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Abstract

School of Mechanical Engineering
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Motion control strategies for the autonomous sampling, transportation

and release of loads suspended to multicopters

by Fotios PANETSOS

The field of multirotor Unmanned Aerial Vehicles (UAVs) has risen in popularity
throughout the last years, since they are recognized as efficient robotic platforms for
a variety of applications. More recently, the incorporation of loads onto multirotors
has expanded the boundaries of UAVs, enhancing their capabilities and enabling their
use in a wider range of tasks. Particularly the suspension of loads through a cable
has captivated the interest of the research community as it is a ready-to-use solution,
as opposed to the rigid attachment of loads, and alleviates the need for complicated
designs. However, the challenges arising from the existence of the cable impede
the autonomous deployment of multirotors with cable-suspended loads in real-world

environments.

In this dissertation, we aim to bridge this gap by equipping multirotors with the
necessary autonomy, thereby enabling their safe operation within the context of 3
distinct applications: (a) swing-free transportation of the cable-suspended load, (b)
tracking of a moving ground vehicle with the goal of releasing the load towards the
target, and (c) water sampling from aquatic environments. More precisely, we design
innovative state estimation techniques which leverage the measurements provided by
onboard sensors and reliably estimate the swinging motion and the tension of the
cable. In addition, we develop robust control schemes that handle the complicated
coupled dynamics of the system and fulfill the objectives of each application. Finally,
we demonstrate the efficacy of the proposed methodologies in outdoor settings and
practical scenarios. Consequently, we believe that our work can contribute to the
ongoing research concerning multirotors with cable-suspended loads, thus broadening

their applicability in real-world environments.
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EOGNIKO METXOBIO ITOAYTEXNEIO

/
[epikniyn
Yy oy Mnyavohoywyv Mnyovixodvy
Awaxtopux Alte3y

Medodoloyieg EAEyyou yvia Autdvoun Actyuatorndio, Metagpopd
xow Evanddeorn Poptivv Avaptnueévey enl Pourotixodyv

IToAuxonTépwy

dhTioc ITANETEOS

To medio twv un emavdpwuévmy evaépiwy oxnudteny (UAVs) éyel anoxtioel peyo-
AOtepn amiynon to TeEAeuTadol YpoVLaL, XoOC avary VwpllovTol e ATOTEAECUATIXES POUTO-
TiXég mAatpopues yia mowiheg egapuoyeg. Iho mpdogata, 1 evowudtwon @optiny ota
ToAuxdnTepa €xel emextelvel Ta opta Twv UAVs, evioylovtag Tic SuvatdtTnTéS Toug Xou
ETUTEENOVTOC TN YPNOT TOUg O €va eUPUTERO Qdoua egapuoyny. Idwaitepa n avdpTtnon
popTiwy p€ow ayowiol €yl uayVNTioeL To eVOLUPEPOY TN EPELVNTIXAC XOWVOTNTAS XS
elvan pio €town mpog yenorn Aoon, o aviideon pe v otadepr| Tpocdptnomn Twv Qop-
Ty, xou yetpldlel Ty avdyxn yio TohOThoxoug oyedlacuolc. 261600, oL TPOXAACELS
Tou TEOoXVTTOUY antd TNV UToEEN Tou ool eunodilouy TNV aUTOVOUT AVETTUEY TwWV

TOAUXOTITEQWY HUE AVUPTNUEVO UEGK TYOWLOL QopTiol Ot TpaypaTixd TepB3dAAovTaL.

Ye auth ) Owtelfn, oTtoyedouue va YeEQuUp®oouue autd To ydopa e€omhilovtag
TOL TONUXOTTERA UE TNV ANoEodTNTY AUTOVOULd, ETUTEENOVTOG €TOL TNV ACQUAY| AELTOVE-
Yiot Toug 6TO TAUICLO 3 BLUPOPETIXADY EPUPUOYOV: (01) UETAUPORE TOU OVUPTNUEVOU UECK
oyowtol poptiou ywelc Takdviworn tou oyomol, (B) napaxoholdnor evoc xVOOUEVOU
eniyelov oyfuotoc pe oxond v evandveon tou @optiov oTo ooy xou (Y) Oelypa-
Tohndlo vepol and vddtva mepBdihovta. Ilio cuyxexpuuéva, oyedidlouue xouvoTOUES
TEYVIXES EXTIUNONG XATACTAONE OV a€lOTOUY TIC UETENOELC TOU TapéyovVTaL ond ou-
oUntipeee, evowuatouévous oto UAV, xou extipoly alldmoto TV TohavTwTixy xivnon
xaL TNy Tdom Tou oyowiol. Emmiéoy, avanticcouue e0pwoTo oy fuaTo EAEYYOL TOU o-
vetonilovy TNy TeplmAoxy dUVOULXY) TOU CUC TAHATOS XAk EXTATIOMVOUY TOUS OTOY0USG
xdde eqapuoync. Téhog, emMOEWVIOUUE TNV ATOTEAECUATIXOTNTA TV TEOTEWVOUEVHY
pedodohoyldy oe e€wtepols YHEOUS Xol TEaxTXd oevdpla. {2¢ ex ToUTOU, Mo TEVOL-
HE OTL M) epyaoio pog Umopel Vo cUUPBAAEL oTNY TEEYOUOA EPEUVAL TIAVL OE TOAUXOTTEQROL
HE avopTNUéva YEow ayowlol @opTio, BlEupUVOVTAC ETOL TNV EQPUOUOCWOTNTA TOUS OF

TpaypaTXd TtepBdihovTa.


HTTP://WWW.NTUA.GR
http://www.mech.ntua.gr




vii

Acknowledgements

This Ph.D. Dissertation could not have been completed without the support of a lot
of people.

Foremost, I am immensely grateful to my PhD advisor Prof. Kostas J. Kyriakopoulos
for believing in me and providing me with the chance to delve into a demanding yet
interesting topic. His guidance has been invaluable and I greatly appreciate the

freedom he gave me to explore my own research paths.

I am also grateful to my committee member Prof. Evangelos Papadopoulos. Ad-
ditionally, I would like to thank Assoc. Prof. George C. Karras for his priceless
contributions. Besides serving as a committee member, he played a crucial role in
keeping me on track through our discussions and in shaping my mindset to overcome

the obstacles that I encountered.

I would also like to thank my friends and colleagues from the Control Systems Lab-
oratory, Panagiotis Rousseas and Sotiris Aspragkathos, who filled each day of this
journey with funny moments, creating memories that I will never forget. They not
only made my daily life easier but also provided practical assistance in conducting

experiments.

I am particularly thankful to the other members of the Control Systems Lab, Michalis
Drossakis and Assoc. Prof. Charalambos Bechlioulis, who were always there to offer

their help whenever it was needed.

Needless to say, I am especially grateful to my family for their support and their belief
in my abilities, and to my close friends, who always found the time to encourage me

and listen to my anxieties.






Contents

Abstract

IMepirndn
Acknowledgements

1 Introduction

1.1 Motivation . . . . . . . . s
1.2 State-of-the-Art and Related Work . . . . . . . . .. .. ... ... ..
1.3 Outline . . . . . . . . e

Preliminaries

2.1 Introduction . . . . . . . . . ..

2.2 Simulation Environment . . . . . ... ... 0 0L

2.3 Low-Level Control . . ... ... ... .. ... ... ... . ......

2.4 Notation . . . . . . . . . e e e

2.5 Equations of Motion . . . . . . . .. ... ... o
2.5.1 Equations of Motion during Load Transportation . . . . . . ..
2.5.2  Equations of Motion during Water Sampling . . . ... .. ..

Aerial Transportation of Cable-Suspended Loads
3.1 Imntroduction . . . . . . . . . . ...
3.2 Problem Formulation . . . . . .. ... ... ... ............
3.3 Estimation of the Cable’s State . . . . . .. .. ... ... ... ....
3.3.1 Frame-based Estimation of the Cable’s State . . . . . ... ..
3.3.2 Event-based Estimation of the Cable’s State. . . . . . ... ..
3.4 Deep Reinforcement Learning Control . . . .. .. .. .. ... ....
3.4.1 Reinforcement Learning Background . . . . . .. .. .. .. ..
3.4.2 Structure of Networks . . . . . . ... ... ... ........
3.4.3 Reward Function . . . . . . ... .. ... .. ...,
3.4.4 Training Procedure . . . . . . . .. ..o,
3.5 Robust Deep Reinforcement Learning Control . . . . . . . .. .. ...
3.5.1 Domain Randomization . . . .. ... .. ... ... .. ...,
3.5.2 Training Procedure . . . . . . . . . ...
3.6 Nonlinear Model Predictive Control . . . . . ... ... ... .....

11

15
15
15
17
18
18
18
21



3.6.1
3.6.2
3.6.3
3.6.4

Nominal NMPC . . . ... ... .o
Augmented Dynamics . . . . .. .. ... ... ... ...,
Gaussian Process Regression . . . . . .. .. .. ... ... ..
GP-based NMPC . . . . . . . ...

3.7 Experimental Results. . . . . . ... ... ... ... ... .......

3.7.1
3.7.2
3.7.3
3.74
3.7.5

Experimental Setup . . ... ... ... ... L.
Deep RL Control Experiments . . . . . ... ... ... ....
Robust Deep RL Control Experiments . . . . . . .. ... ...
Nominal NMPC Experiments . . . . . ... ... ... .....
GP-based NMPC Experiments . . . . . .. ... ... .....

4 Tracking and Release of a Suspended Load to a Ground Target

4.1 Introduction . . . . . . . . . . e

4.2 Problem Formulation . . . . . . . . . ... ...
4.3 Estimation of the Target State . . . . . ... ... ... ... ...

4.3.1
4.3.2

Detection of the Target . . . . .. ... ... ... .......
Target Motion Prediction . . . .. ... ... ... .......

4.4 Nonlinear Model Predictive Control for Target Tracking . . . ... ..
4.5 Release Condition . . . . .. . ... .. L L
4.6 Experimental Results. . . . . ... ... ... ... .. L.

4.6.1
4.6.2

Experimental Setup . . . . . ..o

Real-World Experiments . . . . . . . ... ... ... .. ....

5 Water Sampling from Aquatic Environments

5.1 Introduction . . . . . . . . . L

5.2 Problem Formulation . . . . . . . . . . . . ... ... .

5.3 Disturbance Estimation . . . . . . . . . .. ... ..

5.3.1
5.3.2
5.3.3

Sensor-based Disturbance Estimation . . . . . .. .. ... ..
Gaussian Process Regression . . . . . .. ... ... ... ...
Extended Kalman Filter . . . . . . . . . ... ... ... ....

5.4 Position Control . . . . . . . . .

5.4.1
5.4.2

Geometric Control . . . . . . . . . ...

Nonlinear Model Predictive Control . . . . . . . . .. .. ...

5.5 Experimental Results. . . . . . ... ... ... .. ... ...

5.5.1
5.5.2
5.5.3
5.5.4

Experimental Setup . . . . . ..o
Geometric Control with Gaussian Processes . . . . . . . . ...
NMPC with EKF . . . . . . . .. . .

Autonomous Water Sampling Mission . . . . ... ... . ...

6 Conclusions and Future Work

Appendices

A List of Publications

67
67
68
69
69
70
72
73
74
74
74

77
7
78
79
79
81
81
82
82
82
83
83
84
87
91

93

97

99



xi

Bibliography 103

Extended Greek Summary 115






List of Figures

1.1

2.1

2.2

2.3
2.4
2.5

2.6

3.1
3.2

3.3

3.4

(a) Aerial transportation of cable-suspended loads. (b) Tracking of a
moving ground vehicle and release of the load towards the target. (c)

Water sampling in aquatic environments. . . . . .. ... .. ... ..

The quadrotor with the cable-suspended load in the Gazebo simulation
environment. . . . ... L L.
Capture of a Gazebo environment which simulates the water sampling
procedure. . . . . ... L L e e e
The octorotor vehicle utilized throughout the real-world experiments.
The cascaded PID control architecture of Ardupilot. . . . . . ... ..
(a) The octorotor UAV with the cable-suspended load. The world W
and body-fixed B coordinate systems, the positions p and pz, of the
UAV and the load respectively, and the cable unit vector n are also
depicted. (b) The cable angles n; = [gbL QL}T. ............
The octorotor with the cable-suspended sampling mechanism during

the sampling procedure in a river. . . . . . .. ... ... ...

The octorotor with the cable-suspended load deployed in the field.

(a) The input RGB image obtained by the downward-looking frame-
based camera. (b) The output segmented image produced by the CNN.
(c) The RGB image combined with the output of CNN. The red pixels
correspond to the pixels which the CNN identifies as cable. The green
cross represents the edge of the cable, i.e., the load. The convex hull
of the CNN output is also illustrated. . . . .. ... ... ... ....
The octorotor UAV with the onboard computer and the DVS camera
(DAVIS 346). The body-fixed B and the camera C frames are also
depicted. The red, green, blue colored arrows correspond to the x,y,z
axes of each frame. . . . . . . ... o oo oL
The grayscale images captured by the DVS in an (a) indoor and (c)
outdoor environment at the current time instant ty. A top-down view
(u-v plane) of the corresponding “event” point clouds P for T' = 25
ms in the (b) indoor and (d) outdoor environment. The purple and
red colored points of P correspond to events with polarities p = 1 and

p=0respectively. . . . . . . . ...

xiii



Xiv

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

(a), (b), (c) The processing algorithm applied to the “event” point
cloud P of Figure 3.4d: (a) A top-down view (u-v plane) of the point
cloud P’ generated after the downsampling of P. The purple and red
colored centroids of P’ correspond to centroids with polarities p = 1
and p = 0 respectively while the remaining centroids have polarities
p' € (0,1). (b) A top-down view of the point cloud P” after the filtering
of P’ based on the polarity of each centroid. (c) A top-down view of
the cable cluster C and the respective blue colored line fitted to C. (d)
The Bézier curve (orange color) which approximates the measurements
of the lower edge of the cable (yellow color). . . . . .. ... ... ...
The current “event” point cloud, obtained by the DVS, and a sequence
of cable clusters, extracted according to the proposed method, through-
out the last 2 s in an outdoor environment. The u-v axes denote the
image plane and the ¢ axis represents the time. The purple and red
colored points of the “event” point cloud correspond to events with
polarities p =1 and p = 0 respectively. . . . . . . .. .. ... ... ..
The cable angles, (a) ¢, and (b) 61, computed according to the event-
based algorithm and compared against the accurate measurements pro-
vided by the Vicon system during the indoor experiment. . . . . . ..
Structure of Neural Networks. . . . . . . . .. .. .. ... ... ....
The cumulative reward during the learning procedure. . . . . . . . ..
The cumulative reward and the corresponding moving average through-
out the training procedure, including domain randomization. . . . . .
The position p of the vehicle compared to the reference 3D waypoints
Pref, While using the trained control policy, and the angle 3 during the
simulation scenario. . . . .. .. . L L L L
The deep RL-based control scheme. . . . . . ... ... ... .. ....
The position p of the vehicle, compared to the reference 3D waypoints
Pref, while using the trained control policy, and the angle § during the
experimental scenario. . . . . . ... Lo
The reference positions p,.y and the actual trajectory p of the UAV
in the Gazebo for my, =0.5kgand [ =1.0m. . . . . . .. ... ... ..
The angle § for various load masses mj; and constant cable length [
during the 1%¢ comparative study in the Gazebo. . . . . ... ... ..
Block diagram of the proposed RlL-based strategy including domain
randomization. . . . . .. L L L Lo
The reference positions p,.y and the actual trajectory p of the UAV
during the real experiment for my =0.5kg. . . . . ... ... ...
The angle 3 for various load masses mj, during the comparative study

in the real-world environment. . . . . . . . . . . .. ...



3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

4.1

4.2
4.3

XV

An overview of the deployed nominal NMPC scheme for the swing-
free load transportation based on feedback provided by a frame-based
CAIMETA. v v o e v e e e e e e e e e e e e e e e e e e 98
The actual position of the UAV p and the reference waypoints pyef
during the load transportation experiment inside the NTUA campus.
(a) Position x. (b) Position y. (c¢) Position z. (d) The 3D path of the
vehicle compared to the reference 3D waypoints. . . . . . .. ... .. 59
The estimates of the cable state, computed by the CNN and the EKF,
during the load transportation experiment inside the NTUA campus.
(a) Cable angles n,. (b) Cable angular velocity wr. . . .. ... ... 59
The actual position of the UAV p and the reference waypoints p,s
during the load transportation experiment in a beach location. (a)
Position x. (b) Position y. (c) Position z. (d) The 3D path of the
vehicle compared to the reference 3D waypoints. . . . . . .. ... .. 60
The estimates of the cable state, computed by the CNN and the EKF,

during the load transportation experiment in a beach location. (a)

Cable angles n,. (b) Cable angular velocity wr. . . .. ... ... .. 60
(a) The position p of the UAV and the reference positions p,.¢ in the
x-y plane, (b) the cable angles ny, and (c¢) velocity wy during the
outdoor experiment with the event camera. . . . . ... ... ... .. 62
The norm of the cable’s angle ||ny|| during the comparative study be-

tween the event-based method (DVS) and the frame-based solution
(ZED). . . . o 62
(a) The error ||p — pres|| between the actual position of the UAV and
the reference ones, and (b) the cost function of the NMPC (y-axis
displayed in logarithmic scale) during the simulation comparative study. 64
Overview of the GP-based NMPC architecture including the DVS cam-

(a) The error ||[p — pref|| between the actual position of the UAV
and the reference ones (a zoomed-in view near zero is illustrated in
the upper right corner), and (b) the cost function of the NMPC (y-
axis displayed in logarithmic scale) during the comparative study in a

outdoor environment. . . . .. ... e 65

The multirotor with the cable-suspended load and the UGV deployed
inthe field. . . . . . . . . . .. . e 68
The proposed control scheme for tracking the moving ground vehicle. . 69
Detection of the target. The green cross corresponds to the center of
the bounding box. . . . . . ... L Lo oo 70



xvi

4.4 The red arrows at the upper part of the figure illustrate the trajectory
of the UAV while the red and green colored lines at the lower part
represent the past and future trajectory of the target respectively, as
approximated by the Bézier curve. The ballistic trajectory of the load,
assuming that is released, is depicted by the line with the cyan hue.
Finally, the blue colored sphere indicates that the release condition is
satisfied. . . . . oL Lo

4.5 The position p and the velocity v of the UAV during the first experi-
ment compared to the UGV motion, i.e., pr and v, as estimated by
the Bézier regression. (a) Position x. (b) Position y. (c) Velocity x.
(d) Velocity y. (e) The cable angles i, = [gf)L GL] e

4.6 The successful release of the load towards the target during the second
experiment. (a) The position of the load pr(ts), assuming that is
released, compared to the position of the target pp(t;) in the x-y plane.
The green circle indicates that the release condition (Equation (4.8))
is satisfied. (b) The gripper opens. (c) The load follows a ballistic
trajectory. (d) The load is placed inside the box. . . . . .. ... ...

5.1 Water Sampling with an octorotor in a river. . . . .. ... ... ...
5.2 Dense flow fields computed by the DIS algorithm. The green arrows il-
lustrate the direction of the flow while the length of the arrow indicates
the magnitude of the displacement. . . . . . . .. ... ... ... ...
5.3 The position of the additional sensors required during the water sam-
pling procedure. . . . . . ...
5.4 The geometric controller of Section 5.4.1 augmented with the predic-
tions of the cable tension according to Section 5.3.2. . . . .. ... ..
5.5 The position error p — p,.s and the estimated disturbances T during
the simulation scenario. . . . . . . . . ... Lo
5.6 The position error p — p;.s and the estimated disturbances T during
the experimental scenario in a river. . . . . . ... ... ... .....
5.7 An overview of the deployed NMPC scheme (Section 5.4.2), which in-
corporates the estimates of the cable tension according to Section 5.3.3
and achieves the precise stabilization of the vehicle during water sam-
pling. . . . e
5.8 The actual position of the UAV p compared to the reference sampling
location p;..s and the cable tension estimated by the additional sensors
and the Extended Kalman Filter during the stabilization experiment
in a beach location. (a) Position x. (b) Position y. (c) Position z. (d)

Estimated cable tension. . . . . . . . . ..o



xvii

5.9 The actual position of the UAV p compared to the reference sampling
location p,.s and the cable tension estimated by the additional sensors
and the Extended Kalman Filter during the stabilization experiment
in the Ladonas river. (a) Position x. (b) Position y. (c) Position z.
(d) Estimated cable tension. . . . . . ... ..o oL 90
5.10 Autonomous water sampling mission in a beach location. (a) The
mission commanded via the Ground Control Station. (b) The 3D

path of the vehicle during the mission. . . . . . . ... ... ... ... 92






List of Abbreviations

UAV Unmanned Aerial Vehicle

DoF Degree of Freedom

RL Reinforcement Learning
DDPG Deep Deterministic Policy Gradient
TD3 Twin Delayed DDPG

RGB Red Green Blue

MPC Model Predictive Control(ler)
NMPC Nonlinear Model Predictive Control(ler)
GP Gaussian Process

KCF Kernelized Correlation Filter
EKF Extended Kalman Filter

UKF Unscented Kalman Filter

DVS Dynamic Vision Sensor

NN Neural Network

CNN Convolutional Neural Network
ocCp Optimal Control Problem
CoM Center of Mass

ROS Robot Operating System

PID Proportional Integral Derivative
PCL Point Cloud Library

UuGv Unmanned Ground Vehicle
DIS Dense Inverse Search






Chapter 1

Introduction

1.1 Motivation

The field of multirotor Unmanned Aerial Vehicles (UAVs) has seen widespread devel-
opment throughout the last decade due to their versatile nature, their low cost, and
their applicability to a variety of tasks such as infrastructure inspection, environmen-
tal monitoring, search and rescue missions, surveying and mapping, and agriculture.
More recently, the integration of loads onto aerial platforms has broadened the limits
of UAVs, extended their capabilities, and expanded their utilization to additional sce-
narios. For instance, UAVs may significantly contribute to search and rescue missions
by delivering necessary supplies, medicine, equipment or other goods. Additionally,
multirotors can potentially be deployed in case of environmental disasters where the
access of first responders to the field is hazardous or even infeasible, e.g., water sam-

pling in contaminated aquatic areas.

According to the existing approaches, UAVs with loads may be classified into two
categories based on the attachment of the load to the vehicle’s main body. Specifically,
loads are commonly either rigidly attached to the vehicle’s body or suspended through
a cable. In the former case, rigorous mechanical design, including considerations such
as mounting points tailored to the structure of each multirotor, is a prerequisite for
the successful integration of the load. Moreover, the release of the load entails the
landing of the vehicle, which may be infeasible in emergency situations. Contrastingly,
in the latter case, the usage of a cable is a ready-to-use and non-complex solution

and, hence, has captivated the interest of the research community.

However, the autonomous deployment of multirotors with cable-suspended loads
in real-world environments is quite challenging. From a control point of view, several
issues arise from the underactuated nature of the system dynamics, considering the
increased number of degrees of freedom (DoFs). More precisely, during the aerial
transportation of suspended loads, the arbitrary motion of the vehicle may excite
the swinging motion of the cable owing to the complicated coupled dynamics that
govern the whole system. Substantial angular displacements of the cable can result

in unpredictable scenarios, posing risks to both the vehicle and the load’s safety, e.g.,



2 Chapter 1. Introduction

the cable may dangerously approach the arms and the motors of the UAV. To this
end, the need arises towards the design of robust control schemes that minimize the
oscillations of the cable and ensure the secure transportation of the load towards

reference positions.

Various controllers exist in the literature that aim to cope with the cable angular
motion [92]; however, they are typically validated in indoor environments, thus ne-
glecting the presence of external disturbances. Furthermore, conducting experiments
in indoor conditions facilitates the estimation of internal state variables, e.g., by using
motion capture systems. In contrast, when multirotors with cable-suspended loads
are deployed in outdoor environments and real-world conditions, estimating the ca-
ble’s state based on onboard sensors remains a challenging and unresolved issue. This
is crucial as the majority of controllers require reliable and real-time state feedback.
To this end, multiple sensor options can be considered towards estimating the cable
angular motion in real-world environments; nevertheless, the most straightforward
choice is exploiting a camera, since almost every UAV is equipped with a camera
mounting and, thus, complex mechanical interventions on the platform, e.g., addition
of encoders [7], [73], are avoided. Hence, appropriately designed vision-based tech-
niques, adapted to the specific task of transporting loads, are required in order to

provide robust feedback of the cable’s state.

Furthermore, the aerial transportation of loads can be expanded in order to
consider the tracking of arbitrarily moving targets, with the ultimate aim of releasing
the load towards them. This not only broadens the applicability of UAVs but also
introduces them to new operational scenarios. Vision-based target tracking with
multirotors has been extensively treated in the literature and constitutes a well-
studied problem [9], [10], [29], [36]; however, without considering the existence of
a cable-suspended load. The incorporation of a load and, consequently, its release
towards the target imply various modifications to existing frameworks. Even for
a highly experienced drone pilot, achieving the successful release of the load can
be particularly challenging owing to the oscillations of the cable and the random
motion of the target. Towards this direction, a control scheme, that handles both the
predicted trajectory of the target and the cable angular motion, is indispensable so
as to fulfill this task.

Moreover, UAVs have also proven to be a promising robotic platform for collect-
ing samples from aquatic environments during a water contamination incident. The
deployment of a UAV, instead of manually collecting samples, reduces the exposure
of responders to danger, accelerates the disaster response, and, thus, contributes sig-
nificantly to the emergency management. Two approaches are commonly deployed in
order to conduct water sampling with a UAV: (i) integration of a floating base [1],
[43], [58], customized for a specific vehicle, which allows the UAV to float and land

on the water surface, and (ii) suspension of the sampling mechanism through a cable.
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Evidently, the latter solution offers seamless integration in terms of mechanical com-
plexity and preserves the UAV’s versatility across various tasks beyond water-related
applications. However, when the UAV with the suspended sampling mechanism op-
erates in a fast-flowing aquatic environment, e.g., a river, considerable underwater
disturbances act on the device and indirectly on the vehicle through the rope. Hence,
to guarantee the secure execution of the sampling procedure, it is essential to employ
an appropriate sensor fusion technique that estimates the cable tension using onboard
sensors, along with a control strategy that achieves disturbance rejection and precise

stabilization of the vehicle.

Briefly, UAVs with cable-suspended loads can be exploited for a wide range of
applications and, thus, offer solutions to real-world problems. However, the chal-
lenges, stemming from the presence of the suspended load, hinder their widespread
utilization. To this end, our research endeavors to bridge this gap by supporting the
platform with the required software and hardware and, thus, enable the autonomous
operation of UAVs within the context of three specific tasks (Figure 1.1): (a) swing-
free and safe transportation of suspended loads, (b) tracking of a moving ground
target with the goal of releasing the load towards the former, and (c) water sampling
from aquatic environments. Our approach involves refining existing methodologies
and developing novel state estimation techniques and controllers which address the
challenges posed by the cable while simultaneously meeting the objectives of each ap-
plication. The proposed methodologies are exhaustively validated in outdoor condi-
tions to demonstrate their effectiveness and potential in practical scenarios. Through
this dissertation, we aim to contribute to the field of multirotors with cable-suspended

loads, thereby expanding their utilization in real-world environments.

1.2 State-of-the-Art and Related Work

In the existing literature , there are various approaches which aim to control the
swinging motion of the cable during the transportation of the suspended load, but
may be distinguished into two main categories: generation of swing-free or aggressive
trajectories, according to the requirements of the studied task, and direct control of
the load state [92].

In [64], [66], dynamic programming was applied, so as to compute optimal swing-
free trajectories. In order to track the desired trajectories, a feedback linearization
controller was employed combined with an adaptive part which accounts for changes
in the center of gravity [65]. The authors experimentally verified the dynamic pro-
gramming part while using a simpler controller for trajectory tracking. However,
model inaccuracies led the same authors to a Reinforcement Learning (RL) approach
[16]. By implementing the approximate value iteration algorithm, they estimated
the value function based on a reward which penalizes the distance from the desired

waypoint and the swinging motion of the vehicle. During the training procedure, a
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FIGURE 1.1: (a) Aerial transportation of cable-suspended loads. (b)
Tracking of a moving ground vehicle and release of the load towards
the target. (c) Water sampling in aquatic environments.

simplified model of the quadrotor-load system was utilized in order to obtain the state
transition function. Once the value function was estimated, a greedy policy produced
linear accelerations which maximize the approximated value function. However, the
policy relied on the aforementioned simplified model of the system and, addition-
ally, actions were sampled from a discrete space, which typically results in action

oscillations and, hence, non-smooth control.

In [82], a controller was presented which directly controls the position of the
load, considering not only minimum swinging motion but also aggressive maneuvers,
thereby exploiting the entire range of the cable’s motion. More precisely, two dy-
namic models of the whole system were derived depending on whether the cable is
taut or not. The system was proven to be hybrid differentially flat and this property
was exploited to generate trajectories. Moreover, a geometric controller was designed
which tracks one of the following states: vehicle attitude, load attitude or load po-
sition [81]. The performance of the controller was validated experimentally for the
planar case only. In a later work [86], the efficiency of the aforementioned geometric
controller was demonstrated experimentally in the full three-dimensional workspace
and at significant swing angles, while using an on-board camera and an Extended
Kalman Filter in order to estimate the state of the load. A similar approach was fol-
lowed in [25], where, additionally, the cable was modeled as a serially connected link
in order to take into account its flexibility. The stabilization of the links was achieved
experimentally through nonlinear geometric control. The hybrid dynamic system,

including the case when the cable is not taut, and the differential flatness property of
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the system were also exploited in [85], where appropriate trajectories were generated
in the flat space of the system using Mixed Integer Quadratic Programming. These
trajectories guaranteed waypoint tracking, obstacle avoidance and switching between
the non-zero and the zero cable tension subsystem when necessary. This approach
was validated experimentally in two tasks, pick-up and release of the load and ma-
neuvering the vehicle with the load through a window. However, in both cases, the

system was approximated as planar.

A different model was used in [18], where the load was considered to be attached
to the base of the vehicle via two revolute joints and a prismatic one. The trajectory
generation problem was formulated as a Mathematical Program with Complementar-
ity Constraints, where the constraints take into account the limitation of the cable
length and impose bounds on the input, the load angle and the distance between
the platform and the surrounding obstacles. According to the authors, this approach
reduces the computational cost compared to relative works. A variety of tasks, includ-
ing waypoint navigation, obstacle avoidance and payload throwing, were presented to

validate the generated trajectories.

Additional non-linear control techniques are proposed in the literature in order
to minimize the swinging motion of the load. In [27], an Interconnection and Damp-
ing Assignment-Passivity Based Control (IDA-PBC) methodology was developed for
navigating the vehicle with simultaneous minimization of the load oscillations. Exper-
imental results were presented for planar maneuvers, i.e., longitudinal and transverse
motions, and, hence, the payload was connected to the quadrotor with an 1 DoF rigid
rod. Furthermore, in [96], the backstepping technique was applied to the quadrotor-
slung load system in order to address the problem of load trajectory tracking. Swing
suppression was also studied in [51]. More precisely, a nonlinear hierarchical control
law, which exploits the cascaded property of the whole system, was designed so as
to achieve accurate positioning of the quadrotor with simultaneous elimination of the

swing angle, as presented in experimental results under perturbations.

The majority of the aforementioned control schemes require robust and high-
speed feedback of the complete cable’s state. As a result, they were tested in indoor
settings with precise state feedback. Despite the significant number of controllers
throughout the literature, the estimation of the cable’s state remains a challenging and
open issue, especially when deploying UAVs with cable-suspended loads in outdoor
environments and real-world conditions, where motion capture systems or markers
cannot be used. A few studies have attempted to tackle the estimation of the cable’s
state based on onboard sensors. More specifically, a monocular fish-eye camera and
a novel encoder-based device were utilized in [73] and the respective measurements
were fused with the aid of a Gaussian fusion-based estimation algorithm in order to
obtain an estimate of the payload state. Moreover, in [7], a load transportation device
(LTD), composed of a two-axis cardan joint with two magnetic encoders attached to

each axis, was designed and integrated into a helicopter. However, the oscillations
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of the LTD and the rope severely affected the measurements and, hence, the authors
were forced to develop an observer. In [69], the authors aimed to estimate the state
of a cable-suspended load by utilizing only common on-board sensors, e.g., IMU,
and an Extended Kalman Filter. However, increased estimation errors were observed
in the experimental results, compared to the simulation ones, probably due to the
assumed model. IMU measurements were also exploited in [45], along with a load cell
sensor and a disturbance observer algorithm [46], and, hence, a swing-angle estimation
technique was introduced. Knowledge of the plant model of the UAV including the
inner attitude and thrust controller is a prerequisite for the implementation of this
method.

Returning to the control of the multirotor with the cable-suspended load, deep
Reinforcement Learning (RL) emerges as an appropriate tool given the complexity
inherent in the coupled dynamics of the platform. More specifically, modern model-
free deep RL algorithms, e.g., deep deterministic policy gradient (DDPG) [52], twin
delayed deep deterministic policy gradient (TD3) [19], and proximal policy optimiza-
tion (PPO) [77], mitigate the necessity for exhaustive system identification and have
the potential to handle complicated dynamic models and challenging tasks. Hence,
various works in the literature have leveraged deep RL algorithms to learn policies
capable of controlling multirotors, albeit without incorporating a cable-suspended
load. For instance, in [34], the authors trained a neural network policy which directly
maps the state of a quadrotor with rotor thrusts. The performance of the policy was
experimentally validated in a waypoint tracking scenario while also recovery from
manual upside-down throws was demonstrated. In [42], a policy was learned, based
on the PPO algorithm, enabling a real quadrotor to land on an inclined surface — a
challenging maneuver which results in a non-equilibrium final state, as the attitude
of the vehicle must align with the slope of the surface. Finally, in [80], deep RL was
exploited for the purposes of autonomous drone racing. Specifically, a policy was
trained, using the PPO algorithm and relative gate observations, that can compute
near-time-optimal trajectories and adapt to environmental changes. The authors val-
idated the generated trajectory with an actual quadrotor and achieved aggressive

flight at considerable speeds.

Despite the remarkable recent advances in deep RL, the transferability of the
learned policy from the simulation environment to real robotic platforms remains
a matter of concern. Specifically, the training procedure is commonly realized ex-
clusively within simulation environments, thus, ensuring access to an abundance of
data. The current architecture of deep RL algorithms precludes training in real-world
settings, as the actions produced by the policy, prior to the convergence of the learn-
ing procedure, can lead to unpredictable situations, thereby posing the safety of the
platform to risk. Additionally, restrictions are imposed due to the time required for
the training to converge. Despite the model-free nature of the aforementioned RL

algorithms, the performance of the policy heavily relies on the dynamics that govern
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the simulator. Consequently, the unavoidable inconsistencies between the simulator
and the real-world environment could negatively impact the effectiveness of the pol-
icy, when applied to the actual robot. Furthermore, the robustness of the policy to

observation noise or different dynamic properties of the system is not guaranteed.

In this regard, domain randomization has been proposed as an effective means for
bridging the gap when transferring policies learned in simulation to real robots. By
introducing variations and randomness into the simulator, the goal is to learn policies
that exhibit enhanced robustness and can generalize better to real-world conditions.
More precisely, the randomization of the simulator’s properties, e.g., sensor noise and
variations in dynamics, during the training procedure, results in policies that can
adjust to a diverse range of conditions. Thus, the real-world environment may be
perceived as merely another sample of the varied simulator and the policy can be

successfully deployed on the real robot.

Various works in the literature have exploited domain randomization in the con-
text of real-world robotic applications. More specifically, in [88], an object detector is
trained using low-fidelity rendered images with random camera and object positions,
lighting conditions, and non-realistic textures. Afterwards, the detector is success-
fully transferred to real images featuring high localization accuracy during grasping.
In [76], a vision-based collision avoidance policy for indoor flight was learned en-
tirely in simulation using single RGB images and randomized rendered scenes and
was successfully deployed in a real flight. Additionally, domain randomization was
implemented in a pushing task with a real robotic arm [67] where a variety of dy-
namic parameters, e.g., link mass, and properties of the object to be pushed, were
randomized throughout the training procedure in the simulation in order to achieve
a comparable performance during the real experiments. Finally, the applicability of
domain randomization is extended to a variety of other scenarios and applications
such as dexterous in-hand manipulation [4] and locomotion control of bipedal robots
[50].

Considering the drawbacks of deep RL techniques, namely reward engineering,
lack of performance guarantees, and the necessity for a realistic simulator, nonlinear
Model Predictive Control (NMPC) appears as an appealing alternative approach for
controlling the multirotor with the cable-suspended load. NMPC has been proven to
be an efficient tool for controlling UAVs in general, owing to the inherent properties
stemming from the nature of MPC scheme, i.e., exploitation of the known system
dynamics, optimization over a future horizon, and incorporation of input and state
constraints. Additionally, recent advances in embedded computers and optimization
libraries enable the solution of optimal control problems within a few milliseconds
and, hence, the real-time performance of MPC is feasible. Consequently, NMPC has
been extensively exploited throughout the literature to effectively control multirotors

for a variety of tasks.
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More precisely, MPC schemes for multirotors have been proposed in order to
address the problem of trajectory generation and tracking. In [62], SLQ-MPC was
employed so as to solve a nonlinear optimal control problem for simultaneous tra-
jectory optimization and tracking control. Perception objectives were considered in
[14], and, thus, a perception-aware model predictive control (PAMPC) algorithm for
quadrotors was developed. The work in [22], incorporated the existence of obstacles
into the optimal control problem and presented an NMPC technique that generates
safe trajectories. Also, in [78], NMPC was utilized in order to achieve collision-free
and autonomous navigation of UAVs in obstructed environments with obstacles of

arbitrary non-convex shape.

Moreover, fault-tolerant NMPC strategies have been successfully implemented
so as to control UAVs during motor failure. Specifically, in [5], the authors applied
NMPC to an hexacopter with three failed rotors and achieved the control of the
vehicle, as demonstrated via simulations. In [91], the authors presented an EKF for
monitoring the health of each actuator along with an NMPC which considers the
full dynamics of a real hexarotor and controls the vehicle under actuator failure. In
[61], an NMPC framework for quadrotor fault-tolerant flight was proposed which can
effectively stabilize a quadrotor subjected to the complete failure of a single rotor,

even if the latter occurs during an agile flight.

The applicability of UAVs is extended to a wide range of other scenarios such as
trajectory generation for obstacle avoidance considering the existence of a slung load
[79], aerial pick-and-place with an integrated manipulator [21], and aggressive cable-
suspended payload trajectory tracking including field of view constraints [48]. Based
on the several aforementioned successful attempts to exploit NMPC, it is reasonable
to investigate its utilization for controlling the multirotor with the cable-suspended
load.

However, model-based controllers, and particularly NMPC schemes, are suscep-
tible to the adopted model and, thus, possible mismatches between the nominal and
actual system dynamics may degrade the control performance. This is mainly visi-
ble when the UAV with the cable-suspended load operates in outdoor environments,
where external disturbances, arising primarily from the prevailing environmental con-
ditions, act on the platform. The aforementioned disturbances, combined with the
assumptions throughout the formulation of the nominal dynamics, result in model
discrepancies between the adopted model and the real system dynamics, thereby im-
pacting the efficacy of NMPC schemes. Gaussian Processes (GPs) have been proven
efficient tools for estimating unknown dynamics and, hence, various works in the liter-
ature have exploited GP regression in the context of NMPC schemes in order to bridge
the gap between real and nominal robot dynamics and further enhance the control
performance. More specifically, in [32], [38], the authors exploited GP regression in
order to learn the residual dynamics of a vehicle’s nominal model and incorporated

the respective predictions into an NMPC scheme so as to improve online the tracking
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performance of an autonomous racing car. In [89], the authors extended [32], [38] to
three-dimensional GP predictions for a quadrotor in order to learn the aerodynamic
effects acting on the platform at high speeds. By utilizing an NMPC, augmented with
the approximated residual dynamics, a considerable reduction in trajectory tracking
error was observed. Finally, in [94], a path following algorithm was presented, which
merges GP-based learning, feedback linearization, and MPC into a single framework

and achieved the operation of a ground mobile robot in off-road terrains.

Moving on to discuss the topic of aerial target tracking, various works address the
problem of following a moving target with a multirotor using visual feedback. More
specifically, in [10], the authors presented a visual scheme for tracking a maneuvering
target using a UAV with an onboard gimbal camera. The Kernelized Correlation
Filter (KCF) tracker [30] was utilized in order to detect the target while the full state
of the target was estimated by the Interacting Multi-Model Extended Kalman Fil-
tering (IMM-EKF) algorithm [36] assuming a Singer model with an adaptive mean.
Considering the aforementioned estimates, both the gimbal and the vehicle were con-
trolled in order to achieve the tracking of the moving target. However, the IMM-EKF
estimator predicts solely the state of the target at the next time instant while also

requiring a target motion model, which is a priori unknown.

In [9], the authors proposed a framework for real-time target tracking in cluttered
environments. More precisely, the trajectory of the target, observed with the aid of
markers, was approximated and predicted for a short time horizon using polynomial
regression. Based on the predicted target trajectory and the detected obstacles, the
A* method was utilized in order to find a grid-based collision-free flight corridor for
the UAV. Eventually, a dynamically feasible for the UAV trajectory was generated
using quadratic programming. The authors validated their approach experimentally

in an indoor environment.

Polynomial regression for predicting the target motion was also considered in [29],
where a Bézier curve was utilized in order to describe the target trajectory. Addi-
tionally, the authors assumed that the target velocity and acceleration were bounded
and, thus, constraints were imposed on the quadratic programming problem. Given
the target trajectory, a kinodynamic searching method was implemented so as to
find an appropriate flight corridor consisting of obstacle-free grids and, afterwards,
an optimal polynomial trajectory was generated within the safe flight corridor. The
authors experimentally verified their approach in both indoor and outdoor environ-
ments. In their following paper [95], the visibility of the target was also integrated
into the trajectory planning method so as to avoid target loss. However, the works
mentioned above did not consider the incorporation of a cable-suspended load and,

hence, the release of the load towards the target.

As for the task of conducting water sampling using a UAV with a suspended
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mechanism, we previously highlighted the need for a disturbance rejection tech-
nique which attains the accurate stabilization of the vehicle, especially in fast-floating
aquatic environments, despite the cable tension. In general, multirotor platforms are
now more commonly deployed in real-world outdoor environments so as to perform
a variety of desired tasks. However, due to their interaction with the environment,
UAVs are subject to external disturbances, e.g., wind gusts, ground and wall effects,
and payload disturbances. Since the majority of applications require accurate po-
sition control, i.e., stabilization, path following or trajectory tracking, the rejection
of the disturbances during the flight is crucial for the successful completion of the

commanded task.

In the existing literature, various disturbance rejection methodologies are demon-
strated, albeit not specifically applied to water sampling. These methodologies may
be distinguished into two main categories (i) robust or adaptive control strategies
with unknown disturbances and (ii) online identification and compensation of the

disturbances.

In [2], a robust MPC scheme was designed for robust trajectory tracking un-
der unknown but bounded disturbances. The authors experimentally validated their
approach under turbulence effects, slung load disturbances and collisions with the
environment. Special attention was given to the computation of the optimization
problem and to conservativeness, which is a typical issue in robust control strategies.
A different scheme was presented in [68] where a £; adaptive controller was aug-
mented with an iterative learning control (ILC) framework so as to reduce trajectory
tracking errors under disturbances. The aforementioned controller was employed to
a quadrotor with an added suspended mass and featured an improved performance

compared to a non-adaptive PD-ILC approach.

Instead of designing controllers capable of handling unknown disturbances, an-
other approach is to directly observe the disturbance in real-time and incorporate
this estimation into a controller. Hence, issues such as conservativeness and adapta-
tion performance are avoided. The authors in [97] proposed a deterministic nonlinear
wrench observer, which is capable of approximating the external forces applied to the
Center of Gravity (CoG) of the vehicle, and exploited this estimate by utilizing an
Interconnection and Damping Assignment Passivity Based Controller (IDA-PBC) in
order to control the interaction of the UAV with the environment, as presented in
simulation results. The aforementioned observer relies on the dynamic model of the

vehicle and assumes that the disturbances are not rapidly varying.

Alternatively, stochastic filters, i.e., Kalman Filters, were implemented in [55],
[31] so as to mitigate sensor and process noise. More specifically, the authors designed
Unscented and Extended Kalman Filters which estimate the disturbances, modeled
as random walks, based on an accurate dynamic model of the vehicle. Since the

aforementioned filters require knowledge of the UAV’s dynamics, thrust and torque
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maps, i.e., relationship between thrust/torques and motor commands, were identified

S0 as to approximate the control input produced by the motors.

Revisiting the problem of water sampling, the sensor-based estimation of the dis-
turbance, i.e., the tension of the cable, is a challenging task. Purely vision-based tech-
niques are unsuitable for this scenario since the mechanism is submerged, rendering
its detection extremely demanding, if not entirely unfeasible, and highly contingent

on water purity.

1.3 Outline

The organization of this dissertation is as follows.

Chapter 3:

In this chapter, we present appropriate state estimation techniques and controllers
that address the transportation of a cable-suspended load with a multirotor in outdoor
environments. To guarantee the safe transportation of the load, we develop control
schemes that handle the complicated coupled dynamics of the platform and minimize
the swinging motion of the cable. Additionally, considering the necessity for feedback
of the complete cable’s state throughout the autonomous operation of the platform,
we design techniques that reliably estimate the cable angular motion based on visual

information and feed closed-loop controllers.

More precisely, to avoid the integration of multiple sensors, we exploit a single
downward-looking camera for estimating the cable’s state. Almost every UAV in-
cludes a camera mount and, hence, its integration is a plug-and-play solution. To-
wards this direction, we present 2 vision-based methodologies for estimating the cable
angular motion with the aid of either a conventional RGB camera or a dynamic vision
sensor (DVS).

In the former case, a trained Convolutional Neural Network (CNN) is applied to the
RGB image obtained by the camera and, thus, the robust detection of the cable is
achieved despite the challenging lighting conditions, commonly observed in outdoor
environments. The complete cable’s state is estimated by a Kalman Filter, formulated
for the nonlinear dynamics of the load, which fuses the output of the CNN and the

measurements of a load cell.

In the latter case, we design a novel event processing method, tailored to the specific
application, that leverages the asynchronous nature and the advantageous properties
of DVS and considerably accelerates the estimation of the cable’s state. To the best
of our knowledge, the concept of utilizing event cameras for aerial transportation is
original. More specifically, the events, acquired from the DVS, are represented in the
form of a point cloud, where both spatiotemporal information and polarity are stored.
Afterward, a computationally inexpensive method is developed in order to process

the input point cloud and to robustly distinguish the events that correspond to the
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cable in a quasi-continuous manner. The extracted information is approximated by a
Bézier curve, solving a constrained optimization problem, and, eventually, both the
cable angles and angular velocity are obtained within a much shorter time period
compared to the aforementioned frame-based algorithm. We remark that high-speed

feedback can enhance the performance of closed-loop control schemes.

To attain the transportation of the load towards reference positions with simulta-
neous minimization of the cable angular motion, we develop both model-free and
model-based control schemes. Particularly, building upon the model-free nature of
deep Reinforcement Learning (RL) algorithms, we design a data-driven control pol-
icy without any assumption about the model of the system. This is accomplished
through the utilization of Twin Delayed Deep Deterministic Policy Gradient (TD3),
a deep RL algorithm for continuous action spaces. The RL framework is reformu-
lated according to the requirements of the application, to train an appropriate neural
network policy that fulfills the objectives of the task. Afterward, we adopt domain
randomization during the training procedure, realized in a simulation environment,
in order to learn a policy which is more robust to varying properties of the system,
e.g., load mass, cable length, and observation noise, as well as system dynamics that
differ from the ones encountered during the training. By employing this technique
the gap between simulation and real-world conditions is bridged and the successful

transfer of the policy, trained exclusively in simulation, to the real vehicle is achieved.

Furthermore, we develop a nonlinear Model Predictive Control (NMPC) scheme,
based on the coupled dynamics of the platform, that produces optimal control inputs
and, thus, attains the swing-free transportation of the load. Subsequently, consider-
ing that the performance of NMPC highly depends on the adopted model, we correct
the nominal system dynamics using a non-parametric learning-based approach. More
precisely, we employ Gaussian Processes (GPs) to learn online the model discrepan-
cies between the actual and nominal system dynamics as well as the disturbances,
stemming from the prevailing environmental conditions, that act on the platform in
outdoor environments. Considering the dimensionality of the addressed task, sparse
GP regression is exploited in order to reduce the computational demands of GPs.
We also introduce a weighted version of sparse GP regression with the ultimate goal
of assigning importance to more recent measurements and, thus, accomplishing both
real-time and rapid estimation of the time-varying disturbances encountered in out-
door environments. Ultimately, the learned dynamics are appropriately integrated
into a GP-based NMPC scheme so as to improve the control performance compared

to the nominal case.

