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Abstract

The dissertation presents an in-depth study on the separation of sources in classical guitar duets, addressing
the unique challenge posed by the similar timbral characteristics of the instruments involved. This research
introduces two new datasets comprised of real and synthetic recordings of guitar duets, designed to facilitate
the exploration and evaluation of source separation techniques. Furthermore we propose a novel augmentation
technique, OppositePanning, to enhance the separation process by exploiting the spatial distribution of sound,
thereby offering a new avenue for improving source separation in settings where instruments share similar
timbral characteristics.

We propose a model pipeline which is is motivated by the understanding that guitar duet separation is
inherently a hybrid task for humans. In practice, a human listener would naturally perceive the symbolic
score from the audio, leveraging this score to aid in the separation process. This insight forms the foundation
for the proposed dual-model pipeline, which aims to mimic this human approach by incorporating symbolic
musical information directly into the separation algorithm. This approach is a significant departure from
traditional source separation techniques, which primarily focus on the acoustic signal without considering
the underlying musical structure.

By employing a comparative analysis of Signal-to-Distortion Ratio (SDR) metrics, we evaluate the perfor-
mance of the proposed dual-model pipeline against traditional methods. The findings demonstrate that
incorporating symbolic musical information significantly improves separation accuracy, highlighting the im-
portance of considering the musical context in source separation tasks.

Moreover, this research posits that the methodologies and insights gained from the study of classical guitar
duet separation could potentially be applied in other related fields as of speaker separation and voice singing
separation, offering new perspectives and techniques for achieving more robust separation in complex auditory
environments. The exploration of OppositePanning and the dual-model pipeline not only advances the
understanding and methodology of monotimbral music source separation but also opens up avenues for
further research in polyphonic music analysis and beyond, potentially leading to significant improvements in
various applications of audio separation technology.

Keywords — Music Information Retrieval, Music and AI, Music Source Separation, Monotimbral Music
Source Separation, Guitar Duets, Music Transcription,
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Extetapevn Ilepiindn oto EAAN VX

IMepiypapr ITpoBApatog: Music Source Separation

O Buaywplopdc mnydyv povowxhc (Music Source Separation) eivan pio Stodixacia 1 omolo oToyevEL 6TO VoL AmO-
GUVDETEL TIC NYNTIXES TNYES OL OTOLEC GUVLGTOVY Wit MY NTLXY EYYRAPT Ywelc Vo €xel xdmota tepantépw TANeopopla
TOV WBLOTHTOY TV CLUPETEYOVTWY onudtwy. H ev Adyw dwdixaocio tapouctdlel apXeTEC OUOLOTNTES UE TNV OTO-
YopuBonolnon onudtey, xadng xou ot dVo dladixacies TeplAouBEvouy TOV BLoyWELoUO CNUATWY EVOLAPEROVTOG Amd
avemtOunTa oRUATY, 0 B WELOUOS TNYNAE WOTOCO ETUXEVIPOVETOL XUPIWS GTNY AMOPOVKGT TwV "%atdAAniev"
onpdtev xat oyt oty e&dheldn tou YopLPou. Eva napddelyya Sy wplopol gatveltal oto mapoxdte Ly 0.0.1

I || || '| " Il || : * Sespoaurrac;ieon

v &

Figure 0.0.1: Awyoplopds povoxdv onpdtwy (Ntpope, Pwvh, Mrdooo, Trdrowna ‘Opyava) [1]

Aoy wpetopnog Movowov IInywy oe Ntouvégta Khaowxrc Kiddpog

Yo mhaiota TG ouyxexpwévng dimhwuotixic gpyaciag Yo aoyoindolue pe To TEOBANUO TOU Blaywelopo
HOUCLXWY TNYWV OTO OpYavo TN xAaoixic xiddpog xan ouyxexpudévo oe viougta xhaowhc xwdpac. To ev
Moy mpdPinua etvon pior utoxatnyopiot Tou Awtywplopol IInydv Mouvowic (Music Source Separation) n onola
ovoudletar Awaywplopdc Movowdv IInydv Bg ypoude (Monotimbral Source Separation). Ytéyoc tou npoB-
Muotog autod elvor var xatopépel vou amocuVIEceL To ofjpa NG xdde xiddpac amo To dpyx6 CUVORXS GHUA.
Y10 mopaxdte Lyhuo 0.0.2 gatvetar 1 dtadixacio Tou Awaywplopot Mouoixdv Inydv oe éva viouéto xhaoixic
wddpag 0.0.2.
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Figure 0.0.2: Awywptopds Movowxdv Hnydv o viovéto xhaoixric xuddpog.

ITooxAvoelg

Méypl otyprc, undpyouv dpxeTéc €pEUVEC oL omoleg €youv TETUYEL TOAD LXAVOTONTIXG AMOTEAECUATO GTO
TEOPBANU Bl weloHoU TNYMY, OTIC TEPITTMOOEC OTOU Tol CNUATA TAUPOUCLILoUY BLUPORETIXEC YPOLEC HETAED
Toug. O dlaywpelouds mou yivetaw amo toug ohyopiduous, TAéov yenowonoteiton yior vo Topdet oruata LPNAHS
ToLoTNTOC Xavd var ypnotponondoly oe VEEC NYOYPAPROELS amto XATUELWOUEVOUS HOUGIXOUE Xou Topaywyous. H
€peuva WoT6G0 Tou €xel Yivel ato medBinua tou Alaywplopol nydv mou napoucidlouy xowvég ypotés dev
elvon extevic, xaddc To cuyXEXpEVo TEOBANUA TaEoUGCLAlEL dpXETE TEPLOGOTES TPOXAHCELS OE GYEOT| UE TNV
YeVxOTEPN XoTNYOoplol TOU Blaywpelopo. XTov xhaoind dlaywpelopd tnyNe, 1 eotioor eivar oTov Sy wpelond yeu-
OVOUEVWY TINY OV UE SLOXELTA MY OYPWUTIXA YOPUXTNELO TG, OTWE ToL POVNTIXG, To TOUTOVA, TO UNACO Xou GAAL.
Avutéc o mnyéc mopouctdlouv LY VA ONUAVTIXES PUOUATIXES XL YPOVIXES DlapopEs, YEYOVOS Tou XxahoTd eu-
xoAGTERT TN Otdxpton Toug. Avtileta, o Sy wplowds TNYEDY UE XOLVT| XpOLd G TOYEVEL OTO DAY WELOUO TINYWY TOU
oV XoUV GTNV (Lol OLXOYEVELL 0PYAVKY 1) LOLAloVToL TUPOUOLN NYOYPWHATIXA YoEUXTNELOTIXE. YTy nepintwon
TV VIOVETWV xhaotxic xuddpac, ot ot 800 xldpec Tapdyouy YYouS UE TUPOUOLL MY OYEWHATO, XAho TWVTAC
BUOXOAO TOV BLUYWELOUS TWV EMUELOUS UEPWY ATOXAELC TS BAoEL pacpaTindy dlapopwy. Axdua, ot avtideon
HE TOL HOVOPWVLXE OpYaVaL, OTWE Wit LELOVWUEV Qv 1§ wot cOAo x1ddpa, 1 adAnAentidpoon uetald dvo xddpwv
o€ €Vl VTOUETO ONULovpYEl TOAOTAOXA OpUOVIXSL TIEQLE Y OUEVA, TO OTO(0L €YOLY WG ATOTENEGUA TNV AAANAETUIXGAVYN
CUVLGTWOWY GUYVOTNTOC, XAHoTOVTIC axdpa o SUGXOAYN TNV ATOUOVWGCT UEUOVWUEVLY TUNUATWY XLddpos.

Oeswpentixd YroBadeo

Kelvetaw oxémuo npwtol avokloouue téd didpopa dopxd ototyela tor omolor cuvioTovy Toug ahyoplduous ol
omofot Yo avoludoUV TopaxdTe vor xaAOPOUUE TOV TEOTO UE TOV OTOLO OVITUPLGTOVUE TOL NYNTXE CHUATI GTOV
NAEXTEOVIXO UTOROYLOTY %o TN wop@n Ue tnv omoio ot ahydpripol to ene€epydlovta.

Avanopactdoeig Hyntixov Enudtwy

O tpdmoc ye tov omnolo avanapnotovue Pngloxd tov fyo mailel xodoploTind péro oTny dladixacior Tou Bi-
oY WELOHOY TNYWOV HOUCIXAC Xal YEVIXOTEPR TNV eNeCepyooio TOU ONUATOC.  ALUPOPETIXES UVATHUPC THOELS
HOC ETUTPETOUY VoL AMEXOVICOUUE Xt VoL EEETACOVUE DLUPOPETING YOULAXTNELOTIXS TWV NYNTXGOY onudTtwy. Ou
ONUOYTIXOTEPES AVOTOPAC TAGELS TOU Nyou elvol 1 Xeovixr detypratoAndict TOLU CHUATOG XAl TA PAC-
UL TORAUPAROTA TOU TopOoLGLELouV TNV TANeopopia Yl T0 GUYVOTIXG (PACU TOU GHUATOC GTO TEPAUOUA TOU
Yeovou.

Avabovtac mepartépn v xdde avanapdotaoy, 1 derypatodeimtnuérn Kupatopuoper) evoc nynuxol GHUAToC
s(t) elvon yior ouvdpTnom Tou yedvou N onola delyvel Tic YETHBOAES TOU TAATOUC UE TNV TEEOBO TOU YPOVOUL t.
Io v axePr) dngronoinon evée nynuxod ofuatog, 1 VPNAGTERN CLYVOTNATL GTOV dEYd Nyo BV TEETEL Vol
elvar peyohitepn and to plod tou pudpol derypatondlac. O mapamdve xovévag elvar Yvwotos we Yedpnua
Nyquist-Shannon. Mnopolue vo SoUue €vo SelyUaTtoANTNUéVO ofua fiyou oto Topuxdtw oyhua 0.0.3.
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Figure 0.0.3: T'papixy) avomapdotacy ohuatog fyou.

‘Eva cuveyéc ofua, Omee yio mapddelypa 1 @wvi, molpvel Tiwée mAdtoug ot éva ouveyéc evpos. Avilpdniveg
auoVNoELS, OTWE TO AUTE, UTopoLY va avTiAngloly nenepacuéves dagpopéc évtaons. Etol, unopoldue va npocey-
vicouue To opyd ofua YENOWOTOLOVTAS €val ofjua Tou amoTeAelTon amd BoxELtéc THESC TAATOUS, ETASYUEVES
and éva nenepacpévo cbvoro. H Swobixacio yetatponic avohoywol Setyuotoc oe dmgloxy| woppr ovoudleton
xBavtonoinon. Tpagixd, autd onualvel 6TL wio Ypouixt oyéon Petalld elobdou xon e£680u avtixotio tota and
plot XA T yopaxtnelo x| oyéon. H Biaupopd petald yeitovindv Slaxpitdv Tiuoy ovoudleton xBdvto A
uéyedoc Prpatoc. H diaduasia tne xBavtonolnong gaiveton oto mapoxdte Lyruo 0.0.4.

QUANTIZATION
QUANTIZATION
QUANTIZATION

TIME TIME TIME

Figure 0.0.4: KBavtonoinon ¢meuaxod ofuatos. Arno [2].

Amo v dAAN TAevpd oL paouatikés avamapaotdoels AouBAvovTol UECK BLapoOpwY TEYVIXOY UETACY NUATIONOD
Fourier, xou napéyouv mhnpogoplec oyETIXd PE MO TOL YAPAXTNELOTING TOU HYOU UETUBIANOVTN WS GUVEETNOT
Tou Ypovou. ¢ unevdiuion, o yetaoynuatiopde Fourier evée ofjuatoc oplletar we:

S(f) = /Oo s(t)e 12t dt (0.0.1)

—00

‘Onou:
o S(f) elvon o petaoynuatiopds Fourier tou ofjpotoc s(t)
o 5(t) elvon o opynd ofua

Mot amo Tl ONUOVTIXOTERES (PUCHUATIXES AVATIUPUOTACELS 1) OTOldL YENOLIOTOLEITUL GTY TAPOUGH DITAWUATIXT
epyaoio elvon to gacpatoypdenuo (Spectrogram), o onoto anexovilel Tic ahNoYEC OTO PUCUUTING TEPLEYOUEVO
EVOC GHUOTOS WG oUVAPTNON ToL Yeovou. Ilpoxintel yéow tou Metaoynuatiopod Fourier Bpayelac Aidpxetog
(STFT), o onolog Yewpeitan we 1 eqappoyt) tou Awxpitod Metaoynuatiopot Fourier (DFT) oe cuveydpeva,
EMXAAVTTOUEVA TURAPOTO TOU ofpotoc. Auth 1 dwdixacio uropel vo avarapactade! padnuotind og e&hc:
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STFT{z[n]}(m,w) = Y a[nwln —mle /> &" (0.0.2)

n=—oo

‘Ornou:

e z[n] elvor 1 Soxplth| YpovxXh avamapdoTaon Tou dpyxd cuveYoUC ypovixol ofuatoc x(t), émou n ov-
TUnpoownelel Toug dloxpttole ypovixole deixtec. H petdfoon and x(t) o z[n] onuatodotel tn derypotoh-
ndla Tou cuveyolg ofuatog oe Lop@Pn xaTdAANAN Yia Loy enelepyaocia.

o w[n —m] eivou 1 cuvdptnon napatipou nou egappdletan Yipw and tov delxtn m.

o m onuaivel TOV Bloxplto Yeovixd Belxtn YOpw and Tov onolo ecTidleTal 1) GUVEETNCT ToEAIVEOL.

® W AVTITPOOWTEVEL TN cuyvéTNnTa Yoo TNy omolo utoloyiletor o STEFT.

WO TEALXAL

Paouatoypdenua(m,w) = |STFT{z[n]}(m,w)|? (0.0.3)

6mou S(t, f) elvaw o Short-Time Fourier Transform (STFT) tou ofuatoc s(t) xou avtimpoownelel o pdoua
Lo} VO TOU AVOAUOUEVOU TUAUOTOS, aneixovilovtoag Ty €viaoT Slapopwy LY VOTATKY Xatd TN didpxelo xdie
xeovixol onuelou m. Xto napaxdtw oyfua 0.0.5 @aivetor giar anetxdvion Tou v AdYL PETACYNUATIONOU.

Spectrogram
p 9 +0dB
8192
-10 dB
4096
-20 dB
2048
> 1024 s0de
c
: o RN et e i e o (AT N et S i B 408
£ - - i oy SSEIEER S — Feam
256 o i 2 o oy oy T e 50 dB
W T hFIIr Wb 1 F\ﬁpﬂf Bl Ilﬂ.l‘-lmuh i OF (i s Iu-n-‘f'lh[rm T [n.- F'p'lzrh

128 -60 dB

L T AT TR O Yo N Y0 R ey

64 -70 dB

-80 dB
0 5 10 15 20 25 30

Time

Figure 0.0.5: ®aocyotiny avanapdotaon evog Louotixod nyntixod cHUATOS.

Téhog undpyel 1 xaTNY00piot GUBOAXNAG AVATAEAC TACNG TWV LOUCWKOY onpdtey. Mo cuyfolut| ava-
nopdotaon anotelel to MIDI (Musical Instrument Digital Interface), 1 ev Abyw avanapdotoon dev meprypdepet
XAmoto NYNTd xOUa 0AAS TEpLEYEL TANEOPORIES, OE PNPLaxt| LOR®T, Yiol TNV TEELYEAUPY) XOL TOV YELPLOUO LOUCLXEDY
yeyovotwy (events) oe npoypatixd ypdvo. To govowd yeyovdta unopel vo agopoldy 1o ndtnua # tny anodéo-
HEUOT) EVOC GUYXEXPWEVOL TAXTEOU, TNV TaylTnta (éviaon) pe v onola meéleton éva TAAXTEO, xodde xau
dedou£va ToL aPopolV TNV x{vNoT XATOLOU TEVTAA 1) GAANG HOVABUC EAEYYOU EVOC NAEXTEOVIXOU UOUGLXOL 0pYd-
vou. M avanopdsotacn MIDI gaivetor oto mapaxdte Lyhua 0.0.6.
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Figure 0.0.6: Avonopdotacn MIDI [3].

Ewcaywyn otn Badid Mddnon
Yuvehixtixd Nevpwvixd Aixtua (CNNs)

To Yuvehxtind Nevpovind Aixtuo (CNNs) €youv enavao tathoel Tov Touéa T enciepyaoiag emdvag xou Yenot-
pomolvtal evpéwe oty ‘Opaon TTohoYIoTOV, TAVTOYPOVA EXOUV ONUAVTIXES EQUPUOYES Xat 0Ty encéepyaoia
fiyou. To CNNs elvar eavd va avoyvwpllouv didgpopa tepapyxd wotiBa ota dedopéva, xdtl mou to xorho td
XUTEAANAL Yot avahOoELS oL apopoly T povowdd [4, 5, 6]. H apyitextovin| evéc cuvehxtinol Sixthou Tep-
haBdver cuviBoe didpopa eninedo xat cuvapTHoELS OTwE eineda GUVENENG, CLUVOPTACELS EVERYOTIOMONE %ol
enineda xavovixomoinong. Xto napoxdtey Lyrua 0.0.7 anewcoviletar éva guveltind dixtuo.

Dropout-0.1
Fully-connected
layerd propout-0.1
Fully-connected

Convolutional

la;gr 1 Max-pooling

Batch-Normalization
layer 2 Convolutional
/ layer 3

- 105
105 Batch-Normalization
layer 3

d - 35 Cunvgl(l)nional 70 Max-pooling

35 35 layer 2
Batch-Normalization layer 2

layer 1

H ’iht%lsl-N(}rsmalizntion

140140 layer 5

Batch-Normalization
layer 4

Input layer

L J\ L J

Y Y Y
Input layer Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Output layer

Figure 0.0.7: Eva nopdderyua apyttextovixfic CNN. Ané [7].

IIio cuyxexpéva, évo GUVEAXTXS BixTUO amoTtele(tal amo CLVEMXTIXA enineda, To omola elvor oNuAVTIXG
Yior TNV QYWY YOUPAXTNPIO TIXWY XAl TNV ovaYveplon Tov WotiBwy ota dedouéva, aro Enineda Pooling
T omofot cuvavtdvTol UETE Tol ouveAxTixd enineda.  Autd Ta enineda elvan umeduva v T pelwon Twv Bi-
Ao TAoEL TWV BEdOUEVKV yenolonoidvtae texvixég detypoatoindioc. IIAMpwe Xuvdedeuéva Emnineda
Ta omola Bploxoviar 6To TENOS TNG UEYLTEXTOVIXNG, X0 YENOUWOTOLUVTOL Yiol THY ToEvouncn twv dedouévwy.
Yvuvapthoeig Evepyonoinong xow Kavovixonoinong énwe n ReLU (Rectified Linear Unit), cuyvd
YETOWOTOLOUVTAL YL TNV ELCOYWYTH UM YPUUUXOTATWY 0TO HovTélo, eved eniong e@appolovTon emineda xavov-
womolnong yio T amouyY) Tou overfitting.

Ewcaywy? ota Enavarnntixd Nevpwvixd Aixtua (RNNs)

To Enavoannuxd Nevpwvixd Aixtua (RNNs) elvon piar xatnyoplo veLpwvixtv Sixtiwy mou anooxomolyv otny
eneepyaoio oxohouthaxdy dedouévev, xahotdvtag To Wavixd yia egapuoyéc oty wouoix. Ta RNNs diodé-
TOUV E0WTEPE oTolyela UVAUNG Yiot var amodnxelouy TANEo@oplec GYETIXA YE TEONYOVUEVES TEC TNG ElIGHBOU,
ETUTPENOVTAG TOUG VOL XOTAYPAQOLY Ypovinée elapthioelc. 3to moapoxdtw oyrua 0.0.8 qoiveton 1 apyltextovixy
TWV EMAVOUANTTIHOV DIXTOWV.
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Output
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Figure 0.0.8: "Eva nopdderypa apyttextovixic RNN. Ano [8].

Yuyvd wotéco avtuetwrilovy onuavtixég mpoxifoels xatd Ty enedepyooio ueYdhwv axoroudmy, onwe Ta
vanishing xot exploding gradient problems. I'io Tnv avTigetdOToN AUTOY TV TEOBANUETLY, €Youy avomtuydel
apyttextovixéc 6nne ta Alxtua Maxpde Lovtopng Ipodeopioc (LSTM) xou o Aixtua Movddoc Metodhaypévneg
IIoAne (GRU). Ta LSTM, 6nwe npotddnxav and tov Schmidhuber xaw dhhouc [9], nepidapfBdvouy povédeg
pvAuNS Tou Umopolv va Slatneoly TAnpogopiec oe peydhes axohouvdies, avtipeTwRilovTac anOTEAECUATIXG TO
TpdPBAnua tne e€apdvione tou xhlopatog. To Alxtva Movddag Metadhaypévng IO NG, mou mpotdidnxay omd
v dovletd [10], tpocpépouy wio amhomoinuévn éxdoon twv LSTM pe Aydtepec nopopétpoug.

Meraocynuatiotés (Transformers)

Ou opyrtextovinée Transformers amotehoy yio e€eMyuévn xotnyopla VEUROVIXGDY BIXTOMY TIOU €YOUV GUELCD-
oel onuavTix emituyla oe mowiheg epopuoyEg, oxoua xou o npofBfuata enegepyacioc guoic Yhdooag. H
0Pl XOUVOTOULN TWV APYLTEXTOVIXGY, elvan 1 amovoio enavolauBavauevoy Sixtiwy RNN ¥ LSTM xa v yeron
pnyoviopoy npocoyfic (attention mechanisms). H Boowf déa elvor 1 ieavdnTor ToU LOVTEAOU VoL ECTIACEL OE
didpopo TuRpaTa TG €106dou xotd TNV enelepyacia evée wbvo tuhpatoc. H opyitextovixi toug amotelelton
ano ta enineda tpocoyfc, YvwoTd we self-attention layers, 6mou xéde otouyeio eloddou pnopel va "otpéder T
mpocoyly" tou oe dhha otoyela, Bdoel e avanopdoTaong tou. Kdde eninedo npocoyrc e€etdlel tic cUVOE-
oelg UETAE) OAWY TV GTOLYEIWY TNG EWGOBOU, EVIOYUOVTIS THY XAVOTNTA TOU LOVTEROL Vo avTIAaUPBdveTol To
eLplTEPO VOMUA TwV dedopévwy. Axdua, ol Transformers ypnowonoloty nohveninedeg feedforward vevpwvixég
EMLPAVELES XL T TEMUATO XOVOVIXOTOINOTC.

Nevpwvixd Aixtua Shuffle-Exchange
Emioxénnon twv AwxtOwy Benes

To Nevpwvixd Atxtua Benes 6nog gaivetar oto napaxdte oyfua 0.0.9, yenowonotodv tnyv dour evdg dixtiou
Benes to onolo Bploxel epoppoyt| oe epyaoiec dpogordynone naxétwy ot vnoloyiotxd dixtua. To ev Aoyw dix-
Tuo elvan Lxavé va dpopohoyel anoteAeouatind ofjuato ano Ty elcodo otny €€0do e Bdor éva yetaoynuatioud
TEPLOTEOPNC TNS axohoutiog.

network input side
network output side

Figure 0.0.9: Yynuatiopdc Awtbou Benes. Ané [11].
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Nevpwvixd Aixtua Shuffle-Exchange

Ta veupwvixd dixtua Benes avtixodiotodv xdde daxdnty evoe Sixtvou Benes pe éva Switch Unit, yia cuvdptnon
2-npoc-2 6nwe gatvetan oto oy 0.0.10. To mpdto otp®ua Tou Sixtbou anoteAelton and yia oelpd Switch Units
eve oxohoudel €va oTpdua avadidtang, to onolo avadlatdoel To oo Tng eloédou pe Bdon éva xadoplouévo
TEOTUTIO OVIGTROPYC.

M O @ ® @

vector vector linear activation or  scaling by  pointwise splitinto
concatenation  copy transformation normalization  learnable addition  halves
parameter

-~

Figure 0.0.10: Movddo Switch Unit [12].

YixeTwxn BiBAtoypapia

Badid Nevpwvixd Alxtuo

To Bordid vevpwvind dixtuo TAéov eivan 1 anodoTixdtepn ADom 010 TEOBANUA TOU BlayWELEHOV TNYKOY, xadde
EMTUY Y GVOUV Sloywplond Pe LPNAY ToldTNTa Ywelc Vo elodyouv YoplBouc ota ofjuata. Ot xatnyoples Twv Ba-
POV BIATOWY TOU ETUXEVTRWOVOVTUL GTO TEOBANUA TOU BloywElodo TNY QY etvor 800, exelveg mou dev otnpilovia
otnv aflonoinon xdmolog Tepantépey TANEOPOoplaS EXTOS oo AUTAS TOU GHUATOS ELGOBOL Xat AUTES TOU AZlOTOLOVY
TAnpogoplec Tou aopolv Tic VOTES Tou TodlEL To GpYovo To onolo oxoTmeloUPE Vo dlaywelcouyE.

Badid Nevpwvixd Aixtua yweic xehorn tineogpopiog voTmy

Ta dlxtua Tar omolor Bev xdvouv Yprion xdmolac TEPALTERL TANEOPOEIIE TWV CNUATWY TOU TEENEL VoL BlaY WELCTOUY
ywellovtar xou autd oe 800 xatnyopleg avdhoya ue Tov "ywpeo" oTov onolo enelepydlovtan Ta dedopéva. Eyouvue
TEYVIXEC TIOU ETUXEVTPWVOVTOL OTO XOUOTA, YENOWOTOWWVTOC TN wovodldotaty "guowy" avarapdotaoy fyou,
xoi HE¥OB0UC TTOL EMXEVTEMVOVTUL GTA (PUCUATOYEAUPHUATA, YOTOLLOTOLOVTOS (ULl DLGDLACTIUTY) YPOVIXOCUY VOTIXY

AVOTOEAGTACT] TWV OEDOUEVLV.

Ou apyltextovinég exelvec TOU AELTOUEYOUV TAVK GE PUOUNTOYRUPNUATA, €YOUV WE OTOYO TNV extiunon Ttou
(QUCUATOYPUPHUATOE TOU 0pYdvou evdlapépovtog. Ilapdyouv wa udoxo tnv onola eqopudélovy 6To GUVOAIXS
ofuet xan €€&youy To emduuntéd Spyoavo. Iapaxdte oty edva 0.0.11 Brérovpe v egopuoyy| wog dvadikris
pdokag Tévew oe éva apyixd G xou TO anoTtéheoud TG eV Adyw meding. A&ilel va onuelwdel nwe ol udoxeg
oL onolec mpoPBAénouy Ta Yovtéla autd Bev elvon duadixéc olhd xdde touc otolyelo amoteielton omo apLlduoiec
dexadixnc axpifelog.

Mask Spectrogram Source Estimate
0 0 1 1
1 1 0 1
0 1 0 1
0 0 1 0

Figure 0.0.11: Avaducf udoxa [13]

To BeBoUEVAL OTO QPUCUATOYRUPAUATA, ELVOL TLO CUUTOYT| AT TIC YPOVIXEC UVATOQUCTACELS TAATOUS, TEAYHUA TO
onolo onuolvel Tl Tar LOVTERA amatToOY ALYOTEPOUS UTOAOYLOUOUS, UELVOVTIC TOV Ypovo exmaideuone. Efvow
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ONUAVTIXG Vo oNUELVEl TS Ol TEPLOCOTERES TEOCEYY(OELS TAUPAUBAETOUY T1 YAOT) TOL GRUATOG XUTA TNV eXTIUNOT
TOV TNYOV.

Yo Bédoc tou yedvou, Ta Padid vevpwvixd Sixtua eEehlcoovtay oe Bddoc xal TOAUTAOXOTNTA, EVOOUNTHOVOVTOG
dudpopa enineda yia Ty Behtionon e anddoong Tou daywpetopol. Avayvepilovtac dTi Ta NynTixd ouoto Unopel
VoL €)0UV Ypovixéc eEUPTHOELS, Ol EpELYNTEC evéTaday Tal eTavOANTTXd dixtua 6mtwe To [14]. O Jannson oto
[15] napousiace wa npocappoyt) tou U-Net [16] yio T Moon tou npoAiuatog Sty wetopod Tnydy woustxic, 1
omola éxave yprion cuveklewv omwe olveton oTo mapaxdtew oyfua 0.0.12.

1 64 64 2

input
image ||
tile

output
segmentation
3 map

392 x 392

572 x 572
570 x 570
568 x 568

' 128 128
256 128

>

Sl EE
¥ 256 26 512 256 t
o et S[!"Il'?l =»conv 3x3, ReLU
Ty o tﬁ S copy and crop
512 512 1024 512
Mol — ¢ i ¥ max pool 2x2
8 oy 4 o 4 up-conv 2x2
=» conv 1x1

284
2822
280

14

1024 ©
@f:l»_
> % %
8

&

Figure 0.0.12: Apyitextovixf U-Net yia tov Xoptopd IInyodv and [15]

Tautdypova avamtdydnxoay TeXVIXéC oL omoleg alomoinooy auToUoLa THY XUHATOUORPY) Ywpelc Vo EQapuécouy
xdmolo petacynuotiond. Eva xbelo mieovéxtnua tng Aettovpyiog ot xupatopopdy| etvar 1 Slathenon Tne TAneo-
poploc T™NC @done 1 onola YAVETUL OE QUCHUATIXES AVUTAPAoTAoES. AUo anto T SOVAELES oL oToleg amoTéAeco

TNYT) EUTVEUGTC VIO TNV UEYLTEXTOVIXT TOU AGYONOVUICTE OTY CUYXEXPUEVT DlTAwUoTixt epyacia lvon ol Tas-
Net [17] xou Wave-U-Net [4].

To TasNet ypnowonolel diadoyind cuvehxTxd eminedo yia vor xatapépel Vo dNUloveYNoeL TNV udoxo Oi-
aywedopod tou emduuntod ofuatos. ‘Onwe oiveton oto mopaxdte oyfuo 0.0.13 o Swywpeiotic (separator)
onwovpyel TV udoxa 1 omola eQappoleTal GTNY dEYIXT| XWOLXOTOMGT TOU GHUATOG Xol EMELTOL ATOXMOIXOTOLE(-
To 070 TeAeuTaio 0Tdd. O XWBIXOTONTAC XAl O ATOXWIHOTONTNAG ATOTEAOUVTOL OO Lol OELRd GUVEAEEWY,
EMNEBWY XUVOVIXOTOINONE Xoll CUVORTAOEWY EVERYOETOMONC.

Separator

Encoder ¢ Decoder —

Figure 0.0.13: Apyttextoviny; TasNet [17]

Arno v &k to Wave-U-Net, 6nwe goiveton oto oyfpo 0.0.14 ;mopéyet oxoua giar amoTEAEGUUTIXT UPYLITEX-
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Tovixt| Tpoodpuoouévn and to poviého U-Net yio povodldo tota oNUato Hyou. LUYXEXQUEVO 1) APYLTEXTOVIXT
auTH amoteAe(ton omo:

o 'Evo uovondtt yia 1) cUUTOXVKGT TOAU-XA{poxwy Thneopoptey Bactopévo oe cuveMEel xou detypotoAndio
Tou ofuorTog,

e 'Eva eninedo cuvéhéne to onolo enelepydleton ta mo "muxvd" }opaxTneloTxd Tou apyixol GHUATOC,

e 'Eva yovondtl enavachvieong mou anoxathotd To oo oty apyixf) TOU BLAoTIoY], YENOLWOTOLOVTOG
oLVOETELS TaEAXAUPNG Yiot TNV OAOXAHEWOT] TWV YOPAXTNELOTIXWY OO TEONYOUUEVO GTAdLL.

