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[eptAngm

H dnwiovpyio wouoixAc otoyelel TNy Topaywyy| HOUCLXMY XOUUATIOV Tou cuVBLAlouv éva euydploTo %o dp-
HOVIXG AMOTENECUN PE Vol CUVIETO ot TAOVGLO TEPLEYOUEVD, BNULOVEYOVTAUS GTOV oxpodty| cuvouo¥ruato. H
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SUUBOAY TV GUYYPOVWV HOVTEAWY, TEXVIXWY X0t TpoceyYloewy atny Enclepyacio Puoiic I'Adoocac propel va
elvan meploodTERO AMd WPENUES AV EQPUPUOTTOUY GE HOLCIXE BEBOUEVI. LNV TapoLoa EpYAcid, TEOTEVOUUE Lo
Tpocéyylon mapaywYNS Hovoxc pe Seq2Seq YovTéla, oyedlaouévn va eunhoutilel cuVIETELC, EVOWUATOVOVTIC
elte yio dve elte gl xdTtw Qv o doouévr uehwdia. Tar vo yetateédouye to mepleyduevo evéc MIDI ap-
yetou ot axohoudia, yenowonowlue cbyypova epyoleia xwdxonolnone nou rapoustdlovion oto [9]. Autd pog
EMTEETEL Vo aELOTOLHOOUPE TAEOVELOUOES TEXVIXES TIou Yenotdornotolvtal ouvidwe otnv Enelepyaocia Puoxic
IMdooog, omwe 1 xwdixonomon Ledyoug, 1 enadénorn dedouévwv xan dhheg teyvinés. Ilapd to yeyovog ot
1 o&loAdyYNoN TS povowhc anotehel avtixelpevo dapuwviog YeTagd TV UEAMY TNG EPELVATIXTC XOWdTNTAC, O
TopENC TOPUUEVEL EVEQYOC YLol oxadMuoiixy| Blepebvnom. Xt duer) yac Sodixaoctio afloAdynong, elodyouue yio véa
TPOGEYYLOT TOU EVOWUATOVEL TNV TOCOTXT oELOAGYNON UE TOLOTIXE XELITHELY, UE GTOYO Vo YEQUEOGCOUUE TO
YGouo UETOEY AVTIXELUEVIXDY UETPNoEY Xt avipwmvne avtiindne. Kataliyouue oe nocotnés aflohoyrioeic
mou avuxatonteilouv oe yeydho Bodud exelveg mou mpoxdnTouy amd TNV avticToryn avdpewnive aEloAGYIoN.

A€&eig-xhedid —  Ilapaywyrh povoinic, Hapoywyixd Moviéha, Metaoynuatiotéc, Movowr|, Lupfohixr
Movouxy), Mnyovixr) Mddnon.
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Abstract

Music generation aspires to produce musical pieces that have a pleasant harmonic result along with a complex
and stimulating context, engaging listeners in emotional, intellectual and aesthetic dimensions. Polyphonic
Music Generation can be modeled as multi-dimensional language generation task, thus, the contribution
of state-of-the-art models, techniques and approaches in Natural Language Processing can be more than
beneficial when applied in musical context. In this thesis, we propose a Seq2Seq generation approach,
designed to enhance compositions by integrating additional voices, incorporating either an upper or lower
voice to the given melody.

To transform symbolic music contained on a MIDI file into sequential format, suitable for transformer models,
we employ modern encoding tools. This enables us to integrate advantages such as byte pair encoding, data
augmentation, and other techniques commonly used in Natural Language Processing.

Despite music evaluation being a subject of disagreement among members of the research community, the
field remains active for academic exploration. In our evaluation process, we introduce a novel approach
that integrates quantitative assessment with qualitative criteria, aiming to bridge the gap between objective
metrics and human perception.

Keywords — Music Generation, Conditional Generation, Harmonization, Seq2Seq, Transformers, Music,
Machine Learning,
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewentixd urdéBadpo

[iot oudVeS, 1 XAUTAGHEVT] LIS UNYOVAS LXOVAS VoL ovamopdiyeL Ty aviedmvn Aoy xou avtiAndm aroteholoe @i o-
doia g avipwndtnrac. H teyvnt vonuooivny éyel opogoatiotel oe OAn N Sidpxeta tng totoplag omd ToANoUS
ToATIoMoUE. 3TN paydaio teyvohoyt| e€EMEN Tou 2000 audva, oL ETC TAROVES TEOGT)oUV Vo XAUTAVOHGOLY
TOV UNYOVIOUO TWV avIp®OTVWY CUCTAUATOY VoY VOPLOTS, VO TOV EQUNVEVCOLY UE UOUMUOTIXES dpYEC XoL Vol
ToV YeToppdoouy ot hoywée axohoudicc. [20]. 'Etol yevwhdnxe o topéac tne wnyovixic wddnone.

H ynyavu pddnon mepiotpégetar yOpw omd v €vvolo TN dNULoupYlag UTOAOYICTIXWY CUCTNUETWY ToU
umopolV va uddouv xou vo xatovooouy tov xocuo. Eivaw évoc topéoac uelétng oto mhaiclo tne teyvnTthc
vonuoouvne mou yenotponotel miavotnTe, oTATIoTIXY, Slopopinés eELGOOELS TEOXEWEVOU VoL SNULOVRYHOEL LOV-
TéNo ToU elvon ovd var ONOXANEOGCOoUY cLUYXEXEWEVES epyaoies. Autég ol gpyaocies mepthaufBdvouy Tt Aidn
ano@doewy, TV TEOBAedT, TV emonpavon, T dnuwiovpyia, TN BeAtiotonoinon xau dhha. Me amhovoTtepoug
6poug, €val Yovtého unyovixic pdinong "exmouwdedetan" oe Sedouéva, pe oTéY0 TOV EvVIOomoUd poTiBwy xou
OYECEWY EVTOC TOV BESOUEVY ELTOBOU Xol TNV EEXYWYT TV YAUNUOTIXGY XAUTUAGY Tou T xadopilouy - Téoo
oe yevxt] 600 xou oe hemtouepn] woppr. O andtepoc otdyog eivon va Bertiwdel 1 anddoorn tou yoviélou ue
NV Tépodo Tou Yedvou, TpocupudlovTas T TapoUETEOUS TOL PE xdle emoy” exnaidevons, TapOUOL UE TOV
dvipwno mou padaivel and TNy epneiplo.

Me tnv ndpodo tou ypbvou, o Toufag efehlyUnxe amd To vo oToyelLel dpyWd otnv enlAucy yodnuotixd
OTOUTNTIXY SLadLXAGLRY, 6T Vo PLhoBoZel Tpa v amoxtrioel Ty avlpdmivey avtiindn xou vor pundel tig ov-
Ypdmvee cuhhoyloTixég dwadixaciec. H pnyovind| udinon éyel e€ehuydel oe éva euéhxto epyoleio Tou umopel vo
epappootel oe Tohudpripoug emoTnuovinols Topelc, unnpesieg xar oty xadnuepwvr {wY Tou atouou. O apyéc
Tou 21ou Vo HToY Plal ETOYT ETAVACTAONG, XADC 1) EPELVA EVOWOUATOVETOL GE UEYIAO dpliud EQUPUOYDY,
OTwE 1) THEVOUNOT EXOVKY, TA CUC TARATI CUGTACE®Y, ol aAybprduol Bedtiotonolnorng, 1 enelepyaoio puotxic
YAOOOUS aAAG xa 1) avdAuoT) xon oOvieoT) pououxig.

1.1.1 MetaocynuratioTtég

Ou petaoynuatiotée, 1 transformers, anoteholv pio cUYYpOVN TEOGEYYLON OTN Uy ovix| wdinor, yapaxtnelod-
MEVN amd T XeoT TEONYUEVWY HOVTEAWY VEURGVIXWY dixTOwY. Kevipixd otolyelo autdv twv wovtéhny eivar ol
UMY OVLOUOL AUTOTIPOCOY N XAl TPOGOY 1S, Ol OTOLOL EMITEENOLY GTA LOVTEAX Vo avTIANPYoLY xat Vol a€loTol oLy
TNY TAnpogopia and dLdpopec TNYEC Yeydhou urxoug oe eloodo xa é€odo.

H evehi€io TV UETACYNUATIOTOV EYXELTOL TNV LXAVOTNTA TOUG VAl TEOCUPUOLOVTOL GE SLAPOPES UPYITEXTOVIXES
TopoAharyég, 1 xdde pla TPOCUPUOCUEYY) OE GUYXEXPLUEVA XOUHXOVTA XOlL OTOLTHOELS.

Tao OVTEAD XWBLXOTOLNTA-ATOXWOLXOTOLNTY, Ye Topddelyua Tov TH, nepihaufdvouv tny TAfern apyttex-
ToVWXT| TOU UeTaoynuatio T, eneepydlovton axolouldieg eilodBou yia v mapdyouv axohoudieg e€6Bou, yeyovde
Tou Toug Ao T WavXolE Yo EpYAClES XEWEVOU-TE-XEUEVO, OIS 1) UNYAVIXT HETAPEAUCT] XOL 1) TORAYWYN
oaxoNoLLIXADY BESOUEVV.

Movtéla hOVO KE ATOXWBLXOTOLNTYH, oL avTinpocwnevovtol ond to GPT2, emixevipdvovton anoxieio-
Txd oy anoxwdwonoinoy, npoBiénovtag to enduyevo cUuPBoro oe wa axolouldio ywelc mhalolo and Evav
xwdixomonth. AuTh 1 dpyitextovixy| yenoulormoleltal cuVHdwe ot epyacieg TapaywYhHS XEWEVOU Xou TepltAndng.

Movtéla wévo Ue xwdixonointy, onwe 1o BERT, afionolody tov unyaviopsd autonpocoyic Twy HETaoy -
HOTIOTAV Ylot Vo e€dyouy mAnpeogopieg amd Tig axohouvdieg ewwddou.  Alaxpivovian oe epyaciec YAwoowrnc
xaTavONoNg, OTWS 1 EMONUAVET axOAOLLOY %ol 1) AVAAVGT] GUVILCVRUATOC.

Auto toug emitpénel vo avtetwnicouy anoteheoyatind tolimhoxa tpoliuata oe Sdpopous Topelc, OTwe N
ene€epyacion YEIPLUXWY BESOUEVLV, 1) YAWGOWTH avory VLo xou 1 avdAuaT dedopévewy mou eehiccovton Pe to
yeovo. H evehi&la xou 1 amodotixdtntd Toug Toug xahotolyv xploloug oTny avanTuin TEONYUEVLY EQURUOY MY
unyovixnic wdidnone oe mowihoug Toyeic.

1.1.2 O ps‘cocox‘qp.oc‘cnc‘cﬁq TS5

To yovtého Th elvou éva ovtého xeyévou-ce-xelyevo, o avarntdyvnxe and v Google Al xou Baoileton otny
apyttextovixy Kwdixomounth-Anoxwdixonoint. O xedixomointic Yenotonolel unyaviopolc auTompocoy i Yio
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Figure 1.1.1: O petaoymuattotic - 1 dpyLTEXTOVIXY TOU HOVTEAOU Tou Tpotddnxe and [27]

0 cOMNYN TANEOPORLY EVTOE TNE oxoroudiag ELGOBOU, YEYOVOS IOV ETIULTEENEL GTO UOVTENO VO XUTAVOEL Xal Vol
XWOLXOTOLEL AMOTEAECUATING TIC AMOYPWOELS TOU XEWEVOU elabdou. Avtideta, o Atoxwdixonontic yenoylonotel
Y auTonPocOoy Y, evé Tapdhinia Tapaxohovdel Ty é€0do Tou Kwdixomownty, emtpénovtde tou vo nopdyel
oLVEXTIXES XaL ouVagels pe Ta ouuppaldueva axoloudieg e€650u.

H apyrtextovixr Th unepéyel otny xatoypopt| LoxponpdVecuwy aAANAEERTHACENY, XA TMVTAUC TNV XUTAAANAT,
Yia pYOOiEC TOU AMOUTOVY XATAVON O EXTETOUEVOL TAUGIOU.

Aettovpydvtoc oe axohouvdieg eloédou xan e€680u otadepol urixoue, to povtého TH avanaplotd t6c0 TNV
eloodo 600 xou v €080 we axohouvdieg xewwévou, Sieuxollvovtoac v anpdoxonty enelepyaosia and xeluevo
oe xelyevo. O moluto€ixdc YopaxThpag TOU ETUTEENEL TNV TAUTOYEOVY EXTIUDEVCT| OE BLUPOPETINES pYaoieg,
TEOWVWVTAC TNV AVTAANAYT] YVOCEWY OE BLAPOEOUS TOUEIC Xat BIEUXOAUVOVTUS TN YENON KOG AVTIXEWEVIXNS
OCUVEETNONG ATDAELG.

‘Ol T mapandve xohotolv tov TH éva euéhixto epyahelo yio BlepebvNoT TOMAATADY EQYAOLOV, XATAAANAO
yio mowxiheg epyaoiec xou Tpoo@épovtag eupopo Edapos Yio eEgpebvnon.

IMpoexnaidcsvor Touv T5

Iopbpoia ye moArolg dhhoug petaoynuatiotés, o TH umopel va mpo-exmoudeutel pe aUTO-eMPBAENOUEVO 1| UE
emPBhenduevo 1pémo xou apydTeEpa Var "xohumeaploTel" AETTOUERME VLol GUYXEXPUIEVES EQYAGIES.

Mio mpocéyyion npo-exmaideuone elvar auth var yivel pe auTo-emPBAETOUEVO TEOTO GE €Vl EXTETOUUEVO COUL
DEBOUEVOV XEWEVOU, TEOXEWEVOL Vo Udlel amd €val TEPACTIO PACUN YAWOOXOV TEOTUTWY, DOUWMY, Xl OAAY-
heZapthoewy.
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[ "translate English to German: That is good."

"Das ist gut."]
course is jumping well."

[ "cola sentence: The

"not acceptable” ]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."

Figure 1.1.2: Metooynuotiotic Th: évag cUEAXTOC HETAOYNUATIOTAS XATIAANAOC Ylot ToAuEpYastaxt] udinon

Mo o emPBAenduevn npocéyylon Yl TV mpoexnaldeuot), elval 1 tpoexmaldeuone and xelpevo-ce-xeluevo: ta
dedou£va SloopP®VovTaL GE €va TAALCLO EpTNONG-ANAVTNOTS, 6ToL xdle teplnTwon exnaldeuong TepEyel T600
axoloudiec xelévou elo6d0u 660 xan €€600V. AuTh 1 TPOGEYYLON BIEUXOADVEL TNV IXAVOTNTA TOU LOVTEANOUL Vol
xoTovoel xat va Tapdyel xelyevo og Bldgpopeg epyasiec.

To Masked Language Modeling (MLM) yenotueter we npdodetn teyvnr| npoexnaidevong pe otédyo ty adénom
NS xATAVONGNG TOU YAWaoxol mAaciou and to poviého. Katd tn Bidpxeia authg tng Slodxasctos, éva tuyolo
unoclvoho and onuela evidg e oxohoudiog ElGHBOU ATOXPUTTETAL, TEOTEETOVTUG TO UOVTEAO var TpoBAédeL
QT TOL TOXEUTTOUEVOL ONUEL, AVTAWVTOG antd TIC TANpopopieg Thaualou Tou eivol EVELUUTWUEVES 0TO TERBIA-
hov xelpevo. Ye autd Tov Tedno mEoexTtaldeuong, TO UoVTEAO OEUVEL TNV LXAVOTNTE TOU VO GUUTEPALVEL TLC
TANEOPORIEC TOU AE(TOUY ol VoL AUEAVEL T CUVORLXY) TOU LXAVOTNTO XUTAVONOTNG TEPLEYOUEVOL.

1.1.3 Movowxn
Movowxr Avtidndn

O xode évog yag avtihouPBdveTtal T Louoixy| UE BLapopeTiXd TPOTO, EXEL SLUPOPETIXES TEOTIUNOELS, KHOTAOGO ONOL
HaG UTOROVUE VoL BLoxplVOUUE €vay BLAPWVO amo €vay CUUPWVO Y0, OTKS YLol TUEAPELYU VAL DLACTNHA SN
Kolopd amo éva didotnua 4nc AuvEnuévo. H wavotnta goc va Siapopomolodue Toug dUo autols HYous xal vo
BéLyvouue TEOTUNON GTOV TEWTO, ELVOL ALTO TOU 0BNYNGE TOV AVUEWTO VoL SNULOURYHOEL LOUGLXY.

H yAwooun pe ) gouowr] ixavotnta tou avipdtou avartiydnxoy napdAinia, xou ot 800 yolpdlovtol TapdoLes
DOUEC HOU YOEAUXTNELOTLXAL:

e £y0uV xou oL BVo dladoyx) pUoY Tou eEUPTATOL OO TO XPOVO

o oVOTaELOTOVTAL amto axohovlieg cuPBOALY xou

® OLETOVTOL OO XOVOVES, 1) UEV YEUUUATIXOUE, CUVTUXTIXOUE XOL EVVOLOAOYIXOUC, 1) BE ano dpulovixols ol
HEAWBLXOUGS

H enudhudn uetad autiv teov mediwy evioppdvel T BIETO TNUOVIXY £PEUVA, ETUTEETOVTOG GTOUG EPELVNTES VA
0€LOTIOLACOLY TaL UTdpYoVTa WoVTEAD xou Ti¢ Yedodohoyies otny enelepyaoilo QuUOLXE YAWDOOUS YLol VoL TPOCEY-
yilouv TNV TaEAYWYT LOUCXNEC HE EVaY aAYopLUIXS TEOTO.

Aou? NS ROVOLXAG

H avdntuén tng pouoixic onueloypaplag mponhle amd tnv ovdyxn tou avlp®dmou Vo ETIXOWVWYVEL XOL VoL oVo-
TELOTA TNV pouotxn, Ue anoTéAeopa vo dnuLovpyndoly Bldpopd GUCTHUNTA AVATUPACTAONG HOUCLXS o BLd-
(OPOUC TOMTIOUOUE Xl XOUATOVRES. Apyixd, ol cuc TApaTa auTd e€ehiydnxay ye Ty embiwdn e yelo Tlavixic
exxinoiog yia ouvoyt otic Yohpwdies, 1 onolo e€ehiyUnxe o édeoe Ta Yepéhiar yia Ty xadiépwon e dutinhc
pouotxc onueloypaplog.
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Ytov nuprva g pouoxic onueloypaplac Peloxeton To mEVTAYPULO, TO omolo anotelelton amd mévTe
Yeouués xan téooepa xevd démou tomoetolvTon Tol pouotxd olpfoha, xadéva and ta onola aviiotolyel o éva
oLYxeXELWEVo Tovo Tou xadoplletar and éva Lovotxd xAewdl. To xhewdl autd PBeloxeton mévta otny apy’| Tou
nevTayedupou, xadopilel 1o ePOC TOL TOVOU YL TO POUCIXG XOPUdTL TToU axohoulel.

>t:>

L

Figure 1.1.3: AMowboeig votov

\J

MeTtd 1o xAewd, 0 OMAOUOC LTOYRAPEL TNV TOVIXOTNTU TOU XOUUaTIoN, 1) ontold avTImPocwREVETAL and Tol olY-
Bohat BLECEWY, LUPECEDY XKoL OVULPECUWY, XaL 0 PUIULOS TOu xouuoTol mou opllel Tic ypovixée afleg mou Va
nepthopBdvovton evTog evog PHETEOL.

Ou voteg elvan tar odA oOufola mou, avdhoya tn V€orn TOUC GTO MEVIAYPUUUO XL TN LOPPY| TOU UTUGTOUVLOU
1

TOUg, €Y0UV BlaPoRETIXO ToVXd Do xaL Didpxeta .
Midiﬂe C

v 4 [ | |

i } i i _J_i_"_r_ i ! 1 I

£ f

o
NN
T

. | ° e >
o Z ‘ T f i | i
| Olks 3 | | | | | | | |
= = R
s ©® ° \ | ‘ .
Middle C

Figure 1.1.4: Boowéc votec oe éva TEVTEYPUUUO

"Evot gouvowxd xopudrtt dioBdleton xou ypdpetar and aplotepd mpoc ta 0edld. Avdhoya ye to dpyavo oto omoio
AVULPERETAL TO LOUCIXO XOUUETL, 1 pouoixr onuetoypagla pmopel vo nepthayufBdvet apuovixd o thgote (ouy-
¥0pdiec) 1 pehwdund Swoothuota (uewdio). o mopddelypa, €va wovopwvixd dpyovo, 6Tme To PAGOUTO, TEPL-
oplleton oTo var matlet pio vota xdde popd, ondte 1 pouoiny| onueloypapio anotelelton Uovo and plo pehwdio
YoouuUéVn ot mevidypoppo. Amo tny Gk mAeupd, To TAVO Yenouwlomolel éva euplTERO QAo TOVWY xdle
(popd uéoa oe €vo Louoixd xopudtt. Luvidwe ol mapTitodpeg Tou mdvou yopaxtnellovtal and TN Sour SimArc
mopTitolpag, TNV euehi&io Ylor TOAUGOVIXTY YEOPH Xot TN SUUTERIANY UTOYEAUPMY XAEWBLDY, AAAAYOY XAELBLOD,
onudvoewy nevtdh. Apxetéc pouowéc ouvitéoelc tepthapfdvouy enione xateudivoels extéheonc, GTwe duvauxy),
tempo ol oNUAVOELS EXPEAOTC, YLoL VO SLEUXOAUYOUY TNV axplfn] xou ex@paoTixy) eEXTEAEST) GTO TAVO.

