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Evyaplotieg

Oa nbeha va exkPpdow Tig Bepuodtepeg evyaplotieg Hov oTnV emPAETOVON TNG
duthopatikng pov epyaciac, Epevvitpia Ap. Evayyeiia ApakomodAiov, 1 omoia
QoL €dwaoe TNV TOAVTIUN evKALPLX VAL EKTTOVIOW TNV gpyacio pov oto Ivatitovto
[Mupnvikng kot Swpatdiokng Puoikng tov EKE.D.E. "Anuoxpitog”. H ovveyng
vroothpEn ko kabodnynor g ko OAn tn didpkela avtrg tng dradpoprg v-
NpEov KaBoPLOTIKEG YL TNV ETLTUXT] OAOKAN PWOT) TNG £PEVVAG HOU.

EmumAéov, Oa nfeda va evxoplotrow Ta LITOAOLT HEAN TNG EPEVVITIKTG O-
padog tov metpapatog KM3NeT, yia tn cuvelohopd Toug Kot TIG TOAVTIHEG GUY-
BovAéc Toug. Xwpig tnv kalBodrynomn kat tnv texvikn vIToGTHPLEN TOVS, 1) EpyOcia
avtr) de B popovoe va olokAnpwOet pe emtoyia.

Eva 1duaitepo evyaploted oto idpupa Qvdon yux tnv eumoTochv Ko vIto-
otnplEn ov pov €detfe, TPocPEPOVTAg Pov LITOTPodia WoTe va TepaT®wolv emL-
TUYDG OL TTPOTTTUYLXKEG OV GTTOVOEG,.

Télog, éva pHeydho evXoPLOTAD 0PeIA® GTNV OLKOYEVELX OV KaL 6TOVG Bidovg
HOU Yylot T ovvey T vtoo T pLEn, TNV evOGpPLYVCT) KA TNV APEPLETT CUUTAPACTACT]
Tovg kol OAN TN Sihprelx TV GITOLVIDVY HOU.



Abstract

Neutrinos are subatomic particles of high interest for many fields of scientific
research. Neutrinos, being electrically neutral, offer a unique tool to investigate
the inner regions of astrophysical objects and to comprehend the Universe across
a broader spectrum of energies. Their trajectory remains unaffected by magnetic
fields, keeping directionality when reaching us from distant sources. There are
various astrophysical sources known to emit neutrinos providing a direct means
of observing these sources. Furthermore, evidence for a non-zero mass enabled
studies on neutrino oscillations, contributing to our understanding of fundamental
particle physics.

The KM3NeT water Cerenkov neutrino telescopes are optimized for the detec-
tion of high-energy neutrinos, in the GeV-PeV range. KM3NeT/ARCA neutrino
detector is dedicated to the search for very high-energy cosmic neutrinos (GeV-PeV).
KM3NeT/ORCA detector is optimized for the study of neutrinos created by cosmic
rays in the Earth’s atmosphere (a few GeV). To evaluate the efficiency and overall
performance of neutrino telescopes Monte Carlo simulations are employed.

Graph Neural Networks (GNNs) are a specific class of neural network archi-
tecture designed to operate on graph-structured data. Such networks have been
also developed in the context of the KM3NeT experiment. The input data of the
GNN consists of nodes that store the hit (photomultiplier signal) information (time,
Time-over-Threshold, 3d position, 3d direction) and edges that connect the nodes
defining the relations between hits. The model architecture adopted for the analysis
is based on the ParticleNet architecture [1].

In this study, the performance of the Graph Neural Network (GNN) is inves-
tigated for event classification and energy prediction using KM3NeT/ARCA data
collected from 6, 7, and 8 DUs. Three main networks have been trained and eval-
uated using KM3NeT/ARCAS8 (KM3NeT/ARCA with 8 detection units deployed)
data: signal/background classifier, track/shower classifier and energy regression.
Also, a signal/background classification network has been trained and evaluated
using KM3NeT/ARCA7 data (KM3NeT/ARCA with 7 detection units deployed). The
classification models have been trained to distinguish between atmospheric muons
and signal (neutrinos), and shower-like and track-like neutrinos, respectively. The
regression model is defined to produce an estimation of the neutrino energy. More-
over the performance of the KM3NeT/ARCAG® trained network is evaluated for the
signal/classification task, using KM3NeT/ARCA7 and KM3NeT/ARCAS data.
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[lepiAnym

Ta vetpiva eivat voatoptkd copaTidia TOAD pikprg Halag, eival NAEKTPLKE Ov-
détepa ko aAAnAemidpov povo péocw Paputikov kot acBevov alAniemidpdoe-
wv. H tpoyid toug dev emnpedletor amd poyvntikd media, eEaodaiilovrag étol
v adi&n touvg otn I'n and amopakpuopéveg mnyég. H mbavn mapatipnon ve-
TPIVOV otd QUTEG TIG TINYEG avarpévetal va mopéxel TAnpodopieg yio LG drodi-
KOGLeg IOV APAVOUY XOPU GTO EGOTEPLKO XOTPOPUGLKDV AVTIKELPHEVOV KOOGS
kabioTtatal epiktn koL n Topatipnon Tev idlwv Tewv tnyov. EmmAéov, amode-
i€eic yia pun-pundevikn palo dtevkoAOVOLV TIC HEAETEC GXETIKA HLE TIG TUAAVTOOELG
vetpivo (“neutrino oscillations”), copféAlovtog oTnV TEPAUTEPW® KATAVONOT TG
OepeAddovg PLOIKTG TOV GTOLXELWIMOV COUATISIWV.

H aviyvevon vetpivwv yivetal pécw L8IKA KATAOKEVAGHEVOV VLY VELTMV, OL
omotol otnpilovral oto pouvopevo Cerenkov. TETOLOL aVIYVELTEC XPNGLUOTOLO-
Vvt oto meipopo KM3NeT yia tov evtomiopd vetpivov vymAng evépyelog, 6to
evpog GeV-PeV, 0mov wg péco aviyvevong a&lomoteital to Oolacovo vepod. To -
Aeokomio vetpivaov KM3NeT/ARCA ctoyebel otnv avalntnon moAd vymAng evép-
YELOG KOOULK®V VeTpivev (GeV-PeV), evod to tnAeckomio KM3NeT/ORCA ypnotpo-
TOLELTOIL YLOt T HEAETT) TV VETPIVOV TTOL SNILOVPYOVVTOL OTTO KOGULKES AKTIVEG
otnv atpochopa g I'ng (nepikd GeV). Entiong, pe tig mpoocopoidoelg Monte
Carlo yepuparvetal 1o yaopa peTa&d BewpnTIK®OV TPOGSOKLOV KL TELPOUATIKOV
TOPATNPRoEDV KOONDG TPOGOHOLOVOVTOL Ol XAANAETLOPACELS TWV COHATLOIWV.

Ta Nevpwvika Aiktva Ipadwv (GNNSs) eivat Evag TOTOG VELPOVIKOV SIKTOWV
7OV Xpnoipomotovy dedopéva pe popdrn yphdov. Tétowx diktva éxovv avortto-
x0¢et xau oto mAaiclo tov melpapatog KM3NeT. Ta dedopéva popdng ypaddov mov
Séxeton To dikTvo autoteAovvTaL atd kOpPoug (nodes), ov mepiéxovv TANpodo-
pieg oxetikég pe Ta “ofpata” (“hits”) Tov aviyvevty (xpdvog, Béom - katebBuvon
OTIC TPELG SLACTACELS), kKot akpég (edges) Tov cuvdéovy Toug kKOPPoLG PeTAED TOVG
opilovtag oyéoelg petakd Twv hits. To apxltekTOVIKO HOVTELO TTOV XPNCLULOTTOLE-
it otV Tapovoo avadveor eivor Paciopévo oto ParticleNet architecture.

Jnv mopovoa epyacia peretatal i ewidoon Tov GNN yix v avayvoplon
ocwpatdiov kat v TpoPAeyn tng evépyeldg tovg. Tpia Pacika diktva éxovv
avamntuyBei: éva dikTvo kaTnyoplomoinong onpatog/vropfddpov, to omoio pabo-
ver va Eexwpilet Ta vetpiva (onpa) amd ta atpoosdoaipikd ptovia (bopabpo), éva
dixtvo katnyoplomoinong vetpivwv track/shower, mov pabaivel va Eexwpilel to
VETpLva e VTTOYPAPY) KATALOVIOUOV OITO TO VETPLVA TTOL 081 YOUV G€ TOTOAOYiES
YPOUULKNG TPOXLAG GTOV OVLYVELTH, KOl TEAOG, Eva SIKTLO Yo TNV TpOPAedn Tng
evépyelag Towv vetpivov. Ola ta diktva déxovton dedopéva amd tov aviyveuTi
KM3NeT/ARCAS, ta ool cuAAEXONKY amd 8 aviyvevtikég povadeg (DUs), pe
T omoia yivetan i ekmaidevon (train) ko 1 emadnifevon. EmmpooBétwg, pele-
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Taton To dikTvo Tov orjpatog/vofadpov oto omoio €xel yivel 1 ekmaidevon pe
dedopéva atd KM3NeT/ARCA6 kot KM3NeT/ARCAT.
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1

Neutrinos

In 1892, Becquerel made the discovery of the radioactive phenomena. The fact
that the electron is released from the nucleus during beta decay was originally
noticed by Bohr. Chadwick made the important finding that the fundamental beta
spectrum is continuous in 1914. This conclusion was thought to have different
interpretations until far into the 1920s. It was understood that the neutron, which
Chadwick discovered in 1932, was the particle in the nucleus that released the
electron and neutrino during beta decay. Using the neutron, electron, proton,
and neutrino, Fermi created the four Fermi-Hamiltonians for beta decay. The
discipline of weak interactions emerged as a new area of theoretical physics; initially
introduced by Fermi in 1933, it underwent further refinement in the 1950s through
the contributions of Lee and Yang, Feynman and Gell-Mann, and many others, and
finally put into its present form by Glashow, Weinberg and Salam in the 1960s. As
for the strong forces, after Yukawa’s groundbreaking work in 1934, there was a
lack of a comprehensive theory until the development of chromodynamics in the
1970s. The neutrino was discovered by Reines and Cowan in 1956. Their method
of detection involved the simultaneous observation of a positron emitted in the
reaction V, + p — e" + n and a photon emitted in the deexcitation of cadmium
following the neutron capture: n +''* Cd —!"* Cd + y. For this purpose, they
used the nuclear reactor, located at Savannah River in South Carolina, as both an
anti-neutrino source and a detector of water containing dissolved cadmium chloride.
Investigating beta decays has played a crucial role in unraveling key aspects of
the weak force, including the chirality of neutrinos (their left-handed nature), the
V-A structure of weak interactions, and the observation of parity non-conservation
effects. Weak interactions gained recognition as a new force of nature when an
increasing amount of particles were found to engage in them, and neutrinos became
an essential component of these interactions.

1.1. Standard Model

The "Standard Model" [2] of elementary particles and forces is a theoretical frame-
work derived from observations, foreseeing and interconnecting new data. Its
success in predicting various phenomena has been remarkable. While it is not
anticipated for the standard model to hold true at extremely short distances, its
extraordinary achievements imply that it will likely continue to be a highly accurate
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Figure 1.1: Elementary particles of the standard model, consisting of gauge bosons and the three
generations of fermions. S# is spin, Q, is electric charge, and m (GeV /¢?) is mass. Image credit [2].

approximation of natural phenomena even at scales as minute as 107'® meters. In
the early 1960s, physicists characterized nature by four distinct forces, each with
different ranges and strengths measured at an energy scale of around 1 GeV. The
strong nuclear force operates over a range of approximately a fermi or 10"> meters.
The weak force, responsible for radioactive decay and operating within a range
of 107" m, is about 107> times weaker at low energy. The electromagnetic force,
governing much of macroscopic physics, has both limitless range and strength
and is mediated by the photon. Gravity, the fourth force, also possesses an infi-
nite range and a low-energy coupling, roughly 107, making it too weak to be
detected in laboratory experiments. The Standard Model’s significant achievement
was the development of a unified description encompassing the strong, weak, and
electromagnetic forces within the framework of quantum gauge-field theories. Fur-
thermore, the standard model integrates the weak and electromagnetic forces into
a single electroweak gauge theory.

Leptons, quarks, and mediators are the three types of elementary particles that
make up all matter. Based on their charge (Q), electron number (L.), muon number
(L,), and tau number (L,), there are six different types of leptons. They divide into
three generations by nature. Additionally, there are six corresponding antileptons
with reversed signs. Thus, the total number of leptons is really 12. Quarks may
also be categorized into six "flavours" based on charge, strangeness (S), charm (C),
beauty (B), and truth (T). In addition, there are downess (D) and upness (U), even
though these are not very common terms. Quarks are also classified into three
generations. All signs would also be inverted on the antiquark table. Furthermore,
there are three colours associated with each quark and antiquark, hence adding up
to 36 quarks. All fermions, leptons and quarks, have a half-unit intrinsic angular
momentum. The first generation comprises the up (u) and down (d) quarks that
make up nucleons, along with pions and other mesons involved in nuclear binding.
It also contains the electron e and electron-neutrino v, released by nuclear 8 decay
with a positron. The quarks of the other two generations, charm (c) - strange (s)
and top (t) - bottom (b), are constituents of heavier, short-lived particles. They and
their accompanying charged leptons, muon p and tau 7, decay swiftly via the weak
interaction to the first family’s quarks and leptons.

Lastly, each interaction has a corresponding mediator: the photon for elec-
tromagnetic force, two W’s and a Z for weak force, the graviton for gravity, and
the gluon for strong force. In the standard model, there are eight gluons, each
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possessing a color. Similar to quarks, gluons are not expected to exist as isolated
particles. An overview of the elementary particles of the standard model can be
seen in Figure 1.1.

It is crucial to note that, within the standard model, neutrinos are considered to
be without mass. This aspect will be explored in more detail in section 1.4.

All of this adds up to a significant quantity of elementary particles. Furthermore,
there are at least 61 particles to deal with because the Glashow-Weinberg-Salam
theory requires at least one Higgs particle. Guided by our understanding, initially
with atoms and later with hadrons, numerous individuals have proposed that at
least some of these 61 entities may be compositions of more fundamental subpar-
ticles. However, such hypotheses extend beyond the standard model. One may
wonder why there should be three generations instead of only one. In response,
the dominance of matter over antimatter allows for a reasonable Standard Model
explanation, but only in the case of at least three generations. Naturally, this raises
the opposite query, which is: why there are only three generations. There were
valid reasons to expect a fourth or perhaps a fifth generation in 1988. However,
in less than a year, SLAC and CERN experiments closed off that possibility. The
Z° particle, known as the 'mother of all particles’, can undergo decay into any
quark/antiquark or lepton/antilepton pair, given that the particle’s mass is less than
half that of the Z°. This ensures there is enough energy to produce the pair. By
gauging the Z° lifetime, it becomes possible to count the number of quarks and
leptons with masses below 45 GeV /c?. Experimental results align with expectations
based on the established three generations.

In the meantime, several theoretical hypotheses, lacking direct experimental
support, extend beyond the Standard Model. Grand Unified Theories (GUTs), con-
necting strong, electromagnetic, and weak interactions, are widely acknowledged.
The concept of “supersymmetry’ (SUSY), doubling particle numbers by associating
fermions with bosons and vice versa, is also appealing to theorists. Additionally,
since 1984, superstring theory has captivated the imagination of a generation of par-
ticle theorists. Superstrings not only promise to reconcile quantum mechanics and
general relativity, eliminating infinities in quantum field theory but also propose
a unified 'theory of everything’, wherein elementary particle physics, including
gravity, emerges as an inevitable consequence.

