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Abstract

Neutrinos are subatomic particles of high interest for many fields of scientific

research. Neutrinos, being electrically neutral, offer a unique tool to investigate

the inner regions of astrophysical objects and to comprehend the Universe across

a broader spectrum of energies. Their trajectory remains unaffected by magnetic

fields, keeping directionality when reaching us from distant sources. There are

various astrophysical sources known to emit neutrinos providing a direct means

of observing these sources. Furthermore, evidence for a non-zero mass enabled

studies on neutrino oscillations, contributing to our understanding of fundamental

particle physics.

The KM3NeT water Čerenkov neutrino telescopes are optimized for the detec-

tion of high-energy neutrinos, in the GeV-PeV range. KM3NeT/ARCA neutrino

detector is dedicated to the search for very high-energy cosmic neutrinos (GeV-PeV).

KM3NeT/ORCA detector is optimized for the study of neutrinos created by cosmic

rays in the Earth’s atmosphere (a few GeV). To evaluate the efficiency and overall

performance of neutrino telescopes Monte Carlo simulations are employed.

Graph Neural Networks (GNNs) are a specific class of neural network archi-

tecture designed to operate on graph-structured data. Such networks have been

also developed in the context of the KM3NeT experiment. The input data of the

GNN consists of nodes that store the hit (photomultiplier signal) information (time,

Time-over-Threshold, 3d position, 3d direction) and edges that connect the nodes

defining the relations between hits. The model architecture adopted for the analysis

is based on the ParticleNet architecture [1].

In this study, the performance of the Graph Neural Network (GNN) is inves-

tigated for event classification and energy prediction using KM3NeT/ARCA data

collected from 6, 7, and 8 DUs. Three main networks have been trained and eval-

uated using KM3NeT/ARCA8 (KM3NeT/ARCA with 8 detection units deployed)

data: signal/background classifier, track/shower classifier and energy regression.

Also, a signal/background classification network has been trained and evaluated

using KM3NeT/ARCA7 data (KM3NeT/ARCA with 7 detection units deployed). The

classification models have been trained to distinguish between atmospheric muons

and signal (neutrinos), and shower-like and track-like neutrinos, respectively. The

regression model is defined to produce an estimation of the neutrino energy. More-

over the performance of the KM3NeT/ARCA6 trained network is evaluated for the

signal/classification task, using KM3NeT/ARCA7 and KM3NeT/ARCA8 data.
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Περίληψη

Τα νετρίνα είναι υποατοµικά σωµατίδια πολύ µικρής µάζας, είναι ηλεκτρικά ου-

δέτερα και αλληλεπιδρούν µόνο µέσω βαρυτικών και ασθενών αλληλεπιδράσε-

ων. Η τροχιά τους δεν επηρεάζεται από µαγνητικά πεδία, εξασϕαλίζοντας έτσι

την άϕιξή τους στη Γη από αποµακρυσµένες πηγές. Η πιθανή παρατήρηση νε-

τρίνων από αυτές τις πηγές αναµένεται να παρέχει πληροϕορίες για τις διαδι-

κασίες που λαµβάνουν χώρα στο εσωτερικό αστροϕυσικών αντικειµένων καθώς

καθίσταται εϕικτή και η παρατήρηση των ίδιων των πηγών. Επιπλέον, αποδε-

ίξεις για µη-µηδενική µάζα διευκολύνουν τις µελέτες σχετικά µε τις ταλαντώσεις

νετρίνο (“neutrino oscillations”), συµβάλλοντας στην περαιτέρω κατανόηση της

θεµελιώδους ϕυσικής των στοιχειωδών σωµατιδίων.

Η ανίχνευση νετρίνων γίνεται µέσω ειδικά κατασκευασµένων ανιχνευτών, οι

οποίοι στηρίζονται στο ϕαινόµενο Čerenkov. Τέτοιοι ανιχνευτές χρησιµοποιο-

ύνται στο πείραµα KM3NeT για τον εντοπισµό νετρίνων υψηλής ενέργειας, στο

εύροςGeV-PeV, όπου ως µέσο ανίχνευσης αξιοποιείται το θαλασσινό νερό. Το τη-

λεσκόπιο νετρίνων KM3NeT/ARCA στοχεύει στην αναζήτηση πολύ υψηλής ενέρ-

γειας κοσµικών νετρίνων (GeV-PeV), ενώ το τηλεσκόπιοKM3NeT/ORCA χρησιµο-

ποιείται για τη µελέτη των νετρίνων που δηµιουργούνται από κοσµικές ακτίνες

στην ατµόσϕαιρα της Γης (µερικά GeV). Επίσης, µε τις προσοµοιώσεις Monte

Carlo γεϕυρώνεται το χάσµα µεταξύ θεωρητικών προσδοκιών και πειραµατικών

παρατηρήσεων καθώς προσοµοιώνονται οι αλληλεπιδράσεις των σωµατιδίων.

Τα Νευρωνικά ∆ίκτυα Γράϕων (GNNs) είναι ένας τύπος νευρωνικών δικτύων

που χρησιµοποιούν δεδοµένα µε µορϕή γράϕου. Τέτοια δίκτυα έχουν αναπτυ-

χθεί και στο πλαίσιο του πειράµατος KM3NeT. Τα δεδοµένα µορϕής γράϕου που

δέχεται το δίκτυο αποτελούνται από κόµβους (nodes), που περιέχουν πληροϕο-

ρίες σχετικές µε τα “σήµατα” (“hits”) του ανιχνευτή (χρόνος, θέση - κατεύθυνση

στις τρεις διαστάσεις), και ακµές (edges) που συνδέουν τους κόµβους µεταξύ τους

ορίζοντας σχέσεις µεταξύ των hits. Το αρχιτεκτονικό µοντέλο που χρησιµοποιε-

ίται στην παρούσα ανάλυση είναι βασισµένο στο ParticleNet architecture.

Στην παρούσα εργασία µελετάται η επίδοση του GNN για την αναγνώριση

σωµατιδίων και την πρόβλεψη της ενέργειάς τους. Τρία βασικά δίκτυα έχουν

αναπτυχθεί: ένα δίκτυο κατηγοριοποίησης σήµατος/υποβάθρου, το οποίο µαθα-

ίνει να ξεχωρίζει τα νετρίνα (σήµα) από τα ατµοσϕαιρικά µιόνια (υπόβαθρο), ένα

δίκτυο κατηγοριοποίησης νετρίνων track/shower, που µαθαίνει να ξεχωρίζει τα

νετρίνα µε υπογραϕή καταιονισµών από τα νετρίνα που οδηγουν σε τοπολογίες

γραµµικής τροχιάς στον ανιχνευτή, και τέλος, ένα δίκτυο για την πρόβλεψη της

ενέργειας των νετρίνων. Όλα τα δίκτυα δέχονται δεδοµένα από τον ανιχνευτή

KM3NeT/ARCA8, τα οποία συλλέχθηκαν από 8 ανιχνευτικές µονάδες (DUs), µε

τα οποία γίνεται η εκπαίδευση (train) και η επαλήθευση. Επιπροσθέτως, µελε-
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τάται το δίκτυο του σήµατος/υποβάθρου στο οποίο έχει γίνει η εκπαίδευση µε

δεδοµένα από KM3NeT/ARCA6 και KM3NeT/ARCA7.
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1

Neutrinos

In 1892, Becquerel made the discovery of the radioactive phenomena. The fact

that the electron is released from the nucleus during beta decay was originally

noticed by Bohr. Chadwick made the important finding that the fundamental beta

spectrum is continuous in 1914. This conclusion was thought to have different

interpretations until far into the 1920s. It was understood that the neutron, which

Chadwick discovered in 1932, was the particle in the nucleus that released the

electron and neutrino during beta decay. Using the neutron, electron, proton,

and neutrino, Fermi created the four Fermi-Hamiltonians for beta decay. The

discipline of weak interactions emerged as a new area of theoretical physics; initially

introduced by Fermi in 1933, it underwent further refinement in the 1950s through

the contributions of Lee and Yang, Feynman and Gell-Mann, and many others, and

finally put into its present form by Glashow, Weinberg and Salam in the 1960s. As

for the strong forces, after Yukawa’s groundbreaking work in 1934, there was a

lack of a comprehensive theory until the development of chromodynamics in the

1970s. The neutrino was discovered by Reines and Cowan in 1956. Their method

of detection involved the simultaneous observation of a positron emitted in the

reaction 𝜈 𝑒 + 𝑝 → 𝑒+ + 𝑛 and a photon emitted in the deexcitation of cadmium

following the neutron capture: 𝑛 +112 𝐶𝑑 →113 𝐶𝑑 + 𝛾 . For this purpose, they

used the nuclear reactor, located at Savannah River in South Carolina, as both an

anti-neutrino source and a detector of water containing dissolved cadmium chloride.

Investigating beta decays has played a crucial role in unraveling key aspects of

the weak force, including the chirality of neutrinos (their left-handed nature), the

V-A structure of weak interactions, and the observation of parity non-conservation

effects. Weak interactions gained recognition as a new force of nature when an

increasing amount of particles were found to engage in them, and neutrinos became

an essential component of these interactions.

1.1. Standard Model

The "Standard Model" [2] of elementary particles and forces is a theoretical frame-

work derived from observations, foreseeing and interconnecting new data. Its

success in predicting various phenomena has been remarkable. While it is not

anticipated for the standard model to hold true at extremely short distances, its

extraordinary achievements imply that it will likely continue to be a highly accurate

1



1.1. Standard Model 2

Figure 1.1: Elementary particles of the standard model, consisting of gauge bosons and the three

generations of fermions. 𝑆ℏ is spin, 𝑄𝑒 is electric charge, and 𝑚 (𝐺𝑒𝑉/𝑐2) is mass. Image credit [2].

approximation of natural phenomena even at scales as minute as 10−18 meters. In

the early 1960s, physicists characterized nature by four distinct forces, each with

different ranges and strengths measured at an energy scale of around 1 GeV. The

strong nuclear force operates over a range of approximately a fermi or 10−15 meters.

The weak force, responsible for radioactive decay and operating within a range

of 10−17 m, is about 10−5 times weaker at low energy. The electromagnetic force,

governing much of macroscopic physics, has both limitless range and strength

and is mediated by the photon. Gravity, the fourth force, also possesses an infi-

nite range and a low-energy coupling, roughly 10−38, making it too weak to be

detected in laboratory experiments. The Standard Model’s significant achievement

was the development of a unified description encompassing the strong, weak, and

electromagnetic forces within the framework of quantum gauge-field theories. Fur-

thermore, the standard model integrates the weak and electromagnetic forces into

a single electroweak gauge theory.

Leptons, quarks, and mediators are the three types of elementary particles that

make up all matter. Based on their charge (𝑄), electron number (𝐿𝑒), muon number

(𝐿𝜇), and tau number (𝐿𝜏), there are six different types of leptons. They divide into

three generations by nature. Additionally, there are six corresponding antileptons

with reversed signs. Thus, the total number of leptons is really 12. Quarks may

also be categorized into six "flavours" based on charge, strangeness (S), charm (C),

beauty (B), and truth (T). In addition, there are downess (D) and upness (U), even

though these are not very common terms. Quarks are also classified into three

generations. All signs would also be inverted on the antiquark table. Furthermore,

there are three colours associated with each quark and antiquark, hence adding up

to 36 quarks. All fermions, leptons and quarks, have a half-unit intrinsic angular

momentum. The first generation comprises the up (u) and down (d) quarks that

make up nucleons, along with pions and other mesons involved in nuclear binding.

It also contains the electron 𝑒 and electron-neutrino 𝜈𝑒 released by nuclear 𝛽 decay

with a positron. The quarks of the other two generations, charm (c) - strange (s)

and top (t) - bottom (b), are constituents of heavier, short-lived particles. They and

their accompanying charged leptons, muon 𝜇 and tau 𝜏, decay swiftly via the weak

interaction to the first family’s quarks and leptons.

Lastly, each interaction has a corresponding mediator: the photon for elec-

tromagnetic force, two W’s and a Z for weak force, the graviton for gravity, and

the gluon for strong force. In the standard model, there are eight gluons, each
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possessing a color. Similar to quarks, gluons are not expected to exist as isolated

particles. An overview of the elementary particles of the standard model can be

seen in Figure 1.1.

It is crucial to note that, within the standard model, neutrinos are considered to

be without mass. This aspect will be explored in more detail in section 1.4.

All of this adds up to a significant quantity of elementary particles. Furthermore,

there are at least 61 particles to deal with because the Glashow-Weinberg-Salam

theory requires at least one Higgs particle. Guided by our understanding, initially

with atoms and later with hadrons, numerous individuals have proposed that at

least some of these 61 entities may be compositions of more fundamental subpar-

ticles. However, such hypotheses extend beyond the standard model. One may

wonder why there should be three generations instead of only one. In response,

the dominance of matter over antimatter allows for a reasonable Standard Model

explanation, but only in the case of at least three generations. Naturally, this raises

the opposite query, which is: why there are only three generations. There were

valid reasons to expect a fourth or perhaps a fifth generation in 1988. However,

in less than a year, SLAC and CERN experiments closed off that possibility. The

𝑍𝑜
particle, known as the ’mother of all particles’, can undergo decay into any

quark/antiquark or lepton/antilepton pair, given that the particle’s mass is less than

half that of the 𝑍𝑜
. This ensures there is enough energy to produce the pair. By

gauging the 𝑍𝑜
lifetime, it becomes possible to count the number of quarks and

leptons with masses below 45 𝐺𝑒𝑉/𝑐2. Experimental results align with expectations

based on the established three generations.

In the meantime, several theoretical hypotheses, lacking direct experimental

support, extend beyond the Standard Model. Grand Unified Theories (GUTs), con-

necting strong, electromagnetic, and weak interactions, are widely acknowledged.

The concept of ’supersymmetry’ (SUSY), doubling particle numbers by associating

fermions with bosons and vice versa, is also appealing to theorists. Additionally,

since 1984, superstring theory has captivated the imagination of a generation of par-

ticle theorists. Superstrings not only promise to reconcile quantum mechanics and

general relativity, eliminating infinities in quantum field theory but also propose

a unified ’theory of everything’, wherein elementary particle physics, including

gravity, emerges as an inevitable consequence.

1.2. Fundamental properties of neutrinos

In the 1920s, research on nuclear beta decay yielded the first indications of the

existence of neutrinos. Beta decay is a type of radioactive decay in which a beta

particle (either an electron, 𝛽−
, or a positron, 𝛽+

) is emitted from an atomic nucleus

(𝐴, 𝑍) as well as a lighter secondary nucleus with the same mass number but

differing by one unit, and nothing else observable:

(𝐴, 𝑍) → (𝐴, 𝑍 ± 1) + 𝑒∓ + 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑒𝑙𝑠𝑒 𝑣𝑖𝑠𝑖𝑏𝑙𝑒. (1.1)
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Experimentalists observed a continuum spectrum extending from 𝑚𝑒 to the

maximum permitted energy 𝑄 when the expected energy 𝐸𝑒 ∼ 𝑄 = 𝑀𝑖 −𝑀𝑓 for 𝑒±
should have been well defined in the absence of any additional unseen particles in

the final state. In 1930, Wolfgang Pauli proposed that during the beta decay process,

an unobserved particle was emitted. The non-visible particle has to be neutral to

conserve energy, extremely light, and with spin 1/2 to meet the requirements of

statistics and angular momentum conservation. Beta decays are currently regarded

as the following processes in contemporary notation:

𝑛 → 𝑝 + 𝑒− + 𝜈 𝑒,
𝐴(𝑍, 𝑁 ) → 𝐴(𝑍 + 1, 𝑁 − 1) + 𝑒− + 𝜈 𝑒,
𝐴(𝑍, 𝑁 ) → 𝐴(𝑍 − 1, 𝑁 + 1) + 𝑒+ + 𝜈𝑒.

(1.2)

Three types of neutrinos have been identified via the development of new accel-

erators and advanced detectors. There is a unique family of leptons associated with

each neutrino. Neutrino observations have been essential in helping us comprehend

weak interactions, resulting in the standard model. Further observations using

neutrinos are believed to provide an important contribution to our knowledge of

physics beyond the standard model. In recent decades, it has become clear that

learning about the neutrino is essential in our comprehension of the Universe. This

is due to the fact that the neutrino is the most prevalent type of matter in the

Universe after radiation, and it is the source of the heavy elements that are essential

to life because of its role in nucleosynthesis. Thus, it is evident that the neutrino is

a significant particle.

Neutrinos are several orders of magnitude lighter than all other fermions, and

no direct measurement has found evidence for a non-zero mass. Neutrinos are also

neutral; they do not perceive strong interactions and interact relatively weakly, if at

all. For example, neutrinos produced in nuclear reactors with energy 𝐸𝜈 ∼ 1𝑀𝑒𝑉
have a 10−11 chance of interacting within the Earth while traveling along a track

that goes through its center. Neutrinos are therefore "elusive" particles, but they

are also abundant in the Universe, yet we do not see them since they interact so

infrequently. Neutrinos have two types of interactions:

• Neutral Current (NC), in which they couple with a 𝑍𝑜
boson, altering their

4-momentum but retaining their identity, and remaining uncharged. The

fundamental neutral vertex looks like:
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where f can be any lepton or quark. The Z mediates processes such as

neutrino-electron scattering 𝜈𝜇 + 𝑒− → 𝜈𝜇 + 𝑒− and neutrino-proton scatter-

ing 𝜈𝜇 + 𝑝 → 𝜈𝜇 + 𝑝. In atomic physics, distinguishing neutral weak effects

from electromagnetic processes is sometimes possible by exploiting the fact

that weak interactions violate the conservation of parity (mirror symmetry).