Source 1 output Source K-1 output

Mixture audio ‘
MW o | 1D Convolution, Size 1 |

i Crop and concat
l --------------------------------- >
‘ 1D Convolution, Size 15 | | 1D Convolution, Size 5 |
____________________________________________________ >
L' Crop and concat
‘ Downsampling | | Upsampling |
Downsampling block 1 Upsampling block 1
Downsampling block2 ~ ---------seeoeee- > Upsampling block 2
¢ Crop and concat ?
Downsampling block L~ --------nmmmooee- > Upsampling block L

Crop and concat

1D Convolution, Size 15

Figure 0.0.14: Apyitextoviny Wave-U-Net yioo Awaywplopd Inydv and [4]

Baotopévn ota TasNet xou Wave-U-Net elvou 1 apyitextoviny) Demucs 1 onolo ot mpdtar otddior Tng yenot-
ponolnoe Tt dVvaun Tou povodldotatou ypovixod mediou yio Ty enelepyaoia ofuatoc. Qotdoo, 6co e€ehio-
COVTAY, TPOCUPUOCTNXE €TOL WOTE VO XAVEL YEHOT KO TWV YPOVIXWDY X0l TWYV QUCHATIXWY TEDIWY TV ONUATWY.
Autr) 1) SuTAY TPOGEYYLON ETUTEETEL Lol TLO GPOUEWXT AVEAUGT) xoi eE0YWYY) DEBOUEVKY Ao TOL NYNTIXE CHHUTA.

Badid Nevpwvixd Aixtua pe xeron nAnpogpopiog voTov

Ou ahybprpou dlaywpeltopol Tnyoy yovoixrc tou Bactlovtal 6e TANPEOQopial VOTWY YENOULOTOLOUY TIG LOUCLXES
TOETLTOVPES YLOL VoL EVIGYUOOUY TNV axp{Belol 0TOV BLoyweloud TWV HEUOVWUEVWY 0RYAVMY.

Mo onuavtix| epyoaoio méve oty ev Aoyw tpocéyyion elvar 1 [18]. To ouyxexpiuévo clotnua yenotuonotel
wo apyttextovixyy U-Net. Autr n apyittextovixy nepthopfdvel €vay HOVOTETL XWOIXOTOLNTY, Ao avadpouixd
dixtuvo GRU xou amo éva povomdtt anoxwdixomoinone. IIAnpogopiec yio tic vétee mou natlouv tor dpyova
EVOWUATWOVOVTUL 0TO J{XTUO GE €Val CUYXEXPWEVO GTddlo Tou xwdixonontyh. H emoxdnnon e apyttextovixnic
paivetow oto Lyfuo 0.0.15.
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mix —( 1,100 tracks
(65536,1) % (65536,n)
100, 200 200 100

3
(200,400 ) 400+n, 200
add. inform, -5
(1024, n) 400+n, 800 800, OO—l—n
(2: 800}»(2 800}»[ 800 )

() Encoder Block () Decoder Block () Bidirect. GRU () Dense

;f\;

Figure 0.0.15: Apyitextovixn Baciopévn oto U-Net xou otnyv eloaywyr dedopévewv votdv tou [18].

Teyvixég Enadinong Acdopévwy

H enadinor dedopévwy anotehel wa xevipt] otpatnyxy otny exmoidevon Badudy vevpwvixdy dixtiwy, et
dixd btav o Badtéoiwo ohvoho dedopévwy eivon meplopiopévo [19] xadne ocuuBdiier otn dnuoupyia dixtdovy
Bloywplopol mou yevixevouv xahitepa. Iapaxdtey mopoucidlovton oL BLAPOPES TEXVIXES TOU YENOULOTOLOUVTOL:

1. Avtiotpopr Kavaridv (FlipChannels): Auth n teyvixn nepihaufBdvel v tuyala ovtodhayt| Tov
aptotepol xou BeElol xovoMoU ano éva GTEPE0PWVIXS apyelo Hyou yia xdlde dpyoavo.

2. Mezatémioy (Shift): H tuyeio yetatdmion oto ypdvo tev xovahav Bondd to poviého va pdde
avolholwTeg avanopaotdoelg mou dev e€apt@vTal and T Yomn Tou xdde opydvou 6To Yedvo.

3. Avapei&n (Remix): Mo teyvix] 6mov, evidc evoc uévo batch, dpyova and éva tporyolddt avtohhdo-
COVTOL UE TO AVTIOTOLYA ORYOVA AT6 EVAL DLUPOPETING TEAYOUOL.

4. KAhipoxor (Scale): H tuyoda xhpdnwon evée ofuatog pe évay tolamhactaoth e tééne (0.5, 1.25].

5. Avtidetn tonodétnon otov "xweo" (OppositePanning): Auth n teyvixd, vionoidnxe ot
napodoo Bimhwpatixy epyacta. Anpovpyel touxilec otepeo@uvixég eixdveg npocopudlovtag ) Véon tng
xdde xddpoc oe éva oTEPEOPWVIXS apyElo.

H Avdyxrn yio Exnaidevon ApetdfAnty o Metadéoelg

O Bduaywploude myhc ot viovéta xhaohc xddpoc poldlel e tov dlaywplodd owintdv. ‘Onwe d0o opintéc
umopel vor €Y0UV %OV YopuXTNELOTIXA 1 ahhlKS (Bl Ypold otn puwvr Toug, €tol cupfaivel xar oTig xddpeq.
AopPdvovtag unddr autiv v napopoiwon, yivetaw eupoavéc 6Tl ol uedodoloyieg xan ol TeYVIXEC ToU €youv
avamtuydel yior Tov Sloywpeloud OPLANTGY UTopoLY VA TROCREEOLY XL GTNY BIXT| UAS EQEVVAL

H exnoidevon evog povtéhou €tol (dote va yivel auetdBAnTo otig ueTadéoelg TomV ELoOBWY TOU EVAL Uil TEYVIXT
TOU CLYAYTATAL OTNY BLAXELOYN TOMATAGY opANTOY. TiodetdvTac Ty texvixn pe v ovopooia "Permutation
Invariant Training" (PIT), npooeyyiloupe to mpdPinua poc we éva mpdPinua xodupd dloywetogol xor oyt
xatnyoptonoinong g xde xwddpag. H Boouxr otpatnyiny| tou PIT elvou va evronilel tny Béhtiotn avtiotoliyion
€€680U-0THyY 0L aUTH dNhadN oL Blvel To eNdyloTo GPEAa, Xt Ue Bdon auTd To o@dua Vo exToudeVeL To BixTuo.
Avuty| 1 uédodog mpoopépel wo dueoy; Abor oTIC TEELTTWOELS OToU Tal LoVTEAA Blaywpilouy 6eoTd T oot
oMAG tor xatevdivouv oe Addog oepd otic e€68oug Toug. H Swaduxacio tng ev Aoyw teyvixrc goiveton oto
napaxdtey oyfuo 0.0.16.
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Figure 0.0.16: To poviého exnaidevonc (PIT) [20].

Y 0Ovola dedouEvwy

Méypl otyurc €youv dnuovpyniel xou yenolponolndel toAAd chvoha BeSOUEVKY YId TO YEVIXOTERO TPOBANUA TOU
dlaywpetopol Ty v, Kiplo yapaxtneloTixd Twv cUVOAWY auToY elval Twe YLol xdde HOUCIXEG XOUATL TEPLEYOUV
apyelo Ayou yia o xdde dpyavo Eeywperotd. o Ty epyaocia pog, ta ohvola dedouévmy e Bdorn to bpyova Ta
omnolo mepLEyoLy Umopolv va dlaxpldoly oe duo xatnyopiec. Ty xotnyopla Tou TepLyel BlaopeTind dpyava Vo
Talouv TauToOyEOVa Xal TN XaTnyoplo Tou Tepéyel (Bla dpyava He XOVTIVES Ypolég va tailouy TowTtdypova. XNy
TeMTN xatnyopla avoixouv cUvoha drwe To MUSDB18-HQ [21], MedleyDB [22], Slakh [23], URMP [24] xou
MIR-1K [25]. Eve ot dedtepn xatnyopla avixouy clvola 6nwe to GuitarSet [26] xou to EnsembleSet [27],
xou Tor Buo clvora Tépa ano To apyelo fyou TeplEyouv ouuBolr TAnpogopla yia Tig voTeg Tou mailel To xdie
OpYAVO.

Mertpwxeg yio agtohdynor Tou Awayweicwol IInyoy

To mpoBAnuo Tou Loy wELOUOD LOUCXOY TNYKOY Ao TN @Y Tou eivon éva TeéBAnuc To onolo €yel avdyxn Tnv
avdpdmivn alohdYNom xou Sev apxo0V HOVO OL HETEIXEC Yiot TNV a&loAdynon Tne enidoone xdmoiouv LovTéRou.
YTrdpyouvv noAkéc petpxéc ol onoleg €youv yenotponondel uéypl oHuepd Pe TG TLo EBpaWUEVES TAEOV Vol elval
to SDR, SI-SDR, SAR, ISR xou SIR. ITapaxdtew optlovye 2 ano 1 onuavtixoteg to SDR xaw to SI-SDR.

[ starget |
+ €noise + eartif“2 '

SDR = 10log;, T
mter

To SDR elvon yior uetpuxr) mou UeTpd TNy avohoyiot ToU GHUNTOS TEOS TNV THPUULOPPKOY) IOV ELGAYEL 0 oAy OpLdog
Bloywplopol. Avunpocwnelel OG0 XoAS £va GUGTNUA B WELGUOV TNYOVY EYEL AMOUOVAOGEL TNV eTuUNTH TNYN
and tuyov mapeuBoléc ¥ napapoppnaoels. Tdniotepn T SDR unodexviel xahbtepn anddoon.

l|vstarget ||

Starget — 5est||27

SI-SDR = 10log; T

To SI-SDR eivon plar Bektiwpévn éxdoon g SDR mou elvon ave&dptntn e éviaong twv onpdtwy. Ilo ouy-
xexptuéva dev hauBdver vdd wiot Slapopd oe EVToon Amo ToL dpyxd oYdoTo TNV oTolol EVOEYETAUL VoL ELOGYEL O
ahyopripoc.
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Anpioveyio 2UVOA0L AEBOUEVWLY

Hyovypdpnorn Xuvérlouv Acdouévwy GuitarDuets

Aopfdvovtag unddmn v ENAeldn Sedouévwy Yo EXTABEVGT HOVTEAWY TEXVNTAS YONUOGUYNG OTOV BLoywpeloHo
YOV Blag yeotds, xupldc ylo Tol oevdpla Tou TEpLhoBavouy To poucixd Gpyavo NG xAacic xiddpac,
onpLovpyoaue €va cUVOAO BEBOPEVWY TIOU XAAVUTITEL TOAVQWVIXES NYOYRAPNOELS VTIOLETWY xhaouxrg xuddpag,
€tol HoTe va dteuxohuviel 1 avdmTuén xon afloAdYNoN TEXVIXADY BlawEIoUoD TNYHOY YL TIC TEQLTTOOELS AUTES.

POduion Hyoyvedpnone

Hyoypapridnxay ano éva viouéto xhaowxnc xdpas To XOUUATIO TOU GUVIGTOOY TO HOUGLXO PETERTOPLO UG
ocuvawllac. H nyoyedgnon éyive oe xatdAinho dwudtio nyoyedenong ue oxovotxr Behtiwon. Kdde xhaounr
nddpo NyoypapRdnxe yenoyomoudvtog To uedpwvo udmiic towdtntas (Presonus PM-2). Kotd ) Sidpxeia
e NYOYEdPNoNS, Yenotporolinxay téooepls SlapopeTiés xhooixéc xddpeg yio var e€aopoahiotel wa Towxihio
XeoLwyY 6710 ohvolo Bedouévev woc. Iopd v mpocextind| Tomo¥éTnon TV UixpoPnvwy xou Ti¢ puduicels, oL
NYOYeAUPToel; Tapousiacay To gouvouevo (microphone bleeding) Siappor| wixpogivou, émou o fyog and T wa
x10dpol NYOYEUPHUNHUE OTO ULXPOPWVO TOU XATHYEAPEL TNV GAAT xtddga.

H dnplovpyia evéc ohoXANEOUEVOL Xl EXPEACTIXOU GUVOAOU BEBOUEVGY UTALTOUCE TPOCEXTINO OYEDLICUO TWV
EXTEAECEWY TWV XOUPATIOV. ALdUop@OoaUe (Lol ETLAOYY SLopopwY EpYWV XAACIXAC LOUGIXAS, TIOL AVTLTPOCH-
nevouy Bldopa oTUA, puduolc xon moAuthoxdtnTes. Kotd tn Sidexeio TV NyoYeapHoEnmy, XoTayedpnxay
TOMAEC T OYRAPNOELS Yol OPLOUEVOL XOPUATLOL, TROXEWEVOU VoL UTHEYOUY DLopORETIXES EQUNVELES.

ITpoeneiepyacia

IIowv evowpaT®oOUPE To OEBOUEVA TV NYOYPAPNOEWY GTOUG AYORLIHOUS Bl wEloHoD TNYWY, TEoy-
patonotioope Baowxd Bruota tpoetelepyasiog yia vo eEdc@aicovYE TN cUVOY T xat GLUPBUTOTNTA TWY SEBOPEVWY.
Auté nepthopfdvel TnY xovovixomolnoT Twv eVIdcenmy, TNy agaipeon avemtdiuntomy Yoplfwy xo Tov Sy weloud
TWV NYOYPAPNOEWY OE XUTIAANAGL XOUPATIOL X TOV TOQoXATe TEVAXO UTEEYEL (Lol OUVOALXY) ETLOXOTNGCT TWV
XOUPATIOV ToU Ny oyeaphumxoy poli ue tn didpxeld Toug.
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‘Ovopa Audpxeia (Acsutepdienta)

Valses Poeticos 1 (Enrique Granados) 85.5
Valses Poeticos 1 2nd 97.5
Valses Poeticos 2 92.0
Valses Poeticos 2 2nd 25.0
Valses Poeticos 2 3rd 49.5
Valses Poeticos 3 88.5
Valses Poeticos 3 2nd 86.5
Valses Poeticos 4 116.0
Valses Poeticos 5 46.5
Valses Poeticos 5 2nd 46.0
Valses Poeticos 6 60.0
Valses Poeticos 7 87.0
Valses Poeticos 8 49.0
Valses Poeticos 9 91.0
Valses Poeticos 10 91.5
Summer Garden Suite 1 Opening (Sergio Assad) 82.0
Summer Garden Suite 1 Opening 2nd 73.0
Summer Garden Suite 2 Summer Garden 156.0
Summer Garden Suite 2 Summer Garden 2nd 142.0
Summer Garden Suite 3 Farewell 175.0
Summer Garden Suite 3 Farewell 2nd 168.0
Summer Garden Suite 4 Butterflies 175.0
Tango 1 (Astor Piazzolla) 338.0
Tango 1 2nd 331.0
Tango 2 297.5
Tango (N. Mavroudis) 154.0
demol 34.5
demo?2 66.0
demo3 49.5
demo4 27.0
demob 41.5
demo6 22.5
demo7 27.0
demo8 47.5
JuvoAxr Aldpxeia 58.6 AemtTd

Table 1: Ovépota Hyoypaprioewy xon Sidpxeia Tou cuvéhou dedouévev GuitarDuets.

Anuiovpyio Acdopévey pe Euxovixd ‘Opyava

Eitcaywy? ota Euxovixd ‘Opyava

‘Eva eiovixd 6pyovo, oto mhaiclo g mopaywyhc ovoixic xou tne ¢melaxhc teyvoloyioc Hyou, avopéeetol
og pa tpocopoiwon N avamapaywyr evog ahnhvol Loucixol opYdvou UEco Amo TOV NAEXTEOVLXO UTOAOYLOTH.
Yruepa, T etxovixd 6pyava tallouy éva Lwtixd pdho ot dnoupyio Louoxrc, SNUOXPATIXOTOIWVTAS TNV TROo-
Baom oe éva extetopévo gdoua fiywv. H evowpdtwon twv exovixdyv opydvwy ota mpoypeduuota dnutovpylog
pouoixrc (Digitan Audio Workstations DAWSs) éyel enavonpoodiopioet Tov tpdmo Ue Tov onolo ot xahNTEYVES
dnuovpyolv Tic ouvidéoelc Toug, divovtde Toug T duvatétnta va "tallouv" omolodrrote dpyoavo VYedfoouy,
yoele ot mpaygoTxdTTY Vo To MyoyeoapoLy ol Blol. To dpyavo To omolo yenouomololv undpyel péca
070 {neLaxd TEPBEANOY o TUEAYEL TUVOUOLOTUTIOUS MY OUS UE TO OVTICTOLYO TRUYUATIXG OpYOVOo, ElTE UECW
teyvoloylac Bootopévne oe delyuota eite oe teyvohoyia Baoiopévn oe obvideon. Trdpyouv 8o Baocixol timol
exovixmy opydvev. To exovixd dpyoava Bactopéva oe delyyata, to omolo e€apTVTON Ond EXTETOPEVES CUA-
Aovéc nyoypeapnuévewy Selyudtny and mpaypatxd dpyava. Ko ta eixovind dpyava Baciouéva oe alydprduoug
TopoywyNS AYou, oL OTOlOL TPOGOUOLLYVOVOLY T1 CUUTERLPOPE TWV 0pYavwy [28].
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Iot vo Smutovpyrioouye to dedouéva ano to eovind dpyava yenolponoiooue To Etxovixd ‘Opyavo Native
Instruments: "Session Guitarist - Picked Nylon" [29], to onolo eivar éva hoyiopxé Boociouévo oe
delyyorta, oyeSLHoUEVo VLol VAL OTOTUTMOEL TOV YO0 TNE Xhaowxnc xiddpac.

Iot vor xorTapépouye Vo SWCOUPE TNG EVTORES GTO EIXOVIXG OpYAVO VoL THPGEEL TIG OUGXES VOTEG OL omoleg Va
ouVIoTOUY Ta xopudTia, yenotponotioaue MIDI 8edopéva ano v xowvétnto tou MuseScore [30], xaw Soulédopue
oo tepPdihov eneepyaoiog fyou Logic Pro X [31]. T xdde apyeio MIDI, emhéEope npocextind Sapopetixnée
puduloelg Tou eovXo) 0pYAVOL €Tal (OOTE VoL £YOUUE BlapopeTiXéC YpoLég oe xdde x1ddpa.

‘Evoc Booixdc otoéyoc autic tne dtadcociog dnulovpylag cuvohou BeBoUEvewY ATV 1 ETEXTACY] TOU GUVOAOU
dedouévev mou €yel mpoxlel péow Myoypdenong xotig LTdpyel SUCXOMA GTOV EVIOTIOUS TEAYUATIXOY 1) O-
Yeaupioewy Yepovouévmy xiddowy tou toflouv woli. T v ohoxhipwon tne mopandve Siadixaciag, e€fyoue
xdde yepovouévn extéheon xddpac we éva apyelo WAV 16-bit ye cuyvétnta derypotolndiog 44.100 Hz. Xtov
TOEOXATE Vool ToEOUGCIATETAL Yol GUVOALXY] ETLGXOTNGT] TWV XOUUATLOV TOU SNploupy fumxay xon Tne didexelog
TOUG.

ApwOudés Koppatiod  Adpxeia (Asutepdientar)

Trackl Bach, Minuet in G major, BWV Anh 114 120.0
Track2 Bach Prelude n3 BWV 935 120.0
Track3 Blind Guardian The Bard’s Song 45.818
Track4 Unkoown (No named Provided by MuseScore) 32.0
Track5 Unkoown (No named Provided by MuseScore) 36.0
Track6 Unkoown (No named Provided by MuseScore) 38.571
Track7 Marcello/Bach - Concerto in D minor 109.5
Track8 Duo en Sol op.27 n°8 - Ferdinando Carulli 57.6
Track9 BWYV 304 Bach. J.S. Choral; Eins ist noth, ach Herr, dies Eine 93.103
Track1l Sir Edward Elgar - Pomp and Circumstance March No.1 374.4
Track12 Sibelius Etude Op.76 No.2 192.0
Track13 The Police - Every Breath You Take 214.839
Trackl14 Jordon Drumgoole - Four Short Seasons for Guitar Duet 300.632
Tracklb Gerald Schwertberger - Blue and Rythmic Duets 577.92
Track16 Unkoown (No named Provided by MuseScore) 500.909
Trackl7 J.O.Marques: Six Easy Duets for Guitars - No.1 in C major 56.048
Track18 J.0.Marques: Six Easy Duets for Guitars - No.2 in G major 92.857
Track19 J.O.Marques: Six Easy Duets for Guitars - No.4 in F major 106.667
Track20 J.O.Marques: Six Easy Duets for Guitars - No.6 in C major 89.302
Track21 Suite ¢ minor (BWV997) - Preludio for tenor 154.884
Track22 Mazurka - Francesco Tarrega (1852 - 1909) - Duo 63.717
Track23 Milonga Guitar Duo 105.366
Track24 NIGHTWISH - Ever Dream 83.137
Track25 Poco Allegretto - Ferdinando Carulli (1770 - 1841) - Duo 94.815
Track26 Recuerdos de la Alhambra - Francisco Tarrega 240.0
Track27 Scherzino Mexicano 141.639
Track28 Unkoown (No named Provided by MuseScore) 129.836
Track29 Unknown 63.066
Track30 Unknown 57.81
Track31 Unknown 151.579
Track32 Unknown 122.553
Track33 Terpsichore - Duo op.45 - José Ferrer y Esteve 208.0
Track34 Louis Moreau Gottschalk - The Dying Poet 261.818
Track35 Ferdinando Carulli Trois Noctures op.90 727.183
Track36 Unkoown (No named Provided by MuseScore) 604.337
Juvorixh Aidpxea 106 AemTd

Table 2: NI Dataset

RSE

Apyrtextovixm

To Residual Shuffle-Exchange Network (RSE) mpoxintel and tn depehiddn dour mou eivon yvwoth we dixtuo
Benes. Auté 1o dixtuo Aettovpyel ¢ xplowog unyoviopods yio ) dtadaotiog "avaxdteyatog" xo avtahhayhic
YAUEUXTNELOTIXGDY UEoa ot €va Badd veupwvind dixtuo. To dixtuo Benes elvon yveotd yio tn Suvatdtntd tou va
yelplleton amoteleouatind T TEPLOTEOYES TWV ELGOdWY, N omola elvor uio Yeuehwdng Aettovpyla oe epyaoieg
onwe 1 tadivéunon xo to dixtua Spouordynone. Xto mhaicto tou RSE, to 8ixtuo Benes umootnpilet
duvatodTnTa Tou HovTéhou va Bloyetpileton xou var podaiver amd tor uPNAc didoTaong dedopéva EVOS GHUNTOS
nyov. Anoteleiton and d0o Turuata Benes 6nwe gaiveton oto mapoxdtey Lyruo 0.0.17.
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Figure 0.0.17: Aixtuo YTrohoinou Shuffle-Exchange pe 300 tufuato Benes xou oxte etsddoug [12].

Avuxadiotdvrog ta Switch Units tou Benes Network ye tnv Residual Shufle Exchange Unit émwe qoiveton
oto oyfua 0.0.18, to dixtuo RSE oflonolel tor evowpatwpéva mheovextiuata tou dixtoou Benes, evioybovtag
TV VO TNTE Tou va pardalvel xon v Yevixelel oe dedopéva 1y ou.

i Layer g c
ELU [y
(2m) Z Norm | GELU (4m) w (2m) o @

ip 02
—_— —
(m) (m)
L ® ®
vector vector linear activation or ~ scalingby  pointwise splitinto
concatenation  copy transformation normalization  learnable addition  halves
parameter

Figure 0.0.18: Apyttextovixs; tou Switch Unit, to onolo yenowonoteizoaw otn 9éon twv blocks tou Benes
Auwxtoou [12].

To 8ixtuo RSE ypnowonotel cuveliZelg ot onoleg eapuélovtar Tty amd 1o x0plo dixTuo, ue oxomd v auEHoouv
TOV optId TWY YUPAXTNPLETIXMY XLV UELDCOLY TO WAXOC TO Pxoc TNe eLo6dou [12]. H cuvoluny| apyttextovixd
paiveton oto mapaxdte oyrua 0.0.19.
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8192x1

4096 x 96

Conv + Conv+  2048x384 . 2048 x192 . 2048 x192 2048x128
Layer Norm Layer Norm Linear Residual Shuffle

+GELU +GELU Transform Exchange Network Conv Layer

|_| D L]

Figure 0.0.19: H cuvohut, apyitextovixs tou RSE Awxtiou [12].

H npocéyyiot| pog petatpénet tny apyttextovixt] tou dixtoou Residual Shuffle-Exchange (RSE) ano éva obotnua
povric e£6dou ot €va cUoTnua Bimhrig e£680u. Autd To clotnua elvan txavo vo dnulovpyel Eeywpelotéc "mopTi-
To0pec" yia xdde xddpa amo To MyNTXO dpyElo Elddou.

Eva xpto emiyelpnuo uép NG EMAOYNAC KOG OPYLITEXTOVIXNG ETUXEVTPWUEVNS OTY| HETAYPAUPY) ovTi Yo Evor Tapa-
00CLXO LOVTERD DLoyWELOUOU EYXELTOL OTA EYYEVY TAEOVEXTAUITA TWV CUCTNUATOV UETAYRUPHC OTY| YELPLoUS
EeY PO TGV VOTWYV. AeBoPEVOU GTL OL HPYLTEXTOVIXES PETAYPAPHC €xouV NON emdellel onuavTxy anddoon otnv
AVOLYVRELOT VOTOVY oL ToUoVToL ano €voL HpYavo, 1) OTEUTNYIXY LAS EXUETUAAEDETOL AUTO TO TASOVEXTNUOL YLOL VOl
Behtidoel Ty anddoor diaywetopol. Me to vo uetaypdpel To Hovtého axplBig GAEC TIC VOTEC TOU UTEEYOUV O
éva pouond opyelo, To enduevo B elvon va avadéoel xdie voto ot owath xiddpa. Ltdyog elvol TO LOVTENO
VoL UEIEL XKoL VoL XOTOVOTOEL TIE QUOIXES GUOYETIOELS Xou oAANAoegapThoelg PeETaD TwV YOTWY TNg xdie xiddpag.
INo opdderyyo, to wovtého unopel va pdiel médc n mopovsia plag cuyxexpluévne votoe oe wia xtddpa uropel
CUY VA Vol ATOXAE(CEL TNV TAUTOYEOVY EXTENECY) OPLOUEVWY GAAWY VOTWY oTo (Blo dpyavo. Ilicteboupe 6T 1
enitevdn aUTOY TOL OTOYOU Yot 1 AVAXBAVPY AUTOV TwV CLUCYETICEWY Elval TO TEOXANTIXES Yiol v LOVTENO
Bl wELoHOU 0L TOU EMXEVTPOVETUL UOVO o1 Sudxpion tev fiywv. Avtideto, éva Hovtélo petoypaphc, Tou
e&dyeL Tic véTeg mou tadlovion ot popgr duadixol diaviouatoc y € {0, 11128 napéyel évay o Eexdopo dpbpo
YO TNV XATOVONOT] AUTWY TWV CUOYETIOEWY.

"Eyouye doxiudoel 2 BlapopeTixéc TeooeYYIoELC TNV TEOTOTONGT TNG HEYLTEXTOVIXAC:

Teororoinon 1n

H apyitextoviny| dwatneet tn depeluwdn dour) tou Residual Shuffle Exchange Network nou agopd tnv vhomoinon
tou MusicNet Dataset, ohhd elodyetl évoy BlaxhadwUévo dpouo YETd To eninEdO YEOUUXOU UETATY NUATIOROD.
Kéle dpoporoyio agopd éva and ta 800 dpyava, evowuotavovtag étol éva Eeywpetoto Residual Shuffle Exchange
Network yio xdde yia amo tic 8o xwddpec. To tehxd otddlo oe xdlde dpopordyio anoteheltar and éva eninedo
cLVENENC Tou elvon elduxd pudulopévo ylo vor cupmiéoel Ta yopoxTneloTxd oe éva 128-8idotato anotéheoyol.
Avuti| 1 Sudotaon avtiotolyel otig 128 mbavéc voteg MIDI, emitpénovioc 6to Hoviého Vo anoTuUn®oEL To TATpES
QACU TWV VOTOV Tou xdde bpyavo umopel vo Topdyet.

8192x1

4096 x 96 2048 x192 2048 x 128

Er\;ﬂu;ﬂ Slh\_ume “ p—
Conv + Conv+ 2048 x 384 2048x192 T Cony Layer
Layer Norm Layer Norm Linear

+GELU +GELU Transform -

| Residual Shuffle Cony Layer |

Exchange Network 2

2048 x192 2048 x 128

Figure 0.0.20: Tporonolnon 1n.
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Teononoinon 2

Y1 deltepn TpOoTMONOMOY, UAoTOooue Lot o omhr) Tpoodpuoyy Tou opywol Residual Shuffle Exchange
Network. O muprjvag tou dixtdou, cuunepthapPoavouévou tou otolyelou Residual Shuffle Exchange, nopapével
avolholwtog yior vo Stortnendel n oxepardTnTo TG EEAYOYNC YOPAXTNELOTIXGY TOU TEAYUATOTOLE(TOL ot TOV
apy o oyedlooud. 26T600, N akhayt €xel yivel ato teleutaio 6Tddlo Tou YovTéhou, 6mou To TeAeuTaio eninedo
ocLVENENC €xel avadlapoppwiel étol hote va e€dyel dldvuoya Bimhdolo oe SldoTaoT ano To apytxé. Autd To
eninedo cuvENENS elvon xavd vor avardéoel Tar e€ayuéva YopaxTNEloTIXd 0To XATIAANAO Gpyavo, eEdyovTaS [lo
avamopdotaoy 2x128 tou eVewPATMVEL TNV xoTavouh TdavothTwy Yio Ohec T 128 véteg MIDI oe xan tor 800
bpyova.

8192x1

4096 x 96

Conv + Conv+ 2048x384  2048x192 2048x192  2048x2x128
Layer Norm

Layer Norm Linear Residual Shuffle
+GELU +GELU Transform | Exchange Network Conv Layer D:|

]
|_| L] L]

Figure 0.0.21: Tpomonolnon 2

ITewpdpata ko AnoteAécouata

Ta yovtéha exmoudeltnnay pe péyedoc naxétov 4, oe mopddupo 8192 detypdtwv e Prua 128. H exmaldeuon
yenowonolnoe dUo cbvola dedouévwv: to GuitarSet xou To cbvolo Bedopévwy Ue To elXovixd dpyovo Tou

ONULOVEYHOUE.
Exnaidcsuomn oto NI Dataset

Table 3: Merétn mpootung Permutation Invariant Training

APS SCORE GuitarSet | NI Dataset Test
Modification 1 no PIT | 10.06% 59.03%
Modification 1 PIT 13.14% 62.99%
Modification 2 no PIT | 12.37% 60.58%
Modification 2 PIT 13.29% 63.97%

To apywod melpapa elye wg otdyo T obyxpon g amddoone o TNC AMOTEASOUATIXOTNTAS TwWV D00
Tpomonoioenwy. Evd xan ol 0o tpononotioeic elyav napdpola axplBela, n debtepn tpononolnoy elye eAapend
xoAOTERT, anbébooy 6mwe gatveton xan arno tov mivoxa 0.0.10. Etvow onuovtixd vo onuewwdel 6tL unegéfn tny
TEAOTN ApYLTEXTOVIXY 0TV axp{Beta, Ye UTOBITAGGLO apLipd TopauéTewy. Aedouévou ouTol TOL TELRHULATOS OTO
€86 xou oto e€ric Yo ypnotwomololue Ty 21 TpomonoinoT Yiot GAa T UTOAOLTOL TELPAUATAL.

