
Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

UCQ-rewritings for Disjunctive Knowledge and Queries

with Negated Atoms

Διδακτορική διατριβή

του

ENRIQUE MATOS ALFONSO

Επιβλέπων: Γεώργιος Στάμου

Καθηγητής ΕΜΠ

Αθήνα, Μάιος 2024

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

UCQ-rewritings for Disjunctive Knowledge and Queries
with Negated Atoms

Διδακτορική διατριβή

του

ENRIQUE MATOS ALFONSO

Επιβλέπων: Γεώργιος Στάμου

Καθηγητής ΕΜΠ

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 14 Μαΐου 2024.

. .

Γεώργιος Στάμου Στέφανος Κόλλιας Ανδρέας-Γεώργιος Σταφυλοπάτης

Καθηγητής ΕΜΠ Ομ. Καθηγητής ΕΜΠ Καθηγητής ΕΜΠ

. .

Μανώλης Κουμπαράκης Αριστείδης Παγουρτζής Δημήτρης Φωτάκης

Καθηγητής ΕΜΠ Καθηγητής ΕΜΠ Καθηγητής ΕΜΠ

. .

Αθανάσιος Βουλόδημος

Επίκουρος Καθηγητής ΕΜΠ

Αθήνα, Μάιος 2024

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

. .
Enrique Matos Alfonso
Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

14 Μαΐου 2024

Copyright © – All rights reserved. Με την επιφύλαξη παντός δικαιώματος.
Enrique Matos Alfonso, 2024.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή

για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγ-

γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού

Μετσόβιου Πολυτεχνείου.

Abstract

In this thesis, the problem of query rewriting for conjunctive queries with negation with respect
to disjunctive existential rules is studied. Query rewriting is a well-known approach for query
answering on knowledge bases with incomplete data. Three rewriting techniques are proposed that
find UCQ-rewritings for queries with negation on the (disjunctive) existential rules framework.

The first technique uses resolution with respect to constraints in order to eliminate the negated
atoms from the input query. A set of conjunctive queries is produced and it can be rewritten with
the existential rules in the knowledge base producing more UCQ-rewritings.

The second technique focuses on finding aUCQ-rewriting of queries with not more than one ne-
gated atom. Such queries are transformed into existential rules and the constraints or the knowledge
base are rewritten. The method keeps track of the rewritings produced by the rule corresponding
to the transformed query and yields a complete UCQ-rewriting.

The third rewriting technique uses constraints and conjunctive queries to remove the disjunctive
components of disjunctive existential rules. This process eventually generates new non-disjunctive
rules, i.e., existential rules. The generated rules can then be used to produce new rewritings using
existing rewriting approaches for existential rules. With the proposed technique we are able to
provide complete UCQ-rewritings for union of conjunctive queries with universally quantified ne-
gation.

The proposed techniques are implemented in the COMPLETO system (v1, v2, and v3 respecti-
vely) and some experiments were carried out to evaluate the viability of the proposed solutions.

We also address the undecidability of the existence of a finite and completeUCQ-rewriting and
the identification of finite unification sets (fus) of rules. We introduce new rule classes, connected
linear rules and connected domain restricted rules, that exhibit the fus property for existential rules.
Additionally, we propose disconnected disjunction for disjunctive existential rules to achieve the
fus property when we extend the introduced rule fragments to disjunctive existential rules.

Finally, we present ECOMPLETO, a version of our system implemented in Elixir program-
ming language, capable of handling UCQ¬s with universally quantified negation and disjunctive
existential rules. Our experiments demonstrate ECOMPLETO’s consistent ability to produce finite
UCQ-rewritings, and describe the performance on different ontologies and queries.

Keywords

Disjunctive Existential Rules, Queries with Universally Quantified Negation, Backward Chai-
ning, Query Rewriting.

1

to all my educators

Ευχαριστίες

The work presented in this thesis explores very interesting theoretical problems related to very
practical solutions. I want to thank all my colleagues at the AILS lab for their support, especially
my supervisor Giorgos Stamou, whose guidance and help with bureaucratic matters made this work
possible.

During this research, many colleagues kindly reviewed my drafts, helping me better commu-
nicate my findings. I want to thank Alexandros Chortaras, Stathis Delivorias, Manos Thanos, and
Michael Giazitzoglou for their help.

I would also like to thank every Greek person who made me feel at home in this country.
Lastly, a big thank you to my parents for their support and belief in me, and to my wife and

baby for keeping me motivated to finish this chapter.

Αθήνα, Μάιος 2024

Enrique Matos Alfonso

5

Περιεχόμενα

Abstract 1

Ευχαριστίες 5

1 Introduction 13
1.1 Related Work . 15
1.2 Outline of our contributions. 16

I Preliminaries 19

2 Preliminaries 21
2.1 First Order Logic Resolution . 21

2.1.1 First-Order Logic Resolution . 21
2.2 Disjunctive Existential Rules Framework . 27

II Proposed Methods 33

3 Rewriting Queries with negated Atoms 35
3.1 Constraint Saturation . 35
3.2 Algorithm for Rewriting Conjunctive Queries with Negation 39

3.2.1 Preprocessing . 40
3.2.2 The Algorithm . 40

4 Horn Conjunctive Queries 43
4.1 Union of Horn CQs . 44
4.2 Rewriting a Union of Horn CQs . 45

5 Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms 47
5.1 Constraint Resolution . 47
5.2 Unit Resolution . 50

5.2.1 Query Containment . 51
5.3 Rewriting Operations and Resolution . 51
5.4 Rewritable Queries and Disjunctive Knowledge Bases 56

7

ΠΕΡΙΕΧΟΜΕΝΑ

5.4.1 Expanding the Existing Fragments . 59
5.5 On Queries with Answer Variables and Linear Queries 62

III Implementations and Experimental Evaluation 69

6 Constraint Saturation Evaluation 71

7 Horn Conjunctive Queries Evaluation 75

8 General Conjunctive Queries with Negated Atoms Implementation and Evaluation 79
8.1 Experiments . 80

8.1.1 COMPLETO v3 Experiments . 81
8.1.2 ECOMPLETO Experiments . 84

9 Conclusions 89

Appendices 93

A COMPLETO’s user manual 95

B ECOMPLETO’s user manual 99

Bibliography 104

8

Κατάλογος Σχημάτων

2.1 Hypergraph corresponding to a CSF. 24
2.2 A derivation tree. 26
2.3 UML diagram of an ontology example generated with OWLGrEd. 29
5.1 A refutation of S. 51
6.1 Comparison of the Average Runtime per query for the benchmarks. 72
6.2 Relative Average Runtime per query for the benchmark. 73
6.3 Comparison of the maximum RSS used to answer all the queries of the benchmark. 73
7.1 Axiom counts of the ontologies of the benchmark. 76
7.2 Comparison of the Average Runtime per query for the LUBM group of ontologies. 76
8.1 Size of the UCQ-rewritings for the TRAVEL ontology. 81
8.2 Size of the UCQ-rewritings for the LUBM ontology. 81
8.3 Cumulative distribution of the time needed to compute the UCQ-rewriting for the

TRAVEL ontology. 82
8.4 Cumulative distribution of the time needed to compute the UCQ-rewriting for the

LUBM ontology. 82
8.5 Correlation matrix with different performance parameters for the TRAVEL ontology. 83
8.6 Correlation matrix with different performance parameters for the LUBM ontology. 83
8.7 Clustering of query rewriting runtime vs memory usage for LUBM. 85
8.8 Clustering of query rewriting runtime vs memory usage and size of the rewriting

for LUBM. 85
8.9 Histogram of query rewriting runtime for LUBM. 86
8.10 Memory usage histogram for LUBM. 87
A.1 Diagram of the COMPLETO system. 96

9

Κατάλογος Πινάκων

5.1 Properties of different types of clauses in the disjunctive existential rules framework. 48
5.2 Properties of the resolvent C3 for different types of clauses C1 and C2. 49
8.1 Rewriting experiments results for the CQa¬s from LUBM and TRAVEL ontologies. 80
8.2 Distribution metrics computed on the query rewriting runtime and the memory

used for both ontologies. 84
8.3 Distribution metrics computed on the query rewriting runtime and the memory

used for both clusters in LUBM ontology. 86

11

Chapter 1

Introduction

Rules are very important elements in knowledge-based systems and incomplete databases [1];
they allow us to perform query answering over incomplete data and come up with complete an-
swers. There are two main approaches to perform query answering in the presence of rules, which
depend on the way we use the rules. The forward chaining approach [2] applies the rules on the
facts in order to produce new facts. On the other hand, the backward chaining approach [3] uses
the rules to translate the input query into a set of queries (called the rewriting of the initial query)
that also encode answers of the initial query. Both approaches allow us to infer answers that cannot
be extracted from the initial data.
Example 1.1. Let us consider a rule that defines the grand-parent relationship between two people
based on the parent relationship

r = ∀X∀Y parent(X,Z) ∧
parent(Z, Y)→ grand-parent(X, Y)

and the information that

parent(ana,maria) ∧ parent(maria, julieta).

Traditional database systems would fail to entail that the query Q = ∃Zgrand-parent(ana, Z)
holds, because it is not stated explicitly in the data. However, since the hypothesis of the rule r
holds, we can infer (by forward application of the rule) that the fact grand-parent(ana, julieta) also
holds. Adding this new information allows traditional database systems to conclude that Q holds.
Moreover, the rule r can also be applied to Q in a backward manner to derive additional queries
that provide answers to the question expressed in the original query, i.e.,

Q′ = ∃Z∃Y parent(ana, Z) ∧ parent(Z, Y).

Forward chaining allows efficient query answering in systemswhere data is constant and queries
change frequently. However, the size of the stored data can grow excessively, and the method is not
appropriate for frequently changing data. For some ontologies, this approach does not always ter-
minate [2], and may keep generating constantly new data. Backward chaining, on the other hand, is
ideal for constant queries and changing data, although the size of the rewriting can be exponential

13

Chapter 1. Introduction

with respect to the size of the initial query [4] or in some cases a finite rewriting may not exist. In
both approaches, the application of the rules does not always terminate. Furthermore, having no
restriction on the expressivity of the rules or having negated atoms on the query makes the query
entailment problem undecidable [5].

We focus on the entailment problem of conjunctive queries with negated atoms (CQ¬) in the
framework of (disjunctive) existential rules based on first-order logic (FOL) without function sym-
bols.

Disjunctive existential rules allow the representation of very expressive knowledge in FOL,
e.g.,

∀X∃Y is-parent(X)→ father(X, Y) ∨
mother(X, Y),

where disjunction and existentially quantified variables can appear on the right-hand side of the
implication. Conjunctive query entailment is undecidable in the case of existential rules with dis-
junction. However, under some restrictions the problem can become decidable [5, 6]. To the best
of our knowledge, existing research on existential rules with disjunction is only based on forward
chaining algorithms [7, 6] or Disjunctive Datalog rewriting [8, 9, 10, 11].

Conjunctive queries with negation let us define the counterexamples of disjunctive rules, e.g.,

∃X∀Y ∀Zperson(X)∧ ¬married(X, Y) ∧
¬parent(X,Z)

describes when the following rule does not hold

∀X∃Y ∃Zperson(X)→ married(X, Y) ∨
parent(X,Z).

Here we use the openworld assumption, where the negation is associated to the “cannot” semantics,
and the example query expresses the question of whether there is a person that cannot be married
and cannot be a parent. We also consider universally quantified negation [12, 13, 14], i.e., variables
that are only present in negated atoms are universally quantified.
Example 1.2. Suppose that a machine learning algorithm is able to infer with 90% accuracy that
every person in a ontology is married. The rule ∀X,∃Y person(X) → MarriedTo(X, Y) could be
a good candidate to enrich the knowledge we have. However, to avoid inconsistencies we need to
ensure that the corresponding query ∃X,∀Y person(X),¬MarriedTo(X, Y) cannot be entailed by
the ontology. We could easily notice that such ontology to be consistent cannot have minors, or
priests because it is of common knowledge that they can not be married. Therefore, to modify the
ontology in a consistent way we need to add the rule together with the restrictions that will ensure
that the resulting ontology is used only in a consistent way.

The entailment problem for CQ¬ is undecidable even for very simple types of rules [15, 12].
On the other hand, the use of guarded negation in queries is proven to be decidable over frontier-
guarded existential rules [16]. Yet, the existing query rewriting-based approaches in the literature
[17, 18, 19] that propose implementations and experiments only deal with queries that introduce
negation in very limited ways.

14

1.1 Related Work

Having existential variables, disjunction and queries with negated atoms makes the entailment
problem even more difficult. However, by using these expressive resources in a smart way we can
get very interesting and useful decidable fragments.

Particularly, we are interested in solving the entailment of a union of conjunctive queries with
universally quantified negation by rewriting it into a union of conjunctive queries without negation
(UCQ), called a UCQ-rewriting, where each element in it is a rewriting of the initial UCQ¬.

1.1 Related Work

Rosati studies query answering with respect to description logics (DLs) [12] and with respect
to relational databases with integrity constraints (ICs) [13]. Extensions that allow safe negation
and universally quantified negation are considered. The author provides a set of decidability, un-
decidability, and complexity results for answering different types of queries with respect to various
classes of DL knowledge bases and various combinations of ICs. In general, his results show
that answering relational queries is unfeasible in many DLs and IC languages. The author consid-
ers unions of conjunctive queries with universally quantified negation and shows that answering
queries of this class is undecidable in every DL fragment and even in the absence of ICs.

In [3], König et al. define a generic rewriting procedure for conjunctive queries with respect
to existential rules which takes as a parameter a rewriting operator, i.e., a function which takes as
input a CQ and a set of existential rules and outputs a set of CQs. They also define the properties of
rewriting operators that ensure the correctness and completeness of their algorithm. The authors
prove that piece unification provides a rewriting operator with the desired properties. Finally, they
provide an implementation of their algorithm together with some experiments. In this paper, we
extend their definition of piece unification to deal also with disjunctive existential rules. We also
extend their rewriting algorithm for existential rules into a sound and complete algorithm that also
supports disjunctive existential rules and queries with negated atoms. However, the algorithm does
not always terminate.

In [20], Bourhis et al. present a study of the complexity of query answering with respect
to guarded disjunctive existential rules. The problem is 2EXPTIME-hard even for the simplest
guarded-based class of disjunctive existential rules. Different types of UCQs are also considered
by the authors in order to reduce the complexity of the problem. However, the considered query
languages do not have a positive impact on the complexity of the problem. The only significant
decrease in the complexity was found for atomic queries and linear disjunctive existential rules.
The authors proved that for fixed atomic queries and fixed linear disjunctive existential rules, the
problem is in the AC0 complexity class by establishing that the problem is first-order rewritable,
i.e., it can be reduced to the problem of evaluating a first-order query over a database. The rewriting
algorithm that we propose in this paper terminates for the fragment considered by Bourhis et al.
The techniques and results presented in [20] can be used as a generic tool to study the complexity
of query answering for several fragments of description logics.

Some other research papers [8, 9, 10, 11] focus on the transformation of the query answering
problemwith respect to guarded (disjunctive) existential rules into a query answering problemwith
respect to (disjunctive) Datalog programs by getting rid of existential variables. In [8], Ahmetaj

15

Chapter 1. Introduction

et al. provide a transformation of the problem that yields a polynomial size (disjunctive) Datalog
program when the maximal number of variables in the (disjunctive) existential rules is bounded by
a constant. The translations proposed by other authors [9, 10, 11] are of exponential size.

1.2 Outline of our contributions.

We present an approach that focuses on the elimination of negated atoms in queries by applying
resolution of controlled length with respect to the constraints existing in the knowledge base. After
this process of elimination we obtain a set of queries containing answers of the initial query and
classical rewriting algorithms can then be applied. Furthermore, we prove that the method yields
a set of queries containing all the answers when the expressivity of the initial query is restricted.
Additionally, some experiments were conducted to compare our approach to the existing one for
rewriting negated concepts.

We introduce the concept of Horn conjunctive queries (CQ¬ℎ), a type of conjunctive queries
that allows the negation of one atom and corresponds semantically to the negation of a rule on the
Existential Rules framework. We reduce the entailment problem of such queries, with respect to a
set of Existential Rules, to the entailment of conjunctive queries without negated atoms. Restricted
forms of Existential Rules where such reduction ensures decidability of the entailment problem are
also presented. Additionally, the proposed approach is implemented into COMPLETO [18] allow-
ing us to perform query rewriting and query answering for Horn UCQs. The implementation is
compared to other systems that use tableaux algorithms to find the answers of OWL concepts that
allow the use of negation. The experimental results show that the systemwe implemented performs
better than the other systems that were considered for the case of ontologies with a large number
of ABox assertions.

We introduce a restricted form of FOL resolution (constraint resolution) that is sound and refu-
tation complete, and where the subsumption theorem holds if the consequences are clauses without
positive literals. The number of choices at the moment of selecting clauses to perform constraint
resolution steps is reducedwith respect to the number of choices we have for the case of unrestricted
resolution steps.

Based on the constraint resolutionmethod, we propose an algorithm to compute aUCQ-rewriting
for an input UCQ with respect to (disjunctive) existential rules and constraints. The algorithm
can also compute UCQ-rewritings for conjunctive queries with universally quantified negation by
converting queries with negation into rules. The algorithm is sound, provides a complete UCQ-
rewriting, and terminates for the cases where there is a finite and complete UCQ-rewriting of the
input query with respect to the (disjunctive) existential rules and the negative constraints. We also
present two theorems with sufficient conditions for the termination of the algorithm. One case
requires disconnected disjunctive existential rules (rules where the body and the head do not share
variables) and existential rules that yield a finite and complete UCQ-rewriting for any UCQ (finite
unification set). The other case is based on queries and knowledge bases where all the elements
are linear (rules with at most one atom in the body and CQs with at most one positive atom). We
propose two new classes of existential rules that are generalizations of domain restricted rules [21]
and linear rules [21]. Both class of rules are finite unification sets.

16

1.2 Outline of our contributions.

Additionally, we consider unions of conjunctive queries with negated atoms and answer vari-
ables (denoted as UCQa¬) with respect to existential rules and constraints. The proposed algorithm
is modified in order to compute only the deterministic UCQ-rewritings, i.e. the UCQ-rewritings
that lead to certain answers or that check the consistency of the knowledge base. We prove that the
modified algorithm terminates when there is a finite and complete deterministic UCQ-rewriting of
the input UCQa¬ with respect to the existential rules and constraints of the knowledge base. We
also present two theorems with sufficient conditions for the termination of the modified rewriting
algorithm. One case requires the existential rules to be a finite unification set and the input queries
to have the variables in both the positive and negated atoms as part of the answer variables of the
query. The second case requires the queries to have only one positive atom and an arbitrary number
of negated atoms; also the existential rules and constraints are required to have only one atom in
the body.

Finally, we implemented the proposed algorithm for rewriting conjunctive queries with negated
atoms and answer variables with respect to existential rules in the COMPLETO system, and per-
formed experiments to evaluate the viability of the proposed solution.

17

Part I

Preliminaries

19

Chapter 2

Preliminaries

2.1 First Order Logic Resolution

In this section, we introduce the basic concepts related to the FOL resolution process. Resolu-
tion is the base of all the reasoning processes we describe in this paper. All steps in a high-level
reasoning processes can be tracked down to sequences of resolution steps that ensure its correct-
ness. We also describe the framework of disjunctive existential rules and present the definition of
conjunctive queries with negated atoms.

2.1.1 First-Order Logic Resolution

We assume the reader is familiar with the standard definition of first-order logic formulas. In
this paper, we focus on FOL formulas without function symbols over a finite set of predicate names
and a finite set of constant symbols. We also adopt the standard definitions for the entailment and
equivalence of formulas, as they are rarely modified in the literature. We refer the reader to [22] in
case a background reading is needed.

Because in the following we will often need to modify formulas, in order to make such mod-
ifications more compact and easier to understand we introduce the definition of conjunctive (dis-
junctive) set formulas (CSFs and DSFs). However, the reader should be familiar with the notation
because it is often used in FOL when we write rules and clauses.

Definition 2.1 (Conjunctive (Disjunctive) Set Formula). A conjunctive (disjunctive) set formula
(CSF and DSF, respectively) is a set of formulas {F1,… , Fn}, where the set of formulas is inter-
preted as a conjunction (disjunction) of the formulas in the set, i.e., F1 ∧…∧ Fn (F1 ∨…∨ Fn).

For a given set of formulas {F1,… , Fn}, aCSF containing these formulas is denoted asF1,… , Fn.
On the other hand, a DSF is denoted by [F1,… , Fn]. Finally, an empty CSF is denoted by and is
equivalent to ⊤, and an empty DSF is denoted by and is equivalent to ⊥.

Note that in case a CSF is a sub-formula of another set formula we use parenthesis to avoid
ambiguity, e.g., [(A,B), D] is equivalent to (A ∧ B) ∨D.

