
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών
‘Φυσική και Τεχνολογικές Εφαρμογές’

Interdepartmental Postgraduate Program
‘Physics and Technological Applications’

Ανάλυση Χρονοσειρών του Στοχαστικού Θορύβου στον Αισθητήρα
DECAL για τη Δημιουργία Πραγματικά Τυχαίων Αριθμών

Time Series Analysis of Stochastic Noise in the DECAL Sensor for the
Generation of Truly Random Numbers

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
του Δήμου Ασλάνη

MSc THESIS
Dimos Aslanis

Επιβλέπων: Καθηγητής Αλέξανδρος Κεχαγιάς

Supervisor: Professor Alexandros Kehagias

Αθήνα, Ιούλιος 2024

Acknowledgements

I would like to thank my supervisor, Professor Alexandros Kehagias, for assigning me this project and
providing supervision. I am also thankful to Assistant Professor Ioannis Kopsalis and Dr. Ioannis Theodonis
for their co-supervision and consistent availability throughout this year.

Special thanks are due to Professor Vlasis Mavrantzas and Dr. Loukas Peristeras for their patience and
understanding during the completion of this thesis.

Moreover, I am profoundly grateful to my parents for their unwavering support of my decision to pursue
an MSc in Physics, despite the much safer path in Chemical Engineering. Their encouragement has been
invaluable, even when my choices seemed irrational. I also want to thank the people who I am extremely
lucky to call friends, who have supported me throughout the past seven years of my undergraduate and
postgraduate studies. Finally, my deepest appreciation goes to Katerina, without whom these past two years
would have been significantly more challenging.

Abstract

This thesis explores the stochastic characteristics of noise in the Depleted Monolithic Active Pixel Sensor
(DMAPS) Digital Electromagnetic Calorimeter (DECAL) sensor and its application as a True Random Number
Generator (TRNG) through time series analysis. The study aims to (1) comprehensively analyze the noise
properties of the DECAL sensor, (2) establish a methodology for generating random numbers from noisy
signals using time series analysis, and (3) evaluate the feasibility of using the DECAL sensor as a TRNG.
The sensor’s output, recorded without any external stimulus, is analyzed using statistical and time series
techniques and fitted into an Autoregressive Integrated Moving Average (ARIMA) model. Through this model,
the sensor’s noise is transformed into Gaussian white noise, which is then used to generate random bits. The
generated random numbers and bits are evaluated using existing statistical tests, a novel diffusion test, and
the USA National Institute of Standards and Technology (NIST) test suite. The results demonstrate that this
method can be effectively applied to the DECAL sensor to produce random numbers with a high degree of
randomness. However, the low rate of random bit generation presents a limitation, affecting both its testing
and application as a TRNG. Possible solutions to this issue are discussed. The study concludes that time series
analysis is a viable method for generating random numbers from the DECAL sensor and that, with further
improvements, the sensor can serve as a TRNG.

Περίληψη

Ηπαρούσα εργασία διερευνά τα στοχαστικά χαρακτηριστικά του θορύβου του ψηφιακού ηλεκτρομαγνητικού
αισθητήρα DECAL τεχνολογίας DMAPS και την εφαρμογή του ως γεννήτρια πραγματικά τυχαίων αριθμών
(ΓΠΤΑ) μέσω ανάλυσης χρονοσειρών. Στόχος της μελέτης είναι (1) η συνολική ανάλυση των ιδιοτήτων
θορύβου του αισθητήρα DECAL, (2) η δημιουργία μιας μεθοδολογίας για τη δημιουργία τυχαίων αριθμών από
αναλογικούς θορύβους με τη χρήση ανάλυσης χρονοσειρών και (3) η αξιολόγηση του ενδεχομένου χρήσης
του αισθητήρα DECAL ως ΓΠΤΑ. Ο θόρυβος του αισθητήρα αναλύεται με τη χρήση στατιστικών τεχνικών
και τεχνικών χρονοσειρών και προσαρμόζεται σε ένα μοντέλο ARIMA (Autoregressive Integrated Moving
Average). Μέσω αυτού του μοντέλου, ο θόρυβος του αισθητήρα μετατρέπεται σε Γκαουσιανό λευκό θόρυβο,
ο οποίος στη συνέχεια χρησιμοποιείται για τη δημιουργία τυχαίων bits. Οι παραγόμενοι τυχαίοι αριθμοί
και bits αξιολογούνται με τη χρήση στατιστικών δοκιμών, μιας δοκιμής διάχυσης και της ομάδας ελέγχου
τυχαιότητας αριθμών του Εθνικού Ινστιτούτου Προτύπων και Τεχνολογίας των ΗΠΑ. Τα αποτελέσματα
δείχνουν ότι η μέθοδος αυτή μπορεί να εφαρμοστεί στον αισθητήρα DECAL για την παραγωγή τυχαίων
αριθμών με υψηλό βαθμό τυχαιότητας. Ωστόσο, ο χαμηλός ρυθμός παραγωγής τυχαίων bits αποτελεί
περιορισμό, επηρεάζοντας τόσο τις δοκιμές όσο και την εφαρμογή του ως ΓΠΤΑ. Συζητούνται πιθανές
λύσεις για το ζήτημα αυτό. Η μελέτη καταλήγει στο συμπέρασμα ότι η ανάλυση χρονοσειρών είναι μια
έγκυρη μέθοδος για την παραγωγή τυχαίων αριθμών από τον αισθητήρα DECAL και ότι, με περαιτέρω
βελτιώσεις, ο αισθητήρας μπορεί να χρησιμοποιηθεί ως ΓΠΤΑ.

Contents

Abstract iii

Περίληψη iv

Contents v

List of Figures v

List of Tables vii

Glossary viii

1. Theoretical Background 1
1.1. Random Number Generation . 1
1.2. Calorimetry . 4
1.3. Statistics and Maximum Likelihood Estimation . 7
1.4. Time Series . 10
1.5. Purpose of the Study . 19

2. Methods 20
2.1. Setup . 20
2.2. Data Acquisition and Preprocessing . 23
2.3. Data Analysis and Random Number Generation . 24
2.4. Random Number Testing . 26

3. Results and Discussion 30
3.1. Tuning Results . 30
3.2. Threshold Scan Mean Time Series . 31
3.3. Random Number Validation . 34
3.4. Performance and Efficiency . 37

4. Conclusions 40

Appendix 41

A. MLE of the Normal Distribution 42
A.1. Count Error Analysis . 42
A.2. Gaussian Fit of the Histograms . 43

B. ARIMA Analysis of Another Pixel 46

Bibliography 48

List of Figures

1.1. Total, collision and radiation stopping powers as a function of the incoming electron kinetic
energy in Si. (Reprinted from [28]) . 4

1.2. Straggling functions in silicon for 500MeV pions, normalized to unity at the most probable value
Δ𝑝/𝑥. The width 𝑤 is the full width at half maximum. (Reprinted from [29]) 5

1.3. Normal distribution with mean 𝜇 = 0 and variance 𝜎2 = 1. 10000 simulated samples (blue bins)
and the theoretical Probability Density Function (PDF) (red line). 7

1.4. Poisson distribution with parameter 𝜆 = 3. 10000 simulated samples (blue bins) and the theoretical
Probability Mass Function (PMF) (red line). 7

2.1. Photograph of the DECAL sensor on its board. Setup similar to the one used in this work.
Reprinted from [34]. 20

2.2. Photograph of the DECAL chip. Reprinted from [34]. 20
2.3. Schematic of the pixel front end. From left to right: amplification, shaping and discrimination

unit. Reprinted from [32]. 21
2.4. The two readout modes of DECAL. Top: strip mode, bottom: pad mode. The changing colours

represent the different readout groups. 21
2.5. Example for the swap algorithm. See text for details. 25

3.1. The pixel polarities (a) and Digital-to-Analog Converter (DAC) values (b) after the tuning process. 30
3.2. Comparison of row of pixels before and after tuning. 30
3.3. Threshold scan time series for four pixels in a single strip. 31
3.4. Threshold scan time series (top left), histogram (top right), Autocorrelation Function (ACF) (bottom

left) and Partial Autocorrelation Function (PACF) (bottom right) for a single pixel after discarding
the first 10000 scans. The white noise standard error of the ACF (in which 66.6% of the values
should lie) is calculated as 1/√𝑁, where 𝑁 is the number of samples.[38] 31

3.5. Differenced threshold scan time series (top left), histogram (top right), ACF (bottom left) and PACF
(bottom right) for a single pixel after discarding the first 10000 scans. The white noise standard
error of the ACF (in which 66.6% of the values should lie) is calculated as 1/√𝑁, where 𝑁 is the
number of samples.[38] . 32

3.6. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values for different
Autoregressive (AR) and Moving Average (MA) orders for a single pixel. 32

3.7. Residuals of the ARIMA(3,1,5) model for a single pixel. The histogram (top right), ACF (bottom
left) and PACF (bottom right) are shown. The white noise standard error of the ACF (in which
66.6% of the values should lie) is calculated as 1/√𝑁, where 𝑁 is the number of samples.[38] . . 33

3.8. Q-Q plot of the residuals of the ARIMA(3,1,5) model for a single pixel. 34
3.9. Ljung-Box-Pierce test for the residuals of the ARIMA(3,1,5) model for a single pixel. The blue line

is the relevant 𝜒2 distribution, the red dashed line is the 𝑄 statistic, and the shaded area is the
𝑝-value. 34

3.10. Cumulative periodogram of the residuals of the ARIMA(3,1,5) model for a single pixel. The orange
dashed line is the cumulative periodogram of the data, the blue dashed line is the cumulative
periodogram of the residuals, and the red shaded area is the 95% confidence interval of the white
noise. 35

3.11. Recurrence plots of the data and the residuals of the ARIMA(3,1,5) model for a single pixel. . . 35

3.12. Results of the one-dimensional diffusion test. The faint black lines are some simulated random
walks, the orange area is the 2/3 confidence interval, the blue area is the 95% confidence interval
(analytically computed). The red lines are some simulated Mean Squared Disploacements (MSDs),
the green area is the 2/3 confidence interval, and the faint green area is the 95% confidence
interval (numerically computed). Inside the parentheses of the legends, the actual percentage
of simulations that lie inside the confidence intervals is shown. The inset shows the same MSD
plots, along the 𝑥 axis and with logarithmic scale to better visualize the behavior of the MSDs. . 36

3.13. Results of the two-dimensional diffusion test. The faint lines are some simulated randomwalks, the
orange area is the 2/3 confidence interval, the blue area is the 95% confidence interval (analytically
computed). Inside the parentheses of the legends, the actual percentage of simulations that lie
inside the confidence intervals is shown. 36

3.14. Correlation matrix of the time series of the different pixels of the same strip running simultaneously. 37
3.15. Results of the two-dimensional diffusion test for the concatenated data of the different pixels of

the same strip. The convention is the same as in Figure 3.13. 37
3.16. Results of the one-dimensional diffusion test for the concatenated data of the different pixels of

the same strip. The convention is the same as in Figure 3.12. 37

A.1. Poisson distribution confidence intervals for different values of 𝜆 (a) and the interval for 𝜆 = 25
(b). In both cases, 𝛼 = 0.05. 43

A.2. Example of a Gaussian fit of a threshold voltage scan histogram. 45

B.1. Residuals of the ARIMA analysis of the pixel located at column/strip 31 and row 51. 46
B.2. Q-Q plot of the residuals of the ARIMA analysis of the pixel located at column/strip 31 and row

51, assuming a normal distribution. 46
B.3. Ljung-Box-Pierce Q-statistic of the residuals of the ARIMA analysis of the pixel located at colum-

n/strip 31 and row 51. 47
B.4. Cumulative periodogram of the residuals of the ARIMA analysis of the pixel located at column/strip

31 and row 51. 47

List of Tables

3.1. Results of the NIST tests. For details on the tests and their limitations, see the NIST documentation. 36

Glossary

ACF Autocorrelation Function. 11, 12, 14–18, 27, 32–35
AIC Akaike Information Criterion. 25, 33, 34
AR Autoregressive. 13–16, 32, 33
ARIMA Autoregressive Integrated Moving Average. iii, 16, 25–27, 33–36, 39–41, 47, 48
ARMA Autoregressive Moving Average. 15, 16
ATLAS A Toroidal LHC Apparatus. 5

BIC Bayesian Information Criterion. 25, 33, 34
BMLE Binned Maximum Likelihood Estimation. 9, 24, 44

CDF Cumulative Distribution Function. 7
CERN European Organization for Nuclear Research. 5, 22
CMS Compact Muon Solenoid. 5
CSV Comma Separated Values. 23, 32, 39

DAC Digital-to-Analog Converter. 21, 22, 31
DECAL Digital Electromagnetic Calorimeter. iii, 4, 6, 18–21, 23, 26, 38, 41, 43, 44, 46
DMAPS Depleted Monolithic Active Pixel Sensor. iii, 20

ECAL Electromagnetic Calorimeter. 4, 5
ERNIE Electronic Random Number Indicator Equipment. 2, 3

FFT Fast Fourier Transform. 29
FPGA Field Programmable Gate Array. 22

HCAL Hadronic Calorimeter. 4
HEP High Energy Physics. 4, 7, 43

ITSDAQ ITk Strips Data Acquisition. 22, 39

LHC Large Hadron Collider. 5

MA Moving Average. 14–16, 32, 33
MAPS Monolithic Active Pixel Sensors. 20
MLE Maximum Likelihood Estimation. 8, 9, 25
MSD Mean Squared Displacement. 28, 29, 36, 37

NIST USA National Institute of Standards and Technology. iii, 2, 29, 37, 41

PACF Partial Autocorrelation Function. 12, 14–16, 32–35
PDF Probability Density Function. 7–9, 11
PMF Probability Mass Function. 7, 8
PRNG Pseudo-Random Number Generator. 1–3

RNG Random Number Generator. 1, 2

SNR Signal-to-Noise Ratio. 20

TRNG True Random Number Generator. iii, 1–3, 19, 38–41

Theoretical Background 1.
1.1 Random Number Generation . . . 1
1.2 Calorimetry 4
1.3 Statistics and Maximum Likeli-

hood Estimation 7
1.4 Time Series 10
1.5 Purpose of the Study 19

1.1. Random Number Generation

Introduction

Random number generation has always been important for humanity. In
modern times, some main applications of random numbers are: simula-
tions of natural phenomena [1, 2], mathematics [3], computer program-
ming [4], and cryptography [5].1 1: For a detailed historical overview of random num-

ber generation, the reader is referred to: [6]
Before computers were invented, true random numbers were generated
using physical devices such as dice.2 The first specialized RandomNumber 2: Dice have been found in archaeological sites in

Mesopotamia dating back to 3000 BC. [6]Generator (RNG) was made in 1939 [7], and many followed, especially
after the advent of electronic computers.3 Until the widespread use of 3: The Ferranti Mark I computer, built in 1951, had

a hardware random number generator. [4]personal computers, these random numbers were mainly published in
books and tables for scientists to use. However, the need for quick and
easy access to random numbers led to the rapid development of two types
of RNGs.

▶ True Random Number Generators (TRNGs): Fast physical devices
that generate random numbers using physical processes. These
are mainly used in cryptography and security applications, where
reproducibility is not important, and is even undesirable.

▶ Pseudo-Random Number Generators (PRNGs): Algorithms that gen-
erate random numbers using deterministic processes. These are
mainly used in simulations and computer programming, where
reproducibility is important.

The main goal of a RNG is to generate uniformly distributed random
numbers.4 4: Generating random numbers from other distri-

butions is usually done by transforming uniformly
distributed random numbers. [8]

Tests for Randomness

In addition to the generation of random numbers, it is also important to
test their quality. It is impossible to prove that a sequence of numbers is
random, since every sequence of numbers should have the same probabil-
ity of occurring. However, Kendall and Babington-Smith [9] proposed
the notion of local randomness, which states that every reasonably long
segment of a random sequence should appear random, and pass statistical
tests for randomness. The aim of a statistical test is to detect evidence
against the null hypothesis that the sequence is random. Some of the
most common suites of tests for randomness are:

▶ Diehard tests [10]: A suite of tests developed by George Marsaglia,
which encompasses a wide range of tests for randomness he devel-
oped over the years.

▶ Dieharder tests [11]: A suite of tests developed by Robert G. Brown,
which is an extension of the Diehard tests.

1. Theoretical Background 2

▶ NIST tests [12]: A suite of tests developed by the USA National
Institute of Standards and Technology (NIST) to test the quality of
RNGs.

For a standard introduction to statistical tests for randomness, the reader
is referred to [4]. For historical and conceptual aspects of randomness
testing, [6, 13] provide a comprehensive overview.

