EoNIKO METTYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTIOAOTIESTON
TOMEAS TEXNOAOTIAY IIAHPOSOPIKHE KAI YTIOAOTISTON

Interactive theorem proving with Machine Learning

DIPLOMA THESIS
by

Apostolos Kyteas

ETCLQ)\E':TCO)V: Nuwdroog Ianaomdpou
Koadnyntic E.M.IL

Adhva, OxtodBperoc 2023

Edvixé Metodfio Ilohuteyvelo

Yyon| Hhextpohdywv Mryavixddv xan Mnyoavixodv Troloylotdv
Tougoc Teyvohroyioc IIAnpogopiniic xar YTrohoylotddv
Epyacthpto '\woowv Ipoyeopuatiopod

Interactive theorem proving with Machine Learning

DIPLOMA THESIS
by

Apostolos Kyteas

EnBAEnwyv: Nixdhaoc Iamaonigou
Kodnyntic E.M.IL

Evyxpldnxe and v teiuedr) e€etaotn| enttponr)) 197 OxtwPeiou, 2023.

Nuwdhoog Iaraomdpou Tedpyroc Ltdpou Tedpyioc I'volyoac
Kodnynthc E.M.IL Kodnyntic E.M.IL Koadnyntic E.M.IL

Adhva, OxtodBperoc 2023

AnoxTOAOY KYTEAX
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mnyovixog Trohoyiotov E.M.IL

Copyright (©) — All rights reserved Apostolos Kyteas, 2023.
Me em@OIaEn TOVTOC SLXALDOUATOG.

Arnayopebeton n aviypapt, anodrixeuon xou Slovopr] Tne tapovoag epyactag, €€ oAoxhipou ¥ TUAUITOS AUTAS, Yid
eunopd oxond. Emtpéneton 1 avatinwot), amodixeuct) xou diovouy| Yol oxomd U xepdooXoTUxd, EXTOUDEVTIXAC
1) EEELYNTXAC PUOTC, UTO TNY TEoUTOVEST Vo avapEpeTal 1) TINYY) TPOEAEUOTC %ol Vo BLTNEELTOL TO TUPOV UHVUUL.
Epwtiuata mou agopolv 1t yerion tne epyaociog yio xepdooxomxd oxond npénel vo aneudivoviol Teog Tov
CLUYYPAPEA.

Ou amderc xa o CUUTEPAOUATO TTOU TEPLEYOVTOL GE AUTO TO EYYRUPO EXPRELOUY TOV CUYYEAUPEX Xou EV TRETEL
va epunvevdel 6Tt avuinpoownedouy Ti¢ enionueg Yéocig Tou Edvixod Metodfiou IToduteyvelou.

ITepiindm

H Avtopotonoinuévn Awbpactixr) Xovieon Anodellewy ye Mnyoavier) Mddnon €xet et onuavter avdntuin to
tehevtafa ypovia. [47], [33]. Eivon évac topéac mou enuyelpel var umtoxataotioel Ty oM NAETIBEUoT TV YpNoTov
pe Bondolc anddelEne ye povtéla unyavixic udinone ta onola eivor urtevYuva yiow TNV TOEOYH TWV UTOPHPLLV
TOXTIXV.

To CoqGym elvon éva chvoho dedouevev xar mepBdilov pdinong v Awdpactinf) Xovideon Amodeiewv
nou mepiéyel 71 yuddec amodeilelc ypopuévee and aviponoug yia tov Bondéd anodeléewv Coq, to omolo
dnurovpyfidmxe e€dyovtag anodeilec and 123 clvola anodeilewv [46]. To CoqGym onotéhece T Bdon yia
™ dnurovpyio didpopwy epyaheinv alvieons anodelewy ye mpofiédeic unyovixic pdiinong, érwe to ASTactic
[46], to TacTok [11] xou to Passport [33].

Ye auth) v epyaoia entyeipolue Vo BEATIOOOVUE TIC dpylteXTOVIXEC Tou mpotddnxay and TN Biioypapla,
avTixarho TAOVTAS TOUC Tapadoatuxols ahyodpliuouc avalftnone mou yenoidonotolvial yio Tny e€epelivnor Tou
YOPOU TOUXTIXMY 0 0T0{0¢ ToPEYETOL Antd Ta LOVTENS unyovixhc wdinone, xat va yenotponofooupe AvalAitnon
Aévtpou Mévte Kdpho (MCTS). Ewcdyoupe Tpeic TONTIXES avTopolBOY Yo TNY UAOTOMNoT oG THY TONTIXY otv-
TopolPric "oe Tepuatnég xatactdoelc", Ty mohtn| avtapol3ric "Bdoetl tou Bddouc" xon Ty ToATiny avtopolBric
"ue Baon) pelwon Twv otdywv". Aclyvouue 6t To MCTS ye neploplopévn pdduion tov nopauétony tou etval
ov6 vau opdiyet anoteréopata Tohd xovid oto xopupala anotehéopota Tou togovctdlovion otr BiAloypagplo.

AéEeig-xhewdd — Coq, CoqGym, Avalftnon Mévte Kdpho oe Aévtpa (MCTS), ASTactic, TacTok,

Passport, Anédeiln Oewpnudtwy, Awdpactixt] At6delln Oewpnudtmwy, Kadodnyoluevn Yivieon Anodeilewv,
Bondol Anodeilewyv, Movtého Moxpdc - Bpayunpddeoune Mviung

vii

Abstract

Automated Interactive Theorem Proving with Machine Learning has seen significant advances [47], [33]. It is
a domain which attempts to replace the human element in the interaction with proof assistants with machine
learning models which are responsible for providing the candidate tactics.

CogGym is a dataset and learning environment for ITP containing 71K human-written proofs, which was
created by extracting proofs from 123 open-source Coq projects [46]. CoqGym has been the basis for the
creation of several machine learning prediction tools for guided proof synthesis, like ASTactic [46], TacTok
[11] and Passport [33].

In this thesis we attempt to improve the architectures suggested from previous work by replacing the tra-
ditional search algorithms used for the exploration of the tactic space generated by the machine learning
models with Monte Carlo Tree Search. We introduce three reward policies for our MCTS implementation:
the "reward on terminal states" policy, the "reward on depth" policy and the "reward on goal reduction"
policy. We show that MCTS with limited tuning is capable of producing results very close the the top results
presented in literature.

Keywords — Coq, CoqGym, Monte Carlo Tree Search (MCTS), ASTactic, TacTok, Passport, Theorem
Proving, Interactive Theorem Proving, Proof Assistants, Long Short Term Memory Networks

ix

Euyaplotieg

Euyopiotod Yeppd v Ayyeh Anunteiou yio v unépoyn cuvepyaoior xotd Ty eXTéVNnoy auTnc TN dLmAw-
paterc epyaotog, To Anuiten Butiviedtn yia tny mpdtaoy autol Tou xatamAnxtixod FEuatog xou Ty xadodnynot
Tou xou To XNy Nt idpyo Ltduou mou enépeive va Soulédoupe o auTéd xou Yo OAeg Tig eVOlapépouaes 1Béeg
Tou elye ot cLINTHOELS Pac.

ISwadtepa, Yo Hieho va exppdow tnv euyvwuooivy pou atov xodnynti Nixo Ianaondpou, yia) otheln, v
UTIOUOVY X0l TNV EUTLOTOCUVY Tou €Belle oTe Vo ohoxhnpewiel autr 1 BimAwyotiny spyaoio.

TéNog, éva UEYTAO ELYOPLOTE) GTOUC CUUPOLTNTES Xo PIAOUE OV, TTIOL OUORYUVIY TNV XAE oL UEpa OTT) GYOAY),
HOU YAELo0V TLC YVOOELS Xl TLG LOEEC TOUG %Ol TOU TWEA €Y0UV oxopTioeL xou dnUovpyoldy oe OAa Ta Hépr TN
ne.

Kutéag Andéotorog, Oxtdfetog 2023

xi

Contents

Contents

List of Figures

1

2

3

4

Coq &CoqGym
MovTéla
EZepebvnon npofBienopevoy taxtixov we MCTS

IMewpdpoto

Keilpevo ota ayyAuxa

1

Introduction

1.1 Motivation o e e e e e e e e e e e e e e e e e e e
1.2 Contribution
1.3 Thesis Structure L e

Theroetical Background on Proof Synthesis

2.1 Automated Theorem Proving (ATP) e
2.1.1 Forms of ATP e
2.1.2 Alook at APS methodologies
2.1.3 Alook at ITP methodologies
2.1.4 ITP and Machine Learning L e

Coq &CoqGym

3.1 Coq . . e
3.1.1 Atomic &Compound tactics

3.2 CoqGym e
3.2.1 CoqGym: A large-scale Interactive Theorem Prover dataset and learning environment
3.2.2 Dataset structure L e e e e e
3.23 SerAPI . . e
3.2.4 Synthetic proofs from intermediate goals Lo
3.2.5 Proof structure - environments, goals &proof trees

Machine Learning Background

4.1 Introduction to Machine Learning o
4.1.1 Recurrent Neural Networks (RNNs),
4.2 Long Short-Term Memory Networks
4.2.1 LSTMs definition
4.2.2 LSTM transition equations: o 00 it e e e
4.2.3 Bidirectional LSTMs e

xiii

XV

11

17

27

27
27
27
28

31
31
31
31
32
33

35
35
35
36
36
36
37
37
37

Contents

4.2.4 Tree-Structured LSTMs o o e e
4.3 GRU . . . o
4.4 Encoder - Decoder Architecture e
5 Models
5.1 ASTactic: generating tactics as programs oo e
5.1.1 Spaceof tactics Lo
5.1.2 Architecture e
5.2 TacTok e
5.2.1 Proof State Encoder e
5.2.2 Proof Script Encoder oL e
5.3 Passporto e e e e
5.3.1 Identifier Categories in Passport
5.3.2 Encoding Mechanisms in Passport

6 Monte Carlo Tree Search

6.1 Markov Decision Processes L
6.2 MCTS algorithm o e
6.3 MCTS selection policy« . o o e e e e e
6.4 Disadvantages of MCTS
6.5 MCTS and Machine Learning o
7 Explore Predicted Tactics with MCTS

7.1 TImplementation of MCTS e

7.1.1 State definition oL oL

7.1.2 Selection L

7.1.3 Expansion .
7.1.4 Simulation

7.1.5 Backpropagation e e
7.1.6 Reward Policies e
8 Experiments
8.1 Setup . . .o e
81.1 Models e
8.1.2 Benchmark
8.1.3 Machines L
8.1.4 Parameterso e e
8.2 Determining the Beam size L e
8.3 Reward on terminal states policy L e
8.3.1 MCTS &DFS comparison across models
8.3.2 New theorems proven with MCTS
8.4 Reward on depth policy
8.4.1 Determining policy parameters oLt
8.4.2 MCTS &DFS comparison across models 0oL
8.4.3 New theorems proven with MCTS
8.5 Reward on goal reduction policy
8.5.1 Determining policy parameters
8.5.2 Possible improvements of the reward policy
8.6 Conclusion e e
8.7 Limitations e e e e e e e
8.8 Future Directions L e e e
8.9 Model Benchmarks L

9 Bibliography

xiv

List of Figures

2.0.1 H Apyttextovixf Touv ASTactic. O xwdixonomthc xatdotoone anddeilne (o) nalpver we eloodo
ToV 6T0Y0, TO Tomd TAUGLO XL Toug Opoug Tou meplfdihovtog ot popen AST xau Snuloupyel
embeddings (Staviopata yapaxtneioTindy) yio xdde 6po. O amoxwdwonomntic () cuvdudlel Ta
embeddings eio660u xou dnurovpyel pio Taxter) ot pop@h evoc AST, e€optduevo and avtéc Tic
ELOOBOUC. © v o e e e e e e e,

2.0.3 To TacTok, xotd tn dradxacia ohoxhfipwons Tou cevoplou anddeldng TS TEOCETUELOTIXOTNTOG
v TNV TedoUesT), UETA TNV exTéleo TNg ToxTxAC simpl.o oo oo

2.0.4 H apyrtextovixt) g enelepyaoiog twv avayveoplotxdy oto Passport.o oL L.

3.0.1 H apyrtextovin) tov gpyulelwyv tedfiedne unyovixic wédnong v xadodnyoluevn cvvieon
ATOOEICEMV. o v o e e e e e e e e

4.0.1 O oprdpdc twv Jewpnudteny tou arnodewxviovial Yo xdde yoviého yenowonoldvtac DES xou
MCTS pe v moAitixy| avtauolfnc oe tepuatinég xataotdoeic. O pof wotol aviinpocwrebouy
1o Booind povtéra nou Booilovtor oto ASTactic, TacTok, ASTactic 4+ Passport, Tok + Pass-
port xou Tac + Passport. Ot pmhe ool aviinpoownebouy ta anotehéopota mov Beloxouvpe o
BiBhoypapia [33], [11]. Ou xdxxwvol wotol aviimpocwredouy o anoteréopata tne aloAdYNong
v poviédwv pe MCTS. Ou ool ye v euxéta “AllPassport”, etvar o opidudc tewv Jewenudtonv
nou anodevbovTal emTuyGS yenowonowwvtas eite DFS elte MCTS and touldylotov éva and
T wovtéha mou evioylovtar and To Passport.o Lo oo oo
4.0.2 Apiudc Vewpnudtwv mou amodelydnxay yio xdde poviého yenotwonowdsvtag DEFS xou MCTS
pe mohtixy) Avtopofrc Bdoer tou Bddoug Avalhtnone. Ov uodf otol aviitpocwrebouvy to
Baowd povtéha Bactopéva oto ASTactic, TacTok, ASTactic 4+ Passport, Tok + Passport xou
Tac + Passport. Ou umhke totol aviunpoownelouy) Poaoixr| afloOAOYNON TOU OVUPERETOL GTN
BiBhoypapio [33], [11]. Ot xéxxivol LoTol avTITPOCWTEDOUY To ATOTEAECUATO TNG EXTEAECTS TGV
povtédwv ye MCTS. Ou wotol pe v etixéta “AllPassport” eivon o apriudc towv Jewpnudtwy
moL amodelyUnxay emtuy e yenotponowwvtag eite DES elte MCTS ond touldyiotov éva and ta
povtéha mou evioydovton and to Passport.o oo

2.1.1 The system architecture of a machine-learning-prediction-guided proof-synthesis tool.

4.1.1 The architecture of a RNN. The repeating module in a standard RNN contains a single layer.
4.2.1 The architecture of an LSTM. The repeating module in an LSTM contains four interacting

Jayers. . . . e e e e e e e e e e e
4.3.1 Hidden activation function of GRU.
4.4.1 An illustration of the RNN Encoder—Decoder Sequence to Sequence model

5.1.1 ASTactic architecture. The proof state encoder (a), takes as input the goal, local context, and
environment terms in AST form and generates embeddings (feature vectors) for each term.
The tactic decoder (b) concatenates the input embeddings and generates a tactic in the form
of an AST, conditioned on these inputs. e
5.2.2 TacTok, in the process of completing the proof script of associativity for the add function,
after the execution of simpl.
5.3.1 The architecture of Passport’s identifier processing.

XV

List of Figures

6.3.1 The root denotes the starting state. The average scores [Q(s, a)] of actions leading to next
states are shown inside the circles. The bars denote how many simulations started from a
particular action. This is an abstract example—not taken from any particular game.

7.0.1 The architecture of machine learning prediction tools for guided proof synthesis with MCTS
as a search Component. L e e e e e e e

8.3.1 Number of theorems proved for each model by using DFS and MCTS with reward on terminal
states policy. The purple bars represent baseline models based on ASTactic, TacTok, ASTactic
+ Passport, Tok + Passport and Tac + Passport. The blue bars represent the baseline
mentioned in literature [33], [11]. The red bars represent the results of running the models
with MCTS. The bars labeled “AllPassport”, is the number of theorems successfully proven
using either DFS or MCTS by at least one of the Passport-enhanced models.
8.4.1 Number of theorems proved for each model by using DFS and MCTS with reward on depth
policy. The purple bars represent baseline models based on ASTactic, TacTok, ASTactic +
Passport, Tok + Passport and Tac + Passport. The blue bars represent the baseline mentioned
in literature [33], [11]. The red bars represent the results of running the models with MCTS.
The bars labeled “AllPassport”, is the number of theorems successfully proven using either
DFS or MCTS by at least one of the Passport-enhanced models.

xvi

List of Figures

xvii

List of Figures

xviii

Chapter 1

Coq & CoqGym

Coq

To clotnua COQ oyedidotnxe Yot TNV ovdnTUEn pordnuotiedy anodeilewy xat Wiaitepa yiot T cOVTOEN TUTXOY
TEOBLALY PUPEY, TEOYPAUUUATWY Xt TOV EAEYY0 TNE 0pUOTNTOC TWV TPOYPUUUETWY GE OYECT UE TIC TPOBLAYPOPES
Toug [2]. Xprowwonolelton EXTEVHOS Yiat EpELYNTIXOUS Xou Blopnyavinolc oxoTo0E Yiol TNV oVATTUEN AoYLouxol
vPniie a€omotiag. Ilopadelypoata tng yerone Tou nepthaufdvouy Ty am6delln Yewenudtwy oTa dordnuotixd
[13], v enaifdeuon hoylopuxol xou TEWTOXOAAwY acpaheiog xou Tov oyedopd xou dnmovpyior YAWOOMY
npoypoppatiopol. Xenowonoidnxe enlone otov enaindevuévo pe to CompCert encéepyoaoth C, o onolog
YENoWomoLElTaL YioL TNV TUTXY ENOAADEVCT] pEAMO TIXGY PETayAwTTIoToV (realistic compilers). Tétotol enokn-
Yeuvuévol petary Ao TTio tég dlardétouy pardnuatnn, unyovixr) enaAfdeucy 6Tl 0 TUPEYOUEVO EXTENECLULOS XWX
ouunepLpépetal axplBie 6nwe tpoBhéneton and T onpactohoyio Tou Tyaiov xMGIxa (source code) [22].

O Bontédg anddeéne Coq elvan évo ovdextind xou euéhixto epyoreio AoyLowxo) oL YENCHLOTOLE(TAL EXTEVEMS YLot
Y tumxr enaAdevor) oto Lordnpatind, TV ETLOTAUN TV UTOAOYLOTOV xal o Touelc tépay autodv. Tapgéyel éva
oTtépeo mhalolo yio T eperinon e opdoTnTag PadnuoTindy YewpnudTwy %ol TEoYEAUUUATOY AoYlouixol. YTny
%0pdid Tou, 1o Coq Basiletan otov Aoyioud Enaywydy Koataoxeudv (Calculus of Inductive Constructions),
€val Loyuped Aoyixd Vegého mou cuyywVeDEL Uiot hoyix) udmhodtepne TédEne xau o richly-typed cuvaptnolom
YAOOOU TEOYEUUUATIONOD.

Kevtpué otoiyeio e dopric tou Coq elvon n yhdooa GALLINA, uio yAdooo udmrot emnédou. H GALLINA
EMTEENEL OTOUS YPNOTES VA AVATURAGTOUY O)L UOVO TEOYESUUOTO OAAS ol BLOTNTES QUTWY TWV TEOYPUUUATLY
ol AmOBElEELS qUTWY TWY WLOTATWY. Auth 1 exppactixy YA®ooa anotehel 0 yépupa HETOEY TOU TUTLXODL
poardnuatieod cuAoYLoUOD ot TNG TEaXTIXAC enahdeuone Aoyiopxou.

H GALLINA elvat e€omMopévn ye pia eVpelol YXAUA Yo TELGTIXDY OV BIEUXOADVOUY TOV TUTIXS GUANOYLOUO.
YTrootneilel Tov oploud avadpouix®dy TOTWY BEBOUEVKY, CUVIPTHCEWY Xl VeWENUAT®Y, To oTolo UTOXELVTAUL OE
axpBéc éheyyo Tinwv and tov nupnva tou Coq. Emniéov, n Biadpaotixh tng ¢UoT ENITEETEL GTOUG YENOTES Vol
XUTAOXEVALOVY EX TWV LOTEPWY cLVIETEC omodelel, BEATIOVOVTAC TEC EMAUVOANTTIXG.

Yto owoctotnua tou Coq, o nuphvac tou Coq Aettovpyel we To Yepehwdeg eninedo, urtedduvo yio tov Eheyyo
TOTWY, TN dnpovpyio avTixeevxdy anodelewy eAéyEiuwy and unyavy xou T dlatrhenoy Tou Aoywod Thaiciou.
IT&ve amd autdy Tov TUprva, 0 UNYavopos anodetlng epunvelet Ta oevdpla anodellewy Tou Topéyovton and Tov
YXENOTY, TPOCPEROVTACS EVaL BLABEACTIXG Xl XENOTIXO TEQIBEANOY Yia TOV TUTIXG GUAAOYLIOUO.

H enextaowétnta tou Coq elvar onuovTind TASOVEXTNUA, EMITEETOVTAS TNV AVATTUEY TEOCUPUOCUEVKY TOTWY
OEBOPEVLY, XAVOVKY ATOBELENS HoU TAX TNV, XaIo TOVTAS TO TROCUPUOCHIO GE [lol TOLXLALY DLUPOPETINWY Ep-
Yool Tumxfg enoAfieuong.

Chapter 1. Coq & CoqGym

Atopxeg & BOvOeteg TaxTIXES

Avopxée Toxtuxés: Ou atouwrée taxtinés oto Coq elvon Baowwéc xar omhée ToxTXéC TTOL EXTEAOUV amAéc,
eoTiaopéve Aettovpyies otny amédeln [2]. Autéc ol Taxtixée ypnotponolotvion cuUVAYKS YLol Vol XEVouy wixpd,
otadloxd Buate oty xotaoxeuh Tne oanddeline. Mapodelyuarto atopxdy toxtindy oto Coq elvon to intros (yia
™Y ooy Wy HETOBANTOY 1 utodéoewy), To apply (Yo Ty epapuoy” evée Muuatoc B Yewphuatoc), To simpl
(v TV amhomnoinor exppdoenmv) xou To rewrite (Yo TNV avtixatdotaoy) dpwy Bdoet loothtwy). Ou atouxés
ToxTixég elvon Ta faoind otolyela Twv mo ToAOTAOXWY oeVapltY amodEENC.

Yovieteg Toaxtxéc: And v dhAn mhevpd, ol cbvieteg toxtxés elvar ToxTxéc mou cuVOLALoUY TOMNATAEG
OTOUIXES TAXTIXES OF €va u6vo Bhua [2]. Autéc emTpETOUY 0TOUC XPHOTES VoL QUTOUATOTIOGOUY | VoL GUVTAZOLY
o meplmhoxa Briuota anddeng, xadopilovtag wo axohouvdio evepyelwy. Ou olvieteg TaxTixéc Pnopoly va
nephapBdvouy cuvifixeg Stohddwong, eravdindn xo. Iapadelypota cOvietwy toxtixwy oto Coq nepthouPd-
VOUV TO repeat (Ylo ETOVEINNUPEVT EQOPUOYT| plag SAANG TaxTixAS), TO ; (EpWTNUATIXG, YENOHLOTOLE(TAL YIoL TNV
EQOPUOYT] TOXTIXOV OElptaxd) xou To tacticals ;, | xow +, ta omolo mapéyouv Bidopous TedTouE EXEYYOL TNG
daduxaotag anddeEne.

"Evo TopdBety o dTOUIXDY TOXTIXWYV:

intros x y.
apply Nat.add_comm.

An example of compound tactics:

intros x y; apply Nat.add_comm.

CoqGym

CoqGym: '‘Eva cOvolo 8edopévwy xou nepiBdiiov wdidnong yio to CoqGym

To CoqGym elvan €va Ghvolo Bedopévev xou tepiBdiloy udinong yia Aladpac s Lovieon Anodeiewv mou
nepéyel 71 yddec amodeilelc ypoupévee and avdpdnoug [46] yio tov Bondd anodeilewy Coq. Anuovpyhdnxe
and v e€aywyT anodellewy and 123 projects avolytod xhdxo oto Coq xar xahdnTel éva €0pog Tedlwy e@op-
HOYTC, CUUTEQLAUBAVOUEVGDY TV UoMUATIXGY, TOU UALXOU UTOAOYICTOV, TWV YAWOGKOY TEOYEUUUATIONOU,
AT

Iponyoluevee npoondieieg dnulovpyiog cuvorwy Bedouévev Yo tov Bondéd anodetlewv Coq odrynoav oe
SUVOAA IOV OTOTEAOVUVTAY b PERIXES YLIAADES Vewpruata. Emniéov, xdhuntay udvo évay Teploplolévo evpog
nedlwy, énwe 1 apdunuxf Peano [10] B to Yedpnua nepirthc té&ne Feit-Thompson [14]. To CoqGym ei-
Vo HEYOAUTERO o SladéTel meploc0dTERT ToA{a, ETOUEVKS BIEUXONDVEL TNV EXTIOUBEVUCT] LOVTEAWY UNYOVIXTG
pddnone. Alvel emniéov 1 SuvatdtnTa a€lOAGYNONE TOU SLoTOUEdX .

To nepBdrrov tou CoqGym oyedidotnxe yio va exmoudedel xou vor aLohoYel TEAXTOPES AUTOUATNG DUdEUCTIXAC
ouvieong amodeiewv. O mpdxtopag Eexuvd and to Jemenuo mou mpénel vo anodelyVel poali pe évo alvolo
npoxeévwy. H aAinienidpoor ye tov Bondd anddeléne nepthopfdvel tnv mapayyn poc oelpde toxtxodv. O
Bondoc anddeléng extehel xdde plo and autée xou EMOTEEPEL AMOTEAEGUATA OTY HOPPN VEWY oToOYwY. H anddeiln
€yel emTuy S Bpedel and Tov mpdxTopa GTay dev UTdpPY oLV TAEOV avolyTol 6TOYOoL TPOG Am6dELEN.

Aouf Tou CLUVOAOU BEBOUEVLY

‘Onwe Mo avagépdnxe, to CoqGym mnepihayufBdver éva yeydAne xhipoxac cdvoro dedopévwy and 71 yuhddeg
anodelelc ypauuévee and avipdroug ol onoleg e€nydnoay and 123 projects avoiytod xwdixa oto Coq. Extog
and to apyeio Tyaiou xdduxa, tepthaufdvel eniong To dévtpa cuvtaxTnic avdhuone (ASTs) xaw thovoleg Thnpo-
poplec Aertovpylog twv anodelewy, cupnep auBovouéveny TV TEPBEANOVIWY, TWV CTOXWY Xdl TWV JEVIPLY
anédeigne. Ta ASTs éyouv eaydel and tov diepunvéa (interpreter) tou Coq we tonot dedopévewv OCaml. Ta
apnenuéva ouvtoxtxd 0évtpo AST petatpénovton o E-exgpdoeic (oupfolxéc) oe Lisp [26]. To mepBdihov
CoqGym mapéyel epyahela yio T yprion toug oe Python.

EneZepyaoia projects xou apyelwv Coq

To apyeio Tnyciov xMdixa nou aroteholy To chvoho dedouévmy opyavdvovtot avd project (touéa anodellewy).
Kdélde project mepauBdver éva olvoho oyetnddv anodeilewv yio ouyxexpwévoug touelc. Ta projects oto
CoqGym nepihopfdvouy tny mpotunn BiBAodrixm tou Coq xon ta maxéta mou avapépovton otov Aehetn Haxétwy
tou Coq [7]. Oplopéva amd autd evdéyeton va pnv petayiwttilovion eneldr anontodv pia cuyxexpluévn éxdoon
tou Coq 1 éyouv e&opthoeic Tou dev elvon dardéoec. Mbvo ta projects mou umopolv vo YETAYAWMTTIOTONV
ocupnephaufBdvovtol 6To GUVOAO BedoPEvwy.

