P

TRNE]

$

e
£

Ao

cTs08.
HOEVSE -
=4
$opos

afE
L
v 0

By

1™

EONIKO MET20BIO NMOAYTEXNEIO
SXOAH HAEKTPOAOTQN MHXANIKQN KAl MHXANIKQN YMOAOTIZTON
TOMEAS TEXNOAOTIAZ NAHPO®OPIKHS KAI YIIOAOTIZTQN

Containerization vs Bare Metal: distributed computing
performance using Apache Spark

AtmtAwpatiki epyoaoia

Mapyapita EAévn ToapumonoUAou

EruBAENWV kKaBnyntAG: Fewpylog Nkolpag
AvarAnpwtn¢ KaBnyntrg, E.M.I.

ABnrva, Maptiog 2024

$

7

NVEPOPOS

=

s

Yy

POMHBEVE

H

N

3

EONIKO MET20BIO NMOAYTEXNEIO
SXOAH HAEKTPOAOTQN MHXANIKQN KAl MHXANIKQN YMOAOTIZTQN
TOMEAS TEXNOAOTIAZ NAHPO®OPIKHS KAI YIIOAOTIZTQN

Containerization vs Bare Metal: distributed computing
performance using Apache Spark

AumtAwpatiki epyaocia

Mapyapita EAévn ToapumnonovAou

EruBAENWV KaBnyntAG: Fewpylog Nkolupag
AvarmAnpwtn¢ Kabnyntnc, E.M.I.

EykpiBnke amo tnv tpiueln e€staotikn emtponn tv 22" Maptiou, 2024.

(Yroypadn) (Yroypadn) (Yroypadn)
lewpylog Nkovpag Nektdplog Kolupng AlovUoLog MVEUPATIKATOG
Avariinpwtig Kabnyntrg, E.M.M. KaBnyntng, E.M.M. KaBnyntrc, E.M.N.

ABnrva, Maptiog 2024

(Yroypadn)

Mapyapita EAévn ToapumomnoUuAou

AutAwpatouxog HAektpoAdyog Mnxavikog kat Mnxavikog YrioAoylotwy E.M.M.

Copyright ©(2024) EBviko MetooBilo MoAuteyveio. All rights reserved.
Me emidpUAaén mMavtog SIKALW LATOC.

AnayopeUetal n avtypaodr), anobnkeuon Kot Slavour) tTng mapoloag epyaciog, EE0OAOKARPOU f TUAATOG
QUTAG, Yl EUTTOPLKO OKOTO. ETITpEneTal n avatumwaon, anobrnkeuaon Kat SLavoun ylo 6KoTo Unv
KEPBOOKOTILKO, EKTTALSEUTLKAG f} EPELVNTIKAG dUGONG, UTO TNV TIPOUTOBeon va avadépetal n Ny MPoéAeuong
Kat va Statnpeital to mapdv uRvupa. Epwtripata tou adopolv T Xprion tng £pyaciog ylo KEpSOOKOTIKO
OKOTIO TIPETIEL VAL ameuBUvovTalL TTpog Tov cuyypadEéa.

OL amoPEeLg KAL TOL CUUMEPACATA TIOU TIEPLEXOVTAL OE QUTO TOo £yypado ekppalouv tov cuyypadea Kat Sev
TPEMEL VA EPUNVEUBEL OTL AvTUTPOoWNEVOUV TIG eNionueg BEoelg tou EBvikol MetoofLou MoAutexveiou

OTNV OLKOYEVELA IOV

NeplAnyin

Auth n £€peuva efepeuva TG ouPPLBacTikég AVoelg anddoong Petafl Twv mepLBaAlOVTIWV ToU
Baoilovtal o€ container kat ta neptBarovta bare metal yia tnv ektédeon edpappoywv Apache Spark,
gotialovtag ouykekplpéva ota dashboard aviyveuong tpoxaiwv meplotatikwy. O KATAVEUNUEVOG
UTIOAOYLOMOG, £va BepeAlwdEeC oTolxelo Twv cuyxpovwy edappoywv mou Bacilovtol os dedopéva,
napouctalel Eva pAacpa EMAOYWV avamtuéng, Kabe pia pe SLakpLtd TAEOVEKTHOTO KoL TIPOKANCELG.
Aut n épeuva euPablivel ot BewpnTIKEC PACEL TOU KOATOVEUNUEVOU UTIOAOYLOHOU, TOU
containerization kal Twv vAomolnoswv bare metal, mpostolpalovrag to €5adog yla Lo CUYKPLTLKNA
avaAuon mou Baciletal og PLETPAOELC ArOd0ooNG, KALLAKWOLHOTNTOC, XPrONG MOPWV Kal AEITOUPYLKAG
TIOAUTIAOKOTNTOG.

Ale€nxdnoav pla oslpd MEpOUATWY Xpnotpomnolwvtag to Apache Spark yla tnv ektéAeon HLOVIEAWV
UNXOVIKAC HaBnong toco oe meplBallovta container 6co Kal ot meplBdilovta bare metal. Ta
kputnplo. afloAoynong oxedldotnkav £Tol WOTE VA AVTAVAKAOUV TIG QIOLTHOELS TWV £HOPUOYWV
TIOAAQUITAWY KOTOXWV OTOV TMPAYUATLKO KOOUO, ToVIi{ovTag TV oVTATTOKPLoN KOL TNV KALLAKWOLUOTNTA
twv dashboard omtikomnoinong mou eival kpiowa yla TNV avixveuon TEPLOTATIKWY. Tol TELPOUATIKA
omoteAéopata amoKaAUTTouV OTL, evw Tta TeptBallovia pe container mpoodépouv BeATLwpEVN
KAlHaKkwootnta, gueliéia otnv avamtuén kol HelwPEVn AslToupylky moAumAokotnta, ¢Epouv
ehaywotn emPapuvon anddoong os ouykplon e TIG Slapopdwoelg bare metal. AvtiBeta, ta
neplBarlovia bare metal esmbeikviouv eladpwC OVWTEPN UTOAOYLOTIK omodoTIKOTNTA,
anobidovtag otnv apecn MPOoBacn 6To UALKO, TTOPOAO TIOU AUTO CUVETAYETAL LELWHEVN VALl KoL
EMewpn avoxng os odaApota.

H épeuva kataArnyel 6tL n emtdoyn HeTaU containerization kat bare metal ywa Tig avantugelg Apache
Spark e€aptdtal and T CUYKEKPLUEVEG ATALTHOELS TNG £PAPHOYNG Kal To MAaiolo xpriong tg. Ta
nepBAAlovTa e container MPOTLULWVTOL YLA TNV TIPOCAPHOCTIKOTNTA TOUG OE OEVAPLA BACLOUEVA OTO
cloud kal MOAAQMAWY KATOXWV, OTOU N KALMOKWOLLOTNTA KOL N AELTOUPYLKH amodotikdtnta eivat
KaBoploTikng onuaciog. OL Stapopdwoelg bare metal, wotdco, pnopel va mpoTipwvTal o TAaloLa
TIOU amoutolV Tn HUEYLOTN UTIOAOYLOTIKN amodoon He otaBepd XopaKTnpLoTka doptiou. Auth n
£€peuva oUVELODEPEL OTNV EVPUTEPN KATAVONON TWV APXLTEKTOVIKWY KATAVEUNUEVOU UTIOAOYLOMOU,
npoodEpovtag MANPodopleg yLa TIG EMUMTWOELS TOUG 0TOV OXeSLAOWO Kal T BeAtiotonoinon uPnAng
anodoonc, kKAakwoluwy dashboard yia dtadopoug eviladepOPEVOUC KAl TTIEPUTTWOELS XPHONG.

Né€erg-kAewbLd — dashboard, pnyovik pabnon, kotavepnuévog umoloylopdg, Kubernetes, bare
metal, Apache Spark, containerization, aviyveuon meplotatikwy, avdiuon amndédoong,
KALLOKWOLULOTNTA, XPHon TOpwv

Abstract

This research explores the performance trade-offs between containerized and bare metal
environments for running Apache Spark applications, specifically focusing on incident detection
dashboards. Distributed computing, a cornerstone of modern data-intensive applications, presents a
spectrum of deployment options, each with distinct advantages and challenges. This research delves
into the theoretical underpinnings of distributed computing, containerization, and bare metal
implementations, setting the stage for a comparative analysis grounded in performance metrics,
scalability, resource utilization, and operational complexity.

A series of experiments were conducted using Apache Spark to execute machine learning algorithms
within both containerized and bare metal settings. The evaluation criteria were designed to reflect
real-world multi-tenancy application demands, emphasizing the responsiveness and scalability of
visualization dashboards crucial for incident detection. The experimental results reveal that while
containerized environments offer enhanced scalability, deployment flexibility, and reduced
operational complexity, they incur a minimal performance overhead compared to bare metal setups.
Conversely, bare metal environments demonstrate marginally superior computational efficiency,
attributable to direct hardware access, albeit at the cost of reduced flexibility and lack of fault
tolerance.

The research concludes that the choice between containerization and bare metal for Apache Spark
deployments hinges on specific application requirements and context. Containerized environments
are favored for their adaptability in cloud-based, multi-tenant scenarios, where scalability and
operational efficiency are paramount. Bare metal deployments, however, may be preferred in
contexts demanding maximal computational performance with stable workload characteristics. This
research contributes to the broader understanding of distributed computing architectures, offering
insights into their implications for the design and optimization of high-performance, scalable
dashboards for diverse stakeholders and use cases.

Keywords — dashboard, machine learning, distributed computing, Kubernetes, bare metal, Apache
Spark, containerization, incident detection, performance analysis, scalability, resource utilization

EuxapLoTiec

AuTtn n SuTAwpaTIKA epyacia pou mpooédepe TNV eukalpla va pPeAeTriow Babutepa Staddopa BEpata
ond tov Topéa Tou Katavepnuévou umoAoylopol Kol va AdBw pia yelon amo TV €PEUVNTIKA
Sladikaoia. Euyaplotw Bepua tov srPAémovia Kabnyntr pou K. Fewpylo MkoUpa, avormAnpwtn
kaBnyntr E.M.IM., mou katd tn Slapkelo TG doltnong pou, Hou KaAllépynoe to svSladépov ota
AELTOUPYLKA TUCTAUATO KOL LOU €5WOE TNV eVKALPla VA EKITOVAOW QUTAY TNV SIMAWHATLKA UTTO TV
eniPAen Tou.

INUAVTIKOTEPOL OTNV MOPELA LOU O QUTO TO MEVTAETECG TAEiSL aAAd Kol oTtnVv umtoAoLmol {wn pou sivat
I OLKOYEVELQ oU. TOUG EUXAPLOTW YyLa TNV othpLér Toug og KAOe HoU BrUa KoL TLG UTIEPOXEC OTLYHEG.
Euxoplotw Kol Toug pidoug pou yla ta aféxaota GoLTnTIKA XpovLa.

Mapyapita EAévn ToapumomnoUAou

MapTtiog 2024

Contents

EKTETapEVN TEP NN OTO BN NNV e, 1
1 INEFOAUCTION ..o 22
11 YU][Tot P OTT P PTUOTUPPOTPUPTRUPPTRO 23
1.2 SEFUCTUNE e sa e 23

2 Theoretical DaCKGrouNd ..o 25
2.1 Brief introduction 10 the CONCEPLSvviiieiiee e 25
2.1.1 Distributed COMPULING.....ccuieeeeeieeicciee et e e e e e st e e e s ate e e e snsee e e snnteeeesneneeas 25
2 Y Vo - 1ol o [o - SR 26
2,13 BAr@ MELAl. . 28
2,14 ViIrtU@lIZatioNn c..eeeeeeeeieeeeee e e 28
2.1.5 Containerization........cciiiiiiiiiiiiiiiii s 28

2.2 Advantages and disadvantages of each configuration.........ccccceveieeincec e, 28
23 PrevioUS STUTIEScocveiiieieeeee ettt st re e n e e n e e 29

3 IMIOTIVATION ..ot 31
4 Distributed Processing and Maching LEarningccocoveveiininieiene e, 33
4.1 Frameworks for distributed pProCesSingcoccveeiiiieieiiee e 33
4.2 Kubernetes and KUbernetes in SParkoeeeccveeieiciei s e e e e e e 35
4.3 Performance comparison of different architecturescccocoeeeviie e, 36
4.3.1 Containerization vs Virtualizationcccccoiirieiiinininieneeceee e 36
4.3.2 Containerization vs bare Metal........c.cceceviriiiiiiininiee e 38

O APDPIOACH .ot 40
5.1 Case: multiple possible configurations for visualisation dashboard in a multi-tenancy app40
5.2 DAtasEt.. it 41
5.3 E=To [0 LT =T 4 aT=T) o3P PPPPPPRt 42
5.3.1 MURIPIE @lGOTTtNIMS e e e e e e e e e e s rre e e e e e e e e s naraaeeas 42

5.3.2 Cloud Native / POrtable.........oooviieeeie ettt et et ere e eve e e 43

5.3.3 Non-functional / performance reqUIr€mMeNnts.........cceccuerereeeerieseseeeese e sre e sre e see e e see e 44

6 EXPErimental SELUP........coiviiiiiie ittt nne e 45
6.1 [DL=T ol] o] { o] o DO PP PP PPPPPPUPTN 45
6.2 YT [O TP TUUPTRUPPTPO 45
6.3 FA F={o] a1 o 4 o TP OO R T PUPPPPRRTOTPT 45
6.3.1 RANAOM FOIESt..ciiiiiiiiieiie ettt ettt ettt et et e st e e s bt e e ateesabeesabeesabaeesabeesabeesnbeesnsns 45
6.3.2 MUIIQYEI PEIrCEPIION .oiiueiiiieeeee ettt ettt e sate e st be e st e e sbaesbeeessbeesnbeeeneas 46
6.3.3 Multiclass LOZIStIC REGIESSIONeiiiiiieeieiieeeeciee e e stee e esee e e e see e e sate e e e sate e e e snseeeeennseeessneneens 46
6.3.4 D TTo K] Lo o T I = TR PPP PP 46
6.3.5 NAYVE BaYeS ClasSifier...ccciiiiiiiiiiiiecier ettt e et re e s e e e ee e s et ee e e st e e e e e naeee s 46

6.4 (@70) = (VT = 1 o o 1= SRS 47
6.4.1 Bare Metal —SiNGIE PC ... ettt e e e st e e st e e e e e e et e e e e e naeee s 47
6.4.2 Kubernetes —one Node Spark CIUSTENueiiiciieiiiiee e 47
6.4.3 Kubernetes —two N0de SPArk CIUSTENcc.vveiiiciee e e 48
6.4.4 Kubernetes — four node spark ClUSTEr.........oeeieeiiee e 49

A 21 1 RS PSR 51
7.1 Table with algorithms and performances, for multiple configurations..........cccccevevveivceeennee. 51
7.2 Analysis and iNterpretation ... 55
7.2.1 PerformManCe COMPAIISON.cciiiiieeeiiieeeecteeeeeitreeeestteeeestteeeestreeeesnbaeeesantaeeesasseeeesnreeeessraeens 55
7.2.2 Interpretation aNd CONSEQUENCESuiiiiieeeeiiiiieee e e e eecictrrree e s e e e srrrree e e s e e e sseaaraaeeeeeessnnsraneeas 60
7.2.3 Comparison based on the types of MOdelS........eeeeieiiiiiiiieieccee e 63
7.24 MemMOTY FlUCTUTIONS. ...eeiiiieee ettt ettt etre e e st e e e stre e e e e tb e e e e etaeeeesnbaeeeearaeeeenreeens 64

ST B TS0l 011 o] BTSRRI 65
8.1 PITOIMANCE ettt ettt ettt ettt ettt e bbb ebe e beebeebe e 65
8.2 Performance - POrtabilitycocveiieiieee ettt e enres 65
8.3 ManagemMeENt OVEINEAMcociiei ettt et e st re e e e sab e e e e eareeeesnbreeeeenrees 66

O CONCIUSIONS .. 68

9.1 SUMIMIAIY <.ttt ettt ettt e e e ettt e e s e e e a bbb e e e e e e e e nnb b e e e e e eeeaannebbeeeeeeesaannnbbaeeeesessannnrrneees 68

9.2 Trade-off between performance and portability — management overhead...........ccccceeeueeneen. 69
9.2.1 FOr a SPeCifiC ZOOM IBVEI ..cooueiiiieieeet et e b e e 69
9.3 FUBTUIE SUZBESTIONS. ...ttt e s e e e s e s s b e et e e e e e s s snnrrneeeeeessannnes 70

271 o] 1ol =T)Y SR 71

KataAoyog ZxnUatTwyv

1.1-1: APXITEKTOVLKN KUDEINETESviiuiiiiieiieitieiteiees ettt ettt et et e e st et a et e e sbeesbaessaesseessaesssesseesseesnsesneas 5
1.1-2: Avamnapaotoon 3 epappoywy oU EKTEAOUVTAL O 3 SLULPOPETLKA CONLAINET. .cvvvveverererererererereeeeeene, 6
1.1-3: Avamapdotoon TpLwV PapLoywy ToU KTEAOUVTAL O TPELG SLOPOPETIKESG ELKOVLKEG LUNXAVEG........ 6
1.1-4: Kubernetes - spark cluster TeaoApwY KOUPBWV: PON EKTEAEGNG ..uveeuveereeieeieeieeieereesieeteesteeeeeseenns 13
1.1-5: Heatmap XpNoNG UVAING OVAL KOMPBO .ee.uvieeveeeereeieieesteeeteeestteessteesssesesnsessssesssessnsesessssesssessssessnsesensns 17
1.1-6: HEAtMaP XPOVOU EKTEAEDTIC . uvveerreeureerureeereeestreessreessteeesesessseessseesssesasesessssesssessnsesassesessseesssessnsesanses 18
1.1-7: ALOYPOUULOL ETILTOAXUVOTG cuvveeerrreerereessreessreeasesessseesssessssesassssessssesssesssesansesessssesssessnsessssesesssesssessnsesenses 19
1.1-1: Bar chart showing the volume of data created and replicated worldwide.ccccccvevvieeencierennen. 22
2.1-1: A distributed system connects processors by a communication network.ccceeeeeeevcerevicienenns 25
2.1-2 Interaction of the software components at @aCh ProCeSSOr.ccuvvviiiriieriieeriieeee e 26
2.1-3: Benefits of having Apache Spark for Individual CompPaniesccocveeriierieeniee e 27
D R Y Y AV ol o 11 =Tt { U PP SUSPTPPPPPR 27
4.1-1: Database system architecture for distributed cOMPULINGooeoviiiiiiiiiiiccee e, 33
4.1-2: Schematic of a general framework for distributed computing.ccccocvvviiiiieenci e, 34
g R T V2 =T 0\ | Yol oV =Y ox o U SR 35
4.2-1 KUDErnetes ArChit@CIUIEuii it et e e et e et e e sab e e sabeesbeeeneeesaeeas 36
4.3-1 Representation of three apps running on three different containers.........ccoccvevceeievce e, 37
4.3-2 Representation of three apps running on three different virtual machines.ccccccovevviveieeencnenn. 38
6.4-1: Kubernetes - one node spark cluster: EXecution flOWccccueieiiiiiieiiiiei e 48
6.4-2 Kubernetes - two node spark cluster: EXecUtion fIOW..........cccoveieiiieiieiiiiec e 49
6.4-3 Kubernetes - four node spark cluster: EXecution flOWcccviieiiiiiieiiiiei e 50
7.1-1: RaNAOM fOr@St MEMOIY USAEE ..eeeecuveeeeeireeeeitteeeeereeeeeetteeeesetreeeesbreeeesataeeeesstaeeeensseeesatasesensraeeesnsreeens 53
7.0-2: IVILP IMEIMOTY USQEE «.eeeeererererrereeeeeeeeeeeeteeeeeeeeeeeeeeeeeesaeeeeeeeeeeaeeeeteee.........————————————.—............——————. 53
7.01-3: IMILR IM@IMOIY USAEE «evevtrrrrrrrrretrreerteteteteeereeeeeteeeeeeeeaeaeeeeeaeee..—...——————.....ta.e.eeeee.tea.taaeteeteeaatrrrerrrarrrnsnnns 54
7.1-4: DECiSION trE8 MEMIOIY USAEE ..uviiiiiiisiuurirteeeeeesiiurtrteeeesessaasrereeesssssmmisseteseessssmmmsmreseesssssmmmseeseeeessssnnnsns 54
7.1-5: NQIVE Dayes MEMOIY USAEE....uuiiieiiuieeeeiiieeeeiiteeeeitteeesstteeeessateeeessaeeessstaeeessstesessseeeassssessesnssesessnsseees 55
7.2-1: Random Forest bar graphs of re@SUILSoociiii i e e 56
7.2-2: Multilayer perceptron bar graphs Of FESUILScccveiiiiiiie et earee s 57
7.2-3: Multiclass logistic regression bar graphs of reSUItS.........eeeivcieiieiiiiiieee e 58
7.2-4: Decision tree bar raphs Of FESUILS........ccvviiiiiriee ettt e e e e etae e e e eabaeeeeeabeeeesnreeens 59

7.2-5: Naive bayes bar graphs Of FESUIS........cccvii i e rae e e saree s 60

7.2-6: MemOry USage HEatmMaPuueiiiiiiiiiiiiiiiiee ettt et e e e s s e sttt e e e s s s anb et e e e e e ssaannnreneeeesessannnes
7.2-7: EXeCUtioN TiMe HEatMap ...ueeiiiiiii et e e e s e e re e e e e e e s e nnnes

7.2-8: ACCEIEratioN dIABram .. . ii ittt ettt et ettt e st e e st e e s bee s bee e abeesabeesbeeenbbeesabeesbeeans

KataAoyoc Mvakwv

1.1-1: AEMTOUEPELEG CUVOAOU SESOUEVIIV LLE ATUXITLOTO 1vvervverrrerererereseeesseesseesssesssesssesseesssesssesssessssssssssessees 8
1.1-2: TTIVOKOG OTLOTEAEGLATUIV ..veeuveeureeureenreereeeeesseesseeseeseenseessessseenseesesnsesnseensesssesssesnseenseensesnsesssesssesnsesnes 14
5.2-1 US-Accidents Dataset Details...........eoiiieiiiiiiieeieeee et 41

51

2 R R ST U1 £ =] o =P

Ektetapevn ntepiAndn ota EAAnVIKQ

Elcaywyn

AVTIKELLEVO TNG SUTAWMATLKAG

To avtikelpevo autng tng €peuvag sival va afloloynoel Tnv andédoon tou Apache Spark otav
ovantuoosTal o containerized meplBal\ovta o avtiBeon e tig puBuioslg bare metal, WSlaitepa oto
TAQLCLO TNG OVIXVELONG TEPLOTATIKWY. AUTEC OL SUO OPXLTEKTOVIKEG OVATTUENG AVTUTPOCWIEVUOUV
Sladopetikég pebBodoloyieg otn Slaxeiplon edpappoywv PEYAANG KAIHaKaG, N KaBepia pe Stokpltd
odEAn Kol mepLOPLOUOUG.

OewpnTtiko unofabpo

Z0VTOMN ELOOYWYN) OTLG EVVOLEG

Katavepnpévog UMOAOYLOHOG

To mebio TOU KOTAVEUNUEVOU UTIOAOYLOHOU KOAUTITEL HLOL EUPEL YKAUO UTTOAOYLOTIKWY
MAPASELYUATWY KAl HOVIEAWV TpooPaocng MAnpodopLwy ToU eKTelvovtal o€ TMOAAMAA oTolxeia
enefepyaoiag ouvdedepéva peEcw SLadpopwV PHopdhwv SIKTUWV ETLKOWVWVIOG. AUTA Ta SiKTua pmopst
va KOAUTITOUV TOTKA TepLBAlovta i va ektelvovtal oe eupuTEPN TIEPLOXT], TIapouoLalovtag va
TIOLKIAO TOTTiO yLO TOV OXESLOOUO KOL TNV UAOTIOINON KATOVEUNUEVWY CUOTNUATWY. H KUpLo TTpOKANoN
OTOV KOTOVEUNUEVO UTIOAOYLOMO ElvVOL O QIOTEAEOUATIKOG OUVTOVIOMOC Kol Slaxeiplon Ttwv
UTLOAOYLOTLKWV £PYACLWV Tou Slavépovtat og §1adopouc KOUBOUG, TPOAYoVTaG Th CUVEPYAaia KaL ToV
napaAAnAlopd, evw avtetwrilovral InTARATO OTWE N avox OOARATWY KAl N KALLOKWOLLOTNTA
(Chaisawat & Vorakulpipat, 2020).

Apache Spark

To Apache Spark elval éva MAQICLO KATOVEUNUEVOU UTIOAOYLOUOU avolytol KWOKA Tou €XEL
oxedlaotel ylwa tnv enefepyacio HeyAAwvV CUVOAWV SeSopévwy Kal TNV eKTEAECn TOAUTTAOKWV
£pyaclwv avaluonc dedopévwy. NMapéxet pa sVEAKTN TAATHOPHA YLaL TNV KATAVEUNUEVN eTieEepyaaia
Sebopévwy, MPoadEpovTag XapakTnPLOTIKA OMwe N amobnkeuon Sedopévwy otn pvAun, N avoxn
odaApATWY Kal N uTtootApLEn Sladopwy YAWooWV IPOYPOUUATIOHOU.

To Spark Asttoupyel Baolopevo otnv £vola twv Resilient Distributed Datasets (RDDs), ta omoia
elvat katavepnuéveg cUANOYEC SES80UEVWY TTOU UItopoUV va ele€epyactolVv mapdAAnAa og éva cUVOAo
unxavnuatwv. Ta RDD emutpénouv oto Spark va Soxelpiletal amoteAeopatikd tn dlaipeon, tn
Slavopn Kol Tov UTOAOYLOHO Twv Oebopévwy, KaBLoTwvtag To KATAAANAO yla €pyacieg Tou
Kupaivovtal amno tnv enefepyacio S€60UEVWY TTAKETWY WG TN pon SE60UEVWV OE TIPAYHATLKO XPOVO
(K& G, 2022).

Bare metal

H ulomoinon bare metal meplappavel tnv ektéleon edappoywv ameubeiag oto GpuoLkd UALKO
XWPLG Kovéva evlLAPECO OTpWHA. H OKATEPYAOTN UTIOAOYLOTIKNA LoXUG KOl TOo AAXLOTO TpOcHEeTO
doptio mou oxetiletal pe edappoyEg bare metal Tig kKaBLoTOUV LIl CUVAPTIOOTIKA €TAOYN, WOlaitepa
yla edappoyeg mou amattouv VPNAnR amodoon (Lee & Fox, 2019). Qotdco, oL MPOKANOELS TOU
oxetilovtal pe tnv enektaclpotnTa (Zhang et al., 2020) kal TOV KOLWVOXPNOTO XWPO TIOPWV TIPETIEL VOl
€€ETAOTOUV TTPOCEKTIKA.