To observe a purely neutral weak interaction, researchers must turn to neu-

trino scattering, where there is no competing electromagnetic mechanism.

The weak neutral currents were first observed in neutrino scattering 𝜈𝜇𝑒
experiments at CERN in 1973, and the confirmation of their existence came

shortly thereafter through experiments at Fermilab.

• Charged Current (CC), in which they couple with a 𝑊 ±
boson, "transforming"

into one of the charged leptons 𝑒±, 𝜇± or 𝜏±. The fundamental charged vertex

looks like:

demonstrating the reaction 𝑙− → 𝜈𝑙 +𝑊 −
. Charged weak interactions are

the only ones that change the flavor of the neutrino. Such processes are

the neutrino-muon scattering 𝜇− + 𝜈𝑒 → 𝑒− + 𝜈𝜇, the decay of the muon

𝜇− → 𝑒− + 𝜈𝜇 + 𝜈 𝑒, the decay of the pion 𝜋− → 𝑒− + 𝜈 𝑒 and the beta decay of

the neutron 𝑛 → 𝑝+ + 𝑒− + 𝜈 𝑒.

The flavor of a neutrino is really the type (that is the mass) of the charged lepton

that is attached to the same charged current vertex. For instance, in the decay of a

(virtual) 𝑊 −
or 𝑊 +

, one writes:

𝑊 + → 𝑙+ + 𝜈𝑙, 𝑊 − → 𝑙− + 𝜈 𝑙, (1.3)

where the mass (or type) of the charged lepton is indicated by the label 𝑙 = 𝑒, 𝜇, 𝜏 of

the neutrino. There is a clear experimental explanation for the distinction between

𝜈 and 𝜈 as well as the 𝑙 label assigned to the neutrino. A "𝜈𝑒," as described by

convention, interacting at its creation point can only produce 𝑒−, whilst a "𝜈 𝑒"

can only produce 𝑒+, a 𝜈𝜇 only a 𝜇−, and similarly for the other neutrino types.

Overall, there is a clear phenomenological significance to both the flavour label

and the "bar" notation. The inherent angular momentum (or spin) of neutrinos is

an integer. The remarkable discovery of the 1950s was that, given experimental

uncertainties, the spin of every "𝜈" is anti-parallel to its momentum, yet the spin

of every "𝜈" is parallel. Put otherwise, all of the 𝜈 are right-handed and the 𝜈 are

left-handed. This is the basis of the weak interactions’ "chiral nature" and gives rise

to the consequences of parity violations seen in nature.
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1.3. Neutrino flavors

As aforementioned, there are three types of neutrinos in the particle physics stan-

dard model. Each neutrino completes a doublet with the corresponding charged

leptons. A 𝑊 +
gauge boson, for instance, can couple to any of the three pairings of

charged leptons and neutrinos:

𝑊 + → 𝑒+𝜈𝑒
→ 𝜇+𝜈𝜇
→ 𝜏+𝜈𝜏

(1.4)

The label given to the neutrinos corresponds to the flavour, which is the mass of

the associated charged lepton.

Muon neutrino

Muon neutrinos and anti-neutrinos result from the decay of pions and muons, as

illustrated in the reactions:

𝜋+ → 𝜇+ + 𝜈𝜇, 𝜇+ → 𝑒+ + 𝜈𝑒 + 𝜈𝜇. (1.5)

The discovery of the decay 𝜋± → 𝜇± + 𝜈𝜇 raised the question of whether the

undetected particles 𝜈 were the same as those produced in beta decays. In 1962,

an experiment was conducted by L. Lederman, M. Schwarz, and J. Steinberg using

accelerator neutrinos. By bombarding a Beryllium target with a 15 GeV primary

proton beam, they generated pions, a source of neutrinos through decay. Studying

interactions like 𝜈𝜇 + 𝑁 → 𝜇− + 𝑋 and 𝜈𝑒 + 𝑁 → 𝑒− + 𝑋 , the experiment found

only the first type, demonstrating the distinction between 𝜈𝜇 and 𝜈𝑒.

Electron neutrino

As mentioned above the electron neutrinos and anti-neutrinos are produced in beta

decay processes 𝑛 → 𝑝+ + 𝑒− + 𝜈 𝑒.

Tau neutrino

The tau neutrino 𝜈𝜏 is linked to the tau 𝜏 lepton, which is the third and heaviest

of the charged leptons in the Standard Model of particle physics. The tau lepton

𝜏− was discovered in 1975 at the Stanford Linear Accelerator Center (SLAC) in

California. In processes involving the decay of tau particles 𝜏±, tau neutrinos 𝜈𝜏
and anti-neutrinos 𝜈𝜏 are expected to be produced as,

𝜏− → 𝜈𝜏 +𝑊 −,
→ 𝜈𝜏 + 𝑒− + �̄�𝑒,
→ 𝜈𝜏 + 𝜇− + �̄�𝜇,
→ 𝜈𝜏 + [�̄�𝑠′].

(1.6)

Measurements of the Z-boson width have ruled out a fourth neutrino if it is less

than 40 𝐺𝑒𝑉 . If a fourth form of neutrino exists, it would indicate the existence of

a fourth type of matter, which would be a significant finding.
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1.4. Neutrino oscillations

The probability of detecting a neutrino, initially created in a specific flavor state,

in the same state or transitioning to another flavor state can exhibit oscillations

over time [3]. The concept of neutrino oscillations was first introduced by Bruno

Pontecorvo in the 1950s, suggesting that if neutrinos possess mass, they could

undergo such flavor-changing oscillations. This intriguing phenomenon stems from

the principles of basic Quantum Mechanics. Neutrinos produced in charged current

weak interactions alongside a charged lepton exist as weak eigenstates 𝜈𝑒, 𝜈𝜇, 𝜈𝜏 .
Typically, these weak eigenstates lack a well-defined mass and can be expressed

as linear combinations of three states, namely 𝜈1, 𝜈2, and 𝜈3, each characterized by

distinct masses (𝑚1, 𝑚2 and 𝑚3). The expression for neutrino oscillations in vacuum

using the Dirac formalism is:

|𝑣𝛼⟩ = ∑
𝑗
𝑈 ∗
𝛼𝑗 |𝑣𝑗⟩, (1.7)

where |𝑣𝛼⟩ denotes the eigenstates 𝜈𝑒, 𝜈𝜇, 𝜈𝜏 , |𝑣𝑗⟩ represents the states 𝜈1, 𝜈2, 𝜈3, and

𝑈 ∗
𝛼𝑗 is the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The unitary

arises due to the orthogonality of the three flavor eigenstates and masses. The time

evolution of a mass eigenstate with well-defined energy involves a simple phase

factor, and for a state initially created with a well-defined flavor, the time evolution

results in

|𝜈(𝑡)⟩ = ∑
𝑗
𝑈 ∗
𝛼𝑗𝑒

−𝑖𝐸𝑗 𝑡 |𝑣𝑗⟩. (1.8)

The oscillation probability is

𝑃(𝜈𝛼 → 𝜈𝛽; 𝑡) = |𝑈𝛽𝑗𝑈 ∗
𝛼𝑗𝑒

−𝑖𝐸𝑗 𝑡 |2. (1.9)

This probability exhibits periodicity in time, and notably, it does not vanish, even

for 𝛽 ≠ 𝛼.

If the neutrinos pass through a material medium their oscillation behavior

is modified. This phenomenon is known as the Mikheyev-Smirnov-Wolfenstein

(MSW) effect [4]. The existence of matter adds an extra component to the interaction

for electron neutrinos since ordinary matter contains electrons but lacks muons

or taus. Consequently, when a 𝜈𝑒 beam traverses through matter, it undergoes

both charged and neutral interactions with electrons. On the other hand, 𝜈𝜇 and 𝜈𝜏
exclusively engage in neutral current interactions, resulting in a difference in the

magnitude of their interactions compared to 𝜈𝑒. These interactions cause alterations

in the effective mass that a particle exhibits while traveling through a medium. As

a consequence, oscillation probabilities deviate from their vacuum values.

An experiment that seeks to detect atmospheric neutrinos in order to determine

the parameters that regulate flavor transitions is KM3NeT/ORCA (see Chapter 2).
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Figure 1.2: The flux of neutrinos on the surface of the Earth. The energy thresholds for charged

current interactions on a free proton target are illustrated by three arrows. The line representing

cosmological neutrinos assumes a vanishing neutrino mass. The line corresponding to Supernovae

neutrinos describes only 𝜈𝑒 . The calculation of atmospheric neutrino fluxes is based on the Kamioka

location, with only the lowest energy segment depending on the location. Image taken from [3].

1.5. Neutrino sources

Neutrinos are ubiquitous particles in the cosmos and hold significant importance in

various astrophysical and cosmological phenomena. Figure 1.2 illustrates a graph

depicting the energy distribution of neutrinos reaching the Earth’s surface. This

spectrum spans over 20 orders of magnitude, encompassing a wide range in both

energy and intensity.

Cosmological neutrinos

Cosmological neutrinos [3] are neutrinos generated in the early stages of the

Universe, with an approximate number density of 56 𝑐𝑚−3
for each neutrino species

(𝜈𝑒, 𝜈 𝑒, 𝜈𝜇, 𝜈𝜇, 𝜈𝜏 , 𝜈𝜏) and a black-body spectrum at a temperature around 1.947

Kelvins. During the Universe hot phase, neutrinos were in equilibrium with photons.

As the temperature dropped below 1010 Kelvin, neutrinos decoupled from the rest

of the Universe but continued to cool with the Universe expansion. The neutrino
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temperature is cooler than photons due to the reheating of photons from electron-

positron annihilation. Current measurements of the Universe age and expansion

rate provide strict constraints on neutrino masses. If neutrinos have masses on

the order of a few eV or more, they could be a significant or dominant component,

addressing the "Dark Matter Problem". Neutrinos, if crucial to the Universe mass,

play a crucial role in forming observed structures like galaxies and galaxy clusters.

Early on, the Universe was smooth, as indicated by small amplitude of temperature

fluctuations in the cosmic microwave background radiation. Gravity enhances

density contrasts, leading to the formation of structures. Neutrinos, being weakly

interacting and remaining relativistic due to their small mass, efficiently erase initial

fluctuations up to large scales. This contrasts with other forms of dark matter, such

as WIMPs (Weakly Interacting Massive Particles), which move more slowly due to

their larger mass and are less efficient in erasing fluctuations.

Solar neutrinos

Neutrinos [3] are abundantly produced through thermonuclear reactions occurring

within stellar interiors, specifically in our Sun. A pivotal fusion reaction releasing

nuclear binding energy is described as

4𝑝 + 2𝑒− →4 𝐻𝑒 + 2𝜈𝑒,

liberating 26.73 MeV. The considerable luminosity of the Sun suggests a substantial

flux of 𝜈𝑒 reaching Earth. The nuanced energy spectrum of solar neutrinos is

contingent upon the intricate nuclear reactions orchestrating the conversion of

hydrogen to helium. While the majority of solar neutrinos possess energies below

0.41 MeV, a smaller yet significant component originating from the beta decay of

Boron-8 extends up to 14 MeV, playing a crucial role in solar neutrino detection. The

energy released in fusion reactions contributes to the Sun’s thermal energy, with

neutrinos successfully escaping and carrying away a proportion of the liberated

energy. The solar neutrino flux is given by the equation

Φ𝜈𝑒 ≃
1

4𝜋𝑑2
⊙

2𝐿⊙
(𝑄 − ⟨𝐸𝜈⟩)

(1.10)

which is intricately linked to the solar luminosity 𝐿⊙ ≃ 3.842×1033 𝑒𝑟𝑔/𝑠, Earth-Sun

distance 𝑑 ≃ 1.495𝑥1013 𝑐𝑚, and the average energy 𝐸𝜈 ≃ 0.3𝑀𝑒𝑉 conveyed by

neutrinos in a fusion cycle. Despite variations in energy distributions arising from

distinct reaction cycles, the predicted solar neutrino flux reaching Earth remains

exceptionally high, estimated at approximately 6 × 1010 𝑐𝑚−2𝑠−1. Comprehensive

predictions necessitate the development of solar models that meticulously account

for the contributions from various reaction cycles.

Supernovae

Type II Supernovae explosions [3] signify the culmination of the lifecycle of massive

stars (with masses greater than the solar mass) that have evolved to develop an iron
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core surrounded by successive burning shells and an outer envelope of hydrogen and

helium. The iron core, being the most tightly bound nucleus in nature, undergoes

collapse when it accumulates sufficient nuclear ash and reaches the Chandrasekhar

limit of approximately 1.4 𝑀⊙. This collapse is rapid and results in a "neutronization

burst" of electron neutrinos 𝜈𝑒 as the collapsing core converts nearly all protons

into neutrons. The collapsing core’s implosion is halted when it reaches nuclear

density, leading to the formation of a shock wave that propagates outward, ejecting

the outer layers of the star and causing a visible explosion. The newly formed

proto-neutron star, with a radius of around 10 km, contains a significant amount of

kinetic energy, primarily radiated away in the form of neutrinos. These neutrinos

play a crucial role in the explosion, possibly depositing enough energy near the

outward propagating shock to trigger the explosion.

All six neutrino flavors contribute roughly equally to the energy outflow, pro-

duced in the hot core through "flavor-blind" processes. The neutrino emission

lasts for approximately 10 seconds, during which neutrinos undergo numerous

scatterings in the dense material, determining the time of emission. The different

average energies of neutrino components result from distinct cross sections for

elastic scattering with electrons, with electron neutrinos 𝜈𝑒 having the largest cross

section and are emitted from the regions closer to the surface of the stars, whereas

neutrinos of the muon 𝜈𝜇 and tau 𝜈𝑡𝑎𝑢 flavors, possessing a smaller cross section,

are emitted from deeper regions within the stars and are characterized as "hotter".

The theory of neutrino emission in supernovae explosions received confirmation

on February 23, 1987, with the detection of neutrinos and radiation from supernova

SN1987A, which had exploded 170,000 years earlier in the Large Magellanic Cloud.

Detectors like Kamiokande and IMB observed a few events in coincidence with each

other, providing information on the fluence and temperature of emitted neutrinos.

These events also allowed for the determination of limits on neutrino properties,

including their mass. The data showed no correlation between energy and time of

arrival, leading to a conservative upper limit on the neutrino mass: 𝑚𝜈𝑒 < 20 𝑒𝑉 .

Radioactive neutrinos

The Earth emits about 40 Terawatts of energy, with 40% originating from the decay

of radioactive nuclei, primarily from the Uranium and Thorium decay chains [3].

These chains involve specific decay cascades. In each 𝛽 decay electron neutrinos

𝜈 𝑒 with a maximum energy of 3.27 MeV are emitted. The resulting geophysical 𝜈 𝑒
flux at the Earth’s surface is estimated approximately at a few 106 (𝑐𝑚2𝑠)−1 but it

varies based on the uneven distribution of Uranium and Thorium in the crust and

mantle, being depleted in the core. Detector location impacts the flux, with thicker

crust regions, like Italy, having a larger flux than thinner crust areas, such as Japan.

New large-mass detectors present an opportunity to observe these geophysical

neutrinos, offering insights into Earth’s structure and evolution.



1.6. Water Čerenkov detection 11

AGN

Active galactic nuclei (AGN) [5] are powerful sources of high-energy neutrinos.

AGN, fueled by the accretion of mass onto supermassive black holes, are not only

the brightest sources of electromagnetic radiation but also potential accelerators of

cosmic rays, including ultrahigh-energy cosmic rays. Neutrinos from AGN have

been studied since the late 1970s, considering the interaction of accelerated protons

with ambient photons. Early models suggested large diffuse neutrino intensities,

but subsequent observations and refined models have constrained these predictions.

Atmospheric neutrinos

The Earth is exposed to a nearly uniform and consistent flow of cosmic rays, with an

intensity of around 0.5 particles/(cm
2

sec sr). Atmospheric neutrinos [3] arise from

the interactions of cosmic rays with the Earth’s upper atmosphere. Cosmic rays are

high-energy charged particles, primarily protons with contributions of completely

ionized nuclei, and smaller components of electrons, anti-protons and positrons and

originate from astrophysical sources. Their energy can extend up to 1020 eV. Galactic

magnetic fields trap these cosmic rays for millions of years, causing their directions

to become isotropic and temporally uniform. Upon reaching the upper atmosphere,

primary cosmic rays collide with air nuclei, producing secondary particles such as

protons, neutrons, muons and kaons. Neutrinos are prolifically generated in the

ensuing cascades, with the primary source being the decay of charged pions 𝜋±
and

subsequent muon 𝜇± decays. The dominant decay channel involves 𝜋+
decaying

into 𝜇+ and a muon neutrino 𝜈𝜇, followed by 𝜇+ decay producing a positron 𝑒+, an

electron neutrino 𝜈𝑒, and another muon neutrino 𝜈𝜇, such as:

𝜋+ → 𝜇+ + 𝜈𝜇, 𝜇+ → 𝑒+ + 𝜈𝑒 + 𝜈𝜇

Similar processes occur in the decay of kaons.