Ta cOvola exmaldevong, emxdpwong xou eAéyyou anoteholvTal and BlaopeTixd projects. Autd €ytve yio Toug
axolovdoug Aéyouc:

o Kadde ol anodei&elc oe xdlde project elvan oyetinég peta€d toug, Hrav anapoltnto va eEac@ahlotel 6Tt oL
anodellelg ehéyyou dev ypnotpomololvtay xatd tn didpxeta Tne exnaidevong.

e O otdyog e exnaldeuong Twv povtéhwy elvon 1 YeVixeuor oe dSlopopeTinole TouelC.
H Buaipeom éyive wg e€nic:

e X0volo dedopévwyv exnaidevone: 43,844 anodeifelc

e 20volo dedopévwy emixbpwong: 13,875 anodeifelc

o Y0Ovolo dedouévwy eréyyou: 13,137 anodeilelc

SerAPI

"SerAPI" eivon "war Bihotpen yior) pnyovix) adknhenidpoon pe to Coq" [1], mou Sieuxoldver Ty ahhy-
Aem(Bpoon HE QUTO YENOWOTOLOVTAS CELPLOTONUEVD DEBOUEVA oL AoUYYPOVY] EMXOWVWVIA. LyYEBIOTNXE YLo
Vo ETUXOWOVEL PE eEWTERING EpYOAEld X0 EQUPUOYES YENOULOTIOLOVTUS CELRLOTIONUEVES OVOTOPUC TAGELS TWY
eoWTEPXOY TONWYV dedouévewv OCaml tou Coq. Ta celplonomuéva dedopéva uropolv va elvar oe Sidpopes pop-
@éc omwe JSON 1 Y-exgpdoeic, xdtt mou dieuxohivel To e€wTepind epyahela var avahbouy xou va enegepydlovTton
xOOuwa Coq. Eivon Wiaitepa ypRowo yia epyaoies 6w 1 avdAuoT xGdixa, 1 HETUCYNUXTIOUOS xot 1) Sy YN
dedopévwv oto mhaiolo Tou Coq.

Yuvdetixég anodeifelg and eVOLQUECOUS OTOYOUG

To cUvolo dedopévewy CoqGym €yel epmhovtiotel pe cuvdetinéc anodeilelc. O cuvdetinéc anodeilelc [46] elvou
anodetlelc mou cuvTdyUnxay i vo anodelfouv Toug eEVBLEUECOUS GTOYOUC LTUEYOVTWY Haxpmy anodelewy. O
%x0VPLOg OXOTOC HTAY O EUTAOUTIOUOS TOL UTHPYOVTOC GUVOROU BEBOUEVKY UE ULXPOTERES Xl ALYOTECO TOAOTAOXES
amodei€elc. Autol ol evdiduecol atoyol VewpRdnxay we mo edxohol Vo anodelyVody xan Yeroudol yiot TNV
expdinomn twv woviéAwv. Emmiéov, to dedopéva exmaldevone enextdinxay Ue neplocodtepa napadelyporto. Io
vor dnpioupyioouy autéc Tic ouvileTinée amodellelc, ou Yang et al. [46] Snwolpynoay anodeileic pixoue 1, 2, 3
xou 4 yio xde evoidueco ooy wac anddelne YpouEvne and dvipwno.

Aour) anddeing - nepiBdAlovia, otoyol & dEvipa anodeifewy

Ta tepBdrhovia Twy anodellewy neptéyouy to Yeuehlndn otolyelo ndvw oto omolo Yo xataoxevaotel 1) anodelln.
IepthopPdvouv 6pouc Coq we mpoxeipeves yia tic oamodel€elc. To nepBdrlovta yia tig anodeilelg avamaplotavto
we GUANOYT Gpwy TupYva, oL oTtolot lval ECWTEPIXES AvanapaoTdoELS TToL Yenotworotolvtol and to Coq. Auth
pop®1 Tou TeplBdhhovtog dnploveYinxe pEow TNE EXTEREONE TLWV ATOBElEEwWY Xa eV GUVEYElR TN oelplonoinong
TV eowtepixoy Tou Coq. Aedopévou 6Tt o mnyaiog xddixac xadopllel Thipwe to mepBdihov, autde Jewpriinxe
¢ plat and Tic mavég avamopaoTdoel; Tou Tou Yo uropoloay vo yenotgorolndolv yio tnv exnaidevon. Autd
Yo TV xohotoloe duoxohdtepn, xodde Yo ofuouve eniong Ty exudidnorn tne onuasctoroyiag Tou xwdixa Cog.

To nepiBdhhov yia xdie anddelln - ol tpoxelyeveg oto mAaiold g - xodopiletan 1600 oTo (Blo apyelo mnyaiou
%A 660 %o o€ Ghheg BiBAodxeg. Ymuavtxnd eivon va onuewwdel 6t oL anodelEelg oto CoqGym mepLéyouy
10 TAfpeS TepBdNhov, Tpdypa ou dev loyue ot mponyolpevn epyaoio [18]. To bgehoc tne mapouciog tou
mhfpoug mepBdhhovToc elvon 6Tl To wovtélo unyavixic pdidnong etvan oe Véon va €xel mpdofBacn oe dheg Tig
oyeTxéc TANpogopleg o dounuéveg Loppec.

Chapter 1. Coq & CoqGym

Or anodeifelc 0t0 0Ovoro dedouévwy avamapioTavtor we dévtpa anodellewv. Ot xépufot twv dévtpwy eivor ol
oTo) 0L Xt To ToTuxd Thalatlo. O oxuéc elvan TaxTinég mou Yetaoynuatilouy Tov TeéyovTa oTdY0 OE UTO-GTOYOUG.
Avuté emtedydnue péow e oelplononong Twv TEEXOVIKY otdywv and Tov diepunvéa tou Coq oe xdie Prua
e anddene. O axuée avayvwpilovtal pe xpithplo to e epgavilovton xou anionotobvton ¥y e€apavilovton
oL atoyol xatd tn Sudpxeta e anddelne. Ta mepBdilovta, or otdyol xou Ta dévtpa amddelne oynuatilouy
Lot dounuévn avamapdotaoy Twv anodellewy tou Coq. Xe cUYXEIoT YE TOV aXATEPYAOTO TNYHo XMOX, Wlot
BOUNUEVY AVOTUPIO TACT| ETUTEENEL GTA LOVTENX PNy aviXnc Uddnone vor a€LomoLAooUY TLo EOXONA TIC GUVTUXTIXES
xa onuoctoroyeg douéc. Tlpénel va onpeindel ot auth 1 Sounuévn avanapdo taon dev elvon euxold va e€ay Vel
enedr 1o Coq dev mopéyet ta xorrdhhnha APIs. Katd tn dnuroupyio tou CoqGym, to Coq tpormonotfinxe xou
poli pe to SerAPI [1] n pof) TAnpogopidy extéheone oeptonodnxe. To x0plo poviéro eléyyou anodelewmv
tou Coq Bev emnpedotnxe. Etol, n opddtnta twv anodeiewv dev Hétetan und apgioPrmon.

Chapter 2

Movtelx

ASTactic: ITapaywyn ToOXTIXOV ©C TEOYEALUATH

e auth Ty evotnta Yo yiver o tpoondieln napousiaone e apyttextovixic tou ASTactic, tou oyedaopo
%o TNe dopnc tou [46]. Autd eivon onpovtind xadde wovtéha énwe to Passport [33] xou to TacTok [11], to ontoia
Yo topouctaoToly enlong, SogodvTal YOpw and Ty apyttextovixy tou ASTactic xou ypnoiwonolody tufuata Tng
vhomoinorc Tou.

To ASTactic eivar éva povtéro Badide udidnone mou mopdyel taxtixés we Tpoypdupata [46]. Exnadedeton oto
CoqGym xou Sraxplveton omd TEomNYOVUUEVO TPOTELVOUEVI QUTOUATOTOMNUEVY GUCTANATO AddEENC FewpnudTwy,
eneldy) xotd TN @don avalftnone g anddeling dev eméyel TaxTixéc and éva otadepd cUvoro. Avt’ autou,
oL taxtixée mopdyovton duvapixd omd to ASTactic we agnenuéva ouvtoxtind dévtpa (ASTs). H éZodog tou
ASTactic ypnowornoteitar otn cuvéyela xou doxudletan péow derypatoindlac. Xe xdde xatdotaon (state)
e anodedng, emAéyetan évog aplduds toxTinwy, Bdoel tou mpoxadoplouévou ueyédouc BEAM. Autéc elvou
oL duvatég evépyeleg oL UnopolV va Ylvouv and tny teéyouca xatdotoor. H avalhtnon cuveyileton péow
avalftnone xotd Padoc (DFS) péyer vo Beedel pio owoth anddeln, vo eEavtindel o péyiotoc apripde Taxntindv
1 vae AhEeL To ypovixd dplo Tou €xel tedel.

Apyrtextovixn
Feviny| apyitextovixr] Tou poviéiou

To ASTactic Siordéter wo apyttextoviny) xwodixonoth-anoxwdxonomnt. Tédoco n elcodog dco xa 1 €€odog
Tou povtéhou elvan 8évdpa. O xWBXOTONTAC EVOWUATHOVEL GAOUS TouC Gpoug eloddou Coq: Tov 6TdYo XL TI¢
npoxelyeves exgppaopéves oe ASTs. Eaptiuevoc and to embeddings, o anoxwduonomntic Topdyet piar Toxtixd
pe doun| Tpoypdppatos wEow e oetplaxic avdntuing evoe AST.

Kwdixonowmtng
To ASTactic xwdixonotel Tov otdy0 xou Tic TEoXEipeves xdde xotdoTaons oe JavOoUUTA.

Suyxexpéva, otny xwdixonolnon tepthopfdvetol To tomixd mhaloto e anddelEng xan éwg 10 npoxeiuyeves oto
nepBdihov. Ou ouyypagelc amopdoicay va eEap€oouy €vay UeYEAo apldud TEOXEWEVWY TOU ELOAYWVTAL ond
BBrodrixee, ol onoleg dev oyetiovtav ye v anddeln. O otdyoc xan ol npoxelueves eivan 6pol tou Coq oe
pop®h AST xou xwdixonotobvton yenoiponoidvtog éva dixtuo TreeLSTM 4.2.4.

Ewwoétepa, xdde x6uPog oe éva AST €yel éva obuBolo n mou dnhwdvel Tov cuvtoxtixd tou pdro. To dixtuo
ovoyetilel xdde xouPBo pe pla xpuph xatdotact b xal éva xehl Uviung ¢ Tou evnuepdvovTal and to Taudld Tou
we e€nc:

(Cv h) = fupdate(na C1y.-+,CK, Zfil h?)

Chapter 2. Movtéha

Feature vector

| “in |- *
| “in =

Production rules

Term encoder Tactic decoder

1 1
nat : Type : : — 9 \
1] 1
1 1 ﬁ
0 : nat 1 1 \
Environment ' ' (rewrite_term_list1], (lin_clause)
' T — \ ‘
S:nat - nat | | > Pe J
1 | N H S
| H Attention
add : nat - nat - nat 1 1 @ module = 'é} n
1 | p
! 1 L
a',b,c: nat ' : —> QUALID |-"a, 4
1 1
Local context 1 |
IHG : (@ +h) +c=a +(b+) ! TreeLSTM : —J u| St @
1 1
Goal (S’ +h) +c=Sa +(b+c) | | |
! Parse 1 GRU |
1
9
1 1 .
in_clause :
poTem [] | Feature vectors | “in” LOCAL_IDENT
| |
1 1
1 1
I 1
1 1
1 1

Input Coq terms

Figure 2.0.1: H Apyttextovix Tou ASTactic. O xwdixonomthic xoatdotaone anddeine (o) naipvel we eloodo
TOV 0T6)0, T0 TOTXO TANLGLO Xt Toug Hpoug Tou mepBdhhovtog oe pop@r AST xou dnuiovpyel embeddings
(Braviopara yopaxtTneioTndy) v xdve dpo. O anoxwdwonomtic (B) cuvdudlel ta embeddings eloddou xou
onplovpyel plor toxtxr) ot wopt) evog AST, eaptduevo and autée tic elobdouce.
[46]

H cuvdptnom evnuépwong fupdate elvan 1 mapaihory?) Child-Sum tou TreeLSTM, n elvon 1o obuforo tou x6pfou
oe one-hot encoding, xou ¢; xou h; elvon 1 xotdotaon xehod xou 1 xpUPY| xATAoTACT, TOU XOUPou - Toudloy 1.

Autdc o unohoyloudg TEaYUOTOTOoLElTHL amd TA XATw TEOg T Wvw. OAGXANeo To BEVBpo avamaplotatol and
T0 Rrgot, TNV %xpLET xatdotacn e pllac. Tehnd, 0 hrgor mpooTiVeTon pe éva tplodldotato one-hot didvuoya.
To dudvuouo delyvel €dv 0 6pog elvan 0 oTdY0C, Uia TEoxelpevn 6To TepBdAhov, 1 o Ttpoxeluevn oto Tomixd
mhaiolo.

AnoxwdixonolnTnig

Péhog tou anoxwdixomounty eivon va cuviéoet taxtinée. O ydpog avalAtnone tewv optopdtwy teplopiletot and
oNUACLOAOYIXOUS TIEpLopLoiols oL omolot divovtal péow tne yeauuatixic ywelc oupgpealdpeva (CFG).

O anoxwdixonontic tou ASTactic Snuioupyel toxtixég pe dour) mpoypedupatoc we Agnenuéva Yuvtaxtind
Aévdpa (ASTs) axorovddvtac) pédodo twv Yin & Neubig (2017) [48].

H Bdorn e uedddou toug elvon éva povtého ypoupatxnc to onolo tunonotel tn Sadixacio dnplovpyiog evog
derivation AST w¢ wa oepd evepyetddv. Autég oL evépyeleg elvan elte 1 EQapUOYT) XovOVWY TapaywYHS ElTe 1)
TOEOLY WYY TEPUATIXGY GUUBOAWY. LUVETADC, TO CUVTAXTIXG TNG YAWMOGCUS TEOYEUHATIoHO) Tpoxavopiletal Yéow
TOU HOVTENOU YpopaTixic ©¢ €va obvolo Tdavay evepyeldvy. Etotl) npocéyyior toug eahelpel tnv avdyxn to
HOVTERO Vo dDEL TN YEaUUUATIXY ATOXAELOTIXG YE YpHion Tev dedouévevy exnaidevone (training dataset). Avt’
auTol, ETLTEENEL 0T0 GVOTNHA VoL ETUXEVTPWIEL GTO TG Ol UPLOTAUEVOL XOVOVES YEUUUATIXASC AAANAETLOEOUY Xo
ocuvdudlovton [48].

H pédodoc Eexivd pe évav apyixd x6ufo xou avantiooel éva uepixd dévtpo xotd depth-first ye tov e tpoémo:

o Enexteivel un teppotinote xépPouc emhéyovtog évay xavéva naporywynic and t yeoupotxr (Context-Free
Grammar - CFG) Tou y®pou taxtixdy.

o T tepuatinole xouBoug, emoTeépel plo AexTixny) Hovada Tou avTLoToLYEl Ot €val GPLoHA TNG TOXTIXNG.

Avtn 0 ceploxy) Sladixacia topaywyhc ehéyyetan and éva Gated Recurrent Unit - GRU 4.3.

6

TacTok

To TacTok elvon éva povtého yia Ty npdPiedn e enduevne taxtixic oto Coq, mou dnuoveynoav ot First et
al. [11]. H ¥éa v) dnwovpyio tou TacTok Paoileton ot 800 napotnphioeic:

1. 'Orav ot yerotec adAnhemdpoly ue to Coq yio va amodet&ouy éva dewenua ¥ vo enodndedcouy wia amodelln,
ouyvd mpénel va e€etalouy TNy xatdotaon e anddeng yia vo emAéEouy TNy emOUEVN ToxTxr Tou Vo
e@apuéoouv. Autd €dwaoe TNy 1o vo SoxaoTel To av o povtéha TedBAedne e emduevne Taxtixic Yo
pmopovoay Vo enw@eknioly and TNy TeodcPucT oTIC TANEOoPOopleg TNg xaTtdoTacoNS TN omodelEng.

2. Kadcde o yprioteg Tou Coq, xatd tn dnuiovpylo piog amddeléng, yvweillouv OAec Tic TaxTixég mou €youy
epoppootel péypel exelvo 1o onuelo, éva poviého medPhedng g emdpevng ToxTxAg pmopel emlong va
enw@eAnVel and TNV TEOSPRACT] OTIC TEONYOUUEVES TAXTIXEC OTO GEVAQLO ANOdEIENS.

To povtého exnawdedetar oto CoqGym, péow g axdroudng teyvixic:

o Awoyilel to undpyovta scripts anddellng, daoyllovtde Ta, war toxtix ovd Priga. Do xdde Pripa un-
ohoy{lel Tic EVOLIPETES XATAC TAOCELS AMODEIENG TTOU TPOXUTTOUV.

o Anuoupyel o evonpdtoon (embedding) tdoo twv xataotdoewy anddelne 600 xou tou script anddelEng
oe xdde Pua. O evowpatdoels avtiotolyilovton ot évo apnenuévo cuvtaxtxd dévitpo (AST) tng end-
MEVNG Ypouuhc oTo script anddeldnge.

'Etot, ot eloodot Tou Hovtéhou elvol To UERUAS XUTAOKEVAOUEVO SCript amddellng xot 1 xatdotaon anddeing.

H ¢Z0d0¢ tou yovtéhou eivar évat AST mou to TacTok anoxwdixonotel Snuiovpydvtag Ty enduevn npoBhenduevn
TOTIXY %o T oplopatd Tng.

Kéde oevdpro anddeng diaondton o onypdtuna exnoidevone. To onypdtuno exnaldevone nepthopfBdver:
1. v xotdotoon anddeldng HeTd Ty eQopUoYY plag ToxTix and To script tne anddelng,
2. 7o script g anddedne uéypet TNV TeEAEUTHLA TAXTIXY,
3. v endpeEVN Tox T GTO Script.
H xatdotoorn anddeilng nepthauBdvet:
1. Tov tpé€xovta otdyo,
2. 1o ToTUXO ThaioLo,

3. to nepBdhhov.

Proof
State,
Previous

Tactics
— (Input)

Back-propagate
Loss

>
7]
@

TacTok Model Trainer

==

Seq

"Gold" Predicted Next Tactic

Next ~
Tactic =

=

>
(7]
4

Training Training
Proofs Instances

(a) Awduxaocio exnaidevong touv TacTok [11].

Kdéle dpoc oty xatdotaon anddeiing éxel évo unoxelyevo AST. To script tne anddei&ne avamoplotaton we pia
axohoudio and hextixéc povédec (tokens). To yovtého TacTok padaiver xowvd embeddings yio autd oo AST xou
Ti¢ axohovdiec. Xenowornolel autd ta embeddings yio var napdet éva TeoBhenduevo enduevo Briue oto script
an6delne, oe wopen AST. To npoPienduevo enduevo Bruo oe cuvduaoud ye to AST tne mporyuatinhc enduevng
TOXTIXAC TIOU T{PVOLUE amd TNV Undpyovoa anddelln ypnoulonotodvTon Yo TNV exnaideuoT tou povtéhou. O
EXTAUBELTAS OTY) CUVEYELL CUYXQPIVEL AUTES TG TOXTIXESC XL OVOBLAVEUEL TNV ATWAELOL.

7

Chapter 2. Movtéha

Tac%
ASTs

nat : Type
N 0 : nat >
Environment |5 © 22 s e (fbm i

Embeddings

i

o}
e)
o
o
2 —
L
add : nat -> nat -> nat % g AST
B ‘A o
Local Context| fa" = & s sy = n s n + —>||| P—r— 8 .
m ™+ p NS g 8 —> Tactic and arguments
Goal [sm+ @m+p) =5 @m+mn+ p)}———».—» a ‘—’ﬁ—P © (next step)
intros N g
induc ;on n. b =
Proof nzlq;ivi:y. D:D:D]—_—’ § %
simpl. o .
y Seq uc.l
s
3]
D
s}
e
_ H -
Failure:
Success: Update proof. try next AST
If no goals remaining, Qed. Coq
Otherwise, continue synthesizing proof Interactive

Theorem
Prover

Figure 2.0.3: To TacTok, xatd tn dwdixoacio oroxhfipwong Tou cevaplou anddel&ne TNe TEOCETUPIGTIXOTNTAS
Yior TNV TEOGVEST, UETA TNV EXTEAEST) TNE ToxTixhg simpl.
[11]

Kwdwxonowmtrc Katdotaong Anddeidng

O xwdixonomnthg g xotdotacng anddelng ivon autdg mou oyt and to ASTactic xou avalbetan AeTTOUERNOS
670 mponyoLUevo Tuhue autod tou xepahaiov. Ot eloodol elvan 0 otdyog, To ToTXd TANLGLO, XaL TO TEPLBEAAOV
oe popen AST.

Kwdiwxonowntrc Script Anddering

To script anddeilne anotelelton and Aextxéc povadee (tokens) mou eivon elte taxtixée, eite oplopata, elte dhha
obuBoia. O xwdwononthc Tou oevaplou anddelng avollel cuvtoxtd (parsing) tny axohoudio twv tokens ye
dV0 dlopopetinés uetddoug.

e Tac: Kdvel ouvtoctnt| avdiuorn e axorovdoc nepthapfdvovtac tig mo xowvée toxtxég tou Coq mou
epgavilovtar oto oevdpia amddeldng twv dedogévev exudinong, e€apddvtag custom ToxTixég, xou ooupn
oployata HOTE Ta OVOUATA TOUS VoL Uny elvan xouudTt Tng uddnong.

o Tok: mepthouPBdvel ohdxAnen TV axoloudio AeXTIXMY HovadnY, e€alp®vTas Uovo ta onuela oTENG.

H avoludeloo axoloudlo hextixdv govadnv xwdixomoleiton ye éva augpidpopo LSTM 4.2.3, nou nopdyet éva
embedding yia Ty axohrouvdia. Me tov TpémO awTd N oxoroulia elcddou LeicTaton enelepyasia TEog BLO
xatevdivoeig. Ot BVo e€6dot, pla yio xdie xateduvon, cuyywvedovtal yio vo xatoypdouv to mhalolo and ta
TEONYOUPEVA Xl UEANOVTIXG Briuato amddelEng.

To TacTok amotehelton and ta povtéha Tac xou Tok, o omolo exmoudelovion YwELOTE, Xl YENOULOTOLOUYTAL
CLUTANEWUATIXE otV andrelpa clvieon anodellewy.

Passport
Yy epyaocia toug, o Sanchez-Stern, A. x.d. [33] emxevipdvovton otn povielonoinor avayvepiotixdy (iden-

tifiers). O otdyoc Touc elvan Vo EXPETIAAEUTOOY TOV TAOUTO TwV dedouévny anddelgne ota onolo exmoudedeTol
TO HOVTEAO, BEATIOVOVTAG €TOL TNV an6BOCT TWV HOVTEAWY.

8

To Passport éyel xataoxevactel ndvw oto ASTactic, eunioutiovtag tar UTdpyovTo LOVTENX UE TNV ELCAYWYN
TELOY VEWY UNYAVIOUMDY XWOLXOTOINCNE VLo TOL OVALY VLG TIXAL:

1. xatnyopronoinor Aeduhoyiou (Category Vocabulary Indexing),
2. povteromoinon axohovdoududv unoréewy (subword sequence modeling),
3. emelepyaocia povonatiol (path elaboration).

Ye auth) T evoTnTa Yol ToPOUGLICOUUE Lol GUVTOWY) ETLOXOTNOY TWV TOQOTEVG UNYAVICUMY.

Katnyopleg Avayvwpiotixwy oto Passport

To "avoyvoptotind” (identifiers) eivon cOpfola f§ ovépota Tou yenouponotoldvio yio va Tpocdiopilouy povodixd
petoPAntés, ouvapthoels, otavepés, N dhho oTouyela oe éva mEdYpopUa. XTo TAXCLO TwV anodellewy xou
xataotdoewy anodeing tov Coq, ta avayvoplotxd eivon "ta ovépoata Tou mpoodiopilouy ye wovadixd TpdTo
Yewphpota, TOTOUS JEBOYEVMV, CUVOPTHOELS, XATUOXEVAOTES TOTWY Xou Tomxés wetafBhntéc" [33].

To Passport xwdwonotel xdde ovaryvwptotixd avdhoya pe v xatnyopla Tou:
1. xadolxde oplopde,
2. tomuxn yetofinty),

3. xataoxevaoThg TOTOU.

Mnyaviopoi Kwdixonoinong octo Passport

Tree of
Category Encoded Nodes
: : Vocabulary
; Global ! Indexing Encoded
E Variables ' | > Term
: ; Subword

""""""""""""" : Sequence
0 Constructor ! ,:> Model
Local “HETTTATTTTTTT

EVariableS i:D Path
Elaborator

100101110700
Tree LSTM 011001001101

Figure 2.0.4: H opyitextovixr tne enelepyaoiag tev avayvwelotix®y oto Passport.
[33]

Katnyopionoinon Aegihoyiou:

Ou Sanchez-Stern, A. et al. [33] onuewdvouv 611, xaddde to Coq dev diadétel npwtoyevelc TOMoUC dedopévmy,
x&de avapepdpevos tOnog elvon éva avaryvewplotixd. Autd touc xahotd mohd onpavtixoug, xodoe uropody
vor xouBoholy onpavtixy TAnpogopla 1 ool va Beloxetol ot ovouaTa TV YewpNUdTwY TOU OVIPECOVTIUL GE
autolg.

Me v xoatnyoptonoinorn he€hoyiov, oe xdde avayvwpiotxd avatideton wia ettxéta 1 delxtng ye v xatnyopla
ané v onola mpogpyetat. Autd dlaywpllel avaryvoploTixd Pe To (Blo dvopa and Swupopetixéc xatnyoplec. Em-
TAEOV TOREYEL GTO HOVTEND YPNOWUES TATPOYORIES avary Vwplo Tixd T omola 8ev cuvavtévton auyvd. To mo xowvd
VY VeELo TG ot xdde xoatnyopla Aapfdvouy wa povadixr eTixéta, 1 onola nepthopfdvetar 0Ty xwdixomolnom
touc. ‘Etol to Passport dnuloupyel pio cuoyétion petald OAwV TV YPHOEWY AUTOV TOV oVOYVWELO TIXWY.
Télog, T0 wovtého unopel Vo SNULOVEYHOEL YEVIXEUOELS OYETIXA UE TY) CUUTERLPOEA Xl TG YENOEIC TOUC, XOL Vol
TpoPBAEPEL TaxTIES TTOU AELTOUEYNOUY AMOTEAECUOTING UE AUTE OE TPONYOUUEVES TMEQLTTWOELG.

Movztelonoinorn Axolouvdicrv YroréEewv:

Chapter 2. Movtéha

H povrelonoinor axohouvhdv utoréZewy (subword sequence modeling) eivou pior teyvixd mov yenowwonoteiton
oty enedepyaocia uoxhc Yhdooos (NLP) xau otn unyovixt| uddnon yio tov yeipiond hé€ewyv xat cuuBoiwmv
oe o Aemtopepéc eninedo and autd twv ohdxhnpwy Aewv. Eumiéxel tov yweliopd twv AMEewv oe wixpdtepa
XOPUATLO, OTWE TUNUOTA UTOAEEEWY 1| YUPOUXTARES, Kol T1) LOVTEAOTOINGT, 0XONOUTLAY AUTWY TWV UTOUOVABWY
[38]. Auth 1 npocéyyion eivan WIHTERN YEHOT Yiot TOV YEWPLOUS YAWOOOVY PE TONOTAOXT) LOPPOROYI, CUYXOM-
nriée Yhdooee (agglutinative languages) - YAOooeC TOL dNovpYolv MEEELS HEGK TOU GLUVBLACUOY WIXPOTERKY
HOPONUATWY Yiol TNV Exppact) cLVIETWY WEWY, 1| 6Tav cuvavtdvta Aé€eic Tou Bploxovta extog Ae&ihoyiou.