Pseudo-Random Number Generators

Even though this work is focused on TRNGs, it is important to have a
basic understanding of PRNGs as they are widely used in simulations and
computer programming. PRNGs are algorithms that generate random
numbers using deterministic processes. A general framework for PRNGs
is the following structure: [6]

▶ ℐ: a finite set of states, called the state space.
▶ 𝜇: a probability distribution on ℐ, for the initial state (also called
the seed), 𝑠0.

▶ 𝑓: a deterministic function that maps the state space to itself, called
the state transition function.

▶ 𝒰: the output space, which is usually the interval [0, 1).
▶ 𝑔: a deterministic function that maps the state space to the output
space, called the output function.

The state at step 𝑖, 𝑠𝑖, is updated using the state transition function: 𝑠𝑖+1 =
𝑓 (𝑠𝑖 ∈ ℐ). The output at step 𝑖, 𝑢𝑖, is generated using the output function:
𝑢𝑖 = 𝑔(𝑠𝑖) ∈ 𝒰.

An early attempt to generate pseudo-random numbers was through the
calculation of digits of 𝜋 [14]. The first proper PRNG was developed by
John von Neumann in 1951 [15], known as themiddle-square method. Von
Neumann also suggested that the output of a PRNG should be periodic
in a finite precision computer. A very important development in the
field of PRNGs was the invention of the linear congruential generator
by Lehmer in 1951 [16], which is thoroughly described in [4]. Other
important PRNGs are the Mersenne Twister,5 [17] the Xorshift family [18], 5: which is used in this work when pseudo-random

numbers are needed explicitlyand the MIXMAX family [19]. For a comprehensive treatment of PRNGs,
the reader is referred to [4, 6, 20].

True Random Number Generators

As mentioned before, specialized hardware devices that generate random
numbers using physical processes have existed for over 70 years [7, 21].
Perhaps the most famous TRNG is the Electronic Random Number Indica-
tor Equipment (ERNIE) [22], which is used in the British Premium Bonds
lottery. At its first generation, it produced approximately 50 random digits
per second [6].6 TRNGs are used in cryptography security applications, 6: ERNIE still exists today, but its technology has

been significantly changed.and in any case where the random numbers should not be reproducible.7
7: In cryptography, this is called theKirchoff’s princi-
ple, which states that the security of a cryptographic
system should not depend on the secrecy of the al-
gorithm, but only on the secrecy of the key.

However, they are avoided in simulations and computer programming,
because of their relatively slow speed and their lack of reproducibility.

Unlike PRNGs, TRNGs are usually not made a priori to generate uncor-
related random bits. In order to generate proper random numbers, the

1. Theoretical Background 3

output of the device is usually post-processed, either by software or by
hardware, to remove any bias and correlation, and its output is contin-
uously tested for randomness. The simplest post-processing method is
the von Neumann extractor [15], which takes pairs of bits from the TRNG
output, and outputs a 0 if the pair is 01, a 1 if the pair is 10, and discards the
pair if it is 00 or 11.8 In most cases, the output of a TRNG is used to seed 8: The von Neumann extractor has been improved

since then: [23].a PRNG at random intervals, in order to generate uniformly distributed
random numbers faster.

Stipčević and Koç [24] classify TRNGs into four categories:

▶ Noise-based TRNGs: These TRNGs generate random numbers using
the noise of a physical process, such as Johnson, Zener, or laser
phase noise. They generally compare an analog voltage to a refer-
ence voltage, and output a 1 if the analog voltage is higher than the
reference voltage, and a 0 otherwise.9 9: This is the type of TRNG we will consider in this

work.▶ Chaotic TRNGs: These TRNGs generate random numbers using
chaotic systems, such as lasers. Of course, these systems are deter-
ministic, and are completely reproducible if the initial conditions
are known.

▶ Free-running oscillator TRNGs: These TRNGs generate random num-
bers using free-running oscillators. A free-running oscillator is
made when a digital signal is fed back to the input of a digital
circuit, which then oscillates.

▶ Quantum TRNGs: These TRNGs generate random numbers using
quantum processes, such as Geiger counters or quantum optics.
These are fundamentally random, and have increased in popularity
in recent years.

We refrain from providing examples of TRNGs in this work, as there are
excellent and recent reviews on the subject. Specifically, for a general
overview of TRNGs, the reader is referred to [24],10 and for a focus on 10: in which examples of commercial TRNGs are

also givenquantum TRNGs, the reader is referred to [25, 26].

1. Theoretical Background 4

1.2. Calorimetry

The aim of this section is not to describe calorimetry in detail, but to
provide the reader with the necessary information to understand the basic
principles of the Digital Electromagnetic Calorimeter (DECAL) sensor.
For a review of calorimetry in High Energy Physics (HEP), the reader is
referred to [27–29].11 11: On which the information in this section is

based, unless otherwise stated.
Calorimetry in the context of HEP refers to the measurement of the en-
ergy of particles. Calorimeters are instruments in which particles to be
measured are fully absorbed, and their energy is transformed into a mea-
surable quantity. A calorimeter can be an Electromagnetic Calorimeter
(ECAL) or a Hadronic Calorimeter (HCAL). In this essay, we will focus on
the ECAL. An ECAL usually measures the energy of electrons or photons
through their electromagnetic interactions. A calorimeter can be either
sampling, which is consisted of alternating layers of an absorber, a dense
material used to degrade the energy of the incident particle, and an active
medium that provides the detectable signal, or homogeneous, which is
consisted of a single material that both degrades the energy of the incident
particle and provides the detectable signal.

Electrons and photons interact with the matter of an ECAL mainly
through a few processes. For energies larger than ∼ 10MeV, the dominant
process of electron energy loss is bremsstrahlung (where the electron
interacts with the nuclei of the absorber material and emits a photon [30]).
For the same energy regime, photons lose their energy mainly through
electron-positron pair production. At lower energies, the dominant pro-
cess for electron energy loss is ionization and thermal excitation through
collision, whereas photons lose their energy mainly through Compton
scattering and the photoelectric effect. Electrons and photons with high
energy (≥ 1GeV) produce secondary photons by bremsstrahlung, or sec-
ondary electrons and positrons by pair production. These secondary
particles in turn produce other particles by the same mechanisms, thus
giving rise to a cascade (shower) of particles with progressively degraded
energies. At one point, the energy of the particles in the shower is low
enough that the energy is degraded mainly through ionization and ther-
mal excitation, and the shower stops. This is evident for electrons in
Figure 1.1. An important quantity that characterizes electromagnetic
showers is the radiation length 𝑋0:

Figure 1.1.: Total, collision and radiation stopping
powers as a function of the incoming electron kinetic
energy in Si. (Reprinted from [28])

𝑋0 (g/cm2) =
716.4 g cm−2𝐴

𝑍 (𝑍 + 1) ln (287/√𝑍)
(1.1)

where 𝐴 is the atomic mass number of the absorber material, and 𝑍 is the
atomic number of the absorber material.

The radiation length is the mean distance over which the energy of an
electron is degraded by a factor of 1/𝑒. Using the radiation length and
certain well understood empirical functions, electromagnetic showers can
be universally described. In the case of an analog ECAL, the measurement
is based on the principle that the energy released in the detector material
by the charged particles of the shower, mainly through ionization and

1. Theoretical Background 5

excitation, is proportional to the energy of the incident particle. The
energy resolution of such an ECAL is given by:

𝜎𝐸
𝐸

= 𝑎
√𝐸

⊕ 𝑏
𝐸
⊕ 𝑐 (1.2)

The first term, 𝑎
√𝐸

is the stochastic term. It is due to physical phenomena
with statistical nature. Its main contribution is the fluctuations related to
the physical development of the shower. In the case of sampling calorime-
ters, this term also includes the sampling contribution, as the energy
deposited in the active medium fluctuates event by event because the
active layers are interleaved with absorber layers. Finally, it includes the
uncertainty in the energy loss through ionization of the active medium,
as described by the Landau straggling function [29], which is visualized
in Figure 1.2. The second term, 𝑏

𝐸 is the noise term. It is due to the fluctua-
tions in the detector response and depends on the detector technique and
on the features of the readout circuit. The third term, 𝑐, is the constant
term. It is due to the non-uniformity of the detector response. In special
cases, more terms may be added to the energy resolution equation. For
the sampling calorimeter of the A Toroidal LHC Apparatus (ATLAS) ex-
periment of the Large Hadron Collider (LHC) in European Organization
for Nuclear Research (CERN), the energy resolution is given by: [31]

Figure 1.2.: Straggling functions in silicon for
500MeV pions, normalized to unity at the most prob-
able value Δ𝑝/𝑥. The width 𝑤 is the full width at half
maximum. (Reprinted from [29])

𝜎𝐸
𝐸

= 10.5%
√𝐸

⊕ 170MeV
𝐸

⊕ 0.7% (1.3)

whereas for the homogeneous calorimeter of the Compact Muon Solenoid
(CMS) experiment of the LHC in CERN, the energy resolution is given
by: [31]

𝜎𝐸
𝐸

= 2.8%
√𝐸

⊕ 120MeV
𝐸

⊕ 0.3% (1.4)

It is noted that the lower stochastic term of the CMS calorimeter is due to
the fact that it is a homogeneous calorimeter, in contrast to the sampling
calorimeter of the ATLAS experiment.

Theoretical details about analog calorimeters and the interactions between
particles and matter can be found in [27–29, 32], whereas a more detailed
description of the technical aspects of calorimeters is developed in [27,
33].

Digital Electromagnetic Calorimeter

The idea of a digital calorimeter is to count the number of particles instead
of measuring their energy, and reconstruct the energy of the incident
particle from the number of particles. It can be thought of as a sampling
calorimeter, since it is consisted of layers of active12 and sensitive13 layers 12: usually made from tungsten or lead

13: usually made from silicon[34]. By counting the number of particles, the contribution described
by the Landau straggling function is eliminated, and the stochastic term
is reduced [35]. A DECAL should have high granularity, be radiation
tolerant, have low noise and be constructed with a quick charge collection

1. Theoretical Background 6

and summation logic [32]. Previous works on such calorimeters as well
as more requirements are listed in [34, 35].

1. Theoretical Background 7

1.3. Statistics and Maximum Likelihood
Estimation

This section will provide a brief introduction to the statistical concepts
that are necessary for the rest of this work. For a comprehensive treatment
of statistics in the context of HEP, the reader is referred to [36, 37].

Probability Mass and Density Functions

For a discrete random variable 𝑋, the Probability Mass Function (PMF)
𝑃(𝑋 = 𝑥) is a function that gives the probability that 𝑋 takes the value
𝑥. For a continuous random variable 𝑋, the Probability Density Function
(PDF) 𝑓 (𝑥) is a function that gives the probability that 𝑋 takes a value
in the interval [𝑥, 𝑥 + 𝑑𝑥]. The PMF and PDF must satisfy the following
properties:

Figure 1.3.: Normal distribution with mean 𝜇 = 0
and variance 𝜎2 = 1. 10000 simulated samples (blue
bins) and the theoretical PDF (red line).

Figure 1.4.: Poisson distribution with parameter
𝜆 = 3. 10000 simulated samples (blue bins) and the
theoretical PMF (red line).

𝑃(𝑋 = 𝑥) ≥ 0, ∀𝑥

∑
𝑥
𝑃(𝑋 = 𝑥) = 1

𝑓 (𝑥) ≥ 0, ∀𝑥

∫
∞

−∞
𝑓 (𝑥)𝑑𝑥 = 1

(1.5)

The Cumulative Distribution Function (CDF) of a random variable 𝑋,
denoted as 𝐹(𝑥), is defined as the probability that 𝑋 takes a value less
than or equal to 𝑥:

𝐹(𝑥) ≡ 𝑃(𝑋 ≤ 𝑥) = {
∑𝑥𝑖≤𝑥 𝑃(𝑋 = 𝑥𝑖) for discrete 𝑋
∫𝑥−∞ 𝑓 (𝑥)𝑑𝑥 for continuous 𝑋

(1.6)

The distributions that are relevant for this work are the normal distri-
bution, the Poisson distribution, the 𝜒2 distribution, and the Rayleigh
distribution.

A random variable 𝑋 is said to follow a normal distribution with mean 𝜇
and variance 𝜎2, denoted as 𝑋 ∼ 𝑁(𝜇, 𝜎2), if its PDF is:

𝑓 (𝑥) = 1

√2𝜋𝜎2
exp [−

(𝑥 − 𝜇)2

2𝜎2
] (1.7)

The normal distribution is the asymptotic limit of many other distributions
with physical relevance, and it is widely encountered in nature.14 14: The central limit theorem states that the sum

of a large number of independent and identically
distributed random variables converges to a normal
distribution. We will not delve into the details of the
central limit theorem in this work, but it is one of
the most important theorems in probability theory.

A randomvariable𝑋 is said to follow a Poisson distributionwith parameter
𝜆, denoted as 𝑋 ∼ Poisson(𝜆), if its PMF is:

𝑃(𝑋 = 𝑘) = 𝜆𝑘

𝑘!
𝑒−𝜆 (1.8)

1. Theoretical Background 8

The Poisson distribution is used to model the number of events in a fixed
interval of time or space, given that the events occur with a constant rate
and are independent of each other.

A random variable 𝑋 is said to follow a 𝜒2 distribution with 𝑘 degrees of
freedom, denoted as 𝑋 ∼ 𝜒2(𝑘), if its PDF is:

𝑓 (𝑥) = 1
2𝑘/2Γ(𝑘/2)

𝑥𝑘/2−1𝑒−𝑥/2 (1.9)

where Γ(⋅) is the gamma function, defined as:

Γ(𝑧) = ∫
∞

0
𝑡𝑧−1𝑒−𝑡𝑑𝑡 (1.10)

The 𝜒2 distribution is used to model the sum of the squares of 𝑘 indepen-
dent standard normal random variables.

A random variable 𝑋 is said to follow a Rayleigh distribution with param-
eter 𝜎, denoted as 𝑋 ∼ Rayleigh(𝜎), if its PDF is:

𝑓 (𝑥) = 𝑥
𝜎2

𝑒−𝑥
2/(2𝜎2) (1.11)

The Rayleigh distribution is used to model the magnitude of a two-
dimensional vector whose components are independent and identically
distributed normal random variables.

Maximum Likelihood Estimation

The Maximum Likelihood Estimation (MLE) is a method used to esti-
mate the parameters of a statistical model. Given a set of observations
{𝑥1, 𝑥2, … , 𝑥𝑛} that are assumed to be independent and identically dis-
tributed, the MLE of the parameters 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘) of the model is
the set of parameters that maximize the likelihood function ℒ(𝜃):

ℒ(𝜃) =
𝑛

∏
𝑖=1

𝑓 (𝑥𝑖|𝜃) (1.12)

where 𝑓 (𝑥𝑖|𝜃) is the PDF (or PMF) of the model. In practice, it is more
convenient to maximize the log-likelihood function ℓ(𝜃):

ℓ(𝜃) = lnℒ(𝜃) =
𝑛
∑
𝑖=1

ln 𝑓 (𝑥𝑖|𝜃) (1.13)

Therefore, the MLE of the parameters is the solution of the following
optimization problem:

𝜃̂ = argmax𝜃ℓ(𝜃) (1.14)

The likelihood function satisfies the following properties:

1. Theoretical Background 9

▶ The MLE is consistent, i.e., it converges in probability to the true
value of the parameters as the number of observations increases.

▶ The MLE is unbiased, i.e., the expected value of the MLE is equal to
the true value of the parameters.

▶ The MLE is efficient, i.e., it has the smallest possible variance among
all unbiased estimators.

▶ The MLE is invariant, i.e., it is invariant under one-to-one transfor-
mations of the parameters.

Binned Maximum Likelihood Estimation

In the case of binned data, we assume that each bin count follows a Poisson
distribution. The likelihood function for binned data that are expected
to follow the PDF 𝑓 (𝑥|𝜃) is the product of the Poisson probabilities of the
observed counts in each bin, and is called the Binned Maximum Likelihood
Estimation (BMLE). The log-likelihood function for binned data is:

ℓ(𝜃) =
𝑛
∑
𝑖=1

[𝑘𝑖 ln 𝜆𝑖 − 𝜆𝑖 − ln(𝑘𝑖!)] (1.15)

where 𝑘𝑖 is the observed count in bin 𝑖, and 𝜆𝑖 = ∫𝑥𝑖+1𝑥𝑖 𝑓 (𝑥|𝜃)𝑑𝑥.

1. Theoretical Background 10

1.4. Time Series

This section briefly presents some fundamental concepts of time series
analysis. The area of time series analysis is vast, and this section will only
cover some concepts that are relevant for the rest of this work. The books
by Box, Jenkins and Reinsel15 [38] and Hamilton16 [39] are excellent and 15: for a comprehensive treatment of time series

analysis in their entirety

16: for a moremathematical treatment of time series
analysis

standard references for linear time series analysis, while the book by
Kantz and Schreiber [40] provides a detailed introduction to nonlinear
time series analysis. The material presented in this section is based on
these standard references, unless otherwise stated.

