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Abstract 
The objective of this doctoral dissertation is to assess road crash risk by fusing 
infrastructure, traffic, and driving behaviour data. For this reason, two distinct 
databases were developed. The first one concerned motorway segments and included 
road crash, traffic, road geometry and driver behaviour data, while the second 
database concerned urban and interurban road segments of a broader area for which 
crash and traffic data were unavailable. 
 
The results of the negative binomial regression model for the motorway segments 
showed a positive and statistically significant relationship between road crash 
frequency and events of harsh driving behaviour. Subsequently, taking into account 
the number of road crashes per segment length and traffic volume, four crash risk 
levels of the motorway segments were formulated using hierarchical clustering. These 
four crash risk levels were used as the response variable in five machine learning 
classifiers that included predictors related to road geometry and risky driving 
behaviours. Among the five classification models, Random Forest demonstrated 
superior classification performance across all crash risk levels. Based on the SHAP 
values, it was revealed that harsh braking events serve as a more suitable Surrogate 
Safety Measure than harsh accelerations in terms of crash risk level prediction. 
 
For this reason, harsh brakings were used as the dependent variable in the analyses 
for urban and interurban segments of the broader road network. In addition to 
developing non-spatial models, the identification of spatial autocorrelation led to the 
development of spatial modelling techniques to account for spatial dependencies. It 
was found that the number of trips per segment, segment length and linearity, 
speeding and mobile phone use are positively correlated with harsh brakings. 
Conversely, motorways exhibited fewer harsh braking events compared to other road 
types. Furthermore, the number of trips per examined road segment was found to be 
the most influential predictor, highlighting its importance as a proxy measure of risk 
exposure. In terms of model performance, the Spatial Lag Model outperformed both 
the log-linear model and the Spatial Error Model. Better fit was also observed for the 
spatial Zero-Inflated Negative Binomial model, compared to the corresponding non-
spatial model. Finally, the Spatial Random Forest model reduced the absolute values 
of spatial autocorrelation in the residuals and showed a better fit to the observed data 
compared to the conventional Random Forest model. 
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Περίληψη 
Ο στόχος της παρούσας διδακτορικής διατριβής είναι η αξιολόγηση του κινδύνου 
οδικού ατυχήματος συνδυάζοντας δεδομένα υποδομής, κυκλοφορίας και 
συμπεριφοράς οδηγού. Για τον σκοπό αυτό, αναπτύχθηκαν δύο βάσεις δεδομένων. Η 
πρώτη αφορούσε τμήματα αυτοκινητοδρόμου και περιλάμβανε δεδομένα οδικών 
ατυχημάτων, κυκλοφορίας, γεωμετρίας και συμπεριφοράς των οδηγών, ενώ η δεύτερη 
αφορούσε τμήματα αστικών και υπεραστικών οδών μιας ευρύτερης περιοχής, για τα 
οποία δεν υπήρχαν διαθέσιμα δεδομένα ατυχημάτων και κυκλοφορίας.  
 
Τα αποτελέσματα του μοντέλου αρνητικής διωνυμικής παλινδρόμησης για τα τμήματα 
του αυτοκινητοδρόμου έδειξαν θετική και στατιστικά σημαντική συσχέτιση μεταξύ της 
συχνότητας οδικών ατυχημάτων και των συμβάντων απότομης συμπεριφοράς του 
οδηγού. Ακολούθως, λαμβάνοντας υπόψη τον αριθμό τον ατυχημάτων ανά μήκος 
τμήματος και τον κυκλοφοριακό φόρτο, διαμορφώθηκαν τέσσερα επίπεδα 
επικινδυνότητας των τμημάτων του αυτοκινητοδρόμου με χρήση της ιεραρχικής 
ομαδοποίησης. Τα τέσσερα επίπεδα επικινδυνότητας χρησιμοποιήθηκαν ως 
μεταβλητή απόκρισης σε πέντε ταξινομητές μηχανικής μάθησης που περιλάμβαναν 
προγνωστικούς παράγοντες σχετικά με τη γεωμετρία της οδού και επικίνδυνες 
συμπεριφορές οδήγησης. Μεταξύ των πέντε ταξινομητών που αναπτύχθηκαν, το 
μοντέλο Τυχαίων Δασών επέδειξε ανώτερες επιδόσεις ταξινόμησης σε όλες τις 
κατηγορίες επικινδυνότητας. Με βάση τις τιμές SHAP, προέκυψε ότι οι απότομες 
επιβραδύνσεις χρησιμεύουν ως καταλληλότερος Έμμεσος Δείκτης Ασφαλείας από τις 
απότομες επιταχύνσεις για την πρόβλεψη της επικινδυνότητας.  
 
Για τον λόγο αυτό, οι απότομες επιβραδύνσεις αποτέλεσαν την εξαρτημένη μεταβλητή 
των αναλύσεων για τα αστικά και υπεραστικά τμήματα του ευρύτερου οδικού δικτύου. 
Πέραν της ανάπτυξης μη χωρικών μοντέλων, ο εντοπισμός χωρικής αυτοσυσχέτισης 
οδήγησε στην ανάπτυξη χωρικών τεχνικών μοντελοποίησης, ώστε να ληφθούν υπόψη 
οι χωρικές εξαρτήσεις. Προέκυψε ότι ο αριθμός των διαδρομών ανά τμήμα, το μήκος 
και η γραμμικότητα του τμήματος, η υπέρβαση των ορίων ταχύτητας και η απόσπαση 
προσοχής συσχετίζονται θετικά με τις απότομες επιβραδύνσεις. Αντιθέτως, οι 
αυτοκινητόδρομοι παρουσίασαν λιγότερες απότομες επιβραδύνσεις συγκριτικά με 
άλλους τύπους οδού. Επιπλέον, προέκυψε ότι ο αριθμός των διαδρομών ανά τμήμα 
είναι ο πιο σημαντικός παράγοντας πρόβλεψης, αναδεικνύοντας την σημασία του ως 
υποκατάστατο μέτρο έκθεσης στον κίνδυνο. Όσον αφορά την επίδοση των μοντέλων, 
το Χωρικό Μοντέλο Υστέρησης ξεπέρασε τόσο το λογαριθμογραμμικό μοντέλο όσο 
και το Χωρικό Μοντέλο διόρθωσης του Σφάλματος. Καλύτερη προσαρμογή 
παρατηρήθηκε και για το χωρικό μοντέλο Μηδενικά Διογκωμένης Αρνητικής 
Διωνυμικής Παλινδρόμησης, συγκριτικά με το αντίστοιχο μη χωρικό μοντέλο. Τέλος, 
το Χωρικό μοντέλο Τυχαίων Δασών  μείωσε τις απόλυτες τιμές της χωρικής 
αυτοσυσχέτισης στα κατάλοιπα και παρουσίασε καλύτερη προσαρμογή στα 
παρατηρούμενα δεδομένα συγκριτικά με το συμβατικό μοντέλο Τυχαίων Δασών. 
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Extended Abstract 
Recognizing road safety as a crucial public health issue with significant societal and 
economic consequences, it is essential to understand the multifaceted nature of 
road crashes. Road crashes are influenced by various parameters that can be divided 
into three distinct categories: (i) road users, (ii) vehicles, and (iii) road infrastructure 
and environment. Notably, a substantial percentage of road crashes, up to 94%, can 
be attributed to human factors and errors, either exclusively or partially. 
 
Given the aforementioned context, the main objective of this dissertation is to assess 
road crash risk by fusing infrastructure, traffic, and driving behaviour data. This 
integration of data presents a promising avenue for research. Nevertheless, the 
practical implementation of this data fusion is frequently hindered by challenges such 
as insufficient availability or suboptimal quality of the data. 
 
Within the framework of this dissertation, an extensive literature review was 
conducted. The aim of this literature review process was to provide a review of the 
scientific literature of studies exploiting Surrogate Safety Measures (SSMs) in 
historical crash record investigations. SSMs encompass a wide range of metrics and 
parameters, which are not directly derived from or rely on crash data. From the review 
process, it was concluded that SSMs are steadily gaining ground in the road safety 
literature as they are a sustainable way of gauging road safety and allow the 
conduction of analyses without necessarily requiring historical road crash records. 
These indicators can either be an alternative to road safety analyses or even 
complement analyses that are based on historical crash records. Moreover, the rapid 
and continuous progress in the field of technology makes it increasingly easier to 
collect such metrics. SSMs such as time-to-collision, harsh braking, post-
encroachment time and so on, are widely proposed in transportation science and are 
particularly useful in order to evaluate driving risk and assess road crash risk. 
 
Subsequently, the following research questions were formulated: 
 
Question 1 
How can infrastructure, traffic and driver behaviour data be fused and analyzed to 
derive meaningful conclusions for road crash risk assessment? 
 
Question 2 

a) Can harsh driving behaviour events be meaningfully considered reliable SSMs? 
b) Is there a statistically significant positive correlation between harsh driving 

behaviour events and historical road crash records? 
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Question 3 
Is it possible to predict the crash risk level of road segments by exploiting road 
geometry characteristics and driver-behaviour based SSMs, and, if so, which Machine 
Learning (ML) classifiers are the most appropriate? 
 
Question 4 
Are harsh braking events more pertinent than harsh accelerations in predicting the 
crash risk level of road segments? 
 
Question 5 

a) In the absence of highly detailed historical road crash data, how can harsh 
braking events be analyzed across various road environments? 

b) Is there spatial autocorrelation present in harsh braking frequencies for road 
segments, and, if so, do spatial modelling approaches outperform their non-
spatial counterparts? 

 
Question 6 
Which road infrastructure and driver behaviour parameters exhibit a statistically 
significant impact on the number of harsh braking events per road segment? 
 
These research questions served as the driving force behind the entire research 
endeavor, exploring the integration and analysis of infrastructure, traffic, and driver 
behaviour data for meaningful conclusions in road crash risk assessment. In order to 
answer these research questions, an elaborate methodological framework was 
devised, which is shown in Figure I. 
 
The core of the methodological framework involved a multi-step process, commencing 
with the investigation of road safety modelling data in Greece, laying the 
groundwork for subsequent directions. This investigation highlighted the constraints 
associated with conducting high-detailed crash prediction modelling in Greece. Such 
modelling is only feasible for motorways with high-quality crash data, specifically 
regarding crash location and traffic attributes per road segment. In response to this 
limitation, two distinct databases were developed.  
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Figure I: Graphical representation of the overall methodological framework  

of the doctoral dissertation 
 
The first one focused on 668 motorway segments within the Olympia Odos 
motorway, containing comprehensive data on historical road crashes, traffic, road 
geometry characteristics, and naturalistic driver behaviour metrics. Specifically, crash 
data of all severity levels including property-damage-only (PDO) crashes for the years 
2018-2020 were exploited. In parallel with the road crash data, Average Annual Daily 
Traffic (AADT) data for the same time period were included in the developed database. 
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Regarding the road infrastructure characteristics, a variety of sources, such as 
information from the road operator and the use of different software, including Open 
GIS, Google Earth and GoogleStreetView, were combined. The inclusion of these road 
infrastructure data and of reference drawings of the motorway also enabled the 
identification and isolation of naturalistic driver behaviour data from a smartphone 
application. Driver behaviour data were collected for the period from June 1, 2019, to 
December 31, 2020, from a sample of 327 drivers in 2019 and 330 drivers in 2020. 
The average number of trips per motorway segment over the entire study period was 
769 trips. 
 
The second one covered a broader road network within the Region of Eastern 
Macedonia and Thrace, including urban and interurban roads. Within this road 
network, an initial analysis was conducted on all road segments sourced from 
OpenStreetMap (OSM) to extract their geometric and network characteristics. 
Subsequently, naturalistic driving behaviour data that were extracted from a 
smartphone application were aligned with the corresponding OSM segments. The 
examined road network included 6,103 road segments, with an average length of 
288.8 meters, resulting in a total road network length of 1,763 kilometers. Regarding 
the naturalistic driver behaviour metrics, data from 5,129 trips during 2021 were 
utilized. The mean trip duration was 634 seconds, with a standard deviation of 556 
seconds. However, the developed database for this road network lacked detailed 
crash and traffic data for the examined road segments. 
 
Various methodological tools were applied for the road segments of Olympia Odos 
motorway. These included techniques such as Negative Binomial (NB) regression for 
developing a crash frequency model, Hierarchical Clustering (HC) to determine crash 
risk levels based on historical crash data and traffic attributes, and the utilization of ML 
classifiers such as Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), 
K-Nearest Neighbours (K-NN) and Support Vector Machine (SVM). These classifiers 
were used for crash risk level prediction, leveraging infrastructure and driver behaviour 
data. A critical focus was placed on evaluating the reliability of harsh driving behaviour 
events as SSMs. 
 
Subsequently, the framework extended to include the road network data of Eastern 
Macedonia and Thrace Region, employing harsh braking events for road crash risk 
assessment. This involved applying both non-spatial and spatial models to identify 
significant road infrastructure and driver behaviour parameters influencing harsh 
braking events per road segment. 
 
Ultimately, the synthesis of all the analyses carried out within the framework of this 
doctoral dissertation resulted in a comprehensive road crash risk assessment with 
numerous original and interesting results, which are discussed in more detail below. 
 



 
Dimitrios Nikolaou | Machine learning-based road crash risk assessment 

fusing infrastructure, traffic and driver behaviour data 

 

[25] 
 

For the motorway analyses, a unified database including data on historical injury and 
PDO crashes, traffic attributes, road geometry characteristics, and driver behaviour 
SSMs of 668 road segments of the Olympia Odos motorway was exploited. The results 
of the crash frequency model (NB regression) revealed that road crash frequency in 
the examined motorway segments is positively correlated with the traffic volume, the 
length of the segment, the number of harsh accelerations and the number of harsh 
brakings per segment trips. This finding contributes to existing road safety literature 
by establishing a positive and statistically significant relationship between road 
crash frequency and events of harsh driving behaviour. Consequently, it is 
inferred that these events can serve as a valid subcategory of naturalistic SSMs. 
Specifically, they can be used either to complement Crash Prediction Models (CPMs) 
or as dependent variables in diverse proactive road safety analyses, particularly in 
cases where detailed historical road crash data are lacking. 
 
As a further phase of the motorway investigations, an endeavor was made to formulate 
crash risk level clusters of the motorway segments. This was achieved by 
considering the number of road crashes by segment length and the traffic volume of 
each segment using the agglomerative hierarchical clustering technique. Considering 
the influence of segment length and traffic volume, as indicated by the results of the 
negative binomial regression model, both variables were included into the clustering 
analysis due to their statistically significant impact on motorway segment crash 
frequency. The outcomes of this clustering process delineated four distinct crash risk 
levels with a clear pattern whereby the first risk level class presents high average 
numbers of traffic volume and road crashes by segment length, while these figures 
decrease progressively for each subsequent class. 
 
Subsequently, these identified four levels were utilized as the response variable in five 
ML classification models (LR, DT, RF, SVM, and K-NN). The models included 
predictors encompassing road geometry characteristics and unsafe driving 
behaviours, such as rates of harsh brakings, harsh accelerations, and speeding 
duration per trips within the analyzed segments. Among the five classification models, 
RF demonstrated superior classification performance across all crash risk levels, 
consistently achieving scores exceeding 89% (overall accuracy: 89.9%, macro-
averaged precision: 90.7%, macro-averaged recall: 89.9%, macro-averaged F1 score: 
90.2%). This outcome reveals the potential of the developed RF model as a highly 
promising proactive road safety tool, capable of effectively identifying and prioritizing 
potentially hazardous motorway segments. 
 
Finally, to enhance the interpretability of the RF model, which inherently operates as 
a black-box ML model, SHapley Additive exPlanations (SHAP) values were calculated 
for a typical motorway segment. Based on the SHAP values of the naturalistic driving 
behaviour predictors, it was revealed that harsh braking events serve as a more 
suitable SSM than harsh accelerations in terms of crash risk level prediction. 
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Within the broader road network of the Eastern Macedonia and Thrace Region, a 
spatial dataset consisting aggregated naturalistic driving behaviour metrics, as well as 
geometric and network characteristics on a segment level was analyzed. For the 
examined 6,103 road segments, and based on Moran's 𝐼𝐼 index, statistically significant 
and positive spatial autocorrelation in harsh braking event frequencies was 
detected. Initially, non-spatial modelling techniques, such as log-linear, Zero-Inflated 
Negative Binomial (ZINB) and conventional RF regression models were employed on 
harsh braking events frequencies. However, the existence of spatial autocorrelation 
highlighted the need for the development of spatial models, such as Spatial Error 
Model (SEM), Spatial Lag Model (SLM), Spatial Zero-Inflated Negative Binomial 
(SZINB) and Spatial Random Forest (SRF), in order to take into account such spatial 
dependencies.  
 
Consistent signs of the beta coefficients emerged across all models. Specifically, 
road segment length and the number of trips per segment were identified as proxy 
indicators of risk exposure, positively correlated with harsh braking events. 
Additionally, the efficiency index (statistically significant only in the log-linear model, 
SEM and SLM), related to the linearity of road segments, revealed a positive 
correlation with harsh braking events, suggesting that drivers exhibit more frequent 
harsh braking on road segments with fewer curves. Variables related to speeding and 
mobile phone use were also positively associated with harsh braking events, whereas 
motorways exhibited fewer harsh braking events compared to other road types. 
 
In both RF models, the number of trips per examined road segment was found to 
be the most influential predictor, highlighting its significant relevance in predicting 
the frequency of harsh braking events, as it serves as a naturalistic driving exposure 
metric. On the other hand, the motorway variable exhibited the lowest importance, 
indicating that road type is relatively less valuable in predicting the number of harsh 
braking events. This finding may suggest that factors other than road type such as 
driver distraction and speeding, might play a more crucial role in influencing harsh 
braking events frequencies. 
 
Regarding the performance of the developed models, SLM surpassed both the log-
linear model and the SEM, with lower AIC values and absence of spatial 
autocorrelation in its residuals. Lower AIC values, indicating a better fit, were also 
observed for the SZINB model compared to the non-spatial ZINB model. Moreover, 
the SRF reduced the absolute values of spatial autocorrelation in the residuals 
compared to the respective values of the conventional RF. In addition, the SRF 
outperformed the non-spatial RF model in terms of model fit to observed data, but the 
non-spatial model performed better in terms of generalization to unseen data. 
 
The results of the developed models for the examined road network of the Eastern 
Macedonia and Thrace Region are also visualized in maps. Indicatively, the results 
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of the SZINB model are presented in Figure II, whereas Figure III provides a zoomed-
in view of Figure II, focusing specifically on the center of the regional capital city of 
Xanthi. 
 

 
Figure II: Visualization of the SZINB results on the examined road network 

 

 
Figure III: Zoomed-in view of the SZINB results for the center of Xanthi 

 
This doctoral dissertation offers significant noteworthy contributions in the field of 
road safety, as discussed below. 
 
Holistic Data Collection Approach 
In the context of this doctoral dissertation, a holistic and comprehensive data 
collection was conducted to investigate the impact of driver behaviour, road 
infrastructure characteristics and traffic attributes on road crash risk assessment. 
Technological advancements have significantly facilitated the collection of data from 



 
Dimitrios Nikolaou | Machine learning-based road crash risk assessment 

fusing infrastructure, traffic and driver behaviour data 

 

[28] 
 

various sources, opening up new research opportunities that were previously 
unexplored. 
 
Specifically, this dissertation exploited high-resolution naturalistic driving big 
datasets collected from smartphone sensors to assess road crash risk on motorways 
and a broader road network, encompassing urban and interurban roads. For road 
infrastructure data on the examined motorway, a variety of sources were exploited, 
including data provided by the road operator and software such as Open GIS, Google 
Earth and GoogleStreetView. Geometric and network characteristics for the broader 
road network of the Eastern Macedonia and Thrace Region were derived using 
algorithms in the R programming language. Appropriate libraries were utilized to 
extract data from OSM and process them as simple spatial features. Concerning road 
crash and traffic data on the examined motorway, high-quality data from the road 
operator were employed. This included road crash data of all injury severities, 
including PDO crashes, with high accuracy in crash location, covering the period from 
2018 to 2020. Additionally, AADT data derived from the motorway toll stations for the 
corresponding period were utilized. 
 
Multi-Dimensional Data Fusion for Segment-Level Analyses 
The collection of data from various sources and at different levels necessitates 
appropriate processing for data integration. The first database comprised 668 
motorway segments ranging from 200 to 600 meters in length and was infrastructure-
based. It included data on historical road crashes, traffic volumes and geometric 
characteristics. Subsequently, driver behaviour metrics derived from smartphone 
sensors had to be assigned to the examined road segments. This involved allocating 
driving behaviour metrics from naturalistic data, which are driver-based, to the 
examined motorway segments, which are infrastructure-based data. This allocation 
was achieved via isolating each trip portion to the corresponding segment within the 
internal recording of trips conducted in GIS by the smartphone data providers using 
ESRI polygons at 200m intervals. 
 
For the broader urban and interurban network of the Eastern Macedonia and Thrace 
Region, which exclusively comprised infrastructure and driver behavior data, a series 
of processing algorithms were applied. Initially, a database was created for the 
considered road network, encompassing 6,103 road segments. This database 
contained key geometric characteristics such as length, curvature, road type, etc., for 
each segment. The data extraction from OSM and database creation involved 
exploiting R libraries specifically designed for these tasks. Next, the naturalistic driver 
behavior data, extracted from smartphone sensors and covering indicators like harsh 
braking events, speeding, distraction due to mobile phone use, etc., for every second 
of trips made in 2021 in the study area, had to be assigned to the corresponding road 
segments. This assignment was achieved through a spatial map-matching procedure. 
Initially, the centroid of each road segment line-string was identified using the 
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“st_centroid” function from the “sf” R library. It is noted that centroids are point-type 
quantities and represent the geometric center of each road segment. Subsequently, 
the aggregated driving behaviour metrics were assigned to the nearest road segment 
centroid based on the latitude and longitude coordinates for each trip-second. This 
process was executed using the "st_join" function and the "st_nearest_feature" 
geometry predicate function from the "sf" R library. 
 
Overall, the algorithms utilized in this doctoral dissertation, especially for the broader 
urban and interurban road network, facilitate the seamless transferability of the 
methodological and data processing framework employed in this dissertation. With 
minimal modifications, spatial data frames can be generated for various regions, 
allowing for analyses using the same or different variables, study periods, and 
statistical methodologies. 
 
Advanced and Innovative Combination of Modelling Techniques 
The wealth of high-resolution multiparametric data and the robustness of data 
processing and fusion enabled the development of advanced and innovate 
modelling techniques.  
 
Initially, a crash frequency model (NB regression) was developed. This model 
facilitated the investigation of the influence of various geometric characteristics, traffic 
attributes, and driver behaviour metrics on road crashes. Subsequently, agglomerative 
hierarchical clustering was employed to categorize crash risk levels for the analyzed 
road segments, which were then incorporated as the response variable in several ML 
classifiers. In addition to utilizing ML techniques, the analyses included the 
computation of SHAP values, a recent and potent addition in the field of explainable 
and interpretable ML. These values provided insights into the influential factors 
contributing to crash risk. This comprehensive approach enhances the sophistication 
of the modelling techniques and reinforces the interpretability of their results. 
 
With regard to the broader road network of the Eastern Macedonia and Thrace Region, 
the analyses incorporated harsh braking events as the dependent variables for the 
developed models. Notably, the modelling techniques employed in this doctoral 
dissertation are, to the best of the author's knowledge, being applied for the first time 
to harsh braking events. Among these innovative modelling approaches are the 
SEM, SLM, SZINB, and SRF. It is worth emphasizing that the application of the SRF 
is particularly noteworthy, representing a novel modelling technique applicable not 
only to harsh braking events but also to various aspects of road safety analyses. 
 
Multi-factor Estimation of Crash Risk on Motorways 
Utilizing the high-quality and detailed database developed for the road segments of 
the motorway, aiming to address the research questions posed in this doctoral 
dissertation, valuable and innovative conclusions were drawn. Specifically, statistical 
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correlations from the road crash frequency model revealed a positive and statistically 
significant relationship between historical road crash data and the number of harsh 
driving behaviours. This applies to both the number of harsh accelerations and the 
number of harsh brakings per passed trips within the examined motorway segments. 
This indicates that these indicators of harsh driving behaviour can be utilized as 
SSMs, either complementing traditional crash frequency models or serving as 
dependent variables in road crash risk assessment models in areas where either road 
crash data are unavailable or the available crash data are of low quality. 
 
Additionally, this thesis highlighted an innovative insight, emphasizing that the 
contribution of harsh brakings, compared to harsh accelerations, is higher in predicting 
the crash risk level for road segments. This makes harsh brakings a more suitable 
SSM indicator for proactive road safety analyses, enhancing the understanding of 
road crash risk and providing practical implications for targeted interventions. 
 
Surrogate Estimation of Crash Risk on Urban and Interurban Road Network 
The assessment of this dissertation's contributions would be inadequate without 
recognizing the broader implications of the developed models on the road network of 
the Eastern Macedonia and Thrace Region. In these models, the dependent variables 
were represented by the number of harsh braking events, serving as SSMs. The 
detection of statistically significant and positively correlated spatial autocorrelation 
in harsh braking event frequencies compelled the development of spatial modelling 
approaches. Pivotal to frequency analyses is the measurement of exposure, with 
this dissertation employing two primary exposure variables for the respective models: 
road segment length and the number of trips per segment. This research identifies the 
statistically significant influence of these exposure variables on the number of harsh 
braking events, quantifying their respective impacts. Additionally, it incorporates 
various indicators related to road environment and driver behaviour, contributing to a 
comprehensive assessment of road crash risk. 
 
The creation of comprehensive road safety maps and heatmaps illustrating harsh 
braking events stands as a valuable tool for road management authorities, 
stakeholders and road users. These visualizations present complex data and model 
predictions in an easily comprehensible manner, facilitating communication and 
integration into diverse decision-making processes. Through these maps, the 
multifaceted efforts of this dissertation in road crash risk assessment are effectively 
communicated to both the scientific community and the public domain. Overall, SSMs, 
such as harsh braking events, offer significant potential for monitoring road safety, 
evaluating and enhancing countermeasures, and expanding road safety data 
coverage rapidly. In academia, SSM modelling exercises have emerged in recent 
years. Apart from contributing in that field, this doctoral dissertation demonstrated that 
with the necessary effort, SSM-based spatial models can be used in scarcely-
studied areas.  
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Εκτεταμένη Περίληψη 
Αναγνωρίζοντας την οδική ασφάλεια ως κρίσιμο ζήτημα δημόσιας υγείας με 
σημαντικές κοινωνικές και οικονομικές επιπτώσεις, είναι απαραίτητο να κατανοηθεί η 
πολύπλευρη φύση των οδικών ατυχημάτων. Τα οδικά ατυχήματα επηρεάζονται 
από διάφορες παραμέτρους που μπορούν να χωριστούν σε τρεις διακριτές 
κατηγορίες: (i) χρήστες της οδού, (ii) οχήματα και (iii) οδική υποδομή και οδικό 
περιβάλλον. Αξίζει να σημειωθεί ότι ένα σημαντικό ποσοστό των οδικών ατυχημάτων, 
έως και 94%, μπορεί να αποδοθεί, είτε αποκλειστικά είτε εν μέρει, στον ανθρώπινο 
παράγοντα και σε ανθρώπινα λάθη. 
 
Λαμβάνοντας υπόψη το προαναφερθέν πλαίσιο, ο κύριος στόχος της παρούσας 
διδακτορικής διατριβής είναι η αξιολόγηση του κινδύνου οδικού ατυχήματος 
συνδυάζοντας δεδομένα οδικής υποδομής, κυκλοφορίας και συμπεριφοράς 
του οδηγού. Αυτός ο συνδυασμός των δεδομένων αποτελεί μια πολλά υποσχόμενη 
κατεύθυνση για έρευνα. Ωστόσο, η πρακτική εφαρμογή αυτού του συνδυασμού 
δεδομένων παρεμποδίζεται συχνά από δυσκολίες και προκλήσεις όπως η ανεπαρκής 
διαθεσιμότητα δεδομένων ή η μη βέλτιστη ποιότητά τους. 
 
Στο πλαίσιο της παρούσας διατριβής, διεξήχθη εκτενής βιβλιογραφική ανασκόπηση. 
Σκοπός αυτής της διαδικασίας ήταν να παράσχει μια ανασκόπηση της επιστημονικής 
βιβλιογραφίας των μελετών που αξιοποιούν τους Έμμεσους Δείκτες Ασφαλείας (ΕΔΑ) 
σε διερευνήσεις ιστορικών οδικών ατυχημάτων. Οι ΕΔΑ περιλαμβάνουν ένα ευρύ 
φάσμα μετρήσεων και παραμέτρων, οι οποίες δεν προκύπτουν άμεσα από δεδομένα 
οδικών ατυχημάτων ή δεν βασίζονται σε αυτά. Από τη διαδικασία της βιβλιογραφικής 
ανασκόπησης προέκυψε το συμπέρασμα ότι οι ΕΔΑ κερδίζουν συνεχώς έδαφος 
στην έρευνα για την οδική ασφάλεια, καθώς αποτελούν έναν βιώσιμο τρόπο 
μέτρησης της οδικής ασφάλειας και επιτρέπουν τη διεξαγωγή αναλύσεων χωρίς να 
χρειάζονται απαραίτητα ιστορικά δεδομένα οδικών ατυχημάτων. Οι δείκτες αυτοί 
μπορούν είτε να αποτελέσουν εναλλακτική λύση για τις αναλύσεις οδικής ασφάλειας 
είτε ακόμη και να συμπληρώσουν τις αναλύσεις που βασίζονται σε ιστορικά δεδομένα 
ατυχημάτων. Επιπλέον, η ταχεία και συνεχής πρόοδος στον τομέα της τεχνολογίας 
καθιστά όλο και πιο εύκολη τη συλλογή τέτοιων δεικτών. Οι ΕΔΑ, όπως ο χρόνος για 
σύγκρουση με το προπορευόμενο όχημα, η απότομη επιβράδυνση κτλ., προτείνονται 
ευρέως στην επιστήμη των μεταφορών και είναι ιδιαίτερα χρήσιμοι προκειμένου να 
αξιολογηθεί ο κίνδυνος οδικών ατυχημάτων. 
 
Στη συνέχεια, διατυπώθηκαν τα ακόλουθα ερευνητικά ερωτήματα: 
 
Ερώτημα 1 
Πώς μπορούν να συνδυαστούν και να αναλυθούν τα δεδομένα υποδομής, 
κυκλοφορίας και συμπεριφοράς των οδηγών ώστε να εξαχθούν χρήσιμα 
συμπεράσματα για την αξιολόγηση του κινδύνου οδικού ατυχήματος; 
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Ερώτημα 2 

α) Μπορούν τα συμβάντα απότομης συμπεριφοράς του οδηγού να θεωρηθούν 
αξιόπιστοι ΕΔΑ; 

β) Υπάρχει στατιστικά σημαντική και θετική συσχέτιση μεταξύ συμβάντων 
απότομης συμπεριφοράς του οδηγού και ιστορικών δεδομένων οδικών 
ατυχημάτων; 

 
Ερώτημα 3 
Είναι δυνατή η πρόβλεψη της επικινδυνότητας οδικών τμημάτων με την αξιοποίηση 
των γεωμετρικών χαρακτηριστικών της οδού και των ΕΔΑ που βασίζονται στη 
συμπεριφορά του οδηγού, και, αν ναι, ποιοι ταξινομητές μηχανικής μάθησης είναι οι 
καταλληλότεροι; 
 
Ερώτημα 4 
Είναι τα συμβάντα απότομων επιβραδύνσεων πιο σημαντικά από εκείνα των 
απότομων επιταχύνσεων για την πρόβλεψη της κατηγορίας επικινδυνότητας των 
οδικών τμημάτων; 
 
Ερώτημα 5 

α) Ελλείψει ιδιαίτερα λεπτομερών ιστορικών δεδομένων οδικών ατυχημάτων, πώς 
μπορούν να αναλυθούν οι απότομες επιβραδύνσεις σε διάφορα οδικά 
περιβάλλοντα; 

β) Υπάρχει χωρική αυτοσυσχέτιση στις συχνότητες απότομων επιβραδύνσεων για 
τα οδικά τμήματα και, αν ναι, οι προσεγγίσεις χωρικής μοντελοποίησης 
υπερτερούν έναντι των αντίστοιχων μη χωρικών προσεγγίσεων; 

 
Ερώτημα 6 
Ποιες παράμετροι της οδικής υποδομής και της συμπεριφοράς του οδηγού 
παρουσιάζουν στατιστικά σημαντική επιρροή στον αριθμό των απότομων 
επιβραδύνσεων ανά οδικό τμήμα; 
 
Αυτά τα ερευνητικά ερωτήματα αποτέλεσαν την κινητήρια δύναμη πίσω από την 
παρούσα ερευνητική προσπάθεια, διερευνώντας τον συνδυασμό και την ανάλυση των 
δεδομένων υποδομής, κυκλοφορίας και συμπεριφοράς των οδηγών για την εξαγωγή 
ουσιαστικών συμπερασμάτων στην εκτίμηση του κινδύνου οδικών ατυχημάτων. 
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Προκειμένου να απαντηθούν αυτά τα ερευνητικά ερωτήματα, σχεδιάστηκε ένα 
σύνθετο μεθοδολογικό πλαίσιο, το οποίο παρουσιάζεται στο Σχήμα Ι.  

 
Σχήμα I: Γραφική αναπαράσταση του γενικού μεθοδολογικού πλαισίου 

της διδακτορικής διατριβής 
 
Ο πυρήνας του μεθοδολογικού πλαισίου περιλάμβανε μια διαδικασία πολλών 
σταδίων, η οποία ξεκίνησε με τη διερεύνηση των διαθέσιμων δεδομένων 
μοντελοποίησης της οδικής ασφάλειας στην Ελλάδα, θέτοντας τις βάσεις για τις 
επόμενες κατευθύνσεις. Η διερεύνηση αυτή ανέδειξε τους περιορισμούς που 



 
Dimitrios Nikolaou | Machine learning-based road crash risk assessment 

fusing infrastructure, traffic and driver behaviour data 

 

[34] 
 

σχετίζονται με την ανάπτυξη λεπτομερών μοντέλων πρόβλεψης ατυχημάτων στην 
Ελλάδα. Η ανάπτυξη τέτοιων μοντέλων είναι εφικτή μόνο για τους αυτοκινητοδρόμους 
καθώς για αυτούς υπάρχουν υψηλής ποιότητας διαθέσιμα δεδομένα ατυχημάτων, 
ειδικά όσον αφορά στην ακριβή θέση των ατυχημάτων και τα χαρακτηριστικά της 
κυκλοφορίας ανά οδικό τμήμα. Για να αντιμετωπιστεί αυτός ο περιορισμός, 
αναπτύχθηκαν δύο διαφορετικές βάσεις δεδομένων. 
 
Η πρώτη βάση δεδομένων επικεντρώθηκε σε 668 οδικά τμήματα του 
αυτοκινητοδρόμου της Ολυμπίας Οδού, για τα οποία υπήρχαν διαθέσιμα δεδομένα 
σχετικά με τα οδικά ατυχήματα, την κυκλοφορία, τα γεωμετρικά χαρακτηριστικά και 
διάφορους δείκτες συμπεριφοράς των οδηγών. Συγκεκριμένα, αξιοποιήθηκαν 
δεδομένα ατυχημάτων όλων των επιπέδων σοβαρότητας, συμπεριλαμβανομένων των 
ατυχημάτων με υλικές ζημιές μόνο, για τα έτη 2018-2020. Παράλληλα με τα δεδομένα 
οδικών ατυχημάτων, στη βάση δεδομένων που αναπτύχθηκε συμπεριλήφθηκαν 
δεδομένα Ετήσιας Μέσης Ημερήσιας Κυκλοφορίας (ΕΜΗΚ) για την ίδια χρονική 
περίοδο. Όσον αφορά τα χαρακτηριστικά της οδικής υποδομής, συνδυάστηκαν 
πληροφορίες από διάφορες πηγές, όπως δεδομένα από τον φορέα διαχείρισης του 
αυτοκινητοδρόμου και δεδομένα που προήλθαν από τη χρήση διαφόρων λογισμικών, 
συμπεριλαμβανομένων των Open GIS, Google Earth και GoogleStreetView. Η 
συμπερίληψη των δεδομένων οδικής υποδομής και των σχεδίων αναφοράς του 
αυτοκινητόδρομου επέτρεψε επίσης τον εντοπισμό και την απομόνωση των 
δεδομένων συμπεριφοράς του οδηγού υπό πραγματικές συνθήκες μέσω μιας 
εφαρμογής για έξυπνα κινητά τηλέφωνα. Τα δεδομένα συμπεριφοράς των οδηγών 
συλλέχθηκαν για την περίοδο από την 1η Ιουνίου 2019 έως τις 31 Δεκεμβρίου 2020, 
από δείγμα 327 οδηγών το 2019 και 330 οδηγών το 2020. Ο μέσος αριθμός 
διαδρομών ανά τμήμα αυτοκινητόδρομου καθ' όλη τη διάρκεια της περιόδου μελέτης 
ήταν 769 διαδρομές. 
 
Η δεύτερη βάση δεδομένων κάλυψε ένα ευρύτερο οδικό δίκτυο εντός της 
Περιφέρειας Ανατολικής Μακεδονίας και Θράκης, συμπεριλαμβανομένων τόσο 
αστικών όσο και υπεραστικών οδών. Για το εξεταζόμενο δίκτυο, πραγματοποιήθηκε 
μια αρχική ανάλυση όλων των οδικών τμημάτων που προήλθαν από το 
OpenStreetMap (OSM) για την εξαγωγή των γεωμετρικών χαρακτηριστικών τους. Στη 
συνέχεια, τα δεδομένα συμπεριφοράς των οδηγών υπό πραγματικές συνθήκες, τα 
οποία εξήχθησαν από εφαρμογή για έξυπνα κινητά τηλέφωνα, αντιστοιχήθηκαν με τα 
αντίστοιχα οδικά τμήματα του OSM. Το εξεταζόμενο οδικό δίκτυο περιλάμβανε 6.103 
οδικά τμήματα, με μέσο μήκος 288,8 μέτρα, με αποτέλεσμα το συνολικό μήκος του 
οδικού δικτύου να ανέρχεται σε 1.763 χιλιόμετρα. Όσον αφορά τις μετρήσεις της 
συμπεριφοράς του οδηγού, χρησιμοποιήθηκαν δεδομένα από 5.129 ταξίδια κατά τη 
διάρκεια του 2021. Η μέση διάρκεια ταξιδιού ήταν 634 δευτερόλεπτα, με τυπική 
απόκλιση 556 δευτερόλεπτα. Ωστόσο, επισημαίνεται ότι η βάση δεδομένων που 
αναπτύχθηκε για το εν λόγω οδικό δίκτυο δεν περιείχε λεπτομερή δεδομένα 
ατυχημάτων και κυκλοφορίας για τα εξεταζόμενα οδικά τμήματα. 
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Εφαρμόστηκαν διάφορα μεθοδολογικά εργαλεία για τα οδικά τμήματα του 
αυτοκινητόδρομου της Ολυμπίας Οδού. Σε αυτά περιλαμβάνονταν τεχνικές όπως η 
αρνητική διωνυμική παλινδρόμηση (ΑΔΠ) για την ανάπτυξη ενός μοντέλου 
συχνότητας ατυχημάτων, η ιεραρχική ομαδοποίηση (ΙΟ) για τον προσδιορισμό των 
επιπέδων επικινδυνότητας των τμημάτων με βάση ιστορικά δεδομένα ατυχημάτων και 
χαρακτηριστικά της κυκλοφορίας, και η χρήση ταξινομητών μηχανικής μάθησης όπως 
η Λογιστική Παλινδρόμηση (ΛΠ), το Δέντρο Αποφάσεων (ΔΑ), τα Τυχαία Δάση (ΤΔ), 
οι K-Πλησιέστεροι Γείτονες (Κ-ΠΓ) και οι Μηχανές Διανυσμάτων Υποστήριξης (ΜΔΥ). 
Αυτοί οι ταξινομητές χρησιμοποιήθηκαν για την πρόβλεψη του επιπέδου 
επικινδυνότητας των τμημάτων, αξιοποιώντας δεδομένα υποδομής και συμπεριφοράς 
των οδηγών. Ιδιαίτερη έμφαση δόθηκε στην αξιολόγηση της αξιοπιστίας των 
συμβάντων απότομης συμπεριφοράς του οδηγού ως ΕΔΑ. 
 
