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ABSTRACT

In this study different value-at-risk (VaR) models, which are used to measure
market risk, are analyzed under different estimation approaches (filtered histori-
cal simulation, extreme value theory and Monte Carlo simulation) and backtested
with different techniques. The autoregressive-moving-average and generalized-auto-
regressive-conditional-heteroscedasticity models are used to estimate VaR. In partic-
ular, selected VaR functions, marginal distributions and different horizons are com-
bined over a set of extreme probability levels using the time series of the Financial
Times Stock Exchange 100 Index. Several backtesting techniques are examined in
this research, such as Kupiec’s proportion-of-failures test and Christoffersen’s inde-
pendence test. This study shows that, for short horizons, some approaches under-
estimate VaR. However, various models present violation estimates that almost con-
verge to the desired ones, according to the confidence levels used. Further, nonover-
lapping returns tend to yield satisfactory results for most models. The main con-
clusion of this study is that the horizon selection can affect the estimation, and
consequently the backtesting, of VaR models in some cases.
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1 INTRODUCTION

1.1 Regulatory requirements

The importance of risk management in financial institutions stems from the necessity
to have a reserve of capital able to cover their financial obligations. The concept
of financial risk comprises many different aspects of various types of risks. Risk
in finance can be divided into credit, liquidity, operational, legal and market risks.
Some of the most important risk elements include: credit risk, which arises when the
counterparties are unable to fulfill their contractual obligations; liquidity risk, which
refers to the inability of a financial institution to meet its payment obligations; and
market risk, which is related to unexpected changes in prices over short time horizons
and is the main research subject of this paper.

1.2 Risk metrics

One of the most important components of measuring risk is the selection of risk
models that capture the complex characteristics of different time series and that pro-
duce adequate estimations to meet regulatory bodies’ requirements. Time series can
contain autocorrelation, heteroscedasticity, asymmetric tails on their returns, season-
ality patterns and trends that require modeling capable of estimating coherent risk
measures.

Value-at-risk (VaR) models are currently the most well-known risk tools. The most
common means of verifying VaR models is backtesting. In this process actual prof-
its and losses are compared with the projected VaR estimations, and the consistency
and reliability of VaR calculations can be examined by employing various alterna-
tive approaches. Among the most well-known backtesting techniques are Kupiec’s
proportion of failures (POF) test (Kupiec 1995), which examines the frequency of
losses above the VaR; the independence test (Christoffersen 1998); and the Basel
test proposed by the Basel Committee on Banking Supervision (1996).

Risk management departments use various criteria and backtesting techniques to
select the model to be adopted for risk estimation purposes. Most of the backtesting
methodologies are based on the correctness of the obtained results. When the number
of violations converges to the confidence level of the VaR, the model is considered
to be efficient. Violations that are more or less frequent than the confidence level
are indicative of an underestimation or overestimation of risk. While the overestima-
tion of VaR can imply that a methodology is costly in terms of capital requirements,
underestimation can lead to the default of a financial institution in cases of mar-
ket turbulence. Thus, the convergence of the number of violations to the selected
confidence level is always desirable.

The confidence level selection can vary significantly across financial institutions
or portfolios. One of the most common risk levels (or probability levels) for the
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estimation of VaR is 1%. Another parameter of the VaR, in addition to the confidence
level, is the time horizon. Most of the literature related to the estimation of risk met-
rics examines a one-day horizon. However, the Basel Committee regulations (Basel
Committee on Banking Supervision 1996) require that VaR be reported for ten-day
horizons for liquidity purposes (for the trading book). There are also situations such
as long-term liabilities (pension funds, government bonds) in which yearly horizons
may be desirable. VaR estimation at long-term horizons can be more complex than
at daily horizons due to data availability issues.

It is common in risk modeling for many VaR methodologies to appear adequate
under certain given settings. When these configurations are changed, however, the
performance of the model may deteriorate. Most of the backtesting processes are
designed to test risk models’ reliance on specific conditions. As stated above, the
Basel regulations (Basel Committee on Banking Supervision 1996) require financial
institutions to provide ten-day VaR estimates (for the trading book) and additionally
250 days of the risk model’s (VaR) backtesting, which amounts to 2500 observations
(10 years) in cases in which a nonoverlapping method is used. This creates issues,
due to data limitations, and thus financial institutions tend to use one-day VaR esti-
mations for their backtesting analysis and ten-day overlapped returns for the VaR
calculation; further, it is assumed that the backtesting findings on one-day time series
apply to ten-day overlapped estimations as well. In this way, the financial institutions
can values with limited data availability.

However, the overlapped data induce autocorrelation in the ten-day time series,
and thus it is not correct to use the standard backtesting methods to evaluate a port-
folio built by using this technique. Standard backtesting methods assume indepen-
dent and identically distributed (iid) data, and this assumption is violated when the
overlapped time series are created. Consequently, the backtesting performance of
one-day VaR models should not be correlated with that of ten-day overlapped VaR
estimations. In addition, most studies (see, for example, Sun et al 2009) suggest that
overlapped returns create underestimated VaR estimates.

1.3 Contribution of the paper

The main purpose of this paper is to provide an in-depth analysis of risk metrics’
effectiveness on longer horizons and to evaluate the performance of various VaR
models using nonoverlapping ten-day returns and compare their behavior against
VaR models with a one-day horizon. A variety of nonoverlapping data sets are
used across numerous alternative VaR techniques to assess the models’ compati-
bility on long forecast horizons. Specifically, the case investigated involves a finan-
cial institution with a long position on the Financial Times Stock Exchange 100
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(FTSE 100) index. Several variants of autoregressive-moving-average generalized-
autoregressive-conditional-heteroscedasticity (ARMA-GARCH) models are exam-
ined for a broad range of marginal distributions and three different estimation tech-
niques (filtered historical simulation (FHS), extreme value theory (EVT) and Monte
Carlo simulation). The findings of this study will provide evidence as to whether ten-
day observations present similar behavior to one-day observations and whether the
latter can be considered an appropriate representative sample for backtesting pur-
poses on longer horizons. Although the literature has explored various techniques
for one-day VaR estimation (Barone-Adesi and Giannopoulos 2001; McNeil and
Frey 2000), the calculation and evaluation of the stability of risk metrics on longer
horizons using alternative methodologies are yet to be examined.