Time Series Basics

A time series is a sequence of observations 𝑧1, 𝑧2, … , 𝑧𝑛 ordered in time
(or space), which are typically assumed to be realizations of a stochastic
process [41]. They can be univariate or multivariate, and can be discrete
or continuous. Usually, adjacent observations are dependent. The goal of
time series analysis is to model the underlying stochastic and dynamic
structure of the time series. There are two kinds of mathematical models
that describe any physical phenomenon: deterministic and stochastic.
Deterministic models allow for exact predictions of the future, given the
initial conditions, while stochastic models only allow for probabilistic
predictions of the future. A time series is regarded as a realization of a
stochastic process from an infinite population of possible realizations.
Therefore, although it might have a deterministic component, time series
are usually modeled as stochastic processes.17 In this work, we will focus 17: The stochastic component can also be rooted in

nonlinear or chaotic dynamics.on univariate time series, with discrete time and continuous values:

{𝑧𝑡} (1.16)

where 𝑧𝑡 is the value of the time series at time 𝑡. Moreover, we will assume
that the time interval between observations is constant, i.e., Δ𝑡 = 𝑡𝑖+1−𝑡𝑖 =
constant. Under these assumptions:

𝑧𝑡 = 𝑧(𝑡) = 𝑧(𝑡0 + 𝑖Δ𝑡), 𝑖 = 0, 1, 2, … (1.17)

where 𝑡0 is the initial time and Δ𝑡 is the time interval between successive
observations, numbered by 𝑖. From now on, we will interchangeably use
the index 𝑡 or 𝑖 to refer to the time index.18 We also define the backward 18: i.e., 𝑧𝑡 = 𝑧𝑖
difference operator ∇ as:

∇𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−1 (1.18)

and the backward shift operator 𝐵 as:

𝐵𝑧𝑡 = (1 − ∇)𝑧𝑡 = 𝑧𝑡−1 (1.19)

1. Theoretical Background 11

We define the expectation of the 𝑡-th observation of a time series {𝑧𝑡} as:

𝜇𝑡 ≡ 𝐸[𝑧𝑡] = ∫
∞

−∞
𝑧𝑡𝑓 (𝑧𝑡)𝑑𝑧𝑡 = lim

𝑛→∞
1
𝑛

𝑛
∑
𝑖=1

𝑧𝑖(𝑡) (1.20)

where 𝑓 (𝑧) is the PDF of the time series, and 𝐸[⋅] denotes the expectation
operator. The variance of the 𝑡-th observation is defined as:

𝛾0𝑡 ≡ 𝐸[(𝑧𝑡 − 𝜇𝑡)2] = ∫
∞

−∞
(𝑧𝑡 − 𝜇𝑡)2𝑓 (𝑧𝑡)𝑑𝑧𝑡 = lim

𝑛→∞
1
𝑛

𝑛
∑
𝑖=1

(𝑧𝑖(𝑡) − 𝜇𝑡)2 (1.21)

We can also define the 𝑗-th autocovariance of the 𝑡-th observation as:

𝛾𝑗𝑡 ≡ 𝐸[(𝑧𝑡 − 𝜇𝑡)(𝑧𝑡−𝑗 − 𝜇𝑡−𝑗)] = ∫
∞

−∞
(𝑧𝑡 − 𝜇𝑡)

(𝑧𝑡−𝑗 − 𝜇𝑡−𝑗)𝑓 (𝑧𝑡, 𝑧𝑡−1, … , 𝑧𝑡−𝑗)𝑑𝑧𝑡𝑑𝑧𝑡−1…𝑑𝑧𝑡−𝑗 =

lim
𝑛→∞

1
𝑛

𝑛
∑
𝑖=1

(𝑧𝑖(𝑡) − 𝜇𝑡)(𝑧𝑖(𝑡 − 𝑗Δ𝑡) − 𝜇𝑡−𝑗) (1.22)

where 𝑓 (𝑧𝑡, 𝑧𝑡−1, … , 𝑧𝑡−𝑗) is the joint PDF of the time series at times 𝑡 , 𝑡 −
1, … , 𝑡 − 𝑗 and 𝑗 is the lag of the autocovariance. The autocorrelation is
defined as:

𝜌𝑗𝑡 ≡
𝛾𝑗𝑡

√𝛾0𝑡𝛾0𝑡−𝑗
(1.23)

Using the autocorrelation, we can define the Autocorrelation Function
(ACF) as the function that describes the autocorrelation of the time series
at different lags.

Stationarity

A time series is said to be weakly stationary19 if its mean and autocovari- 19: or covariance stationary
ance are constant over time, i.e.:

𝜇𝑡 = 𝜇, ∀𝑡
𝛾𝑗𝑡 = 𝛾𝑗, ∀𝑡

(1.24)

where 𝜇 and 𝛾𝑗 are constants. A time series is said to be strictly stationary
if the joint PDF of any set of observations is invariant under time shifts,
i.e., for any set of observations 𝑧𝑡1 , 𝑧𝑡2 , … , 𝑧𝑡𝑘 and any time shift 𝜏:

𝑓 (𝑧𝑡1 , 𝑧𝑡2 , … , 𝑧𝑡𝑘) = 𝑓 (𝑧𝑡1+𝜏, 𝑧𝑡2+𝜏, … , 𝑧𝑡𝑘+𝜏) (1.25)

A strictly stationary time series is alsoweakly stationary.20 In this text, the 20: Provided that the mean and autocovariances are
finite.term stationary will refer to weak stationarity, unless otherwise stated.

Another important concept21 is the ergodicity of a time series. A sta- 21: closely related to stationarity

1. Theoretical Background 12

tionary time series is said to be ergodic for the mean if the sample mean
converges to the true mean as the number of observations increases,
i.e.:

lim
𝑛→∞

1
𝑛

𝑛
∑
𝑡=1

𝑧𝑡 = 𝜇 (1.26)

It can be proven [39] that if the autocovariances of a stationary time series
are absolutely summable, then the time series is ergodic for the mean.

A useful quantity for linear time series is the Partial Autocorrelation Func-
tion (PACF).22 The PACF of a stationary time series can be theoretically23 22: It is a measure of the correlation between two

observations at different lags, after removing the ef-
fect of the intermediate observations. It is rigorously
defined in [39].

23: practical computations are usually done using
more efficient algorithms

computed from the ACF using the Durbin recursive algorithm [42]:

𝜙𝑝+1,𝑗 = 𝜙𝑝,𝑗 − 𝜙𝑝+1,𝑝+1𝜙𝑝,𝑝+1−𝑗, 𝑗 = 1, 2, … , 𝑝

𝜙𝑝+1,𝑝+1 =
𝜌𝑝+1 −∑𝑝

𝑗=1 𝜙𝑝,𝑗𝜌𝑝+1−𝑗

1 − ∑𝑝
𝑗=1 𝜙𝑝,𝑗𝜌𝑗

(1.27)

where 𝜙𝑝,𝑝 is the PACF at lag 𝑗.

White Noise

A white noise time series {𝛼𝑡} is a stationary time series with zero mean,
constant variance, and uncorrelated observations at different times, i.e.:

𝜇 = 0
𝛾𝑗 = 𝜎2𝛿𝑗0
𝜌𝑗 = 0, 𝑗 ≠ 0

(1.28)

where 𝜎2 is the variance of the white noise, and 𝛿𝑗0 is the Kronecker
delta24. If the white noise is also Gaussian, then it is called Gaussian white 24: 𝛿𝑗𝑖 = 1 if 𝑗 = 𝑖, and 𝛿𝑗𝑖 = 0 otherwise
noise:

𝛼𝑡 ∼ 𝑁(0, 𝜎2) (1.29)

where 𝑁(𝜇, 𝜎2) denotes a normal distribution with mean 𝜇 and variance
𝜎2. White noise is a fundamental concept in time series analysis, as it is
the building block for many time series models.

Linear Filter Models

Formost time seriesmodels, the observations are assumed to be dependent
on the previous observations and on a Gaussian white noise term (called
shock).25 A linear filter model is a model that describes the observations 25: These dependencies are not necessarily linear.

as a linear combination of the previous shocks:

𝑧𝑡 = 𝜇 + 𝜓(𝐵)𝛼𝑡 (1.30)

1. Theoretical Background 13

where 𝜇 is the mean of the time series, 𝛼𝑡 is the white noise shock at time
𝑡, 𝐵 is the backward shift operator,26 and 𝜓(𝐵) is a polynomial in 𝐵 that 26: defined in Eq. (1.19)

describes the linear dependence of the observations on the shocks. The
polynomial 𝜓(𝐵) is called the transfer function of the filter, and can be
written as:

𝜓(𝐵) = 1 + 𝜓1𝐵 + 𝜓2𝐵2 + … =
∞
∑
𝑗=0

𝜓𝑗𝐵𝑗 (1.31)

where 𝜓𝑗 are the coefficients of the transfer function. If the sequence of
these coefficients is absolutely summable, then the time series is called
stable, and it is stationary [38]:

∞
∑
𝑗=0

|𝜓𝑗| < ∞ (1.32)

At this point, it would be useful to define the transformed time series ̃𝑧𝑡
as:

̃𝑧𝑡 ≡ 𝑧𝑡 − 𝜇 (1.33)

Autoregressive Models

An Autoregressive (AR) model of order 𝑝, denoted as AR(𝑝), is a model
where the observations are a linear combination of the previous observa-
tions and a white noise shock:

𝜙(𝐵) ̃𝑧𝑡 = 𝛼𝑡 or ̃𝑧𝑡 = 𝜙1 ̃𝑧𝑡−1 + 𝜙2 ̃𝑧𝑡−2 + … + 𝜙𝑝 ̃𝑧𝑡−𝑝 + 𝛼𝑡 (1.34)

where ̃𝑧𝑡 is the transformed time series defined in Eq. (1.33), 𝛼𝑡 is the white
noise shock at time 𝑡, and 𝜙(𝐵) is a polynomial in 𝐵 of order 𝑝:

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − … − 𝜙𝑝𝐵𝑝 (1.35)

We can express the AR model using the linear filter model notation (1.30)
as:

̃𝑧𝑡 = 𝜙−1(𝐵)𝛼𝑡 ≡ 𝜓(𝐵)𝛼𝑡 =
∞
∑
𝑗=0

𝜓𝑗𝐵𝑗𝛼𝑡 = 𝛼𝑡 + 𝜓1𝛼𝑡−1 + 𝜓2𝛼𝑡−2 + … (1.36)

provided that the right-hand side of Eq. (1.36) converges. By factorizing
the polynomial 𝜙(𝐵), we get:

𝜙(𝐵) = (1 − 𝐺1𝐵)(1 − 𝐺2𝐵)… (1 − 𝐺𝑝𝐵) (1.37)

It can be proven [38] that the AR model is weakly stationary27 if the roots 27: i.e. it satisfies the condition of Eq. (1.32)

𝐺−1
𝑗 of the polynomial 𝜙(𝐵)28 lie outside the unit circle in the complex 28: 𝜙(𝐵) = 0, also called the characteristic equation

plane.

1. Theoretical Background 14

The ACF of a stationary AR model satisfies the difference equation:

𝜌𝑗 = 𝜙1𝜌𝑗−1 + 𝜙2𝜌𝑗−2 + … + 𝜙𝑝𝜌𝑗−𝑝 𝑗 = 1, 2, … (1.38)

This system of equations for 𝑗 = 1, 2, … , 𝑝 is also called the Yule-Walker
equations [43, 44].29 For a known ACF of a stationary AR model, the 𝜙𝑗 29: These are important equations for the estima-

tion of the AR model parameters. Detailed discus-
sions can be found in [38, 39, 45].

coefficients of the model can be computed using the Yule-Walker equa-
tions. Therefore, along with the mean of the time series and the variance
of the white noise shock, the AR model can be completely defined by its
ACF.

By solving Eq. (1.38) [38], and assuming distinct roots for the characteris-
tic equation (1.37), we get:

1. A damped exponential decay term proportional to 𝐺𝑗
𝑖 for every real

root 𝐺𝑖 of the characteristic equation.
2. A dampened sinusoidal term proportional to |𝐺𝑖|

𝑗 cos(2𝜋𝑓𝑖𝑗 + 𝜃𝑖) for
every complex root 𝐺𝑖 of the characteristic equation, where 𝑓𝑖 is the
frequency of the sinusoid and 𝜃𝑖 is the phase.

Therefore, the ACF of a stationary AR model is a linear combination of
damped exponentials and dampened sinusoids.

The PACF of an AR model can be computed using the Yule-Walker equa-
tions [43, 44], along with Eq. (1.27). From these computations, it can be
shown that the PACF of an AR model is zero for lags greater than the
order 𝑝 of the model.

Moving Average Models

A Moving Average (MA) model if order 𝑞, denoted as MA(𝑞), is a linear
filter model where the transfer function is truncated after 𝑞 terms:

𝑧𝑡 = 𝜇 + 𝜃(𝐵)𝛼𝑡 (1.39)

where 𝜇 is the mean of the time series, 𝛼𝑡 is the white noise shock at time
𝑡, and 𝜃(𝐵) is a polynomial in 𝐵 of order 𝑞:

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − … − 𝜃𝑞𝐵𝑞 (1.40)

Since the shocks are uncorrelated and are assumed to be Gaussian white
noise, the mean and ACF of the MA(𝑞) model are:

𝜇 = 𝐸[𝑧𝑡] = 𝜇 (1.41)

𝜌𝑗 = {
−𝜃𝑗+𝜃1𝜃𝑘−1+𝜃2𝜃𝑘−2+…+𝜃𝑞−𝑗𝜃𝑞

1+𝜃21+𝜃22+…+𝜃2𝑞
if 𝑗 ≤ 𝑞

0 if 𝑗 > 𝑞
(1.42)

Therefore, the MA model is weakly stationary and ergodic.30 Note that 30: If the shocks are Gaussian white noise.

the 𝑞 first autocovariances are the equations needed to solve for the 𝑞
unknowns 𝜃1, 𝜃2, … , 𝜃𝑞. Therefore, the MA model can also be completely

1. Theoretical Background 15

defined by its ACF, along with its mean (1.41) and the variance of the
white noise shock.

Since the shocks are unknown in principle, it would be useful to express
the MA model of Eq. (1.39) in terms of the observed transformed time
series ̃𝑧𝑡. This can be done by inverting the polynomial 𝜃(𝐵):

𝛼𝑡 = 𝜃−1(𝐵) ̃𝑧𝑡 (1.43)

It can be shown [38] that 𝜃(𝐵) is invertible if the roots of the characteristic
equation31 𝜃(𝐵) = 0 lie outside the unit circle in the complex plane. 31: note that this is different from the characteristic

equation of the AR model
A MA model is always stationary, since the series 𝜓(𝐵) = 𝜃(𝐵) is finite,
and therefore converges.32 32: see Eq. (1.32)

From Eq. (1.42), it is clear that the ACF of a MA model is zero for lags
greater than the order 𝑞 of the model. It is possible to show [38, 46]
that this is not true for the PACF of an invertible MA model, which is
nonzero for all lags, and is dominated by exponential decay and dampened
sinusoids.

Autoregressive Moving Average Models

In the previous sections, we have seen that the AR and MA models have
different properties. However, an AR model can be expressed as an MA
of infinite order, and vice versa. To avoid the infinite order problem,
we can combine the AR and MA models into a single model, called the
Autoregressive Moving Average (ARMA) model. An ARMA model of order
𝑝, 𝑞, denoted as ARMA(𝑝, 𝑞), is a model where the observations are a linear
combination of the previous observations and the previous shocks:

𝜙(𝐵) ̃𝑧𝑡 = 𝜃(𝐵)𝛼𝑡 (1.44)

It can be seen as either a 𝑝-order AR model with white noise that follows
a 𝑞-order MA model, or a 𝑞-order MA model with white noise that follows
a 𝑝-order AR model. This lets us combine the properties of the AR and
MA models. Both its ACF and PACF are infinite in length, and behave as
a combination of damped exponentials and dampened sinusoids [38].

