EONIKO METYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON YTTIIOAOTIZTON

TOMEAY. TEXNOAOI'TAY. ITIAHPO®OPIKHY. KAI TIIOAOT'TXTON
EPrasTHPIO MIKPOTHOAOITETON KAI WHIIAKON Y YSTHMATON

Towards Performance Counter Based Power Modeling
RISC-V ISA Use Case

AIITAQMATIKH EPT'AYIA

TOL

I'ewpyrouv AAeEavopen

EnBAenwyv: Anuftpioc Sobvienc
Kodnyntic E.M.IL

Adhva, Anpihog 2024

Edvixé Metoofio Ilohuteyvelo

Yyon Hhextpohdywv Mryovixddv xan Mnyoavixodv Troloylotdv
Touéac Teyvoroyiac ITAnpogopinric xou YTohoyiotedy
Epyaotipio Mixpobnohoylotdv xan Uneloxay Suotnudtwy

)
R
) 5

VP POPOS

n

Towards Performance Counter Based Power Modeling

RISC-V ISA Use Case

AIITAQMATIKH EPT'AYIA

ToL

I'edpyiov ANe€avdpen

ETCLﬁ)\E’TEO)V: Amn']'cho,g Yolvtprng
Koadnyntic E.M.IL

Evxpldnxe and v teiuer) e€etaotn enitponh) Ty 9" Ampiklou, 2024.

Anunteloc Xolvtene TMoavaryudtne Toavéxog Ywthptoc Z0oNC
Koadnyntic E.M.IL Kadnyntic E.M.IL Enixovpoc Kadnyntic E.M.IL

Adhva, Anpihog 2024

AAEEANAPHS I'EQPIIO:
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mryovixog Trohoyiotwv E.M.IL

Copyright (©) — All rights reserved T'edpyloc AleZavdprc, 2024.
Me emipOhagn TovToC SIXUOUATOS.

Arnayopebeton 1 avtiypagn, amodfxeuon xou davouy| tne moapoloas epyaoiag, €€ OhoxAAEoL B TUAUATOS
QUTAS, YLl EUTopd oxomd. Emtpéneton 1 ovatdnworn, anodfixeuor xou diovour| Yol oxond pun xep-
B0OXOTUXNO, EXTAUOEVTIXNG 1} EPEUVNTIXNG PUOME, UTO TNV TEoLNOVEST) Vol avapERETAL 1) TINYY) TROEAEUOTS
xon va Statnpeiton to mopoy prvupa. Epwthuata mou agopolv) yerion tne spyaciog yia xepdooxonixd
oxond mpEmel vor aneLivVoVTaL TEOS TOV GUYYEPEA.

Or andelc xou To CUUTERACHUATI TTOL TEPLEYOVTOL OE AUTO TO EYYRUPO EXPEAloUY TOoV CUYYPAPEX Xou BEV
TeéneL va epunveutel 6Tl avtinpoownebouy Ti¢ enlonue Yol Tou Edvixob Metodfiou Ilohuteyvelou.

oty oikoyévela Uov

ITepiindm

Ta tehevtaio YpovLa, Ol EVERYELIXES AVAYXES EVOC TUTXOL GUC THULATOC Yivovtan 6Ao xou peyohltepes. Me
QT TNV XATAC TAOT XAUAHWOTNS, 1) avaryxT) Slaryelplong Tne Loy 0og EYEL XATAGTEL AvVayXoUOTNTA, UE OYEDOY
ONEC TIC OLXOYEVELEG UXPOEAEYXTEY VoL LAOTIOLOVY €Val LOVTENO Loy 00 o UTtopel vor TeoBAEdeL xou, xatd
oLVETELR, Vo SloryeElploTel emlong TV xaTavdAwon Loy 00g XoTd TNV EXTENEOT) ULAC EQUPUOYTC. M€ QUTH
™ SimhwuaTny| epyacio mpotelvoude pla U€tenon Tng andédoong 1o 0og xovTd 6To UAXS evog SoC mou
Baoileton oe RISC-V ISA xou ovopdleton RocketChip, to omolo e€opoidvetar otny avamtulont] mhaxéta
ZC706 FPGA, ypnowonoudvtag o Tpwtéxorlo emxowvnviog ye tov mueriva ARM tou Zyng SoC xou
XOTOUPEPVOVTAS VO UETAPEPOUPE Tal dedopéva ambdoang yenowonowwviac tg Aoteg FIFO mou viomnotet
auTd 1O TPWTHXOAN0. Me tar Hedoyuévo Tou amoxTAYNXAY amd qUTH TNV TEXVIXTH HETENONS XENOLOTOLO0UE
N cuoy£éTion Spearman xon EXTEADOVTAG oTaTixY) (TUTLXY) Xou BLoo TAUPOUUEYY GUOYETION UE To. Bedouéva
mou amoxThUnxay and 10 Siapopetind benchmarks, xoddg xow 800 BiapopeTinols TpdTOUS aaipEoC
Yopifou (‘Adpoiopa Kivoduevou Iopadtpou xou I'xaouctiavd Pidtpo), xatapépvouue Vo Topotneioouue
TOUG TEPLOPLOHOUS IOV TIRETEL VoL €XEL €val WoVTENO Loy Log, oL omolol efval €vag eWBinde YLol TNV EQUPUOYT
YOEUXTHEUC, TEETEL Vo efvan SLodOYLXO XalL VoL vty VEDEL Y1) YROUUXES CUUTERLPORES, VoL EYEL UVAUT] TWYV TEO-
NYOUUEVRY YEYOVOTWVY Loy VOC-amdBooNe xol Vo efval XAIAXOUPEVO HETAED DLUPOPETIXY BLOHOPPOCEWY
xou ouyvothtwy. Télog, xatalh€aue oto cugmépacuo 4T oL HO1 Vhomouévol PeTENTES amdBOoNE TOU
RocketChip npénetl va enextadolv npoxeiuévou va xohlpouy neptocdtepa douixd oTolyelo ToU GUGTAUI-
to¢ SoC.

Aggeic Khewdid — EZayvywyrn XopaxtneioTtixwyv, Metentéc Andédoong, Moviéro
Evépyeiag, RAPL, RISC-V, RocketChip, Xpovoloyix? Xeipd

vii

Abstract

Over the last few years, the energy needs of a typical system are getting bigger. In this scaling situation
the need of power management has become a necessity, with almost all the microcontroller families
implementing a power model which can predict and, as a result, also manage the power consumption
of a end application execution. In this thesis, we propose a close to hardware power-performance
measurement of a RISC-V ISA based SoC called RocketChip, which is emulated in the ZC706 FPGA
development board, by using the communication protocol with the ARM core of the Zynq SoC and
managing to transfer the performance data using the FIFO lists which this protocol implements.
With the data gained of this measurement technique we use Spearman correlation and performing
static (typical) and cross-correlation with the data gained form 10 different benchmarks, as well as
two different denoising algorithms (Rolling Average and Gaussian Filter), we manage to observe the
constrains a power model should, which are an application-specific character, it needs to be sequential
and to detect non-linear behaviors, to have memory of the past power-performance events and to be
scalable among different configurations and frequencies. Finally we came to a conclusion that the
already implemented performance counters of the RocketChip need to be expanded in order to cover
more building blocks of the SoC system.

Keywords — Feature Extraction, Performance Counters, Power Modeling, RAPL, RISC-
V, RocketChip, Time Series

Euyaplotieg

Oa fdeha vo euyaplotiow tov emPBAénovta xadnynth pou, Anurteio Xolvtern xodode xou Tov xadnynt
Ywthen Z081 vy TNy ToAOTIUN xododRYNoT| TOUC XoTd TNV Sldpxelo TNS BITAOUATIXAC wou. Oa rdeia
eniong va evyaplothow Toug Trodhpio Awdxtopa Xeroto Aopmpdxo xar tov xadnyntr [idpyo Aevtden
yia Ty uroothetEn xou Ty mpoYupio Toug va Bondricouv drote HTay anapaitnTo.

Emuniéov Go Adela vor euyoploTRom TN OLXOYEVELD LOU Ylal TNV UTOOTARIEN TOUG oL TNV Toeousio Tng
oe xdde oTtddlo e Lwng Lou wS PoLTNTAC Xt TNV oTHELEY Toug ot xdde wou andeaoT xou oe xdde wou
xivnomn autd Ta ypdvia.

Téhog, Yo Hdeha vor eLYEIGTACW TOUG QIAOUE HOU TOU UOU TPOGEPEEOY TOL UTUELTNTO EPOBLOL YOl VoL
UTOPECHL VoL OAOXANEMOL TOCO TG OTOUBES HOU 600 ot TNV Topolow dimhwuater epyocia. To e@odia
T ebvon 1) oy dmn, 1 UTOG TARIEN Ol 1) XUTAVOYCT) TTOU U0V TIROCEPERAY XAl LOU TROGPEPOLY, SNULOURY V-
Tag €vo xhlo péoa oo omolo o xdde dvdpwnog unopel va avartuydel xan va e€elydel, xuvnydvTog to
OVELPA TOU XAl XEVOVTOG UTO TIOU Ay AmdeL.

Fedpyioc AheEovdpnic
Ampihoc 2024

xi

Contents

ITepirndm vii
Abstract ix
Evyapiotieg xi
Contents xiii
Figure List xvi
Table List xix
Extetopévn EAAnvixy] Ilepiindn 1
1 Exztetopévn EAAnvixy Ilepiindn 1
L1 EwooyoYyn . . oo 1
1.2 Zyetof Bilhoypagpion. . . . Lo 2
1.21 x86 ApylteXTOVIXES o e 2

1.2.2 ARM ApyttexTOVIXES o o 2

1.2.3 Apyrtextovixég RISC-V . o o0 0L 2

1.24 Mn CPU ApyltexTOVIXES .+« v o o v v ot t ee e 3

1.3 Oewenund Tréfodpo oL 3
1.3.1 Apytextovixgy RISC-V . o o 000 oo 3

1.3.2 RocketChip e 3

1.3.3 Auwenagéc ye to RocketChip oo oo 4

1.34 Metpntéc AmOB00MG 6

1.3.5 IDooéta Avantuing ZC706 o L oo 6

1.3.6 Buoyton AeSOUEVDY 7

1.3.7 Agaipeon Ooplfou 7

1.4 Iewapotixd IMepiBddiov o Lo oo 7
1.5 AMOTEREOUOTA . . v v o e e 8
1.5.1 A&womnoinon Aouxev Xtolyelwy YUoTHUATOS « o . o o o Lo 8

1.5.2 Troted (Tume) BUoyEToN . « « o oo v et 8

1.5.3 AOTaUpOUEV BUGYETION « « v o v v v e 9

1.5.4 Yvoyétion Meta€d Metpntdy Anddoongo 11

1.5.5 Anoteléopota Yuoyétiong oto XUvolo Twv Benchmark 12

1.6 Xuunepdopata - MeMovuxh Epyaofor 0 o oo oo 14

2 Introduction 17
3 Related Work 19
3.1 x86 Architectures 19
3.2 ARM Architectures 20

xiii

Contents

3.3 RISC-V Architectures
3.4 Non CPU Targeted Architectures
4 Theoretical Background
4.1 RISC-VISA . . o o e
4.2 RocketChip o
4.2.1 General Overview L
4.2.2 The RocketCore e
4.2.3 The RocketTile o o
4.24 Front End Servero
425 Proxy Kernel
4.2.6 Host Target Interface o
4.3 Performance Monitoring L oL
4.3.1 Control and Status Register (CSR)
4.3.2 Performance Monitoring CSRs L oL
4.3.3 Performance Monitoring in RocketChip
4.4 7ZC706 Development Board Lo
4.4.1 Zyng-7000 SoCo e
4.4.2 UCDI90120A e
4.4.3 Interconnection Properties (AXI) L oo
4.5 Time Series e e
4.6 Data Correlation L
4.6.1 Static Correlation L L
4.6.2 Cross Correlation L
4.6.3 Significance Threshold o o
4.7 Denoising oL e e
4.7.1 Rolling Average e
4.7.2 Gaussian Filtero

5 Modifying the HTIF

5.1 Timestamp Approach e
5.2 Custom System Call Approach
5.3 Modified Data Transfer Approach
6 Experimental Setup
6.1 RocketChip in ZCT06 0
6.2 Data Collection-Processing L e
6.3 Benchmarks e e
6.4 Challenges e
7 Experimental Results - Evaluation
7.1 Benchmarks Utilization e
7.2 Static Correlation L e e e e
7.2.1 Rolling Window Correlation o
7.2.2 Gaussian Filter Correlation o
7.2.3 Feature Extraction in Static Correlation
7.3 Cross Correlation L
7.3.1 Cross Correlation Across Time
7.3.2 Rolling Window Cross Correlation
7.3.3 Gaussian Filter Cross Correlation
7.3.4 Feature Extraction in Cross Correlation
7.4 Performance Counter Inter-Correlation
7.5 Across benchmark Analysis
7.5.1 Static Rolling Window Analysis. L.
7.5.2 Static Gaussian Filter Analysis L

Xiv

Contents

7.5.3 Cross Rolling Window Analysis 70

7.5.4 Cross Gaussian Filter Analysis 75

8 Conclusions - Future Work 79
8.1 Conclusions 79
8.2 Future Work 80

A Correlation Data 81
Bibliography 83

XV

Contents

Xvi

Figure List

1.2.1
1.3.1
1.3.2
1.3.3
1.4.1
1.4.2
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
1.5.7

2.0.2
2.0.1

3.1.1
3.1.2
3.2.1
3.2.2
3.3.1
3.3.2

4.1.1
4.2.1
4.2.2
4.2.3
424
4.3.1
4.4.1
4.4.2
4.4.3
4.4.4
4.6.1
4.6.2
4.7.1
4.7.2
4.7.3

5.1.1
5.2.1

H mhatppoépua Intel RAPL o oo o000 o 2
IMopddetypa RocketChip Apyttextovixnic. o oo oo oo oo oo 4
Emucowvevio ye yerflon e HTIFo 0000000 5
Kovdho Evépyelog oty IMhaéta ZC706 o o000 6
Mepapotind MepiBdhhov . . . oL Lo o oo o 7
Ipocopuoouévn Emxowvevio ye HTIF .. .00 0000000000000 8
IMopadelypato LTaTHOV DUOYETIOEDY . . . o o v v vt e 8
Hopadelypato ACTUVPOUEVEDY DUOYETICEWY o v o vt 9
IMopadelypato Xpovwy MEYIOTNE BUCYETIONS + « « v v v v v o e e e e e 10
IMopadetypata Bvoyétione Metentddv Anddoong 11
IMopadeiypato BTaTnAg BUGYETIONG + « « o v v v v e v e e e e e e 12
Hopoadelypato AGTUVPOUEVNC BUCYETIONG + « « v v v v v v e v e e e 13
IMopadetypato Avehuong Xedvmy . . o oo oo oo 14
Versal FPGA energy consumption during BSW benchmarking. 18
A complete overview of energy consumption (survey based) [32]. 18
Intel’s RAPL o e 20
Intel Core i7 e 20
ARM Cortex-AT7 o e 21
ARM Cortex-A15 o o e 21
BOOM core o o e 22
PULP core o e 22
Basic RISC-V ISA. e 26
Example RocketChip architecture. 27
Front End Server Example Communication. 28
Proxy Kernel Example Communication. 29
HTIF Communication ittt s e e 30
hpmevent Mapping Formation 32
Zyng 7000 SoC 34
Power Rails Analysis in ZC706« .. 35
Power Rail Configuration in ZC706 36
AXI-Bus Communication 36
Spearman’s Rank Correlation Coefficient 37
Significance Threshold 38
Abstract Denoising Representation L. 39
Rolling Average e e 39
Gaussian Filter o 40
HTIF Timestamp Approach. et 41
HTIF Custom System Call Approach. 42

xvii

Figure List

5.3.1

6.0.1
6.1.1
6.1.2
6.1.3
6.1.4
6.3.1

7.2.1
7.2.2
7.2.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.4.1
7.4.2
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6

HTIF Modified Data Transfer Approach. 43
Experimental Flow L 45
MMCME2 clocking divider RTL 46
MMCME2 clocking divider equation L 46
Floorplan of the Big Rocket Core 47
Floorplan of the Medium Rocket Core 47
CoreMark Function Utilization 49
Rolling Window Correlations 53
Gaussian Filter Correlations L 54
Case of Matrix Multiplication 55
Cross Correlation Across Time Lagso o 0. 56
Rolling Window Correlations 57
Rolling Window Cross Correlations Lags, 58
Gaussian Filter Cross Correlations o 59
Gaussian Filter Cross Correlation Lags 60
Rolling Window CSR Correlations 62
Gaussian Filter CSR Correlations L oo 63
Across Benchmarks Static Rolling Window Analysis 65
Across Benchmarks Static Gaussian Filter Analysis 68
Across Benchmarks Cross Rolling Window Analysis 70
Across Benchmarks Cross Rolling Window Time Lag Analysis 72
Across Benchmarks Cross Gaussian Analysis 75
Across Benchmarks Cross Gaussian Time Lag Analysis 7

xviii

Table List

3.1

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5

Related Work in CPU Architectures L. 19
ISA Instructions for CSR Accessing o o 31
Performance Monitoring CSRs 31
Performance Events oL 33
RocketChip Big Core Utilization e 47
RocketChip Medium Core Utilization 47
Post-Implementation Power/Thermal Analysis 47
Micro-Benchmarks 0oL o 48
CoreMark Benchmark Breakdown 50
Utilization of the building blocks across all benchmarks 52
Common Counter-Rail Behavior Across Benchmarks (Rolling) 66
Common Counter-Rail Behavior Across Benchmarks (Gaussian) 69
Common Counter-Rail Behavior Across Benchmarks (Cross Rolling) 71
Common Counter-Rail Behavior Across Benchmarks (Cross Gaussian) 76

Xix

Table List

XX

Chapter 1

Extetopevn EAAnvixn Tlepiindm

1.1 Ewayoyn

H épeuva tov teleutolo xoupd emXeVTp@VETAUL TNV eE0XOVOUNGCT] EVEPYELIS OTA VEUPWVIXY BixTud AOYW
™S evepYeloxnc xplomg oL TWV UEYEAWY EVERYELUXWY OTOLTACENY TWV GUGKEVWY UETA TNV eEENEN TwV
veupwVIXGY dtlwv(1]. Ilpoteivetar N mopaxorovdnor xou npocuppoyh poviéhwy yia BéltioTn yeron
ot SLAPopES EQPUPUOYES, EXUETUAAEVOUEVY TIC TEXVIXEC WATUNoNe xou T Suvauixy| TOEOUETEOTOMOY) TWV
TNYOV EVEPYELNS, CUUTERLAUBOVOUEVOL Tou puluol Aettoupyiac Tou pohoyiob (DVES)[2].

Yy Bl xatehduvor ToAAES dpYLTEXTOVIXESC YEAOUY VOL UNOTIOLCOLY XUTUOXEVEG BEATIOTNG HATAVAAWONS
evépyeLag, avdueoa Toug xau 1) apyttextovix) RISC-V n omolo mhéov €xel eloywpnoet ot apxetéc eqapuoyég
NG epEUVNTXAC xovdTNTOC Xou el TpoTomoindel yio todkéc vionotoeic[3][4][5]. Ta anotehéopata GTay
ouyxpivovton pe dAhoug muphvee eivan o) eABopbea[6].

To yevixd dpayo 6To onolo Paciletar 1) cLUYREXPWEVT EpELVA ATOTEAE(TOL OO TNV ATOXTNGT YVWOOT YIo TNV
"oupmeplpopd" cuyxexpluévwy building block tou custAuatog wog pe Bdorn Ty enomteld XATAVIAWONG
oy Vog oAAE xou TNV Tapoy Y| Sedouévwy and PETENTES ambdoomC Tou (Blou tou enelepyaoTh, Enelta TNV
XATAOXEVT PoVTéAOU TPOPBAedNC TN xatavdAnwong woybog e Bdoel yeterioelc mou xpltdnxay ot xakitepeg
amd TNV TEoNYOUUEYY] avdhuoT xat €nelta BeATioTonoino Tou TEOoBAETTIX0) oWTOL CLOTAHUNTOS. AUuTH 1
ooty gpyacio xoahOTTEL TO TREDTO Yépog and To YeWxd dpapa cucyetilovtae Ty Topoxololinon
xoTavdhwong toyvoc tou RocketChip RISC-V SoC, nou extekeiton oe po FPGA mhoxéta avdmtuéng
ZC706, YpnoUWOTOIOVTAS TOUG PETENTES ambdoanc Tou divel o enelepyaothc. Méoo and v Simhwpotixy
epyooia Yo npoonadicouUE Vol ANAVTHCOUUE OTIC THPUXYTE EQWOTACELS:

Epdtnonl : Mroget To RocketChip va nopéyel apxetolc petpntés emBOGEMY YL VoL XENOULOTOL-
noel we¢ eloodog;

Epdtnon2 : Mnogel 1 avdiuon nou npdxeital va exteAécoupe va odnynoetl ot npoiedm ye Bdon
NV EQPAUPUOYT;

Epdtnon3 : Oo npénet va €youde uviun yia plar oxp3h tpdBiedn;

Epdtnon4 : Elvau ta dedopéva cuoyétiong evalotnta otig ahhayés Slodppnong;

Ep®tnon5 : Mnopel o npoeneepyacio dedouévwy ye Bdorn tnv anodopuBoroinoy va odnyroel
oe xahOtepn avéhuor dedopévev toyboc/anddoong;

I vor omavtndoly ta napandve Eytve pétpnom oe dlaopetixd teplBdAlovTa xan cuyvotntec tou Rocket-
Core cuo tuatog pag, Ye encéepyaoio 1wy BeBoUEVKY Hog PE YEHoN BUO BLUPOPETIXMY TEYVIXWY APIlpEaTC
YoplPou %o cUCYETION UECW TWV CUVIEAECTWV OUCYETIONG Spearman oAAd xoL UE OLoC TOUPOUEVT
CUCYETLON,.

Chapter 1. Extetouévn ENinvuc Ilepiindn

1.2 Xyetxn BiBAoypapia

1.2.1 x86 ApyitexTtovixég

H rnapoboa avdAuoT emxevipwvetal oty TeoBAedn xol Tov TEpLoplopd NS Loy Vog OE TEAYUATIXG YEOVO
péow tne teyvohoying Running Average Power Limit (RAPL) tne Intel, n onola emtpéner v €&-
owovounon evépyelog oe Bidpopa cuaTaTiXd Tou cucThatog 6w 1 CPU xaw n RAM, péow e xehone
evoe ypovixol mapodipou i Ty TedPiedn tne toybog|7][8]. Epeuves €xouv xdvel exeTdAAEVST] TGV
dedopévey Tou mapéyel to RAPL vy va éyouv nepiocodtepa mepricplo atomiotiog otnv uhonoinomn evog
povtéhou[9]. Emniéov, eetdlovton dhhec npooeyyioelc mou Bacilovial otny eEXPETENNEUCT) TWV UETENTOV
emBO0EWY o TNV EAYOYY| YUPUXTNPIOTIXOV UECW NS CUOYETIONG, elte ypauuwxic[10] elte un ypop-
wic[11], we otéyo v axpBéotepn medBhedn e toyboc. Avagépovion emione wédodol mou yenot-
HOTOLOVUY TO HECO GPAAUO Xat TN OTOTIo T XGALT e xpLThpLa yia TNy emhoyn e xohltepne pedodou
emhoyhc yopaxtneioTixdv[12]. Téhog, egetdlovton texvixés 6mwe to Dynamic Voltage and Frequency
Scaling (DVFS)[12] xou 1 aviyvevorn @done epoppoyic[13][14] v t Behtiotonoinon tne npdPredre
loyVog xan TN elwon e emBdouvong.

Voltage Energy

Default - Unfiltered RAPL
Regulator

Internal SOC

SGX Power

Enable
BIOS Controls
I— —>§)Enable off on
MSR/MMIO
System SW — MSR_PKG_Energy_Status
MSR OxBC[O] Energy MSR_PPO_Energy_Status
Filtering \
Enable

Figure 1.2.1: H m\otp@odpua Intel RAPL

1.2.2 ARM Apgyitextovixég

H €peuva emixevip®vetol 0TNy eaywy YAeoxTnelo Tixwy pe Bdon) cucyétion and BeBoPEva UETENTWY
emdooewy ot mepPBdihov ARM, yenowonowdvtac tov ARM Cortex-A15 xou epopuoélovioc tTny npocey-
yion oe xwvntée ouoxevéc[ls]. Emnhéov, wo dAhn pedodoroyia[l6] yenowonoinoe to Energy Delay
Product (EDP) vyio tpv npdBAedn tne evépyelag xan tny eaywyh twv BéAtiotwy onuelwy exnaidevong
povtélou, Baowldopevn oe dapdppwon big. LITTLE pe toug muprvec cortex-Alb xau cortex-A7. Mia
Tpltn Tpocéyyion|17] yenowonoinoe Ty (B Sludppwon big. LITTLE ot nepi3ddhov eZopoiwone FPGA,
epopudlovtoc petpxéc Clocks Per Instruction (CPI) yio v e€orywyh yopaxtnoto Tixddv xotd tn didpxeta
ouyxprtixfic oaflohéynone. Téhoc oe oyetnd| doudewd [18] éxouv yivel ypfiomn o dedouéva petpioewy oto
RTL evéc Neoverse ATT mupfiva yiol vo UTOpETEL va (pTLory Tel ovtélo mou oto téhog Yo extelel TpoPBAédelc
OE TEAYHATIXG LAXO.

1.2.3 Apyrtextovixég RISC-V

Loppova ge to govtela avdiuong Loy bog oe apyltextovixéc Bactopéveg oe RISC-V undpyouy 2 onuovtxd
EPELYNTXS €pY L.

To npdto elvar to MCPat-Calib[19], to onolo emxevtpdveton otn Badpovounon twv Blobixaoudy
Topoaxohovinone TwV eMBOCEWY OE 0PLOUEVOUG UETENTESC ETUOOOEMY %ot OEXTEC ovapopdc oTov Tuprva
RISC-V BOOM (1 extéc oelpdc uvhonoinomn tou RocketChip) xow otnyv npdfredn tne avéhvong toyloc,
ETUTUYYAVOVTOS PelwoT Tou péoou andlutou T0c0cT00 o@dipatos xoutd 3,64%-6,14%.

To 8eitepo epeuvnTind pyo[20] emxevipmvetar ot dedouéva tou cuyxevTeddnxay uéow tne yeRone Tou
Nangate 45nm PDK vyio tnv avdiluom 1oy bog Biapopwy Souxcy oTolyeltv 6TOV UETAYAWTTLOTY Synopsys
Design evéc npocopounpévou nuptiva Boaotouévou oto PULP[21], yvwotol we RISCY[22]. Katdpepav va
HELOGOLY TNV Loy ¥ xatd 2,2% oe oyéon pe TV TpoPAenduevy uelwon pe aut tn pUdulon poviehonoinong.

1.3. Oewpnuxd YréPadpo

1.2.4 Mn CPU Apyitextovixég

'Epeuva méve oe GPU eotiooe otr oulhoyy npogik toybog xa embddoewy and 49 nuprivec CUDA, yenol-
pomowwvtoag to CUDA SDK xou 0 coulta cuyxpttixdv doxiwov Rodinia. Méow tng yerone uetentodv
eMBOOEWY, CUAEYINXaY BEBOUEVA Yia TNV andBOCT) EVIOADY %ot UWVHUNG, To OTolol GUCYETIOTNXAY UE TNV
XATOVAAWOT Lo 00g. Avoamtiytnxe évo HOVTEAD YRoUUXTE TUAVBEOUNONG YE TOUC UETPNTES EMBOCEWY
¢ aveEdETNTEG YETUBANTES XoU TNV XATAVIAWGCT LoY VO 0C EEURTNUEYY UETABANTY, EMTUYYAVOVTOC UEGO
ANdoc mpdBredne 4,7%. Qot6éc0, T0 YOVTEND aVTIHETOTIOE duoXOAES GTNV axplPY| TEdBAedn yio Tuprivee
HE avayvwon Lehic Aoy TNe EANEPNS OxETIXOY PETENTOY emd6oewV[23]. Xe dhhn €peuva, 1 amddoon
xou M xotavdiwor evépyelag g Google Edge TPU peietiinxay péow tng avdluong méve and 10.000
povtéhwy Bardide pddnone. H pekétn avadewviel T un ypouux oyéon UeTall evépyelog/omddoong xou
Tou aptdpol Twv tpdEewv MAC, xadde xou) onuacio T xeRone uvAung evtog/extoe tou chip yo v
axpB) extiunon e anddoone. To mhaioio PETET yenowwomnotel pedodouc unyovixne uddnone yio va
TpoPBAédet online v anddoon xou v evépyeio e Edge TPU Bdoet twv puduicewy tou povtéhou DL,
TWY UTOAOYIOTIXOY POpTwY epyaciog xat e yerone uvAunc[24].