1.6. Water Čerenkov detection

Experiments for astronomy through high-energy neutrino detection use Čerenkov

detectors for their operation. These detectors derive their name from their funda-

mental operating principle, the detection of Čerenkov radiation. Čerenkov radiation

is electromagnetic radiation emitted when a charged particle passes through a di-

electric medium at a speed greater than the phase velocity (𝑈𝑝ℎ) of light in that

medium. The emitted radiation is in the form of a characteristic cone of light,

known as a Čerenkov cone. This emitted light forms a conical wavefront with a

characteristic angle 𝜃𝐶 , determined by the medium refractive index 𝑛. An illustra-

tion of the Čerenkov cone and angle 𝜃𝐶 is shown in Figure 1.3. For particles with

relativistic velocity 𝛽 = 𝑢/𝑐, the Čerenkov angle is

𝑐𝑜𝑠(𝜃𝐶) =
1
𝛽𝑛
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Figure 1.3: Illustration of the Čerenkov cone and angle 𝜃𝐶 . Detection principles for muon tracks

(left) and cascades (right) in underwater/ice detectors. From [3].

and the refractive index of the medium is defined as 𝑛 = 𝑈𝑝ℎ
𝑐 . The condition for

Čerenkov radiation to occur is 𝛽𝑛 > 1. Since the refractive index is associated

with the frequency of radiation (𝑛 = 𝑐
𝑓 𝜆 ), there exists a cutoff frequency in the

X-ray spectrum. The predominant radiation is in the ultraviolet, with visible blue

radiation appearing for charged particles of high energy. In the case of relativistic

particles (𝛽 ≃ 1) in seawater (𝑛 ≃ 1.35), the Čerenkov angle is approximately 42𝑜 .

The neutrino interacts with the atomic electrons in hydrogen and oxygen

atoms. Due to the MeV range of neutrino energies, the atomic binding energies are

insignificant, allowing the scattering to be treated as elastic scattering of neutrinos

off free electrons. Consequently, the electrons gain some energy from the neutrino.

If the final electron possesses sufficient energy, its speed exceeds the speed of light

in water, leading to the emission of Čerenkov radiation from the electron [6]. Photo

sensors in the detector capture the emitted light, allowing the reconstruction of

the interacting particle’s properties from the hit distributions. Large-scale neutrino

telescopes like KM3NeT use this technique, positioning photo sensors a few meters

to tens of meters apart to cover volumes up to the 𝑘𝑚3
scale. However, there is a

lower energy threshold 𝐸𝑡ℎ for the production of Čerenkov radiation, where the rest

mass of the particle (𝑚0) must allow it to move faster than 𝛽 > 1/𝑛. The threshold

energy is

𝐸𝑡ℎ =
𝑚0√
1 − 1

𝑛2

.

For electrons, this threshold is 𝑇𝑡ℎ ≃ 0.25𝑀𝑒𝑉 , and for muons, it is 𝑇𝑡ℎ ≃ 53𝑀𝑒𝑉 ,

representing the minimum kinetic energies required (𝑇 = 𝐸 − 𝑚0𝑐2).
The interaction of neutrinos can result in two scenarios within the detector. In

the case of a neutral current interaction, the outcome is solely a hadronic shower,

and the neutrino goes undetected. On the other hand, for charged current in-

teractions, a hadronic component is present along with a lepton whose flavor is

determined by the incident neutrino’s flavor. Due to differences in mass and stabil-

ity among electrons, muons, and taus, the Čerenkov light emission signatures vary
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Figure 1.4: Signatures generated in the charged current and neutral current interactions for each

neutrino flavor. From [7].

for each lepton flavor.

1.6.1. Shower/track signatures in water Čerenkov detectors

Using the light production profile’s topology, which is ultimately the measured fea-

ture in Čerenkov detectors, we can categorize event signatures into two main types:

showers and tracks. The contributions of each flavor to these classes are depicted

in Figure 1.4. Particles with significant electromagnetic interactions that release

energy primarily through ionization, called tracks, or through bremsstrahlung,

called showers.

Hadronic and electromagnetic showers

Electromagnetic and hadronic cascades are phenomena that occur when high-

energy particles interact with matter, leading to the production of secondary parti-

cles and the subsequent development of cascade-like events.

Electrons, with energies in the GeV scale, lose kinetic energy by emitting

bremsstrahlung photons as they traverse the medium. These high-energy pho-

tons can undergo pair production, creating electron-positron pairs. Electrons and

positrons generated in the cascade may scatter via Compton scattering or other pro-

cesses. This cascading process forms an electromagnetic shower, where electrons

and positrons with energies above the Čerenkov threshold (0.25 MeV) produce

visible light. The overall signature of electromagnetic cascades appears point-like

in detectors due to the 36 cm attenuation length of electrons in water. The number

of Čerenkov photons is proportional to the cascade energy, enabling a precise

energy reconstruction. Directional reconstruction is challenging due to the spheri-

cal propagation of light, but the emission peak aligns with the incident neutrino

direction.
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Hadronic cascades involve the production of additional hadrons, often light

mesons, from the initial energy transfer to nucleons. The strong force governs the

creation of hadrons, following the law of confinement. All participating hadrons

with energies above the Čerenkov threshold emit light, with the overall light yield

smaller than electromagnetic cascades due to higher particle masses and thresholds.

Despite having a longer attenuation length (83 cm in water), the dimensions of

hadronic showers are comparable to electromagnetic showers. Uncharged pions,

the lightest mesons, are abundant and predominantly decay into two photons,

contributing an electromagnetic component to the shower. While TeV and PeV

showers look similar, lower-energy showers exhibit considerable event-by-event

variation due to variations in the number, type, and propagation of final-state

hadrons. In Čerenkov detectors only charged particles produce observable light,

and the emission direction of hadrons deviates more significantly from the incident

neutrino direction.

Muon tracks

Muons, whether generated directly in the atmosphere as secondary particles of

cosmic rays or produced during interactions involving muon neutrinos, have dis-

tinctive characteristics that affect their behavior in water. Muons have the ability

to travel significant distances in water, extending up to kilometers, depending on

their energy. The primary process leading to energy loss in muons as they traverse

through water is ionization, where interactions with atoms lead to the ionization

of atoms along their path. For muons with energies exceeding 1 TeV, stochastic

processes such as bremsstrahlung, pair production, and photonuclear interactions

become more pronounced, causing significant energy losses and the creation of

electromagnetic showers along the muon track. In the few GeV energy range,

muons exhibit behavior similar to minimum ionizing particles, experiencing nearly

constant energy loss over a straight path until they come to a stop or undergo decay.

In a water medium, the length of a muon track is approximately 4 meters per GeV.

The shower topology includes neutral current (NC) interactions of all neutrino

flavors and charged current (CC) interactions of 𝜈𝑒 and 𝜈𝜏 , being the decay length

of the 𝜏 lepton too short to be resolved below ∼ 1 𝑃𝑒𝑉 . On the other hand, events

with track topology are produced by CC interactions of 𝜈𝜇.
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KM3NeT neutrino telescope

KM3NeT [8] is a research infrastructure hosting two large-volume Čerenkov neu-

trino detectors which are currently under construction in the depth of the Mediter-

ranean Sea. KM3NeT has two primary scientific objectives: the discovery and

observation of high-energy neutrino sources in the Universe and the determination

of the relative masses of the neutrinos, known as the neutrino mass hierarchy.

To accomplish these goals two types of neutrino detectors (ARCA & ORCA) are

established at different locations, both using the same technology but with distinct

configurations.

The KM3NeT/ARCA detector (Astroparticle Research with Cosmics in the

Abyss) is located approximately 100 km south-east of Sicily, Italy, off-shore the

small town of Portopalo di Capo Passero in a depth of 3500 m. The ARCA neutrino

telescope is optimized for the detection of high-energy neutrinos, in the GeV-PeV

energy range, from astrophysical sources. Due to its advanced angular resolution

capabilities, the investigation of the cosmic neutrino flux is enabled providing

information about its source, energy spectrum and flavour composition.

The KM3Net/ORCA detector (Oscillation Research with Cosmics in the Abyss)

is located approximately 40 km off-shore Toulon, France, in a depth of 2450 m. The

ORCA neutrino telescope is optimized for the detection of atmospheric neutrinos,

in the few-GeV energy range, created in the Earth’s atmosphere by cosmic rays.

Exploiting the abundant fluxes of neutrinos, their fundamental properties can be

studied, including the neutrino mass hierarchy and oscillation parameters.

A third location where the KM3NeT infrastructure will be implemented is

off-shore Pylos, Greece, in a depth of 4550 m.

2.1. Technical description of the KM3NeT detec-

tors

As mentioned above, both neutrino detector sites are using the same technology as

well as the same detection mechanism, which is exploiting the Čerenkov emission

produced by relativistic particles in neutrino interactions.

The infrastructure consists of 115 detection units (DUs) each of them giving

vertical support for a string of 18 digital optical modules (DOMs). The DOM [9],

[8] is a transparent 17-inch glass sphere comprised of two hemispheres, hosting 31

15
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Figure 2.1: Digital optical module (DOM).

Image credit [8].

Figure 2.2: Hamamatsu photomultiplier

tube.

3-inch Hamamatsu photomultiplier tubes (PMTs). A DOM and a PMT are illustrated

at figures 2.1 and 2.2, respectively. Inside a DOM the PMTs form five rings consisting

of six PMTs each with an additional PMT positioned vertically downward at the

bottom. At the lower hemisphere there are 19 PMTs and at the upper 12, held

in place by a 3D printed support. The angle between each consecutive PMT in a

ring is 60𝑜 and each ring of PMTs is rotated by 30𝑜 relative to the previous one.

This geometric arrangement provides comprehensive coverage for detecting light

signals from different directions. Each PMT is equipped with a light concentrator

ring, enhancing the light collection area by 20% - 40%. The cavities between the

glass and the support are filled with gel to ensure optical contact. Additionally, the

DOM includes three calibration sensors: 1) an acoustic piezo sensor to determine its

position, 2) compass and tilt meters to determine its orientation, 3) and LED nano-

beacon for timing calibration. Inside the glass sphere are also housed the readout

electronics. The specific components of the readout electronics are as follows:

A Central Logic Board (CLB) is used to handle the digitized signals from all the

sensors within the DOM. Two Octopus Boards connect groups of photomultiplier

tubes (PMTs) to the CLB. Each Octopus Board links two groups of 19 + 12 PMTs to

the central logic processing. There are 31 Base Boards in the DOM. These boards

are responsible for amplifying and discriminating the signals from the PMTs. They

also handle the high-voltage supply (1500 V) for the PMTs while having very low

power consumption, just 45 mW. Finally, a Power Conversion Board (PCB) is in

charge of supplying power to the entire DOM. Due to its structure the DOM can

withstand the hydrostatic pressure encountered at the operating depths.

In Fig. 2.3 is illustrated the configuration of the detection units (DUs), also

referred to as detection strings. Each string consists of two vertical, thin Dyneema
®

ropes, 4mm in diameter, attached to the DOMs via a titanium collar that surrounds

the glass. Between the ropes are inserted additional spacers to maintain their

parallel alignment. The backbone of the connections is obtained by a vertical

electro-optical cable covered in plastic and filled with oil, balancing the pressure.
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Figure 2.3: A schematic representation of a

Detection Unit (DU). Image credit: [8].

Figure 2.4: The respected sizes of the ARCA

and ORCA neutrino telescopes. Image credit:

[8].

Power transmission is facilitated along the DUs through a set of copper wires, while

signals are conveyed to the shore via 18 optical fibers, one per DOM. A penetrator

is employed to introduce the conductors and optical fibers into the glass sphere. To

maintain the stability of the DU, a buoy is keeping the DU almost vertical while its

base remains firmly anchored to the seabed.

The analogue signals from all the sensors in a DOM are digitized and then

processed by the CLB, which is the core processing unit of the DOM. It captures

the occurring time and the Time-over-Threshold (ToT) for each detected pulse

with a precision of 1/
√
12𝑛𝑠. The occurring time indicates the arrival time of the

first photon, which is defined as the moment the voltage amplitude exceeds the

threshold of 0.3 photo-electrons. The ToT corresponds to the length of time during

which the amplitude of the signal remains above the threshold before it decreases

below the threshold once again. The digitized data, that have passed the preset

threshold, are sent onshore for further processing.

The KM3NeT/ARCA & ORCA detectors differ at their respective volumes and

granularity. A comparison between those two is depicted in Fig. 2.4. In its com-

pleted state, KM3NeT/ARCA will comprise two building blocks of 115 vertical DUs

spaced 90m apart, reaching a height of 700𝑚. The vertical space of the DOMs

on the DUs is 36𝑚. Overall, it will cover an area with a radius of approximately

500𝑚 and have an instrumented volume of 1 cubic kilometer (𝑘𝑚3
). On the other

hand, KM3NeT/ORCA, once completed, will consist of a single building block with

115 DUs spaced 20𝑚 apart, resulting in a total height of 180𝑚. The vertical space

of DOMs is 9𝑚. This configuration will cover an area with a radius of approxi-

mately 107𝑚 and have an instrumented volume of about 0.0067 𝑘𝑚3
, providing new

opportunities for neutrino oscillation studies in the Mediterranean.
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2.2. Data acquisition

The KM3NeT detector utilizes a readout system [8] that involves sending all digital

data from the photomultiplier tubes to shore if they exceed the predetermined

threshold of 0.3 photo-electrons. Once on shore, the data is processed in real time

on a computing cluster.

All data are sent from the detector to shore via the fibre-optic transmission

system. The optical data includes the arrival time, the Time-over-Threshold (ToT)

and the PMT identification number, commonly known as a "hit". Each hit consists

of 6 bytes of data, with 1 byte for the PMT address, 4 bytes for the time information,

and 1 byte for the ToT. Each DOM has a data rate of 9-12 Mb/s in which contributes

neutrino-induced events as well as some background sources. The background is

dominated by decays of radio-active potassium (
40𝐾 ) in water, bio-luminescence

and atmospheric muons. The total data rate for a completed building block amounts

to 25 Gb/s and the relative time offsets between any pair of DOMs are stable within

1 ns. Due to the vast amount of information it is required a reduction of the data

rate and only the filtered data are stored on the disk. In order to preserve all the

available information for the offline analyses, each event will contain a "snapshot"

of all the data captured by the detector during the event.

In essence, the first stage of data processing is to collect the unfiltered data from

DOMs and reorganise them into events using a software called DataQueue (DQ)

[10]. Then, run the triggering algorithms through an Optical/Acoustic Data Filter

(ODF/ADF) software. Finally, the processed data are stored into the disk using the

DataWriters (DW) application.

2.2.1. Triggering

A series of specific filter algorithms implemented in software (DF) are utilized to

separate the physics events from the background noise. Different levels of filters

[8] are applied to the data:

• Level-zero filter (L0) is the initial filter applied to the analog pulses (unfiltered

data). It sets a threshold for the pulses and is the only one carried out off-shore.

L0 hits are also referred to as "snapshot hits" or simply "hits" [7].

• Level-one filter (L1) involves the coincidence of at least two L0 hits from

different PMTs of one DOM within a fixed time window, typically 10 ns. L1

hits are referred to as "triggered hits".

• Level-two filter (L2) further refines the data by reducing random coincidences

using the PMTs’ orientations.

In the DataFilter (DF) processing stage, three primary types of data are generated

as outputs [11]:
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• Triggered Events (EVT or IO_EVT): These events contain a "snapshot". This

snapshot includes the information of the triggered hits as well as the back-

ground hits recorded during a specific time interval before and after the

triggered hits.

• Summaryslice Data (SUM or IO_SUM): A summary slice is generated and

recorded for the entire detector every 0.1 seconds. It encapsulates essential

information about the detector performance and status. Within each sum-

mary slice there are summary frames, each of them dedicated to one DOM

and they hold information about the Module Identifier, which is a unique

code assigned to each DOM to distinctly identify it, the Average Rate for each

of the 31 PMTs within each DOM for every 0.1 seconds, and the Status Bits

which convey specific information about the status of the detector during

that interval.

• Timeslice Data (TS or IO_TS): A time slice is generated and saved for the

entire detector at regular intervals of 0.1 seconds. Within this time slice,

data is organized into frames. Each of these frames corresponds to a specific

DOM and contains details about the hits that occurred on the respective

DOM during the 0.1 seconds. A "hit" includes information about the raw

(uncorrected) hit time, PMT channel, and Time Over Threshold.

The above three types of data form "runs" and each run has a duration of 6

hours.

2.3. Monte Carlo Simulation

Monte Carlo (MC) simulations have a multifaceted role in experimental physics.

They aid in optimizing different components and configurations of the experiment,

validating the authenticity of real experimental data through comparisons with

modeling the interactions of particles and simulated results.

In KM3NeT, MC simulations have been employed to model and simulate various

aspects of the detector behavior and the interactions of particles in it. They replicate

how the particles interact with the medium (water) surrounding the detector and the

following Čerenkov light production, and predict the detector response in terms of

the signal detected by the PMTs. These simulations bridge the gap between theoret-

ical expectations and experimental observations, enabling researchers to interpret

the data collected by KM3NeT accurately and make meaningful contributions to

the field of neutrino astrophysics.

2.3.1. Event generation

The initial phase of the simulation process involves generating particle fluxes. These

incoming particles include neutrinos originating from astrophysical sources, as
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well as atmospheric muons and atmospheric neutrinos. Moreover, the geometry of

the detector and its environment is generated.

The simulation involves the propagation of neutrinos through the Earth, sim-

ulating interactions in rock and sea water, for the astrophysical and atmospheric

fluxes of (anti-)neutrinos of all three flavors (𝜈𝜇, 𝜈𝜇, 𝜈𝑒, 𝜈 𝑒, 𝜈𝜏 , 𝜈𝜏). Both neutral-

current (NC) and charged-current (CC) interactions are simulated. Neutrino events

are generated using the program GENHEN.

Atmospheric muons constitute a significant and frequent background. To

replicate this background accurately, the program MUPAGE is utilized, generating

both single and multiple atmospheric muon events.

