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Our roots reaching deeper,
like daggers into flesh

Our wounds sing of freedom,
bleeding with each breath
These eyes are not blind,

I drink the insane flow

My naked heart forgives me!

"Demons",
Pelle Ahman



Evyaplotiec

Ye autod to onuelo, Yo el va euyaploTiow Toug avitp®droue Tou GUVEBUANY GTNV OAOXAEWAOT
e mapovoag didaxToplxg dlatelBne.

Euyaploted and xapdldc tov xadnynt Nixo Mavpduato, yia tnv eumiotoclvy, TV UTOPOVY] TOU
oA xan yior Ghar ool épado omd T cuvepyooia pou pall Tou. Liyovpa anotelel To npbowno and To
omnolo éuado Ta TEPLOTOTERO GTNV AXABNUAULXT) LOU XAUPLERA UEYPL OTLYUNC.

Evyaplotd tov opdtio xadnyntn Acutéen Hoamavtwvonoulo yia Tny UmoToOGUV TOU XAl THY GUVE-
LO(QORE TOU OTNV EMUC THUOVIXT X0l TEOCWTLXY| oL eEENEN GAL AUTA TaL YpOVLAL TOU CUVERYALOUIC TE ANd
0 2018 péypet xou ofjuepa.

Euyaplotd tov opdtio xadnynth I'idpyo Koutooluma yio tny ayaoth cuvepyosia pag ohid xuplwg
Yiot TNV TEPAOTIO PUYOAOYLXT UTOGTHELEY) TTOU OU TEOGEPERE XAUTA XoUEOVC.

Evyaplotd tov petadidoxtopind epeuvnty Qovdorn Mnaxdmovho Yo T GUVERYAGIN UAS Xol VLol TNV
EUTLoTOCUVY oL €DEIEE OTO TEOOWTS UOoU TEOCAAUBEVOVTAC UE GTO EMGTNUOVIXG TOU TROY QoI

Euyopioted 6houg toug ouv-cuyypageic/cuvepydteg mou elya péypl oTiyuns, tov xodnyntd Bin
Wang xou tn petddidaxtopint] epeuvitelo Ziyu Tang tou mavemotnulov tne Loayxdng, 1o Oebddwpo Néxa,
1o Nixo Xatlngpdn, 1o Xewotdpopo Bhdyo, v ‘Avten Maydrtou, to Alovion Beodocdénovro. Euv-
xoplo e tov IIdvo Aophy) xau 1o Lwtrien Bhdyo, tou nopdlo mou e GUVERYUCTAXOPE EUTEANTKS, O
ou{ntioeic pog, wotéoo, uheéay xadoploTixéc. Euyaplotd wiatépwe to Mtéhio Kopida yia tn cuvep-
yoota pog, yio Tic oulntioelc pog, yio T Bordeld Tou Tic TOAAEC POREC TOU T YEELACTNHO XAk YOl T1|
@hior Tou. BEuyopioted o Aewvida Kapayedpyo yio tn forideld tou xou tn gikia tou.

Euyopiotd, oe wa Eeywploth mopdypapo, T @1 xou cuvepydtdo Xtéhha KiopreAidr, mou éxave
TOAD xaAOTEPA UTA Tal TEAEUTALAL YeOVLY GTOV TR(TO 600 Tou xTiplou Pucuxrc. Tnv xahe xon eMoNULC,
péoa amd €8¢, Vo TNEHOEL T1) CURPOVIRL oG xol VoL UE TV TEEEL, oy TTOTE TAVTEEVTE.

IT&ve am’éha euyopto ¢ TNy owxoYEveld pou, Tov Iatépa pov Kwvotavtivo Kapoxdon xou tn Mntépa
pou Afunteo Xtduxov, yio TNV TEpdo Tl UTOo THELEY Toug Oho awTd tor Ypovie. H mapoloo diatelBr
QAUPLEPEIVETOL ATMOXAELS TLXA O oW TOUC.

Oavdone, 18/05/2024



Abstract

In the present thesis, we examine black hole solutions in non-linear theories of gravity and
electromagnetism and we analyze their properties.

At first, we examine f(R) modified gravity theories and elucidate why studying them is signifi-
cant. f(R) gravity theories are capable of describing the early and later universe on cosmological
scales much more satisfactorily than Einstein’s General Theory of Relativity (GR). Considering f(R)
theories as the gravitational model to work with, we choose scalar fields for matter and energy fields.
The rationale behind this choice is the no-hair theorem. According to this theorem, the process of
gravitational collapse, which forms black holes, is a violent physical process that destroys the inter-
nal degrees of freedom previously describing the collapsing star, and consequently, the conservation
laws not related to precise symmetries. Motivated by the potential violation of the no-hair theorem
in f(R) theories, we study black hole solutions in f(R) models coupled to scalar fields in three and
four spacetime dimensions. Our thermodynamic analysis shows that our solutions are preferred over
those of GR due to higher entropy and temperature on the black hole horizon.

We continue with the investigation of black hole solutions in nonlinear electromagnetic theories.
Such theories are predicted by fundamental physics theories, such as string theories. Specifically, we
focus on the Euler-Heisenberg (EH) theory, which modifies Maxwell’s linear electromagnetic theory.
This theory is used to describe photon-photon scattering at the quantum level, and on an astrophysi-
cal level, it can potentially describe primordial black holes in the early universe when the intensity of
electromagnetic fields was stronger. Our results show that nonlinear electromagnetism contributes
to the violation of the no-hair theorem, while simultaneously, our solutions are thermodynamically
preferred, as they have greater entropy on their event horizon. Additionally, the spacetimes we find
respect the energy conditions, which imposes astrophysical relevance to our solutions, as they could
describe black holes in the early universe when the power of electromagnetic fields was stronger.



HepiAndn e AwotpBhc

Yt Swboctopiny) SwotplPr] pe titho "Mehétn Mooewv pehavedy onwy ot U Yeouuixéc Yewplec Bapltn-
TS XL NAEXTEOUYVNTIONOV" TEAYUATEVOUACTE TNV E0PECY) AUCEWY UEAUVOV OOV GE UT] YEUUMHES
Yewpleg BaplTnTag Xou NAEXTEOUXYVNTIGHOU XOL TV AVIAUCT] TV LWBIOTATWY TOUC.

Y10 npodto pépoc e dwatpiPric eZetdloupe Tic f(R) tpomononuéves Yewpleg Bapitnrag xa e&n-
YoUUE Toug AOYOUS Yiat Toug omoloug 1) werétn toug ebvan onuovtixd. O f(R) dewplec Bopbnrog ef-
vou LXavéC Vol Teplypdpouy o€ X0OUONOYIXEC XAUAXES TO TEOILO Xl UETAYEVECTEPO GUUTAY TOAD TLO
wavoromntxd and ) Fevid) Ocwplo tne Lyetixoétntac ([OX) tou Einstein. Eyovroac howndy te f(R)
Yewpleg we T Poaputind povtéro ye to omolo Yo Soviédoupe, emhéyoupe Boduwtd medla yio To media
UM xou evépyetag. O Aoyoc miow ané aut ) Yedpenon eivan o Yedpnua eZdhewdne tyvédv (no-hair theo-
rem). LOupwvo U auTto To Vedpnua, 1 Swodixacia tng Baputinic xatdppeuong, 1 onolo xau dnuovpyel Tic
pehavéc omée, ebvon wia Bloun guotxn dadixacio Tou xutaoTeégel Toug ecwteptxols Baduole ekevdepiog
TOU TPOTEPWE TEPLEYEAPAY TO UTO XATAPEEVGCT) AOTEO, X0 XAUTA GUVETELX TOUS YOUOUS BLaThENomg Tou de
oyetilovta pe axpBelc ouppetpies. Me xivnteo v evdeyduevn mopafioon Tou Jewphpatos eZdhewdme
vy ot f(R) Yewpleg, pehetdue Aoeig yehavdy onmyv oe f(R) povtéha, culevypévmy pe Boduntd
nedlo oe TEELC o TEGOEPLS Y wEOoYEOVXES Blactdoelc. H Vepuoduvauxnr avéluon pag €detie mwe ol Ao-
oelc pag elvon mpotiuntéec o oyéon e avtéc e 'O Aoyw peyaldtepne eviponiog xou Yeppoxpaoiog
TV oTov 0pllovta YEYOVOTWY TNg Uehavrg omrg.

Y10 8eltepo Yépog auUTAC NS SlatplPric TEAYUATELOPAOTE ANOCELS UEAAVY OTWV GE U1 YEOUUIXES
Yewplec nhextpopayvntiopol. Tétoeg Yewpieg npofrénovtan amd Yeyehmdelg Yewpleg QUOKAC, OTKC
enl mapodelypatt ol Yewpleg yopdodv. Xuyxexpiévo, acyoholbuaote ye v Yewploa Euler-Heisenberg
(EH), n omola xou tpomonotel ) ypauuxh dewpio nhextpopayvnuopol tou Maxwell. Auth n dewpio
YETOWOTIOLEITOL Yiol VoL TEPLYPAPEL TN OXEDBACT, PWTOVIWY UE PWTOVLOL Ot eNinedo XBavTixnig QUOIXAC, EVE
o€ AoTPOPUOIXS eNinedO, UTopEl eV BUVANEL VoL TEPLYPAPEL AEYEYOVES UEAUVES OTEC GTO TEMOLLO CUUTAY,
OTAV 1N EVTAOT TWV NAEXTROUAYVATIXADY TEdiwY Ntav toyvpdtepn. Tao anoréopatd pog, uog delyvouv
WS 0 W1 YeopUixds nhextpopoyvntiouwdc cupfdhet otny mopaBioon tou Yewphpatoc eEdhewdne tyvoy,
eved TawTtdypova ol Aoelg pog elvan Yepuoduvaixnd TeoTHUNTEES, xodTL €Youv UeyoAlTERT EVIpOTia
otov opllovta yeyovotwy touc. Emnpdoldeta, ol ywpdypeovol toug onoloug Beloxouue céBovta Tig
evepyeloxéc cuvinxeg, YeYovog Tou emBIAEL TNV Ao TEOQUOIXTH UEAETY TV AUCEQDY pag, xoddTL auTég Yot
UTOPOUCY VO TIERLYEAPOLY HaPES TEUTEC GTO MEMO CUUTAY, OTAV 1) LoYUC TV NAEXTEOUNY VNTIXDY
nedlov NTay Loyvpdtepn.
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Yy napotoa Bidoxtopixt| SlatelB TEayHATEVOUAC TE AIGELS UENAVEY OTOY GE U1 YRoUWMXES Yew-
plec Bapltntag xou niextpopayvntiopol culevypévee pe Poduwtd nedia. Oa Eextvicoupe TNy eloaywy
pog, ooy mewte avagepdolue oto Yedpnuo eEdiewdne yvodv (no hair theorem). Xlugwva e to
Yedpnuo eZdhewdne 1y vy, ol podpes tplnee Vo meplypdpovtol UOVo and TEElS TapauéTpous, oL OTolES
X0l UTOPOLY VoL UETENUOUY acuunTLTXE He vououg Swtienone. Ilpdexeiton yio tn pdlo Toug, Ty teo-
Y101} GTEOQOEUY TOUC Xal TO NAEXTEOUAYVNTIXG Toug @optio. 'Etol ol padpeg tpineg, dev xoufakoly
xdmoto hair (8ev €youv "wodld", €8¢ 1 Aé€n hair uTOBdNAGDVEL TNV ATWOAELD TEPLOCOTERWV Y OPAXTNELO-
TUOV/TUPAUETEWY OV TepLYedpouy wa paden Teona). H Aoy tlow and auth tn ewpnorn eyxeita
070 YEYOVOG 6T, oL podpes TpUmes oynuatilovta péow tne Baputixic xatdppevong, 1 onola, elvor Lot
600 Plown dradixaoia xan xatao TEéper Ghoug Toug vopous dathpnone nou de oyetilovton pe axplfeic
ovupetpiec. Enl nopadelyuart, n ynpxr doun, 1 atopuxr| doun, o Bapuvixde aprdudc xAm, de diatnpovvtan
XOTA TNV XATEPEEVGCT| Ol OL UOVEC TAUPAUETEOL TTOL ETLPLOVOLY elval 1) udla, 1 TEOYLUXT| G TROPOPUT| XOL TO
nhextpoyoyvntxd goptio. ‘Etol howndy, Yo unopoloe va loyuplotel xavele, 6L, ol padpeg tplneg elvon
am{oTeuta amAd QuUOLXd cuo THATA! AU N TEPLO TREPOUEVES otk APOPTIO TEC HOUPES TEUTES We (Biot udla,
elvon amdiuta dpotec! (Puowxd, 1 mparypatxdTnTa Sev ervon outh. H avoxdhudm nwe ol padpes tplneg
IXAVOTIOLOVY XATOLOUE VOUOUS UNyavixig TapdpoLoug He autolg TNe Yepuoduvopxic xan WGMoTo OF NuLx-
oo eninedo, xavomololy toug vépous g Veppoduvoutxic dhhale xotd mohlb To Tomlo €peuvac.)
Avté be Yo ouvéBouve av elyope €val omoLOBNTOTE GANO GUUTTUYES AVTIXEUEVO, OTLKC VLo TAUPABELY O EVal
acTtépt. e 6o aotépla ye TNV (Bio pdla, auty) unogel vo uny etvor e ToV (Blo TROTO XATAVEUNUEVT] XOlL VOL
€Y OVUE OTO €VaL AOTEPL TEPLOYES TUXVOTEPES, EV GLUYXPICEL YUE TO GANO!

O npddtee mpoomdeies ebpeone uehavedv onmyv pe hair agopovoay un APeloavd tedla, wotdoo ta
tehevtaio Ypovia, To evBlapépoy TNE EMOTNUOVIXTE xowdtntag €yel atpagel mpog T PBorduwtd medla.
Auth 1 ueTatomIoN EVBLAPEPOVTOS, EIVOL GUVETEL TNG AVOXGAUPNE TNG OXOTEWVAC EVERYELNG 1) oTtolat Elvan
mdavé va pnopel vo yoviehonowndel yéow PBaduwtodv mediov. Ev npoxewwévw, av autd to nedlo mopa-
Budle Tic evepyeloxnés ouviixeg 1 ouledyvertar un ehdytota pe T Bapdtnta, TOTE To No-hair Yewphpota
nopofidlovtat. To anotéheopa etvon dti mAéov xavelc avalntd Aoewc e e€ntind Baduwmtd nedla dnwe
nedla avtdopata (Ye apynuixnh xivnti evéyewa), nedla Galileon, Moeig tne ewpioc Horndeski ahhd
YO EMEXTACEWY AUTHG. LNy napolota dtateBy), o pehethiooupe Aboelg yehavddv onddv oulevypévmy
pe Baduwtd nedla oe un yeaupxés Yewpleg Bapdtntog xor nAextpouayvntopov, ue to xivnteo yio
HEAETT Toug Vo €xel ot Bdom Tou TNV xoouoloyio aAAd xa o YepeAiddele puoés Fewpleg, dTwS oL
Yewplec yopdv.

Tuyxexpwéva Yo Yewprioovpe f(R) tpononoinuévec Yewplec Popbtntag, ol omoles yYevixebouy
yevix) Yewplo tne oxetuxdrog (I'OX) tou Awvotduy. To cuvaptnolaxd dedong autedy Twv Yewpldv
dlveton amd N oyéon

5= [ dtavgr(m),
6mou n ouvdptnon f(R) elvar wa avolutin) ouvdptnon tou Boduwtod tou Ricei R, eved n emhoyy

f(R) = R pog diver m T'OX. Enl napadelyuort, uepéc yvwotéc un ypopuxés Yewpleg Bapbtnrtog etvou
1o povtého tou Starobinski [[13]

S = /d4x\/?g(R+aR2) ,

pe onuavtixéc TeoBAEPELS Yot TO LOVTEAO TOU %0OUIX0U TANUWELOHOD, UE TNV TOPAUETPO (& Vo EXEL
povddec [whnoc)?, adhd xou o povtého tou Woodard [[14], to omolo eunepiéyel pn yoopuxois 6poug
Tou Boduwtol Tou Ricci pe ) poppy

Sz/d4x\/Tg(R+§) ,
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70 0TOLO TEPLY PAYPEL TO YPOVIXS LETAYEVESTEPO oUUTOY. LTo povtélo tou Woodard, n topduetpoc 3 €xel
povédec [ufixoc] 1. O Ot e€lomoeic Tedlou Tou TEOXVTTOUY ATAUTMVTAC TOV UNBEVLOUS TNC UETAPBoAAC
TEWTNE TAEEWS TOU GUVOETNOLIXOL TNg dpdong divovTal amd TN oyéon

1
f/RHV - ig;wf(R) + guqu/ - Vuvuf/ =0,

omou f' = df (R)/dR. Mnopel xaveic va e€dyel TNy avertépw e&lowon we oxoholidng:
Apyixd, yioo T petofohn tne opilovcoc tne petpixnic €xouue Ot

1
0(V=9) = =5V =99 09" .
Yuvenoe, yetofdhhovtoag GUVOAIXE TN Bpdor €YouuE

5fd4x\/jg (f(R)) = fd4x <—;\/jgguuaglwf(R) + \/jgéf(R)> =

[ d*z/=g (—;gwég’“’f(R) + d‘g}?éR) .

H petaBoiy) tou Baduwtol tou Ricci diveton and ) oyéon
OR =0g"" Ry, + 6R,, 9" .

Xenowonowhvtag Ty Tautdtnta tou Palatini uropolue va ypddouue tov 6po mou eunepléyel T HETABONN
Tou TavuoTy Tou Riccl wg

0Ruwg" f'(R) = f'(R) |90 = ViV, ]0g™

onou L = ¢g""V, V. Enopévwe, dnuiovpyhvtag ohixd Blapopixd xol axUpeVOVTAS TOUS ETLPAVELIXOUS
6pOUG, €Y OVUE

Jd'ay/=gf (R)[9uvg""VaVidg"] =
Jd'z /=g (R)[g V*Vidg""] =
J d*e =gV [f'(R) 9w Vog"] = [ d*x/=gVP[f'(R)|9 Vidg" =
= [ d*a/=gV'Lf (R)] g, Vyog"” =
— [ d*a/ =gV [V [ (R) 909" ] + [ d*2/=g9, Vs[VP f'(R)]6g" =
J d*e /=99, Vo[V ' (R)]6g" =

J d* /=909 (9, 9"V Vaf' (R)] .

T tov épo [ diay/—gf (R)V, V69" exoupe:
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[ day/=gf' (R)[V, V"] =
J d'a/=gVul ' (R)V.,6g"] = [ d*ay/=gV [ (R)]V 69" =
= [ dey=gV,[f'(R)]V,og"" =
— [ d*a =gV, [V, f (R)3g"] + [ day/=gog" 'V, [V . f' (R)] =

Jd*e/=g6g"' V[V, f (R)] .
Enopévae, ouyxevtpivovtas 6Aouc toug 6poug pall éyouue

1
35 = [ dte=g8g" [1'(R) Ry — S0 £ + 90 0F (1) = T,9, (R)] =0

Tt vor undeviletar avertépw nocdtnta yio avdalpetes yetaBoréc tne petpxerc Go npénel

]' !
PRy = 590 f (R) + g 0f =V, Vo f' = 0.

‘Eva peydho pépog tng mapoloog dlatpBric elvon agiepwpévo otny emthuoT tng avetépn e&iowong
napoucior UANG xan ouyxexpuyéva evée Baduwtold nedlou, to omolo Yo ndwlel to pdho tne UANG 6TO
olotNud poc. Ou Yewpfioouue howmdv f(R) Yewplec Bopdintog oulevyuéves pe Paduwtd nedio ot tpelc
xo TEOOEQLS Y Wwpoypovixés daoTtdoels. IIpotod avahdcouue exTeEVHS auTéC Tic Teptntioels al{lel va
avageptolue otig Yewpleg PaplTnTag 08 TEELC YWEOYXPOVIXES DLACTACELS, ARG xou OTIC AOOELS UERAVEY
onwv cLleuyUEveY pe Baduntd tedla otn [OX.

INo o Aoyo autd Yo Eexviooupe and plar anAy Abor 1) omofa Yo Siveton and tn dpdo,

s= [ diov=g|5 - 57000 - Vi) M

Mo Abor autic Tne Bpdong diveton and Tig e€vc oyéoelc [15]

ds® = —F(r)dt? + Fdi) +a(r)2d0? )
F(r):1+x(2r(y+r)ln<yjr) —y(y+2r)> , 3)
a(r) = /r(r +v), @
$(r) = % In (1+ ;) : (5)
V(@) = 6xsinh (vV26) — 2v2x6 (cosh (vV26) +2) 6)

onou x elvon wa otadepd tng Yewplac xou v elvan yio otodepd oloxAfipwong, 1 omola xou mallel To
p6ho tou Baduwtol poptiou xadde xodopilel TNV acLUTTOTIXY CLUTERLPOEE Tou BaduwTtol TEedlou oe
peydhes anootdoeic. H ouvdptnon F(r) cuunepipépeton ¢

B O (AN
3r 672 107%  15r% 210 r ’
F(r—0)~(1- v?x) = 2r(x(v — vIn(v) + vn(r))) + O (r? Inr) , (8
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o dpor Yot Teplypdpet wiar YVhota YeAov| on 6tay (1 — sz) < 0 oto ddotnue 0 < r < oo.
Topa Yewpolpe tn XopAtoviavt] popen tne Yewplac pog yéoo and tn dpdon

7= /d%dt (7¢i;; — NH— N;H') + B )

Eb6, B elvan évag empovelaxds 6poc. Oa ypnowonolicoupe emtyeipnuata xBaviixre Bopdtntog, xou
Yo yenorponoiooupe To PopuTind ohoxhpwpa Sladpouy, clugwva Ue To onolo 1 pdor Yo Teénel va
nepléyel LoVo mpdTeS Topaydyous tne peteic I16]. O ywpedypovos pac elvon otatinds (8ev undpyet
e&dptnom and to xpovo t xaw dev Eyouue Yewproel teptotpo@r)). Ta to Adyo autd Ya Yewpricovue Ty
ehattouévn Xoawhtoviovt, 1 omola Yo diveton and tn oyéon

7= —/d3xdtNH+B. (10)

OaVewprioouvpe téhpa TNV Euxkeldio dpdorn 1 onola xoun oyetileton ye tn Xagrhtoviavr dpdon oe Aopévtlioy
Yeopt, cOUPWVA UE TN CYEoT
Ip=—iT. (an

H Euxheldio petpiny, yenowonowdvtag tnyv anocvvieon ADM, Yo divetan and ) oyéon,

2
A ar)2a0? (12)

ds* = F(r)N(r)%dr* + )

omou T =it xu 0 < 7 < B. Ed¢ to T glvan meptodixd pe meplodo B. Auth 1 meploddtnTa TpoépyeTon
ané 1o yeyovoce 6t oty Buxdeldia ypapy tne, n uetpud xataoteudleton and To YIVOUEVO BU0 opotpldy
G2 x G2, Tuvende, YLa VoL UTopoly oL GUVTETUYUEVES VoL XOAUTTOUY HAO TOV Ywpdypovo, Vo TeéTeL Vot
HETAYELPLOTOUUE TO T oo Teplodxt| cuvtetaypévn. Ot undhoineg cuvtetayuévee malpvouy T ouvidelg
wwéc 0 < < 27,0 <0 <, 7 > 1. HpaypatonoldvTog T 0AOXANEOOELS TolEVOUUE

Tp = 478 / ¥ NN H () dr + B (13)

Xenowonowdvtae v Ewadeldio petpin xaw 1o yeyovoe g N(r)H(r) = —L 6nov 1o L unodnhdvel
v Aayxpedvtliay Tou GUCTALATOC WAC, XATUATYOUUE OTNyY oxdroudn Euwdeldia Spdon

%
Tp = 4775/ 5N (2a (@'F' + 2Fa") + a? (F () + QV) FoF (o) - 2) dr+Bp, (14
Th

OTOU XOU TR LU TOTIOLACOHE UPHETESC OAOXATPWOELS XATA TAUPAYOVTES XOll AXUPOOUIE TOUC ETUPAVELAXOUG
6pouc. Topa, Vo npénel va yetofdhoupe Ty Euxheldio 8pdor, we mpog ta duvaxd tng nedia, dniady| to
N, ¢, a, F &ote vo ndpoupe ti¢ nedlaxég e€lomaelc. Io va o emttiyoupe autd Yo Tpémel vor oxupdGoulE
Bldpopouc empavetaxols dpouc. 2otdoo, tpoxelwévouy 1 Euxdeldio dpdon vo anoteAel €vol Tpayortixd
axEOTATO 6TV Loy UoLY oL Tedloxéc eElowaele, Yo Teénet va BeBorwdolue 6Tt TpdyuoTt

0Ip =0. (15)

O pdhoc Tou emgaveioaxol 6pou Br elvon va mdpel TNy xatdAANAn woppr wote mpdyupatt 0Zg = 0.
Eexwvaye howndy pe 1 ouvdpetnor N xau Bploxouue

2 (d'F' +2Fd") + a2 (F (¢)? + 2v) FoF () —2=0, (16)
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10 omolo xat oNualvel 6Tt 6To XA Toviavo Qopuailoud, 1 Euxieldio dpdon o Siveta anoxielotixd omd
TOV EMLPAVELOXS 6p0 dTay Loy bouy ol e€lotoelg Tedlov,
MeTafdAhovTac we Tpog To ¢ TolpVouUE

V/
a (a (N (—F’qs’ _F¢" 4 Qf/”) - F(b’N’(r)) - 2FNa’q5’> ~0, 17)
OTIOL AXVEWUMAE O ETULPAVELIXOS HPOC
d
p (a2NF§'69) . (18)
Metofoln} ¢ mpog to F divel
2d" +a(¢)’ =0, (19)
6mou oxLEUOXE 0 ETLPAVELINOS 6POC
d
— (aNd'0F) . 20)
r
Téhog, yetoBorf} we mpog To a divel
2/ (NF' + FN') + 2FNd" +a <3F’N’ +N (F”(r) LR+ zv) + 2FN”) 0, (2D

OTIOL Xall oXUE IV BLAPOPOL ETLPAVELAXOL OPOL.

d

™ (FN2d'§a) , (22)
d /

o (aNF'$a) (23)
d /

o (2aFNéa") , 24)
_dir (ddr (2aFN) 5a> . (25)

Tépa, 1 Mon ou diveton and Ti¢ ediomoeic (2)-(6) wavoroel dheg Tic medloxés e€lomoels, GUVETAHS
oG €uetvay povo ot emigavetoxol 6pot. ‘Orot ot emipavetoxol 6pot pall pog divouy

4776( —da(2FNa' +2aNF' 4+ 2aFN') + 25aFNa' + aSFNad'

+ 6B =0 (26)

Th

1 a256FNG + adaNF' + 2a5a’FN)

T va tpoywprioouue G mpémel v yvopiloupe T HETABOAY) TV Tedlwy 0To AMELPO XAl TAVEW GTOV
optlovta. Amé ) ouypr mou HdN yvwpeilovpe ) Ao, unopolpe edxolo va To Bpolue auTo, Xl 1
HETABOAY 0To dmelpo Yo dlvetan amd

2
5 — WX (27)
r
1
da = v (2 — ZZ") , (28)
ov

(29)
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Ytov optlovta Yo €youue

FWmeZFWM+FWNWMW—WJ=FWNmmU—TH=%§V—WJ7 (30)
OF = _%(57"}1) ) (BD)
8alp=r, = da(ry) —d (rp)dry , (32)
5¢|r:rh = 5¢(Th) - ¢/(Th)5Th 5 (33)

OTOL YENOLOTOLUNXE TO YEYOVOS OTL Yid VoL AMOQEDYETOL 1) XwVIXT| WBLoUopgia Téve otov opilovta To
T Yo mpémel va elvon teplodind we tepiodo S 1 omola xou Yo oyetileton pe to F' yéow tne oyéong

p= Fn)

% 47 (34)

I Aéyoug euxohiog Yo anocuviécoupe ) YeTaBoAr Tou emPaveElXol 6pou Ge BUo dpoug Evay GTo
dmelpo xat Evay Tdve otov optlovta

H cuvelopopd oTo dnelpo xou atov opllovta Yo elvan
1
—4 (nBévPx) + O () + 0Bg(c0) — (—167%5aa) + 6Bg(ry) = 0. (36)
T

Yuvenog Yo €youpe
3
B (00) = 4 (mB6v1°x) — B(oo) = 4W5X% : (37)
6Bg(ry) = —167%6aa — Bg(ry) = —21A(rs) | (38)
6TOL YENOWOTOLUNXE TO YEYOVOC GTL BOUAEDOUNE GTO UEYAAOXAVOVIXG GOVORO, GUVETRS Yewpolue T
Vepuoxpacto auetdBhntn xou emnhéov A(ry) = 4ma(ry)?. Tehxd, n Ewdeldio dpdorn o diveton amd tny
axdloudn oyéon
v
Ir = Bgr(co) + Bge(ry) = 471'[3)(5 =27 A(rp,) . 39)
Qot600, 1 Euxheidio dpdon Yo oyetileton ye tnv eheddepn evépyeto F Tou peyoloxavovind cuvdlou,

HECHL TWV OYETEWY

Ig=BF =pM-S§, (40)

onov M, § elvon 1 pdlot xou 1 evrponior Tng uehavic mAC. BUVETHE, SUYXEIVOVTIG UTOPOUUE VoL TOU-
TOTMOWGOLUE TN Hdlol xou TNV evipotio NS Hehavic TG oUppeV PE Ti axdroudeg oyéaelC.

3

M= 4nx% , (41)
S =21 A(ry) . (42)

A&ilel va onpetddooupe Twe 1 napdueteos v eppaviletal otny éxgppaon e pdlog tne padene tpdnac xou
SLVETHOE TO Padpwto nedlo vtivel tn yehovy| ont| e éva deutepebov hair

Iepvdpe tdpa otn PapdTNTa OTIC TEELS Y WPOYPOVIXES DLACTACELS, £vor VEUA TOU Vol TR YUUTEUTOUUE
EXTEVME O AUTY T1) BlaTELPn.
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To cuvaptnolaxd dpdong tng 'OX oe tpelc ywpoypovixéc dlaotdoelg divetar and 0 oyéon
S = / dxz/—gR .
O e€lotoeic medlou Tou tpoxinTouy and avty TN dpdon eivor

R, =0=R,

onhody undevileton xou o Tavuothc Tou Ricci, xododg xou to avtiotoryo Baduwts. Qotdoo, oTic TeElg
Y0pOYpoVIXES dlaoTdoels 0 Tavuothc Tou Weyl undevileton ToauToTind xou Xatd CUVETELR, O TAVUOTHG
Tou Riemann mou eunepiéyetl 6An TNy TANEoQoplol Yior TN YEWHUETEIO TOU YwEOYPOVoU, Umopel va ypopel
oLVAPTHOEL TOL TovuaTH Tou Ricci xou tou avtiotolyou Baduwtod we

Ropys = 2 (galy Rsjp — 91 Rija) — RYay9s)s »

ETOUEVLC
Raﬁ'yé =0,

ondte ocuunepaivoupe 6T, 8¢ pnopel va undpgel wior un TeTEWPéV (un eninedn) yewuetpio oTIC TEELS
YWEOYPOVIXEC Sloo TdoEL; xou dpar O pnopel vor undpget uioe Moo padpne tevnos, ev avtidéoel ye v
TEPINTOON 0TI TEGOEQLC YWPOYPOVIXES DLAGTAOELS, OTOL Xt ouvavtdue T Aoor Tou Schwarzchild. H
uotx| utddeon Tou Exel YIVEL 6TO GUGTNUO Xt BeV EMLTEETEL TNV Topouasia plag hoong padeng Telnac,
elvow 1 amousta VANG. Ewodyovtag Aowndy pio xoopohoyxr| o tadepd, dewpdvtog dnAadr| To cuvapTnoLoxo
dpdomng

S = /d%\/fg(}z —2A),

unopel xavelc Aovovtoc Tig e€lotoels Tou Awvatony vo xatahfiZel otnv Aoor twv Banados, Teitelboim
xou Zanelli (BTZ)

ds? = —b(r)dt + b(r) " dr + 2 (u(r)dt + d9>2 (43)

HE TIG OYETIXEC OLUVAPTNOELS Vo BlvovTan and Tig oYECELS

J2 7“2
J

omou to. M, J elvon n pdlot xou 1 oTeOPORUT TNG Ladeng TeUTOC.

ITpotol Yewpricouyue tpomononuéves Yewpleg Bopbtntog xou Tig AVCE AUTAOY, GUWS, Xoh6 Vo fitoy
VoL x8vouye ot ok eloaywyt) oto Véua, xau étol, oto xepdhouo [2] Mvouue tic ediohoeic Tou Au-
ooty mopousta evoc auTodhAnAemdpmvTos Barduwtol Tediou ¢ oTIC TRELC XWEOYPOVIXES Blao TACELS TTOU
npoxbnTouy and ) dpdon [8l, uc oxond va Beovue hairy Moeig pehavddv ondv.

1 R
s—g [ Pev=als - gorene-vior) (46)

H Abon oty onola xatahyoupe glvon 1 axéiouidn
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ds* = —h(r)dt*> 4+ dr? /h(r) + r2d6?, 47)
p(r)=A/r, (48)
A2A — 2 a2 (A2 -2

h(r) = r? <A2 M e 2% (142/\/( + A)) , (49)
22z (M — AZA) — r2e37 (2M — A2A

bir) = 22 )Azr o ) (50)
e7F (A% —22) (A2A —2M)  2e8 (A2A — M)

V(T) - 2A27‘2 + A2 ) (51)

#2 @2 A¢2 2
V(g)=e=(2A —2q) +e T—A—Q¢ +2q) , (52)
q=MJA*. (53)

H napduetpoc A elvan 1 napduetpoc mou xadopilel Ty Loy b Tou Baduwtod tediou xouw M elvon 1 udla
e pavens teumag. ‘Onwe punopel xoavelc vo mapatnenoet, To duvouixd g Yewplog woc €xetl éva ohxd
uéytoto 1o onolo Beloxeton oTo xevd e Vewplac V(g = 0) = 2A xou cuvdéeton Ye TNV XOOHOROYIXT
otadepd. O ywpdypovoc eivar acuuntwtixd Anti de Sitter (AdS), eved to duvound tepiéyet, extde and
NV xooohoyx otadepd, EUTEQLEYEL TNV TUPAUETEO g 1) omola xou divel pLEaplouévouc Aoyoug tne udlac
e pawens Teunag we teog o "poptio" A tou Baduwtold nediov ¢. Ilpwv nepdoouye ot epuoduvouixy)
Yedpnomn, ofilel va oYOMAGOUUE TN CUUTEPLPOEE TOU TOVUOTH opuhc-evépyelas T Yewplog pog péoa
and TG EVERYELUXES CUVUNXES, LUYXEXPWEVA, 1) TUXVOTNTO EVERYELNS, 1) OXTLVIXT] Tlean xou To ddpoloud
Toug, Yo dlvovtal and Tig oYEoELS

B by B e (A2 —2r%) (A% + M) — 6%2(142 —7r2) (A% 4 202 M)
p=T+V="-+V= 15722 54
AZ A2
22 (A% +2r%) (A% + P M) — 1277 (A2 + 202 M
=T -V —bgz—v = L ) ( A2r222 rrer ) ss)
A2 A2
2e2:2 AQ 2 I AQ 2 2
o pr = 2T —pgr = 2T AR OM) = e (A4 20M) (56)

r2g2 ’

omou T = b(r)¢?/2 etvon 1 xavntied| evépyeta Tou Paduwtol nedlov. Anewoviloviag Thpo auTée Tic
rocdTee 0T0 oaxéroudo oyfua I]unopoiue va Bodue Twe 1 TUXVOTNTY EVERYELS ElVOL TIEVTOTE olpVNTIXH
xat autd ouuPaiver yiortl to Barduwtd duvauixd elvar TOAD apynTed xon xepdilel T Vet ouvelo@opd
Tou xivitixol opou. H axtivinn nieon xou to dbpoiopa tng pe v nuxvdTnTa EVERYELIC WGTOCO Elvan
Yetxnée tooodTnToc and Tov opillovta tTng yehavic onic PEXEL oL TNV ACUUTTWTIXY TEPLOY Y.

I v peletoouye T Yeppoduvoyuiny) ToU CUCTAULATOC Yenotworolfooue tTny Euxieldeia pédodo, 1
omnola yenowonoiinxe yia tewdtn gopd and tov Hawking [17]. Xougwvae pe tnv Euxdeldela pédodo,
n eheVdepn evépyewa elvon avdhoyr tng Buxdeldelag dpdong, oTtny Tpocéyyior cayuatixol onuelou dtoy
ovorotovvTal ot TEdlaxés eELGAOTELS, Y AAALDC

IE:ﬁJ—_.a

onou Ly eivon 1 Euxheldeta dpdiom, [ elvon 1 teplodog Tou Euxieldiou teplodixol ypdvou 1 onola cuvdée-
Ton Pe To avtiotpopo tne Yepuoxpaciauc Tne wadens teumag xou F elvon 1 ehéuldepn evépyela Tou oUGTH-
poTog.
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. 1 e
— A=01 ﬁ / — A=01
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Figure 1: H muxvétnta evépyelag p, n axtivixy| Tleom p, xat to ddpotopd toug p +pr Yo M = £ =1
ad&lovtag to Poduwtéd goptio A.

I Moyoug mhnpdtntac Yo TopoucldcoupE PE Yepinée Tpdlele T wédodo. Apywd Vo Yewproouue
Y axdhovdn oxoyévelo Yeteixwy o Euxheldeia unoypoapn

dr? 9 112

)52 +rodo* .

O ouvtetayuéveg unopoly vo oLy TWES clUPWVA PE Tig oxdiouteg oyéoeic 0 <7 < B, 1y <1 <
00, 0 <6 < 2. Ed& to T elvan 0 Euxdeldeloc ypdvog, o omolog elvar meplodinde pe neplodo S, 1 onola
TPOXEWEVOL VoL omopeLy Vel plar xwvixn Wiopopgla otov opilovta tne uehaviic onfg h(ry) = 0, Ya elvon
avTLoTEOPWE avdhoyT tng Vepuoxpactag xou Yo divetan and tn oyéon

1 N(r)h/'(r)s(r) -

ds* = N(r)?h(r)dr® +

T = — =
B 4 (57)
Ou Yewprioouvpe v Xauhtoviavy| dpdor tne Yewplag Yog Ue TN LoppH
H= / (Hﬂ’gij +pp— NH — NiHi> d?xzdt + By . (58)

Muoc xon 1) AOor) efvon oTatixer) xou oQaiptxd CUPUETEIXY, VO %o To Tedio elvar wbvo axtivixd e€aptnuévo,
elpaote ot Yéon va Yewpriooupe TV axdioutn neploptopévn XowAtoviavi

H= —/dedtNH—i-BH . (59)

H mocétnra NH elvar mpoxtind 1 Aayxpavtliavry tuxvétnta NH = —/—gL. Yuvende €youue va
avTieTwricovue To axdhovdo TedBANUA UeToBoRwY

Ip = 27rﬁ/d7‘NH—|—BE , (60)
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omov Puoxd to By elvan évag emipaveloxog 6pog. Ia va €youpe €va xohd oplouévo tedfBAnua ueTaBoAMY
Yo mpénel o empavelaxds 6poc By va elvon TETOLOC (OOTE VoL AXUPMVEL TOUC ETUPAVELNXODE OPOUC TTOU
Yo dnuovpyndoly xodwg yetafdhouvpe xdde cuvdptnor. Metafdhlovtac Twpa 0 Spdorn w¢ TEog Ta
duvoxd medior N, s, h, ¢ urohoyiloupe Tic axdrovdelc e€lotoelc Tediou

s (s (h’ + hr (¢’)2) + 2hs’) YV =0, 61)
s (Nr (#)? - N’) Y Ns' =0, 62)
N (—h’ +hr(¢)? — 2;";) _ BN’ =0, 63)
N (s¢' (¢ (s (rh! + h) + hrs') + hrsg”) — V') + hrs®N' (¢/)> = 0. (64)

I var utohoyicoupe aUTéS Tig EELOMOELS, UXVPOCUPE TOUS 0XOAOUTOUE ETLPAVELUXOVS GOV

oo

(65)

T+

(iﬂéhN + éﬂr(ngSthgb’ + ;55/1]\75)

H Ao nov dkoape To téve avorotel autée Tic ellodoeic ye N (r) = constant, to onoio, ywelc Bhofn
e yevbtnrag unopel va tedel (oo pe 1, xau enlong s(r) = A2, ‘Exovtag ) Aon Twv TEdLx®Y
eglowoewy, elvar edxoho va unohoyioel xavelc T petaforéc twv nedlwv ota chvopa Tou Euxheldiou
YweoYeovoU, atov optlovta Tne padpeng TeUNAC Xol OTO ANELPO.

Yto dnelpo €youpe

o =056A)r, (66)
2A5A (8¢ +1

Sh — f# , 67)

6s = ASA/r? | (68)

omou xdvope Eexditopo e 1 LoV TapdueTeog 1) otola emitpéneton vo petaBhndel elvan n topduetpog A.
SUVETAE, 0 EMPAVELIXOS 6POS GTO AMELRO diveTon amd
0A
A (—2B§Aq - Zﬁ) - 6B(0) = 0, 69)
omnou Slayweloaue T ueTaBohr] Tou empaveloaxol 6pou B oe dud pépr, £val GTO ATELPO Xou EVaL GTOV 0pl-
Covta g padeng TeUTG. OEE®VTIS TOPA WS BOUAEVOUUE GTO PUEYAAOXAVOVIXG GUVONO, XOUTOVTOG
N Yeppoxpacio o todepr|, UTOROVUE VO ONOXATIOWOCOUUE XAl VO TAPOUUE OTL

A2 A%B
_ 42 _
B() = A 5q+16£2 ﬂM—i_lﬁgZ' (70)
Ytov optlovta tne padpene telnag éyouue 6Tl
dh=0—h'éry , (71)
ds = ds(ry) —s'dry (72)
(5@5 = 6¢(T+) - ¢/5T+ . (73)

Xpnowonowdvtag Ty e&lowon yio T Yepuoxpasio xou 1o yeyovde 6t h(ry) = 0, o emgovelonds 6poc
otov opilovta utohoyileton we

mor 4
2

A(ry)

1 (74)

+ 6B(T+) =0— B(T+) = —
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onov A(ry) = 2mry elvon to epPodd tne padpne tednac. Xto peyahoxavovixd clvoro 1 Euxieldelo
dpdom oyetileton ye v ehedidepn evépyela
Ig=pF=pM-S5, (75)

onou ta M, S elvon 1) ecwTEPXT EVERYELX XoU 1) eVTpoTio Tou cuoThpatoc. H Sudr pog Evxdeldeta dpdom
Yo dlveton PoVOo amd TOUC EMPAVELIXOVS OEOUC Xall Gl

A8 A(ry)
IE—ﬂM—F@— T (76)
OTOTE UTOPOVPE VO TOUTOTOLACOVUE
A2
M =M+ 1622 ° (77)
5= A 78)

Ev xatoxdeld, 1 paden tedna mou Perxoue Yo ixavonolel Tov TpdTo VoUo TN Yeppoduvouixic and
HOTOOKEVNG
OM =T46S . (79)

‘Onwe propel xavelg vo Bet, 1 ecwTtepiny| evépyeta Tou Lo THUTOS Yo diveton amd tn udla tTng padeng
TeVTAC 0AAG xou antd To popTio Tou Boduwtol tediov A. To Baduwté nedio Yo vidver tn yehovi| onr pe
éva deutepevov hair, xadot, n udla e podene tpomac Yo diveton pe ) PorRdeta tne otadepdc tne Yew-
plag g. Emnpdodeta egetdlovtag tny evrponio xar tn Yeppoxpacio tne padene tebnoac ahid xou tn Yep-
poyBentixdTnTa eldae 6TL OAEC OL TOCHTNTES Elvon VETIES Xo XATA CUVETELY, 1) Uadpr) TeUTa unopel vo
gpiel oe Vepuiny| looppomio pe €va Aoutpd FepudtnTog. XN cuvéyela, Vewpooue Xal TEQLO TEEPOUEVES
pehavég omég HE TNV XATEAANAN "povTeLd” yiar T pop@n Tne ywpeoyeovxhc uetphic. KatahnEope ato
CUUTEPAOUA OTL AUTES OL TEPLO TREPOUEVES PEAUVEG OTEC Fot TEQLYPAPOVTOL UTO CUYXEXPLLEVOUS AGYOUG
udlog mpog tpoytax otpogopun. Ev xoataxeldl, xou ol meplotpepdueves YehavéC onég elvon Yepuind
evotoelc, Aoy Vet Yepuoymwentindtnrac.

Y10 devtepo pépog autne TNe drtplBrc, ota xepdhaua 3] [} 2? Yo Dewpricouye f(R) Yewples Bapttr-
tag oulevypéves pe Poduwtd nedla. Xto mpdto e&’autdv, Yo aoyoindolue e wo tpwodidotatn f(R)
Yewplo pe eva eldyrota oulevyuévo auto-ahhnhemidewy Baduwté nedio, Sniady [1]

1 1
5= [#ov=a {50 - goon00.0-vie)| (80)
O nedlaxéc e€lotoelg Tou TEOXUTTOUY and TNV aveTépw Yewpla divovtol and
1
fRR/w - §g/wf(R) + g/u/DfR - V;va R = HT;LV » (81)
émou f'(R) = fr xa o tavuotic opufic evépyewag 1), diveton and tn oyéon
1
pr = ;A¢au¢ - iguugaﬂaaqsaﬁ(b - gWV(gZS) . (82)
H eZlowon Klein-Gordon diveta and tn oyéon
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[ T popt| Tou YwedyEOoVoU EMAEYOUUE
1
b(r)

EB¢ Yo mpénel va toviotel, toe 1 Unopén evog Baduomtol Suvautxol elvar amagoitnT yioe v napaioo
Tou Yewphuartog eEdhewdng iy vév, xodoe yweic auto, 1 eglowon Klein-Gordon urogel va ypoupel e

ds® = —b(r)dt* + —dr® +r?df* . (84)

06 = b)) + ¢ () (1) + 22) =0, (55)

-
1 onola umopel xou va ypopel ooy éva ohxd Blapopind av ohoxhnedooupe Wla @opd
b(r)¢/ (r)r = C', (86)

onou C elvon pior otadepd ohoxfpwong. T'a va €youpe éva ywedypovo pelavic omrg, Yo mpénel vo
uTdpyeL éva TETEpaoUEVO T = T Ttétolo Kote b(ry) = 0. Te auth tny nepintwon Ya tpénet C' = 0 to
onoto Yo emBdret b(r) = 0 navtol yio xdde r > 0 1o omolo dev Exet puotxy| onpacia, 1 to Baduwtd nedio
vorelvon wa otadepd (1) = . e oautd T0 GUANOYLOUG, £xoulE Xvel THY LdDEST TS 1) TAPdYWYOS TOU
Barduwtod mediov (cuyxexptuéva 1 vopua Tou xvntixol dpou, Tou efvor xat 1 tocoTnTa g Yewploc) Yo
TUPUUEVEL TEMEQAUOUEVT] TEVW GTOV 0p(LoVTa YEYOVOTWY. AUTH 1) CUUTEPLPOEE EVIL AVAEVOUEVT] PUOLXE
xat dev e€aptdTon amd TN LopPY| Yia TO GTOLYElD UAXoUS TN YEWpETPlag Tou éyoupe emhélel. Loppuva
e to Yedpnuo e&dhedng iyvav [18] norariactdlovtog Ue ¢ xou 0ONOXANEOVOVTOS 6TO eEWTEPUO TNG
peAaviic omhg Takpvouue

/ d*z/=g(¢00) ~ / d*r/=gV*heV 6 =0, (87)

omou 1o oVUBolo = SNAGOVEL lodTNTA Ywelc va Angdoly urddn empaveiaxol dpot, oL omolol oxxupyinxay
Yewpdvtag mwe To nedlo négtel Ypryopa ot Yeydheg anootdoelc. And tny avetépw e&lowor), uropel
xavelg va anogoavie! tog 1o Poduwtd nedlo Ya mpénel va elvon otardepd.