1.4 Structure

The paper is structured as follows. In Section 2 the VaR metrics are presented and
analyzed. In addition, the backtesting processes are described. Section 3 offers a
detailed introduction to financial time series modeling, specifically using ARMA-
GARCH models based on FHS, EVT and Monte Carlo methodologies. All of the
various techniques are analyzed at different time horizons. In Section 4 backtesting
techniques are introduced to assess the selected risk models’ adequacy. Section 5
presents a detailed description of the empirical results. Finally, Section 6 states the
conclusions of our research.

2 VALUE-AT-RISK ESTIMATION AND EVALUATION TECHNIQUES

Financial institutions use VaR to estimate the market risk of their exposures and to
define their capital requirements. Agencies need a quantitative means of identifying
risks related to market positions. VaR is a metric that can model adverse events, tak-
ing portfolio history or independent risk factors into account. VaR’s numerous advan-
tages include its simplicity and applicability. Moreover, it is applied to returns with
different risk factors and portfolios. In contrast to prices, returns generally remain
stationary, a property that is required in most VaR methodologies.

2.1 VaR

VaR is a risk measure of investment loss. It can be used to estimate investment losses
under a given probability level, assuming normal conditions in the market, and for
different periods, depending on the assets it is applied to. VaR is the quantile of a
projected distribution of profits and losses over a time horizon. Mathematically, VaR
is defined as the minimal potential loss that a portfolio can suffer in the 100a% worst
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case with a 2 .0; 1/. Given that a 2 .0; 1/, the VaR at a level a, VaRa, of the final
net worth X with distribution P is given as follows (Artzner et al 1998):

VaR1�at D supŒr j P.Rt 6 r/ 6 a�; (2.1)

where r denotes the return of an asset and Rt is a random variable that represents
the return of the asset at the end of period T . A large number of alternatives for
estimating VaR exist. One of the most well-known processes is historical simulation,
which follows a simple methodology but relies on numerous assumptions about the
returns of the time series. Other alternatives include Monte Carlo simulation, FHS
and EVT.

2.2 Backtesting

To evaluate the accuracy and validity of VaR estimates, the Basel Committee devel-
oped a statistical test called the traffic light test (Basel Committee on Banking
Supervision 1996). According to the regulations, backtesting should be used on at
least 250 estimates of VaR. Nonetheless, nearly all backtesting results require a
significantly higher number of samples for accurate interpretations.

Most backtesting methodologies are based on the following process:

I at D 1.Rt < VaRat /; (2.2)

where t D T C 1; : : : ; T C n, 1.�/ is the indicator function, T indicates the size of
the VaR estimation sample and n indicates the number of one-step-ahead forecasts.
The VaR is considered to be accurate when the number of failures corresponds to its
confidence level. The correspondence rate between the number of failures and the
confidence interval is evaluated by some statistical backtesting method, such as that
of Kupiec or Christoffersen.

The well-known backtesting process proposed by Kupiec (1995) is based on the
number of failures, which is assumed to follow a binomial distribution.

3 VALUE-AT-RISK METHODOLOGIES

VaR can be estimated with many alternative methodologies, each of which has some
particular weaknesses and strengths. VaR estimation can be a difficult computational
task due to the variety of factors that have an impact on its evaluation; for example,
portfolio VaR depends on the contents of the portfolio, because complex instruments
such as barrier options can affect its returns. The complexity of certain financial
instruments, the portfolio size, the required confidence level and the available history
of risk factors, along with the calculation speed, are some of the various factors that
play an important role in VaR methodology decisions.
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In this research the ARMA and GARCH models are used to capture the volatility
clustering of the time series. In addition to the simple GARCH model, exponen-
tial GARCH (EGARCH) (Nelson 1991) and Glosten–Jagannathan–Runkle GARCH
(GJR-GARCH) (Glosten et al 1993) are used to address asymmetry in the data. Fur-
ther, a large number of distributions were examined for the GARCH model fitting.
Thus, normal, Student t and skewed Student t distributions and the generalized error
distribution (GED) were selected to represent the properties of the data. In contrast
to the normal distribution, which is symmetric, the other distributions are more rep-
resentative of time series with the fat tails and skewness so common to financial
instruments.

ARMA and GARCH models were combined with three alternative methodologies
to estimate VaR: the FHS model (Barone-Adesi and Giannopoulos 2001), which
is based on using random draws with replacement from the standardized residuals;
Monte Carlo simulation, a popular methodology in which an assumption about the
residuals’ distribution is made; and EVT (McNeil and Frey 2000), which assumes
the distribution of the tails of the standardized residuals.

There are several alternative VaR techniques – such as historical simulation,
bootstrapping, EVT with copulas and exponential weighted averages – that appear
promising as well, but they are not tested in this study; the reasons for this are
explained below.

Historical simulation makes assumptions about the symmetry of the data that
are rarely true. Moreover, while the bootstrapping (resampling) technique tends to
require a very large amount of data, it offers a relatively noncomplex methodology
for VaR estimation. EVT combined with copulas is a complex and time-consuming
method that most financial institutions prefer to avoid due to computational speed
issues. Further, fitting copulas to insufficient data can lead to inaccurate predictions.
Finally, the exponentially weighted moving average (EWMA) method stems from
GARCH related models. GARCH models, which represent the evolution of EWMA
models, are preferred for this research.

3.1 Modeling the one-step-ahead forecasts

One of the oldest and most popular VaR estimation approaches is historical simula-
tion, which relies on the empirical distribution of the returns under the assumption
that they are iid. Advantages of this method include its simplicity as well as the
speed of the calculations. However, empirical quantiles are rarely good estimators of
extreme quantiles, and the iid assumption is invalid for most financial time series.