1.2. Fundamental properties of neutrinos

In the 1920s, research on nuclear beta decay yielded the first indications of the
existence of neutrinos. Beta decay is a type of radioactive decay in which a beta
particle (either an electron, 7, or a positron, f*) is emitted from an atomic nucleus
(A, Z) as well as a lighter secondary nucleus with the same mass number but
differing by one unit, and nothing else observable:

(A, Z) > (A,Z £ 1)+ e + nothing else visible. (1.1)
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Experimentalists observed a continuum spectrum extending from m, to the
maximum permitted energy Q when the expected energy E, ~ Q = M; — My for e*
should have been well defined in the absence of any additional unseen particles in
the final state. In 1930, Wolfgang Pauli proposed that during the beta decay process,
an unobserved particle was emitted. The non-visible particle has to be neutral to
conserve energy, extremely light, and with spin 1/2 to meet the requirements of
statistics and angular momentum conservation. Beta decays are currently regarded
as the following processes in contemporary notation:

n—>pt+e +7v,,
A(Z,N)-> AZ+1,N-1)+e +7,, (1.2)
A(Z,N)—> AZ-1,N+1)+e" +v..

Three types of neutrinos have been identified via the development of new accel-
erators and advanced detectors. There is a unique family of leptons associated with
each neutrino. Neutrino observations have been essential in helping us comprehend
weak interactions, resulting in the standard model. Further observations using
neutrinos are believed to provide an important contribution to our knowledge of
physics beyond the standard model. In recent decades, it has become clear that
learning about the neutrino is essential in our comprehension of the Universe. This
is due to the fact that the neutrino is the most prevalent type of matter in the
Universe after radiation, and it is the source of the heavy elements that are essential
to life because of its role in nucleosynthesis. Thus, it is evident that the neutrino is
a significant particle.

Neutrinos are several orders of magnitude lighter than all other fermions, and
no direct measurement has found evidence for a non-zero mass. Neutrinos are also
neutral; they do not perceive strong interactions and interact relatively weakly, if at
all. For example, neutrinos produced in nuclear reactors with energy E, ~ 1 MeV
have a 107! chance of interacting within the Earth while traveling along a track
that goes through its center. Neutrinos are therefore "elusive" particles, but they
are also abundant in the Universe, yet we do not see them since they interact so
infrequently. Neutrinos have two types of interactions:

« Neutral Current (NC), in which they couple with a Z° boson, altering their
4-momentum but retaining their identity, and remaining uncharged. The
fundamental neutral vertex looks like:
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where f can be any lepton or quark. The Z mediates processes such as
neutrino-electron scattering v, + e~ — v, + e~ and neutrino-proton scatter-
ing v, + p = v, + p. In atomic physics, distinguishing neutral weak effects
from electromagnetic processes is sometimes possible by exploiting the fact
that weak interactions violate the conservation of parity (mirror symmetry).
To observe a purely neutral weak interaction, researchers must turn to neu-
trino scattering, where there is no competing electromagnetic mechanism.
The weak neutral currents were first observed in neutrino scattering v e
experiments at CERN in 1973, and the confirmation of their existence came
shortly thereafter through experiments at Fermilab.

« Charged Current (CC), in which they couple with a W* boson, "transforming"
into one of the charged leptons e*, u* or 7*. The fundamental charged vertex
looks like:

demonstrating the reaction [~ — v; + W~. Charged weak interactions are
the only ones that change the flavor of the neutrino. Such processes are
the neutrino-muon scattering y~ + v, — e~ + v, the decay of the muon
y- — e +v,+7,,the decay of the pion 7~ — e~ + ¥, and the beta decay of
the neutron n — p* + e~ + V..

The flavor of a neutrino is really the type (that is the mass) of the charged lepton
that is attached to the same charged current vertex. For instance, in the decay of a
(virtual) W~ or W, one writes:

W1+, W™ =1 +7v, (1.3)

where the mass (or type) of the charged lepton is indicated by the label I = e, y, 7 of
the neutrino. There is a clear experimental explanation for the distinction between
v and vV as well as the [ label assigned to the neutrino. A "v,," as described by
convention, interacting at its creation point can only produce e~, whilst a "v,"
can only produce e*, a v, only a y~, and similarly for the other neutrino types.
Overall, there is a clear phenomenological significance to both the flavour label
and the "bar" notation. The inherent angular momentum (or spin) of neutrinos is
an integer. The remarkable discovery of the 1950s was that, given experimental
uncertainties, the spin of every "v" is anti-parallel to its momentum, yet the spin
of every "v" is parallel. Put otherwise, all of the ¥ are right-handed and the v are
left-handed. This is the basis of the weak interactions’ "chiral nature" and gives rise
to the consequences of parity violations seen in nature.
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1.3. Neutrino flavors

As aforementioned, there are three types of neutrinos in the particle physics stan-
dard model. Each neutrino completes a doublet with the corresponding charged
leptons. A W gauge boson, for instance, can couple to any of the three pairings of
charged leptons and neutrinos:

W' - efv,
— v, (1.4)
- 1hy,
The label given to the neutrinos corresponds to the flavour, which is the mass of
the associated charged lepton.

Muon neutrino
Muon neutrinos and anti-neutrinos result from the decay of pions and muons, as
illustrated in the reactions:

nt s v, gt et v T, (1.5)
The discovery of the decay 7% — p* + vV, raised the question of whether the
undetected particles v were the same as those produced in beta decays. In 1962,
an experiment was conducted by L. Lederman, M. Schwarz, and J. Steinberg using
accelerator neutrinos. By bombarding a Beryllium target with a 15 GeV primary
proton beam, they generated pions, a source of neutrinos through decay. Studying
interactions like v, + N - p~ + X and v, + N — e~ + X, the experiment found
only the first type, demonstrating the distinction between v, and v,.

Electron neutrino
As mentioned above the electron neutrinos and anti-neutrinos are produced in beta
decay processes n — p* + e + V..

Tau neutrino

The tau neutrino v, is linked to the tau 7 lepton, which is the third and heaviest
of the charged leptons in the Standard Model of particle physics. The tau lepton
7~ was discovered in 1975 at the Stanford Linear Accelerator Center (SLAC) in
California. In processes involving the decay of tau particles 7*, tau neutrinos v,
and anti-neutrinos v, are expected to be produced as,

T o>V, + W,
v, +e + v, (1.6)

-V, +tpu +v,
— v, +as’].
Measurements of the Z-boson width have ruled out a fourth neutrino if it is less

than 40 GeV. If a fourth form of neutrino exists, it would indicate the existence of
a fourth type of matter, which would be a significant finding.
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1.4. Neutrino oscillations

The probability of detecting a neutrino, initially created in a specific flavor state,
in the same state or transitioning to another flavor state can exhibit oscillations
over time [3]. The concept of neutrino oscillations was first introduced by Bruno
Pontecorvo in the 1950s, suggesting that if neutrinos possess mass, they could
undergo such flavor-changing oscillations. This intriguing phenomenon stems from
the principles of basic Quantum Mechanics. Neutrinos produced in charged current
weak interactions alongside a charged lepton exist as weak eigenstates v, v,, V..
Typically, these weak eigenstates lack a well-defined mass and can be expressed
as linear combinations of three states, namely v,, v,, and v, each characterized by
distinct masses (m,, m, and m3). The expression for neutrino oscillations in vacuum
using the Dirac formalism is:

Vo) = Z U fv), (1.7)

where |v,) denotes the eigenstates v,, v,, V., |v;) represents the states vy, v,, v3, and
U,; is the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The unitary
arises due to the orthogonality of the three flavor eigenstates and masses. The time
evolution of a mass eigenstate with well-defined energy involves a simple phase
factor, and for a state initially created with a well-defined flavor, the time evolution
results in

() = > Use ™)), (1.8)
J
The oscillation probability is

P(vy = vgit) = |UﬁjU;je_iEjt|2. (1.9)

This probability exhibits periodicity in time, and notably, it does not vanish, even
for f # «a.

If the neutrinos pass through a material medium their oscillation behavior
is modified. This phenomenon is known as the Mikheyev-Smirnov-Wolfenstein
(MSW) effect [4]. The existence of matter adds an extra component to the interaction
for electron neutrinos since ordinary matter contains electrons but lacks muons
or taus. Consequently, when a v, beam traverses through matter, it undergoes
both charged and neutral interactions with electrons. On the other hand, v, and v,
exclusively engage in neutral current interactions, resulting in a difference in the
magnitude of their interactions compared to v.. These interactions cause alterations
in the effective mass that a particle exhibits while traveling through a medium. As
a consequence, oscillation probabilities deviate from their vacuum values.

An experiment that seeks to detect atmospheric neutrinos in order to determine
the parameters that regulate flavor transitions is KM3NeT/ORCA (see Chapter 2).
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Figure 1.2: The flux of neutrinos on the surface of the Earth. The energy thresholds for charged
current interactions on a free proton target are illustrated by three arrows. The line representing
cosmological neutrinos assumes a vanishing neutrino mass. The line corresponding to Supernovae
neutrinos describes only 7. The calculation of atmospheric neutrino fluxes is based on the Kamioka
location, with only the lowest energy segment depending on the location. Image taken from [3].

1.5. Neutrino sources

Neutrinos are ubiquitous particles in the cosmos and hold significant importance in
various astrophysical and cosmological phenomena. Figure 1.2 illustrates a graph
depicting the energy distribution of neutrinos reaching the Earth’s surface. This
spectrum spans over 20 orders of magnitude, encompassing a wide range in both
energy and intensity.

Cosmological neutrinos

Cosmological neutrinos [3] are neutrinos generated in the early stages of the
Universe, with an approximate number density of 56 cm™ for each neutrino species
(Ves Ves Vs Viis Vi, V) and a black-body spectrum at a temperature around 1.947
Kelvins. During the Universe hot phase, neutrinos were in equilibrium with photons.
As the temperature dropped below 10'° Kelvin, neutrinos decoupled from the rest
of the Universe but continued to cool with the Universe expansion. The neutrino
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temperature is cooler than photons due to the reheating of photons from electron-
positron annihilation. Current measurements of the Universe age and expansion
rate provide strict constraints on neutrino masses. If neutrinos have masses on
the order of a few eV or more, they could be a significant or dominant component,
addressing the "Dark Matter Problem". Neutrinos, if crucial to the Universe mass,
play a crucial role in forming observed structures like galaxies and galaxy clusters.
Early on, the Universe was smooth, as indicated by small amplitude of temperature
fluctuations in the cosmic microwave background radiation. Gravity enhances
density contrasts, leading to the formation of structures. Neutrinos, being weakly
interacting and remaining relativistic due to their small mass, efficiently erase initial
fluctuations up to large scales. This contrasts with other forms of dark matter, such
as WIMPs (Weakly Interacting Massive Particles), which move more slowly due to
their larger mass and are less efficient in erasing fluctuations.

Solar neutrinos

Neutrinos [3] are abundantly produced through thermonuclear reactions occurring
within stellar interiors, specifically in our Sun. A pivotal fusion reaction releasing
nuclear binding energy is described as

4p + 2e” -4 He + 2v,,

liberating 26.73 MeV. The considerable luminosity of the Sun suggests a substantial
flux of v, reaching Earth. The nuanced energy spectrum of solar neutrinos is
contingent upon the intricate nuclear reactions orchestrating the conversion of
hydrogen to helium. While the majority of solar neutrinos possess energies below
0.41 MeV, a smaller yet significant component originating from the beta decay of
Boron-8 extends up to 14 MeV, playing a crucial role in solar neutrino detection. The
energy released in fusion reactions contributes to the Sun’s thermal energy, with
neutrinos successfully escaping and carrying away a proportion of the liberated
energy. The solar neutrino flux is given by the equation

o - L 2L

Y 4rdg (Q— ()
which is intricately linked to the solar luminosity L, = 3.842x10* erg/s, Earth-Sun
distance d = 1.495x10" cm, and the average energy E, = 0.3 MeV conveyed by
neutrinos in a fusion cycle. Despite variations in energy distributions arising from
distinct reaction cycles, the predicted solar neutrino flux reaching Earth remains
exceptionally high, estimated at approximately 6 x 10'° cm?s™'. Comprehensive
predictions necessitate the development of solar models that meticulously account
for the contributions from various reaction cycles.

(1.10)

Supernovae

Type II Supernovae explosions [3] signify the culmination of the lifecycle of massive
stars (with masses greater than the solar mass) that have evolved to develop an iron
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core surrounded by successive burning shells and an outer envelope of hydrogen and
helium. The iron core, being the most tightly bound nucleus in nature, undergoes
collapse when it accumulates sufficient nuclear ash and reaches the Chandrasekhar
limit of approximately 1.4 M. This collapse is rapid and results in a "neutronization
burst" of electron neutrinos v, as the collapsing core converts nearly all protons
into neutrons. The collapsing core’s implosion is halted when it reaches nuclear
density, leading to the formation of a shock wave that propagates outward, ejecting
the outer layers of the star and causing a visible explosion. The newly formed
proto-neutron star, with a radius of around 10 km, contains a significant amount of
kinetic energy, primarily radiated away in the form of neutrinos. These neutrinos
play a crucial role in the explosion, possibly depositing enough energy near the
outward propagating shock to trigger the explosion.

All six neutrino flavors contribute roughly equally to the energy outflow, pro-
duced in the hot core through "flavor-blind" processes. The neutrino emission
lasts for approximately 10 seconds, during which neutrinos undergo numerous
scatterings in the dense material, determining the time of emission. The different
average energies of neutrino components result from distinct cross sections for
elastic scattering with electrons, with electron neutrinos v, having the largest cross
section and are emitted from the regions closer to the surface of the stars, whereas
neutrinos of the muon v, and tau v,,, flavors, possessing a smaller cross section,
are emitted from deeper regions within the stars and are characterized as "hotter".

The theory of neutrino emission in supernovae explosions received confirmation
on February 23, 1987, with the detection of neutrinos and radiation from supernova
SN1987A, which had exploded 170,000 years earlier in the Large Magellanic Cloud.
Detectors like Kamiokande and IMB observed a few events in coincidence with each
other, providing information on the fluence and temperature of emitted neutrinos.
These events also allowed for the determination of limits on neutrino properties,
including their mass. The data showed no correlation between energy and time of
arrival, leading to a conservative upper limit on the neutrino mass: my, < 20eV.

Radioactive neutrinos

The Earth emits about 40 Terawatts of energy, with 40% originating from the decay
of radioactive nuclei, primarily from the Uranium and Thorium decay chains [3].
These chains involve specific decay cascades. In each f decay electron neutrinos
vV, with a maximum energy of 3.27 MeV are emitted. The resulting geophysical v,
flux at the Earth’s surface is estimated approximately at a few 10° (cm?®s)™! but it
varies based on the uneven distribution of Uranium and Thorium in the crust and
mantle, being depleted in the core. Detector location impacts the flux, with thicker
crust regions, like Italy, having a larger flux than thinner crust areas, such as Japan.
New large-mass detectors present an opportunity to observe these geophysical
neutrinos, offering insights into Earth’s structure and evolution.
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AGN

Active galactic nuclei (AGN) [5] are powerful sources of high-energy neutrinos.
AGN, fueled by the accretion of mass onto supermassive black holes, are not only
the brightest sources of electromagnetic radiation but also potential accelerators of
cosmic rays, including ultrahigh-energy cosmic rays. Neutrinos from AGN have
been studied since the late 1970s, considering the interaction of accelerated protons
with ambient photons. Early models suggested large diffuse neutrino intensities,
but subsequent observations and refined models have constrained these predictions.