Elkovormoinon

H ewovomoinon mepthapBavel tTn dSnuioupyla eKOVIKWY TEEPLRAANOVIWY UTTOAOYLOTIKWY TTOPWV
EVIOG €VOC HOVO uolkol UToAoYLoTH. H €LKOVOTIOINON EMITPEMEL TNV TAUTOXPOVN EKTEAEDN
TOAMOAMAWY AEITOUPYLKWY OCUCTNUATWY Of £VOV UTIOKEIPEVO emefepyaotr). XToVv TOPEQ TNC
glkovormoinong, ot cupPBaocpol petally amopdvwong, mPapuvong MOPWY Kal KALUOKWOLULOTNTAG
vivovtal kplopeg ektunoetg (Campbell & Jeronimo, n.d.).

Containerization

To containerization €xeL amokTAoel HeydAn onuacia AOyw TNG LKAvOTNTAC ToU va eVBUAOKWVEL
edapUoyEC Kal TIG €0pTAOELG TOUG O eAadpLeéG, PopnTEG Lovadeg mou ovopdlovtal containers. To
Docker kat to Kubernetes givatl kevtplkd og auto to mopadelypa, SteukoAuvovtag tn dnuloupyla, tnv
avamtuén Kal tnv KALakwaon containerized epappoywy. TG EMOUEVEG eVOTNTEG, Ba e€eTGOOUE TOV
QVTIKTUTIO TNG containerized apxltektovikng oto Apache Spark o€ Kkatavepnuéva UTIOAOYLOTIKA
niepBAAAovta, eEEPELVWVTAC TTWE EMNPEALEL TTAPAYOVTEG OTIWG N ANOS00N, N KALOKWOLLOTNTA KAl N
gukoAia avamtuénc. Katavowvtog tig AemTopépeleg TNG containerized apyITEKTOVLKAG, UMTOPOUUE va
KotaAdBoupe KaAUTEPA TOV POAO TN 0TO oxNUaTopd multi-user edappoywv kat toug cupBLBacpolg
TIOU CUVETAYETAL N UL0BETNON TNG TEXVoAoyiog auTnC.

MAgoveEKTAMOTA KOl LELOVEKTAMOTA TNG KAOE QPXLTEKTOVLKNG

O puBuioelg bare metal Eexwpilouv otnv anddoaon, mpoodEpovtag Apecn TPOcBacn oTo UALKO,
YEYOVOC TO 0oToi0 wdheAel TIC epapLOYEG TTOU ATALTOUV €VTOVO UTTOAOYLOUO, E €Val TILO ATTAG OT OO
yla otaBepég amattioelg (USENIX Association., 2003). Qotoco, n €Mewpny toug oe eueAifia Kal
KAlLOKwoLLoTNTa, rmopel va eival damavnpn yla moikla doptia epyaciag kal pmopel va €xet
uPnAOTEPOUG XPOVOUG cuvtnpnong. H elkovomoinon mapéxel Loxuprn amopovwon, achalsla Kot
adaipeon VALKOU, ETUTPEMOVTAC TN SUVALKY KOTAVOUI TIOPWV KOl TNV EKTEAEON 0 Sladopa UALKA,
oA urtodEpel amd évtacn Mopwv, MBOVEC amwAeleg amtddoong Kat MoAUTTAOKOTNTA OTn Slaxeiplon
(Bhardwaj & Krishna, 2021). To containerization evBuAakwvel epapUoyEg Ue TIG e€QPTHOELS TOUG OF
ehadpla, dopntd containers, MpoodhEpovtag amoSoTIKOTNTA TOPWY, TAXELD avATTUEN Kal avoxn
odaApdatwy. QoTo00, avtlleTwrtilel KlvdUvoug aodaleiog amd kowvad nuprveg AZ, TOAUTTAOKOTNTA OTN
Slaxelplon peyaing kAlpakog Kat emupapuveon anodoonc os oUykplon He To bare metal. KaBe puBpuion
napouctdlel évav oupPlBacpd petafl amoddoong, eueAlflog Kol gukoAlag Slaxeiplong,
ovTeTwrilovtoc SLapopPETIKEG OVAYKEG KaL TIEPLOPLOMOUG.

Kivntpo Epyaoiag

H auvfavopevn {Atnon ywa dashboard otov koopo mou Poaociletal ota dedopéva, WBiwg yla
edappoyec omwe n mpoPAedn kukhodoplag kat n avixveuon MePLOTATIKWY, KOBLOTA amapaitntn T
tayeia emetepyaociao Sedopévwy Kat TNV armodoTikn AEToupyia LOVTEAWY UNXAVIKAG Labnaonc. Qotoco,
TO KEVIPLKOTIOLNUEVO CUOTHUOTO Of €vov HOVO UTIOAOYLOTH OUXVA Umod€pouv amo {nthRuata
amod0oon¢, TPOKAAWVTAG APYEG OTTIKOTIOLNOELG KOl LEYAAOUG XpOVouG avapovic. OL mmivakeg eAéyxou
Xpnotluomnololv Suvaptkeg "push" kat "pull” yia mpaypatikol xpovou evnuepwoel SeSopevwy. ITny
npoPAsdn kivnong, ta dashboard AsttoupyolUv oe katdotaocn "pull", émou kdvouv aitnua yla
TiPOPAEPELG O CUYKEKPLUEVEG TIEPLOXEG, 0ONYWVTAG OTNV EKTEAECT QAYOPIBUWY UNXaVIKAG pabnonc.
ATO TNV GAAN TTAEUPA, OTNV AVIXVEUON TIEPLOTATLKWY, XPNOLUOTIOLETAL Ul Tpoogyyian "push”, dmou
oL aAyoplBuol AsltoupyolV avefAptnTa Kol cuveXwg, evtomilovrag Kol avadEPOoVToC MEPLOTATIKA
KaBw¢ ocupBaivouv. AvTlUeTwI{oVTOG QUTEC TIG TIPOKANOELS, N ULOBETNON TNC KATAVEUNUEVNG
enefepyaoiag PeATIWVEL ONUAVIIKA TNV OVIOMOKPLON TOU OUCTAUOTOC EMITPEMIOVIOG TNV

KOTAVEUNUEVN €KTEAECN HOVTEAWV UNXOVIKAG HABNong, ekpetaAAeuopevn tnv unodoun cloud yla
gueltia, KAlLaKwOoOTNTO Kal avtoxr o odpaApota. H Hetdfoon oTov KATOVEUNUEVO UTIOAOYLOUO,
SleukoAuvopevn amd texvoloyieg OMwG To containerization, otoxeUel otn BeAtiwon TNG XPNOTIKOTNTOC,
N Melwon TwV XpOVWV OVAUOVAC Kol TNV amodoTikn Sloxeiplon Twv mopwv. AUt N TPOCEYYLON
afloloyel TNV ektéAeon aAyopiBuwv pnxavikng padnong os epappoyEC aviyveEUONG MEPLOTATIKWY,
urnootnpilovtag ta Katovepnuéva rmeplBarlovia mpo¢ PBeAtiotomnoinon tng amodoong Kol TG
OVTATOKPLONG, Kal Tovilel tn ocuvepyooia UeTafld Katovepnuévng emefepyaciog Kal TeXVOAOYLWV
containerization otnv avamtuén uPnAng amodoong, KAlpokwolpwv dashboard ywo Siddopoug

stakeholders ko use cases.

. - -
v 75, L
. %, T
i a LoV 04, &
& %b*o d’o, 4 P
55 e 0l Y77
bR 1 e Y, 2 £083
{ 3
I gg 4
SUTIONA &
J
o & f
| A P) ¢ a
Gy 2 $ 4o, N &
@ ‘A S
A=)
3
=

>
Y ‘(
& o g, ol
& UAOE a by
2) © 3 Uy
i XaAAvépL *ey .
o P 8 L A (3
S \ -3 Qe
ﬁ,. & A B $17g,
é a" !)QU
S &
497 nar
S wapd!
32
2 & g2
> @, & iy 2
e ol £ S q
W & Fo
iS5 1 o) © X |
5] A
= 8
<ok 3
_.‘,zv‘ H
s FC 2
% e
32 v.";""dg' i
] E"‘& Y B 4
& RKd cora) £ EOS54
by
& Nz Uit)
\ YL PN 2
% = S
i % & 7
% Z
% 2
ToupkoBouvia %
321'm Y O\ 1
b AQ DV
3 f,g,/_ moupyelo, NS 2
SNEKU Z 2 : X
& & /. %5 & %, T
0t “Angoo) <. O ¢
s %
£:

FORI

1.1-1: Ewova ano to dashboard tou épyou FRONTIER, 6mou ¢aivetal n ontikonoinon KAnowwv
OLVLYVEUMEVWV TPOXALWV aAVWHAALWY

Katavepnuévn Enegepyacia ko Mnyovikil Maénon

M£0BodboL yLa Katavepnévn enefepyaoia

Ta mAaiola katavepnuévng enefepyaciag ivatl moAa kat xwpilovtal oe 3 KUPLEC KaTnyopleg, oL
omoie¢ elval ta ocuotriuata database, general kal purpose-built types, kaBéva pe povadikd
TIAEOVEKTNUATO Kol TAaiola epapuoynG Paclopéva oe XPHOELS, AVAYKEG amddoonG Kol KALUOKEG
6ebopévwy (Galakatos et al., 2017).

Ta ovotiuata Bdaocswv Oebopévwy, wg enektdosl DBMS, mpoodépouv OAOKANPWUEVA
niepBarlovta BeAtiotononuéva ya tv évtovn ¢duon Twv SeS0UEVWVY TNG UNXOVIKNAG HABnong,
enwdelovpeva amo ponyuévn dlaxeiplon dedopevwy Kat EAEyXoug cUVOAAaywV.

Ta yevikad mAaiolo arhomololv TNV avamntuén aAyopiBuwyv pnxavikng padnong uécw APl unlou
gmunédou, unootnpilovrag eveliéio Kal KALLOKWOLLOTNTA HE epyadeia Omwe to MPI yla UTtoAOYLOUO
vnAng andédoong, to Hadoop yla epyacieg MapReduce kal to Spark yla in-memory emnefepyaoia Kal
amod0TIKA UTTOOTNPLEN EMAVAANTITIKWY OAYOPIOUWV.

Ta purpose-built cuotiuata eival BEATIOTOMOLNUEVA YLIOL GUYKEKPLUUEVEG EPYAOLES, IPOOHEPOVTAG
anodotkdTnTo aAAA Tieploplopévn eueliia, pe mapadeiypata Onwe to SystemML yia Asttoupyieg
matrix, To OptiML yla ypaputkn aiyeppa katl to Hogwild! yia otoxaotikr kaBodikn BeAtiotonoinon.

Autn n £peuva emikevipwvetol oto Apache Spark, emileyuévo yla tig duvarotnteg ensepyaoiag
oTN UVAMN, TV avtoy o€ obAApaTa KoL TNV €KTETAUEVN UTIOOTAPLEN TNG BLBALOBNKNG LNXOVIKAG
HaBnong mou €xel.

Kubernetes kaw Kubernetes o€ Spark

To Kubernetes eival pia dnpodAng emdoyn yla tnv avamtuén edoppoywv Baclopévwy oe
containers, T000 o€ GUOCLKA pnxavnuota 6co Kal oe nepBarlovra cloud Platform-as-a-Service (PaaS),
AOYW TNC LKAVOTNTAC TOU VAl KALLOKWVEL SUVOHLKA EDAPUOYEC AVTATIOKPLVOUEVO 0€ aAAaYEC dopTiou
epyacioc. Aettoupyel PAOCEL pLaG OPXLTEKTOVIKAG master- worker, 0mou o KUPLOG KOUBOG opyavwveL
TOUG £pYalOUEVOUG KOUPBOUG TTOU EKTEAOUV TLG TTPAYHATIKEG UTtNpeaieg. To Kubernetes elodyel ta pods
W¢ TG BepeAlwdelg PovASEG avaAmTuéng, Ta omola UMopoUVv va TEPLEXOUV €va 1| TEPLOCOTEPQ
containers mou potpalovtal tov (510 Xwpo SIKTUoU, ETUTPEMOVTIAS ATIOTEAECUATLKI ETUKOWWVIO LeETAEY
pods oe SladopeTikd pnyavrpota péow tou Kube-proxy. Ta pods oxedidlovtal vo sival ehadpld,
Intwvtag ouvnBwce gvav uprva CPU A Alyotepo, SteukoAUvovtag tnv eVEALKTN avamtuén o KOUPBoUC
yla va evioxvoouv tnv eueli€io kal tnv aflomiotia tng edappoyng. EmumAéov, to Spark pmopei va
evowpotwOel pe to Kubernetes yia tn Slaxeiplon cluster, émou ot drivers kat ot executors tou Spark
Aettoupyouv péoca oe pods, Slaxelplopevol amno tov scheduler tou Kubernetes. Autr n puBuion
ETUTPETEL TNV QTMOTEAECUATLIKY EKTEAEON Kal KABAPLOPO TNG epapuoyng, e To pod tou 0dnyou va
Slatnpel Ta apxela kataypadng UETA tnv olokAnpwon HéExpL va adalpebel, emibelkviovtag tnv
anodotkdtnTa Tou Kubernetes otn Staxeipion katavepunuévwy edpapuoywy (Zhu et al., 2020a).

Kube-proxy
pod pod
> |
) Container
Container
APl service
slave node
Scheduler
master node Kube-proxy
pod pod
> |
) Container
Container
slave node

1.1-1: Apyitektoviki Kubernetes

Z0ykplon anodoong Twv SLadpopwv oPXLTEKTOVIKWY

Containerization vs Eltkovomoinon

To Docker ypnolpomolel to containerization yla va amopovwvel Slepyacieg, emitpénoviag o€
oA\ amAd containers va Tp€xouv otov (510 UTIOAOYLOTIKO KOUPBO e EAAXLOTO avTiktuTo otnv andodoon.
AuTO oupBalvel emeldn To containerization Aettoupyel oto eninedo Tou Muprva, amodpelyovtog TNV
eMPAPUVON TIOU CUVEEETAL LE TNV ELKOVLKOTIOINON OAOKANPWVY cuotnudtwy. Otav ekKLeltal &va
container tou Docker, n oplouévn Siepyaocia i Siepyaocieg tpéxouv ameubeiag otov UTIOAOYLOTIKO
KOWUBO, Xwplg TNV avaykn ylo AP €lKkovikomoinon. Auto SladEpel Eviova amo TIC ELKOVIKEG UNXAVEG
(VMs), omou n evepyoroinon evog VM meplhapfAvel Tov UTTOAOYLOTH va €LKOVIKOTtolelL oAGKAnpa
cuotnuata, cupnephappovopévwy CPU, RAM Kkat armoBnKeuTikol XWPeou, amoltwvTtag Vo, oOAOKANPO
Aettoupyikd clotnua yo kaBe VM (Bhat, 2018).

Autn n néBodog auldvel onpavtika To ¢optio Twv Mopwy, Kabwg n Asttoupyla VO AELTOUPYLKOU
CUCTAMOTOG EVIOC AANOU CUVETIAYETAL CUCCWPEUON XPRong mopwv. Ta containers potpalovtal Tov
TIUPAVA TOU AELToUpyLKoU cuoThiuatog Tou host, e€aleidovrag tnv avaykn yla EExwPLoTEC eKSOOELC
AELTOUPYIKOU CUOTHMATOC, eVioXUoVTAS £TOL TNV amddoon, BeATloToMolwvTAG T XPHon MOpWVY Kot
MELWVOVTOC TN OTATAAN UTIOAOYLOTLKWVY TIOPWVY. AUTH N amodoTKOTNTa otnVv pocéyyLlon tou Docker
£VOVTLTNG TILO EVTATIKNG O€ TOPoUC dpuong twv VMSs Tovilel Ta MAEOVEKTHATA TOU containerization otn
Slaxelplon kat Tnv avamtuén epappoywy o LELOVWHIEVOUC UTTOAOYLOTLKOUG KOUBOUG.

1.1-2: Avanapdotaocn 3 epappoywv nou ektehovvral os 3 Stadopetikd container.

1.1-3: Avanapdotacn TpLwv eUPHOYWV TTOU EKTEAOUVTAL OF TPELG SLOLDOPETIKEG ELKOVIKEG LNYOVEG.

Containerization vs bare metal

Jtn oUyKplon Tou containerization pe to bare metal yia tig avamtugelg tou Apache Spark, kUpleg
okéPelg mepAapBavouv tn xpnon mMoOpwv, TOUC XPOVOUG €KKivnong, TNV KALAKWOLUOTNTA, TNV
empapuvon amodoong, TV MOAUTIAOKOTNTA Aettoupyiag, tnv eueAiia kal tn dopntotnta. To
containerization £exwpilel oe multi-tenant mepBdaAovia pe Thv amodoTiky Xprion MOpwv Kal TV
anopdvwon nmoAAamAwy epyactwy Spark oto i6lo UALKO. MpoodEpel TaxUTEPOUG XPOVOUG EKKIVNGNG
KOl EVIOXUMEVN KALLOKWOLUOTNTA, TAEOVEKTIKA ylo meplfdAlovta cloud pe Stakupdvoelg dpoptiou
epyaciag. Mapodlo mou To containerization emupépel pa eAadpld emPapuvon anddoong Adyw Tou
OTPWHATOC adalPECNG TOU, AUTO ELvVaL YEVIKA EAAXLOTO’ WOTOCO, VLA EPYACLEC TIOU QTTALTOUV EVIOVOUG
nopoug, To bare metal pnopel va uneptepel ehadpws Adyw TNG Apeong mpocPaocng oto UAKS. Ot
AELTOUPYIKEG TITUXEG €UVOOUV emiong To containerization, mpoodépovrag anlovotepeg Sladikooieg
avarmtuénc, Stoxelplong kot KALLAKWONG o€ cUYKPLON LLE TNV TILO TIOAUTIAOKN KOl OTalLTnTIKA dUon Twv
puBuicswv bare metal.

ErutA£ov, To containerization kepdilel o suehifia kal popnTOTNTA, EMUTPEMOVTIAS OTIC EGAPLOYES
va PeTaklvouvtal eDkoAa og Stadopa neptBarlovta, o avtiBeon pe Tic AUoelg bare metal. H antddaon
uetafy containerization kat bare metal yla to Spark e€aptdrtal amod TG CUYKEKPLUEVESG QMALTHOELG
Xpong, ME TO containerization va toapldlel oe oevapla cloud kat multi-tenant yw tnv
KALLOKWOLUOTNTA KAl TN AEITOUPYLKN amodoTkoTnTa, Kot To bare metal va sivat o kotdAAnAo ya
otaBepic, uPnAng INtnong epyoaocieg mou amnattolv dpeon cAANAETiSpacn e TO UAKO.

JUVOTITIKQA, Ol TIAPOATIAVW CUYKPLOELG €xouv BE0EL Lol oTEPEN BAoN YLO TO ETMIKEVTPO QUTAC TNG
£€pELVOC OTNn oUYKpLoN UeTafy containerization kal bare metal oto mAaiolo tou Apache Spark. Evw n
evotnta 4.3.1 opilel ta mMAgovekTAATA TOU containerization évavtl tng elkovonoinong, Wolaitepa 6cov
odpopd TV armoSoTIKOTNTA TTOPWV, TNV KALLOKWOLLOTNTA KOL TN AELTOUPYIKN arAdTNnTa, N evotnta 4.3.2
TovileL Toug cupBLBacpoUC petafl Twv avantlEswy containerization kat bare metal. Eival pavepo ano
OUTEG TIGC oulnTNOElg OTL TO containerization, ota meplocOTEPA Oevapla, TIPOOGDEPEL UL TILO
LOOPPOTINEVN TIPOCEYYLON, UTIEPTEPWVTOG TNG ELKOVOTIOINONG 600V adopd TN XPron MOpwv Kot Tn
Aettoupyikn akpiBeta. Autd poag odnyel otnv dueon cUykplon HeTaEy containerization kat bare metal,
KaBwg elval o KatdAAnAn ylo auth tnv épeuva.

MNpooéyylon

Nepintwon: noAAanA£g mBaveég Stapopdwoelg yia to dashboard

omnrtikonoinong o€ pa epoppoyr MTOAAATAWY KOUTOXWV

e multi-tenant edoappoyég, ta dashboard omtikomoinong MpEMeL va €ival QVTATIOKPLTIKA Kol
KALLOKWTA, ETUTPEMOVTAC OTOUG XPNOTEG Vo aAANAETLOpOUV AMOTEAECUATIKA HE oUVOeTa oUVoAQ
Sedopévwy. Autd amaltel pLo Aemtr LoopporTtia SLatnpnong TG aKePALOTNTAS TWV SESOUEVWVY KL TNG
omopdvVWeong TG UNNPEoiog eVw MOPEXETOL LA ATIPOCKOTTN eUMELpia og S1adopeg BAOELS XpNOTWV.
o val QVTLUETWITLOTEL AUTO, N £peuva auth e€epeuvd SU0 UAOTIOLAGELG LOVTEAWY UNXOVIKAG LABnong:
N uia oe €va containerized meptBdhov Apache Spark yia tnv KAlpakwowwotnta Kot Ty eveliéia
avamtuéng tou, kot N AaAAn oe bare metal yw t peylotonmoinon TNG UTOAOYLOTIKAG SUVAUNG
e€aleidovrag to emMuUTA£oV KOOTOC TOU containerization.

H afloAoynon auvtwv twv Slopopdwoswv meplhappavel tmv availuon tng amdédoong, Ing
KALLOKWOLLOTNTAG KL TNE XPNoNng mopwv, pall pe tn dtacddalion tng amopdovwong SeSoUEVWV KAl TNG

oodalelag. MPAKTIKEG TTUXEG OMWC N EUMELPlA XPHOTN, N CUVIAPNON TOU CUCTAHOTOG KAl N
KOOTOAOYIKI amodoTkotnta eival eniong Kpiowleg, emnpealovrog tnv emthoyn Petafd tng eveli€iag
plag containerized Stapdpdpwong kat tig Suvatotnteg anodoong tou bare metal. Tehkad, autn n
anodaon ennpedlel CNUAVIIKA TNV amoteAecpatikotnta Twv dashboard omtikomoinong o multi-
tenant edappoyég, kabodnywvtag mpo¢ ula BéAtiotn Slapopdwon mou ocuvdudlel amddoon,
KALLOKWOLUOTNTA KOL LKAVOTIOINoN XPNOoTn Ot TEPUTAOKQ, TPOCAVATOAIOHEVA ota Sedopéva
nieplBaiiovra.

Z0voAo Sedopévwv

To oUvoho &ebopévwv «US-Accidents» amo to Kaggle, mou mepllapPavel mepimov 2.97
gKaTOPpLpLA KataypadEC Tpoxaiwv atuxnuatwy ot Hvwpéveg Moliteleg amo tov Qefpoudplo Tou
2016, xpnotueLel wg Bdon yla tnv afloAoynon tng anddoong aAyopiBuwv pnxavikng uabnong otnv
OVIXVEUON TIEPLOTATIKWY. JUYKEVIPWHEVA HEOW OSladopwv TNywv, CUUTEPIAAUBAVOUEVWY TWV
TUNUATWY peTadOopwV TWV TIOALTELWY Kal TwV alodntinpwv kukhodopiac, auto to oclvolo Sedopévwv
TIPOOPEPEL AETITOUEPEIG TIANPOPOPIEG Yl TA ATUXNUATWY, KaTaysypopupévee o popdn CSV ue 45
XQPOKTNPLOTIKA OTIWE N gofapdtnTa TOU ATUXAATOC, Ol CUVTETAYMEVEC TOMOBEGIOC KAl Ol KOPLKEG
ouvOnkeg. H ektetapévn KaAuPn tou cuvolou dedopévwy os 49 moAlteieg kat Ta Siadopa oevaplo
atuxnUatwyv mapéxouv pla otifapn Baon yla avaluon, unootnpilovtag tov oToxo TG HUEAETNG va
afloloynoet 51apopeg UTTOAOYLOTIKEG SLOUOPPWOELG OTNV AVIXVEUCH TPOXOLWY TIEPLOTOTIKWV.

Ma va emtpamnel pla evOeAEXNG CUYKPLTIKN avAaAucn, To cUvolo Sedopévwyv Stapepiletal pe
T(POCOXH KOl EUMAOUTIZETAL e EMMAEOV AEMTOUEPELEG OTIWG N KATeLBUVON TNG KUKAodOoplag, o Kapog
Kol Ta onuela evSladépovtog, emikevtpwvovtag o€ TOAELS e SLadopeg ocuvOnkeg kukAodoplag Kot
KapoU yLa Lo Looppomnpeévn e€€taon. KaAumrtovtag tnyv nepiodo amnd tov lolvio €wg Tov AekEUPpLo
Tou 2018 yia va AndBouv undyin oL EMOXLAKEC EMLOPACELG, TO CUVOAO SESOUEVWY TIPOETOLUATETAL IE
113 xpovikd aupeTdPfAnTa Kot TOAUGPLOUO XPOVIKA HETAPRAAAOUEVO XOPOKTNPLOTIKA ylot KABE
Kataypadr, XPNOLLOTOLWVTAS 0pVNTIKA SelypatoAnyia ylo Vo avTIUETWITLOTEL N ovIooppoTTia LeTAEY
TWV TMEPUTTWOEWY ATUXNMATWY KOL 1N ATUXNUOTWY. AUTH N OTPATNYLKN TIPOETOLUOCia amoTeAel T
Bdon ywa tnv ekmaidevon kat tn Soklun Tou TAaloiou TPOPAedNC aTUXNUATWY, HE OTOXO va
£€epeuVNOEL KaL va oUYKpPIvEL SLAPOPEC TTPOOEYYIOELG UAOTIONONG O £VAl KOATAVEUNUEVO UTTOAOYLOTIKO
nieplBaAAov, SteukolUvovtog €ToL TV avamtuén mponyuévwy, vPning amddoong dashboard yia
edappoyec unootiplEng kukAodopiog Siktuou (Moosavi, Samavatian, Parthasarathy, Teodorescu, et
al., 2019).