Στη συνέχεια, το πλαίσιο επεκτάθηκε για να συμπεριλάβει τα δεδομένα του οδικού 
δικτύου της Περιφέρειας Ανατολικής Μακεδονίας και Θράκης, αξιοποιώντας συμβάντα 
απότομων επιβραδύνσεων για την αξιολόγηση του κινδύνου οδικών ατυχημάτων. 
Αυτό περιλάμβανε την εφαρμογή τόσο μη χωρικών όσο και χωρικών μοντέλων για 
τον εντοπισμό σημαντικών παραμέτρων οδικής υποδομής και συμπεριφοράς του 
οδηγού που επηρεάζουν τον αριθμό των απότομων επιβραδύνσεων ανά οδικό τμήμα. 
 
Τελικώς, η σύνθεση όλων των αναλύσεων που πραγματοποιήθηκαν στο πλαίσιο της 
παρούσας διδακτορικής διατριβής οδήγησε σε μια ολοκληρωμένη αξιολόγηση του 
κινδύνου οδικών ατυχημάτων με πολλά πρωτότυπα και ενδιαφέροντα 
αποτελέσματα, τα οποία αναλύονται με περισσότερη λεπτομέρεια παρακάτω. 
 
Για τις αναλύσεις του αυτοκινητοδρόμου, αξιοποιήθηκε μια ενοποιημένη βάση 
δεδομένων που περιλάμβανε δεδομένα για ιστορικά οδικά ατυχήματα με 
τραυματισμούς και ατυχήματα με υλικές ζημιές, χαρακτηριστικά κυκλοφορίας, 
χαρακτηριστικά γεωμετρίας της οδού και ΕΔΑ συμπεριφοράς οδηγού για 668 οδικά 
τμήματα του αυτοκινητοδρόμου της Ολυμπίας Οδού. Τα αποτελέσματα του μοντέλου 
συχνότητας ατυχημάτων (ΑΔΠ) έδειξαν ότι η συχνότητα οδικών ατυχημάτων στα 
εξεταζόμενα τμήματα του αυτοκινητοδρόμου συσχετίζεται θετικά με τον κυκλοφοριακό 
φόρτο, το μήκος του εξεταζόμενου οδικού τμήματος, τον αριθμό των απότομων 
επιταχύνσεων και τον αριθμό των απότομων επιβραδύνσεων ανά διερχόμενες 
διαδρομές του κάθε τμήματος. Το εύρημα αυτό συμβάλλει στην υπάρχουσα 
βιβλιογραφία για την οδική ασφάλεια, καθώς διαπιστώνει θετική και στατιστικά 
σημαντική σχέση μεταξύ της συχνότητας οδικών ατυχημάτων και των 
συμβάντων απότομης συμπεριφοράς του οδηγού. Κατά συνέπεια, συνάγεται ότι 
αυτά τα συμβάντα μπορούν να χρησιμεύσουν ως έγκυρη υποκατηγορία των ΕΔΑ υπό 
πραγματικές συνθήκες οδήγησης. Συγκεκριμένα, μπορούν να χρησιμοποιηθούν είτε 
για τη συμπλήρωση των μοντέλων πρόβλεψης ατυχημάτων (ΜΠΑ) είτε ως 
εξαρτημένες μεταβλητές σε διάφορες προληπτικές αναλύσεις οδικής ασφάλειας, ιδίως 
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σε περιπτώσεις όπου δεν υπάρχουν λεπτομερή ιστορικά δεδομένα οδικών 
ατυχημάτων. 
 
Ως περαιτέρω στάδιο των ερευνών για τον αυτοκινητόδρομο, έγινε προσπάθεια να 
διαμορφωθούν επίπεδα επικινδυνότητας των εξεταζόμενων οδικών τμημάτων. 
Αυτό επιτεύχθηκε λαμβάνοντας υπόψη τον αριθμό των οδικών ατυχημάτων ανά μήκος 
τμήματος και την κυκλοφορία κάθε τμήματος με τη χρήση της τεχνικής της 
συσσωρευτικής ιεραρχικής ομαδοποίησης. Λαμβάνοντας υπόψη την επιρροή του 
μήκους του οδικού τμήματος και του κυκλοφοριακού φόρτου, όπως προκύπτει από τα 
αποτελέσματα του μοντέλου ΑΔΠ, και οι δύο αυτές μεταβλητές συμπεριλήφθηκαν 
στην ανάλυση ομαδοποίησης λόγω της στατιστικά σημαντικής επίδρασής τους στη 
συχνότητα ατυχημάτων στα εξεταζόμενα οδικά τμήματα. Τα αποτελέσματα αυτής της 
διαδικασίας ομαδοποίησης καθόρισαν τέσσερα διακριτά επίπεδα επικινδυνότητας με 
ένα σαφές μοτίβο, σύμφωνα με το οποίο η πρώτη κατηγορία επικινδυνότητας 
παρουσιάζει υψηλό μέσο κυκλοφοριακό φόρτο και αριθμό οδικών ατυχημάτων ανά 
μήκος τμήματος, ενώ τα μεγέθη αυτά μειώνονται προοδευτικά για κάθε επόμενη 
κατηγορία επικινδυνότητας. 
 
Στη συνέχεια, τα τέσσερα επίπεδα επικινδυνότητας χρησιμοποιήθηκαν ως εξαρτημένη 
μεταβλητή/ μεταβλητή απόκρισης σε πέντε μοντέλα ταξινόμησης μηχανικής μάθησης 
(ΛΠ, ΔΑ, ΤΔ, ΜΔΥ και K-ΠΓ). Οι ταξινομητές αυτοί, περιλάμβαναν προγνωστικούς 
παράγοντες σχετικά με τα γεωμετρικά χαρακτηριστικά της οδού και μη ασφαλείς 
συμπεριφορές οδήγησης, όπως δείκτες απότομων επιβραδύνσεων, απότομων 
επιταχύνσεων και διάρκεια υπέρβασης των ορίων ταχύτητας ανά διαδρομή εντός των 
εξεταζόμενων οδικών τμημάτων. Μεταξύ των πέντε μοντέλων, το μοντέλο ΤΔ 
επέδειξε ανώτερες επιδόσεις ταξινόμησης σε όλες τις κατηγορίες επικινδυνότητας, 
επιτυγχάνοντας σταθερά βαθμολογίες άνω του 89% (συνολική ορθότητα: 89,9%, 
μακρο-μεσοσταθμική ακρίβεια: 90,7%, μακρο-μεσοσταθμική ανάκληση: 89,9%, 
μακρο-μεσοσταθμική βαθμολογία F1: 90,2%). Το αποτέλεσμα αυτό αποκαλύπτει τις 
δυνατότητες του μοντέλου ΤΔ που αναπτύχθηκε ως ένα πολλά υποσχόμενο 
προληπτικό εργαλείο οδικής ασφάλειας, ικανό να εντοπίζει αποτελεσματικά και να 
ιεραρχεί δυνητικά επικίνδυνα τμήματα αυτοκινητοδρόμων. 
 
Τέλος, για να διευκολυνθεί η ερμηνεία του μοντέλου ΤΔ, το οποίο λειτουργεί εγγενώς 
ως μοντέλο-μαύρο κουτί μηχανικής μάθησης, υπολογίστηκαν οι τιμές SHAP για ένα 
τυπικό τμήμα αυτοκινητόδρομου. Με βάση τις τιμές SHAP των προβλεπτικών 
παραγόντων συμπεριφοράς οδηγού, προέκυψε ότι οι απότομες επιβραδύνσεις 
χρησιμεύουν ως πιο κατάλληλος ΕΔΑ από τις απότομες επιταχύνσεις όσον 
αφορά την πρόβλεψη της επικινδυνότητας των οδικών τμημάτων. 
 
Στο πλαίσιο του ευρύτερου οδικού δικτύου της Περιφέρειας Ανατολικής Μακεδονίας 
και Θράκης, αναλύθηκε ένα σύνολο χωρικών δεδομένων που αποτελείται από 
συγκεντρωτικούς δείκτες συμπεριφοράς του οδηγού υπό πραγματικές συνθήκες, 
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καθώς και γεωμετρικά χαρακτηριστικά και λοιπά χαρακτηριστικά του δικτύου σε 
επίπεδο οδικού τμήματος. Για τα εξεταζόμενα 6.103 οδικά τμήματα, και με βάση τον 
δείκτη Moran's 𝐼𝐼, εντοπίστηκε στατιστικά σημαντική και θετική χωρική 
αυτοσυσχέτιση στις συχνότητες των απότομων επιβραδύνσεων. Αρχικά, 
χρησιμοποιήθηκαν μη χωρικές τεχνικές μοντελοποίησης, όπως το λογαριθμογραμμικό 
μοντέλο, η Μηδενικά Διογκωμένη Αρνητική Διωνυμική (ΜΔΑΔ) παλινδρόμηση και το 
συμβατικό μοντέλο παλινδρόμησης ΤΔ στις συχνότητες των απότομων 
επιβραδύνσεων. Ωστόσο, η ύπαρξη χωρικής αυτοσυσχέτισης ανέδειξε την ανάγκη 
ανάπτυξης χωρικών μοντέλων, όπως το Χωρικό Μοντέλο διόρθωσης του Σφάλματος 
(ΧΜΣ), το Χωρικό Μοντέλο Υστέρησης (ΧΜΥ), το Χωρικό μοντέλο Μηδενικά 
Διογκωμένης Αρνητικής Διωνυμικής παλινδρόμησης (ΧΜΔΑΔ)  και το Χωρικό μοντέλο 
Τυχαίων Δασών (ΧΤΔ), προκειμένου να ληφθούν υπόψη αυτές οι χωρικές εξαρτήσεις. 
 
Σε όλα τα μοντέλα που αναπτύχθηκαν προέκυψαν σταθερά πρόσημα στους 
συντελεστές των μεταβλητών. Συγκεκριμένα, το μήκος του οδικού τμήματος και ο 
αριθμός των διαδρομών ανά τμήμα προσδιορίστηκαν ως υποκατάστατοι δείκτες της 
έκθεσης σε κίνδυνο, οι οποίοι συσχετίζονται θετικά με τις απότομες επιβραδύνσεις. 
Επιπλέον, ο δείκτης αποτελεσματικότητας (στατιστικά σημαντικός μόνο στο 
λογαριθμογραμμικό μοντέλο, στο ΜΧΣ και στο ΜΧΥ), που σχετίζεται με τη 
γραμμικότητα των οδικών τμημάτων, παρουσίασε θετική συσχέτιση με τα συμβάντα 
απότομων επιβραδύνσεων, υποδηλώνοντας ότι οι οδηγοί προβαίνουν συχνότερα σε 
απότομες επιβραδύνσεις σε οδικά τμήματα με λιγότερες καμπύλες. Οι μεταβλητές που 
σχετίζονται με την υπέρβαση των ορίων ταχύτητας και τη χρήση κινητού τηλεφώνου 
συσχετίστηκαν επίσης θετικά με τις απότομες επιβραδύνσεις, ενώ οι αυτοκινητόδρομοι 
παρουσίασαν λιγότερα συμβάντα απότομων επιβραδύνσεων σε σύγκριση με άλλους 
τύπους οδού. 
 
Και στα δύο μοντέλα ΤΔ, ο αριθμός των διαδρομών ανά εξεταζόμενο οδικό τμήμα 
βρέθηκε να είναι ο πιο σημαντικός παράγοντας πρόβλεψης, αναδεικνύοντας την 
υψηλή σημασία του στην πρόβλεψη της συχνότητας των απότομων επιβραδύνσεων, 
καθώς χρησιμεύει ως μέτρο έκθεσης στον κίνδυνο. Από την άλλη πλευρά, η μεταβλητή 
«αυτοκινητόδρομος» παρουσίασε τη χαμηλότερη επιρροή, υποδεικνύοντας ότι ο 
τύπος της οδού είναι σχετικά λιγότερο κρίσιμος για την πρόβλεψη του αριθμού των 
απότομων επιβραδύνσεων. Το εύρημα αυτό μπορεί να υποδηλώνει ότι άλλοι 
παράγοντες πέραν του τύπου της οδού, όπως η απόσπαση της προσοχής του οδηγού 
και η υπέρβαση των ορίων ταχύτητας, ενδεχομένως να κατέχουν σημαντικότερο ρόλο 
στην επιρροή της συχνότητας των απότομων επιβραδύνσεων. 
 
Όσον αφορά την επίδοση των μοντέλων που αναπτύχθηκαν, το ΧΜΥ ξεπέρασε τόσο 
το λογαριθμογραμμικό μοντέλο όσο και το ΧΜΣ, με χαμηλότερες τιμές του δείκτη AIC 
και απουσία χωρικής αυτοσυσχέτισης στα κατάλοιπά του. Χαμηλότερες τιμές του 
δείκτη AIC, που υποδηλώνουν καλύτερη προσαρμογή, παρατηρήθηκαν επίσης για το 
μοντέλο ΧΜΔΑΔ σε σύγκριση με το μη χωρικό μοντέλο ΜΔΑΔ. Επιπλέον, το ΧΤΔ 
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μείωσε τις απόλυτες τιμές της χωρικής αυτοσυσχέτισης στα κατάλοιπα σε 
σύγκριση με τις αντίστοιχες τιμές του συμβατικού μοντέλου ΤΔ. Επιπλέον, το ΧΤΔ 
υπερείχε του μη χωρικού μοντέλου ΤΔ όσον αφορά την προσαρμογή του μοντέλου 
στα παρατηρούμενα δεδομένα, αλλά το μη χωρικό μοντέλο είχε καλύτερες επιδόσεις 
όσον αφορά τη γενίκευση σε μη παρατηρούμενα δεδομένα. 
 
Τα αποτελέσματα των μοντέλων που αναπτύχθηκαν για το εξεταζόμενο οδικό δίκτυο 
της Περιφέρειας Ανατολικής Μακεδονίας και Θράκης απεικονίζονται επίσης σε 
χάρτες. Ενδεικτικά, τα αποτελέσματα του μοντέλου ΧΜΔΑΔ παρουσιάζονται στο 
Σχήμα ΙΙ, ενώ το Σχήμα ΙΙΙ παρέχει μια μεγεθυμένη άποψη του Σχήματος ΙΙ, 
εστιάζοντας συγκεκριμένα στο κέντρο της πόλης της Ξάνθης. 
 

 
Σχήμα II: Απεικόνιση των αποτελεσμάτων του μοντέλου ΧΜΔΑΔ στο εξεταζόμενο οδικό δίκτυο 

 

 
Σχήμα III: Μεγεθυμένη άποψη των αποτελεσμάτων του μοντέλου ΧΜΔΑΔ για το κέντρο της Ξάνθης 
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Η παρούσα διδακτορική διατριβή προσφέρει αξιοσημείωτες και καινοτόμες 
συνεισφορές στον τομέα της οδικής ασφάλειας. Οι συνεισφορές αυτές 
παρουσιάζονται με περισσότερη λεπτομέρεια παρακάτω. 
 
Ολιστική Προσέγγιση Συλλογής Δεδομένων 
Στο πλαίσιο της παρούσας διδακτορικής διατριβής, πραγματοποιήθηκε μια εκτενής 
συλλογή δεδομένων για τη διερεύνηση της επιρροής της συμπεριφοράς του οδηγού, 
των χαρακτηριστικών της οδικής υποδομής και των χαρακτηριστικών της κυκλοφορίας 
στην αξιολόγηση του κινδύνου οδικών ατυχημάτων. Οι τεχνολογικές εξελίξεις έχουν 
διευκολύνει σημαντικά τη συλλογή δεδομένων από διάφορες πηγές, δημιουργώντας 
νέες ερευνητικές ευκαιρίες που προηγουμένως δεν είχαν διερευνηθεί. 
 
Συγκεκριμένα, στην παρούσα διατριβή αξιοποιήθηκαν βάσεις δεδομένων ευρείας 
κλίμακας με στοιχεία υψηλής ευκρίνειας για την οδήγηση υπό πραγματικές 
συνθήκες που συλλέχθηκαν από αισθητήρες έξυπνων κινητών τηλεφώνων για την 
αξιολόγηση του κινδύνου οδικών ατυχημάτων σε αυτοκινητόδρομους και σε ένα 
ευρύτερο οδικό δίκτυο, που περιλαμβάνει τόσο αστικές όσο και υπεραστικές οδούς. 
Για τα δεδομένα οδικών υποδομών στον εξεταζόμενο αυτοκινητόδρομο, 
αξιοποιήθηκαν διάφορες πηγές, συμπεριλαμβανομένων δεδομένων που παρέχονται 
από την αρχή διαχείρισης και λειτουργίας του αυτοκινητοδρόμου και λογισμικών όπως 
το Open GIS, το Google Earth και το GoogleStreetView. Τα γεωμετρικά 
χαρακτηριστικά και τα χαρακτηριστικά του δικτύου για το ευρύτερο οδικό δίκτυο της 
Περιφέρειας Ανατολικής Μακεδονίας και Θράκης προέκυψαν με τη χρήση αλγορίθμων 
στη γλώσσα προγραμματισμού R. Συγκεκριμένα, χρησιμοποιήθηκαν κατάλληλες 
βιβλιοθήκες για την εξαγωγή δεδομένων από το OSM και την επεξεργασία τους ως 
απλά χωρικά στοιχεία. Όσον αφορά τα δεδομένα οδικών ατυχημάτων και κυκλοφορίας 
στον εξεταζόμενο αυτοκινητόδρομο, αξιοποιήθηκαν δεδομένα υψηλής ποιότητας που 
παραχωρήθηκαν από τον φορέα διαχείρισης και λειτουργίας της οδού. Αυτά 
περιλάμβαναν δεδομένα οδικών ατυχημάτων όλων των βαθμών σοβαρότητας, 
συμπεριλαμβανομένων των ατυχημάτων μόνο με υλικές ζημιές, με ακρίβεια στη θέση 
των ατυχημάτων, που καλύπτουν την περίοδο από το 2018 έως το 2020. Επιπλέον, 
χρησιμοποιήθηκαν δεδομένα ΕΜΗΚ που προέκυψαν από τους σταθμούς διοδίων του 
αυτοκινητοδρόμου για την αντίστοιχη χρονική περίοδο. 
 
Πολυδιάστατος Συνδυασμός Δεδομένων για Αναλύσεις σε Επίπεδο Οδικού Τμήματος 
Η συλλογή δεδομένων από διάφορες πηγές και σε διαφορετικά επίπεδα απαιτεί 
κατάλληλη επεξεργασία για την ενοποίηση των δεδομένων. Η πρώτη βάση 
δεδομένων ήταν σε επίπεδο οδικού τμήματος και περιλάμβανε 668 τμήματα 
αυτοκινητοδρόμου μήκους από 200 έως 600 μέτρα. Συγκεκριμένα, περιλάμβανε 
δεδομένα σχετικά με οδικά ατυχήματα, κυκλοφοριακούς φόρτους και γεωμετρικά 
χαρακτηριστικά. Στη συνέχεια, έπρεπε να αντιστοιχηθούν στα εξεταζόμενα οδικά 
τμήματα δείκτες συμπεριφοράς των οδηγών που προέκυψαν από αισθητήρες 
έξυπνων κινητών τηλεφώνων. Η αντιστοίχιση αυτή επιτεύχθηκε μέσω GIS και της 
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απομόνωσης κάθε μέρους των διαδρομών στο αντίστοιχο οδικό τμήμα από την 
εταιρεία που παρείχε τα δεδομένα με τη χρήση πολυγώνων ESRI σε διαστήματα των 
200 μέτρων. 
 
Για το ευρύτερο αστικό και υπεραστικό οδικό δίκτυο της Περιφέρειας Ανατολικής 
Μακεδονίας και Θράκης, το οποίο περιλάμβανε δεδομένα υποδομής και 
συμπεριφοράς των οδηγών, εφαρμόστηκε μια σειρά αλγορίθμων επεξεργασίας. 
Αρχικά, δημιουργήθηκε μια βάση δεδομένων για το εξεταζόμενο οδικό δίκτυο, η οποία 
περιλάμβανε 6.103 οδικά τμήματα. Αυτή η βάση δεδομένων περιείχε βασικά 
γεωμετρικά χαρακτηριστικά, όπως μήκος, καμπυλότητα, τύπος οδού κ.λπ. για κάθε 
τμήμα. Η εξαγωγή δεδομένων από το OSM και η δημιουργία της βάσης δεδομένων 
περιλάμβανε την αξιοποίηση βιβλιοθηκών της R που έχουν σχεδιαστεί ειδικά για 
αντίστοιχους σκοπούς. Στη συνέχεια, έπρεπε να αντιστοιχηθούν στα οδικά τμήματα τα 
δεδομένα συμπεριφοράς των οδηγών υπό πραγματικές συνθήκες οδήγησης, τα οποία 
εξήχθησαν από αισθητήρες έξυπνων κινητών τηλεφώνων και κάλυπταν δείκτες όπως 
οι απότομες επιβραδύνσεις, η υπέρβαση ορίων ταχύτητας, η απόσπαση προσοχής 
λόγω χρήσης κινητού τηλεφώνου κ.λπ. για κάθε δευτερόλεπτο των διαδρομών που 
πραγματοποιήθηκαν το 2021 στην περιοχή μελέτης. Η διαδικασία αυτή επιτεύχθηκε 
μέσω χωρικής αντιστοίχισης-χαρτών. Αρχικά, προσδιορίστηκε το κεντροειδές κάθε 
σειράς-γραμμών των οδικών τμημάτων με τη χρήση της συνάρτησης "st_centroid" 
από τη βιβλιοθήκη "sf" της γλώσσας προγραμματισμού R. Σημειώνεται ότι τα 
κεντροειδή είναι σημειακά μεγέθη και αντιπροσωπεύουν το γεωμετρικό κέντρο κάθε 
οδικού τμήματος. Στη συνέχεια, οι συγκεντρωτικοί δείκτες της συμπεριφοράς των 
οδηγών αντιστοιχήθηκαν στο πλησιέστερο κεντροειδές του οδικού τμήματος με βάση 
τις συντεταγμένες γεωγραφικού πλάτους και μήκους για κάθε δευτερόλεπτο 
διαδρομής. Η διαδικασία αυτή εκτελέστηκε με τη χρήση της συνάρτησης "st_join" και 
της συνάρτησης "st_nearest_feature" από τη βιβλιοθήκη της R "sf". 
 
Συνολικά, οι αλγόριθμοι που χρησιμοποιήθηκαν στην παρούσα διδακτορική διατριβή, 
ιδίως για το ευρύτερο αστικό και υπεραστικό οδικό δίκτυο, διευκολύνουν την 
απρόσκοπτη δυνατότητα μεταφοράς του μεθοδολογικού πλαισίου και του πλαισίου 
επεξεργασίας δεδομένων που χρησιμοποιήθηκε στην παρούσα διατριβή. Με 
ελάχιστες τροποποιήσεις, μπορούν να δημιουργηθούν χωρικές βάσεις δεδομένων για 
διάφορες περιοχές, επιτρέποντας αναλύσεις με τη χρήση των ίδιων ή διαφορετικών 
μεταβλητών, περιόδων μελέτης και στατιστικών μεθοδολογιών. 
 
Συνδυασμός Προηγμένων και Καινοτόμων Τεχνικών Μοντελοποίησης 
Ο πλούτος των πολυπαραμετρικών δεδομένων υψηλής ευκρίνειας και η ακρίβεια της 
επεξεργασίας και του συνδυασμού των δεδομένων επέτρεψαν την ανάπτυξη 
προηγμένων και καινοτόμων τεχνικών μοντελοποίησης. 
 
Αρχικά, αναπτύχθηκε ένα μοντέλο συχνότητας ατυχημάτων (ΑΔΠ). Το μοντέλο αυτό 
διευκόλυνε τη διερεύνηση της επιρροής διαφόρων γεωμετρικών χαρακτηριστικών, 
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χαρακτηριστικών της κυκλοφορίας και δεικτών της συμπεριφοράς του οδηγού στα 
οδικά ατυχήματα. Στη συνέχεια, χρησιμοποιήθηκε η συσσωρευτική ιεραρχική 
ομαδοποίηση για την κατηγοριοποίηση της επικινδυνότητας των οδικών τμημάτων 
που αναλύθηκαν, τα οποία στη συνέχεια ενσωματώθηκαν ως μεταβλητή 
απόκρισης/εξαρτημένη μεταβλητή σε διάφορους ταξινομητές μηχανικής μάθησης. 
Εκτός από τη χρήση τεχνικών μηχανικής μάθησης, οι αναλύσεις περιλάμβαναν τον 
υπολογισμό των τιμών SHAP, μια πρόσφατη και ισχυρή προσθήκη στον τομέα της 
ερμηνεύσιμης μηχανικής μάθησης. Οι τιμές αυτές παρείχαν πληροφορίες σχετικά με 
τους παράγοντες επιρροής που συμβάλλουν στο επίπεδο επικινδυνότητας. Αυτή η 
ολοκληρωμένη προσέγγιση αυξάνει την πολυπλοκότητα των τεχνικών 
μοντελοποίησης και ενισχύει την ερμηνεία των αποτελεσμάτων τους. 
 
Όσον αφορά το ευρύτερο οδικό δίκτυο της Περιφέρειας Ανατολικής Μακεδονίας και 
Θράκης, οι απότομες επιβραδύνσεις χρησιμοποιήθηκαν ως εξαρτημένες μεταβλητές 
στα μοντέλα που αναπτύχθηκαν. Αξίζει να σημειωθεί ότι οι τεχνικές μοντελοποίησης 
που χρησιμοποιήθηκαν στην παρούσα διδακτορική διατριβή, εξ όσων γνωρίζει ο 
συγγραφέας, εφαρμόζονται για πρώτη φορά σε συμβάντα απότομων 
επιβραδύνσεων. Μεταξύ αυτών των καινοτόμων προσεγγίσεων μοντελοποίησης 
είναι τα ΜΧΣ, ΜΧΥ, ΧΜΔΑΔ και ΧΤΔ. Αξίζει να τονιστεί ότι η εφαρμογή του μοντέλου 
ΧΤΔ είναι ιδιαίτερα αξιοσημείωτη, καθώς αποτελεί μια πρωτότυπη και πολλά 
υποσχόμενη τεχνική μοντελοποίησης που μπορεί να εφαρμοστεί και σε άλλες 
αναλύσεις οδικής ασφάλειας πέραν εκείνων των απότομων επιβραδύνσεων. 
 
Πολύ-παραγοντική Εκτίμηση Κινδύνου Ατυχήματος στους Αυτοκινητόδρομους 
Αξιοποιώντας την υψηλής ποιότητας και λεπτομερή βάση δεδομένων που 
αναπτύχθηκε για τα οδικά τμήματα του αυτοκινητοδρόμου, με στόχο την απάντηση 
των ερευνητικών ερωτημάτων που τέθηκαν στην παρούσα διδακτορική διατριβή, 
εξήχθησαν πολύτιμα και καινοτόμα συμπεράσματα. Συγκεκριμένα, οι στατιστικές 
συσχετίσεις από το μοντέλο συχνότητας οδικών ατυχημάτων αποκάλυψαν μια θετική 
και στατιστικά σημαντική συσχέτιση μεταξύ των ιστορικών δεδομένων οδικών 
ατυχημάτων και του αριθμού των απότομων συμβάντων οδήγησης. Αυτό ισχύει τόσο 
για τον αριθμό των απότομων επιταχύνσεων όσο και για τον αριθμό των απότομων 
επιβραδύνσεων ανά διερχόμενο ταξίδι εντός των εξεταζόμενων τμημάτων. Αυτό το 
εύρημα φανερώνει ότι οι δείκτες απότομης συμπεριφοράς του οδηγού μπορούν 
να αξιοποιηθούν ως ΕΔΑ, είτε συμπληρώνοντας τα παραδοσιακά μοντέλα 
συχνότητας ατυχημάτων είτε χρησιμεύοντας ως εξαρτημένες μεταβλητές σε μοντέλα 
αξιολόγησης του κινδύνου οδικών ατυχημάτων σε περιοχές όπου είτε δεν υπάρχουν 
διαθέσιμα δεδομένα οδικών ατυχημάτων είτε τα διαθέσιμα δεδομένα ατυχημάτων είναι 
χαμηλής ποιότητας. 
 
Επιπλέον, η παρούσα διατριβή ανέδειξε μια καινοτόμο διαπίστωση, τονίζοντας ότι η 
συμβολή των απότομων επιβραδύνσεων, σε σύγκριση με τις απότομες επιταχύνσεις, 
είναι υψηλότερη στην πρόβλεψη της επικινδυνότητας των οδικών τμημάτων. Αυτό 
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καθιστά τις απότομες επιβραδύνσεις καταλληλότερο ΕΔΑ για προληπτικές 
αναλύσεις οδικής ασφάλειας, ενισχύοντας την κατανόηση του κινδύνου πρόκλησης 
οδικών ατυχημάτων και παρέχοντας πρακτικές πληροφορίες για στοχευμένες 
παρεμβάσεις. 
 
Έμμεση Εκτίμηση Κινδύνου Ατυχήματος στο Αστικό και Υπεραστικό Οδικό Δίκτυο 
Η αξιολόγηση της συμβολής αυτής της διατριβής δεν θα ήταν πλήρης χωρίς την 
αναγνώριση των ευρύτερων συμπερασμάτων των μοντέλων που αναπτύχθηκαν για 
το ευρύτερο οδικό δίκτυο της Περιφέρειας Ανατολικής Μακεδονίας και Θράκης. Σε 
αυτά τα μοντέλα, οι εξαρτημένες μεταβλητές αντιπροσωπεύονταν από τον αριθμό των 
απότομων επιβραδύνσεων, που χρησιμεύουν ως ΕΔΑ. Ο εντοπισμός στατιστικά 
σημαντικής και θετικής χωρικής αυτοσυσχέτισης στις συχνότητες των απότομων 
επιβραδύνσεων επέβαλε την ανάπτυξη προσεγγίσεων χωρικής μοντελοποίησης. 
Κομβικό σημείο στις αναλύσεις συχνοτήτων είναι η μέτρηση της έκθεσης στον 
κίνδυνο, με την παρούσα διατριβή να χρησιμοποιεί δύο βασικές μεταβλητές έκθεσης 
για τα αντίστοιχα μοντέλα: το μήκος οδικού τμήματος και τον αριθμό διαδρομών ανά 
τμήμα. Η παρούσα έρευνα αναδεικνύει τη στατιστικά σημαντική επίδραση αυτών των 
μεταβλητών έκθεσης στον κίνδυνο, στον αριθμό των απότομων επιβραδύνσεων, 
ποσοτικοποιώντας τις αντίστοιχες επιρροές τους. Επιπλέον, ενσωματώνει διάφορους 
δείκτες που σχετίζονται με το οδικό περιβάλλον και τη συμπεριφορά του οδηγού, 
συμβάλλοντας σε μια ολοκληρωμένη αξιολόγηση του κινδύνου οδικών ατυχημάτων. 
 
Η δημιουργία ολοκληρωμένων χαρτών οδικής ασφάλειας που απεικονίζουν τα 
συμβάντα απότομων επιβραδύνσεων αποτελεί πολύτιμο εργαλείο τόσο για τις αρχές 
διαχείρισης της οδικής κυκλοφορίας και τα ενδιαφερόμενους φορείς όσο και τους 
χρήστες της οδού. Οι οπτικοποιήσεις αυτές, παρουσιάζουν πολύπλοκα δεδομένα και 
προβλέψεις μοντέλων με απλό και κατανοητό τρόπο, διευκολύνοντας την επικοινωνία 
και την ενσωμάτωση τους σε διάφορες διαδικασίες λήψης αποφάσεων. Μέσω αυτών 
των χαρτών, οι πολύπλευρες προσπάθειες της παρούσας διατριβής για την 
αξιολόγηση του κινδύνου οδικών ατυχημάτων κοινοποιούνται αποτελεσματικά τόσο 
στην επιστημονική κοινότητα όσο και στο ευρύ κοινό. Συνολικά, οι ΕΔΑ, όπως οι 
απότομες επιβραδύνσεις, προσφέρουν σημαντικές δυνατότητες για την 
παρακολούθηση της οδικής ασφάλειας, την αξιολόγηση και την ενίσχυση των μέτρων 
και την ταχεία επέκταση της κάλυψης δεδομένων οδικής ασφάλειας. Στην ακαδημαϊκή 
κοινότητα, τα τελευταία χρόνια έχουν εμφανιστεί διάφορες προσπάθειες 
μοντελοποίησης των ΕΔΑ. Εκτός από τη συμβολή στον τομέα αυτό, η παρούσα 
διδακτορική διατριβή κατέδειξε ότι με την απαιτούμενη προσπάθεια, χωρικά μοντέλα 
με βάση τους ΕΔΑ μπορούν να χρησιμοποιηθούν σε περιοχές που έχουν μελετηθεί 
ελάχιστα από άποψη οδικής ασφάλειας. 
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1. Introduction 
 

1.1 Road Safety Overview 

1.1.1 Road Safety Globally 

Road safety has been recognized as one of the most important public health issues, 
bearing an immense societal and economic burden. Despite significant efforts in 
recent years, road safety remains a substantial global challenge. Road crashes, 
leading to injuries and fatalities, rank as the 12th leading cause of death across all age 
groups worldwide, with young individuals aged 5-29 facing the highest risk. According 
to the latest data, 1.19 million road fatalities were recorded in 2021 globally (World 
Health Organization, 2023). Figure 1.1 depicts the number of road fatalities per 
100,000 population in 2021 by country-income level across the six geographic regions 
defined by the World Health Organization. Within the continents, the same correlation 
between income level and fatality rates can be observed, with fatality rates highest in 
low-income countries and lowest in high-income countries in all continents. 
Specifically, the risk of fatal injury in a crash is three times higher in low-income 
countries compared to high-income countries. Additionally, it is observed that the 
African Region has the highest fatality rate (19 road fatalities per 100,000 inhabitants), 
whereas the European Region has the lowest fatality rate (7 road fatalities per 100,000 
inhabitants). 
 

 
Figure 1.1: Road fatalities per 100,000 population by continent and country-income level, 2021. 

(Source: World Health Organization, 2023) 
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Moreover, profound differences are also evident in the analysis of road fatalities 
concerning different road user types. In Figure 1.2, the percentages of fatalities in road 
crashes per road user category within the six geographic regions of the World Health 
Organization for the year 2021 are presented. Globally, 30% of fatalities correspond 
to drivers and passengers of four-wheeled vehicles, 21% to drivers and riders of 
motorcycles and tricycles, 6% to cyclists, 23% to pedestrians, and 21% to unspecified 
road users. Notably, Southeast Asia and the Americas regions exhibit the highest 
proportion of road fatalities among users of motorcycles and tricycles, with 
percentages of 48% and 28%, respectively. In Europe, the rate of fatalities among 
users of four-wheeled vehicles is notably high at 49%, whereas Western Pacific and 
Africa record the highest pedestrian fatality rate at 29% and 27%, respectively. 
 

 
Figure 1.2:. Distribution of road fatalities by road user type and region for 2021. 
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(Source: World Health Organization, 2023) 
 

1.1.2 Road Safety in the European Union 

As previously discussed in the preceding subsection, Europe stands out as the 
continent with the best road safety performance globally. To delve deeper, the focus 
shifts to the European Union (EU), where 20,640 road fatalities were recorded in 2022. 
This figure reflects a 4% increase compared to 2021, attributed to the rebound in traffic 
levels after the Covid-19 pandemic. Although the long-term trend indicates a gradual 
decline (-9% in comparison to the pre-pandemic year), it is not decreasing at a fast 
enough pace to reach the EU target of halving the number of deaths by 2030, as 
illustrated in Figure 1.3. 
 

 
Figure 1.3: Evolution of road fatalities in the EU, 2001-2022.  

(Source: European Commission, 2023) 
 
Moreover, progress in this regard remains inconsistent among EU Member States. 
Notably, Lithuania and Poland reported the most substantial declines, exceeding 30%, 
between 2019 and 2022. However, Poland's fatality rate, while improved, remains 
above the EU average. Conversely, during the last three years, Ireland, Spain, France, 
Italy, the Netherlands, Slovakia, and Sweden have experienced either stagnation or 
an increase in the number of road deaths. 
 
The overall ranking of countries based on fatality rates has remained relatively stable 
since the pre-pandemic period. Sweden (with 22 fatalities per million inhabitants) and 
Denmark (26) remain the countries with best road safety performance, while Romania 
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(86) and Bulgaria (78) reported the highest fatality rates in 2022. The EU's average 
fatality rate in 2022 was 46 road fatalities per million inhabitants (Figure 1.4). 
 
Moreover, Figure 1.4 reveals that Greece, the author's native country and the location 
of the National Technical University of Athens, ranked 24th among the 27 EU Member 
States in 2022, with 61 road fatalities per million population, exceeding the EU average 
of 46. Further details regarding the national road safety state are available in the 
following subsection. 

 
Figure 1.4: Road fatalities per million population in the EU, 2019-2022.  

(Source: European Commission, 2023) 
 

1.1.3 Road Safety in Greece 

In 2022, 635 road fatalities (provisional data) were recorded in Greece (Hellenic 
Statistical Authority, 2023). This places Greece at the 24th position within the EU in 
terms of road safety performance. However, during the decade 2010-2020, Greece 
achieved the most remarkable improvement in road safety among EU Member States. 
As evident in Figure 1.5, depicting the evolution of key road safety figures in Greece, 
there was a 54% reduction in the number of road fatalities, surpassing the target of a 
50% reduction. 
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Figure 1.5: Evolution of basic road safety figures in Greece, 2010-2022.  

(Sources: Hellenic Statistical Authority, 2023; European Commission, 2023) 
 

Table 1.1: Comparison of Greek and EU road crash statistics, 2019. 
(Sources: Hellenic Statistical Authority, 2023; CARE database) 

 

Greece EU27 
2019  2010-2019 (%) 2019 (%)  2019 (%) 

Total fatalities 688  -45% 100%  100% 
Drivers 470  -44% 68%  65% 
Passengers 73  -70% 11%  15% 
Pedestrians 145  -19% 21%  20% 
Inside built-up areas 370  -38% 54%  39% 
Outside built-up areas 318  -52% 46%  61% 
On motorways 50  -43% 7%  9% 
Passenger Cars 202  -63% 29%  44% 
Motorcycles/Mopeds 247  -55% 36%  18% 
Bicycles 22  -4% 3%  9% 
Young drivers (18-24) 61  -54% 9%  8% 
Older drivers (65+) 99  -24% 14%  15% 
Children (0-14) 12  -60% 2%  2% 
Male drivers 441  -43% 64%  55% 
Female drivers 29  -52% 4%  8% 
In crashes with Heavy Goods Vehicles 40  -61% 6%  13% 
Drivers/Passengers in single-vehicle crash 280  -44% 41%  31% 
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The comparison of Greek and EU road crash statistics for 2019, as presented in Table 
1.1, reveals the most significant road safety problems in Greece. One of them is the 
particularly high rate of Powered Two-Wheeler (PTW) (motorcycles and mopeds) 
riders’ fatalities (36%), which was twice the respective EU average (18%). In 2019, 
Greece also presented one of the highest rates (54%) of road fatalities inside built-up 
areas. Moreover, 41% of total road fatalities were vehicle occupants in single-vehicle 
road crashes (EU average 31%). Greece performs poorly in regards to road fatalities 
occurring inside built-up areas and in single vehicle crashes, which are both 
associated with the high traffic of motorcycles and related crashes, but also with 
significant deficiencies (e.g., high rates of speeding and driver distraction, low seatbelt 
and helmet use rates, poor enforcement of traffic violations, inadequate public 
transport network, etc.). 
 