1.3 Oewentixd TroBadpo
1.3.1 Apytextovixr RISC-V

H apyttextoviny RISC-V avadewvietor we €va mewTomoploxd cUCTNUO EVIOADY avOXTOU XMBIXA, TOU
nepthapPdver tic apyée tne petwpévne culhoyhic eviordy (RISC). Auth 1 apyltexTtovixt|, ovamTuyUeEvn
oto lavemotiwo tng Kahipdeviae oto Mrépxhel to 2010, vnootneilet éva cupl pdouo UAOTOCEWY,
and UXPOEAEYXTEC UE YounAéc anattoelc Loy 0oC €we Loyupolc eneepydoTéC TOU amoltolVTAL Yol LT~
Aé¢ embooelc vnoloyiotxdv mepBdihoviay. Teyvixd, to RISC-V npoogépel éva enextdoipo obvoro
Baowxwdy evToAdy, divovtac T duvatétnta yia eZedixeuor oe didpopes Aettovpyies, EVE 1) dlaywelo Tixn
TOU JPYLTEXTOVIXY QORTWONS/anodAXEUOTC EMTEETEL AMAOVOTERES XoL TLO OTOBOTIXES CWANVOCELS EV-
TOAWY, UEWVOVTAS TO XOGTOG Loy 00¢ O aUYXELOT HE GANES apyttexTovixéc. Me tn duvatédTnTa emAoyg
EMEXTACEWY CUUPWVA UE TIG AVAYXES TWYV EPUQUOYDYV, Ol TEOYPOUUITIO TEC UTOPOUY Vil TROCUPUOCOUY TO
RISC-V ye axpiBeta, evoupatdvovtas povo tic amopaitntes Aettoupyles, 6nwe floating-pont povédae (F),
dimhfc axpiBetoc floating-point (D), f atouxée hertovpyies (A).

H apyttextovixi auty dradétet 4 hertouvpyiec enlBredng:

o Azitovpyio unyavfic (M-mode) - n mo npovoutoxh Aettouvpyia, mou yenowwornoleiton xatd Tnv
exxlvnom xaL o€ TOA) CUYAEXPUIEVES TEQLTTAOELS, OL OTOIEC AmaTOUY TOV TAYEY EAEY YO TOU TUEH VAL

e Asitoupyio hypervisor (H-mode) - pia Aettovpyia tou yenowponoteitor yia o virtualization, n orola
dev umdpyel oe 6heg Tic RISC-V apyitextovixée.

o Acttovpyio endéntn (S-mode) - pior Aydtepo Tpovoutolya Aettovpyia, Tou yenolwonoteital ond Tov
TUPHYVAL TOU AELTOVPYIXO) GUGTHUATOC.

o Acitovpyio yefiotn (U-mode) - 1 Aydtepo npovopodya Aettoupyia, nou yenogonoteitoar and o
AOYLOWXO EQOQUOY V.

1.3.2 RocketChip

To RocketChip[25] eivon évae muprivae Paciopévoe oe RISC-V mou ftav enione to npdTo nopayduevo
gpyo meptypapnc Lhxol tou RISC-V ISA. Ilpdxeiton yior plor e€alpeTind TUPUUETPOTOMOULY] YEVVHTELO
S50C avoxto) WO ToU UTOEEl VoL EVOWUATMOOEL Lol TOAL BLIPORETIXWY TUERVWV-ETLTOYLYTGY. H
neptypaph; VAol evée muprive RocketChip (Rocket Core) eivan ypoppévn oe Chisel|26], wa avoutod
xWOA YAOooH TEpLYpapric UAX0U uPnhol emnédou mou €xel ypaptel oe Scala xou avantdyUnxe oto
IMovemothuio e Kalwpodpvioe oto Mrépxhel. H dapdppwon tou RocketCore eivon mohd apdpmtn,
EMTEENOVTOG GTOV TEAXS YENOTH VoL BIUORPWOEL TOUS TUPHVES, Ta Boixd oTolyelol ot T BUVATOTNTES
Tou Tuphva. Exyetarievduevol auté to modularity, umopoly vo xotaoxeuacToldy Bidpopol ETLTUYUVTES
EWBLXWY EQARUOYWY UE DlapopeTixés dlopoppuoelc. H apyitextovinr) Rocket Chip unogel enlong va mapéyel

Chapter 1. Extetouévn ENinvuc Ilepiindn

AVOBLALOPPAOCIUN UTAOX EMEXTACTS EXTOC TOL Baoxol muphva, 6mwe xpupes uvAueg L1 xou L2, yovdda
doyelptone pwviune (MMU), povdda xivnthc unodiactorfic (FPU), uovéda arnoopaiudtmone, petentéc
am6d00NG xo ENEYHTYH BlooTdV, xS o ETXOVLVIO UETAED OAWY AUTWY TV GToLYElWY.

To RocketTile anotehel to enduevo eninedo dapdppwone tou RocketChip xou unopel vo puduiotodv
OheC oL TTUYEC TOL TUEHVA, OTwS xELPES uviues L1 xou L2, MMU, FPU, yovdda evtomiopuold caiudteny,
peTENTéC emBooEWY xou eAeyxTh Sloxonwyv. To RocketTile eivon to Pacixd dowxd otoiyeio Tou Rock-
etChip xau yenowonoteiton yiow TNV xotaoxev) tou tehixold SoC. Mnopel va dioauoppwiel yio évay povo
mupriva, évay multicore 1 oxdpo xou Wiat SLoEPWOT, TOANATAGY TUEHVODY TOMAATAOY cLGTAdWY. O
xVpLOTEPES dlopopphoels evoc Rocket Tile etvon ol e€nic:

e BigCore : "Evoc nuprivoc ugniov emddoewv pe 16 KiB, 4-way set-associative caches evtoldv xou
dedopévev tou vrnootneilel FPU by Default.

e MediumCore : 'Evac nuprvag pe uxpdtepes xpupés uviueg dueong avtiotolyiong 4 KiB mou dev
vnootnellet FPU anéd npoemioyy.

e SmallCore : 'Evag muprivac yoauniic anddoong pe mohd MEQLOPLOUEVT XpUKT UViUT Tou eV UT-
ootnpiler FPU €€ oplouob.

e TinyCore : M 6yl 16060 GUY VA YENOUWOTOLOUUEVY SLopop(PKGT TUEY VL UE UTOGTARIEN HOVO YLot
apytteExTovLXy| 32-bit.

RocketTile RocketTile AXI
Master
Rocket > PTW Rocket > PTW l
v Y v v Y v AXI to
[t] [ue]||[w]| [uo ||
v
| TileBus | | TileBus |
Y
FrontBus
| SystemBus |
| | |
L2 L2 | ControlBus |
Bank Bank 4, ,L J ,;
v v BootROM || PLIC || CLINT || Debug |-
| MemoryBus |" Unit <-|
| PeripheryBus
TA
}) JiAG
TL to AXI TLto AX1| | Other
Device
' {
AXI AXI
Mem Slave

Figure 1.3.1: TTapddeiypua RocketChip Apyttextovidic.

1.3.3 Auenageg pe to RocketChip
Front-End Server

H yerion tou RocketChip oe nepi3diiov npocouoinong anottel anoTeAEoUATIXT ETUXOVGVIX UE TOV OLXODE-
on6tyn unoroyioth. T tov éleyyo Tou muprva, amoutelton 1 dnuioveyia wog Yerowne uTtodoune, mou

1.3. Oewpnuxd YréPadpo

nepthopPdver to Front End Server (fesvr)[27]. To fesvr extelel exteréoipo npdypopor GTNY op)LTEXTOVIXN
TOL 6TOYOU (PLNOZEVOUPEVOL) Xou TapEYEL AettoupYies emxowvwviog Yo Tov éheyyo tou RocketChip. Em-
mAéov, umopel va yenowonowniel i Ty extéheon xdouxa bare metal xau tn pdpTwon evog bootloader
npdTou otadiov. To épyo mapéyel enlong 0 SuvatdtnTa avtioTolylong ¥AHCEWY CUOTALNTOS UETAED
TOU EEOUOLWPIEVOU CUGTAUATOS X0t TNE XevTpuhc unyovic. To fesvr avixel oto vedtepo épyo Spike[28],
AMOTENDVTAC TAEOV UEPOC TNE EMIXOVWVING XEVTELXOU 0Todyou Tou RocketChip.

Proxy Kernel

O Proxy Kernel|29] eivou évac udpmhdtepou emmédou and to Front-End Server nuprivac o onolog enttpénel
OTNV TPOC EXTENEST] EQUPUOYT TNV TEOGBACT Gt Bacixéc XANOEC GUC THRATOS Yo Uiol Lo EVEALXTY ETULXOLY-
wvia ye 10 xevipnd cvotnuo-oxodeonoty. Ilopdha autd o Proxy Kernel dev avtixahotd évav Linux
Kernel.

Host Target Interface

H emxowovio petald tou xevipixol unohoyiot xou tou tuphvet RocketChip yiveton péow pag mpooop-
poopévne dlaotvbeone, yvwotic we HTIF (Host Target Interface). H HTIF onotehel to xlpio péoo
emxovoviog oe Ohec Tic TTLUYEC TNe mepopatixfc ddtadne, unootneilovtac Aettovpyleg 6nwe 1 amoo-
poudTeon, 1 aviyveuon xotdoTacng xa 1 aviioTolylon xhfoswy cuothuatos. H emxowwvia péow HTIF
yivetaw péow dVo FIFO, wa yio xdde xotedduvon emxowvwvicg. H xdde unyavi éxet npdofBacn ato ydpo
dievtivoewy twv FIFO yia avdyvwon xo eyypoapr. H evton HTIF anotehelton and tela Paocixd yéen:
™ Aettoupyia mou {ntelton, To TURAPO dedopévwy Tou TepthauBdvel Tor oplopoTa oL TNV EVIOAY) EXTEAEOTC.
H HTIF ypenowonoteiton yior Tn PETAS00N €VIOADY CUGTHUATOC Xt SEBOUEVLDV UeTUED TOU XEVTEIXOU
umohoyloth xou Tou muphva RocketChip.

H HTIF anoteAeiton and tplo uéen:

e Yuoxeun (Device): Evo cuyxexplpévo ovary veploTixd yla Vo UTEpYEL YVOOT C TPOS ToLd dopixH
povada ameLHOVETAL O OLXODECTOTNC.

o Evtoly (Command): H evtor nouv o exteheotel and tov nuphve 1 ontolo avTinpooeneveTol
enlong amd To aVaYVRELoTIXG TNC.

o Acdopéva (Data): Ta dedopévo Tou cUVOBEVOUY TNV EVTONY Xat ElVOL AMUPOETNTOL YLOL THY CWOTH
Bayelpion tne.

| DEVICE_ID ‘ CMD | DATA |
x

arm

Target to Host FIFO

< I > Shared Address Space

% ’ ’ Virtual Execution Environment
(Target)

Host to Target FIFO

Front End Server
(fesvr)

Host Execution Environment

Figure 1.3.2: Emxowwvia pe yerion e HTIF

Chapter 1. Extetouévn ENinvuc Ilepiindn

1.3.4 Mezpntéc Anddoong

H apyrtextovixi tou RocketChip odAd xou yevixdtepa tou RISC-V nepiéyel pla oelpd omd xatoywentéc
vevixée yerong, nou toug ovoudlet CSR (Control and Status Registers). Ov CSR ypnoyionotodvton yio
vo unopel var undipyet pio enontia oe Sdpopa onueio Tou cuoThwatoc. Ou yetpntéc anddoorng elvan éva
UTOGUVOAO QUTMY TWV XATOUYWENTOV Xl £TOL UTopoLY Vo YedpovTal xou Vo dBdlovtan ue (Bleg eviolég
unyavic 6mee xot ot undrotnol CSR. To RocketChip Siandétel 29 yevinic yerione HeTenTéc oL onolol yia vo
yivouv configure npénel va ypagtel otov register mhpmeventN o xwdwdg tou mpog pétenomn YeyYovoTog
xat €tot o petpntc mhpmeounterN Yo Eextvioel vo petpdet tov apldud TV ERQAVIcE®Y TOU YEYOVOTOC.
H avddeon tou yeyovdtwy pnopel va yivel ubvo oe Aettoupylior unyovic eved 1 avdyvemaon tou unopel va
yivel oe 6heg Tic Aettoupyieg. XTo mepiBdAlov yoc Yo UETEHOOUUE YEYOVOTA TIOU APOEOUV EVIOAES, TNV
QEYLTEXTOVIXY XL TLG UVAUES.

1.3.5 IThaxéta Avantugng ZC706

H moxéta avdntuéne ZC706 Bacileton oto SoC Zynq to onolo mepthauBdver éva encéepyooti ARM
Cortex-A9 xau évo FPGA. Exto¢ and v adlonolnong tou ene€epyoao T TOU GUGTAUATOS Yiol TO Tepl3dA-
Aov poc xou tou AXT bus[30] nov mpoogépetan oe dhec Tic ouoxeuvéc Tic Xilinx, évac and and toug
ONUAVTIXOTEPOUC AOYOUS YEHONS UTAC TNG TAXTPOEUIC efval 1) BUVITOTNTA UETENONG TNG XATAVIAWCTSG
toyVoc tou FPGA. H ZC706 nepuopfdver tov wixpoeheyxti UCD90120A, o onolog elvou ueduvoc
Yol TNV PETENOT & EVERYELOKDY XUVOAMMY TNE TAAXETAUC Xal TNY emxowvwvia ue 1o SoC uéow npwToxdAiou
I2C yiot TV amocTol Twv dedouévwy pétenong.

PS Core

| @
]
1VCCPINT

~—

L1 '
LI L _ ! Q Peripheral Clocks
a0 N S

SoC Configuration

FPGA Core

VCC3V3_FPGA

VCCINT
./

VADJ_FPGA Expansion Slots

VCCAUX VCC1vV5_PL ®
12V PSU hd hd

j'

: T SoC Fan
'
1
R
PL Components , veeivs
DDR_PL
| N y 00O
R
v o0o0Oo
Y)
m % Misc Peripherals
mr=Tm .
System Clock
~—
DDR_PS
S
mm
oooo
~—

SD Card IF

Figure 1.3.3: Kavdho Evépyeloc otnv Ihaxéta ZCT706

Ynv exdva 1.3.3 galvovton o xavdhia evépyetag oTic Teployéc tne mhaxétac ZCT06.

1.4. Tlewopotixd IepBdrhov

1.3.6 Xvuoyétion AcdopEvwy

INo v cuoyétion Twv dedouévwy evépyeloc Ue Twv dedopévwy anddoorng €yive 1 yerion Tou ouvIe-
Aec T ovoyETiong Spearman oo deV LoC EVOLUPEREL WOVO 1) YR UXT) o) Eon avduesa aToug dUo
TUnoug dedouévwy. Emlone yio Ty cuoyétion xou ¢ Tpog Tov Xpeovo, mapatneioaude OTL elvon yenolto
VoL YIVEL X0l BLOLC TAVEWUEVT] CUCYETLON TV dedouévwy, dnhady| wetaxivnorn Toug oTov Ypedvo xou
umohoyioude g véag ouoyétioric tougc. Télog, elvon yprowo vo avagepdel ot yio v emPBefalwon
TV JESOUEVOV G EPUPUOCUUIE TO XATWPAL onuavTixdTnTog p-value[3l] yiu v andppudn tne
undevixnc unddeorng.

1.3.7 Aqguaipeon OoplBou

Ta dedoyéva mou cuviiwe Tpoépyovtol and UETENOELS TAOTC Kol PEVUNTOC ELGYOLY Xdmol aouvihoTa
1) Tuyola CUUTEPLPOEE, 1) omtola ovoudleton YopuPBoc. Auth N aveuoiio Twv dedopévey Exel ToAES TNnyéc,
onwe N pétenon o eZomhiopog, N mapoy Y pedUaTog, To TEpBdAloY xou 1) (Bla 1 Bradixacior wétenong xou
av 1 uétenon ddotnua pétenong elvon wixpd, téte 0 aviixturog tou Yoplfou oto Sedopéva elvol TO
onpavtixdc. T to oxond autd, undpyouv otatiotixol alyderdpol mou mapéyouy évav TeéTo Uelong
Tou YopUBou Tou GUVEROL Bedopévey, dlatnedvtac TNV X0PLo CUUTERLPOES (.. 1 xuTavopr]) oo To
duvatov mo avénagn. Abo and Toug akyopiduouc Tou unipyav oto out mepBdiiov aflohdynong fitay o
XUALOUEVOG UECOGC 6p0¢ xal 10 I'vaovoiavd @ilteo.

1.4 Ilepopotind IlegiBdArov

$ vceivs u @
I :
.

'
'

2 '

+ VCC3V3 FPG 1°C [[+

UCD90120A
* VCCINT

* VCC1V5_PL

ITERATION 1
PUSH_PERF_COUNTERS()
ITERATION 2

PUSH_PERF_COUNTERS()

SFTP

Communication
Protocol
(HTIF)

Frontend Server

ITERATION N External Host Machine

PUSH_PERF_COUNTERS()

Benchmark Data

Benchmarking Environment

CPU (ARM PetaLinux) FPGA (Rocket)

4= 2C706 Power Rail

Figure 1.4.1: Ilewpopoatixd HepBdhhov

Yto mepopotind pag meptBdhov (emédva 1.4.1) éyoupe mpooopuboer 1o RocketChip oclotnuo otnv
Aot avamTUENG PESL Wrapper xou Ue Ty yerion tou hoyiowxol Vivado HLx Editions 2018.3, ue
emxowvwvio e tov front-end server péow AXI bus xow pe pohdL ypoviopol to onolo napdyetan and TO
apyx6 poh6L Tou cuoTAATOC xan Slanpeiton Yéow tou component MMCME2. ‘Ola ta exteléoiya op-
yeta mou tpéyouv otov ARM extelolvton oe mepiBdihov PetaLinux xou éyouv petaylwttiotel pye tov
arm-xilinx-linux-gnueabi ev® 6ha ta extedéowo otov RocketChip éyouv yetayrwttiotel ye tov
riscv64-unknown-elf.

Kotd v didpxeto twv yetphioewy to dedouéva and tnyv extéleorn benchmark oto RocketChip (otddio
4) petagpépovion péow plac tponomonuévne exdoyfic tne HTIF (v omola napictata oty exdva 1.4.2)
otov front-end server (otddio 3), érmou exel petphoelc evépyelag mou HdN €youv mpaypotonoindel and
xou éyouv petageplel and tov pupoeheyxthh UCDY0120A (otddio 1) cuvdéovton pe Tic houBovopevee
petpfoelc anddoone xou mopdyeton €vo véo data point oto civoho dedopévev (otddio 2). Téloc Ta
Topory GUEeveL dedouéva Yetagépovion Yéow mpwtoxdilou SFTP oe e€wtepixo obhotnua yia Ty avdhuot
Toug (0TéBlo 5). ‘Ohn 1 avdluon twv dedopévev éyive pe yprion Python 3.8.10

Chapter 1. Extetouévn ENinvuc Ilepiindn

FIFO Entry Handle Output
to [(Custom) sinaindinging Command Production tl

Target to Host FIFO

Figure 1.4.2: Ilpocappooyévn Emxoivewvia ye HTIF

I to benchmarking twv dedouéveyv €yive yprion 800 dwpopetixcdv BiBiotnxdyv. H mpdtn elvan 1
couita riscv-tests 1 onola nepéyel wxpd benchmark o onola tpéyouv évav cuyxexpévo ahydprdyo.
H beltepn elvar 1 couita benchmark Coremark v1.0 n onola elvon mpocapuoouévn yia tic RISC-V
apyttextovixée, otny onola €youue dlaywpeloel 4 meployéc U€tenone ol omolec apopoly To mergesort,
gupeon oe AloTa, cre %ol TOAATAACIIGUS TUVAXMY.

Téhog, mpénel va avagpepdel 6TL xatd TNy didpxeia yTiolpatog Tou nepBdihovtog Hoboue avTETOTOL UE
BLapopE TIXd EUTOdLAL Tt oTolol xLUElWE oPelhoVTaY GTOUC YoUNAOUE YPOVIGHOUC POAOYLWY, TOV CUYYPOVIOUS
Twv dedouévwy uetagld RocketChip xou front-end server, xoddq xou oTic meploplopéves WOTNTES TOU
Aettoupyixol nou teéyel otov ARM, to PetaLinux, xou oto yeyovdc dti nédve amd €vor xavahl EVEQYELNS
avixel otny Bl pétenom (CUYYOVEUOT) XUVINDY).

1.5 AmnoteAéoupata

1.5.1 AZ&ionoinomn Aopixwyv Ytoiyeinwyv Juotiuatog

Ané avéluon nou éyive oe dha ta benchmark to anotéheopa mouv npoéxue frav 6TL Ta Sowxd otouyeia
mou 6ha o benchmark agopoloav xuplwe v opduntixd xaw Aoy povédo (ALU) ue 72.86%, tov
unyoviopd xAddwv (BRANCH) pe 10.11% xoddc xou tov unyaviopd mopalinionoinone 5-otadiov
(PIPELINE) pe 16.28%. Auté eiye we anotéheopo tny damiotonon 6Tt yio autd to douxd otouyeio
OL VAOTONMUEVOL UETEMNTES oY VOG aexoVV Yl TNV avdiuoT Twv dedopévwy. Avtidétwng vyl
TOMG dhha Sopxd otouyeior (uvhuee cache, floating-point povddec) ol petpntéc anddoone dev AHTov
aexeTOL Yo THY AvAAUGCT) TV SEBOUEVLV, Xl (00C UTEEYEL 1) VALY XY] XATACKELAG XOUVOLEY LWV
RETENTOV cUPPATONS ATOXAEGTIXG UE TA OTOLYED TOU UTO-0VTITPOGWTEDOVTOL.

1.5.2 Xzatxn (Tumxy) Svoyétion

coremark _crc Big 50MHz | Running Average Correlation coremark find Medium 87.5MHz | Gaussian

INSTRUCTION_CACHE_ITIM_BUSY

BRANCH_DIRECTION_MISPREDICTION
DATA_CACHE_WRITEBACK

BRANCH_TARGET_MISPREDICTION 2 0084 0086

025
025 CONDITIONAL_BRANCH_RETIRED 024 0.089 003 0095

020

INTEGER_ARITHMETIC_INSTRUCTION_ReTIRED i

BRANCH_DIRECTION_MISPREDICTION

020 JAL_INSTRUCTION_RETIRED. 2 0084 0086

BRANCH_TARGET_MISPREDICTION - 015

CSR_READ_INTERLOCK

010

CONDITIONAL_BRANCH_RETIRED 89 0.009 X 0.0002
INTEGER_LOAD_NSTRUCTION_RETIRED |

0.05

CSR_READ_INTERLOCK - ADDRESS_GENGERATION_INTERLOCK -

veenTi
VCCPAUX i
VCCPAUX p
veews pLp

VAD) p -
veeava_p

VeenTi 4

VECIVS_PLp

(a) Hopdderyua Suoyétione Kuibuevou Mécou (b) Mopdderypa Yuoyétione Mxaovoiavol Siktpou
‘Opou

Figure 1.5.1: IToapadelyyata Ltotiney Xuoyetioewny

1.5. Amotehéoporta

Yy ewdva 1.5.1 mopatneolue TUpadElypaTo TWV OTATIXWY ouoyeTicewy Yyl 800 cuvduacuolc
CUYVOTNTAG-CUGTARATOS XS Xou YLt Toug 600 akydprduoug agaipeong Bopifou.

IopatnedvTag To Tapay SUEVOL ATOTEAECUOTA UTOPOUUE VoL BOVUE OTL TO LOVTENO TEIVEL VL EIVOL TTLO CUY -
KEXPLUEVO YIO TNV EQALUOYN OTAY To TOPEYOUeVa dedopéva Bactlovtar oToug 1dn vhoroinuévoug
(mapéyovton and to (Blo o RocketChip) petentés embdboewy xaw otar xovdhio toybos. ‘Onwe Ynopolue
vou SoUue, UTdpyouv oplopévee eE0pTHOELC OTLC CUOYETIOES TTOU TaPdYovTaL, ahAd BEV UTHEYOUY AAT
Aemxohuntéuevee e€apthioelc oe xde onuelo avapopds. Etot, axdun xou av urnogel vo undpyouy eEoupé-
oElg, OV UmopolUe va Tapdyouye dio Tutomoinuévn eot yio 6Aa To. benchmarks nou Soxuudotnyoy.

1.5.3 Awxctavpwuévn JuoyéTtion

Correlation coremark find Medium 87.5MHz | Gaussian

Correlation coremark _crc Big 50MHz | Running Average

INSTRUCTION_CACHE_ITIM_BUSY -
INSTRUCTION_CACHE ITIM_BUSY

BRANCH_DIRECTION_MISPREDICTION -

0.40
DATA_CACHE_WRITEBACK

BRANCH_TARGET_MISPREDICTION

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

CONDITIONAL_BRANCH_RETIRED - 035

BRANCH_DIRECTION_MISPREDICTION -
035 JAL_INSTRUCTION_RETIRED.

030
BRANCH_TARGET_MISPREDICTION -
CSR_READ_INTERLOCK -

CONDITIONAL_BRANCH_RETIRED - INTEGER_LOAD_NSTRUCTION_RETIRED -

025

CSR_READ_INTERLOCK ADDRESS_GENGERATION_INTERLOCK -

»

VCOINT p

g
8
E

VCCPAUX p

1 H
- >

veCvs_pLi
veeavs pL.

(a) Hopddelryua Xuoyétione Kuiibuevou Méoou (b) Iopdderypa Luoyétione I'aovoiavol Bidtpou
‘Opou

Figure 1.5.2: Iopoadelypoto Alotaupwpéveny Suoyetioewy

Yy emova 1.5.2 goivovtar Eavd oL Slootowpwuévee cuoyetioelc yio 500 GUVBLACUOVS CLYVOTNTOG-
oLOTAPATOC XxaddS xaL yiot Toug BUo akydprduoug agaipeong YopliBou, oL oToleC AVTITEOCWTEVOUY TNV
HEYLOTH amOAUTY T CUCYETIONEG O OAO TO YPEOVIXO BAOTNUN TOU JOXWAOTNXE 1) CUOYETION. Amnd
TOL OMOTEAEGUATO TOU TORdYNXaY, OOV GUUTEQUOUO UTOPOUUE Vo EEAYOUUE OTL Ol GUVTEAEOTEC elval
HEYOADTERY OE O TNV EXTUOT TWV ATOTEAEOUATOV, OAAG Yia TEPETAlPE ovEALOT TTRETEL Vat YIVOUY Y VWG TOL
%O OL YPOVOL PEYLOTNG CUOYETIONG.

