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ABSTRACT

In this study, different value-at-risk (VaR) models, which are used to measure
market risk, are analyzed under different estimation approaches and backtested
with an alternative strategy. The methodologies examined include filtered histori-
cal simulation, extreme value theory, Monte Carlo simulation and historical simu-
lation. Autoregressive-moving-average and generalized-autoregressive-conditional-
heteroscedasticity models are used to estimate VaR. Selected VaR functions, mar-
ginal distributions and different horizons are combined over a set of extreme proba-
bility levels using the time series of the Financial Times Stock Exchange 100 index.
Data envelopment analysis, which investigates the efficiency of VaR models using a
number of different parameters, is carried out in lieu of standard backtesting tech-
niques. This study shows that, for short horizons, some approaches underestimate
VaR. However, a sufficient number of models present violation estimates that almost
converge to the desired ones. Surprisingly, aside from historical simulation and some
extreme value theory models, overlapping returns tend to yield conservative ten-day
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VaR estimations for most models; in cases of nonoverlapping returns, the results are
satisfactory.

Keywords: value-at-risk (VaR); backtesting; data envelopment analysis (DEA); efficient model
selection; risk estimation.

1 INTRODUCTION

The importance of risk management in financial institutions stems from the necessity
to have a reserve of capital able to cover their financial obligations. The concept of
financial risk comprises many different aspects of various types of risks. Market
risk, which is related to unexpected changes in returns over short time horizons, is
the main research focus of this paper.

One of the most important components of determining risk is the selection of suf-
ficient risk models that capture the complex characteristics of different time series
and that produce adequate estimations to meet regulatory bodies’ requirements. Time
series can contain unpredictable losses, autocorrelation, heteroscedasticity and asym-
metric tails on their returns that require modeling capable of estimating coherent and
sufficient risk measures.

Value-at-risk (VaR) models are the most well-known risk tools. The most com-
mon means of verifying VaR models is backtesting. In this process actual profits and
losses are compared with projected VaR estimations, and the consistency and reliabil-
ity of VaR calculations can be examined by means of various alternative approaches.
Among the most well-known backtesting techniques are the proportion of failures
(POF) test (Kupiec 1995), which examines the frequency of losses in excess of the
VaR; the independence test (Christoffersen 1998); and the Basel traffic light test
(Basel Committee on Banking Supervision 1996).

Risk management departments use various criteria and backtesting techniques to
select the model to be adopted for risk estimation purposes. Most of the backtesting
methodologies are based on the correctness of the obtained results. When the number
of violations converges to the confidence level of the VaR, the model is considered to
be efficient. However, if violations occur more or less frequently they are indicative
of an underestimation or overestimation of risk. While overestimation of VaR can
imply that a methodology is costly in terms of capital requirements, underestimation
can lead to the default of a financial institution in cases of turbulence in the market.
Thus, the convergence of the number of violations to the selected confidence level is
always desirable.

The confidence level selection can vary significantly across financial institutions
or portfolios. One of the most common risk levels (or probability levels) for the esti-
mation of VaR is 1%. However, most financial institutions hold assets with very long
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maturity horizons for which a lower probability level, such is 0.05%, is preferable.
Another parameter of the VaR, in addition to the confidence level, is the time horizon.
Most of the literature related to the estimation of risk metrics examines a one-day
horizon. However, the Basel Committee requires that VaR be reported for ten-day
horizons for liquidity purposes. There are also situations in which yearly horizons
may be desirable, eg, long-term liabilities (pension funds, government bonds). VaR
estimation at long-term horizons can be more complex than at daily horizons due
to data availability issues. Numerous techniques are presented in the literature for
risk metric calculation with relatively small time series, each with several different
advantages and disadvantages.