Linear Nonstationary Models

The AR, MA, and ARMA models are all stationary models.33 However, 33: They satisfy the condition of Eq. (1.32).

many time series are nonstationary, usually due to nonconstant mean.
There are many ways a time series can be nonstationary. Specifically, if
the roots of the characteristic equation 𝜙(𝐵) = 0 of the general ARMA
model lie inside the unit circle in the complex plane, then the time series
exhibits explosive behavior.34 However, if they lie on the unit circle, then 34: An example is the exponential growth of bacte-

ria. It will not be considered in this work.the time series exhibits homogeneous nonstationary behavior.35 In this
35: also called unit root behaviorcase, the time series (1.44) can be expressed as:

𝜙(𝐵)(1 − 𝐵)𝑑 ̃𝑧𝑡 = 𝜃(𝐵)𝛼𝑡 (1.45)

1. Theoretical Background 16

where 𝑑 is the order of the unit root. Since we defined the backward
difference operator ∇ in Eq. (1.18), we can rewrite Eq. (1.45) as:

𝜙(𝐵)∇𝑑 ̃𝑧𝑡 = 𝜃(𝐵)𝛼𝑡 (1.46)

The order 𝑑 of the unit root is called the order of integration of the time
series, and the model defined in Eq. (1.46) is called an Autoregressive
Integrated Moving Average (ARIMA) model. Note that ∇𝑑 ̃𝑧𝑡 = ∇𝑑𝑧𝑡 for
𝑑 ≥ 1.

The reason this kind of nonstationarity is often encountered in practice
is that it models stochastic processes that behave similarly on different
levels. For example, for 𝑑 = 1,36 the backward difference operator ∇ 36: which will be the case later in this work

makes the process invariant under constant shifts:

∇(̃𝑧𝑡 + 𝑐) = ∇ ̃𝑧𝑡 (1.47)

Similarly, for 𝑑 = 2, the process is invariant under constant and linear
shifts.

Box-Jenkins Methodology

The Box-Jenkins methodology [38] is the most widely used approach for
identifying, estimating, and diagnosing ARIMA models. It consists of the
following steps:

1. Difference the time series as many times as needed to make it
stationary. This is done by computing the backward difference
operator ∇ of the time series. A nonstationary time series can be
identified by constant or linearly decreasing ACF and PACF.

2. Identify the AR and MA orders of the stationary time series.
This is done by examining the ACF and PACF of the time series.

3. Estimate the parameters of the ARIMA model. This is done by
fitting the model to the data.

4. Perform diagnostic checks on the residuals of the model.

The identification step is done by examining the ACF and PACF of the
stationary time series. In general, we can have the following cases:37 37: which are discussed in detail in the previous

subsections of this section
1. If the ACF of the stationary time series decays exponentially or

sinusoidally, and the PACF cuts off after a certain lag 𝑝, then the
time series can be modeled as an AR model of order 𝑝.

2. If the PACF of the stationary time series decays exponentially or
sinusoidally, and the ACF cuts off after a certain lag 𝑞, then the time
series can be modeled as an MA model of order 𝑞.

3. If both the ACF and PACF of the stationary time series decay expo-
nentially or sinusoidally, then the time series can be modeled as an
ARMA model.

The estimation and diagnostic checks steps can be done via a variety of
methods, depending on the case under study.

1. Theoretical Background 17

Seasonality and trends

Many time series exhibit seasonality. Seasonality is a pattern that repeats
at regular intervals, and can be identified by the presence of peaks of
the ACF at regular lags. A time series can also have a deterministic trend.
There can also be quadratic or higher-order terms in the trend.

Periodogram

An alternative way to analyze time-series is to assume that it made up of
a sum of sinusoids of different frequencies. If the number of observations
is odd, 𝑛 = 2𝑞 + 1, then we can fit the Fourier series to the time series:

𝑧𝑡 = 𝛼0 +
𝑞
∑
𝑘=1

[𝛼𝑘 cos(2𝜋𝑓𝑘𝑡) + 𝛽𝑘 sin(2𝜋𝑓𝑘𝑡)] + 𝜖𝑡 (1.48)

where 𝑓𝑘 = 𝑘/𝑛 is the frequency of the 𝑘-th sinusoid, and 𝜖𝑡 is the white
noise shock.

The least squares estimates of the Fourier coefficients 𝛼𝑘 and 𝛽𝑘 are given
by:

𝛼̂0 = 𝐸[𝑧𝑡]

𝛼̂𝑘 =
2
𝑛

𝑛
∑
𝑡=1

𝑧𝑡 cos(2𝜋𝑓𝑘𝑡)

̂𝛽𝑘 =
2
𝑛

𝑛
∑
𝑡=1

𝑧𝑡 sin(2𝜋𝑓𝑘𝑡)

(1.49)

The periodogram is the squared magnitude of the Fourier coefficients:

𝐼 (𝑓𝑘) = 𝛼̂2𝑘 + ̂𝛽2𝑘 (1.50)

If the number of observations is even, 𝑛 = 2𝑞, then the only difference is
that the equations remain the same for 𝑘 = 1, 2, … , 𝑞 − 1, and the Fourier
coefficients for 𝑘 = 𝑞 are:

𝛼̂𝑞 =
1
𝑛

𝑛
∑
𝑡=1

(−1)𝑡𝑧𝑡

̂𝛽𝑞 = 0
(1.51)

with the periodogram for 𝑘 = 𝑞 being:

𝐼 (𝑓𝑞) = 𝐼 (0.5) = 𝑛𝛼̂2𝑞 (1.52)

It is worth noting that the maximum frequency that can be estimated
is 𝑓max = 0.5, since the smallest period that can be estimated is two
intervals.

The periodogram and the ACF are transformations of each other [38].
The use of the periodogram is more common in time-series that contain
periodic components, and its use in the context of time-series is called

1. Theoretical Background 18

spectral analysis. In this work, we will not use the periodogram,38 since 38: with the exception of the cumulative peri-
odogram in Section 2.4we are not dealing with periodic time series.

Nonlinear Time Series

The models discussed so far are all linear models, since each observation
is a linear combination of the previous observations and the white noise
shock. However, many time series are nonlinear, and cannot be modeled
by linear models. Nonlinear time series can exhibit complex behavior,
such as chaos, bifurcations, and strange attractors. Nonlinear time series
analysis is a vast field, and is beyond the scope of this work.39 A standard 39: Since, as we will see in the following sections,

the noise of the DECAL is well modeled by a linear
model.

and excellent reference is the book by Kantz and Schreiber [40].

1. Theoretical Background 19

1.5. Purpose of the Study

In this study, time series analysis is used to analyze the behavior of the
noise of a DECAL, that was originally designed to be used in collider
experiments[34, 47, 48].40 The purpose of this work is threefold: 40: from this point on, DECAL will be used to refer

to this specific sensor
1. To thoroughly analyze the noise of the DECAL using time series

analysis, and to characterize the stochastic properties of the noise.
This full characterization of the noise can then be used to improve
the performance and calibration of the DECAL.

2. To present the method of using time series analysis in order to
generate random numbers from a noisy analog signal, using the
noise of the DECAL as a case study. This method can be used in
any TRNG with similar output.

3. To explore whether the DECAL in its current, or in a revised form,
can be used as a TRNG.

Methods 2.
2.1 Setup 20
2.2 Data Acquisition and Preprocess-

ing . 23
2.3 Data Analysis and Random Num-

ber Generation 24
2.4 Random Number Testing 26

2.1. Setup

The DECAL Sensor

The Digital Electromagnetic Calorimeter (DECAL) sensor [34] is a Mono-
lithic Active Pixel Sensors (MAPS) (i.e. it combines sensor and readout
circuit on the same substrate) designed for use as both a digital electro-
magnetic calorimeter (by calculating the initial energy of the incident
particles) and a tracker (by reconstructing the trajectories of the parti-
cles). More specifically, it is a Depleted Monolithic Active Pixel Sensor
(DMAPS) prototype consisting of 64 × 64 pixels with 55 µm pitch and an
epitaxial layer of 25 µm that is expected to be fully depleted when a low
bias voltage is applied. Its pixel readout comprises a comparator that
detects a hit when the shaper output falls below a globally set threshold
voltage. Only this binary information is readout per 40MHz clock cycle.
The reconfigurable readout groups the pixel hits in either 64 strips, each
of size 1 × 64 pixels, or in four pads of size 16 × 64 pixels.

Figure 2.1.: Photograph of the DECAL sensor on
its board. Setup similar to the one used in this work.
Reprinted from [34].

The core of the sensor is the pixel array. Within a column, hits from the
pixel are summed to provide a per column total to the readout logic at
the bottom of the column. This either sums the number of hits across
all columns (pad mode) or outputs the number of hits per column (strip
mode). The chip also includes a test register. This injects 5 bits of data
into the summation scheme, which permits the column and periphery
circuitry to be tested independently of the pixels. Each of these steps
(pixel hit detection, column summation and peripheral readout) requires
25 ns to complete.

Figure 2.2.: Photograph of the DECAL chip.
Reprinted from [34].

Pixel circuity

The circuity of DECAL will be now briefly described. The reader can find
much more detail in reference [34]. Each DECAL pixel is composed of a
monolithic front-end circuit and comprises an amplification, shaping and
discrimination unit (see Figure 2.3). An input voltage pulse induces a step
increase in the amplifier, which in turn produces an amplified signal that
is transmitted to the shaper. The shaper shapes the pulse coming from the
amplifier and helps to filter out noise, improving the Signal-to-Noise Ratio
(SNR). To determine whether a hit has occurred, the output of the shaper is
then passed to a comparator. This detects a hit if the incoming signal value
has passed an externally set detection threshold. Since manufacturing
tolerances mean that the shaper output level and the comparator’s offset
will vary slightly from pixel to pixel, each pixel effectively experiences a
slightly different threshold. However, the threshold voltage can only be
set globally, for all the pixels. To account for this, a capacitor is placed
between the shaper output and the comparator input. The voltage on this
capacitor can be set using an in-pixel Digital-to-Analog Converter (DAC).

2. Methods 21

The value applied to the capacitor allows pixel-to-pixel variations to be
tuned out, ensuring that all pixels have the same threshold. The six bits
values of the tuning DAC are:

Figure 2.3.: Schematic of the pixel front end. From
left to right: amplification, shaping and discrimina-
tion unit. Reprinted from [32].

▶ Bit 1: Masks or unmasks the pixel. A masked pixel is deactivated
in the sense that its shaper output signal does not reach the dis-
criminator.

▶ Bit 2: Determines the polarity of adding or subtracting to the shaper
output.

▶ Bits 3-6: Determine the magnitude of the voltage shift. It is this
voltage that is added or subtracted via the second bit setting.

After the tuning, the global threshold voltage can be set and the shaper
output of each pixel can be used as the input of its comparator, which
compares its voltage with the globally set threshold voltage. Only binary
information is stored, when the shaper output drops below the threshold.
This way, the discriminator separates the analogue front-end from the
digital processing that follows.

Readout

In this subsection, the summation of the DECAL pixels is summarized.
The reader can find many more details about the terms and methods that
are presented here in [34]. The pixels are summed over by a mixture
of two approaches, in which groups of pixels use the cascade approach
(i.e. pixels are iteratively summed in pairs), and the results of these sums
combine in a waterfall fashion (i.e. pixels are summed one by one). More
specifically, the cascade logic is used in blocks of 16 pixels and then the
resulting four blocks are added together in waterfall logic. The DECAL
chip has two modes of operation, strip and pad mode. These modes are
described below:

Figure 2.4.: The two readout modes of DECAL. Top:
strip mode, bottom: pad mode. The changing colours
represent the different readout groups.

▶ Strip mode: All 64 pixels in one column are readout as one strip.
A maximum of three hits per strip and clock cycle can be summed
up, with the loss of information about which pixels have detected a
hit. In strip mode, the chip reads out each column in turn, sending
out 2 bits for each, representing 0, 1, 2, or many hits. Explicitly,
(00)2 = (0)10 hits, (01)2 = (1)10 hit, (10)2 = (2)10 hits, (11)2 = (3)10
or more hits. Therefore, for 64 strips, 128 bits are sent out per clock
cycle, which means that 4 32-bit numbers can be read per clock
cycle.

▶ Pad mode: The pad mode consists of four blocks (pads) of strips
(of 64 bits). Each pad corresponds to a block of 16 × 64 pixel column
arrays and can record up to a maximum of 15 hits per column or a
maximum of 240 (15 × 16) total counts. Further, each strip provides
an overflow bit, the sum of the overflows (16 per pad at most) is
passed via a second 8-bit. Therefore, each pad provides an 8-bit
number for the total number of hits and another 8-bit number for
the total number of overflows. In total, 2 × 8 × 4 = 64 bits are sent
out per clock cycle, which means that two 32-bit numbers can be
read per clock cycle.

2. Methods 22

The communication between DECAL sensor and computer functions via
the Nexys Video Field Programmable Gate Array (FPGA) board and fol-
lows the ROOT-based framework of ITk Strips Data Acquisition (ITSDAQ)
[49].

Tuning

Tuning of each pixel is necessary because from fabrication the voltage
output level varies among pixels and the threshold voltage can only be set
globally for all pixels together. Each pixel is tuned through a dedicated
6-bit DAC.1 It is applied by disconnecting shaper output and comparator 1: which has been outlined in subsection Pixel cir-

cuityinput from a capacitor and instead charging it to a specific voltage using
the tuning DAC. Once that voltage differential is applied, the tuning DAC
gets disconnected the shaper output is reconnected to the comparator
input. Therefore, the aim of the tuning procedure is to find the DAC
bit configuration per pixel that aligns the shaper outputs in the absence
of a signal. The tuning process is applied through a threshold scan. A
threshold scan is done for each pixel independently. During a threshold
scan, the threshold voltage is varied from a low to a high value, and
the comparator of the pixel counts only when the shaper output is near
the threshold voltage. Therefore, a distribution of counts of different
voltages is being generated. This process is repeated for the 25 = 32
different DAC configurations, and 32 different distributions are obtained
for each pixel. From configuration 0 to 15 the polarity is negative. That
means that the voltage shift is subtracted from the shaper output. On
the contrary, from configuration 16 to 31, the polarity is positive, and the
voltage shift is added to the shaper output. It is clear that for the same
conditions, the response should be linear. However, there is a jump when
the polarity changes. The reason is that adding and subtracting a shift of
zero results in a slightly shifted voltage output and the drop is preferred
in the chip design because it leads to an overlap in the voltage range of
both polarities. In order to tune the pixels, a nominal value is chosen and
the DAC configuration whose mean is closest to this value is set.

Software and Computer

The whole board is connected with a computer with a 1000Mbps Ethernet
connection. The computer is equipped with two Intel Core i3-2120 @
3.30GHz processors and 8GB of RAM. The storage is a 1 TB Seagate HDD.
The operating system is Ubuntu 18.04.6, and the communication is done
using the ITSDAQ software, which is based on European Organization
for Nuclear Research (CERN)’s ROOT framework.

2. Methods 23

2.2. Data Acquisition and Preprocessing

Primary Data

The primary data are obtained by performing consecutive threshold
scans2 on a strip3. In this work, we will focus on data obtained by one of 2: introduced in subsection Tuning

3: using the strip mode of the DECAL sensorthe 64×64 pixels of the sensor. We choose the pixel at column/strip 31 and
row 39.4 There is no specific reason for this arbitrary choice, and we have 4: Therefore, we consecutively perform threshold

scans for the strip 31, and only process the data of
the pixel at row 39.

observed similar results for other pixels as well.5 For this application,

5: See Appendix B
there is no need to tune the sensor, as we are only interested about its
noise and do not want to filter it out. However, it is more efficient to tune
the pixels to a certain voltage value, so that we can scan over a smaller
range of threshold voltages. We choose to tune them around the value of
1.16V. Each threshold scan is controlled by the following parameters:

▶ Strip (row)6: The strip that is being scanned. In this case, it is 31. 6: these parentheses indicate the name of the vari-
able in the code▶ Offset (offset): The offset of the threshold voltage, i.e. the mini-

mum threshold voltage. In this case, it is 1.10V.
▶ Range (range): The range of the threshold voltage, i.e. the differ-
ence between the maximum and the minimum threshold voltage.
In this case, it is 0.08V.

▶ Bin edges (nSteps): The number of bin edges7 inside the range. 7: since the data are saved in a histogram format

The space is divided into nSteps-1 equal parts of width range

/ (nSteps-1). Each threshold voltage is saved in the middle of
the corresponding bin of width range / (nSteps-1). In this case,
nSteps is 41, and therefore the width of each bin is 0.002V.8 8: i.e. we sample the threshold voltage at 40 different

values starting from 1.10V and ending at 1.18Vwith
a step of 0.002V

▶ Number of scans (nStrobes): The number of scans that are per-
formed for each threshold voltage scan. In this case, it is 2000.9

9: The number of scans is chosen to be large enough
so that the noise can be estimated accurately. Of
course, increasing the number of scans will increase
the time needed for the data acquisition.

