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Abstract

The objective of this doctoral dissertation is to assess road crash risk by fusing
infrastructure, traffic, and driving behaviour data. For this reason, two distinct
databases were developed. The first one concerned motorway segments and included
road crash, traffic, road geometry and driver behaviour data, while the second
database concerned urban and interurban road segments of a broader area for which
crash and traffic data were unavailable.

The results of the negative binomial regression model for the motorway segments
showed a positive and statistically significant relationship between road crash
frequency and events of harsh driving behaviour. Subsequently, taking into account
the number of road crashes per segment length and traffic volume, four crash risk
levels of the motorway segments were formulated using hierarchical clustering. These
four crash risk levels were used as the response variable in five machine learning
classifiers that included predictors related to road geometry and risky driving
behaviours. Among the five classification models, Random Forest demonstrated
superior classification performance across all crash risk levels. Based on the SHAP
values, it was revealed that harsh braking events serve as a more suitable Surrogate
Safety Measure than harsh accelerations in terms of crash risk level prediction.

For this reason, harsh brakings were used as the dependent variable in the analyses
for urban and interurban segments of the broader road network. In addition to
developing non-spatial models, the identification of spatial autocorrelation led to the
development of spatial modelling techniques to account for spatial dependencies. It
was found that the number of trips per segment, segment length and linearity,
speeding and mobile phone use are positively correlated with harsh brakings.
Conversely, motorways exhibited fewer harsh braking events compared to other road
types. Furthermore, the number of trips per examined road segment was found to be
the most influential predictor, highlighting its importance as a proxy measure of risk
exposure. In terms of model performance, the Spatial Lag Model outperformed both
the log-linear model and the Spatial Error Model. Better fit was also observed for the
spatial Zero-Inflated Negative Binomial model, compared to the corresponding non-
spatial model. Finally, the Spatial Random Forest model reduced the absolute values
of spatial autocorrelation in the residuals and showed a better fit to the observed data
compared to the conventional Random Forest model.
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MepiAnyn

O o16X0¢ TNG TTapoucag dIBAKTOPIKAG dIaTpIPnS cival n afloAdynon Tou Kivouvou
0dIKOU  artuxnuatog ouvouddovtag Oedopéva  UTTOOOMNG,  KUKAoOQOpPIag  Kal
OUNTTEPIPOPAG 0dnyouU. Na Tov oKOTTO auTd, avaTrTuxbnkav duo Baoelg dedouévwy. H
TPWTN OaPOPOUCE TUAUOTA AUTOKIVNTOOPOUOU Kal TTEPIAGUPBaveE OedOPEVA ODIKWV
ATUXNMATWYV, KUKAOQPOPIOG, YEWMPETPIOG KAl CUUTTEPIPOPAS TWV 0ONYWV, EVW N dEUTEPN
aQOopPOUCE TUANOTA ACTIKWY KAl UTTEPACTIKWY 0dWV HIAG eUpUTEPNG TTEPIOXNG, VIO TA
otroia dgv uTTAPXAV dIaBEoIua dedoPEva ATUXNUATWY KAl KUKAOQOPIAG.

Ta ammoteAéopata Tou HOVTEAOU apvnTIKAG SIWVUUIKAG TTAAIVOPOUNONG YIa TA TUAUATA
TOU QUTOKIVNTOOPOMOU £DeIEav BETIKN Kal OTATIOTIKA ONUAVTIKA CUOXETION PETAEU TNG
ouxvOTNTAG OBIKWY ATUXNMATWY KAl TwV CUPBAVTWY OTTOTOMNG CUMTTEPIPOPAS TOU
odnyou. AkoAoUBwg, AauBavovTtag uttdyn Tov apliBud Tov aTuXNUATWY ava PAKog
TMAMATOG KAl TOV  KUKAOQOPIOKO  @OpPTO, Odlapoppwbnkav Téooepa  ETTITTEDA
EMMKIVOUVOTNTAG TWV TUNUATWY TOU AUTOKIVATOOPOUOU HE XPHON TNG IEPAPXIKNAG
opadotroinong. Ta Téoogpa eTmTTEdA  ETTIKIVOUVOTNTAG  XENOILOTTOINBNKAV WG
METABANTA aTTOKPIONG O€ TTEVTE TALIVOUNTEG PUNXAVIKNAG MABnong TTou TTepIAGuBavav
TTPOYVWOTIKOUG TTOPAYOVTEG OXETIKA ME TN YEWWMETPIA TNG 0doU Kal ETTIKIVOUVEG
OUMTTEPIPOPEG 00ryNong. MeTagu Twv TTEVTE TAgIVOUNTWY TTOU avatrTuxenkav, To
MovTéEAO Tuxaiwv Aacwv eTTEdEICE avWTEPES €MIOOOEIS TALIVOUNONG O€ OAEG TIG
katnyopieg emkivouvotntag. Me Bdon 1ic Tipég SHAP, mmpoékuwe OTI 01 aTTOTONES
EMPBPaduvaoelg XPNOINEUOUV wG KATAAANASTEPOG Eppecog Asiktng Ao@aAgiag atro TIg
QTTOTOMEG ETTITAXUVOEIG yIa TNV TTPOPRAEWN TNG ETTIKIVOUVOTNTAG.

MNa Tov AGyo auTod, ol atrdTouES ETTIRPAdUVOEIG ATTOTEAECQV TNV EQPTAMEVN METABANTN
TWV avaAUCEWV YIa TO AOTIKA KAl UTTEPACTIKA TUANATA TOU EUpUTEPOU OBIKOU DIKTUOU.
Mépav TNG avATITUENG KN XWPIKWY POVTEAWYV, O EVTOTTIONOG XWPIKAG AUTOOUOXETIONG
00yNnoe oTnV avAaTTuén XWPIKWYV TEXVIKWY MOVTEAOTTOINONG, WOTE Va An@Bouv uttéywn
0l XWPIKES e€apTAoElC. MNpoékuwe OTI 0 apIBUOS Twv dIadPONWY ava TUAUA, TO UAKOG
Kl N YPAUMIKOTNTA TOU TUAMATOG, N UTTEPRACN TWV Opiwv TaxUTNTAG KAl N aTTO0TTO0N
TIPOOOXAG OUOXETICOVTal OETIKA MPE TIG ATTOTOMEG E€MMIPRPAdUVOEIC. AVTIBETWG, Ol
QUTOKIVNTOOpOWOI TTapouaiacav AlyOTEPEG ATTOTOUEG ETTIBPADUVOEIG OUYKPITIKA HE
GAAoug TUTTOUG 000U. ETTITTAEOV, TTPOEKUWE OTI O APIBPOS TwV dIOdPOPWY avd TUAKO
€ival 0 1Mo oNUAvTIKOG TTapdayovTag TTPORAEYNG, avadeikvUuovTag TNV ONPOCia Tou WG
UTTOKOTAOTATO PETPO €KBEONG OTOV Kivouvo. Ooov agopd Tnv £1Tidoon Twv HOVTEAWY,
10 Xwpikd Movtédo YoTépnong Eemépace TOO0 TO AOyapIBUOYPAUMIKO HOVTEAO OGO
Kai 70 Xwpikd Movtého 816pBwong Tou Z@AAuaTog. KaAltepn TTpocapuoyn
TopaATNERONKE Kal yia TO XwpPIKO HOVvIEAO Mndevikd Aloykwpueévng ApvnTIKAG
Alwvupikig MaAivopounong, CUYKPITIKA UE TO AVTIOTOIXO PN XWPEIKO YovTéAo. TEAOG,
TO XWwPIKO povTéAo Tuxaiwv Aacwv  HeEiwWoE TIG ATTONUTEG TIMEG TNG XWPIKNAG
QUTOOUOXETIONG OTA  KATAAOITTIO KAl TTAPOUCiooE KOAUTEPN TIPOCOAPMOYH OTaA
TTapaTNPEOUUEVA OEDOUEVA CUYKPITIKA PE TO CUMPBATIKO HovTEAO Tuxaiwv Aacwv.
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Extended Abstract

Recognizing road safety as a crucial public health issue with significant societal and
economic consequences, it is essential to understand the multifaceted nature of
road crashes. Road crashes are influenced by various parameters that can be divided
into three distinct categories: (i) road users, (ii) vehicles, and (iii) road infrastructure
and environment. Notably, a substantial percentage of road crashes, up to 94%, can
be attributed to human factors and errors, either exclusively or partially.

Given the aforementioned context, the main objective of this dissertation is to assess
road crash risk by fusing infrastructure, traffic, and driving behaviour data. This
integration of data presents a promising avenue for research. Nevertheless, the
practical implementation of this data fusion is frequently hindered by challenges such
as insufficient availability or suboptimal quality of the data.

Within the framework of this dissertation, an extensive literature review was
conducted. The aim of this literature review process was to provide a review of the
scientific literature of studies exploiting Surrogate Safety Measures (SSMs) in
historical crash record investigations. SSMs encompass a wide range of metrics and
parameters, which are not directly derived from or rely on crash data. From the review
process, it was concluded that SSMs are steadily gaining ground in the road safety
literature as they are a sustainable way of gauging road safety and allow the
conduction of analyses without necessarily requiring historical road crash records.
These indicators can either be an alternative to road safety analyses or even
complement analyses that are based on historical crash records. Moreover, the rapid
and continuous progress in the field of technology makes it increasingly easier to
collect such metrics. SSMs such as time-to-collision, harsh braking, post-
encroachment time and so on, are widely proposed in transportation science and are
particularly useful in order to evaluate driving risk and assess road crash risk.

Subsequently, the following research questions were formulated:

Question 1
How can infrastructure, traffic and driver behaviour data be fused and analyzed to
derive meaningful conclusions for road crash risk assessment?

Question 2
a) Can harsh driving behaviour events be meaningfully considered reliable SSMs?
b) Is there a statistically significant positive correlation between harsh driving
behaviour events and historical road crash records?
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Question 3

Is it possible to predict the crash risk level of road segments by exploiting road
geometry characteristics and driver-behaviour based SSMs, and, if so, which Machine
Learning (ML) classifiers are the most appropriate?

Question 4
Are harsh braking events more pertinent than harsh accelerations in predicting the
crash risk level of road segments?

Question 5
a) In the absence of highly detailed historical road crash data, how can harsh
braking events be analyzed across various road environments?
b) Is there spatial autocorrelation present in harsh braking frequencies for road
segments, and, if so, do spatial modelling approaches outperform their non-
spatial counterparts?

Question 6
Which road infrastructure and driver behaviour parameters exhibit a statistically
significant impact on the number of harsh braking events per road segment?

These research questions served as the driving force behind the entire research
endeavor, exploring the integration and analysis of infrastructure, traffic, and driver
behaviour data for meaningful conclusions in road crash risk assessment. In order to
answer these research questions, an elaborate methodological framework was
devised, which is shown in Figure |.

The core of the methodological framework involved a multi-step process, commencing
with the investigation of road safety modelling data in Greece, laying the
groundwork for subsequent directions. This investigation highlighted the constraints
associated with conducting high-detailed crash prediction modelling in Greece. Such
modelling is only feasible for motorways with high-quality crash data, specifically
regarding crash location and traffic attributes per road segment. In response to this
limitation, two distinct databases were developed.
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Figure I: Graphical representation of the overall methodological framework
of the doctoral dissertation

The first one focused on 668 motorway segments within the Olympia Odos
motorway, containing comprehensive data on historical road crashes, traffic, road
geometry characteristics, and naturalistic driver behaviour metrics. Specifically, crash
data of all severity levels including property-damage-only (PDO) crashes for the years
2018-2020 were exploited. In parallel with the road crash data, Average Annual Daily
Traffic (AADT) data for the same time period were included in the developed database.

[23]



Dimitrios Nikolaou | Machine learning-based road crash risk assessment
fusing infrastructure, traffic and driver behaviour data

Regarding the road infrastructure characteristics, a variety of sources, such as
information from the road operator and the use of different software, including Open
GIS, Google Earth and GoogleStreetView, were combined. The inclusion of these road
infrastructure data and of reference drawings of the motorway also enabled the
identification and isolation of naturalistic driver behaviour data from a smartphone
application. Driver behaviour data were collected for the period from June 1, 2019, to
December 31, 2020, from a sample of 327 drivers in 2019 and 330 drivers in 2020.
The average number of trips per motorway segment over the entire study period was
769 trips.

The second one covered a broader road network within the Region of Eastern
Macedonia and Thrace, including urban and interurban roads. Within this road
network, an initial analysis was conducted on all road segments sourced from
OpenStreetMap (OSM) to extract their geometric and network characteristics.
Subsequently, naturalistic driving behaviour data that were extracted from a
smartphone application were aligned with the corresponding OSM segments. The
examined road network included 6,103 road segments, with an average length of
288.8 meters, resulting in a total road network length of 1,763 kilometers. Regarding
the naturalistic driver behaviour metrics, data from 5,129 trips during 2021 were
utilized. The mean trip duration was 634 seconds, with a standard deviation of 556
seconds. However, the developed database for this road network lacked detailed
crash and traffic data for the examined road segments.

Various methodological tools were applied for the road segments of Olympia Odos
motorway. These included techniques such as Negative Binomial (NB) regression for
developing a crash frequency model, Hierarchical Clustering (HC) to determine crash
risk levels based on historical crash data and traffic attributes, and the utilization of ML
classifiers such as Logistic Regression (LR), Decision Tree (DT), Random Forest (RF),
K-Nearest Neighbours (K-NN) and Support Vector Machine (SVM). These classifiers
were used for crash risk level prediction, leveraging infrastructure and driver behaviour
data. A critical focus was placed on evaluating the reliability of harsh driving behaviour
events as SSMs.

Subsequently, the framework extended to include the road network data of Eastern
Macedonia and Thrace Region, employing harsh braking events for road crash risk
assessment. This involved applying both non-spatial and spatial models to identify
significant road infrastructure and driver behaviour parameters influencing harsh
braking events per road segment.

Ultimately, the synthesis of all the analyses carried out within the framework of this

doctoral dissertation resulted in a comprehensive road crash risk assessment with
numerous original and interesting results, which are discussed in more detail below.
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For the motorway analyses, a unified database including data on historical injury and
PDO crashes, traffic attributes, road geometry characteristics, and driver behaviour
SSMs of 668 road segments of the Olympia Odos motorway was exploited. The results
of the crash frequency model (NB regression) revealed that road crash frequency in
the examined motorway segments is positively correlated with the traffic volume, the
length of the segment, the number of harsh accelerations and the number of harsh
brakings per segment trips. This finding contributes to existing road safety literature
by establishing a positive and statistically significant relationship between road
crash frequency and events of harsh driving behaviour. Consequently, it is
inferred that these events can serve as a valid subcategory of naturalistic SSMs.
Specifically, they can be used either to complement Crash Prediction Models (CPMs)
or as dependent variables in diverse proactive road safety analyses, particularly in
cases where detailed historical road crash data are lacking.

As a further phase of the motorway investigations, an endeavor was made to formulate
crash risk level clusters of the motorway segments. This was achieved by
considering the number of road crashes by segment length and the traffic volume of
each segment using the agglomerative hierarchical clustering technique. Considering
the influence of segment length and traffic volume, as indicated by the results of the
negative binomial regression model, both variables were included into the clustering
analysis due to their statistically significant impact on motorway segment crash
frequency. The outcomes of this clustering process delineated four distinct crash risk
levels with a clear pattern whereby the first risk level class presents high average
numbers of traffic volume and road crashes by segment length, while these figures
decrease progressively for each subsequent class.

Subsequently, these identified four levels were utilized as the response variable in five
ML classification models (LR, DT, RF, SVM, and K-NN). The models included
predictors encompassing road geometry characteristics and unsafe driving
behaviours, such as rates of harsh brakings, harsh accelerations, and speeding
duration per trips within the analyzed segments. Among the five classification models,
RF demonstrated superior classification performance across all crash risk levels,
consistently achieving scores exceeding 89% (overall accuracy: 89.9%, macro-
averaged precision: 90.7%, macro-averaged recall: 89.9%, macro-averaged F1 score:
90.2%). This outcome reveals the potential of the developed RF model as a highly
promising proactive road safety tool, capable of effectively identifying and prioritizing
potentially hazardous motorway segments.

Finally, to enhance the interpretability of the RF model, which inherently operates as
a black-box ML model, SHapley Additive exPlanations (SHAP) values were calculated
for a typical motorway segment. Based on the SHAP values of the naturalistic driving
behaviour predictors, it was revealed that harsh braking events serve as a more
suitable SSM than harsh accelerations in terms of crash risk level prediction.
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Within the broader road network of the Eastern Macedonia and Thrace Region, a
spatial dataset consisting aggregated naturalistic driving behaviour metrics, as well as
geometric and network characteristics on a segment level was analyzed. For the
examined 6,103 road segments, and based on Moran's I index, statistically significant
and positive spatial autocorrelation in harsh braking event frequencies was
detected. Initially, non-spatial modelling techniques, such as log-linear, Zero-Inflated
Negative Binomial (ZINB) and conventional RF regression models were employed on
harsh braking events frequencies. However, the existence of spatial autocorrelation
highlighted the need for the development of spatial models, such as Spatial Error
Model (SEM), Spatial Lag Model (SLM), Spatial Zero-Inflated Negative Binomial
(SZINB) and Spatial Random Forest (SRF), in order to take into account such spatial
dependencies.

Consistent signs of the beta coefficients emerged across all models. Specifically,
road segment length and the number of trips per segment were identified as proxy
indicators of risk exposure, positively correlated with harsh braking events.
Additionally, the efficiency index (statistically significant only in the log-linear model,
SEM and SLM), related to the linearity of road segments, revealed a positive
correlation with harsh braking events, suggesting that drivers exhibit more frequent
harsh braking on road segments with fewer curves. Variables related to speeding and
mobile phone use were also positively associated with harsh braking events, whereas
motorways exhibited fewer harsh braking events compared to other road types.

In both RF models, the number of trips per examined road segment was found to
be the most influential predictor, highlighting its significant relevance in predicting
the frequency of harsh braking events, as it serves as a naturalistic driving exposure
metric. On the other hand, the motorway variable exhibited the lowest importance,
indicating that road type is relatively less valuable in predicting the number of harsh
braking events. This finding may suggest that factors other than road type such as
driver distraction and speeding, might play a more crucial role in influencing harsh
braking events frequencies.

Regarding the performance of the developed models, SLM surpassed both the log-
linear model and the SEM, with lower AIC values and absence of spatial
autocorrelation in its residuals. Lower AIC values, indicating a better fit, were also
observed for the SZINB model compared to the non-spatial ZINB model. Moreover,
the SRF reduced the absolute values of spatial autocorrelation in the residuals
compared to the respective values of the conventional RF. In addition, the SRF
outperformed the non-spatial RF model in terms of model fit to observed data, but the
non-spatial model performed better in terms of generalization to unseen data.

The results of the developed models for the examined road network of the Eastern
Macedonia and Thrace Region are also visualized in maps. Indicatively, the results
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of the SZINB model are presented in Figure Il, whereas Figure Il provides a zoomed-
in view of Figure Il, focusing specifically on the center of the regional capital city of
Xanthi.
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Figure IlI: Visualization of the SZINB results on the examined road network
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Figure lll: Zoomed-in view of the SZINB results for the center of Xanthi

This doctoral dissertation offers significant noteworthy contributions in the field of
road safety, as discussed below.

Holistic Data Collection Approach

In the context of this doctoral dissertation, a holistic and comprehensive data
collection was conducted to investigate the impact of driver behaviour, road
infrastructure characteristics and traffic attributes on road crash risk assessment.
Technological advancements have significantly facilitated the collection of data from
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various sources, opening up new research opportunities that were previously
unexplored.

Specifically, this dissertation exploited high-resolution naturalistic driving big
datasets collected from smartphone sensors to assess road crash risk on motorways
and a broader road network, encompassing urban and interurban roads. For road
infrastructure data on the examined motorway, a variety of sources were exploited,
including data provided by the road operator and software such as Open GIS, Google
Earth and GoogleStreetView. Geometric and network characteristics for the broader
road network of the Eastern Macedonia and Thrace Region were derived using
algorithms in the R programming language. Appropriate libraries were utilized to
extract data from OSM and process them as simple spatial features. Concerning road
crash and traffic data on the examined motorway, high-quality data from the road
operator were employed. This included road crash data of all injury severities,
including PDO crashes, with high accuracy in crash location, covering the period from
2018 to 2020. Additionally, AADT data derived from the motorway toll stations for the
corresponding period were utilized.

Multi-Dimensional Data Fusion for Segment-Level Analyses

The collection of data from various sources and at different levels necessitates
appropriate processing for data integration. The first database comprised 668
motorway segments ranging from 200 to 600 meters in length and was infrastructure-
based. It included data on historical road crashes, traffic volumes and geometric
characteristics. Subsequently, driver behaviour metrics derived from smartphone
sensors had to be assigned to the examined road segments. This involved allocating
driving behaviour metrics from naturalistic data, which are driver-based, to the
examined motorway segments, which are infrastructure-based data. This allocation
was achieved via isolating each trip portion to the corresponding segment within the
internal recording of trips conducted in GIS by the smartphone data providers using
ESRI polygons at 200m intervals.

For the broader urban and interurban network of the Eastern Macedonia and Thrace
Region, which exclusively comprised infrastructure and driver behavior data, a series
of processing algorithms were applied. Initially, a database was created for the
considered road network, encompassing 6,103 road segments. This database
contained key geometric characteristics such as length, curvature, road type, etc., for
each segment. The data extraction from OSM and database creation involved
exploiting R libraries specifically designed for these tasks. Next, the naturalistic driver
behavior data, extracted from smartphone sensors and covering indicators like harsh
braking events, speeding, distraction due to mobile phone use, etc., for every second
of trips made in 2021 in the study area, had to be assigned to the corresponding road
segments. This assignment was achieved through a spatial map-matching procedure.
Initially, the centroid of each road segment line-string was identified using the
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“st_centroid” function from the “sf’ R library. It is noted that centroids are point-type
quantities and represent the geometric center of each road segment. Subsequently,
the aggregated driving behaviour metrics were assigned to the nearest road segment
centroid based on the latitude and longitude coordinates for each trip-second. This
process was executed using the "st join" function and the "st_nearest_feature"
geometry predicate function from the "sf" R library.

Overall, the algorithms utilized in this doctoral dissertation, especially for the broader
urban and interurban road network, facilitate the seamless transferability of the
methodological and data processing framework employed in this dissertation. With
minimal modifications, spatial data frames can be generated for various regions,
allowing for analyses using the same or different variables, study periods, and
statistical methodologies.

Advanced and Innovative Combination of Modelling Techniques

The wealth of high-resolution multiparametric data and the robustness of data
processing and fusion enabled the development of advanced and innovate
modelling techniques.

Initially, a crash frequency model (NB regression) was developed. This model
facilitated the investigation of the influence of various geometric characteristics, traffic
attributes, and driver behaviour metrics on road crashes. Subsequently, agglomerative
hierarchical clustering was employed to categorize crash risk levels for the analyzed
road segments, which were then incorporated as the response variable in several ML
classifiers. In addition to utilizing ML techniques, the analyses included the
computation of SHAP values, a recent and potent addition in the field of explainable
and interpretable ML. These values provided insights into the influential factors
contributing to crash risk. This comprehensive approach enhances the sophistication
of the modelling techniques and reinforces the interpretability of their results.

With regard to the broader road network of the Eastern Macedonia and Thrace Region,
the analyses incorporated harsh braking events as the dependent variables for the
developed models. Notably, the modelling techniques employed in this doctoral
dissertation are, to the best of the author's knowledge, being applied for the first time
to harsh braking events. Among these innovative modelling approaches are the
SEM, SLM, SZINB, and SRF. It is worth emphasizing that the application of the SRF
is particularly noteworthy, representing a novel modelling technique applicable not
only to harsh braking events but also to various aspects of road safety analyses.

Multi-factor Estimation of Crash Risk on Motorways

Utilizing the high-quality and detailed database developed for the road segments of
the motorway, aiming to address the research questions posed in this doctoral
dissertation, valuable and innovative conclusions were drawn. Specifically, statistical
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correlations from the road crash frequency model revealed a positive and statistically
significant relationship between historical road crash data and the number of harsh
driving behaviours. This applies to both the number of harsh accelerations and the
number of harsh brakings per passed trips within the examined motorway segments.
This indicates that these indicators of harsh driving behaviour can be utilized as
SSMs, either complementing traditional crash frequency models or serving as
dependent variables in road crash risk assessment models in areas where either road
crash data are unavailable or the available crash data are of low quality.

Additionally, this thesis highlighted an innovative insight, emphasizing that the
contribution of harsh brakings, compared to harsh accelerations, is higher in predicting
the crash risk level for road segments. This makes harsh brakings a more suitable
SSM indicator for proactive road safety analyses, enhancing the understanding of
road crash risk and providing practical implications for targeted interventions.

Surrogate Estimation of Crash Risk on Urban and Interurban Road Network

The assessment of this dissertation's contributions would be inadequate without
recognizing the broader implications of the developed models on the road network of
the Eastern Macedonia and Thrace Region. In these models, the dependent variables
were represented by the number of harsh braking events, serving as SSMs. The
detection of statistically significant and positively correlated spatial autocorrelation
in harsh braking event frequencies compelled the development of spatial modelling
approaches. Pivotal to frequency analyses is the measurement of exposure, with
this dissertation employing two primary exposure variables for the respective models:
road segment length and the number of trips per segment. This research identifies the
statistically significant influence of these exposure variables on the number of harsh
braking events, quantifying their respective impacts. Additionally, it incorporates
various indicators related to road environment and driver behaviour, contributing to a
comprehensive assessment of road crash risk.

The creation of comprehensive road safety maps and heatmaps illustrating harsh
braking events stands as a valuable tool for road management authorities,
stakeholders and road users. These visualizations present complex data and model
predictions in an easily comprehensible manner, facilitating communication and
integration into diverse decision-making processes. Through these maps, the
multifaceted efforts of this dissertation in road crash risk assessment are effectively
communicated to both the scientific community and the public domain. Overall, SSMs,
such as harsh braking events, offer significant potential for monitoring road safety,
evaluating and enhancing countermeasures, and expanding road safety data
coverage rapidly. In academia, SSM modelling exercises have emerged in recent
years. Apart from contributing in that field, this doctoral dissertation demonstrated that
with the necessary effort, SSM-based spatial models can be used in scarcely-
studied areas.
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ExteTapévn MepiAnyn

Avayvwpifovtag Tnv 08Ik ac@dAeia wg Kpiolyo CATNUa dNUOoIag uyeiag Me
ONMAVTIKEG KOIVWVIKEG KOl OIKOVOUIKES ETTITITWOEIG, €ival ATTapaiTnTo va Katavonoei n
TOAUTTAEUPN QUOTN TWV OSIKWV ATUXNHATWY. Ta 0dIKA aTtuxnuaTta eTnpealovTal
armoé  OIAPOPEG TTAPANETPOUG TIOU UTTOPOUV VA XWPIOTOUV Of TPEIG OIAKPITEG
Katnyopieg: (i) xpnoteg tng odou, (ii) oxAuata kai (iii) odIkry uTTOdOMr Kal 0dIKO
TePIBAAANOV. ALiCel va onueiwBEi OTI éva onuUAvTIKO TTOCOOTSO TWV 0OIKWY ATUXNHATWY,
€wg Kal 94%, ptTopei va atrodobei, €iTe ATTOKAEIOTIKA €iTE €V UEPEI, OTOV AVOPWTTIVO
TTaPAyovTa Kal o€ avBpwTTiva Adon.

AapBdvovtag uttown 1o TTpoava@epBEv TTAQICIO, 0 KUPIOG OTOXOG TNG TTapoucag
d1dakTopIkNG dlatpIBnG eivar n afioAdynon Ttou KivdUvou O3IKOU OTUXAMOATOG
ouvdudalovTag dedopéva 0OIKNG UTTOBOMNG, KUKAOQOPIaG Kal CUUTTEPIPOPAS
TOU 08nyou. AuTdg O CUVOUOOUOG TWV OEDOPEVWY ATTOTEAET Y1 TTOAAG UTTOOXOPEVN
KatevBuvon yia €peuva. QOTO00, N TTPOKTIKA €PAPPOYr auTOU TOU CUVOUOCHOU
OEOOUEVWV TTAPEUTTODICETAI CUXVA ATTO OUOKOAIEG KAl TTPOKANCEIG OTTWG N AVETTAPKNG
d1a0e01uOTNTA dEdOUEVWV ] N UN BEATIOTN TTOIGTNTA TOUG.

2710 TTAQiocI0 TNG TTapoucag diatpIBng, dIEENXON ekTeVAS BIBAIOYPAPIKA avaoKOTTnon.
2KOTTOG auTAG TNG dladikaoiag ATav va TTApPACXEl MIA avaOoKOTTNON TNG ETTIOTAPOVIKAG
BiBAloypaiag Twv hEAETWYV TTOU aglotTololv Toug Eupeooug Acikteg Aogaleiag (EAA)
o€ OIEPEUVNOEIG I0TOPIKWY OBIKWV atuxnuaTtwyv. O EAA trepiAapBavouv éva gupu
@PAoUA PETPACEWYV KAl TTAPAUETPWY, Ol OTTOIEG OEV TTPOKUTITOUV AUECA ATTO DEQOMEVA
00IKWV atuxnuaTwy f dev Baaiovtal o€ autd. At mn dladikaacia TnG BIBAIOYpAQIKAG
QVOOKOTINONG TTPOEKUYE TO CUNTTEPpAaca OTI ol EAA kepdifouv ocuveXwg £5a@og
oTnVv épguva yia Tnv odIkNn aoc@dAsia, Kabwg atmmoteAolv €vav BILCINo TPOTTO
METPNONG TNG OOIKAG aCQPAAEIOG Kal ETTITPETTOUV TN dleCaywyr avaAloewy Xwpig va
xpeldlovTal amapaitnta 1I0TopIKA dedouéva 0dIkwv atuxnuatwy. O1 deikTeg autoi
MTTOPOUV E€iTE VA aTTOTEAECOUV EVOAAAKTIKY AUON YIa TIG avOAUOEIS OOIKAG QOPAAEING
€iTE AKOUN KAl VO CUPTTANPWOOUV TIG AVAAUCEIG TTOU BaacifovTal o€ I0TOPIKA EQOUEVA
aruxnuatwyv. EmimmAéov, n Taxeia kal ouveXAg TTPOOd0G OTOV TOMEQ TNG TEXVOAOYIag
KaBIioTd GAo Kal TTI0 EUKOAN Th cuAAoyr) TETolwV OeIKTWVY. O1 EAA, 0TTwg 0 XpOVog yia
oUyKpOoUOn KE TO TTIPOTTOPEUOHEVO OXNUA, N amméToun emPBpdaduvon KTA., TTpOTEIiVOVTal
EUPEWG OTNV ETTIOTANN TWV PETAQOPWY Kal gival 1I81AITEPA XPOIUOI TTPOKEINEVOU VO
agloAoynOei o Kivouvog 0dIKWV aTUXNHATWV.

2Tn ouvéxela, dlIaTUTTWONKaV Ta akOAoUBa EPEUVNTIKA EPWTAMATA:

Epwrnua 1

Mwg pmopouv va ouvduacTolv Kal va avoAuBouv Ta dedopéva  UTTODOUNG,
KUKAOQOPIOG KOl  OUUTTEPIPOPAS TWV 0dnywv woTe va egayxBouv  xproiua
OUNTTEPACHATA VIO TV agIoAGYNoN Tou KIVOUVOU 08IKOU aTUXAUaTOG;
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Epwrnua 2
a) Mtropouv Ta cupBdvra atrdéTouNG CUUTTEPIPOPAS Tou 0dnyou va BewpnBoulv
agiommoTol EAA;
B) YTApxel OTATIOTIKA ONUOVTIKY KOl BETIK) OUOXETION METALU OUNPBAVTWV
ATTOTOUNG OCUMTTEPIPOPAG TOU O0ONYyoUu Kal I0TOPIKWY OEBOUEVWY  OBIKWV
ATUXNMATWY;

Epwrnua 3

Eival duvath n TpoBAswn TNG £TTIKIVOUVOTNTAG OBIKWY TUNPATWY PE TNV agloTroinon
TWV YEWUETPIKWY XOPAKTNPIOTIKWY TNG odou kal Twv EAA Ttou PBacifovral 0Tn
OUNTTEPIPOPE TOU 0dnyou, Kai, av Val, TToI0I TAEIVOUNTES UNXAVIKAS uddnong eivai ol
KaTaAAnAdTEpOI;

Epwrnua 4

Eivar ta ocuppdavra amétouwyv emMPBpadUvoewy TNIO ONUAVTIKA atrd eKeiva Twv
ATTOTOUWV ETTITAXUVOEWV YIO TNV TTPORAEWN TNG KATNYOPIOag ETTIKIVOUVOTNTAG TWV
00IKWV TUNHATWY;

Epwrnua 5
a) EAAeipel 181aiTepa AETTTOPEPWV I0TOPIKWY BEDOUEVWY ODIKWYV ATUXNHATWY, TTWG
MTTOpOUV va avoAuBouv ol atrétoueg emBpaduvoelg o€ dldpopa  0dIKA
TePIBAAAOVTQ;
B) YTTapxel XwpPIKH QUTOOUCXETION OTIG CUXVOTNTEG ATTOTOPWY ETTIBPAOUVOEWV Yia
Ta 00IKA TUAMOTA KaAl, OV Val, Ol TIPOCEYYIOEIG XWPIKNG MovTEAOTTOINONG
UTTEPTEPOUV EVAVTI TWV AVTIOTOIXWYV PN XWPIKWYV TTPOCEYYIoEWV;

Epwrnua 6

Moleg TTapdAueTpol TNG OOIKNG UTTOOOPNG KAl TNG CUMTTEPIPOPAS Tou 0dnyou
TTapoucidlouv  OTATIOTIKA ONUAVTIKA  €TIPPOr; OTOV  apIBUO Twv  aTTOTOMWYV
eMPBPadUvoewyv avd odIKO TUANQ;

AuTa Ta epeuvnTIKA €pWTAMATA ATTOTEAECAV TNV KivnTApIa duvaun Tiow atmd Tnv
TTOPOUCQ EPEUVNTIKA TTPOCTTABEIN, DIEPEUVWVTAG TOV CUVOUAOHO Kal TNV avaAuon Twv
OEBOUEVWYV UTTOOONNG, KUKAOQPOPIOG KAl CUUTTEPIPOPAS TwV 0dNywWV Yia TNV Eaywyn
OUCIQOTIKWY CUNTTEPACHUATWY OTNV €KTiUNON TOou KIVOUVOU OOIKWY ATUXNMATWV.
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Mpokeiyévou va atravinBouv auTtd Ta €PeuvnNTIKA E€PWTAPATA, OXEOIAOTNKE £va
oUuvOeTO pEBOBOAOYIKS TTAQICI0, TO OTTOIO TTAPOUCIAZETAI OTO ZXNHa I.
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O Tmuprivag Tou peBodoAoyikoU TTAaiciou TrepIAGUBave pia diadikaoia TTOAAWYV
otadiwv, n otoia &ekivnoe pe T digpelivnon Twv OBI0BECINWY BeSOpEVWV
MovteAoTroinong Tng odikiAg ac@dAsiag otnv EAAGda, BéTovTag TIG BACEIS yIa TIG
emOpEvEG KaTeuBUvoelg. H digpelvnon auth avédelite Toug TTEPIOPICUOUG TTOU
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OXETICovVTal PE TNV AVATITUEN AETTTOPEPWY POVTEAWV TTPOBAEWYNS aTUXNUATWY OTNV
EANGBa. H avaTrTuén TETOIWV HOVTEAWV Eival EQIKTH JOVO YIO TOUG AUTOKIVATOOPOUOUG
Kabwg yia auToug uttdpxouv uwnAng tmoioTnTag diabéoiya dedopéva aTuxnudaTwy,
€I0IKA 6oov agopd oTnv akpIfry B€on Twv ATUXNUATWY Kal Ta XOPAKTNPIOTIKA TNG
KUKAOQOpPIiag avad odIKO TunRua. lNa va avTIJETWTIOTEl autdg O TTEPIOPIoUOG,
avaTITUXONKav dUO JIAPOPETIKEG PATEIG DEDOUEVWV.