Background photons, originating from the decay of
40𝐾 in the sea water and

bioluminescence, are also simulated by adding random noise events at a rate of 5

kHz per PMT. Finally, the trigger algorithms are applied and the MC events that

pass the triggering conditions remain and the on-shore triggering is simulated.

2.4. Background sources

The KM3NeT detectors can distinguish three distinct types of optical background

sources that conceal neutrino-induced events: bioluminescence, radioactive decay

processes in water, and atmospheric muons.

• Bioluminescence is the emission of visible light by living organisms through

a chemical reaction. It is prevalent in the deep sea, where surface light is

absent. This phenomenon is diverse, with larger animals like fish or jellyfish

producing bursts of bioluminescence lasting seconds, while bioluminescent

bacteria serve as a weaker yet continuous light source, contributing to the

background rate increasing the chances of pure noise events firing a trigger.

Factors such as sea current and seasonal changes affect the bioluminescent

activity. To mitigate its impact, the high-rate veto (HRV) is employed in data

acquisition systems. It monitors the hit count of a single PMT, excluding it

from triggering if hits exceed 2000 per 100 𝜇𝑠.

• The radioactive decays in water refer to processes where unstable isotopes

within the water undergo radioactive decay, emitting particles such as alpha,

beta, or gamma rays. In particular, seawater contains a small fraction of about

0.04% of radioactive Potassium-40 (
40𝐾 ).

40𝐾 primarily undergoes two decay

channels; a 𝛽 decay, in which a
40𝐾 nucleus transforms into a calcium-40

(
40𝐶𝑎) nucleus by emitting a 𝛽 particle and an antineutrino:

40𝐾 →40 𝐶𝑎 + 𝑒− + 𝜈 𝑒,

and an electron capture, where a
40𝐾 nucleus captures one of its inner orbital

electrons and converts a proton into a neutron. This process results in the
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formation of argon-40 (
40𝐴𝑟) emitting a photon in the subsequent gamma

decay:

40𝐾 + 𝑒− →40 𝐴𝑟∗ + 𝜈𝑒 →40 𝐴𝑟 + 𝛾 + 𝜈𝑒.

The electron, with a maximum energy of 1.31 MeV, has the capability to

generate Čerenkov radiation. Similarly, the excited state of
40𝐴𝑟 possesses an

energy of 1.46 MeV, and its gamma ray can undergo scattering through the

Compton effect, resulting in detectable photons emitted by the subsequent

electrons. These decay processes of
40𝐾 contribute to a consistent, uniform

optical background within the detector. This background has the potential

to trigger random L1 events, but it can also be intentionally employed for

calibration purposes.

• Atmospheric muons are secondary particles produced in the Earth’s atmo-

sphere due to interactions between cosmic rays and air molecules. As they

travel through air, water, or rock, emit Čerenkov radiation and lose energy

along their path. As atmospheric muons lose energy due to Čerenkov radia-

tion, they may eventually come to a complete stop. To minimize the impact

of atmospheric muons as a background source in experiments, detectors

are positioned deep below the Earth’s surface. The overburden of rock, sea

water or other materials above the detector acts as a shield, reducing the

flux of atmospheric muons reaching the detector, yet they can penetrate to

the detector volume if their energy at the sea surface is in the TeV range or

above.

For the KM3NeT/ARCA, the real-time trigger rate is dominated by down-

going atmospheric muons. Thus, trigger settings have been adjusted to

maintain a manageable data rate of muons. To mitigate backgrounds from

atmospheric muons and random coincidences of hits from
40𝐾 decays, selec-

tion cuts are applied based on event reconstruction quality, reconstructed

zenith angle for track-like events, and event energy-related quantities (e.g.,

number of hits) or event topologies.

2.5. Event reconstruction in KM3NeT/ARCA

Reconstruction involves adjusting model parameters to align with observed data.

Relativistic charged particles emit Čerenkov radiation, forming a cone of light

in our detector (see Section 1.6). Neutrino interactions are categorized as either

track events, where a muon emerges, or shower events, generating cascades of

particles. Different reconstruction algorithms are applied to handle each event type

separately [12]. The underlying model assumes that, for both muons and particles

in a shower, Čerenkov radiation is emitted as they traverse the detector.
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2.5.1. Track reconstruction

Due to the non-linear nature of the task of fitting a muon track to PMT hit data, an

approach with several consecutive steps is employed, referred to as the JMuonChain
[13]. Describing the muon trajectory involves five distinct parameters: its direction,

along with the time and position at various points along the trajectory. The muon

trajectory fit employs a coordinate system, where the muon travels parallel to the

z-axis and intersects the z = 0 plane at 𝑥0, 𝑦0 at time 𝑡0. Assuming no scattering or

dispersion of light, the expected arrival time 𝑡𝑖 of Čerenkov photons on a PMT is

defined as

𝑡𝑖 = 𝑡0 +
𝑧𝑖
𝑐
+ 𝑡𝑎𝑛(𝜃𝐶)

𝑅𝑖

𝑐
,

incorporating the characteristic Čerenkov angle 𝜃𝐶 , the speed of light in a vacuum

𝑐, the minimum distance of the muon from the PMT 𝑅𝑖 =
√
(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦0)2,

and the distance 𝑧𝑖 from the PMT to the z = 0 plane.

A linear fit is used to address outliers from optical background hits and scattered

photons in the data. The fit is applied to clusters of causally related hits, selecting

the solution with the maximum number of hits unless a more statistically significant

solution is found. Outliers are removed based on their contribution to the total

𝜒 2
. This process is repeated for various assumed track directions, where the N

best-fit solutions are stored and used in the subsequent fit stage. The fit quality 𝑄
is quantified using 𝑄 = 𝑁𝐷𝐹 − 0.25 × (

𝜒 2

𝑁𝐷𝐹 ), where NDF is the number of degrees

of freedom.

Starting from the twelve best-fit directions, a maximum-likelihood search is

performed using the Levenberg-Marquardt method. The likelihood function incor-

porates probability density functions (PDFs) describing the PMT response:

 = ∏
𝑃𝑀𝑇ℎ𝑖𝑡𝑠

𝜕𝑃
𝜕𝑡

(𝑅𝑖, 𝜃𝑖, 𝜙𝑖,Δ𝑡), (2.1)

where 𝑅𝑖 is the minimum distance of the muon from the PMT, 𝜃𝑖 and 𝜙𝑖 describe

the orientation of the PMT, and Δ𝑡 is the time difference between expected and

measured arrival of light. The PDFs include various information such as Čerenkov

radiation, energy losses, dispersion, optical background, quantum efficiency, angu-

lar acceptance, and transit time spread of the PMTs. Once the muon trajectory is

determined, the energy of the muon is fitted using the spatial distribution of hit

and non-hit PMTs.

2.5.2. Shower reconstruction

The KM3NeT cascade reconstruction algorithm consists of two stages [12].

Initially, the shower vertex is fitted based on hit times, utilizing a high-purity

sample of coincident hits within 20 ns on the same DOM. This sample may still

contain background hits from optical sources, but their impact is mitigated by

employing the M-estimator score-function 𝑀 = ∑ℎ𝑖𝑡𝑠

√
1 + (𝑡𝑖 − 𝑡𝑖)2, where 𝑡𝑖 is the
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hit time on the DOM 𝑖 at a distance 𝑟𝑖, and 𝑡𝑖 = 𝑡0 + 𝑛
𝑐 𝑟𝑖 is the expected hit time of

a spherical wavefront expanding with velocity 𝑐/𝑛 from the shower position at

time 𝑡0. The best fit for the shower position and time is determined using root’s

TMath::Minimizer interface [14] , starting from the center of gravity of the hits.

Subsequently, the shower direction and energy are estimated based on the

distribution of hit or non-hit PMTs. The log-likelihood function used is purely

based on hit/not hit information:

 = ∑
𝑒𝑚𝑝𝑡𝑖𝑒𝑠

𝑙𝑜𝑔[𝑃𝑛𝑜ℎ𝑖𝑡𝑠
𝑖 ] + ∑

𝑃𝑀𝑇ℎ𝑖𝑡𝑠

[1 − 𝑃𝑛𝑜ℎ𝑖𝑡𝑠
𝑖 ]. (2.2)

The probability is defined as 𝑃𝑛𝑜ℎ𝑖𝑡𝑠
𝑖 = 𝑒−𝜇𝑠𝑖𝑔 (𝑟𝑖,𝑧𝑖,𝑎𝑖,𝐸𝑆)−𝑅𝑏𝑔 ⋅𝑇

, where only the expected

number of photons 𝜇𝑠𝑖𝑔(𝑟𝑖, 𝑧𝑖, 𝑎𝑖, 𝐸𝑆) on a PMT i in a time window 𝑇 ranging from

-100 ns to +900 ns are considered in order to minimize the optical background. 𝐸𝑆
is the shower energy, and 𝑟𝑖, 𝑧𝑖, 𝑎𝑖 the coordinates for the shower reconstruction as

shown in Figure 2.5.

Figure 2.5: Coordinate system used in shower reconstruction. Image credit: [15]

2.6. Further neutrino experiments

The concept of using large volumes of natural material to detect neutrinos dates back

to the mid-20th century, but the technical challenges of building and maintaining

detectors in such environments were significant, and the necessary technologies

were not fully developed at that time.

DUMAND [16] (Deep Underwater Muon and Neutrino Detection project) was

among the earliest concepts for high-energy neutrino and cosmic-ray detection

using the deep ocean as a medium. The project was initiated in the 1970s and

envisioned an array of detectors placed at 4800 meters deep underwater in the

Pacific Ocean, off-shore Hawaii. It aimed at detecting high-energy particles by

observing Čerenkov radiation. While facing technical and funding challenges,

DUMAND played a crucial role in shaping the ideas and technologies that later led

to successful experiments.
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Building on DUMAND’s concepts, the AMANDA [17] (Antarctic Muon and

Neutrino Detector Array) experiment was developed as a precursor to IceCube. It

was the first in-ice neutrino telescope located at South Pole. AMANDA deployed a

network of optical modules deep within Antarctic ice to detect Čerenkov radiation

produced by high-energy neutrinos interacting with the ice. Its construction started

in 1993 and the detector was completed in 2000, operating with a total of 677 optical

modules attached on 19 strings arranged in a circle with a diameter of 200 meters.

The strings were deployed in a depth 1500 meters. On March 20, 2005, after

nine years of operation, AMANDA and IceCube merge to form a single IceCube

Collaboration.

2.6.1. Under-water detector: ANTARES

Figure 2.6: Schematic representation of the Antares neutrino telescope. Image credit: [15]

The ANTARES neutrino telescope [15] (Astronomy with a Neutrino Telescope

and Abyss environmental RESearch) is located approximately 40 km off-shore

Toulon, France, in a depth of 2500 m, nearby the KM3NeT/ORCA site. It has an

instrumented volume of 0.05 𝑘𝑚3
, making it the largest observatory designed to

detect neutrinos in the northern hemisphere and the first to operate underwater in

the deep sea. The infrastructure consists of 12 lines of 300 storeys and 885 optical

modules. A detector line is a vertical array of multiple storeys. Each detector

line is formed by arranging 25 storeys with a vertical space of 14.5 meters. Each

storey is enclosed by a titanium frame and comprises the optical modules as well

as the necessary electronics required for data acquisition. An optical module is a

pressure-resistant glass sphere that houses a single 10-inch PMT. Three such optical

modules are attached on a storey with their PMTs having a 45𝑜 deviation directed

downward from the horizon. The schematic view of the ANTARES detector can be

seen at Figure 2.6 and its components at Figures 2.7, 2.8. These detector lines are

deployed vertically in the underwater environment where an anchor and a buoy
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Figure 2.7: The local control module of a storey

consisting the data acquisition electronics. Im-

age credit: [15]

Figure 2.8: A storey with the three optical

modules attached. Image credit: [15]

are keeping them in place. The first storey is placed at 100 meters above the seabed

and the last one at about 450 meters.

The ANTARES scientific program aimes at advancing our understanding of the

Universe through neutrino observations and it covered three main areas: Astron-

omy and Astrophysics, Dark Matter and Particle Physics, Neutrino Oscillations

and Interactions. ANTARES primarily focuses on neutrinos of extraterrestrial ori-

gin, including those from astrophysical sources such as gamma-ray bursts, active

galactic nuclei, microquasars and supernovae. Its location in the Mediterranean

Sea complements the research conducted by other neutrino telescopes like IceCube

and KM3NeT, providing a broader coverage of the sky.

The deployment of the first detector line occurred on February, 2006 and the

ANTARES telescope was completed on 29 May, 2008. Nearly 16 years later, on

February 12, 2022 the official cessation of data acquisition for the ANTARES detector

was marked, initiating the process of its dismantling.

2.6.2. In-ice detector: IceCube

The IceCube neutrino observatory [18] is located near the Amundsen-Scott South

Pole Station, Antarctica, burried below the surface in a depth of about 2500 meters.

It is the first 1 cubic-kilometer particle detector made of 1 gigaton of Antarctic ice

ever built. The layout of the detector is illustrated in Figure 2.11. The infrastructure

consists of the surface array, IceTop, and a denser inner subdetector, DeepCore.

The in-ice detector consists of 86 vertical strings, in and on each string are attached

60 DOMs frozen in boreholes, thus rising up to 5160 DOMs in total. The DOMs are

placed in a 17 meter vertical distance from each other. The strings are arranged

in a hexagonal grid pattern with a separation of 125 meters, covering an area of

1 𝑘𝑚3
. The central part of the array features eight strings deployed more closely,

with a horizontal separation of roughly 70 meters and a vertical spacing of 7 me-

ters between DOMs. This more compact layout forms the DeepCore subdetector,



2.6. Further neutrino experiments 26

designed to reduce the threshold energy for neutrino detection to around 10 GeV.

This configuration allows for the investigation of neutrino oscillations. The sur-

fuce array, IceTop, is composed of 81 stations situated on the upper ends of the

corresponding strings. Each of these stations includes two tanks, and within each

tank, there are two downward-facing DOMs. This setup serves two main purposes.

Firstly, it operates as a "veto and calibration detector" for the IceCube system and

secondly, it is capable of detecting "air showers" initiated by high-energy primary

cosmic rays. This process occurs in the energy range spanning from 300 TeV to 1

EeV.

IceCube’s collaboration has achieved several significant milestones in neutrino

astronomy. Among its notable achievements is the discovery of the diffuse flux of

cosmic neutrinos as well as the detection of a 6.3 PeV neutrino through a Glashow

resonance event. A significant expansion of the current IceCube neutrino telescope,

IceCube-Gen2 [19], is proposed. The plan involves extending the instrumentation

to cover a volume of 10 𝑘𝑚3
within clear glacial ice at the South Pole. IceCube-

Gen2 primary objectives include identifying the sources of astrophysical neutrinos,

discovering GZK (Greisen-Zatsepin-Kuz’min effect) [20],[21] neutrinos, and estab-

lishing itself as a key observatory in future multi-messenger astronomy initiatives.
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Figure 2.9: The IceCube Laboratory. Image

credit: IceCube Collaboration

Figure 2.10: The last DOM before it was

buried one mile deep in the Antarctic ice. Im-

age credit: IceCube Collaboration

Figure 2.11: The IceCube Neutrino Observatory.

Image credit: IceCube Collaboration [18]
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Introduction to Machine Learning

Artificial Intelligence (AI) [22] is a rapidly evolving field with many practical

applications and active research topics. AI focuses on developing systems and

machines capable of simulating the human intelligence and even tackling and

solving problems that are intellectually difficult for humans. The concept of AI

emerged in 1950 when Alan Turing published a paper introducing the Turing test

to determine whether a computer has the ability to exhibit human-like intelligence,

but the term "Artificial Intelligence" was coined later, in 1957, by John McCarthy.

In the early AI projects the knowledge base approach was used, where the systems

relied only on hard-coded knowledge. Some difficulties on this approach led to the

realisation that the systems should be capable of acquiring their own knowledge

by extracting patterns from raw data. Hence, Machine Learning was introduced.

Machine learning (ML) is a subfield of artificial intelligence and computer

science and focuses on building algorithms, extracting patterns from raw data and

making accurate predictions on a given task in order to solve a problem. In general,

machine learning framework involve the following three key components. The

decision process, where the algorithms analyze the input data, which can be labeled

or unlabeled, to generate estimations regarding patterns within the data. An error

function is used to compare the model predictions to known examples, enabling the

assessment of how well the model performs. And finally, the model is optimized by

making adjustments to the model weights in order to minimize the discrepancy

between the model predictions and the known examples. The performance of a

simple machine learning algorithm is heavily affected by the representation of the

data that it is given. The information included in the representation is known as

"feature".

ML can be categorised into four main types: Supervised learning, Unsupervised

learning, Semi-supervised learning and Reinforcement learning. A supervised

machine learning algorithm is trained with a dataset containing labeled examples,

whereas an unsupervised algorithm is trained on unlabeled data. Semi-supervised

learning is a combination of both supervised and unsupervised learning, using

a small labeled dataset to guide the training process and a larger unlabeled one

for feature extraction. Reinforcement learning model is a model similar to the

supervised one, yet it is not trained using labeled data, it learns to make sequential

decisions by trial and error in predictions. For the purposes of this thesis the

supervised method is used.