Chapter 4:

In this chapter, we present an NMPC scheme for tracking a ground target using a
multirotor with a cable-suspended load and a downward-looking camera. The NMPC
framework relies on the dynamic model of the UAV with the suspended load and,

therefore, an estimate of the cable angular motion is obtained using the frame-based
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methodology outlined in Chapter 3. Regarding the detection of the target, a CNN,
along with a Kernelized Correlation Filter (KCF) tracker, is employed. This hybrid
approach ensures reliable target identification even in scenarios where the target may
be visually occluded by the cable. Since the NMPC entails propagating the system’s
behavior over a predicted horizon, the past observations of the target are approx-
imated by a Bézier curve. Specifically, a constrained Bézier regression problem is
appropriately formulated to predict the trajectory of the arbitrarily moving target.
The future target motion is directly incorporated into the predicted horizon of the
NMPC scheme, which computes optimal inputs to the inner attitude control loop of
the autopilot, thus achieving the following of the aggressively moving target. The ul-
timate goal of the proposed framework is to release the suspended load to the ground
target and, consequently, a condition is checked at each time instant. Once the pre-
dicted ballistic trajectory of the load intersects with the future target motion, the
condition is satisfied, triggering the opening of a gripper, located at the lower edge
of the cable.

Chapter 5:

In this chapter, we address the problem of conducting water sampling using a multiro-
tor with a cable-suspended sampling mechanism. We present sensor fusion techniques
for identifying the external forces applied to the vehicle during the sampling proce-
dure and we develop appropriate control strategies that reject the disturbances and
accurately stabilize the UAV. This is mainly applicable in fast-floating aquatic en-
vironments, such as rivers, where considerable underwater drag forces, owing to the
high water velocity, act on the mechanism and are transferred to the vehicle through
the cable.

More precisely, as the mechanism is submerged and solely vision-based techniques
cannot be applied, we integrate low-cost sensors, namely an ultrasonic sensor, a load
cell, and a depth sensor, besides the downward-looking camera, in order to estimate
the cable tension. Since the corresponding measurements are subject to noise, we
design sensor fusion techniques that alleviate the noise effects. Specifically, GPs are
exploited to learn online and approximate the disturbances, transferred through the
cable, in a non-parametric manner. Additionally, a Kalman Filter is developed as a
more computationally inexpensive approach for fusing the measurements provided by
the onboard sensors. An Extended Kalman Filter (EKF) is employed owing to the

nonlinear measurement model.

To attain the precise position control of the vehicle above the sampling location, we
employ a geometric controller which incorporates the estimates of the cable tension.
Furthermore, we develop an NMPC scheme and impose state and input constraints on
the respective Optimal Control Problem (OCP) so as to avoid aggressive maneuvers
of the vehicle above the water surface and, thereby, increase the safety level of the

sampling procedure.
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Eventually, we present a fully autonomous framework which unifies the methodolo-
gies of Chapters 3 and 5 and addresses all the phases of a water sampling mission,
namely the swing-free transportation of the platform to the sampling position, the
stabilization of the UAV during the sampling procedure, and the transportation of

the platform to a final position for sample collection.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter establishes the necessary preliminary background about UAVs with
cable-suspended loads, serving as the basis for the subsequent methodologies. We
introduce the UAV as well as the required variables and fundamental equations that
govern the motion of the platform in the context of the studied applications, i.e., the
swing-free transportation of the cable-suspended load, the tracking and the release
of the load to a ground target, and the water sampling from an aquatic environ-
ment. The control algorithms and sensor fusion techniques, presented in the entire

dissertation, heavily rely on the aforementioned mathematical formulations.

The outline of this chapter is as follows. Section 2.2 presents the simulation
environment where the developed algorithms are initially tested prior to conducting
real-world experiments. In Section 2.3, the low-level control, handled by the autopilot,
is discussed. Finally, Sections 2.4 and 2.5 introduce the notation and the dynamic

models of the platform during the addressed tasks correspondingly.

2.2 Simulation Environment

The majority of the proposed control schemes and state estimation techniques are
initially validated in simulation environments before being deployed in real settings.
Hence, a considerable amount of time is conserved since conducting real-world exper-
iments highly depends on the external weather conditions. Additionally, the safety
of the actual octorotor, utilized throughout the outdoor experiments, is ensured es-

pecially during the early stages of software testing.

More precisely, environments were set up in the high-fidelity Gazebo robotics
simulator [41], based on the needs of the studied application. During the simulation
experiments, a quadrotor vehicle with a cable-suspended load, depicted in Figure
2.1, is considered. The quadrotor is equipped with the Ardupilot firmware [26] and,
hence, Software in the Loop (SITL) simulations are feasible. The control of the

vehicle is achieved using the Robot Operating System (ROS) [71] and, particularly,
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FiGURE 2.1: The quadrotor with the cable-suspended load in the
Gazebo simulation environment.

through the MAVROS node [70] which is an intermediate communication protocol
between the flight controller and ROS. It is mentioned that the real octorotor vehicle
is also equipped with the Ardupilot firmware and, thus, a seamless integration of the
developed control algorithms is assured. Regarding the cable-suspended load, the
cable is modeled as a rigid link and its upper edge is attached to the center of mass
(CoM) of the quadrotor with the aid of a spherical joint.

Various sensors, e.g., downward-looking camera, load cell, and depth sensor,
are incorporated into the quadrotor besides the common navigation ones, e.g., GPS,
IMU, and altimeter. The aforementioned sensors are appropriately integrated either
into the quadrotor’s body or upon the cable according to the requirements of the
addressed task. For the simulation of the water sampling procedure, visual effects
are also included in the simulation environment, as illustrated in Figure 2.2, while
buoyancy and drag forces, related to the water flow, are applied to the submerged

load, in order to model the dynamics during the sampling.

FIGURE 2.2: Capture of a Gazebo environment which simulates the
water sampling procedure.
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2.3 Low-Level Control

As aforementioned, both the quadrotor and the real octorotor of Figure 2.3 are
equipped with the Ardupilot firmware, which is capable of providing state feedback

and controlling the vehicles based on a cascaded PID control architecture.

FI1GURE 2.3: The octorotor vehicle utilized throughout the real-world
experiments.

More precisely, the estimation of the internal state variables of the UAV is
achieved through an Extended Kalman Filter (EKF), which fuses measurements pro-
vided by common navigation sensors, such as IMU, GPS, compass etc. Regarding
the control of the vehicle, the cascaded PID control architecture of Figure 2.4 is em-
ployed, following standard practice in multirotor autopilots, due to the underactuated
nature of the system. Specifically, an outer PID position controller commands an in-
ner attitude one based on the reference position, velocity, and heading of the vehicle.
Subsequently, the inner attitude loop converts the required orientation and vertical
velocity into appropriate inputs, i.e., Pulse Width Modulation (PWM) values, for
each motor of the UAV.

It should be noted that the control schemes, presented in the dissertation, sub-
stitute the default PID position controller of the autopilot and command directly the
inner attitude one due to the addition of the cable-suspended load, which alters the
translational dynamics of the whole system, and the need for controlling the cable’s
state. Consequently, the inner attitude loop of the autopilot is incorporated into the
proposed control schemes while the outer position one is disregarded since it does not

consider the presence of a cable-suspended load.
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FIGURE 2.4: The cascaded PID control architecture of Ardupilot.

2.4 Notation

The necessary notation, which will be utilized consistently throughout the disserta-
tion, is listed below in order to aid the reader’s comprehension of the subsequent

concepts:

¢ Vectors and matrices are generally represented by bold lowercase and uppercase

symbols respectively, while non-bold letters denote scalars.

e Vectors are defined with respect to the world frame W unless a superscript is

utilized.

e Subscripts are used in order to distinguish the variables, e.g., the subscript L

refers to variables of the cable-suspended load.
e L,xn and 0, x,, denote the nxn identity and n x m null matrix correspondingly.
« diag() denotes a diagonal matrix whose non-diagonal elements are zero.

e ||x||4, where x € R" defines a vector and A € R™ " a symmetric positive

definite matrix, is equal to x! Ax.

2.5 Equations of Motion

In this section, the equations of motion for the multirotor with the cable-suspended
load are presented. It should be highlighted that the forces, arising from the water flow
and acting on the submerged load during the sampling from aquatic environments,
alter the dynamics of the system compared to the transportation of the load and the

tracking of the ground target.

2.5.1 Equations of Motion during Load Transportation

Consider the multirotor with the cable-suspended load, and let W be a world (iner-
tial) coordinate system, i.e., East-North-Up (ENU) frame, and B a body-fixed one,
as depicted in Figure 2.5a. The origins of W and B coincide with the position where
the multirotor takes off and the center of mass (CoM) of the vehicle correspond-

ingly. Under the assumptions that the cable is taut, has a constant length [, and
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(a) (B)

FIGURE 2.5: (a) The octorotor UAV with the cable-suspended load.
The world W and body-fixed B coordinate systems, the positions p
and py, of the UAV and the load respectively, and the cable unit vector

n are also depicted. (b) The cable angles i, = [(bL GL]T

its upper edge is exactly attached to the CoM of the vehicle, the cable unit vector
T T

n= [nw Ny nz] € R3 is related to the positions p, = [a:L YL ZL] € R? and

T
p= [ac Y z] € R3 of the load and the UAV respectively, according to the equation:

1

n=- (pL —P) (2.1)

Since the cable unit vector has 2 degrees of freedom (DoFs), it can also be defined

T
based on the cable angles n; = [¢L GL] , as illustrated in Figure 2.5b, where ¢,
and 67, denote consecutive rotations around the x and y axes of the world frame W

correspondingly, i.e.:

n=R,(0,)R.(¢r) [0 0 —1}T (2.2)

T
=>n= [—89L6¢L sor, —CHLC(ﬁL}

By differentiating successively Equation (2.2), the following relationships are

produced for the cable velocity n and acceleration f:

n= JwL (23)
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cBrsor, 5(9LC¢)LH‘-"L||2
i = Jo + 0 2000+ | —soré? (2.4)
—sOrsor C‘9LC¢LHWL||2

where wy, = 71, is the cable angular velocity and

sOpspr —clpcdr
3= o 0 (2.5)
onr,
clpsor  sOpcor

By multiplying Equation (2.4) with the matrix (JTJ )_1 JT| the cable angular

acceleration wy, is derived:

wy, = (JTJ)_1 JTh + ¢ (nL,wr)

oy — sfLsor cor clrsor P —corspLl} 20
_% 0 i% 2tan (¢1)0LoL

The above equation is valid for |¢1| # /2, which is a reasonable assumption in case
of swing-free load transportation. The dependency on the cable acceleration ii can be
eliminated in Equation (2.6) by differentiating twice Equation (2.1) and by exploiting
the Newton-FEuler equations of motion for the load, i.e.:

I'T]

vy = —ge, — m—Ln (2.7)
where vy, is the load velocity, g = 9.81 m/s? is the gravitational acceleration, e, is
the z axis of W, my, is the load mass, and T is the cable tension. It is mentioned that
other external forces acting on the load, e.g., air drag forces, are neglected. Eventu-
ally, considering that J7n = 0,1, the cable angular dynamics can be extracted by

rewriting Equation (2.6) as follows:

wr, =

~| =

(JTJ)_lJT (—ge; — V) +c(nL,wr) (2.8)

T
with v = [vx vy vz} denoting the velocity of the UAV.

Regarding the dynamics of the multirotor, the rigid body equations of motion
are exploited in order to describe the translational dynamics of the vehicle subject to
external disturbances [54]. Concerning the rotational dynamics, the attitude subsys-
tem is controlled by the fast embedded autopilot and a first-order model is utilized so
as to represent the inner-loop attitude controller due to the efficiency of the onboard

autopilot [39], [63]. Consequently, the following equations describe the behavior of
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the multirotor platform:

p=V

f
v = —ge; + FRWBGZ + :;t

. 1
¢ = P (Kppq — &) (2.9)

1
0= — (Kgby—0)

To

)= 1 (Kypa — )
Ty

where m is the mass of the vehicle, F' represents the thrust, normalized with respect
to mass, produced by the motors, Ryyp denotes the rotation matrix from B to W
derived by the Euler roll, pitch, yaw angles, i.e., ¢, 0, ¥ respectively and f.,; are the
external forces acting on the vehicle. Additionally, the parameters K4, Ky, Ky and
T4, To, Ty are the gains and time constants of the inner attitude controller which is
identified according to the attitude response of the octorotor. Finally, the angles ¢4,
04, W4 represent the desired roll, pitch, yaw angles, which are directly sent to the inner
attitude controller, while the actual thrust is computed based on the desired vertical
velocity v,, and is scaled so as to consider nonzero roll and pitch angles according to

the relationship:
g+ (szzd - Uz) /Tz
cBcop

with K, and 7, denoting the gain and the time constant of the inner thrust controller.

F= (2.10)

Finally, the compete dynamic model of the system during the aerial transporta-
tion of the load, assuming that the only external disturbance acting on the vehicle is

the cable tension and, thus, neglecting the air drag forces, is:

p \'%
v —ge. + FRype, + tln
¢ = (Kot — ¢)
f o | = — (Ko —0) (2.11)
W o (Kytha =)
nL wr,
(wr|  [2(I73) I (—ge. — ) + ¢ (n,wi)

2.5.2 Equations of Motion during Water Sampling

Consider the case in which a UAV is conducting water sampling with a suspended
sampling mechanism, as depicted in Figure 2.6. During the water sampling procedure,
the equations which describe the dynamics of the multirotor, i.e., Equation (2.9), are
identical. However, as far as the load is concerned, Equation (2.7) does not hold since

additional forces are acting on the submerged mechanism, besides the gravitational
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FI1GURE 2.6: The octorotor with the cable-suspended sampling mech-
anism during the sampling procedure in a river.

force and the tension of the cable, due to the interaction of the load with the fluid.
More specifically, the Newton-Euler equations for the mechanism during the sampling
are:

mrvy = —mrge, — ||T|n+ £, + £ (2.12)

where:

o f; = pVge, is the buoyancy force with V' denoting the volume of the submerged
load and p the density of the water and

o £f=Dy(vy —vL)+ DMU\VU, —vr| (v —vp) is the drag force induced by the
water with Dy, D)y, € R3*3 the linear and quadratic drag coefficient matrices

T
correspondingly, and v,, = [vw,x Vg, y 0] the water velocity expressed to the

world frame W.

It is evident, from the above equations, that during the sampling procedure some
parameters are related to the shape of the mechanism and to the fluid itself, and thus
are difficult to be identified.

However, due to the coupled dynamics of the whole system, the underwater dis-
turbances, applied to the submerged mechanism, are transferred to the UAV through
the cable. Consequently, solely an estimate of the cable tension is required for the

control of the vehicle during the sampling procedure.
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Chapter 3

Aerial Transportation of
Cable-Suspended Loads

3.1 Introduction

In this chapter, we address the task of transporting a cable-suspended load with a
multirotor UAV in outdoor environments. The suspension of loads through cables
has the advantage of minimum mechanical intervention in the UAV platform and
alleviates the need for complicated designs as opposed to the rigid attachment of loads
to UAVs. However, the existence of the cable-suspended load entails control schemes
that handle the increased number of degrees of freedom (DoFs) and the swinging
motion of the cable and, thus, guarantee the safety of the platform. Additionally,
considering that a reliable estimate of the cable’s state is a prerequisite for feedback
controllers, the need arises towards the development of appropriate techniques for

estimating the cable’s angular motion based on onboard sensors.

To this end, we present 2 methodologies for estimating the cable’s state with
the aid of either a standard camera or a dynamic vision sensor (DVS). In the former
case, the detection of the cable relies on a Convolutional Neural Network (CNN) and
the complete cable’s state is obtained by a Kalman Filter. In the latter case, based
on a point cloud representation for the incoming event streams, a computationally
lightweight event processing method is designed which achieves the fast detection of
the cable while the respective measurements are afterwards fitted to a Bézier curve in
order to approximate the complete cable’s state, within a much shorter time period

compared to the frame-based solution.

Regarding the control of the platform, both model-free and model-based ap-
proaches are investigated in order to achieve the swing-free transportation of the
load. Initially, based on deep Reinforcement Learning (RL), a model-free policy is
learned in the simulation environment which accomplishes the addressed task. After-
wards, domain randomization is included into the training procedure so as to improve
the transferability of the learned policy to real-world conditions and enhance its ro-

bustness to varying properties of the system. Eventually, a model-based approach,
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particularly a nonlinear Model Predictive Controller (NMPC), is formulated for the
system dynamics. Since the multirotor with the cable-suspended load operates in
outdoor environments under the influence of external disturbances, Gaussian Pro-
cesses (GPs) are exploited in order to approximate online the model errors between
the nominal and actual dynamics. Subsequently, the corrected dynamics are fed into
a GP-based NMPC scheme which fulfills the swing-free transportation of the load re-
gardless of the existence of disturbances and the conditions, prevailing in the outdoor

environment where the UAV is deployed.

The outline of this chapter is as follows. In Section 3.2, the problem of the aerial
transportation of cable-suspended loads is formulated. Section 3.3 introduces 2 algo-
rithms for estimating the cable’s state based on visual data acquired by a conventional
or an event camera. In Section 3.4, a model-free policy is trained using deep RL in or-
der to achieve the swing-free transportation of the load while, in Section 3.5, domain
randomization is incorporated so as to learn a more generalized policy. Section 3.6
presents an NMPC scheme utilizing GPs to estimate in real-time the unmodeled dy-
namics and the external disturbances acting on the platform. Finally, Section 3.7
demonstrates the efficacy of the proposed state estimation techniques and control

schemes through real-world experiments.

3.2 Problem Formulation

FIGURE 3.1: The octorotor with the cable-suspended load deployed
in the field.

We consider the motion control problem of transporting a cable-suspended load
towards reference waypoints using a multirotor, as depicted in Figure 3.1. In order
to accomplish the safe transportation of the load, it is essential to take the swinging
motion of the cable into account during the autonomous navigation of the platform.

Otherwise, the arbitrary motion of the UAV may provoke severe oscillations of the
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cable and lead to large angular displacements which may jeopardize the safety of
the whole system. To this end, our ultimate goal is to develop appropriate control
schemes, either model-free or model-based, that handle the complicated coupled dy-
namics of the platform and compute suitable commands ¢4, 04, 14, v., for the inner

attitude controller of the autopilot in order to:

 minimize the position error ||p — pycf|| between the actual position of the UAV

and the reference one p,.; € R3.

e minimize the cable velocity n, or equivalently the angular velocity wy, as well
as the cable angles 1;,. The latter implies that the cable should be maintained
as close as possible to a vertical configuration, i.e., parallel to the z axis of the
world frame W, and, hence, the components n,, n, of the cable unit vector n

should be minimized.

However, the aforementioned closed-loop controllers require robust and high-
speed estimation of the cable’s state besides the vehicle’s state, which is directly
provided by the autopilot. Considering that the octorotor operates in outdoor en-
vironments, where motion capture systems cannot be utilized, we design state esti-
mation algorithms which, based on visual information obtained by a single standard

camera or a dynamic vision sensor (DVS), fulfill the following objectives:

e Robust and real-time identification of the cable despite the challenging outdoor

conditions.

o Estimation of the complete state of the cable, i.e., both 17 and wy, required

for any feedback controller.

3.3 Estimation of the Cable’s State

In this section, we present 2 methodologies for estimating the state of the cable during
the aerial transportation of the load. In order to avoid the integration of multiple
sensors, e.g., encoders, which results in complex mechanical interventions in the UAV
platform, or/and the development of appropriate observers [7], [45], [73], we aim to
exploit a single downward-looking camera, either a standard frame-based or an event
camera. Consequently, given that almost every UAV comes with a mounting for a

camera, the proposed algorithms can be implemented with minimal prerequisites.
3.3.1 Frame-based Estimation of the Cable’s State

CNN-based Cable Detection

Consider the RGB image obtained by the downward-looking camera, located near
the vehicle’s CoM, as depicted in Figure 3.2a. Our objective is to process the afore-
mentioned image in order to identify the cable and, eventually, detect the load in

the image plane. Various methods and algorithms exist in order to achieve object
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detection, such as utilization of markers, histogram of oriented gradients (HOG)
etc. However, since the UAV with the cable-suspended load is operating in outdoor
environments, where various lighting conditions, visual occlusions and shadows are

observed, a neural network approach is chosen due to its robustness and versatility.

()

FIGURE 3.2: (a) The input RGB image obtained by the downward-
looking frame-based camera. (b) The output segmented image pro-
duced by the CNN. (c¢) The RGB image combined with the output of
CNN. The red pixels correspond to the pixels which the CNN identi-
fies as cable. The green cross represents the edge of the cable, i.e., the
load. The convex hull of the CNN output is also illustrated.

More precisely, the mobilenet_segnet model, which consists of multiple convolu-
tional and pooling layers, was employed from the Keras image segmentation frame-
work [28] due to its low computational cost. Specifically, we found that the average
time for the inference of the Convolutional Neural Network (CNN) was 33 ms on the
embedded computer of the vehicle, namely the Jetson AGX Xavier [35], when the
VGA resolution is used for the ZED 2 camera [98]. Regarding the training proce-
dure, a dataset of 1000 images were captured by manually flying the vehicle with the
suspended load in various environments. The dataset was then divided into training
and validation set according to a 90:10 split. The training dataset was labelled using
the labelme software [93] and afterwards the size of the dataset was increased to 4000
images by applying multiple transformations on the images with the imgaug image
augmentation tool [37]. Eventually, the CNN was trained via the back-propagation
method and converged to over 98% accuracy on the validation set after 15 epochs.

An indicative example of the output of the trained CNN is illustrated in Figure 3.2b.

Based on the output of the trained CNN, a region of interest is extracted by

means of a convex hull, the edge (ur,vr) of which denotes the pixel coordinates of
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the load in the image plane as depicted in Figure 3.2c. According to the typical
pinhole camera model, the position of the load, i.e., the lower edge of the cable,
Cpr € R? with respect to the camera frame C is extracted from the pixel coordinates
ur, € [-W/2,W/2], vy, € [-H/2, H/2], as follows:

CPLZ[CZLUL/f “zron/f CZL]T (3.1)

where W x H is the resolution of the camera, f is the focal length, and €z, is the
cartesian coordinate of the cable’s edge w.r.t. the z axis of C. Since the distance €z,
is unknown, the constant cable length [ is exploited so as to retrieve the complete
3D information about the position of the load. Specifically, given that the cable is
assumed to be taut and attached to the origin of the body-fixed frame B, the following
equation is derived:

o] = [ o ac] =1 52

where Ppy, is the position of the cable’s edge w.r.t. B, and Rpc and tpc are the
known rotation matrix and translation vector from C to B. Solving Equation (3.2)
results in a function h : R? — R that maps the coordinates (ur,v) — and known
parameters, namely, the elements of Rpc and tpc, the intrinsic parameters of the

C

camera, and the cable’s length [ — with the distance 2z, i.e., “zr = h (up,vz). The

analytical form of the function h is omitted since it relies on the specific relative pose

between the camera and the body-fixed frame. Eventually, the cable unit vector £n
is computed:
5. ’pr Rpc“pr+tse
n=-— = (3.3)
1PpLll l

and is then transformed to the world frame W (n = Ry pPn).

Kalman Filter

Besides the cable unit vector n, an estimate of the cable velocity is essential for the
subsequent control schemes. Although direct Euler differentiation of the measurement
n is a possible solution, it typically results in a considerably noisy estimate and, hence,

in degraded control performance.

Consequently, a Kalman Filter is selected since it is a widely adopted framework
for state estimation [15], [49]. The Kalman Filter is implemented based on the dy-
namic model of Equation (2.7). More precisely, defining x; = [nT ﬁT]T € RY as
the state vector, the following process and measurement models are considered in the

Kalman Filter formulation:

. n n
xp=1|.|= |1 T .y TW (3.4)
n 7 (—gez — mi[]l’l — V)
I 0
v = 3x3  U3x3 n Tw (3.5)
O3x3 Osx3| |0
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where w € RS and w € R3 represent additive process and observation Gaussian
noises. An Extended or Unscented Kalman Filter (EKF, UKF) is exploited due to
the nonlinear process model. It is mentioned that the acceleration of the UAV v and
the tension of the cable ||T|| are directly measured by the IMU of the vehicle and a
load cell, placed upon the cable, correspondingly. Once the cable unit vector n and
the cable velocity n are estimated, the cable angles n; and angular velocity wy, are

computed according to Equations 2.2 and 2.3.

3.3.2 Event-based Estimation of the Cable’s State

In order to achieve the estimation of the cable state within a much shorter time period
compared to the above frame-based methodology, we investigate the integration of a
Dynamic Vision Sensor (DVS), i.e., an event camera, into the vehicle, as illustrated
in Figure 3.3. Event cameras offer multiple advantages compared to standard ones,
including low latency, low power consumption, high dynamic range, and robustness
against motion blur [20]. Various works in the literature have successfully demon-
strated the deployment of event cameras in outdoor environments for a wide range of
applications, such as powerline inspection [12], pole tracking [90], visual guidance for
ornithopter robot flight [13], intruder monitoring [74], autonomous quadrotor flight
despite loss of a single rotor [83], or event-based odometry [53]. However, due to the
asynchronous nature of event cameras and the novel ways of acquiring visual data,
each work is unique and highly dependent on the object to be identified and the task
to be addressed. Hence, a novel solution adapted to the specific problem of identifying

the cable and estimating its state during aerial transportation is designed.

FIGURE 3.3: The octorotor UAV with the onboard computer and the

DVS camera (DAVIS 346). The body-fixed B and the camera C frames

are also depicted. The red, green, blue colored arrows correspond to
the x,y,z axes of each frame.
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Event Representation

In contrast to frame-based conventional cameras, an event camera is a bio-inspired
sensor which responds to luminance changes asynchronously and independently for
each pixel. Hence, the output of a DVS camera is an asynchronous stream of
“events” triggered by brightness changes in the scene. More precisely, an event
er = (ug, v, tg, px) is triggered at pixel coordinates (uy,vi) and at time ¢ as soon as
a change in log luminance above a predefined threshold is sensed compared to the last
event at the same pixel. The polarity pi € {0, 1} indicates the direction of luminance

change.

According to the proposed algorithm, the events generated by the DVS are pre-
processed in order to identify the ones that correspond to the cable and extract later
significant information about its state. More precisely, as soon as an event e; is trig-
gered, it is stored in a point cloud P = {¢;|t; € [to — T, to]}, which consists of the most
recent events up to the current time instant ¢y. It is mentioned that both spatiotem-
poral information (u,v,t) and polarity p are stored in the point cloud. Indicative
examples of “event” point clouds, along with the respective grayscale images cap-
tured by the DVS, are illustrated in Figure 3.4, where an increased number of events,
corresponding to the background or to noise, is observed in outdoor environments.
The Point Cloud Library (PCL) [75], which distinguishes itself for its computational
efficiency, is exploited for the representation of the “event” point cloud and the subse-
quent processing algorithms. Regarding the representation, a point cloud with points
of type XYZI is selected from the PCL, where the X-Y coordinates are used for the
pixel values, the Z coordinate for the time, and the intensity value I for the polarity

of the events.

Event Point Cloud Processing

The aforementioned point cloud P is downsampled by applying a 3D voxel grid filter
within a spatiotemporal neighborhood of each event, defined by an n, x n, pixel
window by n; ms volume. Hence, the events that belong to each voxel are approxi-
mated by their centroid. It is highlighted that, besides the pixel coordinates and the
timestamps, the polarity of the events in each voxel is also averaged. Consequently,
the newly generated point cloud P’ = {e}|t} € [to — T, to]} consists of centroids ¢’;

J
with real-valued polarities p;- € [0,1], as illustrated in Figure 3.5a.

Afterward, the point cloud P’ is filtered based on the average polarity pg- of each
centroid €}. More specifically, only the centroids with polarity p; € (0,1), i.e., p; # 0
and p;- # 1, are considered as candidate events to belong to the cable, as depicted
in Figure 3.5b. This filtering step essentially implies that there should be at least
2 events e; in each voxel of the point cloud P with opposite polarities in order to
promote the respective centroid e; to a candidate event. This filtering approach is

derived from the observation that, due to either the motion of the vehicle or the
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() (D)

FIGURE 3.4: The grayscale images captured by the DVS in an (a)

indoor and (c¢) outdoor environment at the current time instant 5. A

top-down view (u-v plane) of the corresponding “event” point clouds

P for T = 25 ms in the (b) indoor and (d) outdoor environment. The

purple and red colored points of P correspond to events with polarities
p =1 and p = 0 respectively.
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cable itself, an adequate number of events of opposite polarities is generated on a ms
scale during the transportation of the suspended load. Additionally, when the UAV
hovers at a specific position, both the UAV and the cable cannot be firmly stable
due to existence of external disturbances, arising mainly from the wind in outdoor
conditions. Another advantage of this filter is that the majority of noisy and spurious
events are disregarded. More specifically, after an event is triggered, additional events
of the same polarity and at the same pixel location are sometimes generated within
a certain time interval [12]. Consequently, by applying the aforementioned filtering

step, these same-polarity events are not promoted.

However, there exist some centroids e;- that pass the above-mentioned filter but
correspond to either noise or objects that lie on the terrain/background and not to
the cable. Thus, an Euclidean Clustering algorithm in the spatiotemporal space
is performed using the effective Kd-tree representation for the input point cloud
P = {e;\tg € [to — T to] , p} € (0, 1)} and subsequently employing the nearest neigh-
bor search algorithm. It is highlighted that the cluster tolerance should be properly
selected in order to avoid the cable being detected as multiple sub-clusters. Finally,
the cluster with the maximum size is promoted to the cable cluster C since the cable
is closer to the DVS than any other object on the terrain and is assumed to have a
sufficient diameter. Thus, the events that represent the cable typically occupy most of
the image plane, as depicted in Figure 3.5c. Further checks are also employed between
consecutive extracted cable clusters by comparing their relative position and, thus,
ensuring the proper selection of the cable cluster when objects of similar shape lie on
the terrain. Eventually, a sequence of cable clusters is obtained in a quasi-continuous

manner, as illustrated in Figure 3.6.

As soon as the cable cluster C is extracted, it is essential to find the event
that corresponds to the load, i.e., the lower edge of the cable. Based on the specific
configuration and relative pose of the DVS with respect to the cable, a naive approach
would be to pick the event e € C with the maximum coordinate vj; however, this
approach degrades the importance of the remaining events. Consequently, a 2D line
fitting is performed considering the pixel coordinates (u;, vg) of the events €} € C, as
depicted in Figure 3.5c.

Approximation by a Bézier Curve

By employing the aforementioned processing pipeline, the pixel coordinates (ur,vr)
of the lower edge of the cable are eventually obtained. However, the lower part of
the cable might not generate an adequate number of events during some sparse iter-
ations, which results in a noisy estimate of the cable’s state and degrades the control
performance. Consequently, Bézier curves are exploited in order to both smoothly
approximate the coordinates (ur,vr) and obtain the pixel velocities (i, 0r,), required

for the estimation of the complete state of the cable.
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()

FIGURE 3.5: (a), (b), (c) The processing algorithm applied to the
“event” point cloud P of Figure 3.4d: (a) A top-down view (u-v plane)
of the point cloud P’ generated after the downsampling of P. The
purple and red colored centroids of P’ correspond to centroids with
polarities p = 1 and p = 0 respectively while the remaining centroids
have polarities p’ € (0,1). (b) A top-down view of the point cloud
P after the filtering of P’ based on the polarity of each centroid.
(c) A top-down view of the cable cluster C and the respective blue
colored line fitted to C. (d) The Bézier curve (orange color) which
approximates the measurements of the lower edge of the cable (yellow
color).



3.3. Estimation of the Cable’s State 33

"Event"'
Point Cloud

Cable
Clusters

FIGURE 3.6: The current “event” point cloud, obtained by the DVS,

and a sequence of cable clusters, extracted according to the proposed

method, throughout the last 2 s in an outdoor environment. The u-v

axes denote the image plane and the ¢ axis represents the time. The

purple and red colored points of the “event” point cloud correspond
to events with polarities p = 1 and p = 0 respectively.

More specifically, a Bézier curve is given, according to the order n of the curve,

as follows:

n
B(1) = bin(r)ci (3.6)
=0
where T € [O, 1], B(7) € R? (for the u-v image plane) is the Bézier curve, b; ,(7),i =
T
0,---,n are the Bernstein basis polynomials of degree n, and c; = [Cu,i Cv,i} € R?

are the n 4+ 1 control points.

In order to compute the suitable set of control points ¢ = [co, Cy,- - ,cn} and,
thus, approximate the trajectory of the cable in the image plane, a dataset D =
{(tn=1,ur,N-1,vL,N-1), ", (to,ur,0,vL,0)} is constructed, consisting of the last N
measurements, up to the current time instant ¢, of the pixel coordinates (ur,vr)
along with the respective timestamp, as obtained by the above processing pipeline.

The dataset has a constant length and is updated once a new measurement is available.

After performing a mapping between the parameter 7 € [0, 1} and the time

interval ¢t € [tN,l,to}, the optimal set of control points c is the solution of the

2
) (3.7)

which essentially minimizes the distance between the Bézier curve and the measure-

optimization problem:

B(m) - [UL,i’ UL,i] !

N-1
g 3 (wti
’L:

ments, while the weights wy;, boost the more recent measurements and impose penal-

ties on the previous ones [29)].
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Moreover, constraints, related to the minimum and maximum velocity and ac-
celeration of the cable in the image plane, are incorporated into the optimization
problem, so as to find solely feasible solutions. More precisely, by differentiating the

Bézier curve, the constraints are formulated as follows for the u axis (similarly for

the v one):
n- (Cu,i - Cu,i—l) / (t() - thl) S [_f[/fmaa:u fdmax]
n-(n—1)- (cui — 2¢ui—1 + Cui—2) . . (3.8)
2 S [_umaxy umax]
(to —tn-1)

The above-mentioned constrained Quadratic Programming problem (Equation (3.7))
with 2-(n+1) primal variables, i.e., the control points, and 2-n+2-(n—1) constraints
(Equation (3.8)) is solved with the aid of the OOQP software [24] and, eventually, an
estimate of the pixel coordinates (ur,vy) and velocities (4, 0r) at each current time

instant tg is derived from the Bézier curve, illustrated in Figure 3.5d.

Afterward, given the Bézier curve, the complete state of the cable is computed.

More precisely, similarly to the frame-based method, the cable unit vector Zn is

computed according to Equations 3.2 and 3.3. Regarding the cable velocity, it is
obtained by differentiating Equation (3.3) according to the following relationships:

Cirur + Czpar

R Rpe1l
By = ZBCCp = PO Ca iy + Capi, (3.9)

l
/ £z

Oh .
(BuL ur, + (%L UL) up +¢ zpug

R

B. _ BC oh C .

n= ﬁ (auL“ —;hf%L UL) v+ 2L0L (3.10)
f (auLuL+ Dog vL)

with 88uhL , &) denoting the partial derivatives of the function Cop = h(ur,vp).

Consequently, given the output of the Bézier curve, i.e., the coordinates (ur,vy) and
the velocities (i1, 01, ), both the cable unit vector Zn and the cable velocity ®n can be
computed and then transformed to the world frame W so as to calculate the angles

1, and angular velocity wy, (Equations 2.2 and 2.3).

Accuracy of the Method

The accuracy of the proposed method was initially evaluated through indoor exper-
iments, where the output of the aforementioned event-based solution was compared
against accurate measurements provided by a motion capture system. More precisely,
the DVS and the upper edge of the cable were rigidly mounted on a ceiling with a
relative pose similar to the one on the UAV. It is mentioned that in this case, the
world frame coincides with the body-fixed one. Ground truth was obtained by the
Vicon motion capture system based on markers that were cautiously placed around

the cable to ensure the continuous tracking of its swinging motion. An image of the
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indoor environment, acquired from the frame-based camera of the DAVIS 346, and

the respective “event” point cloud are illustrated in Figures 3.4a and 3.4b respectively.

Throughout the experiments, data from both the DVS and the Vicon system
were gathered by varying the initial angle of the load and releasing it with zero
velocity. Hence, the load moved freely under the influence of gravity. Indicative
results for an indoor experiment are demonstrated in Figure 3.7 where the cable
angles ng, = [qb L 0 L] ’ obtained by the processing of the event stream are compared
against the ground truth captured by the Vicon system. It is evident that our method
successfully distinguishes the cable and captures the entire range of its swinging
motion. The Root Mean Square Errors (RMSE) for the angles ¢ and 6 were
2.204° and 2.639° correspondingly during the indoor tests. Finally, the success rate,
i.e., the number of detections divided by the total number of iterations, was equal to
96.67%.

However, it should be highlighted that although our method captures the fre-
quency of the cable’s swinging motion, the magnitude of the cable angles is overes-
timated, especially when the angles considerably move away from the zero degrees.
This behavior is mainly due to the fact that the lowest part of the cable may not
generate an adequate number of events and, hence, our method may identify as the
edge of the cable (ur,vr) a centroid that does not actually correspond to the edge
but instead to a point located a few centimeters above. Nevertheless, the RMSEs for
the angles are relatively small while also the ultimate goal of our work is the aerial

transportation with minimum swing angles, where the aforementioned behavior is

alleviated.
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FIGURE 3.7: The cable angles, (a) ¢, and (b) 61, computed accord-

ing to the event-based algorithm and compared against the accurate

measurements provided by the Vicon system during the indoor exper-
iment.
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Computational Cost

In order to quantify the computational cost reduction achieved with this method
compared to the frame-based solution, the execution time of the individual processing
steps of the event-based algorithm is measured on the Jetson AGX Xavier in the case
of both indoor and outdoor environments. The mean processing time for each of the
steps that comprise the overall method, i.e., the processing of the “event" point cloud,
and the approximation by a Bézier curve, as well as the parameters of the proposed
algorithm are summarized in Tables 3.1 and 3.2 respectively. It is mentioned that
the computational cost of the point cloud processing is directly related to the number
of incoming events. Consequently, during the indoor experiments, where the DVS
is not moving and the surrounding environment is static, the execution time of this
step is reduced. In any case, the mean processing time of the proposed method
is significantly lower compared to a standard frame-based detection algorithm with

CNNs, where the average time for the inference of the CNN is equal to 33 ms.

Time[ms]
Step Indoor Owutdoor

Point Cloud Processing 3.424 8.091

Bézier curve (N = 100) 0.302 0.337

TABLE 3.1: The computational cost of the individual processing steps
that comprise the event-based method.

Parameter Indoor Outdoor
T'[ms] 25 25
My XNy XNy [pX X px X ms] || 5x5x10 10x3 x5

TABLE 3.2: The parameters of the event-based method.

3.4 Deep Reinforcement Learning Control

In this section, we present a deep Reinforcement Learning (RL) strategy for control-
ling the multirotor with the cable-suspended load. Specifically, a policy, represented
by a deep neural network (NN), is trained in a model-free manner with the ultimate
goal to produce appropriate continuous control inputs which navigate the vehicle
towards reference waypoints while, simultaneously, compensating for the cable oscil-

lations.

Modern model-free deep RL algorithms alleviate the need for system identifi-
cation and have been proven to be an efficient tool for learning policies capable of
addressing complicated tasks and controlling agents with complex system dynamics,
including UAVs [34], [42]. However, the concept of leveraging deep RL for the aerial

transportation of suspended loads is original.
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3.4.1 Reinforcement Learning Background

According to the classic Reinforcement Learning Theory, the agent’s environment is
formulated as a Markov Decision Process (MDP). At each time step ¢, a MDP is
described by the tuple (s¢, at, p(Se4+1|st, at),7¢), where s; is the current state of the
agent, a; is the chosen action, p(s¢11|s¢, a;) is the transition probability or function,
depending on whether stochastic or deterministic dynamics are considered, from the
current state s; to the next one s;11 when action a; is applied, and ry = r¢(s¢, Sp41, at)

is the reward function which quantifies the performance of the agent.

Assuming an episodic setting, the aim of the RL problem is to find an optimal
policy which maximizes the cumulative reward or return over the episode. More
specifically, an episode is terminated after T interactions of the agent with the envi-
ronment, 7 = (so, ag, S1, a1, ...,S7), or when a termination criterion is reached. The
return is computed as the discounted sum of the rewards obtained during an episode,
R(t) = S v tre(se, se1,ar), where v € (0,1) is a discount factor which favors
current rewards over future ones. In deep RL, the objective is to find a policy neural
network 7y, parameterized by some weights 6, which given the current state s; of
the agent produces actions a; = mp(s;), in the deterministic case, that maximize the

expected return E [R(7)].

According to the existing literature [6], the model-free RL algorithms, which
are used for training agents, may be classified into three main categories: policy
optimization, value function learning and actor-critic methods. In summary, pol-
icy optimization methods improve directly the parameterized policy 7wy by apply-
ing gradient ascent on the expected return. In contrary, value function methods
rely on approximating the optimal Q function, defined as Q*(s,a) = max Q(s,a) =
max TIEW[R(T”SO = s,a0 = a], with a deep neural network Q4(s,a), and, then, choos-

ing actions greedily, a(s) = argmaz Qy(s,a).
a

Actor-critic methods combine the advantages of policy optimization and value-
function learning methods. The actor network is the policy my whereas the critic
network represents the Q function Q4(s,a). Actor-critic methods are an appropriate
choice for continuous action spaces and distinguish for their sample efficiency. Conse-
quently, the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, an
actor-critic method proposed by [19], is selected in order to train the UAV with the

slung load.

3.4.2 Structure of Networks

Following the common actor-critic architecture, two neural networks are considered,
in particular the policy network 7g(s) and the Q function network Q4 (s, a). The input
layer of the policy is the state of system, which specifically for the case of an octorotor
with a cable-suspended load consists of the position error p —p;.s, the velocity v, the

orientation of the vehicle 7, i.e., the roll ¢ and pitch 0, the respective angular rates,
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the z,y elements of the cable vector n, n, and n,, and the corresponding elements
of cable velocity n. It is noted that only the position error is taken into account,
instead of both the current position of the vehicle and the goal position, in order to
reduce the dimension of the state vector. Additionally, the state space is augmented
with the last action a;—; taken by the agent, in order to penalize action oscillations
in the subsequent reward function and learn a smooth control policy [60]. The action
vector, i.e. the output of the policy network, is composed of the desired commands
®d, 04, v, for the inner attitude controller of the autopilot. It is mentioned that the
yaw angle is maintained constant to zero. Briefly, the state and action vectors are
given by:
T
s=[p-Pref v om0 oa (3.11)

a=[¢a 8 vzd]T (3.12)

The policy network is a fully connected multi-layer deep neural network, as shown
in Figure 3.8a, with 2 hidden layers of 64 nodes and tanh activation function. The
presence of the tanh function restricts each output of the policy network to the range
[—1,1] and, hence, the actions are afterwards multiplied by the maximum roll, pitch

and climb rate respectively.

Regarding the structure of the @ function network, the inputs are the states s
and the actions a (Figure 3.8b). The state and the action vectors pass through 2
separate layers of 16 and 32 nodes correspondingly, before concatenating them to a
common tensor which is then inputted to 2 hidden layers of 256 nodes each. Rectified
Linear Unit (ReLU) activation function is used in all layers. The output of the Q

function network is a real number which represents the Q value.

3.4.3 Reward Function

The reward is a user-defined function, which is of vital importance for the convergence
of the learning procedure and should satisfy the requirements of the application. To
this end, considering the studied task, i.e., the swing-free transportation of the load
towards reference positions, the reward is computed at each interaction of the agent

with the environment as the weighted linear combination of the following terms:
re=w'p; (3.13)

T . X T
re =W (e = regll I1vells el el el el flaells llae = o ] (3.14)

where w is a vector of weights assigned to each term of p; at any given time step t.
Negative weights are considered since the objective lies in the maximization of the
return. By employing the aforementioned reward, the minimization of the position
error and the reduction in the swinging motion of the cable are encouraged. Addi-
tionally, the jerky motion of the vehicle, originating from unnecessary sudden changes

in the control signals, is avoided while also the energy consumption is reduced.
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FIGURE 3.8: Structure of Neural Networks.
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Parameter Value
Buffer size 10°
Mini-batch size 64
Exploration noise € ~ N(0,0.1%)
Smoothing noise €’ ~ N(0,0.2%)
Discount factor ~ 0.99
Target networks update 7 0.05

TABLE 3.3: Hyperparameters for TD3 algorithm.

3.4.4 Training Procedure
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F1GURE 3.9: The cumulative reward during the learning procedure.

The agent is trained using the TD3 algorithm, which employs the structure of
actor-critic algorithms and is appropriate for continuous action spaces. The TD3
algorithm is considered as an extension of the Deep Deterministic Policy Gradient
(DDPG) [52] algorithm and aims to reduce the overestimation of the ) value function.
In comparison with the DDPG algorithm, TD3 uses a pair of neural networks, Q4,
and @g,, in order to approximate the () function and the minimum one is selected
during the update of the critic networks. Additionally, in TD3, the policy and the
target networks are updated less frequently than the ) function networks. One policy
and target networks update is proposed for every two @) function updates. Ultimately,
noise is added to the target action and, hence, the ) function estimate is smoothened
along similar actions. Thorough details about the TD3 algorithm are presented in
[19].

Briefly, the critic networks are updated based on the mean-squared Bellman
error, while the policy by applying gradient ascent with respect to 6 in order to
maximize the ) function approximation. Moreover, target networks, with the same
structure as the main ones, are considered so as to provide stability in the training
procedure. The weights of the target networks are slowly synchronized to the weights

of the main ones by a small update.
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The UAV with the cable-suspended load, illustrated in Figure 2.1, was trained on
the Gazebo simulation environment of Section 2.2 according to the hyperparameters
of the Table 3.3. The ADAM optimizer [40] was used in order to update the weights
of the policy and the @ function networks with a learning rate equal to 0.001. The
agent was trained in an episodic setting, where each episode consists of 512 time
steps. During each episode, the agent starts at a random position, sampled within a
bounded 3D space, while the reference position is fixed. The episode is terminated
when the maximum number of time steps is reached or the position error exceeds
a certain threshold. The learning procedure was terminated when the cumulative
reward, i.e. the sum of all rewards during an episode, and the respective moving
average, converged, as depicted in Figure 3.9. It should be highlighted that, since
the policy is trained based on exclusively simulation data, the existence of a highly
realistic simulation environment is a crucial factor for the successful deployment of

the learned policy onto the real vehicle at a later stage.

3.5 Robust Deep Reinforcement Learning Control

Although deep RL-based policies can adequately control the dynamics of robotic
platforms, a key point for discussion revolves around the gap between simulation and
real-world conditions. More precisely, policies are typically trained in exclusively sim-
ulation environments, where an unlimited amount of data is available, since training
in real-world environments can be both time-consuming and critically unsafe, espe-
cially at the initial stages of the learning process. As a result, possible mismatches
between the simulator and the real-world environment may impact the performance
of the learned policy when transferred to the real robot. Moreover, another crucial
issue is the robustness of the policy to varying dynamic parameters of the system.
Considering the case of aerial transportation of loads, it is highly impractical to train
a policy for each load mass or cable length. The aforementioned parameters may
dynamically change even during the same flight. For instance, the UAV may release
part of the load or pick an object throughout the same mission. Similarly, the cable
length may vary when a pulley is attached to the vehicle [99], e.g., for navigating

through narrow spaces.

To this end, we modify the learning procedure of Section 3.4 and incorporate
domain randomization [50], [67] in order to bridge the “sim2real” gap and develop a
policy which is robust to varying model parameters, e.g., load mass and cable length.
The core concept of this technique lies in the randomization of the physical properties
of the simulated environment, called the source domain, during the training procedure
with the ultimate goal of learning a policy that performs satisfactorily across all of the
variations of the simulator. Hence, the learned policy can be successfully transferred
to the real-world environment, i.e. the target domain, since the latter is anticipated

to be a sample of the variable source domain.
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3.5.1 Domain Randomization

As aforementioned, in order to bridge the gap between the Gazebo simulation environ-
ment of Section 2.2 and the real conditions and enhance the robustness of the policy,
the randomization of multiple parameters is enforced during training. Towards this
direction, the following aspects of the source domain are randomized: (i) mass my, of
the load, (ii) cable length [, (iii) observation noise in n, (iv) observation noise in n,
and (v) forces Fg applied to the UAV. The additive observation noise in the compo-
nents of the cable vector n and velocity n models the uncertainty in the sensor-based
estimation of the cable state while the forces Fg € R3 represent the disturbances
acting on the vehicle when deployed in outdoor environments. The ranges of the

parameters are summarized in Table 3.4.

Parameter Range
Load Mass my,[kg] [0.25,1.0]
Cable Length {[m] [0.5,2.0]
Noise in n [-0.05,0.05]
Noise in n [-0.1,0.1]
Force Fg[N] [-1.0,1.0]

TABLE 3.4: Ranges of parameter randomizations.

3.5.2 Training Procedure

In order to introduce the domain randomization into the training procedure, various
modifications in the simulation environment are required compared to Section 3.4.
Specifically, a prismatic joint is integrated into the quadrotor of Figure 2.1 so as to
modify the cable length during the simulation, while a plugin is designed in order
to dynamically change the load mass at runtime. Additionally, although the state
and input vectors as well as the reward function are defined similarly to Equations
3.11, 3.12, and 14, the deep neural networks, i.e., the policy my(s) and the Q function
network Q4(s,a), are revised. More precisely, the input of the policy contains the
state vector, including also the noise in the cable state. In contrast, the ground truth
state, i.e., without the additive noise, and the action are concatenated and comprise
the input to the Q-function. Moreover, since the Q-function is solely used throughout
the simulation, the known randomized parameters of Table 3.4 are also provided as

input in order to boost the training procedure, as proposed in [67].

