES BBAloUXeES xEAWY GTO
epyareio EDA. Ot petay Ao ttio tég, onwe ol msp430-gee-toolchain xan zpugcee, elvon amopodtn-
ToL Yo TN Onuovpylo exTEAéoUwY apyelwy and xwdwa C UE 0TOYO CUYXEXQUEVES OOYLTEX-
Tovixéc. O eappoyéc mpooapuolovta Y xdle enelepyaoTr Xou UETAYAWTTIOTH, Aoufdvov-
Tog Lo TIC apyLTEXTOVIXES X Aettoupyég Slagpopéc. Ot mpocopowwoelg Netlist xon RTL
Tpoydatonotovvtal Pe TN Yeron Tou Modelsim yio To Pulpino xou tou Synopsys VCS yua to
OMSP430. H ocuvoluxy| dwdixacio poric epyactodv ameixoviCetar oto Myrua 0.0.8, Cextvodvtag
OO TNV XATUOXEUT] TNG EQPUPUOYHC XUl TROYWEMVTIS UECK TV EVOTATOVY UEIWONE LAXOU Xou
avdAuong. Aemtouepelc enelnyOEiC QUTMY TOV EVOTHTWY TUPEYOVTAL OTIC EMOUEVES EVOTNTES.

ROM Usage

Analysis —>
Module
> I\
ROM HW Usage

b @ l. Per application

Application C Executable /
code Cross-Compiler Memory Image

<f>

Processor ISA > g
Hardware Reduc“‘"! Updated Processor Area and
—l and Bespoke Analysis Timing Imrovement
Synopsys Flow
Module <>

=
>
Updated
Processor
Power
Consumption
<> HDL Modifications
for Compiance

L. Processor
Netlist :
Initial HDL of </>

uProcessors
>
>
Processor

Area and Timing

Y

e

A

Y

>

A

Total Hardware
Improvements

e

Processor
Power
Consumption

Figure 0.0.8: XuvoAuxy| por| epyaotag
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Avaivon Egoppoywy xouw Eneiepyactdrv

Zexwvdue Ye TV avduor VAol yenouylomowwvtag to Synopsys Flow Module, émwe qotveton
oto oyfua 0.0.11 yio petprioeic Twv enelepyactdv. Ot UETAYAOTTIOTEC Synopsys ot o0 Tpo-
couowwthc VCS yenotwonototvton, pali ye t Bihodixn EGFET Standard Cell Library, ya
NV mopaywyY| Boctxey Thneo@opldv UAxoU 0.0.9 xau tyvav extéheone pe oxplBeta xOxhou. Ot
ueTeNoElS TEPAIUPBAVOLY ETEEEQYACTES UE KOl YWPEIC LOVADESG TOMNNATAACIAC TH.

Base Area and Power Metrics

Area(cm?)/Power(mw)

Cores

Figure 0.0.9: Metproeic Emgdveiog xou Ioydog yio toug Poaoixols encéepyoaotég

O Aemtopépeileg ypoviolol delyvouy T SuvatéTnTa adinong Tou poAoyLol ywels emBdpuvon
empdvelag. Xto oyfua 0.0.10 Brénouue TocooTIaleS PETPAOELS TWV TWV XUPLWY XOUUATIOV YidL
TOUC EMEEEQYATTEC.

H register file xatavoldver onpovtiny éxtaon o tépoug Loy bog, Wing yio tov OMSP430, eveo
Ol TOAATAACLIC TEG ELodyouv adloonueiwTn emBdpuvor empdvetag xou toyvog. To yapoxtrplo-
T Lol elvor evaiodnTa oTic Bidpopeg puduioelc TP-ISA, 16ite To mAdTog dedouévwy xou
T0 Bddoc pipeline. H emgdvela, 1 1oylc xou 0 ypoviouoc ennpedlovion and Tig ohhayée 6T
OLOOPPOOT), UE TO TAATOG BEBOPEVWY Vo EYEL ONUOVTIXG avTiXTUTIO Xt TO UxpdTepo design
TETUYOLVEL WG ot 3X AYOTERY) ETULPAVELY X0 XATAVIAWOT| LoY VO EYOVTAS 24% Ty OTEPo POAOL.

Hopoxdtw otov mivaxa 1 @aiveton T0 GUVOAO TWV EQUPUOYOY UE TO OTOl0 A€LOAOYOUUE TOUG
enegEPYAOTEC XOU T1) POY| TG DOUAELAC.

Agou exteléooule TIC eQupUoYEC oTOUC EMEeRYaoTEG e simulation AauBdvouue Toug apyixoic
Yeovoug exTtéleong xou Tpoywedue oe avdhuorn tng ROM émwe qaivetan oto oyrua 0.0.13

Xenotwonowsvtog v EGFET teyvohoyio uviunc yio tunwpévouc uxpoeneiepyaotéc (8],
exTolue TNy emiPBdpuvorn vAxol g ROM Aéyw peyédoug mpoypduuatog, UTOAOYIOUEVO UE
v e&lowon 0.0.1.

ROM preq = Corepy x Instr x Cell greq

(0.0.1)
ROMpoyer = Corepw * Instr = (Cellap + Cellgp)
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Extetauévn Eanvo Iepihndn

Area and Power Components Comparison

EX_UNIT
IF-ID-CTRL
MUL_UNIT
REG_FILE

807

60

Percentages of Total

204

Cores

Figure 0.0.10: Iocootwio avdhuon xatavarwoewy Zero-riscy xar OMSP430
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Figure 0.0.11: Avodutuer| meptypogy| Tou Synopsys Flow Module
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Table 1: Ileprypagéc TwV EQUPUOYDY

Benchmarks | Description
mult Unsigned integer multiplication
div Unsigned integer division
inSort In-place Insertion Sort on array of size 16
intAvg Signed integer average on array of size 16
cre8 Cyclic Redundancy Code for 16 byte array
tHold Digital Threshold Detector on array of size
16 with hardcoded threshold
MLP MLP with 3 Layers of size 4, 10 and 4 with
relu activation function, run for 1 Inference
DTree DTree of Depth 2 with hardcoded compare
values, run for 1 Inference

[oc Ty avdhuor yenoylomololvTtal Ta YoeoxTneto Txd Twv xeAwv ROM. H dwidixaoctio tepiioy-
Bdver T ouyypapn x@dixa C xou TNV Topoy WY UVAUNG TEOYESUUATOS amtd €vay cross-compiler.
Ou petprioeig mepriauBdvouy Toug Tumxolg enelepyactéc xou ZPU _Small, avodbovtag pe xou
Ywplg wovddeg toamhactacty| 0.0.12.

H emBdpuvorn tng ROM elvon onuovtiny, ewdixd yia o ToAIThoXeS EQUEUOYES Xt Ywpeic Hovada
Mult. Ov ZPU_Small xou Zero-riscy mapouctdlouv peyohltepeg xou mo evepyofdpec ROM.
Luyxprtind, o OMSP430 anantel Ayotepa xehd ROM oavd eviodf) Adyw NG opylTEXTOVIXAC TWV
16 bit évavti Twv 32 bit otoug utdromoug. H emBdpuvon tng ROM yia to Zero-riscy Pelticyve-
Tow PE TNV evowpdtwor tou RV32M ISA, enwgelobyevn and Tic medEelc TOAATAACLACUOD.
Avtiieta, To péyeoc ROM tou OMSP430 Beltiddyvetar oploxd e ULor HOVEBO TOAATAAGIAC TN
AOY® OTEUTNYXOVY BEATIOTOTOMONG TOU YETUYAWTTIO T 6ToL %dvel unroll Tov x@oixa ye mult.

Meiwon YAwxo0 oe Xapnho xaw YnAié Eninedo

Me otédy0 tnVv Bedtivon Twv enelepyaoTdY agotpdVIaC UAIXG YENOLOTOOUUE TANPOGOpia omd
to simulations pe yperjon touv Hardware Reduction Module 0.0.14.

To mpdTo Brjua elvon 0 eviomouds xon agolpecn OAOXANEKY GTOLYEIWY TWV ETEEEPYUACTMY, TO
omoio amodevieTon (WOTAC oNuactag Yoo onuavTixy addnor TG EMPAVELNS xot TNS Loy V0.
' tov OMSP430, o ékeyyog yio to cuunepiapBavopeva/amoxAetouevo ototyela yiveton uéow
evog apyetou optopwy verilog. Baowéc Asttovpyieg 6w to Frontend, 1 povdda extéieong xou
1 Hovédo poroytoU elvon amapaitnTeg xou Statnpeovvton. O ayenoylornointeg Aettovpyieg 6Twe ot
AeLTovpYieg EVIOTIOUOU GPUAUATOLY, To EEWTEPXE TEWTOXOAK ETXOLVWVING %ot 1) UTOCTHRLEN
DMA agarpotvton. Iapoupolo Briuata yivovton yio Tov Zero-riscy, Ue Tpocoy T OTr SlATHENOT
N¢ Aettoupyxnc tooduvaploug xadoe agaipolvtal ol povédee Debug Unit, Interrupt Controller
xow Compressed Decoder. Ta anotehéopato delyvouv Tr UEWUEVT] ETLPAVELD XUl XATAVIAGWOT)
toyvog, ue to R, otov mivoxa 2.

YN ouvéyel, evioml{ouUe Xl AQUEOVUE TIG aYENOWOTOINTEG EVIOAES OTIC EQPUPUOYES HAG,
YENOHOTOLWOVTOS YVMOT Yiot To 6OVORO eVTOA®Y xdle enelepyacty. Autd Ta opyela ovahbouy

13
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Printed 1-bit ROM Area Overhead
—&— OMSP430_noMult
10 4 —&— OMSP430
—8— Zeroriscy_noMult
—&— Zeroriscy
8 4 —e— ZPU_Small
©
j<
£
4
2
0
T T T T T T T T
3> S 2 & Q 2
<& & & S & ot & &
& & & &
Applications
Power Consumption
70 A
—&— OMSP430_noMult
—&— OMSP430
607 _o Zeroriscy_noMult
—i— Zeroriscy
50 1 —e— ZPu_small
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g 30 4
£
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10 A
0
T T T T T T T T
> 3 & Y 2 B & 2
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Applications

Figure 0.0.12: EmBdpuvon og emgdveia xou oy Aoyw e ROM yia xdie eqopuoy
YENOWOTOLOVTOG TUTWUEVY TEYVOoAoYia 1-bit ROM xehwv

<>

=

Mem Library
Cell ROM Area
Characteristics Overhead Per
application

<>

Script for Info
<> Extraction

I. ROM Power

Overhead Per

application
Application C Executable / S
code Cross-Compiler Memory Image
ROM Usage

Analysis Module

Figure 0.0.13: Avodutue Ieprypapn tou ROM Analysis module
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Script for Info
Extraction

Updated Processor Area and
Timing Imrovement

Removable Updated
Architectural Processor

Components Power

Hardware Reduction and Bespoke
Analysis Module

rrrrrrrrr

Total Hardware
Improvements

Figure 0.0.14: Avolutu neprypagr) tou HW Reduction module

Table 2: X0yxpion Yetall apyx®dy %ol UEWUEVLY VAOTOLACENY

‘ Cores ‘ Area ‘ Power ‘ Max Timing ‘ Synthesized Timing
Zeroriscy 67.53 | 291.21 14.49 5.91
Zeroriscy R 61.82 | 264.31 14.59 5.91
Zeroriscy _noMul 49.36 | 220.33 14.49 5.91
Zeroriscy noMul R | 43.08 | 190.98 14.87 5.91
OMSP430 50.44 | 205.22 4.25 4.07
OMSP430 R 33.21 | 132.31 4.94 4.07
OMSP430 noMul 42.30 | 177.30 4.25 4.07
OMSP430 noMul R | 25.07 | 104.19 4.94 4.07
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Tic €€600UC TOU AVLYVEUTY Yl Vol EVTOTIOOUY TIC OyETOYOTOMTEC EVIOAES, OL OTOlEC O
oLVEYELa agotpolvTal amd Tov enelepyaoth. H agaipeon nepthauBdver oOvieteg dadixaolec oTig
HOVEDES OmOXWOLXOTOINONG X EXTEREDTS, AofBdvovTag UTOYTN TNV XATAVOUT| TOPWY UETAEY TOV
evtohov. o to Pulpino, ov ayenowonointeg eviokéc evtonilovton,0mmg Qoalveton 6Tov mivaxa
3, xan EAEYYOVTAL Yol BUVATOTNTEG PEIWONG TOU UAIXOU, UE ATOTEAECUN EAYLOTO XEQDT).

Table 3: Aypnotuonointee evioréc Zero-riscy

Type Instructions

Set Less Than slt, sltu, sltiu

Control Status Register  csrrs, csrre, csrrwi, csrrsi, csrrei
Multiplication High Byte mulh, mulhu, mulhsu

System Calls ecall, ebreak, wfi

Qo7600, Yo tov OMSP430, ot teplocoTepe oyenoonolintes eVIoAéC uotpdlovTal UMXO UE TIC
YENOHLOTOLOVUEVES EVTOAEC, TeptopllovTag Tar onuavTixd x€pdn and auth TV tpocéyylon. Ta
CUVOAXE %€EDT amd T dladixaocia agaipeons ayenoonolnTtwy evioh®y @atvovtal 6To mivoxa
4. H hemtopeprc avdiuor pmopel va mpoc@épet mepontépw BeATIOOELS, Omwe oulnteltar oTny
ENMOUEVT EVOTNTOL

Table 4: Képomn uhixo) amd aypenotdonolnteg evioAé Zero-riscy

‘ Core ‘ Area(cm?2) ‘ Power(mW) ‘
Zero-riscy 67.53 291.21
Zero-riscy Red isa 66.03 285.78
Zero-riscy noMul 49.36 220.33
Zero-riscy Red isa noMul | 48.49 217.80

Aot eCoheldhaye Tic aypnotuomoinTeg eVIOAES xat TO Pacind UOVOTATL DESOUEVGLY TWY EVIOAGDY,
TEOYWEAUE UE TOV EC0PVONOYIOUS TV AETTOTERWY UPYITEXTOVIX®Y GTOLYEIWY Yia xdde epap-
poyr. Autéd mepthauBdver TNV afloAOYNOY TEWOY BACIXMY JOYLTEXTOVIXGOY TTUYWOV:

1. Apyrtextovixég onuaieg Tou xataywenth xotdotaonc: Autéc e€etdlovtan Yo vo extiuniet
1 AVaYXoOTNTS TOUG.

2. Aptduog apYITEXTOVIXGY XATUYWENTWY YeEVIXOU oxomol: Aohoyeltar 1 ovdyxn yio
HATOLY WPNTEG TPOCUPUOOUEVOUS OE XAdE EQUQUOYT).