Set operators can then be used to combine set formulas of the same type and obtain a new set
formula. Moreover, equivalent elements of a set formula can be collapsed into a single element,

21

Chapter 2. Preliminaries

e.g.,
[¬A] ∪ [A→ ⊥,B] ≡ [¬A,A→ ⊥,B] ≡ [¬A,B].

The following axioms can be easily proven:
1. A DSF and a CSF of one element are equivalent:

[F] ≡ F .

2. De Morgan’s Laws allow changing a DSF to a CSF, and vice-versa, using negation:

¬[F1,… , Fn] ≡ ¬F1,… ,¬Fn
¬(F1,… , Fn) ≡ [¬F1,… ,¬Fn].

3. Let B and F be two CSFs (DSFs) such that B ∈ F . Then, F ≡ (F ⧵ {B}) ∪ B. Replacing
F by the equivalent formula (F ⧵ {B}) ∪ B is referred to as flattening the formula F .

We model the entailment operator in FOL assuming that on the left-hand side of the entailment
symbol we have a CSF A1,… , An of axioms Ai:

A1,… , An ⊧ F .

The right-hand side of the entailment operator is assumed to be a DSF. For CSFs B and A
(where B ⊆ A) and DSFs C and F (where C ⊆ F), we can prove that A ⊧ F if and only if
A ⧵ B ⊧ F ∪ ¬B; likewise A ⊧ F if and only if A ∪ ¬C ⊧ F ⧵ C .

In the following, we recall the definitions of some of the concepts that are needed for the theory
presented in this paper.

A term is a constant, a variable or an expression f (t1,… , tm) where f is a function symbol
and the arguments ti are terms. However, in this paper, we focus only on simple terms, i.e., either
variables or constants. We only consider Skolem function symbols internally in order to get rid of
existentially quantified variables.

An atom is a formula a(t1,… , tn) where a is a predicate of arity n (denoted by a∕n). The
arguments ti of the atom are terms. A literal is an atom or a negated atom. The complement l̄ of a
literal l is ¬a(t1,… , tn) if l = a(t1,… , tn), and a(t1,… , tn) if l = ¬a(t1,… , tn). A literal is positive
(or of positive polarity) if it is a non-negated atom, and negative (or of negative polarity) if it is a
negated atom. Two literals are complementary if one is the complement of the other.

A formula is ground if it contains no variables. In a formula, the variables can be universally
quantified, existentially quantified, or free. A formula without free variables is closed. The set of
all the variables that appear in an expression F is denoted by vars(F). We denote a sequence of
variables X1,… , Xn using a boldface character (e.g., X).

A substitution � = {X1 ← t1,…Xn ← tn} is a finite mapping of variables Xi to terms ti. The
result of applying a substitution � on an expression F is the expression F� obtained by replacing
in F every occurrence of every variable Xi by the term ti.

Let F be an expression and � the substitution {X1 ← Y1,…Xn ← Yn}. We say � is a renaming
substitution for F , if each Xi occurs in F , and Y1,… , Yn are distinct variables such that each Yi is

22

2.1 First Order Logic Resolution

either equal to some Xj in �, or Yi does not occur in F . The composition of two substitutions �
and � is a new substitution �� that when applied to any expression, has the same effect as applying
those substitutions in sequence (i.e., first � and after �). A substitution � is more general than
another substitution � if there exists another substitution
 such that � = �
 .

A substitution � is a unifier for a set of expressionsS = {F1,… , Fn} iffF1� = F2�,… , Fn−1� =
Fn�. The expressions inS are said to be unifiable if there is a unifier forS. Themost general unifier
(mgu) of the expressions in S is denoted by mgu(S), and it is a unifier for S that is more general
than any other unifier of the expressions in S. Even if it is possible for the same set S to have more
than one mgu, they are unique up to variable renaming.

A hypergraph is a tuple ⟨A,E⟩, whereA is a set of elements called nodes or vertices, andE is a
set of non-empty subsets ofA called hyperedges. We can represent a CSF of atoms as a hypergraph
using the set of variables that appear in the arguments of the atoms as nodes. Each atom in the
formula represents a hyperedge that connects its variables. Note that hyperedges are defined as
sets of nodes and there is no notion of direction between the nodes. With this representation we
can define some properties for CSFs of atoms.

The cardinality of a CSF of atoms F is the number of variables in the formula, i.e., card(F) =
|vars(F)|. The width of a CSF of atoms F (denoted by width(F)) is the number atoms that have
variables in their arguments. Two variables u and v in a CSF of atoms F are connected iff they
both belong to the same atom (∃A ∈ F |{v, u} ⊆ vars(A)), or if there is another variable z in F
that is connected to both u and v.

A CSF of atoms F is connected if all the atoms in it contain variables and all the variables are
connected to each other. An atom that has only constants in its arguments is a connected formula
that is not connected to any other atom and has a cardinality and a width of zero. It is represented by
an empty hypergraph. The constants in the formula play no role in their hypergraph representation.

It follows that a CSF F can be partitioned into a set {U1,… , Un} of connected CSFs such that
if v ∈ vars(Ui) is connected to u ∈ vars(Uj), then i = j. If F is connected, this set contains only
F . The connected cardinality (width) of F is defined as the maximum cardinality (width) of the
connected CSFs in the partition of F and denoted by card∗(F) = maxi (card(Ui)) (width∗(F) =
maxi (width(Ui))). The connected cardinality (width) of a DSF [F1,… , Fm] is the maximum con-
nected cardinality (width) of the formulas Fi, i.e., card∗([F1,… , Fm]) = maxi (card∗(Fi)) (and
width∗([F1,… , Fm]) = maxi (width∗()Fi)).

Example 2.3. The CSF

F = parent(X, Y), parent(Y ,Z), grand-parent(X,Z), person(W)

is represented by the hypergraph in Figure 2.1. We can split F in two connected components

{(person(W)), (parent(X, Y), parent(Y ,Z), grand-parent(X,Z))}.

The connected cardinality of F is 3, the cardinality of the greatest connected component.

Lemma 2.1. Let G be a CSF, and let {U1,… , Un} be the partition of a given CSF F of atoms into

23

Chapter 2. Preliminaries

X

Y

Z

W

Figure 2.1: Hypergraph corresponding to a CSF.

connected CSFs. Then,
G ⊧ F iff G ⊧ Ui for every Ui.

Proof. A detailed proof is given by Tessaris [23]. However, the reader can clearly see that since
no variable is shared between the connected components Ui, the assignments for the variables that
make each Ui valid in G can be combined without introducing conflicts on the values that each
variable gets.

Lemma 2.2. Let k be a natural number. There are a finite number of equivalence classes ofCSFs of
atoms with connected cardinality of at most k that can be constructed using a finite set of predicates
and constants.

Proof. It is easy to check that two CSFs of atoms are equivalent iff they are unifiable by a renaming
substitution. Since we have finitely many predicates and constant symbols, and at most k different
variables, we can combine them in a finite numberM of ways to form a connected CSF. In a CSF
consisting of more thanM connected CSFs we know that some of the connected components are
renamings of others, and keeping only one of them is enough for the evaluation of F according to
Lemma 2.1. Hence, there are at most 2M different equivalence classes.

Lemma 2.3. Let k be a natural number. There are a finite number of equivalence classes of CSFs
of atoms with connected width of at most k that can be constructed using a finite set of predicates
and constants.

Proof. It is a direct consequence of Lemma 2.2 because a bound for the connected width of a CSF
implies that there is also a bound for the connected cardinality.

A clause C is a DSF [l1,… , ln] of literals li, where all the variables are universally quantified.
A contradiction is represented by the empty clause ⊥. A formula F is in conjunctive normal form
(CNF) if it is a CSF of clauses, i.e,

F = [l11,… , l1n1],… , [lm1 ,… , lmnm].

Every FOL formula can be transformed into an equisatisfiable CNF formula using variable
standarization, Skolemization, De Morgan’s laws, and the distributivity of the conjunction and
disjunction logical operators.

24

2.1 First Order Logic Resolution

An instance of a clause C is the result of applying a substitution � to the clause, i.e., C�. If two
or more literals of the same polarity in a clause C are unifiable and � is their most general unifier,
then the clause C� is called a factor of C , and the process of applying � is called factorization.
Definition 2.2 ((Binary) Resolution Rule). Let C1 and C2 be two clauses with no variables in
common, and let l1 ∈ C1 and l2 ∈ C2 be complementary literals with respect to a most general
unifier � = mgu({l1, l̄2}). The binary resolvent of C1 and C2 with respect to the literals l1 and l2
is the clause:

C1 ∪r C2 = (C1� ⧵ [l1�]) ∪ (C2� ⧵ [l2�]).

C1 and C2 are said to be clashing clauses. A resolvent C1 ∪r C2 of C1 and C2 is a binary resolvent
C1�1 ∪r C2�2 of factors Ci�i of the two clauses.

It is easy to show that resolution is sound, i.e., C1, C2 ⊧ C1 ∪rC2. Consequently, the resolution
rule can be used to deduce new clauses and to prove that a formula is unsatisfiable if we are able
to derive the empty clause.
Definition 2.3 (Resolution Derivation (Refutation)). Let Σ be a set of clauses and C a clause. A
(resolution) derivation of C from Σ is a finite sequence of clauses R1,… , Rk = C , such that each
Ri is either in Σ, or a resolvent of two clauses in {R1, ..., Ri−1}. If such a derivation exists, we write
Σ ⊧r C , and say that C can be derived from Σ. A derivation of the empty clause ⊥ from Σ is called
a refutation of Σ. The steps of a resolution derivation are the resolution operations performed to
obtain the resolvents in the sequence.

Sometimes it is useful to knowwhich clauses were used to produce a resolventRi in a resolution
derivation. In such cases, a graph or tree representation can be helpful.
Definition 2.4 (Derivation (Refutation) Graph). Let Σ be a set of clauses and C a clause such that
Σ ⊧r C . A derivation (refutation) graph of C from Σ is a directed graph where the nodes are the
clauses from the derivation Σ ⊧r C , and where there is an edge from each resolvent to the clauses
used in the resolution step by which it was derived.

If we only include in the graph the last clause C and the clauses that are used in at least one
resolution step of the derivation, we can see the derivation graph as a tree, in which the last resolvent
C is the root of the tree and the leaves are clauses from Σ. Indeed, by cloning nodes with more than
one input edges (i.e., clauses used in several resolution steps) we can transform the derivation graph
into a derivation tree. It is more convenient to draw such derivation trees upside-down (Figure 2.2).
Theorem 2.1 (Soundness of Derivation). Let Σ be a set of clauses, and C a clause. If Σ ⊧r C , then
Σ ⊧ C .

Proof. This is a straightforward consequence of the soundness of the resolution rule.
A clause logically implies any instance of it, possibly extended with more literals. This follows

directly from the properties of the disjunction operator and the universal quantification.
Definition 2.5 (Subsumption). Let C and D be two clauses. We say that C subsumes D if there
exists a substitution � such that C� ⊆ D.

25

Chapter 2. Preliminaries

⊥

[a(X)][¬a(X)]

[¬a(X), b(X)][¬b(X)]

[¬a(X),¬b(X)][a(X)]

Figure 2.2: A derivation tree.

Definition 2.6 (Deduction). Let Σ be a set of clauses and C a clause. We say that there exists a
deduction of C from Σ, and write Σ ⊧dr C , if C is a tautology, or if there exists a clauseD such that
Σ ⊧r D and D subsumes C . If Σ ⊧dr C , we say that the clause C can be deduced from Σ.

Resolution steps or derivations involving ground instances of clauses (i.e., clause instances
that do not contain variables) ensure that there are corresponding resolution steps or derivations
involving the non-ground version of the clauses. This process is known as lifting a resolution step
or derivation.

In the text below we recall known theorems taken from the literature [22].

Theorem 2.2 (Lifting Lemma). Let the clauses C ′1, C ′2 be ground instances of the clauses C1, C2,
respectively. Let C ′ be a ground resolvent of C ′1 and C

′
2. Then there is a resolvent of the clauses C

of C1 and C2 such that C ′ is a ground instance of C .

Theorem 2.3 (Derivation Lifting). Let Σ be a set of clauses, and Σ′ a set of ground instances of
clauses from Σ. Suppose R′1, ..., R

′
k is a derivation of the clause R′k from Σ′. Then there exists

a derivation R1, ..., Rk of the clause Rk from Σ, such that R′i is an instance of Ri, for each i ∈
{1,… , k}.

Resolution derivations allow us to infer clauses that are logical consequences of an initial
knowledge in a complete way.

Theorem 2.4 (Subsumption Theorem). Let Σ be a set of clauses, and C a clause. Then Σ ⊧ C iff
Σ ⊧dr C .

Theorem 2.5 (Refutation Completeness of Resolution). Let Σ be a set of clauses. Then Σ is un-
satisfiable iff Σ ⊧r ⊥ .

Performing resolution steps in a breath-first manner ensures that we will find the empty clause
for unsatisfiable formulas. However, for satisfiable formulas, we may never stop generating new
clauses that are not subsumed by the already generated clauses. In general, resolution allows us to
define algorithms that provide sound and complete results, but we cannot ensure termination for
all FOL formulas.

The resolution operator ∪r has some useful properties that allow us to transform derivations
without affecting the consequence.

26

2.2 Disjunctive Existential Rules Framework

Property 2.1 (Symmetry). If C1 and C2 are clashing clauses, then their resolvent clause can be
computed in a symmetric way:

C1 ∪r C2 ≡ C2 ∪r C1.

Property 2.2 (Distributivity). If C1, C2 and C3 are clauses such that C3 resolves with the resolvent
of C1 and C2 using literals from both C1 and C2, then the following distributivity property holds:

(C1 ∪r C2) ∪r C3 ≡ (C1 ∪r C3) ∪r (C2 ∪r C3). (2.1)

Note that on right-hand side of (2.1) the literals used in the resolution steps with respect to C3
(C1 ∪r C3 and C2 ∪r C3) need to be the same that are used in the left-hand side.
Property 2.3 (Commutativity). If C1, C2 and C3 are clauses such that C3 resolves with the resol-
vent of C1 and C2 using only literals from C1, then the following commutativity property holds:

(C1 ∪r C2) ∪r C3 ≡ (C1 ∪r C3) ∪r C2.

Proving the above properties is straightforward if we consider them over ground instances of
the clauses and track the set operations on ground literals. As a consequence of Theorem 2.3, the
properties also hold for general resolution over non-ground clauses.
Example 2.4. Wewill illustrate the distributivity property forC1 = [a(X), b(X)],C2 = [a(X),¬b(X)]
and C3 = [¬a(X), c(X)]. On the left-hand side of (2.1) we have the following resolution steps:

(C1 ∪r C2) = [a(X)]

(C1 ∪r C2) ∪r C3 = [a(X)] ∪r [¬a(X), c(X)]

= [c(X)]

and on the right-hand side

(C1 ∪r C3) = [b(X), c(X)]
(C2 ∪r C3) = [¬b(X), c(X)]
(C1 ∪r C3) ∪r (C2 ∪r C3) = [b(X), c(X)] ∪r [¬b(X), c(X)]

= [c(X)].

Clearly, [c(X)] ≡ [c(X)].

2.2 Disjunctive Existential Rules Framework

A conjunctive query (CQ) is aCSF l1,… , ln of positive literals li where all the variables (which
we denote by X) are existentially quantified, i.e., an expression of the form ∃X l1,… , ln. Queries
that allow negation in the literals li are called conjunctive queries with negation (CQ¬). All the
variables X that appear in the positive literals of a CQ¬ are assumed to be existentially quantified.
In order to avoid domain dependant queries we use universally quantified negation [12, 14, 13],
i.e., all the variablesZ that appear only in negative literals are assumed to be universally quantified:

27

Chapter 2. Preliminaries

∃X∀Z l1,… , ln. Because the variable quantification rules are straightforward we omit quantifiers,
e.g., instead of ∃X∀Y person(X),¬married(X, Y) we write person(X),¬married(X, Y). The set
of variables that appear in both positive and negative literals is called the frontier of the query.
Note that for now we do not introduce the concept of answer variables. Therefore, the queries we
define are normally known as Boolean conjunctive queries. Consequently, throughout the paper by
conjunctive query we mean Boolean conjunctive query. ADSF of conjunctive queries (conjunctive
queries with negation) is usually referred to as a union of conjunctive queries (UCQ) (union of
conjunctive queries with negation (UCQ¬)). For a UCQ¬ , by ¬k we denote the set of CQ¬s in
 that contain exactly k negated atoms, and by ¬# the set of CQ¬s in  that contain two or more
negated atoms. We use the term query to refer to either a CQ, CQ¬, UCQ or UCQ¬.

A fact is a CSF l1,… , ln of positive literals li, where all variables are existentially quantified,
e.g., parent(ana, Y), parent(maria, Y). Existential quantifiers are again omitted.

A closer look at the definition of facts reveals that a fact is equivalent to a Boolean conjunctive
query. However, facts are used to express existing knowledge, while queries represent questions,
so they have different roles in the process of reasoning.

A rule is a closed formula of the form

∀X∃Y B → H,

where the body B is a CSF of positive literals, and the head H is a DSF in which allH ′ ∈ H are
CSFs of positive literals. The set X = vars(B) contains the variables that appear in the body, and
they are universally quantified. On the other hand, Y = vars(H) ⧵ vars(B) are the variables the
appear only in the head. They are existentially quantified, and they are called existential variables.
The frontier of a rule is the set of variables that are present in both the body and head of the rule:
vars(B) ∩ vars(H). We omit quantifiers when writing a rule.

A disjunctive existential rule is a rule with more than one disjoint in the head, i.e., ‖H‖ > 1.
An existential rule is a rule with exactly one disjoint in the head. For simplicity we write the head
of the existential rule as a CSF of atoms. A rule with an empty disjoint in the head is a negative
constraint, i.e., B → ⊥. If it is clear from the context that we refer to a negative constraint, we can
omit the “→ ⊥” and write only the body B of the negative constraint. Sometimes we also refer to
a negative constraint as a constraint.

We say that a CSF of atoms Q depends on a rule r iff there is a CSF of atoms F such that
F ⊭ Q and F , r ⊧ Q. A rule ri depends on a rule rj iff the body of ri depends on rj . The concept
of rule dependencies allows us to define the graph of rule dependencies (GRD) [24], which is a
graph where nodes are rules, and a directed edge between two nodes represents the existence of a
dependency between the corresponding rules.

A knowledge base (KB)  = ⟨,⟩ is composed by a CSF  of rules and a CSF of facts .
For a given set of rules, by⊥ we denote the set of constraints in, by∃ the set of existential
rules and by ∨ the set of disjunctive existential rules. A knowledge base ⟨,⟩ is a disjunctive
knowledge base (DKB) if∨ ≠ ∅, otherwise it is an existential knowledge base (EKB).

Example 2.5 (Disjunctive Knowledge Base). Let us define an example DKB about family relation-
ships.

28

2.2 Disjunctive Existential Rules Framework

Figure 2.3: UML diagram of an ontology example generated with OWLGrEd.

• Facts:

(parent(Y , ana), parent(Y , jane)), (2.2)
sibling(ana, juan)

• Existential rules:

(sibling(X, Y)→ sibling(Y ,X)),
(sibling(X, Y)→ parent(Z,X), parent(Z, Y))

(2.3)

• Negative constraints:

(sibling(X, Y), parent(X, Y)), (2.4)
(same-age(X, Y), parent(X, Y)), (2.5)
(parent(X, Y), parent(Y ,X)), (2.6)
(parent(X,X)) (2.7)

• Disjunctive existential rules :

first-deg-relative(X, Y)→ [parent(X, Y), parent(Y ,X), sibling(X, Y)] (2.8)

Note that the existential rule (2.3) has an existential variableZ, that refers to an anonymous entity
that is a parent of both siblings, i.e., if two people are siblings, they share a parent. Rule (??)

29

Chapter 2. Preliminaries

states that the predicate sibling/2 is symmetric. We could also add symmetry for same-age/2. Fact
(2.2) states that there is an anonymous entity Y that is a parent of both jane and ana. The nega-
tive constraints state the impossibility of a person being parent of his sibling (2.4) and also of a
person of the same age (2.5). Additionally, with the negative constraints we express that parent/2
is asymmetric (2.6) and irreflexive (2.7). Finally, the disjunctive existential rule (2.8) defines the
relation that represents the first degree relative concept [25]: a parent, a child (inverse of parent),
or a sibling.

In this paper, we study the query entailment problem for disjunctive knowledge bases, i.e., the
problem of knowing whether a query can be entailed from a disjunctive knowledge base ⟨,⟩:

, ⊧? . (2.9)

In particular, we solve the entailment problem (2.9) by reducing it to the entailment of a UCQ
′ with respect to the set of facts , i.e., to the problem

 ⊧? ′.