H Ttpwtn pdon O0cdouévwy emmKeEVIpWONKE o0¢ 668 o08IKA TUAMOATA TOU
auTokivnTodpdpou TG OAuptriag Odou, yia Ta otroia uttApxav dlaBEoiua dedouéva
OXETIKA ME TA 0OIKA ATUXAMATA, TNV KUKAOQOPIQ, T YEWMPETPIKA XAPAKTNPIOTIKA Kal
OI14@popPOUG  OEIKTEG OCUUTTEPIPOPAS Twv 0dNywv. ZUYKEKPIYEVA, agloTToindnkav
OedoUEVA ATUXNMATWY OAWYV TwV ETTITTEOWV 0ORAPATNTAG, CUNTTEPIAANBAVOUEVWY TWV
ATUXNMATWY PE UAIKEG CNUIEG YOvoO, yia Ta €T 2018-2020. MapdAAnAa e Ta dedopéva
00IKWV aTuxnUaTWyY, oTn Pdaon Oedopévwyv TTOU avaTTTUXONKE CUUTTEPIANPONKaV
doedopéva Etnolag Méong Hpuepnoiag KukAogopiag (EMHK) yia tnv idla xpovikni
mepiodo. Ooov agopd Ta XOPAKTNPEIOTIKA TNG OOIKAG UTTOdOUNAG, ouvdudoTnKav
TTANPOPOpPIEC aTTd DIAPOPES TTNYEG, OTTWG dEdOUEVA ATTO TOV QopEa dlaxEipIong Tou
QUTOKIVNTOOPOOU Kal dedouéva TTou TTponABav atrd Tn xprion d1IapopwV AOYIOHIKWY,
oupTtrepIAapBavouévwy Twv Open GIS, Google Earth kai GoogleStreetView. H
ouuTreEPIANYN Twv OedopEVWY OOIKNG UTTOOOWNAG KAl Twv OXEDiwV ava@opds Tou
QUTOKIVNTOOPOUOU ETTETPEWE ETTIONG TOV EVTOTIIOMO KAl TV ATTONOVWON TWwV
OEOOUEVWV  OUPTTEPIPOPAG TOU 0ONyou UTTO TIPAYMATIKEG OUVOAKEG PEOW MIag
EQPAPMOYNAG YIa ECuTTva KIVATA TNAEQWva. Ta dedouéva CUPTTEPIPOPAS TwV 0dNYWV
OUAAEXONKav yia Tnv TTEPiodo atrd Tnv 1n louviou 2019 éwg TiIg 31 AekeupBpiou 2020,
ammd Ociyua 327 odnywv 10 2019 kai 330 odnywv 10 2020. O péoog apIBPOS
d1adpPOoUWV ava TURUA AuTOKIVNTOOPOPOoU KaB' AN Tn didpkeia TNG TTEPIGOOU UEAETNG
nrav 769 d1adpouE.

H OeUtepn Bdon Oedopévwyv KAAUwe éva gupUTEPO OBIKO BiKTUO €VTOG TNG
MNepipépeiag AvaTtoAikig Makedoviag kai Opdkng, cuuTTEPIAANPBAVOUEVWY TOCO
QOTIKWV 000 Kal UTTEPACTIKWY 0dwvV. lNa 10 £¢eTaldpevo diKTUO, TTPAYHATOTTOINONKE
MIa  apxiki avaAuon OAwv Twv O0JIKWV TUNUATWY TIoU TTponABav atd TO
OpenStreetMap (OSM) yia Tnv €€aywyr] TWV YEWPETPIKWY XOPAKTAPIOTIKWY TOUG. 2TN
OUVEXEID, Ta OEQOUEVA CUNPTTEPIPOPAS TwV OdNYWYV UTTO TTPAYMOTIKEG OUVONRKES, TA
oTToia £€rixBnoav atrd e@apuoyn yia £EUTTVaA KIvATA TNAEQWVA, avTIoToIXROnNKav Pe Ta
avTtioToixa odIKa TuApaTa Tou OSM. To g€eTalOuevo 0dIKO dikTuo TTEPIAAUPBave 6.103
o3IKA TUAMATA, PE HECO PNKOG 288,8 PETPA, YE ATTOTEAECHA TO OUVOAIKO PNKOG TOU
00IkoU OIKTUOU va avépxetal o€ 1.763 xIAiduetpa. Ooov a@opd TIC PETPHOEIC TNG
OUNTTEPIPOPAG TOU 0dNnyou, xpnolpoTtroinenkav dedopéva atmo 5.129 1agidia katd Tn
didpkeia Tou 2021. H péon didpkeia Tagidiou Atav 634 OeUTEPOAETITA, WE TUTTIKA
atrokAion 556 deutepoAemta. QoTd00, emonuaiveralr 0TI n Bdon d6edouévwyv TTOU
avaTtrTuxbnke yia 1o &v AOyw 0OIKO OikTuo Oev TreEpIEixe AeTTTOouEPry Oedopéva
ATUXNMUATWYV KOl KUKAOQOPIAG yia Ta eE€TAlOMEVA OBIKA TUNUATA.
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Epapudéotnkav Oidpopa HeBodoAoyikd epyaAcia yia Ta OOIKA TUAMATA TOU
auTokivnTédpopou TNG OAupTtriag Odou. e autd TrepIAaUBAvOVTAV TEXVIKEG OTTWG N
apvnTik  diwvupik  TTaAivopéunon (AAM) yia Tnv avdamTugn €vog HovTéAou
ouxvoTNTAG aTtuxnuaTtwy, n 1epapyikr opadotroinon (10) yia Tov TpocdiopIoud Twv
ETTITTEQWV ETTIKIVOUVOTNTAG TWV THNUATWY PE BAon 1I0TOPIKA dEdOPEVA ATUXNHATWY KAl
XOPAKTNPIOTIKA TNG KUKAOPOPIAG, KAl N XPrON TAgIVOUNTWY PINXAVIKAG HABnong 01Twg
n AoyioTikA MaAivopdunon (Al), To Aévipo Atropdocwyv (AA), Ta Tuxaia Adon (TA),
ol K-NAnaiéotepol leitoveg (K-MIM) kar or Mnxavég Aiavuopdtwy Ytrootripigng (MAY).
Autoi o1 Tagivountég Xpnolgotroindnkav  yia TNV TTPORBAEWn Tou  emITTESOU
ETTIKIVOUVOTNTAG TWV THNPATWY, A&lIoTToIlVTAG OEQOUEVA UTTODOMNG KAl CUUTTEPIPOPAS
Twv odnywv. Idiaitepn €ugacn 608nke oTnv agloAdynon Tng agIomoTiog Twv
OUMBAVTWY atrOTouNG CUPTTEPIPOPAS Tou 0dnyou wg EAA.

2TN OUVEXEIA, TO TTAQICIO ETTEKTAONKE yIa va ocuuTTEPIAGREl Ta dedopéva Tou 0BIKOU
dIkTUOoU TNnG Mepipépeiag AvatoAiknc Makedoviag kal @pakng, agioTrolwvTag CUPBAvTa
ATTOTOMWV ETIRBPAdUVOEWY Yia TNV afloAdynon Tou KIVOUVOU OBIKWV ATUXNMATWV.
AuTO TTEPIAGUPBAVE TNV EQAPPOYH TOOO PN XWPIKWY 000 KAl XWPIKWV HOVTEAWYV yia
TOV EVTOTTIONO ONUAVTIKWY TTAPANETPWY OOIKAG UTTOOOUNAG KAl CUUTTEPIPOPAS TOU
0dnyou TTou £TTNPEAGZOUV TOV apPIBPO TwV AaTTOTOPWY ETTIRPAdUVOEWYV avé 0dIKG TURMA.

TeNKwg, n ouvBeon 6AwWV Twv avOAUCEWYV TTOU TTPAYHATOTTOINONKAV OTO TTAQIOIO TNG
TTapoucag dIOAKTOPIKNG OlIaTPIBAG 0dYyNoe o€ Yia OAOKANpwuEVN agioAdynon Tou
KIVOUVOU OJIKWV AaTUXNHATWY JE TTOANG  TTPWTOTUTTA  Kal  evOla@EPOVTA
QATTOTEAEOUATA, TA OTTOIO AVAAUOVTAI PE TTEPICOOTEPN AETTTOUEPEIA TTAPAKATW.

MNa 71 avaAUo€Iic Tou autokivTodpOuou, afloTroinenke Hia evotroinuévn Bdon
ocdouévwy  TTou  TTEPIAAPPave  Oedopéva  yia  1I0TOPIKA  OOIKA aTuxAuaTa JE
TPAUMATIOYOUG Kal OTUXAMATA ME UANIKEG CNMIEG, XOPAKTNPIOTIKA KUKAOQOPIAG,
XOAPOKTNPIOTIKA YEWUETPIOG TNG 000U Kal EAA ouuTtrepipopdg odnyou yia 668 odika
TUAPATA Tou auTokivnTodpdpou TG OAupTriag Odou. Ta atroTeEAEOUATA TOU JOVTEAOU
ouxvotTnTag atuxnuatwy (AAl) €deigav OTI N ouxvoTNTA OJIKWV ATUXNMATWY OTA
e€eTaOUEVA TUANOTA TOU QUTOKIVATOOPOUOU CUCXETICETAI BETIKA E TOV KUKAOQOPIAKO
@OPTO, TO WUAKOG TOU €€eTAlOMEVOU 0OIKOU TUAMOTOG, TOV aApPIOUd Twv aTTOTOMWYV
EMTAXUVOEWVY KOl TOV apIOPO Twv amoTopwy eTMRPaduvoewy ava BIEPXOMEVES
O1adpopég Tou KABe TuAPaTOG. To elpnua autd CUPPBAAAEl OTNV UTTAPYXOUCQ
BiBAloypagia yia TV 0dIkr ac@AAgia, KaBwg dIaTTIOTWVEI BETIKA KAl OTATIOTIKA
ONMAVTIK oXéon HETA{U TNG OUXVOTNTAG OJIKWV ATUXNHATWY KOl TwvV
OUHBAVTWYV ATTOTOUNG CUNTTEPIPOPAG TOoUu odnyou. Kartd ouvetreia, ouvayetal Ot
QUTA TO CUPPBAVTA ITTOPOUV VA XPNOIMEUOOUV WG £yKupn UTToKaTtnyopia Twv EAA utrd
TIPAYMATIKEG OUVONKES OOAYNONG. ZUYKEKPIPEVA, NTTOPOUV va XPNOIKMOTToINBoUV &iTe
yla Tn ouutTAlpwon Twv PovTéAwv TPoRAewns artuxnuatwy (MIMA) eite wg
eCapTnUévEG HETABANTES O€ BIAQOPES TTPOANTITIKEG AVAAUOCEIG 0BIKNG AOPAAELIAG, 10iWg

[35]



Dimitrios Nikolaou | Machine learning-based road crash risk assessment
fusing infrastructure, traffic and driver behaviour data

o€ TIEPITITWOEIG OTTOU Oev  UTTAPXOUV AETTTOPEPNR 10TOPIKA Oedouéva  OdIKWV
ATUXNMATWV.

Q¢ mepaItépw OTASIO TWV EPEUVWV YIA TOV AUTOKIVNTOOPOUO, EyIVE TTPOCTTABEIO VO
OlapoPPWOOUV ETTITTEdA ETTIKIVOUVOTNTAG TWV ECETACOMEVWYV OOIKWV TUNUATWV.
AUTO eTTITEUXONKE AapBAvovTag UTTOWN TOV OPIBPO TwV ODIKWYV ATUXNUATWY ava JrKOg
TMAMATOG KAl TV KUKAOQOpPIa KABE TPAMATOG ME TN XPAON TNG TEXVIKAG TNG
OUOOWPEUTIKNG IEPAPXIKAG opadoTroinong. AauBdvovtag uttéyn Tnv ETPPONR Tou
MIAKOUG TOU 00IKOU TUNHUATOG KAl TOU KUKAOQOPIAKOU QOPTOU, OTTWG TTPOKUTITEI OTTO TA
atmroteAéopata Tou povrédou AAM, kal ol dU0 auTég PETABANTEG CUPTTEPIANPBNKavV
otnv avaAuon opadotroinong Adyw TnG OTATIOTIKA ONUAVTIKAG ETTIOPACAHS TOUG OTN
ouxvoTNTa aTUXNUATWY oTa e€eTalOuEVa OBIKA TUAMATA. Ta aTTOTEAECUATA AUTHG TNG
diadikaoiag opadoTroinong kabdpicav TEooEPa DIAKPITA ETTITTEDQ ETTIKIVOUVOTNTAG UE
éva 0a@€EG MOTIBO, oUPPWVA PE TO OTIOI0 N TIPWTN KATNyopia ETTIKIVOUVOTNTAG
TTOPOUCIACEl UPNAS PECO KUKAOPOPIOKO POPTO KAl APIBPO OOIKWVY OTUXNUATWY avda
MAKOG TUAMATOG, €VW Ta MEYEBN auTd pElwvovTal TTPOOJEUTIKA yia KABE €TTOMEVN
KaTnyopia €TmKIVOUVOTNTOG.

2T OUVEXEIQ, TA TECOEPQA ETTITTED ETTIKIVOUVOTATAG XPNOIMOTTOINONKAV WG £LapTnUEVN
METARANTA/ YETABANTH ATTOKPIONG O€ TTEVTE JOVTEAQ TAEIVOUNONG MNXAVIKAG udbnong
(AN, AA, TA, MAY kai K-TI). O1 ta&ivounTtég autoi, TTepIAGUBavav TTpoyvwaoTIKOUG
TTOPAYOVTEG OXETIKA HE TA YEWMETPIKA XAPOAKTNPIOTIKA TNG 0doU Kal PN aOQaAEig
OUMTTEPIPOPEG 00NYNONG, OTTWG OEIKTEG ATTOTOPWY  ETIRPAdUVOEWY, OTTOTOUWYV
EMTAXUVOEWV Kal DIAPKEIQ UTTEPRACNG TWV OPiWV TaXUTNTAG ava dIadpour eViOg TwV
eCeTalOPEVWY OOIKWV TUNUATWY. MeTagu Twv TTéVTE POVTEAWV, TO MovTéAo TA
EMEDEICE AVWTEPEG ETIOOOCEIS TASIVOUNONG 0€ OAEG TIC KATNYOPIES ETTIKIVOUVOTNTAG,
emrTuyxavovrag otaBepd Babpoloyieg dvw Tou 89% (ouvoAikr opBdétnta: 89,9%,
MakKpo-pecooTaBuIk akpifeia: 90,7%, pokpo-pyecooTabuik avakAnon: 89,9%,
Makpo-pecooTaBuikn BabuoAoyia F1: 90,2%). To ammoTéAeOPa aUTO OTTOKOAUTITEI TIG
ouvatotnTeg Tou HovTéAou TA TTou avamTuxOnke wg €va TTOAAG uTToOXONEVO
TIPOANTITIKO €PYOAAEi0 OOIKAG AO@PAAEING, IKAVO VA EVTOTTICEl ATTOTEAEOUATIKA Kal va
IEPAPXEI dUVNTIKA ETTIKIVOUVA TUANATA QUTOKIVNTOOPOHWV.

TENOG, yia va dIEUKOAUVOED N epunveia Tou povTéAou TA, TO OTTOI0 AEITOUPYEI EYYEVWG
WG MOVTEAO-PAUPO KOUTI PINXAVIKAG MABnong, uttoAoyiotnkav ol TIpéEG SHAP yia éva
TUTTIKO TUAPO autokivnTodpouou. Me Bdon Tmig TinéEG SHAP Twv TTPORAETITIKWV
TTOPAYOVTWY CUUTTEPIPOPAS odnyou, TTPOEKUWE OTI O ATTOTOMESG EMIRPAdUVOEIG
XPNOIMEUOUV WG TTI0 KAaTAAAnAog EAA atmrd TI§ amOTOMES EMITAXUVOEIG OO0V
agopd TNV TTPORAEWN TNG ETTIKIVOUVOTNTAG TWV OBIKWYV THNHATWV.

210 TTAQiCI0 TOu gupuUTEPOU OBIKOU DIKTUOU TNG lNepipépeiag AvatoAikng Makedoviag
Kal Opdkng, avaAuBnke éva OUVOAO XWPIKWV OeBOUEVWY TTOU QTTOTEAEITAI ATTO
OUYKEVTPWTIKOUG OEIKTEG CUNTTEPIPOPAS TOU 0dnyou UTTO TTPAYMOTIKEG OUVONKEG,
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KABWG Kal YEWMETPIKA XAPOKTNEIOTIKA Kal AOITTA XOPAKTNPIOTIKA TOU OIKTUOU O€
eTTiITTE®O 0dIKOU TuAuaTos. MNa Ta e¢etaldueva 6.103 odIKG TuRuaTa, Kai he Baon Tov
O0eiktTn  Moran's I, €vTOTOTNKE OTATIOTIKA ONUAVTIK Kol BETIKA  XWPEIKA
OUTOOUOCXETION OTIG OUXVOTNTEG TWV ATTOTOHWYV ETIRPpaduvoewyv. ApxIKA,
XPNOILOTTOINONKAV JN XWPIKES TEXVIKEG JOVTEAOTTOINONG, OTTWG TO AoyapIOPoypauuIKG
MovTéAO, N Mndevika Aloykwuévn ApvnTikh Alwvupikry (MAAA) TTaAivépounon Kai 1o
oupBatikd  povréAo  TTaAivopdéunong TA  OTIC OuxvoTnNTeEG TWV  OTTOTOMWYV
empBpaduvoewyv. QoTO00, N UTTAPEN XWPIKAG QUTOOUCXETIONG AVEDEIEE TNV avAykn
QVATITUENG XWPIKWV HOVTEAWY, OTTWG To XWPIKO MovTéAo 816pBwaong Tou ZQAAUATOS
(XMZ), 10 Xwpikd Movtého Yotépnong (XMY), 10 Xwplkd HoviéAo Mndevikda
Aloykwpévng ApvnTiKAg Alwvupikng TTaAivopounong (XMAAA) kail To Xwpikd povTéAo
Tuxaiwv Aacwv (XTA), Trpokeigévou va ANeBouv uttdyn auTEG Ol XWPIKEG ECAPTAOEIG.

2€ ONa Ta poOVTEAQ TTOU QvOTITUXONKAV TTPOEKUYOV OTOBEPE TTPOONUA OTOUG
OUVTEAEOTEG TWV HETABANTWYV. SUYKEKPIPEVA, TO MAKOG TOU OOIKOU TURMATOG KAl O
apIBUOS TwV dIOdPOUWY avd TURHA TTPOCBIoPIOTNKAV WG UTTOKATACTATOI OEIKTEG TNG
€kBeong o€ Kivduvo, oI OTToI0I CUOXETICOVTAI BETIKA PE TIG ATTOTOUES ETTIRPAOUVOEIG.
EmmAéov, o Oe€ikTng ammoTeAeouaTIKOTNTAG (OTATIOTIKE ONPAVTIKOG HOVO OTO
AoyapiBuoypappikd povTéAo, oto MXZ kai oto MXY), mou oOxeTifetar PE TN
YPAMMIKOTNTA TWV OBIKWYV TUNUATWY, TTapouciace BETIKA OUOXETION PE Ta CUPBAvTa
ATTOTOMWV ETIRPAdUVOEWY, UTTOONAWVOVTAG OTI O 0dNYOI TTPORAiVOUV CUXVOTEPQ OF
ATTOTOMEG ETTIBPAdUVOEIG O€ ODIKA TUANATA PE AIYOTEPES KAUTTUAEG. O1 ueETABANTEG TTOU
OXETICOVTaI YE TNV UTTEPBACTN TWV OPiIWV TaXUTATAG Kal TN XPnon KivTou TNAEQWVOU
OUOXETIOTNKAV ETTIONG BETIKA PE TIG ATTOTOUES ETTIBPABUVOEIG, EVW Ol AUTOKIVNTODPONOI
TTapouciacav AlyoTepa cUPPBAVTA aTTOTOMWY ETIRBPAdUVOEWY 0 OUYKPION HME AAAOUG
TUTTOUG 0dO0U.

Kai ota dUo povtéAa TA, o apiBuég Twv d10dpopwyV ava eEETAOMEVO 0OIKO THAMA
Bp£ONKE va gival o o onUavTikOg Trapdyovtag TPOBAewng, avadeikvuovTag TV
UYnAr onuacia Tou otnv TPORAEWN TNG CUXVOTNTAG TWV OTTOTOUWYV ETTIBPAdUVOEWY,
KABwWG XpNOIUEUEl WG PETPO €KBEONG OTOV Kivouvo. ATTO TV GAAN TTAEUpd, N HETABANTA
«QUTOKIVNTOOPOPOG» TTAPOUCIiaCcE Tn XOUNAOTEPN ETTIPPON], UTTOBEIKVUOVTAG OTI O
TUTTOG TNG 000U €ival OXETIKA AIYOTEPO KPIOIKOG yia TNV TTPORAEWN Tou apiBuou Twv
amoTopwyv  EmMPBpaduvoewy. To eUpnua autd ptTopei va utrodnAwvel 611 GAAoI
TTAPAYOVTEG TTEPAV TOU TUTTOU TNG 000U, OTTWG N atTéoTTach TNG TTPOCOXNG TOU 0dnyou
Kal N utrépacn Twv opiwv TaxuTNTAG, EVOEXOUEVWG VA KATEXOUV CNUAVTIKOTEPO POAO
OTNnV ETPPOIN TNG CUXVOTNTAG TWV ATTOTOPWY ETTIBPAOUVOEWV.

Ooov agopd TNV £1TidOCN TWV PJOVTEAWYV TTOU avaTtrTuxdnkav, 1o XMY emrépaoce 1600
T0 AoyapiBpoypauuikd povréAho 600 kal To XMZ, pe XapnAdTepeS TIEG Tou deikTn AIC
KAl atroucsia XwpPIKAG AuTOoUOXETIONG OTA KATAAOITTA Tou. XAPNAOTEPES TIUEG TOU
oeiktn AlIC, TToU UTTOBNAWVOUV KAAUTEPN TTPOCAPHOYH, TTaPATNERBNKAV ETTIONG YIA TO
povTéAo XMAAA oe ouykpion PE TO PN Xwpikd poviéAo MAAA. EmimrAéov, To XTA
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MEIWOE TIG ATTOAUTEG TIPEG TNG XWPIKAG QUTOOUOXETIONG OTA KATAAoOITTa O€
oUYKPION ME TIC QVTIOTOIXEG TIMEG TOU cupPatikou poviéhou TA. EmmimmAéov, 1o XTA
UTTEPEIXE TOU N XWPIKOU povTEAou TA 6oov a@opd TV TTPOCAPUOYH TOU POVTEAOU
oTa TTAPATAPOUMEVA BEDOMEVA, AAAG TO N XWPIKO HOVTEAO €iXE KAAUTEPEG ETTIOOOEIG
OO0V aPopd Tn YEVIKEUON O€ PN TTapATNPOUMEVA OEO0UEVQ.

Ta ammoteAéopaTa TWV JOVTEAWYV TTOU avaTiTuxdnkav yia 10 €6eTalOPeEVO 00IKO DIKTUO
NG Mepipépeiag AvatoAikAg Makedoviag kal Opdkng aTtreikovifovral €1riong o€
Xapteg. EVOeIKTIKA, Ta atmmoteAéopaTta Tou poviéAou XMAAA trapouciddovtal OTo
zxnua I, evw 10 Z)Aua Il TTapéxel pia peyeBupévn amroywn Ttou ZxApaTog I,
€0TIACOVTAG CUYKEKPIPEVA OTO KEVTPO TNG TTOANG TNG =AvOng.
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H Ttrapouca &I10aKTOPIKA dIaTpIRry TTPOCPEPEI ASIOONMEIWTEG KOl KAIVOTOMEG
OUVEIoOQPOPEG OTOoV TOMEéa TNG OOIKAG ac@dAsiag. O1  OuveEIOPOPES  AUTEG
TTAPOUCIACOVTAI JE TTEPICOOTEPN AETITOUEPEID TTAPAKATW.

OAiarikn lNpoaéyyian ZuAoyng Asdouévwv

2710 TTAQiCI0 TNG TTapoUCcag OIBAKTOPIKAG dIATPIRNG, TTPAYHATOTIOINONKE YIO EKTEVRG
ouAAoyn) dedopévwy yia Tn dIEPEUVNON TNG ETTIPPONG TNG CUPTTEPIPOPAS TOU 0dNYyOU,
TWV XOPAKTNPIOTIKWY TNG 0OIKAG UTTOOOWUNG KAl TWV XAPAKTNPIOTIKWYV TNG KUKAOPOPIag
oTNV agioAdynon Tou KivoUuvou OdIKWV atuxnuaTtwy. Or TEXVOAOYIKEG eEENICEIC Exouv
OIEUKOAUVEI onuavTIKA T cuAAoyr] dedopévwy atrd IAQoPES TTNYES, dNUIOUPYWVTAG
VEEC EPEUVNTIKEG EUKQIPIEG TTOU TTPONYOUHEVWG OgV gixav diepeuvnOEi.

2UYKEKPIYEVA, aoTnVv TTapouca diaTpiB aglotroinbnkav Bdoeig dedopévwv gupeiag
KAigoKag HE OTOIXEi UPNARG EUKPIVEIOG yIO TNV 00rynon UTTO TTPAYUATIKEG
ouvOnKeg TTou CUAAEXBNKav atrd aiobnTrpeg EEUTTVWV KIVATWY TNAEQWVWYV Yia TNV
agloAdynon Tou KIVOUVOU OJIKWV OTUXNUATWY O€ auTOKIVATOOPOUOUG Kal OE €va
eupuUTEPO 0O0IKO BiKTUO, TToU TTEPIAAPPBAvEl TOOO AOTIKEG OO0 Kal UTTEPAOTIKEG 0DOUG.
Na t1a Ocdopéva od0IKWYV UTTOOOPWY OTov  €EETACOMEVO  QUTOKIVNTODPOWO,
aglotroindnkav dIAQopPEeS TTNYES, CUMTTEPIAQUPBAVOPEVWVY BEDOUEVWV TTOU TTAPEXOVTAI
atro TNV apxn dIaXEipIoNS Kal AEITOUPYIaG TOU QUTOKIVNTOOPOHOU KAl AOYICHIKWY OTTWG
10 Open GIS, 10 Google Earth kai 10 GoogleStreetView. Ta yewpeTpIKA
XOPAKTNPIOTIKA KAl TO XOPAKTNPIOTIKA TOU OIKTUOU YIa TO EUPUTEPO 0OIKO OIKTUO TNG
Mepipépeiag AvatoAikig Makedoviag kal @pakng TTPOEKUYAV UE T Xpron aAyopiBpwyv
oTn YAwooa TpoypaupaTiopolu R. Zuykekpiyéva, xpnoipotroinenkav KataAAnAeg
BIBAI0BNKeG yia Tnv egaywyr] dedopévwy ammd 1o OSM Kal Tnv eTTECEPYATia TOUG WG
atTAd XwpIkd oTtoixeia. Ooov agopd Ta dedoPEVA 0BIKWYV ATUXNMATWY Kal KUKAOQopIag
oTov €¢eTalOPEVO auTOKIVATOOPOUO, aglotroindnkav dedouéva uwnAnig TToIdTnTaG TTOU
TTapaxwpnénkav amd Tov @opéa dlaxeipiong kai Asitoupyiag tng odou. Autd
mepIAGuBavav dedopéva 0dIKWV aTuxnuatwy O6Awv Twv Babuwv cofapdtnrag,
OUNTTEPIAAPBAVOUEVWY TWV ATUXNMATWY PJOVO PE UAIKEG {nNUIEC, UE akpifBeia oTn Béon
TWV ATUXNMATWY, TTOU KAAUTTITOUV TNV TTEPiIod0 atrd 1o 2018 £wg 10 2020. ETiTTAéOV,
xpnoigotroinénkav dedouéva EMHK 1rou Trpoékupav atrd Toug otadpuoug d1odiwv Tou
QUTOKIVNTOOPAKOU YIa TNV AVTIOTOIXN XPOVIKA TTEPiI0dO.

[MoAudidoraro¢ 2uvduaoudc Asdouévwy yia AvauoeiC o€ Emitredo Odikou Tunuarog
H ouAhoyry dedopévwy atmmd dIAQopeg TTNYEG KAl O€ DIAQOPETIKA ETTITTEdA QTTAITEI
KAaTadAAnAn emedepyaoia yia tTnv gvotroinon Twv dedopévwy. H pwtn Bdaon
oedouévwy NArav oe emimedo 0dIKOU TUAMOTOS Kal TrepIAduBave 668 Tunuarta
auTokivnTodpopou pAkoug atd 200 £éwg 600 péTpa. Zuykekpiyéva, TTepIAGUBavE
Oedopéva OXETIKA PE OBIKA aTUXAMATA, KUKAOQOPIOKOUG QOPTOUG KOl YEWMETPIKA
XOPAKTNPIOTIKA. 2TN OUVEXEIA, ETTPETTE VA avTIOTOIXNOoUV oTa €geTaldueva OdIKA
TUHAMATO OEIKTEG CUUTTEPIPOPAG TWV 0dNywv TIOU TIpoékuyav atrd aiodnTrpeg
EEUTTVWV KIVNTWV TNAE@wvwy. H avTioToixion autr emTteuxOnke péow GIS kal Tng

[39]



Dimitrios Nikolaou | Machine learning-based road crash risk assessment
fusing infrastructure, traffic and driver behaviour data

aTTOOVWONG KABE PéEPOUC TwV OIOdPOPWY OTO AVTIOTOIXO OOIKG TPAua atmmd Tnv
eTaipeia TTou TTapeixe Ta 6edopéva he TN Xprion moAuywvwy ESRI o€ diaoTtApaTta Twv
200 péTpwVv.

MNa 10 €upUTEPO AOTIKO KAl UTTEPAOTIKO 00IKO OikTuo NG lMepipépeiag AvaTtoAikAg
Makedoviag kar Opdkng, TO oOToi0 TrEPIANGUPBave  dedopEva  UTTOOOUNG  Kal
OUMTTEPIPOPAG TWV 0dNYywV, £QAPUOOTNKE HIa O€Ipd aAyopiBpwv etre§epyaciag.
ApXIKd, dnpioupynonke pia Baon dedoUEVWY YIa TO £€ETACOUEVO 00IKO OIKTUO, N OTTOIA
mepIAdpBave 6.103 odiIk& TuAuata. Aut) n Bdon Oedouévwy TTEPIEIXE PBaOIKA
YEWUETPIKA XOPAKTNPIOTIKA, OTTWGS PAKOG, KAPTTUAGTNTA, TUTTOG 000U K.ATT. yia KAOE
THAMA. H e€aywyn dedopévwyv atrd To OSM kai n dnuioupyia g Bdong dedopévwv
mepINGuBave Tnv aglotroinon BiBAI0ONKwvY TN R TTOU €X0Uuv OxediaoTei €1dIK& yia
QVTIOTOIXOUG OKOTTOUG. 2TN GUVEXEIQ, ETTPETTE VA AVTIOTOIXNBOUV OTa OBOIKA TUNHATA TA
OedOUEVA OUPTTEPIPOPAS TWV 0ONYWV UTTO TTPAYUATIKEG OUVONKES 00rynong, Ta OTToIa
e€NXOnoav ard aloONTAPESG EEUTTVWV KIVNTWV TNAEQUVWY Kal KAAUTTITAV OEIKTEG OTTWG
ol amréTouEG eMRPAdUVOEIG, N UTTEPBACN opiwv TaxUTNTAG, N ATTOOTIACN TTPOCOXNG
AOYW XpAong KIvnToUu TNAEPWVOU K.ATT. yia KABE SEUTEPOAETITO TWV OIOOPOPWYV TTOU
TTpaypaTtotroidnkav 1o 2021 otnv meploxf MEAETNG. H diadikaoia auth emmTelxONKe
MEOW XWPIKAG AVTIOTOIXIONG-XaPTWV. APXIKA, TTPOCBIOPIOTNKE TO KEVTPOEIDEG KABE
OEIPAG-YPOANPWY TWV OdIKWV TUNUATWY JE TN XPnon tng ouvaptnong "st_centroid”
amd 1N BiIBAI0BRKN "sf' TNG yAwooag TrpoypauuaTioyo’ R. Znueliwvetar OTI TA
KEVTPOEION €ival onUEIaKA PEYEDN KAl QVTITTIPOOWTTEUOUV TO YEWMETPIKO KEVTPO KABE
00IKOU TMNMATOG. 2T OUVEXEIQ, Ol OUYKEVTPWTIKOI OEIKTEG TNG CUMTTEPIPOPAG TWV
0dNywV avTIoTOIXNBNKAV OTO TTANCIECTEPO KEVTPOEIDEG TOU 0BIKOU TURHATOG hE BAon
TIC OUVTETOYMEVEG YEWYPAQPIKOU TIAGTOUG KOl MAKOUG YIa KABE OeUTEPOAETTTO
d1adpoung. H diadikacia autr eKTEAEOTNKE PE TN XPHoN TNG ouvapTtnong "st_join" kai
NG ouvapTtnong "st_nearest_feature" atrd m BiBAI0BRAKN TG R "sf".

2UVOAIKd, ol aAyopiBuol TTou xpnoidoTtroinénkav otnv Tapouca dIdaKTopIKr diatpipn,
I0iwG yIa TO €UPUTEPO QOTIKO KAl UTTEPAOCTIKO 0OIKO OiKTUO, OIEUKOAUVOUV TNV
ATTPOCKOTITN SUVATOTNTA PETAPOPAG TOU HEBODOAOYIKOU TTAQICIOU KaI TOU TTAQICiOU
emmegepyaoiag Oedopévwv TTOU  Xpnolyotroinlnke otnv Trapouca diatpiB. Me
EAAXIOTEG TPOTTOTTOINCEIG, UTTOPOUV VA dnuioupynbouv XwpIKES BAoelg OEOOPEVWV VIO
OIAPOPEG TTEPIOXEG, ETTITPETTOVTAG AVAAUCEIG UE TN XPAON TWV idIWV ] dIOPOPETIKWV
METARBANTWYV, TTEPIGOWV PEAETNG KAI OTATIOTIKWY UEBOBOAOYIWV.

2uvouaouoc lNponyuévwy kai Kaivorouwyv Texvikwv MovreAorroinong

O 1TA0UTOG TWV TTOAUTTAPANETPIKWY OEBOUEVWY UWNAAG EUKPIVEIAS Kal N akpieia TG
ETTECEPYOOIAG KAl TOU OUVOUOAOMOU Twv OeDOMEVWV  ETTETPEWAV TNV AVATITULN
TTPONYHEVWYV KAl KAIVOTOUWYV TEXVIKWYV HOVTEAOTTOINONG.

ApXIKd, avatrTuxonke Eva povréAo ouxvotnTag atuxnuatwy (AAMT). To povrého autd
dleuKOAuve Tn dlepelivnon TNG €TTIPPONG dIOPOPWY YEWMETPIKWY XAPAKTNPIOTIKWY,
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XOPAKTNPIOTIKWY TNG KUKAOQOPIOG Kal SEIKTWV TNG CUUTTEPIPOPAS Tou odnyou oTa
00IK& OTUXAMOTA. 2T OUVEXEIA, XPNOIUMOTTOINONKE N OUCCWPEUTIKA 1EPAPXIKN
opadoTToiNoN YIO TNV KATAYOPIOTTOINON TNG ETTIKIVOUVOTATAG TWV OOIKWY TUNNATWY
TTOU avaAuBnkav, Ta OToid OTn OUVEXEID EvOwMaTWONKav w¢ METARANTA
atmokpliong/egaptnuévn METARANTA O dIAPOPOUG TAEIVOUNTEG MNXAVIKAG MABNONG.
EkT6G 116 TN XPrion TEXVIKWYV MNXAVIKAG MaBnong, ol avaAuoeig TrepiAauavayv Tov
UTTOAOYIONO TwV TIHwWV SHAP, pia Tpoéo@arn Kai Ioxupr TTpooBrkn oTov TouEa TNG
EPMUNVEUCIKUNG MNXAVIKNAG HABnong. O1 TINEG QUTEG TTaPEIXAV TTANPOPOPIEG OXETIKA UE
TOUG TTOPAYOVTEG ETTIPPONG TTOU CUUPBAAAOUV OTO ETTITTEDO ETTIKIVOUVOTNTAG. AUTH N
oAOKANpwuévn  TIpooéyyion  augdvel TNV TTOAUTTAOKOTATA  TWV  TEXVIKWV
MOVTEAOTTOINONG KAl EVIOXUEI TNV EPUNVEIQ TWV OTTOTEAECUATWY TOUG.