3. Méyedoc xataywenth petenth npoypdupoatoc(PC) xa dievduvone Bdonc(BAR): Avahbov-
Tow oL AmaTHOELS YEYEDOUC TOUC.

Auth 1 otpatnyw| BeATioTonoiNoNG AMOOXOTEL GTNY TPOGUOUOYT TOU ENECEQYAC T OTIC EIBIXES
avdryxeg xde EQopUoYc, EVIoYDOVTAS EVOEYOUEVKS T GUVOAXT ATOBOTIXOTNTA TNE OYEDCTC.
Ov opyitextovinéc onuaiec, Tou Yenotevouy ©¢ duadixol BEIXTEC TOU EMNEEALOUV T1) GUUTEPL-
popd Tou enelepyaoTh, eivon (wtinAg onuaciuc. Evod o enclepyactic Zero-riscy mou Bacileton
oe RISCV nopopéver avorrolntog Adyw Tng amouolug apyitexTovix®y ornuotey extog Tou CSR
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Module, ot técoepic onuaieg tne apyttextovixc OMSP430 eetdlovton eovuyto ind avd eqap-
poy

Table 5: OMSP430 Apyitextovinég onuaieg Tou YeNoLOTOL0UVTAL 0VOL EQPUQUOYTY

Application Required flags
Baseline 4(Z, V, N, C)
AllApps 4

mult 4

div 3(no Z flag)
inSort 3(no V flag)
intAvg 4

cre8 4
tHold 4

mlp 3(no Z flag)
dTree 4
AllApps w/ Mult Unit 4

mult w/ Mult Unit 4

mlp w/ Mult Unit 3(no Z flag)

Ov apyttextovixol xotaywentéc etvar Yeuehwdn otolyeio amovixeuong, omopodTnTa YioL TNV EX-
TéAeoT EVIONGY xau T Suryeipion Tng xatdotaong tou eneepyaoty. llpocupudlovue Ta oyé-
Ot avahoywe, utoloyilovtag Toug e€edxeupévous xataywentég mou emBdiiet To RISCV32E
ISA, eCaocpoiilovtac TouldyloTov TEVTE apyitexToViXoUC xataywentéc. H yenowornoinon
HOTAYWENTOY Umd TOUG ENEEEPYUOTES Yiot XAVE EQapuoyT| @aivetar otoug mivaxeg 6, 7. ‘Ocov
QUPORAL TOUG OIPYLTEXTOVIXOUG XATUYWENTES, E6TILoVNE 0T Peiwon Tou apriuol Yo BeATIOOELS
HW, 6l yioe Ty eopuoyy) "mult", 6mou doxpdletar 1 uelworn Tou apriuol Tev xaToywentoy
am6 15 oe 7. Emmiéov, alohoyolue to x€pdn and Tn eiwon Tou TAGTOUC GEBOUEVGLY TKV
XATUY WENTOY GTO Woo and 32 o 16 bits.

O PC xu o BAR, rnou ameudivovion oe ywpoug uvAung, ebvon xployol apyrtextovixol
xotaywentés. Adiohoyolue Tig anoutrioelg Yeyédoug Toug ue Bdon ta peyEln tng UvAung meo-
Yedppoatog xan dedopévey. H avdhuon urtootnpiletar and apyela TOU TOEEYOLY TOL ATOUTOVUEVAL
mAdtn bit yia ) Sieuduvoloddtnon. ‘Ocov agopd Ta x€pdn ot empdveia xou Loy, To uéyedog
tou PC e&etdletan eCovuylotind, wwitepa yio v e@apupoyt "mult", mou aroutel diedduvon 5
bit yio T pviun meoyeduuatog. Iapatnopoldue x€pdn ot empdveia xat oy v 5.31cm2, 2cm2 xou
24.89mW, 6mW yio toug enelepyaotée, yia peiwon tou PC oe mhdtog 5. Ta amoteréopota
Topouctalovtal avahuTXd oTo Tivaxa 8.

Emtayuvvtéc E@apuoyony Mnyavixng Mddnong

Ye autd TO AEPIANO TOPOUCLECOUUE UTOAOYLOTIXEG LOVADES Yiol TNV EMLTAYUVOT EQPURUOY OV
Mrnyovinric Mddnong.
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Table 6: Zero-riscy Aptdudc xotoywent®dy yevxo) oxomol avo EQupuoYn

‘ Application # of required Registers ‘
Baseline 15
AllApps 14
mult 7
div 10
inSort 14
intAvg 7
cre8 8
tHold 8
mlp 12
dTree 8
AllApps w/ Mult Unit 14
mult w/ Mult Unit 6
div w/ Mult Unit 6
mlp w/ Mult Unit 14

Table 7: OMSP430 Aptduodc xatoywentov YEVIXOU 6XOTOU avol EQUEUOYY

Application # of required Registers ‘

Baseline 15
AllApps 10
mult

div

inSort

intAvg

cre8

tHold

mlp

dTree

AllApps w/ Mult Unit
mult w/ Mult Unit
mlp w/ Mult Unit

S Ot Oy N 0 0o

—_
@)

O O © Ot
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Table 8: Anoutoluevo TAATOC XATUYWENTOVY Yo OlEVIUVCLOBOTNCT UVAROY

Application Pulpino PC Pulpino BAR OMSP430 PC OMSP430 BAR
Baseline 32 32 16 10
AllApps 10 8 9 8
mult 5 - ) -
div 7 ) -
inSort 8 7 )
intAvg 7 6 -
cre8 7 - 7 -
tHold 10 5 6 )
mlp 10 8 9 8
dTree 5 - 6 -
AllApps w/ Mult Unit 10 8 9 8
mult w/ Mult Unit - 5 -

div w/ Mult Unit
mlp w/ Mult Unit

O =
oo

O
oo

Enwtayuvtig npafewv Nevpwvixoy xow KAiwdxwon Axpifciag

Me ™ yvoon ot ta MLPs xan SVMs anoteholvton xuplwg and medEelc ToAATAAGIACHOU-
ovoowpevans (MAC), oyedidloupe pio povdda mou emtay Vel auth ) Teddn. O emttayuvTAc,
vhornoinuévog oe Verilog HDL, enexteivel Toug enclepyactéc npocdétovtag evioléc oto ISA,
ue mpoofaon uéow Tou amoxwdwonoint. Exteiel mpdleic MAC, anodnxebovtag ta anotehéo-
OITOL OE €VaY OUGOWEEVTH, X0l ETAVOPEREL/ popTiveL To bias. Ot Aettovpyieg mpaypotonoobvTo
o€ évav Yovo x0xho. Ot emelepyactéc xan 1) VEUpoWIXT Hovada yapaxtnellovton ue T yeron
™ pong epyalelwy Synopsys EDA yia ) oUyxplon tng emgdvelag, tng toybog xou Tou Ypo-
viopoU évavtt g Baouxrc yeauuhc. H elooywyr Tou emtoyuvt unopel va eiodyet emdouvon
OTIC METPNOEC UAXXOU, EVK 1) AVTIXUTACTACT, OVADMY TOAAATAACLAGUO) TOU 101 LTSy 0LV
Topouctdlouye to tradeoffs.

Hpoywedue auty| T Pactxr| LOVEDH LAOTOLOVTOG TEYVIXEC XAWdxwoTg axpifelag. MToyog Jog
elvon vou BEATUOCOVUE TNY ATOTEAECUATIXOTNTA TNG EXTEAEGTC XL VOL UELWGOUUE TNV XATAVIANGCT)
evépyelac oe évay TUTPEVO emelepyac T yio utoloylouole ML. Aepeuvolye tnv tooppotia
petach g axpifelag Tou povtélou ot TG umoloylo g emtdyuvong. H Baoi| xhudxwon
axpifelag amodidel e€oovounon woybog, empdvelas xat mavr) e0IXovoUNoT YEOVIOUoU, oA
0ev UewwveL Toug xoxhoug extéleone. Lo va to avtyetwnicovye autd, YenoYomollue To
TAfpec €0pog bit Tou enelepyacty| Zero-riscy xou mohumhéxouye péyedog 32 bit yia molhamhéc
npd&eic MAC younhétepne axpifelag. Ot petwpéves povédec MAC (16x16, 8x8, 4x4) emitpénouy
TOV TAUTOYPOVO UTOAOYIOUO 2, 4 Xl 8 UEQIXMY TOEAY YWY OF EVaY X0OXA0, OTWSG TEELYEAPETOL
oty eéioworn 0.0.1. Me tn oyedioon 16x16, 1 tiun evég vevpwva unopel va utohoyiotel GToug
uooug xuxhoug. H mepoutéon xAyudnwon (8x8, 4x4) axoloulei TUEOUOL TTROCEYYLOT), UTOUTOV-
TG Lot Agttovpyior HETAED TOVY ETTEDKY TOU BIXTVOU Yol TNV AVABLORYAVOOT] TLV OEGOUEVLY YL
amodoTd utoloyiopd. To oynuoatind tng povddag gatvetar oto oyedo 0.0.15.
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accy = (r1[7: 0]« r2[7 : 0]) 4+ accy;
accy = (r1[15 : 8] * r2[15 : 8]) + accy;
accs = (r1[23 : 16] * r2[23 : 16]) + accs; (0.0.1)

accy = (r1[31 : 24] * r2[31 : 24]) + accy;

accum = accy + accs + accs + accey;

Compute Unit 8-bit PS

en —p

clk —)

rst n ——p

op_a

op_b

-
— T

Figure 0.0.15: Trohoyiotxs) Movdda ye xhudxwon oxp{Belac 8 bit

result <—

IMewpapatixd Meégog
Movtéla uno E&€taon

To mepopotind xoupdtt VAOTOINCE TIC TOEUXETL EQUOUOYES:

e To clvolo dedouévwy RedWine 1o onolo emxevipmveton oe delypata epuipmy ofvev and
™ Bopeia Hoptoyario, anooxonel otn poviehomoinon g molOTNTAS TV oivwy e Bdon
11 guowoynuxd yopoxtneiotind. H xatoahhnhdTtntd Tou yiar T TUTWHEVES TEYVOAOYIES
Eyxelton oTNV eVEMELA, TO YaUnAd x60TOC xau T SuvaToTHTA OLdleong, EMTEENOVTAG TNV
EQOPUOYT) TOU OE QLdAeC xpaotol yia TNV TeoBiedn e toldTnToC.

e To clvoio dedopévwy WhiteWine aoyoheiton pe delypota Acuxol xpoctol and tnv {dia
TEQLOY N, HOVTEAOTOLOVTOG ETLONG TNV TOLOTNTA TOU Xpactol e Bdon 11 yopuxtneloTixd.

e To clvolo dedopévewy Cardio mepihopfdver petproelc Tou eufeuinol xopEdloxol puiol
(FHR) xou tne ouotolic e prtpoc (UC) and xopdotoxoypogpriuote, Tovounuéve and
UOUELTARES.  2TOY0C elvan 1) TeoBhedn g xatdotacng Tou eufpvou pe T yeron 21
OYETIUOV YUQUXTNPLO TIXY

o xdde wovtéro allohoyinxay viormowoec oe MLP xar SVM. ‘Oha tor mopaméves pov-
TENOL AVAXOUY GTEVE GTO TEDO TWV EQPUPUOYOY VLo TUTWHUEVA NAEXTEOVIXAL.
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ITewpapatinr, Awdtaln
Y10 oyfue 0.0.16 gaivetar cuvohixd 1 mewpopotixy didtaln Tou yenowonotfinxe.

C code of Model Executable /
Cross-Compiler Memory Image

<> "3 <>
4,—» ModelSim. . —> %
> L Extraction

Modelsim
Simulator Execution Trace

Ubuntu 16.04 VM

HDL of
Pulpino Core

Execution Time
and Cycles

HDL Of Units

" i
B =

Model Test
PS 8x8 PS 4x4 Outputs

iz
ap
®

e,
Comparison

_B Scripts Per Unit Error
Percentage

£t

Unit
Configurations

Figure 0.0.16: Aemtopepéc Lymnuotixd Hepopatinhc Adtalng

ITot6 cuvortixd, To tepi3dAioy Tpocouolwaone dnuoveyRinxe oto Ubuntu 16.04 oe éva QEMU
VM v v unoothApiln 1oV anatoluevey epyolelwy, cuunepthopfavopévou tou Modelsim-
Intel HDL Simulator yw ti¢ tpocopowwoelg rtl Tou pulpino SoC. H yetayhdtTion twv eqop-
HOY®V €ylve Ue TN Yperion Tou ridey-gnu-toolchain, dnulovpydvtog x@oixa assembly.  Avar-
TOyUnxav apyeta Python yia tov umoloyioud twv axpdv apriudy xOxAony and Tov xootxa
assembly xou tar (yvn extéleorg.

Alepeuvicaue T YoM Baeddy YEUUUEVGY ameLVEldS 0TOV X@OXa Yia TN Uelworn Tng Tpdcaong
otn RAM, odhd emhé€ape v anodrixevon oty RAM yuo ) pelwon tou yeyédoug tou mpo-
yedppatog xou tng ROM. Ta nocootd emtdyuvong e&fydnoay extehwviog xdde Yoviého oe
50-100 eto6d0ug. Ot yetprioeic Aol tepthduBavay peyédn ROM xou diepedvnon twv cuufifac-
LV PeTag) uhoTotioewy, Aaufdvovtoac unon Tic emAoyég xhudxwone oaxplBelac. O TP-ISA
Vewprinre eAxuoTIXY ETLAOYT, TUPEYOVTUC YUEUXTNELOTIXE UAXOU X XOXAOUC EXTEAEOTC UE
Bdom tnv €Zodo ridey-gnu-toolchain. H xhwdnwon axpiPeloag nepiedufove v tpomomnoinon
Tou xWoxa verilog xow C yia TNV EVOOUITWOT] VEWY LOVADWY XAl TOV YEIRLOUS TNG METATOTLONG
TGV Petald Twv emmédwy MLP. ‘Eva apyelo Python urnoloy(Cet tnv andieio oxpifBetac ouy-
xptvovtag Tig e€660ug Ue TANen axpifela xan xAoxwTy axpBeta, TopouoldlovTag T0 T0GO0TO
NG amOAglag oaxplBetag AoyYw CQUAUETWY TAEVOUNONS 1) TAAVOEOUNOTS.
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ArnoteAécpata

Extelolue OAeC TIC BLOHOPPMOELS TWV UTOAOYLOTIXMOY HOVADWY X0l ENEEEPYUOTHOV GTOV Zero-
riscy yto voo AdBoupe {yvn extéheonc. Apyixd, mpoodiopiCouue to péyedog tng ROM ue Bdon
ToV optdud TV EVIOAGDY, o omolog elvan 1084 otn yepdTepn TEQIMTWOT Yiol ToL LOVTEAN HOC,
70 omolo GUVLGTA EAAYLOTO PETENTY| TPOYEAUMATOS TAdTOoUG 11-bit. Metpdue dheg i mbavég
otopoppwoelg TP-ISA vy pe=11, cuunepthaBavoUEVemY TV VEVRWVIXOY LOVADdWY UE BIAPORES
axplBetec.

Metpde TI¢ TEOTEVOUEVES UAOTIOOELS ZeTo-Tiscy aéloTolOVTAS TIG UTOAOYIOTIXES oG HOVADES
xou TLg ouyxpivoule e tn Baoixn Zero-riscy yuo Tig Tpodlaypagég LAl ooy mivoxa 9. To Be
oe xdde 6vouo onuaiver Bespoke xou elvon 1 mpotetvouevn Zero-riscy Pe £@upUOcUEVT Uelnon
uAoU xau uelwon isa.