Chapter 1. Extetapévn ENAnvuc Hepiindn

Lags coremark_crc Big 50MHz | Running Average
-0s Lags coremark _mergesort Big 87.5M

INSTRUCTION_CACHE ITIM_BUSY - 05 05 0.9

Hz | Gaussian

INSTRUCTION_CACHE_ITIM_BUSY

DATA_CACHE_DTIM_BUSY

DATA_CACHE_WRITEBACK -
DATA_CACHE_WRITEBACK

INTEGER_MULTIPLICATION INTERLOCK
04 PIPELINE_FLUSH_FROM_OTHER_EVENT - 02
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED - INTEGER_ARITHMETIC_INSTRUCTION,_RETIRED
INSTRUCTION_CACHE MISS -
'DATA_CACHE MISS_OR_MEMORY_MAPPED,_I0_ACCESS
BRANCH_DIRECTION_MISPREDICTION [IRVPTRETR—
00 BRANCH TARGET_MISPREDICTION -
CONDITIONAL BRANCH RETIRED

BRANCH_TARGET_MISPREDICTION

JALINSTRUCTION_RETIRED G -025

INTEGER_STORE_INSTRUCTION_RETIRED

JALR_INSTRUCTION RETIRED

CONDITIONAL_BRANCH_RETIRED 050

—04 INTEGER_MULTIPLICATION_INSTRUCTION_RETIRED.

LoAD_LATENCY_INTERLOCK -8

-075

CSR_READ_INTERLOCK INTEGER_LOAD_NSTRUCTION_RETIRED

ADDRESS_GENGERATION_INTERLOCK

VCCPAUX_i -

VCCPAUX p -
VAD|p
veeavap

VCCIVS PLp
VCCPAUX
VECIVS_PL

(a) Hopddelryua Xuoyétione Kuiibuevou Méoou (b) Mopdderypo Luoyétione I'naovoiavold Biktpou
‘Opov

Figure 1.5.3: Iopodelyyota Xpovwv Méyiotne Xuoyétiong

Yy ewdva 1.5.3 galvovtor xou tar avtloTolyo T0G00TE HETATOTLONG YPOVOL W TPOS TIG UETPHOELS To
Xpovixh) Metatdmion

omnola unoloyiotnxay and v e&lowon TwhH = v
R—

Me v mopoatenon xou TwV TUPAYOUEVKY YPOVWY, CUUTERAUVOUPE OTL TNV oVEAUGT] BLIC TAUPOVHEVNS
CUOCYETIONG AXOUT XOL AV Ol TUTIOTIOWNUEVOL UETENTEG Tou TapéyovTon elvon opxetol yio o Bacuer agi-
oh6ynom yeetdleton va €youue 800 emmAéov dlabpoués avdiuone oty dladacio e€aywyhc YopaxTneLo-
Ty, H mpdn ebvar n avdhuorn ypovixfc votépnong, n omola pmopel vo deller v e&dptnom g
CUOYETIONG OTO LOTOPXS TWV YEYOVOTWY %ot O}l HOVO OTNY TEUYUOTiX oTiyUr tne pétenone. Autd
onuoivel OTL EXTOC ATO TNV EQUPHOYY CUYXEXELWEVO YopoxThpa Ui TedBAedne yeetdletan eniong va Exel
ToEGILEO UVAUNG TWY YEYOVOTWY TOU GUVERNCAY Xl TN YPOVIXY] TEPLOYT EVIOS TNG THO EVOLOPELOUCUS
emhoync Tou cuvtereo T cuoyétione. H Bedtepn elvon 1 Peudddc Yetinr| EvBel&n, SLoOTL oxdun xou av éva
oLUBAY Tou petenTh embboewy Exel LYNAGTERO CLUVTEAESTH CUGYETIONG, BEV onpalvel amapaitnTo 6Tl TO
oLUPEY awTo elvon o onuavtixd. H Sebtepn dadpoun dev elvan tdéo0 xahd xodopiouévn, Sudtt ayyilet Ta
optar eto€l TNg TEOPBAEYNG EVERYELNG XU TNG AVEAUONG TNS CUUTERLPORJS TOU TUEvaL.

10

1.5. Amotehéoporta

1.5.4 Xvoyegtion Metalb Metpntwy Anddoorng

Correlation coremark_crc Big 50MHz | Running Average Correlation coremark_find Medium 87.5MHz | Gaussian

INSTRUCTION_CACHE ITIM_BUSY - INSTRUCTION_CACHE_ITIM_BUSY -

BRANCH_DIRECTION_MISPREDICTION
oara_cacHE_wriTesacK JRRE 12 0.06: o 0.16 012 Lo

BRANCH_TARGET_MISPREDICTION
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

CONDITIONAL_BRANCH_RETIRED.

BRANCH_DIRECTION_MISPREDICTION

JAL_INSTRUCTION_RETIRED.

BRANCH_TARGET_MISPREDICTION

CSR_READ_INTERLOCK

CONDITIONAL_BRANCH_RETIRED

02 INTEGER_LOAD_NSTRUCTION_RETIRED

o P——— o1 o o
z g g H 3 g £ g 8 g 2 2 g g g
] ¢ g B £ H g E 2 g 2 £ EO.
- - - ¢ 8 8 ¢ B 2 B ¢
g &] g s] 5 g] 2 8 2 g
: A I A g 3
A B E 2 £ g - R
! g g 3 3 g £
(a) Hopddelryua Xuoyétione Kuiibuevou Mésou (b) Mopdderypa Luoyétione M'naovoiavold Siktpou

‘Opov

Figure 1.5.4: Ioapoadelypota Xuoyétione Metpntdv Anddoong

I pio o ohoxhnewévn avdAuoT| , TEETEL VoL YIVEL TORATHENOT TWV UETENTOV TOL THEoLCLALouY TUpOUoLaL
ouuneptpopd. To yeyovdc autd wiel oty napovsiacn twv cuoyetioewy YeTadd TeV Blwv TV UETPNTOY
anddoaong, mopadelypata TV onolwy galvovto otny ewdva 77.

Yuunepaopatind, o outd To TPAUA YivETl XoTavonTéd OTL, €4V UTEEYOLY UETENTES TOU GUUTIEPLPELOVTOL UE
Tov {Blo TpdéT0, N eaTiaoT TG CUUTEPLPORLC TEETEL VoL EIVOL GTNY OUADA TWY UETENTEOV Xk OYL GTIC CUUTER-
Lopéc Twv avtioTolywy petentwy. Eniong, n uedodoroyia arodopufonoinone tou gikteou Gauss napdyel
TEPLOOOTEPES OUAOES CUOYETWOUEVLV UETPNTMY, Ol OTO{EC UTOPOVY VOl AXUPMOOLY TNV UXEROULOTNTO TLV
AnOTEAECUATWY X0t Vo TtapdEouy (Peudde YeTind amotehéopota oTn POt NG EEAYOYNG YOPOXTNELO TIXADV.

11

Chapter 1. Extetouévn ENinvuc Ilepiindn

1.5.5 Amnoteléopata JuoyETiong oto 2JOvoio Twyv Benchmark

Ytatixr SvoyéTion

Static Rolling Average Common Correlations Medium 50MHz

DATA_CACHE_DTIM_BUSY

INSTRUCTION_CACHE_ITIM_BUSY

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

DATA_CACHE_WRITEBACK -

PIPELINE_FLUSH_FROM_OTHER_EVENT -

BRANCH_DIRECTION_MISPREDICTION -

p-

VECINT. -
VECAUX.i -
VeCvs_pL -
VCCNT p -
VecAuX p -
veeivs pL.
vaoLp -
veeava p |

(a) Kuhibpevoc Méooc ‘Opoc Mid 50MHz

Static Gaussian Common Correlations Medium 50MHz

40

INSTRUCTION_CACHE_ITIM_BUSY
-35

DATA_CACHE_DTIM_BUSY
30
BRANCH_DIRECTION_MISPREDICTION 25
20

CONDITIONAL_BRANCH_RETIRED
15

DATA_CACHE_WRITEBACK -

VCCAUXi -
VCCINT p -
VCCAUX p -
_PLp
VAD)p -
VEC3V3p -

o
B
g
S

VeC1vs_pLi
VCC1VS_PL.

(¢) I'xaouotavé Pidtpo Mid 50MHz

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED -

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

Static Rolling Average Common Correlations Big 50MHz

BRANCH_TARGET_MISPREDICTION = 3 3 3 3 3 3 3 3

DATA_CACHE_DTIM_BUSY

PIPELINE_FLUSH_FROM_OTHER_EVENT

CONDITIONAL_BRANCH_RETIRED

DATA_CACHE_WRITEBACK

INSTRUCTION_CACHE_ITIM_BUSY

BRANCH_DIRECTION_MISPREDICTION -

CSR_READ_INTERLOCK

VN -
vecaux.i |

veevs_pLi
VCeTp
veeauxp |
veeaap -

(b) Kuhibpevog Mésoc ‘Opoc Big 50MHz

Static Gaussian Common Correlations Big 50MHz

PIPELINE_FLUSH_FROM_OTHER_EVENT

BRANCH_DIRECTION_MISPREDICTION -

CSR_READ_INTERLOCK

JAL_INSTRUCTION_RETIRED

INSTRUCTION_CACHE_ITIM_BUSY

DATA_CACHE_WRITEBACK - 1

p-

VCOINT i -
vecaux i |
vecvs pLi -
VeaT_p
VecAuX.p -
veevs e
vap|p -
Veeavap -

(d) I'xaouctavs Piktpo Big 50MHz

Figure 1.5.5: Iapadelypoto Ltotixhc YuoyEétiong

225

2.00

125

Yy ewdva 1.5.5 goivovton anoteréopota and v avdhuon petadd 6Awv twv benchmark yia xdde
BlapopeTind cuvduaoud mopopéteny. O aprduol mou @aivovtal avtanoxpivovtal to mocooté oto 10
benchmark oo onola cuvavtdye tov Blo yetent anddoone petad Touv xopugaious 5 xdde benchmark
, oL omofol efvan Ve omd XATWOPAL CNUAVTIXOTNTAS Yiot o = 0.95 xou Bev €xouy LeTAZL Toug
cuoyETion (undpyet éva xatdehl ueTal Toug ouoyétiong 0.5).

Ané ta anoTteEAEoUATA TTOL THEAYOVTOL 06 AUTHV TNV avaALoY) QoalveTal OTL TPOTL 68 CUYXEXPWEVA oTuEela
TWV UETPAOEWY MG UTLEEYEL XATOLL OLOLOYEVELX (TY 0TOUC UETENTES oL apopolv Tny L1 cache
dedopévmv) oty yevnh exdva dev wropel va eivow application agnostic pio npdBiedn méve oe

auTE Tor dedopéval.

12

1.5. Amotehéoporta

ALACTAVEWREVY] VO YETLON

Cross Rolling Average Big 50MHz

40
Cross Rolling Average Medium 50MHz oo BRANCH DIRECTION MISPREDICTION
3
CoNDMIONAL SRANCHETRED
DATA_CACHE_DTIM_BUSY -2.50 BRANCH_TARGET_MISPREDICTION
"
[N ——
2s
20
s w0
-
E—p——— w0
STRUCTION CACHE T 05
"
e AT STRUCTONRETRED J—
y y y . 100 -, - - a a o a a o
£ 3 2 = s 2 B o £ 5 g 5 ¥ 2 g g
z 2 s 2] g z g 3 o S 2 o S]
g 2 g g 2 E g g H g g g
* g 3 s g g g > B g > 2 g E
E g > g
(a) Kuhibpevoc Mécoc ‘Opoc Mid 50MHz (b) Kuhibpevoe Mésoc ‘Opoc Big 50MHz
Cross Gaussian Medium 50MHz 300
Cross Gaussian Big 50MHz
pT— 275
"
P ——
20
s
wmcowcE s 3 3 3 3333
Son a4 a4 P— — w0
5 z 2 c o] 3 o = S = -
E F 0§ 5 3 3 % ¢ E o3 ; o: oz o= 3 ¢
g S 2 8 3 o s] g g g g 2 g s i
s g Qg a 14 g g g < 3 g
s g > B

(¢) I'xaovotavé Pidtpo Mid 50MHz (d) I'xaouctavs Piktpo Big 50MHz

Figure 1.5.6: Hopoadeiypota Atactavpnuévne LuoyEtiong

Yy ewdva 1.5.6 gofvovtar anotehéoyato and v avdivon yetald dAnv twv benchmark yia v Sioo-
TAVEWUEVY] CUCYETLON, UE TIC (Bleg TopaU€TEoug Ue TNV ototix. Ao TNV Al TopaTheNon TWV AnoTe-
Aeoudtwyv gaiveton Tl UTdEYOLY (Blot CUUTERACUNTA OE OYEOT %Ok UE TNV OTATIXYH AVIAUOY), wWOTHCO Ta
dedopéva tou mopouatdlovial £xouv TeoxdPeL and UEYIOTES TIWES GUOYETLONG, ONOTE YioL TNV TAHEY EXOVAL
TPEMEL VoL EEETUGTOUY X0l Ol YPOVOL EUPAVIONS TWY YEYIOTWY.

13

Chapter 1. Extetouévn ENinvuc Ilepiindn

Cross Gaussian Medium 50MHz

Cross Gaussian Big 50MHz

DATA_CACHE_WRITEBACK
PIPELINE_FLUSH_FROM_OTHER_EVENT

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

DATA_CACHE_DTIM_BUSY 225

- 2.00
INSTRUCTION_CACHE_TIM_BUSY

BRANCH_DIRECTION_MISPREDICTION 175

BRANCH_DIRECTION_MISPREDICTION - 4 4 4 4 4 4 4 4

150

INSTRUCTION_CACHE_ITIM_BUSY - 3 3 3 3 3 3 3 3 125
DATA_CACHE_WRITEBACK

»

VCCINT_p
VCCAUX p -
VAD)p -
veeava_p
VECINT i
VECAUX i
VCCINT_p
VCCAUX_p
VAD.p
veeavs p

H
g

VCCINT. -
VECAUX i -
VECIVS_PL -
VCC1VS PLp -
VeC1vs_pL

(a) Kuhbpevoe Mécoc Mid 50MHz (b) Kuhibpevoc Méococ Big 50MHz
Gaussian Lag std Medium 50MHz

Gaussian Lag std Big 50MHz

DATA_CACHE_WRITEBACK
-3 PIPELINE_FLUSH_FROM_OTHER_EVENT

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

DATA_CACHE_DTIM_BUSY

INSTRUCTION_CACHE_ITIM_BUSY

BRANCH_DIRECTION_MISPREDICTION

=y BRANCH_DIRECTION_MISPREDICTION

INSTRUCTION_CACHE_ITIM_BUSY
'DATA_CACHE_WRITEBACK

(c) I'raouotavéd Pidtpo Mid 50MHz (d) I'xaouoctavé Piktpo Big 50MHz

Figure 1.5.7: Ilopadeiyuata Avdivong Xpovev

Me v ypovixh) avdhuon we enduevo Bua, otny ewxdva 1.5.7 nopouctdlovton ol GUVTEAEGTHS SLoxdUAvVong
TOV YPOVIXGY peraﬁo)}wv mou ebvan UTOAOYLOUEVOL OC 7 - Eryive xenon e oETco)\u-cng TULhc oY Bfoon,opot
YL VO UTGPYEL OWOTY AVATORdoTaoT TOU av Tol OedoUEva pog elvon odnyolueva and to napehdov 1 to

HEANNOV.

Yuyunepoopotixd, and oautd To anoTEAéoPATA UnopolUE Vo SoUUE 6Tl BEV LUTAEYEL OE OAOUG TOLG
deixTeEg AVaPopdc CUVETYS CUTERLPOEA GTA DIACTAVPWUEVL CUCYETIOUEVA BESOUEVA, TO OTtolo
elvon éva hoywd amotéleoua Adyw tou yeyovdtog 6Tl Ta benchmarks otoyebouv oe diapopeTtinés poég
EXTENEONC XOL axOUT XL oV oUTES oL poég elval mopduoleg, dev oupBalvouv oTov (Blo ypdvo mialoto.
Avuto 1o anotéheoya Hav avopevouevo xou anotelel enlong endpnorn e uedodoroyiog wag xat onuelo
exxivnong g anddelgng ot oL tpoPAédelc dev npénel va elvon application-agnostic.

1.6 Xvunepdopata - Merhoviixr, Epyacia

Ané v nopandve avdhuor tpoéxude évo GOOTNUA UETPHOEWY XOVTE GTO UAXO, xadde xou uio extevr
avéhuon oty cuoyéton anbddoone evoc RISC-V based cuotfuatoc (RocketChip) ané v omola ta

14

1.6. Yuvurepdoyata - Mehhovtue Epyooia

anoteléopata Hray To eEHC:

Epdtnonl : Mnogel to RocketChip vo mopéyet apxetol UETENTEG EMBOGEWY Yo VO YPNOULOTIOL-
noel we eloodog;

Arndvrnon: Na, av doxiudoouye ot cuyxexpyéva building blocks, chhd neplocdtepol (npocop-
poopévol) petpntéc Yo mopdyouv To TOLTIXE AmOTEAECUATOL.

Ep®tnon2 : Mnopel n avdhuorn nou npdxeltal vo exteAécouue va odnyrioel oe npdPBredn ye Bdon
MY €QUpUOY;

Arndvinon: 'Oy pdoet authc Tne avdhuong, eNELdY| TapatneouUe oNUAVTIXES OANAYES 0T CUUTER-
wpopd oe opiopéva benchmarks.

Ep®tnon3 : Oua mpénet va €youue uvAun yio pio axeiBn tedBredn;

Arndvinon: Nou, enedy) pnopolye va dolue 6Tl GTO TUAHA NS OLUCTUUPOVUEVNS GUCYETLONG
€Y OUUE ONUAVTIXES AANXYES TULWY XOlL, OXOUT XAk oV QUTY 1) CUUTERLPORS. elvan horviooUuévn, 1) uviun
Yo poc Bondrioer va Sorypdoupe oUTES TG TEPLTTAOGCELS.

Ep®tnond : Eivow ta dedopéva cuoyétione evalodnta oTic arlayée dloudppwaong;

Arndvtnon: Na, xadog unopolye vo dobue ota amoteréoparto Across-Configurations.

Ep®tnonb : Mnopel wa npoeneepyacio dedouévwy ye Bdorn tnv anodopuBonoinoy va odnyroet
oe xahOtepn avéhuor dedopévev toyboc/anddoong;

Arndavtnon: O xuhiduevog péoog dpog €dwoe o cuyxexpéva xan "Eexdbopa" anoteréoporta.
Ané tny dAAn mhevpd to Gaussian Filter édwoe mo opohd potifo to omolo unopel ebxoha va
odnyfoel oe neplocdTepeS Peudnc VeTnée TEQINTWOELS.

H mopayouevn épeuva pehhovixd unopel vo emextodel ye toug e€rg tpodmouC:

o Andxtnon dedouévwyv evepyonolnone and neplocdtepa building block xau diactavpolbuevn enolr
Yevon e undleorc pag.

o AZiohbynon tou cuvohou dedopévmy yenowonolnvtag teyvixéc DVES.

o YLyedlaopdC CUYEXPIIEVKDY UETENTOY ETBOCENY o€ einedo LAXOU (6To)0¢ ot cuyXexpluéva build-
ing blocks).

o Ilpocapuoyt| autrc Tne Texvxrc oe tuphveg extéc RocketChip.

15

Chapter 1. Extetouévn ENinvuc Ilepiindn

16

Chapter 2

Introduction

The evolution of neural networks[1] and the emphasis on energy conservation in research in recent
years combined with the wider energy crisis the planet is currently facing have made power con-
sumption monitoring urgently necessary.It is advised that efforts be made in various industry contexts
to process and correlate power consumption in various accelerator components in order to parameterize
a model that can assess the best utilization for each application and take a step large enough to take
advantage of both machine learning techniques and dynamic power source parameterization as well as
various clock operating ranges (DVFS)[2].

Along with this direction, new microarchitecture technologies are being developed focusing in energy
efficiency, performance and modularity having in mind all the applications mentioned above. The
RISC-V architecture has been present in the research field and, due to its open source ISA has been
modified for several state-of-the-art implementations[3][4][5]. Also the results when compared with
several other cores are very promising|6].

The general vision of our research is to try and explore different parameters in a form of performance
counters and power monitoring, in order to correctly and completely "understand" the behaviors of
different building blocks of a RISC-V based system, then model (based on the best selected parameters
from the previous step) the power consumption with the performance counters as an input and finally,
optimize this system on runtime. In this diploma thesis the target is the first step of the vision explained
, trying to make an adaptive and open-source system that can monitor the power consumption of
the RocketChip RISC-V SoC, emulated in an ZC706 FPGA board, using the performance counters
given by the processor.

The analysis presented in our research can also come as a form of answering the following research
questions:

RQ1: Can RocketChip Provide Enough Performance Counters to be Used as Input?

RQ2: Can the Analysis we are Going to Perform Lead to an Application-Agnostic Prediction?
RQ3: Should we Have Memory for an Accurate Prediction?

RQ4: Are the Correlation Data Sensitive to Configuration Changes?

RQ5: Can a denoising-based data Preprocessing Lead to Better Power /Performance Data Anal-
ysis?

In order to answer the above, this exploration will include different frequencies and different Rock-
etChip (targeted architecture) implementations, in order to observe different behaviors and make this
parametric feature selection paradigm more general and adaptable to different and more complex archi-
tectures, but also will include data analysis based on Running Average and Gaussian Filter denoising

17

Chapter 2. Introduction

Time(s)
1024
=#-Arrial0 FPGA
512 U280 FPGA——
JQ) !
5}, 7 . <l Haswell CPUs
256 o N0 O
%. SR -I-VlOOGPU
128 Qe
X \\ ‘ ‘
64 $Q7 \
>

NISEGNN LE

16 C)?”ng \\\ \\
NN\

. \s\\ikets

i SN

1 2 4 8 16 32 64 128 256 512 1024
Power (Watt)

Figure 2.0.2: Versal FPGA energy consumption during BSW benchmarking.

techniques and also a correlation based analysis using Spearman’s Rank Correlation Coefficient and
cross-correlation.

10000000 Legend
Computation Pr
) A Int1
1000000 - A4 Int2
* ’ v Int8
: Turm";’““m’u DGX-Station~ & Int8->Int16
o e g:::;;;g; - Data Center o Intt2 > Int16
g ArriaG. nssh TPUZ A Int16
9 S8 porvan. iAMD Migo ® Int32
% @ #pr100 # Float16
o @ oo * Float16 -> Float32
-2 P Rockeh: @ Float32
(o] Q - TrueNorth °%7 Cell 2)SkyLakeSP B Float64
o AlStorm v . =

]
g

PuDianNat

Form Factor
B Chip
| Card
B System

OQ'BA' Zynq-ﬂzn
,*\e‘aA DianNao

Computation Type
01 1 10 100 1000 10000 [Inference

Peak Power (W) m Training

Figure 2.0.1: A complete overview of energy consumption (survey based) [32].

18

Chapter 3

Related Work

his section will be about feature selection methods and energy prediction techniques in other
models and architectures. Because our analysis is based on RISC-V, we will primarily focus on
CPU architectures to present the related work in these fields.

Architecture Reference Platform Feature Extraction Type Model Present Open Source Workload Agnostic Evaluation Environment

AMD Opteron Correlation (OpenMP Data) Yes No No Physical CPU

10] Intel Atom , Tntel Nehalem Pearson Correlation Yes No No Physical CPU

12 Tntel Core 2 Duo Average Error and Coverage Techniques Yes No Yes Physical CPU

13 Intel Xeon X3440 Phase Detection No No No Grid5000 Platform

x86 34 AMD Phenom Spearman Correlation Yes No No i

11, Intel Core i7 Spearman Correlation (with DVFS Variations) Yes No No

35 Intel Gainestown HotSniper ~ Pearson Correlation and Least Angle Regression Yes No Yes Physical System

14 Tntel Core 2 Duo Power Phase Detection Yes No Undefined Thinkpad Kernel

9] Intel Xeon version RAPL infe

with perf. events Yes Yes Yes Physical CPU

15 Cortex A15 (Mobile Devices) Correlation Me nd Power Rail Metrics Yes No No Mobile Devices Evaluation
ARM 16 Cortex A15-A7 big. LITTLE Energy Delay Product Yes No No Physical Cores
17 Cortex A15-A7 big LITTLE CPI-Centric Feature Extraction Yes No Undefined FPGA Emulation
18 Neoverse A7 RTL Traces From Simulation Yes No Yes RTL training - Physical Core Inference
19) BOOM Core Hyperparameter Tweaking on McPAT Yes Yes Yes Simulated
RISC-V 20 PULP-based RISCY RTL Activations Trigger Yes No Yes Simulated
OurWork Rocket Core Spearman Correlation and Cross Correlation No Yes - FPGA emulation

Table 3.1: Related Work in CPU Architectures

3.1 x86 Architectures

In this field there is the most of the research output. The most famous tool that allowed the real time
power analysis and prediction is Intel’s RAPL (Running Average Power Limit)[7], using a time window
and doing an prediction on the power, it allows to limit the output current to mach this prediction and
save power in several building blocks of the execution system (CPU, RAM etc.). RAPL is also used
also for energy measuring purposed in code paths|[8| and as a data source for further power modeling|9].

Other approaches are also taking advantage of the performance counters of the different CPU architec-
tures and do a feature extraction based on correlation. There are research approaches that try to define
a linear behavior across the benchmarking environment (focusing on Pearson correlation)[10] but also
to detect non-linear correlations on each system , either by focusing on Spearman correlation[11] or
by manually applying non-linear transformations on the data and detecting the correlation drops[35].
Other approaches are using average error and statistical coverage in certain benchmarking criteria in
order to define the best feature selection method[12].

In those fields except for the correlation approaches, there are outputs that define DVFS (Dynamic
Voltage and Frequency Scaling)[12] and application phase detection[13][14] for more optimal and an-
alytical power prediction (overhead reduction). In our case those implementations are not going to
be used due to the limitations set by the close-to-hardware emulated environment and the bare-metal
benchmarking.

Finally, a great observation among the most of the techniques presented above is that they are kernel
dependant, meaning that there is no direct communication with the hardware during the analysis and

19

Chapter 3. Related Work

evaluation phase. Another critical observation is that each research is triggering a specific CPU model
(for example a specific Intel Core i7[35] or an AMD Opteron|33]), meaning that the results are limited
almost exclusively to this CPU models only.

Valizga Energy ——{ Default—Unfiltered RAPL
Regulator L
Enable
BIOS
Enable
Off On

MSR/MMIO
System SW | [MSR_PKG_Energy_Status]

Internal SOC
Power
Controls

MSR OxBC[0O] Energy MSR_PPQ_Energy_Status
Filtering
Enable

Figure 3.1.1: Intel’s RAPL

Figure 3.1.2: Intel Core i7

3.2 ARM Architectures

In a similar manner, the ARM perspective did a same correlation based feature extraction from per-
formance counter data, based on the ARM Cortex-A15 and in a mobile device use case[15]. Another
approach[16] used the EDP (Energy Delay Product) in order to properly predict energy end extract
optimal points for model training, based again in cortex-A15 and cortex-A7 in big. LITTLE configura-
tion. Another big.LITTLE configuration is utilizing an emulated environment (FPGA emulation) and
used CPI (Clocks Per Instruction) metrics for extracting features in a certain benchmarking phases
of the benchmarking approaches[17]. Finally, related work in ARM architectures also includes RTL
traces in order to predict power consumption in a Neoverse A77 core[18].

20

3.3. RISC-V Architectures

ARMP® Cortex®-A7

NEON™
ARMv7 32b CPU || Data Engine
Virtual 40b PA Floating Point
Unit
16-64k T2 e Core
|-Cache D-Cache

-bit AMBA® ACE Coherent Bus Interface

- scu Elcaene
s

Figure 3.2.1: ARM Cortex-A7

3.3 RISC-V Architectures

arm
CORTEX®-A15

CoreSight™ multicore debug and trace

Core 1
NEON™
data engine
Floating
point unit

32k |-cache w/parity 32k D-cache w/ECC

scu L2 cache w/ECC

128-bit AMBA® ACE coherent bus interface

Figure 3.2.2: ARM Cortex-A15

According power analysis models in RISC-V based architectures there are 2 major research projects.

The first one is the MCPat-Calib[19], that focuses on calibrating performance monitoring procedures
in certain performance counters and benchmarks in the RISC-V BOOM core (the out-of-order im-
plementation of RocketChip) and predicting the power analysis, achieving mean absolute percentage

error reduction of 3.64%6.14%.