Ooov agopd 10 eupuTEPO 00IKO BikTUo TNG lMepipépeiag AvatoAiking Makedoviag kai
Opdakng, ol atTdéToUES ETTIRPAdUVOEIG XPNOIUOTTOINONKAV WG eEaPTNUEVES HETABANTEG
OoTa POVTEAA TTOU avatrTuxonkav. AgiCel va onueiwBei OTI OI TEXVIKEG JOVTEAOTTOINONG
TTOU XpPnoIdoTtToINdnkav otnv Tapouca OI0aKTOPIKN dIaTpIPr, €§ dowv yvwpilel o
ouyYpoQEéag, e@ApMOlovVTal  YIO TTPWTN @opd o0& OUupBdvTa AaTTOTOpNWV
emiBpaduvoewyv. MeTall auTwVv TwV KAIVOTOPWY TTPOCEYYIOEWY HOVTEAOTTOINONG
gival Ta MXZ, MXY, XMAAA kai XTA. AgiCel va TovioTei 0TI N €Qapuoyr) Tou JovTéAou
XTA cival 10iaitepa agloonueiwTtn, KABWG aTroTeAel piIa TTPWTOTUTIN Kal TTOAAG
UTTOOXOMEVN TEXVIKI MOVTEAOTTOINONG TTOU MTTOPEI v €QAPUOOTEI KAl O AAAEG
QAVOAUOEIG 0DIKNG AOPAAEIAG TTEPAV EKEIVWV TWV ATTOTOUWYV ETTIBPABUVOEWV.

[oAu-mrapayovrikr) EKTiunon Kivouvou Atuxnuarog orouC AUTOKIVRTOOPOUOUSC
AloTTolvTag TNV UWNAAG TTOI0TNTAG KAl AETTTOMEPH) PAon Oedopévwy  TTou
QvVaTITUXONKE yia Ta 00IKA TUAMOTA TOU AUTOKIVNTOOPOUOU, JE OTOXO TNV aATTdvinon
TWV EPEUVNTIKWY EPWTNUATWY TTOU TEBnNKav oTnv Trapouca OIdakTopikry dlaTpIfn,
e€Nxbnoav TTOAUTIUA KAl KAIVOTOUO CUUTTEPACUATA. ZUYKEKPIUEVA, Ol OTATIOTIKEG
OUOYXETIOEIG aTTO TO HOVTEAO CUXVOTNTAG OBIKWY ATUXNUATWY atToKGAupayv uia BeTIKA
KAl OTOTIOTIKA ONMAVTIKI) OUOXETION METAEU TwV I0TOPIKWY OeOOPEVWY  ODIKWV
ATUXNMUATWYV KAl TOU apIBPoU TwV aTTOTOPWY CUPBAvTwY 0driynong. Autd 1oxuel TO00
yia Tov apiOuo Twv aTTOTONWY ETTITAXUVOEWY 000 KAl YId TOV apIOUo Twv aTTOTONWY
EMPBPaduvoewyv ava dIEPXOPEVO TAEIOI VTOG TWV €CETACOMEVWY TUNUATWY. AuTO TO
eupnuUa @avepwvel 0Tl ol BEIKTEG ATTOTOUNG CUMTTEPIPOPAG TOU 0dNyou JTTopouV
va aglomroinfouv wg EAA, cite oupttAnpwvovtag Ta TTapadooiakd POVTEAA
ouxvoTNTAG aTUXNUATWY E€ITE XPNOIUEUOVTOG WG £CAPTNUEVEG NETARANTEG O PMOVTEAQ
agloAdynong Tou KIvOUVou OOIKWV aTUXNUATWY O€ TTEPIOXEG OTTOU EiTE dEV UTTAPXOUV
O1a0£01ua dedouEva 0dIKWVY aTUXNUATWY €iTE Ta dIaBéoipa dedopéva aTuxnNUATwWY givai
XOUNANG TToI6TNTAG.

EmmAéov, n mapouoa diaTpIBr avéDEIEE pIa KAIVOTOUO dIaTTioTwaon, Tovifovtag OTI N
OUMBOAN TwV atmoTopwy eMRPAdUVOEWY, 0€ OUYKPION HE TIG OTTOTOUES ETTITAXUVOEIG,
gival upnAdTepn oTnv TTPORAEWN TNG ETTIKIVOUVOTNTAG TWV OBIKWV TUNUATWY. AUTO
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KaBiotd TIC armrdétopeg emifpaduvoelg KataAAnAotepo EAA yia TTPOANTITIKEG
avOAUOEIG 0DIKAG aOQPAAEING, EVIOXUOVTAG TNV KATAVONON TOou KIVOUVOU TTPOKANONG
00IKWV ATUXNUATWY KOl TTAPEXOVTAG TTPAKTIKEG TTANPOPOPIEG YIA OTOXEUMEVEG
TTaPEUPAOEIC.

Euueon Ekriunon Kivduvou Atuxiuaro¢ oto Aotiko Kal YrepaoTiko OdIkO AikTuo

H agioAdynon tng oupBoAng autig tng diatpifrig dsv Ba Atav TTANPENG Xwpig TNV
AvVaYVWEIOT TWV EUPUTEPWYV CUNTTEPACHATWY TWV POVTEAWY TTOU avaTTuxénkav yia
TO gupuTEPO 00IKG dikTUO TNG lMepipépeiag AvatoAikig Makedoviag kal Opdakng. €
auTd Ta POVTEAQ, O1 EEAPTNUEVES HETARBANTEG AVTITTIPOCWTTEUOVTAV ATTO TOV apIBUS TWV
aTTOTOMWV €MIRPaAdUVOEWY, TToU Xpnolpgetouv wsg EAA. O eviommoudg OTATIOTIKA
ONMAVTIKNAG KOl BETIKAG XWPIKAG AUTOCUOXETIONG OTIG CUXVOTNTEG TWV ATTOTONWYV
emiBpaduvoewyv eTERAAE TNV avATITUEN TTPOCEYYIOEWV XWPIKAG PMOVTEAOTTOINONG.
KouBIiké onueio oTig avaAUoElg CUXVOTATWY gival n HETPNON TnG €kKBeong ortov
Kivduvo, e TNV TTapouoa diaTpIRr} va XpnoIdoTrolEi dUO BaoIKEG PETABANTEG €kBeaNG
Yl TO QVTIOTOIXO JOVTEAQ: TO UAKOG OOIKOU TURHATOG Kal TOV aplBuo dladpopwy avd
TMAUO. H TTapouca épeuva avadeikvuel TN OTATIOTIKA ONUAVTIKA €TTIOPACH QUTWY TWV
METABANTWY €KBEONG OTOV Kivouvo, OTOV OPIOPO Twv aTTOTOMWV ETTIBPAdUVOEWY,
TTOCOTIKOTTOIWVTAG TIG AVTIOTOIXEG ETTIPPOES TOUG. ETTITTAéOV, evowpaTtwvel dIdpopoug
OcikTeG TTOU OXEeTiICovTal PE TO 0BIKO TTEPIBAAANOV Kal TN CUUTTEPIPOPA Tou odnyou,
OUMBAAAovTag o€ pia OAOKANPwWHEVN agloAOYNON TOu KIVOUVOU OBIKWY ATUXNHATWYV.

H dnuioupyia oAOKANPpWHEVWV XOPTWV OBIKNG AC@AAEIOG TTOU QTTEIKOVICOUV TA
OUMBAvVTa aTTOTOPWYV ETTIBPAOUVOEWV OTTOTEAEI TTOAUTIMO £pYaAEio TOOO YIA TIG APXES
dlaxeipiong TG 0dIKAG KUKAOQOPIAG Kal Ta evOIAQPEPOPEVOUG QPOPEIC OO0 Kal TOUG
XPnoTeg TNG 0dou. O1 OTITIKOTTOINCEIG AUTEG, TTAPOUCIACOUV TTOAUTTAOKO BEDOUEVA KAl
TTPORAEWEIG JOVTEAWV PE TTAG Kal KaTtavonTo TPOTTO, BIEUKOAUVOVTAG TNV ETTIKOIVWVIA
Kal TNV EVOWPATWON Toug o€ didgopeg diadikaoieg Ayng atmo@dccwyv. Méow autwv
TWV XApTWyV, Ol TTOAUTTAEUPEG TTPOOTIABEIEC TNG TTapoucag OIaTpIBASC yia TNV
agloAdynon Tou KIvoUvou 0dIKWV aTUXNHUATWY KOIVOTTOIOUVTAl ATTOTEAECUATIKG TG00
OTNV €TMOTAMOVIKI KOIVOTNTA OCO KAl OTO €upU KOIVO. ZUVOAIKA, ol EAA, 6TTwg ol
ATTOTOMEG  EMPPAOUVOEIG, TIPOOPEPOUV  ONUAVTIKEG  duvaTtdTNTEG  Vyia  ThV
TTapakoAouBbnon TNG 0dIKNAG AoPAAEIag, TRV agIoAOYNOoN Kal TNV £VioXuon TwV PETPWV
Kl TNV TaxEia ETTEKTAON TNG KAAUWNG OEOOPEVWV ODIKAG A0PAAEIAG. 2TNV akadnuaikn
KOIvOTNTa, Ta TeAeuTaia xpoévia €xouv  eU@avioTeEl  OIAQPOPEG TTPOOTIABEIES
povTeAoTToinong Twv EAA. EkTO6¢ amd tn cuuPoAl otov Topéa autd, n Trapouoa
d16akTopIKr dIaTPIRA KATEDEIEE OTI E TNV OTTAITOUNEVN TTPOCTTABEIQ, XWPIKA HMOVTEAQ
ME Baon Toug EAA uttopoUv va XpnoigoTtroinBouv o€ TTEPIOXES TTOU €XOUV PEAETNOEI
eAGYI0TA ATTO ATTOWN OJIKNG ACPAAEIAG.
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1. Introduction

1.1 Road Safety Overview

1.1.1 Road Safety Globally

Road safety has been recognized as one of the most important public health issues,
bearing an immense societal and economic burden. Despite significant efforts in
recent years, road safety remains a substantial global challenge. Road crashes,
leading to injuries and fatalities, rank as the 12th leading cause of death across all age
groups worldwide, with young individuals aged 5-29 facing the highest risk. According
to the latest data, 1.19 million road fatalities were recorded in 2021 globally (World
Health Organization, 2023). Figure 1.1 depicts the number of road fatalities per
100,000 population in 2021 by country-income level across the six geographic regions
defined by the World Health Organization. Within the continents, the same correlation
between income level and fatality rates can be observed, with fatality rates highest in
low-income countries and lowest in high-income countries in all continents.
Specifically, the risk of fatal injury in a crash is three times higher in low-income
countries compared to high-income countries. Additionally, it is observed that the
African Region has the highest fatality rate (19 road fatalities per 100,000 inhabitants),
whereas the European Region has the lowest fatality rate (7 road fatalities per 100,000
inhabitants).
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Figure 1.1: Road fatalities per 100,000 population by continent and country-income level, 2021.
(Source: World Health Organization, 2023)
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Moreover, profound differences are also evident in the analysis of road fatalities
concerning different road user types. In Figure 1.2, the percentages of fatalities in road
crashes per road user category within the six geographic regions of the World Health
Organization for the year 2021 are presented. Globally, 30% of fatalities correspond
to drivers and passengers of four-wheeled vehicles, 21% to drivers and riders of
motorcycles and tricycles, 6% to cyclists, 23% to pedestrians, and 21% to unspecified
road users. Notably, Southeast Asia and the Americas regions exhibit the highest
proportion of road fatalities among users of motorcycles and tricycles, with
percentages of 48% and 28%, respectively. In Europe, the rate of fatalities among
users of four-wheeled vehicles is notably high at 49%, whereas Western Pacific and

Africa record the highest pedestrian fatality rate at 29% and 27%, respectively.
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(Source: World Health Organization, 2023)

1.1.2 Road Safety in the European Union

As previously discussed in the preceding subsection, Europe stands out as the
continent with the best road safety performance globally. To delve deeper, the focus
shifts to the European Union (EU), where 20,640 road fatalities were recorded in 2022.
This figure reflects a 4% increase compared to 2021, attributed to the rebound in traffic
levels after the Covid-19 pandemic. Although the long-term trend indicates a gradual
decline (-9% in comparison to the pre-pandemic year), it is not decreasing at a fast
enough pace to reach the EU target of halving the number of deaths by 2030, as
illustrated in Figure 1.3.
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Figure 1.3: Evolution of road fatalities in the EU, 2001-2022.
(Source: European Commission, 2023)

Moreover, progress in this regard remains inconsistent among EU Member States.
Notably, Lithuania and Poland reported the most substantial declines, exceeding 30%,
between 2019 and 2022. However, Poland's fatality rate, while improved, remains
above the EU average. Conversely, during the last three years, Ireland, Spain, France,
Italy, the Netherlands, Slovakia, and Sweden have experienced either stagnation or
an increase in the number of road deaths.

The overall ranking of countries based on fatality rates has remained relatively stable

since the pre-pandemic period. Sweden (with 22 fatalities per million inhabitants) and
Denmark (26) remain the countries with best road safety performance, while Romania
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(86) and Bulgaria (78) reported the highest fatality rates in 2022. The EU's average
fatality rate in 2022 was 46 road fatalities per million inhabitants (Figure 1.4).

Moreover, Figure 1.4 reveals that Greece, the author's native country and the location
of the National Technical University of Athens, ranked 24th among the 27 EU Member
States in 2022, with 61 road fatalities per million population, exceeding the EU average
of 46. Further details regarding the national road safety state are available in the
following subsection.
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Figure 1.4: Road fatalities per million population in the EU, 2019-2022.
(Source: European Commission, 2023)

1.1.3 Road Safety in Greece

In 2022, 635 road fatalities (provisional data) were recorded in Greece (Hellenic
Statistical Authority, 2023). This places Greece at the 24th position within the EU in
terms of road safety performance. However, during the decade 2010-2020, Greece
achieved the most remarkable improvement in road safety among EU Member States.
As evident in Figure 1.5, depicting the evolution of key road safety figures in Greece,
there was a 54% reduction in the number of road fatalities, surpassing the target of a
50% reduction.
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Basic road safety figures in Greece, 2010-2022
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Figure 1.5: Evolution of basic road safety figures in Greece, 2010-2022.
(Sources: Hellenic Statistical Authority, 2023; European Commission, 2023)

Table 1.1: Comparison of Greek and EU road crash statistics, 2019.
(Sources: Hellenic Statistical Authority, 2023; CARE database)

2019120102019 (%)

|
2019 (%)

Total fatalities 688 -45% 100% || 100%
Drivers 470 -44% 68% 65%
Passengers 73 -10% 1% 15%
Pedestrians 145 -19% 21% 20%
Inside built-up areas 370 -38% 54% 39%
Outside built-up areas 318 -52% 46% 61%
On motorways 50 -43% 7% 9%

Passenger Cars 202 -63% 29% 44%
Motorcycles/Mopeds 247 -55% 36% 18%
Bicycles 22 -4% 3% 9%

Young drivers (18-24) 61 -54% 9% 8%

Older drivers (65+) 99 -24% 14% 15%
Children (0-14) 12 -60% 2% 2%

Male drivers 441 -43% 64% 55%
Female drivers 29 -52% 4% 8%

In crashes with Heavy Goods Vehicles 40 -61% 6% 13%
Drivers/Passengers in single-vehicle crashf 280 -44% 1% 31%
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The comparison of Greek and EU road crash statistics for 2019, as presented in Table
1.1, reveals the most significant road safety problems in Greece. One of them is the
particularly high rate of Powered Two-Wheeler (PTW) (motorcycles and mopeds)
riders’ fatalities (36%), which was twice the respective EU average (18%). In 2019,
Greece also presented one of the highest rates (54%) of road fatalities inside built-up
areas. Moreover, 41% of total road fatalities were vehicle occupants in single-vehicle
road crashes (EU average 31%). Greece performs poorly in regards to road fatalities
occurring inside built-up areas and in single vehicle crashes, which are both
associated with the high traffic of motorcycles and related crashes, but also with
significant deficiencies (e.g., high rates of speeding and driver distraction, low seatbelt
and helmet use rates, poor enforcement of traffic violations, inadequate public
transport network, etc.).

1.1.4 Surrogate Safety Measures

Road crashes are a complex phenomenon affected by several parameters that can be
categorized into three distinct aspects: (i) road users (drivers, riders, passengers and
pedestrians), (ii) vehicles and (iii) road infrastructure and environment. Among these
main categories, it has been observed that the vast majority of road crashes can be
attributed to human factors and human error, either exclusively or partially, accounting
for rates as high as 94% (Singh, 2015). This particularly high percentage of
responsibility for the human factor in the causal chain of road crashes points out the
importance of studying and analysing driver behaviour.

A large array of methods has been used so far in the international literature to study
driver behaviour. For instance, questionnaire surveys are a traditional way of collecting
data of road users self-declared behaviour in traffic and general road safety attitudes
or perceptions (Rowe et al., 2015; Pires et al., 2020). Furthermore, a common way of
collecting data on driver behaviour (e.g., driver distraction, seatbelt use, traffic rule
compliance etc.) is roadside observation (Yannis et al., 2011; Sullman, 2012; Prat et
al., 2015). Another widely used family of methods is the exploitation of driving
simulators. Driver simulators can be used to extract various metrics related to speed,
reaction time, lane position, headway distance, distraction, fatigue and others in a safe
and virtual road environment (Lenné et al., 1997; Calvi & D'amico, 2013; Papantoniou
et al., 2019).

Apart from these methods, the recent swift technological development in naturalistic
driver recording has led to a growing abundance of data from sensors in vehicles and
smartphones, which can be used to assess driver behaviour (Ziakopoulos et al., 2020).
More specifically, smartphone sensors like accelerometers, gyroscopes,
magnetometers, and GPS enable the extraction of various driver performance metrics
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and Surrogate Safety Measures (SSMs) through a low-cost and rapid manner, without
the need for user interaction (Mantouka et al., 2018).

SSMs encompass a wide range of metrics and parameters, which are not directly
derived from or rely on crash data. These measures possess various advantages
when compared to historical crash data. Specifically, they serve as a proactive
approach, enabling road safety analyses before the occurrence of road crashes (Tarko
et al., 2009). In contrast, crash data collection relies heavily on manual methods, which
can be related to limitations such as inaccurate data and under-reporting (Imprialou &
Quddus, 2019; Yannis et al., 2014).

The exploitation of SSMs in the field of road safety facilitates the understanding of
crash-leading factors and allows for evaluating the effectiveness of different
countermeasures (Tarko, 2018). Wang et al. (2021) divided SSMs into two main
groups: (i) SSMs and (ii) SSM-based models. The first group encompasses SSMs that
are time-based, deceleration-based, or energy-based. It includes SSMs that use
predefined thresholds for traffic conflicts’ detection, such as Time-to-Collision (TTC),
Post-Encroachment Time (PET), Time-to-Crash (TC) and Deceleration Rate to Avoid
the Crash (DRAC) (Bonela & Kadali, 2022). On the other hand, the other group of
SSMs focuses on establishing a direct link between each traffic conflict and either a
crash or a non-crash outcome, by estimating its crash probability (Songchitruksa &
Tarko, 2006; Wang & Stamatiadis, 2014). This kind of SSMs can be also derived from
simulation processes (Gettman & Head, 2003).

In addition, the constant advancement in technology has made smartphones a key
choice for collecting data on SSMs, particularly regarding harsh driving behaviour
events such as harsh braking and harsh acceleration (Nikolaou et al., 2023b). It is
important to mention that the two aforementioned harsh driving behaviour events are
distinct occurrences that take place in different traffic situations and should not be
analyzed together as a single phenomenon. Firstly, drivers who experience higher
levels of anger, frustration, and anxiety tend to exhibit increased acceleration values
and apply higher physical pressure on the accelerator pedal (Stephens & Groeger,
2009). On the other hand, drivers more typically engage in harsh braking events as a
reaction to various potentially hazardous situations, aiming to prevent near misses or
collisions (Ziakopoulos et al., 2022).

All in all, SSMs can either be an alternative to road safety analyses or even
complement analyses that are based on historical crash records (Johnsson et al.,
2018). SSMs such as time-to-collision, harsh braking, post-encroachment time and so
on, are widely proposed in transportation science and are particularly useful in order
to assess road safety when detailed crash data are not available. Such events are of
particular importance in evaluating driving risk (Gunduz et al., 2017) since they are
inherently associated with the likelihood of a road crash (Tselentis et al., 2017).
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1.2 Objective

Taking the previous into consideration, the primary objective of this dissertation is to
assess road crash risk by fusing infrastructure, traffic, and driving behaviour data. This
combination of data outlines a highly promising research field. However, the practical
integration of these data types is often hindered by inadequate availability or low
quality of the data. Consequently, this dissertation initially explores the feasibility of
developing comprehensive crash prediction models in Greece by leveraging these
diverse data types. A pivotal aspect of this exploration is the availability of high-quality
crash data especially in terms of crash location recording.

Hence, for roads where high-quality data can be obtained, statistical models are
developed, and machine learning techniques are applied to investigate the influence
of geometric characteristics, traffic attributes, and naturalistic driving behaviour
metrics on road crash occurrence and corresponding crash risk per examined road
segment. A critical aspect of this research entails thoroughly exploring the reliability of
harsh driving behaviour events as SSMs and their utilization for assessing the safety
levels of road segments across various road environments where detailed road crash
data are unavailable.

To achieve these outlined objectives, a plethora of statistical tools, spatial analyses,
and machine learning techniques were employed within the framework of this
dissertation. These methodologies include the following:

- Generalized Linear Model (GLM) with Negative Binomial (NB) distribution,

- Hierarchical Clustering (HC),

- Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest
Neighbours (K-NN), Support Vector Machines (SVM),

- SHapley Additive exPlanations (SHAP values),

- Log-linear Regression, Spatial Error Model (SEM), Spatial Lag Model (SLM),

- Zero-Inflated Negative Binomial (ZINB) Model, Spatial Zero-Inflated Negative
Binomial (SZINB) Model,

- Spatial Random Forest (SRF).

These objectives are expected to lead to knowledge which will be useful for reducing
crash occurrence, and increasing overall road safety levels.
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1.3 Methodology of the Dissertation

To fulfill the scientific objectives outlined in this doctoral dissertation, a series of
methodological steps were systematically executed. The steps are delineated within
this subsection and visually represented in Figure 1.6. The methodological framework
for this doctoral dissertation is designed to address a set of pertinent research
questions through a systematic and comprehensive approach. The key elements of
the methodological framework encompass a thorough Literature Review, precisely
formulated Research Questions, and a structured sequence of steps.

The foundation of this overarching methodological framework rests upon an extensive
literature review, providing contextualization and insights into the existing knowledge
on road crash risk assessment through the utilization of SSMs collected under real
road environment conditions. This review informs the subsequent research questions
and guides the selection of appropriate methodologies. These research questions
serve as the driving force behind the entire research endeavor, exploring the
integration and analysis of infrastructure, traffic, and driver behaviour data for
meaningful conclusions in road crash risk assessment.

The core of the methodological framework involves a multi-step process, starting with
the investigation of road safety modelling data in Greece, laying the groundwork for
subsequent directions. This investigation highlighted the limitation of conducting high-
detailed crash prediction modelling in Greece, feasible only for motorways with high-
quality crash data, in terms of crash location, and traffic attributes per road segment.
To that end, two distinct databases were developed, one for motorway segments with
comprehensive data on historical road crashes, traffic, road geometry characteristics,
and naturalistic driver behaviour metrics, and the other for a road network including
urban and interurban roads, which lacked detailed crash and traffic data, comprising
only geometric characteristics and naturalistic driver behaviour metrics for the
examined road segments.

With the problem under consideration as well as the scientific literature in mind, a
methodological investigation explored the underlying theory of statistical models and
Machine Learning (ML) techniques suitable for road crash risk assessment analysis.
The analysis of motorway data entailed the application of several methodologies.
These included utilizing a GLM with NB distribution to predict crash frequency,
employing HC to establish crash risk levels for motorway segments based on historical
road crash and traffic data, and deploying various ML classifiers—such as LR, DT,
RF, K-NN, and SVM—for predicting crash risk levels by exploiting road geometry
characteristics and driver behaviour metrics. Special emphasis was placed on
assessing the reliability of harsh driving behaviour events as SSMs.
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Upon evaluating the statistical significance and coefficients’ signs of the NB crash
frequency regression model, as well as considering SHAP values from the best-
performing ML classifier for crash risk level prediction, it was deduced that harsh
braking events could be meaningfully regarded as SSMs. These events are deemed
suitable as dependent variables for both statistical and ML models, particularly when
confronted with unavailable crash data or faced with issues related to the low-quality
recording of crash locations.

The framework extended to urban and interurban road network data, where harsh
braking events were examined for spatial autocorrelation using Moran's I and served
as a key metric for road crash risk assessment. The subsequent analyses
encompassed both non-spatial models (Log-linear, Zero-Inflated, Random Forest) and
spatial models (SEM, SLM Zero-Inflated with spatial lag, SRF), aiming to identify
statistically significant road infrastructure and driver behaviour parameters affecting
the number of harsh braking events per road segment. Additionally, a performance
comparison between spatial modelling approaches and their non-spatial counterparts
was also conducted.

The final stage synthesized the findings from the aforementioned analyses, leading to
a comprehensive road crash risk assessment. In summary, this methodological
framework is a structured and logically sequenced process that combines statistical
modelling, machine learning techniques, and spatial analyses to address the research
questions of this doctoral dissertation and achieve the overarching objective of
assessing road crash risk and enhancing road safety.

Further details on the methodological background and implementation of the

techniques applied in this doctoral dissertation are presented in the subsequent
sections.
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Figure 1.6: Graphical representation of the overall methodological framework
of the doctoral dissertation
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1.4 Structure of the Dissertation

The remainder of this doctoral dissertation is organized in nine sections which are
briefly described within this subsection.

Section 2 provides a review of the scientific literature of studies exploiting SSMs in
historical crash record investigations. It showcases the main review findings in terms
of the different types of SSMs and crashes, modelling approaches, and the temporal
dimension of the data used in the examined studies. Subsequently, it discusses overall
findings and trends, future research directions, and outlines the specific research
questions that this doctoral dissertation aims to address.

Section 3 describes the overall methodological framework employed to achieve the
objectives of this doctoral dissertation and delves into the theoretical foundations of
the analytical methods and models utilized throughout the dissertation.

Section 4 investigates and discusses the availability and accuracy of road safety
modelling data in the primary rural road network of Greece, focusing on three types of
data that are considered most critical: crash, traffic and road geometry data. The
exploitation of smartphone data related to driver behaviour is also discussed.

Section 5 provides technical information on the process of data collection and
descriptive statistics for the Olympia Odos motorway. The developed database
includes data on road crashes, traffic, road geometry and driver behaviour per
motorway segment. Detailed road crash and traffic data were kindly provided by the
road operator. Road infrastructure data, sourced from tools like Open GIS software,
Google Earth, and GoogleStreetView, were consolidated. Additionally, smartphone
data were utilized for capturing naturalistic driver behaviour metrics.

Section 6 examines the relationship between road crash frequency in motorway
segments and various explanatory variables based on road design characteristics and
SSMs. Additionally, clusters representing crash risk levels of the examined motorway
segments, based on crash and traffic data, are established. Furthermore, this section
compares the classification performance of five well-known ML techniques that exploit
road design data and SSMs to predict the crash risk level of motorway segments.

Section 7 describes the development of a database for the road network in the Eastern
Macedonia and Thrace Region, including urban and interurban roads. As detailed
traffic and crash data (in terms of geo-location) were unavailable for these roads, the
resulting database includes only geometric characteristics and naturalistic driver
behaviour metrics sourced from OpenStreetMap (OSM) and smartphone data,
respectively. Key descriptive statistics for the considered variables are also provided.
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Section 8 focuses on analysing harsh braking event frequencies per road segment
within the Region of Eastern Macedonia and Thrace, and correlating them with various
road network characteristics and driving behaviour metrics. To that end, various spatial
modelling techniques, including SEM, SLM, SZINB and SRF are employed on harsh
braking events frequencies.

Section 9 presents the conclusions of the thesis and discusses the contribution to
knowledge, the limitations as well as the recommendations for further research.

Lastly, a complete list of the bibliographical references is provided.
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2. Literature Review

2.1 Introduction

Road crashes and their related casualties constitute a major societal and public health
problem as it is estimated that more than 1.19 million people are killed in road crashes
and tens of millions are seriously injured annually (World Health Organization, 2023).
Improving road safety is also included as a key component of the United Nations’
Agenda, as manifested by Sustainable Development Goals (SGDs) 3.6 and 11.2,
which aim to reduce road fatalities and injuries by half and provide sustainable and
safe transport for road users of all age groups respectively (United Nations, 2022).
Until now, the main indicator for measuring road safety outcomes has been historical
crash data, considered to be hard evidence for the measurements of road safety
performance. Even if it is natural to rely on road crash historical records for the
assessment of the road safety level of an examined area or road, specific drawbacks
of road safety analyses based on historical crash records have been determined as
well.

In particular, a long period of time is typically required to collect a sufficient sample of
road crash data that could allow for reliable estimates of the road safety level as road
crashes are rare events by nature (Theofilatos et al., 2019). When examining large
geographical areas, road crashes also face the typical issues inherent in all point data
such as spatial dependence and spatial heterogeneity (Ziakopoulos & Yannis, 2020).
Moreover, any before-and-after study based on historical crash records for the
evaluation of the implementation of a road safety measure may be biased by the
regression-to-the-mean phenomena (Elvik, 2008). In addition, significant
discrepancies are found between the non-fatal road crash injury data provided by
various data sources. This problem is known as under-reporting and several studies
indicate that the Police Departments do not report an appreciable proportion of road
crash injuries, whereas the extent of under-reporting may vary depending on the
severity of the injuries or the road user types (Yannis et al., 2014; Janstrup et al.,
2016). Apart from the aforementioned, it can be perceived that road safety analyses
based on historical crash records are a reactive approach that forces road safety
analysts to wait for road crashes to occur in order to examine measures that could
prevent them and should rely on valid crash data, including accurate location data,
which is not always the case (Imprialou & Quddus, 2019).

Therefore, over the past few years, significant efforts have been made in utilizing
SSMs in order to address this issue (Wang et al., 2021). SSMs include all measures,
parameters, or quantities, which do not stem directly from or rely on crash data. Such
approaches are a sustainable way of gauging road safety and may be more preferable

[57]



Dimitrios Nikolaou | Machine learning-based road crash risk assessment
fusing infrastructure, traffic and driver behaviour data

as they allow for road safety analyses before the physical occurrence of road crashes.
According to Tarko (2018), the use of SSMs in the field of road safety aids in the
detection of road crashes’ excessive risk, the knowledge improvement of crash-
leading conditions, and the effectiveness estimation of various countermeasures.
Wang et al. (2021) provide a comprehensive review of important SSMs and divide
them into two key categories: (i) SSMs and (ii)) SSM-based models. The first category
includes key time-based, deceleration-based, and energy-based SSMs. These
subcategories include predominant SSMs that use predefined thresholds for traffic
conflicts’ identification and are used widely across studies in the road safety literature
such as Time-to-Collision (TTC), Post Encroachment Time (PET), Time-to-
Crash/Accident (TC/TA) and Deceleration Rate to Avoid the Crash (DRAC) (Bonela &
Kadali, 2022). On the other hand, the second category aims to directly associate each
traffic conflict with either a crash or non-crash outcome, by estimating its crash
probability (Songchitruksa & Tarko, 2006; Wang & Stamatiadis, 2014).

Initially, data collection of SSMs was based on roadside observation techniques
(Sayed & Zein, 1999). As it can be intuitively perceived, such approaches were not
accurate as they were based on subjective criteria (Shinar, 1984). In order to reduce
such biases, video-based measurements were introduced many years ago (Hydén,
1987) and have been improving significantly since then. Recent, technological
advancements have led to more advanced techniques that reduce human
interventions and deploy computer vision and sensor techniques (Chen et al., 2017,
Laureshyn et al., 2017; Wu et al., 2018). Moreover, several simulation-based analyses
have been conducted aiming to derive SSMs from traffic simulation models (Gettman
& Head, 2003; Mahmud et al., 2019). The rapid technological development in
naturalistic driver recording has also brought about an increasing availability of data
from sensors in vehicles and smartphones that can be used to extract various SSMs
such as TTC, harsh braking events, and harsh acceleration events (Guido et al., 2012;
Fazeen et al., 2012; Ziakopoulos et al., 2022). All in all, SSMs can either be an
alternative to road safety analyses or even complement analyses that are based on
historical crash records (Johnsson et al., 2018).

Within this framework, the aim of this literature review process is to provide a review
of the scientific literature of studies exploiting SSMs in historical crash record
investigations. More specifically, this review process focuses on studies that attempt
either (i) to investigate the correlation of SSMs and historical crash records or (ii) to
predict the number of expected road crashes through SSMs and then compare them
with the historical crash records. The different types of SSMs, the manner in which
they are collected, their connection with specific road crash types, and the type of the
developed statistical models are examined and discussed. Particular emphasis is
placed on the temporal periods dedicated to data collection for both the SSMs and
road crash data, as uncertainties in the length of the data collection periods are a
problem typically investigated in driver recording (Stavrakaki et al., 2020). In order to
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achieve this aim, published scientific studies that are authored in English are critically
examined. It should be mentioned that this literature review only includes relevant
papers that concern SSMs collected under real road environment conditions, as
opposed to studies that are based on traffic simulation and driver simulators.

During the review process, studies dealing with the use of traffic conflict techniques
for use in-road safety assessments were also identified. Arun et al. (2021b) focused
on mapping the concepts and methods related to surrogate safety assessment using
traffic conflicts. Their study deals with specific topics such as the concept of crash
surrogacy, the definition and identification of traffic conflicts, and the specification of
the relationship between crashes and conflicts. In other studies, Arun et al. (2021a)
assessed the different traffic conflict safety thresholds among various road
environments and applications, while Zheng et al. (2021) discussed various
conceptual and methodological issues related to traffic conflict modelling. However,
this literature review presents novelty in different areas. Specifically, it (i) exclusively
investigates studies that use both SSMs and historical crash records, (ii) extends
beyond measures with predefined thresholds for traffic conflicts’ identification to SSMs
that can be extracted from smartphone sensors and instrumented vehicles related to
harsh driving behaviour events, and (iii) sheds light on the temporal periods dedicated
to data collection for both SSMs and crashes.

Following this Introduction, this section is organized as follows. Section 2.2 describes
the methodological framework of this literature review, including the Preferred
Reporting Items for Systematic Reviews and the Meta-Analyses (PRISMA) approach
that was adopted. Section 2.3 showcases the main review findings in terms of the
different types of SSMs and crashes, various modelling approaches, and the temporal
dimension of the data used in the examined studies. Subsequently, a discussion of
overall findings and trends from the reviewed studies and some future research
directions are provided in Section 2.4. Lastly, Section 2.5 comprises the research
questions that this doctoral dissertation seeks to address meaningfully, presenting
substantial results and findings in the subsequent sections.
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2.2 Review Methodology

The current review was carried out during June 2022 and adhered to the PRISMA
guidelines (Moher et al., 2009). The search was undertaken in the Scopus, TRID and
Web of Science databases; Figure 2.1 depicts the search terms and the study
selection process. It should be noted that there was no specific search restriction on
the publication date of the examined articles. Moreover, articles had to be peer-
reviewed before publication and authored in English which is the predominant written
language in the global scientific literature. Emphasis should be placed on the fact that
the present review process aims to provide a review of the scientific literature
regarding studies exploiting SSMs towards historical crash record investigations and
thus includes only studies that were conducted under real road environment conditions
(as opposed to simulators).

After the exclusion of some papers based on their titles and abstracts, a total of 52
articles were selected for full-text review. After the full-paper review, 18 studies were
excluded for not meeting the inclusion criteria (e.g., absence of historical crash data
or SSMs, separate statistical models for SSMs and road crashes, crash data available
but not used in statistical modelling, etc.). Finally, 34 articles were identified and
reviewed. The literature review findings are presented and discussed in detail in the
following subsections.
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Figure 2.1: PRISMA flow diagram
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2.3 Review Findings
2.3.1 Types of Surrogate Safety Measures and Historical Crash Data

As already pointed out in the introductory section of this literature review process,
SSMs can be leveraged in road safety analyses in two ways. On one hand, they can
provide an alternative to road safety analyses when road crash data are not available
as a proactive approach. On the other hand, SSMs complement analyses based on
historical crash records, which is also the main subject of this review process. The key
information about the SSMs and historical crash records (types and temporal
dimension), modelling approaches, the scale of analysis, and other considered
variables used in the reviewed studies are summarized in Table 2.1, sorted by means
of collection for SSMs. It should be noted that the column named “Temporal Ratio” of
Table 2.1 has been calculated due to the observed discrepancies in data collection
period lengths for road crashes and SSMs. The values of this column are
dimensionless numbers as they have been calculated by converting the crash and
SSMs data collection periods into the same time units.

