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Abstract—Very Short-Term Load Forecasting (VSTLF) at a
residential level constitutes a challenge mainly due to the highly
volatile end-user consumption patterns as well as data integrity
issues that jeopardize the quality of collected data. VSTLF can
enable improved flexibility quantification and more efficient res-
idential Demand-Side Management (DSM) for load aggregators,
not only on a consumer level but also on an aggregated appliance
level. Inspired by the ongoing research debate between statistical-
based and data-driven models for VSTLF, this work investigates
the performance of a Long Short-Term Memory (LSTM) model
with Feed-Forward Error Correction (FFEC), the widely-used
XGBoost method and the State-of-the-Art (SoA) models N-
BEATS and Prophet. Models were trained and tested on 15-
minute aggregate Electric Vehicle (EV) and Air Conditioning
(A/C) loads, using real measurements by the Pecan Street dataset.
In contrast to common research practices, this work considers
solely temporal features and historical consumption for training
the models. Results indicate that firstly LSTM with FFEC and
secondly XGBoost models capture more accurately sub-hourly
load dependencies for both EVs and A/Cs, showcasing their
ability to generalize efficiently across different appliances and
sparse datasets. N-BEATS model performs adequately well but
it cannot outperform the aforementioned models, while Prophet
fails to capture very short term dependencies in the data.

Index Terms—Very Short-Term Load Forecasting, LSTM,
Prophet, N-BEATS, Aggregate Flexible Load

I. INTRODUCTION

A. Context

Residential demand-side flexibility is universally acknowl-

edged as a pivotal element in the transition towards a more

cost-effective and environmentally sustainable energy system

[1]. Precise VSTLF, which commonly refers to sub-hourly

time horizons, can strongly impact the quality of services

provided by energy suppliers or load aggregators to residential
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end-users, ensuring smart grid reliability and efficient opera-

tion [2]. Modelling and predicting very short-term electricity

consumption on a household or even appliance level can be a

catalyst in decision making tasks such as shaping dynamic

pricing strategies, quantification and utilisation of available

flexible capacity and automatic control and scheduling of

flexible distributed energy resources on sub-hourly intervals

[3], [4]. The necessity for accurate VSTLF is also evident

when noticing operational issues faced in existing energy

markets due to potential imbalances creation. For instance,

the UK Energy System Operator requires a re-declaration of

capacity (usually storage) every 15 minutes by all participants

in the balancing mechanism [5]. Similar challenges may arise

as load aggregators become more involved in energy markets.

Despite its importance in various applications, currently

sub-hourly load forecasting presents significant challenges

due to [6]: (1) the highly volatile energy consumption pat-

terns of residential end-users, (2) inadequate data quality due

to unavoidable transmission and storage data loss, and (3)

lack of Internet-of-Things (IoT)-based sensoring data (e.g.

temperature, humidity, occupancy) that can support a more

precise load prediction. Lack of these parameters can increase

uncertainty to decision-making systems, such as Home Energy

or Demand Response Management Systems, that support end-

users participation in local or regional flexibility markets.

B. Related Work

The use of smart metering readings for residential load

forecasting has been widely investigated during the last years.

However, the majority of existing research works focuses

on models that predict community or household-level con-

sumption on a monthly, daily or hourly granularity, even

if lower granularity of data is being utilized. For instance,

works [7]–[11] predicted total power consumption either on

a community level (multiple households) or building-level



(residential or commercial) considering data that are at an

hourly, 30 or 15-minute temporal resolution (or has been

consolidated to such intervals). Various models and methods

have been used such as LSTM [7], [9]–[11], eXtreme Gra-

dient Boosting (XGBoost)[7], Gated Recurrent Unit (GRU)

[7], Recurrent Neural Network (RNN) [7], Autoregressive

Integrated Moving Average (ARIMA) [7], Support Vector

Machines (SVM) and Regression (SVR) [7], [9], Bayesian

Networks [8], Random Forest [7], Back Propagation Neural

Network (BPNN) [10], Extreme Learning Machine (ELM)

[10] and K-Nearest Neighbors (KNN) [10] algorithms. Work

[12] aggregated low resolution (1-min) consumption data to a

30-minute granularity, training a Deep Neural Network (DNN)

with residual blocks to predict total household consumption.