Atmospheric neutrinos

The Earth is exposed to a nearly uniform and consistent flow of cosmic rays, with an
intensity of around 0.5 particles/(cm? sec sr). Atmospheric neutrinos [3] arise from
the interactions of cosmic rays with the Earth’s upper atmosphere. Cosmic rays are
high-energy charged particles, primarily protons with contributions of completely
ionized nuclei, and smaller components of electrons, anti-protons and positrons and
originate from astrophysical sources. Their energy can extend up to 10% V. Galactic
magnetic fields trap these cosmic rays for millions of years, causing their directions
to become isotropic and temporally uniform. Upon reaching the upper atmosphere,
primary cosmic rays collide with air nuclei, producing secondary particles such as
protons, neutrons, muons and kaons. Neutrinos are prolifically generated in the
ensuing cascades, with the primary source being the decay of charged pions 7* and
subsequent muon p* decays. The dominant decay channel involves 7% decaying
into 4" and a muon neutrino v, followed by y* decay producing a positron e*, an
electron neutrino v,, and another muon neutrino v,, such as:

s+, gt e v+,

Similar processes occur in the decay of kaons.

1.6. Water Cerenkov detection

Experiments for astronomy through high-energy neutrino detection use Cerenkov
detectors for their operation. These detectors derive their name from their funda-
mental operating principle, the detection of Cerenkov radiation. Cerenkov radiation
is electromagnetic radiation emitted when a charged particle passes through a di-
electric medium at a speed greater than the phase velocity (U,;) of light in that
medium. The emitted radiation is in the form of a characteristic cone of light,
known as a Cerenkov cone. This emitted light forms a conical wavefront with a
characteristic angle 6., determined by the medium refractive index n. An illustra-
tion of the Cerenkov cone and angle 0. is shown in Figure 1.3. For particles with
relativistic velocity B = u/c, the Cerenkov angle is

cos(0c) = ﬂ_ln
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Figure 1.3: Illustration of the Cerenkov cone and angle 0. Detection principles for muon tracks
(left) and cascades (right) in underwater/ice detectors. From [3].

and the refractive index of the medium is defined as n = % The condition for
Cerenkov radiation to occur is fn > 1. Since the refractive index is associated
with the frequency of radiation (n = fi/l), there exists a cutoff frequency in the
X-ray spectrum. The predominant radiation is in the ultraviolet, with visible blue
radiation appearing for charged particles of high energy. In the case of relativistic
particles (f = 1) in seawater (n = 1.35), the Cerenkov angle is approximately 42°.

The neutrino interacts with the atomic electrons in hydrogen and oxygen
atoms. Due to the MeV range of neutrino energies, the atomic binding energies are
insignificant, allowing the scattering to be treated as elastic scattering of neutrinos
off free electrons. Consequently, the electrons gain some energy from the neutrino.
If the final electron possesses sufficient energy, its speed exceeds the speed of light
in water, leading to the emission of Cerenkov radiation from the electron [6]. Photo
sensors in the detector capture the emitted light, allowing the reconstruction of
the interacting particle’s properties from the hit distributions. Large-scale neutrino
telescopes like KM3NeT use this technique, positioning photo sensors a few meters
to tens of meters apart to cover volumes up to the km® scale. However, there is a
lower energy threshold E,, for the production of Cerenkov radiation, where the rest
mass of the particle (m,) must allow it to move faster than f > 1/n. The threshold
energy is

Eip = ———

For electrons, this threshold is T;;, = 0.25 M eV, and for muons, it is T;;, = 53 MeV,
representing the minimum kinetic energies required (T = E — myc?).

The interaction of neutrinos can result in two scenarios within the detector. In
the case of a neutral current interaction, the outcome is solely a hadronic shower,
and the neutrino goes undetected. On the other hand, for charged current in-
teractions, a hadronic component is present along with a lepton whose flavor is
determined by the incident neutrino’s flavor. Due to differences in mass and stabil-
ity among electrons, muons, and taus, the Cerenkov light emission signatures vary
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Figure 1.4: Signatures generated in the charged current and neutral current interactions for each
neutrino flavor. From [7].

for each lepton flavor.

1.6.1. Shower/track signatures in water Cerenkov detectors

Using the light production profile’s topology, which is ultimately the measured fea-
ture in Cerenkov detectors, we can categorize event signatures into two main types:
showers and tracks. The contributions of each flavor to these classes are depicted
in Figure 1.4. Particles with significant electromagnetic interactions that release
energy primarily through ionization, called tracks, or through bremsstrahlung,
called showers.

Hadronic and electromagnetic showers

Electromagnetic and hadronic cascades are phenomena that occur when high-
energy particles interact with matter, leading to the production of secondary parti-
cles and the subsequent development of cascade-like events.

Electrons, with energies in the GeV scale, lose kinetic energy by emitting
bremsstrahlung photons as they traverse the medium. These high-energy pho-
tons can undergo pair production, creating electron-positron pairs. Electrons and
positrons generated in the cascade may scatter via Compton scattering or other pro-
cesses. This cascading process forms an electromagnetic shower, where electrons
and positrons with energies above the Cerenkov threshold (0.25 MeV) produce
visible light. The overall signature of electromagnetic cascades appears point-like
in detectors due to the 36 cm attenuation length of electrons in water. The number
of Cerenkov photons is proportional to the cascade energy, enabling a precise
energy reconstruction. Directional reconstruction is challenging due to the spheri-
cal propagation of light, but the emission peak aligns with the incident neutrino
direction.
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Hadronic cascades involve the production of additional hadrons, often light
mesons, from the initial energy transfer to nucleons. The strong force governs the
creation of hadrons, following the law of confinement. All participating hadrons
with energies above the Cerenkov threshold emit light, with the overall light yield
smaller than electromagnetic cascades due to higher particle masses and thresholds.
Despite having a longer attenuation length (83 cm in water), the dimensions of
hadronic showers are comparable to electromagnetic showers. Uncharged pions,
the lightest mesons, are abundant and predominantly decay into two photons,
contributing an electromagnetic component to the shower. While TeV and PeV
showers look similar, lower-energy showers exhibit considerable event-by-event
variation due to variations in the number, type, and propagation of final-state
hadrons. In Cerenkov detectors only charged particles produce observable light,
and the emission direction of hadrons deviates more significantly from the incident
neutrino direction.

Muon tracks

Muons, whether generated directly in the atmosphere as secondary particles of
cosmic rays or produced during interactions involving muon neutrinos, have dis-
tinctive characteristics that affect their behavior in water. Muons have the ability
to travel significant distances in water, extending up to kilometers, depending on
their energy. The primary process leading to energy loss in muons as they traverse
through water is ionization, where interactions with atoms lead to the ionization
of atoms along their path. For muons with energies exceeding 1 TeV, stochastic
processes such as bremsstrahlung, pair production, and photonuclear interactions
become more pronounced, causing significant energy losses and the creation of
electromagnetic showers along the muon track. In the few GeV energy range,
muons exhibit behavior similar to minimum ionizing particles, experiencing nearly
constant energy loss over a straight path until they come to a stop or undergo decay.
In a water medium, the length of a muon track is approximately 4 meters per GeV.

The shower topology includes neutral current (NC) interactions of all neutrino
flavors and charged current (CC) interactions of v, and v, , being the decay length
of the 7 lepton too short to be resolved below ~ 1 PeV. On the other hand, events
with track topology are produced by CC interactions of v,,.
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KM3NEeT neutrino telescope

KM3NeT [8] is a research infrastructure hosting two large-volume Cerenkov neu-
trino detectors which are currently under construction in the depth of the Mediter-
ranean Sea. KM3NeT has two primary scientific objectives: the discovery and
observation of high-energy neutrino sources in the Universe and the determination
of the relative masses of the neutrinos, known as the neutrino mass hierarchy.
To accomplish these goals two types of neutrino detectors (ARCA & ORCA) are
established at different locations, both using the same technology but with distinct
configurations.

The KM3NeT/ARCA detector (Astroparticle Research with Cosmics in the
Abyss) is located approximately 100 km south-east of Sicily, Italy, off-shore the
small town of Portopalo di Capo Passero in a depth of 3500 m. The ARCA neutrino
telescope is optimized for the detection of high-energy neutrinos, in the GeV-PeV
energy range, from astrophysical sources. Due to its advanced angular resolution
capabilities, the investigation of the cosmic neutrino flux is enabled providing
information about its source, energy spectrum and flavour composition.

The KM3Net/ORCA detector (Oscillation Research with Cosmics in the Abyss)
is located approximately 40 km off-shore Toulon, France, in a depth of 2450 m. The
ORCA neutrino telescope is optimized for the detection of atmospheric neutrinos,
in the few-GeV energy range, created in the Earth’s atmosphere by cosmic rays.
Exploiting the abundant fluxes of neutrinos, their fundamental properties can be
studied, including the neutrino mass hierarchy and oscillation parameters.

A third location where the KM3NeT infrastructure will be implemented is
off-shore Pylos, Greece, in a depth of 4550 m.

2.1. Technical description of the KM3NeT detec-
tors

As mentioned above, both neutrino detector sites are using the same technology as
well as the same detection mechanism, which is exploiting the Cerenkov emission
produced by relativistic particles in neutrino interactions.

The infrastructure consists of 115 detection units (DUs) each of them giving
vertical support for a string of 18 digital optical modules (DOMs). The DOM [9],
[¢] is a transparent 17-inch glass sphere comprised of two hemispheres, hosting 31

15
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Figure 2.1: Digital optical module (DOM).  Figure 2.2: Hamamatsu photomultiplier
Image credit [8]. tube.

3-inch Hamamatsu photomultiplier tubes (PMTs). A DOM and a PMT are illustrated
at figures 2.1 and 2.2, respectively. Inside a DOM the PMTs form five rings consisting
of six PMTs each with an additional PMT positioned vertically downward at the
bottom. At the lower hemisphere there are 19 PMTs and at the upper 12, held
in place by a 3D printed support. The angle between each consecutive PMT in a
ring is 60° and each ring of PMTs is rotated by 30° relative to the previous one.
This geometric arrangement provides comprehensive coverage for detecting light
signals from different directions. Each PMT is equipped with a light concentrator
ring, enhancing the light collection area by 20% - 40%. The cavities between the
glass and the support are filled with gel to ensure optical contact. Additionally, the
DOM includes three calibration sensors: 1) an acoustic piezo sensor to determine its
position, 2) compass and tilt meters to determine its orientation, 3) and LED nano-
beacon for timing calibration. Inside the glass sphere are also housed the readout
electronics. The specific components of the readout electronics are as follows:
A Central Logic Board (CLB) is used to handle the digitized signals from all the
sensors within the DOM. Two Octopus Boards connect groups of photomultiplier
tubes (PMTs) to the CLB. Each Octopus Board links two groups of 19 + 12 PMTs to
the central logic processing. There are 31 Base Boards in the DOM. These boards
are responsible for amplifying and discriminating the signals from the PMTs. They
also handle the high-voltage supply (1500 V) for the PMTs while having very low
power consumption, just 45 mW. Finally, a Power Conversion Board (PCB) is in
charge of supplying power to the entire DOM. Due to its structure the DOM can
withstand the hydrostatic pressure encountered at the operating depths.

In Fig. 2.3 is illustrated the configuration of the detection units (DUs), also
referred to as detection strings. Each string consists of two vertical, thin Dyneema®
ropes, 4mm in diameter, attached to the DOMs via a titanium collar that surrounds
the glass. Between the ropes are inserted additional spacers to maintain their
parallel alignment. The backbone of the connections is obtained by a vertical
electro-optical cable covered in plastic and filled with oil, balancing the pressure.
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Figure 2.3: A schematic representation of a  Figure 2.4: The respected sizes of the ARCA
Detection Unit (DU). Image credit: [8]. and ORCA neutrino telescopes. Image credit:

[2].

Power transmission is facilitated along the DUs through a set of copper wires, while
signals are conveyed to the shore via 18 optical fibers, one per DOM. A penetrator
is employed to introduce the conductors and optical fibers into the glass sphere. To
maintain the stability of the DU, a buoy is keeping the DU almost vertical while its
base remains firmly anchored to the seabed.

The analogue signals from all the sensors in a DOM are digitized and then
processed by the CLB, which is the core processing unit of the DOM. It captures
the occurring time and the Time-over-Threshold (ToT) for each detected pulse
with a precision of 1/+/12ns. The occurring time indicates the arrival time of the
first photon, which is defined as the moment the voltage amplitude exceeds the
threshold of 0.3 photo-electrons. The ToT corresponds to the length of time during
which the amplitude of the signal remains above the threshold before it decreases
below the threshold once again. The digitized data, that have passed the preset
threshold, are sent onshore for further processing.

The KM3NeT/ARCA & ORCA detectors differ at their respective volumes and
granularity. A comparison between those two is depicted in Fig. 2.4. In its com-
pleted state, KM3NeT/ARCA will comprise two building blocks of 115 vertical DUs
spaced 90m apart, reaching a height of 700m. The vertical space of the DOMs
on the DUs is 36m. Overall, it will cover an area with a radius of approximately
500m and have an instrumented volume of 1 cubic kilometer (km?). On the other
hand, KM3NeT/ORCA, once completed, will consist of a single building block with
115 DUs spaced 20m apart, resulting in a total height of 180m. The vertical space
of DOMs is 9m. This configuration will cover an area with a radius of approxi-
mately 107m and have an instrumented volume of about 0.0067 km>, providing new
opportunities for neutrino oscillation studies in the Mediterranean.
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2.2. Data acquisition

The KM3NeT detector utilizes a readout system [8] that involves sending all digital
data from the photomultiplier tubes to shore if they exceed the predetermined
threshold of 0.3 photo-electrons. Once on shore, the data is processed in real time
on a computing cluster.

All data are sent from the detector to shore via the fibre-optic transmission
system. The optical data includes the arrival time, the Time-over-Threshold (ToT)
and the PMT identification number, commonly known as a "hit". Each hit consists
of 6 bytes of data, with 1 byte for the PMT address, 4 bytes for the time information,
and 1 byte for the ToT. Each DOM has a data rate of 9-12 Mb/s in which contributes
neutrino-induced events as well as some background sources. The background is
dominated by decays of radio-active potassium (*’K) in water, bio-luminescence
and atmospheric muons. The total data rate for a completed building block amounts
to 25 Gb/s and the relative time offsets between any pair of DOMs are stable within
1 ns. Due to the vast amount of information it is required a reduction of the data
rate and only the filtered data are stored on the disk. In order to preserve all the
available information for the offline analyses, each event will contain a "snapshot”
of all the data captured by the detector during the event.

In essence, the first stage of data processing is to collect the unfiltered data from
DOMs and reorganise them into events using a software called DataQueue (DQ)
[10]. Then, run the triggering algorithms through an Optical/Acoustic Data Filter
(ODF/ADF) software. Finally, the processed data are stored into the disk using the
DataWriters (DW) application.

2.2.1. Triggering

A series of specific filter algorithms implemented in software (DF) are utilized to
separate the physics events from the background noise. Different levels of filters
[¢] are applied to the data:

« Level-zero filter (L0) is the initial filter applied to the analog pulses (unfiltered
data). It sets a threshold for the pulses and is the only one carried out off-shore.
L0 hits are also referred to as "snapshot hits" or simply "hits" [7].

« Level-one filter (L1) involves the coincidence of at least two L0 hits from
different PMTs of one DOM within a fixed time window, typically 10 ns. L1
hits are referred to as "triggered hits".

« Level-two filter (L2) further refines the data by reducing random coincidences
using the PMTs’ orientations.

In the DataFilter (DF) processing stage, three primary types of data are generated
as outputs [11]:
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« Triggered Events (EVT or IO_EVT): These events contain a "snapshot". This
snapshot includes the information of the triggered hits as well as the back-
ground hits recorded during a specific time interval before and after the
triggered hits.