Regarding the learning strategy, fixed parameters are utilized at the early stages
of the training. More specifically, the observation noise and the external forces are not
initially involved in the simulation while the load mass and the cable length are equal
to 0.5kg and 1.0m respectively. As the training progresses, the parameters are ran-
domized over time and sampled according to a uniform distribution with bounds that
approach gradually the ranges of Table 3.4. By incrementally incorporating random-

ization into the training procedure, the adoption of conservative policies is avoided
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FI1GURE 3.10: The cumulative reward and the corresponding moving
average throughout the training procedure, including domain random-
ization.

[50]. The randomized parameters are sampled at the beginning of each episode and
are maintained constant throughout it, except for the observation noise in the cable
state which is added at every time step. Eventually, the evolution of the cumulative
reward throughout the training, based again on the TD3 algorithm, is demonstrated

in the learning curve of Figure 3.10.

3.6 Nonlinear Model Predictive Control

In this section, we introduce a model-based approach, as opposed to the model-free
strategies of Sections 3.4 and 3.5, for controlling the UAV with the cable-suspended
load. More specifically, according to the optimal control theory, we develop a nonlin-
ear Model Predictive Control (NMPC) scheme, formulated for the system dynamics,
in order to achieve the swing-free transportation of the suspended load. In general,
NMPC has been proven to be an efficient tool for controlling multirotor UAVs in the

context of various applications, e.g., [14], [61], and [62].

However, especially when the UAV with the cable-suspended load operates in
outdoor environments, external disturbances, mainly arising from the encountered
environmental conditions, are acting on the platform. The aforementioned distur-
bances, along with the assumptions in the system modelling, result in mismatches
between the nominal and actual system dynamics which affect the performance of
model-based controllers, particularly NMPC schemes. To this end, we leverage Gaus-
sian Processes (GPs) in order to learn online and in a non-parametric manner the
model discrepancies that exist between the actual and nominal system dynamics [32],

[38]. In order to guarantee real-time performance, given the computational demands
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of GPs, and also ensure adaptability to the conditions prevailing in the outdoor en-
vironment, a weighted version of sparse GP regression is exploited. Eventually, the
approximated dynamics are integrated into a learning-based NMPC scheme so as to

enhance the control performance.

3.6.1 Nominal NMPC

In order to transport the load safely and with minimum oscillations, an NMPC is
initially formulated for the nonlinear system dynamics described in Equation (2.11).
Hence, the implementation of the NMPC scheme requires, besides the state of the
vehicle and the tension ||'T|| of the cable, an estimate of the cable state, i.e., angles 1,
and angular velocity wy,, and a reference position p,.r. As mentioned in Section 2.3,
the NMPC scheme is deployed as a cascade position control which computes attitude

commands for the inner attitude controller of the autopilot.

Since the objective of the NMPC scheme is to suppress cable oscillations and
to minimize the distance between the actual position of the UAV and the reference
one while simultaneously satisfying input constraints, the following Optimal Control
Problem (OCP) is formulated:

to+T
min [ (1(0) ~ ey O + 1)) 4+ et +T) — xeegtto + TR

v
0
subject to: x(tg) = xo (3.15)
x = f(x,v) (Equation (2.11))

vel

T T
WheI’eX:[pT v 6 ¢ nt wg] G]Rl?’,v:[(ﬁd Oa Vg vzd} € R* are

the state and input vectors, X,¢r = [pfef O01x3 0 0 ey O1x2 01X2}T c R13 ig
the reference state vector, T" is the time horizon of the NMPC optimization problem,
Q is the state error cost matrix, R is the control input cost matrix, P is the terminal
state error cost matrix, and U is the set of input constraints related to roll, pitch and
vertical velocity limits. The cost matrices Q, R, P are positive-definite and block-

diagonal and, for instance, the state error cost matrix Q is structured as follows:

Q=diag ([Q, Qv Q, Qu Qu.)) (3.16)

where Qp, Qu, Qy, Q,, Qu, are block-diagonal weight matrices that penalize the
deviation of the vehicle’s position, velocity, orientation, and cable angles, and angular
velocity respectively from the reference state vector. The terminal state error cost

matrix P is defined in a similar way.

The aforementioned OCP is solved at each iteration and an optimal control
sequence is computed. Only the first control input of the derived sequence is applied

to the UAV and the whole optimization process is repeated according to the receding
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horizon control principle. In order to design the MPC problem and achieve real-time
performance, the ACADO Toolkit [33] is utilized combined with the gqpOASES [17]
solver. Based on experiments conducted on the embedded computer of the UAV,
namely the Jetson AGX Xavier, it was found that the ACADO Toolkit with the
qpOASES solver provides a solution to the OCP after 3.4 ms on average and, hence,

a highly satisfactory control frequency is attained.

3.6.2 Augmented Dynamics

In the above section, the nominal dynamics of the system Xxy1 = f,,0m (X, Vi) Were
exploited, where f,,,,, the discrete-time equivalent model of Equation (2.11), and X1
the estimate of the state at the next time instant t51q. Although the aforementioned
model is adequate for the control of the system, the performance can be further
improved since the nominal model does not capture the entire range of the actual
system dynamics. Consequently, discrepancies occur between the measured and the
estimated next state, and an error e = X1 — X1 is observed originating from the

following reasons:

e The drag forces, induced by the air and applied to both the vehicle and the

load, are neglected in the nominal dynamics.

o The flexibility of the cable may violate the assumption of tautness (Equa-

tion (2.2)) and, thus, the subsequent analysis of Section 2.5.1.

o The upper edge of the cable is assumed to coincide with the CoM of the vehicle;
however, this is practically infeasible due to the limitations that emerge from
the mechanical structure of the UAV.

e The integration of an embedded computer and sensors, e.g., a camera, onto the

UAV may result in a displacement of the CoM of the vehicle.

e Other discrepancies may exist, e.g., errors in the calibration of the load cell that

measures the cable tension.

The incorporation of the aforementioned discrepancies into the nominal dynamics not
only increases the complexity of the model but also entails exhaustive and possibly
expensive system identification procedures, e.g., aerodynamic testing in wind tunnels.
Additionally, some sources of error are subject to the conditions prevailing in the
outdoor environment where the UAV operates, e.g. wind velocity, and, hence, cannot

be predicted.

To this end, we aim to exploit GPs to estimate the unmodeled dynamics in a
non-parametric manner. Inspired by [32], [38], the actual system dynamics can be

represented by the equation:

X1 = £ (X, vk)

(3.17)
= from (Xi, Vi) + By (d (x5, v;) + Wg)
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where wy, ~ N (0,X") is i.i.d. Gaussian noise with a diagonal variance matrix £*, d
denotes the unknown dynamic part to be approximated by the GPs, and B, defines
the subspace of the system dynamics affected by the model discrepancies. It is as-
sumed that model errors exist solely in the second-order system dynamics and, thus,
B, = [03X3; I3x3; 03x3;09%9; szg]. Consequently, the ultimate goal is to estimate
the model errors d,, € R3 and d,, € R? that impact on the translational dynamics of

the UAV and the angular motion of the cable respectively.

3.6.3 Gaussian Process Regression

In the following section, GP regression is briefly introduced according to the thorough
description in [72]. In general, GPs can be exploited for the approximation of an
unknown function g(z) : R™* — R, based on a collection of M noisy observations y;

of the true function g(z) measured at the inputs z;, with:
yi = 9(zj) +w; , wj ~ N (0,0%) (3.18)
More specifically, a dataset D is constructed, i.e.:

D = {Z = [Zl,. . .,ZM}T S RMX”Z,
. (3.19)
y:[yl,...,yM} ERM}

which can be exploited in order to predict the posterior distribution at any query
input z. Conditioning on the dataset D, the posterior distribution is specified by the

following mean and covariance:

M (Z) =k.z (KZZ + IM><MU2)71Y (3.20)

S (z) = k (2.2) — koz (Kzz + Iusaro®)  kz. (3.21)

where k (z;,2;) = o7%exp (—0.5(z; — z;)" L(z; — z;)) € R is the squared exponential
kernel function with positive diagonal length scale matrix L € R™#*"= and variance
o2, [Kzz];; = k(zi,z;) is the i, j element of the matrix Kzz € RMXM ith
z;,2j € Z, [kzz]j = k (z,2;) is the j element of the row vector k. € RM with z; € Z,
and kz, = kI,,.

However, the computational cost of GP regression, mainly determined by the
inversion of the K7z matrix, is highly dependent on the size M of the dataset and
renders its usage impractical for real-time applications where a significant amount of
data is considered. Additionally, it should be noted that GPs can approximate solely
one-dimensional functions and, hence, 5 independent GPs are required to estimate
the model errors d, € R? and d,, € R? for the purposes of the studied application.
Consequently, since the dataset should be updated online — thus, pre-computations

are infeasible — and real-time performance is a prerequisite for the successful control
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of the vehicle, an approximation technique should be employed instead so as to learn

the model discrepancies.

Sparse Gaussian Process Regression

In order to alleviate the computational demands of GP regression and achieve real-
time performance, sparse GP regression is employed. The concept of sparse GP
regression lies in the usage of a subset of the original dataset, consisting of m inducing
points with m < M, in order to increase the computational efficiency of GP regression
for large datasets while simultaneously providing reasonable predictions. Based on
[87], assuming a set of inducing points Z;,q = [zl, .. ,zm}T € R™*"=_ the posterior

distribution is approximated by the following mean and covariance:

¥ (z) = k(z,2) — kZZdez-lndZindede +Ke2,,02K 2,42 (3.23)

_ -1 _
where X = (Kz,,,2,, + 0 K 2,,2K22,,) "+ tim = 0 K 7,,2.,.5K 2,2, (K 2,4Z00a; 5 =
k(zi,z;) is the i, j element of the matrix Kz, ,7 . € R"™*™ with z;,2; € Zjpq,
[Kzindz]ij = k (zi,2;) is the 4, j element of the matrix Kz, ,7 € R™M with z; € Zing
and z; € Z, Kzz, , = Kgmdz, [kzzmd}j = k (z,2;) is the j element of the row vector

k.z,, € R™ with z; € Zjpq, and kz, ,. = szZ,-nd‘

By employing the above approximation technique, the computational complexity
scales as O (M m2), thus rendering the application of sparse GP models feasible for
real-time systems and online learning, in contrast to the intractable standard GP

regression (Equations 3.20 and 3.21) with complexity O (M 3).

Weighted & Sparse Gaussian Process Regression

However, throughout the experiments, the UAV operates in non-stationary outdoor
environments with diverse and variable environmental conditions, e.g., wind speed,
which influence the system dynamics and, hence, result in the time variation of the
model discrepancies d,, and d,,. Consequently, during the learning of the model errors,
adaptability to the outdoor conditions is required in order to capture the temporal
variation of the approximated functions. To this end, weighted GP regression is
employed according to [11], but appropriately adjusted to the case of sparse GP

regression, thus ensuring both adaptability and computational efficiency.

More precisely, a weight w; € RT is assigned to each measurement y; with
the ultimate goal of boosting the more recent measurements during the GP regres-
sion. Towards this direction, the matrices W = diag (\/171, cee \/W) e RMXM and
Wina = diag (\/UTh cee \/@) € R™*™ related to the whole dataset and the induc-
ing points respectively, are introduced. By properly modifying the kernel vectors and

matrices, the posterior distribution for the case of weighted and sparse GP regression
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is characterized by a structure similar to Equations 3.22 and 3.23:

p(z) = kZZindKEilndZindﬁm (3.24)

S (2) = k(2,2) — K.z, K7 7 Kzp0 + Ko,y BKZ,0 (3.25)

ind

~ ~ ~ ~ -1 _ _ o ~— _
where 3 = (szdZmd + O-_QKZdeKZZmd) Y =Wy, [im =0 2KZdemd2KZdeY7
K:Zia = KeZi0a Winds K24 Zina = WindK 2,4 200g Wiha and Kz, .2 = WKz, . zW.
It is mentioned that if all the weights are equal to 1, the aforementioned mean and

covariance are identical to the corresponding values of Equations 3.22 and 3.23.

Practical Implementation

Herein, a more in-depth explanation is provided regarding the implementation of
weighted and sparse GP regression for the case of aerial transportation of cable-

suspended loads.

1) Dataset Update: Throughout each experiment, the dataset D is initially either
empty or filled with offline observations from previous experiments. Once a new mea-
surement is collected during the operation of the UAV, D is updated online; however,
the size of the dataset is restricted in order to guarantee the computational feasibility
of GP regression over time. Hence, when the dataset D reaches a maximum size of
M data points, the incoming measurement {z’, y'} replaces a data point currently in

D according to the following criterion:
. / N2 2
min (o2’ —2i* + puf) (3.26)

where o, 3 € RT are tuning parameters. By employing the aforementioned strategy,
the substitution of older measurements, similar to the incoming one, is encouraged,

thus ensuring that the dataset is up-to-date and covers adequately the input space.

2) Weight Selection: Each measurement {z;,y;} in the dataset is associated with

a weight w; computed according to the time instant ¢; the measurement was collected:
w; = ko + ¢ - tanh (k1¢;) (3.27)

with kg, ¢, k1 € R™. The choice of the above function satisfies the requirement to boost
more recent measurements and enhance the adaptability of the learning procedure to

varying conditions.

3) Selection of inducing points: The choice of the set Z;,q may be critical for
the accuracy of the sparse GP regression. Given a test input z, a naive approach
would be to pick the closest points as inducing ones, i.e., the m points z; € D
with the minimum distance ||z — z;||. However, this approach may lead to numerical

instability in the inversion of the matrix K z Hence, a probability is assigned

indZind"
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to each measurement instead, with lower values of the distance ||z —z;|| corresponding

to a higher probability, and m points are selected randomly given this distribution.

4) Derivative Approximation: Another advantage inherent in GPs is the pos-
sibility to make predictions about the derivatives of the learned function g(z) with
respect to the input variables z = [zl, ceey znz}T. The calculation of the derivatives
solely entails the differentiability of the kernel function. Consequently, considering
that the selected squared exponential kernel function is infinitely differentiable, the
gradient Vi (z) € R™ and hessian H (z) € R"=*"= of the function g at a test input

z can be approximated by the following equations:

T T > T
_ [ ou ou | 9k.z. Ok, 7. —1 ~
Vi(z) = [ﬂ’ T azﬂzi| - [ 8z1md LR Zn:nd KZindZind'um (3.28)
%k.z, k.z,
021 e 0212n,
. . . >—1 ~
H(z) = : s : KZdemd'U’m (3.29)
azﬁzzind azlzzzind
O0z12n,  °°° 022,

It is noted that IA(/ZM Zina and [i,, are already calculated during the inference of GP
regression, and thus, the computational cost of Equations 3.28 and 3.29 is minor.
Higher-order derivatives can also be computed; however, the approximation error is
increased considering solely the measurements y of the function, i.e., without the

addition of derivative observations in the GP regression.

5) Measurements: As aforementioned, the ultimate goal is to approximate the
model discrepancies d, and d,, using 5 independent GPs. However, the unmodelled
disturbances, e.g., drag forces, are physically expressed w.r.t. the body-fixed frame
B. To this end, the training procedure is adjusted so as to learn the model errors £d,
and Pd,,, defined in B. Hence, consistency in the collected dataset is ensured, the
dependency on the orientation of the vehicle, especially the yaw angle, is eliminated,
and the dimension of the input space, and hence, the computational complexity, is

reduced.

Towards this direction, we introduce the velocity of the UAV w.r.t. B, i.e.,
By = R%BV = [ngg va sz]T, as well as the cable angles Bny = [B¢L BHL}T
and angular velocity Bwy, = Bn; computed by the cable unit vector n = Rgv ph
and velocity Pn = R% ph (defined similarly to Equations 2.2 and 2.3 respectively).
During the deployment of the UAV, measurements are collected using the nominal
model of the system, presented in Section 2.5.1, while the inputs z for each component
of the approximated vectors Zd, and Zd,, are selected based on physical observations,
as summarized in Table 3.5. It is mentioned that the selection of appropriate inputs
is critical for successfully learning unknown functions with GP models. Once the
predictions of Bd, and Pd,, are available, the transformation in W is conversely

realized. Finally, it should be noted that some model discrepancies share the same
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input vector and, thus, certain kernel matrix calculations are avoided resulting in the

further reduction of the computational cost.

Model Error | Measurement y Input z
B B -
B B Vk4+1—" Vi B B B
d, dy % Vg, 701, 70L
B B B B
dv,y Vy, ¢L7 ¢L
B B
d'u,z Uz
B4 Bg Bwrp k1 —=Por k11 B, B B
w w,¢ dt vy, CoL, TPL
B B B By
dwﬂ (% 9L7 eL

TABLE 3.5: The structure of the dataset D. Measurements are ob-

tained using the difference between the actual next state and the pre-

dicted one, according to the nominal system dynamics, divided by the

time step dt. The inputs z for each component of the approximated
vectors Pd, and Bd,, are also depicted.

6) Computational Cost: Regarding the computational cost of the weighted and
sparse GP regression, the mean execution time for the inference of the 5 GPs, con-
sidering a dataset of M = 1000 measurements and m = 30 inducing points for each
GP, is equal to 30.9 ms on the embedded Jetson AGX Xavier.

3.6.4 GP-based NMPC

In order to achieve the transportation of the multirotor towards reference positions
Pref € R3 with simultaneous minimization of the cable angular motion, despite the
disturbances acting on the platform, an NMPC is formulated for the augmented
system dynamics which includes the — approximated by the weighted and sparse GP
regression — model discrepancies d,, and d,,. To this end, the following OCP is defined:

N-1
a3 (5" QU)o )
+ (XN - Xref)T P (XN - Xref) (3 30)
st Xpa1 = fhom (Xk, vi) + Bad (%, v) (Equation (3.17)) .
v, € U, =0,---,N—-1
xp = x(0)

where N is the length of the discretized predicted horizon, and the remaining variables
are defined according to Section 3.6.1. The aforementioned OCP is again solved within
approximately 4 ms using the ACADO Toolkit and the qpOASES solver.

Regarding the unmodelled dynamics, the discrepancies d, o and d, o are pre-
dicted at each time instant ¢y using Equation (3.24), for each component of the

vectors, and the corresponding input zg, extracted by the current state xg. A key
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point of discussion revolves around the propagation of the learned dynamics through-
out the predicted horizon of the NMPC. Possible solutions are either the evaluation
of GPs throughout the whole horizon or keeping d, o and d, o constant during the
optimization procedure. However, the former solution is computationally intractable
whereas the latter implies lower accuracy. Towards this direction, a computationally
lightweight second-order local approximation is employed around the current time

instant tg:

i (2) = 1o (z0) + Vs (z0) (21— 70) + 3 (70— 70) " Hlg (20) (5 — 50)  (3:31)

where the gradient and the Hessian matrix are computed according to Equations
3.28 and 3.29 respectively. Consequently, at each iteration of the NMPC, only one

evaluation of the individual GPs is required.

3.7 Experimental Results

In this section, the performance of the proposed control methodologies, namely (i) the
deep RL-based policy, (ii) the robust deep RL-based policy, (iii) the nominal NMPC,
and (iv) the GP-based NMPC, is evaluated through simulation and real experiments
in outdoor environments. During the real-world experiments, the feedback of the cable
state is provided by either the frame-based or the event-based solution, presented in

Sections 3.3.1 and 3.3.2 respectively.

3.7.1 Experimental Setup

Throughout the outdoor experiments, the octorotor vehicle of Figure 2.3 was utilized.
All the developed algorithms, implemented in either Python or C++, are based on
the Robot Operating System (ROS) and run on the onboard Jetson AGX Xavier
computer, which stands out for its high performance and is suitable for drone ap-
plications where size, weight and power consumption are crucial. As mentioned in
Sections 2.2 and 2.3, the embedded computer interfaces with the flight controller us-
ing the MAVLink protocol, while the communication between ROS and the autopilot
is achieved through the MAVROS node. Additionally, a 5 kg load cell, located upon
the cable, along with the HX711 amplifier, are integrated in order to measure the
norm of the cable tension ||T||, which is required for the frame-based estimation of
the cable state and the NMPC schemes. Moreover, an Arduino Mega [57] is mounted
on the UAV in order to transfer the measurements provided by the load cell to the on-
board computer through serial communication. Finally, the vehicle is equipped with
the ZED 2 stereocamera or the DAVIS 346, depending on whether the frame-based

or the event-based estimation algorithm is employed.
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3.7.2 Deep RL Control Experiments
Simulation Experiments

Initially, a comparative study is presented in the Gazebo simulator between the de-
fault PID position controller of the autopilot (Figure 2.4), which is not designed for
minimizing cable oscillations, and the control policy 7y (s), trained according to Sec-
tion 3.4. In both cases, the same 8 waypoints, pyef|i = [a:ref Yref sz}T\i € R3 for
i=1,---,8, were sent successively as reference to the controllers. In order to quantify
the swinging motion of the cable during the navigation of the vehicle, the deviation
of the cable unit vector n from the desired vertical configuration, was computed by
the angle:

B =cos™ ! (|n.|) (3.32)

As illustrated in Figure 3.11d, the PID controller excited the swinging motion of
the cable during the simulation scenario and, hence, notable values of the angle 8 were
observed, which in case of a real-world experiment would jeopardize the safety of both
the vehicle and the load. In contrast, the trained control policy successfully navigated
the UAV towards the reference 3D waypoints, as depicted in Figures 3.11a, 3.11b and
3.11c, while maintaining the angle 5 at significantly lower levels (Figure 3.11d).

Real-World Experiments

Afterwards, a comparative experimental study between the default PID position con-
troller of the autopilot and the control scheme of Figure 3.12 was conducted with
the octorotor in order to evaluate the efficacy of the trained control policy 7y (s) in
real-world conditions. In this preliminary experiment, a box of 1.5 kg, suspended
through a cable of 2.3 m length, was considered, while the detection of the load by
the ZED camera was achieved with the aid of four ArUco markers [23], placed at
the upper surface of the box. The same 8 waypoints were commanded consecutively
as reference to both controllers. It is highlighted that the experiments were realized
successively, at the same location and hour, and, thus, the environmental conditions,

especially the wind speed, could be assumed as identical.

Initially, the default PID position controller provided by the Ardupilot side,
which does not compensate for the cable oscillations, was utilized. Once the vehicle
moved towards the second waypoint, the angle 5 exceeded the 60° and, hence, the
load was not maintained inside the camera’s field of view, as shown in the relevant
video. For safety reasons, the experiment was terminated since the cable approached
the vehicle’s arms and, therefore, the safe completion of the target mission was not

guaranteed.

In contrast, the control policy my(s) efficiently drives the vehicle towards the
reference 3D waypoints, as illustrated in Figure 3.13, while simultaneously a swing-

free motion is achieved. More precisely, the angle 8 does not exceed the value of 15°
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FI1GURE 3.11: The position p of the vehicle compared to the reference
3D waypoints pr.¢, while using the trained control policy, and the
angle [ during the simulation scenario.
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FIGURE 3.12: The deep RL-based control scheme.
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FIGURE 3.13: The position p of the vehicle, compared to the reference
3D waypoints pr.r, while using the trained control policy, and the
angle 8 during the experimental scenario.

during the experiment (Figure 3.13d). The higher values of the angle are noticed
when a new waypoint is commanded, which is a reasonable observation given the
fact that, initially, the position error p — p;.s is dominant in the learned @ function
network. As the vehicle approaches the reference position, the swinging motion of

the load, and specifically the angle 3, is minimized, as depicted in Figure 3.13d.

The aforementioned comparative studies and an additional real-world experiment
are better illustrated in the following link https://youtu.be/7C843hts83E.

3.7.3 Robust Deep RL Control Experiments
Simulation Experiments

Following the convergence of the training procedure in Section 3.5, where domain
randomization was included, the learned policy mp(s) was extensively tested in the
Gazebo Simulator in order to validate its robustness to varying cable lengths [, load
masses my,, and external disturbances Fg. More precisely, comparative studies were
conducted considering the mission of Figure 3.14, which consists of 8 reference posi-

tions p,.s. The ability of the policy to minimize the swinging motion of the cable


https://youtu.be/7C843hts83E
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FIGURE 3.14: The reference positions p,.s and the actual trajectory
p of the UAV in the Gazebo for m; = 0.5kg and [ = 1.0m.

Load Mass [kg]

myp, =025 | m;r, =05 | my,=1.0
[n[/[s~] 0.069 0.062 0.064
BI°] 2.578 2.407 2.237

TABLE 3.6: The mean cable velocity ||n| and angle 8 for | = 1.0m
and different load masses mj,.

was measured based on the norm of the cable velocity ||n|| and the angle 3, defined

in Equation (3.32). The following scenarios were examined:

1) Robustness to load mass: In this comparative study, the cable length was held
constant at 1.0m and 3 different load masses, specifically my, = 0.25, 0.5, and 1.0kg,
were considered during each mission. The time evolution of the angle 8 throughout
each case is demonstrated in Figure 3.15, while the mean velocity ||n| and angle 5

for the individual missions are depicted in Table 3.6.

2) Robustness to cable length: Conversely, in the subsequent scenario, the load

mass was maintained fixed to 0.5kg and the cable length was set to [ = 0.5, 1.5, and

20 ; ; ;
8l l—mp =0.25

oll—mp =05
—myg = 1.0
14 L
12+
—
NIPRT
Q
8
6
4
2
0 1 1 | A
0 20 40 60 80 100 120 140 160

Time(s)

F1cUrE 3.15: The angle S for various load masses mj, and constant
cable length I during the 1% comparative study in the Gazebo.
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Cable Length [m]
1=05]1=15]1=20
[nf[s~'T | 0.070 [ 0.065 | 0.068

B[] 2.392 | 2.623 | 2.791

TABLE 3.7: The mean cable velocity ||n|| and angle 5 for mp = 0.5kg
and different cable lengths [.

Reference Robust Deep Inner Attitude UAV with cable-

Position RL policy Loop suspended load
I F
L Navigation
Sensors
DVS

FIGURE 3.16: Block diagram of the proposed RL-based strategy in-
cluding domain randomization.

2.0m. The swinging motion of the cable during each mission is characterized by the

mean values of Table 3.7.

3) Robustness to external forces: In the previous studies, the quadrotor oper-
ated in the Gazebo environment without the existence of external disturbances. To
this end, the last scenario involved the default values for the cable length and load
mass, namely 1.0m and 0.5kg respectively, and random external forces F¢, with each
component of the vector being uniformly sampled from the range [—1.0,1.0] at each
time step. The mean values for the velocity |[n|| and the angle 3, according to 10

simulation experiments, were equal to 0.086s~! and 2.574° correspondingly.

The above numerical results validate that the performance of the learned policy is
both acceptable and consistent across different values of the system properties owing

to the domain randomization.

Real-World Experiments

After the analysis in the Gazebo Simulator, the control scheme of Figure 3.16 was
directly deployed on the octorotor of Figure 2.3 in order to evaluate performance of
the policy, trained via domain randomization, in a real-world outdoor environment.
The vehicle was equipped with the DAVIS 346 camera for estimating the cable state
according to Section 3.3.2. A cable of [ = 3.8m, which is outside of the training range,
was integrated onto the UAV while loads were placed within a bag, located at the

lower edge of the cable.

More precisely, a comparative study was conducted between 3 different load

masses, namely my = 0.3, 0.5, and 0.9kg. The same mission of 4 reference positions
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FIGURE 3.17: The reference positions p,.s and the actual trajectory
p of the UAV during the real experiment for my = 0.5kg.
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FicUure 3.18: The angle  for various load masses my during the
comparative study in the real-world environment.

was considered, as illustrated in Figure 3.17. Despite the external disturbances act-
ing on the platform and the observation noise in the sensor-based estimation of the
cable state, the learned policy minimized both the position error, e.g., Figure 3.17,
and the cable angular motion, featuring also similar performance levels across the
different masses, as depicted in Figure 3.18, where the angle § is demonstrated for
each case. Consequently, the policy was able to successfully generalize to a real-world
setting due to the domain randomization applied throughout the training procedure.
The aforementioned experiments with the octorotor are better demonstrated in the
following video https://youtu.be/kbPSdWZiRAo.

3.7.4 Nominal NMPC Experiments

Nominal NMPC with Frame-Based Feedback

Initially, the capability of the nominal NMPC scheme, presented in Section 3.6.1, to
efficiently navigate the multirotor to the reference 3D waypoints, without exciting
the swinging motion of the cable-suspended load, was investigated. As for the load,

a sampling mechanism — that will be later exploited for conducting water sampling
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FIGURE 3.19: An overview of the deployed nominal NMPC scheme
for the swing-free load transportation based on feedback provided by
a frame-based camera.

in aquatic environments — was considered. The mass of the mechanism is equal to
my, = 0.25 kg, and it was suspended through a cable of length [ = 3.8 m. Additionally,
the ZED 2 stereocamera was integrated onto the vehicle and, thus, the frame-based
algorithm of Section 3.3.1 was employed so as to provide feedback of the cable’s state,
as depicted in Figure 3.19. In order to evaluate the performance of both the nominal
NMPC and the CNN, 2 experiments were realized in different locations, particularly
the NTUA campus and a beach location.

In both cases, a mission consisting of multiple waypoints was commanded. The
deployed NMPC successfully minimized the error, p,.; — p, between the reference
locations and the actual position of the UAV (Figures 3.20, 3.22), while simultane-
ously the cable angles 177, and angular velocity wy, computed by the CNN and the
EKF, were maintained below critical levels (Figures 3.21, 3.23). Consequently, the
safe transportation of the vehicle and the load was achieved and both missions were
successfully completed, as illustrated in Figures 3.20d, 3.22d. It is also highlighted
that the trained CNN successfully detects the cable and exhibits robustness to the
different environments. Additionally, it is mentioned that, during both missions, the

vehicle moved at a speed of up to 4 m/s.

Both experiments are better illustrated in the following videos https://youtu.
be/G-7rAulAFxHM and https://youtu.be/KménJYrVGoo.

Nominal NMPC with Event-Based Feedback

Herein, the DAVIS 346 was incorporated into the octorotor platform with a mj; =
0.5kg load and a [ = 3.8m cable, as depicted in Figure 3.3, in order to test the perfor-
mance of the event-based estimation method of Section 3.3.2 against real-world and
challenging conditions, commonly encountered in outdoor environments. Despite the

increased number of events, generated by the motion of the vehicle and corresponding


https://youtu.be/G-7rAuAFxHM
https://youtu.be/G-7rAuAFxHM
https://youtu.be/Km6nJYrVGoo
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to the surrounding environment, the proposed method reliably identified the events
that were related to the swinging motion of the cable and provided robust feedback
of the complete cable’s state, fed into the nominal NMPC.

Given a set of reference 3D positions p,.y and the cable’s state, i.e., n; and wy,
obtained by the processing of the event stream, the nominal NMPC scheme computed
desired setpoints for the inner attitude subsystem of the autopilot in order to minimize
the error p,.y — p and the vehicle fulfilled the mission, as depicted in Figure 3.24a.
Additionally, throughout the experiment, the swinging motion of the cable, estimated
by the event-based method, was maintained below critical values (Figure 3.24), since
the upper part of the cable did not approach the structure of the UAV, specifically
the legs of the platform, and the safety of the system was guaranteed.

In order to further investigate the reliability of the proposed algorithm, a second
experiment was conducted where a mission consisting of more reference positions py
was commanded. Similarly, the robust identification of the cable during the mission
and the transportation of the suspended load with minimum swinging motion of the
cable were attained. Both experiments are better illustrated in the following video
https://youtu.be/jFUQcZO0hoM.

Afterwards, in order to demonstrate the advantages of using an event camera
for the task of aerial transportation of cable-suspended loads, a comparative study
was conducted between the event-based and the frame-based method. Throughout
the comparative study, the same mission, composed of 4 reference positions, was
commanded and the feedback of the cable’s state, provided by the two methods,
was fed into the nominal NMPC scheme of Section 3.6.1. It is highlighted that
the parameters of the controller, i.e., the cost matrices and the input limits, were
identical. Additionally, the experiments were realized successively in order to ensure

similar environmental conditions and, hence, a fair comparison.

The two methods were compared based on the efficiency of the controller and,
more specifically, its ability to minimize the norm of the cable’s angle ||nz||. As illus-
trated in Figure 3.25, the rapid and reliable feedback provided by the DVS resulted
in a better performance of the controller, whereas greater swing angles were observed
with the 30 FPS frame-based approach. More precisely, the maximum cable’s angle
IInL| for the event-based method and the frame-based one were equal to 14.13° and
21.95° respectively. Therefore, in the aerial transportation of cable-suspended loads,
high-speed feedback can significantly impact the performance of the controller and,
thus, the utilization of an event camera can further improve the efficiency of existing

control schemes.

3.7.5 GP-based NMPC Experiments

In this section, we demonstrate the advantages of leveraging weighted and sparse

GP regression according to Section 3.6.3, when the UAV with the cable-suspended


https://youtu.be/jFUQcZ0OhoM
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load operates in the presence of considerable external disturbances and, hence, non-

negligible model discrepancies exist between the nominal and actual system dynamics.

Simulation Experiments

Prior to deploying the GP-based NMPC (Section 3.6.4) on the real octorotor, exper-
iments were realized in the Gazebo simulation environment to evaluate our method
under controlled conditions. In order to validate the improvement in the control per-
formance with the addition of GPs, a comparative study was conducted between the
following scenarios: (a) NMPC with the nominal model (Section 3.6.1), (b) NMPC
with sparse GP regression, (¢) NMPC with weighted and sparse GP regression. The

same mission, consisting of 10 different p,.s € R3, was commanded in all cases.

During the comparative study, the following external forces © Fg = [—1.2, 1.8, 0} g
0.3-Bv |Bv| and BF; = —0.13-Bvy, |BVL| were applied to the quadrotor and the load
respectively w.r.t. B. It is mentioned that during scenarios (b) and (c), where GPs
are incorporated, the dataset was initially filled with offline measurements collected
during a previous simulation experiment without the existence of the aforementioned
constant and drag forces. As illustrated in Figure 3.26, where the position error and
the cost function of the NMPC are depicted, the GP models significantly enhanced
the behavior of the system under the influence of the external forces and improved
the performance of the control scheme compared to the nominal case, i.e., scenario
(a). Additionally, in scenario (c), the incorporation of weights, which prioritize more
recent measurements, accelerated the adaptation of the regression problem to the
newly encountered environment and, thus, resulted in a faster reduction of the posi-
tion error and the cost function compared to the scenario (b). Finally, it should be
noted that, during scenarios (b) and (c), the cost of the NMPC does not converge to
zero since the vehicle hovers at the reference positions with non-zero roll and pitch

angles.

Real-World Experiments

Following the validation in the Gazebo simulator, real-world experiments with the
octorotor, including a my, = 0.5kg load suspended through a [ = 3.8m cable, and the
DVS camera were carried out in an outdoor environment in order to test the efficacy
of the GP-based NMPC scheme of Figure 3.27 against challenging conditions and un-
known external disturbances. Similarly, a comparative study was conducted between
the different NMPC schemes, i.e., including (a) the nominal model, (b) sparse GP
regression, and (c) weighted and sparse GP regression. It should be noted that the
experiments were realized sequentially, at the same location, and, thus, the outdoor
conditions, particularly the air speed and direction, can be considered approximately
identical despite the unavoidable existence of turbulence. Finally, the same 7 refer-
ence positions p,.y were provided as input to the controllers so as to ensure a fair

comparison.
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In both scenarios (b) and (c), the dataset was initially composed of measurements
gathered during a previous day with completely different environmental conditions.
As depicted in Figure 3.28, a considerable steady-state position error and an increased
cost were observed when the NMPC formulated for the nominal model, i.e., scenario
(a), was deployed. The aforementioned behavior mainly originated from the 4 beau-
fort mean wind speed, prevailing in the area according to meteorological data, that
resulted in a deviation between the nominal and actual system dynamics. In contrast,
the incorporation of GP models throughout scenarios (b) and (c) led to a significantly
reduced position error and cost which proves the ability of GPs to approximate the
model discrepancies and the external disturbances. Moreover, the weighted version
of sparse GP regression during scenario (c) highlighted the importance of the newly
collected measurements and, hence, a faster improvement in the system behavior
and a generally better performance of the control scheme were attained compared to
scenario (b). The aforementioned experiments are better illustrated in the following
video https://youtu.be/4bm3JLo0d5U.


https://youtu.be/4bm3JLo0d5U
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Chapter 4

Tracking and Release of a
Suspended Load to a Ground
Target

4.1 Introduction

In this chapter, we address the task of tracking a ground vehicle using a multirotor
with a cable-suspended load and a downward-looking camera, with the ultimate goal
of successfully releasing the load towards the target. Aerial target tracking based on
visual feedback is a well studied field throughout the literature, e.g., [9], [10], [29],
and [36]; however without considering the existence of a cable-suspended load and,

hence, its release towards the target.

To this end, a Nonlinear Model Predictive Control (NMPC) scheme, formulated
for the system dynamics, is developed in order to accomplish the following of the
arbitrarily moving target. Since the NMPC relies on the future behavior of the sys-
tem, the trajectory of the ground target throughout the predicted time horizon of the
NMPC, is required. Towards this direction, a Convolutional Neural Network (CNN),
accompanied by the Kernelized Correlation Filter (KCF) tracker, is exploited for
uninterruptedly detecting the target and, subsequently, the aforementioned measure-
ments are integrated into a constrained Bézier regression problem in order to predict
its future trajectory [29]. Eventually, the load is released towards the ground target,
by opening a gripper, as soon as a condition, which relates the predicted ballistic
trajectory of the load and the future target motion, is met. It is mentioned that the
swinging motion of the cable during the tracking of the target renders the successful

release of the load quite challenging even for an experienced human operator.

This chapter is organized as follows. Section 4.2 describes the problem of tracking
and releasing a suspended load to a ground vehicle using a multirotor equipped with a
camera. In Sections 4.3 and 4.4, the vision-based estimation of the future target mo-
tion and the deployed NMPC scheme are presented respectively. Finally, Section 4.5

discusses the release condition while the chapter concludes with Section 4.6, where
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the performance of the proposed NMPC framework is validated through real-world

experiments.

4.2 Problem Formulation

In this section, we formulate the motion control problem of tracking a ground target
using a multirotor with a cable-suspended load, as illustrated in Figure 4.1. More
precisely, consider the case in which an unmanned ground vehicle (UGV) is moving
arbitrarily on the ground without sharing any information about its state, i.e., its
position pr and velocity vy w.r.t. the world frame W, and, hence, the UAV relies
only on the visual information, obtained by the onboard downward-looking camera, so
as to continuously track the target and ultimately release the suspended load towards
it.

FIGURE 4.1: The multirotor with the cable-suspended load and the
UGV deployed in the field.

Towards this direction, the control scheme, depicted in Figure 4.2, is deployed
in order to fulfill the requested task. The aforementioned control strategy consists of

the following parts:

1. CNN-based detection of the cable and estimation of the full cable’s state, i.e.,
1z, and wy, using a Kalman Filter which exploits the output of the CNN and

the measurements provided by a load cell, according to Section 3.3.1,

2. Detection of the target using a KCF tracker and a CNN, which indicates an
initial region of interest (ROI) for the KCF tracker, and prediction of the future
target motion, i.e. the position pr and the velocity vy w.r.t. W, based on

Bézier curves,
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FIGURE 4.2: The proposed control scheme for tracking the moving
ground vehicle.

3. Deployment of an NMPC, formulated for the nonlinear dynamics of the system
(Equation (2.11)), which integrates the future trajectory of the target into the
predicted horizon of the NMPC and produces appropriate commands for the
inner attitude control loop of the autopilot so as to minimize the tracking error

between the target and the load and

4. Check of a condition which, based on the predicted trajectory of the target and
the load, triggers the opening of a gripper and the release of the load towards
the target.

The above individual parts, besides the previously presented frame-based esti-
mation of the cable’s state (Section 3.3.1), are explicitly analyzed in the following

sections.

4.3 Estimation of the Target State

4.3.1 Detection of the Target

Besides the cable’s state, an estimate of the target state is a prerequisite to achieve
the tracking of the ground target and the successful release of the load towards it.
Similarly to Section 3.3.1, a CNN is trained in order to detect the target which moves

in an unknown manner.

However, when the load is located above the target, a part of the area, which
corresponds to the target, is visually occluded by the load and, as a result, the CNN
fails to detect the target consecutively. Hence, a tracker is additionally exploited so
as to achieve the robust identification of the target despite the visual occlusions while
also ensuring a faster detection rate. Among the various trackers presented in the
literature, the KCF tracker [30] is selected due to its high speed and accuracy and its

ability to track the target in the presence of partial occlusions.

The pipeline of the detection is as follows:
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FIGURE 4.3: Detection of the target. The green cross corresponds to
the center of the bounding box.

1. Extract a ROI by utilizing the trained CNN,
2. Based on the aforementioned ROI, deploy the KCF tracker and

3. Re-detect the target using the CNN after some iterations in order to reduce the

accumulated error or when the tracker fails.

Based on the aforementioned pipeline, a ROI, which corresponds to the target, is
extracted by means of a bounding box, as depicted in Figure 4.3. The center (ur, vr)
of the bounding box defines the pixel coordinates of the target in the image plane.
Since the target moves on the ground, its known height zp = h is exploited in order
to compute its 3D position. Consequently, after suitable transformations between the
camera and the world frame, an estimate of the target position pr = [mT YT zT}T

is obtained at each time instant.

4.3.2 Target Motion Prediction

The estimate of the target position is not adequate for the deployed control scheme,
since the NMPC requires both the position and velocity of the target not only at the
current time instant but also throughout the predicted time horizon. To this end,
Bézier curves are exploited, as proposed in [29], similarly to Section 3.3.2. However,
since the objective is to predict the future trajectory of the target, the regression
problem is reformulated compared to Section 3.3.2, where the Bézier curve smoothed

the measurements up to the current time instant.

More precisely, as mentioned in Section 3.3.2, a Bézier curve is defined, based on

the order n of the curve, as follows:

B(7) = _bin(r)e: (4.1)

n
=0
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where 7 € [0, 1}, B(7) € R? (since the target is moving on the x-y plane) is the
Bézier curve, b; ,(7),7 = 0,--- ,n are the Bernstein basis polynomials of degree n and

T
c; = [Caai Cy,i} € R? are the n + 1 control points.

In order to estimate and predict the target motion, it is essential to find the suit-
able set of control points ¢ = [co7 Ci,- - 7Cn] . Towards this direction, assuming that
N estimates of the target position pr are available according to Section 4.3.1, along
with the corresponding timestamps ¢, a set D = {(t1, 271, y71), -, (tN, 27N, YT, N) }
of constant length is constructed, where the timestamp ¢ corresponds to the current
time. The aforementioned set D is updated once a new measurement is available.
Since the aim is to predict the motion of the target up to the future timestamp
tp, the following mapping is performed between the timestamps ¢ € [tl, tp} and the

parameter T € [0, 1} of the Bézier curve:

(4.2)

The optimal set of control points is computed according to the following opti-

mization problem:
N
min >~ (wy,[B(r) - pr(t:)13) (4.3)
i=1

where the goal is to minimize the distance between the measurements and the Bézier

curve with wy, denoting weights which penalise past measurements [29].

Additionally, in order to identify feasible solutions, constraints are imposed on
the above optimization problem. The aforementioned constraints arise from the dy-
namic limits of the target according to which the predicted velocity and acceleration
should lie inside [—umm, umax] and [—amax, amax} respectively. By differentiating
the Bézier curve, the following constraints are defined for the x axis (similarly for the

y dimension):

—Umaz <N (Czi — Czi—1) [/ (tp — t1) < Umaa (4.4)

~Qmaz <0 (0= 1) - (Coy — 20051 + Cai2) [ (tp — 1) < Gaz '

The above constrained Quadratic Programming problem is solved using the

OOQP software [24], similarly to Section 3.3.2, and, eventually, an estimate of the

future trajectory of the target, i.e., pr(t) and vp(t), is available throughout the
predicted horizon [t N tp}.
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4.4 Nonlinear Model Predictive Control for Target Track-

ing

In order to efficiently track the ground target, an NMPC is formulated for the non-
linear system dynamics defined by Equation (2.11). Since the objective of the NMPC
scheme is to track the ground target and eventually release the cable-suspended load

towards the target, the following cost functions are defined:

T 2
I(0) = [plt) 4 tn(t) = pr(®) = [0 0 2]

P

Jo(t) = [[v(t) + In(t) — vr ()13,

Jn<t>:H[¢<t> 0) (1) — ey

2

2 (4.5)

o

Jo(t) = H 7@ Wl

QL

where Q, € R¥3, Q, € R¥3, Q, € R¥3 and Qy, € R**4 are diagonal weighting
matrices and Jp, J,, J, and Jr are task-specific cost functions which penalize the
distance between the load and the target, the relative velocity between the load and
the target, the error between the current orientation of the vehicle and the reference
one, and the swinging motion of the cable. It is mentioned that the UAV should track
the ground target while maintaining a certain altitude above it, defined by the variable
Zref. The reference yaw orientation ..y is maintained constant. Additionally, the
swinging motion of the cable is minimized so as to avoid unnecessary oscillations and

ensure the safety of the load to be delivered.

Considering the total cost function J; = J, + J, + J, + Jr and the input con-
straints, the following Optimal Control Problem (OCP) is formulated throughout the
horizon [tN,tp}:

min [ ((0) + I O)) de + ity

st x(ty) = xn, x = f(x,v) (Equation (2.11)), v e U

(4.6)

T T
where x = [pT v 6 ¢ nt wﬂ ERB v = [gbd 0q Yq vzd} € R* are
the state vector and the commands for the inner attitude controller of the autopilot
respectively, R is the control input cost matrix and, U is the set of input constraints

specified by the roll, pitch and vertical velocity limits.

The aforementioned OCP is solved at each iteration tp, given the predicted
target trajectory, and the first control input of the derived control sequence is sent to
the inner attitude control loop of the autopilot. The ACADO Toolkit [33], along with
the qpOASES solver [17], are again utilized for designing and solving in real time the
presented OCP.
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FIGURE 4.4: The red arrows at the upper part of the figure illustrate

the trajectory of the UAV while the red and green colored lines at

the lower part represent the past and future trajectory of the target

respectively, as approximated by the Bézier curve. The ballistic tra-

jectory of the load, assuming that is released, is depicted by the line

with the cyan hue. Finally, the blue colored sphere indicates that the
release condition is satisfied.

4.5 Release Condition

Regarding the release condition, at each current timestamp ¢, the trajectory of the
load is computed assuming that is released. In this case, the load follows a ballistic
trajectory, i.e. moves only under the influence of gravity, according to the following
equation:
2

pr(t) =pr(tn) + vi(tn) -t—gezg, (4.7)
where py, and vy, are given by Equation (2.1). Given the known target’s height z7 and
the above equation, the timestamp t; at which the trajectory of the load intersects
with the zp is computed, i.e., z(t,) = zr. Consequently, the release condition is

formulated as follows:
IpL(th) — pr(ty)| < d (4.8)

where d is the maximum horizontal distance between the load and the target. It is
mentioned that the condition implies that the timestamp t; lies inside the predicted
horizon of the target motion, i.e., t;, € [tN, tp}, and, hence, an estimate of the target
motion is available. Otherwise, the release condition is not checked. Figure 4.4 offers

a visual explanation of the release condition.
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4.6 Experimental Results

4.6.1 Experimental Setup

The proposed scheme is evaluated experimentally in an outdoor environment while
using the octorotor of Figure 4.1 with the embedded computer Jetson AGX Xavier
and the ZED 2 camera. The vehicle is additionally equipped with a load cell, which
measures the cable tension ||T||, and a servo motor which controls a gripper and,
thus, the release of the load. A base is 3D printed in order to assemble the load
cell and the gripper, both located exactly above the load. Both the load cell and
the servo motor are directly connected with an Arduino Uno, which communicates
serially with the Jetson. As for the load, a bag containing a my = 0.5 kg load is
considered. Finally, the ground target is a UGV Robotnik Summit which is manually

driven towards random directions through joystick teleoperation.

As for the computational cost of the proposed framework, the mean processing
time, on the powerful Jetson, of the individual parts, that comprise the control scheme
of Figure 4.2, is demonstrated in Table 4.1. It is evident that a real-time performance
is achieved during the tracking of the UGV.

Step Time[ms]
CNN 32.41
KCF 5.27
Bézier regression (N = 20) 0.93
NMPC 3.33

TABLE 4.1: The computational cost of the individual parts that com-
prise the proposed framework for tracking the ground target.

4.6.2 Real-World Experiments

In order to validate the ability of the proposed control strategy to uninterruptedly
track the UGV, an outdoor experiment was initially conducted without considering
the release of the load. Throughout the first experiment, the UGV moved with an av-
erage horizontal velocity of 1.5m/s and a maximum equal to 2.5m/s, as estimated by
the Bézier regression (Figures 4.5¢, 4.5d). The deployed vision-based NMPC scheme,
which communicates directly with the inner attitude subsystem of the UAV, enables
the vehicle to respond quickly to the unknown maneuvers of the target, performed
by the operator, and, hence, the continuous tracking of the target was achieved, ac-
cording to Figures 4.5a, 4.5b, where the trajectories of both vehicles in the horizontal
plane are depicted. Additionally, despite the agile motion of the UGV, the swinging
motion of the cable, estimated according to Section 3.3.1, was not excited and the

cable angles were maintained below 20°, as illustrated in Figure 4.5¢.