▶ Number of cycles between scans (nSleep): The number of cy-
cles that are waited between two consecutive scans. This is neces-
sary because the sensor needs some time to reset after each scan.10

10: It can be found by decreasing the value until the
data are corrupted, and is dependent on the setup

In this case, it is 300.
▶ Maximum number of cycles (MaxCap): The maximum number
of cycles that are waited before a reset is performed. This parameter
exists in order to reset the sensor in the middle of a threshold scan,
in order to avoid data corruption due to a voltage drift that has been
documented in previous works [32, 48]. For this application, it is not
necessary to perform long scans, since we need quick consecutive
scans to estimate the noise points. Therefore, this parameter is
disabled. However, the pixel resets anyway before each scan.11 11: This is not strictly necessary, and might slow

down the data acquisition. However, since the source
and the consequences of the voltage drift are not
well understood, for this work we choose to reset
the sensor before each scan.

Data Preprocessing

As mentioned in the previous subsection, the data are saved in a his-
togram format. Each histogram is saved in a Comma Separated Values
(CSV) file, where the first two columns are the bin edges and the third
column is the number of counts in each bin. As mentioned in previous
works [32, 47], the histogram of each pixel is expected to be normally
distributed. Therefore, we can estimate the mean of the noise by fit-
ting a Gaussian to the histogram using the Binned Maximum Likelihood
Estimation (BMLE) method, presented in subsection Binned Maximum
Likelihood Estimation. Detailed expressions and their derivations can be
found in Appendix A.2.

2. Methods 24

2.3. Data Analysis and Random Number
Generation

ARIMA Fitting

By following the procedure outlined in Section 2.2, we obtain a time
series of the mean of the noise of the pixel under study. In principle,
these values are expected to be temporarily correlated. In order to model
this correlation, we use the Autoregressive Integrated Moving Average
(ARIMA) model. By fitting the ARIMA model (Eq. (1.46)) to the time
series, we can estimate the parameters of the model and extract the white
noise component. We fit the time series using the innovations Maximum
Likelihood Estimation (MLE) algorithm, details of which can be found
in [50]. For the computation, we use the statsmodels library [51] in
Python.

ARIMA Model Selection

The ARIMA model is defined by three parameters: the autoregressive
order 𝑝, the differencing order 𝑑, and the moving average order 𝑞. There
are many methods to select the optimal values of these parameters.12 In 12: Many of them are discussed in [38, 50].

this work, we use the Akaike Information Criterion (AIC) [52] and the
Bayesian Information Criterion (BIC) [53] to select the optimal model.
The AIC is defined as:

AIC𝑝,𝑞 = −2
lnℒmax + 2(𝑝 + 𝑞 + 1)

𝑛
≈ ln(𝜎̂2𝛼) +

2(𝑝 + 𝑞 + 1)
𝑛

+ constant

(2.1)

whereℒmax is the maximum likelihood of the model after fitting, 𝑝 is the
autoregressive order, 𝑞 is the moving average order, 𝑛 is the number of
observations and 𝜎̂2𝛼 is the estimated variance of the white noise. The BIC
is given by:

BIC𝑝,𝑞 = ln(𝜎2𝛼) +
(𝑝 + 𝑞 + 1) ln(𝑛)

𝑛
+ constant (2.2)

According to the AIC and the BIC, the optimal model is the one that
minimizes these values. The BIC gives a higher penalty for the number of
parameters, and therefore tends to select simpler models than the AIC.

Random Number Generation

After fitting the ARIMAmodel to the time series, we can extract the white
noise component of the model, using Eq. (1.46):

𝛼̂𝑡 = ̂𝜃−1(𝐵) ̂𝜙(𝐵)𝑤̃𝑡 (2.3)

where ̂𝜃−1(𝐵) and ̂𝜙(𝐵) are the inverse autoregressive and moving average
polynomials, respectively, 𝑤̃𝑡 is the observations after differencing and

2. Methods 25

subtracting the mean, and 𝛼̂𝑡 are the residuals. The ̂⋅ symbol indicates that
these are the estimated values of the parameters.

The white noise component is expected to be a time series of uncorrelated,
normally distributed random numbers. In principle, this is the end goal of
this work: these are hardware generated true random numbers. There are
many approaches in which someone can create random binary numbers
from these residuals. In order to fully exploit the residuals, one should
use all the information that they contain, i.e. the full resolution of the
residuals. However, since this work is focused on exploring the potential
of the DECAL sensor to generate random numbers, we will use a more
conservative approach.13 Since the residuals are normally distributed 13: In which aspects such as round off and measure-

ment errors are not expected to significantly affect
the results

around zero, the simplest way to create random numbers is to assign a bit
on each residual. If the residual is positive, the bit is set to 1, otherwise it
is set to 0. This way, we can create a binary string of length equal to the
length of the time series.

This should make completely random and uncorrelated random bits, pro-
vided that the time series is an ARIMA process and the fit is done correctly.
However, in order to tackle any possible small nonlinearities or devia-
tions of the estimated residuals from the true residuals, an extra shuffle is
performed. The shuffle is done using only information from the gener-
ated binary string, and can be done continuously and computationally
efficiently while generating the random bits. The algorithm is this:

Figure 2.5.: Example for the swap algorithm. See
text for details.

1. Segment Division: Divide the binary string into segments of
length 𝐿 = 8 bytes. Iterate over each segment to perform the
bit manipulation operations.

2. Determine Shuffle Factor:

a) Within each segment, locate the first occurrence of the bit ‘1’
b) Convert the next two bits following this ‘1’ into a decimal value

and add 1 to this value. This results in a number between 1
and 4, which will be denoted as 𝑁shuffle.

3. Skip Segments: Continue iterating over the next 𝑁shuffle segments
without anymodifications. When the𝑁shuffle-th segment is reached,
proceed to the next step.

4. Determine Swap Factor:

a) In the 𝑁shuffle-th segment, locate the first occurrence of the
bit ‘0’.

b) Convert the next two bits following this ‘0’ into a decimal value
and add 1 to this value. This results in a number between 1
and 4, which will be denoted as 𝑁swap.

5. Bit Swapping: Perform bit swapping within the next segments as
follows:

a) Swap the first bit of the 𝑁shuffle-th segment with the first bit
of the (𝑁shuffle + 𝑁swap)-th segment.

b) Swap the second bit of the 𝑁shuffle-th segment with the second
bit of the (𝑁shuffle + 2 × 𝑁swap)-th segment.

c) Continue this process for all bits in the segment.

In order to do this, a maximum of 32 bytes are needed to be stored
in memory.

6. Repeat the Process: Repeat the above steps until the end of the
binary string is reached.

2. Methods 26

2.4. Random Number Testing

After generating the random numbers, we should test them to ensure
that they are indeed random. We will first test the residuals, and then the
binary numbers that are generated from them.

ARIMA Model Diagnostics

The residuals of the ARIMAmodel are expected to be normally distributed,
with zero mean and constant variance, and to be temporally uncorrelated.
First, we can visually inspect the residuals by plotting their histogram
and fit a normal distribution to them. We can also plot the residuals over
time to check for any temporal correlation. For a white noise process, the
Autocorrelation Function (ACF) is expected to follow a normal distribution
around zero, with standard deviation equal to 1/√𝑛, where 𝑛 is the number
of observations.[38] We can therefore plot the ACF of the residuals and
check if it follows these limits. However, in practice we do not know the
true residuals 𝛼𝑡, but only the estimated residuals 𝛼̂𝑡. It can be proven
[54] that the errors of the estimated parameters significantly affect the
standard errors of the residuals’ ACF for small lag values. Box and Pierce
[54] have shown how to correct the ACF standard errors for the estimated
parameters.

In order to assess the ACF of the residuals as a whole, Box and Pierce
[54] introduced a test, later modified by Ljung and Box [55], called the
Ljung-Box-Pierce test. The test statistic is defined as:

𝑄 = 𝑛(𝑛 + 2)
𝐾
∑
𝑘=1

̂𝜌2𝑘
𝑛 − 𝑘

(2.4)

where 𝑛 is the number of observations, 𝐾 is the number of lags,14 ̂𝜌𝑘 is the 14: in this work, we choose 𝐾 = 100
sample ACF at lag 𝑘, and 𝑄 is the test statistic. The test statistic is expected
to follow a 𝜒2 distribution with 𝐾 − 𝑝 − 𝑞 degrees of freedom, where 𝑝
is the autoregressive order and 𝑞 is the moving average order. The null
hypothesis is that the residuals come from a white noise process.

Another check that is performed is the cumulative periodogram test.[38]
Since the ACF is not a sensitive indicator of seasonality, the cumulative
periodogram test is used to detect periodicity in the residuals. We define
the normalized cumulative periodogram as:

𝐶(𝑓𝑘) =
1
𝑛𝑠2

𝑘
∑
𝑗=1

𝐼 (𝑓𝑗) (2.5)

where 𝑓𝑘 is the frequency, 𝑠2 is the variance estimate of the residuals, and
𝐼 (𝑓𝑗) is the periodogram15 at frequency 𝑓𝑗. For a white noise process, the 15: see Subsection Periodogram

cumulative periodogram is expected to be close to a straight line, joining
the points (0, 0) and (0.5, 1). For a process characterized by low frequency
components, the cumulative periodogram will be above this line, and for
a process characterized by high frequency components, the cumulative
periodogram will be below this line. For seasonality, the cumulative
periodogram will show spikes at the corresponding frequencies. The

2. Methods 27

standard error of the cumulative periodogram using the Kolmogorov-
Smirnov test are parallel lines at distances ±𝐾𝜖/𝑞 from the cumulative
periodogram, where 𝐾𝜖 = 1.36 for a 95% confidence interval, and 𝑞 =
(𝑛 − 2)/2 for 𝑛 even and 𝑞 = (𝑛 − 1)/2 for 𝑛 odd.

Recurrence Plot

The recurrence plot is a graphical representation of the recurrence of a
state in a time series. It is used to detect periodicity and other patterns16 16: even nonlinear

in the time series. The recurrence plot is defined as:

𝑅(𝑖, 𝑗) = Θ(𝜖 − ||𝑥𝑖 − 𝑥𝑗||) (2.6)

where 𝑅(𝑖, 𝑗) is the recurrence plot, Θ is the Heaviside step function17, 𝜖 is 17: which is equal to 1 if the argument is positive
and 0 otherwisethe threshold distance, and 𝑥𝑖 and 𝑥𝑗 are the time series at times 𝑖 and 𝑗,

respectively. The recurrence plot is a binary matrix, where 𝑅(𝑖, 𝑗) = 1 if the
distance between the two points is less than 𝜖, and 𝑅(𝑖, 𝑗) = 0 otherwise.
The recurrence plot is symmetric, and the diagonal line represents the
recurrence of the same state. The recurrence plot can be used to detect
periodicity, deterministic chaos, and other patterns in the time series.
The threshold distance 𝜖 is a free parameter, and its value depends on the
time series. In this work, we choose 𝜖 = 0.001. An introduction to the
recurrence plot for time series analysis can be found in [56].

Diffusion Simulation

In order to test the bits that are generated from the residuals, we can
simulate a diffusion process. The diffusion process is a random walk
process, in which the position of a particle is determined by a series of
random steps. We simulate two versions of the diffusion process.

▶ One-dimensional diffusion: The particle starts at position 0 and
at each step it moves up if the random bit is 1 and down if the
random bit is 0. The position of the particle is recorded at each step.

▶ Two-dimensional diffusion: The particle starts at position (0, 0)
and at each step it moves up if the next two random bits are 00,
down if they are 10, left if they are 11 and right if they are 01. The
position of the particle is recorded at each step.

We also use the Mean Squared Displacement (MSD) to quantify the diffu-
sion process. The MSD is defined as:

MSD(𝑡) = ⟨(𝑥(𝑡) − 𝑥(0))2⟩ ≈ 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖(𝑡) − 𝑥𝑖(0))2 (2.7)

where 𝑥(𝑡) is the position of the particle at time 𝑡, 𝑥(0) is the initial position,
𝑁 is the number of particles, and the brackets ⟨⋅⟩ denote the average over
all particles. The MSD is expected to follow a linear relationship with
time, with a slope equal to the diffusion coefficient.

2. Methods 28

Webreak the random bits into segments, and for each segmentwe simulate
the random walk process. We then gather the statistics using these
segments and compare them to the expected values.

For the one-dimensional case, we expect the position of the particle to be
normally distributed18 around the origin, with a standard deviation equal 18: for large number of steps; for small number of

steps, the distribution is binomialto √𝑡, where 𝑡 is the number of steps. Approximately 2/3 of the particles
are expected to be within one standard deviation from the origin, and 95%
of the particles are expected to be within two standard deviations from
the origin. The MSD is expected to follow a linear relationship with time,
with a slope equal to 1. We calculate it using an efficient Fast Fourier
Transform (FFT) based algorithm, described in [57], and perform similar
pseudo-random number simulations to create the 66% and 95% confidence
intervals. This test checks whether the number of 1s and 0s are balanced
in multiple segments of the random bits.

For the two-dimensional case, the particle should perform a one dimen-
sional random walk in the 𝑥 and 𝑦 directions. For large number of steps,
the position of the particle should be symmetrically distributed around
the origin, with a distance from the origin that asymptotically follows
the Rayleigh distribution, with scale parameter equal to √𝑡.[58] This test
checks whether the number of 00s, 01s, 10s and 11s are balanced in multi-
ple segments of the random bits.

NIST Test Suite

The USA National Institute of Standards and Technology (NIST) test suite
is a collection of tests that are used to assess the randomness of a sequence
of random numbers.[12] It is considered a standard in the field of random
number testing, and is widely used to test and validate random number
generators. The NIST test suite consists of 15 tests:

1. Frequency (Monobit) Test: To test the proportion of 0s and 1s
in the entire sequence. It checks if the number of 0s and 1s are
approximately the same, indicating a random sequence.

2. Frequency Test within a Block: Similar to the monobit test but
within smaller blocks of the sequence. It checks if the proportion
of 0s and 1s is approximately the same within each block.

3. Runs Test: To test the number of runs19 in the sequence. It checks 19: sequences of consecutive 0s or 1s

if the number of runs is approximately the same as expected in a
random sequence.

4. Longest Run of Ones in a Block: To test the longest run of 1s in
the sequence. It checks if the longest run of 1s is approximately the
same as expected in a random sequence.

5. Binary Matrix Rank Test: To check for linear dependencies
among fixed-length substrings of the original sequence by ana-
lyzing the rank of matrices constructed from the sequence.

6. Discrete Fourier Transform (Spectral) Test: To identify peri-
odic features (i.e., repetitive patterns that are near each other) in
the sequence.

7. Non-overlapping Template Matching Test: To count the occur-
rences of pre-specified target strings in the sequence. This test
checks for the randomness of specific patterns.

2. Methods 29

8. OverlappingTemplateMatchingTest: Similar to the non-overlapping
template matching test, but with overlapping substrings.

9. Maurer’s Universal Statistical Test: To test the compressibility
of the sequence. It checks if the sequence is compressible, which is
an indication of non-randomness.

10. Linear Complexity Test: To test the linear complexity of the
sequence. It checks the length of a linear feedback shift register
that produces the sequence.

11. Serial Test: To test the number of occurrences of specific patterns
in the sequence. It checks for the randomness of specific patterns.

12. Approximate Entropy Test: To test the approximate entropy of
the sequence. It checks the unpredictability of the sequence.

13. Cumulative Sums (Cusum) Test: To test the cumulative sums of
the sequence. It checks if the cumulative sums are approximately
zero, indicating randomness.

14. RandomExcursionsTest: To count the number of cycles between
zero crossings and the distribution of visits to a particular state
within each cycle. Evaluates the number of visits to a specific state
within a cycle of cumulative sums.

15. Random Excursions Variant Test: Similar to the random excur-
sions test, but with additional states.

Results and Discussion 3.
3.1 Tuning Results 30
3.2 Threshold Scan Mean Time Series 31
3.3 Random Number Validation . . . 34
3.4 Performance and Efficiency 37

3.1. Tuning Results

As mentioned in Section 2.2, before any measurements were taken, the
pixels were tuned (see Subsection Tuning) to limit the range of the thresh-
old scans and decrease the measurement time. The pixel polarities and
Digital-to-Analog Converter (DAC) values after the tuning procedure can
be seen in Figure 3.1. The histograms for a row of pixels before and after
tuning are shown in Figures 3.2a and 3.2b, respectively.1 It is evident that 1: The tuning parameters remain sufficiently con-

stant over time for each pixel, which considerably
reduces the measurement time, as there is no need
to retune the pixels before each measurement.

after tuning, the threshold scan range is significantly reduced, and the
pixels are more uniform. This lets us focus the threshold scans on the
relevant range and reduce the measurement time.

Figure 3.1.: The pixel polarities (a) and DAC values
(b) after the tuning process.

(a) Histogram of a row of pixels before tuning.

(b) Histogram of a row of pixels after tuning. Figure 3.2.: Comparison of row of pixels before and
after tuning.