28
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3.1. Deep Learning

Another part of AI is Deep Learning (DL) [22]. DL is an approach to machine

learning that has seen tremendous growth in its popularity and usefulness, largely

as the result of more powerful computers, larger datasets and techniques to train

deeper networks. The main difference between Machine and Deep Learning is

the way that each algorithm learns from data. Deep learning can learn from both

labeled and unlabeled data and distinguish the important feature of the data. Thus,

it can work directly with raw, unprocessed data, without the need for human

experts to specify the features in advance. Contrarily, classical machine learning

depends more on human guidance and the system needs to know in advance which

features of the data to pay attention to. It typically works better with structured

data, where the important features are well-defined.

Essentially, deep learning is a neural network with three or more layers. The

term "deep" pertains to the depth of a neural network, composed of multiple hidden

layers situated between the input and output layers. The initial layer, referred to

as the "visible layer", is where the input data is introduced. It is called the "visible

layer" because it contains the variables or features that we can directly observe in

our data. The "hidden layers" are the subsequent layers in the neural network. They

are referred to as "hidden" because they don’t receive data directly from the input;

instead, they are intermediate layers that extract increasingly abstract and complex

features from the input data. These features are learned by the neural network

during training. The neural network autonomously determines which features are

useful for explaining the relationships and patterns within the observed data.

3.1.1. Structure of neural networks

A neural network or artificial neural network (ANN) consists of an input layer,

hidden layers and an output layer. Each layer consists of nodes, also known as

neurons (see Figure 3.1), where each node represents a feature or attribute of the

input data. The input layer is responsible for receiving the raw data and passing

it to the subsequent layers. Each hidden layer contains multiple neurons, and

connections exist between neurons in adjacent layers. Each neuron in a hidden layer

sums up the inputs it receives from its connections and applies an activation function
𝑓 to produce its output. This output is then passed on to neurons in the next layer.

The layers are connected by weighted connections, which determine the strength

of the connections between neurons. Each connection has an associated weight
𝑤, which can be adjusted during training to optimize the network performance.

Additionally, a bias term 𝑏 is added to the sum of weighted inputs. For one neuron

the output 𝑦 is

𝑦 = 𝑓 (∑
𝑚

𝑤𝑚𝑥𝑚 + 𝑏). (3.1)

Activation functions are used to decide whether or not a specific neuron should
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Figure 3.1: Left: Schematic drawing of a neuron with its components. Right: Structure representa-

tion of a neural network consisting of an input layer, three hidden layers and an output layer.

be activated. The choice of the function depends on the nature of the problem

and the characteristics of the data. They can determine the neuron output based

on this transformed input. There are two types of activation functions: linear and

non-linear. However, linear functions are rarely used in deep networks due to their

simplicity, making them unable to represent the complexity of the network. To

introduce non-linearity and enable the network to learn complex relationships, a

non-linear activation function 𝑓 (e.g., ReLU, Sigmoid) is applied to the weighted

sum of inputs and bias. The most common function due to its simplicity is the

Rectified Linear Unit (ReLU) defined as,

𝑓𝑅𝑒𝐿𝑈 (𝑥) =

{
0, if 𝑥 < 0.
𝑥, otherwise.

(3.2)

Typically, the ReLU activation function is preferred to be used at hidden layers

and the sigmoid activation function at the output neuron which maps ℝ → (0, 1),

𝜎(𝑥) =
1

1 + 𝑒−𝑥
. (3.3)

An illustration of the ReLu and Sigmoid activation functions can be seen in

Figure 3.2. If all outputs of one layer are connected to each input of the succeeding

layer then the layers are called fully-connected. Those are the layers whose units

receive as inputs the outputs of each of the units of the previous layer.

3.1.2. Training Neural Networks

Prior to commencing neural network training it is crucial to pre-process the input

dataset. The first step is to shuffle the data to ensure that the they are not ordered in

any specific way, thus preventing any unintentional patterns or biases in the data

that may affect training. After shuffling, the input dataset is split into training and

validation sets. The training set is used to train and build the model and is typically

the largest dataset. The validation set is a smaller subset of the data. The model

does not update the weights from this set. It is used to assess the performance of
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Figure 3.2: Left: Rectified Linear Unit (ReLU) function . Right: Sigmoid function, also known as

logistic function.

the training in unseen data and helps to choose the learning algorithm and find the

best values of hyperparameters. Hyperparameters are parameters that are set prior

to the training and are not optimized during the learning process.

During the training process, input data are passed forward through the network.

Each layer computes a weighted sum of inputs, applies an activation function, and

passes the result to the next layer. For the network to be able to produce some

meaningful predictions, the weights and biases of all connections are adjusted. A

loss function is applied to the network predictions and the true values in order to

minimize the loss.

Loss function

The loss function measures the difference between the network predicted and true

value of the label. The choice of loss function depends on the nature of the problem

at hand.

In regression tasks, where the goal is to predict a real-valued quantity, the two

most commonly used regression loss functions are 𝐿1 and 𝐿2 loss.

𝐿1 loss function is also known as Mean Absolute Error (MAE) and it quantifies

the average absolute error between true 𝑦𝑖 and predicted �̂�𝑖 values,

𝐿1𝑙𝑜𝑠𝑠(𝑀𝐴𝐸) =
1
𝑁

𝑁

∑
𝑖=1

|𝑦𝑖 − �̂�𝑖|. (3.4)

𝐿2 loss function, also known as Mean Squared Error (MSE), quantifies the

average squared error between true 𝑦𝑖 and predicted �̂�𝑖 values,

𝐿2𝑙𝑜𝑠𝑠(𝑀𝑆𝐸) =
1
𝑁

𝑁

∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2. (3.5)

Due to its squaring operation, it is more sensitive to larger errors than smaller ones.

In other words, the 𝐿2 loss encourages the model to reduce the influence of outliers

during training, hence minimizing their impact.

In multi-label classification, where a data point can be associated with multiple

class labels, the Cross-Entropy loss (CE) is preferred. It measures the dissimilarity
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between predicted class probabilities �̂�𝑖 and true class labels 𝑦𝑖. The CE loss for a

single data point is defined as,

𝐿𝐶𝐸 = −
𝐶

∑
𝑖=1

𝑦𝑖𝑙𝑜𝑔(�̂�𝑖), (3.6)

where 𝐶 is the number of classes.

A natural approach to train multi-label classification models is by using the

Binary Cross-Entropy (BCE) cost function. The BCE or log loss is also preferred for

binary classification tasks, where a data point can be associated with one of the

two possible classes. It is defined as

𝐿𝐵𝐶𝐸 = −
1
𝑁

𝑁

∑
𝑖=1

𝑦𝑖𝑙𝑛(�̂�𝑖) + (1 − 𝑦𝑖) ⋅ 𝑙𝑛(1 − �̂�𝑖), (3.7)

giving the average binary cross-entropy with 𝑦𝑖 being the true binary label 0 or 1 and

�̂�𝑖 the predicted probability with �̂� ∈ [0, 1]. When the true label is positive (𝑦 = 1)

the loss encourages the model to assign high predicted probabilities (�̂� → 1), and

low predicted probabilities (�̂� → 0) when the true label is 0. At the output layer of

the neural network, the sigmoid activation function (see Section 3.1.1) is typically

used to achieve a good performance.

Gradient descent

Once the loss function is established, the subsequent stage involves employing a

training algorithm to decrease the loss. In simpler terms, the objective is to find

a set of weights and biases that minimize the loss to the greatest extent possible.

This can be achieved by using an algorithm known as gradient descent [23].

Suppose that 𝐿 is a function of 𝑚 variables 𝜈1, 𝜈2,… , 𝜈𝑚. Then the change Δ𝐿 is

produced by a small change Δ𝜈 as,

Δ𝐿 ≈ ∇𝐿 ⋅ Δ𝜈. (3.8)

The gradient of loss 𝐿 is defined as the vector of the partial derivatives,

∇𝐿 ≡ (
𝜕𝐿
𝜕𝜈1

,… ,
𝜕𝐿
𝜕𝜈𝑚)

𝑇
(3.9)

where T is the transpose operation. In order to guarantee the approximate expres-

sion 3.8 to be negative the choice of Δ𝜈 to be written as

Δ𝜈 = −𝜂∇𝐿 (3.10)

is made, where 𝜂 is a small, positive parameter known as learning rate. Substituting

this into the Equation 3.8 results to Δ𝐿 ≈ −𝜂||∇𝐿||2, which suggests Δ𝐿 < 0. In this

way 𝐿 always decreases. Subsequent to the Equation 3.10 is the movement of the

position 𝜈 by the amount,
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𝜈 → 𝜈𝑚 = 𝜈𝑚−1 − 𝜂∇𝐿𝑚−1. (3.11)

By repeatedly applying this update rule 𝐿 will continue to decrease until it reaches a

global minimum. Essentially, the update rule (Eq. 3.10) defines the gradient descent
algorithm.

In neural networks the gradient descent algorithm is applied to find the weights
w and biases b that minimize the loss L. The aforementioned "position" 𝜈 can be

replaced with the parameters 𝑤𝑘, 𝑏𝑙. Hence, the gradient vector is now defined as

∇𝐿(𝑤𝑘, 𝑏𝑙) = (
𝜕𝐿
𝜕𝑤𝑘

,
𝜕𝐿
𝜕𝑏𝑙)

𝑇
. (3.12)

The change Δ𝐿 can be written as the approximation

Δ𝐿(𝑤𝑘, 𝑏𝑙) ≈
𝜕𝐿
𝜕𝑤𝑘

Δ𝑤𝑘 +
𝜕𝐿
𝜕𝑏𝑙

Δ𝑏𝑙. (3.13)

Finally, the gradient descent update rule using the components 𝑤𝑘, 𝑏𝑙 is

𝑤𝑘 → 𝑤𝑘 = 𝑤𝑘−1 − 𝜂
𝜕𝐿

𝜕𝑤𝑘−1

𝑏𝑙 → 𝑏𝑙 = 𝑤𝑙−1 − 𝜂
𝜕𝐿
𝜕𝑏𝑙−1

. (3.14)

Hopefully, by repeatedly applying this rule the weights and biases keep updating

until the minimum of the loss function is found. It is implied that the gradient ∇𝐿
needs to be computed separately for every input and then be averaged to give the

true gradient. Unfortunately, this way is very time consuming and the learning is

slow.

To speed up the learning process the stochastic gradient descent (SGD) can be

used. Essentially, SGD uses a small number 𝑚 of random training inputs 𝑥 , called

mini-batch. The resulting true gradient ∇𝐿 is the average value of the summation

of all the gradients ∇𝐿𝑥𝑗 computed for the mini-batches. That is

∇𝐿 ≈
1
𝑚

𝑚

∑
𝑗=1

∇𝐿𝑥𝑗 . (3.15)

Applying this estimation to the gradient descent update rule (Eq. 3.14) for the

weights 𝑤𝑘 and biases 𝑏𝑙 results to,

𝑤𝑘 → 𝑤𝑘 = 𝑤𝑘−1 −
𝜂
𝑚

∑
𝑗

𝜕𝐿𝑥𝑗
𝜕𝑤𝑘−1

𝑏𝑙 → 𝑏𝑙 = 𝑏𝑙−1 −
𝜂
𝑚

∑
𝑗

𝜕𝐿𝑥𝑗
𝜕𝑏𝑙−1

, (3.16)

where the sums are over the training samples 𝑥 that belong to the mini-batch.

The gradient descent update rule is repeatedly applied until all mini-batches are
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exhausted, hence completing an epoch (complete pass through the training data) of

training. Then, this learning process starts over for a new epoch.

An extension of the SGD is the Adam optimization algorithm [24]. The name

Adam derives from adaptive moment estimation. It is widely used in training neural

networks due to its efficiency and low memory requirements. Adam is well-suited

for problems that involve a large amount of data and/or a high number of parameters.

The algorithm is straightforward to implement and its hyperparameters typically

require little tuning.

To implement the Adam algorithm it is required to initialize the model param-

eters, weights and biases, and set the hyperparameters such as the learning rate
𝜂, the exponential decay rates for the moment estimates 𝛽1, 𝛽2 with 𝛽1, 𝛽2 ∈ [0, 1),
and a small constant 𝜖 to prevent division by zero. It is also required to initialize

the two moment vectors 𝑚0, 𝑣0. The first moment (mean) 𝑚0 keeps track of the

exponentially decaying average of past gradients and the second raw moment

(uncentered variance) 𝑣0 keeps track of the exponentially decaying average of past

squared gradients. They are both initialized as vectors of zeros. This can result in

a slower learning process during the initial stages of optimization since it fails to

capture important gradient information. This is particularly problematic when the

learning rates or decay rates are set to small values. This issue can be counteracted

by updating the bias moment estimates as,

𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡
𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔2

𝑡
, (3.17)

where 𝑔𝑡 are the gradients of the loss function 𝑓 evaluated with respect to the model

parameters 𝜃 for each mini-batch 𝑡 as 𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃). The next step is to compute the

bias-corrected estimates by dividing 𝑚𝑡 and 𝑣𝑡 by factors of (1 − 𝛽𝑡
1) and (1 − 𝛽𝑡

2),
respectively:

�̂�𝑡 ←
𝑚𝑡

(1 − 𝛽𝑡
1)

𝑣𝑡 ←
𝑣𝑡

(1 − 𝛽𝑡
2)

. (3.18)

Finally, update the model parameters 𝜃 using the bias-corrected estimates resulting

to the update rule of the Adam optimizer,

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂 ⋅
�̂�𝑡√
𝑣𝑡 + 𝜖

. (3.19)

Back-propagation algorithm

Back-propagation relies on the chain rule of calculus to compute gradients of the loss

layer by layer [23]. It aims to compute the partial derivatives ( 𝜕𝐿
𝜕𝑤𝑘

, 𝜕𝐿
𝜕𝑏𝑙 ) of the loss for

all weights and biases in the network. However, before calculating these derivatives

directly, an intermediate quantity 𝛿𝑙
𝑗 needs to be introduced. Specifically, 𝛿𝑙

𝑗 is the

error in the j-th neuron in the l-th layer. Using the backpropagation algorithm 𝛿𝑙
𝑗 is
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computed for each layer of the network starting from the output layer and moving

backward through the layers of the network. The error 𝛿𝑙
𝑗 represents how much the

predicted output deviates from the true value. Once 𝛿𝑙
𝑗 is computed for each neuron,

backpropagation establishes a relationship between 𝛿𝑙
𝑗 and the partial derivatives

𝜕𝐿
𝜕𝑤𝑘

, 𝜕𝐿
𝜕𝑏𝑙

.

The error in the output layer 𝐿 for every component 𝑗 is given by

𝛿𝐿
𝑗 =

𝜕𝐿
𝜕𝛼𝐿

𝑗
𝜎′(𝑧𝐿𝑗 ), (3.20)

where the term
𝜕𝐿
𝜕𝛼𝐿

𝑗
measures the rate of change of the loss function in respect to the

activation 𝛼𝐿
𝑗 of the j-th neuron in the output layer. The second term on the right

𝜎′(𝑧𝐿𝑗 ) measures how fast the activation function 𝜎 is changing concerning the

input 𝑧𝐿𝑗 . The value 𝑧𝐿𝑗 is defined as the weighted input to layer 𝑙: 𝑧𝐿𝑗 ≡ 𝑤𝑙𝛼𝑙−1 + 𝑏 ,

where 𝛼𝑙−1
represent the activation on the previous layer and 𝑤𝑙, 𝑏 are the respected

weights and biases, and is already computed during the forward pass.

Rewriting the Equation 3.20 in a matrix-based form using the Hadamard product
⊙, an element-wise vector multiplication,

𝛿𝐿 = ∇𝛼𝐿 ⊙ 𝜎′(𝑧𝐿), (3.21)

where ∇𝛼𝐿 is defined as a vector with components the partial derivatives
𝜕𝐿
𝜕𝛼𝐿

𝑗
. The

error 𝛿𝑙
in a layer 𝑙 in terms of the error 𝛿𝑙+1

of the preceding layers 𝑙+1 is given by

𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1 ⊙ 𝜎′(𝑧𝑙). (3.22)

The transpose of the weight matrix (𝑤𝑙+1) of the (𝑙+1)-th layer is used to propagate

the error backward through the network, moving from the output layer 𝑙 + 1 back

to the previous layer 𝑙. It is applied to the error 𝛿𝑙+1
, essentially moving the error

backward giving a measure of how much the error at the (𝑙+1)-th layer contributes

to the error at the output of the 𝑙-th layer. The Hadamard product ⊙𝜎′(𝑧𝑙) moves

the error backward through the activation function in layer 𝑙. Thus, calculating the

error 𝛿𝑙
at the weighted input to each layer 𝑙. Finally, the changes of loss (gradient)

with respect to any bias 𝑏 𝑙
𝑗 and any weights 𝑤𝑙

𝑗𝑘 in the network can be calculated

with the equations

𝜕𝐿
𝜕𝑏 𝑙

𝑗
= 𝛿𝑙

𝑗 ,
𝜕𝐿
𝜕𝑤𝑙

𝑗𝑘
= 𝛼𝑙−1

𝑘 𝛿𝑙
𝑗 . (3.23)

Common approaches to improve the neural network

There are several ways to improve the performance of a neural network. This

section highlights some of them.

Firstly, the hyperparameter learning rate needs to be tuned depending on the

algorithm. As mentioned in Section 3.1.2 the learning rate is applied to the gradient

and scales it. It can be considered to be similar to a step size. Its value needs to be

small enough to give a good approximation yet not too small, which could result in
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slow convergence or confinement to a local minima. Conversely, if the value is too

large the algorithm might fail to converge as it could overshoot minima. A viable

approach is to decrease the learning rate as the number of epochs progresses.

Secondly, regularization techniques can be applied to prevent overfitting [25].