In work [13] an improved XGBoost model is compared with

a Light Gradient-Boosting Machine (LightGBM) and a deep

LSTM model to predict total household load consumption

on a 15-minute horizon, using historical data with similar

resolution. XGBoost and LSTM were also trained in [14]

with hourly data to predict household electricity consumption

on a multi-time scale basis. Works [15] and [16] utilized

IoT-related features (e.g. humidity, temperature, occupancy)

for sub-hourly load forecasting. In the former, forecasting

took place on a household level while in the latter demo-

graphics were also considered for community-load stochastic

forecasting. However, IoT data is not universally accessible in

households, thus limiting their actual applicability.

Regardless the data resolution and forecasting horizon, the

aforementioned works share all the same characteristic: they

all focus on total load forecasting. To the best of the authors

knowledge, limited literature exists for appliance-level load

forecasting on a sub-hourly basis. For instance, work [17]

develops a Hidden Semi-Markov Model (HSMM) to predict

15-minute consumption of EVs, A/C units and Electric Wa-

ter Heaters (EWH) using 1-minute measurements. However,

that work performed forecasting on a household-level and

not on a community-level. Work [18] performed appliance-

level forecasting from a community perspective, proposing an

LSTM model with a Feed Forward Neural Network (FFNN)

for error correction. However, that work evaluated predictions

on a day-ahead basis. Last but not least, works [19] and [20]

predicted District Heating (DH) and EV load, respectively.

Even if, in both cases, load forecasting took place on an

aggregated (regional or charging station) level, an hourly

forecasting horizon has been selected. The majority of the

literature reviewed in this work is summarized in Table I.

C. Structure and Contribution

This work addresses the identified research gap of sub-

hourly (15-minute) appliance-level load forecasting for an

energy community. In contrast to total household load fore-

casting, where general consumption advice can be deducted,

obtaining focused insights into the consumption patterns of

an EV fleet or a high volume of thermostatically controlled

loads (e.g. A/Cs) can lead to the creation of targeted de-

mand response programs with sub-hourly granularity. In that

TABLE I
RELATED WORK FOR RESIDENTIAL SHORT-TERM LOAD FORECASTING

Ref. Aggregation Forecasting Forecasted Prediction

Level Models Variables Horizon

[4] Household SVM, DNN Total Load 1-min

[7] Commercial
Buildings

LSTM, GRU, RNN,
ARIMA, XGBoost,
Random Forest, SVR

Total Load 30-min

[8] Community Bayesian Networks Total Load 1-hour

[9] Household SVR, LSTM Total Load 1-hour

[10] Community BPNN, LSTM, KNN,
ELM

Total Load 30-min

[12] Household DNN + ResBlock Total Load 30-min

[13] Household LightGBM, LSTM,
XGBoost

Total Load 15-min

[14] Household XGBoost, LSTM Total Load 1-hour

[15] Household CNN, LSTM Total Load 10-min

[17] Household Conditional HSMM EV, EWH,
A/C

15-min

[18] Community LSTM with FF Con-
trol, GB, MLP, SVM

EV, EWH,
A/C

1-hour

[19] Grid
(Regional)

Prophet, LightGBM,
XGBoost

DH 1-day

[20] Grid
(Charging
Stations)

Prophet-LSTM,
ARIMA, VMD

EVs 1-hour

[21] Grid (City) XGBoost, CatBoost Total Load 1-hour

[22] Community Deep-Autoformer,
Transformer, LSTM,
CNN, ARIMA

Total Load 15-min

This
work

Community LSTM with FFEC,
XGBoost, Prophet,
N-BEATS

EV, A/C 15-min

way, load aggregators can obtain a better estimate of the

controlled assets’ flexibility potential, thus providing more

efficient demand-side management services. Additionally, the

absence of IoT-related data in typical households prompted

the authors to rely solely on historical consumption data and

temporal features from the dataset. An LSTM Model with

Feed-Forward Error Correction, inspired by [18], is developed

and compared with the XGBoost method. Additionally, the

SoA models of Prophet and N-BEATS are firstly investigated

for VSTLF. The contributions of this work are the following:

• Community Sub-Hourly Appliance-level Predictions:

Aggregated consumption forecasting of specific flexible

assets (e.g. EVs, A/Cs) on a sub-hourly level contributes

towards a more accurate estimation of the flexibility

potential for aggregators offering DSM services.

• Extensive Models Evaluation: Evaluation of an LSTM

Model with Feed-Forward Error Correction and compar-

ison with XGBoost and the SoA methods of Prophet and

N-BEATS, firstly tested in VSTLF problems.