Because the iid assumption is inadequate for many risk factors and asset prices,
various alternative methodologies are presented in this section.
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The following model of returns is assumed where (Rt , t 2 Z) is a strictly sta-
tionary time series representing daily observations of the negative log return on a
financial asset price. We assume that the dynamics of Rt (McNeil and Frey 2000),
which follow the standard stock price model for simulating the path of a stock price
(the Black–Scholes model assumption), are given by

Rt D �t C "t�t ; (3.1)

where �t and �t respectively represent the mean and standard deviation of the
returns and "t refers to the standardized residuals with mean equal to 0 and standard
deviation equal to 1.

In addition, based on (3.1), VaR can be estimated using the following formula:

VaRat D �t C qa�t ; (3.2)

where qa describes the 100a% quantile of f ."t /, or the density of the standardized
residuals.

According to (3.2), three terms must be defined for VaR estimation. The first term,
the conditional mean, can be assumed as an ARMA model, given by

�t D '0 C

pX
iD1

'iRt�i C

qX
jD1

�jat�j ; (3.3)

where at D "t�t , 'i refers to the autoregressive parameters, �j describes the
moving-average parameters andRt�i represents the previous returns of the portfolio.

Further, many models derived from the GARCH family for conditional variance
modeling exist in the literature. The most well known of these is GARCH(1,1)
(Bollerslev 1986):

�2t D ˛0 C ˛1a
2
t�1 C ˇ1�

2
t�1; (3.4)

where ˛0, ˛1, ˇ1 represent the estimated parameters. In addition, ˛0 > 0, ˛1 > 0,
ˇ1 > 0 and .˛1 C ˇ1/ < 1; these factors imply stationarity.

The EGARCH (Nelson 1991) and GJR-GARCH (Glosten et al 1993) models
were introduced to model data asymmetry. Hentschel (1995) proposed the following
equation to model the leverage effect:

�ıt � 1

ı
D ˛0 C ˛1�

ı
t�1g

v"t�1 C ˇ1
�ıt � 1

ı
; (3.5)

where g."t / D j"t � bj � c."t � b/. The function g is linear. It encompasses two
parameters that define the “size effect” and the “sign effect” of the shocks on volatil-
ity. In addition, ˛0, ˛1, ˇ1 are the estimated parameters. Many different GARCH
models have been derived from (3.5). The parameter ı represents the shape of the
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transformation, while the parameter v serves to transform the absolute value func-
tion g.�/ (Hentschel 1995). EGARCH is among the most popular for modeling
asymmetry. It is generated when the conditions ı D 0, v D 1 and b D 0 apply
to (3.5).

Another well-known GARCH model for modeling asymmetry is GJR-GARCH,
which is derived from (3.5) when ı D 2 and v D 2. The GJR-GARCH model
assumes a specific parametric form of conditional heteroscedasticity.

The third term that should be determined from (3.2) is the quantile (qa), which
is estimated based on the distribution of the standardized residuals. While numer-
ous alternative methodologies for this estimation can be found in the literature, this
research focuses only on three specific methodologies.

The first methodology for obtaining the quantile is to assume a particular dis-
tribution for the standardized residuals. When a distribution is chosen randomly to
create the standardized residuals and many different simulations are implemented to
forecast price paths in the future, Monte Carlo simulation is used. The most popular
distribution assumption is normality, due to the assumptions of the Black–Scholes
stock price model. Nonetheless, most time series in the financial world exhibit fat
tails and skewness. Consequently, Student t distributions, skewed Student t distribu-
tions and generalized Pareto distributions (GPDs) can be used in addition to making
assumptions about the standardized residuals.

Alternatively, the quantile of the distribution can be estimated directly without
particular assumptions. This methodology (McNeil and Frey 2000) is called extreme
value theory. Unlike Monte Carlo simulation, EVT is applied on the tails of the
distribution of the standardized residuals. EVT is based on the assumption that the
distribution of the standardized residuals above a threshold u follow, for example,
a GPD.

According to McNeil and Frey (2000), the quantile of the distribution of the
standardized residuals can be obtained using the following equation:

Oqa D �

�
O".kC1/ C

Ǒ

O�

��
˛

�=T

��O�
� 1

��
; (3.6)

where the number of observations in the tail is fixed to be N D �, � � T , which
yields a threshold at the .k C 1/th-order statistic. Then, if O".1/ > � � � > O".T / are
the ordered standardized residuals, the threshold is O".�C1/ and the GPD is as follows
(McNeil and Frey 2000):

O".1/ � O".kC1/ > � � � > O".k/ � O".kC1/:

Finally, Barone-Adesi and Giannopoulos (2001) proposed the bootstrapping
methodology named filtered historical simulation. This technique does not make
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any assumptions about the distribution of the residuals. FHS uses random draws
with replacement from the standardized residuals created using the conditional mean
and variance estimated parameters. This method is called semiparametric because
it incorporates the characteristics of the empirical distribution within a simulation
process.

3.2 Modeling the ten-steps-ahead forecasts

All of the methodologies described in Section 3.1 can be used to estimate short (one-
day) and long (ten-day) VaR horizons. Based on the Basel regulatory framework,
most financial institutions require a ten-day VaR. Thus, (3.2) can be modified as
follows:

VaRatC10 D �tC10 C qa�tC10: (3.7)

As described in Section 3.1, Monte Carlo simulation can be used to assume a
particular distribution for the standardized residuals, assuming one of the following
specific distributions applies: normal, Student t , skewed Student t or generalized
error.

In addition, the EVT method (McNeil and Frey 2000) can be implemented by
applying it on the tails of the distribution of the standardized residuals, generated
from nonoverlapping ten-day returns.

Bootstrap methods (such as FHS) can also be implemented on ten-day dis-
tributions. The Barone-Adesi and Giannopoulos (2001) method can use random
draws with replacement from the standardized residuals created from the empirical
distribution of real ten-day returns.