Regularization refers to adjustments made to a learning algorithm with the aim

of decreasing its generalization error while keeping its training error unchanged.

Overfitting occurs when a model excels at predicting labels for the training examples

but makes errors when applied to unseen data that were not part of the training

dataset. The most common techniques are dropout ,early stopping and batch-
normalization. Dropout is a straightforward concept in neural networks. During

the training process, for each training example, random neurons in the network are

temporarily excluded from the computation. The extent of dropout is controlled

by a parameter, usually in the range [0, 1], where a higher value implies a more

significant regularization effect. Dropout can be implemented in the neural network

by inserting a dropout layer between two consecutive layers, or by specifying

the dropout parameter for a specific layer. Early stopping involves periodically

evaluating the performance of the model on a validation dataset during training.

After each epoch, the current state of the neural network model is saved as a

checkpoint. The model performance is assessed on a separate validation dataset. If

the model performance on the validation set begins to deteriorate it is an indication

that the model is starting to overfit the training data. Once a decreased performance

on the validation set is observed the training can be stopped. Batch normalization is

a method used to normalize the weighted outputs of each layer before passing them

as input to the next layer. It can be incorporated in the network architecture by

inserting a batch normalization layer between two consecutive layers. Technically,

it is not a regularization technique but it has regularization effect on the model.

Thirdly, a common technique used to enhance the network performance is

pooling. In this technique, a pooling layer takes each feature map output from the

previous layer and produces a more compact feature map, as shown in Figure 3.3.

Pooling is essentially a downsampling process that reduces the spatial dimensions

by half. For instance, in average pooling, the features’ average values are calculated

and used as the output. This approach offers the significant advantage of yielding

fewer pooled features, thereby reducing the number of parameters required in

subsequent layers.

Finally, the problem of vanishing gradients needs to be addressed. As mentioned

in Section 3.1.2, during the process of training a neural network using gradient

descents, the network parameters, which include weights 𝑤 and biases 𝑏 , are

adjusted in small steps to minimize the loss function. This adjustment is determined

by calculating the gradient of the loss function with respect to each parameter.

However, in some situations, this gradient can become extremely small, approaching

zero. When gradients are too small, the parameters associated with those gradients

stop updating, thus no learning is achieved. To prevent this from the start of the

training process, the weights are sampled from a Gaussian distribution, where

the width is inversely proportional to the number of connections of the neuron
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Figure 3.3: This diagram demonstrates an instance of how the pooling technique operates. On

the left side, it displays the output of a layer containing 24x24 neurons, while on the right, 12x12

neurons remain after the pooling process. Modified from [23].

and centered around zero. Additionally, in the subsequent training phases, the

batch-normalization technique, as mentioned earlier, is employed.

3.2. Graph Neural Networks

In particle physics, there is a growing interest in leveraging deep learning as an

exceptional resource to tackle intricate scientific challenges that extend beyond

basic classification. It serves as a means to effectively structure and comprehend

extensive datasets, derive conclusions about unobserved causal factors, and even

discover fundamental physical principles governing complex phenomena. Notably,

within High Energy Physics (HEP), machine learning is frequently employed to

decipher complex inverse relationships, with the goal of deducing insights into the

underlying physics processes based on information acquired from detectors.

Graph Neural Networks (GNNs) are a specific class of neural network archi-

tecture designed to operate on graph-structured data. By definition, data are sets

of items. When examining relationships between these items, whether geometric

or physical, a set can be transformed into a graph by incorporating an adjacency

matrix. Physics data is collected from experiments, where each data point corre-

sponds to a specific event or measurement. They can be thought of as "points"

in space, each having specific attributes associated with them. Point clouds are a

collection of data points represented in 3D space in computer vision and often used

in deep-learning algorithms.

The data collected from the KM3NeT detector have many features of point

clouds, making it a logical choice to exploit graph neural networks for the analysis.

Some advantages on the usage of graphs with respect to image based methods

(e.g CNN) are linked to the limited resolution on position and time that can be

achieved through images/fixed grid pixels. In principle bin size can be increased to

reach any desired resolution, but this operation would cause the increase of the

image size, of memory usage and sparsity of the signal. At the same time, DOMs

in KM3NeT detector are moving under the effect of sea current. This information

is therefore lost inside the position bin size. These techniques have been also
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Figure 3.4: Representation of a directed graph consisting of a global feature 𝑢, nodes 𝑣𝑖, and edges

𝑒𝑘 connecting the nodes pairwise. Figure from [26].

developed in the context of KM3NeT experiment. However, the fixed structure

of pixel has shown limitations in the capability to represent data collected by the

telescope. The high-dimensional and sparse signal registered in the detector can be

much better encoded in graphs.

3.3. Graph Neural Networks in KM3NeT

3.3.1. Structure of graph neural networks

The input data are expressed as graphs, conforming to the architecture [26] of

• a global feature 𝒖, representing the entire graph and carrying some physical

meaning (particles etc),

• the nodes 𝝂𝑖, which are the data points possessing multiple attributes (posi-

tion, time etc) and

• the edges 𝒆𝑘, connecting pairs of nodes and defining the relationship between

them (distance etc).

An illustration of this can be seen in Figure 3.4. The edges are connecting the nodes

one way, allowing the flow of information between the nodes in certain directions.

For memory usage, optimization and for keeping the number of connections under

control, each node is connected to its k-nearest neighbours. This is typically selected

by the geometrical distance between the nodes. The internal formalism of how

a graph 𝒖 is updated is shown in Figure 3.5. The stages of processing are the

following,

𝒆′
𝒌 = 𝜙𝑒(𝒆𝒌 , 𝝂𝒓𝒌 , 𝝂𝒔𝒌 , 𝒖) �̄�′

𝒊 = 𝜌𝑒→𝜈(𝐸′
𝑖 )

𝝂′
𝒊 = 𝜙𝜈(�̄�′

𝒊 , 𝝂𝒊, 𝒖) �̄�′ = 𝜌𝑒→𝑢(𝐸′)
𝒖′ = 𝜙𝑢(�̄�′, �̄�′, 𝒖) �̄�′ = 𝜌𝜈→𝑢(𝑉 ′)

(3.24)

where 𝜙𝑒, 𝜙𝜈 , 𝜙𝑢
are the three update functions and 𝜌𝑒→𝜈 , 𝜌𝑒→𝑢, 𝜌𝜈→𝑢

are the three

aggregation functions. Initially, for each edge 𝒆′
𝒌 an output edge is computed and all
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Figure 3.5: Left: Illustration of how a graph is updated. Starting with updating the edges (a), which

are then aggregated to a node (b), concluding to the update of the entire graph (c). Figure taken

from [26]. Right: Representation of a GNN block. The input graph 𝐺 = (𝑢, 𝑉 , 𝐸) is processed using

the update/aggregation functions and the output graph 𝐺′ = (𝑢′, 𝑉 ′, 𝐸′) with updated attributes is

returned. Figure taken from [27].

the output edges are aggregated to a node 𝒆′
𝒊 , where 𝐸′

𝑖 represents the set of edges

in the i-th node. Then, the nodes are updated yielding the output nodes 𝝂′
𝒊. The

updated edges and nodes are all aggregated resulting to the new graph with global

attribute 𝒖′
. This formalism is a general framework that can be used in several

GNN architectures.

Loss function

In this study, the loss function used for the classification tasks is the Binary Cross En-
tropy, as defined in Section 3.1.2. For the regression tasks, a log-normal distribution

is preferred. The loss is given by,

𝐿 = 𝑙𝑛
√
2𝜋 + 𝑙𝑛(𝜎) +

(𝑦 − 𝜇)2

2𝜎2 , (3.25)

whereas for the minimization only the terms that contain the width 𝜎 and the mean

value 𝜇 are of interest

𝐿 = 𝑙𝑛(𝜎2) +
(𝑦 − 𝜇)2

𝜎2 . (3.26)

For the special case of 𝜎 = 1 the Eq. 3.26 results to the mean squared error as

defined in Eq. 3.5.

3.3.2. Edge convolution

The edge convolution (EdgeConv) operation [28] has to be defined, which is an

approach of learning on point cloud data. In EdgeConv the point cloud is repre-

sented as a graph, where the vertices are the points (nodes) and the edges are the

connections between these points to its k-nearest neighbors. The edge features are

defined as 𝒆𝒊𝒋 = 𝒉𝚯(𝒙𝒊, 𝒙𝒋), where 𝒉𝚯 ∶ ℝ𝐹𝑥ℝ𝐹 → ℝ𝐹 ′
is a function with learnable
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Figure 3.6: The EdgeConv operation. The central point 𝑥𝑖 is surrounded by a local patch consisting

of points 𝑥𝑖𝑗 , which illustrates the connections of a node with its k nearest neighbors. The right side

shows the output 𝑥′
𝑖 of the EdgeConv, calculated by aggregating the edge features linked to all the

edges originating from each connected point. Figure from [28].

parameters Θ and the dimensions 𝐹 represent the feature dimensionality of a given

layer. The output of the EdgeConv operation for each point 𝑥𝑖 has the form

𝑥′
𝑖 = □𝑘

𝑗=1ℎΘ(𝑥𝑖, 𝑥𝑗), (3.27)

where □ is a symmetric aggregation operation (sum, max etc). The best option

for the operation □ is the mean, i.e
1
𝑘 ∑. For the purposes of this analysis the

asymmetrical edge function is preferred, that is

ℎΘ(𝑥𝑖, 𝑥𝑗) = ℎ̄Θ(𝑥𝑖, 𝑥𝑗 − 𝑥𝑖) (3.28)

Overall, when EdgeConv is applied to a point cloud with 𝐹 dimensions and 𝑛
points, it produces a point cloud with 𝐹 ′

dimensions, retaining the same number

of points. What’s particularly noteworthy is its ability to be easily stacked. This

stacking takes one point cloud and converts it into another with the same number

of points, only changing the dimensions of the feature vector for each point. This

stacking capability allows the creation of deep networks that can progressively

learn features from point clouds in a hierarchical manner. Furthermore, the feature

vectors derived from EdgeConv can be interpreted as new coordinates within a

latent space. Consequently, distances between points to be calculated in this latent

space, facilitating the adaptive learning of point proximity through EdgeConv

operations.

3.3.3. ParticleNet architecture

For what concerns the model architecture adopted for the analysis proposed in

the next sections, the ParticleNet architecture has been exploited, as defined in

[1]. The overall structure can be seen in the left side of Figure 3.7. The network

consists of three stacked Edge Convolutional layer blocks, a global average pooling

layer and two fully connected layers. The input is comprised of two quantities,

coordinates and features. Coordinates are only involved in determining k-nearest

neighbors (k-NN) and comprise hit information related to 𝑐𝑡, 𝑥−, 𝑦−, 𝑧− position,

measured using Euclidean distance. Features encompass information for each node

and edge. Node features consist of all pertinent hit information (time, 3d position,
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Figure 3.7: Left: Diagram of the ParticleNet architecture. Right: Close up of the inner structure of

an Edge Convolutional block. Modified from [1].

3d direction), including the direction of the PMT. Edge features, denoted as 𝑒𝑘𝑖𝑗 ,
represent the difference between adjacent nodes 𝑣𝑖 and 𝑣𝑗 , i.e 𝑒𝑘𝑖𝑗 = 𝑣𝑖 − 𝑣𝑗 , where

𝑘 ∈ {time, x-, y-, z-position, x-, y-, z-direction}.

The right side of Figure 3.7 provides a more detailed view of the edge convolution

block. In the first EdgeConv block the k-nearest neighbors are calculated for

updating the node. This block uses the the spatial coordinates of the particles to

compute the distances. A small kernel network, comprised of three layers with 64

neurons each, is trained based on the input features. This kernel network linearly

processes the input, applies batch normalization, and employs the ReLU activation

function. The contributions from all nodes and edges to this kernel network are

averaged for a single training sample, forming the convolution operation. At the

end of the block, an updated graph is produced, featuring newly defined nodes

and edges. In the output graph, the original features are also retained and can be

partially combined with the updates.

The subsequent two EdgeConv blocks follow the same layout, however the

number of neurons per layer increase to 128 and 256 to accommodate the storage

of higher-level features. Each EdgeConv block receives as input the graph in latent

space from the preceding block and apply the same operations. This approach

ensures that the graph evolves as it passes through the network, allowing for the

repeated redefinition of edges. After the last EdgeConv block, the average pooling

layer is applied to reduce the dimensions. Then, the 256 features are supplied to

the fully connected layer, which uses the ReLu activation function. A second fully

connected layer with two nodes, followed by a function, depending on the specific

task, is used to generate the output.
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Figure 3.8: Presentation of the KM3NeT data to graphs. Left: Illustration of a muon track (green

line) in the KM3NeT detector. Right: The resulting graph, where the nodes hold the hit information

(3d position, 3d direction, time). In the central node (orange) the information from all the edges is

aggregated. Figure taken from [7].

This architecture was originally designed for point cloud applications, and used

for jet tagging at LHC, showing outstanding performances with respect to image

convolutional techniques.

The KM3NeT detector can be modelled as a 3D array of photo-sensors, called

Digital Optical Module (DOM), capable to register the arrival time and time over

threshold of the photon hits impinging on one of the 31 PMTs contained inside a

DOM. Every event registered in the KM3NeT telescope can therefore be seen as a

set of photon hits, for which time and coordinates are known. The most natural

way to encode information of events into a graph is to see every photon hit as

a node. In turn, each node has a 7-dimensional feature space represented by: 3

spatial coordinates, 3 directions of the PMTs and time. Each connection between

two nodes, will be characterized by a 2 × F dimensional feature space consisting

of: the feature of the starting node itself and the difference with respect to the

neighbour node to which the starting node is connected to (see Fig. 3.8). To create

the final graph structures then, nodes should be connected to each other, defining

an arbitrary distance metric. Since the features of each node are positions and times

of the photon hits, a natural choice for the distance is the Euclidean. At this point

the convolution operation (see Sec. 3.6) is done applying a multilayer Percepton

network (called a kernel network from now on) on the 2× F dimensional feature

space of the edges, calculated previously, and producing as result an updated vector

of features. The kernel network is slid over the edges of the graphs forming the

event. The final output of the convolution layer will be then the average length

of the updated vectors of k nearest neighbours of each specific node. The kernel

network used in this work is a multi-layer perceptron (MLP) consisting of three

dense layers and three corresponding batch normalization layers.

3.3.4. Software

The analysis software employed in this study is a collaborative effort between the

KM3NeT Collaboration and the broader deep learning community.
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The initial data processing is accomplished using a combination of orcasong

[29] and km3pipe [30]. This pre-processing stage entails converting the input

ROOT files into h5 files using km3pipe and subsequently generating the graphs

with orcasong. The neural network training and evaluation are conducted using

orcanet [31], a framework built upon the Keras and Tensorflow libraries.



4

Event classification and energy

reconstruction with graph neural

networks

The performance of the Graph Neural Network is studied for particle identification

and energy regression. Multiple networks have been trained and evaluated using

KM3NeT/ARCA data for the three following tasks:

• Signal/background classification. The network is trained to distinguish be-

tween signal (neutrinos) and background ( atmospheric muons), yielding a

neutrino probability.

• Track/shower classification. The network learns to classify the events into

tracks or showers, yielding a track probability.

• Energy regression. The network predicts the energy of the interaction, yield-

ing the predicted energy and its uncertainty.

All networks are trained on a single GPU. As mentioned before, the raw data

received from either the real detector or a simulated one need to be preprocessed

to be used from the GNN. The hit information of an event are converted into

graph structures. In these graphs, the nodes are the PMT hit coordinates in space,

direction, ToT and time and the edges connect the neighboring nodes. To train a

neural network on such data, it is crucial to provide a proper training set for each

application. For classification tasks, it is essential to maintain a balanced dataset

between the different categories. For regression, the value of the target variable is

important.

For the two classifiers the true labels that serve as the basis for the networks

to learn from and compute the loss are directly determined from the particle, i.e a

𝜈𝜇𝐶𝐶 is assigned 1 in the signal/background classifier and 1 in the track/shower

classifier, whereas a 𝜈𝑒CC is assigned 1 in the signal/background classifier and 0 in

the track/shower classifier. The loss is calculated form the Binary Cross Entropy
as defined in Section 3.1.2. In the case of the energy reconstruction, the decadic

logarithm of the energy, 𝑙𝑜𝑔10𝐸, is the true label and the loss is derived from the

difference between predicted and true value as well as the predicted uncertainty, as

mentioned in Section 3.3.1.

44
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The terms shower and track neutrinos, as mentioned in Section 1.6.1, are used to

characterize the neutrino interactions that produce different signatures on the detec-

tor. Track neutrinos produce a muon in their outgoing channel, such as muon (anti)

neutrino charged-current (CC) interactions (i.e 𝜈𝜇𝐶𝐶, 𝜈𝜇𝐶𝐶). Shower neutrinos are

electron (anti) neutrino CC interactions and all neutral-current (NC) interactions

(i.e 𝜈𝑒𝐶𝐶, 𝜈 𝑒𝐶𝐶, 𝜈𝑒𝑁𝐶, 𝜈 𝑒𝑁𝐶, 𝜈𝜇𝑁𝐶, 𝜈𝜇𝑁𝐶). In general, shower events emit their

light within a relatively small volume, which implies that they are either predomi-

nantly confined within the detector or, when located at a greater distance from the

detector, may not trigger at all.

To assess the progress of the training, the curves for the loss and accuracy are

plotted over the course of training epochs for both validation and training sets.

The final model used for the analysis is the one with the lowest validation loss for

each task. For the model architecture adopted in the next sections, the ParticleNet

architecture has been exploited [1].