It is common in risk modeling for many VaR methodologies to appear ade-
quate under certain given settings. When these configurations are changed, how-
ever, the performance of the model may deteriorate. Most backtesting processes,
such as Kupiec’s test and the independence test, are designed to test risk mod-
els” reliance on specific conditions. An alternative approach, suggested by this
paper, involves constructing efficient model sets using data envelopment analy-
sis (DEA) (Charnes et al 1978) to provide an overall evaluation of market risk
models. The main aim of this paper is to evaluate risk models utilizing the DEA
methodology, taking different probability levels and horizons into account. The
results of this process for specific configurations are examined to determine DEA’s
suitability for decision-making regarding risk metrics. One of the cases investi-
gated involves a financial institution with a long position on the Financial Times
Stock Exchange 100 (FTSE 100) equity index. Several variants of autoregressive-
moving-average generalized-autoregressive-conditional-heteroscedasticity (ARMA-
GARCH) models are examined for a broad range of marginal distributions and four
different estimation techniques (filtered historical simulation (FHS), extreme value
theory (EVT), Monte Carlo simulation and historical simulation).

The contributions of this paper are twofold. First, we employ the DEA method-
ology to examine its suitability for risk model decision-making — an issue that has
not been adequately addressed in the existing literature — and its potential for provid-
ing an alternative, sophisticated means of evaluating market risk models’ stability.
Second, several market risk models are evaluated by combining selected VaR func-
tions (ie, different ARMA-GARCH combinations), marginal distributions (normal,
Student ¢ and skewed Student ¢ distributions and the generalized error distribution
(GED)) and different horizons (one day and ten days) over a set of extreme prob-
ability levels. Although the literature has explored various techniques for one-day
and ten-day VaR estimation (see, for example, Kontaxis and Tsolas 2021), the sta-
bility of risk metrics on longer horizons has yet to be calculated and evaluated using
alternative methodologies. This research provides an in-depth analysis of risk met-
rics’ effectiveness on longer horizons using various approaches and manipulations
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of data. Further, various nonoverlapping data were compared with overlapping data
across numerous alternative VaR techniques to assess the models’ compatibility on
long forecast horizons and using alternative data aggregation techniques.

The paper is structured as follows. In Section 2 VaR risk metrics are presented
and analyzed. In addition, backtesting processes are described. Section 3 offers a
detailed introduction to financial time series modeling, specifically using ARMA-
GARCH models based on FHS, EVT and Monte Carlo methodologies. All of the
various techniques are analyzed on different time horizons. In Section 4 DEA is
introduced to assess the selected risk models’ adequacy under various settings. Sec-
tion 5 presents a detailed description of the empirical results. Section 6 provides the
research conclusions.

2 VALUE-AT-RISK ESTIMATION AND EVALUATION TECHNIQUES

Financial institutions use VaR to estimate the market risk of their exposures and to
define their capital requirements. Agencies need a quantitative means of identifying
risks related to market positions. VaR is a metric that can be modeled on adverse
events, taking portfolio history or independent risk factors into account. VaR’s
numerous advantages include its simplicity and applicability. Moreover, it is applied
to returns with different risk factors and portfolios. In contrast to prices, returns
generally remain stationary, a property that is required in most VaR methodologies
(Kontaxis and Tsolas 2021).

VaR tends to focus on large price drops in the market. However, risk is influenced
by deviations in future portfolio returns, and depending on the positions in the market
even a positive unexpected jump can result in losses. An adequate estimation of risk
metrics that eliminates over- or underestimations is thus always essential.

2.1 VaR

VaR is a risk measure of investment loss. It can be used to estimate investment losses
under a given probability level, assuming normal conditions in the market, and for
different time periods, depending on the assets it is applied to. VaR is the quantile
of a projected distribution of profits and losses over a time horizon. Mathematically,
VaR is defined as the minimal potential loss that a portfolio can suffer in the 100%
worst case with a € (0, 1) on some fixed time horizon:

VaR! ™ = sup[r | P(R; <r) <a], 2.1

where R refers to the returns of an asset portfolio and a refers to the confidence level.
The most well-known process for VaR estimation is historical simulation, which
follows a simple methodology but relies on numerous assumptions about the returns
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of the time series. Other alternatives include Monte Carlo simulation, FHS and EVT
(Kontaxis and Tsolas 2021).