4 BACKTESTING METHODOLOGIES

Several backtesting methods are currently used to evaluate VaR models. The Basel
Committee has specific rules about backtesting strategies. According to regulations,
backtesting should be based on 250 one-day VaR estimates. As mentioned above, in
this paper the Kupiec and Christoffersen methods of examining the stability of VaR
models at different probabilities are implemented; the backtesting techniques are
used to test VaR accuracy under two different horizons and two different probability
levels.

Other backtesting techniques, such as the Basel traffic light test, are not ana-
lyzed in this study because one-tail tests examine only the underestimation of VaR
estimates and not the overestimation.1

1 See https://bit.ly/3CvystA.
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4.1 Kupiec test

The Kupiec (1995) test is based on the number of failures of VaR estimates depend-
ing on the selected confidence level. As described above, the failures are defined as
follows:

I at D 1.Rt < VaRat /: (4.1)

The number of failures is assumed to follow a binomial distribution. Kupiec sug-
gested testing the null hypothesis that the number of failures over several days
converges to the selected confidence level by using the following likelihood ratio
statistic:

LR D 2 log
��
1 �

x

n

�n�x�
x

n

�x�
� 2 logŒ.1 � a/n�xax�; (4.2)

where n is the number of trials, x is the number of failures and a is the selected
quantile. Under the hypothesis, the likelihood ratio statistic has an asymptotic �2

distribution with one degree of freedom. The Kupiec test is more efficient on large
samples with more than four years of observations.

4.2 Christoffersen test

Christoffersen (1998) developed a different model to evaluate VaR. This method
examines whether the failures in VaR estimation are independent. The Christoffersen
test is estimated by the following likelihood ratio statistic:

LR D �2 ln
�

.1 � �/n00Cn10.�/n01Cn11

.1 � �0/n00.�0/n01.1 � �1/n10.�1/n11

�
; (4.3)

where

�0 D
n01

n00 C n01
; �1 D

n11

n10 C n11
; � D

n01 C n11

n00 C n01 C n10 C n11
;

n00 is the number of periods with no failures followed by a period with no failures,
n10 is the number of periods with failures followed by a period with no failures,
n01 is the number of periods with no failures followed by a period with failures and
n11 is the number of periods with failures followed by a period with failures. The
asymptotic null distribution is a �2 distribution with one degree of freedom. Under
the null hypothesis, the probabilities should be equal: �0 D �1. The test largely
depends on the frequency with which consecutive exceedances are experienced. Only
when failures of VaR estimations show independence can the test be successful.
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TABLE 1 Descriptive statistics of FTSE 100 daily returns.

Mean 0.00013
Median 0.00053
Standard deviation 0.01193
Min �0.09266
Max 0.09384
Skewness �0.1468
Kurtosis 10.87109

5 DATA AND RESULTS

5.1 Data

In this paper the FTSE 100 index time series is used for a sample of 12 years (Jan-
uary 1, 2005–January 1, 2017). The FTSE 100 is a share index of the 100 companies
listed on the London Stock Exchange with the highest market capitalization. The
FTSE 100 data were collected from Bloomberg.

First, the log returns rt were estimated from the prices Pt :

rt D
ln.Pt /

ln.Pt�1/
: (5.1)

The returns were examined and some skewness and kurtosis were identified
in their distribution. Thus, their characteristics converge more to a Student t or
skewed Student t distribution than a normal distribution. The descriptive statistics
are presented in Table 1.

5.2 Results

The first two years of the daily time series were used to calculate the initial VaR
estimates. The rest of the data served to evaluate the performance of various VaR
methodologies for two confidence levels (2.5% and 1%). Moreover, to analyze the
performance of the models on longer horizons, the FTSE 100 daily returns were
transformed to ten-day observations using nonoverlapping returns for the backtesting
implementation.

In our analysis, six different ARMA-GARCH combinations, four different dis-
tributions (normal, Student’s t , skewed Student’s t and GED) and four different
methodologies (FHS, EVT, Monte Carlo simulation and historical simulation) were
employed to estimate our VaR calculations.

Kupiec (1995) and Christoffersen (1998) methods were implemented to give a bet-
ter understanding of the tested models by analyzing their performance for two prob-
ability levels and horizons together; the Kupiec and Christoffersen null hypotheses
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TABLE 2 Kupiec test for one-day VaR estimates on 99% and 97.5% significance levels.
[Table continues on next page.]

Kupiec Kupiec
test test

Method Model Distribution 99% 97.5%

FHS ARMA(0,0)-GARCH(1,1) 99% Normal 0.197 0.778
FHS ARMA(0,0)-GARCH(1,1) 99% SD 0.593 0.589
FHS ARMA(0,0)-GARCH(1,1) 99% SSTD 0.593 0.589
FHS ARMA(0,0)-GARCH(1,1) 99% GED 0.359 0.681
FHS ARMA(1,0)-GARCH(1,1) 99% Normal 0.734 0.878
FHS ARMA(1,0)-GARCH(1,1) 99% SD 0.467 0.980
FHS ARMA(1,0)-GARCH(1,1) 99% SSTD 0.593 0.681
FHS ARMA(1,0)-GARCH(1,1) 99% GED 0.269 0.878
FHS ARMA(0,0)-EGARCH(1,1) 99% Normal 0.734 0.114
FHS ARMA(0,0)-EGARCH(1,1) 99% SD 0.269 0.114
FHS ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.197 0.223
FHS ARMA(0,0)-EGARCH(1,1) 99% GED 0.593 0.144
FHS ARMA(1,0)-EGARCH(1,1) 99% Normal 0.359 0.089
FHS ARMA(1,0)-EGARCH(1,1) 99% SD 0.467 0.069
FHS ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.593 0.223
FHS ARMA(1,0)-EGARCH(1,1) 99% GED 0.593 0.144
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% Normal 0.197 0.632
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% SD 0.269 0.980
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.197 0.980
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% GED 0.141 0.819
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% Normal 0.197 0.632
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.467 0.819
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.467 0.546
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% GED 0.141 0.632

