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Abstract
In the present thesis, we analyse the propagation of gravitational waves
in general relativity solving the dynamical equations and proving the ex-
istence of gravitational waves (GW) that are propagating with velocity
of light and have two polarizations. We demonstrate that the intensity of
gravitational waves is proportional to the square of the third time derivative
of the quadrupole momentum of the matter and is inversely proportional
to the fifth power of the light velocity. For that reason the generation of
the gravitational waves requires a release of large amount of energy which
can be realised during the collision and merger of massive binary systems
of black holes or neutron stars. We estimated the amount of GW energy
radiated from these binary systems, as well as their time of merger. It is
important to note that the formulas we used for all of our calculations can
only be applied for binary systems with big radii enough, so that the masses
of the system can be considered as massive points. We present examples of
recent experimental measurements of the intensity of gravitational waves
generated by the collapse of the binary systems and describe their time
evolution which consists of three stages: inspiral, merger and ring-down.
In addition to the optical, radio, gamma rays and infrared astrophysics,
the gravitational waves opens a new window to the investigation of the
deep structure of the Universe and can provide the information about very
early stages of the evolution of the Universe and of the inflation and Big
Bang. We review ongoing experiments devoted to the measurements of GW
and design of the future experiments allowing even better resolution of the
astrophysical events in the Universe.
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1 Introduction
In the present thesis, we analyse the propagation of gravitational waves in
general relativity solving the dynamical equations and proving the existence
of gravitational waves (GW) that are propagating with velocity of light and
have two polarizations.
For the massive elementary particles for every value of s there are 2s+1 po-
larizations of spins, meaning that the group of symmetry is the SO(3). But
for massless particles for each spin s there are only two spin polarizations
-s, +s, meaning that the little symmetry group is instead SO(2). For the
gravitational waves we show that they propagate with the velocity of light
and that there are only two polarizations perpendicular to the direction of
the propagation and therefore describe a massless particle, the graviton.
Thus, the graviton, the elementary particle of gravitational interaction, is
a massless particle which has two polarizations.
We also calculate the total gravitational energy radiation that the binary
physical systems emit per unit time (4.1.1). Through this formula we un-
derstand the conditions of the emission of gravitational radiation. First
and foremost, there must be acceleration of acceleration, since in the for-
mula there is third time derivative of the quadrupole momentum: 𝐷𝑖𝑗 =
∫ 𝜇(3𝑥𝑖𝑥𝑗 − 𝛿𝑖𝑗𝑥2

𝜅)𝑑𝑉. So it is not enough for a system to accelerate in or-
der to emit gravitational waves, as in electrodynamics, but its acceleration
has to accelerate. The second remarkable point is that the gravitational
radiation is proportional to 1/𝑐5, in contrast to the electromagnetic radia-
tion which is proportional to 1/𝑐3, which explains why it is so difficult to
generate gravitational waves and why they are much weaker and hard to
detect than the electromagnetic waves.
So the generation of the gravitational waves requires a release of large
amount of energy which can be realised during the collision and merger
of massive binary systems of black holes or neutron stars. We estimate the
amount of GW energy radiated from some examples of binary systems, for
which there are recent experimental measurements, as well as their merger
time and we describe their time evolution which consists of three stages:
inspiral, merger and ring-down. It is important to note that the formulas
we prove and use for our calculations can be applied only for big distances
of the two objects of a binary system, so that they can be considered as
massive points. Meaning, the time of the merger we calculate is the time
the binary systems need to merge while they inspiral.
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Through these examples and the corresponding calculations we do, we re-
alise that the phase of inspiral lasts thousand of years radiating less energy,
but once it comes to the merger and ring-down everything becomes more
tense. These phases last only some fractions of seconds, the frequency in-
creases and they radiate huge amount of energy. Thus, we are enabled to
detect GW. Moreover, the more massive the system is, the more violent
the collision and bigger the emission of radiation is. So this is why in order
to detect gravitational waves (GW), we need events of significantly large
binary systems merging. But since these events last only for fractions of
a second, we need such detectors so that they can detect with accuracy
such tricky signal. This is why a lot of effort and research have taken and
still taking place throughout the years on GW detectors. We review such
ongoing experiments devoted to the measurements of GW and design of
the future experiments allowing even better resolution of the astrophysical
events in the Universe.
In addition to the optical, radio, gamma rays and infrared astrophysics, the
gravitational waves opens a new window to the investigation of the deep
structure of the Universe and can provide the information about very early
stages of the evolution of the Universe, the inflation and the Big Bang.
Therefore, the bet for the years to come, is to construct the most efficient
detectors in order to improve the studies on GW and retrieve the answers
we expect we can get about the beginning of the universe.

5



2 Gravitational Waves

2.1 Weak Field Approximation
We consider a weak gravitational field, whose metric can be written as sum
of Minkowski metric for flat space with a small perturbation ℎ𝜇𝜈 [1]:

𝑔𝜇𝜈 = 𝑔(0)
𝜇𝜈 + ℎ𝜇𝜈 , ∣ℎ𝜇𝜈∣ << 1 , 𝑔(0)

𝜇𝜈 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟
⎠

(2.1.1)

As long as for the inverse metric 𝑔𝜇𝜈 it will be:

𝑔𝜇𝜈𝑔𝜈𝜆 = 𝛿𝜆
𝜇

𝑔(0)𝜇𝜌(𝑔(0)
𝜇𝜈 + ℎ𝜇𝜈)𝑔𝜈𝜆 = 𝛿𝜆

𝜇𝑔(0)𝜇𝜌

(𝛿𝜌
𝜈 + ℎ𝜌

𝜈)𝑔𝜈𝜆 = 𝑔(0)𝜆𝜌

𝑔𝜆𝜌 + ℎ𝜌
𝜈𝑔𝜈𝜆 = 𝑔(0)𝜆𝜌

𝑔𝜆𝜌 = 𝑔(0)𝜆𝜌 − ℎ𝜌
𝜈𝑔𝜈𝜆 (2.1.2)

The first approximation is:

𝑔(1)𝜆𝜌 = 𝑔(0)𝜆𝜌 − ℎ𝜌
𝜈𝑔(0)𝜈𝜆

𝑔(1)𝜆𝜌 = 𝑔(0)𝜆𝜌 − ℎ𝜆𝜌 (2.1.3)

While replacing the formula (2.1.3) into the formula (2.1.2) we can take the
second order approximation which is:

𝑔(2)𝜆𝜌 = 𝑔(0)𝜆𝜌 − ℎ𝜌
𝜈𝑔(1)𝜈𝜆

𝑔(2)𝜆𝜌 = 𝑔(0)𝜆𝜌 − ℎ𝜌
𝜈(𝑔(0)𝜆𝜈 − ℎ𝜆𝜈)

𝑔(2)𝜆𝜌 = 𝑔(0)𝜆𝜌 − ℎ𝜆𝜌 + ℎ𝜌
𝜈ℎ𝜆𝜈 (2.1.4)
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Then we calculate the determinant of the metric [2]:

𝑙𝑛 𝑑𝑒𝑡𝑔𝜇𝜈 = 𝑇 𝑟 𝑙𝑛𝑔𝜇𝜈 = 𝑇 𝑟 𝑙𝑛(𝑔(0)
𝜇𝜈 + ℎ𝜇𝜈) = 𝑇 𝑟 𝑙𝑛𝑔(0)

𝜇𝜈 (𝛿𝜈
𝜆 + 𝑔(0)𝜈𝜌ℎ𝜌𝜆) =

= 𝑇 𝑟 𝑙𝑛𝑔(0)
𝜇𝜈 + 𝑇 𝑟 𝑙𝑛(𝛿𝜈

𝜆 + 𝑔(0)𝜈𝜌ℎ𝜌𝜆) = 𝑙𝑛 𝑑𝑒𝑡𝑔(0)
𝜇𝜈 + 𝑇 𝑟 𝑙𝑛(𝛿𝜈

𝜆 + ℎ𝜈
𝜆)

𝑒𝑙𝑛 𝑑𝑒𝑡𝑔𝜇𝜈 = 𝑒𝑙𝑛 𝑑𝑒𝑡𝑔(0)
𝜇𝜈+𝑇 𝑟 𝑙𝑛(𝛿𝜈

𝜆+ℎ𝜈
𝜆), 𝑑𝑒𝑡𝑔𝜇𝜈 = 𝑑𝑒𝑡𝑔(0)

𝜇𝜈 𝑒𝑇 𝑟 𝑙𝑛(𝛿𝜈
𝜆+ℎ𝜈

𝜆)

𝑔 = 𝑔(0)(1 + 𝑇 𝑟 𝑙𝑛(𝛿𝜈
𝜆 + ℎ𝜈

𝜆) + 1
2

[𝑇 𝑟 𝑙𝑛(𝛿𝜈
𝜆 + ℎ𝜈

𝜆)]2 + ...)

𝑔 = 𝑔(0)(1 + ℎ − 1
2

ℎ𝜇
𝜈 ℎ𝜈

𝜇 + 1
2

ℎ2 + ...) (2.1.5)

where:

𝑔 = 𝑑𝑒𝑡𝑔𝜇𝜈, 𝑔(0) = 𝑑𝑒𝑡𝑔(0)
𝜇𝜈

and we used Taylor series for the exponential function:

𝑒𝑥 = 1 + 𝑥 + 1
2

𝑥2 + ...

and the logarithmic:

𝑇 𝑟 𝑙𝑛(1 + ̂𝐴) = 𝑇 𝑟( ̂𝐴 − 1
2

̂𝐴2 + ...) = 𝑇 𝑟 ̂𝐴 − 1
2

𝑇 𝑟 ̂𝐴2 + ...

Then we calculate for this metric the Christoffel symbols, the Riemann
tensor and the Ricci tensor, neglecting powers of ℎ𝜇𝜈 higher than the first as
significantly small terms, since ∣ℎ𝜇𝜈∣ << 1. We begin with the connection
coefficients:

Γ𝜎
𝜇𝜈 = 1

2𝑔𝜎𝛼(𝜕𝜈𝑔𝛼𝜇 + 𝜕𝜇𝑔𝛼𝜈 − 𝜕𝛼𝑔𝜇𝜈)
𝜕𝜌𝑔𝜇𝜈 = 𝜕𝜌(𝑔(0)

𝜇𝜈 + ℎ𝜇𝜈) = 𝜕𝜌𝑔(0)
𝜇𝜈 + 𝜕𝜌ℎ𝜇𝜈 = 𝜕𝜌ℎ𝜇𝜈, 𝑠𝑖𝑛𝑐𝑒 𝑔(0)

𝜇𝜈 = 𝑐𝑜𝑛𝑠𝑡.
} ⇒

⇒ Γ𝜎
𝜇𝜈 = 1

2
(𝑔(0)𝜎𝛼 − ℎ𝜎𝛼)(𝜕𝜈ℎ𝛼𝜇 + 𝜕𝜇ℎ𝛼𝜈 − 𝜕𝛼ℎ𝜇𝜈)
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Γ𝜎
𝜇𝜈 = 1

2
𝑔(0)𝜎𝛼(𝜕𝜈ℎ𝛼𝜇 + 𝜕𝜇ℎ𝛼𝜈 − 𝜕𝛼ℎ𝜇𝜈) − 1

2
ℎ𝜎𝛼(𝜕𝜈ℎ𝛼𝜇 + 𝜕𝜇ℎ𝛼𝜈 − 𝜕𝛼ℎ𝜇𝜈)

Γ𝜎
𝜇𝜈 = 1

2
𝑔(0)𝜎𝛼(𝜕𝜈ℎ𝛼𝜇 + 𝜕𝜇ℎ𝛼𝜈 − 𝜕𝛼ℎ𝜇𝜈) (2.1.6)

since: ℎ𝜎𝛼 ⋅ 𝜕𝜈ℎ𝛼𝜇 ≈ 0. Then we calculate the Riemann tensor:

𝑅𝜎
𝜈𝜆𝜌 = 𝜕𝜆(Γ𝜎

𝜌𝜈) − 𝜕𝜌(Γ𝜎
𝜆𝜈) + Γ𝛾

𝜌𝜈Γ𝜎
𝜆𝛾 − Γ𝛾

𝜆𝜈Γ𝜎
𝜌𝛾 =

= 𝜕𝜆[1
2

𝑔(0)𝜎𝛼(𝜕𝜈ℎ𝛼𝜌 + 𝜕𝜌ℎ𝛼𝜈 − 𝜕𝛼ℎ𝜌𝜈)] − 𝜕𝜌[1
2

𝑔(0)𝜎𝛼(𝜕𝜈ℎ𝛼𝜆 + 𝜕𝜆ℎ𝛼𝜈 − 𝜕𝛼ℎ𝜆𝜈)]+

+1
2

𝑔(0)𝛾𝛼(𝜕𝜈ℎ𝛼𝜌 + 𝜕𝜌ℎ𝛼𝜈 − 𝜕𝛼ℎ𝜌𝜈) ⋅ 1
2

𝑔(0)𝜎𝛼(𝜕𝛾ℎ𝛼𝜆 + 𝜕𝜆ℎ𝛼𝛾 − 𝜕𝛼ℎ𝜆𝛾)−

−1
2

𝑔(0)𝛿𝛼(𝜕𝜈ℎ𝛼𝜆 + 𝜕𝜆ℎ𝛼𝜈 − 𝜕𝛼ℎ𝜆𝜈) ⋅ 1
2

𝑔(0)𝜎𝛼(𝜕𝛿ℎ𝛼𝜌 + 𝜕𝜌ℎ𝛼𝛿 − 𝜕𝛼ℎ𝜌𝛿) =

= 1
2

𝑔(0)𝜎𝛼(𝜕𝜆𝜕𝜈ℎ𝛼𝜌 +�����𝜕𝜆𝜕𝜌ℎ𝛼𝜈 − 𝜕𝜆𝜕𝛼ℎ𝜌𝜈 − 𝜕𝜌𝜕𝜈ℎ𝛼𝜆 −�����𝜕𝜌𝜕𝜆ℎ𝛼𝜈 + 𝜕𝜌𝜕𝛼ℎ𝜆𝜈) =

= 1
2

𝑔(0)𝜎𝛼(𝜕𝜆𝜕𝜈ℎ𝛼𝜌 − 𝜕𝜆𝜕𝛼ℎ𝜌𝜈 − 𝜕𝜌𝜕𝜈ℎ𝛼𝜆 + 𝜕𝜌𝜕𝛼ℎ𝜆𝜈)

𝑔(0)
𝜎𝜇𝑅𝜎

𝜈𝜆𝜌 = 1
2

𝑔(0)
𝜎𝜇𝑔(0)𝜎𝛼(𝜕𝜆𝜕𝜈ℎ𝛼𝜌 − 𝜕𝜆𝜕𝛼ℎ𝜌𝜈 − 𝜕𝜌𝜕𝜈ℎ𝛼𝜆 + 𝜕𝜌𝜕𝛼ℎ𝜆𝜈)

𝑅𝜇𝜈𝜆𝜌 = 1
2

𝛿𝛼
𝜇 (𝜕𝜆𝜕𝜈ℎ𝛼𝜌 − 𝜕𝜆𝜕𝛼ℎ𝜌𝜈 − 𝜕𝜌𝜕𝜈ℎ𝛼𝜆 + 𝜕𝜌𝜕𝛼ℎ𝜆𝜈)

𝑅𝜇𝜈𝜆𝜌 = 1
2

(𝜕𝜆𝜕𝜈ℎ𝜇𝜌 + 𝜕𝜌𝜕𝜇ℎ𝜆𝜈 − 𝜕𝜆𝜕𝜇ℎ𝜌𝜈 − 𝜕𝜌𝜕𝜈ℎ𝜇𝜆) (2.1.7)

where after the first row of calculations we eliminated the terms Γ𝛾
𝜌𝜈Γ𝜎

𝜆𝛾,
Γ𝛾

𝜆𝜈Γ𝜎
𝜌𝛾 as they are of second order of h. Finally, we calculate the Ricci

tensor for this metric (2.1.1):

𝑔(0)𝜇𝜆𝑅𝜇𝜈𝜆𝜌 = 1
2

𝑔(0)𝜇𝜆(𝜕𝜆𝜕𝜈ℎ𝜇𝜌 + 𝜕𝜌𝜕𝜇ℎ𝜆𝜈 − 𝜕𝜆𝜕𝜇ℎ𝜌𝜈 − 𝜕𝜌𝜕𝜈ℎ𝜇𝜆)
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𝑅𝜈𝜌 = 1
2

(𝜕𝜆𝜕𝜈ℎ𝜆
𝜌 + 𝜕𝜌𝜕𝜇ℎ𝜇

𝜈 − 𝜕𝜆𝜕𝜆ℎ𝜌𝜈 − 𝜕𝜌𝜕𝜈ℎ𝜆
𝜆) ⇒

𝑅𝜈𝜌 = 1
2

(𝜕𝜆𝜕𝜈ℎ𝜆
𝜌 + 𝜕𝜌𝜕𝜇ℎ𝜇

𝜈 − 𝜕𝜌𝜕𝜈ℎ + 2ℎ𝜌𝜈) (2.1.8)

where we used the d’ Alembertian operator: 2 = −𝜕𝜆𝜕𝜆 and the trace of
ℎ𝜇𝜈 ∶ ℎ𝜆

𝜆 = ℎ.