1.1-1: Aentop€peleg GUVOAOU SE60UEVWV LE aTUXHLOTOL

Katnyopia XapOKTNPLOTLKA

XapaKTNPLOTIKA id, source, TMC, severity, start_time, end_time,

KukAodopiag start_point, end_point, distance, description

XapaKTNPLOTIKA number, street, side (left/right), city, county, state, zip-

AweBuvong code, country

XapOaKTNPLOTIKA KapoU time, temperature, wind_chill, humidity, pressure, visibility,
wind_direction, wind_speed, precipitation, condition

Xapaktnplotika POI Amenity, Bump, Crossing, Give_Way, Junction, _Exit,
Railway, Roundabout, Station, Stop, Traffic_Calming,
Traffic_Signal, Turning_Loop

Nepiodog nuépag Sunrise/Sunset, Civil Twilight, Nautical Twilight,
Astronomical Twilight

ZuvoAwka Atuxnuorta 2,974,336

Atuxnudtwv MapQuest 2,257,521 (75.89%)

Atuxnuatwv Bing 684,097 (22.99%)

ATUXNHATWV KO aro ta 32,718 (1.1%)

Suo

Kopudaieg MoAwteieg California (485K), Texas (238K), Florida (177K), North

Carolina (109K), New York (106K)

Npoamnattovpeva

MNoAAamAoi aAyoplOpot

H evowpdtwon evog ToKIAou oeT aAyoplBuwv UNXaVIKAG pabnong, cupmepAouBavopévwy Tou
Random Forest, Multilayer Perceptron (MLP), Multiclass Logistic Regression, Decision Tree kat Naive
Bayes Classifier, elval kaBoploTikr] 0 QUTAV TNV HEAETN YlA VO KOTOVONCOUME TIC AETTTOUEPELEG
anédoong SladopeTikwy SLAPOPPWOEWY KATAVEUNUEVOU UTIOAOYLOMOU. Autr n peBodoloyikn
enhoyn e€umnpetel otnv oAlotikn afloAoynon nwg Stadpopeg pubuioslg utodoylopol ennpedlouy TNV
anddoaon Tou alyopiBLoU Kol EVIOXUEL TN YEVIKEUGLUOTNTO TWV EVPNHUATWY TNG €peUVAC. OL LOVASLKEG
OMALTACELS UTIOAOYLOTIKAG SUvaung Kal xpnong mopwv kabe alyopibuou mpoodépouv pia supeia
T(POOTITIKA OTLG QUMALTACELS KOTAVEUNUEVNG eMeepyaoiag Kol PvAUNG, Sivovtag pio oAOKANpWUEVN
afloAdynon Twv pyacLwy Tagvopnong Kat maAlvépounong os Stadopa meplBaiiovta. Tuykpivovtag
Vv anodoon StadopeTikwv aAyopiBuwv, n LeAETN oToxeVEL va amokaAUEL cUYKeKpLUEVA trade-offs
KoL avaykoieg PeAtiotomolnoelg péoa oe Sladopes SlapopPpwoel UTOAOYLOUOU, TIAPEXOVTAG
rmAnpodopieg otnv alnAenidpaon PeTafl pyooLWV UNXOVIKNG LAONGONG KOL TWV UTTOSOUWVY TOUG.

Cloud Native / popntotnta

H ulomoinon pag cloud-native kot GpopnTtAg aPXLTEKTOVIKAC yia edappoyeg Apache Spark eivat
koBoplotikn yla ™ Statpnon tng euehifiog Kot amodoTikotnTtae o S1AdOopPEC UTTOAOYLOTIKEG
puBuicslc. OL OSuvatdotnteg cloud-native, ocuupmeplAapfovopévne TG KALLOKWOLUOTNTAG,
OVOEKTIKOTNTAG KOl KATOVEUNUEVNG emefepyaoiog, EMITPEMOUV O QUTEG TIC £DAPUOYEC va
EKUETAAMEVUTOUV amoteAeopatika Asttoupyieg Ttou cloud omwg n auvtépatn KALLAKWON Kol n ypryopn
napoyn. Tavtoxpova, n dopnrotnta Staodalilel Ot oL edapUOYEC UmopoUV Vo AELITOUPYOUV GUVETTWG
oe dladopeg umodopég, amd mapoyxoug cloud €wg Tomika kévtpa SeSOUEVWY, HELWVOVTAG TOUC

KwbUvoug lock-in tou mpounBeutn. Metuyaivovtog auto, To containerization avadelkvUeTal W pLa
Baoukr) oTpaTNYLKH, XPNOLLOTOLWVTOC TEXVOAOYieC 6w To Docker yia va evBUAakwveL edAPUOYES KoL
TI¢ e€0pThOELG TOUG, SlEUKOAUVOVTAG TN CUVETIH €KTEAEON Og omolodnmote neplBaiiov umootnpilet
container.

ErutAgov, epyaleia opxriotpwong onwg to Kubernetes mailouv kpiowo poAo otn Staxeiplon autwv
Twv containerized ebapuoywy, £vioxUOVTOG TNV KALLOKWOWOTNTA Kal ovOekTIKOTNTA TOUG Of
Sladopeg pubuioelc. Qotdoo, TPOKANCELS OMWE N TTOAUTTAOKOTNTA TNG 0pXNOTPWOnNG, N e€acdhaiion
™¢ aodaielag ota meplpaiiovta, n dlatrnpnon tng anodoong Kat n eniteuén cuvenoug dlaxeiplong
Sebouévwy UTIOYPAUUIIOUV TNV AVAYKN YLO TIPONYHEVEG OTPATNYLIKEG KAl TIPOOEKTIKO oXeSLaouo. H
uTépBaon autwv Twv gunodiwv eival ouowwdng yla Tnv aglomoinon Tou MARPOUC SUVAULKOU HLOC
avOektikng, cloud-native kot ¢opntig apXLTEKTOVIKNG ot edappoyéG Boolopéveg oto Spark,
QUTTOLTWVTOG TOGO TEXVLKH 000 KOl OTPATNYLKA ETTAPKELQL.

Mn A£LTOUpPYLKEG amattoeLg / anattioelg anodoong

H SlaopAAion Twv UN-AELTOUPYLKWY QTITOLTACEWVY KAl TWV ATALTAoEWY anodoonc Twv ehapUoywv
TIOU XPNOLUOTIOLOUV KOTOVEUNUEVO UTIOAOYLIOMO He To Apache Spark eival kaBoplotikn, Kot
neptAapBdavouv tnv KAokwowuotnta (Choi et al., 2021) yia tnv avIlLETWON METABOAAOUEVWY
doptiwy, Kal TNV MPOCOPUOOCTIKOTNTA yia Suvaplkn Katavour mopwv. H upnAn Sabeouotnta Kot
0€LoTILOTIOL TOU GUOTAMATOC £lvVOL OUCLWANG Yl TNV EAOXLOTOTIOINGN TOU XPOVOU adpavelag Kal Th
Slatrpnon cuveyxolg, cuvemnoug anddoong (Thiruvathukal et al., 2019). H ebappoyn pémnel va mapéxet
vPnAn avtanokplon kot xaunAn kabuotépnon (Chang et al., 2016) otnyv enefepyacia kol omTIKonoinon
Sebopévwy yla va umootnpifel aptieg eumelpieg xpriotn, pall Pe TNV AmMOSOTIKOTNTA MOPWV yLo
OLKOVOMUIKA amodotikry KAlWAKkwon ot meplBaMovta cloud. Ta pétpa aoddAelag,
cupnepAapuBavopévng tng Kpurmtoypadnong SeSopévwy Kal Twv achalwv eAEyxwv mpooPaocng, lvat
Kplowa yla tnv mpootacia and pn sfovolodotnuévn mpdcPaocn Kal mapaBlaoslg os multi-tenancy
mhaiola (Neves & Bernardino, 2015). H SiaAettoupytkotnta o Stadopo UMoAoYLOTIKA TiepLlBAaAlovTa
(Lokuciejewski et al., 2021), n gUkoAn cuvtpnon TOU GUOTAUATOG, N EVNUEPWOLUOTNTA, KoL N
CUHMUOPOWON KE T BLOUNXAVIKA TIPOTUTIA ELVAL KPLOLUA YL TN LAKPOTIPOBEOUN BLWOLUOTNTA KaL TN
VvOULUN Slaxeiplon dedopévwy (Suneetha et al., 2020). H woxupn napakoAouBnon, n kataypadn yla
BeAtiotonoinon tng anddoong, kat Eva oAokAnpwuévo oxedlo avakaudng ano kataotpodeg (Nagar,
2017), ouuMEPAOUPAVOUEVWY TOKTIKWY avilypddwv oodaleiag kal ocadwv OTPOATNYIKWY
omokatdotacng, eival anopaitnta yla tn SloTApnon TG OKEPOLOTNTAC TOU CUCTAUOTOG KoL TNG
ETIXELPNOLAKNG OpLOTELaG.

Newpapotik POOpLION

Nepypadn

YTO MElPAPA HaG, EKTEAECAUE TOUC TIEVTE eTUAEYUEVOUC alyopiBuoug os éva bare metal kol tpelg
Slapopdwoelg Kubernetes yia va aflodoyriooupe thv amodoon ToU KOTOVEUNUEVOU UTIOAOYLOUOU
xpnoldomnolwvtag To Apache Spark. Autég ol Slapopdwoelg eival ouolwdelg otV UTOOTNPLEN TNG
T(POOTIAOELAG LaG VO AVOAUCOULLE TLG SLadOPEC KAL OLLOLOTNTEC, TAL UTIEP KOL TA KATTA TWV TPOCEYYIoEWV
containerization kat bare metal otov Topéa TOU KOTAVEUNUEVOU UTIOAOYLOLOU.

10

Spark

KaB' 6An tn Sldpkela Twv MelpapdTtwy pag, To Apache Spark Aeltoupyel wg TO KOWO VAUQ,
ETUTPEMOVIAC HOG va afloAoyrocoupe tnv amodoon Kol Tn ocuumepldopd Tou ot SLOHOPDWOELS
containerization kol bare metal. E€etalovtag nweg to Spark aAAnAemidpd pe kabBéva amd autd ta
mAaioLa, OTOXEUOUE VO KATAVONCGOUUE TIG avTalhayEg, To opEAN Kal TI¢ aduvapieg mou cuvbéovtal
UE KAOE TPOTEYYLON OTOV TOPEN TOU KATAVEUNUEVOU UTtoAoyLlopoU. (Salloum et al., 2016)

MovtéAa pnxovikng paénong

Ta emAeyUEVA HOVTEAQ UNXAVIKAC LABNONG €xouv ertAeyel AOyw TNG OXETIKOTNTAG TOUG HE TV
OVIXVEUON TEPLOTATIKWV KAl TNV TOWKIAL Toug O6cov adopd TIG KATNYOPLEG UNXAVIKAG Habdnong.
MNepAaBAVOUY HLa TIOLKIALG TEXVIKWY UNXAVLKAG LABNONG, EMITPEMOVTAG LAG VO AELOAOYHOOUE TIWG
Sladopeg Stopopdwoelg containerization kal bare metal ennpedlouv tnv anoddoon toug.

Random Forest

O aAyoplBuog Random Forest, ekpetalevopevog tnv kKAaon RandomForestClassifier oto Apache
Spark, Eexwpilel oTtnV avixveuon MEPLOTOTIKWY XPNOLUOTIOLWVTOC TIOAATTAA S£VTpa amodAoEwWV ylo va
XEPLOTEL QTOTEAECUATIKA TIOAUTTAOKA, N Looppomnuéva oUvoha Oebopévwy. Mewwvel To
UTLEPTIPOCAPHOYN KOl EVICXUEL TNV akpiPeLa, kabloTtwvtag Tov oAU UoPdLKO yia SLAPOPES KATAVOUEG
Sebopévwy. H amodedelypévn emituxia Tou oTnV avixveuon TpoxXailwy MEPLOTATIKWY HECW avVAAUGNG
TIAPAYOVTWY KOl BAPUTIKWY TIPOCEYYIOEWVY UTIOYPAUUIZEL TNV TTPAKTIKA TOU Xpnoluotnta otn BeAtiwon
TWV anoteAeopatwy aviyveuong (Jiang & Deng, 2020).

Multilayer Perceptron

To Multilayer Perceptron (MLP), ulomownuévo oto Apache Spark péow NG KAAONG
MultilayerPerceptronClassifier, eival éva veupwviko Siktuo kavo va pobaivel amod peydia cuvoia
Sebopévwy yla TNV AVIXVEUON TIEPLOTOTIKWY. ZeXWPLleL otnv avayvwplon mepimlokwy potifwy,
amodelkvuovTtag Th XPNOOTNTA TOU ylo pyaocieg Taflvopnong kot maAwvdpopnong, blaitepa oe
Aemtopepr) kukAodoplakd oevapla (Kongkhaensarn & Piantanakulchai, 2018).

Multiclass Logistic Regression

O Multiclass Logistic Regression, S100£o1po oto Apache Spark, emekteivel Tov aAyoplBuo logistic
regression yia mpoPAEPel moAOmMAWY KAGOEWY, LOAVIKOC yla TNV aviXVEUGON TIEPLOTATIKWY TIOU
niephapBdavouv moMamAolg TUMouG TepLoTaTkWY. H amAdtnta Kot EpUNVEUCLUOTNTA Tou, OMwCg
dalvetal os avadopég aoddalelag, MPoodEPOUV MPAKTIKA TMAEOVEKTHHATA Yot SladopeC epyacieg
aviyveuong (Wang et al., 2017).

Decision Tree

O aAyoplBuog Decision Tree, mou mapouaotaletal oto Apache Spark, mpoodépel éva amAo oAAa
OUTTOTEAECUATLKO HOVTEAO YLO TNV AVIXVEUCN MEPLOTATIKWY KATOTAooovVToC Ta dedopéva pe Baon Tig

11

SOKIMEG yvwplopatwy. H epunveuoluotnta Kal n edpopuoyr) Tou o Kukhodoplakd oevapla
umoypappifouv Tn XpNoLWWOTNTA TOU oTNV Katavonon dtadopwv Tunwy meplotatikwy (Chen & Wang,
2009).

Nayve Bayes Classifier

O Naive Bayes Classifier, mou ulomoleitat and tnv kKAdon NaiveBayes tou Apache Spark, sival
anodoTIKOG yLa TNV avixveuon mepLotatikwy, Wlaltepa pe katnyopikd dedopéva. Mapd tnv amAotntd
Tou, elval QMOTEAECUATIKOC oTn ypnyopn enefepyacio dsdopévwv Kal £xel xpnolponolnbel oe
uebodoug ouvBeong meplotatikwY KUKAodopiag yla BeAtiwpévn aviyvevon (Q. Liu et al., 2014).

ApPXLTEKTOVLKEG

Bare metal — single PC

21N Stopdpdwon Bare Metal pe évav kOGP0, XpNOLOTOLELTOL £VOG LOVO TIPOCWTIILKOC UTIOAOYLOTAC
W¢ 0 UTIOAOYLOTIKOG KOUPOC ya to spark cluster. Autr n Stataén avtimpoowrnelel TNV MAPASOCLAK)
TPOCEYYLON TNG ekTéAeong tou Spark ameuBelag os adlepwpévo UALKO Xwpi¢ Kavéva emimedo
adaipeons. Ta KUpLA XAPAKTNPLOTLKA AUTAC TNG Stataéng mephapfavouv:

e Hardware: Evag povog umoloylotng (PC) pe adlepwupévoug mopoug CPU, RAM kot
amnoBnkeuonc.

e Spark Cluster: Eva cUumAeypa Spark pe évav koppo, mou Aettoupysi oe bare metal uALKO.

e A&eltoupytko Zuotnpa: O UTTIOAOYLOTIKOG KOUBOG AeLToupyEl ameuBeiag 0To TOTIKO AELTOUPYIKO
TOU oUOoTNUA.

Jupnep\apBdavou e autiy Tn SLapopdwon yla va KaBlepwoou e pa Bactkr HETpnon anodoong
TIOU OVTUTPOOWTEVEL [La TTAPaSOoLaKr TIPOCEyyLon Xwpig emnineda adaipeonc. Auto pag Bonba va
aflohoynooupe tTnv akotépyaotn, duaotkni anodoon tou Apache Spark o adplepwHEVO UALKO.

Kubernetes — spark cluster 1/2/4 k6upwv

Ytn Slapopdwon Kubernetes (K8s) pe évav, S0o kot téooeplg kOuPoucg Spark Cluster,
xpnotuormotn0nke to Kubernetes, pia SnuodiAng miatdopua opxiotpwong doxsiwv, ya tn dlaxeipion
£vO¢ cuotniuatog Spark. To Kubernetes mapéxetl éva upnAo emninedo adailpeonc Kol amopovwaong
TOPWV, KOBLOTWVTAG TO PLot KATAAANAN emtAoyn yLo epyacieg mou ektehovvtal o poptia epyaciac. Ta
KUPLA XOPOKTNPLOTIKA AUTAG TNG Sldtagng mepthappavouy:

e Kubernetes: Eva cUpmAeyua Spark pe évav koppo mou Saxetpiletal and to Kubernetes.

e Docker Containers: To Apache Spark kat ol anattoUpeveg e€aptroelg Tou elval doxeia mou
Sloxelpilovtal amo to Docker kat opxnotpwvovtat and to Kubernetes.

o Awayeipion Népwv: To Kubernetes Siaxelpiletal Suvaptkd toug toépoug CPU Kat Uvrpng mou
Kotavéuovtal ota doxeia Spark.

Mo tic Stapopdwoelg SUO Kal TECOAPWY KOUPBWV:

e KApdkwon Koppwv: Ou epyacieg Spark pmopolv va katavepnBolv oe 2/4 kouBoug,
BeATiwvovtag mBavWE TNV KATAVEUNKEVN EKTEAECT Kal amodoon.

12

e Awakoupela Emkowvwvia: O kopPol Spark emikovwvouv péow tou Siktuou Kubernetes.

KaBwc n moAumAokotnta tou meptpaiiovtog Kubernetes aufavetal, and tov évav otoug SUo Kat
OTh OUVEXELOL OTOUC TEOOEPLG KOUPBOUC, OTOXEVOUUE va aELOAOYCOUUE WG oL edapuoyE Spark
£KTEAOUVTOL OTAV KATAVEROVTAL 0 TIOAAATTAOUG KOUPBouUG ou Staxelpilovral amo to Kubernetes. Auth
n Stapopdwaon pag Bonba va KaTtavonooupe Ta 0PEAN TNG KALLAKWOLLOTNTAG OTNV 0pXHOTPWONG TWV
container.

f/'l.;".h::rkta-r node ?’

Executor
cache

task task

. J

f/'l.r~“'.r'|::rlﬂ=.-r node E\

Executor
cache

;- N

Spark master task task

. /

cluster manager

Y,

kubermetes

spark context

F/'l.;".r'nzxrlm-r node 5\’

Executor

cache

task task

- J

F,';»‘r".i’n::rker node :I\”

Executor
cache

task task
- J

1.1-4: Kubernetes - spark cluster tecodpwv KOUBwV: Por) eKtEAeoNg

13

AnoteAéopata

Nivakag pe aAyopiOpoug Kat anodwoelg ano tig SLAPopeG APXLTEKTOVIKEG

Ta KPIs mou petpiBnkav ATav o XpOvog eKTEAEONG Tou training kol Tou testing Twv HOVIEAWV

HUNXQAVIKNG LABNONG, OTIWE KAL N VAN TIOU KOTAVAAWGCAV.

1.1-2: Mivakog anoteAecpHaTWY

AAyOpLBuot APXLTEKTOVIKN Amnodoon
Xpovog Mvriun Mvriun
(ava koppo) (ouvoAika)
Random forest Bare metal — évag umtoAoyLoTrg 717.85s 1190.64 MiB 1190.64 MiB
K8s — spark cluster evog koupfou 729.86 s 1190.86 MiB 1191.18 MiB
K8s — spark cluster 600 kOpBwv 453.06 s 704.07 MiB 1191.51 MiB
K8s — spark cluster tecodpwv kOpPwv| 334.00s 427.56 MiB 1192.03 MiB
MLP Bare metal — évag umtoAoyLoTrg 1237.64 s 1082.91 MiB 1082.91 MiB
K8s — spark cluster evog kopBou 1309.26 s 1082.83 MiB 1083.46 MiB
K8s — spark cluster 600 kOpBwv 896.01 s 607.97 MiB 1085.14 MiB
K8s — spark cluster tecodpwv kOUPwv| 574.47 s 419.85 MiB 1085.63 MiB
Multiclass Bare metal — évag untoAoyLoTrg 126.42 s 438.85 MiB 438.85 MiB
Logistic regression
K8s — spark cluster evog kopBou 137.73 s 438.67 MiB 438.78 MiB
K8s — spark cluster 800 kOpBwv 88.40s 259.61 MiB 439.49 MiB
K8s — spark cluster tecodpwv KOpPwv| 62.89s 169.90 MiB 440.29 MiB

14

Decision tree Bare metal — évag uTtoAoyLoTNG 542.44 s 1010.77 MiB 1010.77 MiB
K8s — spark cluster evog kbuBou 549.47 s 1011.34 MiB 1011.47 MiB
K8s — spark cluster 800 kOUBwvV 344128 s 598.15 MiB 1012.13 MiB
K8s — spark cluster tecodpwv kOpPwv| 249.46s 391.46 MiB 1012.75 MiB

Naive Bayes Bare metal — évag umtoAoyloTng 411.47 s 762.99 MiB 762.99 MiB
K8s — spark cluster evog kduBou 415.95s 761.92 MiB 762.27 MiB
K8s — spark cluster 800 kOUBwvV 263.25s 451.05 MiB 763.36 MiB
K8s — spark cluster tecodpwv kOpPwv| 183.96s 295.20 MiB 763.42 MiB

AvaAuon Kat eppnveia
Z0yKpLon anodoong

Avalvovtag thv amodoon Stadopwv alyopiBuwv Katd TV UETABAcn amd €va HELOVWHEVO
umoAoyLoth o€ éva cluster teoodpwyv KOpBwv Kubernetes (K8s), mapatnpeital onuovtikn peiwon otov
Xpovo ektédeonc. Autr n BeAtiwon tng anddoong elval cuvenng ota Stadopa HOVTEAQ, e TO EUPOG
NG Helwaong otov XPOvo eKTEAEONC va Kupaivetal and 50.2% £wc nepimou 54.0%. Auth n ONUAVTLKA
pelwon otov xpovo Oelxvel ta kEPSN amoOdoong TMoU EmLTUYXAvOvVTOL HECW Twv Slatafewv
KOTQVEUNUEVOU UTIOAOYLOMOU, WBlaitepa og meptBaAlovta moAAATAWY KOUPBwVY. AUTEC oL BEATIWOELG
Sev umodnAwvouv povo tn SUvapn TNG KAatavepnuévng enefepyaciog aAld emiong tovilouv tnv
anoteAeopaTikotnTta Twv Kubernetes clusters otnv BeAtioTonoinon UMOAOYLOTIKWY EPYACLWV HECW
SLapopwv HOVTEAWV.

AVTIBETWC, KOTA TNV LETABACN amd Eva EPOVWUEVO UTTIOAOYLOTH o€ pia Statagn evog kopPBou K8s,
TIapaTnEELTaL Lo ATILOL AUENCN OTOV XPOVO EKTEAEONG. AUTN N aUénon Kupailvetal and nepimou 1,67%
£WG¢ 8%, avaloya e TOV CUYKEKPLUEVO aAyopLlBuo ou avaAvletal. AUt n Ara avénorn oTov Xpovo
ekTENEONG pmopet va amodoBel oto overhead mou elodyestal amnod tig Stadikaoieg containerization mou
eivat ovowdelg otn Satagn tov evog kOuPou K8s. Av kat autr n avénon sival oXeTIKA ULKPN), TOoVileL
TIG TIOAUTIAOKATNTEG Kt TG TIOAVEC AVATIOTEAECUATIKOTNTES TTIOU UMOPOUV Vo TIPoKUOUV KaTd Thv
petdBaocn oe £vo mepBANOV KOTAVERNUEVOU UTIOAOYLOUOU Xwpilg va aflomotnfolv mAnpwe ot
Suvatdtnteg Twv SlapopPwoewv MOAATTAWY KOUBWV.

15

Average Execution Time by Configuration
628.45

600 +

500 A

400 4

300 +

Average Execution Time (s)

200 4

100 4

W
8

o s
i . ,"'*‘ <
&

1.1-2: Méoog xpOvog eKTEAECN G TWV MOVIEAWV UNXAVIKIG LAONoNG oTig Técoeplg SlapopdwoseLg

IXETIKA HE TN XPHON KUVAKNG, KULO CUVETIAG KAl ONUAVTIKA Lelwon elval epdavig otn cUyKpLon Twv
Slatatewv bare metal pe tg Stapopdwoelg tecodpwy KOUBwY K8s. H xprion HVAUNG HELWVETAL
ONUOVTIKA, Oelyvovtag TNV ovWwIepn omodOoTIKOTNTA MUVAUNG Twv OSlaTAfeEwv KATAVEUNEVOU
uTtoAoyLopoU. AuTH N Helwaon otV KOTavaAwaon PHvAEng Oxt LOVO avtovakAd Tn BeATwUEvn tkavoTnTa
Twv Kubernetes clusters va Stayelpilovrol Toug OPOUG MO OMOTEAECHOTIKA aAAQ emiong Tovilel ta
TIAEOVEKTNLOTA TNC KOTAVOLA G UTIOAOYLOTIKWV doptiwv o toAamAol¢ kopBouc. H peiwon otn xprion
UVALNG oToUuG aAyopiBuoug mepattépw umoatnpiletl tnv kateLBuLvon Tpog Slaveunuéva eptPailovta
umoAoyLlopoU, tolaitepa yla edapUoyEC OMoU N amodoTiky Xpron mopwv eival kplown. Auta to
gupnuota tovifouv ta odpéAn twv Baclopévwy oe Kubernetes dtapopdwoewyv moAAATAWY KOUBWV
otnv enitevén BEATIOTNG AmGS00NG KAl AMOSOTIKOTNTAG TTOPWV.