MC ARMA(0,0)-GARCH(1,1) 99% Normal 0.000 0.002
MC ARMA(0,0)-GARCH(1,1) 99% SD 0.066 0.022
MC ARMA(0,0)-GARCH(1,1) 99% SSTD 0.098 0.330
MC ARMA(0,0)-GARCH(1,1) 99% GED 0.011 0.053
MC ARMA(1,0)-GARCH(1,1) 99% Normal 0.000 0.002
MC ARMA(1,0)-GARCH(1,1) 99% SD 0.011 0.012
MC ARMA(1,0)-GARCH(1,1) 99% SSTD 0.141 0.466
MC ARMA(1,0)-GARCH(1,1) 99% GED 0.004 0.022
MC ARMA(0,0)-EGARCH(1,1) 99% Normal 0.000 0.000
MC ARMA(0,0)-EGARCH(1,1) 99% SD 0.004 0.000
MC ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.197 0.030
MC ARMA(0,0)-EGARCH(1,1) 99% GED 0.004 0.001
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TABLE 2 Continued.

Kupiec Kupiec
test test

Method Model Distribution 99% 97.5%

MC ARMA(1,0)-EGARCH(1,1) 99% Normal 0.000 0.000
MC ARMA(1,0)-EGARCH(1,1) 99% SD 0.002 0.000
MC ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.467 0.022
MC ARMA(1,0)-EGARCH(1,1) 99% GED 0.002 0.000
MC ARMA(0,0)-GJR-GARCH(1,1) 99% Normal 0.000 0.000
MC ARMA(0,0)-GJR-GARCH(1,1) 99% SD 0.001 0.001
MC ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.098 0.180
MC ARMA(0,0)-GJR-GARCH(1,1) 99% GED 0.002 0.003
MC ARMA(1,0)-GJR-GARCH(1,1) 99% Normal 0.000 0.000
MC ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.001 0.001
MC ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.141 0.273
MC ARMA(1,0)-GJR-GARCH(1,1) 99% GED 0.001 0.001

EVT ARMA(0,0)-GARCH(1,1) 99% Normal 0.098 0.819
EVT ARMA(0,0)-GARCH(1,1) 99% SD 0.141 0.919
EVT ARMA(0,0)-GARCH(1,1) 99% SSTD 0.098 0.819
EVT ARMA(0,0)-GARCH(1,1) 99% GED 0.098 0.819
EVT ARMA(1,0)-GARCH(1,1) 99% Normal 0.066 0.778
EVT ARMA(1,0)-GARCH(1,1) 99% SD 0.141 0.919
EVT ARMA(1,0)-GARCH(1,1) 99% SSTD 0.141 0.819
EVT ARMA(1,0)-GARCH(1,1) 99% GED 0.141 0.919
EVT ARMA(0,0)-EGARCH(1,1) 99% Normal 0.593 0.466
EVT ARMA(0,0)-EGARCH(1,1) 99% SD 0.467 0.180
EVT ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.359 0.144
EVT ARMA(0,0)-EGARCH(1,1) 99% GED 0.467 0.394
EVT ARMA(1,0)-EGARCH(1,1) 99% Normal 0.359 0.466
EVT ARMA(1,0)-EGARCH(1,1) 99% SD 0.359 0.330
EVT ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.359 0.330
EVT ARMA(1,0)-EGARCH(1,1) 99% GED 0.359 0.466
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% Normal 0.467 0.394
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% SD 0.467 0.632
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.467 0.632
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% GED 0.359 0.466
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% Normal 0.467 0.273
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.734 0.546
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.886 0.466
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% GED 0.359 0.330

SD, Student t distribution. SSTD, skewed Student t distribution. GED, generalized error distribution. The bold
p-values indicate a failure in the performing test.

www.risk.net/journals Journal of Risk Model Validation



42 G. Kontaxis and I. E. Tsolas

TABLE 3 Kupiec test for nonoverlapping ten-day VaR estimates on 99% and 97.5%
significance levels. [Table continues on next page.]

Kupiec Kupiec
test test

Method Model Distribution 99% 97.5%

FHS ARMA(0,0)-GARCH(1,1) 99% Normal 0.388 0.168
FHS ARMA(0,0)-GARCH(1,1) 99% SD 0.388 0.510
FHS ARMA(0,0)-GARCH(1,1) 99% SSTD 0.768 0.587
FHS ARMA(0,0)-GARCH(1,1) 99% GED 0.388 0.781
FHS ARMA(1,0)-GARCH(1,1) 99% Normal 0.388 0.306
FHS ARMA(1,0)-GARCH(1,1) 99% SD 0.388 0.903
FHS ARMA(1,0)-GARCH(1,1) 99% SSTD 0.768 0.781
FHS ARMA(1,0)-GARCH(1,1) 99% GED 0.388 0.781
FHS ARMA(0,0)-EGARCH(1,1) 99% Normal 0.166 0.781
FHS ARMA(0,0)-EGARCH(1,1) 99% SD 0.768 0.781
FHS ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.733 0.320
FHS ARMA(0,0)-EGARCH(1,1) 99% GED 0.768 0.903
FHS ARMA(1,0)-EGARCH(1,1) 99% Normal 0.061 0.510
FHS ARMA(1,0)-EGARCH(1,1) 99% SD 0.388 0.306
FHS ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.388 0.587
FHS ARMA(1,0)-EGARCH(1,1) 99% GED 0.020 0.086
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% Normal — 0.320
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% SD — 0.320
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.733 0.781
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% GED — 0.320
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% Normal — 0.781
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.273 0.903
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.273 0.781
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% GED — 0.781

MC ARMA(0,0)-GARCH(1,1) 99% Normal 0.388 0.587
MC ARMA(0,0)-GARCH(1,1) 99% SD 0.388 0.320
MC ARMA(0,0)-GARCH(1,1) 99% SSTD — 0.043
MC ARMA(0,0)-GARCH(1,1) 99% GED 0.388 0.320
MC ARMA(1,0)-GARCH(1,1) 99% Normal 0.388 0.587
MC ARMA(1,0)-GARCH(1,1) 99% SD 0.388 0.320
MC ARMA(1,0)-GARCH(1,1) 99% SSTD 0.273 0.139
MC ARMA(1,0)-GARCH(1,1) 99% GED 0.388 0.587
MC ARMA(0,0)-EGARCH(1,1) 99% Normal 0.733 0.903
MC ARMA(0,0)-EGARCH(1,1) 99% SD 0.733 0.320
MC ARMA(0,0)-EGARCH(1,1) 99% SSTD — 0.008
MC ARMA(0,0)-EGARCH(1,1) 99% GED 0.733 0.587
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TABLE 3 Continued.