Technological improvements during recent decades have led to the development of a
wide array of sophisticated tools that provide more rich and rapid data acquisition in
terms of various aspects of driving performance (Ziakopoulos et al., 2020). As can be
observed from Table 2.1, during the last five years, the use of smartphone data has
also begun to gain significant ground in studies featuring SSMs (Strauss et al., 2017;
Paleti et al., 2017; Stipancic et al., 2018a; Stipancic et al., 2018b; Stipancic et al.,
2019; Yang et al., 2019; Khorram et al., 2020; Guo et al., 2021). Exploiting smartphone
sensors such as accelerometers, digital compasses, gyroscopes, and GPS allows the
extraction of various driver performance metrics and SSMs through an inexpensive
and rapid way, even without requiring user engagement (Mantouka et al., 2018).

The SSMs collected via smartphone sensors in the examined studies concern harsh
driving behaviour events such as harsh braking and harsh acceleration. Harsh braking
events are generated by drivers as a reaction to various possibly dangerous situations
in order to avoid a near miss or even a road crash (Ziakopoulos et al., 2022). Moreover,
harsh braking events are a critical element for the assessment of driving risk (Glindlz
et al.,, 2017), as they are innately associated with crash occurrence probability
(Tselentis et al., 2017). However, harsh acceleration events are different phenomena
than harsh braking events, as they are mainly affected by drivers’ levels of anger,
frustration, and anxiety (Stephens & Groeger, 2009). Based on previous studies, it is
noted that the levels of deceleration and acceleration that define harsh braking and
harsh acceleration events respectively may vary across different studies and transport
modes (Kamla et al. 2019; Park et al. 2021).
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Specifically, in a relevant summary table presented in a study by Kamla et al. (2019),
the thresholds of harsh brakings are recorded, ranging from 1.96 m/s? for trucks
(Blanco et al., 2011) to as high as 8.43 m/s? for passenger cars under dry surface
conditions (Greibe, 2007). Regarding certain studies included in Table 2.1, the
thresholds for harsh braking are as follows: 2 m/s? (Stipancic et al., 2018a), 2.67 m/s?
(Desai et al., 2021; Hunter et al., 2021), 3.4 m/s? (Strauss et al., 2017), and 4 m/s?
(Kim et al., 2016).

A frequent barrier encountered in studies exploiting harsh events is that they do not
provide their specific thresholds and calculation methods for commercial reasons (Guo
et al., 2021; Kontaxi et al., 2021; Zhao et al., 2022). Indicatively, the data provider for
the analyses of the study by Yang et al. (2019) mentions that a harsh braking event is
identified if a reduction in the speed is fast enough to thrust the driver and passengers’
bodies forward hard enough to cause the seatbelt to lock.

As can be observed from Table 2.1, naturalistic driving experiments using
instrumented vehicles are another frequently selected option for collecting SSMs.
These experiments are a quite similar alternative to smartphone data but much more
expensive as there are significant costs that depend on the equipment used (Ball &
Ackerman, 2011) and the duration of the experiment (Regan et al., 2012). The majority
of the SSMs collected through instrumented vehicles range in a similar concept to the
data collected by smartphones and concern harsh driving behaviour events (Kim et
al., 2016; Pande et al., 2017; Ambros et al., 2019; Kamla et al., 2019; Mousavi et al.,
2019; Stipancic et al., 2021; Desai et al., 2021; Hunter et al., 2021; Li et al., 2021a;
Park et al., 2021; Li et al., 2021b). Apart from these studies that focus on harsh driving
behaviour events, traffic conflicts and related measures for rating their severity have
also been examined in other naturalistic driving experiments using instrumented
vehicles (Lu et al., 2011; He et al., 2018).
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Table 2.1: Studies exploiting SSMs in historical crash record investigations

Khorram et al. . . . driver age & Bus driver at- Pearson correlation, 2 routes
harsh braking | 176 bus drivers | smartphone | 4 months length deceleration . 3 years 9 (13km,
(2020) experience fault GLM (NB) 10km)
. . traffic random parameters
Paleti et al. harsh braking, | 11 Qr|vers, 228 interchange, volume, avg 4-6pm Generalized Ordered | 513 freeway
harsh trips, 58h of smartphone 1 year 1 year 1 .
(2017) . - surface speed, SD weekdays Response Probit segments
acceleration | driving (4-6pm) .
acceleration (GORP)
congestion, . .
- 5 . INLA Full Bayesian | 1000 links
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speed
variation
harsh braking, . traffic
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. Spearman
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The term traffic conflict denotes an observable event that would end in a road crash
unless one of the involved road users slows down, changes lane, or accelerates to
avoid a collision (Risser, 1985). Based on Table 2.1, it is demonstrated that the
collection of traffic conflict-related SSMs under real road conditions in the majority of
the examined studies is based on video recordings (Alhajyaseen, 2015; Zheng et al.,
2019; Wang et al., 2019; Mukherjee & Mitra, 2020; Johnsson et al., 2021; Fu & Sayed,
2021a; Fu & Sayed, 2021b). Conflict surveys through field observations are another
option for collecting such data (El-Basyouny & Sayed, 2013). When real vehicle
trajectories and speeds are not available, simulation models are widely used
(Gettman, & Head, 2003; Saccomanno et al., 2008). However, simulation studies fall
outside the scope of this literature review research and are not discussed further.

Among the different traffic conflict-related SSMs used in the reviewed studies, it can
be observed that PET, TTC, and DRAC are the most widely used. According to
Gettman and Head (2003), PET is defined as the time elapsed between the
encroachment’s end of the turning vehicle and the time that the trough vehicle reaches
the potential point of the crash, while TTC corresponds to the expected time for two
vehicles to collide if they maintain their present speed and path. Various modifications
of the TTC have been used in the examined studies such as the minimum TTC (mTTC)
(Wang et al., 2019; Johnsson et al., 2021), which corresponds to the TTC’s lowest
values obtained, and the modified TTC (MTTC) proposed by Ozbay et al. (2008) that
takes into account relative position, relative speed and relative acceleration of the
conflicting vehicles (Zheng et al., 2019; Fu & Sayed, 2021b). Lastly, DRAC
corresponds to the minimum deceleration rate required by the following vehicle to
come to a timely stop (or match the leading vehicle’s speed) and hence to avoid a
crash (Zheng, & Sayed, 2019). However, a frequent issue encountered in such studies
and also identified by a relevant study is that the safety thresholds of conflicts vary by
traffic environment type and the application purposes of conflict measures (Arun et al.,
2021b).

According to Lu et al. (2014), connected vehicles are the key to the evolution of next-
generation intelligent transportation systems. In addition, they are expected to bring
multiple benefits to driving behaviour monitoring tools as well (Ziakopoulos et al.,
2020). Table 2.1 reveals that, when utilized, connected vehicles are an additional
emerging option for studies exploiting SSMs for historical crash record investigations
and can be a standardized, streamlined, and seamless collection source of both harsh
event and traffic conflict data (Xie et al., 2019; Hu et al., 2020; Yang et al., 2021).

Regardless of how SSMs are collected, in most of the studies reviewed, the type of
historical road safety data used is either the absolute number of total crashes or the
number of total road crashes divided by a risk exposure indicator such as the number
of vehicles or vehicle kilometers traveled (Lu et al., 2011; Mousavi et al., 2019; Li et
al., 2021b). Furthermore, the severity of road crashes is not taken into account in the
majority of the studies included in Table 2.1. However, there are certain studies that
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focus on serious or fatal road crashes (Alhajyaseen, 2015; Mukherjee & Mitra, 2020).
Several studies attempt to correlate SSMs with specific road crash types such as rear-
end, angle and single-vehicle crashes (Wang et al., 2019; Ambros et al., 2019; Hunter
et al., 2021; Yang et al., 2021). Other research studies focus on specific road crash
characteristics such as the weather conditions, and the time or the day of the crash,
which usually correspond to the conditions of SSM collection (Paleti et al., 2017; Fu &
Sayed, 2021b). Moreover, the historical crash records of some other studies target
specific road user types such as vulnerable road users (Strauss et al., 2017; Li et al.
2021a; Johnsson et al., 2021) and drivers of various transport modes (Khorram et al.,
2020).

Lastly, in addition to the SSMs and historical crash data, most of the examined studies
in Table 2.1 include some supplementary variables that are mainly related to road
infrastructure and traffic. Among these variables, road length and road class prevalil
for infrastructure, while traffic volume and speed prevail for traffic parameters.

2.3.2 Modelling Approaches

This subsection of the review process gives a brief overview of the various modelling
approaches implemented in the reviewed studies that are presented in Table 2.1 and
exploit SSMs for historical crash records. Initially, it can be observed that some studies
are only limited to different correlation methods, such as Pearson or Spearman
correlation, which aim to measure the strength of association between SSMs and road
crashes (Kim et al., 2016; Strauss et al., 2017; Stipancic et al., 2018b; Xie et al., 2019).
Certainly, correlation matrices are also included in other studies as a preliminary step
before the development of more advanced statistical models (Khorram et al., 2020;
Stipancic et al., 2021; Hunter et al., 2021; Li et al., 2021a).

GLMs have been implemented widely in the road safety literature for many years, as
they assume that crashes are independent, random, and sporadic countable events
(Dobson & Barnett, 2018). Based on Table 2.1, it is observed that Poisson (Guo et al.,
2010; Mukherjee & Mitra, 2020; Hunter et al., 2021) and NB models (El-Basyouny &
Sayed, 2013; He et al., 2018; Ambros et al., 2019; Mousavi et al., 2019; Khorram et
al., 2020; Park et al., 2021; Johnsson et al., 2021) are the most common forms of
GLMs among studies exploiting SSMs for historical crash record investigations, with
NB models being more prevalent than Poisson models. The key difference between
these two GLM forms has to do with the fact that NB models relax the equal mean and
variance assumption of the Poisson model, which can account for overdispersion
resulting from unobserved heterogeneity and temporal dependency (Lord &
Mannering, 2010). Specific research documents among the reviewed studies have
also introduced random effects to GLMs in order to extend them to Generalized Linear
Mixed Models (GLMMs) and account for unobserved heterogeneity (Pande et al.,
2017; Kamla et al., 2019).
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Several of the reviewed studies have also attempted to incorporate into their analyses
the effects of various road safety indicators’ spatial characteristics. Bayesian
approaches are widely used to consider the spatial correlation for modelling crash
frequencies. In that context, Li et al. (2021a) developed a Bayesian NB model with
conditional autoregression (CAR) prior to accounting for spatial correlation between
neighbouring bus stops. The results of this research indicated the necessity of
considering spatial autocorrelation during the crash frequency model process as the
developed Bayesian NB-CAR model outperformed the Bayesian model in terms of
various model evaluation metrics. In another study, both the spatial and temporal
dependence of crash observation were taken into account in a multivariate conditional
autoregressive (MVCAR) model in the full Bayesian framework (Yang et al., 2019).

Yang et al. (2021) proposed a new safety measure termed Risk Status, which was
modeled as a latent variable in a Structural Equation Model in the Bayesian framework
that could account for both spatial autocorrelation through CAR spatial effect and
unobserved heterogeneity through road segments random parameters (i.e., SEM-
CAR-RP). Overall, SEM is a powerful multivariate tool for jointly modelling
interrelationships among observed and latent variables (Washington et al., 2020).
However, the proposed approach of SEM-CAR-RP extends the methodological
frontier of SEM applications in the field of road safety as it was found to be superior
compared to more traditional alternatives of SEMs that did not take into account CAR
spatial effect and unobserved heterogeneity. This finding demonstrates that various
fundamental methodological issues of crash data modelling such as spatial
autocorrelation, unobserved heterogeneity, etc. need to be investigated when
exploring data from new data sources similar to those that were presented in Section
2.3.1. Paleti et al. (2017) developed a random parameter Generalized Ordered
Response Probit (GORP) model which is a type of model that can easily handle over
or under-representation of multiple count outcomes at the same time without
demanding a hurdle or zero-inflated model. The outcomes of this research revealed
that the best-performing model was one including measurement error, random
parameter heterogeneity, and spatial dependency.

In a more straightforward approach, Li et al. (2021b) utilized a line-constrained
clustering method that combines Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) with spatial selection functions in order to identify individual-specific
risky road segments. Latent Gaussian Models (LGMs) are a subcategory of structure
additive models, in which the dependent variable for each subject follows a distribution
from the exponential family and can introduce temporal or spatial dependence
(Blangiardo & Cameletti, 2015). This spatial modelling approach using the Integrated
Nested Laplace Approximation (INLA) technique has been chosen as an appropriate
tool for road network screening (Stipancic et al.,, 2018a; Stipancic et al., 2019;
Stipancic et al., 2021). The INLA approach was introduced by Rue et al. (2009) as a
computationally efficient alternative to Markov chain Monte Carlo methods. INLA can
be combined with the Stochastic Partial Differential Equation (SPDE) approach
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proposed by Lindgren et al. (2011) in order to implement spatial and spatio-temporal
models for point-reference data (Lindgren & Rue, 2015).

Extreme Value Theory (EVT) is a statistical approach that enables extrapolation from
observed levels to unobserved levels (Coles, 2001), which is in alignment with the goal
of predicting less frequent road crashes from more frequent traffic conflicts. EVT
Models are becoming increasingly popular with substantial developments achieved
recently. These models are mainly used to estimate the number of road crashes and
then compare them to the observed historical crash records. Among studies presented
in Table 2.1, bivariate EVT models have been proposed and it was found that this
approach generated more accurate crash estimates than univariate models (Zheng et
al., 2019; Wang et al., 2019). In a more recent study, Fu and Sayed (2021a) developed
a Bayesian hierarchical extreme value model, which had three layers: the data layer,
the process layer, and the prior layer. However, as also mentioned for different other
model types and highlighted by Zheng et al. (2021), one important issue while
developing such models is accounting for the unobserved heterogeneity across
different observation locations. In order to deal with the issue, Fu and Sayed (2021b)
propose a random parameters Bayesian hierarchical extreme value modelling
approach.

As can be observed in Table 2.1, traditional modelling approaches such as linear or
logistic regression models have been used in a few studies exploiting SSMs for
historical crash record investigations, but are less preferred (Lu et al., 2011;
Alhajyaseen, 2015; Desai et al., 2021; Guo et al. 2021). This is partly also due to the
emergence of ML and Deep Learning (DL) approaches as powerful tools that are
gaining more ground for road safety analyses due to their ability to handle large
volumes of data, their heightened predictive capabilities, and the complex, non-linear
relationships they can disclose. Indicatively, the random forest algorithm is a data-
mining tool that has been used to determine the importance of the variables and
includes in the statistical models the variables with the strongest impacts on road
crashes (Guo et al., 2021; Park et al., 2021). Furthermore, Hu et al. (2020) exploited
SSMs derived from connected vehicles’ data such as harsh braking, harsh
acceleration, and wait time in order to predict the crash risk at intersections using DL
approaches. Their analyses revealed that the performance of two black-box DL
models, Multi-Layer Perceptron (MLP) and convolutional neural network (CNN) was
slightly better than the Decision Tree Model. However, in the context of the examined
studies it can be perceived that ML/DL approaches are not among the most prevalent
methods at present.

In summary, various modelling approaches have been implemented in the reviewed
studies. However, the selection of an appropriate modelling framework depends highly
on the research questions being asked, the available data, and the specific context of
each study. Specifically, the type of crash data being analyzed (e.g., count data, rates
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such as crashes divided by an exposure parameter, categorical/binary data, etc.), the
level of spatial and temporal dependence, and the existence of unobserved
heterogeneity are some factors that should be taken into consideration towards the
selection of a suitable modelling methodology. While there are many different
modelling approaches available in the literature, they should be treated as starting
points for road safety practitioners, rather than definitive guides.

2.3.3 Temporal Dimension

When examining Table 2.1, no clear pattern can be observed with regard to the time
periods of historical road crash data and SSMs collection. This is a constant topic, and
researchers have to anticipate and plan accordingly in the study design process.
Therefore, in this section, the authors attempt to shed light on this issue and identify
potential hidden patterns through the visualization of the respective data in Table 2.1.
As already mentioned in previous parts of the current review process, there are
different ways that can be used to extract SSMs. It is observed that in studies using
smartphones, instrumented vehicles, or connected vehicles the time period for which
the SSMs were collected can vary from a few days (Pande et al., 2017; Park et al.,
2021) to several months (Boonsiripant et al., 2011; Paleti et al., 2017; Kamla et al.,
2019).

On the other hand, SSMs collected through video recordings or conflict surveys are
collected for a few hours (Alhajyaseen, 2015; Wang et al.,, 2019). As per the
aforementioned, this discrepancy was also one of the main incentives for calculating
the “Temporal Ratio” column of Table 2.1. The difference in time periods between the
collection of historical road crash data and SSMs is mainly attributed to the emergence
of new technologies, which allow for the rapid collection of SSMs data and the
conduction of analyses with shorter time periods. The “Temporal Ratio” column could
be interpreted as by how much more time is needed to collect an equivalent sample
of SSMs with road crash data. For this reason, as well as for readability reasons, two
different graphs have been produced. Specifically, Figure 2.2 demonstrates the time
periods of historical road crash data and SSMs collected through smartphones,
instrumented vehicles, and connected vehicles, while Figure 2.3 presents the
respective values for the studies that used video records or conflict surveys for the
extraction of SSMs.
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Figure 2.2: Time periods of historical road crash data and SSMs collected
through smartphones, instrumented vehicles and connected vehicles
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Figure 2.3: Time periods of historical road crash data and SSMs collected
through video records and conflict surveys

Based on Figures 2.2 and 2.3, a general trend that can be observed is that among all
the examined studies the time period of road crash data is always greater than or
equal to the time period of collection of SSMs, as expected from the increased usability
that SSMs provide. Furthermore, regardless of the manner in which SSMs are
collected, it is observed that in the majority of the examined studies (21 out of 34),
historical road crash data used correspond to periods of three to six years.
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Only five of the examined studies, use exactly the same time periods of historical crash
data and SSMs. These studies exploit smartphones (Paleti et al., 2017; Yang et al.,
2019; Guo et al., 2021) and instrumented vehicles (Guo et al., 2010; Desai et al., 2021)
for the extraction of SSMs. It can be observed that they are concentrated in the low
spectrum of the Y-axis of Figure 2.2 as the crash data that they include in their
analyses do not exceed one year. The highest ratio of road crash data time period to
the time period of SSMs corresponds to the studies presented in the upper left part of
Figure 2.2 (Pande et al., 2019; Stipancic et al., 2018a; Stipancic et al., 2019; Park et
al., 2021). In particular, in these studies, the road crash data time period is calculated
to be between 191 and 365 times longer (mean: 239, st.dev: 84.4) than the SSM time
periods. The vast majority of the studies presented in Figure 2.2 are concentrated in
the middle level of the Y-axis and towards the left side of the X-axis. In these studies,
the time period of road crashes is estimated to be between 12 and 130 times longer
(mean: 50, st.dev: 36.3) than that of the SSMs. In addition, there are also some studies
located in the central and upper right part of Figure 2.2 for which the time period of
road crashes is 4-9 times longer than that of SSMs (mean: 7, st.dev: 2.3) (Lu et al.,
2011; Boonsiripant et al., 2011; Ambros et al., 2019; Kamla et al., 2019; Khorram et
al., 2020).

Lastly, the comparison between Figure 2.2 and Figure 2.3 reveals that the ratio of road
crash data time period to the time period of SSMs is much higher in the studies that
collect SSMs through video records or conflict surveys compared to the other studies.
This is due to the fact that the collection of SSMs through video recordings or conflict
surveys requires only a few hours and the historical crash records correspond to time
periods of at least three years, lending further credence to the utility of SSMs due to
their rapid data collection.
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2.4 Discussion
2.4.1 Overall Findings and Trends from Reviewed Studies

SSMs are steadily gaining ground in the road safety literature as they are a sustainable
way of gauging road safety and allow the conduction of analyses without necessarily
requiring historical road crash records. Moreover, the rapid and continuous progress
in the field of technology makes it increasingly easier to collect such indicators.
However, SSMs can also be combined with data from historical road crash records in
order to complement and provide additional information to relevant road safety
analyses. The present research focused on studies that exploit real-condition SSMs
for historical crash record investigations.

The examination of the studies in the framework of this literature review has revealed
some noteworthy conclusions for road safety analyses that combine SSMs and
historical crash data. It appears that the technological development in recent years
has significantly contributed to making smartphones a key choice for collecting SSMs
(Strauss et al., 2017; Paleti et al., 2017; Stipancic et al., 2018a; Stipancic et al., 2018b;
Stipancic et al., 2019; Yang et al., 2019; Khorram et al., 2020; Guo et al., 2021). The
indicators collected through smartphones’ sensors can be quite similar to those
collected by instrumented vehicles (Ambros et al., 2019; Hunter et al., 2019; Stipancic
et al., 2021). However, the cost of collecting SSMs via smartphones is significantly
lower compared to that of instrumented vehicles. A fact that is also reflected by the
increase in the use of smartphones in the relevant studies during the last five years.

The majority of SSMs collected through either smartphones or instrumented vehicles
involve harsh driving behaviour events. Through these studies, it becomes clear that
the most commonly exploited harsh driving behaviour events such as harsh braking
and harsh acceleration events are positively correlated with various types of road
crash counts (Pande et al., 2017; Stipancic et al., 2018a; Stipancic et al., 2019; Yang
et al., 2019; Ambros et al., 2019; Mousavi et al., 2019; Khorram et al., 2020; Li et al.,
2021a; Desai et al., 2021; Hunter et al., 2021) and road crash risk (Guo et al., 2021).
As this relationship is verified by several studies, it can be deduced that harsh events
could be used as dependent variables in statistical models as a proactive approach
that does not require the collection of historical road crash data. Another approach
used to collect SSMs is based on traffic conflicts. As for real road conditions, the
collection of relevant indicators is mainly carried out through the analyses of video
recordings (Alhajyaseen, 2015; Zheng et al., 2019; Wang et al., 2019; Mukherjee &
Mitra, 2020; Johnsson et al., 2021; Fu & Sayed, 2021a; Fu & Sayed, 2021b). As with
the SSMs collected through smartphones or instrumented vehicles, the reviewed
studies based on traffic conflict indicators aimed either to investigate the relationship
between the produced SSMs and historical crash counts or to predict the number of
road crashes and then compare it with the observed crash counts.
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Regarding the type of statistical analyses used in studies that combine SSMs and
historical road crash data, GLMs including their various modifications dominate. There
are also several studies that choose more specialized approaches to take into account
unobserved heterogeneity and spatial dependence as they are among the most
prevalent methodological issues typically faced when dealing with crash data
modelling. Another common approach chosen by the reviewed studies concerns the
different variants of EVT. Finally, it can be observed that ML techniques are not often
used in the reviewed studies. Overall, the research questions, data type, and specific
contextual factors of each study are critical to the choice of the respectively developed
modelling framework.

Finally, a key finding of this literature review that could be also highlighted as its most
significant contribution relates to the time periods for which both the historical road
crash data and the SSMs are collected. Until recently, it was not clear if there was any
particular pattern. This research sheds light on this topic by revealing that in most
studies that collect SSMs via smartphones and instrumented or connected vehicles,
road crash data correspond on average to time periods that are 50 times longer than
the collection periods of the SSMs. In cases of collection of the alternative indicators
through video recordings, the time period of crash data is significantly higher than the
respective period of collection of SSMs.

2.4.2 Future Research Directions

This subsection outlines research directions that do not appear to be sufficiently
investigated from the present literature of studies exploiting SSMs for historical crash
record investigations and can form meaningful upcoming research endeavors. An
important aspect of road safety analyses is the level of injury severity of road crashes.
However, it is observed that in the majority of the studies, severity has not been
adequately investigated as they mainly exploit the total number of all injury road
crashes without taking into account the different severity levels. However, there are a
small number of studies that focus on serious or fatal road crashes (Alhajyaseen,
2015; Mukherjee & Mitra, 2020). The inclusion of the level of injury severity in similar
studies would be highly interesting for the quantification and the comparative
assessment of the relationship between SSMs and different crash severity levels.
Injury severity estimation using SSMs is also highlighted as a critical research need
by Arun et al. (2021a). In that direction, a few recent research studies have attempted
to estimate crashes by severity level using different SSMs (Goyani et al., 2021; Arun
et al., 2022).

Furthermore, most of the reviewed studies focus on road crashes involving all road
users without separating them. However, there are some specific types of road users
such as pedestrians, pedal cyclists, and motorcyclists that are considered vulnerable
road users (VRUs), as they are prone to injury in any vehicular collision, primarily
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because there is little or no external protective device that could absorb the impact of
a road crash (Yannis et al., 2020). It is estimated that VRUs account for half of all road
fatalities globally (World Health Organization, 2023). Moreover, the noteworthy
increase in the use of new micromobility transport modes such as e-scooters in many
cities around the globe has raised particular concerns for the safety of these emerging
types of VRUs (Karpinski et al., 2022). Therefore, more research is needed on the
manner in which various SSMs could be exploited to enhance the safety of VRUs.
Towards this direction, Ali et al. developed a Bayesian Generalized EVT model in
order to estimate real-time pedestrian crash risks at signalized intersections using
Artificial Intelligence-based video analytics (Ali et al., 2023).

Regarding the spatial scale of the analyses, it appears that the examined studies focus
on the microscopic level as they mainly investigate road segments and intersections.
Another promising research direction would be the application of analyses at a more
macroscopic level such as regional areas (cities, metropolitan areas, local
administrative units, etc.). In such cases, apart from different SSMs and road crash
rates, various demographic, socioeconomic, and traffic exposure factors of the
examined areas could be taken into consideration in the analyses. However, it is
important to note that as the size of the examined area increases, capturing
unobserved heterogeneity becomes more challenging (Wang et al., 2016). Apart from
demographic and socioeconomic factors, key road safety performance indicators
reflecting the safety of road users (seatbelt and helmet use, speeding, driving under
the influence of alcohol, distraction), infrastructure, vehicles, and post-crash response
in the examined regional areas could be also taken into account.

Over the last years, ML models have been proven to be very efficient prediction tools,
making them also particularly popular in road safety analyses. ML and DL approaches
have come to challenge the hitherto dominance of traditional modelling approaches
by being implemented alongside or instead of them. Based on the results of this
literature review research, it appears that these approaches have not found frequent
application in studies that exploit SSMs for historical crash record investigations. This
could be attributed to the major challenge of interpreting the results generated by the
respective algorithms accurately. However, this issue could be tackled by using model
agnostic methods such as the SHAP values and Local Interpretable Model-Agnostic
Explanations (LIME) that would explain the interpretation of the model regardless of
the model type. Furthermore, hybrid modelling approaches integrating both statistical
and ML techniques could be considered in future research studies, as this framework
represents a methodological advancement in traffic conflict-based crash estimation
models (Hussain et al., 2022).

Lastly, the aforementioned future research directions can all be further augmented by
the constant improvements in the technological field such as the further exploitation of
smartphone data that can provide a vast amount of driving big data under real road
conditions and connected vehicles that can be used for a more connected traffic
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environment. The rollout of fifth-generation networks provides a unique opportunity for
creating and exploiting innovative solutions to improve communication between all
transport system components and reduce road crash casualties. The application of
5G in traffic environments could be a game changer over the next years as it enhances
direct communication capabilities with very low latency such as Vehicle-to-Vehicle
(V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Everything (V2X) (Hussein et al.,
2021). This framework could assist in the collection of a wealth of real-time data that
can be also used for the extraction of various SSMs that could be integrated into
traditional road safety analysis.
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2.5 Research Questions

Based on the results of the literature review, the following research questions are
formulated:

Question 1
How can infrastructure, traffic and driver behaviour data be fused and analyzed to
derive meaningful conclusions for road crash risk assessment?

Question 2

a) Can harsh driving behaviour events be meaningfully considered reliable SSMs?

b) Is there a statistically significant positive correlation between harsh driving
behaviour events and historical road crash records?

Question 3

Is it possible to predict the crash risk level of road segments by exploiting road
geometry characteristics and driver-behaviour based SSMs, and, if so, which ML
classifiers are the most appropriate?

Question 4
Are harsh braking events more pertinent than harsh accelerations in predicting the
crash risk level of road segments?

Question 5

a) In the absence of highly detailed historical road crash data, how can harsh braking
events be analyzed across various road environments?

b) Is there spatial autocorrelation present in harsh braking frequencies for road
segments, and, if so, do spatial modelling approaches outperform their non-spatial
counterparts?

Question 6
Which road infrastructure and driver behaviour parameters exhibit a statistically

significant impact on the number of harsh braking events per road segment?

The following sections of this doctoral dissertation are dedicated to delivering
substantial results and findings that meaningfully address these research questions.
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3. Methodological Approach

3.1 General Methodological Framework

This subsection delineates the methodology employed to accomplish the objectives of
this doctoral dissertation, focusing on the road crash risk assessment. This was
achieved through the integration of infrastructure, traffic, and naturalistic driver
behaviour data. An overarching summary of the methodological framework is briefly
provided here and visually depicted in Figure 3.1. Subsequent sections delve into the
theoretical background and explanatory frameworks of specific methods utilized in this
dissertation.

The general methodological framework commenced with an exhaustive literature
review and the formulation of precise research questions, followed by a structured
sequence of actions. Initially, a comprehensive exploration of available data for
detailed road safety modelling in Greece was undertaken. This led to the
establishment of two distinct databases: one encompassed comprehensive data for
the Olympia Odos motorway, including detailed historical road crash records, traffic
attributes, road geometry characteristics, and driver behaviour data on a segmental
basis; the other covered a broader road network within the Region of Eastern
Macedonia and Thrace, albeit lacking detailed crash location data and traffic attributes.

Various methodologies were applied for motorway segments. These included
techniques such as NB regression for developing a crash frequency model, HC to
determine crash risk levels based on historical crash data and traffic attributes, and
the utilization of ML classifiers such as LR, DT, RF, K-NN, and SVM. These classifiers
were used for crash risk level prediction, leveraging infrastructure and driver behaviour
data. A critical focus was placed on evaluating the reliability of harsh driving behaviour
events as SSMs. The analyses revealed that harsh braking events could serve as
reliable SSMs and as dependent variables in road crash risk assessment models,
particularly when dealing with unavailable or low-quality crash data.

Subsequently, the framework extended to include the road network data of Eastern
Macedonia and Thrace Region, employing harsh braking events for road crash risk
assessment. This involved applying both non-spatial and spatial models to identify
significant road infrastructure and driver behaviour parameters influencing harsh
braking events per road segment. Ultimately, the synthesis of all the analyses carried
out within the framework of this doctoral dissertation resulted in a comprehensive road
crash risk assessment.
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Figure 3.1: Graphical representation of the overall methodological framework
of the doctoral dissertation

The above graphical illustration of the methodological approach is used to provide a
broader and more comprehensive picture of the workflow that takes place and results
to the better understanding on how infrastructure, traffic and naturalistic driver
behaviour data can be combined for road crash risk assessment. Further details on
the theoretical background and the implementation of the techniques applied in this
dissertation are presented in the following sections.
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3.2 Theoretical Background
3.2.1 Descriptive Analysis

This doctoral dissertation relies on big datasets, making it crucial to conduct
descriptive analysis on a multitude of variables. Within this context, box plots (also
known as box-and-whisker charts) offer a convenient means to illustrate numerical
data groups, showcasing key parameters like minimum and maximum values, upper
and lower quartiles, median values, as well as outliers and extreme values.

Interquartile
range (IQR)

Qutliers Outliers
ill I.l.
“Minimum” . “Maximum”
(Q1-1.5"1QR) Q1 Medan o (Q3+1.5%IQR)

(25th percentile) (75th percentile)

Figure 3.2: Graphical explanation of box plot

The spacing within the box plot signifies the data's dispersion and skewness,
effectively pinpointing outliers. More specifically:
e The median is represented by the line in the middle of the boxes.
e The lower part of the box denotes the 25th percentile (25% of cases have
values below the 25th percentile).
e The upper part of the box signifies the 75th percentile (25% of cases have
values above the 75th percentile).

3.2.2 Linear Regression

In the field of statistical modelling, Linear Regression stands as a fundamental pillar,
a cornerstone in understanding the relationships between variables. Linear regression
is used to model a linear relationship between a continuous dependent variable and
one or more independent variables. The case of one explanatory variable is called
simple linear regression; for more than one, the process is called multiple linear
regression (Freedman, 2009).

The simple linear regression model is given by Equation 3.1:
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Yi= Bo+ B1* Xy + & Eq. (3.1)

In this mathematical equation of the simple linear regression model, the dependent
variable Y; is a function of a constant term S, (the point where the line crosses the Y
axis) and a constant ; times the value x; of independent variable X for observation i,
plus a disturbance term ¢;. The subscripti corresponds to the individual or observation,
wherei=1,2,3,...,n.

y-axis 4

Bﬂ\—[ Y = Bo + BiX

BO\

< -
0 X X+ X-axis

A 4

Figure 3.3: Schematic diagram of simple linear regression

Linear regression relies on several assumptions, the violation of which necessitates
corrective measures or alternative modelling techniques. These key assumptions
include:

e Continuous nature of the dependent or response variable.

e Inherent linearity in the relationship between variables.

e Disturbances exhibiting a mean of zero, indicating equivalence between model
over-predictions and under-predictions.

e Homoscedasticity of disturbances, signifying a lack of systematic variation in
model uncertainty across observations.

e Nonautocorrelation of disturbances, avoiding correlations stemming from
repeated observations on individuals or spatial data exhibiting location-based
dependencies.

e Exogeneity of regressors, implying the absence of correlation between the
regressors and disturbance terms.

e While not mandatory for estimation, an approximately normal distribution of
disturbance terms facilitates meaningful parameter inferences from the linear
regression model.
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For a deeper understanding and comprehensive insights, Washington et al. (2020)
provide detailed elucidation on these concepts.

3.2.3 Negative Binomial Regression

However powerful in its simplicity, Linear Regression has limitations, primarily within
scenarios where the outcome variable follows a normal distribution and exhibits a
linear relationship with predictors. To extend regression techniques beyond these
confines, Generalized Linear Models (GLMs) have emerged as a significant
advancement. GLMs broaden Linear Regression's concept by accommodating
various response variable types and employing a link function to establish a non-linear
relationship between predictors and responses. This adaptation enables modelling
diverse data types, including binary, count, and categorical outcomes.

Among GLMs, models like Poisson Regression and NB Regression offer specialized
solutions for count data, where assumptions of normality or linearity might not hold.
The Poisson regression makes the assumption that variance and mean are equal,
which is not always the case for data such as road crashes. In many cases, such
datasets have a mean that is lower than their variance meaning that some road
segments concentrate more on crashes than others. To that end, Negative Binomial
regression is another well-known approach that can be considered as a generalization
of Poisson regression and is preferred when overdispersion exists in count data (Lord
& Mannering, 2010).

1500

1000

Frequency

500
I

Value

Figure 3.4: Example of Poisson distribution (mean=5, variance=5, sample=10,000)
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Figure 3.5: Example of Negative Binomial distribution (mean=5, variance=5, k=1, sample=10,000)

In the example of road crashes, based on a Poisson regression model, the probability
of a road segment i having y; crashes per some time period is given by:

Py = Eq. (3.2)

exp(=1i)A;"

;!
where A; is the Poisson parameter for segment i, which is equal to the expected
number of crashes per period, E[y;] for segment i. The Poisson parameter 4; needs
to be defined as a function of independent variables. The most common functional
form is:

A = exp(BX;) Eq. (3.3)

where X; is a vector of independent variables and g is a vector of estimable
parameters. In negative binomial distribution, the variance varies from the mean by
adding the term exp(¢;)to the equation (3.3):

A, =exp(BX; +¢,) Eq.(3.4)

This extra term is a gamma-distributed error term with mean 1 and variance a that
allows the variance to differ from the mean. For additional detailed explanations of the
underlying statistical background, the reader can consult Washington et al. (2020).

3.2.4 Zero-Inflated Negative Binomial Regression

The ZINB regression is used for count data that exhibit overdispersion and excess
zeros. The data distribution of the ZINB combines the negative binomial distribution
and the logit distribution. The possible values of Y are non-negative integers such as
0,1, 2, 3,and so on.
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Figure 3.6: Example of Zero-Inflated Negative Binomial distribution (mean=>5, variance=5, k=1,
sample=10,000, proportion of zeros = 35%)

Suppose that for each observation, there are two possible cases. If the first case
occurs, the count is zero. However, if the second case occurs, counts (including zeros)
are generated according to the negative binomial distribution. Suppose that the first
case occurs with probability 1 and the second case occurs with probability 1-Tr.
Consequently, the probability distribution of the ZINB random variable y; can be
written:

T+ 11— m)gly;=0) ifj=0

(1 - m)g() ifj >0 Eq. (3.5)

Pr(y; =j) = {

where 7; is the logistic link function defined below and g(y;) is the negative binomial
distribution given by:

T(yij+a™h) -1 aU; .
9y =Pr(Y =y |ua) = m(l/l +au)” ( Ml/l +au)” Eq. (3.6)

The negative binomial component can include an exposure time t and a set of k
regressors variables (the x's).