Epunveia Kot CUVETELEG

Mo mapatTipnon oo Tnv avAaAuor] Kag Elval n GNUAVTLKE TITWoh 0T XPHon MVANG 08 OAOUG TOUG
aAyopiBuoug katd t xpron pog Stapdpdwong moAamAwy kopBwv Kubernetes (K8s) oe oUykplon pe
pla Slatagn pepovwUEVOU UTIOAOYLOTH, OMwG anelkoviletal oto heatmap oto oxfua 1.1-5. Auth n
peiwon otn xprion Uvnung amoSiSetal otic opXEG TOU KATAVEUNUEVOU UTIOAOYLOLOU, OTTOU OL EPYACIEG
Statpouvral petafld moAAamAwV KOUBwYV, EMUTPEMOVIAG TO OMOSOTIKN XPAon TNG MvAung. H
Katavepnuévn enefepyaoia oe clusters emTpEmNeL TNV TAUTOXPOVN EKTEAEDH €PYACLWY, BEATIWVOVTAG
TNV TaxVUTNTA UTIOAOYLOMOU Kal TN xpron mopwv. Q¢ amotéhecua, kabe kOuPog emefepydletal
ULKPOTEPO PEPOC TWV SESOUEVWY, LELWVOVTAG TN CUVOALKF KOTAVAAWGN UVAUNG. MPONYUEVES TEXVIKEC
Slaxeiplong pvnung, onwce n £€umvn mpoowplvr amoBbrikevon eSouévwy Kat n woopporio ¢poptiou,
oUPBAANoUV Ttepaltépw o€ aUTH TV anodotikotnta. H amodotikdtnta eival iaitepa afloonueiwtn

16

Algorithm

otLc Stapopdwoelg SU0 KOUBWV Kat Tecodpwv KOUPwWV K8s Spark cluster, ol onoieg cuvenwg ekBétouv
XOUNAOTEPN XPAON UVAUNG oo TIC SLopopdWOELG EVOC KOUBOU KAl LEUOVWHEVOU UTIOAOYLOTH).

Memory Usage (MiB)

Decision tree 1010.77 1011.34 598.15 391.46

1000

MLP 1082.91 1082.83 607.97 419.85

800

Multiclass Logistic regression - 438.85 438.67 259.61 169.90

Algorithm

- 600

Naive Bayes 295.20

- 400

Random forest 1190.64 1190.86 427.56

- 200

'
Bare metal - single PC K8s - one node spark cluster K8s - two node spark cluster K8s - four node spark cluster
Setup

1.1-5: Heatmap xXpfiong Lvnng ava kKoppo

ErmumtAgov, n otiAn "ouvoAlkr HvAUN" OTOV TivaKa QMOTEAEOUATWY HOC SELXVEL OTL N CUVOALKNA
XPRon UVAKNG opapével otabepr) os SLAPOPETIKEG SLaOPPWOELC, Ao £vav £wg TECCEPLS KOUBOUC,
umoSnAwvovtag OTL n TPOOEYYLON KATAVEUNHEVOU UTIOAOYLOROU Tou K8s Sev eloayel emumAéov
overhead pvnung. Autn n otaBepotnta Selyvel TNV Lkavotnta Tou K8s yia opllovtia KALLAKwon xwplig
va mpootiBevral emutAéov KOOTN UVAUNG, TIou elval Kplown ywa tn Stoxeiplon HeydAng KALpakog
Sebopévwv N powv epyaciog HNXQVIKAG MaBnong. H ouvemng xpnon HvAung oe Siadopeg
Slapopowoelg Tovilel v anodotikdtnta Tou K8s otn Slaxeiplon mopwy, unootnpilovtag t xpron
TOoU yla ebapUOYEC KALLOKWTAS uPnAng amddoong xwpic auvénuévn KatavaAwon mopwv. Auth n
BeAtiotonoinon elvat kpiowun o Ttopelg Omwg to big data kat n pnxavikn padnon, o6mou n
omoteAeopoTiky Slaxeiplon pvNUNg pmopel va evioxUoEL ONUAVTIKA TNV amddoaon kot va SLEUKOAUVEL
v enefepyaocia PeyaAUTEPWY CUVOAWY SESOUEVWV TILO ATMOTEAECUOTLKA.

Memory Usage (MiB)

Decision tree 1010.77 1011.47 1012.13 1012.75 1100

1000
MLP 1082.91 1083.46 1085.14 1085.63

900

Multiclass Logistic regression - 438.85 438.78 439.49 440.29 500

- 700
Naive Bayes - 762.99 762.27 763.36 763.42

-600

Random forest 1190.64 1191.18 1191.51 1192.03 500

Bare metal - single PC K8s - one node spark cluster K8s - two node spark cluster K8s - four node spark cluster
Setup

1.1-3: Heatmap ouvoAwkii¢ Xpriong LVAKNG

17

Algorithm

H mapatnpolpevn pelwon otov Xpovo ektéheonc otig Stapopdwoelc moAAamAwy KOUPBwv K8s
onuatodotel emiong éva onUAvTLKO BApa TPpodSdou oTnV AmodoTIKOTNTA KoL TNV KALLAKWOLUOTNTO TWV
UTIOAOYLOTIKWV Sladikaowwy. Aut n pelwon emtpénel tnv oAokANpwon o TOAUTTAOKWY
UTLOAOYLOMWYV o€ UVTOUEC epLOSoug, Tovilovtag tov polo tou Kubernetes otnv feAtiotonoinon twv
UTIOAOYLOTIKWVY TIOpwV. Mapd tnv Ama apxkn alénon otov XpOvo eKTEAEONG KOTA TN HeTABacn amno
UEUOVWHEVO UTIOAOYLOTH O€ pLa Slatagn evog kOUPBou K8s—Adyw Twv XpOvwy eKKivhong container kal
Tou erunédou adaipeong mou sloayet to Kubernetes—ta opEAN Twv HELWUEVWY XPOVWV EKTEAECNC OF
peyaAutepeg Stapopdwoelg eival oadr. Autd ta opEAN avTavakAoUV TNV KALLAKWOLLOTNTA KAl TV
amodotikotnta Tou Kubernetes, emitpénovtag tn SUVALKN avaBeon MOPwWVY yLa va avtamokplBouy oe
aUEOVOLIEVEG UTTIOAOYLOTIKEG QUTALTHOEL] XWPIE val Tapateivouv Toug Xpovoug ekTéAeonc. Auth N
KAlpokwolpotnTa StacdaAilel TNV OLKOVOULKA ommoSOTLKA OLOXEIPLON TwV UTTIOAOYLOTIKWY TIOPWY,
LOOPPOTIWVTAG TNV avabeon mOpwv HE TIC omalthnoelg ¢optiou vy va amodpeuxBel n
UTIOXPNOLUOTIoNoN f N UTtEPTIPOBOAN.

Execution Time (s)

Decision tree - 542.44 549.47 344.13 249.46 1200

1000
MLP 1237.64 1309.26 574.47

800

Multiclass Logistic regression - 126.42 137.73 88.40 62.89
- 600

Naive Bayes - 411.47 415.95 263.25 183.96
- 400
Random forest 717.85 729.86 453.06 334.00 - 200

N ' '
Bare metal - single PC K8s - one node spark cluster K8s - two node spark cluster K8s - four node spark cluster
setup

1.1-6: Heatmap XpOvou ektéAeong

Z0yKpLon HE BAON TOV TUTO TWV HOVTEAWV HNXAVLKNG LABnong

JTO TAPAKATW OLAYPOUUA ETUTAXUVONG UMOPOUUE va SoUpe OtL oto oUpmAsypa 4 KOpBwv
Kubernetes éxoupe emitdyuvon amod mepimov 2 £wg 2,2 ovdloya pe to poviého. O ypdvocg Sev
unoteTpanAactaletal yiati n avénon tou aplBpol Twv KOUPBWV CUVETAYETL KOGTOC GUVTOVIGHUOU KoL
gmkowvwvioc. Autd sival ywwoto wg vopog tou Amdahl, o omolog SnAwvel OtL N péylotn emLtdyuvon
EVOC TIPOYPAULATOG TIEPLOPIIETAL OO TO XPOVO EKTEAEONG TOU LN KOTAVEUNUEVOU TUAUATOG TOU
KWALKA. Mo CUYKEKPLUEVA, OKOUA KL AV TIPOCOECOULE TEPLOCOTEPOUC KOBOUG, OPLOUEVEG EPYAOIEG
TIPETEL VA €KTEAOUVTOL OElPLOKA KoL £TOL UTIAPXEL €val OPLO OTNV EMLTAXUVON TIOU Mmopel va
olokAnpwBel. Népa amo auto, Ta yevikd £€0da amod TNV €VOPXNOTPWON TWV KOVIELWVEP QUEAVOUV
TIEPAUTEPW TOV TIEPLOPLOKO TNG KATAVEUNEVNG EKTEAEONC.

OLmopaTNPROLULES SLOKUAVOELG OTNV EMLTAXUVON TwV SLddopwv aAyopiBUwV LnXavikng Hadnong
pmopoUv va anodoBouv ota LovaSIKA XOPOKTNPLOTIKA KOl UTIOAOYLOTLKEG ATMALTHOELG TOU KaBevog. O
aAyoplBuog Decision Tree, eival Alydtepo evaiobntog otnv opxrotpwan, mapouolalovtag alebntn
gruTayuvon otnv ektéleon. MNoapopoiwg, o Naive Bayes, o omolog elval umoAoyloTikd Alyotepo
analtnTkog, Seiyvel emiong onuavtikn PeAtiwon. AvtiBétwe, o Multilayer Perceptron kat n Multiclass

18

Logistic Regression, mou £€xouv UPNAGTEPEG UTTOAOYLOTIKEG amaltroels Kal Bacilovtal o TeplmAOKeC
EMAVAANTITIKEG Sladikaoieg, epdavilouv HIKPOTEPN EMLTAYUVON, UE TNV TeAeuTtaia va gival n Alyotepo
EUVONUEVN QO TNV KALLAKWON TwWV KOUPBwWV.

Acceleration Diagram

—e— Random forest
2.2+ MLP
—&— MLR o |
—&— Decision tree
2.0{ —®— Naive Bayes
1.8
=
=]
o
T 1.6
[:F]
]
o
2
1.4 1
1.2
1.0 A
1 2 4
Number of Nodes
1.1-7: Auaypappa emtayvvong
z 14
vlAtnon
Anddoon

H pehétn pag Seiyvel tn BeAtiwpévn anddoon twvy clusters moAamAwy KOUBwv tou Kubernetes
£VavTL Twv Tapadootlakwy puBuicswv Bare Metal otnv ektéleon Sladopwv HOVIEAWY LNXOVLKAG
pabnong pe to Apache Spark. Zuykekpluéva, TAPATNPNOAUE LA CNUOVIKY MElwon otov Xpovo
EKTEAEONG O OAOUC TOUG aAyopiBuoug katd tn petdBacn anod Bare Metal oe cuotadeg Kubernetes oe
oA amA£g Stapopdwoelg KOUPwv. Ma mapddelypa, alyoplBuol 6mweg o Multilayer Perceptron kat o
Decision Tree mopatnpnoov HELWWOEL; XPOVOU eKTEAEONG TAavw omd 50% oe pia Sloapdpdwon
tecodpwv KOUPwv Kubernetes. Autn n PeAtiwon odeidetal ot SUVATOTNTEG KATOVEUNUEVNG
enefepyaoiag tou Kubernetes, Tou €MITPEMEL TNV TAUTOXPOVN EKTEAECH £pYACLWYV O TIOAAATAOUG
KOUPBoug kol Pehtiotomolel TNV UTOAOYLOTIK amodoTikotnTta. Qotoco, n Uetdfacn o pua
Slapdpodwon evog kopBou Kubernetes amd Bare Metal deiyvel pia oplakn peiwon otnv taxvutnta
EKTEAEONG, UE QUENOELG TTOU KUpaivovtal amo 1,6% £wg 8,95%.

ErmumAgov, ta clusters tou Kubernetes enideikviouv avwtepn amodoTIKOTNTA UVANG, LEWWVOVTOC
OUVEXWC TN XPNOoN UVAKNG Katd tn petaBoon and Bare Metal o moAAamA£g SlapopPpwoelg KOUPwY
Kubernetes. Autd umoSnAWVEL TNV AMOTEAECUATLKN SLAXELPLON KOl KATAVOUA TWV OPWV UVANG TOU

19

Kubernetes péow tng texvoloylag tng Suvaplkng Staxeiplong mopwyv. H KALAKWOLLOTNTA KAl h
BeAtiotonoinon mopwv mou mpoodEpouv oL ouotadeg moAamAwyY KOUPwv tou Kubernetes eivat
LoLlaitepa TAEOVEKTIKEG Ylo £pyacieg UPNANG amddoong UTTOAOYLOTLKWY EPYOCLWV Kal EGOPUOYES TTOU
Bacifovtal o peydloug oykoucg dedopévwy, Tovilovtag v kavotnta tou Kubernetes va Stavepet
amoteAeopaTIKA Ta doptia epyaciog o ToAAAmAOUC KOUBoUG. Mapdho Tou n pelétn emiBePfalwvel
TNV Lkavotnta tou Kubernetes va BeATIoTOMOLEL TN XpHON MOPWV Kal Vo eVIOXVUEL TNV anddoon Tou
OUOTAMATOG, WBlaitepa otn Slaxeiplon UVAKNG, TovileL emiong tn onpacio tTng EAOYAG TNG KATAAANANG
SLapopdwaong KoL TNEG KOTaVONonG TWV CUYKEKPLUEVWV QTALTHOEWV TNG EdopUOYNG yLla va aglomotnBel
TAnpwg to Kubernetes.

Anodoon — ®opnroétnta

To Kubernetes, mou eival yvwotod ylo th ¢popntotnTa Kot TNV KALLAKWOLLOTNTA Tou otn Sdlaxeiplon
EUTMAEKOUEVWY €PAPHOYWY, ELOAYEL ONUAVTIKA TAEovekTNUOTa, Wlaitepa yla epappoyEG Tou
Bacifovtal oto cloud, evioxUovtog Tnv euKoAia e TNV omola oL epapUOYEG UTTOPOUV VOl ETOKLVNBoUY
oe Sladopa umoloyloTtikd meplBarovra. Auth n ¢popntdtnTa, ANMOTEAECHA TOU containerization,
Slaodalilel otL oL edoplOyEG AELTOUPYOUV CUVETIWE OE OMOLASHIOTE UTIOOOWN, €ite MPOKELTAL yLa
Sladopetikouc mapdyoug cloud eite yla petaBaoelg petalt tomikwy Kat cloud pubuicswv. Qotooo,
outh n eveli€ia pnopet va £pBet pe k6otog anddoaonc. To containerization amopokpUVELTIC EDAPUOYES
and to UVALKO, dnuloupywvtag emiBapuvon mou Ba prmopoloe Vo EMNPEACEL TV TaxUTNTA KAl TNV
ornodoTkOTNTA. ZUyKekpLéva, otlg Slapopdwoel evog kouPou tou Kubernetes, n egukolia
KALAKwOoNG Kal avamtuéng auvéavel eAadpw Toug XPOVOUC EKTEAECNC KOl TG OVAYKEG TIOPWV,
napouctalovrag Evav onuavtiko trade-off otov umoAoylopd uPnAng anddoaong 6mou n TaxuTnTa elval
Kpilowun.

H anodaon petatd Kubernetes kal bare metal emnpedletal anod T LOVASIKEG QTTALTCELG JLAG
edappoync. EAv n KAWLAKWOLOTNTO KAl N €UKOALD QVATTTUENG UTIEPTEPOUV TNG QKOTEPYOOTNG
anédoong, to Kubernetes eival mpotyuntéo, mapd tnv mMoAumAokotnta Slaxeiplong mou ¢Epvel,
cupnepAapBavopévng TG eEeLBIKEUEVNG YVWONG OTNV 0pXNOTPWON Twv container. AvtlBéTwc, to
bare metal pnopet va talplalel kaAUtepa o€ ebapUoyES Pe oTabepég amaltioslg andédoong. Auth n
andédacn ennpedlel OxL MOVO TNV AUeon amodoon aAA Kol T HAKPOTPOBECUN OpyaVWTIKNA
OTPOTNYLIKA KOl BLwoUOTNTA, LOOPPOTIWVIAG TIG TILOOVEC OLKOVOUIEG KOOTOUG KOl TN HELWHEVN
nieplBariovtikn emiBdapuvon tou Kubernetes Evavtl Twv AUECWVY

Fevika £§o0da daxeipiong

To Kubernetes, yvwotd ywa tv evioxuon TG KAMOKWOLWLOTNTAS KAl tng dopntotntag,
cupmnepAapBavel pio ToAUTAOKOTNTA Kot £vav SLoLKNTIKO GOPTO MOU UTTOPEL VoL EMNPEACEL TO KOGTOC,
NV armoSoTIKOTNTA KOl TNV TIPOKTIK edappoyr Tou. H TOAUTTAOKOTNTA IIPOKUTITEL ATTO TOV GUVTOVIOUO
TwvV containers, Tn Slaxeiplon twv mopwv tou cluster, tn pUBLILON SIKTUWV Kat TtV e€acdalion uPnAng
SlaBeootnTag Kal avoxng oe odpdaAipota. H amoteAeopatikr Staxeipion tou Kubernetes amattet
e€eldlkeUpEveG BeELOTNTEC yla va KatavonBouv kat va mAonynBouv oL MePUTAOKEG OXEOEL UETALY
OQUTWV TWV CUCTATIKWY. AUTH N TTOAUTIAOKOTNTA amoTeAel MPOKANON YLla TOUG SLAXELPLOTEG, ELOIKA OTN
SUVOULKA KOTOVOUN TOPWV KAl TNV TOPOKOAOUONON, Qmaltwvtog CUVEXH EMITHPNnon yla tnv
BeAtiotonoinon tng enidoong, tn Slaxeiplon Tou MPOYPAUUATIOMOU TwV pods Kot Th e€aoddailon tng
uyelag tou cluster.

20

H O&uaxeipion twv mnepBaloviwv Kubernetes enekteivetal otnv efaocddiion uvPnAng
Sl008g01uoTNTACG, ATIOTEAECUATIKAC LooppoTtiag ¢doptiou Katl TOAUTTAOKOTNTOC TNG pUBULoNG StKTUOoU.
To Kubernetes mapéxel unxaviopoug yla thv toopportia dpoptiwv kat tn diatrnpnon tng Stabeouotntag
™G edaApUOYNG, OKOUN KoL KOTA T SLdpKeLa amotuxlwy KOpBwv. Qotdaoo, n puBbuion kat n Slaxeipion
QUTWV TWV XOPAKTNPLOTIKWY OIALTEL TIPOOEKTIKO OXeSLAOUO Kol ouvexn emutipnon. EmutAéov, n
aopaAlon NG emikowwviag petaty Ttwv pods, n Slaxeiplon Twv eAéyxwv mpooBacng Kal n
OUHUOpPwWON HE Ta TPOTUTIA aodAAElaG OeSOUEVWY ELOAYOUV TIEPALTEPW TIOAUTIAOKOTNTA,
amattwvtag uPnAotepo emninedo eunelpiag otnv opxnotpwaon containers, tn Slaxeipion SIKTUWV Kal
v aodpdAelo. Auti n TeEpUTAOKOTNTA amaltel onuavtikn enévduon oe ekmaidbevon n mpooAnyn
€L8LKWV, TIPOCHETOVTOG OTOV SLOIKNTLKO POPTO.

H anddaon va uoBetnbei to Kubernetes avti tou Bare Metal 6ev Baciletal povo otnv andédoon
KoL tn dopnToTNTA, AAAA KOL OTNV LKAVOTNTA ULAG OPYAVWONG VA SLOXELPLOTEL KOL VAL GUVTNPROEL ULa
t€tola urtodopr anoteAsopatikd. Evw 1o Kubernetes mpoodépel Aettoupyikd od£AN, 0 SLOLKNTLKOC
$OpTOG Kal Ta cuvadn KOOTN - ToU MEPAAUPBAVOUV €EELSIKEVUEVO TIPOOWTTLKO, EKTIAOEUON, EMAOYN
gpyoeiwv Kat Evtagn, KaBwE KaL TAKTIKEG EVNUEPWOELG CUCTHHATOC - EMNPEAIOUV TO GUVOALKO KOOTOG
kotoxng. OL opyaviopoi Tpémel va afloAoynoouv autd Ta KOOTN Evavil Twv SuvnTIKwY
HOKPOTPOOECUWY ATTOSOTIKOTATWY KOl GTPOTNYLIKWY TTAEOVEKTNUATWY ULOC KALLAKWOLUNG, 0VOEKTIKNAG
mAatdopuog Slovepnuévwy umoAoylopwy. Aut n afloAoynon mpémel va AapBdvel umoyn
Suvatdtnta Sloxelplong TN opyavwong Kal TO CUVOAIKO KOOTOC KTRong yla va kabopioel tnv
kataAAnAotnta tou Kubernetes yia Tig cuykekpluéveg edappoyEg Toug, Stachailovtag otL n ermhoyn
OUVABEL LE TIG AVAYKEC TNG EHAPHUOYNE KOL TOUG OTPATNYLKOUG OTOXOUC TNG OpYAvVWaong.

21

1 Introduction

In an era marked by exponential data growth, the ability to efficiently process and analyze large
datasets is crucial for technological innovation. This thesis explores the field of distributed computing,
focusing on Apache Spark, a leading engine for big data processing. Specifically, it examines Spark's
performance in two operational environments: containerized setups and bare metal configurations.

The motivation for this study stems from the evolving landscape of distributed computing and the
necessity for organizations to make informed decisions regarding their infrastructure. With businesses
and researchers facing the challenge of handling large-scale data, particularly in the context of incident
detection, the deployment architecture of data processing platforms like Apache Spark becomes
critical. This thesis critically examines how containerization and bare metal setups impact the
performance, scalability, and efficiency of distributed computing systems, with a special focus on their
application in incident detection scenarios.

The objective is to provide a detailed comparative analysis of these two deployment strategies,
elucidating their merits and limitations. This analysis is intended to aid in determining the most suitable
architectural choice for specific computing needs, particularly in environments where efficient incident
detection is paramount. This inquiry is not just academically significant but also vitally important for
industry practitioners managing these technologies.

The aim is to offer valuable insights for navigating the complexities of big data processing, guiding
decisions in a rapidly evolving technological landscape. The subsequent chapters explore the
performance implications of containerized versus bare metal deployments in distributed computing
using Apache Spark.

Volume of data created and replicated worldwide (source: 1Dc)
200

180
140
120
120
100
79
80 64.2
60
- 41

40 - 76

15.5

T “ o W B]] "y 1 y (- iy
' ¥ o o " o v e b
> P > >

1.1-1: Bar chart showing the volume of data created and replicated worldwide.

,_.
(=3
L=

-y

-9

]

Data volume in zettabytes
[Ve]
|

L https://medium.com/@mwaliph/exponential-growth-of-data-2f53df89124

22

1.1 Subject

The subject of this thesis is to evaluate the performance of Apache Spark when deployed in
containerized environments as opposed to bare metal setups, particularly in the context of incident
detection. These two deployment architectures represent divergent methodologies in managing large-
scale, data-intensive applications, each with distinct benefits and limitations.

Containerization, facilitated by tools like Docker and orchestrated systems like Kubernetes, is a
lightweight and scalable method to package and run applications, offering high portability and
operational efficiency. Bare metal deployment, which involves installing applications directly onto
hardware, is traditionally preferred for its direct access to hardware resources, enhancing performance
by eliminating virtualization overheads.

This thesis seeks to empirically and theoretically assess the performance differences between
containerized and bare metal deployments of Apache Spark. This assessment includes examining
resource utilization, data processing speed, and system management complexity. The goal is to inform
about the trade-offs between these strategies, aiding in infrastructure decision-making in the context
of distributed computing.

The research will explore various configurations of Spark deployment, from single-node to multi-
node clusters, to comprehensively analyze how different strategies influence the performance of
distributed computing environments, with a particular focus on Apache Spark.

1.2 Structure

The thesis is organized into nine chapters, each focusing on a specific aspect of the comparative
study between containerization and bare metal environments in the context of distributed computing
performance using Apache Spark. The structure is designed to provide a comprehensive understanding
of the subject, starting from basic concepts, and gradually moving towards detailed experimental
analysis and conclusions.

It begins with the 'Introduction’, setting the stage for the study and highlighting its relevance in
today's technological landscape. Here, readers are acquainted with the thesis's objectives and the
significance of the research within the realm of distributed computing. Next, ‘Theoretical Background'
forms the second chapter which delves into essential topics like distributed computing, Apache Spark,
containerization, virtualization, and bare metal, showing the merits and demerits of containerization
against virtualization and Kubernetes against bare metal. It further enriches the reader's understanding
with a survey of related studies.

Moving to the third chapter, 'Motivation', discussions illuminate the escalating importance of
efficient distributed computing and the imperative for comprehensive studies comparing various
architectures. 'Distributed Processing and Machine Learning', the fourth chapter, ventures into the
methodologies for distributed processing, emphasizing the role of Kubernetes, particularly in
conjunction with Spark.

In the fifth chapter, 'Approach’, the thesis takes a more practical orientation. It outlines the
methodologies employed in the study, detailing the case study, dataset, and specific requirements,
including an array of algorithms and performance considerations. 'Experimental Setup', chapter six,
offers a thorough breakdown of the experimental framework, on the Spark configuration, the
algorithms deployed, and the variety of setups examined, ranging from a single PC bare metal to diverse
Kubernetes cluster configurations.

23

Chapter seven, 'Results’, is where the outcomes of the experiments are methodically presented.
This includes performances of algorithms across different setups, accompanied by an analysis and
interpretation of these findings. 'Discussion’, the eighth chapter, dives into the implications of these
results, discussing aspects such as performance, the balance between performance and portability, and
the management overhead associated with each setup.

Concluding the thesis, the 'Conclusions' chapter there is a summary of the research. It reflects on
the trade-offs between performance, portability, and management overhead in varying configurations.

This final chapter also paves the way for future research, proposing directions and opportunities for
further exploration in this field.

24

2 Theoretical background

2.1 Brief introduction to the concepts
2.1.1 Distributed Computing

The field of distributed computing covers a wide range of computational paradigms and information
access models that extend across multiple processing elements connected through various forms of
communication networks. These networks may cover local environments or extend to a wider area,
presenting a diverse landscape for the design and implementation of distributed systems. The main
challenge in distributed computing is the efficient coordination and management of computational
tasks distributed across various nodes, promoting collaboration and parallelism, while addressing
issues such as fault tolerance and scalability (Chaisawat & Vorakulpipat, 2020).

A distributed system, in this context, can be understood as a collection of nearly autonomous
processors engaged in communication through a network. Key features of distributed systems include
the absence of a common physical clock, the lack of shared memory, the geographical separation of
processing elements, the autonomy of individual nodes, and the intermediate heterogeneity in terms
of hardware and software settings. The complexity introduced by these characteristics requires
innovative solutions and reliable algorithms to ensure optimal coordination among the distributed
components, ultimately shaping the landscape for applications ranging from large-scale data
processing to resilient and scalable cloud infrastructures (Eze & Akujuobi, 2022).

FIM
PIM P M

|

Communication network
(WAN/LAN)

F provessorns)
M memaory bank(s)

PIM

PIM PIM P M

2.1-1: A distributed system connects processors by a communication network.