Iot va emlboouue tig e€lotoelg xivnong, Yo emié€ouye yio pop@n yia o Barduwté nedlo, xou cuy-

EXPWEVAL
A
o=\ Tp (88)

onou ta A, B eivan duo otadepéc ohoxhipwong mou xadopllouv tn cuuneptpopd tou Baduwntod nediou.
O1 e€lodioeig nivnong pmopolv va ohoxAnewidolv wg

fr(r) =c1 +car — //d)’(r)erdr , (89)

K
b(r) = c3r? — 1?2 / Wdr (90)

6moL T €1, €2, ¢z and K elvou atodepéc ohoxhfowong, evey ohoxhnewvovtag Ty e&iowon yia to foduwto
nedlo malpvouue

rb/(r)¢'(r)? + rb(r)¢'(r)¢" (r) + b(r)¢'(r)* |

r

Vi(r)="Vy +/ T ©D

6mou 0 BelXTNC R ONAGVEL TOEAYWYLON WS TEog To Paduwtd Tou Ricci. Mropel xavelc vo det 6TL Yo
éva TeTplévo Paduwtd medlo xan v ¢ = 0 maipvoupe mlow ) I'OX xan 1 Aorn BTZ. Zuvenag, 7
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otadepd ¢ oyetileton ye v toyd tng otadepds culeuéng Tne PaplnTog xou N oToepd co Ye TavEg
yeouetpixéc droplioeic tou euncpiéyovia otic f(R) Yewplec Poplintoc. T tn ouyxexpuuévn popyh
Tou Baduntol nediou, urnopolue va unohoyicoupe T cuvdptnom e uetpic b(r) we

b(r) = c3r® —

(92)

ABK 8AKT 64AK T2 <8(B +7) — A)
n )
.

A—8B (A—8B)? (A—28B)3

6mou unopel xavelc vo det 6Tt 6tav ot atadepéc A, B ixovorototy ) cuvinixn 0 < A < 8B, neptypdgpel T
yewueTpio pog podene tpinag ot Evay acuuntwTixd AdS ywedypovo, pe tov opillovta Tne Vo HEYOAGDVEL
xadog 1 mopdueteog A audveton xoAUTTOVTAC THY XeVTELxY Wlodoppla oto 7 = 0.

"Eyoupe agrioel Tic ouvapthoelg Tne Yewploc va UToAoYIG TOVY and TiC UTOAOLTES CUVAPTHCELS, BNAADT
éyouue Ppel ™ Yewpla 1 ontola unopel va unoo tneiZet T Abon pac. Mropobue vo utohoyicouye T Yew-
plo f(R) aoLUTTOTING YioL Uixpd o Yeydho 7

384AK In(2

f(R) ~ R+203(14_8é1)(3)R2Aeff, 7'*>OO, (93)
A

f(R) =~ R(1—8B>, r—0. 94

Mrnopolpe va dolue 6TL, o€ e T4EN, o€ Yeydhee anootdoels nalpvouyue tiow tnv 'O tapouaia piog
x0oUohOYLXNC OoTaERdS, EVE XOVTA 0TV Wlopop@la, 6Tou xou To BadunTé Tedio malpvel TN UEYLOTY T
Tou, ot oTadepég Tou Poduwtol nedlov eneloépyovtan oTov Gpo e I'OX tpomonowbvtag TN otadepd
o0leuine tne Popvtntac and 1 oe 1 — A/8B (éyoupe Véoel k = 8mG3 = 1). Xto axdhovdo didypopuo,
anexovi{ouue OAEC T PUOLXES TOCHTNTES TNE ADOTE UoC

Mrnogotpe va Sodue amd to didypopuo [ twe xodide avddvetan n mopdueteoc A PeyahdVEL XL 0
opllovtac e peravhc omtrg, eved to Baduwmto Ricei and otadepd nou eivon yia Ty nepintwon tne BTZ
Noong yiveton tAéov duvaxd. To Baduwtd duvauixd anelplleton xovtd oTny WLopop®la £V Tapouatdlel
xo €vor TYEdL, @ouvoueva to omola elvar cuvidn yia tic AdS pehavée omég e scalar hair.

TrohoyiCovtac v eviponio tng podene telmoc, eldaue 6Tt 1 Abon pac €yel yeyolltepn evipomnia
and ™ BTZ Aon, xadde avgdvoupe ) otadepd A tou Poduwtol nediov. H evtpornio unoloyiopévr
Tévew otov opilovia yeyovdtwy amexoviletan oto axéhoudo oyfua [B] 6mou unopolue xon vor dolue
OTL mpdrypoto ot ADoELG TN U1 yeouwuxhe Papdtntag Yo xouPBarody tepiocdtepn eviponia and tn BTZ
neplntwon,.

Axorovdwe, 610 endpevo xepdhano, [d]dewprioape tdh pia tporontonuévn Yewpla Baplitntac ot Teelg
YPOYPOVIXES DO TACELS, EV TPOXEWWEVL [4]

1
5= [ @ov=a{fR) - 000 - SRS~ 2v ()} ©>

6mou 86 €youue Vewprioer wor un tetpypévn o0levdn petoll tou Baduwtol Tediov péow Tou GpOou
Rp?. H avetépn dewpla vl tic emhoyée f(R) = R — 2A, V(¢) = 0 déyeton tnv (mhéov didonun)
Noom [19]. Ipdxeitan yior gar TOAG onuoavTixh Aoor, xodog To TETEadIdoToTo Eadep@dxt TNS 1 AboT
twv Bocharova-Bronnikov—-Melnikov—Bekenstein (BBMB) [20] napoucidler onpovtind podnuotixd xon
QUOXE TEOPBATUATY, OTIKS amelptopoUe Tou BadunTod tediou oTov opilovta, aANE xou TNe eviponiog, un-
deviopode e Vepuoxpooios, aotdieia xdtw and Slotopoyés, Lo VoL avapEpouUe Ueptxd. Oo tar oulnTh-
GOUUE EXTEVAS TOPOXATE, XOWOTL 1) TELOBLEG Tty AOOT) BEV UTOPEREL amd Tol TPOBANUATA TN TETEABIAO-
Tatng Aoong, wio xou €xel tenepaopéveg xou Yetinég Yepuoxpacio xon evipomia, eved Lo VEL Xol O TEMTOC
voyuoc tng Yeppoduvopxrc. H povn ehediepn napduetpoc tou cuctipatog etvar 1 udla tne yadens tev-
TaC X O UmopoUue va ofiicouue To BodunmTo nedlo xpatidvtag aueTABANTY TN Wdla, CUVETAOC 1 Yoden
TeUTa xouPoAd Seutepéuoy hair.
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R(r)

A=0.1
A=0.2
A=0.3
A=0.4
0.0 05 1.0 15 20

Figure 2: ‘Olec ol puowég nocodTnteg yia diapopetixd A éyovtog Véoet B =1, K = =5 xou c3 = 1.
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Figure 3: H evtpornia unohoylouévn ndvew otov opilovta yeyovotwy oo cuvdptnon tne napopéteou A,
6mou oL utohoineg atadepéc éxouy @iaplotel we B =1, K = =5 xau ¢z = 1.
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Yxonbe pog elvon va olue twe cuuneptpépeton Wio tapouota Aon ota thaiowa pac f(R) Yewploc.
Tt to A6y0 auto, yia va Abooupe T Tedloxés e€Lomatls, xdvaye Ty unddeon nwe dtav ofooupe TNV
TaPdPeTEO Tou efvon LTETUVY Yot TN Un Yeouu Bapbtnta, tolpvouue Tlow tn Abon [19]. H Abor tou
cuoTApATOC dlveton omd

¢(r) = VA/(r+B), (96)

fr(r)=1+ar, 97)
3B? 2B3 6aB2r
b(r) = — - +
2(aB+1)2 Pr(aB+1) PZaB+1)3
21 6 B? T
r (12 PlaB+ 1t “\aBrn+i)) (°8)
12a2B?
f(R(r = 0) ~ R— =~ n(R) + Co , (99)

- 2(aB+1)3
4B (6Ac — R) 3
33/4\/aBl

f(R(r = o)) ~ R +Cu (100)

eve 10 BordueTé Suvouixd utohoyileton we

aB
Vie) = 51202(aB + 1)* (8aB + ¢2)

+8aB¢*(aB + 1)(aB +4) + 192aB¢*(aB + 1))

<¢2(aB +1)(3072a°B? + ¢°(aB(aB + 5) — 2)

B (—¢*+38
+6aB (8aB + ¢?) <(512aB +¢%) In (W) +512aB1n (a1)> ) . (10D

H poppr e dewploc f(R) mou unootne(let auth tn Aoor unopel vor UTOROYIOTEL HOVO ACUUTTWTIXS
xou oL avetépn f(R) dewploc epnepiéyouy pa otadepd ohoxhipwone. Autd nou moapatneioope eivon
OTL 1) TUPAPETEOS v, 1) OTIOlAL ETUTEENEL TNV VTOEEYN TV U YEOUUXOY TORUUETEMY, 00NYEl o€ €vary un
duyvo tavuoTh opuric evépyelag yia To Baduwtéd nedlo, eved xdvel xou o Poduwtéd tou Ricel Suvouixd
ané otadepd. Emnpdodeta, xadde n nopduetpos a avgdveton, wixpaivel o opilovtog tne puehavic one.
Y10 axdlouvdo dudypopua [ oto onolo xan aneixoviCoviar oL Quowég TocdTNTES TNG Abong pag. Evdi-
apépov €yel vo mopatnenoet xavelc twe o opllovtac wxpaivel xodg UEYOADVOUUE TNV TUPAUETEO TNG
un yeoupae Bopbtntoc, eved TopdAANha To (VoS TOU TAVUCTY OpUNc EVERYELNS omd UNdEY Tou elvon yLot
v mepinTwon e 'O yiveton duvouxd yia Evar un undevixd a.

Trohoyilovtac thpa Tic didpopes VepUoduvopxés TOCOTNTOS THPATNEHOUUE ETLONG EVOLOPEPOLOA
ouumeplpopd. Apyixd, n Aon un yeauwuxhc Bopdtntac pnopel va elvon Yepudtepn xou Yepuoduvoxd
npoTuntéa ev ouyxploet ye ) Avor [19]. Qotdoo be unopel va elvon o tar Sud TawtdypEovo. Kodide
oUEAVETOL 1) TAPSPETEOS W1 YeoUXhS Bapltntog, énetta and pla xpiown tun, 1 Yeppoxpoacio Hawking
ehaTTOVETAL, £V 1) evTpoTia 6Tov opilovta yeyohdvel. H depuoxpacio o divetor and tn oyéon

b’(rh) 332(3 + T’h)
Ty = = 102
" 4 2rl?r2 (aB +ar, +1) 7 (102)
6mou yenowonooope ) oyxéon b(ry) = 0. Onwe xavelc Yo neplueve nalpvoupe ) deppoxpacia

e Aone [19] 6tav o — 0. Xto didypoppa [S, anewxoviloupe ) depuoxpacio Ty cuvapthoel Tng
TUPUUETEOU TNG UN YeAUUpXNE BapdtnTag o UTOAOYIOUEVY TdvVe 6ToV opilovTa yeyovotwy. Kaldde to
a avdvetan, 1 Yepuoxpacion wxpaiver Ayo, otn cuvéyela avidvetar QTdvovTaG 6T WEYLOTN TWY TNG
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Figure 4: O ouvaptioeic b(r), V(r), R(r), f(r) and T,/ (r) anewovilovtor ouvaptroel Tou 7 yio BL-
QUPOPETIXES TYES TOUL @, EVE GT0 TEheLTOfO SLdypopua xdte 8e€id, o opilovtag Yeyovotwy ry, aneixovile-
ToL 00 GUVAPTNOY) TOU . Xe HAa Tat Blorypdupato €youue Véoel B =1 = 1.
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Figure 5: H Yeppoxpacia oo cuvdpTnomn Tou o,LTOAOYIGPEVY Tve GTov opllovta YEYOVOTWY 0ol
éyouue Véoel B =1 = 1.
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X0l OTY) GUVEYELR Wxpodvel Xou TEAL  DUVETMS, ol AUCEIC TS un Yeopxnc Bapdtntog elvon v yével

PuypdTepec.
Mepvdye thpa otny evrporio. Xenowwonowdvtog tov tmo tou Wald [21),122]], uropotye vo unohoyi-
coupe TNy eviponio Tng pehavic onig yio T Yewplor Yog wg

! [ or
S = 71 /d9 T'h (aRaﬂ’yé)

6T0VE g elvon To binormal Sidvuopa téve otov opilovta [23], L eivan 1 Aayxpovtliav tne Jewplog xou

éaﬁé’yé P (103)

T=Th

oL 1 (fr(rn) 1 5 s s

T2\ 2 16 “197 = 979") . 10
aRalB»yé r=rp 2 ( 2 16¢(rh) (9 g g 'g ) ( 4)

Ev téhel xatolfyoupe oto
fr(rn) 1 A
S =mr, (2 - E¢(Th)2 = Zmeal(rh) . (105)
Avuxaotwvtag Ty tocéTnTa fR,,, THEVOUUE
1 B

S 27T7"h( + ary, B+rh) , (106)

E8d, o opllovtag 7p, petofdhietan xadwg 1o B odldlel odAd Yo emnpedleton xan and Tic otodepés |
and a. Kavelc unopel va unodéoel 1t agod a > 0, ov f(R) yehavéc onée €youy yeyolUtepn eviponia
an6 awtég tou [19]. Qotdoo, meénel vo hdBouue unddn nwe ol pehavég onég [19]] éyouv peyarltepo
optlovta, 6nwe unopel xaveic va del and ) cuvdptnon b(r) oto Sudypoupo Fig. 4 Xenoumowdvtog tov
TOTo e evipomiog xou T ouvdrixn tou opilovta b(ry) = 0, anewxoviloupe TNV eviponios UTONOYLOUEY
Téve otov opilovia oo cuVEETHON TNE TaEaUéTEoL a oTo BidypapualBl Eivor eugovéc 611, o1 Moeic twv
F(R) Yewprdv Yo xpiBouv péoa toug Aiydtepn minpogopio andtt autée tne O,

4.0

B 30 /
w

25 yd

2.0

0.0 0.5 1.0 15 2.0

Figure 6: H evtpornio S otov opillovia YEYOVOTWY ¢ GUVEETNOT TNS TopoéTeou a, 6Tou éyoupe VEael
B=Ii=1.

Emunpéoieta, vroroyilovrag ) wdla tne podene tevmag, eidope ot auty| elvon undév, cuvende
poden tevna elvon dpaln. Auth Sev elvan o 1 wovaduer) tétoln tepintwon otn Bihoypapia, xador,
UTdPYOUV aEXETA TopduoLa Topadely ot TapaywYNS dualwy HEAAVOY 0TIV, TOU GUVOSEVOVTAL Antd TN
Ypavor poc cupuetplog, 6Twe auth e obupopene ocuuuetelag. Xt dixy) Yoc nepinTtwon 1) TopdueTEog
a odnyel ot Ypadon e olPpop@PNC CUUHETElOC Xou HdhloTo amodelZope Twes, 1) CLVEETNON TNG KETEXNAS
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unopel va ypapel ooy to dlpotopa Twv Lo ETUEPOUC CUVILTHOEMY, N ot X TwV oTolwv elvat TAYpwS
xadoplopévn amnd Ty Topduetpo a xadde av Yoovpe o = 0 auth Yo undeviotel, dnhadh, éxoupe b(r) =
b(r)a,o + b(T)aR,a,6, 6TOU

382 213 r?
b __ _ r 10
(6raw = ~BLBT1E  Er(aBL1]) B (107)
6a.B2r 602 B2 r
b(r)a.s = ~ 472 1 . 108
Moo = BB+ T PaB 1) n(al(BJrr)Jrl) (108)

Eivor Zexdrdopo mee av Véooupe o = 0 oty b(1) ¢, 1 oLVEpTNON Yo undevioth, eved 1 b(7)aR,a,6 Vo
o doet ™ Aoon [19]. Mropolue va 8olpe étt 1 cuvdetnom b(r)Gr,qa,¢ EUTERLEXEL Evay bpo wdlog

3B
MGRop = 57— > 10
GR,o,¢ 2(aB +1)2 (109)
eV 1 6UVAETNOM b(1)q,¢ Slvel évay bpo palog
3B2
Myy=—— 110
" T 2(aB +1)2 (110)

o ornolog elvon avtidetog and Tov 6po udlog mov 1 ouvdpTnom b(r)gR,a,6 YEVVE. To yeYOVOCS LTS EYElpEL
oNHAVTIXG EpwTAUATA Yior T Veppoduvouxr] OoT aUTASC TS LEAXVAC OTHC.

Yto tplto pépog g mapoloas SlotelPrc, HEAETAUE AUGELS UEAAVEY OTIOV OE UN YeuUUxéS Yewpleg
nhextpopayynTopol xou xuplne pe ) Yewplo Twv Euler xou Heisenberg (EH) [24]], n Lagrangian tng
omnolog diveto and tn oyéon

Lpu ~ —F2 +aF* + BQQ )

émou o a, B ebvor otodepée pe povédec [inoc]? xou F2 = F,, F*, Q = €1, FY F* ue tov tavuoth
tou Maxwell va divetan ané w oyéon F,, = 0,4, — 0, A, 6mou 10 A, elvon to medlo Pordulbag tou
nhextpopayvntiowol. H cuyxexpiuévn dewplia, oe xBavtounyovind eninedo, neplypdpel Tn ox€doon @w-
Toviwy pe putovia. Xe eninedo Papltntag wo Tétoln Yewpla unopel vo neplypdpel axpi3éotepa podpeg
TEUNEC OTO MPWLO CUUTAY OTIOU 1) EVTAOT) TWV NAEXTEOUAY VNTIXWY Tedlwy Yewpeitar cuyxplown ue oauth
TV Boputixdv. Emmpdolderta, tétoleg Yewpleg un yeaupxés wg npog to Baduwto F npoBiémovton and
o Yepehddelg puoxég Yewplec. Tétolor 6pol mpofrénovial and tn un Slaydvia (emitpénoviag dnAady
v Umopén evog MhextpouayvynTxol medlou oty younidteer didotaon) Sotatixy eAdttwon (tinou
Kaluza-Klein) Lovelock dewptcdv ahhd xou amd Yewpieg yopdov.

Yric Yewpleg xopdov, oL avitepol bpot tou Popdwtol tou Maxwell F2 uropolv vo ypaupoly oe
XAELOTY] LOPPT| AL CUYXEXQPLIEVOL OE LA EXPEUCT] TTOU EUTEPLEYEL GAOUGC TOUG OROUC TOU AVATTUYUATOC,
tn Lagrangian twv Born xou Infeld (BI) [25]. e tétoec Yewpiec, n Lagrangian twv BI épyetan and
10-Bidototr unEEY oSN UETE amd CUUTOYOTIOLNGT) TAVE OTNY XATAAANAT Tetodidototy Bedvn. Ye autd Ta
povtéla, N Bl Yewpla elvon mévta culeuvypévn pe to avtiotpopo g napauéteou avdntuéng Bpdyywy e
Yopdhic gs = e? émou 1o ¢ elvon To medlo dilaton (éva Baduwté nedio). H BI dpdon otic 4 yopoypovixée
dlaoTdoelg unopel vo yeopel wg

1 1 N
= -T2 [ &z /g7 e P 1+ = Fp FW — ——— (Fo F 111
Sp1 ﬂ/dm\/ge \/+242]-"u]-" 16714@?“;) (111)
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6100 Frp = 2epmpe FP7 00 To = 57 = J;f , 6mou M elvon 1 koo udloc Tne yopdhc 1 onola
ewvon €v yével dlagopetin) and 1 pdlo Planck. Mropel xoveic ev yével va Yewpfioer tnv dpdon BI
egopynic oo pLat vepy 6 Vewplo Un-YeUUIIXOD NAEXTEORAYYNTIOHOV, OTOTE X0 GE UTY TNV TepinTtwan, 1
napduetpog Ty 6e oyetileton e T Vewpla yopdwv oAAd elvon yior SloaoTartixy| TapdueTeog 1) onola unopet
VoL tpoadloplotel and To exdotote cUoTNUA oL Pewpel xavelc.

Tparyuatomowbviag thpa eva avdmtuype tne BI Spdone oe dpoug T, unopel xavéic va der bt n BI

Yewpla tautileto ye v EH dewpio

d4m¢_T,Jef¢[_ 2L -TiL(1+ 0]

L 47,2 Fuw F, Iy=—

"Etou ayvodvroc mpog otiyur to nedio dilaton, unopel xaveic va 8et dti 1 avewrtépw Yewpla Tautileton
pe v EH dewpio pe

Fw FP For FM +

3 T4 (Fov ]-'””) . (112)

2
Ly =1 (.7:;“/ ]:HV) + C2 }—pu FrP ]:p)\ ]:/\M7 (113)
o6mou [126,127]]
1 1
= ——F - Y - 11
A= 25 (114)

Oewpdvtoc wn duvopixd nedio dilaton e entnedo ywpoypdvo Minkowski 1 napduetpoc T2 unopet
VoL TERLOPLO TEL UEGW TNE PUOLXNC TWV ETULTAYUVTMOV X0 CUYHEXOHIEVAL UECE OHEDATTC PWTOVIKY UE PWTO-
via, yioe Ty omofo undpyouy Eexddapeg melpapatixéc evdeilelg ota mewpduato tou LHC ( 28] 29, [30]).
Or pehéteg oxédaong putoviey pe potovie [26] uropody vo §éoouv éva xdtw 6plo 0Ty TapdUETEO
71 > 100 GeV. Xty neplntwon g Yenplag yopdwyv, autd Yo 0dnyoloe oe Vo XATHOTUTO GpLO YIX T1|
iMoo pdlog tng yopdric My > 0.25 TeV.

Av xovele tdpo MBer unddn Tou ™) duvopixr Tou Baputixol Tediouv xou tou Tedlou dilaton, unopet
xavelg va Ypd&[)st v dpdion Bl w¢

5= /d‘*x\/?g[R—wam} —/d"‘x e[ TRIE  The B £, 115)
oto cVotnuoe Einstein (to cbotnua oo omolo 1 Bapdtnta elvon ehdyiota oulevypévn ue ta medla, Snhadt
HETE TN peTafoln Tng Bpdong pumopolue va yedhovue Gy ~ 1)

Mrnogel xavelg enlong va dewpnoel wia Yewpla pe uPnhdTepouc 6pOUC NAEXTEOUNYVNTIONOY, OE EV-
epYéc ewpleg YaUNADY EVERYELLDY TOL TROEEYOVTAL OUWS ot XAELGTEC VeWplEC Y0pBAY, OTWC 1) ETEPOTIXY
yopdY. Autd mpoxtxd onuaiver, 6Tt xavelc mpaypatonotel éva avAmTUYHO OTNY TUPAUETEO NG Loy g
o0levine tne yopdhc . Xe tetoleg Vewplee, de unopel xavelc vo Yewprioet Ty dpdon twv BL, xadétt T
nedlo Barduidoc de umopodv va yeapolv cay évay 6po Tou av avantuydel tepléyel GAoug TouC ETUUEPOUC
6poug 6mwe 1 Bl Yewpla. Iapdho mou evepyég dewplec oe Bpdyyoug yopdhc dev elvan yvwotés o
AVOAUTIXT Lop®N wcopox')ps Vot ﬂswpﬁooups [311:

~ ~ ~ Br(®) ~ ~ = 4o~
S = /d4x\/ R+ Bq>(<1>) O® —4V,® VFP| — F4( )FWF“”—Bw((I))wl@er...

(116)

oTo ouompcx owocq)opocg mg Y0pdYc 6TOL TO oupﬁo)\o ( .) dnhdver ocﬂpoton UE TN UETEIX OTO ouo‘mpoc
avaupopdic TG 00N Guw, Fuw OMAdVEL Tov Tavuoth tou Maxwell, D, eivar y cuvakholwtn mopdywyog
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e Baduldag, ¢ elvan tar pepuovind medio xan o ... SNAdVeEL dhha medio UANG oAAG xou €vay dmELpO
oprdud dpwv oto . Ed, oL nocdtntee B;(P),i = g, D, F, 1) elvan cuvaptAcels Tou TEPLEYOLY HOVO TO
nedio dilaton xou oyt mopary dYOUS TOU, XL CUYXEXPUEVD SUVAUELS TN cuvdptnong culeuéng Tne Yopdhc
gs = exp(P), g5 X xou unoplv vou Ypopoly ot Lop®t

B;(D) = e72® 4 c(()i) + c(li)e2CI> + -+ 0(22 e 4 117

OTOTE X0l TTPOXELTOL TEAXTLXEL Yot EVOL AVATTU YA TOU TETPAYOYOU TNE oLVERTNoNg oVleLEng TNg YopdN<.
Mdhiota, 0 TpWTOC 6poc ot aUTH To avdnTuyda yia X = 2 divel Tov 6po undevixnc tédEng oto dplo
YOUNADY eVERYELDY NG eTEpOTIXNC Vewplag yopddv. Emmpdoteta, autdc o dpoc eupavileton xat otny
un Slorydvia Blao Totix| eAdTteon e I'OX and tig mévte xwpoypovixés Blao TUCELS OTIC TETTEPLS Y WEO-
xeovixée dootdoelg pe ) pédodo twv Kaluza-Klein. Efvar eZbywe onuavtid vo tovicouye mwe n
AV TERE EXPEACT] TEPLEYEL Xau évay aTadepd 6po yia X = 0, Tov 0nolo WoT6G0 BE UTOPUUE Vo TTROG-
dloploouye xadwg mpdxetton yio éva {rtnua To onolo e€aptdton ot yeydho Badud and tn Yewplo yopddyv
nou Yewpel xavele. Xuvenng, nepvoviac tdpea oto cbotnua Einstein, xou ayvowvtag dha tor udloima
nedio tépa amd o Poputind, To nedio dilaton xoun to medio Paduidac unopolye va yedouue T dpdon

S= %/d‘lx\/fg[n—wwvm] - /d4x\/ngFz(¢)) [7:3 I;ﬂ - /d4a:\/?g7:14 Bpa(6) IE| + ...
(118)

670V oL cLVOPTHoELS Bri(¢), i = 2,4 emdéyovton Eva avamTuypo 6T cuvdptnon oOlevine otne yopdhc

Bri(g)=> g X, i=12, g =exp(d). (119)
X

Ytig etepotnég Yopdég ol bpol EH e umopolv vo Ypapolv 6e XAELOTH LORPT| XL YUAUTO ULl YEVIXOTERT)
dpdon unopel va Yewpniet,

s=— [dey=g [wawvm] - / 4z /=g Bp2(9) [7:3 IQE} - / d*2\/=g T Bpa(¢) Lo + . ..

- 167
(120)

6mov 1o (...) mepthayuBdver Suvopxd yia to nedio dilaton, n axplBrc poppt Twv onolwy dev elvor Suvatd
va Beedel, xou o1 cuvapthcelc Br2(¢), Bpa(p) oe auth tnv nepintwon d0vovion ond €vol avamTuypo
dpTiwv dpwv T ouVapTNoT cLleuing C xoEdfic. Yto Teheutalo xepdhono avThc TNG dateyBrc [6] Do
MEAETHOOUNE EXTEVME TNY VWO TERW BEAOT), Xl CUYXEXEWEVA Vol APHOOVIE TIC ToPaUETEOUS ¢; audaipeTeg
X0l O CUYXEXPWEVA, Yo Yewprooupe TN Spdon

S= % /d%\/jg{R —2VHOV 0 — e 20 F? — f() 2aF G FLF 5T, — ﬁ]—"l)} , (121)

Tuyxexpuéva, 1 ouvdptnor f(¢) o meénel vo neptéyel dpTiec duvdues tTne ouvdptnone oOleuing e
Y0pdHC, dnAadY) vou €xel TN pop@Y| TNS O Mocoupe Tic ediodoeic v f(@) = —3 (g% + ¢g2) — 2,
001660 TPOTOV GULNTACOUPE AVIAUTIXE oUTO TO XEPAAaLo, o ANCOLUE Yot TO XEPHAALO TTIOL TPONYE(L-
Tou owto0 [5} H avahutind auth eloarywyh oTic un yeapuuxés dewplec nhextpoporyvntiopol eivan Baou,
TEOXEWEVOU VoL AVOUNOGOUUE QUTE TA XEPEAOULOL.

‘Eyovtag Aowméy dixonoloyfoel To 6Tl oL U yeouuxés Yewpleg nhextpouayvnuiouol culeuyuéveg
pe Borduwtd medla elvan onuovtind vo yeketnioldv xoddtt mpoépyovton and Yeuehndelg Yewpleg, Yo
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Eexwvhioouye and Ty anh Lagrangian evog Baduwtol nediov, edylota ouleuypévo e ) Bopdnto xon
TO U1 YROUULXO NAEXTROUAYVATIONO, oTT) Spdom [6]

S = /d4x\/—g£ = /d4x\/—g (R— 0", —2V(¢) — P+ aP? + 5@2) . (122)
I va Abooupe tic edloxée e€lomoele, Yo utodéooupe Tt poper TN UETELXAC
ds? = —b(r)dt® 4+ b(r) " tdr? 4 by (r)?dQ? , (123)
eve Yo o edlo Poduldac Yo emitpédoupe wbvo axtivind woryvnuixd tedla Ye TNy emAoyy
A, =(0,0,0,Q, cosb) , (124)

eve Yo agrioouye To Baduwmtd duvoplxd vo utohoyloTel and tig nedlaxé e€lodoelc. Yuvidwe xavelg
UTOVETEL YLol LORPT| YLal TO BUVAIXS XL GTN GUVEYELX AOVEL TIC EELOWOELS TEDiOV, 1O TOG0, aUTH elval £val
pordnuortixd doxoho mEOBANUL, aPevis xodTL cUupwve e To Vewdpnua eZdhhewdng Ly vdy, éva Jetnd
duvopxd de unopel va utootnei&et wa hairy poden teina, agetépou, N LopP TeV TEBIXDOY EELEHOOEWY
elvor TéTolo TOU EMAEYOVTUG €Val BUVOUIXO BE UTOPOUUE VoL OAOXATEWOOUUE AVOAUTIXG TI UTOAOLTES
dlapopiréc e€lomoele. ‘Etot, xavels xdvel cuvidwe pio dedenon, yia napdderyuo Slahéyovtag Wia Lopy
yia to Badumto nedlo, n onola Yo mpénet va elvon tétota wote To medlo va elvon XA oplouévo yia xdde
r > 0, 6nwe xdvope xou euelc €56, Ue AMOTEAECUN Vo UTopolv oL eELOMOELS Vo ohoxhnpwdolv. Ev
TPOXEWEVW, 1 ANOT) TV TEdaxdY eElohoemY elvon 1

—1
NN

6(r) = — (1 n 5) , (125)
bl(r) = T(V + T) 5 (126)

EVQ 1 oLVAETNOT TNG UETEIXC Elvor

b(r) = eyr(v ry 4 G e 2r) —4Q7, | 8aQy, (=07 + 1207 + 12ur) (12 4307 + 3ur)

V2 382 (v + )2
+ %ln (V i r) ( —Vr(co +v)(v47) = 2Q% r(v + 1) (1/4 — 24ann) In (V i r)
+48avQt (v +2r) — 20°Q% (v + 27“)), (127)

OmoL ¢1, ¢ elvan Buo otadepés ohoxfpwaong xou v elvon Pt otadepd mou xoopilel T cUUTERLPOES TOU
Boduwtol mediou, to heyouevo Paduwtd "poptio” (scalar charge). Yrnohoyilovtag xavels tn ouunepe-
LPOPd TNC PETPXNAC OF UEYdAES amooTdoels, unopel v el mwe 1 otodepd ¢ oyetiletar ye to av o
Y WedYeovoc elvat acuuntoTXd eninedog, 1) (A)dS, xou dpo ye TNV xoouoloyxr otadepd, eved 1 otadepd
o oyetileton pe ) pdlo tne padene tevmac. H cuvelo@opd tou un yeouuxod nhextpopoyvntiopol etvat
TOAD ONUOYTIXT GTO XAVEGTAE Loy LEWY TEdiwY xadde xadopilel T HopPr| TOU YWPEOYEPOVOU XOVTA GTNV
WBlopoppio dTeg xon Vo tepyuévope xorddtl tétoleg Slop¥daeic elvor XBavTixhg GUOEWS, EMOUEVKS 1) CUVE-
1opopd Toug Yo efvan TOAD oNUAVTIXY O EXEIVES TIC TEPLOYES TV 1) XPBorvTounyovixy) Yivetal ongovTixy
(6mwe 1 WBiopoppia). Troloyilovtag cuyxexpléva To TETEdYwWVO Tou TavuoTy Tou Riemann nalpvouye
30402Q8, 7520 (02Q5)

6
1
Xy
R R (1= 0) ~ St - +0(T> : (128)

6mou elvoll EPQAVES TS O LoYLROTEROS GEOC TNV LBLoPop@l TEoEpYETL ANd TIC BLOPWOELC TOU UY) YEO-
P00 NAEXTEOUY VITIGHOU.
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'Onwe mpoelnope, agriooue 1o Baduwtd duvouxd vo utohoyiotel amd Tic medlaxés eElodoelg XL 1)
pop@Y| tou etvon 1 axdroudn

V() :% (2 (1/)(458a¢ — 27) + 24962 (1 — 240t + Aot — 36\@x¢>

+ cosh (ﬁgb) (81/)(6 — Tlaw) + 24002 (1 — 240t + At — 36\f2x¢)
+ 36 sinh (ﬁ(b) (2\/51/@(24041# —1)+ 3x) — 4on)? (COSh (4\/§¢) — 14 cosh (3\/5¢))

+24(3 — 200a1)) cosh (2\/%)) . (129)

To duvopixd mepthopfdvel TELYVOUETEIXES cUVOPTACELS Tou Paduwtol nedlouv ¢, oAAd xou Téooepiq
emimhéov otadepéc. Ty xoopoloyed otadepd, Aeg, TNV otadepd x = m/v3 1 onola diver To héyo
e wdloc e pavpne teimac e mpoc To Baduwtd goptio, TN otadepd ¥ = Q2 /vt n onola divel
T0 A6YO TOU YayynTixol @optiov mpog To Paduwtd @optio tng padene tevmac aAAd xa Ty EH ota-
Vepd cr. Buvenmg, N wovader| eeliepr TopdUeTEOC TOV GUCTAHUNTOS Elval To Baduwtd poptio v Tng
padene TEUTAG. LUUTEPUOUTIXG, AUTOU Tou eldoug oL uadeeg TEUTES TEQLYEAPOVTUL Amd €V TEQLOPLO-
HEVO TORUUETEIXS YWRO XAl O TEWTOS VOUOC TNS Yeppoduvauixic 6Tov omolo UTaxolV diveTton oynUaTIXd
and N oyéon

OM ~ TS + ®év . (130)

Ac oulntioouye avoluTixd TNV avwTERE TEOTUON, XS TEOXELTOL YL XY TL TOU ATOUGLELEL oo TNV
BBhoypapia. Oa yenoulomoiooupe xar €6 TN XopAtovioav) exdoyy| Tne dpdong uag. Aol yenot-
HOTIOLOVUE UOVO Loty VTS popTia, T TEBio TOU NAEXTEOUNYYNTIOUOU BE Vot €YEL OPUT| X0 GUVETWE ApOU
0 YWEOYEOVOC YOG EVOL OTATIXAC XOU GPAULPIXE CUPIETELXOS, YENOWOTOLOVTIS To axdhouto ansatz yo
™ petpwt| (oe Euxdeldela ypagpn, éxoupe dnhady) xdvel Tov ypbvo @ovtoc tixd)

dR*W (R)?

ds* = N(R)?B(R)dr?* + B®)

+ R%d0? (131)
n Xawhtoviovy| dpdon tne Yewplag pog oe Buxeldia popgy) elvon
Ip = —/dT/d?’xNH + Bg , (132)

onou B elvan évoc emipaveloxds 6pog MOTE Vo EYOUUE EVOL XOAWS 0pLoUEVO TedBAnua uetofohody 02y =
0, eved yio To porywvnixd medio emhéyouue ) wopyh A, = Z(0)dp. Edw, or cuvtetayuéveg maipvouy
Twéc we e€hc: 0 < 7 < B, Ry, < R < 00, evdd ta 0, ¢ elvon ou obvndes, alipoutioxy| xau avtiototyo
Cevido, ywviee. T va amogeuydel plo xwvixy Wiopoppio otov optlovta tne yehavrc onic Yo Teénel o
Euxeldelog ypdvog va elvan meploduog e neplodo

47W (R)

B=UT = SR B n, (133)

Ry

omou T Yo ewvon 1 Yeppoxpooioa tng padene tevmag. EdG, anoxheiotxd xa udvo ylo UTOAOYLOTIXY
EUXONAL, YENOLHOTIOLOUYE EVal VEO SUGTNUN CUVTETAYUEVWY 6TO oTolo, 1 cuvdpTnon b1 (r) = R nailel to
AOY0 NG oxtivixc ouvtetaypévng. MetaBdhovtag twpa Ty (132) we mpog T dyVWoTeES CUVIPTHOELS
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N, Z, B, ¢, W nalpvoupe ti¢ e€r¢ e€lotoelg

2 (R7WB/ + w3 (R8V + R*esc?(0) (2')° — RS — 2acsc(6) (Z’)4))

+ BR® (W (R2 (¢) + 2) - 4RW/) ~0, (134)
cot(8)Z'(6) — Z"(6) =0, (135)
—2WN’'+ NRW (¢/)* —2NW' =0, (136)

(@) (NRWB' + B(RWN' — NRW' +2NW)) + BNRW¢'¢" + N(—R)W*V' =0,  (137)
2N <R7B’ + W2 (R8V + Rhesc?(0) (2')? — RS — 2acsc(8) (z/)“)) +

BR (2N +4RN' + N (-R?) (¢/)°) = 0. (138)
Iot va Bpotpe auTée Tig EELOMOELS, UXVPMOUPE XATOLOUE ETLPAVELONOVE OPOUS, GUYKEXPIUEVO TOUS
8TBBOGNR2Y  167SBSWNR StBSBNRY |
TBBOQN R ¢" 167 | 8B ’ (139)
w w2 w
Ry,
EVE OXUPOCUUE Xt ETLPAVELOXOUS Opoug e alipovdoxy| e€dptnom
8TBSZNW csc(0)Z' (34 — dacsc?(0) (Z’)Z) o=
/dR 7 (140)
=0

Advovtag Tic avetépn eElodoel Talpvoude T hion Tou avapépope o téve otig (124), (125), (127), (129)
yur = 5 (V2 +4R? — v), evé Peloxouye e N(R) = constant, to onolo ywelc BAdSN e yewxdTr-
140)

Tac unopolpe va Yécouye (oo pe 1 xon W(R)? = 4R*/(v* 4+ 4R?). Suvendx, 1 e&iowon ( yiveTo
8TBOZNW csc(0)Z' ( RY — dacesc2(6) (Z')° b=n W(R) (R* — 40Q?
/dR S{G ) = 1676Qm /dR (B) ( 7o m) 3Qm, -
=0
(141)

H Bpdion Yo SlveTan amoAITWS omd TOV EMLPAVELIXS 6RO , XAHADS OL VW TERL EELOMOELS EMBAANOUY
T0 pndevioud e und ohoxhpworng nocdtntac. Thpa, uneviuuilovrtos Twe N uévr Topdueteos N otolo
Yo unopel vo yetaBddheton elvor To v xododg To Portuwtd duvopnd emPBaiel oL uadpeg TEUTES Vo €Y0uV
nenepaopévouc Adyoug pdlag meog Poduwtd goptio xau payvntind mpog Paduwtd goptio, dnhadr ol
Aovou x = m/v3, P = Q2 /vt elvan pllopiopévol amd ) ewple, Yo éyoupe

dm = 3%6vy , (142)
6Qm = 200/ 1 . (143)
Ot petaforéc Twv nedinv oto dreipo yivovto
4 62y
5B—5V(R2 - )7 (144)
vy
oW = iR (145)
1 v?
bp=0v|—=———F——= ], (146)
0 (\/iR 8\/§R3>
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eve otov opilovta éyouue

0B|g, = —B'(Rp)éR , (147)
00|r, = 0¢(Ry) — ¢'(Rn)d(Ry) , (148)
(SVV|R,L = (5W(Rh) — W/(Rh)(S(Rh) . (149

Ané tn onyur| mou 1 dpdor woc Yo diveton amoxhetoTixd and Tov emgpavetaxd épo I = B, oxondg
Mo €lval Vol UTOAOYICOUPE TOV ETLPAVELONS OPO, WOTE VO UTORECOUYE VoL GLVOECOUNE TNV Euxheidela
dpdom ue TNV eAe0UERT EVERYELX TOU PEYOAOXOVOVIXO) CUGTAUITOL, HECW TNE TPOCEYYLONG OOy UATLXOU
omnuelov. Anhady,

Ip =Bg =BF =BM -8 - 2,,Qm , (150)
onov M, S, ®,, elvon 1 pdla, M eviponio xou 10 Pory vNTooTaTind Suvopnd Tng hadeng TEUTIC. SOUQwVL
ue tov Hawking [[17]], n 1w tc EuxdelBiac dpdone Yo divel tic Veppoduvayixée idtntec tne pehovic
omAC, Yiot Eval Xahd OpLoUEVO TEOBANU HETABOADY. dnhady) 6tav, 02y = 0. H petofolr dnioady| Tou
empaveloxol 6pou dBg Yo mpénel vo elvon TETOLL GTE VoL AXUPKOVEL TOUC EMLPAVELOXOVUS GPOUE TOU
dnwovpyHinxay 6tav urohoyilaue Tig e€ionoelc xiviong. o euxoiia, dlaywpellovue ) petoforr Tou
ETULQPAVELXOL 6oL GE BUS PépT), £Val GTO AmELPO XAl €val aToV opilovTa Tng Yodeng TeUTIC,

Troroyilovtac todpa Ty (I39) oto dmeipo, pall ue ) petaPBold Tou empavelanol pag 6pou, Beloxouye
nwe auty Yo Blvel Evay TenEpUoUEVO 60 TG LopYNC

—487B0v*x + 0Bp(c0) =0, (152)

ev®, otov opllovta yeyovotwy Beioxouye,

W(R) (R* — 4aQ?
32125 Ry Ry, — 16786QmQum, /dR () ( I Q) +0Bp(Ry) =0, (153)
Ry
1 omnola éxppoor unopel avoldywe vo Ypaptel wg
470 A — B0Qm P + 6BE(Rp) =0, (154)
6mou éyoupe Véoer A = 4nRE xu P, = —167 [ dRW(R) (R* — 40Q?,) /R6‘Rh. Oewp®vTac T0

peYahoxavovixd cOVoho, xpatmvTag dnhadt otadepr| T Yeppoxpacio xaL To YoryvnTootatixd duvaixd,
UTOROVUE VOl ONOXANEMCOLUE TLE BVO AVWTERL CYECELS XU VO TTAPOUUE

Bg(co) = 167803 , (155)
BE(Rh) = —4dmwA — BQRm P , (156)

enopévwe, N 1 e Eudeldeloc dpdong 6tav ol e€lodoelc xivnong toybouy dlveton and
Ip = 167p0°y — 47 A — BQm®,, , (157)
%ol oLVETEGS, ouyxivovtag e v (150]) éyouue

M = 16m2y (158)
S=47A, (159)
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¢ TN datnpoluevn péla xou evrporio g pehaviic omig avtiotowya, eve Yuptillovue Twe @, = V2.
Tehxd, o npwtog vopoc e Yeppoduvapixhic mou o untaxodet autr] 1 poden tedno Yo dlvetar and

M =T68 + 20\/1®,,6v . (160)

"Evo evdLapépov YapaxTnelo Tixd mou Tapatnefiodue eivol To YEYOVOS OTL, 1) TUPAUETEOC (v ETELCERYE-
o 0TV Expeact) Tou duvauixol. ‘Onwe €youue avagépet, éva JeTind duvopixd dev duvortan vo topaBidoet
10 Yedpnua e€dhewdme vy olugpwva pe tov Bekenstein [[18]. T'ia tnv mopafioor tou dewphuatoc éva
apVNTLXS Suvoixd etvan anapaitnto. Anewxovilovtag oto axéioudo didypopua TNy adtdo ot Tooo TNt
V(¢)/x ouvapthoel Tou @, uTopolUE Vo BOUUE WS 1) TUESUETEOS (& TOU W1} YEOUUUXOD NAEXTROUOLY V-
niopol cupPdiiel oty mapaPioon Tou Yewpruatog eEdhewdng Lyvedv xodng tonoletel to Porduwtd
BUVOULIXG OTNY dEYNTLXY TERLOYY) OE ONO TO YWEOYEOVO, TOCO XOVTA TNV Wiodoppia ¢ > 1, 600 xau
XOVTA 6T0 XeVo g Yewplac 7 — 00, ¢ — 0. Evo oxduo yopaxtneloté tou duvopxol elvar dTL yia

T T T T T T T
0.5} 1

0.0
-05

x -1.0

&

-15

-2.0

-2.5

3.0t . . . . . .
0.70 0.75 0.80 0.85 0.90 0.95 1.00

[

Figure 7: H adidotatn nocdnta V(¢)/x SUVOPTACEL TOU @, Ylot UENAVES OTEC HE YRoix6 v = 0 xou W
Yeouxd a X x = 0.5 nhextpouay VITIoUS G ACUUTTWTIXG ETINEDO Y WEOYPOVO.

ACLUTTOTIXG ETITEDD YWPOYPGVO, TO JuVaUIXG CUUTEPLPERETL K G°. Auté elvor éval YEVIXS Yopont-
TNELO TGO TWV BUVOLXGDY ToL TapoBtdlouy To Yedpnua eEAAELPNS LY VOV OE AOUUTTOTIXG ETUNEDO YwEOo-
XEOVO 1o UmopolUE Vo To BoUUE we axorovdws. Apyixd unodétouue dTi pmopolue Vo avamTOEOUUE
10 duvauixd oto xevo e Yewplac oe pwoper Taylor V(¢) ~ (¢, émou, to ¢ eivon wa otodepd xon
n évag axéponog apriude. Emouévee, 1 elowor tou Baduwtod medlou yia évav acuuntwtixd eninedo
YWEOYEOVO Gt = Grr = 1 OE Oanpint| cuupeTela Tafpvel T Loy

((=n)p(r)" ! + 20(r) +¢"(r)=0. (161)

r

N
Mo n = 2 nafpvouye éva Yukawa nedlo ¢ ~ &———, evdd av emdupoldue to nedio va cuuneptpépetan
aouuntoTxd oav 1/r tédte n = 5. Buvende, évo duvapixd tou Ya propet va uootneilel pla hairy poden
Tp0ma, Ye éva Baduwntd nedio Tou acuUTTWTXG cupTeptpépeTon oav 1/r Yo Tpénel 6To xevd T Vewploc
vou ouuTEpLpépeTon ooy ¢, AuTéc oL padpec TEUTES UTopolY Vo TepLypdpovTa and éva, D00 A xou TEELS
0ptlovTee, Yiot GUYXEXPEVOUS GUVBLAGHOUE ToV Tapauétewvy. A&ilel va avapepdolye otny nepintwor
TOV TRV 0pllovIwy xadde oe auTh TNV TEp(TTWoT €YouUe To oeVApLo TNG UTaeEng uiog podene Tel-
naC Y€oa oe waver teona, xadde o eowtatog xat o e€dtatog optlovtag Yu etvan oplloviec yeyovotwy.
Ot aoupntwtind AdS padpec tpineg napovoidlovy Wwa petdBaon @done aid Hawking xaw Page, ye tic
pxpéc podpes TeUTES va elvol Veppoduvouixd oo tadelc xodde €youy apyntix) Yeppoywenuxdtnto, eved



36

oL peydhec padpec tpvneg etvor Yeppoduvaxd evotadelc. Eminpbéoieto, ol evepyetanée cuvinxes nopa-
Bualovton and 1o Poduwtd medlo, dmwe xaveic Yo neplueve, apol to duvauixd g Yewplag elvar tétolo
oote va napaPLdler To Jemdenuo eEdhedne tyvav. Yo dpdpo [9 yerethooue Tic Tpoyés Eualwy X
Spalwv copatdiny og autd to Ywedyeovo. Eibdoue mwe uropolue va éyoupe evotadeic xuxhixéc tpo-
Ytéc, oAAG xou mhavnTixée xou aotadelc tpoytéc o yior Tar épalo xou duala owpatido. BUYXEXPUEVA,
o dpaar cePatidlo eV xvolVTAL GTOV YweoyedVo TNg UeAUVHC OTNG, OAAE XIVOUVTOL GE Ul TPOTOTOL -
pévn yewpetplo, Adyw e ahAnAen(Bpaong gwTovinv-gwtoviny Tou emBIAAEL 0 YN YEUUUXOS NAEXTEO-
payvnTiopog. Ev xotaxeldt, mapatneoaue nwg 0To xodes e Loyupdy Tedlny (Yio ueydha yoryvnuixd
poptia) tor amoteAéoUaTd pog efval o CUUPEViR EVOC BLIC TAUATOS EUTLOTOOUVNG UE TA AMOTEAECUATO
tou Tnieoxoniou Opllovta I'eyovotwy.