Kupiec Kupiec
test test

Method Model Distribution 99% 97.5%

MC ARMA(1,0)-EGARCH(1,1) 99% Normal 0.768 0.781
MC ARMA(1,0)-EGARCH(1,1) 99% SD 0.273 0.043
MC ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.733 0.587
MC ARMA(1,0)-EGARCH(1,1) 99% GED 0.020 0.086
MC ARMA(0,0)-GJR-GARCH(1,1) 99% Normal — —
MC ARMA(0,0)-GJR-GARCH(1,1) 99% SD — —
MC ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD — 0.008
MC ARMA(0,0)-GJR-GARCH(1,1) 99% GED — 0.008
MC ARMA(1,0)-GJR-GARCH(1,1) 99% Normal — 0.008
MC ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.273 0.008
MC ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.273 0.008
MC ARMA(1,0)-GJR-GARCH(1,1) 99% GED — 0.043

EVT ARMA(0,0)-GARCH(1,1) 99% Normal 0.388 0.587
EVT ARMA(0,0)-GARCH(1,1) 99% SD 0.388 0.320
EVT ARMA(0,0)-GARCH(1,1) 99% SSTD 0.768 0.139
EVT ARMA(0,0)-GARCH(1,1) 99% GED 0.388 0.320
EVT ARMA(1,0)-GARCH(1,1) 99% Normal 0.768 0.587
EVT ARMA(1,0)-GARCH(1,1) 99% SD 0.768 0.587
EVT ARMA(1,0)-GARCH(1,1) 99% SSTD 0.273 0.043
EVT ARMA(1,0)-GARCH(1,1) 99% GED 0.768 0.587
EVT ARMA(0,0)-EGARCH(1,1) 99% Normal 0.768 0.587
EVT ARMA(0,0)-EGARCH(1,1) 99% SD 0.166 0.510
EVT ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.733 0.139
EVT ARMA(0,0)-EGARCH(1,1) 99% GED 0.768 0.781
EVT ARMA(1,0)-EGARCH(1,1) 99% Normal 0.768 0.587
EVT ARMA(1,0)-EGARCH(1,1) 99% SD 0.166 0.781
EVT ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.733 0.139
EVT ARMA(1,0)-EGARCH(1,1) 99% GED 0.768 0.587
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% Normal — —
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% SD — —
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.733 0.043
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% GED — 0.008
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% Normal — —
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.273 0.043
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.273 0.008
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% GED — —

SD, Student t distribution. SSTD, skewed Student t distribution. GED, generalized error distribution. The bold
p-values indicate a failure in the performing test.
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TABLE 4 Independence test for one-day VaR estimates on 99% and 97.5% significance
levels. [Table continues on next page.]

Ind. Ind.
test test

Method Model Distribution 99% 97.5%

FHS ARMA(0,0)-GARCH(1,1) 99% Normal 0.081 0.879
FHS ARMA(0,0)-GARCH(1,1) 99% SD 0.102 0.759
FHS ARMA(0,0)-GARCH(1,1) 99% SSTD 0.102 0.759
FHS ARMA(0,0)-GARCH(1,1) 99% GED 0.098 0.824
FHS ARMA(1,0)-GARCH(1,1) 99% Normal 0.097 0.222
FHS ARMA(1,0)-GARCH(1,1) 99% SD 0.102 0.579
FHS ARMA(1,0)-GARCH(1,1) 99% SSTD 0.011 0.455
FHS ARMA(1,0)-GARCH(1,1) 99% GED 0.091 0.545
FHS ARMA(0,0)-EGARCH(1,1) 99% Normal 0.705 0.281
FHS ARMA(0,0)-EGARCH(1,1) 99% SD 0.370 0.281
FHS ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.289 0.474
FHS ARMA(0,0)-EGARCH(1,1) 99% GED 0.633 0.340
FHS ARMA(1,0)-EGARCH(1,1) 99% Normal 0.458 0.140
FHS ARMA(1,0)-EGARCH(1,1) 99% SD 0.548 0.178
FHS ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.633 0.398
FHS ARMA(1,0)-EGARCH(1,1) 99% GED 0.633 0.302
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% Normal 0.289 0.879
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% SD 0.370 0.883
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.289 0.883
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% GED 0.218 0.944
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% Normal 0.289 0.879
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.548 0.826
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.548 0.826
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% GED 0.218 0.879

MC ARMA(0,0)-GARCH(1,1) 99% Normal 0.000 0.005
MC ARMA(0,0)-GARCH(1,1) 99% SD 0.046 0.053
MC ARMA(0,0)-GARCH(1,1) 99% SSTD 0.198 0.622
MC ARMA(0,0)-GARCH(1,1) 99% GED 0.014 0.144
MC ARMA(1,0)-GARCH(1,1) 99% Normal 0.000 0.007
MC ARMA(1,0)-GARCH(1,1) 99% SD 0.014 0.032
MC ARMA(1,0)-GARCH(1,1) 99% SSTD 0.254 0.569
MC ARMA(1,0)-GARCH(1,1) 99% GED 0.006 0.053
MC ARMA(0,0)-EGARCH(1,1) 99% Normal 0.000 0.000
MC ARMA(0,0)-EGARCH(1,1) 99% SD 0.015 0.000
MC ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.316 0.087
MC ARMA(0,0)-EGARCH(1,1) 99% GED 0.015 0.002
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TABLE 4 Continued.