« Summaryslice Data (SUM or IO_SUM): A summary slice is generated and
recorded for the entire detector every 0.1 seconds. It encapsulates essential
information about the detector performance and status. Within each sum-
mary slice there are summary frames, each of them dedicated to one DOM
and they hold information about the Module Identifier, which is a unique
code assigned to each DOM to distinctly identify it, the Average Rate for each
of the 31 PMTs within each DOM for every 0.1 seconds, and the Status Bits
which convey specific information about the status of the detector during
that interval.

« Timeslice Data (TS or IO_TS): A time slice is generated and saved for the
entire detector at regular intervals of 0.1 seconds. Within this time slice,
data is organized into frames. Each of these frames corresponds to a specific
DOM and contains details about the hits that occurred on the respective
DOM during the 0.1 seconds. A "hit" includes information about the raw
(uncorrected) hit time, PMT channel, and Time Over Threshold.

The above three types of data form "runs" and each run has a duration of 6
hours.

2.3. Monte Carlo Simulation

Monte Carlo (MC) simulations have a multifaceted role in experimental physics.
They aid in optimizing different components and configurations of the experiment,
validating the authenticity of real experimental data through comparisons with
modeling the interactions of particles and simulated results.

In KM3NeT, MC simulations have been employed to model and simulate various
aspects of the detector behavior and the interactions of particles in it. They replicate
how the particles interact with the medium (water) surrounding the detector and the
following Cerenkov light production, and predict the detector response in terms of
the signal detected by the PMTs. These simulations bridge the gap between theoret-
ical expectations and experimental observations, enabling researchers to interpret
the data collected by KM3NeT accurately and make meaningful contributions to
the field of neutrino astrophysics.

2.3.1. Event generation

The initial phase of the simulation process involves generating particle fluxes. These
incoming particles include neutrinos originating from astrophysical sources, as
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well as atmospheric muons and atmospheric neutrinos. Moreover, the geometry of
the detector and its environment is generated.

The simulation involves the propagation of neutrinos through the Earth, sim-
ulating interactions in rock and sea water, for the astrophysical and atmospheric
fluxes of (anti-)neutrinos of all three flavors (v,, v, ve, Ve, V¢, V). Both neutral-
current (NC) and charged-current (CC) interactions are simulated. Neutrino events
are generated using the program GENHEN.

Atmospheric muons constitute a significant and frequent background. To
replicate this background accurately, the program MUPAGE is utilized, generating
both single and multiple atmospheric muon events.

Background photons, originating from the decay of °K in the sea water and
bioluminescence, are also simulated by adding random noise events at a rate of 5
kHz per PMT. Finally, the trigger algorithms are applied and the MC events that
pass the triggering conditions remain and the on-shore triggering is simulated.

2.4. Background sources

The KM3NeT detectors can distinguish three distinct types of optical background
sources that conceal neutrino-induced events: bioluminescence, radioactive decay
processes in water, and atmospheric muons.

« Bioluminescence is the emission of visible light by living organisms through
a chemical reaction. It is prevalent in the deep sea, where surface light is
absent. This phenomenon is diverse, with larger animals like fish or jellyfish
producing bursts of bioluminescence lasting seconds, while bioluminescent
bacteria serve as a weaker yet continuous light source, contributing to the
background rate increasing the chances of pure noise events firing a trigger.
Factors such as sea current and seasonal changes affect the bioluminescent
activity. To mitigate its impact, the high-rate veto (HRV) is employed in data
acquisition systems. It monitors the hit count of a single PMT, excluding it
from triggering if hits exceed 2000 per 100 ys.

« The radioactive decays in water refer to processes where unstable isotopes
within the water undergo radioactive decay, emitting particles such as alpha,
beta, or gamma rays. In particular, seawater contains a small fraction of about
0.04% of radioactive Potassium-40 (**K). “*K primarily undergoes two decay
channels; a f§ decay, in which a *K nucleus transforms into a calcium-40
(**Ca) nucleus by emitting a  particle and an antineutrino:

YK 50 Ca+e +7,,

and an electron capture, where a **K nucleus captures one of its inner orbital
electrons and converts a proton into a neutron. This process results in the
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2.5.

formation of argon-40 (**Ar) emitting a photon in the subsequent gamma
decay:

YK +e - Ar +v, > Ar + Y+ Ve

The electron, with a maximum energy of 1.31 MeV, has the capability to
generate Cerenkov radiation. Similarly, the excited state of “* Ar possesses an
energy of 1.46 MeV, and its gamma ray can undergo scattering through the
Compton effect, resulting in detectable photons emitted by the subsequent
electrons. These decay processes of “’K contribute to a consistent, uniform
optical background within the detector. This background has the potential
to trigger random L1 events, but it can also be intentionally employed for
calibration purposes.

Atmospheric muons are secondary particles produced in the Earth’s atmo-
sphere due to interactions between cosmic rays and air molecules. As they
travel through air, water, or rock, emit Cerenkov radiation and lose energy
along their path. As atmospheric muons lose energy due to Cerenkov radia-
tion, they may eventually come to a complete stop. To minimize the impact
of atmospheric muons as a background source in experiments, detectors
are positioned deep below the Earth’s surface. The overburden of rock, sea
water or other materials above the detector acts as a shield, reducing the
flux of atmospheric muons reaching the detector, yet they can penetrate to
the detector volume if their energy at the sea surface is in the TeV range or
above.

For the KM3NeT/ARCA, the real-time trigger rate is dominated by down-
going atmospheric muons. Thus, trigger settings have been adjusted to
maintain a manageable data rate of muons. To mitigate backgrounds from
atmospheric muons and random coincidences of hits from *’K decays, selec-
tion cuts are applied based on event reconstruction quality, reconstructed
zenith angle for track-like events, and event energy-related quantities (e.g.,
number of hits) or event topologies.

Event reconstruction in KM3NeT/ARCA

Reconstruction involves adjusting model parameters to align with observed data.
Relativistic charged particles emit Cerenkov radiation, forming a cone of light
in our detector (see Section 1.6). Neutrino interactions are categorized as either

track

events, where a muon emerges, or shower events, generating cascades of

particles. Different reconstruction algorithms are applied to handle each event type
separately [12]. The underlying model assumes that, for both muons and particles
in a shower, Cerenkov radiation is emitted as they traverse the detector.
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2.5.1. Track reconstruction

Due to the non-linear nature of the task of fitting a muon track to PMT hit data, an
approach with several consecutive steps is employed, referred to as the JMuonChain
[13]. Describing the muon trajectory involves five distinct parameters: its direction,
along with the time and position at various points along the trajectory. The muon
trajectory fit employs a coordinate system, where the muon travels parallel to the
z-axis and intersects the z = 0 plane at x,, y, at time #,. Assuming no scattering or
dispersion of light, the expected arrival time t; of Cerenkov photons on a PMT is

defined as

zZ; R;
t; =ty + — + tan(6c)—,
C C

incorporating the characteristic Cerenkov angle 0., the speed of light in a vacuum
¢, the minimum distance of the muon from the PMT R; = \/ (x — x0)> + (v — Y0)?,
and the distance z; from the PMT to the z = 0 plane.

A linear fit is used to address outliers from optical background hits and scattered
photons in the data. The fit is applied to clusters of causally related hits, selecting
the solution with the maximum number of hits unless a more statistically significant
solution is found. Outliers are removed based on their contribution to the total
x*?. This process is repeated for various assumed track directions, where the N
best-fit solutions are stored and used in the subsequent fit stage. The fit quality Q
is quantified using Q = NDF — 0.25 x (NX—I;), where NDF is the number of degrees
of freedom.

Starting from the twelve best-fit directions, a maximum-likelihood search is
performed using the Levenberg-Marquardt method. The likelihood function incor-
porates probability density functions (PDFs) describing the PMT response:

oP
£ == - Ri, 91', ,',At 5 2.1

Aﬂ o (R 00 41, AD) (2.1)
where R; is the minimum distance of the muon from the PMT, 6; and ¢; describe
the orientation of the PMT, and At is the time difference between expected and
measured arrival of light. The PDFs include various information such as Cerenkov
radiation, energy losses, dispersion, optical background, quantum efficiency, angu-
lar acceptance, and transit time spread of the PMTs. Once the muon trajectory is
determined, the energy of the muon is fitted using the spatial distribution of hit
and non-hit PMTs.

2.5.2. Shower reconstruction

The KM3NeT cascade reconstruction algorithm consists of two stages [12].
Initially, the shower vertex is fitted based on hit times, utilizing a high-purity

sample of coincident hits within 20 ns on the same DOM. This sample may still

contain background hits from optical sources, but their impact is mitigated by

employing the M-estimator score-function M = Y,,.. /1 + (t; — ;)?, where t; is the
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hit time on the DOM i at a distance r;, and f; = t, + 21, is the expected hit time of
a spherical wavefront expanding with velocity ¢/n from the shower position at
time t,. The best fit for the shower position and time is determined using root’s
TMath::Minimizer interface [14] , starting from the center of gravity of the hits.

Subsequently, the shower direction and energy are estimated based on the
distribution of hit or non-hit PMTs. The log-likelihood function used is purely
based on hit/not hit information:

L= Z log[Pinohits] + Z [1 _ Pinohits]' (2.2)
empties PMThits
The probability is defined as Protits = e=hsis(nzabs)=Rog'T \where only the expected
number of photons 15;,(7;, z;, a;, Es) on a PMT i in a time window T ranging from
-100 ns to +900 ns are considered in order to minimize the optical background. Es
is the shower energy, and r;, z;, a; the coordinates for the shower reconstruction as
shown in Figure 2.5.

Figure 2.5: Coordinate system used in shower reconstruction. Image credit: [15]

2.6. Further neutrino experiments

The concept of using large volumes of natural material to detect neutrinos dates back
to the mid-20th century, but the technical challenges of building and maintaining
detectors in such environments were significant, and the necessary technologies
were not fully developed at that time.

DUMAND [16] (Deep Underwater Muon and Neutrino Detection project) was
among the earliest concepts for high-energy neutrino and cosmic-ray detection
using the deep ocean as a medium. The project was initiated in the 1970s and
envisioned an array of detectors placed at 4800 meters deep underwater in the
Pacific Ocean, off-shore Hawaii. It aimed at detecting high-energy particles by
observing Cerenkov radiation. While facing technical and funding challenges,
DUMAND played a crucial role in shaping the ideas and technologies that later led
to successful experiments.
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Building on DUMAND’s concepts, the AMANDA [17] (Antarctic Muon and
Neutrino Detector Array) experiment was developed as a precursor to IceCube. It
was the first in-ice neutrino telescope located at South Pole. AMANDA deployed a
network of optical modules deep within Antarctic ice to detect Cerenkov radiation
produced by high-energy neutrinos interacting with the ice. Its construction started
in 1993 and the detector was completed in 2000, operating with a total of 677 optical
modules attached on 19 strings arranged in a circle with a diameter of 200 meters.
The strings were deployed in a depth 1500 meters. On March 20, 2005, after
nine years of operation, AMANDA and IceCube merge to form a single IceCube
Collaboration.

2.6.1. Under-water detector: ANTARES
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Figure 2.6: Schematic representation of the Antares neutrino telescope. Image credit: [15]

The ANTARES neutrino telescope [15] (Astronomy with a Neutrino Telescope
and Abyss environmental RESearch) is located approximately 40 km off-shore
Toulon, France, in a depth of 2500 m, nearby the KM3NeT/ORCA site. It has an
instrumented volume of 0.05 km?, making it the largest observatory designed to
detect neutrinos in the northern hemisphere and the first to operate underwater in
the deep sea. The infrastructure consists of 12 lines of 300 storeys and 885 optical
modules. A detector line is a vertical array of multiple storeys. Each detector
line is formed by arranging 25 storeys with a vertical space of 14.5 meters. Each
storey is enclosed by a titanium frame and comprises the optical modules as well
as the necessary electronics required for data acquisition. An optical module is a
pressure-resistant glass sphere that houses a single 10-inch PMT. Three such optical
modules are attached on a storey with their PMTs having a 45° deviation directed
downward from the horizon. The schematic view of the ANTARES detector can be
seen at Figure 2.6 and its components at Figures 2.7, 2.8. These detector lines are
deployed vertically in the underwater environment where an anchor and a buoy
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Figure 2.7: The local control module of a storey Figure 2.8: A storey with the three optical
consisting the data acquisition electronics. Im- modules attached. Image credit: [15]
age credit: [15]

are keeping them in place. The first storey is placed at 100 meters above the seabed
and the last one at about 450 meters.

The ANTARES scientific program aimes at advancing our understanding of the
Universe through neutrino observations and it covered three main areas: Astron-
omy and Astrophysics, Dark Matter and Particle Physics, Neutrino Oscillations
and Interactions. ANTARES primarily focuses on neutrinos of extraterrestrial ori-
gin, including those from astrophysical sources such as gamma-ray bursts, active
galactic nuclei, microquasars and supernovae. Its location in the Mediterranean
Sea complements the research conducted by other neutrino telescopes like IceCube
and KM3NeT, providing a broader coverage of the sky.

The deployment of the first detector line occurred on February, 2006 and the
ANTARES telescope was completed on 29 May, 2008. Nearly 16 years later, on
February 12, 2022 the official cessation of data acquisition for the ANTARES detector
was marked, initiating the process of its dismantling,.

2.6.2. In-ice detector: IceCube

The IceCube neutrino observatory [18] is located near the Amundsen-Scott South
Pole Station, Antarctica, burried below the surface in a depth of about 2500 meters.
It is the first 1 cubic-kilometer particle detector made of 1 gigaton of Antarctic ice
ever built. The layout of the detector is illustrated in Figure 2.11. The infrastructure
consists of the surface array, IceTop, and a denser inner subdetector, DeepCore.
The in-ice detector consists of 86 vertical strings, in and on each string are attached
60 DOMs frozen in boreholes, thus rising up to 5160 DOMs in total. The DOMs are
placed in a 17 meter vertical distance from each other. The strings are arranged
in a hexagonal grid pattern with a separation of 125 meters, covering an area of
1 km®. The central part of the array features eight strings deployed more closely,
with a horizontal separation of roughly 70 meters and a vertical spacing of 7 me-
ters between DOMs. This more compact layout forms the DeepCore subdetector,
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designed to reduce the threshold energy for neutrino detection to around 10 GeV.
This configuration allows for the investigation of neutrino oscillations. The sur-
fuce array, IceTop, is composed of 81 stations situated on the upper ends of the
corresponding strings. Each of these stations includes two tanks, and within each
tank, there are two downward-facing DOMs. This setup serves two main purposes.
Firstly, it operates as a "veto and calibration detector" for the IceCube system and
secondly, it is capable of detecting "air showers" initiated by high-energy primary
cosmic rays. This process occurs in the energy range spanning from 300 TeV to 1
EeV.

IceCube’s collaboration has achieved several significant milestones in neutrino
astronomy. Among its notable achievements is the discovery of the diffuse flux of
cosmic neutrinos as well as the detection of a 6.3 PeV neutrino through a Glashow
resonance event. A significant expansion of the current IceCube neutrino telescope,
IceCube-Gen2 [19], is proposed. The plan involves extending the instrumentation
to cover a volume of 10 km® within clear glacial ice at the South Pole. IceCube-
Gen2 primary objectives include identifying the sources of astrophysical neutrinos,
discovering GZK (Greisen-Zatsepin-Kuz'min effect) [20],[21] neutrinos, and estab-
lishing itself as a key observatory in future multi-messenger astronomy initiatives.
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Figure 2.9: The IceCube Laboratory. Image Figure 2.10: The last DOM before it was
credit: IceCube Collaboration buried one mile deep in the Antarctic ice. Im-
age credit: IceCube Collaboration
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Figure 2.11: The IceCube Neutrino Observatory.
Image credit: IceCube Collaboration [18]
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Introduction to Machine Learning

Artificial Intelligence (AI) [22] is a rapidly evolving field with many practical
applications and active research topics. Al focuses on developing systems and
machines capable of simulating the human intelligence and even tackling and
solving problems that are intellectually difficult for humans. The concept of Al
emerged in 1950 when Alan Turing published a paper introducing the Turing test
to determine whether a computer has the ability to exhibit human-like intelligence,
but the term "Artificial Intelligence" was coined later, in 1957, by John McCarthy.
In the early Al projects the knowledge base approach was used, where the systems
relied only on hard-coded knowledge. Some difficulties on this approach led to the
realisation that the systems should be capable of acquiring their own knowledge
by extracting patterns from raw data. Hence, Machine Learning was introduced.