Afterwards, a second experiment was realized in order to evaluate the ability of
the proposed scheme to successfully release the suspended load towards the target.
The UAV initially tracked the vehicle until the release condition of Equation (4.8)
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Trajectory
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FIGURE 4.6: The successful release of the load towards the target
during the second experiment. (a) The position of the load py(t1,), as-
suming that is released, compared to the position of the target pr(ts)
in the x-y plane. The green circle indicates that the release condition
(Equation (4.8)) is satisfied. (b) The gripper opens. (c) The load
follows a ballistic trajectory. (d) The load is placed inside the box.

was satisfied, as depicted in Figure 4.6a. At that moment, the opening of the gripper
was triggered and the load was successfully released and placed into a box, carried
by the UGV, as illustrated in Figure 4.6.

The aforementioned experiments, including also an additional one, are better
illustrated in the following video https://youtu.be/6aleTdb71Sc.


https://youtu.be/6aleTdb71Sc
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Chapter 5

Water Sampling from Aquatic

Environments

5.1 Introduction

Throughout this chapter, we address the task of conducting water sampling from an
aquatic environment with the aid of a multirotor. In order to avoid the integration
of a carefully designed floating base at the bottom of the UAV’s body, which enables
the vehicle to land and float upon the water surface [1],[43],[58], we prefer the usage
of a cable-suspended mechanism since it constitutes a more reproducible and plug-
and-play solution with regard to mechanical complexity and does not restrict the

applicability of the UAV to tasks related solely to water sampling.

However, the drag forces applied to the submerged mechanism, due to its inter-
action with the water flow, lead to an inclined configuration of the cable, especially in
river ecosystems where a considerably high average water velocity is usually observed.
The tension of the inclined cable impedes the UAV from precisely stabilizing above
the commanded sampling position and, thus, has to be estimated based on onboard
sensors. Exclusively vision-based techniques are not suitable in this case, since the
mechanism is submerged and, hence, its detection is extremely challenging, if not in-
feasible, and highly dependent on the purity of the water. To this end, the platform’s
sensor suite is augmented with additional low cost sensors, namely an ultrasonic sen-
sor, a load cell, and a depth sensor, besides the downward-looking camera. In order
to fuse the respective measurements, we design two methodologies: (a) Gaussian Pro-
cess (GP) regression and (b) Extended Kalman Filter (EKF). Eventually, the effect
of the disturbance is mitigated by incorporating the estimate of the cable tension into
a feedback controller and, hence, precise stabilization of the UAV above the sampling
position is achieved. Two control schemes are investigated for this task, specifically
(a) a geometric controller and (b) a Nonlinear Model Predictive Control (NMPC)
strategy.

The outline of this chapter is as follows. Section 5.2 defines the control problem

of conducting water sampling with a multirotor while Section 5.3 presents two sensor
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fusion techniques, based on GP regression and Kalman Filtering, which combine the
measurements of low cost sensors and estimate the cable tension during the sampling
procedure. In Section 5.4, a geometric controller and an NMPC scheme are developed
in order to reject the disturbances and attain the accurate position control of the
vehicle. Finally, in Section 5.5, the proposed methodologies are evaluated through
real-world experiments while also a unified framework for autonomous water sampling

missions is presented.

5.2 Problem Formulation

In this section, the formulation of the control problem of water sampling with a
multirotor is presented. Consider the case in which a UAV with a cable-suspended
mechanism is performing water sampling in an aquatic environment, as illustrated
in Figure 5.1. Assuming that the velocity of the water flow u,, is not negligible, the
induced drag forces f; (Equation (2.12)) acting on the submerged mechanism, result
in an inclined configuration of the cable, i.e., |n,| < 1. Consequently, the tension of
the inclined cable T = ||T||n, applied to the airframe, affects the position control of
the UAV and, hence, an increased position error, compared to the reference sampling

location py.y, is observed when the external force is not considered.

FIGURE 5.1: Water Sampling with an octorotor in a river.

For this purpose, a suitable control scheme is required in order to achieve the
precise stabilization of the vehicle above the reference sampling position despite the
underwater disturbances transferred to the UAV through the cable. The following

parts are implemented:
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1. Direct estimation of the cable tension T based on measurements provided by
appropriately integrated onboard sensors i.e. an ultrasonic sensor, a downward-

looking camera, a load cell and a depth sensor,

2. Approximation of the cable tension with the aid of an Extended Kalman Filter
(EKF) or Gaussian Processes (GPs) in order to mitigate the sensor noise effects

and

3. Deployment of a geometric controller or a Nonlinear Model Predictive Controller
(NMPC) which considers the estimates of the tension and produces appropriate
desired commands for the inner attitude controller of the autopilot so as to

minimize the position error p — pycf.

5.3 Disturbance Estimation

5.3.1 Sensor-based Disturbance Estimation

In order to achieve the robust stabilization of the vehicle above the reference sampling
location, an estimate of the cable tension T = ||T||n is essential. For this purpose, the
downward-looking camera, the load cell, the ultrasonic sensor and the depth sensor

are exploited.

More precisely, a load cell is added at the middle of the cable in such a manner
that it measures directly the tension. It is mentioned that the load cell provides
reliable measurements of the tension with low noise. However, only the norm of the
tension ||T| is acquired using the load cell and, hence, additional sensors are required

to obtain the direction of the disturbance, i.e., the cable unit vector n.

Consequently, a depth/pressure sensor is placed at the end of the cable in order
to measure the depth d up to which the sampling mechanism is submerged, i.e., the
vertical distance between the lower edge of the cable and the water surface level.
Since the cable length [ is known, an estimate of the component 7, is derived, under

the assumption that the cable is taut, based on the similar triangle method:

. h+d

= ——— (5.1)
where h denotes the height of the vehicle above the water surface level, directly
obtained by the ultrasonic sensor and corrected for non-zero roll and pitch angles.
Since ultrasonic sensors are prone to noise above water surfaces, a moving average

filter is applied while outliers are disregarded.

Furthermore, the downward-facing camera is exploited in order to estimate the
projection of the cable unit vector n to the x-y plane of the world frame W. More
specifically, the Dense Inverse Search (DIS) [44], an optical flow algorithm which
distinguishes itself for its low computational complexity and its competitive accuracy,

is employed so as to compute a dense flow field, i.e., the optical flow for all the points
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(A) Dense flow field in a sea environment. (B) Dense flow field in a river environment.

(¢) Dense flow field in the Gazebo simulation en-
vironment of Figure 2.2.

FI1GURE 5.2: Dense flow fields computed by the DIS algorithm. The
green arrows illustrate the direction of the flow while the length of the
arrow indicates the magnitude of the displacement.

in the frame. The output of the DIS algorithm is demonstrated in Figure 5.2 for both

simulation and real-world environments.

By averaging the dense flow field, the dominant water flow velocity ©¥,, is es-
timated with respect to the camera frame after converting the pixel velocities to
cartesian ones and removing the odometry of the vehicle. Afterwards, an appropriate
transformation to the world frame W is performed, by utilizing the constant rotation
matrix form the camera frame to the body-fixed one B and the matrix Ry g, and,

thus, the water velocity v,, with respect to W is extracted.

According to Equation (2.12), the projection n,, = [nx Ny O]T of the cable
unit vector to the x-y plane of W, i.e., the water surface, and the drag force f;, which
acts on the mechanism, are co-directional vectors. Since the drag force f; and the
velocity of the water flow v,, are also co-directional vectors, the following equation is
derived:

atan2 (fy, Nz) = atan2 (Qey,y, tw,z) = Ow (5.2)

where 6,, is the direction of the water flow. It is mentioned that the above equa-
tion holds under the assumption that the submerged mechanism is approximately

stabilized, i.e., |[vL|| = 0 and ||v.] = 0.
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5.3.2 Gaussian Process Regression

To cope with the noise, associated with the sensor measurements, a non-parametric
learning-based estimation of the cable tension is designed based on Gaussian Pro-

cesses. The concept of GP regression is thoroughly described in Section 3.6.3.

Considering the requirements of the specific application, the GP regression prob-
lem is formulated in such a manner that the cable tension is approximated. Hence,
the training set D consists of the cable tension T = ||T||fi, measured according to
Section 5.3.1, as the output and the state of the vehicle x = [p v] as the input
data:

D= {z = [xl,...,xN]T eRV*6 Yy = [Tl,...,TN]T S RNX?’} (5.3)

As mentioned in Section 3.6.3, GPs model functions with a scalar value. Consequently,
2 independent Gaussian Processes are utilized in order to approximate the tension
force vector, since the norm of the tension ||T| is measured by the load cell and
the cable unit vector n has 2 degrees of freedom. Once a new estimate of the cable
tension T is available, the training set D and the GPs are updated online during the

sampling procedure.

5.3.3 Extended Kalman Filter

Alternatively, we present a more computationally efficient approach based on a Kalman
Filter which fuses the measurements provided by the onboard sensors and approxi-
mates the cable tension T. More precisely, given the known norm of the tension ||T||,
the ultimate goal of the Kalman Filter is to estimate the cable unit vector n by ex-
ploiting Equations 5.1 and 5.2. To this end, defining x;, = n = [ngg Ny nZ]T cR3

as the state vector, the following process and observation models are formulated:

X, =n=wy (5.4)
[l

yr = |atan2 (i, Nz) | + VL (5.5)
T

where wy, € R? and v € R3 are additive process and observation Gaussian noises
with diagonal covariance matrices. According to the above formulation, the cable
unit vector is modeled as a random walk while the equality state constraint |n| =1
is incorporated into the measurement model as an approximately noiseless pseudo-
measurement [3]. Owing to the nonlinear observation model, an Extended Kalman
Filter (EKF) is deployed.
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5.4 Position Control

5.4.1 Geometric Control

Following the approximation of the cable tension T, a position controller is developed
in order to reject the estimated disturbance and accurately stabilize the vehicle above
the reference sampling position p,.¢. Initially, the geometric controller, presented in
[47], [56], which is built upon the differential flatness property of the multirotor
dynamics, is implemented with an extension, so as to incorporate the external force

[8], [84], particularly the cable tension.
More precisely, the following position and velocity errors are defined:

€p =P — Pref (56)
€ =V — Vyef (5.7)

Since the aim is the stabilization of the vehicle to a given position, the reference
T

velocity is equal to zero, v,.; = [O 0 0} . According to the dynamics of the

vehicle, presented in Equation (2.9), the desired attitude of the UAV, expressed by

the rotation matrix Ry, is computed, given a desired yaw angle 14, as follows:

—kpep — kye, +mge, — T

ba s = 5.8
3,d | —kpep — kyve, + mge, — T (5-8)

T
bsa = [—S¢d ca 0} (5.9)

bs g X b3 g

big=—"—"—-— 5.10
b by byl (5.10)
Rq = [bl,d b3 4 x b1 4 b3,d} (5.11)

where ky, k, € R are positive gains. The rotation matrix R is eventually converted
into desired Euler angles ¢4, 04, g4 for the inner attitude controller of the autopilot.
It is mentioned that other external forces, acting on the platform, e.g., air drag forces,

are neglected.

5.4.2 Nonlinear Model Predictive Control

Additionally, a Nonlinear Model Predictive Controller (NMPC) is designed as an
alternative control strategy in order to both accomplish the precise hovering of the
vehicle during the sampling procedure and impose input and state constraints. Thus,
aggressive maneuvers of the vehicle above the water surface are avoided and the safety

level of the sampling procedure is increased.

The above mentioned NMPC scheme relies on the vehicle’s dynamics, i.e., Equa-
tion (2.9), with the estimated cable tension T considered as the only source of ex-
ternal disturbances. Hence, the state vector consists of the vehicle’s position, ve-

T
locity and orientation, i.e., x = [pT vl ¢ 0 ’(7[)} € R?, while the input vector
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is defined by the desired commands for the inner attitude loop of the autopilot,
T

v =[¢s 64 Ya us,| €R' The Optimal Control Problem (OCP) to be solved

by the NMPC is expressed as:

v

to+T
ain [ (0 =% Ol + [0(OlR) de + Ixtto +T) —xtto+ T

s.t.: x(tg) = %9, Equation 2.9, v € U

T
where X, = [pfe 5 Oixz 0 0 9 f} € R? is the reference state vector. Similarly
to Section 3.6.1, the cost matrices Q, R and P are positive-definite and block-diagonal

and, in this case, the state error cost matrix Q is defined by the following equation:

Q=diag ([Q, Q. Qo)) (5.13)

where the block-diagonal weight matrices Q,, Q,, and Q, penalize the vehicle’s

position, velocity and orientation error respectively.

In addition to the input bounds, related to the set U, state constraints are also
included in the OCP, so as to restrict the motion of the UAV in the x-y plane,

according to the following inequalities:
—Vzmaz < Vz < Vgzmaz (514&)
—Vymaz < Vy < Vymaz (514]2))

By enforcing input and state constraints, the smooth behavior of the NMPC
strategy and, thus, the safe execution of the sampling procedure are guaranteed. It
should be highlighted that safety is a critical factor for the specific task of sampling
given the fact that the UAV operates in an aquatic environment and above the water
surface. Consequently, aggressive maneuvers may jeopardize the electric components

that comprise the vehicle.

The ACADO Toolkit and the qpOASES solver are again exploited for solving
the aforementioned constrained optimization problem and a real-time performance,

similar to Section 3.6.1, is achieved.

5.5 Experimental Results

5.5.1 Experimental Setup

In order to demonstrate the capabilities of the above methodologies to approximate
the cable tension and stabilize the UAV at the reference sampling location, exper-
iments were carried out with the octorotor of Figure 2.3. The vehicle is equipped
with a downward-looking camera, namely the ZED 2 stereocamera, required for the
estimation of the water flow. Additionally, a 5 kg load cell, along with the HX711
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F1GURE 5.3: The position of the additional sensors required during
the water sampling procedure.

amplifier, is utilized in order to measure the norm of the cable tension ||T| during
the water sampling procedure. The load cell is suitably placed at the middle of the
cable. Moreover, the Bar30 High-Resolution 300m Depth/Pressure Sensor, accom-
panied with an I12C Level Converter, provides the depth d at which the sampling
mechanism is submerged. The aforementioned pressure sensor can measure up to 30
Bar with a depth resolution of 2 mm. The pressure sensor is fixed to the lower edge
of the cable and, hence, water samples are collected at desired depths. Finally, the
AO0INYUB ultrasonic ranging sensor is located near the vehicle’s body to measure
the distance h between the UAV and the water surface level. The measurement range
of the ultrasonic sensor is 28-750 cm which evidently implies that the cable length
should be less than 750 cm. The exact location of the aforementioned sensors in the
assembly is better illustrated in Figure 5.3. All the additional sensors, i.e. the ultra-
sonic, the pressure sensor and the load cell, are directly connected with an Arduino
Uno [57] and the respective measurements are transferred to the embedded Jetson

AGX Xavier computer via serial communication.

5.5.2 Geometric Control with Gaussian Processes
Simulation Experiments

Initially, a comparative study was conducted in the simulation environment of Fig-
ure 2.2 between the geometric controller of Section 5.4.1 with and without the term of
the cable tension, estimated with the aid of GPs (Section 5.3.2). The deployed control
scheme is demonstrated in Figure 5.4. As depicted in Figures 5.5a, 5.5b, the posi-
tion controller augmented with the prediction of the GPs was capable of stabilizing
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Sampling Geometric Inner Attitude UAV with cable-
Position Controller Controller suspended load

Position, Orientation
Prediction Velocity, g
. Angular Velocity
Acceleration
Navigation
Sensors - EKF
Gaussian Process | Position,
Regression Velocity | Camera, Load Cell,

Depth Sensor, —

Cable Ultrasonic

Tension

FI1GURE 5.4: The geometric controller of Section 5.4.1 augmented with
the predictions of the cable tension according to Section 5.3.2.

accurately the vehicle above the sampling position, whereas significant steady-state
position errors p — py.s were observed during the same scenario when the distur-
bance term T was not considered. The estimation of the disturbance, using Gaussian
Processes, was successful since the actual tension of the cable, obtained directly by
the Gazebo Simulator, lies inside the confidence bounds of the Gaussian Processes,
as illustrated in Figures 5.5¢, 5.5d. It is mentioned that throughout the simulation
scenario, the mass of the mechanism was increased in order to simulate the water

sampling procedure.

Real-World Experiments

Following the validation in the Gazebo simulation environment, a comparative exper-
imental study between the geometric controller with and without the term, related
to the disturbance, was conducted with the octorotor in real-world conditions. More
specifically, the experiments were realized in the Ladonas river, where significant drag
forces were applied to the submerged load, due to the velocity of the water flow, and
hence an inclined configuration of the cable was observed as depicted in Figure 5.1. It
is mentioned that the experiments were conducted successively and, thus, the external
conditions, and especially the wind forces, could be considered similar. Additionally,
the same positive gains k, k, were utilized and, consequently, a fair comparison be-
tween the two controllers was ensured. Lastly, a 1 liter bottle of m; = 1.2kg was

used as a substitute for a sampling mechanism.

Initially, the position controller, which does not account for the tension of the
cable, was employed. As shown in Figure 5.6a, a steady-state error of approximately
1 meter was noticed in the y-axis of the world frame W, which is a reasonable
observation since the direction of the main water flow is almost parallel to the y-axis.

In contrast, when the disturbance term was estimated with the aid of GPs (Figures
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FIGURE 5.6: The position error p — prey and the estimated distur-
bances T during the experimental scenario in a river.

5.6¢, 5.6d), the position error was significantly reduced and the vehicle was stabilized
to the reference position, as depicted in Figure 5.6b. Consequently, the disturbance
estimation technique and the performance of the position controller can be considered

successful.

The aforementioned comparative studies that validate the efficacy of the geomet-
ric controller, augmented with the GP predictions, are also illustrated in the following
video https://youtu.be/4BynPUOecOk.

5.5.3 NMPC with EKF

Afterward, we examined the performance of the NMPC scheme of Section 5.4.2 to
stabilize the vehicle at the reference sampling position, given the estimates of the cable
tension according to the Kalman Filter of Section 5.3.3. Throughout the subsequent
experiments, a real sampling device of my, = 0.25kg, suspended through a [ = 3.8m
cable, was considered. The mechanism accomplishes water sampling through the use

of a solenoid which reveals a hole and enables the water flow inside a glass tube.


https://youtu.be/4BynPUOec0k
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FIGURE 5.7: An overview of the deployed NMPC scheme (Sec-

tion 5.4.2), which incorporates the estimates of the cable tension ac-

cording to Section 5.3.3 and achieves the precise stabilization of the
vehicle during water sampling.

An overall view of the control architecture is demonstrated in Figure 5.7. In order
to validate the identification of the cable tension and the accurate position control
of the vehicle during the sampling procedure, experiments were realized in the most

common aquatic environments, namely in a sea and in a river.

In the former case, despite the existence of waves, the drag forces, generated by
the water flow and acting on the mechanism, were negligible. Consequently, the cable
was maintained parallel to the z axis of the world frame during the whole experiment
and, hence, the z component of the cable tension T = ||T|n was the dominant
disturbance acting on the UAV, as properly estimated by the additional sensors and
the deployed EKF (Figure 5.8d). Regarding the performance of the NMPC, the
UAV was accurately stabilized above the desired 3D sampling location, as depicted
in Figure 5.8.

In the latter case, the drag forces, induced by the river flow, were considerable
and led to an inclined configuration of the cable. As a result, horizontal disturbances
were also estimated by the onboard sensors and the EKF, as illustrated in Figure 5.9d.
Despite the tension of the cable, the deployed NMPC successfully stabilized the vehicle

above the desired position, as depicted in Figure 5.9.

The experiments conducted in the sea and in the Ladonas river are better pre-
sented in the relevant videos https://youtu.be/IB7a72ZvBQc and https://youtu.
be/EFHL8ckaWpM.


https://youtu.be/IB7a72ZvBQc
https://youtu.be/EFHL8ckaWpM
https://youtu.be/EFHL8ckaWpM
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5.5.4 Autonomous Water Sampling Mission

In this section we merge the outcomes of Chapters 3 and 5 into a fully autonomous so-
lution for water sampling missions by using a UAV with a cable-suspended mechanism
equipped with the necessary sensors, perception and control algorithms. Towards this
goal, we design a completely autonomous and unified framework which addresses all
of the aspects that comprise such a mission with a UAV, particularly, the control of
the vehicle during the sampling procedure and the safe transportation of the sample.
Consequently, in case of a water contamination incident, the proposed framework can
automate the water sampling mission and protect the field personnel since contact
with the contaminated area and, thus, with possible pathogenic microorganisms is

avoided.

More precisely, consider the case in which an emergency alert occurs regarding a
possible contamination in an aquatic environment. In order to identify the existence
or not of pathogenic microorganisms, a location is indicated where water sampling
should be conducted. Since safeguarding the health of field personnel is of utmost
importance, a UAV with a cable-suspended mechanism is deployed instead so as to
perform sampling. More precisely, the following steps comprise the water sampling

mission:

e The field personnel, i.e., the First Responders, point out a reference sampling
location p,es via a Ground Control Station (a system which enables users to
monitor the flight status and interact with the UAV). Additionally, they indicate
a final position py where the collection of the sample should be realized for post-
processing (typically the position where the UAV takes off). It is mentioned
that the water sampling mission can be easily extended for multiple sampling
locations or other positions where the UAV should be transferred with minimum

swing, e.g., for monitoring.

e The UAV should navigate from its initial position pg to the reference sampling
location p,.; while minimizing the cable angles n; and the cable angular ve-
locity wy, in order to guarantee the safe transportation of both the vehicle and

the mechanism.

« As the UAV approaches the sampling location p,.s, the disturbances acting on
the submerged mechanism and transferred through the cable, i.e., the tension
||'T|In, should be identified and rejected so as to achieve accurate position control

during the sampling procedure.

« Eventually, upon the collection of the sample, the UAV should similarly navigate

towards the final position py in a safe manner.

In order to fulfill the aforementioned objectives the NMPC schemes, presented
in Sections 3.6.1 and 5.4.2, are exploited to achieve the swing-transportation of the

sampling mechanism and the precise stabilization of the UAV during the sampling



92 Chapter 5. Water Sampling from Aquatic Environments

Position of the UAV

——Path

15 O Initial Position
O Waypoints

(a)

FIGURE 5.10: Autonomous water sampling mission in a beach loca-
tion. (a) The mission commanded via the Ground Control Station.
(b) The 3D path of the vehicle during the mission.

respectively. The state of the cable and the tension are available with the aid of the
Kalman Filters of Sections 3.3.1 and 5.3.3.

Real-World Experiments

The efficacy of the individual methodologies, i.e., Kalman Filters and NMPC schemes,
to estimate the cable state and tension and control the vehicle throughout the whole

water sampling mission was validated with the octorotor vehicle in a beach location.

According to the above analysis, 2 waypoints were drawn via the Mission Plan-
ner [59] (a Ground Control Station compatible with the autopilot of the vehicle), as
depicted in Figure 5.10a. The first waypoint is located at a certain height above the
reference sampling position while the second one indicates the final position where
the sample is collected by the human operators. Firstly, the NMPC scheme of Sec-
tion 3.6.1 navigated the vehicle from its initial position to the first waypoint while min-
imizing the oscillations of the mechanism, estimated according to Section 3.3.1. Once
the UAV approached the first waypoint, the vehicle descended and hovered above
the desired sampling location by deploying the position controller of Section 5.4.2.
Afterwards, the UAV ascended towards the first waypoint and, eventually, was safely
transported to the second waypoint. The 3D path of the UAV is depicted in Fig-

ure 5.10b, where the 2 waypoints and the sampling position are demonstrated.

The aforementioned water sampling mission is illustrated in the following video
https://youtu.be/13XI6a0Btp8. Additional missions, conducted in the water treat-
ment plant of Thessaloniki and in the Axios river correspondingly, are available on
https://youtu.be/WyGah4iFNLO and https://youtu.be/5wHLSPGcLCO.


https://youtu.be/l3XI6aOBtp8
https://youtu.be/WyGah4iFNL0
https://youtu.be/5wHLSPGcLC0
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Chapter 6

Conclusions and Future Work

In this dissertation, we explored a wide variety of control methodologies and state
estimation techniques tailored specifically for Unmanned Aerial Vehicles (UAVs) with
cable-suspended loads that operate in real-world environments. Our ultimate goal was
to equip such robotic platforms with the necessary autonomy and enable their safe de-
ployment within the context of 3 distinct applications: (a) swing-free transportation
of the load, (b) tracking of a moving ground target with the goal of releasing the load
towards the former, and (c) water sampling from aquatic environments. Through rig-
orous analysis, we elucidated the challenges for each task, arising from the existence
of the cable-suspended load, and we emphasized the importance of reliable state esti-
mation techniques that, based on onboard sensors, provide feedback to appropriately
designed controllers, which eventually handle the coupled system dynamics and fulfill
the desired tasks.

Particularly, we designed a frame-based methodology, using a conventional cam-
era, to estimate the cable angular motion during the aerial transportation of loads.
We employed a Convolutional Neural Network (CNN) for the robust detection of
the cable in outdoor environments and we developed a Kalman Filter to estimate its

complete state.

Considering the computational demands of CNNs, we alternatively leveraged a
dynamic vision sensor. Building upon the asynchronous nature of DVS, we designed a
computationally lightweight event processing pipeline that persistently identifies the
cable and approximates its trajectory in the image plane in a quasi-continuous manner
with the aid of a Bézier curve. Thus, we considerably expedited the estimation of the
cable state, compared to the frame-based solution, which results in improved control

performance.

In order to close the loop and attain the swing-free transportation of the load
towards reference positions, we developed both model-free and model-based control
schemes. Initially, we investigated a data-driven approach, reformulated for the ad-
dressed task, based on deep Reinforcement Learning (RL) due to its model-free nature

and its ability to cope with complex dynamics. Afterwards, we incorporated domain
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randomization into the RL framework so as to produce a more robust and generalized

policy.

Given the drawbacks of RL-based schemes, e.g., reward engineering, training in
simulation environments, and lack of performance guarantees, we conversely designed
a nonlinear Model Predictive Controller (NMPC). Since the performance of model-
based controllers is susceptible to the adopted dynamic model, we employed Gaussian
Processes (GPs) to approximate the discrepancies between the nominal and actual
dynamics. Weighted and sparse GP regression was exploited to achieve both real-time
performance and adaptability to the outdoor conditions. The GP predictions were

appropriately integrated into the NMPC in order to handle the unmodelled dynamics.

Furthermore, we explored the following of a randomly moving ground vehicle
which does exchange any information related to its state. We developed an NMPC-
based framework, which relies on a downward-looking camera, in order to predict
the future target motion based on a CNN, a tracker, and a Bézier curve. The fu-
ture trajectory of the target was incorporated directly into an NMPC scheme, which
minimizes the tracking error between the ground vehicle and the load. Ultimately,
once a condition, related to the predicted trajectories of the load and the target, was
satisfied, the opening of a gripper and the release of the load towards the ground

vehicle were triggered.

Afterward, we successfully addressed the task of conducting water sampling in
aquatic environments, including fast-floating ones, i.e., rivers. We augmented the
platform’s sensor suite with additional low-cost sensors and fused the respective mea-
surements using 2 sensor fusion techniques, namely GP regression and Kalman Filter,
in order to mitigate the noise effects and estimate the cable tension. We employed a
geometric controller which rejects the disturbance of the cable and accurately stabi-
lizes the vehicle during the sampling procedure. In addition, we presented an NMPC
scheme in order to impose state constraints and guarantee the safety of the vehicle
above the water surface. Finally, we combined the methodologies presented through-
out the dissertation to completely automate sampling missions during emergency

situations.

In conclusion, all the above methodologies were thoroughly validated in real-
world environments under the influence of challenging conditions. It is also mentioned
that the state estimation algorithms involve the integration of cameras and low-cost
sensors, commonly encountered in robotics, and, thus can be seamlessly implemented.
Moreover, the control schemes are built upon an inner attitude controller provided
by the majority of the recent autopilots. Hence, the proposed methodologies feature
minimal prerequisites and can be easily deployed. Consequently, we believe that
this dissertation contributes to the field of multirotors with cable-suspended loads
and constitutes a step forward towards the autonomous deployment of these robotic

platforms for practical and real-world applications.
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Looking ahead, a general topic for discussion revolves around the incorporation
of the presented or similar methodologies directly into the autopilots, without the
need of an external embedded computer. This integration can significantly accelerate
the commercial and operational usage of multirotors with suspended loads, resulting

in their widespread deployment in the industry.

Additionally, it should be noted that the applicability of these platforms is not
limited to the studied tasks and can be extended to other applications. For instance, a
possible scenario is the operation of the UAV in GPS-denied environments, where the
visual information obtained by the camera should be exploited in order to estimate
both the cable state and the odometry of the vehicle. Another task is the navigation of
the multirotor in cluttered environments, perceived with the aid of a forward-looking
camera or a LIDAR, where the volume of the whole platform should be considered
and appropriately integrated into constrained control schemes to avoid collisions with
the surrounding obstacles. Finally, a pulley system can be integrated into the upper
edge of the cable, which enables the UAV to dynamically alter the cable length and,
thus, navigate through constrained pathways, but also entails control schemes that

handle the additional degree of freedom.

Regarding the aerial transportation of loads, presented in Chapter 3, future work
could extend to exploring control schemes that do not restrict the cable angular mo-
tion but attain more agile maneuvers of the load so as to achieve obstacle avoidance,
navigation through narrow passages, or interaction of the load with surrounding ob-
jects. However, field-of-view constraints are required for this case to guarantee the
continuous detection of the cable. Moreover, future studies might focus on incorpo-
rating the covariances of the GP posterior distributions into the GP-based NMPC of

Section 3.6.4 in order to investigate safety-critical applications.

As for the tracking of the ground target, addressed in Chapter 4, a possible
future direction is the substitution of the conventional camera with a dynamic vision
sensor so as to expedite both the estimation of the cable state and the prediction
of the future target motion. However, the transition to this configuration is not
straightforward since the simultaneous identification of both the cable and the target
can be extremely challenging owing to the novel acquisition of visual data with event
cameras. Another interesting scenario involves considering a target which does not
move randomly but intentionally attempts to evade the UAV, thereby leading to an
adversarial setting. Consequently, more aggressive maneuvers of the multirotor and

the load are required in order to achieve the following of the target.

In Chapter 5, where the water sampling is discussed, future research endeavors
may consider a sampling device which provides real-time measurements, related to
the water quality. In this case, the multirotor must navigate safely, instead of being

stabilized, so as to seek and eventually locate the source of pollution. Finally, in the
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event that the mechanism becomes lodged in the seabed, onboard sensors should de-
tect this occurrence and command the release of the cable through a suitably designed

mechanism.
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Appendix A

List of Publications

My research has resulted to 7 peer-reviewed papers for international conferences

world-wide and 4 journal papers. The list of publications up to date is as follows:

Journal Papers

[J1] Panetsos F, Rousseas P, Karras G, Bechlioulis C, Kyriakopoulos KJ. A Vision-
Based Motion Control Framework for Water Quality Monitoring Using an Unmanned
Aerial Vehicle. Sustainability. 2022; 14(11):6502. https://doi.org/10.3390/sul4116502

[J2] Panetsos, F., Karras, G.C., Kyriakopoulos, K.J., Oikonomides, O., Kolios, P.,
Eliades, D. et al. (2023) A motion control framework for autonomous water sampling
and swing-free transportation of a multirotor UAV with a cable-suspended mecha-
nism. Journal of Field Robotics, 40, 1209-1230. https://doi.org/10.1002/rob.22182

[J3] F. Panetsos, G. C. Karras and K. J. Kyriakopoulos, "Aerial Transportation of
Cable-Suspended Loads With an Event Camera," in IEEE Robotics and Automation
Letters, vol. 9, no. 1, pp. 231-238, Jan. 2024, doi: 10.1109/LRA.2023.3333245.

[J4] F. Panetsos, G. C. Karras and K. J. Kyriakopoulos, "GP-based NMPC for
Aerial Transportation of Cable-Suspended Loads", in IEEE Robotics and Automa-

tion Letters. (under review)

Conference Papers
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Learning Motion Control Strategy of a Multi-rotor UAV for Payload Transportation
with Minimum Swing," 2022 30th Mediterranean Conference on Control and Automa-
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doi: 10.1109/MED54222.2022.9837220.

[C2] F. Panetsos, G. C. Karras, S. N. Aspragkathos and K. J. Kyriakopoulos, "Pre-
cise Position Control of a Multi-rotor UAV with a Cable-suspended Mechanism Dur-
ing Water Sampling," 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Kyoto, Japan, 2022, pp. 1780-1786,

doi: 10.1109/IROS47612.2022.9981057.
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FEicoaywyn

Kivnteo

To nedio TwV un EMUVOPWUEVLY EVOERLWY OYNUAT®Y, YVKOO T xou we UAVSs, €yel onuet-
oel gupelo avanTuérn xatd TV TEAeuTalo dexaeTior AoYw TNE EVEAXTNG POOTE TOUS, TOU
YOUNAOU XOCTOUC TOUC %Ol TNE BUVATOTNTOG EQPUPUOYNG TOUG OF [LOL TOLUALYL EQYAOLEY
Omw¢ emeDdENoT UTOdOUWY, TERWPBUAAOVTIXY ToEaxoAoVUNCY), ATOCGTOAES €pEUVASC Xou
OLACWOTNG, ATOTUTWOT XAl YUETOYREAPNOT, xaL Yewpyia. 1o mpbdogata, 1 evowudtwon
poptiwy oTic evadpleg Thatopueg diedpuve ta dpla Twv UAVS, evioyuoe tig duvatotntég
TOUC o EMEXTEWVE TN XpNom Toug ot emmpocieta oevdplo. o mopdderypa, o UAVs
UToEoVY Vo GUUBAAAOUY GNUAVTIXG GE ATOCTOAES €QPELVOC XAk BLACWONG UETAUPEROVTOC
anapaitnTes Tpounleies, pdpopaxa, eZomhioud ¥ dhha ayodd. Emmiéoy, ta mohuxdntepal
UToEoVY EVOEYOUEVWS VA Yenolormolndoly oe TeplnTtemon wog TEQUBOANOVTIXAC XoTo-
G TEOPYC OTIOU 1) TEOCPACT) TWV TEMTWY AVTATOXELTNOY 0TO Nedlo elvon emxivouvn 1 axdun

X0l AVEQUXTT), T.Y. OetypotoAndlor vepol oe LOAUGUEVES UBATIVEG TEQLOYES.

Yougova ye Tic utdpyovoeg npooeyyioelc, T UAVs ye goptia umopolv va ta&ivo-
undolyv oe dVo xatnyopieg pe Bdorn TNy mpoodpeTnon Tou PopTiou GTO XVELO CLUA TOU
oyfHaTog. Buyxexpuéva, ta poptio cuVHdLE elte elval 0TEPEd CUVBESEUEVA GTO CWUN
TOU OYNUTOC E(TE XpEPoVToL HECWL EVOS OO0V, TNV TEMTN TERINTON, 0 EVOEAEYNS
UNYOVIXOC OYEDLAOUOC, CUUTERLAOUBAVOUEVWY TUROUETEWY OTWS To oNueia o THRENS 01N
dour| Tou EXJOoTOTE TOAUXOTTEPOL, amotehel Tpolmddeon Yo TNV emTUYT EVOOUATHON
Tou goptiou. Emniéov, n ancieudépwon tou optiou cuvendyetar TNy npocyelwon Tou
oyfuatog, N onolo umopel var efvan adUVOTY O XATACTACELS EXTAXTNG ovayxNg. Avtive-
Ta, oTNY BelTeEEN TEPIMTWOT, N YoM EVOC OO0l elval Uiat ETOWN TEOG YENOoT %ol
un oOVleTn AVOT XU, WG EX TOUTOU, €YEL UoYVNTIOEL TO EVOLUQEROV TNG EPEUVITIXAC

XOWVOTNTOG.

Q01600, 1 W THVOUN AVETTUEY TOAUXOTTERWY UE OVIRTNUEVYL UEGK TYOWLI00 QopTia
oe mpayuotixd TepBdihovta napoucidlel Wialtepeg mpoxhnoelg. Amo dmodm eréyyov,
ToAG {nThpato tpoxdnTouy and tny underactuated @Oom tng duvouLxc TOLU GUGTHUO-
T0¢, haBdvovtac unddn Tov auinuévo aprdud Paduny ehevdepiog. Ilo cuyxexpiéva,
XATE TNV EVOEPLAL HETAPORA avapTNUEVLY popTiwy, 1 avdalpetn xivnon tou oyruatog
unopel va dieyeipel TNV TohavTw T xivnon Tou ool AoYw TN meplmhoxne duval-
xNC OV BIETEL ONOXANPO TO CUCTAHA. LNUAVTIXES YWVIOXES UETATOTIOELS TOU YO0
unopel va 0dnyroouv oe anpdBAenta oevdpLa, VETOVTAG OE XIVOUVO TNV Ao@IAELd TOGO

TOU OYNUATOC OGO %ol Tou PopTiou, T.y. To oyowl umopel vor TANCLAoEL ETXiVOUVA TOUG
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Beayloveg xou toug xwvnthpeg tou UAV. Ia 1o Aéyo autd, avaxOTTeL 1 avdyxn oyedia-
OOV EVPWOTWY OYNUATOY EAEYYOU TOU EAXYLCTOTOOLY TS TUAAVTWOELS TOU GYOWLOU

xa Qo @ahiCouv T ooy UETAPOEE Tou PopTiou o T VETELS avapopds.

Aldpopot eheyxtég undpyouy oTr BBAoYpapio TOU GTOYEVOLY GTNY AVTIUETWTION
e yoviaxic xiviong tou oyowiol [92]. Qotdoo, emxupmvovtan xatd Bdon ot ecwTept-
%4 mepiBdAlovTa, TapafiénovTog €Tol TNV Tapousia eEwTEpX®Y dlatapay®y. Emmiéoy,
1 OleaywYn TEPUUATWY OE E0WTEPXES CUVUAXES DIEUXOADVEL TNV EXTIUNCT] TWV UETO-
BANTEOV XATACTAONE, T.X., YPNOHLOTOLWVTAS CUC THUOTA xataypaprc xivnone. Avtiveta,
OTAY TOL TOAUXOTTERX UE AVUPTNUEVA PECE GYOWIOL QopTiol avamTiGooVTUL O EEMTERL-
%4 TEPBAANOVTOL Xl TIEAYHATIXES CUVUAXES, 1) EXTIUNCT TN XATACTACTS TOU GYOWLOU
ue Bdon oucUNTARES EVOWUATWHUEVOUS OTO OY MU0 TUPAUUEVEL EVOL ATOULTNTIXO Xl GAUTO
Chtnua. To yeyovog autd elvan Wialtepa xplowo, xodog 1 mAstodngio Twy eAeyxThY
amontel a€LOTO TN XU O TEAYUATIXG YPOVO avaTeo@odotnoT xatdotaone. Ilpog authy
v xatebduvon, Tohhég emhoyég aoInThpwy unopoly va Angdody unddn o Ty e-
xtlunon g ywviaxhc xivnong tou oyowiol oe mpaypatixd tepiddAlovta. oTt600, 1
To amAy emhoy elvon 1 aglomoinom wog xduepac, xoadode oyedov xdde UAV elvon ego-
TAlopévo Ue pla Baon xquepoc xon, XaTd CUVETELN, TOAUTAOXES UNYaVIXEC ToREUPAoELS
OTNV TAATPOPUA, T.Y. TROoOAXN TEPLOTROPMOY Xwdixorotay [7], [73], anogelyova.
¢ ex T0UTOV, AmMAUTOUVTOL XATIAANAA OYEBIAOUEVES TEYVIXES BacIOPEVES OTNV OpaoT),
X0l TTPOGOPUOCUEVES OTY) CUYXEXQUEVT] EQUOUOYT TNS UETAPORAS PORTIWY, TEOXEEVOU

VoL TOREYETOL EVPWOTY AVABEACT] TNG XATAC TACTC TOU GYOWLOU.

Emmiéov, n evaépia petapopd @optiwv umopel vo emextadel Oote va cuuneptAdfel
NV Topoxohodnon audalpeTa XIVOUUEVKOY GTOYWY, UE AMWTERO oXOTd TNV evanddeon
Tou goptiov ot autolc. Autd byt pw6vo Bleuplvel TNV epopuoctuoTnTa Twv UAVS ahdd
Xl Ta Elodyel o€ Véa emiyelpnotaxd oevdpta. H noapoxorolinon otéywy Bdoel dpaorng
UE TOALXOTTEPA EXEL AVTWETOTIOTEL EXTEVWS 0T PiAtoypapla xou anotelel Eva xohd
uehetnuévo mpdBinua [9], [10], [29], [36]" yweic wotdéoo va hopfdveton unddn 1 Orope-
&N evog avapTnuévou Uéow oyowtol goptiou. H evowpdtwon evog goptiou xau, xotd
CUVETEL, 1) EVATOVEST| TOU GTOV GTOYO GUVETEYOVTOL OLAPOPES TPOTOTOLATELS OTOL LT~
xovta oyfuota. Axdun xan yio évay éumeipo mAdTo drone, n emituyRg evomodeon Tou
poptiou umopel var elvon WOLUTEPA ATAUTNTIXY AOYW TWY TOAAVIWOEWY TOU GYOWLOU %ol
e tuyadog xivnong tou otdyou. Ilpog auth Ty xatevduvor, Eva oyfud EAEYYOU, TOU
xepileton 1600 TNV TEOPBAETOUEVT TEOYLE TOU GTOYOL OGO XU TN YwViaxn xivnorn Tou

oowioU, elvol amopadTNTO Yol VoL EXTANPMOCEL AUTAY TNV OTOG TOAY.

Emmiéov, o UAVs €youv enlong anodetydel 6Tt elvan piot tohhd unooyduevr pouno-
T TAATPOPUA Yol T GUARNOYT BELYUATWY amd LBtV TERUBEAROVTO XaTd TN BidpxeLla
eVOC TEPLO TATLXOU WOALvoT vepoU. H yprion evoc UAV, avtl tng yewpoxivntng culhoyrg
OELYUATOY, UELOVEL TNV EXVECT] TWV AVTATOXELIT®Y OE %{VOUVO, ETUTUYUVEL TNV ATMOXELOT
OE WLOL XATAC TROPN XAk, S EX TOUTOV, GUUBIAREL oNuavTIXd 0TN Blaryelplomn TN EXToxTNg
avayxne. Avo npoceyyloeic avantiocovion cuvidwe yio T de€aywyr) detypatorndiog
vepoU pe éva UAV: (o) evowudtwon pioc Bdone mou emnhéer [1], [43], [58], eldxd
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OYEBLAOUEVT Yiat VAL CLYXEXELWEVO OyNua, 1 omolo emitpénel 6to UAV va emmAéel xou
VO TPOOYEWMVETOL GTNY EMLPAVELXL TOU VEPOU xoi (B) avdpTtnomn tou pnyaviopol detyuo-
Tohndloc uéow evde ayowo. Ilpogavae, n tekeutala AVoY GUVETAYETOL AVEUTOBLGTY
EVOWUATOOT) OO TAELEAS UNYAVIXTG TOAUTAOXOTNTAS Xo SlaTneel TNV TOALUYENC TIXOTY-
ta Tou UAV oe didgopeg dhheg epyaoiec mépa amd e@apuoyéc mou oyeti{ovion Ye To
vepo. (261600, 6tav 10 UAV pe tov avaptnuévo unyoviopd derypoatoindlog emyelpel
oe €va LBdTIVO TERBAAAOY e Toyelo oY) VEEOD, T.Y. OF €val TOTAUL, ONUAVTIXES UTO-
Beuyteg diatapayéc emOEOUV OTN CUCKEUY Xal EUUECA GTO OYNUA HECK TOU GYOWLOV.
Q¢ ex ToUTOU, YL Vo Blac@alio Tel 1) ao@alc exTéreoT) TNE dladixaotiog delypatorndiog,
elvan amopabtnto va yenowonomdel war xatdAAnAn teyvixy oOvVINng ouoUnThemy Tou
EXTIUE TNV TAOY) TOLU GY OOV YENOLLOTOLOVTAS AUOUNTHEES EVOWUATWUEVOUS OTO OY UL,
poall Ye Wiot oTeaTnyixY) EAEYYOU TOU EMITUYYAVEL TNV AmdeELdT TWV BLATOEAY WY XL TNV

axplPr) otodeponolnoy Tou oy NUATOC.

Ev cuvtopia, o UAVs pe avaptnuéva péow ayowlol goptia utopoly vo aflonol-
ndoLV yio Eval Vpl PACUL EPUPUOYWY XL, ETOL, VO TROCPEPOUY ADCELS O TEOYUOTIXA
TpofAfuata. 2671600, Ol TPOXANOELS, TOU AMOEEEOUV AmO TNV TUEOLGIA TOU AVAETY-
uévou goptiou, eunodilouv v eupela ypron toug. o To oxond autd, N €peuvd pog
TpooToEl VoL YEQUEWOEL AUTO TO YAoUA UTOCTNRICOVTOG TNV TAATYOEUO UE TO UTOUTO-
UMEVO NOYIOULXO 0L UALXO X0, XOTA GUVETELDL, VOl ETUTEEPEL TNV AUTOVOUT| AELTOVEYIO TRV
UAVs o710 mhaiolo tptdv cuyxexpiuévey egappoyoy (Ewdva 1.1): (o) acpold yetapopd
VAP TNUEVLY PopTiwy pe ehaytoTotonon e TohavToTxhAc xiviong tou oyowov, (B)
ToEaxohoVUNoT XWVOVUEVOU ETYEIOL OTOYOU PE OXOTO TNV EVUTOVEST, TOU PopTiou o
autov xau (y) derypatodndio vepol and uddtiva nepBdriovia. H mpooéyyio pog mept-
AofBdvel ) Bertinor Twv uToEYoUcKHY HEGOBOAOYLMY X0 TNV AVATTUEY] VEWY TEYVIXOY
extiunong xatdoTaong XaL EAEYXTOV ToL avTWETOTILOVY T TEOXANCELS Tou VETEL TO
oyowl eV ToLTOYEOVA TETLUYAVOUV Toug GToYoLS xdle egapuoyhc. Ot mpotevoueveg
uedodoloyleg emxupdvovtal eEavTAnTxd oe e€wtepéc UVUAXES Yia var avadety Vel 1
AMOTEAECUATIXOTNTA TOUC XL Ol SLVATOTNTES TOUG OE TMEOXTIXA oevdpla. MéEow authc
e datpeBric, oToyebouue Vo GUUPBAAOUUE GTO TEDIO TWV TOAUXOTITERWY UE VORTNHUEVAL

uéow oyowiol goptia, enextelvovtag €Tal TN ¥pNon TOUS OE TEAYUoTiXd TERLBIANOVTA.
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Evagpia Metagopd

Avoptnuevey Poptiwy

Ewcaywy

Ye autd T0 xePdhao, eEeTACOVUE TNV YETAPOEA EVOS OVIRTNUEVOU UEGL OYOWLOU Pop-
tlou yenowonowwvtog éva toluxdntepo UAV oe nparypotixd nepBdihovta. H avdptnon
PopTIWY HECE TYOWLKDY EYEL TO TAEOVEXTNUA TNG EASYLOTNG UNYOVIXHAC TUREUBAoNE OTNY
EOUTOTIXY TAATPOPUA X UETELELEL TNV avdyxn Yl TtepltAoxoug oedlaopolg ot avtie-
on pe TNy otépea oOVdEDT TwV Qoptinyy ata UAVs. Qotdco, n dnopén Tou avaptnuévou
uéow oyowlol goptiou anaitel oyfuata eréyyou to onola yewpilovion Tov auEnuévo o-
erdud Boducv erevdepiag xou TNV TahavTOTIX %VNoT TOLU GYOWIOL XA, WS EX TOUTOV,
EYYLOVTAL TNV aoPdAela TNG TAaT@opuas. Emimiéov, hauBdvovtag unddn 6t n a&iomi-
o1 extiunomn e xatdotaons Tou oyowlol elvon anapaltntn tpolnddeon yia TNV Yerion
EAEYUTOV aVABEAOTG, AVOXOTTEL 1) AVAYXT) YL AVATTUEN XATIAANAGDY TEYVIXWY OL OTOLES
EXTIMOUV TN Ywvloxy xivnomn Tou oyowlol e BAom TOUC EVOWUATOUEVOUS GTO O) MU

aodnThpes.