2.2 Backtesting

In order to evaluate the accuracy and validity of VaR estimates, the Basel Committee
developed a statistical test called the traffic light test (Basel Committee on Bank-
ing Supervision 1996). According to the regulations, backtesting should be used on
at least 250 estimates of VaR. Nonetheless, nearly all backtesting results require a
significantly higher number of samples for accurate interpretations.
Most backtesting methodologies (Kontaxis and Tsolas 2021) are based on the
following process:
I = 1(R; < VaRy), (2.2)

wheret = T + 1,...,T + n, 1() is the indicator function, 7 indicates the size of
the VaR estimation sample and » indicates the number of one-step-ahead forecasts.
The VaR is considered to be accurate when the number of failures corresponds to its
confidence level.

Most backtesting methodologies are based on the above implication of accu-
racy. A well-known backtesting process proposed by Kupiec (1995) is based on the
number of failures, which is assumed to follow a binomial distribution. However,
this methodology should be implemented using many different confidence levels to
determine the model’s overall accuracy.

This paper does not examine standard backtesting methodologies. Instead, the
DEA algorithm is used to analyze VaR accuracy for two different horizons (one-
step and ten-steps ahead). The purpose of this study is to determine whether DEA
is an adequate means of examining the efficiency of different VaR models that use
various parameterizations, which is an aspect that standard backtesting techniques in
the industry do not investigate.

3 VALUE-AT-RISK METHODOLOGIES

VaR can be estimated with many alternative methodologies, each of which have par-
ticular strengths and weaknesses. VaR estimation can be a difficult computational
task due to the variety of factors that have an impact on its evaluation. The complex-
ity of certain financial instruments, the portfolio size, the required confidence level
and the available history of risk factors, along with the calculation speed, are some
of the various factors that play an important role in VaR methodology decisions.

In this research ARMA and GARCH models are used to capture the volatility
clustering of the time series. In addition to the simple GARCH model, exponential
GARCH (EGARCH) and Glosten—Jagannathan—Runkle GARCH (GJR-GARCH)
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are used to address asymmetry in the data. Further, a large number of distributions
are examined for the GARCH model fitting. Thus, normal, Student ¢ and skewed
Student ¢ distributions and the generalized error distribution (GED) are selected to
represent the properties of the data. In contrast with the normal distribution, which is
symmetric, the other distributions are more representative of time series with the fat
tails and skewness so common to financial instruments.

ARMA and GARCH models are combined with three alternative methodologies to
estimate VaR: the FHS model presented by Barone-Adesi and Giannopoulos (2001),
which is based on using random draws with replacements from the standardized
residuals; Monte Carlo simulation, a popular methodology in which an assumption
about the residuals’ distribution is made; and EVT, which was developed by McNeil
and Frey (2000) and makes an assumption about the distribution of the tails of the
standardized residuals.

3.1 Modeling of one-step-ahead forecasts

One of the oldest and most popular VaR estimation approaches is historical simula-
tion, which relies on the empirical distribution of the returns under the assumption
that they are independent and identically distributed (iid). Advantages of this method
include its simplicity as well as the speed of the calculations. However, empirical
quantiles are rarely good estimators of extreme quantiles, and the iid assumption is
invalid for most financial time series.

Because the iid assumption is inadequate for many risk factors and asset prices,
various alternative methodologies are presented.

We assume the following model of returns:

R; = s + &0y, (3.1)

where ; and o; represent the mean and the standard deviation of the returns and
&; refers to the standardized residuals with mean equal to O and standard deviation
equal to 1.

In addition, VaR can be estimated using the following formula:

VaR? = MKz + 4a0¢, (32)

where ¢, describes the 100a% quantile of f(e;), or the density of the standardized
residuals.