The second research project[20] focuses on the data gathered through the use of Nangate 45nm PDK
for power analysis of various building blocks in the Synopsys Design compiler of a simulated PULP-
based|21] core known as RI5SCY[22]. They were able to reduce power by 2.2% over the projected

reduction with this modeling setup.

Chapter 3. Related Work

FrontEnd L2
Caa e
TLB* L1 ion Cache
ICache 32*-KiB 8*-way
Tags*
Fetch-Target- e By@cycls
3,‘?.“ Instruction Fetch & PreDecode (4 cycles)
- (16* Byte window)
BTB* i i I L I i I i B
(1-cycle redirect) | Fetch Buffer | r-_|
(32" entries
Gshare* BPU] .@(_é] e
redirect;
3scjrlarediod) 4*-Wide Decode
Return Address
Sk (3| | oo] cr | [pcrtr oo |
i r

Rename / Allocate / Retirement
ReOrder Buffer (128" entries)
P

Kem-,8 g .Z1LS
ayoe9 z1

Floating-point Distributed Scheduler
File
GEALED) Fgll:‘e‘e INT Issue Queue M%’ﬂ a'z:‘“’
megorphysca | | 32" entries Qs 32° entries
(128* Registers)

Load Queue Store Buffer & Forwarding
(32" entries) A (32" entries)

‘t 5 =5
L1 Data Cache 8 MSHRs

32* KiB 8*-Wa Line Fill Buffers | 128bitc
Load/Store ng.‘e Yol (10" ontrios) i
Unit

Figure 3.3.1: BOOM core

RISC-V Cores

RISCY B Ibex B Snitch §l Ariane Logarithmic interconnect
T Ara APB - Peripheral Bus
AXI4 - Interconnect

2ttt “‘.1

Oloonoc
interconnect n

interconnect

g
A" RV/RV/RV A RVIRvIRYL.
Y (i E = cluster
Single Core Multi-core E Multi-cluster
* PULPino * Fulmine * Hero
» PULPissimo * Mr. Wolf « Open Piton

U
HWCE Neurostream HWCrypt PULPO
(convolution) (ML) (crypto) (1%t ord. opt)

Figure 3.3.2: PULP core

3.4 Non CPU Targeted Architectures

A more different work[23] involved collecting power and performance profiles from 49 CUDA kernels
in publicly available programs, specifically the CUDA SDK and the Rodinia benchmark suite. Perfor-
mance counters were used to gather data on instruction and memory throughputs, which were found
to be highly correlated with power consumption. A linear regression model was trained using these
performance counters as independent variables and power consumption as the dependent variable. The
model’s estimation accuracies were evaluated using cross-validation, demonstrating an average error
ratio of 4.7%. However, the model faced challenges in accurately estimating power consumption for

22

3.4. Non CPU Targeted Architectures

kernels involving texture reads due to the absence of performance counters for monitoring texture
accesses.

Another research|[24] focuses on characterizing and modeling the performance and power consumption
of the Google Edge TPU, a commercial deep learning accelerator. By extensively exploring over 10,000
DL models with various neural network settings and sizes, the study identifies key factors influencing
inference time and power consumption. The research reveals a non-linear relationship between en-
ergy/performance and the number of MAC operations, indicating a stepped pattern as computation
and DL model size increase. Factors such as on-chip/off-chip memory usage are crucial considerations
for accurate performance estimation. The proposed PETET framework leverages machine learning
techniques to provide online predictions for the performance and power of Edge TPU based on DL
model settings, computational workloads, and memory usage.

23

Chapter 3. Related Work

24

Chapter 4

Theoretical Background

Before we proceed with the experimental setup and evaluation of the data, we must offer some
basic instruction on the technologies and techniques employed in this thesis. This chapter will
primarily explain the fundamentals of the RISC-V and RocketChip architectures, as well as the AMD-
Xilinx design flow and the AMD-Xilinx ZC706 development board’s power measuring capabilities, as
well as all the data processing mechanisms used for our overall evaluation.

4.1 RISC-V ISA

RISC-V[36] is an open standard Instruction Set Architecture (ISA) that embodies the principles of
reduced instruction set computing (RISC). It is unique in the landscape of computer architecture for
being both open-source and highly modular, allowing for extensive customization and optimization
in hardware design. Developed at the University of California, Berkeley, in 2010, RISC-V supports
a wide range of implementations, from small, power-efficient microcontrollers to powerful processors
capable of driving high-performance computing environments.

Technically, RISC-V defines a set of base integer instructions, and it is extendable through optional
instruction sets for floating-point arithmetic, atomic operations, and various other functionalities.
The ISA is designed around a load/store architecture, where memory operations are separate from
arithmetic and logic operations, a hallmark of RISC principles. This separation facilitates simpler,
more efficient instruction pipelines within processors, enhancing performance at lower power costs
compared to complex instruction set computing (CISC) architectures.

RISC-V instruction set is divided into several subsets, known as "extensions," which are denoted
by single-letter identifiers. This modular approach allows implementers to tailor the architecture to
specific application needs by including only the relevant extensions. For example, the base integer ISA
(RV32I, RV641, or RV128I) can be augmented with extensions for single-precision floating-point (F),
double-precision floating-point (D), atomic operations (A), and so on.

Additionally, the newest RISC-V ISAs introduce 4 operating modes

e Machine mode (M-mode) - the most privileged mode, used during startup and in very specific
cases, which require the full core control.

¢ Hypervisor mode (H-mode) - a mode used for virtualization, which is not present in all
RISC-V implementations.

e Supervisor mode (S-mode) - a less privileged mode, used by the operating system kernel.

e User mode (U-mode) - the least privileged mode, used by application software.

25

Chapter 4. Theoretical Background

RV32IMAC

>
CULRW. (1 SCW | (AMOANDW & (AMOORW = (AMOXORW 6 = ClLW CAND
(AMOADDW (' AMOMIN.W . (AMOMAXW = (AMOMINUW = (AMOMAXUW CFW CANDI
CanoswARD |— e —| RV32A | ¢ emp (cor

e

ISRED GUNSRID @REAIED

CGEED GElED GEEED GENED

D GESHID GEECED @EEERD GESEED Gl

s (smun (esmeac — 2 —| pysgy |l w1 pyasc
_ Base Integer ISA /| Compressed ISA Extension |

Figure 4.1.1: Basic RISC-V ISA.

4.2 RocketChip

4.2.1 General Overview

RocketChip[25] is a RISC-V based core that was also the first produced hardware description project
of a the RISC-V ISA. It is a highly configurable, open-source SoC generator that can integrate a
variety of different cores-accelerators. The hardware description of a RocketChip core (Rocket Core)
it is written in Chisel[26] , which is an open source high level hardware description language written
in Scala and developed at the University of California, Berkeley.

The configuration of the RocketCore is very modular. The end user can configure in a very high level
manner the cores, the building blocks and also the core capabilities (there are different cores which are
called small,medium and large for example).

Taking advantage this modularity several application specific accelerators can be made with different
configurations. All this concepts can also be wrapped in the appropriate communication components
(such as AXI interfaces in FPGAs) and be integrated in a more close-to-real environment.

Finally, the RocketChip architecture can also provide reconfigurable extension blocks outside the ba-
sic core, such as the L1 and L2 caches, the memory management unit (MMU),the Floating Point
Unit(FPU), the debug module, the performance counters and the interrupt controller, as well as com-
munication among all these components.

26

4.2. RocketChip

RocketTile RocketTile AXI
Master
Rocket > PTW Rocket > PTW l
! v ¥ Y v ¥ AXI to
[| [wo]||fw | [up]||
v v
| TileBus | | TileBus |
Y
FrontBus
| SystemBus |
| | |
L2 L2 | ControlBus |
Bank Bank 4, ,L l 'L
v v BootROM || PLIC || CLINT || Debug |-
| MemoryBus |" Unit <-|
| PeripheryBus |
TA
) ' JTAG
TL to AXI TL to AXI Other
Device
' {
AXI AXI
Mem Slave

Figure 4.2.1: Example RocketChip architecture.

4.2.2 The RocketCore

Among all the peripheral devices the RocketChip implements and uses, the actual CPU architecture
is in the implementation of the RocketCore building block . This block is a 5-stage in-order SoC
generator that is responsible only for the ISA instruction mapping and the basic functional units, such
as ALU, pipelining drivers and register files. The core can be externally configured for 32,64 or even
128 bit architecture mapping and also for some internal configuration (mul unroll factors, memory
pages, etc).

4.2.3 The RocketTile

The RocketTile is the next configuration level of the RocketChip (it includes the RocketCore). In the
RocketTile you can configure all the aspects of the core, such as the L1 and L2 caches, the MMU, the
FPU, the debug module, the performance counters and the interrupt controller. The RocketTile is
the basic building block of the RocketChip and it is used to build the final SoC. The RocketTile can
be configured to have a single core, a multi-core or even a multi-cluster multi-core configuration. The
basic configurations that are included in the RocketTile are the following:

e BigCore : A high performance core with 16 KiB, 4-way set-associative instruction and data
caches that supports FPU by Default.

e MediumCore : A core with smaller 4 KiB direct-mapped caches that does not support FPU
by Default.

e SmallCore : A low performance core with very limited cache that does not support FPU by
Default.

27

Chapter 4. Theoretical Background

e TinyCore : A not so common used core configuration with support for only 32-bit architec-
ture.

All the above configurations can be mapped and used in a different configuration that can use any
implementation of different caches, cores or even external accelerators.

4.2.4 Front End Server

If the RocketChip is used in a simulated/emulated environment, a communication with the host ma-
chine needs to be built in order to have a proper control over the core. This is achieved with the
Front End Server|[27] (fesvr). This contraption includes an executable which is compiled to run in the
host machine architecture and it includes functions and communication protocols that can be used to
control the RocketChip core.

A usefull feature of the fesvr is that it can be used to run bare metal code in the RocketChip core. It
handles the elf decoding process ass well as the handling of the core state in different execution stages.
It can also be used to load a first stage bootloader and boot an OS into the emulated RISC-V system,
such as Linux, with support for a mountable file system.

Another feature that is implemented into this project and it is very usefull for the setup of this thesis,
is the ability to map system calls from the emulated system to the host machine system calls. This is
possible by invoking proper decoding the to-host commands to be interpreted as a higher level system
calls by using a custom interface, called HTIF, which will be explained later.This allows for a better
and more precise visualization of the core and also for build-in support of multiple system calls, which
can support more complex execution environments.

The fesvr project, despite the fact that is used in this thesis due to compatibility issues, is an older ver-
sion of the RocketChip host-target communication and now it is a part of the newest Spike project[28§].

arm

M-mode : 4
state RISG\-

00010010
HTIF 101001101

D> 00010010

111001001
00010010

Front End Server Bare Metal Code
(fesvr)

Virtual Execution Environment
(Target)

Host Execution Environment

Figure 4.2.2: Front End Server Example Communication.

4.2.5 Proxy Kernel

The Proxy Kernel|29] is a very basic high level kernel written entirely in C and it is used to initialize
basic system calls and drivers in order to have a basic environment. The functionality of this kernel
is very limited compared to a full fledged bootloader or a Linux based kernel, but it covers enough

28

4.2. RocketChip

aspects of core boot up operation that it is very useful for running "less bare metal"* applications
with as little overhead as possible.

arm

M-mode

4
state RISC

U-mode

state
<15 e </>
Front End Server Proxy Kernel User Code

(fesvr) (no bare metal)

User Space

Virtual Execution Environment
(Target)

Host Execution Environment

Figure 4.2.3: Proxy Kernel Example Communication.

4.2.6 Host Target Interface

For the communication between the host machine and the RocketChip core, a custom implemented
interface is used, called HTIF (Host Target Interface).Almost every aspect of the experimental setup
is based on this interface and the communication it provides. This interface is used primarily for the
below reasons:

e Debugging and state tracing
e System call mapping
e Can be expanded to support more complex communication principals

The communication of the HTIF is being done by using two FIFOs (First In First Out lists), one
for the host to target communication and one for the target to host communication. Both of the
machines have access to the address space used by these FIFOs and can read and write to them using
the appropriate pointers in the high level implementation.

The basic formation of an HTIF instruction have three basic parts.

Device

Each building block of the RocketChip can communicate with the target system. This communication
is being established in the high level aspect by assigning an ID to each device and then using it to send
the appropriate command to host. In the opposite direction, after the command is done processed,
the host will send a response to the target device by using the same ID.

Command

The command consist of the actual operation that is requested from the host by the target. This is
usually a system call code but can be expanded with the appropriate implementation in components

29

Chapter 4. Theoretical Background

such as the front end server and the proxy kernel.

Data

The data section is used to send the address space that includes the appropriate arguments that
accompany the device and command instruction in order to proper execute the command in the host
system (for example for a printf command, the target need to send the address of the string that
needs to be printed).

‘ DEVICE_ID CMD DATA

e e e [« e [«

Target to Host FIFO :

< , > Shared Address Space

Front End Server
(fesvr)

> > P P P

Virtual Execution Environment
(Target)

Host to Target FIFO

Host Execution Environment

Figure 4.2.4: HTIF Communication

Finally, it is important to be addressed that the HTIF communication is present only when an
emulated environment is used, because it only provides communication between a host machine.

4.3 Performance Monitoring

4.3.1 Control and Status Register (CSR)

The RISC-V ISA provides a set of CSR (Control and Status Registers) which are used for targeting
and monitoring aspects of the core itself, as well as for the protection and privilege system. The total
of the CSR registers are 4096 (12-bit space). Few of the CSRs are already defined by the ISA. The
functionality of the defined CSRs are outside the scope of this thesis, so we will summarize the CSRs
into the following categories:

e General Purpose CSRs (time, cycle, etc.)

Exception Processing (status registets, interrupt enable, etc.)

Trap Handling (temp registers, trap cause, etc.)

Informational (ISA, version, vendor, etc.)

Building block specific (floating points, cache, etc.)

Debugging

30

4.3. Performance Monitoring

e Performance Monitoring

In this thesis we will only focus int he Performance Monitoring CSRs.

ISA Instruction Usage
CSITW Read and Write a CSR
CSITS Read and Set Selected Bits to 1
csrre Read and set selected bits to 0

Read and Write a CSR

st (from Immediate Value)

. Read and Set Selected Bits to 1
St (Using Immediate Mask)

. Read and Set Selected Bits to 0
csrrel

(Using Immediate Mask)

Table 4.1: ISA Instructions for CSR Accessing

4.3.2 Performance Monitoring CSRs

The performance monitoring is well defined in the RISC-V ISA and can also be expanded accordingly
for the specific needs of each core/application with respect to the ISA guidelines. The ISA defines 29
reconfigurable performance counters, which can be used to monitor various aspects of thr core or of
its building blocks. Each core can define its own set of performance aspect that need to be measured.
Also, if needed, the empty spaces of the CSR definitions can be used for measuring extra performance
events.

Each performance counter have 4 CSR registers (3 for the 64-bit ISA) that define it which are presented
in Table 4.2.

CSR Usage Core State R/W
mhpmeventN Event Selector M-mode R/W
hpmcounterN Event Counter Any R

Event Counter
(M-mode)

Upper Half of Counter Any R

mhpmcounterN M-mode R/W

hpmcounterNh
(32-bit Only)
mhpmcounterNh Upper Half of Counter

(32-bit Only) (M-mode) M-mode R/W

Table 4.2: Performance Monitoring CSRs

From the overall configuration the most important registers are the hpmcounterN and mhp-
meventN. The event that is going to be measured must be written to the event CSR and then the
counter CSR will measure how many times this event was triggered. Each of the counters mentioned
above have a unique register number and all the functionality of selecting an event and reading/writing
performance data is defined in the ISA and it is presented in the Table 4.1.

31

Chapter 4. Theoretical Background

mhpeventN = OxBBBBBB

Event Code Event Region

Figure 4.3.1: hpmevent Mapping Formation

4.3.3 Performance Monitoring in RocketChip

RocketChip, following the general ISA template, it is using the same counters and configuration
architecture-wise. The difference is in the events that can support and in the way those counter
system are being synthesized in the RTL level. The RocketChip has a separate Chisel implemented
CSR file that include all the info about the CSRs that are being used , the performance events that can
support (the default is 29) and how this events are mapped into the actual hardware implementation.
This configuration can be expanded in the pre-synthesis state (Chisel) but for the scope of this thesis
only the given events are going to be used because they can cover a mayor part of the system’s building
blocks and also because due to the emulated environment and not the physical presence of printed
hardware, each new event will not be optimal mapped into the specific component and , as a result,
the results will only have a valid meaning inside this specific emulated environment. Finally, during
the configuration of the core that is going to be synthesized, the number of counters that are going to
be used exists as a parameter. We will use all the 29 available counter slots.

32

4.4. ZC706 Development Board

Event Field Event Name
Exception taken
Integer load instruction retired
Integer store instruction retired
Atomic memory operation retired
System instruction retired
Integer arithmetic instruction retired
Conditional branch retired
JAL instruction retired
JALR instruction retired
Integer multiplication instruction retired
Integer division instruction retired
Floating-point load instruction retired
Floating-point store instruction retired
Floating-point addition retired
Floating-point multiplication retired
Floating-point fused multiply-add retired
Floating-point division or square-root retired
Other floating-point instruction retired
Load-use interlock
Long-latency interlock
CSR read interlock
Instruction cache/ITIM busy
Data cache/DTIM busy
Microarchitectural Events Branch direction misprediction
Branch/jump target misprediction
Pipeline flush from CSR write
Pipeline flush from other event
Integer multiplication interlock
Floating-point interlock
Instruction cache miss
Data cache miss or memory-mapped I/0 access
Memory System Events Data cache writeback
Instruction TLB miss
Data TLB miss

Instruction Commit Events

Table 4.3: Performance Events

In the Table 4.3 are presented all the performance counters that our setup had used during the
benchmarking process.

4.4 7ZC706 Development Board

For the emulation environment we used the ZC706 development board from AMD-Xilinx. This devel-
opment board used for our setup due to three crucial components

e The Xilinx Zynq-7000 SoC, which is a combination of a dual-core ARM Cortex-A9 processor
and a Xilinx 7-series FPGA. This SoC is a perfect fit for our setup, as it allows us to run the
Linux operating system on the ARM cores and use the FPGA for the hardware emulation of the
RocketChip.

e The UCD90120A micro-controller, which is built by Texas Instruments and it measures Volt-
age, Current and Temperature. The measured data can be obtained through the I2C interface
of the ZC706 board.

33

Chapter 4. Theoretical Background

e Interconnection Properties that help the initialization and communication with the ARM
core, FPGA and peripheral devices.

The technologies will be explained in the following sections.

4.4.1 Zynqg-7000 SoC

The Zyng-7000 SoC is a combination of a dual-core ARM Cortex-A9 processor and a Xilinx 7-series
FPGA. This was a very good match to have a higher level control over the emulated environment
and handle all the peripheral control and the measured performance data processing away from the
RocketChip core, in order to introduce as little overhead as possible to our benchmarks. Also the
ARM core is capable of running a custom Linux kernel by Xilinx called PetaLinux, which makes the
data processing of the evaluation system more configurable and manageable.

1
Processing System l

Flash Controller NOR, NAND, Muttiport DRAM Controller
SRAM, Quad SPI DDR3, DDR3L, DDR2

[

AMBA® Interconnect | AMBA® Interconnect

MPCore

. CAN . NEON™ SIMD and FPU
2x

. UART . ARM® Cortex™ - A8
GPI0

Snoop Control Unit

. 20SDI0 . 512KB L2 Cache 256KB On-Chip Memory
with DMA
Lo Tt ot e o]
2x USB

. with DMA '
2x GigE

with DMA AMBA® Interconnect AMBA® Interconnect

Security

: : : : AES, SHA, RSA

General Purpose ACP High Performance
AXI Ports AXI Ports

2
. SPI .
2
I
2

X
X

20
X

P

Processor /0 Mux

XADC
2xADC, Mux,
Thermal Sensor

Programmable Logic PCle® Gen 2
(System Gates, DSP, RAM) 1-8 Lanes

Multi Standards 1/0s (3.3V & High Speed 1.8V)

|

Serial Transceivers

Figure 4.4.1: Zynq 7000 SoC

4.4.2 UCD90120A

The UCD90120A micro-controller offers an I2C communication with the central ARM core of the SoC,
transmitting data for the Voltage, Current and Temperature of the board. This communication allows
the dynamic monitoring of the power consumption of this specific power rails and thus the power

consumption of the whole board. Also there is a specific driver for higher level communication with
the Linux kernel, if any.

Another feature of this communication aspect is the ability to also write Voltage values to the rails,
encouraging techniques like DVFS to be implemented in the high level.

34

4.4. ZC706 Development Board

PS Core

]
1VCCPINT
]

1 ‘/@ Peripheral Clocks

SoC Configuration

FPGA Core
VCCINT

VCC3V3_FPGA

VADJ FPGA Expansion Slots

\ 4

VCCAUX VCC1V5_PL

S
12V PSU
gooo S
: rr—m SoC Fan
1
1 vecivs e
PL Components 1 DDR PL 000

00O

@ Misc Peripherals

System Clock

B

DDR_PS

mm
oooo

(=)

SD Card IF

Figure 4.4.2: Power Rails Analysis in ZC706

The rails that are being monitored are presented in the Fig.4.4.2 as well as the corresponding SoC
region that this rail powers.

35

Chapter 4. Theoretical Background

Power Controller 1 Note: Page numbers reference the pages
PMBus 0x65 on schematic 0381513
u48 p.49
itching Module
VCCINT 1.00V @ 16A
u42 p.50
itching Module
VCC1V8/VCCAUX 1.8V @ 10A
u9s p.51

Linear Regulator

itching Module MGTAVCC 1.0V @ 3A
VCC1V5_PL 1.5V @ 6A u93 p.57
uss p.52 :
Linear Regulator

ing Module MGTAVTT 1.2V @ 3A
VADJ/VADJ _FPGA 2.5V @ 6A u94 p.57
U96 p.53
ing Module
VCC3V3/VCC3V3_FPGA 3.3V @ 10A
uts p.54
L Linear Regulator

MGTVCCAUX 1.8V @ 3A

Switching Dual [uss P57
VCCPINT 1.0V @ 1.5A Linear Regulator

U104 p.55 VCC2V525V @ 1.5A

Switching Dual [ure 057
VCC1V5_PS 1.5V @ 2.5A Linear Regulator

104 p-55 VCCAUX_I0 2.0V @ 3A

[ug2 p.57
Switching Dual
vccpv1wvca I1"gv u@a1.5A :> Source/Sink Regulator

VTTDDR_PL 0.75V @ 3A

U105 p.55 s o6
Switching Dual
VCC3V3_PS 3.3V @ 2.5A
U105 p.55 L
Source/Sink Regulator
L VTTDDR_PS 0.75V @ 0.5A (3A Max)
u27 p.56
i Regulator
VCC5V05.0V @ 2A
U44 p.56

Linear Regulator
V33D_CTL1 3.3V @ 0.25A
u20 p.49

000000

WAVIVPRIR VRV VRIS

UGSS4_c1_35_031615

Figure 4.4.3: Power Rail Configuration in ZC706

4.4.3 Interconnection Properties (AXI)

All the Xilinx FPGAs support the AXI-BUs|[30] (Advanced eXtensible Interface) communication, which
one of the most commonly used communication protocols for device connectivity. It uses a Master-
Slave communication approach with appropriate wiring for Data-Address communication. This flow
of intercommunicating supports the creation of the appropriate wrappers in order for the FPGA
components (such as a RocketChip core) to communicate with the base ARM core of the SoC and also
all the peripheral devices of the evaluation board.

Figure 4.4.4: AXI-Bus Communication

In the Fig.4.4.4 is presented a very abstract implementation of the AXI protocol. The AXI bus has

36

4.5. Time Series

3 different variations, called AXI4, AXI4-Lite and AXI4-Stream. The AXI4 is the most complex and
the most used, as it supports burst transactions and out-of-order transactions. The AXI4-Lite is a
simplified version of the AXI4, which is used for simpler peripherals and the AXI4-Stream is used for
high speed data streaming. The deeper understanding of this protocol can be obtained from the Xilinx
documentation, as it is very complex and out of the scope of this thesis.

4.5 Time Series

Time series analysis is a statistical technique used to analyze data points collected, recorded, or
observed over a period of time. These data points are typically sequential and evenly spaced in
time. Time series data can exhibit patterns such as trends, seasonality, and cyclicality, making it
a powerful tool for understanding and forecasting phenomena in various fields including economics,
finance, weather forecasting, and signal processing. By examining the temporal dependencies and
fluctuations within the data, analysts can identify underlying patterns, detect anomalies, and make
informed predictions about future trends or behaviors.

4.6 Data Correlation

The biggest part of all the data processing includes the correlation between the measured perfor-
mance counter events and power rail measurements. In the experiments two types of correlation are
introduced, the static and the dynamic correlation.

4.6.1 Static Correlation

The static correlation is the usage of the standard correlation metrics in order to determine how close
the power metric data is to the performance metric data in the terms of the "behavior" along the time.
With this concept as the main target and because we are not interested in a linear correlation, because
such data may be incremented or decremented in a non-predictable way, we used the Spearman’s
Rank Correlation Coefficient.

Figure 4.6.1: Spearman’s Rank Correlation Coefficient

In the provided equation in Fig.4.6.1, p is the Spearman’s Rank Correlation Coefficient, d; is the
difference between the ranks of the two variables and n is the number of the samples. The p value is
in the range of —1 to 1, where 1 is a perfect positive correlation, —1 is a perfect negative correlation
and 0 is no correlation at all.

4.6.2 Cross Correlation

In the majority of the time series data (a great example will be the stock market) the data may be
historically correlated. That means that a point in the time series A can be correlated with a
point in the time series B, but not necessarily in the same time, meaning that a more statistically
significant correlation can be found in a different time point. Also great observation can be made with
the behavior of the different correlation coefficients in the different time lags(data shifts through time).

So the cross-correlation method is pretty straight forward. The n data samples are shifted through
time in specific lags and then the static Spearman correlation is calculated. The result is 2xn different

37

Chapter 4. Theoretical Background

correlation coefficients , n for feature correlations (positive lags) and n for past correlations (negative
lags).

4.6.3 Significance Threshold

The correlation coefficient value by itself can show how wear or strong are two time series of data
"behaving" in the same way, but it cannot provide enough information about how confident statistically
we are that this correlation is real. For this reason the value called Significance Threshold[31] is
introduced, in order to provide a correlation value, above which we can be confident that the correlation
is not a random event.

The significance threshold is calculated by the following equation (for the Spearman correlation).

a2

a?+(n—2)

Pthreshold =

Figure 4.6.2: Significance Threshold

In the Fig.4.6.2, « is the significance level, which is usually set to 0.05 and n is the number of the
samples.

4.7 Denoising

The data that usually come from voltage and current measurements introduce some unusual or random
behavior, which is called noise. This anomaly of data has a lot of sources, like the measurement
equipment, the power supply, the environment and the measurement process itself and if the measuring
interval is small, then the noise impact on the data is more significant. For this purpose, there are
statistical algorithms that provide a way to reduce the noise of the data set, keeping the main behavior
(for example the distribution) as intact as possible. Two of the algorithms that were present in our
evaluation environment were the Rolling Average and the Gaussian Filter.

38

4.7. Denoising

—— Original
—— Rolling Average
—— Gaussian

Figure 4.7.1: Abstract Denoising Representation

In Fig.4.7.1, the blue line represents the original data set, the orange one the Rolling Average technique
and the red one the Gaussian Filter. The purpose of this representation is to abstractly show the
behavior of the two algorithms in a noisy data set.

4.7.1 Rolling Average

The rolling average is a simple statistical algorithm that calculates the average of a specific number of
data points in a specific window and then shifts the window through the data set. The result is a new
data set with the same number of data points, but with less impact from the channel noise.

n—1
1
Y= —— § Lty
Nwindow <
7=0

Figure 4.7.2: Rolling Average

In this smoothing situation is always a trade off between the quality loss of the information and thew
noise reduction. This means that the window size nyindow is a crucial parameter for the accuracy of
the analysis.