I to oxond autd, napovoidloupe 2 pedodoloyiee yior TNy extiunon e xotdota-
ong tou oyowlol pe T Porlen eite wog ouufotixAc xduepas eite evog Auvaxon
Awodntipa ‘Opaone (DVS). Ltnv npdtn nepintwon, n aviyveuorn tou oyowtob Boaocileton
oe éva Luvehirtxd Nevpwvind Aixtuo (CNN) xou 1 cuvokixt| xotdo taor tou AauBdve-
Tan amo €va pihteo Kalman. Ytnv deldtepn mepinteon), avamoplo TOVTIS TIC ELOEQY OUEVES
poéc YeEYOVOTLYV (events) ue éva vépog ornuelwy (point cloud), oyedidletar plar uTOAOYL-
o Td ehapetd u€dodog enelepyaoiog Twy events TOU ETUTUYYAVEL TN YT Yopn aviyVeuon
TOU GY OO0, X0 G GUVEYELXL OL avTio ToLyEC peTEN\oELS TpooeYyilovTon Ue pLo XU mOAN
Bézier mpoxewévou va extiundel tehixd 1 cLUVOAXT XATACTACT] TOU GYOWLOL, GE TOAD
UXEOTERD YpoVixd Bldotnua oe clyxelorn Ue TN Abon mou Baclleton Ny cuuPotiny

AAUEQROL.

‘Ocov apopd Tov EAEYYO0 TNG POUTOTIXAC TAATPOPUIC, OLEPELYVMVTNL TEOCEYYIoELS
elte Poaclopévec 610 YOVTEAO TOU GUGTAUATOS E(TE OYL, OL OTOlEC ATOGXOTOUY GTNY
HETOPORE Tou QopTiou Ywels Tahdviwor tou oyowiod. Apyixd, ue ) Bordeia Borhdg
Evioyvutixfc Médnone (RL), exnoudedeton oto nepBAlov Tpocopolnons wia ToATixy,
1 omola 6ev oTneileTol 0TO HOVTIEAO TOU GUCTAUATOS XU EXTANPWVEL TNV ETLIULUNTY €-

poppoYn. LN ouvéyela, N uédodog domain randomization elodyeton xortd TN Sradixacio
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e expdinong, Kote va BeATIVEL 1| UETAPEROLUOTNTA TN EXTOULOEVUEVTC TOMTIXTG OF
TpaYHATXES cLVOTXES xou Vo evloyLUEl 1) eupwo tia TS WE PO TIC HETABANTES WOLOTNTES
TOU CUCTARATOC. XTO TEAOC, WMol TEOCEYYLoT Baclouévn 6To HoVTEND TOU GUGTHUATOS,
oLyYXEXPWEVY €vac un Yeopuuxos TTpoPhentinde Exeyxthic (NMPC), diatundvetan yio
N Suvoxr] TS TAATQPOEUG. AeBoUEVOu OuwE OTL TO TOAUXOTTERO UE TO OVURTNUEVO
wéow oyowtol goptio emiyelpel o unaibpia tepBdihovto und TNV enldpaon eEWTERIUDY
Srotapory v, aflomototvtan Gaussian Processes (GPs) mpoxewévou va mpooeyylotody
OE TROYUOTIXO YPOVO TO GQPIAUOTA UETAUED TOU OVOUAGTIXOU Xol TOU TEayHaTxo) du-
VOULXOU LOVTEAOU TOU GUCTAUATOG. XT1) CUVEYELN, TO OlopUwuévo Suvauixd UOVTENO
tpogodoteitan ot éva oyrfua GP-based NMPC 1o omolo emituyydvel tn petapopd tou
poptiou ywelc Tohdviwon aveldotnTta and TNy UToEEN BLATAEUY MY Xal TOV CLVINXUEDY

TIOL EMXEATOVY 6T0 eEWTERIXO TEPYBdANOV 6Tou yenotuonotelton To UAV.

Opiopog tou IlpofBAruatog

E€etdlouye t0 mpoAnuo ehEY Y0 TNS HETAPORAS EVOS OVIRTNUEVOL UECL TYOWLOV (QOp-
Tlou Tpog anuela AVaPORAS YENOLLOTOUOBVTAS £VOL TOAUXOTTERO, OIS ameELXoVI{EToUL aTNY
Ewdva 3.1. Ipoxewévou va emtevydel 1 ac@alfc ueTapopd Tou goptiou, elvon amapa-
{tnTo va Angiel uTodn N TEAAVTWTIXY %VNOT TOU GYOWLOY XATE TNV AUTOVOUT TAOTYNO)
e mhatpdpuag. Atapopetixd, 1 avdalpetn xivnon Tou UAV unopel vo npoxaréael €vto-
VEC TOAAVTIOOELC TOU GYOWLO0 X0 VO 00N YNOEL OF UEYIAEC YWVIOXES UETATOTIOELS TTOU
unopel va Yéoouy oe %ivouvo TNV ac@diela oAOXANEOL Tou cuoThuatos. o To oxomo
QUTO, O UMWTEPOS OTOYOS UOC EVOL VO oVATTUEOUUE XUTIAANA CYAUATA EAEY YOV, ElTE
Baolouéva oto wovtélo Tou cucThuatog eite Oyt ta onola yewpllovtan TV mepimioxn
SV TNE TAATQOEUAC Xot UTOAOYILoUV XUTAAANAES EVTONES @g, U4, Vq , V2, VIO TOV

€0WTEPIXO Bpoy0 EAEYYOLU TOU AUTOUATOU TLAGTOU TEOXEWWEVOL VL

o chaytotonomiel o opdhud |[P — Pref|l ueto€d tne mparypatixic Véong tou UAV
xou g Véome avapopds Pres € R3.

e chayloTtonomnel N ToyLTNTA TOU GYOWoU N, 1 LoOBUVAUA 1 YWVLoXY ToLTNTA
wr, xoNC xou oL ywvieg Tou oyowod . To teheutalo cuvemdyetar 6Tl TO
oyowl Yo mpémel va dlatneeitar 600 TO BUVATOV TLO XOVIY OE WL XATUAXOPUEPT
Véom, dnhadr mopdAAnha Ye TOv dEova z TOU CUOTAULATOS avaopeds W xot, «¢
€% TOUTOU, OL CUVOTWOES Ny, Ny TOU HoVOdLalou SlovOoUatog Tou oyowlol n Yo

TeEneL v eharyloTonomdoly.

QQot600, oL mpoavagepUévteg eAeYTEC xheloTOV PBpdyou amoutolv elpwaTn Xl
YEHYOET aVaTEO(POSOTNOT TNG XATAGTACNE TOU OYOWLOU TEQEO AN TNV XUTACTACY) TOU
oyfuatog, mou mopéyeton ancudeiog and Tov autdpato mAGTo. AoufBdvovtag unddn ot
To octorotor emuyeipel ot e€wTERIXA TEQIBAANOVTA, OTIOU TOL CUC THUNTA XATOYPapng Xivn-
ong dev umopolv va yenotporoimndoly, oyedidlovue olydprduoug eXTUNONS XATAC TACTG

oL omolot, pe Bdon Ty onTixh TANeopopio Tou Aouldveton elte and wiar amhy) cupBoTiny
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xdepa elte and évav duvauixd aointipa dpaone (DVS), exmtinedvouy toug axdlou-

Youg otdyouc:

o Elpwotn xau oc mpayuatind yedvo ovoyvmpelorn Tou GYowlol Topd Ti¢ avTiEoeg

e€wTtepés ouvinxeg.

o Extlunon tne mhpoug xatdoTacng Tou oyowlol, dSnAadY| My, xou Wi, amopodTnTn

Y10 OTIOLOVONTOTE EAEYXTY| AVABRACTG.

Extiunon tng Katdotaong tou Xyowiol

Ye auth TV evotnTa, Tapouctdloupe 2 uedodohoyles Yior TNV EXTIUNGCT TNS XATAC TOONG
TOU GYoWoL XaTd TNV evagpla YeTapopd Tou goptiou. Ilpoxewévou va amogeuydel 7
EVOWUATOOT TOAGY oUcUNTARWY, T.)Y. TERLC TROPLXMY XWOXOTONTLY, TOU TEOUTUTOVY
neplmhoxeg pnyavixés mopepfdoeic oto UAV, ¥/xan 1 avdmtudn xatdhhnheov topatnen-
v [7], [45], [73], otoyeboupe vo a€LOTOLCOVUE Wit OVO XSUEEOL UE TTPOCOUVATOAOUS
TPOC T XATW, oL CLYXEXPWEVA elTe pior ouuPBatixn xduepa elte Evav awodntripa DVS.
Enopévwg, dedouévou 6TL oxeddv xdde UAV Siordéter pio Bdom yio xduepa, oL TOTEL-

vouevol alyopriuol umopolyv va vhomolndoly ye ehdyloteg npotnodéoelc.

Extipnon tng Katdotaong tou Xyowiol pe Suvpfatiny Kduepa
Aviyveuvon tou Yyowiwob ne CNN

Ocwpolye v exdva RGB mou AopPdvetan and tnv xduepa mou Beioxeton xovid oto
%x€vTpo pdlag Tou oynfuatog, onwe anewxovileton otnv Euxoéva 3.20. Etdyoc pog elvou
VoL eNEEEPY UG TOVUE TNV TEOAVAUPEPVEITA ELXOVA TOOXEWEVOU VL AVaY VWEIGOUUE TO GYOL-
Vi xo, TeENXd, Vo oviy vebooupe To QopTio 6To eninedo g ewodvag. Audpope uédodol
UTEEY 0LV YL Vi VEUGT] AVTIXEWWEVWY, OTWE 1) Yerjon marker, To .o TOYpauUud TPOCUVATO-
Mopévoy xhioewy (HOG) x.At. Qotbéoo, dedopévou dti 1o UAV ye to avaptnuévo péow
oyowtol goptio mhonyeitan o eEwtepind TEPBAANOVTA, OTOU ToEATNEOVVTOL BLAPORES
oLVINUES PWTIOUOD XL OXLES, ETMAEYETOL EVA VEURWVIXO OiXTUO AOYW TNG EVPWO TLOC Xol

e gveMEiog Tou.

ITio ouyxexpwéva, yenowonolinxe to poviého mobilenet segnet and to Keras
image segmentation framework [28] Adyw Tou yopunhol unohoyloTIXOU TOU XGCTOUC.
Ewuxotepa, Swamotdoaye 0Tl 0 HECOG YEOVOS Yol TNV eEAYWYT| CUUTEQUOUSTWY oo
10 Yuvehixtxd Nevpwvixé Aixtuo (CNN) ftav 33 ms 610V evowuatwuévo UTOAOYL-
o1 Tou oyfuatoc, dnhadh oto Jetson AGX Xavier [35], 6tav ypnowonoweitn 1 VGA
avéhuon yio Ty xdpepo ZED 2 [98]. ‘Ocov agopd tn dtadixacio tne exnaidevong, ouk-
Ay Onxe éva oUvoro 1000 exdvwy TETWVTAC YELROXIVNTA TO OYNUL UE TO OVIPTNUEVO
poptio oe dudpopa TEQIBAANOVTA. TN CUVEYEL, To OEDOUEVY YwpeloTNXaY OE €va OET
exmaldevong xou €va oeT emlpwong olUPeva Ye Evay dlayweiopd 90:10. To cdvoro
TV dedOPEVLY eXTaidEVOTC ETEEEPYEO TNXE XPNOLLOTOLOVTAS TO Aoylouixd labelme [93]

xaL o oLVEYEL To péyedog Tou cuvolou avihinxe otic 4000 exdvee epapuolovtog
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TOMOTAOUG PETACYNUATIOPOVS OTIC EXOVES PE TO epyahelo imgaug [37]. Tehxd, to
CNN exnoudedtnxe péow tng uevddou back-propagation xou cuvéxhive oe axplfBela dve
Tou 98% o710 olvolo emxlpwone uetd and 15 emoyéc. Eva evdetnd nopdderypo tng

e€660u tou exmoudevpévou CNN anewoviletan oty Ewdva 3.2b.

Me Bdon v é€0d0o tou exmoudeupévou CNN, e€dyeton plar meployy) evOLapépovTog
ue ) popyt evéc convex hull, to dxpo (ur,vr) Tou omolov UTOBNAGDVEL TG CUVTETOY-
wévee pixel Tou goptiou oto eninedo e ewdvac omwe anewxovileton oty Ewxdva 3.2c¢.
Yougova ye to Tuxd pinhole yovtého xduepag, n Yéon tou poptiou, dNAADT 1 *ATeK
dxpn tou oyomol, “pr, € R? oe oyéon pe 10 oo Tua cuvteTaypévey Tne xdpepoc C

e€dyeton and Tic ouvtetoryuévee pixel ur, € [-W/2,W/2|, vy, € [-H/2, H/2|, ¢ e&hc:

CPLZ[CZLUL/f Czrop/f CZL}T (1)

6mov W x H eivan 1 avdhuon tne xduepos, f ebvor 1 eotioned anbotaon xa ¢

2, ebvon
XUPTECLOVY] GUVTETAYUEVY TNG AXENS TOL G000 KE Teog Tov dfova 2 tou C. E@dcov
1 anéotaon €2y evon dyvwotn, oflomoteiton o otadepd urxoc I Tou ool GoTe va
avoxtniel n Tpwoddotatn Yéorn tou @optiou. Muyxexpiuéva, dedouévou 6Tl TO Gy oWl
Vewpeltol TEVIWUEVO XAl TEOCUPTNUEVO GTNY YT TOU CUCTAUATOS CUVTETAYHUEVKDY TOU

oyfuatog B, mpoxintel n axdrovidn e&lowon:
|7 = [Roc e+ b = 2)

6mou Bpy elvan ) Véom e dxprne Tou oyomol we mpog 10 B xow Rpe xou tpo etvor o
YVOOTOG TVOXAS TEPLOTROPHE ot To Bidvuoua petatomone and to C oto B. H enfhvon
e E&lowone 3.2 éyel wg anotéheoya wa ouvdptnon h @ R? — R mou avtiototylet
TIC OLUVTETAYREVES (UL, VL) — XOU YVWOTES TApAUETEOUS , dnhadn, ta otouyeio twv Rpe
xan tpo, TIC EOWTEPES TUPUUETEOUSC TNG XAUEPAS XU TO UHXoS | Tou oyowlol — ue
v anéotaon Czp, dnhadh, €z = h(up,vr). H avelutnd popeh tTng cuvdptnong h
napahelneton xodwg Boactleton 0Ty EXACTOTE OYETXT 0TAOT HETAUED TN XAUEQAS KOl TOU
CUGTAUATOC GUVTETAYUEVWY TOL oyuatog. Telwxd, utohoyileton To povadiolo Sudvuoua

B
TOL GYOLWIOL "1

B Bpr,  Rpc“pr+tae

n= = 3
ol z (3)

XoL GTN GUVEYELY PeTaoyMatiletor oTo cvoTNua avagopdc W (n = Ry pPn).

Kalman ®i{ATpo

Exto¢ and 1o povaddo didvuoua n, uior extiunorn tng ToyUTNTIS ToU oyowlol elvol
enlong amapaltnTn Yo To endPeEVA oy UaTa EAEYYOL. AV xon 1) optdunTixy TapaydYLom
Euler tng pétenone n ebvon war mdavy) Adom, cuvidweg odnyel oe po moAd Yopucdn

extiunon xau, emouévwe, oe LTOBUVUOUEVT AmOBOCT) TOU OYHUATOS EAEYYOL.

Koatd ouvénela, emhéyeton éva gikteo Kalman, xadog elvon éva eupéwe dladedouévo

pikteo Yl extipnon xatdotaong [15], [49]. To gihtpo Kalman viomoteiton ye Bdom to
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T
duvoxo povtého e E€lowong 2.7. Tho cuyxexpéva, opllovtas X7, = [nT ﬁT} €
R w¢ 10 Sidvuopa xatdotaonc, TeoxUmTouy Ta axdhoude LOVTENS CUGTHLNTOC Xl

uétenong:

. n n
xp=1|.|=|: T .y TW (4)
| 0 n
v = 3x3 3x3 . +w (5)
O3x3 O3x3| [N

6mou w € RSy w € R3 avTitpoownebouy adpoloTixolg yxaoualavols Yopvfoug.
‘Eva Extended ¥ Unscented Kalman Filter (EKF, UKF) yenowonoteitan héyw tou
UN YEUUUXOU WOVTEAOU TOU CUOTAUNTOS. XNUELDOVETAL OTL 1) emitdyuvorn tou UAV v
xou M téon tou oyomol || T petpdvton aneudeioc and to IMU tou oyfuotog xou piot
duvopoxLPEéT, Totodetnuévn Tdvw oto oyowi, avtiotorya. Mol extiundel to pova-
oo Bidvuoua Tou oyowlol n xou 1 ToUTNTAE Tou N, uToloyilovTton oL Ywvieg Ny, xau 1

yowwviaxr Toy0tnta wy, olugwve pe tic Eéiomoeic 2.2 xou 2.3.

Extipnon tng Katdotaong tou Xyowiod ue DVS

[Tpoxewévou va emteuyVel 1 extiunon g xaTdoTACTE TOU GO0 OE TOAD UXEOTERO
YEOVix6 Bldo TN o cUYXELON UE TNV Topamdve pedodoloyia ye cupBatiny xduepa, Ole-
PELUVOUUE TNV EVOWUATWOT eVOg auointhpa DVS oto oymua, dmAady| ploc event xduepag,
onwg anewxoviletoan oty Ewdéva 3.3. Ov DVS nogoucidlouv mohhd mheovextruato oe
oYéon PE TIC TUTIXEC XAUEPES, OTWS YounAo latency, younAn xatavdhwor evépyelag,
udMAS Buvauixd elpog xou evpwo tia we Tpog motion blur [20]. Audgopes douleléc ot
BBhoypapio €youv embdellel pe emtuyla v yenon DVS oe ewtepd nepBdihovta
Yo éva eupl @dopa epappoyoy [12], [90], [13], [74], [83], [53]. Qotdoo, Aoyw tne o-
CUYYXPOVNG PUONC AVTWY THV XAUERWY XL TOU XOUVOTOUOU TEOTOU ANOXTNONSG OTTIXWY
dedopévwy, xdlde doukeld etvan povadixy xou e€optdton ot peydho Podud amd To avTixe-
{uevo mou meémel v TawtomolnUel xan TNV eQapUoYY) Tou avTpeTwriletan. )¢ ex ToOTOL,
oyedtdleTton pLor Véa AOOT) TEOCUPUOCUEVT) GTO GUYXEXPULEVO TEOBATUO TNS VALY VORIONG

TOU GYOWLOU XAl TNG EXTIUNONE TNE XUTAC TAGHE TOU XAUTA TNV EVAEQLAL UETAPORY PORTIWY.

Avanapdotaor twv 'eyovotwy

Ye avtideon pe Tic oupPatixée xduepee, 1 event xduepa elvon €vag aoInTRpag EUVEU-
opévog amd TNy Bloloyia TOU AVTATOXEIVETOL OTIC AAAXYES PWTEVOTNTIG ACUY POV KoL
aveldptnta yio xdde pixel. ¢ ex tolToUL, M €€0d0g wiag xduepag DVS elvon wa o-
oUyyeovn ot yeyovotwy (events) mou mpoxoholvTal and OANAYES POTEVOTNTAS GTO
nepBdAhov. Ihio ouyxexpyéva, éva event e = (Uk, Vi, tk, Pk) TORUTNEELTAL OTIC CUVTE-
Toryuéveg pixel (ug, vg) xou TN oTiypn t Lo aviyveudel wa odAayr ot QeTEVOTN T
Tave and évo tpoxadoplouévo 6plo oe oyéon Ue To Teheutalo event oto (Blo pixel. H
rolxdtnta (polarity) p € {0, 1} unodewxvier Tnv xatedduvon e ahhayhc TNS PWTEL-

VOTNTOG.
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Y0PV UE TOV TEOTEWVOUEVO ahYOELIUO, To events Tou TP yOVTOL ol TNV XAUEQEOL
DVS unofdiiovton oe npoemelepyacio TEOXEWEVOU VO EVTIOTULGTOVY AUTE TOU oVTIO TOL-
XOLV 010 oy owvi xan vo eay YoV apYOTERN GNUAVTIXES TANPOPORIES Yol TNV XAUTAG TooY
Tou. ITo ouyxexpiuéva, WA eppavioTtel Eva event e;, anodnxeletan o €va VEQoOg on-
welov (point cloud) P = {e;|t; € [to — T’ to]}, mou amoteleitan and o Mo npOSPATO
events u€ypL TV TEEYOLUCA YEOoViXY oTIYUY| to. Xnueiwveton OTL TOCO 1) YWEOYEOVLXY
mkneogopia (u, v,t) 6oo xau 1 tokxbéTNT P anoVnxedovion oto point cloud. Evoewxti-
x4 mopodelypota «event» point clouds, pali pe Tic avtioToiyeg grayscale ewdvec mou
xatoryedpovtar ané v DVS, anewxoviCovtar otnv Ewédva 3.4, 6nou mapatneeiton €vog
awnuévog aplduodg events, mou avtictolyel oto background ¥ oe VépuPo, oe elwrte-
ool yweouc. H BiBhodixn Point Cloud Library (PCL) [75], 1 omnolo dtoxpiveton
YLoL TNV UTOAOYIO TIXT| TNG OMOTEAEOUATIXOTNTA, 0&LOTOLE(TOL YIoL TNV OVOTOREo TAGY) TOU
event point cloud xou yia Toug emaxdrovdous ahyoplduouc enelepyacioc. ‘Oco yia Ty
avanopdotaon, emAéyetan and tnv PCL éva point cloud pe onueio tornou XYZI, 6mou
ol ouvtetayUéveg X-Y yenouomololvTol Yio TIC TWES Twyv pixel, 1 ouvtetayuévn Z vy

70 yeovo xan 1 T Iyl Ty moAwdTnTa Twy events.

Eneiepyacio Tovu Event Point Cloud

To npoavagepdéy point cloud P urofBdiieton oe downsampling pe tnv egopuoyt| evog
3D voxel gihtpou evtog piag ywpoypovixrc yertovidg xdde event, mou opileton amod
Tov OYx0 ny[pizels] X ny[pizels] x nyms]. Q¢ ex TolToL, T events TOU AVAXOLV
oe x&de voxel mpooeyyllovio and to x€vipo toug. Emonuoiveton 6T, extdg and Tig
ouvTeTaypéveg pixel xou Tig ypovixég oTiyués, unoloyiletau enlong o péoog bpog g
TOAXOTNTAG TwV events oe xdie voxel. Yuvende, To véo point cloud nou dnulovpyeiton
P = {eg|t9 € [to—T, to]} amotehelton and ¥EVTpd €] UE TEOYUOTINES TONXOTNTES P €

[0, 1], 6nwe anewoviletow oty Ewdva 3.5a.

Ytn ouvéyew, to point cloud P’ guitpdpeton pe Bdon tn uéon tohxotnTa pi xdde
xévtpou €. Ilo ouyxexpypéva, povo ta xévtpa pe tohxdtnta p € (0, 1), dnhadh pj # 0
xou pi # 1, Yewpoldvion w¢ unorigla events ylo Vo avixouy 6To oyoWl, OTKE anELXo-
viletow otnv Ewdva 3.5b. To ¢iktpo autd ouctactixd umodnhwver Tt Yo TEENEL Vol
UTdpy oLV TOUAdYIGTOV 2 events e; oe xdde voxel tou point cloud P ye avtideteq mohL-
x6ThTES TPOXEWEVOL Ve powinlel To avtioTotyo xévTpo €] oe unorglo event. Auth
1) TEOCEYYIOT TROEPYETAL amd TNV TapaTAENoN OTL, lTe AoYw TNE *VNoNg ToU OYHUATOG
elte Tou {Blou Tou oyowll, BnuovpYelton évag emapxnc aptdude events ue avtideteg
TOAMXOTNTES OE XAPaxo ms xatd TN PETAPOEE Tou avapTnuévou goptiou. Emmiéov,
oxoun xu otav 1o UAV otadeponoteiton oe pio cuyxexpiévn Véor, t6co 1o UAV 600
xo To oyowl Bev umopoly va elvor anoAlTwe oTtadepd Aoyw e Unapdng eEnTEpdY
OLATURUY WV, OV TEOXVTTOUV XLElwe and tov dveyo. Eva dAlo mAcovéxtnua autod Tou
pihteou elvon dTL 1 ThetovoTNTo TWV YopuPBndny xou Peudnv events ayvoolvton. Avolu-
TIXOTEPA, UETA TNV EUPAVIOT) EVOC event, TUpaTneoLVToL UERIXES Popéc TpdcUeTa events

{BLog mohxoTNTOC MU 0TV (Blar Véom pixel yéoa oe €va GUYAEXPWWEVO YEOVIXS Bldo TN
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[12]. Kotd ouvénela, pe v e@oppoyy Tou tpoavagpepdévioc guktpaplopatog, oautd to

events {Olog mohxdTnTaC deV TEpow ol vToL.

Qotdoo, undpyouy pepixd xEvTpa € Tou TEPVOLY To TEoUVAPEPVEY (INTEO MG o-
votoyolyv eite oe B6pufo eite oe avtixelpeva tou Peioxovian oto €dagoc/background
xan Oyl oto oyowl. Etol, extelelton évag ahyodprdpoc Euclidean Clustering yenoyto-
TOLWVTAS TNV anoteAeopatixy avanapdotact Kd-tree yi to ewoepyduevo point cloud
P = {e;-|t;» € [to — T, to] ,p; € (0, 1)} X0l 6T1 cLVEYELX ToV olyOprdo nearest neigh-
bor search. To cluster ye to peyolitepo péyedoc mpowldeiton we to cluster Tou oyowviol
C o to oot ebvon mo xovtd ot DVS and onolodrrote dAlo avtixeiuevo oto €da-
@o¢ xat Vewpeltan 0Tl €yel EMoEXT| OLIUETEO. LUVETKC, TA events Tou AVTITPOCWREVOLY
70 oy oWl LYW XATIAUUBAVOUY TO UEYIADTERO UEROG TOU ETUTEDOU TNG EOVIS, OTIWS
anewoviletoaw otny Ewxéva 3.5¢. Tleputépn éleyyol mpoypatonotovvton enione petald
TV Bladoy @y clusters oyowldv, cuyxplvovtag Tn oyeTixy Toug VEoT xou, ETOUEVLG,
dlaoparilovtag T owo T emhoy cluster dtav avtixelyeva tapduolov oyfuatog Beloxo-
vtow o7to €dagoc. Tehwd, uio oxohoudio clusters oyowiny e&dyeton ue oyeddv cuveyr

TEoTO, OTWS aivetar otny Eudva 3.6.

Mol e€aydel To cluster Tou oyowiol C, eivon anapaitnto va Peedel To event mou
avtioTolyel oTo gopTtio, SNAAdY| T0 x&TwW dxpeo Tou cyowioL. Me Bdon Tov TEOGUVATOAL-
oo xou N oyxetix ¥éomn e DVS oe oyéon e to oyowl, wa anhf npocéyyion Yo ftay
1 emhoy” tou event € € C pe ) peyahdTepn ouvietayuévn vi. Q0T600, QUTH 1 TEO-
oéyyion unoPoduilel T onuaocia Twv utéhoinwy events. Katd cuvénelo, tpocapudleton
wo 2D eudela hapPBdvovag unddm Tic cuvteTaypéveg pixel (u;, vé) Twv events € € C,
onwe gaivetan oty Ewdva 3.5¢.

IMpoocéyyion andé KounOAn Bézier

Egopuélovtag ta npoavagepdévta Bruata enelepyasiog, hauldvovton tTeMxd oL cuvte-
Torywévee pixel (up,vr) ToU %dtw dxpouv Tou oyowlol. 261do0, 10 4T PEPOC TOU
oyowlo0 EVOEYETOL Vo UNV Onutovpyhoel emopxy| aptdud events xatd Tn OldExEld Opl-
oUévwy AMyoo Tty emavaliewy, yeyovog mou odnyel o uia YopuPBwdn extiunon tng
xatdoTaong Tou oyowiod xou uroBuduilel Ty anédoon Tou GyYNUUTog EAEYYOL. Du-
venwg, alonoteltan wlor xoaunOAn Bézier yia va mpooeyyioel oyodd T cuvTeToyUéveg
(ur,vr) 0N xou Ti Ty OTNTES (U, V), TOU AmoUTOVVTOL Yot THY EXTUNOY TNS TAHPOUS
XATAC TACNG TOU GYOWLOV.
ITio ouyxexpyéva, uio xaumdAn Bézier opileton, ye Bdon to Padud n tne xaumding,
we e€ng:
n
B(r) =) _bin(r)e; (6)
i=0
omou T € [O, 1}, B(7) € R? (vt 0 u-v eninedo g ewxdvoc) ebvor 1 xopmioAn Bézier,

. 7. 7’ 4 : 4 T
bin(T),i =0, ,nelvou T TOALGVLPA Bdone Bernstein Boduod n xou ¢; = [Cw’ Cv,i} €

R? efvon T n + 1 onpela ehéyyou.
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I vo utohoyiotel o xatdAAnho clvoro onuelwy eAéyyou ¢ = [co,cl, e ,cn}
X0, EMOUEVKC, VoL TPOCEYYIOTEL 1) TEOYIA TOL Gy oWLo) 0To ETUNEDO NG ELXOVAC, EVa OET
dedouévewy D = {(tn—1,ur, N—1,VL,N—1), -, (to,ur,0,vL,0)} Onuovpyeita, to onolo
aroteAelton and T Tehevtaleg N uetprioel, péypl TNV TeEYouca Yeovixy oTiyul to,
TV ouvTeTayUévey pixel (ur,vr) poll ye tic avtioTolyee ypovixée oTiypés, OTKS Tpo-
xOTToLY amd TNy enelpyaocio tou event point cloud. To oet dedopévwy €xel oTalepd

uéyedog xan emxatponolelton HOALC elvon Stordéouun war véa uétenom.

Agol avtiotoiyniel n nopduetpoc T € [O, 1} HE TO YpoVixd dldoTtnua t € [tN_l, to},

vmohoyileton to BéATioto alvoho onueiwy ehéyyou ¢ and ™ Adon tou meofAfuatog

mcin z_: (wti ) (7)
i=0 2

TOL OUCLAC TS ehaytoTonolel TNV amdotaon UeTald NS xaunvAng Bézier xou twv pe-

BeltioTonolnong:

B(r) — [uL,i7 UL,z'] !

TENOEWY, eVv& Ta BN wi; EVIOYUOLY TIC TO TEOCPAUTES UETEHOES Xal ETBIANOLY Xu-

PWOOoELC OTIC TOhUOTEPES [29].

Emmiéov, nepropiopol, mou oyetiCovton ue Tnv eAdyloTn xou HEYLO TN ToyUTNTAL Xal
ETUTAYLVOT TOLU GYOWLOU OTO ETUNEDO TNG EXOVAC, EVOWUATWOVOVTAL 0T0 TEOBAnua Bek-
TiloTonolnong, €tol wote va Beedolv anoxheloTind egixtéc Aoelg. Iho ouyxexpiuéva,
raparywylloviag Ty xounvAn Bézier, dwtundvovto ol e€n¢ neplopiopol i Tov dEova

u (opolwe yio Tov v):

n- (Cu,i - Cu,i—l) / (tO - ZL/N—l) S [_ﬁmaa:v umaa}]

n-(n—1)(cu; —2¢ui-1+ Cui-2) i N (8)
5 € [_uma:va umaz]
(to —tn—1)

To npoavagepdév npdinua Tetpaywvixol Ipoypauuotiopot ye nepopiopoic (E-
Eiowon 3.7) nou yapoxtneileton and 2 - (n+ 1) pyetofintée, dnhadn ta onueia eréyyou,
xou 2-n+2-(n—1) tepopiopoie (EZiowon 3.8), emhbeton pe tn Bordeta Tou Aoylopxol
OOQP [24] xou, tehixd, wo extiynon twv cuvtetaryuévoy pixel (ur,vy) xou Twv ToyL-
oV (g, 0r) oe xdde tpéyovoa ypovixh oty to howBdvetor uéow NS XAUTOANG

Bézier, n onola anewoviCetar otnv Ewdva 3.5d.

Xt ouvéyela, dedouévng g xaumOAng Bézier, extipdton 1 cuvohixy xatdo oo
Tou oyowol. Ilio cuyxexpéva, mapouola pe ) wédodo mou Baciletar otn cupPorti-
xf ®épepa, o povadiado didvuoua Bn unoloyiletu oluguva e tic E&iodhoeic 3.2 o
3.3. 'Ocov agopd TNV ToyTNTA TOL GYOWLoL, auTH TpoxiNTEL topaywyilovtag to E-

yuatiov (3.3) obuguwva pe tic oxdhoudec oyéoelc:

c

. R ) Rpo 1 . .
By = 8¢ “pL = —BC Cirvp + C2pop 9)

[
/ %

spur + Czpar
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L Ry (6‘}2 + 2 ) ur, +Z ZLl:iL
n= ﬁ (8uLu + avaL) UL 4+ 201 (10)
1 (G + gpoe)
ue 8%]2, 887}; VoL BAGVOLY TiC pepinéc Tapaydyoue tne ouvdptnone Czr = h(ug,vr).
Yuvenae, pe Bdomn ty €€0d0 tne xopuniAne Bézier, dnhadn tic ouvtetarypéves (ur,vr,)
xou T toyUTnTee (Ur,vr), T600 To povado didvuoua Tou oyomol Bn boo xu 1

Tay0TNTé Tou i umopolv var UTOAOYIETONY XaL GTH GUVEYELY VO UETACYNUATIO00Y GTO

cLoTNUA avapopdc W €ToL ()OTE VoL UTOAOYLIGTOUY Ol YWVIES 17, xou 1) YwviaxT TaydTnTa

wr, (E€wodoec 2.2 xau 2.3).

Axpifeia tng Me96d0u

H axpifeta tne mpotewvouevng uetdodou allohoyinxe apyixd U€cw TEWAUATWY O ECW-
TEEWOUC YWpEoLS, 6Tou 1) €€0d0¢ TG mpoavagepleicac Aong mou Bacileton ota events
ouyxelinxe ye oaxplBeic petprioeic mou napéyovton amd £vo oOo TN XAToYEaPhS Xivnong.
ITo ouyxexpiuéva, 1 DVS xau 1o dvew dxpo tou oyowiol otepe@inxay oTo To3dvl evog
dwuatiou Ye oyeTr oTdoN ToEoUoLd PE QUTH TTou €xouy Tdvew oto UAV. YXnueldveto
6Tl og aUTH TNV TEpinTwoT To oo TN avapopds cuunintel ue To B. To ground truth
Meinxe and to cloTnuo xataypaprc xivnong Vicon to omnolo Bacileton otn yerion
markers. T va e€aopolotel 1 cuveyhc moapoxohovinon tng ToAavTOTXC xivnong
Tou oyowloy, markers Toro¥eTHUnxay TpocexTd YOpw and To oyowi. Mia exdva Tou
€0WTEPXOV YWOEOUL, and TN cupPBatixy xduepa tne DAVIS 346, xau to avtiotolyo event

point cloud anewxoviCovtar otic Exovee 3.4a xou 3.4b avtiotouya.

Kotd 1t dudpxelor twv nelpaudtonv, ouyxevipndnxoay dedouéva t6c0 and tn DVS
600 %ot a6 1o oo TN Vicon yetaBdhhovtog Tny apyixr Ywvia Tou goptiou xan ameAeu-
YepWVOoVTAC TO Pe undevixt| tayvTnta. ¢ ex ToUTou, T0 QopTio xwhnxe eAcdicpa UTO
NV enidpaom e Papdtntac. Evdeixtind anotehéopata evog TeElpduatos tapouctdlovion
otnv Ewdva 3.7 6mou ot ywvieg Tou oyowiol 1, = [qﬁL GL} nou vroloyllovtar and
v enelepyooia g porc events cuyxplvovtal ue to ground truth mou xatorypedpeton
ané o cuotnua Vicon. Eivar mpogavég ot 1 pédododg pog daxplvel ue emituylo to oyowl
X0l XATAYPAPEL OAO TO VP0G TNG TohavTOTIXNG Tou xiviong. To opdipata RMSE yua
TS YwViee ¢, xou 01, Aoy 2.204° xou 2.639° avtio Toryo xatd Tic doxIES GTOV ECWTERPIXO
yweo. Télog, T0 TococTd emiTLYOUE aviyveuong, dNAadH o apLiUoS TWV VLY VEDCEWY

TPOC TOV oLVOAXS apLdd emavaliPewy, Hrav (o pe 96.67%.

Qotéo0o, Yo mpénel o ToVIoTEL OTL av xou 1) L€Y006¢ wog oLAAOPBAVEL Th cUYVOTNTA
NG TAAAVTOTIXAC XIVNONS TOL GYOWLOD, TO UETRO TWV YWDV TOU OYOWIOU UTEREXTL-
pdTon, eWdd OTaY oL YwVlEG amouoxplvovIal oNHavTIXd omd T undév uolpeg. Auti
1 ouunepLpopd ogelheTan XUplwe OTO YEYOVOS OTL TO YOUNAOGTERO TUNUO TOU OYOWLO-
0 evOéyeTal Vo uny dnuovpYNoeL emapxy| aptdud events xou, wg ex tolTou, N UEH0DdOS
poc umopel Vo TAUTOTOWOEL WS TNV dxpen Tou oyowtol (ur,vr) éva xévtpo To omoio

OTNY TEAYUATIXOTNTA OEV AVTICTOLYEL OTNY dxen aAAd oe éva onuelo Tou Beloxetan Alya
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exatooTd mo mdvew. Ilapdha autd, oe xdde meplntwon, to opdhpata RMSE yia tig
yovieg elvon oyeTind uixpd eV emiong anwTepog 6TOY0C TN DOVAELdS Uog efvan 1) eva-
€plaL UETAPOPA UE EAGYLOTEC YwVieg Tou oyowlol, dmou uetpldletar 1 npoavagepdeioa

CUUTERLPOQRA.

YTroloyictixd Kooctog

ITpoxewévou vo TocoTixonolooupe TN Yelwon Tou UTOAOYICTIX0) XOOTOUC TOU ETL-
TUYYGveTaL Ye auTAY TN uédodo oe alyxplon we ) Aborn mou Boaoileton oty cupfotixy
xduepa, uetpdtan oto Jetson AGX Xavier o ypdvog extéheons Twv emépous Bnudtwy
TOU TPOTEWVOUEVOL dAYOplduou TOCO OE EOWTEPIXA 600 XalL Ot eEWTEPXE TepBdAOVTOL.
O péooc ypdvog enelepyaociog yio xadéva and ta Briata mou anaptilouv TN GUVORLXY
uédodo, dnhady) 1 eneepyaoia Tou event point cloud xou 1 TEOGEYYION UE Wat XOUTOAN
Bézier, xadd¢ xau oL mopdueTeol Tou TEoTEVOUEVOL ahyoplduou cuvodilovtal oToug
IMivoxeg 3.1 xou 3.2 avtiotowya. Toviletow 6tL T0 UTOAOYIGTIXG XOOTOC NG EMELEPY -
olac tou point cloud oyetiCeton dueca pe Tov apLiud Twv ewoepyoduevwy events. Kotd
OUVETELNL, XOTA T1) OLAEXELN TV TEWRAUATWY OE ECWTERXO YOEO0, 6Tou 1 DVS dev xivelton
xa To TEPBAAAOY Elval GTATIXG, 0 YPOVOC EXTEAECTC ALUTOV TOU BRUNTOC UELDVETOL. Y€
xdde meplntwon, o uéoog ypdvog enclepyasiag Tng mpotewouevne pedodou eivan onua-
VIIXA YouNnAOTEROS ot alYXELoM UE €vay TuTixd alyoprduo aviyvevong pe cupBotiny
xdpepa xou Yerion CNN, énou o pécog ypdvoc yia TNy e€aywYr CUUTERUOUATWY ATO TO

CNN eivan {cog e 33 ms.

‘EAleyyog pue Baid Evioyuvtixyy Mdadnon

Ye auty TV evotnTa, Tapouctdloupe wia otpatnyLxy Bactouévn ot Batid Evioyutiny
Méinon (deep RL) yio Tov €AeYY0 TOU TOANUXOTTEPOU UE TO OVAPTNUEVO HEGL) OYOWLOU
popTio. LUYXEXQLUEVA, EXTOUOEVETOL UL TOALTIXT], TOU AVTITPOCWREVETAL and €va Bordl
veupwvixd dixtuvo (NN), ywelc va Booiletor 010 HOVTELO TOU GUOTAUNTOS UE ATMMDTERO
OXOTO VO TORAYEL XUTIAANAES cLVEYElC EL0GBOUC TTOU TAOMYOUV TO OYNUA TEOS CNUELX

AVaPORAS EVE, TAVTOYEOVA, avTICTAVWUILOLY TIG THAAVTWOELS TOU GYOWLOU.

O alyypovol akyderduol Badide Evioyutic Mdadnong, mou dev Boaocilovtu oto
HOVTEAO TOU CUOTAUATOC, DEV ANMAUTOUY TNV AVAYVOPLOT] TNG BUVOULXC TOU CUGTAUATOS
xou €youv anodetyvel anoTeAeoUATIXG EpYUAElX YOl TNV EXUGUTNOT TOAMTIXMY XAVOY VO
v TeTwTI{o0V SUOKONES EQPUPUOYES Xou VoL ENEYYOLY TipdxTopeS (agents) ue TohOThoxn
duvopxt], 6w ta UAVs [34], [42]. Qotdoo, n Wéa tne afonoinone deep RL yio v

EVAEQLOL UETAUPOEE AVORTNUEVKY QPORTIWY elval TEWTOTUTY.

YTroBadpo Evioyutixrc Mdadnong

Yougova pe Ty xhaoixr Oswplo tng Evioyutindic Mainong, to nepi3dAiov evog mpdnto-
ca opiletar w¢ évo Markov Decision Process (MDP). e xdlde ypovixd BAua t, éva

MDP neprypdpetan and tnv nhewdda (¢, ar, p(Se+1]St, at), 1), 6mou s¢ elvan 1 tpéyovoo
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XATHO TAOY) TOU TEAXTOpa , ar elvon 1) emheyuévn evépyela (action), p(set1/st, ar) ebvon 7
mdavotnTa ¥ 1 cuvdeTnon YetdBoong, avdhoyo ue to edv Aopfdveton LTOYT GTOYUC TI-
X ) VIETEQUVLO TIXY) SUVOLXY) TOU CUCTAUOTOS, O TNV TEEYOLC XATACTUCT] S¢ CTNV
ETMOUEVY Spy1 OTaY eQopUOlEToL 1) EVERYELX ar X T4 = T¢(S¢t, Se1, Ar) Ebvon 1) avTopolBh

(reward) mou nocotxomolel TNV ANGI00T TOU TEEXTOEAL.

Trodétoviog 6T 0 TEdXTOPUS AELTOVEYEL OF EMELTOOLY, O GTOYOS TOU TEOBAAUATOS
RL etvon va Beel pio BEATIOTN TOAITIXY TTOU PEYIGTOTOLEL TNV dpOlo TIXT| avTopoL3n 1 o-
n6d00 (return) oto enewddo. o cuyxexpéva, éva eneloddlo teppatiletor HeTd and
T odAnhemudpdoelc Tou Tpdxtopa Ye To TepBdhhov, T = (So, g, $1,a1, ..., ST), § OTAV
wavortonel Eva xputrplo teppatiopol. H anddoor unohoyileton we to ddpolopa twy o-
vTapoBdv mou hauBdvova xatd tn dudpxela evoc encioodlou, R(T) = St v tre(se, 141, ar),
6mou v € (0,1) elvon évag TopdyoVTaG TOU EUVOEL TIC TEEYOUOES AVTUUOLBES EVOVTL TWV
pueMovtxeyv. Xt Bahd Evioyuvtixy Mddnor, o otoéyog eivon va Bpedel uloa moAiti-
X UG TN Lop®n EVOC VELEWVIXOU BXTVOOU Ty, TUEUUETEOTOINUEVTY amd xdmota Bden
0, 1 omolo BeBOPEVNE TN TEEYOUCUS XUTACTACNG S TOU TEAXTOPO TURAYEL EVEQYELES
ar = mp(s¢), OTNY VIETEPUVIO TN TERITTWOT), TOU UEYIGTOTOLOUY TNV UVOUEVOUEVY O-

n6doon E [R(7)].

Topgpovo ye v undpyovoa BiBhoypagia [6], ou akydprduor RL unopolv vo ta-
Ewoundolv oe teeic xlplegc xotnyopies: Beltiotonoinon mohuxic (policy optimiza-
tion), exuddnon value function xau actor-critic pyedodoroylec. Xuvontxd, ot uévo-
ool policy optimization BeAtichvouv dueca TNV TUPUUETEOTOMNUEVY] TONTIXY| Ty Q-
uolovtog gradient ascent otnv avopevéuevn anédoon. Avtideta, ol uédodol value
function BaociCovtar otnv npocéyyion tng BEltiotng ouvdptnong @, mou opileton we
Q*(s,a) = max Q(s,a) = max TIEW[R(T)‘SQ = s,a9 = al, pe éva Badl vevpwvixd dixtuo

Q4(s,a) xou, otn cuvéyela, emhéyouy evépyeleg wg e€hc: a(s) = argmax Qu(s, a).
a

O yédodot actor-critic ocuvbudlouv o TAcovextpata TV Yedodwy policy opti-
mization xou value function learning To 6ixtuo actor elvon 1 ToAiTix my €v&d To critic
avunpoownelel ) ouvdptnon @, Qe(s,a). Ou uédodol actor-critic napdyouv cuveye-
{c evépyeieg, o avtideon ye dhheg uedodoug Tou ToEdYoLY BlaXELTES, Xou dlaxpivovTo
emiong Yol TNV AMOTEAECUATIXOTNTA TOUS WS TEOG TOV ANATOVUEVO optdud dedouévmy.
Katd ouvéneia, emiéyeton o ahydprdpoc Twin Delayed Deep Deterministic Policy Gra-
dient (TD3), wa pédodoc actor-critic mou npoteiveton amd o [19], yio Tnv exnoidevon

tou UAV e 1o avaptnuévo goptio.

Aopf AuxtOwy

Axohoudyvtog Ty TumX apyttEXTOVIX TwV PeVddwY actor-critic, e€etdlovtan B0
veupwvxd dixtua, Wioktepa o 8ixTuo TNg TohTAC Ty (s) xau To BixTuo TG cLVdETNoNC
Q, Qy(s,a). To eninedo tng ewwbddou (input layer) yio Ty okt elvan 1 xatdotoon
TOU CUC THUATOG, 1) OTola EWOLXA YiaL TNV TEP(TTWOT) TOU octorotor Ye To avapTNUEVO HECH

oyowol goptio anoteheltan and To o@dAUa oTN VECH P — Pref, TNV TAXOTNTA V, TOV



130

TEOCUVATOAOUO TOU OYAUATOC 77, ONAadY|, Ti¢ Ywvieg roll ¢ xou pitch 6, Tic avtioTolyeg
YOVIOXES ToyOTNTES, TIC CUVIOTWOES X,y Tou Jovadlolou SLoavioUatog Tou oyowlo) n,
Ng XOL My, XU TS AVTIOTOLYES CUVIGTMOES TNE TayUTNTAC Tou M. LnNUELdVETHL OTL ho-
BdveTow LTOYTN wOVO TO CPAUL VEang, avtl TOCO NG TEEYoLoug VECTE TOU OYHUATOG
600 xan NG emMYuVUNTAC, OOTE Vo Yetwlel 1 SidoTaon Tou dlavboyatog xatdotaong. E-
TUTAEOY, O YWPOS XATACTACTC TEOCUVEAVETOL UE TNV TEAELUTOLA EVEQYELXL a1 TIOU ENS3E
0 TEAXTORPAS, TEOXEWEVOU Vo TUBANTOUY XUPMOELS OTIC ATOTOUES EVUAAAYES EVEQYELDY
oty ouvdptnon avtopoBric [60]. To didvuoua evepyewdy (action vector), dniadn 1 é€o-
00¢ TOL BXTVOL TNE TOMTIXAC, AMOTEAELTAL OO TG EVIOAES P, U4, V2, VIO TOV ECWTEPXO
Beoyo eréyyou tou autdpatou mAdTou. Toviletow 6T 1) ywvia yaw dratnpeitor otadepy

xan {on e undév. LuvonTixd, ta dlavOoUaTa XATAc TooNG Xal EVERYELDY opllovTal we:
. . T
s = [p_pref vn n nn at—l] (11)

a=[6a 0 vs] (12)

To dixtuo TNg TOMTIXAC Elvol Eva TATIPWS cLVOEDEUEVO, ToAVETiNEDO Xou Pord) veu-
pwVXO bixTuo, Omwe @alvetan oty Ewdva 3.8a, pe 2 xpupd enineda 64 xouBwv xou
ouvdptnon evepyomoinong tanh. H moapousia tng cuvdptnone tanh nepiopiler xdde
£€000 Tou duthou TNE ToMTxAc oTo elpoc [—1, 1] xou, we ex ToVTOU, OL EVEPYELEC TTOA-
hamhaotdlovton 6T cUVEYEL Pe TIC UEyloTteg TWEC roll, pitch xou xddetne ToydTnTog

avticTolya.

‘Ocov agopd. TN dour) Tou BixTloL TNg cuvdetnone (), To eninedo Tng €wwédoL
amoteheiton and Ty xdtaotoon s xa Tic evépyeee a (Ewdva 3.8b). Ta Siavioporta
XATACTAONS XL EVERYELWV TepvoLY amd 2 Eeywpelotd eninedo Twv 16 xou 32 xoufwv
avtioToya, mev eveldolv e €vay X0WvO TAVUGTY, 0 OTolog OTr GUVEYELX ELCAYETOL OF
2 xpu@d eminedo Twv 256 xOuBwv to xadéva. H ouvdptnom evepyomnoinone Rectified
Linear Unit (ReLU) ypnowonoieiton oe 6ha tor eninedo. H €€oBoc tou Sixtou tng

cuvdpTnone ( elvon €Vog TEAYUATIXOS apLIUOC TOU AVTLTPOCWTEVEL TNV TWH Q).