Me authv tnv ey, ot Sanchez-Stern, A. et al. [33] npoomodolv va expetodleuTody TIC cuoYETiOELS TOU
umopolV va dnuovpyntoly PeTadd TV avayveeloTxdy Ye Bdorn ta ovouatd Toug ot Tic Yevxée ouufBdoelg
ovopoatodooiag mou ypnoylonotoUvtor otic anodellelc. T dha to avayvoplotind, to Passport yenowwomotel
éva ovtého axoloudiog LTOAEEEwY Yiol Vo ONUovpYHoeL YEPUEES UeTadl oyeTdy ovopdtwy. Aniadr, ta
avary voploTixd ywetlovtar oe xowvd turuata Aé€ewv xan enelepydlovtar e évo wovtého oxohovdiog.

INo napdSetypa, to dvoua tne wetofAntrc orderedListAsc pnopel va ywplotel o "ordered", "list" xou "asc".
EneZepyaocia Movonatio:

H enegepyacio povomatiod elvar 1 tekeutaior teyviny xwdixomoinong mou yenowponoieiton oto Passport:
XWOXOTIOMNGY) TWV ATOAUTWY LOVOTIOTLOY BLOPORETIXDY avary veplo Ty, Tao andAuta povondtio etvon "tor ovo-
HOTOL TV XATAAOY WY, TV dpyelwy xa Twv Yovddwv" evitde twv onolwv mepléyovtol to avayvoplotixd. To
Passport unopel vo expetodheutel onoladToTE OUABOTOMOY AVALY VWELO TIXY OE XOLVES UOVEDES o apyEla Tou
yenotonolovvtal HO1 and toug mpoypeaupatiotés Tov Coq. Mnopel enlong va expetahheutel To 6TUA anodeiewvy
ToU e@apUbleTal OE XAACELS OYETIXWV VEWPNUATOV.

10

Chapter 3

Elepedvnon npoBAstouevwy
toxTixwy ue MCTS

Yra tplo epyoaheio mpoBiedme unyavixnic pdinong yia xadodnyoluevn civieon anodeilewy Tou TopousIdcTNXAY,
(ASTactic 5.1, TacTok 5.2, Passport 5.3), yenotponotidnxay cuvufBatixol ahydprduor avalftnone yio tny e&-
EPEVVNOT] TOL YWPOL TWY TUPOY OUEVLY TOXTIXGY TIou TpoTelvovtan amd to povtéha npdBiedne (DFS, Siepeuvnuixt
Boduroda Behtiovon xhr). Kotd tn Swdixaoio nopaywyhc e anddedne, o ahyopripoc avalitnone oe xéde Briua
OELYUOTOAELTTEL £Vay CLYXEXEUEVO aELIUO TAXTIXWY TTIOU ToEdYOVToL Ot TO HOVTENOD, AVEAOYO UE TO XOPLOUEVO
péyedoc tne axtivag(beam) avalitnong, o Ya cuvéyile v elepebivnontou ywpou.

I tplo povtéha, yenotporotinxe axtiva yeyédoug 20 xatd tn Sidpxeia TV TEPUUdTWY. AUTH 1) CUYXEXELUEVT
T amogocio txe péow doxiudy 6tav doxudotnxe To ASTactic xou uodethiinxe ota tepdyata Twv uTololTwy
HOVTENWY ywelc Tepartépn Bertidoelc. To péyedoc tne déounc "ehéyyer to trade-off petalld ToyTnrog xou
axpifetac” [44]. Eva yeydho mhdtoc déounc odnyel oe pa evpeion neployf avalAtnone, avidvovtoc €tol To
n0c0otéd emtuyiag. To povtého €xel tn SuvatodTnTa vor e€epeuvd peYohlTERD YWpo avalrtnong e Bdpog
avgnuévou yedvou avalftnone. otdoo, napatneriinxe 6t dtav To mhdtoc tng Béoung Yo opiletar oe TuES
peyahbtepeg amnd 20, To tocootd emtuyloc pewwvdtay. H e€¥ynon nlow and autd eivon 6TL To poviérho "nayidele-
Ton" o€ évay U UTOoYOUEVO XAAB0 Yiar TOAD Yp6vo, xat 1 avalAtnon Ayel Aoyw Ypeovixol opiov.

H npdtacy| yac og auth 0 SmAoUatixd epyaoio elval Vo avTXataoTACOUUE TOUS Topadoctaxols ahyopituoug
avalitnong ye tov enavohopBavouevo alyoprduo avalitnone Monte Carlo Tree Search 6. Tnootneilouue ot
n xenon tou MCTS otov ytpo twv mapayduevmy tactics unopel va UeLOOEL TOV anatToOUEVO Yeovo avalhtnong
Yo TOV EVIOTULOUS NG owoThg axohovdioc Twv tactics mou cuviotoly pla TAen anddelln evog Yewpruotoc. H
TayOtepn avalritnon Vo emtpédel Tnv adEnom Tou aptdol twv derypatolnmroluevwy tactics oe xdlde Brpa tne
avalhnone (beam), enexteivovtag €tol Tov ydpo egepetivione. H enéxtaon tou ywpou e&epebvnone unopel va
aw€roel Tov GUVOAXS apLiud TwV amodelewy ToU ATOBELXVOOVTAL ANO TA TUPAUTAVEY LOVTENA.

YAoroinomn Tou Monte Carlo Tree Search

Opiopodg xatdotaorc (state)

Tt va exteléoouue Ty avalAtnot pog meénet va xadopioouye Ty xotdotaon(state) tne anddeldng - xou pe Bdomn
QUTO VoL XATACXEVAGOUPE Toug x6uBouc tou dévBpou avalitnone. H xotdotaon(state) tne anddeine nepléyet
10 epBdhhov tne anddene (global context), to tomxé nhaioclo (local context) xaw Toug OTOYOLE ECTIACUEVOUS
xau un ectaouévouc (focused and unfocused). To mepBdhhov tne anddeldne unopel vo eivar xowvd yia Ohec Tig
XAUTACTAGELS xou Vo Blouotpdletan and autég, oAl xdlde xatdotaor xadoplleton and o Tomxd g Thaiolo xou
TOUg OTOYOUG TNG.

Ynv vhornoinon poc, To xdde avtixelpvo xatdotaone (state object) mepthopPBdver To tactic (evépyeia) anéd to
onolo to dnploupyHinxe Ye TNV eQapUoY” Tou oTnV xatdoTaoy - yovéa. Enionc mepilopfBdver to "observa-
tion_ result" dnhadt to anotéreopa e xatdotacne (SUCCESS, ERROR x.hn.) xou to script uéypt exeivn v

11

Chapter 3. E&epeivnon npofienduevwy taxtndv ue MCTS

Theorem
statement

Proof step
training data

Monte Carlo Tree Search
Candidate
next tactics
Run contnuously i the slotted time
Prediction |
Selection ~ Expansion ~ Simulation ~ Backpropagation
Model o

Proof
Assistant

)

Proof states &
tactic history

Figure 3.0.1: H apyitextovixn towv epyaheinv tpdfiedne unyovixic uddnone yia xadodnyobuevn obvieon
amodelewy.

xatdoTao, Tou elvon 1) axohoudio Twy tactics Tou e@appodcTRXAY amd TN eila TOL BEVEEOL UEYEL TNV XATAC TUON
oawth. T va exterécoupe v avalitnon elvar anapoitnto enione va tpocdécouye tov Yovind x6ufo, to Bédog
e xaTdoTaong, Tov apliud TV EToXEPEWY OE QUTH TNV XATAOTACT), TOUG XOUPBOUG - Toudld av auTd UTdEYOLY
xaL TiC oLUVORXEC avTopolBéc (rewards) i TNy xotdo tao.

Téhog, npoodéoope xdmoleg emmhéov TopauéTeous mou deuxdiuvay Ty vlomoinot uac (timeouts, oprdude
OUVOAXWY tactics mou yenowomouinxay uéypt exelvo to onueio, reference oto nepPdiiov tng amddeng xou
GAhaL).

TepuaTIXES Xl A7) TEPUATIXES XATACTAOCELS

Xty viomoinoh) pog, oL TEPUITIXEC XATUCTACELS €VOL OL XATAOTIOELS OTIC Omoleg DeEV UmopoLY Vo e@up-
pootolv GMhec Toxtxée (tactics). Xopoxtnellouye Tic xotaoTdoelc Tou JEVOPOL avalfTnonfc Uoc we Tep-
HOTES 1) Un TeppaTxég pe Bdom tnv avatpopoddtnon mou hauPdvoupe omd Tto meplBdAlOV anddeling UeTd
v egappoy tou Brpatoc (toxtixdc 7 eviohic Coq) mou dnwolpynoe auth Ty xatdotacy. XTo oUvoho
TWV TEPUATIXWY XATOOTACEWY Uag ouunepthoufBdvouye emlong Tic xatactdoele MAX_ TIME_REACHED
xoar MAX_NUM_ TACTICS_REACHED rou eniotpépovton and 1o nepBdiiov anddedne 5.1.2. Autéc ol
XAUTOO TACELS EMOTEEPOVTAL OTAY EXEL SUUTANEWUEL TO PEYIOTO YPOoViX6 Oplo 1) dTav €xel cuumAnewiel o uéylo-
10¢ apLidC TOXTXOY. BUUTEPLAUBAVOVTAC QUTES TIC XATUC TACEL OTO GUVONO TWV TEQUITIXMY XATUCTACEWY
dieuxdAuve v vAomoinom Tou TepuaTiopol TG avalhTNong Yia AUTES TIG BU0 MEPITTWOELS.

EB86 elvon pior Aloto ye Ohec T TEPUATIXES XATACTACELS:
¢ ALREADY_SUCCEEDED

ALREADY_ FAILED

MAX_TIME_REACHED

MAX NUM_ TACTICS REACHED

ERROR

GIVEN_UP

12

e SUCCESS

Ou un teppatnég xataotdoelg efvor "PROVING" xou "Initializing". To "Initializing" fitov pio xatdotoor mou
npoc¥éoaue we pépog g vAonoinong MCTS yio va dnhwoel 6T 1) avalhtnon dev elye oxdurn Eextvroet yio Tov
TEEYOoVTA XOUfo.

Enuhoyy - Selection

Katd to Bhua e emhoyfic yeedleton va emhéZoupe v xatdotaon(state) mou mpémel vo enextodel, petalld
OAWY TWV XATACTACEWY OMOBEENG TOL elvol oo YOI TOU BEVTEoU avalTnomng.

Ytnv vhomoinon pac yenoponotfioae tov tOno Upper Confidence Bound for Trees (UCT) oe xdde x6ufo, o
ornofog elvar wa topoihay tou tonou UCB, npocappocuévoc yia avalhtnon oe dévdpa 6.3.

; N,
UCT(i) = — + /2"

n; ng

‘Onou:
o w; €lvol 1 GUVOALXY AVTOPOLBY) TOU TEOXUTTEL Omd TOV XOUPO .
e n; elvan o aprdude emtoxédewy oTov xOUPo .
e N; elvon 0 aptiude emoxéPewv 6Tov Yoveixd xouBoci.

o O¢oape Ty TapdueTteo egepeivione C va eivon fon pe /2.

Enéxtaom - Expansion

7

Ye autéd To oTddlo, pla 1) meplocdTEpES VEEC xaTaoTdoEl anddelne npootidevtal oto Bévdpo. Autol ol véol
XOUPOL AVTITPOCWTEVOVY XATACTACELS AnOdEENS Tou dnuLoveYRINXaY EQapuolovTog Wot CUYXEXELUEVT] TOXTIXY
TNV TPONYOUHEVN xuTdoTaoT (TTOU AVTLTPOCWTEVETAL antd TOV XO6UB0 QUANO).

Yy viomoinon poc Teénel vor UAEEOUPE TIC BuvaTéc TaxTEC (EVEPYELES) TIOL PTOPOUV VO EPAEUOCTOVY 011
TEEYOLOA XATAG TooT) anddelEng. Ol BUVITEC EVERYELES YLOL TNV TEEYOUC XUTACTACT ETULOTEEPOVTOL OO TO UOV-
Ao unyovixic udinong, ool tou doouue we elcodo to TepBdihov Tne anddellng, to local context xou Toug
otdyoug Tou pévouv vo anodelydolv. Ou taxtixés emoTeéPovTal HETA TO xdAecua TN Uedodou beam_search
Tou povtéhou. Auth 1 pédodog xohel TOV AMOXWOLXOTONTH TOL BNULOVEYEL TG UTOPNPIES TOXTIXES Yol TNV
Teéyovoa xotdotaon. O oprdude Twv toxtxdv xadopileton and TV mopdueteo beam TOU €YOUUE OVOPEREL
TPV

To deltepo pépog TNg eméxtaong elval Vo EQUEUOCOVUE TIS UTOPNPIES TOXTIXES GTNV TEEYOUCO XUTAG TUOY) XAl VO
ONWUoVEYHOOLUE TIC VEES xuTao Tdoels. Auto yiveta mapéyovtog Tig Toxtnég pla plo oto mepBdilov a€lohdynong
(evaluation environment) 5.1.2 xou AowPdvoviac Ty avotpo@odotnon Yo Tic e@appoouéves evépyees. H oava-
TpoodbTNON TEpLEYEL TNV TP6odo e anddeltne (PROVING, ERROR »in.) xou unopel enlong vo tepthopBéver
To mepBdAhov anddeling xadde xaL TOUC ECTINCUEVOUS, UT] EC TLICUEVOUS, UVUO TUAUEVOUS XOL EYXAUTONEAELUE-
VOUg GTOYOUE, avdloya Pe TNy tpdodo. H avatpopoddtnomn unopel enione va nepiéyet to opdhpata tou Coq, av
7 an6delln Exel PTACEL OE GPAAUL

H avatpogoddtnom nou emtoteépeton and to Coq uéow tou nepiBdhhovioc adlohdynong yenotuonoleltal yia vo
ONULOVEYHOOUYE TIC VEEC XUTUOTACELC.

IToocopoiwon - Simulation

Ye autéd To oTdd0 TPAYHATOTOOVYE W Tpocopoiwon 1 eEdminon and évav véo x6ufo mpoc évay TEpUATIXG
x6ufo axoroudwvtag pla Tuyaio mohitixr. Axoloudolue tnv (Blo Bradixacior yior TV AN xow TRV eQopUoYY
TOV BUVATEOV TOXTIXOY OE XAUE XATAOTUOY], OTWE MEPLYPAPETIUL OTLC TEONYOUUEVES EVOTNTES 3.

Yty uhornoinon e Tpocopoiwone SlatneoluE Ta scripts anodelfewmy Tou dnuiovpyolVToL XaTd T1 SLdEXEL TNG
eZdmhwone. Xty nepintwon mou 6hotl oL otdyoL anodetydolv xatd T Sidpxeila e Tpocouoiwong, To script

13

Chapter 3. EZepedvnon npoPrendpevov toaxtixwy ye MCTS

TIOU TEPLEYEL TIC TOXTIXEC TIOL EQupUdoTNXAY 6TO Hovormdtt and T plla otov Tepuatind x6uPo pe xotdoTtaon

"PROVED" elvou o am6delén tou Yewpruatog.

Oniododiddoo - Backpropagation

Ye autd To OTABLO AVAVEWMVOUUE TOUG XOUBOUS TOL ETUOXEPUAXOUE XOTd T BLdpXela TS Tpocouolwong 6.2 pe
Y xot@AANAN avtopoly). Kateuduvopaote and ta UM tpog TN plla evuep@dvovToac TNy T Xot Tov optdud
emoxéewy xdde xduPou xotd prxoc e Sadpourc.

ITohwtixég AvToapolfng

H o€iohéynon yio to av pio xatdotoor anodetlng eivar "xodf" B "xod", § ndéoo xovtd eivar oty anddelln dev

elvan 4Tl mov Ymopolye vor xdvouye. Av elyae T SUVATOTNTA VAl TO TROYUATOTOMCOVUE UE ol TUTLxY SLodixacta
Yo ofjanve 6TL Vot UTOPOUCUUE YPNOHIOTIOWWVTAS TNV VA QPTACOUUE TNV TENXT] anddelln Tou VewpnNUaTtog Tou
npoonadolpe va anodel€ouye.

To otddio npocopoiwone tou MCTS otoyedet va xdvel oxpu3ig auTd - VoL EQUPUOCEL Lol OELRS TAXTIXWY UE [t
Tuy ol TOALTIXY) UETE amd iat BEBOPEVT xaTdoTaoy anddeling xou va alohoynoel Tny xotdotacn anodeng Bdoet
ATOV TV anoteleopdtwy. E@bdcov dev elyacte oe $éon va alohoYHOOLUE UN TEPUATIXES XATACTICELS TOU
emitely oy Xatd T SLAEXELY TNG TEOCOUOIWONE, 1) TEMTY) LAC TEOGEYYLOT] £lval VoL TERLUEVOUUE 1) TEOCOUOIWwoT
VoL pTdoeL oe plor and TG TEPUATIXES XUTAOTAGELS Xol VoL ToUG avard€couUE TNy avtioTolyr avtopolh.

H mpdtn mohitix avtopgolBrc elvou:

7

e Avtapo3ry +100 edv éyouue @tdoel oe pla xotdotaon nou éyel status '"ALREADY _SUCCEEDED’ #
'SUCCESS’.

o Avtauo3y) -1 edv éyouue @tdoel oe po xoTdoTaoY oL €xel status mou umodnhwver amotuyio - AL-
READY_FAILED, ERROR, GIVEN_UP.

H mopomdve mohitixy| elvar ToAD amhf) oty e@apuoyh e xow tpowdel pior e€epedivnon otoug Teppatinolc
xouPoug, Pdyvovtag étol yio Paditepeg anodeilec. Emmiéov, xoatagpépvel vo anotpénel Ty avolhtnoy ond
TO Vo TayIOeVETOL GE U1 UTOGYOUEVOUS XAGBouS, xadog Vo avtaueiBovton apyntd. Amo tnv dAAn Theupd, ot
Yetnée avtopolPBéc elvon mohd omdviec. Emmnpooidétwe, uohc @Tdoouye o il TEpUATIXY XUTdoTaoY Tou Yo
emoTEEPeL war YeTiny) avtouolBy) €youpe GTdoel ouctaoTixd oTo Téhog tng avaltnonc pac. To script anddeigng
and) plla oto TeppaTixd xOuPo elvon W axohoudiar TAXTIXDY TOU ATOBEVIOUY TO TEEYOV VEDENUAL.

Mt dAAY mpooEyylon Y va amotopelvoue TNV eEEpEUVNCT TWV UN UTOCYOUEVKDY XAADBWY HTAV 1) devnTixn
avtagolB3n 6tav @tdvoye oe Paditepoug xouPouc. O uéoog bpog twv Brudtwy otg anodetlelc Tou CoqGym
elvon 9.1 [46].

H mohituer avtapoBic pog Paoiopévn oto Badog e€epedvnong elvan:

7

o Avtapo3y +100 edv €youpe @tdoel oe wa Véon mou éyel xatdotacn 'ALREADY_SUCCEEDED’ A
"SUCCESS’.

o Avtapo3y) -1 edv éyouue @tdoel oe Ui V€O TOU €YEL XUTACTAOY TOU UTOONAGVEL amotuyia - AL-
READY_FAILED, ERROR, GIVEN_UP.

o AvtopoB —Ag - L%J, D € {5k |k € Z} émou Ag eivar wa otadepd oty onola melpapatioThxoue xon D
elvor To Bddog mou €youpe PTdoEL.

H mopomdve mpocéyyion dev avtigetwnilet to {itnua Twv ondvieny Jetixdv avtagoBov. o va to xdvouue
owTd, TEENEL Vo Bpolue évay TEOTO Vol aELOAOYOUUE EAV 1) EQUPUOYY WG CUYXEXPWEVNG TaxTixrc odnyel oe
XUAOTERT]) XATAOTUOY] ARG TNV TEOYNYOUUEVT.

Ye autéd 1o onuelo a€ilet va avagepdel 611 oto Coq, dtav eapudletar pio Toxtixt], cuvtng epapudleton poVo
GTOV TPWTO GTOY0 OTO TPOOUNHVLO, oL O)L € Ghoug Toug oTdyous. Ot oTdyol xatayweolvTal ot po otolfa, xou
N mhetodmnelior Twv Tax Ty e@apudleTon HGVo OTOV TpEYoVTa 6TOY0 STV X0pLYT| Tne oToifog (tov "ecTiaouévo"
o16Y0).

14

‘Orov pro toxtnd| egapudleton oe évay atéyo oto Coq, puropel vo cupBolv didgopa tpdypata Bdoet g yenot-
MOTOUNUEVNS TAXTLXNG:

e O otdyog emhbetan: Edv 1 toxtinr] emAboel enituymdg Tov 0To)0, aUTOHC 0 CUYXEXPWEVOS LTOGTOYOG
e€apaviletan yiotl et amodetydel.

o O otbdyoc yetaoynuotileton: Edv n toctn| emhdoel yepixidc tov otdyo N tov yetaoynuatilel, o apyixde
votoyog e€agpavileton xou eupaviCovron véor otdyol, avixatontellovtae Ty UToAeltduevn epyaoio Tou
npénel va yivel. ‘Evog otdyoc unopel va avtixataotodel and nodholc véoug otdyouc av 1 epapuolduevn
TOXTIXT TOV BLOOTE O UXEOTEROL TUNUOITAL.

e O otdyoc nopopével auetdfBintog: Edv 1 toxtnr Sev elvan epapudoiur 1 8ev elvan emituyhc, o otéyoc Yo
TaPAUELVEL UETABANTOC.

o Metofol Tou mhauaiou (context): H taxtnd evdéyeton eniong va npocdéael véoug optopole, petaBintéc
1 utotéoeig oto mhaloto (context), emnpedlovtag TV enduevy anddelln.

Eb¢ mapovoidlouye €va Topddel Yo TOU TS 0L GTOYOL UTOEOUY VoL UETACY NUATIOTOVY UE TNY EQUPUOYT) TUXTIXWY.

Listing 3.1: Iopddelyuo YeTaoy NUATIoNo) 0TO WY

Goal forall x y : nat, x + y =y + X.

Proof.
intros x y.
(*
- “intros” moves universally quantified variables (x and y)
- from the goal to the context.
- The goal transforms to "x + y = y + x~ without
- the forall quantifiers.
*)
rewrite Nat.add_comm.
(*
- “rewrite® uses the provided lemma (" Nat.add_comm)
- to change the goal.
- Here, it solves the goal, so no subgoals remain,
- and we're done.
*)
Qed.

Me owtd xatd vou unopolue vo dolue 6Tl 6Toy e@apudlouye pio Tox T xatd T Sdpxeta tng oavolHnong pag,
€4V 0 pLIUOC TWV ECTINOUEVWY OTOYWY UELOVETAL, TOTE 1) ToxTxr] €xel eMAOOEL €vay antd TOUC GTOYOUS, Xo
€YOUUE PTACEL OE Lol O BEATIWUEVY] XATAOTUOT, G OYEDT UE TNV TEONYOUUEVT GTNY onola PeloxdpacTtay.

H mohtueh) avtopof3nic pe Bdon tn pelwon tov e0TIHoPEVWY oToY 0V elval:

o Avtauo3r) +100 €dv éyouue @tdoel oe pla xatdotaon pe status ’"ALREADY _SUCCEEDED’ 1 ’SUC-
CESS’.

o Avtapo3y -1 edv éyouue @tdoel oe wa xatdotaon pe status mou umodniwvel amotuyion - AL-
READY FAILED, ERROR, GIVEN UP.

o Emiotpogn avtopgolBric +Ay xdide @opd mou o aptdpog TV ECTIUCUEVWY GTOYWY UEWIVETL, OOV Ay lvol
pot otodepd Ve GTNV Omolol MELPUUATIOTAXOYE.

Enuewdveton 6Tl Bev avTtouolBoupe apvNTIXd TIC TEQIITAOOELS OTIC omoleg 0 dpldudS TV OTOYWY ALEAVETAL Y
TpaUEVEL OPETIPANTOC, Xl auTO BEV elvol amoEalTNTA €V OEVITIXG OTOTENECUOL.

15

Chapter 3. EZepedvnon npoPrendpevov toaxtixwy ye MCTS

16

Chapter 4
ITetpduota

e autd To xe@dharo Yo avapepYolue oTA ANOTEAECUOTA TV TEROUATLY Yo oTov cuvduaoud tou MCTS pe
Tor uTtdpyovto wovtéla Bahdc pdinone mou dnuoupYoly TaXTIXES we TeoYedupate. Apytxd da tapouctdcouue
N SLETAE N TWV TELRUUATWY Hog XL oTr GUVEYELR Yot avahOooLUE Ta amoTeEAéoUaTa ToL AdBape yio xdde pior omod
T TOMTIXES avToolf3nic Tou e€eTAOUUE OTO TEOTYOVUEVO XEQPIAALO.

Setup

Movtéla

[poryyoTonoiooue To TELRAIATE Hog yenoldonowdvtag ta exmoudeuvuéva wovtéha ASTactic xow TacTok mou rrav
olrdéoua dnpoota. Ta yovtéha Passport Sev fitav Sardéouua Snuocia, emouévwg Enpene va To. EXTUOEVCOUYE
uovol pog. Exnoudedooye to Passport pe to ASTactic, Tac xou Tok, étol wote va elpocte oe Héon va cuyxpel-
vouyue v andédoon tou MCTS cuvbuaouévou e ta poviéha autd. To Aentouepy| anoteAéopata TN EXTEAEOTC
TV HovTédwy pe Ty avalhtnon DFS napoucidlovtoar oty evotnta 8.9.

Benchmark

‘Onwe neptypdpeton oto 3.2, 1o CoqGym nepthauBdvel 123 Coq projects avolytod x@duxa, ywetopéva oe tela
olvoha. T v a&lohéynon pac, extoudetoaye ot 97 and autd (nepthaufdvovtog cuvohxd 57.719 Yewphpota)
xou cuvdécape anodellelc yior 26 (nepuhapBdvovtag cuvohixd 10.782 Yewpruota). Axohoudolue toug First et al.
[11] xon Sanchez-Stern, A. et al. [33] xou eZoupolue To cUvoho cog-library-undecidability o v a&iohdynom.
‘Onwe avagépeton and toue Sanchez-Stern, A. x.o. [33] "H ofiohéynon tov TacTok [First et al. 2020] dev
UTOPESE VoL AVOTOpdyEL To Tponyolpeve anoTtehéopota Yo v anddoon tou ASTactic [Yang and Deng 2019]
[46] o€ auTd TO €pyo Aoy ecwTEpXMY o@olpdTwy Tou Coq xatd v enclepyasio TV cevaplwy anddelne.

YTAwxo

Xenowwonooope GPUs yia tnv exnaldevon twv poviéhnv xa CPUs yia) obvdeor anodeléewv. Elyoue tny
oYM 1 Sadixaoio cOvdeone amodeilewy va elvon eguxtr) oe CPUs xadag, dnwe avagépeton and tov Yang et al.
[46], To utohoyiotixd bottleneck Beloxeton oty ahhnienidpaon pe to Coq xou TNV EXTENECT] TOV TOXTIXDY, byl
OTNY TORUYWYT TOUC.

IMot v exnaldevon tou Passport yenowonotioaue unydvnua pe wo GPU NVIDIA T4 pe 16 GB uviune.