Ind. Ind.
test test

Method Model Distribution 99% 97.5%

MC ARMA(1,0)-EGARCH(1,1) 99% Normal 0.000 0.000
MC ARMA(1,0)-EGARCH(1,1) 99% SD 0.009 0.000
MC ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.490 0.053
MC ARMA(1,0)-EGARCH(1,1) 99% GED 0.009 0.001
MC ARMA(0,0)-GJR-GARCH(1,1) 99% Normal 0.000 0.001
MC ARMA(0,0)-GJR-GARCH(1,1) 99% SD 0.003 0.002
MC ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.160 0.270
MC ARMA(0,0)-GJR-GARCH(1,1) 99% GED 0.005 0.009
MC ARMA(1,0)-GJR-GARCH(1,1) 99% Normal 0.000 0.000
MC ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.003 0.002
MC ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.218 0.547
MC ARMA(1,0)-GJR-GARCH(1,1) 99% GED 0.003 0.004

EVT ARMA(0,0)-GARCH(1,1) 99% Normal 0.058 0.944
EVT ARMA(0,0)-GARCH(1,1) 99% SD 0.070 0.952
EVT ARMA(0,0)-GARCH(1,1) 99% SSTD 0.058 0.619
EVT ARMA(0,0)-GARCH(1,1) 99% GED 0.058 0.944
EVT ARMA(1,0)-GARCH(1,1) 99% Normal 0.046 0.879
EVT ARMA(1,0)-GARCH(1,1) 99% SD 0.070 0.952
EVT ARMA(1,0)-GARCH(1,1) 99% SSTD 0.070 0.944
EVT ARMA(1,0)-GARCH(1,1) 99% GED 0.070 0.952
EVT ARMA(0,0)-EGARCH(1,1) 99% Normal 0.527 0.764
EVT ARMA(0,0)-EGARCH(1,1) 99% SD 0.490 0.405
EVT ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.439 0.340
EVT ARMA(0,0)-EGARCH(1,1) 99% GED 0.490 0.695
EVT ARMA(1,0)-EGARCH(1,1) 99% Normal 0.439 0.764
EVT ARMA(1,0)-EGARCH(1,1) 99% SD 0.439 0.622
EVT ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.439 0.622
EVT ARMA(1,0)-EGARCH(1,1) 99% GED 0.439 0.764
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% Normal 0.548 0.695
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% SD 0.548 0.722
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.548 0.722
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% GED 0.458 0.764
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% Normal 0.548 0.547
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.705 0.658
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.755 0.764
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% GED 0.458 0.622

SD, Student t distribution. SSTD, skewed Student t distribution. GED, generalized error distribution. The bold
p-values indicate a failure in the performing test.
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TABLE 5 Independence test for nonoverlapping ten-day VaR estimates on 99% and
97.5% significance levels. [Table continues on next page.]

Ind. Ind.
test test

Method Model Distribution 99% 97.5%

FHS ARMA(0,0)-GARCH(1,1) 99% Normal 0.646 0.256
FHS ARMA(0,0)-GARCH(1,1) 99% SD 0.646 0.619
FHS ARMA(0,0)-GARCH(1,1) 99% SSTD 0.923 0.779
FHS ARMA(0,0)-GARCH(1,1) 99% GED 0.646 0.787
FHS ARMA(1,0)-GARCH(1,1) 99% Normal 0.646 0.423
FHS ARMA(1,0)-GARCH(1,1) 99% SD 0.646 0.857
FHS ARMA(1,0)-GARCH(1,1) 99% SSTD 0.923 0.787
FHS ARMA(1,0)-GARCH(1,1) 99% GED 0.646 0.787
FHS ARMA(0,0)-EGARCH(1,1) 99% Normal 0.346 0.787
FHS ARMA(0,0)-EGARCH(1,1) 99% SD 0.923 0.787
FHS ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.928 0.572
FHS ARMA(0,0)-EGARCH(1,1) 99% GED 0.923 0.857
FHS ARMA(1,0)-EGARCH(1,1) 99% Normal 0.150 0.619
FHS ARMA(1,0)-EGARCH(1,1) 99% SD 0.646 0.423
FHS ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.646 0.779
FHS ARMA(1,0)-EGARCH(1,1) 99% GED 0.054 0.138
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% Normal 0.079 0.078
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% SD 0.079 0.078
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.928 0.033
FHS ARMA(0,0)-GJR-GARCH(1,1) 99% GED 0.079 0.078
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% Normal 0.079 0.380
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.546 0.293
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.546 0.033
FHS ARMA(1,0)-GJR-GARCH(1,1) 99% GED 0.079 0.380

MC ARMA(0,0)-GARCH(1,1) 99% Normal 0.646 0.779
MC ARMA(0,0)-GARCH(1,1) 99% SD 0.646 0.572
MC ARMA(0,0)-GARCH(1,1) 99% SSTD 0.079 0.128
MC ARMA(0,0)-GARCH(1,1) 99% GED 0.646 0.572
MC ARMA(1,0)-GARCH(1,1) 99% Normal 0.646 0.779
MC ARMA(1,0)-GARCH(1,1) 99% SD 0.646 0.572
MC ARMA(1,0)-GARCH(1,1) 99% SSTD 0.546 0.322
MC ARMA(1,0)-GARCH(1,1) 99% GED 0.646 0.779
MC ARMA(0,0)-EGARCH(1,1) 99% Normal 0.928 0.857
MC ARMA(0,0)-EGARCH(1,1) 99% SD 0.928 0.572
MC ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.079 0.030
MC ARMA(0,0)-EGARCH(1,1) 99% GED 0.928 0.779
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TABLE 5 Continued.