1.1.4 Surrogate Safety Measures 

Road crashes are a complex phenomenon affected by several parameters that can be 
categorized into three distinct aspects: (i) road users (drivers, riders, passengers and 
pedestrians), (ii) vehicles and (iii) road infrastructure and environment. Among these 
main categories, it has been observed that the vast majority of road crashes can be 
attributed to human factors and human error, either exclusively or partially, accounting 
for rates as high as 94% (Singh, 2015). This particularly high percentage of 
responsibility for the human factor in the causal chain of road crashes points out the 
importance of studying and analysing driver behaviour. 
 
A large array of methods has been used so far in the international literature to study 
driver behaviour. For instance, questionnaire surveys are a traditional way of collecting 
data of road users self-declared behaviour in traffic and general road safety attitudes 
or perceptions (Rowe et al., 2015; Pires et al., 2020). Furthermore, a common way of 
collecting data on driver behaviour (e.g., driver distraction, seatbelt use, traffic rule 
compliance etc.) is roadside observation (Yannis et al., 2011; Sullman, 2012; Prat et 
al., 2015). Another widely used family of methods is the exploitation of driving 
simulators. Driver simulators can be used to extract various metrics related to speed, 
reaction time, lane position, headway distance, distraction, fatigue and others in a safe 
and virtual road environment (Lenné et al., 1997; Calvi & D'amico, 2013; Papantoniou 
et al., 2019). 
 
Apart from these methods, the recent swift technological development in naturalistic 
driver recording has led to a growing abundance of data from sensors in vehicles and 
smartphones, which can be used to assess driver behaviour (Ziakopoulos et al., 2020). 
More specifically, smartphone sensors like accelerometers, gyroscopes, 
magnetometers, and GPS enable the extraction of various driver performance metrics 



 
Dimitrios Nikolaou | Machine learning-based road crash risk assessment 

fusing infrastructure, traffic and driver behaviour data 

 

[49] 
 

and Surrogate Safety Measures (SSMs) through a low-cost and rapid manner, without 
the need for user interaction (Mantouka et al., 2018).  
 
SSMs encompass a wide range of metrics and parameters, which are not directly 
derived from or rely on crash data. These measures possess various advantages 
when compared to historical crash data. Specifically, they serve as a proactive 
approach, enabling road safety analyses before the occurrence of road crashes (Tarko 
et al., 2009). In contrast, crash data collection relies heavily on manual methods, which 
can be related to limitations such as inaccurate data and under-reporting (Imprialou & 
Quddus, 2019; Yannis et al., 2014).  
 
The exploitation of SSMs in the field of road safety facilitates the understanding of 
crash-leading factors and allows for evaluating the effectiveness of different 
countermeasures (Tarko, 2018). Wang et al. (2021) divided SSMs into two main 
groups: (i) SSMs and (ii) SSM-based models. The first group encompasses SSMs that 
are time-based, deceleration-based, or energy-based. It includes SSMs that use 
predefined thresholds for traffic conflicts’ detection, such as Time-to-Collision (TTC), 
Post-Encroachment Time (PET), Time-to-Crash (TC) and Deceleration Rate to Avoid 
the Crash (DRAC) (Bonela & Kadali, 2022). On the other hand, the other group of 
SSMs focuses on establishing a direct link between each traffic conflict and either a 
crash or a non-crash outcome, by estimating its crash probability (Songchitruksa & 
Tarko, 2006; Wang & Stamatiadis, 2014). This kind of SSMs can be also derived from 
simulation processes (Gettman & Head, 2003). 
 
In addition, the constant advancement in technology has made smartphones a key 
choice for collecting data on SSMs, particularly regarding harsh driving behaviour 
events such as harsh braking and harsh acceleration (Nikolaou et al., 2023b). It is 
important to mention that the two aforementioned harsh driving behaviour events are 
distinct occurrences that take place in different traffic situations and should not be 
analyzed together as a single phenomenon. Firstly, drivers who experience higher 
levels of anger, frustration, and anxiety tend to exhibit increased acceleration values 
and apply higher physical pressure on the accelerator pedal (Stephens & Groeger, 
2009). On the other hand, drivers more typically engage in harsh braking events as a 
reaction to various potentially hazardous situations, aiming to prevent near misses or 
collisions (Ziakopoulos et al., 2022).  
 
All in all, SSMs can either be an alternative to road safety analyses or even 
complement analyses that are based on historical crash records (Johnsson et al., 
2018). SSMs such as time-to-collision, harsh braking, post-encroachment time and so 
on, are widely proposed in transportation science and are particularly useful in order 
to assess road safety when detailed crash data are not available. Such events are of 
particular importance in evaluating driving risk (Gündüz et al., 2017) since they are 
inherently associated with the likelihood of a road crash (Tselentis et al., 2017).  



 
Dimitrios Nikolaou | Machine learning-based road crash risk assessment 

fusing infrastructure, traffic and driver behaviour data 

 

[50] 
 

1.2 Objective 

Taking the previous into consideration, the primary objective of this dissertation is to 
assess road crash risk by fusing infrastructure, traffic, and driving behaviour data. This 
combination of data outlines a highly promising research field. However, the practical 
integration of these data types is often hindered by inadequate availability or low 
quality of the data. Consequently, this dissertation initially explores the feasibility of 
developing comprehensive crash prediction models in Greece by leveraging these 
diverse data types. A pivotal aspect of this exploration is the availability of high-quality 
crash data especially in terms of crash location recording. 
 
Hence, for roads where high-quality data can be obtained, statistical models are 
developed, and machine learning techniques are applied to investigate the influence 
of geometric characteristics, traffic attributes, and naturalistic driving behaviour 
metrics on road crash occurrence and corresponding crash risk per examined road 
segment. A critical aspect of this research entails thoroughly exploring the reliability of 
harsh driving behaviour events as SSMs and their utilization for assessing the safety 
levels of road segments across various road environments where detailed road crash 
data are unavailable. 
 
To achieve these outlined objectives, a plethora of statistical tools, spatial analyses, 
and machine learning techniques were employed within the framework of this 
dissertation. These methodologies include the following: 
 

- Generalized Linear Model (GLM) with Negative Binomial (NB) distribution, 
- Hierarchical Clustering (HC), 
- Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest 

Neighbours (K-NN), Support Vector Machines (SVM), 
- SHapley Additive exPlanations (SHAP values), 
- Log-linear Regression, Spatial Error Model (SEM), Spatial Lag Model (SLM), 
- Zero-Inflated Negative Binomial (ZINB) Model, Spatial Zero-Inflated Negative 

Binomial (SZINB) Model,  
- Spatial Random Forest (SRF). 

 
These objectives are expected to lead to knowledge which will be useful for reducing 
crash occurrence, and increasing overall road safety levels.  
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1.3 Methodology of the Dissertation 

To fulfill the scientific objectives outlined in this doctoral dissertation, a series of 
methodological steps were systematically executed. The steps are delineated within 
this subsection and visually represented in Figure 1.6. The methodological framework 
for this doctoral dissertation is designed to address a set of pertinent research 
questions through a systematic and comprehensive approach. The key elements of 
the methodological framework encompass a thorough Literature Review, precisely 
formulated Research Questions, and a structured sequence of steps. 
 
The foundation of this overarching methodological framework rests upon an extensive 
literature review, providing contextualization and insights into the existing knowledge 
on road crash risk assessment through the utilization of SSMs collected under real 
road environment conditions. This review informs the subsequent research questions 
and guides the selection of appropriate methodologies. These research questions 
serve as the driving force behind the entire research endeavor, exploring the 
integration and analysis of infrastructure, traffic, and driver behaviour data for 
meaningful conclusions in road crash risk assessment. 
 
The core of the methodological framework involves a multi-step process, starting with 
the investigation of road safety modelling data in Greece, laying the groundwork for 
subsequent directions. This investigation highlighted the limitation of conducting high-
detailed crash prediction modelling in Greece, feasible only for motorways with high-
quality crash data, in terms of crash location, and traffic attributes per road segment. 
To that end, two distinct databases were developed, one for motorway segments with 
comprehensive data on historical road crashes, traffic, road geometry characteristics, 
and naturalistic driver behaviour metrics, and the other for a road network including 
urban and interurban roads, which lacked detailed crash and traffic data, comprising 
only geometric characteristics and naturalistic driver behaviour metrics for the 
examined road segments.  
 
With the problem under consideration as well as the scientific literature in mind, a 
methodological investigation explored the underlying theory of statistical models and 
Machine Learning (ML) techniques suitable for road crash risk assessment analysis. 
The analysis of motorway data entailed the application of several methodologies. 
These included utilizing a GLM with NB distribution to predict crash frequency, 
employing HC to establish crash risk levels for motorway segments based on historical 
road crash and traffic data, and deploying various ML classifiers—such as LR, DT, 
RF, K-NN, and SVM—for predicting crash risk levels by exploiting road geometry 
characteristics and driver behaviour metrics. Special emphasis was placed on 
assessing the reliability of harsh driving behaviour events as SSMs.  
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Upon evaluating the statistical significance and coefficients’ signs of the NB crash 
frequency regression model, as well as considering SHAP values from the best-
performing ML classifier for crash risk level prediction, it was deduced that harsh 
braking events could be meaningfully regarded as SSMs. These events are deemed 
suitable as dependent variables for both statistical and ML models, particularly when 
confronted with unavailable crash data or faced with issues related to the low-quality 
recording of crash locations.  
 
The framework extended to urban and interurban road network data, where harsh 
braking events were examined for spatial autocorrelation using Moran's 𝐼𝐼 and served 
as a key metric for road crash risk assessment. The subsequent analyses 
encompassed both non-spatial models (Log-linear, Zero-Inflated, Random Forest) and 
spatial models (SEM, SLM Zero-Inflated with spatial lag, SRF), aiming to identify 
statistically significant road infrastructure and driver behaviour parameters affecting 
the number of harsh braking events per road segment. Additionally, a performance 
comparison between spatial modelling approaches and their non-spatial counterparts 
was also conducted. 
 
The final stage synthesized the findings from the aforementioned analyses, leading to 
a comprehensive road crash risk assessment. In summary, this methodological 
framework is a structured and logically sequenced process that combines statistical 
modelling, machine learning techniques, and spatial analyses to address the research 
questions of this doctoral dissertation and achieve the overarching objective of 
assessing road crash risk and enhancing road safety. 
 
Further details on the methodological background and implementation of the 
techniques applied in this doctoral dissertation are presented in the subsequent 
sections. 
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Figure 1.6: Graphical representation of the overall methodological framework  

of the doctoral dissertation  
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1.4 Structure of the Dissertation 

The remainder of this doctoral dissertation is organized in nine sections which are 
briefly described within this subsection. 
 
Section 2 provides a review of the scientific literature of studies exploiting SSMs in 
historical crash record investigations. It showcases the main review findings in terms 
of the different types of SSMs and crashes, modelling approaches, and the temporal 
dimension of the data used in the examined studies. Subsequently, it discusses overall 
findings and trends, future research directions, and outlines the specific research 
questions that this doctoral dissertation aims to address. 
 
Section 3 describes the overall methodological framework employed to achieve the 
objectives of this doctoral dissertation and delves into the theoretical foundations of 
the analytical methods and models utilized throughout the dissertation. 
 
Section 4 investigates and discusses the availability and accuracy of road safety 
modelling data in the primary rural road network of Greece, focusing on three types of 
data that are considered most critical: crash, traffic and road geometry data. The 
exploitation of smartphone data related to driver behaviour is also discussed. 
 
Section 5 provides technical information on the process of data collection and 
descriptive statistics for the Olympia Odos motorway. The developed database 
includes data on road crashes, traffic, road geometry and driver behaviour per 
motorway segment. Detailed road crash and traffic data were kindly provided by the 
road operator. Road infrastructure data, sourced from tools like Open GIS software, 
Google Earth, and GoogleStreetView, were consolidated. Additionally, smartphone 
data were utilized for capturing naturalistic driver behaviour metrics. 
 
Section 6 examines the relationship between road crash frequency in motorway 
segments and various explanatory variables based on road design characteristics and 
SSMs. Additionally, clusters representing crash risk levels of the examined motorway 
segments, based on crash and traffic data, are established. Furthermore, this section 
compares the classification performance of five well-known ML techniques that exploit 
road design data and SSMs to predict the crash risk level of motorway segments. 
 
Section 7 describes the development of a database for the road network in the Eastern 
Macedonia and Thrace Region, including urban and interurban roads. As detailed 
traffic and crash data (in terms of geo-location) were unavailable for these roads, the 
resulting database includes only geometric characteristics and naturalistic driver 
behaviour metrics sourced from OpenStreetMap (OSM) and smartphone data, 
respectively. Key descriptive statistics for the considered variables are also provided. 
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Section 8 focuses on analysing harsh braking event frequencies per road segment 
within the Region of Eastern Macedonia and Thrace, and correlating them with various 
road network characteristics and driving behaviour metrics. To that end, various spatial 
modelling techniques, including SEM, SLM, SZINB and SRF are employed on harsh 
braking events frequencies. 
 
Section 9 presents the conclusions of the thesis and discusses the contribution to 
knowledge, the limitations as well as the recommendations for further research. 
 
Lastly, a complete list of the bibliographical references is provided.  
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2. Literature Review 
 

2.1 Introduction 

Road crashes and their related casualties constitute a major societal and public health 
problem as it is estimated that more than 1.19 million people are killed in road crashes 
and tens of millions are seriously injured annually (World Health Organization, 2023). 
Improving road safety is also included as a key component of the United Nations’ 
Agenda, as manifested by Sustainable Development Goals (SGDs) 3.6 and 11.2, 
which aim to reduce road fatalities and injuries by half and provide sustainable and 
safe transport for road users of all age groups respectively (United Nations, 2022). 
Until now, the main indicator for measuring road safety outcomes has been historical 
crash data, considered to be hard evidence for the measurements of road safety 
performance. Even if it is natural to rely on road crash historical records for the 
assessment of the road safety level of an examined area or road, specific drawbacks 
of road safety analyses based on historical crash records have been determined as 
well. 
 
In particular, a long period of time is typically required to collect a sufficient sample of 
road crash data that could allow for reliable estimates of the road safety level as road 
crashes are rare events by nature (Theofilatos et al., 2019). When examining large 
geographical areas, road crashes also face the typical issues inherent in all point data 
such as spatial dependence and spatial heterogeneity (Ziakopoulos & Yannis, 2020). 
Moreover, any before-and-after study based on historical crash records for the 
evaluation of the implementation of a road safety measure may be biased by the 
regression-to-the-mean phenomena (Elvik, 2008). In addition, significant 
discrepancies are found between the non-fatal road crash injury data provided by 
various data sources. This problem is known as under-reporting and several studies 
indicate that the Police Departments do not report an appreciable proportion of road 
crash injuries, whereas the extent of under-reporting may vary depending on the 
severity of the injuries or the road user types (Yannis et al., 2014; Janstrup et al., 
2016). Apart from the aforementioned, it can be perceived that road safety analyses 
based on historical crash records are a reactive approach that forces road safety 
analysts to wait for road crashes to occur in order to examine measures that could 
prevent them and should rely on valid crash data, including accurate location data, 
which is not always the case (Imprialou & Quddus, 2019). 
 
Therefore, over the past few years, significant efforts have been made in utilizing 
SSMs in order to address this issue (Wang et al., 2021). SSMs include all measures, 
parameters, or quantities, which do not stem directly from or rely on crash data. Such 
approaches are a sustainable way of gauging road safety and may be more preferable 
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as they allow for road safety analyses before the physical occurrence of road crashes. 
According to Tarko (2018), the use of SSMs in the field of road safety aids in the 
detection of road crashes’ excessive risk, the knowledge improvement of crash-
leading conditions, and the effectiveness estimation of various countermeasures. 
Wang et al. (2021) provide a comprehensive review of important SSMs and divide 
them into two key categories: (i) SSMs and (ii) SSM-based models. The first category 
includes key time-based, deceleration-based, and energy-based SSMs. These 
subcategories include predominant SSMs that use predefined thresholds for traffic 
conflicts’ identification and are used widely across studies in the road safety literature 
such as Time-to-Collision (TTC), Post Encroachment Time (PET), Time-to-
Crash/Accident (TC/TA) and Deceleration Rate to Avoid the Crash (DRAC) (Bonela & 
Kadali, 2022). On the other hand, the second category aims to directly associate each 
traffic conflict with either a crash or non-crash outcome, by estimating its crash 
probability (Songchitruksa & Tarko, 2006; Wang & Stamatiadis, 2014). 
 
Initially, data collection of SSMs was based on roadside observation techniques 
(Sayed & Zein, 1999). As it can be intuitively perceived, such approaches were not 
accurate as they were based on subjective criteria (Shinar, 1984). In order to reduce 
such biases, video-based measurements were introduced many years ago (Hydén, 
1987) and have been improving significantly since then. Recent, technological 
advancements have led to more advanced techniques that reduce human 
interventions and deploy computer vision and sensor techniques (Chen et al., 2017; 
Laureshyn et al., 2017; Wu et al., 2018). Moreover, several simulation-based analyses 
have been conducted aiming to derive SSMs from traffic simulation models (Gettman 
& Head, 2003; Mahmud et al., 2019). The rapid technological development in 
naturalistic driver recording has also brought about an increasing availability of data 
from sensors in vehicles and smartphones that can be used to extract various SSMs 
such as TTC, harsh braking events, and harsh acceleration events (Guido et al., 2012; 
Fazeen et al., 2012; Ziakopoulos et al., 2022). All in all, SSMs can either be an 
alternative to road safety analyses or even complement analyses that are based on 
historical crash records (Johnsson et al., 2018). 
 
Within this framework, the aim of this literature review process is to provide a review 
of the scientific literature of studies exploiting SSMs in historical crash record 
investigations. More specifically, this review process focuses on studies that attempt 
either (i) to investigate the correlation of SSMs and historical crash records or (ii) to 
predict the number of expected road crashes through SSMs and then compare them 
with the historical crash records. The different types of SSMs, the manner in which 
they are collected, their connection with specific road crash types, and the type of the 
developed statistical models are examined and discussed. Particular emphasis is 
placed on the temporal periods dedicated to data collection for both the SSMs and 
road crash data, as uncertainties in the length of the data collection periods are a 
problem typically investigated in driver recording (Stavrakaki et al., 2020). In order to 
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achieve this aim, published scientific studies that are authored in English are critically 
examined. It should be mentioned that this literature review only includes relevant 
papers that concern SSMs collected under real road environment conditions, as 
opposed to studies that are based on traffic simulation and driver simulators. 
 
During the review process, studies dealing with the use of traffic conflict techniques 
for use in-road safety assessments were also identified. Arun et al. (2021b) focused 
on mapping the concepts and methods related to surrogate safety assessment using 
traffic conflicts. Their study deals with specific topics such as the concept of crash 
surrogacy, the definition and identification of traffic conflicts, and the specification of 
the relationship between crashes and conflicts. In other studies, Arun et al. (2021a) 
assessed the different traffic conflict safety thresholds among various road 
environments and applications, while Zheng et al. (2021) discussed various 
conceptual and methodological issues related to traffic conflict modelling. However, 
this literature review presents novelty in different areas. Specifically, it (i) exclusively 
investigates studies that use both SSMs and historical crash records, (ii) extends 
beyond measures with predefined thresholds for traffic conflicts’ identification to SSMs 
that can be extracted from smartphone sensors and instrumented vehicles related to 
harsh driving behaviour events, and (iii) sheds light on the temporal periods dedicated 
to data collection for both SSMs and crashes. 
 
Following this Introduction, this section is organized as follows. Section 2.2 describes 
the methodological framework of this literature review, including the Preferred 
Reporting Items for Systematic Reviews and the Meta-Analyses (PRISMA) approach 
that was adopted. Section 2.3 showcases the main review findings in terms of the 
different types of SSMs and crashes, various modelling approaches, and the temporal 
dimension of the data used in the examined studies. Subsequently, a discussion of 
overall findings and trends from the reviewed studies and some future research 
directions are provided in Section 2.4. Lastly, Section 2.5 comprises the research 
questions that this doctoral dissertation seeks to address meaningfully, presenting 
substantial results and findings in the subsequent sections. 
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2.2 Review Methodology 

The current review was carried out during June 2022 and adhered to the PRISMA 
guidelines (Moher et al., 2009). The search was undertaken in the Scopus, TRID and 
Web of Science databases; Figure 2.1 depicts the search terms and the study 
selection process. It should be noted that there was no specific search restriction on 
the publication date of the examined articles. Moreover, articles had to be peer-
reviewed before publication and authored in English which is the predominant written 
language in the global scientific literature. Emphasis should be placed on the fact that 
the present review process aims to provide a review of the scientific literature 
regarding studies exploiting SSMs towards historical crash record investigations and 
thus includes only studies that were conducted under real road environment conditions 
(as opposed to simulators). 
 
After the exclusion of some papers based on their titles and abstracts, a total of 52 
articles were selected for full-text review. After the full-paper review, 18 studies were 
excluded for not meeting the inclusion criteria (e.g., absence of historical crash data 
or SSMs, separate statistical models for SSMs and road crashes, crash data available 
but not used in statistical modelling, etc.). Finally, 34 articles were identified and 
reviewed. The literature review findings are presented and discussed in detail in the 
following subsections. 
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Figure 2.1: PRISMA flow diagram 
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2.3 Review Findings 

2.3.1 Types of Surrogate Safety Measures and Historical Crash Data 

As already pointed out in the introductory section of this literature review process, 
SSMs can be leveraged in road safety analyses in two ways. On one hand, they can 
provide an alternative to road safety analyses when road crash data are not available 
as a proactive approach. On the other hand, SSMs complement analyses based on 
historical crash records, which is also the main subject of this review process. The key 
information about the SSMs and historical crash records (types and temporal 
dimension), modelling approaches, the scale of analysis, and other considered 
variables used in the reviewed studies are summarized in Table 2.1, sorted by means 
of collection for SSMs. It should be noted that the column named “Temporal Ratio” of 
Table 2.1 has been calculated due to the observed discrepancies in data collection 
period lengths for road crashes and SSMs. The values of this column are 
dimensionless numbers as they have been calculated by converting the crash and 
SSMs data collection periods into the same time units. 
 
Technological improvements during recent decades have led to the development of a 
wide array of sophisticated tools that provide more rich and rapid data acquisition in 
terms of various aspects of driving performance (Ziakopoulos et al., 2020). As can be 
observed from Table 2.1, during the last five years, the use of smartphone data has 
also begun to gain significant ground in studies featuring SSMs (Strauss et al., 2017; 
Paleti et al., 2017; Stipancic et al., 2018a; Stipancic et al., 2018b; Stipancic et al., 
2019; Yang et al., 2019; Khorram et al., 2020; Guo et al., 2021). Exploiting smartphone 
sensors such as accelerometers, digital compasses, gyroscopes, and GPS allows the 
extraction of various driver performance metrics and SSMs through an inexpensive 
and rapid way, even without requiring user engagement (Mantouka et al., 2018). 
 
The SSMs collected via smartphone sensors in the examined studies concern harsh 
driving behaviour events such as harsh braking and harsh acceleration. Harsh braking 
events are generated by drivers as a reaction to various possibly dangerous situations 
in order to avoid a near miss or even a road crash (Ziakopoulos et al., 2022). Moreover, 
harsh braking events are a critical element for the assessment of driving risk (Gündüz 
et al., 2017), as they are innately associated with crash occurrence probability 
(Tselentis et al., 2017). However, harsh acceleration events are different phenomena 
than harsh braking events, as they are mainly affected by drivers’ levels of anger, 
frustration, and anxiety (Stephens & Groeger, 2009). Based on previous studies, it is 
noted that the levels of deceleration and acceleration that define harsh braking and 
harsh acceleration events respectively may vary across different studies and transport 
modes (Kamla et al. 2019; Park et al. 2021).  
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Specifically, in a relevant summary table presented in a study by Kamla et al. (2019), 
the thresholds of harsh brakings are recorded, ranging from 1.96 m/s2 for trucks 
(Blanco et al., 2011) to as high as 8.43 m/s2 for passenger cars under dry surface 
conditions (Greibe, 2007). Regarding certain studies included in Table 2.1, the 
thresholds for harsh braking are as follows: 2 m/s2 (Stipancic et al., 2018a), 2.67 m/s2 
(Desai et al., 2021; Hunter et al., 2021), 3.4 m/s2 (Strauss et al., 2017), and 4 m/s2 
(Kim et al., 2016). 
 
A frequent barrier encountered in studies exploiting harsh events is that they do not 
provide their specific thresholds and calculation methods for commercial reasons (Guo 
et al., 2021; Kontaxi et al., 2021; Zhao et al., 2022). Indicatively, the data provider for 
the analyses of the study by Yang et al. (2019) mentions that a harsh braking event is 
identified if a reduction in the speed is fast enough to thrust the driver and passengers’ 
bodies forward hard enough to cause the seatbelt to lock. 
 
As can be observed from Table 2.1, naturalistic driving experiments using 
instrumented vehicles are another frequently selected option for collecting SSMs. 
These experiments are a quite similar alternative to smartphone data but much more 
expensive as there are significant costs that depend on the equipment used (Ball & 
Ackerman, 2011) and the duration of the experiment (Regan et al., 2012). The majority 
of the SSMs collected through instrumented vehicles range in a similar concept to the 
data collected by smartphones and concern harsh driving behaviour events (Kim et 
al., 2016; Pande et al., 2017; Ambros et al., 2019; Kamla et al., 2019; Mousavi et al., 
2019; Stipancic et al., 2021; Desai et al., 2021; Hunter et al., 2021; Li et al., 2021a; 
Park et al., 2021; Li et al., 2021b). Apart from these studies that focus on harsh driving 
behaviour events, traffic conflicts and related measures for rating their severity have 
also been examined in other naturalistic driving experiments using instrumented 
vehicles (Lu et al., 2011; He et al., 2018). 
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Table 2.1: Studies exploiting SSMs in historical crash record investigations 

Reference 
Surrogate Measures 

 
  

Other Variables 
  

Historical crash data  Temporal 
Ratio 

(Crash/SSM) 
Modelling Approach Scale of 

analysis Type Sample Collection Period Infrastructure Traffic Other Period Type 

Khorram et al. 
(2020) harsh braking 176 bus drivers smartphone 4 months length deceleration driver age & 

experience 3 years Bus driver at-
fault 9 Pearson correlation, 

GLM (NB) 
2 routes 
(13km, 
10km) 

Paleti et al. 
(2017) 

harsh braking, 
harsh 

acceleration 

11 drivers, 228 
trips, 58h of 

driving (4-6pm) 
smartphone 1 year interchange, 

surface 

traffic 
volume, avg 
speed, SD 

acceleration 
- 1 year 4-6pm 

weekdays 1 
random parameters 

Generalized Ordered 
Response Probit 

(GORP) 

513 freeway 
segments 

Stipancic et al. 
(2018a) harsh braking ~22,000 trips, 

>4000 drivers smartphone 21 days length, class 
congestion, 
avg speed, 

speed 
variation 

- 11 years Total 191 
INLA Full Bayesian 

Latent Gaussian 
Model 

1000 links 
and 

intersections 

Stipancic et al. 
(2018b) 

harsh braking, 
harsh 

acceleration 
~22,000 trips, 
>4000 drivers smartphone 21 days class - - 5 years Total 87 

Spearman correlation 
and pairwise 

Kolmogorov-Smirnov 
test 

20586 links 
and 10721 

intersections 

Stipancic et al. 
(2019) harsh braking ~22,000 trips, 

>4000 drivers smartphone 21 days length, class 
congestion, 
avg speed, 

speed 
variation 

- 11 years Total 191 

INLA Full Bayesian 
 Latent Gaussian 

Model,  
Fractional Multinomial 

Logit 

4623 links 
and 4429 

intersections 

Strauss et al. 
(2017) harsh braking 

over 10,000 
trips, ~1000 

cyclists 
smartphone 137 days - traffic volume - 6 years Cyclists 16 

empirical Bayes (EB) 
estimates - Spearman 

correlation 

13279 
intersections 
and 19837 
segments 

(aggregated 
also at 

corridors 
level) 

Yang et al. 
(2019) 

harsh braking, 
harsh 

acceleration 
10,512 events smartphone 6 months 

bus & subway 
stations, 

intersections, 
length 

traffic 
volume, truck 

flow, 
speeding 

distraction, land 
use, population, 
unemployment, 

income, 
housing, 

commuting 

6 months Total 1 

MVCAR, UCAR, two-
sample Kolmogorov-

Smirnov test, 
Wilcoxon signed-rank 

test 

282 census 
tracts 

Guo et al. 
(2021) 

Harsh: braking, 
acceleration, 

turn, merge into 
lane 

- 
in-vehicle 
navigation 
software 

2 months - 
traffic 

volume, 
congestion, 
avg speed, 

- 2 months Total 1 Random Forest, 
Logistic regression 

40 freeway 
segments 
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Reference 
Surrogate Measures 

 
  

Other Variables 
  

Historical crash data  Temporal 
Ratio 

(Crash/SSM) 
Modelling Approach Scale of 

analysis Type Sample Collection Period Infrastructure Traffic Other Period Type 
speed 

variation 

Ambros et al. 
(2019) 

harsh braking, 
harsh 

acceleration 
1,172 company 

vehicles 
instrumented 

vehicle 8 months curve length & 
radius 

traffic 
volume, 

acceleration 
- 6 years Single-vehicle 9 GLM (NB) 30 rural 

curves 

Boonsiripant 
et al. (2011) 

stop frequency, 
variation of 
stops, 90th 

percentile count 
of stops 

36,724 trips, 
408 drivers 

instrumented 
vehicle 1 year speed limits 

traffic 
volume, 
speed 

variation,V85
, V95, V5, 

acceleration 

- 4 years 
Daytime, clear 

weather, 
motor vehicle 

4 Regression tree and 
GLM 

61 urban 
corridors 

Desai et al. 
(2021) harsh braking 196,215 events instrumented 

vehicle 2  months length - - 2  months Injury and 
PDO 1 Linear regression 

23 
construction 
work zones 
(150 miles) 

Guo et al. 
(2010) near crash 

100 cars, 2 
million veh-

miles, 43000h 
instrumented 

vehicle 1 year - - - 1 year Total 1 GLM (Poisson) 

Northern 
Virginia/Metr

o 
Washington, 

DC 

He et al. 
(2018) 

TTC, MTTC, 
DRAC, brake 

duration 
100 vehicles instrumented 

vehicle 2 months length avg speed 
avg trip 

duration, 
extreme trip 

index 
5 years Rear-end mid-

block 30 GLM (NB) 2772 links 

Hunter et al. 
(2021) harsh braking 10,000 events instrumented 

vehicle 1 months - traffic volume - 4.5 years Rear-end 55 
Spearman, Pearson 

& Kendall Cor., 
Sensitivity Analysis, 

GLM (Poisson) 

8 
intersections 

Kamla et al. 
(2019) harsh braking 

8,000 trucks, 
195,297 harsh 
braking events 

instrumented 
vehicle 2 years width, inscribed 

circle diameter 
traffic 

volume, truck 
traffic 

- 11 years Total 6 
GLM (NB) 

random/fixed-
parameters 

70 
roundabouts 

Kim et al. 
(2016) harsh braking 

20 vehicles, 
150k seconds 
of data, 224 

trips 

instrumented 
vehicle 3 months 

internal TMC, 
recurrent 

bottleneck 

speed, 
acceleration, 
deceleration 

- 4 years Rear-end 
/veh-km 16 Correlation, Spatial 

distribution using GIS 
60 segments 

(63 mile 
freeway) 
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Reference 
Surrogate Measures 

 
  

Other Variables 
  

Historical crash data  Temporal 
Ratio 

(Crash/SSM) 
Modelling Approach Scale of 

analysis Type Sample Collection Period Infrastructure Traffic Other Period Type 

Li et al. 
(2021a) 

harsh braking, 
harsh 

acceleration 

300 buses, 
6.7million GPS 

records 
instrumented 

vehicle 3 months - - number of 
buses 10 years Pedestrian & 

bicycle 41 
Spearman 

correlation, Bayesian 
NB, Bayesian NB-

CAR 

200m & 
100m buffer 

circles 

Li et al. 
(2021b) harsh braking 16 participants instrumented 

vehicle 2 weeks length traffic volume - 3 years Total / veh-
miles 78 

Line-constrained 
clustering method 

(combines DBSCAN 
with spatial selection 

functions) 

156 quarter 
mile 

segments of 
2 highways 

Lu et al. 
(2011) 

conflicts / 
vehicles 

50 taxies, 
2.25million km 

travelled 
instrumented 

vehicle 6 months - - - 3 years Total / 
vehicles 6 Linear regression city, country 

Mousavi et al. 
(2019) harsh braking 31 participants instrumented 

vehicle 2 weeks curvature traffic volume - 5 years Total / traffic 
volume 130 GLM (NB) 

31+21 
quarter mile 
segments of 
2 highways 

Pande et al. 
(2017) harsh braking 33 drivers instrumented 

vehicle 10 days 
curve(y/n), 
auxiliary 
lane(y/n) 

traffic volume - 10 years Total 365 
GLM (NB) 

random/fixed-
parameters 

39 freeway 
segments 

Park et al. 
(2021) 

Harsh: 
acceleration, 
braking, start, 

stop, lane 
change, 

overtaking, 
turning, U-turn 

all commercial 
vehicles in 

Korea 
instrumented 

vehicle 1 week length speeding city 4 years Total 209 Random Forest, GLM 
(NB) 

38 segments 
in 4 cities 

Stipancic et al. 
(2021) harsh braking ~1.5 million 

trips 
instrumented 

vehicle 30 days length, class 
congestion, 
avg speed, 

speed 
variation 

- 5-11 
years Total 61 

INLA Full Bayesian 
Latent Gaussian 

Model 
123792 links 

Hu et al. 
(2020) 

harsh braking, 
harsh 

acceleration, 
wait-time 

90 vehicles connected 
vehicle 1 month approaches, 

traffic light - 
traffic volume, 

speed, 
acceleration, 
deceleration 

5 years Total 61 
Multi-layer perceptron 
(MLP), Convolutional 

Neural Network 
(CNN), Decision Tree 

774 
intersections 

Xie et al. 
(2019) 

TTC, DRAC, 
TTCD 

90 vehicles, 
15.7 million 
GPS points 

connected 
vehicle 1 month - traffic volume - 1 year Rear-end / 

traffic volume 12 Pearson correlation 75 highway 
segments 

Yang et al. 
(2021) 

TTC, DRAC, 
TTCD 

2.7 million 
trajectory points 

connected 
vehicle 1 month class, speed 

limit, lanes traffic volume GPS points 1 year Rear-end 12 SEM-CAR-RP 220 road 
segments 
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Reference 
Surrogate Measures 

 
  

Other Variables 
  

Historical crash data  Temporal 
Ratio 

(Crash/SSM) 
Modelling Approach Scale of 

analysis Type Sample Collection Period Infrastructure Traffic Other Period Type 

Alhajyaseen 
(2015) 

kinetic energy, 
PET - video records 3 hours - - - 6 years Severe 17,520 

Sensitivity Analysis, 
Exponential 

Relationships 
5 urban 

intersections 

Fu & Sayed 
(2021a) DRAC 2,202 events video records 15 hours - - - 3 years Rear-end, 

daytime 1,752 Bayesian hierarchical 
extreme value model 

4 signalized 
intersections 

Fu & Sayed 
(2021b) 

TTC, MTTC, 
PET, DRAC 7,998 conflicts video records 24 hours - 

traffic 
volume, 

shock wave 
area, platoon 

ration 

- 3 years 
Rear-end, 

daytime, good 
weather 

1,095 
Random Parameters 
Bayesian hierarchical 
extreme value model 

4 signalized 
intersections 

Johnsson et 
al. (2021) mTTC, PET - video records 24 hours - traffic volume country 7 years 

Between 
cyclists and 

motor vehicles 
2,555 GLM (NB) 9 signalized 

intersections 

Mukherjee & 
Mitra (2020) PET 

187,174 
crossing 

behaviours 
video records 6 hours 

pavement 
marking, night 
visibility street 

light 

traffic 
volume, 

pedestrian 
traffic, 

overtaking 
tendency, 

speed 

land use, zebra 
cross. following, 
cross/wait time, 
cross difficulty, 

population, 
attraction zone, 
residential area 

6 years Fatal 
Pedestrian 8,760 GLM (NB), GLM 

(Poisson) 

110 
intersections 

and 54 
midblock 
segments 

Wang et al. 
(2019) 

TA, PET, 
mTTC, MaxD - video records 

(UAV) 
4 hours x10 

inters. - - - 5 years Angle, Rear-
end 1,095 Bivariate extreme 

value model 
10 urban 
signalized 

intersections 
Zheng et al. 

(2019) 
TTC, MTTC, 
PET, DRAC - video records 2 hours x 4 

inters. - - - 3 years Rear-end, 
daytime 3,285 Bivariate extreme 

value model 
4 signalized 
intersections 

El-Basyouny 
& Sayed 
(2013) 

TTC - conflict survey 8h x 2 days class, right turn traffic volume - 3 years Total 1,643 
Two-phase model: 

Lognormal (conflicts) 
- GLM (NB) (crashes) 

51 signalized 
intersections 
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The term traffic conflict denotes an observable event that would end in a road crash 
unless one of the involved road users slows down, changes lane, or accelerates to 
avoid a collision (Risser, 1985). Based on Table 2.1, it is demonstrated that the 
collection of traffic conflict-related SSMs under real road conditions in the majority of 
the examined studies is based on video recordings (Alhajyaseen, 2015; Zheng et al., 
2019; Wang et al., 2019; Mukherjee & Mitra, 2020; Johnsson et al., 2021; Fu & Sayed, 
2021a; Fu & Sayed, 2021b). Conflict surveys through field observations are another 
option for collecting such data (El-Basyouny & Sayed, 2013). When real vehicle 
trajectories and speeds are not available, simulation models are widely used 
(Gettman, & Head, 2003; Saccomanno et al., 2008). However, simulation studies fall 
outside the scope of this literature review research and are not discussed further. 
 
Among the different traffic conflict-related SSMs used in the reviewed studies, it can 
be observed that PET, TTC, and DRAC are the most widely used. According to 
Gettman and Head (2003), PET is defined as the time elapsed between the 
encroachment’s end of the turning vehicle and the time that the trough vehicle reaches 
the potential point of the crash, while TTC corresponds to the expected time for two 
vehicles to collide if they maintain their present speed and path. Various modifications 
of the TTC have been used in the examined studies such as the minimum TTC (mTTC) 
(Wang et al., 2019; Johnsson et al., 2021), which corresponds to the TTC’s lowest 
values obtained, and the modified TTC (MTTC) proposed by Ozbay et al. (2008) that 
takes into account relative position, relative speed and relative acceleration of the 
conflicting vehicles (Zheng et al., 2019; Fu & Sayed, 2021b). Lastly, DRAC 
corresponds to the minimum deceleration rate required by the following vehicle to 
come to a timely stop (or match the leading vehicle’s speed) and hence to avoid a 
crash (Zheng, & Sayed, 2019). However, a frequent issue encountered in such studies 
and also identified by a relevant study is that the safety thresholds of conflicts vary by 
traffic environment type and the application purposes of conflict measures (Arun et al., 
2021b). 
 
According to Lu et al. (2014), connected vehicles are the key to the evolution of next-
generation intelligent transportation systems. In addition, they are expected to bring 
multiple benefits to driving behaviour monitoring tools as well (Ziakopoulos et al., 
2020). Table 2.1 reveals that, when utilized, connected vehicles are an additional 
emerging option for studies exploiting SSMs for historical crash record investigations 
and can be a standardized, streamlined, and seamless collection source of both harsh 
event and traffic conflict data (Xie et al., 2019; Hu et al., 2020; Yang et al., 2021). 
 