We say that ′ is a UCQ-rewriting of Q with respect to  if for all set of facts  it holds that

 ⊧ ′ implies , ⊧ . (2.10)

The CQs in ′ are called CQ-rewritings of Q with respect to. If the converse of (2.10)

, ⊧  implies  ⊧ ′

also holds for all set of facts , we say that ′ is a complete UCQ-rewriting of  with respect to
. Note that according to our definition, a UCQ-rewriting may not be complete. In this respect,
our definition follows the definition of UCQ-rewriting from [3] because we extend many of the
concepts and algorithms proposed by the authors.

Finally, we may be interested in the values that some of the variables in  take. However, this
does not change the semantic definition of conjunctive queries.

ACQQwith answer variables (CQa) is aCQ of the form ans(X), B, whereB is aCSF of atoms,
called the body of the query, and ans(X) is the answer atom of the query. The fresh predicate ans/n
is called the answer predicate and X a tuple of variables or constants such that var(X) ⊆ var(B),
is called the answer tuple of the query. A CQa Q is often written as ans(X) ∶− B. Conjunctive
queries without answer variables are calledBooleanCQs and for them the answer tuple is the empty
tuple X = (). A CQ¬ with answer variables (CQa¬) is defined in the same way, but variables that
appear only in negated atoms are not allowed to be part of the answer tuple X. A UCQ (UCQ¬)
with answer variables (UCQa or UCQa¬ respectively) is a DSF of CQas (CQa¬s) with the same
answer predicate. In general, a query with answer variables refers to a CQa, CQa¬, UCQa or to a
CQa¬.

Given a knowledge base , a tuple t of constants in  is a certain answer of a query with
answer variables Q with respect to  iff , ans(t) ⊧ Q. The set of certain answers of a query

30

2.2 Disjunctive Existential Rules Framework

 with respect to a knowledge base  is denoted by cert(,). Computing the set cert(,) is
known as the query answering problem.
Example 2.6. Consider the following three CQas, which have different sets of answer tuples:

Q1 = ans1() ∶− sibling(X, Y),
Q2 = ans2(X) ∶− sibling(X, Y)
Q3 = ans3(X, Y) ∶− sibling(X, Y).

We expect the certain answers ofQ1 to contain the empty tuple if someone has a sibling or otherwise
be the empty set, the certain answers ofQ2 to be the set of people that have siblings, and the certain
answers of Q3 to be set of pairs of people that are siblings.

Consider also a knowledge base  based on Example 2.5, with a different set of facts:

sibling(pedro, ana)
sibling(juan, Y).

The first fact states that pedro and ana are siblings, while the second fact that juan has a sibling.
The certain answers of the queries with respect to  are the following:

cert(Q1,) = {()}
cert(Q2,) = {pedro, ana, juan}
cert(Q3,) = {⟨pedro, ana⟩ , ⟨ana, pedro⟩}.

Thus, there are some siblings in  (by Q1), pedro, ana, and juan have siblings (by Q2) and ana
is a sibling of pedro and pedro a sibling of ana since sibling/2 is symmetric (by Q3). Note that
the sibling of juan has no identity so it is not included in the certain answers of Q3. The answers
can be easily verified by solving the corresponding entailment problems, e.g., pedro is a certain
answer of Q2 because

, ans2(pedro) ⊧ ans2(X), sibling(X, Y).

31

Part II

Proposed Methods

33

Chapter 3

Rewriting Queries with negated Atoms

3.1 Constraint Saturation

In this section, we focus on the entailment ofCQ¬s with respect to existential knowledge bases.
we introduce a method that removes the negated atoms from CQ¬s and yields UCQ that can be
rewritten using existing algorithms in order to find a complete UCQ-rewriting of the CQ¬.
Example 3.7. Lets consider the following EKB and the clauses Ci corresponding to the rules and
constraints:

∃ = {a(x)→ r(x, y)} C1 = [¬a(x), r(x, f (x))],

⊥ = {b(x), r(x, y)→ ⊥} C2 = [¬b(x),¬r(x, y)],

and a query with its corresponding clause.

q = s(x, y),¬a(x) C3 = [¬s(x, y), a(x)].

With the initial clauses we can do the following resolution derivation:

C1, C2, C3,

C4 = [¬s(x, y), r(x, f (x))] = C1 ∪r C3,

C5 = [¬s(x, y),¬b(x)] = C4 ∪r C2,

which basically means that the last clause is a consequence of the initial clauses (Correctness of
Resolution). i.e.

, ⊧ ∃x∃y s(x, y), b(x)→ ∃x∃y s(x, y),¬a(x),

for any sets of facts .
Therefore, we can say that s(x, y), b(x) is a CQ-rewriting of our initial query. Yet, it cannot be

obtained applying a classical rewriting algorithm on the initial query because it contains a negated
atom. On the other hand, it is well known that resolution for FOL is semi-decidable and arbitrary
length resolution derivations should be avoided. However, if we rewrite the constraint in the KB
we get :

b(x), a(x)→ ⊥ C6 = [¬b(x),¬a(x)].

Now we can apply one step resolution between the clause corresponding to q (C3) and C6 and we

35

Chapter 3. Rewriting Queries with negated Atoms

obtain again the clause corresponding to q′. Note that at this point if we have more rules in our
system, the query q′ could be rewritten using a classical algorithm and all the rewritings of q′ will
also be rewritings of q.

Generalizing the process described in the previous example, we could define constraint satu-
ration as the process of eliminating negative atoms from the queries by using constraints to make
resolution derivations of controlled length. We can achieve that by only allowing resolution steps
using clauses corresponding to constraints.
Definition 3.7. For a CQ¬ q and a set of constraints⊥, the constraint saturation sat(q,⊥) is the
most general set of conjunctive queries {… , qi,…} with no negative atoms that can be obtained
from a linear resolution derivation C0, C1,… , Ck, where (i) C0 is the clause corresponding to
¬q, (ii) Ck is the clause corresponding to ¬qi and (iii) The set of side clauses used are the ones
corresponding to the constraints C1,… , C

|| in  together with C0.

Lemma 3.4. Let q be a CQ¬ and the rules from a EKB. The constraint saturation sat(q,⊥) of
a query q with respect to⊥ is a UCQ-rewriting of q with respect to R.

Proof. Indeed, the elements qi ∈ sat(q,⊥) are built using a linear resolution derivation starting
with a clause corresponding to ¬q and using as side clauses the clauses corresponding to the con-
straints  of our EKB. We can affirm then that ⊥ ⊧ qi → q. Therefore, for all set of facts  we
have that  ⊧ qi implies , ⊧ q.

In Example 3.7, the shape of the initial query is very important. To ensure the termination of
the resolution involving the set of clauses corresponding to the rewritten constraints and the query
we need to avoid cases in which the query clause clashes with itself and produces a resolvent that
could contain different answers.
Example 3.8. Lets consider the query

q = B(x), s(x, y),¬B(y) C0 = [¬B(x),¬s(x, y), B(y)],

and the constraint:

 = {B(x),W (x)→ ⊥} C1 = [¬B(x),¬W (x)].

Here since C0 clashes with itself one can end up in a resolution derivation of unbounded length
when trying to remove the negative atoms in q. Particularly, every query of the form:

qn = B(x), s(x, x1),… , s(x, xn),W (xn)

is a rewriting of the initial query.

A CQ¬ is disconnected if the corresponding clause to C = ¬q does not clash with itself or if
the query q′ corresponding to the resolvent ¬(C ∪r C) is less general i.e. q ⪰ q′. Disconnected
queries will prevent generating new answers based on applying resolution involving the clause
corresponding to ¬q and itself.

36

3.1 Constraint Saturation

Even if at the beginning our query is disconnected a rewriting of it could end up resolving with
itself and such cases should also be avoided. In general, we say a CQ¬ q is strongly disconnected
with respect to a set of rules  if it is disconnected and all the queries corresponding to a clause
resulting from a resolution derivation of ¬q using clauses of are also disconnected.

Clearly, the resolution derivations in Definition 3.7 have a bounded length for strongly discon-
nected queries.
Lemma 3.5. In Definition 3.7 the length of the resolution derivation is bounded bym for a strongly
disconnected query with m negative atoms.

Indeed, every resolution step is performing resolution using a clause corresponding to a con-
straint, with all the atoms negated on it. Therefore, each of those steps removes one or more positive
atoms on the clause corresponding to the negated query, but those positive atoms in C0 correspond
to the negated atoms in q and there are only m of them. Moreover, since the query is strongly
disconnected possible steps applying resolution of the query with itself are discarded.
Theorem 3.6. Let  be a set of non disjunctive rules and q a strongly disconnected query with
respect to . If ⊥ contains all the possible rewritings of the queries corresponding to the con-
straints in it, then a complete UCQ-rewriting of the constraint saturation sat(q,⊥) is also a com-
plete UCQ-rewriting of q.

Proof. Lemma 3.4 ensures that a complete rewriting of sat(q,⊥) is a rewriting of q with respect
to .

Then, we need to focus on proving that for all  we have that , ⊧ q implies that there is a
qi ∈ ¬⊥ such that∃, ⊧ qi.

The proof is based on showing that a resolution derivation starting in ¬q and ending in the
empty clause can be rearranged using the commutativity property of the resolution so that the first
resolution steps are applied using constraints from . After those steps we can affirm that the
clause will correspond to a query in the constraint saturation of q, so there will also be a resolution
derivation starting from a clause corresponding to a query in sat(q,⊥) and ending in the empty
clause i.e. , ⊧ q implies , ⊧ sat(q,⊥).

Suppose that:
, ⊧ q (3.1)

and
, ⊭ sat(q,⊥). (3.2)

We can affirm using (3.1) that there is a linear resolution derivation starting with the clause C0 =
¬q, ending in the empty clause ⊥ (C0, C1,… , Cm′ , ⊥) that uses the clauses corresponding to,
and ¬q.

The only way to reach the empty clause is by performing resolution with respect to the clauses
corresponding to the facts  that have the following shape: [a(t′)]. They decrease the size of the
clauses in the linear resolution derivation. The initial clause has also positive atoms (corresponding
to the negated atoms in the original query) and the only way to get rid of them is by doing resolu-
tion with respect to one of the literals in a clause that corresponds to a constraint. Such step will

37

Chapter 3. Rewriting Queries with negated Atoms

decrease the number of positive atoms in the clause of the derivation and probably will introduce
more negative atoms. Since our query has m negated atoms, in our derivation we need at least m
resolution steps to get rid of the positive literals.

If we take a closer look at those resolution steps i1,… , im′ involving constraint clauses we can
try to reorganize them so that they are performed as early as possible. In case the constraint clause
used at step ij can resolve with the initial clause C0 we can perform the step on position 1 and shift
the other steps of the linear derivation. The resulting clause at step ij will be the same.

On the other hand, if some resolution steps with clauses corresponding to rules need to be
applied before we could apply a certain resolution step with a constraint clause, then based on
the commutativity property we could re-arrange those resolution steps by applying resolution first
to the constraint clause and then the resulting clause can be used to apply resolution to the initial
clause, resulting in the same clause at step ij . Note that this modification turns the linear derivation
into a tree but the shape of the derivation is not relevant. The clause that we obtain by applying
resolution between the constraint clause and the rules will have only negative literals. So it will be
equivalent to a constraint C ′ that can be deduced by the knowledge base i.e. , ⊧ C ′. But since
 contains all its rewritings, we know that there will be a constraint C ′′ ∈  such that C ′′ ⪰ C ′.
In that case, the query corresponding to C ′ is a rewriting of the query corresponding to C ′′.

In case C ′′ clashes with C0, instead of using C ′ in the resolution derivation we could use C ′′
which is a side clause that can resolve with the initial query and such step can again be inserted at
position 1. On the other hand, if C ′′ does not clashes with C0 it means that the resolution with C ′
yields a query that is also less general thanC ′′. Therefore, the resulting rewriting will have answers
when a constraint of the system is violated i.e. the resulting rewriting would be inconsistent.

The other possible resolution step involving aC0 would be to resolve it with itself but our query
is strongly disconnected with respect to the knowledge base as hypothesis to avoid those cases.

We will end up in a derivation with at least m initial resolution steps with respect to constraint
clauses. After those steps we will have a clause that needs to correspond to a query that is less
general than one of the queries in the constraints saturation sat(q,⊥). It implies that also there is
a resolution derivation that ends in the empty clause and starts with a clause corresponding to the
negation of a query in sat(q,⊥) i.e. , ⊧ sat(q,⊥). which contradicts (3.2) and proves our
theorem.

Theorem (3.6) allows us to find a set of CQ that after rewriting them in a complete way, will
contain all the rewritings of the original query q and thenwe can apply existing rewriting algorithms
to them in order to find a complete UCQ rewriting of q with respect to  .

To check whether a query is strongly disconnected or not would involve performing resolution
therefore it is not an easy condition to check before starting the rewriting of the query. Furthermore,
if we use a rewriting algorithm as a black box it will be impossible to check while rewriting the
query. Yet, if we implement the rewriting algorithm using the method proposed in [3] we could
focus on checking if the atoms introduced in every rewriting step could at some point clash with
some of the negated atoms that the query had originally. At the end of the process, if we find out
that the query is strongly disconnected, we will know for sure that the resulting UCQ is equivalent
to the initial query.

38

3.2 Algorithm for Rewriting Conjunctive Queries with Negation

Depending on the rules we have, there aremaybe some atoms that when negated are not strongly
disconnected (Example 3.9) and so any other query containing them in negated form will neither
be.
Example 3.9. Lets consider the simple query

q = ¬P (x) C0 = [P (x)],

and the rules from an EKB:

P (x), B(x)→ P ′(x) C1 = [¬P (x),¬B(x), P ′(x)],

P ′(x), s(x, y)→ B(y) C2 = [¬P ′(x),¬s(x, y), B(y)],

 = {B(x),W (x)→ ⊥} C3 = [¬B(x),¬W (x)].

After computing ((C0∪rC1)∪rC2)wewill reach again the clause equivalent to the query in Example
3.8:

q′ = B(x),¬P ′(x) C4 = (C0 ∪r C1) = [¬B(x), P ′(x)],

q′′ = B(x), s(x, y),¬B(y) (C4 ∪r C2) = [¬B(x),¬s(x, y), B(y)],

and we end up again in a resolution derivation of unbounded length when trying to remove the
negative atoms. Therefore, no query that contains ¬P (x)will be strongly disconnected with respect
to this knowledge base.

A negated atom ¬p(x) is self disconnected with respect to if the query q = ¬p(x) is strongly
disconnected w.r.t. . Notice that the only resolution steps that would probably produce non
disconnected queries are those that make resolution with a clause corresponding to a rule and the
head of the rule unifies with another atom belonging to the body of another rule (or the same one)
used previously in the resolution derivation. In case our rules contain only one atom in the body
(known as Atomic-hypothesis or linear rules [21]), resolution steps with rules will not introduce
other body atoms.
Property 3.1. Negated atoms are self disconnected with respect to an Atomic-hypothesis set of
rules.

Proof. Indeed, the initial clause corresponding to q = ¬p(x) cannot yield another clause with more
than one atom by applying resolution with clauses corresponding to rules.

3.2 Algorithm for Rewriting Conjunctive Queries with Negation

For the design of the algorithm to rewrite negative conjunctive queries we use the help of an-
other algorithm that rewrites conjunctive queries into UCQs. We can refer to it as rewrite-ext ∶
R × CQ → UCQ and it can be any of the state of the art rewriters (RAPID[26], SYSNAME[27],
GRAAL [28]) compatible with the theory we support for finding the constraints saturation of a
conjunctive query with negation.

To illustrate better the general idea of the algorithms presented, we treat data structures in a very
simple way. The method pop when applied to a set, returns one of its elements and also removes

39

Chapter 3. Rewriting Queries with negated Atoms

it from the set. The function cover/1 computes the set of most general conjunctive queries given
a set of conjunctive queries.

3.2.1 Preprocessing

f un c t i o n computeConstraints ()
expand := ⊥

whi l e expand.size > 0 do
c := expand.pop
C := C ∪ rewrite -ext(,c)

end f o r
re turn cover(C)

end f un c t i o n

Algorithm 1: Function to rewrite the initial set of constraints.

For a fixed set of non-disjunctive rules  we initially perform the computation of the rewrit-
ings of each one of the initial constraints (Algorithm 1). Then, as long as the existential rules or
constraints do not change, the same computed rewritings of the constraints can be used to perform
the constraint saturation for different queries.

3.2.2 The Algorithm

fun c t i o n rewrite - completo (, q)
C := computeConstraints ()
qCsat := Csaturation (C,q)
ucq := {}
whi l e qCsat.size > 0 do

q′ := qCsat.pop
ucq := ucq ∪ rewrite -ext(, q′)

end f o r
re turn cover(ucq)

end f un c t i o n

Algorithm 2: Main algorithm to rewrite queries with negated atoms.

Algorithm 2 is the main algorithm for rewriting queries with negated atoms. It computes the
rewriting of the constraints (if it is not already computed for that knowledge base). The function
Csaturation (Algorithm 3) takes the clause corresponding to ¬q and performs linear resolution
with respect to the clauses corresponding to the constraints in⊥ to obtain the constraint saturation
sat(q,⊥). The derivations on each step remove at least one of the negated atoms in q by perform-
ing a resolution step (resolve/3) with a derivation of the original query q′′ and a constraint c from
⊥. For each constraint, we check all possible clashing sets with the queries in order to explore
all possible linear derivations starting in ¬q and ending in a clause representing a query without
negative atoms. The initial query is transformed to a clause (queryToClause/1) by creating a
set with the complement of each of the atoms in the query. In the resolution derivation, when the

40

3.2 Algorithm for Rewriting Conjunctive Queries with Negation

clause generated has no positive atoms we can affirm that it represents a query with only positive
atoms therefore we convert it back to a query (clauseToQuery/1), by taking the complement of
the atoms in the clause.
f u n c t i o n Csaturation (C, q)

ucq := ∅
cq := queryToClause (q)
expand := {cq}
whi l e expand.size > 0 do
q′ := expand.pop
f o r ea ch c i n C do

fo r each clashing set l i n c and q′ do
q′′ := resolve (l,c,q′)
i f (q′′ has no positive atom)

ucq := ucq ∪ clauseToQuery (q′′)
e l s e

expand := expand ∪ {q′′}
end i f

end f o r
end f o r
end wh i l e

r e turn cover(ucq)
end f un c t i o n

Algorithm 3: Function to compute the constraints saturation of a query.

With each of the queries in the UCQ resulting from the main algorithm we can perform query
answering, by trying to unify the atoms of the query with atoms in the database  . In case the
original query had some answer variables the atom ans(x) would be part of each of the queries in
the rewriting, but it will not unify with atoms in  . As a result of the unification of the atoms in
the query and the atoms in (if possible and in all possible ways), the variables in the ans predicate
will be replaced by constants and we will end up with tuples t that will be part of the answers of our
query. For each query, finding an answer tuple is an NP-Complete process, yet there are potentially
an exponential number of tuples that can be answers of the query.

In the process of constraints saturation, we have to avoid the queries that remove answer vari-
ables from the atoms of the query in the process of resolution to avoid ending up in domain depen-
dent queries with answer variables that do not belong to the atoms of the query. Yet we only need
to pay attention to it when we try to answer queries without safe negation.

41

Chapter 4

Horn Conjunctive Queries

The problem of deciding whether a query q is entailed, for a given set of non disjunctive rules
 and data :

, ⊧ q (4.1)
can be transformed into an equivalent problem by changing the hypotheses and consequences of
the equation:

∃,,¬q ⊧ ¬⊥. (4.2)
In Eq. (4.2), the term ¬⊥ is a union of BCQ {… qi…} with Boolean queries qi corresponding to
the bodies of the constrains in⊥, i.e.,

qi = a1(x1),… , an(xn)

for each constraint
a1(x1),… , an(xn)→ ⊥ ∈ ⊥.

On the other hand, ¬q depends on the shape of q but if it contains only one negated atom it will be
translated into a rule, i.e., ¬(∃X∀Y, a1(x1),… , an(xn),¬p(y)) is transformed into

rq = ∀X∃Ya1(x1),… , an(xn)→ p(y).

Conjunctive queries with a negated atom are called Horn Conjunctive Queries (CQ¬ℎ).
Consequently, in order to find the answers of a Horn query we can rewrite the bodies of the

constraints by using an additional rule rq corresponding to q.
The rule rq remains inside the framework of Existential Rules, with the variablesY that are not

present in positive literals as existential variables. On the other hand, for Horn CQ¬g or even Horn
CQ¬s we can ensure that rq will not have any existential variables. Additionally, when we perform
UCQ rewriting with the new set of rules, it is convenient to keep track of when the rule rq was
applied in order to identify the rewritings that were obtained using that rule. Thus, we can add a
dummy atom q() to the body of rq. The queries with the predicate q in their atoms will be obtained
by applying at least one rewriting step using rq. Notice that the predicate q cannot be present in
the knowledge base in order to avoid changing the semantics of Eq. (4.1).