IMapdpetpor

YT TELPGUATS Lo YENOLLOTOOUUE TIC TELPOUATIXES ToPUUETEOUS TTou axoroldnoay ou Yang xaw Deng 2019
[46], First et al. [11] xou Sanchez-Stern, A. et al. [33].

17

Chapter 4. Ilepdpota

Yuvidétouv anodeleic optlovtac éva yoovixd 6pLo, uetd To mépac Tou omolou, av N avalATNoTN ATOTUYEL Vo
2 xe PLo; 2)

ptdoel 1o Qed, Yewpoly mwg 1 anddelln anétuye. Eyouv opioel 1o ypovixd dplo oe 10 Aentd, xon auty| eivon

1 TWY) TOU YPTOWUOTONCUUE OTA TELRAUATE Lo,

I tnv exnaidevon tou Passport yenowwonoimooue enlong Ti¢ TopagéTeoug Tou Teptypdpovtol ond Toug Sanchez-
Stern, A. et al. [33].

Oploope:
o default category vocabulary threshold: 200
e byte-pair merge threshold: 4096
e default vector dimension for term, grammar and terminal /non-terminal symbol embeddings: 128

e dimension of LSTM controller: 128

Kadopiopdc Axtivag avalntnong - Beam Size

Adyw tou TepdoTiou ypovixol x6cTouc NG Sladixaciag melpaudTeY, dev HuaoTay o Vo Vo BoXUAcOoUUE
ueydho ebpog Bddoug avalhtnone oe oAoxhneo to clvoho Boxwdv. llpoyuatonooope doxiég yia Bédn 20,
25 xou 30. Anogaocioaye v SlohéEouue projects pe uPnioé oprdud amodeilewv otig onoleg ta ovtéla elyayv elte
ToANEG emTUYNUEVES elte TOAD Aiyeg emtuynuévee anodellelc. Ta projects mou emaéEope Ytav: dblib, UnifySL,
PolTac xou verdi-raft.

Kortd) Sidipxetor tov metpopdtev eldoue 6t n adEnom tou axtivoe oe 25 oto MCTS édwoe Beltiwuéva anoteléo-
pota oe olyxpelon Ue ta anoteréoparto pe axtivo avalritnong 20. H adgnorn tou déoung oe 30 dev npdoiece
xolar agion. Auté ebvon midovodg €vBelér) Tou YEYOVOTOC OTL Ol ETUTAEOY TAXTIXEC TOU TEOTEVOVTOL ATtd TOL LOVTENA
dev elvon apxetd axplBelc yia va mapdyouy neptocdtepeg anodeilel. Ta nopoxdte anoteréoyata napouctdlovtol
yenowonowvtag axtiva avalhnone 25.

IMToAitixn AvtapoBnig oe Teppatixés Kataotdoeig

Kotd v a€lohdynom twv poviéhwy nou exnatdedoope yio To Passport, dev Auasc tav oe Béon vo avamapaydryouue
To oI amoteAéopaTa Tou avagépovton and toug Sanchez-Stern, A. et al. [33]. T oautd Tov Adyo, Do cuyxpi-
VOUUE T ATMOTEAECUOTA HAC UE TO ATMOTEAECUOTA TOU XAUTAUPEQUUE VAL OVOTAEAY Y OUNE, oA Yol TapOUCLACOUUE
xau exelva Tou avagépovtal otn BiMoypapla.

YO0yxpion MCTS & DFS petadd TV ovigAwy

Y10 oyfua 4.0.1 propodue va dodue v anddoor tou MCTS mou exteléotnxe ye v mohiter) "avtauol3y) oe
TeppaTiXég xataotdoec" 7.1.6.

HMopatnpolue 6t dtav eqapudlovpe o MCTS oto ASTactic xan oto TacTok (to povtéha Tac & Toc cuvdu-
aouéva), to DFS uneptepel e uedddou avalfmorc pog, ahhd Oyt onuovTixd.

‘Otav ouyxpeivoupe MCTS xoa DFS oe cuvbuaoud pe to povtéla tou Passport, Bhénoupe 611 to DFS uneptepel
e avalAnonc uag obupeve e ta anotehéopata e tne BiBhoypapiag [33]. And v dhin mhevpd, n MCTS
uneptepel g DFS 6tav ouyxpivoupepe ta amotedéopata and to woviého Passport mou exmoudelooye eyels.
Emunhedv napatnpeolye 6t cuvdudlovtog xou to tplar povtéha 1 MCTS xatdgpepe va anodeiletl 29 nepiocdtepa
Yewprpata and to DFS.

Nea dewprpata ntov arodeixvvoviow pe MCTS

Oa axoloudficoupe Ty npocéyylon tou vodétnoav ot First et al. [11] xou ov Sanchez-Stern, A. et al. [33]
v va a€lohoyfooupe e N epopuoyh e MCTS otic mpotdoelc v goviéhwy odnyel otnv anddelln véwv
VewpnudTwy.

Yrov nivaxa 4.1 BAémouye 6TL btay uroloyiloupe Ty TAnddnTa TnE évwong Twy anodeilewy Tou cuviétovtan
amd dha to ovtéha mou evicydovton and to Passport oe cuvbuaoué pe to MCTS, éyouue 33 véeg amodelleig.

18

1750 | W DFS-reproduced
= DFS-literature
. MCTS

1500 4

1388 1388
1322 1322

12501

1116 1106

1000 4

750

Number of theorems proven

500

250 A

Models

Figure 4.0.1: O apidudc tov Yewpnudtony mou anodeixviovial yia xdde poviého yenotwonowwviag DFS xou
MCTS pe v nohtxr) avtopoBic oe Tepuatixéc xataotdoels. O udf totol aviimpoowtedouy to Bacixd
povtéha mou Baotlovran oto ASTactic, TacTok, ASTactic + Passport, Tok + Passport xou Tac + Passport.
Ou umhe wotol avtimpoownevouy ta anoteAéopata Tov Beloxoupe otn BBAoypapio [33], [11]. Ou xbéxwxvol totol
AVTITPOOWNEVOLY Ta anoteréopota NS a€loAdynong twv poviéiwy ye MCTS. Ou wotol ye tnv etixéta
“AllPassport”, eivar 0 aptduds Twv Jewpnudtwy Tou anodexviovtar ETTLYMS Yenowonouwdvrog elite DFS eite
MCTS oané touldytotov éva and o HOVTEAX oL eVicyLovTal and to Passport.

‘Otav ouyxplvouye Tov optdud twv anodelfewy mouv cuviétovtar and to ASTactic oe cuvduaoud ye to MCTS,
xoTapépae Vo amodeloupe 8 véa Hewpruata Topd To YEYovde 6TL ydooue xdmolec anodeilelg mou Beédnxay pe to
DFS. Iapatneotye eniong 61t oto wovtého ASTactic+Passport, xatagépope vo anodeilouvpe 27 véo Jewpruota,
av xou amodellope povo 24 neptocdtepa Vewphpoto o€ andAUTES TIéS. Autd delyvel xou TdL 6Tl Ydooue UepXEC
amd Ti¢ anodeielc mou anodelydnxayv ye) yeron DFS.

To aroteréopata nou malpvoupe ye v epopuoyr) MCTS pe noltnd "avtapol3 oe TEpUATIES HATACTATELS
oTo UTdpyYovTa LovTéAa elvon ToAD mopduolal e Ta amoteAéopata tov tolpvoupe and to DEFS. Autd dev anotehel
exmAngn. H onavidtnta twv detixdv avtopoBoy mou yapoxtnellel auth Ty tolTen, xadde xou To yeyovog
Twe oty tTeEMd o AdPBoupe Ty Vet avtapolBr) Yo éyouue amodel€el dhoug Toug atdyous, expuAlovy TV
MCTS oe nopadootaxd aryoprdpo avalhnone.

Movtého ASTactic TacTok ASTactic+Passport Tac+Passport Tok+Passport *+Passport
DFS 1322 1388 1301 1089 1223 1641
MCTS 1290 1344 1325 1106 1238 1670
Avagpopd -32 -44 +24 +27 +15 +29
Néo Ocwpfipota 8 (0.07%) 0 (0%) 27 (0.25%) 18 (0.17%) 16 (0.15%) 33 (0.31%)

Table 4.1: Aprdudc Yewpnudtwy mou anodeixviovion ota didpopa poviéha pe to MCTS 6tav ypnowonoteito
N ToNTW avtoponic otic Teppatinée xotactdoels xou axtiva avalitnone (beam) 25. Ta nocootd
unoloyilovtan oe oyéon pe o cuvolixd apldud anodeifewv 10782 twv dedouévwv aliohdynone (evaluation
dataset).

19

Chapter 4. Ilepdpota

‘Onwe avagépeton ot PiBhoypapia [46], To péco uixoc Twv anodellewyv nou anodewviouy To Lovtéha eivou
o - Aydtepo and 10 Taxtieée. To péoo uixog Twv Yewpnudtony Tou amodelytnxoay ot dldpop LOVTERA UE TO
MCTS Atov 6.7. Zuyxpitind, 1o péco urixoc anodeilewv ota dedopéva alltohdynone (evaluation dataset) eivou
12.5. Auté dev pag exinrooel - xadog emBefocdvel TNV Tpocdoxia UaS Twe 660 To Yaxel elval To Yemdpnua,
600 duoxoldtepo Ba elvon va dnovpyRoovue v anddelln tou. To péoo uixoc twv 33 véwv dewpnudtwy
Tou amodely Tnxay Hray 7.8 taxtinés. Auto elvon Alyo udnidtepo and to Péco urnoc GAwv twv anodeilewy mou
avapépouye mapandve. Autd urodniwvel 6t To MCTS Sieuxohivel Ty anddelln yeyahitepny Jewenudtwy.

oAt AvtapolBnig Bdoel tou Bdboug Avalitnong
Kadopiopodc Iapopetpwy IToAvtinrg

ITpoxewévou va xadopicouue TNV TWH ToU Ag axolovdooue TNV (Bla TPOGEYYLOT TOU YENOULOTOLACUUE YL TOV
xadoplopd tou e axtivag avalAtnone (beam) 8.2. Aweldyope doxyéc vy Ag € {0.5,0.75,1} oto chvoha
anodeifewv dblib, UnifySL, PolTac xou verdi-raft.

To anotehéopato TwV TEWUUATLY TV anodellewy ot autd ta alvola dev elyov onuavTixés Blapopés Yol TIg
dapopeTinéc TWéS Tou Ag. Emhé€ope va yenotpomotfiooupe Ty Twh Ag = 0.5 yia var unv tipwpolue utepBolixd
v avalhon oe Baditepo ydpo.

Y0yxpion MCTS & DFS petald tTwv RoviEAwy

Y10 oyfpa 4.0.2 unopolue va dolue tnv anddoorn g MCTS oty omola egopudoaue tny moiitiny) "avtauoBric
Bdoer Tou Bddoug avalntnone". 7.1.6.

Hapatnpotye twe dtav epopudlovpe MCTS oto ASTactic xan to TacTok, n DFS anodidet xohbtepa and v
pédodo avalrtnong pog, anodewvbovtog 65 neplocdtepa Yewpruata.

‘Otav ovyxpivouge MCTS xow DFS oe ocuvbuaoud pe ta povtéla Passport, BAémouvue 6t DFS xou nd
omodidel xahbtepa amd TNy avalATnon pog chupuva pe ta aroteléopata e Pihoypagliog [33], anodeuxviovtag
138 nepiocdtepa Yewpruota. H DFES eniong éxel xahltepn anddoon dtav cuyxplvoupe Ue Ta anotehéopaTa
TV TEWUUdTwY Tou Tpaue and Ta poviéla tou Passport mou epelc exnoudetooue. Mnopolue va dodue ot pe
™ DFS xou o tplot povtéha ouvbuaouéva undpecav vo anodetouv 49 neplocdtepa Jewphuota an’ 6,TL e TO
MCTS.

Néa dewprpata mtov anodeixvvoviow pe MCTS

Yrov nivoxa 4.2 Brénouye 6TL 6tay utoroyilouue TNV TANXOTNTA TNE EVWoTNE TwV anodel&ewy Tou cuvtdydn oy
and oha Tar povtéla evioyuuéva e to Passport oe cuvduaopd pe to MCTS, éyoupe 17 véeg anodeilelc.

Aev mhpope xopla véa anddeln 6tav cuvdudoope to MCTS pe to ASTactic xow to TacTok.

Movtéro ASTactic TacTok ASTactic+Passport Tac+Passport Tok+Passport *+Passport
DFS Repro 1322 1388 1301 1089 1223 1641
MCTS Repro 1257 1282 1244 1027 1151 1592
Aapopd -65 -106 -b7 -62 -72 -49
Néa Oewphiuata 0 0 14 (0.13%) 11 (0.1%) 11 (0.1%) 17 (0.16%)

Table 4.2: Apidudg Yewpnudtenv mou anodeixviovtar ota didpopa povtéra ue to MCTS étav yenowonoeiton
1 mohiTx| avtopol3ic Bdoet tou Bddoug avalhtnong xou oxtiva avalitnong (beam) 25. Ta tocootd
unohoyilovton oe oyéomn Ye T0 cUVOAXS aptiud amodeilewy 10782 twv dedouévev alloldynone (evaluation
dataset).

H egopuoyr e moltixnic avtapoBric Bdoet tou Bddoug avalritnong yio axtiva 25 dev Bedtinoe To anoteAéoyota
e avalhtnorc pag. Ewdlouue mog autd cuvéPn yio toug axdrouvdouc Adyoug:

e H mpddtn nopathienon eivar 6tL ot opvnuixés avtopolBéc Bdoel tou Bddoug mioavde vo epnodilovv v
avaxdAudm Baditepwy amodeilewy. ‘Onwe éyouyue det topandvw, 0 UEGOS 6ROE TOU UAXOUS TwV anodelewy

20

1750 | Wmm DFS-reproduced
mmm DFS-literature
= MCTS-depth-rewards

1500

1388 1388
1322 1322

1250 A

1000

750 A

Number of theorems proven

500 A

250 1

Models

Figure 4.0.2: Aptdudc dewpnudtwy mou anodeiydnxav yia xdde poviého yenotponowdvtog DES xou MCTS pe
nohtix) Avtapolric Bdoet Tou Béddoug Avalitnong. O uedf totol avuinpocwnelouy to Bacixd povtéla
Baotopéva oto ASTactic, TacTok, ASTactic + Passport, Tok + Passport xou Tac + Passport. Ot punke totol
avunpocwredouy T Pac| afloddynor mou avagépeton ot BiBhoypapia [33], [11]. Ou xéxxvol totol
AVTITPOCWTEVOLY Ta anoteréopota NS extéheons Twv wovtéhwy ye MCTS. Ou wotol ye v etixéta
“AllPassport” eivat 0 aptdude Twv Jewpnudtwy tou anodelydnxay emtuyde yenowonouwdvrog glite DFS eite
MCTS anéd touldylotov éva and o Lovtéla Tou evioyovtow and to Passport.

mou mapdyovton avd povtého elvon 6.7 toxtxéc avd anddeln. Autd Belyvel 6Tl tor wovtéha elvan o
amoteheopaTixd oTny ouvieon ppewy anodelgewy xou 6t N avalitnon DES elvar wavy va evtonicel
anotereopaTing autéc Tic anodellele, dedopévmv Twv napapétewy avalitnone tou xadopictnxay (onctiva
avalhtnone 20, ypovixd Gplo 10 Aemtav). H apvnuid avtopolBr) ot Baditepec xoatactdoels dev Behtiwoe
™y avoxdiudn véwv cuvtopdtepry anodeifeny xau anétpede v avalhtnon and to va Peet paxpltepeg
amodel€elg mou avaxahbEinXay and TNV TEONYOVUEYY TONTIXTY] TOU EQUPUOCOYE.

o H deltepn nopathenoy elvon 6TL T0 YpoVixd XOGTOC TWV TMELOUATWY HAC EUTOOLOE VO BEATIOTOTOLCOUUE
g mopopétpoue tou MCTS oe cuvduaopd e v mohtixry avtapoBric Bdoel tou Bdbouc avalhmmong.
Elvar mdavéd 6t av elyope nelpaatiotel Ye TEPLOGOTEPOUC GUVBUAGHOUS TWV TUPUUETEWY Ag xou beam,
Yo unopoloaue v €youpe xalbtepa anoteAéopato. o mopddetypa, auEdvovtac TV TUpdUETE0 Ay O
Tég Yeyohltepeg and 1 xou emextelvovtag TNy mopdueteo beam oe Twég peyahltepee and 30, lowg va
eviapplvade TNV avoxdhudn VEwY GUVTOUOTERPWY amodellewy, Tapdho mou Va eurnodiloye v avaxdiudn
Bordidv anodelEewv.

I[MToAitixn AvtopolfBnic pe Bdon tn peiwon Twv oTdywy
Kadopiopodcg Iapauetpwy IToAitinng

Avth Arav 1 teheutala TohlTixr Tou Soxudooue xou dev elyaue YEOVO Vo ONOXANPWCOUYE T TELRGHUATE oG
HEYEL TN OTLYUY) TOU ONOXANEWINXE CUTH 1) SLTAWUOTIXY.

T v xaropiooupe Ty s Tou A axoroudolue TNy (Blo TEOGEY IO TOU YENOWOTOCUUE Yiol TOV XadopLoud
e déounc 8.2 xou tou Ag. Extelolpe Soxwéc vy Ay € {0.5,1,2} ota obvoha anodellewy dblib, UnifySL,

21

Chapter 4. Ilepdpota

PolTac xau verdi-raft. Ta anoteAéopato mov mhpaye and oauTtd To TeELpdpoTa HToy ongovtixd (Yopw oto 20%)
YELROTERY AMO TOL AMOTEAEGUOTA TOU THPAUUE Ad TLC TEOTYOVUEVES TOMTIXES AVTUUOBHC TOU XENOLUOTOICOUE
oto MCTS. Muw e€rynon vy’ auto elvon 6TL xatd) @dom tng npocouoiwong, ToAES xaTaoTdoelS avTaueiBovto
VETIXE G ATOTENECUO TWV TUXTIXWY TOU UELOVOUY TOV 0pldd TRV ECTIAOUEVRDY OTOY WY GTA LTOBEVTPA TOUG,
oAAG Bev odnyolv xhadid mou Beloxetan 1 anddelln tou dévtpou.

Emnmiéov, a€{let vo avagpepel o pe authv Ty tohtix npoonadolue vo avayvwpeloouye o Yetind anotéheoya
NS eQopUoYAc o ToxTixAc oF o dedouévn xatdotaot (state) odAd aviapelBouue Tic TEOXUTTOVOES XATAUO T8~
oelc xou Oyt T ToxTxés. Autd umopel va odnyroel oe cuvirxec OTOL OL XATUCTICEL OE U UTOGYOUEVOL
napaAddia Tne avalitnone Yo avtauelBovton uPnAd xatd tn Sidpxela e avalATnong.

ITvyaveg BeAtiwoeig tng Ilohtixnc AviopolBng

Ou ypealbpactay TEPLoGHTEPO YPOVO Yid Vo BEATIOCOUUE TL TopaéTeous TS TOMTXAS Pag (Ag, TUES VETIXMDV
AVTOPOBMY, TYES apYNTXOY avTapoBiv) xou Ty axtive avalftnone (beam) dote vo expetalheutoue tar mdavd
0@éhn awthc TN mohTiic. Hrav xdt mou dev elyope ypdvo va xdvoupe Adyw TOU UTOAOYLOTIXOV XOGTOUS TWV
TELOOUATWV.

Mia mpooéyyion nou Yo unopovoe enione vo Behtwoel v avalhtnot pag elvar vo ouvdudooupe to MCTS
ME Uiot TeOoWELVY UVAUN "XaAdY" ToxTixdy mou TeoTddnxay and To HOVTERN - TAXTIXEC TOU €YX0UV GUUBAAEL
oTN YElWON TV ECTINOUEVKDY GTOYWY Xatd Ty avalitnon. O toxtixéc autéc Yo SerypotoAnmrovvton xon Yo
avtopeiBovton xatd) didpxeia T avalhnong. ‘Evo emmiéov Briua oe autd Yo fay vo €youue gL Teocwmpelvi
ViU yio xde ETXEVTPOUEVO GTOYO Tou YewpuaToc.

YuunepdopaTa

Y10l MELpGUATE ag BOXIUACUUE TNV OVTIXATAC TUOT] TWV THEAd0CLox®Y UeVddwv avalitnong ota epyahela tpdP-
Aedne unyovixric udinone yia xadodnyoluevn olvideon anodelewv e Monte Carlo Tree Search - MCTS. Ta
newpdpatd pog €deav 6t 1 yerion e MCTS pnopel vo nopdyet anotehéopota TOAD XOVTE OTA ATOTEAECHATA
e Bihoypapioc. Emniéov, ta neipduatd pog mophyayay anodeielg mtou dev maphydnoay and Tig napadoctaxés
pedodoug avalrtnong. 201600, dev xatopépaue Vo UTEEBOUUE Tol XANITERO OTOTEAEGUOTO TIOU AVAPEROVTAL OTT)
BBhoypapia.

And g TeElC TOAMTIXEG aVTUUOIBAC TTOU YENOWOTOWCUUE 1) TOMTIXY avTOOBNC OTIC TEPUATIXES XATACTACELS
Atav 1 mo anoteieopotiny). ‘Otav cuvdudotnxe pe to wovtéha Passport mou euelc exmawdetoope, to MCTS
xatdpepe va Bpel neptocdtepes amodellelg oe olyxplon ue avtég mou mhpaue pe v DFS. Ilog’” 6ha autd,
oev xatdgpepe vo urepPel o xahdtepa amoteréopato wou avapépovion ot BiBAloypapio. H éAhewdn detindv
avtagoBov oe auth v moltixy xdvel to MCTS va cuuneplpépeton mohd TopdUola e TOUC Topadootaxols
akyoplduoug avalhtnong 6nwe to DFS, divovtde pag mold nopdpoia anoteAéoyota.

Ipoonotoaue vo expgetadieutolue ta oéln Tou MCTS elodyovtoc tig mohitég "avtopol3y) Bdoet tou Bddoug
avalitnong" xou "avtopolBr) Bdoel tng pelwong otdywv". H mohitinr "avtopoin Bdoet tou Bddoug avalhtnone”
pog €dwaoe Yetind delypato, ok Sev Aoy 1000 anoTeAeouaTny TNy avaxdAun yeyolitepwy anodeiewy. H
doxwpacio e mohTiie "aviapoBr) Bdoel g uelwong otdywv" elvon oxdun oe eEEMEN xadds ohoxnpve-
Ton auThg N Bimhwpatr epyaocio, xoddg n eOYWoN e Ntav o BVoxokn and TN pUYULOY TUPUUETEWY OTIC
nponyolueves pedddouc.

ITeclopiopol

O n0ploc meploplopde Tou elyoue 0TA TELRIUATE LOC HTOV TO YEOVIXO X00TOG exTENETTC Toug. H extéleon twv
TELPAUATWY 6T0 oUvolo Twv dedouévev alloddynone (evaluation dataset) yio éva chvolo mapopétewy oe Gha
T 26 ohvoha Bedouévwy tou Coq Blapxoloe apxetés efdouddes ye Tov UAixé (hardware) nou elyoue Swrdéoiyo.
INo 10 Moyo autd, OTWEC AVAUPECOUPE XOL TEOTYOUHUEVA, XOTUPEQUUE VO BOXLUACOUUE UOVO €Vol TEPLOPLOUEVO
e0pog havdY TWOVY Yio TIC Bldpopee Topouéteous. EmnAéov, TooyUoTOTOOOUE TIC SOXES TV THPUUETEWY
TGV og €vat UTOGUVORO TwY dedouévey allohdynone. Emouévwe, Sev umopolue va elyacte BéBatol yior Ty
BeAtiotéTNTd TOULC.

22

Adyow e énhewne hardware, dev unopéoope eniong Vo TELROPATIGTOVUE YE TOL LOVTEAA XAl VA TOL EXTUOEVCOUYE
ex véou. To xdotog Tou LAXOU avagépeTal eniong and TOUC TEPLOGOTERPOUG EPEUVNTEC TOU epYAloVTaL GTOV
Topga Sanchez-Stern, A. et al. [33] w¢ évoc optaxd omory OPELTIXOEC TEPLOPLOUOC.

23

Chapter 4. Ilepdpota

24

Kelpevo oto ayyAixd

25

Chapter 1

Introduction

Theorem proving has stood as the cornerstone of scientific progress. In political debates winners are not
always the politicians with the most concrete arguments and the law does not consistently require indisputable
evidence for a verdict to be determined. But in mathematics, unlike our everyday lives or areas like law or
politics, arguments and propositions need to be indisputable. The only way to evaluate the validity of
a mathematical statement is through the rigorous task of constructing a mathematical proof, a convincing
logical argument which demonstrates the truth of a proposition given a set of assumptions. Scientists through
the millennia have created several proof techniques. Some examples are proof by construction, proof by
induction, proof by contradiction, proof by exhaustion, proof by counter example and more.

Creating a machine that can verify the validity of a theorem and provide its proof with the press of a
button has been an object of research and experimentation for many mathematicians and computer scientists
through the ages. This has led to the evolution of the field of automated theorem proving or automated proof
synthesis which in the context of logic and computer science involves automatically generating a proof for a
given statement, provided that the statement is indeed provable. Unlike proof checking, which verifies the
correctness of a given proof, proof synthesis is the process of actually deriving a proof, potentially without
human intervention.

1.1 Motivation

The advances in the area of Artificial Intelligence and particularly in Neural Networks and Machine Learning
could not bypass the field of Automated Theorem Proving (ATP). There have been significant research
attempts to apply those advances to the fields of Automated Proof Synthesis [37] and Interactive Theorem
Proving. Researchers have collected and structured datasets of significant sizes ([16], CoqGym [46]) which
contain human written and auto generated proofs, and have tried to train models which will either compose
entire proofs or interact with proof assistance and compose proof scripts of the theorems to be proved. These
data have been used to create models which initially were based on Recurrent Neural Network architectures
([46]) and have no shifted to incorporate Large Language models and Transformers [47].

In this thesis we will focus on the domain of Interactive Theorem Proving and specifically on the models
trained on the CoqGym data set which contains proofs of the Coq Proof Assistant.

1.2 Contribution

The principal proposal of this thesis revolves around enhancing the existing architectures of machine learning
prediction guided proof synthesis tools built for the CoqGym dataset with more elaborate proof search
methods and specifically with Monte Carlo Tree Search.

To that end we implemented and tested MCTS on the architectures of ASTactic [46], TacTok [11] and Passport
[33] which are tactic prediction models for Coq Proofs trained on CoqGym dataset [46]. We introduce three

27

Chapter 1. Introduction

reward policies for our MCTS implementation:
1. the "reward on terminal states" policy
2. the "reward on depth" policy

3. the "reward on goal reduction" policy.

1.3 Thesis Structure

In this thesis we start by presenting to the reader the problem of proof synthesis and automated proof synthesis
as well as the domain of interactive theorem proving in chapter 2. We continue by presenting the interactive
theorem prover Coq 3 and then try to briefly familiarize the reader with the theoretical background on Long
Short Term Memory networks 4. Chapter 5 presents the architectures three machine learning prediction
models for guided proof synthesis: ASTactic [46], Passport [33] and TacTok [11]. In chapter 6 we describe
the Monte Carlo Tree Search algorithm and in chapter 7 we describe how we propose to use it with the above
prediction models for guided proof synthesis. Lastly, in chapter 8 we conclude this thesis by presenting and
analyzing the results of our experiments, discussing the limitations that we encountered and proposing ideas
and opportunities for future work.

