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Abstract  
Introduction: Long COVID, a post-acute sequela of SARS-CoV-2 infection, poses a 
significant burden on healthcare systems. Efficient triaging of patients for specialist 
consultation is vital for timely and appropriate care. A machine learning (ML) 
algorithm is proposed in this thesis to prioritise long-COVID patients for initial 
consultations with cardiologists, pulmonologists, or psychiatrists. 

Methods: A ML model was developed using a Support Vector Machine (SVM) 
classifier with Synthetic Minority Oversampling Technique (SMOTE) for class 
imbalance handling and feature selection techniques. The dataset was acquired from 
an ongoing research project that examines holistically Long Covid patients. Data, 
collected from the first consultation in the Long Covid clinic, from 175 patients 
included demographics, COVID-19 severity, vaccination status, validated 
questionnaires (BECK Depression, PTSD, ABC, CAT, EQ-5D, HADS Depression/Anxiety, 
SF-36), and specific symptoms (intestinal disorders, sleep disorders, precardial pain). 
The model was trained and validated using 5-fold Stratified Cross-Validation and 
shuffling of the data.  

Results: The SVM model achieved an accuracy of 0.67 and an Area Under the Curve 
(AUC) of 0.84, outperforming other models (Random Forest, K-Nearest Neighbours, 
Decision Tree, XGBoost). Notably, the SF-36 General Health (SF-36 GH-N) score 
emerged as the most important factor for patient risk group classification, while SF-
36_BP-N (bodily pain), and the HADS anxiety questionnaire follow.  

Conclusion: This study demonstrates the potential of an ML-based approach to 
prioritise long-COVID patients for specialist consultations. By leveraging patient data 
and validated questionnaires, the algorithm can guide resource allocation and 
expedite access to appropriate specialists, improving patient care. The results 
suggests that a patient's overall health perception plays a crucial role in identifying 
the most needed specialist for their initial consultation. Future work will investigate 
the impact of the algorithm on clinical workflow and patient outcomes in a 
prospective study. 

Key Words: Long Covid, Machine Learning, Supervised learning, Unsupervised 

learning, Multi class classification, AUCROC, Imbalanced dataset 
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1. Introduction 
 

This first chapter of the thesis summarises key concepts of Covid and Long Covid, 

including main features of Covid, the definition of Long Covid, its risk factors and 

characteristic symptoms, and current methods for diagnosis, and treatment. A 

comprehensive review is also presented of machine learning applications in Long 

Covid. The rationale and purpose of this work are outlined at the conclusion of the 

chapter. 

 

1.1 Introduction  

Long-term complications following SARS-CoV-2 infection, often referred to as long 
Covid, pose a significant challenge to healthcare systems worldwide. It is estimated 
that 10–20% of people infected by SARS-CoV-2 may go on to develop symptoms that 
can be diagnosed as long COVID [1]. The diverse and persistent symptoms associated 
with Long Covid require a multi-faceted approach to patient care, with timely access 
to the appropriate specialist being crucial for optimal management. However, 
efficiently triaging patients for cardiology, pulmonology, or psychiatry consultations 
can be a complex task for clinicians due to the broad spectrum of Long Covid 
presentations. 

This study explores the potential of machine learning (ML) as a tool to prioritise Long 
Covid patients for initial consultations with specialists. We propose a ML algorithm 
that utilises patient data, including demographics, Covid-19 severity, vaccination 
status, validated clinical questionnaires, and reported symptoms, to predict the most 
relevant specialist for each patient's initial consultation. By leveraging such data, the 
algorithm aims to streamline patient triaging and expedite access to the most 
appropriate specialist care, ultimately improving patient outcomes. 

This thesis details the development and evaluation of the proposed ML model. We 
describe the methodology employed, including the chosen ML algorithm (Support 
Vector Machine with class imbalance handling), feature selection techniques, and 
the data utilised for training and validation. The performance of the model is then 
compared to other commonly used ML algorithms. Furthermore, the study 
investigates the most impactful features identified by the model, providing insights 
into the clinical factors most relevant for specialist prioritisation in Long Covid 
patients. Finally, the potential benefits and limitations of this ML-based approach are 
discussed, along with directions for future research. 
 

1.2 Covid-19 facts 

The coronavirus disease 2019 (Covid-19) pandemic has been dubbed the largest 

worldwide health and socioeconomic calamity in contemporary history [1]. Covid-19, 

caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which 
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can schematically be seen in Figure 1, is an infectious illness that was first found in 

Wuhan City, China, in late 2019 [2]. Covid-19 can cause a range of symptoms, from 

mild to severe, including fever, cough, fatigue, and difficulty breathing. The most 

common symptoms, according to CDC (Centres for Disease Control and Prevention) 
are outlined in Figure 2[3]. The virus is primarily spread via (i) airborne transmission 

(respiratory droplets and aerosols), (ii) direct contact (infectious virus deposited on 

persons), and (iii) indirect contact (infectious virus deposited on fomites) [4]. To 

prevent the spread of Covid-19, public health measures such as wearing masks, 

social distancing, and frequent hand washing are recommended. Vaccines have also 

been developed and are being distributed worldwide to help prevent the spread of 

the virus. 

However, the narrative of Covid-19 goes well beyond its immediate effect. As the 
epidemic progressed, an additional challenge arose: the shadow of "Long Covid" or 
"Post-Covid-19 Syndrome." 

 

 

 

 

 

Figure 1: Schematic representation of SARS-CoV-2 [4]. 
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Figure 2: Most common symptoms of Covid-19 according to CDC [3]. 

 

1.3 Long-Covid 

It is known that certain individuals who have been infected with the virus that causes 

Covid-19 may experience long-lasting consequences known as Long Covid or Post-

Covid Conditions (PCC). Long Covid encompasses a diverse range of persistent 

symptoms, signs, and health complications that emerge after the acute phase of 

Covid-19 infection has resolved. This inclusive definition of Long Covid has been 

collectively formulated by the Department of Health and Human Services (HHS) in 

conjunction with the Centres for Disease Control and Prevention (CDC) and various 

other key stakeholders [5]. Additionally, the World Health Organisation (WHO) 

defines Long Covid as a condition where individuals continue to experience 

symptoms for a period of at least three months after the acute phase of Covid-19, 

emphasising the global recognition and impact of this post-viral syndrome [6]. 

 

1.3.1 Risk factors 

Understanding the risk factors associated with Long Covid is essential in identifying 

those at higher risk and developing targeted interventions to support and manage 

this complex condition.  

Several factors have been identified that may contribute to the development and 

severity of Long Covid. These risk factors include the severity of the initial Covid-19 

infection, with individuals who experienced more severe acute symptoms being 

more likely to develop persistent complications. Additionally, age and pre-existing 

health condition has an important role in the risk of Long Covid, with older 

individuals and those with diabetes, obesity, or cardiovascular disease being at 

higher risk of experiencing prolonged symptoms [6]. 
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Genetic factors and immune system responses also play a significant role in the risk 

of developing Long Covid. Variations in immune response to the SARS-CoV-2 virus 

and genetic predispositions could influence the persistence and severity of 

symptoms in individuals with Long Covid. Environmental factors, such as exposure to 

high levels of viral load during the initial infection or living in areas with high 

transmission rates, may further contribute to the development of Long Covid [6].  

Furthermore, demographic factors have been linked to the likelihood of experiencing 

Long Covid. Research suggests that women may be at higher risk than men for 

developing persistent symptoms, and older individuals may be more susceptible to 

long-lasting effects. Disparities in health outcomes related to race, ethnicity, and 

socioeconomic status have also been observed, with some minority groups and 

individuals with lower incomes facing an elevated risk of Long Covid [7]. 

Demographic disparities in Long Covid highlight the need for equitable care. 

 

1.3.2 Symptoms 

Long Covid is characterised by a wide array of persistent symptoms that emerge after 

recuperating from acute Covid-19 [1]. These symptoms exhibit variability and impact 

various bodily systems, resulting in a multi-faceted clinical presentation. Common 

signs of Long Covid encompass fatigue, breathing difficulties, chest discomfort, joint 

pain, cognitive challenges, and mental health issues like anxiety and depression (see 

Figure 3) [6]. In this subsection, the pulmonary, cardiovascular, and neuropsychiatric 

symptoms of Long Covid are discussed, as these are the most commonly 

encountered in Long Covid clinics. 

Pulmonary manifestations may involve ongoing respiratory challenges, such as 

breathlessness, coughing, and chest pain [6]. Additionally, individuals may encounter 

pulmonary conditions like fibrosis, impaired lung function, embolism, and 

pneumothorax, significantly impacting their quality of life and daily activities [6][8].  

Cardiovascular symptoms include documented cases of heart muscle dysfunction, 

irregular heart rhythms, and elevated troponin levels in some patient’s data. The 

underlying physiological mechanisms may include stress-related heart muscle issues, 

mismatches in microvascular supply and demand, cytokine storms, and heart 

inflammation with or without pericardial involvement [8]. Monitoring the 

cardiovascular health of individuals recuperating from Covid-19 is crucial, as 

heightened D-dimer levels have been linked to severe illness and multi-system 

disorders. 

Neuropsychiatric symptoms affect cognitive abilities, memory retention, emotional 

well-being, and overall quality of life. These symptoms may encompass cognitive 

challenges, headaches, alterations in smell and taste perception, sleep disturbances, 

mood fluctuations, muscle pains, and dysautonomia[8]. The direct infection of the 

central nervous system (CNS) coupled with systemic inflammation and oxygen 
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deprivation in Covid-19-positive individuals can contribute to these neuropsychiatric 

issues.  

In summary, the diverse nature of Long Covid symptoms underscores the intricate 

nature of this condition and the obstacles it presents for both patients and 

healthcare providers. Comprehensive and interdisciplinary care strategies are 

imperative to cater to the varied needs of individuals suffering Long Covid. A 

thorough understanding of the complete spectrum of symptoms linked to Long Covid 

is essential for devising targeted interventions, enhancing patient outcomes, and 

refining the overall management of this emerging health challenge. 

 

 

Figure 3: The most common symptoms of Long Covid [9]. 
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1.4 Machine learning applications in Long Covid identification, 
prediction, and classification: a review of prior work 

Long Covid remains poorly understood, with diagnosis often relying on subjective 

patient reports and lacking standardised criteria. This is where Artificial Intelligence 

(AI) and Natural Language Processing (NLP) are emerging as powerful tools, offering 

promising avenues for diagnosis, risk factor identification, and a deeper 

understanding of this multi-faceted condition.  

Scientists use various terms to describe the condition (e.g., Long Covid, Post-Covid 

conditions, PASC). We also considered various synonyms for the technology used to 

analyse text data, such as artificial intelligence (AI), machine learning, and natural 

language processing (NLP). To address this challenge, we searched for relevant 

publications across several databases (PubMed, Scopus, National Institutes of Health 

(NIH)).  Our search strategy included not only the main term "Long Covid" but also 

various synonyms and related terms like "Post-Covid conditions" and "PASC." 

Additionally, we combined these terms with keywords related to artificial intelligence 

analysis, such as "machine learning," "deep learning," and "natural language 

processing (NLP). In the following paragraphs, the main tasks addressed using ML 

methods are briefly described, while Table 1 summarises key information from 

corresponding works. This review has highlighted various applications of ML, 

including diagnosis, risk stratification, biomarker identification, and symptoms 

identification. 

 

1.4.1 Diagnosis 

Several studies have explored the potential of AI for Long Covid diagnosis and 

classification. The first comes from Jha et al. (2023) [10] who used electronic health 

records (EHR) and High-Resolution Computed Tomography (HRCT) of the lungs of 

over 1,175 patients, The study aimed to identify the developing risk of pulmonary 

fibrosis after 90 days of hospital discharge from clinical features retrieved at the time 

of follow-ups of Covid-19 patients. The dataset included 725 cases of pulmonary 

fibrosis, the rest were cases of standard lung. They used 75% of the data as training 

set. They used an optimised XGBoost model and achieved an accuracy of 99.37% on 

the EHR data and 98.48% on the HRCT data. 

Plaff et al. (2022) [11] used the N3C EHR database which includes more than 8 

million patients. The study investigated 97,995 individuals with a positive Covid-19 

diagnosis. The main purpose of the study was to identify individuals with Long Covid 

from EHRs. They used information about diagnoses and medications received by 

patients, along with a requirement of at least 90 days having passed since their initial 

Covid-19 diagnosis. For this purpose, three XGBoost models were implemented, one 

for all patients, one for the hospitalised ones and one for the non-hospitalised ones. 
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For the above models they achieved an Area Under the Curve (AUC) values of 0.92, 

0.90 and 0.85, respectively. 

The N3C EHR repository was also used by Jiang et al. (2022) [12] to predict Long 

Covid in hospitalised Covid-19 patients using vital sign data collected within the first 

seven days of their hospitalisation. The study investigated Long Covid in two patient 

groups. In the first group, a ML model, XGBoost was used to predict who would 

develop Long Covid. This model analysed data collected from the patients. In the 

second group, different models called Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) models were used to analyse sequences of vital sign 

measurements taken over time. The researchers assessed the performance of all 

models using AUC with 5-fold cross-validation. 

A Random Forest model was used by Sudre et al. (2021) [13] . The study aimed to 

distinguish between short-term Covid-19 and Long Covid at seven days, from fatigue, 

headache, dyspnoea and anosmia symptoms. The dataset included data acquired 

from a mobile health app of 2,149 individuals. The model was implemented using 

five folds and ten iterations of stratified repeated cross-validation techniques. The 

model yielded an AUC value of 75.9%. This research suggests that experiencing more 

than five of these symptoms within the first week of illness may increase the chances 

of developing Long Covid. 

Another study by Subramanian et al. (2022) [14] aimed to distinguish between Covid-

19 positive and negative cases and to identify regions in the lungs that may be 

affected by Covid-19. The authors used two CNN models, one VGG-16 and a ReaNet-

50. The models were trained with 925 HRCT images. They achieved an accuracy of 

97.13%. Utilising a U-Net model, they segmented and predicted the precise lung area 

infected with Covid-19 with an accuracy of 99.40%. 

Blinka et al. (2022) [15] utilised 26,730 known Long Covid cohort patients’ 

characteristics to identify individuals with Long Covid using health insurance records. 

They proposed an elastic net regression model with 10-fold cross-validation. The 

model exhibited specificity of 86% and AUC of 93%. 

 

1.4.2 Risk factor identification 

Identifying individuals at higher risk of developing Long Covid is crucial for early 

intervention and preventative measures. Here too, AI has demonstrated promising 

potential. Hill et al. (2022) [16] applied multivariate logistic regression, random 

forest, and XGBoost to the N3C cohort, to examine links between risk factors such as 

demographics, comorbidities, and treatment, as well as acute characteristics 

associated with Covid-19, and Long Covid. This study found several important factors 

that increase the risk of developing Long Covid (PASC). These factors include middle-

age, having a severe case of Covid-19, and having certain pre-existing health 

conditions. The XGBoost and logistic regression models performed similarly, both 
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achieving an AUC of 0.73. The Random Forest model trailed behind with an AUC of 

0.69. 

Moreno- Pérez et al. (2021) [17] implemented a multiple logistic regression model on 

277 patient demographics and comorbidities acquired from EHRs, to identify risk 

factors associated with the acute phase of Covid-19 infection that may contribute to 

the development of Long Covid. The analysis focused on cases where the condition 

had a 95% chance of occurring within a specific timeframe. While the cause is 

unclear, the study suggests some risk factors like severe pneumonia and male sex. 

 

1.4.3 Phenotype and biomarker identification  

Due to the wide variety of symptoms in Long Covid patients, diagnosing the 

condition is challenging, highlighting the importance of finding biomarkers to 

develop specific treatments. A study from Patel et al. (2023) [18] sought to find new 

blood biomarkers for Long Covid. The study used a random forest classifier trained 

on expression of 2,925 unique blood proteins. The random forest used 3-fold cross-

validation, 10 trees and maximum depth of 3. The study successfully identified 119 

key proteins in the blood that can be used to distinguish Long Covid outpatients from 

healthy controls with exceptional accuracy. This method achieved a perfect score of 

100% in classification accuracy, AUC and F1-score. 

Zhang et al. (2023) [19] used 34,605 EHRs from two large cohorts, INSIGHT and 

OneFlorida+, part of the National Patient Cantered Clinical Research Network data to 

identify subgroups (subphenotypes) of Long Covid in patients who have recovered 

from a confirmed Covid-19 infection. Using a topic modelling technique, they 

analysed over 137 symptoms and conditions, grouping them based on how 

frequently they occurred together in patients. This identified four Long Covid 

subphenotypes: 

• Cardiac and renal issues (33.75% in development cohort, 25.43% in 

validation) 

• Respiratory, sleep, and anxiety problems (32.75% in development cohort and 

38.48% in validation) 

• Musculoskeletal and nervous system complications (23.37% in development 

cohort and 23.35% in validation) 

• Digestive and respiratory issues (10.14% in development cohort and 12.74% 

in validation), linked to specific patient demographics 

Zhu et al. (2022) [20] aimed to identify Long Covid in outpatients using their 719 

patient electronic medical records (clinical notes) from doctor visits. They focused on 

patients who had experienced persistent symptoms for at least 30 days following a 

confirmed Covid-19 diagnosis. The timeframe for analysis extended up to one year 

(365 days) after the initial diagnosis. Additionally, the study explored potential 

subgroups (phenotypes) within Long Covid based on the identified characteristics. To 
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ensure the accuracy of their model, the researchers used 5-fold cross-validation. 

They divided their data into three sets for training, validation, and testing. 60% of 

the total dataset was used to train the model. The remaining 40% was used for the 

test and validation sets, 20% each. The study compared three different pre-trained 
Bidirectional Encoder Representations from Transformers (BERT) models, which are 

powerful language processing tools, to automatically identify patients with Long 

Covid from their clinical notes. The model specifically designed for clinical text, 

ClinicalBERT, achieved the best performance with a sensitivity score of 0.88. This 

means the model correctly identified 88% of patients with Long Covid from their 

medical records. Finally, based on the model classifications, the researchers were 

able to identify potential subgroups (phenotypes) within the Long Covid population. 

 

1.4.4 Symptoms identification 

Symptom identification refers to the process of accurately recognizing and classifying 

the various physical and mental experiences reported by Long Covid patients. Wang 

et al. (2022) [21] created a Long Covid lexicon of symptoms (PASCLex). The 

researchers evaluated PASCLex, a method that uses a medical dictionary (ontology) 

and artificial intelligence (NLP) to automatically extract Long Covid symptoms from 

clinical notes. They trained PASCLex on a large dataset of 23,505 patients (90% of the 

total dataset) with 299,140 related clinical notes. A separate validation subset of 

2,612 patients (10% of the total dataset) with 29,739 clinical notes was used to 

confirm the accuracy of the method. The researchers built their method using a 

comprehensive medical reference system called the Unified Medical Language 

System (UMLS). This allowed their system to achieve high accuracy in identifying 

Long Covid symptoms. Specifically, the method achieved a precision of 94% and a 

recall of 84%. 