Machine learning (ML) is a subfield of artificial intelligence and computer
science and focuses on building algorithms, extracting patterns from raw data and
making accurate predictions on a given task in order to solve a problem. In general,
machine learning framework involve the following three key components. The
decision process, where the algorithms analyze the input data, which can be labeled
or unlabeled, to generate estimations regarding patterns within the data. An error
function is used to compare the model predictions to known examples, enabling the
assessment of how well the model performs. And finally, the model is optimized by
making adjustments to the model weights in order to minimize the discrepancy
between the model predictions and the known examples. The performance of a
simple machine learning algorithm is heavily affected by the representation of the
data that it is given. The information included in the representation is known as
"feature".

ML can be categorised into four main types: Supervised learning, Unsupervised
learning, Semi-supervised learning and Reinforcement learning. A supervised
machine learning algorithm is trained with a dataset containing labeled examples,
whereas an unsupervised algorithm is trained on unlabeled data. Semi-supervised
learning is a combination of both supervised and unsupervised learning, using
a small labeled dataset to guide the training process and a larger unlabeled one
for feature extraction. Reinforcement learning model is a model similar to the
supervised one, yet it is not trained using labeled data, it learns to make sequential
decisions by trial and error in predictions. For the purposes of this thesis the
supervised method is used.

28
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3.1. Deep Learning

Another part of Al is Deep Learning (DL) [22]. DL is an approach to machine
learning that has seen tremendous growth in its popularity and usefulness, largely
as the result of more powerful computers, larger datasets and techniques to train
deeper networks. The main difference between Machine and Deep Learning is
the way that each algorithm learns from data. Deep learning can learn from both
labeled and unlabeled data and distinguish the important feature of the data. Thus,
it can work directly with raw, unprocessed data, without the need for human
experts to specify the features in advance. Contrarily, classical machine learning
depends more on human guidance and the system needs to know in advance which
features of the data to pay attention to. It typically works better with structured
data, where the important features are well-defined.

Essentially, deep learning is a neural network with three or more layers. The
term "deep" pertains to the depth of a neural network, composed of multiple hidden
layers situated between the input and output layers. The initial layer, referred to
as the "visible layer", is where the input data is introduced. It is called the "visible
layer" because it contains the variables or features that we can directly observe in
our data. The "hidden layers" are the subsequent layers in the neural network. They
are referred to as "hidden" because they don’t receive data directly from the input;
instead, they are intermediate layers that extract increasingly abstract and complex
features from the input data. These features are learned by the neural network
during training. The neural network autonomously determines which features are
useful for explaining the relationships and patterns within the observed data.

3.1.1. Structure of neural networks

A neural network or artificial neural network (ANN) consists of an input layer,
hidden layers and an output layer. Each layer consists of nodes, also known as
neurons (see Figure 3.1), where each node represents a feature or attribute of the
input data. The input layer is responsible for receiving the raw data and passing
it to the subsequent layers. Each hidden layer contains multiple neurons, and
connections exist between neurons in adjacent layers. Each neuron in a hidden layer
sums up the inputs it receives from its connections and applies an activation function
f to produce its output. This output is then passed on to neurons in the next layer.
The layers are connected by weighted connections, which determine the strength
of the connections between neurons. Each connection has an associated weight
w, which can be adjusted during training to optimize the network performance.
Additionally, a bias term b is added to the sum of weighted inputs. For one neuron
the output y is

Y= (D Wnkm +b). (3.1)

Activation functions are used to decide whether or not a specific neuron should
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Figure 3.1: Left: Schematic drawing of a neuron with its components. Right: Structure representa-
tion of a neural network consisting of an input layer, three hidden layers and an output layer.

Xm W

be activated. The choice of the function depends on the nature of the problem
and the characteristics of the data. They can determine the neuron output based
on this transformed input. There are two types of activation functions: linear and
non-linear. However, linear functions are rarely used in deep networks due to their
simplicity, making them unable to represent the complexity of the network. To
introduce non-linearity and enable the network to learn complex relationships, a
non-linear activation function f (e.g., ReLU, Sigmoid) is applied to the weighted
sum of inputs and bias. The most common function due to its simplicity is the
Rectified Linear Unit (ReLU) defined as,

frerv(x) = {0’ <0 (3.2)

x, otherwise.
Typically, the ReLU activation function is preferred to be used at hidden layers
and the sigmoid activation function at the output neuron which maps R — (0, 1),

1
o(x) = 1+e™
An illustration of the ReLu and Sigmoid activation functions can be seen in
Figure 3.2. If all outputs of one layer are connected to each input of the succeeding
layer then the layers are called fully-connected. Those are the layers whose units
receive as inputs the outputs of each of the units of the previous layer.

(3.3)

3.1.2. Training Neural Networks

Prior to commencing neural network training it is crucial to pre-process the input
dataset. The first step is to shuffle the data to ensure that the they are not ordered in
any specific way, thus preventing any unintentional patterns or biases in the data
that may affect training. After shuffling, the input dataset is split into training and
validation sets. The training set is used to train and build the model and is typically
the largest dataset. The validation set is a smaller subset of the data. The model
does not update the weights from this set. It is used to assess the performance of
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Figure 3.2: Left: Rectified Linear Unit (ReLU) function . Right: Sigmoid function, also known as
logistic function.

the training in unseen data and helps to choose the learning algorithm and find the
best values of hyperparameters. Hyperparameters are parameters that are set prior
to the training and are not optimized during the learning process.

During the training process, input data are passed forward through the network.
Each layer computes a weighted sum of inputs, applies an activation function, and
passes the result to the next layer. For the network to be able to produce some
meaningful predictions, the weights and biases of all connections are adjusted. A
loss function is applied to the network predictions and the true values in order to
minimize the loss.

Loss function

The loss function measures the difference between the network predicted and true
value of the label. The choice of loss function depends on the nature of the problem
at hand.

In regression tasks, where the goal is to predict a real-valued quantity, the two
most commonly used regression loss functions are L; and L, loss.

L, loss function is also known as Mean Absolute Error (MAE) and it quantifies
the average absolute error between true y; and predicted y; values,

N
1 .
Llloss(MAE) = N Z |yl - yl| (34)
i=1

L, loss function, also known as Mean Squared Error (MSE), quantifies the
average squared error between true y; and predicted y; values,

N
1 .
Lzloss(MSE) = N Z(yl - yi)z' (35)
i=1

Due to its squaring operation, it is more sensitive to larger errors than smaller ones.
In other words, the L, loss encourages the model to reduce the influence of outliers
during training, hence minimizing their impact.

In multi-label classification, where a data point can be associated with multiple
class labels, the Cross-Entropy loss (CE) is preferred. It measures the dissimilarity
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between predicted class probabilities j; and true class labels y;. The CE loss for a
single data point is defined as,

C
Lep =— Y, yilog(3). (3.6)
i=1

where C is the number of classes.

A natural approach to train multi-label classification models is by using the
Binary Cross-Entropy (BCE) cost function. The BCE or log loss is also preferred for
binary classification tasks, where a data point can be associated with one of the
two possible classes. It is defined as

N
Lpce = —% Z yiln(y:) + (1 = ) - In(1 = 3y), 3.7)
i=1
giving the average binary cross-entropy with y; being the true binary label 0 or 1 and
y; the predicted probability with y € [0, 1]. When the true label is positive (y = 1)
the loss encourages the model to assign high predicted probabilities (y — 1), and
low predicted probabilities (y — 0) when the true label is 0. At the output layer of
the neural network, the sigmoid activation function (see Section 3.1.1) is typically
used to achieve a good performance.

Gradient descent

Once the loss function is established, the subsequent stage involves employing a
training algorithm to decrease the loss. In simpler terms, the objective is to find
a set of weights and biases that minimize the loss to the greatest extent possible.
This can be achieved by using an algorithm known as gradient descent [23].

Suppose that L is a function of m variables vy, vy, ..., v,,. Then the change AL is
produced by a small change Av as,

AL = VL-Av. (3.8)

The gradient of loss L is defined as the vector of the partial derivatives,

(3.9)

oL oL \T
VLE( >

a—Vl, cees _8 v
where T is the transpose operation. In order to guarantee the approximate expres-
sion 3.8 to be negative the choice of Av to be written as

Av = —nVL (3.10)

is made, where 7 is a small, positive parameter known as learning rate. Substituting
this into the Equation 3.8 results to AL = —p||VL||?, which suggests AL < 0. In this
way L always decreases. Subsequent to the Equation 3.10 is the movement of the
position v by the amount,
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V = Vi = Vg — VLpy. (3.11)

By repeatedly applying this update rule L will continue to decrease until it reaches a
global minimum. Essentially, the update rule (Eq. 3.10) defines the gradient descent
algorithm.

In neural networks the gradient descent algorithm is applied to find the weights
w and biases b that minimize the loss L. The aforementioned "position" v can be
replaced with the parameters wy, b;. Hence, the gradient vector is now defined as

oL oL\T
VL(wg, b :<—,—) . 3.12
(wi, br) Jwe’ 9b; (3.12)
The change AL can be written as the approximation
oL oL
AL(Wk, bl) ~ —Aw, + —Ab,. (3.13)
awk ab,
Finally, the gradient descent update rule using the components wy, b; is
oL
Wk ™ Wi = Wi — 1o
k=1 (3.14)
b b oL
—> = Wj_1 —
! I -1 Uabl_l

Hopefully, by repeatedly applying this rule the weights and biases keep updating
until the minimum of the loss function is found. It is implied that the gradient VL
needs to be computed separately for every input and then be averaged to give the
true gradient. Unfortunately, this way is very time consuming and the learning is
slow.

To speed up the learning process the stochastic gradient descent (SGD) can be
used. Essentially, SGD uses a small number m of random training inputs x, called
mini-batch. The resulting true gradient VL is the average value of the summation
of all the gradients VL, computed for the mini-batches. That is

1 m
VL= — ) VL,. 3.15
— Z , (3.15)

Applying this estimation to the gradient descent update rule (Eq. 3.14) for the
weights wy and biases b; results to,

U ILy,
Wi = Wi = Wg1 — —
m < OWi_q
, 3.16
R (3.16)

by — b =b_——
m

where the sums are over the training samples x that belong to the mini-batch.
The gradient descent update rule is repeatedly applied until all mini-batches are
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exhausted, hence completing an epoch (complete pass through the training data) of
training. Then, this learning process starts over for a new epoch.

An extension of the SGD is the Adam optimization algorithm [24]. The name
Adam derives from adaptive moment estimation. It is widely used in training neural
networks due to its efficiency and low memory requirements. Adam is well-suited
for problems that involve a large amount of data and/or a high number of parameters.
The algorithm is straightforward to implement and its hyperparameters typically
require little tuning.

To implement the Adam algorithm it is required to initialize the model param-
eters, weights and biases, and set the hyperparameters such as the learning rate
1, the exponential decay rates for the moment estimates f;, f; with 1, B, € [0, 1),
and a small constant € to prevent division by zero. It is also required to initialize
the two moment vectors my, vp. The first moment (mean) m, keeps track of the
exponentially decaying average of past gradients and the second raw moment
(uncentered variance) v, keeps track of the exponentially decaying average of past
squared gradients. They are both initialized as vectors of zeros. This can result in
a slower learning process during the initial stages of optimization since it fails to
capture important gradient information. This is particularly problematic when the
learning rates or decay rates are set to small values. This issue can be counteracted
by updating the bias moment estimates as,

m; < ﬂlmt—l + (1 - ,Bl) © 8t
v < Povi + (1= fo) - gf ’

where g; are the gradients of the loss function f evaluated with respect to the model
parameters 0 for each mini-batch t as g; = Vg f;(0). The next step is to compute the
bias-corrected estimates by dividing m, and v, by factors of (1 — ;) and (1 — ),
respectively:

(3.17)

N m;
My < ————

(1-51
Ut
< TN
(1-452)
Finally, update the model parameters 6 using the bias-corrected estimates resulting
to the update rule of the Adam optimizer,

. (3.18)

A

Uy

A

m;

N

9t < 91‘—1 - ’7 ° (3.19)

Back-propagation algorithm

Back-propagation relies on the chain rule of calculus to compute gradients of the loss
layer by layer [23]. It aims to compute the partial derivatives (aa—‘fk, ;_bL,) of the loss for

all weights and biases in the network. However, before calculating these derivatives
directly, an intermediate quantity § Jl needs to be introduced. Specifically, § j is the
error in the j-th neuron in the 1-th layer. Using the backpropagation algorithm &/ is
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computed for each layer of the network starting from the output layer and moving
backward through the layers of the network. The error § ]l represents how much the
predicted output deviates from the true value. Once 5} is computed for each neuron,

backpropagation establishes a relationship between § 5 and the partial derivatives
oL oL

3_Wk’ ab;”
The error in the output layer L for every component j is given by

oL
L_ e L
8 = 80{}6 (z7) (3.20)

where the term ;T,LL measures the rate of change of the loss function in respect to the
J

activation ] of the j-th neuron in the output layer. The second term on the right
0’(z}) measures how fast the activation function ¢ is changing concerning the
input z]L.. The value z]L. is defined as the weighted input to layer [: z]L. = wla!l + b,
where /™! represent the activation on the previous layer and w', b are the respected
weights and biases, and is already computed during the forward pass.

Rewriting the Equation 3.20 in a matrix-based form using the Hadamard product
O, an element-wise vector multiplication,

st =v,L o d'(Zh), (3.21)
where V,L is defined as a vector with components the partial derivatives :T(LL' The
J

error ' in a layer [ in terms of the error §'*! of the preceding layers [ + 1 is given by

5 = (WHTs" 0 o’(2h). (3.22)

The transpose of the weight matrix (w'™!) of the (I + 1)-th layer is used to propagate

the error backward through the network, moving from the output layer [ + 1 back
to the previous layer . It is applied to the error §'*!, essentially moving the error
backward giving a measure of how much the error at the (I + 1)-th layer contributes
to the error at the output of the [-th layer. The Hadamard product ®c’(z') moves
the error backward through the activation function in layer I. Thus, calculating the
error &' at the weighted input to each layer [. Finally, the changes of loss (gradient)
with respect to any bias b]l. and any weights wj.k in the network can be calculated
with the equations
oL i oL

— =0; =a; '8 (3.23)
I ’ I k
ab; ! oWy !

Common approaches to improve the neural network

There are several ways to improve the performance of a neural network. This
section highlights some of them.

Firstly, the hyperparameter learning rate needs to be tuned depending on the
algorithm. As mentioned in Section 3.1.2 the learning rate is applied to the gradient
and scales it. It can be considered to be similar to a step size. Its value needs to be
small enough to give a good approximation yet not too small, which could result in
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slow convergence or confinement to a local minima. Conversely, if the value is too
large the algorithm might fail to converge as it could overshoot minima. A viable
approach is to decrease the learning rate as the number of epochs progresses.