Core Core Area | Power | Max Clock
Zeroriscy Mul 67.53 291.21 14.49
Zeroriscy noMul 49.35 220.33 14.49
Zeroriscy Be Mult 60.32 257.80 14.59

Zeroriscy Be MAC 32x32 61.96 249.02 14.59
Zeroriscy  Be. MAC PS_ 16 52.47 222.27 15.02
Zeroriscy  Be. MAC PS_8 47.70 207.37 15.15
Zeroriscy Be  MAC PS 4 42.86 191.70 15.65

Table 9: Metpixéc Thuol yia SlopepeTinég puiuicelg Tou Zero-riscy

TroloyiCouye Ty anmheio axplBetag Twv YoVTEAWY AOYw TNG xAdxwong tng axplBelag, e
NV oxpifeta 4-bit var amod{del SuVNTXE CPIAUA E6C Xou 26%, ext6c and T0 6UVORO BESGOUEVLY
Cardio 6mou mégter oto 1,5%. Extipoluye téhoc tnv emtdyuvon ye to TP-ISA, ov xa Bev
€Y OUUE TPOGHBUCT GTOV PETAYAWTTIOTY, EVOWUATMVOVTAC TIC LOVADES oT1 Baoxt| oyedlaoT xou
EXTEAWVTOG TN POY| HETENOTG OTOLYEIWY UAXOU, YENOWOTOWVTAS (Y VN EXTEAEOTS antd TO Zero-
riscy yioo TV extipnom tov xOxhwy.

Yrov mivaxa 10 mapouctdlovion ol fertiwoelc pall Ye To o@dhua mou emipépel 1) xde o

Table 10: BEATIOOEIC TWV TEOTEWVOUEVWV ARYLTEXTOVIXMY EVOVTL TOU dpyxo) Zero-riscy

Cores ‘ Area Gain ‘ Power Gain ‘ Avg Speedup ‘ Error ‘
Zeroriscy-Bespoke 10.6% 11.4% 0% 0.0%
Zeroriscy-Bespoke  MAC32 8.2% 14.4% 23.93% 0.0%
Zeroriscy-Bespoke  MACQ16 22.2% 23.6% 33.79% 0.0%
Zeroriscy-Bespoke  MACQS8 29.3% 28.7% 41.73% 0.5%
Zeroriscy-Bespoke  MACQ4 36.5% 34.1% 46.4% 15.66%

Ou mivoeeg 11 xon 12 cuyxpivouy Tig Bacuxée dloapoppnoelc TP-ISA ye tic npotetvoueves dlapop-
gpooeic TP-ISA nou tepiéyouy exdOGELC TNG LOVEDBAC Hog 600V apopd TNV EXTACT), TNV Loy, TNV
ammAeto axpifetag xan Ty TeoyEen exT@uevn emtdyuvor. O Ilivoxag 11 nepieyel T olyxplon
¢ Baownc axpyBolc uhomoinone 32 bit TP-ISA ye tnv mpotevouevn toyiteen Slopdppwot 32
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bit ye anodextd opdiua (d32_pcll_MAC32_Q8) xau o ITivaxac 12 cuyxpiver T Boowr wixet
Srobppwon 8 bit TP-ISA e tn wixpdtepn Swapdppnot| pag (d8_pcll MACS). Aoufdvouye
uTOPn OTL BEV LTIAPYEL LOVADN TOAMATAACLIOUO) GE XUVEVAY ATt TOUS Bactnolg ENeCepYao TES,
omote 6Aeg ot mpdleic MAC tpogodotoivton uéow tng ALU oe mohhamholg x0xhoug.

Table 11: X0yxpton tng mpotevouevng yeryoens 32 bit uhonolnong évavtt Tou apyou 32 bit
TP-ISA pe axpifela

‘ Configuration ‘ Prop FAST ‘

Area Overhead x2.12
Power Overhead x1.97
Avg Err (Base is 0%) 0.5%

Estimated Speedup | up to 88.5%

Table 12: Y0yxpion tng mpotetvouevng uixeric 8 bit uhomoinong évavtt Tng apytxng 8 bit
TP-ISA

‘ Configuration ‘ Prop SMALL ‘

Area Overhead x1.98
Power Overhead x1.82
Avg Err (Base is 0.5%) 0.5%

Estimated Speedup up to 85.1%

Aedopévou o1l TpdXELTAL Yo Evay TOAD Uixpd emelepyaoTy| BEATIOTOTONUEVD Yo YoUNnAoUg
TOPOUC X0 OEV UTOPOUYE Y pOotpEGOUNE XIOAOU OO TO UG, aVoEVOUUE QUOIXS ol NGO
TV TOPKY UAMX00, TNV omola avtioTodul{ovde Ue auinuévr eXTu®UEYY emitdyuvor. Edv o
YPNOTNG OEV EXTIUS Ty UTiXd XA T0600TO axpifelac 6To LOVTEND, UTORPOUUE Vol TEQLUEVOUUE
on6 85,1% éwe 88,5% péorn exTimUEY ETITAyUVOT Yio Tor hovTého pog ue epinou x2 xat x1,9
emfBdpuvon oe empdveta xat toyV yio Ty TP-ISA. H »pdnwon tne axpiBetog ue Avydtepa bits
amod{OEL XOUADTEQU AMOTEAEGUATO AANGL OOy OPEUTING GPIAUAL, OTIC TEPLOCOTEPES TEQIMTWOELS.

YuunepdopaTa

Ye aut| T SlaTEY3Y), BLEEEUVOUUE TNV UAOTOINGY) TEOCUPUOCUEVKY UIXPOETEEEQY UG TWY OE TUT-
ouevn teyvohoyio. Ilpdtov, emonuaivouues TNy avdyxn yia ueYdAn uelwon tng empdvelag xou
NG Loy YOS OE TETOLN XUXAWUATA, TEOXEWEVOU VoL xaTaoTel duvatr 1) Lhonolnon egopuoy®y ML
oe eCoupeTnd pxpolg enelepyactéc. T o oxond autd, cuvtoviCoupe xar UNOTOLOVUE ETES-
EQYUOTEC YoUNAOU 0ptluo) TUAWY, IXAVOUE VoL EXTENOUY CUYXEXPWEVES EQPUPUOYES, UPAULOMOVTIG
O TN hoyuxr mou eyyunuéva dev Yo yenowonoiniel. H agaipeon twv mArjpws ayenotuonolntomy
OTOLYElWY OmOBEXVIETOL TOAD ETWPEARC XAl ATOBOTIXT| WS TEOS TNV TpooTdieia Behtiwong yeod-
vou. H agalpeom apyitextovincdy otolyelnv xon ayenoylonoinTtemy EVIOA®Y uTopel va elvon o
YpovoPBopa, ahhd eniong enm@einc, Wing 6Tav oToyevel oe axoloudioxd otovyeio Tou enclep-
Yoo T,
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Extetopévn EXinvuer Heplindn

Katd v e&étaon twv emBapivoeny TN UVARNG TEOYRUUUITOS 0Tr OYED0OT) TUpATNEOVUUE OTL
oXOUT] oL EAAPEAS Lo GOVIETES EPUPUOYES UTIOPOLY YO YORA VO TEOXAUAEGOLY TNV XATdAN(N
Topwyv amd T ROM mou elvar cuyxplowol pe xdmotoug and toug uxpolc enclepyactéc. ‘Ocov
agopd T Yenorn e ROM, to oy€dlar ye uixpdTepa Ufxr EVIOADY TAEOVEXTOLY ETELDY| OTOUTOVY
Myotepa xehd ROM, evey ol mohhamhaotaotég anodetxvieton 6Tt a&ilel va e€eTacToLY Aol ot
TOAOTAOXES EVTOAEC XATUAUPBAVOUY Y(PEO OTN UVAUY OTaY TEETEL vor YeapToLy yio o ALU.

Avantiocoupe pio Lovada eVOC XUXAOU TEOXEWEVOU VoL BEATUOCOUUE TIC ETLOOCELS YLl (PORPTOUC
epyaotag ML, epapuoloupe xhudxnwmorn oxplBelag 6Tig HoVAEDdES Yog xou BoxudloVUe Ue 3 Uov-
éha MLP xou SVM. Tt tar povtéha mou 8oxyudooue, UTopoUUe Vo aLEACOUPE ONUAVTIXG TNV
am6B0GT) TNG LOVADAS UE TURUAANAIGUO UE YN0 TNG HAIXOONS axpiBelac e aueANTEN ATWAEL
oxpifetog.

Qotb00, N tpdcVetn emPBdouvon amd TNV XU TAAANAY PUVULCT) TV ELOOBWY YLaL T1) HOVAD XALUX-
wong axpBelog YECW TNG CUVEVWONE Xl TNG UETUTOTIONG UTOPEl Vo OmOTEAEGEL TROYOTEDN,.
‘Ocov apopd T yelhovTiny epyacio, UTdeyouy TepLIMELX YL ETEXTUCELC TOCO GTOV TOUEN TGV
eqopuoyov ML 6nwe autég mou digpeuvroaue 660 xau Yo Bertiowon ot dhhoug toueic. H netlist
xou 1 GUUPOAXY| TEOGOUOIWST) UToEOVY VoL AELOTONUOUY YLOL ULl GUYXEXQLIEVT] EQUQUOYT| UE TT)
0L18000T AMEOCBLOPLOTLY CNUATWY TNV TEOCOUOIWST X TNV eC0YwYY) TANPOPOPLOY CYETIXA
UE TO oETEPANTO EMUNEDO TV AoYIXWY TUAGOY. AUTEC OL TANEOPORIEC UTOEOUY VO YENOLLOTOL-
oLy yio TNV TEOGUEUOYT| Tou eMelepYao T o Ueyahltepo Podud, hauBdvovtag ueyohitepa
0QENN OGOV aPoEd TN YeNoT TOU LAXOU.
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Chapter 1

Introduction

Wearable, low-cost computing platforms have been considered for many use cases recently,
especially with the rise of edge computing and battery powered applications. Amidst growing
concerns about climate change and sustainability, prioritizing non-toxic, low power computing
aligns with broader initiatives aimed at reducing carbon emissions and promoting eco-friendly
technologies. Printed electronics are devices printed on flexible materials instead of the
traditional silicon circuits, constituting a very low cost and non-toxic solution to the problems
mentioned above.

Furthermore, since machine learning workloads seem to be at the core of most modern ap-
plications, the adaptation of printed technology towards low power and efficient execution of
such workloads seems appealing. The usual choice for computing paradigms for the task can
be ASICs and Full Processors, each with its strengths and weaknesses. In our case, printed
processors can serve multiple purposes, allow for flexibility in the applications supported and
are thus considered better for commercial use, compared to ASICs that are specific for a
single application-dataset pair, cannot be reprogrammed and have higher overall production
and design cost. In order to get all the benefits of the processors and maintain low hardware
resources, it is mandatory to explore hardware reduction capabilities, tailoring each processor
strictly to the applications to be run.
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Chapter 1. Introduction

1.1 Related Work

The development of low cost, flexible and disposable computing circuits has been the topic of
much recent research. [10] start by creating and evaluating a suite of low demand applications
for earable programmable platforms that closely relate to the field of wearable applications
in Printed Computing and develop a CGRA-like architecture that targets performance on
the gives suite while maintaining constraints.

The main work on Printed microprocessors [8] presents the first standard cell libraries for
Printed Computing and examines whether candidate microprocessors fit the constraints of
printed applications. The work develops a processor specific to tackle the main problems of
printed computing and measures the specifications of bespoke versions of the core, tailored
to different applications. This work also develops a standard cell library for CNT-TFT
and EGFET technologies for synthesis and physical design implementation with EDA tools,
allowing for exploration, testing of designs and building a better understanding of computing
properties for such circuits. It is shown through testing that sequential circuits in such
technologies tend to have prohibitive area and power characteristics, and that RAM cells are
much more costly compared to ROM cell.

[9] develop and fabricate a core on flexible material and test it with a representative applica-
tion set. The results of the evaluation are used to tune the ISA of the core to better suit the
target applications. They measure process variation on Printed Microprocessors and perform
an exploration on various design points and list benefits from each approach. [13] propose a
symbolic methodology for tailoring a processor to a specific application by removing unused
gates during gate-simulation of the application. They measure benefits for a set of appli-
cations and provide a methodology for support of multiple applications per bespoke core.
[31] generalize symbolic simulation for tailoring processors, removing the need for custom
simulators per core and extending the work to cover wide varieties of HW-SW pairs.

There are also works on ML with printed electronics [6], [5], [7]. Work [27], which is mainly
concerned with printed implementations of Classifiers, comparing bespoke and lookup based
circuits for calculations. They evaluate and compare both digital and analog solutions. |[3]
focus on approximation techniques on Printed solutions with application specific circuits. An
automated cross-layer approximation framework is proposed, considering MLPs and SVMs,
followed by evaluation of the accuracy-hardware specs tradeoff.

1.2 Thesis Objectives

The target of this thesis is to examine and optimize Printed Microprocessors performance and
resource consumption on Printed kernels and machine learning workloads such as Multi Layer
Perceptrons and Support Vector Machines. We perform hardware reduction, removing not
utilized units, instructions from the ISA and architectural features that are not required for
the benchmarks suite we use. Eliminating this logic that is guaranteed to not be used by an
application, can produce a design tailored to the application - a bespoke processor - that has
significantly lower area and power than the original microprocessor that targets an arbitrary
application. We develop a hardware unit that executes MAC operations that targets ML
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1.3. Thesis Outline

Classifiers and explore precision scaling for the benefits and accuracy costs it entails to the
unit. As a proof-of-concept we examine MLP and SVM datasets for printed applications
and measure tradeoffs in the hardware characteristics and execution time speedup for each
workload.

1.3 Thesis Outline

This thesis is organized in a total of 5 chapters with the following structure:

1. Theoretical Background

This chapter presents a brief mandatory theoretical background for Printed Electronics
and the EDA tools that were used. We introduce basic ML concepts and the types of
ML applications that were tested. Finally we explain Precision Scaling and its usability
for our scope.

2. Bespoke Analysis and Hardware Reduction

This chapter provides the workflow for the extraction of hardware specifications includ-
ing rom usage, processor area, timing and power as well as the process of eliminating
hardware. We explain in detail the complete workflow starting from hardware analysis,
application writing, compilation, simulation and extracting the execution information.
Furthermore, we present our process for measuring hardware utilization regarding
our needs and applications. We remove non-utilized hardware first in the level of
components and subsequently in the finer, architectural level given the information
received from our flow.

3. Machine Learning Acceleration Units

In this chapter we develop a computing unit that targets the performance of our cores
when handling ML workloads that are MAC intensive. We discuss the functionality
and the benefits of the unit over the standard ML executions on the cores that contain
or don’t contain a hardware Multiplier. Finally we present the work regarding the
application of Precision Scaling on the unit, exploring the relevant tradeoffs for our task.

4. Experiments and Results

In this chapter we present the models that we used for testing, the experiment setup,
methodology, and the results for our cores and units when running a suite of Printed ML
workloads. We measure area, power and timing for hardware, the respective execution
time and cycles of the targeted models and compare to the baseline processors. We
analyse the power-execution-accuracy tradeoffs of using precision scaling with our units.