2.2 Gauge transformations and Killing equation
The metric above (2.1.1) is not unique, there are several perturbations in
agreement with the weak field approximation. So we can take a gauge trans-
formation, such as that the curvature, hence the physical spacetime, remain
unchanged and gain more restrictions about the admissible perturbations.
Hence we take an infinitesimal change in the coordinates [1]:

𝑥𝜇′ = 𝑥𝜇 + 𝜉𝜇(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝜉𝜇(𝑥) << 1 .

In these coordinates, the new metric is [2]:

𝑔′𝜇𝜈(𝑥′) = 𝑔𝜆𝜌(𝑥)𝜕𝑥′𝜇

𝜕𝑥𝜆
𝜕𝑥′𝜈

𝜕𝑥𝜌 , 𝑔′𝜇𝜈(𝑥 + 𝜉) = 𝑔𝜆𝜌(𝑥)(𝛿𝜇
𝜆 + 𝜕𝜉𝜇

𝜕𝑥𝜆 )(𝛿𝜈
𝜌 + 𝜕𝜉𝜈

𝜕𝑥𝜌 )

𝑔′𝜇𝜈(𝑥) + 𝜉𝜆(𝑥)𝜕𝑔′𝜇𝜈(𝑥)
𝜕𝑥𝜆 + .. = 𝑔𝜇𝜈(𝑥) + 𝑔𝜇𝜌(𝑥) 𝜕𝜉𝜈

𝜕𝑥𝜌 + 𝑔𝜆𝜈(𝑥) 𝜕𝜉𝜇

𝜕𝑥𝜆 + 𝑔𝜆𝜌(𝑥) 𝜕𝜉𝜇

𝜕𝑥𝜆
𝜕𝜉𝜈

𝜕𝑥𝜌

𝑔′𝜇𝜈(𝑥) = 𝑔𝜇𝜈(𝑥) − 𝜉𝜆(𝑥)𝜕𝑔′𝜇𝜈(𝑥)
𝜕𝑥𝜆 + 𝑔𝜇𝜌(𝑥) 𝜕𝜉𝜈

𝜕𝑥𝜌 + 𝑔𝜆𝜈(𝑥) 𝜕𝜉𝜇

𝜕𝑥𝜆

as a first approximation, so:

𝑔(1)′𝜇𝜈(𝑥) = 𝑔𝜇𝜈(𝑥) − 𝜉𝜆(𝑥)𝜕𝑔𝜇𝜈(𝑥)
𝜕𝑥𝜆 + 𝜉𝜎(𝑥)𝜕𝜉𝜆(𝑥)

𝜕𝑥𝜎
𝜕𝑔′𝜇𝜈(𝑥)

𝜕𝑥𝜆 + 𝜉𝜆(𝑥)𝜉𝜎(𝑥)𝜕2𝑔′𝜇𝜈(𝑥)
𝜕𝑥𝜎𝜕𝑥𝜆 −

−𝜉𝜆(𝑥)𝜕𝑔𝜇𝜌(𝑥)
𝜕𝑥𝜆

𝜕𝜉𝜈

𝜕𝑥𝜌 − 𝜉𝜆(𝑥)𝑔𝜇𝜌(𝑥) 𝜕2𝜉𝜈

𝜕𝑥𝜆𝜕𝑥𝜌 − 𝜉𝜎(𝑥)𝜕𝑔𝜆𝜈(𝑥)
𝜕𝑥𝜎

𝜕𝜉𝜇

𝜕𝑥𝜆 − 𝜉𝜎(𝑥)𝑔𝜆𝜈(𝑥) 𝜕2𝜉𝜇

𝜕𝑥𝜎𝜕𝑥𝜆 +

9



+𝑔𝜇𝜌(𝑥) 𝜕𝜉𝜈

𝜕𝑥𝜌 + 𝑔𝜆𝜈(𝑥) 𝜕𝜉𝜇

𝜕𝑥𝜆

𝑔(1)′𝜇𝜈(𝑥) = 𝑔𝜇𝜈(𝑥) − 𝜉𝜆(𝑥)𝜕𝑔𝜇𝜈(𝑥)
𝜕𝑥𝜆 + 𝑔𝜇𝜌(𝑥) 𝜕𝜉𝜈

𝜕𝑥𝜌 + 𝑔𝜆𝜈(𝑥) 𝜕𝜉𝜇

𝜕𝑥𝜆 (2.2.1)

Doing some calculations we will show that the three last terms can be
represented as covariant derivatives and the metric can be written in the
form:

𝑔′𝜇𝜈(𝑥) = 𝑔𝜇𝜈(𝑥) + 𝜉𝜇;𝜈 + 𝜉𝜈;𝜇 (2.2.2)

So let us have the analytical calculations:

𝜉𝜇;𝜈 + 𝜉𝜈;𝜇 = 𝑔𝜈𝜌𝜉𝜇
;𝜌 + 𝑔𝜇𝜌𝜉𝜈

;𝜌 = 𝑔𝜈𝜌(𝜕𝜉𝜇

𝜕𝑥𝜌 + Γ𝜇
𝜆𝜌𝜉𝜆) + 𝑔𝜇𝜌( 𝜕𝜉𝜈

𝜕𝑥𝜌 + Γ𝜈
𝜆𝜌𝜉𝜆) =

= 𝑔𝜈𝜌 𝜕𝜉𝜇

𝜕𝑥𝜌 + 𝑔𝜇𝜌 𝜕𝜉𝜈

𝜕𝑥𝜌 + 𝐴

where, substituting the Christoffel symbols: Γ𝜇
𝜆𝜌 = 𝑔𝜇𝜎(𝜕𝑔𝜎𝜆

𝜕𝑥𝜌 + 𝜕𝑔𝜎𝜌
𝜕𝑥𝜆 − 𝜕𝑔𝜌𝜆

𝜕𝑥𝜎 ),
we set as A the expression:

𝐴 = 1
2

𝑔𝜈𝜌𝑔𝜇𝜎(𝜕𝑔𝜎𝜆
𝜕𝑥𝜌 +

𝜕𝑔𝜎𝜌

𝜕𝑥𝜆 −
𝜕𝑔𝜌𝜆

𝜕𝑥𝜎 )𝜉𝜆 + 1
2

𝑔𝜇𝜌𝑔𝜈𝜎(𝜕𝑔𝜎𝜆
𝜕𝑥𝜌 +

𝜕𝑔𝜎𝜌

𝜕𝑥𝜆 −
𝜕𝑔𝜌𝜆

𝜕𝑥𝜎 )𝜉𝜆 =

=
���������1
2

𝑔𝜈𝜌𝑔𝜇𝜎 𝜕𝑔𝜎𝜆
𝜕𝑥𝜌 𝜉𝜆 + 1

2
𝑔𝜈𝜌𝑔𝜇𝜎 𝜕𝑔𝜎𝜌

𝜕𝑥𝜆 𝜉𝜆 −
XXXXXXXXX

1
2

𝑔𝜈𝜌𝑔𝜇𝜎 𝜕𝑔𝜌𝜆

𝜕𝑥𝜎 𝜉𝜆 +
XXXXXXXXX

1
2

𝑔𝜇𝜎𝑔𝜈𝜌 𝜕𝑔𝜌𝜆

𝜕𝑥𝜎 𝜉𝜆+

+1
2

𝑔𝜇𝜎𝑔𝜈𝜌 𝜕𝑔𝜎𝜌

𝜕𝑥𝜆 𝜉𝜆 −
���������1
2

𝑔𝜇𝜎𝑔𝜈𝜌 𝜕𝑔𝜎𝜆
𝜕𝑥𝜌 𝜉𝜆 = 𝑔𝜈𝜌𝑔𝜇𝜎 𝜕𝑔𝜎𝜌

𝜕𝑥𝜆 𝜉𝜆 =

= 𝑔𝜈𝜌 𝜕
𝜕𝑥𝜆 (𝑔𝜇𝜎𝑔𝜎𝜌)𝜉𝜆 − 𝑔𝜈𝜌 𝜕𝑔𝜇𝜎

𝜕𝑥𝜆 𝑔𝜎𝜌𝜉𝜆 = 𝑔𝜈𝜌 𝜕
𝜕𝑥𝜆 (𝛿𝜇

𝜌 )𝜉𝜆 − 𝑔𝜈𝜌 𝜕𝑔𝜇𝜎

𝜕𝑥𝜆 𝑔𝜎𝜌𝜉𝜆 =

= −𝑔𝜈𝜌𝑔𝜎𝜌
𝜕𝑔𝜇𝜎

𝜕𝑥𝜆 𝜉𝜆 = −𝛿𝜈
𝜎

𝜕𝑔𝜇𝜎

𝜕𝑥𝜆 𝜉𝜆 = −𝜕𝑔𝜇𝜈

𝜕𝑥𝜆 𝜉𝜆

Therefore, we have shown that the three last terms in formula (2.2.1) can
be represented as covariant derivatives:

𝜉𝜇;𝜈 + 𝜉𝜈;𝜇 = 𝑔𝜈𝜌 𝜕𝜉𝜇

𝜕𝑥𝜌 + 𝑔𝜇𝜌 𝜕𝜉𝜈

𝜕𝑥𝜌 − 𝜕𝑔𝜇𝜈

𝜕𝑥𝜆 𝜉𝜆
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In order for the metric to be invariant under this transformation, from the
formula (2.2.2) we get that the sum of the covariant derivatives have to be
zero:

𝜉𝜇;𝜈 + 𝜉𝜈;𝜇 = 0 (2.2.3)
The above is called ”killing equation” and it determines the 𝜉𝜇(𝑥) for which
the metric doesn’t change.
The inverse metric will be:

𝑔′
𝜇𝜈(𝑥) = 𝑔𝜇𝜈(𝑥) − 𝜉𝜇;𝜈 − 𝜉𝜈;𝜇 (2.2.4)

since: 𝑔′
𝜇𝜆(𝑥)𝑔′𝜆𝜈(𝑥) = 𝛿𝜈

𝜇, and 𝑔′𝜈𝜆(𝑥):

𝑔′𝜈𝜆(𝑥) = 𝑔𝜈𝜆(𝑥) + 𝜉𝜈;𝜆 + 𝜉𝜆;𝜈

is of the form: 𝑔′𝜈𝜆(𝑥) = 𝐴𝜈𝜆 +𝐵𝜈𝜆, where 𝐴𝜈𝜆 = 𝑔𝜈𝜆(𝑥), 𝐵𝜈𝜆 = 𝜉𝜈;𝜆 +𝜉𝜆;𝜈

and 𝐵𝜈𝜆 << 1, so 𝑔′
𝜇𝜆(𝑥) should be of the form: 𝑔′

𝜇𝜆(𝑥) = 𝐴𝜇𝜆 − 𝐵𝜇𝜆, so
as that: 𝑔′

𝜇𝜆(𝑥)𝑔′𝜆𝜈(𝑥) = (𝐴𝜇𝜆 + 𝐵𝜇𝜆) ⋅ (𝐴𝜈𝜆 − 𝐵𝜈𝜆) = 𝐴2 − 𝐵2 = 𝐴2 =
𝑔𝜈𝜆(𝑥)𝑔𝜆𝜇(𝑥) = 𝛿𝜈

𝜇.

As for the change in perturbation ℎ𝜇𝜈, we use the formula 2.1.3 for 𝑔𝜇𝜈

and the same formula adjusted in the new coordinates:
𝑔′𝜇𝜈 = 𝑔(0)𝜇𝜈 − ℎ′𝜇𝜈 (2.2.5)

where 𝑔(0)𝜇𝜈 is constant so it doesn’t change, for 𝑔′𝜇𝜈 and we substitute
them into the formula 2.2.1:

𝑔′𝜇𝜈(𝑥) = 𝑔𝜇𝜈(𝑥) − 𝜉𝜆(𝑥)𝜕𝑔𝜇𝜈(𝑥)
𝜕𝑥𝜆 + 𝑔𝜇𝜌(𝑥) 𝜕𝜉𝜈

𝜕𝑥𝜌 + 𝑔𝜆𝜈(𝑥) 𝜕𝜉𝜇

𝜕𝑥𝜆

����𝑔(0)𝜇𝜈 − ℎ′𝜇𝜈 = ����𝑔(0)𝜇𝜈 − ℎ𝜇𝜈 − 𝜉𝜆(𝑥) 𝜕
𝜕𝑥𝜆 (𝑔(0)𝜇𝜈 − ℎ𝜇𝜈)+

+(𝑔(0)𝜇𝜌 − ℎ𝜇𝜌) 𝜕𝜉𝜈

𝜕𝑥𝜌 + (𝑔(0)𝜆𝜈 − ℎ𝜆𝜈) 𝜕𝜉𝜇

𝜕𝑥𝜆

ℎ′𝜇𝜈 = ℎ𝜇𝜈 + 𝜉𝜆(𝑥)𝜕𝑔(0)𝜇𝜈

𝜕𝑥𝜆 − 𝜉𝜆(𝑥)𝜕ℎ𝜇𝜈

𝜕𝑥𝜆 − 𝑔(0)𝜇𝜌 𝜕𝜉𝜈

𝜕𝑥𝜌 + ℎ𝜇𝜌 𝜕𝜉𝜈

𝜕𝑥𝜌 − 𝑔(0)𝜆𝜈 𝜕𝜉𝜇

𝜕𝑥𝜆 + ℎ𝜆𝜈 𝜕𝜉𝜇

𝜕𝑥𝜆

ℎ′𝜇𝜈 = ℎ𝜇𝜈 − 𝜕𝜉𝜈

𝜕𝑥𝜇
− 𝜕𝜉𝜇

𝜕𝑥𝜈
(2.2.6)

So we got the perturbation of the metric under infinitesimal coordinate
transformation.
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2.3 Gauge fixing condition: Harmonic gauge
Since we have a system which is invariant under a gauge transformation we
are going to fix the gauge through a fix gauge condition. Specifically, we
will take the harmonic gauge condition 2𝑥𝜇 = 0, which through the weak
field approximation becomes (proof in the appentix A) [1]:

𝜕Ψ𝜇
𝜈

𝜕𝑥𝜇 = 0, 𝑤ℎ𝑒𝑟𝑒 Ψ𝜇
𝜈 = ℎ𝜇

𝜈 − 1
2

𝛿𝜇
𝜈 ℎ, 𝜈 = 0, 1, 2, 3 (2.3.1)

which are actually four conditions (ν=0,1,2,3) and do not violate the initial
condition on ℎ𝜇𝜈 being small, while:
Ψ𝜇

𝜇 = ℎ𝜇
𝜇 − 1

2𝛿𝜇
𝜇ℎ = ℎ − 1

2 ⋅ 4ℎ = ℎ − 2ℎ = −ℎ.
Calculating the second derivative of Ψ𝜇𝜈 [2]:

𝜕Ψ𝜇
𝜈

𝜕𝑥𝜇 = 𝜕ℎ𝜇
𝜈

𝜕𝑥𝜇 − 1
2

𝛿𝜇
𝜈

𝜕ℎ
𝜕𝑥𝜇 = 0

𝜕2Ψ𝜇
𝜈

𝜕𝑥𝜌𝜕𝑥𝜇 = 𝜕2ℎ𝜇
𝜈

𝜕𝑥𝜌𝜕𝑥𝜇 − 1
2

𝜕2ℎ
𝜕𝑥𝜌𝜕𝑥𝜈 = 0 (2.3.2)

and reversing the indices 𝜈 ↔ 𝜌 we get:

𝜕2ℎ𝜇
𝜌

𝜕𝑥𝜈𝜕𝑥𝜇 − 1
2

𝜕2ℎ
𝜕𝑥𝜌𝜕𝑥𝜈 = 0, (2.3.3)

and if we sum these two formulas (2.3.2) and (2.3.3) we see that:

𝜕2ℎ𝜇
𝜈

𝜕𝑥𝜌𝜕𝑥𝜇 + 𝜕2ℎ𝜇
𝜌

𝜕𝑥𝜈𝜕𝑥𝜇 − 𝜕2ℎ
𝜕𝑥𝜌𝜕𝑥𝜈 = 0 (2.3.4)