Secondly, regularization techniques can be applied to prevent overfitting [25].
Regularization refers to adjustments made to a learning algorithm with the aim
of decreasing its generalization error while keeping its training error unchanged.
Overfitting occurs when a model excels at predicting labels for the training examples
but makes errors when applied to unseen data that were not part of the training
dataset. The most common techniques are dropout ,early stopping and batch-
normalization. Dropout is a straightforward concept in neural networks. During
the training process, for each training example, random neurons in the network are
temporarily excluded from the computation. The extent of dropout is controlled
by a parameter, usually in the range [0, 1], where a higher value implies a more
significant regularization effect. Dropout can be implemented in the neural network
by inserting a dropout layer between two consecutive layers, or by specifying
the dropout parameter for a specific layer. Early stopping involves periodically
evaluating the performance of the model on a validation dataset during training.
After each epoch, the current state of the neural network model is saved as a
checkpoint. The model performance is assessed on a separate validation dataset. If
the model performance on the validation set begins to deteriorate it is an indication
that the model is starting to overfit the training data. Once a decreased performance
on the validation set is observed the training can be stopped. Batch normalization is
a method used to normalize the weighted outputs of each layer before passing them
as input to the next layer. It can be incorporated in the network architecture by
inserting a batch normalization layer between two consecutive layers. Technically,
it is not a regularization technique but it has regularization effect on the model.

Thirdly, a common technique used to enhance the network performance is
pooling. In this technique, a pooling layer takes each feature map output from the
previous layer and produces a more compact feature map, as shown in Figure 3.3.
Pooling is essentially a downsampling process that reduces the spatial dimensions
by half. For instance, in average pooling, the features’ average values are calculated
and used as the output. This approach offers the significant advantage of yielding
fewer pooled features, thereby reducing the number of parameters required in
subsequent layers.

Finally, the problem of vanishing gradients needs to be addressed. As mentioned
in Section 3.1.2, during the process of training a neural network using gradient
descents, the network parameters, which include weights w and biases b, are
adjusted in small steps to minimize the loss function. This adjustment is determined
by calculating the gradient of the loss function with respect to each parameter.
However, in some situations, this gradient can become extremely small, approaching
zero. When gradients are too small, the parameters associated with those gradients
stop updating, thus no learning is achieved. To prevent this from the start of the
training process, the weights are sampled from a Gaussian distribution, where
the width is inversely proportional to the number of connections of the neuron
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hidden neurons (output from feature map)
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Figure 3.3: This diagram demonstrates an instance of how the pooling technique operates. On
the left side, it displays the output of a layer containing 24x24 neurons, while on the right, 12x12
neurons remain after the pooling process. Modified from [23].

and centered around zero. Additionally, in the subsequent training phases, the
batch-normalization technique, as mentioned earlier, is employed.

3.2. Graph Neural Networks

In particle physics, there is a growing interest in leveraging deep learning as an
exceptional resource to tackle intricate scientific challenges that extend beyond
basic classification. It serves as a means to effectively structure and comprehend
extensive datasets, derive conclusions about unobserved causal factors, and even
discover fundamental physical principles governing complex phenomena. Notably,
within High Energy Physics (HEP), machine learning is frequently employed to
decipher complex inverse relationships, with the goal of deducing insights into the
underlying physics processes based on information acquired from detectors.

Graph Neural Networks (GNNs) are a specific class of neural network archi-
tecture designed to operate on graph-structured data. By definition, data are sets
of items. When examining relationships between these items, whether geometric
or physical, a set can be transformed into a graph by incorporating an adjacency
matrix. Physics data is collected from experiments, where each data point corre-
sponds to a specific event or measurement. They can be thought of as "points”
in space, each having specific attributes associated with them. Point clouds are a
collection of data points represented in 3D space in computer vision and often used
in deep-learning algorithms.

The data collected from the KM3NeT detector have many features of point
clouds, making it a logical choice to exploit graph neural networks for the analysis.

Some advantages on the usage of graphs with respect to image based methods
(e.g CNN) are linked to the limited resolution on position and time that can be
achieved through images/fixed grid pixels. In principle bin size can be increased to
reach any desired resolution, but this operation would cause the increase of the
image size, of memory usage and sparsity of the signal. At the same time, DOMs
in KM3NeT detector are moving under the effect of sea current. This information
is therefore lost inside the position bin size. These techniques have been also
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Figure 3.4: Representation of a directed graph consisting of a global feature u, nodes v;, and edges
er connecting the nodes pairwise. Figure from [26].

developed in the context of KM3NeT experiment. However, the fixed structure
of pixel has shown limitations in the capability to represent data collected by the
telescope. The high-dimensional and sparse signal registered in the detector can be
much better encoded in graphs.

3.3. Graph Neural Networks in KM3NeT

3.3.1. Structure of graph neural networks

The input data are expressed as graphs, conforming to the architecture [26] of

« a global feature u, representing the entire graph and carrying some physical
meaning (particles etc),

« the nodes v;, which are the data points possessing multiple attributes (posi-
tion, time etc) and

« the edges ey, connecting pairs of nodes and defining the relationship between
them (distance etc).

An illustration of this can be seen in Figure 3.4. The edges are connecting the nodes
one way, allowing the flow of information between the nodes in certain directions.
For memory usage, optimization and for keeping the number of connections under
control, each node is connected to its k-nearest neighbours. This is typically selected
by the geometrical distance between the nodes. The internal formalism of how
a graph u is updated is shown in Figure 3.5. The stages of processing are the
following,

e = ¢(ex, vy, Vs, u) €, = pV(E])
i=¢' (e vi,u) & = p(E) (3.24)
/ — ¢u(é/, 1—’/’ u) 1—)/ — pv—>u(V/)

where ¢, @7, ¢* are the three update functions and p*~", p*~%, p"~* are the three
aggregation functions. Initially, for each edge e;. an output edge is computed and all
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Figure 3.5: Left: Illustration of how a graph is updated. Starting with updating the edges (a), which
are then aggregated to a node (b), concluding to the update of the entire graph (c). Figure taken
from [26]. Right: Representation of a GNN block. The input graph G = (u, V, E) is processed using
the update/aggregation functions and the output graph G’ = (v, V/, E’) with updated attributes is
returned. Figure taken from [27].

the output edges are aggregated to a node e, where E represents the set of edges
in the i-th node. Then, the nodes are updated yielding the output nodes v;. The
updated edges and nodes are all aggregated resulting to the new graph with global
attribute u’. This formalism is a general framework that can be used in several
GNN architectures.

Loss function

In this study, the loss function used for the classification tasks is the Binary Cross En-
tropy, as defined in Section 3.1.2. For the regression tasks, a log-normal distribution
is preferred. The loss is given by,

RY:
L = Inv2r + In(o) + (yz—f) (3.25)
o
whereas for the minimization only the terms that contain the width ¢ and the mean
value 1 are of interest
_ 2
L =In(c?) + M (3.26)
o

For the special case of o = 1 the Eq. 3.26 results to the mean squared error as
defined in Eq. 3.5.

3.3.2. Edge convolution

The edge convolution (EdgeConv) operation [28] has to be defined, which is an
approach of learning on point cloud data. In EdgeConv the point cloud is repre-
sented as a graph, where the vertices are the points (nodes) and the edges are the
connections between these points to its k-nearest neighbors. The edge features are
defined as e;; = he(xi, x;), where he : R"'XR" — R" is a function with learnable
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Figure 3.6: The EdgeConv operation. The central point x; is surrounded by a local patch consisting
of points x;,, which illustrates the connections of a node with its k nearest neighbors. The right side
shows the output x/ of the EdgeConv, calculated by aggregating the edge features linked to all the
edges originating from each connected point. Figure from [28].

parameters © and the dimensions F represent the feature dimensionality of a given
layer. The output of the EdgeConv operation for each point x; has the form

x| = Dj?:lh@(xi, xj), (3.27)

where O is a symmetric aggregation operation (sum, max etc). The best option
for the operation o is the mean, i.e ; ;. For the purposes of this analysis the
asymmetrical edge function is preferred, that is

he(xi, x;) = he(xi, x; — x;) (3.28)

Overall, when EdgeConv is applied to a point cloud with F dimensions and n
points, it produces a point cloud with F” dimensions, retaining the same number
of points. What’s particularly noteworthy is its ability to be easily stacked. This
stacking takes one point cloud and converts it into another with the same number
of points, only changing the dimensions of the feature vector for each point. This
stacking capability allows the creation of deep networks that can progressively
learn features from point clouds in a hierarchical manner. Furthermore, the feature
vectors derived from EdgeConv can be interpreted as new coordinates within a
latent space. Consequently, distances between points to be calculated in this latent
space, facilitating the adaptive learning of point proximity through EdgeConv
operations.

3.3.3. ParticleNet architecture

For what concerns the model architecture adopted for the analysis proposed in
the next sections, the ParticleNet architecture has been exploited, as defined in
[1]. The overall structure can be seen in the left side of Figure 3.7. The network
consists of three stacked Edge Convolutional layer blocks, a global average pooling
layer and two fully connected layers. The input is comprised of two quantities,
coordinates and features. Coordinates are only involved in determining k-nearest
neighbors (k-NN) and comprise hit information related to ct, x—, y—, z— position,
measured using Euclidean distance. Features encompass information for each node
and edge. Node features consist of all pertinent hit information (time, 3d position,
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Figure 3.7: Left: Diagram of the ParticleNet architecture. Right: Close up of the inner structure of
an Edge Convolutional block. Modified from [1].

k
ij>
= v; — vj, where

3d direction), including the direction of the PMT. Edge features, denoted as e
represent the difference between adjacent nodes v; and v}, i.e ef;
k € {time, x-, y-, z-position, x-, y-, z-direction}.

The right side of Figure 3.7 provides a more detailed view of the edge convolution
block. In the first EdgeConv block the k-nearest neighbors are calculated for
updating the node. This block uses the the spatial coordinates of the particles to
compute the distances. A small kernel network, comprised of three layers with 64
neurons each, is trained based on the input features. This kernel network linearly
processes the input, applies batch normalization, and employs the ReLU activation
function. The contributions from all nodes and edges to this kernel network are
averaged for a single training sample, forming the convolution operation. At the
end of the block, an updated graph is produced, featuring newly defined nodes
and edges. In the output graph, the original features are also retained and can be
partially combined with the updates.

The subsequent two EdgeConv blocks follow the same layout, however the
number of neurons per layer increase to 128 and 256 to accommodate the storage
of higher-level features. Each EdgeConv block receives as input the graph in latent
space from the preceding block and apply the same operations. This approach
ensures that the graph evolves as it passes through the network, allowing for the
repeated redefinition of edges. After the last EdgeConv block, the average pooling
layer is applied to reduce the dimensions. Then, the 256 features are supplied to
the fully connected layer, which uses the ReLu activation function. A second fully
connected layer with two nodes, followed by a function, depending on the specific
task, is used to generate the output.
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Figure 3.8: Presentation of the KM3NeT data to graphs. Left: Illustration of a muon track (green
line) in the KM3NeT detector. Right: The resulting graph, where the nodes hold the hit information
(3d position, 3d direction, time). In the central node (orange) the information from all the edges is
aggregated. Figure taken from [7].

This architecture was originally designed for point cloud applications, and used
for jet tagging at LHC, showing outstanding performances with respect to image
convolutional techniques.

The KM3NeT detector can be modelled as a 3D array of photo-sensors, called
Digital Optical Module (DOM), capable to register the arrival time and time over
threshold of the photon hits impinging on one of the 31 PMTs contained inside a
DOM. Every event registered in the KM3NeT telescope can therefore be seen as a
set of photon hits, for which time and coordinates are known. The most natural
way to encode information of events into a graph is to see every photon hit as
a node. In turn, each node has a 7-dimensional feature space represented by: 3
spatial coordinates, 3 directions of the PMTs and time. Each connection between
two nodes, will be characterized by a 2 x F dimensional feature space consisting
of: the feature of the starting node itself and the difference with respect to the
neighbour node to which the starting node is connected to (see Fig. 3.8). To create
the final graph structures then, nodes should be connected to each other, defining
an arbitrary distance metric. Since the features of each node are positions and times
of the photon hits, a natural choice for the distance is the Euclidean. At this point
the convolution operation (see Sec. 3.6) is done applying a multilayer Percepton
network (called a kernel network from now on) on the 2x F dimensional feature
space of the edges, calculated previously, and producing as result an updated vector
of features. The kernel network is slid over the edges of the graphs forming the
event. The final output of the convolution layer will be then the average length
of the updated vectors of k nearest neighbours of each specific node. The kernel
network used in this work is a multi-layer perceptron (MLP) consisting of three
dense layers and three corresponding batch normalization layers.

3.3.4. Software

The analysis software employed in this study is a collaborative effort between the
KM3NeT Collaboration and the broader deep learning community:.
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The initial data processing is accomplished using a combination of orcasong
[29] and km3pipe [30]. This pre-processing stage entails converting the input
ROOT files into h5 files using km3pipe and subsequently generating the graphs
with orcasong. The neural network training and evaluation are conducted using
orcanet [31], a framework built upon the Keras and Tensorflow libraries.
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Event classification and energy
reconstruction with graph neural
networks

The performance of the Graph Neural Network is studied for particle identification
and energy regression. Multiple networks have been trained and evaluated using
KM3NeT/ARCA data for the three following tasks:

« Signal/background classification. The network is trained to distinguish be-
tween signal (neutrinos) and background ( atmospheric muons), yielding a
neutrino probability.

« Track/shower classification. The network learns to classify the events into
tracks or showers, yielding a track probability.

« Energy regression. The network predicts the energy of the interaction, yield-
ing the predicted energy and its uncertainty.

All networks are trained on a single GPU. As mentioned before, the raw data
received from either the real detector or a simulated one need to be preprocessed
to be used from the GNN. The hit information of an event are converted into
graph structures. In these graphs, the nodes are the PMT hit coordinates in space,
direction, ToT and time and the edges connect the neighboring nodes. To train a
neural network on such data, it is crucial to provide a proper training set for each
application. For classification tasks, it is essential to maintain a balanced dataset
between the different categories. For regression, the value of the target variable is
important.

For the two classifiers the true labels that serve as the basis for the networks
to learn from and compute the loss are directly determined from the particle, i.e a
v,CC is assigned 1 in the signal/background classifier and 1 in the track/shower
classifier, whereas a v.CC is assigned 1 in the signal/background classifier and 0 in
the track/shower classifier. The loss is calculated form the Binary Cross Entropy
as defined in Section 3.1.2. In the case of the energy reconstruction, the decadic
logarithm of the energy, logE, is the true label and the loss is derived from the
difference between predicted and true value as well as the predicted uncertainty, as
mentioned in Section 3.3.1.

44
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The terms shower and track neutrinos, as mentioned in Section 1.6.1, are used to
characterize the neutrino interactions that produce different signatures on the detec-
tor. Track neutrinos produce a muon in their outgoing channel, such as muon (anti)
neutrino charged-current (CC) interactions (i.e v,CC, v,,CC). Shower neutrinos are
electron (anti) neutrino CC interactions and all neutral-current (NC) interactions
(ev.CC,v.CC,v.NC, v .NC,v,NC, v,NC). In general, shower events emit their
light within a relatively small volume, which implies that they are either predomi-
nantly confined within the detector or, when located at a greater distance from the
detector, may not trigger at all.

To assess the progress of the training, the curves for the loss and accuracy are
plotted over the course of training epochs for both validation and training sets.
The final model used for the analysis is the one with the lowest validation loss for
each task. For the model architecture adopted in the next sections, the ParticleNet
architecture has been exploited [1].

Selection criteria

To suppress events generated by environmental optical background, mainly due to
K decay, the following selection criteria are applied to each event.

+ The minimum number of triggered hits is requested to be 25, thus rejecting
ambiguous events with only a few signal hits and reducing the atmospheric
muon contamination.

« Selecting only upgoing events by accepting events reaching the detector from
zenith angles greater than 90 deg to further suppress the atmospheric muons.