5. Conclusions and Future Work
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Chapter 1. Introduction

In this chapter we mention conclusions from the previously examined experimental re-
sults and provide possible future work regarding improvements on the hardware and
application execution metrics.
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Chapter 2

Theoretical Background

This chapter examines the features of Printed Electronics, Printed Computing and describes
the function of the Synopsys EDA tool in synthesizing hardware and measuring hardware
specifications. Furthermore, we provide information about the types of ML workloads that
were examined and tested in the the thesis. We introduce Precision Scaling and potentials
scopes of use.
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Chapter 2. Theoretical Background

2.1 Printed Computing

2.1.1 Printed Electronics

Printed electronics technology represents a burgeoning field within the domain of electronic
engineering, offering novel methods for fabricating electronic devices using printing processes
on various substrates. Unlike traditional electronic manufacturing techniques that rely on
photolithography and vacuum deposition, printed electronics utilize low-cost additive man-
ufacturing processes, such as inkjet printing, screen printing, or flexographic printing, to
deposit functional materials in specific patterns to create electronic circuits and devices. The
main categories for printing technologies are subtractive and additive. In subtractive print-
ing, deposition and etching steps follow one another, making it expensive and time consuming
but creating faster and smaller circuits [12], [11]. Opposite to that, additive printing comes
with a much faster manufacturing process, requiring only deposition steps for all types of
components [32]. The main drawbacks compared to subtractive technologies are slower cir-
cuits and bigger component sizes. The basic steps for realising a component with each one
of the processes is described in Figure 2.1.1 as described in [8]. It is evident that steps in
additive technologies are less and simpler.

Step 1: Gate patterning Step 4: Developmeant
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Step 2: S0z and Active Layer
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Figure 2.1.1: Steps required in Subtractive (a) and Additive (b) printing process

Printing functional materials typically includes conductive inks, dielectric inks, and semicon-
ductor inks, among others, which are formulated to exhibit desired electrical and mechanical
properties. This inherent flexibility in manufacturing processes enables rapid prototyping and
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2.1. Printed Computing

customization of electronic devices, facilitating iterative design cycles and reducing time-to-
market for new products. Because of the facts mentioned, printed electronics appear to be
more cost-effective and scalable in production compared to silicon-based circuits.

The versatility of printed electronics allows for the fabrication of lightweight, flexible, and
even stretchable electronic devices, enabling applications in wearable electronics, biomedical
sensors [18],[20], [34],[25], and food and agriculture [17], [35], among others . They are suit-
able for a wide variety of disposable and ultra-low cost applications since printed electronics
can be manufactured using comparatively cheap printing equipment and materials on flexi-
ble substrates such as plastic or paper using non-toxic materials. The flexibility, and design
versatility of printed electronics make them an attractive alternative to traditional silicon-
based circuits for a variety of emerging applications in electronics, sensing, and beyond|14].
[10] also present a set of candidate sensors and applications for similar use cases with pro-
grammable wearable hardware in Figure 2.1.2, but by taking into account the disposable
nature of printed computing, the range of uses becomes even greater.
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Figure 2.1.2: Capabilities and Applications of Earable and Printed Computing

Despite their numerous advantages, printed electronics also exhibit several drawbacks com-
pared to silicon-based circuits. One significant limitation is the relatively lower performance
and functionality of printed electronic devices, particularly in terms of speed, power con-
sumption, and integration density. Silicon-based circuits, benefiting from mature semicon-
ductor fabrication processes, offer superior performance characteristics, enabling high-speed
operation and complex functionality suitable for a wide range of applications, including high-
performance computing and advanced electronics. In contrast, printed electronics often suf-
fer from higher resistivity and limited material choices, which can restrict their performance
and functionality, especially in demanding applications requiring high-frequency operation or
analog signal processing. The stability and reliability of printed electronic devices may pose
challenges, as the properties of printed materials can be sensitive to environmental factors
such as temperature, humidity, and mechanical stress, potentially leading to degradation or
failure over time. The low cost manufacturing techniques for printed electronics produce
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Chapter 2. Theoretical Background

circuits with large feature sizes that cause area and power considerations. These can usu-
ally cause implementation issues with many applications, especially battery powered, and
need to be handled by the hardware designers. Achieving consistent performance in printed
electronics can be challenging due to variations in printing processes, ink formulations, and
substrate properties, requiring careful optimization and quality control measures to ensure
reliability and consistency.

2.1.2 EGFET

Electrolyte-gated field-effect transistor (EGFET) technology represents a promising advance-
ment in the field of flexible electronics, offering novel means for achieving electronic devices
with low operating voltages and enhanced biocompatibility [24]. EGFET presents impor-
tant characteristics compared to other printed technologies such as CNT-TFT, namely high
mobility and low supply voltage, making it suitable for the targeted applications mentioned
[22], [29]. Unlike conventional FETSs, which typically employ solid dielectrics as gate insu-
lators, electrolyte-gated FETs utilize an electrolyte solution as the gate insulator, enabling
dynamic control of the device properties through ion migration and electrochemical processes.
Electrolyte-gated FETs exhibit high ionic conductivity, making them particularly suitable for
integration with biological systems, such as bioelectronic devices and biosensors, where di-
rect interfacing with biological fluids and tissues is required. EGFET technology holds great
promise for advancing the field of flexible and bioelectronic devices, offering opportunities
for innovative applications, mentioned in 2.1.1. Figure 2.1.3 is the design and actual printed
hardware of an EGFET component, as printed in [8].

Cross Section View Top View

D 1IN, 04 S

| Substrate |

1 11O
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1 Electrolyte Substrate
B pEDOT:PSS

Figure 2.1.3: Cross Section View, Top View and Printed EGFET

In addition to that, [8] presents a memory design and library for printed microprocessors
that implements ROM and RAM architectures. ROM memories appear to be faster, smaller
and more energy efficient than RAM memories and so, designs with less RAM are usually
more preferential. Figure 2.1.4 displays the architecture for single and multi bit ROM, using
printed conductive material and sensing resistors to read the stored value.

These multi-bit ROMs allow for storing multiple values with use of a single conductive patch,
thus increasing the memory density. Different geometries of the conductive material can
output different conductivity levels and encode more than a binary value. This comes at the
cost of an additional ADC required to read the analog voltage levels.
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2.2 EDA Tools

Electronics Design Automation tools represent a crucial component of electronic circuit de-
sign workflows, facilitating the creation, simulation, and optimization of intricate hardware
systems. These software applications encompass a broad spectrum of functionalities, includ-
ing netlist generation, simulation, and analysis. EDA tools streamline the design process by
offering intuitive interfaces and powerful algorithms that expedite the exploration of various
design alternatives and mitigate the need for extensive manual iterations. Moreover, simula-
tion capabilities integrated into EDA tools empower designers to assess circuit performance
under diverse operating conditions, predicting phenomena such as power consumption with
remarkable accuracy.

In addition to facilitating circuit design, EDA tools play a pivotal role in quantifying hard-
ware specifications and evaluating the performance metrics of electronic systems. Through
sophisticated analysis modules, these tools enable engineers to conduct detailed character-
ization studies, examining crucial parameters such as signal propagation delays and power
dissipation. By leveraging EDA tools for hardware measurement, designers can ascertain the
efficacy of their designs and identify potential bottlenecks or design flaws early in the de-
velopment cycle. Furthermore, these tools facilitate the generation of comprehensive reports
and visualizations, providing actionable insights into the behavior and performance of their
circuits. With the integration of simulation and measurement capabilities, EDA tools offer
a unified platform for the design, analysis, and validation of electronic systems, allowing for
designing efficiently in the rapidly evolving landscape of hardware design
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Chapter 2. Theoretical Background

2.2.1 Standard Cell Libraries
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Figure 2.2.1: Basic components of Standard Cell Library

Standard cell libraries play a pivotal role in the synthesis process within the domain of
electronic design automation (EDA). These libraries consist of pre-characterized and pre-
optimized logic cells, each representing a specific combination of logic functionality and
physical implementation. Standard cell libraries provide a comprehensive set of building
blocks that make up essential components such as basic gates, flip-flops, and other complex
functional units. Within the EDA environment, these libraries serve as fundamental re-
sources for the translation of high-level hardware descriptions into gate-level representations.
By utilizing standard cell libraries, EDA tools can efficiently map abstract descriptions of
electronic circuits, expressed in hardware description languages like Verilog or VHDL, onto
the available set of logic cells, ensuring compatibility with the target technology and meeting
design constraints such as timing, area, and power consumption. Standard cell libraries facil-
itate design exploration and optimization by offering a diverse selection of cells with varying
characteristics, enabling designers to make decisions regarding trade-offs between different
design metrics. For this thesis we used a printed electronics standard cell library to synthesize
our designs and measure specifications.

2.2.2 Synopsys Design Compiler

One prominent EDA tool widely used in the electronics industry is Synopsys Design Compiler.
Design Compiler is a synthesis tool that translates high-level hardware descriptions, typically
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2.3. Machine Learning Applications

specified in hardware description languages, into gate-level representations (netlists) suitable
for implementation on specific target technologies. In our case the target technology is the
EGFET library, that provides standard cells for printed electronics. Design Compiler employs
advanced algorithms and optimization techniques to generate optimized netlists, aiming to
meet design constraints such as timing and area. Additionally, the tool offers features for
design exploration, allowing engineers to explore trade-offs between different design metrics
and refine their designs. With its comprehensive synthesis capabilities, Design Compiler
significantly streamlines the design process, enabling efficient realization of complex electronic
systems while meeting the imposed performance requirements.

2.2.3 Synopsys Power Compiler

Synopsys Power Compiler is an advanced power optimization tool integrated within the
Synopsys Design Compiler suite, tailored specifically to address the escalating demand for
low-power electronic systems. It functions as a comprehensive solution for power-centric
design, offering a range of features aimed at measuring both dynamic and static power con-
sumption in electronic circuits. Leveraging sophisticated algorithms Power Compiler enables
engineers to systematically analyze, optimize, and manage power consumption throughout
the design process. Furthermore, it provides extensive power analysis capabilities, display-
ing power profiles and exposing potential optimization opportunities. Power Compiler aids
monitoring and achieving reductions in power consumption while preserving design integrity
and meeting performance requirements, thus facilitating the development of energy-efficient
electronic systems crucial for the Printed applications we tackle.

2.3 Machine Learning Applications

2.3.1 Machine Learning

Machine Learning is a branch of artificial intelligence that focuses on the development of
algorithms and statistical models that enable computers to learn from and make predictions
or decisions based on data, without being explicitly programmed for every task. The
overarching goal of machine learning is to enable systems to automatically improve their
performance on a given task through experience or exposure to data. This is typically
achieved by identifying patterns and relationships within the data, which are then used to
make predictions or decisions on new, unseen data. Machine learning algorithms can be
broadly categorized into three main types: supervised learning, unsupervised learning, and
reinforcement learning. Machine Learning applications are usually computation intensive
mostly consisting of Multiply-Accumulate and Comparison operations especially when
targeting MLPs, SMVs or DTs

2.3.2 Training and Inference

Training and Inference are two fundamental processes that occur during the lifecycle of a
model.
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Training

Training refers to the phase where the model learns from a dataset, typically consisting
of input-output pairs. During training, the model adjusts its internal parameters, such as
weights and biases in neural networks, based on the provided data in order to minimize a
predefined loss function. This process involves iteratively feeding the training data through
the model, computing the output, comparing it to the true labels, and updating the param-
eters using algorithms such as back propagation described in 2.3.1. Back propagation works
backwards from the output layer of the network, tuning the weights of neurons inside it with
the goal of minimizing loss 2.3.1.

aaf =0;y; where §; = g—ZE -0’ (net;) (2.3.1)
] J

The goal of training is to optimize the model’s performance on the training data, enabling it
to generalize well to unseen data, while avoiding pitfalls such as over fitting.
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Figure 2.3.1: Back Propagation Basis

Inference

Inference on the other hand, occurs after the model has been trained and involves using the
learned parameters to make predictions or decisions on new, unseen data. During inference,
the trained model takes input data and processes it to produce an output prediction or
decision, without further adjusting its parameters. Inference is the phase where the model’s
effectiveness and generalization capability are put to the test, as it encounters data that it
did not see during training. The performance of the model during inference is evaluated
based on various metrics, such as accuracy, precision, recall, or mean squared error,
depending on the specific task the model is designed for. Overall, training and inference are
complementary processes that together enable machine learning models to learn from data
and make useful predictions or decisions. Our work focuses and is evaluated on the inference
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of several machine learning models.

2.3.3 Classification and Regression

Classification and Regression are two of the most popular tasks in machine learning, and
the ones that we examined.

Classification

Classification involves predicting the class or category of an input based on its features. In
classification, the output variable is categorical, meaning it belongs to a finite set of predefined
classes. Common examples include spam email detection, image recognition, and sentiment
analysis.

Regression

In regression the output variable is numerical, allowing for a wide range of possible values.
Typical applications of regression include predicting house prices, stock prices, and temper-
ature forecasting.

Metrics

Both classification and regression involve training a model on labeled data, where the model
learns the underlying patterns and relationships between the input features and the output
variable. The performance of classification and regression models is evaluated using metrics
such as accuracy, precision, recall, F1-score (for classification), and mean squared error, mean
absolute error (for regression), among others, to assess how well the model generalizes to new,
unseen data. Both classification and regression models were used in the experimental section.

2.3.4 Examined models

1. Multi Layer Perceptrons (MLPs)

Multi Layer Perceptrons (MLPs) are a class of artificial neural networks widely used
in machine learning and pattern recognition tasks. They consist of multiple layers
of interconnected nodes, each layer comprising one or more neurons or units. The
architecture typically consists of an input layer, one or more hidden layers, and an
output layer. In our case, we used mostly models with one or two hidden layers, for
a few different applications. In MLPs, information flows forward from the input layer
through the hidden layers to the output layer, with each layer performing a series of
computations to transform the input data into meaningful output predictions. The key
feature of MLPs lies in their ability to learn complex non-linear relationships within the
data through backpropagation that occurs during training, where the network adjusts
its internal parameters (weights and biases) based on the difference between predicted
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and actual outputs.

Regarding the computations needed for an MLP, firstly the input data is fed into the
network through the input layer, where each node represents a feature or attribute
of the input. Then, the weighted sum of inputs is calculated at each neuron in the
subsequent hidden layers, followed by the application of an activation function to
introduce non-linearity and enable the network to model complex relationships. This
process is repeated for each layer, with the outputs of one layer serving as inputs to
the next. The following is the calculation of a single neuron within an MLP, where W
is the weight matrix, x in the input matrix, b is the bias of the neuron and f is the
activation function which can be relu, step function etc.

y = f(WxT + b) (2.3.2)

The output layer produces the network’s prediction based on the transformed represen-
tations learned through the hidden layers. It is evident that the prevailing computation
when calculating the output of the MLP is the weighted sums, including multiplications
and additions (MAC). These computations appear many times, since they are required
for all neurons, for all layers. Accelerators for such applications usually contain many
MAC units in order to speed up computation by calculation MAC oprations fast and in
parallel. Finally, throughout training the network’s parameters are iteratively adjusted
using optimization algorithms, where the error between predicted and actual outputs
is minimized by updating the weights and biases in a direction that reduces the loss

function.
Input Layer
.
A 4
Input Data— ~ Output
G
- n
- Output layer

Hidden Layers

Figure 2.3.2: Simple MLP architecture where Circles are the Neurons of the Model [1]
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2. Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are supervised learning models used for classification
and regression tasks. At their core, SVMs aim to find the optimal hyperplane that sepa-
rates different classes or groups in the input data space. This hyperplane is determined
by maximizing the margin, which represents the distance between the hyperplane and
the nearest data points of each class, known as support vectors. The key idea behind
SVMs is to transform the input data into a higher-dimensional feature space where
classes are more easily separable, typically achieved through the use of kernel functions.
These functions compute the dot product between pairs of data points in the higher-
dimensional space without explicitly mapping the data points into that space, thus
avoiding the computational burden associated with working in high dimensions. SVMs
then seek to find the hyperplane with the largest margin in this transformed space,
effectively minimizing the classification error and improving generalization performance.