The resulting set of rules∪{rq} also needs to be a fus in order to guarantee the existence of a

43

Chapter 4. Horn Conjunctive Queries

UCQ-rewriting of the bodies of the constraints in the knowledge base. Therefore, by rewriting the
bodies of the constraints we cannot ensure that all Horn queries can be answered. Nevertheless,
depending on the rules in  and rq we can check some of the sufficient conditions ensuring that
the resulting set of rules is also a fus.

The final UCQ rewriting of the bodies of the constraints will contain (i) queries obtained using
only rules from ∃ and (ii) queries that were obtained by applying rq at least once. The queries
from (i) will allow us to express the inconsistencies of the original knowledge base and queries
from (ii) will contain the rewritings of q (removing the dummy atoms).

The intuition behind Eq. (4.2) is that Eq. (4.1) will be satisfied when the application of the
rule rq introduces inconsistencies with respect to the constraints of the system.

Performing Forward Chaining with the resulting set of rules  ∪ {rq} could also be used to
answer the bodies of the constraints in . However, there needs to be a way to tell apart the
inconsistencies introduced by using rq and those that do not depend on the presence of rq. Basically,
we have two problems to solve:

∃, ⊧ ¬⊥ (consistency of the knowledge base)

and

∃ ∪ {rq}, ⊧ ¬⊥ (consistency of the knowledge base if the new rule is added).

Forward Chaining algorithms could also be modified in order to flag the facts that can only be ob-
tained due to an application of rq. We will then be interested if one of the flagged atoms is involved
in triggering a constraint in . This would avoid computing the forward chaining saturation of both
knowledge bases, considering that one of them is a subset of the other.

4.1 Union of Horn CQs

For conjunctive queries without negated atoms, the entailment of a UCQ Q = [q1,… , qn] is
a matter of considering the entailment problem of each query qi separately and then taking the
disjunction of the results:

 ⊧ [q1,… , qn] iff

 ⊧ q1 or … or  ⊧ qi or … or  ⊧ qn.

In the presence of a union of conjunctive queries with negation (UCQ¬), we can consider the
reduction in equation (5.1) and notice that it is possible to perform resolution between two clauses
corresponding to negation of queries qi. Therefore, considering entailment of each of the queries
separately would not be a complete approach.
Example 4.10. Consider an empty set of rules with a UCQ¬:

⊧ [a(X), (b(Y),¬a(Y))].

44

4.2 Rewriting a Union of Horn CQs

By reasoning with each of the queries separately we obtain:

⊧ a(X)

and
⊧ b(Y),¬a(Y)

but we would not be able to infer that b(X) is a rewriting of the initial UCQ¬, i.e.,

 ⊧ b(Y)

implies
 ⊧ [a(X), (b(Y),¬a(Y))],

but b(Y) ⊭ a(X) and b(Y) ⊭ b(Y),¬a(Y).

A possible approach to follow can be to convert the Horn queries into rules and perform rewrit-
ing on the remaining queries plus the constraints of the system:

∃,¬Q¬1 ⊧ ¬⊥, Q¬0. (4.3)

Union of conjunctive queries that contain either Horn conjunctive queries or conjunctive queries
are called union of Horn conjunctive queries (UCQ¬ℎ).

Property 4.1. For a finite unification set  and a UCQ¬ℎ Q, if the set of rules ¬Q¬1 is also a
fus and together they define a directed cut i.e.  ⊳ ¬Q¬1, then the entailment problem for Q is
decidable for any set of constraints and facts.

Proof. If we consider Prop. 5.1 and the reduction of the entailment problem in Eq. (4.3) we can
see that the resulting set of rules ∪ ¬Q¬1 is a fus of existential rules.

Property 4.1 helps us knowing beforehand if the UCQ rewriting of the initial UCQ¬ℎ exists.
Besides checking the fus property for the set of rules corresponding to the Horn queries, we also
need to make sure that the rules in  do not depend on the set of rules corresponding to the Horn
queries. Nevertheless, if our Horn queries are translated to rules that have the same property of the
rules in  i.e.  ∪ ¬Q¬1 are linear rules or domain restricted rules, then we don’t need to check
the dependencies between both set of rules to ensure decidability.

4.2 Rewriting a Union of Horn CQs

The Algorithm 4 defines the general procedure to find the rewritings of a UCQ¬ℎ. The queries
are rewritten using an external rewriting algorithm rewrite_ext/2. Finally, the rewritings are
filtered (to_rewritings/2), selecting those that have the predicate ‘ans‘ and also transformed
into answers of the original queries in Q.

45

Chapter 4. Horn Conjunctive Queries

f u n c t i o n rewrite (, Q)
ucq := {}
ucq.addAll(Q¬0)
ucq.addAll(⊥)
ucq := rewrite_ext (ucq ,∃ ∪ ¬Q¬1)
ucq := filter_rewritings (ucq , ’ans ’)
re turn ucq

end f un c t i o n

Algorithm 4: Function to rewrite Horn UCQs.

Example 4.11. Using the existential rules and constraints from Example 2.5 we could rewrite
ans(X) ∶− Person(X),¬MarriedT o(X, Y) and obtain the following UCQ-rewriting:

ans(X) ∶−[Priest(X)),

Minor(X),

SinglePerson(X)].

Notice that rq has an existential variable and it cannot produce rewritings from the following con-
straints:

MarriedT o(X, Y), ℎasParent(X, Y)→ ⊥

MarriedT o(X,X)→ ⊥.

On the other hand, if we include Y as answer variable, i.e.,

ans(X, Y) ∶− Person(X), P erson(Y),¬MarriedT o(X, Y),

we are asking for pairs of people that cannot be married. The rewriting has 81 queries but basically
the approach is to introduce the rule

ans(X, Y), P erson(X), P erson(Y)→MarriedT o(X, Y)

and to rewrite the constraints:

MarriedT o(X, Y),Minor(X)→ ⊥

MarriedT o(X, Y), P riest(X)→ ⊥

MarriedT o(X, Y), SingleP erson(X)→ ⊥

MarriedT o(X, Y), ℎasParent(X, Y)→ ⊥

MarriedT o(X,X)→ ⊥.

46

Chapter 5

Backward Chaining for Disjunctive
Knowledge and Queries With Negated
Atoms

In this section we first present constraint resolution, a novel type of resolution that is sound and
refutation complete. Constraint resolution reduces the number of available choices in the resolution
process by focusing on producing resolvents with a smaller number of positive literals. Constraint
resolution is then translated into backward rewriting steps, allowing the definition of a rewriting
algorithm for the framework of disjunctive existential rules that is able to solve the query entailment
problem (2.9).

5.1 Constraint Resolution

The entailment problem (2.9) can be transformed into a consistency check problem

,,¬ ⊧? ⊥, (5.1)

which can then be solved using resolution refutation. Depending on the expressivity of the queries
in  their negation can yield new facts, negative constraints, existential rules, or even disjunctive
existential rules.

To apply resolution, we need to convert first the facts and rules of the DKB, as well as the
negated query ¬ to aCNF. In what follows, our purpose is to define a restricted resolution strategy
in order to control the process of resolution among these clauses, so as to decrease the number of
available choices every time we perform a resolution step. This might result in longer derivations,
but the algorithm to generate them is simpler. The main goal of the restrictions we introduce is
to make the resolution process focus on eventually generating resolvents without positive literals
and any number of negative literals. The process can then continue by eliminating those remaining
negative literals without introducing again positive literals.
Definition 5.8 (Positive/Negative Charge). The positive (negative) charge |C|+ (|C|−) of a clause
C is the number of positive (negative) literals in the clause.

47

Chapter 5. Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms

Table 5.1: Properties of different types of clauses in the disjunctive existential rules framework.
Name Properties
Rule clause (RC) |C|+ = 1 ∧ |C|− ≥ 1
Fact clause (FC) |C|+ = 1 ∧ |C|− = 0
Constraint clause (CC) |C|+ = 0 ∧ |C|− ≥ 1
Disjunctive RC (DRC) |C|+ ≥ 2 ∧ |C|− ≥ 0

According to the above definition, aHorn clauseC is a clause with positive charge smaller than
or equal to one, i.e., |C|+ ≤ 1. The clause we obtain by converting to CNF a negative constraint or
the negation of a CQ has zero positive charge. We call a clause with no positive literals a constraint
clause (CC). The Skolemized version of an existential rule can produce several clauses with one
positive literal, while a disjunctive existential rule can give rise to several clauses with more than
one positive literal. We call a clause with only one positive literal a rule clause (RC), and a clause
with more than one positive literal a disjunctive rule clause (DRC). Facts generate ground clauses
containing only one literal, which has positive polarity, and we call such clauses fact clauses (FCs).
Note that existential variables in the facts are replaced by Skolem terms. Table 5.1 summarizes the
properties that define the different types of clauses we may encounter when doing resolution on a
DKB. As we can see, RCs, FCs and CCs are Horn clauses. Finally, a CQ¬ may produce a FC, RC
or DRC, depending on its positive and negative charge.
Example 5.12. From the DKB of Example 2.5 we obtain the following clauses:

• Fact clauses:
[parent(f0, ana)]
[parent(f0, jane)]
[sibling(ana, juan)].

• Rule clauses:
[¬sibling(X, Y), sibling(Y ,X)]
[¬sibling(X, Y), parent(f2(X, Y), X)]
[¬sibling(X, Y), parent(f2(X, Y), Y)].

• Constraint clauses:
[¬sibling(X, Y),¬parent(X, Y))],
[¬same-age(X, Y),¬parent(X, Y)]
[¬parent(X, Y),¬parent(Y ,X)]
[¬parent(X,X)].

• Disjunctive rule clauses :

[¬first-deg-relative(X, Y), parent(X, Y),
parent(Y ,X), sibling(X, Y)].

Table 5.2 shows the properties of the resolvent for different types of clauses when performing a
resolution step. From these properties follows that a resolution refutation should involve resolution
steps with respect to fact clauses because they always produce clauses with a smaller negative

48

5.1 Constraint Resolution

Table 5.2: Properties of the resolvent C3 for different types of clauses C1 and C2.
C1 C2

CC DRC RC
FC |

|

C3||
− < |

|

C1||
−

|

|

C3||
− < |

|

C1||
−

|

|

C3||
− < |

|

C1||
−

RC |

|

C3||
+ = 0 1 ≤ |

|

C3||
+ ≤ |

|

C2||
+

|

|

C3||
+ = 1

DRC |

|

C3||
+ < |

|

C1||
+

|

|

C3||
+ >

max(|
|

C1||
+ , |

|

C2||
+)

CC does not exist

charge. Such resolution steps can be arranged so that they are performed in the last part of the
resolution derivation. Additionally, this type of resolution step is generally linked to data retrieval
with respect to databases. For this reason, we mainly focus on the initial part of a rearranged
resolution derivation, until it reaches a clause that has only negated atoms. Such a process is linked
to producing CQ-rewritings since the resulting clause corresponds to the negation of a conjunctive
query.

As we can see from Table 5.2, in order to get derivations that produce clauses with a non-
increasing positive charge, we need to avoid resolution steps involving two DRCs, i.e., we need
to use in every resolution step at least one Horn clause. However, if we focus on resolution steps
where one of the clauses used is a CC, the resolvent will always have a smaller positive charge (See
CC column on Table 5.2).

Definition 5.9 (Constraint Derivation). Let Σ be a set of clauses and C a clause. A resolution
derivation (refutation) Σ ⊧r C of a clause C(⊥) from Σ is a constraint derivation (refutation) iff all
its resolution steps involve resolution with a constraint clause. A constraint derivation of a clause
C from Σ is written as Σ ⊧c C . Similarly, there is a constraint deduction of C from Σ, written as
Σ ⊧dc C , if C is a tautology or if there is a clause D such that Σ ⊧c D and D subsumes C .

The subsumption theorem can be formulated using constraint deductions and consequences
with no positive literals.

Theorem 5.7 (Constraint Subsumption for Constraint Clause Consequences). Let Σ be a set of
clauses and C a constraint clause. Then Σ ⊧ C iff Σ ⊧dc C .

Proof. Based on the subsumption theorem for resolution derivations (Theorem 2.4), the fact that
Σ ⊧ C implies that we have a deduction of C , i.e., there is a derivation Σ ⊧r D of a clause D that
subsumes C . Note that D needs to be a CC in order to subsume another CC. This proof is based
on being able to transform every resolution derivation of a CCD into a constraint derivation ofD.

The resolution derivation Σ ⊧r D for sure involves resolution steps with respect to some
constraint clauses. Let Ci1 be the closest resolvent to the root (D) of the corresponding deriva-
tion tree that is obtained by applying binary resolution without using a constraint clause: Ci1 =
(

Ci0 ∪r Cj0
)

. We can assume that on the path to the root of the tree the resolution steps involve
always constraint clauses Cj1 ,… , Cjk :

(

Ci0 ∪r Cj0
)

∪r Cj1 ∪r…∪r Cjk = D.

49

Chapter 5. Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms

Therefore, we can apply the distributivity property if Cj1 clashes on literals coming from both
clauses Ci0 and Cj0 , obtaining

(

(Ci0 ∪r Cj1) ∪r (Cj0 ∪r Cj1)
)

…∪r Cjk = D.

On the other hand, if Cj1 clashes on literals coming from only one of the clauses (we assume it is
Ci0 without loss of generality) we apply the commutativity property to obtain

(

(Ci0 ∪r Cj1) ∪r Cj0
)

…∪r Cjk = D.

If we continue the same process for all the clauses Cj1 ,… , Cjk in the same order, we obtain
(

Ci0 ∪r Cj′1 ∪r…∪r Cj′
k′

)

∪r
(

Cj0 ∪r Cj′′1 ∪r…∪r Cj′′
k′′

)

= D.

Because D is a constraint clause at least one of the clauses used to obtain it is also a constraint
clause:

|

|

|

|

(

Ci0 ∪r Cj′1 ∪r…∪r Cj′
k′

)

|

|

|

|

+
= 0

or
|

|

|

|

(

Cj0 ∪r Cj′′1 ∪r…∪r Cj′′
k′′

)

|

|

|

|

+
= 0.

This eliminates the resolution step between the two non-constraint clauses. In the sameway, we can
eliminate the rest of the resolution steps that involve two non-constraint clauses. Thus, transforming
the existing deduction of C into a constraint deduction of C .

Theorem 5.8 (Completeness of Constraint Resolution Derivations). A set of clauses Σ is unsatis-
fiable iff there exists a constraint refutation of Σ, i.e., Σ ⊧c ⊥.

Proof. This follows from Theorem 5.7 by taking as a consequence the empty clause that has no
positive literals and is only subsumed by itself.

5.2 Unit Resolution

A unit clause is a clause with only one literal. Unit resolution steps involve at least one unit
clause. Correspondingly, we also define unit derivations and refutations.

Definition 5.10 (Unit Derivation). Let Σ be a set of clauses andC a clause. A resolution derivation
(refutation) Σ ⊧r C of a clause C(⊥) from Σ is a unit derivation (refutation) iff all its resolution
steps involve resolution with a unit clause. A unit derivation of a clause C from Σ is written as
Σ ⊧1 C . Similarly, there is a constraint deduction ofC from Σ, written as Σ ⊧d1 C , ifC is a tautology
or if there is a clause D such that Σ ⊧1 D and D subsumes C .

Unit resolution is not refutation complete. A very simple propositional example suffices to
show the incompleteness of unit refutations.

50

5.3 Rewriting Operations and Resolution

⊥

[¬P ,¬P]

[¬P ,¬Q][¬P ,Q]

[P , P]

[P ,¬Q][P ,Q]

Figure 5.1: A refutation of S.

Example 5.13. Let S = {[P ,Q], [P ,¬Q], [¬P ,Q], [¬P ,¬Q]}. Figure 5.1 shows a refutation of
S. However, S contains no unit clause, i.e., there is no unit refutation of S.

On the other hand, if Σ contains only one clause that is not a unit clause, the completeness of
unit refutations can be easily shown.
Theorem 5.9 (Completeness of Unit Resolution Derivations). A set of clauses Σ, that contains
only one clause that is not a unit clause, is unsatisfiable iff there exists a unit refutation of Σ, i.e.,
Σ ⊧1 ⊥.

Proof. Similar to the proof of Theorem 5.7.

5.2.1 Query Containment

Given two CQ¬s Q1 and Q2, the query containment problem is the problem of knowing if all
the certain answers of Q1 are included in the certain answers Q2 (Q1 ⊆ Q2). Query containment
can also be expressed as an entailment problem, e.g.,

Q1 ⊧? Q2. (5.2)

In Equation (5.2) all the clauses that correspond to Q1 are unit clauses and Q2 is represented
by only one clause, i.e., the Skolemized version of ¬Q2. Therefore, the containment of two queries
Q1 and Q2 is equivalent to the problem of finding a unit refutation for the clauses corresponding
to Q1 ∧ ¬Q2.

5.3 Rewriting Operations and Resolution

Conjunctive query rewriting is a process that mimics the constraint derivations introduced in
the previous section. However, resolution steps involving Skolem functions are performed together
in order to avoid introducing literals with Skolem functions that will not be able to be removed.
For existential rules, the process of query rewriting is well known [3]. However, in most of the ex-
isting literature disjunctive rules are mainly used in a forward chaining manner [7, 6] or to perform
Disjunctive Datalog rewritings [8, 9, 10, 11].

In Example 2.5, one could infer that two first-degree relatives that have the same age have to
be siblings:

first-deg-relative(X, Y),
same-age(X, Y) → sibling(X, Y).

(5.3)

51

Chapter 5. Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms

This rule can be obtained by a constraint derivation using (2.8) and the clauses corresponding
to:

(same-age(X, Y), parent(X, Y)→ ⊥)
(same-age(X, Y)→ same-age(Y ,X))

expressing respectively that children and their parents cannot have the same age and that the same-
age/2 predicate is symmetric.

The new existential rule (5.3) can then be used in rewriting steps defined for existential rules.
A rewriting step as defined in the existential rules framework [3] corresponds to the resolution

steps between RCs corresponding to an existential rule and a CC corresponding to the negation of
a CQ.
Definition 5.11 (Rewriting Step). Let r = B → H be an existential rule, and Q a conjunctive
query. If there is a subsetH ′ ⊆ H that unifies with someQ′ ⊆ Q through amgu � (i.e.,H ′� = Q′�)
such that

1. if v ∈ vars(Q ⧵Q′) and v ≠ v�, then v� is a frontier variable of r or a constant, and

2. if v is an existential variable of the rule r, then v� ∉ vars(Q ⧵Q′),

then the query (B ∪ (Q ⧵Q′))� is a rewriting of Q using the existential rule r.

If an existential rule r has more than one atoms in its head, it gives rise to more than one RCs.
Nevertheless, the resolution steps with such RCs are always performed together in order to avoid
unnecessary propagation of Skolemized existential variables. Thus, the resulting clause cannot
contain a Skolem term representing an existential variable of r. Hence, existential variables cannot
be assigned to a variable that will be part of the result (condition 1 in Definition 5.11) nor should
be replaced by a variable that belongs to the result (condition 2 in Definition 5.11).

Definition 5.11 is an adaptation to our framework of the piece-based rewriting step proposed
in [3].

For the resolution steps between some DRCs obtained from a disjunctive existential rule and
a CC obtained from the negation of a CQ, we define a corresponding rewriting step generalizing
Definition 5.11 with the goal to support both existential rules and disjunctive existential rules.
Definition 5.12 (General (Disjunctive) Rewriting Step). Let r = B → H be a rule, and Q a
conjunctive query. If there is a subset H ′ ⊆ H , and for each ℎi ∈ H ′ there is a subset ℎ′i ⊆ ℎi
that unifies with some Q′ ⊆ Q through a mgu � (i.e., ℎ′1� = …ℎ′n� = Q

′�) such that

1. if v ∈ vars(Q ⧵Q′) , then v� is a frontier variable of r or a constant, and

2. if v is an existential variable of the rule r, then v� ∉ vars(Q ⧵Q′),

then (B∪(Q⧵Q′)→ H ⧵H ′)� is a rewriting ofQ using the rule r. A rewriting step is a disjunctive
rewriting step if the rule used is a disjunctive existential rule.

A disjunctive rewriting step can yield a disjunctive rule with fewer disjunctive components,
an existential rule in case |(H ⧵H ′)�| = 1 or a negative constraint (the negation of a conjunctive
query) in caseH = H ′.

52

5.3 Rewriting Operations and Resolution

Example 5.14. Consider a disjunctive existential rule:

r1 = diabetesRisk(X)→ [(diabetic(Y),
sibling(Y ,X)),

(diabetic(Z),
parent(Z,X))].