4.7.2 Gaussian Filter

The Gaussian filter is a more complex algorithm that uses the Gaussian distribution to calculate the
weighted average of the data points in the window. The result is a new data set with the same number
of data points which has also less noise impact, but with a much more smooth behavior (lacks of "sharp
edges"). This makes this algorithm less suitable for our cases, but can produce very beneficial results
in the parts that this data behave in a more continuous way.

39

Chapter 4. Theoretical Background

_G=w?

1 n—1
Yi = 2— E Ti4j€ 202
\V 4LTTO =0

Figure 4.7.3: Gaussian Filter

In the Fig.4.7.3, o is the standard deviation of the Gaussian distribution and p is the mean of the
Gaussian distribution. In the same way as the moving average, the o value is a crucial parameter for
the accuracy of the analysis.

40

Chapter 5

Modifying the HTIF

In the process of meticulously constructing the benchmarking environment, it became imperative to
undertake a significant modification to the Host-Target Interface. This adjustment was essential
for the efficient management of Voltage/Current measurements in conjunction with the collection of
performance counter data. One of the most substantial challenges encountered during this endeavor
was the synchronization between the host measuring process and the target performance metrics. The
complexity of ensuring real-time alignment and accurate data correlation posed a significant overhead,
necessitating the development of a custom solution, which ensures as little interference as possible with
the target system’s operation. This chapter will provide a detailed explanation of the modifications
made to the HTIF, as well as the rationale behind these changes.

5.1 Timestamp Approach

The most naive approach that it must synchronize the data is to attach the same (or in worst case a very
close) timestamp to the two different types of data measurements. The first obstacle of this approach
is that due to the bare metal nature of the benchmarking environment the host-target timestamps are
not automatically in sync, because the clock of the emulated system starts when the frontend opens.
Although as described in Chapter 4, the HTIF provides a high level interface for system call handling,
so the forwarding of the time system call can be used for this communication.

Timestamp o Handle Handle
to Request >| FIFO Entry dindindinginaiing ”| command "l syscall]
Target to Host FIFO
\ 2
t Timestamp | Response | e led e led e |« FIFO Entry |« Response
1 Received | Received A A Produced

Host to Target FIFO

Figure 5.1.1: HTIF Timestamp Approach.

Algorithm 1 Timestamp Approach Algorithm (Host Side)

1: while TH FIFO is not empty do
2: req < pop(TH_FIFO)

3: res < handle syscall(req)

4: push(res, HT FIFO)

5: end while

41

Chapter 5. Modifying the HTIF

Algorithm 2 Timestamp Approach Algorithm (Target Side)

1: procedure FRONTEND _SYSCALL(code, data)
2 req < (code,data,device id)
3 push(req, TH FIFO)
4: wait until res < pop(HT _FIFO)
5 return res
6: end procedure
7: procedure BENCHMARKING
: > Main Benchmarking Code
9: res < frontend syscall(TIMESTAMP SYSCALL,null)
10: bind _data(res,PERF_DATA)
11: end procedure

As seen also in the Fig.5.1.1 from the time ¢y this timestamp will be requested, it will require an
extra communication and transmission overhead and it finally produces the requested output
in the time ¢;. So this At = t; — tg is not a constant overhead in every timestamp request because it
depends on the FIFO contents. This makes this approach not the most efficient for approaching
the real-time synchronization of the data.

A more clean picture of the procedure is being analyzed in the Algorythms 1 and 2, where is we can
see that both the target and the host are waiting for the transfer of the data, making a huge impact
of the correctness of the data measured.

5.2 Custom System Call Approach
Another way of reducing the produced overhead by the timestamp request is to implement a custom
system call that will transmit the requested data one time, so the one out of two FIFO transfers will

be avoided. Thus the data processing will be more efficient to be in the ARM Core, it will be more
optimal to implement the system call to transfer the performance data from the RISC-V core to the

ARM core.
Frontend Handle Handle
System Call FIFO Entry nelindinainaling Command Syscall }

Target to Host FIFO

Output
tl Production

Figure 5.2.1: HTIF Custom System Call Approach.

Algorithm 3 Custom System Call Approach Algorithm (Target Side)

1: procedure FRONTEND _SYSCALL(code, data)

2 req < (code,data,device id)

3 push(req, TH FIFO)

4: wait until res < pop(HT _FIFO)

5 return res

6: end procedure

7: procedure BENCHMARKING

8: > Main Benchmarking Code
9: frontend _syscall(CUSTOM _SYSCALL,HPCO DATA ,HPC1 DATA,..HPCn DATA)

10: end procedure

42

5.3. Modified Data Transfer Approach

In this implementation which is shown in Fig.5.2.1, the overhead is reduced when compared to
the timestamp implementation, but still there are some steps before and after the FIFO im-
plementation that, although they are defined by the HTIF protocol as the optimal practice, they
produce a not necessarily needed overhead.

In the Algorithm 3 we can see that the main change in this procedure is that the data will be transferred
and produced in the host (which handles the system call the same way as described in the Algorithm
1).

5.3 Modified Data Transfer Approach

If we deconstruct the data transmission problem further we will come to a conclusion that is not the
system call that matter in out implementation, but the data this system call will transfer. So the
handling of the system call is not necessary for the data transfer.

Having this crucial aspect in mind, the HTTF was modified in order to support a custom command
that if it send from the RISCV core, the data will be parsed immediately without any further high
level handling of this command, which bypasses all the system call handling process. This approach is
leaving only the ctutial to functionality aspects of the HTIF, such as the FIFO and the push
and pop handling.

FIFO Entry Handle Output
to { (Custom) neindinginaling Command Production tl

Target to Host FIFO

Figure 5.3.1: HTIF Modified Data Transfer Approach.

Algorithm 4 Modified Data Transfer Approach Algorithm (Host Side)

while TH FIFO is not empty do
req < pop(TH_FIFO)
if req|CMD] is a data transfer command then

1:
2
3
4: res < parse_data(req)

5: bind _data(res, POWER_DATA)
6

7

8

9

push(null, HT FIFO) > Nothing to return back
continue
end if
: req <— pop(TH_FIFO)
10: res < handle syscall(req)
11: push(res, HT FIFO)
12: end while

Algorithm 5 Modified Data Transfer Approach Algorithm (Target Side)

1: procedure BENCHMARKING
2: > Main Benchmarking Code
3: push(binded req(DATA TRANSFER CMD,HPM DATA), TH FIFO)

4: end procedure

The implementation as stated in Fig.5.3.1 show the contraption of out implementation which so far is
the most efficient in terms of computation overhead. This approach, as already discussed, have a
constraint that a high level co-processor must exists so it cannot be reduced any further.

43

Chapter 5. Modifying the HTIF

As well as the other approaches, the Algorithms 4 and 5 show the host and target side of the imple-
mentation, where we can see that there is no more system call wrapping in the data transfer and also
the data processing starts immediately after fetching from FIFO.

44

Chapter 6

Experimental Setup

This chapter will describe all the experimental methodology that was followed in order to achieve
the proper data collection and present the results of this thesis. The chapter will be divided into
three main sections, the wrapping of the rocket chip in the Zynq FPGA, the data collection-processing
and the benchmarks that were used for the validation of our results. Also in the end will be presented
some challenges and compromises that needed to be addressed before the explained methodology.

$ vccive

* VCC3V3 FPG ﬁ I’C

UCD90120A
* VCCINT

+ VCC1V5_PL

ITERATION 1
PUSH_PERF_COUNTERS()
ITERATION 2

PUSH_PERF_COUNTERS()

SFTP

Communication
Protocol
(HTIF)

RN

ITERATION N External Host Machine

PUSH_PERF_COUNTERS()

Benchmark Data

Benchmarking Environment

CPU (ARM PetaLinux) FPGA (Rocket)

4= 2C706 Power Rail

Figure 6.0.1: Experimental Flow

6.1 RocketChip in ZC706

Implementation

For adapting the RocketChip core to the ZC706 FPGA development board, we used a higher level
of communication that introduced an adapter component to out RTL implementation. The adapter
comes between the actual RocketChip implementation and the Processing System (ARM core and
peripherals). The adapter component is responsible for the communication with the ARM core front
end and then translating the AXI commands to instruction and data communication segments that are
transferred to the RocketChip implementation. This wrapped module (adapter and Rocket) is loaded
on the FPGA Core and communicate with the ARM core only through AXI as already mentioned.

External clocking is achieved be adapting the Zynq system clock with the MMCME2 clock divider
with the appropriate constrains that can control the clocking of the PS and all the components of the
PL (which is mainly the RocketChip and helping peripheral devices).

45

Chapter 6. Experimental Setup

MMCME2_BASE _inst
CLKFBOUT -
CcLkFBOUTB |
—| CLKFBIN CLKFBSTOPPED |
SYSCLK P [| \S'k,igl‘fds L CLKINSEL CLKINSTOPPED |/ | r?mgo’hostdk
SYSCLK N [24— cLrin cLxouTo [~ [~
IBUFDS [CLKIN2 cLkouTos BUFG
— DADDRI6:0] cLkouT1
DCLK cLkouT1B |-
— DEN cLkouT2 ¢
t—= DI[15:0] cLkoutzs [
——1 DwWE cLkouTs
— PSCLK cLkouTss [
PSEN cLkouTa [
| PSINCDEC cLkouTs [
| PWRDWN cLkouTe
{1 RsT po[15:01 -
pROY [7/¢ reset0_i_0
LOCKED — 'O,\/>%_P
PSDONE | TRTLINV
MMCME2_ADV reset0_i st |
= 0~ o o fesetd
= = n) o=
RTL_INV /-
- RTL_OR

Figure 6.1.1: MMCME2 clocking divider RTL

In the Fig.6.1.1 is presented the clocking of the core along with the inputs and outputs, the only output
is connected to the main RocketCore subsystem with clock rate calculated by the below equation.

; - 1000 y RC_CLK_ MULT
RocketChip = TZYNQ RC CLK _ DIVIDE

Figure 6.1.2: MMCME2 clocking divider equation

From this equation (Fig.6.1.2) the parameter Tzynq is the period of the Zynq system clock, and the
parameters RC CLK MULT and RC CLK DIVIDE are the parameters that are set in the
constrains file in post synthesis time.

The synthesis, implementation and bitstream generation parts were done using Xilinx Vivado HLx
Editions 2018.3. The implementation was focused in a single core Rocket implementation of the
RV64IMAF architecture in order to have focused execution environment and to not include any
scheduler overhead, at least for this stage of exploration.

46

6.1. RocketChip in ZC706

Utilization

Figure 6.1.3: Floorplan of the Big Rocket Core Figure 6.1.4: Floorplan of the Medium Rocket
Core

Resource Utilization Available Utilization % Resource Utilization Available Utilization %

LUT 35042 218600 16.03 LUT 30312 218600 13.87
LUTRAM | 1121 70400 1.59 LUTRAM | 1105 70400 1.57
FF 18426 437200 4.21 FF 13195 437200 3.02
BRAM 24 545 4.40 BRAM 6 545 1.10
DSP 15 900 1.67 DSP 11 900 1.22
10 2 362 0.55 10 2 362 0.55
BUFG 1 32 3.13 BUFG 1 32 3.13
MMCM 1 8 12.50 MMCM 1 8 12.50
Table 6.1: RocketChip Big Core Utilization Table 6.2: RocketChip Medium Core Utilization

In the Fig. 6.1.3 and Fig. 6.1.4 is presented the floorplan of the RocketChip with one Big and one
Medium core in the ZC706 FPGA. The utilization of the RocketChip in the ZC706 is also presented
in the Tables 6.1 and 6.2. The utilization is calculated by the Vivado tool after the implementation
of the RocketChip in the ZC706 FPGA. For the floorplaning analysis each color represents another
building component of the system.

Power /Thermal Analysis

Furthermore in the FPGA floorplaning, in the post implementation step of the RocketChip in the
ZC706, the power and thermal analysis was performed.

Configuration Frequency (MHz) Junction Temperature (°C) Max Power (W)
12.5 28.7 2119
Big Rocket Core 50 28.7 2065
87.5 28.5 2065
12.5 28.9 2207
Medium Rocket Core 50 28.6 2052
87.5 28.9 2207

Table 6.3: Post-Implementation Power/Thermal Analysis

47

Chapter 6. Experimental Setup

6.2 Data Collection-Processing

For the proper communication with the frontend server, we introduced a customized implementation
of the HTIF protocol as described in the Chapter 5 (Fig. 6.0.1 Section 3). With this communication
protocol, we were able to transfer 2 different performance counter data per benchmark run from the
emulated environment to the host system. This data were then bind with the measured voltage and
current from the FPGAs power rails (Fig. 6.0.1 Section 1) in this time frame. Then this data were put
in as an entry to a CSV file describing the benchmark run and the measured power consumption (Fig.
6.0.1 Section 2). All the executables in the Processing System were compiled with the arm-xilinx-
linux-gnueabi compiler and were executed in the PetalLinux (build 2018.3) environment using kernel
version 4.14.

After the data were collected the produced dataset were transferred via SFTP from the development
board to a host machine for the processing flow (Fig. 6.0.1 Section 5). This flow includes:

e The production of the building block utilization of the RocketCore across benchmarks.

e The static (Spearman) correlation of the power rails and the performance counters using Running
Average and Gaussian Filtering.

The cross-correlation of the power rails and the performance counters using Running Average
and Gaussian Filtering.

e The Spearman correlation between all the performance counters with themselves.
e The production of the best correlations per benchmark.
e The production of the best correlations across all benchmarks and environment configurations.

All the processing part was handled in a Python 3.8.10 environment using the Pandas, Numpy, Scipy
and Matplotlib libraries. The produced results were then presented in the next chapter.

6.3 Benchmarks

For the validation and the observation of our environment we used two types of benchmarking (Fig.
6.0.1 Section 4). The micro-benchmarking technique in order to target individual and smaller building
blocks of the RocketChip core in order to have more focused results and the utilization of an official
benchmark suite which in our case was the CoreMark. All the benchmarks were executed in the
bare metal core, in order to be zero interference from the operating system subprocesses and system
calls, and compiled with the riscv64-unknown-elf compiler with cross-compilation with an x86 64
host machine.

Micro-Benchmarks

For the micro-benchmarking we used the implemented library of prebuilt benchmarks called riscv-
tests and is developed by Berkeley University.

Benchmark Description
mm Matrix Multiplication
Multiplication Testing of

multiply Random Generated Data
gsort Quicksort Algorithm
pmp Memory Protection Test
Hanoi Tower Algorithm
towers

(Recursion Test)

Table 6.4: Micro-Benchmarks

48

6.3. Benchmarks

In the Table 6.4 are presented the five microbenchmarks that were used for this implementation. We
also tested the Dhrystone Benchmark which was included in the same benchmarking suite but can
be a more generic implementation than a conventional microbenchmark.

CoreMark

To have a more complete validation of the system running in terms of performance analysis we used
the CoreMark benchmarking suite. The CoreMark is a widely used benchmarking suite for embedded
systems and is used for the validation of the performance focused CPU and memory building blocks.
For the build of the CoreMark we used the prebuilt riscv-coremark which is a CoreMark 1.0 port
for the RocketChip core implemented also by the Berkeley University.

cmp_complex

®69.31 %

38.08 % M_129.34 %

/é]31.19 4.33 %
-

Figure 6.3.1: CoreMark Function Utilization

In order to enhance the data collection and also check the corresponding correlation, we based our
research in the utilization scheme of CoreMark 1.0 presented in Fig.6.3.1 and we broke the data sources
during the benchmarking in four main parts, which are also presented in the Table 6.5.

Chapter 6. Experimental Setup

Benchmark Description
coremark matrix Matrix Multiplication of Integers
coremark mergesort Mergesort Algorithm
coremark find Running a.FlndH.lg Algorithm
- in a List
Cyclic Redundancy Check
coremark crc .
- Algorithm

Table 6.5: CoreMark Benchmark Breakdown

This breakout was necessary for the integrity of the data , because measuring the benchmark as a
whole will create interference of different building block instances in one power measurement, which
was not an optimal flow. For each metric we run a separate benchmark to reduce the overhead of data
transfer.

6.4 Challenges

For the implementation of the RocketChip in the FPGA environment, there were a few challenges that
need to be addressed. The biggest drawback were the clock critical paths of the implemented system.
Many paths of the implemented system introduced a very wide critical path that picked around 10.7ns
meaning that the biggest frequency that the system can be tested is around 87.5MHz. Everything
above this will introduce timing violations and possible produce error in our measurement setup.

Another challenge was the AXI communication between the FPGA and the host system. This type
of communication (FIFO based system) helped the overall procedure , making the ARM processor of
the Zyng SoC the data collector and processor, but with a communication overhead. This challenge
can be addressed (as will be presented in the Feature Work section) with the introduction of a RoCC
accelerator that will address only this type of communication, with asynchronous timing and more low
level communication.

Furthermore, based on the hard to debug environment of the emulated system and the configuration
itself, it was not possible to test riscv-torture which performs a stress test in the CPU core. The source
code of this benchmark was written in RISC-V Assembly and there were some low level incompatibilities
with our custom system in the compilation stage.

Finally, in the Chapter 4 as we can see in the Fig. 4.4.2 and Fig. 4.4.3 some power rails power multiple
components and also some rails are powered by other, closer to the PSU rails. This makes the data
collection a bit more complex, because the outcome of each rail measurement is a combination of
components and power rails so it is not so targeted at each individual component. Ideas and proposals
for optimizing this flow will also be presented in the last section.

50

Chapter 7

Experimental Results - Evaluation

In this chapter, we will present the results of out experimental methodology. The type of the analysis
was also analyzed in the Chapter 6. Due to the number of the overall outputs (about 500 plots
for the correlations heatmaps) in some sections will present only some important results. The overall
analysis can be found in the Appendix A.

Also in the produced correlation heatmaps the data were produced under this constrains which are
valid for every plot that is presented in the following sections:

e In the Y-axis we have the Performance Counters that are measured.

e In the X-axis we have the Power Rail Current and Power that are measured. Voltage is in
generally stable in every rail.

e When correlation coefficients are calculated, we present the absolute value of this coefficients,
because we want to depict the strength of the correlation and not the direction (positive
or negative).

e The zero values are excluded from the analysis, because they provide no useful information.
e In the same way, the constant values of Power and Current are also excluded.

e The Rolling Window is set to 200 values when there are above 1000 measurements and no
window when there are less.

e The Gaussian filter is set to a sigma of 15 values when there are above 1000 measurements.

7.1 Benchmarks Utilization

In order to have a validation of the data measured, we need at first to be sure that the performance
counters that are used are utilizing all the building blocks of the emulated system. For this, we
presented the utilization across all benchmarks, as presented in the Figure 7.1. The results were
collected from the Big Core configuration environment but the results are similar to the Medium
Core so the re-run of all the benchmarks was not necessary.

51

Chapter 7. Experimental Results - Evaluation

Building Block Utilization (%)

ALU 72.86
SYSTEM 0.01
BRANCH 10.11
FLOAT 0.01
I CACHE 0.02
D CACHE 0.70
PIPELINE 16.28

Table 7.1: Utilization of the building blocks across all benchmarks

As we can see from this analysis the ALU Performance Counters were the most utilized and with
a huge difference with the other blocks. This is an expected behavior as the ALU handles the most
simple number manipulation tasks (logic, arithmetic, shifting, etc.) and all the benchmarks include a
part of this operations. So, even if we try to isolate all the other blocks always a basic ALU operation
will be included in this frame of measurement.

Furthermore the BRANCH and PIPELINE blocks are also utilized in a very interesting amount.
The branching is also well defined because of the if-else,for and while statements that are included in
the benchmarks, which can also cannot be avoided. The pipeline events are also inevitable due to all
the stalling and interlocking mechanisms in the classic 5-stage pipeline architecture that RocketChip
implements.

In the other hand, Data Cache has a lower impact on the benchmarks. This is also expected because
none of the benchmarks was memory bound and specific for targeting caches, so the impact was
expected to be less than the core’s main components. This impact is also visible in the I Cache
utilization. In the same utilization percentage, FLOAT block does not have also impact, because this
type of events occurred only on the mm (matrix multiplication) and dhrystone benchmarks, as
well as the SYSTEM, which involves a very little set of system related counters, not directly related
to benchmarks and core’s performance.

Finally, there are some system blocks that were not utilized at all, like the EXCEPTION handling
events, which were utilized by 0.0002% of the overall system resources, something that is a very normal
percentage, due to the lack of actual exceptions in the benchmarking process.

From the utilization we can come to a conclusion that besides the building blocks with the max
utilization, as described above, the performance counters for the underutilized components cannot
provide enough info for the complete analysis of those components. In cases as these, the creation of
low-level (Chisel implemented) custom performance event is necessary, in order to have a complete
picture of the system’s behavior.

7.2 Static Correlation

In this section will be presented important results of the static Spearman correlation analysis and
the descriptions across the total of the results.

52

7.2. Static Correlation

7.2.1 Rolling Window Correlation

coremark _crc Big 50MHz | Running Average

INSTRUCTION_CACHE_ITIM_BUSY -

ning Average

017

~0.40 coremark_mergesort Medium 50MHz | Run

INSTRUCTION_CACHE_ITiM_8USY -8 014 | 00 0061
-0200

paTa_cackE_ o susy -JEKS

DATA_CACHE_WRITEBACK 035
'DATA_CACHE WRITEBACK
0175
INTEGER_MULTIPLICATION_INTERLOCK.
030 PIPELINE_FLUSH_FROM_OTHER_EVENT
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED o150
INTEGER_ARITHMETIC_INSTRUCTION ReTiReD [5
025 INSTRUCTION_CACHE_MISS
DATA_CACHE_MISS_OR_MEMORY_MAPPED_I0_ACCESS 0125
BRANCH_DIRECTION_MISPREDICTION
BRANCH_DIRECTION_MISPREDICTION
020
BRANCH TARGET_MISPREDICTION 0100
BRANCH_TARGET_MISPREDICTION - CONDITIONAL BRANCH RETIRED.
015
JaL_nsTrucTion remren JR 007
INTEGER_STORE_INSTRUCTION_RETIRED.
CONDITIONAL_BRANCH_RETIRED 010 JALR_INSTRUCTION_RETIRED o050
INTEGER_MULTIPLICATION_INSTRUCTION_RETIRED.
Loap_atency inTerLock JRTSE
005 0025

CSR_READ_INTERLOCK - INTEGER_LOAD_NSTRUCTION_RETIRED

ADDRESS_GENGERATION,_INTERLOCK

1

VECINT.i

VCCPAUX_i
VCCINTp -

VCCPAUX p
veeava p

H

VeCvs pL g

E

(a) Coremark Crc Big 50MHz (b) Coremark Mergesort Mid 50MHz

dhrystone Big 12.5MHz | Running Average

qsort Big 87.5MHz | Running Average

para_cachE_oTiM_susy JECREURNEE ST o1 o007 s X
DATA_CACHE_DTIM_BUSY
'DATA_CACHE_WRITEBACK

£ = & 0 2 - o £ = e 2 2 <
< g > g g g g g s g g ES

(c¢) Dhrystone Big 12.5MHz (d) Quicksort Big 87.5MHz

Figure 7.2.1: Rolling Window Correlations

As we can see in the Fig.7.2.1 there were a lot of individual behaviors in each benchmark and each
configuration under test. We can see that in cases such as Fig.7.2.1d the maximum correlations are
in the VCC1V5_ PL, which is an explainable behavior, due to the regions the VCC1V5 powers
(Fig.4.4.2). We can also see that the VCC3V3 has also a high value of correlation.

In the other hand, measurements as presented in the Fig.7.2.1b and Fig.7.2.1c have lower correlation
coefficients and the picks are in rails that have different component utilization with PL, such as
VCCINT and VCCAUX. That examples are not so clear, because the correlations are low and
are in core components, so the results cannot be counted with a big weight in the feature extraction
process.

Furthermore, in examples such as Fig.7.2.1a we can see that there are high correlation values and in
the rail that actively power the core (VCCINT).

Generally, we observed that the most correlated across all performance counters were the VCCINT
and VCC1V5_ PL rails, which are close to the logic (PL), as also described above. Also the bench-
marks with generally high correlation values in important power rails were the coremark matrix
and the dhrystone.

53

Chapter 7. Experimental Results - Evaluation

7.2.2 Gaussian Filter Correlation

Correlation coremark find Medium 87.5MHz | Gaussian

INSTRUCTION_CACHE_ITIM_BUSY

Correlation coremark _mergesort Big 87.5MHz | Gaussian

insTRUCTION_cAcHE_mim_susy R 00: 0s: 1 o 28 0068

BRANCH_DIRECTION_MISPREDICTION DATA_CACHE_DTIM_BUSY

'DATA_CACHE_WRITEBACK

INTEGER_MuLTIPLICATION INTERLOCK -SRI

BRANCH_TARGET_MISPREDICTION
PIPELINE_FLUSH_FROM_OTHER_EVENT

CONDITIONAL_BRANCH_RETIRED INSTRUCTION_CACHE_MISS

DATA_CACHE_MIss_OR_MEMORY_MappED,_i0_access -JS

o
[——
o5 N =
CSR_READ_INTERLOCK 1 11-1 1 [X 02 0028 JAL_INSTRUCTION_RETIRED - 04 0 o . 017 0019 0034 oo
010 JALR INSTRUCTION_RETIRED -
INTEGER_LOAD_NSTRUCTION_RETIRED P}
0ss
JRR———
] I) I
5z g 2 ¢ g g I -
g S 8 g 2 8 I+ & 2 & B
g g g g 3 S s g 2 & H
= g g g g g g g
g g g g
(a) Coremark Find Mid 87.5MHz (b) Coremark Mergesort Big 87.5MHz
Correlation pmp Big 87.5MHz | Gaussian Correlation multiply Medium 50MHz | Gaussian

istruction_cacke_mm_susy R} 031

L os INSTRUCTION_CACHE_IT_BUSY 040
OATA_CACHE.DTIM_BUSY
DATA CACHE_WRITEBACK y 20 03 DATA_CACHE.DTIM _BUSY
pEUNE st FRom_csh waiTe SRR L on [ETOME 02 y .
INSTRUCTION Tt iss
PIPELINE_FLUSH_FROM_OTHER_EVENT 05 -
SYSTEM_INSTRUCTION_RETIRED PIPELINE_FLUSH_FROM_OTHER_EVENT
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED o
STRUCTON CACHE s INTEGER_ARITHMETIC_INSTRUCTION_RETIRED
04
DATA_CACHE_MISS_OR_MEMORY_MAPPED_IO_ACCESS. DATA_CACHE_MISS_OR_MEMORY_MAPPED_IO_ACCESS
BRANCH_DIRECTION,MISPREDICTION 025
SRANCH_TARGET MISPREDICTION BRANCH_DIRECTION_MISPREDICTION
CONDITIONAL BRANCH_RETIRED 03
BRANCH_TARGET_MISPREDICTION 20
JALINSTRUCTION_RETIRED
INTEGER STORE_INSTRUCTION_RETIRED JALINSTRUCTION_RETIRED
OATA_TL8 S
02 ATOMIC_MEMORY_OPERATION_RETIRED. o1s
JALRINSTRUCTION_RETIRED -
wrecen uumrucamon wstaucrion senneo ST
LOAD. LATENCY_INTERLOCK 010
CSR_READ_INTERLOCK
csn_nen_weRLock S 01 fenod
EXCEPTION_TAKEN 2 INTEGER_LOAD_NSTRUCTION_RETIRED
INTEGER LOAD_NSTRUCTION_RETIRED s 005
'ADDRESS_GENGERATION_INTERLOCK .4 62 2 ADDRESS_GENGERATION_INTERLOCK:
ud X 8 S)) a pud !])))) a
£ 3 5 3 5 3 g £) - 5 g -
g g g g g o s g g g g g S o s g
> S Bl g S H 9 > 8 a g] H 9
s g > g g * g g > g g g
= g = g

(c) PMP Big 87.5MHz (d) Multiply Mid 50MHz

Figure 7.2.2: Gaussian Filter Correlations

In the Gaussian Filter Correlation analysis the overall results were more "blurry" than the rolling
average, due to the nature of the filtering, which is more "soft" and "smooth" than the rolling window
(it cuts the spikes of the dataset provided). The greatest correlation coeflicient with scientific
importance had a pick in the area of 0.65.