Another approach was implemented by Katsarou et al. (2022) [6]. They collected free 

text data from 208 individuals in a Facebook post regarding symptoms of Long Covid. 

Via a decisions tree model, they classified Long Covid patients based on 

demographics, disease duration, hospitalisation, and symptoms.  

Patient-generated data offer a unique window into the subjective aspects of Long 

Covid, complementing traditional clinical data and enriching our understanding of 

the disease. 

Furthermore, Branda et al. (2022) [22] utilised 296,154 Twitter data to track the 

progression of Long Covid over time. By analysing tweets for more than 150 days, 

researchers aimed to create detailed timelines of symptoms and conditions 

experienced by individuals.  They used an NLP model and reached an accuracy value 

of 75%.  
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Table 1: Summary of studies on Machine Learning applications in long-covid. 

Study Data 
Al 

method/m
odel 

Task Output (%) Key Findings 

Diagnosis and classification 

Jha et 
al. 

(2022) 

1,175 EHR & 
HRCT  

XGBoost 

Binary 
classification 
of pulmonary 

fibrosis 

Accuracy: 
99 

precision: 
99 

An XGBoost 
system 

achieved 99% 
accuracy in 

detecting 
pulmonary 

fibrosis using 
EHR or HRCT 

data in Covid-19 
patients, 

suggesting its 
potential as a 

fast and 
efficient tool for 
early diagnosis. 

Plaff et 
al. 

(2022) 

N3C 
database 

XGBoost 
Long Covid 

classification 

Hospitalis
ed AUC: 90   

 
Non-Hosp. 
AUC:    85  

 
All 

patients 
AUC:   92 

The models 
identified 
features 

(respiratory 
problems, 

fatigue, pre-
existing health 

conditions), and 
highlighted 

limitations (data 
being skewed 

towards 
patients who 

use the 
healthcare 

system more). 
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Jiang et 
al. 

(2022) 

N3C 
database 

CNN, 
XGBoost, 

LSTM 

Long Covid 
classification 

LSTM AUC: 
59.9 

 
XGBoost 

AUC:  82.2  
 

CNN AUC: 
61.6 

Vital signs 
within the first 

week of 
hospitalization 

were more 
informative than 

pre-existing 
conditions for 

Long Covid 
prediction. Time 

series data in 
another 

subcohort 
benefitted from 
CNN and LSTM 

models. Overall, 
vital signs were 
significant for 

Long Covid 
analysis, but 

limitations 
include a small 

sample size 
with vital sign 

data and 
unclear medical 

meaning for 
some features. 

Sudre 
et al. 

(2021) 

2,149 self-
reported 

data 

Random 
Forest 

Long Covid 
classification 

AUC: 75.9 

14.5% of people 
with 

symptomatic 
Covid -19 were 
found to have 

Long Covid 
lasting 4 weeks, 
with women and 

older adults 
more likely 

affected. Early 
disease severity 

and a simple 
model using 
age, sex, and 

symptom count 
could predict 

who would 
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experience Long 
Covid. 

Subram
anian et 

al. 
(2022) 

925 HRCT 
VGG-16, 
ResNet-

50, U-Net 

Long Covid 
classification 

Accuracy:  
97.1 - 99.4 

The model 
calculates a CT 

severity score to 
assess lung 

involvement, 
potentially 

linked to 
disease severity 
and long-term 
complications. 

Blinka 
et al. 

(2022) 

26,730 
patient data 

Elastic Net 
regression 

Long Covid 
classification 

AUC: 93        
sensitivity: 

86 
specificity: 

86 

The model 
identified 

several factors 
associated with 

Long Covid, 
including 

symptoms 
(shortness of 

breath and 
fatigue), pre-

existing 
conditions, and 
demographics 

(female sex, 
older age).  

 

 
 

Risk factor identification 
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Hill et 
al. 

(2022) 

N3C 
database 

Random 
Forest, 

XGBoost 

Identification 
of risk factors 

associated 
with Long 

Covid 

XGBoost 
AUC:  73  

 
Random 

Forest 
AUC: 69 

Important risk 
factors for PASC 
such as middle 

age, severe 
Covid-19 
disease, 
specific 

comorbidities. 

Moreno
- Pérez 
et al. 

(2021) 

277 EHRs 
Multiple 
logistic 

regression 

Identification 
of risk factors 

associated 
with Long 

Covid 

Cumulativ
e 

Incidence 
Value 95 

Around 50% of 
Covid-19 

patients still 
experience 

fatigue, 
shortness of 
breath, and 

psychological 
distress 10-14 

weeks after 
infection. These 

symptoms 
mostly resolved 
by 16-18 weeks. 
While the cause 

is unclear, the 
study suggests 

some risk 
factors like 

severe 
pneumonia and 

male sex. 

Phenotype and biomarkers identification 

Patel et 
al. 

(2023) 

2,925 
unique 
blood 

proteins 
expressions 

Random 
Forest, 

NLP 

Blood 
biomarker 
detection 

associated 
with  Long 

Covid 

AUC, 
accuracy, 
F1-score: 

100 

Blood protein 
analysis in Long 
Covid patients 
revealed 119 

potential 
markers. These 
markers could 

be key for 
diagnosis and 
personalised 
treatments. 
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Zhang 
et al. 
(2023 

34,605 
EHRs 

Topic 
modelling 
clustering 

Define Long 
Covid 

subtypes 
No scores 

This study 
identified four 
sub-types of 

Long 
Covid(PASC) 

based on EHRs. 
These sub-types 

group patients 
with similar new 
health problems 

after Covid 
infection. The 

findings suggest 
PASC is not one 
condition, but a 
group affecting 

different organs. 
This can inform 
treatment plans 
for Long Covid 

patients. 

Zhu et 
al. 

(2022) 
719 EHRs BERT 

Identification 
of Long Covid 
and potential 
computationa
l phenotypes 

Sensitivity: 
88.1 

This study 
explored using 

EHRs to identify 
Long Covid 

patients. 
ClinicalBERT, a 

pre-trained 
model, 

achieved the 
best results in 

finding potential 
cases by 
analysing 

written notes. 
While the 
analysis 
provided 

insights into 
relevant words 

like "fatigue" 
and 

"hospitalisation
", limitations like 

data size and 
interpretability 
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prevent 
definitive 

diagnosis based 
on these 
findings. 

Symptoms identification 

Wang et 
al. 

(2022) 

328,879 
clinical 
notes 

PASCLex 
(NLP) 
model 

Symptom 
identification 

Precision: 
94       

recall: 84 

A new method 
using AI and 

EHRs can create 
a more 

complete list of 
symptoms for 

Long Covid 
patients. This 
could improve 
diagnosis and 

future research 
for this 

condition. 

Katsaro
u et al. 
(2022). 

208 
individuals 

via 
Facebook 

Decision 
Trees 

Symptom 
identification 

No scores 

This Greek study 
found similar 

Long Covid 
symptoms in 

hospitalized and 
non-

hospitalized 
patients, 
including 
fatigue, 

neurological 
problems, and 

smell disorders. 
However, 

hospitalised 
patients showed 

more 
psychological 



Page | 30  
 

issues. Notably, 
similar 

symptoms 
across patient 
groups suggest 

a possible 
genetic link to 

Long Covid. 

Branda 
et al. 

(2022) 

296,154 
Twitter data 

NLP, SVM 
Symptom 

identification 
Accuracy: 

75 

Analysing their 
experiences 

revealed 
symptom 

patterns and 
disease 

progression. 
Such data can 
aid clinicians 
and improve 

understanding 
of Long Covid. 
Social media 

offers a unique 
way to capture 
frequent health 

updates, 
potentially 

applicable to 
other chronic 

illnesses. 
However, 

limitations 
include reliance 
on self-reported 

data and the 
unstructured 

nature of social 
media text. 
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1.5 Rationale and purpose of study 

Long Covid poses a significant challenge for healthcare systems. Traditional 

diagnostic and management methods, heavily reliant on subjective patient reports 

and lacking standardized criteria, often lead to inefficiencies. These inefficiencies 

manifest as delayed diagnosis, suboptimal treatment planning, and a critical gap in 

triage strategies for Long Covid patients. 

Currently, there is a concerning absence of research focused on developing targeted 

triage protocols for Long Covid patients. This lack of a systematic approach often 

results in mismatched referrals, where patients are directed to specialists who may 

not be best equipped to address their specific needs. This not only wastes valuable 

time and resources for patients and the healthcare system but also delays access to 

appropriate care. 

ML offers a promising solution to address these limitations. ML algorithms have the 

potential to analyse vast amounts of patient data, including demographics, medical 

history, Covid-19 severity, and reported symptoms. By identifying intricate patterns 

within this data, ML models can be instrumental in: 

• Enhancing Diagnostic Accuracy: ML algorithms may be able to identify subtle 

patterns in patient data that are missed by traditional methods, leading to 

more accurate diagnoses of Long Covid. 

• Optimizing Triage Processes: By learning from the data, ML algorithms can be 

trained to predict the most appropriate specialist for each Long Covid patient 

based on their individual characteristics. This can streamline the triage 

process and ensure patients receive the most relevant care sooner. 

• Supporting Treatment Planning: Analysing patient data, ML models can help 

identify potential risk factors and disease trajectories, informing the 

development of personalized treatment plans for Long Covid patients. 

This study aims to bridge the critical gap in Long Covid patient triage by harnessing 

the power of machine learning. We propose an innovative ML algorithm that utilizes 

a comprehensive dataset of patient information. This information includes 

demographics, Covid-19 severity, vaccination status, validated clinical questionnaires, 

and reported symptoms. The algorithm will be meticulously trained to predict the 

most relevant specialist for each patient's initial consultation. 

We believe this approach has the potential to revolutionize Long Covid management 

by streamlining the triage process. Our ML model can expedite patient evaluations, 

ensuring they are directed to the most appropriate specialist for their specific needs. 

This can lead to faster access to specialized care, potentially improving patient 

outcomes and alleviating the burden on healthcare systems by freeing up valuable 

time and resources for clinicians. 
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By evaluating the effectiveness of our proposed ML model, this study aims to 

contribute significantly to the development of innovative tools that can optimize 

Long Covid management and ultimately improve patient care. 
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2. Theory of Machine Learning  
 

Machine learning, a subfield of artificial intelligence, empowers computers to learn 

from data without explicit programming. This learning process allows them to 

identify patterns, make predictions, and improve their performance over time. By 

delving into the theoretical underpinnings of ML algorithms, this chapter provides 

the foundational knowledge necessary to understand, implement, and analyse these 

powerful tools. In the following sections the theoretical background behind ML, 

different ML models, optimization techniques, data handling techniques and 

evaluation metrics will be discussed. 

 

2.1 Introduction 

Pioneering figures like Alan Turing laid the groundwork for AI with the Turing test, 
which challenged machines to exhibit human-like intelligence through conversation 
[23]. Arthur Samuel is credited with one of the first definitions of machine learning, 
describing it as "a field of study that gives computers the ability to learn without 
being explicitly programmed" [24]. Building on this foundation, Tom M. Mitchell, a 
leading figure in machine learning, offered a more formal definition that captures 
the essence of this field [25]. These definitions highlight the core aspects of machine 
learning: the ability to learn from data, improve with experience, and ultimately 
make predictions or informed decisions [23]. 

Mitchell's definition emphasises the notion of experience-driven improvement in a 
computer program's performance on specific tasks. According to Mitchell, a program 
is considered to learn from experience (E) with respect to a set of tasks (T) and a 
performance measure (P) if its performance on those tasks, as measured by P, 
improves with the experience gained through E [25]. This definition highlights three 
key elements: 

• Tasks (T): Machine learning is not a one-size-fits-all solution. There are 
various tasks a program can learn to perform, such as image recognition, 
spam filtering, or stock price prediction. 

• Experience (E): This refers to the data the program is exposed to during the 
learning process. The quality and quantity of data significantly impact the 
program's ability to learn and improve. 

• Performance Measure (P): This metric helps us evaluate how well the 
program performs on the defined tasks. It could be accuracy, error rate, or 
any other measure relevant to the specific task. 

Mitchell's definition highlights that machine learning is not simply about processing 
data. It's about the program's ability to leverage experience to demonstrably 
improve its performance on a particular set of tasks. 
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2.2 Supervised Learning 

Supervised learning is a cornerstone of machine learning techniques. It involves 
training a model using labelled examples, where each data point has a corresponding 
desired output. This type of learning is widely used in applications where past data 
can be leveraged to predict future events. Common examples include fraud 
detection in credit card transactions or classifying species based on specific 
measurements [26]. 

Supervised learning tasks fall into two main categories: classification and regression. 
In classification problems, the output labels are discrete categories. For example, a 
segment of text could have a category label, such as "Spam" vs. "Legitimate Email" 
or "Positive" vs. "Negative Movie Review." The model learns to classify new data 
points into these predefined categories. 

On the other hand, regression problems deal with continuous outputs, such as 
predicting house prices or stock market trends. The model learns from this labelled 
data to make predictions on new, unseen data. The goal is to minimize the 
difference between the predicted outputs and the actual values. During the training 
process, the algorithm separates the raw input data from its corresponding labels. 
Based on this labelled data, the algorithm builds a predictive model that can then be 
used to generate labels (classification) or continuous values (regression) for new 
data points [26]. The following figure 4 explains the concept. 
Supervised learning plays a vital role in various real-world applications. It empowers 
systems to make informed decisions and accurate predictions based on historical 
data, impacting fields like finance, healthcare, and self-driving cars. 

 

Figure 4: Supervised learning model [26]. 
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2.3 Unsupervised Learning 

Unsupervised learning is a fundamental machine learning paradigm concerned with 
analysing unlabelled data to discover underlying patterns or relationships. Unlike 
supervised learning, which requires labelled examples for training, unsupervised 
learning thrives in scenarios where labelled data is scarce or expensive to acquire. 
This makes it particularly valuable for tasks like customer segmentation in marketing 
or anomaly detection in financial transactions [26]. This concept is demonstrated in 
Figure 5. 

 

Figure 5: Unsupervised learning model [26].  

 

Unsupervised learning algorithms can be broadly categorized into three main areas: 
clustering, dimensionality reduction, and anomaly detection. 

• Clustering groups data points together based on their similarity. This allows 
for the identification of distinct categories within the data, even without 
predefined labels. Common clustering algorithms include K-means clustering 
and hierarchical clustering. 

• Dimensionality reduction aims to simplify complex data by capturing its 
essential features in a lower-dimensional space. This improves computational 
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efficiency and visualization capabilities. Techniques like Principal Component 
Analysis (PCA) and t-SNE are commonly used for dimensionality reduction 
[26]. 

• Anomaly detection algorithms identify data points that deviate significantly 
from the majority of the data. This can be helpful in fraud detection or 
system health monitoring. 

By exploring the inherent structure of the data, unsupervised learning models 
provide valuable insights that would be difficult to uncover with traditional methods. 
These insights can then be used for various applications, such as data exploration, 
pattern recognition, and data preprocessing tasks. 

Evaluation in unsupervised learning presents a unique challenge compared to 
supervised learning. In the absence of pre-defined labels, there is no single "correct" 
answer for the model's outputs. Therefore, evaluation metrics in unsupervised 
learning tend to be more nuanced and focus on aspects like the interpretability of 
the results, the model's ability to capture meaningful patterns, and the overall 
effectiveness in achieving the desired outcome. 

 

2.4 Theoretical background of ML models 

2.4.1 Extreme Gradient Boosting (XGBoost) 

XGBoost, an innovative and scalable tree boosting system, has emerged as a 
powerful tool in the realm of machine learning. Developed by Tianqi Chen and Carlos 
Guestrin from the University of Washington, XGBoost has garnered widespread 
adoption among data scientists due to its ability to deliver state-of-the-art across 
various machine learning challenges its ability to deliver state-of-the-art results 
across various machine learning challenges. 

At the core of XGBoost lies the concept of gradient tree boosting, a technique that 
performs additive optimization in functional space. This method involves the 
construction of an ensemble of decision trees, where each subsequent tree is 
trained to correct the errors made by the previous ones. The final prediction is 
obtained by summing the predictions of all individual trees. Mathematically, the 
objective function of XGBoost can be represented as: 

regularized objective = ∑ 𝑙(𝑦�̂� − 𝑦𝑖) + ∑ 𝛺(𝑓𝑘)

𝑘𝑖

 

Here, l represents the loss function measuring the difference between the true 
label 𝑦𝑖 and the predicted label 𝑦�̂�, while Ω is the regularization term that penalizes 
complex models to prevent overfitting. 

For a given dataset the model uses K additive functions to predict the output. Thus, 

𝑦�̂� = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1 , 𝑓𝑘 ∈ ℱ, 

where ℱ is the space of regression trees [27]. 
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The following pseudocode (Figure 6) shows the XGBoost algorithm.  
The XGBoost algorithm uses a function called Build-Tree to build the next regression 
tree in the ensemble. Built-Tree will also need another greedy function which 
evaluates every possible split at a given node and returns the split with the highest 
gain. 

 

Figure 6: The XGBoost algorithm pseudocode [27]. 
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2.4.2 Decision Trees  

Decision trees (DTs), lauded for their interpretability and efficiency. However, their 
very strength – the ability to capture intricate patterns in data – can lead to 
overfitting if left unchecked. This section explores two crucial concepts in DT 
construction: stopping criteria and impurity measures. These elements work in 
tandem to ensure the model achieves a balance between purity and complexity, 
ultimately enhancing its generalisation performance [28]. 

Imagine building a DT for fruit classification. You begin by splitting the data based on 
colour (red vs. non-red). This effectively separates apples and cherries from oranges 
and bananas. Further splitting is possible, considering size, texture, etc. However, at 
what point does additional splitting become detrimental? 

Stopping criteria address this very question. They act as safeguards to prevent the DT 
from becoming overly complex and memorizing the training data too precisely. This 
memorization, known as overfitting, hinders the model's ability to perform well on 
unseen data. Here are some common stopping criteria employed in DT learning: 

• Maximum Tree Depth (MTD): This parameter sets a limit on the number of 
splits a DT can undergo, effectively controlling its depth. While deeper trees 
can capture more complex relationships, they are also more susceptible to 
overfitting. Setting an appropriate MTD helps to strike a balance between 
capturing intricate patterns and preventing excessive complexity. 