28

1.3. Thesis Structure

29

Chapter 1. Introduction

30

Chapter 2

Theroetical Background on Proof
Synthesis

2.1 Automated Theorem Proving (ATP)

Automated theorem proving (ATP) [Bibel 2013; Fitting 2012; Pfenning 2004] is a set of techniques that prove
logical formulas automatically.

ATP is a tool used in formal mathematics to produce mathematical proofs whose validity can be then checked
by experts [5]. Additionally, it has wide application beyond mathematics, in areas like system verification,
where one states the correctness of a system as a theorem and justifies it in the form of proofs [37].

2.1.1 Forms of ATP

There are two main forms of ATP:
e Automated proof synthesis (APS) [37]:

Given a logical formula P, if P holds, return a proof M of P. In the light of the importance of theorem
proving, APS serves as a useful tool for activities based on formal reasoning. For example, from
the perspective of the aforementioned system verification, APS serves for automating formal system
verification. Various methods for (semi)automated static program verification, essential for proving the
correctness and safety of high-stakes applications [22], can be seen as APS procedures.

¢ Interactive theorem proving (ITP)

In ITP, proofs are constructed by human experts interacting with software tools called proof assistants,
such as Coq [2], Isabelle [29], and Lean [28]. Proof assistants allow users to state theorems and
their proofs formally in the form of certain programming languages and automatically check that the
proofs correctly prove the theorems [37]. The interaction with the human becomes essential due to the
enormous search space that needs to be explored by the machine in order to fully generate a correct
proof. Machine learning can automate such interactive theorem proving, opening up a new avenue for
theorem proving [46]. The model can learn to interact with proof assistants, given data containing
human-written proofs.

2.1.2 A look at APS methodologies

Automated proof synthesis for implicational logics

The traditional approach taken by the programming-language community to tackle APS has been with the
use of symbolic methods. An APS algorithm inspects the syntactic structure of a formula P and, using
the obtained information, tries to construct a proof derivation of P [37]. A seminal work in this regard is

31

Chapter 2. Theroetical Background on Proof Synthesis

by Ben-Yelles [1979][3] in which a sound and complete APS algorithm for an implicational fragment of the
propositional logic is proposed. This algorithm, given a formula of implicational logic, determines the set
(possibly empty) of A - terms in long /5 - normal form which have a given formula as a type.

An implicational logic can be specified by the rule

a—f @
5

and a set of axiom schemes. Getting into more detail on this topic is not on the goals of this thesis. There have
been several advances on this domain and improvements on the Ben-Yelles work [17]. Furthermore, similar
algorithms have been implemented and used by Hammers, which are tools that provide general purpose
automation for formal proof assistants [8].

Automated proof synthesis with machine learning

The first work of Sekiyama and Suenaga views the APS problem as a machine translation problem from the
language of logical formulas to the language of proofs [36]. Their second work introduces the use of statistical
machine learning. They experiment with the application of deep neural networks (DNN), introducing the
DNN architecture named proposition-to-proof model tailored to the APS problem [37].

In short, they created a statistical model of APS problem in terms of probabilities, which serves for quantifying
how a partially constructed proof is likely to lead to a correct proof of the given proposition P. Based on
that, they defined a proof-synthesis procedure that searches for a proof of given proposition P in the order of
the likelihood. This proof synthesis procedure requires a function to estimate the likelihood of an inference
rule being applied at a specific step of a proof (or, equivalently, a specific position of a partially constructed
proof). For this estimation, they used DNN based on the aforementioned proposition-to-proof architecture.

The performance evaluation of their network revealed that it can predict the inference rules which fill a
partially constructed proof of a propositional-logic formula with 96.79% accuracy.

2.1.3 A look at ITP methodologies

As mentioned above, Interactive theorem proving (ITP) is a method of formal verification in computer science
and mathematics that combines human-guided reasoning with the assistance of computer software. It involves
the interaction between a human user (typically a mathematician or software engineer) and a computer-based
tool, known as a proof assistant or interactive theorem prover.

A large part of the process of proof formalisation consists of providing justifications for smaller goals [9].
And although mathematicians would not face any serious complications when tackling these goals, users of
modern interactive theorem provers have to spend an important part of the formalisation effort on them.
This effor usually includes:

1. library search,

2. minor transformations on the already proved theorems (such as reordering assumptions or reasoning
modulo associativity-commutativity) [9],

3. combining a small number of simple known lemmas.

ITP automation techniques are able to reduce this effort significantly. Automation techniques are most
developed for systems that are based on somewhat simple logics, such as those based on first-order logic,
higher-order logic, or the untyped foundations of ACL2, which is a logic and programming language in which
one can model computer systems [19].

Hammers

The strongest general purpose proof assistant automation technique is today provided by tools called “ham-
mers” [4]. Hammers combine learning from previous proofs with translation of the problems to the logics of
automated systems and reconstruction of the successfully found proofs.

Blanchette et al. [4] present the three main components of a hammer in most cases.

32

2.1. Automated Theorem Proving (ATP)

1. The premise selector heuristically identifies a fraction of the available theorems as potentially relevant
to discharge the current interactive goal.

2. The translation module constructs an ATP problem from the selected premises and the current goal,
converting from the proof assistant’s rich logic to the ATP’s logic, often a variant of many-sorted
first-order logic (FOL).

3. The proof reconstruction module processes a proof found by an ATP so that it is accepted by the proof
assistant.

The advantage of a hammer is that it is a general system not depending on any domain-specific knowledge
[9]. It can use not only the lemmas from standard or other predefined libraries but all currently accessible
lemmas, including those proven earlier in a given formalisation.

When it comes to performance, hammers are very effective in assisting and facilitating ITP users, especially
for routine proofs. As standalone provers, their performance is tied to the complexity of the domain and of
the goals they are given. CoqHammer [9], can prove 40.8% of the theorems of the Coq standard library in
a push-button mode. For each theorem in the library only the previous theorems and proofs could be used
during evaluation.

2.1.4 ITP and Machine Learning

Gauthier et al. [12] present the problem of using Machine Learning to guide theorem provers with the
following formulation: "Can we learn a mapping from a given proof state to the next tactic (or sequence of
tactics) that will productively advance the proof towards a solution"?

Starting from this question, a number of different attempts have been made using various techniques in the
past years. Here we will try to mention the most interesting and important of those attempts, and will focus
on those which are most relevant to the Coq proof assistant for the context of this thesis.

In order to do that we will first define the problem of ITP and Machine Learning by breaking it down to its
parts.

Gathering data

The first step to tackle this problem is to create the datasets necessary and build the necessary tooling and
APIs to interact with them. These datasets are pairs of problems (goals) together with their proofs which
is the sequence of tactics which solve the goals. The size, variety and quality of these datasets are essential
for the effective training of the models. Examples of such datasets are LeanDojo Benchmark, LeanDojo
Benchmark 4 - with 98,641 and 100,780 theorems respectively [47], LEANSTEP [16] and CoqGym [46].

Data Representation

The second step is to create a data representation of these proofs which will be used as an input for the
model training. Here we have various approaches to the problem which include Long Short Term Memory
models [46], Graph Neural Network models [31], Language models and Transformers [47].

Output representation

Here it has to be decided how the new tactics will be represented. This is done either using a tactic grammar
[46], tactic templates or language modeling [47].

Lemma/Premise selection

Another important aspect of interactive theorem proving is the lemma or premise selection. This is mainly
used by Hammers, and is further analyzed above 2.1.3. Language models just memorize the lemmas from
the training data [47].

Term Generation

The next step is to set up a way of generating tactics. There are also various approaches for this problem,
for example generating tactics as programs [46], using dependent type theory or language models [47].

Proof search strategies

33

Chapter 2. Theroetical Background on Proof Synthesis

The final element needed for the problem of automating interactive theorem proving with ML, is how to
search for the proof. After the model which generates the tactics is available, a search method is needed to
find the sequence of model generated tactics which will lead to the solution of all the goals. This search can
be done with traditional methods like DFS [46], BFS, iterative deepening, best first search and Monte Carlo
Tree Search [20].

In figure 2.1.1 we can see the system architecture of a machine-learning-prediction-guided proof-synthesis
tool.

Theorem
Statement

Proof Step
Training Data

Search g\
candidate tactics
next tactics
Prediction |77 y APr_oct)f t
Model intros induction n ssistan
proof states &

proof states

tactic history

| eauto || simpl || apply H ” simpl |

<7

=

Figure 2.1.1: The system architecture of a machine-learning-prediction-guided proof-synthesis tool.
[33]

Limitations
The main problems of applying machine learning to APS are:

1. There is no guarantee that the output of a DNN will be correct. Although neural networks thrive
in domains like language processing, for theorem proving the answer cannot be approximate but is
required to be fully correct.

2. The encoding of an APS problem as input to a DNN is non-trivial [36].

34

Chapter 3

Coq & CoqGym

3.1 Coq

The COQ system is designed to develop mathematical proofs, and especially to write formal specifications,
programs and to verify that programs are correct with respect to their specification [2]. It is being widely
used for research and industrial purposes for the development of high-assurance software systems. Examples
of its usage are theorem proving in mathematics [13], software and security protocol verification, and the
design and construction of programming languages. It was also being used in the CompCert verified C
compiler, which is used for the formal verification of realistic compilers. Such verified compilers come with
a mathematical, machine-checked proof that the generated executable code behaves exactly as prescribed by
the semantics of the source program[22].

The Coq proof assistant is a robust and versatile software tool used extensively for formal verification in math-
ematics, computer science, and beyond. It provides a rigorous framework for establishing the correctness of
mathematical theorems and software programs. At its core, Coq relies on the Calculus of Inductive Con-
structions (CIC), a powerful logical foundation that merges a higher-order logic and a richly-typed functional
programming language.

Central to Coq’s structure is its GALLINA language, a specification and mathematical higher-level language.
GALLINA allows users to represent not only programs but also properties of those programs and proofs
of these properties. This expressive language forms the bridge between formal mathematical reasoning and
practical software verification.

GALLINA is equipped with a wide array of features that facilitate formal reasoning. It supports the definition
of inductive data types, functions, and theorems, all subject to precise type checking by the Coq kernel.
Furthermore, its interactive nature enables users to incrementally construct complex proofs, refining them
iteratively.

In the Coq ecosystem, the Coq kernel serves as the foundational layer, responsible for type-checking, gener-
ating machine checkable proof objects, and maintaining the logical framework. Above this kernel, the proof
engine interprets user-provided proof scripts, offering an interactive and user-friendly environment for formal
reasoning.

Coq’s extensibility is a notable asset, enabling the development of custom data types, proof rules, and tactics,
making it adaptable to a diverse range of formal verification tasks.

3.1.1 Atomic & Compound tactics

Atomic Tactics: Atomic tactics in Coq are basic and elementary tactics that perform simple, focused op-
erations in the proof [2]. These tactics are typically used to make small, incremental steps in the proof
construction. Examples of atomic tactics in Coq include intros (for introducing variables or hypotheses), ap-
ply (for applying a lemma or theorem), simpl (for simplifying expressions), and rewrite (for rewriting terms

35

Chapter 3. Coq & CoqGym

using equalities). Atomic tactics are the building blocks of more complex proof scripts.

Compound Tactics: Compound tactics, on the other hand, are tactics that combine multiple atomic tactics
into a single step [2]. They allow users to automate or script more intricate proof steps by specifying a
sequence of actions to be taken. Compound tactics can include conditional branching, iteration, and more.
Examples of compound tactics in Coq include repeat (to repeatedly apply another tactic), ; (semicolon, used
to apply tactics sequentially), and tacticals like ;, |, and +, which provide various ways to control the proof
process.

An example of atomic tactics:

intros x y.
apply Nat.add_comm.

An example of compound tactics:

intros x y; apply Nat.add_comm.

3.2 CoqGym

3.2.1 CoqGym: A large-scale Interactive Theorem Prover dataset and learning
environment

The CoqGym dataset and learning environment for ITP was created by extracting proofs from 123 open-
source Coq projects. It contains 71K human-written proofs [46] and covers a plethora of application domains,
including mathematics, computer hardware, programming languages, etc.

Previous attempts to create datasets of projects in the Coq proof assistant resulted in sets which consisted
of a few thousand theorems. Furthermore, they were only covering a limited range of domains such as Peano
arithmetic [10] or the Feit-Thompson Odd Order theorem [14]. CoqGym is both larger and more diverse
thus facilitating training machine learning models and the evaluating cross-domain generalization.

The CoqGym environment is designed to train and evaluate auto-ITP agents. The agent begins with specific
theorem to prove together with a defined set of premises. Interaction with the proof assistant involves issuing
a series of tactics, with the proof assistant executing each one and providing results in the form of new goals.
The proof has been successfully found by the agent when no more objectives remain.

3.2.2 Dataset structure

As already mentioned, CoqGym includes a large-scale dataset of 71K human-written proofs from 123 open-
source Coq projects. In addition to the source files, it also contains abstract syntax trees (ASTs) and rich
runtime information of the proofs, including the environments, the goals, and the proof trees. The ASTs have
been extracted from the internals of Coq’s interpreter as OCaml datatypes. They are serialized into Lisp -
style S-expressions [26]. The CoqGym environment provides tools for using them in Python.

Processing Coq projects and files

The source files comprising the data set are organized under projects. Each project contains a set of inter-
related proofs about specific domains. The projects in CoqGym include the Coq standard library and the
packages listed on the Coq Package Index [7]. Some of them may not compile because they require a specific
version of Coq, or there is a missing dependency. Only projects that compile are included in the dataset.

The training, validation and test sets are composed of different projects. This was done for the following
reasons:

e Since the proofs in each project are inter-related, it was necessary to ensure that testing proofs were
not used during training.

o Goal of the training of the models is to generalize accross domains.

The split was as follows:

36

3.2. CoqGym

e Training dataset: 43,844 proofs
e Training dataset: 13,875 proofs
e Testing dataset: 13,137 proofs

3.2.3 SerAPI

"SerAPI" is "a library for machine-to-machine interaction with the Coq" [1], facilitating interaction with
it by using serialized data and asynchronous communication. It is designed to communicate with external
tools and applications by using serialized representations of Coq’s internal OCaml datatypes. The serialized
data can be in various formats like JSON or S-expressions, making it easier for external tools to analyze and
manipulate Coq code. It is particularly useful for tasks like code analysis, transformation, and extraction in
the context of Coq developments.

3.2.4 Synthetic proofs from intermediate goals

The CoqGym dataset has also been enriched with synthetic proofs. Synthetic proofs [46] are proofs synthe-
sized to prove the intermediate goals of existing long proofs. The main reasoning behind it was to enrich the
existing dataset with smaller and less complex proofs. The hypothesis was that these intermediate goals are
easier to prove and more conducive to learning. Additionally, the training data was augmented with more
examples. To create these synthetic proofs Yang et al. [46] generated proofs of length 1, 2, 3, and 4 for each
intermediate goal in a human-written proof.

3.2.5 Proof structure - environments, goals & proof trees

The proof environments contain the foundational elements upon which the proof will be built. They contain
Coq terms as premises for the proofs. The environments for the proofs are represented as a collection of
kernel terms, which are internal representations used by Coq and stripped of syntactic sugar. This form
of the environment was generated through the execution of the proofs and the subsequent serialization of
Coq’s internals. As the source code completely defines the environment, it was considered as a possible
representation for it. This would make the training of the machine learning models more challenging, as it
would also imply the learning of the semantics of Coq code.

The environment for each proof - the premises in its scope - is defined both in the same source file and in
other libraries. It is important to note that proofs in CoqGym contain the complete environment, which was
not the case in prior work [18], The benefit of having the complete environment is that the machine learning
model is able to access all relevant information in structured forms.

Proofs in the dataset are represented as proof trees. The nodes of the trees are the goals and the local context.
The edges are tactics which manipulate and transform the current goal into sub-goals. This was achieved
by serializing the current goals from Coq’s interpreter at each step of the proof. The edges are identified by
tracking how goals emerge and disappear during the lifetime of the proof. Environments, goals, and proof
trees together form a structured representation of Coq proofs. Compared to raw source code, a structured
representation allow machine learning models to more easily exploit the syntactic and semantic structures. It
is worth noting that this structured representation is nontrivial to extract because Coq does not provide APIs
exposing its internals. In constructing CoqGym, Coq was modified and together with SerAPI [1] the runtime
information was serialized. The core proof-checking module of Coq was not touched, so as the correctness of
the proofs would not be compromised.

37

Chapter 3. Coq & CoqGym

38

Chapter 4

Machine Learning Background

4.1 Introduction to Machine Learning

4.1.1 Recurrent Neural Networks (RNNs)

Introduction to RNNs: Recurrent Neural Networks (RNNs) are a class of artificial neural networks
designed for processing sequential data or data with temporal dependencies. Unlike traditional feedforward
neural networks, where information flows in one direction from input to output, RNNs have connections that
loop back on themselves, allowing them to maintain and use information from previous time steps while
processing the current input.

The key components of an RNN include:

1. Hidden State (h;): At each time step ’t’, an RNN maintains a hidden state that captures information
from previous time steps. This hidden state is updated at each time step based on the current input,
the previous hidden state, and learned parameters (weights and biases). It serves as a summary of the
data seen so far.

2. Input (z;): The input at time step ’t’, denoted as x, represents the data point or feature vector from
the sequence being processed. It can represent elements of a sequence, such as words in a sentence,
time steps in a time series, or any other relevant information.

3. Weights and Biases: RNNs have weights and biases that are learned during training. These param-
eters determine how the input and hidden state are combined to produce the updated hidden state.

Architecture of traditional RINNs:
Hidden State Update:

The core operation in an RNN is the update of the hidden state (h:) at each time step (¢). This update
is based on the current input (x;), the previous hidden state (h;—1), and learned parameters (weights and
biases).

The mathematical expression for updating the hidden state in a basic RNN can be written as follows:

hei = f(he—1,i, @)

where f is a non-linear activation function. An example is given below:

he = 0(Whe - € + Whi, - hy—1 + bp)

- hy: The updated hidden state at time step ’t’. - z;: The input at time step 't’. - hy_1: The previous hidden
state at time step ’t-1’. - Wj,: Weight matrix that connects the input to the hidden state. - Wjj: Weight

39

Chapter 4. Machine Learning Background

@ ®) ®

— N
A J A

| |
© ® &

Figure 4.1.1: The architecture of a RNN. The repeating module in a standard RNN contains a single layer.
[30]

matrix that connects the previous hidden state to the current hidden state. - b,: Bias vector. - o: Activation
function, often the hyperbolic tangent (tanh) or the rectified linear unit (ReLU).

Output Calculation:

RNNs can produce an output at each time step based on the hidden state. The output at time step 't’ (y;)
is calculated as:

Yt = U(Wyh “hy + by)

- y¢: The output at time step ’t’. - Wy,: Weight matrix that connects the hidden state to the output. - by:
Bias vector.

Learning Probability Distributions with RNNs:

As described by Cho et al., 2014 [6], an RNN can learn a probability distribution over a sequence by being
trained to predict the next symbol in a sequence. In that case, the output at each timestep ’t’ is the
conditional distribution p(z¢|z¢—1,...,21). For example, a multinomial distribution (1-of-K coding) can be
output using a softmax activation function:

eWiht,i

p(ae,j = 1|aeq,...,21) = W

for all possible symbols j = 1,..., K, where w; are the rows of a weight matrix W.

By combining these probabilities, we can compute the probability of the sequence 'x’ using:

T

p(r) = Hp(xt|$t—17 ce,T1)

t=1

From this learned distribution, it is straightforward to sample a new sequence by iteratively sampling a
symbol at each time step.

3. Sequential Processing:

40

4.2. Long Short-Term Memory Networks

RNNs process sequences by iterating through the time steps. For a sequence of length *T’, the RNN updates
its hidden state from ¢ = 1 to T'. The final hidden state (hr) can be used for making predictions or further
processing.

4. Backpropagation Through Time (BPTT):

Training an RNN involves adjusting the model’s parameters (weights and biases) to minimize a loss func-
tion. This is typically done using an optimization algorithm like stochastic gradient descent (SGD) or its
variants. The backpropagation algorithm is applied through time (BPTT) to compute gradients and update
the parameters.

5. Vanishing Gradient Problem:

RNNs can struggle with long sequences due to the vanishing gradient problem. This occurs because gradients
become very small when backpropagated through many time steps, making it challenging to learn long-term
dependencies. More advanced RNN architectures like LSTMs and GRUs were designed to mitigate this
problem.

6. Bidirectional RNNs:

In some cases, bidirectional RNNs are used. These models process sequences in both forward and reverse
directions, allowing them to capture information from past and future time steps simultaneously.

7. Sequence-to-Sequence Models:

RNNs are used in sequence-to-sequence tasks, where an input sequence is transformed into an output se-
quence. For example, in machine translation, an RNN can encode a sentence in one language and then decode
it into another language.

In practice, RNNs are often stacked in multiple layers to capture more complex features and dependencies
in data. While basic RNNs are conceptually simple, the introduction of LSTM and GRU architectures has
addressed some of their limitations and made them more effective for processing sequential data. These
advanced architectures incorporate gating mechanisms and memory cells to better capture long-range depen-
dencies.

4.2 Long Short-Term Memory Networks

LSTMs, or Long Short-Term Memory networks, are a type of recurrent neural network (RNN) architecture
that was specifically designed to overcome some of the limitations of traditional RNNs when dealing with
sequences of data. LSTMs are a fundamental component of deep learning and have found widespread use in
various fields, including natural language processing, speech recognition, and time series analysis.

4.2.1 LSTMs definition

As mentioned by Zaremba and Sutskever [49] the key feature that sets LSTMs apart from traditional RNNs
is their ability to capture and remember long-range dependencies and relationships within sequential data.
Traditional RNNs suffer from the vanishing gradient problem, which makes it challenging for them to learn
and remember information from distant time steps in a sequence. LSTMs address this issue by introducing
a more complex memory mechanism.

We define the LSTM unit at each time step ¢ to be a collection of vectors in R¢:

e an input gate i,

a forget gate fy,
e an output gate oy,

e a memory cell ¢,

a hidden state h;.

41

Chapter 4. Machine Learning Background

® ® ©

1
A AL A

Figure 4.2.1: The architecture of an LSTM. The repeating module in an LSTM contains four interacting

layers.
[30]

The entries of the gating vectors i, f:, and o are in the range [0, 1]. The memory dimension of the LSTM
is refered to as d.

4.2.2 LSTM transition equations:
The LSTM transition equations are the following:

it=o (W“)xt YU + b“)) (4.2.1)
ft=0 (W(f)xt +UDh_y + b(f)) (4.2.2)
ot =0 (W(")xt FUOR_; + b(")) (4.2.3)
ut = tanh (W(“)xt +UWh,_ + b(“)> (4.2.4)
ct =it Out + ft © cty_y (4.2.5)
ht = ot ® tanh(ct) (4.2.6)

In the equations above: x; is the input at the current time step, o denotes the logistic sigmoid function, ®
denotes elementwise multiplication.

Cell State (C;): The cell state serves as the memory of the LSTM and allows information to flow through the
network over long sequences. It can selectively retain or forget information, making it suitable for modeling
dependencies over time.

Hidden State (h:): The hidden state is responsible for capturing and passing on relevant information to the
next time step. It is updated based on the current input, the previous hidden state, and the cell state.

Input Gate (i;): The input gate controls how much each unit is updated It takes into account the current
input and the previous hidden state.

Forget Gate (f;): The forget gate controls the extent to which the previous memory cell is forgotten. It
considers the current input and the previous hidden state.

Output Gate (0¢): The output gate controls the exposure of the internal memory state, and more specifically
which parts of the cell state are used to compute the current hidden state. It also influences the output of
the LSTM cell.

42

4.2. Long Short-Term Memory Networks

The hidden state vector in an LSTM unit is therefore a gated, partial view of the state of the unit’s internal
memory cell. Since the value of the gating variables varies for each vector element, the model can learn to
represent information over multiple time scales.

Variants of LSTMS are Bidirectional LSTMs and Multilayer LSTMs (Graves et al., 2013 [15]).

4.2.3 Bidirectional LSTMs

Bidirectional LSTMs (Long Short-Term Memory networks) (Graves et al., 2013 [15]) are a type of recurrent
neural network (RNN) architecture that process sequences in both forward and backward directions. This
bidirectional processing allows them to capture dependencies in the past and future context of each time step
in a sequence.

Forward LSTM:

The forward LSTM processes the sequence from left to right. It computes a hidden state hf°™2'd at each
time step ¢ based on the input x; and the previous hidden state h{°*}7*d. The computation is done based on
the transition equations presented above 4.2.2.

Backward LSTM:

The backward LSTM processes the sequence from right to left. It computes a hidden state hbakward at each
time step ¢ based on the input z; and the previous hidden state hp2¢"#d. The backward LSTM equations
are analogous to those of the forward LSTM but with different weight matrices and biases.

Concatenation:

The outputs of the forward and backward LSTMs at each time step can be concatenated to form the final
bidirectional output hPt = [plorward pbackward] = This concatenated output captures information from both
directions.

4.2.4 Tree-Structured LSTMs

Traditional LSTM architectures only allow for strictly sequential information propagation. This limitation
has spurred the development of more sophisticated and versatile models. Tai et al., 2015 [43] in their work
have introduced the Child-Sum Tree-LSTM and the N-ary Tree-LSTM. Both of them enable richer network
topologies, in which each LSTM unit can assimilate information from multiple child units. The two models
maintain the basic structure of standard LSTM units. Each unit contains j contains input and output gates
i; and o4, a memory cell ¢; and hidden state h;. However, the key distinction lies in how these units handle
gating vectors and memory cell updates, which can depend on potentially many child units. Furthermore,
the TreeLSTM unit contains one forget gate f;k for each child k, instead of a single forget gate.

In practical applications, each Tree-LSTM unit receives an input vector x;. For example, in some NLP tasks
where the input consists of sentences, x; represents a vector representation of each word within the sentence.
The choice of input vectors and the way they are organized depend on the specific tree structure used in the
network.

Child-Sum Tree-LSTM

Given a tree, let C(j) denote the set of children of node j. The Child-Sum Tree-LSTM transition equations
are the following:

43

Chapter 4. Machine Learning Background

hi= > hi (2)
keC(j)
;=0 (W(i)xj + U(i)];,j + b(i)) (3)
fin=0 (mej +UDhy, + b(f)) (4)
0;=0 (W<°>xj + U@, + b<°>) (5)
uj = tanh (W(“)xj +UWh; + b(")) (6)
G =i;0u+ Y fix®c (7)
keC(j)
h; = 0; ® tanh(c;) (8)

where in Eq. 4, k € C(j) [43].

An intuitive interpretation of each parameter matrix in these equations is to view it as encoding correlations
between the component vectors of the Tree-LSTM unit, the input x;, and the hidden states hj, of the unit’s
children. For example, in a dependency tree application, the model can learn parameters W () such that the
components of the input gate i; have values close to 1 (i.e., “open”) when a semantically important content
word (such as a verb) is given as input, and values close to 0 (i.e., “closed”) when the input is a relatively
unimportant word (such as a determiner) [43].

4.3 GRU

Cho et al., 2014 [6] motivated by the LSTM architecture presented above, proposed a new type of hidden
unit - "a hidden unit that adaptively remembers and forgets"

Those units, now known as GRUs, or Gated Recurrent Units, are a type of recurrent neural network (RNN)
architecture that, like LSTMs (Long Short-Term Memory networks), is designed to address the vanishing
gradient problem and facilitate the learning of long-range dependencies in sequential data.

GRU architecture:

Figure 4.3.1: Hidden activation function of GRU.
[23]

Hidden State (ht): Like traditional RNNs and LSTMs, GRUs maintain a hidden state that captures infor-
mation from previous time steps. This hidden state is updated at each time step.