According to (3.2), three terms must be defined for VaR estimation. The first term,
the conditional mean, can be assumed to be an ARMA model, given by

p q
He=9o+ Y iR+ Y 6z, (3.3)

i=1 ji=1
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where z; = &;0;, @; refers to the autoregressive parameters, 6; describes the moving-
average parameters and R;_; represents the previous returns of the portfolio.
Further, many models derived from the GARCH family for conditional variance
modeling exist in the literature. The most well known of these is GARCH(1,1)
(Bollerslev 1986):
07 =ag +aya’_, + pio’,, (3.4)

where oy, a1, B represent the estimated parameters. In addition, g > 0, @7 = 0,
B1 = 0and (a1 + B1) < 1; these factors imply stationarity.

The EGARCH (Nelson 1991) and GJR-GARCH (Glosten et al 1993) models
were introduced to model data asymmetry. Hentschel (1995) proposed the following
equation to model the Leverage effect:

8 §
o, —1 o; —1
=t 0107188 —1 + B1— — (3.5)
where g(e;) = |e; — b| — c(&; — b). The function g is linear. It encompasses two

parameters that define the “size effect” and the “sign effect” of the shocks on volatil-
ity. In addition, «g, o1, B are the estimated parameters. Many different GARCH
models have been derived from (3.5). EGARCH (Nelson 1991) is among the most
popular for modeling asymmetry. EGARCH is generated when the conditions § = 0,
v =1and b = 0 apply to (3.5).

Another well-known GARCH model for modeling asymmetry is GJR-GARCH,
which is derived from (3.5) when § = 2 and v = 2.

The last component that should be determined from (3.2) is the quantile (g,),
which is estimated based on the distribution of the standardized residuals. While
numerous alternative methodologies for this estimation can be found in the literature,
this research focuses only on three specific methodologies.

The first methodology for obtaining the quantile is to assume a particular dis-
tribution for the standardized residuals. When a distribution is chosen randomly to
create the standardized residuals and many different simulations are implemented to
forecast price paths in the future, Monte Carlo simulation is used. The most popular
distribution assumption, however, is normality. The cumulative distribution function

for a normal distribution is
1 X — U
- 1—|—erf( ):| 3.6)
2 |: o2 (

Nonetheless, most time series in the financial world exhibit fat tails and skewness.
Consequently, Student ¢ distributions, skewed Student ¢ distributions and the GED
can be used in addition to making assumptions about the standardized residuals.
Alternatively, the quantile of the distribution can be estimated directly without
particular assumptions. This methodology (McNeil and Frey 2000) is called extreme
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value theory. Unlike Monte Carlo simulation, EVT is applied on the tails of the
distribution of the standardized residuals.

EVT is based on the assumption that the distribution of the standardized residuals
above a threshold u follows, for example, a GPD:

1_(1+5_Y)2 it £0
ﬂ 9,
Gep(y) = (3.7)

l—exp(%) if&£ =0,

where B represents the scale parameter, y the standardized returns and & the
shape. According to McNeil and Frey (2000) the quantile of the distribution of the
standardized residuals can be obtained by using the following equation:

o A ,é a \°¢
da = _(8(k+1) + g((IC/_T) — 1)), 3.8)

where the number of observations in the tail is fixed tobe N = k, x < T, yielding
a threshold at the (k + 1)th order statistic. Then, if £;) > --- = &(r) are the ordered
standardized residuals, the threshold is &(,1) and the GPD is as follows:

Eqy —Ek+1) =+ Z E() — Eke+1)-

Finally, Barone-Adesi and Giannopoulos (2001) proposed the bootstrapping
methodology named filtered historical simulation. This technique does not make
any assumptions about the distribution of the residuals. FHS uses random draws
with replacement from the standardized residuals created using the conditional mean
and variance estimated parameters. This method is called semiparametric because
it incorporates the characteristics of the empirical distribution within a simulation
process.