If we want to rewrite the queryQ = diabetic(X1), to learn if there are any diabetic people, we can
obtain the UCQ-rewriting [diabetic(X1), diabetesRisk(X)], using r1 with the unifier � = {Y ←←←

X1, Z ←←← X1}.
On the other hand, if we have the negative constraint singleChild(X1), sibling(Y1, X1) and the

query Q′ = diabetic(Y2), parent(Y2, X2) asking if there is a diabetic parent, we can derive the
existential rule

diabetesRisk(X), singleChild(X)→ diabetic(Z),
parent(Z,X),

by rewriting the constraint using the rule r1 and the unifier �2 = {X1 ← X, Y1 ← Y }. Using the
new existential rule we obtain the following UCQ-rewriting:

[(singleChild(X), sibling(Y ,X)),
(diabetic(Y), parent(Y ,X)),
(diabetesRisk(X), singleChild(X))].

Note that the final UCQ-rewriting contains also negated constraints which are possible reasons for
which a query can be entailed, i.e., inconsistent knowledge bases. However, sometimes we might
want to filter out the negated constraints if we are sure that the knowledge base is consistent.

Using the above-defined rewriting steps, we can now define rewriting for DKBs.

Definition 5.13 (Rewriting). Let ⟨,⟩ be a tuple consisting of a set of rules and a UCQ . A
one-step rewriting ⟨′,′⟩ of ⟨,⟩ can be obtained by adding to or to , as appropriate, the
result f ′ of a general rewriting step that uses one of the conjunctive queries in  and a rule in,
i.e., ′ =  ∪ (¬f ′) if f ′ is a negative constraint, otherwise′ =  ∪ (f ′).

A k-step rewriting of ⟨,⟩ is obtained by applying a one-step rewriting to a (k − 1)-step
rewriting of ⟨,⟩. For any k, a k-step rewriting of ⟨,⟩ is a rewriting of ⟨,⟩.

So far we have dealt with rewritings of conjunctive queries with respect to existential rules and
disjunctive existential rules. However, we have not considered negative constraints and conjunctive
queries with negated atoms. Negative constraints are transformed into queries in the rewriting
process, i.e.,

∃,∨,⊥, ⊧  iff ,∨, ⊧ ¬⊥,.

In a similar way, if  is a UCQ¬, the entailment problem can be reduced to the entailment of a
UCQ:

∃,∨,⊥, ⊧  iff
(∃,¬¬1), (∨,¬¬#), ⊧ ¬⊥,¬0,

(5.4)

53

Chapter 5. Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms

where ¬¬1 contains existential rules (negations of CQ¬s with one negated atom) and ¬¬# dis-
junctive existential rules (negations of CQ¬s with more than one negated atom).
Theorem 5.10 (Soundness and Completeness of Rewritings). Let ⟨,⟩ be a DKB and a UCQ.
Then, ⊧  iff there is a rewriting ⟨′,′⟩ of

⟨

(,∨), (,¬⊥)
⟩

such that ⊧ Qi for some
conjunctive query Qi in ′.

Proof. The k-step rewriting of⟨(,∨), (,¬⊥)
⟩ is based on a constraint derivation. Moreover,

such a rewriting can be mapped to a constraint derivation. Since constraint derivations are sound
and complete (Theorem 5.8), this theorem also holds.

f u n c t i o n rewritek(,)
 ∶=  ∪ ¬⊥

 ∶=  ⧵⊥

do
old ∶= 
old ∶= 
 ∶= rewrite∃k(

∃,)
 ∶= rewrite∨(,)

whi l e ( ≠ old or  ≠ old)
re turn 

end f un c t i o n

Algorithm 5: Function to rewrite UCQs with respect to existential rules and disjunctive existential
rules.

Given a set of rules and a UCQQ, function rewritek/2 presented in Algorithm 5 computes
all the rewritings of ⟨(,∨), (,¬⊥)

⟩. The algorithm alternates between computing the rewri-
tings of CQs using existential rules (rewrite∃k/2 presented in Algorithm 6) and computing the
rewritings using disjunctive existential rules (rewrite∨/2 presented in Algorithm 7). New CQs
are used to generate more rules, and new existential rules are used to generate more CQs until a
fixed point is reached, i.e., until no new rule or query is produced.
f u n c t i o n rewrite∃k(,)

old ∶= 
exp ∶= 
level := 0
do

 ∶=cover(∪ rew(exp,))
exp ∶=  ⧵old
old ∶= 
level := level + 1

whi l e exp ≠ ∅ and level < k
re turn 

end f un c t i o n

Algorithm 6: Function to rewrite UCQs using existential rules.

54

5.3 Rewriting Operations and Resolution

f u n c t i o n rewrite∨(,)
old ∶= 
exp ∶= ∨

do
 ∶= ∪ rew∨(,exp)
exp ∶= ∨ ⧵old
old ∶= 

whi l e exp ≠ ∅
re turn 

end f un c t i o n

Algorithm 7: Function to rewrite UCQs using disjunctive existential rules.

Function rew/2 (in Algorithm 6) computes the set of the results of all possible rewriting steps
for all the combinations of existential rules and CQs in its arguments. This step is known as the
expansion of a query, and it generates more conjunctive queries. On the other hand, function
rew∨/2 (in Algorithm 7) computes the expansion of disjunctive existential rules by computing the
set of the results of all disjunctive rewriting steps for all the combinations of disjunctive existential
rules andCQs in its arguments that do not yield a conjunctive query. This restriction does not affect
completeness because a CQ Q′ that can be generated from a CQ Q in a disjunctive rewriting step
using rule r can also be generated in two steps. In particular, a disjunctive rewriting step generates
first an existential rule r′ (r′ ∈ rew∨({Q}, {r})), and then a rewriting step using r′ generates the
query Q′ (Q′ ∈ rew({Q}, {r′})).

The cover/1 function (in Algorithm 6) computes, for a given UCQ Q, the minimal subset
Q′ ⊆ Q such that for all q ∈ Q there is a q′ ∈ Q′ such that q′ subsumes q, i.e., the corresponding
clause to q′ subsumes the corresponding clause to q.

The cover/1 function allows us to keep always the minimal set of CQs that can yield the same
results. In [3], the authors perform a deeper analysis showing that using the cover computation on
the rewriting algorithm they propose ensures that the resulting UCQ-rewriting will be of minimal
size (cardinality).

In both rewrite∃k/2 and rewrite∨/2, all newly generated CQs and rules are also expanded,
unless some CQs are removed when computing the cover. The process stops when a fixed point is
reached.

All CQs generated by Algorithm 5 are computed according to our definition of a rewriting; this
ensures the correctness, i.e., every CQ that is generated is a CQ-rewriting of the input query with
respect to the input sets of rules and constraints.

The rewriting function for disjunctive existential rules (rewrite∨/2) generates all the possible
rules using an inputUCQ rewriting. The fact that new rules have less disjunctive components in the
head ensures that the output is always finite. Therefore, the completeness of the result of Algorithm
5 relies totally on the completeness of the result provided by Algorithm 6.

Algorithm 6 describes the rewriting function for existential rules (rewrite∃k/2), and is based
on the general rewriting algorithm proposed on [3]. It implements a breath-first expansion process
where each iteration of the loop expands a new level of conjunctive queries. We have introduced
the parameter k that allows us to control how many levels of CQs will be expanded and ensures

55

Chapter 5. Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms

termination of each individual call to Algorithm 6 for k ≠ ∞. However, the loop in Algorithm
5 will keep on calling Algorithm 6 as long as new CQs are generated, without affecting the com-
pleteness of the whole rewriting process. The parameter k defines a pause on the existential rules
rewriting process in order to generate more rules from the disjunctive existential rules.

König et al. study the completeness of theUCQ-rewriting computed by the rewriting algorithm
for existential rules based on different definitions of the query expansion function [3]. Our expan-
sion function (rew/2) ensures that the computedUCQ-rewriting is complete because it corresponds
to their piece-based rewriting operator that ensures the completeness. Moreover, if there is a finite
and complete UCQ-rewriting of the input UCQ, the function rewrite∃k/2 will find it after a finite
number of calls to it.

5.4 Rewritable Queries and Disjunctive Knowledge Bases

The termination of Algorithm 5 depends on the termination of Algorithms 6 and 7. Algorithm
7 always terminates because the produced rules contain less disjunctive components in the head.
On the other hand, setting k = ∞ or executing a possibly infinite number of calls to Algorithm 6 is
denoted by rewrite∃/2 and corresponds to the classical rewriting algorithm for existential rules
proposed in [3], whose termination is studied in [5]. In general, the problem of knowing if there
exists a finite UCQ-rewriting for any UCQ with respect to an arbitrary set of existential rules is
undecidable [5]. A set of existential rules that ensures the existence of a finite UCQ-rewriting for
any UCQ is called a finite unification set (fus) [21]. There are some classes of existential rules that
have the fus property:

1. Linear existential rules [21]: existential rules with one atom in the body.

2. Disconnected existential rules [29]: existential rules that do not share variables between the
body and the head.

3. Domain restricted rules [21]: existential rules that each atom in the head contains none or
all of the variables in the body.

4. Acyclic graph of rule dependencies (aGRD) [24]: existential rules that do not contain cycles
in the graph of rule dependencies.

5. Sticky rules [30]: Each marked variable occurs at most once in a rule body. The marked
variable set is built from a rule set using the following marking procedure: (i) for each rule
ri and for each variable v occurring in the body of ri, if v does not occur in all atoms of the
head of ri, mark (each occurrence of) v in the body of ri; (ii) apply until a fixpoint is reached:
for each rule ri, if a marked variable v appears at position p[k] in the body of ri, then for
each rule rj (including i = j) and for each variable x appearing at position p[k] in the head
of rj , mark each occurrence of x in the body of rj .

If a set of existential rules is a fus and the new existential rules generated by Algorithm 7 are
also a fus, combining them could yield a new set of existential rules that is not a fus [5]. Therefore,

56

5.4 Rewritable Queries and Disjunctive Knowledge Bases

we need stronger conditions to ensure that we always call Algorithm 6 with a set of existential rules
that is a fus.

For a set of existential rules , a cut is a partition {1,2} of , and it is a directed cut
(1 ⊳2) if none of rules in 1 depends on a rule of2.

Property 5.1. Let be a set of existential rules with a directed cut1 ⊳2. For any CQ Q and
any set of facts  we have that

, ⊧ Q if there is a CQ Q′ such that
,1 ⊧ Q′ and Q′,2 ⊧ Q.

Proof. The proof is based on being able to organize the application of the rules of. The existing
dependencies ensure that the rules of 1 are never depending on the rules of 2. For a detailed
proof check [5].

Property 5.1 [5] allows us to study the decidability of entailment when we combine two sets of
rules for which the entailment problem is decidable.

In Algorithm 7, even if the resulting set of existential rules is a fus, the process of generating
new rules could potentially continue forever after we obtain newCQs fromAlgorithm 6. Therefore,
we need ways to ensure that the total number of existential rules generated by Algorithm 7 is
bounded, i.e., at some point, the algorithm will not produce new rules.

Existential rules with one atom in the body ensure that the CQ-rewritings will never grow in
size. Indeed, a rewriting operation will replace one or more atoms for the atomic body.

A rule B → H is linear if it has only one atom in the body, i.e., |B| = 1.

Theorem 5.11. Let  be a set of rules and  a UCQ. If  contains only atomic queries and 
only linear rules, then Algorithm 5 stops for any value of k.

Proof. Linear existential rules are a fus and rewriting queries with them stops even when k = ∞.
The new rules generated by the linear disjunctive existential rules and the atomic queries will also
be linear rules, and combining them with ∃ will also produce a fus. Additionally, the number
of single atoms that can be built using a finite number of predicates, variables and constants is
bounded. Therefore, the number of rules that we can derive from the linear disjunctive existential
rules is finite. Consequently, Algorithm 5 stops because at some point no new rules and no new
queries can be generated.

Theorem 5.11 is closely related to Theorem 7.13 and Lemma 7.12 proposed by Bourhis et al.
in [20]. However, it is still interesting to prove it considering the algorithm we have proposed so
that the technique can be extended to the study of other fragments.

Rules that do not share variables between the head and the body produce rewritings where the
introduced body of the rule is not connected to the remaining part of the query.

A rule B → H is disconnected if no variable from the body is present in the head of the rule,
i.e., vars(B) ∩ vars(H) = ∅. Disconnected rules can still share constants between the body and the
head of the rule and this allows us to express knowledge about specific individuals.

57

Chapter 5. Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms

Theorem 5.12. Let 1 be a fus and 2 a set of disconnected existential rules. The union of both
sets1 ∪2 is also a fus.

Proof. Disconnected rules add atoms to the rewritings that do not share variables with the remain-
ing part of the query. It follows that the connected cardinality of CQ-rewritings produced by rules
B → H ∈ 2 is bounded as follows:

card∗(rew(B → H, Q)) ≤
max (card∗(B), card∗(Q)).

The rules in1 may produce CQ-rewritings with a larger connected cardinality, but they only pro-
duce a finite number of CQ-rewritings because1 is a fus. It follows that the connected cardinality
of the CQ-rewritings of an initial query Q is bounded, i.e.,

card∗(rewrite∃ (1 ∪2, Q)) ≤
max (card∗(rewrite∃(1, B)),

card∗(rewrite∃(1, Q))).

Using Lemma 2.2 we conclude that the number of rewritings produced by1 ∪2 cannot be
infinite. Thus, 1 ∪2 is also a fus.

Theorem 5.13. Let be a set of rules and  a UCQ. If∃ is a fus, and∨ a set of disconnected
disjunctive existential rules, then Algorithm 5 stops for any set of constraints⊥, any UCQ  and
for any value of k.

Proof. The new existential rules produced by the function rewrite∨ are disconnected rules and
they can be combined with the rules in∃ and yield a fus (follows from Theorem 5.12).

Rewritings of disjunctive rules Bi → Hi will have the following form:
⋃

j
B′j ∪

⋃

j
Q′j → H ′,

where H ′ ⊆ Hi� is a subset of an instance Hi� of the original head of the rule Hi, B′j ⊆ B′′�′

is a subset of an instance B′′�′ of a rewriting of the body Bj of a disjunctive existential rule, i.e.,
B′′ ∈ rewrite∃(Bj ,∃), and Q′j ⊆ Q′′�′′ is a subset of an instance Q′′�′′ of a rewriting of an
input CQ or a negated constraint Qj , i.e., Q′′ ∈ rewrite∃(Qj ,∃). The substitutions �′ and �′′
are compositions of the mgus applied in the rewriting steps. None of the B′j or Q′j share variables
between them because they are introduced using an atom in the head of the disjunctive rule that
does not share variables with the body.

Because ∃ is a fus we have a finite number of rewritings B′j and Q′j . This ensures that there
is only a finite number of different bodies B′ for the generated existential rules. The number of
different heads, H ′ is obviously finite too. Therefore, there is only a finite number of different
existential rules that will eventually be generated by rewrite∨. Thus, Algorithm 5 stops for any
value of k.

58

5.4 Rewritable Queries and Disjunctive Knowledge Bases

5.4.1 Expanding the Existing Fragments

Domain restricted (dr) rules [21] are existential rules where all the atoms in the head contain
none or all of the variables in the body of the rule. However, if we consider rules where the bodies
can have more than one connected component, then the definition of dr rules can be generalized.

Definition 5.14 (Connected domain restricted rule). A rule is called connected domain restricted
(cdr) rule if for every connected component C in the body of the rule and for every atom ℎ in the
head, ℎ contains none or all the variables of C .

Example 5.15 (Common ancestor and six degrees of separation rules). In biology and genealogy,
the most recent common ancestor (MRCA), last common ancestor (LCA), or concestor of a set of
organisms is the most recent individual from which all the organisms of the set are descended. We
could express a simpler rule stating that for every two organisms there exists a common ancestor:

organism(X), organism(Y)→ organism(Z), ancestor(Z,X), ancestor(Z, Y)

The rule is obviously not domain restricted but it is connected domain restricted.
Another example of cdr rule that is not a dr is the six degrees of separation rule. It describes

the idea that all people are six, or fewer, social connections away from each other.

person(X), person(Y)→ knows(X,X1), knows(X1, X2), knows(X2, X3),
knows(X3, X4), knows(X4, X5), knows(X5, Y)

In the example rules we assume that the predicate ancestor/2 is irreflexive and antisymmetric,
and knows/2 is reflexive and symmetric.

Atoms in the head of a cdr rule r contain all the variables of some (possibly none) connected
components in the body of the rule. We can be sure that the rewritings of a CQ q with respect to
r will not introduce new variables that are connected to the variables in the part of q that is not
modified by the rewriting. Some new variables might be introduced but they will be in isolated
connected components. Hence, the connected cardinality of the rewritings with respect to cdr rules
is not increasing. Consequently, the class of cdr rules also has the fus property.

Theorem 5.14. A set of cdr existential rules is a fus.

Proof. A UCQ-rewriting q′ that is generated using a cdr rule r and a CQ q has new connected
components C ′i that are either (i) not connected to the rest of the query or (ii) that all their variables
were already present in an atom of q′. Therefore, the only new variables (w.r.t. the variables
in q) that are introduced in the rewritings are part of disconnected components that come from
the body of the set of rules (case i). For case (ii), we can ensure that in q there was a connected
componentCj that had an atomwith all the variables in the newly introduced connected component
C ′i , thus card∗(C ′i) ≤ card∗(Cj). We can then ensure that the generated UCQ-rewritings have
a bounded connected cardinality. Therefore, cdr rules can only produce a finite number UCQ-
rewritings (Lemma 2.2).

59

Chapter 5. Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms

Definition 5.14 also applies to disjunctive existential rules. However, a rule generated by a
disjunctive rewriting step involving a cdr rule might not be a cdr rule. Therefore, the fus property
cannot be extended to connected domain restricted disjunctive rules.
Example 5.16. Consider the rule a(X), b(Y)→ [r(X, Y), c(X), c(Y)] and theCQ r(X, Y), s(X, Y).
They both generate a new disjunctive rule a(X), b(Y), s(X, Y)→ [c(X), c(Y)] that is not a cdr rule.
If another CQ c(X), s(X,Z) is used instead, then a disjunctive rule that is not a cdr rule is again
generated, i.e., a(X), b(Y), s(X,Z)→ [r(X, Y), c(Y)].

We use a similar approach to define a new rule class based on linear rules.
Definition 5.15 (Connected linear rule). A rule is called connected linear rule (clr) if every atom
in the head either does not contain variables from the body or contains variables from only one
connected component in the body and this connected component has only one atom.

Both rules of Example 5.15 are also connected linear rules.
Example 5.17. The following rule is not a cdr but it is clearly a connected linear rule.

graduated(X,Z), graduated(Y ,W)→ exam(V), passed(X, V), passed(Y , V)

Theorem 5.15. A set of connected linear existential rules is a fus.

Proof. A UCQ-rewriting q′ that is generated using a clr rule r and a CQ q has new atoms a′i that
are either (i) not connected to the rest of the query or (ii) only connected to variables which were
already present in an atom of q.

A clr prevents an atom in the head of the rule from containing variables from two different
atoms (or connected components) in the body. Therefore, the rewritten atoms in q are never re-
placed by more than one corresponding atom that is connected to the rest of the query. This ensures
that the newly formed connected component in q′ will not have more atoms than those existing in
q. The rewriting q′ can have other atoms that are not a “replacement” of atoms in q but those atoms
are not connected to the atoms that existed in q. They come from other connected components that
were present in the body of the rules. Thus, the UCQ-rewritings which are introduced using con-
nected linear rules have a bound on the number of atoms in their connected components. Therefore,
connected linear rules may only produce a finite number UCQ-rewritings (Lemma 2.3).

The definition 5.15 may also be extended to disjunctive existential rules. However, a rule
generated by a disjunctive rewriting step involving a clr rule might not be a clr rule. Therefore, the
fus property cannot be extended to connected linear disjunctive rules.
Example 5.18. Consider a connected linear rule a(X), b(Y) → [r(X,W), c(X), c(Y)] and a CQ

c(X), s(X,Z). We can generate new disjunctive rule (i.e., a(X), b(Y), s(X,Z)→ [r(X,W), c(Y)])
that is not a connected linear rule.

A disjunctive existential rule can be restricted to have disconnected disjoints.
Definition 5.16 (disconnected disjunction). A disjunctive existential rule has disconnected dis-
junction if the disjoint components in the head of the rule never share variables with the same

60

5.4 Rewritable Queries and Disjunctive Knowledge Bases

connected component in the body of the rule. A disjunctive existential rule that has disconnected
disjunction is called a D-disjunctive existential rule or DDER.
Theorem 5.16. The rewritings of DDERs are also DDERs.

Proof. Let C1,… , Cn → [D1,… , Dm] be a DDER r1. Without loss of generality, we define
a rewriting r2 that removes D1 and introduces new atoms B in the body, i.e., B,C1,… , Cn →

[D2,… , Dm]. The atoms in B may possibly merge some connected components Ci of the body of
the rule. In particular, those that were connected to D1. However, those components cannot be
connected to any of the remaining disjoints [D2,… , Dm] due to the fact that r1 is a DDER. Thus,
r2 is also a DDER.

Using similar reasoning, we can also affirm that cdr (clr) that are also DDER, generate rewrit-
ings that are also cdr (clr).
Theorem 5.17. Let be a DDER that is also a cdr (clr). Then, is also a fus.