Fig. 1. Proposed methodology for aggregated Appliance-Level Sub-Hourly
Load Forecasting in Residential Energy Communities

• High Model Applicability: In this work, forecasting is

based solely on historical consumption and temporal-

related features. This can increase models applicability

since IoT data are rarely available in real-life applications.

This work is structured as follows. In Section II, the mod-

elling framework and the investigated models are described.

In Section III, the data analysis, the experimental setup and

results evaluation are presented, and in Section IV the main

conclusions and future research orientations are provided.

II. METHODOLOGY

A. Data Pre-Processing and Preparation
An overview of the modelling framework, showing the

breakdown between data pre-processing, data preparation,

models training and results evaluation is presented in Fig. 1.

The first step to obtain appliance-level aggregated consump-

tion profiles of the community is to isolate appliance-specific

measurements and identify both the eligible days and houses,

meaning the houses with considerable 15-minute consumption

(max > 1kW) throughout the year (85% of non-NaN values)

and days without many missing (NaN) values. Then, data

should be cleaned by removing error measurements (negative

or irrationally low) and interpolate in between of NaN values.

Last step involves aggregating individual household data to de-

rive the community load and generating time-related features.

Fig. 2. Time Step Shifting Mechanism for training/test data transformation

The output of the data pre-processing module will ultimately

be a dataframe with the following input features:

1) Consumption (kW): Aggregate appliance-level (EV and

A/C) consumption for each 15-minute time step

2) Time: Time indices in range [1-1440] indicating the

minute of the day

3) Weekday: Weekday indices in range [0-6] indicating the

day of the week (0 = ’Monday’)

4) Month: Month indices in range 1-12 indicating the month

of the year (1 = ’January’)

Dataset preparation for training and testing varies depending

on the model under consideration. The Prophet model is a

highly automated, statistics-based model with the capability

to receive raw historical data, without any additional data

transformation/modification, to train the model. On the con-

trary, data normalization and time step shifting mechanism

are essential before data being fed into LSTM, XGBoost

and N-BEATS models. In this work, MinMax scaling is

applied for each feature of the processed dataset following

the transformation shown in Eq. (1) and Eq. (2):

Xnorm =
X −min(X)

max(X)−min(X)
, ∀X ∈ χ (1)

Xscaled = Xnorm · (Lup − Llow) + Llow, ∀X ∈ χ (2)

where χ represents the set of input features X and

{Llow, Lup} are the lower and upper boundaries of the de-

sired feature range. The training and test sets are defined by

randomly assigning days of each month to each set. The next

step is to select the temporal horizon utilized for aggregated

appliance-level training and testing, as shown in Fig. 2, where

n stands for the previous time steps selected as input time

window. In this work, a 3-hour window has been selected,

meaning n = 12 15-minute time periods.

B. Short-Term Load Forecasting Models

This section offers a brief summary of the working princi-

ples underlying the investigated models, namely the proposed

LSTM model with Feed-Forward Error Correction, the XG-

Boost, the N-BEATS and the Prophet models.

1) LSTM with Feed-Forward Error Correction: LSTM ar-

chitecture firstly introduced by [23] and further improved by

[24], is a special type of RNNs that operate as sequence-based

models, enabling the establishment of temporal correlations

between past information and current circumstances. Given

that LSTM-based models have found extensive application in

VSTLF, as elaborated in Section I, a comprehensive depiction

of the LSTM architecture is deemed unnecessary.



Fig. 3. LSTM with Feed-Forward Error Correction Architecture

In this work, an LSTM with Feed-Forward Error Correction

architecture is investigated, inspired by a model proposed

in [18]. The detailed architecture developed in this work is

outlined in Fig. 3. More specifically, the selected input features

Xt = [xt−n, . . . , xt−3, xt−2, xt−1] are being used to train

the LSTM model, leading to a prediction (singular value) of

Yt,LSTM . Then, this prediction is being refined by feeding a

Feed-Forward Neural Network with the LSTM prediction and

the historical appliance-level aggregate load to produce a more

accurate estimate of the energy consumption for the target

time interval t. This approach aims to improve the accuracy

of the aggregate predictions for each appliance considered (EV,

A/C), by incorporating additional error correction mechanisms

provided by the FFNN.