Exnaidcsuon pe diagpopeTtindt cOVOAa SsdopEvwyY

Table 4: Anoteléopato oo didpopo civola dedoPEVLV

MOD2 - APS SCORE GuitarSet | NI Dataset Test
Train NI - Finetune GuitarSet | 71.81% 7.99%
Train GuitarSet 72.77% 7.65%
Train GuitarSet + NI Dataset | 68.62% 62.62%
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To npdto nelpaya anoxdhue twe to povtélo Eeyviel Ypryopa ta deddpeva ota onola €xel tpoexmandeutel xo i
€y ovTag exnaudeuTel ot BEUTEPO YPovo ato alvoho NI Dataset ¢yvtog npoexmaudevuévo oto GuitarSet, n anddoon
TOU HOVTENOU 010 GUVolo Soxiung Tou GuitarSet fitav un BEATIOTN, UTOBNAWMVOVTAS ATWAELY TANPOPORLDY TOU
anox TNV xoTd TNV oy Lxr exntoldeuvon.

IMopbpota, to deltepo melpopo UTOYEGUULCE TIC TEOXANCELS TNG UETAPECOLLOTNTAS TOU GUVOROL dedopévwy. H
exnaidevon oe mpayuatnée nyoypaproels (GuitarSet) dev petappdotnxe xohd oty anddoor oto cuvdeTind
ovvoro dedopévwv (NI Dataset), vnodetxviovtac éva onuavtind ydopa YeTolld tne uddnone touv yoviéhov oe
TEOYHOTIXG EVAVTL GUVIETIXDV DEBOUEVWY.

Yto tehevutalo melpapa, o cuvduaoudS Tou cuvohou dedouévwy NI Dataset xou tou GuitarSet yio exnoldeuon
odnynoe o éva LOVTENO PE PETPIXEC amdboomng xovtd otig udnidtepeg Baduoroyiee APS nou emtedydnxay
OTaY EXTAUBEUGTAY ATOXAELTTIXG ot xdde cUVolo Bedopévwy. Autdc o cuvbuooud Bedouévev evioyuoe T
AVIEXTIXOTNTA TOU HOVTEAOU X0 TNV LXAVOTNTA TOU va yevixeleTal o mowiia dedopéva. Ilpoywpmvtag, 1 ap-
YLTEXTOVIX amd TN Be0TERY TPOTOTOINGCT), EXTALBELUEVY) GTO GUVBLACUEVO GOVONO Bedopévay, da yenouronondel
Yo TNV eXTOUBEVOY) TOU LOVTEAOU Bloywpelool Tou TAnpogopeitoal and to oxop.

DEMUCS

YBewouxodg Transformer Demucs yia tov Alayweiowd IInyowyv Mouvowxrg

O Défossez xou dhhot [32] mopousiacay tov YTReWxé Transformer Demucs (HT Demucs), o onolog Paciotnxe
oc mponyolueves exdoyég g Blag apyttextovixfc. H véo apyttextovind evowuatdvel évay dlaxAadoluevo
Transformer Encoder, o onolog xaheitan var cuvevdoel xau va ahknhoe&apthioel Thnpogoplec ano 2 Touelc autodvy
NG XUUOTOROPPNE XAl AUTOV TOU PUOUATOYRAPHLATOC.

To Hybrid Demucs anotehetton and 80o U-Nets mou Aertoupyoldv 1600 GOV YpbVo OGO ol GTOV QPACUL
oLYVOTATWY, e xdde éva va Blardétel Tévte emlnedo xwdomownty xat anoxwdixomointy. Ta eninedo cuyxAlvouv
METE TOV TEUTTO XwdixomonTy, axohoudolueva amd €va xowvé €xto eninedo. To xbplo eninedo anoxwdxononTy
ebvan enione xowé. H goopatind é€o8oc, uetd and avtiotpopo yetaoynuatiopd Fourier pixpod ypdvou (iISTFT),
ouYywvedETOL UE TN Ypovixt) €€000, TapdyovTag TNy Tedfiedn tou povtélou. ‘Onwe galvetan oto ayfua 0.0.22,
1 apyrtextovixy| nopouctdlel éva udvo eninedo self-attention xwdxonowmtr and tov Transformer. O pnyoviopoe
npocoy M anoteAelton and 8 "xeqdhia’.

( ISTFT }—«{/\
{1 1| e b

ZDecoder; (Cin = 48, Cout = 4-2-2) ]\ TDecoder; (Cin, = 48, Cout = 4-2)

ZDecoders (Cir, = 96, Cour = 48) \ TDecoders(Cin = 96, Cout = 48)

ZDecoders(Cip = 192, Cout = 96) / TDecoders(Cin = 192, Cout = 96)

ZDecoder(Cip = 384, Cour = 192) | \ TDecoders(Cin = 384, Cour = 192)

Cross-Domain Transformer Encoder

| ZEncodery(Cin — 192, Cous — 384) | [ TEncoders(Cin = 192, Cour = 384)

ZEncoders(Cin, = 96, Cout = 192) \ TEncoders(Cin = 96, Cour = 192)

ZEncoders(Cip, = 48, Cout = 96) \ / TEncoders(Cin = 48, Cout = 96)

ZEncoder; (Cin = 22, Cou = 18) \ /[ TEncoder (Cin = 2, Cout = 48)
" r——

| — o

A

A ANAS AN

Figure 0.0.22: Apyitextoviny DEMUCS [33].
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Avalvtixny XOyxpion twv Metpuxwyv SDR ko SI-SDR

H a€lohdynon tng moldtnTag TS anogoveons evog ahyoplduou Tohhéc @opéc UETELETOL UE YEYON LETEIXMY OTWE
10 SDR xau to SI-SDR. Evéy autég ol yetpixéc €youv yenotpomoindel exTeves o UEAETEC TTOU ETUXEVTOWOVOVTAL
TNV ATOUOVLOT BLUPOPETIXDY 0PYAVKY, 1) CUUTERLPORA TOUC GTO TANICIO TNG AMOUOVWONEC TNYWOV YE TUEOUOLYL
YOEUXTNEWOTIXG Y poLdc Tapaével AydTepo Jlepeuvnuévn.  Aedopévou 6Tt 1) TAELOVOTNTA TWV TEOTYOUUEVEV
epELVAVY TEpLhopfBdvel dpyava PE BLlapopeTixés Ypotés, 1 duson alyxpeion Twv Ty SDR mou emtuyydvoupe
euelc evdéyetan va uny elvan evdewetixd. o vo éyoupe uio opyind extiunon e xaTaAANAOTNTAS TWV UETELXWY
QAUTOV 0T TELPAUATO UaS, ONULoVpYHooue 2 BlapopeTixd oevdpla uifewyv yia va ouyxpivouue. To npdto cevdplo
apopovoE 2 NYNTXE oHUATA Ao 2 BIAPOPETIXEC XhaoWES Xiddpe eV To BelTERO TEVdpLO apopoloe 1 MynTixd
ofpa ano xhoowr| xddpo xon 1 nyntxd ofja ano mdvo. e xdde oeviplo ToRUANGEUE CUCTNUOTIXG TNV
avohoyla avapelEne yio va TeocoUoudoouue Sudpopa eninedo amopdvwone mnyodv. Me to melpopa ovtd oto-
YEVOUUE 0TO Vo eEeTdooLUE TAVES AVIGOTNTES OTIC AMAVTAHGELS TwVY peteixey. H yedodoloyia tou axoloudolye
patvetar oto mopxdte oyfuo 0.0.23.

“Reference”

& — s Al

D weight
2 “Estimate”

@/ S T T @ 1

Metrics Evaluation

/ “Reference” c
P4 & — o e i s
N E
weight o ., E
- | » Estimate | g
ﬁ! &~ Aoy —— > @— i 2
Figure 0.0.23: MeYodohoyla yio a€LloAOYNON UETEXODV.
SDR for Guitars vs Different Instruments SI-SDR for Guitars vs Different Instruments

20 4
—8— Guitars —8— Guitars
Different Instruments Different Instruments
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w
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Figure 0.0.24: Avdduon tov yetpedv SDR xan SI-SDR yua pléeig peto€d 800 xhaowmdv xiddpwy xou
OLAUPOPETIXWY 0PYAVWY.

To anoteréoparta, 6mwe @ofveton oto oy 0.0.24 delyvouv o6t ov Twée SDR xou SI-SDR yio T pieig -
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Vdpoc elvan ouveyde vhnidtepes and avtée mou Tpoépyovtal and WEELS BLUPOPETIXMY 0pYAVWY. LUYXEXPWEVA,
ropotnerinxay Bieg téc SDR ota pelypata xiddpog axdun xon otay puor xiddpa elye apxetd younhoteen éviaon
oe obyxplom PE Ta BlapopeTind dpyava. Autd LUTOBSNAGVEL OTL 1 ogoLdTHTA oTY Yeold LeToll Twv Blo xldpwv
anotelel TEOUANCT YId TIC HETPXES Yia VoL aELOAOYNTOLY oxEIBME TNV TOLOTNTA TNG ATOPOVROTS.

YAloroinon Yuvdptnong Evioyvong Acdopévwy Opposite Panning

H vhonoinom tneg teyvinic enavénong OppositePanning éyxetton oty eupeia yprion Tou panning otig cUYYEOVES
nyoyeagproelc. Me tov 6po panning otny nyoindlo avapepdpacte ot oxdmun tonodétnor evdg fyou oe éva
ano to 800 xAVAALL EVOE GTEREOPWVIXG OpYElov. e TopaywyYEg 6Tou UTEEYOUV TOANE Youowd dpyava, TO
panning efvou gL xov) Te vy yio T dnoupyio xhpou xou pog TAneéotepns exévac Hyov. Autd elvan Wiaitepa
ONUAVTIXG OTAY TEOXELTOL YIA TOV BLALY WELOUO 0PYEVKY OTWS OL XAUCIXES XdpeES, oL oToleg Uy Vd TotodeToUvToL
avTdlapeted oe wa pién. Xto nopoxdtew oyfuo 0.0.25 gaiveton pio anexdvion e wedodoroyiog pac.

Initial Scenario Panning Scenario

Opposite Panning

9
Pan Left () Pan Right Pan Left 0 Pan Right

Figure 0.0.25: Teyvix) Enat&none Opposite Panning.

Y10 oUvoho Bedopévwy Wog, oL dpyég NyoYpaproelc dev meplhopBdvouy authv Ty uedodoroyio panning,
TEOLCLELOVTOG €Vl GEVAPLO TIOU BEV aVTITPOoWNEVEL TApwe Tic ouvixee Tou mpayuatixol xéouou. Lo
vo avtigetownicovpe autd, n texvix OppositePanning eiodyeton we otpotnyy enadénong. Autrh n ey
ONpLovpYEl TEYYNTA oevdplo 6Tou 800 XdEeC €YouV BLOPOPETIXE panning, TEOCOUOIWVTAS EYYEVOS TS CUV-
Ve TEoryUoTiX S NYOYEAPNOTS.

ITelpdportor %ol AMOTEAECUATA

Y10 TAAOLO TV TEIROUATWY UAC, TPOTOTOLRCOUE TO HOVTENO ETOL (OOTE VoL eEQYEL HOVO U0 GTEQEOXUVIALAL, UE
&0 xavdht vor avTmpoowneler po and e 000 xhaowéc xddpes. Axdua pudulooye To LOVTERO YioL VoL AgL-
TovpYel o TUAUOTA 4 BEUTEPOAENTWY. g CUUPLVIDL PE TNV PUTIICELS TV dEY XDV NYOYRUPHOEWY, 1 CUYVOTNTI
derypotohnlag yio Ti¢ OTEREOPWVIXES xuUaTopop®ES dlatnerinxe ota 44.100 Hz. Egapudcaue tv exnaldeuvon
PIT vy vo MBoupe unddn tic mdavée pyetotéoelc nny®y xatd T didpxela Tne exnaidevong.

Katd ) 8udpxeia tne exnoidevong, 1 ouvdpetnon Addoug ftav évag cuvduaoude tou L1 ogpdiuatog (Bdpog 0,8)
xou Tou adpolotixod opdhpatoc (Bdpoc 0,2). Ta Bdern xadoplotnray e Bdon ta Péltiota anoteréopota and
dudpopec boxwpéc. H evowudtwon tou adpolotinot opdlpatog e€acpahilel 6Tl 10 poviého avayvwpllel 6Tl xou
tat 800 amoteréopata Yo Teénel cuAhoYWXd Vo tpooeyyilouv Ty gicodo. Xpnowonoidnxe o Behtiotonomtic
Adam, pye pudud uddnone oplouévo oo 0,0003, cuuPotéd ue to apyixé Demucs. H exnaidevorn tou povtélou
xpdtnoe meplnov 100 emoyéc. Elvan onpovtind va onuewwdel 6Tl To O amoTeEAEOUATIXG HOVTENR TROEXUYIY
ouvenwe petald tne 70ne xou 100mg emoyfc. To Sedopéva pog ywpelotnxay pe avoroylo 80-20 exmaldevonc-
emxbpwong avtiotoya. o v aglohdynon e anddoaorg, yenowdonoimooue Ueteiéc 6w ot SDR, SI-SDR,
SAR, ISR xa SIR.

Ta melpdparta tov Teé€aue ywellovta oe 2 Baouée xatnyopiec. H npdtn xatnyoplo apopd to netpdyuata ta onolo
éywvay otny apyttextovixi tou DEMUCS yweic tnv alonoinon xdmolag nepattépw mhnpo@oplag yia TLe vOTeG ToU
nailel To xdde Gpyoavo eved 1 Bedtepn xatryopla apopd Tol TELPAUOTA GTO OTO(0 TRPOTOTOLACOUE TNV UEYLTEXTOVIXT
tou DEMUCS pe 6t6)0 vor unopel vo déyeton dedopéva yior TLg VOTEC Tou apopoly tny xdde xuddpa. o v
TANEopopla TwV VOTWY Yenowonowoaue elte dedopéva groundtruth elte Sedopéva to onola elyov mpofregidel
aro Vv apyLtextovixr) RSE nou napousidotnxe mponyouuévee. Tapoxdtw galveton o yevixn emoxdnnon g
draduxaotac Tou yenowwonoinxe yio va exnandeutel xou va aflohoyniei to povtého. To napaxdte oyhuc 0.0.26
neptypdpet TN dodixacto exnaideuone Tou HovTéAoL.
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Guitar 2 Estimation

To tehxd amoTeEAéoUTO A0 OAOL TOL TMELOAUATA QAUiVOVTOL GTOV TUPOXATEL Tivaxo OOV YENOLOTOLOUUE TIG
AXEWVVPLES.

GD GuitarDuets Dataset

GS GuitarSet Dataset

NI NI Dataset

GS SI GuitarDuets Score Informed

Table 5: Xuvohixd anoteréopata o€ OA Tot GUVOIA BESOUEVLV

Metric | URMP GD+GS+NI | GD + GS | GS NI GD GD SI GD NI
SDR GI1: 1.633 | G1: 4.306 G1: 4200 | G1: 4.580 | GI1: 2.672 | GI: 5.140 | G1: 5.399 | GI1: 5.988
G2: 2.609 | G2: 0.765 G2: 1.206 G2: 1.323 | G2: 0.012 | G2: 0.991 G2: 1.166 | G2: 0.934
SL.SDR G1: -2.440 | G1: -6.161 GI1: -0.334 | G1: -4.223 | G1: -0.841 | G1: 1.803 | G1: 1.657 | G1: 2.370
G2: -2.444 | G2: -6.174 G2: -0.340 | G2: -4.178 | G2: -0.815 | G2: 1.806 | G2: 1.664 | G2: 2.362
SAR GI1: 2.906 | G1: 7.988 G1: 8839 | G1: 8314 | Gl1: 4706 | G1: 7.719 | G1: 7.815 | GI1: 8.835
G2: 6.088 | G2: 1.964 G2: 10.670 | G2: 6.627 | G2: 8.491 | G2: 1.417 | G2: 2.101 G2: 0.893
SIR Gl1: 5.113 | G1: 10.596 G1: 6.235 G1: 7552 | G1: 3.989 | G1: 10.186 | GI1: 11.280 | G1: 11.777
G2: 8.250 | G2: 4.518 G2: 7.732 G2: 8.939 | G2: 8.612 | G2: 4.935 G2: 5.158 | G2: 4.271
ISR G1: 1.621 | G1: 5.873 G1: 5.908 G1: 8.115 | GI: 6.368 | G1: 6.400 | G1: 6.808 | G1: 7.229
G2: 2.817 | G2: 1.146 G2: -1.427 | G2: -0.310 | G2: -2.957 | G2: 0.571 G2: 0.589 | G2: 2.215

Metd v avdluon Twv anoTeAeoudTey ond To Sidpopa cUVOAA dedouévwy, TpoxinTouy ol e&elg mopaTnenoELS.
ITpdytov, anooxomolue otny avdhuon tng BéATIoTng anddoorng ue Bdon ) uetpwr SDR, o cuvbuaoude tou "My-
Dataset+NI Dataset’ yiat tnv npddtn xddpa (G1) naphyaye v vhnidtepn SDR ota 5.988. Autd unodnhdvel
OTL TO HOVTEAO TOU EXTAUSEVTNXE O AUTO TO GUVOVUOHEVO GOVORO BEBOUEVLV HTOV TLO AMOTEAECUATIXO OTN|
cUVOAXT| oo TNTaL Blaywptopol ouatoc yio v xwdpa mou nailer odého. H mpoodxn tou NI Dataset, nou
onuovpyeitan amd éva tpdoldeto eovind dpyoavo xddpag, miavov tapelye emmiéov mAnpogopiec mou Petiwooy
TN SuvatdTnTa Tou wovtéhou va dlaxplvel avdueoa ot 8o xrddpec. ot petpixr SI-SDR, oplouévo and o
cUvoha Bedouévev eugpavicay apvntixée Tiée SI-SDR, unodewviovtag npoxiioeic otny eniteuérn Sy wplopol
hofdvovtoc unddy TNy €viaon Tou xdle GHUATOC, VK dAAA Elyay youniéc detixéc Twég. 2otdoo, xan maAL
T0 oUvoho dedouévwv "GuitarDuets + NI Dataset" cugdvice ta Aiydtepo ixavonomtind anoteAéopato. Io
auT6 TO cUVBLACOUS, M xovTwoTNTA TV TWOY SDR otic tiwég SI-SDR unodewxvier 61l to povtéro dotnpeel
EMAPXWE TNV EVTOON TV apYX®dY TNYoY, eacparilovtogc cuveny] mowdtnta doywpelopol. lapatneeiton yior €v-
Tovn acvupetpio petadd twv yetpixody SDR xow SI-SDR, pe tnv tekevtalor var xortorypdipel ouy Ve yauniotepes
Tiéc. Autd elvan €val avoevouevo anotéheoyua, BeBOUEVNC TNS AVAALOTC OV XAVoHE Tapandvew. Auth 1 andx-
Ao vroypopp{ler Tnv mopousior GQoARdTLY Sl welool Tou LTEEBAVOUY ATANS TNV XAWAXWoT TNS EVTAoNG,
mdoavov neplhopBdvovTac mopauoppoels, TapeUoréc 1| dAAa artifacts.
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Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

Yuvolxd, to xahltepo yovtého elvar autd mou exmoudedtnxe oto ouvduaoud "GuitarDuets + NI Dataset”
EMTUYYAVOVTAG CUVETY ATOTEAECUATA OE OAEC TIC UETEIXEC.

H @lon xdde cuvohou dedouévwy mailel xadopiotind pdho oty anddooy tou poviehou. I mopddetypa, N
xodapy) Sudixptor PeTald ouvodelag xou yehwdlag oto 'GuitarSet” amlomolel Tov xodopiopd dlaywpetopov. Avti-
Yétwe, To 'myDataset’, Tou ano ) gUon Tou Tapouctdlel chvieToug pdhoug Tne xde xddpac, 0dnyel ot oyeTIXd
youniéc yetpwée. To NI Dataset’, mou mpoépyetar and €va euxovind dpyavo, npocpépet éva mo xadapd yo,
70 0mol0, 6TAY GUVOUALETOL UE TTPOYUOTIXES NYOYPAPNOELS, UTTOPEL VoL EVIGYUGEL TNV IXAVOTNTA YEVIXEUGTC TOU
HOVTENOL.

Yuunepdopata xow MeAhovtixeg Enextdoeig

YuunEpdopaTR

Yy ev Aoyw €peuva UEAETHOOUE TO TEOBATUO Bl WECLOU HOUGIXOY TNYWY PE XOWVY YPOLd, CUYXEXQWWEVA
oe viouéta xhaolxnc xddpac. Xenolonolioaue yio To TElpduata pag Tic state-of-the-art apyitextovixée ya
BLOLYWELOUO HOLCXDY TNYOV Yo Vo e€lohoyricouue Ty enidoor toug oTo Bixd pag meoBinua. I'a to oxond
autd, dnuovpyoaue V0 Véo GUVOA BEBOUEVLY TOL AMOTEAOUVTOL ATO TEOYUOTIXES X0 ELXOVIXES MY OYEAUPHOELS
viouvétwy xiddpac, xadng dev LTApye xdmoto dAAo cUvolo Bedouévwy Bladéopo. Eiohyaue pio véa teyvixm
enadEnong dedouévev, Tnv OppositePanning. Tauvtoypova npotelvaye wio dpyttextovixy| oelpd 1 omola a&lonolel
2 Blopopetind LOVTEAN HOUCIXAC UETOYPUPNS XAl SLoYWELOUOU TNYWV Yio ToV XahOTepo Blaywpelopd. Amo ta
TELPAUATA PG TUPAUTNENOOUE TS TO LOVTEA TOU ETULTUYYEVOUY TOAD XahO Blaywelowd oty TERITTWoY Tou ol
HOLOWESC TINYEC TOPOUCIALOUV DIUPOPETIXES YPOLES, DEV XATAPERVOUV Va EXOUV (BLO UMOTENEGHA YLal TAL VTOUETA
xhaoic wddpac. IMopatneRdnxe udhioto ott mopd Tic LPNAES TWES TV PETPXGY Yia TNV o&loAdYNoY Tou
HOVTEAOU, 1) TOLOTNTA TOU BLoYwEoLIOU OTWS BAMIOTOINXE ATO ATOUXNO UXOUCTIXS TEGT BV HTAV ovIAOYT).
‘Etol Aoundv ®Evovtoag cUYXQLTIXA TELAUATA, E00HUE TWE Ol UETPWXEC IOV YPNOWLOTOLOUYTAL UEYEL OTLYURS Yot
TOV Sl WELoUO TNYWYV UE BLOPOpETIUES YEOLEC BEV Elvol TOGO AVTITPOCKWTEVTIXES YIA TOV OLUYWELOUO TINYWV UE
%oy ypotd. Axdua mpotelvaye plol VEA opYLTEXTOVIXT 1 OTolol TOEAIETOUYE EVAL HOVTEND UOUGIXAC UETOYPUPIC
oTn oelpd Ye éva wovtéro Soyweolwol. H ev Adyw apyrttextovin| @dvnxe vor Sivel éva onuavtin adénon otic
TIESC HATOLWY ATO TWY UETEUODV.

MeAhovrtixéc Enextdoesic

o Kplvetonw onuovtind yia tig ueAhovtnég enextdoelg va dwiel teptocdtepn Bdon otn dnuiovpyio evog mhnpéo-
TEPOL OE BLIPXELL oL OE BLAPOPETIXES YPOoLéC xiddpac. Me autdv tov Tpémo Yo unopécouy Ta HOVTEND Vol
YEVIXEVOLY XUAUTEQA o VoL eXTaLdedovVToL o€ €val TANEESTEPO oUvoho dedopévwy. Axdua etvar avayxaio
vo mapartetoly pall pe ta apyeio Byou tne xdie xddpac, apyela mou meptypdpouv Tic voTeS Tou Tadlel 1
xdde wa, €Tol MoTte Vo elvol EUXOAOTERY 1) EXTABEVUCT] UPYLTEXTOVIXMY TOU Ao OAOVOVTOL UE TNV LOUCLXY
METOY POLpY).

o E&io00 onuovtixd elvon var yivel éva Te0T axpOdoE®Y oo EXTOUOEVUEVOUS LOUGCIXOUS, €T0L WOTE VoL oE-
LOAOYNCOUUE TOLOTIXG TNV ANOBOCT] TOU BLoyWELOUOU ARG XL THUTOYEOVAL VoL AVTIG TOLY(OOLUE TIC TIEQ
TOV PETEOV PE TNV TOL0TIXY BoaduoAOYNoT TV UXOUTLY

o Axdya, elvon omopaitnTto var yivel gl extevéotepn HEAETN NG AmOBOCTE TWV UETPXOY OTO XOTA TOGO
elvol avTLTPOoOTEVTINES TOU BLoWELOUOU LOUGIXGDY TNYKY Ol 0ToleC TapoUCLALoUY XOLVE YUEaX TNELGTLXA
YEOLdS.
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Chapter 1. Introduction

Music source separation is an essential task in audio signal processing that aims to separate individual
sound sources from a mixed audio recording without prior knowledge on the properties of the participating
signals. The ability to isolate and extract individual instruments or voices from a musical ensemble has
numerous applications in music production, audio restoration, and content analysis [34]. Classical guitar
duets, characterized by the intricate interplay and harmonization between two guitarists, present a unique
and challenging scenario for music source separation.

The motivation behind this thesis originates from the extensive and diverse repertoire of classical guitar
duets, where the interaction between two guitars creates a rich sound of harmonies and timbres. There are
many situations where the ability to separate the individual guitar parts could be valuable. For instance,
in educational settings, learners may benefit from isolating and studying each guitarist’s performance in-
dependently. Furthermore, in music production and performance, the ability to separate the guitar parts
can provide greater control over the mix, enabling adjustments of volume levels, equalization, and spatial
placement as it has been shown in [35, 36, 37].

Moreover, the practical implications of successful source separation in this context are vast. In the domain
of audio forensics, separating guitar tracks can aid in the analysis and authentication of recordings. This
capability could be instrumental in copyright disputes where the origin of a specific guitar part is in question.
Additionally, the extracted audio can serve as a valuable resource for remixing and remastering historical
recordings, where original multitracks are unavailable, thereby preserving and revitalizing cultural heritage.

The significance of this research also extends to the development of assistive technologies for musicians and
composers. By facilitating the isolation of individual parts, composers can experiment with rearranging
pieces for educational purposes or adaptive performances, catering to musicians with varying skill levels or
disabilities. Similarly, assistive listening devices can be enhanced to focus on specific instruments within an
ensemble, tailoring the listening experience to the preferences or needs of the user, such as focusing on a
particular guitar part in a duet for learning or enjoyment purposes.

1.1 Definition of Problem: Music Source Separation

Source separation is a common problem in the field of digital signal processing (DSP) and has attracted
significant attention in AI research. It involves decoupling different source signals within a given signal
mixture, aiming to eliminate unwanted interferences or isolate specific source signals for further processing.
Source separation can be applied to various types of signals, including images and audio signals.

While source separation shares some similarities with signal denoising, as both involve separating signals of
interest from unwanted components, source separation primarily focuses on isolating "proper" signals rather
than noise. There exist effective techniques for generic denoising problems, but source separation tackles the
challenge of extracting specific source signals from mixtures.

Source
Separation

i &

Figure 1.1.1: Source Separation image [1]
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1.2. Monotimbral Source Separation in Classical Guitar Duets: Challenges and Complexities

1.2 Monotimbral Source Separation in Classical Guitar Duets:
Challenges and Complexities

This thesis specifically addresses the task of source separation in the context of classical guitar duets, a type
of monotimbral source separation problem. The goal is to separate the individual guitar parts from a mixed
recording without any prior information about the sources, such as musical arrangements. This problem falls
under the broader category of music source separation, which involves separating different instruments or
vocals in a musical ensemble. It is also related to speech separation, which aims to isolate speech from a
mixture in multi-speaker environments.

e -

Source Separation System ‘\Hm“lmM\h“W\mwlmw\”uh\umwm-\m|wMH‘]H\“MHI‘mw|\\|‘\\|“l‘uhlhwﬂ-“hh‘m‘|h”\|u|“”»‘wu\ﬂulwﬂhn\l
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Figure 1.2.1: Source Separation in Classical Guitar Duets

Before delving into tmonotimbral source separation, it is essential to understand the foundational role of
timbre in music. Timbre, often described as the "color" or "quality" of a musical sound, distinguishes
different types of sounds, even when they share the same pitch and loudness. At a high level, timbre is what
enables our ears to identify instruments, voices, or sounds as unique, such as differentiating a piano from
a violin even if they play the same note at the same volume. This unique quality arises from the complex
interplay of sound waves, including the fundamental frequency and a series of overtones or harmonics that
the instrument or voice produces. The specific mixture of these harmonics, along with the way they evolve
over time, contribute to the distinctive timbre of a sound. The material and shape of an instrument, the
technique of a player, or the characteristics of an electronic sound source can all significantly affect these
acoustic properties, crafting the sounds we can recognize and appreciate in music.

Difference between Classic Source Separation and Monotimbral Source Separation

In classic source separation, the focus is on separating individual sources with distinct timbral characteristics,
such as vocals, drums, and bass. These sources often exhibit significant spectral and temporal differences,
making them easier to distinguish. In contrast, monotimbral source separation aims to separate sources that
belong to the same instrumental family or share similar timbral characteristics. In the case of classical guitar
duets, both guitars produce sounds with similar timbres, making it challenging to separate the individual
guitar parts solely based on spectral differences.

Polyphonic Nature of the Guitar

Another significant challenge in monotimbral source separation of classical guitar duets is the polyphonic
nature of the guitar itself. Unlike monophonic instruments, such as a single voice or a solo guitar, the
interaction between two guitars in a duet creates complex polyphonic textures, where multiple notes are
played simultaneously. This polyphony results in overlapping and intertwined frequency components, making
it difficult to isolate individual guitar parts based solely on spectral cues.

Intertwined Melodies and Harmonies

Classical guitar duets are known for their intricate interplay and harmonization between the two guitarists.

3



Chapter 1. Introduction

The melodies and harmonies produced by each guitarist are often closely intertwined, with notes from one
guitar complementing or harmonizing with the other. This interdependence further complicates the sepa-
ration process, as the individual guitar parts are not only spectrally similar but also musically intertwined.
It requires sophisticated algorithms and models that can effectively capture the intricate relationships and
dependencies between the guitar parts.

Performance Variability and Expressiveness

The performance style and expressiveness of the guitarists add another layer of complexity to the mono-
timbral source separation task. Each guitarist may have a unique playing technique, dynamic range, and
expressiveness, which further affects the spectral characteristics of the individual guitar parts. Additionally,
the performance variability, including timing fluctuations, nuances, and stylistic variations, introduces further
challenges in accurately separating the guitar parts.

Addressing these challenges in monotimbral source separation of classical guitar duets requires advanced
algorithms and models that can exploit both spectral and temporal cues effectively. Techniques that incor-
porate higher-level musical knowledge, such as score information or harmonic models, can provide additional
context and improve the separation quality.

1.3 Goals and Contributions
1.3.1 Goals

The primary objectives of this thesis are:

e To explore and develop effective techniques for monotimbral music source separation of classical guitar
duets.

e To contribute to the broader field of music source separation by expanding the understanding of the
challenges and opportunities specific to classical guitar duets.

e To conduct subjective and objective evaluations to assess the quality and perceptual fidelity of the
separated guitar parts.