Proof. We state that the Algorithm 5 cannot generate infinitely many rewritings if the rules are
DDER and cdr (clr).

LetQ be a UCQ andM be the maximum cardinality (width) of the bodies in the rules of and
the CQs inQ. Given that all the rules in are cdr (clr), a rewriting step will only produce queries
with a cardinality bounded byM . Additionally, the cardinality of the bodies of rules produced as
rewritings of disjunctive rules in ∨ will be bounded byM because they are DDER. The newly
generated existential rules will have the same fus property of ∃, i.e., cdr (clr) and this ensures
that at every step of the algorithm∃ is a fus.

Thus, the rewriting Algorithm 5 will stop due to the fact that it can only produce finitely many
rewritings of the initial arguments.

For other types of queries and knowledge bases there is no certainty that the rewriting algorithm
will stop. However, we can still try to compute the rewritings up to a certain depth. Nevertheless,
we should point that our rewriting algorithm stops if there is a finite and complete UCQ-rewriting
of the input query with respect to the rules and the constraints in the knowledge base.
Theorem 5.18. Let  be a set of rules and  a UCQ. If a UCQ  has a finite and complete
UCQ-rewriting with respect to, then Algorithm 5 stops for any finite value of k.

Proof. The completeness of the definition of rewritings and the fact that we produce rewritings
using all possible one-step rewritings ensures that if there is a finite UCQ rewriting f , then after
a finite number of steps Algorithm 5 (with a finite value of k) will produce a rewriting equivalent to
f . Because f is complete, any further rewriting of f using existential rules will not produce
new conjunctive queries, i.e., the condition = old holds for the rest of the iterations in the loop.

The algorithm can still produce new (disjunctive) existential rules, but since no new CQs are
generated, the number of new rules that can be produced is finite due to the fact that new rules
are produced with strictly less disjoint components in the head. Consequently, we will reach an
iteration of the loop in Algorithm 5 where  = old . Therefore, Algorithm 5 terminates because
after a finite number of iterations the condition to continue iterating on the loop will no hold.

61

Chapter 5. Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms

Note that a subset of the existential rules needed to generate the finite and complete UCQ-
rewriting of the initial query in Theorem 5.18 could potentially produce an infinite number of
rewritings.

Example 5.19. To illustrate this we can consider the following DKB:

• Existential rules:
(r(X,W), r(W ,Y)→ r(X, Y)),

(b(X)→ a(X)),
(c(X)→ a(X)).

• Disjunctive existential rules:
s(X)→ [b(X), c(X)].

If we try to rewrite the UCQ [a(X), (s(X), r(X, f))] with respect to ∃ using k = ∞ it would
produce an infinite set of CQ-rewritings of the form:

s(X), r(X,W1), r(W1,W2),… , r(Wn, f).

However, for k = 1 (or any other finite value) the new rules produced by the disjunctive exis-
tential rule would eventually generate the conjunctive query s(X). The application of the cover/1
function would then remove the queries that can produce the infinite set of rewritings and yield the
finite and complete UCQ-rewriting [a(X), s(X), b(X), c(X)] of the initial query.

Therefore, the expansion process in Algorithm 6 needs to have a finite depth (i.e., k ≠ ∞) in
order to avoid infinite loops.

Theorem 5.18 ensures that Algorithm 5 stops only if there is a finite and complete UCQ-
rewriting for the input query otherwise the algorithm may never stop. However, it does not require
the fus property for the set of existential rules in the knowledge base. On the other hand, Theorems
5.11 and 5.17 ensure that Algorithm 5 will always terminate if the required conditions are met.

5.5 On Queries with Answer Variables and Linear Queries

While Theorems 5.11 and 5.17 impose rather strong restrictions on the disjunctive framework,
they also suggest the existence of finite UCQ-rewritings for very expressive types of queries with
negated atoms and answer variables.

For queries with answer variables we focus on the query answering problem instead of the
entailment problem. In theory we could try all possible assignments of constants in to variables
in the answer tuple X and check whether the resulting query is entailed. However, computing
a UCQ-rewriting for each possible assignment of constants would not be very efficient. We can
compute the UCQ-rewritings Q′ of a query with answer variables Q with respect to the rules in
and then transform the entailment problem, i.e.,

,, ans(t) ⊧ Q iff , ans(t) ⊧ Q′. (5.5)

62

5.5 On Queries with Answer Variables and Linear Queries

The answer atoms in the elements of Q′ will be affected by the mgus of the rewriting process
but the answer variables will never be replaced by an existential variable because of condition 1 in
the definition of general (disjunctive) rewriting step.

The entailment of a UCQa¬ can be transformed into the entailment of a UCQ (5.4). However,
the presence of answer atoms in CQa¬s will create rules with answer atoms in their body that
may produce rewritings with more than one occurrence of answer atoms. Because the set of facts
can only contain one answer atom, a rewriting with more than one occurrence of answer atoms
ans(X1),… , ans(Xn), B′ can only be entailed in case there is anmgu for {ans(X1),… , ans(Xn)}. A
UCQ-rewriting of a query with answer variables is deterministic if theCQs in it do not containmore
than one occurrence of answer atoms. Rewritings without answer atoms correspond to rewritings
of the negated constraints. They allow us to check the consistency of the datawith respect to the
rules in our knowledge base. However, the query answering problem does not make much sense
when one of these rewritings is entailed by the data.

Algorithm 5 needs to be modified in order to avoid unnecessary rewritings of queries with
answer variables. In Algorithms 6 and 7 we need to modify the functions rew/2 and rew∨/2
that compute one-step rewritings so that they only give rewritings with no more than one an-
swer atom. More specifically, the resulting CQs B (rules B → H) with more than one an-
swer atom (i.e, {ans(X1),… , ans(Xn)} ⊆ B) are replaced by the CQ B� (rule B� → H�) where
� = mgu({ans(X1),… , ans(Xn)}). We call these modified functions deterministic one-step rewrit-
ing functions. Algorithm 5 with deterministic one-step rewriting functions computes a determin-
istic UCQ-rewriting that is complete based on the fact that the answer predicate is fresh, i.e., it is
not used in the knowledge base. Using deterministic one-step rewriting functions helps with the
termination of the rewriting process.
Example 5.20. Consider a knowledge base without rules and the following UCQa¬

Q = [(ans(X,Z), r(X, Y), r(Y ,Z),¬r(X,Z)),
(ans(X, a), r(X, a))].

The query Q has infinitely many CQ-rewritings of the following form:

ans(X, a), ans(X,X1),… , ans(X,Xn−1),
r(X,Xn), r(Xn, Xn−1),… , r(X1, a).

However, there is a finite and complete deterministic UCQ-rewriting of Q:

[(ans(X, a), r(X,X2), r(X2, a), r(a, a)),
(ans(X, a), r(X,X1), r(X1, a)),
(ans(X, a), r(X, a))].

Answer variables play a different role when splitting CSFs on connected components. The su-
per cardinality of aCSF of atoms F with answer variablesX is the number of non-answer variables
in it: card+(F) = |vars(F) ⧵ vars(X)|. We say that two non-answer variables u and v in a CSF of
atoms F are super connected if they belong to the same atom, or if there is another non-answer
variable z in F that is super connected to both u and v.

63

Chapter 5. Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms

A CSF of atoms is super connected if all the atoms in it contain non-answer variables super
connected to each other. Atoms containing only constants or answer variables in their arguments
are super connected formulas with a super cardinality of zero.

A CSF F can be partitioned into a set {U1,… , Un} of super connected components such that
if v ∈ vars(Ui) is super connected to u ∈ vars(Uj), then i = j. The super connected cardi-
nality of F is defined as the maximum super cardinality of the super connected components in
the partition of F and denoted as card∗+(F) = maxi(card+(Ui)). The super connected cardinal-
ity of a DSF [F1,… , Fm] is the maximum super connected cardinality of the formulas Fi, i.e.,
card∗+([F1,… , Fm]) = maxi (card∗+(Fi)).

Lemma 5.6. Let  be a knowledge base and F a CSF of atoms with answer atom ans(X) parti-
tioned into the super connected components {U1,… , Un}. Then,

, ans(t) ⊧ F iff , ans(t) ⊧ ans(X), Ui
for every Ui.

(5.6)

Proof. It follows directly from Lemma 2.1 after transforming (5.6) into:

 ⊧ F� iff  ⊧ Ui�
for every Ui ≠ ans(X),

(5.7)

where � = mgu(ans(t), ans(X)). Note that � replaces the answer variables with constants and the
resulting connected components will be the same as the super connected components.

Lemma 5.7. Let k be a natural number. There are a finite number of equivalence classes of CSFs
of atoms with super connected cardinality of at most k that can be constructed using a finite set of
predicates and a finite set of constants.

Proof. Straightforward using Lemma 5.6 and similar arguments to the ones used in the proof of
Lemma 2.2.

Given a set of ruleswithout disjunctive existential rules (i.e.,∨ = ∅), using reduction (5.4)
we can focus on the disjunctive rules that are obtained from the negation of the CQa¬s:

 ⊧  iff (∃,¬¬1),¬¬# ⊧ ¬⊥,¬0, (5.8)

and study when Algorithm 5 with deterministic one-step rewriting functions terminates.
If all the variables in the frontier of theCQa¬s are also answer variables, then the corresponding

disjunctive existential rules will act similarly to disconnected rules if we use deterministic one-step
rewriting functions on Algorithm 5.

Theorem 5.19. Let  be a set of rules without disjunctive existential rules and  a UCQa¬. If
all the variables in the frontier of the CQa¬s in  are also answer variables and ∃ is a fus, then
Algorithm 5 with deterministic one-step rewriting functions, applied on the rules∪¬1 ∪¬¬#,
and UCQ ¬0, terminates for any value of k.

64

5.5 On Queries with Answer Variables and Linear Queries

Proof. The variables that appear in negated atoms of the CQ¬s will end up being the variables in
the head of the corresponding rules in (¬¬i)i>0. However, the variables that only appear in the
negated atoms will be translated to existential variables and only answer variables are going to be
frontier variables of the corresponding rules. Therefore, every new existential rule will have the
frontier variables included in the set of answer variables.

In the presence of deterministic one-step rewriting functions, existential rules with all the fron-
tier included in the set of answer variables (a) add atoms to the rewritings that do not share
non-answer variables with the remaining part of the query. This ensures that when they are com-
bined with a fus, the super connected cardinality of the UCQ-rewritings will be bounded. More
specifically for any UCQ Q′,

card∗+(rewrite∃ (∃ ∪a, Q′)) ≤
max (card∗+(rewrite∃(∃, B)),

card∗+(rewrite∃(∃, Q′))),

where B is the body of rules ina.
Using Lemma 5.7 we can also affirm that there are finitelymany rewritings that can be obtained.

Therefore, every existential rule that is generated from the negated CQ¬s in (¬i)i>0 together with
the rules in∃ will yield a finite and complete deterministic UCQ-rewriting. Thus, we can ensure
the termination of every iteration of the loop in Algorithm 5 for any value of k.

Likewise, every existential rule that is generated from the negated CQ¬s in (¬i)i>0 will have a
body with a bounded super connected cardinality. Thus, we cannot generate infinitely many exis-
tential rules from the CQ¬s in (¬i)i>0 (Lemma 5.7), which ensures the termination of Algorithm
5 with deterministic one-step rewriting functions for any value of k.

Based on Theorem 5.11, we can also define other restrictions on UCQa¬s that ensure that the
rewriting algorithm stops. As in the case of existential rules, we say that a CQ (CQ¬) is linear if it
contains only one positive literal. Similarly, a UCQ (UCQ¬) is linear if all the CQs (UCQ¬s) in it
are also linear. A CQa (CQa¬) is linear if it contains only one positive literal in the body. Likewise,
a UCQa (UCQa¬) is linear if all the CQas (UCQa¬s) in it are also linear.

Theorem 5.20. Let be a set of rules without disjunctive existential rules and a UCQa¬. If is
a set of linear rules and a linear UCQa¬, then Algorithm 5 with deterministic one-step rewriting
functions, applied on the rules ∪¬1 ∪ ¬¬#, and UCQ ¬0, stops for any value of k.

Proof. Because  is linear the corresponding disjunctive rules (¬¬i)i>1 will have two atoms in
the body and one of them will be an answer atom. The CQas will have one atom in the body and
the negated constraints will only have one atom. Therefore, the deterministic one-step rewriting
functions ensure that the new rules generated from disjunctive rules will contain only two atoms
in the body and one of them will be an answer atom. There is a finite number of rules that can be
generated with two atoms in the body and a decreasing number of disjoints in the head.

The deterministic CQ-rewritings produced by linear existential rules in  and the existential
rules generated from (¬¬i)i>0 will have a maximum of two atoms. Thus, there are finitely many
deterministic CQ-rewritings that can be generated.

65

Chapter 5. Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms

We conclude that Algorithm 6 terminates every time it is called in the main loop and also
that the condition to continue executing the loop at some point will not hold because there are a
finite number of rules and CQs rewritings that can be generated. Consequently, Algorithm 5 with
deterministic one-step rewriting functions stops for any value of k.

If there is a finite and complete deterministic UCQ-rewriting of a UCQa¬  with respect to a
set of rules  that does not contain disjunctive existential rules, we can ensure that Algorithm 5
with deterministic one-step rewriting functions stops.

Theorem 5.21. Let  be a set of rules without disjunctive existential rules and  a UCQa¬. If
there is a finite and complete deterministic UCQ-rewriting of  with respect to, then Algorithm
5 with deterministic one-step rewriting functions, applied on the rules ∪¬1 ∪ ¬¬#, and UCQ
¬0, terminates for any finite value of k.

Proof. Deterministic one-step rewriting functions will only discard rewritings that are not deter-
ministic. The algorithm produces rewritings using all possible deterministic one-step rewritings
and this ensures that if there is a finite deterministic UCQ rewriting f , then after a finite number
of iterations (with a finite value of k) a rewriting equivalent to f will be generated. The com-
pleteness off ensures us that any further rewriting off using existential rules and deterministic
one-step rewriting functions will not produce new deterministic CQs, i.e., the condition  = old

holds for the rest of the iterations in the loop. Consequently, after finitely many iterations we also
reach the condition = old . Therefore, Algorithm 5 terminates because after a finite number of
iterations the condition to continue iterating on the loop will not hold.

The concepts of connected domain restricted rules, connected linear rules, and disconnected
disjunction can be modified to represent queries with negated atoms using the concept of supper
connection. We basically define the properties that would ensure that the corresponding disjunc-
tive existential rule rq = ¬q holds the desired property, considering that answer variables can be
interpreted as constants when we analyze the connections.

Definition 5.17. ACQa is a connected domain restricted query (cdrq) if, for every super connected
component C in the positive liters of the query and for every negated atom ℎ, ℎ contains none or
all the nonanswer variables of C .

Definition 5.18. A CQa is a connected linear query (clq) if every negated atom is either not supper
connected to positive atoms or it is supper connected to only one positive atom.

Additionally, a concept corresponding to disconnected disjunction can be defined for CQas.

Definition 5.19. A CQa has disconnected negation, if every negated atom is not super connected
to another negated atom.

Theorem 5.22. Let  be a set of existential rules and  a UCQa¬ with disconnected negation. If
 is a set of cdr(clr) rules and a cdrq(clq) UCQa¬, then Algorithm 5 with deterministic one-step
rewriting functions, applied on the rules∪¬1 ∪¬¬#, and UCQ ¬0, stops for any value of k.

66

5.5 On Queries with Answer Variables and Linear Queries

Proof. Algorithm 6 will be called with ′ =  ∪ ¬1 ∪ ¬¬#, a cdr (clr) that have disconnected
disjuntion. Hence, there is a finite UCQ rewriting of ¬0 with respect to ′. Using Theorem
5.21 we can ensure that Algorithm 6 stops for ′ and ¬0 using deterministic one-step rewriting
functions and a finite value of k.

67

Part III

Implementations and Experimental Evaluation

69

Chapter 6

Constraint Saturation Evaluation

Negated concepts are strongly disconnected queries with respect to a DL − Lite ontology be-
cause DL − Lite axioms are a set of linear of rules (Property 3.1). Therefore, the constraint satura-
tion for negated concepts will contain all the possible answers. In this paper, we focus on comparing
the performance of the proposed approach with another approach by Jianfeng Du and Jeff Z. Pan
that is able to rewrite negated concepts [17].

COMPLETO v1 was implemented using RAPID as an external rewriter and a connection to a
MySQL database for efficient instance retrieval. A TBox is used to obtain a rewriting of the initial
constraints in the system. Then, the assertions that could be encoded initially in OWL format are
translated to a MySQL database. Finally, the rewriting and instance retrieval processes can be
carried out by using the constraints rewriting, the database of assertions and the queries that need
to be rewritten and answered. Appendix A shows a description of the system and how it can be
installed and used that is also available online1.

The experiments were carried out on an Intel® CoreTM i7-3612QM CPU@ 2.10GHz x 8, with
8 Gb of RAM memory and a SSD running Ubuntu 17.04 64-bit. The benchmark used consists
of two groups of ontologies used in [17]. One of the groups was from the Lehigh University
Benchmark (LUBM) [31] and the other from DBPedia (version 2014) [32]. Some axioms were
removed from the original versions of the ontologies in order to make them compatible with the
RAPID system. Also, constraints stating that sibling atomic concepts are disjoint were added to
the LUMB ontologies. The group of LUMB ontologies consists of the same set of axioms and
different numbers of assertions associated with different numbers of universities (1, 5, 10, 50, and
100) given as a parameter to the LUMB generator [31]. The second group of DBPedia ontologies
was built with basic assertions about atomic concepts and abstract roles from DBPedia-as-Tables2
to construct the ABox. Each version of the ontology uses the same axioms and a percentage of the
assertions (1, 5, 10, 50 and 100%). The queries to rewrite and to answer using the assertions were
built by negating each of the concepts present in the TBox. For the LUBM ontologies, they were
43 concepts and for the DBPedia ontologies 783.

Figure 6.1 shows the comparison of the average runtime taken to answer each query of the
dataset. The performance of COMPLETO v1 is better than the performance of REBSIR for the
LUBM group of ontologies. On the other hand, for the DBPedia datasets COMPLETO v1 on average

1http://image.ntua.gr/completo-rr2017/Appendixes.pdf
2http://web.informatik.uni-mannheim.de/DBpediaAsTables/

71

http://image.ntua.gr/completo-rr2017/Appendixes.pdf
http://web.informatik.uni-mannheim.de/DBpediaAsTables/

Chapter 6. Constraint Saturation Evaluation

takes longer than REBSIR to answer a query for small ontologies. Yet, when the ontologies grow
in size the performance of COMPLETO v1 gets closer to the performance of REBSIR eventually
becoming better than it.

1 5 10 50 1000.03

0.3

3

30

300

Tim
e(

sec
)

REBSIR
COMPLETO

(a) LUBM dataset group.

1% 5% 10% 50% 100%0.03

0.3

3

30

300
REBSIR

COMPLETO

(b) DBPedia dataset group.

Figure 6.1: Comparison of the Average Runtime per query for the benchmarks.

The relative runtime can be seen in Fig. 6.2 where the coordinates of the dots plotted represent
the average times taken by each system in each of the datasets. Both axes of the graph are in
logarithmic scale and points over the y = x line represent datasets where the COMPLETO v1 system
takes on average less time than REBSIR to answer a query. We can clearly see that for the LUBM
group COMPLETO v1 is always faster and it takes on average 59% of the time taken by REBSIR to
answer a query. For the DBPedia group of ontologies, COMPLETO v1 on average takes 238% of
the time that REBSIR takes to answer a query. Yet, for both cases, we can see that the COMPLETO
v1 system is more scalable i.e. with the increase of the size of the ABox the COMPLETO v1 system
improves the relative runtime difference.

Figure 6.3 shows a comparison of the maximum resident set size (RSS) of the systems during
the process of answering all the queries of the benchmark. REBSIR uses in all the cases less memory
than COMPLETO v1. Considering the relative memory difference for each case, on average, REBSIR
uses 54% of the memory used by COMPLETO v1.

72

0.03 0.3 3 30 300
0.03

0.3

3

30

300
0.59y = x

y = x
2.38y = x
5y = x

COMPLETO Time (sec)

RE
BS

IR
Tim

e(
sec

)

LUBM
DBPedia

Figure 6.2: Relative Average Runtime per query for the benchmark.

1 5 10 50 100

512

1,024

1,536

11
8

13
0 21
0

91
7 1,

17
5

28
0 37
2 46
1

1,
13
4 1,
48
2

Me
mo

ry
(M

b)

REBSIR COMPLETO
(a) LUBM dataset group.

1% 5% 10% 50% 100%

2,048

3,072

4,096

1,
50
6

1,
61
6

1,
63
2

1,
83
0

2,
01
1

2,
96
0

3,
11
8

3,
25
5 3,
64
5

3,
69
6

REBSIR COMPLETO
(b) DBPedia dataset group.