Reset Gate (rt): The reset gate in a GRU controls how much of the previous hidden state (’ht-1’) should be
forgotten or reset at the current time step. It takes into account the current input and previous hidden state
and produces values between 0 and 1, indicating what information to retain from the past.

44

4.4. Encoder - Decoder Architecture

rj = o ((Wralj + [Urhy-1)l;)

Update Gate (zt or ut): The update gate, sometimes denoted as 'zt’ or 'ut’, determines how much of the
new candidate state should be mixed with the previous hidden state to compute the current hidden state.
Similar to the reset gate, it also takes into account the current input and previous hidden state.

zj = o ((W.z]; + [Uzh—1y]))

Candidate State (ﬁt): The candidate state is computed based on the current input and the previous hidden
state. It represents the new information that could potentially be added to the hidden state.

The actual activation of the proposed unit h; is computed by

RO = 2 4 (1)

where

h§t> = (V[/vét> + [U (7" ®© h<t,1>)]j)
The update gate and reset gate are crucial components that control the flow of information in and out of
the GRU cell. These gates allow GRUs to selectively update their hidden states, making them capable of
capturing both short-term and long-term dependencies in sequential data. Those units that learn to capture
short-term dependencies will tend to have reset gates that are frequently active, but those that capture
longer-term dependencies will have update gates that are mostly active [6].

Compared to LSTMs, GRUs have fewer parameters and are computationally less intensive, which can make
them easier to train on smaller datasets and in situations where computational resources are limited. However,
LSTMs tend to perform slightly better on tasks that require modeling complex long-term dependencies due
to their more elaborate memory cells.

4.4 Encoder - Decoder Architecture

The encoder-decoder proposed by Cho et al., 2014 [6] consists of two main components: an encoder and a de-
coder, which respectively learn to "encode a variable-length sequence into a fixed-length vector representation
and to decode a given fixed-length vector representation back into a variable-length sequence".

From a probabilistic perspective, this new model is a general method to learn the conditional distribution over
a variable-length sequence conditioned on yet another variable-length sequence, e.g., p(y1, ..., ym |21, ..., T7),
where one should note that the input and output sequence lengths T and Tj may differ [6].

This architecture is particularly prevalent in natural language processing tasks, machine translation, text
summarization, speech recognition, and more. Here’s an overview of each component:

Encoder:

The encoder is the first part of the architecture and is responsible for processing the input data and encoding
it into a fixed-dimensional representation, often referred to as a "context vector" or "thought vector." It takes
variable-length input sequences, such as sentences or time series data, and transforms them into a compressed
representation with fixed dimensions. Typically, the encoder is built using recurrent neural networks (RNNs),
long short-term memory (LSTM) networks, gated recurrent units (GRUs), or more recently, transformer-
based models like the Attention Is All You Need architecture. As the encoder reads each symbol, the hidden
state of the RNN changes according to Eq. (1). After reading the end of the sequence (marked by an end-of-
sequence symbol), the hidden state of the RNN is a summary c¢ of the whole input sequence. The encoder’s
output is a high-level representation of the input sequence, which is then passed to the decoder.

Decoder:

45

Chapter 4. Machine Learning Background

The decoder is the second part of the architecture and is responsible for generating an output sequence from
the encoded representation produced by the encoder. It takes the context vector from the encoder and, step
by step, generates elements of the output sequence. Like the encoder, the decoder can also be constructed
using recurrent networks or transformer-based models. During training, the decoder is typically provided
with the correct target sequence, and its output is compared to the target sequence to calculate the loss for
training purposes.

The decoder of the proposed model is another RNN which is trained to generate the output sequence. It is
typically provided with the correct target sequence and tries predicting the next symbol y; given the hidden
state hi. Its output is compared to the target sequence to calculate the loss for training purposes. However,
unlike the RNN described in Sec. 2.1, both y; and hi are also conditioned on y;_; and on the summary c of
the input sequence. Hence, the hidden state of the decoder at time ¢ is computed by,

hi = f(hi—layt—la C)

and similarly, the conditional distribution of the next symbol is

P(yt|yt—1vyt—27 <51, C) = g(hivyt—lv C)

for given activation functions f and g (the latter must produce valid probabilities, e.g., with a softmax
function). During inference or testing, the decoder generates the output sequence one element at a time,
often autoregressively, using its own previously generated elements as input.

Y1 Y2 ,

Encoder

10)08/\ Jopooug]

Decoder

Figure 4.4.1: An illustration of the RNN Encoder—Decoder Sequence to Sequence model

The two components of the proposed RNN Encoder-Decoder are jointly trained to maximize the conditional
log-likelihood [6]:

N
1
—3
max nz::l 0g P (Yn|Tn)

where 6 is the set of model parameters, and each (z,,y,) is an (input sequence, output sequence) pair from
the training set. In our case, as the output of the decoder, starting from the input, is differentiable, we can
use a gradient-based algorithm to estimate the model parameters.

46

4.4. Encoder - Decoder Architecture

The resulting trained model can be used in two ways. One approach is for the model to generate target
sequences from input sequences. The second approach is for the model to produce a probability value pg(y|x)
from Eqgs. (3) and (4) for a given input and output.

The encoder-decoder architecture is versatile and has been applied to various tasks beyond natural language
processing, such as image captioning, speech synthesis, and more. It is particularly useful for tasks where the
input and output sequences have different lengths or where the mapping between input and output is complex
and context-dependent. Additionally, attention mechanisms, often used in conjunction with encoder-decoder
architectures, have improved their performance by allowing the decoder to focus on different parts of the
input sequence when generating the output.

47

Chapter 4. Machine Learning Background

48

Chapter 5

Models

5.1 ASTactic: generating tactics as programs

In this section an attempt will be made to present the architecture of ASTactic and details of its design
and structure [46]. This is important since models like Passport [33] and TacTok [11] which will be also be
presented are building on top of the ASTactic architecture and utilize parts of its implementation.

ASTactic is a deep learning model that generates tactics as programs [46]. It is trained on CoqGym, and
it stood out from previously suggested automated theorem provers because during the proof search phase it
does not select tactics from a fixed set. Instead, tactics are dynamically generated by ASTactic as abstract
syntax trees (ASTs). The output of ASTactic is then utilized and tested by sampling. On each state of the
proof, a number of Tactics is selected, based on the predefined BEAM size. These are the possible actions to
take from the current state. The search continues via depth-first search (DFS) until a correct proof is found,
or until the maximum number of tactics is reached or the search times out.

5.1.1 Space of tactics

The output space of ASTactic is "specified by a context-free grammar (CFQG) that is fixed during training
and testing" [46]. A statistical analysis of the proofs in CoqGym showed that many of those valid tactics
are seldom used in the data set, and thus omitting them could facilitate the learning, at the expense of not
successfully finding a proof for the theorems in the test data which require those omitted tactics. For that
reason, the tactic grammar does not contain all the possible valid tactics that can be used in a Coq proof.
Additionally, ASTactic can only generate atomic tactics 3.1.1. Compound tactics and user defined tactics
have been excluded to simplify the tactic generation. This is not a severe handicap because all proofs can be
completed without compound tactics. When a tactic requires a Coq term as its argument, the term to be an
identifier the term is constrained to be an identifier.

5.1.2 Architecture
Overall model architecture

ASTactic has an encoder - decoder architecture (Fig. 2). Both the input and the output of the model are
trees. The encoder embeds all input Coq terms: the goal and the premises expressed in ASTs. Conditioned
on the embeddings, the decoder generates a program-structured tactic by sequentially growing an AST.

Encoder

ASTactic encodes the goal and premises of each state into vectors. What is included in the encoding is very
significant as it deeply impacts the training of the model. In this case the entire local context of the proof
and up to 10 premises in the environment are included. The authors decided to exclude a large number of
premises imported from libraries, which were not related to the proof. A significant case could be made for

49

Chapter 5. Models

Feature vector

LOCAL_IDENT

Production rules

Term encoder Tactic decoder

1 1
nat : Type : : — 9 \
:] 1
1 ﬁ
0 : nat 1 1 \
Environment ' . [rewrite_term_lisﬂ] [in_clause]
S:nat - nat ' ! —7 > Pt !
1 | N H /!
| ' Attention
add : nat - nat - nat : : @ module write_ 'é} n;
1 1 ;
a',b,c: nat ' : —> QUALID |-"a, 4

1 1

Local context 1 |

IHG : (@ +h) +c=a +(b+) ! TreeLSTM : —J u| St @
1 1
Goal (S’ +h) +c=Sa +(b+c) | | |

! Parse ! GRU |
1 | 9
poTem [] | Feature vectors
| |
1 1
1 1
I 1
1 1
1 1

Input Coq terms

Figure 5.1.1: ASTactic architecture. The proof state encoder (a), takes as input the goal, local context, and
environment terms in AST form and generates embeddings (feature vectors) for each term. The tactic
decoder (b) concatenates the input embeddings and generates a tactic in the form of an AST, conditioned
on these inputs.

[46]

adding logic to select relevant premises from the entire environment. This could potentially generate a more
powerful model, and it is something that we will also mention in possible improvements and future work.
Both the goal and the premises are Coq terms in the form of ASTs and are encoded using a TreeL.STM
network 4.2.4.

Specifically, each node in an AST has a symbol n indicating its syntactical role. The network associates each
node with a hidden state A and a memory cell ¢ which are updated by its children as follows:

(C, h) = fupdate(na Cly---,CK, Zfil hz)

The update function fypdate is the Child-Sum variant of TreeLSTM, n is the symbol of the node in one-hot
encoding, and ¢; and h; are the cell state and hidden state of the children.

This computation is performed bottom-up. The entire tree is represented by hyqos, the hidden state of the
root. Finally, the hyoot is appended with a 3-dimensional one-hot vector. The vector indicates whether the
term is the goal, a premise in the environment, or a premise in the local context.

Decoder

The challenging task of the decoder is to synthesize tactic arguments. Within the decoder, constraints based
on semantics are integrated to restrict the search space for arguments.

ASTactic’s decoder generates program-structured tactics as Abstract Syntax Trees (ASTs) following the
method in Yin & Neubig (2017) [48].

The foundation of their method revolves around a grammar model. This model formalizes the process of
generating a derivation AST as a sequence of actions. These actions can either apply production rules or
produce terminal tokens. Consequently, the syntax of the programming language is predefined within the
grammar model as a set of potential actions. Thus, their approach eliminates the need for the model to deduce
the grammar solely from limited training data. Instead, it allows the system to concentrate on understanding
how the existing grammar rules interact and combine [48].

It begins with a single node and grows a partial tree in depth-first order in the following manner:

e It expands non-terminal nodes by choosing a production rule in the Context-Free Grammar (CFG) of
the tactic space.

50

5.1. ASTactic: generating tactics as programs

e For terminal nodes, it emits a token corresponding to a tactic argument.

This sequential generation process is controlled by a Gated Recurrent Unit (GRU) 4.3, whose hidden state
is updated by the input embeddings and local information in the partially generated AST.

All symbols and production rules in the tactic grammar have learnable embeddings.

At time step ¢, let n; be the symbol of the current node; a;—; is the production rule (also referred as action)
used to expand the previous node; p; is the parent node’s state concatenated with the production rule used
to expand the parent; g is the goal, which is fixed during the generation process. The state s; is updated by:

St = fGRU(St—la [at—l Pt gt Ut]) (1)

where “” denotes vector concatenation.
e u,; is a weighted sum of premises.

e s;_1 is used to compute an attention mask on the premises, which selectively attends to the relevant
premises for the current generation step.

The mask is then used to retrieve u;:

w; = fatt(stfl : 7‘2') (2)

Uy = Zwﬂ’i (3)

where

e r; is the i-th premise,

e w; is its weight,

e fu: is a two-layer fully-connected network.
Expanding ASTs and synthesizing arguments

In the context of expanding the ASTs and generating associated arguments, the pivotal factor is the state
variable denoted as s;. This variable plays a crucial role in dictating the expansion strategy, determining the
application of production rules and the generation of tokens.

To facilitate the selection of a production rule, Yang et al. [46] in their approach are modeling the probabilities
associated with these rules, selecting the node with the highest probability. Specifically, p, is defined as the
softmax output of a transformation, computed as softmax(Wg - f(st)),

where:
e f denotes a linear layer followed by the application of a hyperbolic tangent function,
e Wy, represents the embedding matrix corresponding to production rules.

Within the AST representation, tokens correspond to tactic arguments. Synthesizing these arguments
presents a challenge due to the large syntactic space, which effectively includes all valid identifiers within the
Coq language. Nonetheless, there are strong semantic constraints on these arguments. For example, in the
case of a tactic such as "apply H’, where 'H’ represents a premise, '"H’ must invariably correspond to a valid
premise either within the environment or the local context.

In order to effectively incorporate these semantic constraints into the argument synthesis process, Yang et
al. [46] did the following:

Identifiers of premises (as in “apply H”): Each premise is scored using s; in the same way as computing the
attention masks (Equation 3). The probability for each premise is given by a softmax on the scores.

51

Chapter 5. Models

Integers (as in “constructor 2”): Most integers in the data are in the range of [1, 4]. They are generated using
a 4-way classifier.

Quantified variables in the goal (as in “simple induction n”): A universally quantified variable is randomly
picked from the goal.
Evaluation environment

ASTactic also provides an evaluation environment - an environment of interacting with Coq theorems during
testing. It receives a command from the model(in this case ASTactic) agent and interacts with Coq using
SerAPI 3.2.3. The environment can perform single interactions - steps, providing commands to Coq and
getting the results of the application of those commands. Commands can include Coq tactics to be applied
or commands other valid Coq commands like Admitted - for giving up the proof and Undo - for backtracking.

The environment returns the feedback given from Coq to the agent. The possible responses that can be
returned on the progress of the proof are:

¢ ALREADY SUCCEEDED

e ALREADY FAILED

e MAX_TIME REACHED

e MAX NUM_TACTICS REACHED
¢ ERROR

e GIVEN_UP

e PROVING

e SUCCESS

The evaluation environment is used for the evaluation of ASTactic and the models presented below. We also
used it for our own experiments, which we present in a following chapter.

5.2 TacTok

TacTok is a model of next-tactic prediction for Coq proposed by First et al. [11]. The core motivation behind
the creation of TacTok comes from two observations:

1. When human users interact with Coq to prove a theorem or verify a proof, they very often have to
examine the proof state in order to choose the next tactic to apply. This inspired the idea to test how
next-tactic prediction models would benefit from having access to information in the proof state.

2. Since Coq users, when building a proof, are aware of all the tactics that have been applied up to each
proof state, a model of next tactic prediction may also benefit from having access to the previous tactics
in the proof script.

The model is trained on CoqGym, through the following technique:

e It traverses the existing proof scripts by stepping through them, one tactic at a time. For each step it
computes the resulting intermediate proof states.

e It creates an embedding of both the proof states and the partially written proof script at each step.
The embeddings are mapped to an abstract syntax tree (AST) of the next line in the proof script.

Thus, the model’s inputs are the partially written proof script and the proof state.

The model’s output is an AST that TacTok decodes to the next predicted tactic and its arguments.

Each proof script is broken down into training instances. A training instance consists of the following:
1. the proof state after a tactic from the proof script has been executed,

2. the proof script up to the last tactic,

52

5.2. TacTok

3. the next tactic in the script.
The proof state includes:

1. the current goal,

2. the local context,

3. the environment.

Back-propagate
o Loss
Proof &
State, @ TacTok Model

Trainer

Previous AST
(Input)
Seq) -
"Gold" L Predicted Next Tactic
Next L [1
Tactic i &
3 AST
Training Training
Proofs Instances

(a) TacTok training process [11].

Each term in the proof state has an underlying AST. The proof script is represented as a sequence of tokens.
The TacTok model jointly learns embeddings for these ASTs and sequences. The TacTok model uses these
embeddings to output a predicted next proof script step, in the form of an AST, and sends that along with
the AST form of the ground-truth next tactic to the trainer. The trainer then compares these tactics and
back-propagates the loss.

Tacm

Embeddings

Y

‘Proof Script Encoder| \ Proof State Encoder‘

nat : Type
Environment | | mt s e ¢ f\om

add : nat -> nat -> nat

n, m, p : nat
i T)

Local Context

—> Tactic and arguments

Tactic Decoder

Goal [s@+@+pr=smems w}———» (next step)
Proof [m— |
simpl. - Seq A
Failure:
Success: Update proof. try next AST
If no goals remaining, Qed. Coq
Otherwise, continue synthesizing proof Interactive

Theorem
Prover

Figure 5.2.2: TacTok, in the process of completing the proof script of associativity for the add function,
after the execution of simpl.
[11]

53

Chapter 5. Models

5.2.1 Proof State Encoder

The encoder of the proof state is the one which was introduced from ASTactic and is analyzed in detail in
the previous section of this chapter 5.1.2. The inputs are the goal, local context, and environment in AST
form.

5.2.2 Proof Script Encoder

The proof script consists of tokens that are either tactics, arguments to tactics, or other symbols. The proof
script encoder parses the sequence of these tokens in two different modes.

e Tac: Parses the sequence including the most common Coq tactic tokens appearing in the training proof
scripts, excluding custom tactics, and obscure arguments so that their names are not learned.

e Tok: includes the entire token sequence, only excluding punctuation.

The parsed sequence of previous tokens is encoded with a Bidirectional LSTM 4.2.3, which generates an
embedding for the sequence. In this way, the input sequence is processed in both the forward and backward
directions, and the outputs of these directions are concatenated to capture context from both past and future
proof steps.

TacTok comprises both the Tac and Tok models, trained separately, and uses either one when attempting to
synthesize a proof script.

5.3 Passport

In their work Sanchez-Stern, A. et al. [33] focus on modeling identifiers. Their goal is to exploit the rich
information of the proof data the model is trained on, thus improving performance.

Passport is the resulting proof-synthesis tool for Coq built on top of ASTactic, enriching the existing models
by introducing three new encoding mechanisms for identifiers:

1. category vocabulary indexing,
2. subword sequence modeling,
3. path elaboration.

In this section we will be giving a brief overview of the above mechanisms, without analyzing all the technical
and implementation details of the work, since it is beyond the scope of this thesis.

5.3.1 Identifier Categories in Passport

In computer science and programming, "identifiers" are symbols or names used to uniquely identify variables,
functions, constants, or other elements in a program. In the context of Coq proofs and proof states, identifiers
are "the names that uniquely identify theorems, datatypes, functions, type constructors, and local variables"
[33].

Passport encodes each identifier according to its category:
1. global definition,
2. local variable,
3. type constructor.

Global Definitions

The most straightforward of our categories to include was identifiers referencing global definitions. These
identifiers refer to objects defined globally directly by the user, using the keywords Definition, Theorem,
Inductive, or one of their variants. Global definitions are generally either an inductive type name, or a name
given to some Gallina term (function, constant value, etc). Crucially, since proof objects themselves are
terms, theorems are global definitions with their names bound to their proof objects.

54

5.3. Passport

Local Variables

Besides global definitions, local variables are the most common type of identifier in Coq terms. Local variables
can be bound to an explicit term, as in a let definition, but in many cases (function parameters, forall bindings,
and existential pairs) are given only a type binding. This is in contrast to global definitions, which are always
bound directly to terms. Encoding local variables is often critical to determining the correct next step in
a proof, or even understanding its basic structure. Even when the local variable’s name isn’t particularly
informative, knowing when local variables repeat is often critical.

Type Constructors

Unlike global definitions and local variables, type constructors are not bound on their own, but are instead
defined as part of inductive type definitions.

5.3.2 Encoding Mechanisms in Passport

Tree of
Category Encoded Nodes
: : Vocabulary
; Global Indexing Encoded
E Variables ! i > Term
: Subword

s S e Sequence
; D 0 Constructor ' Model

i Local ‘AATTTATTTTTTT
Vanables

| :{> Path
Elaborator

100101110100
Tree LSTM E(> 011001001101

Figure 5.3.1: The architecture of Passport’s identifier processing.
[33]

Category Vocabulary Indexing:

Sanchez-Stern, A. et al. [33] point that since Coq has no primitive datatypes; every referenced type is an
identifier. This makes them very significant as they can "carry a lot of meaning—and that meaning can be
reflected in the names of theorems that refer to them".

With Category Vocabulary Indexing, each identifier is tagged with the category it comes from. This distincts
identifiers with the same name from different categories. It can even provide the model with useful information
about uncommon identifiers. Additionally, the most common identifiers in each category are given a unique
tag, which is included in their encoding. In this way Passport creates an association between all usages of
the exact identifier. Furthermore, the model can create generalization about their behavior and usages, and
predict tactics that worked effectively with them in past usages.

Subword Sequence Modeling:

Subword sequence modeling is a technique used in natural language processing (NLP) and machine learning
to handle words and tokens at a more granular level than whole words. It involves breaking down words into
smaller units, such as subword pieces or characters, and modeling sequences of these subword units [38]. This
approach is particularly useful for handling languages with complex morphology, agglutinative languages -
languages which form words through the combination of smaller morphemes to express compound ideas -, or
when dealing with out-of-vocabulary words.

With this technique Sanchez-Stern, A. et al. [33] are trying to take advantage of the correlations that can
be created between identifiers based on their names and the overall naming conventions used across proofs.
For all identifiers, Passport uses a subword sequence model to draw bridges between related names. That is,
identifiers are broken down into common word-pieces, and processed with a sequence model.

For example the variable name orderedListAsc can be broken down to "ordered", "list" and "asc".

55

Chapter 5. Models

Path Elaboration:

Path elaboration is the last encoding technique used in Passport: the encoding of fully-qualified paths of
different identifiers. Fully-qualified paths are "the names of directories, files, and modules" within which
different identifiers - type constructors and global definitions are contained. In this way, Passport can take
advantage of any grouping of identifiers into common modules and files already used by Coq developers to
organize development. Passport can also capitalize on proof development styles that dispatch proofs for
entire classes of related theorems using powerful tactics.

56

Chapter 6

Monte Carlo Tree Search

6.1 Markov Decision Processes

A Markov Decision Process (MDP) is a discrete, stochastic, and generally finite model of a system to which
some external control can be applied [44]. When used for reinforcement learning, firstly the parameters of
an MDP are learned from data, and then the MDP is processed to choose a behavior.

MDP is a process defined as a tuple < S, A, T, R >, where:

e S is the set of states that are possible in an environment (state space). A specific state s0€S is
distinguished as the initial state.

e A, is the set of actions available to perform in state s. The subscript S can be omitted if all actions
are always available in the given environment.

e P,(s,s’) is the transition function modelled by a probability that action aperformed in state s will lead
to state s’. In deterministic games, the probability is equal to 1 if the action in state s leads to s’,
whereas 0 if it does not.

e Ra(s) is the immediate reward (payoff) for reaching state s by action a. In Markov games, where states
incorporate all the necessary information (that summarizes the history), the action component can be
omitted.

We assume the Markov Property: "For a Markov chain the conditional distribution of any future state X, 1,
given the ppast states Xo, Xq,..., X;,—1 and the present state X,,, is independent of the past states and
depends only on the present states" [32].

6.2 MCTS algorithm

MCTS is an iterative search algorithm, directly applicable to problems which can be modelled by a Markov
decision process (MDP) [25]. Additionally, certain modifications of MCTS make it possible to apply it to
partially observable MDPs (POMDPs). It collects and utilizes statistical evidence to assess the decisions
available in particular states and navigate the search space.

MDP allows to model a simulated environment with sequential decisions to make in order to receive a reward
after certain sequence of actions. The next state of the environment can be derived only using the current
state and the performed action.

In complicated problems or games, like chess and go, the size of the state space (e.g. a game tree) makes
an exhaustive search impossible. In practical applications, MCTS is allotted some computational resources
which can be either specified by the number of iterations or the time available for making a decision. MCTS
is an anytime algorithm. This property means that it can be stopped at anytime and provide the currently
best action (decision) using Eq. 1 [42]:

o7

Chapter 6. Monte Carlo Tree Search

a* = arg max Q(s,a),
g max Q(s,a), (1)
where A(s) is a set of actions available in state s, in which decision is to be made and Q(s,a) denotes the
empirical average result of playing action ain state s. Naturally, the more the iterations, the more confident
the statistics are and the more likely it is that the recommended best action is indeed the optimal one.

Each iteration consists of four phases as depicted in the image.

1. Selection: In this phase, the algorithm starts at the root of the tree (the current game state or decision
point) and navigates down the tree following a selection policy. The selection policy often balances
exploration and exploitation, aiming to visit promising nodes while also exploring new possibilities.
This phase continues until a leaf node (a node with unexplored actions or unvisited states) is reached.

2. Expansion: Once a leaf node is reached, the expansion phase comes into play. In this step, the algorithm
selects one or more child nodes corresponding to untried actions or unvisited states from the current
node. These actions or states represent potential future moves or decisions. When expansion reaches
the terminal state, which is extremely rare, then the current iteration skips directly to backpropagation.

3. Simulation (Rollout): After expansion, the algorithm conducts a simulation (also known as a rollout)
from one of the newly added child nodes. The simulation often involves using a simple heuristic or a
random policy to play out the game or explore the potential outcomes from the selected child node
until a terminal state or a predefined depth is reached. This step helps estimate the value of the current
child node.

4. Backpropagation: After completing the simulation, the algorithm backpropagates the result (outcome)
of the simulation back up the tree to update the statistics associated with each node along the path
from the root to the expanded child node. This update includes adjusting the visit counts and the
accumulated values (e.g., wins or rewards). The backpropagation phase helps refine the value estimates
of nodes in the tree.

Run continuously in the allotted time

| Selection —— Expansion —— Simulation || Backpropagation

RAEGEE

(a) Monte Carlo Tree Search phases [42]

6.3 MCTS selection policy

The aim of the selection policy is to maintain a proper balance between the exploration (of not well-tested
actions) and exploitation (of the best actions identified so far). The most common algorithm, which has
become de facto the enabler of the method is called Upper Confidence Bounds applied for Trees (UCT)
introduced by Kocsis and Szepesvari (2006) [21]. First, it advises to check each action once and then according
to the following formula:

t= ya) +C
a* = arg arenjé) {Q(s a)

In[N(s)]
N(s,a) [’

58

6.4. Disadvantages of MCTS

where A(s) is a set of actions available in state s, Q(s, a) denotes the average result of playing action a in state
s in the simulation performed so far, N(s) is a number of times state s has been visited in previous iterations
and N(s, a)—a number of times action a has been sampled in state s. Constant C controls the balance
between exploration and exploitation. The usually recommended value of C to test first is v/2, assuming that
Q values are normalized to the [0, 1] interval, but it is a game-dependent parameter, in general.

Due to the UCT formula and random sampling, MCTS searches the game tree in an asymmetric fashion in
contrast to traditional tree search methods such as minimax. The promising lines of play are searched more
thoroughly. Figure 2 illustrates the type of asymmetrical MCTS search.

6604

)

(sejdwies) s}ISIA JO Jaquinu ay)

Figure 6.3.1: The root denotes the starting state. The average scores [Q(s, a)] of actions leading to next
states are shown inside the circles. The bars denote how many simulations started from a particular action.
This is an abstract example—not taken from any particular game.

[42]

6.4 Disadvantages of MCTS

MCTS is not a silver bullet when it comes to solving search problems. A few reasons are combinatorial
complexity, sparse rewards or other kinds of inherent difficulty in the problem domain [42]. Other disadvan-
tages are the high computation cost and the high memory requirements (both of which we encountered when
implementing and executing MCTS for the current thesis), as well as lack of guarantees as MCTS does not
guarantee finding an optimal solution [39]. Whenever the vanilla MCTS algorithm, i.e., implemented in its
base unmodified form, fails to deliver the expected performance, it needs to be equipped with some kind of
enhancements [42].