1.3.2 Contributions

This thesis contributes to the field in several ways:

e Introduction of a dataset comprised of real classical guitar duet recordings, totaling approximately one
hour of music, which serves as a valuable asset for training and evaluating source separation models.

e Creation of a synthetic dataset using online transcriptions of guitar duets and virtual instruments to
generate approximately two hours of music. This dataset includes MIDI representations for each guitar
part, providing a rich resource for in-depth analysis and algorithm training.

e Implementation of the OppositePanning augmentation technique to simulate real-world recording con-
ditions and improve the model’s performance in scenarios with spatial audio variations.

e Comparative analysis of SDR metrics in the context of classical guitar duets to understand their effec-
tiveness and limitations for sources with similar timbral characteristics.

e Development of a pipeline composed of dual models for improved separation accuracy and fidelity. This
includes generating a piano roll representation for each guitar, followed by separating the mixed audio
into individual guitar audio files.

e Exploration and assessment of modifications to a music transcription architecture, shifting from out-
putting a single transcript to generating two separate transcripts for each instrument in the recordings.
This adaptation aimed to enhance the precision of the transcription process in scenarios involving two
instruments.

e Modification of the Demucs hybrid transformer architecture to incorporate activity labels (soft labels)
for the notes. This alteration was designed to provide a more nuanced understanding of note activity,
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1.4. Thesis Outline

1.4

potentially leading to improved separation performance by accurately capturing the dynamics of note
production.

Thesis Outline

In the subsequent sections of this thesis, we will present a comprehensive review of the relevant literature,
describe the methodology employed in our research, detail the implementation and experimental setup,
discuss the obtained results, and provide a thorough analysis and interpretation of the findings. Finally, we
will conclude with an assessment of the contributions made by this study and outline potential avenues for
future research.

This thesis is organized into five chapters. Each chapter is outlined as follows:

Chapter 1: Introduction

This chapter provides an introduction to the problem of music source separation, particularly focusing
on classical guitar duets, the specific challenges they present, the goals, and the contributions of this
research.

Chapter 2: Theoretical Background
A comprehensive overview of the machine learning methodologies and audio representations pertinent
to music source separation, including advanced neural network architectures.

Chapter 3: Literature Review
An analysis of the current state-of-the-art approaches in music source separation, discussing both digital
signal processing and deep neural network approaches.

Chapter 4:Creating Datasets for Monotimbral Source Separation
An analysis of the methodology and an overview of the two distinct datasets created.

Chapter 5: Residual Shuffle-Exchange Music Transcription Network And Experiments
Introducing and analyzing the Residual Shuffle-Exchange Music Transcription Network. Modification
of the aforementioned model and experiments on various datasets, including our own datasets.

Chapter 6: Demucs Architecture And Experiments

An exploration of the Demucs architecture’s history and experiments, discussing the rationale behind
the OppositePanning augmentation, and detailing the score-informed and non-score informed experi-
ments.
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Chapter 2. Theoretical Background

2.1 Machine Learning

Machine Learning (ML) is a subfield of artificial intelligence that focuses on the development of algorithms
and statistical models that enable computers to perform tasks without explicit instructions, relying instead
on patterns and inference. The primary goal of ML is to allow computers to learn automatically without
human intervention.

2.1.1 Types of Machine Learning
There are three main types of machine learning:

e Supervised Learning: This involves learning a function that maps an input to an output based
on example input-output pairs. It infers a function from labeled training data consisting of a set of
training examples. Mathematically, given a training set (z;, ;)7 where x; represents the input and y;
the corresponding output, supervised learning algorithms try to find a function f such that f(x;) = y;.

e Unsupervised Learning: Unlike supervised learning, unsupervised learning algorithms are given no
labels and are left to find structure in their input on their own. The primary objective is to model the
underlying structure or distribution in the data in order to learn more about the data, with prominent
techniques including clustering and dimensionality reduction.

e Reinforcement Learning: This type of learning is concerned with how software agents ought to
take actions in an environment so as to maximize some notion of cumulative reward. The problem is
modeled as a Markov Decision Process (MDP) with states S, actions A, and rewards R, aiming to find
a policy 7 : S — A that maximizes the expected cumulative reward.

2.1.2 Fundamental Concepts

Feature Extraction and Selection Features are individual independent variables that act as the system
input. Predictive models use features to make predictive decisions. The process of transforming raw data
into a set of features is known as feature extraction. The selection of appropriate features in the dataset
substantially influences the efficacy of the machine learning model.

Model Evaluation In ML, model evaluation is a critical step to understand the performance of the model.
It involves splitting the dataset into training and testing sets, where the training set is used to train the model
and the testing set, which is unseen during training, is used to evaluate its performance. The evaluation of
model performance is articulated through various metrics, each designed to the specific nature of the task
at hand. For classification tasks, metrics such as accuracy, precision, recall, and the F1 score are prevalent,
whereas mean squared error (MSE) is typically utilized for regression tasks.

The accuracy metric represents the proportion of correct predictions out of the total predictions made,
formulated as:

Number of correct predictions

Accuracy = (2.1.1)

Total number of predictions

Precision and recall are metrics that offer a more nuanced evaluation of a model’s performance, particularly
in imbalanced datasets. Precision, defined as the ratio of true positive predictions to the total positive
predictions made by the model, is given by:

Precisi True Positives (2.1.2)
recision = 1.
True Positives + False Positives

Recall, also known as sensitivity, measures the proportion of actual positives correctly identified by the model,
calculated as:

True Positives
Recall = 2.1.3
eea True Positives + False Negatives ( )
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2.1. Machine Learning

The F1 score harmonizes the balance between precision and recall, providing a single metric to assess the
model’s accuracy while considering both the false positives and false negatives. It is the harmonic mean of
precision and recall:

Precision x Recall
F18S =2 2.14
core % Precision + Recall ( )

In the assessment of regression models, common losses that are being utilized are the L1 loss, or Mean
Absolute Error (MAE), and L2 loss (also known as Mean Squared Error, MSE) are particularly significant.

L1 loss is defined as the mean absolute difference between the actual and predicted values, offering a linear
measure of errors. This characteristic makes it less sensitive to outliers in comparison to L2 loss, thus
providing a robust evaluation metric in scenarios where outliers are present:

1 — N
L1 Loss = — Y, - Y; 2.1.5
0ss nZI | (2.1.5)

i=1

Following the introduction of L1 loss, it is essential to discuss L2 loss, which emphasizes the square of the
differences between the actual values and the predictions made by the model. L2 loss, synonymous with
MSE, heavily penalizes larger errors, which accentuates the impact of outliers within the dataset:

L2 Loss (MSE) = 1 > (Y- Yy)? (2.1.6)
n
i=1

Here, Y; denotes the actual value, whereas Y; represents the predicted value. The sensitivity of L2 loss to
error magnitude makes it a crucial tool for identifying and mitigating the influence of outliers in the data.

Model Training Techniques Effective training of machine learning models is crucial for achieving optimal
performance. This process can be approached through either iterative optimization algorithms or closed-form
solutions, depending on the nature of the model and the problem being addressed. Iterative algorithms, such
as Gradient Descent or its variants (Stochastic Gradient Descent, Mini-batch Gradient Descent), are widely
used for models where the solution cannot be analytically computed. These algorithms iteratively update
the model parameters 6 to minimize the loss function J(#), according to the rule:

enemt = acurrent - avj(ecurrent) (217)

where « is the learning rate and VJ(0) is the gradient of the loss function with respect to the model
parameters. This approach is suitable for large datasets and complex models.

On the other hand, closed-form solutions, like the Normal Equation in Linear Regression, provide a direct
computation of the optimal model parameters without the need for iteration. For a linear regression model,
the optimal parameters 6 can be found using:

0= (XTX)"1xTy (2.1.8)

where X is a full rank matrix of input features and y is the vector of target values. However, closed-form
solutions are not always feasible due to computational complexity or the inability to express the solution in a
closed form for many machine learning models. When X is not a full-rank matrix; in such a case you should
use a Penrose Pseudo-Inverse implemented via SVD.

In addition to selecting an appropriate optimization algorithm, the use of a validation set plays an important
role in monitoring the training process and preventing overfitting, which is explained in Paragraph 2.1.2.
The validation set, separate from the training and test sets, is used to evaluate the model during training,
allowing for the tuning of hyperparameters and the assessment of the model’s generalization ability to unseen

9



Chapter 2. Theoretical Background

data. By carefully monitoring performance on the validation set, practitioners can make informed decisions
about when to stop training to avoid overfitting, thereby striking a balance between bias and variance.

The choice between iterative and closed-form optimization methods, along with the strategic use of a valida-
tion set, are essential considerations in the development of machine learning models, ensuring they are both
accurate and generalizable.

Overfitting and Underfitting Overfitting occurs when a model learns the detail and noise in the training
data to the extent that it negatively impacts the performance of the model on new data. Underfitting occurs
when a model cannot capture the underlying trend of the data. Both overfitting and underfitting lead to
poor predictions on new data.

Bias-Variance Tradeoff The bias-variance tradeoff is an important concept in machine learning that
involves balancing the error introduced by the bias with the error introduced by the variance.

e Bias: Error due to overly simplistic assumptions in the learning algorithm. High bias can cause an
algorithm to miss relevant relations between features and target outputs (underfitting).

e Variance: Error due to too much complexity in the learning algorithm. High variance can cause
overfitting.

A good model requires finding a balance between these two types of errors.
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Figure 2.1.1: Bias-Variance tradeoff [3§]

2.2 Audio Representations

Audio representation plays a crucial role in the field of music source separation and audio signal process-
ing. Different representations allow us to capture various aspects of audio signals, such as time-domain
features, frequency content, and temporal evolution. In this section, we explore several key forms of audio
representation.

2.2.1 Waveform Representation

The most basic representation of an audio signal is its waveform, which is a time-domain representation.
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Figure 2.2.1: Waveform of an audio signal.

In waveform representation, the audio signal s(t) is represented as a function of time ¢. This is the rawest
form of the audio, showing the amplitude variations over time. To accurately capture an audio signal using
digital samples, the highest frequency in the original sound should be no more than half of the rate at
which it’s sampled. This rule is known as the Nyquist-Shannon theorem. For example, in many audio
applications, sounds are sampled at 44.100 Hz, which means they can represent frequencies up to about
22.050 Hz. During this digitization process, quantization is applied, whereby each sound level is transcribed
into a specific number from a predetermined range of values see Fig 2.2.2. This quantization process is
crucial for converting the continuous amplitude of the audio signal into a discrete set of levels, which can be
represented digitally.

QUANTIZATION
QUANTIZATION
QUANTIZATION

TIME TIME TIME

Figure 2.2.2: Quantization illustration. From [2]

2.2.2 Spectral Representations

Spectral representations are crucial in analyzing the frequency content and temporal evolution of an audio
signal. These representations, obtained through various Fourier Transform techniques, provide insights into
how the sound’s characteristics change over time and frequency. As a reminder, the Fourier Transform of a
signal is defined as

S(f) = /OO s(t)e 2™ dt (2.2.1)

—0
Where:
e S(f) is the Fourier Transform of s(t), representing the signal in the frequency domain.
e s5(t) is the original time-domain signal.

e f is the frequency in Hertz (Hz).
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e ¢ is the time in seconds.

Spectrogram Representation

The spectrogram is a time-frequency representation that illustrates how the spectral content of a signal
changes over time. It is derived using the Short-Time Fourier Transform (STFT), which can be considered
as applying the Discrete Fourier Transform (DFT) to consecutive, overlapping segments of the signal. This
process can be mathematically represented as:

STFT{z[n|}(m,w) = Z z[njwn — mle 72N (2.2.2)

n=—oo

In this equation:

e z[n] is the discrete-time representation of the originally continuous time signal 2(t), where n represents
discrete time indices. The transition from z(t) to x[n] signifies the sampling of the continuous signal
into a form suitable for digital processing.

e w[n — m] is the window function applied to localize the signal in time around the index m. This
windowing is crucial for analyzing specific segments of the signal while minimizing boundary effects.

e m signifies the discrete time index around which the window function is centered, allowing for the
temporal localization of the Fourier analysis.

e w represents the digital frequency components for which the STFT is calculated, correlating to specific
frequencies based on the sampling rate. Unlike analog frequency expressed in Hz, w is dimensionless,
representing a fraction of the sampling frequency.

The STFT equation applies the principles of the Discrete Fourier Transform (DFT) to these windowed
segments, enabling the analysis of the signal’s frequency content over time. Each term in the sum evaluates
the contribution of a frequency component at a specific time, providing a granular view of the signal’s spectral
evolution.

Most commonly, the magnitude squared of the STFT is visualized in the spectrogram:

Spectrogram(m,w) = |[STFT{xz[n]}(m,w)|? (2.2.3)

where |STFT{xz[n]}(m,w)|? represents the power spectrum of the analyzed segment, highlighting the intensity
of various frequencies at each time point m.

The transition from the continuous-time signal z(t) to its discrete-time counterpart z[n], and the subsequent
analysis using STFT, underscores the adaptability of Fourier analysis principles in the digital signal processing
domain. This approach facilitates a detailed examination of how the frequency components of a signal change
over time, making the spectrogram an invaluable tool in audio signal analysis and other applications.
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Figure 2.2.3: Spectral representation of an audio signal.

Mel-Frequency Cepstral Coefficients (MFCCs)

Mermerstein et al. [39] introduced MFCCs which are a feature widely used in audio signal processing,
particularly in speech and music analysis. They are derived through a multi-step process:

1.

Fourier Transform and Power Spectrum Calculation: For a digital signal, compute the Discrete
Fourier Transform (DFT) to convert it from the time domain to the frequency domain. The DFT is
given by:

S[k] = Z_j s[n]e 92T % (2.2.4)

where N is the total number of samples, s[n] is the signal in the time domain, and % corresponds to the
index of the discrete frequency bins. The power spectrum, P[k], is obtained by taking the magnitude
squared of the DFT:

P[k] = |S[k]|? (2.2.5)

. Frequency Discretization and Mel Scale Mapping: After computing the DFT and before map-

ping to the mel scale, acknowledge that the frequencies have been discretized into bins. Then, map the
power spectrum obtained from the DFT to the mel scale, which is a perceptual scale of pitches. The
mapping can be expressed as follows for discrete frequency bins:

m[k] = 25951og,, (1 + 71;’“0) (2.2.6)

where fi represents the center frequency of the k-th bin in Hz, which is derived from the discrete
frequency bins obtained in the DFT.

. Logarithmic Scaling: Take the logarithm of the powers at each of the mel frequencies, now clearly

defined for discrete bins:
L[m] = log(P[mlk]]) (2.2.7)

Discrete Cosine Transform: Apply the Discrete Cosine Transform (DCT) to the vector of mel log
powers to de-correlate the energy bands, now with explicit notation that these operations are on discrete
sets of data:

m

i forl=1,2,...,L (2.2.8)

M
MFCC(l) = Y Lfm]cos [1(m - 0.5)
m=1

. The MFCCs are the amplitudes of the resulting spectrum, with each component now clearly tied to

discrete frequency analysis.
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Figure 2.2.4: The process of computing Mel-Frequency Cepstral Coefficients [40].

Chroma Features

Chroma features are an important representation in music signal processing, focusing on the twelve different
pitch classes. They condense the entire spectrum of a music piece into 12 distinct bins, each corresponding
to one of the 12 semitones of the musical octave. This representation is particularly useful for analyzing the
musical content of a signal in terms of harmonies, chords, and melody [41].

The computation of Chroma features typically involves several steps:

1. Spectral Analysis: Perform a spectral analysis of the signal, often using the Short-Time Fourier
Transform.

2. Pitch Class Profiling: Map the spectral energy to each of the 12 pitch classes across all octaves.

3. Normalization: Normalize the energy in each pitch class bin to make the representation robust to
variations in dynamics.

Chroma Feature Representation

I
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: | ||\|II|‘|\ ||*|| o4
bl
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Figure 2.2.5: Chromagram of the same audio signal as Fig. 2.2.3 showing the intensity of the 12 pitch
classes over time.

2.2.3 Symbolic Representations

Symbolic representations, such as MIDI (Musical Instrument Digital Interface) and piano rolls, are partic-
ularly prominent in music processing for several reasons. MIDI is not only a protocol for the operation of
electronic musical instruments but also a powerful tool for capturing the specific features of musical perfor-
mance, including details like the notes played, their pitch, velocity, and duration. This compact representation
allows for precise manipulation and analysis of musical elements.

Piano rolls offer a visual and symbolic representation of music, where music is depicted as a binary matrix
with rows corresponding to different pitches (notes) and columns representing successive time steps. This
format simplifies the complexity of musical composition into a more accessible form, enabling straightforward
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analysis and synthesis of music. The binary nature of piano rolls indicates the presence or absence of notes
at given times, making it particularly useful for algorithms that generate or modify music.
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Figure 2.2.6: Graphical representation of a MIDI track [3]

Compared to direct audio representations, symbolic formats like MIDI and piano rolls offer several advantages.
Firstly, they compress information about the music into a more manageable form, reducing the dimension-
ality of data and focusing on the essential musical aspects rather than the audio signal’s intricate details.
This compression facilitates more efficient processing and analysis, especially in applications like music com-
position, automated performance, and music information retrieval. Secondly, these representations allow for
easier manipulation and editing of musical components, such as altering pitch, tempo, and rhythm, without
affecting the audio quality. Lastly, symbolic representations are more interpretable for humans and machines
alike, supporting tasks such as music theory analysis, score generation, and interactive music systems.

2.3 Advanced Neural Network Architectures for Music Processing

2.3.1 Convolutional Neural Networks (CNNs)
Introduction to CNNs

Convolutional Neural Networks (CNNs) have revolutionized the field of image processing and have significant
applications in audio signal processing, especially in analyzing musical components. CNNs are particularly
adept at capturing hierarchical patterns in data, which makes them suitable for tasks involving music, such
as genre classification, instrument recognition, and music source separation [4, 5, 6].

A convolutional network’s architecture typically encompasses a variety of layers and processes, each con-
tributing to the network’s ability to learn complex hierarchical patterns in data. The core components of
the architecture include convolution layers, pooling layers, activation functions, fully connected layers and
normalization layers. Additionally, the network often integrates processes such as upsampling, concatenation,
dropout, and interpolation methods like nearest neighbor or bilinear interpolation. An example of a CNN
architecture is illustrated in Fig. 2.3.1.
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Figure 2.3.1: An example of a CNN architecture. From |[7]

Architecture of CNNs

Convolutional Layers: The core of CNNs is the convolutional layers, which are important in feature
extraction and pattern recognition within the input data. These layers employ multiple learnable filters
(kernels) to systematically scan through the input image or signal. Each filter is designed to detect specific
features, such as edges, textures, or more complex patterns at higher layers of the network. Formally, the
output of a convolutional filter with a 2D kernel K € R%=*Ev_applied on an input I € Rf=*Iv_is given by:

Output (i, j) = Z Z Input(i + m, j + n) - Kernel(m, n) (2.3.1)

m

illustrates how the output is computed by applying filters to the input. This operation ensures translational
invariance, enabling the network to recognize patterns irrespective of their spatial location in the input. The
process involves sliding each filter over the input and computing the dot product between the filter and input
at each position, generating a feature map that highlights the presence of detected features.

I

- N TN
s\: '\\“\- \'\\“\\“\
Wy NN N
Iy \\_\\ N \.‘\“‘\x
\ .\\\\ M\x\:“\\
kernel x;\ K‘“Q“‘“x\\

4 R Gutput“\:\\\

0 0

Figure 2.3.2: Visualization of the convolution operation in a CNN. From [42]

The strength of convolutional layers comes from their ability to learn a hierarchy of features. Lower layers
may learn to recognize simple patterns such as lines and edges, while deeper layers can detect more complex
features by combining the simpler patterns detected by earlier layers. This hierarchical feature extraction
makes CNNs extraordinarily effective for tasks involving visual perception, such as image classification, object
detection, and beyond. By utilizing multiple convolutional filters, each designed to capture different aspects
of the input data, CNNs can adapt to a wide range of tasks and datasets, making them a versatile tool in
the field of deep learning.
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Dilated Convolution: Dilated convolutions, also known as atrous convolutions, introduce another dimen-
sion to standard convolutional layers. They involve skipping input values at regular intervals—a technique
that expands the receptive field of the filter without increasing its size. This is particularly beneficial in audio
processing, as it allows the network to capture wider temporal context in the data, essential for understanding
rhythmic and harmonic structures in music.

Dilated Output(i, j) = Z Zlnput(i +m xd,j+n xd) x Filter(m,n) (2.3.2)

m n

where d is the dilation rate, determining the stride with which the input is sampled.

dilation=1 dilation=2 dilation=3

Figure 2.3.3: Visualization of dilated convolution operation in a CNN, showcasing its expanded receptive
field. From [43]

Strides and Padding: Stride refers to the number of pixels by which we slide the filter across the input.
A larger stride results in a smaller output dimension. Padding involves adding extra pixels around the input
border, allowing the filter to be applied to bordering elements and controlling the spatial size of the output.

Input Size — Filter Size + 2 X PaddingJ 41 (23.3)
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Figure 2.3.4: Illustration of stride and padding effects in a CNN. From [44]

Pooling Layers: Pooling layers reduce the spatial dimensions of the input, lowering computational com-
plexity and parameters. Common pooling methods include max pooling and average pooling.
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Figure 2.3.5: Example of pooling operations in a CNN. From [45]

Activation Functions: Activation functions introduce non-linearities into the CNN, enabling the net-
work to learn complex patterns beyond linear separations. These functions are applied to the output of
convolutional and fully connected layers, with common choices including the Rectified Linear Unit (ReLU)
for general purposes, sigmoid for binary classification tasks, and softmax for multi-class classification. The
choice of activation function plays a crucial role in the network’s ability to converge and the overall model
performance. Some of the activation functions depicted in Fig. 2.3.6 are:

ReLU(x) = max(0, z) (2.3.4)
Sigmoid(z) = — (2.3.5)
igmoid(z) = y——— 3.

Softmax(z;) = - (2.3.6)

Zj exi

Tanh RelU

ax(0,z
Rl I/_ max(0, )
"X
o

Sigmoid Linear

Joy=x

X X

Figure 2.3.6: Visualization of common activation functions used in CNNs. From [46]

Normalization Layers: To improve training stability and efficiency, normalization layers adjust the acti-
vations throughout the network, typically after convolutional layers and before activation functions. Batch
Normalization and Layer Normalization are widely used, with the former normalizing the inputs across the
batch dimension and the latter across the feature dimension. These layers help in faster convergence and
mitigate the problem of internal covariate shift.
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BatchNorm(z) = L fbateh (2.3.7)

/2
Obatch te

T — lfflayer

LayerNorm(z) = (2.3.8)

2
Jlaycr +e

Where ;1 and o2 are the mean and variance computed over the specified dimension, and € is a small constant
added for numerical stability.

Incorporating activation functions and normalization layers into a CNN architecture is critical for enhancing
the network’s learning capabilities. Activation functions allow the network to capture non-linear relationships,
while normalization layers ensure that the learning process remains stable and efficient across different layers
of the network.

Fully Connected Layers: The final part of a CNN, fully connected (FC) layers, compile the learned
features for output tasks such as classification or regression. These layers form a dense network architecture,
where each neuron is interconnected with all activations in the previous layer. The mathematical operation
within an FC layer can be represented as:

Output = Activation(W - Input + b) (2.3.9)

where W represents the weight matrix associated with the connections between the current layer’s neurons
and the incoming activations, Input is the vector of activations from the previous layer, and b denotes the
bias vector added to the weighted inputs before the activation function is applied. The activation function,
denoted as Activation, introduces non-linearity, allowing the network to learn complex patterns.

The Perceptron: The concept of the perceptron provides a fundamental understanding of how neural
networks, including fully connected layers in CNNs, operate. A perceptron is the simplest form of a neural
network unit, designed to perform binary classification. It takes multiple binary inputs, multiplies each with
a corresponding weight, and sums them up. This weighted sum is then passed through an activation function,
typically a step function, to produce a binary output. The perceptron rule updates the weights based on the
error of the output compared to the expected result, gradually learning the optimal weights that minimize
the error.

a=o <Z w;T; + b) (2.3.10)
1=1

where ¢ is the activation function, w; are the weights, x; are the input features, and b is the bias. The
perceptron forms the building block for more complex neural networks by illustrating how individual neurons
can make decisions by weighing input signals and applying a non-linear activation.

Figure 2.3.7: Perceptron
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1D Convolutional Neural Networks: While the aforementioned descriptions primarily focus on CNNs
designed for 2D input data, such as images, the principles and components of CNN architectures can be
similarly applied to 1D data. 1D CNNs are particularly effective for analyzing sequential data, including
audio signals, time series data, and text. In these applications, 1D convolutional layers operate by sliding
filters along a single dimension, extracting patterns and features across temporal or sequential dimensions.
This makes 1D CNNs adept at tasks such as audio genre classification, sentiment analysis from text, and
forecasting in time series data.

CNNs in Music Representation

CNNs are adept at processing time-frequency representations of audio, such as spectrograms. They can
efficiently capture spectral or temporal dependencies and recognize textural patterns, making them suitable
for various music analysis tasks.
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Figure 2.3.8: Visualization of a CNN on a sound inference. From [47]

2.3.2 Recurrent Neural Networks (RINNs)
Introduction to RNNs

Recurrent Neural Networks (RNNs) are a class of neural networks that are particularly powerful for sequential
data processing, making them ideal for applications in music, where data is inherently sequential. RNNs have
internal memory elements to store information about previous inputs, enabling them to capture temporal
dependencies.

Architecture of RNNs

RNNSs process sequences by iterating through the sequence elements and maintaining a state that encapsulates
information learned from previous elements. The basic formula for a simple RNN is given by:

hy = activation(Wypas + Wrphe—1 + by) (2.3.11)
where h; is the hidden state at time ¢, x; is the input at time ¢, W, and W}, are weights, and by, is the bias.

Problems with Basic RNNs Basic Recurrent Neural Networks (RNNs) often encounter significant chal-
lenges when processing long sequences, notably the vanishing and exploding gradient problems. The vanishing
gradient problem occurs when the gradients of the loss function decrease exponentially as they are propagated
back through time, making it difficult for the RNN to learn and retain information from earlier inputs in a
sequence. Conversely, the exploding gradient problem involves the gradients growing exponentially, poten-
tially leading to numerical instability and divergent learning processes. These issues compromise the RNN’s
ability to effectively capture long-term dependencies in sequence data.
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Figure 2.3.9: An example of an RNN architecture. From [§]

To mitigate these problems, advanced architectures like Long Short-Term Memory (LSTM) networks and
Gated Recurrent Unit (GRU) networks have been developed. Schmidhuber et al. [9], incorporate mem-
ory cells that can maintain information across long sequences, effectively addressing the vanishing gradient
problem. Cho et al. [10] , proposed GRU networks that offer a simplified version of LSTMs with fewer
parameters and have been shown to perform comparably in many tasks. Both LSTM and GRU architec-
tures are designed to retain information over long sequences, making them well-suited for tasks that require
understanding temporal dependencies, such as language modeling and time series forecasting.

Structure of RNN/LSTM-like Architectures RNN, LSTM, and GRU architectures share a founda-
tional structure that processes data sequentially, allowing these networks to maintain a form of memory over
inputs through time. In a basic RNN, this structure consists of a loop that reuses the same weights at each
timestep, effectively enabling the network to pass information from one step to the next. However, LSTMs
and GRUs introduce more sophisticated mechanisms to this loop.

LSTM architectures are structured around a series of gates: the input gate, the forget gate, and the output
gate, along with a cell state. These components work together to regulate the flow of information, allowing
the network to decide which data should be retained or discarded as it processes each timestep. This structure
enables LSTMs to mitigate the vanishing gradient problem by maintaining a cell state that can carry relevant
information throughout the processing of the sequence, regardless of length.

GRU networks simplify the LSTM design by combining the input and forget gates into a single update gate
and merging the cell state and hidden state. This streamlined architecture still allows for effective regulation
of information flow but with fewer parameters than LSTMs, making GRUs computationally more efficient in
some cases.
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Figure 2.3.10: LSTM compared to GRU. From [4§]

Both LSTM and GRU units are composed of these gates and states, forming the building blocks of more
complex neural network architectures. These blocks are repeated across layers and sequences, enabling the
network to perform deep learning on sequential data. By structuring the networks in this way, RNNs, LSTMs,
and GRUs can learn patterns in time series data, speech, text, and other sequential forms of information,
providing the basis for applications ranging from language translation to stock market prediction.

RNNs in Music Representation

RNNs, particularly LSTMs and GRUs, are well-suited for music generation, transcription, and even source
separation. They can effectively model temporal dynamics and dependencies in musical elements, capturing
the long-term structure in music.
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Figure 2.3.11: An example of an RNN architecture for music processing. From [49]

2.3.3 Transformers

Vaswani et al. [50] introduced transformers, an architecture that has revolutionized the field of deep learning
by introducing a mechanism to process sequential data without relying on recurrent architectures. Their
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core is the self-attention mechanism, which allows the model to focus on different parts of the input sequence
when predicting an output.

The Self-Attention Mechanism

The self-attention mechanism enables the model to dynamically emphasize the importance of certain parts
of the input data over others. Mathematically, the attention function can be described as mapping a query
and a set of key-value pairs to an output, where the output is a weighted sum of the values. The weight
assigned to each value is computed by a compatibility function of the query with the corresponding key.
Mathematically,

Attention(Q, K, V) = softma <QKT) Vv (2.3.12)
s £y = X .0,
Vdy

where @), K, and V represent the queries, keys, and values matrices, respectively, and dj, is the dimensionality
of the keys.

Transformer Architecture

The Transformer model architecture consists of an encoder and a decoder, each composed of multiple layers

of self-attention and fully connected feed-forward networks.

Detailed Structure of Encoder Each encoder layer consists of two sub-layers: a multi-head self-attention
mechanism, and a simple, position-wise fully connected feed-forward network. Normalization is applied before
each sub-layer, with a residual connection around each of the two sub-layers.

LayerNorm(z + Sublayer(x))

Sublayer refers to either the multi-head self-attention mechanism or the feed-forward network. This approach
is replicated across N identical layers.
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Figure 2.3.12: Illustration of Encoder. From [51]

Multi-Head Self-Attention Instead of performing a single attention operation, the Transformer model
employs multiple attention heads to capture different representation subspaces at different positions. This
allows the model to attend to information from different representation subspaces at different positions
simultaneously, enhancing its ability to understand complex dependencies in the data. To this end, for each
attention head, the input X is linearly transformed by multiplying it with learnable weight matrices W<,
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WX and WV respectively, in order to produce the query (Q), key (K), and value (V') matrices upon which
the attention operation is performed.

MultiHead(Q, K, V) = Concat(head, . . . , head; )W

where head; = Attention(QW 2, KW/, viv))

In this formulation, W, W/, and W) are the weight matrices for the i*" attention head for queries, keys,
and values respectively, and W is the output weight matrix that combines the outputs of all attention heads.
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Figure 2.3.13: Illustration of multiple Heads of the transformer. From [51]

Position-wise Feed-Forward Networks Each layer in the encoder and decoder contains a fully connected
feed-forward network, which is applied to each position separately and identically.

FFN(z) = max(0, W1 + by )Wa + b

Detailed Structure of Decoder The decoder also consists of IV identical layers. In addition to the two
sub-layers that are also present in each encoder layer, the decoder inserts a third sub-layer, between the
multihead attention block and the feedforward block, which performs multi-head attention over the encoder’s
output.

Masked Self-Attention In the decoder, the self-attention layer is modified to prevent positions from
attending to subsequent positions. This masking ensures that predictions for position ¢ can depend only on
the known outputs at positions less than .

Normalization and Residual Connections FEach sub-layer in the encoder and decoder, including self-
attention, feed-forward networks, and the additional encoder-decoder attention in the decoder, is equipped
with normalization and residual connections, promoting faster training and mitigating the vanishing gradient
problem.
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Figure 2.3.14: Tllustration of Encoder and Decoder. From [51]

Application in Music Processing

Transformers find applications in various music processing tasks such as music generation, transcription, and

source separation [52, 32]. Their ability to handle long-range dependencies makes them particularly suited
for capturing musical structure and context.