3. Results and Discussion 31

3.2. Threshold Scan Mean Time Series

Consecutive threshold scans were performed on the same row of pixels,
as described in Subsection Primary Data. This created a series of Comma
Separated Values (CSV) files, each containing the threshold scan histogram
for a single scan. These files were then processed to extract the mean and
standard deviation of the threshold distribution for each scan, following
the procedure described in Subsection Data Preprocessing. An example
of this fitting can be seen in Figure A.2. The mean for each scan is plotted
in Figure 3.3. From this figure, it is evident that the threshold scan mean
series2 quickly drops for the first few scans, after which it stabilizes. This 2: from now on, the term time series will be used

for the threshold scan mean time seriesis likely due to the warm-up of the sensor, and has also been noted and
discussed in previous studies [32]. In our case, it seems that the sensor
stabilizes after around 10000 scans. We therefore discard the first 10000
scans in the rest of the analysis. It can also be seen that the behavior of
the time series of the different pixels is similar, as is evident from certain
common peaks and valleys in Figure 3.3. The same observation can be
made from similar plots in the literature [32]. This suggests that the time
series of the different pixels of the same strip are correlated.

Figure 3.3.: Threshold scan time series for four pix-
els in a single strip.

The time series of a single run of the sensor3 after discarding the first 3: under the conditions described in Subsection Pri-
mary Data10000 values, along with its histogram, Autocorrelation Function (ACF)

and Partial Autocorrelation Function (PACF), can be seen in Figure 3.4.

Figure 3.4.: Threshold scan time series (top left),
histogram (top right), ACF (bottom left) and PACF
(bottom right) for a single pixel after discarding the
first 10000 scans. The white noise standard error of
the ACF (in which 66.6% of the values should lie)
is calculated as 1/√𝑁, where 𝑁 is the number of
samples.[38]

3. Results and Discussion 32

From this figure, it is clear that the time series is heavily autocorrelated,
as the ACF and PACF show significant values. Specifically, the slow and
linear decrease of the ACF and PACF suggest non-stationarity. Therefore,
the time series is differenced to make it stationary. The differenced
time series, along with its histogram, ACF and PACF, can be seen in
Figure 3.5.

Figure 3.5.: Differenced threshold scan time series
(top left), histogram (top right), ACF (bottom left)
and PACF (bottom right) for a single pixel after dis-
carding the first 10000 scans. The white noise stan-
dard error of the ACF (in which 66.6% of the values
should lie) is calculated as 1/√𝑁, where 𝑁 is the
number of samples.[38]

From this figure, it is evident that the differenced time series is stationary,
as the ACF and PACF do not exhibit slow and linear decreases. The
differenced time series is then used for the rest of the analysis. Moreover,
it seems that the histogram of the differenced time series is approximately
Gaussian. However, the ACF and PACF still show significant values,
suggesting that the time series is not yet white noise. Specifically, the ACF
shows significant values at lags 1, 2 and 3, and the PACF seems to decay
exponentially. This would suggest that the time series is anAutoregressive
(AR)(3) process. Nevertheless, since there are some deviations from this
behavior that might suggest contributions from other AR and Moving
Average (MA) terms, we will explore different models and determine
the best one using the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC). The resulting AIC and BIC values for different
AR and MA orders can be seen in Figure 3.6.

Figure 3.6.: AIC and BIC values for different AR
and MA orders for a single pixel.

Using the AIC and BIC values of Figure 3.6, we choose the Autoregressive
Integrated Moving Average (ARIMA)(3, 1, 5) model for the time series of

3. Results and Discussion 33

the pixel in question, as it has a low AIC4 and BIC5 value. The residuals 4: which gives more weight to goodness of fit

5: which gives more weight to model complexityof this model, along with their histogram, ACF and PACF, can be seen in
Figure 3.7.

Figure 3.7.: Residuals of the ARIMA(3,1,5) model
for a single pixel. The histogram (top right), ACF
(bottom left) and PACF (bottom right) are shown.
The white noise standard error of the ACF (in which
66.6% of the values should lie) is calculated as 1/√𝑁,
where 𝑁 is the number of samples.[38]

From this figure, it seems that the residuals are Gaussian white noise, as
the ACF and PACF are significantly close to zero, and the histogram is
Gaussian. This suggests that the ARIMA(3,1,5) model is a good fit for the
time series of the pixel in question.

3. Results and Discussion 34

3.3. Random Number Validation

ARIMA Model Diagnostics

The ARIMA(3,1,5) model was fitted to the time series of the chosen pixel.
The residuals of this model were then analyzed to determine if the model
was a good fit. These tests address whether the residuals are Gaussian
white noise6. 6: i.e. normally distributed with zero mean and con-

stant variance, and uncorrelated
The normality of the residuals is assessed using a Q-Q plot.7 The Q-Q plot 7: Due to the large sample size, most quantitative

tests are not very useful, because they are overly
sensitive to small deviations from normality

of the residuals can be seen in Figure 3.8. From this figure, it is evident
that the residuals are approximately normally distributed, as the points
lie close to the line.

Figure 3.8.: Q-Q plot of the residuals of the
ARIMA(3,1,5) model for a single pixel.

The autocorrelation of the residuals is assessed by visually inspecting the
ACF and PACF of the residuals in Figure 3.7, and by the Ljung-Box-Pierce
test, which was presented in the Subsection ARIMA Model Diagnostics.
The Ljung-Box-Pierce result for the residuals is visualized in Figure 3.9.
From this figure, it is evident that the 𝑝-value is larger than 0.05, and the
null hypothesis that the residuals are white noise cannot be rejected. This
further suggests that the ARIMA(3,1,5) model is a good fit for the time
series of the pixel in question.

Figure 3.9.: Ljung-Box-Pierce test for the residu-
als of the ARIMA(3,1,5) model for a single pixel.
The blue line is the relevant 𝜒 2 distribution, the red
dashed line is the 𝑄 statistic, and the shaded area is
the 𝑝-value.

The seasonality of the residuals is assessed using the cumulative peri-
odogram, as described in Subsection ARIMA Model Diagnostics. The
cumulative periodogram of the residuals can be seen in Figure 3.10. From
this figure, it is evident that the data do not show any significant sea-
sonality, as there are no significant peaks, and have an excess of high
frequencies. After the ARIMA fitting, the residuals follow the expected
line, which suggests the lack of seasonality and autocorrelation.

Finally, the residuals are checked for nonlinear behavior using recurrence
plots, also described in Subsection ARIMA Model Diagnostics. The recur-
rence plot of the data and the residuals can be seen in Figure 3.11. From
this figure, it is evident that the residuals are less autocorrelated than
the data, as the recurrence plot of the residuals is more uniform than the
recurrence plot of the data.

3. Results and Discussion 35

Figure 3.10.:Cumulative periodogram of the residu-
als of the ARIMA(3,1,5) model for a single pixel. The
orange dashed line is the cumulative periodogram
of the data, the blue dashed line is the cumulative pe-
riodogram of the residuals, and the red shaded area
is the 95% confidence interval of the white noise.

(a) Recurrence plot of the data. (b) Recurrence plot of the residuals.
Figure 3.11.: Recurrence plots of the data and the
residuals of the ARIMA(3,1,5) model for a single
pixel.

After these checks, the residuals are transformed into binary values us-
ing the method described in Subsection Random Number Generation.
The binary results taken from different days of the same pixel are then
concatenated to form a single binary string of size 3Mb.

Diffusion Tests

As described in Subsection Diffusion Simulation, the diffusion tests were
constructed to test the relative frequency of 0 and 1 in segments of the
binary results8 and the relative frequency of 00, 01, 10 and 11 in segments 8: for the one-dimensional test

of the binary results9. In order to properly assess the statistics, the binary 9: for the two-dimensional test

data were divided into segments (1) of size 1000, and 3000 Mean Squared
Disploacements (MSDs) were computed from these segments for the one-
dimensional test, and (2) of size 500, for the two-dimensional test. The
results of the one-dimensional and two-dimensional tests can be seen in
Figures 3.12 and 3.13, respectively.

3. Results and Discussion 36

Figure 3.12.: Results of the one-dimensional diffu-
sion test. The faint black lines are some simulated
random walks, the orange area is the 2/3 confidence
interval, the blue area is the 95% confidence interval
(analytically computed). The red lines are some sim-
ulated MSDs, the green area is the 2/3 confidence
interval, and the faint green area is the 95% confi-
dence interval (numerically computed). Inside the
parentheses of the legends, the actual percentage
of simulations that lie inside the confidence inter-
vals is shown. The inset shows the same MSD plots,
along the 𝑥 axis and with logarithmic scale to better
visualize the behavior of the MSDs.

Figure 3.13.: Results of the two-dimensional diffu-
sion test. The faint lines are some simulated random
walks, the orange area is the 2/3 confidence inter-
val, the blue area is the 95% confidence interval (an-
alytically computed). Inside the parentheses of the
legends, the actual percentage of simulations that
lie inside the confidence intervals is shown.

From these figures, it is evident that the diffusion tests are passed, as all
the confidence intervals are consistent with the expected behaviors. This
suggests that the binary data are indeed random.

NIST Tests

The binary data were also tested using the USA National Institute of
Standards and Technology (NIST) tests, as described in Subsection NIST
Test Suite. The results of these tests are summarized in Table 3.1. For
the symbol convention, we use the one in the original documentation
[12]: 𝑛 is the number of bits in the binary data to be assessed at each
repetition, 𝑚 or 𝑀 is the relevant parameter for the test, the 𝑝-value is
proportional to the probability that the underlying 𝑝-values follow the
expected distribution, and the number of passes is the number of times
the 𝑝-value is larger than 0.01 in 100 repetitions. Some of these tests
pose limitations on the sample size, which is why the results are either
unavailable or limited for some tests. See the NIST documentation for
more information on the tests and their limitations.

Test n m/M p-value Passes (Minimum)
Frequency 10000 - 0.05655 291/300 (291)

Block Frequency 10000 10 0.02408 293/300 (291)
Runs 10000 - 0.52744 295/300 (291)

Longest Run 10000 - 0.38383 296/300 (291)
Rank 38912 - 0.02075 76/77 (73)
Fourier 10000 - 0.00001 298/300 (291)

Non-overlapping 106 9 - 433/441 (427)
Overlapping 106 9 - 3/3 (2)
Universal 106 - - 3/3 (2)

Linear Complexity 106 500 - 3/3 (2)
Serial 10000 2 0.48142, 0.19516 292, 296/300 (291)

Approx. Entropy 10000 2 0.21709 296/300 (291)
Cumulative Sums 10000 - 0.77276, 0.01265 293, 291/300 (291)

Table 3.1.: Results of the NIST tests. For details on
the tests and their limitations, see the NIST docu-
mentation.

From Table 3.1, it is evident that the binary data pass the tests. The
small sample size forbids the proper assessment of the random excursions
tests.

3. Results and Discussion 37

3.4. Performance and Efficiency

Including Other Pixels

As described in Subsection Primary Data, the Digital Electromagnetic
Calorimeter (DECAL) sensor works in strip mode during the measure-
ments. This means that the data from all 64 pixels of a strip are read out
simultaneously. In order to improve the rate of random bits, it would
be beneficial to include the data from all pixels. However, as was briefly
noted in Section Threshold Scan Mean Time Series, the time series of the
different pixels of the same strip seem to be correlated. This is likely due
to the fact that the pixels are read out simultaneously, while the sensor is
subject to the same conditions.

Figure 3.14.: Correlation matrix of the time series
of the different pixels of the same strip running si-
multaneously.

The correlation between the time series of the different pixels of the same
strip is visualized in Figure 3.14. From this figure, it is evident that the
time series of the different pixels of the same strip are indeed correlated.
This suggests that the data from the different pixels of the same strip
should not be concatenated to form a single binary string, as this would
significantly worsen the quality of the random bits. Instead, the data
from the different pixels should be treated separately, as was done in the
previous sections.

If the binary data from the different pixels of the same strip are concate-
nated, the diffusion tests are not passed, as can be seen in Figures 3.16
and 3.15.

Figure 3.15.: Results of the two-dimensional diffu-
sion test for the concatenated data of the different
pixels of the same strip. The convention is the same
as in Figure 3.13.

Efficiency

Asides from the quality of the random bits, the efficiency, as measured
by the rate of high-quality bits generated, of a True Random Number
Generator (TRNG) is also important. Existing TRNGs can generate ran-
dom bits at rates higher than 10Mbps [24, 59–62]. At the current DECAL
setup, the significantly slowest step is the data acquisition, which takes
around 310min for 100000 scans.10 This corresponds to a rate of 5.4 bps,

10: The post-processing for this amount of data
takes less than one minute.

which is significantly slower than the commercial TRNGs. However, the
current setup is not optimized for speed, as it has been designed to test
the DECAL as a calorimeter, and not for producing random bits. It is
likely that the rate can be improved by optimizing the data acquisition
process, either by redesigning the setup to be suitable for a TRNG, or by

Figure 3.16.: Results of the one-dimensional diffu-
sion test for the concatenated data of the different
pixels of the same strip. The convention is the same
as in Figure 3.12.

3. Results and Discussion 38

improving the firmware of the sensor. In this work, the focus has been
on assessing the quality of the random bits, and the optimization of the
rate has been left for future work. Some suggestions for improving the
rate are given below:

▶ Take advantage of the fact that the sensor can read out all pixels of
a strip simultaneously. This could potentially increase the rate by a
factor of 64. In order to decorrelate the data from the different pix-
els, an additional step could be added to the post-processing, using
either univariate or multivariate time series analysis, or other meth-
ods. Alternatively, the sensor or its firmware could be redesigned
in a way that the data from the different pixels are decorrelated
before being read out. For example, the pixels could be read with a
small delay between them.

▶ Optimize the data acquisition process and setup. Currently, the
user has to manually start the data acquisition process, through
the ROOT-based ITk Strips Data Acquisition (ITSDAQ) software.
The threshold scans are saved in CSV files, which are then read and
processed by a Python script. This is a significantly slow process,
as the writing and reading of the CSV files on a computer equipped
with a hard drive takes a long time. In a final setup, the data
acquisition and processing should be done on a single device using
compiled code, without the need for intermediate files. At the same
time, a lot of information is printed to the console during the data
acquisition, which can be turned off in a future setup. This would
significantly reduce the time needed for the data acquisition and
processing.

▶ Avoid resetting the sensor after each measurement. Because of the
voltage drift reported in previous studies [32, 48], the sensor is hard
coded to reset after each measurement. However, this is a slow
process, reported to take as much as 85% of the total measurement
time [32]. If the drift is not significant, the sensor could be left
running for a longer time, until the values fall outside the relevant
range. This would significantly reduce the time needed for the data
acquisition. In our case, the ARIMA model could take care of the
drift by including a constant term.

▶ Reduce the number repetitions of the threshold scans and the range
of the scans. As described in Subsection Primary Data, in this work
the range is set from 1.10V to 1.18V, and the number of repetitions
is set to 2000. This is done to ensure that the data is of the highest
quality, to provide a good basis for the analysis. However, the range
and the number of repetitions could be reduced to increase the rate
of random bits. Specifically, from Figure 3.3, it is evident that the
values are located between 1.156 and 1.166. Therefore, the chosen
range is unnecessarily large. The number of repetitions could also
be reduced, until the error in the calculation of the mean of the
threshold distribution is acceptable. This would significantly reduce
the time needed for the data acquisition.

▶ Optimize the post-processing. The post-processing of the data is
currently done in Python,11 with many checks. The post-processing 11: mainly using statsmodels and custom code

could be done in a faster language, such as C++, or the Python code
could be optimized. The post-processing could also be parallelized,
as the data from the different pixels are independent.

▶ Use all the available information from the residuals. In principle, the

3. Results and Discussion 39

random numbers are not the bits, but the residuals of the ARIMA
model. The residuals are then transformed into binary values, choos-
ing 0 or 1 depending on their sign. However, the residuals contain
more information than just their sign. For example, the magnitude
of the residuals could be used to generate more random bits from
each residual. This would increase the rate of random bits.

The combination of these suggestions could significantly increase the rate
of random bits, and bring it closer to the rates of commercial TRNGs.

Conclusions 4.
The feasibility of using the Digital Electromagnetic Calorimeter (DE-
CAL) sensor as a True Random Number Generator (TRNG) was evaluated
through a comprehensive analysis of its noise properties and the appli-
cation of time series analysis. The key findings and implications of this
research are summarized as follows:

▶ Effective Noise Modeling: The Autoregressive Integrated Mov-
ing Average (ARIMA) model was effectively fitted to the time series
data obtained from the DECAL sensor. Diagnostic tests, including Q-
Q plots, the Ljung-Box-Pierce test and spectral analysis, confirmed
that the residuals of the model exhibited properties consistent with
Gaussian white noise. This indicates that the ARIMA model is
well-suited for characterizing the sensor’s noise and transforming
it into a format suitable for random number generation.