H cOvieon pouoixic €xel (¢ 0TOYO0 TNV 0pYEVMOT TWV APROVIXMY X0l HEAWIXGY oTolyelwy dote vo napay el
€Vl AMOTENECHAL TIOU VaL EEL:

® OPUOVIXY) CUVAQELX, EUYFPLOTO NYNTIXO AMOTENECUA OE YpoviXT oTiyun ¢
e TAOUCLO Xal EVOLUPEROV UEAWDIXS TEPIEYOUEVO, OE BLAC TN YedVou Ot

Autd xodiotd Ty Topay WY1 Louotxic, xa WLalTERA TONUPWVIXNC HOVGIXAG, MG ULl TOAUTAOKN kat toAvdidotatn
gpyaoio mopaywyhe Adyou.

Thttps://musictheory.pugetsound.edu/mt21c/OctaveRegisters.html
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Apyeio poLoXNG xou PNPLAKES LOUOCIXES AVATALATTACELS

H pouowxy| unogel va avamapoctodel 6To TAKGCLO UTOAOYIOTIXWDVY UNYOVOY UE TN XENOT SLapopwY LORPMY oTo-
V1ixeuone Tou YeNoWOoToloLY BLUPORETIXES LOPQES DEBOUEVMY.

Yo mhalola authg NS Simhwpatixrc Yo eoTIdoouue 6T GUPBOAXT avardpdoTaoT) apyEelwy Wovoxnc ue apyela
MIDI.

To MIDI (Musical Instrumental Interface) [29] eivon évo texvixd mpdtuno mou Teptypdpel €va TEWTOXOAO
emixolvwviag, por Pnplant] DIEToRT xaL NAEXTEIXEC CUVBECELC TTOU GUVBEOLY Uidl UEYEAT TTolXh{ol NAEXTEOVIXEY
HOUGIXOY 0PYBVLVY, UTOAOYLOTOV X0 GUVOPMY GUGKEUMY H)YOL YLOL THY OVATAAYwYT), TNV enelepyaocia o v
EYYEUPY) HOUCLXYC.

Ye wo anhovoteutixy dnodr, éva apyeio MIDI unopel va Yewpniel we maptitovpa pe mpéoletes mpoaipetinég
ONUEDTEI.

Ta apyeio MIDI anoteholvton xuplwe amd ¢mpiaxéc eVIoAES TOU AVTITPOCWTEVOUY OUGCIXE YEYOVHTA, OTWE
UMVOPOTA YioL TNV EVERYOTOINan xou To xAelowo e voTag, Ty tordTnTa, To VPog xou TN didpxetd, dTwe oiveton
oto 1.1.5. Xpnowelel »¢ Lop®th| Yid TN CUYYQEUPH LOUCIXAC, ETUTEENOVTUC TNV TEOCOUOIWOT) CUVIECEWY XaL
BleuxoAlvovTag TNV ToLthior xou THY eTxoveVio HETOED SLUPOPETIXV 0PYEVWY, ETUTEETOVTAS TOUS VoL EAEYYOLY
T0 éva To dAho [24].

Figure 113 from (—EL‘E] Message Channel NL‘:‘,(::E, Velocity 71/B4
[Miiller, FMP, Springer 2015] 60 NOTE ON 1 67 100
0 NOTE ON 1 55 100 67/G4 I 1[ I[ ]
0 NOTE ON 2 43 100
55 NOTE OFF 1 67 0
0 NOTE OFF 1 55 0
0 NOTE OFF 2 43 0
A I 5 NOTE ON 1 67 100 60/C4
" — } 0 NOTE ON 1 55 100
(o - 0 NOTE ON 2 43 100
[J) —_—— | = 55 NOTE OFF 1 67 0
T 0 NOTE OFF 1 55 0 55/G3 L ! Il ]
.ﬁ 0 NOTE OFF 2 43 0
I 5 NOTE ON 1 67 100
—~Ty 0 NOTE ON 1 55 100
B e 0 NOTE ON 2 43 100 18/C3
Ll » B 3 & = 55 NOTE OFF 1 67 0
0 NOTE OFF 1 55 0
0 NOTE OFF 2 43 0
5 NOTE ON 1 63 100 43/G2 T 10 10 1
0 NOTE ON 2 51 100
0 NOTE ON 2 39 100
240 NOTE OFF 1 63 0
0 NOTE OFF 2 51 0
0 NOTE OFF 2 39 0 36/C2
0 240 480
Time (ticks)

Figure 1.1.5: ZuuPolixéc avanopaoTaceLS HOUCIXNG: dl AVATORAcTAOT TopTitovpas, Wa avanopdotacr MIDI
(o€ AmAOUCTEUUEVT], TUVOXOTIOUNUEYY LOPYPT) Xol Lo AVITOEAOTAGT) POAOU TUAVOU.

Or petoAntéc mou e€onhifouv Tol HOUCIXA YEYOVOTA TEPLYPAPOLY Ta YAEUXTNELOTXE TNE vOTaC Ttou Talleton oe
HLOL GUYXEXQLIEVT] YEOVIXT| CTLYUN.

O oprdude Toviod Udoue (pitch) elvon évac axéparoc aptdude mou xupaiveton petoll 0 xar 127 xou xwdxonotel
To Udog plog votag. Avuxatontpilovtog Ty evduypdupLor Tou oxoLaTo) Tdvou, 6Tou UTdEyoLY 88 TAXTE
TIOL OVTLOTOLYOUY OE Wouotxd U mou xupaivovtar and tic votee A0 éng C8, o aptiudc MIDI xwdixonotel ta
povowd On CO éwg GI pe avZavouevn oepd. o napdderypa, to peoaio C avtiotoryel otov aplduds Tovixod
Ooue 60.

H toydtnta tou mAhxteou cupfBohiletar xou moh we évay axépato apidud mou xuyaivetar omd 0 éwg 127, o onolog
ehéyyel Ty évtaon e votag mou nailetan. Xe ouyfdvrta note-on, puduilel v évtao, evéd oe cuyBdvto note-
off, duayepiletar v e€acdévion xatd ™ pdon g anchudépwong e votag. 26T600, 1 axplBic enidpacn tng
nowxiAhel avdhoya pe to dpyavo 1) to cuvieodlep Tou yenoiuomoLeita.

To xavéh MIDI (program) hettovpyel ¢ Uéco opydvwone xau Spopohdynong dedopévwyv MIDI yio tov éheyyo
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1.1. Oewpnuxd vndBadeo

BLapdpwy 0pYavLY 1 fixwv evtog wag eyxatdotaonse MIDI. YuvAdwe éva xoavdht cuvdéeton Ue Eva GUYHEXPLUEVO
bpyovo, av xou dev elvon unoypewtnd. To xavdh eivon eniong évag axéparog aprduog mou xuualvetar and 0-15.

ITépov e evehi&ia Toug, evac Aéyocg yia Tov omnolo ypnowonototue apyeio MIDI, elvon to peydho €upoc Oe-
douévwy mou dlatldeton oe aUTH TN YopPY|, YEYOVOS Tou Yoc Slvel T duvatdtnTa vo emextelvoupe TNy épeuva
pac oe toAhég xateudivoelc.

1.1.4 Miditok

H epgdvion twv I'hwooixwy Movtéhwy €Qepe enavdoTooT 0TNY QUTOUATY) TURAY WYY LOUCIXTG, TEOXAUAMVTAS T1
HETABAOT OTN LOUCIXT| AVATHEACTUOY) 0nd TOAOTAOXA CUCTAUINTA UVATUQUCTACEWY GE WA TO YAWOOUXT LOP®T.
Avth) n petatémion odhynoe oty mpdtact e cupBolonoinong yia TN cLUBOAXY wouoLxH, éva
xplowo Priua npoenegepyaciog yia Ty eloaywyt dedouévwy MIDI oe Nevpwvind Alxtua. Arnuogiomomuévn
ota TéAN Tne dexaetiog Tou 2010 xou oTig aeyég tng dexactiag Tou 2020 Ye TNV AVOBO TNG AEYLTEXTOVIXNE TOU
HETAOYNUATIOTY), 1) 1O€a améxTNnoe amfynom.

Yta téhn tou 2021, oo Fradet et al [9]. nopousiccav to Miditok, éva naxéto Python oyediouopévo yio va
petooynpatilel ) wouoixy yAdooo and opyelor MIDI oe axohoudiec cuyBormv. Aettovpydviag ©¢ epyahelo-
O1nn avoxtod x@dixa, To Miditok mapéyel otoug epeuvnTég Ui QLAY TEOC TO YEHOTN TEOCEYYIOTN YL T
petatponn apyeiwv MIDI ce token, evioppivoviag €tol T UEYUAUTERT, GUUUETOXT GTOV ToUéd TN dnuLovpyiag
pououic. H mhatpdpuo npocgépel Sldpopous cuufolomnointes xou Paocwwéc Aettoupyieg npoenelepyacios, 6mwe
aOEnon dedouévmv, cupforomoinomn cuvohou dedopévev xou Byte Pair Encoding.

H xwdwonolnon twv apyelwv MIDI eivon anopaitntn yio Ty npoetoyacio T6v dedouévny yio TNV exmaldeucn
TOVY LOVTEAWY UE TNV AVTLIETOTLOT TNG TEOXANCNE TOU UEYEAOU €000V TYLLY OV UTIEPYOUV OTLS LOUCIXES TTATRO-
goplec. Ta apyeio MIDI mepléyouv Bidgpopa YapaxtneloTixd, 6twe to Tovixd UPog xau 1 toyvTnTa, T omola
avamaplotavtar we cugfdvta vétag mou cupPaivouy oe cuyxexpléva ypovixd onuelo. Me v xwdixomolinon
QUTAV TWY TANROYORLAY, To cuveYT) xat Towtha yapaxtneiotixd urnoBaduilovtar xou xBavtilovton oe Soxpitéc
TWES, UELOVOVTAS TNY TOAUTAOXOTNTA X0 BEATIC TOTOLOVTAS TNV anddoon Tou Yovtéhou. Evd 1 umoderypato-
ndla v Ty g Ty vTnTag Bondd oty anoteAecuatixy CUANPN TWV ATOYEWCEWY TN BuVaULXTg, 1 BlaTheNo
Tou TMATPOUS €Upous Tou Térou elvor {oTNAC oNpaclac YLol TNV ETOEXY oVOmoedo TooT TS HOUoLXAC. Luvolxd,
1 oupPBoAixonoinoy emitpénel oto povtéha va pordatvouy potifo anotedeopatind, vo yevixebouv tAngo@opleg xou
VoL xGvouv TEoPBAEYEIC TO AMOTEAECUATIXG.

To Miditok yegupdvel To ydoua uetalld twv epyactoy Hopaywyhe wovoure xa e Eneepyaciag Kewwévou,
EMTEENOVTOG GTOUG EPELVNTES VL aElomoligouy ta I'Awaoixd Movtéla yia var avtamoxpidoly GTiC amotThoELS TeVY
EPYOOLWY cuVLPaoUéves Pe TNV pouotx. To Miditox anotelel cuvdetind xoufo petadd dedopévwy povotxic
X0l YAWOOIXOY HOVTEAWY Xou ot auTh TN Bitmhopotin. Tig anopoitnteg mAnpogoplec xan odnyieg yio T yeron
OAWV TV amapalTNWY EPYUAEIWY OVTAHOUUE OO T1) CUVEYWS CUVTINEOVUEVY XOU EVAUERWUEVY] TAATYOPUA TOU
Miditok, n omola avatpogpodoteitan xou Pedtudvetan cuveyde [9, 7).

Io i avdyxeg authc e teplhndng, Yo avapépouue pepés Baocxés Thnpopoplec yior Toug 800 TO YNOWOUS

AHOOXOTONTEC TOU Y ENOULOTIOLOOE.

Kwdwxonowntric REMI

5
P

&4

N

Y )
7

M

Figure 1.1.6: ®0M\o mapTitolpac ylo anexdvion tou cupBoronomt, dnee tapoucidleto oTo

O ouyPoronomtiic REMI, eworiydn pe tov Pop Music Transformer oto [14]. O REMI avoamopiotd tic poucixés
voTEC dladoyixd, petatpénovtag to dedouéva MIDI oe tokens Pitch, Velocity xouw Duration yia tig voteg xou oe
tokens Bar xou Position yia to ypdvo.

H extetopévn éxdoon REMIH+ uropel va yewplotel molhanAd dpyava npociétovtag Udpxec Program mewv and tig
udpxec Pitch. Ou minpogopicc puduol avanapictavton we éva wévo Tempo token. Koatd tnv anoxwdixomoinon
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Figure 1.1.7: Anewdvion tou cupyforomointy REMI

TOAMNATAGY axohoLIOY GUUBOANY, AToXwBXOTOLODVTAUL UWOVO oL puTol xou Ol YEOVIXEC UTOYRAPES TNG TEWTNG
axohoudiag v ohdxineo to MIDIL

Kwdiwxonowntric TSD

£V Uolid
2 1o
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0'T 1S9y
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€ ys-L
£V Uolid
02 1o
T€ Q@
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Figure 1.1.8: Anewdvion tou cupforonomnth REMI

Avupetwnilovroc tic ntpoxifioeig twv Note-Off cuuBoiwy xon tne duoxolag tng yeovixic avanapdotacng, o
ovuPohronowntic TSD, v Time Shift Duration tokenizer, avanopiotd to dedopéva MIDI yenowwonouwdsvtag pntd
oluBora didpxetac (duration tokens) yia tic ddpxeiee Twv votmy. ‘Onwe xou ot 300 nponyoluevol, unopel vo
oupnepthdPet oOpBola Program nptv and xdde pdpxa Pitch yio vo xadoploel minpogoplec opydvou, edv €xetl tnv
HUTEIAANAY pUduLom.

Kwdwxonoinon oe Lebyn
d = aa

(most recurrent subsequence)
aabaabaacaa dbdbded

H xwdwonoinong Ledyouc yenowonoolviar cuvidwe otny encéepyaoio QUOIXAC YAWMOCOS. EOXELTOL Yiol [Lol
eV ouunieong mou avtixahotd emavohouBavopevee axohoueg yopuxThEWY O €vol OWUA XEWEVOU UE
veodnuovpYNuéva GUPPBONA, ETLTEENOVTAS TNV XWOLXOTOMGY OTEVIWY AEEEWY XAl TNY XUTATUNOT &Y VOO TWY Y
cUVleTwy MEewv oe uo-he€lhoyixée Lovddec.

Yt oupPoluxr pououxr, N xwdonoinor Lebyoug evioylel tor Ae€hdyia cuuBoliopol Ue Ty ouadonoinomn twv
Boaowxdv cupPolopdy oe véa cOpfola, Ye anotéhecyo o cuunayelc avanapootdoets [8]. H xwdixonoinon xou
oupnieon TwV dpyelwy aUTOY BIEUXOADVEL TN Y1 YORT EXTALBEVUDT], EVIOYVOVTIC TNV AnODOCT] TV HOVTEAWY OF
ocLpPBoAxéc povotxéc epyaoieg BIEUXOAUVOVTAC TNV EXUAINCT AVATIEUOTAGEWY.

Eitvor onuovtixd vo eqopuoleton ue ocuvEnela o Oha Tt oOvoha BedoUEVKDY TIou ahANAETLBPOUY e éval ovTéo,
OCUUTERLAAUBAVOUE VWV TWV GUVOAWY eEXTodELGNE, ETXDPWONG Xt BOXWAC, Yiot Vo Blacpoliotel 1 BéATiot) and-
doan,.

1.1.5 Meédodol agiohdyiong

H Swdwooio afordynone oty mopaywyr pouoxic omotekel Wi ovvietn mpdxAnor, Sedouévne tng um-
oxeevixnig @OoNg e wouoxng avtidndng xal Twv TOAUTAEUpKY TTUYWY TNg Houoixnc towdtntag. Ilapd vy
OTAPE N AVTIXELUEVIXWY XAVOVKV Yot TNV avTloTiET, T abvieon xou T Lousoixy| evapudvion, o xadoplonde evoc av-
TIXEWEVIXOL ETUTEDOL Yl TN oUYXELoT Xou TNV o€loAGYNoT Tapapével YEua Blapwviag oTny EgEUVTIXT XOLVOTNTA,
oAAG xou €var evepyd e€etaldpevo axadnuoind nedio. H aflohdynon epyaoidv mopaywyis pouoixic tepthauBdvel
cLUVADWLE TOLOTINES AELONOYNOELS aXEOUOTC Xl TOCOTIXESG OVONDOELS.
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1.2, Iewdpotxd Mépoc

ITototixéc AZiorovyioelg

Eva elvon 80oxoho vo xardopiotody xadohd xpithplo Yot TNy aloAdYNoT) TNG TOLOTNTAG TNG UOUCLXNG, 1) olv-
Yedmvn aflohoynon TpocPépel YVOOES Tépa and amhéc mocoTixée petprioelc. 2Tn dadixaoio aflohdynong
CUPHETEYOUY oLVATWC eXTTALBELUEVOL Louool, CUVIETES, HOUCLXONGYOL XL GTOHA UE DLopOpETIXd entinedo ey-
TELPOYVWUOCUVTC.

Ou petpuég yior tny avipnmivn a€lohdynor ot epyacieg SNUoLEYIXC LOUGIXTE GLY VA TEpLAUUBAVOLY TNV HoLGLXT
0pdoTNTA, TN CUVEXTIXY TOLXAOUOEGId, TO EVOLAPEROV TOU LOUGLXO) TEQLEYOUEVOU XAl TT) GUVOALXY| UTIOXELLEVIXT
npotipnom. I'o v anodotixdtepn xa neptocdTepo xatevinuévn alloldyiom, ylveta SidonaoT Tne dtadixaciog oe
CUYXEXPWEVES EPWTNOELS TOU APOEOUY BLUPORETIXWY BIAOTACEWY TNE TOLOTNTOC TNE Hououxrc, TepthauSovouévou
TTUYOV OTWS 1) GLVOYN, 0 TAOUTOS xai 1) SLopELYuLoT).

ITocotixég A&LtohoyroeLg

ITopd v TOAUTAOXSTNTA TNG UETATPOTHE TCWY UTOXEWEVLXMY HOUGIXADY LBLOTHTWY OE AVTIXEWEVXES HETPNOELS, OL
TOGOTUXES AELOAOYHOELS TPOGPEPOUY TOMITIES TANEOPOPIEC GYETIXG UE TY) GUVOAXT| TOLOTNTA TNS TRy OUEVNG
pouoig.

Avutéc ol a€lohoynoelc euneplé oLV BLAPOPES PETEXES, CUUTERLAAUSBOVOUEVLY TWV GUVIRTACEWY OTWAELDY, TWV
GPOAUATOY CUUBONOUOD o GANWY PETEXADY, OTKC N ToEoovy) oTny (Blar xAigaxo xan 1) apUovIXY] CUVETELDL.
Yuyxpivovtog Tic e£680U¢ TOU UOVTENOL UE TIC TWES TOU TROTOTUTIOU, UTOPOUUE VO UETPHOOUUE TOGOTIXA TG
AmOXACELC 01 VoL AELONOYHOOUUE TNV LXAVOTNTA TOU UOVTENOU Vou MIUElTal TO Uog Xou TNV EXPROCT) TWYV TEWTO-
TUTIWY HOUGLXWY cLVIECEWY, xadde XL Vo TopdyeL NYNTXd EUYdEIoTO LoUoIXd Xeluevo.

ITpotewouevog Tpdnog AZtordyiong

Mo tic avdyxeg autic g BmAwUaTXig cpyaoiag, omo@aciouue Vo YeNOWLOTOLCOUUE Wdl TROCUQUOCUEVT
peTexr) a€LOAGYNONC, TEOXEWEVOU VoL VAT TOEOUUE (Lol UETELXY| TOU VAL ATOTUTIOVEL TOGO TNV OMOTEAECUOTIXOTN T
TNE exmaldeuong Tou LOVTEAOLU GO Xl TNV TEAXY) TOL anddooT]. X1y 0 pag elvor 1) EEAY WYY TOCOTIUOY UETEWY
mou Yo pog emTEEPOUY Vo aELONOYHOOUUE TNV ToLOTNTa TN eXTaiBevomg xou TN mpoenelepyaoiog, xadde xo Ta
TENXE AMOTENECUATO TOU HOVTEAOU.