3.2 Modeling of ten-steps-ahead forecasts

All of the methodologies described in Section 3.1 can be used to estimate short and
long VaR horizons. On the basis of the Basel regulatory framework, most financial
institutions require the ten-day VaR. Thus, (3.2) can be modified as follows:

VaR?, 1o = fr+10 + ¢aOr+10- (3.9

Monte Carlo simulation can create a ten-steps-ahead distribution of standard-
ized residuals, assuming one of the following specific distributions applies: normal,
Student ¢, skewed Student ¢t or GED.
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In addition, Danielsson and De Vries (2000) described a methodology for estimat-
ing ten-steps-ahead distributions based on the following:

_EWH)
(H) A §

4o = —(10)% 8(K+1)(k/LT) , (3.10)

According to this method, VaR can be estimated using the term 1/&, where £ can be
calculated from Hill (1975) estimators

k
A 1 A ~
%‘(H) = E E lOg(S(k)) —10g(8(k+1)). (3-11)
j=1

Bootstrap methods can also be used to estimate ten-steps-ahead distributions.
Barone-Adesi and Giannopoulos (2001) proposed the simulation of ten-steps-ahead
pathways based on the empirical distribution of the returns. This method formulates
the conditional volatility, and the forecasts are obtained recursively.

3.3 Alternative methodologies in the literature

Several alternative VaR techniques — such as bootstrapping, EVT with copulas and
exponential weighted averages — appear promising as well and could be tested with
the backtesting method proposed in this study. While the bootstrapping (resampling)
technique tends to require a very large amount of data, it offers a relatively noncom-
plex methodology for VaR estimation. EVT combined with copulas is a complex
and time-consuming method that most financial institutions prefer to avoid due to
computational speed issues. Copulas are not easily calculated through risk factors,
but they are regarded as a sophisticated method by which to model VaR. Finally,
the exponentially weighted moving average (EWMA) method stems from GARCH-
related models. GARCH models, which represent the evolution of EWMA models,
are preferred for our research.

4 DATA ENVELOPMENT ANALYSIS

Several backtesting methods are currently used to evaluate VaR models. The Basel
Committee has specific rules about backtesting strategies. According to the regu-
lations, backtesting should be based on 250 one-day VaR estimates. As mentioned
above, in this paper an alternative method (DEA) that examines the stability of VaR
models under different probability levels is implemented; the DEA approach is used
to test VaR accuracy for two different horizons.

DEA is a nonparametric method for estimating production frontiers. More specif-
ically, it can be used for the empirical measurement of the productive efficiency of
decision-making units (DMUs).
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The Charnes—Cooper—Rhodes (CCR) DEA methodology was formally developed
by Charnes et al (1978). According to DEA, for each DMU the virtual input and
output weights are formed as follows:

input =U1X10 + T UmXmo, 4.1

output = v1y1o + *** + Vs ¥Ymo- 4.2)

Then, linear programming is used to determine the weight that maximizes the
output/input ratio.

Optimal weights may vary for different DMUs. Thus, the weights in DEA are
derived from the data rather than being fixed in advance. Each DMU is assigned a
best set of weights, with values that can vary for different DMUs.

In the DEA method, the efficiency of each DMU is measured, and the needs of
each DMU; are evaluated after n optimizations. The following fractional program-
ming model measures the relative efficiency score of an evaluated DMU, ie, DMU,,

oel,...,n:
maximize § = 1210 ¥ V2Y20 " ¥ UsYso (4.3)
P1X10 + P2X20 + -+ + PmXmo

subject to
V1yi o Usys) <1, j=1,...,n,
P1X1j +  + PmXmj
p17p27"'7pm 20’
U17023""vs 20’
where the input weights (p;, i = 1,...,m) and output weights (v,, r = 1,...,s)

are the variables.

The ratio of the output to the input should not exceed 1 for each DMU. The
objective is to obtain weights p; and v, that maximize the DMU, ratio.

Equation (4.3) can be transformed into the equivalent linear program using the
transformation method presented by Charnes and Cooper (1962):

maximize 0 = uyip, + -+ + Uyso 4.4)
subject to

kixio+ - +kmxmo=1,
Hay1j + o+ msysy Skixiy ot kmxmi, J=1,....n,
k17k23"'7km 207

Ml?“Za"'vlLSZO'
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TABLE 1 Descriptive statistics of FTSE 100 returns.