Yuvédpetnon AviopolBng

H avtapo3) etvan pio suvdptnor Lotxig onpactog yio T obyxAlon tng daduxaciog ex-
wddnone, n onola xadoplleton and Tov yeRoTn xou Vo TEENEL VoL IXaVOTIOLEl TIC AMOUTHOELG
e epapuoync. o to oxond autd, Aopfdvovtag uTddn TNV TEOC UEAETH EQRUOYT, ON-
Aod1) TN UETAPOREE TOU POETIOU YWElg TAAAVTWOT TOU TY0WVOL TEOg VETELS AVAPORAS, 1)
avtopolf3n unoloyiletan oe xdde odnienidpoon Tou medxTopd UE TO TEPYBEANOV WS O

O TUOULIOUEVOC YRAUUUIXOC GUVOVICHOS TWV aXOAOUIWY OpwV:
ry = WTpt (13)

T . . T
re =W [Ipe = Breglls 1vells lmell ol el el el llae = o ] (14)
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6mou w elvar éva didvuopa Bopdv mou avtiotolylovtal 6Toug dpoug Tou BlaVOoUATOS
pi o€ xdde dedopévo ypovixd Brua t. Xenowwomololvton apvntixd Bden apol o otdyog
€YxelTon OTN PEYLOTOTOMOY NS amédoone. Me Bdon tnv mpoavagepdeion avtopol3y),
eviappelveTon 1) EAXYLOTOTOMNOT) TOL GPANLATOS 6T V€om o 1) HElWOT TN TUAXVTWTIXAG
xivnong Tou oyowiol. Emmiéov, ano@edyeton 1) oTaouwdxn xivnor tou oyfuatog, Adyw
AOAOTWY KAl ATOTOUMY ALYV OTU CHUATA EAEY YOV, EVE UELOVETAL XA 1) XATAVIAWOT)

EVEQYELOG.

Aadixoocio Expddnong

O mpdxtopac exnaudeleTon yenoyonowwvtas tov arydprduo TD3, o onolog emotporte-
el TN Bour| Twv ahyopituwy actor-critic xou mopdyel cuveyelc evépyetec. O alydpriuog
TD3 Yewpeiton enéxtaom tou akyopiduou Deep Deterministic Policy Gradient (DDPG)
[52] xou 6ToyevEL 0T Pelwon g unepexTiunong TN cuvdptnone Q. e olyxpion Ye Tov
alyopriuo DDPG, o TD3 ypnowonotel éva {elbyog veupwwixdy dixtiwy, Qg xon Q4,,
TEOXEWEVOL VA TPOCEYYIOEL TN CLVAETNOT () XL ETMAEYETAL AUTO PE TNV UIXEOTERY TN
xatd TNV evnpépwon Twv dxtlwy critic. Emniéov, otov TD3, n noAtixr xou ta target
dixTua EVnuEp®YOVTOL AYOTERO GLY VA antd Ta dixTua TN cuvdptnong Q. Ipoteivetan plo
EVNUEPWOT) TNE TOAMTIXTG Xo TwV target SixTL®Y Yio xdde VO EVNUERWOELS TNG CUVAETY-
onc Q. Télog, npootideton VopuPBog oty evépyela mou mapdyetan and To target dixtuo
actor xau, w¢ ex t0o0TOL, N exTiunon TS ouvdptnone ) eCOPAAUVETOL Lol TUPOUOLES
evépyeiec. Extevelc Aentopépelec oyetnd ye tov ahyoprduo TD3 napovcidloviar oto
[19].

Ev cuvtopla, ta dixtua critic evnuepdvovtan pe Bdon to mean-squared Bellman
error, eve 1 moATixY| e@apuolovtac gradient ascent w¢ mpog ta Bden 0 ye otodyo TN
HEYLOTOTOMOY NS EXTILWOUEVNS cuvdetnone (. Emniéov, cuunepilouBdvovton target
olxTua, pe (Bl dour pe ta xOpLa, £ToL WoTe va dlaopakileton 1) evotddeio Tng Sadixaciog
exnofdevong. Ta Bdpn twv target Suxtinmv cuyypoviCovtan pe o Bden Twv x0plwy e

apYo6 puiUo.

To UAV pe 1o avaptnuévo péow oyowiob @optio, mou anewoviletan otny Ewdva
2.1, exnoudeTnxe oo mepi3dhhov mpocouoiwone Gazebo tng Ewdvag 2.2 obugpova pe
Tic napapétpous tou Ilivaxa 3.3. To epyokeio Behnotonoinone ADAM [40] yenowo-
Toinxe Yior TV EVNUERKOT TWV Bap®y TNG TOATIXAS XU TWV BIXTLKY TNE CUVAETNONG
Q pe puiuod expdinone ico pe 0.001. Kotd tn Sudpxeia xde encicodiov, o mpdxTopag
Eexwvd amd puo Tuyaio Vo, evidg eVOC TEQLOPIOUEVOU TELOOLAGC TATOU Y WEOU, EVEK 1) Yéon
avapopds etvar otadepr|. To encioddio teppatiletan 6tav emiteuyvel o uéyiotog apriude
Xeovixwyv Brnudtev (512) % btav to ogdhua Yéonc unepPel éva ouyxexpwévo opto. H
oladuxacio exudinone tepuatioTnxe OTay TO AUEOLOUN OAWY TWV AVTALOBOV XaTd TN
OldipxeLa EVOC EMELCOBI0U, X0 O AVTIOTOLYOC XWVOUUEVOS UEGOS OPOC, CUVEXALVAY, OTIWS

anewoviletoan oty Ewéva 3.9. Oa npénet vo tovioTel Oti, dedouévou 6Tl 1) TOALTLXY
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eXTUDEVETOL UE YE\OM ATMOXAELG TS BEBOUEVLY TpocoUolwoNg, 1) UToEEn eVOS EENUEETL-
%4 PEAMO TIX0U TERPYBAAAOVTOC TPOCOUOIWOTNS Elval xploylog TaEdyoVTag Yior TNV ETLTUYY

UETOUPORA OF UETAYEVEGTERO GTABLO TNG EXTUOEUPEVNC TOAMTIXAC OTO TEUYUATINO OY UL

Evpwotog 'EAeyyog pe Badid Evioyvtixy Mdadnon

Ou mohitiée, mou €youv exmandeutel e PBathd Evioyutr Mddnor, €youvv amodeiyie-
[ avég vou EAEYYOUV IXOVOTIONTXG TN BUVOULIXY] BLAPOEEY POUTIOTIXWY TAATPOPUMDY.
Qo1600, onuavixd Yua npoc culhtnon anotelel To ydouo YeTold Tou TEPBAAAO-
VTOC TPOCOUOIMONS XU TWV TEAYHATIXWY cuvinxey. Io cuyxexpiwéva, oL TOATIXEG
CLVAVWC EXTAUOEVOVTOL ATOXAELCTIXA GE TEOCOUOIWTES, OTOU ATEQLOPLOTOS OYXOG OE-
dopévev etvan dladéoidog, xadag 1 exnaidevon ot mpaydoTixd tepBdihovta unopel va
elvoan 1600 ypovofopa 6o xou ETXVOUVY), EWBWXE OTA dpEYLXd OTAdl TG dladixaciog
expdinong. Q¢ anotéheoya, miavég avavTtiotolyleg HETHE) TOU TEOGOUOUWTY oL TOU
TpaypaTiXol TeplBEANOVTOC Unopel Vol EMNEEACOUY TNV AmOBOCT| TNG EXTOUOEVUEVNC TO-
Nt 6tav yetagepdel oto mporyuatind pounot. Emmiéov, éva dhho xplowo {htnuo
elvon 1 evpwoTiot TNG TOMTIXNAC WC TEOG TG OUVAUIXES TUPAUETEOUS TOU GUC THUATOC.
AopBdvovtag unédm Ty nepintwon e evadplag HETAPORAS PopTiny, dev elval xadohou
TEAX TG Vo EXTaUdEDETAL ol TOALTIXT Yol x&de T Tng walog Tou optiou N Tou urxoug
Tou oyowlol. O mpoavagepleloes TopdueTpol EVOEYETUL Vo OANGLOUY OXOUT XOU XAT
N Budpxeta e Bag mthong. o mapdderypa, To UAV umopel va ameheudepnoel uépog
Tou QopTiou 1 var CUAAEEEL évar avTixelpevo xatd Ty (Blo anoctolr). Ouolwg, To urxog
Tou oyowio) unopel var UeTaBIAAETOL ST Lol TROYOAlol EIVOL TEOCURTNUEVT GTO OY MU

[99], m.x., Yot TAORYNON OE OTEVOUS YDEOUC.

INo o oxond autod, tporomololue T dladuxacio exudinong tne Evotnrag 3.4 xau
EVOWHATWVOLPE TN wéYodo domain randomization [50], [67] tpoxewévou va ye@upwIel
T0 Ydoua YETAC) TOU TEOCOUOLWTY XU TOU TEUYUATIXOU TEPYBAAAOVTOC Xal VO oLV TU-
x Vel plo moAiTixn| mou elvor ebpwa TN WS TEOG TIC BLAPOPES TUPUUETEOUS TOU UOVTEAOU,
Ty wdla poptiou xou uhxog oyowiol. H Baoixr déa tiow and auth v teyvixr éyxel-
TOL OTNY TUYAOTOMON TWV QUOIXADY WOTATLY TOL TEPBIAAOVTOC TEOCOUOIWST, TOU
ovopdleton source domain, xotd Tn Sidpxelo TN EXTABEUONC UE ATDTEPO OTOYO TNV
EXPAONOT PLOC TOMTIXNAC TIOU AMOBIBEL IXAVOTOINTIXA OE OAES TIC TOPAUAAAYES TOU TEO-
copolwT. £2¢ ex TOUTOU, N EXTAUOEVUEVY] TOATIXT| UTOREl Vo eTapepVel EMTUY KOS GTO
mporypatixd teptBdhhov (target domain) xaddde autd avopéveton va efvar évor delypa Tou

ueTo3AnTol source domain.

Mé&9Yo8oc Domain Randomization

‘Onwe mpoavapépinxe, Teoxetuévou va Yegupwiel To ydouo uetall Tou teptBdAlovTog
npocopoiwong Gazebo tng Evotnrac 2.2 xan Twv Teoy otV cuvInxey xon Vo EVIoyu-
Vel 1 evpwotio TN TohTAG, EMBEAAETOL 1) TUYUOTOINGT) TOMAGY TOPOUETEWY XATH TT|

oudpxelor Tng exnaldevone. Ilpog auth v xatediuvor, TuyonomowlvTal oL axdhovdeg
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ntuyéc Tou source domain: (o) udlo my, tou goptiou, (B) whxog oyowol I, (y) H6pu-
Boc oty napathenon tou povadiaou dlaviopatog 1, (8) VépuBoc otny Topathienon e
ToyOTnTag 0, xou (€) duvdpec Fg mou aoxolvton oto UAV. O npocidetinde Y6pufog
TOEATAENONG OTIC CUVIC TOOES TOU LOVADLAOU SLVOCHATOS TOU GYOWLO0 I XL GTNY To-
UTnTa 11 govteronolel v affefoudtnTar TNV EXTUNON NS XATACTACNS TOU GYOWLOD
e xphon aodnthpwy, eve ol duvdueic Fg € R3 avtinpocwnelouy Tic dlatapoyéc mou
emdpoly ato dynua 6tav emiyelpel ot e€wtepnolg ydpeouc. Ta ebpn twv TapouéTewy

ouvoilovtan otov Ilivoxa 3.4.

Awadixoocio Expddnong

[Tpoxewévou va ewoaydel n uévodoc domain randomization ot dadixacio extaldevong,
anattoLVToL BldPopes TEOTOTOMTELS 6TO TEPYBAAAOY TEOGOUOIWONS OE GUYXELON UE TNV
Evotnra 3.4, Yuyxexpudéva, plo tplopatixt dedewon evowpataoveTtal 6to quadrotor tng
Ewdvag 2.1 ¢hoTe vo TpOTOTOLEITon TO UX0S TOU GYOWIOU XTd T1) BLIEXELX TNG TEOCO-
polwong, eve oyedidleton éva plugin yio vo petaBdAieton duvaxd 1 udlo Tou goptiou.
Emmiéov, av xan o SLlayOoUotar XoTdo TUOTS Xol EVERYELDY XOS Kol 1) CUVAETNOT] oV To-
noiBric optlovton mapdpoia pe tic E€lowoeic 3.11, 3.12 xou 14, ta fordid vevpwvixd dixtua,
Onhadr) ) mohutixr m(s) xou To dixtuo NG cuvdpong Q Q4 (s, a), avodewpoivtat. Io
CUYXEXQUEVA, 1) €l0000¢ TNG TOMTIXNC TEPLEYEL TO BLAVUOUI XATAC TAONG, CUUTEQLAO-
Bavouévou xau tou Yoplfou otny xatdotooy Tou oyowol. Avtileta, n mpaypaTixy
XATACTAOT TOU CUCTAUATOS, Ywels Tov Tpdcdeto VopuPBo, xou Ol EVEPYELEG GUVEVEVO-
vTaL xou amotehoLy TNy elcodo otn cuvdptnon Q. Emmiéoyv, dedouévou 6Tl 1 cuvdpeTtnon,
Q ypnowonoleltol AMOXAEICTIXE OTNY TEOCOUOIWGT), Ol YVWOTEC TUYALOTONUEVES o
edueteot Tou Iivaxa 3.4 napéyovta eniong we elcodol mpoxeévou va utootnelyvel 7

draduaoio Tne exmaidevone, 6nwe npoteiveton oto [67].

‘Ocov agopd ™ otpatnyr expdinong, yenoiwomooivion oTadepéc ToPdUETEOL
oTa apyxd otdd e exnaldeuong. Iho ouyxexpwéva, o YopuBog mapathenong xou
oL e€wTepINEC BUVAUELS BEV eumERIEYOVTAL APYIXE OTNY TEOCOUOIWSoT eV 1) udla Tou
(popTioL xou To UAXOS Tou ayowlol Tapauévouy (oo ue 0.5kg xan 1.0m avtictouya. Ko-
YOS TEoYWeEd 1) EXTAUBEVCT), Ol TUPGUETEOL TUYOLOTIOLOUVTAL UE TNV TEEODB0 TOU YpOVOU
X0l OELYHATOANTTOOVTOL GUUPUWVOL UE (L0 OUOLOUORYT XATAVOUY| UE Optat TToL TANGLLouy
otodtaxd o Ve tou Iivaxa 3.4. Me v otodlax?) EVOWUITWon NG Tuyootoinong
ot dradixacia exnaldevong, anogedyetan 1 LYETNON CUVTNENTIXGY ToATXOY [50]. Ou
TUYOLOTIOINUEVES TIORAUETEOL BELYUATOANTTOUVTOL OTNY apy 1) xdUe ENElc0diou xou dlatn-
polvton otadepég oe GAO TO EMELGOOL0, EXTOC amd Tov VOpUPBO ToEATAENONG GTNY Xo-
TdoTOo TOL GYowlol Tou TpootideTton ot xdle ypovixd Brua. Tehuxd, n e€éhin Tou
adpoloyatog Twv avtouolBay, ue Bdon xou ndA tov alyoprdpo TD3, xoatadewcvieTon

oty xaumOin tne Ewdvag 3.10.
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Mn I'eopuixog IlpofBAentindg ‘Eleyyocg

Ye authv TV evéTnTa, Tpaouctdlovye uia Teocéyyion nou Baciletal 0To Yovtélo Tou
cuocTHUATOC, ot avtideon e Tic Tponyolueves oTpatnYxéc Twv Evotitwy 3.4 xou 3.5,
yia Tov éAeyyo tou UAV e 1o avaptnuévo péow ayowlol goptio. IIo ocuyxexpiuéva,
oLppwva pe Tt Yewpio BEATIOTOU EAEYYOL, AVATTUCOOUUE €VoL GYHUL U1 YRUUUXOUV
IpoPrentxol Exéyyouv (NMPC), Siatunwuévo yio T Suvaixy Tou oo TAUATOS, Tpo-
XEWEVOUL VoL ETUTEUYVEL 1) UETAPORS TOU AVAPTNUEVOU PopTiou Ywels TahdvTwor. Ievixd,
o NMPC éyer anodewyel éva anoteheopotind gpyohreio v tov éheyyo twv UAVs oto
TAa{o10 SLapdpwy eQopUoY®Y, T.Y., [14], [61] xou [62].

Qotéoo, edwd étav 1o UAV pe 1o avaptnuévo yéow oyowiol qoptio emiyeipel
oe umaldploug Yweoug, eEnTepxéc dlatapay€g, TOU TEOEEYOVTAL XUplw amd TIC EMi-
xpatoVoeg TMEPBAANOVTIXEG ouVITixeg, emBEOUY oTny TAaT@opoua. Ot mpoavagepieioeg
oatapayés, pall ue Tig UTOVECELS XATA T LOVTIEAOTOIMOY) TOU GUC TAUATOS, 00N YolV OE
avovTiotolyleg HETHED TNG OVOUUCTIXNAG Xl TNG TEOYHATIXNAG BUVOULXAS TOU GUGTHUO-
To¢, ol omoleg emneedlouv TNV anddoon Twv oynudtwy NMPC. T to oxond autd,
ofomolovye Gaussian Processes (GPs) yio va uddouye oe mporypatixd ypbvo xau pe un
TUPAUUETEIXO TEOTIO TIC ATOXAIGELS TIOU LTEEYOUV UETOEY TOU TEAYUATLXOU Xl TOU OVO-
HooTixol povtéhou tou cuothuatog [32], [38]. Ilpoxewévou va dlacpatiotel enidoon
OE TRAYHATIXO YPeOVO Tapd TG LTohoYloTixég anouthoels Twv GPs, xou enlong npooop-
OO TIXOTNTA OTLC SLVINXES TIOU ETXEATOUY 010 e€wTepnd TepBdAloY, aflomoleital Wia
otaduiopévn (weighted) éxdoomn tne sparse GP nohwvdpounone. Tehxd, 1 extigduevn
dLVOLXT) EVOWPATOVETAL o€ €va oyfua learning-based NMPC étol wote va Behtindel

1N anddoon Tou eAEYYOL.

M Teappixog IpoPBrentindg ‘Eleyyog pe Bdon to Ovopactixd
MovTéAro

IMpoxewévou va petagepVel To Qoptio Ue acpIieior oL YUE EASYICTES TUAAXAVTWOELS, OLa-
Tun@veton apyxd évag NMPC v ) un yeopuix Suvoxy Tou cUCTHUATOS TOU TE-
erypdgpetan and v E&iowon 2.11. Q¢ ex toltou, n egapuoyr tou oyfuatogc NMPC
omoutel, ExTOC omd TV xotdoToon Tou oyfuatos, Ty tdon ||T|| tou oyowol, wio e-
xTlunon e xaTdoTACTC TOU GYOWLOU, BNAAOY TIC YWVIES 171, xou TN Ywvloxr TaydTnToL
wr,, xou pat VEon avapopdc Pref. ‘Omwe avagépdnxe oty Evétnta 2.3, 10 oyfua NMPC

umohoyilel eviolég yia Tov ecwTtepnd Bpodyo EAEYYOU TOU AUTOUATOU TWAGTOU.

Aedopévou 6tL 0 atdyog tou oynuatog NMPC elvon var teproploet Tic Tahavtddoelg
TOU GYOWL00 X0 VO ENXYIOTOTONOEL TNV andoTaoT Yetadd TNg meaypatxnc Yéong tou

UAV xou tng 9€ong avopopdc eV TauTOY R0V IXOVOTIOL0UVTOL TEpLopiolol oTtny elcobo,
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dratumdveTtan to axdrovdo IHpdBinua Bértiotou Exéyyou (OCP):

to+T
i [ (Ilt) — e ()17 + [0OIR) A+ (o +T) — xoes o + Tl

v
0
subject to: x(tg) = xg (15)
x = f(x,v) (E€lowon 2.11)

velU

T T
énoux:[pT v 6 ¢ nt wg] €R13,v:[¢d 0a Ya Uzd] € R* evau

T0L SLOVOOLOITOL XOTAG TUGTE O ELGOBOV, Xpef = [pz;f 01x3 0 0 ey O1x2 leg]T €
R eivon to emduuntd didvuopa xatdotaone, T eivon o ypovixde opilovtoc Tou Tpo-
Briuatog Behtiotonoinong, Q elvon o mivoxag oTddong Yo T0 GPIAYL XUTAC TOOTE,
R elvau o mivaxag otdiduong v tny elcodo ehéyyou, P eivar o mivoxag otddwong yu
TO TEPUATIXO oA xatdoTaong xou U elvon to oUvolo twv Teploploumy otny lcodo
mou oyetilovton Pe TaL OpLal TV Ywviwy roll, pitch xou tng xataxdpupng taydTntag. O
mivaxeg otdduone Q, R, P elvon Yetixd opioyévol xou dlary@vior xo, yior Topdderyyo, o

mivaxog Q Bopelton we e€ng:

Q=diag ([Qy Qv Q; Qu Qu.)) (16)

onov Qp, Qu, Qy, Qy;, Quy, slvon Brarydvia unTe®a oTédong Tou eTBAAAOLY XUPKOOELS
oo opdhpata TN Yéong, TS T dTNTOC, TOU TEOCAUVATOMGUOU TOU OYHUATOS XOL TGV
YOOV Xl TNES YWVIXAS Tay0TNTog Tou ool avtioTolya o€ oyEoT Ye o emiuunto

dtdvuopa xotdotaong. O nivaxag P oplleton pe nopduoio tpémo.

To mpoavagepdéy OCP emhbeton oe xdie emavdindn vroroyilovtoag war BEATL-
ot axohoudia evioAdy ehéyyou. Mdvo 1 mpdtn elcodog Tne mopayduevng axoloudiog
epapuoleton oto UAV xouw ohdxhnen 1 Sodixacio Bedtiotonoinone enavahaudveto.
[Tpoxewévou va oyediaotel o meoBinua MPC xou va emiteuyel enidoon o mporypo-
w6 ypodvo, yenowonoteitor o ACADO Toolkit [33] oe cuvduaoud pe tov emAdTn
qpOASES [17]. Me Bdon mepdpata Tou EYVaY GTOV EVOOUATOUEVO UTOAOYLOTH TOU
UAV, cuyxexpiéva oto Jetson AGX Xavier, dwamioteddnxe 61t to ACADO Toolkit pe
tov emAUTn qpOASES nopéyouy Aoon oto OCP petd and 3.4 ms xotd yéco 60 xa,

¢ X TOOTOU, EMTUYYAVETAUL Uiot EEOUPETIXG LXAVOTIOLNTIXT| CUYVOTNTA EAEY )Y OU.

Enaugnuévn Auvopix

2NV TopATEVG EVOTNTA, YENOLLOTOLAUXE 1) OVOUIC TiXT| SUVAULXY| TOU GUC TAUITOC X4 =
from (Xi, Vi), 610U f0m elvon T0 100B0VAUO povTéLO Blaxpltol ypdvou tne Efiowone
2.11 xou Xp41 1 exTUNON TNS XATACTAONG TNV ETOUEVT YEOVXT OTWYWHUN trt1. AV xou
T0 Tpoovapep¥Ey poviého elvon emapxEg Yol TOV EAEYYO TOU GUCTAUITOC, 1) AmOdOoT
unopet var BeAtiwdel tepartépw xoddg TO OVOUAC TG HOVTEND BEV GUANUPBAVEL ONOXAT-

PO To €VPOC NS TEAYUATIXNC BuvaUxnc Tou cucThuatos. Koatd ouvénela, tpoxinTtouv
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anoxhioelg HETAE) TN UETEOVUEVNS X0 TNG EXTIUWUEVNS EMOUEVNC XATAC TAONC TOU CU-

O TAUATOS %o TUEAUTNEELTAL VOl CPIAUL € = X4 — K41 YL TOUG axdAouvdoug Adyoug:

o Ou duvdpelc omoVEAXOUCOS, TOU TEOXAAOVVTOL UG TOV AEPA XA AGXOVVTOL TOCO

070 OYNUA 6CO XAl OTO POETIO, TAPAUEAOVVTOL OTO OVOUAOCTIXO UOVTENO.

o H euxopdlo Tou oyowiol propel vo nogofidoet Ty unddeon 6T elvar TEVTOUEVO

(E€iowon 2.2) xou, w¢ ex to0tou, Ty enaxdéhovdn avdhvon tne Evétntog 2.5.1.

e To dvw dxpo tou oyowol) VYewpelitan 6Tl cuunintel pe to xévipo palac tTou o-
yhuotoc. 201600, auTo elvor TEAXTIXG AVEPIXTO AOYW TWV TEQLOPIOUWY TOU TEO-

x0mTouy and TNV xatooxevy) Tou UAV.

o H evowpdtworn evéc umohoylot] xou awodntripwy, m.y. woc xduepas, oto UAV

unopel vou 0dNYNoEL O PETATOTIOT TOU XEVTEOU Udlac TOU OYNUATOC.

o 'AN\eg amoxMoelg pmopel vo umdpyouy, T.y. o@didata ot Boduovéunon tng

BuVaOXLPEANE TTOL UETEE TNV TAGT TOU GYOWLOV.

H evowudtwon twv mpoavageptEviwy anoxhoewy 6T0 OVOUAcTIXd HOVIEAO TOU Gu-
OTARATOC O)L UOVO QUEAVEL TNV TOAUTAOXOTNTA TOU ahAd cuveTdyetan eniong e€avTAn-
Tég xan TUoVOS SamavNEES OLadXAClES Yiot TNV AVAY VORI TOU CUCTAUNTOS, T.Y.
AEPOOLVIUIXES BOXES oE ofpayyes. EmimAéov, oplouéveg TNYEC CPUAUATOY UTOXEVTOL
oTIC oLUVITXES IOV ETXEATOVY 0TO e€WTEPO TepIBdANoY 6Tou Aettovpyel To UAV, m.y.

Tar OTNTOL TOU OVEUOU X, WS €X TOUTOL, OEV UmopoLy vo Teofiepdoiyv.

I to oxond autd, cToyeLouue vo exyetorheutolye GPs yio tnv un nopouetpl-
x| extipnomn tne wn poviehomomnuévne duvauxhc. Eumveuopévor and to [32], [38], 7

TEAYHATIXY) BuVOIXY TOL UG THUATOC Uropel vo avamapao Tadel and Ty e&lowon:

Xp1 = f (xg, vp)

(17)
= from (Xk, vi) + Ba (d (xp, vi) + Wy,)

6mou wy, ~ N (0,X%) ebvan yxoaouotavéc B6puPoc pe dlarydvio mivaxa dtoxdpovong
XY, d unodNAGOVEL TO dYVWOTO duVOLXO PEEOC TOU TEETEL VAL TEOCEYYLOTEL and Tig
GPs xau o nivaxoc By opllel tov unoyweo g Suvouixic Tou GUCTAUNTOS TOU ETN-
eedletar and TiC anoxAicelg oto povtého. Trnotldetow 6T GPIAYATA GTO UOVTENO U-
ThEYOLY AMOXAELGTIXA 0T SeUTEPNE TEENG BUVOULXY TOU GUCTAUANTOS XoL, ETOUEVHC,
B, = [03X3; Isy3; 03x3;09x0; ngg}. Katd cuvénela, o andtepoc otdyog elvar vo e-
xtundodv to ogpdhpata dy, € R3 xor d,, € R? nou ennpedlouv 0 uetopopind duveuxh

Tou UAV xau 1 yovion xivior tou oyowio) avtioTolya.

ITaAwdpounon pe Gaussian Processes

Yy axdrouldr evétnta, napovotdletar ev cuvtoula 1 tokwvdpounon ue GPs cOugpova
we ) Aemtopept| meptypop) oto [72]. Tevixd, oo GPs pnopolv va o&ionoimndodv yio
NV TPOCEYYION WaS dyvewotne ouvdptnone ¢(z) : R™ — R, pe Bdon wa culhoyt
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M YopuPwddv magatnerioeny y; e oAnhvhic cuvdptnong g(z) Tou UETPWVTOL OTLS
€10600U¢ Zj, OTOL:
Y; = g(Zj) +wj, wj NN(OaUQ) (18)

ITo cuyxexpuéva, dnuiovpyeital éva oeT dedouévey D:

D= {Z = [Zl,...,ZM]T € RMxnza
. (19)
y = [yl,...,yM} ERM}

10 onolo pnopel vo aZlomonel Tpoxelévou va tpofheplel 1 ex Twv UoTEpWV (posterior)
xatovoyur| oc omoladnnote elcodo z. Me Bdor to et dedouévey D, 1) eX TWV UCTEQKY

xatovour| xoopiletar and Tic oxdhouieg Léon T xot GUVSLXOUOVOT:
o\ —1
,u(z) :kzz<Kzz—‘rIM><MU ) y (20)

Y (z) =k(z,2z) — kzZ(KZZ + IM><M0'2)71kZz (21)

6mou k (z;,25) = op? exp (—0.5(z; — z;)  L(z; — z;)) € R elvon 1) squared exponential
kernel ouvdptnon e L € R™*"= you SroxGpavon o2, [Kzz); j = k(2i,2;) ebvu 0 i, j

RMXM

ototyelo tou mivaxa Kzz € e z;,2; € Z, [kzZ]j =k (z,2;) elvon T0 j oToyelo

Tou dlaviopatog yeoputc kyz € RM ye z; € Z, xou ky, = kI,

Qot600, 10 UTOROYLOTIXG X6C0TOG NG moAwdpdunone pe GPs, mou xodopiletan
xuplwg and Ty avtioTeo@n Tou Tivaxa K77, e€aptdton oe yeydio Badud and to yéyedog
M Tou oeT BedoPEVLY xou XorhoTd TN YEHOT TNS U1| TEAXTLIXY| OE EQPUPUOYES TTEAYUATIXOV
YeOVoUL Omou anantelTol oNUAVTIXOS OYxoc dedopévey. Emmiéoy, Yo npénet va onuelmdel
6t o. GPs umopolv va npoceyyicouv LoVOBLIGTATES GUVIPTACELS XOL, WS EX TOUTOU,
amowtolvTon 5 aveldptntec GPs ylo v extiunon tov ogohpdteov oto poviého d, € R3
xou d, € R?. Koatd ouvénela, dedopévou 6Tl 10 GeT DEBOUEVOV TRETEL VO EVIUEPCVETOL
CUVEY(C — ETOUEVWS, OL EX TWV TEOTEPWY LToAoYIopoL efvar addvaTol — xau 1) enidoon oe
TeAYUoTIXd Yeovo elvon mpolmodeon yio tov emtuyn EAeYy0 Tou oyfuatog, Vo TEENEL
va yenowonondel Wa TEOCEYYIOTIXY TEYVIXT Y TNV EXUAUNOT TwV AmoxAlcEwY GTO

povtéro.

IToaAwdpopmor we Sparse Gaussian Processes

[Tpoxewévou va uewdolv ol utohoyloTixég anoutroelc Tne naAwdpdunong e GPs xou
va emitevy Vel enidoon oe mpayUatind ypovo, aflonoleitan 1 pédodog sparse GP regres-
sion. H yédodog auth| €yxeitar oTn yeHom EVOS UTOGUVOAOU TOU ap)ixol GET DEBOUEVLY,
Tou omoteAelton and m onuela (inducing points) ye m < M, tpoxewévou va oaugndel
1 uToAoylo Ty amodoTixéTNTa Twv GPs yio yeydha oeT dedouévey, TapEyovTag Tou-
TOYPOVAL LXAVOTIOLTIXES npoﬁ)\éq)ag. Me Bdon to [87], vnovétovtog éva oet inducing

points Z;,q = [zl, . ,zm} € R™ ™= n ex twv voTépwy xatovour tpooeyyileton Ue
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T axdAoVIEC PEOT TUUY| O GUVOLIXVUAVOT:

p(z) = kZZindKEilndZind'um (22)

E (Z) = k (Z7 Z) - kZZznngzlnlende z + kZZ Ekzzndz (23)

: — -2 -1 — 52 -
omou X = (szdzmd +to KZindZKZZz‘nd) sbm =0 Kz, ,7,.,5Kz,,2Y, [KZindZind]i,j -
€ Rmxm UEZi,Z; € Zind, [KZde]

ind ind

k (zi,z;) ebvau to 1, j otoiyelo tou nivoxa Kz, 2 =

UE 2; € Zing xu z; € Z,

ind

o) ef o ‘ ‘ mxM
k (z;,2z;) elvon t0 4, j otoiyelo tou nivaxa Kz, ,7z € R

Kzz,., = Kgde’ k-2,..]; = k(z,2;) evon to j oToyelo Tou daviopatoc ypouuric
k.z,, €R™ue z; € Zijpg, xw Kz, .. = kZZind'

XeNOWOTOWWVTAS TNV TORATAVEL TEOCEY YO TIXT TEYVIXT UE UTOAOYLO TIXT] TOAUTAO-
w6t O (Mm?), xatotoron eguth| n ypfion sparse GPs ylo cuo Thuarta TpayHoTixol
xeovou xou online exudinor, oc avtideon pe ) duoeRAUTY TUTIXY TUAWVOEOUNOT UE
GPs (EZwomoeic 3.20 xou 3.21) nohvmhoxdtnrac O (MS)

IToaawdpobunomn e Weighted & Sparse Gaussian Processes

QQot600, xatd TN SdpxeEld TV TERUUdTWY, To UAV Aettoupyel oe un otatixd eEmTepl-
x4 mepiBdAhovta e mouxiheg xan petofBAntéc mepBahhoviinée cuvixes, Ty, TaydTNTo
avépou, mou emneedlouy TN SUVOULXY] TOU GUGTAUATOS Xok, WS EX TOUTOU, €Y0UV WG
AmOTEAECUA TN YEOVLXY| OLoXOUAVeT) TwV anoxAloewy 6to wovtého d, xou dy,. Kotd
OLVETELA, XOTA TNV EXUGUNOT TOV CQUAUATWY OTO UOVTEAO, ONMALTEITOL TPOCUPUOC Ti-
x0TNTA 0TS e€WTEPES oLVINXES TpoxEWEVoL Vo anoTuntwidel 1 ypovixy| dlaxduavon
TV cLVOPTHoEWY Tou Tpooeyyilovtar and Tt GPs. T to oxond autd, yenowomnote-
{tou otodpopévn (weighted) nodwvdpdunon ye GPs olugpova pe to [11], ahhd xotdAnho
TROCOPUOCUEVY 0TV Tepintwan Twv sparse GPs, diacpakilovtag €Tl 1600 Tpocapuo-

CTIXOTNTA OO0 X0l UTOAOYIO TLXY| ATOTEAECUATIXOTNTOL.

Lo cuyxexpwéva, aviototyiletou éva Bdpoc w; € RY o x&de pérenon y; pe o
TWTEPO GTOYO TNV EVIOYUOT TWV TUO TEOCPATWY UETENOEWY XATA T1) DLIEXELXL TNG ToALY-
dedunone pe GPs. Eto, ewodyovtan ov nivaxeg W = diag (y/wr, -+ , Jwar) € RM*M
xot Wing = diag (y/wr,- -+ ,/wm) € R™™, ou oyetilovion pe 0Abxhnpo to ceT de-
dopévev xou ta inducing points avtiotoiya. Tpomonowdvtoag xatdhinia ta kernels, 7
EX TWV VO TEPWY XATAVOUT] Yol TNV TERITTwoT TN Tahvdpounone ue weighted & sparse
GPs yopoxtneileton and tig e€lomOELS:

M (Z) = kZZindKEilndZindﬁm (24)

E (Z) = k (Z7 Z) - kZZ1ndIA</EzlndZ,LndEZ'de + EZZ'Lnri/i/EZzndZ (25)

~ ~ ~ ~ -1 ~ ~

. _ -2 S Wy T — g2 =
6mou 3 = (KZdemd to KZdeKZZmd) Y =Wy, im =0 Kz, ,2,,,2Kz, 2V,
N _ T W T ¥ W

K.Zina = Kezi,aWind: K2,,02000 = WindK 2,42, Winag, xo0 Kz, 7 = WingKz, . 7zW.
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Ynuet@dveTon OTL edv Ao Tar Bdier elvan (oo pe 1, 1 y€om Ty xou 1 cUVBLIXLUAYVOT) Elvol

{Bleg pe tic avtiotoiyes Tég twv Eliodoewy 3.22 xou 3.23.

IMpaxtix®y YAoroinon

Ye authy TNV evoTnTa, TapoLCLEleToL AETTOUEP®S 1) LAOTOINGT TN TOAVOPOUNONG UE
weighted & sparse GPs yio v neplntwon tng evaéplag UeTapopds QopTity avapTNUEVLY

H€ow oyowioL.

1) Emxaipornoinon oet dedopévmv: Xe xdde nelpopa, to oet dedopévev D eivon ap-
Y& €lte xevo elte yeudto ye petprioelc and nponyoLueva newpduota. Moiic culieyel
wo véa uétenon xatd tn Aettovpyia tou UAV, 10 et D evnuep®dVETUL OE TROYHATIXG
¥eovo. Qot6c0, 10 péyedog Tou oeT Bedouévwy TEpLopllETAUL TPOXEWEVOL Var Blac(o-
Mo Tel and LTOAOYIOTIXNE TAEURAS 1) BUVATOHTNTA LAOTOMONE TNG TOAVOEOUNONS UE TNV
TdEodo Tou YEdvou. ()¢ ex ToUTOL, 6Tay To OET dedouévwy D @tdoel og éva PEYIoTo
péyedoc M dedopévov, 1 véa pétenon {z',y'} avtixadiotd éva dedouévo and to tpéyov

oet D obuygpwva ye to oaxélovdo xpltriplo:
. / ) 2 2
min (o2’ — 2| + fuf) (26)

omou a, 8 € RT elvon mopdpetpor mpoc pduion. Me tnv egapuoyy| tne npoovoapepie-
{oag otpatnynic, eviappdveTan 1 AVTIXATAC TAOT, TUAAOTERWY UETEYOEWY, TOUROUOLLY
UE TIC ELOEPYOUEVES, OLacpaAlloVTag £TOL OTL TO GET BEDOUEVWYV EVOL ETUXALLOTONUEVO

%ol XUAUTITEL ETOPXOS TOV YDPO TWV ELGOBWV.

2) Emdoyn Bapdv: Kdde pétpnon {z;,y:} oto oet dedopévwy oyetileton ye éva
Bdpog w; mou unohoy(leton GUUPWVAL UE TN YEOVIXY GTIYUN T; xoTd TNV omolo GUAAE Y ONxE
M pETENON:

w; = ko + ¢ - tanh (kit;) (27)

we ko,c, k1 € RT. H emhoyd tne mopamdve cuVEpTNorc xavorolel Ty amaftnomn yio
evioyuon TV MO TEOCPATKY UETENCEWY Xk BEATIGVEL TNV TROCUPUOC TIXOTNTA TNG Olo-

duactag exudinone otic petoffAntéc cuviixeq.

3) Emiloyrj twv inducing points: H emhoyh tou cuvohou Zing eivon xplown yio
v oxp{Bela TN mokvdpdunone ue sparse GPs. Aedouévng plog elo6dou z, uio amhoix
Tpocéyylon Yo Koy 1 EMAOYY TwV TANCLECTEPWY oNuelwy w¢ inducing points, dnhady
TV M oNUelwY Z; € D pe Ty wxpdtepn andotao ||z—z;l|. Qotdoo, auth 1 tpocéyyion
unopel vo 0dnyioel o€ aptiuntiny| aotdidela xaTd TV AVTIoTEORT Tou Tivaxa IN(Zindzmd.
Enopévag, avtiotoryileton oe xdlde yétenon wa mdavotnta, e younhoOTepes TWES TNG
anboTAONG ||Z2—2;|| var avtioToryoly ot uhnidtepn mdavoTTA, xou M onuela ETAEYOVTOL

Tuyaia pe Bdon auth TNV xoTavoun.

4) Ilpoaéyyon Ilapaydsywr: Evo dhho mheovéxtnua twv GPs elvou 1 duvatdtn-
ot TEOBAEPNG TV ToEAYDOYWY TG oLVEETNENS ¢(Z) WS TEOS TG UETABANTES El6HBOU
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z = [zl, ceey znz}T. O unohoyiopds TV Topayd YV TEoUTOVETEL ATOXAEIGTIXG TN Olo-
pbeiomn g ouvdptnong kernel. Xuvenng, AauPdvovtoc unddn ot 1 emheypévn squared
exponential kernel cuvdptnon elvan anelpwe diagopiown, N xhion Vi (z) € R™ xou n
eoowov) H (z) € R™ %™ 1ng ouvdptnone g oe yio doxpootixny elcodo z unopolv vo

TPOGEYYLOTOUY and TIC TopaXdTe EELCWOELS:

T > = T
_ |[onp ou _ | Okez,, ok.z,, -1 ~
V,u (Z) - [Tzl’ e am} o |: 521 4 [ zznz ‘ KZindZmd'u’m (28)
a2ﬁzzind BZEZZ'L'nd
0z% 0z12n,
— . . . T—1 ~
H(z) = : " : Kzl-ndzmdﬂm (29)
aQIN{ZZmd 82E2Z¢nd
0212n, T 022

nz
1

indZind
XL ETOUEVKS, TO LTOAOYLOTIXO x60ToC Twv Ediotoenmy 3.28 xau 3.29 elvon acruavto.

YnuetveTaL OTL To K} XL [y, €YOUV NON UTOAOYIOTEL XUTd TNV ToAVOEOUNOT),
Mnogoiv eniong va urtohoyiotolv mapdywyol Limidteene t8éne. 2otdoo, To G-
wo mtpoaéyyione avgdveton AauBdvovtoc unddn HOVo TG PETENOES Y TNS CUVARTNOTNG,
ONAad, ywels TNV TEOCVAXN TURATNENCEWY TWV TALAYWYWY XATA TNV ToALVOROUNOT).

5) Mezprioeis: 'Onee npoavagéednxe, 0 andTepOs 6ToOY0G EiVOL VO TPOCEYYIGTOUY
ot amoxAioelg d,, xaun dy, yenowwonowdvrog 5 aveldptnteg GPs. dotdoo, ol un yovieio-
roinuéveg dlatapayés, T.y. duvduelc omo¥éAxovaag, expedlovion cuvdng oe oyéon e
T0 oTaepd GUCTNUO CUVTETAYHEVWY Tou oyfuatog B. Yuvenwg, 1 Swdaocta tng ex-
naideuone Tpocupuéletan 1ot HGoTte Vo Tpoceyyilovton To opdhuata oto povtéro Bd,
o Bdw, mou opilovtar w¢ mpog o B. Q¢ ex toltov, Slcpoiiletar ) cLVERELX GTO
oeT dedouévev, eColelpetar 1 e€dpTNOT AMd TOV TPOCAVATOMGCUO TOU OYAUATOC, ELOIXA
N yovid yaw, xou UELDOVOVTOL 1) OLACTAON TOU YWEOL €L0000U, Xal XAUTA CUVETELX, 1|

UTOAOYLO TIXT] TOAUTAOXOTN T

poc auth TV xatehduvon, ewodyoupe TNy toyOTnTe Tou UAV e tpoc to B, Bv =
R%Bv = [Bvx va BUZ}T, x9S o TIC Ywvieg Tou oyowiol By = [BqSL BHL}T
xon T yowioodd toaxOtnia Bwy = Brp mou unoloyilovton and to wovadiuio diévuoua
tou oyoiot Pn = R, pn xaw v taydmra B = R, gi (opilovta napdpola pe Tic
E€wohoeig 2.2 xou 2.3 avtiotowya). Koatd vy Aettovpyio tou UAV, yetprioeic culhéyo-
VTOL YENOLLOTIOLOVTAS TO OVOUAC TIXO HOVTEAO TOU GUC THUATOS, TTOU TOPOUCLELETAUL GTNY
Evétnta 2.5.1, eved ot elocodol z Yo xdie UV TOON TwVY TEOGEY YL OUEVLY BLIVUCUSTWY
Bd, xo Bd,, emiéyovia pe Bdon puoée napatneroeis, 6mwe ouvodiletor otov Tlivona
3.5. Ynueidvetan OTL 1) ETAOYT TWV XATIAANAWY ELGOOWY elvon xplowdn Yot TNV ETTUYY
exudinom dyvwotwy cuvapthoewy péow GPs. Mol eivar Siadéoiueg ol tpofrédels Twv
Bd, xou Bd,, o petaoynpationéc Touc we mpoc to olotnue avopopdc W mpaypato-
motelton avtiotpopa. Téhog, meénel va onpeiwdel 6T optopéveg amoxhioelg wotpdlovton
70 (Bl0 BLdVUOUA ELGOBOU Xall, ETOUEVLS, XATOLOL UTOAOYLOUOL TVAXWY ATOPEDYOVTOL UE

ATOTEAEOUA TNV TEQUUTERW UEKOY TOU UTOAOYLOTIXOU XOOTOUG.
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6) Trohoyotiké Kéoros: ‘Ocov agopd T0 UTOAOYIGTIXG XOGTOG TNG TUAVSROUNONG
ue weighted & sparse GPs, o uéoog ypovog extéheong yio Ty e€aywyr) CUUTEQACUATCDY
and g 5 GPs, Yewpwvrog éva oet dedoyévewoy M = 1000 yetproewv xaw m = 30

inducing points yia x&e GP, eivar {coc pe 30.9 ms oto Jetson AGX Xavier.

Mn I'eoppixog ITpoBAentinog ‘Eleyyoc pe Gaussian Processes

Do v emutevydel 1 peTopopd Tou TOAUXOTTEROL TIPOC TiC VEOELS avapopds Pres € R?
HE TAUTOYEOVT EAAYLOTOTOMON TNS YWVIAXHS XIVIOTE TOU OO0, oY TIC OLUTURIYES
Tou aoxolvTL 0Ty That@opua, éva NMPC oyfua Siatundveton yior Ty emagnuévn
duVOLXY) TOLU CLOTAUATOS Tou cupunepthaufdvel Tig anoxiioelg d, xan dy,, OTwS AVTES
npooeyyllovton and tny nakvdpounon ue weighted & sparse GPs. ' to oxond auto,

opiletan to axdroudo OCP:

N-1
min Y ((Xk — Xrep)" Q(xp — Xpef) + 'UkTR'Uk:)

V0, UN -1
k=0

+ (XN = Xpep) P (XN — Xpey)
st Xpr1 = fhom (Xk, V&) + Bad (xg, Ug) (EE(G(;)OT] 3.17)
vpeU, k=0,---,N—-1

xo = x (0)

onou N elvan o draxpitonoinuévoe opilovtag meoBeidng v ol undloiteg peTofANTéS
optlovtar clpgpwva ye v Evémta 3.6.1. To mpoavagepdéy OCP emhbeton xou mél
uéoa oe nepimou 4 ms ypnowonowdvtoc 1o ACADO Toolkit xou tov emhitn gpOASES.

‘Ocov agopd TN un yoviehomoinuévn duvoyixy|, ot anoxiioels d, o xou dy o mpo-
Brénovton oe xde ypovixh oTiyur to yenowwomownvioc v E&lowon 3.24 yia xdie ou-
VIO TOOA TWV SLIVUOUETWY Xa TNV avTioTolyn elcodo zg, Tou e€dyetal amd TNy Te€youca
xatdotaon Xo. ‘Eva onpavtind Héua tpog oulftnon anotelel n tpdBiedn tne un wovte-
Aomonuévne duvauixrc oe 6ho Tov ypeovixo opllovta tou NMPC. IIwavéc Adoeig etvon
elte n ouveync mpocéyyion Twv d, xou d,, oe ohdxhneo Tov opllovta elte 1 Batrienon
TV dy o xou dy o oTodepmy xatd ) Swdixacio e Beltiotonoinong. 2otdc0, N TEOT
Moo ebvan uToAoyioTixd SuoETAUTY eV& 1) BelTERPY CLUVETdYETL YaunAoTeEn axplBeta.
ITpog authY TV xotedYuvor, YeNOCULOTOLEITOL ial UTOAOYLO TIXE. EAAPELE TROGEYYIOT) OE-

OtepNe TAENS YUpw amd TNV TeEYouoa yeovixy oTiyun fo:

o (20) = o (0) + Vil (30) (31— 20) + 3 (31 — 20) Bl (20) (70— 20)  (31)

omou N xAion xo 1 oot unoloyilovioan clugwva e T E€owoeg 3.28 xan 3.29
avtiotoya. Xuvenwg, oe xdie emavdindn tou NMPC, anawteiton wévo pla aiohdynon

Twv empépoug GPs.
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ITewpapotind AnoteAéopata

Ye auThY TNV EVOTNTY, 1) ANODOCT] TWY TEOTEWOUEVWY UEVOBOAOYLOY EAEYYOL, ONAadY
(o) 0 éheyyog pe Podid evioyutixd wdinom, (B) o ebpwotog éleyyog ue Badid evioyutixn
wéimom, (v) to NMPC oyfjuo Sloatunmuévo yior T0 0VORao TiXd WOVTENO TOU GUC TR
to¢ xou (8) to NMPC oyfua nov Baciletar otic GPs, allohoyolvton uéow mpocoyol-
OOEWV X0l TEAYHATIXWY TEIpoudTwy ot unafdpta tepBdihovta. Kotd tn Sudpxeia twv
TEEUUITWY GTOV TEAYHUATIXO XOOUO, 1) AVATEOPOOOTNON TNG XATACTACTC TOU GYOWLOU
napéyetan elte and N Aon mou Paciletar otny cupBatix xduepa elte and tn Abon Tou

otnelletar otnv DVS, mou napousidlovton otic Evétntee 3.3.1 xou 3.3.2 avtiotouya.