Y10 tehevTtolo xepdhano g Tapovoas doteic [B) pehetoape t Spdiom [120} xau Mooye Tig Tedi-
axéc e€lowoels yia TN ouvdptnor ovleuvéne [11]

f(@) = —%(g;2+g§) -2, (162)
6mov gs = exp(¢) eivar 1 ouvdptnon clleuine tou mediou dilaton. Ilponyouvuévee dixarohoyhoope
EMAPXWE AUTH TNV EMAOYT Yot TN ouvdptnon olleuing, N omola mepéyel xou évay oTadepd 6p0, TOV
onolo 8¢ unopolye va tpocdloploouye enaxpBac, xadde tpdxeltat Yo éva tpdBAnua to omolo Boaoileton
oty exdotote Yewplor Yopdhv mou peietdel xavelc. Advovtog tic e€lowoelc Beloxoupe to axdrovdo
ototyelo uripoug

2 2
ds* = —B(R)dt* + W + R%dQ?, (163)
6mou
4M? 2(a = B)Qp,
By =1- 2 4+ /QL 1 4M2R2 RS (164
4M?R?
W = G e (165

¢(R):—;1n<VQ$”+4M2R2_Q’2"> . (166)

VQE +4M2R? + Q2,

T to nedio Paduidac emhéCoye uévo oxtivixd poyvnuxd medio. Acvuntwtixd 1 cuvdptnon B(R)
CUUTEQLPEPETAL TV

oM Q% Q Q5 2(a = )@,

_q e *m _ 7
B(R— 4o0) =1 7 + R2 4MR3+64M3R5 76 +O(1/R"), (167)
_ 4 2
B(RHO)WjL(lQé\i)JrO(RQ). (168)

omou elvan Eexdopo nwe (dnwe Yo tepiuévaue) oL SLopUOOELS TOU W1 YROUUIXOU) NAEXTEOUAY VTIOHOU
elvol TOAD ONUOVTIXEG XOVTE GTNY LBLOULOP®Ia, EVE OE UEYAAES ATOOTATELS, O YWEOYPOVOS OE Unopel va
Eeywploel and yio gay vtixd goptiouévn paden tevna. ‘Otay to mepdomnuo Tou 6pou a — B elvon Yetixd ol
6pPOL TOU UM YROUUIXOU NMAEXTEOUAY YNTLOUOU TeocdiBouy o ehxTixr Svoun oTo YweoYeovo, eved dToy
o — 8 < 0 npocdibouv o amwotx d0voun. ‘Otav a — 8 > 0 n yaden teima Gu €xel yeyardtepn
axtiva yioo tov opifovta yeyovétwy and 6t 1 GMGHS [32] [33]] poadpn tedma xou cuvende Yo elvon
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Yeppoduvaxd tpotyuntéa. ‘Eva emimiéov moAd evilagépoy yopaxtnelotixd elvol To YEYOVOS OTL Yid
o — B > 0 xadog to payvntixd goptio audvel, o opllovtoc uxpalvel U€ypL £V CUYXEXPUEVO OpLO, EVE
and yio Ty ToU @, xou Tavew o opllovtag yeyohdvel. Apa Yo uTdpyel Tdvto wla T Tou opilovta
Yeyovotwy 1) onola Yo avtiotouyel o 800 dlapopetind woryvTixd poptic Q. Anhad, n dpdon [120] Vo
Topdryel padpes TpUNES TOL Unopel Vo €youv tov (Blo opilovta YEYOVOTWY, Yio BLUPOPETIXES TWES TWY
poptiey Tng padene Teumag.

Mot vor To o TomoLooUPE AUTo, aTo axdrouto oyiua amexovIOVUE TN CUVAETNOY TNG HETEIXNS Yid
BLdpopeS TWES TOL AOYOUL Tou Yoy vnTxol goptio mpoc ) wala g padeng teumag. Etvar Eexddopo nwg

5

o — - R : — Qu/M=0

------- Qu/M =05

T Qu/M=0 4 ‘ s Qu/M =083

0sf K 2 _ 1 H
. Qu/M =09 A 2! Qu/M =5

B(R)
B(R)

cm- Qu/M =3

1/ Qu/M =5

0.5 1 ‘5 1‘0 S‘l’l 100 0.1 D.‘S 1 % 1‘0 5‘0 100
R/(2M) R/(2M)

Figure 8: H ocuvdptnon B(R) ywwa — 5 > 0 (opiotepd) o o — B < 0 (8euor).

ol Moelg e a—f > 0 ouunepupépovtan topduota ue tn Schwarzchild hoom xon xadde peyahdver o Aoyoc
Tou payYNTol goptiou mpog TN wdla TN Yehavic omhg, o opllovtag YEYUAMYVEL LNy TEpinTwon Tou
o — < 0 unopolye va €youue €wg xot 8V0 0pllovteg eved xodwg 0 AdYOC Tou Py ViTixol @optiou Tpog
T wélo e pehavic onig auidvel matpvouue YuuvéS Wlopoppiec 6w otny Teplntworn tne Reissner-
Nordstrom podernc tpimag.

Y1 ouvéyeta amexovi{ouvue TNV evilapEpouaa TERIMTWOY) TOU UTOPEL XAVELS Vo TTORATNENOEL GTNV
nepintwon a— 4 > 0 otny onola xou propoVUE Vo tdpouye ToV (BLo 0pllovTa YEYOVOTWY Yol BLUPORETIXES
TEC Tou AGYOoL Tou payVNTiXoU @optiou Tpog T pdla e pehavic omrc. To oevdplo anewxovileton oto
axdhoudo BLdrypoyol

Yuvende, n Yewplo pog etvon txavi vo dmoet podpes tednes ye Ty (Blor oxxtiva opllovta yia Slapope-
Txég THéS Tou AdYou Tou payynTxol goptiou mpog T udla Toug. 261600, 6K Vo SoVUE ToPUXETE,
unopolue va Eeywploovpe autég Tig Aoelg utohoyilovtag ) Yeppoxpacia Toug.

ITepvdye Tdpo oTNY AVEAUGT TOU TAVUGTY OpUNC EVERYELACS TTOU BlVEL QUTES Tig HEAVES OTtéC GLLNTHOV-
ToC TIC EVEPYELXES oUVIKES. LTO QuOxd cUoTnUe cuvTetaypévey, (¢, R, 6, ) o tavuothc opunc-
EVEQYELUC TEQLYPAPETOL UG EVAL AVIOOTPOTIO PEVGTO Xal OE CUVAAAOLWTY Hop@Y| uropel va ypopel wg

T" = (pg + po)u'u” + (pr — po)nt'n” + peg"” . (169)

Yto avewTépw pE elvol 1) TUXVOTNTA EVERYELNS TOU PELGTOU OTWE UETEATAL ONO EVOV TOQATNENTH O
omnolog xiveltow pall e to pevstd pr elvon 1 axtivixy mtieam, py elvon 1 emipaveloxy tieon, eved u* xou
nt elvon 1 yeovoeldric TeTpaTayUTNTA Xou €V YWEOEDES Lovadlafo Sidvuoua xddeto 6To uk xon oTIC
yovioxéc xatevdivoelg. Ta tetpadlaviopato u” xow nHixavonolody Tic cUVIXES:

ut =u(R) oy, uu"gu, =-1, (170)

n* =n(R)&, ntn"gu =1. (171)
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R,/ (2M)

I I I I
0.2 0.5 1 2

Qm/M

Figure 9: O opilovtoc yeyovotwy cuvapTioel Tou A6You Tou uayvnuxol ¢optiou mpog T wala g
peAavic omAc.

T tn Yewplo pog, umopel xaveic vo unoloyioel

2 2 _ 4
B(R) (d¢\* @2 a—B)Q,
b =T = s () — e - 2O ), a73)
2 2 _ 4

INo 10 avie6TEOTo PELCTO, OL EVERYELOXES CUVIXES ATOXTOVY TIC axdlouleg oyéoelg
* dwroewr|c evepyetaxr) cuvirxn (NEC): pE+pPr>0 & pr+po>0,

* Acvevic evepyeioxn ouvinxn (WEC): NEC & pg >0,

* Ioyuen evepyeioni cuvdixn (SEC): NEC & pg+pr+2ps > 0.

Yta mponyolUeVa Blory PAUUATO ATEXOVICOHE TIS EVERYELIXES CUVINXES, XL CUYXEXPLIEVO TIC TOGOTNTES
PE, PE+DR, PE + Do, XU pE + PR+ 2pp 0 cuvapTtiioels Tou Aoyou R/M, evey emhéEope Q. /M = 0.5,
eV 1) 0BLEoTAT TOGHTNTA TNE Blapopdc Twv otodepdv e Yewploc (o — ) /M? mofpvel Tic Tiwée 1 xon
—1, avtioToiya. Elvor eupovég amd ta dlory pQUpaTtoa TS O AVeTépw TOCOTNTES TUPUUEVOLY VETIXES AV
oTov opllovta YEYOVOTWY TNS wadpeng TeUTaG oAAG xan €€ amd ouTY], XAl CUVETME ONEC OL EVEQYELUXES
ouVITxeS IxavoToloUvTal.

Avutd ta anoteréopata CUVETHE, SNAGVOUY W Umopolue vo tapoBidcoupe T oY Ypovn exdoyT
Tou Yewpruorog e€dhewhng yvov [34, 135] oto mvedpa tou [36]. Yuvendg, prmopolue vo €youue éva
duvaix medio dilaton é€w améd pro yehov omn, xou cuvenne deutepeov hair ywpeic vo napafidlovye Tic
evepyeloxéc ouvixes. Autd To arvouevo, unopel vor Yivel xatavonTo m¢ Ulol GUVETEL TOU YEYOVOTOG
TS 0 TaVLOTAC opPhc evépyetae Tre Vewplac poc eivon tétolog Gote 1 empaveloxd wieon (pg = T9)
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Figure 10: O evepyeloxéc cuvdixee Yot Q@ /M = 0.5 xou (@) o — 5 > 0 (b) o — 8 < 0. Ov xddetec
padpee ypopuée anewxoviCouv Tov opillovta YeyovoTwy.

uTeploy Vel amévavtt oty axtvixd nieon (pr = T €Ew and tov opllovta. Luverde 1 oxbéhoudn
nocdtnTa elvan Getinn €€w amd tov opllovta tne padens tpdnoc

G-J=T%-T% >0, (175)

6mov G = pp + T xou J = pp + TH. Kavelc propel va del e 1 avertépn oyéon tpoépyetor and
PWTOEWDY| evepyeloxy] cuvixn. XUVende, 1 Abon pag anotehel €va Tohd amhé mapdderyuo nopaBiaong
tou no-hair Yewpruatoc oo mhaicto wag Yewpliog mou eunepiéyel dpoug TEWTNE T8ENe dbpdwone ot
otadepd o0levéne e yopedrc.

Iepudpe todpar 0T FepUOBLVUUIXY UEAETY TOU GUOTAUNTOC HUC. DUYUEXQUIEVA YEYCULOTOLACOE
emyetpuorta xPavting Bopdtntoc xou Ty Euxheldela Spdon. Yto mAalolo tng Tpocéyylone ooy HaTixol
onuelov, pmopel xavelc vo unootneiel twg N Euxheldia dpdon cuvelo@pépel tar péytota xou dpa autr Yo
oyetileton pe v eheliepn evépyela Tou otatiouxol cuvérou. Ev mpoxeyévew, yia vo utohoyloouue
v Euxdeidela Spdom, Yewprioaue to oTolyelo prixoug

W (R)|2dR?

ds* = [N(R)]?B(R)dr?* + [ BR) + R2d0O? | (176)

eve Véoaue yia To tetpadidvucpa Tou Tediov Barduidoc
A, =(0,0,0,A(0)) .

Eb6, o Euxeldetog elvon neptodinde xan ouyxexpipéva nodpvel Tée petolt 0 < 7 < fB., evd, 1 aetiviny
ouviotwoa R € [Ry,+00). T va unohoyiooupe tn deppoxpocia mpaypatonotolue évay UTOAOYLOUS
TAPOUOLO PE aUTOV oL €YLVE oe €va TpornyoLuevo dpdeo pac [I7]. T to oxond autd, apyixd oryvoolyue
TO YWVIIXO XOUUATL XL TEYUATOTOLOVUE EVaL AVATTUYUA O OELRd YUpw amd tov opllovta. Luvenne
€ ovpE TAoV éva BiIBLdoTaTo oTolyelo urixous, To omolo elvan TO GTOLYElD UHXOUS TOL BIBLEGTATOU YWEOU
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X0 EXTIEQRACUEVO OE ToMXéS GUVTETAYUéVES Bivetan and ) oyéon dS = dR?+ R?dO?. Suvendg éyoupe

. W (Rp,)?
dR? = —— =" _4Rr? 177
BBk~ Fr) e
B'(Rp)(R — Rp)dr? = R?dO? . (178)

H ocuvtetaypévn © elvon meplodixr] e meplodixotnta 2w to omofo onuaivel nwe to 7 Ya elvan enlong
nepELodLx6 Ue po teplodo B mou Yo divetow and T oyéon:

1 47 W (R)

57’7 =

~ T  N(R)B'(R) . (79

h

omnou T elvon 1 Vepuoxpocio tng uehavig onric. ' Adyoug auvtoouvénetag, eréyEaue nwg 1 Yepuoxpocio
oev e€opTdTon amd TNV ETAOYT| TOU UG TAUATOE GUVTETAYUEVKY Xxadde TpoxeTol Yo pia Baduwth tocdtna.

Ewcaydyovtag tédpa évay entpavelaxd 6po ot Yewpla pog tov By €10l OOTE Vo €(0UUE EVal XUADG
oplouévo medBAnua yetoBorwy 0Zg = 0, utopolue vo unoloyicouye TNy Euxheldeia Spdor cuvaptrioet
TOV AYVOOTWY CLUVIPTHCEWY TOU CUGTARATOS LIS 0

onp, [T [ .
1, = 2P / d0/ dR [-NR*W sin L(R,0)] + Bs . (180)
0 Rp

167

E8, to L vnodnidvel tn Lagrangian tou cuothuatog 1 onola elvo cUVAETNOT TWV CUVTETAYUEVWY
R, 0. Agol axvpwooupe emipavetaxois 6pous, 1 Evdeldeta dpdorn nalpvel T popey

Iy =B, /ﬂ do /Oo dRL(Q",0,Q") + Bg (181)
0 Ry,
6mou 10 Q' = {N(R), W(R), B(R), ¢(R), A(8)} xou t0 L(Q*, 9, Q") Va divovran amd
Al ryi i INsind 7 3 (DpA)* —2¢ pd (9pA)? 6
+ BR® (WR?¢> —2RW' + W) } : (182)

Yopgwva pe tov ADM gopuahiopd, neénet vo petafdhoupe tnv avortéew Euxieldeia dpdorn e npog xo-
Véva amd tar Suvopind medla Q° yio vor tdpouye Tig tedlaxés eElodoelg. Tlpayuatonowdvtoc tn petaBoAy)
naipvoupe Tic elomoeic Euler-Lagrange

oL oL
— 0, =——= | =0. 183
oQi ! (a@m) (183)

EnBédhovtoc tnv avetépw e&iowon yio to duvepuxd edio Q1 = N (R) uropolye vo 3olpe 6Tt 0 npdtog
bpoc undeviletan Toutotnd, evdy L/ON = L/N. Luvernde, 1 eficwon yio 10 N(R) unodnhédver mwe
£ = 0 1o onoto pe ™ oelpd tou emPBdiel Iy = Bp. Luvenng, dtav toybouv ol tedioxée eglonaoelg (on-
shell) é6in n mnopogopio yia T puoxy) and v Euxdeldewa Spdon Yo xwdixonoindel otov empovetoxd
6po. Tnohoyllovtag thpa xou TLc undhotnes nedlaxég e€lowoels, unopel xavelc vo del€el twe 1 cuvdptnon
N elvou pa otardepr] ouvdptnon tny omolo unopolue va Yécouye (on e TN povada ywelc PAEBN tng
YEVIXOTNTOC.
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Enporvtind elvan vor Tovicouue Teg xotd Ty eEaywyY) TWV TEBLIXWY EELOMOEMY UXUPOCUUE XATOLOUS
ETULPAVELOIXOVUS OPOUC X0l CUYXEXPUIEVL TOUG

R 2BR?¢/' BR >
nouw
0=
oo We—2¢(80A) 2(a — IB)Wf(¢)(89A)3
o /R A ( SRZsind 65 0 ) oA » (185)

H petafolt] tou emgpavetaxod 6pou 6B Yo elvon TéTola ETOL OOTE VoL £YOUUE EVal XUAS 0pLoUEVo TEOBATUA
petaBordy 0Zg = 0. H pyetafolr tou nedlou Baduidoc Yu diveton and §A = (6Q.,) cos b, axon avtixo-
Yo tevTog tiow oty avwtépw e&lowon unopolue ameudelog Vo OAOXANEMGOUUE

Qn { VPR + Q5 [RE -~ 40 - Q7] - R}

Br NS Qum - (186)
H petoforr) Twv undroinwy duvaixdy mediwy os peydieg anootdoels o dlveton omd
26M 1
B=—+ — 1
- Mo (L). -
0p = Q—méQ - n oM+ 0O = (188)
MR 2M?R R3)
4 3 1
W= aprM " appén O <R3) ’ (189)
eved otov opilovta Yo €youpe
0B|r, = —B'(Rn)dRn , (190)
6¢|Rh = 6¢<Rh) - ¢/(Rh)6(Rh) ) (191)
OW (R, = 0W(Ry) = W'(Rp)d(Rp) - (192)

SNUEWOVOUUE TS OL TORAUETEOL v, B elvon ototepég tne VYewplog xou Bev emtpéneton 1 uetaBoAr Toug,
eved N uala M xou o payvitixd @optio @y, eivon otadepéc ohoxhipwaone xou 1) UETABONY TOUC ETLTEENETAL.

'Onwe mpo-avapépae, Yol VoL €YOUUE €Vl XUAWS 0plouévo TedBinuo yetaBorny Yo meénel 6Zp =
0. T ™ dleuxdiuvor| yog Yo meémel var anocuviécoupe or ueTaBolr] Tou empavelaxold 6pou o Buo
XOUUATLOL Vel 0TO dmElpo o éva otov opilovta, dnhady

Trohoyilovtag T CUVELCPORE TWV EMPAVELIXWY 0pWY OTO AMEWO Xl YewpdvTag TN UeTHBol Tou
dB(c0) Beloxoupe Twe évac 6poc undevinic TdEne EMPBIOVEL X0 CUVETADS €YOLUE

%R (6B — 26W) + 6B (c0) = 0 = (194)

5B (00) = B, 6M | (195)
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And v & pepld, otov opillovta yeyovotwy €xouue (hopfdvovtag umogn xaL T GUVELGQOEE Tou
MY VITOGTATIXO0) BUVOLXOV)

Qu { VIR + Q [R — 4(a — A)Q2] - RIQ2 |

2nRL0Ry, + B
' 2M RS

6Qu + 6B (Ry) =0, (196)

To onolo umopel va ypapel toodivaua wg

6A

OTIOU YPNOWOTOLACUUE TO YEYOVOC TG 1) ETLpAvELd TNe padpne Telmac Yo diveton and A = 4w R, eved
oploape To poryvnTooTatnd duvoxd we e&hc

 Qm {\/m [R: —4(a — B)Q2] — Rian}

2M RS

d,, (198)

Oewp®VTIC THOPA TO UeYahoXavovXd cOVolo, xpotdue TN Yepuoxpacio otadepr) xaL To oty vNTOoo TATNG
BUVOPIXO TOU CUCTAUNTOS 0L CUVETKC, UTOROVUE VO OAOXANPWOOUUE TIG OVOTEPW OYECELS, XAUTOAY-
YOVTOC OTa

Bp(co) =B M , (199)

Yuvenng, N T e Euxdeldelag dpdone Yo Slveton amd tny axdhoudn oyéon

IE = BTM - % - ﬁT(I)QO ) (201)

xau a6 T onypn mou 1 Euxdeldela Spdomn Yo oyetileton pe tnv ehéuldepn evépyeio G Tou GUGTARATOC
uéoa and m oyéon Iy = ;G = M — S — 5,9, Q1 umopolye var TaUTOTOGOVYE, HECEL GUYXELONG
v Sotneoluevn udla tng podene TeLTog xou TV EVTEOTia TG UEAAVAE OTTE w¢ axohoVYmg

M=M, (202)
S=A/4. (203)

Téhog, o npwtoc vouoc tne Yeppoduvauixic Yo ixavorolelton amd xatooxeuic xou Jor AoBaver 0 wopy
OM =TS + ©,6Qm . (204)

Mepvdpe Théov oty avéhuon e Yepuoxpacioc tne pehavic omfic. Eto dypoppa [IT} anewovi-
Coupe tn Veppoxpacio tne yehavic onric cuvapthoel Tne adldotatng tocétntog Ry, /(2M). Tavtdypova,
€youpe xdvel adldoTatn tn Yepuoxpacio TV ADGEWOY pog, Slonpwvtoag T we TN Yepuoxpacia tne Abong
Schwarzchild. To Sworypduporto [11] utohoyiomnxay cbugwva ye v oxdrloudn hoyui: T xadewd
A e adidotong tosdtnrag (o — B)/M? xou tou Moyou Qn /M, utohoyloupe apriunTixd TNy T
Tou Adyou Ry, /(2M). Xenowonowdvag Téhpa Ty €xgpeact ylo Ty Teptodixdtnta Tou Euxdeldiou ypo-
vou, umohoyilouye TN Veppoxpacio tng uehavic Teimag yia xdde tétolo Adyo. Téhog yia Tic Sidpopeg
Téc e noodTNTac (o — B)/M? amexovilovye To dorypdpparta amd ) Mota { Ry /(2M), T(Rp) /Tsen }-
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Figure 11: The black-hole temperature for (a) attractive and (b) repulsive higher-order electromag-
netic contributions, with varying values of the magnetic charge (Q.,,), while keeping the mass (M)
the same. The axes in both figures are logarithmic.

Xenowonooaye tny Bia mapdueteo wdloc M yio Tov utohoyioud tne Yeppoxpacias tne uehavic omhg
Schwarzschild Tscp. 3t 800 autd Sorypdupata £xovue cuumepthdfBer pe pot xouxida Ty owxoyévela
Mooewv tne yehovic omfc Schwarzschild, n onola xoux(Sa Vo Peioxetar oto onuelo (1,1) xdt mou wévo
Tuyado Sev elvan xowg, 0 opillovtde g apevde divetan and TNy axtiva Ry, = 2M xou 1 Yeppoxpacia omd
vt T =1/(87M).

Ané ta dlaypdppata e Yepuoxpactoc, uropel va yivel tpogavég nwg otny nepintwon mov o — S > 0
€youue 6VO BLAPOPETIXOUEC *AEDOUE ADOEWY. LTOV TEMTO ¥AGDO €youue Yehavéc omég ol omoleg elvon
Yepuind actadelc xodadg Yepuatvovton xodwg wixpatvouy, o autd tov xAddo Peloxetan xou 1) ueAavy| oy
Schwarzschild. Emnpécieta, éyouue xou évo debtepo xhado Yehaviv onay, ot omoleg Yo umopoldv va
¢pdouv oe Yepuinn| loopporia pe to houtpd Yepudtnrag, xadwe 660 o opllovtds toug uixpalvel, oauTég
Yo Puyovton xou cuvenog Yo Eyouv Yetnr| edixn Yeppoywenuixdtnta. ‘Onwg enlone alveton and to
didypapa, ol yelavée omég mou Vo Exouv v Bl oxtivar opllovta yeyovdtwy yior 8uo SLapopeTinég
Tiég Tou AoYou pdlog TEog wory viTixd @optio Yo avixouv ot SlapopeTinols Yeproduvopixolc ¥AdBoug
X0l GUVETIWGE, PTopolie va Eeywpiooupe Tig uehavég omég unoloyilovtag ) deppoxpacia toug. And v
GAAn peptd, oty teplntwon a — 5 < 0 ol podpeg tpumeg pnopel vo etvan Yepuxd evotadeic ye To houtpd
YepudtnTag xadde Yuyovtar 660 o opillovtde Toug pixpolvel.

Ac oulntiocoupe oyetnd cOvtopa Ty Unopdn acuuntwtikd (A)dS Moewv. Axohouddvrtog to [37],
eloary&youpe évo Badumtd Suvouxd otn Yewplo poc péow tou dpou V(@) xou théov Yewpolpe Ty

S= / d*z/—g (R — VOV 0 — e 20T + f()( — 2aF GFL F5F0, 4+ BF) — m(¢>)) , (205)

e to duvound V(@) va divetan and tn oyéon

B(p) = %Ae’% + éAew + % = %A(cosh(Qd)) +2), (206)
X0l UTOPOUUE Vol UTONOYICOUYE T1 CUVAETNOT TNE HETEWNC WS
— 4 2
B(r)—l_W_M_1A<_]\;>, (207)
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eved ta o(r), R(r) napapévouv opetdBinta. A&ilel va onpeiwdel nwe ta Suvound V(@) xou f(¢p) eivan
oyed6V TauTdoNua Xou TpdxELToL Yio duvaixd torou Liouville [38].

Oewphvtac Thpa Tws 0 6poc culevine petadd tou dilaton xaw tou dpou tou Maxwell eivar g
poppric e~ 27 unopolue vo mépouye TNV Bl Yewpetplo ue Ty TepitTwon mou ¥ = 1 ylo TN wop@n Tne

ouvdptnone f(¢)
o (e 1)

2M4 (€20 — 1)* (a — fB)

Ye autn) Ty meplntewon, o AoYog Tou Yoy vnTixol goptiou mpog T wala g peravig teUmag pmopel vo
ndpet Tipéc ot onoleg Va elvon prlaplouéveg and 1 ewplo. Xuvende, tétoleg Yavpeg OéC UTopolv Vo
TEQLYPAPOVTAL AT EVOL TEQLOPLOUEVO TOROUETEXO Y WO, apol 1) Yewpla Yo uetatpénet ta 800 aveldotnTa
hair tn¢ onfc oe éva. Logpéotata, Yo Aoy TEOTIHOTERO Vo ETLTEETETOL 1) ANy ) TNS HopPHC TOU mediou
Yot BlapopeTIXéC CLVAPTNOELS, WOTOCO deV xaTapépaue va Bpolue axplBelc Moelg yiot autd To cevdplo,
ouvenig Yo mpenel xavelg va avalntroet aptiuntixéc Aooelg.

Ev xortonheidl, ot padpeg tp0mES Tou TEpypdpovTon 0To xe@dhato [6] oamoteholv Wwa yevixeuon tev
perovov onwv GMGHS [32] 33]], vy wia cuyxexpiuévn ouvdptnon oblevéng 1 omolo €yel Yepehiddon
npoélevon. Ot hoelg mou mapovotdlovton, uropet vo eivon Yeppoduvouixd evotadels, Yeppoduvopixd
mpoTiunTéeg xan Boputind euotadelc, eved oéfovtar xou Tig evepyeloxée ouviixee. H perétn tétowwv
Mooewy elvon onuovTix oto TAalols xBavTiney Slopdioewy TwWVY YRUUUXOY VEWELDY TOU NAEXTEOUNY V-
nuopoL. Iopdddnha, clugwva pe to dpdeo [39] ol Aoelc pog cuupwvoly Ue Ta Topatnenotoxd de-
Bopéva aveEopTATWS TV TWOY Twv otadepdy tne dewploc a, 8, xoa poll ye to yeyovde nwe oéBovton
X0l TIG evepYeLoxée ouviixeg xan eivon Veppxd xan Poputind suotadelc, xahotd Tr B pog oxoyEvel
pehavédy omv évay mdavo urodriplo wadpng TEUTAC OTO TEMOLHO GUUTAY GTAY X0l 1) Loy UG TWV NAEXTEO-
MOy VATLXWY TES{wY ftay LoyuedTepT.

f(¢) = —3cosh(2¢) — 2 — (208)
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Chapter 1

Introduction

1.1 f(R) Gravity

General Relativity (GR) [40] is a widely accepted theory of gravity and it provides the framework
for the description of strong gravitational interactions. For weak gravitational fields, GR reduces
to Newtonian gravity. The theory has been tested several times over the last 100+ years of its
existence, with many experimental successes, starting from the perihelion of Mercury, the existence
of neutron stars, black holes, gravitational waves [41]] with black hole shadows [42] being the latest
experimental success. For extensive discussions of the subject i refer the reader to the following
textbooks [43] 44} 45| 46l [47]]. However, GR is thought to be inadequete in the microscopic scales of
particles and high energies. In all other scales, GR has been tested and remains the golden standard.
The Einstein field equation reads

Guw = Ry — %gwR = KTy , (1.1
where G, is the Einstein tensor, R,,, R are the Ricci tensor and the Ricci scalar respectively,
k = 87G/c* (i will mostly use ¢ = 1 throughout the thesis) is Einstein’s constant and T}, is the
energy-momentum tensor. The left hand side of this equation concerns the geometry, while the
right hand side concerns the matter fields. Since the establishment of GR as the standard gravita-
tional theory many alternatives have been proposed. For a discussion i refer the reader to [48] and
references therein. An interesting approach was presented by Sakharov [49], which showed that,
since fluctuations in spacetime itself lead to higher-power corrections to the Einstein equations, the
Einstein-Hilbert action which describes GR is just a first order approximation of a more complicated
theory. Some years later, Stelle showed [50] that these theories are renormalizable at the one loop
level, hence avoiding dangerous singularities.

The development of observational cosmology shows that the universe has undergone two phases
of cosmic acceleration. To match the observations, scalar fields have been considered as candidates
for these situations, modifying in this way the right hand side of the energy-momentum tensor of
the Einstein equation. However, one can also modify the left hand side of this equation, changing
in this way the theory of gravitation. To describe the system under consideration, we will use the
Lagrangian formalism. The Lagrangian for the Einstein equation is given by

R
S = /d%\/?g (M + £M> , (1.2)

49
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where L), is the matter Lagrangian that gives rise to the energy-momentum tensor. By applying
calculus of variations with respect to the fields to the action (1.2)) we obtain the Einstein equation
(1.1). To modify the theory of gravitation, i.e the left hand side of Einstein equation, we will replace
R with f(R) in the action (1.2), namely

S = /d‘*a:\/?g ({6(7]2 +LM> . (1.3)

The simplest f(R) one might consider is f(R) = R — 2A where A is the cosmological constant, so
this is basically GR and this f(R) describes a linear theory of gravity. Non-linear models have been
used to describe the early and late cosmological history of our Universe [51]-[13[]. In particular,
following the recent cosmological observational results the f(R) gravity cosmological models were
used to explain the deceleration-acceleration transition. This requirement imposed constraints on
the f(R) models allowing viable choices of f(R) [52]. These theories exclude contributions from
any curvature invariants other than R and they avoid the Ostrogradski instability [53]] which usually
is present in higher derivative theories [14]]. For early times, the model

f(R)Y=R+aR* a>0, (1.9

known as the Starobinsky inflation model [13] has been used due to the fact that leads to the
accelerated expansion of the universe because of the non-linear aR? gravity term. Dark energy
models from f(R) theories have also been used to realize the late-time acceleration, a well known
model is [54} 55]]

fR)=R-5 an>0. (1.5)

We will now discuss some properties of f(R) theories and their equivalence to Brans-Dicke theory
[56].

Keeping f(R) general, the field equations that arise after varying the action (1.3) with respect to
the metric g are given by

1
fRR;W - igqu(R) + (g;wD - Vuvu) fR = "‘@T;w ; (1.6)

where fr = df(R)/dR and O is the D’Alambert operator with respect to the metric and 7, is given
by

2 0Lm
Ty =——F= - 1.7
! V=9 59;“/
Tracing the field equation (1.6) we obtain
30fr + frR — 2f(R) = #T . (1.8)

Einstein’s theory corresponds to f(R) = R, fr = 1 and we obtain that R = —kT, so that the Ricci
scalar is directly determined by matter, while for a general f(R) theory Ofg # 0, which means that
there is a scalar degree of freedom that propagates (the box operator [] in general implies a field
propagation), dubbed “scalaron" ¢ = fr and the trace equation, determines the behavior of the
scalaron.

The f(R) theories may also be recasted in a type of Brans-Dicke theory [56] via suitable redef-
initions of fields. We can recast the action of f(R) gravity (ignoring the matter part) in the
following manner

5= [atov=a (100 + LR - ) | (1.9)
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where y is an auxiliary field. By variation with respect to x we obtain

P f(x)
dx?

d2
and under the assumption that df(2X ) # 0 we obtain R = x, hence the actions Ii and li are
X

(R—x)=0, (1.10)

equivalent. By defining

o= df (x) (1.11)
dx
the action (1.9) reads
5= [atev=3 (E2-v(0) . (112)
where U(y) is a field potential given by
K
The action of the Brans-Dicke theory is [56]
R
Spp = /d4$«/—g (2 — %V"&pvuw — U((p)) , 1.14)

where wgp is the dimensionless Brans-Dicke parameter. We can see that the two action and
are equivalent for wpp = 0 in the unit system ~ = 1. Hence, the two theories describe the
same physics in that unit system. However, observations have shown that wpp is given by a large
number [57].

1.1.1 Conformal Transformation

It is possible to write the action for f(R) gravity in the Einstein frame (in a way that after
variation we will obtain the standard form of Einstein equations G, = fields). In view of this
statement, we perform a conformal re-scaling (transformation) of the metric

g;;u = QQ.g,uV . (115)

The hat represents quantities in the Einstein frame, while 2? is the conformal factor. The Ricci scalar
in the Jordan frame is related to the Einstein frame in the following way

R =02 (fz 4 600w — 66“w8aw) , (1.16)

where w = In {2 . We can also rewrite the action for f(R) theory in the following way

S:/d4\/fg<21ﬁfRR—U> , U:JCRRQ;HJC(R). (1.17)

Using the conformal transformation, we can rewrite the above action as

5= / dia/—§ ( FrO2 (R 460k — 6g&ﬂ8awa@w) - Q—4U) , (1.18)
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where we’ve used that \/—g = Q*/—3. The [lw term will vanish, since it is a total derivative, if we
perform the integration. The Einstein frame corresponds to the situation where the action is linear

in R which constraints fg
fR = Q2 > 0.

We introduce a new scalar field ¢ given by

\/E¢: \/glnfR )

so that w turns up being

Finally the action will read

s= | tay/ 52~ Lorons-vie)}

where U Rfn-f
j— f— R —
YOTRT e

Finally, the conformal factor is found to be

0 = fr=exp (\/mcb) :

(1.19)

(1.20)

(1.21)

Having showed that the f(R) gravity field equations are equivalent to GR plus a scalar field we

will proceed, by discussing some black hole solutions in f(R) theories.
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1.2 Black holes in f(R) Gravity

Black hole solutions in f(R) theories have been found and they either are deviations of the known
black hole solutions of General Relativity, or they possess new properties that should be investigated.
Static and spherically symmetric black hole solutions were derived in (34 1) and (2+ 1) dimensions
58, 59, 160, [61]], while in [62] 163} 64, |65, 66l 67] charged and rotating solutions were discussed.
Static and spherically symmetric black hole solutions were investigated with constant curvature,
with and without electric charge and cosmological constant in [68],[69].

Solutions with dynamical curvature in vacuum E]can be obtained in the following way. We con-
sider f(R) gravity in the absence of matter, i.e the action with £), = 0, hence, the resulting
field equation ends up being (1.6). To solve the tensorial field equation, we have to impose a metric
ansatz. For a spherically symmetric spacetime, one can consider

ds? = —A(r)dt* + B(r)dr® + r?dQ? | (1.22)

where A(r), B(r) are two unknown metric functions that should be determined from the field equa-
tion. However, having two unknown functions, results in very complicated equations. Moreover,
one has three unknown functions f(R), A(r), B(r), but the resulting field equations yield two in-
dependent differential equations, hence one of the functions has to be given by hand. Recently, in
(701, two metric functions have been considered, while the derivative of the f(R) model, fr(r) has
been fixed in terms of the radial co-ordinate and analytic results have been obtained in terms of the
Heun functions. However, the results are complicated and we will not reproduce them here. We
will assume that B(r) = A~!(r). This restricts the dynamics of the system under consideration and
the spacetime is not the most general one. However, the static and spherically symmetric solution in
vacuum and electro-vaccum (Schwarzchild and Reissner-Nordstrém (RN)) of GR satisfy this condi-
tion, and in order to obtain simple results we will use this gauge. From the field equations, we can
obtain the f(R) theory as

R
f(R)=caR+ 02/ r(R)dR+ C (1.23)

where ¢; is related to Newton’s effective constant and GR, ¢, is related to geometric corrections that
are encoded in f(R) gravity, while C is a constant with units [L]~2, being related to the cosmological
constant. We will ignote C and give some values to the integration constants to obtain the metric
function A(r). At first we set ¢; = 1,¢3 = 0 and the equation for the metric function reads

1
—r?A"(r) = A(r)+1=0,

2
with solution .
A(r) =1+ +ear® (1.24)
which is the Schwarzchild-(A)dS solution and the Ricci scalar as well as the f(R) theory read
R(r) = —12¢4 , (1.25)
f(R) = —6cy . (1.26)
Now if we set ¢4 = ~3 we have
R(r) = 4A (1.27)
f(R)=2A, (1.28)

IHere vacuum denotes the absence of fields. Since we consider f(R) theory, the true vacuum is a non-trivial concept.
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which describes (A)dS spacetime, depending on the sign of the cosmological constant. We now set
c1 = 1 and keep ¢, arbitrary, hence we allow for geometric corrections. The equation for the metric
function A(r) will now read

cor® A'(r) + (cor + 1) (r?A”(r) +2) — 2A(r)(2cor + 1) =0,

which we can integrate to obtain A(r). The result is complicated, but adjusting the integration
constants, we find that

2
A(r) =2+ 442 (362 + c4> , (1.29)

where the mass term O(r~1) is given by the geometric correction ¢, and in order to have a positive
mass term (and a black hole in the absence of cosmological constant) we have to impose ¢y < 0.
We can see that there exists an effective cosmological constant term given my the O(r?) term of the
metric function

3 2
Aegt = —3 (;2 + <:4> : (1.30)
which we will ignore by setting ¢, = —3c3/2 for the following discussion of thermodynamics, in
order to have a simple analytic expression of the event horizon, Finally the metric function will read

Ar) = % _ ¥ , (1.31)

where we have redefined c¢; = —1/6M. Now, the f(R) theory will read

R(r) = 7,% : (1.32)
frlr) =1- =, (1.34)
f(R) =R - ?%M R. (1.35)

We can see that a square root correction is introduced via co, that depends on the mass of the black
hole. The resultant f(R) model does avoid the tachyonic instability since

PR _ J(r)
dRZ T R(r) 1M " (1:30)

The black hole horizon is located at A(r,) = 0 — r, = 4M. Calculating the temperature T'(ry), the
entropy S(ry), quasi-local energy F(ry) and the Gibbs free energy G(ry,) [71) [72] 166, 73} 741, we
find that

T(ry) = AA:E:) o= 327lrM , (1.37)
T 2

S(rn) = mrj fr(ry) = 10 3M ; (1.38)

Bw) = § [ (P00) = ful)R) +2fn(r)) dr| =1, (139

G(T}L) = E(T}L) — S(T}L)T(Th) = 5M/6 . (1.40)
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First Law of Thermodynamics from f(R) Gravity Field Equations

We can obtain the aforementioned relations from the Einstein equations, by going to a frame
where the T% component of the energy momentum tensor will be related to the energy density of
matter. Hence the f(R) field equations|1.6|can be written as

6%, = 1 {34 U R) — ) + (940, — 40 ] (1.41)

Now the ¢t and rr components of Einstein equations read

rd'+A—-1 A'f 24" A" 24f A F 1
=+ — - oS,
r2 2f r 2 rf r2  2f r2

where we have take into account that f7(r) = 0. At the horizon we have the constraint A =0, A’ #
0, hence the above relation reads

2fr + (f — Rfg)ry = ATwr}, (fz/a + 2:?) ) (1.42)

where all functions are evaluated at the black hole horizon and we have used the definition of
temperature 7' = A’ /4w. Now it is easy to verify that

A
S=fn= ™3 R, (1.43)
dS = 2mrpdrfr + frdrnmri (1.44)

where we have defined S as the entropy at the black hole horizon and A is the area of the black hole
horizon. Further defining

1
dE = 7 (2fn+ (f = Rfr)r*)dry . (1.45)
as the variation of a modified Misner-Sharp energy and also

1

B(rw) = ; [ (P(0) = Ta)ROD) + 20() dr

, (1.46)

T=Th
we have the first law of thermodynamics
dE =1TdS . (1.47)

Note here that we assumed that the horizon radius is allowed to vary. All quantities are well defined
and positive. Another aspect of the obtained black holes is that they possess an angle deficit. To see
this we will perform a co-ordinate transformation. The metric in Schwarzchild co-ordinates reads

1 2M 1 oM\ 7!
ds2 — — [ = _ g2+ [ 2 - 2= dr? + r2d0? . (1.48)
2 r 2 r
We now set
t— V2, (1.49)

r—p/V2. (1.50)
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Now the metric in the new co-ordinates reads

ds?

AM apM\ ! 2
- (1 - ) dr? + (1 - ) dp? + £de?, (1.51)
p p

-1
— (1 — 4M> dr? + <1 — 4M> dp® + p? (1 — W) do? | (1.52)
p p 2m

where d¢ = 7 is the angle deficit.
Having discussed a simple example of black-hole solutions in f(R) theories and some of its
properties, we will proceed in order to investigate black-hole solutions coupled to scalar fields.

1.3 Black hole solutions coupled to scalar fields

1.3.1 General comments and some particular scalar potentials that give hairy
black hole spacetimes

We will at first discuss a little bit the no-scalar hair theorem possed by Bekenstein [[18]. To do so,
we begin with a very simple scalar field theory consisting only of a pure kinetic term for the scalar
field, namely

1
S / &'z =g [? - 2V“¢VM¢} , (1.53)
By variation with respect to the fields one can obtain the Einstein and Klein-Gordon equations,
1
G/w = vpﬁbvvgb - §g/wvn¢vﬁ¢ , (1.54)
Op=0. (1.55)

Assuming the existence of an asymptotically flat, static and spherically symmetric black hole solu-
tion, the metric element can be written as

ds* = —g,2(r)dt* + +7r2dQ? . (1.56)

dr?
9r7(r)
Under the above ansatz, the Klein-Gordon equation yields a first integral,

9 (1) ger (r)d' (r)r* = C (1.57)

where C is an integral constant. A black hole spacetime possesses an event horizon at a finite
rp, > 0. The black hole horizon is defined as an one-way hypersurface where nothing can escape.
Considering radial null geodesics i.e ds?> = 0, # = constant = ¢, we can obtain for the velocity of

photons that

dr

E = i‘gtt(r)grr(rﬂ . (1.58)

At large distances, the velocity becomes equal to 1 and photons travel at their usual speed of light,
while in the case of a horizon, a far-away observer will see the photons freezed there and hence their
velocity seems to be zero, a scenario that can be achieved with the vanishing of g (r) or g,..(r) at
the horizon radius rj,. An event horizon is also defined as the locus of points satisfying V,rVr = 0,
while in the case of static and spherically symmetric spacetimes, this will also yield that g;; = 0, so
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the event horizon will coincide with the Killing horizon. Consequently, (1.57) imposes that C' = 0,
under the assumption of finiteness of ¢/(r,). As a result we have that

91t (1) grr (1)@’ (r)r? = 0, (1.59)

which yields that either one of the metric functions vanishes for any » > r,, which is meaningless or
that ¢’(r) = 0 — ¢ — constant. As a result the theory will naturally yield the Schwarzchild
black hole due to Birkhoff’s theorem. Of course, this could also be seen by multiplying the wave
equation with ¢ and integrating over the exterior black hole region

/ﬁ d*z/—ge0p = 0 — / d*o/—gVH eV 6 =0, (1.60)

where we dropped a total derivative term which vanishes under the assumption of a sufficiently
fast-decaying scalar field. Hence, the only way to make the above integral zero is ¢'(r) = 0 — ¢ =
constant, and therefore no non-trivial degree of freedom sourced by a minimally coupled scalar field
can survive outside the black hole horizon. In conclusion, self-interactions or non-minimal couplings
should be present.

Let us now discuss a little bit the easiest way to evade the no-scalar hair theorem, which is by
considering self interactions for the scalar field in the form of a scalar potential and comment on the
existing bibliography. In the presence of a potential the above action has to be supplemented with
the potential term V (¢), in the action

S = / d*z /=g [5 — %wwm ~ V()| - (1.61)

One of the first black hole solutions that a scalar potential has been used to evade the no-scalar-hair
theorem is the MTZ black hole [75]], with a scalar potential given by

Vig) = %A cosh(2¢) — % . (1.62)
As we will see this might be the simplest potential in order to circumvent the no scalar hair theorem.
This solution can be conformally maped to the Jordan frame, where the potential takes the simple
form of a quartic one V ~ ¢*. The solution generated by this potential is described by one integration
constant, the mass of the black hole, and the scalar field does not introduce a length scale responsible
for its behavior. If one wants to abandon conformal invariance in the Jordan frame then the potential
reads [76]]

V(p) = —%cosh (\/§¢5> + l% + l% (; sinh (\/6¢) + gsinh (\/2@5) - \/§¢C05h <\/§¢>> )

(1.63)
where ¢ is a dimensionless constant which is responsible for the breaking of conformal invariance
in the Jordan frame. It is clear that when g — 0 we obtain the MTZ potential. The parameter g is a
secondary hair of the solution since it enters the conserved mass of the black hole, but is not a scale
introduced by the scalar field. In this scenario, again the only integration constant is the mass of the
black hole. One might be tempted to consider charged black hole solutions with the inclusion of a
Maxwell term in the Lagrangian and in this case the potential has to be modified as [77]

3 h(2 h(4
V(g) = o n coszl(2 ®) n 00881(2 ®) _ (1.64)
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Here the solution is again described by only one integration constant being the electric charge, with
the black hole being massless. The conformal invariance is also broken in the Jordan frame.