Correlation to Music: The Transformer’s self-attention mechanism can analyze the temporal structure
of music, enabling it to understand complex relationships and patterns in musical compositions. At the same

time as discussed in [33] it can be used for modelling cross domain relationships between spectral and audio
representations.
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Figure 2.3.15: Cross Domain Transformer Encoder. From [33]

2.3.4 Benes Networks

Overview of Benes Networks

Benes Networks, known from their application in packet routing tasks in computer networks, have recently
found their place in the realm of neural network architectures for processing long sequences. These networks
are characterized by their unique structure, consisting of interleaved shuffle and switch layers. The shuffle
layers are responsible for permuting the signals, while the switch layers consist of switches that can either
swap two adjacent signals or leave them unchanged. This distinctive arrangement allows Benes Networks as
depicted in Fig. 2.3.16 to efficiently route signals from input to output.
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Figure 2.3.16: Illustration of Benes Network. From [11]

Neural Shuffle-Exchange Networks

In the context of neural networks, the Benes Network structure is adapted in the form of Neural Shuffle-
Exchange Networks. These networks replace each switch of a Benes Network with a Switch Unit, a learnable
2-t0-2 function as depicted in Fig. 2.3.17. The input to these networks is a sequence of a specific length, with
each element being a multi-dimensional vector. The network’s first layer consists of a series of Switch Units,
each processing a pair of adjacent sequence elements. Following this are the shuffle layers, which permute
the inputs based on a defined permutation pattern, such as the perfect shuffle permutation.

i Layer g ¢
ELU =]
e I Ll e 0 @

i 02
— —
(m) (m)
L ® ®
vector vector linear activation or  scalingby  pointwise split into
concatenation  copy transformation normalization  learnable addition  halves
parameter

Figure 2.3.17: Residual Switch Unit. A number of feature maps (m) is shown in parentheses. Depicted here
with the default of hidden layer being 2x larger than the input (4m being the size of the hidden layer and
2m the size of the input) [12].

Functioning and Applications

The combination of regular Shuffle-Exchange Networks followed by reversed Shuffle-Exchange Networks,
which reshuffle the input sequence to the right by 1 element after the learnable switch operation, forms a
Benes block. This block can connect any input to any output, allowing the network to have a receptive
field encompassing the entire sequence without any bottlenecks. Such networks can process sequences of
significant lengths, up to millions of elements, making them particularly suitable for tasks where long-range
dependencies are crucial, such as in music transcription or sequence processing applications where traditional
methods like attention mechanisms are less effective due to their computational complexity.

Advantages in Music Processing

The Residual Shuffle-Exchange Network, a variant of the Neural Shuffle-Exchange Network, demonstrates
state-of-the-art performance in tasks like music transcription. This network’s architecture, which uses signif-
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icantly fewer parameters compared to other models, highlights its efficiency and effectiveness in processing
long sequences, a critical requirement in music processing applications [12]. We will analyze this architecture
in depth in Sec.5.
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Source separation is a fundamental subfield of audio signal processing, and its principles and methods are
used in many research areas. Yet, the vast majority of its literature orbits around separating sources with
different timbres, a scenario distinct from the challenges posed by monotimbral source separation. In this
literature review, as we explore the fundamental principles of general source separation in depth —spanning
methodologies, data augmentation techniques, architectures, and evaluation protocols— we also underscore
the unique facets of monotimbral separation. This includes specialized considerations like permutation-
invariant training, the imperative for conditioning, and more. Our intent is to both present a comprehensive
overview of source separation at large and to spotlight where the literature potentially lacks in addressing
the specific challenges of separating sources with identical or near-identical timbral characteristics.

3.1 Traditional Signal Processing Approaches

Source separation, as previously highlighted, is a complicated issue with various dimensions. One foundational
way to categorize it is based on the count of sources and sensors. When the number of sensors exceeds or
matches the sources, we term the scenario as over-determined or determined, in that order. Conversely, if
sensors are outnumbered by sources, we define the issue as under-determined.

For the former categories, matrix factorization strategies, particularly those anchored in Independent Compo-
nent Analysis (ICA) [53, 54], have demonstrated considerable success. ICA is designed to divide a signal into
additive components, assumed to be non-Gaussian and statistically independent. This technique represents
a mixed signal from n sensors, x, as a product of an n X p mixing matrix with linearly independent columns,
A, and p statistically independent vectors, s:

x = As. (3.1.1)

The objective of ICA is to determine an unmixing matrix that closely aligns with the pseudoinverse of A,
denoted as W = AT, ensuring that the inferred components u maintain as much statistical independence as
feasible.

u= Wx = WAs. (3.1.2)

However, ICA’s elegance falls short in monaural source separation, predominantly because it mandates more
sensors than sources.

For the under-determined scenarios, especially the single channel challenge, which is central to this study,
traditional techniques can be divided into three overarching classes:

e Spectral Decomposition Based
e Model Based
e Computational Auditory Scene Analysis (CASA) Based

In spectral decomposition, an input mixture’s representation is dissected into fundamental elements,
subsequently organized into separate sets symbolizing the distinct sources. The signal’s representation could
adopt varied forms, yet commonly, it’s the magnitude or power spectrogram of the mixture, derived via the
STFT. The uniqueness of these methods lies in the decomposition and grouping criteria.

One such method is the Independent Subspace Analysis (ISA), a broader application of ICA. Here, the basis
elements of a group can co-exist without the statistical independence assumption, but this constraint persists
among elements of divergent groups. A technique hinging on ISA, as discussed in [55], is deployed to fragment
the mixture spectrogram into independent source domains, which are then reverted to obtain the separated
sources.

The Non-Negative Matriz Factorisation (NMF') is another decomposition strategy. As inferred from its
designation, NMF insists on non-negativity across all matrices. In the decomposition equation:

V = WH, (3.1.3)
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where V represents the known matrix, H is the matrix of basis vectors, and W is the weight matrix.

All these matrix elements uphold non-negativity. This non-negative stipulation lends the technique a perceiv-
able significance, often absent in most matrix decompositions. Specifically, non-negative weights ascertain
an exclusively additive amalgamation of the basis elements, and the non-negative basis vectors eliminate
potential mutual cancellations. Given their inherent non-negativity, magnitude and power spectrograms are
apt for this technique. The learned matrices W and H encapsulate valuable information for source separa-
tion. Specifically, W encodes the spectral profiles of distinct sources, while H reveals the temporal activation
patterns corresponding to the predefined number of sources. The number of sources to be separated can
be explicitly defined by choosing the inner dimension of the matrices. Let V be the observed matrix, H
the matrix of basis vectors, and W the weight matrix, with dimensions (F' x T), (S x T'), and (F x 5),
respectively, where F' is the number of features, T" is the number of time points, and S is the user-defined
number of sources.

The objective during the algorithm’s training is to minimize the error between the reconstructed matrix
V = WH and the initial observed matrix V. After training, to extract each sound source k, the source
matrix can be calculated as:

Vi = W HY

where W, is the k-th column of W and Hy, is the k-th row of H. This decomposition allows for the isolation of
individual sound sources from the observed data, providing flexibility and control over the source separation
process.

A technique built on NMF is discussed in [56, 57, 58], where an additional component promoting temporal
continuity is integrated during the weight and basis vector matrices’ estimation.

CASA aims to replicate the human auditory system’s decoding process. Employing psychoacoustical indi-
cators like harmonicity and onset-offset time, CASA strategies [59, 60| generate streams grounded in pitch
closeness. Nonetheless, these techniques stumble when segregating sources that overlap at the same pitch.

In model-based strategies, generative templates of the source signals are crafted to facilitate the separation
process. Given that these models extrapolate parameters from solo samples, they are highly susceptible to
the recording surroundings. Such models might hinge on Hidden Markov Models (HMM), as illustrated in
[61].

3.2 Machine Learning Approaches

The progression of deep learning has catalyzed a surge in wholly supervised methods. This section aims to
explore the spectrum of DNN methodologies, from non-score informed techniques that utilize classification
and leverage time and frequency, to score-informed approaches and the application of CNNs, illustrating the
breadth and depth of DNN applications in current research.

3.2.1 Non-Score-Informed Techniques
Classification

Depending on the domain of data processing, we have waveform-centric techniques that leverage the 1D
"natural" audio data representation, and spectrogram-centric methods that employ a 2D time-frequency
data transformation. This transformation might be predetermined, like the Short Time Fourier Transform
(STFT) magnitude, or one that’s independently discerned.

For strategies utilizing spectrograms, based on signal estimation, there’s direct estimation, which learns the
source signal spectrograms directly, and indirect estimation, where the model deduces a 2D mask for every
source. This mask is element-wise multiplied with the input spectrogram to deduce the original source signal.
An illustration of a binary masking producing a source estimate in Fig. 3.2.1. Common masking applied for
source separation is not binary but continuous.
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Figure 3.2.1: Illustration of binary masking [13]

Signal estimation methodology doesn’t majorly dictate the model’s efficacy, although masking techniques have
a maximal constraint defined by the Ideal Binary Mask (IBM) and Ideal Ratio Mask (IRM). In contrast,
direct estimation can, in theory, flawlessly retrieve the source signals. As outlined in [62], the IBM and IRM
for time-frequency signals are distinctly characterized. However, each choice concerning the computation
domain comes with its pros and cons.

Time-frequency domain data are essentially more compact than waveforms, as a result models demand less
computation, shortening training durations. Essential details, like temporal dependencies, can be harnessed
by simpler models, leading in smaller parameter footprints. Plus, 2D representation models can adapt
methodologies from the well-explored realm of image processing. Conversely, adopting the STFT magni-
tude for time-frequency representation isn’t without pitfalls. Primarily, the STFT isn’t tailored for source
separation. Most approaches neglect the signal’s phase when estimating sources, thus decreasing optimal
performance by omitting crucial information. Consequently, the phase of the split signals isn’t deduced. To
bypass this, some methods presuppose the source phase matches the mixture’s [63], or they approximate
it using the Griffin-Lim algorithm [64]. Unlike magnitude, estimating phase via DNNs is tricky, given its
cyclic nature, leading to inconsistencies at junctures (like when values range between minus pi and pi, the
juncture being pi). Phase unwrapping could be a potential remedy, but it shifts the challenge, enlarging the
value span, making phase estimation by DNNs still challenging. Nevertheless, the significance of phase data
in tasks like speech amplification [65] and audio separation is undeniable. Indeed, [66] reports promising
outcomes by innovatively turning the regression challenge of phase estimation into a classification one.

Techniques Leveraging Time-Frequency (2D) Representations

Utilizing the time-frequency domain, especially via the STFT, has become common in a majority of audio
applications. Given this, it’s unsurprising that the DNN-based source separation research ventured into
this domain. This preference, combined with many efficient techniques preferring this domain, is why our
literature exploration commences with these methodologies. Initially, due to constraints in resources and
the growing stages of machine learning tools, the focus was on relatively straightforward and shallow neural
networks. In [67], one of the foundational forays into speech separation using DNNs, a basic network was
employed to combine single-frame estimates from NMF in a nonlinear manner. This non-linearity in basis
vector combinations was seen as enhancing separation potential, while introducing non-linear activation
functions between layers seemed to boost the model’s expressive capability. Conversely, in [68], the approach
involved feeding the network with an assortment of adjacent frames to offer temporal context.

As years progressed, DNNs evolved in depth and complexity, incorporating diverse layers to refine separation
efficiency. Recognizing that audio signals could have extended temporal dependencies, researchers integrated
recurrent layers into designs to adeptly manage lengthy frame sequences. Huang et. al [14] explored deep
recurrent neural networks (DRNN) and their varied temporal connections. Jannson et al. [15] introduced
a U-Net [16] adaptation for spectrogram-based music segregation as illustrated in Fig. 3.2.2. This deep
autoencoder consists of several 2D convolutional layers, functioning at varied scales through upsampling and
downsampling, targeting both micro and macro patterns.
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Figure 3.2.2: U-Net Architecture for Source Separation From [16]

Methods using Time/Waveform (1D) Representations

Techniques within the waveform domain distinguish themselves by conventional feature extraction frontends,
like the Short-Time Fourier Transform (STFT), in favor of handling data in its one-dimensional form. This
approach encompasses either employing learned transformations to derive latent representations or directly
processing the waveform data end-to-end. A key advantage of operating in the waveform domain is the
preservation of phase information, which is often lost in magnitude-only representations used in other meth-
ods.

These 1D methodologies do not imply that the resultant latent representations are one-dimensional; rather,
it suggests that the data undergoes processing in a manner akin to multi-channel one-dimensional signals.
This is reflected in the activation maps of various layers being one-dimensional. In practice, where traditional
methods might apply two-dimensional convolutions, these techniques utilize one-dimensional convolutions to
process the data.

Central to the discussion of 1D techniques are two architectures: TasNet [17] and Wave-U-Net [4]. Each has
significantly influenced the landscape of audio processing, particularly in tasks like speech enhancement and
music separation.

TasNet employs a strategy where the input waveform is transformed into a latent representation through
an encoder, which is then manipulated by a separator network to isolate source signals as illustrated in Fig.
3.2.3. This process involves:

e Encoding the input signal into a mixture of basis vectors and weights,
e Applying masks to these weights via the separator to isolate individual sources,

e Reconstructing the source signals through a decoder using the masked weights.
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Separator

Figure 3.2.3: TasNet Architecture for Source Separation From [17]

Originally, TasNet featured a separation module comprising a deep LSTM network to capture temporal
dependencies, augmented by a fully connected layer. Variations on this architecture have experimented with
different separator designs to enhance performance, often maintaining the encoder and decoder components
unchanged. Innovations include modifications to incorporate RNNs that process both feature and channel
dimensions, the introduction of Temporal Convolutional Networks (TCNs) for efficiency, and even meta-
learning approaches [69, 70] for separator adaptation.

Wave-U-Net, conversely, provides a simpler yet effective architecture adapted from the U-Net model for
1D audio signals illustrated in Fig. 3.2.4. It consists of:

e A downsampling path to distill multi-scale information,
e A bottleneck layer for dense representation processing,

e An upsampling path that restores the signal to its original dimension, leveraging skip connections for
feature integration.
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Figure 3.2.4: Wave-U-Net Architecture for Source Separation From [4]

Subsequent research on Wave-U-Net has explored modifications to its core components [71, 72|, aiming to
leverage long-range temporal information, introduce attention mechanisms for feature selection, and refine
the downsampling process to preserve information fidelity.

Both TasNet and Wave-U-Net exemplify the versatility and potential of waveform-based processing techniques
in audio signal analysis, demonstrating how direct manipulation of the waveform can yield significant insights
and improvements in various audio processing tasks.
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In addition to TasNet and Wave-U-Net, the Demucs [73] architecture represents another significant advance-
ment in the realm of audio processing techniques. Initially, Demucs utilized the power of the 1D time domain
for signal processing. However, as the architecture evolved, it uniquely positioned itself by simultaneously
utilizing both the temporal and spectral domains of signals. This dual-domain approach allows for a more
comprehensive analysis and reconstruction of audio data, showcasing the architecture’s innovative integration
of time and frequency information. Since the Demucs model, due to its unique approach in leveraging audio
signals, forms the the cornerstone of the research and practical exploration undertaken in this thesis, it will
be thoroughly analyzed in a later chapter 6.

3.2.2 Score-Informed-Techniques

Score-informed music source separation leverages musical scores to enhance the accuracy of separating in-
dividual instruments or voices from a mixed audio signal. This approach contrasts with traditional source
separation methods that rely solely on the audio signal. We can characterize the activity labels of each note
as soft labels. Most of the practices using soft labels are done within DNN Architectures like CNNs.

Score-informed techniques offer several advantages over traditional source separation methods:

e Improved Accuracy: Leveraging score information leads to more accurate separation of instruments,
particularly in complex polyphonic music.

e Efficient Handling of Polyphony: These techniques are particularly effective in handling polyphonic
textures found in classical and chamber music. Versatility in Applications: Score-informed separation
is applicable in a range of contexts, including remixing, karaoke systems, and music analysis tasks.

Convolutional Neural Networks (CNNs)

As explored in "Monaural Score-Informed Source Separation for Classical Music Using Convolutional Neural
Networks" [74] CNNs can be effectively used for score-informed source separation. This approach involves
using score-informed constraints in a convolutional neural network (CNN) architecture to improve source
separation. The method first derives training features from audio files and their corresponding scores. One
notable characteristic of the scores is that each score is a series of harmonic partial trying to mimic not only the
base frequency of a note but also its harmonics. These features, known as score-based soft masks and score-
filtered spectrograms, are then used to train the CNN. The model is trained on synthetic renditions of music
scores and is capable of separating real-life performances based on these scores. The paper demonstrates that
this approach achieves better performance, and is less computationally intensive compared to score-informed
Non-negative Matrix Factorization (NMF) systems. The use of score labels in this context helps the model in
accurately separating sources by providing additional contextual information about the timing and frequency
of notes played in the music, leading to more effective and efficient source separation.

At the same time a notable work in "Improved Separation of Polyphonic Chamber Music Signals by Integrat-
ing Instrument Activity Labels" [18] presents another score informed music source separation, particularly
focusing on polyphonic chamber music. The system uses a U-Net architecture, modified from the Demucs
model, for separation in the time domain. This architecture includes several encoder and decoder blocks with
bidirectional LSTMs or GRUs in the bottleneck. The number of output tracks is set based on the desired
instrument number. Time-dependent instrument activity labels, indicating whether a specific instrument
is playing at any given time, are integrated into the network. This integration occurs at various stages of
the encoder-decoder architecture, with a focus on combining these labels with encoder inputs. Integrating
instrument activity labels improves the system’s ability to separate sources by providing additional context.
The architecture overview is illustrated in the Fig. 3.2.5
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Figure 3.2.5: Schematic model structure with channel numbers of each layer for additional information
integration. From [18§]

The approach was tested using both simulated and real instrument activity labels, showing significant im-
provement in separation quality over traditional methods that don’t use such labels. The paper explores both
a joint model (predicting all source signals simultaneously) and independent models for each instrument, high-
lighting their flexibility and robustness. The integration of activity labels before the deepest encoder block
is shown to yield the best results. Experiments demonstrate the effectiveness of this approach with real and
simulated label errors, showing that the model maintains robustness even with some label inaccuracies. The
results show significant improvements in separation quality compared to traditional approaches, validating
the effectiveness of integrating time-dependent instrument activity labels.

Cheuk . [75] present an advanced framework called "Jointist" for music transcription and source separation.
This framework integrates three key modules: Instrument Recognition (fIR), Transcription (fT), and Source
Separation (fMSS) as illustrated in Fig. 3.2.6.
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Figure 3.2.6: Jointlist Architecture. From [75]

Jointist handles multi-instrument transcription by being aware of different instruments and their specific
characteristics. It uses Transformer networks for instrument recognition, combining a CNN front end with
a transformer back end. The transcription module is inspired by the onsets-and-frames model, modified
to condition on instrument vectors. The source separation module utilizes predicted piano rolls and the
STFT spectrogram for separation. The paper demonstrates how Jointist effectively improves performance in
transcription and separation tasks, and explores its application in areas like downbeat, chord, and key esti-
mations, as well as music classification. The experiments show that Jointist, with its joint training approach
and modular design, offers significant advancements in handling complex polyphonic music scenarios.

Introduction to Music Transcription In the following chapters of this thesis, we will delve into exper-
iments and discussions surrounding various transcription models that will help us with the score informed
separation. To ensure thoroughness and provide a foundational understanding, we will introduce the task of
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music transcription. Music transcription is the process of converting a music audio signal into a symbolic
representation, typically in the form of a musical score or a MIDI file.

Yang et al. [76] introduced the Complex Transformer, an approach that leverages complex numbers to enhance
the Transformer model’s capacity for sequence modeling, particularly for tasks involving audio signals such
as music transcription. The model’s architecture is designed to handle complex-valued input, enabling it to
process the naturally complex-valued representations of audio signals obtained after a Fourier Transform.
Notably, the Complex Transformer achieved state-of-the-art results

Building upon the foundation of Transformers for sequence modeling, Gardner et al. [52] presented MT3, a
multi-task, multi-track music transcription model that utilizes a general-purpose Transformer to transcribe
an array of musical instruments from various transcription datasets. MT3’s innovation lies in its unified
training framework, which significantly improves transcription accuracy for instruments with fewer resources
while maintaining high performance for those more abundant in the training data. This is achieved through a
tokenization scheme and a flexible output vocabulary inspired by the MIDI specification, enabling the model
to represent complex musical compositions accurately.

3.3 Data Augmentation in Deep Neural Networks for Audio Pro-
cessing

Data augmentation is a pivotal strategy in the training of deep neural networks, especially when the available
dataset is limited. By artificially enhancing the dataset’s size and diversity, augmentation techniques can
mitigate overfitting, thereby improving a model’s generalization capability to unseen data. This becomes
particularly crucial in scenarios where additional data acquisition is challenging or impossible. Data aug-
mentation has a critical role, especially when training recurrent neural networks with limited data [19]. Data
augmentation contributes to the creation of better-generalizing separating networks.

While the concept of data augmentation bolstering the performance of DNNs isn’t novel and has been
highlighted in various works like [77, 78], particularly in the realm of music information retrieval tasks,
the specific techniques employed can vary based on the application and the data’s nature. In addition to
traditional techniques, our approach also incorporates a novel augmentation method, OppositePanning, which
specifically addresses the realistic scenario of instrument panning in audio mixtures.

1. FlipChannels: This technique involves randomly swapping the left and right audio channels for each
instrument. Given the stereo nature of many audio recordings, this technique can introduce variability
without distorting the essence of the sound.

2. Shift: Randomly shifting channels is another useful method. It helps the model learn invariant repre-
sentations that aren’t overly reliant on specific channel placements, thereby enhancing the robustness
of the trained model.

3. Remix: A creative technique where, within a single batch, one instrument from a song is interchanged
with the same instrument from a different song. This can simulate diverse musical combinations and
scenarios, challenging the model to identify and separate instruments even in previously unheard mixes.

4. Scale: Randomly scaling the signal with a multiplier, often drawn from a range, for example, [0.5,
1.25], can introduce variations in amplitude. This is instrumental in ensuring that the model doesn’t
overfit to specific amplitude levels and can generalize well across varied volume levels.

3.4 Monotimbral Source Separation: A Closer Look

Audio source separation, at its core, aims to disentangle individual sound sources from a composite audio
mix. This objective can further branch out into several specialized tasks like speech separation, speech
enhancement, and the popular music source separation, each with its unique challenges and characteristics.

Differentiating Speech and Music Separation
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Sarkar et al. [27] helps elucidate some of the nuances and distinctions within the music separation domain.
notably:

1. Speech Separation Domain

e Tasks in this realm often include speech denoising, multi-speaker separation, and dereverberation.
The challenges here primarily revolve around handling multiple speakers, background noises, and
the intricate sound reverberations in varying environments.

2. Music Separation Domain:

e Historically, music separation research has been predominantly aimed at the demixing challenge,
as underscored by the MUSDB dataset’s popularity.

e The demixing challenge mainly concerns separating vocals, bass, and drums from mixed and
mastered pop songs. The profound success of deep learning architectures in this area has showcased
the feasibility of source separation on a commercial scale.

e However, the success in this realm has inadvertently overshadowed other vital areas within music
source separation. This has led to a narrowed perception where music source separation is mostly
equated with the task of separating vocals, drums, and bass stems from mastered tracks.

Venturing into Monotimbral Ensembles
The challenge here is two-fold:

1. Spectral Overlap: Unlike the broader music demixing challenge, which involves instruments with
distinct spectro-temporal cues (like vocals and drums), monotimbral ensembles frequently comprise
instruments that operate within similar frequency ranges. This, coupled with their harmonized nature,
results in an intense spectral overlap, making their separation much more complex.

2. Label Ambiguity: Often, monotimbral ensembles might contain multiple sources from the same
instrument family. This presents an ambiguity in labeling, further complicating the separation task.

Given these intricacies, separating monotimbral ensembles encapsulates the complexities of both speech
and music separation [20, 79]. The overlap in frequency, the harmonically correlated structure, and
label ambiguities make this task uniquely challenging.

3.5 The Need for Permutation Invariant Training

In the realm of audio processing, the challenge of source separation is a multifaceted one, especially when
the sources in question share similar characteristics. Classical guitar duets can be likened to the complexities
faced in speaker separation. Just as two speakers may have closely matched tonal qualities, making their
voices challenging to distinguish, two classical guitars can create complex and challenging-to-separate sound
patterns. Given this parallel, it becomes evident that the methodologies and techniques honed for speaker
separation in the realm of deep learning and audio processing can offer invaluable insights for our research. By
delving into the strategies used for speaker separation, we can adapt and refine these methods, tailoring them
to the unique nuances of classical guitar duets, and thereby advancing the field of musical source separation.

Speaker-independent multi-talker speech separation presents a significant challenge due to the inherent label
ambiguity or permutation problem. Historically, only a handful of deep learning-based studies have ventured
into addressing this issue. Weng et al. [79] achieved commendable results by leveraging instantaneous
energy to navigate the label ambiguity challenge. Their method employed a two-speaker joint-decoder with a
speaker switching penalty. However, this approach is intrinsically tied to the decoder, making it a challenge
to scale beyond two speakers. On the other hand, Hershey et al. [80] made strides with the deep clustering
(DPCL) technique. This method involved training an embedding for each time-frequency bin to optimize a
segmentation criterion. During the evaluation phase, each bin was mapped into an embedding space, and
a clustering algorithm was subsequently applied to partition the time-frequency bins. While this method
has shown promise, it operates under the assumption that each bin is exclusive to a single speaker. This
assumption, although frequently accurate, can sometimes be sub-optimal. Moreover, integrating this method
with other techniques, especially those in the complex-domain separation realm, poses challenges [20].
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In light of these challenges, a novel training criterion, termed "permutation invariant training" (PIT), has
been proposed for speaker-independent multi-talker speech separation. Unlike traditional perspectives that
view speech separation as either a multi-class regression or a segmentation problem, PIT approaches it
as a genuine separation challenge. The primary strategy of PIT is to first ascertain the optimal output-
target assignment and subsequently minimize the error based on this assignment. This method offers a
direct solution to the long-standing label permutation problem, which has been a significant roadblock in
the evolution of deep learning techniques for speech separation [20]. Permutation Invariant Training
(PIT) [27] is an approach that we have to consider. It is particularly advantageous when dealing with label
ambiguities. As the monotimbral ensembles can have multiple sources from the same instrument family,
traditional training might struggle with assigning correct labels due to the inherent similarities among these
sources. PIT addresses this by ensuring the model is invariant to different permutations of the output labels,
thus reducing the ambiguity in assignments and enhancing the overall separation quality.
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Error
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Figure 3.5.1: The two-talker speech separation model with Permutation Invariant Training (PIT) [20].

The proposed solution, as illustrated in Fig. 3.5.1, underscores two pivotal innovations: permutation invariant
training (PIT) and segment-based decision making. The model treats reference source streams as a set,
rather than an ordered list, ensuring consistent training outcomes irrespective of the source order. During
the inference phase, the mixed speech is the sole available data. Speech separation is executed for each input
meta-frame, estimating an output meta-frame with multiple frames of speech for each stream. Due to the
inherent nature of PIT, the output-to-speaker assignment might fluctuate across frames. However, this can
be mitigated and potentially enhanced by overlaying a speaker-tracing algorithm atop the network’s output.

In conclusion, while the broader domain of music separation has seen significant advancements, particularly in
the demixing challenge, there remains a vast landscape of challenges within monotimbral ensemble separation
that demands focused research and innovative techniques like PIT.

3.6 Datasets

As highlighted previously, the evolution of music source separation methods has shifted from traditional digital
signal processing (DSP) techniques to fully supervised end-to-end deep neural networks. The availability of
well-constructed datasets for training and evaluation is now an indispensable component of this research.
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3.6.1 Existing Datasets for Music Source Separation

In response to the demand for more comprehensive and reliable datasets, researchers have developed dedicated
collections tailored for music source separation tasks. Prominent examples include MUSDB18-HQ [21],
MedleyDB [22], Slakh [23], URMP [24], MIR-1K][25], GuitarSet[26], EnsembleSet[27] each designed with
specific objectives and rich annotations.

All the aforementioned datasets can be divided into two primary categories:

Multitimbral Datasets

This subset encompasses sources with pronounced timbral distinctions, typically representing disparate in-
struments like bass, drums, and vocals. The unique sonic characteristics of each instrument make them
discernible from one another.

MedleyDB: MedleyDB dataset was primarily curated to facilitate research on melody extraction and in-
cludes 122 songs, totaling approximately 7.17 hours of audio. It offers stereo-format recordings with a
sampling rate of 44.100 Hz, accompanying each song with processed stems, raw audio, metadata, melody 0
annotations, instrument activations, and genre information.

DSD100: The DSD100 dataset is featuring 100 full-length tracks split evenly into a training set and a test
set, cumulatively offering around 10 hours of audio. Each track is presented in stereo format with a standard
sampling rate of 44.100 Hz. Uniquely, the dataset provides the individual stems for vocals, bass, drums, and
other accompaniments, allowing for detailed analysis and separation tasks. Additionally, the DSD100 dataset
includes comprehensive metadata and mixing information, although it does not provide melody annotations
or genre classifications.

MUSDBI18-HQ: The MUSDB18 dataset, widely used in music separation research, combines data from
various sources, including MedleyDB and DSD100. It comprises 150 songs spanning different musical gen-
res, totaling 10 hours of high-quality audio. MUSDBI18 includes full-length stereo recordings and, notably,
offers four individual stems (vocals, bass, drums, and "other") for each song to facilitate multi-instrument
separation.

Slakh: Synthesized Lakh (Slakh), a multi-track audio dataset, was designed for tasks such as music source
separation and multi-instrument transcription. It contains 2.100 tracks, amounting to approximately 145
hours of mixture data. These tracks are synthesized from the Lakh MIDI Dataset v0.1 [81] using professional-
grade virtual instruments and aligned MIDI files with 34 instrument classes.

MIR-1K: MIR-1K is a dataset created for singing voice separation, consisting of 1000 song clips. Each clip
includes music accompaniment in one channel and singing voice in the other. It offers manual annotations
for pitch contours, unvoiced frames, lyrics, and vocal /non-vocal segments. Additionally, the dataset provides
speech recordings of the lyrics, and the clips vary in duration from 4 to 13 seconds. In total, MIR-1K spans
133 minutes and is derived from 110 karaoke songs. These songs were chosen from a pool of 5000 Chinese
pop songs and performed by 8 females and 11 males, most of whom lack professional music training.

URMP: URMP (University of Rochester Multi-Modal Musical Performance) is a dataset designed for an-
alyzing musical performances from both audio and visual perspectives. It encompasses 44 simple multi-
instrumental music pieces, constructed by combining separately recorded performances of individual instru-
ment tracks. FEach piece in the dataset includes the musical score in both MIDI and PDF formats, high-quality
individual instrument audio recordings in WAV format, and assembled videos in MP4 format. The videos
feature a 1080P resolution with a frame rate of 29.97 FPS and arrange the instrument players horizontally, fol-
lowing the score’s track order. Additionally, the dataset provides frame-level pitch trajectories and note-level
transcriptions for individual tracks in ASCII delimited text format.

EnsembleSet: EnsembleSet is a chamber ensemble dataset crafted to address the challenges in source
separation research. This dataset leverages Spitfire Audio’s "BBC Symphony Orchestra" sample library
to create realistic digital renditions of chamber ensemble scores derived from MIDI transcriptions (RWC
Classical Music Database [82]) and lilypond scores (Mutopia) [83].