6.5 MCTS and Machine Learning

MCTS combined with deep reinforcement learning (RL) has emerged as a formidable force, exemplified by
Google DeepMind’s AlphaGo, as detailed in Silver et al. [40]. This groundbreaking development not only

59

Chapter 6. Monte Carlo Tree Search

revolutionized the game of Go but also made a significant impact on artificial intelligence (AI) as a whole. It’s
worth noting that MCTS has found applications in a wide array of combinatorial games and even ventured
into real-time video games [42].

This integration of MCTS and ML not only enhances strategic decision-making but also opens up possibil-
ities across diverse domains. AlphaGo’s success story has ignited a wave of innovation, inspiring numerous
approaches that integrate MCTS with machine learning (ML) models. Some of these approaches are outlined
below.

Policy Networks:

In many applications, deep neural networks, known as policy networks, can be trained to estimate the
likelihood of taking specific actions in a given state. These policy networks can be used within the MCTS
algorithm to guide action selection. During the selection phase of MCTS, instead of using purely random or
heuristic-based selection, the policy network can suggest actions that are more likely to be promising based
on a policy function. The policy, denoted by p(als) informs which action—a—should be chosen given state
s. A policy can be deterministic or stochastic. It is often modelled as a probability distribution of actions in
a given state [42]. AlphaGo, used a policy network to guide its Monte Carlo simulations in the game of Go
[40].

Value Networks:

In addition to policy networks, value networks can be employed to estimate the expected outcome or value
of a particular state. These networks help in the evaluation phase of MCTS, using a function v*(s) that
approximates the outcome of the game in a given state s. A perfect (non-approximate) value function is
often used when solving a game, e.g. Checkers by Schaeffer et al. [34]. This is a similar concept to the
state evaluation function. The use of them can be technically the same, however, the term “state evaluation
function” is usually used when the function is static, whereas value function is self-improving through ML.
Value networks are particularly useful in domains where it is challenging to perform exhaustive simulations
[42].

Rollout Policies:

Rollouts (simulations) are an essential part of MCTS, but they can be improved by using learned policies
instead of random actions. Machine learning techniques can be used to train rollout policies that guide the
simulations. These policies may be trained to explore the state space more effectively, leading to better
estimates of node values during the selection process. Used in [35]

Experience Replay:

In some cases, MCTS can benefit from experience replay mechanisms commonly used in deep reinforcement
learning. Experience replay involves storing and randomly sampling previously encountered states and actions
into a replay memory [27] to train and improve the performance of neural networks. In this way an agent
can mentally experience the effects of its actions without actually executing them [24]. This technique can
help MCTS algorithms learn from past simulations, making them more efficient over time.

Domain-Specific Heuristics:

Machine learning can be employed to learn domain-specific heuristics or features that enhance MCTS. These
heuristics can help in the selection and evaluation of nodes in the search tree. By incorporating learned
features, MCTS can make more informed decisions during the tree traversal.

Adaptive Strategies:

Machine learning models can be used to adapt MCTS parameters dynamically based on the characteristics
of the problem or environment. For example, the exploration-exploitation trade-off parameters, such as the
exploration constant in the UCB formula [41], can be learned and adjusted over time.

Hybrid Approaches:

Some applications may benefit from hybrid approaches that combine MCTS with other machine learning
methods like reinforcement learning. In such cases, MCTS may be used for policy optimization, while
reinforcement, learning techniques are employed to fine-tune the learned policies.

60

Chapter 7

Explore Predicted Tactics with MCTS

In all three machine learning prediction tools for guided proof synthesis presented above (ASTactic 5.1, Tac-
Tok 5.2, Passport 5.3), conventional search algorithms were utilized to explore the space of generated tactics
proposed by the prediction models (DFS, iterative deepening etc.). During the proof generation process, the
search algorithm at each step would sample a specific number of model generated tactics, according to the
specified beam size, and continue the search.

For all three models a Beam of size 20 has been used during testing. This specific value was decided through
a trial and error process when ASTactic was tested and was adopted for the testing of the rest of the models
without further improvements. The beam size "controls the trade-off between speed and accuracy" [46]. A
large beam width results in an expanded search space, thus increasing the success rate. The model is enabled
to explore larger search space at the expense of a longer search runtime. It was noticed however that when
the beam width would be set to values greater than 20, the success rate would drop. The explanation behind
that is that the model gets "trapped" in an unpromising branch for too long, and the search times out.

Our proposal in this thesis is to replace the traditional search algorithms with the Monte Carlo Tree Search
iterative search algorithm 6. We claim that the usage of MCTS in the space of generated tactics can reduce
the search time required to identify the correct sequence of tactics that constitute a full proof of a theorem.
Faster search will allow to increase the number of sampled tactics at each step of the search (beam), thus
expanding the exploration space. The expansion of the exploration space can increase the overall number of
proofs proved by the above models.

7.1 Implementation of MCTS

7.1.1 State definition

In order to perform our search we need to define the proof state - and based on that construct the nodes of
our search tree. The proof state contains the proof environment (global context), the local context and the
goals (focused and unfocused). The proof environment can be shared across states, but each state is defined
by its local context and its goals.

In our implementation, each state object (tree node) contains the tactic (action) which generated it by being
applied in its parent state, the "observation result" which holds the state status (SUCCESS, ERROR etc.)
and the script up to that state, which is the sequence of tactics applied from the root of the tree until that
state. In order to perform the search it is necessary to also add have the parent node, the depth, the number
of visits to this state, the total rewards for the state and the children of the node, if it has any. Lastly we
have included some additional parameters which facilitated our implementation (timeouts, number of overall
tactics used up to this point, reference to the proof environment and more).

61

Chapter 7. Explore Predicted Tactics with MCTS

Theorem
statement

Proof step
training data

Monte Carlo Tree Search
Candidate
next tactics

Run contnuously i the slotted time
Prediction |
Selection ~ Expansion ~ Simulation ~ Backpropagation
Model
Q

Proof
Assistant

Proof states &
tactic history

Figure 7.0.1: The architecture of machine learning prediction tools for guided proof synthesis with MCTS
as a search component.

Terminal and non-terminal states

In the general case, a terminal state refers to a state in which the game or decision-making process ends.
In our implementation, terminal states are the states in which no more tactics can be applied to the
proof. We label the proof states of our search tree as terminal or non-terminal based on the feedback
we get from the proof environment after the application of the step (tactic or Coq command) which gen-
erated this state. In our set of terminal states we also include the states MAX TIME REACHED and
MAX NUM_ TACTICS REACHED which are returned by the proof environment 5.1.2. These states are
returned when the maximum time limit has been reached or when the maximum number of tactics has been
reached. Including these states in the set of terminal states facilitated the implementation of the termination
of the search for these two cases.

Here is a list of all the terminal states:
e ALREADY SUCCEEDED
o ALREADY FAILED
e MAX TIME REACHED
e MAX NUM_ TACTICS REACHED
¢ ERROR
e GIVEN UP
e SUCCESS

Non-terminal states are "PROVING" and "Initializing". Initializing was a state we added as part of the
MCTS implementation to indicate that the search had not yet started for the current node.

7.1.2 Selection

During the selection step we need to pick the proof state that should be expanded next, among all the proof
states we have reached so far.

62

7.1. Implementation of MCTS

For the selection process of our implementation we used the Upper Confidence Bound for Trees (UCT)
formula which is a variant of the UCB formula, tailored for tree search 6.3.

We used the following formula to calculate the UCT value of each node:
i In V;
UCT(i) = = + /2=
n; n;

w; is the total reward obtained from node <.

Where:

n; is the number of times node i has been visited.

N; is the number of times the parent of node 7 has been visited.

We set the exploration parameter C' to be equal to v/2.

7.1.3 Expansion

In this stage, one or more new proof states are added to the tree, branching from a leaf node. These new
nodes represent proof states that have been reached by applying a particular tactic to the previous state
(represented by the leaf node).

In our implementation of the expansion stage we have to get the possible tactics (actions) which can be
applied in the current proof state. The possible actions for the current state are returned by the trained
model, after providing as input the environment of the proof, the local contexts and the goals that remain to
be proved. The tactics are returned after calling the beam_search method of the model. This method calls
the decoder which generates the candidate tactics for the current state. The number of generated tactics is
specified by the beam parameter which we have mentioned above.

The second part of the expansion is to apply the candidate tactics in the current state and create the new
states. This is done by providing the tactics one at a time to the proof environment 5.1.2 and getting the
feedback on the applied actions. The feedback includes the progress of the proof (PROVING, ERROR etc.)
and can also include the proof environment as well as the focused, background, shelved and given up goals,
depending on the progress. The feedback can also contain the Coq exceptions, if the proof has reached an
error.

The feedback returned from Coq through the proof environment is used to set up the new states.

7.1.4 Simulation

In this stage we perform a simulation or rollout from a new node to a terminal state following a random
policy. We follow the same process for getting and applying the possible tactics at each state as described in
the previous sections 7.1.3.

In our implementation of the simulation logic we are maintaining the proof scripts that are being generated
during the rollout. In the case that all goals are proved during the rollout, the proof script containing the
tactics applied in the path from the root to the terminal node in state "PROVED" is a proof of the theorem.

7.1.5 Backpropagation

In this stage we are simply updating the nodes that were visited during the simulation 6.2 with the appropriate
rewards. We navigate back from the leaf node to the root updating the value and visit count of each node
along the path.

7.1.6 Reward Policies

When MCTS is used in games like chess, it is usually combined with a component which can evaluate the
states or, in this case, the chess positions during the simulation stage. And, although evaluating a chess

63

Chapter 7. Explore Predicted Tactics with MCTS

position as winning or losing is not trivial, there are extremely advanced software tools or machine learning
models that surpass the human evaluation. Unfortunately, evaluating if a proof state is "good" or "bad", or
how close it is to the proof is not something we can do. Being able to do that in a formal way would mean
that we would be able to reach the actual proof of the theorem we are trying to prove.

The simulation stage of MCTS is aiming to do just that - apply series of tactics with a random policy after
a given proof state and evaluate the proof state based on these results. Since we are not able to evaluate
non-terminal states reached during the rollout, our first approach is to wait for the rollout to reach one of
the terminal states and assign them the corresponding reward.

Our first reward policy is:

e Return a reward of +100 if we have reached a state which has status ’ALREADY SUCCEEDED’ or
"SUCCESS’.

e Return a reward of -1 if we have reached a state which has status which indicates failure - AL-
READY FAILED, ERROR, GIVEN _UP.

The above policy has the benefits of being very simple to apply and of promoting an exploration to the
terminal nodes, thus searching for deeper proofs. Furthermore, it manages to prevent the search of being
trapped in unpromising branches, since they will be negatively rewarded. On the other hand, the positive
rewards are very sparse. More importantly, once we reach a terminal state which will be returning a positive
reward we have essentially reached the end of our search. The proof script from the root node to the terminal
node is a sequence of tactics which prove the current theorem.

Another approach to discourage the exploration of unpromising branches was to give negative rewards when
reaching deeper nodes. The average number of steps in the proofs of CoqGym is 9.1 [46].

Our reward policy based on the exploration depth is:

e Return a reward of +100 if we have reached a state which has status "ALREADY SUCCEEDED’ or
'SUCCESS'.

e Return a reward of -1 if we have reached a state which has status which indicates failure - AL-
READY FAILED, ERROR, GIVEN _UP.

e Return a reward of —\;- |2, D € {5k |k € Z} where)\, is a constant on which we experimented and
D is the depth that we have reached.

The above approach still does not address the issue of sparse positive rewards. In order to do that we need
to find a way to evaluate if the application of a certain state leads to a better state than the previous one.

In this point it is worth mentioning that in Coq, when a tactic is applied, it typically applies only to the first
goal in the foreground, not to all goals. The goals are arranged in a stack, and most tactics apply only to
the current goal at the top of the stack (the "focused" goal).

When a tactic is applied to a goal in Coq, a few different things might happen based on the tactic used:

e The goal is solved: If the tactic successfully solves the goal, that particular subgoal disappears because
it has been proved.

e The goal is transformed: If the tactic partially solves the goal or transforms it in some way, the original
subgoal disappears and new subgoal(s) appear, reflecting the remaining work to be done. A single goal
might be replaced by multiple subgoals if the applied tactic breaks it into smaller pieces.

e The goal is unchanged: If the tactic is not applicable or unsuccessful, the goal will remain unchanged.

e Additional context: The tactic might also add new definitions, variables, or hypotheses to the context,
affecting the subsequent proof.

Here is an example of how goals can transform with tactic application.

Listing 7.1: Example of goal transformation

Goal forall x y : mnat, x +y =y + x.

64

7.1. Implementation of MCTS

Proof.
intros x y.
(*
- “intros” moves universally quantified variables (x and y)
- from the goal to the context.
- The goal transforms to "x + y =y + x° without
- the forall quantifiers.
*)
rewrite Nat.add_comm.
(*
- “rewrite uses the provided lemma (Nat.add_comm)
- to change the goal.
- Here, it solves the goal, so no subgoals remain,
- and we're done.
*)
Qed.

With these in mind we can see that when we apply a tactic during our search, if the number of focused goals
decreases then the tactic has actually solved one of the goals, and we have reached an improved state from
the previous on we were in.

Our reward policy based on the reduction of focused goals is:

o Return a reward of +100 if we have reached a state which has status "ALREADY SUCCEEDED’ or
"SUCCESS'.

e Return a reward of -1 if we have reached a state which has status which indicates failure - AL-
READY FAILED, ERROR, GIVEN _UP.

e Return a reward of +), every time the number of focused goals decreases where), is a constant on
which we experimented.

Note that we do not penalize the cases in which the number of goals increases or remains unchanged, since
this is not necessarily a negative outcome.

In the following section we will be presenting the results of our experiments.

65

Chapter 7. Explore Predicted Tactics with MCTS

66

Chapter 8

Experiments

In this chapter we will present the results of our experiments on combining MCTS with the existing deep
learning models which generate tactics as programs. We will be presenting the setup of our experiments and
then we will analyze the results that we got for each of the reward policies which we analyzed in the previous
chapter 7.1.6.

8.1 Setup

8.1.1 Models

We conducted our experiments on pre-trained and shared models of ASTactic and TacTok. Passport models
where not publically available, so we had to run the training for the models ourselves. We trained Passport
with ASTactic, Tac and Tok, so that we would be able to compare the performance of MCTS combined to
these models. The detailed results of running the models with the default search (DFS) are presented in
section 8.9.

8.1.2 Benchmark

As described in 3.2, the CoqGym benchmark includes 123 open-source Coq projects, split into three sets. For
our evaluation, we trained on 97 projects (containing a total of 57,719 theorems) and synthesized proofs for 26
projects (containing a total of 10,782 theorems). We follow First et al. [11] and Sanchez-Stern, A. et al. [33]
and exclude the coq-library-undecidability project from the evaluation. As it is mention by Sanchez-Stern,
A. et al. [33] "TacTok’s evaluation [First et al. 2020] was unable to reproduce prior results for ASTactic’s
performance [Yang and Deng 2019] [46] on that project due to internal Coq errors when processing the proof
scripts”.

8.1.3 Machines

We ran this paper’s experiments GPUs for training and CPUs for synthesizing proofs. We were fortunate
that the process of synthesizing proofs could be done on CPUs since, as it is mentioned by Yang et al. [46],
the bottleneck of the process is found in the interaction with Coq and the execution of tactics, not their
generation.

For training Passport we used a machine with one NVIDIA T4 GPU with 16 GB of memory.
For synthesizing the proofs we used:
e One 12th Generation Core i7 Processor @ 2.40GHz, 32GB RAM and 512GB local SSD disk.
e One Standard D2s_v3 Azure VM with Xeon E5-2673 v3 @Q 2.40GHz, 8GB RAM and 50 GB SSD disk.

67

Chapter 8. Experiments

8.1.4 Parameters

In our experiments we used the experimental parameters followed by Yang and Deng 2019 [46], First et al.
[11] and Sanchez-Stern, A. et al. [33].

They synthesize proofs by setting a timeout, after which, if the search has failed to reach Qed it fails. The
timeout was set to 10 minutes by all of them, and this is the value we used in our experiments.

For training passport we also used the setup described by Sanchez-Stern, A. et al. [33].
We set:
e default category vocabulary threshold: 200
e byte-pair merge threshold: 4096
e default vector dimension for term, grammar and terminal /non-terminal symbol embeddings: 128

e dimension of LSTM controller: 128

8.2 Determining the Beam size

Due to the huge time expense of the testing process, we were not able to test a large range of depths across
the entire testing dataset. We run tests for depth 20, 25 and 30. We chose to select projects with a high
count of proofs in which the models had either too many or too few successful proofs. The projects that we
picked were: dblib, UnifySL, PolTac and verdi-raft.

Upon experimentation we saw that increasing the beam to 25 in MCTS gave improved results compared to
a beam of 20. Increasing the beam to 30 did not add any value. This is probably an indication of the fact
that the additional tactics suggested by the models are not accurate enough to generated more proofs. The
results presented below, have been generated using a beam of 25.

8.3 Reward on terminal states policy

When doing the evaluation on the models we trained for Passport we were not able to replicate the exact
results which are mentioned in Sanchez-Stern, A. et al. [33]. For this reason we will compare our results
with the results which we were able to replicate, but we will also be showing those which are mentioned in
literature.

8.3.1 MCTS & DFS comparison across models

In figure 8.3.1 we can see the performance of MCTS executed with the "reward on terminal states" policy
7.1.6.

We observe that when applying MCTS to ASTactic and TacTok (Tac & Toc models combined), DFS out-
performs our search method, but not significantly.

When we compare MCTS and DFS combined with the Passport models, we see that DFS outperforms our
search according to literature results [33]. On the other hand, MCTS outperforms DFS on the evaluation
results we got for the Passport models we trained ourselves. Across all models, we can see that with MCTS
all three models were able to prove 29 more theorems than with DFS.

8.3.2 New theorems proven with MCTS

We will be following the approach taken by First et al. [11] and by Sanchez-Stern, A. et al. [33] to evaluate
how MCTS applied to the model suggestions leads to new theorems proven.

In table 8.1 we see that when we calculate the union of the proofs synthesized by all the Passport-enhanced
models combined with MCTS, we have 33 new proofs. When we compare the number of proofs synthesized
by ASTactic combined with MCTS we were able to prove 8 new theorems, despite the fact that we lost some

68

8.3. Reward on terminal states policy

1750 | W DFS-reproduced
= DFS-literature
. MCTS

1500 4

1388 1388
1322 1322

12501

1116 1106

1000 4

750

Number of theorems proven

500

250 A

Models

Figure 8.3.1: Number of theorems proved for each model by using DFS and MCTS with reward on terminal
states policy. The purple bars represent baseline models based on ASTactic, TacTok, ASTactic + Passport,
Tok + Passport and Tac + Passport. The blue bars represent the baseline mentioned in literature [33], [11].
The red bars represent the results of running the models with MCTS. The bars labeled “AllPassport”, is the
number of theorems successfully proven using either DFS or MCTS by at least one of the
Passport-enhanced models.

proofs which were found with DFS. We also notice that in the ASTactic+Passport model, we were able to
prove 27 new theorems, although we only proved 24 more theorems in absolute values. This again shows that
we lost some of the proof that were proved with DFS.

Overall we can see that the results that we get with the application of MCTS with the 'reward terminal states’
policy to the existing models are very similar to the results that we get from DFS. This is not surprising.
The scarcity of positive rewards in MCTS, and the fact that when we finally get a positive reward we have
essentially solved our search problem, "reduce" MCTS to a traditional search algorithm.

Model ASTactic TacTok ASTactic+Passport Tac+Passport Tok+Passport *+Passport
DFS Repro 1322 1388 1301 1089 1223 1641
MCTS Repro 1290 1344 1325 1106 1238 1670
Difference -32 -44 +24 +27 +15 +29
New Theorems 8 (0.07%) 0 (0%) 27 (0.25%) 18 (0.17%) 16 (0.15%) 33 (0.31%)

Table 8.1: Number of theorems proven across models with MCTS when using the reward on terminal states
policy and a beam of 25. The percentages are calculated over the total 10782 of the evaluation dataset.

As it is also mentioned in literature [46], the average length of theorem proofs is small - less than 10 tactics.
The average length of the theorems proved across models with MCTS was 6.7. In comparison, the average
length of the proofs in the testing dataset is 12.5. This is not surprising - as it validates the expectation
that the longer the theorem, the harder it will be to generate its proof. The average length of the 33 new
theorems that were proved was 7.8 tactics. This is a bit higher than the average length of all the proofs
which we mention above. This indicates that MCTS facilitates the proving of longer theorems.

69

Chapter 8. Experiments

8.4 Reward on depth policy

8.4.1 Determining policy parameters
As mentioned in the previous chapter 7.1.6, the reward on depth policy was defined as follows:

e Return a reward of +100 if we have reached a state which has status ’"ALREADY SUCCEEDED’ or
"SUCCESS’.

e Return a reward of -1 if we have reached a state which has status which indicates failure - AL-
READY FAILED, ERROR, GIVEN UP.

e Return a reward of —\;- |2, D € {5k |k € Z} where)\, is a constant on which we experimented and
D is the depth that we have reached.

In order to determine the value of Ay we have followed the same approach we used for determining the beam
8.2. We run tests for Ay € {0.5,0.75,1} in projects dblib, UnifySL, PolTac and verdi-raft.

The results of evaluating the proofs for these projects did not have significant differences for the different
values of A\;. We chose to use a value of Ay = 0.5 to not significantly penalize searching in deeper space.

8.4.2 MCTS & DFS comparison across models
In figure 8.4.1 we can see the performance of MCTS executed with the "reward on depth" policy 7.1.6.

We observe that when applying MCTS to ASTactic and TacTok (Tac & Toc models combined), DFS out-
performs our search method proving 65 theorems more.

When we compare MCTS and DFS combined with the Passport models, we see that DFS outperforms our
search according to literature results [33] by 138 theorems. DFS also outperforms MCTS when comparing
with the evaluation results we got for the Passport models we trained ourselves. We can see that with DFS
all three models combined were able to prove 49 more theorems than with MCTS.

8.4.3 New theorems proven with MCTS

In table 8.2 we see that when we calculate the union of the proofs synthesized by all the Passport-enhanced
models combined with MCTS, we have 17 new proofs.

We did not get any new proofs when combining MCTS with ASTactic and TacTok.

Model ASTactic TacTok ASTactic+Passport Tac+Passport Tok+Passport *+Passport
DFS Repro 1322 1388 1301 1089 1223 1641
MCTS Repro 1257 1282 1244 1027 1151 1592
Difference -65 -106 -57 -62 -72 -49
New Theorems 0 0 14 (0.13%) 11 (0.1%) 11 (0.1%) 17 (0.16%)

Table 8.2: Number of theorems proven across models with MCTS when using the reward on depth policy
and a beam of 25. The percentages are calculated over the total 10782 of the evaluation dataset.

Applying the "reward on depth policies" for a beam of 25 did not improve our search results. We have the
following assumptions on the cause behind that.

e The first observation is that a negative reward on depth could hinder the discovery of deeper proofs.
As we have seen above, the average length of proofs generated across models is 6.7 tactics per proof.
This indicates that the models are more effective in synthesizing shorter proofs, and that DFS is able to
effectively locate those proofs, given the search parameters specified (beam of 20, 10 minute timeout).
Giving negative reward for reaching deeper states did not improve the discovery of new shorter proofs,
and prevented the search from finding longer proofs which were discovered by the "reward on terminal
states" policy.

70

8.5. Reward on goal reduction policy

1750 | Wmm DFS-reproduced
mmm DFS-literature
= MCTS-depth-rewards

1500

1322 1322

1250 A

1000

750 A

Number of theorems proven

500 A

250 1

Models

Figure 8.4.1: Number of theorems proved for each model by using DFS and MCTS with reward on depth
policy. The purple bars represent baseline models based on ASTactic, TacTok, ASTactic + Passport, Tok +
Passport and Tac + Passport. The blue bars represent the baseline mentioned in literature [33], [11]. The
red bars represent the results of running the models with MCTS. The bars labeled “AllPassport”, is the
number of theorems successfully proven using either DFS or MCTS by at least one of the
Passport-enhanced models.

o The second observation is that the evaluation cost prevented us from fine-tuning the MCTS combined
with the "reward on depth" policy. It is possible that by trying more combinations of Ay and beam
parameters, we could have gotten better results. For instance, increasing the \; parameter to values
greater than 1, and widening to values greater than 30, could encourage the discovery of new shorter
proofs, despite hindering the discovery of deep proofs. This is something we will also discuss in our
conclusions and the limitations that we faced for our experiments 8.7.

8.5 Reward on goal reduction policy

8.5.1 Determining policy parameters

As mentioned in the previous chapter 7.1.6, the reward policy based on the reduction of focused goals was
defined as follows:

o Return a reward of 4100 if we have reached a state which has status "ALREADY SUCCEEDED’ or
"SUCCESS'.

e Return a reward of -1 if we have reached a state which has status which indicates failure - AL-
READY FAILED, ERROR, GIVEN _UP.

e Return a reward of +), every time the number of focused goals decreases where A, is a constant on
which we experimented.

This was the last policy that we considered testing, and we did not have time to complete our experiments
by the time this thesis was finalized.

71

Chapter 8. Experiments

To determine the value of A\, we follow the same approach we used for determining the beam 8.2 and Ay. We
run tests for A, € {0.5,1,2} in projects dblib, UnifySL, PolTac and verdi-raft. The results that we got from
these experiments were significantly (around 20%) lower than the results we got from the previous reward
policies which we used in MCTS. An explanation to that is that during the simulation phase, many states
are highly rewarded as a result of tactics reducing the number of focused goals in their branches, but they
are not leading to the proof branches of the tree.

To examine this deeper we need to remember that with this policy we are trying to recognise the positive
effect of applying a tactic in a given state, but we reward the resulting states and not the tactics. This can
lead in situations where states in unpromissing branches of the search will be highly rewarded during the
search.

8.5.2 Possible improvements of the reward policy

We would need more time to fine tune the policy parameters (\,, reward on proof, rewards on failure) and
the beam in order to exploit possible benefits of this policy. It was something that we did not have time to
do due to the computational cost of the evaluation phase.

One approach which could also add value to the search is to combine MCTS with a cache of "good" model
generated tactics - tactics that have contributed to the reduction of focused goals during search, which will
be sampled and rewarded during the search. An extra step to that would be to have such a cache for every
focused goal of the theorem.

8.6 Conclusion

In our experiments we tried replacing the traditional search components of machine learning prediction tools
for guided proof synthesis with Monte Carlo Tree Search. Our experimentation showed that using MCTS
can produce results very close to the top literature results. Furthermore, our experiments produced proofs
which were not being generated be the traditional search methods. Still, we were not able to outperform the
best results as found in literature.

From the three MCTS reward policies we used the "reward on terminal states" policy was the most effective.
When combined with our Passport trained models, MCTS was able to find more proofs compared to the
DEFS results we were able to reproduce. Still it was not able to outperform the best results mentioned in
literature. The scarcity of positive rewards in this policy makes MCTS behave very similarly to traditional
search algorithms like DFS, thus giving us very similar results.

We attempted to leverage the benefits of MCTS by introducing the "reward on depth" policy and the "reward
on goal reduction" policy. The "reward on depth" policy showed potential, but was not as effective in the
discovery of longer proofs. The experimentation on the "reward on goal reduction" policy is still ongoing by
the time this thesis is being completed, since fine+tuning it was harder than the previous methods.