We have so far seen that the potentials are linear combinations of inverse trigonometric (expo-
nential) functions in all three cases and the scalar field does not introduce a length scale. In the MTZ
case, the scalar field backreacts to the metric and dresses the black hole with a secondary scalar hair,
since there is no way to keep the mass fixed and simultaneously make the scalar field vanish, while
in the second case the scalar field backreacts to the metric, with the scalar field theory dressing the
black hole again with a secondary scalar hair. What will happen if we want to introduce a new length
scale in the scalar sector of the theory, that controls the behavior of the scalar field, in the sense that
keeping the mass fixed we can make the scalar field vanish and possibly in an asymptotically flat
spacetime? Such an attempt is presented in [15]], with a potential given by

V(#) = A (—cosh (V26)) = 20+ x (6sinh (V29) —2v36 (cosh (V29) +2)) ,  (1.65)

where y = M /v3, where M corresponds to the black hole mass and v to the scalar field parameter,
that controls the far-field behavior of the scalar field, namely the scalar charge. We should note that
black hole solutions exist also when A = 0. A similar potential might also be found in [78][79]. In
the attempt to derive these solutions, the authors fix the form of the scalar field and solve the corre-
sponding field equations in order to reconstruct the theory. This “potential engineering" procedure is
actually a well acclaimed technique to tackle physical problems, see for example references [80),[81]]
for the application of this technique in cosmological inflation. However, the corresponding solution
ends up being described by only one integration constant and x which is the model parameter. In
addition, these potentials arise in the context of supergravity [82]]. We should mention here that
these solutions cannot reduce continuously (at the level of the line element) to the Schwarzchild
AdS black holes by taking the limit of v — 0, since this would imply the vanishing of the black
hole mass. Of course the theory will give the corresponding Schwarzchild-AdS black holes at
the scalar vacuum ¢ = 0. In conclusion, these spacetimes can be completely characterized by one
integration constant, either M or v and the constant of the theory y and hence the scalar field does
not introduce a new scale.
From the above discussion it is clear that the exact form of the potential under consideration plays
a crucial role in the resulting black hole spacetime. Let us check whether the family of potentials that
yield hairy black holes, share a similar behavior near the vacuum of the theory. In an asymptotically
flat spacetime we have that g;; = 1 = g, in the line element . Near the vacuum of the theory
¢ — 0 we will assume that the scalar potential is analytic and can be expanded as V(¢ — 0) ~ (¢",
where ( is a constant and n denotes the leading order term. Then the Klein-Gordon equation
becomes )
o= + 220 4 gy =0 (166)
o~ VEVTr

For n = 2 we obtain a massive scalar and the field has the Yukawa fall-off ¢ ~ . If wewant a
fall-off behavior for the scalar field as 1/r (in order to define a scalar charge as the scale controlling
the 1/r term), then one can see that this corresponds to n = 5, and the potential is V(¢) ~ (¢°
at the scalar vacuum. One can check that indeed after setting A = 0 in the potential the
above argument holds. Moreover, the thermodynamic nature of this kind of hairy black holes is also
of interest. Since y is a constant of the theory, it is not allowed to vary. As a result, the produced
compact object can lose mass through Hawking evaporation, but it also has to lose its scalar hair in
order for the aforementioned ratio y = M /v? to be constant throughout the process. In addition,
charged black holes of this kind also have also been found [83] [5]. In these solutions, besides x
one has to introduce another constant of the theory v, which gives the electromagnetic to scalar
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charge ratio, 9 = Q2/v*. As a result, the metric functions of these spacetimes are described by
Guv = Guv(r, X, ¥, A, v), where it is clear that the only integration constant allowed to vary is the
scalar charge. Again, the black hole might lose mass through Hawking evaporation, as well as scalar
charge, but in these cases, it must also be striped off its electromagnetic charge. However, the key
point here is to note that the only constant that is allowed to vary is the mass because of the relation
between the mass of the black hole and the scalar hair from the theory. If x = M /13 then

oM = 3XV25V , (1.67)

since oy = 0 which will give a relation between the variation of the horizon of the black hole and
the scalar charge. Consequently, these type of theories will satisfy a first law of the form

dM =1T4dS

since the only primary hair carried by the black hole will be the mass, even if they are charged.
In the Appendix[A.0.1]we explore a simple, asymptotically flat black hole solution and discuss its
thermodynamics in detail, presenting all calculations.

1.3.2 Conformal scalar hair

Let me now dive deeper in the hairy black hole scenarios.

The first attempts begun in the early 70ies with the works of Bocharova, Bronnikov, Melnikov
and Bekenstein and the result is the BBMB black hole [[20]]. The action of the BBMB black hole,
contains the Ricci scalar, a kinetic term for the scalar field and a conformal coupling between the
scalar field and curvature, namely

R 1 1
S = /d‘*ac\/?g[5 - §V“¢VH¢ - ER¢2] . (1.68)

The scalar field is conformally coupled to gravity, thus the trace of the resulting energy momen-
tum tensor will be zero. Varying with respect to the fields we obtain the Einstein and Klein-Gordon
equation:

G =T (1.69)
O¢ = %R(;S (1.70)

where
Ty = V,u$Vy — %ngawacb + é(gWD ~ ViV +Gu) e’ (1.71)

Indeed if we trace T}, and use the Klein-Gordon:

1 1
gMVTp,V = guuau¢au¢ - g iguugaﬁaa¢aﬁ¢ + Egm/ [g/u/gaﬁvavﬁ - v#vu + ij](b?
1

1 4 1 1
= g#V6M¢6V¢ - 4§gaﬁaa¢aﬁ¢ + ggaﬁvavﬁ((bQ) - ggpuvuvy(¢2) + EQMV[RMV - §guuR]¢2

1 1 1
= 7guya,u¢au¢ + iguyvpvu(¢2) + E[R — §4R}¢2

1 1
= 9" 0,00,0 + 59"V, V(%) — GRo



60 CHAPTER 1. INTRODUCTION

= 9" 0,90, + %g””[?amam +20V,V, 6] — %R¢2
= GGV, Vb — ézwz
1
= 6[V"V,0 — R
= 1R 1R =0
= d)[é ¢ — 5 ¢ =

Now, the equations become:

R=0, (1.72)
Op=0. (1.73)
Solving these equations alongside the tensorial Einstein equation we find that

ds® = —b(r)dt* + b(r) " 'dr® + r? (d6? + sin® 6dg?) | (1.74)

m\ 2
b(r) = (1 - 7) : (1.75)

m
o(r) = £V6 : (1.76)

r—m

where m is the mass of the black hole. We can see that the scalar field diverges at the event horizon
of the black hole which lies at r, = m. This divergence has been argued by Bekenstein that is
not pathological [20]. However, it was also shown by Bronnikov [[84] that this solution is unstable
under scalar perturbations and a thermodynamical analysis of the black hole shows that this solution
is pathological. The temperature will be given by

V(re) _ 1 2m(r—m)

T(rn) = 47 - 4 r3 r=rp=m - w77
The entropy on the other side will be given by
1
S(rp) = 7wry (1 - 6¢(rh)2) — 00 . (1.78)

The divergence of the scalar field at the event horizon results in the divergence of the entropy at the
event horizon. As a result the produced compact object does not have a conventional thermodynamic
interpretation. Also, according to the zeroth law of black hole thermodynamics a black hole should
have non-zero surface gravity  at the event horizon, which is given by

KOV kb = kkY | (1.79)

where k¢ is a properly normalized Killing vector. The temperature may also be given in terms of the
surface gravity
K
T =— . 1.80
(=g (1.80)
The black hole temperature can also be obtained from the "Euclidean trick". We consider a point r
that is very close to the horizon r = 7, + ¢, where ¢ is very small. Now Taylor-expanding we get that

the metric function b(r) near r, asymptotes to

b(r — 1) ~ b (ra)(r —ry) =V (rp)e . (1.81)
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Now ignoring the angular part of the metric and performing a Wick rotation ¢ — iT we obtain

dr?
b'(’l’h)e '

ds® = b (ry)edr? + (1.82)

To recover the familiar geometry of the 2—sphere, which has a conical defect at R — 0 so to keep
the metric regular one has to impose periodicity in A© ~ 27

ds? = dR® + R*dO? (1.83)

we have to define
=dR?> & b(rp)edr® = R*dO©?*,

Reo U= o g Vlm) (1.84)

The fact that © is periodic with period 27 and given that 7 is also related to ©, 7 should also be
periodic with period 3. Now we have

©  V(ry) V(rn) 2w b'(rn) 1 _
— == >~ 7w —5=T (1.85)

A vanishing temperature also occurs in the case of extremal black holes. For example in the case of
the extremal Reissner-Nordstrom (RN) solution which happens for Q@ = M and the resulting metric
is the same with the BBMB black hole, a zero temperature also happens, but the entropy is still finite

and given by the area law.
A generalization of the BBMB black hole solution was presented in [[85]. Consider the action

h-21 Lwg 49 L po? 4 (1.86)
B) —59 u¢u¢—ﬁ¢—a¢ . .

Sz/d‘*x\/?g(

The matter part of the action is invariant under conformal transformations
Guv = U2, = Q2) 0. (1.87)

As a result, the energy-momentum tensor is trace-less and in the presence of the cosmological con-
stant the scalar curvature is
R=4A. (1.88)

With the BBMB black hole ansatz, the solution becomes

(1.89)

(1.90)

=

Z

I
7 N
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|
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SN—
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In order to respect the conformal invariance, the parameter « is specified, so the solution exists
only for « = —A/18. There are three horizons, the inner r;, event r;, and cosmological horizon r,
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and all possible divergences of the curvature invariants, the metric function and the scalar field are
hidden behind the event horizon. We note that we cannot have a black hole solution for an AdS
spacetime, since the metric ansatz will be always positive.

We can see here, that the scalar field does not diverge at the event horizon of the black hole,

which is located at )
= (1= VI=D0)) (1.91)

the positive cosmological constant shifted the position of the event horizon.
The thermodynamics of this solution have been discussed in [86]. The temperature of the black

hole at the event horizon is given by
1 4M
T(rn) = 5A\1— — (1.92)
2l l

where [ is the dS radius A = 3/12, while the temperature at the cosmological horizon is given by

T(re) = ——A|1— —, (1.93)

which is the opposite of the temperature of the event horizon. The entropy at the black hole horizon
is negative,
S(rp) = m(=0)\/1(l — 4M) (1.94)

while the entropy at the cosmological horizon is equal to
S(re) = =S(rn) - (1.95)

The black hole solution discussed in [85] is a generalization of the BBMB black hole solution
in the presence of a positive cosmological constant. This modification allows the scalar field to
be finite at the event horizon dressing the black hole with secondary scalar hair [[87], but still the
thermodynamic properties of the solution indicate that the produced compact object does not have
a conventional thermodynamic behavior. In an attempt to understand better the thermodynamical
properties of the solution a charge was introduced to the theory [85][86].

1.3.3 Minimally coupled scalar hair in Anti de Sitter

Regarding now the minimally coupled case, one of the first exact results was given by Martinez,
Troncoso and Zanelli [[75]. Considering the action

—2
5= /d4m\/jg{R+261 _ %a%am _ V(¢)} : (1.96)
and the scalar potential
_ 620
Vig) = N sinh (\/6) , 1.97)

an exact black hole solution was obtained, with the scalar field being regular at the event horizon of
the black hole. The scalar field is given by

o(r) = V6 Arctanh a , (1.98)

(i
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where p is a scalar charge. The potential has a global maxima for ¢ = 0 and a mass term given by:

m?=V"(¢=0) = —l% (1.99)
which satisfies the Breitenlohner-Friedman bound [88] [89]]that ensures the perturbative stability of
AdS spacetime, while the geometry of the spatial 2-section is hyperbolic. The electrically charged
case was later considered [77], where it was found that the resulting black hole is massless due to
the fact that the contributions from the gravitational part of the action to the mass, get canceled
by the contributions of the matter part of the action. Solutions with minimally coupled scalar field
where also considered in [76], where a generalization of the MTZ black hole was investigated, with
a scalar potential that breaks the conformal invariance in the Einstein frame.

1.3.4 Horndeski classes

Regarding the non-minimally coupled scenarios, the literature is also rich, with black holes in
the Horndeski scenario being discussed in [90}, 91}, 92, 93], with time dependent scalar fields being
introduced in [94]]. Furthermore, bi-metric theories have also provided the framework to discuss
hairy black holes [95]]. We will briefly discuss the solutions of Horndeski theory reported at [90,[92].
We consider the action:

R 1
3= —(g"" — 2GM) 8ﬂ¢8u¢> (1.100)

Sz/d‘*x\/?g( 5

where we consider Einstein’s gravity and a scalar field which besides, its usual kinetic energy term,

is coupled to the Einstein tensor and z is the coupling constant. This is a Horndeski theory [96] and

we expect second order differential equations for the equations of motion. This model has been at

first considered for cosmology, since the addition of such a term results to an accelerated expansion

without the need of a scalar potential. We will discuss here some local solutions of this model.
Varying with respect to the fields, the field equations are obtained

1
Gyu = vu¢vu¢ - iguuvaqbvaqb

1
— z( ~ V.V, 606 + VoV, )V (V,0) + RunasVeihVPh — iRquﬁVl,qﬁ +2V*R,(, V)0

1 1, 1
~ 5GwV6Va6 + gw( — RVa¢V56 + 5(00)” - Zvavﬁwav%)) . (1.101)

(9 = 26"V, V06 =0. (1.102)
We will consider the following metric ansatz
ds? = —f(r)dt* + h(r)dr® + r2dQ?* , (1.103)

where dQ2? is the 2-sphere line element. Since Vg = 0 and V,G"” = 0 because of the Bianchi
identity, we can rewrite the Klein-Gordon equation as

viu{(g" ~ 2G")V,0} =0, (1.104)
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1
Using, V,V# = fa,t(,/—gw), integrating once, setting the integration constant to zero and
-9
considering ¢'(r) # 0 since this will yield trivial solutions, the Klein-Gordon equation will take the
form
rf'(r) _ r*h(r)
f(r) z

Einstein’s equations are rather complicated but we will give them for completeness:

—h(r)+1=0. (1.105)

h(r) (z¢' (r) (¢ (r) + 4r¢" (r)) — 27’ (r)) = 3rzh' (1) ()2 + h(r)? ((r* + 2) ¢'(r)* + 2) — Qh(r()i TO%)’
&' (r)? (f(r) (h(r) (7”2 +2) = 32) = 3rzf'(r)) + 2h(r) (f(r)(h(r) = 1) —rf'(r) =0, (1:107)

— F(r)R(r) (' (r)(2¢' (r)(¢' () + 20" (1)) = 7h' (1)) +r2f" (r)§ (1)) = rzf'(r)h (1) (r)?
+4h(r)2(f'(r) + [ (r) + rh(r) £ (r)2(20(r) + 26 (1)) + f(r)? (4h(r) (W (r) — 22¢' (r)¢" (r))+
620" ()¢’ (r)? — 4rh(r)?¢’(r)?) =0, (1.108)

which are the ¢t, rr, 00 equations respectively. We solve for h(r) from the Klein-Gordon

_ 2 f'(r) + f(r))
Now substituting back to ¢t and 66, we obtain a relation for ¢'(r)?
oz rf(r) + f(r)
¢ (r)” = IS (1.110)

and from rr a differential equation for f(r) can be found
rf(r) (rf'(r) + f(r)) (r (3r%z + 1% +222) f/(r) + 22 (3r® +22) f'(r) —2r°f(r)) =0, (1.111)
which has a solution

2 9232 tan™?! (LZ)
r 3 + T

C1 CoT

f(r) = +3caz . (1.112)

The obtained configurations satisfy all components of Einstein’s equations and the Klein-Gordon.
The asymptotic expressions at zero and at infinity are

6 4

fr—0)~ Py + 5. +4deaz, (1.113)
¢+ e 4 3 2 2
2(1) CoZ CoZ CoZ Cor
f(r— o0) ~ . ~ 50 + 5d 2 + 3 + 3caz . (1.114)
We will modify f(r) in order to match Schwarzchild solution at small distances. Setting ¢; = —2m

1
and ¢y = o and f(r) becomes

fr=+5-—+——+—7~, (1.115)
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while now the asymptotic expressions read

2m r 6
=0~ 1= T 00 a116)
3 r? 8 7T1/z 2m z n*

We can see that z acts as an effective cosmological constant term. Considering that z > 0, the metric
at infinity behaves similar to the Schrwarzchild-AdS solution. Imposing m > 0, the metric has only
one root which indicates the position of the black hole horizon. We present plots for the metric
function f(r) and for the squared derivative of the scalar field.

= — m=1

m=2

m=3
5L —_ m=-1

— m=-2

r

s —
2 — m=1
m=2
-4 m=3

1 1 1 1 1 1

0 1 2 3 4 5

Figure 1.2: The derivative of the scalar field squared ¢'(r)? while changing m (z = 1).

We can see that the derivative of the scalar field blows at the event horizon of the black hole.
Moreover ¢’'(r)? is negative outside of the horizon and the scalar field behaves as a ghost, since
f(r) > 0 outside the horizon while inside the horizon, the scalar field behaves as a regular one,
since f(r) < 0.

The Kretschmann scalar is divergent at the origin » — 0. It’s expression is complicated but we’ll
give a plot.
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Figure 1.3: The Kretschmann scalar while changing m (z = 1).

The temperature is given by

1
T=_, (1.118)
B
where 3 = 27/k, where
1 (—gu)
K= ———— . (1.119)
2/ —91tgrr s
Then, the temperature at the horizon can be obtained:
2
2
T(ry) = (22 (1.120)

8mzry,

where, r, is the position of the black hole horizon. The temperature is always positive since z > 0.
In the limit of 2 — oo we recover the temperature of the Schwarzchild black hole.

0.4

T(rn)

0.2

0.1F

'h

Figure 1.4: The temperature while changing =.

The temperature has a minimum value. We compute the derivative of the temperature with
respect to the horizon
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It has a root located at ry = v/2z. The second derivative is positive at this point 7" (ry) =

H 3 i I : _ 1 _0.11254
meaning that r( is a total minima and the value of the minima is 7'(ry) = NN AR

1
427 23/2
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1.4 Outline of the thesis

The subject of this doctoral thesis is the study of black hole solutions in modified theories of
gravity, and in particular, the study of black holes coupled to scalar fields in the context of f(R)
theory of gravity and string-inspired theories. Both f(R) gravity and string inspired theories are
well acclaimed frameworks in theoretical physics. f(R) theories are mostly used to describe cosmo-
logical scenarios in the early and late universe, while string theories attempt to unify gravitational
interactions with other fundamental forces. In any case, modifications of linear theories, such as GR
or Maxwell’s theory, will inevitably play a crucial role in the strong field regime.

This thesis is separated into two parts. In the first part we examine black hole solutions in f(R)
gravity theories coupled to scalar fields. We have showed that the f(R) theory is mathematically
equivalent to GR plus a scalar field. In our case, the scalar field is introduced ad hoc and is not
of fundamental origin. Our motivation is to consider departures from GR with the help of f(R)
gravity, keeping the matter content of some well known GR solutions the same, in order to make
comparisons between the GR case and the f(R) case.

In the first three chapters we deal with the context of a minimally and non-minimally
coupled scalar field in (2 + 1) dimensions. (2 + 1) dimensional General Relativity (GR) has gained a
lot of interest over the decades, since the introduction of a negative cosmological constant results to
a black hole solution, the BTZ black hole named after Bafiados, Teitelboim, and Zanelli [97]]. This
came as a surprise in the scientific community, since in (2+1) dimensions, the Weyl tensor C 3.5
vanishes by definition, in the absence of matter the Einstein equation reads

R, =0=R, (1.121)

where R,,,, R denote the Ricci tensor and the Ricci scalar. Now, since the Riemann tensor R,g+s
contains all information about the geometry and is given by

Rapys = 2 (gapy Ros — 951 Rsja) — R9ajv9s)8 — Capre » (1.122)

we can deduce that
Raopys =0, (1.123)

and hence no non-trivial geometry can be formed. Moreover, now the Riemann curvature tensor
which will contain all information about the curvature of spacetime may be written in terms of
the energy momentum tensor and its trace, and there will be no pure geometrical contribution
to the Riemann tensor, which basically means that in three spacetime dimensions, the notion of
gravitational mass does not exist (a gravitational propagating degree of freedom, the graviton).
However the inclusion of a negative cosmological constant in the action

S = /d%\/fg(RJrzl—?) , (1.124)

where [ is the Anti de Sitter (AdS) radius, gives non-trivial contributions to the Einstein tensor,
and as a result, the Ricci scalar and Ricci tensor are no more equal to zero but proportional to the
cosmological constant

G;Lu - l72guy =0 5 (1125)

6

R = 5 (1.126)
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By solving the field equation one finds the following line element

2
ds? = —b(r)dt? + b(r) " dr? + (u(r)dt n de) (1.127)
with
J2 7“2
b(r) = i + e (1.128)
J

where M, J are the mass and the angular momentum of the black hole. Of course the static case
refers to J = 0. However, we have said that there is no gravitating mass in three dimensions. This
raises a question about the nature of the integration constant M. To discuss this, let us perform
some more calculations and consider for simplicity the static case. The action is

S = /d3x\/jg£ = /d%x/jg(R —2A). (1.130)
The above action may be written in Hamiltonian form as
7= /d%dt (m9gi; — NH — N;H') (1.131)

where N is the lapse function, N' is the shift vector and H, H' are Hamiltonian constraints. We will
take that t; <t <5 and 0 < ¢ < 27, while r > r,. We will use the Euclidean line element

2
ds? = N(r)2F(rdr® + 2 4 1242 (1.132)
F(r)
Now the Hamiltonian action is
Z=-2m(ty — tl)/ N(r)rN(r)H(r)dr (1.133)
T=Th
where here N(r)H(r) = —L. We will work with Euclidean periodic time 7 = it, with a period of g
Moreover, the Euclidean action Zg is related to the Lorentzian action Z;, via Zp = —iZ . By applying
these in (1.133) we have that
(o) oo
Ig =2n(ma —11) N(r)rN(r)H(r)dr =27 N(r)rN(r)H (r)dr (1.134)
r=rp T=Th
We now compute the quantity
N(r)rN(r)H(r) = —LN(r)r = rN(r)(2A — R(r)) , (1.135)

for the Euclidean line element (1.132). This calculation yields
3rF' (r)N'(r) + 2N(r)F'(r) + rN(r)F"(r) + 2F(r)N'(r) + 2rF(r)N" (r) + 2ArN(r), (1.136)
which up to boundary terms this is equal to

N(r) (F'(r)+2Ar) . (1.137)
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Now the action becomes
Ip = 2%6/ N(r)(F'(r)+2Ar)dr + B, (1.138)
T=Th

where B is a boundary term. We now want 6Zg = 0 to hold. This will give the equations of motion
that give the BTZ black hole, while the variation of 5 will be such that it will cancel the boundary
terms that will arise when we vary. Now, variation with respect to F' gives

N'(r)y=0— N(r)=1, (1.139)
while variation with respect to NV yields
2rA+ F'(r)=0— F(r) = —r?’A - M . (1.140)

This is the stationary BTZ black hole. To find these equations we have cancelled a boundary term
which was

d
g (N(r)oF) . (1.141)
Going back to our action, we have that
0Zg =2nB (N(r)oF(r))| +0B=0, (1.142)

Th

in order to have a well defined variational principle. Evaluating the variations at infinity we have
d0F(00) = —0M (1.143)

while at the horizon we obtain
OF(ry) = —F'(rp)ory, . (1.144)

As a result, the boundary term has to be such that

0Zg =0 — 27B86F(00) — 27 B6F (rp,) + 6B =0 —

—2mBOM + 6B(00) + 2w BF (r1,)6ry + 8B(rp) =0,

and therefore,

0B(c0) = 2785M (1.145)
while
8B(ry) = —27BF’ (ry)drn (1.146)
and hence
B(c0) = 275M (1.147)
6B(rn) = _2776%57% — B(ry) = —4n Ay, (1.148)

where we have set that F/(r,) = 47 /(8)) in order to avoid conical singularities at the horizon in the
Euclidean space. We calculated the Euclidean action. It reads

Tg = B(co) + B(ry) = 2nBM — 4 A, (1.149)
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However, the Euclidean action is related to the free energy of the thermodynamic system in the
Grand Canonical Ensemble (fixed temperature) as

T=BM-38, (1.150)

and now we can compute the conserved black hole mass as well as entropy at the event horizon of
the black hole as
M =21 M (1.151)

and
S =474, . (1.152)

Our calculation agrees with that of the BTZ paper [98]], which has a factor of 1/27 in their action
which if taken into account would yield that M = M and S = 4nr;,. Hence by using gravitational
path integral arguments one can see that M will be the total thermodynamic mass-energy contained
in the (2 + 1) dimensional spacetime.

With the inclusion of Maxwell electrodynamics

1
Sgp = - /d?’:m/—gF#,,F“” , (1.153)

where F),, the antisymmetric Faraday tensor, we find the charged BTZ black hole with a lapse

function b(r)
2

b(r) = —M + ;—2 — 22 1n§ : (1.154)

while the Maxwell field will read

Ay = (Ay(r),0,0) = (—an ;,o,o) . (1.155)

The charged rotating solution is a more subtle case [99} (100, 101}, [102].

Before addressing modified theories of gravity, in the second chapter [2] we set the stage by dis-
cussing an exact, asymptotically AdS black hole solutions dressed with a scalar hair in (2 + 1) space-
time dimensions. We find that such a discussion is important, because a simple exact spacetime of a
simple minimally coupled to gravity scalar field theory was missing from the literature. We discuss,
in detail, the implications of the scalar hair on the resulting spacetime, evaluating the thermody-
namic quantities, the energy conditions and we also investigate rotating solutions.

In chapter [3] of this thesis we will dress the BTZ black hole with a scalar hair, in the context of
f(R) gravity [1]]. By considering the theory

5= / d3xﬂ{;f(R) — 0 Bu00, V<¢>} , (1.156)
solving the field equations we will find that the Newton’s constant is modified near the origin, due to
the presence and strength of the scalar field there, while at large distances, the effects of the scalar
field are (almost) negligable and the uncharged and non-rotating BTZ black hole is recovered. We
find that the scalar potential includes a mass term that satisfies the Breitenlohner-Freedman bound
in three dimensions [88} [89]], ensuring the stability of AdS spacetime under scalar perturbations,
hence our solution is stable. Moreover, the novel black hole solution possesses a larger radius for the
event horizon of the black hole than the corresponding BTZ black hole, and as a result our solution

is thermodynamically preffered, having higher entropy at the event horizon. To find this solution
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we fixed the scalar field function with a particular form, however, since the physics of our new
black hole depends on the asymptotic behavior of matter, a scalar field and potential that satisfy the
conditions
¢(r—00)=0, V(r—o0)=0, V| _ =0, (1.157)

(matter vanishes at space infinity) are expected to yield black hole solutions with the same proper-
ties.

In chapter [4 we consider a scalar field non-minimally coupled to gravity [4]. The non-minimal
coupling term is given by

Shme = — / AP/ —gERY? | (1.158)
where ¢ is a constant that expresses the strength of the coupling between matter and gravity. There
is a critical value for this constant, which for a d-dimensional spacetime is given by

- d—2
4(d - 1)
and in the case of d = 2+ 1, £ = 1/8. This particular value corresponds to a conformally coupled

theory, which means that the action will be invariant under conformal transformations. In general,
a theory

(1.159)

S = /dVoM (1.160)
is conformally invariant when a conformal rescaling of the form
Juw = L (2) gy (1.161)
will transform the Lagrangian density £ as
L— Q)L (1.162)
and since the volume changes as
Vol = Q(x)*Vol , (1.163)
the action-theory S is preserved invariant.
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For £ = 1/8 there exists a well-known black hole solution with a scalar field regular anywhere
presented in [[19], where the action reads

R+2072
K

1
5= /d3m\/7—g{ — 0u00"0 — SR&} . (1.164)
The theory is conformally invariant and as a result the energy-momentum tensor is trace-less, there-
fore the Ricci scalar is proportional to the negative cosmological constant
R= 0 1.165
=5 (1.165)

The solution of the field equations yields (for x = 1)

ds® = —b(r)dt* + b(r) " tdr? + r2d6? (1.166)
12 B2(—2B - 3r)

o(r) =1/ TiBB - (1.168)

The matter field, dresses the black hole with a scalar hair of secondary type [87], since the scalar
charge B is related to the mass of the black hole via
3B2

For completeness, the explicit calculation of the thermodynamic quantities is given in the Ap-
pendix

We are interested in extending this theory by replacing R with a general f(R) function, which
will eventually introduce a scale (a gravitational one) in the theory, hence a scalar potential is also
required to counterbalance this scale. Our theory is given by

S = /d%\/fg{f(R) — 0,00"p — éRqs? - 2v<¢)} . (1.170)

To solve the field equations we assumed that the scalar field takes the particular form of the GR case
[[19], so the f(R) model will be given by

R
fr(r) =1+ar — f(R) =R+a/ r(R)dR+C , (1.171)

where « is the gravitational scale with units [L]~! that will allow for non trivial corrections to
Einstein’s theory and C' is a constant with units [L]~2 being related to the cosmological constant.
The subscript r denotes differentiation with respect to the Ricci scalar df (R)/dR = fr. The black
hole solution that we obtain has a smaller radius for the event horizon and for larger values of a,
the horizon is getting smaller, while for & = 0 we smoothly go back to the GR black hole solution
[19], therefore, we can compare our novel solution with the one of GR. Calculating the trace of
the energy-momentum tensor, we find that the trace is dynamical, meaning that the theory is not
invariant under conformal transformations and « breaks the invariance, hence our theory has a
scale. The resultant scalar potential has a mass term which is determinded by the non-minimcal
coupling ans is given by .

1 3
2
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which satisfies the Breitenlohner-Freedman bound in three dimensions [88], [89]], ensuring the sta-
bility of AdS spacetime under scalar perturbations where A is an effective cosmological constant
the f(R) theory and non-minimal coupling term generates.
The resulting f(R) model (which, due to the complicated form of the Ricci scalar, we can only
calculate asymptotically) is free of ghost and tachyonic instabilities, since it satisfies
df (R) d*f(R)
ar VY T

>0. (1.173)

Calculating the thermodynamic quantities of our solution, we find that the f(R) black hole has
lower temperature and higher entropy for most values of «, therefore, our solution is thermodynam-
ically preferred over the GR one for most values of a. The interesting part of our novel solution,
is that the mass of the black hole is zero. We attribute this fact to the breaking of the conformal
invariance, as we show in detail. Similar behaviors have also been found in the literature, when the
conformal invariance is broken [77,76].

In a similar work, which however is not a part of this thesis [2], but it will be mentioned for
completeness we considered (3 + 1)-dimensional f(R) gravity in the presence of a scalar field non-
minimally coupled to gravity in the action

1 1
§=3 /d4fc«/—g (f(R) — 0"0u06 — ZRe® — 2V(¢)> : (1.174)
To solve the field equations we fixed the f(R) theory in some particular ways, namely,
f(R)=R—-2a0VR, (1.175)
f(R)=R—2A—2avR—4A. (1.176)

The first of these models corresponds to asymptotically flat spacetime (but with a deficit), while
the second to asymptotically (A)dS spacetime. To derive exact solutions of the field equations in
f(R) gravity is a very difficult procedure. The main motivation to consider these models is that,
these models have been used to derive exact black hole solutions in vacuum and coupled to linear,
conformally invariant Maxwell electrodynamics [58], (59} (103} 66, 104}, [105]]. From the cosmological
point of view it has been pointed out, that, models of the form f(R) = R+ aR " fora <0, —1 <
n < 0 are cosmologically unacceptable [106]. In any case, considering this scenario allows for finite
scalar field at the event horizon of the black hole, as we discuss in detail. Therefore, we considered
them to derive exact black hole solutions with a conformally coupled scalar field. Solving the field
equations, we found that indeed the scalar potential, which is determined from the scalar equation
of motion preserves the conformal invariance, since it is given by

V($) ~ ot . (1.177)

Calculating the temperature of this black hole, we find that it is always positive and proportional to
the gravitational scale «, while the entropy is always negative, because it receives non trivial correc-
tions due to the square root correction and the non-minimal coupling. For our theory, according to
[21}, 22} 23] the entropy will be given by

1 o oL
- _ - 2 o8 1.1
S(rn) 4 7 d*xv/h <3Raﬁ’y6) ‘Hgaﬂgw ’ (1.178)



1.4. OUTLINE OF THE THESIS 75

where L corresponds to the Lagrangian of the theory, & is the induced metric on H, é,4 is the
binormal to the horizon surface H (an antisymmetric quantity satisfying é,3¢*° = —2) and ry, is the
position of the event horizon. The entropy can be found to be

S(rn) = ? (fR(Th) - éfﬁ(?“h)Q) ) (1.179)

where A = 477} is the surface of the black hole. We will provide a proof for completeness in the
Appendix[A.0.3]

Plugging in the explicit expressions we can see that the entropy is negative. As we have already
discussed, the entropy of theories where a non-minimal coupling between gravity and scalar fields
exists may be non-physical.

To cure this problem, we introduced linear electrodynamics. Solving the field equations, we
found that, due to the conformal invariance, the electric charge does not appear in the metric func-
tion, however it appears in the scalar field function resulting in positive entropy when particular
relations hold, as we discussed in detail. This is also the case in GR, as we have already discussed in
However, we found that the introduction of the gravitational scale « results in a finite scalar
field at the event horizon of the black hole. In[1.3.2] we saw that this is the case if we consider a
positive cosmological constant.

We will now introduce the second part of this thesis, which is based on non-linear electrody-
namics (NED). in regions with strong gravitational fields, such as those near black holes, traditional
linear theories may break down. Non-linear electrodynamics becomes important in these strong
field regimes, where the intensity of electromagnetic fields can become comparable to the strength
of gravitational fields. Studying how non-linearities affect the behavior of electromagnetic fields in
these regimes is crucial for understanding the physics of objects like black holes, neutron stars, and
other astrophysical phenomena. Moreover, non-linear electrodynamics is expected to lead to phe-
nomena that are absent in linear theories. In the early universe for example, when energy densities
were extremely high, the interplay between gravitational and electromagnetic fields was significant.
NED can be crucial in modeling the behavior of these fields during cosmological evolution. Conse-
quently, NED allows us to investigate how electromagnetic interactions influenced the dynamics of
the early universe and whether non-linear effects played a role in the formation of cosmic structures.
Understanding these cosmological implications helps build a more complete picture of the evolution
of the universe. For a review on non-linear electrodynamics and its applications, see [107] and
references therein.

One of the particular aspects of string/brane-induced non-linear electrodynamics effects is that
the higher order in the Maxwell tensor can be combined into an all-order expression, the so-called
Born-Infeld (BI) Lagrangian [[108,[109}25,[110},111L[112], as a result of re-summation of open string
excitations (attached to, e.g., 3-brane worlds in the D-brane extension of string theory, in which
case the world-volume of (d = 3)-brane leads to the DiracBI (DBI) action (see [113][114,[115] and
references therein). In such models, the BI electrodynamics in four spacetime dimensions originates
from the higher (d = 10)-dimensional superstring action upon either compactification or appropriate
restriction on a 3d-brane volume. It is important to note that in all such string-inspired models the BI
Lagrangian couples to the inverse of the open-string coupling g, = ¢?, where ¢ is the (dimensionless)
dilaton field, so the corresponding four-dimensional action in a curved four-dimensional background
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metric (in the Jordan or o-model frame), gl{,,, reads

S = _ﬁz/dm e¢\/Det( — gl + T W) : (1.180)

2
where F,,, is the Maxwell tensor F,,, = d, A, — 9, A,, and Ty = 52— = ];[W , is the (open) string
tension, with o/ = M; 2 the Regge slope (M, the string mass scale, which in general is different
from the four-dimensional Planck scale). In four space-time dimensions, the determinant can be

expanded to yield

1 1 2
SBI = —7:12/d4.’,13 \V4 —g‘]e \/1 + l“’ Fhy — (‘/—-v,u,l/ Fhv ) (1181)

272 16 7,

where f,w = %s,wpg F?7 is the dual of the Maxwell tensor, with ¢,,,, the Levi-Civita fully anti-
symmetric symbol in curved spacetime with metric gl{y. Expanding the (square root in the) four-
dimensional BI action in inverse powers of the BI parameter 7y, leads to effective dimension
8 (and higher) operators in the effective field theory, which make contact with the generic Euler-
Heisenberg (EH) NED [112, 26| 27]:

d4x¢_7@f¢ (-2 -TiL(1+ o)),

Iy = Fu F', Iy =

L L FF AP (;Wf ) : (1.182)

4T 4TZ 8 7'4 32 7'4

Hence, ignoring for the moment the dilaton, to fourth order in the field strength ¥, one obtains

(up to the dilaton factors) a special case of the generic EH NED with dimension 8 operators, with
Lagrangian:

2
£EH =C (;Flu‘y f”y) + Co J—_:u,l/ -pr -Fp)\ J—_.Auv (1183)

where the BI Lagrangian corresponds to [26][27]

1 1
=——F, =—. 1.184
AT T3 TR (1.184)
The reader should notice that the ratio of ¢y /¢y = —4 exactly, which is a characteristic prediction of

the BI theory.

Phenomenologically, assuming a constant dilaton and flat Minkowski spacetime, the BI param-
eter 72 can be constrained in collider physics, via light-by-light scattering, for which there is clear
experimental evidence these days at LHC experiments (see [28],[29] 30]). Such light-by-light scat-
tering studies [[26] can place a lower bound on the BI parameter 7; > 100 GeV. In the case of string
theory, this would lead to a (weak) lower bound of the string mass scale M, > 0.25 TeV. Notably,
extra dimension collider (LHC) searches place currently this bound to M, > O(10) TeV. Forecasts
for much larger values of the lower bounds of the BI parameter in future colliders, in particular FCC,
have been given in [27]]. Embedding the BI (or more generally Euler-Heisenberg) theory into curved
spacetime, and fully incorporating the dilaton effects, leads to a whole new area of tests of NED by
employing the entire machinery of modern gravitational experiments technology.
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The BI action Sg; and in curved background metrics can be augmented, at an
effective field theory level, by including the dynamics of the gravitational (g;{,/) and dilaton (¢)
fields. In this respect, we recall that the D-brane action is by construction in the so-called Jordan (or
o-model) frame. Passing into the Einstein frame in four dimensions, via the transformation of the
metric: g, — g, = e >?g;,, we write for the pertinent gravitational action (in geometrized units
¢ = G = 1, in which we work from now on):

S = F/d‘lxr[n 2w¢vu¢} /d4x olT2 1B 1 T —44513} ..., (1.185)
where the quantities IF, i = 2,4 are given by the corresponding ones in (T.182), but the indices
contraction is made by the Einstein-frame metric g,,,,.

Departing from the case of the brane DBI action (1.180), one may consider higher-order (in
derivatives, that is in a Regge slope o’ expression) electromagnetic terms in effective low energy
field theories stemming only from closed strings, e.g. the heterotic string [116]. In such theories,
unlike the DBI brane or open-string case, there is no re-summation in closed form of the gauge terms.
Nonetheless, some authors have generalised the BI effective action in a curved (3 + 1)-dimensional
spacetime, by considering the following form of dilaton couplings to the electromagnetic fields in a
BI NED setting [[117, (118} [119]:

1
—— / day/=g [R — VGV .6+ ﬁBI] ,
167

%y 6*47417 e*S'YqS ~
Lp1 = 4Bp; 2 (1 e T e PP ) (1.186)
BI

where the notation has been defined above, + defines the dilaton coupling, and now fSg; plays
the role of the generalised BI parameter, with mass dimensions +2 (which is identified with 72 in
the case of strings, in which case, to match with the corresponding O(a’) Maxwell terms of the
heterotic-string effective action [116], e~2? F2, one should fix v = 1).

The above considerations deal with tree-level in string loops, that is first quantized actions on
world-sheet with trivial topology (2d sphere for closed string sectors, and disc for open one). In
general, string loop effective actions are not known in closed form. In simplified phenomenological
scenarios such effective actions can be expressed in the generic form, e.g. in the closed string sector
in the string (or o-model frame with metric g, in (3 + 1)-dimensions, after string compactifica-
tion) [31]:

S = /d4x\/ R+i3¢,(q>) O® — 4V, V4 _BFié)

(1.187)

where the (...) symbol above a tensorial quantity implies contraction of the world-indices with the
string-frame metric g,,,,, F),, denotes the field strength of the gauge field, D, is the gauge covari-
ant derivative, 1) are fermionic matter fields and the ... denote other matter fields as well as (an
infinity of) higher-derivative (higher order in o’) terms, The quantities B;(®),: = g, ®, F’, 1) are non-
derivative functions of the dilaton which arise from summing over (closed) world-sheet topologies,
that is these functions involve powers of the string coupling g; = exp(®) of the form g, X, where
x = 2—2N where N denotes the number of handles, is the genus of the world-sheet surface (sphere
has N = 0, torus (one string loop) = 0 etc. Thus,

B;(®) = e 2® 4 ( ) + c( ) 20 4t cg,)L ey (1.188)

E F*" — By(®)) Dip + ...
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where the constant quantities ¢; pertain to effects of string loops, so that the expressions
involve a power series in the square of the string coupling g2 = exp(2®). The first term on the
right-hand side of leads to the standard closed string expression for the gauge field Maxwell
terms in the low-energy effective action, e~2? F?2 for standard dilaton kinetic term normalization in
the Einstein frame [[116/[120)], 121])

Passing to the Einstein frame, via appropriate redefinitions of [31]]: the metric g, — g., =
C By(®)g,., where C' are numerical normalization constants, the dilaton

’ 2 ’
P — ¢=[dP \/Z (g—z) + 2(%‘; + %‘;’), where the prime denotes d/d®, and the fermionic matter

fields, ) — ¢ = C—3/4 By 3/4 Bi}/ 2, leaving the gauge fields as they are, yields the effective action:

1 1
S= [d'sy/—g——=R— —— + Smatter ,
/ VTG T saG e
— 1
Smatter:/d4x\/_g|:_wmw_ZBF((I))F#VFMU'F... s (1189)

where the reader should notice the potential existence (depending on the specific type of string
theory considered) of constant (dilaton-independent) terms involving F? terms (¢f the c(()F) terms
on the right-hand side of (I.188))).

In case we consider more general theories involving a combination of closed and open strings
(the latter attached, e.g. to brane universe)s, for which one obtains effective actions in the Einstein
frame that include both closed- and open-string sectors (the latter leading to DBI terms of the form
appearing in the second integral on the right-hand side of (I.185)), then, the inclusion of string loops
can lead, following similar arguments to the closed-string case (I.189)), to generalised situations, in
which the (string-loop corrected) effective action acquires the form in the Einstein frame [122]:

S = m%/d4x\/jg[R—2V“¢Vu¢] - /d4m\/ngFz(¢) [7;2 I;ﬂ - /d%\/?gﬁ;* Bpa(0) Iﬂ T
(1.191)

where the functions Br:(¢), i = 2, 4 admit a power series expansion in the string coupling, summing

2We note for completion that a similar factor accompanies the quadratic gravitational curvature (Gauss-Bonnet (GB))
terms in the action at string-loop tree level. This is a remnant of the corresponding situation of the ten-dimensional target-
spacetime heterotic-string effective field theory action, which in the extra (compact) dimensional sector leads to the cel-
ebrated anomaly cancellation by equating the extra-dimensional (non-Abelian) gauge with the corresponding quadratic-

curvature gravitational GB terms [ d®z+v/—G(6)e—2® (TrF2 - R%'B) — 0 (with the Tr being a group-index trace), which

leads to the Heterotic string selecting the Eg x Eg gauge group as the unique target-space group before compactification to
(83+1)-dimensions [[120} [121].

3Indeed, if only Abelian gauge fields are considered then only open world-sheet surfaces are taken into account, in order
to evaluate the pertinent contribution to the effective action, as discussed explicitly in [122] where it was shown that the loop
corrected effective action acquires the form in the sigma-model frame (ignoring antisymmetric tensor fields contributions,
which are of no interest in the present discussion):

= ;-2 _ 3 = _ .
S = /d4x —Ga/ 22 [— 50/(72—&-4(8(;5)2 +...]+die (f’\/dot(gu,, +27ra’Fw,) +dy+dz+dee® +...,
(1.190)
where d;, i = 1,2,..., denote finite parts of the dilaton tadpoles, and the dots denote contributions from higher derivative

corrections, as well as higher string loops (that is higher powers of the string coupling gs = exp(¢). Passing onto the
appropriate Einstein frame leads to actions of the form (I.191).
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up terms of the generic form

Bri(¢) =Y g%, i=12, g =exp(d), (1.192)
X

where x = 2 — 2N — Ny, with Ny the number of holes (or boundaries) (eg disc has genus x = 1,
since N = 0, Ny = 1 etc), where finite parts of dilaton tadpoles contribute to the coefficients c;F”.

In heterotic strings, which do not involve branes, the higher derivative EH electrodynamics terms
do not appear in a closed BDI form. In that case a more general action, involving EH terms, after

summation over string loops, might then be considered, in the Einstein frame:

1

S = Ton

/d4x\/jg[7€— 2v“¢vu¢} - /d‘*m\/?gBFz(qb) {7:3 Iﬂ - /d‘*m\/fgn‘*Bm(qﬁ) L+ ...
(1.193)

where the ellipsis (...) includes possible string-loop generated dilaton-potential terms, whose pre-
cise form is not known at present, as this is a highly string-model-dependent issue, and the functions
Br2(¢), Bra(¢) in this case are given by power series expansions of even powers of the string cou-
pling, of the form (1.188), as only closed world-sheet surfaces are involved. The Euler-Heisenberg
Lagrangian Lgy is given by (1.183)), but the coefficients ¢;,7 = 1,2 no longer satisfy (1.184), given
that the DBI action no longer describes the electromagnetic self-interactions in closed form.

As a result, NED is a well motivated field of research as it arises in more fundamental theories,
as we have already discussed. For this reason we will consider different versions of the following
action

1
S=16m / A0y~ [R—2V" 0V .6~ Vi (8) ~ F(8)F ~ £(6) (20F 4 F5, FyFo = BFY) |, (1194)
solve the resulting field equations in various scenarios and discuss their properties. At first we will
consider that F/(¢) =1 = f(¢) in the following action functional

S = /d4x\/jg£ = /d‘*x\/fg (1; — %a“gba#gﬁ ~V(¢)—P+aP?+ ﬂQQ) , (1.195)

which is basically the EH theory with a minially coupled scalar field. This is discussed in chapter [5]
and the pertinent paper is [5]. To solve the field equations, we introduced pure magnetic fields via
the one-form (in spherical symmetry)

A, = (0,0,0, K(6)) . (1.196)

In this case the scalar Q> ~ E x B in the above action turns out to be zero, since it vanishes if we
do not consider dyons. Then the Maxwell equation obtained by variation with respect to A,, yields

VH(F,, —2aPF,,) =0. (1.197)

For K(0) = Qn, cosf, these equations are trivially satisfied. In the Appendix we prove this
result. This simple form of the electromagnetic one-form enabled us to obtain an exact black hole
solution, dressed with a secondary scalar hair in the context of non-linear electrodynamics. In
chapter [5| we will discuss in great detail the influence of each of the parameters of the black hole
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solution. For now, let us comment on the scalar potential. We found that the potential supporting
such solution is

V(e) = 3% <1/8Aeff (cosh (\@fb) + 2) —36myv° (\/i(b (COSh (\@(b) + 2) — 3sinh (\@gﬁ)) —4aQ? *

(288¢2+2 (7262 + 71) cosh (\f2¢) 43224 sinh (ﬁ¢>)+100 cosh (2\/%) —14cosh (3\/§¢) +cosh (4\/§¢)

— 229) + 604Q2, <8¢2 +4 (q52 + 2) cosh (ﬁ(ﬁ) — 12264 sinh (ﬁ(ﬁ) + cosh (2\/5(]5) — 9) ) .
(1.198)

While not entirely clear in this form, the scalar potential is actually independent of the black hole
paramters. By defining x = m/v® ¢ = Q,2 /v?, the potential will contain only fundamental consants
fixed by the theory and consiquently, both the mass and the magnetic charge are allowed to vary,
consistently in order to keep the afforementioned ratios constant. These types of potentials are
actually important in black hole physics, since they provide a controlled way to violate the no-hair
theorem and they have their root in the context of supergravity.