2) XGBoost Model: XGBoost is a high-accuracy ensemble

learning model rooted in Gradient Boosting Decision Trees,

published in 2016 [25]. It incorporates a regularization term to

control model complexity, preventing overfitting and improv-

ing generalization. Additionally, second-order Taylor expan-

sion helps XGBoost accelerate optimization speed and reduce

modelling complexity [21]. The primary objective of XGBoost

is to enhance prediction accuracy by leveraging insights gained

from previous weak learners (Tree 1-t) while introducing new

weak learners designed to target and correct residual errors.

The model accumulates calculation results from all trees to

derive conclusions. Through an iterative process of combining

multiple learners, the approach ultimately leads to predictions

that surpass the accuracy achieved by any individual learner.

3) N-BEATS Model: Neural Basis Expansion Analysis for

Interpretable Time Series Forecasting (N-BEATS), proposed in

2020 [26], is a deep neural architecture which approaches fore-

casting as a non-linear multivariate regression problem. The

fundamental building block is a multi-layer Fully Connected

(FC) network incorporating Rectified Linear Unit (ReLU) non-

linearities (Fig. 4, left). The first model block receives the

input features for each time step t while the rest of the blocks

receive as inputs the previous block(s) outputs. The model

produces a forward forecast and a backcast, which is block’s

best estimate of the input. The arrangement of blocks into

stacks follows a doubly residual topology (Fig. 4, middle and

right), where one branch processes the backcast and one the

forecast outputs of each layer. The fact that forecasts can be

aggregated hierarchically enables the build-up of a very deep,

explainable neural network.

4) Prophet Model: Prophet, published in 2018 by the

former Facebook - currently Meta team [28], constitutes an

explainable model for time series forecasting that relies on an

additive model. The utilization of Markov Chain Monte Carlo

methods helps Prophet to accommodate efficiently non-linear

trends, incorporating yearly, weekly, and daily seasonality,

Fig. 4. N-BEATS Model Architecture obtained by [27]

along with holiday effects. Its fully automatic nature ensures

reliable forecasts even on complex and incomplete datasets,

displaying resilience to missing data, trend shifts, and outliers.

In this work, we model and evaluate Prophet’s performance on

sub-hourly load forecasting, enhancing existing research where

the model is being tested in longer time horizons.

C. Forecasting Performance Metrics

Performance evaluation of load forecasting models typically

involves commonly used metrics such as the Root Mean

Squared Error (RMSE), the Mean Absolute Error (MAE),

and the Mean Absolute Percentage Error (MAPE), being

a metric similar to MAE expressed in percentage terms.

Given the high load volatility and the high number of time

periods when community appliance-level consumption is zero,

using the MAPE metric can be considered misleading for

VSTLF, since such conditions may lead to outliers with

disproportionately large MAPE values. For that reason, the

Mean Arctangent Absolute Percentage Error (MAAPE) was

proposed in literature [29]. MAAPE, ranges in (0, π/2), given

that arc tangent equals to π/2 when its argument tends to

infinity: limx→∞ tan−1 x = π
2 . Another metric commonly

used in VSTLF is the Median Absolute Error (MedAE), which

is robust to outliers when values are close to (or equal to) zero.

In this work, the metrics of Normalized RMSE (NRMSE),

MAE, MedAE and MAAPE are selected, as already depicted

in Fig.1. NRMSE is preferable over RMSE when comparing

the forecasting accuracy of appliances with different consump-

tion levels. MedAE and MAAPE consider the existence of

outliers and near-zero values in the dataset, while MAE is

selected as a commonly used metric in STLF problems. The

selected metrics are computed follows:

NRMSE =

√
1
N

∑n
i=1(Yi − Ŷi)2

Ymax − Ymin

, (3)

MAE =
1

N

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ , (4)

MedAE = median(
∣∣∣Y1 − Ŷ1

∣∣∣ , . . . , ∣∣∣Yn − Ŷn

∣∣∣), (5)

MAAPE =
1

N

n∑
i=1

arctan

(∣∣∣∣∣Yi − Ŷi

Ŷi

∣∣∣∣∣
)

(6)



Fig. 5. Community-Level EV consumption training and test set data

Where:

• N is the total number of forecasts.

• Yi is the actual (true) value of ith observation.

• Ŷi is the forecasted value of ith observation.

• Ymax is the test set maximum value.

• Ymin is the test set minimum value.

III. EVALUATION

A. Experimental Setup

In this work, Python 3.11.3 is being used to train and test

the investigated models. The experimental results have been

conducted using a computer with Windows 11 Pro, 11th Gen

Intel(R) Core(TM) i5-11300H @ 3.10GHz CPU, NVIDIA

GeForce RTX 3050 Ti GPU and 16GB RAM installed.