We can see that in cases such as presented in Fig. 7.2.2b the there are same correlation coefficients
across the almost all the counters/rails, this is a result that due to the lack of measurements or the
behavior of the benchmarking events produced results that cannot be included in a model feature
production and maybe more low-level measurement is needed for proper evaluation of this kind if
behaviors.

In the other hand, more explainable behaviors can be found in cases such as Fig. 7.2.2a and Fig.
7.2.2¢ in which smaller correlation coefficients are produced but the picks were spotted around the
VCCINT and VCC1V5_ PL rails, which are important in the PL’s power distribution.

Finally, in the case of Fig. 7.2.2c we can see that almost everywhere the coefficients are different and
relatively high, with a pick correlation in LOAD LATENCY INTERLOCK in every rail. This
is also a result that needs further investigation, due to the same behaving results in both of the axis.

54

7.3. Cross Correlation

Correlation mm Medium 87.5MHz | Gaussian Correlation mm Big 50MHz | Gaussian

oata_cacke_omim_susy JERSTES

DATA_CACHE_WRITEBACK
oaTa_cacke_whiTesack JRREES

FLOATING_POINT_INTERLOCK

FLOATING_POINT_INTERLOCK

008
PIPELINE_FLUSH_FROM_OTHER EVENT

ppeUNE_FLUsH_From_0THER evenT JERNSEREEY TR

006 INSTRUCTION_CACHE_MISS.

INSTRUCTION_CACHE_MISS
DATA_CACHE_MISS_OR_MEMORY_MAPPED_I0_ACCESS

'DATA_CACHE_MISS_OR_MEMORY_MAPPED_I0_ACCESS
BRANCH_DIRECTION_MISPREDICTION

002

apoRESS_GeNGERATION INTERLoCK JRYSTS ADDRESS_GENGERATION INTERLOCK

Figure 7.2.3: Case of Matrix Multiplication

In the Fig. 7.2.3 we have an interesting observation in the mm benchmark, because we can see that the
FLOATING POINT INTERLOCK event is triggered with a high correlation (compared to the
coefficients of the same benchmark) in the VCCAUX (in the Medium config) and VCC1V5_PL (in
both configs) rails. The same behavior with hugh similarity is observed in 5 out of the 6 configurations
(not observed in Big configuration with 87.5MHz frequency). This is a result that can be explained by
the nature of the benchmark, which is a matrix multiplication and the floating point operations are
the most important in this kind of operations. In the dhrystone benchmark, where we have also FPU
presence, this behavior is not observed.

As analyzed in the beginning and in the description of the results, in this analysis there were not
a standardized behavior of the performance counters and the power rails, so there are no so clear
difference between the benchmarks and rail utilization except for the benchmarks of multiply and
pmp which were producing very invalid results with behavior close to the Fig. 7.2.2d.

7.2.3 Feature Extraction in Static Correlation

Observing the produced results we can see that the model tend to be more application specific when
the data provided are based in the "vanilla" performance counters and the power rails. As we can
clearly see there are some heavy dependencies in the correlations that are produced, but there are no
overlapping dependencies in each benchmark. So, even if may be exceptions, we cannot produce a
standard flow for all the benchmarks tested.

7.3 Cross Correlation

In this section are presented the results of the cross-correlation between the performance counters
and the power rails. In the presented results in the corresponding sections we will present the same
benchmarks as in the static correlation analysis, so the visual comparison can be easier.

55

Chapter 7. Experimental Results - Evaluation

7.3.1 Cross Correlation Across Time

1.00

0.75 A

0.50

0.00

Correlation Coefficients

—-0.50 1

—-0.75 1

-1.00

coremark crc Big 50MHz VCC1V5_ PL vs INSTRUCTION CACHE ITIM BUSY

The Fig. 7.3.1 presents the cross correlations coeflicients across different shifts in time, the time lags.
We can see that in this example there is a periodic-like behavior of the correlation coefficients, which
can be explained by the nature of those measurements because the crc routine can be called multiple

Cross Correlation

-- highest +/- correlation
—— 95% confidence interval
—— 99% confidence interval
—— 99.9% confidence interval

0.25 1

| /\[\A[\ ﬂ/\ [\/‘\ A AdA

i S i | S 3 S | 8 i m— i . i

A At +—H o
AR AN LA L UV | EIAWA B A

-0.25 4

—2000 -1000 0 1000 2000
Time Lags

Figure 7.3.1: Cross Correlation Across Time Lags

times in the same time frame.

What we can also observe is the red, green and purple lines which represents the confidence intervals,
above which the correlation (even if is not strong) is statistically significant. This formula is analyzed
in Fig. 4.6.2 and as we can see is calculated with 3 different confidence levels, 0.95, 0.99 and 0.999.

If we run this analysis with each correlation then the amount of the produced plots will be in the
area of 12000 plots. So to reduce this analysis overhead we will extract the maximum absolute
correlation coefficient (highlighted by the blue dashed lines in Fig. 7.3.1) and the time lag that
this coefficient was found. Then we will also consider the confidence intervals and the significance

of the correlation in our final analysis.

56

7.3. Cross Correlation

7.3.2 Rolling Window Cross Correlation

Correlation coremark _crc Big 50MHz | Running Average

INSTRUCTION_CACHE_ITIM_BUSY 050
Correlation coremark_mergesort Medium 50MHz | Running Average
wsrrucron_cacve e sosv SR
DATA_CACHE_WRITEBACK o045 oATA CACHE oTI_8usY
OATA CACHE WRITEBACK Looss
INTEGER_MUTIPLICATION INTERLOCK
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED PPELIE FLUSH_FROM_OTHER EVENT oo
040
INTEGER ARITHMETIC INSTRUCTION RETIRED
NSTRUCTION CACHE s
oazs
BRANCH_DIRECTION_MISPREDICTION - DATA_CACHE_MISS_OR_MEMORY_MAPPED_IO_ACCESS
035 BRANCH_DIRECTION_MISPREDICTION
oo
SRANCH_TARGET_MSPREDICTION
BRANCH TARGET_MISPREDICTION - CONDIIONAL BRANCH RETRED
030 AL NSTRUCTION ReTRED aots
NTEGER STORE INSTRUCTION RETRED
CONDITIONAL BRANCH_RETIRED - JALR INSTRUCTION_RETIRED - om0
INTEGER_HUTIPLCATION INSTRUCTION RETIRED
025
Lono_LATENCY INTERLOCK
CSR_READ_INTERLOCK 0.005
READ NTEGER LOAD_NSTRUCTION RETIRED
ADDRESS GENGERATION INTERLOCK
: 5 2 2 5 2 gz g vooF o2 @2 2 FRE)
g 5 2 g H g s g g g g g H H g
8 5 ¥ 0§ i g S - =
= s = g
Correlation gsort Big 87.5MHz | Running Average
Correlation dhrystone Big 12.5MHz | Running Average e T o D o o st
o7
OATA_CACHE_DTIM_BUSY DATA_CACHE_WRITEBACK 075 075
o7
06
DATA CACHE_WRITEBACK SYSTEM_INSTRUCTION_RETIRED o7 o074
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED 079 079 06
0s
PIPELINE_FLUSH_FROM_OTHER_EVENT DATA_CACHE_MISS_OR_MEMORY_MAPPED_IO_ACCESS 074 0.74
BRANCH_DIRECTION_MISPREDICTION 078 078 0s
o4
DATA_CACHE_MISS, OR_MEMORY_MAPPED_10_ACCESS CONDITIONAL BRANCH RETIED o o7
JAL_INSTRUCTION RETIRED 078 078
03 04
BRANCH DIRECTION_MISPREDICTION
INTEGER_STORE_INSTRUCTION_RETIRED 078 o8
JALR_INSTRUCTION RETIRED o7 o074
BRANCH_TARGET_MISPREDICTION 02 03
CSR_READ_INTERLOCK 074 o7
INTEGER _LOAD_NSTRUCTION_RETIRED. 079 o9
CONDITIONAL_BRANCH_RETIRED 01
ADDRESS_GENGERATION INTERLOCK 076 076 02
5 B 3 g 2 3 o 3 § a 2
g 2 o £ & 7 ¢ g g &
g g = ¢

Figure 7.3.2: Rolling Window Correlations

As we can see in the Fig. 7.3.2 almost everywhere the results have higher correlation coefficients than
the static analysis. For example in Fig. 7.3.2a we can see that the high correlation with the VCCINT
remains but also there are a time dependant high correlation with the VCCAUX and also there are a
same behavior in certain performance events such as DATA CACHE _WRITEBACK which have
higher coefficients but it is still the lowest in this benchmark. In the same flow are the benchmarks in
Fig. 7.3.2c and Fig. 7.3.2b.

In the other hand int the results presented in Fig. 7.3.2d we can see that there are also in the same
behaving scheme as the ones mentioned above, but in the X-axis in each rail we have almost the same
correlation coefficients, which is a result that needs further investigation and timing analysis.

Futhermore, coming back to the coremark crc example, the most of the events have the pick cor-
relation in the same value area (0.38-0.5), which cannot be directly explained and we need to see the
timing of this picks to obtain more information about the behavior of the benchmarks.

Concluding, we can see that in the majority of the benchmarks there is a future(all the values are
positive) time dependency which tend to push the correlation higher than the static analysis. This
result is not necessarily improving the correlation itself because it can heavily depend of the future

57

Chapter 7. Experimental Results - Evaluation

behavior, which is not always predictable. This type of prediction and validation is an open topic for
feature research, because it needs a heavy focus in lower level parts of the code (machine code level

register and/or memory block accesses).

Lags coremark_crc Big 50MHz | Running Average

INSTRUCTION_CACHE_ITIM_BUSY

DATA_CACHE_WRITEBACK

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED -

BRANCH_DIRECTION_MISPREDICTION

BRANCH_TARGET_MISPREDICTION

CONDITIONAL_BRANCH_RETIRED

CSR_READ_INTERLOCK

VCOINT_p
»
veeavs_p

VCCPAUX.i -
VCCPAUX p -

2
g
S

VeCIvs P

(a) Coremark Crc Big 50MHz

Lags dhrystone Big 12.5MHz | Running Average

DATA_CACHE_DTIM_BUSY -

DATA_CACHE_WRITEBACK -

PIPELINE_FLUSH_FROM_OTHER_EVENT

DATA_CACHE_MISS_OR_MEMORY_MAPPED_IO_ACCESS

BRANCH_DIRECTION_MISPREDICTION

BRANCH_TARGET_MISPREDICTION

CONDITIONAL_BRANCH_RETIRED -

VCCPAUX p -
veews pLp

(c¢) Dhrystone Big 12.5MHz

o

Lags coremark _mergesort M

NSTRUCTION_CACHE M _BusY 05 om

edi

o5 os3 [NENN

DATA_CACHE_DTIM_BUSY - 057
DATA_CACHE_WRITEBACK - 058
INTEGER_MULTIPLICATION_INTERLOCK | 041

PIPELINE FLUSH FROM_OTHER EVENT - 055
INTEGER_ARITHMETIC_INSTRUCTION RETIRED - 0.4
INSTRUCTION_CACHE_MISS - 056
DATA_CACHE_MISS_OR_MEMORY_MAPPED, 10 ACCESS - 041

s onecnon msmeorcron JRRE

BRANCH_TARGET_MISPREDICTION (1

CONDIIONAL BRANCH RETIRED | 041 043
msrocron erneo JRRS 05
INTEGER_STORE_INSTRUCTION_RETRED I 065

JALR INSTRUCTION_RETIRED |
INTEGER,_MULTIPLICATION INSTRUCTION RETIRED -
LOAD_LATENCY_INTERLOCK -
INTEGER_LOAD_NSTRUCTION_RETIRED S}

ADDRESS_GENGERATION_INTERLOCK

Ve,
veeenox i B8
vecws.pLi
veenT s
veernu s B
veews pLp -

(b) Coremark Mergesort Mid 50MHz

Lags gsort Big 87.5MHz | Running Average
oA CACHE DT bus | 084 056 013 oss 0s

owm cacvevtessce . 05 0ss 055 03t 0% o35 o5 o
reLIE s row o sven | 038 056 n o oss _ os
SmsTucrowReTRes - 054 036 035 03t 036 o055 o055 o9
WTEGERAMTETC NSTRUCTON ReTReD | 034 053 031 ose oss os os 0
OATA_CACHE 55 OR MEMHORY Mnseed 0 Access | 034 055 - o1 oss - os
swavcw omecton msereoicrion | 034 039 037 oes | 039 osn o033 | 04
coomousL swicH RETRED | 034 039 037 oss | 039 os7 036 o
JAL_INSTRUCTION_RETIRED - 0,54 0.59 057 0.69 059 057 055 049

WG sTore wSTUCTON RETRED | 034 039 037 oss | oss os7 oss o4

JARINSTRUCTION RETIRED - 054 056 055 054 056 055 055 049

CSRREADINTERLOCK| 054 06 055 0S4 0s6 055 055 049
INTEGER_LOAD_NSTRUCTION RETIRED | 054 059 057 068 059 057 056 049
ADDRESS_GENGERATION_INTERLOCK - 0.54 057 056 054 057 056 0.61 047
g = 2 e 2 2 2 g
g 2 o z 2 = g -
g g H g g b s g
g g > S] s
£ g g
s z g

(d) Quicksort Big 87.5MHz

Figure 7.3.3: Rolling Window Cross Correlations Lags

um 50MHz | Running Average

In Fig. 7.3.3 are presented the lags where the pick correlation was reached in the benchmarks. The
form of the presentation of each lag is the percentage of the distance from 0, so the represented

value is calculated as val = Lag

Nmeasurements

From the presented results we can see the benchmark presented in Fig. 7.3.3d has the same time
shifting in the pick correlation coefficients and this results in a low trust in this benchmark’s results.
In the other hand, the other three benchmarks mentioned in Fig. 7.3.3 have a more distributed timing
lags, that have some similarities that mostly occur across the X-axis.

58

7.3. Cross Correlation

7.3.3 Gaussian Filter Cross Correlation

Correlation coremark find Medium 87.5MHz | Gaussian

INSTRUCTION_CACHE_ITIM_BUSY -

045

BRANCH_DIRECTION_MISPREDICTION -

BRANCH_TARGET_MISPREDICTION

CONDITIONAL_BRANCH_RETIRED -

JAL_INSTRUCTION_RETIRED

CSR_READ_INTERLOCK -

INTEGER_LOAD_NSTRUCTION_RETIRED -

ADDRESS_GENGERATION_INTERLOCK -

»

VCCPAUX p
VEC1VS pL

(a) Coremark Find Mid 87.5MHz
ig 87.5MHz | Gaussian

06 049 | 058 o

Correlation pmp
wsaucrion_cacwe mw susy JERNEETTRNE
DATA_CACHE_OTIM_BUSY 0s8 os9 oso | o8
OATA_CACHE_WRITEBACK
PPELINE_FLUSH_FROM_CSR WRITE
PPELINE_FLUSH FROM_OTHER EVENT
SYSTEM_NSTRUCTION_RETIRED

INTEGER ARITHMETIC INSTRUCTION_RETIRED
INSTRUCTION_CACHE WSS

DATA_CACHE_MISS_ OR_MEMORY_MAPPED_10_ACCESS
BRANCH_DIRECTION_MISPREDICTION
BRANCH_TARGET_MISPREDICTION

CONDITIONAL_ BRANCH_RETIRED
JALINSTRUCTION RETIRED

INTEGER STORE INSTRUCTION_RETIRED
DATA TLB iss

AR NSTRUCTION_RETIRED
INTEGER_MULTIPLICATION_INSTRUCTION_RETIRED
(0RO, LATENCY INTERLOCK

SR _READ INTERLOCK

excerTion Taken

INTEGER_LOAD NSTRUCTION RETIRED

ADDRESS_GENGERATION_INTERLOCK

048
jud X 5 a) o
g ¥ 2 L P 2 o
z] 3 5 2
2 o H H 3
8 & 2 g S K 4]
g S 2 8 g
> g s g =
s g

(c) PMP Big 87.5MHz

060

0ss

050

045

INSTRUCTION CACHE ITIM_BUSY
DATA_CACHE_DTIM_BUSY

"DATA_ CACHE_WRITEBACK

INTEGER_MULTIPLICATION INTERLOCK
PIPELINE_FLUSH_FROM_OTHER_EVENT
INTEGER_ARITHMETIC_INSTRUCTION_ RETIRED
INSTRUCTION_CACHE_MISS

DATA_CACHE_MISS_OR_ MEMORY_MAPPED_10_ACCESS
BRANCH_DIRECTION_MISPREDICTION
BRANCH_TARGET_MISPREDICTION
CONDITIONAL BRANCH RETIRED

JAL INSTRUCTION_RETIRED

INTEGER _STORE_INSTRUCTION_RETIRED
JALR_INSTRUCTION_RETIRED

INTEGER MULTIPLICATION_INSTRUCTION_RETIRED
LOAD_LATENCY INTERLOCK

INTEGER LOAD_NSTRUCTION_RETIRED

ADDRESS_GENGERATION INTERLOCK

s

(b) Coremark Mergesort Big 87.5MHz
Medium 50MHz

Correlation multipl

INSTRUCTION_CACHE_ITIM_BUSY
'DATA_CACHE_DTIM_BUSY

INSTRUCTION,_TLB_MISS
PIPELINE_FLUSH_FROM_OTHER_EVENT
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED
DATA_CACHE_MISS_OR_MEMORY_MAPPED_I0_ACCESS
BRANCH_DIRECTION_MISPREDICTION
BRANCH_TARGET_MISPREDICTION
JAL_INSTRUCTION_RETIRED
ATOMIC_MEMORY_OPERATION_RETIRED
INTEGER_MULTIPLICATION_INSTRUCTION_RETIRED
CSR_READ_INTERLOCK
INTEGER_LOAD_NSTRUCTION_RETIRED

ADDRESS_GENGERATION_INTERLOCK

veeavap

g g
E

veeIvs pL -
VCONTp

VCCPAUX p -

VECIVS PLp -

(d) Multiply Mid 50MHz

Figure 7.3.4: Gaussian Filter Cross Correlations

-0350

0325

0300

0275

0250

0225

0200

0175

Gaussian

-055

045

0.40

035

030

025

As discussed also in the rolling average result presentation, following the same flow, we can see that
the correlation coefficients are relatively higher than the static analysis. So in this flow again the
multiply benchmark (Fig. 7.3.4d) we again have results that arein a false positive case because we
can see across two power rails same correlation coeflicients.

In the other hand, the other benchmarks (and in general our solutions) have a higher coefficients in
rails closer to PL such as VCCINT and VCCAUX. Again some false positive results can be found
in cases such as Fig. 7.3.4a where also rail VADJ was utilized but this rail has no direct impact in

PL nor PS core (is peripheral related).

99

Chapter 7. Experimental Results - Evaluation

Lags coremark_find Medium 87.5MHz | Gaussian

INSTRUCTION_CACHE_TM_BUSY ~06
Lags coremarl
INSTRUCTION_CACHE T USY -
BRANCH_DIRECTION_MISPREDICTION - OATA CACHE DT BUSY s
Fos]
OATA CACHE WRITEBACK -
INTEGER_MULTIPLICATION_NTERLOCK
BRANCH TARGET_MISPREDICTION - L oso
PPELIN FLUSH_FROM_OTHER EVENT 1
02
INTEGER ARITHMETIC NSTRUCTION RETIRED
CONDITIONAL_BRANCH RETIRED - INSTRUCTION_CACHE i - 0z
DATA CACHE_MIS_OR MEMORY_MAPPED_10_ACCESS
00
anancr oecrion mseaeoicrion JES oon o4t | 00w
JALINSTRUCTION_RETIRED - om0
BRANCH TARGET MISPREDICTION - s oe 0ss
CONDITIONAL_BRANCH RETIRED 03 os oowr
-02
CSR_READ_INTERLOCK - JALINSTRUCTION_RETIRED O 0.4 0.047 -025
wrecen store wsrrucrion rereeo SRR o0u7
JALR_INSTRUCTION_RETIRED 0. 0.047 o0
INTEGER_LOAD, NSTRUCTION_RETIRED - 04
INTEGER WULTPLCATION INSTRUCTION RETIRED 03 o 00w
LORD_LATENCY_NTERLOCK o r oas | ooar
-0
ADDRESS_GENGERATION INTERLOCK - recen ono_nsrrucion remineo S o0
-06
AooRess enGeRATION INTERLOcK SR 0ss | oonr :
g s 2§ ¢ R)
g H g £ 7 g 2 ¢ £ 3]
8 2 g 3 g 2 ¢ § 2 ¢ g
g § E g 8§ 0§ £ 8 §E f g
g 3 g g 5§ 2 8 3 g
g g s g g S
> = s
Lags multiply Medium 50MHz | Gaussian
INSTRUCTION_CAGHE. i BuSY
wsraucrion_cacre_ e ousy JOINEREN o IRl 0 o o
OATA_CACHE_DTIM_sUSY Los
“os
OATA_CACHE WRITEBACK oATA CACHE DT BUSY
PIPELIE FLUSH_FROM_CSR_WAITE
WSTRUCTION LSS
PPELINE_FLUSH_FROM_OTHER_EVENT 0ss 03 04
Loso
SYSTEM INSTRUCTION RETIRED 0se PPELIN FLUSH FROM OTHER EvEnT |
INTEGER ARITHMETIC_NSTRUCTION RETIRED 2
U X 02 INTEGER ARTHMETIC_NSTRUCTION RETIRED
0zs
DATA_CACHE_MISS_ OR_MEMORY_MAPPED,10_ACCESS - DATA CACHE_MIS_OR MEMORY_MAPRED_J0_ACCESS -
BRANCH_DIRECTION MISPREDICTION
sRaNCH_TARGET_MispREDICTION 00 BRANCH DIRECTION MISPREDICTION
™
CONDITIONAL BRANCH_RETIRED
BRANCH TARGET MISPREDICTION
JALINSTRUCTION_RETIRED
INTEGER_STORE_INSTRUCTION_RETIRED -02 JAL_INSTRUCTION_RETIRED
o2
oA Tus Miss
HTOMIC_MEMORY OPERATION RETIED
JALR INSTRUCTION_RETIRED
-oa
INTEGER_MULTIPLICATION_INSTRUCTION RETIRED INTEGER_MULTIPLCATION INSTRUCTION RETIRED
030
LOAD_LATENCY INTERLOCK -
csn_ReAD_NTERLOCK |
CSR_READ_INTERLOCK Rea0 |
: -5
EXCEPTION TAKEN INTEGER_LOAD_NSTRUCTION RETIED |
075

INTEGER LOAD_NSTRUCTION RETIRED 058
ADDRESS_GENGERATION INTERLOCK 0s8 ADDRESS_GENGERATION_INTERLOCK -

7 7 -08 . . .

g 2 B g 5 =

> 9 g g S o

E ? g = g

s H

(c) PMP Big 87.5MHz (d) Multiply Mid 50MHz

Figure 7.3.5: Gaussian Filter Cross Correlation Lags

Again, performing lag analysis we can see that again in the Fig. 7.3.5 the rails VCC3V3 and VADJ
have very out of scope correlation lags, which is normal due no direct impact on the powered be those
rails regions. In the other hand, in the other rails the different counters have a pick in the same lag,
which seems that there is a consistent behavior per benchmark.

Furthermore, as came as a result in previous sections also, benchmarks such as multiply (Fig. 7.3.5d)
have a very similar behavior across the power rails, which is a result that needs further investigation
and maybe another benchmarking target.

7.3.4 Feature Extraction in Cross Correlation

In the cross-correlation analysis is observed that even if the standard provided counters are enough for
a basic evaluation we need to have two extra analysis tracks in the feature extraction process. The first
one is the time lag analysis, which can show the dependance of the correlation in history of events
and not only in the actual moment of measurement. That means that except the applicaiton specific
character of a prediction it also needs to have memory window of the events that happened and
the time area within the most interesting correlation coefficient pick. The second is the false-positive
indication, because even if a performance counter event peaks in a higher correlation coefficient, does

60

7.4. Performance Counter Inter-Correlation

not necessarily means that this event is more important. The second track is not so well defined
because it touches the boundaries between the energy prediction and the core behavior analysis.

7.4 Performance Counter Inter-Correlation

In the previous sections were presented all the data from each individual benchmark and configuration
with 2 different types of denoising filters and two correlation calculations (cross and static). In those
results we observed that many counters in each individual rail behaved in the same way. This can
certainly be a part of a benchmarking mechanism (if a comparison is made we can have events from
ALU and BRANCH units fire in almost the same time). All this same firing events can also produce
correlation in performance counters so when analysis is performed we can focus in the independent
performance groups, each one with a different behavior (so no inter-correlation).

Before we proceed to the results, we first need to clarify that we did not calculated the cross-correlation
between the performance counters, because we are investigating the property of two ore more perfor-
mance counters "firing" together in the same time frame, which in our benchmarking system is included
in each independent measurement.

61

Chapter 7. Experimental Results - Evaluation

Correlation coremark_crc Big 50MHz | Running Average

INSTRUCTION_CACHE_ITIM_BUSY - 1

Correlation coremark mergesort Medlum 50MHz Running Average

[ELS N PRI . 7 0,64 0.62 0.71 0.71 0,84 0,620, 3082082071082}

oara_cacHE_wriresack JEIE 012 0.06 o 0. 012 08
DATA_CACHE_WRITEBACK (X LR

INTEGER_MULTIPLICATION INTERLOCK T TRRE

PIPELINE_FLUSH_FROM_OTHER_EVENT
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED {08
06 INSTRUCTION CACHE_MISS el
DATA_CACHE_MISS_OR_MEMORY_MAPPED,_10_ACCESS {IPXXPY
BRANCH_DIRECTION_MISPREDICTION
BRANCH_DIRECTION_MISPREDICTION 080
'BRANCH_TARGET_MISPREDICTION
conpimonaL_sranci reTiReo B8 075
BRANCH_TARGET_MISPREDICTION 0 019 02 018 04
JALINSTRUCTION_RETIRED

INTEGER_STORE_INSTRUCTION_RETIRED 070

CONDITIONAL_BRANCH_RETIRED JALR_INSTRUCTION RETIRED

CSR_READ_INTERLOCK INTEGER _LOAD_NSTRUCTION_ RETIRED o
ADDRESS_GENGERATION INTERLOCK EHS

CSR_READ_INTERLOCK -

INSTRUCTION_CACHE_ITIM_BUSY
'DATA_CACHE_WRITEBACK
BRANCH_DIRECTION_MISPREDICTION
BRANCH_TARGET_MISPREDICTION

CONDITIONAL_BRANCH_RETIRED -

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

(a) Coremark Crc Big 50MHz (b) Coremark Mergesort Mid 50MHz

Correlation qsort Big 87.5MHz Runnmg Averaqe
Correlation dhrystone Big 12.5MHz | Running Average PYNCRTIETSR ;- [o - (o7c R 075 077 078 072 054 055 079 0

DATA_CACHE_WRITEBACK -RORES
DATA_CACHE_DTIM_BUSY -

PIPELINE_FLUSH_FROM_OTHER_EVENT -

09
OATA_CACHE_WRITEBACK Fos svstem_nsTRUCTION_ReTReo L3
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED
PIPELINE_FLUSH_FROM_OTHER_EVENT DATA CACHE_MISS_OR_MEMORY_MAPPED_I0_ACCESS - 3 077 078 072 054 05 o
06
BRANCH_DIRECTION_MISPREDICTION RO 099 099 1
DATA_CACHE_MISS, OR_MEMORY_MAPPED_10_ACCESS CONDITIONAL_BRANCH RETIRED 11 0w
JALINSTRUCTION_RETIRED 11 om 7 o
o4
GRANCH_DIRECTION_MISPREDICTION INTEGER_STORE_INSTRUCTION_ReTIRED Rl 0 099 099 1
JALR_INSTRUCTION_RETIRED OB 054 054 [0l g 1 (38 053
BRANCH_TARGET_MISPREDICTION .
LTARGET 0 csR_READ_INTERLOCK XS g P oo (5] 06
NTEGER LOAD_NSTRUCTIONRETIRED . nss 1 ﬂ
monal T
CONDITIONAL BRANCH_RETIRED ADDRESS_GENGERATION_INTERLOCK -JOR%)9 1/)1l 092 093 093 1
M M M z =z a x ¥ 5 2 8 8 3588 88 % 88
a g il 4 - 2 2 8 EE L EEEE & g g 2
8 g 8 g & E = E 208 B %3 &8 § & 8 E BB
£ £] g 8 g E g & 2 2 g 2z 2z B 2 o2
5 £ s E E 3 ¢ o EEE S EREELE G
! o o & & 2 % .6 6 &£ £ 5 & 6 G 35 6 @
& [£ z z H 2832 3285 28 2 322 &8 32 &
3 3 2 g 5 g S5t EE =28 ;8 EE £ E 8
< <] g 2 E4 % £ 2 2 2 4 B g 2 2 2 8 2 ¢
g z & H : P E 8 =5 £ = 2
E 3 g Z) s 8 & = J 9 2 B 2 ¢ 3 2 8
z 5 z g £ E & 9 ¢ g = g
2] g] T g .3
] g H H i £ 2 % 8 o g £
g H 8 © £ 8 % g g 8
g H 2 g & g £ 2
§ g ¢
%] = <
3 5
H H

(c) Dhrystone Big 12.5MHz (d) Quicksort Big 87.5MHz

Figure 7.4.1: Rolling Window CSR Correlations

In the produced results (Fig. 7.4.1), observing benchmarks such as coremark crc we can see
that counters with same high correlation in static and cross analysis (Fig. 7.2.1a and Fig. 7.3.2a)
have also high correlation in the CSR analysis (CSR_READ INTERLOCK VS CONDI-
TIONAL BRANCH_ RETIRED) but as we can also see in those benchmarks also other CSRs
(INTEGER_LOAD INSTRUCTION RETIRED) do not have the same behavior.