Xenowponowdvrag v Bihiodnixn Muspy, e€dyouue amo tol mopay OUEVO ATOTEAEGHUATO Yol ToL opyLXd BedoUéva
TG TOPOXATE HETELXES:

o Evtpornia votac: Luyvotnta eHQAvVIoNg Uiog OUddoC YOTWY 01O Youoxd xeluevo
o Evtpornia cuyvotnroag: Luyvotnta el@dviong Was vOTag 6To Louoind elpevo
o Yuvéma xhipoxac: To yeyolitepo nocootd votmv ot heg Tic pelloveg xan eNdooveg xAloxes.

2uvBualoupE TIC TUPATEVL PETEIXES (OC TEOG TNV ELXAE(BLAL ATOCTACY TOUE GTOY ToEAUXATL TUTO:

distance = \/(or_ PCE — pr_ PCE)2 4 (or_PE —pr_PE)2 + (or_SC — pr_SC)2

1.2 Ileipapotind Meépog

1.2.1 30Ovolo Acdopévwyv

Xy napolod SLTAWUOTIXY, XAl VLol TNV EXTOUBEVOY) TOU HOVTEAOU TRy wYNE Hovoxic, o YenolLOTOlcOUUE
T0 6UVOLO BeBopéveV yopxmv cuvlécewy Tou Johann Sebastian Bach, xowvade yvewotéd we "JSB Chorales".

Auté 1o cUvolo dedouévwy anoteleiton and apuovixd mholotee yopwdiec Tou Mray, yeyovdc mou to xohotd
Wovixd YeU€NO YL TN LEAETY) CUCTNUATOY Tapay WYLXNS HOUOXAC AOYW TV TEQITAOXWY HEAWBLLY XL TNE XAUAL
xodoptopévne pouoxrc dounc Tou.

Ta yopixd tou Mroy anotehodyv nopddetypa Tne LoeoTtelog Tou otny appovio xou v avtioTiér, yenowebovtag
¢ avextiunta BbaxTixd epyolelor oty exmaldeuor g Yewplag g HovoxAc xou TEoopEépovTag Eva YOVIUO
€8O Yo TN UEAETY) TNG LOLOIXNC BOUNE Xl TV TEYVXWY GUVIESTC.
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Chapter 1. Extetapévn Ieplindn oto EXAnvixd

Me yioe cuAhoyH and 372 TeTEdAPWVES Yopndieg, xodeulo and T onoleg TEPLEYEL UEAWOIXES YEUUMES VLol PWVES
c0oTEAVO, GATO, TEVORO XU UTECO0, AUTO TO GUVORO BEBOUEVKY TaREYEL dpPovo UNXO VLo LOUCIXE. TELROUATA.

Topoxdtey meprypdgpovton tor Briuota mpoenelepyaoiog, CUUTEPLAAUBAVOUEVOL TOU XoJopIoHOD XaL TNG XOVOV-
wonolnong Tewv Bedouévev, Yio va SlaoQailoTel 1) cuVoYY xa 1 axpiBela TwY LOVOXDY BESOUEVLY, OTWS TERL-
YedpeToL AETTOUEROSC OTNV EMOUEVY) EVOTNTA.

1.2.2 Tlpoenelepyacio AcdoUEvmy

Eexwvroope encéepydlovtac to olvoro Bedouévey Twv yopodv JSB xou arnopovidvovtoe Tic 372 TeTpdpwves
Yopwdieg, and T 514 yopwdicc Tou cuvolou TwY dedouévwy. XN cuvéyela, yweloaue Tta 372 apyela MIDI
oe EeywploTd oUvola exnoidevongs, emxbpwong xat doxiune, diaogaiilovtag 6tL dev Yo undpEet Sloppor| TANEo-
QopLY xoTd T dladixacior exnaldeuong Tou LovTéAou.

Distribution of chorales based on voice count

400

350 A1

300 ~

250 1

200 1

150 ~

Count of MIDI Files

100 1

50 1

2 4 6 8
Mumber of Instruments

Figure 1.2.1: Katavou? twv yopuxwy tou Bach ye Bdon to mAfloc govay.

Yo emdueva Priwata tpoenegepyaotag, Yo dnuiovpyroouue "opyela-toudid" and to apyixd apyelo, xodévo and
To onola o mepiéyel évay ouyxexpluévo tumo epyaocioc. Tlpénel va Sioucparicouvue 6TL xavéva "apyelo-toud(" dev
daywpileton and to avtictoryo "yovéa" tou.

Yty mpocéyyion wog yio Ty npoetotacio apyelinv MIDI yia tny exnoldevon evog poviéhou xeylévou-ce-xelyevo
onwe o petaoynpatiotic Th, Eexwvioaue pe mpwtdtuma apyela MIDI nou mepieiyav tic téooepic SlopopeTinég
HOUCIXEC POVEC.

Y1oy0g pog NToy Vo GUYYWVEVGOUUE YELTOVIXA XOpudTior UE BAOT CUYXEXPUIEVES ATAUTHOELS TN EpYaoiog, UE
anotéheopa va tpoxtouy apyeia MIDI ye pévo 6o koppdtia mou var evvooly tny anoteAeopatikn) kwducoroinon
oe axohoudiec £166d0uL/eE6B0L.

T tov egoploloylopd tne dladixaociac ocupPohomoinone xa e LAomoinone epyaoidv 6mwe "IlpooVxn
avotepne apuovixig axoroudioc" xou "IlpocOnxn xatwdtepne opuovixic axoroudioc", Sourooue TN Uop@n
elo6dou-e€600u aneuleiog yéoo ota apyelor MIDI.

Auté nepiehduPBave ) dnuiovpyio 12 tponomoioewy Yo xdle povod apyeio, LOOUEPME XATAVEUNUEVLY PETAED
TV 000 EPYUOLAOY.
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(a) Original overview of a four-voice Bach chorale. (b) Modified file, with isolated soprano voice.

Figure 1.2.2: Ontixn avanopdotaot Twy Tpononolioewy 1ov uréotnooay to apyelor MIDI xatd tn didpxeia Tou
pépouc tne mpoeneepyaoiag Ty dedouévmwy Tou TEpLYpdPeTAUL oTNY evéTNTaT.2. 1.

Yuufolonoinon

MeTd Ti¢ TponYOVUUEVES TPOTOTIOOELS, TEOYWEAUE OTT| Bladixacio GUUBOAOTOINONE TEV TPOTOTONUEVKY oY ElWY
MIDI.

Xernotgonmoldvtag Toug cugfohomolntég xou Tig poutiveg g Biiotxne Miditok, mou teplypdpovton napandve,
METATEETOVPE ALTES TG LOUOLXES CUVUETELS Ot Bounuéves axoroudiec cuUBoOAmY.

Iot Tic avayxeg TwV dpYIXOY TELRUUATOY TNS WEAG Pag, Xdvoupe yerion Tou cupfBolononth TSD.

Ou napduetpol Tou cupforonomth opllouv Bidpopeg TTLYES TS Sadxaciog cuyPBoronoinong yia apyeio MIDI.
IepthauPdvouv mpodlaypapés dnwe To VPO Tou TdVou Tou Aopfdveton LToYN, TNy avdhuon tou puduod, Tov
aptdpd TV SeryUdTwY TayiTNTOC Xou TN oUUTERIANdT eV GUUBOAWY Yio TO YEULOWR, TNV apyY) XL TO TEAOG
e axoroudiac.

To Miditok moapéyel wor mowhion Topopétewy dlawdppuaong Tou cupBolomolnTy], oL omoleg ehéyyouv Tnv
EVOWUATOON LOUCXADY OTOLYEWY, 0TS ouYYopEdieg, TadoElC, TEUTO, YPOVIXES UTOYQRUQES, OAAAYES UOUCLXOV
opydvou (program) xou xdudeic tovewv. Optopévee and autée T mapopétpous, OTwe To eVpoc Tou TOVOU
X T 0TNTOC, AvaQEPOVTAL GTNY UTOBELYHOTOANlal TwV TANPOQPORLOY TOU TERLEYOVTOL OTA YEYOVOTA VOTWY,
EMTEETOVTAS TNV XATAYEAPY| TOoug and AMydTepa tokens.

O tokenizer umopel vo npocopuootel yia va yepileton apyeion MIDI moANamhédv @wvedv xon tpoc@épel emAoYES
Yoo TNV 0pYdvewon Twyv powyv token, eite wg evwaia por) eite wg Eeywplotég poéc Y xdde povh. Kdvouue
YEfon AUTOV TOU TAEOVEXTAUOTOC Yo Vol eEAYOUUE TN Lop®T| £L06B0L/eE680U Twy axoloudiwy ue tokenized mou
TEQLY PAPIHOY TEOTY OUUEVLG.

IMTpoYpata

I v emitoyovue Ty e€etdixevon e epyaoiog xatd T Sidpxeta g eEXTalBevang, ELoaydyoue 6TOV GUUBOAOTOL-
Nty 6Vo é€tpa cUpPola to onola Yo Aertoupyroouy cav mpodéuata: to teddepa "Add Upper" xou to npddeua
"Add Lower". Autd, wc olpfola, utodnhevouy TNy etadENoT TOV AVOTERKOY XUl TOV XUTOTEPWY UPUOVIXMOY
POV, aviiotolya. Auth n otpatnywr ntpocdixr, mou yenowonoteltar we deiktng, o omolog xadodnyel Tov
petaoynuotio T TH, BIEUXOADVOVTIC TNV XATAVONOY XAk TNY EXTENECT| TOU GTIC CUYXEXPWEVES EQYOOIES TapALY-
WYNHS HOUCIXNE TIOU TEPLYPAPOVTOL OTO TELPAUUATIXNG MG TAXLCLO.
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EnalZnon Acdopévwy

O oupPoronomntic cuveyilel ye éva Briua enavénong SeBoUévmy Yio TEQUTERE EUTAOUTIONS TOU GUVOAOU Oe-
dopéveyv. Auth n enadinon nepthauBdvel T YERoYWYNOoT TwV GUUBOAWY TOVOU, ToyOTNTAC Xol BIAEXELNS Yiot TNV
eloay WYY TUPUAAAY DV OTIC LOUGCIXEC oxohoutieg. Juyxexpluéva, 1 adENoT Tou TOVou epapldleTol e HETATOTLON,
TOU TOVOU XoTd 2 oxTdBec mMpog To v xou Tpog T xdtw. H adinom tne tayvtntac xou tne didpxelos e@op-
poleton pe petotémion 1 Swothuatoc 1 xadepio. Me T cuCTHATIXG TEOCUPUOYT AUTOY TWV TUEUUETEWY, O
oupfBolononTthc evioy Vel TNV Towthopoppia Tou GUVOAOL BEBOUEVLY, ETUTEENOVTAS OTO HOVTEAD va pordaivel xou
Vo YEVLXEVEL xahUTERA OE DLopOPETXE. LOUCIXE. TAaiCLaL.

Xenhon xwdixonoinone Ledyoug

Emnhéov, n yehon xwdwonoinone Lebyoue byte (BPE) evioylel nepautépw tny amodotixdtnta tne uedoddou
xwdixonoinong, eZacpahilovtac BélTiotes emddoels o€ OAN T @dor e exnaidevone xa tne dnuovpyias [8].

H xwdwonoinor Lebyouc byte npénet vo padeutel oto clvolo twv dedouévwv (cOvoha exnaideuone, enxdp-
wone xan doxyhc, avtiotorya). Autd Swogahiler T cuvEmEl xou TN CUVOYTH TNG Xwdxomoinone o dha Ta
oUVOAX BEBOPEVWY, BLEUXOADVOVTOS TNV OPOLOUOPPT] AVATUREC TUCT] TWY HOUGIXMDY AXOAOUTIOY YLol TO UOVTERO.
Anuiovpyolue éva véo, emauénuévo Ae€ihoYlo, to omolo anotekeiton and T¢ Mo cUYVES uoaxoloudiec.

Apyotepa, Ta obvola dedopévwy exmaldeuong, emxdpwong xou doxiung xwdlxonololvtal Ue To Véo Ae&ihdyio BPE
¥, €Tol, ouumECovTan ot PxEdTERO UEYETOC TTOU OVATUPLOTE ATOTEAECUATIXG TI TTANPOPORIEC TOU ANALTOUVTAL
YO TNV ATMOTEAECUATIXY EXTIOUBEUCT] TOU LOVTEAOU.

1.2.3 Ileipdpota
Emloyr Hopoapétpwy

Yo apytxd pog TELpdorTa BIEpELVACOPE TS EMNEEALOUY TO LOVTEROD OL ToEdUETEOL TOU peYEdoug Tou Aedihoyiou
e to omnofo yiveton N xwdixonoinon Levyoug xou T0GoaTd eyxaTdAelPng Tou poviélou. ‘Ocov apopd to uéyedog
TOU YOVTENOU, ETAEEAUE TIC TOPOPETPOUS TIOU YeNoLonooly oTig dnpooiedoels e BiBhoypagpiog (8]

Table 1.1: TTapduetpol yia Tar apyLxd TELRGUATA

Tokenizer Vocab Size Num Layers Num Attention Heads Dropout Rate

2500 0.2
TSD 5000 8 16 0.4
train/loss eval/loss

T5_2500_8_16_05 == T5_5000_8_16_05 T5_5000_8_16_04 T5_2500_8_16_04 T5_2500_8_16_05 — T5_5000_8_16_05 T5_5000_8_16_04 T5_2500_8_16_04

1602 - T5_5000_8_16_02

train/global_step train/global_step

20k 40k 60k 80k 100 20k 40k 60k 80k 100

Figure 1.2.3: Yuvoptioelg anwheldy Tov teotwy nelpoudtoy 1.1. Apyixd extelolue nelpduata Ue
TOPAUUETEPOUS TOU UOVTEAOL olupwva ue T BiBhoypapia [8]. Emiélaue éva apxetd yeydho edpoc Ty,
TEOXEWEVOU VoL BEEEUVIICOLUE TNV XATELVUVOTY) TEPUUTERW TELQOHATIONOV.
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H avdiuon twv anoteheoudtov, mou aneixovilovtar oto 1.2.3, anoxdhude a&ioonueintes tdoeg. To povtéha
TV eXTAUBENTINAY UE T0C00TO eyxatdheidng 0,2 napovciucay Tayela UNEPTPOGUPUOYY oTa BEBOPEVA Uog, UT-
odexviovTag avenopxt) xavovixoronon. Avtileta, ta poviéha pe mtocootéd daxonrg 0,5 napovsiacay onuddia
UTOTIPOGORUOYNC, UTodNAdVovTae unepPfolxy) xavovixonoinon. Kotd cuvénel, xadopicaye 6Tl t0 BéATioTto
1000016 eyxatdhewdmne Beloxeton yipw oto 0,4, emtuyydvovtog pia looppomia HETOEY UTEPTPOCUPUOYNS Xol
UTIOTPOGOPUOYNC.

Avagopid ye to péyedog tou hedhoyiov, ol mopatnerioeic €delay OTL Tal UOVTER Ye pixpdTepo uéyedog Aek-
hoyiou (2500) métuyov younidtepes Tés amwhewdv oe olyxplon pe exelva ue peyahitepo wéyedog (5000). To
(oUVOUEVO TS elvor BIXAOAOYNUEVD, xod®G Eva UEYARDTERO AeEIAOYLO GE €Vl OYETIXE ixed GUVOAD BEBOUEVLV
umopel vor 0dNYHoEL 0TV amdxELYPN TOAITYKY TANEOPOELKOY Tiow omd xwdonotoelg Leuywy. Koatd cuvéneia,
T0 YoVTENO umopel var BuoxoheleTtal Vo CUAAGPBEL amoTeEAEoHATIXG ToL UToXElUeva LoTBa TwV Sedopévwy.

Me 1t Yeperiwon tne nelpapotinic wag dladixactoc, teptopilouye topa To TESO TWV TMV TV TUPUUETOMY YLot
vo epPordivouye TERLoGOTERO OTNY €PELVE HaG. XE QUTYH T YAcT), 6ToYeVOLVUE Vo a€LOAOYHOOUUE TOV TEOTO
e Tov onolo To HovTENO cUAhaUBAVEL TANPOYOoplec UTO BLopopeTinés cuVINxeS, 0TIALOVTOSC OE GUYXEXPUIEVES
OLOLOPPWTELS TIOPOUETEWV.

INo Toug TaPAXETW TELPUUATIONOUE, EEEUVOUUE TNV ATODOCT] TV LOVTEAWY Yo TIC TUROUETEOUC TIOU AVAPELOVTAL
oto 1.2.

Table 1.2: ITepetalpw mewpopatiopol ye 0téy0 TNV £0peon BEATIOTOY ToUROUETEWY LOVTEAOU

Tokenizer Vocabulary Size Model Layers Model Attention Heads Dropout Rate

1500 8 12 0.3
2500 10 16 0.4

TSD

MeTadAAovTac aUTES TIC TUPUUETEOUE, EMBLWOXOUUE VO ATOXTHOOUUE YVWOELS OYETXE UE TO TS OLPORETIXES
OPYLTEXTOVIXES BLOopPOCEIC EMNEEGCOLY TNV amOB0GT TOU HOVTEAOU GTNV XOTOYPAUPY Xl XUTUVONCT TWV UT-
OXElUEVWY TEOTUTWY TKV DEBOUEVLV.

train/loss eval/loss
5 5_T5_1500_10_12_04_5e5_s 5_T5_1500_10_12_04_5e5_s

500 8 16 04 5e5 s 500 8 16 04 55 s

7_T5.1500_10_16_04 5e5 s - 7_T5_1500 10 16 04 5e5 s -

w

w

train/global_step train/global_step

10k 20k 30k 40k 50l 10k 20k 30k 40k 50l

Figure 1.2.4: KoumOAn anwieidv twv woviéAnv mtou exnoudebtnxay ue TSD cuyBolonomtd xou puéyedoc
Ae&hoylou = 1500. O undhoinee mopduetpol Teptypdpovtat oto 1.2

Metd Vv extéhect) TV TELROUATOV UE TIC Tpoavapepleioes TapaUéTEous, TOpUTNEOVUE OTL, OGOV aPopd TIC
ATWAELES, TOL HOVTENA PALVETOL VO XATOATYOUV GE TapdpoLa anoteréopata. To povtéha ye yoaunidtepo nococtd
eyxatdhewdne patveton vo mdvouv euxoldTER TIC TANPOPOpEies xau Tor potiBa otnyv emduunT €€0d0, eugpavilovtog
O AMOTOUES HOUUTVAES.

13



Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

trainfloss eval/loss
Ses_s — 15_T5_2500_1 5 1 s — 15_T5_2500_10
— 12_T5_2500_Li — 12_T5_2500_

w

train/global_step train/global_step

10k 20k 30k 40k 501 10k 20k 30k 40k 501

Figure 1.2.5: KaumOAn anmieldv Twv woviéAny mou exnoudebtnxoy pue TSD cuyBoionomtd xou puéyedog
re&uhoyiou = 2500. O unéloineg napduetpol teplypdpovToal 6To 1.2

IMopaywyn

IMo vo tepdooupe oTn BOXWY TV TOEUTEVE UOVTEAWY, ATOQUciooue Vo Topdyouue €000 amo TO HOVTENO
eapuolwvtoc Yeppoxposcio 6To TeAixd anotéheoyo. Lxondc e Yeppoxpacios elvor vo topdyeton TpdTaoT 0TV
€€000, N onola dev axoloudel tTnv cuvdptnor softmax, emhéyovtag to cOYfBoro e T yeyoldtepn mdavoTnTa
eugpdvionc.  Auty 1 mpoothun mopéyel peyahitepn suehi&lor xan dnuioveyoTnTa ot Swdixaciog mapaywyYhg
HOUGXAC, ETLTEETOVTAS GTO HOVTENO var eTude(&el YeyahbTepn SMuLoupYXOTNTA Xou Vo amo@UYEL Tov Bpoyo "mo
mdavo endpevo cbuBoro".

EgoapuéfovTag tTnv npoTtelvouevy wédodo agloAdynong

IMot Vo amOXTHCOUYE Lol GUVOALXY| ETULOXOTINGT] TNG AMABOCTE TWV HOVTIEAWY WO, Yol XeNOLLOTIOLICOVUE TN UETELXT
Tou oplotnre vopitepa oto 1.1.5.