Regardless of how SSMs are collected, in most of the studies reviewed, the type of 
historical road safety data used is either the absolute number of total crashes or the 
number of total road crashes divided by a risk exposure indicator such as the number 
of vehicles or vehicle kilometers traveled (Lu et al., 2011; Mousavi et al., 2019; Li et 
al., 2021b). Furthermore, the severity of road crashes is not taken into account in the 
majority of the studies included in Table 2.1. However, there are certain studies that 
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focus on serious or fatal road crashes (Alhajyaseen, 2015; Mukherjee & Mitra, 2020). 
Several studies attempt to correlate SSMs with specific road crash types such as rear-
end, angle and single-vehicle crashes (Wang et al., 2019; Ambros et al., 2019; Hunter 
et al., 2021; Yang et al., 2021). Other research studies focus on specific road crash 
characteristics such as the weather conditions, and the time or the day of the crash, 
which usually correspond to the conditions of SSM collection (Paleti et al., 2017; Fu & 
Sayed, 2021b). Moreover, the historical crash records of some other studies target 
specific road user types such as vulnerable road users (Strauss et al., 2017; Li et al. 
2021a; Johnsson et al., 2021) and drivers of various transport modes (Khorram et al., 
2020). 
 
Lastly, in addition to the SSMs and historical crash data, most of the examined studies 
in Table 2.1 include some supplementary variables that are mainly related to road 
infrastructure and traffic. Among these variables, road length and road class prevail 
for infrastructure, while traffic volume and speed prevail for traffic parameters. 
 

2.3.2 Modelling Approaches 

This subsection of the review process gives a brief overview of the various modelling 
approaches implemented in the reviewed studies that are presented in Table 2.1 and 
exploit SSMs for historical crash records. Initially, it can be observed that some studies 
are only limited to different correlation methods, such as Pearson or Spearman 
correlation, which aim to measure the strength of association between SSMs and road 
crashes (Kim et al., 2016; Strauss et al., 2017; Stipancic et al., 2018b; Xie et al., 2019). 
Certainly, correlation matrices are also included in other studies as a preliminary step 
before the development of more advanced statistical models (Khorram et al., 2020; 
Stipancic et al., 2021; Hunter et al., 2021; Li et al., 2021a). 
 
GLMs have been implemented widely in the road safety literature for many years, as 
they assume that crashes are independent, random, and sporadic countable events 
(Dobson & Barnett, 2018). Based on Table 2.1, it is observed that Poisson (Guo et al., 
2010; Mukherjee & Mitra, 2020; Hunter et al., 2021) and NB models (El-Basyouny & 
Sayed, 2013; He et al., 2018; Ambros et al., 2019; Mousavi et al., 2019; Khorram et 
al., 2020; Park et al., 2021; Johnsson et al., 2021) are the most common forms of 
GLMs among studies exploiting SSMs for historical crash record investigations, with 
NB models being more prevalent than Poisson models. The key difference between 
these two GLM forms has to do with the fact that NB models relax the equal mean and 
variance assumption of the Poisson model, which can account for overdispersion 
resulting from unobserved heterogeneity and temporal dependency (Lord & 
Mannering, 2010). Specific research documents among the reviewed studies have 
also introduced random effects to GLMs in order to extend them to Generalized Linear 
Mixed Models (GLMMs) and account for unobserved heterogeneity (Pande et al., 
2017; Kamla et al., 2019). 
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Several of the reviewed studies have also attempted to incorporate into their analyses 
the effects of various road safety indicators’ spatial characteristics. Bayesian 
approaches are widely used to consider the spatial correlation for modelling crash 
frequencies. In that context, Li et al. (2021a) developed a Bayesian NB model with 
conditional autoregression (CAR) prior to accounting for spatial correlation between 
neighbouring bus stops. The results of this research indicated the necessity of 
considering spatial autocorrelation during the crash frequency model process as the 
developed Bayesian NB-CAR model outperformed the Bayesian model in terms of 
various model evaluation metrics. In another study, both the spatial and temporal 
dependence of crash observation were taken into account in a multivariate conditional 
autoregressive (MVCAR) model in the full Bayesian framework (Yang et al., 2019). 
 
Yang et al. (2021) proposed a new safety measure termed Risk Status, which was 
modeled as a latent variable in a Structural Equation Model in the Bayesian framework 
that could account for both spatial autocorrelation through CAR spatial effect and 
unobserved heterogeneity through road segments random parameters (i.e., SEM-
CAR-RP). Overall, SEM is a powerful multivariate tool for jointly modelling 
interrelationships among observed and latent variables (Washington et al., 2020). 
However, the proposed approach of SEM-CAR-RP extends the methodological 
frontier of SEM applications in the field of road safety as it was found to be superior 
compared to more traditional alternatives of SEMs that did not take into account CAR 
spatial effect and unobserved heterogeneity. This finding demonstrates that various 
fundamental methodological issues of crash data modelling such as spatial 
autocorrelation, unobserved heterogeneity, etc. need to be investigated when 
exploring data from new data sources similar to those that were presented in Section 
2.3.1. Paleti et al. (2017) developed a random parameter Generalized Ordered 
Response Probit (GORP) model which is a type of model that can easily handle over 
or under-representation of multiple count outcomes at the same time without 
demanding a hurdle or zero-inflated model. The outcomes of this research revealed 
that the best-performing model was one including measurement error, random 
parameter heterogeneity, and spatial dependency. 
 
In a more straightforward approach, Li et al. (2021b) utilized a line-constrained 
clustering method that combines Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) with spatial selection functions in order to identify individual-specific 
risky road segments. Latent Gaussian Models (LGMs) are a subcategory of structure 
additive models, in which the dependent variable for each subject follows a distribution 
from the exponential family and can introduce temporal or spatial dependence 
(Blangiardo & Cameletti, 2015). This spatial modelling approach using the Integrated 
Nested Laplace Approximation (INLA) technique has been chosen as an appropriate 
tool for road network screening (Stipancic et al., 2018a; Stipancic et al., 2019; 
Stipancic et al., 2021). The INLA approach was introduced by Rue et al. (2009) as a 
computationally efficient alternative to Markov chain Monte Carlo methods. INLA can 
be combined with the Stochastic Partial Differential Equation (SPDE) approach 
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proposed by Lindgren et al. (2011) in order to implement spatial and spatio-temporal 
models for point-reference data (Lindgren & Rue, 2015). 
 

Extreme Value Theory (EVT) is a statistical approach that enables extrapolation from 
observed levels to unobserved levels (Coles, 2001), which is in alignment with the goal 
of predicting less frequent road crashes from more frequent traffic conflicts. EVT 
Models are becoming increasingly popular with substantial developments achieved 
recently. These models are mainly used to estimate the number of road crashes and 
then compare them to the observed historical crash records. Among studies presented 
in Table 2.1, bivariate EVT models have been proposed and it was found that this 
approach generated more accurate crash estimates than univariate models (Zheng et 
al., 2019; Wang et al., 2019). In a more recent study, Fu and Sayed (2021a) developed 
a Bayesian hierarchical extreme value model, which had three layers: the data layer, 
the process layer, and the prior layer. However, as also mentioned for different other 
model types and highlighted by Zheng et al. (2021), one important issue while 
developing such models is accounting for the unobserved heterogeneity across 
different observation locations. In order to deal with the issue, Fu and Sayed (2021b) 
propose a random parameters Bayesian hierarchical extreme value modelling 
approach. 
 
As can be observed in Table 2.1, traditional modelling approaches such as linear or 
logistic regression models have been used in a few studies exploiting SSMs for 
historical crash record investigations, but are less preferred (Lu et al., 2011; 
Alhajyaseen, 2015; Desai et al., 2021; Guo et al. 2021). This is partly also due to the 
emergence of ML and Deep Learning (DL) approaches as powerful tools that are 
gaining more ground for road safety analyses due to their ability to handle large 
volumes of data, their heightened predictive capabilities, and the complex, non-linear 
relationships they can disclose. Indicatively, the random forest algorithm is a data-
mining tool that has been used to determine the importance of the variables and 
includes in the statistical models the variables with the strongest impacts on road 
crashes (Guo et al., 2021; Park et al., 2021). Furthermore, Hu et al. (2020) exploited 
SSMs derived from connected vehicles’ data such as harsh braking, harsh 
acceleration, and wait time in order to predict the crash risk at intersections using DL 
approaches. Their analyses revealed that the performance of two black-box DL 
models, Multi-Layer Perceptron (MLP) and convolutional neural network (CNN) was 
slightly better than the Decision Tree Model. However, in the context of the examined 
studies it can be perceived that ML/DL approaches are not among the most prevalent 
methods at present. 
 
In summary, various modelling approaches have been implemented in the reviewed 
studies. However, the selection of an appropriate modelling framework depends highly 
on the research questions being asked, the available data, and the specific context of 
each study. Specifically, the type of crash data being analyzed (e.g., count data, rates 
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such as crashes divided by an exposure parameter, categorical/binary data, etc.), the 
level of spatial and temporal dependence, and the existence of unobserved 
heterogeneity are some factors that should be taken into consideration towards the 
selection of a suitable modelling methodology. While there are many different 
modelling approaches available in the literature, they should be treated as starting 
points for road safety practitioners, rather than definitive guides. 
 

2.3.3 Temporal Dimension 

When examining Table 2.1, no clear pattern can be observed with regard to the time 
periods of historical road crash data and SSMs collection. This is a constant topic, and 
researchers have to anticipate and plan accordingly in the study design process. 
Therefore, in this section, the authors attempt to shed light on this issue and identify 
potential hidden patterns through the visualization of the respective data in Table 2.1. 
As already mentioned in previous parts of the current review process, there are 
different ways that can be used to extract SSMs. It is observed that in studies using 
smartphones, instrumented vehicles, or connected vehicles the time period for which 
the SSMs were collected can vary from a few days (Pande et al., 2017; Park et al., 
2021) to several months (Boonsiripant et al., 2011; Paleti et al., 2017; Kamla et al., 
2019).  
 
On the other hand, SSMs collected through video recordings or conflict surveys are 
collected for a few hours (Alhajyaseen, 2015; Wang et al., 2019). As per the 
aforementioned, this discrepancy was also one of the main incentives for calculating 
the “Temporal Ratio” column of Table 2.1. The difference in time periods between the 
collection of historical road crash data and SSMs is mainly attributed to the emergence 
of new technologies, which allow for the rapid collection of SSMs data and the 
conduction of analyses with shorter time periods. The “Temporal Ratio” column could 
be interpreted as by how much more time is needed to collect an equivalent sample 
of SSMs with road crash data. For this reason, as well as for readability reasons, two 
different graphs have been produced. Specifically, Figure 2.2 demonstrates the time 
periods of historical road crash data and SSMs collected through smartphones, 
instrumented vehicles, and connected vehicles, while Figure 2.3 presents the 
respective values for the studies that used video records or conflict surveys for the 
extraction of SSMs. 
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Figure 2.2: Time periods of historical road crash data and SSMs collected  

through smartphones, instrumented vehicles and connected vehicles 
 

 
Figure 2.3: Time periods of historical road crash data and SSMs collected  

through video records and conflict surveys 
 
Based on Figures 2.2 and 2.3, a general trend that can be observed is that among all 
the examined studies the time period of road crash data is always greater than or 
equal to the time period of collection of SSMs, as expected from the increased usability 
that SSMs provide. Furthermore, regardless of the manner in which SSMs are 
collected, it is observed that in the majority of the examined studies (21 out of 34), 
historical road crash data used correspond to periods of three to six years. 
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Only five of the examined studies, use exactly the same time periods of historical crash 
data and SSMs. These studies exploit smartphones (Paleti et al., 2017; Yang et al., 
2019; Guo et al., 2021) and instrumented vehicles (Guo et al., 2010; Desai et al., 2021) 
for the extraction of SSMs. It can be observed that they are concentrated in the low 
spectrum of the Y-axis of Figure 2.2 as the crash data that they include in their 
analyses do not exceed one year. The highest ratio of road crash data time period to 
the time period of SSMs corresponds to the studies presented in the upper left part of 
Figure 2.2 (Pande et al., 2019; Stipancic et al., 2018a; Stipancic et al., 2019; Park et 
al., 2021). In particular, in these studies, the road crash data time period is calculated 
to be between 191 and 365 times longer (mean: 239, st.dev: 84.4) than the SSM time 
periods. The vast majority of the studies presented in Figure 2.2 are concentrated in 
the middle level of the Y-axis and towards the left side of the X-axis. In these studies, 
the time period of road crashes is estimated to be between 12 and 130 times longer 
(mean: 50, st.dev: 36.3) than that of the SSMs. In addition, there are also some studies 
located in the central and upper right part of Figure 2.2 for which the time period of 
road crashes is 4–9 times longer than that of SSMs (mean: 7, st.dev: 2.3) (Lu et al., 
2011; Boonsiripant et al., 2011; Ambros et al., 2019; Kamla et al., 2019; Khorram et 
al., 2020). 
 
Lastly, the comparison between Figure 2.2 and Figure 2.3 reveals that the ratio of road 
crash data time period to the time period of SSMs is much higher in the studies that 
collect SSMs through video records or conflict surveys compared to the other studies. 
This is due to the fact that the collection of SSMs through video recordings or conflict 
surveys requires only a few hours and the historical crash records correspond to time 
periods of at least three years, lending further credence to the utility of SSMs due to 
their rapid data collection. 
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2.4 Discussion 

2.4.1 Overall Findings and Trends from Reviewed Studies 

SSMs are steadily gaining ground in the road safety literature as they are a sustainable 
way of gauging road safety and allow the conduction of analyses without necessarily 
requiring historical road crash records. Moreover, the rapid and continuous progress 
in the field of technology makes it increasingly easier to collect such indicators. 
However, SSMs can also be combined with data from historical road crash records in 
order to complement and provide additional information to relevant road safety 
analyses. The present research focused on studies that exploit real-condition SSMs 
for historical crash record investigations. 
 
The examination of the studies in the framework of this literature review has revealed 
some noteworthy conclusions for road safety analyses that combine SSMs and 
historical crash data. It appears that the technological development in recent years 
has significantly contributed to making smartphones a key choice for collecting SSMs 
(Strauss et al., 2017; Paleti et al., 2017; Stipancic et al., 2018a; Stipancic et al., 2018b; 
Stipancic et al., 2019; Yang et al., 2019; Khorram et al., 2020; Guo et al., 2021). The 
indicators collected through smartphones’ sensors can be quite similar to those 
collected by instrumented vehicles (Ambros et al., 2019; Hunter et al., 2019; Stipancic 
et al., 2021). However, the cost of collecting SSMs via smartphones is significantly 
lower compared to that of instrumented vehicles. A fact that is also reflected by the 
increase in the use of smartphones in the relevant studies during the last five years. 
 
The majority of SSMs collected through either smartphones or instrumented vehicles 
involve harsh driving behaviour events. Through these studies, it becomes clear that 
the most commonly exploited harsh driving behaviour events such as harsh braking 
and harsh acceleration events are positively correlated with various types of road 
crash counts (Pande et al., 2017; Stipancic et al., 2018a; Stipancic et al., 2019; Yang 
et al., 2019; Ambros et al., 2019; Mousavi et al., 2019; Khorram et al., 2020; Li et al., 
2021a; Desai et al., 2021; Hunter et al., 2021) and road crash risk (Guo et al., 2021). 
As this relationship is verified by several studies, it can be deduced that harsh events 
could be used as dependent variables in statistical models as a proactive approach 
that does not require the collection of historical road crash data. Another approach 
used to collect SSMs is based on traffic conflicts. As for real road conditions, the 
collection of relevant indicators is mainly carried out through the analyses of video 
recordings (Alhajyaseen, 2015; Zheng et al., 2019; Wang et al., 2019; Mukherjee & 
Mitra, 2020; Johnsson et al., 2021; Fu & Sayed, 2021a; Fu & Sayed, 2021b). As with 
the SSMs collected through smartphones or instrumented vehicles, the reviewed 
studies based on traffic conflict indicators aimed either to investigate the relationship 
between the produced SSMs and historical crash counts or to predict the number of 
road crashes and then compare it with the observed crash counts. 
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Regarding the type of statistical analyses used in studies that combine SSMs and 
historical road crash data, GLMs including their various modifications dominate. There 
are also several studies that choose more specialized approaches to take into account 
unobserved heterogeneity and spatial dependence as they are among the most 
prevalent methodological issues typically faced when dealing with crash data 
modelling. Another common approach chosen by the reviewed studies concerns the 
different variants of EVT. Finally, it can be observed that ML techniques are not often 
used in the reviewed studies. Overall, the research questions, data type, and specific 
contextual factors of each study are critical to the choice of the respectively developed 
modelling framework. 
 
Finally, a key finding of this literature review that could be also highlighted as its most 
significant contribution relates to the time periods for which both the historical road 
crash data and the SSMs are collected. Until recently, it was not clear if there was any 
particular pattern. This research sheds light on this topic by revealing that in most 
studies that collect SSMs via smartphones and instrumented or connected vehicles, 
road crash data correspond on average to time periods that are 50 times longer than 
the collection periods of the SSMs. In cases of collection of the alternative indicators 
through video recordings, the time period of crash data is significantly higher than the 
respective period of collection of SSMs. 
 

2.4.2 Future Research Directions 

This subsection outlines research directions that do not appear to be sufficiently 
investigated from the present literature of studies exploiting SSMs for historical crash 
record investigations and can form meaningful upcoming research endeavors. An 
important aspect of road safety analyses is the level of injury severity of road crashes. 
However, it is observed that in the majority of the studies, severity has not been 
adequately investigated as they mainly exploit the total number of all injury road 
crashes without taking into account the different severity levels. However, there are a 
small number of studies that focus on serious or fatal road crashes (Alhajyaseen, 
2015; Mukherjee & Mitra, 2020). The inclusion of the level of injury severity in similar 
studies would be highly interesting for the quantification and the comparative 
assessment of the relationship between SSMs and different crash severity levels. 
Injury severity estimation using SSMs is also highlighted as a critical research need 
by Arun et al. (2021a). In that direction, a few recent research studies have attempted 
to estimate crashes by severity level using different SSMs (Goyani et al., 2021; Arun 
et al., 2022). 
 
Furthermore, most of the reviewed studies focus on road crashes involving all road 
users without separating them. However, there are some specific types of road users 
such as pedestrians, pedal cyclists, and motorcyclists that are considered vulnerable 
road users (VRUs), as they are prone to injury in any vehicular collision, primarily 
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because there is little or no external protective device that could absorb the impact of 
a road crash (Yannis et al., 2020). It is estimated that VRUs account for half of all road 
fatalities globally (World Health Organization, 2023). Moreover, the noteworthy 
increase in the use of new micromobility transport modes such as e-scooters in many 
cities around the globe has raised particular concerns for the safety of these emerging 
types of VRUs (Karpinski et al., 2022). Therefore, more research is needed on the 
manner in which various SSMs could be exploited to enhance the safety of VRUs. 
Towards this direction, Ali et al. developed a Bayesian Generalized EVT model in 
order to estimate real-time pedestrian crash risks at signalized intersections using 
Artificial Intelligence-based video analytics (Ali et al., 2023). 
 
Regarding the spatial scale of the analyses, it appears that the examined studies focus 
on the microscopic level as they mainly investigate road segments and intersections. 
Another promising research direction would be the application of analyses at a more 
macroscopic level such as regional areas (cities, metropolitan areas, local 
administrative units, etc.). In such cases, apart from different SSMs and road crash 
rates, various demographic, socioeconomic, and traffic exposure factors of the 
examined areas could be taken into consideration in the analyses. However, it is 
important to note that as the size of the examined area increases, capturing 
unobserved heterogeneity becomes more challenging (Wang et al., 2016). Apart from 
demographic and socioeconomic factors, key road safety performance indicators 
reflecting the safety of road users (seatbelt and helmet use, speeding, driving under 
the influence of alcohol, distraction), infrastructure, vehicles, and post-crash response 
in the examined regional areas could be also taken into account. 
 
Over the last years, ML models have been proven to be very efficient prediction tools, 
making them also particularly popular in road safety analyses. ML and DL approaches 
have come to challenge the hitherto dominance of traditional modelling approaches 
by being implemented alongside or instead of them. Based on the results of this 
literature review research, it appears that these approaches have not found frequent 
application in studies that exploit SSMs for historical crash record investigations. This 
could be attributed to the major challenge of interpreting the results generated by the 
respective algorithms accurately. However, this issue could be tackled by using model 
agnostic methods such as the SHAP values and Local Interpretable Model-Agnostic 
Explanations (LIME) that would explain the interpretation of the model regardless of 
the model type. Furthermore, hybrid modelling approaches integrating both statistical 
and ML techniques could be considered in future research studies, as this framework 
represents a methodological advancement in traffic conflict-based crash estimation 
models (Hussain et al., 2022). 
 
Lastly, the aforementioned future research directions can all be further augmented by 
the constant improvements in the technological field such as the further exploitation of 
smartphone data that can provide a vast amount of driving big data under real road 
conditions and connected vehicles that can be used for a more connected traffic 
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environment. The rollout of fifth-generation networks provides a unique opportunity for 
creating and exploiting innovative solutions to improve communication between all 
transport system components and reduce road crash casualties. The application of 
5G in traffic environments could be a game changer over the next years as it enhances 
direct communication capabilities with very low latency such as Vehicle-to-Vehicle 
(V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Everything (V2X) (Hussein et al., 
2021). This framework could assist in the collection of a wealth of real-time data that 
can be also used for the extraction of various SSMs that could be integrated into 
traditional road safety analysis. 
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2.5 Research Questions 

Based on the results of the literature review, the following research questions are 
formulated: 
 
Question 1 
How can infrastructure, traffic and driver behaviour data be fused and analyzed to 
derive meaningful conclusions for road crash risk assessment? 
 
Question 2 
a) Can harsh driving behaviour events be meaningfully considered reliable SSMs? 
b) Is there a statistically significant positive correlation between harsh driving 

behaviour events and historical road crash records? 
 
Question 3 
Is it possible to predict the crash risk level of road segments by exploiting road 
geometry characteristics and driver-behaviour based SSMs, and, if so, which ML 
classifiers are the most appropriate? 
 
Question 4 
Are harsh braking events more pertinent than harsh accelerations in predicting the 
crash risk level of road segments? 
 
Question 5 
a) In the absence of highly detailed historical road crash data, how can harsh braking 

events be analyzed across various road environments? 
b) Is there spatial autocorrelation present in harsh braking frequencies for road 

segments, and, if so, do spatial modelling approaches outperform their non-spatial 
counterparts? 

 
Question 6 
Which road infrastructure and driver behaviour parameters exhibit a statistically 
significant impact on the number of harsh braking events per road segment? 
 
The following sections of this doctoral dissertation are dedicated to delivering 
substantial results and findings that meaningfully address these research questions. 
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3. Methodological Approach 
 

3.1 General Methodological Framework 

This subsection delineates the methodology employed to accomplish the objectives of 
this doctoral dissertation, focusing on the road crash risk assessment. This was 
achieved through the integration of infrastructure, traffic, and naturalistic driver 
behaviour data. An overarching summary of the methodological framework is briefly 
provided here and visually depicted in Figure 3.1. Subsequent sections delve into the 
theoretical background and explanatory frameworks of specific methods utilized in this 
dissertation. 
 
The general methodological framework commenced with an exhaustive literature 
review and the formulation of precise research questions, followed by a structured 
sequence of actions. Initially, a comprehensive exploration of available data for 
detailed road safety modelling in Greece was undertaken. This led to the 
establishment of two distinct databases: one encompassed comprehensive data for 
the Olympia Odos motorway, including detailed historical road crash records, traffic 
attributes, road geometry characteristics, and driver behaviour data on a segmental 
basis; the other covered a broader road network within the Region of Eastern 
Macedonia and Thrace, albeit lacking detailed crash location data and traffic attributes. 
 
Various methodologies were applied for motorway segments. These included 
techniques such as NB regression for developing a crash frequency model, HC to 
determine crash risk levels based on historical crash data and traffic attributes, and 
the utilization of ML classifiers such as LR, DT, RF, K-NN, and SVM. These classifiers 
were used for crash risk level prediction, leveraging infrastructure and driver behaviour 
data. A critical focus was placed on evaluating the reliability of harsh driving behaviour 
events as SSMs. The analyses revealed that harsh braking events could serve as 
reliable SSMs and as dependent variables in road crash risk assessment models, 
particularly when dealing with unavailable or low-quality crash data.  
 
Subsequently, the framework extended to include the road network data of Eastern 
Macedonia and Thrace Region, employing harsh braking events for road crash risk 
assessment. This involved applying both non-spatial and spatial models to identify 
significant road infrastructure and driver behaviour parameters influencing harsh 
braking events per road segment. Ultimately, the synthesis of all the analyses carried 
out within the framework of this doctoral dissertation resulted in a comprehensive road 
crash risk assessment. 
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Figure 3.1: Graphical representation of the overall methodological framework  

of the doctoral dissertation 
 

The above graphical illustration of the methodological approach is used to provide a 
broader and more comprehensive picture of the workflow that takes place and results 
to the better understanding on how infrastructure, traffic and naturalistic driver 
behaviour data can be combined for road crash risk assessment.  Further details on 
the theoretical background and the implementation of the techniques applied in this 
dissertation are presented in the following sections.  
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3.2 Theoretical Background 

3.2.1 Descriptive Analysis 

This doctoral dissertation relies on big datasets, making it crucial to conduct 
descriptive analysis on a multitude of variables. Within this context, box plots (also 
known as box-and-whisker charts) offer a convenient means to illustrate numerical 
data groups, showcasing key parameters like minimum and maximum values, upper 
and lower quartiles, median values, as well as outliers and extreme values. 
 

 
Figure 3.2: Graphical explanation of box plot 

 
The spacing within the box plot signifies the data's dispersion and skewness, 
effectively pinpointing outliers. More specifically: 

• The median is represented by the line in the middle of the boxes. 
• The lower part of the box denotes the 25th percentile (25% of cases have 

values below the 25th percentile). 
• The upper part of the box signifies the 75th percentile (25% of cases have 

values above the 75th percentile). 
 

3.2.2 Linear Regression 

In the field of statistical modelling, Linear Regression stands as a fundamental pillar, 
a cornerstone in understanding the relationships between variables. Linear regression 
is used to model a linear relationship between a continuous dependent variable and 
one or more independent variables. The case of one explanatory variable is called 
simple linear regression; for more than one, the process is called multiple linear 
regression (Freedman, 2009).  
 
The simple linear regression model is given by Equation 3.1: 
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𝑌𝑌𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1 ∗  𝑋𝑋1𝑖𝑖 + 𝜀𝜀𝑖𝑖  Eq. (3.1) 

 
In this mathematical equation of the simple linear regression model, the dependent 
variable 𝑌𝑌𝑖𝑖 is a function of a constant term 𝛽𝛽0 (the point where the line crosses the Y 
axis) and a constant 𝛽𝛽1 times the value 𝑥𝑥1 of independent variable 𝑋𝑋 for observation 𝑖𝑖, 
plus a disturbance term 𝜀𝜀𝑖𝑖. The subscript 𝑖𝑖 corresponds to the individual or observation, 
where 𝑖𝑖 = 1, 2, 3, …, n. 
 

 
Figure 3.3: Schematic diagram of simple linear regression  

 
Linear regression relies on several assumptions, the violation of which necessitates 
corrective measures or alternative modelling techniques. These key assumptions 
include: 
 

• Continuous nature of the dependent or response variable. 
• Inherent linearity in the relationship between variables. 
• Disturbances exhibiting a mean of zero, indicating equivalence between model 

over-predictions and under-predictions.  
• Homoscedasticity of disturbances, signifying a lack of systematic variation in 

model uncertainty across observations. 
• Nonautocorrelation of disturbances, avoiding correlations stemming from 

repeated observations on individuals or spatial data exhibiting location-based 
dependencies. 

• Exogeneity of regressors, implying the absence of correlation between the 
regressors and disturbance terms. 

• While not mandatory for estimation, an approximately normal distribution of 
disturbance terms facilitates meaningful parameter inferences from the linear 
regression model. 
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For a deeper understanding and comprehensive insights, Washington et al. (2020) 
provide detailed elucidation on these concepts. 
 

3.2.3 Negative Binomial Regression 

However powerful in its simplicity, Linear Regression has limitations, primarily within 
scenarios where the outcome variable follows a normal distribution and exhibits a 
linear relationship with predictors. To extend regression techniques beyond these 
confines, Generalized Linear Models (GLMs) have emerged as a significant 
advancement. GLMs broaden Linear Regression's concept by accommodating 
various response variable types and employing a link function to establish a non-linear 
relationship between predictors and responses. This adaptation enables modelling 
diverse data types, including binary, count, and categorical outcomes. 
 
Among GLMs, models like Poisson Regression and NB Regression offer specialized 
solutions for count data, where assumptions of normality or linearity might not hold. 
The Poisson regression makes the assumption that variance and mean are equal, 
which is not always the case for data such as road crashes. In many cases, such 
datasets have a mean that is lower than their variance meaning that some road 
segments concentrate more on crashes than others. To that end, Negative Binomial 
regression is another well-known approach that can be considered as a generalization 
of Poisson regression and is preferred when overdispersion exists in count data (Lord 
& Mannering, 2010). 
 

 
Figure 3.4: Example of Poisson distribution (mean=5, variance=5, sample=10,000) 
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Figure 3.5: Example of Negative Binomial distribution (mean=5, variance=5, k=1, sample=10,000) 

 
In the example of road crashes, based on a Poisson regression model, the probability 
of a road segment 𝑖𝑖 having 𝑦𝑦𝑖𝑖 crashes per some time period is given by: 
 

𝑃𝑃(𝑦𝑦𝑖𝑖) =  
exp(−𝜆𝜆𝑖𝑖 )𝜆𝜆𝑖𝑖

𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖!
 Eq. (3.2) 

 
where 𝜆𝜆𝑖𝑖 is the Poisson parameter for segment 𝑖𝑖, which is equal to the expected 
number of crashes per period, 𝐸𝐸[𝑦𝑦𝑖𝑖] for segment 𝑖𝑖. The Poisson parameter 𝜆𝜆𝑖𝑖 needs 
to be defined as a function of independent variables. The most common functional 
form is: 
 

𝜆𝜆𝑖𝑖  = 𝑒𝑒𝑥𝑥𝑒𝑒(𝛽𝛽𝑋𝑋𝑖𝑖) Eq. (3.3) 
 

where 𝑋𝑋𝑖𝑖 is a vector of independent variables and 𝛽𝛽 is a vector of estimable 
parameters. In negative binomial distribution, the variance varies from the mean by 
adding the term 𝑒𝑒𝑥𝑥𝑒𝑒(𝜀𝜀𝑖𝑖)to the equation (3.3): 
 

𝜆𝜆𝑖𝑖  = 𝑒𝑒𝑥𝑥𝑒𝑒(𝛽𝛽𝑋𝑋𝑖𝑖 + 𝜀𝜀𝜄𝜄) Eq. (3.4) 
 

This extra term is a gamma-distributed error term with mean 1 and variance a that 
allows the variance to differ from the mean. For additional detailed explanations of the 
underlying statistical background, the reader can consult Washington et al. (2020). 
 

3.2.4 Zero-Inflated Negative Binomial Regression 

The ZINB regression is used for count data that exhibit overdispersion and excess 
zeros. The data distribution of the ZINB combines the negative binomial distribution 
and the logit distribution. The possible values of 𝑌𝑌 are non-negative integers such as 
0, 1, 2, 3, and so on. 
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Figure 3.6: Example of Zero-Inflated Negative Binomial distribution (mean=5, variance=5, k=1, 

sample=10,000, proportion of zeros = 35%) 
 
Suppose that for each observation, there are two possible cases. If the first case 
occurs, the count is zero. However, if the second case occurs, counts (including zeros) 
are generated according to the negative binomial distribution. Suppose that the first 
case occurs with probability π and the second case occurs with probability 1-π. 
Consequently, the probability distribution of the ZINB random variable 𝑦𝑦𝑖𝑖 can be 
written: 
 

Pr(𝑦𝑦𝑖𝑖 = 𝑗𝑗) =  �𝜋𝜋𝑖𝑖 + (1 −  𝜋𝜋𝑖𝑖)𝑔𝑔(𝑦𝑦𝑖𝑖 = 0)     if 𝑗𝑗 = 0
(1 −  𝜋𝜋𝑖𝑖)𝑔𝑔(𝑦𝑦𝑖𝑖)                       if 𝑗𝑗 > 0    Eq. (3.5) 

 
where 𝜋𝜋𝑖𝑖 is the logistic link function defined below and 𝑔𝑔(𝑦𝑦𝑖𝑖) is the negative binomial 
distribution given by: 
 

𝑔𝑔(𝑦𝑦𝑖𝑖) = Pr( 𝑌𝑌 = 𝑦𝑦𝑖𝑖  � 𝜇𝜇𝑖𝑖 ,𝛼𝛼) =  Γ(𝑦𝑦𝑖𝑖+𝛼𝛼−1) 
Γ(𝛼𝛼−1)Γ(𝑦𝑦𝑖𝑖+1)

(1
1 + 𝑎𝑎𝜇𝜇𝑖𝑖� )𝛼𝛼−1(𝑎𝑎𝜇𝜇𝑖𝑖 1 + 𝑎𝑎𝜇𝜇𝑖𝑖� )𝑦𝑦𝑖𝑖  Eq. (3.6) 

 
The negative binomial component can include an exposure time 𝑡𝑡 and a set of 𝑘𝑘 
regressors variables (the 𝑥𝑥′𝑠𝑠). 
 
The expression relating these quantities is the following: 
 

 𝜇𝜇𝑖𝑖 = exp(ln( 𝑡𝑡𝑖𝑖) +  𝛽𝛽1 𝑥𝑥1𝑖𝑖 +   𝛽𝛽2 𝑥𝑥2𝑖𝑖 + ⋯+   𝛽𝛽𝑘𝑘 𝑥𝑥𝑘𝑘𝑖𝑖) Eq. (3.7) 
 

Often,  𝑥𝑥1 ≡ 1, in which case  𝛽𝛽1  is called intercept. The regression coefficients 
𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑘𝑘 are unknown parameters that are estimated from a set of data. Their 
estimates are symbolized as 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑘𝑘. 
 
This logistic link function 𝜋𝜋𝑖𝑖 is given by:  
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𝜋𝜋𝑖𝑖 =  𝜆𝜆𝑖𝑖

1+ 𝜆𝜆𝑖𝑖
 Eq. (3.8) 

 
where: 
 

𝜆𝜆𝑖𝑖 = exp(ln( 𝑡𝑡𝑖𝑖) + 𝛾𝛾1 𝑧𝑧1𝑖𝑖 +   𝛾𝛾2 𝑧𝑧2𝑖𝑖 + ⋯+   𝛾𝛾𝑚𝑚 𝑧𝑧𝑚𝑚𝑖𝑖) Eq. (3.9) 
 

The logistic component can include an exposure time 𝑡𝑡 and a set of 𝑚𝑚 regressors 
variables (the 𝑧𝑧′𝑠𝑠). Note that the 𝑧𝑧′𝑠𝑠 and the 𝑥𝑥′𝑠𝑠 may or may not include terms in 
common. 
 
For more in-depth explanations on the underlying background of the ZINB, the reader 
can refer to Cameron & Trivedi (2013) and Garay et al. (2011). 
 

3.2.5 Logistic Regression 

Logistic regression, despite its name, functions as a classification model, particularly 
suitable for analyzing data with a binary outcome variable. This model aims to estimate 
the probability (P) of an event occurring by considering various predictors. In logistic 
regression, the outcome variable denotes the presence or absence of a condition, 
often coded as 1 or 0.  
 
The logistic regression equation incorporates a logit transformation, where the natural 
logarithm of the odds represents the relationship between the probability of an event 
(P) and the covariates. It is formulated as: 
 

𝑌𝑌𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑡𝑡 (𝑃𝑃𝑖𝑖) = 𝐿𝐿𝐿𝐿 � 𝑃𝑃𝑖𝑖
1− 𝑃𝑃𝑖𝑖

� =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1,𝑖𝑖 + 𝛽𝛽2𝑋𝑋2,𝑖𝑖 + ⋯+ 𝛽𝛽𝐾𝐾𝑋𝑋𝐾𝐾,𝑖𝑖 Eq. (3.10) 

 
and where 𝛽𝛽0 is the model’s constant and the 𝛽𝛽1, … ,𝛽𝛽𝐾𝐾 represent the unknown 
parameters associated with explanatory variables 𝑋𝑋𝐾𝐾. In Equation 3.10, the unknown 
binomial probabilities are a function of explanatory variables (which may include both 
continuous and discrete variables). 
 
The estimation of unknown parameters in Equation 3.10 often employs maximum 
likelihood methods. Once these parameters are estimated, they're used to calculate 
the probability of the outcome being 1 based on the covariates:  
 

𝑃𝑃𝑖𝑖 =  𝐸𝐸𝐸𝐸𝑃𝑃 [𝛽𝛽0+ 𝛽𝛽1𝐸𝐸1,𝑖𝑖+ 𝛽𝛽2𝐸𝐸2,𝑖𝑖+⋯+ 𝛽𝛽𝐾𝐾𝐸𝐸𝐾𝐾,𝑖𝑖]
1+ 𝐸𝐸𝐸𝐸𝑃𝑃 [𝛽𝛽0+ 𝛽𝛽1𝐸𝐸1,𝑖𝑖+ 𝛽𝛽2𝐸𝐸2,𝑖𝑖+⋯+ 𝛽𝛽𝐾𝐾𝐸𝐸𝐾𝐾,𝑖𝑖]

 Eq. (3.11) 
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Figure 3.7: The logistic function with example data 

 
For multiclass classification tasks, logistic regression expands its utility by employing 
strategies like One-vs-Rest or One-vs-All. For further information on its underlying 
theoretical background, the reader might consult Washington et al. (2020). 
 

3.2.6 Decision Tree 

DTs are a common class of non-parametric models that can be utilized for both 
regression and classification tasks and their concept was introduced by Quinlan 
(1986). It is noted that within the framework of this doctoral dissertation DTs were used 
for classification purposes. In terms of the underlying theoretical background, a DT 
classifier acts as a graphical representation where nodes encapsulate the features 
present in a dataset, branches denote potential values these features might assume, 
and leaves signify the resulting classification labels. These trees function on the 
fundamental principle of hierarchical decision-making, aiming to classify new data 
points by navigating through a series of decisions based on various features or 
attributes. 
 
The construction of a DT involves iterative partitioning of the dataset into subsets 
based on the values of chosen features. This iterative process continues until specific 
stopping criteria are met, such as reaching a defined maximum depth or achieving a 
minimum reduction in impurity. The result is a structured tree that visually depicts the 
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decision-making process, enabling straightforward interpretation and understanding 
of how the data is classified. 
 

 
Figure 3.8: Typical hierarchical structure of a Decision Tree 

 
Although there are several techniques to choose the best attribute at each node, 
information gain and Gini impurity are two approaches that are frequently used as 
splitting criteria for DT models. They aid in the assessment of each test condition's 
quality and its capacity to categorize samples into classes. Information gain is hard to 
describe without first talking about entropy. Entropy is a concept that stems from 
information theory, which measures the impurity of the sample values. The following 
formula defines it, where: 
 

𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑙𝑙𝑒𝑒𝑦𝑦(𝑆𝑆) =  −  ∑ 𝑒𝑒(𝑐𝑐)𝑙𝑙𝑙𝑙𝑔𝑔2𝑒𝑒(𝑐𝑐)𝑐𝑐∈𝐶𝐶  Eq. (3.12) 
 

- 𝑆𝑆 represents the data set that entropy is calculated  
- 𝑐𝑐 represents the classes in set, 𝑆𝑆 
- 𝑒𝑒(𝑐𝑐) represents the ratio of data points that belong to class 𝑐𝑐 to the number of 

total data points in set, 𝑆𝑆. 
 