So, eventually, through the fix gauge condition which leads to the formula
(2.3.4), the Ricci tensor (2.1.8) is simplified to the following formula:

𝑅𝜈𝜌 = 1
2
2ℎ𝜌𝜈 (2.3.5)

Finally, as the perturbation ℎ𝜇𝜈 changed through the previous gauge
transformation (2.2.6), we need to examine what new restrictions appear
with this new condition. So, we take the gauge fixing condition in the new
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coordinates of the gauge transformation. First we calculate ℎ′𝜇
𝜈 and ℎ′ that

will be needed:

(2.2.6) ⇒ 𝑔(0)
𝜇𝜌 ℎ′𝜇𝜈 = 𝑔(0)

𝜇𝜌 ℎ𝜇𝜈 − 𝑔(0)
𝜇𝜌

𝜕𝜉𝜈

𝜕𝑥𝜇
− 𝑔(0)

𝜇𝜌
𝜕𝜉𝜇

𝜕𝑥𝜈

ℎ′𝜈
𝜌 = ℎ𝜈

𝜌 − 𝜕𝜉𝜈

𝜕𝑥𝜌 −
𝜕𝜉𝜌

𝜕𝑥𝜈

ℎ′𝜇
𝜈 = ℎ𝜇

𝜈 − 𝜕𝜉𝜇

𝜕𝑥𝜈 − 𝜕𝜉𝜈
𝜕𝑥𝜇

(2.3.6)

where in the final step we changed the indices: 𝜈 → 𝜇, 𝜌 → 𝜈. Furthermore:

(1.3.6) ⇒ ℎ′𝜇
𝜇 = ℎ𝜇

𝜇 − 𝜕𝜉𝜇

𝜕𝑥𝜇 −
𝜕𝜉𝜇

𝜕𝑥𝜇

ℎ′ = ℎ − 2 𝜕𝜉𝜇

𝜕𝑥𝜇 (2.3.7)

So now the gauge fixing condition in the transformed coordinates will be:

𝜕Ψ′𝜇
𝜈

𝜕𝑥𝜇 = 𝜕ℎ′𝜇
𝜈

𝜕𝑥𝜇 − 1
2

𝛿𝜇
𝜈

𝜕ℎ′

𝜕𝑥𝜇 =

= 𝜕ℎ𝜇
𝜈

𝜕𝑥𝜇 − 𝜕
𝜕𝑥𝜇

𝜕𝜉𝜇

𝜕𝑥𝜈 − 𝜕
𝜕𝑥𝜇

𝜕𝜉𝜈
𝜕𝑥𝜇

− 1
2

𝛿𝜇
𝜈

𝜕ℎ
𝜕𝑥𝜇 + 1

2
𝛿𝜇

𝜈
𝜕

𝜕𝑥𝜇
𝜕𝜉𝜇

𝜕𝑥𝜇 + 1
2

𝛿𝜇
𝜈

𝜕
𝜕𝑥𝜇

𝜕𝜉𝜇

𝜕𝑥𝜇
=

= 𝜕ℎ𝜇
𝜈

𝜕𝑥𝜇 − 1
2

𝛿𝜇
𝜈

𝜕ℎ
𝜕𝑥𝜇 − 𝜕2𝜉𝜇

𝜕𝑥𝜇𝜕𝑥𝜈 − 𝜕2𝜉𝜈
𝜕𝑥𝜇𝜕𝑥𝜇

+ 1
2

𝜕2𝜉𝜇

𝜕𝑥𝜈𝜕𝑥𝜇 + 1
2

𝜕2𝜉𝜇

𝜕𝑥𝜈𝜕𝑥𝜇
=

= 𝜕Ψ𝜇
𝜈

𝜕𝑥𝜇 − 𝜕2𝜉𝜇

𝜕𝑥𝜇𝜕𝑥𝜈 − 𝜕2𝜉𝜈
𝜕𝑥𝜇𝜕𝑥𝜇

+ 1
2

𝜕2𝜉𝜇

𝜕𝑥𝜈𝜕𝑥𝜇 + 1
2

𝑔(0)𝛽𝜇𝑔(0)
𝜇𝜆

𝜕2𝜉𝜇

𝜕𝑥𝜈𝜕𝑥𝜇
=

= − 𝜕2𝜉𝜇

𝜕𝑥𝜇𝜕𝑥𝜈 − 𝜕2𝜉𝜈
𝜕𝑥𝜇𝜕𝑥𝜇

+ 1
2

𝜕2𝜉𝜇

𝜕𝑥𝜈𝜕𝑥𝜇 + 1
2

𝜕2𝜉𝛽

𝜕𝑥𝜈𝜕𝑥𝜆 =
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= − 𝜕2𝜉𝜇

𝜕𝑥𝜇𝜕𝑥𝜈 − 𝜕2𝜉𝜈
𝜕𝑥𝜇𝜕𝑥𝜇

+ 1
2

𝜕2𝜉𝜇

𝜕𝑥𝜈𝜕𝑥𝜇 + 1
2

𝜕2𝜉𝛽

𝜕𝑥𝜈𝜕𝑥𝛽 =

= − 𝜕2𝜉𝜇

𝜕𝑥𝜇𝜕𝑥𝜈 − 𝜕2𝜉𝜈
𝜕𝑥𝜇𝜕𝑥𝜇

+ 1
2

𝜕2𝜉𝜇

𝜕𝑥𝜈𝜕𝑥𝜇 + 1
2

𝜕2𝜉𝜇

𝜕𝑥𝜈𝜕𝑥𝜇 =

=
���

���

− 𝜕2𝜉𝜇

𝜕𝑥𝜇𝜕𝑥𝜈 − 𝜕2𝜉𝜈
𝜕𝑥𝜇𝜕𝑥𝜇

+
�
�

�
��𝜕2𝜉𝜇

𝜕𝑥𝜈𝜕𝑥𝜇 = 2𝜉𝜈 ⇒

𝜕Ψ′𝜇
𝜈

𝜕𝑥𝜇 = 2𝜉𝜈 = 0

2𝜉𝜈 = 0 (2.3.8)

where 𝛽 = 𝜆 because 𝑔(0)𝛽𝜇𝑔(0)
𝜇𝜆 = 𝛿𝛽

𝜆. Thus, this formula along with the
killing equation (2.2.3) from the transformation of the coordinates are the
two restrictions for the admissible spacetimes: ”𝑥𝜇 + 𝜉𝜇”, in which Ricci
tensor is written in the form: 𝑅𝜈𝜌 = 1

22ℎ𝜌𝜈 (2.3.5).

2.4 Solution of the gravitational wave equation and
their polarizations

Now it is the proper time to take the Einstein’s equations in the void, for
simplicity, and substitute the Ricci tensor we found. In the void the energy-
momentum tensor is equal to zero: 𝑇𝜇𝜈 = 0, so from the Einstein equations
[1]:

𝑅𝜇𝜈 − 1
2

𝑔𝜇𝜈𝑅 = 8𝜋𝑘
𝑐4 𝑇𝜇𝜈 (2.4.1)

as we prove in the appentix B, the Ricci tensor is equal to zero too and
from the (2.3.5):

2ℎ𝜇𝜈 = 0 (2.4.2)

and in one dimension:

( 𝜕2

𝜕𝑥2 − 1
𝑐2

𝜕2

𝜕𝑡2 )ℎ𝜇𝜈 = 0
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ℎ𝜇𝜈 = ℎ𝜇𝜈(𝑡 ± 𝑥
𝑐

) (2.4.3)

Therefore, we reached the classical wave equation and so we got to the
point where the existence of gravitational waves is proved. Thus, the tiny
disturbance on the metric of our spacetime is a wave which propagates with
the speed of light c.
Looking more into the nature of these waves, we go back in the initiative
equation (2.3.1) of gauge fixing condition: 𝜕Ψ𝜇

𝜈
𝜕𝑥𝜇 = 0, where Ψ𝜇

𝜈 is Ψ𝜇
𝜈 (𝑡 ± 𝑥

𝑐 )
as well and we can keep only the wave which propagates to the right. So
(2.3.1) becomes:

𝜕Ψ0
𝜈

𝜕𝑥0 + 𝜕Ψ1
𝜈

𝜕𝑥1 = 0, 𝜕Ψ0
𝜈

𝜕(𝑐𝑡)
+ 𝜕Ψ1

𝜈
𝜕𝑥1 = 0

1
𝑐

𝜕Ψ0
𝜈

𝜕(𝑡 − 𝑥
𝑐 )

𝜕(𝑡 − 𝑥
𝑐 )

𝜕𝑡
+ 𝜕Ψ1

𝜈
𝜕(𝑡 − 𝑥

𝑐 )
𝜕(𝑡 − 𝑥

𝑐 )
𝜕𝑥

, 1
𝑐

Ψ̇0
𝜈 − 1

𝑐
Ψ̇1

𝜈 = 0

Ψ0
𝜈 − Ψ1

𝜈 = 0, 𝜈 = 0, 1, 2, 3 (2.4.4)

So from equation (2.4.4) we get four conditions on Ψ𝜇
𝜈 :

Ψ0
0 − Ψ1

0 = 0

Ψ0
1 − Ψ1

1 = 0

Ψ0
2 − Ψ1

2 = 0 (2.4.5)

Ψ0
3 − Ψ1

3 = 0

Then, as we discussed in the previous two units, there is a gauge transfor-
mation:

𝑥𝜇′ = 𝑥𝜇 + 𝜉𝜇(𝑡 − 𝑥
𝑐

)

which leaves our system invariant, since:

𝜕Ψ′𝜇
𝜈

𝜕𝑥𝜇 = 2𝜉𝜈 = 0

15



by just setting 2𝜉𝜈 = 0. So, using the formulas (2.3.6), (2.3.7), Ψ𝜇
𝜈 in the

transformed coordinates is [2]:

Ψ′𝜇
𝜈 = ℎ′𝜇

𝜈 − 1
2

𝛿𝜇
𝜈 ℎ′ = ℎ𝜇

𝜈 − 𝜕𝜉𝜇

𝜕𝑥𝜈 − 𝜕𝜉𝜈
𝜕𝑥𝜇

− 1
2

𝛿𝜇
𝜈 (ℎ − 2 𝜕𝜉𝜌

𝜕𝑥𝜌 ) =

= ℎ𝜇
𝜈 − 1

2
𝛿𝜇

𝜈 ℎ − 𝜕𝜈𝜉𝜇 − 𝜕𝜇𝜉𝜈 + 𝛿𝜇
𝜈 𝜕𝜌𝜉𝜌

Ψ′𝜇
𝜈 = Ψ𝜇

𝜈 − 𝜕𝜈𝜉𝜇 − 𝜕𝜇𝜉𝜈 + 𝛿𝜇
𝜈 𝜕𝜌𝜉𝜌 (2.4.6)

where 𝜉𝜇 = 𝜉𝜇(𝑡− 𝑥
𝑐 ) ∶ 𝜉0, 𝜉1, 𝜉2, 𝜉3 Thus, since 𝜉𝜇 depends only in time and

x direction as well, μ=0,1 and ν=0,1, so from (2.4.6) we get another four
conditions:

Ψ′0
1 = Ψ0

1 − 𝜕1𝜉0 − 𝜕0𝜉1 = Ψ0
1 + 1

𝑐
̇𝜉0 − 1

𝑐
̇𝜉1 = 0

Ψ′0
2 = Ψ0

2 − 𝜕0𝜉2 = Ψ0
2 − 1

𝑐
̇𝜉2 = 0

Ψ′0
3 = Ψ0

3 − 𝜕0𝜉3 = Ψ0
3 − 1

𝑐
̇𝜉3 = 0 (2.4.7)

Ψ′2
2 + Ψ′3

3 = Ψ2
2 + Ψ3

3 + 2𝜕𝜌𝜉𝜌 = Ψ2
2 + Ψ3

3 + 2(𝜕0𝜉0 + 𝜕1𝜉1) =

= Ψ2
2 + Ψ3

3 + 2
𝑐

( ̇𝜉0 − ̇𝜉1) = 0

where we can set ero all the terms above, since we can choose accordingly
the terms of ̇𝜉. So eventually, we get that:

Ψ0
1 = Ψ0

2 = Ψ0
3 = Ψ2

2 + Ψ3
3 = 0 (2.4.8)

Combining this condition with the previous ones (2.4.5), we have:

Ψ0
0 = Ψ0

1 = 0, Ψ0
1 = Ψ1

1 = 0, Ψ0
2 = Ψ1

2 = 0, Ψ0
3 = Ψ1

3 = 0 (2.4.9)
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Finally, we note that Ψ𝜇
𝜈 is a symmetric matrix, so at the end the matrix

which describes our plane gravitational wave is the following:

Ψ𝜇
𝜈 =

⎛⎜⎜⎜⎜
⎝

Ψ0
0 Ψ0

1 Ψ0
2 Ψ0

3
Ψ1

0 Ψ1
1 Ψ1

2 Ψ1
3

Ψ2
0 Ψ2

1 Ψ2
2 Ψ2

3
Ψ3

0 Ψ3
1 Ψ3

2 Ψ3
3

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 Ψ2

2 Ψ2
3

0 0 Ψ3
2 Ψ3

3

⎞⎟⎟⎟⎟
⎠

(2.4.10)

Thus, the only non zero components of the matrix are Ψ2
3 and Ψ2

2 − Ψ3
3,

which is obvious from the condition (2.4.6) too:

Ψ′2
3 = Ψ2

3

Ψ′2
2 − Ψ′3

3 = Ψ2
2 − Ψ3

3 + 𝜕𝜌𝜉𝜌 − 𝜕𝜌𝜉𝜌 = Ψ2
2 − Ψ3

3

so there is no way we can set these terms equal to zero. Therefore, these
two are the physical degrees of freedom of our system, in contrast with the
initial 16 degrees of freedom of the matrix. We see that taking into account
the symmetries and the invariance of the system, we manage to find the
true physical degrees of freedom, which describe its physical properties. In
fact, these two degrees of freedom describe the two modes of oscillating for
the gravitational waves. From the conditions (2.4.8), (2.4.9) we get that
Ψ𝜇

𝜈 is traceless:

Ψ0
0 + Ψ1

1 + Ψ2
2 + Ψ3

3 = 0, Ψ𝜇
𝜇 = −ℎ = 0

So: Ψ𝜇
𝜈 = ℎ𝜇

𝜈 and everything we have found for Ψ𝜇
𝜈 is true for ℎ𝜇

𝜈 as well:

ℎ𝜇
𝜈 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 ℎ3

3 ℎ2
3 0

0 ℎ3
2 ℎ2

2 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 ℎ3

3 ℎ2
3 0

0 ℎ2
3 −ℎ3

3 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

(2.4.11)

where since Ψ2
2 + Ψ3

3 = 0, ℎ2
2 + ℎ3

3 = 0 and finally ℎ3
3 = −ℎ2

2 and ℎ2
3 = ℎ3

2
out of symmetry. So, the two different solutions for the gravitational waves
are:

ℎ𝜇
𝜈 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 ℎ3

3 0 0
0 0 −ℎ3

3 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

= ℎ3
3

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

𝑎𝑛𝑑 (2.4.12)
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ℎ𝜇
𝜈 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 ℎ2

3 0
0 ℎ2

3 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

= ℎ2
3

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

(2.4.13)

and they correspond to the two ways we were talking before, in which
the gravitational waves propagate oscillating the spacetime. So there are
two polarizations, the plus and the cross polarization, where in the first
case if we take a y- plane, spacetime oscillates along y and -axis, while in
the second case the oscillation is rotated by 45 degrees. We will show that,
exactly like electromagnetic waves, gravitational waves propagate along one
axis and the oscillation of spacetime takes place in the perpendicular plane
to it. We write the solution ℎ𝜇

𝜈 in the Fourier form, since they are plane
waves (2.4.3):

ℎ𝜇𝜈(𝑥) = ℎ𝜇𝜈(𝑘)𝑒𝑖𝑘𝜇𝑥𝜇 (2.4.14)

Substituting ℎ𝜇𝜈 in this form into the formulas (2.3.1), (2.4.2) we will have
that:

(2.3.1) ⇒ 𝜕𝜇ℎ𝜇
𝜈 (𝑥) − 1

2
𝜕𝜇ℎ𝜌

𝜌𝛿𝜇
𝜈 = 0

𝑖𝑘𝜇ℎ𝜇𝜈(𝑘)𝑒𝑖𝑘𝜇𝑥𝜇 − 1
2

𝑖𝑘𝜇ℎ𝜌
𝜌(𝑘)𝑒𝑖𝑘𝜇𝑥𝜇𝛿𝜇

𝜈 = 0

𝑘𝜇ℎ𝜇𝜈(𝑘) = 0 (2.4.15)

where we get that the wave vector 𝑘𝜇, which shows the direction of prop-
agation, is perpendicular to the plane of the wave’s oscillation. Moreover,
from the formula (2.4.2):