Selection criteria

To suppress events generated by environmental optical background, mainly due to

40𝐾 decay, the following selection criteria are applied to each event.

• The minimum number of triggered hits is requested to be 25, thus rejecting

ambiguous events with only a few signal hits and reducing the atmospheric

muon contamination.

• Selecting only upgoing events by accepting events reaching the detector from

zenith angles greater than 90 deg to further suppress the atmospheric muons.

• The minimum value of log-likelihood is requested to be greater than 50 to

discard events with very low probability to be signal.

• Lastly, a minimum uncertainty of the energy reconstruction is set to a factor

of 1 to cast outliers.

4.1. Signal/Background classification

A classification model has been trained to distinguish between atmospheric muons

and neutrinos. The classifier produces a score for each event, ranging from 0 to 1,

that represents the probability the network assigns to that event to be of a certain

class. During the training phase the Graph Neural Network (GNN) takes as input

the graphs created from the Monte Carlo (MC) simulation. The training process

utilizes approximately 90% of the dataset for training and 10% for validation.

Specifically, three training sessions were conducted, with one utilizing ARCA7

v8.0 MC and the other two employing ARCA8 v8.0 MC data as input with an

energy spectrum that ranges from 102 to 108 GeV for the neutrinos. The datasets

consist of 500K, 1 million events, and 2 million events respectively, equally divided

among atmospheric muons and neutrinos. All networks are trained with ReLU
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as activation function, Adam as optimizer (𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜀 = 0.1),

epochs equal to 20, initial learning rate 0.03 with a 0.1% decrease after each epoch,

batchsize 32 and k-nearest neighbors (k-NN) equal to 10 (ARCA8) and 16 (ARCA7,

ARCA8). The evaluation of the network trained on ARCA7 involved analyzing a

period of 25.5 days, while for the network trained on ARCA8, a period of 170 days

was examined. The analysis results for each training session are presented in the

following sections. Additionally, the evaluation of the ARCA6 trained network

was performed making predictions on ARCA7 v8.0 MC and ARCA8 v8.0 MC data

samples. The analyzed period consists of 25.5 and 22.2 days, respectively. The

training session using ARCA6 v6.3 MC data as input was conducted by Alba Domi,

using the same classification model and hyperparameters.

4.1.1. GNN performance on ARCA6

In this section, the performance of the ARCA6 trained network is examined on the

ARCA7 and ARCA8 data. In the following plots, the distributions of neutrino scores

with weighted events (to account for the atmospheric and cosmic neutrino flux) are

presented on the upper part and the comparison between the inference on data over

inference on MC simulation on the lower part. In Figures 4.1, 4.2 the results for the

ARCA6 trained network evaluated on the ARCA7 data are presented. In Figure 4.1

no selections are applied to the events, whereas the plots in Figure 4.2 are generated

by applying the selections defined on 4, i.e on the number of triggered hits for

each event 𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25, on the log-likelihood 𝑙𝑜𝑔_𝑙𝑖𝑘 > 50 and by selecting

only the upgoing events with 𝑧𝑒𝑛𝑖𝑡ℎ > 90. These selections are applied to suppress

events generated by environmental optical background, mainly due to
40𝐾 decay.

Similarly, using the ARCA8 data for the inference, Figure 4.3 shows the probability

distribution and the data-MC comparison without selections, whereas in Figure 4.4

the predefined selections are applied. For both inferences, after implementing the

selections, a good agreement between data and MC is evident up to nu_score = 0.8.

To further assess the performance of the GNN-trained networks, the results for

each trained network inferred with each dataset are displayed in the tables below,

showcasing the application of a selection for low and high neutrino scores. The

initial three rows exhibit the results without any additional selections, while the

subsequent rows demonstrate the impact of applying a selection based on trig-

gered hits, log-likelihood and zenith. The evaluation results of the ARCA6 trained

network, using ARCA7 and ARCA8 data, are presented in Table 4.1. Focusing

on high neutrino scores (nu_score> 0.98), only 1.82% and 0.95% of atmospheric

neutrinos remain in the respective data-sets, as well as 14.28% and 11.43% of cosmic

neutrinos. This indicates that the classifier struggles to effectively differentiate

between neutrinos and the background. Atmospheric muons are correctly assigned

a neutrino score closer to 0, with only 0.08% and 0.01% of muons remaining at

nu_score> 0.98.
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Figure 4.1: Upper part: Probability of the event

to be classified as neutrino. Lower part: data/MC

ratio. ARCA6 trained network using ARCA7

data for evaluation.

Figure 4.2: Upper part: Probability of the event

to be classified as neutrino. Lower part: data/MC

ratio. Selection criteria: 𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25,

𝑙𝑜𝑔_𝑙𝑖𝑘 > 50, 𝑧𝑒𝑛𝑖𝑡ℎ > 90 (up-going). ARCA6

trained network using ARCA7 data for evalua-

tion.

Figure 4.3: Upper part: Probability of the event

to be classified as neutrino. Lower part: data/MC

ratio. ARCA6 trained network using ARCA8

data for evaluation.

Figure 4.4: Upper part: Probability of the event

to be classified as neutrino. Lower part: data/MC

ratio. Selection criteria: 𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25,

𝑙𝑜𝑔_𝑙𝑖𝑘 > 50, 𝑧𝑒𝑛𝑖𝑡ℎ > 90 (up-going). ARCA6

trained network using ARCA8 data for evalua-

tion.
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ARCA6 TRAINING - ARCA7 INFERRED

events

w\o cuts
nu score<=0.2 nu score>=0.98

data
11759482

(100%)

9272786

(78.85%)

10736

(0.001%)

atm.

muons

9624273.2

(100%)

7955951.5

(82.67%)

1705.8

(0.02%)

atm.

neutrino

655.2

(100%)

351.7

(53.68%)

3.37

(0.51%)

cosmic

neutrino

2.56

(100%)

0.80

(31.25%)

0.19

(7.42%)

trig. hits>25 & log. lik.>50 & zenith>90

data
12344

(100%)

7564

(61.28%)

74

(0.60%)

atm.

muons

11273

(100%)

7411.2

(65.74%)

9.08

(0.08%)

atm.

neutrino

73

(100%)

17.60

(24.11%)

1.33

(1.82%)

cosmic

neutrino

0.70

(100%)

0.07

(10.00%)

0.10

(14.28%)

ARCA6 TRAINING - ARCA8 INFERRED

events

w\o cuts
nu score<=0.2 nu score>=0.98

data
12348906

(100%)

9501884

(76.94%)

8234

(0.0001%)

atm.

muons

10090861

(100%)

8170448

(80.97%)

775

(0.008%)

atm.

neutrino

674.35

(100%)

350.5

(51.98%)

1.96

(0.29%)

cosmic

neutrino

2.54

(100%)

0.75

(29.53%)

0.16

(6.30%)

trig. hits>25 & log. lik.>50 & zenith>90

data
10538

(100%)

6350

(60.26%)

46

(0.44%)

atm.

muons

10288.7

(100%)

6596.2

(64.11%)

1.18

(0.01%)

atm.

neutrino

76.67

(100%)

16.58

(21.62%)

0.73

(0.95%)

cosmic

neutrino

0.70

(100%)

0.06

(8.57%)

0.08

(11.43%)

Table 4.1: Left: Evaluation of the ARCA6 trained network using ARCA7 data. Right: Evaluation of

the ARCA6 trained network using ARCA8 data.

4.1.2. GNN performance on ARCA7

signal-background classifier

track neutrinos 226 (48.9%) / 47 (45.6%)

shower neutrinos 0

atm. muons 236 (51.1%) / 56 (54.3%)

total 462 / 103

Table 4.2: Number of events used in training and validation datasets for the signal/background

classification network using ARCA7 data. The first value represents the absolute number of events

in thousands in the training set and the second value the number in the validation set, with the

proportion indicated in parentheses.

In this training session, ARCA7 v8.0 MC data are used as input consisting of

approximately 560.000 atmospheric muons and track neutrino events. The training

set consists of 460K events and the validation set of 100K events. An overview

of the two sets is presented in Table 4.2. In Figure 4.5 the training and validation

loss and accuracy curves are visualised. The loss decreases steadily as the training

progresses. The decreasing validation loss indicates that the model generalizes well

to unseen data. The model that is used for evaluating the trained network is the one

with epoch equal to 20. The evaluation involved analysing a period of 25.5 days.

The neutrino probability is presented in Figure 4.6, 4.7 where the distributions of

neutrino scores with weighted events at the upper part and the ratios between the

inference on data over inference on MC simulation at the lower part are shown. In

Figure 4.6 no selections are applied to the events, whereas the plots in Figure 4.7 are

generated by applying a selection on the number of triggered hits for each event
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𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25, on the log-likelihood 𝑙𝑜𝑔_𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 > 50 and by selecting only

the up-going events with 𝑧𝑒𝑛𝑖𝑡ℎ > 90.

Figure 4.5: ARCA7, k-NN=16 training. Left: The loss curves for the training and validation (with

dots) sample for ARCA7. Right: The accuracy curves for the training and validation (with dots)

sample for ARCA7.

Figure 4.6: ARCA7 trained network using

ARCA7 data for evaluation. Upper part: Prob-

ability of the event to be classified as neutrino.

Lower part: data/MC ratio.

Figure 4.7: ARCA7 trained network using

ARCA7 data for evaluation. Upper part: Prob-

ability of the event to be classified as neutrino.

Lower part: data/MC ratio. Selection Criteria:

𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25, 𝑙𝑜𝑔_𝑙𝑖𝑘 > 50, 𝑧𝑒𝑛𝑖𝑡ℎ > 90
(up-going).

The evaluation results of the ARCA7 trained network, using ARCA7 and ARCA8

data, are presented in Table 4.3. Focusing on high neutrino scores (nu_score> 0.98),

85.8% and 78.47% of atmospheric neutrinos remain in the respective datasets, as

well as 96.2% and 91.43% of cosmic neutrinos. Additionally, only 2.58% and 1.00% of

atmospheric muons survive this selection. Overall, the performance of the ARCA7

network seems to result in a better classification when using data from 7 DUs.
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Figure 4.8: ARCA7 trained network using

ARCA8 data for evaluation. Upper part: Prob-

ability of the event to be classified as neutrino.

Lower part: data/MC ratio.

Figure 4.9: ARCA7 trained network using

ARCA8 data for evaluation. Upper part: Prob-

ability of the event to be classified as neutrino.

Lower part: data/MC ratio. Selection Criteria:

𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25, 𝑙𝑜𝑔_𝑙𝑖𝑘 > 50, 𝑧𝑒𝑛𝑖𝑡ℎ > 90
(up-going).

ARCA7 TRAINING - ARCA7 INFERRED

events

w\o cuts
nu score<=0.2 nu score>=0.98

data
11759482

(100%)

9603854

(81.67%)

31256

(0.003%)

atm.

muons

9221943.6

(100%)

8222680

(89.16%)

5299.5

(0.06%)

atm.

neutrino

496.9

(100%)

49.1

(9.88%)

249.8

(50.3%)

cosmic

neutrino

1.95

(100%)

0.08

(4.10%)

1.26

(64.62%)

trig. hits>25 & log. lik.>50 & zenith>90

data
11668

(100%)

2020

(17.31%)

718

(6.15%)

atm.

muons

10852

(100%)

2661.3

(24.52%)

280.5

(2.58%)

atm.

neutrino

55.8

(100%)

0.02

(0.03%)

47.9

(85.8%)

cosmic

neutrino

0.53

(100%)

0.0001

(0.01%)

0.51

(96.2%)

ARCA7 TRAINING - ARCA8 INFERRED

events

w\o cuts
nu score<=0.2 nu score>=0.98

data
12348906

(100%)

10408152

(84.28%)

17372

(0.001%)

atm.

muons

10090861

(100%)

9242488

(91.59%)

2014.57

(0.02%)

atm.

neutrino

674.35

(100%)

79.6

(11.80%)

275.32

(40.83%)

cosmic

neutrino

2.54

(100%)

0.14

(5.51%)

1.43

(56.30%)

trig. hits>25 & log. lik.>50 & zenith>90

data
10538

(100%)

1946

(18.47%)

436

(4.14%)

atm.

muons

10288.7

(100%)

3119.57

(30.32%)

102.51

(1.00%)

atm.

neutrino

76.67

(100%)

0.04

(0.05%)

60.16

(78.47%)

cosmic

neutrino

0.70

(100%)

0.0002

(0.03%)

0.64

(91.43%)

Table 4.3: Left: Evaluation of the ARCA7 trained network using ARCA7 data. Right: Evaluation of

the ARCA7 trained network using ARCA8 data.
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4.1.3. GNN performance on ARCA8

signal-background classifier

track neutrinos 287 (43.6%) / 53 (27.5%)

shower neutrinos 0

atm. muons 372 (56.4%) / 140 (69.6%)

total 659 / 193

signal/background classifier

track neutrinos 405 (23.4%) / 42 (22.3%)

shower neutrinos 392 (22.7%) / 38 (20.2%)

atm. muons 930 (53.8%) / 108 (57.4%)

total 1727 / 188

Table 4.4: Number of events used in training and validation datasets for the signal/background

classification network utilizing ARCA8 data (k-NN=10) (left) and ARCA8 data (k-NN=16) (right).

The first value represents the absolute number of events in thousands in the training set and the

second value the number in the validation set, with the proportion indicated in parentheses.

Two networks are trained using ARCA8 v8.0 MC data as input. The effect of

the hyperparameter k-nearest neighbors (k-NN) on GNN performance is examined.

One network is trained with 1M events and k-NN equal to 10, and the other one

with 2M events and k-NN equal to 16. The default setting for k-NN is 16, although

an investigation was conducted with k-NN = 10. However, as demonstrated below,

the results were not as favorable, a conclusion also supported by Lukas Hennig

[32]. An overview of the two sets for both trained networks is presented in tables

4.4. The loss and accuracy plots for both networks are visualised in Figure 4.10

and Figure 4.11 respectively. At the network with k-NN=10, the expected steady

decrease of the validation loss as the training progresses is not achieved. At the

network with k-NN=16 the validation loss initially decreases but after epoch=12 it

remains constant which is a sign of overfitting.

Figure 4.10: ARCA8, k-NN=10 training. Left: The loss curves for the training and validation

(with dots) sample for ARCA8. Right: The accuracy curves for the training and validation (with

dots) sample for ARCA8.

The models that are used to evaluate the networks are the ones with epoch equal

to 11 and 19, respectively. The evaluation for both networks involved analyzing a

period of 170 days. The analysis results are shown in Figures 4.12, 4.13 for the trained

network with k-NN=10 and in Figures 4.14, 4.15 for the one with k-NN=16, where the

probability for each event to be classified as neutrino and the data-MC comparison
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Figure 4.11: ARCA8, k-NN=16 training. The loss curves for the training and validation (with

dots) sample for ARCA8 (left) and The accuracy curves for the training and validation (with dots)

sample for ARCA8 (right).

are reported. A good agreement between real data and MC simulation is shown in

Figures 4.13, 4.15, where the background events are suppressed. A peak of events

with very high neutrino score in the data can be observed, which is compatible with

an excess of atmospheric neutrinos in that region of the neutrino score. Table 4.5

showcases the evaluation outcomes of the ARCA8 trained network with k-NN=10,

utilizing ARCA7 and ARCA8 data. Analyzing the evaluation conducted with ARCA7

data, it is evident that at high neutrino scores (nu_score>0.98), 93.20% and 97.14%

of atmospheric and cosmic neutrinos remain respectively. Similarly, the evaluation

conducted with ARCA8 data shows that 91.61% and 97.70% of atmospheric and

cosmic neutrinos are classified as neutrinos. Also, it is worth noting that 9.52%

and 8.18% of atmospheric muons survive the high neutrino score selection in the

respective evaluation. Comparing the two inferences, ARCA8 showcases slightly

better results than the ARCA7 when using the ARCA8 trained network. Overall, the

ARCA8-trained network with k-NN=10 seems to be able to differentiate neutrinos

from the background effectively.

In Table 4.6 the evaluation outcomes of the ARCA8 trained network with k-

NN=16, using ARCA8 data, are reported. In the training datasets both shower and

track neutrinos were included as well as for the network evaluation. After applying

the predefined selections (𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25, 𝑙𝑜𝑔_𝑙𝑖𝑘 > 50, 𝑧𝑒𝑛𝑖𝑡ℎ > 90) and at

neutrino scores above 0.98, the contamination from atmospheric muons is 4.33%.

Track neutrinos occupy a percentage of 93.18%, whereas shower neutrinos 73.86%.

Additionally, 97.36% of cosmic neutrinos remain. The network demonstrates a

stronger capability in classifying tracks compared to showers, yet it still performs

well in overall classification.

A small difference at the muons-neutrinos events with no selections is observed

while looking at Table 4.3 where the ARCA7 data have been evaluated by comparing

them with the other ones. This is because all the available runs were used to evaluate

the ARCA6 & ARCA8 trainings, whereas for the ARCA7 training some of the events

(500K) were used for the training session and the rest for the evaluation.
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Figure 4.12: ARCA8, k-NN=10 trained net-

work. Upper part: Probability of the event to

be classified as neutrino. Lower part: data/MC

ratio.

Figure 4.13: ARCA8, k-NN=10 trained net-

work. Upper part: Probability of the event to be

classified as neutrino. Lower part: data/MC ratio.

Selection criteria: 𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25, 𝑙𝑜𝑔_𝑙𝑖𝑘 >
50, 𝑧𝑒𝑛𝑖𝑡ℎ > 90 (up-going).