A typical distributed system is presented in the figure above. Each computer has a memory-
processing unit, and the computers are connected through a communication network. Figure 2.1-2
schematically shows the relationship of the software components running on each computer, using the
local operating system and the network protocol stack for their operation. The distributed software is
also referred to as middleware (Salkenov & Bagchi, 2019). A distributed execution means an execution
of processes throughout the distributed system for the collective achievement of a common goal.

25

The distributed system uses a multi-layered architecture to analyse the complexity of its design. The
middleware drives the distributed system, providing platform-level heterogeneity transparency (Xiang
et al., 2019). Figure 2.1-2 schematically shows the interaction of this software with the system
components on each processor. We assume that the middleware level does not include the traditional
functions of the application layer of the network protocol stack, such as http, mail, ftp, and telnet.
Various primitives and function calls defined in various middleware-level libraries are embedded in the
user program code. (Kshemkalyani & Singhal, n.d.)

Distributed application

.l, ‘I- yly ql' Extent of

distributed

Distributed software protocols
(middleware libraries) §
. =]
Application layers =
k=)
Operating Transport layer =
system 'g
MNetwork layer 5
=

Data link layer

2.1-2 Interaction of the software components at each processor.

2.1.2 Apache Spark

Apache Spark is an open-source distributed computing framework designed for processing large
data sets and executing complex data analysis workloads. It provides a flexible platform for distributed
data processing, offering features such as in-memory data storage, fault tolerance and support for
various programming languages.

Spark operates based on the concept of Resilient Distributed Datasets (RDDs), which are distributed
data collections that can be processed in parallel in a cluster of machines. RDDs allow Spark to
efficiently manage the division, distribution, and computation of data, making it suitable for tasks
ranging from packet data processing to real-time data streaming (K & G, 2022).

One of the main advantages of Spark is its compatibility with various deployment options (Hou et
al.,, 2019), including containerization, virtualization, and bare metal capabilities. Spark can be
comfortably integrated into various infrastructures, adapting to the specific requirements of each
configuration (Qureshi et al., 2019a).

26

Reasons why companies prefer Apache Spark ”

2.1-3: Benefits of having Apache Spark for Individual Companies

The architecture of Spark is shown in Figure 2.1-4, displaying a typical master-worker architecture.
A Spark cluster has a single master and any number of workers (Neciu et al., 2021). The driver and the
executors run their separate Java processes. The driver, running on the master node of the Spark
cluster, creates a logical flow of operations according to all jobs, divides the flow into multiple stages,
and ultimately schedules the tasks of the stages to the executors. It also stores the metadata for all
RDDs. On the other hand, an executor is a distributed agent, responsible for executing tasks. Each Spark
application has its own executors. Executors read from external sources, store the data of
computational results in memory, cache, or hard disk drives, perform all data processing, and write the
results to external sources. (Zhu et al., 2020a)

Internals of Job Execution In Spark

Submit the code (jar files) and configured
dependencies to Executors for further execution

..

Request G o
for worker U e = Executer
nodes/ al S e

Esecutors *

in the
cluster

Executer

[—4 SparkContext >—|

DAG Scheduler Task Schduler

As the Action

Encounters, it

will creat the —

job. | — ‘

JOB Tasks

=l

_ Executer
Launch tasks via T
cluster manager

Build orerator DAG and split graph into stages
of task snd submit each stage as ready to task scheduler

' '
d Collect and aggregate intermediate results from the ¢
executors

2.1-4 Spark Architecture

2 https://www.knowledgehut.com/blog/big-data/spark-use-cases-applications
3 https://medium.com/@shubham02gupta/demystifying-the-internal-workings-of-apache-spark-architecture-
2918ec59fc5

27

2.1.3 Bare Metal

Bare metal implementation, as opposed to virtualization and containerization, involves running
applications directly on the physical hardware without any intermediate layer. Analyzing the trade-offs
between bare metal, virtualization, and containerization (Salehi et al., 2019) becomes critical for
understanding the complex dynamics affecting the performance (Duplyakin et al., 2020) and portability
of machine learning applications in multi-tenancy environments.

The raw computational power and minimal additional load associated with bare metal applications
make them an exciting choice, particularly for applications requiring high performance (Lee & Fox,
2019). However, challenges related to scalability (Zhang et al., 2020) and shared resource space must
be carefully considered.

2.1.4 Virtualization

Virtualization involves creating virtual environments of computing resources within a single physical
computer. Virtualization allows the simultaneous execution of multiple operating systems on an
underlying processor. By examining specific virtualization settings, we aim to discover the complex
relationship between its choices and the overall performance of machine learning algorithms in the
context of multi-user applications. In the field of virtualization, trade-offs between isolation, resource
overhead, and scalability become critical considerations.(Campbell & Jeronimo, n.d.)

2.1.5 Containerization

Containerization has gained timely significance for its ability to encapsulate applications and their
dependencies on lightweight, portable units called containers. Docker and Kubernetes are central to
this paradigm, facilitating the creation, deployment, and scaling of containerized applications. In the
upcoming sections, we will examine the impact of containerization on Apache Spark and distributed
computing settings, exploring how it affects factors such as performance, scalability, and ease of
deployment. Understanding the details of containerization, we can better comprehend its role in
shaping multi-user applications and the trade-offs involved in adopting this technology.

The benefits of containerization go beyond resource efficiency and simplification of deployment; it
introduces a level of abstraction that promotes cohesion in diverse environments. However, challenges
such as the complexity of orchestration and potential overhead require a penetrating evaluation. The
following sections will analyze specific containerization settings, offering a comprehensive analysis of
their impact on the performance of machine learning algorithms in a multi-user environment. This
exploration is critical for understanding the optimal balance between the advantages of
containerization and the specific requirements of applications based on Apache Spark.(Bhat, 2018)

2.2 Advantages and disadvantages of each configuration

Bare metal configurations offer optimal performance. This direct interface with the hardware
ensures that applications can advantage from the full computational power available, without any
overhead from hypervisors or container runtimes (USENIX Association., 2003). Such performance
efficiency is particularly critical for applications demanding high computational resources, like certain
machine learning tasks. Bare metal systems also provide simplicity in certain contexts. For applications
with specific, stable requirements, the straightforward nature of bare metal — without the need for

28

managing additional virtual layers — can be beneficial (Clements et al., n.d.). However, this configuration
also presents several disadvantages. The lack of flexibility is a significant drawback; bare metal systems
do not offer the same scalability and rapid provisioning capabilities as virtualized or containerized
environments. This can be a limitation in dynamic computing scenarios where quick scaling up or down
is required. Additionally, for diverse workloads, bare metal can prove pricey, as it might necessitate
dedicated hardware for each type of application. Another consideration is the potential for increased
maintenance downtime. Unlike virtualized environments where maintenance tasks can often be
performed with minimal disruption, updates and maintenance on bare metal systems may require
taking the entire system offline, leading to potential service interruptions.

Virtualization offers flexibility and efficiency. Its primary advantage lies in the strong isolation it
provides. By running each application in a separate virtual machine (VM), complete with its own
operating system, virtualization ensures robust security and fault tolerance (Seznec et al., 2010). This
isolation is particularly beneficial in multi-tenant environments where the isolation of different
workloads is essential. Additionally, virtual machines offer hardware abstraction, allowing applications
to run on various hardware configurations without modification, a feature particularly useful in
heterogeneous computing environments. Another benefit of virtualization is the flexibility in resource
allocation. Resources such as memory, and storage can be dynamically allocated and reallocated
among VMs, facilitating efficient utilization of physical resources (Misevigienmisevi misevicien et al., 2012).
However, these advantages come with certain drawbacks. Virtual machines are resource-intensive, as
each VM runs its own operating system, leading to higher storage and processing overhead. This can
result in slower performance compared to running applications directly on physical hardware (bare
metal). The complexity in setting up and maintaining VMs, particularly in large-scale deployments, also
poses a challenge, requiring significant expertise and resources.

Containerization offers a unique set of advantages. Its primary strength is its ability to encapsulate
applications along with their dependencies into lightweight, portable entities known as containers. This
portability ensures consistent performance across diverse computing environments, effectively
addressing compatibility issues often encountered in software deployment. Furthermore, containers
are recognized for their resource efficiency (Bhardwaj & Krishna, 2021). By sharing the host operating
system's kernel and avoiding the overhead of virtual machines, they allow for more efficient use of
system resources. Another significant advantage is the rapid deployment and scaling capability of
containers (Bellavista & Zanni, 2017). The sharpness with which containers can be started, stopped, and
replicated makes them particularly suited for environments where scalability and responsiveness are
critical. Moreover, the isolation provided by containerization enhances security, as applications operate
independently within their respective containers, minimizing the risk of inter-application conflicts and
potential security breaches. Despite these benefits, containerization is not without its challenges.
Security remains a concern, primarily because containers share the host operating system's kernel. If
not properly secured, this shared environment can become a vector for security vulnerabilities.
Additionally, the management of containers, particularly in large-scale deployments, introduces a level
of complexity that necessitates sophisticated orchestration tools like Kubernetes (Casalicchio & lannucci,
n.d.). Lastly, while containers are more resource-efficient than virtual machines, they still introduce a
performance overhead compared to bare metal configurations due to the additional layers involved in
container runtime and image storage.

2.3 Previous studies

The exploration into containerized environments, especially using Kubernetes, has been extensive.
Watts et al. (2021) provided crucial insights into the effectiveness of Kubernetes in a bare-metal cloud,
employing introspection tools like Prometheus in conjunction with Apache Spark. Their findings suggest
certain advantages in introspection capabilities offered by Kubernetes (Watts et al, 2021).
Complementing this, Zhu et al. (2020) focused on performance aspects, noting Spark's superior

29

performance on bare metal, attributed mainly to better data locality. These studies collectively
underscore the efficiency of bare metal in certain aspects but also highlight the advanced monitoring
and management capabilities offered by Kubernetes in containerized setups (Zhu et al., 2020b).

In the realm of data analytics, Li et al. (2021) introduced ShadowVM, combining bare metal CPUs
and GPUs. This approach, diverging from traditional JVM-based environments, achieved significant
speedups, indicating the untapped potential of bare metal resources in high-performance data
analytics. However, it's crucial to recognize the specific hardware dependencies in their methodology,
which might limit the generalizability of these results (Li et al., 2021).

Container orchestration's impact on performance has been a main area. Horchulhack et al. (2022)
discussed performance degradation in containerized Apache Spark due to multi-tenancy and hardware
over-commitment (Horchulhack et al., 2022). This is complemented by Qureshi et al. (2019), who
proposed a dynamic container-based resource management framework for Spark, aiming to enhance
performance. The contrast between these two studies highlights a critical aspect: while
containerization introduces certain complexities, innovative management frameworks can mitigate
these issues (Qureshi et al., 2019b).

Further, the comparative performance of container orchestration mechanisms, explored by Beltre
et al. (2019), reveals nuanced differences between Kubernetes and Docker Swarm. Both were found
capable of nearing bare metal performance, yet Kubernetes might introduce overheads in specific
applications. These findings are pivotal for the present research, as they offer a clear perspective on
choosing appropriate orchestration tools based on application requirements (Beltre et al., 2019).

Liu and Guitart's (2020) study takes a critical look at the performance implications of multi-container
deployment schemes, particularly relevant in high-performance computing (HPC) environments. Their
research is important in understanding how different container technologies and deployment
granularities affect the performance of distributed applications. By exploring various container
configurations, Liu and Guitart provide a view of the trade-offs involved in container orchestration and
resource allocation. Their work is insightful when considering the balance between container overhead
and the benefits of isolation and scalability that containerization offers. The study examines how the
granularity of container deployments - from lightweight, single-application containers to more
complex, multi-service containers - impacts overall system performance, latency, and resource
utilization (P. Liu & Guitart, 2021).

Finally, Kumar and Kaur's (2022) study talks about the performance of containerized Message
Passing Interface (MPI) applications, particularly in the context of InfiniBand-based HPC systems. This
empirical investigation compares the performance of containerized MPI applications with those
running on bare metal setups, providing insights for deploying demanding computational workloads in
containerized environments. Their research is relevant for understanding the overheads and benefits
associated with containerization in environments where interprocess communication and network
efficiency are critical. The study's findings highlight how containerization, despite its abstraction layer,
can closely match the performance of bare metal setups, especially when optimized for network-
intensive tasks. Kumar and Kaur's work is instrumental for this thesis as it offers a direct comparison
between containerized and bare metal environments in handling high-performance, network-centric
applications. It marks the potential of containerized environments to achieve near bare metal
performance, while also illuminating the challenges and considerations necessary for optimizing such
deployments in the context of Apache Spark (Kumar & Kaur, 2022).

These studies collectively provide a comprehensive understanding of the performance dynamics
between containerized (especially Kubernetes orchestrated) and bare metal environments in the realm
of distributed computing with Apache Spark. The insights gained from these studies serve as a
foundation for further investigation into the optimal deployment strategies for specific computing
needs in distributed environments.

30

3 Motivation

In the modern data-driven world, the demand for dashboards is continuously increasing. These
dashboards play a critical role in providing information from complex data sources, particularly in areas
such as traffic forecasting and incident detection. They also require fast data processing in the backend,
which includes training and inference of machine learning models.

However, when these dashboards operate in environments based on a single computer, they often
face performance and response issues, as they are centralized. Creating visualizations can be slow,
leading to low usability and long waiting times for their users. This problem is particularly intense in
scenarios such as traffic forecasting, where predictions must cover the entire network, or in incident
detection, which involves processing data from many sensors in real-time. This problem is particularly
intense in scenarios such as traffic forecasting, where predictions must cover the entire network, or in
incident detection, which involves processing data from many sensors in real-time.

In the operation of dashboards, there are two fundamental dynamics: "push" and "pull". In traffic
forecasting, dashboards operate in a "pull" state, where they request predictions for specific areas,
leading to the execution of machine learning algorithms. On the other hand, in incident detection, a
"push" approach is used, where algorithms operate independently and continuously, detecting and
reporting incidents as they occur.

In the dashboard space, "push" refers to a process where the system automatically provides data or
information to users without requiring action on their part. This means that users do not need to
request updates but receive them automatically. For example, in traffic forecasting, "push" means that
the system can automatically offer traffic predictions or information about traffic changes, allowing
users to receive this information without actively utilizing the dashboard. This approach helps improve
performance and response in critical situations, enhancing the system's effectiveness.

To address these challenges, the adoption of a distributed computing environment is proposed. In
such an environment, machine learning algorithms can be executed distributed, improving system
response (Verbraeken et al., 2020). Additionally, flexibility and scalability are offered when using cloud
infrastructure, while improving the system's resilience to faults.

This transition to distributed computing is driven by the desire to improve usability and reduce
waiting times for dashboard users. When machine learning algorithms operate in a distributed
environment, performance is significantly improved. This improvement ensures that visualizations are
created instantly, resulting in a more user-friendly experience.

While the transition to distributed computing is pursued to improve usability and reduce waiting
times for dashboard users, it must be recognized that this transition is not always easy. It requires the
activation and management of multiple servers that will run the machine learning algorithms, ensuring
compatible versions of libraries and other required components. However, various technologies are
proposed to reduce the time and effort required for the installation and maintenance of the backend
for the execution of machine learning algorithms. Technologies such as containerization and
virtualization provide flexibility, resource management, and application isolation, aiding in the efficient
development and maintenance of the distributed computing environment. These technologies work
together with distributed computing to offer a comprehensive solution that improves performance,
response, and scalability, providing a path for the future development of dashboards tailored to various
stakeholders and use cases.

The main contribution of this work is to evaluate, in a structured and objective manner, different
approaches to the installation and execution of ML algorithms within a traffic support application on

31

the road network. These tables should prioritize distributed environments to optimize performance
and provide more immediate response to users. This proposal can be used by technology solution
providers to choose the approach that will benefit all stakeholders as much as possible, from end-users
seeking improved usability to dashboard providers and development and maintenance teams seeking

improved management and greater flexibility.

The thesis evaluates two approaches to executing machine learning algorithms in a traffic support
environment on the road network. The approaches include the use of "Bare Metal" for direct execution
on physical computers, and the use of container technology, such as Kubernetes (K8s), for flexibility
and resource management. Each approach has its advantages, with the choice depending on the

specific needs of the environment and stakeholders.

Additionally, it is worth noting that the work addresses not only improvements in performance but
also the need for portability across various infrastructures. This consideration is becoming increasingly
important in the context of developing dashboards in various organizations and regions.

This thesis supports the development of high-performance dashboards that leverage machine
learning algorithms for data visualization. In this way, the benefits of distributed computing are
highlighted, as well as its synergy with containerization and virtualization technologies, which
collectively have a positive impact on usability, response, and scalability, providing a path for the future
development of dashboards, tailored to various stakeholders and use cases.

Q5 A 5 &
= A 4% <
& . o Wi
by O 0y 2 4
ok 2,
) A o E083
E
-t -
/ : &
S : ' & /
TOA LY
l "p‘) :_(\ 5
3 2 & =
§ ¥ a0, 0 &
8 R g
8 3
5 (%] 2
A l 4 ;_\x“
& v g “org o
S Dl] < . o/
o XahavdpL ey,
o D] & A,]
& . - Uy
~ =) a0,
& S 10ag
&
<2 <
s et
ST wop
SR
1 S g B
o S)
= = '9‘“)
= @ K S 3
:_; {g g <
S [1) £ <
£ A
e g
ok 3
\-.3*"0\3\ E
.'7% o <
oyl L
2
2 e VS
o= (> =
o /'7'{) 27\ & ye
¥ LT & EOS54
o
& NeoW) A =
!’.fq,h | 2\
ATT A 1y ‘z
% Z
ToupkoBouvia %
FASL 4 v O {,o(ﬂi\@ AOAQPY(C
3 PR /£ A 2
S INEQTKUL Z T ‘ 4
& & % % e
ot “Aigoo® % &, %
> £

FORZ

2.3-1: Image from the dashboard of the FRONTIER project, showing the visualization of some detected
traffic anomalies.

32

4 Distributed Processing and Machine
Learning

Distributed machine learning refers to multi-node machine learning algorithms and systems
designed to improve performance, increase accuracy, and scale to larger input data sizes. Increasing
the size of input data for many algorithms can significantly reduce learning error and often be more
effective than using more complex methods (EXPERTOPINIO N 8, 2009). Distributed machine learning
allows companies, researchers, and individuals to make informed decisions and draw significant
conclusions from large amounts of data.

4.1 Frameworks for distributed processing

There are many systems for executing machine learning tasks in a distributed environment. These
systems are divided into three basic categories: database, general, and purpose-built systems
(Galakatos et al., 2017). Each type of system has distinct advantages and disadvantages, but all are used
in practice depending on individual use cases, performance requirements, input data size, and
corresponding implementation effort.

Database systems are typically extensions or modifications of traditional database management
systems (DBMSs), offering a more integrated environment for executing machine learning algorithms.
These systems can include specific optimizations for data access patterns and storage layouts, which
are essential in managing large datasets typically used in machine learning. They also benefit from the
robust transaction and concurrency control mechanisms inherent in DBMSs.

Local user Global user Global user
‘ ‘ Global schema
Distributed DBMS — ——
-~
I v
[| I
DDBMS 1 DDBMS 2 DDBMS 3
N N’ S—
P N’ p o

4.1-1: Database system architecture for distributed computing

4 https://phoenixnap.com/kb/distributed-database

33

General frameworks, on the other hand, provide a level of abstraction that allows users to design
and implement machine learning algorithms without the need to manage the details of the underlying
distributed system. They offer APIs in high-level languages, enabling the development of complex
algorithms in a more user-friendly manner. These frameworks are widely used because of their
flexibility, scalability, and the extensive ecosystem of libraries and tools they support. Examples include:

e MPI (Message Passing Interface): A low-level framework designed for high-performance
distributed computation.

e Hadoop: An open-source MapReduce implementation ideal for executing workflows on large
clusters of commodity machines.

e Spark: Known for its in-memory computation capabilities, Spark allows users to compose
workflows using predefined APl operators and extends the MapReduce paradigm by
supporting iterative algorithms efficiently.

Load

Balancing

Controller

Samplesl Tﬂesults Samplesl Tﬂesulls L T Samplesl/ Tﬂesults

Numerical Numerical Numerical
Simulation Simulation R Simulation
1 | I 1 I I
Nodel! = | ‘ Node2i NelelE

4.1-2: Schematic of a general framework for distributed computing.

Purpose-built systems, designed exclusively for specific machine learning tasks, offer highly
optimized implementations. These systems tend to be less flexible but more efficient for their target
tasks. They often include optimizations for particular data structures, computational patterns, and
hardware configurations. SystemML, for instance, provides a high-level language with R-like syntax for
matrix operations, while OptiML offers a Scala-embedded domain-specific language based on linear
algebra operations. Hogwild! presents a lock-free implementation of stochastic gradient descent,
optimizing for shared memory systems.

5 https://www.researchgate.net/publication/220285046_Examination_of load-
balancing_methods_to_improve_efficiency_of _a_composite_materials_manufacturing_process_simulation_u
nder_uncertainty_using_distributed_computing/figures?lo=1

34

| Parser DML Statements :
____________________________ J
r ——————————————————————————— I
| High-Level Operators :
| Compiler |
| Low-Level Operators | | Optimi-
.- -l mEmm—— J | zations
r—————— —— = B -
: Runtime Control CP MR :
| ; Program Instructions || Instructions | |
| | Caching /J. Program |
: E Blocks ‘ Ceneric MR Jobs | :
| |
! | |

4.1-3: SystemML Architecture

Apache Spark, the framework chosen for this research, stands out in the category of general
frameworks. Spark's in-memory processing capabilities significantly reduce the time for iterative
algorithms, a common pattern in machine learning. Additionally, Spark's resilient distributed datasets
(RDDs) provide a fault-tolerant way to handle distributed data, an essential feature for robust
distributed processing. Its rich ecosystem, including libraries like MLlib for machine learning, makes
Spark a comprehensive tool for distributed machine learning. This research will utilize Spark's
capabilities to evaluate distributed computing performance in containerized versus bare-metal
environments.

4.2 Kubernetes and Kubernetes in Spark

Kubernetes is increasingly used for the development of web applications based on containers, on
physical computers within Platform-as-a-Service (PaaS) clouds, allowing the scale-out of an application
with dynamic workload changes. Kubernetes also follows the master- worker architecture, as shown in
Figure 4.2-1. The master node is responsible for managing the Kubernetes system. This is an entry point
for all administrative tasks. The master node takes care of coordinating the worker nodes, where the
actual services are executed.

In Kubernetes, pods, rather than containers, are the smallest computational development units,
running on worker nodes. A pod can encapsulate one or multiple containers and is assigned a unique
IP address. Each container in a pod shares the network namespace, including the IP address and
network ports. Pods running on different physical computers can communicate via the Kube-proxy, a

6

https://www.researchgate.net/publication/260592097_Hybrid_Parallelization_Strategies_for_LargeScale_Mac
hine_Learning_in_SystemML/figures

35

component of Kubernetes. In Kubernetes, a pod's CPU request is usually one CPU core or less, so pods
can be flexibly deployed on various nodes to maintain the flexibility and reliability of applications.

Spark can also use Kubernetes as its cluster manager, as well as other managers. In Kubernetes, all
Spark drivers and executors run in pods and are scheduled by the native Kubernetes scheduler. Once a
Spark application is submitted to a Kubernetes cluster, a Spark driver is created and initially runs within
a pod, and then the driver creates Spark executors, which also run within pods, connect to them, and
execute the application code. After the application is completed, the executors' pods are terminated
and cleaned up, but the driver's pod retains the log files and remains in a "completed" state in the
Kubernetes API until it is finally "garbage collected" or manually deleted. (Zhu et al., 2020a).

Kube-proxy

pod

h

Container

AP service

worker node

Scheduler

master node Kube-proxy

pod

¥

Container

worker node

4.2-1 Kubernetes Architecture

4.3 Performance comparison of different architectures

4.3.1 Containerization vs Virtualization

Docker isolates only one process (or a group of processes, depending on how the image is built),
and all containers run on the same computing node. As isolation is applied at the kernel level, the
execution of containers does not significantly burden the computing node compared to virtual
machines. When a container is activated, the selected process or group of processes continues to run
on the same computing node, without the need for virtualization or simulation of anything. Figure 4.3-1
shows three applications running in three different containers on a single physical computing node.

36

App App App

Libs Libs Libs

) 4 A< 4 N 4

Docker Engine

N

Host OS

Server

\ v

4.3-1 Representation of three apps running on three different containers.

In contrast, when a virtual machine is activated, the hypervisor virtualizes the entire system - from
the processing unit to RAM and storage space. To support this virtualized system, an entire operating
system must be installed. The virtualized system is an entire computer running within a computer. The
load required to run a single operating system is already significant, so if an operating system is
executed within another, it is even greater. Figure 4.3-2 shows a representation of three applications
running in three different virtual machines on a single physical computing node.

37

App App App
Libs Libs Libs
Guest Guest Guest
0S 0S 0S
Hypervisor
Host OS
Server

v

4.3-2 Representation of three apps running on three different virtual machines.

Figures 4.3-1 and 4.3-2 give an indication of three different applications running on a single
computing node. In the case of a virtual machine, we need not only the dependent libraries of the
application but also an operating system to run the application. In comparison, with containers, the
fact that they share the kernel of the operating system of the computing node with the application
means that the additional load of an extra operating system is discarded. This not only significantly
improves performance but also allows us to optimize resource usage and minimize untapped
computational power. (Bhat, 2018)

4.3.2 Containerization vs bare metal

When comparing containerization with bare metal in the context of Apache Spark, several factors
are critical:

1. Resource Utilization: Containerization allows for better resource utilization and efficiency,
especially in multi-tenant environments. It enables running multiple isolated Spark jobs on the
same physical hardware without interference.

2. Startup Time and Scalability: Containers have a significantly lower startup time compared to
setting up new bare metal environments. This rapid scalability is beneficial in cloud
environments where workloads can be volatile.

3. Performance Overhead: While containerization introduces some overhead due to the
additional layer of abstraction, this is often minimal. However, in extremely resource-intensive
tasks, bare metal can provide marginally better performance due to direct hardware access.

38

4. Operational Complexity: Managing bare metal deployments can be more complex and
resource-intensive compared to containerized environments. Containerization offers easier
deployment, management, and scaling, which is crucial in agile and dynamic computing
environments.

5. Flexibility and Portability: Containerization provides higher flexibility and portability.
Applications packaged in containers can be easily moved across different environments, a
feature not as easily achievable with bare metal solutions.

The choice between containerization and bare metal in Apache Spark deployments hinges on the
specific requirements of the use case. Containerization offers significant advantages in terms of
scalability, resource efficiency, and operational simplicity, making it suitable for cloud and multi-tenant
environments. Bare metal, while offering potentially higher performance, is more suited to stable,
resource-intensive tasks where direct hardware access is critical.