• Minimum Samples per Leaf (MSPL): This criterion ensures a minimum 
number of data points in each leaf node. If a split results in a leaf with too few 
samples, it might not generalise well to unseen data. An appropriate MSPL 
value helps to prevent such scenarios. 

• Minimum Impurity Decrease (MID): This criterion focuses on the concept of 
impurity, which will be discussed in detail in the following section. MID halts 
splitting if the decrease in impurity after a split falls below a certain threshold. 
This prevents unnecessary splits that don't significantly improve the model's 
ability to differentiate between classes. 

• Maximum Number of Nodes (MNN): This criterion directly controls the 
complexity of the DT by limiting the total number of nodes it can have. 
Setting an appropriate MNN value can help to prevent the tree from 
becoming overly complex. 

The selection of optimal stopping criteria often necessitates experimentation and 
evaluation using a validation set (data not used for training). By carefully choosing 
these criteria, we can guide the DT learning process towards creating a model that is 
both accurate and generalisable. 

Impurity measures are metrics that quantify the level of "mixedness" within a node 
regarding the target variable (what the DT is trying to predict). The objective is to ask 
questions (through splits) that create the "purest" possible child nodes, where the 
data points within a node are more likely to belong to the same class. Lower impurity 
signifies a more homogenous node, while higher impurity indicates a greater mix of 



Page | 39  
 

classes. In the following mathematical equations, we denote impurity of a node N as 
i(N). Also, P(wj ) is the fraction of patterns at a node N that are in category wj . If all 
the patterns are of the same category, the impurity is 0; otherwise, it has a positive 
value with the greatest value occurring when the different classes are equally likely. 

Some commonly used impurity measures include: 

• Gini Impurity (Classification): This measure calculates the probability of 
misclassifying a randomly chosen data point if it were labelled according to 
the class distribution within the node. A high Gini impurity indicates a diverse 
mix of classes, while a value of zero implies perfect separation (all data points 
belong to the same class). During DT construction, the algorithm aims to 
select features and split points that minimise Gini impurity, leading to purer 
child nodes. 

𝑖(𝑁) = − ∑ 𝑃(𝑤𝑗) log2 𝑃(𝑤𝑗)

𝑗

 

 

• Entropy Impurity (Classification): This measure reflects the average amount 
of information needed to classify a data point in the node. Higher entropy 
signifies greater uncertainty or randomness in class labels within the node. 
Similar to Gini impurity, the DT learning process seeks to minimise entropy by 
choosing splits that create child nodes with lower entropy values. 

𝑖(𝑁) = ∑ 𝑃(𝑤𝑖)𝑃(𝑤𝑗) = 1 − ∑ 𝑃2(𝑤𝑗)

𝑗𝑖≠𝑗

 

• Mean Squared Error (Regression): This measure is employed in regression 
tasks and calculates the average squared difference between the predicted 
values and the actual target values within a node. A lower mean squared 
error indicates a closer fit between the predictions and the actual data points. 
The DT learning process, in the context of regression, aims to select features 
and split points that minimise the mean squared error, leading to child nodes 
with improved prediction accuracy. 

By incorporating these impurity measures into the DT learning process, we 
guide the model towards creating the purest possible child nodes, ultimately 
resulting in a more accurate model 

Stopping criteria and impurity measures play a crucial role in achieving 
optimal DT performance. Stopping criteria prevent excessive complexity, 
while impurity measures steer the tree towards informative splits that 
effectively separate the data. Finding the right balance between these two 
forces is essential for building a DT that performs well on unseen data. By 
understanding these concepts, researchers and practitioners can leverage DTs 
effectively for various classification and regression tasks. The simplest 
Decision Tree algorithm is Iterative Dichotomiser 3 (ID3) and the pseudocode 
can be found in Figure 7. 
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Figure 7: Pseudocode for the ID3 Decision Tree [29]. 

 

2.4.3 Random Forest  

At its core, a Random Forest is an ensemble method. Ensemble methods combine 
predictions from a collection of weaker learners to create a more robust and 
accurate final prediction. In the case of, Random Forests, the individual learners are 
decision trees. By leveraging the collective intelligence of numerous decision trees, 
Random Forests can achieve superior performance compared to a single decision 
tree [30]. 

The construction of a Random Forest involves several key steps: 

1. Decision Trees: The forest is comprised of a collection of individual decision 
trees. Each tree is built using a subset of the training data, typically created 
using a technique called bootstrap aggregating (bagging). Bagging involves 
sampling the training data with replacement, resulting in some data points 
being included in the subset multiple times while others are omitted entirely. 
This injects randomness into the model creation process. 
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2. Random Feature Selection: To further enhance diversity and prevent 
overfitting, a random subset of features is considered for splitting at each 
node within a tree. This reduces the correlation between trees and helps the 
forest to capture a broader range of patterns within the data. 

3. Tree Growing: Each tree in the forest is grown independently until a stopping 
criterion is met. Common stopping criteria include limitations on the 
maximum depth of the tree or a minimum number of data points required in 
a leaf node. 

4. Prediction: For classification tasks, the final prediction of the , Random Forest 
is determined by a majority vote of the individual trees. Each tree casts a 
vote for the class it predicts, and the class with the most votes becomes the 
final prediction. For regression tasks, the final prediction is typically the 
average of the predictions from all trees in the forest. 

The provided pseudocode (Figure 8) offers a concise representation of the Random 
Forest algorithm. The RandomForest function iterates through a loop, building B 
individual trees using the RandomizedTreeLearn function. This function constructs a 
single decision tree by selecting a random subset of features (f) at each node for 
splitting the data. The BootstrapSample function generates a bootstrap sample by 
randomly sampling the training data with replacement. By incorporating these 
elements of randomness, Random Forests are able to achieve superior performance 
and generalization compared to a single decision tree. 

 

Figure 8: Random Forest pseudocode [31]. 
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2.4.4 Support Vector Machines 

In the realm of machine learning, Support Vector Machines (SVMs) have emerged as 
a prominent algorithm for classification tasks [32][33]. Their effectiveness lies in 
identifying an optimal hyperplane within a high-dimensional feature space. This 
hyperplane strategically separates data points belonging to distinct classes, aiming to 
achieve the maximum margin – the distance between the hyperplane and the closest 
data points from either class. By maximising the margin, SVMs strive to enhance the 
model's robustness and generalisation performance on unseen data. Typically, this 
mapping to the higher dimension space would cost computationally. But fortunately, 
SVMs do not need to calculate this higher dimension and only the formula of the dot 
product is needed. Hence, instead of a complexity of O(n2) we have a complexity of 
O(n). 

Mathematical Notation: 

• 𝒙𝒊  ∈  𝑹𝒅: This represents an n-dimensional feature vector, encoding the 
characteristics of the i-th data point. 

• 𝒚𝒊: This denotes the class label associated with the i-th data point. In binary 
classification, +1 signifies class 1, and -1 signifies class 2. 

• 𝒘 ∈  𝑹𝒅: This represents the weight vector, a crucial element with a 
direction normal (perpendicular) to the hyperplane. It dictates the direction 
of separation within the feature space. 

• 𝒃 ∈  𝑹: This signifies the bias term, influencing the position of the 
hyperplane relative to the origin in the feature space. 

• (𝒘𝑻𝒙𝒊  +  𝒃): This represents the decision function. Its value indicates on 
which side of the hyperplane a particular data point lies. 

• 𝑲(𝒙𝒊, 𝒙𝒋): This notation (applicable in specific scenarios) represents a kernel 

function. 

The decision boundary in SVM is established by a hyperplane, mathematically 
expressed as: 

𝒙𝑇 𝒘 +  𝑏 =  0 

This equation defines a plane within a d-dimensional space. Data points are 
segregated based on their class labels on opposite sides of this hyperplane. The 
weight vector (w) dictates the hyperplane's orientation, while the bias term (b) 
influences its placement relative to the origin. 

In the context of SVMs, the margin signifies the separation between the hyperplane 
and the closest data points from each class, also known as support vectors. The 
margin can be understood as the distance between the two support vectors. 
Mathematically, the margin can be expressed as: 

𝑚𝑎𝑟𝑔𝑖𝑛 (𝑚)  =  
2

||𝒘||
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Here, ||w|| represents the Euclidean norm (magnitude) of the weight vector. A 
larger weight vector magnitude corresponds to a wider margin, indicating a clearer 
separation between the hyperplane and the support vectors. 

In Figure 9, one can see an image on how SVM finds the hyperplane. In the figure, m 
is the margin described earlier. Also, the variable ρ represents the distance between 
the hyperplane and the origin O. This distance can be calculated as:  
 

𝜌 =  
|𝑏|

||𝒘||
  

 

Figure 9: SVM hyperplane [33]. 

 

Class Red 

Class Blue 
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The Optimisation Problem 

The core objective of SVM lies in finding the hyperplane that maximises the margin 
while simultaneously minimising classification errors. This translates into a 
mathematical optimisation problem: 

minimise  1
2

 𝒘𝑇𝒘 =
1

2
 ||𝒘||

2
 (objective function)  

subject to  𝑦𝑖(𝒙𝑖
𝑇𝒘 +  𝑏) ≥  1, 𝑜𝑟  1 −  𝑦𝑖(𝒙𝑖

𝑇𝒘 +  𝑏)  ≤  0, (𝑖 = 1,· · · , 𝑚)  

This quadratic problem can be solved by the Lagrange multipliers method to 
minimise the following:  

𝐿𝑝(𝒘, 𝑏, 𝛼) =  
1

2
 ||𝒘||

2
 +  ∑ 𝛼𝑖 (1 − 𝑦𝑖(𝒙𝑖

𝑇𝒘 +  𝑏))

𝑚

𝑖=1

 

with respect to w, b and the Lagrange coefficients αi ≥ 0 (i = 1, · · · , αm). Letting the 
partial derivatives of Lp with respect to W and b equal to zero, leads us to the dual 
problem of the above problem. This approach focuses on maximising a function of 
the Lagrange multipliers (αi) while adhering to certain conditions derived from the 
original problem. 

This involves introducing Lagrange multipliers and maximising a function over them. 
The dual formulation simplifies the problem and avoids explicit computations with 
high-dimensional data points, especially when using kernel functions (explained 
later). 

The Kernel Trick: Addressing Non-Linear Separability 

For data that are not linearly separable in the original feature space, SVM employs 
the kernel trick. A kernel function 𝑲(𝒙𝒊, 𝒙𝒋) is a function that computes the inner 

product of two data points 𝒙𝒊 and 𝒙𝒋 in a higher-dimensional feature space, but 

without explicitly mapping the data points to that space. This offers a 
computationally efficient way to find non-linear decision boundaries in the original 
space. The kernel function essentially operates on the original data points and 
transforms them implicitly into a higher-dimensional space where they become 
linearly separable. This allows SVM to leverage the power of non-linear models while 
maintaining computational efficiency. 

Here are some commonly used kernel functions: 

• Linear Kernel: 𝑲(𝒙𝒊, 𝒙𝒋)  = 𝑥𝑖
𝑇  𝑥𝑗 (This is the simplest kernel, essentially 

performing a dot product in the original space. It is useful when the data is 
already linearly separable in the original features.) 

• Polynomial Kernel: 𝑲(𝒙𝒊, 𝒙𝒋) = (𝑥𝑖
𝑇𝑥𝑗 +  𝑐)

𝑑
. This kernel maps the data to a 

higher-dimensional polynomial feature space. By allowing for polynomial 
interactions between features, it can handle more complex relationships 
between features in the original space. 
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• Radial Basis Function (RBF) Kernel: 𝑲(𝒙𝒊, 𝒙𝒋) = 𝑒𝑥𝑝 (−
||𝑥𝑖− 𝑥𝑗||

2

(2𝜎2)
). This kernel 

projects the data points into a high-dimensional space using a radial basis 
function. The parameter σ controls the smoothness of the decision boundary. 
A smaller σ leads to a more complex and potentially overfitting decision 
boundary, while a larger σ creates a smoother but potentially less accurate 
boundary. 

• Sigmoid Kernel: 𝑲(𝒙𝒊, 𝒙𝒋) = 𝑡𝑎𝑛ℎ(𝛼 𝑥𝑖
𝑇𝑥𝑗 +  𝑐). This kernel is less commonly 

used due to potential numerical instability issues. It performs element-wise 
non-linear transformations on the dot product in the original space. 

By selecting an appropriate kernel function, SVMs can effectively handle non-linear 
data distributions, making them a versatile tool for various classification tasks. 

In conclusion, SVMs provide a robust and powerful approach to classification 
problems. Their foundation lies in maximising the margin between classes in a high-
dimensional feature space. The mathematical framework, including the optimisation 
problem and the kernel trick, empowers SVMs to handle both linearly separable and 
non-linearly separable data. This, combined with their ability to control model 
complexity through regularisation, makes SVMs a valuable tool in the machine 
learning practitioner's arsenal. 

 

2.4.6 K Nearest Neighbours  

The K-Nearest Neighbours (K-NN) algorithm  is a well-established non-parametric 
classification technique widely used in machine learning [34][35]. Its popularity 
stems from its inherent simplicity and effectiveness across diverse applications, 
making it a prevalent choice for pattern recognition tasks. The core principle of K-NN 
revolves around classifying a new data point by identifying its closest neighbours in 
the feature space, determined by a distance metric. Subsequently, the class label is 
assigned based on the majority vote among those nearest neighbours. 

K-NN relies on a fundamental mathematical framework to perform classification. 
This framework involves representing data points, defining a distance metric, 
identifying nearest neighbours, and employing a majority vote strategy. 

• Data Representation: 

o A new data point is represented as a vector in the n-dimensional 
space, denoted by 𝒙 ∈  𝑹𝒏. Each element in the vector corresponds 
to a feature of the data point. 

o The training dataset, denoted by 𝑻 =  {𝒙𝒊  ∈  𝑹𝒏  | 𝒊 =  𝟏, 𝟐, . . . , 𝒎}, 
is a collection of m data points, each represented by an n-dimensional 
feature vector. 

o Every data point in the training set is associated with a class label, 
denoted by 𝒚𝒊  ∈  𝑪. Here, C represents the set of possible class 
labels. 
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Figure 10: An example of a dataset. Using k-NN the point with the star symbol will be classified 
as a red circle, since this is the majority class among the 3 neighbours [36]. 

A crucial element in K-NN is the distance metric, denoted by d(x, y). This function 
calculates the distance (similarity or dissimilarity) between two data points, x and y, 
in the n-dimensional feature space. The most common choice is the Euclidean 
distance, which calculates the straight-line distance between the points. The 
selection of an appropriate distance metric is important, as it affects how similarity 
between data points is measured within the context of your specific problem 
domain. 

The distance can be calculated as: 

Euclidean distance: This is the most commonly used distance measure, and it is 
limited to real-valued vectors. Using the formula below, it measures a straight line 
between the query point and the other point being measured. 

 

𝑑(𝑥, 𝑦) = √∑(𝑦𝑖 − 𝑥𝑖)2

𝑖

 

 

Manhattan distance: This is also another popular distance metric, which measures 
the absolute value between two points. 

 

𝑑(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑖

 

 

Minkowski distance: This distance measure is the generalised form of Euclidean and 
Manhattan distance metrics. The parameter, p, in the formula below, allows for the 
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creation of other distance metrics. Euclidean distance is represented by this formula 
when p is equal to two, and Manhattan distance is denoted with p equal to one. 

𝑑(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|

𝑖

)

1
𝑝

 

 

Hamming distance: This technique is used typically used with Boolean or string 
vectors, identifying the points where the vectors do not match. As a result, it has 
also been referred to as the overlap metric. This can be represented with the 
following formula: 

 

𝑑(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|𝑖 , {
𝑥 = 𝑦, 𝑑 = 0
𝑥 ≠ 𝑦, 𝑑 ≠ 1

 

 

The objective is to find the K closest data points in the training set to the new data 
point (x). This process, known as nearest neighbour search, can be achieved using 
various techniques, depending on factors like dataset size and dimensionality. 

After identifying the K nearest neighbours, denoted by N_K(x), the class label 
prediction for x is determined through a majority vote:  

1. For each class label (c ∈ C), the algorithm counts the occurrences of that label 
within the nearest neighbours (N_K(x)).  

2. The class label with the highest count (majority) is assigned as the predicted 
class for the new data point (x). 

Unlike some algorithms that explicitly define a decision boundary, K-NN's decision 
boundary is implicit. It is shaped by the distribution of data points and the chosen K 
value: 

• A smaller K value results in a more intricate decision boundary that can adapt 
to complex data patterns. However, it might be more susceptible to noise in 
the data. 

• A larger K value leads to a smoother decision boundary but might be less 
sensitive to local variations in the data distribution. 

When incorporating K-NN it is essential to consider its strengths and limitations. 

• Curse of Dimensionality: As the number of features (n) increases, distances 
between data points tend to become more similar, making it challenging to 
identify meaningful nearest neighbours. Feature selection or dimensionality 
reduction techniques can be explored to mitigate this issue, especially if it's 
relevant to your research. 

• Choice of K: The optimal value of K significantly impacts K-NN's performance. 
Techniques like cross-validation can be employed to determine an 
appropriate K for your specific dataset and classification task. 
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Figure 11 depicts the pseudocode implementing a k-NN algorithm. 

 

Figure 11: k-NN pseudocode algorithm [35]. 

 

2.4.7 Linear Regression 

Linear regression [37] and logistic regression are two fundamental statistical 
methods widely used in machine learning for modelling relationships between 
variables. They offer valuable tools for understanding and predicting various 
phenomena. 

Linear regression establishes a linear relationship between a dependent variable (y) 
and one or more independent variables (x). The core assumption is that the 
expected value of the dependent variable (y) can be expressed as a linear function of 
the independent variables (x). Mathematically, this relationship can be represented 
as: 

𝑦(𝒙)  =  𝒘𝑇 𝒙 +  𝜀  

where: 

• y(x) denotes the predicted value of the dependent variable for a given input 
vector (x). 

• 𝒘𝑇 represents the transpose of the weight vector (w), containing the 
coefficients for each independent variable. 

• x represents the input vector containing the values of the independent 
variables. 

• ε represents the residual error, which captures the difference between the 
actual value of y and the predicted value (y(x)). 

The residual error (ε) is typically assumed to follow a normal distribution with a 
mean of zero and a constant variance. The model parameters are estimated through 
a process called least squares regression, which minimises the sum of squared errors 
between the actual and predicted values of y. 
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Linear regression is a cornerstone of statistical modelling, offering several 
advantages that make it a popular choice for various research endeavours.  