Figure 2.3.3: Visualization of SVM Classifier [23]

The process for computing SVMs involves several steps. In the beginning the input
data is transformed into the higher-dimensional feature space using a kernel function,
such as the radial basis function or polynomial kernel. Then, the optimal hyperplane
that maximizes the margin between classes is determined by solving a constrained op-
timization problem, often using techniques such as quadratic programming or Lagrange
multipliers. This optimization process involves finding the support vectors, which are
the data points that lie closest to the decision boundary and thus have non-zero La-
grange multipliers. Once the optimal hyperplane is identified, new data points can be
classified by evaluating their position relative to the hyperplane in the transformed fea-
ture space. Even though it may seem different from MLPs, SVMs have quite similar
computation patterns to MLPs. Again, multiplication and addition of inputs, biases
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and weights takes over as the biggest percentage of the calculations, even more so than
the MLPs since there are no activation functions to be applied at the end of each node.
Below is the calculation required for a hyperplane, where w is the weight matrix, x the
input matrix and b the bias:

wTx + b (2.3.3)

In general SVMs offer several advantages, including the ability to handle high-
dimensional data, resistance to overfitting, and effectiveness in dealing with non-linear
decision boundaries through the use of appropriate kernel functions.

3. Decision Trees

Decision Trees are popular supervised learning models used for both classification and
regression tasks. They operate by recursively partitioning the input space into regions,
guided by feature values, in order to make predictions. At each internal node of the
tree, a decision is made based on the value of a specific feature, leading to one of several
possible branches corresponding to different feature values. This process continues until
a leaf node is reached, where a final prediction or decision is made. The key advantage
of Decision Trees lies in their interpretability and ability to handle both numerical and
categorical data. They can capture complex non-linear relationships within the data
and are robust to outliers but they are susceptible to overfitting, especially when the
trees are deep, which can be mitigated through techniques such as pruning or methods
like Random Forests.

The computation required to build Decision Trees involves recursively partitioning the
feature space based on the selected features. This process begins with the entire dataset
at the root node, where the algorithm evaluates different splitting criteria, such as Gini
impurity or entropy, to determine the best feature and value to split the data. This
splitting criterion aims to maximize the homogeneity of the target variable within each
resulting partition. Once a split is determined, the dataset is divided into subsets, and
the process is repeated recursively for each subset until certain stopping criteria are met,
such as reaching a maximum tree depth or having a minimum number of samples in each
leaf node. Finally, the tree is pruned to prevent overfitting and improve generalization
performance. During prediction, new data points traverse the tree, following the path
defined by their feature values, until they reach a leaf node, where the predicted output
is assigned based on the majority class or mean value of the training samples in that
leaf node. In the processor level, Decision Trees are almost exclusively comprised of
comparison operations.
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Figure 2.3.4: Binary DT schematic

2.4 Precision Scaling

Precision scaling is one of many approximation techniques [4], that involves adjusting the
precision of numerical representations to strike a balance between computational efficiency
and accuracy. In various fields such as digital signal processing, and mainly machine learning,
where accuracy can be considered as another knob and not strictly required at 100% like most
digital computation, precision scaling is usually employed to handle the tradeoff between
precision and computational resources. By reducing the number of significant bits used in
calculations, precision scaling techniques aim to optimize performance and memory usage
while sacrificing as little accuracy as possible. However, the process of scaling precision
inherently introduces approximation errors, as it involves truncating or rounding values.
These errors can propagate through subsequent calculations, potentially impacting the overall
accuracy of computational results. Thus, such changes are often paired with respective
analysis on total error introduced to a system or machine learning model, as well as with
overall gains in area, timing and power, since the hardware used for applications with scaled
precision are simpler and consume less energy since much less computing components are
required to accommodate the reduced precision.

The accuracy tradeoff inherent in precision scaling usually requires an understanding of the
specific requirements and constraints of the computational task at hand. Depending on the
task, there may be much or little room for accuracy loss. Consequently, the decision to employ
precision scaling involves a careful evaluation of the acceptable level of error tolerance within
the context of the application.
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It is common in machine learning applications to easily achieve high accuracy for simple, non-
critical problems, thus precision scaling can transform that excess accuracy to computational
efficiency. Additionally, real-time systems and compression tasks, inherently benefit from
reduced precision since they target low computation time, low memory footprint and thus
the accuracy becomes a secondary concern. Tasks where precision scaling does not apply as
favorably are safety-critical and accurate systems. For example, medical computing, scientific
simulations and numerical analysis, mostly tied to cryptography, necessitate high precision
and accuracy of result, despite the increased computational costs.
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Chapter 3

Bespoke Analysis and Hardware
Reduction

This chapter provides the workflow for the extraction of hardware specifications for the cores
including area, timing and power with the EDA tools. We perform an analysis on a Printed
Application Suite and present our process for measuring hardware utilization regarding our
needs and applications. We consider ROM overhead for each application. Finally, we prune
non-utilized hardware in the level of components and also in the architectural level, with the
information from the previous analysis.
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3.1 Examined Processors

The build flow and the application suite were tested with a variety of processors, all relatively
small, in order to fit the needs for printed electronics technologies. All of the cores are
evaluated on hardware characteristics based on our build-flow 3.2 and 2 of them were used
for application simulations.

Zero-riscy

Zero-riscy is a 32 bit 2-stage pipeline RISCV architecture and part of the Pulpino SoC, de-
veloped by ETH [28]|. The core can implement the RV32IMC ISA and is configurable with
the ability to remove extensions. The extensions can configure the core to synthesize with
16 registers in the register file instead of the standard 32, whether or not to include multi-
plication and division commands using a mult-div unit, and whether to support compressed
instructions. For this thesis we configured the core with the reduced register file, no inclusion
of compressed instructions and tested both with and without a mult-div instructions support.
Despite the minimal configurations, Zero-riscy is the biggest of the examined cores since its
the only one with multiple pipeline stages and relatively complex ISA. Figure 3.1.1 showcases
a block diagram of the core’s components and functionalities.
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Figure 3.1.1: Zero-riscy core diagram
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OMSP430

OpenMSP430[19] is a 16-bit single stage, low-power, register based microcontroller.
OMSP430 is also a highly configurable core, with options for including or excluding com-
ponents integrated in the core’s Verilog description files. The configuration files allow for
tweaking on all system peripherals like Clock Operation, Interrupts, DMA and Debugger
functionality, Memory Sizes, certain Functional blocks removal and ASIC-FPGA specific
configurations. We again use minimal configuration with the exception of the multiplier
unit which can severely decrease execution times in Multiplication-Heavy applications. Fig-
ure 3.1.2 displays an overview of the core’s components. Despite the low gate count and
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attempts at low power, OMSP430 can still be very large in area when synthesized with
EGFET technology as tested in [8].
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E P §
% Peripheral bus >
Execution Unit T I | I
Watchdog
Peripherals
DMA controller,
Debugger Bootloader,

Memory-BIST,

Figure 3.1.2: OpenMSP430 block diagram for core, capabilities and peripherals support [2]

ZPU _Small

ZPU _Small [21] is the small version of the configurable Zpu processor. It utilizes a stack-
based 32 bit ISA, that is also very restrained when considering functionality. This aims in
minimizing sequential components, and provides a good low resource solution for many of
the applications examined. ZPU _Small is the only one of the cores tested that is written in
VHDL instead of Verilog. A block diagram of ZPU _Small is shown in 3.1.3

TP-ISA

TP-ISA is an architecture designed in [8] with the intricacies of the EGFET technology and
the commonly used applications in mind. It is highly customizable in terms of architectural
characteristics such as PC size, BAR number and size, Pipeline Depth and Data Width, so
analyses are done also for different core configurations. Figure 3.1.4 displays the complete
ISA. It is a compact RISC architecture that minimizes complexity and use of sequential
components, in order to improve area and power consumption when targeting the EGFET
library.
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Figure 3.1.3: ZPU block diagram for core [16]

Instruction Format| 23 22 21 20 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0

M-Type: ape ode W C A B|R addressi 5 address2
ALDD OP-ADD 1 00 0R addressi 5 address2
ADC CP-ADD 1 140 0R addressl a address2
S8 OF-ADD 1 01 0R addressl 5 addres 2
CMP OP-ADD 001 0R address1 5 address2
sB8 CP-ADD 1 110R addressl 5 address2
AMD OF-AND 1 00 0R address1 5 address?
TEST OF-AND 000 0R address1 s address?
OR OPF-0OR i 00 0R address1 5 address2
XOR OP-X0R 1 00 0R address1 5 address2
NOT OF-HNOT 1 00 0R address1 5 address2
RL OF-RL 1 00 0R address1 5 address2
RLC OP-RL 1 10 0R addressl 5 address2
RR OF-RR 1 00 0R address1 5 address2
RRC OP-RR 1 140 0R addressl 5 address2
RRA OP-RR 1 01 0R addressl L address2

S-Type: opode | w | 300 | R address1 | immediate
STORE OP-5TORE 1 00 0R address1 immediate
SET-BAR OF-BAR 00 0 0x ptr address immediate

B-Type:| opeode | 4b0001 | R addressl | 410 bimask
BR OF-BR o0 01R addressl 0000 bmask
BRM OF-BR 00 1 1R address1 0000 bmask

Figure 3.1.4: The complete ISA of TP-ISA Core
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3.2 Processors Build Flow

The work implemented in this thesis consists mostly of measurements of hardware character-
istics through EDA tools, cross-compilers targeting the architectures of the cores examined,
netlist-rtl simulations of processors and digital design to alter and write new hardware. At
the center of the workflow lie the Synopsys Suite and the Modelsim simulator.

HDL files and Synopsys Compiler

Each core consists of a set of Hardware Description files, that the EDA tool will use along
with the standard cell library to produce meaningful information about the hardware. Some
of the tested cores can contain tens of files, scaling with the complexity of the core and the
number of the units within. Many changes were required in the Verilog code of several cores,
which is due to version mismatch with the tool, or in cases of unsupported operations when
building a netlist from rtl. Many standards may also need to be applied for designs that are
intended to run in simulations, such as timing information of units and proper description
of tasks that can happen in simulation, like loading a memory with values. Also, in cases
where a memory compiler or memory library is missing, memories cannot be built with the
base standard cell library, since this leads to prohibitive area and power outputs. We did
not compile memories for our experiments since a memory library is not provided for printed
technologies.

For measuring hardware characteristics, firstly we import the processors’ Verilog Description
code in Synopsys EDA. Synopsys functions are called using tcl scripts that are used to
tune environment parameters that relate to design constraints and general build guides,
manipulate the building process and report on outputs. Furthermore, tcl scripts contain
information about the structure of the processor’s files, so for more complex cores the process
requires more attention. Finally, with the core files, the parameter values, the script that
guides the build process and the technology dependent standard cell library, which in our
case is printed electronics EGFET, the relevant results are produced.

Cross-Compilers

Since we aim at running simulations of certain applications on the selected cores and strive
to extract information from the executions of these, a cross-compiler is essential. Cross-
Compilers allow the creation of an executable file based on an application written in high
level code (C code in our case), for a specific target architecture, that is different from the
machine running the compiler. The cross-compilers for OMSP430 and ZPUSmall, msp430-
gee-toolchain [26] and zpugcec|36] respectively, were build in Ubuntu 22.04 while the cross-
compiler for Pulpino, along with the simulation flow was built in a Ubuntu 16.04 Virtual
Machine since ri5cy-gnu-toolchain|30] and modelsim caused errors with newer OS versions.

With these compilers we are able to write any application in C code and have the compiler
produce executable or memory images, in the case of OMSP430, that can be used to realize an
application’s memory requirements and to run the applications in simulation. Applications
were rewritten for each core, taking into account the specifics of each core and compiler,
including architectural differences, like scaling the bitwidths of the applications for cores of
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different sizes, and functional differences. For example, the access to OMSP430 multiplier
unit is implemented in ¢ code by directly accessing the relevant registers to write inputs and
read results. When it comes to the TP-ISA core, there is no compiler available and thus
measurements were done mostly for hardware specifications and speedup estimations based
on standard assembly code.

Netlist-Rt]l Simulators

After having the rtl of the cores tuned to work with the tools and have the executable of
our application produced by the cross-compiler we can run the relevant rtl simulations, or
continue with the compilation of the rtl and run more accurate netlist simulations. For the
Pulpino rtl simulations we mainly used the Modelsim simulator since the rtl description and
testbench provided was tested to work directly with Modelsim. There are also makefiles
provided that make the total processes of building an app with the cross-compiler, running
the simulation and storing the output of the tracer module easier to perform, so this approach
was preferred. For OMSP430 we used Synopsys VCS for rtl simulations, so the processes
mentioned above were done manually.

A few tests were implemented with netlist simulation as well, yet netlist simulations take
much more time to execute compared to the higher level rtl simulations. Since our analysis
is focused on the commands executed, cycles required and execution time, the rtl simulation
is enough for these purposes, thus we mainly use Modelsim and Synopsys VCS for rtl simula-
tions. We specify that in all cases of simulations the memory was implemented in testbench
and not built directly.

Total Work-flow

The total workflow process for this chapter is shown in Figure 3.2.1. The process starts at
the Application Building, moving through the Synopsys Flow module that provides hard-
ware measurements and input for Hardware Reduction and Bespoke Analysis through the
simulations. The final outputs of the Hardware Reduction and Bespoke Analysis Module
are compared to the initial measurements of the first Synopsys Flow. The ROM Analysis
Module requires only the output from the cross-compiler to produce ROM Usage info.

Within each module, at the point were results have been produced, we develop a set of python
and bash scripts to extract the more specific information that interests us for each of the
different analyses that follow. Detailed explanations of the Analysis and Flow Modules is
provides in the following sections.

3.3 Cores and Application Suite Analysis

3.3.1 Base Cores Measurements

We first run the cores through the Hardware Analysis flow with Synopsys as described in 3.2.
Figure 3.3.1 contains a deeper look of the Synopsys Flow Module which was mainly used for
these measurements. The Synopsys Compilers require the modified Verilog description as well
as the EGFET Standard Cell Library, and produce our Base Hardware information. The VCS
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Figure 3.2.1: Total Workflow containing the Suite Analysis, Hardware Analysis and
Hardware Modification Setup
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Simulator similarly requires the same inputs as the Synopsys Compilers, with the addition of
the executable of the application to be run. It produces the cycle accurate execution traces
and these outputs are directly fed into the next Module for Reduction Analysis.
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Figure 3.3.1: Detailed view of Synopsys Flow module

Plot 3.3.2 contains the base area and power measurements for Zero-riscy, OMSP430 and
ZPU _Small. There are also measurements with and without the multiplier unit for the 2
cores that have Multipliers in their kits. Plot 3.3.3 shows timing details for the synthesized
cores, allowing for a view in the possibility for increasing the clock without an area overhead.
We observe that the max clock remains the same for designs with and without clock, which
indicates that the multiplier unit in both cases is not on the critical path and thus does
not restrict the timing period. Also, ZPU Small appears to have the biggest margin for
improvement, being the smallest of the three and able to reach 71Hz clock.