2ℎ𝜇
𝜈 = 0, 𝜕𝜇𝜕𝜇(ℎ𝜇

𝜈 (𝑘)𝑒𝑖𝑘𝜇𝑥𝜇) = 0, 𝑔(0)𝜇𝜈𝜕𝜈𝜕𝜇(ℎ𝜇
𝜈 (𝑘)𝑒𝑖𝑘𝜇𝑥𝜇) = 0

𝑖𝑘𝜇ℎ𝜇
𝜈 (𝑘)𝑔(0)𝜇𝜈𝜕𝜈𝑒𝑖𝑘𝜇𝑥𝜇 = 0, 𝑖𝑘𝜈ℎ𝜇

𝜈 (𝑘) ⋅ 𝑖𝑘𝜇𝛿𝜇
𝜈 𝑒𝑖𝑘𝜇𝑥𝜇 = 0

−𝑘𝜈𝑘𝜈ℎ𝜇
𝜈 (𝑘)𝑒𝑖𝑘𝜇𝑥𝜇 = 0, 𝑘𝜈𝑘𝜈ℎ𝜇

𝜈 (𝑥) = 0

𝑘𝜈𝑘𝜈 = 0 (2.4.16)
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Consequently the wavevector 𝑘𝜇 is null, which is translated into the fact
that the gravitational waves propagates with the speed of light and the
graviton is massless:

𝑘𝜇 = (𝜔
𝑐

, 𝑘⃗), 𝜔 = 2𝜋𝑓, 𝑘 = 2𝜋
𝜆

𝑘𝜇𝑘𝜇 = 0, (𝜔
𝑐

, 𝑘⃗)(𝜔
𝑐

, −𝑘⃗) = 0, (𝜔
𝑐

)2 − 𝑘2 = 0, 𝜔
𝑘

= 𝑐, 2𝜋𝑓
2𝜋
𝜆

= 𝑐,

𝜆𝑓 = 𝑐, 𝜐 = 𝑐

In the case we took before, where the wave propagates in x direction and
still setting c=1, it will be:

𝑘𝜇 = (𝑘0, 𝑘3, 𝑘2, 𝑘1) = (𝜔, 0, 0, 𝜔)

𝑘𝜇 = 𝜔(1, 0, 0, 1) (2.4.17)

so that:

𝑘𝜇𝑘𝜇 = 𝑔(0)
𝜇𝜈 𝑘𝜈𝑘𝜇 =

⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝜔
0
0
𝜔

⎞⎟⎟⎟⎟
⎠

(𝜔 0 0 𝜔) =

=
⎛⎜⎜⎜⎜
⎝

𝜔
0
0

−𝜔

⎞⎟⎟⎟⎟
⎠

(𝜔 0 0 𝜔) = 𝜔2 − 𝜔2 = 0

We also calculate the energy flux in a gravitational wave which is given
by the terms 𝑐𝑇 0𝑖 of the energy-momentum tensor, using the following
formula of it [2]:

𝑇 𝜇𝜈 = 𝑐4

32𝜋𝑘
ℎ𝜆,𝜇

𝜌 ℎ𝜌,𝜈
𝜆 (2.4.18)
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Figure 1: Propagating gravitational wave

Since we have chosen the wave to propagate through the x-axis, or equiva-
lently the ℎ𝜇𝜈 to depend only on x,t, it is clear that the only non zero term
of the energy flux will be the 𝑐𝑇 01 and since the only non zero components
of ℎ𝜆

𝜌 are the ℎ3
3 = −ℎ2

2 and ℎ2
3 = ℎ3

2, there will be:

𝑐𝑇 01 = 𝑐5

32𝜋𝑘
ℎ𝜆,0

𝜌 ℎ𝜌,1
𝜆 = 𝑐5

32𝜋𝑘
(𝜕ℎ2

3
𝜕𝑥0

𝜕ℎ3
2

𝜕𝑥1
+ 𝜕ℎ3

2
𝜕𝑥0

𝜕ℎ2
3

𝜕𝑥1
+ 𝜕ℎ2

2
𝜕𝑥0

𝜕ℎ2
2

𝜕𝑥1
+ 𝜕ℎ3

3
𝜕𝑥0

𝜕ℎ3
3

𝜕𝑥1
) =

= 𝑐5

32𝜋𝑘
(2 𝜕ℎ2

3
𝜕(𝑐𝑡)

(−𝜕ℎ2
3

𝜕𝑥
) + 2 𝜕ℎ2

2
𝜕(𝑐𝑡)

(−𝜕ℎ2
2

𝜕𝑥
)) = 𝑐5

16𝜋𝑘
(− 𝜕ℎ2

3
𝜕(𝑡 − 𝑥

𝑐 )
𝜕(𝑡 − 𝑥

𝑐 )
𝜕(𝑐𝑡)

𝜕ℎ2
3

𝜕(𝑡 − 𝑥
𝑐 )

𝜕(𝑡 − 𝑥
𝑐 )

𝜕𝑥
−

− 𝜕ℎ2
2

𝜕(𝑡 − 𝑥
𝑐 )

𝜕(𝑡 − 𝑥
𝑐 )

𝜕(𝑐𝑡)
𝜕ℎ2

2
𝜕(𝑡 − 𝑥

𝑐 )
𝜕(𝑡 − 𝑥

𝑐 )
𝜕𝑥

) = 𝑐5

16𝜋𝑘
( 1
𝑐2 (ℎ̇2

3)2 + 1
𝑐2 (ℎ̇2

2)2)

𝑐𝑇 01 = 𝑐3

16𝜋𝑘
((ℎ̇2

3)2 + 1
4

(ℎ̇2
2 − ℎ̇3

3)2) (2.4.19)

since:

ℎ33 = −ℎ22, ℎ̇33 = −ℎ̇22, −ℎ̇33 = ℎ̇22, (ℎ̇22 − ℎ̇33)2 = (2ℎ̇22)2 = 4(ℎ̇22)2

(ℎ̇22)2 = 1
4

(ℎ̇22 − ℎ̇33)2.
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Since the gravitational waves transfer energy they create around them an
additional gravitational field, which is, as we can see, of second order com-
pared to the field of the wave itself, since the energy from which is produced
is of the same order. On the other hand, the action for the gravitational
field is:

𝑆 = − 𝑐3

16𝜋𝑘
∫ 𝑅√−𝑔𝑑4𝑥 (2.4.20)

where the gravitational constant is 𝑘 = 6, 67 ⋅ 10−8 𝑐𝑚3

𝑔⋅𝑠𝑒𝑐2 and:

𝑐3

16𝜋𝑘
= (3 ⋅ 1010)3

16𝜋 ⋅ 6, 67 ⋅ 10−8
𝑐𝑚3 ⋅ 𝑔 ⋅ 𝑠𝑒𝑐2

𝑠𝑒𝑐3 ⋅ 𝑐𝑚3 = 8, 05 ⋅ 1036 𝑔
𝑠𝑒𝑐

Thus the dimensionality of the coupling constant is: [ 𝑐3

16𝜋𝑘 ] = 𝑔
𝑠𝑒𝑐 and the

dimensionality of the integrant is:[𝑅√𝑔𝑑4𝑥] = 1
𝑐𝑚2 ∗ 𝑐𝑚4 = 𝑐𝑚2, therefore

the dimension of the gravitational action S is: [𝑆] = 𝑔
𝑠𝑒𝑐 ⋅ 𝑐𝑚2.
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3 Radiation of Gravitational Waves and their
intensity

3.1 Flat Gravitational Waves and Einstein Equation
In the previous unit we ended up in the formula: 2ℎ𝜇𝜈 = 0, which proves
that a gravitational field ℎ𝜇𝜈 propagates in vacuum as a wave with the
speed of light. Considering some bodies moving in space and producing
these gravitational waves, as we enter mass in our system we expect terms
of the energy-momentum tensor to appear in the previous formula. So,
using the more convenient term: Ψ𝜇𝜈 = ℎ𝜇𝜈 − 1

2𝛿𝜇𝜈ℎ, which was defined
through applying the harmonic gauge, we gradually have the following.
We have showed that:

𝑅𝜇𝜈 = 1
2

𝑔(0)𝜆𝜌 𝜕2ℎ𝜇𝜈

𝜕𝜆𝜕𝜌 = 1
2
2ℎ𝜇𝜈 (2.3.5)

Acting by operator 2 on Ψ𝜇𝜈 we get [2]:

2Ψ𝜇
𝜈 = 2ℎ𝜇

𝜈 − 1
2

𝛿𝜇
𝜈 2ℎ (3.1.1)

Through Einstein equation, in appendix B, we have also shown that:

𝑅𝜇𝜈 = 8𝜋𝑘
𝑐4 (𝑇𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑇 ) (𝐵.0.3)

1
2
2ℎ𝜇

𝜈 = 8𝜋𝑘
𝑐4 (𝑇 𝜇

𝜈 − 1
2

𝛿𝜇
𝜈 𝑇 ) (3.1.2)

1
2
2ℎ = 8𝜋𝑘

𝑐4 (𝑇 − 1
2

⋅ 4𝑇 ) = 8𝜋𝑘
𝑐4 (𝑇 − 2𝑇 ) = −8𝜋𝑘

𝑐4 𝑇 (3.1.3)

where we substituted 𝑅𝜇𝜈 from the formula (1.3.5). Combining the previous
formulas (3.1.1), (3.1.2), (3.1.3), we eventually get that:

1
2
2Ψ𝜇

𝜈 = 8𝜋𝑘
𝑐4 (𝑇 𝜇

𝜈 − 1
2

𝛿𝜇
𝜈 𝑇 ) − 1

2
𝛿𝜇

𝜈 (−8𝜋𝑘
𝑐4 𝑇 ) + Ο(ℎ2) =

= 8𝜋𝑘
𝑐4 𝑇 𝜇

𝜈 − 1
2

⋅ 8𝜋𝑘
𝑐4 𝛿𝜇

𝜈 𝑇 + 1
2

⋅ 8𝜋𝑘
𝑐4 𝛿𝜇

𝜈 𝑇 + Ο(ℎ2)
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1
2
2Ψ𝜇

𝜈 = 8𝜋𝑘
𝑐4 𝑇 𝜇

𝜈 + Ο(ℎ2) (3.1.4)

The terms of higher order of h that we write above are originating from the
corresponding terms we skipped when we calculated the Riemann and the
Ricci tensors in the previous unit (2.1.7, 2.1.8), where the terms Γ𝛾

𝜌𝜈Γ𝜎
𝜆𝛾,

Γ𝛾
𝜆𝜈Γ𝜎

𝜌𝛾 were eliminated as they are of second order of h. So, instead of
𝑇𝜇𝜈, we use the 𝜏𝜇𝜈, which is the energy-momentum tensor in the weak
gravitational field and contains terms of 𝑇𝜇𝜈 and terms of second order of
h. Therefore, (3.1.4) is finally written as follows:

1
2
2Ψ𝜇

𝜈 = 8𝜋𝑘
𝑐4 𝜏𝜇

𝜈 (3.1.5)

From this last formula, we can get that, since:

𝜕Ψ𝜇
𝜈

𝜕𝑥𝜇 = 0 (2.3.1)

will also be:
𝜕𝜏𝜇

𝜈

𝜕𝑥𝜇 = 0 (3.1.6)

For solving equation (3.1.5) we notice that is completely analogous to the
corresponding one for the potential 𝐴𝜇( ⃗𝑟, 𝑡) of electromagnetic waves:

2𝐴𝜇( ⃗𝑟, 𝑡) = 4𝜋
𝑐

𝑗𝜇( ⃗𝑟, 𝑡)

the solution of which is [1]:

𝐴𝜇( ⃗𝑅0, 𝑡) = 1
𝑐

∫ 1
𝑅

⋅ 𝑗𝜇( ⃗𝑟′, 𝑡 − 𝑅
𝑐

) 𝑑 ⃗𝑟′3
≈ 1

𝑐𝑅0
∫ 𝑗𝜇( ⃗𝑟′, 𝑡 − 𝑅0

𝑐
) 𝑑 ⃗𝑟′3

where ⃗𝑅0 = ⃗𝑟′ + 𝑅⃗ and if | ⃗𝑅0| ≫ | ⃗𝑟′|, then |𝑅⃗| = | ⃗𝑅0 − ⃗𝑟′| ≈ | ⃗𝑅0|. So, the
corresponding solution for the weak gravitational field will be:

Ψ𝜇
𝜈 ( ⃗𝑟, 𝑡) ≈ − 4𝑘

𝑅0𝑐4 ∫ 𝜏𝜇
𝜈 ( ⃗𝑟′, 𝑡 − 𝑅0

𝑐
) 𝑑𝑉 ′ (3.1.7)

where the integration is over the volume 𝑑𝑉 ′ of the radiating matter which
has a distribution of size L (see Fig.3) and coordinates ( ⃗𝑟′, 𝑡 − 𝑅

𝑐 ), with R
being the distance between a random point of the matter and the observer
and 𝑅0 the position of the observer in the inertial frame or else his distance
from the center of mass of the distribution (Fig.2).
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Figure 2: The geometry of the radiating matter of the gravitational waves.

Figure 3: The radiation of the gravitational waves propagating in 𝑥1 direc-
tion.

In order to evaluate the integral above, we use equation (3.1.6), separating
the space and time components:

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗 − 𝜕𝜏𝑖0
𝜕𝑥0 = 0,

𝜕𝜏0𝑗

𝜕𝑥𝑗 − 𝜕𝜏00
𝜕𝑥0 = 0 (3.1.8)
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From the first equation of (3.1.8) we get:

𝜕
𝜕𝑥0 ∫ 𝜏𝑖0𝑥𝑘𝑑𝑉 = ∫

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗 𝑥𝑘𝑑𝑉 = ∫
𝜕(𝜏𝑖𝑗𝑥𝑘)

𝜕𝑥𝑗 𝑑𝑉 − ∫ 𝜕𝑥𝑘

𝜕𝑥𝑗 𝜏𝑖𝑗𝑑𝑉 =

= ∮
𝑅0

(𝜏𝑖𝑗𝑥𝑘)𝑑𝑆𝑗 − ∫ 𝛿𝑘𝑗𝜏𝑖𝑗𝑑𝑉 = 0 − ∫ 𝜏𝑖𝑘𝑑𝑉 = − ∫ 𝜏𝑖𝑘𝑑𝑉

∫ 𝜏𝑖𝑘𝑑𝑉 = −1
2

𝜕
𝜕𝑥0 ∫(𝜏𝑖0𝑥𝑘 + 𝜏𝑘0𝑥𝑖)𝑑𝑉 (3.1.9)

where ∮
𝑅0

(𝜏𝑖𝑗𝑥𝑘)𝑑𝑆𝑗 = 0 because we consider 𝜏𝑖𝑗(𝑅0) = 0. From the second
equation in (3.1.8):

𝜕
𝜕𝑥0 ∫ 𝜏00𝑥𝑖𝑥𝑗𝑑𝑉 = ∫

𝜕𝜏0𝑗

𝜕𝑥𝑗 𝑥𝑖𝑥𝑗𝑑𝑉 = ∫ 𝜕
𝜕𝑥𝑗 (𝜏0𝑗𝑥𝑖𝑥𝑗)𝑑𝑉 − ∫ 𝜏0𝑗

𝜕𝑥𝑖

𝜕𝑥𝑗 𝑥𝑗𝑑𝑉 −

− ∫ 𝜏0𝑗𝑥𝑖 𝜕𝑥𝑗

𝜕𝑥𝑗 𝑑𝑉 = ∮
𝑅0

(𝜏0𝑗𝑥𝑖𝑥𝑗)𝑑𝑆𝑗 − ∫ 𝜏0𝑗𝛿𝑖
𝑗𝑥𝑗𝑑𝑉 − ∫ 𝜏0𝑗𝑥𝑖𝑑𝑉 =

= 0 − ∫ 𝜏0𝑖𝑥𝑗𝑑𝑉 − ∫ 𝜏0𝑗𝑥𝑖𝑑𝑉 = − ∫(𝜏0𝑗𝑥𝑗 + 𝜏0𝑗𝑥𝑖)𝑑𝑉 , 𝑠𝑜 ∶

𝜕
𝜕𝑥0 ∫ 𝜏00𝑥𝑖𝑥𝑗𝑑𝑉 = − ∫(𝜏0𝑖𝑥𝑗 + 𝜏0𝑗𝑥𝑖)𝑑𝑉 (3.1.10)

From the equations (3.1.9) and (3.1.10) we finally get:

∫ 𝜏𝑖𝑘𝑑𝑉 = 1
2

𝜕2

𝜕𝑥2
0

∫ 𝜏00𝑥𝑖𝑥𝑗𝑑𝑉 (3.1.11)

Now, 𝜏00 is the energy density of our system, thus:

𝜏00 = 𝜇𝑐2 = 𝜇(𝑥′, 𝑦′, 𝑧′; 𝑡 − 𝑅0
𝑐

) ⋅ 𝑐2 (3.1.12)

Therefore, the weak gravitational field is:

Ψ𝜇
𝜈 = − 4𝑘

𝑅0𝑐4 ∫ 𝜏𝜇
𝜈 (𝑡 − 𝑅0

𝑐
) 𝑑𝑉 ′
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Ψ𝑖𝑗 = − 4𝑘
𝑅0𝑐4 ∫ 𝜏𝑖𝑗(𝑡 − 𝑅0

𝑐
) 𝑑𝑉 = − 4𝑘

𝑅0𝑐4 ⋅ 1
2

𝜕2

𝜕𝑥2
0

∫ 𝜏00𝑥𝑖𝑥𝑗𝑑𝑉 ; 𝑥0 = 𝑐𝑡

Ψ𝑖𝑗 = − 2𝑘
𝑅0𝑐4 ⋅ 1

𝑐2
𝜕2

𝜕𝑡2 ∫ 𝜇𝑐2𝑥𝑖𝑥𝑗𝑑𝑉 = − 2𝑘
𝑅0𝑐4 ⋅ 𝜕2

𝜕𝑡2 ∫ 𝜇𝑥𝑖𝑥𝑗𝑑𝑉

Ψ𝑖𝑗 = − 2𝑘
𝑅0𝑐4 ⋅ 𝜕2

𝜕𝑡2 ∫ 𝜇𝑥𝑖𝑥𝑗𝑑𝑉 (3.1.13)

3.2 Energy Density Flow and the Quadrupole Mo-
mentum

It is time to introduce the quadrupole momentum tensor 𝐷𝑖𝑗 [1]:

𝐷𝑖𝑗 = ∫ 𝜇(3𝑥𝑖𝑥𝑗 − 𝛿𝑖𝑗𝑥2
𝜅)𝑑𝑉 , 𝐷𝑖𝑖 = 0 (3.2.1)

We remind that in the previous unit we found the energy flow through 𝑥1

direction to be:

𝑐𝑇 01 = 𝑐3

16𝜋𝑘
(ℎ̇2

23 + 1
4

(ℎ̇22 − ℎ̇33)2) (2.4.19)

Since for our plane wave: ℎ = 0, from the formula: Ψ𝜇𝜈 = ℎ𝜇𝜈 − 1
2𝛿𝜇𝜈ℎ

(2.3.1) we have that:

Ψ𝑖𝑗 = ℎ𝑖𝑗, 𝑖 ≠ 𝑗 𝑎𝑛𝑑 Ψ22 − Ψ33 = ℎ22 − ℎ33

which is easy to prove, as:

Ψ22 = ℎ22 − 1
2

(ℎ11 + ℎ22 + ℎ33) = 1
2

(ℎ22 − ℎ11 − ℎ33)

Ψ33 = ℎ33 − 1
2

(ℎ11 + ℎ22 + ℎ33) = 1
2

(ℎ33 − ℎ11 − ℎ22)

Ψ22 − Ψ33 = 1
2

(ℎ22 − ℎ11 − ℎ33) − 1
2

(ℎ33 − ℎ11 − ℎ22) =
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= 1
2

(ℎ22 − ℎ11 − ℎ33 − ℎ33 + ℎ11 + ℎ22) = ℎ22 − ℎ33

So, eventually, we can write (3.1.13) as:

ℎ𝑖𝑗 = − 2𝑘
𝑅0𝑐4 ⋅ 𝜕2

𝜕𝑡2 ∫ 𝜇𝑥𝑖𝑥𝑗𝑑𝑉 (3.2.2)

and now the terms ℎ2
3, ℎ2

2, ℎ3
3 that appear in the energy flow 𝑇 01 (2.4.19)

can be written as follows:

ℎ23 = − 2𝑘
𝑅0𝑐4 ⋅ 𝜕2

𝜕𝑡2 ∫ 𝜇𝑥2𝑥3𝑑𝑉

ℎ22 = − 2𝑘
𝑅0𝑐4 ⋅ 𝜕2

𝜕𝑡2 ∫ 𝜇𝑥2
2𝑑𝑉

ℎ33 = − 2𝑘
𝑅0𝑐4 ⋅ 𝜕2

𝜕𝑡2 ∫ 𝜇𝑥2
3𝑑𝑉 𝑎𝑛𝑑

ℎ22 − ℎ33 = − 2𝑘
𝑅0𝑐4 ⋅ 𝜕2

𝜕𝑡2 ∫ 𝜇𝑥2
2𝑑𝑉 + 2𝑘

𝑅0𝑐4 ⋅ 𝜕2

𝜕𝑡2 ∫ 𝜇𝑥2
3𝑑𝑉 =

= − 2𝑘
𝑅0𝑐4 ⋅ 𝜕2

𝜕𝑡2 ∫ 𝜇(𝑥2
2 − 𝑥2

3)𝑑𝑉

We now calculate the corresponding terms of 𝐷𝑖𝑗 and we compare them to
the previous ones:

𝐷23 = 3 ∫ 𝜇𝑥2𝑥3𝑑𝑉

𝐷22 = ∫ 𝜇(3𝑥2
2 − 𝑥2

1 − 𝑥2
2 − 𝑥2

3)𝑑𝑉 = ∫ 𝜇(2𝑥2
2 − 𝑥2

1 − 𝑥2
3)𝑑𝑉

𝐷33 = ∫ 𝜇(3𝑥2
3 − 𝑥2

1 − 𝑥2
2 − 𝑥2

3)𝑑𝑉 = ∫ 𝜇(2𝑥2
3 − 𝑥2

1 − 𝑥2
2)𝑑𝑉 𝑎𝑛𝑑
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𝐷22 − 𝐷33 = ∫ 𝜇(2𝑥2
2 − 𝑥2

1 − 𝑥2
3 − 2𝑥2

3 + 𝑥2
1 + 𝑥2

2)𝑑𝑉 = 3 ∫ 𝜇(𝑥2
2 − 𝑥2

3)𝑑𝑉

So, eventually, we get that:

ℎ23 = − 2𝑘
3𝑅0𝑐4 𝐷̈23

ℎ22 − ℎ33 = − 2𝑘
3𝑅0𝑐4 (𝐷̈22 − 𝐷̈33)

Therefore, we can write the energy density flow 𝑇 01 as a function of quadrupole
momentum 𝐷𝑖𝑗 :

𝑐𝑇 01 = 𝑐3

16𝜋𝑘
(ℎ̇2

23 + 1
4

(ℎ̇22 − ℎ̇33)2)

𝑐𝑇 01 = 𝑐3

16𝜋𝑘
[(− 2𝑘

3𝑅0𝑐4 𝐷⃛23)2 + 1
4

(− 2𝑘
3𝑅0𝑐4 (𝐷⃛22 − 𝐷⃛33))2]

𝑐𝑇 01 = 𝑐3

16𝜋𝑘
⋅ 4𝑘2

9𝑅2
0𝑐8 [𝐷⃛2

23 + 1
4

(𝐷⃛22 − 𝐷⃛33)2]

𝑐𝑇 01 = 𝑘
36𝜋𝑅2

0𝑐5 [𝐷⃛2
23 + 1

4
(𝐷⃛22 − 𝐷⃛33)2] (3.2.3)

Thus, the flow of radiation through a spherical angle 𝑅2
0𝑑Ω is:

𝑑𝐼 = 𝑐𝑇 01 ⋅ 𝑅2
0𝑑Ω

𝑑𝐼 = 𝑘
36𝜋𝑐5 [𝐷⃛2

23 + 1
4

(𝐷⃛22 − 𝐷⃛33)2]𝑑Ω (3.2.4)

We can notice that when a mass is spherical symmetric, so 𝐷𝑖𝑗 = 0, it
doesn’t produce gravitational radiation.
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3.3 Radiation Flow and the polarizations of Flat Grav-
itational Waves

Speaking about the flow of radiation, we can’t help bringing up the tensor
polarization 𝑒𝑖𝑗 of the gravitational wave, which, as we can see from the
formulas (2.4.13) and (2.4.18), is:

𝑒(1)
𝑖𝑗 = 1√

2

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

, 𝑒(2)
𝑖𝑗 = 1√

2

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

(3.3.1)

with: 𝑒𝑖𝑖 = 0, 𝑒(𝜆)
𝑖𝑗 ⋅ 𝑒(𝜆)

𝑖𝑗 = 1 and 𝑒𝑖𝑗 ⋅ 𝑛𝑗 = 0, where 𝑛𝑗 = 𝑥𝑗
|𝑥| .

So, now the formula (3.2.4) takes the form:

𝑑𝐼 = 𝑘
72𝜋𝑐5 ∑

𝜆1,𝜆2

(𝐷⃛𝑖𝑗 ⋅ 𝑒(𝜆)
𝑖𝑗 )2𝑑Ω (3.3.2)

since:

𝑑𝐼 = 𝑘
72𝜋𝑐5 ∑

𝜆1,𝜆2

(𝐷⃛𝑖𝑗 ⋅ 𝑒(𝜆)
𝑖𝑗 )2 = 𝑘

72𝜋𝑐5 [(𝐷⃛23√
2

+ 𝐷⃛32√
2

)2 + (𝐷⃛33√
2

− 𝐷⃛22√
2

)2]𝑑Ω =

= 𝑘
72𝜋𝑐5 [(2𝐷⃛23√

2
)2 + 1

2
(𝐷⃛33 − 𝐷⃛22)2]𝑑Ω = 𝑘

72𝜋𝑐5 [2𝐷⃛2
23 + 1

2
(𝐷⃛33 − 𝐷⃛22)2]𝑑Ω =

= 𝑘
72𝜋𝑐5 ⋅ 2[𝐷⃛2

23 + 1
4

(𝐷⃛33 − 𝐷⃛22)2]𝑑Ω = 𝑘
36𝜋𝑐5 [𝐷⃛2

23 + 1
4

(𝐷⃛33 − 𝐷⃛22)2]𝑑Ω

3.4 Average of Radiation over polarizations
The total radiation in all directions per unit time is 𝑑𝐼

𝑑𝑡 ⋅ 4𝜋 and we should
average over all directions and polarizations. First, we average over polar-
izations, so from the formula (3.3.2):

𝑑𝐼 = 𝑘
72𝜋𝑐5 ∑

𝜆1,𝜆2

𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙 ⋅ 𝑒(𝜆)
𝑖𝑗 𝑒(𝜆)

𝑘𝑙 𝑑Ω = 2 ⋅ 𝑘
72𝜋𝑐5 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙 ⋅ 𝑒𝑖𝑗𝑒𝑘𝑙𝑑Ω

29



𝑑𝐼 = 𝑘
36𝜋𝑐5 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙 ⋅ 𝑒𝑖𝑗𝑒𝑘𝑙𝑑Ω (3.4.1)

where:

𝑒𝑖𝑗𝑒𝑘𝑙 = 1
4

[𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 + (𝑛𝑖𝑛𝑗𝛿𝑘𝑙 + 𝑛𝑘𝑛𝑙𝛿𝑖𝑗) − (𝛿𝑗𝑙𝑛𝑖𝑛𝑘 + 𝛿𝑖𝑘𝑛𝑗𝑛𝑙 + 𝛿𝑗𝑘𝑛𝑖𝑛𝑙+

+𝛿𝑖𝑙𝑛𝑗𝑛𝑘) − 𝛿𝑖𝑗𝛿𝑘𝑙 + (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)] (𝑝𝑟𝑜𝑜𝑓 ∶ 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝐶)

Substituting the average of the product of polarization above, in the equa-
tion (3.4.1), we get that:

𝑑𝐼 = 𝑘
36𝜋𝑐5 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙 ⋅ 𝑒𝑖𝑗𝑒𝑘𝑙𝑑Ω =

= 𝑘
36𝜋𝑐5 ⋅ 1

4
[𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 + 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝑛𝑖𝑛𝑗𝛿𝑘𝑙 + 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝑛𝑘𝑛𝑙𝛿𝑖𝑗−

−𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝛿𝑗𝑙𝑛𝑖𝑛𝑘 − 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝛿𝑖𝑘𝑛𝑗𝑛𝑙 − 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝛿𝑗𝑘𝑛𝑖𝑛𝑙 − 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝛿𝑖𝑙𝑛𝑗𝑛𝑘−

−𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝛿𝑖𝑗𝛿𝑘𝑙 + 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝛿𝑖𝑘𝛿𝑗𝑙 + 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝛿𝑖𝑙𝛿𝑗𝑘]𝑑Ω =

= 𝑘
36𝜋𝑐5 ⋅ 1

4
[(𝐷⃛𝑖𝑗𝑛𝑖𝑛𝑗)2 + 𝐷⃛𝑖𝑗𝐷⃛𝑘𝑘𝑛𝑖𝑛𝑗 + 𝐷⃛𝑖𝑖𝐷⃛𝑘𝑙𝑛𝑘𝑛𝑙 − 𝐷⃛𝑖𝑙𝐷⃛𝑘𝑙𝑛𝑖𝑛𝑘−

−𝐷⃛𝑘𝑗𝐷⃛𝑘𝑙𝑛𝑗𝑛𝑙 − 𝐷⃛𝑖𝑘𝐷⃛𝑘𝑙𝑛𝑖𝑛𝑙 − 𝐷⃛𝑙𝑗𝐷⃛𝑘𝑙𝑛𝑗𝑛𝑘 − 𝐷⃛𝑖𝑖𝐷⃛𝑘𝑘 + 𝐷⃛𝑘𝑗𝐷⃛𝑘𝑗 + 𝐷⃛𝑙𝑗𝐷⃛𝑗𝑙]𝑑Ω =

= 𝑘
36𝜋𝑐5 ⋅ 1

4
[(𝐷⃛𝑖𝑗𝑛𝑖𝑛𝑗)2 − 4 ⋅ 𝐷⃛𝑖𝑙𝐷⃛𝑘𝑙𝑛𝑖𝑛𝑘 + 2 ⋅ 𝐷⃛𝑘𝑗𝐷⃛𝑘𝑗], 𝑠𝑜 ∶

𝑑𝐼 = 𝑘
36𝜋𝑐5 [1

4
(𝐷⃛𝑖𝑗𝑛𝑖𝑛𝑗)2 + 1

2
⋅ 𝐷⃛𝑘𝑗𝐷⃛𝑘𝑗 − 𝐷⃛𝑖𝑙𝐷⃛𝑘𝑙𝑛𝑖𝑛𝑘]
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3.5 Average of Radiation over Directions
We still have to average over all directions 𝑛𝑖 and from the formula above
we can see that we are going to need the following average values:

𝑛𝑖𝑛𝑗 = 1
3

𝛿𝑖𝑗, 𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 = 1
15

(𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (𝑝𝑟𝑜𝑜𝑓 ∶ 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝐷), 𝑠𝑜 ∶

𝑑𝐼 = 𝑘
36𝜋𝑐5 [1

4
𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 + 1

2
⋅ 𝐷⃛𝑘𝑗𝐷⃛𝑘𝑗 − 𝐷⃛𝑖𝑙𝐷⃛𝑘𝑙𝑛𝑖𝑛𝑘] =

= 𝑘
36𝜋𝑐5 [1

4
𝐷⃛𝑖𝑗𝐷⃛𝑘𝑙 ⋅ 1

15
(𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 1

2
⋅ 𝐷⃛𝑘𝑗𝐷⃛𝑘𝑗 − 𝐷⃛𝑖𝑙𝐷⃛𝑘𝑙 ⋅ 1

3
𝛿𝑖𝑘] =

= 𝑘
36𝜋𝑐5 [1

4
⋅ 1

15
(𝐷⃛𝑖𝑖𝐷⃛𝑘𝑘 + 𝐷⃛𝑘𝑗𝐷⃛𝑘𝑗 + 𝐷⃛𝑙𝑗𝐷⃛𝑙𝑗) + 1

2
⋅ 𝐷⃛2

𝑖𝑗 − 1
3

𝐷⃛𝑘𝑙𝐷⃛𝑘𝑙] =

= 𝑘
36𝜋𝑐5 (1

4
⋅ 1

15
⋅ 2𝐷⃛2

𝑖𝑗 + 1
2

𝐷⃛2
𝑖𝑗 − 1

3
𝐷⃛2

𝑖𝑗) = 𝑘
36𝜋𝑐5 ( 1

30
+ 1

2
− 1

3
)𝐷⃛2

𝑖𝑗

𝑑𝐼 = 𝑘
36𝜋𝑐5 ⋅ 1

5
𝐷⃛2

𝑖𝑗

So the total radiation in all directions per unit time is:

4𝜋 ⋅ 𝑑𝐼
𝑑𝑡

= 4𝜋 ⋅ 𝑘
36𝜋𝑐5 ⋅ 1

5
𝐷⃛2

𝑖𝑗

4𝜋 ⋅ 𝑑𝐼
𝑑𝑡

= 𝑘
45𝑐5 ⋅ 𝐷⃛2

𝑖𝑗 , 𝐷𝑖𝑖 = 0 [2] (3.5.1)
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4 Radiation of Gravitational Waves from Bi-
nary Systems, their Orbital Decay and the
Merger Time Scale

4.1 Gravitational Wave Radiation of a Binary System
The energy flow per unit time, as we just showed in the previous unit, is
[1]:

𝑑𝐸
𝑑𝑡

= 𝑘
45𝑐5 ⋅ 𝐷⃛2

𝑖𝑗 (4.1.1)

where 𝐷𝑖𝑗 is the quadrupole momentum tensor: 𝐷𝑖𝑗 = ∫ 𝜇(3𝑥𝑖𝑥𝑗 −𝛿𝑖𝑗𝑥2
𝜅)𝑑𝑉

and since μ is the density of mass: [𝜇] = 𝑔
𝑐𝑚3 , the units of measure in the

equation above are:

[𝑑𝐸
𝑑𝑡

] = [𝑘]
[𝑐]5

⋅ [𝐷⃛𝑖𝑗]2 = 𝑐𝑚3

𝑔 ⋅ 𝑠𝑒𝑐2 ⋅ 𝑠𝑒𝑐5

𝑐𝑚5 ⋅ (
𝑔

𝑐𝑚3 ⋅ 𝑐𝑚2 ⋅ 𝑐𝑚3

𝑠𝑒𝑐3 )2 =

= 𝑠𝑒𝑐3

𝑔 ⋅ 𝑐𝑚2 ⋅ 𝑔2 ⋅ 𝑐𝑚4

𝑠𝑒𝑐6 = 𝑔 ⋅ 𝑐𝑚2

𝑠𝑒𝑐2 ⋅ 1
𝑠𝑒𝑐

which is indeed the unit of energy per time. As for the order of magnitude
of the energy that a system emits, we calculate the coefficient:

𝑘
45𝑐5 = 6, 67 ⋅ 10−8

45 ⋅ (3 ⋅ 1010)5 = 6, 1 ⋅ 10−62 𝑠𝑒𝑐3

𝑔 ⋅ 𝑐𝑚2

We see how small it is, so we can understand why it is so hard to detect
gravitational waves. To have a comparison measure, the energy of an elec-
tron in copper, since its mass is 𝑚𝑒 = 9 ⋅ 10−28𝑔 and its drift velocity is
𝜐 = 2, 3 ⋅ 10−3, is:

𝑚𝑒𝜐2

2
= 23, 8 ⋅ 10−34 𝑔 ⋅ 𝑐𝑚2

𝑠𝑒𝑐2

much bigger than the coefficient above.

We consider two bodies rotating around each other in a (x,y) plane (see
Fig.4), where: ⃗𝑟 = ⃗𝑟2 − ⃗𝑟1 and considering the reduced mass: 𝜇 = 𝑚1⋅𝑚2

𝑚1+𝑚2
,

32



Figure 4: Two bodies rotating in (x,y) plane

we have that:

⃗𝑟1 = − 𝑚2
𝑚1 + 𝑚2

⃗𝑟, ⃗𝑟2 = 𝑚1
𝑚1 + 𝑚2

⃗𝑟

𝑎𝑛𝑑 𝑥 = 𝑟 ⋅ 𝑐𝑜𝑠𝜓, 𝑦 = 𝑟 ⋅ 𝑠𝑖𝑛𝜓, 𝑧 = 0

We begin calculating the quadrupole momentum tensor of this system, in
order to find the total radiation this emits. Here we have a system of
discrete masses, so the integral in the tensor becomes summation:

𝐷𝑥𝑥 = 𝑚1(3𝑥1𝑥1 − 𝑥2
1 − 𝑦2

1 − 𝑧2
1) + 𝑚2(3𝑥2𝑥2 − 𝑥2

2 − 𝑦2
2 − 𝑧2

2) =

= 𝑚1 ⋅ 𝑚2
2

(𝑚1 + 𝑚2)2 (2𝑥2 − 𝑦2) + 𝑚2 ⋅ 𝑚2
1

(𝑚1 + 𝑚2)2 (2𝑥2 − 𝑦2) =

= 𝑚1 ⋅ 𝑚2
2 + 𝑚2 ⋅ 𝑚2

1
(𝑚1 + 𝑚2)2 (2𝑥2 − 𝑦2) = 𝑚1 ⋅ 𝑚2(𝑚1 + 𝑚2)

(𝑚1 + 𝑚2)2 (2𝑥2 − 𝑦2) =

33



= 𝑚1 ⋅ 𝑚2
𝑚1 + 𝑚2

⋅ 𝑟2(2𝑐𝑜𝑠2𝜓 − 𝑠𝑖𝑛2𝜓)

𝐷𝑥𝑥 = 𝜇 ⋅ 𝑟2(3𝑐𝑜𝑠2𝜓 − 1)

𝐷𝑦𝑦 = 𝑚1(3𝑦1𝑦1 − 𝑥2
1 − 𝑦2

1 − 𝑧2
1) + 𝑚2(3𝑦2𝑦2 − 𝑥2

2 − 𝑦2
2 − 𝑧2

2) =

= 𝑚1 ⋅ 𝑚2
2

(𝑚1 + 𝑚2)2 (2𝑦2 − 𝑥2) + 𝑚2 ⋅ 𝑚2
1

(𝑚1 + 𝑚2)2 (2𝑦2 − 𝑥2) = 𝑚1 ⋅ 𝑚2
𝑚1 + 𝑚2

⋅ 𝑟2(2𝑠𝑖𝑛2𝜓 − 𝑐𝑜𝑠2𝜓)

𝐷𝑦𝑦 = 𝜇 ⋅ 𝑟2(3𝑠𝑖𝑛2𝜓 − 1)

𝐷𝑥𝑦 = 3𝑚1𝑥1𝑦1 + 3𝑚2𝑥2𝑦2 = 3 𝑚1 ⋅ 𝑚2
2

(𝑚1 + 𝑚2)2 𝑥𝑦 + 3 𝑚2 ⋅ 𝑚2
1

(𝑚1 + 𝑚2)2 𝑥𝑦 =

= 3 𝑚1 ⋅ 𝑚2
𝑚1 + 𝑚2

𝑟2𝑠𝑖𝑛𝜓 ⋅ 𝑐𝑜𝑠𝜓

𝐷𝑥𝑦 = 3𝜇 ⋅ 𝑟2𝑠𝑖𝑛𝜓 ⋅ 𝑐𝑜𝑠𝜓

𝐷𝑧𝑧 = 𝑚1(3𝑧1𝑧1 − 𝑥2
1 − 𝑦2

1 − 𝑧2
1) + 𝑚2(3𝑧2𝑧2 − 𝑥2

2 − 𝑦2
2 − 𝑧2

2) =

= − 𝑚1 ⋅ 𝑚2
2

(𝑚1 + 𝑚2)2 (𝑥2 + 𝑦2) − 𝑚2 ⋅ 𝑚2
1

(𝑚1 + 𝑚2)2 (𝑥2 + 𝑦2) = − 𝑚1 ⋅ 𝑚2
𝑚1 + 𝑚2

⋅ 𝑟2(𝑠𝑖𝑛2𝜓 + 𝑐𝑜𝑠2𝜓)

𝐷𝑧𝑧 = −𝜇 ⋅ 𝑟2

𝐷𝑥𝑧 = 3𝑚1𝑥1𝑧1 + 3𝑚2𝑥2𝑧2 = 0 = 𝐷𝑦𝑧

In the simple circular motion: 𝑟 = 𝑐𝑜𝑛𝑠𝑡. and 𝜓 = 𝜔⋅𝑡. So only ψ depends on
time in the quadrupole momentum above. Moreover, taking the equation of
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Figure 5: 3D representation of two bodies rotating in (x,y) plane

the forces of gravity between the two masses which equal to the centripetal
force for their system, we get that:

𝐹1→2 = 𝐹2→1 = 𝑘𝑚1𝑚2
𝑟2 = 𝐹𝜅 = 𝜇𝜐2

𝑟
= 𝑚1𝑚2

𝑚1 + 𝑚2
⋅ 𝜔2 ⋅ 𝑟2

𝑟

𝑘𝑚1𝑚2
𝑟2 = 𝑚1𝑚2

𝑚1 + 𝑚2
𝜔2𝑟, ̇𝜓 = 𝜔 = √𝑘(𝑚1 + 𝑚2)

𝑟3 (4.1.2)

Thus, differentiating the quadrupole momentum tensor we get:

𝐷̇𝑥𝑥 = −6𝜇 ⋅ 𝑟2𝜔 ⋅ 𝑐𝑜𝑠𝜓 ⋅ 𝑠𝑖𝑛𝜓, 𝐷̈𝑥𝑥 = −6𝜇 ⋅ 𝑟2𝜔2(−𝑠𝑖𝑛2𝜓 + 𝑐𝑜𝑠2𝜓) =

= 6𝜇 ⋅ 𝑟2𝜔2(2𝑠𝑖𝑛2𝜓 − 1), 𝐷⃛𝑥𝑥 = 24𝜇𝑟2𝜔3 ⋅ 𝑠𝑖𝑛𝜓 ⋅ 𝑐𝑜𝑠𝜓

𝐷̇𝑦𝑦 = 6𝜇 ⋅ 𝑟2𝜔𝑠𝑖𝑛𝜓 ⋅ 𝑐𝑜𝑠𝜓, 𝐷̈𝑦𝑦 = 6𝜇 ⋅ 𝑟2𝜔2(𝑐𝑜𝑠2𝜓 − 𝑠𝑖𝑛2𝜓) =

= 6𝜇 ⋅ 𝑟2𝜔2(2𝑐𝑜𝑠2𝜓 − 1), 𝐷⃛𝑦𝑦 = −24𝜇𝑟2𝜔3 ⋅ 𝑠𝑖𝑛𝜓 ⋅ 𝑐𝑜𝑠𝜓

𝐷̇𝑥𝑦 = 3𝜇𝑟2𝜔(𝑐𝑜𝑠2𝜓 − 𝑠𝑖𝑛2𝜓), 𝐷̈𝑥𝑦 = 3𝜇𝑟2𝜔2(−2𝑐𝑜𝑠𝜓 ⋅ 𝑠𝑖𝑛𝜓 − 2𝑠𝑖𝑛𝜓 ⋅ 𝑐𝑜𝑠𝜓) =
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= −12𝜇𝑟2𝜔2𝑐𝑜𝑠𝜓 ⋅ 𝑠𝑖𝑛𝜓, 𝐷⃛𝑥𝑦 = 12𝜇𝑟2𝜔3(𝑠𝑖𝑛2𝜓 − 𝑐𝑜𝑠2𝜓)

𝐷̇𝑧𝑧 = 0

Finally, we have to take time average over the period: 𝑇 = 2𝜋
𝜔 , for the

squares of derivatives of quadrupole momentum before we substitute them
into the formula for total radiation (4.1.1):

𝐷⃛2
𝑥𝑥 = (24𝜇𝑟2𝜔3)2 ⋅ 𝑠𝑖𝑛2𝜓 ⋅ 𝑐𝑜𝑠2𝜓 = 72𝜇2𝑟4𝜔6

𝐷⃛2
𝑦𝑦 = (−24𝜇𝑟2𝜔3)2𝑠𝑖𝑛2𝜓 ⋅ 𝑐𝑜𝑠2𝜓 = 72𝜇2𝑟4𝜔6

𝐷⃛2
𝑥𝑦 = (12𝜇𝑟2𝜔3)2(𝑠𝑖𝑛2𝜓 − 𝑐𝑜𝑠2𝜓) = 72𝜇2𝑟4𝜔6

So eventually the total radiation the system loses while the bodies are
rotating is:

𝑑𝐸
𝑑𝑡

= 𝑘
45𝑐5 ⋅ 𝐷⃛2

𝑖𝑗 = 𝑘
45𝑐5 ⋅ (𝐷⃛2

𝑥𝑥 + 𝐷⃛2
𝑦𝑦 + 𝐷⃛2

𝑥𝑦 + 𝐷⃛2
𝑦𝑥) =

= 𝑘
45𝑐5 ⋅ (𝐷⃛2

𝑥𝑥 + 𝐷⃛2
𝑦𝑦 + 2𝐷⃛2

𝑥𝑦) = 𝑘
45𝑐5 ⋅ 288𝜇2𝑟4𝜔6 = 32

5
𝑘𝜇2𝑟4𝜔6

𝑐5 =

= 32
5

𝑘 𝑚2
1𝑚2

2
(𝑚1+𝑚2)2 𝑟4(√𝑘(𝑚1+𝑚2)

𝑟3 )6

𝑐5 = 32
5

𝑘 𝑚2
1𝑚2

2
(𝑚1+𝑚2)2 𝑟4 𝑘3(𝑚1+𝑚2)3

𝑟9

𝑐5 = 32𝑘4𝑚2
1𝑚2

2(𝑚1 + 𝑚2)
5𝑐5𝑟5

𝑑𝐸
𝑑𝑡

= 32𝑘4𝑚2
1𝑚2

2(𝑚1 + 𝑚2)
5𝑐5𝑟5 (4.1.3)

4.2 Orbital Decay and Merger Time
From the classical Newton’s law of gravity:

𝐸 = −𝑘𝑚1𝑚2
2𝑟

, 𝑑𝐸
𝑑𝑡

= 𝑘𝑚1𝑚2
2𝑟2 ⋅ ̇𝑟
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So, comparing the two relations about 𝑑𝐸
𝑑𝑡 above we get that:

𝑘𝑚1𝑚2
2𝑟2 ⋅ ̇𝑟 = 32𝑘4𝑚2

1𝑚2
2(𝑚1 + 𝑚2)

5𝑐5𝑟5 , ̇𝑟 = 2𝑟2

𝑘𝑚1𝑚2
⋅ 32𝑘4𝑚2

1𝑚2
2(𝑚1 + 𝑚2)

5𝑐5𝑟5

̇𝑟 = 64𝑘3𝑚1𝑚2(𝑚1 + 𝑚2)
5𝑐5𝑟3 , (4.2.1)

which is the rate of orbital decay in the system of the two masses while
they rotate around each other, radiating gravitational radiation and thus
losing energy, hence the orbital decay.
For simplicity, we consider that the two masses are equal:

𝑚1 = 𝑚2 = 𝑚, 𝜇 = 𝑚 ⋅ 𝑚
𝑚 + 𝑚

= 𝑚2

2𝑚
= 𝑚

2

Then, the total radiation per unit time becomes:

𝑑𝐸
𝑑𝑡

= 32𝑘4𝑚2
1𝑚2

2(𝑚1 + 𝑚2)
5𝑐5𝑟5 = 32𝑘4𝑚4 ⋅ 2𝑚

5𝑐5𝑟5 = 64𝑘4𝑚5

5𝑐5𝑟5

𝑑𝐸
𝑑𝑡

= 64𝑘4𝑚5

5𝑐5𝑟5 , (4.2.2)

[𝑑𝐸
𝑑𝑡

] = [𝑘]4[𝑚]5

[𝑐]5[𝑟]5
= ( 𝑐𝑚3

𝑔 ⋅ 𝑠𝑒𝑐2 )4 ⋅ 𝑠𝑒𝑐5

𝑐𝑚5 ⋅ 𝑔5

𝑐𝑚5 = 𝑐𝑚12
𝑔4 ⋅ 𝑠𝑒𝑐8 ⋅ 𝑠𝑒𝑐5 ⋅ 𝑔5

𝑐𝑚10
= 𝑐𝑚2 ⋅ 𝑔

𝑠𝑒𝑐3 .

Using the formula for the orbital decay (4.1.3), we can find the expected
time of the merger of these two rotating masses:

𝑑𝑟
𝑑𝑡

= 64𝑘3𝑚1𝑚2(𝑚1 + 𝑚2)
5𝑐5𝑟3 , ∫

𝑟

0
𝑟3𝑑𝑟 = 64𝑘3𝑚1𝑚2(𝑚1 + 𝑚2)

5𝑐5 ∫
𝑇

0
𝑑𝑡

𝑟4

4
= 64𝑘3𝑚1𝑚2(𝑚1 + 𝑚2)

5𝑐5 ⋅ 𝑇 , 𝑇 = 𝑟4

4
⋅ 5𝑐5

64𝑘3𝑚1𝑚2(𝑚1 + 𝑚2)

𝑇 = 5
256

⋅ 𝑐5

𝑘3 ⋅ 𝑟4

𝑚1𝑚2(𝑚1 + 𝑚2)
(4.2.3)
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In order to understand the formulas we found above and the physics of
gravitational waves, we are going to take some specific physical systems
and apply the equations we found.
All these formulas above are correct as long as distance between the two
masses of the binary system is much larger than their radius in order to
be able to think of them as massive points as we did. So, these formulas
can’t be applied for merger or ring-down, since then the distance between
the masses are minimal.