Values of entropy can range from 0 to 1. When every sample in the data set 𝑆𝑆 is a 
member of the same class, entropy is equal to zero Entropy will peak at 1 if half of the 
samples are categorized into one class and the other half into a different class. The 
attribute with the least level of entropy should be utilized to determine which feature is 
best to divide on and to identify the optimum DT. The difference in entropy before and 
after a split on a particular attribute is known as information gain. Since it is performing 
the best at categorizing the training data in accordance with its target classification, 
the attribute with the highest information gain will result in the best split. The following 
formula is typically used to describe information gain, where: 
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𝐼𝐼𝐸𝐸𝐼𝐼𝑙𝑙𝐸𝐸𝑚𝑚𝑎𝑎𝑡𝑡𝑖𝑖𝑙𝑙𝐸𝐸 𝐺𝐺𝑎𝑎𝑖𝑖𝐸𝐸 (𝑆𝑆,𝑎𝑎) = 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑙𝑙𝑒𝑒𝑦𝑦(𝑆𝑆) −  ∑ |𝑆𝑆𝑣𝑣|
|𝑆𝑆|𝑣𝑣∈𝑣𝑣𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒𝑠𝑠(𝑣𝑣) 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑙𝑙𝑒𝑒𝑦𝑦(𝑆𝑆𝑣𝑣) Eq. (3.13) 

 
- 𝑎𝑎 represents a specific attribute or class label 
- 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑙𝑙𝑒𝑒𝑦𝑦(𝑆𝑆) is the entropy of dataset, 𝑆𝑆 
- |𝑆𝑆𝑣𝑣|

|𝑆𝑆|
 represents the proportion of the values in 𝑆𝑆𝑣𝑣 to the number of values in 

dataset, 𝑆𝑆 
- 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑙𝑙𝑒𝑒𝑦𝑦(𝑆𝑆𝑣𝑣) is the entropy of dataset, 𝑆𝑆𝑣𝑣. 

 
The probability that a random data point in a dataset would be incorrectly classified if 
its label were based on the class distribution of the dataset is represented by the Gini 
Impurity. Similar to entropy, the impurity of a set 𝑆𝑆 is equal to zero when it is completely 
pure (belonging to a single class). The formula below is used to describe this concept: 
 

𝐺𝐺𝑖𝑖𝐸𝐸𝑖𝑖 𝐼𝐼𝑚𝑚𝑒𝑒𝐼𝐼𝐸𝐸𝑖𝑖𝑡𝑡𝑦𝑦 = 1 −  ∑ (𝑒𝑒𝑖𝑖)2𝑖𝑖  Eq. (3.14) 
 
One critical challenge associated with DTs is the potential for overfitting, especially 
when the trees become too complex. Overfitting occurs when the model learns to fit 
the training data too precisely, resulting in reduced generalizability to new, unseen 
data. To mitigate this issue, various strategies are employed, including setting 
constraints on the tree's depth or complexity, employing pruning techniques to simplify 
the tree structure, or using ensemble methods that combine multiple trees to enhance 
predictive performance and reduce overfitting. 
 
For a more comprehensive understanding of DTs, interested readers are directed to 
delve into Han et al. (2022). 
 

3.2.7 Random Forest 

RF, introduced by Ho (1995) and further improved by Breiman (2001), stands as a 
prominent ML algorithm known for its great skill in both regression and classification 
tasks. This algorithm operates on the foundation of DTs, an elemental component in 
its ensemble learning structure. 
 
DTs, within the context of RF, function diversely for classification and regression tasks. 
In classification, these trees segment the dataset based on various attributes, thereby 
enabling the classification of instances into distinct classes or categories. On the other 
hand, regression trees facilitate the prediction of continuous numerical values by 
segmenting the dataset using specific feature thresholds. 
 
The fundamental strength of RF lies in its ensemble learning approach. It embraces 
bagging, a process that involves generating numerous subsets of data by employing 
bootstrapping techniques from the original dataset. Subsequently, these diverse 
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subsets contribute to the creation of multiple DTs. The essence of RF lies in the 
aggregation of predictions from these varied trees, which collectively generate the final 
output. 
 
Randomness assumes a pivotal role within the framework of RF. This algorithm 
introduces feature randomness by considering only a random subset of features at 
each node for the purpose of tree splitting. Furthermore, the utilization of bootstrapping 
ensures that each tree is trained on a distinct subset of the data, thereby enhancing 
the diversity and reducing the correlation between individual trees. 
 
One more advantage of RF is that it makes use of an "out-of-bag" (OOB) estimating 
technique. For every tree, about one-third of the original dataset is removed during the 
bootstrapping procedure. Although these out-of-bag samples are not utilized for 
training the particular tree, they can be used to get an unbiased assessment of the 
model's effectiveness without requiring a different validation set. This technique 
provides an internal validation mechanism, offering insights into the model's 
generalization performance while optimizing computational resources. 
 
In regression scenarios, the RF algorithm combines predictions from numerous trees 
by averaging their outputs. Consequently, this process yields a continuous prediction, 
ensuring a robust and reliable outcome. Meanwhile, in classification tasks, the 
algorithm relies on the aggregation of predictions from multiple trees to determine the 
mode, i.e., the most frequently occurring class prediction among the trees (majority 
voting). 
 

 
Figure 3.9: Graphical illustration of the Random Forest algorithm 
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The strengths of RF extend beyond its adaptability in handling diverse tasks. It boasts 
robustness by avoiding overfitting through the collective wisdom of multiple trees, 
accommodates missing data without necessitating imputation, offers insights into 
feature importance rankings, and exhibits scalability by efficiently processing large 
datasets through parallelization. However, the interpretability of complex ensembles 
can be challenging, hindering a comprehensive understanding of the model's decision-
making process. Moreover, training multiple trees can be computationally demanding, 
especially when dealing with a substantial number of trees and features. 
 

3.2.8 Support Vector Machines 

SVMs stem from statistical learning theory (Vapnik, 1999) and were developed by 
Cortes & Vapnik (1995), primarily focusing on binary classification tasks. The key 
objective of constructing an SVM model is to establish an optimal dividing hyperplane 
between two classes by maximizing the margin, which refers to the distance between 
the closest points of each class (Meyer, 2001). Therefore, different classes are 
separated by the hyperplane:  
 

〈𝑤𝑤,𝛷𝛷(𝑥𝑥)〉 + 𝑏𝑏 = 0 Eq. (3.15) 
 
which corresponds to the decision function  
 

𝐼𝐼(𝑥𝑥) = 𝑠𝑠𝑖𝑖𝑔𝑔𝐸𝐸(〈𝛷𝛷(𝑥𝑥𝑖𝑖),𝑤𝑤〉 + 𝑏𝑏) Eq. (3.16) 
 
The support vectors encompass the points lying on the boundaries, whereas the 
optimum separating hyperplane is positioned at the center of the margin. The following 
Figure provides a graphical representation of a linear separable example of SVMs. 
 

 
Figure 3.10: Graphical illustration of SVM classification (linear separable example) 
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Furthermore, SVMs can be extended to address nonlinear classification issues, 
regression tasks, and outlier detection. However, a significant drawback of SVMs is 
their inability to directly unveil the relationships between dependent and independent 
variables. Among the array of kernel-based algorithms (kernels) such as linear, 
polynomial, gaussian Radial-basis function, and sigmoid, this doctoral dissertation 
specifically focused on the gaussian Radial-basis function (Karatzoglou et al., 2005):   
 
Radial-Basis Function kernel (RBF): 
 

K�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = exp �−𝛾𝛾�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2� , 𝛾𝛾 > 0 Eq. (3.17) 

 
where, γ is the kernel parameter.   
 
Furthermore, two parameters (C, γ) of the SVM model (C-SVM) with the gaussian 
radial-basis kernel function need to be defined. According to Karatzoglou et al. (2006), 
the cost parameter C controls the penalty for incorrectly classifying a training point 
and, as a result, the prediction function's complexity. A complex prediction function will 
be produced by a high-cost value C in an effort to misclassify as few training data as 
feasible. Lower cost parameter C, on the other hand, leads to simpler prediction 
functions. 
 
The primal form of the bound constraint C-SVM is the following: 
 
minimize 𝑡𝑡(𝑤𝑤, 𝜉𝜉) = �1

2
� ‖𝑤𝑤‖2 + �1

2
� 𝛽𝛽2 + � 𝑐𝑐

𝑚𝑚
�∑ 𝜉𝜉𝑖𝑖𝑚𝑚

𝑖𝑖   
 
subject to  𝑦𝑦𝑖𝑖(〈𝛷𝛷(𝑥𝑥𝑖𝑖),𝑤𝑤〉 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖    Eq. (3.18) 
 
where, 𝑖𝑖 = 1, …, m, and 𝜉𝜉𝑖𝑖 ≥ 0. 
 
The respective dual form of the bound constraint C-SVM is the following: 
 
maximize 𝑊𝑊(𝛼𝛼) =  ∑ 𝑎𝑎𝑖𝑖 −  1

2
𝑚𝑚
𝑖𝑖=1 ∑ 𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗 �𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 + 𝑘𝑘 �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗��𝑚𝑚

𝑖𝑖,𝑗𝑗=1  
 
subject to 0 ≤ 𝛼𝛼𝑖𝑖  ≤ 𝑐𝑐

𝑚𝑚
, where, 𝑖𝑖 = 1, …, m  Eq. (3.19) 

 
and  ∑ 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖 = 0𝑚𝑚

𝑖𝑖=1 . 
 
For further information on the underlying background of the SVMs, the reader can also 
refer to Schölkopf & Smola (2002). 
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3.2.9 K-Nearest Neighbours 

The K-NN algorithm is a non-parametric supervised learning classifier, which exploits 
proximity to make classifications or predictions regarding the grouping of individual 
data points. While applicable to both regression and classification problems, its 
primary use lies in classification, relying on the idea that similar points can be found 
very close to one another. 
 
K-NN is a simple and intuitive classifier that assigns a label to a new data point based 
on the labels of its K nearest neighbours within the training set. The distance measure 
used to determine the nearest data points can be any of the standard related metrics, 
such as Euclidean distance or Manhattan distance. The value of K acts as a 
hyperparameter regulating model complexity, adjustable through cross-validation. K-
NN can be used for both binary and multiclass classification tasks and can handle 
non-linear decision boundaries. 
 
Within the scope of this doctoral dissertation, the K-NN algorithm serves classification 
tasks, employing the widely adopted Euclidean distance method for computing 
distances between data points. Euclidean distance is the most commonly used 
distance measure, and it is limited to real-valued vectors It quantifies a straight line 
between the query point and the point under measurement using the following formula: 
 

𝑑𝑑(𝑥𝑥,𝑦𝑦) =  �∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1   Eq. (3.20) 

 

 
Figure 3.11: Graphical illustration of the K-NN algorithm 

 
The reader is referred to Peterson (2009) for additional explanations on the theoretical 
background of the K-NN algorithm. 
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3.2.10 Model Evaluation Metrics 

Model evaluation encompasses the utilization of diverse evaluation metrics to 
comprehend the performance of a machine learning or statistical model, along with 
identifying its strengths and weaknesses. This evaluation process holds significance 
in appraising a model's effectiveness during preliminary research phases and 
assumes a crucial role in ongoing model monitoring. Different key metrics offer insights 
into the model’s performance, which vary depending on whether the model serves 
regression or classification purposes. 
 
In regression analysis, R-Squared (𝑅𝑅2) or the coefficient of determination serves as a 
fundamental metric that determines the proportion of variance in a dependent variable 
predicted or explained by an independent variable. In simpler terms, 𝑅𝑅2 indicates how 
well a regression model (independent variable) predicts the outcome of observed data 
(dependent variable). 𝑅𝑅2 values range from 0 to 1. A value of 0 implies that the model 
explains or predicts 0% of the relationship between the dependent and independent 
variables, while a value of 1 indicates that the model predicts 100% of the relationship.  
 
Mathematically, 𝑅𝑅2 is calculated by dividing sum of squares of residuals (𝑆𝑆𝑆𝑆𝑟𝑟𝑒𝑒𝑠𝑠) by total 
sum of squares (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡) and then subtract it from 1. In this case, 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 measures total 
variation. 𝑆𝑆𝑆𝑆𝑟𝑟𝑒𝑒𝑟𝑟 measures explained variation and 𝑆𝑆𝑆𝑆𝑟𝑟𝑒𝑒𝑠𝑠 measures unexplained 
variation. As 𝑆𝑆𝑆𝑆𝑟𝑟𝑒𝑒𝑠𝑠 + 𝑆𝑆𝑆𝑆𝑟𝑟𝑒𝑒𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡, 𝑅𝑅2  = Explained variation / Total Variation. 
 

𝑅𝑅2 = 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

 Eq. (3.21) 

 
Adjusted 𝑅𝑅2 is a refinement that adjusts for model complexity. It measures the 
proportion of variation explained by only those independent variables that really help 
in explaining the dependent variable. It penalizes the inclusion of independent 
variables that do not significantly aid in predicting the dependent variable within 
regression analysis. The only difference between R-squared and Adjusted R-squared 
equation is degree of freedom. 
 

𝑅𝑅2𝑎𝑎𝑑𝑑𝑗𝑗𝐼𝐼𝑠𝑠𝑡𝑡𝑒𝑒𝑑𝑑 = 1 −  𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟/𝑑𝑑𝑑𝑑𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡/𝑑𝑑𝑑𝑑𝑡𝑡

  Eq. (3.22) 

 
In the above equation, 𝑑𝑑𝐼𝐼𝑡𝑡 is the degrees of freedom 𝐸𝐸 − 1 of the estimate of the 
population variance of the dependent variable, and 𝑑𝑑𝐼𝐼𝑒𝑒 is the degrees of freedom 𝐸𝐸 −
𝑒𝑒 − 1  of the estimate of the underlying population error variance. Adjusted R-squared 
value can be calculated based on value of R-squared, number of independent 
variables (predictors), total sample size. 
 

𝑅𝑅2𝑎𝑎𝑑𝑑𝑗𝑗𝐼𝐼𝑠𝑠𝑡𝑡𝑒𝑒𝑑𝑑 = 1 −  (1−𝑅𝑅2)(𝑁𝑁−1)
𝑁𝑁−𝑝𝑝−1

 Eq. (3.23), 
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where 𝑅𝑅2 = sample R-squared, 𝑒𝑒 = number of predictors and 𝐿𝐿 = total sample size. 
 
The Root Mean Square Error (RMSE) is another widely employed measure to assess 
prediction quality. This metric indicates how far predictions fall from measured true 
values using Euclidean distance. To compute RMSE, one calculates the residual 
(difference between prediction and truth) for each data point, computes the norm of 
residual for each data point, computes the mean of residuals, and finally takes the 
square root of that mean. RMSE is commonly used in supervised learning 
applications, as RMSE uses and needs true measurements at each predicted data 
point.  RMSE can be expressed as: 
 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 =  �∑ ‖𝑦𝑦(𝑖𝑖)−𝑦𝑦�(𝑖𝑖)‖2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 Eq. (3.24) 

 
where 𝐿𝐿 is the number of the data points, 𝑦𝑦(𝑖𝑖) is the i-th measurement and 𝑦𝑦�(𝑖𝑖) is the 
corresponding prediction. 
 
The Akaike Information Criterion (AIC) is a statistical metric widely used in regression 
model selection, balancing the trade-off between model complexity and goodness of 
fit. It serves as a tool to compare different models by considering both their 
performance and simplicity. AIC assigns a score to each model based on the balance 
between how well it fits the data and how many parameters it uses. The principle 
behind AIC is rooted in information theory, aiming to minimize the information loss 
between the model and the true underlying process it represents. Lower AIC values 
indicate a better trade-off between fit and complexity, suggesting a model that 
adequately represents the data without unnecessary complexity. It is calculated using 
the following formula: 
 

𝐴𝐴𝐼𝐼𝐴𝐴 = 2𝑘𝑘 − 2 log(𝐿𝐿�)  Eq. (3.25) 
 

where 𝑘𝑘 represents the number of parameters in the model and 𝐿𝐿� denotes the 
maximum value of the likelihood function for the model (Akaike, 1970; Sakamoto et 
al., 1986). 
 
For classification models, the first step for the evaluation of the classification 
performance is the development of the confusion matrix, which gives insights into the 
distribution of the predictions and targets. Confusion matrix is a performance 
measurement for machine learning classification problems where output can be two 
or more classes. For a binary classification scenario (two classes: positive and 
negative), the confusion matrix has four main components: 
 

• True Positives (TP): These are cases where the model correctly predicted the 
positive class. 
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• True Negatives (TN): These are cases where the model correctly predicted the 
negative class. 

• False Positives (FP): These are cases where the model predicted the positive 
class, but the actual class was negative (Type I error). 

• False Negatives (FN): These are cases where the model predicted the negative 
class, but the actual class was positive (Type II error). 

 
A core classification performance indicator is the overall classification accuracy, which 
is specified as the fraction of predictions that are rightly classified. 
 

𝐴𝐴𝑐𝑐𝑐𝑐𝐼𝐼𝐸𝐸𝑎𝑎𝑐𝑐𝑦𝑦 =  𝑇𝑇𝑁𝑁+ 𝑇𝑇𝑃𝑃
𝑇𝑇𝑁𝑁+𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁+𝐹𝐹𝑃𝑃

  Eq. (3.26) 
 

While overall classification accuracy is an important measure, it may not be enough 
for classifiers with response variables that contain more than two classes. In such 
cases, precision, recall, and the F1 score are insightful per-class performance metrics 
that can be calculated (Grandini et al., 2020). These metrics are particularly helpful in 
cases of not uniformly distributed class labels. In such cases, relying solely on 
accuracy can be misleading because it is possible to achieve a high overall accuracy 
score by simply predicting the dominant class most of the time. However, this 
approach could lead to low precision and recall scores for the remaining categories. 
 
Precision indicates the fraction of right predictions for a particular category, which is 
calculated by dividing the number of true positives by the sum of true positives and 
false positives.  
 

 𝑃𝑃𝐸𝐸𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝐸𝐸 =  𝑇𝑇𝑃𝑃
𝐹𝐹𝑃𝑃+𝑇𝑇𝑃𝑃

  Eq. (3.27) 
 
Recall (or Sensitivity/ True Positive Rate) represents the fraction of cases of a category 
that were correctly predicted and is expressed by the number of true positives divided 
by the number of true positives plus the number of false negatives.  
 

𝑅𝑅𝑒𝑒𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙 =  𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁

 Eq. (3.28) 
 
Specificity quantifies the proportion of true negative cases (correctly identified 
negatives) among all actual negative instances. It complements metrics like accuracy, 
precision, and recall, providing insight specifically into a model's performance 
regarding the true negative class. 
 

𝑆𝑆𝑒𝑒𝑒𝑒𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦 =  𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑃𝑃

  Eq. (3.29) 
 
In addition to precision and recall, the F1 score, which is calculated as their harmonic 
mean, is also commonly provided.  



Dimitrios Nikolaou | Machine learning-based road crash risk assessment 
fusing infrastructure, traffic and driver behaviour data 

 

[99] 
 

 
𝐹𝐹1 =  2 ∗ 𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛∗𝑅𝑅𝑒𝑒𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣

𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛+𝑅𝑅𝑒𝑒𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣
 Eq. (3.30) 

 
Finally, it is mentioned that the aforementioned per-class metrics can be averaged 
across all classes, resulting in the respective macro-averaged scores. 
 
Apart from the aforementioned metrics, Receiver Operating Characteristics (ROC) 
curve is a graphical representation of the effectiveness of a binary classification model 
which plots the True Positive Rate (TPR) versus the False Positive Rate (FPR) at 
different classification thresholds. 
 

𝐹𝐹𝑃𝑃𝑅𝑅 =  𝐹𝐹𝑃𝑃
𝑇𝑇𝑁𝑁+𝐹𝐹𝑃𝑃

= 1 − 𝑆𝑆𝑒𝑒𝑒𝑒𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦 Eq. (3.31) 
 
Area Under the Curve (AUC) serves as a comprehensive metric for assessing the 
performance of a binary classification model. As both TPR and FPR range between 0 
to 1, So, the area will always lie between 0 and 1, and a higher value of AUC indicates 
better model performance. The key objective is to maximize this area to achieve the 
highest TPR and lowest FPR at the given threshold. Essentially, the AUC measures 
the probability that the model will assign a randomly selected positive instance a higher 
predicted probability compared to a randomly chosen negative instance. 
 

 
Figure 3.12: ROC curve example 

 
For multiclass classification tasks, the One vs All methodology can be utilized, 
resulting in individual ROC curves for each class. 
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3.2.11 SHapley Additive exPlanations (SHAP values) 

SHAP values are a recent addition to the field of explainable and interpretable ML, 
drawing from coalitional game theory (Shapley, 1953). These values provide a 
measure of contribution of each feature to the prediction of a particular instance in a 
model. The SHAP value for each feature is defined as the difference between the 
expected model output and the output when that feature is excluded. The SHAP 
values are a model-agnostic method, meaning it can be applied to explain the 
predictions of any machine learning model, including black-box models. In the case of 
multiclass classification models, SHAP values are calculated for each class separately 
as it allows the understanding of the contribution of each feature to the prediction of 
each class.  
 
More specifically, SHAP values provide a solution to the problem wherein a group of 
individuals collaborates, resulting in an overall gain from their cooperation. Given that 
each player holds unique significance in the collaboration, determining how to 
distribute the surplus fairly among them becomes essential. By considering the distinct 
contributions of each player, Shapley values propose a potential equitable allocation 
of the generated surplus among the participants (Shapley, 1953). 
 
Translating this issue into the context of a model's predictions involves regarding 
explanatory variables as the players and the model 𝐼𝐼() as the coalition. The prediction 
made by the model represents the payoff from this coalition. The core challenge is 
determining the allocation of the model's prediction among specific variables. The 
concept of employing Shapley values to assess local variable importance was first 
introduced by Strumbelj & Kononenko (2010). 
 
In a scenario involving a permutation 𝐽𝐽 of 𝑒𝑒 explanatory variables within model 𝐼𝐼(), 
𝜋𝜋(𝐽𝐽, 𝑗𝑗) represents the set of indices that precede the 𝑗𝑗-th variable in permutation 𝐽𝐽. 
When the 𝑗𝑗-th variable is positioned first, 𝜋𝜋(𝐽𝐽, 𝑗𝑗) =  ∅. Considering a specific instance 
𝑥𝑥∗, the model’s prediction 𝐼𝐼(𝑥𝑥∗) defines the Shapley value as follows: 
 

𝜑𝜑�𝑥𝑥∗, 𝑗𝑗� =  1
𝑝𝑝!
∑ ∆𝑗𝑗|𝜋𝜋(𝐽𝐽,𝑗𝑗)(𝑥𝑥∗)𝐽𝐽   Eq. (3.32) 

 
where the sum is taken over all 𝑒𝑒! possible permutations (orderings of explanatory 
variables) and ∆𝑗𝑗|𝐽𝐽(𝑥𝑥∗) indicates the variable importance. Essentially, 𝜑𝜑�𝑥𝑥∗, 𝑗𝑗� is the 
average of the variable-importance measures across all possible orderings of 
explanatory variables. 
 
It is worth mentioning that the value of ∆𝑗𝑗|𝜋𝜋(𝐽𝐽,𝑗𝑗)(𝑥𝑥∗) remains constant for all 
permutations 𝐽𝐽 that share the same subset 𝜋𝜋(𝐽𝐽, 𝑗𝑗). The previous equation can be 
expressed in an alternative form: 
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𝜑𝜑�𝑥𝑥∗, 𝑗𝑗� =  1
𝑝𝑝!

 ∑ ∑ {𝑠𝑠! (𝑒𝑒 − 1 − 𝑠𝑠)!}𝑆𝑆⊆ {1,…,𝑝𝑝}∖{𝑗𝑗}
|𝑆𝑆|=𝑠𝑠

𝑝𝑝−1
𝑠𝑠=0 ∆𝑗𝑗|𝑆𝑆�𝑥𝑥∗�  Eq. (3.33) 

 
where |𝑆𝑆| denotes the cardinal size of set 𝑆𝑆 and the second sum is taken over all 
subsets 𝑆𝑆 of explanatory variables, excluding the 𝑗𝑗-th one, of size 𝑠𝑠. 
 
It is also noted that the number of all subsets of sizes from 0 to 𝑒𝑒 − 1 amounts to 2𝑝𝑝 −
1, significantly fewer than the permutations totaling 𝑒𝑒!. Nevertheless, when dealing 
with a large 𝑒𝑒, computing Shapley values using equations such as (3.32) or (3.33) 
might not be feasible. In such instances, employing an estimation based on a 
permutation sample becomes a viable option. Strumbelj & Kononenko introduced a 
Monte Carlo estimator for this purpose in (2014). Moreover, the SHAP package, 
developed by Lundberg & Lee (2017), presents an efficient implementation for 
computing Shapley values specifically tailored for tree-based models. 
 
The properties of Shapley values in cooperative games extend to predictive models, 
granting them the following properties: 
 

• Symmetry: if two explanatory variables 𝑗𝑗 and 𝑘𝑘 are interchangeable then their 
Shapley values are equal. 

• Dummy feature: if an explanatory variable 𝑗𝑗 does not contribute to any 
prediction for any set of explanatory variables, then its Shapley value is equal 
to 0. 

• Additivity: if model 𝐼𝐼() is a sum of two other models 𝑔𝑔() and ℎ(), then the 
Shapley value calculated for model 𝐼𝐼() is a sum of Shapley values for models 
𝑔𝑔() and ℎ(). 

• Local accuracy: the sum of Shapley values is equal to the model’s prediction, 
that is, 𝐼𝐼�𝑥𝑥∗� −  𝐸𝐸𝐸𝐸�𝐼𝐼�𝑋𝑋�� =  ∑ 𝜑𝜑(𝑥𝑥∗, 𝑗𝑗)

𝑝𝑝
𝑗𝑗=1  , where 𝑋𝑋 is the vector of explanatory 

variables (corresponding to 𝑥𝑥∗) that are treated as random values. 
  

3.2.12 Hierarchical Clustering 

In data mining, hierarchical clustering is a type of clustering analysis that creates a 
hierarchy of clusters based on two key strategies: the agglomerative and the divisive. 
Agglomerative is a bottom-up approach where each observation starts in its own 
cluster, and pairs of clusters are merged as one moves up the hierarchy. Divisive is a 
top-down approach where all observations start in one cluster, and splits are 
performed recursively as one moves down the hierarchy. Within the framework of this 
doctoral dissertation, the agglomerative approach is used. 
 
Hierarchical clustering has the distinct advantage that any valid measure of distance 
can be used. In fact, the observations themselves are not required: all that is used is 
a matrix of distances. In this dissertation, in order to determine which clusters should 
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be combined, the Euclidean distance between single observations of the dataset and 
Ward’s minimum variance method as the linkage criterion were used.  
 
The results of hierarchical clustering are usually presented in a dendrogram as in the 
example of the following figure. 
 

 
Figure 3.13: Example of a Dendrogram from Hierarchical Clustering 

 
For further details on the theoretical background of hierarchical clustering, the reader 
is referred to Murtagh & Contreras (2012). 
 

3.2.13 Detection of Spatial Dependence 

The initial action in tackling spatial dependence involves identifying its extent within a 
specific phenomenon by observing its presence in a dataset. Moran's 𝐼𝐼 coefficient, 
introduced by Moran in (1950), stands as the most commonly used metric for gauging 
spatial autocorrelation, and it was employed within the framework of this doctoral 
dissertation. 
 
Global Moran's 𝐼𝐼 is a measure of the overall clustering of the spatial data and it defined 
as: 
 

𝛪𝛪 =  𝑁𝑁
𝑊𝑊

 
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖−�̅�𝑥)�𝑥𝑥𝑖𝑖−�̅�𝑥�𝑁𝑁

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑁𝑁
𝑖𝑖=1

  Eq. (3.34) 

 
where: 

• 𝐿𝐿 is the number of spatial units indexed by 𝑖𝑖 and 𝑗𝑗, 
• 𝑥𝑥 is the variable of interest, 
• �̅�𝑥 is the mean of the variable of interest 𝑥𝑥, 
• 𝑤𝑤𝑖𝑖𝑗𝑗 are the elements of a spatial weights’ matrix with zeroes on the diagonal, 
• and 𝑊𝑊 is the sum of all 𝑤𝑤𝑖𝑖𝑗𝑗 so that: 
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𝑊𝑊 = ∑ ∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1   Eq. (3.35) 

 
The determination of 𝐼𝐼 's value can significantly hinge on the underlying assumptions 
embedded within the spatial weights matrix, denoted as 𝑤𝑤𝑖𝑖𝑗𝑗. This matrix is pivotal as 
it provides a structured framework essential for addressing spatial autocorrelation and 
modelling spatial interaction by constraining the number of pertinent neighbours. The 
aim is to construct a matrix that accurately reflects one's presumptions regarding the 
specific spatial phenomenon under examination. Commonly, one approach involves 
assigning a weight of 1 to zones designated as neighbours, and 0 otherwise; however, 
the delineation of “neighbours” can vary. Alternatively, assigning a weight of 1 to the 
𝑘𝑘 nearest neighbours and 0 otherwise presents another prevalent method. Moreover, 
an option exists to employ a distance decay function for weight assignment. 
Occasionally, the length of a shared edge is utilized for assigning distinct weights to 
neighbours. The selection of the spatial weights’ matrix ought to be guided by the 
theoretical underpinnings of the phenomenon in focus. Notably, 𝐼𝐼 's value exhibits a 
high sensitivity to these weights and can significantly impact the conclusions drawn 
about a phenomenon, particularly when using distances. 
 
The expected value of Moran's 𝐼𝐼 under the null hypothesis of no spatial autocorrelation 
is: 
 

𝐸𝐸(𝐼𝐼) =  −1
𝑁𝑁−1

  Eq. (3.36) 
 

As sample sizes expand, an anticipated outcome involves increased dispersion, 
leading 𝐸𝐸(𝐼𝐼) to converge towards 0. Moran's 𝐼𝐼 values usually range from -1 to 1, but 
the coefficient can assume values outside this range, depending on the weighting 
function used. When 𝐼𝐼 significantly surpasses 𝐸𝐸(𝐼𝐼), it signals positive spatial 
autocorrelation, while values notably lower than 𝐸𝐸(𝐼𝐼) indicate negative spatial 
autocorrelation. Intuitively, positive autocorrelation implies clustering, whereas 
negative autocorrelation suggests dispersion. To illustrate typical Moran's 𝐼𝐼 values, 
commonplace patterns are often employed, as depicted in the following Figure. 
 

 
Figure 3.14: Spatial autocorrelation examples 
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Global spatial autocorrelation analysis yields only one statistic to summarize the whole 
study area. In other words, the global analysis assumes homogeneity. If that 
assumption does not hold, then having only one statistic does not make sense as the 
statistic should differ over space. Moreover, even if there is no global autocorrelation 
or no clustering, clusters can be found at a local level using local spatial autocorrelation 
analysis. 
 
Anselin (1995) introduced Local Moran's 𝐼𝐼 as part of the Local Indicators of Spatial 
Association framework, offering a per-observation coefficient 𝐼𝐼𝑖𝑖 derived from the global 
Moran's 𝐼𝐼. 
 

𝛪𝛪𝑖𝑖 =  
(𝑥𝑥𝑖𝑖−�̅�𝑥)∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖−�̅�𝑥�𝑁𝑁

𝑖𝑖=1

∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑁𝑁
𝑖𝑖=1

  Eq. (3.37) 

 
Similar to the global Moran's 𝐼𝐼, the interpretation of Local Moran's 𝐼𝐼 remains consistent. 
However, unlike its standardized global counterpart, Local Moran's 𝐼𝐼 does not adhere 
strictly to the -1 to 1 range, allowing for values that significantly deviate from this range. 
 
There are also several other metrics that were not used in the framework of this 
doctoral dissertation but they can be certainly used for the detection of spatial 
dependence such as the Geary’s 𝐴𝐴 (Geary, 1954) and Getis-Ord 𝐺𝐺𝑖𝑖∗ tests (Ord & Getis, 
1995), and the more recent Approximate Profile-Likelihood Estimator (Li et al., 2007). 
 

3.2.14 Spatial Error and Lag Models 

The SEM serves as an extension of the traditional linear regression modelling, which 
can be used to analyze spatially dependent data. In the linear regression model, it is 
assumed that the errors are independent and identically distributed, meaning there is 
no correlation or relationship between the error terms of different observations. 
However, this is not always the case in spatial datasets. The SEM considers and 
addresses spatial autocorrelation within the residuals. Essentially, this means that the 
errors resulting from regression analysis exhibit autocorrelation in a way that the error 
associated with a particular spatial feature can be represented as a weighted average 
of the errors observed in its neighbouring features. Mathematically, the SEM can be 
expressed as: 
 

𝑦𝑦 = 𝑋𝑋𝛽𝛽 + 𝐼𝐼,     𝐼𝐼 = 𝜆𝜆𝐸𝐸𝑟𝑟𝑟𝑟𝑊𝑊𝐼𝐼 + 𝜀𝜀 Eq. (3.38) 
 
where 𝑦𝑦 is a (N×1) vector of observations on a dependent variable taken at each of N 
locations, 𝑋𝑋 is a (N×k) matrix of covariates, 𝛽𝛽 is a (k×1) vector of parameters, 𝐼𝐼 is a 
(N×1) spatially autocorrelated disturbance vector, 𝜀𝜀 is a (N×1) vector of independent 
and identically distributed disturbances and 𝜆𝜆𝐸𝐸𝑟𝑟𝑟𝑟 is a scalar spatial parameter. 
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With regard to the SLM, this type of model can be used to address the spatial 
autocorrelation in the dependent variable and can be expressed as: 
 

𝑦𝑦 = 𝜌𝜌𝐿𝐿𝑣𝑣𝑟𝑟𝑊𝑊𝑦𝑦 + 𝑋𝑋𝛽𝛽 + 𝜀𝜀 Eq. (3.39) 
 

where 𝜌𝜌𝐿𝐿𝑣𝑣𝑟𝑟  is a scalar spatial parameter that indicates the degree to which a spatial 
feature is affected by its neighbours. For more in-depth explanations on the statistical 
background of the SEM and the SLM the reader can refer to Ward & Gleditsch (2018). 
It is also noted that the fit of the SEM and the SLM can be compared with the fit of the 
simple linear regression model by using the AIC, with lower values of this criterion 
indicating better statistical model quality. 
 

3.2.15 Spatial Random Forest 

SRF is a powerful ML algorithm that combines the principles of conventional RF with 
spatial analysis techniques. The mathematical background of conventional RF has 
been described in previous subsection of this dissertation and is hence omitted here 
for brevity. However, it should be noted that conventional RF models may fail to 
consider the spatial structure present in spatial datasets. Consequently, spatial 
relationships and autocorrelation in the residuals can lead to biased importance scores 
of non-spatial predictors and suboptimal model performance. 
 
To overcome this limitation, one option is to generate spatial predictors. These 
predictors assist in taking into account the spatial structure of the training data, 
ultimately minimizing the spatial autocorrelation of the model residuals and providing 
accurate variable importance scores. One approach to accomplish this is by 
incorporating geographical proximity effects into the prediction process by adding the 
columns of the distance matrix of the examined road segments as explanatory 
variables, as suggested by Hengl et al. (2018). More specifically, Hengl et al. (2018) 
proposed the following generic SRF system: 
 

𝑌𝑌(𝑠𝑠) = 𝐼𝐼(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝑅𝑅 ,𝑋𝑋𝑃𝑃)  Eq. (3.40) 
 
where 𝑋𝑋𝐺𝐺 represents covariates that consider the geographical proximity and spatial 
relations among observations: 
 

𝑋𝑋𝐺𝐺 = �𝑑𝑑𝑝𝑝1,𝑑𝑑𝑝𝑝2, … ,𝑑𝑑𝑝𝑝𝑁𝑁� Eq. (3.41) 
 
where, 𝑑𝑑𝑝𝑝1 is the buffer distance to the observed location 𝑒𝑒𝑖𝑖 from 𝑠𝑠 and 𝐿𝐿 stands for 
the total number of training points. 𝑋𝑋𝑅𝑅 corresponds to surface reflectance covariates, 
while 𝑋𝑋𝑃𝑃 are process-based covariates. For a more comprehensive elucidation, 
interested readers are directed to consult the detailed explanations provided by Hengl 
et al. (2018).  
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4. Investigation of Road Safety Modelling Data 
in Greece 

 

4.1 Introduction 

A road crash results from a combination of factors related to the components of the 
traffic system comprising roads, vehicles and road users, and the way they interact 
(Haddon Jr, 1980). Budgets for road safety policies and activities are not infinite. 
Therefore, decision makers and road safety stakeholders have to determine the 
optimal possible use of available funds. With regards to improvements in the existing 
road infrastructure, several quantitative methodologies have been developed over the 
years, to enhance evidence-based decision making. These methodologies include 
road crash analyses, road safety inspections, assessment of the "in-built" safety of 
roads, use of Crash Prediction Models (CPMs), etc. Probably the most detailed 
approach is offered through the application of CPMs, a practice well described in 
AASHTO Highway Safety Manual (HSM) (National Research Council, 2010). Yet, 
especially this methodology requires high quality data in order to predict crash 
frequency in specific road elements (segments, intersections, etc.) and produce 
reliable results. More specifically, the availability of detailed and good quality data on 
road crashes and related casualties, infrastructure geometric characteristics (e.g., 
curve radius, lane width, etc.) and traffic attributes consists a basic prerequisite for this 
kind of modelling (Ambros et al., 2018). 
 
Within the above context, the aim of this section is to investigate and discuss the 
availability and accuracy of road safety modelling data in the primary rural road 
network of Greece, focusing on three types of data that are considered most critical: 
crash, traffic and road geometry data. This section is structured as follows: subsection 
4.2 concerns crash data availability and presents a case study in the subregion of 
Viotia for the period 2011-2015. This analysis focuses on identifying the percentage 
of crashes that could be accurately geo-located and used for modelling purposes.  
 
Then, concerning traffic data, an exploration of the coverage of the road network by 
spot traffic measurements also in the subregion of Viotia is performed and discussed. 
Subsection 4.4 focuses on geometric design data, which are generally not readily 
available in official databases in Greece. The investigation focuses on a section of 
Patras-Pyrgos two-lane highway, and compares the data that can be obtained through 
two common Open GIS Data Platforms ("Blender" software and Shuttle Radar 
Topography Mission (SRTM) data through the GPS Visualizer platform) with the actual 
data retrieved from a topographic survey of the highway. Moreover, the possibility of 
exploiting other types of data in road safety analyses, such as telematics data from 
smart mobile phone sensors, is discussed.  
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4.2 Crash Data 

The Hellenic Statistical Authority maintains the official road crash database in Greece. 
This database includes road crashes in which at least one involved road user was 
injured (slightly/seriously) or killed.  The case study that will be presented in this 
subsection is based on road crash data collected from the Police and codified into the 
National Road Crash Database by the Hellenic Statistical Authority. The Department 
of Transportation Planning and Engineering of the National Technical University of 
Athens has access to this National Road Crash Database.  
 
More specifically, in Greece, Traffic Police officers attend the crash site and complete 
the road crash data in high detail in standardized templates, i.e., the Crash Data 
Collection Forms, immediately after the occurrence of a crash, providing information 
on crash conditions, as well as on characteristics related to the road, the involved 
persons or vehicles. The Crash Data Collection Forms are then forwarded to the 
Hellenic Statistical Authority, which is responsible for the final checking and 
codification into the official National Road Crash Database.  
 
Copy files of the National Road Crash Database are provided to the Department of 
Transportation Planning and Engineering of the National Technical University of 
Athens (NTUA) (with personal identification removed), who developed a system of 
efficient queries to extract any combination of data. This NTUA database consists of 
disaggregated data for all road injury crashes in Greece for the period 1985-2021, is 
updated on an annual basis, and is also used for the purposes of this investigation. 
 
The variables that are included in this database are presented in the following table 
grouped by crashes’, involved road users’ and vehicles’ characteristics. 
 