▶ Generation and Validation of Random Bits: By converting the
residuals of the ARIMA model into binary sequences, 3Mb of ran-
dom numbers were successfully generated. The randomness of
these sequences was rigorously tested using a variety of statistical
tests, including the USA National Institute of Standards and Tech-
nology (NIST) test suite and novel diffusion tests. The sequences
passed these tests, demonstrating high-quality randomness suitable
for cryptographic and other security applications.

▶ Diffusion Tests Confirmation: The diffusion tests, which assess
the relative frequency of binary pairs and the mean squared dis-
placement of binary sequences, provided additional validation. The
results from both one-dimensional and two-dimensional diffusion
tests were consistent with the expected behavior of random se-
quences, further affirming the reliability of the generated random
numbers.

▶ Performance and Practicality: The process of generating ran-
dom numbers from the DECAL sensor data was found to exhibit
a low rate of random bit generation, which may limit the sensor’s
practical application as a TRNG. However, the computational effi-
ciency of the model fitting, residual analysis, and binary conversion
processes supports the sensor’s use in real-time or near-real-time
systems.

▶ Recommendations for Improvement: To enhance the DECAL
sensor’s performance as a TRNG, future work should focus on
optimizing the sensor’s design and its communication with the
data acquisition and post-processing systems. At this stage, the
setup was a prototype, and further possible refinements should
be considered to improve the rate of random bit generation and
broaden the sensor’s applicability as a TRNG.

Appendix

A.
MLE of the Normal Distribution

A.1 Count Error Analysis 42
A.2 Gaussian Fit of the Histograms . 43

A.1. Count Error Analysis

The first step is to determine the error of each binned count. As is common
practice in event count statistics in High Energy Physics (HEP), the hits
count of each bin is assumed to follow a Poisson distribution (Probability
Mass and Density Functions)

For each bin, a specific count 𝑘obs,𝑖 is recorded by the Digital Electro-
magnetic Calorimeter (DECAL) sensor. The true value of the count is
𝑘true,𝑖 = 𝜆𝑖. Therefore, the error of the count is assumed to be equal to the
confidence interval of the parameter 𝜆𝑖. The confidence interval is defined
as the range of values within which the true value of the parameter is
expected to lie with a certain probability, 1 − 𝛼, given the observed data.
In order to determine the confidence interval, the cumulative distribution
function of the Poisson distribution is used. The cumulative distribution
function of the Poisson distribution is given by:

𝐹(𝑘) ≡ 𝑃(𝑋 ≤ 𝑘) =
𝑘
∑
𝑖=0

𝜆𝑖𝑒−𝜆

𝑖!
= 1 − 𝐹𝜒 2 (2𝜆; 2(𝑘 + 1)) (A.1)

where 𝐹𝜒 2 is the cumulative distribution function of the chi-squared dis-
tribution, which is given by:

𝐹𝜒 2(𝑥; 𝑘) =
𝛾 (𝑘2 ,

𝑥
2)

Γ (𝑘2)
= 1

Γ (𝑘2)
∫
𝑥

0
𝑡
𝑘
2−1𝑒−

𝑡
2 𝑑𝑡 (A.2)

where 𝛾 is the lower incomplete gamma function and Γ is the gamma
function. Assuming central confidence intervals (i.e. equal probability on
both sides of the interval), the confidence interval of the parameter 𝜆𝑖 is
given by:

𝜆low,𝑖 =
1
2
𝐹−1𝜒 2 (1 − 𝛼

2
; 2(𝑘obs,𝑖 + 1))

𝜆high,𝑖 =
1
2
𝐹−1𝜒 2 (𝛼

2
; 2(𝑘obs,𝑖 + 1))

(A.3)

All of these can also be seen in Figure A.1. This interval has a proba-
bility of 1 − 𝛼 to contain the true value of the parameter 𝜆𝑖. It is worth
noting that for very small values of 𝜆𝑖, the confidence continues to give
central intervals, and therefore the lowest possible value of 𝜆𝑖 is never
zero. In order to account for noise and avoid a phenomenon which in

A. MLE of the Normal Distribution 43

HEP is called ”flip-flopping”, the procedure described in [63] must be
followed. In this case, the signals we are dealing with are produced by
the noise, and therefore there is no need to account for this phenomenon.
However, if at some point the DECAL sensor is used to generate numbers
from a source, this methodology must be revised. As far as efficiency
is concerned, for large number of events, the Poisson distribution can
be approximated by a Gaussian distribution with mean 𝜆𝑖 and standard
deviation √𝜆𝑖. Even though this would save computational time, at this
point the analysis is performed using the Poisson distribution, in order to
avoid any approximation. For this report, the observed counts are used as
the most probable true values of the parameters 𝜆𝑖. The error of each bin
is then calculated as the difference between the observed value and the
edges of the Poisson distribution confidence interval with 1 − 𝛼 = 0.68.

Figure A.1.: Poisson distribution confidence inter-
vals for different values of 𝜆 (a) and the interval for
𝜆 = 25 (b). In both cases, 𝛼 = 0.05.

A.2. Gaussian Fit of the Histograms

According to previous work on the DECAL sensor, these histograms are
expected to be normally distributed [47]. Therefore, the next step is
to fit the histograms in order to determine the mean and the standard
deviation of each one of them. The histograms are fitted with a Gaussian
distribution. The probability density function of the Gaussian distribution
is given by Equation ??. The Gaussian distribution is defined by two
parameters, the mean 𝜇 and the standard deviation 𝜎. In order to fit
the histograms, the Binned Maximum Likelihood Estimation (BMLE)
method is used (see Subsection ??). This method assumes that every bin
is independent of the others and that the probability of a count 𝑘𝑖 in a
bin is given by the Poisson distribution. The efficiency can be increased
by approximating the Poisson distribution with a Gaussian distribution.
However, in this case the Poisson distribution is used, in order to avoid
any approximation. Specifically, the likelihood function is given by the
product of the probability of each bin, as given in Equation (??). For each
bin, the expected count 𝜆𝑖 of the Gaussian distribution is given by:

𝜆𝑖 = ∫
𝑥𝑖+1

𝑥𝑖
𝑓 (𝑥)𝑑𝑥 = 𝑁

2
[erf (

𝑥𝑖+1 − 𝜇

√2𝜎
) − erf (

𝑥𝑖 − 𝜇

√2𝜎
)] (A.4)

where erf is the error function and 𝑁 the total hit count. The partial

A. MLE of the Normal Distribution 44

derivatives of 𝜆𝑖 with respect to 𝜇 and 𝜎 are given by:

𝜕𝜆𝑖
𝜕𝜇

= − 𝑁
√2𝜋𝜎

[𝑒−
(𝑥𝑖+1−𝜇)2

2𝜎2 − 𝑒−
(𝑥𝑖−𝜇)2

2𝜎2]

𝜕𝜆𝑖
𝜕𝜎

= − 𝑁
√2𝜋𝜎2

[(𝑥𝑖+1 − 𝜇)𝑒−
(𝑥𝑖+1−𝜇)2

2𝜎2 − (𝑥𝑖 − 𝜇)𝑒−
(𝑥𝑖−𝜇)2

2𝜎2]
(A.5)

The second partial derivatives of 𝜆𝑖 with respect to 𝜇 and 𝜎 are given by:

𝜕2𝜆𝑖
𝜕𝜇2

= − 𝑁
√2𝜋𝜎3

[(𝑥𝑖+1 − 𝜇)𝑒−
(𝑥𝑖+1−𝜇)2

2𝜎2 − (𝑥𝑖 − 𝜇)𝑒−
(𝑥𝑖−𝜇)2

2𝜎2]

𝜕2𝜆𝑖
𝜕𝜎2

= − 𝑁
√2𝜋𝜎5

{[(𝑥𝑖+1 − 𝜇)2 − 2𝜎2] (𝑥𝑖+1 − 𝜇)𝑒−
(𝑥𝑖+1−𝜇)2

2𝜎2 −

[(𝑥𝑖 − 𝜇)2 − 2𝜎2] (𝑥𝑖 − 𝜇)𝑒−
(𝑥𝑖−𝜇)2

2𝜎2 } (A.6)

𝜕2𝜆𝑖
𝜕𝜇𝜕𝜎

= − 𝑁
√2𝜋𝜎4

[(𝜇2 + 𝑥2𝑖+1 − 2𝑥𝑖+1𝜇 − 𝜎2)𝑒−
(𝑥𝑖+1−𝜇)2

2𝜎2

−(𝜇2 + 𝑥2𝑖 − 2𝑥𝑖𝜇 − 𝜎2)𝑒−
(𝑥𝑖−𝜇)2

2𝜎2]

Maximizing the likelihood function is equivalent to maximizing the loga-
rithm of the likelihood function (Equation 1.15).

The partial derivatives of the logarithm of the likelihood function with
respect to 𝜇 and 𝜎 are given by:

𝜕 ln 𝐿(𝜇, 𝜎)
𝜕𝜇

=
𝑛
∑
𝑖=1

[(
𝑘𝑖
𝜆𝑖

− 1)
𝜕𝜆𝑖
𝜕𝜇

]

𝜕 ln 𝐿(𝜇, 𝜎)
𝜕𝜎

=
𝑛
∑
𝑖=1

[(
𝑘𝑖
𝜆𝑖

− 1)
𝜕𝜆𝑖
𝜕𝜎

]
(A.7)

The second partial derivatives of the logarithm of the likelihood function
with respect to 𝜇 and 𝜎 are given by:

𝜕2 ln 𝐿(𝜇, 𝜎)
𝜕𝜇2

=
𝑛
∑
𝑖=1

[(
𝑘𝑖
𝜆𝑖

− 1)
𝜕2𝜆𝑖
𝜕𝜇2

−
𝑘𝑖
𝜆2𝑖

(
𝜕𝜆𝑖
𝜕𝜇

)
2
]

𝜕2 ln 𝐿(𝜇, 𝜎)
𝜕𝜎2

=
𝑛
∑
𝑖=1

[(
𝑘𝑖
𝜆𝑖

− 1)
𝜕2𝜆𝑖
𝜕𝜎2

−
𝑘𝑖
𝜆2𝑖

(
𝜕𝜆𝑖
𝜕𝜎

)
2
]

𝜕2 ln 𝐿(𝜇, 𝜎)
𝜕𝜇𝜕𝜎

=
𝑛
∑
𝑖=1

[(
𝑘𝑖
𝜆𝑖

− 1)
𝜕2𝜆𝑖
𝜕𝜇𝜕𝜎

−
𝑘𝑖
𝜆2𝑖

𝜕𝜆𝑖
𝜕𝜇

𝜕𝜆𝑖
𝜕𝜎

]

(A.8)

The error of the parameters 𝜇 and 𝜎 are assumed to be one standard
deviation from the maximum likelihood value. Therefore, the errors of
the parameters 𝜇 and 𝜎 are given by the contour that is defined by the
equation:

ln 𝐿(𝜇, 𝜎) = ln 𝐿max −
1
2

(A.9)

A. MLE of the Normal Distribution 45

where 𝐿max is the maximum value of the likelihood function. The log-
arithm of the likelihood function can be approximated by a quadratic
function around the maximum likelihood value. Therefore, equation A.9
can be approximated by:

H1,1 (𝜇 − 𝜇max)
2 + 2H1,2 (𝜇 − 𝜇max) (𝜎 − 𝜎max) +H2,2 (𝜎 − 𝜎max)

2 = 0
(A.10)

where H𝑖,𝑗 is the 𝑖, 𝑗-th element of the Hessian matrix, which is given by:

H =
⎡
⎢
⎢
⎣

− 𝜕2 ln 𝐿(𝜇,𝜎)
𝜕𝜇2 |

𝜇=𝜇max,𝜎=𝜎max
− 𝜕2 ln 𝐿(𝜇,𝜎)

𝜕𝜇𝜕𝜎 |
𝜇=𝜇max,𝜎=𝜎max

− 𝜕2 ln 𝐿(𝜇,𝜎)
𝜕𝜇𝜕𝜎 |

𝜇=𝜇max,𝜎=𝜎max
− 𝜕2 ln 𝐿(𝜇,𝜎)

𝜕𝜎2 |
𝜇=𝜇max,𝜎=𝜎max

⎤
⎥
⎥
⎦

(A.11)

Therefore, for a given histogram (i.e. sets of bins 𝑥𝑖 and counts 𝑘𝑖), the
maximum likelihood value of the parameters 𝜇 and 𝜎 are found by the
computational solution of the system of equations A.7 and the errors of
the parameters 𝜇 and 𝜎 by the solution of equation A.10. The p − value of
the Pearson’s chi-squared test is also calculated.

This procedure is applied to all the histograms generated by the DECAL
sensor. An example can be seen in Figure A.2.

FigureA.2.: Example of a Gaussian fit of a threshold
voltage scan histogram.

B.
ARIMA Analysis of Another Pixel

In the main text, the Autoregressive Integrated Moving Average (ARIMA)
analysis of the pixel located at column/strip 31 and row 39 was presented.
In order to show that the results are similar for other pixels as well, the
ARIMA analysis of the pixel located at column/strip 31 and row 51 is
presented here.1 These measurements were taken during a different day 1: Which was chosen arbitrarily.

than the ones in the main text. The results are shown in Figures B.1, B.2,
B.3, and B.4. It can be seen that the analysis is consistent with the one
presented in the main text.

Figure B.1.: Residuals of the ARIMA analysis of the
pixel located at column/strip 31 and row 51.

Figure B.2.: Q-Q plot of the residuals of the ARIMA
analysis of the pixel located at column/strip 31 and
row 51, assuming a normal distribution.

B. ARIMA Analysis of Another Pixel 47

Figure B.3.: Ljung-Box-Pierce Q-statistic of the
residuals of the ARIMA analysis of the pixel located
at column/strip 31 and row 51.

Figure B.4.: Cumulative periodogram of the resid-
uals of the ARIMA analysis of the pixel located at
column/strip 31 and row 51.

Bibliography

Here are the references in citation order.

[1] David P. Landau and K. Binder. A guide to Monte Carlo simulations in statistical physics. Fourth edition.
Cambridge, United Kingdom: Cambridge University Press, 2015. 519 pp. (cited on page 1).

[2] Mark E. J. Newman and Gerard Tonnis Barkema. Monte Carlo methods in statistical physics. Oxforg:
Clarendon press, 1999 (cited on page 1).

[3] James E. Gentle. Random number generation and Monte Carlo methods. 2. edition, corrected second
printing. Statistics and computing. New York: Springer, 2005. 381 pp. (cited on page 1).

[4] Donald Ervin Knuth. The art of computer programming. Volume 2: Seminumerical algorithms. Third
edition. Vol. 2. Boston: Addison-Wesley, 2021. 764 pp. (cited on pages 1, 2).

[5] A. J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography. CRC
Press series on discrete mathematics and its applications. Boca Raton: CRC Press, 1997. 780 pp. (cited
on page 1).

[6] Pierre L’Ecuyer. “History of uniform random number generation.” In: 2017 Winter Simulation Conference
(WSC). 2017 Winter Simulation Conference (WSC). Las Vegas, NV: IEEE, Dec. 2017, pp. 202–230. doi:
10.1109/WSC.2017.8247790. (Visited on 01/08/2024) (cited on pages 1, 2).

[7] M. G. Kendall and B. Babington-Smith. “Second Paper on Random Sampling Numbers.” In: Journal of
the Royal Statistical Society Series B: Statistical Methodology 6.1 (Jan. 1, 1939), pp. 51–61. doi: 10.2307/
2983623. (Visited on 06/24/2024) (cited on pages 1, 2).

[8] Luc Devroye. Non-Uniform Random Variate Generation. New York, NY: Springer New York, 1986. (Visited
on 06/24/2024) (cited on page 1).

[9] M. G. Kendall and B. Babington Smith. “Randomness and Random Sampling Numbers.” In: Journal of
the Royal Statistical Society 101.1 (1938), p. 147. doi: 10.2307/2980655. (Visited on 06/24/2024) (cited
on page 1).

[10] George Marsaglia. The Marsaglia Random Number CDROM including the Diehard Battery of Tests of
Randomness. 1995 (cited on page 1).

[11] Robert G. Brown. Dieharder: A Random Number Test Suite. Version 3.31.1. 2024 (cited on page 1).

[12] Andrew Rukhin et al. “A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications.” In: NIST Special Publication 800-22 (2010) (cited on pages 2, 28, 36).

[13] Alexander Shen. “Randomness Tests: Theory and Practice.” In: Fields of Logic and Computation III.
Ed. by Andreas Blass et al. Vol. 12180. Series Title: Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 258–290. doi: 10.1007/978-3-030-48006-6_18. (Visited on
06/24/2024) (cited on page 2).