Iot var avahbooupe 8le€odind 10 GUVORLXG ATOTEAEGUN CUYXPIVOVTOC TNV eVBUYRAUULOY TNG ELOAYOUEVNE PWVAC
HE TN Bedopévn Yehmdion xon agloAOYOVTOC CUYXEXPEVES TTUYES, 0TS 0 ThoUTOg, 1 ThHENoY TNS XAluaxag xou
1 auTOVoUN am6doaT. AuTY 1) BOUNUEVN TPOCEYYLOT ETUTEENEL TNV EVOEAEYY| EEETAOT TOGO TWV OMGTIXOY OGO
X0 TWV ETUEPOUS YORUXTNEIOTIXWY TNG TUPAYOUEVNE PLVIS.

Iot vo omtixonotiooude auTd Tor EupidorTa, dNuioupYoUue paBSoYpdupota Tou anetxovi{ouy TNV XATAVOUT| TeV
ANOOTACEWY amd T OelYUOTA TOU GUVOROL BoXtU®Y ToL TapdyovTar ond xdde wovtélo 1.2.6. AuthA 1 ntpocéyyion
emtpénel TNV 00NN cUYXELoT PETAED BlapopeTixmy wovtéhwy 1.2.7 1.2.8.

Onwe emPefoucdvetor xou ond T XOUTOAES OMWAELDY, ToL WOVTENX Telvouv Vo guyKkATvour xou mapouctdlouy
Tapouola amoteAéopata. 20Td00, oL dlapopés Yivovtal o eugavelc xatd TNV a€loAdYNoT TNS TOLOTNTS TN
TOEAYOUEVNC QWVAC O oUYXELoN UE TNV Soouévr. Xe autd, ol dopopéc elvon Mo €VTOVES, XJTL TOL elval
avaPEVOUEVO, xadtE TO TPMTO cLYXpEivel apyela Tou €xouv uéen xowvol mhatoiou (oL Bedouéves PwVEC).

Ouolwg, aflohoyovtog to anoTehéouata TS TEOcUETNS MAUPAYWYHS PWVAC, AUTH TN Popd e UeTaSaAAouevn
Yepuoxpaoia, TopatnEoLYE OTL oL UEoEC TWES TWV ATOCTACEWY deV 0AAGLOUY, Ol XUTAVOUES TWV AMOGTACEWY
€YOUV TEOUOL LOPPT| XL ETOUEVIS XATUATYOUUE OTo cupmépacua 6Tl 1 uetofoly tne Yeppoxpaciog xotd
T ddpxetla e TopaywYAc dev PETABEAAEL oNUaVTIXG TN GUVOAIXY| a&loAdYNoY. Autd UTOBNAGOVEL OTL, EVTOC
Tou EMAEYUEVOL €0poUC, 1) ToRdUETEOS TNE Vepuoxpaciac unopel vo €xel TERLOPLOPEVO AVTIXTUTIO GTNY TOLOTNTA
TWV TORAYOUEVLY QuvadY. To euphuatd poc delyvouv enlong ot wo tipn Yeppoxpaciag 0,2 napdyel otodepd
LXOLVOTIOLTIXG. AMOTEAEGUATAL
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1.2. Iepdyotind Mépog

Euclidean Distance of Predicted Metrics from Ground Truth Metrics: Complete Result Analysis (Temperature = 0.2)

Distances complete result
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Figure 1.2.6: X0yxpion TV XATUVOUOY OTOGTIONS UETOED TV HETPXWDY TOU PETERUNXAY OTLC OOy OUEVES
expogc xou TNe Baocixic odfdelog o 0AEXANEO TO PoLUCIKS XopudTL (APLeTEPE) Xou EWBXA OTY) TOEAYOUEVT] PLVY)

Distances complete result
TSD_T5_1500_8_12_03

(8e&1d).

Euclidean Distance of Predicted Metrics from Ground Truth Metrics: Complete Result Analysis (Temperature = 0.2)
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Figure 1.2.7: Avdivon 16 yovtélwy, ye yeron tou TSD tokenizer xat twv mopopétpwy ToL TEQLYEdPOVTAUL GTO
1.2: Kotavous| Tev UETPGOY anooTdoewy Uetadd Twy TopayoUevmy eE6dwy xau e Paoinhc ahfdelog, Tou
unohoyioTnxay 6To GOVOAO TWV HOUGIXMDY XOPUIATILV TOU GUVOAOL Boxiddy, pe pliulor tne depuoxpascioc 6To

0,2
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Chapter 1. Extetopévn Iepihndn ota EAAnvid

Distance of generated voice
TSD_T5_1500_8_12_03

Euclidean Distance: Ground Truth vs. Generated Voice Metrics Comparison (Temperature = 0.2)
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Figure 1.2.8: Analysis of 16 models using TSD tokenizer and parameters described on 1.2: Distribution of
metric distances between generated outputs and ground truth, calculated specifically on the generated voice
in the test set, with temperature settings ranging from 0.05 to 0.35.
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Effect of Temperature Variation on Metric Distance measured on Complete Result: Comparative Analysis (Range: 0.05 to 0.35)
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Figure 1.2.9: Avdhuon 16 povtéhwy ue ™ xerion TSD cuufBolomointy) xon nopauétewy Tou TEpLYpd@ovTal 0To

1.2: Koatovous| tev UETPXOY anocTdoewy YeTodl Twy Topoy OUEVKDY EEGBWY XoL TOU BOGUEVOU TOU

0,2.

unoloylotnxay 0To GOVOAO TV HOUCLXMY XOUUATIOY TOU GLUVOAOL Boxipdy, pe pbiuion tng Yeppoxpaciog oto
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Effect of Temperature Variation on Metric Distance measured on generated voice: Comparative Analysis (Range: 0.05 to 0.35)
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Figure 1.2.10: Avdluor 16 povtéhwy ye ) yerion TSD cuyfolonointy| xo napauétewy mou teplypdpovio
oto 1.2: Katavous| Tov HETpO)Y anooTtdoewy HeTad) TwV Tapay OUEVGLY eE60wV Xat Tou doouévou, Tou
unoloyloTnxay WX VLo TNV TURAYOUEVT] PwVT] 0To GOVOAO doxY, Ue puduioelc Yeppoxpaciog mou
xupaivovton and 0,05 éwg 0,35
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1.2, Iewdpotxd Mépoc

IMTepetaipw nelpapaticpor: REMI & Structured XuvpPolonomntés Adyw TwV UTOAOYIOTIXGDY TE-
PLOPLOUAY XAl TWV TEPLoplodY oTNV toyV g GPU, enexteivaye t0 nedio e@uproyc TwV TELRUUATWY UAS YLOL VO
OLEPEUVHCOUUE LOVTERA UE ALY OTEPES TOPAUETEOUS, UixpoTepd HeYEDN xou BlapopeTixolc tokenizers. TAonowwdvtag
TOAUGELT O TELRAUOTA, YENOULOTIOLooHE Eva LovTéNo Ue 4 oTpouata, 12 xeparéc Teocoyfc, T0c0oTH BlaXOTAS
0,3 xou didpopoug tokenizers, xadéva pe yéyedog he€hoyiou 1000.

Comparing evaluation metrics of two small models trained with REMI tokenizer and custom augmentation
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Figure 1.2.11: Muwpd povtého mou exnoudevovtol oe dedouéva Tou €xouy emonUelwlel ue Toug cuYfolonolnTég
REMI, Structured & TSD: Z0yxplon TV XATAVOUOY TV ATOCGTAGEWY PETOED TWV UETEIXWY TOU HETEWVTL
oI maparydpeveS £680uc xan e Baowxhc aldeloc o OAOUANEO TO HoVOIXS xopudTt (apLoTERE) Xou
CUYXEXPUEVEL GTNV TRy OUEVY Quv (de&Ld)

Iopatnerioope 6Tt 0 TSD xou o REMI @aiveton va Eemepvolv tov Structured dcov agopd Tic YETEIXES HaC.
Qotéo0o, yia va diegdyouue TElpdUaTa o ANEWOVILOUY ONOXANPOUEV TOL TAEOVEXTHUOTA Kol TOL UELOVEXTHUOTOL
Tou xoevoe, TEETEL vor ovahdBouue pia o eEovTAnTin Stadixacio telpapatiopol, emmAéoy, 1) Sac@dhion ot
oL mopoL pog elvan emapXelc Yo Vo YELPLOTOVUE QUTOV TOV BLEVPUUEVO TELRUUATIOUS E(VOL ETULTAXTIXY AVAYXT).
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.3 Xvunepdopata

Yuvolilovtag, N napolon SwateBr) aoyohfiinxe Ye TOV EUTAOUTIOUS TWY TOAPOVIXDY Y0pwdidY Tou Mnay uéow
evOg HovTélou Topaywyng povoixiic Baciopévou oe petacynuatiot Seq2Seq. H npocextiny npoeneepyastia, 7
onola teptAduPave tn cupBolatonoinot), Ty enadEnon SeSOUEVKLY Xl TNV TUTOTOINGT], UTOYEAUULCE TOV Xplotuo
EONO TOL YEPLOUOV TKV BedoUEveY ot auTtd To €pyo. O yetaoynuationds g cUPBoAXNC LOUCIXAS OE dladoyixt
pop®t avodelyinxe we évo duvnuxd Eeywptotd nedlo yerétne.

To nelpopatind pog to&idl Slepelvnoe BLEPope SLULOPPMOELS HOVTEAWY, UTOXUADTTOVTOS YVWOES OYETXE UE
TG EMUTTOOELS TWY TOROPETEWY GTNY anddoo, cuunepthopBovouévng e cUYXAIONC, TNS UTEPTEOCUPUOYNS ol
e moTéTNTAE TS PWVAC. Ol cUYXEITIXEC aVAAUCELS TIaRElYaY UTOYPMOELS TNG CUUTERLPORES TOU UOVTEAOU,
dieuxpwvilovtag Tic avtiotaduioeg xan Tic BérTioteg Sopopphoels. Ilpocoyn 86Unxe otny e€étaon twv cuyfo-
AXDV LOVGIUDY AVOTOROC TAOEWY Kol TWY TEXVIXWY 0LOAGYNONG, CUUTERLAUUBOVOUEVKDY TAULGIWY Yla TOCOTIXN
xot ToloT aloAGY oM.

Ipotelvaye pa xouvotéuo npocéyyion aflohdynorne nou evduypoupileton pe Ty avdpmnivn avtiindy, plyvovtag
QWS OTLC SLOPORES TWV HOVTEAWY %ol avadevUovTac TN onuocia tng emhoyic tng Yeppoxposiog.

Yuvohixd, 1 mopoloo Ster) ouufdiiel oty mpowdnon Tng mopaywyhc povoixnc ue Bdon Ty teXVnT
VONHOGUVY], aVABEXVIOVTOC TLC BUVOTOTNTES YLO UETUOYNUATIOTIXY xouvoTouid OE aUTOV TOV BIETLO TNUOVIXO
Topéd.

1.4 Xuvlntnon

H nopoloo épguva mopouctdlel TONITIUES YVOOELS OYETXE PE TNV TOEAYWYYH UOUCIXAC oL TO HOVTENX TOU
Baoilovtal oe YeTaoyNUaTioTéS, avolyovTtag 1o Spdpo yior eAhovTXT| e€epedivnon Xou xoLvoTouia.

Ipoywedvtag, oxoneloLUE Vo AELOTIOLCOUUE TG TEYVIXES TEOEXTAUOEVCTC UE UAoXA Yot Vol BEATUOCOUUE TNV
anédooT XoL TNV TEOCUPUOCTIXOTNTH Tou Yoviédou. Emmiéov, oxonelouue va Siepeuviicouvde mpdodetes ap-
YITEXTOVIXEC TOROANAYEC Xl VoL ETEXTEIVOUUE TNV €PEUVE UAC OE BLAPOPOUE HOUOLXOUS TOUELC.

Emuniéov, n uelhovtixn pog Souvletd Yo emixevipwiel 6Tny avantuén g Tpocaproouévng GUVERTNONG AMWAELDY
mou Vo evnuepndvetol and Tig uedodoug a€LOAGYNCNE TOU TERLYPAPOVTOL OE TROTYOUHUEVES UEAETES, UE GTOYO TN
Behtiwon e npooxdAhnong tou woviéhou otig appovixéc apyéc. H evowudtwon egopuoyody etednynuatxdtr-
tag o epBardivel Ty xatavdneon tng dadixactiog AN ano@doenmy Tou LOVTEAOU, ETUTEENOVTOC TOV ELRUUATIONS
pe avTinopadeTinée ETEENYHOELS XoUu TNV TPy WY UTH GpouC.

H diepebvnon dlapopetinwy Uetddwv xou povtéhwy ouuBoixonolinong, cuUTERLAAUSBOVOUEVWY TWY HPEYIAWY
YAWOOIXWY UOVTEA®Y X0l TWV VEUPOVIXMY dIXTiwY Yedpwy, Yo tpoopépel euxatples yia T Bedtiwon tne ouy-
Bohuic avanopdotaong xou ene€epyacioc e wovowxrc. H xatavénon tov mepimhoxdv e Swadixactiog cupBo-
Axonoinong Vo emitpéder Ty 1pbodo T600 GTIC GUUPOMXEC GO0 %o GTLC MYNTIXES AVATHPOC THOELS LOVCIXNG,
TPoVWVTOC BETLO TNUOVIXES CuVERYasies aTn dnutovpyia xaw obvieor povotxic.

Téhog, oxomebouye va Slepeuviicouue Towtheg pedodoug aglohoynong Yl TNV OAOXANPOUEVT aflohoynon Tne
TOLOTNTAG, TNS CUVOYAC X0 TNG EXPEACTIXOTNTAS TWV TORAYOUEVWY UOUCIXADY OTOTEAEGUATWY, TEowI)VToC
TEMXE TLC BUVATOTNTEG TWV CUCTNUATWY TAPAYWYNS LoUoIXAC YE Bdomn TNV teyvnTy| vonuooivy.
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Chapter 2

Introduction

The realm of music generation has long been a captivating domain, blending the intricacies of artistry and
technology to create harmonious compositions that resonate with audiences on emotional, intellectual, and
aesthetic levels. Within this landscape, the pursuit of polyphonic music generation stands as a pinnacle
aspiration, seeking to craft musical pieces that not only possess pleasant harmonic qualities but also harbor
a complexity that stimulates the listener across multiple dimensions.

We draw inspiration from the advancements in Natural Language Processing (NLP), particularly in the
domain of language generation tasks, we propose a novel approach to polyphonic music generation.

At the heart of our methodology lies a Seq2Seq generation framework, crafted to enrich musical compositions
byintegrating additional voices into the given melody. By extending the traditional Seq2Seq paradigm to the
domain of music, we aim to embed compositions with layers of complexity and depth, elevating the listening
experience for both creators and audiences alike.

Central to our approach is the transformation of symbolic music, typically stored in MIDI files, into a
sequential format suitable for transformer models. Here, we employ modern encoding tools, as introduced
in prior research [9], which include techniques such as byte pair encoding and data augmentation. By
incorporating these techniques to music information, we expect to unlock new avenues of expression and
innovation, as seen in the field of Natural Language Processing.

While objectively evaluating musical compositions remains an ongoing challenge, our research takes strides
towards bridging the gap between quantitative assessments and human perception. Through a novel eval-
uation framework that implements quantitative metrics with qualitative criteria, we offer a comprehensive
understanding of the compositional quality and aesthetic appeal of our generated music.

In the subsequent sections of this paper:

o We will firstly provide all the background needed in basic Machine Learning algorithms and concepts
as well as transformer models. After doing so, we will provide a thorough description of crucial music
concepts in order to explain our train of thought, regarding the specification of the concept.

e We will break down the appropriate tools that bridge symbolic music representations with transformer
models, allowing us to approach music generation tasks through the prism of natural language process-
ing, use state-of-the-art tools and add our own vision to the trajectory of the abilities of the field of
generative music. We explore a creative task for polyphonic music enrichment with the use of a TH
transformer, in order to test the limits of machine understanding and creativeness in terms of musical
context.

e After developing and testing our model, explore certain aspects of each evaluation category, discuss the
evaluation process in detail, and propose a composite metric utilizing metrics from the MusPy library

21



Chapter 2. Introduction

22



Chapter 3

Machine Learning

For centuries, building a machine that is capable of replicating human reasoning and perception has been an
aspiration of humanity. Artificial intelligence has been envisioned throughout history by multiple civilizations.
In the rapid technological evolution of the 20th century, scientists seek to comprehend the mechanism of
human recognition systems, interpret it with mathematical principles and translate it into logical sequences.
[20]. Thus the field of Machine Learning came into existence.

Machine learning revolves around the concept of creating computational systems that can learn and un-
derstand the world. It’s a field of study within artificial intelligence that utilizes probabilities, statistics,
differential equations in order to create models that are capable of completing certain tasks. These tasks
include decision making, predicting, labeling, generating, optimizing and more. In simpler terms, a machine
learning model is "trained" on data, aiming to identify patterns and relationships within the input and ex-
tract the mathematical curves that define them - both in an overview and in detail. The ultimate goal is to
improve the model’s performance in time, by adjusting its parameters with each epoch of training, similar to
a human person learning from experience.

Throughout the years, the field has evolved from originally aiming to solve mathematically demanding pro-
cesses, instead of humans, to now aspiring to acquire human perception and mimic human reasoning processes.
Machine Learning has evolved to a versatile tool that can be applied across numerous scientific domains, ser-
vices and individual daily life. The early 21st century has been a time of revolution, as research is being
incorporated in a large number of applications, such as image classification, recommendation systems, opti-
mization algorithms, natural language processing and more.
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Chapter 3. Machine Learning

3.1 Learning Categories

In order to provide a clearer understanding of the diverse methods and applications of machine learning
research, we will analyze the three fundamental categories of algorithms in this field. In the following section,
we will examine the concepts of supervised, unsupervised and reinforcement learning.

Supervised Learning

Supervised Learning in machine learning involves developing knowledge about the data by understanding the
relationship between input and corresponding output. The training data, real or synthetic, are presented as a
set of paired samples, also referred to as labelled data. The objective of a supervised model is to construct an
artificial system capable of mapping the connections between input and output, to estimate the mathematical
curves that describe them, enabling the model to make accurate and well-informed decisions.

Supervised learning can be categorized into regression, which involves tasks with continuous output needs like
forecasting, and classification, that includes tasks where data points are assigned to predefined classes, such
as sentiment analysis or image classification. However, it should be noted that the above distinction is not
always straightforward, as supervised learning includes a diverse range of tasks, that cannot be fit into two
categories, Sequence-to-sequence tasks, multi-label classification, task that reach to the extend of complex
real-world scenarios are considered supervised tasks, without be distinct in the above mentioned categories.

Unsupervised Learning

Opposing supervised learning, unsupervised learning is the type of learning that operates with unlabeled
data. In this case, the learning algorithm utilizes the probability distribution of the data points in order to
discover relationships, patterns and structures within the dataset, with minimal human interaction. Two of
the most popular methods used in supervised learning are principal component analysis for dimensionality
reduction and clustering. Anomaly detection, self-organizing maps and word embeddings represent some of
the tasks the field engages in.

Reinforcement Learning

Reinforcement Learning is the area of machine learning that is concerned with optimal control in dynamic
systems. Within this type of learning, an agent interacts with an environment to take sequential decisions,
getting feedback in form of rewards and penalties, in order to optimize its actions and maximize the reward.
During training, the agent develops adaptive strategies, applicable in scenarios where dynamic decision
making and adaptability is required. Thus, this type of learning is optimal for game playing, autonomous
robotics and recommendation systems tasks.

Later in this thesis we will be diving deeper in the fields of supervised and unsupervised learning, focusing
on Natural Language Processing tasks and examining in detail how and which techniques are utilized in the
state of the art technologies in this field.

3.2 Training a Machine Learning Model

This section is dedicated to explain the fundamental aspects of constructing and training a neural network.
In the following pages we will go into detail on the architecture and the parameters of a machine learning
model, on the requirements of data the model is trained on as well as the basic concepts of the training and
learning process.

3.2.1 Architecture of a Neural Network

A neural network consists of interconnected layers of artificial neurons, including an input layer, one or more
hidden layers, and an output layer. Each neuron applies an activation function to the weighted sum of
its inputs, producing an output signal. The connections between neurons have associated weights that are
adjusted during the training process to optimize the network’s performance. This layered structure and the
adaptive nature of the connections enable the neural network to process complex information.
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3.2. Training a Machine Learning Model

The architecture of a neural network is inspired by the biological neural networks in the human brain, aiming
to replicate its information processing, learning, and adaptation capabilities. During training, the weights of
the connections between neurons are adjusted in order to optimize the network’s performance on a specific
task, just like the connections in the human brain are strengthened or weakened based on experience and
learning. [22]

In supervised learning the goal is to minimize the difference between the desired and the predicted output,
while in unsupervised learning, it is to identify patterns withing the data without explicit guidance.
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Figure 3.2.1

3.2.2 The role of the architecture of a model

The architecture of a neural network is a key factor to the model’s ability to extract information from the
data. According to the task, the nature and volume of the available data, and the available computational
resources, it is crucial to select a suitable model architecture, considering specific parameters, in order to
achieve optimal training cost and performance. This subsection explains how the number of nodes, layers
and connections influences the training process of a neural network.