Dimitrios Nikolaou | Machine learning-based road crash risk assessment 
fusing infrastructure, traffic and driver behaviour data 

 

[109] 
 

Table 4.1: Variables included in the national road crash database 
Group List of Variables 

Crash characteristics Year, Month, Location (geo-code), Area Type, Street number, Kilometer 
mark, Kilometrage direction, Road type, Road code, Road’s in junction 
code, Motorway(Y/N), Week of the year, Day of week, Hour, Date, 
Number of fatalities, Number of serious injuries, Number of slight 
injuries, Number of vehicles involved, Pavement type, Weather 
conditions, Pavement conditions, Pavement state, Night lighting, Traffic 
directions, Number of lanes for each direction, Direction markings, Lane 
markings, Left edgeline markings, Right edgeline markings, Median, 
Central barrier, Left side barrier, Right side barrier, Left side shoulder, 
Right side shoulder, Pavement width, Straight, Narrowing, Lever 
crossing, Right turn, Left turn, Turn alteration, Ascent, Descent, Ascent / 
Descent alternation, Type of crash first impact, Maneuver of vehicle A 
which likely contributed to the crash, Pedestrian maneuver, Traffic 
control / signalization, Police / Port Authority, Hit and run crash 

Involved road users’ 
characteristics 

Road user type, Gender, Age (in years), Nationality, Use of protective 
equipment, Injury severity, Position in vehicle, Purpose of trip 

Involved vehicles’ 
characteristics 

Vehicle type and usage, Vehicle plates nationality, With trailer, Vehicle 
capacity, 1st year of registration, Vehicle Technical inspection, Number 
of drivers and passengers, Type of alcohol test, Result of alcohol test, 
Time of alcohol test, Place where alcohol test took place, Driving 
license, License category, Year of acquisition, Vehicle carried 
dangerous goods (ADR), Overweight vehicle, Load oversized 

 
Data for all injury road crashes in the subregion of Viotia were considered for the five-
year period 2011-2015. Firstly, a query was executed in the database in which all road 
crashes in the subregion of Viotia were searched by year, by type of area, by road 
code, by station, by infrastructure characteristics (intersection or not, curve or not) and 
by type of casualties (fatalities, serious injuries, slight injuries). 
 
These data were used to investigate in which way they could be used for microscopic 
modelling analysis and identify if these data are appropriate for the development of 
CPMs. An important issue for consideration during the crash analysis is the treatment 
of road crashes with unknown location. In many cases of road crashes included in the 
database, there is no indication of the road on which the crash occurred and/or the 
specific location of the crash. The following table (Table 4.2) presents the number and 
the respective percentage of road crashes occurred on unknown roads during the 
period 2011-2015 in subregion of Viotia. Based on Table 4.2, it can be observed that 
51% (232/451) of total injury road crashes in Viotia from 2011 to 2015 were coded as 
occurring on unknown road. 
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Table 4.2: Road crashes with unknown road for the years 2011-2015 in the subregion of Viotia 

Year Total Crashes Unknown Road Unknown Road (%) 
2011 118 57 48% 
2012 92 53 58% 
2013 101 55 54% 
2014 75 35 47% 
2015 65 32 49% 
Total 451 232 51% 

 
Even for crashes on known roads, the specific location of some road crashes is 
unknown and is not included in the database. Table 4.3 demonstrates the number and 
the respective percentage of crashes that have occurred on known roads but there is 
no indication of the crash specific location. In a further 9% (42/451), although the road 
code was available, the specific location (road chainage) was unknown. 
 

Table 4.3: Crashes on known road and unknown station for years 2011-2015 in subregion of Viotia 

Year 
Crashes – 

Known Road 
Known Road – 

Unknown Station 
Known Road – 

Unknown Station (%) 
2011 61 9 15% 
2012 39 14 36% 
2013 46 8 17% 
2014 40 8 20% 
2015 33 3 9% 
Total 219 42 19% 

 
In a more detailed level of analysis, 14 rural roads were isolated and the geo-located 
crashes were analyzed in order to identify whether the infrastructure characteristics as 
recorded in the road crash database are identical to the actual infrastructure 
characteristics of the site. These roads are namely:  
 

• National Road EO.03: Livadeia - I/C E.O. 3 (Livadeia) - Chaironia - Subregion 
limit (Fthiotida). 

• National Road EO.29: Distomo - Steiri - Moni Osiou Louka. 
• National Road EO 44: Subregion limit N. Evvoias (Ritsona) - I/C to Elaiona-

Thiva. 
• Regional Road Ep.5: Distomo - Paralia Distomou - Antikyra - Region limit 

(Fokida). 
• Regional Road Ep.11: Kastro-Stroviki-Orchomenos - I/C E.O.3 (Livadeia). 
• Regional Road Ep.17: I/C E.O. 3 (Aliartos) - Akraifnio – Kokkino. 
• Regional Road Ep.21: Prodromos - Paralia Saranti. 
• Regional Road Ep.23: I/C Kaparelli (Ep.24) - Plataies - Subregion limit N. Attikis 

(Erythres). 
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• Regional Road Ep.24: I/C E.O.03 (Thiva) - Loutoufi - Melissochori - I/C 
Kaparelli. 

• Regional Road Ep.28: I/C E.O. 3 - Neochoraki - Asopia - Tanagra - I/C E.O. 1. 
• Regional Road Ep.30: Subregion limit N. Attikis (Fyli) - Pyli – Dafni. 
• Regional Road Ep.31: Subregion limit N. Attikis (Magoula) - Kokkini - Stefani - 

I/C Ep.30. 
• Regional Road Ep.36: I/C E.O. 44 (Thiva) - Mouriki - Platanakia - Loukissia – 

Drosia. 
• Regional Road Ep.37a & Ep.37b: Arachova - Kalyvia - Subregion limit N. 

Fokidas (Eptalofo) & I/C to Ski Centre - I/C to Eptalofo. 
 
The following table (Table 4.4) presents the total number of road crashes on these 
roads and the number of road crashes on these roads with unknown crashes’ specific 
location for the five-year period 2011-2015. 
 
Table 4.4: Crashes on known and codified roads and unknown station for the years 2011-2015 in the 

subregion of Viotia 

Year 
Crashes – Known 

codified Road 
Known codified Road 

– Unknown Station 
Known codified Road – 
Unknown Station (%) 

2011 16 1 6% 
2012 14 2 14% 
2013 12 1 8% 
2014 9 0 0% 
2015 4 1 25% 
Total 55 5 9% 

 
An additional table (Table 4.5) was created to identify whether the infrastructure 
characteristics as recorded in the road crash database match to the actual basic 
infrastructure characteristics retrieved from Google Earth aerial imagery. It was found 
that the basic geometric characteristics (e.g., intersection, curve or straight segment, 
presence of lighting) matched in only 54% of the cases. 
 
Table 4.5: Crashes on known-codified roads and crashes with identical infrastructure characteristics 

Year 
Crashes – Known codified Road 

and known Station 

Matching of infrastructure 
characteristics (crash database 

and road coding) 
(%) 

2011-2015 50 27 54% 

 
As a conclusion, and taking into account the results of the four previous tables (Tables 
4.2-4.5), out of a total of 451 recorded road crashes in the road network of Viotia, only 
for 177 (39%) is both the road code and the road station recorded. Furthermore, based 
on the detailed analysis of a sample of roads, it can be assumed that for approximately 
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half of these crashes (46%) there are obvious discrepancies between basic geometric 
characteristics of the crash location, as recorded in the database, compared to Google 
Earth data, leading to the deduction that no more than 21% of available injury crashes 
data is usable for purposes of crash analysis and modelling that requires precise road 
crash location. 
 
For the purpose of this doctoral dissertation’s analyses, Olympia Odos Operation, the 
firm operating the Elefsina – Korinthos – Patras motorway has kindly provided a fully 
detailed crash database for the period from January 1st, 2010 until December 31st, 
2020, including road crashes with casualties as well as property-damage-only (PDO) 
crashes. Generally, motorway concessionaires in Greece usually maintain their own 
databases in which road crash data with exact location of crashes are recorded, 
commonly also including crashes with material damage only. 
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4.3 Traffic Data 

In Greece, there is no official national database for traffic data, either traffic volumes 
or traffic synthesis. Regularly updated datasets exist only for urban areas (e.g., in 
Athens greater area) and on toll-operated motorways. However, even these datasets 
are usually not openly and readily available to researchers and practitioners. Traffic 
data on lower class rural roads (national and/ or regional) are usually collected on a 
per-case basis by regional road authorities, using spot traffic counts.  
 
As a result, the lack of traffic data is also an important obstacle in microscopic road 
infrastructure safety research in Greece and in many cases, it actually defines the type 
and magnitude of research that can realistically be conducted. In order to gain an 
understanding of the extent of available data, a case study investigation of traffic data 
availability was performed in the national and regional road network of the subregion 
of Viotia. Contact with the road management authority of Viotia resulted in identifying 
a set of spot traffic count results, covering a 12h per day period (8am to 8pm) for a 
period of three days: Wednesday 10/9/2014, Friday 12/9/2014 and Saturday 
13/9/2014, for only four locations, combined for both directions of travel: on Thiva-
Livadeia Road, Livadeia-Lamia Road, Thiva Ring Road and Elefsina-Thiva Road 
(Figure 4.1). 
 

 
Figure 4.1: Locations of available traffic data in the subregion of Viotia. (Source: Road management 

authority of Viotia subregion - field surveys in September 2014). 
 
It can be expected that traffic data with a similar level of detail and extent can be 
obtained also for other sub regions of Greece. The above traffic data could be 
potentially useful for road safety analyses, after suitable elaboration to estimate the 
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Average Annual Daily Traffic (AADT). The available detailed information on traffic 
synthesis (passenger cars, buses, light trucks, 2-axes heavy trucks, 3-axes heavy 
trucks, and heavy trucks with trailers) may also provide qualitative information for the 
causes of road crashes during the road safety inspections. However, the data cover a 
very small fraction of the road network in Viotia subregion, thus, severely limiting the 
scope of the analyses. 
 
Motorway concessionaires in Greece maintain traffic databases for the road axes they 
are responsible for. In general, on toll operated motorways, toll stations data can 
provide a very comprehensive and detailed dataset for traffic volumes and synthesis 
of traffic, that are fully appropriate for road safety analysis and modelling. 
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4.4 Geometric Design Data 

The development and the application of road infrastructure CPMs is inherently related 
to the availability of data on the examined road infrastructure, including geometry (e.g. 
horizontal curvature, vertical curvature and slope), cross section elements (e.g. 
presence of central median, number of lanes, lane width, shoulder type and width, 
etc.), roadside conditions (e.g. distance of hazards, road safety barriers, etc.) and 
other road features and equipment (e.g. rumble strips, condition of markings and 
signs, road lighting, etc.). Not all types of road infrastructure data are necessary at all 
times; the selection of the parameters that need to be considered as independent 
variables in the models is probably the most critical decision that affects the 
robustness of the approach. 
 

4.4.1 Potential Data Sources 

Potential road geometric design data sources commonly include: 
 

• National Road Authorities Databases: Road infrastructure and road design data 
are commonly collected and maintained in the asset management databases 
of National Road Authorities. In Greece however, the road registry maintained 
by the Ministry of Infrastructure and Transport includes mostly administrative 
data and there is no road geometry database exists with sufficient detail to be 
able to provide useful and meaningful data for road infrastructure analyses. 

 
• Data from vehicle mounted cameras and road survey vehicles: Vehicle 

mounted cameras can be used for surveys of road infrastructure: a road is 
recorded in high resolution while driving at a constant speed appropriate for 
recording. Weather condition for this type of survey should be ideal, and it is 
typically performed during the day. The primary purpose of this type of survey 
is to collect geo-referenced images of road segments which can be used for 
road attribute coding. Furthermore, equipping the vehicle with various sensors 
enhances data collection and analysis of multiple data types such as road 
element data, operating data, and traffic volume data. 
 
An extensive use of such a road infrastructure data collection methodology took 
place during the period 2012-2015 by Egnatia Odos SA, in the framework of 
the Greek Road Rehabilitation and Safety Project. A large part of the national 
and regional rural road network of Greece (excluding motorways) was 
surveyed, including 4,200 km of national roads and 10,800 km of regional 
roads, covering the 13 regions of the country, in order to identify potential 
sections for road rehabilitation and safety works. In the data collection phase of 
the above project, vehicle mounted video cameras were used in conjunction 
with GPS and georeferenced AutoCAD drawings were developed with the 
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horizontal and vertical alignment of the examined roads and the respective road 
station. Satellite images were also used as a background of the horizontal 
alignment drawings. Using these drawings and the video footage, the following 
data were collected and coded in databases, on the basis of the start/ end 
station: road gutter, drainage ditch, pavement width, unsealed shoulders, high 
embankments, high cuts, additional traffic lanes, medians, sidewalks, technical 
works (culverts, bridges, etc.), traffic signs, road safety barriers, delineators, 
lighting posts, other posts, at-grade intersections, interchanges, access 
facilities, pavement deficits, bus stops, etc.  
 
These data are adequately detailed and appropriate for road infrastructure 
analysis; yet they are somewhat outdated as road improvements have already 
taken place in some locations 

 
• Data from High Definition (HD) maps: A high-definition map (HD map) is a 

highly accurate 3D map containing details not normally present on traditional 
maps. Such maps can be precise at a centimeter level. HD maps are captured 
using an array of sensors, such as LiDARs, radars, digital cameras and GPS. 
HD maps can also be constructed using aerial imagery. High-definition maps 
usually include map elements such as road shape, road marking, traffic signs 
and barriers. An example of HD mapping suppliers includes TomTom, Here, 
Navtech, MobilEyE etc. 

 
• Open GIS road geometry data: A series of online utilities provides coordinates 

along the road network of many countries, including Greece. In order to 
investigate the potential and accuracy of Open GIS Data in effectively 
describing road geometry (horizontal elements and elevations) a pilot 
assessment study was performed as presented in the following subsection. 

 

4.4.2 Pilot Evaluation of Open GIS Road Geometry Data 

Data extraction and assessment was based on comparing road geometry data 
retrieved from OPEN GIS sources to the actual data for the road axis of Patras-Pyrgos 
National Road in the area "Vrachneika", as derived from a detailed topographic survey 
at scale 1: 500 (Figure 4.2). 
 
The investigation included the use of: 

• Blender software (free software available at: https://www.blender.org/) with GIS 
tracking of road data, and 

• the GPS Visualizer platform that retrieves data from the SRTM database - same 
to OSM data that is also accessible via API. 

 

https://www.blender.org/
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Figure 4.2: Blender and GPS Visualizer data assessment area. 

 

4.4.2.1 Blender Software 

Blender is a free software released under the GNU General Public License. It supports 
the entirety of the 3D pipeline—modelling, rigging, animation, simulation, rendering, 
compositing and motion tracking, video editing and 2D animation pipeline. Using the 
add-on ‘’Blender GIS’’, Blender software can retrieve and process geographic 
information in standard GIS file formats e.g., shapefile vector, raster image, geotiff 
DEM, OpenStreetMap xml. 
 
The steps followed using the Blender software were: 

1. Using the add-on, the area where the topographic survey was made, was 
visually identified and the background map was retrieved (GIS tab → 
webgeodata → Basemap, source google – satellite level). 

2. Digital model was retrieved (GIS tab → webgeodata → Get SRTM) 
3. Open street Map (OSM) data was saved for the existing roads (GIS tab → 

webgeodata → Get OSM, highway level). 
4. The highway level information was extracted (*.shp file) in the form of lines with 

elevation data (GIS tab → Export, feature: line). 
5. Import of the *.shp file in AutoCAD software and comparison of the elevations 

of the imported lines to the topographic survey elevations. 
 

4.4.2.2 GPS Visualizer platform and Shuttle Radar Topography Mission database 

GPS Visualizer is an online utility that creates maps and profiles from geographic data 
(https://www.gpsvisualizer.com/). It is free and easy to use, yet powerful and extremely 
customizable. Input can be in the form of GPS data (tracks and waypoints), driving 
routes, street addresses, or simple coordinates. 
 

https://www.gpsvisualizer.com/
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The elevations of the same eight sampling points considered for the Blender software 
were also estimated by using the DEM database 
(https://www.gpsvisualizer.com/elevation). The procedure of converting the AutoCAD 
points (*.dwg file) to kml/kmz files was the following: 
 

1. Export of the AutoCAD points to a *.shp file. 
2. Import of the *.shp file in Google Earth and then export as *.kml file. 
3. Import of the *.kml file in DEM database of GPS Visualizer site  
4. Export in *.txt file. 

 

4.4.2.3 Comparison of Open GIS Data to topographic survey data 

The data extracted from Blender software and from GPS Visualizer platform were 
compared against the respective points on the topographic survey, with regards to 
their elevation as shown in Tables 4.6 and 4.7 that follow. 
 

Table 4.6: Accuracy assessment of road centerline points - Blender software 

Point no. Χ (Easting) Y (Northing) Elevation 
(Blender) 

Elevation 
(Survey) 

Difference in 
elevations (m) 

1 294999.85 4225789.11 29.18 25.98 3.20 
2 295066.33 4225763.10 42.33 43.17 0.84 
3 295230.16 4225760.95 48.94 49.60 2.36 
4 295506.68 4225736.57 49.35 47.40 2.34 
5 295867.39 4225772.21 68.33 71.20 2.94 
6 295901.81 4225838.99 66.06 64.40 4.56 
7 295917.74 4225759.28 82.82 87.10 13.55 
8 296081.10 4225921.02 58.82 56.80 0.82 

 
 

Table 4.7: Accuracy assessment of road centerline points - GPS Visualizer platform 

Point 
no. 

Latitude Longitude Elevation 
(GPS Visualizer) 

Elevation 
(Survey) 

Difference in 
elevations (m) 

1 38.1593349
 

21.6618775
 

28.90 25.98 2.92 
2 38.1591157

 
21.6626432

 
43.50 43.17 0.33 

3 38.1591336
 

21.6645123
 

49.60 49.60 1.70 
4 38.1589767

 
21.6676730

 
47.40 47.40 0.39 

5 38.1593793
 

21.6717767
 

71.20 71.20 0.07 
6 38.1599885

 
21.6721501

 
64.40 64.40 2.90 

7 38.1592743
 

21.6723546
 

87.10 87.10 9.27 
8 38.1607677

 
21.6741715

 
56.80 56.80 1.20 

 
From the above analysis it is evident that no accurate information for vertical alignment 
and road elevations can be collected from both Open GIS data sources (Blender and 
GPS Visualizer). Specifically, street surface elevations obtained from Open GIS 
applications have very large deviations, both between applications (e.g., Blender data 

https://www.gpsvisualizer.com/elevation
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compared to GPS Visualizer data) and (more importantly) when compared to actual 
surveyed elevations. In more than half of the randomly selected examined points (6 
out of 8 for Blender data and 5 out of 8 for GPS Visualizer data), elevation differences 
from the survey exceed 1m. The problem seems to be is intensified in cases where 
the road is at a cut or fill section of considerable height (e.g., point 7), where 
differences up to 13.5m were observed. 
 
On the other hand, with regards to the horizontal alignment, qualitative evaluation of 
data for the road centerline location from both Blender and GPS Visualizer reveals 
small differences compared to the surveyed road centerline and these data can 
potentially be used to build a road geometry database for the purpose of road safety 
analyses. 
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4.5 Smartphone Data 

An alternative approach to road safety related data that will be exploited in parallel 
within the framework of this doctoral dissertation, is the use of crowdsourced 
smartphone data from OSeven Telematics (www.oseven.io). OSeven maintains and 
operates an innovative data collection scheme which records personalized driving 
behaviour analytics in real time, using smartphone sensors. An integrated system is 
used for the recording, collection, storage, evaluation and visualization of driving 
behaviour data, using smartphone applications and advanced ML algorithms. The 
system includes specially developed smartphone application for data collection and 
transmission, as well as for providing feedback to the participants on their driving 
behaviour. 
 
The steps described below for data processing are exclusively performed by OSeven 
and do not constitute part of this dissertation. More details on the data processing 
steps cannot be provided since they are intellectual property of the company. 
However, the main features of the system are outlined below.  
 
A smartphone app has been developed by OSeven to record driver behaviour using 
the sensors of the smartphone, and a variety of APIs is exploited to read sensor data 
and temporarily store them to the smartphone’s database before transmitting them to 
the central (backend) database. The data recording is initiated automatically in the 
smartphone app when a driving status is recognized, and again it stops automatically 
when a non-driving status is recognized. The frequency of the data recording varies 
depending on the type of the sensor, with a minimum value of 1 Hz. Trip recording 
also continues if the vehicle is idled for five minutes, to consider the case that the 
driver resumes a trip after a few minutes stop. All extra information collected after the 
end of driving is discarded. 
 
The recorded data come from various smartphone sensors and data fusion algorithms 
provided by Android (Google) and iOS (Apple). Indicatively, technology sensors 
integrated in the smartphone are the Accelerometer*, the Gyroscope*, the 
Magnetometer and the GPS (speed, course, longitude, latitude). Fusion Data provided 
by iOS and Android include yaw, pitch, roll, linear acceleration* and gravity* (elements 
marked with an asterisk “*” sign refer to x, y, z components). 
 

 
Figure 4.3: Coordinate systems of the smartphone and the vehicle 

http://www.oseven.io/
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After the end of each trip, the application is transmitting all data recorded to the central 
database of the OSeven backend office via an appropriate communication channel, 
such as a Wi-Fi network or cellular network (upon user’s selection) e.g., 4G (online 
options). The data collected are highly disaggregated in space and time. Once stored 
in the backend cloud server, they are converted into driving behaviour and safety 
indicators, using signal processing, ML algorithms, Data fusion and Big Data 
algorithms. ML methods (filtering, clustering and classification methods) are mainly 
used to clean the data from noise and errors, and to identify repeated patterns within 
the data.   
 
Various forms of metadata are ultimately computed, including both exposure and 
driving behaviour indicators - such as trip duration, trip distance, driver speed, 
instances of speeding, the frequency of harsh braking and harsh acceleration 
incidents, and driver distraction from mobile phone use. The detection of harsh events 
is accomplished through the utilization of the proprietary OSeven algorithms, which 
are private and under intellectual property rights. Essentially, these algorithms utilize 
data from all axes of the accelerometer, along with inputs from GPS, magnetometer, 
and gyroscope sensors. The algorithms analyse the time series data throughout the 
entire trip in order to increase the accuracy of harsh events detection. Importantly, 
these algorithms do not rely on predefined thresholds to deem whether an event is 
harsh or not. Instead, ML techniques and data fusion are implemented to identify 
abrupt spikes in the sensor data (Kontaxi et al., 2021a) regardless of absolute values. 
 
It is worth noting that all naturalistic driving data used in this doctoral dissertation were 
provided by OSeven Telematics in a fully anonymized format, complying with the 
relevant national and European personal data regulations, including the General Data 
Protection Regulation (GDPR). 
 
OSeven smartphone application has been employed for research purposes pertaining 
mainly to driving behaviour, as extensively documented in prior studies (Papadimitriou 
et al., 2019; Kontaxi et al., 2021b; Ziakopoulos, 2021; Tarlochan et al., 2022; 
Fafoutellis et al., 2023). Therefore, it can be concluded that these indicators along with 
other data (e.g., from map providers) can be subsequently exploited to identify 
patterns and locate sections of the road network with above normal concentrations of 
harsh braking and harsh acceleration events, of speeding events and also provide 
estimations on average speed, to be used for road safety modelling purposes. 
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4.6 Discussion 

Based on the results of the above pilot studies, for non-motorway rural roads in Greece 
the absence of traffic volume information and even more, of properly geo-located road 
crash data, seems to be an impermeable obstacle for detailed crash prediction 
modelling efforts. Specifically, for non-motorway rural roads it was found that: 
 

• approximately 80% of the injury crashes recorded in the official National Road 
Crash Database has either missing or obviously inaccurate crash location 
information, 

• existing traffic volume data on the rural road network are largely unavailable 
and derived from scarce spot counts performed several years ago, 

• geometric (road design) data are available only in the deliverables of the Greek 
Road Rehabilitation and Safety Project performed on behalf of Egnatia Odos 
SA in 2012-2015. Limited data can be retrieved from Open GIS sources, 
keeping however in mind that elevation information is largely inaccurate. 

 
On the other hand, road crash prediction modelling can potentially be performed on 
motorways, using crash and traffic data maintained by road operators, provided that 
an arduous and resource-consuming process is applied to collect and code missing 
geometric design data. 
 
It should be acknowledged that this investigation exhibits certain limitations that need 
to be considered along with the findings and conclusions. Firstly, the investigation of 
this section focuses only on the rural road network; availability and accuracy of road 
safety data for urban roads may significantly differ. However, it can be expected that 
the lack of a registry for municipal roads (excluding those in Athens and Thessaloniki) 
in the National Road Crash Database is likely to exacerbate the issue of incomplete 
geolocation records for crashes on urban roads across the provinces of Greece. 
 
Secondly, both the investigation of crash data reliability and location information with 
regards to the official Greek National Road Crash Database and of traffic data 
availability, is focused on a single prefecture of Greece. Although this prefecture 
(Viotia) is considered quite representative of average conditions, it may be true that 
different conditions may prevail in other prefectures (particularly in island prefectures). 
Lastly, the integration of naturalistic driver behaviour data from smartphones stands 
as an invaluable addition to road safety analyses. 
 
The investigation of this section highlighted the limitation of conducting high-detailed 
crash prediction modelling in Greece, feasible only for motorways with high-quality 
crash data, in terms of crash location, and traffic attributes per road segment. This led 
to the establishment of two distinct databases: one encompassed comprehensive data 
for the Olympia Odos motorway, including detailed historical road crash records, traffic 
attributes, road geometry characteristics, and driver behaviour data on a segmental 
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basis; the other covered a broader road network within the Region of Eastern 
Macedonia and Thrace, albeit lacking detailed crash location data and traffic attributes. 
Additional details regarding the data collection and processing methods used for these 
two distinct databases, along with the outcomes of the statistical and ML analyses, are 
expounded upon in the subsequent sections of this doctoral dissertation. 
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5. Motorway Data Collection and Processing 
 

5.1 Introduction 

This section provides technical information on the process of data collection and 
descriptive statistics for the Olympia Odos motorway. Based on the experience and 
knowledge gained through Section 4 findings regarding the pilot study in Viotia 
subregion, the investigation of crash location data reliability and the pilot evaluation of 
Open GIS road geometry data, detailed road crash investigations of this doctoral 
dissertation focused on Olympia Odos motorway for which very detailed and accurate 
historical road crash and traffic data were kindly provided by the road operator. 
However, detailed road infrastructure and geometry data were not readily available. 
Therefore, the required dataset had to be developed exploiting available data from all 
potential sources. Olympia Odos motorway is located in Southern Greece and is a 
rural motorway from Athens to Patras that comprises 201.5 km of rural motorway in 
total, with two or three lanes per direction and 29 interchanges. Part of the motorway 
of 63 km (Elefsina-Korinthos) is in operation since 2010, whereas the rest (Korinthos-
Patras) was fully operational since the summer of 2017. 
 

 
Figure 5.1: Olympia Odos motorway in Greece 

 
The rest of this section is organised as follows. Subsections 5.2 and 5.3 provide brief 
descriptions of the main attributes of the collected crash and traffic data for Olympia 
Odos motorway. Following this, subsection 5.4 describes the activities performed to 
develop a road infrastructure database for Olympia Odos motorway, combining 
information from the road operator, Open GIS software, Google Earth and 
GoogleStreetView. The creation of this road infrastructure database and of reference 
drawings of the motorway also enabled the identification and isolation of naturalistic 
driver behaviour data from OSeven database (subsection 5.5). Concluding this 
section, subsection 5.6 presents a summary table containing the motorway-related 
variables that were ultimately analyzed in this doctoral dissertation, accompanied by 
their abbreviations and relevant descriptive statistics.  



Dimitrios Nikolaou | Machine learning-based road crash risk assessment 
fusing infrastructure, traffic and driver behaviour data 

 

[126] 
 

5.2 Crash Data 

Crash data of all severity levels including PDO crashes were available for the period 
2015–2020. As the entire motorway (i.e., from Athens to Patras) was finalized and 
started operating in summer 2017, crash data for the entire length were available for 
the years 2018-2020. Therefore, it was decided to focus on a smaller time period 
(2018-2020) but for a longer road network. The motorway is operated by a private road 
operator firm, Olympia Odos Operation SA, who kindly provided data for this doctoral 
dissertation. The following 28 variables (per crash) are included in the provided road 
crash database: 
 
reference number, Crash Data Collection Form number, crash type, date, time, 
direction of travel, road station (chainage), interchange name, ramp name, tunnel 
name, toll station name, weather conditions, pavement conditions, lighting conditions, 
number of slightly injured, number of seriously injured, number of fatalities, crash 
severity, and ten variables on the type and number of involved vehicles: other/ 
powered-two-wheeler/ passenger car/ bus/ vehicle with trailer or caravan/ truck/ taxi/ 
truck with dangerous load/ truck <2.5 T/ truck>2.5 T. 
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5.3 Traffic Data 

For the purpose of the analyses of this doctoral dissertation, Olympia Odos SA, the 
firm operating the Elefsina - Korinthos - Patras motorway (an identification of km posts 
using Google Street View) has provided traffic data as follows: 
 

1. AADT for section of the motorway (28 sections defined according to the location 
of interchanges), for years 2015 to 2020. AADT is provided as a sum for both 
directions of travel, with an estimated equal distribution per direction, according 
to Olympia Odos. 

2. Traffic composition, considering four different vehicle categories: 
Cat 1: Power-Two-Wheelers (PTWs). 
Cat 2: Passenger cars - light vehicles (may tow a trailer, height less than 2.2m). 
Cat 3: Heavy vehicles with maximum 3-wheel axes (may tow a trailer, height 
more than 2.2m). 
Cat 4: Heavy vehicles with 4 or more-wheel axes (may tow a trailer, height more 
than 2.2m). 

 
Data from major toll stations are available (separate for each direction of traffic), 
dividing the motorway into five large sections. Traffic composition data are available 
for the same time period to AADT data. In parallel with the road crash data, the time 
period of traffic data that was examined within this doctoral dissertation corresponds 
to the same three-year time period (2018-2020). 
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5.4 Road Infrastructure Data 

A road geometry database that focuses on the section from the toll station of Elefsina 
(CH.26 + 500) to the end of the motorway (CH.223 + 200) was developed through a 
multi-step process. As a first step, a draft centerline of Olympia Odos Motorway was 
preliminarily retrieved from Open GIS software, using the Blender application 
(https://www.blender.org/), as follows: the Open GIS polylines representing the 
existing road network in the vicinity of the motorway were exported in shapefile format 
and imported to CAD environment; then, all neighbouring road centerlines were 
removed and centerlines for the motorway, for transverse roads and entrance/exit 
ramps at interchanges were isolated. At this stage, the CAD drawing of the motorway 
was developed in the official national coordinate system in Greece (EGSA 87). It is 
noted that only horizontal alignment information on the road centerlines was retrieved. 
 
Following the zone of the centerline defined in the first step, a series of high-detail 
satellite images (pixel size approximately 1.2 × 1.7m) were retrieved using the 
respective GIS module of the free online software HEC-RAS 
(https://www.hec.usace.army.mil/software/hec-ras/) and georeferenced as the 
background of the CAD drawing. Combining information from the Open GIS road 
centerline and the detailed satellite imagery, the centerline of the motorway was 
subsequently refined, as follows: the preliminary centerline from Open GIS software is 
a polyline with dense points. This was manually replaced in the CAD environment by 
a “road design equivalent” centerline, consisting of tangents, circular curves, and spiral 
(clothoid) curves. Spiral curves were introduced on the entrance and exit of all curves 
with a radius of less than R = 1000, assuming a clothoid curve parameter A ranging 
from R/3 to R (R/3 < A < R), according to Greek road design guidelines. In segments 
where the two directions of travel follow different paths, the main centerline was the 
direction from Elefsina to Patras and a secondary centerline was created for the 
opposite direction. 
 
The refined CAD centerline was then imported into the Google Earth online platform 
(https://earth.google.com) and using the satellite views and the Google Street View 
imagery in conjunction, the location of km posts was determined. This location is of 
utmost importance for microscopic road safety analyses, as all elements of the 
analysis (crashes, speed limits, etc.) are recorded according to those locations (GPS 
use for crash location recording is not performed in Greece). The km posts, as 
identified in Google Earth, were subsequently imported into the base CAD drawing of 
the motorway and a road chainage system (stations) was established. 
 
In the next step, all available road infrastructure data were imported into the CAD 
drawing as well as the Google Earth interface, mostly based on their respective road 
station (chainage) but also cross-checking their location against the Google Earth 
satellite imagery and Street View images. An important source of information at this 
stage was the motorway schematic provided by the road operator (Olympia Odos 

https://www.blender.org/
https://www.hec.usace.army.mil/software/hec-ras/
https://earth.google.com/
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Operation SA) with the exact locations (road station-chainage) of interchanges (with 
entrance/exit ramps), toll stations, motorway service stations, parking areas, tunnel 
and cut-and-cover entrance and exits, and speed limit signs. 
 
The above procedure produced a CAD drawing, as presented in Figure 5.2, with 
georeferenced satellite images as the background, including motorway centerline 
geometry, chainage, speed limits, and visualization of other important road 
infrastructure elements: toll stations, interchanges (with transverse roads, entrance 
and exit ramps), km posts, location of lane addition or lane drop, weaving segments, 
etc., and a Google Earth Dataset in .kmz file form, presented in Figure 5.3, with several 
layers of information: center-line, chainage, tunnels, additional lane points (gore, start, 
and end), lane drops/additions, etc. These two powerful tools were utilized in order to 
code road infrastructure data for further analysis and create a database that forms the 
basis for subsequent motorway analyses. 
 

 
Figure 5.2: Extract of the developed CAD drawing 

 

 
Figure 5.3: Extract of the Google Earth .kmz file  
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5.5 Driver Behaviour Data 

Another database on road user behaviour data on Olympia Odos Motorway was 
developed, in order to be jointly investigated with the road infrastructure, crash, and 
traffic data. Naturalistic driver behaviour data were recorded via a smartphone 
application and processed in the platform, both developed by OSeven 
(https://oseven.io/). Drivers install the application developed by OSeven on their 
smartphones and subsequently engage in normal driving activities. The application 
engages automatically when driving is initiated and records different data types such 
as vehicle location, speed, acceleration, deceleration, duration of engagement with 
the phone, etc. These data are further processed to develop metrics to describe driver 
behaviour. Further details on the operation of this application have already provided 
in subsection 4.5 of this doctoral dissertation. 
 
For the analyses of Olympia Odos motorway segments, OSeven has provided a 
representative dataset from its database in a completely anonymized format that 
corresponds to the period from 1 June 2019 to 31 December 2020. The data were 
recorded from a driver sample equal to 327 drivers for 2019 and 330 drivers for 2020. 
It is possible that some drivers were mindful that their driving behaviour was recorded 
through the application and were even more aware than usual. However, these effects 
have been reported to decrease over time as drivers gradually forget that they are 
being recorded (Tselentis, 2018). For the total considered time period the average 
number of recorded trips per motorway segment was 769 trips. Subsequently, driving 
behaviour metrics from naturalistic data, which are driver-based, needed to be 
assigned to the examined motorway segments, which are infrastructure-based data. 
This was achieved via isolating each trip portion to the corresponding segment within 
the internal recording of trips conducted in GIS by OSeven using ESRI polygons at 
200m intervals. 
  

https://oseven.io/
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5.6 Descriptive Statistics 

At this point, it should be noted that the recording of driver behaviour through the 
smartphone app was not feasible within the tunnel road segments due to the loss of 
GPS signal. Furthermore, toll station segments are not typical motorway segments 
both in terms of geometric design and driver behaviour. Consequently, these two types 
of road segments were not included in the motorway segments’ analyses of this 
doctoral dissertation. The motorway-related variables that were finally included and 
analyzed are presented in Table 5.1, along with their abbreviations and some key 
descriptive statistics. As also mentioned in Sections 2 and 4, the variables related to 
road design characteristics, traffic attributes, and road crashes are widely used in 
CPMs, whereas harsh driving behaviour events are SSMs that can complement road 
safety analyses. 
 

Table 5.1: Road crash, traffic, geometry, and driver behaviour variables per motorway segment 
Variable Abbreviation Descriptive Statistics 

Number of Segment no. Count: 668 
Direction Direction Frequencies: E: 337 T: 331 

Segment Start (Chainage) Seg_Start - 
Segment End (Chainage) Seg_End - 
Number of through lanes lanes Frequencies: 2: 435, 3: 233 

Length of motorway segment (km) len_seg Min.: 0.2000, Max.: 0.6000, 
Mean: 0.5284, Median: 0.6000 

Average Annual Average Daily Traffic 
Volume of motorway segment (veh/day) 

2018-2020 
avg_AADT_18_20 Min.: 6,511, Max.: 22,079,  

Mean: 10,786, Median: 7,423 

Posted speed limit (km/h) speed_limit Min.: 90.0, Max.: 130.0,  
Mean: 121.7, Median: 130.0 

Number of Total Road Crashes (Injury & 
Property Damage Only) 2018-2020 TotCr18_20 Min.: 0.00, Max.: 13.00,  

Mean: 2.02, Median: 2.00 
Number of Total Road Crashes (Injury & 

Property Damage Only) by segment length 
2018-2020 

TotCr18_20_len_seg Min.: 0.00, Max.: 30.00,  
Mean: 3.88, Median: 3.33 

Curve 1 - Radius R (m) Curve1 Min.: 0, Max.: 50,000,  
Mean: 2,129, Median: 950 

Curve 1 - Length of curve in segment (m) Lcurve1_in_seg Min.: 0.00, Max.: 600.00,  
Mean: 218.21, Median: 196.31 

Lane width (m) lane_width Min.: 3.55, Max.: 3.95,  
Mean: 3.92, Median: 3.95 

Paved inside shoulder width (m) pav_ins_sh_width Min.: 0.50, Max.: 1.75,  
Mean: 0.69, Median: 0.75 

Median width (measured from near edges 
of traveled way in both directions) (m) median_width Min.: 2.25, Max.: 23.50,  

Mean: 4.96, Median: 4.88 
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Distance from edge of inside shoulder to 
barrier face (m) dist_edginssh_barf Min.: 0.00, Max.: 0.75,  

Mean: 0.04, Median: 0.00 

Paved outside shoulder width (m) pav_out_sh_width Min.: 0.25, Max.: 4.50,  
Mean: 2.77, Median: 3.00 

Distance from edge of outside shoulder to 
barrier face (m) dist_edgoutsh_barf Min.: 0.00, Max.: 3.25,  

Mean: 0.82, Median: 0.50 

Number of recorded trips rec_trips Min.: 173, Max.: 1,689,  
Mean: 769, Median: 529 

Average speed (all trips) (km/h) avg_speed Min.: 77.0, Max.: 153.0,  
Mean: 115.9, Median: 118.0 

Number of harsh accelerations per trips ha_per_trips Min.: 0.0000, Max.: 0.1614,  
Mean: 0.0046, Median: 0.0020 

Number of harsh brakings per trips hb_per_trips Min.: 0.0000, Max.: 0.1172,  
Mean: 0.0052, Median: 0.0022 

Number of speeding events per trips speeding_per_trips Min.: 0.03, Max.: 2.56,  
Mean: 0.68, Median: 0.71 

 
The histogram of Figure 5.4 presents the distribution of road crash frequencies in the 
examined motorway segments, while the boxplots of Figures 5.5 to 5.17 display the 
key descriptive statistics of the numeric variables of Table 5.1. 
 

 
Figure 5.4: Number of Total Road Crashes (Injury & PDO), 2018-2020 
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Figure 5.5: Length of motorway segment (km) 

 
 
 
 

 
Figure 5.6: Average AADT of motorway segment (veh/day), 2018-2020 
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Figure 5.7: Posted speed limit (km/h) 

 
 
 
 

 
Figure 5.8: Number of total road crashes by segment length, 2018-2020 
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Figure 5.9: Length of curve in segment (m) 

 
 
 
 

 
Figure 5.10: Lane width (m) 

 



Dimitrios Nikolaou | Machine learning-based road crash risk assessment 
fusing infrastructure, traffic and driver behaviour data 

 

[136] 
 

 
Figure 5.11: Paved inside/outside shoulder width (m) 

 
 
 
 

 
Figure 5.12: Distance from edge of inside/outside shoulder to barrier face (m) 
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Figure 5.13: Median width (m) 

 
 
 
 

 
Figure 5.14: Number of recorded trips 
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Figure 5.15: Average speed (all trips) – km/h 

 
 
 
 

 
Figure 5.16: Number of speeding events per trips 
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Figure 5.17: Number of harsh driving behaviour events (accelerations/brakings) per trips 
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6. Motorway Segment Analyses 
 

6.1 Introduction 

Motorways, also referred to as freeways, exhibit much lower crash rates, in terms of 
injury crashes per million vehicle kilometres, than other road types. Studies comparing 
motorways to standard rural and urban roads indicate 50% to 90% lower crash rates 
for motorways (European Commission, 2018). It has also been found that the 
extension of the motorway network is associated with a reduction in road fatality rates, 
while other road types do not present the same positive safety effects (Albalate & Bel, 
2012). During the last few years, motorway length has increased substantially in many 
European countries (Papaioannou & Kokkalis, 2012). Elvik et al. (2017) evaluated the 
road safety effects of a new motorway in Norway through an Empirical Bayes before-
after evaluation and found that injury severity was reduced markedly. In the case of 
Greece, the considerable improvement of its main road network from 750 km of 
motorways in 2007 to 2,200 km in 2018 was a key factor for the reduction in road 
fatalities by 54% during the period 2010-2020 (European Transport Safety Council, 
2021). 
 