Next we measure the overhead of each of the basic functional units for the Zero-riscy and
OMPS430 since they are the bigger cores and the ones that we simulate. The main blocks
are Instruction Fetch, Instruction Decode and Controller together and the Execution Unit.
Since the Multiplier Unit and Register File may be contained in other units, they are shown

50



3.3. Cores and Application Suite Analysis

Base Area and Power Metrics

300 +

250 4

200 +

150 4

Area(cm?)/Power(mW)

100

Cores
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as separate percentages. Measurements are displayed in Figure 3.3.4 for designs with and
without a multiplier.
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Figure 3.3.4: Component Percentages for Zero-riscy and OMSP430

The 2 smaller cores were not included in this hierarchical percentage analysis of components
since their base components are merged to one or two large files, making it hard to distinguish
where each logic part belongs. For the cores shown, the remaining percentages up to 100%
of utilization are attributed mostly to logic that is not in some of the main components or
logic from merged components.

For OMSP430 the Register file consumes more than a third of the area and power resources,
while for Zero-riscy it is between 20-30%, even when considering that we used the RV32E
architecture, that reduces the register file in half. Even with relatively small Register files,
the EGFET technology heavily punishes the use of sequential components. The Multipliers
introduce a 20-25% area and power overhead so it is definitely worth examining the tradeoff
this with the reduced execution time offered by the base core.

Finally, we explore the hardware characteristics’ sensitivity to the TP-ISA different config-
urations. The knobs that where used to produce the configurations are Datawidth, number
of BARs and PC size. Pipeline Depth was also an available knob but since sequential com-
ponents have a prohibitive cost in the EGFET technology, as shown in [8], we explore only
single-stage pipeline configurations. Figure 3.3.5, 3.3.6, 3.3.7, 3.3.8 show the results in com-
parison.

Area and Power scale almost linearly for all configurations. Changes in DATAWIDTH and
PC_WIDTH cause steep changes to area and power while BARs are less effective. Timing is
also mostly dependent on DATAWIDTH, degrading rapidly with each doubling. The knobs
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chosen for the configurations play a massive role in gains, since the smallest of the designs
takes up almost 3x less space, 3x lower power consumption and has a 24% faster clock.

3.3.2 TestSuite Analysis

Since the setup for simulations was implemented for Pulpino and OMSP430, we evaluate
these cores and workflows with a suite of printed applications also used in [8]. Table 3.1
contains the description for each of the applications. The suite is mostly comprised of common
kernels/applications that are standard in printed applications [33], [8] and additionally a small
Multi-Layer Perceptron and Decision Tree.

Table 3.1: Benchmark Descriptions

Benchmarks | Description
mult Unsigned integer multiplication
div Unsigned integer division
inSort In-place Insertion Sort on array of size 16
intAvg Signed integer average on array of size 16
cre8 Cyclic Redundancy Code for 16 byte array
tHold Digital Threshold Detector on array of size
16 with hardcoded threshold
MLP MLP with 3 Layers of size 4, 10 and 4 with
relu activation function, run for 1 Inference
DTree DTree of Depth 2 with hardcoded compare
values, run for 1 Inference

Each of the apps was evaluated with the workflow described in 3.2 for multiplier and standard
cores. It is important to evaluate these separately for designs with and without a multiplier
since that heavily changes the execution time and assembly code produced for the application.
Figure 3.3.9 shows the execution times of the 2 cores for each application.

OMSP430 performs consistently worse than the Zero-riscy core, due to a slower clock. We
can also see that for multiplication intensive applications such as the mlp, inclusion of a
Multiplier Unit drastically reduces execution times.

3.3.3 ROM Analysis

Using the memory design for printed microprocessors developed in [8] we can calculate the
hardware overhead that is inserted with ROM because of program size. The library itself
is not available, but the hardware characteristics of each cell are given in the paper. We
calculate the overhead of the 1-bit ROM as shown in 3.3.1, where Corepy, is each core’s
DataWidth, Instr is the number of instructions in the program memory for the application,
Cellsp is the active power of a 1 bit ROM cell in the EGFET memory library and Cellgp is
the static power of a 1 bit ROM cell in the EGFET memory library.

55



Chapter 3. Bespoke Analysis and Hardware Reduction

Execution Time of Different Functions for Various Configurations

EEE Zeroriscy noMul

EEm Zeroriscy + Mul

mmm OMSP430 noMult
dTree == OMSP430 + Mult

mip

tHold

arc8

Applications

intAvg

insort

mult

0 250 500 750 1000 1250 1500 1750 2000
Execution Time (Ex)

Figure 3.3.9: Execution times of Apps for the tested cores with and without a Mult Unit

ROM ppeq = Corepy * Instr x Cell greq

3.3.1
ROMpyyer = Corepy x Instr x (Cellap + Cellgp) ( )

The analysis of ROM sizes requires only the second stage of the build flow, namely, it requires
writing the C code for each processor and the production of the program memory from the
cross-compiler. Figure 3.3.10 illustrates this, showing the exact inputs and steps to get to
the usage results.

We show measurements for the standard 2 cores and additionally for the ZPU Small, since
we have access to the zpugcc compiler we rewrite the applications for this as well and give the
executable as input to the described flow. We also analyse for lack of multiplier units, since
this can have a great effect in the program memory, as mentioned in the previous section.
This means that we configure the cross-compiler to not use multiplier commands and re-
do the flow to compare. Number of instructions per benchmark are shown in Table 3.2.
Using 3.3.1 we extract Area overhead and Power consumption of ROM cells for all instances,
displayed in Figure 3.3.11. For the more complex benchmarks and especially without a Mult
Unit, we see that the ROM overheads can even become comparable to those of the core itself.

Overall, ZPU _Small and Zero-riscy have larger and more power hungry ROMs. Even though
the number of instructions can be comparable in many benchmarks, OMSP430 is a 16 bit
processor while ZPU Small and Zero-riscy are 32-bit, thus requiring double the ROM cells
per instruction. It is also shown, that benchmarks that do not use mult/div instructions like
inSort, intAvg, cre8, tHold and dTree receive no benefits from using a configuration with a
Multiplier unit.
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Figure 3.3.10: Detailed view of ROM Analysis module
Table 3.2: Instructions per Benchmark in each Processor
Processor Benchmark
mul | div | inSort | intAvg | crc8 | tHold | mlp | dTree

OMSP430 noMult | 48 64 97 51 78 49 310 | 48
OMSP430 21 64 97 51 78 49 307 | 48
Zeroriscy noMult | 19 o6 | 137 39 573 | 103 679 | 29
Zeroriscy 13 13 | 137 39 573 | 103 453 | 29
ZPU _Small 31 31 187 108 178 110 520 88
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As seen in Figure 3.3.11 for Zero-riscy, ROM overhead is much improved when extending to
RV32M ISA including Multiply operations, both in simple mult and div, but especially for the
mlp. This is because the compiler does not need to include the base function for multiplying
using simple logical operations and shifts, instead using only the mult/div command. In
contrast we can also see that the ROM size for OMSP430 improves only marginally with
inclusion of a Multiplier unit like Zero-riscy. We observe that this is due to the msp430-gcc-
toolchain unrolling the computations of the mlp neuron for loops. Since the access to the
OMSP430 Multiplier happens by accessing specific registers and not with a standard "mul"
command, the compiler can decide to instead unroll the code.

3.4 Coarse and Fine Grain Hardware Reduction

In order to begin optimizing the cores by reducing hardware we first need information about
the commands executed by the core when running the application suite that we target. Using
the build flow described in 3.2 for the Pulpino and OMSP430 cores, we produce both the
assembly code and the traces required for extracting the needed information.

For the methods that follow, we can see that each core may receive more significant im-
provements from a method while the other does not. This, of course, is due to the different
modules described in hardware, different architectures and the way each cross-compiler pro-
duces assembly code and utilizes the hardware.

The basis for this whole analysis is the Hardware Reduction Module, shown in Figure 3.4.1.

With the outputs of the previous module’s traces, we can use each processors ISA to extract
information about the utilization of each of the core’s components and functionalities. Once
these are recognized we modify the verilog descriptions accordingly and feed them back to
Synopsys. A big part of this module is the hardware measurements part, also utilized in the
Synopsys Flow Module. Finally the outputs of the 2 modules can be compared to produce
the improvements offered by the total flow. Moving on, we present each of the removing
processes in detail.

3.4.1 Module Removal

Locating and removing hardware at the component level of the core is the first step at
receiving significant area and power gains. A module can serve several functionalities and
commands of the cores, so we need to make sure that if none are needed in our application
suite, we completely remove the module from the design. Some of the basic functionalities
such as Fetch-Decode, Arithmetic-Logical operations, Register File and Clock functionality,
if they exist as parts of modules, we can immediately conclude that these cannot be removed
and so we continue by examining the remaining components.

OMSP430

For the OMSP430 core, the control for included and excluded components is configured via a
verilog defines file, making the removal process simple. We firstly conclude that the Frontend,
Execution Unit and Basic Clock Module components are needed for the operation of the core,
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since all of them contain one or more of the basic functionalities mentioned in 3.4.1. In this
particular core, there is a module responsible for communication with program and data
memory, the Memory Backbone, which is needed for reading commands and data and is thus
also needed.

After looking at the produced code by the cross-compiler, we can eliminate components
from the unused functionalities. Firstly, we do not request any debugging operations, nor
use any external communication protocols (the supported were UART and 12C) in our C
code, which is also reflected in the final assembly. We also observe that the code does not
include initialization and use of NMIs or Watchdog utilities during execution of any of the
applications. Additionally, neither the C code nor the assembly code contain any commands
that indicate need for DMA support.

With all of the above in mind we continue by undefining the Serial Debug Interface, Watch-
dog, all the extra clock options from the Basic Clock Module and the DMA option for the
Memory Backbone module. We run the application suite 2 times, with and without the
removal of the 16x16 Multiplier peripheral, in order to gather results and compare both
implementations both on the hardware and software side which we analyse later.

Zero-riscy

For the Zero-riscy core, components need to be excluded manually, within the verilog descrip-
tion of the core, which requires more attention to the management of signals and maintaining
functional equivalence of the rest of the core. In this case the high-level Execution, Fetch,
Decode and Load-Store blocks include the essential functionalities for operation and thus are
not considered for removal.

In similar fashion to the OMSP430 analysis, there are no debugging commands used in any
of the applications, nor are there need for interrupts. Additionally, we did not intend on
using any of the compressed commands, so they were disabled in the cross-compiler options
and of course not used in the final assembly. For No further modules could be removed since
many applications used direct control registers operations and the rest of the modules were
all needed for greater modules to operate properly.

In the end, we remove the Debug Unit, Interrupt Controller and Compressed Decoder Units.
After manually removing these units we rerun the applications to check for functional equiv-
alence of the core. For the multipliers, the Pulpino has 2 implementations of Multipliers, a
Slow and a Fast one. We only consider designs that implement either the Fast Multiplier or
that implement no Multiplier, to realise the area-latency tradeoff.

The benefits both from the undefines of OMSP430 and from the changes on Zero-riscy are
shown in Table 3.3 where R is reduced.

3.4.2 Unused Commands

The next step in hardware removal is locating the commands that are not used in our appli-
cations and removing the associated hardware.
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Table 3.3: Comparison of Baseline and module reduced implementations

‘ Cores ‘ Area ‘ Power ‘ Max Timing ‘ Synthesized Timing
Zeroriscy 67.53 | 291.21 14.49 5.91
Zeroriscy R 61.82 | 264.31 14.59 5.91
Zeroriscy noMul 49.36 | 220.33 14.49 5.91
Zeroriscy noMul R | 43.08 | 190.98 14.87 5.91
OMSP430 50.44 | 205.22 4.25 4.07
OMSP430 R 33.21 | 132.31 4.94 4.07
OMSP430 noMul 42.30 | 177.30 4.25 4.07
OMSP430 noMul R | 25.07 | 104.19 4.94 4.07

For locating the commands we used the complete instruction set of each core and created
a parser script for each one. These scripts receive as inputs the Instruction Set and the
output of the tracer and output all the commands that were not found in the tracer from
the Instruction Set as well as their type. We then call the script for all tracer files of our
applications and get the complete list of unused commands for all of them. We can then look
at the output and remove the commands one by one from the core.

The removal is a more complex process than simple module removal because it requires
removing specific hardware in the Decoder module that recognizes when the command arrives
and hardware in the Execution block that computes the command and communicates with
the registers. Since many commands can reuse the same resources in a core, it is common
that finding an unused commands can lead to no gain if the same resource is also occupied
by a used command.

Zero-riscy

For the Zero-riscy core, we extract the unused commands with the method explained above,
and we follow up by checking which of them can lead to reduction in hardware, mainly from
the Decode and Execute blocks of the design. After this we have our final set of removable
operations mentioned in Table 3.4, showing the type and the specific instructions.

Table 3.4: Zero-riscy Unused Commands

Type Instructions

Set Less Than slt, sltu, sltiu

Control Status Register  csrrs, csrre, csrrwi, csrrsi, csrrei
Multiplication High Byte mulh, mulhu, mulhsu

System Calls ecall, ebreak, wfi

In Figure 3.4.2 we report the area, power and timing improvements, where Pulpino Reduced
ISA is the core with the removed instructions. Area and Power gains are very small, between
1% and 2% and no timing gains.
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OMSP430

For the OMSP430 after extracting the unused commands for all the applications, we discover
that most of them reuse the hardware of useful commands, as described above. This means
that this approach does not produce meaningful gains for this particular application set. This
however does not mean that finer levels of analysis cannot provide important improvements,
as we well see in the following section.

3.4.3 Architectural Components

Since we now have the unused instructions per application and the basic instructions dat-
apath responsible for them removed, we can continue by reducing the finer architectural
components needed for each application. This subsection looks into the utilization of three
basic architectural components:

1. Architectural Flags of the Status Register, where these exist
2. Number of Architectural Registers
3. Program Counter and Base Address Register size

This aims in seeing how tailoring the core to specific needs of each application can bring gains
to our design. As mentioned in [8], registers in the EGFET printed technology library have
a very significant cost for area and power compared to combinational circuits. This makes
the choice of architectural components a good one, since all of them are implemented with
registers and any excess sequential logic comes with a substantial overhead.

The removal and gains from this kind of tailoring is also examined in [8] for their specific

TP-ISA core.

Architectural Flags of the Status Register

Architectural flags represent specific settings or indicators within a processor that govern
its behavior or configuration. These flags serve as binary markers or variables that inform
the processor about certain conditions or modes of operation, influencing its execution flow
and outcomes. They are pivotal components of microarchitectures, providing mechanisms
for tasks such as conditional branching, data manipulation, system state management and
arithmetic/logical operations.

e For this stage, the Pulpino core remains unchanged since it is of RISCV architecture.
The ISA of RISCV processors does not contain architectural flags and there is no gain
here.

e As mentioned in the previous section, the OMSP430 had no unused commands for
the whole set of applications, so this analysis is done per application. The OMSP430
architecture contains 4 flags in the Status Register:

— Z flag: Is set to 1 when the result of a byte or word operation is 0 and cleared when
the result is not 0
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— V flag: Is set to 1 when the result of an arithmetic operation overflows the signed-

variable range

— N flag: Is set to 1 when the result of a byte or word operation is negative and cleared

when the result is not negative

— C flag: Is set to 1 when the result of a byte or word operation produced a carry and

cleared when no carry occurred

After examining the ISA we create a document that contains the relations of each in-
struction to each architectural flag and modify the python script that locates the unused
commands to finally produce the removable architectural flags. Table 3.5 shows the un-
used architectural flags per application tested, with and without use of a multiplier,
where Baseline is the standard number of flags in the core and AllApps is the flags
needed to be able to run all the apps in the suite. Table 3.6 presents the area and power
overhead of each the removable flags when referring to each application.