Another example is the coremark mergesort benchmark (Fig. 7.4.1b), where we can see that there
are different groups of correlations between counters, but there are no important, because of the low
correlation coefficients in benchmarking process.

In the other hand, in examples such as gsort (Fig. 7.4.1d) we can see that the counters have a very
similar behavior across the benchmarks, which makes bigger groups of same behaving counters, which

62

7.4. Performance Counter Inter-Correlation

reduces the feature extraction process and the data consistency.

Correlation coremark find Medium 87.5MHz | Gausgian Correlation coremark_mergesort Big 87.5MHz | Gaussian

INSTRUCTION_CACHE ITIM_BUSY - 1 SOR R A 0.170.086.0026.0170.150.0:

INSTRUCTION_CACHE_ITIM_BUSY -

DATA CACHE_DTIM BUSY nm” +B480,0¢10.16 0420.0750.11 017 0.140.068.00TH0060.04.04702.
-09
OATA_CACHE WRITEBACK {38 00sD20. ; e -
BRANCH_DIRECTION_MISPREDICTION INTEGER MULTIPLICATION INTERLOCK | ‘ 110.7.00110090.078,0610310.090.073. L 099,004 | os
-os FPELIV FLUSH_FROM_OTHER_EVENT 3 1\049h\,‘mu\.u 0120076013 0.180.0790.120.0740.02 001 0,050.0380.09

BRANCH_TARGET_MISPREDICTION

DATA CACHE_MISS_OR_MEMORY_MAPPED_10_Access SR RI R) HmH.n._..mu.‘.u.,‘ 26.0086.020.006D. o8
CONDITIONAL_BRANCH_RETIRED ECTT SNSRI . -<0.07.02:0.0760.13 0.320.0: mw.w 1601702902
06
BRANCH_TARGET_MISPREDICTION
conomonaL_srancH_ReReo RIRRES
JALINSTRUCTION RETIRED 04
05 JALINSTRUCTION_RETIRED.
INTEGER_STORE_INSTRUCTION_RETIRED 13
CSR_READ_INTERLOCK o JALR_INSTRUCTION_RETIRED
INTEGER_MULTIPLICATION_INSTRUCTION_RETIRED | 02
LOAD_LATENCY_INTERLOCK
INTEGER_LOAD_NSTRUCTION_RETIRED 03
INTEGER_LOAD_NSTRUCTION_RETIRED {3
ADDRESS GENGERATION INTERLOCK
ADDRESS_GENGERATION_INTERLOCK 02 rr 5 §Eesns3288828¢8¢83
33338 EsEEEEE g ESQ
= EE2E Y2288 EEEEEE
g " 0 ") EEEEgafigaacasetat
& 3 8§ & 5 8§ & R EEEREEEE EEEE RN
2 g g z H g H <] T £¢385E 28 £ 35606662868
bl S S E B H E H 538853z tzp82zz2z6E3z25
g 2] & & 3 g g 298585288 FEE5E8
E g H z z H z' z S g gd 220822 222 32¢
w' & & g 2 = g z' t 8325808282830 22¢28
g 5 = 3 5 3 g 2 H] R RN - -
5 2 o & 2 & 2 & § ¢ Zz:§ b 5 8
] H 2 E o E H gYE 238 o S g¢
F [o Ed 3 s & & g 5 E g £ % 2 88
S & g 2 E 8 2 I} E g g a g 8 E g8
g 2 g 3 5 o 2 s 2 £3 £ 3 z <
g § § 5 = R - S
13 5 H H 2 i g f g
H g 2 8 & k4 B 2 2
H & H 3 £
H £ 2 g =
z 3

(a) Coremark Find Mid 87.5MHz (b) Coremark Mergesort Big 87.5MHz

Correlation pmp Big 87.5MHz | Gaussian | Correlation multiply Medium 50MHz | Gaussian

INSTRUCTION_CACHE_ITIM_BUSY - 1 0T 4 10.970.950.960.960.950.9710K40.970.910.970.97

INSTRUCTION_CACHE_ITIM_BUSY - 0 024 024 024

LAY 6 IR 650.50.620.560.550,6800E0.570.420.56 0.5 0.610.570.610.560.410.560.580.560.57
DATA_CACHE_WRITEBACK 4 . 710,62 0.40.620.620.620.630.620.620.420.620.610.620.6: 09 DATA_CACHE_DTIM_BUSY k3

PIPELINE_FLUSH_FROM_CSR_WRITE 0,972 1083 1090999098 1 L 10941 1
INSTRUCTION TL8_Miss -8

PIPELINE_FLUSH_FROM_OTHER EVENT - 1 JCEILE0.98 1 0.9.98)LD, 99,1.0.980.970.970.970.960.98 L0, 980.930.980.99

SYSTEM_INSTRUCTION_RETIRED -0.9708L>: 1 0.98 1 1083 1099099092098 1 &L 10941 1 o8 PIPELINE_FLUSH_FROM_OTHER_EVENT
0
INTEGER_STORE_INSTRUCTION_RETIRED -0.96:K30X¥0.990.970.9%0.99:F3RE0. 990.810.990.97 1 0.990.990.998£0.99.960.990.99 JAL_INSTRUCTION_RETIRED -1
0.990.970.99 1 0.990.99:8E0.9%0.960.990.99 o4
!
LOAD_LATENCY_INTERLOCK J R AORBRE KL 80060.420 1) 760.80.740.720 660,760 40 ;
! 03 (CSR_READ_INTERLOCK

ADDRESS_GENGERATION_INTERLOCK

ADDRESS_GENGERATION INTERLOCK 0,970 1099 1 1 1 09m9%9%98 1 HE 10941 1
“igg a8 aunsaxszas 5 om L oo ooz 2 8 2 & % & %
Lsgg 8828838558588 x 8 5 8 8 5 38 8 8 % 8 %
ERR ggEf2283838¢E3 g € ¢ f 2 8¢ 2 2 8 g 8
B ESESGEEzZ2FREa 5 % 3 E S BE G § EE 2 E &
SB B Ee b2 DEEDLE 24 26 2 238 8 B EEE
] S gRzsEESZE 5 L& 2o 8 B2 2 E 2 E
SEEE §68g58 36872 o 38 £ 8 o 58 § 8 &8 o & %
556¢ 5635688368 £ 62 gd2:Ect2dEs
£3z2z2 522 z2zE=izs S 2 3 2 £ Z 52§ z = 2 %

195 @ EE JEE EERLYESZ % g & E £ & & 5 58 E £ E g
F52 %2 $2% 2228 B3 £ 58 25 82 22 8% 8 ¢
ERE §55 234 oz = 2 § 58 2 £ 3 & 32 <
253 g4y =3 5 g J E - - H
o2 EE g% z28¢% R Z gz o5 3 >3 ¢ g &
ER a1 5 b 3 o) o £ 2 3 2 = 3 2 2
g3 ¢ ° e z 88 S 8 %z 8 g z g B
g g g £ £ £ % 4 £ 5 £ E 2
£ g £ 5 H E o 8 g2 3 H

g =] g o]

£ 3 E 3

H g E ¢

E S, £

z < z

(c) PMP Big 87.5MHz (d) Multiply Mid 50MHz

Figure 7.4.2: Gaussian Filter CSR Correlations

Using the Gaussian Analysis (Fig. 7.4.2) we can see that in general there are formed more groups of
counters with same behavior. Benchmarks such as the coremark mergesort (Fig. 7.4.2b) do not
have large groups of correlated counters, but in the corresponding analysis they do not have also same
correlation coefficients.

In a critical cases, such as the multiply benchmark (Fig. 7.4.2d) we can see that almost all the counters
have the same behavior, which is no correct behavior as a result of the denoising methodology and the
little number of the measurements we have in this specific benchmark. Almost the same behavior is
observed in the pmp benchmark (Fig. 7.4.2¢).

63

Chapter 7. Experimental Results - Evaluation

Concluding, in this section is understood that, if there are same behaving counters, the focus of the
behavior must be in the group of the counters instead of the intendant counter behaviors. Also the
denoising methodology of Gaussian Filter produces more groups of correlated counters, which can
invalidate the integrity of the results and produce false positive results in the flow of feature extraction.

7.5 Across benchmark Analysis

In this section we will present the results as a conclusion of all the above analysis process, in order
to introduce a better view on same correlation patterns and same behaving counters across all
the benchmarks. In all of the analysis done in the across-benchmark field all the inter-correlated
counters are represented by one counter so we can be more focused on the independent results.
Also, the correlations that are going to be presented are only the ones above the significance level
with a = 0.95, so the correlation (even weak) will be statistically significant.

64

7.5. Across benchmark Analysis

7.5.1 Static Rolling Window Analysis

Static Rolling Average Common Correlations Medium 12.5MHz

DATA_CACHE_DTIM_BUSY - 2

DATA_CACHE_WRITEBACK -

INSTRUCTION_CACHE_ITIM_BUSY

PIPELINE_FLUSH_FROM_OTHER_EVENT -

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED -

o

veew
vecaux.

VeCIvs_pL
VECNT p -
vecaux p

veevs b,

(a) Mid 12.5MHz

Static Rolling Average Common Correlations Medium 50MHz

DATA_CACHE_DTIM_BUSY
INSTRUCTION_CACHE_ITiM_BUSY

INTEGER ARITHMETIC_INSTRUCTION_RETIRED
DATA_CACHE_WRITEBACK -
PIPELINE_FLUSH_FROM_OTHER_EVENT -

BRANCH_DIRECTION_MISPREDICTION -

p-

vee
VECINT p -
VCCAUX p -

VADLp -

VCCIVS_PL i -
veewvs_pL,

(¢) Mid 50MHz

Static Rolling Average Common Correlations Medium 87.5MHz

DATA_CACHE_DTIM_BUSY -

DATA_CACHE_WRITEBACK

INSTRUCTION_CACHE_ITIM_BUSY

PIPELINE_FLUSH_FROM_OTHER_EVENT -

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED -

BRANCH_TARGET_MISPREDICTION -

]

VECINT p
VCCAUX p -

veeavs_PLi
veevs_pL

(e) Mid 87.5MHz

-20

18

Static Rolling Average Common Correlations Big 12.5MHz

-40
BRANCH_TARGET_MISPREDICTION
CONDITIONAL_BRANCH_RETIRED. -3
DATA_CACHE_DTIM_BUSY
30
PIPELINE_FLUSH_FROM_OTHER_EVENT
BRANCH_DIRECTION_MISPREDICTION 25
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED.
20
INSTRUCTION_CACHE_ITIM_BUSY
DATA_CACHE_WRITEBACK - 15
CSR_READ_INTERLOCK -
. - - . - L10
2 g £ 3 g) g
3 g S 3 o £ 8
S g E g] g
= 4
Static Rolling Average Common Correlations Big S0MHz
-300
BRANCH_TARGET_MISPREDICTION - 3 3 3 3 3 3 3 3
275
DATA_CACHE_DTIM_BUSY
250
PIPELINE_FLUSH_FROM_OTHER_EVENT
225
CONDITIONAL_BRANCH_RETIRED
DATA_CACHE_WRITEBACK 200
INSTRUCTION_CACHE_ITIM_BUSY s
BRANCH_DIRECTION_MISPREDICTION -
150
CSR_READ_INTERLOCK
125
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED -
. : , . 100
X 2 g 5 bl g
2 z 3 g, >
2 o 2] H
g 2 8 3 2 g
g g s g 3 g
> s
Static Rolling Average Common Correlations Big 87.5MHz
-40
DATA_CACHE_DTIM_BUSY
-3
BRANCH_TARGET_MISPREDICTION
PIPELINE_FLUSH_FROM_OTHER_EVENT
30

DATA_CACHE_WRITEBACK

25
BRANCH_DIRECTION_MISPREDICTION
2.0
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED
INSTRUCTION_CACHE_ITIM_BUSY
15
CSR_READ_INTERLOCK
10

veews pLi |
VEC1Vs_pL,
VADp -
veeava_p

(f) Big 87.5MHz

Figure 7.5.1: Across Benchmarks Static Rolling Window Analysis

65

Chapter 7. Experimental Results - Evaluation

The results presented in 7.5.1 are showing the common counter-rail correlation pairs as chosen among
the top 5 common correlations of each benchmark and with an inter-correlation threshold of
0.5 (performance inter-correlated with a coefficient higher than 0.5 belong to the same group). Also we
do not count the VADJ and VCC3V3 in the final research output so the results that are correlated
with those rails will be ignored. The rails are presented in the plots only for false positive reference.
We can clearly see some common counter-rail correlations across all the frequencies that are presented
in Table 7.2.

Configuration Common Counter-Rail Behavior
BRANCH TARGET _ MISPREDICTION
Big DATA CACHE_ WRITEBACK

BRANCH_ DIRECTION MISPREDICTION
DATA_CACHE_DTIM_ BUSY
DATA CACHE WRITEBACK

Medium

Table 7.2: Common Counter-Rail Behavior Across Benchmarks (Rolling)

In the produced outputs the DATA CACHE_ WRITEBACK is marked in blue because we can
see that it appears in both of the configurations. We can also see that that in general the common cor-
relation are not many. For example the pick is in the BRANCH TARGET MISPREDICTION
in the Big configurations with 12.5MHz and 87.5MHz frequencies, which is the 4 out of 10 benchmarks.
So this makes the behavior not consistent when the problem becomes generalized.

66

7.5. Across benchmark Analysis

67

Chapter 7. Experimental Results - Evaluation

7.5.2 Static Gaussian Filter Analysis

Static Gaussian Common Correlations Medium 12.5MHz

DATA_CACHE_DTIM_BUSY

BRANCH_DIRECTION_MISPREDICTION

INSTRUCTION_CACHE_ITIM_BUSY

CONDITIONAL_BRANCH_RETIRED

DATA_CACHE_WRITEBACK -

PIPELINE_FLUSH_FROM_OTHER_EVENT -

»

VCCINT p -
VECAUX p -

VCC1vs_PL,

(a) Mid 12.5MHz

Static Gaussian Common Correlations Medium 50MHz

INSTRUCTION_CACHE_ITIM_BUSY

DATA_CACHE_DTIM_BUSY

BRANCH_DIRECTION_MISPREDICTION

CONDITIONAL_BRANCH_RETIRED

DATA_CACHE_WRITEBACK -

»

VeeT,
vecaux
vecis pLi

VECINTp -
VECAUXp -
veews_pL
vaDlp -
veesvp -

(c) Mid 50MHz

Static Gaussian Common Correlations Medium 87.5MHz

BRANCH TARGET_MISPREDICTION
INSTRUCTION_CACHE_ITIM_BUSY -
BRANCH_DIRECTION_MISPREDICTION
CONDITIONAL_BRANCH RETIRED
DATA_CACHE_DTIM_BUSY
DATA_CACHE WRITEBACK -

PIPELINE_FLUSH_FROM_OTHER_EVENT -

»

VeaNT
vecaux
veews .
VCECINTp -
VCCAUX p -
vecis. e,
\ADJ_p

(e) Mid 87.5MHz

10

10

n Common Correlations Big 12.5MHz

PIPELINE_FLUSH_FROM_OTHER_EVENT

DATA_CACHE_WRITEBACK

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

BRANCH_DIRECTION_MISPREDICTION

DATA_CACHE_DTIM_BUSY

DATA_CACHE_MISS_OR_MEMORY_MAPPED_I0_ACCESS

CONDITIONAL_BRANCH_RETIRED

INSTRUCTION_CACHE_ITIM_BUSY

JALINSTRUCTION_RETIRED.

CSR_READ_INTERLOCK

LOAD_LATENCY_INTERLOCK -

BRANCH_TARGET_MISPREDICTION -

2
g

VCTINT i
VOCAUX,

vecavs pL.
VCCINT_p -

vecavs_pL.

(b) Big 12.5MHz

Static Gaussian Common Correlations Big 50MHz

PIPELINE_FLUSH_FROM_OTHER_EVENT

BRANCH_DIRECTION_MISPREDICTION -

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

CSR_READ_INTERLOCK

JAL_INSTRUCTION_RETIRED

INSTRUCTION_CACHE_ITIM_BUSY

DATA_CACHE_WRITEBACK - 1

PLD -
VADLp -

vecvs pLi
VCCINT_p -
VCCAUX_p -

VCC1VS P
veeavap -

(d) Big 50MHz

Static Gaussian Common Correlations Big 87.5MHz

PIPELINE_FLUSH_FROM_OTHER_EVENT
DATA_CACHE_WRITEBACK
BRANCH_DIRECTION_MISPREDICTION
BRANCH_TARGET_MISPREDICTION

DATA_CACHE DTIM_BUSY
INSTRUCTION_CACHE_ITIM_BUSY

CONDITIONAL BRANCH RETIRED
CSR_READ_INTERLOCK
DATA_CACHE_MISS_OR_MEMORY_MAPPED_I0_ACCESS -
LOAD_LATENCY_INTERLOCK -

JALINSTRUCTION RETIRED -

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED -

VO i
vecAUX.i -

veews .
VCCINTp -
VeCAUXp -

veews .
veeavp -

(f) Big 87.5MHz

Figure 7.5.2: Across Benchmarks Static Gaussian Filter Analysis

68

7.5. Across benchmark Analysis

In Fig. 7.5.2 we present the across benchmark results for each configuration, which come as a result
with the same parameters as the static rolling window analysis. In this analysis we can see that is

a less consistent behavior across each configuration, with the same behaving counters presented in
Table 7.3.

Configuration Common Counter-Rail Behavior
PIPELINE FLUSH FROM OTHER_ EVENT
BRANCH DIRECTION MISPREDICTION
Big DATA CACHE_ DTIM BUSY
INSTRUCTION CACHE ITIM BUSY
CSR_READ INTERLOCK
DATA CACHE_ DTIM BUSY
Medium BRANCH DIRECTION MISPREDICTION
INSTRUCTION CACHE ITIM BUSY

Table 7.3: Common Counter-Rail Behavior Across Benchmarks (Gaussian)

Again, from the results produced in the Table 7.3 we can see that the behavior is more consistent
among all the configurations and frequencies, with peaks that reach even 5 out of 10 benchmarks. The
downside of this analysis is that this denoising methodology produces more false positive results, so
the results must be taken with caution and to further be analyzed to be included with confidence
in the feature extraction process.

69

Chapter 7. Experimental Results - Evaluation

7.5.3 Cross Rolling Window Analysis

Cross Rolling Average Big 12.5MHz

Cross Rolling Average Medium 12.5MHz
-300 -300
DATA_CACHE_DTIM_BUSY
BRANCH_DIRECTION_MISPREDICTION
275 275
PIPELINE_FLUSH_FROM_OTHER_EVENT 250 250
BRANCH_TARGET_MISPREDICTION
225 225
DATA_CACHE_WRITEBACK - 3 3 3 3 3 3 3 3
200 PIPELINE_FLUSH_FROM_OTHER_EVENT 200
BRANCH_DIRECTION_MISPREDICTION
175 175
DATA_CACHE_WRITEBACK - 3 3 3 3 3 3 3 3
INSTRUCTION_CACHE ITIM_BUSY 150 150
125 125
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED
100 100
= = = ul <) 2 a 2 5 Iy 2 vl ol 2 Q
H 2 B 3 5 g, 2 2 z 2 5 5 5 z,) 2
g § g S 3 o B B 8 3 4 S 3 g ES B
* g 4 g 3 g g 3 g g H g
s g s 4
Cross Rolling Average Big 50MHz
-a0
Cross Rolling Average Medium 50MHz soo BRANCH _DIRECTION_MISPREDICTION
PIPELINE_FLUSH_FROM_OTHER_EVENT
-35
-275 CONDITIONAL_BRANCH_RETIRED
DATA_CACHE_DTIM_BUSY 250 BRANCH_TARGET_MISPREDICTION
30
225
DATA_CACHE_DTIM_BUSY
DATA_CACHE_WRITEBACK - 3 3 3 3 3 3 3 3
25
200
PIPELINE_FLUSH_FROM_OTHER_EVENT
BRANCH_DIRECTION_MISPREDICTION
175 .0
DATA_CACHE_WRITEBACK
INSTRUCTION_CACHE_ITIM_BUSY 150
INSTRUCTION_CACHE_ITIM_BUSY
15
125
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED CSR_READ, INTERLOCK
- . . 100))) o o o o o -10
] o = a a 2 o o F X 5]] |] J
5 x a !] el 3 o 2 . x 2 3 o
z 2 & s 3 z 2 2 g 2 o B 2] g 3
g g g 3 9 s 3 9 3 S < g
L T - g &8 5 & & Z g
g g = g
Cross Rolling Average Medium 87.5MHz Cross Rolling Average Big 87.5MHz
-300 -300
BRANCH_TARGET_MISPREDICTION OATA CACHE WRITEBACK
275 275
PIPELINE_FLUSH_FROM_OTHER_EVENT
250 BRANCH_DIRECTION_MISPREDICTION - 250
DATA_CACHE_DTIM_BUSY
225 225
INSTRUCTION_CACHE_ITIM_BUSY
DATA_CACHE_WRITEBACK - 200 -2.00
BRANCH_TARGET_MISPREDICTION
175 175
BRANCH_DIRECTION_MISPREDICTION |
150 INTEGER_ARITHMETIC_INSTRUCTION_RETIRED 150
INSTRUCTION_CACHE_ITiM_BUSY
125 125
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED CSR_READ_INTERLOCK
" 100 " 100
5 5 2, B x @ B o £ 5 2 g % @ g g
B 3 3 S g B] 5 El g
g 2 o z g H g 2 o 2] g i
g g g 2 o S] g g g 2 o s 2
H g Fl 14 g z g s g il 4 g 2 g
B Q 8 I

N

(e) Mid 87.5MHz (f) Big 87.5MH

Figure 7.5.3: Across Benchmarks Cross Rolling Window Analysis

70

7.5. Across benchmark Analysis

In the analysis performed in Fig. 7.5.3 are presented the results with the same constrains as in the
static analysis except that instead of the top 5 common correlations we have the top 5 common peak
correlations across the time lags. The results are presented in Table 7.4.

Configuration Common Counter-Rail Behavior
DATA CACHE_ WRITEBACK
Big BRANCH DIRECTION MISPREDICTION

BRANCH TARGET MISPREDICTION
DATA CACHE WRITEBACK
DATA CACHE DTIM BUSY

Medium

Table 7.4: Common Counter-Rail Behavior Across Benchmarks (Cross Rolling)

From the results in Table 7.4 we can see the common counters are the same in a great degree with
the results in the static rolling window analysis (Table 7.2). This result is compatible with the data,
because they were performed in the same power measurements but we can see that in almost every
configuration the results per counter are the same in all the rails (even if the rails must not be corralated
with the results such as VADJ and VCC3V3).

In order to analyze this homogenous behavior we need again to focus in the the lags of the peaks.

71

Chapter 7. Experimental Results - Evaluation

Rolling Average Lag std Medium 12.5MHz

DATA_CACHE_DTIM_BUSY

75
PIPELINE_FLUSH_FROM_OTHER_EVENT |50
25
DATA_CACHE_WRITEBACK
00
SRANCH _DIRECTION MISPREDICTION
25
50
NSTRUCTION_CAGHE ITiM_BUSY
s
NTEGER_ARITHMETIC_INSTRUCTION_RETIRED
| 100
H E s s B z, g g
g § B g g g 3 g
< g H g 2 S
= g
Rolling Average Lag std Medium 50MHz
PPELINE FLUSH_FROM_OTHER EVENT 0 o o o o o o o
DATA_CACHE BTN 8USY | 31 1 51 32
-
DATA CACHE_WRITEBACK o
"
BRANCH_DIRECTION, MISPREDICTION | o o o 3 o o o
-
NSTRUCTION_CACHE ITIM_8USY - 0 o < o o o o o
-
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED 1 0 o o o o o o 3 0
I - N R - -
g 3 A H] K g Fi
S 2 S 3 o 3
s] g s S] S
= ¢

(¢) Mid 50MHz

Rolling Average Lag std Medium 87.5MHz

BRANCH_TARGET_MISPREDICTION

PIPELINE_FLUSH_FROM_OTHER_EVENT

DATA_CACHE_DTIM_BUSY

DATA_CACHE_WRITEBACK

BRANCH_DIRECTION_MISPREDICTION

INSTRUCTION_CACHE_ITIM_BUSY

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

VCCINT.
VeCAUX i
VECINT p.
VCCAUX p
_PLp
VADLp
veeava_p

veews_pL.

(e) Mid 87.5MHz

Rolling Average Lag std Big 12.5MHz

BRANCH_DIRECTION_MISPREDICTION

0.016

0016

BRANCH_TARGET_MISPREDICTION

PIPELINE_FLUSH_FROM_OTHER_EVENT

DATA_CACHE_WRITEBACK

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

ul ol ol l] \ g J

H g g, 5 ¥ a g g

g g S 2 o s B

H g 3 g g S g

2 g
Rolling Average Lag std Big 50MHz
BRANCH_DIRECTION_MISPREDICTION - 014 92 45 014 92 46 ou o6
CONDITIONAL BRANCH_RETIRED - 0 ° ° ° ° o o °
GRANCH_TARGET MISPREDICTION - 25 19 0065 25 19 0065 3
DATACACHE DTIMBUSY - 0 o o 3 3 13 °
PIPELINE_FLUSH_FROM_OTHER EVENT - -0 o o ° 3 o 0
DATACACHE WRITEBACK - 016 18 17 o3 18 17 034 o018
NSTRUCTION_CACHE_ITIM_BUSY - -0 0 0 P 3 13 3 °
CSR_READ_INTERLOCK - -0 ° o o o 3 3

o =)) o) o g g

£ 3 g 3 5 2 ey 2

: 3 K B 3] 3 H

hi 2 S R 9 s 3

1 g g
s g 3 H g Z 1
= 4

(d) Big 50MHz

Rolling Average Lag std Big 87.5MHz

'DATA_CACHE_WRITEBACK -

BRANCH_DIRECTION_MISPREDICTION |

INSTRUCTION_CACHE_ITIM_BUSY

BRANCH_TARGET_MISPREDICTION

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

CSR_READ_INTERLOCK

»

vec1vs_pL.
VCCINT_p
VECAUX_p

VEC1VS_pL
veevs p

(f) Big 87.5MHz

Figure 7.5.4: Across Benchmarks Cross Rolling Window Time Lag Analysis

72

7.5. Across benchmark Analysis

In the results presented in Fig. 7.5.4 we have calculated the Coefficient of Variation (CV) (CV =
%), from the across benchmark top 5 lag analysis. The CV is a standardized measure that evaluates
the relative variability of data in relation to their means, independent of their scales or units and is
calculated to validate the common lags. Also if a counter appears only on one benchmark, then std
will be zero, so we will only focus in the cross benchmark common lags. We used absolute value in the
variance part of the CV calculation in order to have the correct future/past orientation of the lags.