Nodes: this term refers to the number of neurons on a neural network. This number is correlated to the
model’s complexity: The greater the number of neurons, the greater the model’s capacity to retrieve complex
information from the input data. However, an excessive number of nodes might not lead to optimal training,
as it might lead to overfitting, and also increase the computational cost of the model, both in training and
inference.

Layers: The number of layers of a neural network represents the ability of the model to capture hierarchical
representations and abstract features. Typically, a neural network has an input layer, one or more hidden
layers and an output layer. Shallow networks, e.g. a single layer feedforward NN in Figure 1.2.1b are effective
for simple tasks, such as regression. By adding more hidden layers in a neural network, the model will have
the tability to represent increasingly complex features. The domain focused on complex models
trained on diverse data, requiring networks with many layers, is known as Deep Learning. Although, like
in the case of adding more nodes, adding more layers to a neural network can provide the model with more
capacity to memorize the training data, thus lead to an overfit model.

Connections: The number of connections between the nodes of layers of a neural network are correlated
with the networks learning capacity. The weights of the connections in a neural network determine the
emphasis put on different features or details on the training data, influencing the model output. The weights
are adjusted during the training process. Too many connections in a neural network may lead the model to
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memorize the input data or get biased on specific patterns, thus, regularization techniques, such as dropout
or weight decay, are employed, in order to avoid relying on specific connections and to create a model that
generalizes well.

The concept of an overfit and underfit model will be discussed in detail later, in section *****

3.2.3 Loss Functions, Backpropagation and Activation Functions

In addition to the architectural and topological parameters mentioned in the previous subsection, the learning
and expression path of the neural network output is controlled by the loss and activation functions. To be
able to explain the operation of these, let us focus on Figure 1.2.1, which shows a shallow neural network.

The loss function is responsible to guide the learning process [25]. It calculates the difference between
the model’s prediction and the desired outcome. During training, the goal is to make the predictions as close
to the actual values as possible.

This is done through backpropagation, an optimizing algorithm that calculates the gradient of the loss
with respect to the parameters and minimizes the loss function by adjusting the weights of the neural
network.

Neural models undergo multiple iterative rounds of training, known as epochs, continuing until the loss
function reaches a minimum, or the model reaches the maximum predefined number of iterations.

It is important to select the appropriate loss function and evaluation metrics in relation to the task and the
characteristics of the available dataset.

Mean Squared Error(MSE) and its variations are often suitable for regression and estimation tasks, due
to their simplicity and interpretability.

ysp = ZimJz))”

(3.2.1)

Some commonly used variations are Root Mean Squared Error (RMSE), Max-Error , Mean Average Error
(MAE).

Binary Cross Entropy Loss, measures the difference between the predicted probability distribution and
the actual probability distribution, making them suitable for optimizing classification models. The predicted
probability is represented by a vector of predicted probabilities for each class, where the predicted probability
of the true class is denoted by p(y=1/z) and the predicted probability of the other class is denoted by p(y=0/z).

BCE = L(y,p) = —(ylog(p) + (1 — y)log(1 — p)) (322)

Despite being easy to compute, differentiable and providing a probabilistic interpretation of the model’s
output, Binary Cross Entropy Loss is sensitive to class imbalances. Some robust alternatives for situations
that involve an imbalanced dataset are also weighted binary cross entropy loss functions.

Beyond the loss function, evaluation metrics are an index of the model’s performance in classification
tasks. These metrics are based on calculations on the correct and incorrect predictions of a model. The
following confusion matrix contains the parameters considering a binary classification problem.

Table 3.1: Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)
Actual Negative  False Positive (FP) True Negative (TN)

Where:

e True positives(TP): the number of samples correctly classified as given label.
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3.2. Training a Machine Learning Model

e True Negatives(TN): the number of samples correctly classified as not given label.
e False positives (FP): the number of samples incorrectly classified as given label.
e False negatives (FN): the number of samples incorrectly classified as not given label.

Using the above values we can calculate the performance labels, such as accuracy, precision, recall and
F1-score.

Accuracy is the ratio of correctly classified samples to the total number of samples.

Number of Correctly Classified Samples

Accuracy = (3.2.3)

Number of Total Samples

Using the classified samples categories in the confusion matrix above, accuracy is mathematically described

as:
TP+TN

TP+TN+FP+FN

Accuracy =

(3.2.4)

As simple and intuitive metric as it is, it can be misleading when used on imbalanced datasets, as it favors the
majority class, and it would be an ineffective index of the model’s performance in recognizing the minority
class.

Precision is a metric used to measure the positive samples that are correctly predicted from the total
predicted samples in a positive class and is mathematically defined as:

.y TP
Precision = TP+ FP (3.2.5)

Recall, or True Positive Rate, is the ratio of true positive classifications out of the total number of positive

samples. Mathematically,

TP
Recall = m (326)

What is observed in the above equations and 3.1 is that Precision involves the expected positive samples
(TP and FP), and outputs the ratio of successful positive classifications out of the expected positive samples.
Optimizing the precision value translates as minimizing the model’s false alarms.

Recall, on the other hand, involves TP and FN values and focuses on how many of the samples that the
model classified as positive, were actually positive. A higher recall value indicates the model’s ability to
capture relevant instances.

Generally, metrics emphasizing on True Positive and False Positive values without considering the Negatives
may produce high scores that can be misleading for tasks where the minority classes are significant [18§].

This suggests that the inverse relationship between the two metrics, also discussed as the precision-recall
trade-off, makes them evaluate different aspects of the model’s performance. Maximizing both metrics is
only sometimes possible, therefore, the optimal solution would be to maintain a balance between them.

F1-score, is a combined metric that represents the harmonic mean between recall and precision values.

Fl— 94 precision x recall

3.2.7
precision + recall ( )
F1-score considers both the ability to correctly identify positive examples (precision) and the ability of the
model to identify all the positive examples (recall), making it a robust and safe metric for model evaluation
and optimization.

The final stage before a network produces an output involves the Activation Function. This function
determines the result on the output of a neuron, taking the samples from the training dataset,
mapping the input data to the corresponding labels.
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Among the most essential characteristics of an activation function are non-linearity, differentiability and
boundedness. A non-linear activation function gives the model the ability to approximate any complex pat-
tern within the data, while differentiability plays a crucial role in backpropagation, as it is required to the
calculations of the gradients. A linear activation function has a constant gradient, making the backpropaga-
tion process impossible, as the weighted sum would remain unchanged.

Depending on the range of an activation function, different results are achieved in training. Bounded func-
tions, like tanh and sigmoid function (3.2.2 ) prevent extreme output values, providing numerical stability
to the system. However, when these functions take values close to their boundary values, the gradient is
minimized and vanishes during backpropagation (vanishing gradient problem).

The vanishing gradient is a significant challenge in deep learning algorithms as it slows down and sabotages
the training process, as the weights are updated minimally. Thus, function that avoid saturation are desired
in complex tasks. ReLU 3.2.3 is a widely used activation function that is non-linear, differentiable, has an
unlimited range of values in the positive plane and avoids some of the saturation and vanishing gradient
issues. However, for input values below zero, the ReLU function undergoes very has a small gradient, which,
in backpropagation, can also lead to "dead nodes", that will remain in the network but contribute little to
training.

Linear a(z) = ax + 3 Sigmoid a(zr) = Tanh a(z) = 5=
/ ,f

Figure 3.2.2: Examples of activation functions.
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Figure 3.2.3: ReLU activation function and variants.

The role of the activation function is crucial and it should be chosen depending on the nature of the task.
While there is no fixed rule on selecting, the scientific community has arrived at some preferences, giving
some guidelines [23]:

e ReLU is a widely used function that performs well in many contexts. Nevertheless it is only to be used
in the hidden layers of a neural network.

e In case there are "dead" nodes in the network , it’s preferred to use leaky ReLU.
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3.2. Training a Machine Learning Model

e Considering the vanishing gradient problem, the use of sigmoid and tanh function needs to be consid-
ered carefully. The functions are frequently applied in classification problems, image classification but
avoided in Deep Networks.

3.2.4 Opverfitting and hyperparameter fine-tuning

The main objective of a machine learning algorithm is to retrieve useful information and recognize patterns
from data on the training set and make decisions on the test set. The ability of a model to perform well on
data that it has not encountered on the training phase is called generalization. An indicator that a model
generalizes well is a low value in loss function and error rate or high values evaluation metrics. The inability
of a model to generalize is commonly associated with overfitting or underfitting.

Overfitting and Underfitting

Overfitting occurs when the model memorizes the details (noise) of the samples during training, resulting into
making decisions on false criteria later on unseen data. An indicator of overfitting is substantial differences
between training loss and test loss values, considering that the training loss is already low. Underfitting on
the other hand occurs when the model lacks complexity in order to retrieve and learn information on the
data, resulting in high training error.

The key to effectively training and constructing a model lies in striking the balance between overfitting and
underfitting — achieving a favorable tradeoff between training error and test error. The paragraphs below are
dedicated in discussing the factors that influence the training process and how we can handle them in order
to ensure the model’s optimal performance.

Architecture

Firstly, as discussed thoroughly in 3.2.2, the architecture and capacity of a model are of great significance
when it comes to generalization. The number of nodes, layers and connections and how they influence the
model’s training process, a more complex model is prone to memorizing the data, thus overfitting while a
simpler model may underperform.

Hyperparameter tuning

Following the architecture of the model, comes the hyperparameter tuning process. Hyperparameters are
external configuration variables that manage the machine learning model training. Due to the rapid evolution
of the field, the tasks machine learning is called upon to solve are becoming more and more complex, and
the need to control the training process results in an escalating number of hyperparameters. Here, we will
mention some of the most important and how we can handle them optimally.

Learning Rate (LR): a positive scalar that determines the step size during optimization process of a model
[11]. In many cases, the learning rate is not a fixed constant but is varied and scheduled to be adjusted
dynamically during the learning process in response to the model’s performance. These adjustments are
carried out by an optimizer, such as Gradient Descent(GD, SGD) or Adaptive Learning Rate (ADAM).

Batch Size: refers to the number of training examples utilized in one iteration during model training.
Choosing the appropriate batch size involves considering the model architecture, dataset characteristics and
also computational resources. In general, a larger batch size provides a smoother gradient, although it requires
more memory and could potentially lead to the model overfitting. Smaller batch sizes introduce more noise
to the training process, aiding as a regularizer to the training, although excessively small batches prevent the
model from generalizing well and might influence the training duration.

These two parameters receive much focus during fine-tuning processes, as they significantly influence the
speed at which the model converges.
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Regularization techniques

In contrast to controlling the complexity of the model beforehand, through model parameters, architecture
and functions of the model, we can also use reguralization to reduce overfitting [32]. Regularization methods
reduce the complexity of the model during training.

L1 and L2 Regularization techniques penalize larger complex models by adding an extra term A in the
loss function. The general mathematical expression term is:

cost = loss function + regularizationterm (3.2.8)

This technique reduces larger weights and prevents some connections from becoming dominant. The A
term, which is included in the regularizationterm above, can oversimplify the structure of a deep learning
model when receiving very large values, whereas extremely small values makes the regularization inefficient.
L1 Regularization, also called Lasso Regression, penalizes the sum of absolute value of weights, while L2
Regularization, or Ridge Regression, penalizes the sum of square weights. L2 is more commonly used due to
its computational efficiency.

.:z" “-\.:I \'_Ff : [_; -\; _;g—-\. g ;
N égﬁafﬁfxx ~7\ /M

1\ 2o /f N\ NS S / .S
\ / Y i
'f- -\-\‘" H:'- H { f‘f’- K f/’lh—&# |r-f \«"A‘f\\ .l..llr i . \' //."' s \\
HX’ $. 7&4-a*x PRV ET 74T I T
ﬂ\ "'.__."' LAY \ . '| W P Fa \:l | |
A . AN S A —
i '\)\l‘, iﬂ-\_ g \_.l\_.-.._ T LAY . /*’"
('} ¢ %2{ ¢ ’Xf‘w ST AR TRAYEY.
M f“w:/ ;*«"’\4 v il A e P
,r/ - o \‘\ f A Y LN\ Y e S
. P s ) !
~ Dl e
[ b f—
L _/ H"\—\_.f' L A p—
(a) Standard Neural Network (b) Simplified Network after applying dropout

Figure 3.2.4: Comparison of a neural network before and after dropout is applied

Adding to the above, dropout and data augmentation are also commonly used regularization techniques.

Dropout is a technique that deactivates nodes of the network randomly during training, making the network
less sensitive to specific weights. The result is a simplified network that is less prone to overfitting ??. The
dropout probability for each weight updated step is suggested to be around 20% - 50% .

Data augmentation is a method that creates fake data by applying random transformations to the training
dataset to equalize imbalances, add data variations and, thus, avoid overfitting. It is a straightforward
reguralization technique, widely used in image classification, NLP and generative tasks.

Among the above-written and other reguralization techniques, for the needs of this thesis we will be exper-
imenting with dropout rate, data augmentation, weight decay and early stopping, and will be discussed in
depth in the later chapters.

3.3 Natural Language Processing

The recent technological revolution and rapid development of machine learning has laid the foundations for
integration with other scientific fields. Natural Language Processing (NLP) is an interdisciplinary subfield of
computer science and linguistics [3]. It is the field of machine learning that revolves around the represent-
ing, understanding and generating human language through computational algorithms, using rule-based or
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Figure 3.3.1: Standard RNN and Unfolded Version [6]

probabilistic models. The field includes language representations, speech, syntax, semantics of words and ex-
pressions in order to interpret and manipulate natural language data in order to use it in various algorithms,
tools, and methods.

3.3.1 Brief Course of Evolution

The field emerged in the late 1940s with Machine Translation as its main field of activity, however, it was later
established as Natural Language Processing as the scope of application became broader [16]. For the later
part of the 20th century, the field was relatively inactive. That was until the introduction the feed-forward
Neural network, a probabilistic language model, in 2001 [2]. The feed-forward NN uses a lookup table of
n previous words in a sequence to predict the next one. Later, multitask learning for language processing
was proposed, with a multitask model that assigned grammatical categories and classified named entities.
This model was the middle step that lead to the introduction of word embedding, a process that addressed
representing text as dense vectors in a continuous vector space. This representation encapsulates semantic
information about words and their contextual relationships in a compact and meaningful manner. Later a
general framework for sequence-to-sequence word mapping was proposed, using encoder-decoder architecture.

3.3.2 Recurrent Neural Networks

Neural networks in the field of NLP were discussed a lot at the beginning of the 21st century. In 2013,
Recurrent Neural Networks were introduced to the field for language modeling, and very quickly became a
popular choice for modeling long text sequences.

Recurrent Neural Networks [21], [6], as the name states, use feedback loops and go through the training
data in recurrent cycles during training. RNNs fall into the class of supervised machine learning models and
require a training dataset of input-target pairs.

A simple RNN consists of an input layer (), a recurrent hidden layer h(Y) and an output layer o), as seen
in 3.3.1. The input layer has N input units, that process the data sequentially, one element at a time. The
input units are connected through weights to the hidden units in the hidden layer, where the weights are
mapped in a weight matrix U. The hidden layer has M hidden units, that share their parameters through
recurrent connections. This helps the network share information across different elements in the sequence.
When initializing the hidden units we use small non-zero elements in a bias vector b;. As the training
proceeds, the information flows through a feedback loop recurrently in the hidden layer. At each step, the
hidden state h(*) is updated based on the input z* and the previous hidden states h(*~1). Thus, at each time
step, h(!) contains information from data of past time steps, giving the network the ability to "remember".
Mathematically the training process can be summed up in the following equations:

where by and be are bias vectors, ¢ is an activation function and U, V and W are the weighting matrices of
the input-to-hidden connection, hidden-to-output connection, and hidden-to-hidden connection, respectively.

3.3.3 LSTMs and GRUs

Despite their novelty, standard RNNs face the challenge of vanishing gradient during training. Long-Short
Memory Models (LSTM), a modified version of RNNs, address this challenge by replacing a hidden layer of
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Figure 3.3.2: RNN mathematical equations as given in [6]

a® =b + WAt 4 gz®
Y = o(a®)
o™ = by + VR

the Standard RNN with a memory cell to store and output information. The flow of information in the cells is
controlled by a set of "gates", that, depending on the previous inputs and state of the cell, allow the network
to selectively store or forget data. LSTMs became very prominent in the field, as they retain important
information for a much longer time and disregard the less important information. Further improvements
constructed the Gated Recurrent Unit (GRU), a simpler version of the LSTMs that replaces the set of gates
with a single "update gate" [13].

3.4 Transformers

Further development on Machine Translation systems lead to the enhancement of Attention Mechanism in
encoder-decoder systems. This turned out to be a significant advancement to the field, with a great focus on
sequence to sequence models. Attention, together with Transformer models, is currently the state of the art
in language processing tasks, with Large Language Models dominating the research field.

3.4.1 Attention Mechanism

The concept of attention was first introduced to encoder-decoder models for machine translation in 2014 by
Bahdanau et al [1].

To explain how the attention mechanism operates, we will firstly refer to the example of additive attention
in Machine Translation and Alignment, such as the RNNsearch model uses in [1].

The model follows an encoder-decoder type of architecture, with main objective to translate an input sentence
z to an output sentence y.

The encoder is a BIRNN. For every term z; of the input x, the encoder computes an annotation term h; such
as:
(hth,...,hT) == BiRNN(Il,.Ig,...,I’T). (341)

The decoder consist of an attention function and an RNN. At each time step ¢, the RNN is characterized
by a hidden state s;. The attention mechanism produces an embedding c; called context vector using the
input’s annotation term 3.4.1.

The context vector ¢; is derived in the following steps. The attention function takes as input the previous
hidden state of the decoder RNN, s;_; and the annotations h; described in 3.4.1, thus computing an alignment
model:

€ij = f(si-1, hj) (3.4.2)
which scores the matching level of the inputs around position j to the outputs around position 3.

The scores are then passed through a Softmax function to obtain a set of attention weights a;;, that express
the probability of the target word y; being aligned to, or translated from, a word z; from the input.

eij
L

Finally, ¢; is computed as a weighted sum of the annotations h; based on the weights oy;;:

(3.4.3)

Q5

ct = Zaijhi (3.4.4)

32



3.4. Transformers

The most probable output symbol y; is computed as follows:

P(yt|y1»m»yt71»x) = RNN(Ct) (345)

In the context of [1], the attention scores e;; have to go through m  n iterations, where m the length of
the encoder sequence and n the length of the decoder sequence. Vaswani et al. 2017 [27] proposed a more
efficient model to compute the attention scores e;;, that first projects s; and h; onto a common space and
then calculates the dot-product of the two to obtain e;;.

eij = f(si)g(hy)" (3.4.6)
where g(h;) is the encoder projection vector and f(s;) is the decoder projection vector.

The differences between 3.4.2 and 3.4.6 is that in the later case, we only need to calculate f(s;) m times and
g(h;) n times followed by matrix multiplication calculation of the two vectors, making dot-product attention
faster and more space efficient in practice.

In the context of [27], the encoder projection vector g(h;) is called query Q, the decoder projection vector
f(s;) is called key K, and the inpit annotations h; is called values V.

Thus the attention is calculated as follows:
T

Attention(Q, K, V) = Softmaa;(QK

Nen W (3.4.7)

where dj, is a scaling factor.

Multi-Head Attention

Multi-head attention is an extension of the attention mechanism also introduced by [27]. In this concept
the queries Q, keys K and values V are projected into the same subspace and then the attention function is
performed in parallel. This allows the model to attend to information at different positions between different
projections of the input.

Self-attention

Self-attention is a method utilized by transformers, in which case the query, key and value are all derived
from the same set, allowing each element to attend to others within the same set. Self-attention connects
all positions of the input with a constant number of sequentially executed operations, without needing the
input-target corresponding.

3.4.2 Transformers Architecture
As described in 3.4.1, the original transformer model follows the encoder-decoder architecture.
e Input representation: The input sequence is mapped into a continuous vector.
e Encoder: is composed by a multi-head self-attention layer and a position-wise feed-forward network.

e Decoder: Similar to the encoder, the decoder is composed by multi-head self-attention layer for the
targeted output with added mask, that prevents the model to attend to future elements during training.
The additional sub-layer of multi-head attention feeds to the decoder the encoder output, aligning and
finding correspondence between input-target sequences. The two attention layers are followed by a
feed-forward neural network.

e Output: The decoder outputs a probability distribution over the output vocabulary, and after a linear
transformation and a Softmax activation, the final output will be the most probable element of the
output vocabulary.