When discussing the nature of the black hole, we came across an interesting scenario, that of
many horizons. Due to the asymptotic nature of the metric function near the origin and at large
distances, we at first established that our solution always describes a black hole with at least one
horizon in asymptotically AdS or flat spacetime. However, we have found that the black hole might
have up to three horizons depending on the values of the parameters, introducing in this way the
notion of a black hole inside of a black hole, since the smallest and largest roots of the metric
function will denote event horizons.

Furthermore, we discussed the thermodynamics of the solution. At first we calculated the tem-
perature of the black hole when it possesses only one horizon and we found that in the flat case
the temperature decreases as the event horizon radius is getting larger, or one can see it from the
opposite side, the temperature is getting larger as the black hole shrinks meaning that when the
event horizon ceases to exist, the black hole evaporated away. This should be also the case in any
black hole spacetime. For example, in the Schwarzchild scenario, a textbook calculation unveils that

11
T 8tM  Awry

(1.199)

where one can clearly see the aforementioned discussion. However, this thermal evaporation will
take very long periods of time. The Stefan-Boltzmann law states that for an emitter or a black body,
the energy emitted per unit surface area per unit time is proportional to the temperature to the
fourth power and in terms of black hole physics this is

aM dM
~TY S 2 T2 = M2 ~ M3 1.2
G, — 7 —t , (1.200)

where A;, = 167 M is the area of the Schwarzchild black hole which is a back-of-the-envelop calcu-
lation to see that for astrophysical black holes, this is indeed a huge amount of time!
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Figure 1.6: The Bekenstein-Hawking entropy as a function of the scalar charge v for the asymptoti-
cally flat case, having set Q,,, = 0.2, m = 1 for two different values of the non-linear electrodynamics
parameter.

We proceeded by calculating the entropy of the black hole by using the Wald formula. Since
we are dealing with General Relativity, we show that the entropy will be given by the Bekenstein-
Hawking area law

S~ A (1.201)

In order to see the effect of the black hole parameters on the entropy we plot the entropy as a
function of the scalar charge v in Figure We can see that the hairless black hole is a total
maxima in the phase space of the parameters that affect the entropy. The non-linear electrodynamics
parameter « does not affect the entropy significantly. The fact that the entropy of the hairy black
holes is smaller has its root in the fact that the scalar hair results in more dense black hole solutions,
in the astrophysical nomenclature this black hole is a “compact object" since it is more dense than
its hairless counterpart.
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CHAPTER 1. INTRODUCTION



Chapter 2

A simple example of a hairy black
hole in (2 + 1) spacetime dimensions.

Before we dwell further into the modified theories, let me discuss a very simple example of a
hairy black hole in three spacetime dimensions. This chapter is based on the paper [8].

We consider a simple model of a scalar field minimally coupled to gravity in three dimensions in
the action

1 R
s= L f d3x¢fg{2 - L9600 - v<¢>} 7 1)

which consists of the Ricci scalar and a self interacting scalar field minimally coupled to gravity. By
variation of this action we obtain the field equations

1
Guu = R,ul/ - iguVR = T’;UJ ) (22)
oV
Oé — — = 2.
¢ 99 0, (2.3)
1
zjul/ = au(bal/d) - §g/tuaa¢8(x¢ - guuv(¢) . (24)

To solve the field equations we assume that the scalar field has a coulomb-like form as in the four
dimensional theory [123]], with the solution first appearing in [87]. We find that the scalar field
dresses the black hole with secondary hair, with the scalar charge appearing in the conserved black
hole mass. The Null Energy Condition is violated inside the event horizon, a feature also appearing
in the four-dimensional sibling [[123]], and we point out that this is a global feature in any space-
time having a vanishing 1/g,,(r;) = 0 at the event horizon of the black hole, where only radial
dependence on the scalar field is assumed. At large distances, the solution reduces to the BTZ black
hole, while the scalar potential admits an even power law expansion, with the mass term being
above the Breitenlohner-Freedman bound.
We consider a (2 + 1)-dimensional metric ansatz of the form

1

ds* = —h(r)dt* + 0

dr? +r2d6? | (2.5)

where h(r), b(r) are the two unknown metric functions to be found solving the field equations. Since
the metric only depends on r, we will consider that ¢ is only r-dependent, hence ¢ = ¢(r),V = V(r).

83
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The tt, rr, 06 components of the Einstein field equation and the Klein-Gordon equation read

b (r) +rb(r)d' (r)? +2rV(r) =0, (2.6)
b(r) ( fh((’;)) - ¢’(7‘)2) 1oV (r) =0, 2.7)
—b(r)h (r)? + 2h(r)? (b(r)qi)’(?")2 + 2V(r)) + h(r) (B (r)W (r) +2b(r)h"(r)) =0, (2.8)
1 "1\ (1 r h/(r) 1 (p ")) — V/(T) —

90000 +060) (e + ) o)+ 6 ) - S0 —o. 2.9

Using the Bianchi identity one can prove that can be obtained from the Einstein equations.
Hence, we have a system of with three independent equations in four unknown functions. As a
result one of the unknowns has to be fixed ad hoc. However, if one fixes the scalar potential from
the begining in (2.1, then the system can be, at least in principle, integrated, since one will have
three unknown functions and three equations. Hence, we fix the form of the scalar field as

o(r) = —, (2.10)

where A is a scalar length scale that controls the behaviour of the scalar field, which we will call
scalar charge. Note that the scalar charge has been defined as the term controlling the O(r—!) term
of the scalar field at infinity in four dimensions and we will use the same terminology in our work.
We have checked that using ¢(r) = A/r™ with n > 0, exact results can be obtained for different n,
however for n = 1 we can find simple exact solutions.

There is a pole in the scalar field function for » — 0, however this will not be a problem because
of the presence of a curvature singularity at » = 0 as we will discuss, thence the solution will be
valid for r > 0. Then, we find that

2 2 2
b(r) = %e’fﬁ (142026;‘ﬁ + 03) ) (211
3
2
h(r) =1 (Se737 +e) (2.12)
cicy A2 1 A?
V)= e (42 - n?) - et (2.13)

where c1, co, c3 are constants of integration to be determined from the boundary conditions. Note
here that at large distances, the solution asymptotes to

2 242 A2¢y (4A2 4
b(T%OO)Ng(CP)JrCz)JrCI( 62+C3)+ CQ+C3)+O<<i)>(2.14)

2 \A2 2c2 8cir?
A%cs  cgr? 5  C3 n\*
h(r — o0) ~ + 52 + yE + cor® — 5 +0 <r) , (2.15)
c1 [/ C3 A26182 + cic3 1 4
\%4 ~—— (— ) ————40| |- . 2.16
(s o0) =5 (s oo i (() (2.16)

From the above relations we can see that we have some O(r?) terms that survive at large distances
which we can identify as cosmological constant terms, that are generated by the vacuum of the
scalar field theory and depend on A. For ¢; = A*(ca + A)%,c3 = —A%(c2 + A), where A is an
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effective cosmological constant, we rewrite the asymptotic expressions of the metric functions at
large distances

1 A4(3co — A n*
b(r—>oo)N—Ar2+§A2(cQ—A)+%+O <<T> ) , 2.17)

1 AY(co + A \*
h(r—)oo)N—Ar2+2A2(CQ+A)—(Cgi2)+0<<r) ) . (2.18)

To compute the mass of the black hole, we will use the quasi-local method [124]. The quasi-local
energy at a finite distance r( is defined as

B(ro) =2 (Vbo(ro) = vB(r0)) - (2.19)

where b, determines the zero of the energy (which we take to be the pure AdS space-time by(r) =
—Ar?) and the quasi-local mass at 7 can be obtained as

m(ro) = \/h(ro)E(ro) . (2.20)

Now, the ADM mass of the black hole can be read off by taking the limit at ry — oo
M= —%A2 (ca—A) . (2.21)
A2N —2M

2
charge A and the effective cosmological constant A, which are the parameters of our solution

Setting co = we can rewrite the solution in terms of the black hole mass M, the scalar

2N 2 2N
hr) =12 <AAAQ2M _eEE (AAAfM + A)) , (2.22)
27’26% M — A%A) — r%ﬁij 2M — A2A
br) = 2 M AT e ), 2.23)
A2 A2
er? (A% = 2r%) (A2A —2M)  2e2Z (A%A — M)
V(r) = 5172 + yE ; (2.24)
25 (A2A — M) % (¢% — 2) (A%A — 2M
Vi¢) = ( yE ) + G ;f(ﬂ ) . (2.25)
Their asymptotic expressions now read
A (AN — *
h(?" — OO) ~ 7A7'2 -+ (AQA — M) - % + O ((i) ) ) (226)
4N 92 4
b(r%oo)wArQMJrAA?;A/MJrO((l) ) ) (2.27)
4r r
AN A% (A2A— M)  3ASA —544M 1\*
V(r—o00) ~ A+ 52 T A + 9076 o (r) , (2.28)

Ag? A M A 5M

V(¢_>O)NA+2+¢4(4_w>+¢6(8_w>+0<¢8>' (2.29)
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We can see that at large distances, the solution resembles the BTZ black hole, while corrections in

S

1
the structure of space-time appear as O | | — terms, where s > 2 which are supported by the
T

existence of the scalar field. Moreover, the scalar field dresses the black hole with secondary scalar
hair, since the conserved mass is given by the scalar charge in addition to an integration constant.
The potential has a mass term given by m? = V(¢ = 0) = A, which is above the Breitenlohner-
Freedman bound in three dimensions [88,[89] and for small ¢ (large ), the potential admits an even
power series expansion. It is also invariant under the substitution ¢ — —¢. The potential
contains both the mass and the scalar charge of the black hole space-time. However this should not
happen. As a result we have to find a way to render the potential independent of the black hole
mass and scalar charge. By inspection we can see that we can define the conserved mass to scalar
charge ratio ¢ as

1= 33> (2.30)
and now the potential will be
2 5 2
V(p) = e%(2A —2¢) +e? <A;b — A —q¢* + Qq) ) (2.31)
Ap? A — 3A—5
V(¢—>0)~A+%+ 4q¢4+ 51 65 + 0 (¢%) (2.32)

where now ¢ is the parameter of our theory. Now the potential is general enough and the theory
can yield black holes with different masses and scalar charges. The mass of the resulting
compact object might reduce through Hawking evaporation for example, but a varying mass implies
a varying scalar charge, so that their ratio ¢ is constant. Therefore, from a field theory point-of-view
we can argue that the scalar charge A is kind of a thermodynamic variable, since it has to vary
when M is changing. In Fig. we plot the scalar potential as a function of r and ¢, where we
can see that the potential is always negative in order to support the hairy structure and to violate
the no-hair theorem. Moreover from the plot of V(¢) it is clear that the theory contains a global
maximum located at Vipax(¢) = A. We have also checked that the on-shell action is constant at large
distances. The 1/g,,, component has two roots given by

an 9 —1/2
re = +A (m <4(AAM)>> . (2.33)

(A2A — 2M)?

We work on the solution in AdS space-time, the horizon being .. From now on, we will set A =
—(—2, where ¢ denotes the AdS radius. In addition, note that there always exist a horizon when M
and A are positive and the scalar field does not imply any bound for the existence of a horizon. In
the limit of small scalar charge A, we obtain, at zero order, the BTZ black hole

1 M M1
h(r) ~r? <£2 - Tz) + A% <4T4 - ngz) +0(4%) (2.34)
1 M\ 3A°M
b(r) ~7* (z? - 7a2> -5z toMAY. (2.35)
1 AZ(2r2 4+ 02M) A (3r? + 200°M) 6
V)~ =5 - 4(rtezy 12 (r662) +oA) - (2:36)

This is related to the asymptotic nature of the scalar field. In our case, the scalar field decays fast
enough ((’)(r‘l)) and hence its impact on the conserved mass is mild, in the sense that the mass
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Figure 2.1: The potential V(r) and V(¢) for M = —A = 1, while changing the scalar charge A.

is not completely determined by the scalar hair parameter A. As a result, sending ¢ to zero we
can obtain the massive BTZ black hole. We note that this is not the case when ¢ falls like O(r~1/2)
(19,125 126,127,128, [129] where the mass is given explicitly in terms of the scalar hair parameter.
In our case, the mass depends on the scalar hair A but also on an independent integration
constant cp. Therefore, the integration constant can take any particular value and we can always
have a massive black hole solution when A approaches zero and the scalar field vanishes. Recently
another solution appeared [[130], where the scalar field falls faster at infinity (O(r~!) as in our case)
and the no-hair limit in this case is also well-defined and the BTZ black hole is obtained in the limit
of vanishing scalar field.

Figure 2.2: Left: h(r) versus r for M = ¢ = 1, while changing the scalar charge A. Right: r; as a
function of A, while changing the mass of the black hole for ¢ = 1.

In Fig. we plot h(r) as a function of r for different scalar charges and r, as a function of
the scalar charge A and we can see that as A grows, the bigger the event horizon radius becomes.
We should also note that the horizon r, is also a root of h(r) even though h(r) # b(r) (in fact

2
h(r)/b(r) = e_%), therefore, the black hole has the same causal structure as the static BTZ black
hole, where inside the horizon we still have one time and two position coordinates. There exists a
singularity at the origin as can be seen by calculating the Kretschmann scalar, which is plotted in
Fig. Its expression is complicated, but by checking the limits we can see that it is divergent at
the origin, while regular for any other » > 0 and at large distances is related to the cosmological

constant
12 8A2 n\*
aBvd
Ragfy(;R v (T—)OO)NM+W+O<(T> > . (237)
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Figure 2.3: The Kretschmann scalar R,g,5R*#7(r) for M = —A = 1/¢?> = 1 while changing A.

2.0.1 Energy Conditions

In this subsection we will discuss the energy conditions of the obtained space-time. For this
reason we rewrite the Einstein field equation as

Gy =T/ (2.38)

In this frame of reference, we can identify 7, = —p, T," = p,, T, = p; = —p being the energy
density, the radial pressure and the transverse pressure respectively. The energy conditions are
obtained from these expressions. The weak energy condition (WEC) states that given a time-like
vector field t®, the quantity T,,t%t" is positive, T,;t?t* > 0 — p > 0. The null energy condition
(NEC) states that 7,,[%l® > 0 — p + p, > 0, where [%l, = 0, so that the geometry will have a
focussing effect on null geodesics. The explicit expressions read

A2 A2
07 (A2 = 2r2) (A2 4+ 2M) — €77 (A2 —12) (A2 + 202 M
p=T+V = bir)g 2+ V() = S A2 (A EM) e st
A2 A2
e (A2 4+ 2r2) (A2 + 2 M er (A2 4 202 M
=T -V =b(r)¢2)2 - V(r) = ( ) ( Azm?? ( ) . (2.40)
957 (A2 + PM) — ¢33 (A2 + 202 M
p+pr=2T =b(r)¢/(r)* = ‘ ( )7«252 ( ) , (2.41)

where T = b(r)¢'?/2 is the kinetic energy of the scalar field. The energy density p is negative inside
and on the black hole horizon. Inside the horizon, b(r) is negative, ¢'? is always positive and the
potential is negative everywhere as we can see from Fig. resulting in negative energy density
inside the black hole. On the horizon, we have b(r,) = 0, hence the contribution from the kinetic
energy of the scalar field vanishes and the potential makes the energy density negative. Outside
of the black hole horizon b(r) is positive, but the effect of the potential energy is stronger than the
kinetic energy, resulting in negative energy density everywhere, as we can see in Fig. At large
distances, the kinetic energy asymptotes as

2 2 6
T(r—>oo)~A—A'/Vl+(’)<<1> ) ) (2.42)

2122 2rd
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while the expression for the potential energy in the limit r — —+oo is given in (2.28). The leading
order term in the kinetic energy is positive and since all constants A, ¢, M are finite constants, the
kinetic energy is positive for large r. We can see in that the potential will cancel this positive
contribution of the kinetic energy, therefore the sum p = 7 4+ V will be always negative. It is
known that too negative a potential might threaten the WEC of a regular scalar field. In our case the
potential is the quantity that violates WEC. For the NEC, we can see that at the event horizon r , we
have p+p,, = 0due to the fact that b(r.) = 0. Outside and on the horizon the NEC is satisfied, while
inside the event horizon the NEC is violated. This is a common feature of black hole space-times
that arise from an action that consists of the Ricci scalar of Einstein’s gravity and a simple non-
minimally self interacting scalar field in arbitrary dimensions that satisfies ¢""(ry) = 0,¢ = ¢(r),
and not a peculiar case of our model. This behaviour is indeed present in the four-dimensional case
[123,[131]]. In Fig. [2.4)we plot the energy density (WEC) and the sum of the energy density and
radial pressure (NEC) of our black hole in order to illustrate the discussion above. In FIG. we also
plot the radial pressure. We can see that the radial pressure is negative for some region inside the
black hole horizon, while at the horizon and outside of the horizon, the radial pressure is positive.
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Figure 2.4: The energy density p, the radial pressure p, and the radial pressure p+p, for M =/¢ =1
while changing the scalar charge A.

2.0.2 Thermodynamics

In this subsection we will discuss the thermodynamics of the black hole solution. We begin with
the temperature. To derive the black hole temperature, at first we perform a Wick rotation and move
to imaginary time ¢ — i7 where 7 will now be periodic, the period of which we have to find in order
to specify the temperature. We will now ignore the angular part of the space-time metric and thence
we are left with )

2
) dre . (2.43)

ds® = h(r)dr® +
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We now expand the metric functions near the horizon

h(r —ry)=h(ry)+ R0 (re)(r—ry)+ .. =0 (ro)(r—ry), (2.44)
bir —=ry)=blry)+b(ro)r—ry)+... =0 )(r—ry), (2.45)

and the reduced space-time element reads

_
D) (r—rv)

Even if it is not clear at this point, the above line element describes a cone in Euclidean space and
has a conical singularity at the tip » — 0, unless we fix the period of 7 in a particular way. Therefore,
we will now compare this line element with the line element of two-dimensional flat space-time in
polar coordinates that reads

ds* = h'(ry)(r —ry)dr? + dr? . (2.46)

dS? = dR* + R%d©? (2.47)

where © is periodic of period Tg = 27 and we will treat 7 as an angular coordinate, in order for the
space-time to be truly Euclidean. By setting ds? = dS? we can relate the two radial coordinates

1

= e =)

dr? | (2.48)

which by integration will yield the relation

rT—T4+
=2 2.
SV 249
and now we are left with the angular coordinates
B (r)(r —ry)dr* = R?de? (2.50)
which again by integration yields
/ / / /
o VNOIV(ry) O V(I )V(rs) 2.51)
2 T 2
O is periodic with Tg = 27 and by denoting S the period of 7 we have
W (r v
5:4—”_)‘35£:M7 (2.52)
W (r )b (r) p dr
which is the temperature of our black hole space-time. Substituting the functions we find
A2
(A2 +2r%) (A2 + P M) —rie™ (A2 +20°M) 7 (2.53)

re) = o A2 2

and substituting the horizon radius we can express the temperature as a function of the black hole
mass

(A% 4+ PM) \/In (A2 + 2 M) — In (A2 + 22 M) + In(2)
V2 Al2 '

The temperature is always real and positive. In Fig. [2.5] we plot the temperature of the black hole.
We can see that the temperature increases as the mass of the black hole is growing. Moreover, the

T(M) = (2.54)
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Figure 2.5: The temperature of the black hole for / = 1 as a function of M, while changing the
scalar charge.

temperature is non-zero and finite for zero mass, which happens because a horizon exists even for
the massless case, given by r, (M = 0) = A/(21n 2). For small A, it becomes
T(r,) ry A% (22 — PM)
T ~
T o2 83 (2

+0 (A% (2.55)

while the BTZ temperature corresponds to Tprz = 74 /(27(?) = V M/2nl. As a result, the hairy
black hole possesses a larger temperature at the event horizon. Using the Wald formula [21] 22],
we can calculate the entropy of the black hole as

S = —27T-/d0\/7'_2,’_ <8R8(;CB,)/6> ’ éaﬁéy& ) (2.56)
+

where £,4 is the bi-normal to the horizon surface [23]], £ is the Lagrangian of the theory £ =
(8m) " (R/2 — 0%¢0a/2 — V(¢)), and

oL
3Raﬁ75

(9°7¢%° — g"7g*°) | (2.57)

N | =

T=r4

hence the entropy will be given by the Bekenstein-Hawking area law
S===—, (2.58)

where A = 27y is the circumference of the three-dimensional black hole. The hairy black holes
possess a larger event horizon radius in comparison to the BTZ black hole which has an event horizon
at ry = g\/ M

3A2
8¢/ M

hence they are thermodynamically preferred over the BTZ black hole, having higher entropy, when
the scalar charge is small. The black hole space-time is thermally stable in the canonical ensemble,
which can be seen by evaluating the heat capacity

re ~ VM + +0 (4%, (2.59)

ds TA

C = T* = 5
(re) =To7 r=ry  2y/2,/In (A2 + (2M) — In (A% + 22M) + In(2)

(2.60)
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which is always positive. For negligible scalar hair we obtain the heat capacity of the BTZ black hole
C=7ry/2=ml/MJ2.

Now, lets discuss the first law of thermodynamics. To do so, we will consider the Euclidean class
of metrics described by

ds* = N(r)?h(r)dr® + 5 +r2de* . (2.61)

dr?
h(r)s(r)
The coordinates here range as 0 < 7 < 3, ry < r < oo, 0 < 6 < 2. Here 7 is the Euclidean
time which is periodic with period 5 in order to avoid a conical singularity at the event horizon of
the black hole where h(r;) = 0. This periodicity is related to the temperature of the black hole
spacetime as
1 N()W(r)s(r)

T=—-= 2.62
5 yym ( )
We will consider the Hamiltonian version of the action now and we will write
H= / (Wij Gij +pp— NH — NH) d?zdt + By . (2.63)

ince this solution is static and spherically symmetric, we can consider a reduced Hamiltonian
H=— / d*zdtNH + By (2.64)

The Euclidean action is related to the Lorentzian action via

Te=—iT. (2.65)

Ig = QWﬂ/drNH + Bg . (2.66)
In order to have a well defined variational principle we have to include a boundary term Br which
will take care of the boundary terms that we will cancel in order to obtain the field equations.
Therefore, we will consider the following total action

By variation with respect to the fields we obtain the following equations

s (s (h’ + hr (¢’)2) + 2hs’) L2V =0, (2.68)
s (Nr (#)? - N’) Y N5 =0, (2.69)
N (—h’ + hr (¢)° — 2;V> —2nN' =0, (2.70)
N (s¢/ (¢ (s (rh' + h) + hrs') + hrs¢”) — rV') + hrs®N' (¢/)° = 0. (2.71)

In order to obtain these equations, we have cancelled several boundary terms. These boundary
terms combined are

Clﬂahjv v %ﬁr6¢th¢’ v ;B(Sth> ~ (2.72)

T+
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The solution reported previously satisfies these equations with N(r) = constant which we can set
without loss of generality equal to 1 and s(r) = eA* /2 Having the solution, its easy to compute
the variation of the fields at infinity and at the horizon. At infinity we have

56 = 8A/r, (2.73)
2A6A (3402 + 1

5h = —% , 2.74)

55 = AGAJr? | 2.75)

where we have made explicit that the only parameter that can vary is the scalar charge A. Now, the
boundary term at infinity takes the value

0A

A (—Zﬁ(SAq — %) +0B(c0) =0, (2.76)

where we split the variation of the boundary term B into two pieces, one at the horizon and one
at infinity for simplicity. As we result, considering the Grand Canonical Ensemble and therefore
keeping the temperature fixed, we obtain the boundary term at infinity

A% A%

_ A2 il i
Bloo) = A%Bq + Tz = BM+ 1o - 2.77)

Now, at the event horizon of the black hole we have

Sh=0—Heér, , (2.78)
ds =6s(ry) —s'ory (2.79)
56 = 56(ry) — $or . (2.80)

Now, using the formula for the temperature (2.62) and the fact that i(ry) = 0 the boundary term
at the horizon reads
71'(57'_;,_ A(T+)

2 4

Now, we have a well defined variational procedure that will yield 6Zz = 0. In the Grand Canonical
Ensemble, the Euclidean action is related to the free energy of the black hole solution:

(2.81)

+0B(ry) =0 — B(ry) = —

Ip=BF=pM-S. (2.82)
Our Euclidean action is just given by the boundary terms
Tp = BM+ %62 - A(f) (2.83)
and hence we can identify
A2
M =M+ T (2.84)
S= Alr+) . (2.85)

4

As a result the first law of thermodynamics holds in a modified version due to the strong back-
reaction of the scalar field to the spacetime metric as

M =T3S . (2.86)
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2.1 Rotating Black Hole Solutions

To discuss rotating solutions, we impose the metric ansatz

1

ds® = —h(r)dt® + o)

dr? + r2 (d + u(r)dt)* | (2.87)

where we have introduced the angular shift function u(r). Inserting this ansatz in the field equations
(2.2),(2.3) we obtain the following solution

J a2 J
u(r) = et - T (2.88)
12 (2657 (A2 M+ AL = P22) — 75 (U2 M + AL = J22) + J202)
br) = , (2.89)
AL
h(r) = e~/ b(r) | (2.90)

SrtedT (A2 M + A — J22) + 212657 (A% — 2) (2420 M + A* — J202)

AA%re (2.91)
J20% (2A%r2 + A* 4 4r)
4Ar4 02 ’
S (A22M + A% — J22) + 265" (47 — 2) (2A202M + A* — J202) + J20% (6" + 267 + 4)
V(¢) == 4 A402

(2.92)
while the scalar field is the same as (2.10) and J is the angular momentum of the black hole. We
used the quasi-local method to derive the angular momentum and the conserved black hole mass
[124]

J = lim ) (2.93)
T0—>00 h(/’f-o)
M = mlgnoo( h(ro)E(ro) — Ju(ro)> . (2.94)
The asymptotic expressions at large distances yield
J A2 AY] . AST 1"
ur o)~ —5a gt T gz T asas O <(r> ’ (2.95)
r? A? AL M+ T 1\’
oo T () E AR o (1)), 290
2 At 2 2 4
b(r — o0) 7 M + 2 + O " , (2.97)
1 A2 A2PM A 1\°
~—— - - 2.
Vir— o0) PRETETE Yz +0 <r) ; (2.98)

1 ’ M1 1 3J° 5M 3
Vo0~ g gm o (~pgm) tard (- ) O @)@
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We can see that at large distances we obtain a solution similar to the rotating BTZ black hole, with
changes in the structure of space-time being related to A, and in the small hair case, we also obtain
the rotating BTZ black hole. The horizon is given by b(r) = 0 [132} [133]], which is also a root of
h(r). b(r) has two roots, which can be computed analytically but these expressions are lengthy, so
we will not given them here. The existence of horizons provides bounds for the angular momentum
of the black hole. Therefore, black holes can only exist when
At At A%+ M)’

A>0&0>0&M>0& <J2 < 75 24 Mor 5 + 28 M < P < (z% . (2.100)
In the cases where the inequalities are saturated (J? = A*/¢? + 242 M or J? = (A% + 52/\/1)2 /%)
in the above expressions we have black holes with a single event horizon, while in any other case

the black holes develop two horizons, an inner and an event horizon. The rotating solution admits a
region of space-time where the Killing field 9/t is space - like, which transforms into the condition

gie >0 — —h(r) +2u(r)?> > 0. (2.101)

It is clear that at the event horizon, the previous condition holds, and also for some region outside of
the horizon [133]]. In Fig. 2.6/l we plot the scalar potential where it is obvious that between the inner
and event horizon, negative potential wells are developed, while as we increase the mass parametet,
the wells become deeper. In addition, it is clear form both figures, that in the rotating case, the
vaccum of the field theory represents a local maximum, and not a global one. One should also note
the fact that the potential energy is bounded from below, which will play a crucial role in the stability
of the system. Moreover, in Fig. [2.7| we plot the metric function b(r) and g, in order to study the
geometry. From Fig. (left) we can see that the black hole develops two horizons, while for the

1.0

0.5

0‘5 1‘0 1‘5 2‘[] 2‘5 0.0 0.5 1.0 1.5 2.0
Figure 2.6: V(r) having set { = A = 1, J = 2, while varying the mass parameter.

degenerate case J? = (A% + 62/\/1)2 /02, the horizons coincide. The g;; component is positive at the
horizon and for some region after the horizon, denoting the presence of an ergo-region, as in the
BTZ black hole [97,[98],[134]. The scalar potential depends on the conserved black hole charges. We
can eliminate these charges by introducing a new constant x, such as

J2
X= i (2.102)
besides ¢ = M /A?. Now the potential will read
e (g X P Y oy L) e (- S22y xot e
Vig)=e (ng ( q+2 2£2>+2q X+€2>+e <2q+2x ” 1 5



96CHAPTER 2. A SIMPLE EXAMPLE OF A HAIRY BLACK HOLE IN (2+1) SPACETIME DIMENSIONS.

— M=1

— M=11
M=1.2
M=13

— M=14
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0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0

Figure 2.7: b(r) and g4;(r) having set ¢ = A = 1, J = 2, while varying the mass parameter.

1 92 ot (—ql*—1) @5 (—5gl* 4 3xL? - 3) g
V(¢%O)N*ﬁ*ﬁ+ WE + Y + 0 (¢%) . (2.104)
Consequently, our theory will give black hole space-times with a fixed angular momentum to
conserved mass ratio given by

x _ J?
2 M2
Both the conserved mass and the angular momentum are allowed to vary, in a consistent way, so the
ratio J2/M? will always be constant. To compute the Hawking temperature we will use the concept
of surface gravity, which is defined by

/1
K= fﬁvquvﬂX”, (2.106)

where X* is a Killing vector field of our space-time defined as X* = (1,0, 2), where  is the angular
velocity at the horizon of the black hole, defined as

(2.105)

Q=_99 , (2.107)
9ee r=r4
Evaluating the surface gravity we find
1o (A () + 20u(r) + Q))° = (0 (1) = r2(u(r) + Qu'(r)?)
oLl (2.108)
2 h(r)
r=r+
Now, we can find the temperature as
A2
e — J2¢2
_rx 1 W2 o e _
T(ry) = o = 1m b(r) ( ) r2u/(r) = 22 (2.109)
T+

A2 )
r=r+ 4w A2r (2 ( — et )

which of course reduces to the temperature of the BTZ black hole, when A approaches 0. The
entropy is given by the same formula as in the non-rotating case (2.58)). The heat capacity is found
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to be

1 1 )
+ 2 -3 +T+ )

A2 A

JO—e>t (A2 J0)  e*F (A2 — JO) + Jt

Clry)=mrd |2 A% | J¢

(2.110)
which for small A reduces to the heat capacity of the rotating BTZ black hole
1 167‘1

Due to the complexity of in order for the existence of horizons, we will perform a numerical
analysis for the thermodynamics of this solution and plot the temperature, the entropy, and the heat
capacity as functions of the black hole mass M for appropriate values of A, J, ¢. In Fig. we fix
A =0.5,0=1,J =2 and plot the corresponding thermodynamic quantities for the allowed values
of mass. It is clear all thermodynamic quantities are positive and growing with the increase of mass,

0.4F 4t

03r 3r

& o02f @ ol

00 . L L L L L Ok

Figure 2.8: The temperature T, the entropy S and the heat capacity C as functions of the black hole
mass

in accordance with the BTZ black hole case. Moreover, these black holes are thermally stable in the
canonical ensemble and do not develop any phase transition. The system under consideration is
complicated and therefore we cannot present simple calculations to show that the internal energy
of the black hole do not coincide, however we do not expect a different behaviour from the non-
rotating case.



98CHAPTER 2. A SIMPLE EXAMPLE OF A HAIRY BLACK HOLE IN (2+1) SPACETIME DIMENSIONS.



Part 11

Black Holes in f(R, ¢) Theories

99






Chapter 3

Black holes of (2 +1) dimensional
f(R) gravity coupled to a scalar field

In this chapter we consider (2+ 1)-dimensional f(R) gravity and a scalar field minimally coupled
to gravity. Solving the field equations, we find that, at large distances where the scalar field is weak,
the BTZ black hole is obtained, while at small distances, the scalar field brings strong corrections to
the dynamics of the system, resulting at a new family of black hole solutions. The temperature and
the entropy of the black hole are calculated and compared to the BTZ black hole case. We find that
due to the larger event horizon radius of the f(R) black hole, the entropy is larger in comparison
to the BTZ case, hence the f(R) black holes are thermodynamically preferred. This chapter is based
on [1]].

3.1 The setup-derivation of the field equations

We will consider the f(R) gravity theory with a scalar field minimally coupled to gravity in the
presence of a self-interacting potential. Varying this action we will look for hairy black hole solutions.
We will show that if this scalar field decouples, we recover f(R) gravity. First we will consider the
case in which the scalar field does not have self-interactions.

3.1.1 Without self-interacting potential

Consider the action
1 1
S = /d?’x\/—g {%f(R) — 2gﬂ”aﬂ¢ay¢} : (.1
where « is the Newton gravitational constant x = 87G. The Einstein equations read

1
fRRuV - ig,LWf(R) + g;waR - v#vva = w1y , 3.2)

where f'(R) = fr and the energy-momentum tensor T}, is given by
1
Tuu = u¢au¢ - ggm/gaﬁaa¢aﬂ¢ . 3.3)

101
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The Klein-Gordon equation reads

Op=0. (3.4

We consider a spherically symmetric ansatz for the metric
ds* = —b(r)dt* + %dﬁ +r2d6? . (3.5)

For the metric above, the Klein-Gordon equation becomes
D6 = ()¢ (r) + ¢'(r) (V') + b(r—”) =0, (3.6)

and takes the form of a total derivative
b(r)¢'(r)r =C, (3.7)

where C is a constant of integration. In order to have a black hole, we require at the horizon to
have r = ry — b(rg) = 0. Then, C = 0. This means that either b(r) = 0 for any » > 0 and no
geometry can be formed, or the scalar field is constant ¢(r) = c¢. We indeed expected this behaviour,
which cannot be cured with the addition of a second degree of freedom in the metric (3.5). From
the no-hair theorem [18] we know that the scalar field should satisfy its equation of motion for the
black hole geometry, thus if we multiply the Klein-Gordon equation by ¢ and integrate over the black
hole region we have

/ d*z/=g(¢00) ~ / dPr/=gVHeV 6 =0, (3.8)

where ~ means equality modulo total derivative terms. From equation (3.8) one can see that the
scalar field is constant.

3.1.2 With self-interacting potential

We shown that if the matter does not have self-interactions then there are no hairy black holes in
the f(R) gravity. We then have to introduce self-interactions for the scalar field. Consider the action

1

s=/ d3x\/fg{21ﬁf(R) 39" 0,00, V<¢>} - (3.9)

The scalar field and the scalar potential obey the following conditions
p(r—00)=0, V(r—o00)=0, V|¢:0:0‘ (3.10)

Varying the action using the metric ansatz (3.5) we get the ¢¢, rr, 80 components of Einstein’s
equations (for x = 1) and the Klein-Gordon equation

r (V1) fR(r) = fROY"(r) = f(r) +b(r) (2f5(r) + ¢'(r)?) + 2V () — fr(r)V (r) + 2b(r) fR(r) =0,

(3.11)

b(r) (r (=0 (r) fR(r) + fRY (1) + £ (r) + b(r)¢' (1) = 2V () + fr(r)V (1) — 2b(r) f5(r)) ?30172 )
—r (20 (r) fR(r) + b(r) (2f%(r) + &' (r)?) + 2V () + 2fr(r)V' (r) + 7f (r) =0, (3.13)
() NS @) iy~ VO 3.14)

r ()
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The Ricci Curvature for the metric (3.5) reads

R(r) = —@ =b"(r). (3.15)

From (3.11) and (3.12) equations we obtain the relation between fr(r) and ¢(r)

R(r) +¢'(r)* =0, (3.16)
while the (3.11) and (3.13) equations yield the relation between the metric finction b(r) and fr(r)
(2b(r) — 7' (1)) fr(r) + fr(r) ' (r) —rb"(r)) =0. (3.17)

Both equations (3.16)), (3.17) can be immediately integrated to yield
fr(r) =c1 + cor — //¢/(T)2deT , (3.18)

K
.22

b(r) =csr*—r /rsz(r)dr (3.19)

where ¢y, ¢o, c3 and K are constants of integration. We can also integrate the Klein-Gordon equation

V() = Vo + / rb'(r)¢'(r)? + rb(r)¢'(r)¢" (r) + b(r)¢'(r)® , =

r

Equation is the central equation of this work. First of all, we recover General Relativity for
the vanishing of scalar field and for ¢; = 1,co = 0. We stress the fact that in f(R) gravity we are
able to derive non-trivial configurations for the scalar field with one degree of freedom as can be
seen in the metric (3.5). This is not the case in the context of General Relativity, as it is discussed in
[135]. There we can see that a second degree of freedom (equation (4) in [135]) must be added for
the existence of non-trivial solutions for the scalar field. Here, the fact of non-linear gravity makes
fr # const., and therefore we can have a one degree of freedom metric. The integration constants
c1 and ¢, have physical meaning. ¢; is related with the Einstein-Hilbert term, while ¢, is related to
possible (if co # 0) geometric corrections to General Relativity that are encoded in f(R) gravity. The
last term of this equation is related directly to the scalar field. This means that the matter not only
modifies the curvature scalar R but also the gravitational model f(R).

(3.20)

3.2 Black hole solutions

In this section we will discuss the cases where ¢; = 1,co = 0 and ¢; = ¢, = 0 for a given scalar
field configuration. For the second case to satisfy observational and thermodynamical constraints
we will introduce a phantom scalar field and we will reconstruct the f(R) theory, looking for black
hole solutions.

3.2.1 C1 = 1,62 =0

Equations (3.18), (3.19) and (3.20) are three independent equations for the four unknown func-
tions of our system, fg,®,V,b, hence we have the freedom to fix one of them and solve for the
others. We fix the scalar field configuration as

B(r) = , (3.21)
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where A and B are some constants with unit [L], the scalar charges. We now obtain from equation

fr(r)
A

m 5 (3.22)

fR(T) =1-
where we have set ¢c; = 0 and ¢; = 1. Therefore, we expect that, at least in principle, a pure
Einstein-Hilbert term will be generated if we integrate fr with respect to the Ricci scalar.
Now, from equation (3.19) we obtain the metric function

b(r) = csr? — (3.23)

4ABK 8AKr 64AK T2 <8(B +7) — A)
- .

A-SB (A—8BY (A—sBp"

The metric function is always continuous for positive r when the scalar charges satisfy 0 < A < 8B.
Here we show its asymptotic behaviors at the origin and space infinity

_ 4BK SAKr ,  64AKr? r 3
b(ir - 0) = TA—8B  (A_8B) +c3r +7(A—8B)3 In <_A—SB> +O(r°) , (3.24)
K AK
b(r - o0) = > + U r?Aegt + O(r2) , (3.25)

where the effective cosmological constant of this solution is generated from the equations can be
read off
192AK In(2)

Aefr = —c3 +

It is important to discuss the asympotic behaviours of the metric function. At large distances,
we can see that we obtain the BTZ black hole where the scalar charges appear in the effective
cosmological constant of the solution. Corrections in the structure of the metric appear as O(r—™)
(where n > 1) terms and are completely supported by the scalar field. At small distances we can
see that the metric function has a completely different behaviour from the BTZ black hole. Besides
the constant and O(r?) terms there are present O(r) and O(r? In(r)) terms that have an impact on
the metric for small ». Our findings are in agreement with the work [136] where in four dimensions
Schwarzchild black holes are obtained at infinity with a scalarized mass term while at small distances
a rich structure of black holes is unveiled. This is expected since at small distances the Ricci curvature

becomes strong and therefore changing the form of spacetime. The Ricci scalar and the Kretschmann
scalar are both divergent at the origin

16AK
R (T’ — 0) = m + 0 (hl 7") s (327)
128K?A? 1
K(r—0) = 2(A_sD) +(9<T1nr) ) (3.28)

indicating a singularity at » = 0. As a consistency check for A = 0 we indeed obtain the BTZ [[97]]
black hole solution

b(r) = c3r? + g ) (3.29)

which means that for vanishing scalar field we go back to General Relativity. Hence the solution
(3.23) can be regarded as a scalarized version of the BTZ black hole in the context of f(R) gravity.
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Now we solve the expression of the potential from the Klein-Gordon equation

1
- 8AB2(A—8B)3(B+r)3

V(r)

(B(4A4(—BQ(K — 18¢3r?) + 36 B3c3r + 12B*c3 — 4ABKr — 2K7r?) — 64A3B(r?(9B%c3 + K)

+ Br(18B%c3 + K) + 6B*c3) + 256 A2B(B(6r*(B?c3 + K) + 2Br(6B%c3 + 5K) + 4B%c3 + 3B*K)+

30K In(2)(B + r)%) — A% Bes(2B% + 6Br + 3r2) + 64BK (— A*(2B% + 6 Br + 312) 1n(m )
M —

—8(5A4% — 32AB + 64B*)(B + ) In(8(B +r) — A)) — 4096 AB>K (B + r)?(121n(2)(B + r) + B)

+98304B3 K In(2)(B+1)%)—8A? K (A?~32AB+64B?)(B+r)® In(r)+8K (A—8B)*(B+r)? ln(B—i—r)) ,

(3.30)
the asymptotic behaviors of which are
K In(r) 0
3A(24A2Bes — A3cs — 1924 (B%c3 — K In(2)) + 512B3c3) 1

To ensure that the potential vanishes at space infinity, we need to set the integration constant V; at

(3.20) equal to
192K In2 (5A% — 32AB + 64B%)

0 A(A—8B)3
In addition, there is a mass term in the potential that has the same sign with the effective cosmolog-

ical constant 3 (1924K In(2) 3
2 " ) 1
_ _oyo 3 (924K In(2)  \ _ 3, :
m V (¢ 0) 4 ( (A _ 83)3 3 eff » (3 34)

(3.33)

4

which satisfies the Breitenlohner-Freedman bound in three dimensions [|88}, [89]], ensuring the sta-
bility of AdS spacetime under perturbations if we are working in the AdS spacetime.
Substituting the obtained configurations into one of the Einstein equations we can solve for f(r)

1
flr) = AB2r(A—8B)3(A—8(B +7))

[B(lQQBKr In(2)(5A%—32AB+64B%)(A—8(B+7))+A(A—8B)*(16 Besr?(A—8B)—2Bczr(A—8B)?
+8Kr(A+8B)—~AK(A—8B)))+A?Kr(—(A*-32AB+64B%)) In(r)(A—8(B+7))+ Kr(8(B+r)—A)

A)) —(A—-8B)*In(B + r)) ] .

(6432((5A2 —32AB + 64B*)In(8(B + 1) — A) 4+ 2A% In( !

8B +r)—
(3.35)
On the other side, the Ricci scalar can be calculated from the metric function
16AK (—36r(A — 8B) + (A — 8B)? + 192r?) 384 AK 8B+r)—A
R(r) = + In — Bcs.
r(A—8B)%(A—8(B+r))? (A—8B)3 r

(3.36)



106 CHAPTER 3. BLACK HOLES OF (2+1) DIMENSIONAL f(R) GRAVITY COUPLED TO A SCALAR FIELD

As one can see it is difficult to invert the Ricci scalar and solve the exact form of f(R), though we
have the expressions of R(r), f(r) and fr(r). Nevertheless we can still obtain the asymptotic f(R)
forms by studying their asymptotic behaviors

_ AK(A—-8B) T768AK In(2) 1
Jlr=eo) = =55 (A—_spp = tOs) (3.37)
_ AK(A—-8B) 1152AKIn(2) 1
R(r—o00) = - 1281 + (A—8B)? — 6¢c3 + O =) (3.38)
2AK
f (’I“ — 0) - _m + @ (1117”) 5 (339)
16AK
frnd B ————— 1 .
R(r—0) T(A78B)2+O(nr), (3.40)
which leads to
384AK In(2)
~ 23 — ———— 7 — R _2A 41
f(R) R+ 2¢3 (A—sDB)? R eff 5 T =00, (3.41)
f(R) ~ R 1—£ r—0 (3.42)
o 8B/’ ’ :
20 //,/'/ o T T T "/‘,
25 5 /,/'/
€ -30 ,/// """ A=0 Z -10 ,/'/’ ----- A=0
7~ A=0.1 ,,/" A=0.1
35 /,// A=0.2 s ,;/' A=0.2
& A=0.3 L A=0.3
» - A=0.4 . = A=0.4

-40 -35 -30 -25 -20 -20 -15 -10 -5

Figure 3.1: The f(R) function. The black dashed line represents the Einstein Gravity f(R) = R —
2\, where other parameters have been fixed as B=1, K = —5 and ¢3 = 1.

The fact that the Ricci scalar contains logarithmic terms prevents us from obtaining the non-linear
corrections near the origin, where we expect the modified part of the f(R) model to be stronger,
since it is supported by the existence of the scalar field and the scalar field takes its maximum value
forr = 0 — ¢(0) = /A/B. To avoid the tachyonic instability, we check the Dolgov-Kawasaki
stability ctiterion [61]] which states that the second derivative of the gravitational model frr must
be always positive [51}[137, [138]]. Using the chain rule

dfr(R) _ dfr(r)dr  fr(r) r?(A—8(B+r))3

fRR: dR dr dR_ R/(T’) __128K(A—8B)(B—|—7")2 5 (343)

we can see that the above expression is always positive for K < 0 when the continuity condition
0 < A < 8B is considered. So far we have not imposed any condition on c3, therefore the spacetime
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Figure 3.2: All the physical quantities of the AdS black holes are plotted with different scalar charges

A, where other parameters have been fixed as B =1, K = —5 and c3 = 1.
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might be asympotically AdS or dS depending on the value of parameter c;

cs m >0 asympotically AdS , (3.44)
192AK In(2
c3 ?A_g;)(d) asympotically dS . (3.45)

We can prove that the metric function has at most one root, which can not describe a dS black
hole. For the asympotically AdS spacetime, the condition K < 0 gives an AdS black hole solution
while the condition K > 0 gives the pure AdS spacetime with a naked singularity at origin. For the
asympotically dS spacetime, the condition K > 0 gives a pure dS spacetime with a cosmological
horizon. Therefore pure AdS or dS spacetime described by this solution suffers from the tachyonic
instability, only AdS black holes can survive from this instability. We plot all the physical quantities
of the AdS black holes in FIG.[3.2]and FIG. In FIG. [4.2| we plot the metric function, the potential,
the scalar field, the Ricci scalar, the f(r) and fr functions along with the A = 0 (BTZ black hole)
case in order to compare them. In FIG. [3.1] we plot the f(R) model along with f(R) = R — 2A
in order to compare our model with Einstein’s Gravity. For FIG. 3.1 we used the expression for the
Ricci scalar for the horizontal axes and the expression for f(r) for the vertical axes.

From FIG. and FIG. [3.1) we can see that the existence of scalar charge A makes the solution
deviate from the GR solution, and the stronger the scalar charge is, the larger it deviates. The figure
of the metric function shows that the hairy solution with stronger scalar charge has larger radius of
the event horizon, while its influence on the curvature is qualitative, from constant to dynamic, with
a divergence appearing at origin. The scalar charge also modifies the f(R) model and the potential
to support such hairy structures, where the potential develops a well near the origin to trap the
scalar field providing the right matter concentration for a hairy black hole to be formed. For the
f(R) model, the scalar charge only sets aside a small distance with the Einstein Gravity while the
slope changes little, indicating our f(R) model is very close to Einstein Gravity. We can see that even
slight deviations from General Relativity can support hairy structures. The asymptotic expressions
tell us that at large scale the scalar field only modifies the effective cosmological
constant while at small scale the slope of f(R) can also be modified, which agrees with the figure of
f(R).