• Interpretability: A key strength of linear regression lies in its interpretability. 
The weight coefficients (w) directly correspond to the impact of each 
independent variable on the dependent variable. This transparency allows 
researchers to gain a clear understanding of how changes in the independent 
variables influence the predicted outcome. By analysing the coefficients, 
researchers can identify the most influential variables and the direction of 
their effect (positive or negative). This interpretability is particularly valuable 
in studies where understanding the underlying relationships between 
variables is crucial. 

•  
Computational Efficiency: Linear regression models are computationally 
efficient to train. This efficiency makes them well-suited for analysing large 
datasets, a common occurrence in many research fields. The training process 
is relatively fast, allowing researchers to quickly iterate and explore different 
model configurations. This computational efficiency is particularly 
advantageous when dealing with limited computational resources or when 
rapid analysis is required. 

However, it is crucial to understand its limitations to ensure its appropriate 
application. 

• Linearity Assumption: A fundamental assumption in linear regression is the 
existence of a linear relationship between the dependent and independent 
variables. If the underlying relationship is non-linear, the model might not 
accurately capture the true association. This limitation can lead to misleading 
results and inaccurate predictions. Researchers need to carefully assess the 
data to ensure a linear relationship exists before applying linear regression. 
 

• Sensitivity to Outliers: Linear regression models can be sensitive to outliers 
in the data. Outliers are data points that deviate significantly from the 
majority of the data. The presence of outliers can significantly influence the 
estimated parameters and affect the model's performance. Techniques for 
outlier detection and handling might be necessary to ensure the model's 
robustness and reliability. 

By understanding both the strengths and limitations of linear regression, researchers 
can effectively utilise this technique to gain valuable insights from their data. It is a 
powerful tool, particularly when the assumptions are met, and interpretability is a 
priority. However, it is essential to consider the potential for non-linear relationships 
and the presence of outliers to ensure the model produces reliable results. 

 



Page | 50  
 

2.4.8 Logistic Regression 

Logistic regression is a statistical method employed for classification tasks [37]. It 
builds upon the principles of linear regression but adapts them to model the 
probability of an outcome belonging to a specific category. In logistic regression, the 
dependent variable (y) is typically binary (e.g., 0 or 1), representing two distinct 
classes. 

The core idea lies in using a linear function to model the log-odds of an observation 
belonging to the positive class (y = 1). This log-odds is then transformed using the 
sigmoid function, which maps any real number to a value between 0 and 1. The 
resulting value represents the predicted probability of an observation belonging to 
the positive class. 

Mathematically, the relationship in logistic regression can be expressed as: 

𝑝(𝑦 =  1 | 𝒙, 𝑤)  =  𝜎(𝑤𝑇 𝒙)  

where: 

• p(y = 1 | x, w) represents the conditional probability of an observation 
belonging to the positive class (y = 1) given the input vector (x) and the model 
parameters (w). 

• σ( ) denotes the sigmoid function, which transforms the linear combination of 
weights and features (𝑤𝑇 𝒙) into a probability value between 0 and 1. 

Based on the predicted probability from the sigmoid function, a decision rule can be 
established to classify new observations. A common threshold of 0.5 is often used, 
where observations with a predicted probability greater than 0.5 are classified as 
belonging to the positive class, and others are classified as belonging to the negative 
class. 

The interpretation of logistic regression coefficients differs from linear regression. 
While the coefficients still reflect the influence of each independent variable, their 
interpretation focuses on the direction and relative strength of the association with 
the log-odds of belonging to the positive class. 

Logistic regression stands out as a cornerstone technique within machine learning, 
particularly for classification tasks. While it offers distinct advantages, it is crucial to 
understand its limitations for effective application. 

Unlike linear regression, logistic regression is specifically designed to excel at 
classification problems. It thrives in predicting binary outcomes, making it a robust 
tool for tasks like identifying spam emails or classifying customers into risk categories 
(high-risk vs. low risk). This classification prowess stems from its ability to model the 
probability of an observation belonging to one of two classes. 

However, logistic regression is not without limitations. A key constraint lies in its 
restriction to binary classification tasks. If a problem involves more than two classes 
(e.g., classifying an image as cat, dog, or bird), adaptations like multinomial logistic 
regression are necessary. Additionally, logistic regression assumes a certain level of 
separability between the classes in the feature space. Ideally, data points belonging 
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to each class should be clearly distinguishable. If the classes significantly overlap or 
the data is not linearly separable, logistic regression might not perform optimally in 
such scenarios. 

Despite these limitations, logistic regression offers valuable insights even with its 
interpretable coefficients. While not as straightforward as interpreting coefficients in 
linear regression, they still reveal the relative importance of each feature in 
influencing the classification. Researchers can leverage this information to 
understand which features play a more significant role in distinguishing between the 
two classes. This interpretability becomes particularly valuable in studies where 
understanding the underlying relationships between variables is crucial. 

In conclusion, logistic regression is a powerful tool for binary classification tasks, 
particularly when interpretability is desired. However, researchers need to consider 
the number of classes and the separability of data points to ensure the model's 
suitability for the specific problem at hand. By understanding both its strengths and 
limitations, researchers can effectively utilise logistic regression to gain valuable 
insights from their classification tasks. 

 

2.4.9 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) represent a specialised architecture within 
the realm of deep learning, particularly adept at image recognition tasks. Unlike 
traditional neural networks characterised by extensive inter-layer connections, CNNs 
leverage a more localized approach. This focus on local information within an image 
significantly enhances their efficiency in processing image data [38]. 

Two fundamental concepts underpin the efficiency of CNNs: 

• Limited Connectivity: A defining characteristic of CNNs is the restricted 
connectivity between neurons. Each neuron establishes connections only 
with a small region of neurons in the subsequent layer. This approach 
dramatically reduces the overall number of connections and, consequently, 
the total number of parameters within the network compared to fully 
connected architectures. 

• Weight Sharing: CNNs employ filters, known as kernels, that traverse the 
image, identifying specific features such as edges or shapes. Crucially, these 
kernels are shared by multiple neurons, leading to a further reduction in the 
number of required parameters. The output from these filters generates a 
map, termed an activation map, that highlights the regions within the image 
that elicited a response from the filter. By incorporating a diverse set of 
kernels, CNNs progressively learn a variety of features, ultimately 
constructing intricate representations of the image. 

The synergy between local connections and weight sharing offers substantial 
advantages. This approach significantly diminishes the number of parameters within 
the network, fostering both efficiency and a reduced susceptibility to overfitting. 
Consequently, CNNs achieve remarkable performance in image recognition tasks, 
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solidifying their position as powerful tools for applications such as object detection 
and classification. 

Convolutional layers are the essential building blocks of CNNs, particularly adept at 
image recognition tasks. Similar to hidden layers in regular neural networks, they 
transform the input image into a higher-level representation. However, unlike fully 
connected layers that utilise connections between every neuron, convolutional 
layers leverage local connections for calculations, making them more efficient for 
processing image data. 

Neurons in a convolutional layer connect only to a small region of the input image. 
This significantly reduces the number of connections and parameters compared to 
fully connected layers. 

The core operation of a convolutional layer is the convolution, performed using 
filters called kernels. These kernels slide across the image, detecting specific features 
like edges or shapes. Each kernel acts as a feature extractor and importantly, shares 
its weights with all neurons in the layer, further reducing parameters. 

The output of the convolution process is stored in activation maps. Each activation 
map highlights the image regions where a specific kernel detected its corresponding 
feature. By using a variety of kernels, CNNs can progressively learn and represent 
complex features within the image. 

Several hyperparameters influence the size of the resulting activation maps: 

• Kernel Size (N): The size of the kernel window, also known as the receptive 
field, determines the region of the input involved in the convolution 
operation. 

• Stride (S): This parameter defines how many pixels the kernel moves after 
each convolution. A larger stride reduces the activation map size. 

• Zero-Padding (P): Padding the image with zeros around the borders can be 
used to maintain the input dimensions during convolution. 

Sharing weights across neurons significantly reduces the total number of parameters 
in the network, improving efficiency and reducing the risk of overfitting. 

Local convolutions capture local image characteristics, which are often highly 
correlated. This allows kernels with shared weights to effectively identify patterns 
across various local regions in the image, while using different kernels helps extract 
diverse feature types. 

Often inserted after convolutional layers, pooling layers aim to reduce the activation 
map dimensions while preserving key information. Pooling also introduces spatial 
invariance, making the model less sensitive to small shifts in features within the 
image. Max-pooling, a common technique, extracts the maximum value from a 
defined window within the activation map. 

Activation functions are non-linear activation functions (like ReLU) are typically 
applied to the convolution outputs within the activation maps before feeding them 
to the next layer. 
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While not always used in modern CNN architectures, some traditional approaches 
add a fully connected layer between the final convolutional layers and the output 
layer. This layer can help model non-linear relationships between the extracted 
features. However, due to the increased number of parameters it introduces, fully 
connected layers can potentially lead to overfitting. As a result, alternative 
techniques like max-over-time pooling are being explored to replace the role of fully 
connected layers. 

 

2.4.10 Long Short-Term Memory 

Long Short-Term Memory (LSTM) networks, introduced by Hochreiter and 
Schmidhuber in 1997, address a significant limitation of standard Recurrent Neural 
Networks (RNNs): the inability to handle long-term dependencies in sequences. 
Unlike RNNs, LSTMs can learn and remember information over extended periods, 
making them particularly suitable for tasks involving sequential data like speech or 
video [39]. 

The core unit of an LSTM network is the memory block. This block consists of a cell 
that stores information and three gates: 

Input Gate (it) that controls the flow of information into the cell. It takes the previous 
output h(t-1) and current input x(t) as input and uses a sigmoid function (σ) to 
generate values between 0 and 1. A value of 0 completely blocks information, while 
1 allows all information to pass through. 

𝑖𝑡  =  𝜎(𝑊(𝑖𝑥) 𝑥𝑡  +  𝑈𝑖ℎℎ𝑡−1  + 𝑏𝑖) 

Cell Input Layer (lt) is similar to the input gate, it receives h(t-1) and x(t) but uses a 
hyperbolic tangent (tanh) activation function to generate values between -1 and 1, 
representing the candidate information for the cell state. 

𝑙𝑡  =  𝑡𝑎𝑛ℎ(𝑊𝑙𝑥𝑥𝑡  +  𝑈𝑙ℎℎ𝑡−1  + 𝑏𝑙) 

Forget Gate (ft), crucially determines what information from the past (c(t-1)) should be 
remembered or forgotten. It takes h(t-1) and x(t) as input and uses a sigmoid function 
to generate values between 0 and 1. This value is then multiplied (Hadamard 
product) with the previous cell state (c(t-1)) to update the new cell state (ct). A value 
of 0 completely forgets the old information, while 1 retains it entirely. 

𝑓𝑡  =  𝜎(𝑊𝑓𝑥𝑥𝑡  + 𝑈𝑓ℎℎ𝑡−1  +  𝑏𝑓) 

Cell State (ct), acts as the memory of the LSTM cell, storing information over longer 
periods. It's updated by combining the previous cell state (c(t-1)) controlled by the 
forget gate (ft) and the product of the current input gate (it) and cell input (lt). 

𝑐𝑡  =  𝑓𝑡  ∘  𝑐𝑡−1  +  𝑖𝑡  ∘  𝑙𝑡 

The output gate (ot) controls the flow of information out of the cell. It takes h(t-1) and 
x(t) as input and uses a sigmoid function to generate a value (ot) between 0 and 1. 
This value is then multiplied with the current cell state activated by a tanh function 
(tanh(ct)) to obtain the final output vector (h(t)). 
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𝑜𝑡  =  𝜎(𝑊𝑜𝑥𝑥𝑡  +  𝑈𝑜ℎℎ𝑡−1  +  𝑏𝑜) 
 

ℎ𝑡  =  𝑜𝑡  ∘  𝑡𝑎𝑛ℎ(𝑐𝑡) 

By regulating the flow of information through these gates and the cell state, LSTMs 
can effectively learn long-term dependencies within sequential data, overcoming the 
limitations of traditional RNNs. 

 

2.5 Theoretic approach of the optimisation techniques 

In this section, different optimisation techniques that will be are discussed, which are 

used to optimise the ML models. 

 

2.5.1 Select Features (SelectKBest) 

Feature selection is a crucial step in ML, particularly when dealing with large 
datasets [40]. It involves identifying and selecting the most relevant features from 
the entire feature set. This not only improves the efficiency of ML algorithms but 
also helps to avoid overfitting, a common problem where a model performs well on 
training data but poorly on unseen data. 

SelectKBest is a popular method for feature selection [40]. It is a filter-based 
approach that relies on statistical measures to score and rank features based on 
their relationship with the target variable (what you are trying to predict). 
SelectKBest offers several advantages. It is easy to use, computationally efficient, 
and works independently of any specific ML algorithm. It provides different scoring 
functions like chi-squared, mutual information, and F-value, allowing you to choose 
the one that best suits your data type (numerical or categorical) and the task at hand 
(regression or classification). By leveraging SelectKBest, it is possible to streamline 
the data analysis workflow and achieve better performance from ML models. 

 

2.5.2 K-fold Cross-Validation 

The quest for accurate and reliable predictions is paramount in ML. However, a 
significant hurdle stands in the way - overfitting. This phenomenon occurs when a 
ML model becomes overly fixated on the intricacies of the training data, losing its 
ability to generalise effectively to unseen data. Imagine a student who memorises 
every detail on a practice test but struggles with a slightly different version on the 
actual exam. That is essentially overfitting in action - the model excels at the specific 
data it trained on but fails when confronted with real-world scenarios. 

The consequences of overfitting can be severe. A model that appears to perform 
exceptionally well on training data might produce inaccurate and misleading results 
when deployed in real-world applications. For instance, a spam filter trained on a 
specific dataset of spam emails might incorrectly classify legitimate emails as spam if 
it overfits to the training data's idiosyncrasies. 
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This is where the concept of data scarcity comes into play. Ideally, we would have an 
abundance of data to train and evaluate our models. With ample data, we could 
train multiple models with varying complexities or utilise a validation set - a separate 
dataset specifically used to assess a model's generalisability. The model performing 
best on the validation set, which hasn't been "seen" by the model during training, is 
then chosen for deployment. 

However, in many practical scenarios, data is a precious commodity. We might not 
have the luxury of a dedicated validation set. This creates a dilemma: using a 
validation set with limited data can lead to overfitting to that very set, defeating its 
purpose. To circumvent this challenge, data scientists turn to a powerful technique 
called cross-validation. 

Cross-validation is a strategic approach to effectively utilise limited data for both 
training and performance assessment. It essentially involves a clever partitioning of 
the available data into folds (groups). The model is then trained on a combination of 
these folds (usually S-1 folds), S being the number of groups, and evaluated on the 
remaining fold. This process is repeated for all possible choices of the held-out fold, 
ensuring a comprehensive evaluation across the entire dataset. This process is 
shown in Figure 12. Finally, the performance scores from each run are averaged to 
obtain a more robust and generalisable estimate of the model's accuracy [41]. 

Figure 12: Cross validation process [41]. 

By leveraging cross-validation, we can effectively squeeze the most out of our limited 
data resources. It allows us to train models, assess their generalisability on unseen 
data within the same dataset, and ultimately select the best performer for real-world 
applications. In essence, cross-validation acts as a safeguard against overfitting, 
ensuring that our models can not only learn from the data but also adapt and 
perform well on new, unseen data encounters. 
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2.5.3 Hyperparameter tuning 

Grid search is a popular technique for finding the optimal combination of 
hyperparameters for a machine learning model. It works by creating a grid - a set of 
discrete values - for each hyperparameter. The model is then trained and evaluated 
on every possible combination of these values within the grid. To assess 
performance, cross-validation is employed, which provides a more robust estimate 
of the model's generalisability. 

The key advantage of grid search lies in its comprehensiveness. It explores every 
possible combination within the defined grid, ensuring that the optimal 
hyperparameter configuration is not missed. This exhaustive approach makes it a 
reliable method for identifying the absolute best combination. 

However, grid search comes with a significant drawback - its computational cost. 
Evaluating every single combination can be extremely time-consuming, especially for 
models with many hyperparameters. The use of k-fold cross-validation further 
exacerbates this issue, as each combination requires k training steps. 

Despite its slowness, grid search remains a valuable option when the goal is to find 
the absolute best hyperparameter configuration, especially if computational 
resources are not a major constraint. 

 

2.6 Data preparation techniques  

2.6.1 Simple Imputer 

The presence of missing data, often represented by values like "NaN" or "None," can 
significantly impact the performance of ML models. These missing entries can 
introduce bias or hinder the model's ability to learn accurate relationships between 
features. To address this challenge, data imputation techniques are employed. 

SimpleImputer works by replacing missing values with a chosen value based on a 
specific strategy. It provides various options, like using the mean or median for 
numerical data, or the most frequent value for categorical data. One can even 
specify a constant value to fill in the blanks. This flexibility allows the user to tailor 
the imputation approach to their data type and the nature of the missing values. 
However, one should be mindful of outliers when using the mean strategy, as they 
can skew the results. 

By effectively addressing missing data with SimpleImputer, one can ensure that their 
ML models have a solid foundation of clean and complete data. This, in turn, leads to 
more accurate predictions and improved model performance. 

 

2.6.2 Synthetic Minority Oversampling Technique  

Class imbalance, where one class vastly outnumbers others in a dataset, can Lead to 
biased predictions in ML models. Imagine training a fraud detection model – if only a 
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tiny fraction of transactions is fraudulent, the model might simply classify everything 
as safe. The Synthetic Minority Oversampling Technique (SMOTE) tackles this issue. 

SMOTE helps the model by creating synthetic samples for the rare, minority class. 
This lets the model learn the minority class's characteristics better, leading to more 
accurate detection. Additionally, SMOTE balances the class distribution, reducing 
bias towards the majority class. With a richer dataset and less bias, models trained 
using SMOTE become more robust and generalise better to unseen data. 

While SMOTE is a powerful tool, it is important to remember that it increases the 
dataset size by creating artificial data points. Tuning parameters like the number of 
nearest neighbours and the oversampling rate is crucial. Combining SMOTE with 
under sampling the majority class can also be a good strategy for a more balanced 
approach. 

 

2.6.3 One-Hot Encoding 

Machine learning algorithms thrive on numerical data, utilising features represented 
by numbers to make predictions and uncover patterns within datasets [39]. 
However, real-world data often present a challenge in the form of categorical 
variables. These variables represent qualities or classifications using labels or text, 
such as "red," "blue," or "large," "medium," "small" [40]. While categorical variables 
hold valuable information, machine learning models struggle to directly process and 
learn from them due to their non-numerical nature. One-hot encoding emerges as a 
critical technique in this scenario, transforming categorical data into a numerical 
format that empowers machine learning models to understand and leverage the 
power of these features. 