The complexity and the approach of projecting the input-target correlations into a common geometric space,
gives transformers great versatility and allows them to be converted into variations with multiple usability.
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Figure 3.4.1: The Transformer - a model architecture proposed by [27]

Encoder-Decoder Models

Encoder-Decoder models are constructed according to the full transformer architecture 3.4.1 described above.
The encoder processes the input and creates context representations that are later used by the decoder that
generates the output sequence step-by-step. TH is a state-of-the-art encoder-decoder Transformer, typically
used in sequence-to-sequence modeling tasks, such as machine translation, sequence-to-sequence generation
etc.

Decoder Only Models

Decoder-only models are constructed by decoder blocks and removed the cross-attention module between
the encoder and decoder, since they lack an encoder to connect to. Without context information, these
models use positional encoding and masked multi-head attention on the input. The attention focuses on
the previous (left) and not the forthcoming parts of the input. A distinctive decoder-only language model
is GPT2, which is the predecessor of GPT-3. It’s objective is to predict the next most suitable token of a
sequence, gradually completing the sentence. Decoder-only models are typically used for tasks such as text
generation and summarization.

Encoder Only Models

Encoder-only models are built using transformer encoder blocks [10]. Due to the self-attention mechanism,
encoder models extract information within the input, making them excellent to develop language understand-
ing systems. Encoder-Only transformer models, like BERT, are the state-of-the-art methods on NLP, and
they are suitable for language understanding tasks (sequence labeling, sentiment analysis, text classification).
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3.4. Transformers

3.4.3 Pretraining

Large Language models (LLMs) are mainly transformer models. These models are often pre-trained on large
corpora without a predefined task, in order to extract dependencies in large texts. These dependencies will
later be used as a knowledge base for further fine-tuning on specific tasks with smaller datasets. There are
numerous techniques used in the pretraining phase of a language model.

e Masked Language Modeling: Certain words of the input sequence are randomly masked by a
designated token and the model is trained to predict the original word based on the context provided
by the surrounding text. This technique is mostly used on encoder-only models

e Causal Language Modeling: This technique is often used on autoregressive models, mostly decoder-
only or encoder-decoder models, that predict the next token given a prior sequence.

e Multitask Learning: The model is trained to preform multiple related tasks simultaneously. This
pretraining technique is most suitable for encoder-decoder models. The distinction between each tasks
can be done with a prompt or a task specific token given at the input. Throughout training, tasks
share common parameters, enabling the model to employ the inherited relationships in the entirety of
the model’s objectives, without the need for specific fine-tuning.
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[ "translate English to German: That is good."

"Das ist gut."]

"cola sentence: The
course is jumping well."

"not acceptable” ]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."

Figure 3.5.1: T5 Transformer: a flexible transformer suitable for multitask learning

3.5 T5 Model

The T5 model is a state-of-the art Seq2Seq model, developed by Google Al, based on Encoder-Decoder
architecture. The Encoder employs self-attention mechanisms to capture contextual information within the
input sequence. which allows the model to effectively understand and encode the nuances of the input text.
In contrast, the Decoder utilizes self-attention while also attending to the output of the Encoder, enabling it
to generate coherent and contextually relevant output sequences.

Notably, the T5 architecture excels in capturing long-term interdependencies, making it well-suited for tasks
requiring an understanding of extended context.

Operating on fixed-length input and output sequences, the T5 framework represents both input and output
as text sequences, facilitating seamless text-to-text processing. Its multitask nature enables simultaneous
training on diverse tasks, promoting knowledge sharing across domains and facilitating the utilization of an
objective loss function.

All of the above make the T5 transformer model a flexible tool for multitasking exploration, well-suited for
diverse tasks and offering ample opportunities for exploration.

Pretraining methods

Similar to many other transformers, T5 can be pretrained in a self-supervised or supervised manner and later
be fine-tuned for specific tasks.

A self-supervised approach, is pretraining on an large corpus of sequential data, in order to learn from a vast
array of recurring patterns and structures.

A more supervised approach to pretraining, is the Text-to-Text Pretraining Format: the data is formatted
into a text-to-text framework, where each training instance contains both input and output text sequences.
This approach facilitates the model’s ability to understand and generate text across various tasks.

Masked Language Modeling (MLM) serves as an additional pretraining technique aimed at increasing the
model’s grasp of language context. During this process, a random subset of tokens within the input sequence
is obscured, prompting the model to predict these masked tokens by drawing upon contextual information
embedded in the surrounding text. By engaging in this exercise, the model sharpens its capacity to infer
missing information and elevate its overall language comprehension ability.
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Music Theory and Data Representation

Music, as a general term, is the manipulation of sound and the means it travel through, intertwining with
rhythm, harmony and melody, in order to create expressive content. The ability of the human brain to
develop music emerged alongside with linguistic competence.

The intentional production of sound arose to assist in organizing labor, improve long-distance communication,
it was used as a coherence tool in communities and as a defence mechanism against potential threats. As an
evolutionary consequence, music became means of human expression, creativity, communication and part of
civilizations’ cultural attributes.

Melody and lyricism became the way in which people narrate their daily lives, worship deities, promote
intellectual culture and therefore build and preserve history, customs and traditions. Today music has
transformed into an art form, a platform of expression and a subject of interest in creative composition and
interpretive analysis.
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4.1 Theoretical Background of Music

The reasons behind humans’ interest in sonic impulses are the morphology of sound signals and the biological
structure of the human nervous system. In the following subsection we will explore the fundamental elements
of a harmonious sound and the brain’s cognitive ability to interpret them.

4.1.1 Math, Sound and Perception

Human’s audible spectrum is between 20Hz - 20kHz. Our ears are especially sensitive to sounds from 1kHz -
6kHz, which is the fundamental frequency range of the human voice. The brain has the ability to distinguish
and process in detail sounds within that range, allowing us to hear clearly when a person whispers, recognize
different pitches and musical instruments and generally comprehend the details of a sound.

A sound is a set of waves that originates from a vibrating source. Sound waves can be produced by the
surface of a drum, the strings of a guitar, the human vocal chords or, in case of wind instruments, the air
column inside the instrument. All of the above can be modeled as a standing wave on vibrating string.

A vibrating string produces sound waves at frequencies that are integer multiples of the fundamental fre-
quency. This means that when a string or chord vibrates at frequency f, it also emits sound waves that at
frequencies 2f, 3f, and so on, as seen in 4.1.1. These sound waves are called harmonics [30] and includes
all pitches in a harmonic series (including the fundamental frequency). The term "overtone" refers to the
pitches above the fundamental.

C3 (()1 1-f=132 Hz
C4 <>1/2<> 2:f=264 Hz
G4« e 3=3961
Cs <« W~ 4f-528H
BS < T T T T s s-6e0

Gs < W~~~ -T2

Figure 4.1.1: Harmonic partials on strings

Harmonics form an arithmetic progression and can be represented by a linear function, however, we respond
to sounds non-linearly. The human brain perceives low-pitch harmonics as farther apart and high-pitch
harmonics as closer together, reflecting a logarithmic function in human perception.

A way of organizing pitch relationships in a natural and intuitive way for nonlinear human perception is
the octave scale. The aforementioned, models the frequencies in a geometric sequence (f,2f,4f,8f,16f),
with each element having twice or half the frequency of its successive elements. This system aids in our
comprehension of music by simplifying complex functions with high variations and non-linearity, making
musical understanding more accessible.

4.1.2 Harmonic resonance in music

We interpret a note’s pitch as the fundamental frequency f of its periodic waveform. The second harmonic,
whose frequency is twice the fundamental, sounds an octave higher; the third harmonic, three times the
frequency of the fundamental, sounds a perfect fifth above the second harmonic. The fourth harmonic vibrates
at four times the frequency of the fundamental and sounds a perfect fourth above the third harmonic (two
octaves above the fundamental). This phenomenon is illustrated in musical notation at 4.1.2.
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The harmonics of a note resonate together simultaneously, each at a lower volume. When we hear a C2 note,
we simultaneously hear a C3, G4, C5, E5, each diminishing in intensity.
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Figure 4.1.2: Harmonic Intervals of note C2

Pitches with a simple ratio also share common overtones. When these pitches are heard together or in
succession, the overtones of each pitch harmonize, which the human ear finds pleasing. In musical terminology,
this is known as consonance. The octave, perfect fifth and perfect fourth, with frequency ratio 1 : 2, 2 : 3
and 3 : 4 respectively, are great examples of consonances. The more complex a ratio gets, audible common
overtones become fewer and the final result is cacophonous. These sounds are called dissonances. Among
them is the infamous tritone, also known as the devil’s interval, which has a fairly complex ratio of 32 : 45.

Table 4.1: Harmonious intervals of C and their frequency ratios

Interval Example notes Frequency ratio
Octave c-C 1:2
Perfect Fifth C-G 2:3
Perfect Fourth C-F 3:4
Major third C-E 4:5
Minor third A-C 5:6

Dissonant sounds cannot be avoided and, nonetheless, contribute to the interest and diversity of a musical
composition. However, to achieve harmony, it is essential that dissonances be resolved by consonances.

The mathematical relationships between underlying musical intervals were formalized and systematized by
ancient greek mathematician and philosopher Pythagoras. He experimented and observed the fundamental
importance of simple numerical ratios that define musical intervals and developed Pythagorean Tuning [31], a
framework that contributed to the Western music theory and practice and influenced musical compositions.

4.2 Overview of Historical Periods

Mesopotamia

Signs of musical and lyrical competence are dated back to Mesopotamian history. Mesopotamia is among
the earliest and most well-documented civilizations that have rich musical tradition. There are artifacts
of instruments made of animal bones, depictions of musicians and musical instruments appear in the 4th
millennium BC and clay tablets that recorded song, genres and also included instructions on how to play
instruments. This evidence suggest that humans developed musical notation and theoretical understanding
of music as early as the 3rd millennium BC.

Music in Mesopotamia serves ceremonial, religious and entertainments purposes, and was also intertwined
with poetry and storytelling. Musicians were highly regarded and associated with religion and royalty.
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Ancient Greece

An important milestone in the development of music theory is found in ancient Greece. The etymology of
the word itself is derived from the Muses, daughters of Zeus and patron goddesses of creative and intellectual
endeavors. It was believed that music evoked emotions, inspired courage and promoted moral values. It was
considered essential for cultivation of mind and soul. For the above-mentioned reasons, musical competence
was essential for people in Ancient Greece. Education emphasized the importance of musical literature and
arts, Greek drama incorporated choral odes that complemented the spoken dialogue of the play.

Musical theory evolved alongside with mathematics and philosophy, concepts that were inevitably linked
in the process. Pythagoras, a Greek philosopher credited with discovering the mathematical relationships
between musical intervals, observed the lengths of vibrating strings that produce harmonic ratios, a discovery
which is considered the foundation of harmonic theory and consonance. The Pythagorean tuning system,
laid the groundwork for the mathematical understanding of musical harmony and the development of musical
scales.

Medieval Period (500-1400)

Medieval music refers to the music that developed in the Middle Ages, the longest period in the history
of Western music. Two genres are dominant in this era, secular, which was intended for a non-religious
audience and sacred, that mostly served a religious purpose. Much medieval music was purely vocal or
used only instruments, until the 9th century, a time that witnessed the beginning of polyphonic music. In
polyphony, two or more notes sounding simultaneously are called a chord, and a sequence of chords is called
a harmonic progression. Counterpoint, the art of combining multiple independent melodic lines, intersects
with the rules of harmonic progression in creating rich and cohesive musical textures. While counterpoint
focuses on the interplay of individual voices, following harmonic principles ensures that these voices move
in a harmonically satisfying manner, contributing to a pleasant acoustic result. Singers in churches and
monasteries begun experimenting with adding an accompanying voice to sing many notes in parallel to the
melody of the organ, emphasizing the perfect consonances, perfect fourths, fifths and octaves. Monasteries
provided a great place for experimentation in polyphony, musical tradition survived through manuscripts of
liturgical music.

Renaissance (1400-1600)

The Renaissance sparked a renewed focus on the ideas and values of ancient Greece. Intellectual waves
explored philosophy, literature, arts and notably music. The new interest in the past came with significant
innovations for the future. Music was freed from medieval constraints, there was room for variations in
rhythm, range, harmony, notation. Polyphony was advancing, and counterpoint developed to study the
interdependence and harmonic coherence of voices, regarding dissonances and consonances. Viol and keyboard
instruments,such as the harpsichord, became components of the consort, from which early opera emerged.
Music composition and performance attracted a lot of attention and the interest of intellectuals and both the
upper and domestic class.

Baroque (1600-1750)

The Baroque style followed the Renaissance period. Composers aimed to achieving a fuller sound, that
was rich and challenging, both to the audience and the performers. In this period, major and minor scales
were solidified, music was composed following common-practice tonality, an approach to writing a song in
a particular key. This approach is extensively used in classical music, later to be the foundation of western
popular music. Composers revived new genres and forms of musical pieces, leading to the birth of suite,
sonata, concertos etc, and established the mixed vocal-instrumental forms of opera, cantata and oratorio.

Among the most important composers of this period is Johann Sebastian Bach. The youngest of a fam-
ily with great musical tradition, he wrote numerous works of both sacred and secular pieces that present
didactic interest. The four-part harmony system formed the core of Bach’s style, and his works are consid-
ered to establish the rules of this evolving schema, that would later dominate musical expression. Among
sonatas, cantatas, fugues and an immense variation of works, Bach’s four-part choral compositions managed
to prescribe the principles of the four-part harmony system. They are studied among musicians until today.
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Classic (1750-1820)

Despite its shorted duration, classical period had a pivotal effect on western musical style. Composers
now emphasize on balance, clarity, virtuosity and take interest in instrumental music. The harpsichord is
replaced by the fortepiano, the precursos of the piano, which allows the performer to play louder or softer,
thus enhancing the works with emotional depth. Music is mainly homophonic, meaning there is a clear
melody line over a subordinate chordal accompaniment, that follows the rules of counterpoint established in
the previous eras. Classical period composers created highly esteemed works, like symphonies, sonatas and
concertos, performed by orchestras or featuring a virtuoso solo performer (piano, flute, violin) accompanied
by an orchestra. Among the key figures of this era were, Joseph Haydn, Wolfgang Amadeus Mozart, Ludwig
van Beethoven, and Franz Schubert.

Romantic (1820-1900)

Romanticism emerged alongside with the Industrial Revolution, and the ascent of the middle class. The
middle class’s growing interest in music composition moved it from elite settings, opera houses and theaters,
to public venues, like concerts and festivals. Romantics sought to compose music that provoked emotions,
breaking away from strict rules and conservative norms. They tended to make greater use of longer, more
fully defined and more emotionally evocative themes, used more elaborate harmonic progressions, increased
chromaticism and tonal range in order to sustain musical interest in their works. Less common musical
structures such nocturne, concert etude and arabesque emerged Despite his classical influence, Ludwig van
Beethoven was the first composer to introduce typical romantic elements in his works. Notable figures of the
era include Polish composer Frédéric Chopin, Robert Schumann and Franz Liszt.

Modern and Post Modern (1900 - Present)

Novelty styles, techniques, and genres that have emerged since the late 19th century are enclosed in the
modern and contemporary era. From revolutionary experiments to minimalist compositions, modern music
has continually pushed the boundaries of traditional tonality and form. The advent of electronic music,
spurred by innovations in technology, has opened up new sonic possibilities and expanded the scope of
musical expression. Contemporary music reflects the multiculturalism and globalization of the 21st century,
with artists drawing inspiration from a wide range of cultural traditions and blending genres to create
innovative fusions. From avant-garde experimentation to mainstream pop, modern and contemporary music
continue to evolve, challenging conventions and reflecting the ever-changing landscape of human experience.
Moreover, mathematical principles are increasingly employed in music composition, resulting in intricate
structures and novel sonic experiences.

Music in the time of "now"

Today music has no borders and no limitations. It is not restricted within the lines of a disc or a CD
and it does not require a lot of means to be played or produced. Aspiring musicians have opportunity to
create and share their work, with affordable recording equipment and interactive software. Tools and gadgets
that provide the capability to manipulate sounds and deliver dynamic performances, even on the stage, are
revolutionizing the music industry.

The development of digital platforms and streaming services has a profound impact on how music is dis-
tributed and consumed. YouTube, Spotify, Soundcloud and more are some worldwide scale platforms, where
artists and listeners meet and interact. However, despite giving everyone the ability to produce, share and
listen to music on demand, large discographies and curated playlists wield significant influence over music
trends, determining commercial success and thus shaping the trajectory of overall artistic expression.

In this rapidly evolving musical landscape, technological innovation and artistic creativity meet, collide and
interact, to redefine the boundaries of musical expression, creating room for more and more possibilities over
time.
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4.3 Music notation

Humans required a language to communicate and represent the auditorily perceived music, leading to the
development of a notation system. These systems have varied across civilizations, cultures and time, with not
particularly comprehensive pre-medieval iterations. Driven by the Christian Church’s goal for consistency
in chants throughout services, a notation system emerged, that closely resembles what we know as musical
notations today. Later the Western Music notation system was established, which will be described in the
following section.

The foundation of musical notation lies in the staff, a set of five horizontal lines and four spaces upon which
musical symbols are placed. Each line and space on the staff corresponds to a specific pitch, determined
by the clef symbol placed at the beginning of the staff. The clef symbol at the start of a musical passage
establishes the pitch range for that passage.

The clef is followed by the key signature of the piece. The key signature is a set of symbols, placed on the
beginning of the section to convey the tonality of the music. Each major and minor scale has its corresponding
key signature, showing up to seven flats or seven sharps, called accidentals, representing the notes used within
the scale. The accidental symbols are placed on a line or space of the staff and affect all the subsequent
occurrences in the same pitch class within the section.

Time signatures are placed next to the key signatures of a musical piece, and play a crucial role in defining
the meter and rhythm of a musical composition. A time signature consists of two numbers written as a
fraction at the beginning of a piece of music. The top number indicates the number of beats in each measure,
while the bottom number represents the type of note that receives one beat. For example, in 4/4 time,
commonly known as "common time," there are four beats per measure, with a quarter note receiving one
beat.

Notes are the oval symbols placed on the lines or spaces of the pentagram. A note’s pitch is related to the

vertical positioning on the staff, i.e. which line or space they are on'.
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Figure 4.3.1: Basic notes on a staff. The pitch is defined by the vertical position between the staff lines and
spaces.

The pitch can be modified by using a corresponding accidental (a sharp, flat or natural symbol) to the left
of the note.

The duration of a note is symbolized by the note-head or with the addition of a note-stem plus beams or
flags®>. The duration symbols were introduced in the context of the "common time", or 4/4 time signature.
In the context of a 4/4 measure, a whole note takes up a whole measure, a half note takes up a half measure,
a quarter note takes up a quarter of the measure, and so on 4.3.3. The presence of articulation marks, such
as staccato dots, ties or accents, can affect the perceived duration and articulation of a note.

A musical piece is read and written from left to right. According to the instrument the musical piece is
referring to, the musical notation could include harmonic intervals called chords or melodic intervals called
melody. For example, a monophonic instrument such as a flute, is restricted to play one note at a time, so
the musical notation consists of just a melody written on one staff. On the other hand, the piano utilizes
a wider range of pitches at a time within a musical piece. Typically piano staves are characterized by their
dual-staff structure, flexibility for polyphonic writing, and inclusion of key signatures, clef changes, pedal

Thttps://musictheory.pugetsound.edu/mt21c/OctaveRegisters.html
2https:/ /www.schoolofcomposition.com/music-notation/
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markings. Several musical compositions also include performance directions, such as dynamics, tempo and
expression markings, to facilitate accurate and expressive piano performance.

4.4 Symbolic Music Representation

Music can be represented within the context of computational machines using various storage formats that
utilize different data modalities. In the following sections, we offer a brief overview of the most commonly
employed representation formats in the research area of Automatic Music Synthesis.

4.4.1 MIDI files

MIDI (Musical Instrumental Interface) [29] is a technical standard that describes a communication protocol,
digital interface, and electrical connectors that connect a wide variety of electronic musical instruments,
computers, and related audio devices for playing, editing, and recording music.

In a simplistic view, a MIDI file can be considered a score with additional optional annotations. As a result,
you can count on getting a transcription of the song, as well as meter information such as beats and downbeats

[26].
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MIDI files primarily consist of digital instructions that represent musical events, such as note-on and note-off
messages, velocity, pitch, and duration, as seen in 4.4.1. It serves as a format for music writing, enabling
the simulation of compositions and facilitating variety and communication between different instruments,
allowing them to control one another [24].