Figure 6.3: Comparison of the maximum RSS used to answer all the queries of the benchmark.

73

Chapter 7

Horn Conjunctive Queries Evaluation

In COMPLETO v2, our system was upgraded with respect to the version presented in [18]. We
now use the GRAAL [28] rewriting system that is able to rewrite CQs using existential rules. We
also changed the MySQL database to H2 database for representing the ABox assertions in the
ontology. The OWL 2 ER fragment of the TBox and the rules corresponding to the Horn queries
are used to rewrite the constraints of the system. Then, the ABox assertions that could be encoded
initially in OWL format are translated to a H2 database. Finally, the consistency check and instance
retrieval processes can be carried out by using the constraints rewriting, the database of assertions
and the queries that need to be rewritten and answered. A description of the system and how it
can be installed and used is available online1 and also in Appendix A. Additionally, we used the
interfaces provided in the OWLAPI for the FACT++ [33] and HERMIT [34] solvers. Both systems
perform reasoning using tableau techniques. However, they are designed to deal with ontology
languages that are more expressive than OWL 2 ER.

The experiments were carried out on an Intel® CoreTM i7-5930K CPU @ 3.50GHz x 6, with
32 Gb of RAM memory and a SSD running Ubuntu 16.04 64-bit. We used ontologies that have
both constraints and assertions. Additionally, they also belong to the OWL 2 ER fragment. The
benchmark is composed by one of the groups of ontologies used in [17], the one from the Lehigh
University Benchmark (LUBM) [31]. Additionally, constraints stating that sibling atomic concepts
are disjoint were added. The group of LUBM ontologies consists of the same set of axioms and
different number of assertions associated to different number of universities (1, 5, 10, and 50) given
as a parameter to the LUBM generator [31]. Additionally we tested the system using two small
ontologies travel2 and films3. Figure 7.1 shows the axiom counts of the ABox and ABox+TBox
for the ontologies of the benchmark.

The queries for the experiments were obtained by applying Association Rules techniques im-
plemented using theWeka software [35]. Rules that describe hidden relations between the concepts
of the ontology were obtained and we rewrote the counter examples expressions corresponding to
the rules in order to check when it is consistent to add the new rules to the ontologies. A total of 86
queries were used for the travel ontology, 14 for the films ontology and 7 for the LUBM ontologies
group.

1http://image.ntua.gr/~gardero/completo2.0/usermanual.pdf
2http://www.owl-ontologies.com/travel.owl
3https://www.irit.fr/recherches/MELODI/ontologies/FilmographieV1.owl

75

http://image.ntua.gr/~gardero/completo2.0/user manual.pdf
http://www.owl-ontologies.com/travel.owl
https://www.irit.fr/recherches/MELODI/ontologies/FilmographieV1.owl

Chapter 7. Horn Conjunctive Queries Evaluation

lubm50lubm10lubm5lubm1filmstravel

101

102

103

104

105

106

107

108

8.
5
⋅1
05

8.
5
⋅1
05

4.
18

⋅1
05

67
,4
64

11
5

17

7.
74

⋅1
06

1.
27

⋅1
06

6.
25

⋅1
05

1.
01

⋅1
05

54
6

93

Ax
iom

sc
ou
nt

ABox ABox+TBox

Figure 7.1: Axiom counts of the ontologies of the benchmark.

1 5 10 50
10

50

100

150

200

69.90

149.88

134.62

74.27
76.46

109.53

y = 0.8x + 69

Number of Universities (log)

Tim
e(

sec
)

COMPLETO
FACT++
HERMIT

Figure 7.2: Comparison of the Average Runtime per query for the LUBM group of ontologies.

76

Figure 7.2 shows the average runtime per query for the LUBM group of ontologies. The run-
time for COMPLETO increases with the size of the ABox and one can notice that it describes a
linear relation (y = 0.8x + 69) to the number of universities in the ABox. On the other hand,
FACT++ and HERMIT were only able to provide answers for the ABox containing only one uni-
versity and they both took on average approximately twice as longer than COMPLETO for answering
each query. For the rest of the LUBM ontologies, the systems reached the timeout of one hour per
query defined for the experiments.

For the films ontology, COMPLETO takes 28.9 sec per query while HERMIT and FACT++ take
less than 0.2 sec per query. In the case of the travel ontology, HERMIT and FACT++ take both
0.03 sec per query while COMPLETO takes 0.48 sec per query. Both Films and travel ontology have
a very small number of assertions compared to the group of LUBM ontologies.

The RAM memory used by COMPLETO is not strongly affected by the size of the ABox and
the average is 2,480 MB. The other systems used more than 5,800 MB for the only case where they
were able to give answers.

77

Chapter 8

General Conjunctive Queries with
Negated Atoms Implementation and
Evaluation

COMPLETO1 is a query rewriting system that focuses on answering UCQ¬s in the framework of
disjunctive existential rules. The system is implemented in java. The first version of COMPLETO
(COMPLETO v1) [18] answers CQ¬ using a resolution-based approach to eliminate negated atoms.
The proposed algorithm is complete only for a restricted type of queries.

In the second version of the system [19] (COMPLETO v2), only queries with one negated atom
are answered by being transformed into rules. The approach is complete but termination is guar-
anteed only when the resulting set of rules is a fus.

The 3rd version of COMPLETO (COMPLETO v3) [36] implements Algorithm 5 with determin-
istic one-step rewriting functions and answers queries with answer variables that have an arbitrary
number of negated atoms. Algorithm 5 can be seen as a generalization of both algorithms proposed
in [18, 19]. Indeed, queries with one negated atom are transformed into rules, while the rewriting
defined for disjunctive rules is similar to what was presented in [18] as constraint resolution. Fur-
thermore, COMPLETO v3 takes advantage of the termination results for knowledge bases consisting
of a fus and UCQ¬s whose frontier is part of the answer variables of the query (Theorem 5.19), as
well as for knowledge bases consisting only of linear elements (Theorem 5.20). Choosing k = ∞
allows the rewriting with respect to existential rules to be performed by an external rewriter if the
are no answer variables in the queries.

The current version of the system is called ECOMPLETO2 and it is implemented in the Elixir
programming language. The system answers queries with answer variables that contain an arbitrary
number of negated atoms with respect to disjunctive existential rules. Ontologies are provided in
DLGP+ format, a proposed extension of DLGP3 v2.0 that allows the specification of disjunctive
existential rules and negated atoms in queries.

Disjunction in DLGP+ is specified in the head of a rule by writing a list of the disjoints en-
1http://image.ntua.gr/~gardero/completo3.0/
2https://github.com/gardero/ecompleto
3https://graphik-team.github.io/graal/papers/datalog+_v2.0_en.pdf

79

http://image.ntua.gr/~gardero/completo3.0/
https://github.com/gardero/ecompleto
https://graphik-team.github.io/graal/papers/datalog+_v2.0_en.pdf

Chapter 8. General Conjunctive Queries with Negated Atoms Implementation and Evaluation

Table 8.1: Rewriting experiments results for the CQa¬s from LUBM and TRAVEL ontologies.
Ontology Info rew time mem
LUBM UCQa¬ 77 6193.12 2138

min 0 104 1129
mean 4 205.58 2069
max 55 466 2237

TRAVEL UCQa¬ 18 264.96 2043
min 0 1 123

mean 2 2.12 143
max 76 8 920

closed in squared brackets. The disjoint elements can be a single atom or several atoms enclosed
in brackets, e.g.,

[disj. rule] [leaf(X), (inner_node(X), edge(X,Y))] :- node(X).

Negation in queries with negated atoms is specified with the minus symbol before an atom, e.g.,

[q neg] ? :- person(X), -marriedTo(X,Y).

8.1 Experiments

To the best of our knowledge, there is no other system that producesUCQ-rewritings forUCQ¬s
with universally quantified negation. Therefore, the experiments were performed in order to get a
general idea of the performance of COMPLETO producing UCQ-rewritings. We used an Intel(R)
Core(TM) i5-7300HQ CPU at 2.50 GHz with 8 GB of RAM running 64-bit Windows 10.

For the experiments, we used two ontologies that contain negative constraints and have been
used in previous research papers based on queries with negation [18, 19]. The first is the Lehigh
University Benchmark (LUBM) ontology [31], enriched with 70 additional disjoint classes ax-
ioms added for the atomic sibling classes, i.e., for classes asserted to share the same super-class.
Secondly, we used the TRAVEL ontology4 that has 10 disjoint class axioms. The OWL 2 ER [37]
fragment of both ontologies was translated into existential rules. We were not able to prove the fus
property for the set of existential rules obtained from neither of the two ontologies we used.

We also prepared a query file with 500 CQa¬s for each ontology which we used to let COM-
PLETO produce finite UCQ-rewritings of the UCQa¬ that contain all the queries in the file and also
for each separated CQa¬. The queries contain 3 atoms and 2 of them are negated. The queries
have one variable in the frontier which is also the answer variable of the query. We generated the
queries by performing Association Rule Mining [38] on a dataset obtained from the assertions of
the ontologies. The queries and the ontologies we used are publicly available 5.

Table 8.1 shows the size of the UCQ-rewriting (rew) for the UCQa¬ containing all the CQa¬s
in the file and the minimum (min), mean and maximum (max) statistics for the rewriting of each
individual CQa¬ in the file. The table also shows the time (time) in seconds and the RAM memory

4https://protege.stanford.edu/ontologies/travel.owl
5http://image.ntua.gr/~gardero/completo3.0/ontologies/

80

https://protege.stanford.edu/ontologies/travel.owl
http://image.ntua.gr/~gardero/completo3.0/ontologies/

8.1 Experiments

87%

7%
6%

0
(0 − 10]
(10 − 80]

UCQ-rewriting size

Figure 8.1: Size of the UCQ-rewritings for the TRAVEL ontology.

85%

3%5%
7%

0
(0 − 10]
(10 − 20]
(20 − 80]

UCQ-rewriting size

Figure 8.2: Size of the UCQ-rewritings for the LUBM ontology.

(mem) in Mb used by the rewriting process in each of the cases. The results give an idea of the
performance of the system with respect to each UCQa¬ or individual CQa¬.

For the TRAVEL ontology, the size of the UCQ-rewriting of the UCQa¬ is smaller than the
biggest UCQ-rewriting for an individual CQa¬. The time that it took to compute the rewriting of
the UCQa¬ is the time that it takes on average to rewrite 125 individual CQa¬s (5 min). The RAM
memory used to rewrite the UCQa¬ is approximately double of the RAM used for rewriting the
individual CQa¬ that consumed the most RAM memory.

8.1.1 COMPLETO v3 Experiments

For the LUBM ontology, the size of the rewriting of the UCQa¬ has 11 more queries than the
biggest rewriting for an individual CQa¬. The time that it took to compute the rewriting of the
UCQa¬ is the time that it takes on average to rewrite 30 individual CQa¬s (less than 2 hours). The
RAM memory used to write the UCQa¬ is less than the RAM memory that was used for rewriting
the individual CQa¬ that consumed the most RAM memory.

For both ontologies, the RAMmemory consumed to compute the rewritingswas approximately
2 GB.

Figures 8.1 and 8.2 show information about theUCQ-rewriting size. In both ontologies, at least
85% of the queries have zero rewritings. In this case, the CQ-rewritings of the CQas are subsumed
by the CQ-rewritings of the negative constraints of the DKB.

Figures 8.3 and 8.4 show the cumulative distribution of the rewriting runtime. Dashed horizon-
tal lines represent the mean runtime. Each bar represents the number of queries that were rewritten

81

Chapter 8. General Conjunctive Queries with Negated Atoms Implementation and Evaluation

Figure 8.3: Cumulative distribution of the time needed to compute the UCQ-rewriting for the
TRAVEL ontology.

Figure 8.4: Cumulative distribution of the time needed to compute the UCQ-rewriting for the
LUBM ontology.

82

8.1 Experiments

Figure 8.5: Correlation matrix with different performance parameters for the TRAVEL ontology.

Figure 8.6: Correlation matrix with different performance parameters for the LUBM ontology.

in or faster than the corresponding time. Note that in both cases the runtime for more than 60% of
the queries was smaller than the mean runtime.

Figures 8.5 and 8.6 show the correlation matrix with different performance parameters for the
TRAVEL and LUBM ontologies. In order to get an idea of the rewriting process we computed the
RAM memory used by the system (mem), the time that it takes to compute the UCQ-rewriting
(time), the size of the UCQ-rewriting (rew), the number of generated existential rules in the rewrit-
ing process (ger), the number of rewritten (expanded) disjunctive existential rules (ecr) and also
the number of generated (gcq) and rewritten (ecq) conjunctive queries. For the LUBM ontology
we can notice that the number of generated CQs and the size of the UCQ-rewriting have a correla-
tion coefficient of 0.9. For the TRAVEL ontology, we can see that time, ecq, gcq and mem are all
correlated with coefficients greater than or equal to 0.94.

83

Chapter 8. General Conjunctive Queries with Negated Atoms Implementation and Evaluation

Example 8.21. One of the queries for the TRAVEL ontology was:

ans(X) ∶− ¬Capital(X),¬Town(X),
Destination(X).

It focuses on destinations that cannot be capitals or towns. The UCQ-rewriting produced by COM-
PLETO was the following:

[ans(X) ∶− Farmland(X),
ans(X) ∶− NationalPark(X),
ans(X) ∶− RuralArea(X)].

Considering the above interpretation of the query, the answer tells us that only farmlands, national
parks, and rural areas cannot be town or capital destinations.

8.1.2 ECOMPLETO Experiments

Table 8.2: Distribution metrics computed on the query rewriting runtime and the memory used for
both ontologies.

LUBM Travel
Metric Runtime (m) Memory (Mb) Runtime (m) Memory (Mb)
mean 18.59 370.46 0.035 104.54
std 1.67 37.00 0.150 16.70
min 15.33 328.00 0.020 93.00
25% 17.62 350.00 0.022 101.00
50% 18.43 359.00 0.023 103.00
75% 19.10 371.00 0.024 105.00
max 24.76 526.00 2.454 337.00

Table 8.2 shows the mean, std, min, max, and the 25th, 50th, and 75th percentiles of the UCQ
rewriting runtime and the used RAM memory for both ontologies. The UCQ rewriting runtime is
on average 500 times faster for the TRAVEL ontology than for the LUBM ontology. The rewriting
process for the TRAVEL ontology uses on average one third of the RAM memory used to rewrite
queries compared to the LUBM ontology.

Figure 8.7 shows the runtime vs RAM memory of the rewriting process for each query of
the LUBM ontology. There are 3 clusters that group the points according to their standardized
coordinates. Figure 8.8 shows also the size of the UCQ rewriting using colors. The darker the
datapoint is, the larger the size of the corresponding rewriting is. The cluster grouping shows
some correlation with the size of the rewriting.

Table 8.3 shows the count, mean, std, min, max, and the 25th, 50th, and 75th percentiles of the
UCQ rewriting runtime and the used RAM memory for each of the clusters of LUBM queries.

Figure 8.9 shows the distribution of the query rewriting runtime for the LUBM ontology. The
distribution is multimodal and it is split according to the cluster group.

The distribution of the RAM memory used in the rewriting process is shown in Figure 8.10.
We can notice a bimodal shape, despite having 3 clusters that group the queries.

84

8.1 Experiments

Figure 8.7: Clustering of query rewriting runtime vs memory usage for LUBM.

Figure 8.8: Clustering of query rewriting runtime vs memory usage and size of the rewriting for
LUBM.

85

Chapter 8. General Conjunctive Queries with Negated Atoms Implementation and Evaluation

Table 8.3: Distribution metrics computed on the query rewriting runtime and the memory used for
both clusters in LUBM ontology.

Runtime (m) Memory (Mb)
Metric Cluster 0 Cluster 1 Cluster 2 Cluster 0 Cluster 1,2
count 50 280 170 50 450
mean 21.82 18.95 17.06 469.64 359.44
std 1.72 0.88 0.68 24.31 15.49
min 17.57 17.92 15.33 423.00 328.00
25% 21.37 18.40 16.53 449.25 349.00
50% 22.15 18.68 17.10 468.00 357.00
75% 22.90 19.20 17.65 485.75 367.00
max 24.76 22.69 18.36 526.00 445.00

Figure 8.9: Histogram of query rewriting runtime for LUBM.

86

8.1 Experiments

Figure 8.10: Memory usage histogram for LUBM.

87

Chapter 9

Conclusions

Firstly, we proposed a method to rewrite conjunctive queries with negated atoms based on
resolution in order to eliminate the negated atoms. The constraints in the knowledge base are
rewritten using the rules in order to express the inconsistencies without the need of the rules. The
expanded set of constraints is used to build a constraint saturation of the initial query by eliminating
the negated atoms using resolution. Finally, conventional rewriting algorithms are used in the
resulting union of conjunctive queries.

The method was implemented in the first version of COMPLETO. The RAPID system was used
as an external rewriter and a connection to a MySQL database allowed efficient instance retrieval
for the obtained rewriting.

COMPLETO v1 was compared to REBSIR for rewriting negated concepts. The experimental
results showed that COMPLETO v1 is generally faster than REBSIR, especially when the number of
assertions in the knowledge base grows. The relative performance of COMPLETO v1 with respect
to REBSIR is always improved when the number of assertions grows. On the other hand, REBSIR
used less memory resources.

Despite the satisfactory performance of COMPLETO v1, we believe that the principal result
is the first definition of query answering for queries with negated atoms based on the classical
rewriting algorithms.

Secondly, we proposed the definition of Horn queries and union of Horn conjunctive queries.
We also provide a way to check the decidability of the entailment problem for these queries, by
using a reduction to the entailment problem of conjunctive queries. The reduction also allows to
answer Horn conjunctive queries using classic query answering methods developed on conjunctive
queries.

We propose the use of a conjunctive query rewriting approach to provide a UCQ rewriting for a
union of Horn conjunctive queries. The method is implemented in version 2.0 of the system COM-
PLETO. The GRAAL system was used as an external rewriter and a connection to an H2 database
allowed efficient instance retrieval for the obtained rewriting.

COMPLETO v2 was compared to FACT++ and HERMIT for rewriting Horn queries. The exper-
imental results showed that COMPLETO v2 is faster than the other systems for big ontologies. For
ontologies with more than half a million axioms FACT++ and HERMIT were not able to find the
answers to the queries on time. For very small ontologies COMPLETO v2 is still fast, yet FACT++

89

Chapter 9. Conclusions

and HERMIT outperform it.
We are very glad with the satisfactory performance of COMPLETO v2 but we believe that the

principal result is the definition of Horn queries and the way we can answer them. We can use the
system to improve the consistency check for the ontologies.

Moreover, we studied the application of the query rewriting approach on the framework of
disjunctive existential rules in order to produce complete UCQ-rewritings that encode the answers
of an initial query.

To ensure the completeness of our rewriting approach, we introduced a special case of first-
order logic resolution (constraint resolution), where every resolution step involves one clause with-
out positive literals, and the subsumption theorem holds when the consequence is a clause without
positive literals. The resolution completeness theorem also holds, allowing constraint resolution
to be used in refutation procedures for FOL formulas.

Based on the definition of constraint resolution we proposed an extension of the rewriting
approach for existential rules in order to deal with disjunctive existential rules. The rewriting
of a disjunctive existential rule produces disjunctive rules with fewer disjunctions in the head and
eventually produces an existential rule or a conjunctive query. The rules generated from disjunctive
rules are then used in order to find additional rewritings of the initial conjunctive query rewriting.
The proposed algorithm can be used for general knowledge bases with disjunctive existential rules;
it terminates for the cases where there is a finite and complete UCQ-rewriting of the input queries
with respect to the (disjunctive) existential rules and the negative constraints. However, there are
rather strong conditions that are able to ensure the existence of a finite and completeUCQ-rewriting.

Moreover, we studied some of the sufficient conditions that ensure that the proposed algorithm
terminates. One case requires linear CQ¬s and all elements of the knowledge base to be linear. The
other case requires a fus and disconnected disjunctive existential rules without imposing restrictions
on the input CQs or the constraints. Both cases impose very strong conditions on the disjunctive
existential rules. However, for knowledge bases without disjunctive existential rules, we were
able to provide finite and complete deterministic UCQ-rewritings for UCQa¬s with at most one
positive atom (with respect to linear existential rules and linear constraints) and for UCQa¬s that
include the frontier in the answer variables (with respect to a fus). Both types of UCQa¬s are very
expressive. We also proposed two new classes of existential rules that have the fus property and
that are generalizations of domain restricted rules and linear rules.

Using the proposed algorithm and taking advantage of the stopping criteria, we implemented
a sound and complete rewriting approach for unions of conjunctive queries with negated atoms
and answer variables in the COMPLETO system that specializes in query answering for conjunctive
queries with negation. The implementation was evaluated on two ontologies.