Although motorways exhibit reduced crash rates compared to other road types, 
crashes still occur, and, due to high vehicle speeds, these crashes tend to be more 
severe. Therefore, there is still space for road safety improvements. In Greece, 50 
road fatalities were recorded on motorways in 2019 and, towards this direction, a 
target of zero fatalities on motorways by 2030 has been set in the Greek Road Safety 
Strategic Plan for the period 2021-2030 (Yannis et al., 2023). Naturally, available funds 
for road safety interventions are not infinite. Consequently, decision-makers and 
stakeholders are forced to resolve their optimal allocation. Several quantitative 
techniques have been applied to enhance decision-making with regard to identification 
of segments’ crash frequencies or risk levels and their prioritization in terms of 
potential upgrades.gt  
 
Indicatively, Montella et al. (2008) developed two generalized linear CPMs with a 
negative binomial distribution error structure for estimating the safety of rural motorway 
segments in Italy. The first one considered total road crashes, while the second model 
considered only severe crashes. The key result of this research was that design 
consistency measures significantly affected road safety. La Torre et al. (2019) used a 
5-year period dataset with fatal and injury crashes that occurred on 884 km of 
motorway segments in Italy, in order to develop two CPMs that could be applied and 
transferred to the entire Italian motorway network with proper calibration. That 
research provided a tool that enables the dealing with potential safety issues and 
helping in selecting treatments. Data Envelopment Analysis is another technique that 
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has been also used for the identification of hazardous motorway segments (Shah & 
Ahmad, 2020). 
 
Regarding CPMs, they represent a reactive modelling approach primarily based on 
historical crash records collected within a long period of time (Theofilatos et al., 2019). 
Consequently, such approaches force road safety experts to wait for the occurrence 
of road crashes in order to identify the problems and examine measures for their 
prevention. Therefore, in recent years, researchers have increasingly started using 
indicators that are not based on historical crash data. As also mentioned in the 
literature review section of this doctoral dissertation, these indicators have been 
termed SSMs and can either be a proactive approach to road safety analyses (Wang 
et al., 2021) or even complement analyses that are based on historical road crashes 
(Johnsson et al., 2018). SSMs can be collected either through traffic simulation models 
(Gettman & Head, 2003; Mahmud et al., 2019) or under real driving conditions through 
smartphones (Paleti et al., 2017), equipped vehicles (Ambros et al., 2019), and video 
recordings (Johnsson et al., 2021). On one hand, SSMs can be time-based, 
deceleration-based, and energy-based. Among the most prevalent indicators of this 
subcategory of SSMs are PET, TTC, and DRAC (Bonela & Kadali, 2022). On the other 
hand, the recording of driving behaviour through sensors in vehicles and mobile 
phones has made harsh driving behaviour events an alternative subcategory of SSMs 
(Ziakopoulos et al., 2022; Stipancic et al., 2019). 
 
Within this context, the objective of this section is threefold, specifically: 
 

i. Investigate the relationship between road crash frequency in motorway 
segments and various explanatory variables based on road design 
characteristics and SSMs; 

ii. Create risk-level clusters of the motorway segments based on crash and traffic 
data; 

iii. Compare the classification performance of five well-known ML techniques 
which exploit road design data and SSMs for the prediction of the crash risk 
level of motorway segments. 

 
A detailed description of the dataset that was exploited for the motorway segment 
analyses has been provided in the previous section of this dissertation. 
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6.2 Crash Frequency Model 

As per the aforementioned, the first objective of this section was to develop a CPM in 
order to investigate the relationship between road crash frequency in road segments 
of the Olympia Odos motorway in Greece and various explanatory variables based on 
road design characteristics and SSMs. Since road crashes are count data, a count 
data modelling approach was selected.  
 
As a first step, the variance and the mean of road crash frequency in the examined 
motorway segments were calculated in order to choose between Poisson regression 
and NB regression. In particular, it was estimated that the variance is equal to 3.98 
and is higher than the mean which is equal to 2.02. For this reason, NB regression 
was chosen as the most appropriate modelling approach. 
 
This analysis was conducted in R-studio (R Core Team, 2023) using the MASS R 
package (Ripley et al., 2013). A high number of regression model tests were 
conducted for different combinations of Table 5.1 variables. The optimal combination 
of variables was the one that had a sufficient number of statistically significant 
independent variables at a 95% confidence level (p-values ≤ 0.05) and the lowest 
possible AICc. Moreover, the independent variables were also checked for 
multicollinearity through the Variance Inflation Factor (VIF). A standard guideline is 
that VIF values higher than 10 indicate high multicollinearity. However, a threshold 
equal to 5 is also commonly used (Sheather, 2009). The dependent variable of the 
developed NB regression was the variable “TotCr18_20” of Table 5.1 and the results 
of the model are presented in the following Table. 
 

Table 6.1: Statistical model for crash frequency in motorway segments 
Independent 

Variables Estimate Std. Error z value Pr(|z|) VIF 

(Intercept) -1.091 0.193 -5.667 <0.001 - 
avg_AADT_18_20 6.67 * 10-5 0.000 12.295 <0.001 1.014 

ha_per_trips     7.604 2.174 3.499 <0.001 1.058 
hb_per_trips    10.826 2.541 4.261 <0.001 1.066 

len_seg          1.671 0.325 5.144 <0.001 1.012 
AICc     2,333.033 

 
Based on this Table, it can be observed that all the explanatory variables are 
statistically significant at a 95% confidence level; there is no issue of multicollinearity 
as the VIF values are much lower than 5. With regard to the coefficients, it is revealed 
that road crash frequency in the examined motorway segments is positively correlated 
with the average AADT, showing that as traffic volume increases, the number of road 
crashes increases as well. This finding is also in alignment with the findings of a meta-
analysis of 521 CPMs from more than one hundred studies (Høye & Hesjevoll, 2020). 
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Furthermore, it is demonstrated that both harsh accelerations and harsh braking have 
a positive relationship with the dependent variable, indicating that as the number of 
these two harsh driving behaviour events increases, crash frequency also increases. 
This is a noteworthy finding of the current doctoral dissertation as it confirms that harsh 
driving behaviour events present a statistically significant positive correlation with 
historical crash records. This conclusion means that these indicators can be 
meaningfully considered reliable SSMs that can be also used in proactive road safety 
analyses (Petraki et al., 2020; Ziakopoulos, 2021). Lastly, crash frequency is higher 
for motorway segments with higher length, as length serves as an exposure 
parameter. 
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6.3 Definition of Crash Risk Levels 

The next stage of the statistical analysis carried out within the framework of this section 
focuses on the creation of crash risk level clusters of the examined motorway 
segments. For this purpose, agglomerative hierarchical clustering was applied through 
the “hclust” function of the stats R package (R Core Team, 2023).  
 
As also mentioned in subsection 3.2.12, the Euclidean distance between single 
observations of the dataset and Ward’s minimum variance method as the linkage 
criterion were used. The variables considered for the formation of the risk level clusters 
of the motorway segments under consideration correspond to the number of total road 
crashes by segment length and the respective AADT of each segment. The selection 
of the number of clusters was based on the dendrogram illustrated in Figure 6.1. 
 

 
Figure 6.1: Hierarchical Clustering Dendrogram 

 
As observed by Figure 6.1, and also based on the theoretical background of selecting 
the optimal number of clusters through the dendrogram, an appropriate choice of the 
number of clusters would be two. However, selecting only two clusters would lead to 
binary classification and to considerable detail and information loss. Therefore, in 
order to provide a more detailed description of the crash risk level of the examined 
road segments, four clusters were chosen as the next most appropriate option. Some 
basic descriptive statistics of the four crash risk levels are presented in the following 
Table. 
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Table 6.2: Descriptive statistics of the four crash risk levels of the examined motorway segments 

Crash Risk Level Count of Segments Mean 
“TotCr18_20_len_seg” 

Mean 
“avg_AADT_18_20” 

1 96 7.57 20,876 
2 104 4.55 17,218 
3 193 3.25 8,086 
4 275 2.76 6,726 

Total 668 3.87 10,786 
 
These numbers reveal a clear pattern whereby the first risk level class presents high 
average numbers of traffic volume and road crashes by segment length, while these 
figures decrease progressively for each subsequent class. It should be highlighted that 
these are subsample averages; hierarchical clustering does not readily include 
theoretical centroid calculations.  
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6.4 Comparing Machine Learning Techniques for Crash Risk Level 
Predictions 

After defining the clusters of crash risk level, five ML classification models were 
developed in R-studio (R Core Team, 2023). The objective of these analyses was to 
identify the best performing model in terms of predicting crash risk level of the 
considered road segments. The response variable of these models was the multiclass 
variable “crash_risk_level” of Table 6.2. The independent predictors included in the 
models consisted of various road design characteristics and naturalistic driving 
behaviour metrics, represented by the following variables from Table 5.1: 
 

• lanes: Number of through lanes, 
• lane_width: Lane width (m), 
• Curve1: Curve 1 - Radius R (m), 
• Lcurve1_in_seg: Curve 1 - Length of curve in segment (m), 
• median_width: Median width (measured from near edges of travelled way in 

both directions) (m), 
• pav_ins_sh_width: Paved inside shoulder width (m), 
• pav_out_sh_width: Paved outside shoulder width (m), 
• dist_edginssh_barf: Distance from edge of inside shoulder to barrier face (m), 
• dist_edgoutsh_barf: Distance from edge of outside shoulder to barrier face (m), 
• speed_limit: Posted speed limit (km/h), 
• avg_speed: Average speed (all trips) (km/h), 
• speeding_per_trips: Number of speeding events per trips, 
• ha_per_trips: Number of harsh accelerations per trips, 
• hb_per_trips: Number of harsh brakings per trips. 

 
The examined dataset was subsequently split into training and test subsets with a 
proportion of 75% and 25%, respectively. It is emphasized that the variable 
distributions were maintained to be similar during the splitting process. The training 
subset was used to train the classification models and included 501 segments, while 
the test subset was used to evaluate the classification performance of the models and 
amounted to 167 motorway segments. The core parts of the five models’ training, 
including the R packages that were used for their development, are demonstrated in 
the following Table. 
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Table 6.3: Basic elements of the five classification models’ training 
Classification Model Key Elements 
Logistic Regression library(nnet), weights: 64 (45 variable) 

Decision Tree library(caret), Resampling: Cross-validated (5-fold),  
Method = rpart2, Maxdepth = 5 

Random Forest library(randomForest), Trees = 500,  
Variables tried at each split = 3, majority vote 

Support Vector Machines library(e1071), Type: C-classification, Kernel: radial,  
Cost:1, gamma = 0.0667 

K-Nearest Neighbours library(caret), Pre-processing: centred (14), scaled (14), 
Resampling: Cross-validated (10-fold, repeated 3 times), K = 5 

 
As mentioned previously, the test subset was used to evaluate the performance of the 
developed models. The following Figures depict the confusion matrixes for the test 
dataset specifically, which reveal the distribution of predictions and targets for the 
different models. 
 

 
Figure 6.2: Confusion Matrix for the test dataset – Logistic Regression 
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Figure 6.3: Confusion Matrix for the test dataset – Decision Tree 

 
 
 
 

 
Figure 6.4: Confusion Matrix for the test dataset – Random Forest 
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Figure 6.5: Confusion Matrix for the test dataset – Support Vector Machines 

 
 
 
 

 
Figure 6.6: Confusion Matrix for the test dataset – K-Nearest Neighbours 

 
As a first outcome, it can be gleaned that the diagonals of the matrices are highly 
populated. This is an indication that the proposed methodology allows for overall 
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accurate classification of crash risk levels without many losses due to misclassification 
in other categories (e.g., those on the secondary diagonal). 
 
Regarding the quantification of accuracy performance, the sum of the cells of the 
diagonals indicates the overall accuracy of the five developed models. The resulting 
values in descending order are 89.9% for RF, 85.1% for LR, 84.5% for SVM, 83.9% 
for DT, and 81.5% for K-NN. However, in the developed classification models, the 
dependent variable includes four crash risk levels. Consequently, it is highly useful to 
investigate additional metrics for each particular category of the response variable, as 
overall accuracies may be misleading. To that end, Table 6.4 presents precision, 
recall, and the F1 score for each category, as well as the respective macro-averaged 
indicators for all the levels per developed ML classification model. 
 

Table 6.4: Performance evaluation metrics per crash risk level and developed model 
 LR DT RF SVM K-NN 

Crash Risk Level Precision (%) 
1 84.0 70.0 88.5 87.5 70.0 
2 87.5 85.0 95.8 88.5 85.0 
3 87.8 90.2 90.7 88.9 82.2 
4 83.1 85.5 87.8 80.2 84.7 

Macro-averaged 85.6 82.7 90.7 86.3 80.5 
Crash Risk Level Recall (%) 

1 87.5 87.5 95.8 87.5 87.5 
2 80.8 65.4 88.5 88.5 65.4 
3 75.0 77.1 81.2 66.7 77.1 
4 92.8 94.2 94.2 94.2 88.4 

Macro-averaged 84.0 81.0 89.9 84.2 79.6 
Crash Risk Level F1 score (%) 

1 85.7 77.7 92.0 87.5 77.8 
2 84.0 73.9 92.0 88.5 73.9 
3 80.9 83.1 85.7 76.2 79.6 
4 87.7 89.7 90.9 86.7 86.5 

Macro-averaged 84.6 81.1 90.2 84.7 79.4 
 
Based on Table 6.4 performance metrics, it can be observed that the RF classification 
model was the best performing model for the classification of the crash risk level of 
motorway segments, with very satisfactory metrics for all levels. This outcome 
demonstrates the noteworthy value and utility of the developed RF model, as it can 
predict with high accuracy the crash risk level of a motorway segment, by using road 
design and naturalistic driving behaviour data. Therefore, this model could serve as a 
reliable method to identify the most hazardous motorway sections before road crashes 
occur and prioritize them. This model could also aid in the efficient allocation of 
available resources towards targeted road safety actions and measures.  
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6.5 SHAP values for Crash Risk Level Classifier 

In this subsection, it was decided to calculate and provide SHAP values for the RF 
model as it demonstrated better classification performance than the other developed 
ML models. This approach was selected in order to overcome the difficult task of 
interpreting its outcomes. The DALEX R-package was used in order to calculate the 
SHAP values (Biecek, 2018). To create a representative instance of motorway 
segments, the median values of the continuous predictors were used. Medians were 
preferred instead of the mean values, as it can be concluded that the predictors are 
not normally distributed based on the outcomes of Shapiro-Wilk normality tests, 
skewness, and kurtosis values, which are presented in the Table 6.5 for each 
predictor. 
 
Regarding the outcome of the Shapiro-Wilk test, it can be concluded that if the test is 
non-significant (p-value > 0.05), the distribution of the sample is not significantly 
different from a normal distribution (Thode, 2002). Moreover, a skewness value of 0 
indicates a symmetric distribution, while positive or negative values indicate right or 
left skew, respectively. With regard to kurtosis, a value of 3 indicates a normal 
distribution, while higher or lower values indicate a more or less peaked distribution, 
respectively (Ho & Yu, 2015). With regard to categorical predictors, their most 
prevalent class from the training dataset was used. This approach ensured that the 
new instance was representative of the data and can be used to understand the 
model’s prediction for similar instances. 
 

Table 6.5: Skewness, kurtosis, and median values of numeric predictors in the training dataset 
Abbreviation Shapiro-Wilk (p-Value) Skewness Kurtosis Median 

lane_width <0.001 -2.42 10.48 3.95 
Curve1 <0.001 5.74 42.56 950.00 

Lcurve1_in_seg <0.001 0.49 2.27 197.65 
median_width <0.001 3.86 23.58 4.93 

pav_ins_sh_width <0.001 1.64 11.43 0.75 
pav_out_sh_width <0.001 -0.85 3.68 3.00 
dist_edginssh_barf <0.001 3.19 15.79 0.00 
dist_edgoutsh_barf <0.001 0.96 3.13 0.50 

speed_limit <0.001 -1.16 2.82 130.00 
avg_speed <0.001 -1.27 6.31 118.00 

speeding_per_trips <0.001 0.24 2.68 0.71511 
hb_per_trips <0.001 5.24 38.53 0.00215 
ha_per_trips <0.001 7.70 75.01 0.00197 

 
Figure 6.7 presents the SHAP values plot for the multi-class RF classification model, 
which was determined as the best performing model among the developed five 
models. SHAP values for each feature are computed separately for each class and 
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the contribution of each feature to the model prediction for each class is displayed on 
the plot. The SHAP values can be positive (green bars) or negative (red bars) for each 
crash risk level, depending on whether the feature has a positive or negative 
contribution to the prediction for that class. It is noted that the purple boxplots of Figure 
6.7 show the distribution of the attribution of a variable from every possible 
combination of variable layouts. It is also mentioned that Figure 6.7 demonstrates the 
SHAP values for a representative instance of motorway segments, which uses the 
median values of the numeric predictors. 
 

 
Figure 6.7: SHAP values for the RF model and a representative motorway segment 
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It can be observed that this representative motorway segment is more likely to belong 
to the lowest crash risk level, as denoted by the positive (green) bars of all predictors 
for this specific class. This crash risk level corresponds to overall safer locations with 
lower traffic volumes and road crashes by segment length than the motorway 
segments between the first and the third crash risk level (see Table 6.2). 
 
It is worth noting that Figure 6.7 shows the contribution of only a subset of the variables 
that have been included in the multiclass classification RF model, as the other 
variables are not contributing much to the model’s predictions and their contribution to 
the model’s output can be, therefore, considered negligible.  
 
A useful conclusion that can be drawn on this basis has to do with the fact that the 
harsh acceleration related variable does not make a significant contribution to the 
prediction of the segment crash risk level. Based on the literature, both harsh 
accelerations and harsh brakings constitute SSMs that can be used in various road 
safety analyses (Paleti et al., 2017; Stipancic et al., 2018b; Ziakopoulos et al., 2022; 
Nikolaou et al., 2023b). However, the results of this investigation suggest that harsh 
brakings may be more pertinent than harsh accelerations for predicting the crash risk 
level of motorway segments overall. 
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6.6 Discussion 

The aim of this section was to exploit various road geometry data and SSMs for various 
road crash investigations in road segments of the Olympia Odos motorway in Greece. 
To that end, a unified database containing data on historical injury and PDO road 
crashes, road design characteristics, and SSMs of 668 motorway segments was 
utilized.  
 
While the observational area and the data are singular for this study, they are viewed 
with three different approaches, each with a unique context. In particular, the first 
approach aimed to provide initial insights into the relationship significance and 
magnitude between road crash frequency and road geometry and SSM variables. 
However, since SSMs are still a new concept and their connection with hard road 
safety metrics such as crashes remains uncertain, it was fruitful to consider how these 
variables would perform for a clustering approach. To that end, the second model was 
applied as a first step, to reveal clusters that the segments can formulate based on 
crash and AADT data. The predictive power of road geometry and SSM variables was 
then tested on these clusters, having removed the variables used to obtain the 
clusters. Thus, in the present approach, the developed models contributed to prove 
that contextually, SSMs can be used to model crashes directly (negative binomial 
regression model – subsection 6.2), or indirectly, even without crashes, (ML 
classification models – subsection 6.4) when a type of safety categorization is 
established (clustering model – subsection 6.3). 
 
To provide more detail, the negative binomial regression model was first developed to 
model motorway segment crash frequency. The results of this model pointed out that 
road crash frequency in the considered motorway segments is positively correlated 
with the traffic volume, the length of the segment, and the number of harsh 
accelerations and harsh brakings per segment trips. This analysis contributes to 
existing road safety literature by demonstrating a positive and statistically significant 
relationship between crash frequency and harsh driving behaviour events. Therefore, 
it can be concluded that such events can be a valid subcategory of naturalistic SSMs 
which can be used either to complement CPMs or as dependent variables of various 
road safety proactive analyses when detailed historical road crash data are not 
available. 
 
As a further step of the statistical analysis, it was attempted to create crash risk level 
clusters of the motorway segments considering the number of road crashes by 
segment length and the traffic volume of each segment through the agglomerative 
hierarchical clustering technique. Segment length and traffic volume of each segment 
were taken into account in the clustering analysis, as the results of the negative 
binomial regression model revealed that these two variables have a statistically 
significant impact on the crash frequency of motorway segments. Based on the results 
of this clustering approach, four crash risk levels were defined.  
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Afterwards, these four levels formed the response variable of five ML classification 
models (LR, DT, RF, SVM, and K-NN). Data on road geometry characteristics and 
unsafe driving behaviours, such as rates of harsh brakings, harsh accelerations, and 
speeding duration, per trips in the considered segments were included as predictors 
in the developed models. Among these models, RF achieved the best overall and per 
crash risk level classification performance with very high and consistent scores of 
more than 89% (overall accuracy: 89.9%, macro-averaged precision: 90.7%, macro-
averaged recall: 89.9%, macro-averaged F1 score: 90.2%). This finding is in alignment 
with previous studies, which report that RF is a promising modelling approach with 
high performance in either crash severity or crash risk prediction (Santos et al., 2022; 
Dimitrijevic et al., 2022). In addition, the SHAP values were calculated for a typical 
motorway segment in order to assist with the interpretation of the RF classification 
model, which is a black-box ML model. Based on the SHAP values of the naturalistic 
driving behaviour predictors, it was revealed that harsh brakings may serve as a more 
suitable SSM than harsh accelerations in terms of crash risk level prediction. 
 
The findings of this section also suggest that the developed RF model could serve as 
a quite auspicious proactive road safety tool that could be used for the identification 
and prioritization of potentially hazardous motorway segments. Consequently, this 
approach could also assist to the best possible allocation of available resources for 
targeted interventions. Similar models could be applied to the rest of the motorway 
network in Greece, contributing to the achievement of the target of the Greek Road 
Safety Strategic Plan for the period 2021-2030, which aims at zero road fatalities on 
motorways by 2030 (Yannis et al., 2023). The inclusion of additional predictors that 
have not been considered in this research, such as the pavement conditions, may be 
beneficial towards the improved performance metrics of the ML models. Moreover, the 
prospect of extending the analyses included in this study to other types of road 
environments, such as urban and rural roads that are not motorways, is a quite 
challenging task that could be considered as well. 
 
Naturally, this research is not without limitations. With regard to the extraction of road 
geometry data for Olympia Odos motorway, the results are obviously not an exact 
replication of the actual road design of the motorway and minor differences could be 
expected if a comparison with the as-built drawings of the project was made. 
Nevertheless, any differences would be minor and, although important from a 
designer’s point of view, they are not expected to be able to differentiate the study’s 
results. The negative binomial regression technique that was used for the 
development of the crash frequency regression model does not take into account 
unobserved heterogeneity and the effects of spatial characteristics of various road 
safety indicators. Another limitation of the current research is that tunnels and toll 
station segments were not considered in the analyses, leading to discontinuities in the 
research area. 
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However, these limitations can provide directions for future research efforts. 
Specifically, the inclusion of random effects in the crash frequency modelling approach 
could be considered in order to account for the unobserved heterogeneity. Moreover, 
spatial modelling approaches could be a promising alternative kind of modelling as it 
could consider the spatial dependency of road safety indicators.  
 
Lastly, regarding the crash risk level classification models, it was found that RF 
outperformed the other developed classifiers in terms of predicting crash risk levels of 
the considered motorway segments. This is likely attributed to its ability to capture non-
linear relationships, its robustness to hyperparameter choices, its ability to capture 
variable importance and its reduced risk of overfitting while remaining efficient. It 
should be mentioned that the performance of various ML models will probably vary 
across different datasets and the selection of the best performing approach that could 
serve as a proactive road safety approach should be completed with caution. The 
results of this research indicated that the RF classifier could be a strong candidate for 
this task. However, the development of additional classification models, such as 
Decision Jungle, which was found to outperform RF in a previous study (Ijaz et al., 
2021), Gradient Boosting, and Linear Discriminant Analysis classifiers, could be 
considered in future research efforts. 
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7. Urban and Interurban Road Network Data 
Collection and Processing 

 

7.1 Introduction 

The investigation of road safety modelling data in Greece, as presented in Section 4, 
revealed that detailed crash prediction modelling is feasible only in motorways 
possessing high-quality crash data concerning crash locations and traffic attributes 
per road segment. However, based on the key findings of Section 6, it was concluded 
that harsh braking events could serve as a valid subcategory of naturalistic SSMs. 
These could be utilized as dependent variables in various road safety proactive 
analyses in cases where detailed historical road crash data are unavailable. 
 
This section describes the development of a database for the road network in the 
Eastern Macedonia and Thrace Region, including urban and interurban roads. 
Detailed traffic and crash data (in terms of crash geo-location) were not available for 
the examined roads. Therefore, the developed database includes only geometric 
characteristics and naturalistic driver behaviour metrics for the examined road 
segments. Located in northeastern Greece, approximately 700 kilometers driving 
distance from Athens, this area was selected as a challenging location in terms of data 
availability, with the reasoning that if models converged in this area, they would be 
reasonably expected to converge in other regions of Greece. 
 
The initial step of the data collection process involves the definition of a study road 
network within specific boundaries. Within this road network, an analysis is conducted 
on all road segments sourced from OSM to extract their geometric and network 
characteristics (Section 7.2). Subsequently, naturalistic driving behaviour data that 
were extracted from a smartphone application, including the number and location of 
harsh braking events and other metrics, are aligned with the corresponding OSM 
segments (Section 7.3).  
 
This process leads to the development of a spatial dataset that encompasses 
aggregated behaviour metrics, as well as geometric and network characteristics on a 
segment level. Concluding this section, subsection 7.4 presents a summary table 
containing the segment-related variables that were ultimately analyzed in the 
subsequent section of this doctoral dissertation, accompanied by their abbreviations 
and relevant descriptive statistics. 
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7.2 Road Infrastructure Data 

In this subsection of this doctoral dissertation, an analysis is conducted on all road 
segments sourced from OSM to extract their geometric and network characteristics. 
The OSM initiative is a collaborative effort, which offers user-generated street maps. 
About a decade ago, the accuracy of OSM data with regard to segment length was 
approximately 80% to 90%, with an error of ± 6 meters. Since then, OSM has 
undergone continuous enhancements (Haklay, 2010; Zhang & Malczewski, 2019).  
 
It is also noted that the World Geodetic System 1984 (WGS84) which is widely utilized 
by GPS units and services, is also employed by OSM. All algorithms and analyses in 
this study have been conducted in R-studio (R Core Team, 2023) by using several 
packages. Specifically, the R library “osmdata” was used to extract the road segment 
data from OSM (Padgham et al., 2017). This library imports OSM data into R as simple 
features, which can be further processed with the R package “sf” (Pebesma, 2018). 
 
The examined road network is illustrated in Figure 7.1 and consists of 6,103 road 
segments, with an average length of 288.8 meters, resulting in a total road network 
length of 1,763 kilometers. The distribution of road types is as follows: residential roads 
account for 67.8%, tertiary roads for 12.1%, secondary roads for 7.4%, motorways 
and motorway links for 3.8%, and the remaining 9% consists of other road types. It is 
noted that the maps presented in this dissertation were generated using the OSM/R-
studio interface package and JavaScript library “leaflet” (Cheng et al., 2019). 
 
 
 

 
Figure 7.1: Examined road network of the Eastern Macedonia and Thrace Region (in grey) 

 



Dimitrios Nikolaou | Machine learning-based road crash risk assessment 
fusing infrastructure, traffic and driver behaviour data 

 

[161] 
 

Beyond road type, additional critical geometric characteristics, including road segment 
length, slope, and curvature, were also collected. Figure 7.2 illustrates the length of 
each analyzed road segment. 
 

 
Figure 7.2: Length of the examined road segments   

  
With regard to the curvature characteristics of the considered segments an index 
termed “efficiency” has been calculated. Specifically, it is a metric of segment linearity 
expressed by the ratio of the Euclidean distance between the start and end points of 
a road segment to the total segment length. It is a dimensionless ratio between 0 and 
1, with higher values indicating a more linear road segment, while lower values 
indicate higher curvature. 
 

 
Figure 7.3: Linearity index (“efficiency”) of the examined road segments 

 



Dimitrios Nikolaou | Machine learning-based road crash risk assessment 
fusing infrastructure, traffic and driver behaviour data 

 

[162] 
 

Slope data were obtained using SRTM data. Figure 7.4 presents the slope class of the 
examined road segments. However, as detailed in subsection 4.4 of this doctoral 
dissertation, a notable disparity exists between these data and the surveyed 
elevations. Consequently, it was deemed more appropriate to exclude elevation data 
from the road crash risk assessment analyses of the subsequent section. 
 

 
Figure 7.4: Slope class (%) of the examined road segments 
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7.3 Driver Behaviour Data 

This doctoral dissertation utilizes naturalistic driving behaviour data obtained from an 
existing smartphone application developed by OSeven Telematics (https://oseven.io/), 
which is compatible with both Android and iOS devices. This application operates in 
the smartphone’s background collecting sensors data without requiring any user 
initiation while driving or any other engagement. Sensors like the accelerometer, 
magnetometer, GPS and gyroscope are utilized to record the data. To clean and 
normalize the data, sophisticated ML algorithms, Data fusion and Big Data algorithms 
are implemented. Various forms of metadata are ultimately computed, including both 
exposure and driving behaviour indicators - such as trip duration, trip distance, driver 
speed, instances of speeding, the frequency of harsh braking and harsh acceleration 
incidents, and driver distraction from mobile phone use. Further details on the 
operation of this application have been provided in subsection 4.5 of this doctoral 
dissertation. 
 
For the analyses of the road segments within the Eastern Macedonia and Thrace 
Region, data from 5,129 trips during 2021 were utilized. The mean trip duration was 
634 seconds, with a standard deviation of 556 seconds. The histogram of trip durations 
is presented in Figure 7.5. Among these trips, a total of 2,889 harsh braking events 
were recorded. 
 

 
Figure 7.5: Histogram of trip duration frequencies in the examined road network 

 

https://oseven.io/
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The data collection procedure aimed to create a spatial dataset that contains 
geometric and network characteristics, as well as aggregated driving behaviour 
metrics on the road segment level. The OSM segmentation was retained for the 
analysis, as there is a solid reasoning behind it that dictates that segments are 
separated when road/traffic conditions change (e.g., a lane is added or the speed limit 
changes). Smartphone data, which provide information for each second of a trip had 
to be associated with the corresponding road segment that each driver travelled 
through.  
 
To this end, a spatial map-matching procedure was followed. Initially, the centroid of 
each road segment line-string was identified using the “st_centroid” function from the 
“sf” R library (Pebesma, 2018). Centroids are point-type quantities and represent the 
geometric center of each road segment. Next, the aggregated driving behaviour 
metrics were assigned to the nearest road segment centroid based on the latitude and 
longitude coordinates for each trip-second. This was accomplished using the "st_join" 
function and the "st_nearest_feature" geometry predicate function from the "sf" R 
library. 
 
Figure 7.6 displays the duration (in seconds) of speeding per segment trips for the 
examined road segments, while Figure 7.7 illustrates the duration (in seconds) of 
mobile phone use during these trips. Additionally, Figures 7.8 and 7.9 present the 
number of harsh braking and harsh acceleration events, respectively, per segment 
trips for the examined road segments. 
 

 
Figure 7.6: Speeding (secs) per segment trips 
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Figure 7.7: Mobile phone use (secs) per segment trips 

 

 
Figure 7.8: Harsh braking events per segment trips 

 

 
Figure 7.9: Harsh accelerations per segment trips  
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7.4 Descriptive Statistics 

The procedure described in subsections 7.2 and 7.3 ultimately led to the development 
of a spatial dataset that includes aggregated behaviour metrics, as well as geometric 
and network characteristics at a segment level for 6,103 road segments in the Eastern 
Macedonia and Thrace Region. Table 7.1 presents the variables that were finally 
included and analyzed in the subsequent section of this doctoral dissertation, along 
with their abbreviations as well as key descriptive statistics. 
 

Table 7.1: Geometric characteristics and driving behaviour metrics per examined road segment 
Variable Description Abbreviation Descriptive Statistics 

Number of trips [count] trip_count Min.: 0.00, Max.: 1,272.00,  
Mean: 32.10, Median: 1.00 

Number of harsh braking  
events [count] harsh_braking_count Min.: 0.00, Max.: 117.00,  

Mean: 0.47, Median: 0.00 
Duration of exceeding  
the speed limits [sec] speeding_count Min.: 0.00, Max.: 19,126.00,  

Mean: 16.05, Median: 0.00 
Duration of mobile phone 

use [sec] mobile_usage_count Min.: 0.00, Max.: 2,461,00,  
Mean: 13,51, Median: 0.00 

Segment length [m] length Min.: 2.05, Max.: 11,301.96,  
Mean: 288.84, Median: 123.07 

Measure of segment linearity 
[dimensionless ratio] efficiency Min.: 0.01, Max.: 1.00,  

Mean: 0.94, Median: 1.00 
Road type: motorway or motorway_link motorway Frequencies: No: 5,872, Yes: 231 

 
The numeric values of Table 7.1, have been visually depicted on the examined roads 
in Figures 7.2-7.3 and 7.6-7.8. Additionally, Figure 7.10 illustrates the distribution of 
harsh braking frequencies among the examined segments. This variable also serves 
as the dependent variable for the models in the subsequent section of this thesis. 
 

 
Figure 7.10: Histogram of harsh braking events in the examined road segments  

5,519 

272 99 51 21 31 20 13 4 6 13 7 5 3 2 3 1 - 7 4 2 6 14 
 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21

-3
0

31
+

Number of harsh braking events



Dimitrios Nikolaou | Machine learning-based road crash risk assessment 
fusing infrastructure, traffic and driver behaviour data 

 

[167] 
 

8. Urban and Interurban Road Network Analyses 
 

8.1 Introduction 

The results of Section 6, focusing on 668 motorway segments in Greece, indicated 
that both the number of harsh braking events and harsh accelerations were positively 
correlated with the number of injury as well as property-damage only crashes 
(Nikolaou et al., 2023a). Moreover, it was also found that harsh brakings contribute 
significantly to predicting the crash risk level of the examined road sections, which is 
not the case for harsh accelerations. Therefore, and based also on the literature review 
findings of Section 2, it is concluded that harsh braking events are a plausible SSM 
that can be used either in various proactive road safety analyses before road crashes’ 
occurrence or in cases of unavailable detailed road crash data (Nikolaou et al., 2023c). 
 
Spatial autocorrelation often occurs when treating frequencies of harsh braking events 
as point-type data (Ziakopoulos, 2021; Ziakopoulos et al., 2022). In the case of the 
6,103 road segments within the Eastern Macedonia and Thrace Region (Section 7), 
the observed Moran’s 𝐼𝐼 value is positive (0.0263) and statistically significant (p-value 
< 0.001), indicating that neighbouring road segments tend to have similar harsh 
braking counts. Consequently, it is important to consider spatial modelling techniques 
to capture spatial dependencies and enhance the reliability of the analyses, similar to 
studies that either exploit only historical road crashes or combine both SSMs and 
crash records (Ziakopoulos & Yannis, 2020; Aguero-Valverde & Jovanis, 2006; 
Stipancic et al., 2018b; Satria et al., 2021; Yang et al., 2021; Li et al., 2021a). However, 
spatial analysis of SSMs has not received significant attention in the road safety 
literature, making it a promising research direction in the field (Nikolaou et al., 2023b). 
 
In light of this background, the objective of this section is to carry out spatial analysis 
of harsh braking events across various road environments within the Region of 
Eastern Macedonia and Thrace in Greece. This is achieved by exploiting smartphone 
driving behaviour data and OSM geometric data. The data collection and processing 
have been provided in Section 7 of this doctoral dissertation. This section focuses on 
analysing harsh braking event frequencies per road segment and correlating them with 
various road network characteristics and driving behaviour metrics. Spatial modelling 
techniques, including SEM, SLM, SZINB and SRF are employed on harsh braking 
events frequencies. 
 
After this introduction, this section is organized as follows. Subsections 8.2 to 8.4 
present and discuss the key results obtained from the developed models. Finally, 
Section 8.5 concludes the key findings and suggests potential avenues for future 
research. 
  



Dimitrios Nikolaou | Machine learning-based road crash risk assessment 
fusing infrastructure, traffic and driver behaviour data 

 

[168] 
 

8.2 Spatial Error and Lag Models 

After completing the data collection process, which was described in Section 7, log-
linear regression was selected as a suitable method for the preliminary analysis of the 
correlation between harsh braking events and the remaining variables of Table 7.1. 
Previous studies have established the advantages of utilizing GLMs for count data 
modelling (Lord & Mannering, 2010). However, considering harsh events as road 
segment attributes, particularly due to their substantially higher occurrence compared 
to road crashes within the same time period, linear regression can be explored in order 
to reveal potential linear relationships. This approach was also employed by Petraki 
et al. (2020) who demonstrated a robust relationship between harsh braking events 
and geometric and traffic characteristics, and was further supported by exploratory 
modelling, which highlighted that traditional count-based models (such as GLM - 
Negative Binomial Regression) were unsuitable for the current spatial dataset, 
probably due to the significant excess of zeros (Figure 7.10). 
 
A series of various mathematical transformations of the independent variables such 
as logarithm usage were tested. It was also established that adding one harsh braking 
event to all segments allowed for better model fit, while enabling the inclusion of road 
segments with no events in the log-linear model with negligible numeric differences in 
the coefficients. The model was assessed for multicollinearity by means of the VIF. 
Overall, present results showed no multicollinearity as VIF values were lower than the 
established value of 5 (Sheather, 2009).  
 
Moreover, as also pointed out in the introduction of Section 8, positive and statistically 
significant spatial autocorrelation was detected for the frequencies of harsh braking 
events among the examined road segments. Towards this direction, SEM and SLM 
have been developed in order to consider such spatial dependencies. The results of 
the log-linear model (baseline), SLM and SEM are presented in the following Table. 
These models were developed in R-studio (R Core Team, 2023) using packages 
“stats”, “spdep” (Bivand & Wong, 2018) and “spatialreg” (Bivand et al., 2021). 
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Table 8.1: Log-linear regression (baseline), SEM and SLM results for harsh braking events 
Dependent variable: log (harsh_braking_count + 1) 
 Log-linear Model  

(baseline) 
Spatial Error Model 

(SEM) 
Spatial Lag Model  

(SLM) 
Independent 
variables Estimate S.E. P-

value VIF Estimate S.E. P-
value Estimate S.E. P-

value 
(Intercept) -0.201 0.046 <0.001 - -0.203 0.046 <0.001 -0.202 0.046 <0.001 
trip_count 0.002 0.000 <0.001 1.484 0.002 0.000 <0.001 0.002 0.000 <0.001 
log(1+length) 0.029 0.004 <0.001 1.152 0.029 0.004 <0.001 0.029 0.004 <0.001 
log(1+speeding_count) 0.070 0.005 <0.001 1.260 0.071 0.005 <0.001 0.071 0.004 <0.001 
log(1+efficiency) 0.126 0.056 0.026 1.084 0.127 0.056 0.025 0.123 0.056 0.026 
mobile_usage_count 0.001 0.000 <0.001 1.499 0.001 0.000 <0.001 0.001 0.000 <0.001 
motorway: yes -0.071 0.022 <0.001 1.017 -0.069 0.022 0.001 -0.070 0.022 0.002 
Lamda - - - - 0.021 0.010 0.035 - - - 
Rho - - - - - - - 0.020 0.008 0.013 
Adjusted R2 0.479 - - - - - - - - - 
AIC 3,589.1 - - - 3,586.7 - - 3,585.0 - - 
Residuals Moran’s I 0.035 - 0.018 - <0.001 - 0.496 0.003 - 0.418 

 
As observed from the results presented in Table 8.1, the signs of the independent 
variables’ coefficients remain consistent among the three models. In particular, both 
the length of the examined road segment and the number of trips per segment can be 
considered as proxy indicators of risk exposure and as expected, were found to be 
positively correlated with the number of harsh braking events, meaning that as either 
the length of the road segment increases or the number of trips taken on that segment 
rises, the number of instances where drivers perform harsh braking also tends to 
increase. These exposure metrics provide disjointed exposure dimensions for 
assessing the frequency of harsh braking events. More specifically, the road segment 
length represents geographical, infrastructure-based exposure, which is more fixed, 
while the number of trips per segment reflects naturalistic driving exposure, which 
depends on travel elements. 
 