Figul’e 1.13 from r‘l;:?ki] Message Channel NLI:lr(rj‘t:er Velocity 71/B4
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Figure 4.4.1: Symbolic music representations: a sheet music representation, a MIDI representation (in a
simplified, tabular form), and a piano-roll representation. [24]

The variables equipping the note events describe the features of the note that is played at a certain time.

The MIDI note number is an integer ranging between 0 and 127 that encodes the pitch of a note. Mirroring
the alignment of the acoustic piano, where there are 88 keys that correspond to musical pitches ranging from
A0 to C8, the MIDI number encodes the musical pitches CO to G9 in increasing order. For example, the
middle C corresponds to the MIDI number 60.

The key velocity is again an integer ranging from 0 to 127, that controls the intensity of the note that is
played. In note-on events, it regulates volume, while in note-off events, it manages decay during the release
phase. However, its precise effect varies based on the instrument or synthesizer being used.

The MIDI channel acts as a means to organize and route MIDI data to control various instruments or
sounds within a MIDI setup. Usually a channel is associated with a particular instrument, although it is not
mandatory. Channel is also an integer ranging from 0-15.

Finally, the time stamp is an integer value that represents how many clock pulses or ticks to wait before the
respective note-on or note-off command is executed.

The standardization of the MIDI protocol made it possible for complex productions to be realized on systems
as compact as synthesizers with integrated keyboards and sequencers. This, along with the stabilization of
the market for personal computers, provided people, ranging from music producers to home recorders, with
the ability to record music. This simultaneous development played a significant role in the revival of music
in the 1980s.

The MIDI file format is particularly used in music production and composition through computers, sound
design for video games and films. It is also utilized in live performances, allowing musicians to control
samplers, synthesizers and other electronic instruments in real-time.

Due to their precise control over pitch, duration and dynamics, lightweight nature and universal compatibility,
MIDI files are suitable for computer music generation, analysis and transcription. Notable datasets include
Lakh MIDI Dataset, with 176k unique MIDI files, MuseData, JSB Chorales and many more valuable resources
in advancing Al-driven approaches to music generation.
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4.4. Symbolic Music Representation

4.4.2 MusicXML files

MusicXML is a versatile mark-up language, designed specifically for representing music notation. Files include
symbols for beams, key signatures, and time signatures, along with a wide range of other musical symbols, that
are capable of capturing and preserving the full range of musical elements. This makes MusicXML suitable for
encoding complex musical scores with precise notation and formatting details. The largest publicly available
MusicXML dataset is Theorytab Dataset (TTD), which contains 16K musical pieces, stored in MusicXML
format.

Nevertheless, due to their detailed content, these files require more storage space and computational resources
in order to be utilized. Due to licensing restrictions, the MusicXML datasets available are very limited and
not as rich as the MIDI counterparts.

These practical and technical challenges make this file type a less suitable and popular choice among the
research community, when it comes to music generation, as MIDI files make a more compatible choice.

4.4.3 Pianoroll

The Pianoroll file is an image-like music representation, structured according to the alignment of the piano
keyboard. It visualizes music in a grid-like matrix, where the piano’s pitches are depicted along the vertical
axis and time is represented in the horizontal axis, formatted in discrete time steps.

The name "pianoroll" was inspired by the old storage medium, a continuous roll of paper with punched
holes, that represented note control data, and was used in old piano players. MIDI files emerged as the
digital successor of the traditional pianorolls, thus, the formats of the two digital filestypes are very similar.
Consequently, only a few datasets are stored explicitly in pianoroll format, as MIDI files can easily be
converted to pianoroll and vice versa. Pypianoroll is an open source python library that bridges the gap
between these music representations, offering tools that can manage and manipulate both formats efficiently.
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Figure 4.4.2: Pianoroll Music Representation [28§]

The aforementioned symbolic music representations play a major role in machine learning applications,
especially in tasks focused around music generation, transcription and analysis. Following the flourishing
of the field, numerous specialized tools have been developed that greatly enhance our ability to handle and
manipulate these representations effectively. Among these tools are Pypianoroll, MusPy, Music21, mido,
miditoolkit and miditok, some of which will be utilized and further analyzed below.
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5.1 MidiTok

The advent of Language Models (LMs), changed the landscape of generative music tasks, mandating a
shift to the approach of music representation, from a complex and multidimensional notation system to a
more linguistic-like form. Thus, the concept of tokenization for symbolic music was proposed, as a crucial
preprocessing step in preparing MIDI data for input into Neural Networks. The concept became more and
more popular during the late 2010s and early 2020s, as the transformer architecture emerged.

In late 2021, Fradet et. al [9] introduced Miditok, a python package that serves as a tool to transform music
language from MIDI files, to token sequences. It is among the first open source toolkits to offer a friendly
and convenient way to tokenize MIDI files, encouraging the participation of more researchers in the music
generation field.

The platform is built around the idea that all MIDI tokenizations share common methods. It features the
most known MIDI tokenizers, along with functions crucial for preprocessing, such as data augmentation,
dataset tokenization, and Byte Pair Encoding.

Miditok acts as a connecting link between Generative Music and Natural Language Processing tasks, allowing
researchers to utilize the tools of the latter, particularly Language Models (LLMs), to address the requirements
of the former. As of today the platform is actively maintained, receives regular updates, bug fixes and
improvements, based on user feedback [7].

5.1.1 The Tokenization Process

In order to understand the utility and importance of the tokenization process, we need to dive into the form
of the stored information in a MIDI file.

The contents of the file fall into categories; tracks of instruments, tempo changes, time signature changes,
key signature changes, lyrics etc.

The musical information is contained within the track of the file, in the form of note events that occur at a
certain moment in time. As described in 4.4.1, a note event has five characteristics; an onset and offset time,
pitch, velocity and time step (tick).

The base time unit in MIDI files is the tick, with a resolution known as the time division expressed in ticks
per quarter note. Events in MIDI files occur at specific ticks, represented by a high value, typically ranging
from 384 to 480. Pitch range and velocity values are ranging from 0 to 127.

Using wide ranges of possible values with a language model is usually not optimal, as the later is a discrete
model and so could struggle to efficiently capture the differences between two consecutive values.

The main idea of tokenization in the context of MIDI files, is to address the challenge posed by the wide
ranges of these values present in the data.

By tokenizing the information, the continuous and varied attributes such as velocity and time, are down-
sampled and quantized into discrete tokens. This quantization helps reduce the complexity of the data and
optimizes model performance by providing a more manageable and structured input for the models to process.

Velocity affects the dynamics and volume of a note when played. It plays a significant role in denoting
the musical expression and emotion. Although, a difference between values 100 and 101 cannot capture
differences effficiently, therefore downsampling velocity values can help capture the nuances of dynamics
while still reducing complexity.

Unlike velocity, pitch range directly impacts the sound and expression of a note. Reducing the pitch range
will limit the musical variety and expression that can be captured within the musical piece. Therefore,
maintaining the full pitch range is essential for a sufficient representation of the music.

Concluding, tokenizing MIDI files, allows for the representation of music data in a format that is more suitable
for training models, enabling them to learn patterns effectively, generalize information, and make predictions
in a more efficient manner.
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5.2 MidiTok Tokenizers

Tokenization techniques offer different ways to represent musical information as tokens, each with its own
advantages in terms of capturing musical attributes, reducing complexity, and optimizing model performance.
The choice of tokenization method can significantly impact the effectiveness of training models on symbolic
music data.

To address this, MidiTok introduces a diverse selection of tokenizers, each employing distinct methods of
tokenization. These tokenizers offer varying degrees of specialization, with some of them being suitable for
specific datasets and others designed for more generalized use cases.

In this subsection, we will present the most notable characteristics and functionalities of some of the frame-
work’s tokenizers. To showcase the operations of each tokenizer, we will illustrate the tokenization process
using the musical sheet below, as provided in *
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Figure 5.2.2: Illustration of REMI tokenizer

REMI tokenizer, was introduced with the Pop Music Transformer in [14]. REMI represents musical notes
sequentially, tokenizing MIDI data into Pitch, Velocity, and Duration tokens for notes, and Bar and Position
tokens for time.

The extended version REMI+ can handle multiple instruments by adding Program tokens before Pitch tokens.
Tempo information is represented as a single Tempo token. When decoding multiple token sequences, only
the tempos and time signatures of the first sequence are decoded for the entire MIDI.

5.2.2 MIDI-Like Tokenizer
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Figure 5.2.3: Illustration of REMI tokenizer

The MIDI-Like tokenizer, as introduced in [19] and utilized in subsequent works like Music Transformer and
MTS3, simplifies tokenization by directly converting MIDI messages (NoteOn, NoteOff, TimeShift, etc.) into
tokens. It operates on a FIFO (First In First Out) logic during decoding. Like REMI, it can include Program
tokens to specify instrument information and treat all tracks as a single stream of tokens.

Thttps://miditok.readthedocs.io/en/v3.0.1/index.html

49



Chapter 5. Tokenization

As MIDI-Like tokenizer incorporates NoteOff messages into its tokenization process, it employs a strategy
to manage overlapping notes. This may lead to alterations in the durations of overlapping notes, in order to
prevent conflicts with NoteOff tokens.
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Figure 5.2.4: Tllustration of TSD tokenizer

Addressing the challenges of Note-Off tokens in the previous tokenizer, the TSD tokenizer, or Time Shift
Duration tokenizer, represents MIDI data using explicit Duration tokens for note durations. Same as the
previous two, it can include Program tokens before each Pitch token to specify instrument information if
configured to do so.

5.2.4 Structured tokenizer
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Figure 5.2.5: Illustration of Structured tokenizer

The Structured Tokenizer, introduced with the [12], operates similarly to the TSD tokenizer but follows a
consistent token type succession (Pitch , Velocity, Duration, TimeShift). This structured approach is applied
in every element of the musical piece and provides uniformity to the tokenized file.

Unlike REMI and TSD, which allow for additional tokens like TimeSignature, the Structured Tokenizer
restricts the insertion of additional tokens except for Program tokens when configured to do so.

5.2.5 Embedding-Based Tokenization: Octuple, CPword, and MuMIDI

Further research and more novel approach to the tokenization process, introduces tokenizers incorporating
embedding pooling operations to effectively make sequences shorter. Miditok incorporates Octuple, CPword,
and MuMIDI tokenizers. These tokenizers use embeddings to represent musical elements in a more compact
and efficient manner.

Octuple employs embedding pooling to merge individual note tokens into compound tokens, that also exhibit
uniformity, facilitating a reduction in overall sequence length while capturing essential musical information.
Similarly, CPword utilizes embedding pooling to represent various musical elements, optimizing the tok-
enization process for multitrack MIDI data. Meanwhile, MuMIDI takes embedding pooling a step further
by integrating learned positional encoding and representing all tracks in a single token sequence, handling
multitrack data in a very efficient manner.

The aforementioned tokenizers present considerable complexity during training and decoding, making them
suitable for small models.

The framework offers a wide variety of tokenizers, each presenting unique differences both in approach
and complexity. Tokenizers such as REMI, TSD, Structured, and MIDI-Like adopt a traditional sequential
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Time Sig 4/4 Time Sig 4/4 Time Sig 4/4 Time Sig 4/4
Tempo 116 Tempo 116 Tempo 116 Tempo 116
Bar O Bar 0 Bar O Bar 1
Position 0 Position 7 Position 27 || Position 0
Program O Program O Program O Program O
Duration 1.0 Duration 1.0 Duration 0.4 Duration 4.0
Velocity 80 Velocity 84 Velocity 72 Velocity 80
Pitch D3 Pitch A3 Pitch G3 Pitch A3

-

Figure 5.2.6: Illustration of Octuple, an embedding-based tokenizer

representation of musical elements. While effective in capturing the structure of MIDI data, these tokenizers
are straightforward and suitable for simple musical pieces, but may lack the efficiency and compactness
needed in large and complex tasks and may require longer sequences, leading to increased computational
complexity and training times. On the other hand, tokenizers such as Octuple, CPword and MuMIDI that
utilize embeddings, offer a more complete and versatile tokenization process, making them more suitable for
more complex tasks. However, both embedding-based and traditional tokenization methods remain vital for
generative music tasks, each offering distinct advantages tailored to different use cases.

5.2.6 Byte Pair Encoding (BPE)

d = aa
(most recurrent subsequence)

aabaabaacaa dbdbdcd

After exploring tokenization techniques, we will investigate how vocabulary techniques commonly used in
natural language processing are applied to music generation tasks using tokenized sequences. Music gen-
eration presents unique challenges due to the complexity of musical patterns, simultaneous note play, and
multiple tracks. Initially, only small vocabularies of tokenizers were proposed, resulting in large token se-
quences. Recent research aims to address this issue by reducing sequence length, leading to the adoption of
Byte Pair Encoding (BPE) in tools like miditok [8].

BPE (Byte Pair Encoding) is a compression technique used in natural language processing (NLP) to replace
recurring byte sequences in a corpus with newly created symbols.

For example, in the sequence "aabaabaacaa," the subsequence "aa" occurs frequently and is replaced with
a new symbol, resulting in a compressed sequence. This process continues until a target vocabulary size is
reached.

BPE is widely utilized in building tokenization vocabularies, enabling the encoding of rare words and the
segmentation of unknown or composite words into sub-word units.

In symbolic music, tokens from a tokenizer without Byte Pair Encoding (BPE) are considered as the base
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vocabulary, similar to characters in text. Thus, initially, the vocabulary consists of unique characters present
in the data, which are then automatically grouped, learned as tokens by the BPE algorithm and added to
the new vocabulary. BPE is computed using the Hugging Face tokenizers Rust library, enabling fast training
and encoding.

Internally, base tokens are represented as characters, each having three unique forms: a textual description
(e.g., Pitchs8), an integer ID, and a byte form represented by a character or sequence of characters. Tokens
learned with BPE are represented by the unique characters of the base tokens they represent.

It is crucial to emphasize that Byte Pair Encoding (BPE) should be initially learned and then applied
consistently across all data interacting with a model. When performing data augmentation on the training
set, BPE should be learned collectively on the training, validation, and test sets, followed by its application
to each of these datasets respectively.

BPE has been shown to enhance the performance of Transformer models in symbolic music tasks, facilitating
the learning of more isotropic embedding representations. It can be applied on top of any tokenization
method except those based on embedding pooling.
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Evaluation Methods

The Evaluation process for music generation is complex and challenging task, due to the subjective nature
of music perception and the multi-dimensional aspects of musical quality. Despite the existence of objective
rules for counterpoint, composition and music harmonization, the tasks of defining an objective plane for
comparison and evaluation of music pieces is often a subject of disagreement among members of the research
community, yet a field that remains an active area for academic exploration.

Evaluation in generative music tasks typically involve both qualitative listening evaluations and quantitative
assessments. In this chapter, we will explore certain aspects of each evaluation category, discuss the evaluation
process in detail, and suggest a composite metric utilizing metrics from the MusPy library.
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6.1 Qualitative Evaluation

Music is a deeply subjective matter and, among individuals, preferences can vary widely. What one person
finds enjoyable or musically satisfying in terms of melodic and rhythmic content may not resonate with
another. This subjectivity makes it challenging to establish universal criteria for evaluating the quality of
generated music.

Despite the above, musical competence is a biologically inherited ability, as mentioned in 4, which makes
humans capable of retrieving information and understanding basic concepts of a musical piece, such as
melodicity, harmonicity, rhythmic coherence, emotional expression, that can work as empirical evaluation
metrics.

Human evaluation provides researchers with the ability to explore more complex aspects of the musical
experience, beyond simple quantitative metrics. Humans can intuitively explore in-depth factors such as
aesthetic appeal, cultural context, historical background, influences among musical pieces through time and
expression styles.

In most related work, human evaluation involves a mixture of trained musicians, composers, musicologists,
as well as individuals with varying levels of experience in the field, ranging from casual listeners to music
enthusiasts.

In the area of study of generative music, as demonstrated by [8], metrics employed for human evaluation
involve:

e fidelity on pitch scale and rhythm regarding the prompt

e correctness, i.e. featuring good note succession and harmony

coherent diversity, i.e. featuring diverse correct melodies and harmonies
e their overall subjective preference

In order to systematically assess the different dimentions of music quality, it is optimal to break down the
evaluation process into specific questions and criteria, as demonstrated by [5]:

4

e coherence—"Is it temporally coherent? Is the rhythm steady? Are there many out-of-context notes?”

¢

e richness—Is it rich and diverse in musical textures? Are there any repetitions and variations? Is it
too boring?”

e arrangement—*Are the instruments used reasonably? Are the instruments arranged properly?

6.2 Quantitative Evaluation

As mention in the sections above, quantitative metrics are subject to irregularities

As mentioned beforehand, the objective characteristics of a musical text, easily perceived by humans, are
complex to translate in objective rules and to project in a computational plane outside human perception.
However, the use of quantitative metrics is necessary to straightforwardly evaluate the performance and
creative capacity of both the generative model and the data pre-processing architecture.

Quantitative evaluation metrics, derived from the predicted model hardly lead us to valuable conclusions by
themselves. Although, when applied to the generated output and compared to ground truth values, these
metrics offer a quantitative basis for assessing the fidelity, accuracy, and overall performance of the generative
model.

6.2.1 Loss Functions

Ground truth similarity is utilized in the model training and validation through the loss functions.

For sequence-to-sequence models used in sequence generation tasks, loss functions such as the sequence
cross-entropy loss are employed. The output generated file is compared with the original file to find out the
deviations from the input sequence [15].
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This kind of loss function measures the discrepancy between the predicted sequence and the ground truth
sequence [15], considering the entire output sequence rather than individual tokens. In this context, the
model’s weights are updated to ensure that it mimics the exact style and expression of the artist’s work in
the training set, taking into consideration the accompanying musical composition in the input. Therefore,
when producing "irregular" output, the model is penalized for both generating music that does not suit the
accompanying input and for lacking coherence, melody, rich context, and a stable rhythmic style.

6.2.2 Tokenization Errors

As proposed in [8], another method to secure that the model outputs coherent and valid results, is to measure
the syntax errors in the output. For a more in depth elaboration, Fradet et. al propose that, the model
outputs might include token sequences that have a pitch token as the last sequence value, or tokens that
"go back in time", tokens that have incorrect successions and do not follow the pitch, velocity, duration
pattern. To test this possibility, the authors of the paper propose the application of a syntactic error metric
to the output, that can provide several indications about the quality and efficiency of the model training,
and whether it can ultimately learn the music representation efficiently and yield coherent results, or not.

6.2.3 Evaluation Metrics

In addition to loss functions and Tokenization Syntax Errors, various evaluation metrics and Python libraries
offer valuable tools and provide mathematical representations of certain characteristics of a musical piece
that are often perceived intuitively by listeners. By analyzing these metrics, researchers and musicians can
gain quantitative insights into various aspects of musical pieces that often emerge from qualitative research.

One such library is MusPy, a Python package designed for symbolic music generation and evaluation. MusPy
provides a range of evaluation metrics, including pitch accuracy, rhythm accuracy, and harmonic consistency,
allowing for comprehensive assessment of generated music quality. Among recent authors, [5] utilize these
metrics to evaluate the output of their model, in comparison to the ground truth. A closer value to that of
the ground truth is considered better.

6.2.4 Proposed Evaluation Metric

For the needs of this diploma thesis, we decided to utilize a custom evaluation metric, in order to develop
one metric that captures both the efficacy of model training and its ultimate performance. We aim to derive
quantitative measures that enable us to evaluate the quality of training and pre-processing, as well as the
final outcomes of the model.

We decide to employ the following metrics, using the MusPy library:

e Pitch class entropy: measures the randomness of the distribution of musical notes within a note class,
with lower entropy indicating less diversity and higher entropy indicating more diversity.

e Pitch Entropy: measures the randomness of the distribution of musical notes within a note class, with
lower entropy indicating less diversity and higher entropy indicating more diversity.

e Scale consistency: the largest pitch-in-scale rate over all major and minor scales

After extracting the aforementioned metrics, from both the ground truth and the predicted output, we
calculate their euclidean distance in the following manner:

distance = \/(or_ PCE — pr_ PCE)2 4 (or_PE —pr_PE)2 + (or_SC — pr_SC)2

By applying this metric to both the ground truth and the predicted outcomes of our model, and calculating
the Euclidean distance between them for the test set, we aim to achieve two main objectives:

e Evaluate the Discrepancy between Ground Truth and Predicted Outcomes: By measuring the Euclidean
distance 6.2.4 between the ground truth and the generated model outcomes, we gain insights into more
qualitative characteristics of the generated melodies, than their similarities to the ground truth. This
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analysis enables us to understand how closely the model’s predictions align with the original musical
compositions, showing any variations or deviations in terms of melodic structure, harmony, and overall
musical quality.

e Determine the Model with Optimal Performance: By computing the average Euclidean distance across
all models, we can identify which model consistently produces the most accurate and faithful results
compared to the ground truth. This comparative analysis allows us to discern the relative performance of
different model configurations and make informed decisions regarding model selection and optimization
for future iterations of our study.
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Experiments

The experimental setup for our study involved the use of state-of-the-art deep learning frameworks, including
HuggingFace Transformers and PyTorch, for model development and training. For MIDI preprocessing
routines such as track merging, custom data augmentation and output format, we utilized libraries such like
miditoolkit, and mido. We utilized a MidiTok library ! for the tokenization process, which provided us with
a comprehensive set of functions and tools essential for encoding MIDI events into sequence format. This
encoding was necessary for the pretraining of the transformer model.