The expression relating these quantities is the following:

p = exp(In(t) + Brxy+ Poxgi+ -+ BrXi) Eq. (3.7)
Often, x; =1, in which case B, is called intercept. The regression coefficients
B1, B2, -, B are unknown parameters that are estimated from a set of data. Their
estimates are symbolized as by, b,, ..., by,.
This logistic link function r; is given by:
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Ai
;= Tll Eq (38)
where:
A =exp(n(t) + y1 21+ V2Zai+ -+ Vm Zmi) Eq. (3.9)

The logistic component can include an exposure time t and a set of m regressors
variables (the z's). Note that the z's and the x's may or may not include terms in
common.

For more in-depth explanations on the underlying background of the ZINB, the reader
can refer to Cameron & Trivedi (2013) and Garay et al. (2011).

3.2.5 Logistic Regression

Logistic regression, despite its name, functions as a classification model, particularly
suitable for analyzing data with a binary outcome variable. This model aims to estimate
the probability (P) of an event occurring by considering various predictors. In logistic
regression, the outcome variable denotes the presence or absence of a condition,
often coded as 1 or 0.

The logistic regression equation incorporates a logit transformation, where the natural
logarithm of the odds represents the relationship between the probability of an event
(P) and the covariates. It is formulated as:

Y, = logit () = LN (25) = Bo+ BuiXei+ BoXoi+ -+ BiXi;  Eq. (3.10)

and where g, is the model’s constant and the g, ...,k represent the unknown
parameters associated with explanatory variables Xy. In Equation 3.10, the unknown
binomial probabilities are a function of explanatory variables (which may include both
continuous and discrete variables).

The estimation of unknown parameters in Equation 3.10 often employs maximum
likelihood methods. Once these parameters are estimated, they're used to calculate
the probability of the outcome being 1 based on the covariates:

EXP [Bo+ B1X1,i+ B2X2i+ -+ PrXk i
: : : Eq. (3.11
1+ EXP [Bo+ B1X1,i+ B2Xz i+ -+ B Xk i 9 ( )

i =
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Figure 3.7: The logistic function with example data

For multiclass classification tasks, logistic regression expands its utility by employing
strategies like One-vs-Rest or One-vs-All. For further information on its underlying
theoretical background, the reader might consult Washington et al. (2020).

3.2.6 Decision Tree

DTs are a common class of non-parametric models that can be utilized for both
regression and classification tasks and their concept was introduced by Quinlan
(1986). Itis noted that within the framework of this doctoral dissertation DTs were used
for classification purposes. In terms of the underlying theoretical background, a DT
classifier acts as a graphical representation where nodes encapsulate the features
present in a dataset, branches denote potential values these features might assume,
and leaves signify the resulting classification labels. These trees function on the
fundamental principle of hierarchical decision-making, aiming to classify new data
points by navigating through a series of decisions based on various features or
attributes.

The construction of a DT involves iterative partitioning of the dataset into subsets
based on the values of chosen features. This iterative process continues until specific
stopping criteria are met, such as reaching a defined maximum depth or achieving a
minimum reduction in impurity. The result is a structured tree that visually depicts the
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decision-making process, enabling straightforward interpretation and understanding
of how the data is classified.

Root Node

Internal Node Internal Node

Leaf Node Leaf Node

Leaf Node Leaf Node

Figure 3.8: Typical hierarchical structure of a Decision Tree

Although there are several techniques to choose the best attribute at each node,
information gain and Gini impurity are two approaches that are frequently used as
splitting criteria for DT models. They aid in the assessment of each test condition's
quality and its capacity to categorize samples into classes. Information gain is hard to
describe without first talking about entropy. Entropy is a concept that stems from
information theory, which measures the impurity of the sample values. The following
formula defines it, where:

Entropy(S) = — Xcecp(6)logzp(c) Eq. (3.12)

- S represents the data set that entropy is calculated

- c represents the classes in set, S

- p(c) represents the ratio of data points that belong to class ¢ to the number of
total data points in set, S.

Values of entropy can range from 0 to 1. When every sample in the data set S is a
member of the same class, entropy is equal to zero Entropy will peak at 1 if half of the
samples are categorized into one class and the other half into a different class. The
attribute with the least level of entropy should be utilized to determine which feature is
best to divide on and to identify the optimum DT. The difference in entropy before and
after a split on a particular attribute is known as information gain. Since it is performing
the best at categorizing the training data in accordance with its target classification,
the attribute with the highest information gain will result in the best split. The following
formula is typically used to describe information gain, where:
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Information Gain (S,a) = Entropy(S) — ZveUcalues(a)%Entropy(Sv) Eq. (3.13)

- a represents a specific attribute or class label

- Entropy(S) is the entropy of dataset, S

- % represents the proportion of the values in S, to the number of values in

dataset, S
- Entropy(S,) is the entropy of dataset, S,,.

The probability that a random data point in a dataset would be incorrectly classified if
its label were based on the class distribution of the dataset is represented by the Gini
Impurity. Similar to entropy, the impurity of a set S is equal to zero when it is completely
pure (belonging to a single class). The formula below is used to describe this concept:

Gini Impurity = 1 — Y;(p;)? Eq. (3.14)

One critical challenge associated with DTs is the potential for overfitting, especially
when the trees become too complex. Overfitting occurs when the model learns to fit
the training data too precisely, resulting in reduced generalizability to new, unseen
data. To mitigate this issue, various strategies are employed, including setting
constraints on the tree's depth or complexity, employing pruning techniques to simplify
the tree structure, or using ensemble methods that combine multiple trees to enhance
predictive performance and reduce overfitting.

For a more comprehensive understanding of DTs, interested readers are directed to
delve into Han et al. (2022).

3.2.7 Random Forest

RF, introduced by Ho (1995) and further improved by Breiman (2001), stands as a
prominent ML algorithm known for its great skill in both regression and classification
tasks. This algorithm operates on the foundation of DTs, an elemental component in
its ensemble learning structure.

DTs, within the context of RF, function diversely for classification and regression tasks.
In classification, these trees segment the dataset based on various attributes, thereby
enabling the classification of instances into distinct classes or categories. On the other
hand, regression trees facilitate the prediction of continuous numerical values by
segmenting the dataset using specific feature thresholds.

The fundamental strength of RF lies in its ensemble learning approach. It embraces

bagging, a process that involves generating numerous subsets of data by employing
bootstrapping techniques from the original dataset. Subsequently, these diverse
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subsets contribute to the creation of multiple DTs. The essence of RF lies in the
aggregation of predictions from these varied trees, which collectively generate the final
output.

Randomness assumes a pivotal role within the framework of RF. This algorithm
introduces feature randomness by considering only a random subset of features at
each node for the purpose of tree splitting. Furthermore, the utilization of bootstrapping
ensures that each tree is trained on a distinct subset of the data, thereby enhancing
the diversity and reducing the correlation between individual trees.

One more advantage of RF is that it makes use of an "out-of-bag" (OOB) estimating
technique. For every tree, about one-third of the original dataset is removed during the
bootstrapping procedure. Although these out-of-bag samples are not utilized for
training the particular tree, they can be used to get an unbiased assessment of the
model's effectiveness without requiring a different validation set. This technique
provides an internal validation mechanism, offering insights into the model's
generalization performance while optimizing computational resources.

In regression scenarios, the RF algorithm combines predictions from numerous trees
by averaging their outputs. Consequently, this process yields a continuous prediction,
ensuring a robust and reliable outcome. Meanwhile, in classification tasks, the
algorithm relies on the aggregation of predictions from multiple trees to determine the
mode, i.e., the most frequently occurring class prediction among the trees (majority
voting).

N\ aNra

Decision Tree-1 Decision Tree-2 Decision Tree-N
Result-1 Result-2 Result-N

\—— Majority Voting / Averaging v—I

1

Final Result

Figure 3.9: Graphical illustration of the Random Forest algorithm
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The strengths of RF extend beyond its adaptability in handling diverse tasks. It boasts
robustness by avoiding overfitting through the collective wisdom of multiple trees,
accommodates missing data without necessitating imputation, offers insights into
feature importance rankings, and exhibits scalability by efficiently processing large
datasets through parallelization. However, the interpretability of complex ensembles
can be challenging, hindering a comprehensive understanding of the model's decision-
making process. Moreover, training multiple trees can be computationally demanding,
especially when dealing with a substantial number of trees and features.

3.2.8 Support Vector Machines

SVMs stem from statistical learning theory (Vapnik, 1999) and were developed by
Cortes & Vapnik (1995), primarily focusing on binary classification tasks. The key
objective of constructing an SVM model is to establish an optimal dividing hyperplane
between two classes by maximizing the margin, which refers to the distance between
the closest points of each class (Meyer, 2001). Therefore, different classes are
separated by the hyperplane:

(w,o(x))+b =0 Eq. (3.15)
which corresponds to the decision function
f(x) = sign({(®(x;),w) + b) Eq. (3.16)
The support vectors encompass the points lying on the boundaries, whereas the

optimum separating hyperplane is positioned at the center of the margin. The following
Figure provides a graphical representation of a linear separable example of SVMs.

Hyperplane

Figure 3.10: Graphical illustration of SVM classification (linear separable example)
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Furthermore, SVMs can be extended to address nonlinear classification issues,
regression tasks, and outlier detection. However, a significant drawback of SVMs is
their inability to directly unveil the relationships between dependent and independent
variables. Among the array of kernel-based algorithms (kernels) such as linear,
polynomial, gaussian Radial-basis function, and sigmoid, this doctoral dissertation
specifically focused on the gaussian Radial-basis function (Karatzoglou et al., 2005):

Radial-Basis Function kernel (RBF):

2
K(x;, x;) = exp (—y”xi — x| ),y >0 Eq.(3.17)

where, y is the kernel parameter.

Furthermore, two parameters (C, y) of the SVM model (C-SVM) with the gaussian
radial-basis kernel function need to be defined. According to Karatzoglou et al. (2006),
the cost parameter C controls the penalty for incorrectly classifying a training point
and, as a result, the prediction function's complexity. A complex prediction function will
be produced by a high-cost value C in an effort to misclassify as few training data as
feasible. Lower cost parameter C, on the other hand, leads to simpler prediction

functions.

The primal form of the bound constraint C-SVM is the following:
minimize  t(w,&) = (3)Iwl* + (3) 82+ (£) 2 ¢,
subjectto  y;((@(x;),w)+b)=>1-¢; Eq. (3.18)
where,i =1, ...,m,and ¢ > 0.

The respective dual form of the bound constraint C-SVM is the following:
maximize W(a) = ?;1 a; — %ZZ}=1 a;a; (yly] +k (xl,x]))
subjectto 0 <a; <— where,i=1,..,m Eq.(3.19)

and Z:Zl a;y; = 0.

For further information on the underlying background of the SVMs, the reader can also
refer to Scholkopf & Smola (2002).
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3.2.9 K-Nearest Neighbours

The K-NN algorithm is a non-parametric supervised learning classifier, which exploits
proximity to make classifications or predictions regarding the grouping of individual
data points. While applicable to both regression and classification problems, its
primary use lies in classification, relying on the idea that similar points can be found
very close to one another.

K-NN is a simple and intuitive classifier that assigns a label to a new data point based
on the labels of its K nearest neighbours within the training set. The distance measure
used to determine the nearest data points can be any of the standard related metrics,
such as Euclidean distance or Manhattan distance. The value of K acts as a
hyperparameter regulating model complexity, adjustable through cross-validation. K-
NN can be used for both binary and multiclass classification tasks and can handle
non-linear decision boundaries.

Within the scope of this doctoral dissertation, the K-NN algorithm serves classification
tasks, employing the widely adopted Euclidean distance method for computing
distances between data points. Euclidean distance is the most commonly used
distance measure, and it is limited to real-valued vectors It quantifies a straight line
between the query point and the point under measurement using the following formula:

d(x,y) = JEL, i — x)? Eq. (3.20)

? ) = new object to be classified

For K = 1: new object - Class 1

For K = 5: new object 2 Class 2

Figure 3.11: Graphical illustration of the K-NN algorithm

The reader is referred to Peterson (2009) for additional explanations on the theoretical
background of the K-NN algorithm.
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3.2.10 Model Evaluation Metrics

Model evaluation encompasses the utilization of diverse evaluation metrics to
comprehend the performance of a machine learning or statistical model, along with
identifying its strengths and weaknesses. This evaluation process holds significance
in appraising a model's effectiveness during preliminary research phases and
assumes a crucial role in ongoing model monitoring. Different key metrics offer insights
into the model’s performance, which vary depending on whether the model serves
regression or classification purposes.

In regression analysis, R-Squared (R?) or the coefficient of determination serves as a
fundamental metric that determines the proportion of variance in a dependent variable
predicted or explained by an independent variable. In simpler terms, R? indicates how
well a regression model (independent variable) predicts the outcome of observed data
(dependent variable). R? values range from 0 to 1. A value of 0 implies that the model
explains or predicts 0% of the relationship between the dependent and independent
variables, while a value of 1 indicates that the model predicts 100% of the relationship.

Mathematically, R? is calculated by dividing sum of squares of residuals (SS,..) by total
sum of squares (SS;,;) and then subtract it from 1. In this case, SS;,; measures total
variation. SS,., measures explained variation and SS,.; measures unexplained

variation. As SSy.5 + SSycq = SStot R? = Explained variation / Total Variation.

Rz =3rs Eq.(3.21)

SStot

Adjusted R? is a refinement that adjusts for model complexity. It measures the
proportion of variation explained by only those independent variables that really help
in explaining the dependent variable. It penalizes the inclusion of independent
variables that do not significantly aid in predicting the dependent variable within
regression analysis. The only difference between R-squared and Adjusted R-squared
equation is degree of freedom.

2adi _ 1 _ SSres/dfe
R%adjusted = 1 TT Eq. (3.22)

In the above equation, df; is the degrees of freedom n — 1 of the estimate of the
population variance of the dependent variable, and df, is the degrees of freedom n —
p — 1 of the estimate of the underlying population error variance. Adjusted R-squared
value can be calculated based on value of R-squared, number of independent
variables (predictors), total sample size.

R?adjusted = 1 — % Eq. (3.23),
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where R? = sample R-squared, p = number of predictors and N = total sample size.

The Root Mean Square Error (RMSE) is another widely employed measure to assess
prediction quality. This metric indicates how far predictions fall from measured true
values using Euclidean distance. To compute RMSE, one calculates the residual
(difference between prediction and truth) for each data point, computes the norm of
residual for each data point, computes the mean of residuals, and finally takes the
square root of that mean. RMSE is commonly used in supervised learning
applications, as RMSE uses and needs true measurements at each predicted data
point. RMSE can be expressed as:

’ N NP
RMSE — 2i=1”y(113 Y(l)HZ Eq (324)

where N is the number of the data points, y(i) is the i-th measurement and (i) is the
corresponding prediction.

The Akaike Information Criterion (AIC) is a statistical metric widely used in regression
model selection, balancing the trade-off between model complexity and goodness of
fit. It serves as a tool to compare different models by considering both their
performance and simplicity. AIC assigns a score to each model based on the balance
between how well it fits the data and how many parameters it uses. The principle
behind AIC is rooted in information theory, aiming to minimize the information loss
between the model and the true underlying process it represents. Lower AIC values
indicate a better trade-off between fit and complexity, suggesting a model that
adequately represents the data without unnecessary complexity. It is calculated using
the following formula:

AIC = 2k — 2log(L) Eqg. (3.25)

where k represents the number of parameters in the model and L denotes the
maximum value of the likelihood function for the model (Akaike, 1970; Sakamoto et
al., 1986).

For classification models, the first step for the evaluation of the classification
performance is the development of the confusion matrix, which gives insights into the
distribution of the predictions and targets. Confusion matrix is a performance
measurement for machine learning classification problems where output can be two
or more classes. For a binary classification scenario (two classes: positive and
negative), the confusion matrix has four main components:

e True Positives (TP): These are cases where the model correctly predicted the
positive class.
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e True Negatives (TN): These are cases where the model correctly predicted the
negative class.

e False Positives (FP): These are cases where the model predicted the positive
class, but the actual class was negative (Type | error).

e False Negatives (FN): These are cases where the model predicted the negative
class, but the actual class was positive (Type Il error).

A core classification performance indicator is the overall classification accuracy, which
is specified as the fraction of predictions that are rightly classified.

TN+ TP

Accuracy = ———
Y = IN+TP+FN+FP

Eq. (3.26)

While overall classification accuracy is an important measure, it may not be enough
for classifiers with response variables that contain more than two classes. In such
cases, precision, recall, and the F1 score are insightful per-class performance metrics
that can be calculated (Grandini et al., 2020). These metrics are particularly helpful in
cases of not uniformly distributed class labels. In such cases, relying solely on
accuracy can be misleading because it is possible to achieve a high overall accuracy
score by simply predicting the dominant class most of the time. However, this
approach could lead to low precision and recall scores for the remaining categories.

Precision indicates the fraction of right predictions for a particular category, which is
calculated by dividing the number of true positives by the sum of true positives and
false positives.

TP
FP+TP

Precision = Eq. (3.27)

Recall (or Sensitivity/ True Positive Rate) represents the fraction of cases of a category
that were correctly predicted and is expressed by the number of true positives divided
by the number of true positives plus the number of false negatives.

TP
TP+FN

Recall = Eq. (3.28)

Specificity quantifies the proportion of true negative cases (correctly identified
negatives) among all actual negative instances. It complements metrics like accuracy,
precision, and recall, providing insight specifically into a model's performance
regarding the true negative class.

TN
TN+FP

Specificity = Eq. (3.29)

In addition to precision and recall, the F1 score, which is calculated as their harmonic
mean, is also commonly provided.

[98]



Dimitrios Nikolaou | Machine learning-based road crash risk assessment
fusing infrastructure, traffic and driver behaviour data

Fl= 2« Precision*Recall Eq (330)

Precision+Recall

Finally, it is mentioned that the aforementioned per-class metrics can be averaged
across all classes, resulting in the respective macro-averaged scores.

Apart from the aforementioned metrics, Receiver Operating Characteristics (ROC)
curve is a graphical representation of the effectiveness of a binary classification model
which plots the True Positive Rate (TPR) versus the False Positive Rate (FPR) at
different classification thresholds.

FP
TN+FP

FPR =

=1 — Specificity Eq. (3.31)

Area Under the Curve (AUC) serves as a comprehensive metric for assessing the
performance of a binary classification model. As both TPR and FPR range between 0
to 1, So, the area will always lie between 0 and 1, and a higher value of AUC indicates
better model performance. The key objective is to maximize this area to achieve the
highest TPR and lowest FPR at the given threshold. Essentially, the AUC measures
the probability that the model will assign a randomly selected positive instance a higher
predicted probability compared to a randomly chosen negative instance.
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Figure 3.12: ROC curve example

For multiclass classification tasks, the One vs All methodology can be utilized,
resulting in individual ROC curves for each class.
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3.2.11 SHapley Additive exPlanations (SHAP values)

SHAP values are a recent addition to the field of explainable and interpretable ML,
drawing from coalitional game theory (Shapley, 1953). These values provide a
measure of contribution of each feature to the prediction of a particular instance in a
model. The SHAP value for each feature is defined as the difference between the
expected model output and the output when that feature is excluded. The SHAP
values are a model-agnostic method, meaning it can be applied to explain the
predictions of any machine learning model, including black-box models. In the case of
multiclass classification models, SHAP values are calculated for each class separately
as it allows the understanding of the contribution of each feature to the prediction of
each class.

More specifically, SHAP values provide a solution to the problem wherein a group of
individuals collaborates, resulting in an overall gain from their cooperation. Given that
each player holds unique significance in the collaboration, determining how to
distribute the surplus fairly among them becomes essential. By considering the distinct
contributions of each player, Shapley values propose a potential equitable allocation
of the generated surplus among the participants (Shapley, 1953).

Translating this issue into the context of a model's predictions involves regarding
explanatory variables as the players and the model f() as the coalition. The prediction
made by the model represents the payoff from this coalition. The core challenge is
determining the allocation of the model's prediction among specific variables. The
concept of employing Shapley values to assess local variable importance was first
introduced by Strumbelj & Kononenko (2010).

In a scenario involving a permutation J of p explanatory variables within model f(),
n(J,j) represents the set of indices that precede the j-th variable in permutation J.
When the j-th variable is positioned first, 7(J,j) = @. Considering a specific instance
x., the model’s prediction f(x,) defines the Shapley value as follows:

¢(x.j) = 55,000 )  Eq.(3:32)

where the sum is taken over all p! possible permutations (orderings of explanatory
variables) and A’V (x,) indicates the variable importance. Essentially, ¢(x.,j) is the

average of the variable-importance measures across all possible orderings of
explanatory variables.

It is worth mentioning that the value of A/I"U)(x,) remains constant for all

permutations | that share the same subset n(J,j). The previous equation can be
expressed in an alternative form:
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o(x.)) = 5 T80 Tse . onpls! (0 — 1= A (x.) Eq. (3.33)

|S|=s

where |S| denotes the cardinal size of set S and the second sum is taken over all
subsets S of explanatory variables, excluding the j-th one, of size s.

It is also noted that the number of all subsets of sizes from 0 to p — 1 amounts to 2P —
1, significantly fewer than the permutations totaling p!. Nevertheless, when dealing
with a large p, computing Shapley values using equations such as (3.32) or (3.33)
might not be feasible. In such instances, employing an estimation based on a
permutation sample becomes a viable option. Strumbelj & Kononenko introduced a
Monte Carlo estimator for this purpose in (2014). Moreover, the SHAP package,
developed by Lundberg & Lee (2017), presents an efficient implementation for
computing Shapley values specifically tailored for tree-based models.

The properties of Shapley values in cooperative games extend to predictive models,
granting them the following properties:

e Symmetry: if two explanatory variables j and k are interchangeable then their
Shapley values are equal.

e Dummy feature: if an explanatory variable j does not contribute to any
prediction for any set of explanatory variables, then its Shapley value is equal
to 0.

e Additivity: if model f() is a sum of two other models g() and h(), then the
Shapley value calculated for model f() is a sum of Shapley values for models
g0 and h().

e Local accuracy: the sum of Shapley values is equal to the model’s prediction,
thatis, f(x.) — Ex{f(X)} = X¥_; ¢(x.,)) , where X is the vector of explanatory
variables (corresponding to x,) that are treated as random values.

3.2.12 Hierarchical Clustering

In data mining, hierarchical clustering is a type of clustering analysis that creates a
hierarchy of clusters based on two key strategies: the agglomerative and the divisive.
Agglomerative is a bottom-up approach where each observation starts in its own
cluster, and pairs of clusters are merged as one moves up the hierarchy. Divisive is a
top-down approach where all observations start in one cluster, and splits are
performed recursively as one moves down the hierarchy. Within the framework of this
doctoral dissertation, the agglomerative approach is used.

Hierarchical clustering has the distinct advantage that any valid measure of distance
can be used. In fact, the observations themselves are not required: all that is used is
a matrix of distances. In this dissertation, in order to determine which clusters should
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be combined, the Euclidean distance between single observations of the dataset and
Ward’'s minimum variance method as the linkage criterion were used.

The results of hierarchical clustering are usually presented in a dendrogram as in the
example of the following figure.

A Dendrogram

T

A B

Figure 3.13: Example of a Dendrogram from Hierarchical Clustering

For further details on the theoretical background of hierarchical clustering, the reader
is referred to Murtagh & Contreras (2012).

3.2.13 Detection of Spatial Dependence

The initial action in tackling spatial dependence involves identifying its extent within a
specific phenomenon by observing its presence in a dataset. Moran's I coefficient,
introduced by Moran in (1950), stands as the most commonly used metric for gauging
spatial autocorrelation, and it was employed within the framework of this doctoral
dissertation.

Global Moran's I is a measure of the overall clustering of the spatial data and it defined
as:

Z?’le}V:l wij(x;—%)(xj—%)

=N
w N Gr—%)2

Eq. (3.34)

where:
e N is the number of spatial units indexed by i and j,
e x is the variable of interest,
e i is the mean of the variable of interest x,
e w;; are the elements of a spatial weights’ matrix with zeroes on the diagonal,

e and I is the sum of all w;; so that:
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w=3x Z?I=1 wi;  Eq. (3.35)

The determination of I 's value can significantly hinge on the underlying assumptions
embedded within the spatial weights matrix, denoted as w;;. This matrix is pivotal as
it provides a structured framework essential for addressing spatial autocorrelation and
modelling spatial interaction by constraining the number of pertinent neighbours. The
aim is to construct a matrix that accurately reflects one's presumptions regarding the
specific spatial phenomenon under examination. Commonly, one approach involves
assigning a weight of 1 to zones designated as neighbours, and 0 otherwise; however,
the delineation of “neighbours” can vary. Alternatively, assigning a weight of 1 to the
k nearest neighbours and 0 otherwise presents another prevalent method. Moreover,
an option exists to employ a distance decay function for weight assignment.
Occasionally, the length of a shared edge is utilized for assigning distinct weights to
neighbours. The selection of the spatial weights’ matrix ought to be guided by the
theoretical underpinnings of the phenomenon in focus. Notably, I 's value exhibits a
high sensitivity to these weights and can significantly impact the conclusions drawn
about a phenomenon, particularly when using distances.

The expected value of Moran's I under the null hypothesis of no spatial autocorrelation
is:

1

E()= == Eq.(3.36)

As sample sizes expand, an anticipated outcome involves increased dispersion,
leading E(I) to converge towards 0. Moran's I values usually range from -1 to 1, but
the coefficient can assume values outside this range, depending on the weighting
function used. When [ significantly surpasses E(I), it signals positive spatial
autocorrelation, while values notably lower than E(I)indicate negative spatial
autocorrelation. Intuitively, positive autocorrelation implies clustering, whereas
negative autocorrelation suggests dispersion. To illustrate typical Moran's I values,
commonplace patterns are often employed, as depicted in the following Figure.

Positive spatial Negative spatial No spatial
autocorrelation autocorrelation autocorrelation

Figure 3.14: Spatial autocorrelation examples
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Global spatial autocorrelation analysis yields only one statistic to summarize the whole
study area. In other words, the global analysis assumes homogeneity. If that
assumption does not hold, then having only one statistic does not make sense as the
statistic should differ over space. Moreover, even if there is no global autocorrelation
or no clustering, clusters can be found at a local level using local spatial autocorrelation
analysis.

Anselin (1995) introduced Local Moran's I as part of the Local Indicators of Spatial
Association framework, offering a per-observation coefficient I; derived from the global
Moran's I.

[ = (Xi—f)Z?':lWij(xj—f)
e Y (= x)?

Eq. (3.37)

Similar to the global Moran's I, the interpretation of Local Moran's I remains consistent.
However, unlike its standardized global counterpart, Local Moran's I does not adhere
strictly to the -1 to 1 range, allowing for values that significantly deviate from this range.

There are also several other metrics that were not used in the framework of this
doctoral dissertation but they can be certainly used for the detection of spatial
dependence such as the Geary’s C (Geary, 1954) and Getis-Ord G; tests (Ord & Getis,
1995), and the more recent Approximate Profile-Likelihood Estimator (Li et al., 2007).

3.2.14 Spatial Error and Lag Models

The SEM serves as an extension of the traditional linear regression modelling, which
can be used to analyze spatially dependent data. In the linear regression model, it is
assumed that the errors are independent and identically distributed, meaning there is
no correlation or relationship between the error terms of different observations.
However, this is not always the case in spatial datasets. The SEM considers and
addresses spatial autocorrelation within the residuals. Essentially, this means that the
errors resulting from regression analysis exhibit autocorrelation in a way that the error
associated with a particular spatial feature can be represented as a weighted average
of the errors observed in its neighbouring features. Mathematically, the SEM can be
expressed as:

y=Xf+u u=Ag,Wu+e Eq. (3.38)
where y is a (Nx1) vector of observations on a dependent variable taken at each of N
locations, X is a (Nxk) matrix of covariates, f is a (kx1) vector of parameters, u is a

(Nx1) spatially autocorrelated disturbance vector, ¢ is a (Nx1) vector of independent
and identically distributed disturbances and A, is a scalar spatial parameter.
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With regard to the SLM, this type of model can be used to address the spatial
autocorrelation in the dependent variable and can be expressed as:

Y = PragWy+XB + ¢ Eq. (3.39)

where p,,, is a scalar spatial parameter that indicates the degree to which a spatial
feature is affected by its neighbours. For more in-depth explanations on the statistical
background of the SEM and the SLM the reader can refer to Ward & Gleditsch (2018).
It is also noted that the fit of the SEM and the SLM can be compared with the fit of the
simple linear regression model by using the AIC, with lower values of this criterion
indicating better statistical model quality.

3.2.15 Spatial Random Forest

SRF is a powerful ML algorithm that combines the principles of conventional RF with
spatial analysis techniques. The mathematical background of conventional RF has
been described in previous subsection of this dissertation and is hence omitted here
for brevity. However, it should be noted that conventional RF models may fail to
consider the spatial structure present in spatial datasets. Consequently, spatial
relationships and autocorrelation in the residuals can lead to biased importance scores
of non-spatial predictors and suboptimal model performance.

To overcome this limitation, one option is to generate spatial predictors. These
predictors assist in taking into account the spatial structure of the training data,
ultimately minimizing the spatial autocorrelation of the model residuals and providing
accurate variable importance scores. One approach to accomplish this is by
incorporating geographical proximity effects into the prediction process by adding the
columns of the distance matrix of the examined road segments as explanatory
variables, as suggested by Hengl et al. (2018). More specifically, Hengl et al. (2018)
proposed the following generic SRF system:

Y(s) = f(Xg, Xr, Xp) Eq. (3.40)

where X represents covariates that consider the geographical proximity and spatial
relations among observations:

Xe = (dp1, dpa, - dpy) Eq. (3.41)

where, d,,; is the buffer distance to the observed location pi from s and N stands for
the total number of training points. X corresponds to surface reflectance covariates,
while X, are process-based covariates. For a more comprehensive elucidation,
interested readers are directed to consult the detailed explanations provided by Hengl
et al. (2018).
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4. Investigation of Road Safety Modelling Data
in Greece

4.1 Introduction

A road crash results from a combination of factors related to the components of the
traffic system comprising roads, vehicles and road users, and the way they interact
(Haddon Jr, 1980). Budgets for road safety policies and activities are not infinite.
Therefore, decision makers and road safety stakeholders have to determine the
optimal possible use of available funds. With regards to improvements in the existing
road infrastructure, several quantitative methodologies have been developed over the
years, to enhance evidence-based decision making. These methodologies include
road crash analyses, road safety inspections, assessment of the "in-built" safety of
roads, use of Crash Prediction Models (CPMs), etc. Probably the most detailed
approach is offered through the application of CPMs, a practice well described in
AASHTO Highway Safety Manual (HSM) (National Research Council, 2010). Yet,
especially this methodology requires high quality data in order to predict crash
frequency in specific road elements (segments, intersections, etc.) and produce
reliable results. More specifically, the availability of detailed and good quality data on
road crashes and related casualties, infrastructure geometric characteristics (e.g.,
curve radius, lane width, etc.) and traffic attributes consists a basic prerequisite for this
kind of modelling (Ambros et al., 2018).

Within the above context, the aim of this section is to investigate and discuss the
availability and accuracy of road safety modelling data in the primary rural road
network of Greece, focusing on three types of data that are considered most critical:
crash, traffic and road geometry data. This section is structured as follows: subsection
4.2 concerns crash data availability and presents a case study in the subregion of
Viotia for the period 2011-2015. This analysis focuses on identifying the percentage
of crashes that could be accurately geo-located and used for modelling purposes.

Then, concerning traffic data, an exploration of the coverage of the road network by
spot traffic measurements also in the subregion of Viotia is performed and discussed.
Subsection 4.4 focuses on geometric design data, which are generally not readily
available in official databases in Greece. The investigation focuses on a section of
Patras-Pyrgos two-lane highway, and compares the data that can be obtained through
two common Open GIS Data Platforms ("Blender" software and Shuttle Radar
Topography Mission (SRTM) data through the GPS Visualizer platform) with the actual
data retrieved from a topographic survey of the highway. Moreover, the possibility of
exploiting other types of data in road safety analyses, such as telematics data from
smart mobile phone sensors, is discussed.
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4.2 Crash Data

The Hellenic Statistical Authority maintains the official road crash database in Greece.
This database includes road crashes in which at least one involved road user was
injured (slightly/seriously) or killed. The case study that will be presented in this
subsection is based on road crash data collected from the Police and codified into the
National Road Crash Database by the Hellenic Statistical Authority. The Department
of Transportation Planning and Engineering of the National Technical University of
Athens has access to this National Road Crash Database.

More specifically, in Greece, Traffic Police officers attend the crash site and complete
the road crash data in high detail in standardized templates, i.e., the Crash Data
Collection Forms, immediately after the occurrence of a crash, providing information
on crash conditions, as well as on characteristics related to the road, the involved
persons or vehicles. The Crash Data Collection Forms are then forwarded to the
Hellenic Statistical Authority, which is responsible for the final checking and
codification into the official National Road Crash Database.

Copy files of the National Road Crash Database are provided to the Department of
Transportation Planning and Engineering of the National Technical University of
Athens (NTUA) (with personal identification removed), who developed a system of
efficient queries to extract any combination of data. This NTUA database consists of
disaggregated data for all road injury crashes in Greece for the period 1985-2021, is
updated on an annual basis, and is also used for the purposes of this investigation.

The variables that are included in this database are presented in the following table
grouped by crashes’, involved road users’ and vehicles’ characteristics.
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Table 4.1: Variables included in the national road crash database

Group List of Variables
Crash characteristics Year, Month, Location (geo-code), Area Type, Street number, Kilometer
mark, Kilometrage direction, Road type, Road code, Road’s in junction
code, Motorway(Y/N), Week of the year, Day of week, Hour, Date,
Number of fatalities, Number of serious injuries, Number of slight
injuries, Number of vehicles involved, Pavement type, Weather
conditions, Pavement conditions, Pavement state, Night lighting, Traffic
directions, Number of lanes for each direction, Direction markings, Lane
markings, Left edgeline markings, Right edgeline markings, Median,
Central barrier, Left side barrier, Right side barrier, Left side shoulder,
Right side shoulder, Pavement width, Straight, Narrowing, Lever
crossing, Right turn, Left turn, Turn alteration, Ascent, Descent, Ascent /
Descent alternation, Type of crash first impact, Maneuver of vehicle A
which likely contributed to the crash, Pedestrian maneuver, Traffic
control / signalization, Police / Port Authority, Hit and run crash

Involved road users’ Road user type, Gender, Age (in years), Nationality, Use of protective
characteristics equipment, Injury severity, Position in vehicle, Purpose of trip

Involved vehicles’ Vehicle type and usage, Vehicle plates nationality, With trailer, Vehicle
characteristics capacity, 1st year of registration, Vehicle Technical inspection, Number

of drivers and passengers, Type of alcohol test, Result of alcohol test,
Time of alcohol test, Place where alcohol test took place, Driving
license, License category, Year of acquisition, Vehicle carried
dangerous goods (ADR), Overweight vehicle, Load oversized

Data for all injury road crashes in the subregion of Viotia were considered for the five-
year period 2011-2015. Firstly, a query was executed in the database in which all road
crashes in the subregion of Viotia were searched by year, by type of area, by road
code, by station, by infrastructure characteristics (intersection or not, curve or not) and
by type of casualties (fatalities, serious injuries, slight injuries).

These data were used to investigate in which way they could be used for microscopic
modelling analysis and identify if these data are appropriate for the development of
CPMs. An important issue for consideration during the crash analysis is the treatment
of road crashes with unknown location. In many cases of road crashes included in the
database, there is no indication of the road on which the crash occurred and/or the
specific location of the crash. The following table (Table 4.2) presents the number and
the respective percentage of road crashes occurred on unknown roads during the
period 2011-2015 in subregion of Viotia. Based on Table 4.2, it can be observed that
51% (232/451) of total injury road crashes in Viotia from 2011 to 2015 were coded as
occurring on unknown road.
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Table 4.2: Road crashes with unknown road for the years 2011-2015 in the subregion of Viotia

2011 118 57 48%
2012 92 53 58%
2013 101 55 54%
2014 75 35 47%
2015 65 32 49%
Total 451 232 51%

Even for crashes on known roads, the specific location of some road crashes is
unknown and is not included in the database. Table 4.3 demonstrates the number and
the respective percentage of crashes that have occurred on known roads but there is
no indication of the crash specific location. In a further 9% (42/451), although the road
code was available, the specific location (road chainage) was unknown.