4.3 Application of the Equation of Total Emitting Ra-
diation on Physical Binary Systems

• Hydrogen atom

Let us begin with the Hydrogen atom and take its radius 𝛼0 and
the masses of the particles that compose it:

𝛼0 = 5, 291 ⋅ 10−9𝑐𝑚, 𝑚𝑒 = 9, 11 ⋅ 10−28𝑔, 𝑚𝑝 = 1, 67 ⋅ 10−24𝑔

We are going to need the distance of the electron of the centre mass
of the system proton-electron and thus the reduced mass as well:

𝛼∗
0 = 𝑚𝑒

𝜇
𝛼0, 𝜇 =

𝑚𝑒 ⋅ 𝑚𝑝

𝑚𝑒 + 𝑚𝑝

𝛼∗
0 =

𝑚𝑒 + 𝑚𝑝

𝑚𝑝
𝛼0 = (1 + 𝑚𝑒

𝑚𝑝
)𝛼0 = 5, 295 ⋅ 10−9𝑐𝑚

So, from the formula (4.2.2) the gravitational radiation of the Hydro-
gen electron is:

𝑑𝐸
𝑑𝑡

= 64𝑘4𝑚5
𝑒

5𝑐5𝛼∗
0

5 = 64 ⋅ (6, 67 ⋅ 10−8)4 ⋅ (9, 11 ⋅ 10−28)5

5 ⋅ (3 ⋅ 1010)5 ⋅ (5, 29 ⋅ 10−9)5 = 1, 58 ⋅ 10−180 𝑔 ⋅ 𝑐𝑚2

𝑠𝑒𝑐3

As we can see the energy per unit time that is emitted while the
electron is rotating around the nucleus, is extremely small. So, since
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we know that the energy of the Hydrogen’s electron in the ground
state is 1 Ry:

1𝑅𝑦 ≈ 2, 18 ⋅ 10−18𝐽 = 2, 18 ⋅ 10−18𝑘𝑔 𝑚2

𝑠𝑒𝑐2 = 2, 18 ⋅ 10−18 ⋅ 107𝑔𝑐𝑚2

𝑠𝑒𝑐2

1𝑅𝑦 = 2, 18 ⋅ 10−11𝑔𝑐𝑚2

𝑠𝑒𝑐2 ,

so the approximate time for the electron to collide into the nucleus
will be:

𝑡 = 1𝑅𝑦
𝑑𝐸
𝑑𝑡

≈ 10169𝑠𝑒𝑐 = 10153𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑦𝑒𝑎𝑟𝑠

practically never.

• Neutron stars binaries

Another interesting physical system is binary neutron stars. Let us
take neutron stars of one solar mass which rotate around each other
with radius r:

𝑀𝑛𝑒𝑢 = 𝑀⊙ = 2 ⋅ 1033𝑔, 𝑟 = 1, 89 ⋅ 1010𝑐𝑚

So, using formula (4.2.2), the time of their merger is:

𝑇 = 5
256

⋅ 𝑐5

𝑘3 ⋅ 𝑟4

𝑀𝑛𝑒𝑢𝑀𝑛𝑒𝑢(𝑀𝑛𝑒𝑢 + 𝑀𝑛𝑒𝑢)
= 5

256
⋅ 𝑐5

𝑘3 ⋅ 𝑟4

2𝑀3
𝑛𝑒𝑢

=

= 5
256

⋅ (3 ⋅ 1010)5

(6, 67 ⋅ 10−8)3 ⋅ (1, 89 ⋅ 1010)4

2 ⋅ (2 ⋅ 1033)3 = 1, 28 ⋅ 1013𝑠𝑒𝑐 = 405.885 𝑦𝑒𝑎𝑟𝑠

an amount of time which explains us why the merger of binary neutron
stars is observable. Meanwhile, the period of their rotation, using the
formula (4.1.2), is:

𝑇 = 2𝜋
𝜔

= 2𝜋√ 𝑟3

𝑘(𝑀𝑛𝑒𝑢 + 𝑀𝑛𝑒𝑢)
= 2𝜋√ (1, 89 ⋅ 1010)3

2 ⋅ 6, 67 ⋅ 10−8 ⋅ 2 ⋅ 1033 = 999, 49 𝑠𝑒𝑐
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Thus, the neutron stars complete one rotation in every approximately
1000 seconds or 16,7 minutes, while the time for them to collide, when
their radius is 189.000 km, is 405.885 years. A lot of white dwarfs
and neutron stars exist with orbital periods in this range.
What is of the most interest here is that when the radius is reduced
to 1890 km or 𝑟 = 1, 89 ⋅ 108 cm, the collision merge time is:

𝑇 = 1, 28 ⋅ 105𝑠𝑒𝑐 = 35, 55 ℎ𝑜𝑢𝑟𝑠 ≈ 36 ℎ𝑜𝑢𝑟𝑠

and the frequency of their rotation then is:

𝜔 = √2𝑘𝑀𝑛𝑒𝑢
𝑟3 = √2 ⋅ 6, 67 ⋅ 10−8 ⋅ 2 ⋅ 1033

(1, 89 ⋅ 108)3 = 6, 29𝑠−1, 𝑓 = 𝜔
2𝜋

= 1𝐻

So, it is really remarkable that the whole process of 405.885 years
takes place until the stars approach at a distance 100 times smaller
and once they get there the phenomenon becomes rapid and violent.
The stars complete a rotation around each other in every 1 second
and within 36 hours they merge. Lastly, we calculate the emitted
radiation per unit time when their radius is 𝑟 = 1, 89 ⋅ 1010𝑐𝑚 and
𝑟 = 1, 89 ⋅ 108𝑐𝑚, respectively, using the formula (4.2.2):

𝑑𝐸
𝑑𝑡

= 64𝑘4𝑀5
𝑛𝑒𝑢

5𝑐5𝑟5 = 64 ⋅ (6, 67 ⋅ 10−8)4 ⋅ (2 ⋅ 1033)5

5 ⋅ (3 ⋅ 1010)5 ⋅ (1, 89 ⋅ 1010)5 = 1, 38 ⋅ 1035 𝑔 ⋅ 𝑐𝑚2

𝑠𝑒𝑐3

𝑑𝐸
𝑑𝑡

= 1, 38 ⋅ 1045 𝑔 ⋅ 𝑐𝑚2

𝑠𝑒𝑐3

It is clear that as the radius of the system reduces, the amount of en-
ergy that is being released is much larger. The event is indeed more
tense.

• Binary Black Hole merger GW150914

The Binary Black Hole merger GW150914 was the first astronom-
ical observation in 2015 that confirmed the existence of gravitational
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waves, as the general relativity predicted a century before. This sys-
tem consisted of two rotating black holes whose masses were of about:

𝑀1 = 36𝑀⊙, 𝑀2 = 29𝑀⊙

The event that was recorded [3], from the initial inspiral to their
merger, lasted approximately 0,2 seconds and the signal we took was
from 35 Hz to 250 Hz. Finally, a bigger black hole of about𝑀 = 62𝑀⊙
was formed. The radius of the system of the black holes, the time
of the merger and the orbital frequency that were measured were
respectively:
𝑟 = 350𝑘𝑚 = 35 ⋅ 106𝑐𝑚, Δ𝑡𝑚𝑒𝑟𝑔𝑒𝑟 = 20𝜇𝑠𝑒𝑐 = 2 ⋅ 10−5𝑠𝑒𝑐, 𝑓 = 75𝐻𝑧
So, using again the formulas (4.2.2) and (4.2.3), we can find ourselves

Figure 6: Binary Black Hole Merger of GW150914

the time of the merger, as well as the orbital frequency and test our
calculations by comparing them:

𝜔 = √𝑘(𝑀1 + 𝑀2)
𝑟3 = √6, 67 ⋅ 10−8 ⋅ (29 + 36) ⋅ 2 ⋅ 1033

(35 ⋅ 106)3 = √20, 224 ⋅ 104
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𝜔 = 4, 5 ⋅ 102𝑠𝑒𝑐−1, 𝑓 = 𝜔
2𝜋

= 71, 57𝐻𝑧

𝑇𝑚𝑒𝑟𝑔𝑒𝑟 = 5
256

⋅ 𝑐5

𝑘3 ⋅ 𝑟4

𝑀1𝑀2(𝑀1 + 𝑀2)
=

= 5
256

⋅ (3 ⋅ 1010)5

(6, 67 ⋅ 10−8)3 ⋅ (35 ⋅ 106)4

29 ⋅ 36 ⋅ 65 ⋅ (2 ⋅ 1033)3 = 4, 421 ⋅ 10−3𝑠𝑒𝑐

We notice that the frequency is pretty accurate, the time of merger
though has a significant deviation of two orders of magnitude, as
expected. As we noted when we found the formula for time merger, it
can be applied only when the distance of the rotating bodies is much
larger than their radii, so that they can be considered as massive
points. Calculating the Schwarschild radius of the black holes above,
we have:

𝑟𝑔1 = 2𝑘𝑀1
𝑐2 = 2 ⋅ 6, 67 ⋅ 10−8 ⋅ 36 ⋅ 2 ⋅ 1033

(3 ⋅ 1010)2 = 10, 672 ⋅ 106𝑐𝑚 = 106, 72𝑘𝑚

𝑟𝑔2 = 2𝑘𝑀2
𝑐2 = 2 ⋅ 6, 67 ⋅ 10−8 ⋅ 29 ⋅ 2 ⋅ 1033

(3 ⋅ 1010)2 = 8, 597 ⋅ 106𝑐𝑚 = 85, 97𝑘𝑚

Hence, the radius of the system: r=350 km for which the given time
of merger is Δ𝑡𝑚𝑒𝑟𝑔𝑒𝑟 = 2 ⋅ 10−5𝑠𝑒𝑐, is merely larger than the sum of
the radii of the two black holes. So, then the objects are too close and
applying our formula for time merger leads to inevitable, significant
error.
As long as the experimental figure 6 is concerned, as we already noted,
the time of merger that is depicted is approximately 0,2 sec. So,
solving our formula (4.2.3) over r, we calculate the radius of the system
then:

𝑟 = (
256 ⋅ 𝑘3𝑀1𝑀2(𝑀1 + 𝑀2)𝑇𝑚𝑒𝑟𝑔𝑒𝑟

5𝑐5 )1/4 =

= (256 ⋅ (6, 67 ⋅ 10−8)3 ⋅ 29 ⋅ 36 ⋅ 65 ⋅ (2 ⋅ 1033)3 ⋅ 0, 2
5(3 ⋅ 1010)5 )1/4 = 9, 077 ⋅ 107𝑐𝑚 = 907, 7𝑘𝑚
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So, approximately, when the radius of the system is almost 2,5 times
bigger, the time merger is 4 orders of magnitude bigger. We ascertain
that the merging becomes more and more rapid as the radius reduces
and that the figure shows a bigger part of the whole phenomenon
than the experimental data we took above.

In this system we can see how the much bigger masses affect the
merger. The event happens much more rapidly than the merger
of the binary neutron stars before, since for a radius of neutron
stars 𝑟 = 1, 89 ⋅ 107𝑐𝑚, same order of magnitude with the radius
𝑟 = 9, 077 ⋅ 107𝑐𝑚 of the black holes, the time merger is calculated to
be 12,8 sec in contrast with 0,2 sec here in black holes case. Moreover,
the amount of radiation they emit per unit time when the radius is
𝑟 = 35 ⋅ 106𝑐𝑚, using (4.1.3), is:

𝑑𝐸
𝑑𝑡

= 32𝑘4𝑀2
1 𝑀2

2 (𝑀1 + 𝑀2)
5𝑐5𝑟5 = 32 ⋅ (6, 67 ⋅ 10−8)4 ⋅ 292 ⋅ 362 ⋅ 652 ⋅ (2 ⋅ 1033)5

5 ⋅ (3 ⋅ 1010)5 ⋅ (35 ⋅ 106)5

𝑑𝐸
𝑑𝑡

= 1, 46 ⋅ 1058 𝑔 ⋅ 𝑐𝑚2

𝑠𝑒𝑐3

For the corresponding radius 𝑟 = 18, 9 ⋅ 106𝑐𝑚 the neutron stars emit
per unit time:

𝑑𝐸
𝑑𝑡

= 1, 38 ⋅ 1050 𝑔 ⋅ 𝑐𝑚2

𝑠𝑒𝑐3 .

So, the radiation emitted per unit time from the black holes is several
times larger, as well, than the corresponding one from the neutron
stars. This is why we managed to detect these gravitational waves
[2].
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5 Running and Future GW Experiments

5.1 Cryogenic Resonant Bar Detectors
The first GW detectors that were designed by Weber were the Resonant
Bar Detectors. The main part of these detectors is a massive suspended
cylinder of several tons which is vibrating at a characteristic resonance
frequency. The basic idea around them is that when a gravitational wave
passes through them, oscillates the cylinder whose resonance frequency is
close to the frequency of gravitational radiation, around 75Hz, allowing to
detect the gravitational signal. The reason of suspending the cylinder is
to reduce the noise and and for that the bar is also cooled in very low
temperatures in order to minimiζe the thermal noise, which is one of the
fundamental sources of noise for Resonant Bar Detectors. Additionally, the
bigger the cylinder’s mass is the better the detector’s sensitivity is, as the
errors minimiζe. So the next generation of such detectors aim in greater
masses. Current experiments which use such detectors are ALLEGRO,
AURIGA, EXPLORER, NAUTILUS, and NIOBI [4].

5.2 Michelson Laser Interferometers
These category of detectors are the contemporary, mainly used GW detec-
tors. They are the well known Michelson-Morley Interferometers, which
consist of two perpendicular vacuum optic paths with a laser placed at the
one end of one of the arms. The beams from the laser at some point split
through a beam splitter, placed at the point where the arms are crossed,
they reflect on mirrors at the other two ends of the two arms and finally
they combine again at the splitter and end in a detector at the other end of
the second arm. The detector gets the signal of the two combined beams.
The way this device can detect gravitational waves is that when a gravi-
tational wave passes through, slightly stretches one arm and shortens the
other, changing the lengths of the two paths and so the frequencies of the
interfered beams and their interference. Though, the fluctuation is so small
that the device needs to be as much as isolated from sources of noise can be
and sensitive as well, in order to be able to detect the delicate gravitational
waves [5]. Thus, from the beginning till now, this is the main headache of
mechanics and experimentalists about the designing of such detectors, the
minimiation of noise.
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So, from 2002-2015 and 2023 till today, the LIGO (Laser Interferometer
Gravitational Wave Observatory) detector in Louisiana and in Hanford
(Washington) USA, the VIRGO in Santo Stefano a Macerata, Italy, and
from 2019 and forth the KAGRA detector in Kamioka, Japan [6] also, are
the Michelson Laser Interferometers that are running together and collabo-
rate, combining their data on measuring fluctuations in their signals, check-
ing whether they come from GWs or random noise. The LIGO-VIRGO
collaboration was the one that for the first time managed to detect gravita-
tional waves, the GW150914, which we discussed in the main text, coming
from two black holes with masses of 29 and 36 solar masses merging about
1.3 billion light-years away from earth [3]. This collision released a suffi-
ciently large amount of gravitational radiation that the detectors were able
to detect.
As far as the future experiments are concerned, three basic programs are
running, the ET (Einstein Telescope) in Europe, the LISA (Laser Interfer-
ometer Space Antenna) from European Space Agency (ESA) and DECIGO
( DECi-hert Interferometer Gravitational wave Observatory) from Japan.
The Einstein Telescope will be a ground-based detector as are the previous
three detectors that are currently operating, but this one will be constructed
underground in order to limit the effect of the seismic noise. The remain-
ing characteristics that will make it a much more sensitive and improved
detector are the increasing of the size of the interferometer from the 3km
arm length of the Virgo detector or 4 km of the LIGO to 10km, due to its
shape. The inteferometer will consist by three pieces shaping a triangle,
this way its length increases a lot and easily. Moreover, new technologies
are added, such as cryogenic facilities that will cool down to 10–20K the
mirrors to directly reduce the thermal vibration of the test masses, new
quantum technologies to reduce the fluctuations of the light, and a set of
infrastructural and active noise-mitigation measures to reduce environmen-
tal perturbations [7].
The big revolution in the evolution of GW detectors comes with space-
based interferometers, LISA and DECIGO. The main idea is to avoid earth
originating noise, seismic, volcanos operation and others. So LISA will con-
sist by three spacecrafts arranged in an equilateral triangle with sides 2.5
million kilometres long, moving along an Earth-like heliocentric orbit [8].
So another advantage is the huge increasing of the length of the detector,
which increases its sensitivity. The DECIGO detector is designed in order
to fill in the gap between the sensitive bands of frequency that LIGO and
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LISA detect [9]. These future detectors are expected to operate around
2030 and 2035.
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6 Conclusions
Summarising the above theoretical analysis, we stress that our main result
is the calculation of the total gravitational energy radiation that the bi-
nary physical systems emits per unit time (4.1.1). Through this formula
we understand the conditions of the emission of gravitational radiation.
First and foremost, there must be acceleration of acceleration, since in
the formula there is third time derivative of the quadrupole momentum:
𝐷𝑖𝑗 = ∫ 𝜇(3𝑥𝑖𝑥𝑗 − 𝛿𝑖𝑗𝑥2