In conclusion, the discussions in sections 4.3.1 and 4.3.2 have laid a solid foundation for the focus
of this research on the comparison between containerization and bare metal in the context of Apache
Spark. While section 4.3.1 defines the advantages of containerization over virtualization, particularly in
terms of resource efficiency, scalability, and operational simplicity, section 4.3.2 emphasizes the trade-
offs between containerization and bare metal deployments. It is evident from these discussions that
containerization, in most scenarios, offers a more balanced approach, outperforming virtualization in
terms of resource utilization and operational sharpness. This leads to the direct comparison between
containerization and bare metal, as it is more appropriate for this research.

39

5 Approach

5.1 Case: multiple possible configurations for visualisation
dashboard in a multi-tenancy app

In multi-tenancy applications, visualization dashboards serve as the interface for diverse users to
interact with complex datasets, facilitating data-driven decision-making processes. These dashboards
need to be highly responsive, scalable, and capable of handling concurrent requests without significant
performance degradation. The underlying challenge is to maintain the integrity and isolation of data
and services for each client, while offering a unified, seamless user experience.

For this research, the machine learning models will be implemented in two distinct configurations.
The first is a containerized Apache Spark environment, where Apache Spark is deployed within
containers and orchestrated by Kubernetes. This approach leverages the benefits of containerization,
including scalability, resource efficiency, and deployment agility, which are essential in a multi-tenancy
context. The second configuration is Apache Spark on bare metal, involving a direct deployment on
physical servers. This setup aims to maximize computational power and memory efficiency by
eliminating the overhead associated with containerization. The second setup is Apache Spark on bare
metal. This configuration involves deploying Apache Spark directly on physical servers. The expectation
here is to utilize the maximum computational power and memory efficiency, given the absence of
containerization overhead.

The effectiveness of these configurations is assessed on several fronts. One of them is performance,
which is measured in terms of responsiveness, data processing speed, and the capacity to handle
concurrent user requests. Next, scalability is evaluated by the system's ability to adapt to fluctuating
workloads, a frequent occurrence in multi-tenancy applications. Moreover, resource utilization is
another critical factor, particularly in cost-constrained environments, assessing how efficiently the
system uses hardware resources. Additionally, isolation and security are imperative to ensure that the
data and processing of one tenant do not interfere with another.

Practical considerations of these configurations include various aspects. User experience is
paramount, with the dashboard's responsiveness and reliability directly impacting the user's ability to
make timely, data-informed decisions. Maintenance and upgradability are also crucial, especially
considering the diverse needs of multiple tenants, dictating how easily new features can be deployed
and existing ones maintained. Lastly, cost efficiency is a key consideration, seeking a balance between
performance and resource utilization to minimize operational costs.

The choice of configuration has significant implications for the overall effectiveness of a multi-
tenancy app. A containerized environment, while offering scalability and ease of management, might
introduce performance overheads. On the other hand, bare metal setups, though potentially more
performant, could pose challenges in scalability and rapid deployment.

In conclusion, it is necessary to select an appropriate computational configuration for visualization
dashboards in multi-tenancy applications. The evaluation of containerized versus bare metal
environments, specifically using Apache Spark, is important in determining the optimal setup that
balances performance, scalability, and cost efficiency, with ensuring an effective, responsive, and user-
friendly dashboard experience in multi-tenant scenarios.

40

5.2 Dataset

To evaluate the performance of various configurations for machine learning algorithms in the
context of incident detection, a comprehensive dataset from Kaggle, named "US-Accidents", is used.
This dataset includes approximately 2.97 million traffic accident incidents that occurred in the United
States from February 2016. The Kaggle dataset is continuously collected through various sources, with
multiple APIs providing traffic event data streams. These APls, managed by entities such as the US and
state departments of transportation, police departments, traffic cameras and traffic sensors on road
networks, record vital information for assessing traffic accidents and their impacts.

The dataset covers 49 states of the United States. The data is provided in CSV format, with 45
features describing various aspects of each accident record. Significant features include a unique
identifier (ID), accident severity ('Severity'), start and end times of the accident ('Start_Time' and
'End_Time'), geographical coordinates of the starting and ending points ('Start_Lat', 'Start_Lng',
'End_Lat', 'End_Lng'), distance affected by the accident ('Distance(mi)'), physical description of the
accident ('Description’), and weather characteristics such as temperature, wind speed, rainfall, and
weather condition.

5.2-1 US-Accidents Dataset Details

Category Features

Traffic Attributes id, source, TMC, severity, start_time, end_time,
start_point, end_point, distance, description

Address Attributes number, street, side (left/right), city, county, state, zip-
code, country

Weather Attributes time, temperature, wind_chill, humidity, pressure, visibility,
wind_direction, wind_speed, precipitation, condition

POI Attributes Amenity, Bump, Crossing, Give_Way, Junction, _Exit,
Railway, Roundabout, Station, Stop, Traffic_Calming,
Traffic_Signal, Turning_Loop

Period-of-Day Sunrise/Sunset, Civil Twilight, Nautical Twilight,
Astronomical Twilight

Total Accidents 2,974,336

MapQuest Accidents 2,257,521 (75.89%)

Bing Accidents 684,097 (22.99%)

Reported by Both 32,718 (1.1%)

Top States California (485K), Texas (238K), Florida (177K), North

Carolina (109K), New York (106K)

41

The dataset includes a variety of accidents, with various levels of severity and geographical
locations. The dataset covers 49 states of the United States. The data is provided in CSV format, with
45 features describing various aspects of each accident record. Significant features include a unique
identifier (ID), accident severity ('Severity'), start and end times of the accident ('Start_Time' and
'End_Time'), geographical coordinates of the starting and ending points ('Start_Lat', 'Start_Lng',
'End_Lat', 'End_Lng"), distance affected by the accident ('Distance(mi)'), physical description of the
accident ('Description'), and weather characteristics such as temperature, wind speed, rainfall, and
weather condition.

Table 5.2-1 provides an overview of the dataset, showing the total number of accidents, the
percentage of accidents reported from various sources (MapQuest, Bing), and the states with the
highest number of accidents.

To facilitate comparative analysis of various implementation approaches, the dataset is detailed
further regarding features related to traffic, direction, weather, points of interest (POI), and time of
day. Additionally, the dataset is segmented for specific cities, including Atlanta, Austin, Charlotte,
Dallas, Houston, and Los Angeles, with an emphasis on achieving diversity in traffic and weather
conditions. The temporal aspect is considered by sampling data from June 2018 to December 2018,
covering 12 weeks, to reduce the impact of seasonality on weather and traffic patterns. (Moosavi,
Samavatian, Parthasarathy, Teodorescu, et al., 2019)

For training and testing the accident prediction framework, all data were used, and each entry is
represented by 113 time-invariant features and 8 x 24 time-varying features. Due to the rarity of
accidents in the dataset, negative sampling was used to balance the frequency of samples between
accident and non-accident categories. (Moosavi, Samavatian, Parthasarathy, & Ramnath, 2019)

This comprehensive dataset, covering a wide range of features related to traffic accidents, provides
a powerful basis for evaluating the performance of machine learning algorithms in the proposed
distributed computing environment. The richness and diversity of the data supports the exploration of
various configurations and the comparison of implementation approaches to enhance the
development of high-performance dashboards for traffic support applications on the road network.

5.3 Requirements

5.3.1 Multiple algorithms

The choice of multiple machine learning algorithms within the experimental framework is
significant. The objective is to gain a comprehensive understanding of the performance implications
across various distributed computing configurations when executing a diverse set of algorithms. The
selected algorithms for this study include:

e Random Forest

e Multilayer Perceptron (MLP)
e Multiclass Logistic Regression
e Decision Tree

e Naive Bayes Classifier.

42

Including multiple machine learning algorithms serves a dual purpose. Firstly, it allows a holistic
evaluation of computing environment configurations by examining how each algorithm performs under
various conditions. Secondly, it contributes to the generalizability of the findings, facilitating a more
reliable interpretation of the results. Various algorithms have unique features, and their performance
can be affected by the underlying infrastructure. Therefore, using a diverse set of algorithms ensures a
detailed evaluation of the configurations.

The variety of the algorithms aims to capture a broader spectrum of computational patterns and
resource usage scenarios. Each algorithm brings in focus distinct computational requirements, varying
in terms of distributed processing demands and memory usage. By incorporating a mix of classification
and regression algorithms, we aim to evaluate the impact of computing configurations on various
aspects of machine learning tasks.

The analysis of the performance of multiple algorithms contributes to enhancing the interpretability
of the results. The comparative evaluation provides insights into how the strengths and weaknesses of
each algorithm manifest in various computing environments. This, in turn, helps draw more detailed
conclusions about the trade-offs and optimizations that may be necessary for specific algorithm-
environment combinations.

5.3.2 Cloud Native / portable

The implementation of a cloud native and portable architecture in applications utilizing Apache
Spark for distributed computing is crucial. This approach is essential in ensuring that applications
remain flexible and efficient across various computational environments.

Cloud native applications embrace the dynamic capabilities of cloud computing (Nr & Rezzakul
Haider, 2016). They are constructed and deployed to fully utilize cloud features such as scalability,
resilience, and distributed processing. For applications relying on Apache Spark, being cloud native
implies the ability to efficiently utilize cloud functionalities like auto-scaling, rapid provisioning, and the
integration of microservices.

Portability, on the other hand, refers to the ability of the application to run across different
computing environments without significant changes (Pop et al., 2014). This is crucial in a scenario
where the underlying infrastructure might vary between cloud providers, on-premises data centers, or
hybrid configurations. A portable setup ensures that the application can be seamlessly migrated or
replicated across different environments, offering flexibility, and reducing vendor lock-in risks.

To successfully implement a cloud-native and portable architecture, especially for applications
utilizing Apache Spark, certain key strategies are employed. The first strategy is containerization. This
involves using container technologies, such as Docker (Bhimani et al., 2017), which package the
application along with its dependencies into a container image. This method is fundamental in
achieving portability, ensuring that the application runs consistently across any computing
environment that supports containerization. The second strategy involves the use of orchestration
tools. Kubernetes is a prime example of such a tool, which is instrumental in managing containerized
applications across various environments. Orchestrating with tools like Kubernetes helps in maintaining
consistency, enabling scaling, and ensuring resilience of the application. This is particularly vital in
environments that vary between cloud and on-premises setups (Kratzke, 2018).

However, implementing a cloud-native and portable architecture is not without its challenges. One
significant challenge is the complexity that arises in orchestrating, monitoring, and ensuring security
across diverse environments (Ugwuanyi et al., 2020). This complexity necessitates advanced strategies
and tools for effective management. Another hurdle is maintaining optimal performance (Mkandla &
Chikohora, 2021). Each environment may require specific optimizations and fine-tuning to achieve

43

desired performance levels. Lastly, a major challenge lies in achieving consistency in data management.
Ensuring uniform data handling and processing across different cloud and on-premises environments
poses a significant challenge, requiring diligent planning and execution. These challenges necessitate a
comprehensive approach, incorporating both technical expertise and strategic foresight, to successfully
implement and maintain a robust, cloud-native, and portable architecture in Apache Spark-based
applications.

5.3.3 Non-functional / performance requirements

The non-functional and performance requirements are crucial in ensuring the efficiency of
applications leveraging distributed computing with Apache Spark. These requirements form the
foundation of a system that supports optimal operational performance.

The scalability of the system is a primary concern (Choi et al., 2021). The system must be capable of
both vertical and horizontal scaling to manage fluctuating loads in a multi-tenancy context, where the
number of users and data volume can change significantly. This adaptability includes the ability to
dynamically add or remove computational resources in response to real-time demand, which is
essential for maintaining consistent performance. Alongside scalability, the system's availability and
reliability are important. High availability minimizes downtime and ensures continuous access to the
dashboard. The system should be designed with redundancy and failover mechanisms to gracefully
handle potential failures. Reliability, in terms of consistent and accurate performance, is equally critical
(Thiruvathukal et al., 2019).

Another key aspect is responsiveness and latency. The dashboard must provide a high level of
responsiveness, with minimal latency in data processing and visualization rendering, to ensure a
seamless user experience. Any delay or sluggishness can significantly impact usability and decision-
making (Chang et al., 2016). Furthermore, resource efficiency is vital for cost-effective operation,
especially when scaling in cloud environments (Zaharia, 2019). The system should optimize the use of
computational resources (memory, storage) to run intensive tasks efficiently, thereby reducing
unnecessary resource consumption.

Security and data isolation are critical in a multi-tenancy environment (Neves & Bernardino, 2015).
The system must incorporate robust security measures, including data encryption, secure access
controls, and isolation of tenant data, to prevent unauthorized access and data breaches. In addition,
the system should be interoperable, designed to function across different cloud providers and on-
premises environments (Lokuciejewski et al., 2021). It must seamlessly integrate with various data
sources and be compatible with other systems, tools, and services.

Maintenance and upgradability of the system are essential for its long-term viability. The system
should facilitate easy maintenance, allow for disruption-free upgrades, and support automated
deployment and updates, without significant downtime or disruption (Nagar, 2017). This also includes
capabilities for efficient troubleshooting and monitoring. Additionally, the system must adhere to
relevant industry standards and compliance requirements, especially regarding data handling and
privacy. The system should be designed to meet these regulations, ensuring legal and ethical use of
data (Suneetha et al., 2020).

Lastly, robust monitoring and logging capabilities are imperative for tracking performance metrics,
system health, and user activities. These features are critical for proactive maintenance, performance
optimization, and security auditing. Furthermore, a comprehensive disaster recovery plan is necessary,
including regular backups and a clear strategy for service restoration in the event of significant failures
or disasters (Alnafessah & Casale, 2020).

44

6 Experimental Setup

6.1 Description

In our experiment, we run the five selected algorithms in one bare metal and three Kubernetes
configurations to evaluate the performance of distributed computing using Apache Spark. A
comprehensive understanding of the configurations in both the hardware and software domains is
provided. These configurations are essential in supporting the effort to analyse the differences and
similarities, the pros, and cons of the approaches of containerization and bare metal in the field of
distributed computing.

6.2 Spark

Throughout our experiments, Apache Spark serves as the common thread, allowing us to evaluate
its performance and behaviour in containerization, and bare metal configurations. The spark version
used is 3.1.1. By examining how Spark interacts with each of these configurations, we aim to
understand the trade-offs, benefits, and drawbacks associated with each approach in the field of
distributed computing. (Salloum et al., 2016)

6.3 Algorithms

The selected machine learning algorithms have been chosen due to their relevance to incident
detection and their variety in terms of machine learning categories. These algorithms are Random
Forest, Multilayer Perceptron (MLP), Multiclass Logistic Regression, Decision Tree, and Naive Bayes.
The rationale behind this choice is to facilitate a comprehensive comparison of different configurations,
whilst considering the unique characteristics of each algorithm.

These algorithms include a variety of machine learning techniques, allowing us to evaluate how
various containerization, and bare metal configurations affect their performance. Through them, we
aim to gain valuable insights into the trade-offs between performance, portability, and management
overhead in distributed computing environments during their application in incident detection tasks.

6.3.1 Random Forest

The Random Forest algorithm is an ensemble learning method ideal for incident detection due to
its aggregation of multiple decision trees to create a more accurate and reliable predictive model. This
method is capable at handling large, complex datasets with numerous feature interactions, a common
characteristic in incident detection scenarios. Within Apache Spark, Random Forest is implemented
using the RandomForestClassifier class. It constructs numerous decision trees during training and uses
their collective predictions for the final decision, thus reducing the risk of overfitting and enhancing
prediction accuracy. The algorithm's ability to manage various data distributions, including unbalanced
datasets often encountered in incident detection tasks, makes it highly versatile. In traffic incident
detection, Random Forest has been shown to perform effectively, particularly in scenarios with
unbalanced data, by combining factor analysis with a weighted approach to improve detection accuracy
(Jiang & Deng, 2020).

45

6.3.2 Multilayer Perceptron

The Multilayer Perceptron (MLP) is a form of neural network that consists of multiple layers of
interconnected neurons, capable of learning complex patterns within large datasets. This versatility
makes MLP suitable for both classification and regression tasks in incident detection. Within Apache
Spark, the MLP can be implemented using the MultilayerPerceptronClassifier class. The ability of MLP
to notice complex patterns and relationships in data allows it to detect subtle and detailed incident
patterns, which can be beneficial in complex incident detection scenarios. MLP's effectiveness in large
datasets as demonstrated in traffic incident detection highlights its applicability in diverse incident
detection contexts (Kongkhaensarn & Piantanakulchai, 2018).

6.3.3 Multiclass Logistic Regression

Multiclass Logistic Regression extends the logistic regression model to handle scenarios where
predictions are needed for more than two classes. This method predicts the probability of each class,
making it particularly suitable for incident detection tasks that require distinguishing among multiple
types of incidents. Apache Spark offers a flexible implementation of Multiclass Logistic Regression
through the LogisticRegression class. The simplicity and interpretability of this model are beneficial,
especially in understanding and communicating incident detection results. Its application in patient
safety incident reports, for example, demonstrates the model's practical utility in real-world incident
detection scenarios (Wang et al., 2017).

6.3.4 Decision Tree

The Decision Tree algorithm is a versatile and easy-to-understand machine learning technique. It
creates a model that predicts the value of a target variable based on several input variables. Each
internal node of the tree represents a test on an attribute, each branch represents the outcome of the
test, and each leaf node represents a class label (decision). Apache Spark provides an implementation
of the Decision Tree Classifier algorithm. This simplicity of structure makes it highly interpretable, which
is vital in incident detection for understanding the factors leading to an incident. In traffic incident
detection, decision trees have been successfully applied, showing their strength in classifying and
understanding different types of traffic incidents based on various traffic parameters (Chen & Wang,
2009).

6.3.5 Nayve Bayes Classifier

The Naive Bayes Classifier, based on Bayes' theorem, is a straightforward yet powerful algorithm for
classification tasks, particularly effective in incident detection involving categorical data. Despite its
fundamental assumption of independence among features, it has shown a good performance in various
applications. It is known for its speed and efficiency in handling large datasets, making it suitable for
incident detection tasks where rapid processing of large volumes of data is required. Apache Spark
enables the implementation of Naive Bayes through the NaiveBayes class. In the context of traffic
incident detection, the Naive Bayes Classifier has been effectively used in ensemble settings to improve
detection performance and stability, particularly in scenarios involving large datasets and complex
feature sets (Q. Liu et al., 2014).

46

6.4 Configurations

The specific configurations used for our experimental tasks represent various infrastructure
approaches, each with its unique characteristics and trade-offs. The choice of configurations is
important, as it directly affects performance, scalability, and portability of Apache Spark applications.
We have chosen four distinct configurations for our experimental tasks:

e Bare Metal - Single PC
e Kubernetes — one node spark cluster
e Kubernetes — two node spark cluster

e Kubernetes — four node spark cluster

6.4.1 Bare Metal — Single PC

In the Bare Metal configuration with a single node, a single personal computer is used as the
computing node for the Spark cluster. This setup represents the traditional approach of running Spark
directly on dedicated hardware without any abstraction layer. The main features of this setup include:

e Hardware: A single computer (PC) with dedicated CPU, RAM, and storage resources.

e Spark Cluster: A Spark cluster with a single node, running on bare metal hardware.

e Operating System: The computing node operates directly on its native operating system.
e Cores: 4

We include this configuration to establish a baseline performance measurement that represents a
traditional approach to distributed computing without any abstraction layers. This helps us evaluate
the raw, physical performance of Apache Spark on dedicated hardware.

6.4.2 Kubernetes — one node spark cluster

In the Kubernetes (K8s) configuration with a one-node Spark Cluster, Kubernetes was used, a
popular container orchestration platform, to manage a Spark cluster consisting of a single node.
Kubernetes provides a high level of abstraction and resource isolation, making it a suitable choice for
tasks running on workloads. The main features of this setup include:

e Kubernetes: A Spark cluster with one node managed by Kubernetes.

e Docker Containers: Apache Spark and its required dependencies are containers managed by
Docker and orchestrated by Kubernetes.

¢ Resource Management: Kubernetes dynamically manages the CPU and memory resources
allocated to the Spark containers.

e Cores: 4

Kubernetes is a popular choice for container orchestration and offers enhanced resource
management capabilities. We aim to evaluate how running Spark on Kubernetes affects performance
and resource usage compared to the bare metal configuration.

47

4 N

N
Spark master Worker node

Executor

cluster manager cache

spark context

I\“- Ciiver Droram _/,l

kuber nebes

task task

/

6.4-1: Kubernetes - one node spark cluster: Execution flow

6.4.3 Kubernetes — two node spark cluster

In the Kubernetes (K8s) configuration with a two-node Spark Cluster, the Kubernetes setup was
expanded to include a Spark cluster with two nodes. This setting introduces additional complexity by
distributing the workload across multiple nodes.

The main features of this setup are:
e Kubernetes: A Spark cluster with two nodes managed by Kubernetes.

e Node Scaling: Spark tasks can be distributed across two nodes, potentially improving parallel
distributed execution and performance.

¢ Inter-node Communication: Spark nodes communicate via the Kubernetes network.
e Cores: 4

With the increased complexity of the Kubernetes environment, we aim to evaluate how Spark
applications perform when distributed across multiple nodes managed by Kubernetes. This
configuration helps us understand the benefits of scalability in container orchestration.

48

Worker node 1

Executor
cache
™ task task
Spark master \.
cluster manager
spark context
\ Dirives Prasran y
kubernetes
Worker node 2
Executor
cache
task task
kN

6.4-2 Kubernetes - two node spark cluster: Execution flow

6.4.4 Kubernetes — four node spark cluster

In the Kubernetes configuration with a four-node Spark Cluster, we further extend the Kubernetes
setup to include a Spark cluster consisting of four nodes. This setting introduces additional complexity
by distributing the workload across multiple nodes. The main features of this setup include:

e Kubernetes: A Spark cluster with four nodes managed by Kubernetes.

e Node Scaling: Spark tasks can be distributed across four nodes.

¢ Inter-node Communication: Spark nodes communicate via the Kubernetes network.
o Cores: 4

As the complexity of the Kubernetes environment increases, we aim to evaluate how Spark
applications perform when distributed across multiple nodes managed by Kubernetes. This
configuration helps us understand the benefits of scalability in container orchestration.

49

F"n.r#".i’n::rkﬁ:r node :I\

Executor
cache

task task

- J

f/'l.;".h::rkta-r node S‘

Executor
cache

4 N

Spark master task task

. /

cluster manager

spark context

@Jurker node 5\

Executor
cache

task task

. /

r,'c.’#".i’n::rl*:e.-r node E’

Executor
cache

task task

o /

6.4-3 Kubernetes - four node spark cluster: Execution flow

These architectures aim to provide a comprehensive picture of how various computing
environments affect the performance of Apache Spark. The results emerging from each of these
settings will be analyzed and compared in the following sections, offering conclusions on the trade-offs
between performance, portability, and management overhead associated with each composition.