Ind. Ind.
test test

Method Model Distribution 99% 97.5%

MC ARMA(1,0)-EGARCH(1,1) 99% Normal 0.923 0.787
MC ARMA(1,0)-EGARCH(1,1) 99% SD 0.546 0.128
MC ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.928 0.177
MC ARMA(1,0)-EGARCH(1,1) 99% GED 0.054 0.138
MC ARMA(0,0)-GJR-GARCH(1,1) 99% Normal 0.079 0.002
MC ARMA(0,0)-GJR-GARCH(1,1) 99% SD 0.079 0.002
MC ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.079 0.030
MC ARMA(0,0)-GJR-GARCH(1,1) 99% GED 0.079 0.030
MC ARMA(1,0)-GJR-GARCH(1,1) 99% Normal 0.079 0.030
MC ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.546 0.030
MC ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.546 0.030
MC ARMA(1,0)-GJR-GARCH(1,1) 99% GED 0.079 0.128

EVT ARMA(0,0)-GARCH(1,1) 99% Normal 0.646 0.779
EVT ARMA(0,0)-GARCH(1,1) 99% SD 0.646 0.572
EVT ARMA(0,0)-GARCH(1,1) 99% SSTD 0.923 0.322
EVT ARMA(0,0)-GARCH(1,1) 99% GED 0.646 0.572
EVT ARMA(1,0)-GARCH(1,1) 99% Normal 0.923 0.779
EVT ARMA(1,0)-GARCH(1,1) 99% SD 0.923 0.779
EVT ARMA(1,0)-GARCH(1,1) 99% SSTD 0.546 0.128
EVT ARMA(1,0)-GARCH(1,1) 99% GED 0.923 0.779
EVT ARMA(0,0)-EGARCH(1,1) 99% Normal 0.923 0.779
EVT ARMA(0,0)-EGARCH(1,1) 99% SD 0.346 0.619
EVT ARMA(0,0)-EGARCH(1,1) 99% SSTD 0.928 0.022
EVT ARMA(0,0)-EGARCH(1,1) 99% GED 0.923 0.787
EVT ARMA(1,0)-EGARCH(1,1) 99% Normal 0.923 0.779
EVT ARMA(1,0)-EGARCH(1,1) 99% SD 0.346 0.787
EVT ARMA(1,0)-EGARCH(1,1) 99% SSTD 0.928 0.022
EVT ARMA(1,0)-EGARCH(1,1) 99% GED 0.923 0.779
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% Normal 0.079 0.002
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% SD 0.079 0.002
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% SSTD 0.928 0.128
EVT ARMA(0,0)-GJR-GARCH(1,1) 99% GED 0.079 0.030
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% Normal 0.079 0.002
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% SD 0.546 0.128
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% SSTD 0.546 0.030
EVT ARMA(1,0)-GJR-GARCH(1,1) 99% GED 0.079 0.002

SD, Student t distribution. SSTD, skewed Student t distribution. GED, generalized error distribution. The bold
p-values indicate a failure in the performing test.
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were considered to hold when the p-value was above 5%. The p-values of both tests
on all the tested models are presented in Tables 2–5. The p-values in bold indicate a
failure in the performing test.

For one-day VaR estimates, the Kupiec test accepts all the models that use FHS and
EVT methods (Table 2). Meanwhile, the Kupiec test null hypothesis for the Monte
Carlo methodology is rejected for most of the models tested. The same results are
observed for both significance levels. Further, the Christoffersen test presents similar
observations (Table 4); among the models that use FHS and EVT, all but two are
accepted by the Christoffersen test. The Christoffersen test null hypothesis is rejected
for most models that use the Monte Carlo method.

Further, the Kupiec test presents several models as efficient, even those using the
Monte Carlo method, for ten-day VaR estimates (Table 3) and both confidence levels
(99%, 97.5%). On the other hand, several failures of the test are observed for GJR-
GARCH models, when each of the different VaR methods (FHS, EVT or Monte
Carlo simulation) are used. In addition, the Christoffersen test (Table 5) suggests all
the models as efficient for the 99% confidence level. However, failures are observed
for GJR-GARCH models at the 97.5% confidence level.

It can be seen that the Kupiec and Christoffersen tests yielded several efficient
models for the different horizons tested (one-day, ten-day nonoverlapped). The gen-
eral conclusion is that, for daily observations, the EVT and FHS methodologies were
deemed to be efficient in several trials, while the Monte Carlo method appears to
fail for both backtesting techniques. On the other hand, all methodologies (FHS,
EVT and Monte Carlo simulation) were deemed to be efficient when used on ten-
day horizons; one exception to this was the GJR-GARCH model, which presented
several failures for ten-day levels in both the Kupiec and Christoffersen tests.

According to the research outcomes, ten-day VaR estimates based on nonoverlap-
ping portfolio returns can present similar behavior to one-day VaR calculations on
many occasions. However, the Monte Carlo method that presents backtesting failures
on daily horizons can be proven to be adequate based on Kupiec and Christoffersen
tests when longer horizons were used. One reason for the above finding is the lim-
ited number of ten-day observations compared with daily ones, which might not be
enough to judge the efficiency of the models.

6 CONCLUSIONS

The decision-making process involved in selecting suitable risk metrics is often dif-
ficult, depending on various circumstances. This paper focuses on the evaluation of
market risk (ie, VaR) models over longer forecast horizons and examines the behav-
ior of such models at different confidence levels. The results of this study show that
changing the forecast horizon can affect the efficiency of some VaR models. Thus,
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the assumption of most financial institutions that backtesting results based on daily
observations can be generalized for ten-day risk estimations might not always be
accurate.

This finding is important and requires further testing concerning the assumptions
that financial institutions make when VaR values are estimated on longer horizons.
Further, this research found that the GJR-GARCH model presents several failures
at ten-day levels in both the Kupiec and Christoffersen tests, in contrast to the other
models that were used. Finally, the results suggest that some models’ efficiency can
be affected by the selection of the significance level.
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