The experimental results showed that the implementation is able to provide UCQ-rewritings in
a reasonable time and using a reasonable amount of RAM memory. Also, rewriting UCQ¬s with a
large number of queries takes considerably less time than the time required to rewrite all the CQ¬s
individually.

Finally, we took on the significant computational challenge involved in determining the exis-
tence of finite and complete UCQ-rewritings, as well as the identification of finite unification sets
(fus) of rules. Our contributions encompass the introduction of two novel rule classes: connected

90

linear rules and connected domain restricted rules, which have the fus property and surpass the
expressiveness of their antecedent rule classes, namely linear rules and domain-restricted rules.

Furthermore, we introduced the concept of disconnected disjunction tailored to disjunctive ex-
istential rules. This novel conceptualization makes it easier to achieve the fus property, even in
the context of disjunctive existential rules. In terms of practical implementation, we have elab-
orated upon the architecture of our system, ECOMPLETO, specifically engineered for the task of
query rewriting within the framework of disjunctive existential rules. The system handles UCQ¬
queries that include universally quantified negation. In addition, it offers an augmented version of
DLGP+, thereby facilitating the specification of disjunctive existential rules and the inclusion of
negated atoms within queries.

Empirical evaluation of our system attested to the consistent performance of ECOMPLETO in
generating finite UCQ-rewritings for a diverse array of queries. Remarkably, the system exhib-
ited enhanced efficiency during the rewriting process, notably in the case of the TRAVEL ontology,
where it demonstrated a fast performance together with diminished memory consumption, con-
trasted against the LUBM ontology.

Finally, the experiments provide valuable insights into ECOMPLETO’s performance when pro-
ducing UCQ-rewritings for UCQ¬s involving universally quantified negation and disjunctive exis-
tential rules. The significant differences in runtime andmemory efficiency between the LUBM and
TRAVEL ontologies emphasize the importance of considering ontology complexity when assessing
ECOMPLETO’s performance. Clustering and distribution patterns offer additional insights into the
behavior of ECOMPLETO under different query scenarios. Overall, these findings contribute to our
understanding of the system’s capabilities and provide valuable information for researchers and
practitioners working with complex queries and ontologies in the context of disjunctive existential
rules.

91

Appendices

93

Appendix A

COMPLETO’s user manual

Figure A.1 shows a description of the COMPLETO system and its main workflow.

Installing the Software

The software is contained in a jar1 file and it needs to be executed by a java2 compiler:
java -jar completo.jar \

[other options]

The option -Xmx can help us increase the memory assigned to the process.

Running the Experiments

For running the experiments we need to know how to execute the main actions provided by the
COMPLETO system. The TBoxes3 and the ontologies with assertions4 used in the experiments can
be downloaded to provide the necessary inputs to the system.

Constraints Rewriting.

Given a owl ontology with constraints in it, we can generate a file with the rewriting of the
constraints. The command to execute is the following:
java -jar completo.jar \

-o [ontology path] \

(-q [queries path] -nconcepts) \

-c [constraints path]

where the path for the constraints should refer to a non existing file where all the rewriting of the
constraints will be written as queries. Also, if we want to generate a queries file with the negation
of all the concepts in the ontology we then use -q [queries path] -nconcepts. Files with
queries have the following format:

1http://image.ntua.gr/completo/completo.jar
2version 1.8 or more recent.
3http://image.ntua.gr/completo/tbox.zip
4http://image.ntua.gr/completo/ontofile.zip

95

http://image.ntua.gr/completo/completo.jar
http://image.ntua.gr/completo/tbox.zip
http://image.ntua.gr/completo/ontofile.zip

Appendix A. COMPLETO’s user manual

COMPLETO

TBox
(OWL)

Constrains
Rewritings

a) Constraints Rewriting Process

COMPLETO

ABox
(OWL)

MySQL
DB

b) OWL to MySQL ABox Exporting Process

COMPLETO
queries

Query
Rewritings
Instances
retrieved

c) Query Rewriting and Instances Retrieval

Figure A.1: Diagram of the COMPLETO system.

96

Q(?X) <- -AdministrativeStaff(?X).

Q(?X) <- -Article(?X).

Q(?X) <- -AssistantProfessor(?X).

Q(?X) <- -AssociateProfessor(?X).

and files with constraints have boolean queries describing the constraints:
_answer <- College(?X), ResearchGroup(?X).

_answer <- College(?X), researchProject(?X, ?_u0).

_answer <- AdministrativeStaff(?X), Article(?X).

_answer <- AdministrativeStaff(?X), Book(?X).

where negated atoms come with a minus “-” sign, variables with a “?” sign before the identifier.
Queries files can also be built manually.

OWL to MySQL ABox Exporting Process.

In order to generate a SQL database with the assertions contained in an owl ontology we need
to run:
java -jar completo.jar \

-o [ontology path] -eabox \

-aboxname [abox SQL name]

The command will create a SQL database usingMySQL software. The database will be used in the
instance retrieval process for the queries. Additionally, we need a configuration file (sqlconfig.properties)
containing some important data used to establish the connection to MySQL:
username=[username]

password=[password]

url=[url:port of the installed MySQL instance]

Also, for big databases we will need to increase the limits of the thread_stack and max_-

allowed_packet on the configurations files of MySQL.

Query Rewriting and Instance Retrieval.

The main task in the experiments is related to rewriting queries and finding the instances of the
result in SQL databases. In order to execute the task we need to use the following command:
java -jar completo.jar \

-o [ontology path] -q [queries path] \

(-qi [index of the query to be rewritten]) \

-c [constraints path] -aboxname [abox SQL name] \

(-apath [path to output the answers of the queries])

where all the queries in the file will be rewritten one by one unless an index is specified with the -qi

option is specified and in such a case only the query in the corresponding index will be rewritten.
In case we are only interested in the rewritings of the queries we should provide the file to

output the rewritings and remove the information about the Abox:

97

Appendix A. COMPLETO’s user manual

java -jar completo.jar \

-o [ontology path] -q [queries path] \

(-qi [index of the query to be rewritten]) \

-c [constraints path] \

(-qrewritings [path to output the rewritings])

98

Appendix B

ECOMPLETO’s user manual

ECOMPLETO is a query rewriting system that supports queries with universally quantified nega-
tion and ontologies with disjunctive existential rules. It Provides a UCQ rewriting that can be used
to find all the answers of the input query with respect to the rules in the ontology.

Running

• From bash:

time mix run -e "ECompleto.Experiments.rewrite(

’ontologies/travel.dlgp’,

’ontologies/travel.queries2.txt’

) |> Enum.map(&(\"#{&1}\"))"

• From iex -S mix

iex(1)> ECompleto.Experiments.rewrite(

’ontologies/travel.dlgp’,

’ontologies/travel.queries.txt’,

0)

Usage Examples

• To get the rewritings of a query

ECompleto.Experiments.rewrite(

’experiments/AGOSUV-bench/A/A.dlp’,

’experiments/AGOSUV-bench/A/A_queries.dlp’,

0)

|> ECompleto.Program.to_file(

’experiments/AGOSUV-bench/A/A_rewritings_0_ecompleto.dlgp’

)

• To get the answers of a query

99

Appendix B. ECOMPLETO’s user manual

ECompleto.Experiments.answer(

’experiments/AGOSUV-bench/A/A.dlp’,

’experiments/AGOSUV-bench/A/A_queries.dlp’,

0)

|> ECompleto.Program.to_file(

’experiments/AGOSUV-bench/A/A_answers_0_ecompleto.dlgp’

)

DLGP+ Notation

DLGP+ is an extension of the existing DLGP v2.0 notation that allows the specification of
disjunctive existential rules and negated atoms in queries.

Disjunction is specified in the head of a rule by writing a list in squared brackets. The disjoint
elements can be a single atom or several atoms enclosed in brackets, e.g.,
[disj] [leaf(X), (inner_node(X), edge(X,Y))] :- node(X).

Negation in queries with negated atoms is specified with the minus symbol, e.g.,
[q] ? :- person(X), -marriedTo(X,Y).

Notes

Consider that currently, Skolem functions use the variable name as the functor of the Skolem
term. This is okay if we do rewriting with respect to constraint clauses and never propagate those
Skolem terms. However, the Chase algorithms need to ensure that the nulls generated have a
globally unique ID. Implement some sort of substitution for the prefixes in the OWL notation
inside the dlgp programs.

100

Bibliography

[1] Leonid Libkin. Incomplete information and certain answers in general data models. Pro-
ceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2011, June 12-16, 2011, Athens, Greece, Maurizio Lenzerini και Thomas
Schwentick, επιμελητές, σελίδες 59–70. ACM, 2011.

[2] Adrian Onet. The Chase Procedure and its Applications in Data Exchange. Data Exchange,
Integration, and Streams, Phokion G. Kolaitis, Maurizio Lenzerini και Nicole Schweikardt,
επιμελητές, τόμος 5 στο Dagstuhl Follow-Ups, σελίδες 1–37. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2013.

[3] Mélanie König, Michel Leclère, Marie-Laure Mugnier και Michaël Thomazo. Sound, com-
plete and minimal UCQ-rewriting for existential rules. Semantic Web, 6(5):451–475, 2015.

[4] StanislavKikot, RomanKontchakov, Vladimir V. Podolskii καιMichael Zakharyaschev. Long
Rewritings, Short Rewritings. Proceedings of the 2012 International Workshop on Descrip-
tion Logics, DL-2012, Rome, Italy, June 7-10, 2012, Yevgeny Kazakov, Domenico Lembo
και FrankWolter, επιμελητές, τόμος 846 στο CEURWorkshop Proceedings. CEUR-WS.org,
2012.

[5] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier και Eric Salvat. On rules with
existential variables: Walking the decidability line. Artif. Intell., 175(9-10):1620–1654, 2011.

[6] Georg Gottlob, Marco Manna, Michael Morak και Andreas Pieris. On the Complexity of
Ontological Reasoning under Disjunctive Existential Rules. Mathematical Foundations of
Computer Science 2012 - 37th International Symposium, MFCS 2012, Bratislava, Slovakia,
August 27-31, 2012. Proceedings, Branislav Rovan, Vladimiro Sassone και Peter Widmayer,
επιμελητές, τόμος 7464 στο Lecture Notes in Computer Science, σελίδες 1–18. Springer,
2012.

[7] David Carral, Irina Dragoste και Markus Krötzsch. Tractable Query Answering for Expres-
sive Ontologies and Existential Rules. The Semantic Web - ISWC 2017 - 16th International
Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part I, Clau-
dia d’Amato, Miriam Fernández, Valentina A. M. Tamma, Freddy Lécué, Philippe Cudré-
Mauroux, Juan F. Sequeda, Christoph Lange και Jeff Heflin, επιμελητές, τόμος 10587 στο
Lecture Notes in Computer Science, σελίδες 156–172. Springer, 2017.

101

BIBLIOGRAPHY

[8] Shqiponja Ahmetaj, Magdalena Ortiz και Mantas Simkus. Rewriting Guarded Existential
Rules into Small Datalog Programs. 21st International Conference on Database Theory,
ICDT 2018, March 26-29, 2018, Vienna, Austria, Benny Kimelfeld και Yael Amsterdamer,
επιμελητές, τόμος 98 στο LIPIcs, σελίδες 4:1–4:24. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

[9] Vince Bárány, Michael Benedikt και Balderten Cate. Rewriting Guarded Negation Queries.
Mathematical Foundations of Computer Science 2013 - 38th International Symposium,
MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings, Krishnendu Chat-
terjee και Jirí Sgall, επιμελητές, τόμος 8087 στο Lecture Notes in Computer Science, σελίδες
98–110. Springer, 2013.

[10] Georg Gottlob, Sebastian Rudolph καιMantas Simkus. Expressiveness of guarded existential
rule languages. Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014, Richard
Hull καιMartin Grohe, επιμελητές, σελίδες 27–38. ACM, 2014.

[11] Meghyn Bienvenu, Balderten Cate, Carsten Lutz και Frank Wolter. Ontology-Based Data
Access: A Study through Disjunctive Datalog, CSP, and MMSNP. ACM Trans. Database
Syst., 39(4):33:1–33:44, 2014.

[12] Riccardo Rosati. The Limits of Querying Ontologies. Database Theory - ICDT 2007, 11th
International Conference, Barcelona, Spain, January 10-12, 2007, Proceedings, Thomas
Schwentick και Dan Suciu, επιμελητές, τόμος 4353 στο Lecture Notes in Computer Science,
σελίδες 164–178. Springer, 2007.

[13] Riccardo Rosati. On the decidability and finite controllability of query processing in
databases with incomplete information. Proceedings of the Twenty-Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 26-28, 2006,
Chicago, Illinois, USA, Stijn Vansummeren, επιμελητής, σελίδες 356–365. ACM, 2006.

[14] SergeAbiteboul, RichardHull καιVictor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[15] Víctor Gutiérrez-Basulto, Yazmin Angélica Ibáñez-García, Roman Kontchakov και Egor V.
Kostylev. Conjunctive Queries with Negation over DL-Lite: A Closer Look. Web Reasoning
and Rule Systems - 7th International Conference, RR 2013, Mannheim, Germany, July 27-
29, 2013. Proceedings, Wolfgang Faber και Domenico Lembo, επιμελητές, τόμος 7994 στο
Lecture Notes in Computer Science, σελίδες 109–122. Springer, 2013.

[16] Vince Bárány, Balderten Cate καιMartin Otto. Queries with Guarded Negation. Proc. VLDB
Endow., 5(11):1328–1339, 2012.

[17] Jianfeng Du και Jeff Z. Pan. Rewriting-Based Instance Retrieval for Negated Concepts in De-
scription Logic Ontologies. The Semantic Web - ISWC 2015 - 14th International Semantic
Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I, Marcelo

102

BIBLIOGRAPHY

Arenas, Óscar Corcho, Elena Simperl, Markus Strohmaier, Mathieu d’Aquin, Kavitha Srini-
vas, Paul T. Groth, Michel Dumontier, Jeff Heflin, Krishnaprasad Thirunarayan και Steffen
Staab, επιμελητές, τόμος 9366 στο Lecture Notes in Computer Science, σελίδες 339–355.
Springer, 2015.

[18] Enrique Matos Alfonso και Giorgos Stamou. Rewriting Queries with Negated Atoms. Rules
and Reasoning - International Joint Conference, RuleML+RR 2017, London, UK, July 12-
15, 2017, Proceedings, Stefania Costantini, Enrico Franconi, William Van Woensel, Roman
Kontchakov, Fariba Sadri και Dumitru Roman, επιμελητές, τόμος 10364 στο Lecture Notes
in Computer Science, σελίδες 151–167. Springer, 2017.

[19] Enrique Matos Alfonso και Giorgos Stamou. On Horn Conjunctive Queries. Rules and Rea-
soning - Second International Joint Conference, RuleML+RR 2018, Luxembourg, September
18-21, 2018, Proceedings, Christoph Benzmüller, Francesco Ricca, Xavier Parent και Du-
mitru Roman, επιμελητές, τόμος 11092 στο Lecture Notes in Computer Science, σελίδες
115–130. Springer, 2018.

[20] Pierre Bourhis, Marco Manna, Michael Morak και Andreas Pieris. Guarded-Based Disjunc-
tive Tuple-Generating Dependencies. ACM Trans. Database Syst., 41(4):27:1–27:45, 2016.

[21] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier και Eric Salvat. Extending De-
cidable Cases for Rules with Existential Variables. IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July
11-17, 2009, Craig Boutilier, επιμελητής, σελίδες 677–682, 2009.

[22] , Shan-Hwei Nienhuys-Cheng και Ronaldde Wolf, επιμελητές. Foundations of Inductive
Logic Programming, τόμος 1228 στο Lecture Notes in Computer Science. Springer, 1997.

[23] Sergio Tessaris. Questions and answers: reasoning and querying in Description Logic. Δι-
δακτορική Διατριβή, University of Manchester, 2001.

[24] Jean-François Baget. Improving the Forward Chaining Algorithm for Conceptual Graphs
Rules. Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth In-
ternational Conference (KR2004), Whistler, Canada, June 2-5, 2004, Didier Dubois, Christo-
pher A. Welty καιMary-Anne Williams, επιμελητές, σελίδες 407–414. AAAI Press, 2004.

[25] NCI Dictionary of Cancer Terms: first-degree relative. https://www.cancer.gov/

publications/dictionaries/cancer-terms/def/first-degree-relative.
[26] D. Trivela, G. Stoilos, A. Chortaras και G. Stamou. Optimising Resolution-Based Rewriting

Algorithms for OWL Ontologies. 2015.
[27] Georg Gottlob, Giorgio Orsi και Andreas Pieris. Query Rewriting and Optimization for On-

tological Databases. ACM Trans. Database Syst., 39(3):25:1–25:46, 2014.
[28] Jean François Baget, Michel Leclère, Marie Laure Mugnier, Swan Rocher και Clément Sipi-

eter. Graal: A Toolkit for Query Answering with Existential Rules, σελίδες 328–344. Springer
International Publishing, Cham, 2015.

103

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/first-degree-relative
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/first-degree-relative

BIBLIOGRAPHY

[29] Jean-François Baget και Marie-Laure Mugnier. Extensions of Simple Conceptual Graphs:
the Complexity of Rules and Constraints. J. Artif. Intell. Res., 16:425–465, 2002.

[30] Andrea Calì, Georg Gottlob και Andreas Pieris. Advanced Processing for Ontological
Queries. PVLDB, 3:554–565, 2010.

[31] Yuanbo Guo, Zhengxiang Pan και Jeff Heflin. LUBM: A benchmark for OWL knowledge base
systems. J. Web Semant., 3(2-3):158–182, 2005.

[32] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard
Cyganiak και Sebastian Hellmann. DBpedia - A Crystallization Point for the Web of Data.
Web Semant., 7(3):154–165, 2009.

[33] Dmitry Tsarkov και Ian Horrocks. FaCT++ Description Logic Reasoner: System Descrip-
tion. Proceedings of the Third International Joint Conference on Automated Reasoning, IJ-
CAR’06, σελίδες 292–297, Berlin, Heidelberg, 2006. Springer-Verlag.

[34] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos και Zhe Wang. HermiT: An OWL
2 Reasoner. Journal of Automated Reasoning, 53(3):245–269, 2014.

[35] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann και Ian H.
Witten. The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl., 11(1):10–
18, 2009.

[36] Enrique Matos Alfonso, Alexandros Chortaras και Giorgos Stamou. UCQ-Rewritings for
disjunctive knowledge and queries with negated atoms. Semantic Web, 12(4):685–709, 2021.

[37] Jean-François Baget, Alain Gutierrez, Michel Leclère, Marie-Laure Mugnier, Swan Rocher
και Clément Sipieter. Datalog+, RuleML and OWL 2: Formats and Translations for Exis-
tential Rules. Proceedings of the RuleML 2015 Challenge, the Special Track on Rule-based
Recommender Systems for the Web of Data, the Special Industry Track and the RuleML 2015
Doctoral Consortium hosted by the 9th International Web Rule Symposium (RuleML 2015),
Berlin, Germany, August 2-5, 2015, Nick Bassiliades, Paul Fodor, Adrian Giurca, Georg Got-
tlob, Tomás Kliegr, Grzegorz J. Nalepa, Monica Palmirani, Adrian Paschke, Mark Proctor,
Dumitru Roman, Fariba Sadri και Nenad Stojanovic, επιμελητές, τόμος 1417 στο CEUR
Workshop Proceedings. CEUR-WS.org, 2015.

[38] Rakesh Agrawal, Tomasz Imielinski και Arun N. Swami. Mining Association Rules between
Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, Washington, DC, USA, May 26-28, 1993, Peter Buneman
και Sushil Jajodia, επιμελητές, σελίδες 207–216. ACM Press, 1993.

104

	Abstract
	Ευχαριστίες
	Introduction
	Related Work
	Outline of our contributions.

	I Preliminaries
	Preliminaries
	First Order Logic Resolution
	First-Order Logic Resolution

	Disjunctive Existential Rules Framework

	II Proposed Methods
	Rewriting Queries with negated Atoms
	Constraint Saturation
	Algorithm for Rewriting Conjunctive Queries with Negation
	Preprocessing
	The Algorithm

	Horn Conjunctive Queries
	Union of Horn CQs
	Rewriting a Union of Horn CQs

	Backward Chaining for Disjunctive Knowledge and Queries With Negated Atoms
	Constraint Resolution
	Unit Resolution
	Query Containment

	Rewriting Operations and Resolution
	Rewritable Queries and Disjunctive Knowledge Bases
	Expanding the Existing Fragments

	On Queries with Answer Variables and Linear Queries

	III Implementations and Experimental Evaluation
	Constraint Saturation Evaluation
	Horn Conjunctive Queries Evaluation
	General Conjunctive Queries with Negated Atoms Implementation and Evaluation
	Experiments
	Completo v3 Experiments
	ECompleto Experiments

	Conclusions

	Appendices
	Completo's user manual
	ECompleto's user manual

	Bibliography