The significance of one-hot encoding lies in addressing two key challenges associated 
with incorporating categorical data into machine learning models: 

• Numerical Compatibility: Many machine learning algorithms, from linear 
regression to complex neural networks, rely on features represented by 
numerical values for computations [39]. One-hot encoding bridges this gap by 
converting categorical data into numerical vectors. Consider a dataset with a 
"colour" variable containing "red," "green," and "blue." Directly assigning 
numerical values (e.g., red = 1, green = 2, blue = 3) to categories can be 
misleading. The model might interpret "blue" as inherently "better" due to its 
higher numerical value. One-hot encoding avoids this pitfall by creating a 
distinct numerical representation for each category. 

• Preserving Categorical Information: Assigning numerical values disregards 
the inherent categorical nature of the data. Categories often represent 
distinct classifications without an inherent order. For instance, "red" is not 
inherently better or worse than "blue." One-hot encoding tackles this by 
creating a binary vector for each data point. The length of this vector 
matches the total number of categories. Each position in the vector 
represents a specific category. If the data point belongs to the corresponding 
category, the value at that position is set to 1, and 0 otherwise. This 
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essentially creates a new feature for each category, with the binary vector 
indicating category membership. 

The one-hot encoding process itself is a two-step waltz: 

1. Integer Encoding: Each unique category within a categorical variable is 
assigned a unique integer value. This initial step provides a numerical 
representation for each category while maintaining its distinct identity. 

2. Binary Vector Creation: For each data point, a binary vector is created with a 
length equal to the total number of categories. Each position in the vector 
corresponds to a specific category. The value at a position is set to 1 if the 
data point belongs to the corresponding category, and 0 otherwise. 

Consider the "colour" variable example again. After one-hot encoding, a data point 
with the value "red" would be transformed into a vector like (1, 0, 0), signifying 
membership in the "red" category and exclusion from "green" and "blue." 

One-hot encoding offers several advantages for incorporating categorical data into 
machine learning models: 

• Improved Model Performance: By providing a format compatible with 
machine learning algorithms, one-hot encoding can lead to more accurate 
model predictions. The model can now effectively learn the relationships 
between categories and other numerical features within the dataset [40]. 

• Enhanced Data Interpretability: The binary representation of categories 
allows for easier interpretation of model behaviour and feature importance. 
By analysing the weights assigned to features in a model, we can gain insights 
into which categories have a stronger influence on the model's predictions. 

• Effective Handling of Unordered Data: One-hot encoding is particularly 
useful for categorical data where the order of categories has no inherent 
meaning. Clothing size (small, medium, large) is a perfect example. Assigning 
a higher numerical value to "large" doesn't imply superiority over "small." 
One-hot encoding preserves this information by creating separate features 
for each category. 

However, it is crucial to acknowledge the considerations and potential alternatives 
to one-hot encoding: 

• Increased Data Dimensionality: One-hot encoding can significantly increase 
the number of features in the dataset, especially when dealing with a large 
number of categories. This can impact model training time and 
computational resources [42]. 

• Potential for Sparse Data: When dealing with a vast number of categories, 
the resulting binary vectors can become sparse, with many zeros. This can 
lead to inefficiencies in some algorithms. 

Here are some alternative encoding techniques to consider depending on the 
specific characteristics of the dataset: 
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• Label Encoding: Assigns a unique integer to each category. However, this 
method assumes an inherent order among categories, which may not always 
be true. 

• Frequency Encoding: Replaces categories with their frequency counts within 
the dataset. This can be helpful for capturing the relative importance of 
categories but may not be suitable for all algorithms [42]. 

• Embedding Techniques: Advanced methods like word embeddings can learn 
low-dimensional vector representations of categories, capturing semantic 
relationships between them. This can be particularly useful for large numbers 
of categories or situations where categories have inherent relationships (e.g., 
colours on a spectrum). However, embedding techniques often require more 
complex models and computational resources [43]. 

The choice of encoding technique depends on the specific characteristics of the 
dataset, the number of categories, and the ML model used. Here are some factors to 
consider when making this decision: 

• Number of Categories: If there is a small number of categories (less than 10), 
one-hot encoding is generally a good choice. However, with a large number 
of categories, it can lead to high dimensionality and sparse data. In such 
cases, consider alternative techniques like encoding with fewer dimensions 
or using embedding techniques. 

• Inherent Order in Categories: If the order of categories has a meaningful 
interpretation (e.g., shirt sizes - small, medium, large), label encoding might 
be suitable. However, for unordered categories (e.g., colours), one-hot 
encoding is preferred. 

• Model Complexity: Some ML models, like decision trees, can handle 
categorical data natively. However, most models benefit from some form of 
encoding. 

In conclusion, one-hot encoding is an essential tool in the ML toolbox, enabling us to 
unlock the power of categorical data. By transforming categorical features into a 
format that preserves category information and aligns with ML algorithms, one-hot 
encoding paves the way for more accurate and interpretable models.  

 

2.7 Evaluation Metrics 

The success of any ML project hinges on building a model that excels at making 
predictions on unseen data. To achieve this, reliable methods are needed to both 
train and assess the model's performance using the available training data. 
Evaluating a machine learning algorithm is a fundamental step in any such project, 
and this section explores various metrics that estimate a model's effectiveness. 
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2.7.1 Confusion Matrix 

A confusion matrix is a powerful tool for assessing how well a classification model 
performs. It is essentially a table with two dimensions: rows represent the actual 
classifications (the true labels), and columns represent the model's predictions. This 
layout allows us to see how often the model's predictions matched the true 
classifications. 

For consistency, this thesis uses a convention where the model's predictions appear 
in the columns, and the true classifications are displayed in the rows. Importantly, 
the order of the categories (classes) is the same in both rows and columns. This 
means the correctly classified instances fall on the main diagonal, running from the 
top left corner to the bottom right corner. These diagonal values represent the 
number of times the model's predictions agreed with the true classifications. 

An example of confusion matrix can be found in Figure 13. In this figure, true positive 

(TP) captures the number of positive data points the model correctly classified as 

positive. These are the ones the model got right – truly positive instances identified 

as positive. False Positive (FP), or type 1 error, refers to negative data points that the 

model mistakenly classified as positive. These are the model's errors – negative 

instances flagged as positive. True Negative (TN) represents negative data points the 

model correctly classified as negative. The model identified these negative instances 

accurately. False Negative (FN), or type 2 error, describes positive data points the 

model incorrectly classified as negative. The model missed these positive instances 

by classifying them as negative. 

 

Figure 13: Confusion matrix for multi-class dataset [44].  
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2.7.2 Precision  

Precision measures the accuracy of the model's positive predictions. It essentially 
asks: "Out of all the instances the model classified as positive, how many were truly 
positive?". 

To calculate precision, we divide the number of True Positives (correctly classified 
positive instances) by the total number of elements the model predicted as positive 
(the sum of all positive values in a specific column of the confusion matrix), as shown 
below. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

In simpler terms, precision helps us understand how good the model is at identifying 
actual positive cases from the pool of instances it flagged as positive. 

 

2.7.3 Recall 

Recall focuses on the model's ability to identify all the actual positive cases in the 
data. It asks: "Out of all the instances that are truly positive in the data, how many 
did the model correctly classify as positive?". 

To calculate recall, we divide the number of True Positives (correctly classified 
positive instances) by the total number of actual positive cases in the data (the sum 
of all positive values in a specific row of the confusion matrix), as shown below. 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

In simpler terms, recall helps us understand how well the model captures all the 
positive instances, ensuring it doesn't miss any important cases. Another way to 
think about it is measuring the model's ability to be "complete" in finding positive 
cases. 

 

2.7.4 Accuracy 

Accuracy is a popular metric used to evaluate how well a classification model 
performs, especially in multi-class problems. It is calculated directly from the 
confusion matrix. 

Accuracy is the sum of correctly classified instances (True Positives and True 
Negatives) on the main diagonal, divided by the total number of instances in the 
dataset (including both correctly and incorrectly classified ones). In simpler terms, if 
a data point is randomly picked and predicted its class, accuracy depicts the 
probability of the model being right. 

To calculate the accuracy one can, utilise the formula:  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
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One advantage of accuracy is its simplicity. It gives you an overall idea of how well 
the model performs across all classes in the dataset. Each data point contributes 
equally to the accuracy score. 

However, accuracy has limitations. In datasets with imbalanced classes (where some 
classes have many more data points than others), accuracy can be misleading. The 
model could be performing poorly on less frequent classes, but this might be masked 
by its good performance on the dominant class. Accuracy does not provide 
information on how well the model performs on individual classes. 

2.7.5 F1-Score 

The F1-Score [45] emerges as a powerful tool for evaluating a classification model's 
performance, leveraging insights from both precision and recall. It takes centre stage 
after we have analysed the confusion matrix, a grid summarising classification 
results. 

The F1-Score is calculated using the harmonic mean of precision and recall. This 
harmonic mean essentially rewards models that achieve similar levels of precision 
(correctly identifying positive cases) and recall (capturing all true positive cases). The 
formula itself is a weighted average, with F1 reaching its best value (1) when both 
precision and recall are perfect, and its worst value (0) when either metric is very 
low. 

This metric can be calculated as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1 +  𝑟𝑒𝑐𝑎𝑙𝑙−1
=  2 · (

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
) 

The F1-Score can be applied to both binary (two-class) and multi-class problems. 

• Binary F1-Score: In binary classification, it considers only the positive class 
(ignoring True Negatives). The confusion matrix guides the calculation of 
precision and recall for the positive class, which are then plugged into the F1-
Score formula. 

• Multi-Class F1-Score: Things get a bit more complex with multiple classes. 
Here, we have two main approaches: Macro F1-Score and Micro F1-Score. 

o Macro F1-Score: This approach treats all classes equally. It calculates 
average precision and recall across all classes and then combines 
them using the harmonic mean to get the Macro F1-Score. This 
method is beneficial when you want to ensure the model performs 
well on all classes, regardless of their size. 

o Micro F1-Score: This approach considers all data points together, 
disregarding class boundaries. It essentially calculates the overall 
accuracy (fraction of correctly classified instances) as the Micro F1-
Score. This method is useful when you prioritize overall model 
performance and might not be as concerned about individual class 
imbalances. 
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The F1-Score heavily penalises models with very low precision or recall. This 
characteristic makes it particularly useful for identifying weaknesses in a model's 
prediction capabilities. A high F1-Score generally indicates a well-performing model. 

 

2.7.6 Micro-Averaging 

In the realm of multi-class classification, where models juggle multiple categories, 
evaluating performance can get cluttered with a barrage of metrics for each class. 
Micro-averaging emerges as a technique to streamline this by condensing the 
information into a single, overall metric. 

The core concept is simple: instead of analysing individual classes, we consider all 
data points as a whole. Micro-averaging achieves this by: 

1. Combining Class Data: It breaks down the barriers between classes and 
aggregates the total number of true positives (correctly classified positives), 
false positives (incorrectly classified positives), and false negatives (missed 
positives) across all classes. 

2. Calculating Overall Metrics: With these combined counts, micro-averaging 
calculates precision (true positives divided by the sum of true and false 
positives) and recall (true positives divided by the sum of true positives and 
false negatives) for the entire dataset. 

Imagine taking a multi-section exam. Micro-averaging would be like adding up all 
your correct and incorrect answers across all sections to calculate your overall score. 
This approach prioritises the model's overall accuracy in classifying data points, 
regardless of their specific class labels. 

However, micro-averaging can be insensitive to class imbalances. If a dataset has one 
dominant class with significantly more data points than others, the model's 
performance on smaller classes might be masked by its performance on the 
dominant class. 

Therefore, micro-averaging is a good choice when overall model accuracy is the 
primary concern and class imbalances are not a major issue. 

 

2.7.7 Macro-Averaging 

Micro-averaging simplifies things by focusing on the overall picture, but what if we 
want to ensure the model performs well on all classes, even the smaller ones? Here's 
where macro-averaging steps in. 

Macro-averaging champions fairness by giving equal weight to each class, regardless 
of its size: 

1. Measure by Class: It calculates precision and recall for each individual class, 
treating them like separate mini tests within the larger multi-class exam. 
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2. Average Across Classes: Finally, it takes the average of these individual class 
precisions and recalls to arrive at the final macro-averaged scores. 

Macro-averaging is like averaging grades on a test with multiple sections, but where 
each section has the same weight, even if it has fewer questions. This approach 
ensures that the model's performance on smaller classes isn't overshadowed by the 
performance on larger ones. 

Macro-averaging is a valuable tool when all classes are important, and ensuring good 
performance across the board is crucial. However, it might not be the best choice if 
overall model accuracy is your primary concern. 

 

2.7.8 AUC - ROC Curve 

Before delving into AUC-ROC, it is essential to establish a clear understanding of two 
fundamental metrics [45][46][47]: 

• True Positive Rate (TPR) or sensitivity or recall: This metric quantifies the 
proportion of true positive instances (correctly classified positive cases) 
relative to all actual positive cases in the data. Mathematically, it is expressed 
as  

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 , 

where TP denotes true positives and FN denotes false. 

• True Negative Rate or specificity: Specificity focuses on the model's ability to 
correctly classify negative instances. It is calculated as  

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
,  

where TN represents true negatives and FP represents false positives. 

Both Sensitivity and Specificity range between 0 and 1. A value closer to 1 signifies 
better performance. 

Another metric that we should mention is False Positive Rate (FPR) that is equal to  

𝐹𝑃𝑅 = 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

The Receiver Operating Characteristic (ROC) curve serves as a graphical 
representation of the model's performance across different classification thresholds. 
It plots the Sensitivity (y-axis) against 1-Specificity (False Positive Rate) on the x-axis. 
As the classification threshold is varied, the ROC curve depicts the trade-off between 
sensitivity and specificity. An example of a ROC curve can be seen in Figure 14. 

In an ideal scenario, a perfect model would achieve a sensitivity of 1 (classifying all 
true positives correctly) and a specificity of 1 (classifying all true negatives correctly). 
This translates to an ROC curve that aligns with the upper left corner of the graph. 
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While the ROC curve offers valuable insights, it can be cumbersome to summarise 
performance using a single value. AUC-ROC (Area Under the ROC Curve) addresses 
this challenge. AUC-ROC essentially quantifies the entire two-dimensional area 
encompassed by the ROC curve. 

Interpreted probabilistically, AUC-ROC represents the likelihood that the model will 
rank a randomly chosen positive instance higher than a randomly chosen negative 
instance. Consequently, a higher AUC value indicates a greater ability for the model 
to distinguish between the positive and negative classes. The AUC-ROC metric ranges 
from 0 to 1, with 1 signifying perfect performance (where the ROC curve aligns 
perfectly with the upper left corner) and 0 indicating entirely random classification. 

  

Figure 14: ROC-AUC curve [47].  The long-dashed line in the middle corresponds to a random classifier. TPR denotes           
the True Positive Rate, while FPR the False Positive Rate. Roc is the Receiver Operating Characteristic curve 
and AUC the Area Under the ROC Curve 
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3. Materials and Methods 
 

This chapter details the procedures for acquiring the dataset of Long Covid patients 

from the Long Covid Clinic of Evangelismos General Hospital and the rigorous 

screening process implemented to ensure accurate diagnoses. The process of data 

warehousing is also outlined, which includes the storage, organisation, and 

management of the collected data for efficient analysis.  Finally, the analytical 

methods employed in the study are discussed along with the specific ML and 

statistical techniques used to analyse the data from the initial screening process in 

order to prioritise Long Covid patients. 

 

3.1 Dataset 

3.1.1 Data acquisition 

The data used in this study was obtained from a private dataset compiled at the Long 

Covid Clinic of Evangelismos General Hospital. The dataset is derived from a novel 

study by Dr. Katsaounou. The study is the first to holistically analyse Long-Covid. 

Patients attending the clinic underwent a comprehensive screening process to 

determine their eligibility for the study. This screening involved a physician 

evaluation and a series of questionnaires. Only patients diagnosed with Long Covid 

by the medical team were included in the dataset. The dataset includes 174 Long 

Covid patient data. 

Following the initial screening, patients diagnosed with Long Covid participated in a 

series of specialist examinations. These included consultations with a 

pneumonologist, a cardiologist, and a psychologist. During each examination, 

relevant medical data was collected and added to the dataset. Additionally, the 

medical team documented the most urgent treatment recommendation for each 

patient, categorised as pneumonology, cardiology, psychology, or none. 

This data acquisition approach offers several advantages. Firstly, by focusing on 

patients diagnosed by a team of specialists at a dedicated Long Covid clinic, the 

dataset ensures a high degree of accuracy in Long Covid identification. Secondly, the 

inclusion of diverse medical data from various specialist examinations provides a 

comprehensive picture of the patients' Long Covid experience. Finally, documenting 

the most urgent treatment recommendation provides valuable insights into the 

multifaceted nature of Long Covid and the potential need for multi-specialty 

interventions. 
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3.1.2 Feature description 

Given the objective of prioritising patients based on their initial screening, the 
dataset is limited to features from the initial screening process and the physician 
recommendation for the most urgent treatment specialty. This ensures that the 
prioritisation is based solely on information available at the time of the first visit, 
enabling timely and efficient patient triage. Our dataset is consisted of 88 features 
encompassing demographics, Covid-19 history, Long Covid symptoms, mental health 
status, lifestyle factors, quality of life measures and the label for each patient. The 
features and the target value are described below, to provide a comprehensive 
understanding of the dataset. 

• Demographic Information: 

o Gender: Categorical variable indicating the patient's gender (0=Male, 
1=Female). 

o Age: Numerical variable representing the patient's age in years. 
 

• Covid-19 History: 

o Disease Severity: Categorical variable indicating the severity of the 
patient's Covid-19 illness (0=Mild, 1=Moderate, 2=Severe). 

o Number of Covid-19 Episodes: Numerical variable indicating the 
number of times the patient has contracted Covid-19. 

o Hospitalisation: Binary variable indicating whether the patient was 
hospitalised due to Covid-19 (0=No, 1=Yes). 

o ICU Admission: Binary variable indicating whether the patient 
required intensive care unit (ICU) admission due to Covid-19 
complications (0=No, 1=Yes). 

o Intubation: Binary variable indicating whether the patient required 
mechanical ventilation (intubation) due to Covid-19 (0=No, 1=Yes). 
 