Mean 0.00013
Median 0.00053
Standard deviation 0.01193
Min —0.09266
Max 0.09384
Skewness —0.1468

Kurtosis 10.87109

5 DATA AND RESULTS

In this paper, the FTSE 100 index time series is used for a sample of 12 years.
The FTSE 100 is a share index of the 100 companies listed on the London Stock
Exchange with the highest market capitalization.

Initially, we estimated the log returns r; from the prices P;:

=1 Fr 5.1
ry = n(Pt_l). 5.1

The returns were examined and some skewness and kurtosis identified in their dis-

tribution. Thus, their characteristics converge more to a Student ¢ or skewed Student
t distribution than to a normal distribution. The descriptive statistics are presented in
Table 1.

The first two years of the daily time series were used to calculate the initial
VaR estimates. The rest of the data served to evaluate the performance of various
VaR methodologies for two confidence levels (2.5% and 1%). Moreover, to ana-
lyze the performance of the models on various horizons, the FTSE 100 daily returns
were transformed to ten-day observations using overlapping returns (summing daily
returns by changing only one day in each sample) and nonoverlapping returns for
backtesting implementation. Most financial institutions prefer to use the overlapping
method for ten-day VaR estimate backtesting. Cases in which the nonoverlapping
method is generally selected are cases without data limitations. The Basel regula-
tions require 250 days of VaR estimates for risk model backtesting, which amounts
to 2500 observations (10 years) in cases in which the nonoverlapping method is
used. One of the aims of this paper is to evaluate the performance of the various VaR
models with regard to both overlapping and nonoverlapping ten-day returns.

In our analysis we employ six different ARMA-GARCH combinations, four dif-
ferent distributions (normal, Student ¢, skewed Student ¢ and GED) and four differ-
ent methodologies (FHS, EVT, Monte Carlo simulation and historical simulation) to
estimate our VaR values.
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Tables 2—4 depict the number of violations for the different VaR models used for
one-day, overlapping ten-day and nonoverlapping ten-day observations. The viola-
tions are summarized for the significance levels of 99% and 97.5%. The assumed
number of violations amounts to 25 and 63 for 99% and 97.5%, respectively. For
the nonoverlapping ten-day returns, however, the assumed number of violations is
3 and 6 for the different confidence levels (99% and 97.5%) due to the aggregation
of observations. As can be seen from the tables, the pattern of violations differs sig-
nificantly among the different returns’ horizons. For one-day returns, the number of
violations tends to be higher than the assumed values, which implies an underesti-
mation of the VaR; thus, the capital requirements will be lower than they should be.
However, a sufficient number of models present a number of violations that nearly
converges to the assumed number of violations.

In addition, in historical simulation and some EVT models, ten-day overlapping
returns tend to create very conservative VaR estimations for most of the models
examined in this research. This outcome is not typical, as most studies (see, for exam-
ple, Sun et al 2009) suggest that overlapping returns create underestimated VaR val-
ues. In our study the overestimation can be related to a dependency on jump diffusion
processes.

Finally, nonoverlapping ten-day returns present the expected number of violations
in a large number of the models tested.

The difference between the assumed and the actual number of violations is not
an appropriate indicator for a VaR model’s accuracy. Thus, the DEA methodology
was implemented to give a better understanding of the tested models by analyzing
their performance under two probability levels together; the results are presented in
Tables 5-7. Further, Figures 1-3 give a better understanding of the efficiency scores
presented in those tables.

When the applying the DEA methodology, we considered differences between the
observed and the assumed numbers of violations at particular significance levels as
inputs, and we did not consider any explicit output. The efficiency scores summarize
the performance of the models. High scores indicate the model’s efficiency, while
low scores reflect the inability to find weights that would enable the selected model
to perform efficiently.