Figure 4.14: ARCA8, k-NN=16 trained net-

work. Upper part: Probability of the event to

be classified as neutrino. Lower part: data/MC

ratio.

Figure 4.15: ARCA8, k-NN=16 trained net-

work. Upper part: Probability of the event to be

classified as neutrino. Lower part: data/MC ratio.

Selection criteria: 𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25, 𝑙𝑜𝑔_𝑙𝑖𝑘 >
50, 𝑧𝑒𝑛𝑖𝑡ℎ > 90 (up-going).
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ARCA8 TRAINING - ARCA7 INFERRED

events

w\o cuts
nu score<=0.2 nu score>=0.98

data
11759482

(100%)

9808174

(83.41%)

53572

(0.004%)

atm.

muons

9624273.2

(100%)

8437373.6

(87.67%)

18684.6

(0.20%)

atm.

neutrino

655.2

(100%)

60.4

(9.22%)

361.3

(55.14%)

cosmic

neutrino

2.56

(100%)

0.10

(3.91%)

1.83

(71.48%)

trig. hits>25 & log. lik.>50 & zenith>90

data
12344

(100%)

2270

(18.39%)

1670

(13.53%)

atm.

muons

11273

(100%)

2091.0

(18.55%)

1073.3

(9.52%)

atm.

neutrino

73.0

(100%)

0.008

(0.01%)

68.0

(93.20%)

cosmic

neutrino

0.7

(100%)

0.00

(0.006%)

0.68

(97.14%)

ARCA8 TRAINING - ARCA8 INFERRED

events

w\o cuts
nu score<=0.2 nu score>=0.98

data
69414231

(100%)

57313147

(82.57%)

284658

(0.004%)

atm.

muons

53307525

(100%)

46768367.3

(87.73%)

84840.66

(0.16%)

atm.

neutrino

3958.79

(100%)

379.66

(9.59%)

2068.98

(52.26%)

cosmic

neutrino

14.64

(100%)

0.61

(4.17%)

10.26

(70.08%)

trig. hits>25 & log. lik.>50 & zenith>90

data
67494

(100%)

11257

(16.68%)

9151

(13.56%)

atm.

muons

57306.10

(100%)

10601.28

(18.50%)

4687.04

(8.18%)

atm.

neutrino

421.34

(100%)

0.06

(0.01%)

386.00

(91.61%)

cosmic

neutrino

3.92

(100%)

0.0003

(0.0001%)

3.83

(97.70%)

Table 4.5: Left: Evaluation of the ARCA8, k-NN=10 trained network using ARCA7 data. Right:

Evaluation of the ARCA8, k-NN=10 trained network using ARCA8 data.

ARCA8 TRAINING - ARCA8 INFERRED

events

w\o cuts
nu score<=0.2 nu score>=0.98

data
69414231

(100%)

63057165

(90.84%)

174560

(0.002%)

atm.

muons

53307525

(100%)

49972494.2

(93.74%)

53394.4

(0.0001%)

atm.

neutrino tracks

3277.69

(100%)

378.34

(11.54%)

1905.95

(58.15%)

atm.

neutrino showers

9158.76

(100%)

81.64

(0.001%)

3061.49

(33.43%)

cosmic

neutrino

12.6

(100%)

0.88

(6.98%)

8.75

(69.44%)

trig. hits>25 & log. lik.>50 & zenith>90

data
67494

(100%)

28873

(42.78%)

5037

(7.46%)

atm.

muons

57306.1

(100%)

28263.29

(49.32%)

2482.2

(4.33%)

atm.

neutrino tracks

360.97

(100%)

0.55

(0.002%)

336.35

(93.18%)

atm.

neutrino showers

1133.44

(100%)

0.04

(0.0001%)

837.14

(73.86%)

cosmic

neutrino

3.41

(100%)

0.003

(0.01%)

3.32

(97.36%)

Table 4.6: Evaluation of the ARCA8, k-NN=16 trained network using ARCA8 data.
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4.1.4. GNN performance on ARCA6-8

The comprehensive outcomes are showcased for the three training and evaluation

sessions carried out with the ARCA6, ARCA7, and ARCA8 datasets, as reported in

the proceedings of the ICRC2023 conference [33]. The inference of the network

trained on ARCA6 has been performed on a total lifetime of 45 days, for the ARCA7

trained GNN, a period of 25.5 days has been used, while for the network trained on

ARCA8, a period of 22.2 days was examined. In total 93 days have been analyzed.

The analysis results are shown in Figure 4.16, where the probability for each event

to be classified as neutrino is reported.
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Figure 4.16: Probability of the events to be classified as neutrino for ARCA6-8. Graph taken from

[33].

A peak of events with a very high neutrino score in the data, compatible with

an excess of atmospheric neutrinos in that region of the neutrino score is observed.

The data-Monte Carlo comparison is compatible with values obtained in other

KM3NeT analyses, exploiting different selection methodologies [34].
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4.2. Track/Shower classification

track-shower classifier

track neutrinos 379 (40.6%) / 32 (34.0%)

shower neutrinos 470 (50.3%) / 47 (50.0%)

atm. muons 85 (9.1%) / 15 (16.0%)

total 934 / 74

Table 4.7: Number of events used in training and validation datasets for the track/shower clas-

sification network using ARCA8 data. The first value represents the absolute number of events

in thousands in the training set and the second value the number in the validation set, with the

proportion indicated in parentheses.

A classification model has been defined for particle identification. It is trained to

learn to characterize the events as tracks or showers. The shower-like neutrinos that

are used for the training and evaluation processes are 𝜈𝜇𝑁𝐶, 𝜈𝜇𝑁𝐶, 𝜈𝑒𝐶𝐶, 𝜈𝑒𝑁𝐶, 𝜈 𝑒𝑁𝐶,

and the track-like neutrinos are 𝜈𝜇𝐶𝐶, 𝜈𝜇𝐶𝐶. The classifier produces a track prob-

ability for each event, ranging from 0 to 1. The track-like muons and neutrinos are

assigned a value close to 1, while shower-like neutrinos tend to 0. Similarly to the

other processes, 90% of the dataset is used for the training and 10% for the validation.

The training was performed with about 1 million events of ARCA8 v8.0 MC, equally

divided among tracks and showers (see Table 4.7). The network is trained with

ReLU as activation function, Adam as optimizer (𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜀 = 0.1),

epochs equal to 20, initial learning rate 0.003 with a 0.0025% decrease after each

epoch, batchsize 32 and k-nearest neighbors (k-NN) equal to 16. The model that

is finally used to evaluate the network is the one with epoch equal to 19. The

evaluation of the network involves analyzing a period of 170 days. The training and

validation loss and accuracy are visualized in Figure 4.17. It is noticeable that the

validation loss steadily decreases over the epochs reaching lower values compared

to training.

In the following plots 4.18, 4.19 the distributions of track scores with weighted

events are presented. In Figure 4.18 no selections are applied to the events, whereas

in Figure 4.19 a selection on the number of triggered hits for each event 𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 >
25 and on the log-likelihood 𝑙𝑜𝑔_𝑙𝑖𝑘 > 50 is applied to suppress the background. In

both Figures, the data is denoted by the black line. Muons, shown in red, appear to

closely follow the distribution of the data. Track neutrinos are represented by the

yellow line and shower neutrinos by the blue line. Upon applying the necessary se-

lections, 𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25, 𝑙𝑜𝑔_𝑙𝑖𝑘 > 50, at high track scores a peak of track events

is noticeable while the shower events decline. Table 4.8 showcases the evaluation

outcomes of the ARCA8 trained network using ARCA8 data. Atmospheric muons

are accurately identified as tracks, where 92.63% of them remain when applying

track_score > 0.98 and the selections 𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25, 𝑙𝑜𝑔_𝑙𝑖𝑘 > 50. A percentage

of 35.86% of track neutrinos remain and 0.0001% of shower neutrinos survive the
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Figure 4.17: ARCA8 training. Left: The loss curves for the training and validation (with dots)

sample for ARCA8. Right: The accuracy curves for the training and validation (with dots) sample

for ARCA8.

selection. It appears that the network struggles to distinguish track neutrinos from

showers, yet correctly assigns a track score closer to 0 for shower events. This is

probably due to the fact that most track neutrinos leave only a small percentage

of light inside the limited instrumented volume of ARCA8, thus not allowing the

discrimination of short tracks and shower topologies.

Figure 4.18: ARCA8 trained network. Probabil-

ity of the event to be classified as track.

Figure 4.19: ARCA8 trained network. Probabil-

ity of the event to be classified as track. Selection

criteria: 𝑛_𝑡𝑟𝑖𝑔_ℎ𝑖𝑡𝑠 > 25, 𝑙𝑜𝑔_𝑙𝑖𝑘 > 50.
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ARCA8 TRAINING - ARCA8 INFERRED

events

w\o cuts
track score<=0.2 track score>=0.98

data
69414231

(100%)

1166906

(1.68%)

54816423

(78.97%)

atm.

muons

53307525

(100%)

912259.9

(1.71%)

42442862.8

(79.62%)

track

neutrino

2587.68

(100%)

783.00

(30.26%)

647.62

(25.03%)

shower

neutrino

24313.02

(100%)

18154.3

(74.67%)

36.21

(0.001%)

trig. hits>25 & log. lik.>50

data
12918432

(100%)

98928

(0.008%)

12111409

(93.75%)

atm.

muons

9520318.6

(100%)

116349.6

(1.22%)

8818445.8

(92.63%)

track

neutrino

429.4

(100%)

145.02

(33.77%)

153.98

(35.86%)

shower

neutrino

7679.6

(100%)

6210.02

(80.86%)

0.71

(0.0001%)

Table 4.8: Evaluation of the ARCA8 trained network using ARCA8 data.
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4.3. Energy regression

In a first attempt to reconstruct the neutrino energy for ARCA8, the GNN is

employed. A regression model is defined to produce an estimation of the neutrino

energy from the analysis of the signal produced by the propagating particle(s).

Along with the predicted value, the algorithm provides an estimated uncertainty.

As previously noted, the true label of the energy is the decadic logarithm, 𝑙𝑜𝑔10𝐸.

This implies that the uncertainty is a factor rather than an absolute value. To

illustrate this, consider the following example: The predicted value as generated

form the output layer of the network shall be 𝑙𝑜𝑔10𝐸 = 2 and its uncertainty

𝑙𝑜𝑔10𝐸𝑢𝑛𝑐 = 0.1. This means that the predicted energy is 𝐸 = 102 GeV and the

boundaries for the uncertainty are calculated as 𝐸𝑢𝑛𝑐 = 102±0.1. Then, the upper

error is 102+0.1 = 102.1 ≈ 125.9 GeV and the lower error 102−0.1 = 101.9 ≈ 79.4 GeV. It

is evident that the uncertainty boundaries are asymmetrical and the uncertainty is

the relative factor 100.1 ≈ 1.259.

The GNN for the training phase uses as input the graphs generated from the

MC simulation. Similarly to the previous sections, the training process uses ap-

proximately 90% of the dataset for training and 10% for validation. In particular,

the training was performed with about 1 million events of ARCA8 v8.0 MC with

an energy spectrum that ranges from 102 to 108 GeV, consisting of track-like and

shower-like neutrinos, as shown in Table 4.9. The validation dataset was composed

of 100k events, in similar proportions. The energy estimation is performed by

means of the last fully-connected layer with a linear activation function, which

calculates the estimated energy. The network is trained using SGD as optimizer

(momentum=0.9, decay=0), epochs equal to 20, initial learning rate 0.009 with a

0.02% decrease after each epoch, batchsize 64 and k-nearest neighbors (k-NN) equal

to 16. The best validation epoch turned out to be the 20th. The inference of the

network has been performed on a total lifetime of 170 days.

Track-like ((a)numuCC) and shower-like (numuNC, (a)nueCC, anueNC) event

topologies are characterized by a different spatial evolution inside the detector,

hence in the following figures, the performances are reported separately.

energy reconstruction

track neutrinos 148 (36.1%) / 32 (36.7%)

shower neutrinos 262 (63.9%) / 55 (63.2%)

total 410 / 87

Table 4.9: Number of events used in training and validation datasets for the energy reconstruction

network using ARCA8 data. The first value represents the absolute number of events in thousands

in the training set and the second value the number in the validation set, with the proportion

indicated in parentheses.
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4.3.1. GNN performance on ARCA8

Figure 4.20 shows the training and validation loss curves. The validation loss

decreases steadily as the training progresses. It is fair to assume that the model

generalizes well to unseen data.

Figure 4.20: ARCA8 training. The loss curves for the training and validation (with dots) sample

for ARCA8.

In Figures 4.21, 4.22 the predicted energies with respect to the Monte Carlo

energies for track-like and shower-like neutrinos are shown. Most of the events are

grouped around the identity line (diagonal) for both shower and track neutrinos.

Observing the behavior of track-like neutrinos in Figure 4.21, for low energies

up to 103 GeV most entries are further away from the diagonal showing a wider

data dispersion. As the energy increases they are getting closer to the diagonal

showcasing a better reconstruction. A strong selection on the uncertainty (𝐸𝑢𝑛𝑐 ≤ 1)

reduces the outliers and brings the median closer to the diagonal, successfully

eliminating most of the underestimation. In the case of shower-like events, Figure

4.22, the reconstructed energy for the majority of the events is already close to

the diagonal showcasing a narrow data dispersion. Applying the same uncertainty

selection small changes are observed where mostly the lower-energetic events are

affected. It is worth noticing the better performances of the shower-like events

with respect to track-like ones. This behavior is probably due to the better event

containment for showers.

Similarly , the graphs 4.23 and 4.24 show the predicted energies with respect to

the Monte Carlo energies for shower-like and track-like events respectively. The

coefficient of determination, 𝑅2
score, is computed to assess the degree of alignment

between the predicted and true energies, using the formula 𝑅2 = 1 − 𝑆𝑆𝑅
𝑆𝑆𝑇 , where

SSR is the sum of squared residuals ∑𝑛
𝑖=1(𝑦𝑡𝑟𝑢𝑒

𝑖 − 𝑦𝑝𝑟𝑒𝑑
𝑖 )2 and SST is the total sum of

squares ∑𝑛
𝑖=1(𝑦𝑡𝑟𝑢𝑒

𝑖 − �̄�𝑡𝑟𝑢𝑒)2. For shower-like and track-like events 𝑅2
is 0.708 and

0.304 respectively.
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Figure 4.21: ARCA8 trained network. Reconstructed versus true energy for track neutrinos. Left:

No selection is applied. Right: Uncertainty selection (𝐸𝑢𝑛𝑐 ≤ 1). A solid white line is added as a

diagonal to indicate the perfect reconstruction. The black solid line is the median and the black

dashed lines represent the uncertainties of the data.

Figure 4.22: ARCA8 trained network. Reconstructed versus true energy for neutrino interactions

creating shower signatures. Left: No selection is applied. Right: Uncertainty selection (𝐸𝑢𝑛𝑐 ≤ 1). A

solid white line is added as a diagonal to indicate the perfect reconstruction. The black solid line is

the median and the black dashed lines represent the uncertainties of the data.
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Figure 4.23: ARCA8 trained network. Reconstructed versus true energy for neutrino interactions

creating shower signatures. Left: No selections applied. Right: Uncertainty selection (𝐸𝑢𝑛𝑐 ≤ 1). The

confidence intervals at 68% and 90% are illustrated.

Figure 4.24: ARCA8 trained network. Reconstructed versus true energy for neutrino interactions

creating shower signatures. Left: No selections applied. Right: Uncertainty selection (𝐸𝑢𝑛𝑐 ≤ 1). The

confidence intervals at 68% and 90% are illustrated.
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Conclusion

In Chapter 1 the fundamental properties of neutrinos as well as its detection tech-

niques are presented.

Chapter 2 analyses the KM3NeT research infrastructure consisting of two neu-

trino detectors KM3NeT/ARCA and KM3NeT/ORCA. A brief technical description

of the detectors is provided.

Chapter 3 introduces a subfield of Deep Learning, Graph Neural Networks

(GNNs). The Graph Neural Networks are trained on Monte Carlo (MC) simulations

of events with the KM3NeT/ARCA detector. While the full detector will consist of

115 so-called detection units, this thesis uses simulations from an early stage of the

detector consisting of six, seven and eight detection units.

Chapter 4 demonstrates the performance of the GNN for three different net-

works: signal/background classifier, track/shower classifier, and energy regression.

Firstly, the signal/background classification is examined using KM3NeT/ARCA

data collected from 6, 7, and 8 DUs. The KM3NeT/ARCA6 trained network is evalu-

ated using ARCA7 and ARCA8 data separately. However, the classifier encounters

challenges in effectively distinguishing between neutrinos and the background.

Subsequently, the KM3NeT/ARCA7 network is trained and evaluated. The classifier

effectively classifies neutrinos and atmospheric muons, demonstrating slightly bet-

ter classification when applied to ARCA7 data compared to ARCA8. Following this,

two KM3NeT/ARCA8 networks are trained and evaluated, differing mainly in the

k-NN parameter set to 10 and 16, respectively. Notably, the KM3NeT/ARCA8 with

k-NN=16 exhibits a slightly better performance in recognizing neutrinos compared

to KM3NeT/ARCA8 with k-NN=10.

Moving on, the track/shower classification is assessed using KM3NeT/ARCA8

data. The network faces challenges in distinguishing track neutrinos from showers,

but it accurately assigns a track score closer to 0 for shower events.

Finally, the energy regression is attempted using KM3NeT/ARCA8 data, reveal-

ing better performance for shower-like events compared to track-like ones. This

behavior is likely attributed to the better event containment for showers.
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