« The minimum value of log-likelihood is requested to be greater than 50 to
discard events with very low probability to be signal.

« Lastly, a minimum uncertainty of the energy reconstruction is set to a factor
of 1 to cast outliers.

4.1. Signal/Background classification

A classification model has been trained to distinguish between atmospheric muons
and neutrinos. The classifier produces a score for each event, ranging from 0 to 1,
that represents the probability the network assigns to that event to be of a certain
class. During the training phase the Graph Neural Network (GNN) takes as input
the graphs created from the Monte Carlo (MC) simulation. The training process
utilizes approximately 90% of the dataset for training and 10% for validation.
Specifically, three training sessions were conducted, with one utilizing ARCA7
v8.0 MC and the other two employing ARCA8 v8.0 MC data as input with an
energy spectrum that ranges from 10 to 10® GeV for the neutrinos. The datasets
consist of 500K, 1 million events, and 2 million events respectively, equally divided
among atmospheric muons and neutrinos. All networks are trained with ReLU
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as activation function, Adam as optimizer (f; = 0.9, f; = 0.999 and ¢ = 0.1),
epochs equal to 20, initial learning rate 0.03 with a 0.1% decrease after each epoch,
batchsize 32 and k-nearest neighbors (k-NN) equal to 10 (ARCAS8) and 16 (ARCA7,
ARCAS3). The evaluation of the network trained on ARCA7 involved analyzing a
period of 25.5 days, while for the network trained on ARCAS, a period of 170 days
was examined. The analysis results for each training session are presented in the
following sections. Additionally, the evaluation of the ARCA6 trained network
was performed making predictions on ARCA7 v8.0 MC and ARCAS8 v8.0 MC data
samples. The analyzed period consists of 25.5 and 22.2 days, respectively. The
training session using ARCA6 v6.3 MC data as input was conducted by Alba Domi,
using the same classification model and hyperparameters.

4.1.1. GNN performance on ARCA6

In this section, the performance of the ARCA6 trained network is examined on the
ARCA7 and ARCAS data. In the following plots, the distributions of neutrino scores
with weighted events (to account for the atmospheric and cosmic neutrino flux) are
presented on the upper part and the comparison between the inference on data over
inference on MC simulation on the lower part. In Figures 4.1, 4.2 the results for the
ARCAG6 trained network evaluated on the ARCA7 data are presented. In Figure 4.1
no selections are applied to the events, whereas the plots in Figure 4.2 are generated
by applying the selections defined on 4, i.e on the number of triggered hits for
each event n_trig_hits > 25, on the log-likelihood log_lik > 50 and by selecting
only the upgoing events with zenith > 90. These selections are applied to suppress
events generated by environmental optical background, mainly due to *°K decay.
Similarly, using the ARCAS8 data for the inference, Figure 4.3 shows the probability
distribution and the data-MC comparison without selections, whereas in Figure 4.4
the predefined selections are applied. For both inferences, after implementing the
selections, a good agreement between data and MC is evident up to nu_score = 0.8.

To further assess the performance of the GNN-trained networks, the results for
each trained network inferred with each dataset are displayed in the tables below,
showcasing the application of a selection for low and high neutrino scores. The
initial three rows exhibit the results without any additional selections, while the
subsequent rows demonstrate the impact of applying a selection based on trig-
gered hits, log-likelihood and zenith. The evaluation results of the ARCAG6 trained
network, using ARCA7 and ARCAS data, are presented in Table 4.1. Focusing
on high neutrino scores (nu_score> 0.98), only 1.82% and 0.95% of atmospheric
neutrinos remain in the respective data-sets, as well as 14.28% and 11.43% of cosmic
neutrinos. This indicates that the classifier struggles to effectively differentiate
between neutrinos and the background. Atmospheric muons are correctly assigned
a neutrino score closer to 0, with only 0.08% and 0.01% of muons remaining at
nu_score> 0.98.
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Figure 4.1: Upper part: Probability of the event
to be classified as neutrino. Lower part: data/MC
ratio. ARCAG6 trained network using ARCA7
data for evaluation.
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Figure 4.3: Upper part: Probability of the event
to be classified as neutrino. Lower part: data/MC
ratio. ARCAG6 trained network using ARCA8
data for evaluation.
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to be classified as neutrino. Lower part: data/MC
ratio. Selection criteria: n_trig_hits > 25,
log_lik > 50, zenith > 90 (up-going). ARCA6
trained network using ARCA?7 data for evalua-
tion.
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ratio. Selection criteria: n_trig_hits > 25,
log_lik > 50, zenith > 90 (up-going). ARCA6
trained network using ARCAS8 data for evalua-
tion.
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data 11759482 9272786 10736 data 12348906 9501884 8234
(100%) (78.85%) (0.001%) (100%) (76.94%) (0.0001%)
atm. 96242732 7955951.5 1705.8 atm. 10090861 8170448 775
muons (100%) (82.67%) (0.02%) muons (100%) (80.97%) (0.008%)
atm. 655.2 3517 3.37 atm. 674.35 350.5 1.96
neutrino  (100%) (53.68%) (0.51%) neutrino  (100%) (51.98%) (0.29%)
cosmic 2.56 0.80 0.19 cosmic 2.54 0.75 0.16
neutrino  (100%) (31.25%) (7.42%) neutrino  (100%) (29.53%) (6.30%)
e 12344 7564 74 data 10538 6350 46
(100%) (61.28%) (0.60%) (100%) (60.26%) (0.44%)
atm. 11273 7411.2 9.08 atm. 10288.7 6596.2 1.18
muons  (100%) (65.74%) (0.08%) muons  (100%) (64.11%) (0.01%)
atm. 73 17.60 1.33 atm. 76.67 16.58 0.73
neutrino  (100%) (24.11%) (1.82%) neutrino  (100%) (21.62%) (0.95%)
cosmic 0.70 0.07 0.10 cosmic 0.70 0.06 0.08
neutrino  (100%) (10.00%) (14.28%) neutrino  (100%) (8.57%) (11.43%)

Table 4.1: Left: Evaluation of the ARCA6 trained network using ARCA7 data. Right: Evaluation of
the ARCAG6 trained network using ARCAS data.

4.1.2. GNN performance on ARCA?7

signal-background classifier
track neutrinos 226 (48.9%) / 47 (45.6%)
shower neutrinos 0
atm. muons 236 (51.1%) / 56 (54.3%)
total 462 /103

Table 4.2: Number of events used in training and validation datasets for the signal/background
classification network using ARCA7 data. The first value represents the absolute number of events
in thousands in the training set and the second value the number in the validation set, with the
proportion indicated in parentheses.

In this training session, ARCA7 v8.0 MC data are used as input consisting of
approximately 560.000 atmospheric muons and track neutrino events. The training
set consists of 460K events and the validation set of 100K events. An overview
of the two sets is presented in Table 4.2. In Figure 4.5 the training and validation
loss and accuracy curves are visualised. The loss decreases steadily as the training
progresses. The decreasing validation loss indicates that the model generalizes well
to unseen data. The model that is used for evaluating the trained network is the one
with epoch equal to 20. The evaluation involved analysing a period of 25.5 days.
The neutrino probability is presented in Figure 4.6, 4.7 where the distributions of
neutrino scores with weighted events at the upper part and the ratios between the
inference on data over inference on MC simulation at the lower part are shown. In
Figure 4.6 no selections are applied to the events, whereas the plots in Figure 4.7 are
generated by applying a selection on the number of triggered hits for each event



4.1. Signal/Background classification 49

n_trig_hits > 25, on the log-likelihood log_likelihood > 50 and by selecting only
the up-going events with zenith > 90.
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Figure 4.5: ARCA7, k-NN=16 training. Left: The loss curves for the training and validation (with
dots) sample for ARCA7. Right: The accuracy curves for the training and validation (with dots)
sample for ARCA?7.
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Figure 4.6: ARCA?7 trained network using
ARCA?7 data for evaluation. Upper part: Prob-
ability of the event to be classified as neutrino.
Lower part: data/MC ratio.

Figure 4.7: ARCA?7 trained network using
ARCA7 data for evaluation. Upper part: Prob-
ability of the event to be classified as neutrino.
Lower part: data/MC ratio. Selection Criteria:

n_trig_hits > 25, log_lik > 50, zenith > 90
(up-going).

The evaluation results of the ARCA?7 trained network, using ARCA7 and ARCA8
data, are presented in Table 4.3. Focusing on high neutrino scores (nu_score> 0.98),
85.8% and 78.47% of atmospheric neutrinos remain in the respective datasets, as
well as 96.2% and 91.43% of cosmic neutrinos. Additionally, only 2.58% and 1.00% of
atmospheric muons survive this selection. Overall, the performance of the ARCA7
network seems to result in a better classification when using data from 7 DUs.
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Figure 4.8: ARCAY7 trained network using
ARCAB data for evaluation. Upper part: Prob-
ability of the event to be classified as neutrino.
Lower part: data/MC ratio.
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Figure 4.9: ARCAY7 trained network using
ARCAR data for evaluation. Upper part: Prob-
ability of the event to be classified as neutrino.
Lower part: data/MC ratio. Selection Criteria:
n_trig_hits > 25, log_lik > 50, zenith > 90
(up-going).

11759482 9603854 31256 d 12348906 10408152 17372
data (100%) (81.67%) (0.003%) ata (100%) (84.28%) (0.001%)
atm.  9221943.6 8222680 5299.5 atm. 10090861 9242488 2014.57
muons (100%) (89.16%) (0.06%) muons (100%) (91.59%) (0.02%)
atm. 496.9 49.1 249.8 atm. 674.35 79.6 275.32
neutrino  (100%) (9.88%) (50.3%) neutrino  (100%) (11.80%) (40.83%)
cosmic 1.95 0.08 1.26 cosmic 2.54 0.14 1.43
neutrino  (100%) (4.10%) (64.62%) neutrino  (100%) (5.51%) (56.30%)
data 11668 2020 718 data 10538 1946 436
(100%) (17.31%) (6.15%) (100%) (18.47%) (4.14%)
atm. 10852 2661.3 280.5 atm. 10288.7 3119.57 102.51
muons (100%) (24.52%) (2.58%) muons (100%) (30.32%) (1.00%)
atm. 55.8 0.02 47.9 atm. 76.67 0.04 60.16
neutrino  (100%) (0.03%) (85.8%) neutrino  (100%) (0.05%) (78.47%)
cosmic 0.53 0.0001 0.51 cosmic 0.70 0.0002 0.64
neutrino  (100%) (0.01%) (96.2%) neutrino  (100%) (0.03%) (91.43%)

Table 4.3: Left: Evaluation of the ARCA7 trained network using ARCA7 data. Right: Evaluation of

the ARCA7 trained network using ARCAS data.
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4.1.3. GNN performance on ARCAS8

signal-background classifier signal/background classifier
track neutrinos 287 (43.6%) / 53 (27.5%) track neutrinos 405 (23.4%) / 42 (22.3%)
shower neutrinos 0 shower neutrinos 392 (22.7%) / 38 (20.2%)
atm. muons 372 (56.4%) / 140 (69.6%) atm. muons 930 (53.8%) / 108 (57.4%)
total 659 /193 total 1727 / 188

Table 4.4: Number of events used in training and validation datasets for the signal/background
classification network utilizing ARCAS8 data (k-NN=10) (left) and ARCAS8 data (k-NN=16) (right).
The first value represents the absolute number of events in thousands in the training set and the
second value the number in the validation set, with the proportion indicated in parentheses.

Two networks are trained using ARCAS8 v8.0 MC data as input. The effect of
the hyperparameter k-nearest neighbors (k-NN) on GNN performance is examined.
One network is trained with 1M events and k-NN equal to 10, and the other one
with 2M events and k-NN equal to 16. The default setting for k-NN is 16, although
an investigation was conducted with k-NN = 10. However, as demonstrated below,
the results were not as favorable, a conclusion also supported by Lukas Hennig
[32]. An overview of the two sets for both trained networks is presented in tables
4.4. The loss and accuracy plots for both networks are visualised in Figure 4.10
and Figure 4.11 respectively. At the network with k-NN=10, the expected steady
decrease of the validation loss as the training progresses is not achieved. At the
network with k-NN=16 the validation loss initially decreases but after epoch=12 it
remains constant which is a sign of overfitting.

training
—e— validation

training 0.96
0.300 1 —e— validation

0.275 4

0.250
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loss
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0.175 4

0.150 +

2‘0 0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18
Epoch

Epoch

Figure 4.10: ARCAS, k-NN=10 training. Left: The loss curves for the training and validation
(with dots) sample for ARCAS8. Right: The accuracy curves for the training and validation (with
dots) sample for ARCAS.

The models that are used to evaluate the networks are the ones with epoch equal
to 11 and 19, respectively. The evaluation for both networks involved analyzing a
period of 170 days. The analysis results are shown in Figures 4.12, 4.13 for the trained
network with k-NN=10 and in Figures 4.14, 4.15 for the one with k-NN=16, where the
probability for each event to be classified as neutrino and the data-MC comparison



4.1. Signal/Background classification 52

0.16 4 training training
—e— validation 0.975 1 —e— validation

0.970 4
0.965

g el ey
0.960 | il f\/,l—r’\\ /\‘
| -~ A ! ]
f

0.955 -

0.950 4

T T T T T T T T T T T 0.945 1 T — T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Epoch Epoch

Figure 4.11: ARCAS8, k-NN=16 training. The loss curves for the training and validation (with
dots) sample for ARCAS (left) and The accuracy curves for the training and validation (with dots)
sample for ARCAS (right).

are reported. A good agreement between real data and MC simulation is shown in
Figures 4.13, 4.15, where the background events are suppressed. A peak of events
with very high neutrino score in the data can be observed, which is compatible with
an excess of atmospheric neutrinos in that region of the neutrino score. Table 4.5
showcases the evaluation outcomes of the ARCAS trained network with k-NN=10,
utilizing ARCA7 and ARCAS8 data. Analyzing the evaluation conducted with ARCA7
data, it is evident that at high neutrino scores (nu_score>0.98), 93.20% and 97.14%
of atmospheric and cosmic neutrinos remain respectively. Similarly, the evaluation
conducted with ARCA8 data shows that 91.61% and 97.70% of atmospheric and
cosmic neutrinos are classified as neutrinos. Also, it is worth noting that 9.52%
and 8.18% of atmospheric muons survive the high neutrino score selection in the
respective evaluation. Comparing the two inferences, ARCA8 showcases slightly
better results than the ARCA7 when using the ARCAS trained network. Overall, the
ARCAB8-trained network with k-NN=10 seems to be able to differentiate neutrinos
from the background effectively.

In Table 4.6 the evaluation outcomes of the ARCAS8 trained network with k-
NN=16, using ARCAS data, are reported. In the training datasets both shower and
track neutrinos were included as well as for the network evaluation. After applying
the predefined selections (n_trig_hits > 25, log_lik > 50, zenith > 90) and at
neutrino scores above 0.98, the contamination from atmospheric muons is 4.33%.
Track neutrinos occupy a percentage of 93.18%, whereas shower neutrinos 73.86%.
Additionally, 97.36% of cosmic neutrinos remain. The network demonstrates a
stronger capability in classifying tracks compared to showers, yet it still performs
well in overall classification.

A small difference at the muons-neutrinos events with no selections is observed
while looking at Table 4.3 where the ARCA7 data have been evaluated by comparing
them with the other ones. This is because all the available runs were used to evaluate
the ARCA6 & ARCAS trainings, whereas for the ARCA7 training some of the events
(500K) were used for the training session and the rest for the evaluation.
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Figure 4.12: ARCAS8, k-NN=10 trained net-
work. Upper part: Probability of the event to
be classified as neutrino. Lower part: data/MC
ratio.
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Figure 4.14: ARCAS, k-NN=16 trained net-
work. Upper part: Probability of the event to
be classified as neutrino. Lower part: data/MC
ratio.
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Figure 4.13: ARCAS8, k-NN=10 trained net-
work. Upper part: Probability of the event to be
classified as neutrino. Lower part: data/MC ratio.
Selection criteria: n_trig_hits > 25, log_lik >
50, zenith > 90 (up-going).