DEA analysis indicated a number of efficient models for each of the different
tested horizons (one-day, ten-day overlapping and ten-day nonoverlapping). The
EVT and FHS methodologies were deemed to be efficient in a number of trials,
while the Monte Carlo method appeared to fail the DEA test in all cases.

More specifically, for one-day VaR models, DEA efficiency scores presented six
efficient models, mainly those utilizing FHS and EVT methods. Meanwhile, DEA
gave the models based on the Monte Carlo method the lowest scores among the
various models tested. In contrast, DEA for ten-day VaR models with overlapping
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TABLE 5 CCR efficiency scores for one-day VaR models (in percent).

Method Model Normal SD SSTD GED
FHS ARMA(0,0)-GARCH(1,1) 57 100 100 69
FHS ARMA(1,0)-GARCH(1,1) 73 100 71 70
FHS ARMA(0,0)-EGARCH(1,1) 65 60 58 59
FHS ARMA(1,0)-EGARCH(1,1) 42 65 65 66
FHS ARMA(0,0)-GJR-GARCH(1,1) 50 67 63 64
FHS ARMA(1,0)-GJR-GARCH(1,1) 55 61 68 64
MC ARMA(0,0)-GARCH(1,1) 18 29 46 30
MC ARMA(1,0)-GARCH(1,1) 17 26 42 26
MC ARMA(0,0)-EGARCH(1,1) 14 24 48 22
MC ARMA(1,0)-EGARCH(1,1) 13 19 72 20
MC ARMA(0,0)-GJR-GARCH(1,1) 13 20 45 19
MC ARMA(1,0)-GJR-GARCH(1,1) 14 19 42 20
EVT ARMA(0,0)-GARCH(1,1) 54 61 57 61
EVT ARMA(1,0)-GARCH(1,1) 53 68 55 68
EVT ARMA(0,0)-EGARCH(1,1) 68 72 58 68
EVT ARMA(1,0)-EGARCH(1,1) 100 75 57 57
EVT ARMA(0,0)-GJR-GARCH(1,1) 67 100 100 67
EVT ARMA(1,0)-GJR-GARCH(1,1) 60 81 81 63

Historical simulation received a score of 33. SD, Student ¢ distribution. SSTD, skewed Student ¢ distribution. GED,

generalized error distribution.

TABLE 6 CCR efficiency scores for overlapping ten-day VaR models (in percent).

Method Model Normal SD SSTD GED
FHS ARMA(0,0)-GARCH(1,1) 59 57 58 57
FHS ARMA(1,0)-GARCH(1,1) 72 68 79 70
FHS ARMA(0,0)-EGARCH(1,1) 70 66 65 67
FHS ARMA(1,0)-EGARCH(1,1) 70 65 68 66
FHS ARMA(0,0)-GJR-GARCH(1,1) 67 60 65 66
FHS ARMA(1,0)-GJR-GARCH(1,1) 69 61 62 64
MC ARMA(0,0)-GARCH(1,1) 65 66 59 65
MC ARMA(1,0)-GARCH(1,1) 86 71 59 72
MC ARMA(0,0)-EGARCH(1,1) 79 68 61 75
MC ARMA(1,0)-EGARCH(1,1) 66 63 70 64
MC ARMA(0,0)-GJR-GARCH(1,1) 62 62 69 73
MC ARMA(1,0)-GJR-GARCH(1,1) 63 60 62 72
EVT ARMA(0,0)-GARCH(1,1) 63 75 79 71
EVT ARMA(1,0)-GARCH(1,1) 100 100 86 84
EVT ARMA(0,0)-EGARCH(1,1) 82 83 81 72
EVT ARMA(1,0)-EGARCH(1,1) 84 81 80 73
EVT ARMA(0,0)-GJR-GARCH(1,1) 100 100 79 71
EVT ARMA(1,0)-GJR-GARCH(1,1) 81 82 83 80

Historical simulation received a score of 83. SD, Student ¢ distribution. SSTD, skewed Student ¢ distribution. GED,

generalized error distribution.

www.risk.net/journals

Journal of Operational Risk



76

G. Kontaxis and I. E. Tsolas

TABLE 7 CCR efficiency scores for nonoverlapping ten-day VaR models (in percent).