8.7 Limitations

The major limitation we had for our experimentation was the cost of the evaluation experiments. Doing a full
evaluation run for a set of parameters across all 26 Coq projects could take several weeks with the hardware
we had available. Due to this reason, as mentioned in the previous sections 8.2, we could only test a limited
range of potential values for the different parameters. Additionally, we performed the testing in a subset of
the evaluation set. Hence, we cannot be certain for their optimality.

Due to lack of hardware we were also not able to experiment with the models and retrain them. The hardware
cost is also raised as a concern by most researchers working on the domain. Sanchez-Stern, A. et al. [33] for
instance mention that "expensive hardware is required to train these models, limiting who can develop them,
and often requiring the use of shared clusters which can slow development".

Another limitation was the complexity of preparing the environment to run the experiments.

72

8.8. Future Directions

8.8 Future Directions

Fine-tuning the reward policies would be the first step going forward. As already explained, this is a task
that can have a big computational cost but MCTS has already given promising results with very little
experimentation on its parameters.

Our approach to fine-tuning would be to test different combinations of the reward policy parameters and
the search beam. Specifically it is worth trying even larger values of the Beam combined with the reward on
depth policy and test if this approach can generate new proofs and not necessarily more proofs than previous
search methods or combination. The goal from this approach would be to test if a greater beam and a search
focused on small depths could benefit the discovery of new short proofs. The second step would be to fine
tune the "reward on goal reduction" policy. This policy could give significant benefits since it will increase the
number of positive rewards given in MCTS. We would also like to test the above policies in combination with
CoqHammer - where its application would be represented as applying the hammer tactic. Finally, combining
the reward on depth policy with the reward on goal reduction policy would also be interesting to test.

Another possibility for future work would be to replace the LSTM components of Graph Neural Networks
and evaluate if incorporating Graph Neural Networks (GNNs) enhances the capability to identify and exploit
intricate structures inherent in proof strategies. This approach has already been explored by Paliwal et al.
[31]. GNNs, are inherently capable of managing relational data and propagating information across graph-
structured entities [45], and could facilitate a more nuanced understanding and navigation through the logical
space of proofs. Given that proof synthesis could be conceived as a graph where each theorem and lemma
serve as nodes connected through logical entailment or dependencies, GNNs might be uniquely positioned to
learn and leverage these structural relations effectively.

Another option would be to retrain the policy networks that we have available (ASTactic, TacTok, Passport)
with MCTS as was famously done for Alpha Go [40].

Finally, a direction which could significantly improve the performance of all the models would be to enrich
CoqGym with information about which premises of the proof context and the environment are being used
for the proof. This is also mentioned by Yang et al. [46] as a complex endeavor which could have significant
benefits. Having such information and including it in the vector encoding during training could improve the
performance of the trained models.

73

Chapter 8. Experiments

Table 8.3: The evaluation results of running TacTok and ASTactic models with MCTS using the reward on
terminal state policy 8.3

Name TacTok-MCTS ASTactic-MCTS Dataset Total
weak-up-to (12 9%) 20 (14.4%) 139
buchberger 72 (9.9%) 70 (9.7%) 725
jordan-curve-theorem 21 (3.3%) 19 (3.0%) 628
dblib 44 (24.4%) 41 (22.8%) 180
disel 83 (13.1%) 77 (12.1%) 634
zchinese 5 (11.6%) 5 (11.6%) 43
afc 31 (13.1%) 32 (13.5%) 237
dep-map 11 (25.6%) 9 (20.9%) 43
chinese 35 (26.7%) 31 (23.7%) 131
UnifySL 180 (18.6%) 182 (18 8%) 968
hoare-tut 3 (16.7%) 1 (5.6%) 18
huffman 28 (8.9%) 25 (8.0%) 314
PolTac 112 (30 9%) 116 (32 0%) 363
angles 4 (6.5%) 4 (6.5%) 62
cog-procrastination 6 (75.0%) 5 (62.5%) 8
tree-automata 104 (12.6%) 95 (11.5%) 828
coquelicot 100 (6.8%) 95 (6.5%) 1467
fermat4 0 (7.7%) 3 (10.0%) 130
demos (75 0%) (72 1%) 68
coqoban 0 (0.0%) 0 (0.0%) 2
goedel 59 (9.7%) 53 (8.7%) 606
verdi-raft 113 (5.3%) 111 (5.2%) 2127
verdi 44 (8.6%) 37 (7.2%) 514
zorns-lemma 2 (8.1%) 10 (6.7%) 149
coqrel 183 (71.5%) 179 (69 9%) 256
fundamental-arithmetic 15 (10.6%) 1 (7.7%) 142
Totals 1344 (12.5%) 1290 (12.0%) 10782

74

8.8. Future Directions

Table 8.4: The evaluation results of running ASTactic+Passport, Tac+Passport, Tok+Passport models

with MCTS using the reward on terminal state policy 8.3.

Name ASTactic—Passport—MCTS Tac—Passport—MCTS Tok—Passport—MCTS Dataset Total
weak-up-to 23 (16.5%) 2 (8.6%) 14 (10.1%) 139
buchberger 70 (9.7%) 70 (9.7%) 69 (9.5%) 725
jordan-curve-theorem 19 (3.0%) 16 (2.5%) 22 (3.5%) 628
dblib 41 (22.8%) 41 (22.8%) 36 (20.0%) 180
disel 83 (13.1%) 63 (9.9%) (12 6%) 634
zchinese 5 (11.6%) 4 (9.3%) 4 (9.3%) 43
afc 33 (13.9%) 28 (11.8%) 28 (11.8%) 237
dep-map 9 (20.9%) 7 (16.3%) 8 (18.6%) 43
chinese 31 (23.7%) 27 (20.6%) 33 (25.2%) 131
UnifySL 189 (19 5%) 126 (13.0%) 168 (17.4%) 968
hoare-tut 1 (5.6%) (16 %) 3 (16 %) 18
huffman 25 (8.0%) 22 (7.0%) 23 (7.3%) 314
Pol Tac 118 (32 5%) 87 (24.0%) 110 (30 3%) 363
angles 4 (6.5%) 3 (4.8%) 4 (6.5%) 62
cog-procrastination 5 (62.5%) 5 (62.5%) 6 (75.0%) 8
tree-automata (11 6%) 3 (10.0%) 99 (12.0%) 828
coquelicot 95 (6.5%) 77 (5.2%) 88 (6.0%) 1467
fermatd 3 (10.0%) 9 (6.9%) 8 (6.2%) 130
demos 50 (73 5%) 9 (72.1%) (76 5%) 68
coqoban 0 (0.0%) 0 (0.0%) 0 (0.0%) 2
goedel 56 (9.2%) 7 (9.4%) 58 (9.6%) 606
verdi-raft 117 (5.5%) 7 (4.6%) 108 (5.1%) 2127
verdi 37 (7.2%) 7 (7.2%) 42 (8.2%) 514
zorns-lemma, 10 (6.7%) 10 (6.7%) 7 (4.7%) 149
cogrel 184 (71 9%) 163 (63.7%) 159 (62 1%) 256
fundamental-arithmetic 11 (7.7%) 10 (7.0%) 9 (6.3%) 142
Totals 1325 (12.3%) 1106 (10.3%) 1238 (11.5%) 10782

75

Chapter 8. Experiments

8.9 Model Benchmarks

Name TacTok ASTactic & CogHammer ASTactic Dataset Total
weak-up-to 8 (12.9%) 36 (25.9%) 3 (16.5%) 139
buchberger 6 (10.5%) 192 (26.5%) 70 (9.7%) 725
jordan-curve-theorem 22 (3.5%) 168 (26.8%) 19 (3.0%) 628
dblib 5 (25.0%) 67 (37.2%) A1 (22.8%) 180
disel 9 (14.0%) 194 (30.6%) 83 (13.1%) 634
zchinese 5 (11.6%) 3 (30.2%) 5 (11.6%) 43
afc 33 (13.9%) 70 (29.5%) 33 (13.9%) 237
dep-map 1 (25.6%) 16 (37.2%) 9 (20.9%) 43
chinese 35 (26.7%) 58 (44.3%) 31 (23.7%) 131
UnifySL 180 (18.6%) 367 (37.9%) 189 (19 5%) 968
hoare-tut 5 (27.8%) 6 (33.3%) 1 (5.6%) 18
huffman 28 (8.9%) 81 (25.8%) 25 (8.0%) 314
PolTac 112 (30.9%) 308 (84.8%) 118 (32 5%) 363
angles 4 (6.5%) 5 (24.2%) 4 (6.5%) 62
cog-procrastination 6 (75.0%) 5 (62.5%) 5 (62.5%) 8
tree-automata 111 (13.4%) 311 (37.6%) 96 (11.6%) 828
coquelicot 100 (6.8%) 299 (20.4%) 95 (6.5%) 1467
fermat 0 (7.7%) 47 (36.2%) 3 (10.0%) 130
demos 53 (77.9%) (80.9%) 50 (73 5%) 68
cogoban 0 (0.0%) 0 (0.0%) 0 (0.0%) 2
goedel 7 (11.1%) 128 (21.1%) 53 (8.7%) 606
verdi-raft 121 (5.7%) 351 (16.5%) 117 (5.5%) 2127
verdi 47 (9.1%) 127 (24.7%) 37 (7.2%) 514
zorns-lemma 12 (8.1%) 21 (14.1%) 10 (6.7%) 149
coqrel 183 (71.5%) 191 (74.6%) 184 (71 9%) 256
fundamental-arithmetic 5 (10.6%) 41 (28.9%) 1 (7.7%) 142
Totals 1388 (12.9%) 3167 (29.4%) 1322 (12.3%) 10782

Table 8.5: Success rates, as evaluated on the CogGym benchmark by Yang and Deng 2019 [46], the three

tools, TacTok [11], ASTactic [46], and CoqgHammer [Czajka and Kaliszyk 2018] [9].

76

8.9. Model Benchmarks

Name CogHammer Tac Tok Dataset Total
weak-up-to 30 (21.6%) 2 (8.6%) 2 (8.6%) 139
buchberger 166 (22.9%) 70 (9.7%) 65 (9.0%) 725
jordan-curve-theorem 165 (26.3%) 16 (2.5%) 22 (3.5%) 628
dblib 55 (30.6%) 41 (22.8%) 35 (19.4%) 180
disel 185 (29.2%) 63 (9.9%) (11 4%) 634
zchinese 2 (27.9%) 4 (9.3%) 4 (9.3%) 43
e 64 (27.0%) 28 (11.8%) 28 (11.8%) 237
dep-map 4 (32.6%) 7 (16.3%) 8 (18.6%) 43
chinese 56 (42.7%) 27 (20.6%) 30 (22.9%) 131
UnifySL 303 (31.3%) 126 (13.0%) 153 (15.8%) 968
hoare-tut 6 (33.3%) (16 %) (16 %) 18
huffman 74 (23.6%) 22 (7.0%) 21 (6.7%) 314
PolTac 289 (79.6%) 87 (24 0%) 110 (30 3%) 363
angles 5 (24.2%) 3 (4.8%) 4 (6.5%) 62
cog-procrastination 3 (37.5%) 5 (62.5%) 6 (75.0%) 8
tree-automata 292 (35.3%) 83 (10.0%) 96 (11.6%) 828
coquelicot 73 (18.6%) 77 (5.2%) 78 (5.3%) 1467
fermat4 47 (36.2%) 9 (6.9%) 8 (6.2%) 130
demos (79.4%) (72 1%) (76 5%) 68
cogoban 0 (0.0%) 0 (0.0%) 0 (0.0%) 2
goedel 120 (19.8%) 57 (9.4%) 58 (9.6%) 606
verdi-raft 337 (15.8%) 99 (4.7%) 97 (4.6%) 2127
verdi 120 (23.3%) 36 (7.0%) 33 (6.4%) 514
zorns-lemma 9 (12.8%) 8 (5.4%) 10 (6.7%) 149
cogrel 179 (70.0%) 174 (68 0%) 177 (69.1%) 256
fundamental-arithmetic 39 (27.5%) 1 (7.7%) 10 (7.0%) 142
Totals 2850 (26.4%) 1097 (10.2%) 1159 (10.7%) 10782

Table 8.6: Continuation of the previous table. 8.5

7

Chapter 8. Experiments

Table 8.7: Success rates as evaluated on Passport benchmark trained with ASTatic, Tac and Tok. Note
that these are the results that we managed to replicate. The performance of the model is different to the
performance found in Sanchez-Stern, A. et al. [33]

Name ASTactic+Passport Tac+Passport, Tok+Passp0rt Dataset Total
weak-up-to (16 5%) 12 (8.6%) 4 (10.1%) 139
buchberger 70 (9.7%) 70 (9.7%) 69 (9.5%) 725
jordan-curve-theorem 17 (2.7%) 6 (2.5%) 22 (3.5%) 628
dblib 41 (22.8%) 1 (22.8%) 36 (20.0%) 180
disel 78 (12.3%) 63 (9.9%) (12 6%) 634
zchinese 5 (11.6%) 4 (9.3%) 4 (9.3%) 43
stc 33 (13.9%) 23 (9.7%) 23 (9.7%) 237
dep-map 9 (20.9%) 7 (16.3%) 8 (18.6%) 43
chinese 31 (23.7%) 27 (20.6%) 33 (25.2%) 131
UnifySL 182 (18 8%) 123 (12.7%) 162 (16.7%) 968
hoare-tut 1 (5.6%) 3 (16.7%) 3 (16.7%) 18
huffman 25 (8.0%) 21 (6.7%) 23 (7.3%) 314
PolTac 118 (32 5%) 87 (24.0%) 110 (30 3%) 363
angles 4 (6.5%) 3 (4.8%) 4 (6.5%) 62
cog-procrastination 5 (62.5%) 5 (62.5%) 6 (75.0%) 8
tree-automata 96 (11.6%) 3 (10.0%) 99 (12.0%) 828
coquelicot 95 (6.5%) 77 (5.2%) 88 (6.0%) 1467
fermat4 3 (10.0%) 8 (6.2%) 8 (6.2%) 130
demos (73 5%) 9 (72.1%) (76 5%) 68
cogoban 0 (0.0%) 0 (0.0%) 0 (0.0%) 2
goedel 56 (9.2%) 6 (9-2%) 58 (9.6%) 606
verdi-raft 112 (5.3%) 7 (4.6%) 104 (4.9%) 2127
verdi 37 (7.2%) 7 (7.2%) 42 (8.2%) 514
zorns-lemma 0 (6.7%) 10 (6.7%) 7 (4.7%) 149
coqrel 179 (69 9%) 157 (61.3%) 159 (62 1%) 256
fundamental-arithmetic 1(7.7%) 10 (7.0%) 9 (6.3%) 142
Totals 1301 (12 1%) 1089 (10.1%) 1223 (11.3%) 10782

78

Chapter 9

Bibliography

[1]
2]
3]
[4]

[5]
6]

7]
8]

[9]

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

Arias, E. J. G. “SerAPI: Machine-Friendly, Data-Centric Serialization for COQ”. In: 2016. URL:
Barras, B. et al. “The Coq Proof Assistant Reference Manual : Version 6.1”. In: (June 1997).
Ben-Yelles, C. “Type Assignment in the Lambda-Calculus: Syntax and Semantics”. PhD thesis. De-
partment of Pure Mathematics, University College of Swansea, Sept. 1979.

Blanchette, J. C. et al. “Hammering towards QED”. In: Journal of Formalized Reasoning 9.1 (2016),
pp. 101-148.

Buzzard, K. The future of mathematics. CRNS-Imperial Lecture. 2019.

Cho, K. et al. “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation”. In: CoRR abs/1406.1078 (2014). arXiv: 1406.1078. URL:

Coq Package Index. Accessed: October 9, 2023.

Czajka, L. and Kaliszyk, C. “Goal Translation for a Hammer for Coq (Extended Abstract)”. In: Pro-
ceedings First International Workshop on Hammers for Type Theories, HOTT@IJCAR 2016, Coimbra,
Portugal, July 1, 2016. Ed. by J. C. Blanchette and C. Kaliszyk. Vol. 210. EPTCS. 2016, pp. 13—20.
DOIL: 10.4204/EPTCS.210.4. URL:

Czajka, ¥.. and Kaliszyk, C. “Hammer for Coq: Automation for Dependent Type Theory”. In: Journal
of Automated Reasoning 61.1 (June 2018), pp. 423-453. 1SSN: 1573-0670. DOI: 10.1007/s10817-018-
9458-4. URL:

Dixon, L. and Fleuriot, J. “IsaPlanner: A Prototype Proof Planner in Isabelle”. In: Automated Deduction
— CADE-19. Ed. by F. Baader. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 279—-283. ISBN:
978-3-540-45085-6.

First, E., Brun, Y., and Guha, A. “TacTok: Semantics-Aware Proof Synthesis”. In: Proceedings of the
ACM on Programming Languages 4.00PSLA (2020), pp. 1-31. poI: 10.1145/3428299.

Gauthier, T. et al. “Learning to Prove with Tactics”. In: CoRR abs/1804.00596 (2018). arXiv: 1804.
00596. URL:

Gonthier, B. Formal proof of the Four Color Theorem. Version 1.3.0. May 2023. URL:

Gonthier, G. et al. “A Machine-Checked Proof of the Odd Order Theorem”. In: Interactive Theorem
Proving. Ed. by S. Blazy, C. Paulin-Mohring, and D. Pichardie. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 163-179. 1SBN: 978-3-642-39634-2.

Graves, A., Jaitly, N., and Mohamed, A.-r. “Hybrid speech recognition with Deep Bidirectional LSTM”.
In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. 2013, pp. 273-278. DOIL:
10.1109/ASRU.2013.6707742.

Han, J. M. et al. “Proof Artifact Co-training for Theorem Proving with Language Models”. In: CoRR
abs/2102.06203 (2021). arXiv: 2102.06203. URL:

Hindley, J. R. “Counting a Type’s Inhabitants”. In: Basic Simple Type Theory. Cambridge Tracts in
Theoretical Computer Science. Cambridge: Cambridge University Press, 1997. Chap. 9, pp. 108-139.
DOI: 10.1017/CB09780511608865.009.

Huang, D. et al. “GamePad: A Learning Environment for Theorem Proving”. In: International Confer-
ence on Learning Representations. 2019. URL:

79

https://arxiv.org/abs/1406.1078
https://doi.org/10.4204/EPTCS.210.4
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1145/3428299
https://arxiv.org/abs/1804.00596
https://arxiv.org/abs/1804.00596
https://doi.org/10.1109/ASRU.2013.6707742
https://arxiv.org/abs/2102.06203
https://doi.org/10.1017/CBO9780511608865.009

Chapter 9. Bibliography

[19]

[20]
[21]
[22]
[23]

[24]
[25]

[26]
[27]

[28]
[29]

[30]
31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

42|

[43]

Joosten, S., Kaliszyk, C., and Urban, J. “Initial Experiments with TPTP-Style Automated Theorem
Provers on ACL2 Problems”. In: ACL2 Theorem Prover and Its Applications (ACL2 2014). Ed. by F.
Verbeek and J. Schmaltz. Vol. 152. Electronic Proceedings in Theoretical Computer Science (EPTCS).
2014, pp. 77-85. DOL: 10.4204/EPTCS. 152.7.

Kaliszyk, C. et al. “Reinforcement Learning of Theorem Proving”. In: CoRR abs/1805.07563 (2018).
arXiv: 1805.07563. URL:

Kocsis, L. and Szepesvari, C. “Bandit Based Monte-Carlo Planning”. In: Machine Learning: ECML 2006.
Ed. by J. Fiirnkranz, T. Scheffer, and M. Spiliopoulou. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 282—293. 1SBN: 978-3-540-46056-5.

Leroy, X. The Compcert verified compiler, software and commented proof. 2009. URL:

Li, L. et al. “Biomedical event extraction based on GRU integrating attention mechanism”. In: BMC
Bioinformatics 19 (Aug. 2018), pp. 177-184. DOI: 10.1186/s12859-018-2275-2.

Lin, L.-J. Reinforcement learning for robots using neural networks. Tech. rep. DTIC Document, 1993.
Lizotte, D. J. and Laber, E. B. “Multi-objective Markov decision processes for data-driven decision
support”. English. In: J. Mach. Learn. Res. 17 (2016). Id/No 211, p. 28. 1SSN: 1532-4435. URL:
McCarthy, J. “Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part
I”. In: Communications of the ACM 3.4 (1960), pp. 184-195. DOI: 10.1145/367177.367199.

Mnih, V. et al. “Playing Atari with Deep Reinforcement Learning”. In: CoRR abs/1312.5602 (2013).
arXiv: 1312.5602. URL:

Moura, L. M. de et al. “The Lean Theorem Prover (System Description)”. In: CADE. 2015. URL:
Nipkow, T., Paulson, L. C., and Wenzel, M. Isabelle/HOL — A Proof Assistant for Higher-Order Logic.
Vol. 2283. LNCS. Springer, 2002.

Olah, C. Understanding LSTM Networks. Blog post. Aug. 2015. URL:

Paliwal, A. et al. “Graph Representations for Higher-Order Logic and Theorem Proving”. In: CoRR
abs/1905.10006 (2019). arXiv: 1905.10006. URL:

Ross, S. M. Stochastic Processes. 2nd. John Wiley and Sons, 1995.

Sanchez-Stern, A. et al. “Passport: Improving Automated Formal Verification Using Identifiers”. In:
ACM Transactions on Programming Languages and Systems 45.2 (June 2023), pp. 1-30. DOI: 10.
1145/3593374. URL:

Schaeffer, J. et al. “Checkers Is Solved”. In: Science 317.5844 (2007), pp. 1518-1522. porL: 10. 1126/
science.1144079. eprint: URL:

Segler, M. H. S., Preuss, M., and Waller, M. P. “Planning chemical syntheses with deep neural networks
and symbolic ATI”. In: Nature 555.7698 (Mar. 2018), pp. 604-610. 1SSN: 1476-4687. pO1: 10 .1038/
nature25978. URL:

Sekiyama, T., Imanishi, A., and Suenaga, K. “Towards Proof Synthesis Guided by Neural Machine
Translation for Intuitionistic Propositional Logic”. In: CoRR abs/1706.06462 (2017). arXiv: 1706 .
06462. URL:

Sekiyama, T. and Suenaga, K. Automated proof synthesis for propositional logic with deep neural net-
works. 2018. arXiv: 1805.11799 [cs.AI].

Sennrich, R., Haddow, B., and Birch, A. “Neural Machine Translation of Rare Words with Subword
Units”. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics, Aug. 2016,
pp- 1715-1725. pOI: 10.18653/v1/P16-1162. URL:

Sharma, A. et al. Robust and Adaptive Planning under Model Uncertainty. 2019. arXiv: 1901. 02577
[cs.AI].

Silver, D. et al. “Mastering the game of Go with deep neural networks and tree search”. In: Nature
529.7587 (2016), pp. 484-489. DOI: 10.1038/naturel16961.

Sironi, C. F. et al. “Self-adaptive MCTS for General Video Game Playing”. In: Applications of Evo-
lutionary Computation. Ed. by K. Sim and P. Kaufmann. Cham: Springer International Publishing,
2018, pp. 358-375. 1SBN: 978-3-319-77538-8.

Swiechowski, M., Godlewski, K., Sawicki, B., et al. “Monte Carlo Tree Search: a review of recent
modifications and applications”. In: Artificial Intelligence Review 56 (2023), pp. 2497-2562. pOI: 10.
1007/s10462-022-10228-y.

Tai, K. S., Socher, R.., and Manning, C. D. “Improved Semantic Representations From Tree-Structured
Long Short-Term Memory Networks”. In: CoRR abs/1503.00075 (2015). arXiv: 15603.00075. URL:

80

https://doi.org/10.4204/EPTCS.152.7
https://arxiv.org/abs/1805.07563
https://doi.org/10.1186/s12859-018-2275-2
https://doi.org/10.1145/367177.367199
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1905.10006
https://doi.org/10.1145/3593374
https://doi.org/10.1145/3593374
https://doi.org/10.1126/science.1144079
https://doi.org/10.1126/science.1144079
https://doi.org/10.1038/nature25978
https://doi.org/10.1038/nature25978
https://arxiv.org/abs/1706.06462
https://arxiv.org/abs/1706.06462
https://arxiv.org/abs/1805.11799
https://doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/1901.02577
https://arxiv.org/abs/1901.02577
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y
https://arxiv.org/abs/1503.00075

[44]

[45]
[46]
[47]
[48]

[49]

Uther, W. “Markov Decision Processes”. In: Encyclopedia of Machine Learning. Ed. by C. Sammut and
G. I. Webb. Boston, MA: Springer US, 2010, pp. 642—-646. 1SBN: 978-0-387-30164-8. DOI: 10.1007/978-
0-387-30164-8_512. URL:

Wu, Z. et al. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE Transactions on Neural
Networks and Learning Systems (2020).

Yang, K. and Deng, J. Learning to Prove Theorems via Interacting with Proof Assistants. 2019. arXiv:
1905.09381 [cs.L0].

Yang, K. et al. “LeanDojo: Theorem Proving with Retrieval-Augmented Language Models”. In: Neural
Information Processing Systems (NeurIPS). 2023.

Yin, P. and Neubig, G. A Syntactic Neural Model for General-Purpose Code Generation. 2017. arXiv:
1704.01696 [cs.CL].

Zaremba, W. and Sutskever, I. “Learning to Execute”. In: CoRR abs/1410.4615 (2014). arXiv: 1410.
4615. URL:

81

https://doi.org/10.1007/978-0-387-30164-8_512
https://doi.org/10.1007/978-0-387-30164-8_512
https://arxiv.org/abs/1905.09381
https://arxiv.org/abs/1704.01696
https://arxiv.org/abs/1410.4615
https://arxiv.org/abs/1410.4615

	Contents
	List of Figures
	Coq & CoqGym
	Μοντέλα
	Εξερεύνηση προβλεπόμενων τακτικών με MCTS
	Πειράματα
	Κείμενο στα αγγλικά
	Introduction
	Motivation
	Contribution
	Thesis Structure

	Theroetical Background on Proof Synthesis
	Automated Theorem Proving (ATP)
	Forms of ATP
	A look at APS methodologies
	A look at ITP methodologies
	ITP and Machine Learning

	Coq & CoqGym
	Coq
	Atomic & Compound tactics

	CoqGym
	CoqGym: A large-scale Interactive Theorem Prover dataset and learning environment
	Dataset structure
	SerAPI
	Synthetic proofs from intermediate goals
	Proof structure - environments, goals & proof trees

	Machine Learning Background
	Introduction to Machine Learning
	Recurrent Neural Networks (RNNs)

	Long Short-Term Memory Networks
	LSTMs definition
	LSTM transition equations:
	Bidirectional LSTMs
	Tree-Structured LSTMs

	GRU
	Encoder - Decoder Architecture

	Models
	ASTactic: generating tactics as programs
	Space of tactics
	Architecture

	TacTok
	Proof State Encoder
	Proof Script Encoder

	Passport
	Identifier Categories in Passport
	Encoding Mechanisms in Passport

	Monte Carlo Tree Search
	Markov Decision Processes
	MCTS algorithm
	MCTS selection policy
	Disadvantages of MCTS
	MCTS and Machine Learning

	Explore Predicted Tactics with MCTS
	Implementation of MCTS
	State definition
	Selection
	Expansion
	Simulation
	Backpropagation
	Reward Policies

	Experiments
	Setup
	Models
	Benchmark
	Machines
	Parameters

	Determining the Beam size
	Reward on terminal states policy
	MCTS & DFS comparison across models
	New theorems proven with MCTS

	Reward on depth policy
	Determining policy parameters
	MCTS & DFS comparison across models
	New theorems proven with MCTS

	Reward on goal reduction policy
	Determining policy parameters
	Possible improvements of the reward policy

	Conclusion
	Limitations
	Future Directions
	Model Benchmarks

	Bibliography