50

7 Results

7.1 Table with algorithms and performances, for multiple
configurations

Now, a comprehensive table and accompanying figures that detail the performance metrics of
various machine learning algorithms under multiple configurations is presented. These configurations
include both bare metal and Kubernetes-based distributed environments, with differing node counts
in the Apache Spark clusters. The table showcases key performance indicators (KPIs) for each algorithm

such as:

e Execution time (both for training and testing)

e Memory consumption per node

e Memory consumption in all

This section serves as a visual and data-driven foundation for the subsequent analytical discussion,
allowing for a clear comparison between containerized and bare metal environments in distributed

computing.
7.1-1 Results Table
Algorithms Configuration / Setup Performance (KPIs)
Time Memory Memory
(per node) (across all nodes)
Random forest Bare metal — single PC 717.85s 1190.64 MiB 1190.64 MiB
K8s — one node spark cluster 729.86 s 1190.86 MiB 1191.18 MiB
K8s — two node spark cluster 453.06 s 704.07 MiB 1191.51 MiB
K8s — four node spark cluster 334.00s 427.56 MiB 1192.03 MiB
MLP Bare metal —single PC 1237.64 s 1082.91 MiB 1082.91 MiB
K8s — one node spark cluster 1309.26 s 1082.83 MiB 1083.46 MiB
K8s —two node spark cluster 896.01s 607.97 MiB 1085.14 MiB

K8s — four node spark cluster 574.47 s 419.85 MiB 1085.63 MiB
Multiclass Bare metal — single PC 126.42 s 438.85 MiB 438.85 MiB
Logistic regression
K8s — one node spark cluster 137.73 s 438.67 MiB 438.78 MiB
K8s — two node spark cluster 88.40 s 259.61 MiB 439.49 MiB
K8s — four node spark cluster 62.89 s 169.90 MiB 440.29 MiB
Decision tree Bare metal —single PC 542.44 s 1010.77 MiB 1010.77 MiB
K8s — one node spark cluster 549.47 s 1011.34 MiB 1011.47 MiB
K8s — two node spark cluster 344.128 s 598.15 MiB 1012.13 MiB
K8s — four node spark cluster 249.46 s 391.46 MiB 1012.75 MiB
Naive Bayes Bare metal — single PC 411.47 s 762.99 MiB 762.99 MiB
K8s — one node spark cluster 415.95s 761.92 MiB 762.27 MiB
K8s — two node spark cluster 263.25s 451.05 MiB 763.36 MiB
K8s — four node spark cluster 183.96 s 295.20 MiB 763.42 MiB

52

Memory Usage (MB)

Memory Usage (MB)

Random Forest Memory Usage Over Time (in MB) - K85 1Node Random Forest Memory Usage Over Time (in MB) - K85 2Nodes

Memory Usage (MB)

T T
—e— Node driver (Max: 0.45 MB) 700 - —®— Node driver (Max: 0.56 MB)
400 4 —®— Node 4 (Max; 267.65 MB) ; —— Node 2 (Max;: 530.82 MB) H;
—&— Node 3 (Max: 427.56 MB) —8— Node 1 (Max: 704.08 MB) F
—e— Node 2 (Max: 335.49 MB) 600 1-
—e— Node 1 (Max: 308.21 MB)
Il T [
300 500
@
z b
o 400
; 8
200 2 _1 ’
! 2 300
£
[
: I
200
100
100
0 0
0 50 100 150 200 250 300 350 400 0 100 200 300 400 500 600
Time (Seconds) Time (Seconds)
Random Forest Memory Usage Over Time (in MB) - K8S 4Nodes Random Forest Memory Usage Over Time (in MB) - Bare Metal
T T T
1200 1200 1~ —e— Node driver (Max: 1190.62 MB)
1000 Iﬂ Il } 1000
p
800 ? I 800
I H : £ !
- N
—®— Node driver (Max: 0.58 MB) | &
600 | 2 600
f ~~ Node 1 (Max; 1190.86 MB) | = 4
" S b
’ i" g j I
) f r r - vt f vt
200 200 j
044 E 0
0 200 400 600 800 0 200 400 600 800
Time (Seconds) Time (seconds)
7.1-1: Random forest memory usage
MLP Memory Usage Over Time (in MB) - K8S 1Node MLP Memory Usage Over Time (in MB) - K85 2Nodes
T T T T
—e— Node 4 (Max: 221.78 MB) f 600
400 1" —»— Node 3 (Max: 238.27 MB)
—8— Node 2 (Max: 419.86 MB)
—8— Node 1 (Max: 375.51 MB) 500
—&— Node driver (Max: 0.75 MB)
300
) @ 400
3
£ = Troteir?
% % —o— Node 2 (Max: 607.97 MB) P
2 00 l p 2 300 —e— Node driver (Max: 0.70 MB)
> . l > —8— Node 1 (Max: 487.37 MB)
5 S
5 5 (" —
= = 200 ¢ L
] .
100 ®
100
3 p
[0
0 100 200 300 400 500 600 0 200 400 600 800 1000
Time (Seconds) Time (Seconds)
MLP Memory Usage Over Time (in MB) - K8S 4Nodes MLP Memory Usage Over Time (in MB) - Bare Metal
T T T
—®— Node driver (Max: 1082.17 MB)
1000 1000
b
- p p—
800 T b= 800
3 g @
i £
600 & 600
—8— Node driver (Max: 0.63 MB) , b
—#— Node 1 (Max: 1082.83 MB) ;
| S
400 £ 400
% r g] f
200 ; t 200 f
04 Fﬁ 0
0 200 400 600 800 1000 1200 1400 0 100 200 300 400 500
Time (Seconds) Time (Seconds)

7.1-2: MLP memory usage

53

MLR Memory Usage Over Time (in MB) - K8S 1Node

MLR Memory Usage Over Time (in MB) - K8S 2Nodes

175§]
—8— Node 4 (Max: 169 90 MB) - Nude dnver(Max 0. 35 MB)
—s— Node 3 (Max: 90.06 MB) r 2507 _o Node 2 (Max: 259.62 MB)
150 1 —®— Node 2 (Max: 89.85 MB) —&— Node 1 (Max: 179.53 MB)
—&— Node 1 (Max: 90.04 MB)
—e— Node driver (Max: 0.44 MB) 200
125 y
=) =)
= } = 1
100
g g 150
@ f’| @
8 8
=1 =1
75 fl
]]
£ £ 100
@ @
= =
50
] 50
25 J
0 - 88000000000 0000 00000000 +0-0000 0 T ”—
0 20 40 60 80 100 120 0 25 50 75 100 125 150 175
Time (Seconds) Time (Seconds)
MLR Memory Usage Over Time (in MB) - K85 4Nodes MLR Memory Usage Over Time (in MB) - Bare Metal
T T T T T T
—8— Node 1 (Max: 438.68 MB) —8— Node driver (Max: 438.61 MB) >
—®— Node driver (Max: 0.29 MB) r I
400 400 l
& 300 & 300
= =
@ @
o o
@ @
8 8
=1 =1
> 200 > 200
]]
£ £
@ @
= =
100 5 100
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250
Time (Seconds) Time (Seconds)
7.1-3: MLR memory usage
Decision Tree Memory Usage Over Time (in MB) - K8S 1Node DEEISIQn Tree Memory Usage Over Time (in MB) - K8S 2Nodes
T T T
400 —e Node 4 (Max: 39147 MB) | 600 —a— Node driver (Max: 0.49 MB)
—&— Node 3 (Max: 209.45 MB) —&— Node 2 (Max: 586.77 MB)
350 —e— Node 2 (Max: 347.00 MB) | —e— Node 1 (Max: 598.15 MB)
—e— Node 1 (Max: 251.45 MB) 500 if
300 —&— Node driver (Max: 0.55 MB) |
- | -)]
400
£ 250 ; \r g
o @
o o
b g
- A, f o
fand el
5 5
£ 150 £
= f S 200 -
100 [
100
) F
o r o
0 50 100 150 200 250 300 0 100 200 300 400
Time (Seconds) Time (Seconds)
DECISIOn Tree Memory Usage Over Time (in MB) - K85 4Nodes Decision Tree Memory Usage Over Time (|n MB) - Eare Metal
1000 4- + Nnde drwer(Max 0.48 MB) 1000 [—— Node drwer(Max 1010 89 MB!
—o— Node 1 (Max: 1011.34 MB)
800 N‘ 800 n
@ @
£ £
600 600
;
g g
=] =]
fal fal
g 400 g 400
] g
= =
200 200
] [
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time (Seconds) Time (Seconds)

7.1-4: Decision tree memory usage

54

Naive Bayes Memory Usage Over Time (in MB) - K8S 1Node Naive Bayes Memory Usage Over Time (in MB) - K85 2Nodes

300 1 _g— Node 4 (Max: 156.05 MB) —e— Node driver (Max: 0.39 MB)

Node 3 (Max: 248.86 MB) Node 2 (Max: 387.82 MB)
—8— Node 2 (Max: 295.21 MB) 400 4 —8— Node 1 (Max: 451.05 MB) %
250 1 —a— Node 1 (Max: 156.04 MB)
—&— Node driver (Max;: 0.24 MB)

N
o
=)

w

&

53

.

Memory Usage (MB)
=
G
=)
Memory Usage (MB)
Y]
S
S
!

=
5]
15}

100 4
50

0 0

T T r T T T T T T T r r T T

0 50 100 150 200 250 0 50 100 150 200 250 300 350

Time (Seconds) Time (Seconds)
Naive Bayes Memory Usage Over Time (in MB) - K85 4Nodes Naive Bayes Memory Usage Over Time (in MB) - Bare Metal

800 800
700 700 4
600 - 600 -

@

=]

IS]
.

1 —®— Node driver (Max: 0.37 MB)

Memory Usage (MB)
N
=]
S
Memory Usage (MB)
&
=]
S
!

—e— Node driver (Max: 762.89 MB)
Node 1 (Max: 761.92 MB)
300 4 300 +
200 200
100 + 100 +
0 04 L
o] 100 200 300 400 500 0 100 200 300 400 500 600

Time (Seconds) Time (Seconds)
7.1-5: Naive bayes memory usage

The previous table and figures provide a detailed quantitative analysis of the performance
differences between containerized (Kubernetes) and bare metal setups in executing various machine
learning algorithms on Apache Spark. Observations from these data, including trends in time efficiency,
and memory consumption across different configurations, set the stage for a deeper analysis in the
following sections.

7.2 Analysis and interpretation

7.2.1 Performance comparison

Starting with the Random Forest algorithm, a noticeable performance enhancement is observed
when transitioning from a single PC bare metal setup to various Kubernetes (K8s) configurations. This
enhancement is particularly pronounced in the four-node spark cluster configuration. The execution
time is significantly reduced from 717.85 seconds on bare metal to just 334.00 seconds on a four-node
K8s cluster, reflecting a decrease of approximately 53.5%. However, when comparing the bare metal
setup to the K8s one-node cluster, there's only a small increase in execution time to 729.86 seconds,
about 1.67% higher. Moreover, memory usage decreases significantly from 1190.64 MiB on bare metal
to 427.56 MiB in the four-node K8s cluster, clearly demonstrating the superior memory efficiency
achievable in distributed computing setups.

55

Random Forest - Time (seconds) Random Forest - Memory (MiB)

800
1190.64 1190.86
717.85 722,80
700 -
600
500 -
_ 453.06 .E 704.07
v
o
E 400 g
= £
L)
334.0 =
300 -
200
100 |
0 .
> @ & z
D
@e")' oob (\ob oob
< o &
e'o& & o &
&) &’
& g &

7.2-1: Random Forest bar graphs of results

The Multilayer Perceptron (MLP) algorithm shows a similar trend. The execution time decreases
dramatically from 1237.64 seconds on bare metal to 574.47 seconds on the four-node K8s cluster.
However, the execution time between the bare metal and the one-node K8s setup shows a negligible
increase to 1309.26 seconds. Memory consumption also shows a substantial reduction, dropping from
1082.91 MiB on bare metal to 419.85 MiB on the K8s four-node cluster, which reaffirms the advantages
of distributed setups in terms of memory utilization.

56

MLP - Time (seconds} MLP - Memory (MiB)

1400
1309.26 1082.91 1082.83
1237.64
1200 1000
1000 A
800 1
896.01
800 E.:
s = 607.97
Py 600 4
v g
: :
600 574.47 =
419.85
400 A
400
200 4
200
0- 0-
> @ (2 (] 2 @ @ (]
3 >
& ob ob' ob 2 Qb °b- ob
& et 0" & z»@ et o N
& & & oy & & N &
o & o > i P
& & & & & €

7.2-2: Multilayer perceptron bar graphs of results

For the Multiclass Logistic Regression algorithm, the performance improvement in the four-node
setup is significant, with the execution time dropping by about 50.2% from 126.42 seconds on bare
metal to just 62.89 seconds. Conversely, when comparing the bare metal setup to the one-node K8s
setup, the execution time increases to 137.73 seconds. Similarly, memory usage sees a substantial
decrease from 438.85 MiB on bare metal to 169.90 MiB in the four-node K8s cluster, underscoring the
capability of distributed computing to optimize memory usage.

57

MLR - Time (seconds) MLR - Memory (MiB)

500 -
200 1 438.85 438.67
150
137.73 _
m
= 126.42 s
v > 259.61
£ <]
= &
100 =
88.4
169.9
62.89
5)0 -
0 .
a @ & @ (] (7]
B
@e'}' Qob (\ob & (\ob oob
7] (s] .3 "
Q;o& ‘00 "\,‘3\ 5\0\) 5\0\)
& & & &

7.2-3: Multiclass logistic regression bar graphs of results

Similarly, the Decision Tree algorithm shows a decrease in execution time from 542.44 seconds to
249.46 seconds (about 54.0%) when comparing bare metal and the K8s four-node cluster. In the one-
node K8s setup, the execution time is slightly higher at 549.39 seconds compared to bare metal.

Memory usage also decreases significantly from 1010.77 MiB on bare metal to 391.46 MiB in the four-
node K8s configuration.

58

Decision Tree - Time (seconds) Decision Tree - Memory (MiB)

600 4 1010.77 1011.34
542.44 549.47
500 4
400 +
]
= 344.13 S 598.15
L5}
g g
£ 300 - £
8}
=
249.46
391.46
200 4
) I
0 .
» @ (] @ > & (]
<& & & o &
. & e'oo " Qob p & . <& " Qo’b' p S
L & Ie) Ly 8]
° R o > <° -~ N
*ib @ @‘9 @‘9

7.2-4: Decision tree bar graphs of results

Lastly, the Naive Bayes algorithm under the K8s one-node setup takes marginally longer to execute
at 415.95 seconds compared to 411.47 seconds on bare metal, a 1.1% increase. Memory usage shows
a considerable reduction from 762.99 MiB on bare metal to 295.20 MiB in the four-node K8s cluster,
demonstrating the efficiency of the multi-node environment in managing memory resources.

59

Naive Bayes - Time (seconds) Naive Bayes - Memory (MiB)

500 +
800 4
762.99
411.47 415.95
400 +
300 + @
w 263.25 E 451.05
L5}
g g
= E
%)
=
200 4
183.96 3952
mo_ I I
0 .
> @ @ (] & @
>
@e'}' Qob (\ob oob (\ob oob
@ o & o &
Q;S\e' & ‘-C;\ ‘u,o‘) ‘-«,“3\ ‘p\o‘)
& & & &

7.2-5: Naive bayes bar graphs of results

In conclusion, the transition from a traditional single PC bare metal setup to distributed computing
environments, particularly those based on Kubernetes multi-node clusters, results in substantial
performance improvements. These improvements are evident in reduced execution times and memory
utilization across various algorithms. The most notable improvements are observed in the four-node
K8s cluster configuration, which demonstrates significant enhancements in all aspects of performance.
However, even in the one-node K8s setup, where there is a slight increase in execution time for most
algorithms, this is offset by a considerable decrease in memory usage. This highlights the effectiveness
and efficiency of distributed computing in handling a variety of computational tasks. The results
illustrate the advantages of adopting distributed computing frameworks, particularly in scenarios
where efficient resource utilization is a priority.

7.2.2 Interpretation and consequences

The transition from a single PC bare metal setup to Kubernetes (K8s) multi-node clusters reveals
insights into the dynamics of distributed computing environments. Notably, the marked performance
enhancements in multi-node configurations, particularly in the four-node K8s cluster, are evident in
terms of reduced execution time and more efficient memory utilization. These improvements highlight
the effectiveness and scalability of distributed systems.

60

Algorithm

An important observation from our data is the considerable decline in memory usage in the multi-
node K8s configuration across all tested algorithms, relative to the bare metal setup, shown in the
heatmap in figure 7.2-6. The underlying mechanism for this reduction can be associated with
distributed computing principles, where tasks are split across multiple nodes, allowing for more
efficient memory use. In distributed clusters, parallel processing enables simultaneous execution of
tasks, which not only improves computational speed but also optimizes resource utilization. This leads
to each node handling a smaller, more manageable portion of data, thereby consuming less memory
than a single machine processing the entire dataset. Furthermore, advanced memory management
techniques, such as intelligent data caching and load balancing across nodes, contribute to this
reduction in memory usage. This distribution of tasks and efficient resource management is particularly
evident in the two-node and four-node K8s Spark cluster setups, which consistently show lower
memory usage compared to the single-node cluster and bare metal configurations.

Memory Usage (MiB)

Decision tree 1010.77 1011.34 598.15 391.46

MLP 1082.91 1082.83 607.97 419.85

Multiclass Logistic regression - 438.85 438.67 259.61 169.90

Naive Bayes 451.05 295.20

Random forest 1190.64 1190.86 427.56

1
Bare metal - single PC K8s - one node spark cluster K8s - two node spark cluster K8s - four node spark cluster
Setup

7.2-6: Memory Usage Heatmap

Adding to this, an examination of the "total memory" column in our results table reveals that the
total memory utilized across all nodes remains consistent across different configurations. This stability
in total memory usage, even as the number of nodes increases from one to four, suggests that K8s's
approach to distributed computing does not introduce memory overhead. This indicates that horizontal
scaling through K8s can be achieved without incurring additional memory costs. This feature is
invaluable in processing large-scale data or machine learning workflows where efficient memory
management is paramount.

The consistent total memory usage across various node configurations underscores the efficiency
of K8s in resource management. It demonstrates K8s's capability to distribute workload effectively
without compromising on memory efficiency. This finding is particularly reassuring for applications that
demand high scalability and performance without the penalty of increased resource consumption. The
efficiency of K8s in managing memory across a distributed environment, as evidenced by our data,
supports its adoption for deploying complex applications that require scalable, efficient, and cost-
effective memory usage. Furthermore, this observation reinforces the notion that distributed
computing, especially in a K8s environment, is also about optimizing resource allocation and usage. The
evidence of our experiments bolsters the argument that K8s facilitates an intelligent and efficient use
of resources. This optimization is vital in big data and machine learning domains, where judicious

61

1000

800

- 600

- 400

- 200

Algorithm

memory usage can significantly enhance performance and enable the processing of larger datasets
more effectively.

Memory Usage (MiB)

Decision tree 1010.77 1011.47 1012.13 1012.75

MLP 1082.91 1083.46 1085.14 1085.63

Multiclass Logistic regression - 438.85 438.78 439.49 440.29

Naive Bayes 762.99 762.27 763.36 763.42

Random forest 1190.64 1191.18 1191.51 1182.03

Bare metal - single PC K8s - one node spark cluster K8s - two node spark cluster K8s - four node spark cluster
setup

7.2-1: Total memory consumption heatmap

The significant reduction in execution time observed in multi-node Kubernetes (K8s) setups, as
shown in the heatmap in figure 7.2-7, has profound implications for the efficiency and scalability of
computational processes in distributed computing environments. In practical terms, the reduction in
execution time enables more complex computations to be completed in shorter periods. Furthermore,
this efficiency gain underscores the value of Kubernetes in optimizing computational resources across
multiple nodes, which is essential for applications that demand high throughput and low latency. By
dramatically decreasing execution times, Kubernetes multi-node clusters not only enhance the
operational efficiency of computing tasks but also enable a higher throughput of workloads. In addition,
the scalability afforded by Kubernetes means that as computational demands increase, resources can
be dynamically allocated to meet these needs without a corresponding increase in execution time. This
scalability is a key factor in the cost-effective management of computational resources, as it allows for
the precise tuning of resource allocation to match the workload, thereby avoiding underutilization or
over-provisioning.

However, this improvement comes with a nuanced understanding of the initial overheads
encountered during the transition from traditional bare metal setups to containerized environments.
Specifically, the marginal increase in execution time in transitioning to a one-node K8s setup, when
compared to the bare metal configuration, highlights the inherent complexities of container
orchestration. This initial overhead can be attributed to factors such as container startup time, the
abstraction layer introduced by Kubernetes, and the resource management overhead that comes with
it. Despite this slight increase, the overarching trend towards significantly reduced execution times in
larger multi-node configurations underscores the scalability and efficiency benefits of Kubernetes for
distributed computing. The nuanced increase in execution time from bare metal to a one-node K8s
setup underscores the importance of considering the trade-offs between immediate performance and
long-term scalability and efficiency. While the initial setup in Kubernetes may introduce minor
inefficiencies, these are quickly offset by the substantial gains in resource optimization and execution
speed as the system scales.

62

1100

1000

900

- 800

- 700

- 600

- 500

Algorithm

Execution Time (s)

Decision tree - 542.44 549.47 344.13 249.46

MLP 1237.64 1309.26 574.47

Multiclass Logistic regression - 126.42 137.73 88.40 62.89

Naive Bayes - 411.47 415.95 263.25 183.96

Random forest 453.06 334.00

I |
Bare metal - single PC K8s - one node spark cluster K8s - two node spark cluster K8s - four node spark cluster
Setup

7.2-7: Execution time Heatmap

Our analysis demonstrates that Kubernetes, especially in multi-node configurations, provides a
more efficient, scalable, and resource-optimized environment for distributed computing with Apache
Spark, compared to traditional Bare Metal setups. However, this efficiency requires more sophisticated
setup and management, which should be considered against the performance improvements in
practical applications. Understanding these trade-offs and the behavior of different algorithms in
various environments is essential for effectively leveraging distributed computing with Apache Spark.

To summarize, the performance benefits of using distributed computing environments, such as
Kubernetes with Apache Spark, are clear, but the optimal setup depends on factors like algorithm
choice and scalability requirements. This analysis highlights the need for careful consideration and
testing when selecting the appropriate infrastructure for distributed computing with Apache Spark. The
shift towards distributed computing frameworks like Apache Spark on Kubernetes multi-node clusters
signifies a notable advancement in efficiently and sustainably handling complex computational tasks.

7.2.3 Comparison based on the types of models

In the acceleration diagram below we can see that in the Kubernetes 4 nodes spark cluster we have
an acceleration from about 2 to 2.2 depending on the algorithm. The time does not sub-quadrupled
because increasing the number of nodes brings with it a cost of coordination and communication. This
is known as Amdahl's law, which states that the maximum speedup of a program is limited by the
execution time of the non-distributed part of the code. More specifically, even if we add more nodes,
some tasks must be executed serially, and so there is a limit to the acceleration that can be completed.
Beyond that, the overhead from orchestrating the containers increases further the constraint of
distributed execution.

The observable variations in acceleration for the various machine learning algorithms can be
ascribed to the unique characteristics and computational demands of each. The Decision Tree
algorithm may be less sensitive to orchestration changes, exhibiting noticeable acceleration in
execution. Similarly, the Naive Bayes, which is computationally less demanding, also shows significant

63

1200

1000

800

- 600

- 400

-200

improvement. In contrast, the Multilayer Perceptron, which has higher computational requirements,
displays smaller acceleration. Also, the type of computations involved in each algorithm can influence
its response to containerized environments. Algorithms heavily reliant on iterative processes or
intensive computations may exhibit more pronounced effects from orchestration overhead, as seen in
the Multiclass Logistic Regression model. The Random Forest algorithm, with its ensemble approach,
also experiences a discernible increase in acceleration, yet this is moderated by the complexity of its
structure. This nuanced behavior across algorithms highlights the importance of considering both
algorithmic efficiency and the computational environment when optimizing for performance in
containerized systems.

Acceleration Diagram

—&— Random forest
2.2 MLP
—e— MLR
—&— Decision tree
2.04 —®— MNaive Bayes

1.8

1.6

Acceleration

1.4 A

1.2

1.0 A

Number of Nodes

7.2-8: Acceleration diagram

7.2.4 Memory fluctuations

In the graphs 7.1-1, 7.1-2, 7.1-3, 7.1-4 and 7.1-5 we see the memory usage over time with
fluctuations and occasional peaks. This variability in memory usage is typically caused by data loading,
garbage collection and cashing. When the model loads data into memory, there's a spike in memory
usage which then drops once the data is either moved out of memory or no longer in use. Also,
intermediate results or data might be cached in memory during processing. Once the cache is cleared
or written to disk, memory usage may decrease. Furthermore, in programming languages like Java and
Python, garbage collection (GC) is a form of automatic memory management. The garbage collector
attempts to reclaim memory occupied by objects that are no longer in use by the program. When GC
kicks in, memory usage can drop suddenly. This could explain the sharp drops in memory usage
observed in the graphs.

64

8 Discussion

8.1 Performance

The empirical data from our study highlights the superior performance of containerized
environments, particularly Kubernetes multi-node clusters, over traditional Bare Metal setups when
executing various machine learning algorithms using Apache Spark.

e Execution Speed: A key finding in our study is the notable reduction in execution time across
all algorithms when transitioning from Bare Metal to Kubernetes clusters, in multi-node
setups. For instance, in the four-node Kubernetes configuration, the execution time for
algorithms like the Multilayer Perceptron and Decision Tree saw reductions of more than
50%. This decrease is attributed to the distributed processing capabilities of Kubernetes
clusters, which allows for simultaneous execution of tasks across multiple nodes, thereby
optimizing computational efficiency. However, when transitioning from Bare Metal to
Kubernetes clusters, in one-node setup, we observe a slightly worse execution speed,
ranging from 1.6% to 8.95%.

e Memory Usage: Memory efficiency is another critical performance aspect where
Kubernetes clusters demonstrate superiority. Our findings indicate a consistent decrease in
memory usage when moving from a Bare Metal setup to a Kubernetes multi-node cluster.
This suggests that Kubernetes, through its containerization technology, effectively manages
and allocates memory resources across its nodes, reducing the overall memory footprint
for similar workloads.

Furthermore, Kubernetes clusters, particularly those with multiple nodes, have demonstrated their
capacity for scalability and resource optimization, crucial for high-performance computing tasks in
distributed environments. The distributed nature of Kubernetes facilitates the handling of larger and
more complex tasks by spreading the load across multiple nodes. This scalability is particularly
beneficial for data-intensive applications, where handling large volumes of data efficiently is
paramount.

The study also highlights the resource optimization capabilities of Kubernetes. The efficient
allocation and utilization of memory resources in multi-node Kubernetes clusters imply enhancements
in overall system performance, especially when compared to the more rigid and resource-intensive
Bare Metal setups. These performance gains have implications for applications where time efficiency
and resource optimization are critical. Kubernetes clusters emerge as a preferable choice for
distributed processing tasks, given their superior performance metrics in memory.

However, it is important to note that these performance enhancements are not universally
applicable. The choice of configuration, the nature of the computational task, and the specific
requirements of the application should be carefully considered to harness the full potential of
Kubernetes in distributed computing environments.

8.2 Performance - Portability

Kubernetes, known for its portability and scalability in container orchestration, offers benefits for
cloud-native applications. However, this comes at the cost of potential performance drawbacks,
especially in smaller configurations like a one-node setup.

Portability in distributed computing refers to the ease with which applications can be moved and
executed across different computing environments. Containerization, epitomized by Kubernetes, has
significantly advanced the portability of applications. It allows for a consistent and predictable

65

deployment environment, irrespective of the underlying hardware or infrastructure. This feature is
particularly advantageous in cloud-native applications, where the ability to migrate workloads
seamlessly across various cloud providers or between on-premises and cloud environments is essential.

While portability offers flexibility and adaptability, it can come at a cost to raw performance metrics.
Containerization abstracts the application from the hardware, introducing a layer of overhead that can
impact performance. In Kubernetes, this overhead is manifest in container orchestration, network
configuration, and resource allocation strategies, which can slightly degrade performance compared to
running applications directly on bare metal. For instance, in a one-node Kubernetes setup, the ease of
scaling and deployment is counterbalanced by a marginal increase in execution time and resource
utilization, as observed in our empirical data. This trade-off is critical in contexts where peak
performance is paramount, such as in high-performance computing tasks that necessitate rapid data
processing.

The decision to opt for a containerized environment or a bare metal setup, hinges on a thorough
understanding of the application's specific requirements. If the priority is on flexibility, scalability, and
ease of deployment, containerization presents a compelling case. Conversely, for applications where
maximum performance is non-negotiable, bare metal setups might be more appropriate. In our study,
while Kubernetes demonstrated superior resource management capabilities, especially in multi-node
configurations, it is essential to note that these benefits come with increased complexity in system
administration. The management overhead, including the need for specialized knowledge in container
orchestration and network configurations, can be significant.

The choice between containerization and bare metal should also consider the nature of the
application. For example, applications that experience fluctuating workloads and require rapid scaling
will benefit more from a Kubernetes environment. In contrast, applications with consistent
performance demands and less need for scalability might find bare metal setups more efficient.
Looking at the broader picture, the trade-off between performance and portability also has long-term
implications for organizational strategy and sustainability. Kubernetes' ability to optimize resource
utilization can translate into cost savings and reduced environmental impact over time. However, this
must be weighed against the immediate performance needs and the technical capacity of the
organization to manage a Kubernetes environment.

Choosing the right infrastructure for an application depends on a careful evaluation of the
application's specific requirements. For applications where flexibility and adaptability are paramount,
Kubernetes and containerized environments are beneficial. Conversely, for applications with stringent
performance requirements, Bare Metal configurations might be more suitable.

8.3 Management overhead

While Kubernetes offers advantages in scalability and portability, it introduces a certain level of
complexity and management overhead. This overhead and its impact on the cost-effectiveness and
practicality of Kubernetes solutions have implications. Its complexity stems from various factors,
including the orchestration of containers, the management of cluster resources, network
configurations, and ensuring high availability and fault tolerance. Effective management of a
Kubernetes environment requires a robust understanding of these components and their interplay,
which often necessitates specialized skills and knowledge (Toka et al., 2021).