Next we study the thermodynamics of this solution. The Hawking temperature and Bekenstein-
Hawking entropy are defined as [71], [73]]

V(ry) 2K (B +ry)

Tlry) = ir 7 (A—8(B+ry))’ (3.46)
A
S(’I’+) %f}{(’fﬁk) = 47T27’+fR(7’+) = 47T2’]”+ (]_ — 8(B—|—’r'+)> s (3.47)

where r is the radius of the event horizon of the AdS black hole and A = 27r, is the area of the
event horizon, where the gravitational constant G equals 1/87 since we’ve set 87G = 1. Here in the
first expression we have already used r, to replace the parameter c;. It is clear that the Hawking
temperature and Bekenstein-Hawking entropy are both positive for K < 0 and 0 < A < 8B. We
present their figures in FIG. FIG. shows that for the same radius of the event horizon, the
hairy black hole solution owns higher Hawking temperature but lower Bekenstein-Hawking entropy.
However, with fixed parameters B, c3 and K, the hairy black hole solution has larger radius of the
event horizon, therefore, we plot the entropy inside the event horizon as a function of the scalar
charge A in FIG.[3.4]to confirm if the hairy solution is thermodynamically preferred or not. The fact
is that hairy black hole solution is thermodynamically preferred, which owns higher entropy than its
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corresponding GR solution, BTZ black hole, and the entropy grows with the increase of the scalar
charge A. It can be easily understood that the participation of the scalar field gains more entropy
for the black hole.

3.2.2 Exact Black Hole Solution with Phantom Hair

In the previous section, we have set ¢; = 1 and ¢; = 0, therefore the f(R) model consists of the
pure Einstein-Hilbert term and corrections that arise from the existence of the scalar field. We have
shown that with the vanishing of scalar field, we obtain the well known results of General Relativity,
the BTZ black hole [98]].

We will now discuss the possibillity that the scalar field, purely supports the f(R) model by
setting ¢; = ¢ = 0. From equation we can see that due to the O(r~") (where n > 0) nature
of the scalar field and the double integration, there will be regions where fr < 0. For example for
our scalar profile the fg turns out to be

A

m P} (3.48)

fr(r) = —

which is always negative for A, B > 0. With this form of fr one can derive an exact hairy black hole
solution similar to a hairy BTZ black hole which however has negative entropy as can be seen from
the relation (3.47).

It is clear that a sign reversal of f(R) can fix the negative entropy problem. As a result, the sign
reversal of other terms in the action is also required, which leads to a phantom scalar field instead
of the regular one. This comes in agrement with recent observational results which they require
that at the early universe to explain the equation of state w < —1 phantom energy is needed to
support the cosmological evolution [[139}[140| [141]]. As it will be shown in the following, in the pure
f(R) gravity theory the curvature acquires non-linear correction terms which makes the curvature
stronger as it is expected in the early universe. Hence, we consider the following action

1

5= [@ova{ gt + 500,000 - V(o)) (3.49)

which is the action (3.9) but the kinetic energy of the scalar field comes with the positive sign which
corresponds to a phantom scalar field instead of the regular one. Under the same metric ansatz

(3.5, equation (3.16)) now becomes
7(r)—¢'(r)? =0, (3.50)
and by integration

fr(r) = // &' (r)2drdr | (3.51)

having set ¢; = 0 and ¢, = 0. With the same profile of the scalar field, the solution of this action
becomes
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Figure 3.3: The Hawking temperature and Bekenstein-Hawking entropy are plotted with different
scalar charges A, where other parameters have been fixed as B = 1 and K = —5.
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Figure 3.4: The Bekenstein-Hawking entropy as a function of the scalar charge A, where other

parameters have been fixed as B =1, K = =5 and ¢3 = 1.
o(r) = Bﬁ . (3.52)
fr(r) = 8(Bﬁr) ; (3.53)
br) = % n SIZT A2, (3.54)
R(r) = 6A-— 1%{ , (3.55)
R = L CO
iy = 22 (B2 asn
f(R) = g_iAé/\+2'5§1n<6ABA—éiR+16K> ’ (3.58)
Vie) = —{(4(]/;2 - 3A8¢2 + B;ﬁ;p "+ BQI,Zf6 * %m (A AB¢2> (3:59)
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The f(R) model avoids the afforementioned tachyonic instability when frr > 0, and for the ob-
tained f(R) function we have

A2T2
fRR:*m>O:>K<O. (3.60)
For a particular combination of the scalar charges: B = A/8, the f(R) model is simplified and takes
the form: 42 A)
128K R—-6

The metric function (3.54) as we can see, is similar to the BTZ black hole with the addition of a
O(r) term because of the presence of the scalar field, and this term gives Ricci scalar its dynamical
behaviour. The potential satisfies the conditions

V(r—o0)=V(p—0) =0, (3.62)

and also V’(¢ = 0) = 0. It has a mass term which is given by
m?=V"(p=0)= —%A : (3.63)

The metric function for A = —1/i?> (AdS spacetime) and for A, B > 0 has a positive root, since
K < 0. For A = 1/1% (dS spacetime) the metric function is always negative provided for A, B > 0
and K < 0, therefore we will discuss only the AdS case.

The horizon is located at

2 ( K (AKIZ — AB) — 2Kl)
’[“_,'_ = A 5 (3.64)

where we have set A = —1/I2. As we can see, in this f(R) gravity theory we have a hairy black hole
supported by a phantom scalar field.
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Figure 3.6: The temperature and the entropy at the horizon of the black hole, as functions of the
scalar charge A while changing scalar charge B.

In FIG. [3.5|we show the behaviour of the metric function b(r), the potential V' (r), the dynamical
Ricci scalar R(r) and the f(R) function. As can be seen in the case of B = A/8, the scalar charge A
plays an important role on the behaviour of the above functions. For example if the scalar charge A
is getting smaller values the radius of the horizon of the black hole is getting larger. This means that
even a small distribution of phantom matter can support a hairy black hole.
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Figure 3.5: We plot the metric function, the potential, the Ricci scalar and the f(R) function of
the phantom black hole for different scalar charge A, where other parameters have been fixed as
B=A/8, K=—-1and A = —1.

Looking at the thermodynamic properties of the model the Hawking temperature at the horizon
is given by
2K ry K (4K1? — AB)

Tlre) = TA * 272 - Al ’ (3.65)

which is always positive for A, B > 0 and K < 0, while the Bekenstein-Hawking entropy is given by

A 9  Artrg T2 AKI
S(ry) = ;5 fr(re) = dn7ri fr(ry) = 2B 1) JKUKE - A4D) >0. (3.66)

For the thermodynamic behaviour of the hairy black hole we can see from FIG. 3.6 that for larger
scalar charge A we are getting smaller temperatures, while the entropy has the opposite behaviour.

3.3 Conclusions

In this section, we considered (2 + 1)-dimensional f(R) gravity with a self interacting scalar field
as a matter field. Without specifying the form of the f(R) function we derived the field equations
and we showed that the f(R) model has a direct contribution from the scalar field. At first we
considered the case, where fr(r) = 1 — [ [ ¢/(r)*drdr, which indicates that if we integrate with
respect to the Ricci scalar we will obtain a pure Einstein-Hilbert term and another term that depends
on the scalar field. The asymptotic analysis of the metric function unveiled the physical meaning
of our results. At infinity we obtain a scalarized BTZ black hole. The scalar charges appear in the
effective cosmological constant that is generated from the equations. Corrections in the form of
spacetime appear as O(r~") (where n > 1) terms that depend purely on the scalar charges. At the
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origin we obtain a different solution from the BTZ black hole, where O(r) and O(r?In(r)) terms
change the form of spacetime.

The scalar curvature is dynamical and due to its complexity it was difficult to obtain an exact form
of the f(R) function. Using asymptotic approximations, we show that the scalar charges make our
theory to deviate form Einstein’s Gravity. In the obtained results we considered the Dolgov-Kawasaki
stability ctiterion [61] to ensure that our theory avoids tachyonic instabilities [51] (137, [138]. We
then calculated the Bekenstein-Hawking entropy and the Hawking temperature of the solution and
we showed that the hairy solution is thermodynamically preferred since it has higher entropy.

We then considered a pure f(R) theory supported by the scalar field. We showed that thermo-
dynamic and observational constraints require that the pure f(R) theory should be builded with a
phantom scalar field. The black hole solution we found has a metric function which is similar to
the BTZ solution with the addition of a O(r) term. The scalar charge is the one that determines the
behaviour of the solution. For bigger scalar charge, the horizon radius is getting smaller meaning
that the black hole is formed closer to the origin. The O(r) term is the one that gives to the Ricci
scalar its dynamical behaviour. The obtained f(R) model is free from tachyonic instabilities. We
computed the Hawking temperature and the Bekenstein-Hawking entropy to find out that they are
both positive, with the temperature getting smaller with the increase of the scalar charge while the
entropy behaves the opposite way, growing with the increase of the scalar charge.

In the f(R) gravity theories if a conformal transformation is applied from the original Jordan
frame to the Einstein frame then, a new scalar field appears which is coupled minimally to the
conformal metric and also a scalar potential is generated. The resulted theory can be considered as
a scalar-tensor theory with a geometric (gravitational) scalar field. Then it was shown in [[142,[143]],
that this geometric scalar field cannot dress a f(R) black hole with hair. On the other hand on
cosmological grounds, it was shown in [52] that dark energy can be considered as a geometrical
fluid that adds to the conventional stress-energy tensor, which means that the determination of
the dark energy equation of state depends on the understanding of which f(R) theory better fits
current data. In our study we have introduced real matter parameterized by a scalar field coupled
to gravity, therefore, it would be interesting to study the interplay of the geometric scalar field with
the matter scalar field and see what are their implications to cosmology. However, to study this
effect we have to extend this work to a study of (3 + 1)-dimensional f(R) gravity theories. The main
difficulty of constructing such theories is the complexity of their resulting equations. Nevertheless,
even numerically we can get important information of how matter is coupled to f(R) gravity and
what are the cosmological implications.

It would be interesting to extent this theory including an electromagnetic field. In three dimen-
sions the electric charge makes a contribution to the Ricci scalar, therefore we expect, like in the BTZ
black hole, to find a charged hairy black hole in f(R) gravity. One could also study the properties of
the boundary CFT, consider a rotationally symmetric metric anstaz to find rotating hairy black holes
or study hairy axially symmetric solutions from hairy spherically symmetric solutions [144].
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Chapter 4

(2+ 1) Dimensional Black Holes in

f(R, ¢) Gravity

In this chapter, we extend the theory we considered previously, adding in the action a direct
coupling between matter and curvature of the form £ R¢?, where ¢ = 1/8 the conformal coupling
factor. We solve the field equations and compare our results with a well known hairy black hole
solution of the (2 + 1)-dimensional Einstein-Conformal scalar equations. We also derive the temper-
ature, the entropy and the conserved mass of the novel black hole, to find that our solution might
be thermodynamically preferred and is massless due to the contribution of non-linear gravity to the
mass of the black hole. This chapter is based on [4]].

4.1 Conformal (2+ 1) dimensional black hole

We begin with a brief review of the conformally dressed black hole derived in [19]. The action of
the theory consists of the Ricci scalar, a negative cosmological constant, and a conformally coupled
scalar field, namely

2

where we will use k = 87G = 1 for simplicity throughout the paper. By variation one can obtain the
Einstein equation and the Klein-Gordon equation

L R+207 R
S—f/dm\/—ig{T— W00 — SRS} “4.1)

G;uj - gul/l_2 = Tm/ ; (4.2)

1
O — gRgb =0, 4.3)
where G, = R,,, — 3g,, R and the energy-momentum tensor is given by

1 1
T;w = u¢au¢ - §guuaa¢aa¢ + g (g,uVD - v,uvu + G;w) ¢2 . (44)

One can prove that by virtue of equation (4.16) the energy-momentum tensor is traceless so that we

have a constant Ricci scalar 6

115
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We assume the metric ansatz with g4 g,., = —1
ds* = —b(r)dt? +b(r)"tdr® 4 r2d6?* , (4.6)

where b(r) is the only degree of freedom and it can be obtained from the Ricci scalar (1.165)

2

br) == -2 40, (4.7)
l r
while from the ¢¢ and rr components of the Einstein equation we can get the scalar field
o(r) = __ 4.8)
S Vartea '

Substituting them into the #9 component of the Einstein equation and together with the Klein-
Gordon equation (4.16) we have

2 B2%2(-2B-3
b(r) = % + % : (4.9)

8B
P(r) = Vi s (4.10)
where B = ¢4/c3 > 0.

This solution is regular for any positive r, except for a singularity at the origin » = 0, as can
be seen from the divergence of the Kretschmann scalar K = R,,,,,R*"??. The metric function b(r)
has only one root which gives the radius of the event horizon r, = 2B. The scalar field does not
diverge at the event horizon rj, like the BBMB black hole [[20] because of the presence of a negative
cosmological constant.

The Hawking temperature [[17] is given by the Euclidean trick (t — —i7)

_W(r) 9B
Ty = i w2 “4.11)
Using Wald’s formula [21]], the entropy at the event horizon can also be obtained as
A 1 9 wr,  27B
=2 (1= \ =—=—, .12
S 4 ( 8(]5(7‘;) ) 3 3 (4 )

where A = 271y, is the horizon area.

The entropy acquires another term, besides the GR one, that depends on the scalar field, which
comes from the non-minimal coupling between matter and curvature. As a result, the entropy is
smaller than the corresponding BTZ black hole entropy [98] which is 7r,/2, but is positive and
finite, while the entropy of the BBMB black hole is infinite due to the divergence of the scalar field
at the event horizon. The conserved black hole mass can be obtained by using the first law of
thermodynamics
32 3B2
3212 812
All thermodynamic quantities grow with the increase of the scalar charge B (or ), in agreement
with those obtained from the Hamiltonian formalism [[19].

The scalar field dresses the black hole with a secondary scalar hair, since its charge B is not an
independent conserved quantity, as it is related to the conserved mass of the black hole.

(4.13)

dM =TdS — M = /T(rh)S'(rh)drh -
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4.2 f(R) Gravity Black Hole Solution

In this Section we extend the conformal black hole solution [[19] described in the previous Section

in f(R) gravity by replacing the Einstein-Hilbert term R with the f(R) function and endowing the
scalar field with a self-interacting potential V' (¢) in the action

1 1
=1 /d?’x\ﬁ—g{f(R) — 0u00"6 — RS> —2V(6)} (4.14)
The field equations that arise from this action are
1
I, = frRu, — §9uvf(R) + 9, 0fr =V, Vofr=Tu , (4.15)
1
O¢ - gRe = V'(¢) =0, (4.16)
df (R
where fr = {l(R) and the energy momentum tensor becomes
1 « 1 2
ZLV = 3,L¢3u¢ - égul/a ¢aa¢ + g (g/LuD - vuvu + G/Ll/)(;s - guyV((b) . (417)

The trace of Einstein equation (4.15) gives

I =2frR — 3f(R) 4+ 40fr = ¢0¢ — R$*/8 — 6V (¢) . (4.18)

Assuming the same metric ansatz (4.6)), the ¢, 7r, 00 components of the Einstein equation and the
Klein-Gordon equation take the form

tt:2r (b (¢¢' — Afg) +4frb" —2b (4ff + ¢ — ¢¢") +4f —8V) +V (8fr + ¢*) — 16b [} + 4bpd(419)

rr:2r (U (69 — 4fp) + AfRb” +4b¢? + Af —8V) + ' (8fr + ¢*) — 16bf}, + 4bpd' =0, (4.20)

00 : v (40" (¢¢" — 4fp) + @b — 4b (45 + ¢* — ¢¢") +8f — 16V) + 16frb =0, (4.21)
RVPRY o(r) (26 (r) +7b" (1)) | b(r)¢'(r) p Vi(r)

KG: b (’I")¢ (7") + 3r + r + b(’f‘)(b (T) - QZ/)/(T) =0 ’ (422)

also the trace (4.18)) becomes

Iy

= 320V fp4-32frb +167 fRD"+8r b ¢’ +-2¢°V +1r¢?b —320 f 1, —32rb f s +-8bdg’ +8rbpg’ +24r f—48rV = 0.

(4.23)
The Klein-Gordon equation can be obtained by taking the covariant derivative of Einstein’s equa-

tion [2]]. Therefore, we have a system of three independent equations with four unknown functions:
the f(R) function, the potential V(¢), the scalar field ¢(r) and the metric function b(r). We will
leave the potential undetermined and solve it from the field equations. We will then check the trace
of the energy-momentum tensor. A vanishing trace will indicate that the matter field is conformally
coupled to gravity and a scale (if any) is counterbalanced in the action. From equations and
we can obtain the relation between the gravitational function fz(r) and the scalar field ¢(r)

Afg(r) +3¢'(r)* = ¢(r)d"(r) = 0. (4.24)

We can immediately integrate this equation for fz(r)

fr(r)=s+ar+ / / i (¢(r)¢" (r) — 3¢/ (r)?) drdr (4.25)
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where s and « are constants of integration. The constant s is the coefficient of the Einstein-Hilbert
term, « is related to geometric corrections to Einstein gravity that are encoded in f(R) theories and
the last term is generated from the scalar field. It shows that the scalar field gives an immediate
modification to the f(R) model if the integrand does not equal zero. To simplify the equations we
consider the integrand to be vanishing, i.e. fj;(r) = 0, which gives the profile of the scalar field as
o(r) =+/A/(r + B) and fr(r) = s+ ar. Also, in order to make it comparable with the GR case [[19]

we use A = 8B and s = 1, then the scalar field becomes same with (1.168)) and
fr(r)=1+ar. (4.26)

We can immediately integrate fr(r) with respect to Ricci scalar to obtain the general form of the
f(R) theory

R
fr(r)=1+4+ar — f(R)=R+ a/ r(R)dR+C , (4.27)

where C is an integration constant with the unit [L]~2, related to the cosmological constant. This

expression shows that a geometric correction term appears in addition to the Einstein-Hilbert term,

while the scalar field does not appear immediately in the f(R) model as happens in [1].

Then we can solve the metric function as
3B2 2B3 6aB?r 9 ( 1 6a2B? ( r ))
b(r) = — - + +r2 (= + In ,
PlaB+1)?2 PPr(aB+1) PZ(aB+1)3 2 2(aB+1)* al(B+r)+1

(4.28)

where [ is the AdS radius that appears as an integration constant. We can see that the metric function

is well behaved for any r > 0 if we constrain the parameters B, « to be positive. For this reason we

will impose that «, B > 0. At large distances, the metric function asymptotes to

2B2

2 -2
b(r — 00) ~ —Aegr — 2 +0(r =), (4.29)
where the effective cosmological constant that the f(R) theory and the non-minimal coupling gen-
erate is given by
1 6a’B%In(al)
Agg=—| 5 ———5—F . .
eff (12 2(aB + 1)t ) (4.30)

For vanishing scalar charge B, we obtain pure AdS spacetime and we will also consider that 1 —
6a?B?In(al)/(aB + 1)* > 0 in order to have an asymptotically AdS spacetime, so we can compare
our solution with [19]]. Now, we can obtain the potential from the Klein-Gordon equation

V(r) =

B3 602 (B? + a(B +1)?) r 3(a? —a*B?) 3a°(aB +1)?
1?(aB+1)4 (B+r)3 <al(B+r)+l> B+r a(B+r)+1
6a?B(aB +1) aB(aB+1)(aB(aB +5) —2)

(B +r)? (B+r)?

+ 6a° lnal) . (4.31)

which vanishes at spatial infinity and as a function of ¢ reads

aB

Vig) = 51212(aB + 1)4 (8aB + ¢?)

<¢2(aB+1)(3072a232+¢6(aB(aB+5)—2)+8aB¢4(aB+1)(aB+4)

2
+192aB¢*(aB+1))+6aB (8aB + ¢°) ((512aB +¢°) In (M) +512aB1n (al)> ) :

(4.32)
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The Ricci scalar can be obtained from the metric function

6 6aB?(a(20B? + 9aBr + 4B + 6ar® + 9r) +2) 36a% B2 < r )
al(

B =-5 - 2r(aB +1)3(a(B +r) + 1)2 T P@BT 1) \ad(BAr)+1

while the function f(r) yields

4 6aB? (a(aB?*(3ar —2) + B(ar(2ar — 3) — 4) — 2r(2ar + 3)) — 2) N

f(r)= 2 + Pr(aB+1)3(a(B+7r)+1)?
1202 B? r
2(aB +1)* ((aB —2)In (al(B—i—r)—i—l) +aB ln(al)) . (4.34)

The Ricci scalar is divergent at origin and related to the AdS scale at infinity. The Kretschmann scalar
behaves as 6
24B 1
RPVR, -0~ ——————+ 0=, 4.35

575(T ) l4r6(aB+ 1)2 + <T4> ( )
near the origin, which is also divergent at » = 0, indicating a physical singularity. It is clear that
we cannot invert the Ricci scalar and solve it for r, to substitute back to the f(r) function in order
to obtain f(R). However, we can use asymptotics to have a feeling of the curvature model at the
origin and at infinity. The asymptotic expressions of the Ricci scalar near the origin and at infinity
are respectively

12aB?
312 .
R(T’ — OO) ~ 6Aeff — W + O(T’ ) 5 (4.37)

so the f(R) function near the origin and at large distances yields respectively

1202 B2
f(R(r —0)) ~ - m In(R) , (4.38)
4B (6Acr — R) 3/4
f(R(r - o)) ~ R-— S3/0 bl , (4.39)

up to a constant of integration. The argument of the In tern is not dimensionless, but this
expression is an approximation.

In FIG[4.1|we plot f(R(r)) as a function of R(r) to see how our f(R) deviates from the GR case
f(R) = R+ 21=2. We can see that for stronger «, our theory deviates more from GR.

To check if the resultant f(R, ¢) theory is free of ghost and tachyonic instabilities [51}, (137} (145,
138| [146] we need to confirm if the following relations hold respectively

1 B 1
thotal >0— thotal = ngravity + meauer =1l+ar— §¢(T)2 =+l+ar-— T_H =r <O[ + B-FI")(&‘{D)

— f}l%(r)total l2r2(a(B + ’I“) + 1)3 (Oé(B + 7“)2 + B)

Jrr(r) >0 = frr(r) = R(r) = 20 B2(B 1 1)? >0. (4.41)

The two above relations hold for B > 0 and « > 0 and in this case the resultant f(R, ¢) theory
is free of ghosts and avoids the tachyonic instability. The fact that fg_, > 0 also ensures that
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Figure 4.1: f(R(r)) as a function of R(r) for different values of «, where we have set B = = 1.

the entropy is positive [72, [73] 71} [147]] and our solutions may possess a higher entropy than the
corresponding GR counterpart [[19] for a fixed horizon value, meaning that the f(R) black holes
may be thermodynamically preferred over the GR one [[19].

Expanding the metric function b(r), f(r) and R(r) near « — 0 we find that

_ —3B*r—2B*+1  2a (3327“2 +3B3%r + B4)

b(r) 5, 5, + 0O (on) , (4.42)
4 12aB?

e (%) (4.43)
6 12aB?

R(T) = _ﬁ — W + O (OZQ) 5 (4.44)

where, as expected, at zeroth order we obtain the GR black hole [[19] and the curvature functions
f(r), R(r) become dynamical due to the gravitational scale o. The trace of the resultant energy-
momentum tensor is dynamical

TH 3a’B3
B 2r(aB 4+ D4(al(B 4 1) +1)2

((aB + 1)(a(2aB? + B(9ar + 4) + 3r(2ar + 3)) + 2)

+ 6ar(a(B+7r) + 1)2(ln(m

)+ ln(al))> , (4.45)

which indicates that the theory is not conformally invariant and possesses a scale that breaks
the conformal invariance. This scale is the geometric correction parameter «. For vanishing «, the
trace of the energy momentum tensor vanishes as expected since o — 0 gives the GR case [19].
We present some plots of b(r), R(r), f(r),V(r), T, in Fig. in order to better understand our
solution alongside the « = 0 case which corresponds to GR [[19]. We can see that the modified
gravity parameter affects the dynamics of the curvature related functions, while the GR black hole
[19] admits a larger horizon radius in comparison with the modified gravity one. We also plot the
horizon radius as a function of a.. The fact that the larger the deviation from the GR solution [[19] is,
the smaller the horizon radius becomes, is in agreement with the (3+ 1)-dimensional case [2]. Next,
we will briefly discuss scalar perturbations of the obtained spacetime. For this reason, we consider
a massless test scalar field ¢ that satisfies its equation of motion [148]],

Ogo = 0. (4.46)
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Transforming the scalar field as ¢y = r~'/2ppe~ 0!, the Klein-Gordon equation takes the form of a
Schrodinger-like one
4?0

T3+ (W5 = Verr)po =0, (4.47)

where we expressed this equation using the tortoise coordinate r, = [drb(r)~".

effective potential is complicated, however its asymptotic expression is

The resulting

2 .2
Vegt(r — 00) ~ e +0 <1> , (4.48)
4 r2

meaning that there is an AdS boundary at infinity constraining the matter fields, regardless of the
modified gravity parameter « and the effect it has on A.g. We checked that, the inclusion of a mass
term for the test scalar field does not change the behavior of the resulting effective potential at large
distances. Also, no potential well is formed near the horizon of the black hole for both the massive
and massless case, as can be confirmed from FIG. where we plot the effective potential of the
massless case, meaning that the test scalar particles are not trapped near the black hole, so, as a
result, the spacetime is stable under massless and massive scalar perturbations.
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Figure 4.2: The functions b(r), V(r), R(r), f(r) and T,*(r) are plotted versus r with different values
of «, while in the last panel, the radius of the event horizon r}, is plotted as a function of «. In all
the figures we have set B=1=1.
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Figure 4.3: The effective potential V.g(r) for the massless test scalar particles as a function of r for
different values of a, where we have set B = = 1.
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4.3 Thermodynamics

In this section we will study the thermodynamics of the extended black hole solution in f(R)
gravity, including Hawking temperature, entropy and the conserved mass.

4.3.1 Hawking temperature

The Hawking temperature can be calculated as

. b’(rh) . 332(3 + Th)
T = 4 2ri2ri(aB +ar, +1)’ (4.49)

where the relation b(ry) = 0 has been used. As expected, it can reduce to the Hawking temperature
(4.11) in conformal dressed black hole case [19] when a — 0.

In FIG. we plot the Hawking temperature T as a function of «. With the increase of «, the
Hawking temperature of the black hole first decreases slightly, then grows up to a maximum, finally
descends until approaching zero which can be seen from the expression (4.49).

4.3.2 Entropy

Using Wald’s formula [21] 22]], we can calculate the entropy of the black hole in f(R) gravity
with a non-minimal coupling as

1 S o
S = 1 /d9 Th (8]{04675)

where £,4 is the binormal to the horizon surface 23], £ is the Lagrangian of the theory, and

_l(ng“h)

Eagéns (4.50)

T=Th

oL
aRoszé

- 116¢(m)2) (g°7¢%° — gP1g*?) . (4.51)

T=Th 2

Finally the formula of the entropy for our theory can be obtained

S =7y, (fR(;h> - 116¢(7"h)2) = éfzzml(rh) : (4.52)
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Figure 4.4: The Hawking temperature is plotted as a function of «, where we have set B =1 = 1.
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Substituting the explicit expression for fr__, we have

1
S = 5 Th (1+ozrh —

B Th) , (4.53)

In fact, here r}, is also changing with the choices of B, | and «. One might deduce that since « > 0,
the f(R) black holes have higher entropy than the conformal ones [[19]. However, we have to keep
in mind that the conformal case [19] has a larger radius for the event horizon as can be seen from
the metric function b(r) in Fig. Using the relations and b(ry,) = 0, we can plot the entropy
at the event horizon as a function of « in FIG.

40
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20
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]

Figure 4.5: The entropy S at the event horizon is plotted as a function of «, where we have set
B=I1l=1.

With the increase of «, the entropy first decreases a little bit to a minimum value, then grows
up always. Therefore, for most values of «, the entropy of the f(R) black hole is higher than
the corresponding conformal (2 + 1)-dimensional black hole [[19], indicating that our solution is
thermodynamically preferred for most cases. It is worth to mention that the conformal case (« = 0)
is a local maximum of the entropy with respect to «.

4.3.3 Conserved Mass

For a D-dimensional spacetime manifold M, which is topologically the product of a spacelike
hypersurface and a real line interval ¥ x Z, the total quasi-local energy is defined as [149, [150]

E= / P2 o | (4.54)
B

where B = 0X. is the (D — 2)-dimensional boundary, o is the determinant of the induced metric o,
on B, and ¢ is the energy density.

The boundary 9 M consists of initial and final spacelike hypersurfaces ¢ and ¢’ respectively, and a
timelike hypersurface 7 = B x 7 joining them. The (D — 1)-metric v;; on 7 can be written according
to the ADM decomposition as

Yijda'de! = —N?dt* + o4y (dz® + VOdt) (da® + VPdt) . (4.55)

The conserved charge associated with a Killing vector field &¢ is defined as [149, [150]

Qe = /B dP2x\/o (su' +51) & | (4.56)
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where v is the unit normal to spacelike hypersurfaces ¢’ or t”, and j° is the momentum density.
We first calculate the quasi-local energy inside the spacelike hypersurface r = ry = const.

E = / dP2x\/oe = / dP72x\/o (k — &) (4.57)
B B
where k = —./b(ro)/r0 is the trace of the extrinsic curvature and ¢, is the vacuum energy density.
For rq — oo, we have the global quasi-local energy
_ 2mrg [602B%In (%) 1
E(T‘())—— I \/ (aB—|—1)4 +1—27TT‘0€0(7‘0)+O % . (458)
To make it finite, the vacuum energy density has to be
1 [6a2B2In ()
= —— _—atz 1 .
60(7"0) l \/ (CVB ¥ 1)4 + ) (4 59)

then the global quasi-local energy becomes zero.
The conserved mass can be further calculated as

—/ dP2¢\/oeu; €t
B

= Ohgéo E(ro)v/b(ro)

M

5 2rB%*  37B? Lo 1
= m — — — _—
ro—oo al?ry  2r¢all? ra

= 0, (4.60)

which, however, turns out to be zero.

The fact that the conserved mass is zero has its root in the f(R) theory. It is known that the
conserved mass is related to the constant term in the metric function that survives in the asymptotic
expansion at infinity when one is dealing with (A)dS spacetime in (2 + 1) dimensions. We can split
the metric function in two parts. A part that is not completely supported by the gravitational scale
a denoted by b(r)gr,«,¢ and a part that is completely supported by «, i.e, when we turn off « these
terms will vanish, denoted b(r)q,4. We have b(r) = b(r)a,¢ + b(7)GR,a,6, Where

3B? 2B3 r?
_ _ — .61
breros = ~pEp e BraByD) B o0
6aB?r 602 B2 T
b(r) e = 2 1 . .62
Moo = BB+ 17 T PlaB 118 n(al(B—!—r)—!—l) (4.62)

It is clear that by setting & = 0 in b(r)q,4, the term will vanish, while b(r)gr, q,¢ Will yield the
conformal black hole solution [19]. It can be seen that the b(7)gr,q,4 part contains a term that is
related to the mass of the black hole

3B?

P(aB+1)2° *6%)

Mcr,a,p =

while expanding the b(r), 4 term at infinity, we find that the constant term will be related to the

mass of the black hole reads )
3B
Mq,p = —m ’ (4.64)



126 CHAPTER 4. (2+ 1) DIMENSIONAL BLACK HOLES IN f(R, ¢) GRAVITY

which is the opposite of the mass term the b(r)cr.o,¢ term generates. Hence the term that exists
because of the f(R) function in the metric (4.28)), b(r)4,4 yields a massless black hole, and one can
argue that the f(R) theory that satisfies fr(r) = s + ar yields black holes with no mass. In fact, if
one ignores the scalar field and considers only

S = / dx/~gf(R), (4.65)

with our metric ansatz the field equations will naturally yield fr(r) = s+ ar, where a logarith-
mic term that depends on « will cancel the mass the other terms generate yielding massless black
holes. For this reason, a more general metric ansatz has to be considered that will yield different
profiles for fr(r), as is indeed recently done in [151]]. However, in our case, since we are interested
in comparing the f(R) black hole with the GR one [[19], we cannot consider a more general metric
ansatz, as the metric specifies the form of the scalar field, which further specifies fz(r) as can be
seen in (4.25).

The parameter o which provides a gravitational correction term to the Ricci scalar term in our
f(R) theory, breaks the conformal invariance of the GR case presented in [19]. In the case of GR
[19] the mass of the black hole depends on the scalar charge B. In our theory in the metric function
both the gravitational parameter and the scalar charge are present and except the mass term
there is another term which is proportional to 72 which appears in the metric function because of
the presence of both the scalar field and the gravitational scale o. Considering the expansions of
b(r) .65 b(T) G R.0.¢ At infinity in and we can say that the massless black hole is a result
of the cancellation from the scalar field and the gravitational field contributions. A similar behavior
was found in [77]. Breaking the conformal invariance of the action of the MTZ black hole in the
Einstein frame through a particular scalar potential, a massless black hole was found and this was
attributed to the cancellation of gravitational and scalar field contributions.

4.4 Conclusions

In this chapter, we considered f(R) gravity theory and matter in the form of a self-interacting,
non-minimally coupled scalar field. Solving the field equations we found that fr(r) = d’;(g‘) =
1 4+ ar where « is a non-linear correction term of the Ricci scalar R, having dimensions of inverse
length. If &« = 0 we go back to GR recovering the theory of a conformally coupled scalar field
to gravity, discussed in [[19]. The parameter « introduces a gravitational scale that breaks the
conformal invariance. Calculating the exact forms of the derivatives of f(R) function we deduced
that fr ., > 0 and frr > 0 which makes our theory free of ghost and tachyonic instabilities. We
also calculated the conserved mass of the black hole and interestingly we found that the black hole
is massless due to the cancellation of gravitational and scalar field contributions to the mass term.
We attributed this effect to the breaking of the conformal invariance due to the presence of the
gravitational parameter a.

We also studied the thermodynamics of the extended black hole solution in f(R) gravity, includ-
ing Hawking temperature and the entropy. With the increase of «, the Hawking temperature of the
black hole first decreases slightly, then grows up to a maximum, finally descends until approaching
zero, while the entropy first decreases to a minimum value, then grows up with the increase of «. Be-
sides, the entropy of the black hole is higher than the corresponding conformal (2 + 1)-dimensional
black hole [19] for most values of «, indicating that our solution is thermodynamically preferred
for most cases. We also briefly discussed the stability of the obtained spacetime under massive and
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massless scalar perturbations and deduced that the obtained solution is stable under both types of
perturbations.

A possible extension of this work is to perform a detailed thermodynamical analysis to examine
the validity of the first law of thermodynamics, as well as the thermodynamical stability and possible
phase transitions of the obtained black hole solution. One can also introduce a linear Maxwell field
in the action and study the interplay of the gravitational parameter o and the charge @ on the
conformal invariance of the theory and see their effects on the black hole solution. With the addition
of electric charge one can also study possible thermodynamical critical behaviors, pointing out how
the gravitational scale « affects thermodynamics. Rotating solutions might also be considered. The
properties of the resultant conformal field theory could also be studied. The stability of the obtained
spacetime may be investigated, as well as the geodesic motion of particles around the black hole
solution and how the gravitational parameter « affects the motion.



128 CHAPTER 4. (2+ 1) DIMENSIONAL BLACK HOLES IN f(R, ¢) GRAVITY



Part I11

Black Hole Solutions in
String-Inspired Non-Linear
Electrodynamics with Dynamical
Dilaton Fields

129






Chapter 5

Magnetically Charged
Euler-Heisenberg Black Holes with
Scalar Hair

In this chapter, we study the Einstein-Euler-Heisenberg theory in the presence of a self inter-
acting scalar field, minimally coupled to gravity. We solve analytically the field equations for the
magnetically charged case and we obtain novel magnetically charged hairy black holes. The scalar
field dresses the black hole with a secondary scalar hair. The hairy black hole develops three hori-
zons when Euler-Heisenberg parameter and the magnetic charge are small and the horizon radius
is getting large when the scalar charge and the gravitational mass are large. The presence of matter
and the magnetic field outside the horizon of the black hole increases the temperature only for small
black holes. Calculating the heat capacity we show that the asymptotically AdS Euler-Heisenberg
hairy black hole undergoes a second order phase transition and then it is stabilized. Also the weak
energy condition is violated for the asymptotically AdS Euler-Heisenberg hairy black hole.

5.1 Introduction

The Euler-Heisenberg Lagrangian of electrodynamics was at first considered in 1936 [24]]. The
Euler-Heinsenberg theory is a more accurate classical approximation of QED than Maxwell’s theory,
when the fields have high intensity. The vacuum is treated as a specific type of medium, and the
properties of polarization and magnetization are determined by the clouds of virtual charges sur-
rounding the real currents and charges [152]. A way to detect the effect of the Euler-Heisenberg
theory has been proposed in [153]. Since the Euler-Heisenberg theory has interesting physical fea-
tures, it was a natural consequence to couple the Euler-Heineberg Lagrangian to the Ricci scalar via
the volume element to search for black hole solutions. The first black hole solution to the Euler-
Heisenberg electrodynamics was derived in [154]], where analytical solutions were obtained for the
magnetically charged case, also discussing electric charges and dyons. Electrically charged black
holes were considered in [[155] and [[156]], while in [156] the geodesic structure was the main study
of the paper. In [[157] motions of charged particles around the Euler-Heisenberg AdS black hole
were studied. The thermodynamics of these black holes were studied in [158},[159], while the quasi-
normal modes were calculated in [160]. Rotating black holes were found in [161}, [162], while the
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Euler-Heisenberg Lagrangian was introduced along with modified gravity theories in [[163],[164}[165]]
and the corresponding black holes were analyzed.

In this work, we generalize the Einstein-Euler-Heisenberg black holes of [154] by introducing a
self interacting scalar field, minimally coupled to gravity. By assuming only magnetic charges, we
integrate analytically the field equations and discuss the corresponding solutions. Electric charge is
considered to be negligible near the black hole horizon, due to the presence of plasma (electrically
charged particles result in electrically conductive plasma) around astrophysical black holes that
neutralizes any electric charge carried by the black hole. The upper bounds of electric charge an
astrophysical black hole can carry we refer to [166]]. However, magnetically charged black holes
cannot be neutralized with ordinary matter [167]]. When the Euler-Heisenberg parameter vanishes
we obtain novel magnetically charged hairy black holes, while when the scalar charge vanish, we
get the solution of [154] and when both the Euler-Heisenberg parameter and the magnetic charge
vanishes we go back to the well known hairy black hole solution of [15]. The scalar field dresses
the black hole with secondary scalar hair, since the scalar charge is related to the mass parameter,
while the scalar potential is negative in order to support the hairy structure and it possesses a
mass term that satisfies the Breitenlohner-Friedman bound that ensures the perturbative stability of
the AdS spacetime. The black hole horizon shrinks as the magnitude of the scalar field is getting
larger, while is getting larger as the gravitational mass is increasing. Calculating thermodynamical
quantities we find that the temperature develops a minima in the AdS case signalizing in this way a
second order phase transition, while the scalar field gains entropy for the black hole by the addition
of a linear term in the entropy and hence the hairy black holes are thermodynamically preferred.
Calculating the weak energy condition we find that it is violated in the case of asymptotically AdS
spacetime.

The work is organized as follows. In Section we set up the theory, derive the solution and
discuss the effect of the scalar field on the black hole. In Section [5.3] we write down some limit-
ing behaviors of the obtained black hole solution. In Section |2.1| we discuss the thermodynamical
properties, while in Section |5.5|we investigate the energy conditions and finally in Section [5.6|we
conclude.

5.2 Black hole solutions

We consider the Euler-Heisenberg action in the presence of a scalar field

S = /d%\/fgc = /d‘*x\/fg (R—0"¢0,¢ — 2V (¢) — P+ aP* + BQ?) , (5.1)

where £ denotes the Lagrangian of the theory, P = F,, F*, Q = €,,p0 F*" FP?,F,, = 0, A, — 0, A,
is the Faraday tensor (field strength) and ¢, ,. is the Levi-Civita tensor that satisfies

€uvpo€P? = =24 . (5.2)
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The field equations are

Gu =T =T5, + T2V, (5.3)
av
O¢p = — 5.
¢ ¢’ (5.4)
V. ("™ —2aPF" — 2BQe"*"F¢,) =0, (5.5)
1
Ty = 040006 — 5 90 0° 000 — gV () , (5.6)
1
TEM =2F,,F, + 59 (=P + aP? + BQ?) — 4aPF,,F", — 8B8Qe,cn, F"F?, . (5.7)
We consider the following spherically symmetric ansatz for the spacetime metric
ds* = —b(r)dt® + b(r) " tdr® 4 by (r)?dQ? (5.8)

where dQ? = df? + sin? fdp? which allows us to consider the following electromagnetic ansatz for
the four-vector A,
Ay = (A(r),0,0,Qu cos ) , (5.9)

where @, is the magnetic charge of the black hole and the magnetic part of the four vector will
be null at the equatorial plane. Under these ansaetze, the scalar quantities P, ) that enter the field
equations read

_ 2@1271 / 2
= i 24 (1), (5.10)
_ 8QnA(r)

Q=- NG (5.11)

where it is clear that @ will vanish if we do not consider dyons (both electric and magnetic charges).
The system of the field equations (5.3)-(5.7) admits an exact magnetically charged solution given
by

A(r) =0, (5.12)
1 v

o= L(14Y) 19

bi(r) =/r(v+r), (5.14)

while the metric function b(r) is obtained as

(2r — o) (v +2r) — 4Q$n+8ann (=2 +12r2 + 12vr) (V2 +3r2 + 3ur) 2 ( r ) .

—1In
v+r

b(r) = exr(v+r)+ 2 306720 12 8

(—1/57"(02 +v)(v+r)=2Q%r(v+r) (v —240Q2,) In (L) +48avQy, (v +2r) — 20°Q7 (v + 2T)> ;
(5.15)

where ¢y, co are constants of integration and v is the scalar charge, also a constant of integration
which determines the behavior of the scalar field. For a well behaved scalar field we will impose
v > 0. At large distances, the metric function asymptotes to

—cg — 2 +6Q7 4\ r(ar?+4) v(cv+r?+10Q2, 0
Co u+02u+u + Qm+r2 PR (c1 )_ (c2 Q )+(’)
3r 672 V2 v 10r3

b(r — o0) ~ 1+
(5.16)
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We can see that the scalar charge v is introducing a new scale in the theory which leads to the
appearance of an effective cosmological constant. Also the generated mass term is given by both
an integration constant and the scalar charge v, hence the scalar field dresses the black hole with a
secondary scalar hair. By redefining the integration constants, the asymptotic relation yields

2m  mr+Q3,  Agr? 1 v (3my + 5Q%)) 1\
b(T — OO) ~1— T + 7‘2 — 3 — gT‘(AeffV) — T + O ; s (5.17)
Co + v 12 .
where we have set m = and Aer = — (301 + ﬁ) For small r the metric behaves as
b(r — 0) 809y, oY) (5.18)
3vir2 ’ ’

from which we can deduce that the solution always describes a black hole at least in asymprotically
flat or AdS spacetime, due to the fact that b(r) is continuous and changes sign in the range 0 < r <
co. In the small scalar hair case (v — 0), the metric function yields

2 4 2 4 2
b(r) = (1 _2m @ 20Q,  Aer ) . (m L 00Qn  Qn  Aerr

r 72 516 3 r2 5r7 r3 3

>+o(u2) . (5.19)

Using the metric function (5.15) and the scalar field function (5.13)) from the system of the field
equations ([5.3))-(5.7) we can specify the scalar potential

38

V() = L (I/SAeff (cosh (\/5(15) + 2) —36muv° (\/5(15 (cosh (\/§¢> + 2) — 3sinh (\/§¢>) —4aQ?
(288¢2+2 (72¢% + 71) cosh (x@gfa) —432v/2¢sinh (\/%) 100 cosh (2\@;5) —14cosh (3\/§¢>) +cosh (4\@;5) —229)

+64Q2, (&;52 +4 (g% +2) cosh (\/iqs) ~ 12v2¢sinh (\/§¢> + cosh (Niqs) - 9) ) . (5.20)

For small ¢ we have

¢ Aeft n * e 4 (V2m) ¢°

~ A
V($) ~ Aegt + 3 18 T

+0(¢°) . (5.21)

We can also express the potential as a function of r

1
V(r)= ————
) 60874 (v 4 r)*
(61/6 2r2(w+r)? (V2 + 1202 4+ 120r) + 0573 (v 4 1) (108m(v + 2r) + Aegr® (V2 + 6r° + 6ur))
— 4o*Qy, (V0 4+ 1332020 + 5040%r° + 300 r? 4+ 12960r° + 432r% — 61°7) +

r r
12r3(v 4+ )% 1In (W> (3m1/5 (1/2 +6r% + 6vr) + Q3 (V2 + 672 + 6ur) (V4 — 24ann) In <W>

— 144avQ? (v + 2r) + 60°Q2, (v + 2r)>) ., (5.22)
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and for small scalar hair (v — 0):

V2 (2518 Aot — 18aQy, + 25r*Q2, — 30mr®)
150710

Vi(r) = Aegr + +0 (7). (5.23)

As expected, at zeroth order one obtains the cosmological constant. Its asymptotic behavior at large
distances reads

Aeff’/2 AeffV3 1 ‘
Vir — o0) ~ Aegr + s + O - . (5.24)
There is also a mass term in the potential
2
m? =V"(¢=0) = gAeff , (5.25)

which in the case of AdS spacetime is negative and the scalar field is a tachyon, however in this case
it still respects the Breitenlohner-Friedman bound that ensures the perturbative stability of the AdS
spacetime [88]]. The Kretschmann scalar is singular at the origin

30402Q8, 7520 (a?Q,) 1\°
vxY m
Rius RN (1 5 0) e S0 2502 4 O (r) : (5.26)
while it is regular for any » > 0 and at infinity its behavior is
, 8AZ  2A%0° 1\*
Ry RMXV (r — 00) ~ ?e + ;T + 0O (r) ; (5.27)

2 2,2 2 8
By R (1 — 50) ~ 48721 _ 8(18vm? + l/r?m +12mQ?2)) Lo <1> . (5.28)
Thus the solution is valid for any » > 0 and describes a black hole in asymptotically (A)dS or flat
spacetime for appropriate relations between the parameters. We will focus on the AdS case in order
to make comparisons with the uncharged AdS hairy black hole and the flat case which is also of
great interest. As can be seen from the definition of A.g in order to obtain a flat spacetime the scale
introduced by the presence of the scalar field has to be canceled by the integration constant ¢;. In
Fig. [5.1 we plot the metric function b(r) and the potential V' (r) for the asymptotically AdS and flat
spacetimes for a fixed scalar charge while changing «. The o = 0 case differs in structure with the
a # 0 cases, having an inner and an event horizon. The Euler-Heisenberg parameter o does not
affect the horizon radius of the black hole as we can see. Moreover, the potentials are negative in
order to support the hairy structure and violate the no-hair theorem. It is worth noting that, as we
can see from the figures, « acts in favour of the no-hair theorem, since the existence of o ensures
a negative potential everywhere, while for o = 0 there is a small region where the potential can be
positive. In Fig. [5.2|we also plot b(r), V(r) while chancing v having set a = 0.5. We can see that for
bigger v (stronger scalar field) the black hole horizon radius is smaller. We also evaluate numerically
and plot in Fig. [5.3|the horizon radius as a function of v for both AdS and flat cases to visualise how
the horizon changes as a function of the scalar charge.