Concluding, from those results we can see that there is no across benchmark consistent behavior in the
cross-correlated performance counters, which is a reasonable result due to the fact that the benchmarks
target different execution flows and even if those flows are similar, the do not happen in the same time
frame. This result was expected and is also validation of our methodology and a starting point of proof
that the predictions must not be application-agnostic.

73

Chapter 7. Experimental Results - Evaluation

74

7.5. Across benchmark Analysis

7.5.4 Cross Gaussian Filter Analysis

Cross Gaussian Medium 12.5MHz

DATA_CACHE_WRITEBACK

DATA_CACHE_DTIM_BUSY

PIPELINE_FLUSH_FROM_OTHER_EVENT

BRANCH_DIRECTION_MISPREDICTION

INSTRUCTION_CACHE_ITIM_BUSY - 3 3 3 3 3 3

p-

VCCINTp -
VCCAUX p -

VECIVS PL -
vee1vs_pL.

(a) Mid 12.5MHz

Cross Gaussian Medium 50MHz

DATA_CACHE_WRITEBACK

DATA_CACHE_DTIM_BUSY

BRANCH_DIRECTION_MISPREDICTION

INSTRUCTION_CACHE_ITIM_BUSY - 3 3 3 3 3 3

p-

pud ol]] 3]
2 2 g 5
5 3 ¢ E 2 &
g g g g i g
g g g E]
= g

(¢) Mid 50MHz

Cross Gaussian Medium 87.5MHz

DATA_CACHE_WRITEBACK - 2 2 2 2 2 2
PIPELINE_FLUSH_FROM_OTHER_EVENT
BRANCH _TARGET_MISPREDICTION
DATA_CACHE_DTIM_BUSY
INSTRUCTION_CACHE I BUSY - 2 2 2

BRANCH_DIRECTION_MISPREDICTION

o]
o]
»

o
z
g
S

VCCAUX i

Veevs L
VCC1Vs_PL,

(e) Mid 87.5MHz

VAD) p -

VAD)p -

VCC3V3p -

VeCaV3p -

-3.00

-2.75

-2.50

225

- 2.00

150

- 1.00

-3.00

-2.75

-2.50

-2.25

2.00

175

150

125

- 1.00

veeava p |

Cross Gaussian Big 12.5MHz

-300
PIPELINE_FLUSH_FROM_OTHER_EVENT

275
BRANCH_DIRECTION_MISPREDICTION - 3 3 3 3 3 3 3 3

250

INSTRUCTION_CACHE_ITIM_BUSY.

DATA_CACHE_WRITEBACK

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

'DATA_CACHE_MISS_OR_MEMORY_MAPPED_I0_ACCESS

BRANCH_TARGET_MISPREDICTION

veeavs pLi
vap)
veeavap

(b) Big 12.5MHz

Cross Gaussian Big 50MHz

-40
PIPELINE_FLUSH_FROM_OTHER_EVENT
35
INTEGER_ARITHMETIC_INSTRUCTION_RETIRED
30
INSTRUCTION_CACHE ITIM_BUSY 2.5
2.0
BRANCH_DIRECTION_MISPREDICTION - 4 4 4 4 4 4 4 4
H1s
DATA_CACHE_WRITEBACK.
10
Cross Gaussian Big 87.5MHz
-300
DATA_CACHE_WRITEBACK
275
250

BRANCH_DIRECTION_MISPREDICTION - 3 3 3 3 3 3 3 3

INTEGER_ARITHMETIC_INSTRUCTION_RETIRED

BRANCH_TARGET_MISPREDICTION

'DATA_CACHE_MISS_OR_MEMORY_MAPPED_I0_ACCESS

55 2 o9 o2 2 2 2
z H o H 5 g 2 2
s g

(f) Big 87.5MHz

Figure 7.5.5: Across Benchmarks Cross Gaussian Analysis

75

Chapter 7. Experimental Results - Evaluation

Performing analysis on the cross correlated data had the same processing constrains as the Cross
Rolling Window Analysis and the results are presented in Table 7.5.

Configuration Common Counter-Rail Behavior

Big BRANCH DIRECTION MISPREDICTION

Medium DATA CACHE WRITEBACK
INSTRUCTION CACHE_ ITIM BUSY

Table 7.5: Common Counter-Rail Behavior Across Benchmarks (Cross Gaussian)

From the results in Table 7.5 we can see that there are no common counters across the configurations,
although there are still common points with the static analysis performed in previous sections. Also
we can see also that there are a homogenous result across all the rails in this analysis, so again we
need to also focus in the time lags of the peaks.

76

7.5. Across benchmark Analysis

Gaussian Lag std Medium 12.5MHz

o
Gaussian Lag std Big 12.5MHz
DATA_CACHE WRITEBACK - 0 ° o 0 o ° 13 0
PPELINE_FLUSHFROM_OTHER, EVENT
- 200
DATA_CACHE_DTIM_BUSY 027 27 27 a1 95 BRANCH_DIRECTION_MISPREDICTION
400
WSTRUCTION_CACHE TiM_USY .
PPELINE_FLUSH_FROM_OTHER_EVENT - 0 ° 0 0 o 0 o 0 —e0o
DATA_CACHE WRITEBACK
=
—a00
NTEGER_ARTHMETIC INSTRUCTION, RETIRED
BRANCH_DIRECTION_MISPREDICTION - 0 0 0 0 0 0 o o
DATA_CAGHE_MISS_ OR_MEMORY_WAPPED_I0_ACCESS
1000 10
NSTRUCTION CACHE T 8USY - 2.7 s 28 27 s 28 26 a2
SRANCH_TARGET_MISPREDICTION
i 0 i v I " i -1200
= v)))] o
c = 2 3 2 3
g H o 5 S g 2 g
] g 2 g g o] g
s g H g Bl H

(a) Mid 12.5MHz (b) Big 12.5MHz

Gaussian Lag std Medium 50MHz

"
Gaussian Lag std Big 50MHz
s
DATA_CACHE_WRITEBACK
-3 PPELINE FLUSH_FROM_OTHER EVENT
0
2
NTEGER_ARITHMETIC_INSTRUCTION_RETIRED
DATA_CACHE_DTIM_BUSY
1 20
INSTRUCTION_CACHE_ITIM_BUSY
o
BRANCH_DIRECTION_MISPREDICTION 0
1 BRANCH_DIRECTION_MISPREDICTION
o
INSTRUCTION_CACHE_ITIM_BUSY 2
DATA_CACHE WRITEBACK
10
< c 2 z a = a B B
3 z El , H) 3,) 2
b § 3 g S 3 o B f
g s g = g g g
s g

(c) Mid 50MHz (d) Big 50MHz

Gaussian Lag std Medium 87.5MHz

Gaussian Lag std Big 87.5MHz

DATA_CACHE_WRITEBACK- 0.2 -0.065 016 035 0065 016 04 | 68
OATA CACHE_WRITEBACK
-
PIPELINE_FLUSH_FROM_OTHER_EVENT - 0 o 3 o o o 3 3 -10
SRANCH_DIRECTION_MISPREDICTION
BRANCH_TARGET_MISPREDICTION - 0 0 o o o o 0 o =1 [2
NTEGER ARITHMETIC_INSTRUCTION_RETIRED
DATA CACHE DTIM BUSY - © 3 o 3 3 o o o 30 .
INSTRUCTION_CACHE_ITIM_BUSY | 8.6 35 8.6 35 a7 0.074 -a0 BRANCH_TARGET_MISPREDICTION
BRANCH_DIRECTION_MISPREDICTION - 0 o o o o o o o -50 DATA_CACHE_MISS_OR_MEMORY_MAPPED_IO_ACCESS.
-
o)] a a s o o
X 2 = ol ol a3 a o 5 5 3) 5
H 2 | = E g, g 2 3 3 &, 3 E S g 4
g g H g 3 o s 4 g g s -
s 3 s S 3 S g g g g 2 g
< g H E

(e) Mid 87.5MHz (f) Big 87.5MHz

Figure 7.5.6: Across Benchmarks Cross Gaussian Time Lag Analysis

7

Chapter 7. Experimental Results - Evaluation

In the results presented in Fig. 7.5.6 we have again calculating the Coefficient of Variation (CV)
of the across benchmark correlations. We can see that again there are not a consistent behavior
across benchmarks (high CV values) which is an expected result, which also enhances the need of a
benchmark specific prediction and feature extraction process, as also mentioned in the previous
sections with similar result generation.

78

Chapter 8

Conclusions - Future Work

8.1 Conclusions

I n this research we managed to dive into the design space exploration of power analysis and correlation
based feature extraction in a RISC-V ISA based SoC called RocketChip emulated in an ZC706
FPGA board and managed to:

e Implement an emulated adaptive power monitoring system, gathering performance counter data
from the RocketChip SoC.

Produce Data in a certain Real-Time Scenario.

Analyze the Data Using Different Denoising Techniques.

Analyze the Data Using Different Correlation Techniques.

Gathering observations and analysis of the different behaviors across 3 frequencies and 2 Rock-
etChip implementations.

Those implementations lead to answer the basic questions of the research around a power model for
the RocketChip core. The results of the research are:

RQ1: Can RocketChip Provide Enough Performance Counters to be Used as Input?

Ans : Yes, if we test certain components but more (custom) counters will produce more building
block specific measurements.

RQ2: Can the Analysis we are Going to Perform Lead to an Application-Agnostic Prediction?

Ans : No based on this analysis because we observed major behaviour changes in certain bench-
marks.

RQ3: Should we Have Memory for an Accurate Prediction?

Ans : Yes, because we can see that in the cross-correlation section we have major value changes
and, even if this behaviour is wrong, the memory will help us prune these cases.

RQ4: Are the Correlation Data Sensitive to Configuration Changes?

Ans : Yes, as we can see in the Across-Configurations results 7.

79

Chapter 8. Conclusions - Future Work

RQ5: Can a denoising-based data Preprocessing Lead to Better Power /Performance Data Anal-
ysis?

Ans : The Rolling Average gave more specific and “clear” results. In the other hand Gaussian
Filter gave a smoother pattern which can easily lead to more false positive cases.

This first step into power modeling resulted as an interesting research topic that can be further explored
in the future, because as already mentioned the parameters that need to be independently explored
are many and very important for achieving power modeling in a RISC-V ISA environment.

8.2 Future Work

Based on the research the topics that needs to be explored in the future are:
e Gain Activation Data From Building Blocks and Cross-Validate our Assumption.
e Evaluate the Dataset Using DVFS Techniques.
e Design Specific Performance Counters (Target Specific Building Blocks).
e Adapt This Technique to Cores Outside RocketChip.

80

Appendix A

Correlation Data

All the correlation data that are used as a research output and presented in chapter 7 are available
in the following link: data. The data are all in the form of heatmaps with titles indicating the
target of each output.

81

https://shorturl.at/bAMSW

Appendix A. Correlation Data

82

Bibliography

[1]

2]

13l

4]

[5]

16]

7]

18]

19]

[10]

[11]

O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-
of-the-art in artificial neural network applications: A survey,” en, Heliyon, vol. 4, no. 11, e00938,
Nov. 2018, 1SSN: 24058440. DOI: 10.1016/j.heliyon.2018.e00938. [Online|. Available: (visited
on 03/24/2024).

T. Kolpe, A. Zhai, and S. S. Sapatnekar, “Enabling improved power management in multicore
processors through clustered dvfs,” in 2011 Design, Automation & Test in Furope Conference &
Ezhibition (DATE), 2011, pp. 1-6. pDOI: 10.1109/DATE.2011.5763052.

S. Di Mascio, A. Menicucci, G. Furano, C. Monteleone, and M. Ottavi, “The Case for RISC-V
in Space,” en, in Applications in FElectronics Pervading Industry, Environment and Society, S.
Saponara and A. De Gloria, Eds., vol. 573, Series Title: Lecture Notes in Electrical Engineering,
Cham: Springer International Publishing, 2019, pp. 319-325, 1SBN: 978-3-030-11972-0 978-3-030-
11973-7. DOL: 10.1007/978-3-030-11973-7_37. [Online]. Available: (visited on 02/09,/2024).
E. Cui, T. Li, and Q. Wei, “RISC-V Instruction Set Architecture Extensions: A Survey,” IEEE
Access, vol. 11, pp. 24696-24 711, 2023, 1SSN: 2169-3536. DOI: 10.1109/ACCESS.2023.3246491.
[Online|. Available: (visited on 03/01,/2024).

I. Elsadek and E. Y. Tawfik, “RISC-V Resource-Constrained Cores: A Survey and Energy Com-
parison,” in 2021 19th IEEE International New Clircuits and Systems Conference (NEWCAS),
Toulon, France: IEEE, Jun. 2021, pp. 1-5, 1ISBN: 978-1-66542-429-5. DOI: 10.1109/NEWCAS50681 .
2021.9462781. [Online]. Available: (visited on 02/09/2024).

P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand, and L. Benini,
“Slow and steady wins the race? A comparison of ultra-low-power RISC-V cores for Internet-
of-Things applications,” in 2017 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS), Thessaloniki: IEEE, Sep. 2017, pp. 1-8, I1SBN: 978-1-
5090-6462-5. DOI: 10.1109/PATMOS . 2017 .8106976. [Online]. Available: (visited on 02/09/2024).
J. Veiga, J. Enes, R. Expésito, and J. Tourino, “Bdev 3.0: Energy efficiency and microarchitec-
tural characterization of big data processing frameworks,” Future Generation Computer Systems,
vol. 86, Apr. 2018. DOI: 10.1016/j.future.2018.04.030.

K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “RAPL in Action: Experiences in
Using RAPL for Power Measurements,” en, ACM Transactions on Modeling and Performance
Evaluation of Computing Systems, vol. 3, no. 2, pp. 1-26, Jun. 2018, 1SSN: 2376-3639, 2376-3647.
DOL: 10.1145/3177754. [Online]. Available: (visited on 02/10/2024).

G. Fieni, R. Rouvoy, and L. Seiturier, “Selfwatts: On-the-fly selection of performance events
to optimize software-defined power meters,” in 2021 IEEE/ACM 21st International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGrid), 2021, pp. 324-333. DOI: 10.1109/
CCGrid51090.2021.00042.

R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu, “A Study on the Use of Performance
Counters to Estimate Power in Microprocessors,” IEEE Transactions on Circuits and Systems
II: Ezxpress Briefs, vol. 60, no. 12, pp. 882-886, Dec. 2013, 1SSN: 1549-7747, 1558-3791. DOI:
10.1109/TCSII.2013.2285966. [Online]. Available: (visited on 03/04/2024).

M. Y. Lim, A. Porterfield, and R. Fowler, “SoftPower: Fine-grain power estimations using per-
formance counters,” en, in Proceedings of the 19th ACM International Symposium on High Per-

83

https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1109/DATE.2011.5763052
https://doi.org/10.1007/978-3-030-11973-7_37
https://doi.org/10.1109/ACCESS.2023.3246491
https://doi.org/10.1109/NEWCAS50681.2021.9462781
https://doi.org/10.1109/NEWCAS50681.2021.9462781
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1016/j.future.2018.04.030
https://doi.org/10.1145/3177754
https://doi.org/10.1109/CCGrid51090.2021.00042
https://doi.org/10.1109/CCGrid51090.2021.00042
https://doi.org/10.1109/TCSII.2013.2285966

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
23]

formance Distributed Computing, Chicago Illinois: ACM, Jun. 2010, pp. 308-311, 1SBN: 978-1-
60558-942-8. DOI: 10.1145/1851476.1851517. [Ounline]. Available: (visited on 02/06,/2024).

R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade, “Counter-Based Power Mod-
eling Methods: Top-Down vs. Bottom-Up,” en, The Computer Journal, vol. 56, no. 2, pp. 198—
213, Feb. 2013, 1ssN: 0010-4620, 1460-2067. DOI: 10.1093/comjnl/bxs116. [Online]. Available:
(visited on 03/04,/2024).

G. L. T. Chetsa, L. Lefevre, J.-M. Pierson, P. Stolf, and G. Da Costa, “Beyond CPU Frequency
Scaling for a Fine-grained Energy Control of HPC Systems,” in 2012 IEEE 24th International
Symposium on Computer Architecture and High Performance Computing, New York, NY, USA:
IEEE, Oct. 2012, pp. 132-138, 1SBN: 978-0-7695-4907-1 978-1-4673-4790-7. DOI: 10.1109/SBAC-
PAD.2012.32. [Online]. Available: (visited on 02/06/2024).

R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade, “Decomposable and re-
sponsive power models for multicore processors using performance counters,” in Proceedings of
the 24th ACM International Conference on Supercomputing, ser. ICS ’10, Tsukuba, Ibaraki,
Japan: Association for Computing Machinery, 2010, pp. 147-158, 1SBN: 9781450300186. DOI:
10.1145/1810085.1810108. [Online]. Available:

S. Sankaran and R. Sridhar, “Energy modeling for mobile devices using performance counters,”
in 2018 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS),
Columbus, OH, USA: IEEE, Aug. 2013, pp. 441444, 1SBN: 978-1-4799-0066-4. DOI: 10.1109/
MWSCAS.2013.6674680. [Online|. Available: (visited on 02/10/2024).

E. Vasilakis, I. Sourdis, V. Papaefstathiou, A. Psathakis, and M. G. Katevenis, “Modeling energy-
performance tradeoffs in ARM big. LITTLE architectures,” in 2017 27th International Symposium
on Power and Timing Modeling, Optimization and Simulation (PATMOS), Thessaloniki: IEEE,
Sep. 2017, pp. 1-8, ISBN: 978-1-5090-6462-5. DOI: 10.1109/PATMOS . 2017 . 8106950. [Online].
Available: (visited on 02/10/2024).

M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin, “Power-
performance modeling on asymmetric multi-cores,” in 2013 International Conference on Compil-
ers, Architecture and Synthesis for Embedded Systems (CASES), Montreal, QC, Canada: IEEE,
Sep. 2013, pp. 1-10, 1SBN: 978-1-4799-1400-5. DOI: 10.1109/CASES. 2013 .6662519. [Ounline].
Available: (visited on 03/04/2024).

Z. Xie, X. Xu, M. Walker, J. Knebel, K. Palaniswamy, N. Hebert, J. Hu, H. Yang, Y. Chen,
and S. Das, “Apollo: An automated power modeling framework for runtime power introspection
in high-volume commercial microprocessors,” in MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO 21, Virtual Event, Greece: Association for
Computing Machinery, 2021, pp. 1-14, 1SBN: 9781450385572. DOI: 10.1145/3466752.3480064.
[Online]. Available:

J. Zhai, C. Bai, B. Zhu, Y. Cai, Q. Zhou, and B. Yu, “McPAT-Calib: A RISC-V BOOM Mi-
croarchitecture Power Modeling Framework,” IEEE Transactions on Computer-Aided Design of
Integrated Clircuits and Systems, vol. 42, no. 1, pp. 243-256, Jan. 2023, 1SSN: 0278-0070, 1937-
4151. pDOI: 10.1109/TCAD.2022.3169464. [Online|. Available: (visited on 02/29/2024).

A. K. A. Kumar and A. Gerstlauer, “Learning-Based CPU Power Modeling,” in 2019 ACM/IEEE
1st Workshop on Machine Learning for CAD (MLCAD), Canmore, AB, Canada: IEEE, Sep.
2019, pp. 1-6, ISBN: 978-1-72815-758-0. DOI: 10 .1109/MLCAD48534 . 2019 . 9142100. [Online].
Available: (visited on 02/29/2024).

F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini, “PULP: A Ultra-Low Power Parallel Accel-
erator for Energy-Efficient and Flexible Embedded Vision,” en, Journal of Signal Processing Sys-
tems, vol. 84, no. 3, pp. 339-354, Sep. 2016, 1SSN: 1939-8018, 1939-8115. DOI: 10.1007/s11265-
015-1070-9. [Online]. Available: (visited on 02/29/2024).

Ribcy, https://github.com/openhwgroup/cv32e40p. [Online]. Available:

H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka, “Statistical power modeling
of GPU kernels using performance counters,” in International Conference on Green Computing,
Chicago, IL, USA: IEEE, Aug. 2010, pp. 115-122, 1sBN: 978-1-4244-7612-1. por: 10. 1109/
GREENCOMP.2010.5598315. [Online|. Available: (visited on 02/08/2024).

84

https://doi.org/10.1145/1851476.1851517
https://doi.org/10.1093/comjnl/bxs116
https://doi.org/10.1109/SBAC-PAD.2012.32
https://doi.org/10.1109/SBAC-PAD.2012.32
https://doi.org/10.1145/1810085.1810108
https://doi.org/10.1109/MWSCAS.2013.6674680
https://doi.org/10.1109/MWSCAS.2013.6674680
https://doi.org/10.1109/PATMOS.2017.8106950
https://doi.org/10.1109/CASES.2013.6662519
https://doi.org/10.1145/3466752.3480064
https://doi.org/10.1109/TCAD.2022.3169464
https://doi.org/10.1109/MLCAD48534.2019.9142100
https://doi.org/10.1007/s11265-015-1070-9
https://doi.org/10.1007/s11265-015-1070-9
https://doi.org/10.1109/GREENCOMP.2010.5598315
https://doi.org/10.1109/GREENCOMP.2010.5598315

Bibliography

[24]

[25]

[26]

[33]

[34]

[35]

[36]

Y. Ni, Y. Kim, T. Rosing, and M. Imani, “Online Performance and Power Prediction for
Edge TPU via Comprehensive Characterization,” in 2022 Design, Automation & Test in Fu-
rope Conference & Ezhibition (DATE), Antwerp, Belgium: IEEE, Mar. 2022, pp. 612-615, 1SBN:
978-3-9819263-6-1. DOI: 10.23919/DATE54114 .2022.9774764. [Online|. Available: (visited on
02/10/2024).

K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook, D. Dabbelt,
J. Hauser, A. Izraelevitz, et al., “The rocket chip generator,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, vol. 4, pp. 6-2, 2016.

J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZienis, J. Wawrzynek, and K.
Asanovié¢, “Chisel: Constructing hardware in a Scala embedded language,” en, in Proceedings
of the 49th Annual Design Automation Conference, San Francisco California: ACM, Jun. 2012,
pp. 1216-1225, 1SBN: 978-1-4503-1199-1. DOIL: 10.1145/2228360 .2228584. [Online|. Available:
(visited on 03/01/2024).

Fesvr, https://github.com/riscvarchive/riscv-fesvr. [Online|. Available:

Spike, https://github.com /riscv-software-src/riscv-isa-sim. [Online]. Available:

Risc-v prozy kernel, https://github.com/riscv-software-src/riscv-pk. [Online]. Available:

Auxi, https:/ /www.xilinx.com/products/intellectual-property/axi.html. [Online|. Available:

D. G. Bonett and T. A. Wright, “Sample size requirements for estimating pearson, kendall and
spearman correlations,” en, Psychometrika, vol. 65, no. 1, pp. 23-28, Mar. 2000, 1SSN: 0033-3123,
1860-0980. DOI: 10.1007/BF02294183. [Online]. Available: (visited on 02/07/2024).

A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey and Bench-
marking of Machine Learning Accelerators,” in 2019 IEEFE High Performance Extreme Computing
Conference (HPEC), Waltham, MA, USA: IEEE, Sep. 2019, pp. 1-9, 1sBN: 978-1-72815-020-8.
DOL: 10.1109/HPEC.2019.8916327. [Ounline|. Available: (visited on 02/01,/2024).

R. Zamani and A. Afsahi, “A study of hardware performance monitoring counter selection in
power modeling of computing systems,” in 2012 International Green Computing Conference
(IGCC), San Jose, CA, USA: IEEE, Jun. 2012, pp. 1-10, 1SBN: 978-1-4673-2154-9 978-1-4673-
2155-6 978-1-4673-2153-2. DOL: 10.1109/IGCC.2012.6322289. [Online|. Available: (visited on
03/04,/2024).

K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation and thread scheduling
via performance counters,” en, ACM SIGARCH Computer Architecture News, vol. 37, no. 2,
pp. 46-55, May 2009, 1SsN: 0163-5964. DOI: 10.1145/1577129 . 1577137. [Online]. Available:
(visited on 02/06/2024).

M. Sagi, N. A. V. Doan, M. Rapp, T. Wild, J. Henkel, and A. Herkersdorf, “A Lightweight
Nonlinear Methodology to Accurately Model Multicore Processor Power,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3152-3164,
Nov. 2020, 1ssN: 0278-0070, 1937-4151. DOI: 10.1109/TCAD.2020.3013062. [Online|. Available:
(visited on 03/04,/2024).

Risc-v isa, https:/ /riscv.org/technical /specifications/. [Online|. Available:

85

https://doi.org/10.23919/DATE54114.2022.9774764
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1007/BF02294183
https://doi.org/10.1109/HPEC.2019.8916327
https://doi.org/10.1109/IGCC.2012.6322289
https://doi.org/10.1145/1577129.1577137
https://doi.org/10.1109/TCAD.2020.3013062

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	Figure List
	Table List
	Εκτεταμένη Ελληνική Περίληψη
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Σχετική Βιβλιογραφία
	x86 Αρχιτεκτονικές
	ARM Αρχιτεκτονικές
	Αρχιτεκτονικές RISC-V
	Μη CPU Αρχιτεκτονικές

	Θεωρητικό Υπόβαθρο
	Αρχιτεκτονική RISC-V
	RocketChip
	Διεπαφές με το RocketChip
	Μετρητές Απόδοσης
	Πλακέτα Ανάπτυξης ZC706
	Συσχέτιση Δεδομένων
	Αφαίρεση Θορύβου

	Πειραματικό Περιβάλλον
	Αποτελέσματα
	Αξιοποίηση Δομικών Στοιχείων Συστήματος
	Στατική (Τυπική) Συσχέτιση
	Διασταυρωμένη Συσχέτιση
	Συσχέτιση Μεταξύ Μετρητών Απόδοσης
	Αποτελέσματα Συσχέτισης στο Σύνολο των Benchmark

	Συμπεράσματα - Μελλοντική Εργασία

	Introduction
	Related Work
	x86 Architectures
	ARM Architectures
	RISC-V Architectures
	Non CPU Targeted Architectures

	Theoretical Background
	RISC-V ISA
	RocketChip
	General Overview
	The RocketCore
	The RocketTile
	Front End Server
	Proxy Kernel
	Host Target Interface

	Performance Monitoring
	Control and Status Register (CSR)
	Performance Monitoring CSRs
	Performance Monitoring in RocketChip

	ZC706 Development Board
	Zynq-7000 SoC
	UCD90120A
	Interconnection Properties (AXI)

	Time Series
	Data Correlation
	Static Correlation
	Cross Correlation
	Significance Threshold

	Denoising
	Rolling Average
	Gaussian Filter

	Modifying the HTIF
	Timestamp Approach
	Custom System Call Approach
	Modified Data Transfer Approach

	Experimental Setup
	RocketChip in ZC706
	Data Collection-Processing
	Benchmarks
	Challenges

	Experimental Results - Evaluation
	Benchmarks Utilization
	Static Correlation
	Rolling Window Correlation
	Gaussian Filter Correlation
	Feature Extraction in Static Correlation

	Cross Correlation
	Cross Correlation Across Time
	Rolling Window Cross Correlation
	Gaussian Filter Cross Correlation
	Feature Extraction in Cross Correlation

	Performance Counter Inter-Correlation
	Across benchmark Analysis
	Static Rolling Window Analysis
	Static Gaussian Filter Analysis
	Cross Rolling Window Analysis
	Cross Gaussian Filter Analysis

	Conclusions - Future Work
	Conclusions
	Future Work

	Correlation Data
	Bibliography