In addition, the positive sign of the beta coefficient of the efficiency index suggests that 
road segments with fewer curves have a higher number of harsh braking events. This 
implies that drivers perform more harsh brakings on straighter road segments, possibly 
due to the fact that they drive with higher speed or more aggressively when no curves 
are present. On the other hand, they tend to be more cautious in road curvature, which 
reduced visibility and introduces higher risk of run-off road instances. Moreover, the 
variables related to speeding and mobile phone use while driving, were found to be 
positively associated with the number of harsh braking events on road segments. In 
cases of exceeding speed limits, drivers are more likely to brake abruptly to avoid 
potential collisions or reduce excessive speed. Similarly, mobile phone use while 
driving can lead to distraction impacting reactions and increasing the likelihood of 
harsh braking. Lastly, the negative sign of the beta coefficient of the motorway variable 
indicates that the number of harsh braking events on motorways is lower than the 
respective number on other road types such as primary, secondary and residential 
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roads. This could be explained by smoother traffic flow, more lane options and longer 
visibility distances on motorways. 
 
The Moran’s 𝐼𝐼 statistic indicates that the residuals from the baseline model have 
statistically significant positive spatial autocorrelation (Moran’s 𝐼𝐼 = 0.035 with p-value 
< 0.05). Based on this indication, the SEM was developed in order to address spatial 
autocorrelation. When considering the AIC values, it is observed that the SEM 
performs better than the baseline model. Moreover, the Lamda value of 0.021 is also 
statistically significant (p-value = 0.035), suggesting that the error term is spatially 
autoregressive. Based on the SEM residuals’ Moran’s 𝐼𝐼, it is also evident that there is 
no spatial autocorrelation in the residuals anymore as the Moran’s 𝐼𝐼 is close to zero 
and the p-value is higher than 0.05. The same is observed for the residuals of the 
SLM. Moreover, a statistically significant (p-value = 0.013) and positive spatial lag term 
“Rho” was obtained, indicating positive spatial autocorrelation.  Finally, by comparing 
the values of the AIC criteria, it can be observed that the performance of the SLM 
outperforms the other two developed models. 
 
The results of the SLM for the examined road network of the Eastern Macedonia and 
Thrace Region are visualized in Figure 8.1, whereas Figure 8.2 provides a zoomed-in 
view of Figure 8.1, focusing specifically on the center of the regional capital city of 
Xanthi. 
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Figure 8.1: Visualization of the SLM results on the examined road network 

 
 
 
 

 
Figure 8.2: Zoomed-in view of the SLM results for the center of Xanthi 
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8.3 Spatial Zero-Inflated Negative Binomial Model 

As noted in subsection 8.2, traditional GLM count modelling techniques, such as NB 
regression, could not be fitted to the dataset under consideration. This limitation likely 
stemmed from the significant excess of zero occurrences in harsh braking events 
across the analyzed road segments. Additionally, Figure 7.10’s histogram depicting 
harsh braking frequencies on these road segments indicates a distribution following a 
ZINB pattern. Consequently, a ZINB model and a corresponding spatial model with 
spatial lag were constructed for this purpose. These models were developed using R-
studio (R Core Team, 2023) and the “pscl” package (Zeileis et al., 2008; Jackman, 
2020). ZINB models combine two components: one for modelling excessive zeros 
(using a logistic regression model) and another for modelling count data (using a NB 
regression model). The dependent variable of these two developed models is 
“harsh_braking_count” and the results are presented in the following Table. 
 

Table 8.2: Zero-inflated Negative Binomial and Spatial Zero-inflated Negative Binomial results for 
harsh braking events 

 Zero-Inflated Negative Binomial 
(ZINB) 

Spatial Zero-Inflated Negative 
Binomial (SZINB) 

Count model coefficients (negbin with log link): 
Independent variables Estimate Std. 

Error z value Pr(>|z|) Estimate Std. 
Error z value Pr(>|z|) 

(Intercept) -1.527 0.112 -13.605 <0.001 -1.591 0.113 -14.111 <0.001 
trip_count 0.004 0.000 9.192 <0.001 0.003 0.000 8.926 <0.001 
log(1+speeding_count) 0.174 0.033 5.227 <0.001 0.191 0.032 5.869 <0.001 
motorway: yes -1.429 0.380 -3.758 <0.001 -1.359 0.367 -3.704 <0.001 
length 0.0002 0.000 4.423 <0.001 0.0002 0.000 4.480 <0.001 
log(1+mobile_usage_count) 0.273 0.038 7.242 <0.001 0.264 0.037 7.066 <0.001 
spatial lag - 0.109 0.032 3.436 <0.001 
Log(theta) -0.818 0.074 -11.017 <0.001 -0.794 0.074 -10.695 <0.001 
Zero-inflation model coefficients (binomial with logit link): 
Independent variables Estimate Std. 

Error z value Pr(>|z|) Estimate Std. 
Error z value Pr(>|z|) 

(Intercept) 4.209 0.364 11.551 <0.001 4.065 0.360 11.281 <0.001 
trip_count -0.434 0.104 -4.188 <0.001 -0.433 0.102 -4.258 <0.001 
log(1+speeding_count) -1.173 0.940 -1.248 0.212 -1.374 0.844 -1.628 0.103 
motorway: yes -1.763 2.267 -0.777 0.437 -1.355 2.019 -0.671 0.502 
length -0.0003 0.000 -0.864 0.388 -0.0003 0.000 -0.784 0.433 
log(1+mobile_usage_count) -0.402 0.172 -2.338 0.019 -0.421 0.177 -2.381 0.017 
spatial lag - 0.531 0.390 1.362 0.173 
AIC 4,350.4 4,336.4 

 
The signs of the independent variables in the count component of the two ZINB models 
align with those of the three models (Log-linear, SEM, SLM) presented in Table 8.1. 
In particular, the results of Table 8.2 confirm that the variables “trip_count”, 
“speeding_count”, “length” and “mobile_usage_count” are positively correlated with 
the number of harsh brakings on the examined road segments, while the opposite is 
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the case for the variable “motorway”. Interpretations of these signs are covered in 
subsection 8.2 and are omitted here to prevent repetition. The only difference between 
the independent variables featured in Tables 8.1 and 8.2 lies in the absence of 
statistical significance for the “efficiency” variable in the ZINB models, leading to its 
exclusion. 
 
Within the zero-inflated component of Table 8.2’s models, only “trip_count” and 
“mobile_usage_count” turned out to be statistically significant. In particular, their 
coefficients’ signs imply that an increase in these variables corresponds to decreased 
probabilities of zero harsh braking occurrences on the examined road segments.  
 
Additionally, among the two models of Table 8.2, the SZINB model demonstrates 
superior data fit, evident from the AIC criterion values. Noteworthy is the positive and 
statistically significant (p-value < 0.001) spatial lag term in the count component, 
indicating positive spatial autocorrelation.  
 
Visual representation of the SZINB model's results for the Eastern Macedonia and 
Thrace Region’s road network is displayed in Figure 8.3, with Figure 8.4 offering a 
more detailed view focused on the city of Xanthi. 
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Figure 8.3: Visualization of the SZINB results on the examined road network 

 
 
 
 

 
Figure 8.4: Zoomed-in view of the SZINB results for the center of Xanthi 
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8.4 Spatial Random Forest 

The results of the five models, as seen in Tables 8.1 and 8.2, show a statistically 
significant relationship between the selected independent variables and the frequency 
of harsh braking events per segment. Thus, these variables were also selected as 
input to the SRF model. The R package “spatialRF” (Benito, 2021), which internally 
uses the R package “ranger” (Wright & Ziegler, 2015), was exploited for the 
development of the SRF model. It is noted that the dependent/response variable of 
the SRF model was “log (harsh_braking_count + 1)”. 
 
Initially, a conventional non-spatial RF model is developed with defined distance 
thresholds for the examination of spatial autocorrelation in the residuals. If statistically 
significant and positive spatial autocorrelation exists, the SRF using spatial predictors 
is subsequently applied. These predictors are derived from the distance matrix of the 
considered road segments and are used as explanatory variables in the SRF model 
following Hengl et al. (2018).  
 
It is noted that information overlap and over-parameterization due to excessive 
covariate usage are not problematic because RF has built-in protections against 
overfitting, allowing for the fitting of models with a large number of covariates, even 
surpassing the number of observations (Biau & Scornet, 2016; Hengl et al., 2018). By 
including spatial predictors, the SRF manages to enhance its capability so as to 
minimize the spatial autocorrelation in the residuals and provide more precise variable 
importance scores. Moreover, the inclusion of spatial predictors in the model can 
indirectly address some aspects of unobserved heterogeneity in the data, which 
pertains to variations in the response variable that are not accounted for by the 
remaining observed predictors included in the model. 
 
Figure 8.5 illustrates information on the non-spatial RF model residuals. Specifically, 
its upper panels demonstrate the results of the normality test, while the middle panel 
indicates the relationship between the residuals and the fitted values and the lower 
panel shows the Moran’s 𝐼𝐼 of the residuals across distance thresholds and their 
respective p-values (positive and statistically significant for distances between 0 and 
2000 meters). 
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Figure 8.5: Non-spatial RF model residuals 
 
The presence of spatial autocorrelation in the residuals, based on the high Moran’s 𝐼𝐼 
residuals as indicated by the large y-values in the lower distances of the bottom plot, 
indicates that the non-spatial RF model did not fully capture the spatial dependencies 
in the data. In order to minimize the spatial autocorrelation of the residuals, the non-
spatial RF model was transformed into a SRF model by adding the columns of the 
distance matrix of the road segments as spatial predictors (Hengl et al., 2018). Figure 
8.6 presents the Moran’s 𝐼𝐼 of the residuals of the SRF model. 
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Figure 8.6: SRF model residuals 
 
On the basis of the lower panels of Figures 8.5 and 8.6, it can be observed that the 
SRF was able to reduce the absolute values of the Moran’s 𝐼𝐼 statistics. A likely 
explanation for the change from positive to negative spatial autocorrelation (in the 
residuals) could be the inclusion of the additional spatial explanatory variables in the 
SRF model that incorporates spatial dependence structures as these additions help 
capture the spatial relationships among the observations.  
 
However, it should be noted that the absolute values of the Moran's 𝐼𝐼 index can provide 
some insight into the strength of spatial autocorrelation, but it is not the sole criterion 
for model evaluation. To that end, Table 8.3 provides the key parameters of each RF 
model, along with some key model performance metrics. 
 

Table 8.3: Key parameters and performance metrics of RF models  
 Non-spatial RF SRF 
Number of trees 500 500 
Sample size 6,103 6,103 
Number of predictors 6 6,109 
Mtry 2 78 
Minimum node size 5 5 
R2 (out-of-bag) 0.526 0.440 
R2 (cor (observed, predicted)2) 0.900 0.928 
Pseudo R2 (cor (observed, predicted)) 0.949 0.964 
RMSE (out-of-bag) 0.309 0.336 
RMSE 0.156 0.150 
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When examining typical metrics (not out-of-bag metrics), for instance, R2, Pseudo R2 
and RMSE, it is observed that the SRF outperforms the non-spatial RF model. A 
spatial model can capture spatial dependencies among the considered data points 
leading to a better fit to the observed data compared to non-spatial model. However, 
based on the out-of-bag performance metrics, it is found that non-spatial RF model 
outperforms the SRF, declaring that the non-spatial model is likely performing better 
in terms of generalization on unseen data. This conclusion can be also enhanced by 
Figure 8.7, which compares the predictive performance of the two RF models across 
thirty spatial folds. It is noted here that spatial folds are subsamples of the initial data 
that are separated in location clusters, a concept known as spatial cross-validation 
(Lovelace et al., 2019). Thus, the localized spatial aspects and unobserved traits are 
retained through the cross-validation process as opposed to traditional random cross-
validation. 

 

Figure 8.7: RMSE across 30 spatial folds 
 
Within the framework of the two RF models’ development, the permutation variable 
importance technique was also employed to assess and rank individual predictors on 
the basis of their relative importance. Variable importance scores are visualized in 
Figure 8.8, demonstrating the increase in mean error (computed on the out-of-bag 
data) observed across trees when a predictor is permuted. This approach provides 
valuable insights into the relative contributions of predictors in both spatial and non-
spatial RF models. As a result, the SRF has an additional set of variable importance 
scores for the spatial predictors, with the maximum importance of a few of these spatial 
predictors matching the importance of the second and third most important predictors. 
 
In both RF models, the number of trips per examined road segment (which serves as 
a naturalistic driving exposure metric), was found to be the most influential predictor, 
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highlighting its significant relevance in predicting the frequency of harsh braking 
events. On the other hand, the motorway variable exhibited the lowest importance in 
both RF models, indicating that road type is relatively less valuable in predicting the 
number of harsh braking events. This finding may suggest that factors other than road 
type such as driver distraction and speeding, might play a more crucial role in 
influencing harsh braking events frequencies. 
 

 

Figure 8.8: Permutation importance computed on the out-of-bag data 
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8.5 Discussion 

The objective of this section was to conduct spatial analyses of harsh braking events 
by exploiting smartphone driving behaviour data and OSM road network 
characteristics, aiming to enhance the current SSM knowledge. The examined road 
network consists of 6,103 road segments located in the Region of Eastern Macedonia 
and Thrace in Greece. A spatial dataset consisting aggregated naturalistic driving 
behaviour metrics, as well as geometric and network characteristics on a segment 
level was analyzed. Initially, non-spatial modelling techniques, such as log-linear, 
ZINB and conventional RF regression models were employed on harsh braking events 
frequencies. However, the existence of statistically significant spatial autocorrelation 
highlighted the need for the development of spatial models, such as SEM, SLM, SZINB 
and SRF, in order to take into account such spatial dependencies. 
 
The results of the log-linear regression model, SLM, SEM, ZINB and SZINB showed 
consistent signs of the beta coefficients of the considered variables across all models. 
In specific, road segment length and the number of trips per segment were identified 
as proxy indicators of risk exposure, positively correlated with harsh braking events. 
Furthermore, the efficiency index (statistically significant only in the log-linear model, 
SEM and SLM), related to the linearity of road segments, showed a positive correlation 
with harsh braking events, indicating that drivers tend to brake harshly more often on 
road segments with fewer curves. Variables related to speeding and mobile phone use 
were also positively associated with harsh braking events, while motorways exhibited 
fewer harsh braking events compared to other road types. It was also found that the 
SLM surpassed both the log-linear model and the SEM, with lower AIC values and 
absence of spatial autocorrelation in its residuals. Lower AIC values, indicating a better 
fit, were also observed for the SZINB model compared to the non-spatial ZINB model. 
 
Moreover, the SRF reduced the absolute values of spatial autocorrelation in the 
residuals compared to the respective values of the conventional RF. In addition, the 
SRF outperformed the non-spatial RF model in terms of model fit to observed data, 
but the non-spatial model performed better in terms of generalization to unseen data. 
This is a typically expected finding, as spatial structures would be very challenging to 
transfer to completely unexamined areas in a manner that is informative and that 
would provide an edge in forecasting. Regarding variable importance ranking, the 
number of trips per examined road segment emerged as the most influential predictor 
in both models, highlighting its significance in predicting harsh braking events. A key 
takeaway is that for causal or exploratory ML analysis in a given area, spatial cross-
validation would be reasonably more fruitful than its random counterpart. This would 
apply especially in cases where few variables are present in the data, as the 
unobserved spatial effects would be more pronounced then. 
 
Overall, SSMs have immense potential for road safety monitoring, countermeasure 
assessment and improvement, and rapid expansion of road safety data coverage. In 
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academia, SSM modelling exercises have emerged in recent years. Apart from 
contributing in that field, this section demonstrated that with the necessary effort, SSM-
based spatial models can be used in scarcely-studied areas. Aided by technological 
developments such as telematics, which enable scalable and expedient data 
collection, high-quality data applications and monitoring in such areas is possible and 
can even be converted to the norm in the short term. 
 
Despite the valuable insights gained from this section, a significant limitation that 
needs to be acknowledged is the lack of available traffic data (AADT or real-time) per 
examined segment, which could have provided additional insights into the influence of 
traffic volume on harsh braking events. However, the absence of AADT was attempted 
to be tackled by using the number of trips and the segment length as substitute risk 
exposure metrics. Several microscopic and mesoscopic spatial analysis studies have 
been shown to include more disjointed parameters such as land use (Ziakopoulos & 
Yannis, 2020), however in this investigation it was considered that SSM models 
warrant more directly related variables. 
 
In summary, this section provides valuable insights into the relationship between 
independent variables and harsh braking events, highlighting the relevance of 
exposure metrics and the impact of spatial autocorrelation in the models' development. 
Authorities can organize public awareness campaigns to educate drivers about the 
dangers of speeding and distracted driving, emphasizing on the positive correlation 
between such behaviours and harsh braking events, as revealed in this doctoral 
dissertation. Furthermore, leveraging such spatial modelling techniques, authorities 
can identify high-risk areas for harsh braking events and deploy targeted enforcement 
efforts to address specific road safety issues. 
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9. Conclusions 
 

9.1 Dissertation Overview 

Recognizing road safety as a crucial public health issue with significant societal and 
economic consequences, it is essential to understand the multifaceted nature of road 
crashes. Road crashes are influenced by various parameters that can be divided into 
three distinct categories: (i) road users, (ii) vehicles, and (iii) road infrastructure and 
environment. Notably, a substantial percentage of road crashes, up to 94%, can be 
attributed to human factors and errors, either exclusively or partially. 
 
Given the aforementioned context, the main objective of this dissertation is to assess 
road crash risk by fusing infrastructure, traffic, and driving behaviour data. This 
integration of data presents a promising avenue for research. Nevertheless, the 
practical implementation of this data fusion is frequently hindered by challenges such 
as insufficient availability or suboptimal quality of the data. 
 
Within the framework of this dissertation, an extensive literature review was 
conducted. The aim of this literature review process was to provide a review of the 
scientific literature of studies exploiting SSMs in historical crash record investigations. 
SSMs encompass a wide range of metrics and parameters, which are not directly 
derived from or rely on crash data. From the review process, it was concluded that 
SSMs are steadily gaining ground in the road safety literature as they are a sustainable 
way of gauging road safety and allow the conduction of analyses without necessarily 
requiring historical road crash records. These indicators can either be an alternative 
to road safety analyses or even complement analyses that are based on historical 
crash records. Moreover, the rapid and continuous progress in the field of technology 
makes it increasingly easier to collect such metrics. SSMs such as time-to-collision, 
harsh braking, post-encroachment time and so on, are widely proposed in 
transportation science and are particularly useful in order to evaluate driving risk and 
assess road crash risk. 
 
Subsequently, the following research questions were formulated: 
 
Question 1 
How can infrastructure, traffic and driver behaviour data be fused and analyzed to 
derive meaningful conclusions for road crash risk assessment? 
 
Question 2 

a) Can harsh driving behaviour events be meaningfully considered reliable SSMs? 
b) Is there a statistically significant positive correlation between harsh driving 

behaviour events and historical road crash records? 
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Question 3 
Is it possible to predict the crash risk level of road segments by exploiting road 
geometry characteristics and driver-behaviour based SSMs, and, if so, which ML 
classifiers are the most appropriate? 
 
Question 4 
Are harsh braking events more pertinent than harsh accelerations in predicting the 
crash risk level of road segments? 
 
Question 5 

a) In the absence of highly detailed historical road crash data, how can harsh 
braking events be analyzed across various road environments? 

b) Is there spatial autocorrelation present in harsh braking frequencies for road 
segments, and, if so, do spatial modelling approaches outperform their non-
spatial counterparts? 

 
Question 6 
Which road infrastructure and driver behaviour parameters exhibit a statistically 
significant impact on the number of harsh braking events per road segment? 
 
These research questions served as the driving force behind the entire research 
endeavor, exploring the integration and analysis of infrastructure, traffic, and driver 
behaviour data for meaningful conclusions in road crash risk assessment. In order to 
answer these research questions, an elaborate methodological framework was 
devised, which is replicated on Figure 9.1. 
 
The core of the methodological framework involved a multi-step process, commencing 
with the investigation of road safety modelling data in Greece, laying the groundwork 
for subsequent directions. This investigation highlighted the constraints associated 
with conducting high-detailed crash prediction modelling in Greece. Such modelling is 
only feasible for motorways with high-quality crash data, specifically regarding crash 
location and traffic attributes per road segment. In response to this limitation, two 
distinct databases were developed.  
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Figure 9.1: Graphical representation of the overall methodological framework  

of the doctoral dissertation 
 
The first one focused on 668 motorway segments within the Olympia Odos motorway, 
containing comprehensive data on historical road crashes, traffic, road geometry 
characteristics, and naturalistic driver behaviour metrics. Specifically, crash data of all 
severity levels including PDO crashes for the years 2018-2020 were exploited. In 
parallel with the road crash data, AADT data for the same time period were included 
in the developed database. Regarding the road infrastructure characteristics, a variety 
of sources, such as information from the road operator and the use of different 
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software, including Open GIS, Google Earth and GoogleStreetView, were combined. 
The inclusion of these road infrastructure data and of reference drawings of the 
motorway also enabled the identification and isolation of naturalistic driver behaviour 
data from a smartphone application. Driver behaviour data were collected for the 
period from June 1, 2019, to December 31, 2020, from a sample of 327 drivers in 2019 
and 330 drivers in 2020. The average number of trips per motorway segment over the 
entire study period was 769 trips. 
 
The second one covered a broader road network within the Region of Eastern 
Macedonia and Thrace, including urban and interurban roads. Within this road 
network, an initial analysis was conducted on all road segments sourced from OSM to 
extract their geometric and network characteristics. Subsequently, naturalistic driving 
behaviour data that were extracted from a smartphone application were aligned with 
the corresponding OSM segments. The examined road network included 6,103 road 
segments, with an average length of 288.8 meters, resulting in a total road network 
length of 1,763 kilometers. Regarding the naturalistic driver behaviour metrics, data 
from 5,129 trips during 2021 were utilized. The mean trip duration was 634 seconds, 
with a standard deviation of 556 seconds. However, the developed database for this 
road network lacked detailed crash and traffic data for the examined road segments. 
 
Various methodologies were applied for the road segments of Olympia Odos 
motorway. These included techniques such as NB regression for developing a crash 
frequency model, HC to determine crash risk levels based on historical crash data and 
traffic attributes, and the utilization of Machine Learning classifiers such as LR, DT, 
RF, K-NN and SVM. These classifiers were used for crash risk level prediction, 
leveraging infrastructure and driver behaviour data. A critical focus was placed on 
evaluating the reliability of harsh driving behaviour events as SSMs. 
 
Subsequently, the framework extended to include the road network data of Eastern 
Macedonia and Thrace Region, employing harsh braking events for road crash risk 
assessment. This involved applying both non-spatial and spatial models to identify 
significant road infrastructure and driver behaviour parameters influencing harsh 
braking events per road segment. 
 
Ultimately, the synthesis of all the analyses carried out within the framework of this 
doctoral dissertation resulted in a comprehensive road crash risk assessment with 
numerous original and interesting results, which are discussed in the following 
concluding subsections. 
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9.2 Main Findings for Motorway 

For the motorway analyses, a unified database including data on historical injury and 
PDO crashes, traffic attributes, road geometry characteristics, and driver behaviour 
SSMs of 668 road segments of the Olympia Odos motorway was exploited. The results 
of the crash frequency model (NB regression) revealed that road crash frequency in 
the examined motorway segments is positively correlated with the traffic volume, the 
length of the segment, and the numbers of harsh accelerations and harsh brakings 
per segment trips. This finding contributes to existing road safety literature by 
establishing a positive and statistically significant relationship between crash 
frequency and events of harsh driving behaviour. Consequently, it is inferred that these 
events can serve as a valid subcategory of naturalistic SSMs. Specifically, they can 
be used either to complement CPMs or as dependent variables in proactive road 
safety analyses, particularly in cases where detailed historical crash data are lacking. 
 
As a further phase of the motorway investigations, an endeavor was made to formulate 
crash risk level clusters of the motorway segments. This was achieved by considering 
the number of road crashes by segment length and the traffic volume of each segment 
using the agglomerative hierarchical clustering technique. Considering the influence 
of segment length and traffic volume, as indicated by the results of the negative 
binomial regression model, both variables were included into the clustering analysis 
due to their statistically significant impact on motorway segment crash frequency. The 
outcomes of this clustering process delineated four distinct crash risk levels with a 
clear pattern whereby the first risk level class presents high average numbers of traffic 
volume and road crashes by segment length, while these figures decrease 
progressively for each subsequent class. 
 
Subsequently, these identified four levels were utilized as the response variable in five 
ML classification models (LR, DT, RF, SVM, and K-NN). The models included 
predictors encompassing road geometry characteristics and unsafe driving 
behaviours, such as rates of harsh brakings, harsh accelerations, and speeding 
duration per trips within the analyzed segments. Among the five classification models, 
RF demonstrated superior classification performance across all crash risk levels, 
consistently achieving scores exceeding 89% (overall accuracy: 89.9%, macro-
averaged precision: 90.7%, macro-averaged recall: 89.9%, macro-averaged F1 score: 
90.2%). This outcome reveals the potential of the developed RF model as a highly 
promising proactive road safety tool, capable of effectively identifying and prioritizing 
potentially hazardous motorway segments. 
 
Finally, to enhance the interpretability of the RF model, which inherently operates as 
a black-box ML model, SHAP values were calculated for a typical motorway segment. 
Based on the SHAP values of the naturalistic driving behaviour predictors, it was 
revealed that harsh braking events serve as a more suitable SSM than harsh 
accelerations in terms of crash risk level prediction.  
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9.3 Main Findings for Urban and Interurban Road Network 

Within the broader road network of the Eastern Macedonia and Thrace Region, a 
spatial dataset consisting aggregated naturalistic driving behaviour metrics, as well as 
geometric and network characteristics on a segment level was analyzed. For the 
examined 6,103 road segments, and based on Moran's 𝐼𝐼 index, statistically significant 
and positive spatial autocorrelation in harsh braking event frequencies was detected. 
Initially, non-spatial modelling techniques, such as log-linear, ZINB and conventional 
RF regression models were employed on harsh braking events frequencies. However, 
the existence of spatial autocorrelation highlighted the need for the development of 
spatial models, such as SEM, SLM, SZINB and SRF, in order to take into account 
such spatial dependencies.  
 
Consistent signs of the beta coefficients emerged across all models. Specifically, road 
segment length and the number of trips per segment were identified as proxy 
indicators of risk exposure, positively correlated with harsh braking events. 
Additionally, the efficiency index (statistically significant only in the log-linear model, 
SEM and SLM), related to the linearity of road segments, revealed a positive 
correlation with harsh braking events, suggesting that drivers exhibit more frequent 
harsh braking on road segments with fewer curves. Variables related to speeding and 
mobile phone use were also positively associated with harsh braking events, whereas 
motorways exhibited fewer harsh braking events compared to other road types. 
 
In both RF models, the number of trips per examined road segment was found to be 
the most influential predictor, highlighting its significant relevance in predicting the 
frequency of harsh braking events, as it serves as a naturalistic driving exposure 
metric. On the other hand, the motorway variable exhibited the lowest importance, 
indicating that road type is relatively less valuable in predicting the number of harsh 
braking events. This finding may suggest that factors other than road type such as 
driver distraction and speeding, might play a more crucial role in influencing harsh 
braking events frequencies. 
 
Regarding the performance of the developed models, SLM surpassed both the log-
linear model and the SEM, with lower AIC values and absence of spatial 
autocorrelation in its residuals. Lower AIC values, indicating a better fit, were also 
observed for the SZINB model compared to the non-spatial ZINB model. Moreover, 
the SRF reduced the absolute values of spatial autocorrelation in the residuals 
compared to the respective values of the conventional RF. In addition, the SRF 
outperformed the non-spatial RF model in terms of model fit to observed data, but the 
non-spatial model performed better in terms of generalization to unseen data. 
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9.4 Innovative Contributions 

This doctoral dissertation offers significant noteworthy contributions in the field of road 
safety, as illustrated in Figure 9.2. These contributions are discussed in detail in the 
following subsections. 
 

 
Figure 9.2: Innovative contributions of the dissertation 

 

9.4.1 Holistic Data Collection Approach 

In the context of this doctoral dissertation, a holistic comprehensive data collection 
was conducted to investigate the impact of driver behaviour, road infrastructure 
characteristics and traffic attributes on road crash risk assessment. Technological 
advancements have significantly facilitated the collection of data from various sources, 
opening up new research opportunities that were previously unexplored. 
 
Specifically, this dissertation exploited high-resolution naturalistic driving big datasets 
collected from smartphone sensors to assess road crash risk on motorways and a 
broader road network, encompassing urban and interurban roads. For road 
infrastructure data on the examined motorway, a variety of sources were exploited, 
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including data provided by the road operator and software such as Open GIS, Google 
Earth and GoogleStreetView. Geometric and network characteristics for the broader 
road network of the Eastern Macedonia and Thrace Region were derived using 
algorithms in the R programming language. Appropriate libraries were utilized to 
extract data from OSM and process them as simple spatial features. Concerning road 
crash and traffic data on the examined motorway, high-quality data from the road 
operator were employed. This included road crash data of all injury severities, 
including PDO crashes, with high accuracy in crash location, covering the period from 
2018 to 2020. Additionally, AADT data derived from the motorway toll stations for the 
corresponding period were utilized. 
 

9.4.2 Multi-Dimensional Data Fusion for Segment-Level Analyses 

The collection of data from various sources and at different levels necessitates 
appropriate processing for data integration. The first database comprised 668 
motorway segments ranging from 200 to 600 meters in length and was infrastructure-
based. It included data on historical road crashes, traffic volumes and geometric 
characteristics. Subsequently, driver behaviour metrics derived from smartphone 
sensors had to be assigned to the examined road segments. This involved allocating 
driving behaviour metrics from naturalistic data, which are driver-based, to the 
examined motorway segments, which are infrastructure-based data. This allocation 
was achieved via isolating each trip portion to the corresponding segment within the 
internal recording of trips conducted in GIS by the smartphone data providers using 
ESRI polygons at 200m intervals. 
 
For the broader urban and interurban network of the Eastern Macedonia and Thrace 
Region, which exclusively comprised infrastructure and driver behavior data, a series 
of processing algorithms were applied. Initially, a database was created for the 
considered road network, encompassing 6,103 road segments. This database 
contained key geometric characteristics such as length, curvature, road type, etc., for 
each segment. The data extraction from OSM and database creation involved 
exploiting R libraries specifically designed for these tasks. Next, the naturalistic driver 
behavior data, extracted from smartphone sensors and covering indicators like harsh 
braking events, speeding, distraction due to mobile phone use, etc., for every second 
of trips made in 2021 in the study area, had to be assigned to the corresponding road 
segments. This assignment was achieved through a spatial map-matching procedure. 
Initially, the centroid of each road segment line-string was identified using the 
“st_centroid” function from the “sf” R library. It is noted that centroids are point-type 
quantities and represent the geometric center of each road segment. Subsequently, 
the aggregated driving behaviour metrics were assigned to the nearest road segment 
centroid based on the latitude and longitude coordinates for each trip-second. This 
process was executed using the "st_join" function and the "st_nearest_feature" 
geometry predicate function from the "sf" R library. 
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Overall, the algorithms utilized in this doctoral dissertation, especially for the broader 
urban and interurban road network, facilitate the seamless transferability of the 
methodological and data processing framework employed in this dissertation. With 
minimal modifications, spatial data frames can be generated for various regions, 
allowing for analyses using the same or different variables, study periods, and 
statistical methodologies. 
 

9.4.3 Advanced and Innovative Combination of Modelling Techniques 

The wealth of high-resolution multiparametric data and the robustness of data 
processing and fusion enabled the development of advanced and innovate modelling 
techniques.  
 
Initially, a crash frequency model (NB regression) was developed. This model 
facilitated the investigation of the influence of various geometric characteristics, traffic 
attributes, and driver behaviour metrics on road crashes. Subsequently, agglomerative 
hierarchical clustering was employed to categorize crash risk levels for the analyzed 
road segments, which were then incorporated as the response variable in several ML 
classifiers. In addition to utilizing ML techniques, the analyses included the 
computation of SHAP values, a recent and potent addition in the field of explainable 
and interpretable ML. These values provided insights into the influential factors 
contributing to crash risk. This comprehensive approach enhances the sophistication 
of the modelling techniques and reinforces the interpretability of their results. 
 
With regard to the broader road network of the Eastern Macedonia and Thrace Region, 
the analyses incorporated harsh braking events as the dependent variables for the 
developed models. Notably, the modelling techniques employed in this doctoral 
dissertation are, to the best of the author's knowledge, being applied for the first time 
to harsh braking events. Among these innovative modelling approaches are the SEM, 
SLM, SZINB, and SRF. It is worth emphasizing that the application of the SRF is 
particularly noteworthy, representing a novel modelling technique applicable not only 
to harsh braking events but also to various aspects of road safety analyses. 
 

9.4.4 Multi-factor Estimation of Crash Risk on Motorways 

Utilizing the high-quality and detailed database developed for the road segments of 
the motorway, aiming to address the research questions posed in this doctoral 
dissertation, valuable and innovative conclusions were drawn. Specifically, statistical 
correlations from the road crash frequency model revealed a positive and statistically 
significant relationship between historical road crash data and the number of harsh 
driving behaviours. This applies to both the number of harsh accelerations and the 
number of harsh brakings per passed trips within the examined motorway segments. 
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This indicates that these indicators of harsh driving behaviour can be utilized as SSMs, 
either complementing traditional crash frequency models or serving as dependent 
variables in road crash risk assessment models in areas where either road crash data 
are unavailable or the available crash data are of low quality. 
 
Additionally, this thesis highlighted an innovative insight, emphasizing that the 
contribution of harsh brakings, compared to harsh accelerations, is higher in predicting 
the crash risk level for road segments. This makes harsh brakings a more suitable 
SSM indicator for proactive road safety analyses, enhancing the understanding of road 
crash risk and providing practical implications for targeted interventions. 
 

9.4.5 Surrogate Estimation of Crash Risk on Urban and Interurban  
Road Network 

The assessment of this dissertation's contributions would be inadequate without 
recognizing the broader implications of the developed models on the road network of 
the Eastern Macedonia and Thrace Region. In these models, the dependent variables 
were represented by the number of harsh braking events, serving as SSMs. The 
detection of statistically significant and positively correlated spatial autocorrelation in 
harsh braking event frequencies compelled the development of spatial modelling 
approaches. Pivotal to frequency analyses is the measurement of exposure, with this 
dissertation employing two primary exposure variables for the respective models: road 
segment length and the number of trips per segment. This research identifies the 
statistically significant influence of these exposure variables on the number of harsh 
braking events, quantifying their respective impacts. Additionally, it incorporates 
various indicators related to road environment and driver behaviour, contributing to a 
comprehensive assessment of road crash risk. 
 
The creation of comprehensive road safety maps and heatmaps illustrating harsh 
braking events stands as a valuable tool for road management authorities, 
stakeholders and road users. These visualizations present complex data and model 
predictions in an easily comprehensible manner, facilitating communication and 
integration into diverse decision-making processes. Through these maps, the 
multifaceted efforts of this dissertation in road crash risk assessment are effectively 
communicated to both the scientific community and the public domain. Overall, SSMs, 
such as harsh braking events, offer significant potential for monitoring road safety, 
evaluating and enhancing countermeasures, and expanding road safety data 
coverage rapidly. In academia, SSM modelling exercises have emerged in recent 
years. Apart from contributing in that field, this doctoral dissertation demonstrated that 
with the necessary effort, SSM-based spatial models can be used in scarcely-studied 
areas. 
  



Dimitrios Nikolaou | Machine learning-based road crash risk assessment 
fusing infrastructure, traffic and driver behaviour data 

 

[193] 
 

9.5 Further Challenges 

This doctoral dissertation addressed various composite issues related to the data 
collection, processing and integration, and advanced modelling for the examined road 
segments. Consequently, it is inevitable that limitations emerged during the entire 
research process, and open challenges remain, which need to be acknowledged. 
 
With regard to the multisource-based extraction of road geometry data for Olympia 
Odos motorway, the results are obviously not an exact replication of the actual road 
design of the motorway and minor differences could be expected if a comparison with 
the as-built drawings of the project was made. The same is probably true for the 
geometric characteristics of the road segments of the Eastern Macedonia and Thrace 
Region extracted via OSM. Nevertheless, any differences would be minor and, 
although important from a designer’s point of view they are not expected to be able to 
differentiate the results of this dissertation. 
 
Another limitation related to the motorway segments is that the analyses did not 
include tunnels and toll station segments, resulting in discontinuities in the research 
area. Moreover, the motorway segments analyses did not take into account 
unobserved heterogeneity and the effects of spatial characteristics of various road 
safety indicators. However, this limitation provided directions for the research efforts 
in the broader road network of Eastern Macedonia and Thrace Region, where spatial 
modelling approaches were followed.  
 
Despite the valuable insights gained from these spatial analyses, a significant 
limitation that needs to be acknowledged is the lack of available traffic data (AADT or 
flow conditions) per examined segment, which could have provided additional insights 
into the influence of traffic on harsh braking events. The absence of AADT was 
attempted to be tackled by using the number of trips and the segment length as 
substitute risk exposure metrics. Moreover, harsh driving events essentially represent 
behavioural variables. Consequently, despite the sample size of drivers and trips 
analyzed in this dissertation being substantial and meeting the standards of the 
literature, there still remains a possibility that the observed driving behaviour diverged 
from the norm, leading to a frequency of harsh braking events either exceeding or 
falling below the anticipated levels. 
 
Upon concluding this dissertation, the author believes that the current research 
findings lead to several research issues that demand further scientific investigation. 
Indicatively, a promising avenue for research involves exploring temporal patterns, 
which would capture seasonal cyclical trends in both road crash and harsh braking 
hotspots.  
 
It is also evident that this dissertation did not comprehensively cover all aspects of the 
road environment. While the existing analysis delves into certain factors, the inclusion 
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of additional independent variables, such as slopes, pavement conditions, the 
presence of roadworks, land use, weather conditions and more, can significantly 
enrich the depth of understanding and offer unexplored insights.  
 
While this doctoral dissertation has employed a comprehensive set of statistical and 
ML models, the ever-expanding nature of data science and transportation research 
opens avenues for further exploration. Future investigations may benefit from the 
exploration of additional models that could contribute further insights. For instance, 
advanced deep learning architectures such as neural networks or recurrent neural 
networks could be explored for crash frequency modelling. Ensemble methods like 
gradient boosting machines and XGBoost might offer enhanced predictive 
performance for crash risk level classification tasks. Additionally, the integration of 
spatiotemporal models, considering both spatial and temporal dimensions 
simultaneously, could provide a better understanding of the factors influencing harsh 
braking events. 
 
Finally, the scope of harsh braking analyses can be expanded by extending its 
application to include additional geographical regions, potentially encompassing other 
countries. This extension has the potential to transform the research into a digital twin, 
offering a comprehensive road crash risk assessment. This transformation is further 
facilitated by technological developments, such as telematics, which enable scalable 
and expedient data collection. Consequently, high-quality data applications and 
monitoring in scarcely-studied areas become possible and can even be converted to 
the norm in the short term. 
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