The investigated Sub-Hourly Load Forecasting models are

developed using the submetered data of EVs and A/Cs from

8 households in Austin, Texas, USA, as obtained from the

Pecan Street dataset [30]. The raw data, which refer to a

full 2018 calendar year, has been processed as explained

in Section II, leading to the community-level EV and A/C

aggregated loads presented in Fig.5-6. As it can be seen, A/C

community load showcases a strong seasonal pattern, with

higher consumption during summer months due to cooling

requirements. On the contrary, EV communal consumption is

lower than the A/C total load, showing daily/weekly patterns

without any significant differentiation among seasons. 80% of

the pre-processed days has been randomly selected for training

and 20% for testing purposes. The modelling hyper parameter

settings shown in Table II have been selected after multiple

attempts (e.g. learning rate: 0.001 - 0.00001, batch size: 256

- 1024, etc), being tailored to each specific model.

B. Modelling Results

Modelling results are being evaluated using the mean and

standard deviation values of metrics NRMSE, MAE, and

MAAPE calculated over the test set predictions, computed on

a 15-minute basis for each appliance and model, while MedAE

Fig. 6. Community-Level A/C consumption training and test set data

TABLE II
PARAMETER SETTINGS FOR ALL MODELS CONSIDERED

Model Hyperparameters Value

LSTM with FFEC

LSTM, FFEC Optimizers adam

LSTM Units 200

LSTM Dropout Rate 0.2

LSTM Learning Rate 1e-4

LSTM, FFEC Loss Functions MAE

LSTM, FFEC Epochs 200

LSTM, FFEC Batch sizes 256

FFEC Layer1,2 Sizes 256, 128

FFEC Layer1,2 Activation Functions ReLU

XGBoost

Loss Function MSE

Colsample Bytree 0.9

Learning Rate 0.1

Tree Maximum Depth 3

Number of Trees 100

Tree Subsample 0.8

NBEATS

Model Type generic

Lookback - Horizon 12 - 1

Generic Neurons, Stacks, Layers 512, 20, 8

Loss Function MAE

Learning Rate 1e-5

Epochs 100

Batch Size 512

Prophet Interval Width 0.95

is calculated, by definition, over the full test set. Additionally,

a ”Naive Persistence” model has been used as benchmark,

predicting that the upcoming value matches the previous one.

EV community load can be characterized by a high sparsity



TABLE III
MODELLING RESULTS

Evaluation Metric
Electric Vehicles Air Conditioning

Naive LSTM with FFEC XGBoost NBEATS Prophet Naive LSTM with FFEC XGBoost NBEATS Prophet

NRMSE Mean 0.100 0.095 0.098 0.102 0.336 0.259 0.230 0.222 0.261 0.711

NRMSE Std 0.212 0.208 0.173 0.210 0.326 0.333 0.287 0.274 0.315 0.535

MAE Mean [kW] 0.455 0.429 0.445 0.462 1.522 2.135 1.889 1.829 2.146 5.850

MAE Std [kW] 0.958 0.940 0.785 0.953 1.476 2.740 2.360 2.252 2.597 4.400

MedAE [kW] 0.000 0.007 0.130 0.013 1.004 1.175 1.113 1.025 1.166 5.080

MAAPE Mean 1.034 1.042 1.026 1.037 1.133 0.640 0.635 0.618 0.638 0.842

MAAPE Std 0.664 0.649 0.665 0.659 0.559 0.617 0.613 0.623 0.618 0.582

(constant presence of zero or near-zero consumption intervals),

while high consumption intervals are less frequent. Conse-

quently, this EV load pattern ”helps” sequence-based models,

such as the LSTM with Feed-Forward Error Correction, to

perform more accurately than others. As shown in results

Table III, LSTM with FFEC marginally outperforms XGBoost

model in Electric Vehicles load forecasting which, in turn,

showed lower prediction errors than the Naive Persistence and

N-BEATS models. In absolute terms, all the aforementioned

models showcase great results with a mean MAE of less

than 0.5 kW, due to the volatile and sparse nature of EV

consumption as well as due to the short forecasting horizon

(15-minutes) that makes Naive Persistence model performing

considerably well. However, EV predictions can be char-

acterized by high dispersion, given that standard deviations

of NRMSE and MAE are almost twice as much as the

corresponding mean values of these metrics.