• Long Covid Symptoms: 

o High Oxygen Mixtures: Binary variable indicating whether the patient 
required supplemental oxygen therapy (0=No, 1=Yes). 

o Dyspnoea: Binary variable indicating whether the patient experiences 
shortness of breath (0=No, 1=Yes). 

o Nasal Congestion: Binary variable indicating whether the patient 
experiences nasal congestion (0=No, 1=Yes). 

o Cough: Binary variable indicating whether the patient experiences a 
persistent cough (0=No, 1=Yes). 

o Chest Pain: Binary variable indicating whether the patient experiences 
chest pain (0=No, 1=Yes). 
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o Precordial Pain: Binary variable indicating whether the patient 
experiences precordial pain (0=No, 1=Yes). 

o Constrictive Precordial Pain: Binary variable indicating whether the 
patient experiences constrictive precordial pain (0=No, 1=Yes). 

o Palpitations: Binary variable indicating whether the patient 
experiences palpitations (0=No, 1=Yes). 

o Tachycardia: Binary variable indicating whether the patient 
experiences a rapid heart rate (tachycardia) (0=No, 1=Yes). 

Additional Symptoms: 

o Fatigue: Binary variable indicating whether the patient experiences 
fatigue (0=No, 1=Yes). 

o Muscle Weakness: Binary variable indicating whether the patient 
experiences muscle weakness (0=No, 1=Yes). 

o Paraesthesia: Binary variable indicating whether the patient 
experiences numbness or tingling (paraesthesia) (0=No, 1=Yes). 

o Myoclonus: Binary variable indicating whether the patient 
experiences involuntary muscle twitches (myoclonus) (0=No, 1=Yes). 

o Muscle Spasm: Binary variable indicating whether the patient 
experiences muscle spasms (0=No, 1=Yes). 

o Tremor: Binary variable indicating whether the patient experiences 
tremors (0=No, 1=Yes). 

• Mental Health Symptoms: 

o Arthralgias: Binary variable indicating whether the patient 
experiences joint pain (0=No, 1=Yes). 

o Headache: Binary variable indicating whether the patient experiences 
headaches (0=No, 1=Yes). 

o Dizziness: Binary variable indicating whether the patient experiences 
dizziness (0=No, 1=Yes). 

o Vertigo: Binary variable indicating whether the patient experiences 
vertigo (0=No, 1=Yes). 

o Sleep Disturbance: Binary variable indicating whether the patient 
experiences sleep disturbances (0=No, 1=Yes). 

o Concentration Difficulty: Binary variable indicating whether the 
patient experiences difficulty concentrating (0=No, 1=Yes). 

o Brain Fog: Binary variable indicating whether the patient experiences 
brain fog (0=No, 1=Yes). 
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o Memory Impairment: Binary variable indicating whether the patient 
experiences memory impairment (0=No, 1=Yes). 
 

• Other Health Factors: 

o Anosmia: Binary variable indicating whether the patient experiences 
loss of smell (0=No, 1=Yes). 

o Ageusia: Binary variable indicating whether the patient experiences 
loss of taste (0=No, 1=Yes). 

o Weight Loss: Binary variable indicating whether the patient has 
experienced weight loss (0=No, 1=Yes). 
 

• Physiological Measurements: 

o Fever: Binary variable indicating whether the patient experiences a 
fever (0=No, 1=Yes). 

o Sweating: Binary variable indicating whether the patient experiences 
excessive sweating (0=No, 1=Yes). 

o Hair Loss: Binary variable indicating whether the patient experiences 
hair loss (0=No, 1=Yes). 

o Rash: Binary variable indicating whether the patient experiences a 
rash (0=No, 1=Yes). 
 

• Gastrointestinal Symptoms: 

o Dyspepsia: Binary variable indicating whether the patient experiences 
indigestion (0=No, 1=Yes). 

o Bowel Issues: Binary variable indicating whether the patient 
experiences bowel problems (0=No, 1=Yes). 
 

• Ophthalmic Symptoms: 

o Ophthalmic Problems: Binary variable indicating whether the patient 
experiences eye problems (0=No, 1=Yes). 
 

• Psychological Distress: 

o Anxiety: Binary variable indicating whether the patient experiences 
anxiety (0=No, 1=Yes). 

o Depression: Binary variable indicating whether the patient 
experiences depression (0=No, 1=Yes). 

o Fear: Binary variable indicating whether the patient experiences fear 
(0=No, 1=Yes). 
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o Nervousness: Binary variable indicating whether the patient 
experiences nervousness (0=No, 1=Yes). 
 

• Vaccination Status: 

o Vaccination Before: Binary variable indicating whether the patient 
received a Covid-19 vaccination prior to their initial Covid-19 illness 
(0=No, 1=Yes). 

o Vaccination After: Binary variable indicating whether the patient 
received a Covid-19 vaccination after their initial Covid-19 illness 
(0=No, 1=Yes). 
 

• Lifestyle Factors: 

o Smoking Status: Categorical variable indicating the patient's smoking 
status (0=Never, 1=Current, 2=Ex-smoker). 

o Height: Numerical variable representing the patient's height in meters 

o Weight: Numerical variable representing the patient's weight in 
kilograms. 

o  ΒΜΙ (Body Mass Index): Categorical variable indicating the patient's 
Body Mass Index (BMI) category (0=Underweight, 1=Normal Weight, 
2=Overweight, 3=Obese Class I, 4=Obese Class II, 5=Obese Class III, 
6=Morbid Obesity). 

• Quality of Life Questionnaires: 

o SF-36: This section includes various subscales from the Short Form-36 
(SF-36) Health Survey, a widely used tool to assess health-related 
quality of life [48]. Each subscale score ranges from 0 to 100, with 
higher scores indicating better health. 
 

• Mental Health Questionnaires: 

o HADS: This section includes scores from the Hospital Anxiety and 
Depression Scale (HADS), which measures anxiety and depression 
symptoms. Scores range from 0 to 21, with higher scores indicating 
more severe symptoms [49]. 
 

• Physical Activity Questionnaires: 

o IPAQ: This section includes various scores from the International 
Physical Activity Questionnaire (IPAQ), which assesses physical activity 
levels. Scores are categorised based on activity intensity and total 
metabolic equivalent (MET) score [50]. 
 

• Other Questionnaires: 
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o EQ-5D: This section includes scores from the EuroQol 5 Dimensions 
(EQ-5D), a generic measure of health-related quality of life. Scores are 
derived from five dimensions: mobility, self-care, usual activities, 
pain/discomfort, and anxiety/depression [51]. 

o CAT and mMRC: These sections include scores from the COPD 
Assessment Test (CAT) and the modified Medical Research Council 
(mMRC) dyspnoea scale, which assess dyspnoea (breathlessness) 
severity [52][53]. 

o Fatigue Severity Scales: These sections include scores from various 
fatigue severity scales, which measure the intensity and impact of 
fatigue. [54] 

o MoCa: The Montreal Cognitive Assessment (MoCA) questionnaire is a 
brief in-office tool used by healthcare professionals to assess cognitive 
function. It can quickly detect mild cognitive impairment, a potential 
sign of conditions like Alzheimer's disease. The MoCA evaluates 
various areas like memory, attention, and language through tasks and 
questions. Scoring a maximum of 30, a score below 24 suggests a 
need for further evaluation [55]. 

o ABC: The Activities-Specific Balance Confidence (ABC) questionnaire is 
not related to cognition. Instead, it focuses on a person's confidence 
in maintaining balance during daily activities. Here, individuals rate 
their confidence level (from 0% to 100%) for specific actions like 
walking on uneven surfaces. This helps healthcare professionals assess 
fall risks and recommend interventions like balance training [56]. 

o Chalder Fatigue: The Chalder Fatigue Questionnaire, also known as 
the CFQ, is a tool used to assess fatigue severity. Developed in 1993, 
it's a self-administered questionnaire designed to be easy to 
understand. The CFQ asks eleven questions to gauge both physical and 
mental fatigue experienced over the past month. Scores range from 0 
to 33, with higher scores indicating greater fatigue. This questionnaire 
is commonly used in clinical settings to evaluate fatigue in conditions 
like chronic fatigue syndrome and multiple sclerosis, but it can also be 
helpful for anyone experiencing persistent tiredness [57]. 

o FACIT: This section includes scores from the Functional Assessment of 
Chronic Illness Therapy (FACIT), which assesses the impact of chronic 
illness on daily life [58]. 

o PTSD Scales: These sections include scores from PTSD symptom 
assessment scales, which measure the presence and severity of post-
traumatic stress disorder (PTSD) symptoms [59]. 

o Beck Depression Inventory (BDI) and PCFS: These sections include 
scores from the Beck Depression Inventory (BDI), which measures 
depression severity, and the Patient Concerns Form Short (PCFS), 



Page | 72  
 

which assesses patient concerns and priorities [60][61]. 
 

• Doctor's Recommendation: 

o OUTPUT: This variable captures the doctor's recommendation for the 

most urgent treatment specialty based on the initial screening (e.g., 

pneumology, cardiology, psychology, none). The meaning of each 

target value is described below. 

i. 0 → none 

ii. 1 → pneumologist 

iii. 2 → cardiologist 

iv. 3 → psychiatrist 

 

3.1.3 Datasets 

To investigate the impact of data complexity on model performance, we derived 

three distinct datasets from the original data. The first dataset included all possible 

target values (0, 1, 2, 3), representing the most complex scenario for analysis. This 

dataset served as the foundation for training the initial machine learning model. 

The second dataset was created by excluding patients classified as needing 

cardiology consultations (class 2). This decision was motivated by the model's 

observed lower accuracy in predicting this specific specialist need. By removing this 

class, we aimed to assess the effect of a simplified classification task on model 

performance. 

Finally, the third dataset involved combining classes 1, 2, and 3 into a single class. 

This manipulation resulted in a binary classification problem, further reducing the 

complexity compared to the original dataset.  This approach allowed us to observe 

how model accuracy changes as the classification task transitions from a multi-class 

to a binary problem. 

 

3.2 Exploratory Data Analysis 

Exploratory data analysis (EDA) serves as the foundation for understanding the 

characteristics and potential relationships within our dataset. This initial investigation 

is crucial for identifying patterns, outliers, and potential issues that may require 

further exploration or data cleaning techniques [62]. In this section, the details of the 

dataset are described, including the distribution of variables, identifying potential 

missing values, and uncovering any initial insights that may guide subsequent 

analysis. 
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Initial exploration begins by examining the distribution of the target variable, 

depicted in Figure 15. This initial inspection reveals an inhomogeneous dataset, 

meaning the distribution of patients across different target classes is not uniform.  

Class 2 appears to hold the most patients, suggesting a potential imbalance. 

 
Figure 15: Distribution of the target values. The values refer to the dataset after deleting the 
patients missing the target values. 

Figure 16 presents the distribution of gender across target values. The target variable 

categories are displayed on the x-axis, while the y-axis represents the patient count 

for each combination of target value and gender (0: Male, 1: Female). Interestingly, 

the gender distribution is not uniform across target categories. Target values 1.0, 2.0, 

and 3.0 show a higher prevalence of females, while Target 0.0 exhibits a 

predominantly male population. This observation suggests a potential association 

between gender and the target variable. 

Thirty-three features, out of the eighty-eight of the dataset, were continuous 
features, These features were investigated using density plots (Figure 17). In data 
visualization, density plots offer a statistically robust technique for depicting the 
distribution of continuous variables. They employ kernel density estimation, a non-
parametric approach, to create a smooth curve representing the probability density 
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function (PDF) of the data. This visual exploration revealed outliers within the 
distributions of height and the IPAQ questionnaire features. Careful examination of 
the data confirmed that these outliers coincided with missing values. To address this 
issue, we opted to treat the outliers in height and all IPAQ features as missing values 
and imputed them with zeros. This approach prioritises data completeness while 
acknowledging the potential limitations of replacing missing values with zeros.   

 
Figure 16: Gender ((0.0=Male, 1.0=Female) distribution among target values. 

 

Figure 17: Selected density distribution of continuous features that had outliers. 
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Following the identification and treatment of outliers in height and IPAQ features 
(described in Section 2.3.1), revised density plots were generated (Figure 18). It is 
important to note that for these plots, IPAQ features besides the "Total PAscore 
(METs)" variable have been excluded. The rationale behind this exclusion will be 
addressed in the next section (2.3.2). This figure allows us to visualise the 
distribution of continuous features after addressing the outliers, providing a clearer 
understanding of the data for subsequent analysis.  

The majority of features followed a normal distribution. This can be validated by the 
Quantile-Quantile (QQ) plots [63]. A QQ plot is a graphical tool used to compare the 
distribution of a dataset to a theoretical distribution, such as a normal distribution. It 
achieves this by plotting the quantiles (percentiles) of the data against the quantiles 
of the theoretical distribution. If the data closely follows the theoretical distribution, 
the points on the QQ plot will fall approximately along a straight diagonal line. 
Deviations from this line indicate that the data may not be normally distributed. 
Points falling above the line suggest the data have more extreme values (higher or 
lower) than the theoretical distribution, while points below the line indicate the data 
is more concentrated around the centre. Figure 19 presents the QQ plots for the 
continuous features of the dataset. 

We further investigated the distribution of continuous features to assess normality. 
Figure 19 provides a visual representation of these distributions. While some 
features appear to deviate from a normal distribution, the majority exhibit a 
relatively normal shape. Additionally, the figure suggests the presence of potential 
outliers. 

To gain a deeper understanding of these outliers, box plots were generated for all 
continuous features (Figures 20 and 21). The box plot for "Total PAscore (METs)" is 
presented separately (Figure 21) due to the higher range of values in this feature 
compared to the others. By examining the box plots, we can identify the 
interquartile range (IQR) for each feature and visually assess the distribution of data 
points, including the location of potential outliers relative to the rest of the data. 

As described earlier (Section 2.3.1), we identified and addressed outliers in height 

and IPAQ features by treating them as missing values and imputing them with zeros.  

Following this step, further exploration of the data distribution using boxplots 

(Figures 20 and 21) revealed a limited presence of outliers.  Given the minimal 

number of outliers remaining, we opted not to pursue more aggressive outlier 

removal techniques. This decision balances the value of retaining data points with 

the potential influence of outliers on the analysis. The current state of the data, with 

minimal outliers and a reasonable distribution for most features, provides a solid 

foundation for subsequent analysis. 

Finally, the bar plot of the top 10 correlated features, acquired using the correlation 

coefficient, with the target value (Output) was created (Figure 22). This plot indicates 

that SF-36 PRE GH-N, the general health aspect of the SF-36 questionnaire, values 

are crucial to predict the target values. 
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Figure 18:New density distribution of the features. 
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Figure 19: Quantile-Quantile (QQ) plots of the continuous features of the dataset. 
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Figure 20: Box plots of the continuous features. 
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Figure 21: Box plot of the feature “Total PAscore (METs)”. 

 

 
Figure 22: Top ten correlations with target variable. 
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3.3 Data Warehousing 

3.3.1 Anonymisation 

To ensure patient confidentiality and compliance with regulations like the General 

Data Protection Regulation (GDPR), all patient names within the dataset were 

anonymised. A unique five-digit random code was generated for each patient using 

the Excel random function. This approach effectively removes any personally 

identifiable information from the data, protecting patient privacy and allowing for 

ethical research practices. Anonymisation is crucial because it minimises the risk of 

data breaches and ensures that patients cannot be identified from the analysed data. 

This is especially important in the healthcare field, where patient data is highly 

sensitive. 

 

3.3.2 Missing Values 

The presence of missing data is a common challenge encountered in data analysis. In 
this study, the dataset contained approximately 7% missing values. We employed a 
targeted approach to address this issue, ensuring the integrity of the data and 
minimising potential biases. 

For patients with missing values in the crucial "OUTPUT" variable, which is the target 
variable, exclusion was deemed the most appropriate course of action. These 
missing values could not be reliably imputed, and their inclusion could have 
significantly impacted the analysis. This exclusion resulted in the removal of 15 
patients from the final dataset. A visualisation of the missing data can be found in 
Figure 23.    

The analysis of missing data revealed significant absence of values for specific 
features within the IPAQ questionnaire. Notably, the "IPAQ PRE Physical Activity 
(PAscore) Intense Activity PA" feature lacked data for 82% of participants (144 
values). Due to this substantial amount of missing information, this feature was 
excluded from further analysis. Similarly, "IPAQ PRE Physical Activity (PAscore) 
Moderate Activity PA" and "IPAQ PRE Physical Activity (PAscore) Walking Activity PA" 
were excluded due to missing data of 43% and 30%, respectively.  This exclusion 
strategy prioritises using features with a higher data retention rate. Consequently, 
the IPAQ questionnaire is now represented by the "Total PAscore (METs)" variable, 
which exhibits a more manageable missing data rate of 19%. This approach ensures 
the inclusion of relevant information from the IPAQ questionnaire while minimising 
the impact of missing data on the overall analysis. 

For missing values, we opted for a mean imputation technique based on patient 
groups defined by the "OUTPUT" variable. This approach acknowledges the potential 
relationship between missing values and the output categories. We calculated the 
mean value for each feature within each group defined by the "OUTPUT" variable. 
This group-wise approach ensures that the imputed values are more relevant to the 
specific patient characteristics associated with each output category. To improve 
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interpretability, especially for continuous variables like height, the calculated mean 
values were then rounded to a specific number of decimal places. Finally, the missing 
values in each patient record were filled in using the corresponding rounded mean 
values based on their "OUTPUT" category. 

 

Figure 23: Heatmap of the missing data. Yellow points indicate the missing data, while the velvet area represents the data 
that are available. 
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This approach to missing data management balances the need to retain as much 
data as possible while minimising the introduction of bias. By strategically excluding 
patients with missing output values and employing a group-wise mean imputation 
for other features, we ensured a robust and reliable dataset for further analysis. 

 

3.3.3 Handling of categorical features 

This analysis explores two approaches to handling categorical data within the 
dataset. The first approach utilises the raw categorical data, where features and the 
target variable hold values like 0, 1, 2, and 3. While this representation preserves the 
original data, it can be challenging for some ML algorithms to directly interpret these 
categories. 

The second approach addresses this by converting the categorical variables into 
dummy variables. This technique creates a new binary feature for each category 
within a categorical variable (often encoded as 0 or 1). This allows the ML model to 
learn the relationship between the different categories and the target variable more 
effectively. The choice between these approaches depends on the specific model 
being used and the nature of the data. 

By comparing the performance of models trained on both representations of the 
data, we aimed to investigate the potential for bias reduction and improvement in 
model accuracy achieved through the use of dummy variables. The results of this 
comparison will be presented in a subsequent section (Section 4) to determine the 
most appropriate approach for further analysis. 

 

3.3.4 Feature selection 

To optimise model performance and accuracy, a feature selection process was 

implemented. This process aimed to identify the most relevant features from the 

dataset while minimising redundancy. We employed a function named 

select_and_fit_features that takes the input features (X), target variable (y), and a 

feature selector object as arguments. The feature selector object utilises a specific 

method (e.g., fit_transform) to analyse the features in relation to the target variable 

and select a subset that holds the most predictive power. 