Probability to be classified as neutrino

104 -1_‘1-.1-‘-‘—0-%_‘_‘;
102 4._._.—'—_0—_|ﬁI¢¢r_._

101 { 3 GNN - atm neutrinos

GNN - cosmic neutrinos
0| C=1 GNN- muons

10 | GNN-data

Number of events

Data/MC
—

o
=}

0.2 0.4 0.6 0.8 1.0
Neutrino score
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classified as neutrino. Lower part: data/MC ratio.
Selection criteria: n_trig_hits > 25, log_lik >
50, zenith > 90 (up-going).
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d 11759482 9808174 53572 data 69414231 57313147 284658
s (100%) (83.41%) (0.004%) (100%) (82.57%) (0.0047%)
atm. 96242732 8437373.6 18684.6 atm. 53307525 46768367.3 84840.66
muons (100%) (87.67%) (0.20%) muons (100%) (87.73%) (0.16%)
atm. 655.2 60.4 361.3 atm. 3958.79 379.66 2068.98
neutrino  (100%) (9.22%) (55.14%) neutrino  (100%) (9.59%) (52.26%)
cosmic 2.56 0.10 1.83 cosmic 14.64 0.61 10.26
neutrino  (100%) (3.91%) (71.48%) neutrino  (100%) (4.17%) (70.08%)
data 12344 2270 1670 data 67494 11257 9151
(100%) (18.39%) (13.53%) (100%) (16.68%) (13.56%)
atm. 11273 2091.0 1073.3 atm. 57306.10 10601.28 4687.04
muons (100%) (18.55%) (9-52%) muons (100%) (18.50%) (8.18%)
atm. 73.0 0.008 68.0 atm. 421.34 0.06 386.00
neutrino  (100%) (0.01%) (93.20%) neutrino  (100%) (0.01%) (91.61%)
cosmic 0.7 0.00 0.68 cosmic 3.92 0.0003 3.83
neutrino  (100%) (0.006%) (97.14%) neutrino  (100%) (0.0001%) (97.70%)

Table 4.5: Left: Evaluation of the ARCAS8, k-NN=10 trained network using ARCA?7 data. Right:

Evaluation of the ARCA8, k-NN=10 trained network using ARCAS8 data.

data 69414231 63057165 174560
(100%) (90.84%) (0.002%)
atm. 53307525 49972494.2 53394.4
muons (100%) (93.74%) (0.0001%)
atm. 3277.69 378.34 1905.95
neutrino tracks (100%) (11.54%) (58.15%)
atm. 9158.76 81.64 3061.49
neutrino showers  (100%) (0.001%) (33.43%)
cosmic 12.6 0.88 8.75
neutrino (100%) (6.98%) (69.44%)
data 67494 28873 5037
(100%) (42.78%) (7.46%)
atm. 57306.1 28263.29 2482.2
muons (100%) (49.32%) (4.33%)
atm. 360.97 0.55 336.35
neutrino tracks (100%) (0.002%) (93.18%)
atm. 1133.44 0.04 837.14
neutrino showers  (100%) (0.0001%) (73.86%)
cosmic 3.41 0.003 3.32
neutrino (100%) (0.01%) (97.36%)

Table 4.6: Evaluation of the ARCAS8, k-NN=16 trained network using ARCA8 data.
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4.1.4. GNN performance on ARCA6-8

The comprehensive outcomes are showcased for the three training and evaluation
sessions carried out with the ARCA6, ARCA7, and ARCAS datasets, as reported in
the proceedings of the ICRC2023 conference [33]. The inference of the network
trained on ARCA6 has been performed on a total lifetime of 45 days, for the ARCA7
trained GNN, a period of 25.5 days has been used, while for the network trained on
ARCAS, a period of 22.2 days was examined. In total 93 days have been analyzed.
The analysis results are shown in Figure 4.16, where the probability for each event
to be classified as neutrino is reported.

Neutrino score distribution
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10 cosmic neutrinos
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Figure 4.16: Probability of the events to be classified as neutrino for ARCA6-8. Graph taken from

[33].

A peak of events with a very high neutrino score in the data, compatible with
an excess of atmospheric neutrinos in that region of the neutrino score is observed.
The data-Monte Carlo comparison is compatible with values obtained in other
KM3NeT analyses, exploiting different selection methodologies [34].
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4.2. Track/Shower classification

track-shower classifier
track neutrinos | 379 (40.6%) / 32 (34.0%)
shower neutrinos | 470 (50.3%) / 47 (50.0%)
atm. muons 85(9.1%) / 15 (16.0%)
total 934 /74

Table 4.7: Number of events used in training and validation datasets for the track/shower clas-
sification network using ARCAS8 data. The first value represents the absolute number of events
in thousands in the training set and the second value the number in the validation set, with the
proportion indicated in parentheses.

A classification model has been defined for particle identification. It is trained to
learn to characterize the events as tracks or showers. The shower-like neutrinos that
are used for the training and evaluation processes are v,NC,v,NC, v.CC, v.NC,v ,NC,
and the track-like neutrinos are v,CC,v,CC. The classifier produces a track prob-
ability for each event, ranging from 0 to 1. The track-like muons and neutrinos are
assigned a value close to 1, while shower-like neutrinos tend to 0. Similarly to the
other processes, 90% of the dataset is used for the training and 10% for the validation.
The training was performed with about 1 million events of ARCA8 v8.0 MC, equally
divided among tracks and showers (see Table 4.7). The network is trained with
ReLU as activation function, Adam as optimizer (; = 0.9, f, = 0.999 and ¢ = 0.1),
epochs equal to 20, initial learning rate 0.003 with a 0.0025% decrease after each
epoch, batchsize 32 and k-nearest neighbors (k-NN) equal to 16. The model that
is finally used to evaluate the network is the one with epoch equal to 19. The
evaluation of the network involves analyzing a period of 170 days. The training and
validation loss and accuracy are visualized in Figure 4.17. It is noticeable that the
validation loss steadily decreases over the epochs reaching lower values compared
to training,.

In the following plots 4.18, 4.19 the distributions of track scores with weighted
events are presented. In Figure 4.18 no selections are applied to the events, whereas
in Figure 4.19 a selection on the number of triggered hits for each event n_trig_hits >
25 and on the log-likelihood log_lik > 50 is applied to suppress the background. In
both Figures, the data is denoted by the black line. Muons, shown in red, appear to
closely follow the distribution of the data. Track neutrinos are represented by the
yellow line and shower neutrinos by the blue line. Upon applying the necessary se-
lections, n_trig_hits > 25, log_lik > 50, at high track scores a peak of track events
is noticeable while the shower events decline. Table 4.8 showcases the evaluation
outcomes of the ARCAS trained network using ARCA8 data. Atmospheric muons
are accurately identified as tracks, where 92.63% of them remain when applying
track_score > 0.98 and the selections n_trig_hits > 25, log_lik > 50. A percentage
of 35.86% of track neutrinos remain and 0.0001% of shower neutrinos survive the
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Figure 4.17: ARCAS training. Left: The loss curves for the training and validation (with dots)
sample for ARCAS. Right: The accuracy curves for the training and validation (with dots) sample
for ARCAS.

selection. It appears that the network struggles to distinguish track neutrinos from
showers, yet correctly assigns a track score closer to 0 for shower events. This is
probably due to the fact that most track neutrinos leave only a small percentage
of light inside the limited instrumented volume of ARCAS, thus not allowing the
discrimination of short tracks and shower topologies.
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Figure 4.18: ARCAS trained network. Probabil-
ity of the event to be classified as track.

Figure 4.19: ARCABS trained network. Probabil-
ity of the event to be classified as track. Selection
criteria: n_trig_hits > 25, log_lik > 50.
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data 69414231 1166906 54816423
(100%) (1.68%) (78.97%)
atm. 53307525 912259.9 42442862.8
muons (100%) (1.71%) (79.62%)
track 2587.68 783.00 647.62
neutrino  (100%) (30.26%) (25.03%)
shower  24313.02 18154.3 36.21
neutrino  (100%) (74.67%) (0.001%)
12918432 98928 12111409
data (100%) (0.008%) (93.75%)
atm. 9520318.6 116349.6 8818445.8
muons (100%) (1.22%) (92.63%)
track 429.4 145.02 153.98
neutrino  (100%) (33.77%) (35.86%)
shower 7679.6 6210.02 0.71
neutrino  (100%) (80.86%) (0.0001%)

Table 4.8: Evaluation of the ARCAS trained network using ARCAS8 data.
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4.3. Energy regression

In a first attempt to reconstruct the neutrino energy for ARCAS8, the GNN is
employed. A regression model is defined to produce an estimation of the neutrino
energy from the analysis of the signal produced by the propagating particle(s).
Along with the predicted value, the algorithm provides an estimated uncertainty.
As previously noted, the true label of the energy is the decadic logarithm, lo g;oE.
This implies that the uncertainty is a factor rather than an absolute value. To
illustrate this, consider the following example: The predicted value as generated
form the output layer of the network shall be log;oE = 2 and its uncertainty
logioEune = 0.1. This means that the predicted energy is E = 10* GeV and the
boundaries for the uncertainty are calculated as E,,. = 10**%!, Then, the upper
error is 102" = 102! = 125.9 GeV and the lower error 10°°%! = 10 ~ 79.4 GeV. It
is evident that the uncertainty boundaries are asymmetrical and the uncertainty is
the relative factor 10! = 1.259.

The GNN for the training phase uses as input the graphs generated from the
MC simulation. Similarly to the previous sections, the training process uses ap-
proximately 90% of the dataset for training and 10% for validation. In particular,
the training was performed with about 1 million events of ARCAS8 v8.0 MC with
an energy spectrum that ranges from 10% to 10® GeV, consisting of track-like and
shower-like neutrinos, as shown in Table 4.9. The validation dataset was composed
of 100k events, in similar proportions. The energy estimation is performed by
means of the last fully-connected layer with a linear activation function, which
calculates the estimated energy. The network is trained using SGD as optimizer
(momentum=0.9, decay=0), epochs equal to 20, initial learning rate 0.009 with a
0.02% decrease after each epoch, batchsize 64 and k-nearest neighbors (k-NN) equal
to 16. The best validation epoch turned out to be the 20th. The inference of the
network has been performed on a total lifetime of 170 days.

Track-like ((a)numuCC) and shower-like (numuNC, (a)nueCC, anueNC) event
topologies are characterized by a different spatial evolution inside the detector,
hence in the following figures, the performances are reported separately.

energy reconstruction

track neutrinos | 148 (36.1%) / 32 (36.7%)

shower neutrinos | 262 (63.9%) / 55 (63.2%)
total 410/ 87

Table 4.9: Number of events used in training and validation datasets for the energy reconstruction
network using ARCAS8 data. The first value represents the absolute number of events in thousands
in the training set and the second value the number in the validation set, with the proportion
indicated in parentheses.
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4.3.1. GNN performance on ARCAS8

Figure 4.20 shows the training and validation loss curves. The validation loss
decreases steadily as the training progresses. It is fair to assume that the model
generalizes well to unseen data.
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Figure 4.20: ARCAS training. The loss curves for the training and validation (with dots) sample
for ARCAS.

In Figures 4.21, 4.22 the predicted energies with respect to the Monte Carlo
energies for track-like and shower-like neutrinos are shown. Most of the events are
grouped around the identity line (diagonal) for both shower and track neutrinos.
Observing the behavior of track-like neutrinos in Figure 4.21, for low energies
up to 10* GeV most entries are further away from the diagonal showing a wider
data dispersion. As the energy increases they are getting closer to the diagonal
showcasing a better reconstruction. A strong selection on the uncertainty (E,,. < 1)
reduces the outliers and brings the median closer to the diagonal, successfully
eliminating most of the underestimation. In the case of shower-like events, Figure
4.22, the reconstructed energy for the majority of the events is already close to
the diagonal showcasing a narrow data dispersion. Applying the same uncertainty
selection small changes are observed where mostly the lower-energetic events are
affected. It is worth noticing the better performances of the shower-like events
with respect to track-like ones. This behavior is probably due to the better event
containment for showers.

Similarly , the graphs 4.23 and 4.24 show the predicted energies with respect to
the Monte Carlo energies for shower-like and track-like events respectively. The
coefficient of determination, R* score, is computed to assess the degree of alignment

SSR

between the predicted and true energies, using the formula R* = 1 — 57, where

SSR is the sum of squared residuals Y™ (y/7*¢ — y*"**)? and SST is the total sum of

1

squares Y., (y/"“¢ — y'"“¢)%. For shower-like and track-like events R? is 0.708 and
0.304 respectively.
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Figure 4.21: ARCAS trained network. Reconstructed versus true energy for track neutrinos. Left:
No selection is applied. Right: Uncertainty selection (E,,. < 1). A solid white line is added as a
diagonal to indicate the perfect reconstruction. The black solid line is the median and the black
dashed lines represent the uncertainties of the data.
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Figure 4.22: ARCAS trained network. Reconstructed versus true energy for neutrino interactions
creating shower signatures. Left: No selection is applied. Right: Uncertainty selection (E,n. < 1). A

solid white line is added as a diagonal to indicate the perfect reconstruction. The black solid line is
the median and the black dashed lines represent the uncertainties of the data.
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Figure 4.23: ARCAS trained network. Reconstructed versus true energy for neutrino interactions

creating shower signatures. Left: No selections applied. Right: Uncertainty selection (E,, .
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Conclusion

In Chapter 1 the fundamental properties of neutrinos as well as its detection tech-
niques are presented.

Chapter 2 analyses the KM3NeT research infrastructure consisting of two neu-
trino detectors KM3NeT/ARCA and KM3NeT/ORCA. A brief technical description
of the detectors is provided.

Chapter 3 introduces a subfield of Deep Learning, Graph Neural Networks
(GNNs). The Graph Neural Networks are trained on Monte Carlo (MC) simulations
of events with the KM3NeT/ARCA detector. While the full detector will consist of
115 so-called detection units, this thesis uses simulations from an early stage of the
detector consisting of six, seven and eight detection units.

Chapter 4 demonstrates the performance of the GNN for three different net-
works: signal/background classifier, track/shower classifier, and energy regression.

Firstly, the signal/background classification is examined using KM3NeT/ARCA
data collected from 6, 7, and 8 DUs. The KM3NeT/ARCAG6 trained network is evalu-
ated using ARCA7 and ARCAS data separately. However, the classifier encounters
challenges in effectively distinguishing between neutrinos and the background.
Subsequently, the KM3NeT/ARCA?7 network is trained and evaluated. The classifier
effectively classifies neutrinos and atmospheric muons, demonstrating slightly bet-
ter classification when applied to ARCA7 data compared to ARCAS8. Following this,
two KM3NeT/ARCAS8 networks are trained and evaluated, differing mainly in the
k-NN parameter set to 10 and 16, respectively. Notably, the KM3NeT/ARCAS8 with
k-NN=16 exhibits a slightly better performance in recognizing neutrinos compared
to KM3NeT/ARCAS8 with k-NN=10.

Moving on, the track/shower classification is assessed using KM3NeT/ARCA8
data. The network faces challenges in distinguishing track neutrinos from showers,
but it accurately assigns a track score closer to 0 for shower events.

Finally, the energy regression is attempted using KM3NeT/ARCAS data, reveal-
ing better performance for shower-like events compared to track-like ones. This
behavior is likely attributed to the better event containment for showers.
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