In the case of Air Conditioning load, XGBoost outperforms

the rest of the investigated models, showing 14% lower

NRMSE, MAE and MedAE and 4% lower MAAPE than the

Naive Persistence model. We also observe that forecasting

errors of LSTM with FFEC are considerably low and close to

XGBoost’s performance. The higher frequency and volumes of

consumption, when compared to EVs, and the lower number

of zero-consumption intervals, create a larger performance gap

among models, showing the superiority of both XGBoost and

LSTM with FFEC models.

From Table III, it is also evident that Prophet shows the

weakest performance for both EV and A/C load forecasting,

with a mean 15-minute MAE of above 1.5kW and NRMSE

more than twice as much as the Naive Persistence model.

This indicated that Prophet model cannot capture very short

term dependencies in the data since its design is heavily

reliant on the identification of trend and seasonality patterns,

which cannot be observed in such short term appliance-level

forecasting periods. With regards to N-BEATS, being tested

for the first time in appliance level VSTLF, it shows high

forecasting accuracy with a mean 15-minute MAE of less than

0.5kW in EV and 2.2kW in A/C community loads, respec-

tively. However, N-BEATS fails to strongly outperform the

Naive Persistence, LSTM with FFEC and XGBoost models.

This can be explained by the fact that N-BEATS has been

originally designed for optimal performance in non-sparse data

(e.g. stock prices, loans), that differ from volatile residential

sub-hourly energy patterns where measurements can be zero.

To further showcase the effectiveness of the proposed

methods, Fig. 7 presents two example days illustrating EV

and A/C aggregate community loads forecasting. Except for

Prophet model that is a statistics-based model, thus cannot

map such short term load fluctuations, the rest of the models

predict reasonably well EV and A/C total loads. It is also

noticeable that the investigated models have a slight time delay

in predictions when compared to the historical real values,

showing the high impact of the last interval measurements in

future predictions.

IV. CONCLUSIONS

In this work, the problem of sub-hourly (15-minute)

appliance-level load forecasting for an energy community has

been investigated. Real consumption data of Electric Vehicle

and Air Conditioning community loads have been used, ob-

tained from 8 households in Austin, Texas, USA collected

during a calendar year, without any additional features usage

(e.g. IoT-based data) in models training and testing. Statistical-

based method of Prophet and data-driven models of N-BEATS

and XGBoost have been compared with an LSTM with

Feed-Forward Error Correction model. In addition, a ”Naive

Persistence” model has been used as benchmark, matching

the upcoming value with the previous observation. Forecasting

accuracy was evaluated on a 15-minute basis, with the use

of NRMSE, MAPE, MedAE and MAAPE metrics that can

accommodate the sparse and volatile nature of appliance-level

consumption in the calculation.

LSTM with Feed-Forward Error Correction model

marginally outperforms the rest of the investigated models in

the EV community load forecasting, showing a mean MAE

of less than 0.5kW and a nearly 4% smaller error than the

Naive Persistence model. XGBoost model closely follows the

performance of LSTM with FFEC in EV community load

forecasting but outpeforms all models in the A/C community



Fig. 7. Example of EV and A/C aggregate community load forecasting. Historical consumption can be seen with the black-coloured line and the community
appliance-level forecasting models with the coloured lines. The impact of past values in future predictions, in such short term horizon, is evident

load forecasting, showing 14% lower NRMSE, MAE and

MedAE and 4% lower MAAPE than the Naive Persistence

model. However, the very short term forecasting horizon and

the high number of near-zero (or zero) consumption intervals

make the Naive Persistence model a highly accurate solution,

especially in EV load forecasting, where it matches the

performance of the N-BEATS model. Important conclusions

of this work are also the fact that N-BEATS, initially designed

for less sparse time series forecasting, cannot outperform

LSTM with FFEC and XGBoost models in appliance-level

VSTLF and that Prophet model lacks in performance since it

cannot capture very short term dependencies in the data.

Future research directions can focus on the integration

of human-related input (e.g. end-user preferences) in the

training process. For instance, Electric Vehicles time of ar-

rival/departure or the minimum and maximum indoor tem-

perature requirements can improve modelling performance. In

addition, the seasonal character of the A/C community load

and the intra-weekly trends seen in the EV community load

raises concerns on whether separate seasonal/weekly/daily

(e.g. weekends vs weekday) models should be trained and

utilized separately, rather than training and using a unique

model for all periods.
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