ITewpapotiny Adtadn

Koatd tn Sudpxeio tov melpopdtov o e€mTepixols Ywpeous, yenoonotinxe to octoro-
tor oynua tng Ewdvog 2.3. ‘Ohot ou akyodprduol, vionomuévol eite oe Python elte o
C++, Baotlovtoaw oto Robot Operating System (ROS) xau tpéyouv otov evonuate-
wévo unohoyloty Jetson AGX Xavier, o onolog Eeywellet Yot TV LPNAA Tou anddoon
xan elvon XatdAAnhog yia eopuoyég Ye drones 6mou to péyedog, to Bdpog xou 1 xota-
vahwor pevpatog mallouv onuavtixd poro. ‘Onwe avagépdnxe otic Evotnreg 2.2 xou
2.3, 0 EVOWUATWUEVOS UTOAOYLO THC CUVOEETAL UE TOV AUTOUATO TUAOTO Y ENOULOTOLOVTOG
10 npwtoxohho MAVLink, evéd n emxowovio yetagd ROS xan awtéuotov mAdtou emi-
Tuyydvetar péow tou xéuBou MAVROS. Emniéov, evonyoatdvetar pior Suvauoxupéin
5 kg médvew oto oyowi, yall ye tov evioyuty HX711, vy tn pétenon tne vopuag tng
tdomg tou oyowtol || T||, xadde etvon amapaltnTn Yl TRV extipnon e xatdoTaong Tou
oyowlol uéow e ouufBatixnic xduepac xou yia o oyfuatoe NMPC. Eminiéoyv, éva Ar-
duino Mega [57] tonoVeteiton 610 UAV Tpoxeévou Vo UETAPEREL OTOV EVOOUXTWHUEVO
UTIOANOYIO TH TIC UETENOELC TOU Tapé€yovTal omd TNV BuVoXUPENN uéow oelploaxic Emi-
xowvoviag. Téhog, 1o oynua elvon e€omhiouévo ye tn xduepo ZED 2 v tn DAVIS 346,

avdhoya Ye To av yenowonolelton o alyoprduog extiunone Bdoet RGB exdvwy 1) events.

Iewpdpata pe Badid Evioyvtixy Mddnon
ITepdpata o ITpocopolwTi

Apyxd, mapouotdleton pior oLYXELTIXY MEAETN oTov mpocouolwt Gazebo petald Tou
default PID eleyxtr ¥éone tou awtépoatov mhétou (Evétnra 2.4), o omolog dev hoy-
Bdver unddMY TIC TAAAVTWOELS TOU Gy oWV, XaL TNG TOMTIXAC Tg(s), Tou exmoudelTn-
xe olugwva ye v Evémnta 3.4. Ko otig 80o mepintioelg, to (Bl 8 waypoints,
Prefli = [xref Yref Zref]T|i €ER3 gopi=1, -,8, ctéhdnray dodoyind we Véoeic
avapopds atoug eheyxtéc. Ilpoxeiévou va tocotixonomdel n tohavtwTing xivnon Tou
oY OO0 XAt TNV TAOYYNON TOU OYNUATOS, UTONOYICTNXE 1) amdXALoT TOU Hovadlafou

0LavOOUATOS TOU Y oWL00 N amd TNV eTUUNTA xaTaxdELEN VEon CUUPWYA UE T Ywvid:

B =cos™!(|n.|) (32)
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‘Onwg gaivetan oty Euxéva 3.11d, o PID eheyxtric diéyeipe tnv Tohavtotid xivnom
TOU OYOWLO0 XATA TN BLIEXELL TOU GEVAPIOU TPOCOUOIWONE %o, WS EX TOUTOV, TUPAUTY-
efinxay alloonuelwtes Tiwée g Ywviac B, oL onolec 0Ty TERINTWOT EVOC TRy HATIXOD
Telpduatog Yo €¥eTay o X(VOUVO TNV aGPAAELL TOGO TOU OYHUATOS OGO XAk TOU (PopTIoU.
Avti¥eta, n exmoudeupévn tohtixn odrynoe pe emtuylo o UAV mpog T TpLobido tota
onpela avapopds, 6mwe aneixovileta otig Ewxodvee 3.11a, 3.11b xou 3.11c, eved 1 ywvia

B dutneRinxe oe onpovtixd younidtepa enineda (Ewudva 3.11d).

IMeipdpata o IMpaypatixd IlepiBdArov

3TN CUVEYELD, TEAYUATOTIOLAUNXE ULoL CUYXELTIXT TELRUATLXY UEAETN ueTall Tou default
PID eheyxtn 9€ong Tou auTOUaTou TAGTOU Xl TOU Oy fuatoc eAEyyou Tne Ewdvag 3.12
ue To octorotor mpoxewévou va aglohoynUel 1 ATOTEAEOUATIXOTNTO TNG EXTIUDEVIEVNC
moltixic mp(s) oe mpaypatixée ouvdrixec. e oUTO TO TEOXATUEXTIXO TElPOHA, YEN-
owonodnxe éva xoutt 1.5 kg, avaptnuévo péow evég oyowlol uhxoug 2.3 m, Ve
N aviyvevor tou @optiou and v xduepa ZED emtebydnxe pe tn Pordewa tecodpony
ArUco markers [23], totodetnuévmv otny néve enupdvels tou xoutiol. Ta (Bl 8 way-
points otdhInxay Sladoyixd we Véoelg avapopds otoug dlo eheyxTtés. Emonuatveton 6Tt
TaL TELRAU T TEayLotoToL i oy Sladoyixd, otny (Bla Totodeoio xan dpa, xo, ©S €x To-
0Tou, oL TepBarlovTiXéC cuVIxeg, xau WialTepa 1) Tary O TNTA TOL AvEUOU, Yo Umopoloay

var Yewpndoly TavopoldTuTES.

Apywd, yenowonowinxe o default PID ekeyxtric Véone tou Ardupilot, o ono-
fog Bev avtiotaduilel Tic Tahavtwoelc Tou oyowiod. Molig to dynua xwvidnxe tpog to
deltepo waypoint, 1 yovio 8 Zenépace tic 60° xou, we ex TOUTOU, TO PopTio dev dio-
TneHUNXE Y€oo 0To ONTIXO TEdlo TNE XAUERAS, OTWS (alveTon oTo oyetxd PBivieo. T
Aoyoug aocpaielag, To melpopa TepuatioTnxEe agol To oyowl mhnoiace Toug Peayloveg

TOU O NUATOC XA, CUVETIG, BEV HTAY EYYUNUEVT 1) ACPUAAS OAOXAHRWOY) TNE ATOG TOATC.

Avtideta, 1 tohtn| mp(s) odnyel anoteleopoTiNg TO Gy TEOS ToL TELOOLAO ToTaL
onuela avapopds, 6mwe (alveton otny Eudva 3.13, eved Tautdypova EMTUYYAVETL T)
ehaylotonoinon tne TaAavTwTixhc xivnong tou oyowlol. Ilo cuyxexpiéva, 1 ywvia 3
dev umepPaiver MY T Twv 15° xatd ™ Sdexelo Tou mepdpatos (Ewdva 3.13d). O
uPnhoTepeg TWES TS Ywviag TapatneolvTol 6tay Bivetan eVvToAr) Yl éva Véo omuelo,
wor hoyuer) mopatienorn dedopévou OTL, dpywd, To o@dhuo Y€ong P — Prey €lvon xu-
plopyo oTo exmaudeupévo dixtuo g cuvdptnone (. Koadde to dynua tAnodler npog
N V€on avaopds, 1 TOAAVTWTIXT xVNoT Tou GYoWLoY, XaL GUYXEXPWEVA 1) Ywvia 3,

ehaylotonoleitan, omwe anewoviletar oty Ewxdva 3.13d.

O mpoavagepieioeg ouyxpELTée HEAETES xS xou EVal TPOCUETO TEALYUATIXO TE-

lpaar tapovotdlovtan xaAlTepa 6TOV axdAovdo cUvdeouo https://youtu.be/7C843hts83E.
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IMepdpata pe EVpwoty Badid Evioyvtixy Mddnon
ITewpdpata o IlpocopoiwTi

Metd tn obyxion tng dladwaciag exudinone otny Evotnta 3.5, énou cupnepthipinxe
7 wédodoc domain randomization, 1 exnaudevuévn Toltixy mp(s) SoXWACTNHE EXTEVES
otov npocopolwty Gazebo mpoxewévou va emxvpwiel N evpwotin TN W TEOC TaL Bi-
Gpopeg TWES Tou urxoug oyowtol | xou tne pdlag @optiou my, ahhd xaL TiC EEMTEPIXES
owtapayéc Fg. Iho ouyxexpéva, mpaypatomoinxay cuyxplitxés uekéteg Aaufdvo-
vTog unodn Ty anoctolr g Ewdvag 3.14, 1 onola anoteheitan amd 8 Héaeic avapopdg
Pref- H wavétnrta g moAtinic va ehayto Tomolel TNy TeAavTo Ty xivnor Tou oy ool
weteROnxe e Bdon v vopua tne ToyTNTaG Tou oyowol ||l xou ™ yovie §, tou

oplletan and v Ellowon 3.32. E¢etdotnxay ta axdrovda cevdpla:

1) Evpwotia ws mpog tn udla tov goptiov: e auth Tn cuyXeitin HEAETY), TO UWAXOSC
Tou ayowtol datneninxe otodepd xou (oo e 1.0m eved Mgidnxay urogn 3 SapopeTi-
xéc palec poptiou, ouyxexpwéva my, = 0.25, 0.5, xou 1.0kg xatd 0 Sudpxeio xdde
arnoctolfic. H ypovuxr e€énin tne ywviog S oe xdlde mepintwon mapovoidleton otny
Ewéva 3.15, evéd n péon tiun e todtntoc ||n| xou tne yoviee Sy xdde pepovwpévn

anoo toAT) anewxoviCovtar otov Ilivoxa 3.6.

2) Evpwotia ws mpos to prjkos tou oxowiod: Avtideta, oto oxdéhovdo oevdplo, 7
udla Tou gopTtiou SwtneRinxe otadepr| ota 0.5kg evdd To Prxog Tou xaAwdiov oploTnxe
ota | = 0.5, 1.5, xou 2.0m. H tohavtwtin xivnorn tou oyowiol xoatd tn didpxela xdde

anooTohic yopaxtneileton and tig uéoeg Tyég tou ivaxa 3.7.

3) Evpwotia s mpog s eEntepikés datapaxés: LTic TponyoUUEVES HEAETES, TO
quadrotor emyelpoloe ato mepfdhhov Tou Gazebo ywels Ty Unapdn e€wTepx®y dia-
Tapaywv. T'a o oxond autd, 1o teheutaio oevdplo nepthduPave Tic default Tipée yia to
unxog tou oyowlol xou T udla optiou, dnhadh 1.0m xo 0.5kg avticTouya, xou Tuyo-
lec e€wtepée duvdpelc Fg, pe xdie cuviotdoa tou dlaviouatog vo deryuatolnmteiton
opolopoppo and to evpog [—1.0,1.0] oe xdde ypovixd Brua. Ou péoec Tpée yio Ty
ToyUTnTa ||| xa ™ yovia 8, cbugpove pe 10 tepduata npocopoiwong, Ntav {oeg ye
0.08651 xou 2.574° avtioTouya.

Ta mopandve aprdunTnd amoTEAECUATA ATOOEWVIOLY OTL 1} ATOB0OT) TNE EXATUOEL-
HEVNC TOMTIXAC Efvon TOGO AmOBEXTH OGO X CUVETAG OTIC DLAPORES TUES TWV WBLOTHTWY

Tou cuoTHATOS Yden otn wédodo domain randomization.

ITepdpoata o Ipaypatind IlepiBdAiov

Metd v avdiuvorn otov npocopowwth Gazebo, to oyfua eAéyyou tne Ewdvag 3.16
epapudotnxe aneulelog oto octorotor tne Ewdvac 2.3 npoxewévou vo aohoyndel 7
enldoor TNg TOMTIXNC, oL eEXTAUBEVTNXE Pé€ow TN pevodou domain randomization, oe
éva Tparypatixd unaideto tepBdAiov. To dynua oy eonhiopévo ye Ty xduepa DAVIS

346 pe oxond TNy exTiunom TS xATdoTAGTS TOU O} oLV GUUPwVA UE TNV Evotnta 3.3.2.
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‘Eva xohddo pe urixog | = 3.8m, 1o onolo Peloxeton exT6C TOU EVEOUC TWV TGV TOU
xenowonolninxay xotd Ty exnaldevon, evonuotdinxe octo UAV eve Sdpopa @optio

tonovethinxay péco o Yo TeAVTa, ToU BeIOXETAL 0TO XJTw EXPO TOL Oy OWLOU.

ITio ouyxexpyéva, uior cuyxeltxn peAétn dlelhydn uetol 3 SapopeTixwdy paloy
poptiou, ouyxexpéva mr, = 0.3, 0.5, xou 0.9kg. E&etdotnxe 7 Bl amootohy anote-
Aoluevn and 4 Yéoeic avapopds, 6nws (atvetar oty Ewdva 3.17. Tlapd Tic e€wtepinég
BLATAROUYES TOU DEOUV OTNV TAXTPOPUA X0t ToV VOpUBO OTNV EXTUNCT TNS XATAC TACE
TOU GYOWLOU, 1) EXTOUOELUEVY) TOALTIXY EAayLOo TOoToINoE T600 To o@diua Yéong, .. Ei-
x6va 3.17, 660 xou T Ywvloxh xivnon Tou oyowlol, TapouctdlovTos UAALC To TOROUOLYL
eninedo anodoong vyl Tic 3 dapopetinéc pdles, omwe anewxoviletar otny Ewodva 3.18,
6mou nopouvotdletan n ywvio B yio xde nepintwon. Katd cuvénelo, n noltixy| undpece
Vo YeVIxeLTel pe emtuyio oe éva mporypatixd nepl3dhiov yden ot uédodo domain ran-
domization mou egopudoTnXE xatd TNV exnaldevor. Ta mpoavagpepVévta Telpduato Ue To

octorotor gafvovton xaAlTepa 610 Tapaxdtw Bivieo https://youtu.be/kbPSdWZiRAo.

IMewpdpota NMPC pe Bdon to Ovopactind Moviéro

IMewpdpata NMPC Bdoet Ovopaotixod Movtélou xaw JupPatixr Kdue-
po

Apywxd, diepeuviinxe n wavotnta tou oyfuatoc NMPC, nou Basctiletan oto ovopaoTti-
%6 UOVTEAO TOU CUCTAUNTOS OTwE Tapouctdleton oty Evétnta 3.6.1, vo odnyel omo-
TEAEOUAUTIXG TO TOAUXOTTEQO OE TELOOLAC Tortal omuelor avapopds, ywelc va dieyelpel Ty
TAAXVTWTIXH XVNoT TOL avapTNuévou péow oyowol goptiou. ‘Ocov agopd To poptio,
yenotpomotinxe évag unyoviopog detypatolndlog, mtov apyotepa Yo alomoindel yio
dieaywyn derypotoindiag oe uddtiva tepBdihovto. H pdla tou unyaviopol etvon {on
ue mp = 0.25 kg, eved avoptilnxe yéow evog oyowol ufxoug | = 3.8 m. Emmiéoy,
N xduepa ZED 2 evowuoat@inxe oto oynua xot, »¢ ex To0Tou, yenoiworotiinxe o oh-
yYoprluog e Evotnroc 3.3.1 yia TNy avatpo@odotnor TG XATAGTACTS TOU GYOWLoU,
onwe anewoviletoan otny Ewova 3.19. Ipoxeiévou va allohoyndel n anddoor 1660 Tou
NMPC 660 xou tou CNN, mparypatonotidnxay 2 telpduato o€ dlapopeTixég Tonoveaieg,

CUYXEXPLEVA OTNY TTavemio TlolToAn tou EMII xaw o o mopohior.

Ko otig 800 nepintddoelc, eEeTAOTNUE WUial ATOGTOAY] AMOTEAOVUEVY) OO TOAAATAL
onuelo. O NMPC ehayiotonolnoe emtuytc 10 0QIANIAL Pref — P UETOHED TV VECEWY
avapopdc xar tne mpaypotifc Yéone touv UAV (Ewdvee 3.20, 3.22), evéd towtdypova
OL YWVIES M1, %o 1 YVIXT) Ty OTNTA Wy, TOU oY owLol, Tou exTiuinxay ard 1o CNN
xou o EKF, Satneddnxay poxpid and emxivduves twée (Ewdvee 3.21, 3.23). 'Etot,
emTEOYUNXE 1) ACPUATIC UETAUPORPA TOU OYNUATOS XU TOU QOETIOU o OAOXANEWI XY
ue emtuyla xou oL 8U0 aMOGTOAES, OTwe Galveton ot Euxdvee 3.20d, 3.22d. Tovileton
eniong 6T o exnandevgévo CNN aviyvelel ye emtuylo o oyowi xou emdetxvieL evpwaTia
oTa dlapopeTixd tepBdiiovta. Emnpdoieta, avapépeton 6Tl xat oTlc 600 AmOCTOAES TO

oymuat xvidnxe pe toydTnTeS éwg xou 4 m/s.


https://youtu.be/kbPSdWZiRAo
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Ta 800 mepdparto anewxoviovton xaAlTepa ota Tapaxdte Bivteo https://youtu.
be/G-7rAuAFxHM xou https://youtu.be/Km6nJYrVGoo.

IMepdpoata NMPC Bdoer Ovopaoctixod Movtélou xauw DVS

Ye auth) Y evotna, evowuotwinxe n xduepa DAVIS 346 oto octorotor ye ¢qoptio
my, = 0.5kg xou oyowl | = 3.8m, o6nwe aneixoviletoaw oty Ewxdva 3.3, npoxeiévou
vo. Siepeuvniel 1 anodoon e puedédou exTiunong TS XATAoTAoNS Tou oY owLo0 Bdoel
events (Evotnta 3.3.2) évavtt 80ox0hwY cuVINXGOY, TOU GUVATWS CUVAVTMOVTOL GE L-
naldplar mepBdihovta. Tlopd tov auvgnuévo aprdud events, mou dnuioupyolvTon and Ty
%ivnom Tou oY NUATOC Xl AVTIC TOLY OV OTOV TERLBAANOVTA Y WO, 1) TEOTEWOUEVT u€Y0d0g
aviyvevoe aflomoTa To events mou oyetiovtay e TNV TAAXAVTWTIXH xivnon Tou oyoL-

viol xou Topelye 0pwo TN AVATEOPOBOTNOY TNS CUVOAMXHC XatdoTaorc Tou 6to NMPC
oY UL

Me dedopévo éva alvoho 3D Héocwv avapopdc Pref xoL TNV XUTAGTAGT| TOU Gy OWLO-
0, ONAadN N, xou Wr,, TOL EXTILATAL antd TNV encéepyacio TG ELOoEPyOUEVNS Pong events,
70 oo NMPC, Siatunwuévo yia 10 ovopastixd BoviéAo Tou GUGTHUNTOS, UTOAOYLOE
XATIAANAES ELGOBOUC YLoL TOV ECKTERIXO BpdY0 EAEYYOU TOU AUTOUATOU TLAGTOU TEO-
%EWEVOU Vo ehaytoTonoinUel T0 CQIMNIA Pref — P X, €TOL, TO OYNUAL EXTAPWOE TNV
anocToAY), 6nwe anewxovileton oty Ewodva 3.24a. Emniéov, xad” 6An tn Sidpxelo Tou
TERAPATOC, N TAAXVTWTIXH %xiynom Tou oyowlol, Tou extinxe yeow tne DVS, duatn-
eOnxe xdtw and xplowee tpée (Ewdva 3.24), xadde to oyowi dev ninoiace to UAV

X0lL, ETOUEVWS, DLACQPAACTNXE 1) ACPIAELN TOU CUC THUATOG.

IMpoxewévou va diepeuvniel tepantépw N aglomoTior TOL TEOTEWVOUEVOL ahyopliiuou,
o1e&r0n €va Beltepo melpapor 6OV EEETACTNXE UIA ATOCTOAY UE TEPLOGOTERES VETELG
avapoEdS Pref. Ouolwe, emtedydnxay 1600 1 eVPWOTN AVAYVOELOY TOU GYOWLO) XAUTd
TN OLdEXELN TNG ATOCTOANG OCO oL 1) UETUPOEE TOU AVIRTNUEVOU (PopTiOu UE EALYIOTY
TohavTo T xivnon tou ayowtol. Kot ta 800 meipdpata napouctdloviton xaAlTepa 6TO

Tapaxdtw Bivieo https://youtu.be/jFUQcZ00hoM.

Y Tn CUVEYELD, TEOXEWEVOU Vo amodelEOUUE ToL TAEOVEXTHUOTO IOV OOPEEOLY AT
v xerion DVS xatd tnv evaépia yetapopd @optiny, mpoyuatorodnxe ula cuyxpeitiny
weRétn peta€l g wedodou mou Baciletar ot events xou e uedddou mou ctneileton
ot ouuPotind xduepa. Katd tn ouyxpitin uehétn, dewpdnxe 7 (dia anoctoly, anote-
hoVuevn and 4 Foelg avapopds, xou 1 avaTEOPodOTNOT TNE XATACTACTS TOLU GYOWLOU,
Tou exTNOnxe amd Tig dVo puedddoug, tpogodotiinxe oo oyfuo NMPC tng Evotntog
3.6.1. Emonuaivetar 0Tl oL TopdueTeol Tou EASYXTH, ONAadY oL Tivaxeg xOGTOUG XL Ot
Teploployol oty elcodo, frav tavouoldtuteg. Emimiéov, ta nepduota tpoypotonotin-
%Ay 010y XS TEOXEWEVOU VOl SLUGPUANOTOVY TUPOUOLES TERUBOANOVTIXES CUVITIXES XL,

¢ ex T00ToL, Wa dixoun clyxpelon.

Ot 800 ygdodor cuyxplinxay ye Bdon TNV ATOTEAECUATIXOTNTOL TOU EAEYXTH XA, TILO

CUYXEXQUEVA, TNV XAVOTNTA TOU VO EAAYLOTOTOLEL TNV VOPUA TNS YWVIOG TOU GOV


https://youtu.be/G-7rAuAFxHM
https://youtu.be/G-7rAuAFxHM
https://youtu.be/Km6nJYrVGoo
https://youtu.be/jFUQcZ0OhoM
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InLll. Onwe gaivetow oty Ewdva 3.25, n yeriyopn xou alldmotn avatpopodotnon
mou Tapéyetan and v DVS elye wg anotéheopa v xahitepn enidoon tou eheyxTy,
eve avTdéTwe mopatneiinxay HEYOADTERES YWVIEC OTAY YeNOolLoTolUNX e 1) CUUBATIXY
xdpepa. Iho ouyxexpyéva, 1 uéyotn yovio tou oyomvol |[nr] yie ™ pédodo mou
Baoileton ota events xou yuar 0 uédodo mou otnpiletan otic RGB exdvee Arav {om
ue 14.13° xou 21.95° avtiotoiya. Emouévwg, xotd TNy evaéplor HETAPORSE AVUQTNUEVLY
popTiwy, N YEHYOoR! avateopoddTnon Umopel vo enneedoet onuavTixd tny enidoor Tou
EAEYXTY) XU, EMOUEVWLC, 1| Yenon wac xduepac DVS unopel va Behtiddoel tepantépw tnv

ATMOTEAECUATIXOTNTO TOV UTARYOVIWY OYNUATWY EAEYYOL.

ITewpdpoatae NMPC pe GPs

e auThAY TNV EVOTNTA, TOEOUCIALOUUE Tal TAEOVEXTAUNTA TNG YeNONG TahVOEOUNONG UE
weighted xou sparse GPs alugwvo ye tnv Evotnta 3.6.3, étav to UAV ye to avaptnuévo
péow oyowlol @optio emlyelpel UG TNV TAEOVGIN GNUAVTIXGDY EEWTERIXMY BLATARAY DY
Xoll, WS EX TOUTOU, UTEEYOUY U AUEANTEES AMOXAIOELS UETOED TNG OVOPACTIXAC XOU TNG

TEAYHATIXNAG SUVOULIXHAC TOU GUCTAUATOC.

ITewpdpata o Ilpocowolwty

e amd v egappoyy Tou oyfuatoc NMPC nou Baoiletan otic GPs (Evétnra 3.6.4)
6TO TpayUaTIXO octorotor, mporyuatomolinxay melpduata 6To TepYBdAhov Tpocouoiw-
onc Gazebo yia Ty allohdynomn e pedodou und eheyyoueves ouvirixec. Ilpoxeévou
va emixvpwiel 1 Bedtiwon tne enidoong Tou oyfuatog eAéyyou pe v npocuixn GPs,
Tpay HATOTOWONXE Wit ouYXELTX HEAETN PeTOED TwV axdloudny oevapiwy: (o) NMPC
ue Bdomn to ovopaotind yoviého (Evotnra 3.6.1), (B) NMPC pe sparse GPs, (y) NMPC
ue weighted xou sparse GPs. H {61 amoctohr, anoteholuevn and 10 dapopetind onuela

Pref € R3, e€eTdoTnXe 0 OAEC TIC TEPLNTWOELS.

Kotd tn ouyxprtied uehétn, ot oxdhovdec eEotepinée duvdpeic BFg = [—1.2, 1.8, O] g
0.3 Bv |Bv| xow PFp = —0.13 - Bvp |BVL| aoxinxav oto quadrotor xou 6To QopTio
avtioTolya w¢ meog 1o choTnua cuvteTaypévey B, Avagépetar 6Tl xotd Tar oevdpla
(B) %o (), 6mou evonyotwvovtow ot GPs, to oet dedopévev Aoy apyixd yeudto ue
HeTENOELS TOL GUAREYIMXY XaTd TN BLdEXEL EVOC TIEOTYOVUUEVOU TEWRHUATOS TEOCOUO-
lwone xwpls Ty UToEén TV TEoavapeplEvTwY eEwTEpXDY duvduewy. Onwg gaiveto
oty Ewoéva 3.26, énou anewxoviCovion to opdhuo 9€ong xou 1 GUVEETNOT XOGTOUS TOU
NMPC, ta povtéha GPs Behtiowoay onuaviixd tn cuPnEeplpopd ToU GUC TAUATOS UTO
NV eTlBpAoN TV EEWTERPIXWY OUVAUEWY X0l TNV ANOBOCT TOU OYNUATOS EAEYYOU O
oUYXpLoT YE TNV ovouao Tixn teplntwon, dnhady| To cevdplo (o). Emimiéov, oto oeviplo
(v), N evowudtwon Popdy, Tou divouv TEoTEPUITNTA OTIC TO TEOCPATES UETPNOELS,
EMTAYUVE TNV TEOCUPUOYY TOU TEOBAAUATOS TAAVOEOUNONS OTO VEO TEQIBAANOV X,
¢ ex To0ToL, elye wg anotéheoua TNy TayVTeEn Pelwon Tou opdhyatog VEong xou TNg

ouvdptnone xéotoug o olyxplon pe to oevdplo (B). Télog, mpénel va onuewdel 6t
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xatd to oevdpta (B) xou (), t0 x6ot0c Tou NMPC 8ev cuyxhivel 6to Undév ool To

oynua otodepornolelton 0TI VEOELS avapopdc e N Undevixée yYwvieg roll xou pitch.

IMepdpata o IMpaypatind IepiBdAiov

Metd v emixpwor otov npocopolwty Gazebo, mpoypatonoinxay neElpdUATA UE TO
TpaYHaTiX6 octorotor, cuunepthopBavouévou evog goptiov my, = 0.5kg mou avaptiin-
%€ PEOw eVOC oyowlol | = 3.8m xou tng xduepag DVS, oe éva e€wtepnd nepiBdAloy,
Tpoxelévou va eheyyVel 1 anoteheopatixotnta tou oyfuatogc NMPC ue GPs ¢ E-
%x6vag 3.27 Evavtl SOOXOADY GUVITXGDY XL oY VOO TWY EEWTERXGDY dLortapaywy. Ouolng,
oL 0n wa ouyxeltxr) HEAETN UeToD TwV SlapopeTixwy oynudtwy NMPC, dnhady,
ouunepthopPovopévou (o) Tou ovouaotixod povtéhou, (B) twv sparse GPs xau (y) twv
weighted xou sparse GPs. ©a npénet va onuewwdel 6tL tar nelpdporta tporypotonolin-
xav dladoyxd, oty (Bl Totoveoia, xat, enopévwe, ol eEwTtepinég ouvixeg, Wialtepa
N T OTNTA X 7 XATELYLVOT Tou afpd, UTopolV va Vewenoly TavoUoLOTUTEG TToRd
v avardgeuxtn Unopén toelne. Téhog, o (Bieg 7 Véoeic avapopdc Prep 00UNXAY WS

eloodol oToug eAeYXTEG, WoTE va eaopahioTel Wia dixoun clyxplon.

Ko oo 800 oevdpio (B) xou (), t0 ot dedopévwy apyixd anaptldtoy ond Je-
TEHOELS TOU CLUYXEVTEWOINUAY XATA T1) OLAEXELN WIS TEONYOUUEVNS NUERAS UE EVTEAWDG
otapopeTinég mepBorlhovinés ouviixeg. ‘Omnwe anewoviletan otny Ewdva 3.28, éva
ONUAVTIXG CQANUA LOVUNG XoTdoTaone ot Féom xou €va auEnuévo X60ToS TRt
efnxay étav epapudéotnxe o NMPC Sioatunwuévog yia To ovopaotixd Loviéro, On-
AodY) to oevdplo (o). H mpoavagepdeioa ouunepipopd mporhde xuplwe amd ™ péon
Ty OTNTOL avERou, TeEpinou 4 Umo@bde, TOU ETXEATOUCE GTNY TEQLOYT CUUPWVIL YE To
UETEWPOAOYIXE BEGOPEVA, XL ElYE WG ATOTEAECUA AmOXAOEC UETOED TNG OVOUAO TIXNAS
XL TNG TEAYMATIXNG SUVOUIXAC TOL cuoThuatoS. Avtlileta, 1 eVOWUdTwor LOVTEAWY
GPs ota oevdpta (B) xon (y) 0dhynoe oe onuovtind yetwpévo opdhua Yéone xou x6oToc,
YEYOVOC TOL amodevlel TNV xavotnTa Twv GPs va npooeyyilouv tig anoxhiceig oto
wovtélo xau Ti e€wtepnég Swtapayéc. Emmiéov, n weighted exboyy| tne mohivdpoun-
one pe sparse GPs xotd 1o oevopiou (y) tévioe ) onuacio twv mo tpdogatwy ye-
TEHOEWY XA, WS EX TOUTOV, emtelydnxe TaydTepn BeAtiwon oTn cuunERLPOEd TOLU Gu-
OTAUATOC Xl YEVIXE XUADTERY €TIBOOT, TOU OYNUATOC EAEYYOU OE GUYXQELOT UE TO OF-
véplo (). Ta npoavapepdévta netpduota aneixovilovton xahiTepo 010 Topaxdte Bivieo
https://youtu.be/4bm3JLo0d5U.


https://youtu.be/4bm3JLo0d5U
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[TapoaxohoOUnon »ou
Evandovdeorn evog AvapTtnuevou

Poptiov os Eniyesio Xtdyo

Ewcaywy

Ye autd 1o xepdhano, e€etdlovue TNV mapaxoAoUNoT eVOC ENYELOU OYAUATOS YENOL-
HOTIOLOVTAG EVAL TOANUXOTTERO UE OVURTNUEVO PECW OYOWLOU QOPTIO %ol Uidt XGUEQD UE
TEOCAVATONOUO TEOG TOL XATW, UE AMWTERO GXOTO TNV EMTUY Y evanddeon tou gopTiou
otov otoyo. H evaépia mapaxorotinon otdywy pe Bdon ontix avatpopoddtnor etvor
évo xaAd pehetnuévo nedio ot BBhoypapio, m.y. [9], [10], [29] xou [36]" yweic woTtéc0
vor hofBdveton umodn 1 Oraedn avapTEéVou PEGE ayowlol PopTiou oL, wS X TOUTOU,

1 evand¥ect| TOU GTOV GTOYO.

I to oxond autd, avantiooeton éva oyfua Mn Feopuxod Hpofientixod EAéyyou
(NMPC), Sotunepévo yior Tn SUVaX’ ToU CUCTHUNTOS, TEOXEWWEVOU va emtteuy Vel 1
Tapoxohoinan tou audaipeta xivoluevou otoyou. Aedouévou 6Tt o NMPC Bacileto
OTY MEANOVTIXT] CUUTIERLPOEE TOU GUC THUATOS, ATALTELTAL 1) TEOYIA TOU ETYELOU GTOYOU
oe 6ho Tov ypovixd opllovta tou NMPC. Ilpog auth tnv xatedduvor, éva BuvexTi-
%6 Nevpwvixd Aixtuo (CNN), cuvodeuduevo and évav Kernelized Correlation Filter
(KCF) tracker, o&iomoteltan yioo tnv obLdAelnty oviyveuon tou GTOYOL X, GTN GU-
VEYELL, Ol Tpoavapepdeloeg UETEYOEIS EVOWUATOVOVTOL GE Vol TROBANUA TahvOROUNoNS
Bézier npoxewévou va mpofiegidel n pelhovtixr tou tpoytd [29]. Tehwxd, to goptio
aneAeLdepMOVETAL TEOG TOV ENLYELD GTOYO, AVOLYOVTAS WAl OETAYT), HOAC ovomoinel
wor ouvdrixn mou cuoyetilel TNV TEoBAenduevy PBoahAloTIXY TEOYIE TOU QOETioL Ue TN
HeEANOVTIXT %vNom TOL GTOYOU. LNUEWWVETOL OTL 1) TOAAVTOTIX xvNoT Tou oY owilol Xa-
Té TNV TapaxohoUNCT TOU GTOY 0L IO Td TNV ETTUY T EVandUeon Tou opTiou dpxeTd

0UOXOAT oXOUT XU YLOL EVOLY EUTIELRO YELRLOTH).

Opiopoc tou IpofAvuatog

e auTAY TNV EVOTNTO, SLATUTIOVOUUE TO TEOBANUA EAEY Y 0L xivnong Tng mapoxolovinong
EVOC ETUYEIOL GTOYOL YENOULOTOLWVTAS VAL TOAUXOTITEQO UE OVIRTNUEVO HECH TY OOV
poptio, omwe aiveton oty Ewdva 4.1. Ihio cuyxexpwéva, egetdlovpe tnv mepintwon

xotd T omola éva un enavdpnuévo eniyeto dymuo (UGV) xivelton audaipeto oo €dopog
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Xwelg vor polpdleTon TANEOPoRiEg OYETXE UE TNY XATACTAOY) TOU, dnhadn TN Véorn Tou pr
XL TNV ToyTNTE Tou Vv oe oéom Pe To cloTnua avapopds W, xat, w¢ ex To0ToU, TO
UAV Booileton udvo otic ontixéc nAnpogopieg, mou Aopfdvovtol and Ty xGuepa, OoTE
VO TUPAXOROVVEL CUVEYMS TOV OTOYO %O TEAIXE VO EVATOUECEL TO avaRTNUEVO (PopTio

OE AUTOV.

ITpog authY TV xoteduvar, avamtiooeTon T0 oy ud EAEYY 0L, Tou anexovileTo
otnv Euxéva 4.2, npoxeévou va exmhnpwiet n {ntoduevn epapuoyr. H npoavagepideioa

oTpaTNYWr eEAEYYOUL anoteleiton amd Tor axdhouda uépn:

1. Aviyveuon tou oyowiol Bdoer CNN xou extiunon g cuVolxc xATAGTACTS TOU
oyowlol, dnhadn Nz, xaL wr,, Yenowonowwvtoag éva gihteo Kalman mou o&ionotet
Vv €€060 Tou CNN xou Ti¢ UETENOELS TTOU TOREYOVTOL atd BUVAULOXVPET), GUUPLVA

ue v Evotnra 3.3.1,

2. Aviyveuor tou atdyou yenowonowwvtag évay KCF tracker xou éva CNN, 1o omolo
umoBexvieL Yt apyxr] teploy ) eviiagépovtoc (ROI) vy tov KCF tracker, xou
meoPBhedmn e perlovixrc xivnong tou atdyou, dnhadn tng Yéong pr xou Tng
TayOTNTOC VT O OYEOT UE TO GUOTNUA avapopds W, YenoLLOTOWMVTAC XOUTUAES

Bézier,

3. Avdmntuin evog NMPC, Slatunwuévou yiol T U Yeouuixy) Suvouxr Tou cuo THdo-
to¢ (Egiowon 2.11), 0 onolog eVowpatdVeL Tn LEAOVTIXH TpoyLd ToU 0TdY 0L GTOV
yeovixd optlovta tou NMPC xou mopdyel xatdhAnieg eVIOAES Yol TOV ECWOTERIXO
Bpoyo EAEYHOL TOL AUTOUATOU TUAGTOU TOU EAYLC TOTOLOVY TO GQUAUOL TULUXONO-

Oinone yetagd Tou oTOYOU XaL TOU PopTiou X

4. 'Eleyyog wog ouviniune n omnola, Bdoel tng mpoPBAenduevne Teoytds tou otdyou
X0l Tou PopTiov, evepYOoTOLEl TO AVOLYUO WAS AETEYNS XU TNV AMEAELIERMOT) TOU

popTiov Tpog Tov oTOYO.

Ta topamdve HEROVWUEVYL UEPT), EXTOC ATO TNV EXTIUNOT TNG XATAC TAOTC TOU CYOL-
VoV HEOW XGUEPAC TTOU TTAPOLCLAG TNXE TpoNYoupévewe (Evétnta 3.3.1), avahbovto oyo-

Ao Tixd oTic axdlovdeg evoTnTeg.

Extipnon tnc Katdotaong tou Xtdyou

Aviyvevorn tou Xtdyou

Extog amd v xatdotacT Tou oyowlol, 1) EXTUNCT TN XATACTACNS TOU OTdY0U elvol
amapaitnTn npolndveon yia TNy emitevdn TNg TapaxoAoVINCHC TOU XA TNV ETTUYY €-
vanoveor) tou goptiou oe autév. Me avdhoyo teoémo pe v Evotnra 3.3.1, éva CNN

exTaudeVETOL Yo var vty VEUYEL 0 6TOY0C oL XIVELTOL TPOS Ay VWO TeES XoTteLIUVOELC.

QQoté00, dtav to Qoptio Beloxeton MAvVK and TOv 0TOYO, €va PEPOg TNG TEPLOY NG
NG EOVOC, TOU AVTIGTOLYEL OTOV OTOY0, XAAUTTETOL ANO TO PORETIO XA, WS AMOTEAECUA,

0 CNN anotuyydvel vo aviyveloel Tov GToy0 GUVEYOUEVA. XULVETWS, €vac tracker
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ollonoteiton emimpooieta €tol ote va emtevyVel 1 eVPWOTN AVAYVOELON TOU GTOY 0oL
TOEE ToL OTTIXG EUTO0L, eV TapdhAnha Stoopaiileton taydtepog pLiUOE aviyveuong.
Meto€l twv dlapdpwy tracker nou mapovsidlovian ot Bihoypapla, emiéyeton o KCF
tracker [30] Aoyow tne udmiAc ToybTNTaG xon oxpiBEdc Tou Xxou TNS IXAVOTNTES TOL VoL

TopaxohoVVEl GTOYOUS ToEOoLGia UEPLXNS OTTIXTG TUPEUTOBIONG.
H Sudixaoio tne aviyvevong elvan wg e€he:
1. E€aywyn ROI yenowonowdvtag to exnoudeupévo CNN,

2. Me Bdon v npoavagepdeioo neptoyy| eviagpépovtos (ROI), yeron evéc KCF

tracker xou

3. Aviyveuon Cavd tou oTtoyou yenowonowdvtag o CNN uetd and pepnés ena-
voridelg, mpoxelwévou va pelwdel 10 GUCCWEELUEVD GPIAUA 1 OTAV ATOTUYEL O

tracker.

Me Bdion v npoavagepeioa diadixaota, e€dyeta pio teploy ) evitagépovtog (ROI),
TIOL AVTLO TOLYEl OTOV OTOY0, UE TN LOP@PT| EVOS optoywviou, 6mwe aneixoviletou otny Ei-
x6va 4.3, To xévtpo (ur, vr) Tou opdoywviou opilel Tic ouvteTayUéveS pixel Tou GToYOU
o710 eninedo g exovag. Egdoov o otodyoc nveltan oto €dagog, To YVvmwaTtod tou o
zr = h yenowonoieitar yio va utoAoyio Tel 1) Telodido TaTn Vo ToU. LUVETKOE, HETA oo
XATAAANAOUG PETACYNUATIOUOVE HETAEY TOU CUC TAUATOS TNG XAUEROS XAl TOU UG THUA-
TOC AvaPopds, AaufdveTon plo extiunon tng Véong Tou oToyov P = [:cT yr ZT}T o€

xade ypovixr oTiyun.

IIp6BAedm tne Kivnong tou Xtéyou

H extlunon tne 9€omg tou 6ty 0UL dev elvon ETaEXC YIa TO AVATTUCCOUEVO Oy U ENEY-
you, xadwe o NMPC anawtel 1600 11 0éom 660 xon tny TorydTntal Tou 6TdY0L OYL UOVO
TNV TEEYOLUoA YPOoVIXY) OTLYUN 0hAd xou OE OO TOV PEANOVTIXG Ypovixd opilovTa. T'a To
oxond autd, allonolovvTon oL xauriiec Bézier, 6nwe npoteivetar oto [29], napduola pe
v Evéomnta 3.3.2. Qotéc0, dedouévou 6tL oxondg eivan 1 medPBiedn tne perhoviinrg
TEOYLAS TOU GTOY OV, TO TEOBANUA TUALVOROUNONE ENAVABLATUTOVETAL OE GOYXELOT| UE TNV
Evétnra 3.3.2, 6nou n xounOAn Bézier e€opdiuvoe tic petproeic wéypt Ty tpé€xouca
YEOVIXY CTUYUY.

ITio ouyxexpyéva, 6mwe avapépetal otny Evotnta 3.3.2, wa xounOAn Bézier oplle-

T, pe Bdomn 1o PBadud n g xaumiAng, og e&hg:
B(T) = Z bi7n(7)ci (33)
i=0
6Tou T € [0, 1}, B(7) € R? (0900 o 616y0¢ nivelton oto o — y eninedo) ebvon 1 xoumdAn

Bézier, b; ,(7),i = 0,--- ,n elvor T tohudvupa Bdone Bernstein Boduod n xou ¢; =

T
[Cm' CW} € R? elvor o n + 1 onuela ehéyyou.
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IMTpoxewévou va extyuniel xou va tpofhegiel n xbvnomn Tou otdyou, elvan amapaitnto
va Beedel To xatdhinio chvoho onueiwy eréyyou ¢ = [co, ci, - ,cn} . Hpog authy v
xotevYuvor), vtodétovtac 6t N extiunoelg tne Véong tou 6Téyou pr elvon Slordéoiueg
obupwva ye v Evotnra 4.3.1, pall pe ti¢ avtloTtolyeg ypovixég oTiyuég t, éva OeT
dedouévewv D = {(t1,x71,y711), -, (tN, 27N, Y7,N) } oTodepol peyédoug dnuiovpye-
{ton, 6mou N yeovixh) otiyur| tn avtiotoyel oty tpEyouca otiyur. To mpoavapepdéy
oeT 0edopévwy D emxouponoelton woAC etvon Sladéotun wior véa pétenon. Aedopévou
6Tl 0 oxoTog elvon var TpofBAégouye TNV xivnan Tou GTOYoU PEYEL TN UEANOVTIXY YEOVIXY
oy tp, n axdrovdn avtiotolyion meaypatonoteitar HETUED TWV YEOVLIXOU BLHo THUATOG

te [tl, tp] X0 TNG TOEOUETEOV T € [0, 1] NG xounvAng Bézier:

t—t
ty —t

(34)

To BértioTto clvolo omnueiwv eréyyou umoroy(letan clupwva pe To axdhouto

TeoBAinua BeAtiotononong:

N
. 2
min >~ (wy, |B(r:) — pr(t:)|3) (35)
i=1
6mou o oToy0¢ elvar va ehaylotomoinVel 1 andoTaon PETOED TWV UETEHOEWY Xl TNG
xaumOAne Bézier pye wy, vo dnAcdyvouv Bden mou emPBAAAOUY XUPOCE OTIC TAAUOTERES

wetproels [29].

Emmiéov, Yo TOV EVIOTUOUO YOVO EQIXTWV ADCEWY, emBdAlovTaL TEploployol oTo
Topamdve TedlAnua Bektiotonoimong. Ou neploplopol awtol mnydlouy and tar duvoXd.
OpLOL TOL OTOY OV, CUUPWVA UE T OTtolaL 1) TEOPBAETOUEVT) Tar OTNTO Yo ETUTAYUVOT| TOL Vo
TEETEL VoL BploX0OVTOL OTO ECHTERIXO TWV [—um(w, umw} O [—amw, amw} avtioTolya.
IogoaywyiCovtag Ty xounvAn Bézier, opiCovta ol axdroudol teptopiopol yio Tov dova

x (opoine yio T ddotaon y):

—Umaz <N (Cpi — Cai—1) /[ (tp — t1) < Umaa (36)

—amaz <0 (0= 1) (cri = 2051 + Cai2) / (tp — 11)” < Gmaa

To napamndve nedfinua Tetpaywvixot Ipoypaupationol ye teploptopoie emhdeTol

xenowonotwvtog to hoylopxd OOQP [24], mapdpowa pe v Evétnra 3.3.2 xou, tekt-

x4, wa extiunon e pehhovtixic Tpoytdc Tou oTtoyov, dnhadh pr(t) xou vr(t), eivan
dlordéouun oe GAo Tov pueAhoviixd opllovta [t N, tp}.



Exteviic EAAnvixtj Ilepidngn 153

Mn T'eapuixodg IlgoBAentindc ‘Eleyyog yio Iopoaxo-
AoVvUnorn Xtodyou

Me oxond tnyv anotehecpatiny nopaxoroLinon tou entyelov otdyou, évac NMPC dia-
TUTOVETOL YLOL TN U1] YROUUWXT Buvouixy) Tou cucTiuatog mou opileton and v Ediow-
on 2.11. Aedoyévou 611 10 oyfuo NMPC embidxer v mapaxorotdnon tou enlyeiou
OTOYOU Xl TEMXE TNV evanddeon Tou avoapTnuévou goptiou oe autdy, opilovton ot a-

x6hovidec cLUVAPTATELC XOOTOUC:

T 2

Jp(t)ZHp(t)Hn(t)pT(t)[0 0 Zref] a

Jo(t) = [Iv(t) + I(t) — v (t)|[G,

2 37
Jn<t>=H[¢<t> B() () — o] BT

o

6mou Q, € R¥3, Q, € R¥>3, Q, € R¥3 xau Qp € R eivou drorydowior mivaxeg
otdduong xan Jp, Jy, Jy xon Jp, ebvan cuvaptAcEc XxOGTOUC, 0L CYEBIAOUEVES YioL TNV
CUYXEXQIIEVT] EQUPUOYT, Tou oyeTilovTon Pe TNV andc oot METAED TOU POoETIOL XaL TOU
OTOYOU, TN OYETXT Ty LTNTA PETOEY TOU QPOETIOL oL TOU GTOYOU, TO GQAAUI UeTAED
TOU TPEYOVTOG X0 TOU ETIUUNTOY TEOCAVATOMOUOU TOU OYHUATOS, XL TNV TAAAVTOTLXY
xivnon tou oyowol. Ynuewdvetar 6t 1o UAV Yo mpénel var mapaxoloviel tov eniyeto
OTOYO BLATNEOVTAS Eva oLYXEXEWEVO Oog Tave and autdy, Tou oplleton amd TN Je-
TOBANTY 2rep. H yowvia avagopds yaw 1y..r dlatneeiton otadepr. Emmhéov, n yovioxd
xlvnon tou oyowlol ehayloTonoleltal, MHOTE VoL ATOPEDYOVTAL TEPLTTES TUAAVTWOOELS Xl

vou Slao@ahiletan 1) ao@dAELd TOL TEOG ToEABOCT PoETiou.