Method Model Normal SD SSTD GED
FHS ARMA(0,0)-GARCH(1,1) 75 85 100 80
FHS ARMA(1,0)-GARCH(1,1) 72 84 100 82
FHS ARMA(0,0)-EGARCH(1,1) 81 100 75 100
FHS ARMA(1,0)-EGARCH(1,1) 67 65 63 67
FHS ARMA(0,0)-GJR-GARCH(1,1) 68 67 65 68
FHS ARMA(1,0)-GJR-GARCH(1,1) 67 66 65 70
MC ARMA(0,0)-GARCH(1,1) 63 62 63 58
MC ARMA(1,0)-GARCH(1,1) 63 66 65 68
MC ARMA(0,0)-EGARCH(1,1) 58 63 65 59
MC ARMA(1,0)-EGARCH(1,1) 61 63 61 62
MC ARMA(0,0)-GJR-GARCH(1,1) 58 62 45 19
MC ARMA(1,0)-GJR-GARCH(1,1) 57 61 64 64
EVT ARMA(0,0)-GARCH(1,1) 75 100 100 80
EVT ARMA(1,0)-GARCH(1,1) 72 100 85 82
EVT ARMA(0,0)-EGARCH(1,1) 81 85 75 87
EVT ARMA(1,0)-EGARCH(1,1) 67 65 63 67
EVT ARMA(0,0)-GJR-GARCH(1,1) 59 60 62 61
EVT ARMA(1,0)-GJR-GARCH(1,1) 55 56 58 57

Historical simulation received a score of 10. SD, Student ¢ distribution. SSTD, skewed Student ¢ distribution. GED,

generalized error distribution.

FIGURE 1 CCR efficiency scores for one-day VaR models.
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FIGURE 2 CCR efficiency scores for overlapping ten-day VaR models.
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returns indicated only four efficient models, all of which stem from the EVT method;
this finding indicates that the FHS method is not efficient when overlapping ten-
day returns are used. In addition, DEA efficiency scores presented seven models as
efficient — mostly those using FHS and EVT methods — for ten-day VaR estimates
using nonoverlapping returns. The above observations indicate that the EVT and FHS
methods present some efficient VaR estimates for one-day and ten-day (nonoverlap-
ping) horizons. However, when ten-day VaR is calculated with overlapping obser-
vations, the FHS method does not produce any efficient models, while EVT still
produces a number of accurate VaR estimates.

6 CONCLUSIONS

The decision-making process involved in selecting suitable risk metrics is often dif-
ficult, depending on various circumstances. In this paper we focused on the VaR
evaluation of market risk models for different significance levels and forecast hori-
zons. The results suggest that some models are more efficient than others for various
significance levels. Further, we observed that, when the forecast horizon changes,
other models dominate in terms of efficiency under different confidence levels.
Another finding was that the choice of overlapping or nonoverlapping observations
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FIGURE 3 CCR efficiency scores for nonoverlapping ten-day VaR models.
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can seriously affect the efficiency of VaR estimation on longer horizons. These find-
ings are clearly important and require further testing with regard to the assumptions
that financial institutions make when VaR values are estimated for longer horizons.

Further, according to the research outcomes, DEA can be a suitable alternative
and computationally efficient method for the selection of accurate risk methodolo-
gies. Unlike most of the commonly adopted backtesting techniques, which focus
only on a specific quantile of the distribution tail, DEA examines the stability of
the models under different parameterizations. Theoretically, a model could be supe-
rior compared with others in all circumstances; however, the complexity of financial
markets is so vast that no model can achieve that. Thus, DEA may serve as an alterna-
tive backtesting methodology for assessing different risk methodologies for a range
of significance levels and may offer better insight into a model’s efficiency in risk
management.
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