Table 4.3: Crashes on known road and unknown station for years 2011-2015 in subregion of Viotia

2011 61 9 15%
2012 39 14 36%
2013 46 8 17%
2014 40 8 20%
2015 33 3 9%
Total 219 42 19%

In a more detailed level of analysis, 14 rural roads were isolated and the geo-located
crashes were analyzed in order to identify whether the infrastructure characteristics as
recorded in the road crash database are identical to the actual infrastructure
characteristics of the site. These roads are namely:

¢ National Road EO.03: Livadeia - I/C E.O. 3 (Livadeia) - Chaironia - Subregion
limit (Fthiotida).

¢ National Road EO.29: Distomo - Steiri - Moni Osiou Louka.

¢ National Road EO 44: Subregion limit N. Evvoias (Ritsona) - I/C to Elaiona-
Thiva.

e Regional Road Ep.5: Distomo - Paralia Distomou - Antikyra - Region limit
(Fokida).

¢ Regional Road Ep.11: Kastro-Stroviki-Orchomenos - I/C E.O.3 (Livadeia).

e Regional Road Ep.17: I/C E.O. 3 (Aliartos) - Akraifnio — Kokkino.

¢ Regional Road Ep.21: Prodromos - Paralia Saranti.

¢ Regional Road Ep.23: I/C Kaparelli (Ep.24) - Plataies - Subregion limit N. Attikis
(Erythres).
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e Regional Road Ep.24: I/C E.O.03 (Thiva) - Loutoufi - Melissochori - 1/C
Kaparelli.

¢ Regional Road Ep.28: I/C E.O. 3 - Neochoraki - Asopia - Tanagra - I/C E.O. 1.

¢ Regional Road Ep.30: Subregion limit N. Attikis (Fyli) - Pyli — Dafni.

e Regional Road Ep.31: Subregion limit N. Attikis (Magoula) - Kokkini - Stefani -
I/C Ep.30.

¢ Regional Road Ep.36: I/C E.O. 44 (Thiva) - Mouriki - Platanakia - Loukissia —
Drosia.

e Regional Road Ep.37a & Ep.37b: Arachova - Kalyvia - Subregion limit N.
Fokidas (Eptalofo) & I/C to Ski Centre - I/C to Eptalofo.

The following table (Table 4.4) presents the total number of road crashes on these
roads and the number of road crashes on these roads with unknown crashes’ specific
location for the five-year period 2011-2015.

Table 4.4: Crashes on known and codified roads and unknown station for the years 2011-2015 in the
subregion of Viotia

2011 16 1 6%
2012 14 2 14%
2013 12 1 8%
2014 9 0 0%
2015 4 1 25%
Total 55 5 9%

An additional table (Table 4.5) was created to identify whether the infrastructure
characteristics as recorded in the road crash database match to the actual basic
infrastructure characteristics retrieved from Google Earth aerial imagery. It was found
that the basic geometric characteristics (e.g., intersection, curve or straight segment,
presence of lighting) matched in only 54% of the cases.

Table 4.5: Crashes on known-codified roads and crashes with identical infrastructure characteristics

2011-2015 50 27 54%

As a conclusion, and taking into account the results of the four previous tables (Tables
4.2-4.5), out of a total of 451 recorded road crashes in the road network of Viotia, only
for 177 (39%) is both the road code and the road station recorded. Furthermore, based
on the detailed analysis of a sample of roads, it can be assumed that for approximately
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half of these crashes (46%) there are obvious discrepancies between basic geometric
characteristics of the crash location, as recorded in the database, compared to Google
Earth data, leading to the deduction that no more than 21% of available injury crashes
data is usable for purposes of crash analysis and modelling that requires precise road
crash location.

For the purpose of this doctoral dissertation’s analyses, Olympia Odos Operation, the
firm operating the Elefsina — Korinthos — Patras motorway has kindly provided a fully
detailed crash database for the period from January 1st, 2010 until December 31st,
2020, including road crashes with casualties as well as property-damage-only (PDO)
crashes. Generally, motorway concessionaires in Greece usually maintain their own
databases in which road crash data with exact location of crashes are recorded,
commonly also including crashes with material damage only.
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4.3 Traffic Data

In Greece, there is no official national database for traffic data, either traffic volumes
or traffic synthesis. Regularly updated datasets exist only for urban areas (e.g., in
Athens greater area) and on toll-operated motorways. However, even these datasets
are usually not openly and readily available to researchers and practitioners. Traffic
data on lower class rural roads (national and/ or regional) are usually collected on a
per-case basis by regional road authorities, using spot traffic counts.

As a result, the lack of traffic data is also an important obstacle in microscopic road
infrastructure safety research in Greece and in many cases, it actually defines the type
and magnitude of research that can realistically be conducted. In order to gain an
understanding of the extent of available data, a case study investigation of traffic data
availability was performed in the national and regional road network of the subregion
of Viotia. Contact with the road management authority of Viotia resulted in identifying
a set of spot traffic count results, covering a 12h per day period (8am to 8pm) for a
period of three days: Wednesday 10/9/2014, Friday 12/9/2014 and Saturday
13/9/2014, for only four locations, combined for both directions of travel: on Thiva-
Livadeia Road, Livadeia-Lamia Road, Thiva Ring Road and Elefsina-Thiva Road
(Figure 4.1).

Figure 4.1: Locations of available traffic data in the subregion of Viotia. (Source: Road management
authority of Viotia subregion - field surveys in September 2014).

It can be expected that traffic data with a similar level of detail and extent can be

obtained also for other sub regions of Greece. The above traffic data could be
potentially useful for road safety analyses, after suitable elaboration to estimate the
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Average Annual Daily Traffic (AADT). The available detailed information on traffic
synthesis (passenger cars, buses, light trucks, 2-axes heavy trucks, 3-axes heavy
trucks, and heavy trucks with trailers) may also provide qualitative information for the
causes of road crashes during the road safety inspections. However, the data cover a
very small fraction of the road network in Viotia subregion, thus, severely limiting the
scope of the analyses.

Motorway concessionaires in Greece maintain traffic databases for the road axes they
are responsible for. In general, on toll operated motorways, toll stations data can
provide a very comprehensive and detailed dataset for traffic volumes and synthesis
of traffic, that are fully appropriate for road safety analysis and modelling.

[114]



Dimitrios Nikolaou | Machine learning-based road crash risk assessment
fusing infrastructure, traffic and driver behaviour data

4.4 Geometric Design Data

The development and the application of road infrastructure CPMs is inherently related
to the availability of data on the examined road infrastructure, including geometry (e.g.
horizontal curvature, vertical curvature and slope), cross section elements (e.g.
presence of central median, number of lanes, lane width, shoulder type and width,
etc.), roadside conditions (e.g. distance of hazards, road safety barriers, etc.) and
other road features and equipment (e.g. rumble strips, condition of markings and
signs, road lighting, etc.). Not all types of road infrastructure data are necessary at all
times; the selection of the parameters that need to be considered as independent
variables in the models is probably the most critical decision that affects the
robustness of the approach.

4.4.1 Potential Data Sources

Potential road geometric design data sources commonly include:

e National Road Authorities Databases: Road infrastructure and road design data
are commonly collected and maintained in the asset management databases
of National Road Authorities. In Greece however, the road registry maintained
by the Ministry of Infrastructure and Transport includes mostly administrative
data and there is no road geometry database exists with sufficient detail to be
able to provide useful and meaningful data for road infrastructure analyses.

e Data from vehicle mounted cameras and road survey vehicles: Vehicle
mounted cameras can be used for surveys of road infrastructure: a road is
recorded in high resolution while driving at a constant speed appropriate for
recording. Weather condition for this type of survey should be ideal, and it is
typically performed during the day. The primary purpose of this type of survey
is to collect geo-referenced images of road segments which can be used for
road attribute coding. Furthermore, equipping the vehicle with various sensors
enhances data collection and analysis of multiple data types such as road
element data, operating data, and traffic volume data.

An extensive use of such a road infrastructure data collection methodology took
place during the period 2012-2015 by Egnatia Odos SA, in the framework of
the Greek Road Rehabilitation and Safety Project. A large part of the national
and regional rural road network of Greece (excluding motorways) was
surveyed, including 4,200 km of national roads and 10,800 km of regional
roads, covering the 13 regions of the country, in order to identify potential
sections for road rehabilitation and safety works. In the data collection phase of
the above project, vehicle mounted video cameras were used in conjunction
with GPS and georeferenced AutoCAD drawings were developed with the
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horizontal and vertical alignment of the examined roads and the respective road
station. Satellite images were also used as a background of the horizontal
alignment drawings. Using these drawings and the video footage, the following
data were collected and coded in databases, on the basis of the start/ end
station: road gutter, drainage ditch, pavement width, unsealed shoulders, high
embankments, high cuts, additional traffic lanes, medians, sidewalks, technical
works (culverts, bridges, etc.), traffic signs, road safety barriers, delineators,
lighting posts, other posts, at-grade intersections, interchanges, access
facilities, pavement deficits, bus stops, etc.

These data are adequately detailed and appropriate for road infrastructure
analysis; yet they are somewhat outdated as road improvements have already
taken place in some locations

Data from High Definition (HD) maps: A high-definition map (HD map) is a
highly accurate 3D map containing details not normally present on traditional
maps. Such maps can be precise at a centimeter level. HD maps are captured
using an array of sensors, such as LiDARSs, radars, digital cameras and GPS.
HD maps can also be constructed using aerial imagery. High-definition maps
usually include map elements such as road shape, road marking, traffic signs
and barriers. An example of HD mapping suppliers includes TomTom, Here,
Navtech, MobilEyE etc.

Open GIS road geometry data: A series of online utilities provides coordinates
along the road network of many countries, including Greece. In order to
investigate the potential and accuracy of Open GIS Data in effectively
describing road geometry (horizontal elements and elevations) a pilot
assessment study was performed as presented in the following subsection.

4.4.2 Pilot Evaluation of Open GIS Road Geometry Data

Data extraction and assessment was based on comparing road geometry data
retrieved from OPEN GIS sources to the actual data for the road axis of Patras-Pyrgos
National Road in the area "Vrachneika", as derived from a detailed topographic survey
at scale 1: 500 (Figure 4.2).

The investigation included the use of:

Blender software (free software available at: https://www.blender.org/) with GIS
tracking of road data, and

the GPS Visualizer platform that retrieves data from the SRTM database - same
to OSM data that is also accessible via API.
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Figure 4.2: Blender and GPS Visualizer data assessment area.

4.4.2.1 Blender Software

Blender is a free software released under the GNU General Public License. It supports
the entirety of the 3D pipeline—modelling, rigging, animation, simulation, rendering,
compositing and motion tracking, video editing and 2D animation pipeline. Using the
add-on “Blender GIS”, Blender software can retrieve and process geographic
information in standard GIS file formats e.g., shapefile vector, raster image, geotiff
DEM, OpenStreetMap xml.

The steps followed using the Blender software were:

1. Using the add-on, the area where the topographic survey was made, was
visually identified and the background map was retrieved (GIS tab —
webgeodata — Basemap, source google — satellite level).

2. Digital model was retrieved (GIS tab — webgeodata — Get SRTM)

3. Open street Map (OSM) data was saved for the existing roads (GIS tab —
webgeodata — Get OSM, highway level).

4. The highway level information was extracted (*.shp file) in the form of lines with
elevation data (GIS tab — Export, feature: line).

5. Import of the *.shp file in AutoCAD software and comparison of the elevations
of the imported lines to the topographic survey elevations.

4.4.2.2 GPS Visualizer platform and Shuttle Radar Topography Mission database

GPS Visualizer is an online utility that creates maps and profiles from geographic data
(https://www.gpsvisualizer.com/). It is free and easy to use, yet powerful and extremely
customizable. Input can be in the form of GPS data (tracks and waypoints), driving
routes, street addresses, or simple coordinates.

[117]


https://www.gpsvisualizer.com/

Dimitrios Nikolaou | Machine learning-based road crash risk assessment
fusing infrastructure, traffic and driver behaviour data

The elevations of the same eight sampling points considered for the Blender software
were also estimated by using the DEM database
(https://www.gpsvisualizer.com/elevation). The procedure of converting the AutoCAD
points (*.dwg file) to kml/kmz files was the following:

Export of the AutoCAD points to a *.shp file.

Import of the *.shp file in Google Earth and then export as *.kml file.
Import of the *.kml file in DEM database of GPS Visualizer site
Export in *.txt file.

O~

4.4.2.3 Comparison of Open GIS Data to topographic survey data

The data extracted from Blender software and from GPS Visualizer platform were
compared against the respective points on the topographic survey, with regards to
their elevation as shown in Tables 4.6 and 4.7 that follow.

Table 4.6: Accuracy assessment of road centerline points - Blender software

1 294999.85 | 4225789.11 29.18 25.98 3.20
2 295066.33 | 4225763.10 42.33 43.17 0.84
3 295230.16 | 4225760.95 48.94 49.60 2.36
4 295506.68 | 4225736.57 49.35 47.40 2.34
5 295867.39 | 4225772.21 68.33 71.20 2.94
6 295901.81 | 4225838.99 66.06 64.40 4.56
7 295917.74 | 4225759.28 82.82 87.10 13.55
8 296081.10 | 4225921.02 58.82 56.80 0.82

Table 4.7: Accuracy assessment of road centerline points - GPS Visualizer platform

1 38.1593349 | 21.6618775 28.90 25.98 2.92
2 38.1591157 | 21.6626432 43.50 43.17 0.33
3 38.1591336 | 21.6645123 49.60 49.60 1.70
4 38.1589767 | 21.6676730 47.40 47.40 0.39
5 38.1593793 | 21.6717767 71.20 71.20 0.07
6 38.1599885 | 21.6721501 64.40 64.40 2.90
7 38.1592743 | 21.6723546 87.10 87.10 9.27
8 38.1607677 | 21.6741715 56.80 56.80 1.20

From the above analysis it is evident that no accurate information for vertical alignment
and road elevations can be collected from both Open GIS data sources (Blender and
GPS Visualizer). Specifically, street surface elevations obtained from Open GIS
applications have very large deviations, both between applications (e.g., Blender data
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compared to GPS Visualizer data) and (more importantly) when compared to actual
surveyed elevations. In more than half of the randomly selected examined points (6
out of 8 for Blender data and 5 out of 8 for GPS Visualizer data), elevation differences
from the survey exceed 1m. The problem seems to be is intensified in cases where
the road is at a cut or fill section of considerable height (e.g., point 7), where
differences up to 13.5m were observed.

On the other hand, with regards to the horizontal alignment, qualitative evaluation of
data for the road centerline location from both Blender and GPS Visualizer reveals
small differences compared to the surveyed road centerline and these data can
potentially be used to build a road geometry database for the purpose of road safety
analyses.
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4.5 Smartphone Data

An alternative approach to road safety related data that will be exploited in parallel
within the framework of this doctoral dissertation, is the use of crowdsourced
smartphone data from OSeven Telematics (www.oseven.io). OSeven maintains and
operates an innovative data collection scheme which records personalized driving
behaviour analytics in real time, using smartphone sensors. An integrated system is
used for the recording, collection, storage, evaluation and visualization of driving
behaviour data, using smartphone applications and advanced ML algorithms. The
system includes specially developed smartphone application for data collection and
transmission, as well as for providing feedback to the participants on their driving
behaviour.

The steps described below for data processing are exclusively performed by OSeven
and do not constitute part of this dissertation. More details on the data processing
steps cannot be provided since they are intellectual property of the company.
However, the main features of the system are outlined below.

A smartphone app has been developed by OSeven to record driver behaviour using
the sensors of the smartphone, and a variety of APIs is exploited to read sensor data
and temporarily store them to the smartphone’s database before transmitting them to
the central (backend) database. The data recording is initiated automatically in the
smartphone app when a driving status is recognized, and again it stops automatically
when a non-driving status is recognized. The frequency of the data recording varies
depending on the type of the sensor, with a minimum value of 1 Hz. Trip recording
also continues if the vehicle is idled for five minutes, to consider the case that the
driver resumes a trip after a few minutes stop. All extra information collected after the
end of driving is discarded.

The recorded data come from various smartphone sensors and data fusion algorithms
provided by Android (Google) and iOS (Apple). Indicatively, technology sensors
integrated in the smartphone are the Accelerometer*, the Gyroscope*, the
Magnetometer and the GPS (speed, course, longitude, latitude). Fusion Data provided
by iOS and Android include yaw, pitch, roll, linear acceleration* and gravity* (elements
marked with an asterisk “*” sign refer to x, y, z components).
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Figure 4.3: Coordinate systems of the smartphone and the vehicle
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After the end of each trip, the application is transmitting all data recorded to the central
database of the OSeven backend office via an appropriate communication channel,
such as a Wi-Fi network or cellular network (upon user’s selection) e.g., 4G (online
options). The data collected are highly disaggregated in space and time. Once stored
in the backend cloud server, they are converted into driving behaviour and safety
indicators, using signal processing, ML algorithms, Data fusion and Big Data
algorithms. ML methods (filtering, clustering and classification methods) are mainly
used to clean the data from noise and errors, and to identify repeated patterns within
the data.

Various forms of metadata are ultimately computed, including both exposure and
driving behaviour indicators - such as trip duration, trip distance, driver speed,
instances of speeding, the frequency of harsh braking and harsh acceleration
incidents, and driver distraction from mobile phone use. The detection of harsh events
is accomplished through the utilization of the proprietary OSeven algorithms, which
are private and under intellectual property rights. Essentially, these algorithms utilize
data from all axes of the accelerometer, along with inputs from GPS, magnetometer,
and gyroscope sensors. The algorithms analyse the time series data throughout the
entire trip in order to increase the accuracy of harsh events detection. Importantly,
these algorithms do not rely on predefined thresholds to deem whether an event is
harsh or not. Instead, ML techniques and data fusion are implemented to identify
abrupt spikes in the sensor data (Kontaxi et al., 2021a) regardless of absolute values.

It is worth noting that all naturalistic driving data used in this doctoral dissertation were
provided by OSeven Telematics in a fully anonymized format, complying with the
relevant national and European personal data regulations, including the General Data
Protection Regulation (GDPR).

OSeven smartphone application has been employed for research purposes pertaining
mainly to driving behaviour, as extensively documented in prior studies (Papadimitriou
et al.,, 2019; Kontaxi et al.,, 2021b; Ziakopoulos, 2021; Tarlochan et al., 2022;
Fafoutellis et al., 2023). Therefore, it can be concluded that these indicators along with
other data (e.g., from map providers) can be subsequently exploited to identify
patterns and locate sections of the road network with above normal concentrations of
harsh braking and harsh acceleration events, of speeding events and also provide
estimations on average speed, to be used for road safety modelling purposes.
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4.6 Discussion

Based on the results of the above pilot studies, for non-motorway rural roads in Greece
the absence of traffic volume information and even more, of properly geo-located road
crash data, seems to be an impermeable obstacle for detailed crash prediction
modelling efforts. Specifically, for non-motorway rural roads it was found that:

e approximately 80% of the injury crashes recorded in the official National Road
Crash Database has either missing or obviously inaccurate crash location
information,

e existing traffic volume data on the rural road network are largely unavailable
and derived from scarce spot counts performed several years ago,

e geometric (road design) data are available only in the deliverables of the Greek
Road Rehabilitation and Safety Project performed on behalf of Egnatia Odos
SA in 2012-2015. Limited data can be retrieved from Open GIS sources,
keeping however in mind that elevation information is largely inaccurate.

On the other hand, road crash prediction modelling can potentially be performed on
motorways, using crash and traffic data maintained by road operators, provided that
an arduous and resource-consuming process is applied to collect and code missing
geometric design data.

It should be acknowledged that this investigation exhibits certain limitations that need
to be considered along with the findings and conclusions. Firstly, the investigation of
this section focuses only on the rural road network; availability and accuracy of road
safety data for urban roads may significantly differ. However, it can be expected that
the lack of a registry for municipal roads (excluding those in Athens and Thessaloniki)
in the National Road Crash Database is likely to exacerbate the issue of incomplete
geolocation records for crashes on urban roads across the provinces of Greece.

Secondly, both the investigation of crash data reliability and location information with
regards to the official Greek National Road Crash Database and of traffic data
availability, is focused on a single prefecture of Greece. Although this prefecture
(Viotia) is considered quite representative of average conditions, it may be true that
different conditions may prevail in other prefectures (particularly in island prefectures).
Lastly, the integration of naturalistic driver behaviour data from smartphones stands
as an invaluable addition to road safety analyses.

The investigation of this section highlighted the limitation of conducting high-detailed
crash prediction modelling in Greece, feasible only for motorways with high-quality
crash data, in terms of crash location, and traffic attributes per road segment. This led
to the establishment of two distinct databases: one encompassed comprehensive data
for the Olympia Odos motorway, including detailed historical road crash records, traffic
attributes, road geometry characteristics, and driver behaviour data on a segmental
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basis; the other covered a broader road network within the Region of Eastern
Macedonia and Thrace, albeit lacking detailed crash location data and traffic attributes.
Additional details regarding the data collection and processing methods used for these
two distinct databases, along with the outcomes of the statistical and ML analyses, are
expounded upon in the subsequent sections of this doctoral dissertation.
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5. Motorway Data Collection and Processing

5.1 Introduction

This section provides technical information on the process of data collection and
descriptive statistics for the Olympia Odos motorway. Based on the experience and
knowledge gained through Section 4 findings regarding the pilot study in Viotia
subregion, the investigation of crash location data reliability and the pilot evaluation of
Open GIS road geometry data, detailed road crash investigations of this doctoral
dissertation focused on Olympia Odos motorway for which very detailed and accurate
historical road crash and traffic data were kindly provided by the road operator.
However, detailed road infrastructure and geometry data were not readily available.
Therefore, the required dataset had to be developed exploiting available data from all
potential sources. Olympia Odos motorway is located in Southern Greece and is a
rural motorway from Athens to Patras that comprises 201.5 km of rural motorway in
total, with two or three lanes per direction and 29 interchanges. Part of the motorway
of 63 km (Elefsina-Korinthos) is in operation since 2010, whereas the rest (Korinthos-
Patras) was fully operational since the summer of 2017.

quququququ
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Figure 5.1: Olympia Odos motorway in Greece

The rest of this section is organised as follows. Subsections 5.2 and 5.3 provide brief
descriptions of the main attributes of the collected crash and traffic data for Olympia
Odos motorway. Following this, subsection 5.4 describes the activities performed to
develop a road infrastructure database for Olympia Odos motorway, combining
information from the road operator, Open GIS software, Google Earth and
GoogleStreetView. The creation of this road infrastructure database and of reference
drawings of the motorway also enabled the identification and isolation of naturalistic
driver behaviour data from OSeven database (subsection 5.5). Concluding this
section, subsection 5.6 presents a summary table containing the motorway-related
variables that were ultimately analyzed in this doctoral dissertation, accompanied by
their abbreviations and relevant descriptive statistics.
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5.2 Crash Data

Crash data of all severity levels including PDO crashes were available for the period
2015-2020. As the entire motorway (i.e., from Athens to Patras) was finalized and
started operating in summer 2017, crash data for the entire length were available for
the years 2018-2020. Therefore, it was decided to focus on a smaller time period
(2018-2020) but for a longer road network. The motorway is operated by a private road
operator firm, Olympia Odos Operation SA, who kindly provided data for this doctoral
dissertation. The following 28 variables (per crash) are included in the provided road
crash database:

reference number, Crash Data Collection Form number, crash type, date, time,
direction of travel, road station (chainage), interchange name, ramp name, tunnel
name, toll station name, weather conditions, pavement conditions, lighting conditions,
number of slightly injured, number of seriously injured, number of fatalities, crash
severity, and ten variables on the type and number of involved vehicles: other/
powered-two-wheeler/ passenger car/ bus/ vehicle with trailer or caravan/ truck/ taxi/
truck with dangerous load/ truck <2.5 T/ truck>2.5 T.
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5.3 Traffic Data

For the purpose of the analyses of this doctoral dissertation, Olympia Odos SA, the
firm operating the Elefsina - Korinthos - Patras motorway (an identification of km posts
using Google Street View) has provided traffic data as follows:

1. AADT for section of the motorway (28 sections defined according to the location
of interchanges), for years 2015 to 2020. AADT is provided as a sum for both
directions of travel, with an estimated equal distribution per direction, according
to Olympia Odos.

2. Traffic composition, considering four different vehicle categories:
Cat 1: Power-Two-Wheelers (PTWs).

Cat 2: Passenger cars - light vehicles (may tow a trailer, height less than 2.2m).
Cat 3: Heavy vehicles with maximum 3-wheel axes (may tow a trailer, height
more than 2.2m).

Cat 4: Heavy vehicles with 4 or more-wheel axes (may tow a trailer, height more
than 2.2m).

Data from major toll stations are available (separate for each direction of traffic),
dividing the motorway into five large sections. Traffic composition data are available
for the same time period to AADT data. In parallel with the road crash data, the time
period of traffic data that was examined within this doctoral dissertation corresponds
to the same three-year time period (2018-2020).
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5.4 Road Infrastructure Data

A road geometry database that focuses on the section from the toll station of Elefsina
(CH.26 + 500) to the end of the motorway (CH.223 + 200) was developed through a
multi-step process. As a first step, a draft centerline of Olympia Odos Motorway was
preliminarily retrieved from Open GIS software, using the Blender application
(https://www.blender.org/), as follows: the Open GIS polylines representing the
existing road network in the vicinity of the motorway were exported in shapefile format
and imported to CAD environment; then, all neighbouring road centerlines were
removed and centerlines for the motorway, for transverse roads and entrance/exit
ramps at interchanges were isolated. At this stage, the CAD drawing of the motorway
was developed in the official national coordinate system in Greece (EGSA 87). It is
noted that only horizontal alignment information on the road centerlines was retrieved.

Following the zone of the centerline defined in the first step, a series of high-detail
satellite images (pixel size approximately 1.2 x 1.7m) were retrieved using the
respective  GIS module of the free online software HEC-RAS
(https://www.hec.usace.army.mil/software/hec-ras/) and georeferenced as the
background of the CAD drawing. Combining information from the Open GIS road
centerline and the detailed satellite imagery, the centerline of the motorway was
subsequently refined, as follows: the preliminary centerline from Open GIS software is
a polyline with dense points. This was manually replaced in the CAD environment by
a “road design equivalent” centerline, consisting of tangents, circular curves, and spiral
(clothoid) curves. Spiral curves were introduced on the entrance and exit of all curves
with a radius of less than R = 1000, assuming a clothoid curve parameter A ranging
from R/3 to R (R/3 < A <R), according to Greek road design guidelines. In segments
where the two directions of travel follow different paths, the main centerline was the
direction from Elefsina to Patras and a secondary centerline was created for the
opposite direction.

The refined CAD centerline was then imported into the Google Earth online platform
(https://earth.google.com) and using the satellite views and the Google Street View
imagery in conjunction, the location of km posts was determined. This location is of
utmost importance for microscopic road safety analyses, as all elements of the
analysis (crashes, speed limits, etc.) are recorded according to those locations (GPS
use for crash location recording is not performed in Greece). The km posts, as
identified in Google Earth, were subsequently imported into the base CAD drawing of
the motorway and a road chainage system (stations) was established.

In the next step, all available road infrastructure data were imported into the CAD
drawing as well as the Google Earth interface, mostly based on their respective road
station (chainage) but also cross-checking their location against the Google Earth
satellite imagery and Street View images. An important source of information at this
stage was the motorway schematic provided by the road operator (Olympia Odos
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Operation SA) with the exact locations (road station-chainage) of interchanges (with
entrance/exit ramps), toll stations, motorway service stations, parking areas, tunnel
and cut-and-cover entrance and exits, and speed limit signs.

The above procedure produced a CAD drawing, as presented in Figure 5.2, with
georeferenced satellite images as the background, including motorway centerline
geometry, chainage, speed limits, and visualization of other important road
infrastructure elements: toll stations, interchanges (with transverse roads, entrance
and exit ramps), km posts, location of lane addition or lane drop, weaving segments,
etc., and a Google Earth Dataset in .kmz file form, presented in Figure 5.3, with several
layers of information: center-line, chainage, tunnels, additional lane points (gore, start,
and end), lane drops/additions, etc. These two powerful tools were utilized in order to
code road infrastructure data for further analysis and create a database that forms the
basis for subsequent motorway analyses.

ol

Figure 5.2: Extract of the developed CAD drawing
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5.5 Driver Behaviour Data

Another database on road user behaviour data on Olympia Odos Motorway was
developed, in order to be jointly investigated with the road infrastructure, crash, and
traffic data. Naturalistic driver behaviour data were recorded via a smartphone
application and processed in the platform, both developed by OSeven
(https://oseven.io/). Drivers install the application developed by OSeven on their
smartphones and subsequently engage in normal driving activities. The application
engages automatically when driving is initiated and records different data types such
as vehicle location, speed, acceleration, deceleration, duration of engagement with
the phone, etc. These data are further processed to develop metrics to describe driver
behaviour. Further details on the operation of this application have already provided
in subsection 4.5 of this doctoral dissertation.

For the analyses of Olympia Odos motorway segments, OSeven has provided a
representative dataset from its database in a completely anonymized format that
corresponds to the period from 1 June 2019 to 31 December 2020. The data were
recorded from a driver sample equal to 327 drivers for 2019 and 330 drivers for 2020.
It is possible that some drivers were mindful that their driving behaviour was recorded
through the application and were even more aware than usual. However, these effects
have been reported to decrease over time as drivers gradually forget that they are
being recorded (Tselentis, 2018). For the total considered time period the average
number of recorded trips per motorway segment was 769 trips. Subsequently, driving
behaviour metrics from naturalistic data, which are driver-based, needed to be
assigned to the examined motorway segments, which are infrastructure-based data.
This was achieved via isolating each trip portion to the corresponding segment within
the internal recording of trips conducted in GIS by OSeven using ESRI polygons at
200m intervals.
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5.6 Descriptive Statistics

At this point, it should be noted that the recording of driver behaviour through the
smartphone app was not feasible within the tunnel road segments due to the loss of
GPS signal. Furthermore, toll station segments are not typical motorway segments
both in terms of geometric design and driver behaviour. Consequently, these two types
of road segments were not included in the motorway segments’ analyses of this
doctoral dissertation. The motorway-related variables that were finally included and
analyzed are presented in Table 5.1, along with their abbreviations and some key
descriptive statistics. As also mentioned in Sections 2 and 4, the variables related to
road design characteristics, traffic attributes, and road crashes are widely used in
CPMs, whereas harsh driving behaviour events are SSMs that can complement road
safety analyses.

Table 5.1: Road crash, traffic, geometry, and driver behaviour variables per motorway segment

Number of Segment no. Count: 668
Direction Direction Frequencies: E: 337 T: 331
Segment Start (Chainage) Seg_Start -
Segment End (Chainage) Seg_End -
Number of through lanes lanes Frequencies: 2: 435, 3: 233

Min.: 0.2000, Max.: 0.6000,

Length of motorway segment (km) len_seg Mean: 0.5284. Median: 0.6000

Average Annual Average Daily Traffic

Volume of motorway segment (veh/day) avg_AADT_18_20 Min.: 6,511, Max.. 22,079,

Mean: 10,786, Median: 7,423

2018-2020
- - Min.: 90.0, Max.: 130.0,
Posted speed limit (km/h) speed_limit Mean: 1217, Median: 130.0
Number of Total Road Crashes (Injury & ToCr18 20 Min.: 0.00, Max.: 13.00,
Property Damage Only) 2018-2020 - Mean: 2.02, Median: 2.00

Number of Total Road Crashes (Injury &

Property Damage Only) by segment length | TotCr18_20_len_seg Min.- 0.00, Max.. 30.00,

Mean: 3.88, Median: 3.33

2018-2020
. Min.: 0, Max.: 50,000,
Curve 1 - Radius R (m) Curve1 Mean: 2,129, Median: 950
. . Min.: 0.00, Max.: 600.00,
Curve 1 - Length of curve in segment (m) Lcurvel_in_seg Mean: 218.21. Median: 196.31
. . Min.: 3.55, Max.: 3.95,
Lane width (m) lane_width Mean: 3.92, Median: 3.95
. . . . Min.: 0.50, Max.: 1.75,
Paved inside shoulder width (m) pav_ins_sh_width Mean: 0.69, Median: 0.75
Median width (measured from near edges median width Min.: 2.25, Max.: 23.50,
of traveled way in both directions) (m) - Mean: 4.96, Median: 4.88
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Distance from edge of inside shoulder to dist edainssh barf Min.: 0.00, Max.: 0.75,
barrier face (m) -4 - Mean: 0.04, Median: 0.00

. . . Min.: 0.25, Max.: 4.50,
Paved outside shoulder width (m) pav_out_sh_width Mean: 2.77, Median: 3.00

Distance from edge of outside shoulder to dist edaoutsh barf Min.: 0.00, Max.: 3.25,
barrier face (m) 549 - Mean: 0.82, Median: 0.50

Min.: 173, Max.: 1,689,
Mean: 769, Median: 529
. Min.: 77.0, Max.: 153.0,
Average speed (all trips) (km/h) avg_speed Mean: 115.9, Median: 118.0
Min.: 0.0000, Max.: 0.1614,
Mean: 0.0046, Median: 0.0020
, . . Min.; 0.0000, Max.: 0.1172,
Number of harsh brakings per trips hb_per_trips Mean: 0.0052, Median: 0.0022
Min.; 0.03, Max.: 2.56,
Mean: 0.68, Median: 0.71

Number of recorded trips rec_trips

Number of harsh accelerations per trips ha_per_trips

Number of speeding events per trips speeding_per_trips

The histogram of Figure 5.4 presents the distribution of road crash frequencies in the
examined motorway segments, while the boxplots of Figures 5.5 to 5.17 display the
key descriptive statistics of the numeric variables of Table 5.1.

Number of Total Road Crashes (Injury & PDO) 2018-2020
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Figure 5.4: Number of Total Road Crashes (Injury & PDO), 2018-2020
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Figure 5.5: Length of motorway segment (km)
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Figure 5.6: Average AADT of motorway segment (veh/day), 2018-2020
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Figure 5.7: Posted speed limit (km/h)
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Figure 5.8: Number of total road crashes by segment length, 2018-2020
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Figure 5.9: Length of curve in segment (m)
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Figure 5.12: Distance from edge of inside/outside shoulder to barrier face (m)
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Figure 5.13: Median width (m)

Number of recorded trips
1800

1689

1600

1400

1325

1200

1000

800

600

529
466
400

200 173

Figure 5.14: Number of recorded trips
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Figure 5.15: Average speed (all trips) — km/h
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Figure 5.16: Number of speeding events per trips
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Figure 5.17: Number of harsh driving behaviour events (accelerations/brakings) per trips
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6. Motorway Segment Analyses

6.1 Introduction

Motorways, also referred to as freeways, exhibit much lower crash rates, in terms of
injury crashes per million vehicle kilometres, than other road types. Studies comparing
motorways to standard rural and urban roads indicate 50% to 90% lower crash rates
for motorways (European Commission, 2018). It has also been found that the
extension of the motorway network is associated with a reduction in road fatality rates,
while other road types do not present the same positive safety effects (Albalate & Bel,
2012). During the last few years, motorway length has increased substantially in many
European countries (Papaioannou & Kokkalis, 2012). Elvik et al. (2017) evaluated the
road safety effects of a new motorway in Norway through an Empirical Bayes before-
after evaluation and found that injury severity was reduced markedly. In the case of
Greece, the considerable improvement of its main road network from 750 km of
motorways in 2007 to 2,200 km in 2018 was a key factor for the reduction in road
fatalities by 54% during the period 2010-2020 (European Transport Safety Council,
2021).

Although motorways exhibit reduced crash rates compared to other road types,
crashes still occur, and, due to high vehicle speeds, these crashes tend to be more
severe. Therefore, there is still space for road safety improvements. In Greece, 50
road fatalities were recorded on motorways in 2019 and, towards this direction, a
target of zero fatalities on motorways by 2030 has been set in the Greek Road Safety
Strategic Plan for the period 2021-2030 (Yannis et al., 2023). Naturally, available funds
for road safety interventions are not infinite. Consequently, decision-makers and
stakeholders are forced to resolve their optimal allocation. Several quantitative
techniques have been applied to enhance decision-making with regard to identification
of segments’ crash frequencies or risk levels and their prioritization in terms of
potential upgrades.gt

Indicatively, Montella et al. (2008) developed two generalized linear CPMs with a
negative binomial distribution error structure for estimating the safety of rural motorway
segments in Italy. The first one considered total road crashes, while the second model
considered only severe crashes. The key result of this research was that design
consistency measures significantly affected road safety. La Torre et al. (2019) used a
5-year period dataset with fatal and injury crashes that occurred on 884 km of
motorway segments in lItaly, in order to develop two CPMs that could be applied and
transferred to the entire Italian motorway network with proper calibration. That
research provided a tool that enables the dealing with potential safety issues and
helping in selecting treatments. Data Envelopment Analysis is another technique that
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has been also used for the identification of hazardous motorway segments (Shah &
Ahmad, 2020).