Table 3.5: OMSP430 Architectural Flags Usage per Application

Application Required flags
Baseline 4(Z, V, N, C)
AllApps 4

mult 4

div 3(no Z flag)
inSort 3(no V flag)
intAvg 4

cre8 4
tHold 4

mlp 3(no Z flag)
dTree 4
AllApps w/ Mult Unit 4

mult w/ Mult Unit 4

mlp w/ Mult Unit 3(no Z flag)

Table 3.6: OMSP430 Architectural Flags Area and Power Overhead

‘ Flag Removed ‘ Area gain(cm?2) ‘ Power gain(mW) ‘

| Z | 0.09

| 0.4 |

| \% | 0.11

| 0.06 |

The results derived from Table 3.6 show reductions that equate to 0.4% of the total area
and power, which is too small of a benefit for these bigger cores. In comparison, smaller
cores like TP-ISA [8] tend to benefit a lot more from such small changes.
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Number of Architectural Registers

Architectural registers constitute a crucial component of a processor’s internal structure,
serving as storage elements directly specified by the processor’s ISA. These registers facilitate
the execution of instructions and managing the processor’s state during program execution.
Architectural registers typically encompass various types, including general-purpose registers,
which hold operands and intermediate results during computation, and specialized registers
such as program counters, instruction registers, and status registers. Architectural registers
play a critical role in coordinating the cycle of the processor, facilitating efficient instruction
execution and ensuring the proper handling of program flow and system state transitions.

e The Zero-riscy core uses specifically the RISCV32E ISA, which means that due to the
specialized registers, we cannot have designs with less than 5 architectural registers, or
we run into errors. Again we modify the python script to parse the tracer file and output
all the needed registers for each application. Table 3.7 contains the needed registers for
each application to run.

Table 3.7: Pulpino Number of Required Registers per Application

‘ Application # of required Registers ‘
Baseline 15
AllApps 14
mult 7
div 10
inSort 14
intAvg 7
cre8 8
tHold 8
mlp 12
dTree 8
AllApps w/ Mult Unit 14
mult w/ Mult Unit 6
div w/ Mult Unit 6
mlp w/ Mult Unit 14

We continue by removing the registers from HW and measuring the improvements. First
we measure the gains for the mult application, by dropping the number of registers from
15 to 7. We also measure gains from dropping all register’s Data Width to half, from
32-16, since none of our applications required 32 bit accuracy. The results are shown in
Table 3.8.

e The OMSP430 core again contains 16 registers, out of which 4 are special purpose and
12 are general purpose, meaning we cannot have less than 5 registers needed for an
application.

With a similar methodology we extract the registers as shown in Table 3.9. For the
register removal, we test gains from removing a single GPR and from reducing the data
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Table 3.8: Pulpino Gains from Register removal

‘ ‘ Area gain(cm?2) ‘ Power Gain(mW) ‘
| 15 to 7 Registers | 7.41 | 32.36 |
| 32 to 16 Data Width | 10.95 | 44.57 |

width of all GPRs by one. Results are shown in Table 3.10.

Table 3.9: OMSP430 Aprdudc xotoywpent®dy YEVIX0) OXOTO) Vol EQUPUOYT

Application # of required Registers ‘

Baseline 15
AllApps 10
mult

div

inSort

intAvg

crc8

tHold

mlp

dTree

AllApps w/ Mult Unit
mult w/ Mult Unit
mlp w/ Mult Unit

—_
S o oo 1w

© O © Ut

Table 3.10: OMSP430 Gains from Register removal

‘ ‘ Area gain(cm?2) ‘ Power Gain(mW) ‘
‘ GPR Removal ‘ 1.27 ‘ 5.31 ‘
| 16 to 15 Data Width | 1.59 | 6.78 |

67



Chapter 3. Bespoke Analysis and Hardware Reduction

Program Counter and Base Address Register Size

The PC and BAR are important specific architectural registers with the purpose of addressing
memory spaces. The PC is used to address the program memory and is the placeholder for
the next instruction that is to be fetched, decoded and executed. On the contrary, the BAR
addresses the data memory and IO spaces. Since we do not use other 10 for either of the 2
cores when running these applications, the BAR is used to only address the Data Memory.

We can extract the amount that we can to reduce the PC by examining the size of the
program memory of each application, which is produced after we compile the code. If the
program memory contains N words then out PC need only be 2V bits in order to address
it. The same holds for the BAR when it comes to addressing the data memory. We create
scripts that take the memory images, produced by cross-compiling, as input and generate
the required bitwidth for addressing. Table 3.11 contains the minimum bitwidths for both
processors and all applications.

For area and power gain we examine the PC in the case of the mult app that in both cases
requires 5 bits for addressing the program memory. The improvements are shown in Table
3.12 In many cases for both processors, some applications do not require any space in data
memory, this is shown in the table with a dash.

Table 3.11: Required bits for Memory Addressing

Application Pulpino PC Pulpino BAR OMSP430 PC OMSP430 BAR
Baseline 32 32 16 10
AllApps 10 8 9 8
mult 5 - ) -
div 7 - 5) -
inSort 8 7 )
intAvg 7 6 -
cre8 7 - 7 -
tHold 10 5 6 5
mlp 10 8 9 8
dTree D - 6 -
AllApps w/ Mult Unit 10 8 9 8
mult w/ Mult Unit - 5 -

div w/ Mult Unit
mlp w/ Mult Unit

e
oo
© 1
oo

Table 3.12: Gains from reduced memory addressing

‘ Area gain(cm2) Power Gain(mW) ‘
‘ Puplino PC Drop from 32 to 5 5.31 24.89 ‘
‘ OMSP430 PC Drop from 16 to 5 2 6 ‘
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Chapter 4

Machine Learning Acceleration Units

In this chapter we present the computing units that target the performance of our cores
when handling ML workloads. We discuss design choices for the neural operations unit. We
present the work regarding the application of precision scaling on these units and a few design
remarks.
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4.1 Neural Operation Accelerator

As mentioned in the theoretical background, MLPs and SVMs are dominated by Multiply-
Accumulate operations, that require multiplication of partial products, addition of a bias
and addition to a total accumulator value. Accelerators for such operations often contain
several MAC units that efficiently compute such operations. In a standard processor, one
MAC operation would take at least 2 cycles to execute if the processor contains a one-cycle
multiplier and several more cycles for other cases. Furthermore, full multipliers tend to
be very power hungry and occupy a lot of area, so it is evident that improvements in this
operation can cause major impact in circuit characteristics.

4.1.1 Design of Neural Unit

The accelerator unit was implemented in Verilog HDL and attached to each of the tested
cores, being added in the ISA as commands, accessed through the decoder. The unit has an
internal signal for accumulation and implements essentially 2 functionalities; executing the
MAC operation with the result being stored back to the accumulator (Equations 4.1.1, where
inp 1 is the input sample and inp 2 is the weight of the model) and resetting the accu-
mulator /loading the new bias (Equation 4.1.2, where the bias is given in inp 2). Inside the
unit, the accumulated value for the current neuron is always stored with dedicated registers
inside the unit. The 1st operation takes as input 2 integers, performs multiplication, adds
the result to the value that the accumulator registers hold currently and stores the result
in the accumulator registers within the unit, in a single cycle. The 2nd operation takes as
input 1 integer, clears all the accumulated contents and sets the integer as a new bias for the
calculation of the next neuron, in one cycle.

accum = (inp lxwnp 2)+ accum
(inp_1xinp_2) (4.1.1)

accum = inp 2
b (4.1.2)

When testing for the results we print the outputs of the core and check for erroneous cal-
culation. When running the unit with RV32M ISA included, we observe that the assembly
from the ribcy-gnu-toolchain compiler includes div instructions in the routine for printing
the output and since we replace the mult-div unit with our new accelerator unit, we receive
trash characters in the standard output. For testing purposes only, since the actual core
applications do not use the uart functionality, we include a small module that implements
division when it is needed for printing the output and debugging as shown in Figure 4.1.1
The division unit is removed for actual hardware measurements and measuring true program
size and execution cycles.

We characterized the baseline cores and the neural unit and the core designs for the Zero-riscy
and TP-ISA core using the Synopsys EDA toolflow with the EGFET standard cell library
in order to extract information about area, power and timing and compare to baseline. In
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the cases that we had no multiplier previously, we expect to have a new overhead in the
above metrics, caused by the insertion of additional hardware and in the cases where a unit
is replaced to insert our new accelerator, we present the respective trade-offs.

4.1.2 MAC execution on cores
Zero-riscy Core

The Zero-riscy core, implements RV32M ISA and instructions include multiplication and divi-
sion related instructions directly with the use of a 4-stage multiplication-division unit. There
is also the option for not use of a multiplier unit which conserves power, area and timing but
has greatly increases the execution time for workloads that are heavy on multiplication or di-
vision operations. The new unit was integrated in the place of the old multiplication /division
unit and thus accessed through the multiplication and division commands in the software.
The reset/bias setting is tied to the division command and the single stage MAC operation
is tied to the multiplication command, since none of the original multiplication and division
commands are needed for the calculation of our models.

Since the old multiplication and division commands were multicycle commands and caused
the core to stall, additional changes to the core’s HDL files were necessary in order to achieve
a true one cycle MAC execution. The Instruction Fetch, Instruction Decode and Execution
Block modules were modified in order to prevent the processor stall and start fetching the
next command immediately in the following cycle. Additional modification of relevant control
signals was also performed.

TP-ISA Core

The leading printed processor TP-ISA is a single cycle, configurable bitwidth core that does
not contain a multiplication unit. As mentioned, this does conserve area and power from the
design, but causes the execution cycles to skyrocket for applications heavy on the multiplica-
tion and increases the program memory that now needs to contain the code for multiplication
using basic addition and shifting operations. The accelerator unit was implemented as a new
command, performing operations similarly to the Pulpino implementation. The ISA of the
core has space for encoding a test instruction, so with the appropriate modifications to the
decoder and alu modules, the new command is recognised and usable.

4.2 Precision Scaling of Neural Units

Since our focus is to reduce execution time and consumption for a printed processor that
calculates the computations of a ML model, we explore the tradeoff between the model’s
accuracy and the speedup in computations. When using basic precision scaling for the units,
meaning that we replace each unit with a similar version, scaled down, we can expect power,
area and possible timing savings, but not reduction in cycles needed for execution, since
the code executed remains unchanged, only decreasing the bit precision. To tackle this, we
take advantage of the full bit-width of the Zero-riscy core and multiplex the 32-bit size to fit
multiple MAC operations of lower precision.
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The base neural units contained a 32x32 bit Multiplier along with a 32 bit accumulator where
the partial products are added for a neuron. We develop scaled down versions containing
16x16, 8x8 and 4x4 MAC units. This allows for simultaneous calculation of 2, 4 and 8 partial
products in one cycle of operation. 4.2.1

In detail, the scaled down 16x16 units receive as input the two 32bit registers rl and r2,
but now instead of containing one 32bit parameter each, they contain two 16bit each. The
unit contains two 16x16 Multipliers that execute the calculations and store the output to the
accumulation register as shown below:

= (r1[7
acce = (rl[l
= (r1]

accy 2 0] % 72[7 : 0]) + accey;

5: 8] % 1r2[15 : 8]) + acces;

accs = (r1]23 : 16] * 2[23 : 16]) + accs; (4.2.1)
accy = (r1[31 : 24] * r2[31 : 24]) + accy;

accum = accy + accs + accy + accy;

Figure 4.2.1 showcases the schematic of the 32x32 bit unit with 8 bit precision scaling.

Compute Unit 8-bit PS

en —p

clk —

rst n —p

op_a

op_b

A
s _

Figure 4.2.1: Overview of the 8 bit precision scaling unit

With the 16x16 design, it is evident that a neuron’s value from partial products and accu-
mulation can be calculated in half the cycles. The further scaled 8x8 and 4x4 units work
similarly, with the exception of more MAC units and that the 32 bit registers hold even
double the parameters. This approach requires an operation between layers of the network
that reorganizes the previous layer exits to the format of the registers that we describe above.
The operation is a concatenation in order to bring 2 two neuron outputs in one register and
have the units work as mentioned.
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Chapter 5

Experiments and Results

In this chapter we present the experiment setup and methodology, and the results for our
cores and units when running the targeted workloads. We measure area, power and timing
for hardware and the respective execution time and cycles of the targeted apps, and compare
our proposed changes to the baseline processors.
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5.1 Models Tested

The Neural acceleration unit was evaluated from 3 datasets for MLP and SVM. We tested for
both classification and regression tasks in each model for each dataset [15]. The presentation
and analysis of the models considers the base 32x32 MAC unit.

5.1.1 RedWine

This dataset is related to red wine samples from the north of Portugal. The goal is to model
wine quality based on 11 features regarding physicochemical tests. This application greatly
suits the benefits of printed technologies. The flexibility of the substrate, the low-cost and
disposability allow for printed processors to be applied to wine bottles and predict the wine’s
quality.

MLP

The RedWine MLP Classifier consists of 2 fully connected layers with 2 input neurons and 6
output neurons, using relu as activation function for each neuron. This means that for a single
sample of 11 features there are 34 MAC operations (34 multiplications and 34 accumulations)
and 8 bias loads. For reference, standard Zero-riscy with multiplier requires 8 bias loads of
1 cycle, 34 multiplications of 4 cycles and 34 accumulations of 1 cycle, totaling 170 cycles.
Comparing to our mac unit, it would require 8 bias loads of 1 cycle and 34 MAC operations
of 1 cycle, totaling 42 cycles on neural operations.

The RedWine MLP Regressor consists of 2 fully connected layers with 2 input neurons and
1 output neuron, using relu as activation function for each neuron. So for 1 sample of 11
features the whole model performs 26 MAC operations and 3 bias loads.

SVM

For the calculation of the SVM Classifier it is required to calculate 15 sets of loading a
bias and perform 11 MAC operations (as many as the features) for each inference input,
to produce a classification result. This comes to 15 bias loads and 165 MAC operations,
severely more than the MLP counterpart. This of course, coupled with the lack of needing
to additionally calculate the relu activation functions, indicates a bigger room for speedup
by optimizing MAC operations. Respectively, the Zero-riscy with multiplier requires a total
of 840 cycles while our unit requires just 180 for neural operations.

The SVM regressor is a much smaller model, where instead of calculating 15 sets of feature
MAC operations, we only calculate a single set of 1 bias load and 11 MAC operations, one for
each feature. Since it is not as MAC dense, we would expect a smaller speedup, comparatively
to the classifier.