To have a better understanding of the hairy Euler-Heisenberg black hole we found, we studied
the horizon structure of the various solutions and their dependence on the gravitational mass. In
Fig. [5.4|we show the dependence of the horizons on the gravitational mass for Aeg = 0. The Euler-
Heisenberg parameter is small (o« = 0.05) and the magnetic field is fairly large, Q,,, = 5. We find that,
in the interval of black hole masses between 5.5 and 8.0 (or 8.5) there are three possible solutions
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Figure 5.1: Hairy black hole configurations for asymptotically AdS A. = —1 (left) and flat Aeg =
0 (right) spacetimes, where we have fixed m = 1,Q,, = 0.5,» = 1, while changing the Euler-
Heisenberg parameter a.

of the metric function, signalling one outer the two inner horizons. The influence of the scalar
field is not large. The extreme solutions, where we get just two horizons correspond to vanishing
temperatures.

In Fig. [5.5|we show the horizon structures for asymptotically AdS spaces with (Aes = —1). The
Euler-Heisenberg parameter is small (o« = 0.05) and the magnetic field is fairly large, @,, = 5. We
find that, in the interval of black hole masses between 8.5 and 9.0, there are three possible roots
again. The influence of the scalar field is not large here either. We observe that the range of variation
of the horizons is considerably smaller than the previous case: it varies between 1.0 and 3.5, which is
an order of magnitude smaller than before. The extreme solutions, where we get just two solutions
correspond to vanishing temperatures.

Finally in Fig. we show once more the behaviour of the horizons for a large scalar charge
(v = 10). It contains both the asymptotically flat case and the asymptotically AdS case. We see the
remarkable characteristic that the horizon (just one solution for each m) starts off with very small
values, while, when m is large enough, it jumps to a much larger value. That is a large black hole
get suddenly large horizon values. In addition, the horizon radii for A = —1 are almost one order
of magnitude smaller than the ones for A = 0.

To summarise our results: The structure of three roots, as well as the existence of points with
T = 0, appears when a is small. To have this behaviour of the horizons, the magnetic charge @,
should be large enough. The structure disappears when Ay takes on large negative values. The
horizon radius is getting large when the scalar charge and the gravitational mass are large.

The no-hair theorem by Bekenstein, states that for an asymptotically flat spacetime, a positive
definite potential cannot violate the no-hair theorem. For this reason we multiply the Klein-Gordon



5.2. BLACK HOLE SOLUTIONS 137

< — v=1
— v=2
08 v=3
v=4

— v=5

0 2 4 6 8 10 0.0 0.5 1.0 15 2.0

r r

Figure 5.2: Hairy black hole configurations for asymptotically AdS A = —1 (left) and flat Aegr = 0
(right) space-times, where we have fixed m = 1,Q,, = 0.5,a = 0.5, while changing the scalar
charge v.

equation (5.4) by V(¢) and we integrate over the black hole exterior region

[dtav=5(vems-vew'©) =0 [ dey=a(9. (V@) -V(6)V,0vo-V(e)V (o)

(5.29)
For an asymptotically flat spacetime, we can ignore the first term which is a total derivative and this
relation becomes

/ drz/=gV'() (vmvw + V(¢>)) = 0. (5.30)

It is clear that the kinetic term above is always positive outside the black hole region. In order
for the integral to be zero, we want a negative potential in order to counterbalance the positive
kinetic term, which will result in a zero area between the curve of the integrand and the r axis. The
presence of the scalar field introduces a matter distribution outside the horizon of the black hole.
The condition guarantees that the kinetic energy of the scalar field has to counterbalance the
potential energy of the scalar field in order to have a stable matter distribution outside the horizon
of the black hole. Therefore we have to find regions of spacetime where the potentials are negative
to violate the no-hair theorem and to support the hairy structure.
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Figure 5.3: The horizon radius r, as a function of v having set m = 1,Q,, = 0.5, =
asymptotically AdS Aegr = —1 (left) and flat Aeg = 0 (right) spacetimes.
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5.3 Special Cases for Black Hole Solutions

In this section we will present special cases for the black hole solutions we found in the previous
section depending on the choice of the parameters.
For the case v — 0 we have the Euler-Heisenberg black hole [154]]

4 2 2
by =1 2 20Cn | QO Aeir

5.31
r 576 r2 3 7 ( )

while the potential gives the cosmological constant V' = A.g. As it is expected, because the scalar
field is decoupled, if we set the Euler-Heisenberg parameter equal to zero we can obtain the (A)dS
RN spacetime, the magnetically charged RN spacetime by also setting Aegr = o = 0, and the
Schwarzschild one by further imposing @,, = 0.

For the case @ = 0 we obtain novel magnetically charged hairy black hole solutions where the
metric function is given by

4Q?n _ 6771,(V+ 27’)

b(ry=1-

1
2 2 - gAeffT(V +7)

- % In (1/ Jrr 7’) (?mwr(u +r)+vQ: (v+2r) + Q3 r(v+7)In (L)) , (5.32)

while the potential will be given by

Vig) = 3% <V8Aeff (cosh (\/i(b) + 2) — 36mu° (\/§¢ (cosh (\[2(#) + 2) — 3sinh (\/§¢)>

+ 604Q2, (8¢2 +4(¢* +2) cosh (\/5(;5) — 12v/2¢ sinh <\/§q§> + cosh (2\/§¢) — 9) > . (5.33)

For the case o = @,,, = 0 we turn back to the well known asymptotically AdS black hole solutions
with a scalar hair [[15]] where the metric function will be given by

1 6m(v+2r) 12mr r
b(r)y=1- g’f’Aeff(V +7r)— 3 -3 (v+7)ln (1/ " r) , (5.34)

with potential

12m (\/5(1) (cosh (ﬂqﬁ) + 2) — 3sinh (\/Zzﬁ)) -

v3

(5.35)

V(e) = %Aeff (cosh (\/iqb) + 2) —

5.4 Thermodynamics

In this Section we will discuss the thermodynamical properties of the hairy black hole solution.
We will study the temperature first. To do so we perform a Wick rotation ¢ — 47, and move to
Euclidean time. Imposing periodicity of the Euclidean time we can obtain the black hole temperature
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as

T(ry,) = V' (rn) _ 1
o 125 (v + 1) (V(V +2rp,) + 2rp(v +75) In ( + ))

v+rh

(—8041/2@; (v® = 6r, — 3ury) (207 + 6, 4+ 9ury) +120°Q7 vy (v+rp ) +00r) (Aegr® 4+ 12) (v+11)°

Th
v+

+6rp(v+7ry)In ( ) (l/(l/ + 2rp) (804an (71/2 + 67",% + 61/rh) + 1/4T%L(1/ + Th)z)

=207 (v +ri)? (v = 240Q7,) In < [ ) )) ; (5.36)

v+

where we have already substituted the mass parameter using the horizon condition b(r;) = 0 and rj,
denotes the event horizon. For small black holes, the Euler-Heisenberg parameter « plays a decisive
role since

4aQ? 1
T(rp < 1) ~ 3;;#:;} +0 ( n<’;h)> : (5.37)
h

while for large black holes the effect of « is negligible

T(rp>1)~— (5.38)

Aefrn At/ Aegi? + 20 1
4m 87 807y, :

Th

We can see this behaviour in Fig. [5.7|where we plot the temperature of the black hole while changing
the Euler-Heisenberg parameter «. We observe that « increases the temperature in the case of small
black holes.
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Figure 5.7: The temperature of the hairy black hole configurations for asymptotically AdS A.g = —1
(left) and flat Aege = 0 (right) spacetimes, where we have fixed @Q,,, = 0.5, v = 1, while changing the
Euler-Heisenberg parameter «.
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Figure 5.8: The temperature of the hairy black hole configurations for asymptotically AdS Aeg = —1
(left) and flat A.g = 0 (right) spacetimes, where we have fixed Q,, = 0.5, = 0.5, while changing
the scalar charge v.

In Fig. [5.8]we plot the black hole temperature having fixed the Euler-Heisenberg parameter o =
0.5, while we vary the scalar charge of the solution both for asymptotically AdS and flat cases. The
temperature of the asymptotically AdS case develops a minimum which can be obtained numerically.
For example for Q,, = 0.5, = 0.5, = 1, Aegr = —1 we find that 77(r]"") = 0 — ri"" = (.543748
which corresponds to T'(rj™) = 0.147635.

The entropy of the black hole may be obtained using Wald’s formula [21]] which for our action

reads
2 oL ..
S(rp) = =27 ¢ d*zvh Eapéns (5.39)
8R0¢6’Y§ r=rp
where ¢é,5 the binormal to the horizon surface normalized to satisfy é,5é*” = —2 and h is the

induced metric on the horizon. Since the only quantity in the Lagrangian that involves the Riemann
tensor is the Ricci scalar, we can obtain the standard Bekenstein-Hawking area law [168]]

S(rp) =27 A, (5.40)
where A = 47[by(rp,)]? is the area of the black hole. Hence
S(ry) = 8%y (ry, + 1), (5.41)

with the scalar charge appearing in the entropy, resulting in higher entropy in comparison with the
non-hairy black hole, since v > 0. However, one has to keep in mind that the hairy black holes
posses a smaller event horizon radius when compared to the Euler-Heisenberg black hole.

To study the possibility of phase transitions, we will calculate the heat capacity. A positive heat
capacity indicates that the black hole is thermodynamically stable. Non-stable black holes, may
undergo a phase transition in order to be stabilized. Phase transitions occur at the points where
the heat capacity vanishes or diverges. A vanishing point in the heat capacity indicates a first order
phase transition, while a divergence point indicates a second order phase transition. The first order
phase transition occurs at high Gibbs anergy and it does not change the favored configuration while
a second order phase transition occurs at lower Gibbs anergy and allows the coexistence of two
configurations.

The heat capacity is given by

— (5.42)
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where m(r;,) is the mass as a function of the event horizon of the black hole, obtained from the
relation b(rp,) = 0. The explicit expression is too complicated to be given here. For AdS spacetime,
for large r,, the heat capacity is positive, since

2Aegf — 20 1
C(rp > 1) ~ 27r? + 27vr), + M +0| =], (5.43)
5Aeff Ty

and the AdS black holes are stable. However, in order to see if the black hole undergoes a phase
transition before it gets stabilized we will plot the heat capacity in Fig. The fact is that the
asymptotically AdS Euler-Heisenberg hairy black holes undergo a second order phase transition and
then they are stabilized. The phase transition point occurs at the minima of temperature. For a flat
spacetime, the heat capacity asymptotes to

1
C(rp > 1) ~ =277} — 2(7v)ry, + O (7“2> , (5.44)
h

where we can see that the flat black holes are thermodynamically unstable and there exists no phase
transition to make the black holes stable as we can deduce from Fig. [5.9

C(rn)
C(rn)

L L L | L L f L L L L L
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0

Figure 5.9: The heat capacity for asymptotically AdS A = —1 and flat Ao = 0 spacetimes, where
we have fixed @, = 0.5, « = 0.5, while changing the scalar charge v.

5.5 Energy Conditions

In this Section we will discuss the energy conditions of the hairy black hole. For this reason, we
will use the Einstein equation in the appropriate reference frame, where we can identify the energy
density, the radial and tangential pressure as

Gr =T (5.45)
p=-T%,, (5.46)
pT‘ = T”,;‘ bl (5-47)
po=p,=TY%. (5.48)

The weak energy condition (WEC) states that given a timelike vector field ¢¢, the quantity 7,;t%t’
is positive, i.e T,,t** > 0 — p > 0. The null energy condition (NEC) states that 7,,,[%l* > 0 —
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p+ pr > 0, where (%], = 0, so that the geometry will have a focusing effect on null geodesics. For
the energy momentum tensor of the scalar field, we have

o = SH) (4 V() = i (5.49)
Py = %b(r)aﬁ’(rﬁ —V(r), (5.50)

while for the energy momentum tensor of the Euler-Heisenberg theory we obtain
EM 20Q%, Q2 (1—4(a—328)A(r)?) + 48QmA'(r)

+ 60l (r)* + A'(r)* = —5'81)

T by (r)8 by (r)4 by (r)?
4 2 _ / 2 /
ngM _ _i?(?)ngl + Qm (4(a b?iQ(f))rl (T) + 1) _ 45?177:?2(7“) + 204./4/(7“)4 + .,4/(7")2 ) (5.52)

We will at first discuss the NEC, which implies p + p, > 0. By adding the energy densities and radial
pressures, we have

ptpr=p+ M pl 4P = p? = pPM e pl M = 0(r) ¢ (r)? (5.53)

First of all ¢'(r)? > 0 for any » > 0. b(r) is negative inside the black hole, resulting in the violation
of the NEC, zero at the event horizon resulting to p + p, = 0, while after the event horizon b(r)
is positive, hence, the NEC is protected, regardless of the asymptotic nature of spacetime. For
the contribution of the scalar field to the total energy density, we can see that inside the event
horizon, where b(r) < 0, the WEC is violated by the scalar field, since V(r) is also negative i.e
V(r) < 0 regardless of the asymptotic nature of spacetime. On the event horizon b(r,) = 0 and
since V(r,) < 0 the WEC is also violated. Caution must be given for the contribution of the scalar
field to the energy density in the causal region of the black hole i.e » > r,. For asymptotically
AdS spacetimes, outside of the event horizon we have b(r) > 0 and V(r) < 0, however, the scalar
potential is too negative, hence as we can see in Fig. the scalar field part of the energy
momentum tensor will always violate the WEC. For the asymptotically flat case, at large distances,
the kinetic energy of the scalar field 7 (r) = b(r)¢’(r)?/2 asymptotes to

V2 —513 — Tmu? 1\°

mu? 1\°
V(ir— o0)~— £ +0 (r) . (5.55)

It is clear that their sum 7 (r) + V(r) will be positive at large distances, since the kinetic energy
surpasses the contribution of the potential. It is therefore evident that for a region outside of the
black hole horizon p? > 0. The electromagnetic part of the energy density yields

EM (’I“) — an _ 20‘an )

r2(v+r)2 riv+r)t
There will be regions of negative energy density due to the Euler-Heisenberg modified electromag-
netism parameter a. We plot p?M(r) in Fig. where we can see that p”*(r) can be positive,
however it does not contribute much in the total energy density, hence p < 0 everywhere and the
WEC is violated in the case of AdS spacetime. However in the asymptotically flat case, it is obvious
from (5.54), and FIG. that, for a region outside of the event horizon to infinity p > 0
and the WEC holds.

while the potential behaves as

o (5.56)
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Figure 5.10: Several energy densities are plotted. In the first row, we have the energy density of the
scalar field for AdS (left) and flat spacetimes (right). In the second row, we plot the energy density
of the electromagnetic part of the energy momentum tensor (left) and the total energy density for
AdS spacetime (right). In the third row we plot the total energy density of the asymptotically flat
case. For the AdS cases we have set A.f = —1, for the flat spacetimes A = 0, while we have fixed
m=1,Q,, = 0.5, a = 0.5, and we vary the scalar charge v.
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5.6 Conclusions

We studied the Einstein-Euler-Heisenberg theory in the presence of a minimally coupled to grav-
ity, self interacting scalar field. We solved analytically the field equations and, assuming an electro-
magnetic field with magnetic charge, we obtained novel magnetically charged hairy black holes. The
scalar field dresses the black hole with secondary scalar hair, while the scalar potential is negative
in order to support the hairy structure and it possesses a mass term that satisfies the Breitenlohner-
Friedman bound that ensures the perturbative stability of the AdS spacetime. The presence of the
scalar charge is introducing a new scale in the theory which leads to the appearance of an effective
cosmological constant. The hairy black hole develops three horizons when Euler-Heisenberg param-
eter and the magnetic charge @,,, are small and the horizon radius is getting large when the scalar
charge and the gravitational mass are large.

We also studied the thermodynamics of the hairy Euler-Heisenberg black hole. We found that
the presence of matter outside the horizon of the black hole increases the temperature only for small
black holes. Also we found the same behaviour for the magnetic field, it increases the temperature
only for small black holes. Calculating the heat capacity we found that the asymptotically AdS Euler-
Heisenberg hairy black hole undergoes a second order phase transition and then it is stabilized. The
phase transition point occurs at the minimum of the temperature while the scalar field gains entropy
for the black hole by the addition of a linear term in the entropy and hence the hairy black holes are
thermodynamically preferred.

We found that the WEC is violated on the horizon of the hairy Euler-Heisenberg black hole.
For asymptotically AdS spacetimes, outside of the event horizon the scalar field part of the energy
momentum tensor will always violate the WEC. However in the asymptotically flat case, we found
that for a region outside of the event horizon to infinity the WEC holds.

It would be interesting to extend this work to the case that the scalar field is magnetically
charged. Then we expect that the magnetized scalar field will interact with the magnetic field,
so that the magnetized scalar charge, the magnetic charge and the Euler-Heisenberg parameter will
play a decisive role in the structure and properties of the magnetized hairy Euler-Heisenberg black
hole. It would also be of interest to study the shadow of the obtained spacetime and to constrain
the modified Euler-Heisenberg parameter along with the scalar charge from the results of the Event
Horizon Telescope [42] in the astrophysical scenario @,, < m. In [[169]] it was found that consider-
ing Maxwell electrodynamics there is a threshold value for the electric charge (), above which any
value of the scalar charge is allowed. It would be worth investigating the same possibility in our
case.



Chapter 6

Exact black holes in string-inspired
Euler-Heisenberg theory

In this chapter, we embark on a comprehensive exploration of a gravitational theory extend-
ing the classical Euler-Heisenberg (EH) electrodynamics coupled to a non-trivial dilaton field. Our
motivation for this study stems from the rich theoretical landscape it promises, building upon the
established framework of self-gravitating dilaton-linear-electrodynamics. This extension allows us
to delve into intriguing phenomena, notably exemplified by the Gibbons-Maeda-Garfinkle-Horowitz-
Strominger (GMGHS) black hole [32} [33], a significant exact solution within this domain. In our
investigation, we examine the intricacies of our proposed model and unravel its associated black-
hole solution in detail. One of our key insights lies in the strategic assumption of a specific profile
governing the dilaton coupling to the Euler-Heisenberg terms. This choice results in an exact analytic
black-hole solution, facilitating a straightforward examination of its physical characteristics.

Having the solution at hand, we then commence a rigorous analysis encompassing various facets
of our model’s implications. This includes a thorough examination of the geodesics of massive test
particles within the black-hole spacetime, followed by a meticulous scrutiny of the energy conditions.
Subsequently, we delve into the thermodynamic aspects of the black hole, computing the relevant
thermodynamic quantities, such as the temperature, the entropy, and the magnetic potential (®,,),
to demonstrate the validity of the first law of thermodynamics. Moreover, within the parameter
space of solutions, we unveil the existence of pairs consisting of two distinct black holes charac-
terized by different ratios @,,/M, both more compact than the Schwarzschild solution yet sharing
identical horizon radii. Intriguingly, despite their geometric similarity, a thermodynamic analysis
reveals clear distinctions, with one black hole exhibiting thermodynamic stability while its doppel-
gdnger proves to be thermodynamically unstable. Additionally, we explore the radial stability of
the black-hole solution under linear perturbations and also its scalar quasi-normal modes, shedding
light on its potential as an astrophysical entity. Furthermore, we extend our discussions to encom-
pass other solutions and extensions of our model theory, including asymptotically (Anti-)de Sitter
(AdS) spacetimes and more general dilaton couplings, providing a comprehensive overview of the
theoretical landscape. In conclusion, our work offers a thorough investigation into the gravitational
theory of non-linear EH electrodynamics coupled to a non-trivial dilaton field, unraveling a plethora
of intriguing phenomena and paving the way for further exploration and theoretical advancements
in this domain.

The structure of the current chapter is the following: In the next section [6.1] we discuss our
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model and its associated black hole solution. By assuming a specific profile for the dilaton cou-
pling to the EH terms, in such a way that, additionally to non-trivial dilaton couplings, one has
also dilaton-independent EH terms, we demonstrate the possibility of studying analytically the cor-
responding black-hole solution. In section [6.2] we first discuss the geodesics of test particles in such
black hole spacetimes, and then demonstrate the satisfaction of the energy conditions for appropri-
ate sets of the parameters of the solution. In section |6.3] we study the thermodynamics of the black
hole, and show explicitly, by computing the relevant thermodynamical quantities, that the first law
of thermodynamics is satisfied in a coordinate-independent way, as should have been expected. In
the parameter space of solutions, it is possible to obtain two distinct black holes with different ratios
Qm/M that are more compact than the Schwarzschild solution and share the same horizon radius.
However, these black holes even though they have the same horizon radius, from a thermodynamic
point of view, are quite distinguishable, since the solution with a greater value for the ratio @,,/M is
thermodynamically stable, while its doppelgénger with a lower value for the ratio @,,,/M is thermo-
dynamically unstable. In section [6.4, we demonstrate the radial stability of the black-hole solution
under linear perturbations, and study its scalar quasi-normal models, which provide insights into its
properties as a potential astrophysical object. Other solutions of (extensions of) our model theory
(6.1), including asymptotically (Anti-)de Sitter (AdS) spacetimes, as well as solutions corresponding
to more general couplings exp(—2v¢), of the dilaton to the Maxwell term in the action, rather than
the v = 1 in closed strings, are discussed in section [6.5] Finally, conclusions and outlook are given
in section

6.1 Theory And Solution

In the geometrised unit system (¢ = G = 1), the Einstein-frame action functional that we will
occupy us in this chapter is a simplified version of (1.193) and reads

§= 1 [ daVTg[R—2VH6,6 — HF - [(6) aFGFLF L - AFY] . 6D

Such a field theoretic gravitational actions also arises as part of a non-diagonal reduction of the
Gauss-Bonnet action [170] and admits the GMGHS black hole [[32] 33] as an exact solution when
f(¢) = 0. In (6I), R is the Ricci scalar, 2 = F,, F** ~ E? — B? is the usual Faraday scalar,
and F* = ]-'W.F“”fa,g]:“ﬂ, where ¥, stands for the usual field strength 7, = 0,4, — 0, A,
and o, 8 are coupling constants of the theory, with dimensions (length)2, which in our discussion
are treated phenomenologically. The scalar field ¢ and the associated scalar function f(¢) are both
dimensionless For the moment we do not consider a potential for the dilaton, but only its non-
linear interactions with the EH terms. The addition of a pure dilaton potential 2(¢) can lead to
interesting alternative solutions, including a cosmological constant, which we discuss in section|6.5

1The reader should be reminded at this stage that in the special case of (open)string/brane-inspired BI theory at tree-level
in string loops, the function f(¢) ~ e~5? (¢f (L.I85)), however in such a case the Maxwell term F?2 in should be
accompanied by the inverse of the open string coupling, ie. e~?, instead of e~ 2% that appears in (6-I). On the other hand,
in the heterotic-string-inspired model can be mapped to the model (I.186), upon choosing v = 1, and F.F = 0, that
is concentrating on magnetically charged black holes only (in which case, the function f(¢) ~ e~6%). However, as we have
already stressed, and we shall argue below, it is crucial for an analytic treatment of the black-hole solution to have a dilaton-
independent term in f(¢), which, as we have argued in the previous section, can be induced by considering higher-order
string loop corrections in the underlying string-theory model.
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The field equations emanating from are of the following form

Gy = 20,00,0 — 0" $Dad + 2727 (fffm - % g,“,}'2> -

1
f(d)) {8afpafuﬁfanfﬁn - ag;w %F%f%féa - 46}—#5-7'.y§f2 + ZQ;WB.T'A} 9 (62)
40¢ = —2e" 20 F2 4 dfd(f (2aFGF3 FYLFS, — BFY) | (6.3)
0, (VI[P (BFOF — ) — 1605 7} <0 69

By taking into account the higher-order electromagnetic invariants 7* and F%F2 F | F’, , we are
interested in extending the GMGHS solution [32] [33]. To do so, we introduce the most general
spherically symmetric metric ansatz in the form

dr?
B(r)

ds® = —B(r)dt* + + [R(r)]?d? (6.5)

where B(r), R(r) are two unknown functions to be determined from the field equations, while
d9? = d6? +sin? Ody?.f] Moreover, we consider both electric and magnetic charges, via the following
four-vector, which is compatible with spherical symmetry,

A, = (V(r),0,0,Qy, cosb) , (6.6)

where @,,, stands for the magnetic charge carried by the black hole. This ansatz for the electromag-
netic field solves by construction the ¢ component of the Maxwell equations iff one considers that
the scalar field inherits the spacetime symmetries, namely ¢ = ¢(r). Interestingly, one can see that
the combination

i = B)QL | SHQAIV()P

aFe FB Y 5 4 _
20T G 5T e = BF = TR R R(rJ

+4(a— B)[V'(r)]*, (6.7)

will vanish if one does not consider both electric and magnetic configurations in the case of o = .
In the above, prime denotes derivation with respect to . Maxwell’s equation is very difficult to be
integrated for the dyonic case and as a result we will consider pure magnetic fields, that is V' (r) = 0.
Consequently, both these non-linear electrodynamics terms will contribute iff o # 5. We will begin
our analysis for the scalar free scenario ¢ = 0, f(¢ = 0) = 1, for which the solution reads

2M | Q5 2(e—PB)Qn

r r2 5r6 ’

(6.8)

and R(r) = r. This solution resembles the Einstein-Euler-Heisenberg black hole [154]. The inter-
esting thing to notice in is that the non-linear electromagnetic terms F4F %}—%}— o and F*
affect the spacetime geometry in a similar way. It is solely the values of the coupling constants «
and (3 that determine whether this contribution survives or not. Note that in the case of o« = 3 the
higher-order electromagnetic term does not contribute at all. However, in the case where o # f,
we notice that depending on the signs of the parameters « and (3, the non-linear electromagnetic

2Note that throughout this article, ¢ will always denote the azimuthal coordinate, while ¢ will always denote the scalar
field.
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terms can act either attractively or repulsively. Black holes with a scalar hair in the Euler-Heisenberg
theory have been discussed in [5], and it was found that the scalar hair results in a more com-
pact black hole (having a smaller radius for the event horizon) when compared to the non-hairy
Einstein-Euler-Heisenberg black hole.

Let us now assume a non-trivial profile for the coupling function f(¢). In particular, we consider

f(¢) = —[3cosh(2¢) + 2] = —% (3¢72? +3e%? +4) . (6.9)

Notice here that the coupling function f(¢) contains the dilatonic coupling ¢ with ¢ = +1 as
well as a constant (dilaton independent) term. At this point the reader is invited, for completion, to
compare such couplings with the string-loop corrected coupling functions Br4(¢), in the framework
of string-inspired models (I.193)), discussed in the introduction of this thesis. In such a stringy
context, the exponential dilaton terms in the coupling function can be written as f(¢) =
—3(95% + g2) — 2, where g, = exp(¢) is the string coupling. As discussed in the introduction of
this thesis, the g2 is the standard tree-level dilaton-Maxwell term coupling [116}, 120} [121]], while
the g2 indicates two-string-loop corrections (genus-y = 2 world-sheet surfaces). The crucial, for
our subsequent discussion, dilaton-independent term in f(¢) might be the result of appropriate
combinations of higher-string-loop corrections in the Einstein-frame effective action.

It is now straightforward to solve the field equations of (6.1), with (6.9), in order to determine
the geometry of the spacetime and the functional expression for the scalar field. By doing so, one
obtains a simple exact, magnetically charged black-hole solution, for which it holds that

_ 4 2
By —1- 2 2(‘(”2) ROP=r(r-Gm) (6.10)
r3(r— g
1 Qn
o) =y (1-F2) 4= 0.0.0.00050) (6.11)

We observe that in this case, for o = 3 we obtain the GHS solution [33]], while the radial coordinate
r € (Q3,/M,+oo) in order to have R € (0, +00). In this case, it is also intriguing to observe that the
sign of the combination o — 3 among the coupling constants determines whether the higher-order
electromagnetic terms in the theory will contribute attractively or not.

To obtain a better understanding of the spacetime geometry, one may express the line element
in terms of the physical coordinate system with R playing the role of the radial coordinate. By

doing so, one finds that

W (R)|2dR2

2 _ _ 2, | 2 1092
ds® = —B(R)dt” + B(R) + R°dQ~, (6.12)
with functions B(R), W(R), and ¢(R) being given by
2 _ 4
B(R) 1 4M _ 2(a f)Qm ’ (6.13)
Q7, + Q5 +4M2R? R
4M?R?
2 _

VO T AMPR? — @2
S(R) = — L1 [ Y& TAMPRE = G, ) (6.15)

2\ Qi +4M2R? + @2,
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Figure 6.1: The metric function B(R) in terms of R/(2M ) for various values of the parameter Q,, /M
and (a) (a«—p)/M? =1, (b) (a«—3)/M? = —1. All parameters are dimensionless, and the horizontal
axis in both figures is logarithmic.

In the physical coordinate system (¢, R, 6, ¢), one can verify that the curvature invariant quantities
R, RuR*, and Rap,sR*P7 possess a single spacetime singularity residing at R = 0, while the
function B(R) satisfies the following expansions

2M | QE  Qp, Q3 2(a — B)Qy,

At “m _ 7
B(R— 4+o00) =1 7 + 7 T AN +64M3R5 76 +O(1/R"), (6.16)
_ 4 2
B(R —0) = —% + <1 = 23; ) + O(R?). (6.17)

From (6.16)), it becomes apparent that the spacetime (6.12) is practically indistinguishable from
that of a magnetically charged Reissner-Nordstréom black hole for an observer at infinity, with the
parameter M corresponding to the ADM mass of the solution. However, an observer much closer
to the black hole would perceive a completely different picture. Indeed these quantum-
gravity corrections are important near the singularity, since the geometry there is determined by
their behavior.

The radial null-trajectories for the spacetime (6.12)), lead to the relation

dt _ 4 2MR 1 (6.18)

dR V@i +4M2R? |B(R)|’

which by its turn means that the roots of the function B(R),) correspond to black-hole horizons. In
Fig. one can observe the behavior of the metric function B(R) in terms of the dimensionless
quantity R/(2M). We see that the solution describes a black hole with a single horizon when
(a— B)/M? = 1, while for (o — 8)/M? = —1 the black-hole horizons can range from two to none. It
is essential to note that the previous assertion holds in general for (a— 3)/M? being either greater or
lower than zero. Analysis of Fig. |6.1al reveals that a positive value for the combination (a — 3)/M?
results in black-hole solutions featuring a single horizon. To facilitate comparison, we have also
included the Schwarzschild solution which can be obtained by simply setting @,, = 0. One can
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Figure 6.2: The ratio R, /(2M) in terms of the ratio @Q,, /M for various values of the dimensionless
parameter (o — 3)/M?. Both axes are logarithmic.

readily observe that within our theory’s solution spectrum, black holes can exhibit either greater
compactness or sparsity relative to the Schwarzschild solution. In astrophysical scenarios where @,
is relatively small compared to the mass, our solution appears more compact. Conversely, when the
fraction (o — 3)/M? takes a negative value, the solutions range from black holes with two horizons
to naked singularities. The transition from one class of solutions to the other occurs continuously
as the magnetic charge @), increases, as depicted in Fig. Consequently, in this scenario, there
always exists a specific value for the ratio @Q),,,/M that renders the black hole extremal, meaning the
inner and outer horizons coincide.

It is crucial to highlight here the intriguing behavior observed in the realm of single-horizon
black-hole solutions, for which « — 8 > 0. Specifically, there exists a minimum value for the
ratio Rp/(2M), which is below unity, resulting in more compact black holes compared to the
Schwarzschild solution. Starting from (),,, = 0 (Schwarzschild) and increasing the magnetic charge,
the resulting black holes become progressively more compact until reaching the point where Ry, /(2M)
attains its minimum value. Beyond this point, further increase in the ratio Q,,,/M causes Ry /(2M)
to rise again, eventually reaching R;,/(2M) = 1, albeit now with @Q,,, # 0. Subsequently, any addi-
tional increase in the ratio ),,,/M yields a solution more sparse than the Schwarzschild counterpart.
This particular behavior is elucidated by analyzing Fig. where the relationship between the ratio
of the black hole horizon (R},) to twice the black hole mass (2M) and the ratio @,,/M is depicted
for various values of the dimensionless parameters (a — 3)/M?. Conversely, it is observed that when
a — B < 0, the outer horizon radius of the resulting black holes is consistently smaller than that
of the corresponding Schwarzschild black hole with the same mass. Furthermore, it is important
to note that in this scenario, the graph reaches a termination point. This occurs because, beyond a
certain threshold of the ratio @Q,, /M (which is less than unity), there is a significant transition in the
nature of the compact object. Specifically, the object transitions from being an extremal black hole to
a naked singularity. Consequently, for this particular choice of parameters, there is no horizon to be
depicted. These observations are further corroborated by the findings depicted in Fig. Return-
ing now to the case & — 8 > 0, the discovery of black-hole solutions sharing identical horizon radii
yet varying in the ratios Q,,,/M unveils a realm of doppelgdnger black holes within the framework of
theory (6.1I). While it is typical to find black holes stemming from different theoretical paradigms
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with shared horizon radii but differing physical attributes such as mass, electric charge, or secondary
scalar hair, such occurrences are notably rare when considering black holes that arise from the same
theory. Even more remarkable is the fact that these two doppelginger black holes, despite having
identical horizon radii, exhibit distinguishable thermodynamic behaviors. One is thermodynamically
stable while the other is unstable. This distinctive feature is thoroughly explored in Section [6.3

6.2 Geodesics and energy conditions

6.2.1 Geodesics

In this subsection, we will examine the geodesic curves of massive particles and the effective
gravitational potential generated by the spacetime geometry given by egs. and (6.10). We
choose to work with the (¢,r, 6, ¢) coordinate system, as it facilitates a straightforward derivation of
the effective gravitational potential Vg through a well-established procedure. This will help us to
better comprehend the geometry of the aforementioned black hole solutions. To do so, we introduce
the effective Lagrangian

dzt dx” 72

_ o i2
2Lest = Guv dr dr B(’f‘)t + B(r)

+ [R(r)]? (92 + sin? 9¢2) , (6.19)

the Euler-Lagrange equations of which yield the geodesic equations. In the above, 7 is an affine
parameter of motion which can be identified with the proper time of a particle, dot denotes deriva-
tion with respect to 7, while 2L. = —1 corresponds to massive particles which follow a timelike
path. Note that massless particles will not follow the geodesics induced by the geometry g,,,,, instead
they will follow the geodesics induced by an effective geometry that accounts for photon-photon in-
teractions, introduced by the non-linear electromagnetic terms in our action. Upon inspecting the
Lagrangian (6.19), it becomes evident that there is no explicit dependence on the coordinates (¢, o).
As a result, the Euler-Lagrange equations for ¢ and ¢ yield two conserved quantities: the energy E
and the angular momentum J of the particle under consideration, respectively. Hence, we have

E = B(r)t, (6.20)
J = [R(r))*sin® 60 o . (6.21)
The equation of motion for 6 reads

[R(r)]26 + 2R(r)R' (r)i6 — J cosf _

g 0, (6.22)

and by choosing # = 7/2 (§ = 0), the particles stay fixed at the equatorial plane. Now plugging
these results back to (6.19) we obtain the radial equation of motion

272+ Vaalr) = 5 B, (6.23)
with the effective potential induced by the geometry being
B(r) J?
= 1 2

and the functions B(r) and R(r) given by (6.10) . As we have already mentioned in the previ-
ous section, the radial coordinate r ranges from Q2, /M to plus infinity because the physical radial
coordinate R € (0, +00).
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Figure 6.3: The effective potential Vi in terms of the quantity /M for @,,,/M = 0.5, J/M =5, and
(a — B)/M? = {—2,0,2}. All parameters are dimensionless, and the horizontal axis is logarithmic.

In Fig. we depict the behavior of the effective potential V¢ in terms of the dimensionless
parameter r/M, considering three distinct values for the fraction (ow — 3)/M?. Upon close exami-
nation, it becomes evident that the scenarios where o = 3 and (o« — 3)/M? = 2 share a strikingly
similar pattern in the effective potential. In both cases, the potential curve features one maximum
and one minimum value, corresponding to unstable and stable circular orbits, respectively. On the
other hand, in the case where (o — 8)/M? = —2, an additional minimum emerges, exhibiting local
behavior that closely resembles the Newtonian potential. To understand the origin of this difference,

we have to examine the expansion of the potential Vg in the limit r — @

that

Vete(r — Q2 /M) =

1
Veff(T — JrOO) =

2

_ JPM*(a—B)

M3(a - B) (472M? = Q3,)

4
4 Q7
m (T - M )

M+J2+
r o 2r2

(
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6 _ Xm
m (T’ M

Q7

?

J2 Q4

+0

2
m

J2Q6

M

(o — B)Qm

—2
) ] (6.25)

We observe that the first term, which dominates in this particular regime, depends explicitly on the
sign of the quantity « — 8. When a — 8 > 0, the potential tends toward negative infinity, whereas
for a — 8 < 0, the potential tends toward positive infinity. This alignment precisely mirrors our
observations in Fig. Finally, from Fig. it is also clear that for /M > 2, the effective
potential in all cases exhibits the same profile, independently of the relative values of the coupling
constants « and 3. This can be naively understood through the expansion of the potential at infinity,
which is of the following form

2 202
1> {JMJFJQm

r3

ré

M r4

M?2r4

76

+0
(6.26)

/M, where one can verify

%

1

r7

It is obvious that in the asymptotic regime, the coupling constants « and 3 cease to influence the
potential profile, as their first contribution comes into play only in the seventh term of the expansion.
Consequently, even at medium distances, we anticipate that beyond a certain point, the coupling
constants will have negligible impact on the potential’s behavior.
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Figure 6.4: The energy conditions for @,,,/M = 0.5 with (a) a positive and (b) a negative value
assigned to the dimensionless quantity (o — 3)/M?. The vertical lines correspond to the horizon of

the black hole determined by these parameters.

6.2.2 Energy Conditions

We will now turn our attention to the energy conditions associated with the stress-energy tensor
of our theory. In the physical coordinate system (¢, R, 0, ) the stress-energy tensor is described by

an anisotropic fluid which in a covariant form can be written as

T" = (pg + po)u'u” + (pr — po)nt'n” + peg"” .

(6.27)

In the above, pg is the energy density of the fluid measured by a comoving observer with the
fluid, pg is its radial pressure, py is its tangential pressure, while v and n* are its timelike four-
velocity and a spacelike unit vector orthogonal to u* and also to both angular directions. The

four-vectors u* and n* satisfy the following relations:
ut =u(R) 6y, utugu =-1,
n* =n(R)d8, n'n’g. =1.

Given egs. (6.2)), (6.9), (6.12)-(6.15), and (6.27)-(6.29), one can readily compute that

. B(R) [do\° Q2 _,, 2(a—pB)Q%
pE:_Tt:[VV((_R))P<dj;> —l—%e ¢+%f(¢)a

_pn _ BR) (do\® QL Ly 2a-B)Qs
=T = ity (i) e ),
6 e . B®B) [(de\? Q% _,,  6(a-B)Qk

pQ_TQQ_T LP__[W(R)]Q (dR) +7R4e ¢+Tf(¢)

For the anisotropic fluid of (6.27), the energy conditions take the following expression:

(6.28)
(6.29)

(6.30)

(6.31)

(6.32)
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* Null Energy Conditions (NEC): pE+pPr>0 & pEp+ps>0,
* Weak Energy Conditions (WEC): NEC & pg >0,
» Strong Energy Conditions (SEC): NEC & pgp+pr+2pe >0.

In Figs. [6.4aland[6.4b] we illustrate the graphs of the quantities pg, pp+pr, pr+po, and pp+pr+2ps
each plotted against the dimensionless parameter R/M. The free parameters of our model and
solution have been chosen to be Q,,,/M = 0.5, while the combination (« — 3)/M? takes values of
1 and —1, respectively. It is evident from Fig. that all the aforementioned quantities maintain
positive values within the causal region of spacetime and as a result, all energy conditions are
satisfied.

These results imply, therefore, the existence of a dilaton hair in the black hole’s exterior, while the
energy conditions are satisfied, thereby leading to a bypass of the pertinent (modern version of the)
no-hair theorems [34} [35] in the spirit of [36]]. The situation can be understood as a consequence
of the fact that the stress-energy tensor of our theory (6.1)), with (6.9), is such that the tangential
component of the pressure (py = T%) dominates over its radial one (pr = T%) (in the (¢, R, 0, ¢)
coordinate system), outside the horizon. That is, the following quantity is positive in the exterior
region of the black hole,

G-J=T%-T% >0, (6.33)

where G = pp + T9% and J = pp + T%. Note that the condition follows from NEC. As
discussed in detail in [36], the quantity 2G /R is the effective gradient pressure force, and its positivity
(i.e. that of G, since R > 0) explains in a physical way the existence of scalar hair in the black-hole’s
exterior, without any violation of the energy conditions. The validity of the condition can also
be explicitly checked in our model from Egs. and (6.32)). Thus, the exact black hole solution
of the self-gravitating scalar-EH (non-linear) electrodynamics examined in this paper constitutes
another explicit example of the general considerations of [36] for bypassing the no-hair theorem
without any violation of the energy conditions.

6.3 Thermodynamic analysis

In this section, we will discuss the thermodynamics of both the GMGHS and our black-hole
solution by considering their Euclidean actions. We will consider the Grand Canonical Ensemble
and enclose the black hole spacetime in a cavity with a large radius r.. In the Grand Canonical
Ensemble, the black hole is allowed to exchange energy/mass and charge with its environment, so
these two quantities are allowed to flow in and out through the boundary keeping the temperature
and the magnetostatic potential of the boundary fixed. This effectively means that T'(ry) = T'(r.)
and ®,,(r,) = ®,,(r.) and the system black hole-cavity is in thermodynamic equilibrium. Note
that T is the black-hole temperature and &,, is the magnetostatic potential. The quantum partition
function for the system is then given by

Z = / g/w) Yle ZS(g,w) Y) / [ (E) e T (g ) , (6.34)

where S is the Lorentzian action, Zg is the Euclidean action and ¢ denotes all other possible fields
included besides the metric tensor. The two actions are related via Zp = —iS [171]]. The quantity

gfLLV) is the Lorentzian metric with signature (— + ++), which corresponds to a R3! spacetime, while
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g,(f) is the Euclidean metric with signature (+ + ++), which is obtained from the Lorentzian one

by performing a Wick rotation [172] of the time coordinate (7 = it). In the standard Matsubara
formalism of finite-temperature systems, the Euclidean metric corresponds to a space R3 x S},T,
where the radius 3, of the S! is the inverse temperature 7~! in units of the Boltzman factor kp = 1.
Hence, the second integral in is evaluated over all possible field configurations that have
an imaginary time 7 with period 8,. From the partition function, using standard thermodynamic
relations one can obtain the Free Energy G of the system as

1
G=——tnz. (6.35)
Br
By using the saddle point approximation (Laplace’s method) we will consider that the classical action
contributes the most and as a result we may drop the integral in the partition function Z. Then the
Euclidean action Zp can be related to the free energy evaluated on shell through the following
relation

Ip =66 . (6.36)

Having the expression of the free energy for the black hole solution, we will compare it with the
free energy of the grand canonical ensemble in order to extract the mass (internal energy), the
entropy, and the magnetostatic potential of the black hole. For more information in the discussion
that follows, we refer the reader to the original work of Gibbons and Hawking [[16].

6.3.1 GMGHS black hole

We start our analysis with the thermodynamics of the GMGHS solution. The Euclidean action,
including the appropriate boundary terms, is given by

Ty = _L/ d*z\/g (R —2V,pVh — e 29 F?) — i/ (K — Ko)d®zVh . (6.37)
167 Jx 81 Jox

In the Euclidean signature, the GMGHS black hole is described by the following metric:

dr?
B(r)

ds*> = B(r)dr? + + [R(r)]2dQ? (6.38)

where B(r) = 1 — 2M/r, while R(r) has the same form as in eq. (6.10). In this coordinate system,
the Euclidean time coordinate is periodic and takes values in the range 0 < 7 < (.. For the
derivation of the thermodynamic quantities, we assume that we have enclosed the black hole in a
large cavity with radius r.. Therefore, the radial coordinate takes values in r;, < r < r.. Finally, the
two angular coordinates take their usual values. The boundary term K represents the trace of the
extrinsic curvature, which in our case reads

2R (r)y/B(r) B'(r)

K - Vo‘na = R(r) + 2 B(T)

) (6.39)

where n, = 4/1/B(r) ¢}, is a normalized spacelike vector field. The K term in the above hy-
persurface integral represents the Gibbons-Hawking-York boundary term, ensuring a well-defined
variational principle. The second boundary term K| serves as a subtraction term to render the ac-
tion finite for flat space (in the absence of the black hole). For flat space, K, equals 2/r, obtained
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by setting B(r) = 1 and R(r) = r in the above relation. Utilizing these relations, one can readily
compute the Euclidean action (6.37) to be

_BM Q3

T
B 2 AM

(6.40)

In the above, we have used that the horizon radius is given by r, = 2M. In the Grand Canonical
Ensemble, the Euclidean action is identified with the free energy of the thermodynamic system as

Ir = B;G, thus, we can rewrite (6.40) as
IE = 57’M - BT(I>QO -5 P (641)

where S is the entropy and ®,,, is the magnetostatic potential, ®,, = @,,,/r,. For the derivation of
the above equation, we have used the fact that 8, = 87M = 1/T with T being the temperature of
the black hole. By combining now egs. and we can evaluate the black-hole entropy 5,
which is given by the following relation
S =2rM (2M — @) 2==

=2r )= m[R(rp)]* = (6.42)
where A denotes the horizon area. It is evident that in this case, the entropy function has the
well-known form of the Bekenstein-Hawking entropy. For validation, the same result may also be
obtained using Wald’s formula or even using the Arnowitt-Deser-Misner (ADM) formalism [173]].
For a comprehensive analysis of the ADM formalism, readers are directed to [174]. Additionally,
for its explicit application in black-hole solutions, we refer the interested reader to [[75]. In the
subsequent subsection, we will utilize the ADM formalism for the thermodynamic analysis of our
black-hole solution.

The inclusion of the Gibbons-Hawking-York boundary term ensures that the Euclidean action
attains an extremum within the class of fields considered here, 6Zr = 0 . As a result, it is evident
that the first law of thermodynamics in the Grand Canonical Ensemble (keeping the temperature
and the magnetic potential fixed) takes the form

OM =TS + 2,6Qm , (6.43)

derived from (6.41)), and holds by construction. The first law is also evident by taking the variation
of the entropy with respect to the primary black-hole charges. The temperature of this black hole
is the same as that of the Schwarzschild black hole, as pointed out in [175]], since the Euclidean
continuation does not care about the angular part. Consequently, the heat capacity C for constant
charge will also be negative, C' = —1/(87T?); hence, these types of black holes cannot reach thermal
equilibrium.

6.3.2 Black hole with non-linear electrodynamics

We will now focus on our black-hole solution, emanating from the action and characterized
by the line element (6.12)-(6.14). The scalar and the gauge fields are of the form ¢ = ¢(R)—with R
being the physical radial coordinate—and .A,, = (0, 0, 0, A(¢)), respectively. In this case, to determine
the thermodynamic quantities associated with the resulting black-hole solution, we will make use of
the Euclidean signature and also utilize the ADM formalism [[173],(174]]. Hence, we consider the line
element of the form
(W(R)?dR?

ds*> = [N(R)]?B(R)dr? + BR)

+ R2d0? (6.44)
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where the Euclidean time takes values in the range 0 < 7 < (., while the radial coordinate R €
[R}, +00). To obtain the temperature, that is the period of the Matsubara frequency 7, in our case,
we follow the calculation of [[7]. To this end, we first ignore the angular part of the line element and
perform a series expansion near the horizon. Thus, we are left with a two-dimensional line element
which is compared with the line element of two-dimensional space expressed in polar coordinates
dS = dR? + R2d©2. By doing so, we obtain

- W(Ry)?
dR?* = dR? 6.45
B'(Ry)(R—Ry) (6.45)
B'(Rp)(R — Rp)dr? = R?dO? . (6.46)

The coordinate © is periodic with a period 27 which implies that 7 is also a periodic coordinate with
a period 3, given by:
1 47W (R)

FTTTNBBB®),

; (6.47)

h

where T is the temperature of the black hole. For completeness, we also remark at this point that
we have also checked that, as expected, the temperature will take on the same values at the event
horizon regardless of the coordinate system we are using (r or R).