In this analysis, we utilised a feature selector from scikit-learn called SelectKBest. This 

selector employs the f_classif scoring function to evaluate features based on their 

ANOVA F-value, a statistical measure that assesses the separability of classes based 

on a feature. The k parameter of the selector determines the desired number of 

features to retain, which will be optimised to achieve maximum model accuracy. The 

select_and_fit_features function is called with the imputed features, target variable, 

and the chosen feature selector to perform the selection and transformation. This 

approach ensures that the models are trained on a focused set of features most likely 

to contribute to accurate predictions. 
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3.3.5 SMOTE 

Since our dataset exhibited an imbalance in class distribution, where some specialist 
consultation categories had fewer data points compared to others, we employed the 
Synthetic Minority Oversampling Technique (SMOTE) to address this issue [64]. 
SMOTE helps create synthetic samples for underrepresented specialist consultation 
groups, balancing the data and ensuring the ML model learns effectively from all 
categories. This step is crucial for building a robust model that can accurately 
prioritise patients for different specialist consultations. 

 

3.4 Model Training 

3.4.1 Stratified K-Fold Cross-Validation 

Our dataset presented a challenge due to its imbalanced class distribution. This 

means that some specialist consultation categories had significantly fewer data 

points compared to others. To ensure the model's generalizability and prevent 

evaluation sets (folds) from containing only one class during cross-validation, we 

employed Stratified K-Fold Cross-Validation. This technique addresses class 

imbalance by creating evaluation sets within the data that maintain the same class 

proportions as the entire dataset (stratification). This ensures that each class is fairly 

represented across all these evaluation sets used for model evaluation. In supervised 

classification tasks, this specifically guarantees balanced representation across all 

folds, providing a more robust assessment of the model's performance on unseen 

data. 

 

3.4.2 Exploring Model Training Session Through Data Complexity and 
Missing Data Handling 

For each combination of dataset and missing data approach, we trained and 
evaluated a variety of ML models. These models included Support Vector Machines 
(SVM), Random Forests, Decision Trees, XGBoost, and K-Nearest Neighbours (KNN). 
Also, a Convolutional Neural Networks (CNN) model and a Long Short-Term Memory 
(LSTM) model, for the datasets whose missing data handled using the non-dummy 
approach, were explored. This selection aimed to assess the effectiveness of deep 
learning models for this specific scenario while acknowledging time constraints. 

 

The above can be visualised as in Figure 24, showing how the experimental part of 
this thesis was implemented. 
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3.4.2 Training sessions 

3.4.2.1 SVM model 

Our training process addressed class imbalance with SMOTE and employed 5-fold 

cross-validation for robust evaluation (via the evaluate_model function). Feature 

selection technique SelectKBest with k parameter equals to 20, was iteratively 

applied, followed by SMOTE on the selected features. For the Support Vector 

Classifier (SVC) model, hyperparameter tuning with RandomizedSearchCV identified 

the best configuration, see Table 2. This optimised model was then evaluated using 

the evaluate_model function. This SVM model follows a One-vs-Rest (OvR) approach.  

This approach involves training one classifier per class. Each classifier is trained to 

distinguish one class from all the other classes. In other words, for each classifier, one 

 

Figure 24: Experimental structure of this thesis. 
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class is considered the positive class, and all other classes are considered the 

negative class 

 

Table 2: The hyperpameters for the Support Vector Machine (SVM) model. 

non-dummy variables approach 

 kernel gamma C 

Dataset 1 poly 0.001 1 

Dataset 2 rbf 0.001 1000 

Dataset 3 rbf 0.001 100 

dummy variables approach 

Dataset 1 rbf 0.001 1000 

Dataset 2 poly 0.001 1 

Dataset 3 rbf 0.001 100 

 

The hyperparameters above are: 

• kernel or kernel function: maps the data to a higher-dimensional space where 

a linear decision boundary can be found. There are various types of kernels, 

like linear, polynomial, radial basis function (RBF), and sigmoid. 

• gamma or kernel coefficient, or: affects the shape and smoothness of the 

decision boundary.  

• C or regularisation parameter: balances between maximizing the margin and 

minimising the training error. 

 

3.4.2.2 Random Forest model 

For the Random Forest model, the training procedure consists of a feature selection 

process with k variable being 30. The value for k is derived after an exhaustive 

research among values from 2 to 80 with a step of 1. After that SMOTE is used on the 

chosen features for each technique. RandomizedSearchCV identified the best 

hyperparameters (see Table 3) for each RFC on each dataset. These optimised models 

were then evaluated using the evaluate_model function.  
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Table 3: Hyperparameters for the Random Forests model. 

non-dummy variables approach 

 n_estimators min_samples_split min_samples_leaf max_depth bootstrap 

Dataset 1 100 5 2 9 True 

Dataset 2 400 2 1 7 True 

Dataset 3 100 5 2 9 True 

dummy variables approach 

Dataset 1 400 5 1 9 False 

Dataset 2 400 5 1 9 False 

Dataset 3 200 5 2 9 True 

The hyperparameters mentioned above are: 

• Number of Trees/estimators: The quantity of decision trees in the forest. 

•  Minimum Samples per Split: Minimum samples required to split a node. 

• Minimum Samples per Leaf: Minimum samples required in a leaf node. 

• Max Depth: Maximum depth of each decision tree. 

•  Bootstrap Sampling: Whether to use bootstrap sampling while building 

trees. 

 

3.4.2.3 Decision Tree model 

The training regimen for the decision tree classifier follows a rigorous approach to 
ensure optimal performance and mitigate potential data challenges. Stratified K-Fold 
cross-validation is employed to segment the data into training and testing sets while 
maintaining the inherent class distribution within each fold. To maximise feature 
relevance, SelectKBest was implemented. This method identified the top 20 most 
informative features for the model. Subsequently, to address potential class 
imbalance issues, SMOTE was utilised to synthetically generate data points for the 
underrepresented class. Hyperparameter tuning was then conducted via 
GridSearchCV, exploring a comprehensive grid of criteria, maximum depth, and other 
relevant parameters for the decision tree classifier (Table 4). Finally, the model's 
performance was evaluated using cross-validation predictions. This evaluation 
encompassed metrics such as the classification report and ROC AUC score, providing 
a thorough assessment of the model's effectiveness. 
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Some key decision tree hyperparameters and how they influence the model are 
described below. 

• Criterion (gini or entropy): This parameter defines how the quality of a split at 
each node in the tree is measured. The two most common options are: 
 

o gini impurity: Favours splits that maximise the difference in the class 
distribution between child nodes. This leads to a purer separation of 
classes. 

o entropy: Measures the randomness or uncertainty in a node. A lower 
entropy value indicates a better split. 

Choosing between gini and entropy can depend on the dataset and task. 
Generally, gini is preferred for classification with imbalanced datasets, while 
entropy might be suitable for balanced datasets. 

• Max_Depth (integer): This hyperparameter controls the maximum depth a 
tree can grow. A deeper tree can potentially capture more complex 
relationships in the data but might also lead to overfitting. Setting a smaller 
max_depth restricts the tree's complexity and helps prevent overfitting, 
especially on smaller datasets. 
 

• Min_Samples_Split (integer or float): This parameter determines the 
minimum number of samples required to split an internal node. Splits are 
only considered if there are at least min_samples_split samples in the node. 
A higher value can prevent overfitting by avoiding splits with very few data 
points. However, setting it too high might lead to underfitting by preventing 
the tree from capturing finer details in the data. 
 

• Min_Samples_Leaf (integer or float): This hyperparameter specifies the 
minimum number of samples allowed in a leaf node. Splits are not performed 
if the resulting child nodes would have fewer samples than 
min_samples_leaf. Higher values can help prevent overfitting by ensuring 
some minimum representation of each class in the leaf nodes. 
 

• Max_Features (integer, float, or specific options): This parameter controls 
how many features are considered at each split. There are three main 
options: 

o integer: Only the specified number of features werr considered for 
splitting. 

o float (fraction): A fraction of the total features was randomly selected 
for each split. 

o specific options: 

▪ "auto": Square root of the total features is used. 

▪ "sqrt": Same as "auto". 
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▪ "log2": Logarithm base 2 of the total features is used. 

 

 

Table 4: Hyperparameters for the Decision Tree model. 

non-dummy variables approach 

 criterion max_depth max_features min_samples_leaf min_samples_split 

Dataset 1 entropy 50 sqrt 1 2 

Dataset 2 entropy 30 log2 2 5 

Dataset 3 entropy 50 sqrt 4 10 

dummy variables approach 

Dataset 1 gini 40 sqrt 1 2 

Dataset 2 gini 10 auto 1 2 

Dataset 3 entropy 40 sqrt 1 10 

 

3.4.2.4 K- Nearest Neighbours model 

The model utilises SelectKBest as a feature selection technique within the KNN 
model training process. This approach selects a predefined number of features (k) 
based on a specific scoring function. In this case, the code uses SelectKBest to select 
the top 45 features based on the f_classif scoring function. This function evaluates 
features based on the ANOVA F-value, favouring features that have a high difference 
in the class distribution between child nodes in a decision tree. 

While GridSearchCV is used for hyperparameter tuning (Table 5) of the KNN model, 
it does not directly impact the number of features used. Therefore, the number of 
features in the final KNN model is determined by the selection with SelectKBest. This 
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approach focuses on features that are most relevant to class separation as measured 
by the F-value. 

 

Table 5: Hyperparameters for KNN model. 

non-dummy variables approach 

 metric n_neighbours weights 

Dataset 1 manhattan 3 distance 

Dataset 2 manhattan 5 distance 

Dataset 3 euclidean 7 distance 

dummy variables approach 

Dataset 1 manhattan 3 distance 

Dataset 2 manhattan 7 distance 

Dataset 3 manhattan 3 distance 

 

The above hyperparameters are explained bellow. 

• metric: This parameter defines the distance metric used to calculate the 
distance between data points. The default metric is 'minkowski', which 
includes Euclidean distance (p=2) as a common choice. Other options include 
Manhattan distance (p=1), Chebyshev distance (p=inf), and custom distance 
metrics defined as callable functions. The appropriate metric depends on the 
characteristics of your data and the relationships between features. 
 

• number of neighbours: This parameter defines the number of nearest 
neighbours to consider when classifying a new data point. Higher values can 
lead to smoother decision boundaries and potentially reduce the impact of 
noise but might also increase the risk of overfitting. Lower values can capture 
more local variations in the data but might be more susceptible to noise.  
 

• weights: This parameter specifies how to weight the contributions of 
neighbouring points when making predictions. There are three main options: 

• 'uniform': All neighbours within the specified distance contribute equally 
to the prediction. 
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• 'distance': Neighbours closer to the query point have a higher weight than 
those farther away. This can be useful when the closer neighbours are 
likely to be more informative. 

• callable: A custom function can be defined to assign weights based on a 
specific logic. 

Choosing the appropriate weight function can influence the decision 
boundary of the KNN model and potentially improve its performance. 

 

3.4.2.5 XGBoost model 

The XGBoost model training session, uses stratified K-Fold cross-validation for 

balanced evaluation across folds. Feature selection with SelectKBest was employed 

to pinpoint the 20 most relevant features. The value for k, derived after an 

exhaustive search among different values from 2 to 80 with a step of 1. To rectify 

class imbalance, SMOTE augments the minority class with synthetic samples. The 

heart of the training lies in hyperparameter tuning (Table 6) with 

RandomizedSearchCV, which optimises the XGBoost model's performance. This is 

followed by unseen data evaluation using metrics like classification reports and ROC 

AUC score (not shown here). Finally, Recursive Feature Elimination (RFE) hones the 

model by iteratively removing the least significant features, ultimately identifying the 

most crucial ones for accurate classification.  

 

Table 6: Hyperparameters for XGBoost model. 

non-dummy variables approach 

 subsample n_estimators max_depth learning_rate colsample_bytree 

Dataset 1 0.8 400 9 0.2 1.0 

Dataset 2 0.7 300 5 0.01 0.6 

Dataset 3 0.7 500 7 0.05 0.6 

dummy variables approach 

Dataset 1 0.8 100 7 0.3 0.6 

Dataset 2 0.6 200 3 0.2 0.6 

Dataset 3 1.0 300 7 0.3 0.8 
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A brief description of the above hyperparameters can be found below. 

• Tree-Specific Hyperparameters: 

o max_depth: This parameter controls the maximum depth a tree can 
grow. Deeper trees can capture more complex relationships in the data 
but are also more prone to overfitting. 

o subsample: This value determines the proportion of rows used for 
building each tree. Lower subsample values can help prevent overfitting 
by training on a smaller portion of the data in each iteration. 

o colsample_bytree: This parameter controls the percentage of features 
considered when splitting a node in each tree. Lower values can help 
reduce overfitting by training on a subset of features at each split, 
potentially leading to more robust models. 

• Learning Task-Specific Hyperparameters: 

o n_estimators: This parameter defines the number of trees used in the 
XGBoost ensemble model. More trees can improve model accuracy but 
also increase training time and complexity. 

o eta (learning rate): This value controls the step size taken during model 
updates and helps prevent overfitting. Smaller learning rates lead to more 
conservative updates, making the model less prone to overfitting. 

 

For the non-dummy approach only 

3.4.2.6 Convolutional Neural Network (CNN) model 

The implementation of a 1D Convolutional Neural Network (CNN) to address a 
classification task with imbalanced classes is described here. After data preparation 
and splitting into training and test sets, SMOTE is applied to generate synthetic 
samples for the minority class, balancing the class distribution in the training data. 
The data is then reshaped to a format suitable for the 1D CNN architecture. 

The CNN model itself is a sequential model with multiple convolutional layers for 
feature extraction, interspersed with pooling layers for dimensionality reduction[38]. 
A flattening layer prepares the extracted features for dense layers, which handle 
higher-level abstraction. The final dense layer with softmax activation outputs 
probabilities for the four predicted classes. 

To address class imbalance during training, class weights were calculated based on 
the class distribution in the training data. These weights were used during model 
compilation, assigning greater importance to the minority classes during the training 
process. Finally, the model was trained on the resampled data with class weights, 
and its performance was evaluated on the unseen test data using metrics like 
accuracy. The training history, including training and validation accuracy over 
epochs, is visualised to assess the model's learning behaviour and potential for 
overfitting. 
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A more detailed description of the CNN layers follows. 

Convolutional Layers (Conv1D): 

• These layers are the core of feature extraction in CNNs. They apply filters 
(also called kernels) that slide across the input data, capturing local patterns 
and feature activations. 

• The code defines three convolutional layers: 

o Conv1D(64, activation='relu'): This layer uses 64 filters. The "relu" 
activation function introduces non-linearity, allowing the network to 
learn more complex relationships between features. 

o Conv1D(128, activation='relu'): Similar to the first layer, this layer 
uses 128 filters. As the network progresses through layers, it can learn 
increasingly complex features by combining simpler ones learned in 
earlier layers. 

o Conv1D(256, activation='relu'): The final convolutional layer uses 256 
filters with "relu" activation. This layer likely extracts even more 
intricate features based on the preceding layers' outputs. 

Pooling Layers (MaxPooling1D): 

• These layers perform downsampling, reducing the dimensionality of the data 
while preserving the most significant features. 

• The code uses two MaxPooling1D layers, likely with a pooling size of 2 (not 
explicitly mentioned). Max pooling takes the maximum value within a 
window of size 2 on the input, effectively reducing the size of the data by half 
in each dimension. This helps control overfitting and reduces computational 
costs. 

Flattening Layer: 

• This layer transforms the multi-dimensional output from the convolutional 
layers (typically with height, width, and channels) into a single long vector. 
This is necessary to connect the extracted features to the fully connected 
layers. 

Dense Layers: 

• These layers perform more complex, non-linear transformations on the 
flattened data. They learn higher-level abstractions and relationships 
between the extracted features. 

• The code defines two dense layers: 

o Dense(128, activation='relu'): This layer has 128 neurons and uses 
"relu" activation. It processes the flattened features and learns more 
intricate relationships between them. 

o Dense(n, activation='softmax'): The final dense layer has n neurons, 
corresponding to the n predicted classes in the classification task. It 
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uses "softmax" activation, which outputs a probability distribution for 
each class, ensuring the sum of probabilities across all classes is 1. 

 

 

3.4.2.7 Long short-term memory (LSTM) model 

The following paragraphs outline a training process for a Long Short-Term Memory 

(LSTM) network for a multiclass classification task with imbalanced classes. After data 

preparation, including handling missing values and encoding the target variable, the 

data were split into training and test sets while maintaining class proportions using 

stratified splitting. 

 

To address class imbalance, SMOTE was applied to the training data, generating 

synthetic samples for the minority class. The data were then reshaped to a format 

suitable for LSTM processing, where each feature vector was treated as a sequence 

with one dimension. 

 

The LSTM model itself is a sequential model with a single LSTM layer containing 64 

memory units. LSTMs are adept at capturing long-term dependencies in sequential 

data, which can be crucial for classification tasks involving sequences. The LSTM layer 

is followed by a dense layer with four output neurons and softmax activation. The 

four neurons correspond to the four classes, and softmax activation ensures the 

model outputs probabilities for each class, enabling multiclass classification. 

 

The model was compiled with the Adam optimiser and sparse categorical cross-

entropy loss, which is suitable for this multiclass classification scenario. Training 

occurs for 10 epochs on the resampled data, and validation data were used to 

monitor the model's performance and prevent overfitting. Finally, the model was 

evaluated on the unseen test data, and its performance metrics like accuracy are 

reported. The training history, including training and validation accuracy over epochs, 

is visualised to assess the model's learning behaviour. 

A detailed description of the classes follows below. 

1. LSTM Layer (layers.LSTM(64, input_shape=(X_resampled.shape[1], 1))): 

• Function: This layer is the core component of the LSTM model and is 
responsible for capturing long-term dependencies in sequential data. It 
utilizes a special architecture with memory cells, gates, and internal 
connections that allow it to learn from past information and retain relevant 
context for future predictions. 

• Parameters: 
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o 64: This defines the number of memory units within the LSTM layer. 
Each memory unit has the capability to store and process information 
relevant to the sequence. A higher number of units can potentially 
capture more complex relationships but also increases model 
complexity. 

o input_shape=(X_resampled.shape[1], 1): This specifies the expected 
format of the input data. Here, X_resampled.shape[1] represents the 
number of features in each sample, and 1 indicates that the features 
are treated as a single sequence with one dimension. 