We also made use of a computational setup powered by high-performance GPUs on Kaggle to enhance the
training pace and enable seamless experimentation with large models and large-scale datasets.

We began by conducting experiments using the architecture and model parameters outlined in our bibliog-
raphy. We explored a variety of parameters to determine which ones were most suitable for our task and the
available data. Eventually, we steered towards the direction of the optimal parameters based on our findings,
facilitating further experimentation.

Ultimately, we applied the proposed evaluation method on the generated results of each model to investigate
their plausibility and objectivity.

We showcase the evaluation metrics through bar plots, alongside their mean values, to facilitate a comparative
analysis of the proposed models. Additionally, we delve into examining the rate at which our model generates
audibly pleasing music, that also serves the purpose of harmonization, regarding the Bach Chorales input.

Thttps://miditok.readthedocs.io/en/v3.0.2/
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7.1 Dataset - JSB Chorales

For the needs of this thesis, we will explore the posibilities of Generative Music using the renowned Johann
Sebastian Bach Chorales dataset, or else refered to as JSB Chorales. This dataset, comprised of harmonically
rich chorales by Bach, serves as a fertile ground for studying generative music systems due to its intricate
melodies and well-defined musical structure.

The Bach Chorales, in particular, represent a collection of hymn-like compositions that are a great example
of Bach’s mastery of harmony and counterpoint. As mentioned in 4, these chorales are of great didactic
significance, they often used as teaching tools in music theory education, provide a fertile ground for studying
musical structure and compositional techniques. Could there be a more fitting domain than this to impart
the rules of musical composition to a model?

This dataset comprises a collection of 372 four-part chorales, each containing melodic lines for soprano, alto,
tenor, and bass voices. To prepare the dataset for generative music experiments, we performed preprocessing
steps, which will be thoroughly analyzed in the next section, including data cleaning and normalization, to
ensure consistency and accuracy in the musical data.

7.2 Data Preprocessing

We began by acquiring the JSB dataset and isolating the 372 four voice chorales, out of 514 of the dataset
total chorales. Subsequently, we partitioned the 372 MIDI files into distinct training, validation, and test
sets, ensuring that there will be no ensuring that there is no information leakage during the model’s training
process.

Distribution of chorales based on voice count
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Figure 7.2.1: Distribution of JSB Chorales Dataset

In the subsequent preprocessing steps, we will generate "child files" from the original files, each containing a
specific task type. We must ensure that no "child file" becomes separated from its corresponding "parent."
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7.2.1 MIDI file formatting

The original MIDI files contained four tracks, each representing a distinct musical voice: Basso, Tenor, Alto,
and Soprano. The goal was to transform these files into a format conducive to training a Seq2Seq model like
the T5 transformer.

This translates to merging neighboring tracks based on specific task requirements to create MIDI files with
only two tracks. The MIDI file that contains only two tracks, will later be tokenized effectively into I/O
sequences.

To facilitate the tokenization process and streamline the implementation of the "Add upper harmonic voice"
and "Add lower harmonic voice" tasks, we structured the input-output format directly within the MIDI files.
This translates to merging neighboring tracks based on specific task requirements to create MIDI files with
only two tracks.

For each chorale file, we generated 12 modifications, split evenly between the two tasks. For the "Add upper
harmonic sequence" task, the modifications were as follows:

e Adding a Tenor voice to a piece that contains only Basso.

e Adding an Alto voice to a piece that contains only Tenor.

Adding an Alto voice to a piece that contains both Tenor and Basso (combined in one track).

Adding a Soprano voice to a piece that contains only Alto.

Adding a Soprano voice to a piece that contains both Alto and Tenor (combined in one track).

Adding a Soprano voice to a piece that contains Alto, Tenor, and Basso (combined in one track).
Similarly, modifications were made for the "Add lower harmonic sequence" task.

These modified MIDI files were then saved in the output of the notebook, with each set (training, validation,
test) stored in its respective folder for ease of access and organization.
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(a) Original overview of a four-voice Bach chorale. (b) Modified file, with isolated soprano voice.

Figure 7.2.2: Visual representation of the modifications that the MIDI files underwent during the data
preprocessing part described in 7.2.1.

7.2.2 Tokenization
Following the previous modifications, we proceed into the tokenization process of the modified MIDI files.

Utilizing the tokenizers and routines of the miditok library, described in 5.1, convert these musical composi-
tions into structured sequences of tokens.
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For the needs of the initial experiments of our idea, we make use of the TSD tokenizer, described in 5.2.3.

The tokenizer parameters define various aspects of the tokenization process for MIDI files. They include
specifications such as the pitch range considered, beat resolution, number of velocity bins, and the inclusion
of special tokens for padding, sequence start, end, and masking.

Miditok provides a variety of tokenizer configuration parameters, that control the incorporation of musical
elements like chords, rests, tempos, time signatures, program changes, and pitch bends. Some of these
parameters, such as pitch range and velocity bins, refer to downsampling of the information contained in
MIDI note-events, allowing them to be captured by fewer tokens.

The tokenizer can adapt to handle multi-voice MIDI files and offers options for organizing token streams,
whether as a single stream or separate streams for each voice. We make use of that advantage to extract the
I/O format of the tokenized sequences described earlier.

7.2.3 Prefix tokens

To achieve the task specificity during training, we introduced two task specific tokens to the tokenizer: the
"Add Upper" token and the "Add Lower" token. These tokens signify the augmentation of upper and lower
harmonic voices, respectively. This strategic addition, utilized as a prefiz token, guides the T5 transformer,
facilitating its comprehension and execution of the specific music generation tasks outlined in our experimental
framework.

7.2.4 Data Augmentation

The tokenizer proceeds with a data augmentation step to enrich the dataset further. This augmentation
involves manipulating pitch, velocity, and duration tokens to introduce variations in the musical sequences.
Specifically, pitch augmentation is applied with an offset of 2 tokens, resulting in pitch transposition by 2
octaves up and down. Velocity and duration augmentation are applied with offsets of 1 token each. By
systematically adjusting these parameters, the tokenizer enhances the diversity of the dataset, enabling the
model to learn and generalize better across different musical contexts.

7.2.5 Byte Pair Encoding

Additionally, employing byte pair encoding (BPE) further enhances the efficiency and robustness of our
tokenization method, ensuring optimal performance throughout the training and generation phases [8].

As described in 5.2.6, Byte Pair Encoding needs to be learned in the entirety of the data (training, validation,
and test sets, respectively). This ensures consistency and coherence in tokenization across all datasets,
facilitating uniform representation of musical sequences for the model. A new, augmented vocabulary is
created, that consists of the most frequent subsequences.

Later, the training, validation and test datasets are encoded with the new BPE vocabulary, and, thus,
compressed in a smaller size that efficiently represents the information needed to train the model effectively.

Length Standardization

Before continuing with the training and data loading process, a length criterion is applied to the tokenized
data. This criterion ensures that both input and output tokens conform to a standardized format, simplifying
processing within the scope of the study. Standardizing the length is crucial because T5 utilizes standard
input-output phrases, necessitating uniformity in the data.

Preparing for training

Later, the data sequences are loaded into a DataLoader, with the appropriate prefix added as the first token
of each sequence. This prefix serves as a cue to the model regarding the type of task it is about to be trained
on. Furthermore, right padding is applied to ensure consistent sequence lengths across the dataset.
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7.3 Results

7.3.1 Parameter Selection

In the initial phase of our experiments, we sought to explore the impact of dropout rate and Byte Pair
Encoding (BPE) vocabulary size on model training with our dataset. We conducted training sessions with
six models using standard parameters, including n;jayers = 8 and nyeads = 16, while varying the parameters:
vocabulary size = 2500, 5000 and dropout rates = 0.2, 0.4, 0.5.

Table 7.1: Parameter settings for initial experiments

Tokenizer Vocab Size Num Layers Num Attention Heads Dropout Rate

2500 0.2
TSD 5000 8 16 0.4
train/loss eval/loss

T5_2500_8_16_05 = T5_5000_8_16_05 T5.5000_8_16_04 T5_2500_8_16_04 T5.2500_8_16_05 — T5_5000_8_16_05 T5_5000_8_16_04 T5.2500_8_16_04 -
T5_5000_8_16_02 S T5_5000_8_16_02

5
4 3

train/global_step train/global_step

20k 40k 60k 80k 100 20k 40k 60k 80k 100

Figure 7.3.1: Loss functions of first experiments 7.1. We initially run experiments with model parameters
according to the bibliography [8]. We chose a rather wide range of values, in order to explore the direction
of further experimenting.

Analysis of the results, depicted in 7.3.1, revealed notable trends. Models trained with a dropout rate of
0.2 exhibited rapid overfitting on our data, indicating insufficient regularization. Conversely, models with
a dropout rate of 0.5 demonstrated signs of underfitting, suggesting excessive regularization. Consequently,
we determined that the optimal dropout rate lies around 0.4, striking a balance between overfitting and
underfitting.

Regarding vocabulary size, observations indicated that models with a smaller vocabulary size (2500) achieved
lower loss values compared to those with a larger size (5000). This phenomenon is justifiable, as a larger
vocabulary on a relatively small dataset may lead to valuable information being hidden behind pair encodings.
Consequently, the model may struggle to effectively capture the underlying patterns of the data.

With the groundwork of our experimental process established, we now narrow the scope of parameter values
to delve deeper into our investigation. In this phase, we aim to assess how the model captures information
under varying conditions, focusing on specific parameter configurations.

For this segment of experimentation, we select the parameter values described in 7.2

By systematically varying these parameters, we seek to gain insights into how different architectural con-
figurations impact the model’s performance in capturing and understanding the underlying patterns of the
data. This focused approach allows us to refine our understanding and optimize the model’s architecture for
enhanced performance and efficacy in subsequent phases of our study.

After running the experiments with the aforementioned parameters, we notice that, in terms of loss, the
models seem to be reaching similar results. Models with lower dropout rate seem to catch up on information
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Table 7.2: Further investigation on mentioned parameters to investigate improvements.

Tokenizer Vocabulary Size Model Layers Model Attention Heads Dropout Rate

1500 8 12 0.3
TSD 2500 10 16 0.4
train/loss

s — 5.T5.1500_10_12 04 5e5 s
s — 3_T5_1500_8_16_04

e5_s — 7_T5_1500_10_16_04_5e5 s <

St Y -
1
1
o train/global_step o train/global_step
10k 20k 30k 40k 501 10k 20k 30k 40k 501

Figure 7.3.2: Loss curve of models trained with TSD tokenizer and vocabulary size = 1500. The rest of the
parameters are described in 7.2

trainfloss eval/loss
0_16 0_12 D4 5e5s — 15 T5 2500 10

e b i
B e

train/global_step train/global_step

10k 20k 30k 40k 501 10k 20k 30k 40k 501

Figure 7.3.3: Loss curve of models trained with TSD tokenizer and vocabulary size = 2500. The rest of the
parameters are described in 7.2

and patterns in the desired output more easily, displaying steeper curves.

7.3.2 Test Set Generation

In order to test the proposed model, we decided to utilize the model’s ability to generate output with
temperature. Adding temperature when generating output from a T5 model is a technique used to control
the randomness and diversity of the generated text. The temperature parameter adjusts the softmax function
during sampling, affecting the distribution of probabilities assigned to each token in the vocabulary. This
addition provides greater flexibility and control over the text generation process, allowing for the model to
display more creativity and avoid the "most probable next token" loop.
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For the initial experimentation phase, we chose to produce output samples using a fixed temperature of 0.2.
Subsequently, during the testing phase, we varied the temperature values across a range from 0.05 to 0.35 to
explore the impact of this variation on the final auditory output

7.3.3 Applying proposed Evaluation Metric

To obtain a comprehensive overview of our models’ performance, we will utilize the metric defined earlier in
6.2.4.

To gain a comprehensive understanding of the overall outcome, we conduct a comparative analysis at two
levels. Firstly, we assess whether the inserted voice aligns with the given melody, providing a global overview
of the total result. Additionally, we delve into more specific insights, evaluating aspects such as the richness
of the additional voice, its adherence to a consistent scale, and its standalone performance. This structured
approach allows us to examine both the holistic result and the individual characteristics of the generated
voice.

Euclidean Distance of Predicted Metrics from Ground Truth Metrics: Complete Result Analysis (Temperature = 0.2)
Distances complete result Distances of predicted voice
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Figure 7.3.4: Comparison of distance distributions between metrics measured on generated outputs and
ground truth across the entire musical piece (left) and specifically on the generated voice (right).

We visualize these findings, we create bar plots illustrating the distribution of distances from the samples
of the test set generated by each model 7.3.4. This approach allows for easy comparison between different
models 7.3.5 7.3.6.

As evidenced by the loss curves shows, the models tend to converge and exhibit similar results. However, the
disparities become more apparent when evaluating the quality of the generated voice in the comparison to
the ground truth. In this, the differences are more pronounced, which is anticipated since the first compares
files that have parts of common context (the given voices).

Similarly, evaluating the results of additional voice generation, this time with variable temperature, we
observe that the mean values of the distances do not change, the distances distributions are of similar shape,
and therefore we conclude that varying the temperature during generation does not significantly alter the
overall evaluation. This suggests that, within the selected range, the temperature parameter may have limited
impact on the quality of the generated voices. Our findings also indicate that a temperature value of 0.2
consistently produces satisfactory results.

Through this analysis, the model trained on vocabulary size equal to 1500, n;ayers = 10, npeads = 16 and
dropout,ate = 0.3, seems to produce the most prominent results.
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Euclidean Distance of Predicted Metrics from Ground Truth Metrics: Complete Result Analysis (Temperature = 0.2)
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Figure 7.3.5: Analysis of 16 models, using TSD tokenizer and parameters described on 7.2: Distribution of
metric distances between generated outputs and ground truth, calculated across the entirety of musical
pieces in the test set, with a temperature setting at 0.2
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Euclidean Distance: Ground Truth vs. Generated Voice Metrics Comparison (Temperature = 0.2)
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Figure 7.3.6: Analysis of 16 models using TSD tokenizer and parameters described on 7.2: Distribution of
metric distances between generated outputs and ground truth, calculated specifically on the generated voice
in the test set, with temperature settings ranging from 0.05 to 0.35.
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Distance of complete result

Effect of Temperature Variation on Metric Distance measured on Complete Result: Comparative Analysis (Range: 0.05 to 0.35)
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Figure 7.3.7: Analysis of 16 models using TSD tokenizer and parameters described on 7.2: Distribution of
metric distances between generated outputs and ground truth, calculated across the entirety of musical
pieces in the test set, with a temperature setting at 0.2.
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Effect of Temperature Variation on Metric Distance measured on generated voice: Comparative Analysis (Range: 0.05 to 0.35)
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Figure 7.3.8: Analysis of 16 models using TSD tokenizer and parameters described on 7.2: Distribution of
metric distances between generated outputs and ground truth, calculated specifically on the generated voice
in the test set, with temperature settings ranging from 0.05 to 0.35.
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7.3.4 Further Experiments: REMI, Structured & Tokenizers

Due to computational limitations and constraints in GPU power, we expanded the scope of our experiments
to explore models with fewer parameters, smaller sizes, and different tokenizers. Implementing numerous
experiments, we utilized a model with 4 layers, 12 attention heads, a dropout rate of 0.3, and various
tokenizers, each with a vocabulary size of 1000.

Comparing evaluation metrics of two small models trained with REMI tokenizer and custom augmentation
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Figure 7.3.9: Small models trained on data tokenized with REMI, Structured & TSD

tokenizers:Comparison of distance distributions between metrics measured on generated outputs and
ground truth across the entire musical piece (left) and specifically on the generated voice (right).

We observed that the TSD tokenizer and REMI tokenizer appear to surpass the Structured Tokenizer in
terms of our metrics. However, to conduct experiments that comprehensively illustrate the advantages and
disadvantages of each, we need to undertake a more exhaustive experimentation process, additionally, ensuring
that our resources are adequate to handle this expanded experimentation is imperative.
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Conclusion

8.1 Discussion

In conclusion, this thesis explored a music generation task for the enrichment of Polyphonic Bach Chorales
through the development and evaluation of a Seq2Seq transformer-based model. Through careful prepro-
cessing, including, tokenization, data augmentation, standardization and more, we laid the foundation for
a modeling of how the careful handling of data is of great importance. The process involving transforming
symbolic music content into sequential form could potentially constitute a distinct field in itself.

Our experimental journey included a thorough examination of various model configurations, including param-
eter variations such as dropout rates, BPE vocabulary sizes, and temperature values. The results revealed
insights into the impact of these parameters on model performance, with notable observations regarding
convergence, overfitting, and the fidelity of generated voices.

Our comparative analyses provided subtle understandings of the model’s behavior, clarifying the trade-
offs and optimal configurations for achieving desired outcomes. Notably, the examination of loss curves
highlighted the convergence of models and underscored the importance of fine-tuning parameters to balance
performance and generalization.

We devoted a proportional amount of attention and resources to examine Symbolic Music Representations,
including their inherent structures and characteristics, alongside an exploration of the relevant tools and
frameworks facilitating interdisciplinary research. This investigation explores symbolic music encoding and
decoding processes, as well as the development of innovative techniques for effectively leveraging symbolic
music data in machine learning applications.

Additionally, we thoroughly review the evaluation techniques applied to generative music. This includes a
detailed exploration of the frameworks and libraries utilized for both quantitative and qualitative assessment
of musical compositions. We proposed an innovative evaluation approach that seems to converge with that of
human perception in musical terms. This evaluation shed light into the differences and qualities of the devel-
oped models, and revealed the significance of temperature selection in influencing the quality and consistency
of outputs, with a temperature value of 0.2 emerging as a reliable choice.

Overall, this thesis represents a significant step towards advancing the capabilities of Al-driven music gener-
ation and underscores the potential for transformative innovation in this interdisciplinary field.
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Chapter 8. Conclusion

8.2 Future Work

Through systematic experimentation and rigorous analysis, this research contributes valuable insights to the
field of music generation and transformer-based models.

Moving forward for further exploration, we plan to leverage masked pretraining and fine-tuning techniques
to further enhance the performance and adaptability of our model to specific musical tasks. Along with
that, we would include exploring additional architectural variations, and extending the application of voice
augmentation to diverse musical domains.

In addition to our investigation into harmonic understanding within the proposed model, our future work will
explore how evaluation methods outlined in [4] can inform the development of a custom loss function. This
aims to establish a method for penalizing the model based on criteria more closely aligned with harmonic
relevance rather than traditional cross-entropy distance metrics. By utilizing insights from these evaluation
techniques, we aim to enhance the model’s ability to capture and adhere to harmonic principles, thereby
further refining the quality and coherence of its generated musical compositions.

Given that the model displays an ability for understanding specific harmonic rules inherent in the given
melody, we aim to integrate explainability applications, allowing for a deeper understanding of the underlying
processes and decisions made during music generation.

An explainable model will provide us the opportunity to explore the use of counterfactual explanations or
attacks for further experimentation on conditional generation. By employing counterfactuals, we aim to
investigate how changes in specific features or conditions can influence the model’s output, thereby gaining
deeper insights into its creative abilities.

On the context of generative symbolic music, investigating different tokenization methods and models, in-
cluding both large language models (LLMs) and graph neural networks (GNNs), will provide opportunities
to explore diverse avenues for encoding and processing symbolic music data.

Although, exploring the intricacies of the tokenization process not only enhances our understanding of sym-
bolic music representation but also offers opportunities to model information and time dynamics effectively.
This may allow us to develop insights into how musical information is structured and conveyed over time,
thereby contributing to efforts that adopt the reverse path—converting audio signals into tokens. Under-
standing the tokenization process from this perspective enables us to bridge the gap between symbolic and
audio-based music representations, facilitating advancements in both domains and fostering interdisciplinary
collaborations in the field of music generation and synthesis [17].

Lastly, we plan to explore different evaluation methods, such as in [4] to assess the quality, coherence, and
expressiveness of the generated musical outputs comprehensively. These future endeavors will contribute to
advancing the capabilities and understanding of Al-driven music generation systems.
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