𝜅)𝑑𝑉. So it is not enough for a system to accel-
erate in order to emit gravitational waves, as in electrodynamics, but its
acceleration has to accelerate. The second remarkable point is that the
gravitational radiation is proportional to 1/𝑐5, in contrast to the electro-
magnetic radiation which is proportional to 1/𝑐3, which explains why it is
so difficult to generate gravitational waves and why they are much weaker
and hard to detect than the electromagnetic waves. Another significant
point is the polarization of the waves. For the massive elementary particles
for every value of s there are 2s+1 polarizations of spins, meaning that the
group of symmetry is the SO(3), but for massless particles for each spin s
there are only two spin polarizations -s, +s, meaning that the little sym-
metry group is instead SO(2). For the gravitational waves we showed that
they propagate with the velocity of light and that there are only two po-
larizations perpendicular to the direction of the propagation and therefore
describe a massless particle, the graviton. Thus, the graviton, the elemen-
tary particle of gravitational interaction, is a massless particle which has
two polarizations. We also ascertained through the examples we gave that
the more massive the system is, the more violent the collision and bigger the
emission of radiation is. So in order to detect gravitational waves (GW), we
need events of significantly large binary systems merging. Events that last
for fractions of a second, so we need such detectors so that they can detect
with accuracy such tricky signal. This is why a lot of effort and research
have taken and still taking place throughout the years on GW detectors.
Therefore, the bet for the years to come, is to construct the most efficient
detectors in order to improve the studies on GW and retrieve the answers
we expect we can get about the beginning of the universe.
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Appendices
A The harmonic gauge fixing condition in

weak field approximation
The harmonic gauge is: 2𝑥𝜇 = 0, where 2 is the covariant D’ Alember-
tian, so:

2𝑥𝜇 = 0, 𝑔𝜌𝜎𝜕𝜌𝜕𝜎𝑥𝜇 − 𝑔𝜌𝜎Γ𝜆
𝜌𝜎𝜕𝜆𝑥𝜇 = 0, 𝑔𝜌𝜎Γ𝜆

𝜌𝜎 = 0

(𝑔(0)𝜌𝜎 − ℎ𝜌𝜎) ∗ 1
2

𝑔(0)𝜆𝛼(𝜕𝜎ℎ𝛼𝜌 + 𝜕𝜌ℎ𝛼𝜎 − 𝜕𝛼ℎ𝜌𝜎) = 0

𝑔(0)𝜌𝜎 ∗ 1
2

𝑔(0)𝜆𝛼(𝜕𝜎ℎ𝛼𝜌 + 𝜕𝜌ℎ𝛼𝜎 − 𝜕𝛼ℎ𝜌𝜎) − ℎ𝜌𝜎 ∗ 1
2

𝑔(0)𝜆𝛼(𝜕𝜎ℎ𝛼𝜌 + 𝜕𝜌ℎ𝛼𝜎 − 𝜕𝛼ℎ𝜌𝜎) = 0

𝑔(0)𝜆𝛼(1
2

𝜕𝜎ℎ𝜎
𝛼 + 1

2
𝜕𝜌ℎ𝜌

𝛼 − 1
2

𝜕𝛼ℎ) = 0, 𝑔(0)𝜆𝛼𝑔(0)𝜆𝛼(1
2

𝜕𝜌ℎ𝜌
𝛼 + 1

2
𝜕𝜌ℎ𝜌

𝛼 − 1
2

𝜕𝛼ℎ) = 0

𝜕𝜌ℎ𝜌
𝛼 − 1

2
𝜕𝛼ℎ = 0, 𝜕𝜌ℎ𝜌

𝛼 − 1
2

𝑔(0)𝜌
𝛼 𝜕𝜌ℎ = 0, 𝜕𝜌(ℎ𝜌

𝛼 − 1
2

𝛿𝜌
𝛼ℎ) = 0

𝜕𝜌Ψ𝜌
𝛼 = 0, 𝑤ℎ𝑒𝑟𝑒 Ψ𝜌

𝛼 = ℎ𝜌
𝛼 − 1

2
𝛿𝜌

𝛼ℎ

where we substituted the 𝑔𝜌𝜎 and Γ𝜆
𝜌𝜎 from the formulas 2.1.3, 2.1.6 respec-

tively.

B The Ricci tensor in the vacuum
In the void the energy-momentum tensor is zero: 𝑇𝜇𝜈 = 0, so from the
Einstein equation:

𝑅𝜇𝜈 − 1
2

𝑔𝜇𝜈𝑅 = 8𝜋𝑘
𝑐4 𝑇𝜇𝜈 (B.0.1)
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using a generic metric 𝑔𝜇𝜈, we have:

𝑔𝜇𝜈𝑅𝜇𝜈 − 1
2

𝑔𝜇𝜈𝑔𝜇𝜈𝑅 = 8𝜋𝑘
𝑐4 𝑔𝜇𝜈𝑇𝜇𝜈, 𝑅 − 4

2
𝑅 = 8𝜋𝑘

𝑐4 𝑇

𝑅 = −8𝜋𝑘
𝑐4 𝑇 (B.0.2)

Substituting the Ricci scalar from (B.0.2) to the Einstein equation above
(B.0.1):

𝑅𝜇𝜈 = 8𝜋𝑘
𝑐4 𝑇𝜇𝜈 + 1

2
𝑔𝜇𝜈𝑅 = 8𝜋𝑘

𝑐4 𝑇𝜇𝜈 − 1
2

𝑔𝜇𝜈
8𝜋𝑘
𝑐4 𝑇

𝑅𝜇𝜈 = 8𝜋𝑘
𝑐4 (𝑇𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑇 ) (B.0.3)

so, we can see from (B.0.3), that when 𝑇𝜇𝜈 = 0 ⇒ Τ = 0 ∶ 𝑅𝜇𝜈 = 0 too.
Thus, in the void the Ricci tensor, as well as the Ricci scalar, is equal to
ero.

C Calculation of the polarizations average:
𝑒𝑖𝑗𝑒𝑘𝑙

Since 𝑒𝑖𝑗𝑒𝑘𝑙 is a normalied tensor of rank 4 to get what is equal to, it is
enough to combine the unitary 𝑛𝑖 and 𝛿𝑖𝑗 in all possible ways having 4
indices each time:

𝑒𝑖𝑗𝑒𝑘𝑙 = 𝑎 ⋅ 𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 + 𝑏 ⋅ (𝛿𝑖𝑗 ⋅ 𝑛𝑘𝑛𝑙 + 𝛿𝑘𝑙 ⋅ 𝑛𝑖𝑛𝑗) + 𝑐 ⋅ (𝛿𝑖𝑘 ⋅ 𝑛𝑗𝑛𝑙 + 𝛿𝑖𝑙 ⋅ 𝑛𝑘𝑛𝑗+

+𝛿𝑗𝑙 ⋅ 𝑛𝑘𝑛𝑖 + 𝛿𝑗𝑘 ⋅ 𝑛𝑖𝑛𝑙) + 𝑑 ⋅ 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝑓 ⋅ (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)

Now we apply the properties of the tensor polarization and we begin with
its trace to be zero 𝑒𝑖𝑖 = 0:

𝑒𝑖𝑖𝑒𝑘𝑙 = 𝑎 ⋅ 𝑛𝑖𝑛𝑖𝑛𝑘𝑛𝑙 + 𝑏 ⋅ (𝛿𝑖𝑖 ⋅ 𝑛𝑘𝑛𝑙 + 𝛿𝑘𝑙 ⋅ 𝑛𝑖𝑛𝑖) + 𝑐 ⋅ (𝛿𝑖𝑘 ⋅ 𝑛𝑖𝑛𝑙 + 𝛿𝑖𝑙 ⋅ 𝑛𝑘𝑛𝑖+

+𝛿𝑖𝑙 ⋅ 𝑛𝑘𝑛𝑖 + 𝛿𝑖𝑘 ⋅ 𝑛𝑖𝑛𝑙) + 𝑑 ⋅ 𝛿𝑖𝑖𝛿𝑘𝑙 + 𝑓 ⋅ (𝛿𝑖𝑘𝛿𝑖𝑙 + 𝛿𝑖𝑙𝛿𝑖𝑘) =
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= 𝑎 ⋅ 𝑛𝑘𝑛𝑙 + 𝑏 ⋅ (3𝑛𝑘𝑛𝑙 + 𝛿𝑘𝑙) + 𝑐 ⋅ (𝑛𝑘𝑛𝑙 + 𝑛𝑘𝑛𝑙 + 𝑛𝑘𝑛𝑙 + 𝑛𝑘𝑛𝑙) + 3𝑑 ⋅ 𝛿𝑘𝑙 + 2𝑓 ⋅ 𝛿𝑘𝑙 =

= (𝑎 + 3𝑏 + 4𝑐) ⋅ 𝑛𝑘𝑛𝑙 + (𝑏 + 3𝑑 + 2𝑓)𝛿𝑘𝑙 = 0

𝑎 + 3𝑏 + 4𝑐 = 0 (C.0.1)

𝑏 + 3𝑑 + 2𝑓 = 0 (C.0.2)

Right after that, we take the condition: 𝑛𝑖 ⋅ 𝑒𝑖𝑗 = 0:

𝑛𝑖𝑒𝑖𝑗𝑒𝑘𝑙 = 0, 𝑛𝑖 ⋅ 𝑒𝑖𝑗𝑒𝑘𝑙 = 𝑎 ⋅ 𝑛𝑖𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 + 𝑏 ⋅ (𝛿𝑖𝑗𝑛𝑖𝑛𝑘𝑛𝑙 + 𝛿𝑘𝑙𝑛𝑖𝑛𝑖𝑛𝑗)+

𝑐 ⋅ (𝛿𝑖𝑘𝑛𝑖𝑛𝑗𝑛𝑙 + 𝛿𝑖𝑙𝑛𝑖𝑛𝑘𝑛𝑗 + 𝛿𝑗𝑙𝑛𝑘𝑛𝑖𝑛𝑖 + 𝛿𝑗𝑘𝑛𝑖𝑛𝑖𝑛𝑙) + 𝑑 ⋅ 𝑛𝑖𝛿𝑖𝑗𝛿𝑘𝑙+

+𝑓 ⋅ (𝑛𝑖𝛿𝑖𝑘𝛿𝑗𝑙 + 𝑛𝑖𝛿𝑖𝑙𝛿𝑗𝑘) = 𝑎 ⋅ 𝑛𝑗𝑛𝑘𝑛𝑙 + 𝑏 ⋅ (𝑛𝑗𝑛𝑘𝑛𝑙 + 𝛿𝑘𝑙𝑛𝑗) + 𝑐 ⋅ (𝑛𝑘𝑛𝑗𝑛𝑙+

+𝑛𝑙𝑛𝑘𝑛𝑗 + 𝛿𝑗𝑙𝑛𝑘 + 𝛿𝑗𝑘𝑛𝑙) + 𝑑 ⋅ 𝑛𝑗𝛿𝑘𝑙 + 𝑓 ⋅ (𝑛𝑘𝛿𝑗𝑙 + 𝑛𝑙𝛿𝑗𝑘) =

(𝑎 + 𝑏 + 2𝑐)𝑛𝑙𝑛𝑘𝑛𝑗 + (𝑏 + 𝑑)𝛿𝑘𝑙𝑛𝑗 + (𝑐 + 𝑓)𝑛𝑘𝛿𝑗𝑙 + (𝑐 + 𝑓)𝑛𝑙𝛿𝑗𝑘 = 0

𝑎 + 𝑏 + 2𝑐 = 0 (C.0.3)

𝑏 + 𝑑 = 0, 𝑑 = −𝑏 (C.0.4)

𝑐 + 𝑓 = 0, 𝑓 = −𝑐 (C.0.5)

Using (C.0.4), (C.0.5), the formula (C.0.2) becomes:

𝑏 − 3𝑏 − 2𝑐 = 0, 𝑐 = −𝑏 (C.0.6)

Likewise, from (C.0.6), (C.0.1) becomes:

𝑎 + 3𝑏 − 4𝑏 = 0, 𝑏 = 𝑎 (C.0.7)

So, eventually, for the coefficients we have that:

𝑏 = 𝑎; 𝑐 = −𝑎; 𝑑 = −𝑎; 𝑓 = 𝑎 (C.0.8)
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The formula (C.0.3) just verifies the relations above, so we need a last
condition and that will be the normaliation of the tensor: 𝑒𝑖𝑗𝑒𝑖𝑗 = 1:

𝑒𝑖𝑗𝑒𝑖𝑗 = 𝑎 ⋅ 𝑛𝑖𝑛𝑗𝑛𝑖𝑛𝑗 + 𝑏 ⋅ (𝛿𝑖𝑗𝑛𝑖𝑛𝑗 + 𝛿𝑖𝑗𝑛𝑖𝑛𝑗) + 𝑐 ⋅ (𝛿𝑖𝑖𝑛𝑗𝑛𝑗 + 𝛿𝑖𝑗𝑛𝑖𝑛𝑖+

+𝛿𝑗𝑗𝑛𝑖𝑛𝑖 + 𝛿𝑖𝑗𝑛𝑖𝑛𝑗) + 𝑑 ⋅ 𝛿𝑖𝑗𝛿𝑖𝑗 + 𝑓 ⋅ (𝛿𝑖𝑖𝛿𝑗𝑗 + 𝛿𝑖𝑗𝛿𝑖𝑗) =

= 𝑎 + 2𝑎 − 𝑎 ⋅ (3 + 1 + 3 + 1) − 3𝑎 + 𝑎(3 ⋅ 3 + 3) = 4𝑎 = 1

𝑎 = 1
4

(C.0.9)

Thus, combining (C.0.8), (C.0.9), we finally get the 𝑒𝑖𝑗𝑒𝑘𝑙:

𝑒𝑖𝑗𝑒𝑘𝑙 = 1
4

[𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 + (𝛿𝑖𝑗𝑛𝑘𝑛𝑙 + 𝛿𝑘𝑙𝑛𝑖𝑛𝑗) − (𝛿𝑖𝑘𝑛𝑗𝑛𝑙 + 𝛿𝑖𝑙𝑛𝑘𝑛𝑗+

+𝛿𝑗𝑙𝑛𝑘𝑛𝑖 + 𝛿𝑗𝑘𝑛𝑖𝑛𝑙) − 𝛿𝑖𝑗𝛿𝑘𝑙 + (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)]

D Calculation of the space averaging: 𝑛𝑖𝑛𝑗, 𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙

Starting with the average 𝑛𝑖𝑛𝑗, as it is unitary and of second rank, it will
be written as a product of 𝛿𝑖𝑗:

𝑛𝑖𝑛𝑗 = 𝑎𝛿𝑖𝑗, 𝑛𝑖𝑛𝑖 = 𝑎𝛿𝑖𝑖 = 3𝑎 = 1, 𝑎 = 1
3

𝑛𝑖𝑛𝑗 = 1
3

𝛿𝑖𝑗

Likewise, the average 𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙, as it is of rank 4, will be written as the
sum of all combinations of 𝛿𝑖𝑗𝛿𝑘𝑙:

𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 = 𝑎(𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘), 𝑛𝑖𝑛𝑖𝑛𝑘𝑛𝑘 = 𝑎(𝛿𝑖𝑖𝛿𝑘𝑘 + 𝛿𝑖𝑘𝛿𝑖𝑘 + 𝛿𝑖𝑘𝛿𝑖𝑘) =

= 𝑎(3 ⋅ 3 + 3 + 3) = 15𝑎 = 1, 𝑎 = 1
15

𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 = 1
15

(𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)
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