EnsembleSet comprises a selection of 9 classical pieces, encompassing string quartets, clarinet quintets, piano
trios, and piano quintets from the RWC Classical Music Database. Additionally, it includes 71 compositions
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from Mutopia, featuring various chamber ensembles with string quartets at the core. The core of this dataset
is Spitfire Audio’s BBC Symphony Orchestra Sample Library, capturing individual instruments with multiple
microphones in a studio setup. It simulates high-quality recordings of chamber ensemble pieces, faithfully
reproducing the nuances of real performances.

In summary, EnsembleSet offers 6 hours and 9 minutes of multi-instrument, multi-microphone data, primarily
focusing on string ensembles, with additional woodwind and brass instruments. Each song is paired with its
corresponding MIDI file, containing essential articulation information.

Monotimbral Datasets

Contrasting the multitimbral subset, this category encapsulates sources with homogeneous or closely re-
lated timbral attributes, either emanating from identical instruments or from those with pronounced sonic
similarities.

GuitarSet: A comprehensive dataset that offers top-notch guitar recordings paired with extensive annota-
tions and metadata. The unique use of a hexaphonic pickup during guitar recording allows us to capture not
only individual string recordings but also significantly streamline the costly annotation process, resulting in
rich and detailed annotations.

GuitarSet comprises recordings of diverse musical excerpts performed on an acoustic guitar, complemented
by meticulously synchronized annotations. These annotations encompass pitch contours, precise string and
fret positions, chord progressions, beats, downbeats, and intricate playing styles.

This dataset features a total of 360 excerpts, each approximately 30 seconds in duration. These 360 excerpts
are derived from various combinations, including performances by six different players across 30 lead sheets.
Notably, there are two versions for each performance: comping following the sheet and soloing with an impro-
vised performance. Musicians initially record the comping version and later overlay their solo performance
on top of their comping. The 30 lead sheets are generated from a wide spectrum of musical styles, including
Rock, Singer-Songwriter, Bossa Nova, Jazz, and Funk. Additionally, they encompass three distinct chord
progressions: 12 Bar Blues, Autumn Leaves, and Pachelbel Canon, all performed at both slow and fast tempi.

The audio recordings are captured using the hexaphonic pickup technology, delivering separate signals for
each guitar string. This innovation enables automated note-level annotation, a valuable feature for researchers
and enthusiasts alike. Musicians are provided with lead sheets and accompanying backing tracks that reflect
the correct style, complete with a drum kit and bass line. To ensure the highest audio quality, each excerpt is
recorded using both the hexaphonic pickup and a Neumann U-87 condenser microphone as a reference. For
each of the 360 excerpts, there is an associated file containing 16 annotations. These encompass pitch data,
including pitch contours and MIDI note annotations for each of the six strings. Additionally, annotations
cover beat positions, tempo, and chord progressions, providing a wealth of information for in-depth music
analysis.

Extracting Monotimbral Datasets from Multitimbral: In a multitimbral dataset featuring diverse
orchestral instruments, the creation of monotimbral datasets can be achieved by selectively extracting specific
instrument families. For instance, in the case of stringed instruments such as violins, violas, and cellos, a
monotimbral dataset can be formed by exclusively acquiring these instruments and omitting others from
different categories. This focused selection ensures a dataset dominated by a single timbre. Such practices
can be applied to datasets like the URMP or the EnsembleSet.

Our endeavor, which focuses on the separation of classical guitar duets, naturally aligns with the monotimbral
category. Upon scrutinizing available datasets, "GuitarSet" emerges as the most congruous to our research
requirements due to its specific orientation towards guitar soundscapes. Nevertheless, a significant portion
of existing datasets is predominantly geared towards scenarios where source signals exhibit notable timbral
differences, such as drums, vocals, and bass. In contexts like guitar duets, identifying datasets that capture
recordings of homogeneous instruments proves to be an intricate task. The challenge is accentuated when
seeking datasets apt for classical guitar separation, considering the instrument’s inherently polyphonic char-
acter. As of now, a dataset meticulously tailored to polyphonic recordings of identical instruments, especially
classical guitars, remains elusive.
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3.7 Evaluation Metrics for Source Separation

The field of Blind Audio Source Separation (BASS) [84] has been a focal point of research for many years,
producing numerous successful techniques with commendable results. Yet, due to the inherently subjective
and complex nature of this task, assessing performance and comparing different methods necessitates the
adoption of widely accepted and high-quality evaluation metrics.

Historically, various metrics have been employed, such as Inter-Symbol Interference (ISI) [85] or the Mean
Squared Error (MSE) between L2-normalized source signals. While these metrics are relevant, they possess
limitations. One of the most critical shortcomings is their treatment of the desired signal sy, considering
it recovered up to permutation and gain, without accounting for other forms of distortion. Moreover, these
metrics offer a singular performance value, failing to differentiate between various error sources like sensor
noise (€noise), source interferences (€interf), spectral correctness, and the introduction of unrelated artifacts.
Such distinction is crucial for accurate technique assessment, especially since different applications may
prioritize one type of error over another. Errors in separation tasks can be categorized into three groups:
sensor noise (eneise), interference from other sources (eintert), and disruptive artifacts (eartir), with the latter
being particularly detrimental. Consequently, a technique may score highly in metrics while still delivering
suboptimal perceived performance, depending on the balance of error terms.

To address these challenges, the BSS Eval toolkit [86] has emerged as a valuable resource. Initially developed
for MATLAB, it has gained widespread usage within the Python community through the museval package.
The toolkit introduces metrics such as the Source to Distortion Ratio (SDR), Source to Interference Ratio
(SIR), and Source to Artifacts Ratio (SAR) [84] , which can be configured to accommodate time-invariant
filter and gain adjustments, aligning more closely with specific application requirements.

In the computation of these metrics, it is assumed that the estimated source signal sy,; can be decomposed
into four terms: spj = Starget T €interf + €noise + Cartif. 1his decomposition relies on orthogonal projections of
the source signals onto subspaces defined by the source signals and /or sensor noise. As a result, the metrics
are defined as follows:

Source to Distortion Ratio (SDR): Serves as a measure of overall signal separation quality, capturing
both the interference and artifacts in the separated signal relative to the desired source. The SDR is defined
as:

||3target ||2

+ €noise + eartifH2 ’
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Source to Interference Ratio (SIR): Quantifies the clarity of separated sources, specifically focusing on
how well other interfering sources have been excluded from the separated signal. The SIR is defined as:

SIR — 101og,, ISterectl”®
10 ||ein‘cerf||2

Source to Artifacts Ratio (SAR): Indicates the presence of auditory artifacts, assessing the amount of
distortion or unwanted sounds introduced during the separation process that are not related to interference.
The SAR is defined as:
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Source Image to Spatial Distortion Ratio (ISR): Measures the amount of spatial distortion or filtering
distortion that the separation algorithm introduces. The ISR is defined as:
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Among these metrics, SDR is typically considered the most crucial, as it aligns closely with human perception.
Despite its widespread adoption, the BSS Eval toolkit has its limitations, particularly concerning allowed
distortions and the correlation between metrics and human perception. One concern is that the permissible
distortions within the toolkit can alter the reference signal substantially, potentially matching any estimated
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signal, leading to issues of objectivity and credibility in evaluating different algorithms. To address this, a
scale-invariant version of the metric SDR have been proposed in [87], enhancing and redefining the traditional
metrics.

Scale-Invariant Source to Distortion Ratio (SI-SDR): An enhancement of the traditional SDR, SI-
SDR is less sensitive to the scaling of the estimated signal, making it a more robust metric for evaluating
the true quality of source separation, especially in scenarios where the amplitude or volume of the separated
sources might vary. The SI-SDR is defined as:
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the estimated source signal.

In summary, the evaluation of source separation methods relies on robust metrics like SDR, SIR,ISR and
SAR, offered by the BSS Eval toolkit. However, ongoing efforts are essential to address potential limitations
and better align these metrics with human perception, ensuring more accurate and reliable evaluations of
source separation algorithms. For this specific research we are focusing on the SDR and SI-SDR while at the
same time calculating the rest of the metrics.
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Given the lack of datasets addressing the needs of monotimbral source separation, particularly for scenarios
involving classical guitars or similar instruments, our research aims to bridge this gap. We intend to embark on
the creation of dedicated datasets that encompasse polyphonic recordings of the same instrument, facilitating
the development and evaluation of source separation techniques for such challenging and musically rich
contexts. In doing so, we aim to provide a valuable resource for researchers and practitioners in the field of
music source separation.

4.1 Dataset Creation: GuitarDuets

In this section, we present the process of creating a unique and authentic dataset for monotimbral music source
separation by recording two classical guitars performing together. This dataset harnesses the interaction
and interplay between real guitarists, capturing the intricacies of live performances. The recording process
involved meticulous setup, performance considerations, and data collection to ensure a dataset for further
analysis and training of our source separation models.

Recording Setup

The recording process began with the setup of a suitable recording environment to achieve optimal audio
quality. We selected a quiet and acoustically treated room to minimize background noise and undesirable
reverberations. Each classical guitar was positioned using high-quality condenser microphones (Presonus
PM-2) to capture the respective sounds. During the recording process, four different classical guitars were
used to ensure a diverse range of timbres in our dataset. Despite meticulous placement and adjustments, we
encountered a challenge with microphone leakage, where the sound from one guitar’s performance inadver-
tently bled into the microphone capturing the other guitar. This unintended crossover of sound presented a
significant concern, as it could potentially compromise the isolation of the individual guitar tracks, impacting
the quality and accuracy of the source separation dataset. In addressing the issue of source bleeding in
microphones, we recorded a specialized test set that is free from such leakage. This set, consisting of seven
tracks, was created to ensure the absence of cross-feed between microphones. We leveraged this dataset for
the model’s testing and validation phases to provide an accurate assessment of its separation capabilities.

Performance Considerations and Data Collection

Creating a comprehensive and expressive dataset required careful planning of the guitar duet performances.
We curated a selection of diverse classical music pieces, representing various styles, tempos, and complexities.
The guitarists practiced extensively to ensure synchronized performances while allowing for artistic interpre-
tation and expressive dynamics. Emphasis was placed on capturing the inherent interactions between the
two instruments, such as harmonies, counterpoint, and complementary melodies.

During the recording sessions, we captured multiple takes of each piece to introduce variability in the dataset.
This allowed us to incorporate different interpretations and slight variations in performances, akin to the
natural imperfections present in live music. We ensured consistency in data collection by maintaining the
same recording setup and conditions for all pieces.

Preprocessing

Before integrating the recorded data into the source separation pipeline, we performed essential preprocessing
steps to ensure data consistency and compatibility. This involved normalization of audio levels, removal of
any unwanted artifacts, and segmenting the recordings into appropriate samples for the source separation
task. Special care was taken to preserve the natural dynamics and timbres of the guitars during preprocessing.
We exported each individual guitar performance as a 44.100 Hz 16-bit WAV file in both stereo and mono
formats. Subsequently, to create the mixed audio files, we simply summed the two guitar files representing
each duet.

In the following table there is an overall overview of the tracks constituting the dataset recording along with
their duration.
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Figure 4.1.1: Marios and Orpheas playing at a concert.

Recording Name

Valses Poeticos 1 (Enrique Granados)
Valses Poeticos 1 2nd

Valses Poeticos 2

Valses Poeticos 2 2nd

Valses Poeticos 2 3rd

Valses Poeticos 3

Valses Poeticos 3 2nd

Valses Poeticos 4

Valses Poeticos 5

Valses Poeticos 5 2nd

Valses Poeticos 6

Valses Poeticos 7

Valses Poeticos 8

Valses Poeticos 9

Valses Poeticos 10

Summer Garden Suite 1 Opening (Sergio Assad)
Summer Garden Suite 1 Opening 2nd
Summer Garden Suite 2 Summer Garden
Summer Garden Suite 2 Summer Garden 2nd
Summer Garden Suite 3 Farewell
Summer Garden Suite 3 Farewell 2nd
Summer Garden Suite 4 Butterflies
Tango 1 (Astor Piazzolla)

Tango 1 2nd

Tango 2

Tango (N. Mavroudis)

demol

demo?2

demo3

demo4

demob

demo6

demo7

demo8

Total Duration

Duration (seconds)
85.5
97.5
92.0
25.0
49.5
88.5
86.5
116.0
46.5
46.0
60.0
87.0
49.0
91.0
91.5
82.0
73.0
156.0
142.0
175.0
168.0
175.0
338.0
331.0
297.5
154.0
34.5
66.0
49.5
27.0
41.5
22.5
27.0
47.5
58.6 minutes

Table 4.1: Dataset Recordings and Durations
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Conclusion

The dataset created through the recording of two classical guitars playing together offers an authentic and ex-
pressive representation of real-world guitar duets. Unlike synthesized or MIDI-based datasets, this collection
captures the subtleties and nuances of live performances, providing a rich resource for training and evaluat-
ing music source separation models. The combination of meticulous recording setup, thoughtful performance
considerations, and careful data collection ensures that the dataset reflects the artistry and complexities of
classical guitar duets. It is important to note that during the recording process, we encountered a microphone
bleeding issue which may pose challenges and should be taken into consideration for any future research or
experiments utilizing this dataset.

4.2 Dataset Creation for Music Source Separation: Leveraging Na-
tive Instruments Plugin and MIDI Scores

In this section, we present a comprehensive account of our dataset creation process, where we combine
the expressive power of Native Instruments’ SESSION GUITARIST - PICKED NYLON plugin [29], which
constitutes a virtual instrument generating classical guitar sounds, and the musical notation data from MIDI
scores sourced from the MuseScore community [30]. As discussed in the preceding section, the dataset
comprising real recordings is insufficient in duration to constitute a comprehensive training set for neural
network models. Consequently, we are developing this synthetic dataset. The generation of synthetic data
is not only more efficient and less time consuming but also serves to augment our initial dataset. Moreover,
this synthetic compilation allows us to conduct comparative analyses between real and synthetic datasets,
thereby evaluating the model’s ability to generalize across these two distinct domains.

Introduction to Virtual Instruments

A virtual instrument, in the context of music production and digital audio technology, refers to a software-
based emulation of traditional musical instruments or synthesizers. Unlike physical musical instruments,
which require physical interaction and acoustic sound generation, virtual instruments exist entirely within
the digital realm, residing as software plugins within Digital Audio Workstations (DAWSs).

Throughout history, the development of virtual instruments has been shaped by technological advancements.
The early efforts in the 1980s to utilize MIDI for computer-music communication laid the foundation for
virtual instrument development. As computers gained processing power and storage capabilities, developers
began creating basic software synthesizers, marking the initial steps in the world of virtual instruments.
The 1990s saw significant progress with sample-based technology, resulting in virtual instrument plugins
that could convincingly emulate acoustic instruments. The 2000s witnessed a paradigm shift with the rise of
Digital Audio Workstations (DAWs) and standardized plugin formats, fueling the proliferation of high-quality
virtual instruments that continue to redefine modern music production [88].

Today, virtual instruments play a vital role in the music-making process, democratizing access to an extensive
array of sounds and unleashing creativity in music production. The seamless integration of virtual instruments
within modern DAW workflows has revolutionized the way artists craft their compositions, enabling them to
explore diverse timbres, styles, and sonic landscapes, all within the digital domain. Whether through sampled-
based or synthesis-based technologies, virtual instruments have become indispensable tools, empowering
musicians, composers, and producers to express their artistic visions with unprecedented flexibility and
versatility.

There are two primary types of virtual instruments: sample-based and synthesis-based. Sample-based
virtual instruments rely on extensive collections of recorded audio samples from real instruments. These
high-fidelity samples capture the nuances and sonic characteristics of acoustic instruments, such as pianos,
guitars, strings, and brass. When triggered, these samples play back the recorded sounds, producing realistic
and expressive tones. Sample-based virtual instruments offer a vast selection of instruments, articulations,
and playing styles, allowing musicians to access a wide range of lifelike sounds without the need for physical
instruments or dedicated hardware.

On the other hand, synthesis-based virtual instruments generate sounds algorithmically, simulating the
behavior of synthesizers and electronic instruments [28]. Through various synthesis techniques, such as sub-
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tractive synthesis, additive synthesis, FM synthesis, and wavetable synthesis [89], these virtual instruments
can create an extensive array of electronic sounds, pads, leads, and textures. Synthesis-based virtual in-
struments provide artists with the flexibility to craft entirely original and imaginative sounds, unleashing
boundless creative possibilities.

Native Instruments Plugin: “Session Guitarist - Picked Nylon”

The Native Instruments plugin, “Session Guitarist - Picked Nylon” [29], is a sample-based virtual instrument
meticulously designed to capture the nuances of a nylon-stringed guitar. Its clean and mellow timbres make
it an ideal production tool for a wide range of music genres, from classical to contemporary styles like bossa
nova and flamenco. The plugin’s remarkable flexibility and top-tier performance controls enable artists to
achieve their desired sounds effortlessly. To create this plugin, master guitar-maker Lisa Weinzierl crafted
the instrument using rare preamps and a carefully controlled studio environment, ensuring a realistic tone
[29]. The plugin offers a rich library of strummed chords, picked arpeggios, and delicate riffs, performed with
various playing styles by a top-class session player.

“'SESSION GUITARISTSS

icked Vgl

Figure 4.2.1: Native Instruments Plugin: “Session Guitarist - Picked Nylon” [29].

MIDI Scores from the MuseScore Community

In the realm of music production and digital audio technology, music representations play an important role
in capturing musical data in digital format. A music representation, also known as a music file format, is a
standardized way to store musical information, such as pitch, duration, tempo, and dynamics, in a digital
file. These representations allow music to be seamlessly transferred, edited, and reproduced across various
digital platforms and software applications.

Over the years, numerous music representations have emerged, each tailored to specific purposes and re-
quirements. Some popular, audio based formats include WAV (Waveform Audio File Format), AIFF (Audio
Interchange File Format), FLAC (Free Lossless Audio Codec), and MP3 (MPEG Audio Layer III), among
others. These formats vary in terms of audio quality, compression techniques, and storage efficiency.

Among the various music representations, MIDI (Musical Instrument Digital Interface) stands out as one of
the most widely used and versatile formats. Unlike audio-based formats, MIDI files do not contain actual
audio waveforms; instead as stated in Sec. 2.2.3, they store musical instructions and data that represent
the performance of instruments and their interactions within a composition. MIDI files are lightweight,
highly editable, and do not suffer from audio degradation due to compression, making them ideal for music
composition, arranging, and sequencing.

The flexibility of MIDI allows composers and producers to manipulate individual musical elements, such as
notes, velocities, and articulations, with precision and ease. MIDI data can be easily edited and reorganized,
making them a powerful tool for composing and arranging complex musical pieces. Furthermore, MIDI’s
ability to separate musical data from sound generation allows users to apply different virtual instruments or
synthesizers to interpret the MIDI data, yielding diverse and customizable sound options.

Due to its widespread compatibility and efficiency, MIDI has become the industry standard for various mu-
sical applications, including music production, video game soundtracks, film scoring, and live performances.
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Figure 4.2.2: Piano roll of a MIDI file [90].

MIDTI’s ubiquity in digital music production workflows highlights its adaptability and universal appeal to
musicians, composers, and producers worldwide.

The MuseScore community [30] is an invaluable resource for musicians and researchers alike. It hosts an
extensive collection of guitar duet MIDI scores, presenting musical notation and performance data. MIDI
(Musical Instrument Digital Interface) files encode musical events, such as pitch, duration, and velocity,
making them an excellent representation of the musical score. From this vast repository, we handpicked a
selection of guitar duet MIDI scores, ensuring a diverse and representative set of classical music pieces.

Digital Audio Workstation (DAW): Logic Pro X

To transform the MIDI scores into realistic guitar performances, we used Logic Pro X, a sophisticated Digital
Audio Workstation (DAW) trusted by musicians and producers worldwide. Logic Pro X [31] provides a
professional environment for music production, enabling seamless integration with virtual instruments and
audio processing tools. By importing the MIDI files into Logic Pro X, we gained access to a rich array of
creative possibilities for shaping the sound of the virtual instruments.

MIDI-Based Sound Creation

Within Logic Pro X, we loaded the SESSION GUITARIST - PICKED NYLON plugin three times, creating
three distinct instances, each with a unique timbral setting. This configuration allowed us to simulate three
separate guitars, each contributing a distinct sound to the duet ensemble. With this meticulous setup, we
ensured a wide range of timbres for each guitar part in the duet, closely mirroring real-world scenarios where
guitarists select different instruments to achieve specific tones and styles.

For each MIDI file, we selected two out of the three distinct timbral settings from the plugin, creating a diverse
combination of guitar duets. This careful selection process resulted in an expansive dataset. The resulting
duets showcased an array of musical styles, dynamic performances, and harmonious interplay between the
two guitars.

To finalize the dataset, we exported each individual guitar performance as a 44.100 Hz 16-bit WAV file in
both stereo and mono formats. Subsequently, to create the mixed audio files, we simply summed the two
guitar files representing each duet.
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In the following table there is an overall overview of the tracks consisting the dataset recording along with

their duration.

Track Number
Trackl
Track2
Track3
Track4
Trackbd
Track6
Track7
Track8
Track9
Trackl1
Track12
Trackl13
Track14
Tracklb
Track16
Trackl7?
Trackl8
Track19
Track20
Track21
Track22
Track23
Track24
Track25
Track26
Track27
Track28
Track29
Track30
Track31
Track32
Track33
Track34
Track35
Track36
Total Duration

Track Name

Bach, Minuet in G major, BWV Anh 114

Bach Prelude n3 BWV 935

Blind Guardian The Bard’s Song

Unkoown (No named Provided by MuseScore)

Unkoown (No named Provided by MuseScore)

Unkoown (No named Provided by MuseScore)
Marcello/Bach - Concerto in D minor

Duo en Sol op.27 n°8 - Ferdinando Carulli

BWYV 304 Bach. J.S. Choral; Eins ist noth, ach Herr, dies Eine
Sir Edward Elgar - Pomp and Circumstance March No.1
Sibelius Etude Op.76 No.2

The Police - Every Breath You Take

Jordon Drumgoole - Four Short Seasons for Guitar Duet
Gerald Schwertberger - Blue and Rythmic Duets

Unkoown (No named Provided by MuseScore)
J.O.Marques: Six Easy Duets for Guitars - No.1 in C major
J.O0.Marques: Six Easy Duets for Guitars - No.2 in G major
J.0.Marques: Six Easy Duets for Guitars - No.4 in F major
J.O.Marques: Six Easy Duets for Guitars - No.6 in C major
Suite ¢ minor (BWV997) - Preludio for tenor

Mazurka - Francesco Tarrega (1852 - 1909) - Duo

Milonga Guitar Duo

NIGHTWISH - Ever Dream

Poco Allegretto - Ferdinando Carulli (1770 - 1841) - Duo
Recuerdos de la Alhambra - Francisco Tarrega

Scherzino Mexicano

Unkoown (No named Provided by MuseScore)

Unknown

Unknown

Unknown

Unknown

Terpsichore - Duo op.45 - José Ferrer y Esteve

Louis Moreau Gottschalk - The Dying Poet

Ferdinando Carulli Trois Noctures op.90

Unkoown (No named Provided by MuseScore)

Duration (seconds)
120.0
120.0
45.818
32.0
36.0
38.571
109.5
97.6
93.103
374.4
192.0
214.839
300.632
977.92
500.909
56.048
92.857
106.667
89.302
154.884
63.717
105.366
83.137
94.815
240.0
141.639
129.836
63.066
97.81
151.579
122.553
208.0
261.818
727.183
604.337
106 minutes

Table 4.2: NI Dataset and Durations

Below in Fig. 4.2.3, we present spectrograms of both a real guitar recording from our dataset, and a synthetic
guitar counterpart. Examination of these spectrograms reveals that the spectrogram on the right exhibits
increased noise levels which can be attributed to microphone-related noises and the phenomenon of instrument

source leakage.
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Chapter 4. Creating Datasets for Monotimbral Source Separation

Synthetic Guitar Real Recording Guitar

Frequency [Hz]

05 10 15 2.0 05 1.0 15 2.0
Time [sec] Time [sec]

Figure 4.2.3: Comparison between synthetic (left) and real (right) data.
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Chapter 5. Residual Shuffle-Exchange Music Transcription Network And Experiments

5.1 Overview of the Residual Shuffle-Exchange Network

5.1.1 Benes Network Foundation

The Residual Shuffle-Exchange Network (RSE) evolves from the foundational structure known as the Benes
network. This network is a key component within the RSE architecture and serves as a pivotal mechanism for
facilitating the process of shuffling and exchanging features within a deep neural network. The Benes network
is renowned for its ability to efficiently handle permutations of inputs, which is a fundamental operation in
tasks such as sorting and routing networks.

In the context of the RSE, the Benes network underpins the model’s ability to manage and learn from the
high-dimensional data involved in music transcription. It comprises two Benes blocks, which are critical for
the network’s capacity to develop rich representations of the input data. These blocks are arranged in a
manner that allows for a deep and complex transformation of features, setting the stage for the subsequent
application of the Residual Switch Unit (RSU).

2" Benes block -
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Shared Shared
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Figure 5.1.1: Residual Shuffle-Exchange network with two Benes blocks and eight inputs.[12]

By replacing the standard Switch Unit with the RSU, the RSE network leverages the Benes network’s
inherent strengths while enhancing its ability to learn and generalize from audio data. This modification is
instrumental in achieving the feature processing necessary for long sequences. The subsequent section on the
RSU will delve into the specifics of this replacement and its implications for the network’s performance.

5.1.2 Residual Switch Unit (RSU)

The RSU is the cornerstone of the RSE network, distinguishing it from its predecessors. It is constructed on
a residual network basis, incorporating Gaussian Error Linear Units (GELU) and Layer Normalization. The
RSU design is inspired by the feed-forward block seen in the Transformer architecture. It processes pairs of
input vectors, producing output vectors of corresponding size, with each vector representing the number of
feature maps in the network. The RSU’s linear transformations, followed by Layer Normalization and GELU
activation, ensure effective feature processing and stability in training deep networks [12].
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Figure 5.1.2: Residual Switch Unit. A number of feature maps (m) is shown in parentheses. Depicted here
with the default of hidden layer being 2x larger than the input (4m being the size of the hidden layer and
2m the size of the input) [12].

Mathematical Formulation

The RSU’s formulation involves multiple components as shown in eq. 5.1.1:
- Two linear transformations applied to the feature dimensions.
- Layer Normalization and GELU activation.

- A final output calculation using sigmoid and scalar multiplication operations.

i=[iy,ig]

= GELU(L N Zi
g (LayerNorm(Zi)) (5.1.1)
c=Wg+B

[01,00] =0(S)®i+hGc

This design enables a more straightforward architecture compared to the gated mechanisms in previous
models, facilitating easier training and potentially more robust performance in various applications [12].

5.1.3 Incorporation of Strided Convolutions

For tasks with a significant discrepancy in information content, such as the MusicNet dataset provides because
of the polyphonic nature of the instruments included and the multple notes played at the same time, the
RSE network utilizes strided convolutions. These convolutions are applied before the main network, serving
to increase the number of feature maps while reducing the sequence length. This approach not only aligns
the information content more appropriately but also speeds up the processing without sacrificing accuracy
[12].
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8192x1

4096 x 96

Conv + Conv+ 2048 x384 . 2048 x192 . 2048 x192 2048x128
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+GELU +GELU Transform | Exchange Network | | Conv Layer
|_|

Figure 5.1.3: The architecture with two prepended convolutions employed for the MusicNet Dataset.|[12]

5.2 Music Transcription Application of RSE Network

The RSE network’s implementation in TensorFlow has demonstrated its adaptability and effectiveness in
various tasks. The network architecture has been fine-tuned to optimize performance without leading to
overfitting, showcasing its robustness [12].

5.2.1 Performance on Algorithmic Tasks

In algorithmic tasks, where a small change in input can significantly alter the output, the RSE network has
shown promising results. It has been evaluated on tasks like long binary addition, multiplication, and sorting.
These tasks are benchmarks for assessing a model’s capacity to develop and manage long-term dependencies
[12].

5.2.2 MusicNet Dataset Performance

A notable application of the RSE network is in the MusicNet Dataset [91], which involves the classification
of notes played at each time step in a waveform. The network has shown remarkable performance in this
multi-label classification task, achieving an Average Precision Score (APS) of 78.02% on a certain window
size. This performance highlights the RSE network’s capability in handling complex, long-sequence data [12].

Compared to other architectures listed on the MusicNet leaderboard at Papers With Code [92], the RSE
network not only outperforms competitors in APS but also does so with a substantially smaller model
size. For instance, the Complex Transformer, which follows the RSE network in performance, has an APS of
74.22% but requires nearly four times as many parameters (11.61M compared to RSE’s 3.06M). This efficiency
highlights the RSE network’s advantage, which can deliver top-tier performance in music transcription tasks
without the computational expense typically associated with larger models.
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Figure 5.2.1: Papers With Code Leaderboard in the task of Music Transcription on the MusicNet Dataset
with Average Precision Score [92].
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Figure 5.2.2: Papers With Code Chart in the task of Music Transcription on the MusicNet Dataset APS to
number of parameters [92].

The above Fig. 5.2.2 of the RSE Network and the Complex Transformer illustrating the parameter footprint
in comparison to the performance, underlines the RSE network’s superior capability in translating complex
auditory information into accurate transcriptions with fewer parameters. This efficiency is critical for practical
applications where computational resources may be limited.

5.2.3 MusicNet Dataset Overview

MusicNet is a comprehensive dataset consisting of hundreds of freely-licensed classical music recordings.
These recordings are composed by 10 composers and involve 11 different instruments, offering a diverse range
of classical music pieces. The dataset is enriched with detailed instrument recorded at a sample rate of 44.100
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Hz and note annotations given in the format of csv files containing the notes and the corresponding samples
of the audio that the note is being played, amounting to over 1 million temporal labels across all tracks.
It encompasses 34 hours of chamber music performances, recorded under various studio and microphone
conditions [91].

5.2.4 Evaluation Metric for Music Transcription

Identification of notes in an audio segment is formulated as a multi-label classification problem. We assign
each audio segment a binary label vector y € {0,1}'2%) where the 128 dimensions correspond to the MIDI
note numbers. A value of y,, = 1 indicates the presence of note n at the midpoint of the audio segment x.

Let f : X — H be a function that maps the audio segment to a feature map. We train a model to predict
a label vector y given the feature map f(x), optimized for mean square loss. The prediction y can be
interpreted as a multi-label estimate of the notes in x by choosing a threshold ¢ and predicting label n if
Un = cC.

Precision, Recall and Average Precision Score

Music transcription models are evaluated using three metrics: precision, recall as stated in Ch. 2, and average
precision score (APS).

These metrics are parameterized by the note prediction threshold ¢, which is varied to construct precision-
recall curves. The APS is then calculated as the area under these curves:

1
APS:/ Precision(r) dr (5.2.1)
0

Here, r is the recall rate, and Precision(r) is the precision as a function of recall. This score provides a
single-figure measure of the model’s overall performance across all threshold settings.