Regarding CPMs, they represent a reactive modelling approach primarily based on
historical crash records collected within a long period of time (Theofilatos et al., 2019).
Consequently, such approaches force road safety experts to wait for the occurrence
of road crashes in order to identify the problems and examine measures for their
prevention. Therefore, in recent years, researchers have increasingly started using
indicators that are not based on historical crash data. As also mentioned in the
literature review section of this doctoral dissertation, these indicators have been
termed SSMs and can either be a proactive approach to road safety analyses (Wang
et al., 2021) or even complement analyses that are based on historical road crashes
(Johnsson et al., 2018). SSMs can be collected either through traffic simulation models
(Gettman & Head, 2003; Mahmud et al., 2019) or under real driving conditions through
smartphones (Paleti et al., 2017), equipped vehicles (Ambros et al., 2019), and video
recordings (Johnsson et al., 2021). On one hand, SSMs can be time-based,
deceleration-based, and energy-based. Among the most prevalent indicators of this
subcategory of SSMs are PET, TTC, and DRAC (Bonela & Kadali, 2022). On the other
hand, the recording of driving behaviour through sensors in vehicles and mobile
phones has made harsh driving behaviour events an alternative subcategory of SSMs
(Ziakopoulos et al., 2022; Stipancic et al., 2019).

Within this context, the objective of this section is threefold, specifically:

i. Investigate the relationship between road crash frequency in motorway
segments and various explanatory variables based on road design
characteristics and SSMs;

i. Create risk-level clusters of the motorway segments based on crash and traffic
data;

iii. Compare the classification performance of five well-known ML techniques
which exploit road design data and SSMs for the prediction of the crash risk
level of motorway segments.

A detailed description of the dataset that was exploited for the motorway segment
analyses has been provided in the previous section of this dissertation.
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6.2 Crash Frequency Model

As per the aforementioned, the first objective of this section was to develop a CPM in
order to investigate the relationship between road crash frequency in road segments
of the Olympia Odos motorway in Greece and various explanatory variables based on
road design characteristics and SSMs. Since road crashes are count data, a count
data modelling approach was selected.

As a first step, the variance and the mean of road crash frequency in the examined
motorway segments were calculated in order to choose between Poisson regression
and NB regression. In particular, it was estimated that the variance is equal to 3.98
and is higher than the mean which is equal to 2.02. For this reason, NB regression
was chosen as the most appropriate modelling approach.

This analysis was conducted in R-studio (R Core Team, 2023) using the MASS R
package (Ripley et al., 2013). A high number of regression model tests were
conducted for different combinations of Table 5.1 variables. The optimal combination
of variables was the one that had a sufficient number of statistically significant
independent variables at a 95% confidence level (p-values < 0.05) and the lowest
possible AlICc. Moreover, the independent variables were also checked for
multicollinearity through the Variance Inflation Factor (VIF). A standard guideline is
that VIF values higher than 10 indicate high multicollinearity. However, a threshold
equal to 5 is also commonly used (Sheather, 2009). The dependent variable of the
developed NB regression was the variable “TotCr18 20" of Table 5.1 and the results
of the model are presented in the following Table.

Table 6.1: Statistical model for crash frequency in motorway segments

(Intercept) -1.091 0.193 -5.667 <0.001 -
avg_AADT_18_20 | 6.67 105 0.000 12.295 <0.001 1.014
ha_per_trips 7.604 2174 3.499 <0.001 1.058
hb_per_trips 10.826 2.541 4.261 <0.001 1.066
len_seg 1.671 0.325 5.144 <0.001 1.012
AlCc 2,333.033

Based on this Table, it can be observed that all the explanatory variables are
statistically significant at a 95% confidence level; there is no issue of multicollinearity
as the VIF values are much lower than 5. With regard to the coefficients, it is revealed
that road crash frequency in the examined motorway segments is positively correlated
with the average AADT, showing that as traffic volume increases, the number of road
crashes increases as well. This finding is also in alignment with the findings of a meta-
analysis of 521 CPMs from more than one hundred studies (Hgye & Hesjevoll, 2020).
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Furthermore, it is demonstrated that both harsh accelerations and harsh braking have
a positive relationship with the dependent variable, indicating that as the number of
these two harsh driving behaviour events increases, crash frequency also increases.
This is a noteworthy finding of the current doctoral dissertation as it confirms that harsh
driving behaviour events present a statistically significant positive correlation with
historical crash records. This conclusion means that these indicators can be
meaningfully considered reliable SSMs that can be also used in proactive road safety
analyses (Petraki et al., 2020; Ziakopoulos, 2021). Lastly, crash frequency is higher
for motorway segments with higher length, as length serves as an exposure
parameter.
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6.3 Definition of Crash Risk Levels

The next stage of the statistical analysis carried out within the framework of this section
focuses on the creation of crash risk level clusters of the examined motorway
segments. For this purpose, agglomerative hierarchical clustering was applied through
the “hclust” function of the stats R package (R Core Team, 2023).

As also mentioned in subsection 3.2.12, the Euclidean distance between single
observations of the dataset and Ward’s minimum variance method as the linkage
criterion were used. The variables considered for the formation of the risk level clusters
of the motorway segments under consideration correspond to the number of total road
crashes by segment length and the respective AADT of each segment. The selection
of the number of clusters was based on the dendrogram illustrated in Figure 6.1.
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Figure 6.1: Hierarchical Clustering Dendrogram

As observed by Figure 6.1, and also based on the theoretical background of selecting
the optimal number of clusters through the dendrogram, an appropriate choice of the
number of clusters would be two. However, selecting only two clusters would lead to
binary classification and to considerable detail and information loss. Therefore, in
order to provide a more detailed description of the crash risk level of the examined
road segments, four clusters were chosen as the next most appropriate option. Some
basic descriptive statistics of the four crash risk levels are presented in the following
Table.
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Table 6.2: Descriptive statistics of the four crash risk levels of the examined motorway segments

1 96 7.57 20,876
2 104 4.55 17,218
3 193 3.25 8,086
4 275 2.76 6,726
Total 668 3.87 10,786

These numbers reveal a clear pattern whereby the first risk level class presents high
average numbers of traffic volume and road crashes by segment length, while these
figures decrease progressively for each subsequent class. It should be highlighted that
these are subsample averages; hierarchical clustering does not readily include

theoretical centroid calculations.
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6.4 Comparing Machine Learning Techniques for Crash Risk Level
Predictions

After defining the clusters of crash risk level, five ML classification models were
developed in R-studio (R Core Team, 2023). The objective of these analyses was to
identify the best performing model in terms of predicting crash risk level of the
considered road segments. The response variable of these models was the multiclass
variable “crash_risk_level” of Table 6.2. The independent predictors included in the
models consisted of various road design characteristics and naturalistic driving
behaviour metrics, represented by the following variables from Table 5.1:

e lanes: Number of through lanes,

e lane_width: Lane width (m),

e Curvel: Curve 1 - Radius R (m),

e Lcurvel1_in_seg: Curve 1 - Length of curve in segment (m),

e median_width: Median width (measured from near edges of travelled way in
both directions) (m),

e pav_ins_sh_width: Paved inside shoulder width (m),

e pav_out_sh_width: Paved outside shoulder width (m),

e dist_edginssh_barf: Distance from edge of inside shoulder to barrier face (m),

e dist_edgoutsh_barf: Distance from edge of outside shoulder to barrier face (m),

e speed_limit: Posted speed limit (km/h),

e avg_speed: Average speed (all trips) (km/h),

e speeding_per_trips: Number of speeding events per trips,

e ha_per_trips: Number of harsh accelerations per trips,

e hb_per_trips: Number of harsh brakings per trips.

The examined dataset was subsequently split into training and test subsets with a
proportion of 75% and 25%, respectively. It is emphasized that the variable
distributions were maintained to be similar during the splitting process. The training
subset was used to train the classification models and included 501 segments, while
the test subset was used to evaluate the classification performance of the models and
amounted to 167 motorway segments. The core parts of the five models’ training,
including the R packages that were used for their development, are demonstrated in
the following Table.
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Table 6.3: Basic elements of the five classification models’ training
| (ClassificationModel |~ KeyElements |
Logistic Regression library(nnet), weights: 64 (45 variable)

library(caret), Resampling: Cross-validated (5-fold),
Method = rpart2, Maxdepth = 5
library(randomForest), Trees = 500,

Variables tried at each split = 3, majority vote
library(e1071), Type: C-classification, Kernel: radial,
Cost:1, gamma = 0.0667
library(caret), Pre-processing: centred (14), scaled (14),
Resampling: Cross-validated (10-fold, repeated 3 times), K=5

Decision Tree

Random Forest

Support Vector Machines

K-Nearest Neighbours

As mentioned previously, the test subset was used to evaluate the performance of the
developed models. The following Figures depict the confusion matrixes for the test
dataset specifically, which reveal the distribution of predictions and targets for the
different models.
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Figure 6.2: Confusion Matrix for the test dataset — Logistic Regression
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Figure 6.3: Confusion Matrix for the test dataset — Decision Tree
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Figure 6.4: Confusion Matrix for the test dataset — Random Forest

[149]



Dimitrios Nikolaou | Machine learning-based road crash risk assessment

fusing infrastructure, traffic and driver behaviour data

Figure 6.5: Confusion Matrix for the test dataset — Support Vector Machines
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Figure 6.6: Confusion Matrix for the test dataset — K-Nearest Neighbours

As a first outcome, it can be gleaned that the diagonals of the matrices are highly
populated. This is an indication that the proposed methodology allows for overall
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accurate classification of crash risk levels without many losses due to misclassification
in other categories (e.g., those on the secondary diagonal).

Regarding the quantification of accuracy performance, the sum of the cells of the
diagonals indicates the overall accuracy of the five developed models. The resulting
values in descending order are 89.9% for RF, 85.1% for LR, 84.5% for SVM, 83.9%
for DT, and 81.5% for K-NN. However, in the developed classification models, the
dependent variable includes four crash risk levels. Consequently, it is highly useful to
investigate additional metrics for each particular category of the response variable, as
overall accuracies may be misleading. To that end, Table 6.4 presents precision,
recall, and the F1 score for each category, as well as the respective macro-averaged
indicators for all the levels per developed ML classification model.

Table 6.4: Performance evaluation metrics per crash risk level and developed model

1 84.0 70.0 88.5 87.5 70.0

2 87.5 85.0 95.8 88.5 85.0

3 87.8 90.2 90.7 88.9 82.2

4 83.1 85.5 87.8 80.2 84.7

Macro-averaged 85.6 82.7 90.7 86.3 80.5
(CrashRisklevel | Reaall(®)

1 87.5 87.5 95.8 87.5 87.5

2 80.8 65.4 88.5 88.5 65.4

3 75.0 77.1 81.2 66.7 77.1

4 92.8 94.2 94.2 94.2 88.4

Macro-averaged 84.0 81.0 89.9 84.2 79.6
(CrashRisklevel |  Flscoe(®)

1 85.7 77.7 92.0 87.5 77.8

2 84.0 73.9 92.0 88.5 73.9

3 80.9 83.1 85.7 76.2 79.6

4 87.7 89.7 90.9 86.7 86.5

Macro-averaged 84.6 81.1 90.2 84.7 79.4

Based on Table 6.4 performance metrics, it can be observed that the RF classification
model was the best performing model for the classification of the crash risk level of
motorway segments, with very satisfactory metrics for all levels. This outcome
demonstrates the noteworthy value and utility of the developed RF model, as it can
predict with high accuracy the crash risk level of a motorway segment, by using road
design and naturalistic driving behaviour data. Therefore, this model could serve as a
reliable method to identify the most hazardous motorway sections before road crashes
occur and prioritize them. This model could also aid in the efficient allocation of
available resources towards targeted road safety actions and measures.
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6.5 SHAP values for Crash Risk Level Classifier

In this subsection, it was decided to calculate and provide SHAP values for the RF
model as it demonstrated better classification performance than the other developed
ML models. This approach was selected in order to overcome the difficult task of
interpreting its outcomes. The DALEX R-package was used in order to calculate the
SHAP values (Biecek, 2018). To create a representative instance of motorway
segments, the median values of the continuous predictors were used. Medians were
preferred instead of the mean values, as it can be concluded that the predictors are
not normally distributed based on the outcomes of Shapiro-Wilk normality tests,
skewness, and kurtosis values, which are presented in the Table 6.5 for each
predictor.

Regarding the outcome of the Shapiro-Wilk test, it can be concluded that if the test is
non-significant (p-value > 0.05), the distribution of the sample is not significantly
different from a normal distribution (Thode, 2002). Moreover, a skewness value of 0
indicates a symmetric distribution, while positive or negative values indicate right or
left skew, respectively. With regard to kurtosis, a value of 3 indicates a normal
distribution, while higher or lower values indicate a more or less peaked distribution,
respectively (Ho & Yu, 2015). With regard to categorical predictors, their most
prevalent class from the training dataset was used. This approach ensured that the
new instance was representative of the data and can be used to understand the
model’s prediction for similar instances.

Table 6.5: Skewness, kurtosis, and median values of numeric predictors in the training dataset

lane_width <0.001 -2.42 10.48 3.95
Curve1 <0.001 5.74 42.56 950.00
Lcurvel_in_seg <0.001 0.49 2.27 197.65
median_width <0.001 3.86 23.58 4,93
pav_ins_sh_width <0.001 1.64 11.43 0.75
pav_out_sh_width <0.001 -0.85 3.68 3.00
dist_edginssh_barf <0.001 3.19 15.79 0.00
dist_edgoutsh_barf <0.001 0.96 3.13 0.50
speed_limit <0.001 -1.16 2.82 130.00
avg_speed <0.001 -1.27 6.31 118.00
speeding_per_trips <0.001 0.24 2.68 0.71511
hb_per_trips <0.001 5.24 38.53 0.00215
ha_per_trips <0.001 7.70 75.01 0.00197

Figure 6.7 presents the SHAP values plot for the multi-class RF classification model,
which was determined as the best performing model among the developed five
models. SHAP values for each feature are computed separately for each class and
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the contribution of each feature to the model prediction for each class is displayed on
the plot. The SHAP values can be positive (green bars) or negative (red bars) for each
crash risk level, depending on whether the feature has a positive or negative
contribution to the prediction for that class. It is noted that the purple boxplots of Figure
6.7 show the distribution of the attribution of a variable from every possible
combination of variable layouts. It is also mentioned that Figure 6.7 demonstrates the
SHAP values for a representative instance of motorway segments, which uses the
median values of the numeric predictors.
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Figure 6.7: SHAP values for the RF model and a representative motorway segment
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It can be observed that this representative motorway segment is more likely to belong
to the lowest crash risk level, as denoted by the positive (green) bars of all predictors
for this specific class. This crash risk level corresponds to overall safer locations with
lower traffic volumes and road crashes by segment length than the motorway
segments between the first and the third crash risk level (see Table 6.2).

It is worth noting that Figure 6.7 shows the contribution of only a subset of the variables
that have been included in the multiclass classification RF model, as the other
variables are not contributing much to the model’s predictions and their contribution to
the model’s output can be, therefore, considered negligible.

A useful conclusion that can be drawn on this basis has to do with the fact that the
harsh acceleration related variable does not make a significant contribution to the
prediction of the segment crash risk level. Based on the literature, both harsh
accelerations and harsh brakings constitute SSMs that can be used in various road
safety analyses (Paleti et al., 2017; Stipancic et al., 2018b; Ziakopoulos et al., 2022;
Nikolaou et al., 2023b). However, the results of this investigation suggest that harsh
brakings may be more pertinent than harsh accelerations for predicting the crash risk
level of motorway segments overall.
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6.6 Discussion

The aim of this section was to exploit various road geometry data and SSMs for various
road crash investigations in road segments of the Olympia Odos motorway in Greece.
To that end, a unified database containing data on historical injury and PDO road
crashes, road design characteristics, and SSMs of 668 motorway segments was
utilized.

While the observational area and the data are singular for this study, they are viewed
with three different approaches, each with a unique context. In particular, the first
approach aimed to provide initial insights into the relationship significance and
magnitude between road crash frequency and road geometry and SSM variables.
However, since SSMs are still a new concept and their connection with hard road
safety metrics such as crashes remains uncertain, it was fruitful to consider how these
variables would perform for a clustering approach. To that end, the second model was
applied as a first step, to reveal clusters that the segments can formulate based on
crash and AADT data. The predictive power of road geometry and SSM variables was
then tested on these clusters, having removed the variables used to obtain the
clusters. Thus, in the present approach, the developed models contributed to prove
that contextually, SSMs can be used to model crashes directly (negative binomial
regression model — subsection 6.2), or indirectly, even without crashes, (ML
classification models — subsection 6.4) when a type of safety categorization is
established (clustering model — subsection 6.3).

To provide more detail, the negative binomial regression model was first developed to
model motorway segment crash frequency. The results of this model pointed out that
road crash frequency in the considered motorway segments is positively correlated
with the traffic volume, the length of the segment, and the number of harsh
accelerations and harsh brakings per segment trips. This analysis contributes to
existing road safety literature by demonstrating a positive and statistically significant
relationship between crash frequency and harsh driving behaviour events. Therefore,
it can be concluded that such events can be a valid subcategory of naturalistic SSMs
which can be used either to complement CPMs or as dependent variables of various
road safety proactive analyses when detailed historical road crash data are not
available.

As a further step of the statistical analysis, it was attempted to create crash risk level
clusters of the motorway segments considering the number of road crashes by
segment length and the traffic volume of each segment through the agglomerative
hierarchical clustering technique. Segment length and traffic volume of each segment
were taken into account in the clustering analysis, as the results of the negative
binomial regression model revealed that these two variables have a statistically
significant impact on the crash frequency of motorway segments. Based on the results
of this clustering approach, four crash risk levels were defined.
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Afterwards, these four levels formed the response variable of five ML classification
models (LR, DT, RF, SVM, and K-NN). Data on road geometry characteristics and
unsafe driving behaviours, such as rates of harsh brakings, harsh accelerations, and
speeding duration, per trips in the considered segments were included as predictors
in the developed models. Among these models, RF achieved the best overall and per
crash risk level classification performance with very high and consistent scores of
more than 89% (overall accuracy: 89.9%, macro-averaged precision: 90.7%, macro-
averaged recall: 89.9%, macro-averaged F1 score: 90.2%). This finding is in alignment
with previous studies, which report that RF is a promising modelling approach with
high performance in either crash severity or crash risk prediction (Santos et al., 2022;
Dimitrijevic et al., 2022). In addition, the SHAP values were calculated for a typical
motorway segment in order to assist with the interpretation of the RF classification
model, which is a black-box ML model. Based on the SHAP values of the naturalistic
driving behaviour predictors, it was revealed that harsh brakings may serve as a more
suitable SSM than harsh accelerations in terms of crash risk level prediction.

The findings of this section also suggest that the developed RF model could serve as
a quite auspicious proactive road safety tool that could be used for the identification
and prioritization of potentially hazardous motorway segments. Consequently, this
approach could also assist to the best possible allocation of available resources for
targeted interventions. Similar models could be applied to the rest of the motorway
network in Greece, contributing to the achievement of the target of the Greek Road
Safety Strategic Plan for the period 2021-2030, which aims at zero road fatalities on
motorways by 2030 (Yannis et al., 2023). The inclusion of additional predictors that
have not been considered in this research, such as the pavement conditions, may be
beneficial towards the improved performance metrics of the ML models. Moreover, the
prospect of extending the analyses included in this study to other types of road
environments, such as urban and rural roads that are not motorways, is a quite
challenging task that could be considered as well.

Naturally, this research is not without limitations. With regard to the extraction of road
geometry data for Olympia Odos motorway, the results are obviously not an exact
replication of the actual road design of the motorway and minor differences could be
expected if a comparison with the as-built drawings of the project was made.
Nevertheless, any differences would be minor and, although important from a
designer’s point of view, they are not expected to be able to differentiate the study’s
results. The negative binomial regression technique that was used for the
development of the crash frequency regression model does not take into account
unobserved heterogeneity and the effects of spatial characteristics of various road
safety indicators. Another limitation of the current research is that tunnels and toll
station segments were not considered in the analyses, leading to discontinuities in the
research area.
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However, these limitations can provide directions for future research efforts.
Specifically, the inclusion of random effects in the crash frequency modelling approach
could be considered in order to account for the unobserved heterogeneity. Moreover,
spatial modelling approaches could be a promising alternative kind of modelling as it
could consider the spatial dependency of road safety indicators.

Lastly, regarding the crash risk level classification models, it was found that RF
outperformed the other developed classifiers in terms of predicting crash risk levels of
the considered motorway segments. This is likely attributed to its ability to capture non-
linear relationships, its robustness to hyperparameter choices, its ability to capture
variable importance and its reduced risk of overfitting while remaining efficient. It
should be mentioned that the performance of various ML models will probably vary
across different datasets and the selection of the best performing approach that could
serve as a proactive road safety approach should be completed with caution. The
results of this research indicated that the RF classifier could be a strong candidate for
this task. However, the development of additional classification models, such as
Decision Jungle, which was found to outperform RF in a previous study (ljaz et al.,
2021), Gradient Boosting, and Linear Discriminant Analysis classifiers, could be
considered in future research efforts.
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7. Urban and Interurban Road Network Data
Collection and Processing

7.1 Introduction

The investigation of road safety modelling data in Greece, as presented in Section 4,
revealed that detailed crash prediction modelling is feasible only in motorways
possessing high-quality crash data concerning crash locations and traffic attributes
per road segment. However, based on the key findings of Section 6, it was concluded
that harsh braking events could serve as a valid subcategory of naturalistic SSMs.
These could be utilized as dependent variables in various road safety proactive
analyses in cases where detailed historical road crash data are unavailable.

This section describes the development of a database for the road network in the
Eastern Macedonia and Thrace Region, including urban and interurban roads.
Detailed traffic and crash data (in terms of crash geo-location) were not available for
the examined roads. Therefore, the developed database includes only geometric
characteristics and naturalistic driver behaviour metrics for the examined road
segments. Located in northeastern Greece, approximately 700 kilometers driving
distance from Athens, this area was selected as a challenging location in terms of data
availability, with the reasoning that if models converged in this area, they would be
reasonably expected to converge in other regions of Greece.

The initial step of the data collection process involves the definition of a study road
network within specific boundaries. Within this road network, an analysis is conducted
on all road segments sourced from OSM to extract their geometric and network
characteristics (Section 7.2). Subsequently, naturalistic driving behaviour data that
were extracted from a smartphone application, including the number and location of
harsh braking events and other metrics, are aligned with the corresponding OSM
segments (Section 7.3).

This process leads to the development of a spatial dataset that encompasses
aggregated behaviour metrics, as well as geometric and network characteristics on a
segment level. Concluding this section, subsection 7.4 presents a summary table
containing the segment-related variables that were ultimately analyzed in the
subsequent section of this doctoral dissertation, accompanied by their abbreviations
and relevant descriptive statistics.
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7.2 Road Infrastructure Data

In this subsection of this doctoral dissertation, an analysis is conducted on all road
segments sourced from OSM to extract their geometric and network characteristics.
The OSM initiative is a collaborative effort, which offers user-generated street maps.
About a decade ago, the accuracy of OSM data with regard to segment length was
approximately 80% to 90%, with an error of + 6 meters. Since then, OSM has
undergone continuous enhancements (Haklay, 2010; Zhang & Malczewski, 2019).

It is also noted that the World Geodetic System 1984 (WGS84) which is widely utilized
by GPS units and services, is also employed by OSM. All algorithms and analyses in
this study have been conducted in R-studio (R Core Team, 2023) by using several
packages. Specifically, the R library “osmdata” was used to extract the road segment
data from OSM (Padgham et al., 2017). This library imports OSM data into R as simple
features, which can be further processed with the R package “sf’ (Pebesma, 2018).

The examined road network is illustrated in Figure 7.1 and consists of 6,103 road
segments, with an average length of 288.8 meters, resulting in a total road network
length of 1,763 kilometers. The distribution of road types is as follows: residential roads
account for 67.8%, tertiary roads for 12.1%, secondary roads for 7.4%, motorways
and motorway links for 3.8%, and the remaining 9% consists of other road types. It is
noted that the maps presented in this dissertation were generated using the OSM/R-
studio interface package and JavaScript library “leaflet” (Cheng et al., 2019).

Figure 7.1: Examined road network of the Eastern Macedonia and Thrace Region (in grey)
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Beyond road type, additional critical geometric characteristics, including road segment
length, slope, and curvature, were also collected. Figure 7.2 illustrates the length of
each analyzed road segment.
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Figure 7.2: Length of the examined road segments

With regard to the curvature characteristics of the considered segments an index
termed “efficiency” has been calculated. Specifically, it is a metric of segment linearity
expressed by the ratio of the Euclidean distance between the start and end points of
a road segment to the total segment length. It is a dimensionless ratio between 0 and
1, with higher values indicating a more linear road segment, while lower values
indicate higher curvature.
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Figure 7.3: Linearity index (“efficiency”) of the examined road segments
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Slope data were obtained using SRTM data. Figure 7.4 presents the slope class of the
examined road segments. However, as detailed in subsection 4.4 of this doctoral
dissertation, a notable disparity exists between these data and the surveyed
elevations. Consequently, it was deemed more appropriate to exclude elevation data
from the road crash risk assessment analyses of the subsequent section.
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Figure 7.4: Slope class (%) of the examined road segments
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7.3 Driver Behaviour Data

This doctoral dissertation utilizes naturalistic driving behaviour data obtained from an
existing smartphone application developed by OSeven Telematics (https://oseven.io/),
which is compatible with both Android and iOS devices. This application operates in
the smartphone’s background collecting sensors data without requiring any user
initiation while driving or any other engagement. Sensors like the accelerometer,
magnetometer, GPS and gyroscope are utilized to record the data. To clean and
normalize the data, sophisticated ML algorithms, Data fusion and Big Data algorithms
are implemented. Various forms of metadata are ultimately computed, including both
exposure and driving behaviour indicators - such as trip duration, trip distance, driver
speed, instances of speeding, the frequency of harsh braking and harsh acceleration
incidents, and driver distraction from mobile phone use. Further details on the
operation of this application have been provided in subsection 4.5 of this doctoral
dissertation.

For the analyses of the road segments within the Eastern Macedonia and Thrace
Region, data from 5,129 trips during 2021 were utilized. The mean trip duration was
634 seconds, with a standard deviation of 556 seconds. The histogram of trip durations
is presented in Figure 7.5. Among these trips, a total of 2,889 harsh braking events
were recorded.

Histogram of Trip Duration Frequencies
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Figure 7.5: Histogram of trip duration frequencies in the examined road network

[163]


https://oseven.io/

Dimitrios Nikolaou | Machine learning-based road crash risk assessment
fusing infrastructure, traffic and driver behaviour data

The data collection procedure aimed to create a spatial dataset that contains
geometric and network characteristics, as well as aggregated driving behaviour
metrics on the road segment level. The OSM segmentation was retained for the
analysis, as there is a solid reasoning behind it that dictates that segments are
separated when road/traffic conditions change (e.g., a lane is added or the speed limit
changes). Smartphone data, which provide information for each second of a trip had
to be associated with the corresponding road segment that each driver travelled
through.

To this end, a spatial map-matching procedure was followed. Initially, the centroid of
each road segment line-string was identified using the “st_centroid” function from the
“sf” R library (Pebesma, 2018). Centroids are point-type quantities and represent the
geometric center of each road segment. Next, the aggregated driving behaviour
metrics were assigned to the nearest road segment centroid based on the latitude and
longitude coordinates for each trip-second. This was accomplished using the "st_join"
function and the "st _nearest feature" geometry predicate function from the "sf" R
library.

Figure 7.6 displays the duration (in seconds) of speeding per segment trips for the
examined road segments, while Figure 7.7 illustrates the duration (in seconds) of
mobile phone use during these trips. Additionally, Figures 7.8 and 7.9 present the
number of harsh braking and harsh acceleration events, respectively, per segment
trips for the examined road segments.
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Figure 7.6: Speeding (secs) per segment trips
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7.4 Descriptive Statistics

The procedure described in subsections 7.2 and 7.3 ultimately led to the development
of a spatial dataset that includes aggregated behaviour metrics, as well as geometric
and network characteristics at a segment level for 6,103 road segments in the Eastern
Macedonia and Thrace Region. Table 7.1 presents the variables that were finally
included and analyzed in the subsequent section of this doctoral dissertation, along
with their abbreviations as well as key descriptive statistics.

Table 7.1: Geometric characteristics and driving behaviour metrics per examined road segment

Min.: 0.00, Max.: 1,272.00,

Number of trips [count] trip_count Mean: 32.10, Median: 1.00
Number of harsh braking harsh_braking_count Min.: 0.00, Max.: 117.00,
events [count] - - Mean: 0.47, Median: 0.00
Duration of exceeding speeding_count Min.; 0.00, Max.: 19,126.00,
the speed limits [sec] - Mean: 16.05, Median: 0.00
Duration of mobile phone mobile_usage_count Min.: 0.00, Max.: 2,461,00,
use [sec] - - Mean: 13,51, Median: 0.00
Min.: 2.05, Max.: 11,301.96,

Segment length [m} length Mean: 288.84, Median: 123.07

Measure of segment linearity . Min.: 0.01, Max.: 1.00,
. . : efficiency .
[dimensionless ratio] Mean: 0.94, Median: 1.00
Road type: motorway or motorway_link motorway Frequencies: No: 5,872, Yes: 231

The numeric values of Table 7.1, have been visually depicted on the examined roads
in Figures 7.2-7.3 and 7.6-7.8. Additionally, Figure 7.10 illustrates the distribution of
harsh braking frequencies among the examined segments. This variable also serves
as the dependent variable for the models in the subsequent section of this thesis.
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Figure 7.10: Histogram of harsh braking events in the examined road segments
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8. Urban and Interurban Road Network Analyses

8.1 Introduction

The results of Section 6, focusing on 668 motorway segments in Greece, indicated
that both the number of harsh braking events and harsh accelerations were positively
correlated with the number of injury as well as property-damage only crashes
(Nikolaou et al., 2023a). Moreover, it was also found that harsh brakings contribute
significantly to predicting the crash risk level of the examined road sections, which is
not the case for harsh accelerations. Therefore, and based also on the literature review
findings of Section 2, it is concluded that harsh braking events are a plausible SSM
that can be used either in various proactive road safety analyses before road crashes’
occurrence or in cases of unavailable detailed road crash data (Nikolaou et al., 2023c).

Spatial autocorrelation often occurs when treating frequencies of harsh braking events
as point-type data (Ziakopoulos, 2021; Ziakopoulos et al., 2022). In the case of the
6,103 road segments within the Eastern Macedonia and Thrace Region (Section 7),
the observed Moran’s I value is positive (0.0263) and statistically significant (p-value
< 0.001), indicating that neighbouring road segments tend to have similar harsh
braking counts. Consequently, it is important to consider spatial modelling techniques
to capture spatial dependencies and enhance the reliability of the analyses, similar to
studies that either exploit only historical road crashes or combine both SSMs and
crash records (Ziakopoulos & Yannis, 2020; Aguero-Valverde & Jovanis, 2006;
Stipancic et al., 2018b; Satria et al., 2021; Yang et al., 2021; Li et al., 2021a). However,
spatial analysis of SSMs has not received significant attention in the road safety
literature, making it a promising research direction in the field (Nikolaou et al., 2023b).

In light of this background, the objective of this section is to carry out spatial analysis
of harsh braking events across various road environments within the Region of
Eastern Macedonia and Thrace in Greece. This is achieved by exploiting smartphone
driving behaviour data and OSM geometric data. The data collection and processing
have been provided in Section 7 of this doctoral dissertation. This section focuses on
analysing harsh braking event frequencies per road segment and correlating them with
various road network characteristics and driving behaviour metrics. Spatial modelling
techniques, including SEM, SLM, SZINB and SRF are employed on harsh braking
events frequencies.

After this introduction, this section is organized as follows. Subsections 8.2 to 8.4
present and discuss the key results obtained from the developed models. Finally,
Section 8.5 concludes the key findings and suggests potential avenues for future
research.
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8.2 Spatial Error and Lag Models

After completing the data collection process, which was described in Section 7, log-
linear regression was selected as a suitable method for the preliminary analysis of the
correlation between harsh braking events and the remaining variables of Table 7.1.
Previous studies have established the advantages of utilizing GLMs for count data
modelling (Lord & Mannering, 2010). However, considering harsh events as road
segment attributes, particularly due to their substantially higher occurrence compared
to road crashes within the same time period, linear regression can be explored in order
to reveal potential linear relationships. This approach was also employed by Petraki
et al. (2020) who demonstrated a robust relationship between harsh braking events
and geometric and traffic characteristics, and was further supported by exploratory
modelling, which highlighted that traditional count-based models (such as GLM -
Negative Binomial Regression) were unsuitable for the current spatial dataset,
probably due to the significant excess of zeros (Figure 7.10).

A series of various mathematical transformations of the independent variables such
as logarithm usage were tested. It was also established that adding one harsh braking
event to all segments allowed for better model fit, while enabling the inclusion of road
segments with no events in the log-linear model with negligible numeric differences in
the coefficients. The model was assessed for multicollinearity by means of the VIF.
Overall, present results showed no multicollinearity as VIF values were lower than the
established value of 5 (Sheather, 2009).

Moreover, as also pointed out in the introduction of Section 8, positive and statistically
significant spatial autocorrelation was detected for the frequencies of harsh braking
events among the examined road segments. Towards this direction, SEM and SLM
have been developed in order to consider such spatial dependencies. The results of
the log-linear model (baseline), SLM and SEM are presented in the following Table.
These models were developed in R-studio (R Core Team, 2023) using packages
“stats”, “spdep” (Bivand & Wong, 2018) and “spatialreg” (Bivand et al., 2021).
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Table 8.1: Log-linear regression (baseline), SEM and SLM results for harsh braking events

(Intercept) -0.201 0.046 | <0.001 - -0.203 0.046 | <0.001 -0.202 0.046 | <0.001
trip_count 0.002 0.000 | <0.001 | 1.484 0.002 0.000 | <0.001 0.002 0.000 | <0.001
log(1+length) 0.029 0.004 | <0.001 | 1.152 0.029 0.004 | <0.001 0.029 0.004 | <0.001
log(1+speeding_count) 0.070 0.005 | <0.001 | 1.260 0.071 0.005 | <0.001 0.071 0.004 | <0.001
log(1+efficiency) 0.126 0.056 | 0.026 | 1.084 0.127 0.056 | 0.025 0.123 0.056 | 0.026
mobile_usage_count 0.001 0.000 | <0.001 | 1.499 0.001 0.000 | <0.001 0.001 0.000 | <0.001
motorway: yes -0.071 0.022 | <0.001 | 1.017 -0.069 0.022 | 0.001 -0.070 0.022 | 0.002
Lamda - - - - 0.021 0.010 | 0.035 - - -
Rho - - - - - - - 0.020 0.008 | 0.013
Adjusted R? 0.479 - -

AlC 3,589.1 - - - 3,586.7 - - 3,585.0

Residuals Moran’s | 0.035 - 0.018 - <0.001 - 0.496 0.003 - 0.418

As observed from the results presented in Table 8.1, the signs of the independent
variables’ coefficients remain consistent among the three models. In particular, both
the length of the examined road segment and the number of trips per segment can be
considered as proxy indicators of risk exposure and as expected, were found to be
positively correlated with the number of harsh braking events, meaning that as either
the length of the road segment increases or the number of trips taken on that segment
rises, the number of instances where drivers perform harsh braking also tends to
increase. These exposure metrics provide disjointed exposure dimensions for
assessing the frequency of harsh braking events. More specifically, the road segment
length represents geographical, infrastructure-based exposure, which is more fixed,
while the number of trips per segment reflects naturalistic driving exposure, which
depends on travel elements.