AopBdvovtag urédn tn cuvdetnon tou cuvolxol xéctoug Jp = J, + Jy + Jy + J
X0l TOUG TEELOPLOUOUE GTNY El00B0 TOu GUOTAHUATOS, To axdroudo TTpdBAnua Bértiotou

EXéyyou (OCP) Satunddvetor ooy ypovixd opilovia [tN, tp]5

min [ (1(0) + [0(0)) d + (e

st x(ty) = xn, X = f(x,v) (E€lowon 2.11), v e U

(38)

OToL X = [pT vIi ¢ 0 v nt wﬂT ERB v = [qﬁd Oa Y vzd}T € R* eivan
TO SLEVUOUOL XATAGTACTG X0 OL EVIOAES YLO TOV EGWTERXO oy 0 EAEYYOL TOU AUTOUATOU
mAoTou avtiotowya, R elvan o mivaxag otdduiong yia tny eloodo xo, U elvon to ohvoro
TWV TEPLOPIOUDY 6NV elcodo Tou xadopllovtar amd To 6pLa TV Ywviey roll, pitch xo

NS XATOXOELPNG TaY OTNTOC.

To npoavagepdéy OCP emhleton oe xdie ypovixr enavdindn ty, dedouévng tng

TEOBAETOUEVNC TEOYLAC TOU GTOYOU, Xl 1) TEAOTY El00B0C Amd TNV TaEay OUEVT) oxxohoudia
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€L000WY ATOCTEAMAETUL OTOV €0WTEPO [(Bpdyo ehéyyou Tou autouatou mAdtou. To
ACADO Toolkit [33], pall ye tov emhitn qpOASES [17], yenowlomootvtan xou mdAL

Yl To oYedlooUo xou TNy enthuor o mpaypatixd ypovo tou OCP.

Yuvinxn Aneievdépwong tou Pogtiouv

‘Ocov agopd T cuvinxn Yo TNV anekeulépnwon Tou QopTiou, ot xdle TEEYoUTA YEOoVLXY
oTiyun ty, vtohoy(letar 1 TpoyLd Tou QopTiou LToYETovTac 6Tl aneAeLlepOVETAL. LTNY
nepintwon auty, o goptio axoloudel po BolhioTixn TeoyLd, dnAadY| xiveltow udvo Lo
Vv enidpaon g BapdtnTag, olupeva ye Ty axorovdn eicwon:

t2

pL(t) = pr(tn) + vi(tn) -t —ge:5, (39)

omou pr, xou vy, divovtan and tnv E&iowon 2.1. Aedouévou tou yvewoTtol Udoug Tou
OTOYOL 27 XaL NS Tapandve e&iowong, unoloyiletow 1 yeovixr oTiyur| tn, xatd TNV
omolo 1 Tpoyld Tou Qoptiov Téuveton PE TO 2Zp, dMhadh zr(th) = zp. Xuvenog, 7
oLVl yio TRV aneleudépwon Tou popTiou BlopopP®veTal WS eENG:

IpL(tr) — pr(th)l < d (40)

omou d elvon 1 u€yiotn optllovtia andc taoT) HETAED TOL PopTioL Xl TOU GTOYoU. XNUEL-
OVETAL OTL 1) SUVD XY UTOONAWYVEL OTL 1) YeovixY| oTiyur ¢y, Beloxetar evtde tou opllovta
NG TEOPAETOUEVNC Xivnong Tou aTdyou, dnhady| ty, € [tN, tp], X0, S EX TOUTOU, ULOL E-
xtlunon e xivnong tou atdyou etvon dlardéoiur. AlapopeTixd, 1 ouvinixn dev eAEyyEToL.
H Ewéva 4.4 mpoc@épel pio oTTiny ovomopdo Toaon Tng cuvIixng yio Ty aneAeudépnmon

Tou QopTiou.

ITetpapatind AnoteAécpata

IMewpopotiny Awdtadn

To npotewdyevo oyhua allohoyelton TELUUATIXG ot Eva eEwTEPXO TEpBEANOY YeNnotuo-
Towwvtac To octorotor tng Ewoévag 4.1 pe tov evonpatwuévo urtoroyioth Jetson AGX
Xavier xau v xduepa ZED 2. To oynuoa elvor emimhéov e€omhiopévo ue wla duvouoxu-
pENN, 1 omolo yeTpd TNy Tdom Tou ool ||T||, xou évav cepBoxivnthpa Tou EAEYYEL Wa
aETdY T %o, ETOUEVKS, TNV aneheudépwor Tou goptiou. Mia Bdon exTun®veTol Yior TN
CLVAPUOAGYNOT TNG BuvaPoXLPEANS Xau TN aETdY NS, Tou BeloxovTton xou oL Vo axEBKS
v and to goptio. Tocoo 1 duvapoxuhérn 600 xau o oepBoxivnthipag cuvdEéovtan -
nevdelog ye éva Arduino Uno, to onolo emxovmvel oelplaxd pe to Jetson. ‘Ocov agpopd
70 @optio, Aopfdvetar unddn ula Todvta Tou tepLéyel poptio mr, = 0,5 kg. Téhog, o e-
niyelog otoyoc ebvon to UGV Robotnik Summit mou odnyeiton yewpoxivto mpog tuyaleg

xateLdUVoElS Yéow TNAEYEpLOUo0 YE joystick.
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‘Ocov aopd 10 UTOAOYLG TIXO XOOTOC TOU TEOTEWVOUEVOL OYHULATOS, O UECOC YPOVOC
ene€epyaciog, 0To LPNAGOY SuvatoTHTwy Jetson, TwV UEUOVWUEVWY UERKY, TOU GUVLC TO-
Ov to oyfua ehéyyou tng Ewdvoc 4.2, nopoucidleton otov Ilivaxa 4.1. Ebvon mpopovég
OTL EMTUYYAVETOL ETUBOOT, O TEAYUATIXO YEOVO XATA TN Bidpxela TN TapaxohoLInong
tou UGV.

IMewpdpoata o IMpayuatind IlepiBdAioy

[Tpoxewévou va emxupwiel 1 IXAVOTNTA TNG TEOTEWOUEVNS OTEATNYLXNC EAEYYOU VoL ot
poxohovdel addxona to UGV, die€&rydn apywd éva melpopa oe e€wtepnd Yweo ywels
vou Angdel unddn n anehevdépwan tou goptiou. Katd tn Sidpxelo Tou npdtou nelpdua-
t0¢, T0 UGV xwhdnxe e péon oplldvtio taydtnta 1.5m/s xou péyiotn 2.5m/s, énwg
extuuiinxe yéow tne xaunvine Bézier (Ewdvee 4.5¢, 4.5d). To avantuocduevo cOon-
poe NMPC nou Baoiletar otny dpaon xou emixowvwvel ancudeiog pe 1o ecntepnd Ppdyo
ehéyyou tou UAV, emitpénel 610 Oynuot Vo avTamoxplveton YerYopa 6TOUS &y vwo Toug
EALYHOUC TOU GTOYOU, TOU EXTEAOVUVTOL UG TOV YELPLO T 0L, XUTA CUVETELY, 1) CUVEY NS
Tapaxohovinom tou otdyou emTelYUnxe, cluwva pe Tic Ewdveg 4.5a, 4.5b, 6mou a-
rewxovilovton oL TeoyEC xat TwV 800 oyMudtwy cto opldvtio eninedo. Emmiéoyv, nopd
Ti¢ anotopeg xwroeg Tou UGV, 1 tahavtwTtind xivnon tou oyowtol, tou extiddtal cOy-
pova pe v Evétnta 3.3.1, dev dieyépdnxe xou ol ywvleg Tou oyowiol datneriinxay

xate and 209, 6nwe galveton oty Ewdva 4.5e.

YN ouvéyela, mpayuoatonojinxe éva dedtepo melpapor TEOXEWEVOL Vo olONOY -
Vel N ovOTNTA TOU TEOTEWVOUEVOU OYUAUTOS Vo EVATOVECEL ETUTUYOC TO AVIRTNUEVO
poptio otov otoy0. To UAV apyxd mapaxohotinoe to oynua puéypt vor ixovomoinet
N ouvdfxn Yo Ty aneleudépmon tou goptiov (EZiowon 4.8), dnwe anewxoviletar otny
Ewoéva 4.6a. Exelvn tn otiypr), evepyonojinxe 1o dvolypa tne oemdyng xat To (optio
anchevdepddnxe pe emtuylo xou tonoVethinxe eviog xoutiol, mou yetépepe 0 UGV,

onwe gatvetar otny Ewdva 4.6.

Ta mpoavageplévta nelpduota, CUUTEQLAAUBAVOUEVOLU Xou EVOS ETUTAEOV, ATELXO-

viCovtou xaAUTtepa 0TO OYETIXO PBivieo https://youtu.be/6aleTdb71Sc.


https://youtu.be/6aleTdb71Sc
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Aecwypatoindia Nego and
Yodtwva IepiBdAAovTa

Ewcaywy

Ye autd to xe@dhato, e€etdlouye T dielaywyy) derypoatorndlag vepod and €vor LBATIVO
repBdiiov ue Tt fordela evog mohuxontépou. Ilpoxewévou va anogpeuvydel n evonudtw-
on WG s oyedlaouévng TAwTAC Bdong oto xdtw wépog Tou onuatog Tou UAV, 7
omolol EMTEENEL GTO OYNUA VA TEOCYEWWVEL XL Vo EMTAEEL OTNV ETULPAVELXL TOU VEEOD
[1],[43],[58], tpoTolpe Ty avdeTnom eVOc Unyoviodol LEcw oy omlol, xadoe anotehel
woe €Towr meog yenon AUoTn amd TAELEAC UNYOVIXTC TOAUTAOXOTNTUC XL OEV TEELO-
etler v egappooiudtnta Tou UAV oe epyaoiec mou oyetilovion amoxheloTxd ye

detypatorndio vepou.

Qotéoo, 1 omcVérxovoa dOvaurn ou aoxelton otov Pudicuévo unyoavioud, Aoyw
N AAANAETBPAOTC TOU UE TN POT| TOL VEEOU, 0BNYEL OE Wlol EMXAWVY VECT TOou Gy oWLoY,
xVplwg g ToTdUL 6TIou CUVAHTWE TapaTNEElTAL ULl aEXETd LPNAY wéon TaydTNTa VEEOU.
H tdon tou emixhivoig oyowio) eunodiler to UAV va otadepomomndel enaxpiBcdc mdve
a6 Ty emduunty| Yéon derypatolndlag xou, enoyévee, teénel va extyunel pe fdomn toug
EVOWUATOUEVOUS TdVw oTo Oynua awodnthpec. Teyvinée mou Boaocilovton anoxhelotixd
oTNY 6paoT Sev elvol XATIAANAES OE AUTH TNY TEPITTWOT, xS 0 unyaviouwds lvon Pu-
YopEvog xal, S EX TOVTOU, 1) AV VEUGT| TOU elvor eEALEETIXG BOOXOAT), av O)L AVEPLXTY,
xou e€aptdton oe yeydho Badud and v xadapdtntar Tou vepol. T To oxond autd,
TO OET WOUNTARWY TNG POUTOTIXNE TAXTPOPUOS ETaEdveTal ue TpdoveTous aonThpeg
YOUNAOU xOGTOUS, GLUYXEXPWEVA Evay auoINTARN LTERY WY, Wat BUVOHOXUPEAT xan Evay
aodntriea Bédoug, Tépa PUOLXE amO TNV XGUERA UE TEOC TA XATL TEOCUVUTOACUS. Me
oxom6 T oOVINEN TV avtioTolywy PeTphoewy, oyedidloupe BVo pedodoroyies: (o)
novdpounon we Gaussian Processes (GPs) xau () Extended Kalman Filter (EKF).
Telxd, n enldpaon tne Swotapayfic HETELALETAU EVOWUATOVOVTAC TNV EXTUNON TN Tdong
TOU Oy 0WL00 OE €va oYU EAEYYOL X, ETOL, EMTUYYAVETOL 1) axpLB3ic otadeponoinon
tou UAV ndvew and ) 9éon derypoatoindlac. Avo oyruota eAEY)0U SlepeuvmdVTOL Yiot
QTAY TNV EQapUOYN, ouyxexpéva: (o) éva oyfua YEWUETpoV e éyyou (geometric
controller) xou (B) wot otpatnyx un yeouuxol npoBientixol eréyyou (NMPC).
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Oplopodg tou IlpofBAruatog

Yy evétnta auth, Blatumdvoupe To TedfBAnua eAEyyou Tng Serypotohndlag vepol ue
TOAUXOTTERO.  Buyxexpéva, eEetdlouue v nepinTtwon xatd tnv onolo éva UAV e
AVORTNUEVO HEGH GO0V UNYAVIoUS TeayLoTOToLE! SetyatoAnla vepol oe €var UBATLVO
nepBdAioy, 6mwe gaivetar oty Ewxodva 5.1. Trnodétovtag 6Tl 1 Toy TNt Tng poRe Tou
vepol Uy, OV elvon aeAnTéa, 1) emarydpevn omoVélxouvoa dvoun fy (E€lowon 2.12) nou
opat 6TOV BUIOUEVO UNYAVIOUO, €YEL WG ATOTEAEOUA TNV ETXAWVY VEOT TOU GYOWLOU,
dnhady) n.| < 1. Xuvende, n tdomn tou emdvole oyowod T = ||'T||n, nou aoxeitou
o070 Oynua, emneedlel tov éheyyo tng Yéong tou UAV xou, xatd cuvéneia, 6tav Oev
hoBdveton unddr 1 e€wTepiny| dlvoUT TopaTNEELTOL AUENUEVO GPAAUA, OE CUYXQELON UE

v emdupnty Véon derypatorndioc prey-

[N to oxond autd, anouteiton Eva XaTEAANAO Oy AU EAEYYOU TEOXEWEVOL VAL ETIL-
tevy Vel 1 axpPric otadeponoinon Tou oyfuatog Thvw and T Yéor derypatornlog mopd
Tig unoPBpeyteg Satapayéc mou petapépovian ato UAV péow tou oyowiod. Ta axdroudo

uéern vAomololvToL:

1. "Ayeon extiunon e tome tou oyowot T ye Bdon TIC UETPNOELS TOU TOREYOVTAL
AT HATAAANAA EVOWUATOUEVOUC ETIL TOU OYHUATOC Lo INTARES, CUYXEXPLUEVA EVaY

awo¥NThREa LUTEEN YWY, ULot XAPEQED, Uiot DuVOHOXLPERT xou Evay aucunThea Bddouc,

2. Ilpocéyyion tng Tdong Tou oyowiol ue tn Borieia evog Extended Kalman Filter
1y Gaussian Processes (GPs) npoxewévou va petplaotel o 96pufoc oTic petpfoeig

TWV ACUNTHPWY XL

3. Avdmtuin evoc Yewueteol EAEYXTH 1 EVOC U1 YEUUULXOU TROBAETTIX0) EAEYXTY
(NMPC) mou Aowfdver unddn T EXTWACELS TNG THONG XL TAUPAYEL TIS XOTEAAN-
AEC EVTOMEC YLOL TOV ECWTEPXO BpOY0 EAEYYOU TOU AUTOUATOU TUAGTOU, (GTE VOl

ehaylotonowniel to opdiua Yéong p — Prey-

Extipnon tne Awatopayng

Extipnon tne Awxtapayrs Baoer AcOntripwy

ITpoxewévou va emteuydel 1 edpwotn otadepomoinon Tou oyRuATOC VW and TNV &-
muunty €on derypatodndlag, elvon amopaitnTn wiot extiunon e Tdong Tou Gy oLy
T = || T||n. o 1o oxond autd, adlonotodviar pio xduepas Tou xoltdlel TPOC T XATw,

ulor Suvaoxuérn, évag aodnthipag uneprywy xal £vag aodntrheas Bddouc.

ITio cuyxexpwéva, Tpootideton wa SuvoroxuPErn ot LEan Tou GYOWLOY UE TETOLO
TEOTO WOTE VoL YETEA GuUETH TNV TAoT. LnueltdveTton OTL 1 duvopoxuérn napéyel oli-
OMOTEC YETPNOEC TN TAONS HE YounAo VopuBo. 201600, Ho6Vo 1 VopUd NG TAoTG
| T|| petptéton and v Suvopoxuvdéhn xou, we ex To0TOU, omoutovVIAL TEGCVETOL UoVT-
TheeS Yo vo extiunel n xatedYuvon tng Sotapayfic, dnhadn to povadialo didvuoua Tou

oyowlol n.
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Koatd ouvéneia, Tonodeteltan évog aucintripog Bdoug 6to %dtw dxpo tou oy ool
o onolog unoloyilel To Badoc d uéyel To onolo elvon Budiopévoc o unyaviouds delyua-
Tohndloc, dnhadh TNV xotaxdpuprn ando ooy YETAE) TNS EMLPAVELNS TOU VEROD XL TOU
%4Te dxpou Tou oyowol. E@dcov to uixog tou ayowlol | elvon Yvwo o, TpoxOTTEL Yot
extiunon g cuVoTWoUG Ny, UTO TNV TEoUTOGUEST 6TL TO XAUAWOLO Elvol TEVIWUEVO, UE

Bdom TNV OUOLOTNTA TELYWOVWV:
N, = _h+d (41)

l

6mou 10 h LUTOBNAGVEL To UPOC TOLU OYAUATOE TAVEL ATO TNV EMLPAVELL TOU VEEOV, TO
omnolo yetpiéton ansuieiog and Tov aucinTheo LTEPNY WY X0 BlopBveTon Yior U UNOEVIXES
yowvieg roll xou pitch. Aedopévou 61t oL ausinthpes ueprywy elvon emppenelc oe VopuPo
TV and To vepo, epapudleTtal €va GIATEo XWVOUUEVOU UEGOL GOV, EVE OL UXPULES TUIES

Ay VOOUVTAL.

Emmiéov, yia va extiundel n npoforr tou yovodiaiou dlaviouatog Tou ayowlol n
670 eninedo x — y Tou cucTAUATOC avapopds W, aflonotelton 1 xduepa. Ihio cuyxexpt-
wéva, yenotpornoteitow o ahydprduoc Dense Inverse Search (DIS) [44], évag olyopripog
ontxfic porc (optical flow) mou Sraxpiveton yior T younAr VTOAOYLO TIXY TOALTAOXHTNTE
oL xau TNV axp{Peld Tou, pe oxond Tov utoloyloud evée muxvol mediou poric (dense
flow field), dnhad” tne omuxic pofic yior bha tar onueio tne edvac. To anotéleopo Tou
ahyoprduouv DIS napousidletar oty Ewdva 5.2 1600 yia t0 mep3dhhov mpocopoiwong
000 %Al YL TEOYUUTIXG TEQLSHANOVTAL

TrohoylCovtag Tov Y€oo 6po Tou medlou potc, e&dyetal 1 xVplar ToyLTNTA EPONG

Tou vepot ¢

Vw OF OYEON YE TO CUCTNUON CUVIETAYUEVWY TNS XAUEQAS APOV UETAUTEA-
ToLV oL TayUTNTES TWV pixels oe xapTeclaveég xon agonpedel 1 odoueTplor TOU OYHUATOC.
Y1n ouvéyela, exteAelTon EVaC XATIAANAOC UETACY NUATIONOG OTO GUC TNUAL avapopdc W,
YENOWOTOLOVTAS TOV 0 TaERO TiVaXA TEQLOTROPHE AO TO GOOTNUN CUVTETAYUEVWY TNG
XAPEPOS 0TO cUoTNUA Tou oyrfuatoc B xou tov mivaxa Ry p xa, tehixd, unoloyileton

1N T OTNTAL TOU VEEOUL Vy,, O oot ue 10 W.

Yopgwva pe v E&lowon 2.12, n npofory ng, = [nm Ny O}T TOU UovadLaiou
dlavioUaTog Tou oowiol 6To eninedo  — y Tou W, 0MAad oTNV ETPAVELL TOU VEROU,
xar 1 omoV¥éAxouoa dOvaur fg, mou dpa GTOV UNYOVIoUO, Elval OUOEEOT BLOVOCUTA.
Acedopévou otL 1 omo¥érxouvoa dovaun fg xon 1 Toy T TS PONE TOL VEROU vy, Elvor

enlong oudppona daviouota, TEOoXUTTEL 1 axdrovdn eElowon:
atan2 (M, fg) = atan2 (t,y, tw.e) = Ow (42)
omou b, etvon 1 xatedhYuvon Tne porg Tou vepol. Enueldvetal OTL 1) Tapandve e&iowon

loyVel und v npoindleorn 6Tl o Pudouévog unyaviopos elvon mepitou oTadepomoln-

pévoc, dnhadh ||vr| ~ 0 xou [|[vi| ~ 0.
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ITaAwdpounon pe Gaussian Processes

o Ty avtipetoniorn tou Yopfou, Tou GUVOBEVEL TIC UETEHOES TwV aoINnThpwy, oyeE-
OLdleTon Wi U TOEOPETEXN eXTUNOT TNG TAoNES TOU GO0 BACLOUEVY GTY) UN) VLX)
uddnon xou, ouvyxexpwéva, otic Gaussian Processes. H évvola tng naAwvdpdunong ue

GPs mepiypdgpetan Sielodnd oty Evétnra 3.6.3.

Aoufdvovtag unddn TIC ATUTACELS TNG CUYXEXPWEVNC EQUOUOYTS, TO TEOBANUA
NS TAAVOPOUNOTE BLITUTOVETAL UE TETOLO TEOTO WOTE va mpooeyyileton 1 tdon Tou
oyowlol. Enopéve, to oet 6edouévey D anotehelton and TNV Tdom TOU GYOWLOU T =
|'T||f, petpoluevn 00¥cpmvoc pe v Evémnra 5.3.1, wg €€0d0, xau TNy xotdoTtaon tou

OYNUATOC X = [p v} ¢ DEBOUEVO ELGOBOL:

D= {z: x1,-oxn] € RO Y = [y, ] E]R{NX?’} (43)

‘Onwe avagépinre otny Evétnta 3.6.3, 1o GPs yovtelonowody Paduntéc ouvaptrosic.
Yuvenwg, yenowomnowolvtar 2 aveldptnteg Gaussian Processes yia va mpooeyylotel
T0 ddvuopa tne Ttdong, dedopévou Ot 1 voppa tne tdone T petpiéton amevdeiog
and TNV duvooxLPEAT xan 6TL To povadiaio didvuoua Tou oyowlol n €yel 2 Poduoig
eheudeploc. Mohic elvon Stordéaiun pio véo u€tenom Tne Tdomg ToU GYoWLoU T, 0 cOvoho
exmaidevong D xou oo GPs emxouponolodvton o€ Tpayotind yeovo xatd Tr) dladixascto

e Serypotondlog.

Extended Kalman Filter

Evohhaxtixd, nopouotdlouye glot UTOAOYLOTIXG TO anodoTixY| TEocEYYioT Tou BoacileTton
oe éva @iktpo Kalman, to omolo cuvbudlel Tic UETEHOES TOU TOEEYOVIOL Amd TOUG
oY TheeS Tou oy NuaToC Xt TpoaeYY(lel TV tdon tou xahwdiov T. Il cuyxexpéva,
dedouévne Tng Yvwothc vopuas tne tdong || T||, o andtepoc ot6y0¢ Tou piktpou Kalman
elvon vor extiuioel To govadiaio didvuoua tou oyowlol n aflonoldvtog T Edlomoeig 5.1
xou 5.2. I to oxomd auto, opllovtag X, =n = [nac Ny nZ}T € R3 wc 1o dLdvuoua

XATACTAONC, OLATUTVOVTAL ToL OXOAOUT LOVTER VLol TO CUGTNUO XU TG UETEHOELS:

XL =n= Wi, (44)
[m|

yL = |atan2 (fy,ng) | + VL (45)
(0

émouwy, € R3 xow v, € R3 ebvon adporotixol yxaouoiavol YépuBol e Siory¢vioug mivonee
OUPUETABANTOTNTOC.  DOUGVO UE TNV TUEATAVEL OLATUTWOT, TO Uovadlafo dLdvuoua
Tou ool povielonoteitan we random walk evdy o mepopoude wotnTog |nf| = 1
EVOWUOTWVETOL GTO LOVTENO PETENONG oay Wiat oyeddv addpufn Peudouétenon [3]. Adyw
TOU U1 YRuUUULx0) LOVTEAOL TWY UETENoEWY, avantiooetal éva Extended Kalman Filter
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‘EAeyyog Ocong
I'ewypetpixdg ‘Eleyyog

Metd v npocéyyion tne tdong tou oyowtol T, avantiooeton évag eheyxthc Véong
TEOXEWEVOL Vo amopplplel 1 exTiwouevn dlatapoy xou va otadeponomdel pe axplBela
T0 OyNua Whve and TNy emduunty V€on derypatorndlag pres. Apyixd, Lhonoigiton o
YEWUETEIXOS EAEYXTHS, Tou Topouctdleton ota [47], [56], xou o onoloc Baocileton otny
wiotnto differential flatness tng Suvauxic Tou TOAUXOTTEROL, UE WOl EMEXTAOT), ETOL

oote va ouuepthngVel n ewntepud dOvaun [8], [84], cuyxexpyéva n téomn Tou oyowiol.

ITio avahutxd, opllovton Tor axdroudo apdhuato Y€ong xan ToydTNTAC:

€p =P — Pref (46)
€ =V — Vyef (47)

Egbéoov o otoyog ebvan 1 otadepomoinon tou oyfuatog oe pio dedopévn Héon, n To-
YOTNTAL ovorpopdc elvon (o ue Undéy, Vyer = [O 0 O]T. Y0uguvo ue ) duvoxr Tou
oyfuatog, mou mapoucidletoan oty Ellowon 2.9, o emduuntdc npocavatohiopds Tou
UAV, exgpacuévoc péow tou mivoxa teploteopnc Ry, umoloy(leton, dedouévng wiog
emduuntic Ywviac yaw g, we e€nc:

—kyep, — kye, +mge, — T

b 48
4T Zkyep, — kpey, + mge, — T (4
T
boy = [~sta cta 0] (49)
bad X b3 q
b~ P2axbsa 50
Y oo,y X bl 0
Rq= [bl,d b3 X b1 g b3,d} (51)

omou ky, k, € RY etvan Yetind xépdn. O wivoxag mepiotpophic Ry tehixd petatpéretan
otic emuuntéc ywvieg Buler ¢4, 04, 1q Yot Tov ecwtepnd Ppodyo eAéyyou Tou auTéua-
ToU TAGTOV. LnuelwveTton 6Tl GANES EEMTEPIXES DUVENELS, TTOU BPOLY OTNY POUTOTLXY

TAATQOPUA, T.Y. AEROOUVAUIXES BUVAUELS OTLOVEAXOVCAC, AUEAODVTAL.

M I'pappixodg IpoBAentindg ‘Eleyyog

Emun\éov, avantiooeton évag un yeouuxos tpofrentinos eleyxthc (NMPC) we evah-
hoxTiny) oTeaTnYWr eAEY oL Tpoxeyévou va emitevyVel 1 axe3ric otadeponolnomn Tou
oyHoTtog xortd TN Bidpxeia Tng derypatoAndlag xan va emBAndoly neploptopol oty xa-
TAoTAOY TOL OYNAUATOC X oTny €loodo. ‘Etol, amogelyovtal andtouol ehlyuol Tou
OYNAHATOG TAVE ATO TNV ETLPAVELX TOU VEEOU ol ALEAVETAL TO ETUTESO AGPARELNS TNG

daduxaoiog tne derypatorndiog.
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To napandve oyfua NMPC Basileton otn duvopxr Tou oyfuatog, dniadr otny E-
Elowomn 2.9, ue Ty exToduevn tdom tou oyowlot T vo Yewpeiton wg n povn tnyr e€wte-
eV SLatopayv. Enouévewe, To Bldvuoua xatdo Toong anoTeAeital and tn véan, Tny To-
YUTNTO X0l TOV TEOCAVATOMOUS TOL OYUATOS, ONAADT X = [pT vl ¢ 0 w}T € RY,
eVQ To dLdvuopa el06bou oplleTtar and TiC EMIUUNTES EVIOAES YLo TOV ECWTERIXO Bpbd) 0
EAEYYOU TOU AUTOUATOU TUAOTOU, U = [gf)d 0q g uzd}T € R%. To mpdPhnua BérTI-
otou ehéyyou (OCP) nou mpénel vo hudel and tov NMPC exgppdletar we:

to+1T
min [ (1(0) — s O + o)) -+ et +T) —xtto + T
0

(52)
s.t.r x(to) = x0, E€lowon 2.9, velU

T
OTOV Xpef = [pfef Oi1x3 0 O wref} € RY elvar to emdupnté didvuoua xotdoto-
onc. Ouolwe pe v Evétnta 3.6.1, ou nivaxeg x6ctoug Q, R xan P elvan Yetind opi-
OUEVOL X0 BLtY(VIOL X, O QUTHY TNV TERITTMON), 0 TVaXag XOCGTOUS YL TO GQPIAUAL

xatdotaong Q optleton and tnv axdrovin elowon:

Q=diag (|Q, Q. Q) (53)

omou Ta Blarywvlo ntena otdiuong Qp, Q. xan Q, emBAAAOUY XVEWOELC GTA COAIALATA

e Véong, TN TaydTNTOC XAl TOU TEOCAUVATOANOUOU avTioTOoLyd.

Extéc and tou meploplopols elobdou, mou opllovta and to cbvoro U, mepihoy-
Bdvovton eniong oto OCP meploplopol oty xatdo 1001 TOU CUCTAUATOS, ETOL WOTE Vol

neptoplotel 1 xbvnom tou UAV 6710 eninedo o —y, oclupwva e Tig axdAovdeg aviooTnTeg:

_Uac,max S Uy S Uw,maa; (540(/)

—Vy,max < Vy < Vy max (545’)

Me v emfBolr meploplou®v otnyv €l00do XaL GTNY %ATdoTAoY), Olcpaiileton 7
opot) ouumeptpopd Tou NMPC oyruatog xot, enopévng, 1 ao@ohic extéleoT) Tng dlo-
duxaoiog g Serypatohndloc. Oo mpénel vo Toviotel 6TL 1 ac@dieia elvon €vag xploylog
TOEAYOVTOC VLol TH CUYXEXELWEVT EQopUoYY) dedouévou 6Tt To UAV emyelpel oe uddtivo
TEPYBAAAOY o TV amd TNV empdvela Tou vepol. Koatd cuvénela, andtopol ehvyuol

unopel va ¥€couv oe %fvduvo Tor NAEXTEXE YEPT) TTOL AMOTEAOVY TO OYTUdL.

To ACADO Toolkit xou o emhitne qpOASES o€lomoiolvtan Eovd yior Ty eniAvon
Tou TEoAVAPEPVEVTOC TEOBAAUNTOS BEATICTOTOMONE UE TEPLOPLOUOUS XL, €TOL, EMTUY-

YAvetow eTdOCT OE TRAYUATIXG YEOVO, Tapduola ue TV Evotnta 3.6.1.
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ITelpopatind AnoteAEcpaTa

IMelpapotinr Aldtadn

ITpoxewévou vo amodetydel 1 xavoTnTa TwV ToEamdve LedodohoyLdY Vo tpoceyyilouy
NV Tdom Tou oyowlol xou vo otadepomooty to UAV oty emduunts Véon deryyato-
Andlag, meorypotonowidnxay nepduata pe to octorotor tne Ewdvog 2.3. To dymuo slvou
eZOTAOUEVO UE Lo XAUEPA TIOU XOLTALEL TTPOC To XATw, CLYXEXPWWEVA TN stereocamera
ZED 2, mou o&lomotelton yior Tny eXTiUnon tne porc Tou vepoL. EmnAéoy, ypnoiponoteiton
wo duvopoxupérn 5 kg, pali e tov evioyut) HX711, yioo mn yétenon e vopuac tng
tdone tou oyxowol || T|| xatd tn Sdpxeia tne derypatorndlioc vepod. H duvapoxudéin
Tomo¥etelton xatdhAnia ot wéon tou oyowol. Emmiéov, o Bar30 High-Resolution
300m ouwodntipac Bddouc, cuvodeuduevog and évav 12C Level Converter, mopéyel to
Bddoc d oto omoio Beloxeton o unyoviopog derypatodndloc. O mpoavagepdelc aodn-
Theoc Badoug urnopel va yetproel émg xou 30 Bar pe dwxprtdétnta 2 mm. O owcdnthpog
Bddouc elvol oTEPEWUEVOSC OTO XATwW dXEO TOL GY OOV XaL, ETOL, GUAAEYOVTOL DElY AT
vepol ota emuuntd Béin. Téhog, o acintipag uneprywv AOINYUB Beioxeton xovtd
0TO OWUA TOU OYAUATOS €TOL WOTE Vo UETEdEL TNV andotacn h yeta€d tou UAV xou
e em@dvetag Tou vepoL. To ebpog pétpnong tou aocdnthipa unephywy eivon 28-750
cm, YEYovog TO onolo onualvel 6TL To UHXOS TOU Gyowlol Yo Teénel Vo elvol UxpoTe-
eo ané 750 cm. H axpBric ¥éon twv npoavagepdéviny aocdntheny otny TAXT@OpU
amexovileton xohltepa oty Euxdva 5.3. ‘Ohol ol npdoidetol anodntrpeg, dnhadr o ou-
ontripac unephywy, o awcintipac Bddoug xou 1 dBuvapoxuér, cuvdéovtar ameudeiog
pe évor Arduino Uno [57] xou o1 avtio Tolye HETPHOELS UETAUPEPOVTOL GTOV EVOOUATOUEVO

unohoyloth Jetson AGX Xavier yéow oeiplaxnc emxovwviag.

Il'ewpetpindc 'EAeyyog pwe Gaussian Processes
IMTeipdpata o Ilpocopoiwty

Apyxd, dielnydn wa ouyxpitix| UEAETH oTo epiBdAlov tpocopoiwong tng Ewdvag 2.2
HETAHED TOU YEWUETEIXOU eAeyxTh Tng Evotntog 5.4.1 ye xou ywels tov 6po tne tdong
TOU GO0, exT®UEYN pe TN BoRdeia twv GPs (Evétnta 5.3.2). To oyfua eréyyou
napovotdleton oty Ewdva 5.4. 'Onwe aneixoviletoa otic Ewdveg 5.5a, 5.5b, o eheyxthc
Véong mou cuunepthauBdver v meofBiedn twv GPs ftav woavde vo otadepomoloet pe
axpifela To Oynua Thve and Tr Y€on derypatondlog, eVed oNUavTING COANLUTA LOVIUNG
xatdotaone otn Véon p — Pref TapatnErUnxoy xatd to (Blo cevdplo 6tay dev Al
umodm o 6poc g datapayhc T. H extiunon tng dwtopoync, XeNOWOTOLOVTIS Tig
GPs, Aoy emtuyfc xadog 1 mporypotins) 8o Tou oyowiol, Tou Aaufdveton ancudeiog
ané Tov mpooopoiwth Gazebo, Bploxeton péoa ota dpla eumotocivng v GPs, émwg
patveton ota oyAuata 5.5¢, 5.5d. Xnueldvetar 6Tl xatd TN didpxela Tou oevapiov, N udla

Tou unyaviopol o e yia vo tpocopolwiel 1 diadixacio tng delypatorndiog vepou.
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IMepdpoata o IMpaypatixd IepiBdAiov

Metd v enoifdevon oto nepiBdilov npocouoinone Gazebo, wa cuyXELTXY TELEod-
T LEAETY) UETOEY TOU YEWUETELXOU EAEYXTY UE Xou Ywelg Tov bpo, Tou oyetiletan e
T Siotopary Yy, Slelnydn we to octorotor oe mpaypatixés cuviixes. 1o cuyxexpiuéva,
ToL MELpdUATO TRy ortotoldnxay otov totaud Addwva, 6mou aoxiinxe onuovTixy o-
mo¥éAxovca dUVoun otov Budicuévo unyoavioud, Aoyw tng Tay0TNToC TG EOMg TOU
VEPOU, X0l (S EX TOVTOL TapATNENUNXE Uial ETXAWVTC VEGT TOU GYOWLIO0 OTWE OMELXO-
viletow oty Ewdva 5.1. Xnuewdveton OTL o TElpdotar £ytvary Bladoyind xon, €Tot, oL
e€wTepés cLVINXES, XaL LWOLOUTEPA OL OEPOBUVIUIXES BUVAUELS, UtopoLy va Yewpnioly
Tapopolec. Emmiéov, yenowwonomidnxay ta (ot Jetind x€pdn Ky, ky xou, xatd cuvénela,
eCaogariotnxe por dixoun clyxpion wetold twv 800 eheyxtodv. Télog, éva umouxdt
1 Atpou xou pdlac my = 1.2kg yenowwomotidnxe »¢ UTOXUTACTATO EVOC TEOYUATLIXOD

unyoviouol devypatolndlog.

Apywd, yenowonodnxe o eheyxtric ¥€ong, o omolog dev Aaufdvel unddy TNy
Tdor Tou oyowlol. ‘Onwe galveton otny Ewdva 5.6a, nopatneridnxe éva opdiua wovung
xatdotaone mepinou Im otov d€ova y tou outhuatog avagopds W, to omnolo elvon
Qo Aoy Tapatienon a@ol Tedypatl 1 xatebduvon Tng xVplag porg Tou vepol elvou
oxedOV ToEdAANAY pe Tov dfova y. Avtideta, 6toy 0 6pog Satopoy e EXTUAUNXE UE
™ Bordeia twv GPs (Ewdveg 5.6¢, 5.6d), to opdhua Héong yewddnxe onuovtind xou to
oymuo otadepontoiinxe otny emduunty Véor, omwe aneixoviCetan otny Ewxdva 5.6b.
Katd ouvéneia, n extiunon tne diatapaync xou n enidoor tou eheyxty Véong unopolv

va Yewpndoly emtuynuéves.

O mpoavagepieioeg ouyxELTIXEC UEAETES TTOL ETAANUEVOUY TNV AMOTEAECUATIXOTHTO
TOU YEWUETEXOU eAeyxTh, enavénuévou pe Tic mpoPiédec twv GPs, anewxovilovton
eniong oto mapaxdtw PBivieo https://youtu.be/4BynPUOecOk.

NMPC pe EKF

Y1 ouvéyela, eletdoope TNy avotnta tou oyfuatoc NMPC tng Evotnrac 5.4.2 va
otadeponoifoel To Oynua ot Véorn derypotorndiog, SESOUEVLY TV EXTWNCEWY TNG
Tdone Tou oyowol clupwva Ye to @iktpo Kalman tng Evotnrag 5.3.3. Xe oha 1o
TOEOXATE TELRAUATO, YPNOWOTOLUNXE Wit Tporyortixny) cuoxevy| devypotohndloc udlog
my, = 0,25kg, avaptnuévn péow evog oyowol prixoug | = 3,8m. O unyoavioudq
emiTUYYdveL T detypatolndio vepol péow tng xenone wac nhextpouoryvnTixnig PorBidog
TIOU OMOXAAUTITEL Lol OTI) YOl ETUTEETEL TN POY| TOU VEEOU PEGA OE EVOV YUAAVO CWATVAL.
Mo oOvodn tng apyitextovixhc eAéyyou napouctdletar otny Ewdva 5.7. ITpoxewévou
Vo eTxLpwUEl 1 avary vidpelon Tne Taomg Tou oy ool xo o axpl3hc éAeyyog Yéong Tou
oyuatog xatd TN dtadixactio Tng delypatorndiog, Teoryuatomoinxoy TELEGUATO OTO IO

xowvd LBATIVAL TepBdihovTa, dnhady) o VIAAGTO X0 TOTEL.

Yy et mepintwon, mopd TRy Unaedn xuudTwy, 1 omoVélxovca Shvaur, Tou

TpoxaAeitan amd TN oY) TOU VEEOD Xou BP0 GTOV UNYAVIOUO, NTAY OUEANTEN. BUVETOC,


https://youtu.be/4BynPUOec0k
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10 oyowl dlatnehinxe ToEdAANAO UE TOV GEOVA Z TOU GUGTHUITOS avVapoRds XoTd TN
OLdipxeLl OAOXANEOU TOU TEWRAUATOS XL, WS €X TOUTOU, 1] CUVIOTWOOA Z TNG TIoNE TOU
oyowol T = || T||n #rav n xvplapyn datapayh tou aoxfinxe oto UAV, énwe owotd
exuuiinxe and toug npdovetous auointhpes xou to avantuyuévo EKE (Ewdva 5.8d).
‘Ocov agopd v enldoon tou NMPC, to UAV ctadeponomidnxe pe axplBeia néver and

v emduunty) Véon derypatorndiog, 6mme anewxovileton otny Ewdva 5.8.

Yy debtepn nepintwor, 1 omoUérxouvca dUvoun, AOYw TNG PONE TOL TOTAUUOU,
ftay Wiaktepa onpavTxer xat 00Yynoe oe emxhvy) ¥€om tTou oyowiod. ¢ anotéleoua, ot
opllovTieg Blatapoyég exTiuiinxay eniong and Toug EVOWUATOUEVOUS AGUNTHEES Xol TO
EKF, onwg gaivetoan oty Ewdva 5.9d. Tlopd tnv tdom tou oyowiod, to NMPC oyrfua
otadeponoinoe ye emtuyla To OyNua TEvVe amd Ty emduunty Véor, onwe anewxovileton

otnv Ewdva 5.9.

Ta mewpdpata mou €ywvay oty Ydhacoo xou oTtov notoud Addwva mapouctdlovTtal
xoAOTEPa 0TaL oYETIXA Bivteo https://youtu.be/IB7a72ZvBQc xou https://youtu.
be/EFHL8ckaWpM.

Avtévopeg Anoctohrég Actypatorndiog Nepod

e authv TNV eVOTNTA EVOTIOOUUE Ta amoTeAEoUata Twv Kegohalewv 3 xou 5 ot pio tAfpwe
autdvoun AVor yio anocTorég derypatorndiog vepol yenowonouwdvtog éva UAV ye o-
VORTNUEVO PECWL GYOWLOU UNY VoW xat EEOTALOUEVO UE Toug amapaitnTous auodnTrpec,
ahyoplduoug extiunone xatdotaong xa oyfpata eréyyou. Ilpog autdv Tov otdyo,
oyedLEaloupE €val EVTIEAMS AUTOVOUO %ol EVOTOINUEVO TAAUGLO Tou avTiweTwnilel Oheg Tig
TTLUYEC TTOL GUVLCTOVY Wal TéTola anocTOAY| ue éva UAV, cuyxexpidéva Tov EAeYyo Tou
oyfuaTog xotd T dladixacio Tng derypatoAndlac xou TV AoQah) HETAPOEE Tou Oelyuo-
to¢. Katd ouvénela, oe meplntwon evog meplo Tatinol wéAuvong vepol, TO TPOTEWVOUEVO
TA{OLO UTOREL VoL AUTOUATOTIOLTOEL TNV AMOG TOAY) detypotorniog vepol xal vo TpooTa-
Te00EL TOUC TEMOTOUC OVTUTOXPLTES APOU ATOPEVYETOL 1) ETAPY] TOUSC UE TN LOAUCUEVT

TEQLOYT| X, ETOUEVWS, PE TdovoUg TooYOVOUS ULXPO0RYAVIGUOUC.

ITio ouyxexpyéva, egetdlovpe v mepintwon xotd TNy onolo eppavieton uio xa-
TACTAOY) EXTAXTNG AVAYXNG OYETWS Ue mdavy woAuvor oe vddtvo mep3dhioyv. Ilpo-
xewévou va towtonomdel 1 Umapdn 1 oyt Toadoyovwy WXEo0RYAVIOUMY, UTOSEXVIETL
wot totoVeotio 6mou Vo npénel va yiver derypatodndio vepol. Aedopévou 6t 1 Slapviaén
NS UYELC TWV TEOTOY AVTATOXEITGY elvor uloTne onuactog, yenotoroleiton avt auTto
éva UAV pe avoptnuévo p€ow oy ool unyaviouwd yio Vo Teary Lo TOTIOLAOEL T1) SELYaTO-
Andla. Avaluticdtepa, tor axdrouto Briuata cUVIETOLY TNV amoc ToAY| detypotoindiog

VEEOU:

o O mpotoL avtanmoxpltéc emonuotvouy o emduunty| Tonoveoior derypatorndiog
Pref P€ow evéc otaduod eddgoug (éva oloTnua Tou emTEénel 6Toug YENOoTES Vot
Topoxoloudoly TNV xatdoTaoT TS TTHONG Xt Vo oAMnAemdpolv pe to UAV).

Emnéov, unodewcvbouv wo tehixr 9éon py 6mou mpénel va mporypoatonomdel 7


https://youtu.be/IB7a72ZvBQc
https://youtu.be/EFHL8ckaWpM
https://youtu.be/EFHL8ckaWpM
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ouAhoyt| Tou Selypartoc v yeteneepyaocia (cuvidwe n Véon and v omolo o-
noyewdvetow 0 UAV). Enueidveton 6Tt 1) amoo tohy) derypotolndiog vepol unopet
e0xolo va emextodel yio tohhamiég Héaeic derypatondlag ¥ dhiec Yéaelc 6mou To

UAV Yo mpénel va yetopepiel ue eAytotn TahdvInaon, T.y. Yot CUANOYT EXOVLY.

o To UAV da npénel va mhonyndeel amd v apyxr| Tou ¥éon po otnv emduunti
Véom SeryUaToANDIOC Pref ENUYLOTOTOLOVTOC TUPEAANAL TIC YWVIES M, XOL T1) Y-
viaxr] T OTNTO Wy, TOU GO0V, WOTE VoL BACPAAC TEL 1) ATPUAC UETAPORE TOCO

TOU OYNUATOC OGO XAl TOU UNYAVIOUOD.

o Ko to UAV minoidler tn 9éon derypatoindiog prey, oL Slotapayés mou Spouv
ooV Butiouévo unyaviopsd xon HETaPEROVTAL UESk Tou oyowiol 6to UAV, dnhadn
7 téon || T||n, do npénet var avory veplotovy xou va amopetpiody dhote va emtteuy Vel

axplPric Eheyyoc Tne Véomng Tou oyHuaTog xatd TN dladixacia Tng derypatoAndlag.

o Telxd, petd tn cuhhoyy tou Belypotos, o UAV Yo npénel nopoyolng vo mhon-
ynel mpoc Ty tehin) Véom py pe ac@ady| TedTo.

Ipoxewévou va exminewdoly ol Tpoavagepévteg oTOYOL, AELOTOLOVVTOL T oY Uo-
ta NMPC, nou mapovsidotnxay otic Evéotnteg 3.6.1 xou 5.4.2, yio TV peTtopopd Tou
UNYOVIOUOU UE EAGYLO TN TAAAVTWTIXY XVNoT Tou GYoWoL xaL TNV axpyd| otodeporno-
inon tou UAV xatd ) Serypotorndlo avtiotoiya. H ywwvioxn xivnon xo 1 tdorn tou
oyowiol etvon dirdéoipa ye T Bordea Twv @idtewy Kalman twv Evothtwy 3.3.1 xou
5.3.3.

ITepdpoata o Ipaypatixd IlepiBdAiov

H armoteleoyotixdtnta Twv emigépous uedodoroylay, oniadr twv Kalman @iitpwy xou
v oynudtewy NMPC, vy v extiunon tng xatdotaong xa. g Tdong Tou oYowiow
X0l TOV €AEYYO TOU OYAUATOS XATd TNV anocTohy detypatodndiog vepol emakniedtnxe

ue to octorotor oe plo mopohio.

20UPOVA UE TNV TUEATAVe ovdAUcT), 2 waypoints oyedidotnxay Yéow tou Mission
Planner [59] (évag otadude eddpous oupPatodc e ToV aUTOUATO TAGTO TOU OYAUATOC),
onwe anewxovietow otny Ewdva 5.10a. To mpdto onuelo Peloxetar oe éva oployévo
Odog mdvw amd Ty emduuntyh Véor derypatoAndlag, eved To BeUTERO UTOBEIXVUEL TNV
tehxy| Véon omou To delypa cUAAEYETAL amd Toug YeleloTég. Apyixd, to oyfuo NMPC
¢ Evétnrog 3.6.1 odfynoe to oynua and v apyixy Tou Y€orn oTo mpwto waypoint
ENALYLO TOTOLWVTAS TOPIAANALL TS TOAAVTOOELS TOU GYOWLOU, EXTMOUEVES COUPOVA UE
v Evétnra 3.3.1 . Mok to UAV ninolace to mpdto waypoint, to dymuo xatéBnxe
xan otadeponoinxe mdve and Ty emduunty Véomn derypatolndlog, avantioocovtog
Tov eheyxT) Véong tne Evotntog 5.4.2. X1 ouvéyela, 1o UAV avéfnxe npog to mpdhto
waypoint xou tehxd petapépdnxe ye acpdieia oto tehx6 onuelo. H tpiodidotaty dia-
dpour) Tou UAV anewovileton otny Ewdva 5.10b, 6mou nagoucidlovton to 2 waypoints

xau n Véon detypatorndiog.
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H mpoavagepieioa anoctolr) derypatodndloc vepod mopouctdletol 6TO Topaxdte
Bivteo https://youtu.be/13XI16a0Btp8. Ilpdoletec anoctorég, mou MEAYUATOTOL-
fonxay otic eyxatactdoec tne ETYAO xow otov A&i6 motopd avtiotouya, eivon dadéot-
pec ota https://youtu.be/WyGah4iFNLO xou https://youtu.be/5wHLSPGCLCO.


https://youtu.be/l3XI6aOBtp8
https://youtu.be/WyGah4iFNL0
https://youtu.be/5wHLSPGcLC0
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