2. Dense Layer (layers.Dense(n, activation='softmax') 

• Function: This layer performs the final classification task. It takes the output 
from the LSTM layer (the hidden state), which represents the processed 
sequence information, and maps it to class probabilities. 

• Parameters: 

o n: This signifies the number of output neurons, corresponding to the 
four classes the model needs to predict. 

o activation='softmax': This activation function ensures the output 
from the layer sums to 1, interpreting the values as probabilities for 
each class. The class with the highest probability is predicted for a 
given sequence. 

In summary, the LSTM layer extracts and retains crucial information from the 
sequential data, while the dense layer with softmax activation translates the 
processed information into class probabilities for multiclass classification. This 
combination allows the LSTM network to effectively learn patterns and make 
predictions based on sequential data. 
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4. Results 
This part of the thesis reviews the performance of the models used to our 

classification problem. The evaluation scores for the different models are presented 

followed by the feature importance plot and the confusion matrix for the results per 

class for the SVM model used in dataset 1. 

From the results, it is clear theta all models exhibited variations in performance 

depending on the data handling approach (dummy vs. non-dummy) and the number 

of target classes present 

4.1 SVM model 

When all target classes were included (dataset 1), the model achieved higher 

Accuracy (0.67) and ROC AUC score (0.84) using the dummy approach, than using the 

non-dummy approach to handle the categorical features. Also, for the scenario with 

one missing target class (dataset 2), the dummy approach maintained a comparable 

Accuracy (0.70) and ROC AUC score (0.78) to the non-dummy approach.  

Interestingly, the dummy approach also yielded better scores than the non-dummy 

approach for the binary classification scenario (Table 7). Overall, the SVM model 

demonstrated promising performance for multi-class and potentially binary 

classification tasks. 

 

4.2 Random Forests model 

When all target classes were included, the “dummy” model achieved an accuracy of 

0.64 and an ROC AUC score of 0.83. Interestingly, the non-dummy approach yielded a 

lower Accuracy of 0.55 but a comparable ROC AUC score of 0.79 for this complete 

dataset. Also, for the scenario with one missing target class (dataset 2), the dummy 

approach generally yielded higher performance across both metrics (Accuracy: 0.75 

vs. 0.67, ROC AUC: 0.88 vs. 0.84). Overall, the random forest model demonstrated 

promising performance for multi-class classification tasks, highlighting the 

importance of choosing an appropriate data handling technique depending on the 

data characteristics, see Table 7. 

 

4.3 Decision Tree Model 

The impact of the data handling approach also differed across the chosen 

performance metrics (Accuracy and ROC AUC Score) see Table 7. 

For Accuracy, the dummy approach consistently achieved higher scores across all 

scenarios. When all target classes were included, the dummy approach reached a 

score of 0.51 compared to the non-dummy approach's 0.46. This trend continued for 

the three target value (dataset 2) scenario (0.58 vs. 0.56) and even extended to the 
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binary classification dataset (dataset 1), where the dummy approach achieved a 

notable lead (0.74 vs. 0.64). These results suggest that the dummy approach might 

be generally preferable for maximizing Accuracy in this dataset, regardless of the 

number of target classes. 

The ROC AUC score results were more nuanced. The dummy approach maintained 

consistent scores (around 0.68) for both all and three target value scenarios. 

However, in the binary classification case, the dummy approach showed a slight 

improvement (0.72) compared to the non-dummy approach (0.63). While the 

difference is smaller than for Accuracy, it suggests the dummy approach might also 

offer some benefit for ROC AUC score, particularly in simpler classification tasks with 

fewer target classes. 

 

4.4 KNN model 

There's a clear advantage to using dummy target values for the KNN model in this 
case, particularly when maximising Accuracy is the primary concern, see Table 7. The 
dummy approach consistently yielded higher Accuracy scores across all scenarios. 
With all target values included, the dummy approach achieved an Accuracy of 0.60 
compared to the non-dummy approach's 0.54. This trend continued for the three 
target value (dataset 2) scenario (0.69 vs. 0.65) and became even more pronounced 
in the binary classification (dataset 1) case (0.80 vs. 0.77). 

The impact of data handling on ROC AUC score is less clear-cut compared to 
Accuracy. The dummy approach maintained consistently high scores (around 0.78-
0.82) across all scenarios. The non-dummy approach also achieved good scores 
(around 0.75-0.81), with a decrease compared to the dummy approach in some 
cases. 

 

4.5 XGBoost model 

Interestingly, the model generally achieved better results with the dummy approach 

for both Accuracy and ROC AUC score, see Table 7. 

For Accuracy, the dummy approach yielded slightly better results across all scenarios. 

When all target classes were included, the dummy approach achieved an Accuracy of 

0.59 compared to the non-dummy approach's 0.53. This trend continued for the 

three-target value (dataset 2) scenario (0.75 vs. 0.71) and even extended to the 

binary classification (dataset 1) case (0.81 vs. 0.79). 

The impact of the data handling approach was even more pronounced for ROC AUC 

score. The dummy approach achieved consistently high scores across all scenarios 

(around 0.81-0.87). In contrast, the non-dummy approach, while still exhibiting good 

scores (around 0.77-0.86), showed a decrease compared to the dummy approach in 

all cases. 
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Table 7: Evaluation scores for the XGBoost model. SVM: Support Vector Machine, RF: Random 
Forest, DT: Decision Tree, KNN: K- Nearest Neighbours. 
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4.6 CNN model 

For the non-dummy approach, the CNN model's performance exhibited variations 
depending on the number of target classes present in the dataset.  

The model achieved the lowest average test accuracy within the cross-validation folds 
(0.1875) when dealing with all target values (dataset 1). This suggests the model 
struggled with the complexity of a larger number of classes. As the number of target 
classes decreased, the Test Accuracy improved significantly. In the three-target 
values (dataset 2) scenario, the Test Accuracy reached 0.3182, and it climbed further 
to 0.5000 for the binary classification case (dataset 3). This trend indicates the model 
performs better with fewer target classes. 

While the training loss generally decreased across epochs for all scenarios, 
suggesting the model learned from the data, there were fluctuations in the loss 
curves. These fluctuations could point to potential challenges with overfitting or 
underfitting. Additionally, the validation accuracy didn't always show a clear upward 
trend. This suggests that further hyperparameter tuning might be necessary to 
improve the model's ability to generalize to unseen data. 

Overall, the CNN model seems to struggle with a larger number of target classes. Its 
performance improves as the number of target classes decreases, reaching its peak 
in the binary classification scenario. This suggests the model's architecture or 
training strategy might require adjustments to handle multi-class classification tasks 
more effectively. 
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      (b) 

 

      (c) 
Figure 25: Training and testing sessions of the CNN model for (a) the full dataset (dataset 1), (b)for 
the three-target values dataset (dataset 2) and (c) for the binary dataset (dataset 3). Accuracy 
refers to the accuracy achieved during the training session, while val_accuracy refers to the 
accuracy achieved using the validation set. 

 

4.7 LSTM model 

The LSTM model's performance exhibited a clear correlation between the complexity 

of the target variable and its ability to learn effectively. When faced with the full 

target values, the model achieved a low initial training accuracy of around 19%, only 
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increasing to 41% by the end of 10 epochs. Similarly, validation accuracy remained 

stagnant, fluctuating between 15.62% and 18.75%. This lack of improvement was 

mirrored in the loss function. Training loss decreased slightly from 1.4204 to 1.3095, 

and validation loss showed minimal change from 1.4169 to 1.3609. These metrics 

suggest the model struggled with the complexity of the full target task. Conversely, 

reducing the number of targets led to a significant improvement in performance. 

With three target values, training accuracy rose from 29.06% to 51.28%, with 

validation accuracy also demonstrating a positive trend, ending at 36.36%. Training 

and validation loss followed a similar pattern, indicating the model was successfully 

learning the relationships within the data. The most successful application was 

observed in the binary classification task. Here, the model achieved the highest 

accuracy, starting at 50% and reaching 61.40% after 10 epochs. Validation accuracy 

also improved significantly, peaking at 68.18%, although it exhibited some 

fluctuations. The loss function mirrored this trend, with training loss decreasing from 

0.7310 to 0.6763. While validation loss showed an increase at the end, these metrics 

demonstrate the model's superior performance on the binary task. By analysing 

these results, we can determine the appropriate scenarios where this LSTM model 

can be effectively applied (i.e., simpler classification problems) and potentially 

explore methods to improve its performance on more complex tasks with a large 

number of target variables. 
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      (b) 

 

(c) 

 
Figure 26: Training and testing sessions of the LSTM model for (a) the full dataset (dataset 1), 
(b)for the three-target values dataset (dataset 2) and (c) for the binary dataset (dataset 3). 
Accuracy refers to the accuracy achieved during the training session, while val_accuracy refers to 
the accuracy achieved using the validation set. 

 

4.8 Best model and feature importance 

Examining the full target dataset (dataset 1), where categorical features were 

addressed using the dummy approach, the SVM emerged as the most effective 

model for this classification task.  Its accuracy of 0.67 surpassed the runner-up, the 
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Random Forest model, by a margin of 0.03 (detailed model accuracies can be found 

in Table 8).  

Intriguingly, for the SVM model the most impactful feature, emerging buy compering 

the f_values from the ANOVA test that is used by SelectKBest, was SF-36_GH-N, 

which corresponds to the general health section within the SF-36 health 

questionnaire (Figure 28). The second most important feature was SF-36_BP-N 

(bodily pain), and the third most important feature was the HADS anxiety 

questionnaire.   

 

 

Figure 27: Visual representation of the Table 12. SVM: Support Vector Machine, RF: Random 
Forest, DT: Decision Tree, KNN: K- Nearest Neighbours. 

 

Table 8: Summary table of model accuracies for the dataset 1. SVM: Support Vector Machine, RF: Random 
Forest, DT: Decision Tree, KNN: K- Nearest Neighbours. 
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Figure 28:  Important features selected by the SVM model when missing values handled with the 
dummy approach. 

 

4.9 Metric scores per class for the best model 

The evaluation metrics, alongside the confusion matrix, see Figure 29, reveal 
interesting class-specific performance variations in the model. Class 0.0, the class 
referring to patients labelled as they do not need any further specialist consultation,  
stands out with the highest precision (0.69) as shown in table 9. This indicates a 
strong ability to correctly identify relevant instances of class 0.0 and limit false 
positives, which can be further confirmed by its high recall of 0.81. Analysing the 
confusion, we can see that a significant portion of class 0.0 instances were indeed 
classified correctly. 

Conversely, class 2.0 shows the lowest performance. Despite a moderate precision 
of 0.56 (indicating the model isn't including a substantial number of irrelevant 
instances in this class), the recall of 0.42 is concerning. This low recall, evident from 
the confusion matrix , suggests the model is missing a significant number of relevant 
class 2.0 examples.  

Classes 1.0 and 3.0 showcase a trade-off between precision and recall. Class 1.0 
exhibits balanced performance with a precision of 0.57 and a recall of 0.58. This 
suggests the model performs moderately well for this class, as reflected in the 
confusion matrix (likely a balance between correct classifications on the diagonal 
and misclassifications elsewhere). It identifies relevant instances of class 1.0 while 
avoiding a high number of irrelevant ones. 
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On the other hand, class 3.0 achieves the highest recall (0.87), indicating a strong 
ability to capture most of the relevant examples, as confirmed by the high value on 
the diagonal in the confusion matrix for class 3.0. However, the precision of 0.81 
suggests there might be some inclusion of irrelevant instances in this category. 
Depending on the specific context of the thesis and the relative importance of 
precision versus recall, this trade-off for class 3.0 may require further consideration.  

 

Figure 29: Confusion matrix of the SVM model. 

 

Table 9: Metric scores per class for the SVM model. 

 

 

 

  

Class Precision Recall F1-score
0.0 0.69 0.81 0.74
1.0 0.57 0.58 0.57
2.0 0.56 0.42 0.48
3.0 0.81 0.87 0.84
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5. Discussion and conclusion 
In this thesis, the interrogated dataset was acquired at the Long Covid clinic of 
Evangelismos General Hospital, as part of an ongoing research project that examines 
holistically Long Covid patients. The analysis showed that different models were the 
most appropriate for different datasets. All models that emerged as the best, used 
the dummy variables data handling approach to address the categorical features. 
This indicates that categorical features should be converted to dummy variables and 
not being used as they are [65] 

A trend emerged where model complexity mirrored dataset complexity. For Datasets 
2 and 3, exhibiting lower complexity, the Random Forest model performed most 
effectively. Conversely, the SVM algorithm provided a promising foundation for Long 
Covid patient classification in the more intricate Dataset 1. Importantly, we cannot 
attribute the model discrepancies to model parameter variations between the 
different datasets. The most likely explanation for the differential performance lies in 
the inherent complexity of the datasets themselves.  

Analysis of various features associated with Long Covid reveals a hierarchy of 
importance for patient classification, as illustrated in Figure 28. Here, we delve 
deeper into these prominent features. 

A potential high link between BMI and Long Covid severity emerges from Figure 28, 
aligning with research by Wu et al. (2021) [66]. This suggests that BMI may serve as 
an indicator of overall health, potentially influencing the intensity of Long Covid 
symptoms. 

Figure 28 emphasizes the significant impact of vaccination after a Covid-19 infection 
on Long Covid development and severity. This finding is further corroborated by 
research from Mumtaz et al. (2022) [67]. It underscores the critical role of 
vaccination in mitigating the risk and severity of Long Covid. 

The prominence of gastrointestinal problems and sleep disturbances in Long Covid 
patients is highlighted in Figure 28. Studies by Tedjasukmana et al. (2023) and 
Álvarez-Santacruz et al. (2024) provide deeper insights into these specific aspects 
[68], [69]. Additionally, Vélez et. al (2023) contributes valuable knowledge in this 
domain [70]. 

The HADS questionnaire, as showed in Figure 28, was identified as an important 
feature in classifying patients. The association between anxiety and Long Covid was 
studied by Mazza et al. (2022) [71]. The study shows a high association between 
anxiety and Long Covid development. 

Also, there is a high association between arthralgias and Long Covid, as showed in 
Figure 28. Research by Nalbandian et al. (2021) [72] supports this association. 

Moreover, the SF-36 family of questinnaires, depicted in Figure 28, provides valuable 
insights into various mental and physical health aspects relevant to Long Covid. A 
study by Rodríguez-Galán et al. (2022) demonstrates the utility of SF-36 for assessing 
Long Covid patients [73]. Scores on specific subscales like Mental Health (MH-N), 
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Physical Functioning (PF-N), and General Health (GH-N) could be particularly 
informative. 

By prioritizing these key features and leveraging insights from the cited studies, we 
can develop more robust classification models, ultimately leading to improved 
diagnosis and management strategies for Long Covid. 

While some features like fatigue and breathlessness have emerged as strong 
indicators of Long Covid, others require a closer look. Let's delve into two such 
features: 

One of the features that need a closer look is chest pain. While chest pain is a 
recognized symptom of Long Covid, it might not be as specific as others. Focusing on 
the exact type of chest pain experienced by patients could be more informative. For 
instance, studies by Ziauddeen et al. (2022) offer valuable insights into the 
characteristics of chest pain in Long Covid patients [74]. 

Another feature is PTSD. The relevance of PTSD scores and specific PTSD 
subcategories for Long Covid classification needs further investigation. Studies by 
Aceituno et al. (2024) explore the relationship between these conditions in Covid-19 
patients [75]. 

While the SVM model, using the dummy handling approach achieved a promising 
accuracy of 0.67, further exploration can lead to significant improvements. 
Additional investigation is warranted for features like specific types of chest pain 
(building on Ziauddeen et al., 2022 [74]) and particular PTSD subcategories (as 
explored by Aceituno et al., 2024 [75]) to potentially enhance model performance. 
Integrating data from electronic health records, imaging tests, and genetics could 
also provide a more holistic view of patient health, potentially leading to even more 
robust patient classification. 

Also, after discussing the above features with our collaborators at the Evangelismos 
General Hospital, we concluded that patients should have the Covid-19 vaccine, 
since it is the only way to reduce the risk for developing Long Covid. The rest of the 
symptoms emerge because Long Covid impacts multiple physiological systems. We 
cannot reduce the risk for Long Covid by preventing different symptoms. For 
example, trying to sleep better will not prevent Long Covid. 

This study acknowledges some limitations. The current accuracy of 0.67 indicates 
room for improvement. Future research should explore techniques like 
hyperparameter tuning and feature engineering to refine the model. Additionally, 
the generalisability of the findings may be limited by the specific patient population 
and data sources used. Further research with diverse populations and healthcare 
settings is crucial for broader applicability. 

Our model aims to become a standard process assessing patients at their first visit at 
the Long Covid clinic. This can be done by creating an application with a simple 
questionnaire containing the most important features, as described in section 4.8. 
After the patient completes the questionnaire, the application will send the results 
proposing the  medical specialty that is best suited for the patients’ needs. This way 
we can streamline the triaging process in the clinic. 
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Several exciting possibilities emerge for future research. Data integration from 
various sources, including electronic health records, imaging, and genetic 
information, could offer a more comprehensive picture of patient health. Broader 
population studies across different geographical locations and healthcare systems 
are necessary to verify the generalizability of the findings. Continuous model 
improvement through techniques like hyperparameter tuning and feature 
engineering is essential to maintain optimal performance in a constantly evolving 
environment.  

One of the challenges in developing machine learning models is the need for large, 
robust datasets. This thesis proposes a novel approach to address this challenge by 
leveraging advancements in Artificial Intelligence. A recent study by Nikolopoulos et 
al. (2024) demonstrates the effectiveness of Wasserstein Generative Adversarial 
Networks (WGANs) in generating synthetic patient data [76]. WGANs offer a 
significant advantage in terms of speed, allowing for the creation of a large volume 
of data in a shorter timeframe. Furthermore, WGANs are designed to capture the 
underlying distribution of the real patient data, ensuring statistical similarity 
between the real and synthetic populations. This approach not only expedites data 
acquisition but also mitigates the risk of type II errors, which occur when a true 
effect goes undetected due to insufficient data points. Utilising a combination of 
real-world and virtual patient data can lead to a robust dataset size for training and 
validating the model. 

This thesis contributes significantly to the growing body of research on the 
application of machine learning in healthcare. By demonstrating the feasibility and 
effectiveness of machine learning for prioritising Long Covid patients, this study 
paves the way for more efficient and targeted approaches to managing this complex 
condition. As future research refines the model and expands its generalisability, ML  
has the potential to revolutionize Long Covid patient care, leading to improved 
outcomes for patients and optimised resource utilisation within healthcare systems. 
This approach ultimately empowers clinicians to deliver more focused and timely 
interventions, ensuring increased safety for Long Covid patients. 
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