In addition, the positive sign of the beta coefficient of the efficiency index suggests that
road segments with fewer curves have a higher number of harsh braking events. This
implies that drivers perform more harsh brakings on straighter road segments, possibly
due to the fact that they drive with higher speed or more aggressively when no curves
are present. On the other hand, they tend to be more cautious in road curvature, which
reduced visibility and introduces higher risk of run-off road instances. Moreover, the
variables related to speeding and mobile phone use while driving, were found to be
positively associated with the number of harsh braking events on road segments. In
cases of exceeding speed limits, drivers are more likely to brake abruptly to avoid
potential collisions or reduce excessive speed. Similarly, mobile phone use while
driving can lead to distraction impacting reactions and increasing the likelihood of
harsh braking. Lastly, the negative sign of the beta coefficient of the motorway variable
indicates that the number of harsh braking events on motorways is lower than the
respective number on other road types such as primary, secondary and residential
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roads. This could be explained by smoother traffic flow, more lane options and longer
visibility distances on motorways.

The Moran’s [ statistic indicates that the residuals from the baseline model have
statistically significant positive spatial autocorrelation (Moran’s I = 0.035 with p-value
< 0.05). Based on this indication, the SEM was developed in order to address spatial
autocorrelation. When considering the AIC values, it is observed that the SEM
performs better than the baseline model. Moreover, the Lamda value of 0.021 is also
statistically significant (p-value = 0.035), suggesting that the error term is spatially
autoregressive. Based on the SEM residuals’ Moran’s I, it is also evident that there is
no spatial autocorrelation in the residuals anymore as the Moran’s I is close to zero
and the p-value is higher than 0.05. The same is observed for the residuals of the
SLM. Moreover, a statistically significant (p-value = 0.013) and positive spatial lag term
“‘Rho” was obtained, indicating positive spatial autocorrelation. Finally, by comparing
the values of the AIC criteria, it can be observed that the performance of the SLM
outperforms the other two developed models.

The results of the SLM for the examined road network of the Eastern Macedonia and
Thrace Region are visualized in Figure 8.1, whereas Figure 8.2 provides a zoomed-in
view of Figure 8.1, focusing specifically on the center of the regional capital city of
Xanthi.
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Figure 8.1: Visualization of the SLM results on the examined road network
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Figure 8.2: Zoomed-in view of the SLM results for the center of Xanthi
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8.3 Spatial Zero-Inflated Negative Binomial Model

As noted in subsection 8.2, traditional GLM count modelling techniques, such as NB
regression, could not be fitted to the dataset under consideration. This limitation likely
stemmed from the significant excess of zero occurrences in harsh braking events
across the analyzed road segments. Additionally, Figure 7.10’s histogram depicting
harsh braking frequencies on these road segments indicates a distribution following a
ZINB pattern. Consequently, a ZINB model and a corresponding spatial model with
spatial lag were constructed for this purpose. These models were developed using R-
studio (R Core Team, 2023) and the “pscl” package (Zeileis et al., 2008; Jackman,
2020). ZINB models combine two components: one for modelling excessive zeros
(using a logistic regression model) and another for modelling count data (using a NB
regression model). The dependent variable of these two developed models is
“harsh_braking_count” and the results are presented in the following Table.

Table 8.2: Zero-inflated Negative Binomial and Spatial Zero-inflated Negative Binomial results for
harsh braking events

(Intercept) -1.527 0.112 | -13.605 | <0.001 -1.591 0.113 | -14.111 | <0.001
trip_count 0.004 0.000 | 9.192 | <0.001 0.003 0.000 | 8926 | <0.001
log(1+speeding_count) 0.174 0.033 5227 | <0.001 0.191 0.032 5.869 | <0.001
motorway: yes -1.429 0.380 | -3.758 | <0.001 -1.359 0.367 | -3.704 | <0.001
length 0.0002 0.000 | 4.423 | <0.001 0.0002 0.000 | 4.480 | <0.001
log(1+mobile_usage_count) | 0.273 0.038 7.242 <0.001 0.264 0.037 7.066 <0.001
spatial lag - 0.109 0.032 3.436 <0.001
Log(theta) -0.818 0.074 | -11.017 | <0.001 -0.794 0.074 | -10.695 | <0.001

(Intercept) 4.209 0.364 | 11.551 | <0.001 4.065 0.360 | 11.281 | <0.001
trip_count -0.434 0104 | -4.188 | <0.001 -0.433 0.102 | -4.258 | <0.001
log(1+speeding_count) -1.173 0.940 | -1.248 0.212 -1.374 0.844 | -1.628 0.103
motorway: yes -1.763 2267 | -0.777 0.437 -1.355 2.019 | -0.671 0.502
length -0.0003 | 0.000 | -0.864 0.388 -0.0003 0.000 | -0.784 0.433
log(1+mobile_usage_count) | -0.402 0172 | -2.338 0.019 -0.421 0177 | -2.381 0.017
spatial lag - 0.531 0.390 1.362 0.173
AlC 4,350.4 4,336.4

The signs of the independent variables in the count component of the two ZINB models
align with those of the three models (Log-linear, SEM, SLM) presented in Table 8.1.
In particular, the results of Table 8.2 confirm that the variables “trip_count”,
“speeding_count”, “length” and “mobile_usage_count” are positively correlated with
the number of harsh brakings on the examined road segments, while the opposite is
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the case for the variable “motorway”. Interpretations of these signs are covered in
subsection 8.2 and are omitted here to prevent repetition. The only difference between
the independent variables featured in Tables 8.1 and 8.2 lies in the absence of
statistical significance for the “efficiency” variable in the ZINB models, leading to its
exclusion.

Within the zero-inflated component of Table 8.2's models, only “trip_count” and
“‘mobile_usage count” turned out to be statistically significant. In particular, their
coefficients’ signs imply that an increase in these variables corresponds to decreased
probabilities of zero harsh braking occurrences on the examined road segments.

Additionally, among the two models of Table 8.2, the SZINB model demonstrates
superior data fit, evident from the AIC criterion values. Noteworthy is the positive and
statistically significant (p-value < 0.001) spatial lag term in the count component,
indicating positive spatial autocorrelation.

Visual representation of the SZINB model's results for the Eastern Macedonia and

Thrace Region’s road network is displayed in Figure 8.3, with Figure 8.4 offering a
more detailed view focused on the city of Xanthi.
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Figure 8.3: Visualization of the SZINB results on the examined road network
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Figure 8.4: Zoomed-in view of the SZINB results for the center of Xanthi
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8.4 Spatial Random Forest

The results of the five models, as seen in Tables 8.1 and 8.2, show a statistically
significant relationship between the selected independent variables and the frequency
of harsh braking events per segment. Thus, these variables were also selected as
input to the SRF model. The R package “spatialRF” (Benito, 2021), which internally
uses the R package “ranger” (Wright & Ziegler, 2015), was exploited for the
development of the SRF model. It is noted that the dependent/response variable of
the SRF model was “log (harsh_braking_count + 1)”.

Initially, a conventional non-spatial RF model is developed with defined distance
thresholds for the examination of spatial autocorrelation in the residuals. If statistically
significant and positive spatial autocorrelation exists, the SRF using spatial predictors
is subsequently applied. These predictors are derived from the distance matrix of the
considered road segments and are used as explanatory variables in the SRF model
following Hengl et al. (2018).

It is noted that information overlap and over-parameterization due to excessive
covariate usage are not problematic because RF has built-in protections against
overfitting, allowing for the fitting of models with a large number of covariates, even
surpassing the number of observations (Biau & Scornet, 2016; Hengl et al., 2018). By
including spatial predictors, the SRF manages to enhance its capability so as to
minimize the spatial autocorrelation in the residuals and provide more precise variable
importance scores. Moreover, the inclusion of spatial predictors in the model can
indirectly address some aspects of unobserved heterogeneity in the data, which
pertains to variations in the response variable that are not accounted for by the
remaining observed predictors included in the model.

Figure 8.5 illustrates information on the non-spatial RF model residuals. Specifically,
its upper panels demonstrate the results of the normality test, while the middle panel
indicates the relationship between the residuals and the fitted values and the lower
panel shows the Moran’s I of the residuals across distance thresholds and their
respective p-values (positive and statistically significant for distances between 0 and
2000 meters).
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Figure 8.5: Non-spatial RF model residuals

The presence of spatial autocorrelation in the residuals, based on the high Moran’s 1
residuals as indicated by the large y-values in the lower distances of the bottom plot,
indicates that the non-spatial RF model did not fully capture the spatial dependencies
in the data. In order to minimize the spatial autocorrelation of the residuals, the non-
spatial RF model was transformed into a SRF model by adding the columns of the
distance matrix of the road segments as spatial predictors (Hengl et al., 2018). Figure
8.6 presents the Moran’s I of the residuals of the SRF model.
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Figure 8.6: SRF model residuals

On the basis of the lower panels of Figures 8.5 and 8.6, it can be observed that the
SRF was able to reduce the absolute values of the Moran’s [ statistics. A likely
explanation for the change from positive to negative spatial autocorrelation (in the
residuals) could be the inclusion of the additional spatial explanatory variables in the
SRF model that incorporates spatial dependence structures as these additions help
capture the spatial relationships among the observations.

However, it should be noted that the absolute values of the Moran's I index can provide
some insight into the strength of spatial autocorrelation, but it is not the sole criterion
for model evaluation. To that end, Table 8.3 provides the key parameters of each RF
model, along with some key model performance metrics.

Table 8.3: Key parameters and performance metrics of RF models

Number of trees 500 500
Sample size 6,103 6,103
Number of predictors 6 6,109
Mtry 2 78
Minimum node size S S
R? (out-of-bag) 0.526 0.440
R2 (cor (observed, predicted)?) 0.900 0.928
Pseudo R? (cor (observed, predicted)) 0.949 0.964
RMSE (out-of-bag) 0.309 0.336
RMSE 0.156 0.150
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When examining typical metrics (not out-of-bag metrics), for instance, R?, Pseudo R?
and RMSE, it is observed that the SRF outperforms the non-spatial RF model. A
spatial model can capture spatial dependencies among the considered data points
leading to a better fit to the observed data compared to non-spatial model. However,
based on the out-of-bag performance metrics, it is found that non-spatial RF model
outperforms the SRF, declaring that the non-spatial model is likely performing better
in terms of generalization on unseen data. This conclusion can be also enhanced by
Figure 8.7, which compares the predictive performance of the two RF models across
thirty spatial folds. It is noted here that spatial folds are subsamples of the initial data
that are separated in location clusters, a concept known as spatial cross-validation
(Lovelace et al., 2019). Thus, the localized spatial aspects and unobserved traits are
retained through the cross-validation process as opposed to traditional random cross-
validation.

Evaluation results on 30 spatial folds

RMSE

Mon-spatial §

0.25 0.50 0.75

Figure 8.7: RMSE across 30 spatial folds

Within the framework of the two RF models’ development, the permutation variable
importance technique was also employed to assess and rank individual predictors on
the basis of their relative importance. Variable importance scores are visualized in
Figure 8.8, demonstrating the increase in mean error (computed on the out-of-bag
data) observed across trees when a predictor is permuted. This approach provides
valuable insights into the relative contributions of predictors in both spatial and non-
spatial RF models. As a result, the SRF has an additional set of variable importance
scores for the spatial predictors, with the maximum importance of a few of these spatial
predictors matching the importance of the second and third most important predictors.

In both RF models, the number of trips per examined road segment (which serves as
a naturalistic driving exposure metric), was found to be the most influential predictor,
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highlighting its significant relevance in predicting the frequency of harsh braking
events. On the other hand, the motorway variable exhibited the lowest importance in
both RF models, indicating that road type is relatively less valuable in predicting the
number of harsh braking events. This finding may suggest that factors other than road
type such as driver distraction and speeding, might play a more crucial role in
influencing harsh braking events frequencies.

Non-spatial model Spatial model
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Figure 8.8: Permutation importance computed on the out-of-bag data
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8.5 Discussion

The objective of this section was to conduct spatial analyses of harsh braking events
by exploiting smartphone driving behaviour data and OSM road network
characteristics, aiming to enhance the current SSM knowledge. The examined road
network consists of 6,103 road segments located in the Region of Eastern Macedonia
and Thrace in Greece. A spatial dataset consisting aggregated naturalistic driving
behaviour metrics, as well as geometric and network characteristics on a segment
level was analyzed. Initially, non-spatial modelling techniques, such as log-linear,
ZINB and conventional RF regression models were employed on harsh braking events
frequencies. However, the existence of statistically significant spatial autocorrelation
highlighted the need for the development of spatial models, such as SEM, SLM, SZINB
and SRF, in order to take into account such spatial dependencies.

The results of the log-linear regression model, SLM, SEM, ZINB and SZINB showed
consistent signs of the beta coefficients of the considered variables across all models.
In specific, road segment length and the number of trips per segment were identified
as proxy indicators of risk exposure, positively correlated with harsh braking events.
Furthermore, the efficiency index (statistically significant only in the log-linear model,
SEM and SLM), related to the linearity of road segments, showed a positive correlation
with harsh braking events, indicating that drivers tend to brake harshly more often on
road segments with fewer curves. Variables related to speeding and mobile phone use
were also positively associated with harsh braking events, while motorways exhibited
fewer harsh braking events compared to other road types. It was also found that the
SLM surpassed both the log-linear model and the SEM, with lower AIC values and
absence of spatial autocorrelation in its residuals. Lower AIC values, indicating a better
fit, were also observed for the SZINB model compared to the non-spatial ZINB model.

Moreover, the SRF reduced the absolute values of spatial autocorrelation in the
residuals compared to the respective values of the conventional RF. In addition, the
SRF outperformed the non-spatial RF model in terms of model fit to observed data,
but the non-spatial model performed better in terms of generalization to unseen data.
This is a typically expected finding, as spatial structures would be very challenging to
transfer to completely unexamined areas in a manner that is informative and that
would provide an edge in forecasting. Regarding variable importance ranking, the
number of trips per examined road segment emerged as the most influential predictor
in both models, highlighting its significance in predicting harsh braking events. A key
takeaway is that for causal or exploratory ML analysis in a given area, spatial cross-
validation would be reasonably more fruitful than its random counterpart. This would
apply especially in cases where few variables are present in the data, as the
unobserved spatial effects would be more pronounced then.

Overall, SSMs have immense potential for road safety monitoring, countermeasure
assessment and improvement, and rapid expansion of road safety data coverage. In
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academia, SSM modelling exercises have emerged in recent years. Apart from
contributing in that field, this section demonstrated that with the necessary effort, SSM-
based spatial models can be used in scarcely-studied areas. Aided by technological
developments such as telematics, which enable scalable and expedient data
collection, high-quality data applications and monitoring in such areas is possible and
can even be converted to the norm in the short term.

Despite the valuable insights gained from this section, a significant limitation that
needs to be acknowledged is the lack of available traffic data (AADT or real-time) per
examined segment, which could have provided additional insights into the influence of
traffic volume on harsh braking events. However, the absence of AADT was attempted
to be tackled by using the number of trips and the segment length as substitute risk
exposure metrics. Several microscopic and mesoscopic spatial analysis studies have
been shown to include more disjointed parameters such as land use (Ziakopoulos &
Yannis, 2020), however in this investigation it was considered that SSM models
warrant more directly related variables.

In summary, this section provides valuable insights into the relationship between
independent variables and harsh braking events, highlighting the relevance of
exposure metrics and the impact of spatial autocorrelation in the models' development.
Authorities can organize public awareness campaigns to educate drivers about the
dangers of speeding and distracted driving, emphasizing on the positive correlation
between such behaviours and harsh braking events, as revealed in this doctoral
dissertation. Furthermore, leveraging such spatial modelling techniques, authorities
can identify high-risk areas for harsh braking events and deploy targeted enforcement
efforts to address specific road safety issues.
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9. Conclusions

9.1 Dissertation Overview

Recognizing road safety as a crucial public health issue with significant societal and
economic consequences, it is essential to understand the multifaceted nature of road
crashes. Road crashes are influenced by various parameters that can be divided into
three distinct categories: (i) road users, (ii) vehicles, and (iii) road infrastructure and
environment. Notably, a substantial percentage of road crashes, up to 94%, can be
attributed to human factors and errors, either exclusively or partially.

Given the aforementioned context, the main objective of this dissertation is to assess
road crash risk by fusing infrastructure, traffic, and driving behaviour data. This
integration of data presents a promising avenue for research. Nevertheless, the
practical implementation of this data fusion is frequently hindered by challenges such
as insufficient availability or suboptimal quality of the data.

Within the framework of this dissertation, an extensive literature review was
conducted. The aim of this literature review process was to provide a review of the
scientific literature of studies exploiting SSMs in historical crash record investigations.
SSMs encompass a wide range of metrics and parameters, which are not directly
derived from or rely on crash data. From the review process, it was concluded that
SSMs are steadily gaining ground in the road safety literature as they are a sustainable
way of gauging road safety and allow the conduction of analyses without necessarily
requiring historical road crash records. These indicators can either be an alternative
to road safety analyses or even complement analyses that are based on historical
crash records. Moreover, the rapid and continuous progress in the field of technology
makes it increasingly easier to collect such metrics. SSMs such as time-to-collision,
harsh braking, post-encroachment time and so on, are widely proposed in
transportation science and are particularly useful in order to evaluate driving risk and
assess road crash risk.

Subsequently, the following research questions were formulated:

Question 1
How can infrastructure, traffic and driver behaviour data be fused and analyzed to
derive meaningful conclusions for road crash risk assessment?

Question 2
a) Can harsh driving behaviour events be meaningfully considered reliable SSMs?
b) Is there a statistically significant positive correlation between harsh driving
behaviour events and historical road crash records?
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Question 3

Is it possible to predict the crash risk level of road segments by exploiting road
geometry characteristics and driver-behaviour based SSMs, and, if so, which ML
classifiers are the most appropriate?

Question 4
Are harsh braking events more pertinent than harsh accelerations in predicting the
crash risk level of road segments?

Question 5
a) In the absence of highly detailed historical road crash data, how can harsh
braking events be analyzed across various road environments?
b) Is there spatial autocorrelation present in harsh braking frequencies for road
segments, and, if so, do spatial modelling approaches outperform their non-
spatial counterparts?

Question 6
Which road infrastructure and driver behaviour parameters exhibit a statistically
significant impact on the number of harsh braking events per road segment?

These research questions served as the driving force behind the entire research
endeavor, exploring the integration and analysis of infrastructure, traffic, and driver
behaviour data for meaningful conclusions in road crash risk assessment. In order to
answer these research questions, an elaborate methodological framework was
devised, which is replicated on Figure 9.1.

The core of the methodological framework involved a multi-step process, commencing
with the investigation of road safety modelling data in Greece, laying the groundwork
for subsequent directions. This investigation highlighted the constraints associated
with conducting high-detailed crash prediction modelling in Greece. Such modelling is
only feasible for motorways with high-quality crash data, specifically regarding crash
location and traffic attributes per road segment. In response to this limitation, two
distinct databases were developed.
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Figure 9.1: Graphical representation of the overall methodological framework
of the doctoral dissertation

The first one focused on 668 motorway segments within the Olympia Odos motorway,
containing comprehensive data on historical road crashes, traffic, road geometry
characteristics, and naturalistic driver behaviour metrics. Specifically, crash data of all
severity levels including PDO crashes for the years 2018-2020 were exploited. In
parallel with the road crash data, AADT data for the same time period were included
in the developed database. Regarding the road infrastructure characteristics, a variety
of sources, such as information from the road operator and the use of different

[185]



Dimitrios Nikolaou | Machine learning-based road crash risk assessment
fusing infrastructure, traffic and driver behaviour data

software, including Open GIS, Google Earth and GoogleStreetView, were combined.
The inclusion of these road infrastructure data and of reference drawings of the
motorway also enabled the identification and isolation of naturalistic driver behaviour
data from a smartphone application. Driver behaviour data were collected for the
period from June 1, 2019, to December 31, 2020, from a sample of 327 drivers in 2019
and 330 drivers in 2020. The average number of trips per motorway segment over the
entire study period was 769 trips.

The second one covered a broader road network within the Region of Eastern
Macedonia and Thrace, including urban and interurban roads. Within this road
network, an initial analysis was conducted on all road segments sourced from OSM to
extract their geometric and network characteristics. Subsequently, naturalistic driving
behaviour data that were extracted from a smartphone application were aligned with
the corresponding OSM segments. The examined road network included 6,103 road
segments, with an average length of 288.8 meters, resulting in a total road network
length of 1,763 kilometers. Regarding the naturalistic driver behaviour metrics, data
from 5,129 trips during 2021 were utilized. The mean trip duration was 634 seconds,
with a standard deviation of 556 seconds. However, the developed database for this
road network lacked detailed crash and traffic data for the examined road segments.

Various methodologies were applied for the road segments of Olympia Odos
motorway. These included techniques such as NB regression for developing a crash
frequency model, HC to determine crash risk levels based on historical crash data and
traffic attributes, and the utilization of Machine Learning classifiers such as LR, DT,
RF, K-NN and SVM. These classifiers were used for crash risk level prediction,
leveraging infrastructure and driver behaviour data. A critical focus was placed on
evaluating the reliability of harsh driving behaviour events as SSMs.

Subsequently, the framework extended to include the road network data of Eastern
Macedonia and Thrace Region, employing harsh braking events for road crash risk
assessment. This involved applying both non-spatial and spatial models to identify
significant road infrastructure and driver behaviour parameters influencing harsh
braking events per road segment.

Ultimately, the synthesis of all the analyses carried out within the framework of this
doctoral dissertation resulted in a comprehensive road crash risk assessment with
numerous original and interesting results, which are discussed in the following
concluding subsections.
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9.2 Main Findings for Motorway

For the motorway analyses, a unified database including data on historical injury and
PDO crashes, traffic attributes, road geometry characteristics, and driver behaviour
SSMs of 668 road segments of the Olympia Odos motorway was exploited. The results
of the crash frequency model (NB regression) revealed that road crash frequency in
the examined motorway segments is positively correlated with the traffic volume, the
length of the segment, and the numbers of harsh accelerations and harsh brakings
per segment trips. This finding contributes to existing road safety literature by
establishing a positive and statistically significant relationship between crash
frequency and events of harsh driving behaviour. Consequently, it is inferred that these
events can serve as a valid subcategory of naturalistic SSMs. Specifically, they can
be used either to complement CPMs or as dependent variables in proactive road
safety analyses, particularly in cases where detailed historical crash data are lacking.

As a further phase of the motorway investigations, an endeavor was made to formulate
crash risk level clusters of the motorway segments. This was achieved by considering
the number of road crashes by segment length and the traffic volume of each segment
using the agglomerative hierarchical clustering technique. Considering the influence
of segment length and traffic volume, as indicated by the results of the negative
binomial regression model, both variables were included into the clustering analysis
due to their statistically significant impact on motorway segment crash frequency. The
outcomes of this clustering process delineated four distinct crash risk levels with a
clear pattern whereby the first risk level class presents high average numbers of traffic
volume and road crashes by segment length, while these figures decrease
progressively for each subsequent class.

Subsequently, these identified four levels were utilized as the response variable in five
ML classification models (LR, DT, RF, SVM, and K-NN). The models included
predictors encompassing road geometry characteristics and wunsafe driving
behaviours, such as rates of harsh brakings, harsh accelerations, and speeding
duration per trips within the analyzed segments. Among the five classification models,
RF demonstrated superior classification performance across all crash risk levels,
consistently achieving scores exceeding 89% (overall accuracy: 89.9%, macro-
averaged precision: 90.7%, macro-averaged recall: 89.9%, macro-averaged F1 score:
90.2%). This outcome reveals the potential of the developed RF model as a highly
promising proactive road safety tool, capable of effectively identifying and prioritizing
potentially hazardous motorway segments.

Finally, to enhance the interpretability of the RF model, which inherently operates as
a black-box ML model, SHAP values were calculated for a typical motorway segment.
Based on the SHAP values of the naturalistic driving behaviour predictors, it was
revealed that harsh braking events serve as a more suitable SSM than harsh
accelerations in terms of crash risk level prediction.
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9.3 Main Findings for Urban and Interurban Road Network

Within the broader road network of the Eastern Macedonia and Thrace Region, a
spatial dataset consisting aggregated naturalistic driving behaviour metrics, as well as
geometric and network characteristics on a segment level was analyzed. For the
examined 6,103 road segments, and based on Moran's I index, statistically significant
and positive spatial autocorrelation in harsh braking event frequencies was detected.
Initially, non-spatial modelling techniques, such as log-linear, ZINB and conventional
RF regression models were employed on harsh braking events frequencies. However,
the existence of spatial autocorrelation highlighted the need for the development of
spatial models, such as SEM, SLM, SZINB and SRF, in order to take into account
such spatial dependencies.

Consistent signs of the beta coefficients emerged across all models. Specifically, road
segment length and the number of trips per segment were identified as proxy
indicators of risk exposure, positively correlated with harsh braking events.
Additionally, the efficiency index (statistically significant only in the log-linear model,
SEM and SLM), related to the linearity of road segments, revealed a positive
correlation with harsh braking events, suggesting that drivers exhibit more frequent
harsh braking on road segments with fewer curves. Variables related to speeding and
mobile phone use were also positively associated with harsh braking events, whereas
motorways exhibited fewer harsh braking events compared to other road types.

In both RF models, the number of trips per examined road segment was found to be
the most influential predictor, highlighting its significant relevance in predicting the
frequency of harsh braking events, as it serves as a naturalistic driving exposure
metric. On the other hand, the motorway variable exhibited the lowest importance,
indicating that road type is relatively less valuable in predicting the number of harsh
braking events. This finding may suggest that factors other than road type such as
driver distraction and speeding, might play a more crucial role in influencing harsh
braking events frequencies.

Regarding the performance of the developed models, SLM surpassed both the log-
linear model and the SEM, with lower AIC values and absence of spatial
autocorrelation in its residuals. Lower AIC values, indicating a better fit, were also
observed for the SZINB model compared to the non-spatial ZINB model. Moreover,
the SRF reduced the absolute values of spatial autocorrelation in the residuals
compared to the respective values of the conventional RF. In addition, the SRF
outperformed the non-spatial RF model in terms of model fit to observed data, but the
non-spatial model performed better in terms of generalization to unseen data.
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9.4 Innovative Contributions

This doctoral dissertation offers significant noteworthy contributions in the field of road
safety, as illustrated in Figure 9.2. These contributions are discussed in detail in the
following subsections.

Advanced and Innovative
Combination of
Modelling Techniques

Holistic
Data Collection Approach

Multi-Dimensional
Data Fusion for
Segment-Level Analyses

Multi-factor urrogate Estimation
Estimation of Crash Risk of Crash Risk on Urban &
on Motorways Interurban Road Netwo

Figure 9.2: Innovative contributions of the dissertation

9.4.1 Holistic Data Collection Approach

In the context of this doctoral dissertation, a holistic comprehensive data collection
was conducted to investigate the impact of driver behaviour, road infrastructure
characteristics and traffic attributes on road crash risk assessment. Technological
advancements have significantly facilitated the collection of data from various sources,
opening up new research opportunities that were previously unexplored.

Specifically, this dissertation exploited high-resolution naturalistic driving big datasets
collected from smartphone sensors to assess road crash risk on motorways and a
broader road network, encompassing urban and interurban roads. For road
infrastructure data on the examined motorway, a variety of sources were exploited,
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including data provided by the road operator and software such as Open GIS, Google
Earth and GoogleStreetView. Geometric and network characteristics for the broader
road network of the Eastern Macedonia and Thrace Region were derived using
algorithms in the R programming language. Appropriate libraries were utilized to
extract data from OSM and process them as simple spatial features. Concerning road
crash and traffic data on the examined motorway, high-quality data from the road
operator were employed. This included road crash data of all injury severities,
including PDO crashes, with high accuracy in crash location, covering the period from
2018 to 2020. Additionally, AADT data derived from the motorway toll stations for the
corresponding period were utilized.

9.4.2 Multi-Dimensional Data Fusion for Segment-Level Analyses

The collection of data from various sources and at different levels necessitates
appropriate processing for data integration. The first database comprised 668
motorway segments ranging from 200 to 600 meters in length and was infrastructure-
based. It included data on historical road crashes, traffic volumes and geometric
characteristics. Subsequently, driver behaviour metrics derived from smartphone
sensors had to be assigned to the examined road segments. This involved allocating
driving behaviour metrics from naturalistic data, which are driver-based, to the
examined motorway segments, which are infrastructure-based data. This allocation
was achieved via isolating each trip portion to the corresponding segment within the
internal recording of trips conducted in GIS by the smartphone data providers using
ESRI polygons at 200m intervals.

For the broader urban and interurban network of the Eastern Macedonia and Thrace
Region, which exclusively comprised infrastructure and driver behavior data, a series
of processing algorithms were applied. Initially, a database was created for the
considered road network, encompassing 6,103 road segments. This database
contained key geometric characteristics such as length, curvature, road type, etc., for
each segment. The data extraction from OSM and database creation involved
exploiting R libraries specifically designed for these tasks. Next, the naturalistic driver
behavior data, extracted from smartphone sensors and covering indicators like harsh
braking events, speeding, distraction due to mobile phone use, etc., for every second
of trips made in 2021 in the study area, had to be assigned to the corresponding road
segments. This assignment was achieved through a spatial map-matching procedure.
Initially, the centroid of each road segment line-string was identified using the
“st_centroid” function from the “sf’ R library. It is noted that centroids are point-type
quantities and represent the geometric center of each road segment. Subsequently,
the aggregated driving behaviour metrics were assigned to the nearest road segment
centroid based on the latitude and longitude coordinates for each trip-second. This
process was executed using the "st join" function and the "st nearest feature"
geometry predicate function from the "sf" R library.
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Overall, the algorithms utilized in this doctoral dissertation, especially for the broader
urban and interurban road network, facilitate the seamless transferability of the
methodological and data processing framework employed in this dissertation. With
minimal modifications, spatial data frames can be generated for various regions,
allowing for analyses using the same or different variables, study periods, and
statistical methodologies.

9.4.3 Advanced and Innovative Combination of Modelling Techniques

The wealth of high-resolution multiparametric data and the robustness of data
processing and fusion enabled the development of advanced and innovate modelling
techniques.

Initially, a crash frequency model (NB regression) was developed. This model
facilitated the investigation of the influence of various geometric characteristics, traffic
attributes, and driver behaviour metrics on road crashes. Subsequently, agglomerative
hierarchical clustering was employed to categorize crash risk levels for the analyzed
road segments, which were then incorporated as the response variable in several ML
classifiers. In addition to utilizing ML techniques, the analyses included the
computation of SHAP values, a recent and potent addition in the field of explainable
and interpretable ML. These values provided insights into the influential factors
contributing to crash risk. This comprehensive approach enhances the sophistication
of the modelling techniques and reinforces the interpretability of their results.

With regard to the broader road network of the Eastern Macedonia and Thrace Region,
the analyses incorporated harsh braking events as the dependent variables for the
developed models. Notably, the modelling techniques employed in this doctoral
dissertation are, to the best of the author's knowledge, being applied for the first time
to harsh braking events. Among these innovative modelling approaches are the SEM,
SLM, SZINB, and SRF. It is worth emphasizing that the application of the SRF is
particularly noteworthy, representing a novel modelling technique applicable not only
to harsh braking events but also to various aspects of road safety analyses.

9.4.4 Multi-factor Estimation of Crash Risk on Motorways

Utilizing the high-quality and detailed database developed for the road segments of
the motorway, aiming to address the research questions posed in this doctoral
dissertation, valuable and innovative conclusions were drawn. Specifically, statistical
correlations from the road crash frequency model revealed a positive and statistically
significant relationship between historical road crash data and the number of harsh
driving behaviours. This applies to both the number of harsh accelerations and the
number of harsh brakings per passed trips within the examined motorway segments.
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This indicates that these indicators of harsh driving behaviour can be utilized as SSMs,
either complementing traditional crash frequency models or serving as dependent
variables in road crash risk assessment models in areas where either road crash data
are unavailable or the available crash data are of low quality.

Additionally, this thesis highlighted an innovative insight, emphasizing that the
contribution of harsh brakings, compared to harsh accelerations, is higher in predicting
the crash risk level for road segments. This makes harsh brakings a more suitable
SSM indicator for proactive road safety analyses, enhancing the understanding of road
crash risk and providing practical implications for targeted interventions.

9.4.5 Surrogate Estimation of Crash Risk on Urban and Interurban
Road Network

The assessment of this dissertation's contributions would be inadequate without
recognizing the broader implications of the developed models on the road network of
the Eastern Macedonia and Thrace Region. In these models, the dependent variables
were represented by the number of harsh braking events, serving as SSMs. The
detection of statistically significant and positively correlated spatial autocorrelation in
harsh braking event frequencies compelled the development of spatial modelling
approaches. Pivotal to frequency analyses is the measurement of exposure, with this
dissertation employing two primary exposure variables for the respective models: road
segment length and the number of trips per segment. This research identifies the
statistically significant influence of these exposure variables on the number of harsh
braking events, quantifying their respective impacts. Additionally, it incorporates
various indicators related to road environment and driver behaviour, contributing to a
comprehensive assessment of road crash risk.

The creation of comprehensive road safety maps and heatmaps illustrating harsh
braking events stands as a valuable tool for road management authorities,
stakeholders and road users. These visualizations present complex data and model
predictions in an easily comprehensible manner, facilitating communication and
integration into diverse decision-making processes. Through these maps, the
multifaceted efforts of this dissertation in road crash risk assessment are effectively
communicated to both the scientific community and the public domain. Overall, SSMs,
such as harsh braking events, offer significant potential for monitoring road safety,
evaluating and enhancing countermeasures, and expanding road safety data
coverage rapidly. In academia, SSM modelling exercises have emerged in recent
years. Apart from contributing in that field, this doctoral dissertation demonstrated that
with the necessary effort, SSM-based spatial models can be used in scarcely-studied
areas.
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9.5 Further Challenges

This doctoral dissertation addressed various composite issues related to the data
collection, processing and integration, and advanced modelling for the examined road
segments. Consequently, it is inevitable that limitations emerged during the entire
research process, and open challenges remain, which need to be acknowledged.

With regard to the multisource-based extraction of road geometry data for Olympia
Odos motorway, the results are obviously not an exact replication of the actual road
design of the motorway and minor differences could be expected if a comparison with
the as-built drawings of the project was made. The same is probably true for the
geometric characteristics of the road segments of the Eastern Macedonia and Thrace
Region extracted via OSM. Nevertheless, any differences would be minor and,
although important from a designer’s point of view they are not expected to be able to
differentiate the results of this dissertation.

Another limitation related to the motorway segments is that the analyses did not
include tunnels and toll station segments, resulting in discontinuities in the research
area. Moreover, the motorway segments analyses did not take into account
unobserved heterogeneity and the effects of spatial characteristics of various road
safety indicators. However, this limitation provided directions for the research efforts
in the broader road network of Eastern Macedonia and Thrace Region, where spatial
modelling approaches were followed.

Despite the valuable insights gained from these spatial analyses, a significant
limitation that needs to be acknowledged is the lack of available traffic data (AADT or
flow conditions) per examined segment, which could have provided additional insights
into the influence of traffic on harsh braking events. The absence of AADT was
attempted to be tackled by using the number of trips and the segment length as
substitute risk exposure metrics. Moreover, harsh driving events essentially represent
behavioural variables. Consequently, despite the sample size of drivers and trips
analyzed in this dissertation being substantial and meeting the standards of the
literature, there still remains a possibility that the observed driving behaviour diverged
from the norm, leading to a frequency of harsh braking events either exceeding or
falling below the anticipated levels.

Upon concluding this dissertation, the author believes that the current research
findings lead to several research issues that demand further scientific investigation.
Indicatively, a promising avenue for research involves exploring temporal patterns,
which would capture seasonal cyclical trends in both road crash and harsh braking
hotspots.

It is also evident that this dissertation did not comprehensively cover all aspects of the
road environment. While the existing analysis delves into certain factors, the inclusion
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of additional independent variables, such as slopes, pavement conditions, the
presence of roadworks, land use, weather conditions and more, can significantly
enrich the depth of understanding and offer unexplored insights.

While this doctoral dissertation has employed a comprehensive set of statistical and
ML models, the ever-expanding nature of data science and transportation research
opens avenues for further exploration. Future investigations may benefit from the
exploration of additional models that could contribute further insights. For instance,
advanced deep learning architectures such as neural networks or recurrent neural
networks could be explored for crash frequency modelling. Ensemble methods like
gradient boosting machines and XGBoost might offer enhanced predictive
performance for crash risk level classification tasks. Additionally, the integration of
spatiotemporal models, considering both spatial and temporal dimensions
simultaneously, could provide a better understanding of the factors influencing harsh
braking events.

Finally, the scope of harsh braking analyses can be expanded by extending its
application to include additional geographical regions, potentially encompassing other
countries. This extension has the potential to transform the research into a digital twin,
offering a comprehensive road crash risk assessment. This transformation is further
facilitated by technological developments, such as telematics, which enable scalable
and expedient data collection. Consequently, high-quality data applications and
monitoring in scarcely-studied areas become possible and can even be converted to
the norm in the short term.
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