One of the primary challenges in managing Kubernetes environments is the dynamic nature of
resource allocation and monitoring (Kim et al., 2021). Kubernetes excels in efficiently allocating
resources across multiple nodes and containers. However, this requires continuous monitoring and
fine-tuning to ensure optimal performance. Administrators must oversee the distribution of memory,
and storage resources, manage pod scheduling, and monitor the health of the entire cluster. This level

66

of oversight demands dedicated tools and a proactive management approach. Another critical aspect
of management overhead is maintaining high availability and effective load balancing in a Kubernetes
environment. Kubernetes provides mechanisms for load balancing and ensures that applications are
always available, even in the event of node failures. However, configuring and managing these features
requires careful planning and ongoing management to prevent service disruptions and maintain
consistent performance levels (Jorge-Martinez et al., 2021).

Network configuration in a distributed computing environment is complex, and Kubernetes adds
layers to this complexity with its own networking model. Network policies and ensuring secure
communication between pods are pivotal for maintaining a robust and secure environment.
Additionally, implementing and managing security measures such as role-based access control (RBAC)
(Shamim et al., 2020), secrets management, and compliance with data security standards form an
integral part of the management overhead. The sophisticated nature of Kubernetes necessitates a
higher level of expertise in container orchestration, network management, and security (Budigiri et al.,
2021). Organizations must invest in training their IT staff or hiring specialists with the requisite skills.
This investment in human capital is a significant aspect of management overhead and impacts on the
overall cost and feasibility of adopting Kubernetes for distributed computing. To manage the
complexity of Kubernetes, organizations often rely on a suite of automation tools and platforms. These
tools aid in deployment, monitoring, scaling, and managing the lifecycle of applications.

While these tools streamline management processes, selecting the right tools, integrating them into
existing systems, and maintaining them adds another layer to the management overhead. Kubernetes
environments are dynamic and require regular updates and upgrades to ensure security, performance,
and feature enhancements. Managing these updates, while ensuring minimal disruption to services, is
a challenging aspect of Kubernetes administration. It requires careful planning, testing, and execution,
further adding to the management workload (He, 2020).

The management overhead associated with Kubernetes has direct cost implications. These costs
include the investment in specialized personnel, training, tooling, and the time spent on administration
and maintenance tasks (Nguyen et al., 2020). Organizations must consider these costs when evaluating
the total cost of ownership of a Kubernetes environment.

While Kubernetes introduces substantial management overhead, it's essential to balance this with
the operational benefits it provides. Kubernetes enables scalable, flexible, and efficient distributed
computing environments. The decision to adopt Kubernetes should factor in the long-term operational
efficiencies, potential cost savings, and the strategic benefits of having a scalable and robust distributed
computing platform. Organizations considering Kubernetes must evaluate their capacity to manage
these environments effectively. This includes investing in the necessary tools, expertise, and resources
to handle the intricacies of Kubernetes management. The management overhead of Kubernetes can
influence its overall cost-effectiveness, especially for applications that do not require its full scale and
flexibility. Organizations must assess the total cost of ownership, including management and
maintenance, when deciding on the suitability of Kubernetes for their specific applications.

Ultimately, the choice between Kubernetes and Bare Metal is not just about performance and
portability but also about an organization's ability to manage and maintain the chosen infrastructure
effectively. This decision should be grounded in a comprehensive understanding of the application's
needs, the organization's management capacity, and the long-term implications of adopting a particular
computing environment.

67

9 Conclusions

Considering the findings from our comprehensive analysis, the implementation of future
dashboards using a distributed computing approach is recommended, particularly for scenarios where
scalability and flexibility are key requirements. While distributed computing environments, especially
those managed by Kubernetes, have demonstrated potential for enhanced scalability and improved
resource utilization, their performance compared to traditional bare metal setups can be context
dependent. In certain configurations, particularly in multi-node setups, distributed computing has
shown promising improvements in processing efficiency. However, it's important to acknowledge that
in some instances, especially in smaller-scale deployments, the performance gains might not be as
significant due to the overhead introduced by containerization and orchestration. Therefore, our
recommendation to adopt a distributed computing approach for future dashboards is particularly
aimed at applications where the advantages of scalability, flexibility, and resource optimization align
with the specific needs and constraints of the task at hand.

9.1 Summary

This thesis has undertaken a comprehensive exploration into the realms of distributed computing,
focusing on the performance of Apache Spark in containerized versus bare metal environments. The
thesis began with a theoretical background, laying the foundational concepts of distributed computing,
Apache Spark, containerization, virtualization, and bare metal implementations. It progressed through
a detailed analysis of various deployment strategies, empirical experiments, and interpretation of the
results.

The empirical study, forming the core of this thesis, revealed insightful findings. Key among them is
the superior performance of containerized environments, particularly Kubernetes multi-node clusters,
compared to traditional bare metal setups. This superiority manifested in reduced execution times, and
more efficient memory management across a range of machine learning algorithms. Notably, the
enhancements in performance metrics were most pronounced in multi-node Kubernetes
configurations.

However, the study also highlighted the nuances of containerized environments. While Kubernetes
excelled in scalability and portability, it introduced a complexity in management and an overhead in
smaller-scale setups, like the one-node cluster. This observation establishes a crucial finding: the choice
between containerization and bare metal is not clear-cut but depends on specific use cases, balancing
the trade-offs between performance, portability, and management overhead.

The thesis also delved into the practical aspects of deploying Apache Spark in different computing
environments. It offered insights into the implications of these setups in real-world applications,
particularly emphasizing the importance of understanding the specific requirements of an application
and the capability of an organization to manage the chosen infrastructure.

In summary, this thesis contributes to the field of distributed computing by providing a detailed
comparative analysis of containerization and bare metal environments using Apache Spark. It offers a
subtle understanding of the trade-offs involved in different deployment strategies, guiding
practitioners and researchers in making informed decisions for their specific computational needs.

68

9.2 Trade-off between performance and portability —
management overhead

The thesis highlighted a trade-off in distributed computing environments: the balance between
performance and portability versus the management overhead. While Kubernetes-based containerized
environments offered enhanced portability and scalability, they also introduced a significant
management overhead compared to bare metal setups.

9.2.1 For a specific zoom level

In exploring the trade-off between performance and portability in distributed computing
environments, it becomes essential to focus on a specific zoom level, one that encapsulates the details
and dynamics of these environments.

At this level, we observe that while Kubernetes excels in providing a highly portable and scalable
environment, it also introduces a level of complexity and management overhead that cannot be
overlooked. This is particularly evident in the one-node Kubernetes cluster setup, where the benefits
of containerization become a trade-off. On the one hand, Kubernetes offers the flexibility to seamlessly
deploy applications across diverse environments, a feature that is invaluable in today's rapidly evolving
technological landscape. On the other hand, this flexibility comes with a cost — a slight decrease in raw
performance metrics compared to traditional bare metal setups. This performance dip, though small,
is critical to consider in contexts where every millisecond of computation time counts. In high-
performance computing tasks, for example, where processing large volumes of data in the shortest
time possible is crucial, the overhead introduced by containerization might be a significant factor.
However, for applications where scalability and the ability to adapt to different environments are more
important than the sheer speed of execution, Kubernetes presents a compelling option.

Furthermore, when delving into the specifics of resource utilization, Kubernetes demonstrates its
strength in efficient resource management. In a one-node setup, the platform's ability to manage
resources dynamically becomes a key advantage, particularly in scenarios where resource constraints
are a major concern. Kubernetes' scheduling and resource allocation mechanisms allow for more
efficient use of available computational resources, which can lead to cost savings and improved overall
system sustainability.

However, this efficient resource management comes at the cost of increased complexity in system
administration. Kubernetes requires an understanding of container orchestration, network
configurations, and resource allocation strategies. This complexity necessitates a higher level of
expertise and potentially more sophisticated monitoring and management tools, which could suggest
challenges for organizations without the required technical capabilities.

The specific zoom level analysis also highlights the importance of application-specific considerations
in choosing a deployment strategy. Depending on the nature and requirements of the application, the
balance between performance, portability, and management overhead can vary. For instance,
applications that require rapid scaling to handle fluctuating workloads would benefit more from a
Kubernetes-based environment, despite the potential performance overhead. In contrast, applications
that demand the highest level of performance and are less sensitive to scaling requirements might be
better served by a bare metal setup.

In conclusion, the analysis at this specific zoom level underscores the need for a tailored approach
to choosing between containerized and bare metal environments. The decision should be based on a
thorough understanding of the application's requirements, the organization's technical capabilities,
and the specific trade-offs involved in each deployment strategy. By carefully considering these factors,

69

organizations can make informed decisions that align with their strategic objectives and operational
constraints, ensuring the optimal use of their computational resources.

9.3 Future suggestions

Future research could benefit from delving into the development of strategies aimed at minimizing
the performance overhead observed in Kubernetes environments, especially in configurations with a
smaller scale. Such strategies could potentially balance the high scalability and portability of
containerized systems and the performance-centric nature of bare metal setups.

To understand the scalability limits and performance implications comprehensively, it would be
instructive to expand experimental studies across more nodes, extending the current investigation
from up to 24 nodes to larger clusters. Observing the behavior in larger deployments could provide
insights into when and if the performance benefits plateau or decline, offering valuable data for
optimizing container orchestration across varying scales.

Another promising area for future exploration is the advancement of resource management
techniques. These techniques could further boost the efficiency of containerized environments,
broadening their applicability across a diverse range of computational tasks and scenarios. By
enhancing resource management, containerized systems could potentially resemble the performance
efficiencies of bare metal setups while retaining their inherent benefits of flexibility and scalability.

The exploration of hybrid approaches also presents significant potential for future research. These
approaches would aim to combine the performance benefits of bare metal environments with the
scalability and portability advantages of containerization. Such a hybrid model could offer a balanced
solution, tailor-made for applications requiring both high performance and the ability to scale across
varied environments. Additionally, there is an opportunity in conducting application-specific studies.
These studies would provide a deeper understanding of how different deployment strategies impact
various domains, such as real-time data processing or high-performance computing. Insights from
these studies could guide the development of specialized deployment strategies that are optimized for
specific types of applications, thus ensuring optimal performance and efficiency.

Lastly, the development of improved management tools and practices for containerized
environments stands as a critical need. The complexity and management overhead associated with
these environments, as highlighted in this thesis, underscore the necessity for more intuitive and
efficient management solutions. By simplifying the operational aspects of containerized systems, these
tools and practices could significantly make it easier to adopt them, making them more accessible and
practical for a wider range of users and applications.

70

Bibliography
Alnafessah, A., & Casale, G. (2020). Artificial neural networks based techniques for anomaly

detection in Apache Spark. Cluster Computing, 23(2), 1345-1360.
https://doi.org/10.1007/s10586-019-02998-y

Bellavista, P., & Zanni, A. (2017, January 5). Feasibility of fog computing deployment based on
docker containerization over RaspberryPi. ACM International Conference Proceeding Series.

https://doi.org/10.1145/3007748.3007777

Beltre, A. M., Saha, P., Govindaraju, M., Younge, A., & Grant, R. E. (2019). Enabling HPC Workloads
on Cloud Infrastructure Using Kubernetes Container Orchestration Mechanisms. 2019
IEEE/ACM International Workshop on Containers and New Orchestration Paradigms for
Isolated Environments in HPC (CANOPIE-HPC), 11-20. https://doi.org/10.1109/CANOPIE-
HPC49598.2019.00007

Bhardwaj, A., & Krishna, C. R. (2021). Virtualization in Cloud Computing: Moving from Hypervisor to
Containerization—A Survey. Arabian Journal for Science and Engineering, 46(9), 8585-8601.
https://doi.org/10.1007/s13369-021-05553-3

Bhat, S. (2018). Practical Docker with Python. In Practical Docker with Python. Apress.
https://doi.org/10.1007/978-1-4842-3784-7

Bhimani, J., Yang, Z., Leeser, M., & Mi, N. (2017). Accelerating big data applications using
lightweight virtualization framework on enterprise cloud. 2017 IEEE High Performance

Extreme Computing Conference (HPEC), 1-7. https://doi.org/10.1109/HPEC.2017.8091086

Budigiri, G., Baumann, C., Mihlberg, J. T., Truyen, E., & Joosen, W. (2021). Network Policies in
Kubernetes: Performance Evaluation and Security Analysis. 2021 Joint European Conference
on Networks and Communications & 6G Summit (EuCNC/6G Summit), 407-412.
https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482526

Campbell, S., & Jeronimo, M. (n.d.). An Introduction to Virtualization.

Casalicchio, E., & lannucci, S. (n.d.). The State-of-the-Art in Container Technologies: Application,

Orchestration and Security. https://aws.amazon.com/ecs

Chaisawat, S., & Vorakulpipat, C. (2020). Fault-Tolerant Architecture Design for Blockchain-Based
Electronics Voting System. 2020 17th International Joint Conference on Computer Science and

Software Engineering (JCSSE), 116—121. https://doi.org/10.1109/JCSSE49651.2020.9268264

71

Chang, B. R., Tsai, H.-F., & Wang, Y.-A. (2016). Optimized Multiple Platforms for Big Data Analysis.
2016 IEEE Second International Conference on Multimedia Big Data (BigMM), 155—158.
https://doi.org/10.1109/BigMM.2016.61

Chen, S., & Wang, W. (2009). Decision tree learning for freeway automatic incident detection.
Expert Systems with Applications, 36(2, Part 2), 4101-4105.
https://doi.org/https://doi.org/10.1016/j.eswa.2008.03.012

Choi, J. Y., Cho, M., & Kim, J. S. (2021). Employing vertical elasticity for efficient big data processing
in container-based cloud environments. Applied Sciences (Switzerland), 11(13).

https://doi.org/10.3390/app11136200

Clements, A. A., Almakhdhub, N. S., Saab, K. S., Srivastava, P., Koo, J., Bagchi, S., & Payer, M. (n.d.).

Protecting Bare-metal Embedded Systems With Privilege Overlays.

Duplyakin, D., Uta, A., Maricq, A., & Ricci, R. (2020). In Datacenter Performance, The Only Constant
Is Change. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), 370-379. https://doi.org/10.1109/CCGrid49817.2020.00-56

EXPERTOPINION 8. (2009). www.computer.org/intelligent

Eze, K. G., & Akujuobi, C. M. (2022). Design and Evaluation of a Distributed Security Framework for
the Internet of Things. Journal of Signal and Information Processing, 13(01), 1-23.
https://doi.org/10.4236/jsip.2022.131001

Galakatos, A., Crotty, A., & Kraska, T. (2017). Distributed Machine Learning. In Encyclopedia of
Database Systems (pp. 1-6). Springer New York. https://doi.org/10.1007/978-1-4899-7993-
3_80647-1

He, Z. (2020). Novel Container Cloud Elastic Scaling Strategy based on Kubernetes. 2020 IEEE 5th
Information Technology and Mechatronics Engineering Conference (ITOEC), 1400-1404.
https://doi.org/10.1109/ITOEC49072.2020.9141552

Horchulhack, P., Viegas, E. K., & Santin, A. O. (2022). Detection of Service Provider Hardware Over-
commitment in Container Orchestration Environments. GLOBECOM 2022 - 2022 IEEE Global
Communications Conference, 6354—6359.

https://doi.org/10.1109/GLOBECOM48099.2022.10001375

Hou, J., Zhu, Y., Du, S., & Song, S. (2019). Design and implementation of reconfigurable acceleration
for in-memory distributed big data computing. Future Generation Computer Systems, 92, 68—

75. https://doi.org/https://doi.org/10.1016/j.future.2018.09.049

72

Jiang, H., & Deng, H. (2020). Traffic Incident Detection Method Based on Factor Analysis and
Weighted Random Forest. IEEE Access, 8, 168394—-168404.
https://doi.org/10.1109/ACCESS.2020.3023961

Jorge-Martinez, D., Butt, S. A., Onyema, E. M., Chakraborty, C., Shaheen, Q., De-La-Hoz-Franco, E., &
Ariza-Colpas, P. (2021). Artificial intelligence-based Kubernetes container for scheduling nodes
of energy composition. International Journal of System Assurance Engineering and

Management. https://doi.org/10.1007/s13198-021-01195-8

K,S., &G, S. (2022). Improvement in Performance of Image Classification based on Apache Spark.
2022 2nd Asian Conference on Innovation in Technology (ASIANCON), 1-6.
https://doi.org/10.1109/ASIANCON55314.2022.9909293

Kim, E., Lee, K., & Yoo, C. (2021). On the Resource Management of Kubernetes. 2021 International
Conference on Information Networking (ICOIN), 154—-158.
https://doi.org/10.1109/1COIN50884.2021.9333977

Kongkhaensarn, T., & Piantanakulchai, M. (2018). Comparison of probabilistic neural network with
multilayer perceptron and support vector machine for detecting traffic incident on
expressway based on simulation data. 2018 15th International Joint Conference on Computer

Science and Software Engineering (JCSSE), 1-6. https://doi.org/10.1109/JCSSE.2018.8457369

Kratzke, N. (2018). About the Complexity to Transfer Cloud Applications at Runtime and How
Container Platforms Can Contribute? In D. Ferguson, V. M. Mufioz, J. Cardoso, M. Helfert, & C.
Pahl (Eds.), Cloud Computing and Service Science (pp. 19-45). Springer International
Publishing.

Kshemkalyani, A. D., & Singhal, M. (n.d.). Distributed Computing: Principles, Algorithms, and

Systems.

Kumar, M., & Kaur, G. (2022). Containerized MPI Application on InfiniBand based HPC: An Empirical
Study. 2022 3rd International Conference for Emerging Technology (INCET), 1-6.
https://doi.org/10.1109/INCET54531.2022.9824366

Lee, H., & Fox, G. (2019). Big Data Benchmarks of High-Performance Storage Systems on
Commercial Bare Metal Clouds. 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), 1-8. https://doi.org/10.1109/CLOUD.2019.00014

Li, Z., Han, M., Wu, S., & Weng, C. (2021). ShadowVM: accelerating data plane for data analytics
with bare metal CPUs and GPUs. Proceedings of the 26th ACM SIGPLAN Symposium on

73

Principles and Practice of Parallel Programming, 147-160.

https://doi.org/10.1145/3437801.3441595

Liu, P., & Guitart, J. (2021). Performance comparison of multi-container deployment schemes for
HPC workloads: an empirical study. The Journal of Supercomputing, 77(6), 6273—6312.
https://doi.org/10.1007/s11227-020-03518-1

Liu, Q,, Lu, J., Chen, S., & Zhao, K. (2014). Multiple Naive Bayes classifiers ensemble for traffic
incident detection. Mathematical Problems in Engineering, 2014.

https://doi.org/10.1155/2014/383671

Lokuciejewski, R., Schiissele, D., Wilhelm, F., & Groppe, S. (2021). A Platform for Interactive Data
Science with Apache Spark for On-premises Infrastructure. International Conference on Cloud

Computing and Services Science. https://api.semanticscholar.org/CorpusliD:235234356

MiseviCienmisevi misevicien, R., Tuminauskas, R., & PaZereckas, N. (2012). Educational
Infrastructure Using Virtualization Technologies: Experience at Kaunas University of

Technology. In Informatics in Education (Vol. 11, Issue 2).

Mkandla, R., & Chikohora, E. (2021). An Evaluation of Data Consistency Models in Geo-Replicated
Cloud Storage. 2021 3rd International Multidisciplinary Information Technology and
Engineering Conference (IMITEC), 1-5. https://doi.org/10.1109/IMITEC52926.2021.9714674

Moosavi, S., Samavatian, M. H., Parthasarathy, S., & Ramnath, R. (2019). A Countrywide Traffic
Accident Dataset. http://arxiv.org/abs/1906.05409

Moosavi, S., Samavatian, M. H., Parthasarathy, S., Teodorescu, R., & Ramnath, R. (2019). Accident
risk prediction based on heterogeneous sparse data: New dataset and insights. GIS:
Proceedings of the ACM International Symposium on Advances in Geographic Information

Systems, 33—42. https://doi.org/10.1145/3347146.3359078

Nagar, A. (2017). Developing Big Data Curriculum with Open Source Infrastructure (Abstract Only).
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education,
700-701. https://doi.org/10.1145/3017680.3022386

Neciu, L.-F., Pop, F., Apostol, E.-S., & Truica, C.-0. (2021). Efficient Real-time Earliest Deadline First
based scheduling for Apache Spark. 2021 20th International Symposium on Parallel and
Distributed Computing (ISPDC), 97-104. https://doi.org/10.1109/ISPDC52870.2021.9521640

Neves, P. C., & Bernardino, J. (2015). Big Data in the Cloud: A Survey. In Big Data in the Cloud: A

Survey (Vol. 1). www.ronpub.com/ojbd

74

Nguyen, T. T., Yeom, Y. J.,, Kim, T., Park, D. H., & Kim, S. (2020). Horizontal pod autoscaling in
kubernetes for elastic container orchestration. Sensors (Switzerland), 20(16), 1-18.

https://doi.org/10.3390/520164621

Nr, M., & Rezzakul Haider, M. (2016). Deployment of TOSCA Cloud Services Archives using

Kubernetes.

Pop, D., Neagul, M., & Petcu, D. (2014). On Cloud deployment of digital preservation environments.
IEEE/ACM Joint Conference on Digital Libraries, 443—444.
https://doi.org/10.5555/2740769.2740859

Qureshi, N. M. F., Siddiqui, I. F., Abbas, A., Bashir, A. K., Choi, K., Kim, J., & Shin, D. R. (2019a).
Dynamic Container-based Resource Management Framework of Spark Ecosystem. 2019 21st
International Conference on Advanced Communication Technology (ICACT), 522-526.

https://doi.org/10.23919/ICACT.2019.8701970

Qureshi, N. M. F., Siddiqui, I. F., Abbas, A., Bashir, A. K., Choi, K., Kim, J., & Shin, D. R. (2019b).
Dynamic Container-based Resource Management Framework of Spark Ecosystem. 2019 21st
International Conference on Advanced Communication Technology (ICACT), 522-526.

https://doi.org/10.23919/I1CACT.2019.8701970

Salehi, M., Hughes, D., & Crispo, B. (2019). MicroGuard: Securing Bare-Metal Microcontrollers
against Code-Reuse Attacks. 2019 IEEE Conference on Dependable and Secure Computing
(DSC), 1-8. https://doi.org/10.1109/DSC47296.2019.8937667

Salkenov, A., & Bagchi, S. (2019). Cloud based autonomous monitoring and administration of
heterogeneous distributed systems using mobile agents. Future Generation Computer

Systems, 99, 527-557. https://doi.org/https://doi.org/10.1016/].future.2019.04.047

Salloum, S., Dautov, R., Chen, X., Peng, P. X., & Huang, J. Z. (2016). Big data analytics on Apache
Spark. In International Journal of Data Science and Analytics (Vol. 1, Issues 3—4, pp. 145-164).
Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s41060-
016-0027-9

Seznec, A., ACM Digital Library., & Sigarch. (2010). Proceedings of the 37th annual international

symposium on Computer architecture. ACM.

Shamim, M. S. |., Bhuiyan, F. A., & Rahman, A. (2020). XI Commandments of Kubernetes Security: A
Systematization of Knowledge Related to Kubernetes Security Practices. 2020 IEEE Secure

Development (SecDev), 58—64. https://doi.org/10.1109/SecDev45635.2020.00025

75

Suneetha, V., Suresh, S., & Jhananie, V. (2020). A Novel Framework using Apache Spark for Privacy
Preservation of Healthcare Big Data. 2020 2nd International Conference on Innovative
Mechanisms for Industry Applications (ICIMIA), 743-749.
https://doi.org/10.1109/1CIMIA48430.2020.9074867

Thiruvathukal, G. K., Christensen, C., Jin, X., Tessier, F., & Vishwanath, V. (2019). A Benchmarking
Study to Evaluate Apache Spark on Large-Scale Supercomputers.

http://arxiv.org/abs/1904.11812

Toka, L., Dobreff, G., Fodor, B., & Sonkoly, B. (2021). Machine Learning-Based Scaling Management
for Kubernetes Edge Clusters. IEEE Transactions on Network and Service Management, 18(1),

958-972. https://doi.org/10.1109/TNSM.2021.3052837

Ugwuanyi, S., Asif, R., & Irvine, J. (2020). Network Virtualization: Proof of Concept for Remote
Management of Multi-Tenant Infrastructure. 2020 IEEE 6th International Conference on
Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys), 98—105.
https://doi.org/10.1109/DependSys51298.2020.00023

USENIX Association. (2003). Proceedings of the seventeenth Large Installation Systems
Administration Conference (LISA XVII) : October 26-31, 2003 San Diego, CA, USA. USENIX

Association.

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., & Rellermeyer, J. S. (2020). A
Survey on Distributed Machine Learning. In ACM Computing Surveys (Vol. 53, Issue 2).
Association for Computing Machinery. https://doi.org/10.1145/3377454

Wang, Y., Coiera, E., Runciman, W., & Magrabi, F. (2017). Using multiclass classification to automate
the identification of patient safety incident reports by type and severity. BMC Medical
Informatics and Decision Making, 17(1). https://doi.org/10.1186/s12911-017-0483-8

Watts, T., Benton, R., Bourrie, D., & Shropshire, J. (2021). Insight from a Containerized Kubernetes

Workload Introspection. University of Hawai’i at Manoa.

Xiang, Q., Tony Wang, X., Jensen Zhang, J., Newman, H., Richard Yang, Y., & Jace Liu, Y. (2019).
Unicorn: Unified resource orchestration for multi-domain, geo-distributed data analytics.
Future Generation Computer Systems, 93, 188-197.
https://doi.org/https://doi.org/10.1016/j.future.2018.09.048

Zaharia, M. (2019). Lessons from Large-Scale Software as a Service at Databricks. Proceedings of the

ACM Symposium on Cloud Computing, 101. https://doi.org/10.1145/3357223.3365870

76

Zhang, X., Zheng, X., Wang, Z., Yang, H., Shen, Y., & Long, X. (2020). High-density Multi-tenant Bare-
metal Cloud. Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 483—495.
https://doi.org/10.1145/3373376.3378507

Zhu, C., Han, B., & Zhao, Y. (2020a). A Comparative Study of Spark on the bare metal and
Kubernetes. Proceedings - 2020 6th International Conference on Big Data and Information

Analytics, BigDIA 2020, 117-124. https://doi.org/10.1109/BigDIA51454.2020.00027

Zhu, C., Han, B., & Zhao, Y. (2020b). A Comparative Study of Spark on the bare metal and
Kubernetes. 2020 6th International Conference on Big Data and Information Analytics

(BigDIA), 117-124. https://doi.org/10.1109/BigDIA51454.2020.00027

77