5.1.2 WhiteWine

Similarly to the RedWine dataset, this dataset is also related to white wine samples from the
north of Potrugal and the task is to model wine quality based on 11 features. This is also a
well suited application for printed electronics, for the reasons mentioned previously.
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MLP

The WhiteWine MLP Classifier consists of 2 fully connected layers with 4 input neurons and
7 output neurons, using relu as activation function for each neuron. So for a single sample
of 11 features there are 72 MAC operations (72 multiplications and 72 accumulations) and
11 bias loads.

The WhiteWine MLP Regressor consists of 2 fully connected layers with 4 input neurons and
1 output neuron, using relu as activation function for each neuron. So for a single sample of
11 features there are 48 MAC operations and 5 bias loads.

SVM

For the calculation of the SVM Classifier it is now required to calculate 21 sets of loading
a bias and perform 11 MAC operations for each inference input. This comes to 21 bias
loads and 231 MAC operations, again more demanding than the MLP counterpart. This also
indicates an increase in the complexity of the whitewine model compared to redwine, since
the weights, biases and required calculations have increased.

Similarly to the RedWine dataset, for the Whitewine SVM regressor we only need to calculate
a single set of 1 bias load and 11 MAC operations, one for each feature.

5.1.3 Cardio

The dataset consists of measurements of fetal heart rate (FHR) and uterine contraction (UC)
features on cardiotocograms classified by expert obstetricians. The fetal cardiotocograms
(CTGs) were automatically processed and the respective diagnostic features measured. The
CTGs were also classified by three expert obstetricians and a consensus classification label
assigned to each of them. Classification was both with respect to a morphologic pattern (A,
B, C. ...) and to a fetal state (N, S, P). The goal is to predict the fetal state based on 21
features from relevant measurements.

MLP

The Cardio MLP Classifier consists of 2 fully connected layers with 3 input neurons and 3
output neurons, using relu as activation function for each neuron. So for a single sample of
21 features there are 72 MAC operations (72 multiplications and 72 accumulations) and 6
bias loads.

The Cardio MLP Regressor consists of 2 fully connected layers with 3 input neurons and 1
output neuron, using relu as activation function for each neuron. So for a single sample of
21 features there are 66 MAC operations and 4 bias loads.

SVM

For the calculation of the SVM Classifier it is now required to calculate 3 sets of loading a
bias and perform 21 MAC operations for each inference input, totaling 3 bias loads and 63
MAC operations, this time less demanding than the MLP counterpart.
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Similarly to the RedWine dataset, for the Whitewine SVM regressor we only need to calculate
a single set of 1 bias load and 11 MAC operations, one for each feature.

5.2 Setup

Figure 5.2.1 shows the complete flow for evaluating the units and the precision scaling tech-
nique with the MLP and SVM datasets chosen.
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Figure 5.2.1: Experimental Setup

Simulation Environment

The whole environment for running the experiments and evaluating results was set up in
Ubuntu 16.04 in a QEMU VM, in order to support all the tools needed, since some required
old software versions. We use Modelsim-Intel HDL Simulator to perform rtl simulations of
the whole pulpino SoC executing the models. For compiling the applications we setup the
riScy-gnu-toolchain from the pulp repository and configure it for the zero-riscy architecture.
This compiler also provides the corresponding assembly code.

All the models and applications were written in software ¢ code for the baseline and the
modified pulpino core version containing the customized commands that utilize the new
accelerator units. We use the built in hardware tracer to extract exact timings, cycles and
commands executed by the core when running the app. Since we have the assembly code
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and the execution traces, we develop python scripts that compute the exact number of
cycles by extracting the application commands part from the assembly code and locating the
corresponding ones in the traces.

We explored the option of using hardcoded weights to minimise accesses to RAM. This would
cause the code to not be able to be rolled into loops, thus creating prohibited program size
for most of the large models. In the end the weights were stored into RAM in order to
drastically reduce the program and consequently the ROM size.

To extract the speedup percentages, we run each model on 50-100 inputs of each dataset, as
many as possible to get a representative sample that also fits in memory.

Hardware Measurements

We measure ROM sizes for our models. We take advantage of the TP-ISA high configurability
and explore possible tradeoffs between implementations, keeping a steady PC since we already
know the maximum size for our models. We measure our units’ hardware resources for
base 32x32 and Precision scaled implementations for 16, 8 and 4 bits. Since we intend on
implementing the units with TP-ISA, we also measure smaller instances of our units, again
with all available precision scaling options. We make a total exploration of all possible
Unit-Core combination.

Even though the bulk of our work is done on the Zero-riscy core, TP-ISA stands as the
most attractive option to address printed computing restrictions. We provide representative
hardware characteristics based on the measurements and execution cycles/execution time
basing on the program file generated by the ribcy-gnu-toolchain compiler since we do not
have access to the TP-ISA compiler.

Precision Scaling Tradeoff Calculation

After designing the mentioned units, we integrate them to our mentioned simulation envi-
ronment, changing the verilog file that contains the neural unit and recompiling the rtl each
time. The C code for each application is also modified to accommodate the new needs of
the units, since the number of loops and operations need to be cut, in ratio to the scaling.
There is also need to incorporate additional commands that handle shifting of values in the
registers that carry the output from a layer of an MLP to the next, as described in Chapter
4.2.

We use a python script in order to extract the accuracy loss of each solution. Firstly, the
calculations of the whole model for the entire dataset, are calculated with full precision and
then with the respective precision of each unit. We then compare the outputs and present a
percentage or accuracy loss, due to erroneous classification or regression outputs.
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5.3 Results

Following the steps described in 5.2, we run for all possible configurations of units and cores
on Zero-riscy to get the execution traces.

Firstly, using the outputs from the compiler we get the size of the ROM in regards to the
number of instructions 5.1. The highest number of instructions is 1084, which is addressable
by an 11 bit PC, since 11 bits can address 2048 spaces. Now we know that for our TP-ISA
configurations we need exactly pc=11 to guarantee that all models run.

Model ROM space used
Redwine  MLP C 524
Redwine  MLP R 448
Redwine SVM_C 624
Redwine  SVM_ R 608
Whitewine MLP C 524
Whitewine MLP R 448
Whitewine  SVM _C 624
Whitewine SVM R 608
Cardio MLP C 024
Cardio MLLP_R 504
Cardio_ SVM_C 1476
Cardio SVM R 1084

Table 5.1: ROM space used by different models

Following we measure all the possible TP-ISA configurations for pc=11 in Figure 5.3.1.
We include Neural Units with all available precisions and multiplexes. The lowest one for
resources is the one with a datawidth of 4 and no unit attached with 1.38cm2, 6.58mW,
29.13Hz specs for area, power and max clock , while the most demanding one is the one
with a datawidth of 32 and a full 32 bit unit with no precision scale and 23.15c¢m2, 74.43mW,
12.51Hz specs respectively. The 3 hardware metrics seem to have almost a linear relationship.

Now we measure the proposed bespoke Zero-riscy implementations and compare to the base-
line Zero-riscy for hardware specs in Table 5.2. The Be in each names means Bespoke and is
the standard Zero-riscy with applied hardware reduction and isa reduction as mentioned in
chapter 3.4.

We then measure the error introduced with precision scaling. Figure 5.3.2 describes the
accuracy loss on the tested models due the scaling precision of our units. We highlight
that this applies both to standard smaller units and the larger scaled units regardless. The
accuracy loss is calculated as the added error on top of the base model’s accuracy. For 4-bit
precision scale, the error can reach up to 26% which is strictly prohibited in most applications.
However when considering the Cardio dataset the error drops to 1.5% making it viable. For
32 bits and 16 bits, all models have 0% added accuracy loss.

Tables 5.4, 5.5, 5.6 contain the set cycles for each option (a) no Multiplier Unit present,
(b) standard Zero-riscy Multiplier Unit present, (c¢) use of Standard Neural Unit with no
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Figure 5.3.1: Total Area-Power diagram for all TP-ISA configs

Core Core Area | Power | Max Clock
Zeroriscy  Mul 67.53 291.21 14.49
Zeroriscy noMul 49.35 220.33 14.49
Zeroriscy Be Mult 60.32 257.80 14.59
Zeroriscy Be MAC 32x32 61.96 249.02 14.59
Zeroriscy Be MAC PS 16 52.47 222.27 15.02
Zeroriscy  Be . MAC PS8 47.70 207.37 15.15
Zeroriscy Be MAC PS_4 42 .86 191.70 15.65

Table 5.2: Hardware metrics for different Zero-riscy configurations

Table 5.3: Speedups and gains of proposed architectures on Zero-riscy Core

‘ Area Gain ‘ Power Gain ‘ Avg Speedup ‘ Error ‘

Cores

Zeroriscy-Bespoke 10.6%
Zeroriscy-Bespoke MAC32 8.2%
Zeroriscy-Bespoke  MACQ16 22.2%
Zeroriscy-Bespoke  MACQS8 29.3%
Zeroriscy-Bespoke  MACQ4 36.5%

11.4%
14.4%
23.6%
28.7%
34.1%

0%
23.93%
33.79%
41.73%
46.4%

0.0%
0.0%
0.0%
0.5%
15.66%
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Figure 5.3.2: Error introduced in each model by the chosen precision

Register multiplexing, (d) use of Neural Unit with a x2 register multiplexing, (e) similar with
x4 Multiplexing and (f) similar with x8 multiplexing. We group them in this way and not
by the precision scaling group because units with low precision where the precision is equal
to datawidth, for example TP-ISA with datawidth of 4 and neural unit of precision scale
4, will need the same amount of cycles as a unit with no precision scaling that is used by
a bigger core, for example Zero-riscy with standard 32x32 Neural Unit. After we have this
information we can use it along with the clock measurements of each configuration to extract
the final execution times.

Table 5.4: Execution Cycles comparison for Redwine

| Cycles RWine_MLP_C | RWine_ MLP_R | RWine_SVM_C | RWine_SVM_R |
Baseline  noMul 750517 597740 2786184 118406
Baseline_ Mul 163117 90040 529021 27321
MAC _noMux 140549 70460 386521 20021
MAC _2xMux 98375 59445 338521 19321
MAC _4xMux 93975 55045 289021 17521
MAC _ 8xMux 88375 49945 269521 16721

It is worth mentioning that for neurons with less connections, using extreme precision scaling
for parallelizing mac executions yields less or no benefits benefits. For example, neurons with
4 or less inputs will receive no parallelization benefits by reducing the precision bellow 8 for
the 32-bit unit.

82



5.3. Results

Table 5.5: Execution Cycles comparison for Whitewine

| Cycles | WWine_ MLP_C | WWine_ MLP_R | WWine_SVM_C | WWine_SVM_R |
Baseline _noMul 1463281 945466 3904056 118716
Baseline Mul 308081 173566 739621 27421
MAC noMux 258903 133888 540121 19921
MAC 2xMux 201493 117957 472921 19221
MAC 4xMux 149093 103057 403621 17421
MAC 8xMux 138393 92957 376321 16621
Table 5.6: Execution Cycles comparison for Cardio

| Cycles | Cardio_ MLP_C | Cardio_ MLP_R | Cardio_SVM_C | Cardio_SVM_R |
Baseline _noMul 707033 627480 586174 121694
Baseline  Mul 132883 111530 99221 25521

MAC _ noMux 102527 82965 71471 18271

MAC 2xMux 88663 72451 63221 18021

MAC 4xMux 72513 63101 56921 17171

MAC 8xMux 65358 56051 50171 15671

As mentioned earlier, in order to parallelize the unit with precision scaling it is necessary
to first process the input signals and concatenate them to create the total 32 bit input. In
our implementation, this operation happens in software and costs us a few execution cycles,
preventing the speedup from reaching similar levels to that of the unit.

We also make an estimation for speedup with TP-ISA, being the SoTA for printed micro-
processors. For proper gathering of information we would need the compiler for the core and
execution traces to get cycle accurate results. Since we do not have access to the compiler,
we are forced to estimate using the traces from the execution of Zero-Riscy. The units were
added to the base TP-ISA design and implemented as extensions of the Instruction Set. We
run the base and proposed configurations through our hardware flow and extract are, power
and timing info. Since we do not have access to the TP-ISA compiler, we use the traces
from Zero-riscy with ribcy-gnu-toolchain to estimate the execution cycles on the core, since
all instructions required for the execution of our models already belong to to the Instruction
Set of TP-ISA.

Table 5.7 and 5.8 compare the base TP-ISA configurations with our proposed TP-ISA con-
figurations containing versions of our unit with regards to area, power, accuracy loss and
rough estimated speedup. Table 5.7 contains the comparison of the base accurate 32 bit
TP-ISA implementation to our proposed 32-bit fastest configuration with acceptable error
(d32_pcll MAC32 Q8) and Table 5.8 compares the base small 8-bit TP-ISA with our
smallest configuration (d8 pcll MACS). Keep in mind that there is no multiplication unit
in any of the base processors, so all MAC operations are fed through the ALU in multiple
cycles.
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Table 5.7: Comparison of proposed Fast configuration against standard 32 bit Accurate
TP-ISA

‘ Configuration ‘ Prop FAST ‘

Area Overhead x2.12
Power Overhead x1.97
Avg Err (Base is 0%) 0.5%

Estimated Speedup | up to 88.5%

Table 5.8: Comparison of proposed Small configuration against 8-bit TP-ISA

Configuration ‘ Prop SMALL ‘

Area Overhead x1.98
Power Overhead x1.82
Avg Err (Base is 0.5%) 0.5%

Estimated Speedup up to 85.1%

Since this is a very small core optimized for low resources and we cannot remove any of the
hardware, we naturally expect an increase in hardware resources, that we make up for with
increased estimated speedup. Unless the user really values every percentage of accuracy in
the model, we can expect from 85.1% up to 88.5% average estimated speedup for our models
with about x2 and x1.9 overhead in area and power for the TP-ISA. Precision scaling with
less bits yields better results but prohibitive error, in most cases.
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Chapter 6

Conclusion And Future Work

In this thesis, we explore the implementation of bespoke microprocessors in printed technol-
ogy. Firstly, we highlight the need for high area and power reduction in such circuits in order
to enable ML applications on ultra small cores. To this end, we tune and implement low
gate-count processors, able to execute specific applications, by removing all the logic that is
guaranteed not to be used. The removal of full unused components proves very beneficial
and time efficient with regards to effort for returns. Removal of architectural components
and unused instructions can be more time consuming, but also beneficial especially when
targeting sequential components of the processor.

When considering program memory overheads to the design we observe that even slightly
more complex benchmarks can quickly cause the ROM to take up resources comparable to
some of the small cores. For ROM utilization, designs with smaller instruction lengths have
an advantage because they require less ROM cells, while multipliers are proved to worth
considering since complex instructions take up memory space when they need to be written

for an ALU.

We develop a single-cycle unit in order to improve performance for MAC intensive ML work-
loads, we implement precision scaling to our units and test with 3 MLP and SVM models.
For the models tested, we can greatly increase the unit’s performance by parallelising with
use of precision scaling for a negligible accuracy loss. However the added overhead from
setting up the inputs properly for the precision scaled unit by concatenating and shifting can
become a bottleneck.

As for future work, there is room for extensions both in the domain of ML applications like the
ones we explored and also for improving in other domains. Netlist and symbolic simulation
can be utilized for a given application by propagating undefined signals in the simulation and
extracting information about unchanged level of logic gates. This information can be used
to tailor the processor to a greater degree, receiving larger benefits in regards to hardware
utilization.
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