5.3 Modifications to Existing Architecture

Our approach transforms the single-output music transcription architecture of the Residual Shuffle-Exchange
Network (RSE) into a dual-output system. This system is adept at generating separate transcriptions for
each guitar within a mixed audio input, tailored specifically to unravel the complexities of audio separation
and transcription from two guitars. A key rationale behind opting for a transcription-focused architecture
over a traditional separation model lies in the inherent advantages of transcription systems in handling
distinct notes. Given that transcription architectures have already demonstrated commendable performance
in delineating individual notes, our strategy leverages this strength for enhanced separation efficiency. By
accurately transcribing all notes present in the audio mix, our model aims to simplify the task of attributing
each note to the correct guitar. The goal is for the model to learn and understand the natural correlations
and mutual exclusivities among guitar notes. For example, the model can learn how playing a certain note
on one guitar can often preclude the simultaneous playing of certain other notes on the same instrument.
We believe that achieving such a goal and uncovering these correlations is more challenging for a separation
model focused solely on distinguishing sounds. In contrast, a transcription-based model, which outputs
the notes being played as a binary vector y € {0,1}12® and is designed with features targeting this specific
objective, offers a clearer pathway to understanding these correlations. The use of vectors in the transcription
model provides a more intuitive and direct means to analyze and grasp the intricate relationships between
simultaneous notes on a guitar.

We have tried two different approaches in modifying the architecture:

5.3.1 Modification 1

In the first modification, we adapted the initial architecture to enhance its ability to differentiate between
the two instruments playing simultaneously. The architecture retains the foundational structure of Residual
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Shuffle Exchange Network dedicated to MusicNet Dataset implementation but introduces a bifurcated path-
way after the linear transformation layer. Each path is dedicated to one of the two instruments, integrating
a separate Residual Shuffle Exchange Network for each. This split allows the model to focus on the unique
characteristics of each instrument, leveraging the potential of the Residual Shuffle Exchange Network to cap-
ture and transcribe the subtleties of each instrument’s contribution to the audio mix. The final stage in each
pathway consists of a convolution layer that is specifically fine-tuned to condense the rich feature maps into
a 128-dimensional output. This dimensionality corresponds to the 128 possible MIDI notes, thereby enabling
the model to capture the full spectrum of notes each instrument can produce.
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L
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Exchange Network 2
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Figure 5.3.1: Modification showing the two different RSEs used.

5.3.2 Modification 2

In the second modification, we implemented a simpler adaptation of the initial Residual Shuffle Exchange
Network. The core of the network, including the Residual Shuffle Exchange component, remains unchanged
to preserve the integrity of feature extraction performed by the original design. However, an alteration
has been made at the concluding stage of the model, the last convolutional layer has been reconfigured to
output twice the original dimensionality. Instead of creating two separate pathways for each instrument, this
architecture entrusts a single, convolution layer with the responsibility of segregating the features pertinent
to each instrument from the shared feature set produced by the RSE. This convolutional layer is adept at
assigning the extracted features to the appropriate instrument, outputting a 2x128-dimensional representation
that encapsulates the probability distribution for all 128 MIDI notes across both instruments.

8192x1

4096 x 96
Conv + Conv+ 2048 x 384 2048 x 192 2048x192  2048x2x128
Layer Norm Laye[ Norm Linear Residual Shuffle
+ GELU + GELU Transform | | Exchange Network | | Conv Layer

o L] L]

Figure 5.3.2: Modification 2 showing the alteration in the last convolution layer.
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5.3.3 Experiments and Results

In this section, we delve into the experimental outcomes, where we applied the model configuration as outlined
in the original paper. The RSE architecture processes the audio signal by transforming the waveform into its
frequency representation. For any given input audio with a sampling rate of 11.000 Hz, the goal is to identify
the musical notes it contains. The method begins by segmenting the audio into frames of 8.192 samples each.
Within these frames, it computes the Fast Fourier Transform (FFT) to convert the time-domain signal into
frequency-domain information. This step is followed by creating a sequence comprising 4.096 samples of the
real parts and 4.096 samples of the imaginary parts of the FFT result. Utilizing these features, the network
performs inference on the central portion of the initial 8.192-sample frame to predict the notes present. The
analysis advances across the audio by moving the frame by a hop size of 128 samples, repeating this process
for subsequent segments. The network’s output is a 128-element vector, representing the probabilities of each
of the 128 MIDI notes being played. To derive a final, actionable prediction, these probabilities are subjected
to a thresholding process to binarize the outcomes, indicating the presence or absence of each note.

We employed a permutation invariant training algorithm within the TensorFlow framework. Our training
leveraged two datasets: the widely recognized GuitarSet and a custom dataset comprising native instruments.

To align with the MusicNet dataset’s format, the labels from the GuitarSet (.jams files) were transformed into
CSV format. Similarly, MIDI files from our native instrument dataset were converted to the same format,
ensuring uniformity in data processing. All audio files, originally sampled at 44.100 Hz, were resampled to
11.000 Hz and converted to mono for consistency and computational efficiency.

The datasets were split in a ratio of 0.8 for training, 0.1 for validation, and 0.1 for testing. This partitioning
was crucial to evaluate the model’s performance comprehensively across various scenarios, ensuring a robust
and well-generalized learning process.

Ablation Study on PIT Loss and Modifications

Table 5.1: Ablation Study

APS SCORE GuitarSet | NI Dataset Test
Modification 1 no PIT | 10.06% 59.03%
Modification 1 PIT 13.14% 62.99%
Modification 2 no PIT | 12.37% 60.58%
Modification 2 PIT 13.29% 63.97%

The initial experiment was designed not only to compare the performance and efficiency between two archi-
tectural modifications but also to test whether the integration of permutation invariant training (PIT) loss
contributes to improving the model’s effectiveness. While both modifications yielded similar accuracy, the
second modification demonstrated a slight edge. Notably, it not only surpassed the first in accuracy but also
exhibited enhanced efficiency, attributed to its reduced parameter count. Unlike the first modification, which
doubled the parameters by duplicating the residual shuffle exchange network, the second modification simply
altered the last convolution layer to produce the desired output. This strategic change resulted in significantly
faster inference and training times. Consequently, for subsequent experiments, the second modification will
be adopted as the preferred architecture. Moreover, the inclusion of PIT loss indeed enhanced the model,
contributing to its overall performance in both modifications. Consequently, for subsequent experiments, the
integration of PIT loss will be adopted.

From this experiment, it is inferred that incorporating a linear convolution at the end of the network is
effective in capturing and distinguishing individual notes played by each guitar. This suggests that linear
convolution is a potent mechanism for the in-depth analysis required in music transcription.
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Figure 5.3.3: PIT Training difference with no PIT train. Figure is showing gorundtruth scores (Blue),
Estimated Scores with no PIT (Red), Estimated Scores with PIT (Green)

In the above Figure 5.3.3, we observe the ground truth piano rolls for each guitar depicted in blue, alongside
the predictions from two algorithms: one that did not utilize Permutation Invariant Training (PIT), shown
in red, and one that did employ PIT. The parts enclosed within the black and white boxes represent specific
sections from each guitar. It is evident that the model without PIT struggled to consistently assign melody
notes to the correct guitar, switching notes between guitars mid-phrase. This issue largely stems from the
fact that without PIT, the computed loss for weight optimization is higher and less representative of the
desired outcome.

Conversely, the predictions made by the algorithm incorporating PIT demonstrate a marked improvement in
maintaining the continuity of a musical phrase within the same guitar. This indicates that PIT was effective
in training the model to better understand and preserve musical phrases, assigning them accurately to the
appropriate guitar throughout a piece. This distinction underscores the significance of PIT in enhancing
model performance for tasks requiring a nuanced understanding of musical structure and consistency in
source separation.

Cross-Dataset Experiments

Table 5.2: Cross Dataset Experimentds’ Results

MOD2 - APS SCORE GuitarSet | NI Dataset Test
Train NI - Finetune GuitarSet | 71.81% 7.99%
Train GuitarSet 72.77% 7.65%
Train GuitarSet + NI Dataset | 68.62% 62.62%

The first experiment revealed a pronounced "forgetfulness" in the model when fine-tuned with a different
dataset. After training on the NI dataset and subsequent fine-tuning on the GuitarSet, the model’s per-
formance on the GuitarSet test set was suboptimal, indicating a loss of information acquired during initial
training. This behavior points to the model’s tendency to rapidly overwrite learned features, a phenomenon
that necessitates further investigation into memory retention during fine-tuning.

Similarly, the second experiment highlighted the challenges of dataset transferability. Training on real record-
ings (GuitarSet) did not translate well to performance on the synthetic dataset (NI Dataset), suggesting a
significant gap between the model’s learning on real versus synthetic data. This underlines the importance
of dataset diversity in training for robust model generalization.
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In the third experiment, the combination of the NI Dataset and GuitarSet for training yielded a model with
performance metrics close to the highest APS scores achieved when trained exclusively on either dataset.
This blend of datasets enhanced the model’s robustness and its ability to generalize across varied data.

Moving forward, the architecture from the second modification, trained on the combined dataset, will be
employed to feed the score-informed separation model. This approach aims to leverage the collective strengths
of both datasets to cultivate a transcription model capable of dealing with a broader spectrum of audio inputs.
The ultimate goal is to enhance the accuracy and reliability of music transcription, facilitating its application
in complex tasks such as score-informed source separation.
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Chapter 6. Demucs Architecture And Experiments

6.1 History of Demucs

Demucs (Deep Extractive Music Source Separation) emerged as a pivotal solution for the music source
separation task, particularly on the MUSDBHQ dataset. Over the years, multiple iterations of Demucs have
been introduced [73, 33, 32]. This section provides an exploration of the progressive development of the
Demucs architecture over time.

6.1.1 Origins of Demucs

The initial version of Demucs, as delineated in the paper "Music Source Separation in the Waveform Domain"
[73] sought to challenge the prevailing notion that models should predominantly operate in the spectrogram
domain. This research hypothesized that operating solely in the waveform domain could still yield satisfactory
results.

The first work of the Demucs was focused on Adaptation of Conv-Tasnet [17|. Originally tailored for
monophonic speech separation at 8.000 Hz, Conv-Tasnet was reconfigured for stereophonic music source
separation at 44.100 Hz. While it surpassed prior methods, achieving an SDR of 5.7, it fell short of the IRM
oracle’s 8.2 SDR. Despite its accuracy, Conv-Tasnet exhibited audio artifacts, especially in drums and bass
sources. To address Conv-Tasnet’s limitations, Demucs was introduced. Drawing inspiration from music
synthesis models, Demucs utilizes a U-net architecture, merging a convolutional encoder with a transposed
convolution-based decoder. Integral components included a bidirectional LSTM, exponentially increasing
channels with depth, and gated linear units as activation functions.

Architectural Blueprint
Demucs’ architecture comprises of a Convolutional Auto-encoder:

e Encoder: Constituted of six convolutional blocks. Each block employs a convolution with a kernel
size of 8 and stride of 4, augmented with another convolution of kernel size 1, leading to the employ-
ment of gated linear units (GLUs). These GLUs enhance model depth and expressivity at minimal
computational expense. The encoder is depicted in Fig. 6.1.2

e Bi-directional LSTM: This LSTM bridges the encoder and decoder, using a linear layer to reduce
the channel count to match the encoder’s output.

e Decoder: Essentially a reverse-engineered encoder. After processing through the blocks, the sources
are synthesized only at the final layer, with each channel producing its corresponding waveform. The
decoder is depicted in Fig. 6.1.2

Mirroring the Wave-U-Net [4] approach, Demucs uses skip connections between encoder and decoder blocks
of the same index. These connections afford direct access to the original signal, enabling the direct transfer
of the input signal’s phase to the output. The Demucs architecture is illustrated in Fig. 6.1.1
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6.1.2 Hybrid Demucs Architecture

Recent developments in Demucs have advanced the hybridization of spectrogram and waveform source sep-
aration. While theoretically, spectrogram and waveform models should have no difference, in practice, with
constrained datasets like MUSDB’s 100 songs, inductive biases have a significant impact. Various auditory
artifacts arise depending on the domain utilized.

Défossez et al. [33] expanded the Demucs architecture for end-to-end hybrid waveform/spectrogram domain
source separation. Integrating the original U-Net architecture, the model introduced parallel branches: tem-
poral (time) and spectral (frequency). Further enhancements include compressed residual branches featuring
dilated convolutions, LSTM, and localized attention.

Architectural Blueprint

Built on the U-Net encoder/decoder structure, integrated with a BiLSTM for long-range context. Symmet-
rically designed encoder and decoder layers process 44.100 Hz audio, with 6 layers each.

Hybrid Approach:

e Temporal Branch: Processes input waveform similarly to standard Demucs, with GELU activations
supplanting ReLU.

e Spectral Branch: Processes the spectrogram obtained from a Short-Time Fourier Transform (STFT)
to match the temporal branch output. Convolutions are applied frequency-wise to manage frequency

dimensions, while keeping the temporal dimension intact (and equal to the number of frames of the
STFT).

e Shared Encoder/Decoder Layer: Summation of the temporal and spectral representations undergo
further encoding and decoding. The result feeds into both temporal and spectral decoders. The
architecture is highlighted by dual U-Net structures with respective skip connections.
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e Output: The spectral branch undergoes an Inverse Short-Time Fourier Transform (ISTFT) and com-
bines with the temporal branch for the final prediction.
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Figure 6.1.3: Hybrid Demucs architecture. The input waveform is processed both through a temporal
encoder, and a spectral encoder; in the second case the input undergoes through the STFT. The two
representations are summed when their dimensions align. Both decoder branches are built symmetrically to
their respective encoders. The output spectrogram goes through the ISTFT and is summed with the
waveform outputs, giving the final model output. The Z prefix is used for spectral layers, and T prefix for
the temporal ones [33].

Technical Features

e Alignment: Ensured alignment between spectral and temporal representations regardless of input
length, leveraging convolution padding techniques from models like MelGAN [93].

e Spectrogram Representation: Both complex number and amplitude spectrogram representations
were investigated. Regardless of the chosen representation, the final loss is applied in the waveform
domain.

e Compressed Residual Branches: Introduced between two convolution layers, these branches use
dilated convolutions. Respective to time dimension, two such branches exist per encoder layer. Local
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attention and a 2-layer BiILSTM provide long-range context for the 5th and 6th encoder layers.
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Figure 6.1.4: Representation of the compressed residual branches that are added to each encoder layer. For
the 5th and 6th layer, a BILSTM and a local attention layer are added [33].

e Local Attention: A modification of the conventional attention mechanism, local attention introduces
a controllable penalty, that penalizes attending to positions that are far away. This dynamic approach,
which contrasts fixed penalty systems in Natural Language Processing [94], proves innovative in the
audio domain.

6.1.3 Hybrid Transformer Demucs for Music Source Separation

In the evolving field of Music Source Separation (MSS), a pertinent inquiry emerges regarding the signifi-
cance of long-range contextual information versus localized acoustic features. Recent advancements in other
domains [95, 96] has shown that attention-based Transformers are quite effective at handling long sequences
of data. Défossez et al. [32] introduces the Hybrid Transformer Demucs (HT Demucs), a fusion of tem-
poral /spectral bi-U-Net premised on the original Hybrid Demucs. The novel architecture incorporates a
cross-domain Transformer Encoder, integrating self-attention in each domain as well as cross-attention inter-
domain.

Architectural Blueprint

The foundational Hybrid Demucs consists of dual U-Nets, operating in both the time and spectrogram
domains, each featuring five encoder and decoder layers. The layers converge post the fifth encoder, followed
by a shared sixth layer. The primary decoder layer is also shared, branching into both temporal and spectral
domains. The spectral output, post an inverse Short Time Fourier Transform (ISTFT), is merged with
the temporal output, producing the model’s prediction. The HT Demucs retains the initial four layers
from its predecessor but changes the internal encoder-decoder layers. Unlike the original Hybrid Demucs,
which requires careful parameter optimization to synchronize temporal and spectral data, the cross-domain
Transformer Encoder exhibits adaptability with heterogeneous data.
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Transformer Enhancements: As delineated in Sec. 6.1.5, the architecture showcases a single self-
attention Encoder layer from the Transformer. Employing both layer (each token is independently normal-
ized) and time-layer (all the tokens are normalized together) normalizations, it facilitates a stable training
environment, synergizing with Layer Scale [97]. A consistent dimension of 384 is maintained, with auxiliary
linear layers adapting to the Transformer’s internal dimensionality as needed. The attention mechanism is
comprised of 8 heads, while the hidden state size of the feed-forward network quadruples that of the trans-
former. The cross-domain encoder integrates self and cross-attention layers, both in spectral and waveform
domains, augmented with 1D and 2D sinusoidal encodings.
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Figure 6.1.5: Details of the Hybrid Transformer Demucs architecture. (a): the Transformer Encoder layer
with self-attention and Layer Scale. (b): The Cross-domain Transformer Encoder treats spectral and
temporal signals with interleaved Transformer Encoder layers and cross-attention Encoder layers. (c):

Hybrid Transformer Demucs keeps the outermost 4 encoder and decoder layers of Hybrid Demucs with the

addition of a cross-domain Transformer Encoder between them [32].

With burgeoning sequence lengths, there’s a concomitant surge in memory consumption and computational
latency. To counteract this, the design incorporates sparse attention kernels introduced in the zformer
package [98], aligned with a Locally Sensitive Hashing (LSH) blueprint to dynamically regulate the sparsity
configuration. The final model variant, termed Sparse HT Demucs, attains a sparsity magnitude of 90%,
achieved through multiple rounds of LSH.

6.2 Experimental Evaluation

In the subsequent section, we delineate the systematic procedures undertaken in our experimental process.
This includes the methodologies employed for model adaptation and optimization, the inherent challenges
faced, and the rigorous measures adopted to maintain the integrity and fidelity of our results. This segment
aims to provide a comprehensive overview of the practical dimensions underpinning our research.
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6.2.1 Methodology
Non-Score Informed Experiments

For our purposes, we carefully fine-tuned the model to perform the task of separating classical guitar duets.
Firstly, the final layer of the model underwent a modification to output just two stereo channels, with each
channel representing one of the two classical guitars. This streamlining from four to two channels allows for
more targeted separation.

We made several refinements to the demucs hybrid transformer, optimizing it to operate on 4-second segments.
This optimization strikes a balance between computational efficiency and the ability to capture relevant
musical nuances. To enhance the model’s robustness, we employed various data augmentation techniques,
ensuring the model encounters a diverse range of input variations, thereby improving its generalization
capability. To enhance the model’s robustness, we employed various data augmentation techniques. These
included traditional methods such as FlipChannels, Shift, Remix, and Scale, as well as our OppositePanning
technique described in Sec. 6.2.1. OppositePanning, introduces varying stereo images by adjusting the
panning positions of pairs of guitars.

In alignment with the integrity of the original recordings, the sample rate for the stereo waveforms was
maintained at 44.100 Hz, preserving the fidelity of the authentic musical essence.

A key challenge in source separation of instrumental duets is addressing the inherent permutation ambigu-
ity, since in contrast to the general music source separation case, the two interplaying guitars cannot be
distinguished by particular timbral characteristics/profiles. To overcome this, we implemented permutation
invariant training, a strategic approach that effectively mitigates this challenge by factoring in the potential
source permutations during training.

During the training phase, our chosen loss function was a weighted sum of the L1 loss (0.8) and the sum loss
(0.2).

Weighted Loss = 0.8 x L; 4+ 0.2 x Sum Loss

The weights were determined based on optimal outcomes from preliminary tests. The incorporation of
the sum loss ensures the model recognizes that both outputs should collectively approximate the input.
To manage inherent permutation ambiguity in source separation, this loss function was further augmented
with a permutation-invariant wrapper. This wrapper recalculates the most favorable loss for both possible
output permutations at each iteration, guiding parameter updates accordingly. The Adam Optimizer, with
a learning rate set at 0.0003, was employed, consistent with the original Demucs model. Model training
spanned approximately 100 epochs, each lasting roughly an hour. It’s noteworthy that the most efficacious
models in terms of validation loss consistently emerged between the 70th and 100th epochs. We partitioned
our data in an 80-20 train-validation split for all the following experiments with all the datasets.

For performance assessment, we employed metrics such as SDR, SI-SDR, SAR, ISR and SIR. Adhering to the
median-of-medians protocol outlined in 73], these metrics were computed for both guitars of each segment.
By first determining the median score for each song segment and subsequently deriving the median from
these per-song scores across the entire test set, we were able to represent our evaluation with a singular,
consolidated value. An illustration of the whole pipeline can be seen in Fig. 6.2.1
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Figure 6.2.1: An overview of the pipeline utilized for training our variant of demucs in the task of guitar
duet separation.

In our experimental results, we present an exhaustive exploration of various trainings conducted using a
composite of datasets. These encompass GuitarDuets Dataset, Native Instruments Dataset, GuitarSet, and
a segment of URMP.

Score-Informed Experiments

At this stage we propose the development of a pipeline composed of dual models. The first model would
intake the combined sounds of the two guitars and strive to generate a binarized piano roll representation
for each individual guitar. Afterward, the second model combines the mixed audio and the generated piano
rolls to create separate audio files for each guitar.
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Figure 6.2.2: Proposed System Overview

This approach leverages the intrinsic correlations that are anticipated to emerge when training the primary
model. By extracting piano rolls from the mixture, the model can potentially unravel the intricate dynamics
and interdependencies exhibited by the two guitars in tandem. Furthermore, by incorporating the piano roll
data, we enrich the source separation process with a profound layer of musical context. This representation
doesn’t merely differentiate the two sounds; it captures the temporal progression and pitch nuances of the
guitars. This, in turn, permits the models to reference the melodic and harmonic architectures [99] when
disentangling the intertwined audio sources, opening a promising avenue for enhanced accuracy and fidelity
in source separation tasks.

For the purpose of the following experiments we are going to utilize the RSE (Residual Shuffle Exchange
Network) as trained and analyzed in Sec 5.

Integration of Activity Labels into Demucs Architecture The Demucs architecture, as depicted in
Fig. 6.1.5, processes audio segments of four seconds in duration. To facilitate the separation task, activity

70



6.2. Experimental Evaluation

labels, which are binary vectors indicating the presence or absence of each of the 128 MIDI notes during
small temporal frames, are concatenated to the input at specific points in each branch of the architecture.

Time Domain Concatenation In the time domain branch, the activity labels are concatenated af-
ter the third TEncoder layer. The binary vector for each guitar has a dimensionality of 128 x
samples of 4 seconds segment, yielding a combined shape of 256 x samples of 4 seconds segment for both
guitars. The dimensions of the encoder outputs before concatenation are as follows:

o After TEncoder layer 0: Size([4,48,44100])

e After TEncoder layer 1: Size([4,96,11025])

e Pre-concatenation TEncoder layer 2: Size([4,192,2757])
e Post-concatenation: Size([4,448,2757])

Post concatenation, the dimensions are updated to torch.Size([4,448,2757]), accounting for the additional
label information. The activity labels are resampled from 44100 samples to match the 2757 sample time
resolution of the encoder at this stage.

Frequency Domain Concatenation The activity labels are integrated into the frequency domain branch
after the second ZEncoder layer. The concatenation process is tailored to preserve the distinct identity of the
128 MIDI notes, which is critical for the model’s ability to distinguish between different notes during the sound
separation task. The shape of the activity labels for concatenation is 2 x 128 x samples of 4 seconds segment,
aligning with the two guitars’ MIDI notes. The dimensions of the encoder outputs before and after concate-
nation are itemized below:

o After ZEncoder layer 0: Size([4, 48,128,173])
e Pre-concatenation ZEncoder layer 1: Size([4,96,128,173])
o Post-concatenation: Size([4,98,128,173])

This adjustment increases the channel dimension from 96 to 98, allowing the model to process the note
information alongside the audio data. To ensure compatibility with the encoder’s frequency resolution, the
activity labels are resampled from their original sample rate of 44.100 Hz to match the encoder’s frequency
resolution of 173.

The concatenation on this stage allows the preservation of the distinct 128 notes without the need for
downsampling, crucial for maintaining separation fidelity.

OppositePanning Augmentation

The implementation of the OppositePanning augmentation technique is motivated by the prevalent use of
panning in modern audio recordings. In productions where multiple instruments are present, panning is
a common technique to create spatial depth and a fuller sound image. This is particularly relevant when
separating instruments like classical guitars, which are often spatially positioned in a mix.

Since our datasets consists of raw recordings, no such panning procedure has been applied, presenting a
scenario that is not entirely representative of real-world conditions. To address this, OppositePanning is
introduced as an augmentation strategy. This technique artificially creates scenarios where two guitars are
panned differently, closely mimicking real recording conditions. An illustration of the augmentation can been
seen in Fig. 6.2.3
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Figure 6.2.3: Illustration of Opposite Panning Augmentation.

By training the model on data augmented with such spatial variations, it becomes adept at handling real-
world scenarios where panning plays a significant role in the audio mix. This augmentation thus aims to
bridge the gap between the dataset’s limitations and the practical realities of audio production, ensuring that
the model is well-equipped to perform in typical, panned environments.

6.2.2 Experiments
Traditional Approach NMF

In the pursuit of advancing music transcription and source separation technologies,we recognized the necessity
of establishing a reliable baseline, particularly given the scarcity of prior research in the specific context of
monotimbral source separation with polyphonic instruments. To address this gap and set a foundational
benchmark, we turned to a classic Digital Signal Processing (DSP) approach, specifically the Non-negative
Matrix Factorization (NMF) algorithm, for our initial baseline tests.

The choice of NMF as a baseline test is informed by its simplicity, interpretability, and established track
record in handling audio separation tasks [100]. By decomposing a mixed audio signal into a set of basis
components and their corresponding weights, NMF provides a clear framework to understand how differ-
ent sounds contribute to the overall mixture. This characteristic makes it an ideal starting point for our
experiments, offering a straightforward yet effective method for initial assessments.

In our baseline tests with NMF, we aim to separate and transcribe the audio of two guitars from mixed
signals. The performance of NMF in this context sets a foundational benchmark against, which we can
measure the advancements brought about by our modified dual-output architecture. This comparison is vital
to demonstrate the incremental improvements and justify the need for more sophisticated models in scenarios
where the interplay of sounds is more complex than what NMF can effectively handle.

For the following table we are going to use the acronyms for the evaluation metrics so we repeat the
definitions as outlined in Section 3.7:

SDR Source to Distortion Ratio

SI-SDR Scale-Invariant Source to Distortion Ratio

SAR Source to Artifacts Ratio

SIR Source to Interference Ratio

ISR Source Image to Spatial Distortion Ratio
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Table 6.1: NMF Algorithm Results on myTestSet

Metric | Guitar 1 | Guitar 2
SDR -2.663 -1.890

SI-SDR | -41.364 -41.364
SAR -34.257 -34.596
SIR -0.011 0.020
ISR 6.801 -1.912

Non-negative Matrix Factorization (NMF) yields very low values, primarily due to its inherent limitations
in capturing the intricate characteristics of audio signals. NMF operates by decomposing a spectrogram
into a set of basis components and their corresponding activations, attempting to reconstruct the original
signal through this simplified representation. However, when dealing with sources that share closely matched
timbres, such as classical guitars, the basis components generated by NMF may be too generic or "pure" to
effectively distinguish between the subtle differences in sound characteristics that define each source. As a
result, NMF might excel in tasks where the sources have significantly different timbral qualities but fall short
in scenarios requiring the discrimination of finer auditory details.

6.2.3 Demucs Non Score Informed Experiments

In our pursuit to optimize the performance of monotimbral music source separation, we conducted an exper-
iment to determine the most effective version of the Demucs architecture for our specific application, all the
different versions where trained and tested on the GuitarDuets Dataset.

Table 6.2: Revised Results for Different DEMUCS Architectures

Metric | Initial (Our Implementation) | Hybrid Hybrid Transformer
SDR G1: 3.94 G1: 4.06 | G1: 5.14
G2: 0.15 G2: 0.80 | G2: 0.99
SI-SDR | G1: 0.27 G1: 0.63 | G1: 1.80
G2: 0.30 G2: 0.71 | G2: 1.81
SAR G1: 6.57 G1: 6.67 | G1: 7.72
G2: 0.78 G2: 0.83 | G2: 1.42
SIR G1: 9.22 G1: 9.19 | G1: 10.19
G2: 3.84 G2: 394 | G2: 4.94
ISR GI1: 5.82 G1: 5.61 | G1: 6.40
G2: 0.04 G2: 0.03 | G2: 0.57

Based on the above table, it is evident that the hybrid transformer version of Demucs yielded the best results.
This conclusion is drawn not only from the better performance metrics associated with this version but also
from the qualitative evaluation of the audio outputs. When listening to the separated sources, it was observed
that the hybrid transformer Demucs introduced the least amount of noise, making it the preferred choice
for our project. This finding underscores the importance of selecting an appropriate model architecture that
balances computational efficiency with high-quality audio separation.

For the following experiments we are going to use the DEMUCS Hybrid Transformer version.
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Training on GuitarDuets

Table 6.3: Results for Model Trained on GuitarDuets

Metric | Test GuitarDuets | Test NI Dataset | Test Guitarset
SDR G1: 5.140 G1: 2.814 Gl1: 1.771
G2: 0.991 G2: 0.933 G2: 2.324
SI-SDR | G1: 1.803 G1: -7.877 G1: -2.615
G2: 1.806 G2: -9.312 G2: -2.624
SAR G1: 7.719 G1: 4.026 G1: 5.696
G2: 1.417 G2: 3.157 G2: 5.605
SIR G1: 10.186 G1: 6.852 Gl1: 7.121
G2: 4.935 G2: 7.104 G2: 7.152
ISR G1: 6.400 G1: 8.814 G1: 2.132
G2: 0.571 G2: 3.776 G2: 3.097

The metrics for the three datasets, as shown in the above table 6.3, although they seem relatively high, are
not satisfactory. They highlight the model’s challenges in accurately distinguishing the timbres of different
guitars. Particularly within GuitarDuets, the slightly enhanced SDR for the first guitar implies that the
model possesses a certain degree of recognition capability, more so when the guitar primarily functions as a
solo instrument. This suggests that isolating a single melody becomes more feasible when it is accompanied
by another guitar playing patterns.

From the above table we can infer that the model’s performance is not uniform across the various datasets.
The discrepancy in performance can be attributed to the inherent differences in the datasets’ composition.
Specifically, the NI Dataset, being synthetic, poses generalization challenges for the model, which is trained
on real data from GuitarDuets, indicating a potential shortfall in the model’s ability to adapt from real to
synthetic data scenarios. Conversely, the GuitarSet’s lack of timbral distinction between its parts—since
both are played by the same guitar—complicates the model’s decision-making process based on timbre alone.
Informal subjective listening of the outputs generated from GuitarDuets corroborate that while the model
is capable of enhancing the dominant parts for each guitar and diminishing the others, it does not achieve
a flawless separation. This limitation becomes markedly evident in the GuitarSet test set, where the model
demonstrates a relative proficiency in isolating the accompaniment guitar. The accompaniment guitar’s
consistent role likely aids the model in this aspect, yet it significantly struggles to distinguish the solo
guitar. The observed performance variance underscores the critical need for model enhancements to better
generalize across different data forms and to more effectively discern and isolate timbral characteristics in
complex musical compositions.