The Euclidean action is related to the Lorentzian action via Zr = —iS and we will consider the
following variational problem which basically consists of the theory alongside a boundary term
denoted by Bz which we will consider in order to have a well-defined variational principle 6Zz = 0.
Thus, we have

2 - ™ oo .
7= 2P / 9 [ dR[-NR*Wsin0L(R,6)] + B . (6.48)
167 0 Rp

Here £ denotes the Lagrangian of the theory which is a function of R, 6 coordinates. After canceling
total derivatives, the Euclidean action reads

(oo}

Iy =5, / do [ dRL(Q',0,Q") + Bg , (6.49)
0 R}L

with Q" = {N(R), W(R), B(R), #(R), A(A)} and L(Q',d,Q") given by

Al Ay ; Nsinf I A)A 9 A)2
L@, 0,Q") = ﬁ {WR7B’ + w3 (2f(¢)(a —B) (8;4; - e‘*%’?% - 36)
+ BR® (WR*¢" — 2RW' + W) } : (6.50)

Following the ADM formalism, we have to vary the above Euclidean action with respect to each one
of the dynamical fields Q° to obtain the field equations. By doing so, we obtain none other than the
well-known Euler-Lagrange equations, namely

oL oL
— =0 — | =0. 6.51
oQi (a@cm) (6.51)

Let us now apply the above equation for the dynamical field Q' = N(R). Upon substituting the
expression qf L from (6.50) into (6.51), we find that the second term vanishes identically, while
OL/ON = L/N. As a result, the equation for N(R) indicates that £ = 0, which in turn implies
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Zr = Bg. This outcome is anticipated in the ADM formalism, where the metric construction
is specifically tailored to yield this result. Additionally, by solving the field equations for all
dynamical fields Q?, one can determine the unknown functions and verify that the resulting solution
is the one obtained in Sec. with line element (6.12)-(6.14), alongside a constant N which
without loss of generality we may set equal to 1. It is important to mention at this point, that during
the derivation of the Euler-Lagrange equations, certain boundary terms were omitted. These terms
are of the following form

R 2BR?¢’ BR >
and -
X (We(0p4) | 2a—BW(0)(0APN |
Be /Rh R ( 2R2sin 0 + RS sin® 0 ) oA - (6.53)

The variation of the boundary term §Bg will account for the neglected boundary terms, ensuring
the attainment of a well-defined variational principle §Zr = 0. Utilizing the fact that the variation
of A yields §A = (6Q,,) cos§, and substituting the expressions for the functions in (6.53)), one can
integrate and derive the following expression:

L @ [ VPRI T QL [BY — (0 - AQ3] - BAQ2, )

OMRS 0Qm - (6.54)
Now, the variation of the dynamical fields at infinity yield
20M 1
B=—— — )
g R +O(R2>7 (6.55)
0p = @m 0Qm — m oM+ O L (6.56)
MR ™ 2MZ2R R3) " :
m 3 1
W = s 0M = 5353 6Qm + O (Ra) : (6.57)
while at the horizon we have that
5B|Rh = _B/(R}L)(SR}L ’ (658)
0@|r, = 0¢(Ry) — ¢'(Rn)d(Ry) , (6.59)
oW (g, = W (Rp) — W'(Rn)d(Rp) - (6.60)

Note that the parameters «, 8 are fixed by the theory and thus not allowed to vary, while M and Q,,
are pure integration constants allowed in the variation.

As previously mentioned, to ensure a well-defined variational procedure, it is desirable to have
0Zr = 0. For clarity and convenience, we will partition the variation of the boundary term 65 into
two components: one at infinity and another at the event horizon, expressed as:

5Br = 0Bg(00) + 0Bx(Ry) - (6.61)

Evaluating now (6.52)) at infinity and considering the variation of the boundary term at infinity we
find that a zeroth order contribution survives, which according to the variations of the fields leads
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to

%R (6B — 26W) + 6B (c0) = 0 = (6.62)

5B (00) = B, 6M | (6.63)

On the other hand, eq. (6.52) at the horizon, alongside the variation of the boundary term at the
horizon and (6.54) results in

Qu { VAMPRE + QF, [R), — 4o - BQ3] - RIQ3, }

2RO Ry + B
2MES

5Qum + 0Bg(Ry) =0, (6.64)

which might be written equivalently as

0A

where we have used the fact that the area of the black hole is given by A = 47R? and we have
defined the magnetic potential as

B Qm{\/ 4M2R}21+Qén [R;lz —4(Oé—ﬁ) gn] _R;lz '?n}

m ONRS (6.66)

Considering now that we are dealing with the Grand Canonical Ensemble, we keep the temperature
and the magnetic potential of the system fixed and as a result we can drop the variations to obtain

BEg(c0) = 8- M , (6.67)
Be(Rp) = *é — Br @ Q- (6.68)

Therefore, the value of the Euclidean action is given by

IE = /BTM - % - ﬁT@QO ) (669)

and since the Euclidean action is related to the free energy G of the system via Zgp = 3,G = 5, M —
S — 3:9,,Q,, we can identify, by comparison the conserved black hole mass and the entropy of the
black hole as

M=M, (6.70)
S=A/. (6.71)

Finally, the First Law of Thermodynamics holds by construction as in the GMGHS black hole.

With the confirmation that the black-hole thermodynamic quantities in our case adhere to the
standard relations, we can now proceed to analyze the black hole’s temperature. In Fig. we
depict the black-hole temperature as a function of the dimensionless quantity Ry, /(2M). Notice
that the temperature is scaled by the temperature of the Schwarzschild black-hole to form a dimen-
sionless quantity, ensuring its independence from the chosen unit system. In Figs. and
we explore the effects of the higher-order electromagnetic contributions on black-hole temperature,
considering fixed (yet distinct) values for the coupling constants o and 3, along with varying mag-
netic charge (Q,,) values, but maintaining the same value for the black-hole mass. Both Figs. [6.5a
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Figure 6.5: The black-hole temperature for (a) attractive and (b) repulsive higher-order electromag-
netic contributions, with varying values of the magnetic charge (Q.,,), while keeping the mass (M)
the same. The axes in both figures are logarithmic.

and were generated using the following procedure: For each value (o« — 3)/M? and the ratio
Qm /M, we numerically evaluate the value of the ratio Rj,/(2M) using eq. (6.13). Subsequently,
employing equation (6.47), we calculate the temperature of the black hole for each parameter pair.
Finally, for each (a — 3)/M? we plot the points from the list {R;,/(2M), T(Rp)/Tsch }- Note that we
use the same mass parameter M for the temperature calculation of the Schwarzschild black hole
Tscrn. In both figures, we have also incorporated a distinctive dot symbolizing a constant value for
the quantity T'(Ry)/Tsch, irrespective of the ratio Ry /(2M). Apparently, this is not coincidental,
as it mirrors the characteristics of the Schwarzschild black hole, where the horizon radius precisely
equals 2M and its temperature is determined by the established formula 7" = 1/(87 M).

Focusing now on the thermodynamical characteristics of our solution, we observe that regardless
of the value (o — 3)/M?, for Q,, = 0, our solution reduces to the Schwarzschild black hole and
therefore all graphs in Fig. have as a starting point the Schwarzschild point. However, when
we depart from this limit, we notice that for o — 3 > 0, as illustrated in Fig. the temperature
of the resulting black holes consistently surpasses that of the Schwarzschild black hole, whereas for
a — 3 < 0 (Fig. [6.5D), the opposite effect occurs. Furthermore, this temperature increase, in the
a — 8 > 0 scenario, is independent of whether the black hole under examination possesses a smaller
or larger horizon radius compared to the corresponding Schwarzschild black hole. As previously
observed in Fig. and discussed in Sec. it becomes evident in Fig. that there are
consistently pairs of black-hole solutions, more compact than the Schwarzschild solution, that share
the same horizon radius R;, but with different ratios @,,,/M. However, now we see that although
these solutions possess the same horizon radius, their temperatures differ significantly. This can
be understood through the relation (6.47) where it is evident that the formula determining the
temperature of a black hole depends on the first derivative of the function B(R). This means that
black-hole solutions which for different ratios Q,, /M result in the same horizon radius Ry, through
the equation B(R},) = 0, their temperatures are not necessarily the same since B’(R},) could differ
in these two cases.

Moreover, we can deduce the thermodynamic stability of these black holes by examining how the
temperature changes with a change in the mass. In Fig. it is evident that there are two distinct
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branches of black-hole solutions. In the first branch we have black-hole solutions that get colder as
the mass is decreasing, while in the second branch we have black holes that are getting hotter as
the mass is getting smaller. This implies that the heat capacity C = dM/dT for the first branch is
positive since both dM, dT are negative and the black holes are thermally stable, while the second
branch, for which the temperature rises with the decrease of mass, exhibits negative heat capacity
and are thermally unstable. Notice also the fact that the Schwarzchild black hole lies in the second
(unstable) branch which is a well-known result. Furthermore, the parameter space of these black
holes exhibits a point where dT' = 0 indicating the divergence of the heat capacity and as a result a
phase transition from hot to cold black holes. In Fig. we can see that as the black holes lose
mass they get colder which implies that they are thermally stable since they possess positive heat
capacity. These results are in agreement with the studies in [176]], where the black holes are viewed
as defects in the thermodynamical spacetime [177].

In the next section, we proceed to study the stability of the black holes from a linear-perturbation
point of view, which, in general, is distinct from the thermodynamic stability. Indeed, as we shall
demonstrate explicitly below, such a linearised stability analysis does not necessarily imply thermo-
dynamical stability, in the sense that the thermodynamically unstable branches found above exhibit
stability under linear perturbations.

6.4 Linear Perturbations

6.4.1 Radial Stability

In this section, we investigate the stability of our solution under radial perturbations. For sim-
plicity, we focus on linear and radial perturbations. Therefore, we use the following ansatz:

ds®> = —P(R,t)dt* +Q(R, t)dR*+R?d0)?, A = ap(R, t)dt+Q,, cos 0 dp, ¢ = ¢(R,1), (6.72)

where

P(R,t)=B(R)[1—ee ™'n(R)], Q(R,t) = +ee ™ hy(R), (6.73)

1
H(R)
H(R,t) = ¢(R) +ee “'p1(R), ao(R,t) = ee”“tag(R). (6.74)

For the stability analysis, it is more convenient to work within the physical coordinate system; hence,
in the above equations B(R), ¢(R) and H(R) = B(R)/W?(R) are given in eqgs. (6.1346.15), and
correspond to the background/unperturbed spacetime. Note that the radial perturbations are asso-
ciated with the L = 0 perturbationf|in the even sector of the gravitational perturbations. Therefore,
in the electromagnetic part, only the electric-type perturbations contribute, as the magnetic-type
corresponds to the odd sector [181], [182]]. The dimensionless constant ¢ determines the order of the
perturbation. Finally, w specifies the decomposition of the modes with fixed energy.

A direct calculation reveals that both the spacetime and the matter field perturbations are deter-
mined from the function ¢;. Consequently, the investigation of the system is simplified to a single
equation for the perturbation of the scalar field. This specific equation can be expressed in the
conventional Schrédinger form:

d*¥(r*)

dr*?

+ [w? = V(R)| W (r*) =0, (6.75)

3L is the “angular momentum" index in the spherical harmonics function YLML (0, ¢). For more information about the
decomposition of the perturbations in spherical harmonics, see [178}[179] 180, [181]].
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Figure 6.6: The graph of the effective potential V in terms of r* for various values of the parameter
Qm/M and (a) (o — B)/M? =1, (b) (o — B)/M? = —1.

where we have defined a new perturbation function as ¥ = R¢; and the tortoise coordinate is
dr* = ——42__ The potential of the Schrédinger equation has the following form

VB(R)H(R)
_ HB'+2BR¢ [¢/ (R(H' + HRY") +4H) + 3HR¢"] + BH'
a 2R
B(a - p)Qy, (Rffi)/ + f) Bye=20Q2 (2 — R)
RS + R .

V(R)

n (6.76)

Considering our emphasis on the stability of black-hole solutions, there is no need to solve eq.
(6.75). The time evolution factor, exp (—iwt), simplifies the task, requiring us only to ascertain
whether the frequency, w, is purely imaginary or not. In the scenario where the frequency w is purely
imaginary, the mode undergoes exponential growth due to the presence of the term exp (—iwt)
making the solution unstable. Therefore, a negative eigenvalue, w? < 0, that signifies an unstable
mode, corresponds to a bound state in the Schrédinger equation (6.75). A general result in quantum
physics is that for a potential that vanishes in both asymptotic regions, has a barrier form, and is
positive definite. Therefore, eq. does not exhibit bound states. In Fig. [6.6] we depict the
potential of the Schrodinger equation for two families of solutions. The first one corresponds to
(a — B)/M? = 1, while the second one corresponds to (o« — 3)/M? = —1. By carefully examining
the parametric space of the solutions, we deduce that the potential always takes a form similar
to the potentials in Fig. Therefore, we conclude that our solutions are stable under radial
perturbations.

Although radial stability is a strong indication regarding the stability of a particular solution,
a more careful and general perturbation analysis has to be performed to extract a stronger result,
which, however, lies beyond the scope of this work. Moreover, as shown in the previous section
linear stability does not necessarily imply thermodynamical stability for the black hole, in the
sense that the latter, although linearly stable, nonetheless it possesses thermodynamically unstable
branches.
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6.4.2 Scalar Quasi-Normal Modes

Quasi-normal modes (QNMs) play a crucial role in the study of black holes and other astrophys-
ical objects [[183] [184] [185]]. These modes represent the characteristic vibrations or oscillations of
a black hole after a perturbation, such as a gravitational wave or a scattering event. QNMs are
characterized by complex frequencies, i.e. eigenvalues of the Schrodinger equation, consisting of a
real part and an imaginary part. The real part corresponds to the oscillation frequency, while the
imaginary part reflects the damping or decay of the mode. The study of QNMs provides valuable
insights into the nature and properties of black holes, offering a unique window into their internal
dynamics.

For simplicity, we will consider the propagation of a test scalar field ® in the background of our
black hole and extract its QNMs. We begin our analysis from the following action functional for the
scalar field,

S = / d'z/=g [VFOV,® + m*®?] (6.77)

where m is the mass of the test scalar field. The variation of the above action with respect to the
scalar field yields the Klein-Gordon equation in the black hole background

(O-m*)@=0. (6.78)

Note that the test scalar field ®, as a perturbation field, does not back-react on the spacetime metric
and is a function of all spacetime coordinates ® = ®(¢, R, 0, ¢). For clarity, we choose to work in the
physical coordinate system. Therefore, the background metric is given by eq. (6.12). We can apply
the separation of variables as follows

Y(R)

(I)(ta Ra 97 50) = eithYL],\/[L (07 @)T ) (679)

where Y'* (0, o) represents the spherical harmonics function. By using the tortoise coordinate,

dr* = %, one can rewrite the perturbation equation in a Schrodinger form as:
d*¥(r*
y U 4 = viw) v =, (6.80)
¥

where V(R) is the effective potential of the Schrodinger equation and is given by

!/ !/
_HB+BH EL(L +1) +m?B. (6.81)

v 2R R?

The background metric functions B and H = B/W? are given in egs. .

In the pursuit of calculating the QNMs, the WKB (Wentzel-Kramers-Brillouin) approximation
stands as a valuable method. Particularly useful in the context of wave-like phenomena, the WKB
approximation provides an efficient and semi-classical approach to estimating the complex frequen-
cies associated with QNMs. By treating the Schrédinger-like equation governing the perturbations
as a semiclassical wave equation, the WKB method allows for the determination of QNM frequen-
cies without the need for an exact solution. The WKB method was initially developed for quantum
mechanical problems; however, Schutz and Will were the first to apply this method to the problem
of scattering around black holes [[186]]. Later, Iyer and Will extended this approach to the third WKB
order beyond the eikonal approximation [[187], and Konoplya further advanced it to the sixth order
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|

| (a—pB)/M*=0.01 ]|

(a—B)/M7=—1

|

(a—B)/MT=1

Qm/M =0.01 | 0.329438 — 0.096255¢ | 0.329438 — 0.096255¢ | 0.329438 — 0.0962554
Qm/M =0.3 | 0.333767 — 0.0967124 | 0.333767 — 0.0967284% | 0.333767 — 0.096696 7
Qm/M =0.6 | 0.348235 — 0.098171¢ | 0.348226 — 0.098595¢ | 0.348243 — 0.097727 4

Table 6.1: The dimensionless L. = 1, n = 0 quasinormal modes (Mw) for m = 0.

|

| (a—pB)/M*=0.01 |

(o —B)/M* = -1

|

(a—B)/M*=1

|

Qm/M =0.01 | 0.401632 — 0.050195¢ | 0.401632 — 0.050195¢ | 0.401632 — 0.0501954
Qm/M =0.3 | 0.404334 — 0.052296¢ | 0.404335 — 0.052294¢ | 0.404332 — 0.052298 4
Qm/M =0.6 | 0.413700 — 0.058602¢ | 0.413733 — 0.058522¢ | 0.413667 — 0.0586794

Table 6.2: The L = 1, n = 0 dimensionless quasinormal modes (Mw) for m/M = 0.4.

[188, 185]. Interestingly, the sixth order yields a relative error of approximately two orders of mag-
nitude lower than that of the third WKB order [[188, [185]]. However, for simplicity, in this work, we
will employ the first-order WKB approximation, in which the QNM frequencies are obtained from
the solution of the following equation

, nez>.

2 *
n+;:—¢l“ V) 6.82)

—2V(r")

—k
T*=Tmax

The expression in the right-hand part of the above equation is evaluated at the maximum of the
potential r¥ . while n is the overtone number of the QNMs.

max

In Tables and we present the dimensionless QNM frequencies, denoted by (Mw), for
two distinct scenarios: when m = 0 and m/M = 0.4, respectively. Notably, as @,, approaches O,
our solution converges to the Schwarzschild black hole, irrespective of the (a — 3)/M? parameter.
This convergence is evident in the first row of both tables, where Q,,,/M = 0.01, as the QNM values
remain constant across varying (o — ()/M?. Furthermore, as (o« — 8)/M? tends toward 0, our
solution adopts the characteristics of the GMGHS black hole. Consequently, the QNMs in the first
row of both tables, specifically when (o — 8)/M? = 0.01, align with those of the GMGHS black
hole. The subsequent rows in the tables provide additional insights into the characteristics of our
solution. For instance, in the second and third rows, where Q,,,/M = 0.3 and 0.6, respectively, we
observe a systematic variation in the QNM values with changes in both Q,,,/M and (a— 3)/M?. This
behavior highlights the sensitivity of the QNM frequencies to the parameters characterizing the black
hole solution. Furthermore, by comparing these results to the Schwarzschild and GMGHS cases, we
discern how our solution deviates from these benchmark scenarios. Additionally, the tables reveal
intriguing patterns in the imaginary parts of the QNMs. For varying Q,,/M and (« — 3)/M?, the
imaginary parts exhibit non-trivial changes, reflecting the impact of the black hole’s charge and the
parameter (o — 3)/M? on the damping behavior of the perturbations.
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6.5 Other Solutions

6.5.1 Asymptotically (A)dS spacetimes

Let us now, briefly discuss asymptotically (A)dS spacetimes. Following [37], introducing a scalar
potential U(¢) in the action and considering

S = / d'oy/=g(R = 2990V ,u6 — e 2 F2 & [(6)( — 20F 4 FLF L F, + BF') = B(9)) , (6.83)

with a U(¢) of the form

B(0) = % Ae2 4 % A2 4 % _ %A(cosh@qﬁ) +9), (6.84)

we can obtain B(r) as

2M_ 2a-P)Qh 1, <r _ an) , (6.85)

M

while ¢(r), R(r) will remain the same. Note here that the potentials U(¢) and f(¢) are almost
identical, and they are both Liouville-type potentials [38]

6.5.2 Solutions for general v

Assuming that the coupling term between the dilaton and the Maxwell term is of the form e=27¢
we can obtain the same geometry with the v = 1 case with the coupling function f(¢) now being

given by
(i e

20 (20— 1) (a — )

In this case, the charge-to-mass ratio is fixed by the theory. As a result, such black holes are described
by a constrained phase space of free parameters, since this situation reduces the number of primary
black hole hairs from two to one. A more physical result would be to let the form of the dilaton field
to be affected by the change of the coupling function with the Maxwell term, however, we were not
able to derive exact results in this case, so one has to employ numerical techniques. Such endeavors
may be undertaken in subsequent works.

f(¢) = —3cosh(2¢) — 2 — (6.86)

6.6 Conclusions

In the quest to comprehend gravitational phenomena and the nature of gravity itself, the theoret-
ical exploration of black holes stands as a pivotal frontier. The predictions of General Relativity (GR)
are in good agreement with current observations related to black holes. This is attributed to the large
mass of the observed objects and therefore their large horizon radius and small horizon curvature.
Additionally, a plethora of cosmological observations indicates instances where GR exhibits limita-
tions, with the most notable challenges being the Dark Energy Problem and GR’s inability to account

#Nonetheless, we should notice that the presence of a positive cosmological constant term in the gravitational effective
actions is problematic within the context of string/brane-inspired quantum gravity theories, due to the so-called swampland
conjecture [189][190] [191]. This issue is open at present, and its study goes beyond the purpose of the current article.
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for the inflationary epoch in our universe. Therefore, the validity of General Relativity is expected
to come under scrutiny in extreme conditions. General Relativity is commonly acknowledged as an
effective theory applicable only within the realm of low energies. Consequently, such observations
motivate us to explore modified gravitational theories, especially in extreme conditions where GR’s
validity may be compromised. Among these theoretical frameworks, modifications originating from
String Theory, particularly the heterotic string theory, emerge as leading contenders. Notably, String
Theory offers insights into high-order corrections, ranging from the Gauss-Bonnet term to non-linear
electromagnetic effects, and provides a rich avenue for exploring the behavior of black holes under
diverse conditions.

One intriguing aspect of string/brane-induced non-linear electrodynamics is the emergence of
the Born-Infeld (BI) Lagrangian, which encapsulates higher-order corrections to Maxwell’s theory.
This Lagrangian arises from the resummation of open string excitations, particularly in the con-
text of D-brane worlds in string theory. The coupling of the BI Lagrangian to the dilaton field in
curved spacetime leads to an effective four-dimensional action, offering a novel perspective on elec-
tromagnetic interactions in the presence of gravity. Furthermore, considerations of higher-order
electromagnetic terms, originating from closed string sectors, broaden the theoretical landscape.
The inclusion of string loops leads to generalized effective actions, incorporating both closed and
open string contributions, and potentially revealing novel phenomena beyond conventional elec-
tromagnetic frameworks. Departing from traditional electromagnetic theories, the exploration of
non-linear electrodynamics within the context of black hole solutions offers a rich avenue for un-
derstanding strong-field regimes and cosmological implications. Non-linear effects become crucial
in regions with intense gravitational fields, such as those near black holes, shedding light on phe-
nomena absent in linear theories. Moreover, non-linear electrodynamics holds relevance for early
universe cosmology, where the interplay between gravitational and electromagnetic fields played a
significant role.

In this chapter, we considered a string-inspired theory that involves a scalar field ¢ coupled to
the electromagnetic field via a non-linear function f(¢). The action encompasses higher-order elec-
tromagnetic invariants, contributing to the field equations and leading to novel black hole solutions.
Furthermore, we investigated the impact of a non-trivial coupling function f(¢), considering a spe-
cific functional form motivated by string-inspired models. The resulting exact, magnetically charged
black hole solution revealed significant departures from the classical General Relativity predictions,
with the scalar field and the electromagnetic field configurations exhibiting non-trivial behavior. We
explored the implications of different coupling constants « and § on the spacetime geometry and
electromagnetic field configurations. The solutions obtained exhibit intriguing features, including
dependence on the sign of o — 3 which determines whether the higher-order electromagnetic terms
contribute attractively or repulsively to the spacetime geometry. Additionally, we examined the hori-
zon structure of the black hole solutions, observing transitions from single to multiple horizons and
even to naked singularities as the parameters varied. Notably, the compactness of the black holes
relative to the Schwarzschild solution depended on the the magnetic charge to mass ratio. Our find-
ings suggest a rich interplay between the scalar field, electromagnetic field, and spacetime geometry,
highlighting the potential implications of such theories in astrophysical contexts, and the search for
potential signatures of string theory in black hole physics, at least those signatures that can be mani-
fested through effective string-inspired field theory models. It goes without saying, however, that the
present work does not deal with a detailed experimental sensitivity analysis of such objects, which
still remains to be done.

The examination of geodesics and energy conditions delves into the intricate dynamics of parti-
cles moving within the spacetime geometry described by the black hole solutions under investigation.
By analyzing the geodesic equations we unveil the behavior of massive particles in the vicinity of
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these black holes, elucidating the role of the effective gravitational potential. Notably, the effec-
tive potential exhibits distinct features depending on the relative values of the coupling constants,
offering insights into the stability and nature of orbits around the black holes. Additionally, the ex-
amination of energy conditions associated with the effective stress-energy tensor reveals intriguing
properties of the spacetime, indicating the existence of a dilaton hair in the black hole’s exterior
while satisfying all energy conditions. This observation challenges the traditional no-hair theorems,
underscoring the nuanced interplay between gravitational theories, non-linear electrodynamics, and
scalar fields in modified theories. Our thermodynamic analysis provided valuable insights into the
properties of black holes in both the GMGHS solution and our black-hole solution with non-linear
electrodynamics. Our analysis allows for the extraction of important thermodynamic quantities such
as mass, entropy, magnetostatic potential, and the extraction of the first Law of Thermodynamics.
Notably, the entropy of both black hole is consistent with the Bekenstein-Hawking entropy formula.
By examining the behavior of the temperature, we concluded that when the non-linear electrody-
namics terms act attractively, there exist two distinct branches of black holes, one that is getting
colder as the mass is decreasing and therefore is thermally stable, and another one that is getting
hotter as the mass is decreasing which is thermally unstable. On the other hand, when the non-
linear electrodynamics terms have a repulsive effect, the black holes are getting colder as the mass
is decreasing and as a result are thermally stable.

Finally, our analysis of linear perturbations and scalar quasi-normal modes (QNMs) provides
valuable insights into the stability and dynamic behavior of black hole solutions with non-linear
electrodynamics. Through a rigorous investigation of radial stability, we demonstrated that our
black hole solutions remain stable under linear and radial perturbations. This finding underscores
the robustness of our black hole solutions against radial perturbations, supporting their viability
as physically meaningful configurations within the framework of non-linear electrodynamics. Fur-
thermore, our examination of scalar QNMs yielded intriguing results regarding the characteristic
vibrations and oscillations of the black hole spacetime. Moreover, the analysis of scalar QNMs re-
vealed the intricate interplay between the black hole parameters, such as charge and (a — 3)/M?2,
and the frequency and damping behavior of perturbations. By systematically varying these param-
eters, we observed distinct patterns in the QNM frequencies, indicating the sensitivity of the black
hole’s dynamic properties to its intrinsic characteristics. Notably, our results exhibited convergence
to the Schwarzschild black hole in the limit of vanishing charge and alignment with the GMGHS
black hole in specific parameter regimes. These observations highlight the rich phenomenology
associated with black holes in our string-inspired theory.
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Chapter 7

Concluding Remarks

In the present thesis, we investigated black hole solutions and their properties in modified theo-
ries of gravity and electrodynamics. Such theories are well established frameworks, in investigating
the effects of gravity and electrodynamics in the strong field regime, where the intensity of the fields
is strong. In such a scenario linear theories such as GR and Maxwell’s theory of electrodynamics
break down.

In the first part of this thesis, we presented in detail black hole solutions coupled to scalar fields,
f(R) gravity theories and non-linear theories of electrodynamics that stem from string theories.
We discussed about well known solutions of f(R) theories, presented some of their properties and
shed light to some problematic behaviors they present. The no-scalar hair theorem has been also
scrutinized and we discussed several ways that this theorem might be bypassed, by the inclusion of
scalar potentials for the scalar field, as well as non-minimal couplings between the scalar field and
gravity. The no-scalar hair theorem states that black holes are described by parameters that can be
measured by an observer at infinity and therefore are associated to a Gauss law, such as the mass,
the electromagnetic charge and the angular momentum. We reviewed same problematic aspects
of these scenarios such as the fact that in the conformal coupling case, the scalar field blows up
at the horizon of the black hole, a scenario that may be remedied with the inclusion of a positive
cosmological constant only to find out that such a black hole possesses negative entropy at the event
horizon, due to the fact that the entropy acquires an addition term because of the gravity-matter
coupling. In addition, the potentials that may be used to bypass the no-scalar hair theorem are not
well motivated from a high-energy physics point of view, but can be viewed as toy models, in order
to investigate the behavior of hairy black holes.

We then moved on to the main part of this thesis by introducing scalar fields as matter fields in
f(R) gravity we came to some interesting conclusions. First of all, the three dimensional black holes
might be thermodynamically preferred when compared to their GR counterparts, as they possess
higher entropy at the event horizon of the black hole. Effects of non-linear gravity are important in
the region where the scalar field is strong, i.e near the origin. On the other in the conformal-breaking
case of chapter [4] the produced black hole is massless, an effect we have correlated to the parameter
« that breaks the conformal invariance, by showing that the part of the metric that is completely
supported by « will yield negative mass contributions.

In the final part of this thesis we discussed black hole solutions in the context of non-linear theo-
ries of electrodynamics and in particular versions of the Euler-Heisenberg theory. This theory arises
naturally in the context of dimensional reduction of the ten dimensional heterotic string theory. At
first we considered a simple scalar field theory of a self-interacting scalar field minimally coupled to
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gravity. Imposing a scalar field that is regular everywhere, in the scenario of pure radial magnetic
fields, we obtained an exact magnetically charged hairy black hole solution and reconstructed the
scalar potential. The black hole carries secondary charge since the black hole mass is supported by
the scalar field. In addition we found that the potential restricts the free parameters of the theory
since it allows for fixed mass to scalar charge and magnetic to scalar charge ratios. Such a scenario
is also present in the linear electrodynamics case.

In the final chapter, we investigated a similar theory. We considered couplings of the dilaton field
with the Euler-Heisenberg electrodynamics. Here the coupling function is of fundamental nature,
since it contains the dilatonic coupling e*2¢. The form of the coupling function is in particular f(¢) =
—3(g5%+9%) — 2, where g, = exp(¢) is the string coupling. As we discussed in the pertinent chapter
and in the introduction, the g;? is the standard tree-level dilaton-Maxwell term coupling [116),
120, [121], while the ¢? indicates two-string-loop corrections (genus-y = 2 world-sheet surfaces).
The crucial, for our subsequent discussion, dilaton-independent term in f(¢) might be the result
of appropriate combinations of higher-string-loop corrections in the Einstein-frame effective action.
For this coupling function, we obtained exact magnetically charged black hole solutions with a
non-trivial dilaton. We found that the non-linear electrodynamics term will be either of attractive
or repulsive nature. When they act attractively, we found that there will be black hole solutions
with the same radius for the event horizon but for different masses and charges and such compact
objects cannot be therefore identified by their horizon. However, these objects will have different
thermodynamic properties. Evaluating the thermodynamic quantities we found that in the case
where the non-linear terms act attractively we have two branches of black hole solutions. In the first
branch we have cold black hole solutions that are thermally unstable, while in the second branch we
have hot black holes that are thermally stable. By examining the energy conditions, we found that
our theory respects them, while a stability analysis showed that the black holes are stable against
radial perturbations.

In conclusion, in this thesis, we obtain several novel black hole solutions in f(R, ¢) theories and
non-linear theories of electrodynamics. We discussed their thermodynamic aspects and we came to
some interesting conclusions. The results obtain indicate that non-linear theories posses far more
interesting phenomenology in regards to the compact objects they can host, when compared to
linear theories such as GR and Maxwell’s theory.
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Appendix A

More Calculations

A.0.1 A very simple asymptotically flat hairy black hole solution: Extended
discussion and calculations

Let us now elaborate a bit more on the minimally coupled case, since a scalar potential is the
easiest way to evade the no scalar hair theorem. Consider the action of A solution of this
action is [[15]]

dr?

ds* = —F(r)dt* + ) + a(r)2dQ? (A1)
F(r):l—l—x(Zr(l/—&—r)ln(V—:r) —V(Z/+2r)> , (A.2)
a(r) = r(r+v), (A.3)
o(r) = \% In (1+ ;) : (A4)
V() = 6xsinh (V36) — 2v2x6 (cosh (V29) +2) | (A.5)

where Y is a constant of the theory and v an integration constant which plays the role of the scalar
charge, since it controls the 1/r behavior of the scalar field at large distances. F'(r) asymptotes as

F(r — o0) ~ 1 0 e S S S Y N EA (A.6)
r—o0)~1— —24 2 — — - .
3r 6r2  10r3  15r% 2175 r ’

F(r—0)~ (1-v°x) = 2r(x(v —vIn(v) + vIn(r))) + O (r*Inr) , (A7)

and hence describes a genuine black hole spacetime for (1 —v? X) < 01in the interval 0 < r < 0.
Now, we consider the Hamiltonian version of General Relativity, whose action is

7= /d%dt (7gi; — NH — N;H') + B . (A.8)

Here B is a boundary term. We are going to make use of quantum gravity arguments, and use the
Gravitational Path Integral approach therefore, as required by the Path Integral, the action has to
contain only first derivatives of the metric [16]. The spacetime we consider is static (no dependence
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on t and is irrotational). Hence we can consider the reduced action principle
I= —/dSzdtNH +B. (A.9)

We will consider the Euclidean action which is related to the Hamiltonian action via
I = —il . (A.10)

The Euclidean metric reads

dr?

ds* = F(r)N(r)%dr* + )

+ a(r)?d0? | (A.11)

where 7 = it and 0 < 7 < (. Here 7 is periodic with period 8. This comes from the fact that the
Euclidean version of the metric is basically the space constructed by the product of two two-spheres
&% x &2, Hence in order to cover the whole space, we have to treat T as periodic. The other
coordinates range as 0 < ¢ < 2w, 0 < 0 < 7, r > r;,. Now performing the integrations in the action
we are left with

Ip = 47f /OO N(r)a(r)*N(r)H(r)dr + Bg . (A.12)

By using the Euclidean metric and the fact that N(r)H (r) = —L where L stands for the Lagrangian
of the theory, we obtain the Euclidean action

Tp— 47Tﬁ/ %N (2a (@'F' + 2Fa") + a? (F () + 2V) +2F () - 2) dr+Bg,  (A13)
Th

where several integrations by part were performed. Now, we need to vary the Euclidean action with
respect to the fields IV, ¢, a, F' in order to obtain the equations of motion. To do so we will cancel (at
first) some boundary terms. However, in order for the Euclidean action to attain a true extremum
within the class of the fields considered we have to make sure that

0Zrp =0. (A.14)

The role of the boundary term Bg is to make sure that the variation of the Euclidean action indeed
will vanish. We now begin the variations, starting from N. This is trivial and we obtain

2 (d'F' +2Fa") + a2 (F (#) + 2v) YoF () —2=0, (A.15)

which means that in the Hamiltonian formulation, the Euclidean action is the boundary term and
everything is encoded there. Here primes denote derivative with respect to r. Variation with respect

to ¢ yields
!
a (a (N (—F’¢' — F¢" + V(;/”) - F¢’N’(7«)) - 2FNa’¢’> =0, (A.16)
and i cancelled the boundary term
d /
- (a*>NF¢'s9) . (A.17)

Variation with respect to F' reads
2a" +a ()’ =0, (A.18)
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and i cancelled the boundary term

d

o (aNd'6F) . (A.19)
Finally variation with respect to a reads

2/ (NF' + FN') + 2FNd" + a (3F’N’ +N (F”(r) FF($) + 2v) + QFN“) =0, (A20)

and here several boundary terms have been cancelled

dii (FN2d'sa) | (A.21)
dii (aNF'sa) (A.22)
dii (2aFN6a') | (A.23)
—dir <;T (2aFN) 5a> ) (A.24)

Now, the solution reported in equations (A.1))-(A.5) satisfies the obtained equations of motion. So
we are left with the boundary terms. All the boundary terms together now read

4775( — 64 (2FNd' + 2aNF' + 2aFN") + 26aFNd' + adFNd'

+6Bg =0 (A.25)

Th

+ a26¢FN¢' + adaNF' + 2a5a’FN)

To proceed, we need to know the variations of the fields at infinity and at the horizon. Since we
already know the solution this is easy and their variation at infinity reads

2
5 = X (A.26)
T
1 v
da = v <2 - 47‘) 5 (A.27)
5o = 0 (A.28)
=7 .

At the event horizon we have that

F) oy = F )+ F' (Dl (1 = 1) = F'0) o (0 = 14) = e = 12), (A.29)

B
SF — f%(érh) , (A.30)
daly=r, = da(ry) —a'(rp)dry , (A.31)
8¢|p=r, = 60(rn) — &' (rn)dry, , (A.32)

where i have used the fact that in order to avoid a conical singularity at the horizon 7 is periodic

with period 3 which is related to F’ via

F'(rn)
4

T =

(A.33)

|~
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For our convenience, lets break the variation of the boundary term into two pieces, one at infinity
and another one at the horizon
0Bg = 6Bg(00) + 6Bg(ry) . (A.34)

Now, the contributions at infinity and at the horizon reads
1
—4 (nBévPx) + O () + 0Bg(c0) — (—167%5aa) + 6Bg(ry) = 0. (A.35)
T

As a result we have

3
B (00) = 4 (nB6v1x) — Bp(oo) = 47@% : (A.36)

6Bg(ry) = —167%6aa — Bg(ry) = —21A(rs) | (A.37)

where i used the fact that we’re keeping the temperature (3) fixed (Grand Canonical Ensemble) and
that A(ry,) = 4ma(ry)?. As a result, the Euclidean action now reads

Ir = Br(co) + B(r,) = zwax% — 21 A(ry) - (A.38)
However, the Euclidean action is related to the free energy F in the Grand Canonical Ensemble as
Ip=pF=pM-S§, (A.39)

where M, S are the mass and entropy of the black hole. Therefore, by comparison we can obtain
the conserved mass and entropy of the black hole as

3
M= 47TX% , (A.40)

S =21 A(ry,) . (A.41)

Note here that the parameter v appears in the mass of the black hole and therefore, the scalar
hair is secondary since the the scalar charge v is related to the mass of the black hole. The = factors
in these expressions appear due to the fact that we have set k = 87G =1 — G = 1/87.

A.0.2 Thermodynamics of the (2 + 1) dimensional black hole with conformal
scalar hair.

Here, we will discuss the thermodynamics of the black hole presented in [19] using the Euclidean
Path Integral approach. To do so, we will consider the Hamiltonian version of this action, namely

= / (745, + pd— NH — N'H ) d*adt + By (A.42)

Here B is a boundary term. Since this solution is static and spherically symmetric, we can
consider a reduced Hamiltonian

H=-— / d*zdtNH + By (A.43)
We will consider the following line element
2 2 o dr? 2 192
ds® = —N(r)°b(r)dt* + — + r*d6~ | (A.44)

b(r)
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where the coordinates range as t; < t < t2, 0 <7 < 00, 0 < 6 < 27. In the Euclidean Path Integral
approach, the Euclidean action is identified with the free energy F in the grand canonical ensemble
via

In = BF, (A.45)

where 3 is the periodicity of the Euclidean imaginary time. The Euclidean action is related to the
Hamiltonian action via Zp = —iH, making the time periodic ¢ — i7 with period 8, and performing
the time and angular integrations we end up with

Ip = 27p / drNH + B . (A.46)

In order for the Euclidean spacetime to be regular at the event horizon of the black hole, find
that g is given by

8= bf” =1T, (A.47)

b (rn)

and is related to the inverse black-hole temperature. Now, equation (A.46) takes the form

T8N (g?z%’ F (2 (rC' — 1)+ 2b (¢ +7¢")) + 2r) — 26l (g’)Q)
Tp=— / dr +Bg. (A48)

(kl?
Here, we have made the substitution ¢ = k¢?/8 in order to much the definition of the original

work [19]. Primes denote derivation with respect to the radial coordinate r. Now, varying with
respect to the dynamical fields N, b, ( we obtain the equations

CrPY + ¢ (P (r¢ = 1) +2b( +r¢") +2r) — 20 =0, (A.49)

CCN'+ (N (r¢’ = 1) = Nr¢") + 2Nr (¢')? =0, (A.50)

C(N' (3¢rY + 2b (¢ + 2rC")) + 2b¢rN”)
+N (gZ (Fb" + 26') + 4C (¢ (rb + b) + br¢") — 2br (4')2) ~0. (A.51)

These equations are solved by the solution reported in [19], and furthermore, now the Euclidean
action will be given solely by the boundary term Zp = Bg. To derive the aforementioned field
equations we ignored (for the moment) some boundary terms. In order to have a well defined
variational procedure 6Zg = 0, the variation of the boundary term 5Bz has to be such that it cancels
these boundary terms. Consequently, the variation of the full action becomes

+0Bg =0.

Th

7B (OCCNTY + (N (—2br0¢" 4 0b(—C) + 0b) + Nr(’ (4b6¢ — 6b¢) + 2b6¢CrN')
(kK

(A.52)

For convenience we will split the variation of the boundary into two terms, one at infinity and
another one at the horizon:

0Bg = 6Bg(00) + 6Bg(ry) . (A.53)
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The variations of the fields at infinity read

8¢ = (1 - 21;) SB+0O(r73), (A.54)
r r

4B 1 —

§¢ = (73 - 742) SB+0O(r ), (A.55)
6B% 6B

db = <_l2r - 12> 0B (A.56)

Now evaluating the boundary term at the boundary we obtain

6(BBsB) 12 (nBB%B) 12xB8B35B \* B

E—r T + 12,2 +0 " +0B(0) =0. (A.57)

At the horizons the variation of the fields reads

bl = b (1), = —%m , (A.58)
6Clr, = 6C(rn) — ' (rp)orn (A.59)
At the horizon (A.52)) reads
2
BT 0T | 5B(r) = 0. (A.60)

As a result, the variation of the Euclidean action finally reads

6(rSBoB)
K2
Considering the Grand Canonical Ensemble (keeping the temperature fixed) we find that in order

for the action to attain a true extremum when the field equations hold, the boundary terms read

87T2(5’I“h

0Ip=0— — + 0B(00) + 3 +0Bg(ry) =0. (A.61)

32
Be(oc) = X707 (A62)
2
Bi(rp) = 87;:1 . (A.63)

In conclusion, since the action is solely given by the boundary terms and related to the free
energy of the solution in the Grand Canonical Ensemble Zp = 3F = SM — S, where M, S are the
mass and the entropy of the black hole we have

Ip =BF = iy (A.64)
we can identify
B2
M= 3B (A.65)
K12
2
5=5"h (A.66)
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as the conserved mass and entropy of the black hole respectively. As a final comment, we note
that the first law of thermodynamics

IM =T3S , (A.67)
holds by construction.

A.0.3 Calculation of Entropy from Wald’s Formula

The Lagrangian of the theory|1.174]is

] 1 Lo
L= "0 = 50"00u0 — SRE —V(9). (A.68)

The quantities that involve parts of the Riemann tensor are the gravitational term f(R) and the
non-minimal coupling term R$?. Hence, the derivative of the other terms in the Lagrangian with
respect to the Riemann tensor wil be zero. Therefore

ORapgys  ORapys \ 2 12 '
By applying the chain rule we can see that

oL _lf OR 1, OR
aRO‘ﬁ’Yls B 2 RaRaﬂfyé 12 aRaM(; ’

so we only have to calculate

The Ricci scalar, in terms oﬁ%@lakiemann tensor is defined as
R = g""¢"* Ryvux , (A.69)
and by taking the derivative we have
RT (9"5¢" Ry = g“"g”ggzzz = % i g A 5 Rfﬁw (Ruvrx — Ruprr)
since the Riemann tensor has to satisfy
Ry = —Rypex - (A.70)

We now can calculate the derivatives
0
aRaﬁ’yé

In total, the derivative of the Lagrangian with respect to the Riemann tensor multiplied with the
binormals wil now read

oL AoA 1 fR 1 2 ay ,B6 By ad\a o 1 2
mgaﬂgvé = 5(7 - ﬁ¢ )(9 9" —g"'g )Ea,@€76 = _<fR — 6¢ ) (A.71)
Now the full expression for the entropy will be

0w = (1w —gotrn?) ot [ [ smoanae =T () 000%) = 2 (s So?)
(A.72)

lgpﬁ, VA
2

1 1
(Ryur = Bupn) = 597" (53 56763 — o 555Z5§) = 5(9‘”95 o - g’”g“‘s) :
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A.0.4 Magnetically Charged Black Holes

Let’s discuss magnetically charged black holes. Under the assumption A, = Q,, cosfdyp, the
only non-zero components of the Faraday tensor are Fy, = —F,9 = —Q,,sinf. As a result the
electromagnetic invariant P = F, FH gives
v w v 66 (] QQ'n%
F,uuFM =g MgX F,LLL/FUJX =g gWWFe@F9@+g¢¢g FL,DGFLPQ =2

)

Yoo

independent of 6, . Now, Maxwell’s equation yields
V*E,, —2aV*PF,, —2aPV*F,, = V*F,,, — 200" PF,, —2aPV"*F,, =0,

where we have changed the covariant derivative with a partial since P is a coordinate independent
quantity (scalar). The second term now is

—2a9*" 0, PF,, = —2a¢%° 0y PFy, — 2ag¥?0,PF,, =0,
since P is independent of 6, ¢. Eventually, Maxwell’s equation ends up being
V*F,, —2aPV*F,, =0, (A.73)

hence, if we satisfy V#F},, = 0 we can satisfy the above equation. This choice for A, satisfies
V#F,, =0 and here’s why. We have

VHE,, =0 g (0o Fu —T5, Fo — T, Fun) =0 — ¢% (0pFp, — ThgFr —T5,Fp\) =0,

K
ap av

and remembering that the only non-zero component of the Faraday tensor is Fy, = —F_¢ we have
9% (09 Fpyp — T8, F o — T8 Fop) =0 — 0gFpy — Ty Fog — T Fp, = 0 — OgFyp — TiFp, =0 —

—Qm cos0 — (—Qp)sinfcotd =0—-0=0,

hence V#F,, =0 for A, = (0,0,0, @y, cosb).

Just for completeness, we would like to comment that any non-linear electrodynamics theory
that contains purely magnetic fields and depends on the Lorentz invariant P admits such magnetic
solutions. To see this, consider

S = /d4r\/jg(P - L(P)), (A.74)

with £(P) containing non-linear terms that depend only on P. The variation with respect to A,
yields
VH(Fuy — Lp(P)F) =0, (A.75)

where the subscript denotes differentiation with respect to the argument. Now since Lp will be
a function of P only, and since for magnetic cases P is a function of r only, the one-form A4, =
(0,0,0, Q,, cos ) will satisfy the aforementioned field equation.

To convince the reader that the aforementioned ansatz will give a Coulomb-like radial magnetic
field, we remind that the magnetic vector will be given by [[192]

1
B, = —ge”le“ ) (A.76)
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Now this evaluates as
1 1 1
_ietr&pFGw - §Et7«¢0F(’00 = _5 (\/ _ggeogww(aOAw - agpAH) Y _ggwwgee(_aﬁAap + 8¢A0)> .

Now, Ay = 0 since this will give rise to angular dependent magnetic fields. Therefore,
V367G 0 Ay = —/ =G5 g7 (~Qp sin0) ~ 2
9oo

where we made the assumption that g;; = ¢"". It is consequently clear that this ansatz will give
Coulomb-like radial magnetic fields.
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