[14] N. C. Metropolis, G. Reitwiesner, and J. Von Neumann. “Statistical treatment of values of first 2,000
decimal digits of e and of π calculated on the ENIAC.” In: Mathematics of Computation 4.30 (1950),
pp. 109–111. doi: 10.1090/S0025-5718-1950-0037598-8. (Visited on 06/24/2024) (cited on page 2).

[15] J. Von Neumann. “Various techniques used in connection with random digits, notes by G E Forsythe.”
In: National Bureau of Standards Applied Math Series. National Bureau of Standards Applied Math Series
12 (1951), pp. 36–38 (cited on pages 2, 3).

[16] Derrick H. Lehmer. “Mathematical Methods in Large-scale Computing Units.” In: Proceedings of the
Second Symposium on Large Scale Digital Computing Machinery. Symposium on Large Scale Digital
Computing Machinery. Harvard University: Harvard University Press, 1951, pp. 141–146 (cited on
page 2).

https://doi.org/10.1109/WSC.2017.8247790
https://doi.org/10.2307/2983623
https://doi.org/10.2307/2983623
https://doi.org/10.2307/2980655
https://doi.org/10.1007/978-3-030-48006-6_18
https://doi.org/10.1090/S0025-5718-1950-0037598-8

[17] Makoto Matsumoto and Takuji Nishimura. “Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator.” In: ACM Transactions on Modeling and Computer Simulation
8.1 (Jan. 1998), pp. 3–30. doi: 10.1145/272991.272995. (Visited on 01/08/2024) (cited on page 2).

[18] George Marsaglia. “Xorshift RNGs.” In: Journal of Statistical Software 8.14 (2003). doi: 10.18637/jss.
v008.i14. (Visited on 06/24/2024) (cited on page 2).

[19] G.K Savvidy and N.G Ter-Arutyunyan-Savvidy. “On the Monte Carlo simulation of physical systems.” In:
Journal of Computational Physics 97.2 (Dec. 1991), pp. 566–572. doi: 10.1016/0021-9991(91)90015-D.
(Visited on 06/24/2024) (cited on page 2).

[20] Frederick James and Lorenzo Moneta. “Review of High-Quality Random Number Generators.” In:
Computing and Software for Big Science 4.1 (Dec. 2020), p. 2. doi: 10.1007/s41781-019-0034-3.
(Visited on 01/08/2024) (cited on page 2).

[21] J.D. Cobine and J.R. Curry. “Electrical Noise Generators.” In: Proceedings of the IRE 35.9 (Sept. 1947),
pp. 875–879. doi: 10.1109/JRPROC.1947.229646. (Visited on 06/25/2024) (cited on page 2).

[22] W. E. Thomson. “ERNIE - A Mathematical and Statistical Analysis.” In: Journal of the Royal Statistical
Society. Series A (General) 122.3 (1959), p. 301. doi: 10.2307/2342795. (Visited on 06/25/2024) (cited on
page 2).

[23] Yuval Peres. “Iterating Von Neumann’s Procedure for Extracting Random Bits.” In: The Annals of Statistics
20.1 (Mar. 1, 1992). doi: 10.1214/aos/1176348543. (Visited on 06/25/2024) (cited on page 3).

[24] Mario Stipčević and Çetin Kaya Koç. “True Random Number Generators.” In: Open Problems in Mathe-
matics and Computational Science. Ed. by Çetin Kaya Koç. Cham: Springer International Publishing,
2014, pp. 275–315. doi: 10.1007/978-3-319-10683-0_12. (Visited on 06/24/2024) (cited on pages 3,
37).

[25] Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. “Quantum random number generators.”
In: Reviews of Modern Physics 89.1 (Feb. 22, 2017), p. 015004. doi: 10.1103/RevModPhys.89.015004.
(Visited on 06/24/2024) (cited on page 3).

[26] Xiongfeng Ma et al. “Quantum random number generation.” In: npj Quantum Information 2.1 (June 28,
2016), p. 16021. doi: 10.1038/npjqi.2016.21. (Visited on 01/08/2024) (cited on page 3).

[27] Christian W. Fabjan and Fabiola Gianotti. “Calorimetry for particle physics.” In: Reviews of Modern
Physics 75.4 (Oct. 15, 2003), pp. 1243–1286. doi: 10.1103/RevModPhys.75.1243. (Visited on 10/18/2023)
(cited on pages 4, 5).

[28] Claude Leroy and Pier-Giorgio Rancoita. Principles of radiation interaction in matter and detection. 2nd
ed. Singapore: World Scientific, 2009 (cited on pages 4, 5).

[29] Particle Data Group et al. “Review of Particle Physics.” In: Progress of Theoretical and Experimental
Physics 2022.8 (Aug. 8, 2022), p. 083C01. doi: 10.1093/ptep/ptac097. (Visited on 10/24/2023) (cited
on pages 4, 5).

[30] Werner Nakel. “The elementary process of bremsstrahlung.” In: Physics Reports 243.6 (July 1994), pp. 317–
353. doi: 10.1016/0370-1573(94)00068-9. (Visited on 10/23/2023) (cited on page 4).

[31] Francesca Cavallari. “Performance of calorimeters at the LHC.” In: Journal of Physics: Conference Series
293 (Apr. 1, 2011), p. 012001. doi: 10.1088/1742-6596/293/1/012001. (Visited on 10/23/2023) (cited
on page 5).

[32] Lucian Fasselt. “Characterization of the DECAL sensor - a CMOS MAPS prototype for digital electro-
magnetic calorimetry and tracking.” MSc Thesis. Berlin: Humboldt U. Berlin, Jan. 23, 2023. 77 pp. (cited
on pages 5, 6, 21, 23, 31, 38).

[33] Erika Garutti. “Overview on calorimetry.” In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 628.1 (Feb. 2011), pp. 31–39.
doi: 10.1016/j.nima.2010.06.281. (Visited on 10/18/2023) (cited on page 5).

[34] Philip Patrick Allport et al. “DECAL: A Reconfigurable Monolithic Active Pixel Sensor for Tracking
and Calorimetry in a 180 nm Image Sensor Process.” In: Sensors 22.18 (Sept. 10, 2022), p. 6848. doi:
10.3390/s22186848. (Visited on 09/24/2023) (cited on pages 5, 6, 19–21).

https://doi.org/10.1145/272991.272995
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.1016/0021-9991(91)90015-D
https://doi.org/10.1007/s41781-019-0034-3
https://doi.org/10.1109/JRPROC.1947.229646
https://doi.org/10.2307/2342795
https://doi.org/10.1214/aos/1176348543
https://doi.org/10.1007/978-3-319-10683-0_12
https://doi.org/10.1103/RevModPhys.89.015004
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1103/RevModPhys.75.1243
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1016/0370-1573(94)00068-9
https://doi.org/10.1088/1742-6596/293/1/012001
https://doi.org/10.1016/j.nima.2010.06.281
https://doi.org/10.3390/s22186848

[35] P.P. Allport et al. “First tests of a reconfigurable depleted MAPS sensor for digital electromagnetic
calorimetry.” In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors andAssociated Equipment 958 (Apr. 2020), p. 162654. doi: 10.1016/j.nima.2019.162654.
(Visited on 09/24/2023) (cited on pages 5, 6).

[36] J. Ocariz. “Probability and Statistics for Particle Physicists.” In: (2014). Publisher: arXiv Version Number:
1. doi: 10.48550/ARXIV.1405.3402. (Visited on 11/07/2023) (cited on page 7).

[37] Roger John Barlow. “Practical Statistics for Particle Physics.” In: CERN Yellow Reports: School Proceedings
Vol. 5 (Sept. 19, 2020), 149 Pages. doi: 10.23730/CYRSP-2020-005.149. (Visited on 11/07/2023) (cited
on page 7).

[38] George E. P. Box et al. Time series analysis: forecasting and control. Fifth edition.Wiley series in probability
and statistics. Hoboken, New Jersey: John Wiley & Sons, Inc, 2016. 669 pp. (cited on pages 10, 13–17, 24,
26, 31–33).

[39] James D. Hamilton. Time series analysis. Princeton, N.J: Princeton University Press, 1994. 799 pp. (cited
on pages 10, 12, 14).

[40] Holger Kantz and Thomas Schreiber. Nonlinear Time Series Analysis. 2nd ed. Cambridge University
Press, Nov. 27, 2003. (Visited on 06/02/2024) (cited on pages 10, 18).

[41] Geoffrey Grimmett, David Stirzaker, and David Stirzaker. Probability and random processes. 3. ed., repr.
with corr., [Nachdr.] Oxford: Oxford Univ. Press, 2009. 596 pp. (cited on page 10).

[42] J. Durbin. “The Fitting of Time-Series Models.” In: Revue de l’Institut International de Statistique / Review
of the International Statistical Institute 28.3 (1960), p. 233. doi: 10.2307/1401322. (Visited on 06/08/2024)
(cited on page 12).

[43] G. U. Yule. “VII. On a method of investigating periodicities disturbed series, with special reference
to Wolfer’s sunspot numbers.” In: Philosophical Transactions of the Royal Society of London. Series
A, Containing Papers of a Mathematical or Physical Character 226.636 (Jan. 1927), pp. 267–298. doi:
10.1098/rsta.1927.0007. (Visited on 06/06/2024) (cited on page 14).

[44] G. Walker. “On periodicity in series of related terms.” In: Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical Character A131.818 (June 3, 1931), pp. 518–532.
doi: 10.1098/rspa.1931.0069. (Visited on 06/06/2024) (cited on page 14).

[45] Walter Enders. Applied econometric time series. Fourth edition. Hoboken, NJ: Wiley, 2015. 485 pp. (cited
on page 14).

[46] Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications: With R Examples.
Springer Texts in Statistics. Cham: Springer International Publishing, 2017. (Visited on 06/08/2024)
(cited on page 15).

[47] I. Kopsalis et al. “Evaluation of the DECAL Fully Depleted monolithic sensor for outer tracking and
digital calorimetry.” In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 1038 (Sept. 2022), p. 166955. doi: 10.1016/j.nima.
2022.166955. (Visited on 09/24/2023) (cited on pages 19, 23, 43).

[48] Lucian Fasselt et al. “Energy calibration through X-ray absorption of the DECAL sensor, a monolithic
active pixel sensor prototype for digital electromagnetic calorimetry and tracking.” In: Frontiers in
Physics 11 (Oct. 17, 2023), p. 1231336. doi: 10.3389/fphy.2023.1231336. (Visited on 10/18/2023)
(cited on pages 19, 23, 38).

[49] ATLAS Collaboration. Technical Design Report for the ATLAS Inner Tracker Strip Detector. Artwork Size:
pages 556 Publication Title: 556 pp. (2017). Deutsches Elektronen-Synchrotron, DESY, Hamburg, 2017,
pages 556. doi: 10.3204/PUBDB-2017-09975. (Visited on 10/25/2023) (cited on page 22).

[50] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and Forecasting. Springer Texts in
Statistics. Cham: Springer International Publishing, 2016. (Visited on 06/18/2024) (cited on page 24).

[51] Skipper Seabold and Josef Perktold. “Statsmodels: Econometric and Statistical Modeling with Python.” In:
Python in Science Conference. Austin, Texas, 2010, pp. 92–96. doi: 10.25080/Majora-92bf1922-011.
(Visited on 06/18/2024) (cited on page 24).

https://doi.org/10.1016/j.nima.2019.162654
https://doi.org/10.48550/ARXIV.1405.3402
https://doi.org/10.23730/CYRSP-2020-005.149
https://doi.org/10.2307/1401322
https://doi.org/10.1098/rsta.1927.0007
https://doi.org/10.1098/rspa.1931.0069
https://doi.org/10.1016/j.nima.2022.166955
https://doi.org/10.1016/j.nima.2022.166955
https://doi.org/10.3389/fphy.2023.1231336
https://doi.org/10.3204/PUBDB-2017-09975
https://doi.org/10.25080/Majora-92bf1922-011

[52] H. Akaike. “A new look at the statistical model identification.” In: IEEE Transactions on Automatic
Control 19.6 (Dec. 1974), pp. 716–723. doi: 10.1109/TAC.1974.1100705. (Visited on 06/18/2024) (cited
on page 24).

[53] Gideon Schwarz. “Estimating the Dimension of a Model.” In: The Annals of Statistics 6.2 (Mar. 1, 1978).
doi: 10.1214/aos/1176344136. (Visited on 06/18/2024) (cited on page 24).

[54] G. E. P. Box and David A. Pierce. “Distribution of Residual Autocorrelations in Autoregressive-Integrated
Moving Average Time Series Models.” In: Journal of the American Statistical Association 65.332 (Dec.
1970), pp. 1509–1526. doi: 10.1080/01621459.1970.10481180. (Visited on 02/22/2024) (cited on
page 26).

[55] G. M. Ljung and G. E. P. Box. “On a measure of lack of fit in time series models.” In: Biometrika 65.2
(Aug. 1, 1978), pp. 297–303. doi: 10.1093/biomet/65.2.297. (Visited on 06/23/2024) (cited on page 26).

[56] Bedartha Goswami. “A Brief Introduction to Nonlinear Time Series Analysis and Recurrence Plots.” In:
Vibration 2.4 (Dec. 8, 2019), pp. 332–368. doi: 10.3390/vibration2040021. (Visited on 05/08/2024)
(cited on page 27).

[57] V. Calandrini et al. “nMoldyn - Interfacing spectroscopic experiments, molecular dynamics simulations
and models for time correlation functions.” In: École thématique de la Société Française de la Neutronique
12 (2011), pp. 201–232. doi: 10.1051/sfn/201112010. (Visited on 02/20/2024) (cited on page 28).

[58] Rayleigh. “The Problem of the Random Walk.” In: Nature 72.1866 (Aug. 3, 1905), pp. 318–318. doi:
10.1038/072318a0. (Visited on 06/23/2024) (cited on page 28).

[59] Quantis Quantum Random Number Generator (QRNG) PCIe - IDQ. url: https://www.idquantique.
com/random-number-generation/products/quantis-qrng-pcie/ (visited on 07/02/2024) (cited
on page 37).

[60] M. Bucci et al. “A high-speed oscillator-based truly randomnumber source for cryptographic applications
on a smartcard IC.” In: IEEE Transactions on Computers 52.4 (Apr. 2003), pp. 403–409. doi: 10.1109/TC.
2003.1190581. (Visited on 07/02/2024) (cited on page 37).

[61] Kyungduk Kim et al. “Massively parallel ultrafast random bit generation with a chip-scale laser.” In:
Science 371.6532 (Feb. 26, 2021), pp. 948–952. doi: 10.1126/science.abc2666. (Visited on 07/03/2024)
(cited on page 37).

[62] Xiufeng Xu and Yuyang Wang. “High Speed True Random Number Generator Based on FPGA.” In: 2016
International Conference on Information Systems Engineering (ICISE). 2016 International Conference
on Information Systems Engineering (ICISE). Los Angeles, CA, USA: IEEE, Apr. 2016, pp. 18–21. doi:
10.1109/ICISE.2016.14. (Visited on 07/03/2024) (cited on page 37).

[63] Gary J. Feldman and Robert D. Cousins. “Unified approach to the classical statistical analysis of small
signals.” In: Physical Review D 57.7 (Apr. 1, 1998), pp. 3873–3889. doi: 10.1103/PhysRevD.57.3873.
(Visited on 11/07/2023) (cited on page 43).

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1080/01621459.1970.10481180
https://doi.org/10.1093/biomet/65.2.297
https://doi.org/10.3390/vibration2040021
https://doi.org/10.1051/sfn/201112010
https://doi.org/10.1038/072318a0
https://www.idquantique.com/random-number-generation/products/quantis-qrng-pcie/
https://www.idquantique.com/random-number-generation/products/quantis-qrng-pcie/
https://doi.org/10.1109/TC.2003.1190581
https://doi.org/10.1109/TC.2003.1190581
https://doi.org/10.1126/science.abc2666
https://doi.org/10.1109/ICISE.2016.14
https://doi.org/10.1103/PhysRevD.57.3873

	Abstract
	Περίληψη
	Contents
	List of Figures
	List of Tables
	Glossary
	Theoretical Background
	Random Number Generation
	Calorimetry
	Statistics and Maximum Likelihood Estimation
	Time Series
	Purpose of the Study

	Methods
	Setup
	Data Acquisition and Preprocessing
	Data Analysis and Random Number Generation
	Random Number Testing

	Results and Discussion
	Tuning Results
	Threshold Scan Mean Time Series
	Random Number Validation
	Performance and Efficiency

	Conclusions
	Appendix
	MLE of the Normal Distribution
	Count Error Analysis
	Gaussian Fit of the Histograms

	ARIMA Analysis of Another Pixel

	Bibliography