Training on GuitarSet

Table 6.4: Results for Model Trained on Guitarset

Metric | Test on GuitarDuets | Test on NI Dataset | Test on Guitarset
SDR G1: 4.580 G1: 2.454 G1: 7.880
G2: 1.323 G2: -0.125 G2: 7.551
G1: -4.223 Gl1: -2.574 G1: -8.135
SESDR | o 4178 G2: -2.716 G2: -8.074
SAR G1: 8.314 G1: 2.640 G1: 9.416
G2: 6.627 G2: 2.776 G2: 10.521
SIR G1: 7.552 G1: 5.110 G1: 13.420
G2: 8.939 G2: 7.361 G2: 13.669
ISR G1: 8.115 G1: 6.978 G1: 10.845
G2: -0.310 G2: 2.086 G2: 10.007
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In this experiment, a particular model distinguishes itself as the most effective, exhibiting commendable
performance on the GuitarSet dataset, yet showing limitations when applied to GuitarDuets and the syn-
thetic NI Dataset without modifications from earlier experiments. The inherent structure of the GuitarSet,
with one guitar serving as accompaniment and another performing a relatively straightforward solo, primar-
ily influences this result. The solo parts, often consisting of single, higher-pitched notes, contrast with the
accompaniment’s rhythmic patterns, which vary harmonically. This distinct separation between solo and
accompaniment within the GuitarSet simplifies the model’s task, making it considerably easier than iden-
tifying guitars based on their unique timbral qualities. Furthermore, it’s important to note, as previously
mentioned, that the GuitarSet lacks timbral differences between the two guitars played simultaneously, lim-
iting the model’s ability to generalize to datasets where timbral characteristics, rather than musical roles,
are essential for distinguishing between guitars. Informal subjective listening confirm the model’s proficiency
in the GuitarSet, where it achieves near-perfect separation between the accompaniment and solo parts. This
capability also extends to test dataset of GuitarDuets, where the model effectively discerns melody from
accompaniment, a feature particularly beneficial for classical compositions characterized by a clear division
between these roles. However, the model faces difficulties with more complex classical guitar duets, where
the intertwining of parts blurs the lines between accompaniment and solo roles. This highlights a significant
challenge: developing models capable of nuanced differentiation in scenarios where musical roles are not
distinctly defined, thus requiring a more sophisticated approach to recognize and isolate intertwined musical
elements.
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Figure 6.2.4: Clear Prediction from GuitarSet trained model.
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Figure 6.2.5: Noisy prediction from GuitarDuets trained model.

In the above Figures 6.2.4 and 6.2.5, we observe two distinct outcomes from models trained on different
datasets. For the computation of the spectrograms presented above, and subsequent figures, standard pa-
rameters were employed as defined by the plt.specgram function in matplotlib. Specifically, a Hanning window
was used with a length of 256 samples. The moving stride, was set to 128 samples, the Discrete Fourier Trans-
form (DFT) length, matched the window length of 256 samples.

The first Figure 6.2.4 showcases a model trained on the GuitarSet dataset, which yields a clear and accurate
prediction of a melody. This result reflects the inherent quality of the GuitarSet data, characterized by
distinct melodies from a single guitar and the absence of microphone bleeding, allowing the model to learn
and separate melodies effectively without introducing artifacts.

Conversely, the second Figure 6.2.5 presents predictions from a model trained on the GuitarDuets dataset.
Here, the output is noticeably noisier compared to that of the GuitarSet model. This disparity can be
attributed to the distinct structure and nature of the GuitarDuets dataset, which unlike GuitarSet, contains
instances of microphone bleeding. This aspect of the dataset introduces additional complexity during training,
challenging the model’s ability to cleanly separate the source signals. This comparison underscores the
significant impact dataset characteristics have on the performance of source separation models, highlighting
the importance of dataset selection and preparation in training effective models for music source separation.

Training on GuitarDuets and GuitarSet

Table 6.5: Results for Model Trained on GuitarDuets + Guitarset

Metric | Test on GuitarDuets | Test on NI Dataset | Test on GuitarSet
SDR G1: 4.200 G1: 2.865 G1: 7.992
G2: 1.206 G2: 1.485 G2: 8.303
G1: -0.334 G1: -2.345 G1: -11.403
SISDR | o 0.340 G2: -3.487 G2: -11.367
SAR G1: 8.839 G1: 3.698 G1: 8.902
G2: 10.670 G2: 4.188 G2: 10.192
SIR G1: 6.235 G1: 5.398 G1: 14.505
G2: 7.732 G2: 7.403 G2: 16.088
ISR G1: 5.908 G1: 5.079 G1: 12.862
G2: -1.427 G2: 1.142 G2: 12.424
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In this experiment, merging the two datasets—GuitarDuets and the GuitarSet—appeared to have minimal
impact on the model’s performance on the GuitarSet test set. This could be attributed to the GuitarSet’s
larger size, offering the model more learning opportunities. Furthermore, as previously discussed, separating
guitars in the GuitarSet is a comparatively simpler task. The metrics for GuitarDuets remained consis-
tent with prior experiments. Informal listening corroborated these findings, with results for the GuitarSet
mirroring the previous experiment and GuitarDuets showing consistent outcomes across all experiments.

Training on Native Instruments Dataset

Table 6.6: Test Results for NI Dataset training

Metric | Test GuitarDuets | Test NI Dataset | Test Guitarset
SDR Gl1: 2.672 G1: 2.247 G1: 1.325
G2: 0.012 G2: 3.272 G2: 2.307
SI-SDR | G1: -0.841 G1: -9.130 G1: -3.004
G2: -0.815 G2: -7.672 G2: -2.945
SAR G1: 4.706 G1: 4.283 G1: 5.794
G2: 8.491 G2: 3.511 G2: 4.569
SIR G1: 3.989 G1: 10.609 G1: 6.874
G2: 8.612 G2: 5.811 G2: 5.813
ISR G1: 6.368 G1: 7.816 G1: 1.030
G2: -2.957 G2: 10.043 G2: 3.306

In our experiment, we assessed the performance of a model trained on synthetic data from the NI Dataset,
subsequently applying this model to both real and synthetic test datasets, including GuitarDuets and the
Guitarset. The results, as outlined in the provided table, indicate a underperforming outcome, compared to
models trained on real data. This underperformance is particularly evident in the SDR and SI-SDR. metrics
across all test datasets, suggesting a limitation in the model’s ability to generalize from synthetic to real data
contexts effectively.
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Figure 6.2.6: Illustration of noise on predicted Data.

In the above figure 6.2.6 we have a comparison between two models’ performance in music source separation
on the same real recording track: one trained on synthetic data and the other on real-world recordings.
The right side of the figure shows the output of the model trained on synthetic data, where we observe the
introduction of noisy artifacts. In contrast, the left side, depicting the output from the model trained on real
data, demonstrates a cleaner separation with fewer artifacts. This visual evidence highlights the challenge of
domain mismatch, where training on synthetic data can lead to the incorporation of artifacts when the model
is applied to real-world data. The comparison underscores the importance of training models on data that
closely matches the target domain to minimize the introduction of unwanted noise and improve the quality
of source separation.
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Training on GuitarDuets + Native Instruments

Table 6.7: Test Results for GuitarDuets + NI training

Metric | Test GuitarDuets | Test NI Dataset | Test Guitarset
SDR G1: 5.988 G1: 5.016 G1: 1.537
G2: 0.934 G2: 4.185 G2: 1.880
SI-SDR | G1: 2.370 Gl: -14.114 G1: -3.272
G2: 2.362 G2: -13.439 G2: -3.285
SAR G1: 8.835 G1: 4.641 G1: 4.732
G2: 0.893 G2: 3.027 G2: 3.412
SIR G1: 11.777 G1: 11.280 G1: 7.460
G2: 4.271 G2: 8.667 G2: 6.447
ISR G1: 7.229 G1: 14.055 G1: 2.525
G2: 2.215 G2: 11.992 G2: 3.852

The integration of both real and synthetic data for training presents an approach to overcoming the limitations
observed when models are trained exclusively on either type of dataset. This experiment aimed to evaluate
the efficacy of such a combined dataset, incorporating real data from GuitarDuets with synthetic data from
the NI Dataset, in enhancing model generalization across different test sets, including GuitarDuets, the NI
Dataset, and the Guitarset.

The results, as depicted in the provided table, illuminate the impact of this hybrid training approach. For the
test sets of GuitarDuets and the Guitarset, the model demonstrates a performance that closely approximates,
and in some aspects, surpasses the outcomes observed with training solely on GuitarDuets. Notably, it
significantly outperforms the models trained exclusively on synthetic data. This improvement underscores
the potential benefits of diversifying training data sources to bridge the gap between real and synthetic
environments. However, the gains in performance, while meaningful, are not as substantial as one might
anticipate considering the combination of datasets.

This moderate enhancement suggests that while merging real and synthetic datasets can indeed provide
a richer learning context, leading to improved model adaptability, the inherent differences in the nature of
these datasets pose challenges. The real data capture the complex characteristics of live musical performances,
whereas the synthetic data offer a more controlled but less varied representation of musical sounds.

Training on GuitarDuets + Native Instruments + GuitarSet

Table 6.8: Test Results for GuitarDuets + NI + GuitarSet training

Metric | Test GuitarDuets | Test NI Dataset | Test Guitarset
SDR G1: 4.306 G1: 4.233 G1: 3.264
G2: 0.765 G2: 3.612 G2: 3.365
SI-SDR | G1: -6.161 G1: -0.153 G1: -4.086
G2: -6.174 G2: -0.961 G2: -4.078
SAR G1: 7.988 G1: 3.486 G1: 3.105
G2: 1.964 G2: 2.654 G2: 3.820
SIR G1: 10.596 G1: 11.064 Gl1: 7.413
G2: 4.518 G2: 7.852 G2: 8.216
ISR G1: 5.873 G1: 10.536 G1: 4.993
G2: 1.146 G2: 10.086 G2: 5.125

The previous experiment, which involved training a model on a comprehensive dataset consisting of Gui-
tarDuets, the NI Dataset, and the Guitarset, demonstrated a model that achieves a relatively consistent
performance across the three test datasets. This consistency is noteworthy, considering the distinct char-
acteristics and challenges posed by each dataset. However, the performance does not reach the peak levels
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observed in previous experiments where the model was trained on individual or pairs of datasets. This
outcome suggests a trade-off between consistency and peak performance when expanding the training data
scope.

A key observation from this experiment is the model’s ability to adapt to the varying natures of the datasets
it was exposed to. On the one hand, the training has created a model with broad understanding, allowing
it to perform with a degree of competence across all test cases. On the other hand, the mixing of data
sources appears to have introduced a level of complexity that prevents the model from achieving the high
performance observed when training was more focused. Specifically, the blending of synthetic and real data,
combined with the Guitarset’s lack of timbral variation and fixed musical roles, seems to have resulted in a
model that, while versatile, may be somewhat confounded by the inherent contradictions and nuances of the
aggregated datasets.

Transfer Learning from URMPStrings to GuitarDuets

We explored the potential of transfer learning by leveraging a segment of the URMP dataset that housed
similar instruments. Specifically, we extracted recordings featuring at least two instruments from the violin,
viola, and cello categories. For any given recording, we synthesized all viable pairs from these instrument
groups. For instance, a recording encompassing violin, oboe, cello, viola, and piano would yield the pairs:
(violin, cello), (violin, viola), and (cello, viola). This methodology expanded our dataset with three distinct
tracks from a single recording. With this enriched 3-hour dataset, we initially trained our model. Upon
achieving satisfactory performance with the same experimental setup as the guitar duets separation, we
proceeded to finetune the model using our specific guitar recordings.

Table 6.9: Experiment Results

BEST MODEL | URMP Test | MyTestSet
Insl: 8.634 G1: 1.633

SDR Ins2: 9.457 G2: 2.609
Insl: -17.708 | G1: -2.440

SI-SDR Ins2: -17.649 | G2: -2.444
Ins1: 9.875 G1: 2.906

SAR Ins2: 9.637 G2: 6.088
SIR Insl: 16.378 | GI1: 5.113
Ins2: 18.725 G2: 8.250

ISR Insl: 20.030 | G1: 1.621
Ins2: 19.029 | G2: 2.817

The metrics indicate commendable performance on the SDR metric by the model on the URMP dataset.
This can be attributed to the dataset’s simplicity, where at most two notes are played concurrently by the
two strings. This reduces the model’s task to distinguishing between two notes, rather than discerning
the nuanced timbres of two instruments. Informal subjective listening for the URMP dataset confirms the
model’s proficiency in differentiating between the two strings, despite some residual overlap. For the results
from GuitarDuets using transfer learning, the model appears to recognize the roles of each guitar, amplifying
each part, albeit without achieving complete separation.

Comparative Analysis of SDR Metrics in Source Separation

In the field of music source separation, the evaluation of separation quality is often quantified using metrics
such as the Source to Distortion Ratio (SDR) and Scale-Invariant Source to Distortion Ratio (SI-SDR).
While these metrics have been extensively used in studies focusing on the separation of different instruments,
their behavior in the context of separating sources with similar timbral characteristics remains less explored.
Given that most prior work involves instruments with distinct timbres, direct comparison of SDR values
may not be appropriate for our study, which focuses on two classical guitars sharing very similar timbral
properties. Notably, despite obtaining relatively high SDR values in comparison to general music source
separation literature, our subjective listening evaluations reveal that the actual perceptual quality of the
separations does not align with these quantitative assessments.
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Methodology To address the challenges presented by the similar timbral characteristics of sources, our
experiments entailed the creation of synthetic mixtures featuring two distinct guitar sounds with closely
aligned timbres. To guarantee a fair comparison across all tests, all signals involved in these experiments
were normalized. The methodology involved systematically varying the mixing ratio to simulate varying levels
of source separation, with this mixing ratio specifically referring to the construction of a signal that serves as
the estimate. The ’reference’ in this context denotes the unadulterated signal. This precise approach allowed
for the creation of a controlled environment to explore how metric responses might differ when applied to
mixtures of instruments with significant timbral overlap compared to those with distinct timbres. Through a
setup involving mixtures of different instruments, we aimed to investigate any potential disparities in metric
responses attributable to timbral similarities.
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Figure 6.2.7: Methodology of metrics evaluation.

Experimental Findings The results, illustrated in Fig. 6.2.8, indicate that the SDR and SI-SDR. values
for the guitar mixtures are consistently higher than those obtained from mixtures of different instruments.
Specifically, the same SDR values were observed in guitar mixtures even when one guitar was 0.3 times lower
in volume compared to the different instruments. This suggests that the similarity in timbre between the
two guitars introduces a challenge for the metrics to accurately assess the quality of separation.

SDR for Guitars vs Different Instruments SI-SDR for Guitars vs Different Instruments
20
—8— Guitars —8— Guitars
Different Instruments Different Instruments

20 1

10 4

SI-SDR

~10 4

—~30

T T T T T T T T T T T T T u T u T T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mixing Ratio Mixing Ratio

Figure 6.2.8: Comparative analysis of SDR and SI-SDR metrics for mixtures of two classical guitars versus
different instruments.
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Conclusions From the observed data, we conclude that SDR and SI-SDR values are influenced by the
similarity of timbral characteristics between the sources. Consequently, these metrics should not be directly
compared to those from other research in audio source separation involving different instruments. It should be
noted that our approach of using a weighted mixture to simulate source separation is an initial approximation
and not a full representation of the complex processes involved in actual separation algorithms. Despite this
simplification, our results provide preliminary insights into the metrics’ behavior. Specifically, Fig. 6.2.8
demonstrates that on average, an SDR value equivalent to that of a mixture of different instruments can
be obtained when the weight of one guitar in the mixture of two guitars is 0.3 times lower. This suggests
that higher SDR or SI-SDR values in our study should not necessarily be interpreted as superior separation
performance relative to studies with more diverse instrument separations. This underlines the importance of
considering the nature of the source material when evaluating and comparing source separation algorithms.

Demucs Score Informed Experiments

The initial experiment is designed to elucidate the optimal method for integrating activity labels of notes
into our network, given that the Demucs architecture operates across both frequency and temporal domains.
Using the exact same experimental setup as the previous experiments with the modification as outlined in the
former section, our investigation will explore the efficacy of assigning labels within a singular domain, across
both domains, or a combination, in enhancing the model’s capacity for sound separation. For this purpose,
we will employ the NI Dataset—a synthetic dataset generated from MIDI files, which contains the exact
timing and duration of note playbacks. This approach aims to precisely determine the most effective strategy
for label incorporation within the network’s architecture to achieve superior sound isolation outcomes.

Table 6.10: Comparison of NI Dataset Results Across Different Branches

Metric | Time Branch | Freq Branch | Freq and Time Branch
SDR G1: 3.965 G1: 4.747 G1: 4.756
G2: 4.367 G2: 3.703 G2: 4.842
G1: -9.226 G1: 0.543 G1: 1.572
SI-SDR G2: -10.311 G2: 0.492 G2: 1.054
SAR G1: 4.824 G1: 4.840 G1: 4.592
G2: 3.009 G2: 3.606 G2: 4.457
SIR G1: 12.312 G1: 10.468 G1: 11.475
G2: 8.209 G2: 10.243 G2: 10.592
ISR G1: 12.218 G1: 11.659 G1: 14.373
G2: 12.252 G2: 12.376 G2: 13.078

The experiment evaluated three distinct approaches to data concatenation within the Demucs structure:
solely within the time domain, exclusively in the frequency domain, and a hybrid approach that integrates data
across both domains. The analysis, as detailed in the accompanying table, reveals that the hybrid approach
of concatenating data in both the frequency and time domains achieves the most promising outcomes. This
performance can be attributed to the inherent design and strengths of the Demucs architecture 6.1.3, which
has historically shown improved efficiency when leveraging both domains concurrently.

Demucs, from its inception to its latest iteration, has consistently demonstrated significant gains in perfor-
mance by utilizing information from both the frequency and temporal domains. This architecture is adept at
discerning which domain’s information is more pertinent for a given task, thus effectively reconstructing the
sound by drawing on the strengths of both domains. The results of this experiment underscore the rationale
behind the superior performance observed when employing a hybrid concatenation approach: by engaging
both domains, the model can access a more comprehensive dataset, enabling a better sound separation. This
finding not only reinforces the architecture’s versatility but also highlights the importance of a multifaceted
approach in achieving optimal sound isolation results.

In the pursuit of refining the Demucs architecture’s capacity for sound separation, the subsequent experiment
focuses on the utility of activity labels, specifically the role of RSE’s transcription model accuracy in enhancing
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the Demucs framework. We investigate whether the Demucs architecture can benefit not only from ground-
truth labels but also from high-accuracy predictions of note labels provided by a transcription model. Given
that transcription models inherently introduce artifacts, this experiment evaluates the advantage of employing
a Residual Sound Exchange (RSE) model trained on the NI dataset to generate near-perfect activity labels,
which are then used to inform the Demucs model.

Table 6.11: Comparison of NI Dataset Results for Label Quality

Metric | No Labels | Almost Perfect Labels | Perfect Labels
SDR G1: 2.247 G1: 3.527 G1: 4.756
G2: 3.272 G2: 2.049 G2: 4.842
G1: -9.130 | G1: -1.974 G1: 1.572
SESDR | o 7672 | G2: -2.336 G2: 1.054
SAR G1: 4.283 G1: 3.520 G1: 4.592
G2: 3.511 G2: 3.115 G2: 4.457
SIR G1: 10.609 | G1: 10.580 G1: 11.475
G2: 5.811 G2: 7.443 G2: 10.592
ISR G1: 7.816 G1: 7.900 G1: 14.373
G2: 10.043 | G2: 8.561 G2: 13.078

The analysis of label quality on the Demucs architecture, as summarized in the table above, offers insights into
the model’s performance with respect to different label accuracies. While the integration of almost perfect
labels from the Residual Sound Exchange Network (RSE) transcription model does not markedly influence
the Signal-to-Distortion Ratio (SDR), it is evident that these labels significantly enhance the Scale-Invariant
Signal-to-Distortion Ratio (SI-SDR). This metric is particularly crucial as it better reflects the perceptual
quality of the audio separation, suggesting that the precision of activity labels plays a pivotal role in achieving
higher fidelity in sound isolation tasks.
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Figure 6.2.9: Prediction with almost perfect labels (left) and No Labels (right).

In the above figure 6.2.9, we observe the significant impact of predicted labels on the performance of the
source separation algorithm. On the left side of the figure, the algorithm, equipped with labels, demonstrates
a heightened level of certainty for specific melodies or accompanying parts. This distinction is noticeably
clearer when compared to the image on the right, where the separation quality is inferior. The enhanced
clarity and accuracy in identifying and isolating melodies or accompaniments in the labeled scenario result
in a higher Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) score. Other metrics, such as Signal-to-
Artifact Ratio (SAR), Signal-to-Interference Ratio (SIR), and Image-to-Spatial Ratio (ISR), exhibit marginal
variations, indicating that the label quality predominantly affects the SI-SDR metric within the scope of this
experiment.
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Table 6.12: Median Metrics for GuitarDuets with RSE trained on NI and Guitarset

Metric | Values
SDR G1: 5.399
G2: 1.166
SI-SDR. | G1: 1.657
G2: 1.664
SAR G1: 7.815
G2: 2.101
SIR G1: 11.280
G2: 5.158
ISR G1: 6.808
G2: 0.589

These are the final results from the transcription model trained on NI Dataset combined with GuitarSet and
then subsequently the score informed demucs architecture trained on GuitarDuets with soft labels creating
from the aforementioned transcription architecture. In the following section we are going to have an overall
overview of the models’ performance on GuitarDuets test set.

6.2.4 Discussion
Overall Overview of myTestSet

For the following table we are going to use the abbreviations:

GD GuitarDuets Dataset

GS GuitarSet Dataset

NI NI Dataset

GS SI GuitarDuets Score Informed

Table 6.13: Comprehensive Test Results across Different Training Sets

Metric | URMP GD+GS+NI | GD+GS GS NI GD GD SI GD-+NI
SDR G1: 1.633 | G1: 4.306 G1: 4200 | G1: 4.580 | G1: 2.672 | GI: 5.140 | G1: 5.399 | G1: 5.988
G2: 2.609 | G2: 0.765 G2: 1.206 G2: 1.323 | G2: 0.012 | G2: 0.991 G2: 1.166 | G2: 0.934
SL.SDR G1: -2.440 | G1: -6.161 GI1: -0.334 | G1: -4.223 | GI1: -0.841 | GI1: 1.803 | G1: 1.657 | G1: 2.370
G2: -2.444 | G2: -6.174 G2: -0.340 | G2: -4.178 | G2: -0.815 | G2: 1.806 | G2: 1.664 | G2: 2.362
SAR G1: 2906 | G1: 7.988 G1: 8.839 G1: 8314 | G1: 4.706 | G1: 7.719 | GI1: 7.815 G1: 8.835
G2: 6.088 | G2: 1.964 G2: 10.670 | G2: 6.627 | G2: 8.491 | G2: 1.417 | G2: 2.101 G2: 0.893
SIR G1: 5.113 | G1: 10.596 G1: 6.235 G1: 7552 | G1: 3.989 | G1: 10.186 | GI1: 11.280 | G1: 11.777
G2: 8250 | G2: 4.518 G2: 7.732 G2: 8.939 | G2: 8.612 | G2: 4.935 G2: 5.158 | G2: 4.271
ISR GI1: 1.621 | GI1: 5.873 G1: 5.908 G1: 8115 | G1: 6.368 | G1: 6.400 | G1: 6.808 | G1: 7.229
G2: 2.817 | G2: 1.146 G2: -1.427 | G2: -0.310 | G2: -2.957 | G2: 0.571 G2: 0.589 | G2: 2.215

Upon analyzing the results from the various datasets, several key insights emerge regarding the performance
of models in the music source separation task for two classical guitars.

Firstly we aim to analyze the best Performance by Metric SDR (Signal to Distortion Ratio): The combination
of ‘GuitarDuets+NI Dataset’ for the first guitar (G1) yielded the highest SDR at 5.988. This suggests that
the model trained on this combined dataset was most effective in overall signal separation quality for the
soloing guitar. The inclusion of the NI Dataset, which is generated from a classical guitar plugin, likely
provided additional information that enhanced the model’s ability to distinguish between the two guitars.
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SI-SDR (Scale-Invariant Signal to Distortion Ratio): Some of the datasets demonstrated negative SI-SDR
values, indicating challenges in achieving scale-invariant separation, while others had low positive values.
However, again the combination ‘GuitarDuets + NI Dataset‘ dataset performed the least poorly, with values
of 2.370 for G1 and 2.362 for G2. For this combination, the proximity of SDR values to SI-SDR suggests
that the model adeptly preserves the scaling of the original sources, ensuring consistent separation quality.

An observation is the pronounced disparity between SDR and SI-SDR metrics, with the latter often registering
lower values. This is an outcome that was expected given the analysis we carried out in Sec. 6.2.3. This
divergence underscores the presence of separation errors transcending mere amplitude scaling, potentially
encompassing distortions, interferences, or other artifacts. While a satisfactory SDR might suggest an overall
competent separation, the SI-SDR, accentuates more granular inaccuracies when amplitude variations are
neutralized. Such a pronounced metric gap serves as a diagnostic indicator: consistent discrepancies across
datasets could signal the model’s challenges with specific separation nuances or heightened sensitivity to
certain interferences. Conversely, a minimal difference between SDR and SI-SDR may be indicative of the
model’s robustness in source separation.

SAR (Signal to Artifacts Ratio): The combination of ‘GuitarDuets + GuitarSet* for G2 achieved the highest
SAR at 10.670. This indicates that this model introduced the fewest auditory artifacts during the separation
process for the second guitar.

SIR (Signal to Interference Ratio): ‘GuitarDuets Score Informed* dataset excelled in this metric, with values
of 11.280 for G1 and 5.158 for G2. This suggests that the model trained on this dataset was most adept at
clarifying separated sources, minimizing interference from other sources.

ISR (Intereference to Spillover ratio): The combination of ‘GuitarDuets+NI Dataset* yielded the highest ISR
values, with 7.229 for G1 and 2.215 for G2. This indicates that this model was most effective in minimizing
the presence of auditory artifacts specific to the image (or spectral representation) of the source.

Overall Best Model:

The combination of "GuitarDuets + NI Dataset" appears to be the most promising achieving consistent
results throughout all the metrics. This suggests that supplementing the model with a comprehensive dataset
collection can enhance the model’s ability to distinguish between classical guitar timbres.

The nature of each dataset that the model is trained on, plays a pivotal role in the model’s performance.
For instance, the clear distinction between accompaniment and solo roles in the ‘GuitarSet‘ simplifies the
separation task. In contrast, ‘GuitarDuets‘, being real recordings with microphone bleed, presents a more
complex scenario, leading to relatively lower metrics. The ‘NI Dataset‘, generated from a virtual instrument,
offers a cleaner, more controlled environment, which when combined with real recordings, can enhance the
model’s generalization capability. The ‘URMP-Transferred‘ dataset, while not directly analogous to the
guitar separation task, still offers valuable insights into timbral differences, aiding in the separation process.
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Conclusion

Discussion In this thesis, we delve into the task of monotimbral music source separation with a focus on
guitar duets. This area distinguishes itself from general music source separation due to its unique challenge
of separating sources that share identical timbral characteristics, particularly when considering the classical
guitar’s polyphonic nature. Before delving into the discussion, we summarize the key contributions of this
work as follows:

e Dataset Creation: We introduced two monotimbral datasets specifically designed for this study. The
first dataset consists of real classical guitar duet recordings, while the second is a synthetically generated
dataset of duets. These resources are crucial for advancing research in monotimbral source separation.

— Merging Datasets: It was demonstrated that merging the two classical guitar datasets could
lead to improved results, showcasing the potential for dataset augmentation in enhancing model
performance.

e Architectural Modifications: Existing architectures for separation and transcription were adapted
to address the challenges of monotimbral source separation.

e Pipeline Architecture: A pipeline architecture that combines the tasks of separation and tran-
scription was developed, facilitating a more integrated approach to addressing the problem of source
separation.

e Cross-dataset Evaluation: Extensive evaluation was conducted across both real and synthetic
datasets under various conditions.

e Comparative Analysis: We performed a comparative analysis of music source separation metrics,
highlighting the need for metrics that are more sensitive to timbral differences in the context of mono-
timbral source separation.

e PIT’s Effectiveness: The implementation of Permutation Invariant Training (PIT) has been shown
to further enhance the performance of separation algorithms, affirming its value in improving source
separation outcomes.

More specifically in this work, we employed the Demucs architecture, recognized for its state-of-the-art
performance in music source separation and we tried to evaluate its performance on the task of monotimbral
music source separation. The aim of this experiment is to assess the applicability of a high-performing
architecture to monotimbral source separation, specifically, to determine its efficacy in discerning subtle
differences in sound timbres and identify its constraints. Additionally, we created two distinct datasets
GuitarDuets and NIDataset comprising real and synthetic data to assess the Demucs architecture and examine
the model’s generalization across these domains. Our findings indicate that monotimbral source separation
poses significant challenges in generalization between real and synthetic domains. However, when data from
both domains are combined, the separation performance improves significantly for tests on real-domain data.
The challenges observed in generalizing between real and synthetic domains in monotimbral music source
separation underline the importance of diverse training datasets. This insight is equally applicable to speech
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and singing voice separation, where models might benefit from exposure to both carefully annotated synthetic
data and the unpredictability of real-world recordings. Overall, while the Demucs architecture demonstrates
notable success in separating sources with distinct timbres, its performance on monotimbral data falls short.
This underscores the importance of meticulous model tuning and careful consideration of model size and
architecture for effective monotimbral source separation. Furthermore, we introduced a pipeline architecture
that leverages a music transcription framework to identify the notes played by each guitar. A key rationale
behind opting for a transcription-focused architecture as a supportive mechanism to the separation model,
over utilizing a traditional separation only model lies in the inherent advantages of transcription systems in
handling distinct notes. Transcription architectures have already demonstrated commendable performance
in delineating individual notes on various instruments. By accurately transcribing all notes present in the
audio mix, the transcription model can learn and recognize orchestration patterns specific to guitar duets.
By understanding which notes are likely to belong to each guitar based on the arrangement of notes at
any given time, it can make informed decisions about note separation. Recognizing that a single musical
piece can be orchestrated in myriad ways, it is crucial not to make assumptions about consistent orchestration
patterns. Instead, we maintain the separation model as the final output stage in our architecture, trusting it to
consider the proposed orchestration from the transcription model. This model will then refine and deliver the
ultimate separated signals, relying predominantly on the timbral characteristics, which are the most crucial
feature for differentiating the two classical guitars. This approach ensures that the separation is informed yet
not constrained by the transcription, allowing for a dynamic response to the complexity of the audio mix.
Another reason for using the transcription model is to learn and understand the natural correlations and
mutual exclusivities among guitar notes. The notes predicted by the transcription algorithm then serve as soft
labels to guide the separation process. This approach resulted in notable improvements in the Scale-Invariant
Signal-to-Distortion Ratio (SI-SDR) metric. The incorporation of a Permutation Invariant Training (PIT)
approach, combining both audio separation and transcription separation, could greatly enhance the model’s
performance. Finally, we conducted a comparative analysis to evaluate the effectiveness of common metrics
used in general source separation for assessing monotimbral source separation. Our analysis revealed that
these metrics might not fully capture the nuances of monotimbral music source separation, suggesting the
need for more tailored assessment criteria in this specific context. While a satisfactory SDR might suggest an
overall competent separation, the SI-SDR accentuates more granular inaccuracies when amplitude variations
are neutralized. Such a pronounced metric gap serves as a diagnostic indicator: consistent discrepancies
across datasets could signal the model’s challenges with specific separation nuances or heightened sensitivity
to certain i nterferences. Conversely, a minimal difference between SDR and SI-SDR may be indicative
of the model’s robustness in source separation. Expanding on the potential applications of our findings,
the methodologies and models developed in this thesis could significantly contribute to the fields of speech
separation and voice singing separation. Speech and singing voice, while inherently different from musical
instruments in their timbral qualities, share the common challenge of separating homogeneous sources in
complex auditory scenes. The success of the Demucs architecture and our pipeline in guitar duet separation
hints at promising outcomes for these related tasks.

Future Work

e An extensive analysis is imperative to further understand the efficacy of common metrics in the as-
sessment of monotimbral music source separation. This deep dive should aim to uncover potential
limitations these metrics present when applied to monotimbral contexts, thereby paving the way for
the development of more tailored and representative evaluation methods specific to monotimbral sepa-
ration tasks.

e Conduct a formal listening test to further assess the efficacy of our separation algorithm and gain deeper
insights into the representativeness of the evaluation metrics.

e Future endeavors should concentrate on expanding the real data dataset, coupled with strategies for
annotating this data to enable the effective training of transcription architectures with authentic notes.
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