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ITEPIAHYH

H mopodoa dmhopatikn epyocio emKEVIPOVETAL GTNV OVOKOTAOKELY NAlog o€ aoVUpeTpeg Tomoloyieg pe 6vo
adpato coOpaTidw, OTmg To veTpiva 1 GAA vIoynNPle cmpoTidw okotewng YANG. H pébodog €xel ypnopomombei
UEYPL OTIYUNG HE EMLTUYIO GE CULUUETPIKEG TOTOAOYIEG KOl €MITPEMEL TN S1OdIACTATY OVOKATOOKELT HALoG TOL
GUGTNLOTOG.

Ot teMKéG KOTOOoTACELS e EAAEITOVON EVEPYELD €ivol ONUAVTIKEG, EMED TTpoPAémovtar amd Bewpieg mépa amd TO
Kabiepwpévo TIpotuno (BSM). Qotdoo, n perétn toug anotelel mpokinon, kabhg n avalitnon véov copatidioy
glvol apkeTd mo TePImAOKN G GYEOT LE AVTH TOV YVOOTOV copatidiov. [lapd to yeyovog o1t cuvnbileton o tétoteg
KOTAOTAGELS, N avaliTnon va YiveTal cuyvd GTnv ovpd Tng KOTOVOUNG NG EALEITOVCAG EVEPYELD, TO GYNUO TNG
Katavoung tov vroBddpov gival TaPOLOO LE TO GYNLO KOTAVOUNG TOV CHUOTOS, KAoTdVTag SUGKOAN TN dtdKpion
peta&d tovg. EmmAéov, ta anotedéopata Bacilovial cuyvd oe Bempnricég Tapadoyéc, ol omoieg pmopel va 0dnyncovv
o€ AavOaoéva CUUTEPACLLOTOL.

Amd v dAn, N palo amotelel pio omd TIG MO OMUOVTIIKES TOPAUETPOVS GTN PLGIKT TV CTOWELMIDV COUATOI®V,
kaBog eivatl éva eUOIKO YOPAKTNPIOTIKO oV UTopel va yproyomombel yio v meptypapn tov wiotitov tovs. H
emloyn tov emmédon palog yuwo avalnmoelg Kopue®y gival Aoyiky, kabdg onpoto mov umopel va kpdpfovv véa
QLOIKN TEIVOVV Vo epEavilovTol 6€ CUYKEKPIEVES TIEG Nalag, Tpocpépovtag avénuévn evaicncio oe oxéon pe
GALEG KIVMUATIKEG TOPAUETPOVG. AkOa, TO VIEOPabpo oTIg kKatavoués Halag eivol ocuyvd OpaAd, ETITPETOVIOG GTO
onpa vo, Eeywpilet.

H pébodoc mov mpoteiver n [2] Paciletar ot d168100TATH OVOKOTOOKEVT] UALOC Y10 TEMKEC KOTUOTAGELS e dVO
adpato coOUATIOW, TOV EMTPENEL TNV 0val)TNOT KOPLE®V 610 diodldotato eminedo. H emhoyn avalijtmong kopvepdv
o€ 500 J10oTacEL; 0OPEIAeETAL OTO YEYOVOS OTL LEAETMOVTOL TOTOAOYIES e dVO AYVOOTO COUATIOW.

Apykd, vIapyEL AVOALTIKY AVON Y TNV ddomacr evog (edyovg ToT kovapKk o€ VO AentoOvio Kot dvo adpata
copatidw, to vetpiva. Avti 1 avoAvtikn Ao vroAoyilet Tig oplég TOV AdPATOV COUOTOIOV Le Leydin akpifela
KO EMTPENEL TV TANPY OVAKOTOOKELT TOV cLoTAHATOS. H avolvtikny Abon kataAnyel o€ £va TOADOVULO TETAPTOL
Babprod kot pmopetl va ddoet €og Téooepig Avoelg yu éva (gdyog palmv. H avolvtikny Adon ypnoylomoteitol g
gPYOaAEio YO TNV OVOKATOOKELT LALOC.

¥ ovvéxew, dokwaletar n ovakatookevn palog oe pio yvoot ovppetpikn tomoloyio tov Koabiepopévou
[Ipotomov, avt TG d1-AemnToviKng Stdomacns evog (edyovg Tom KOLApK ¢ omddeln. Amd TN otTiyun, mov 1|
OVOAVTIKN ADOT ETITPENEL TV TANPY| OVOKOTAUGKELT TOL GLOTHLOTOG KOl TOPEYEL TANPOPOPIES Yo TNV EVEPYELD Kol
TNV TPITN CLVIGTOGN TNG OPUNG TV VETPIveV, gival po koA 10éo va eleyyBel 6ho to eminedo paldv yio mbovég
Mogic. Ao ovtd tov EAeyy0 TPOKVTTEL pio TEPLOYT GTO 0160100T0T0 EMinedo paldv oty omoio pmopei va Avbei Eva
Cevyog polov (emivodrea). Xt cvvéyela, pe tn Pondewa tov PDFS kdbe onueio poldv amoxtd éva Papog to
omoio pmopet va mpootedel oy katavoun erivoottag. o éva yeyovog kot yuo pior Avor, onuovpyeitatl pio
TETOW0L KOTOVOUN. ATO OAEG TIG KOTAVOUES ETAVCLUOTNTOS OV TPOKVTTOVY Yo £va YEYOVOG EMALYETOL £va. onuEio
palov, avtd pe to peyardtepo Papog. Emopévag, yio éva yeyovog mpokbdmrel éva povadikd Levyog polov. Av
emavaAnedet 1 dradkacio ovT Yot TOAAG YeyovoTa givat duvath 1 S1631A0TATN AVaKATAoKELT Haag, 1 omoia yio ™)
GUULETPIKT) TOTOAOYIO HTALV EMLTUYTUEVT).

211 GUVEYELD, 1| EPYACIO EMEKTEIVETAL GTN SIEPEVVION TOTOAOYIDV TTOL £XOVV MG TEMKT| KATAGTOGN TNV 10100 pe ™V
GUUUETPIKT OAAG Ol HAleC TV GUUUETEXOVIOV cOUATISIOV dtapépovy. Ot Tomoloyieg mov doKipdoTnKaY ey 600
kot BaoiCovror oto Rho Model [4][5][6], éva poviého mov mpoPAémetl éva, véo vrobetikd Bopd tom kovdpk. H pia
tomoloyio TpoéPrene Eva GyvmoTto couatioo eva 1 devtepn 000. Kdvovtog tig avaykaisg aAlayég otov adydopiOuo, 1
avakatackevn palog sival epikth. Kot otig 000 mepumtmoetg, ta anoteAéopato €dsi&av ott 1 pébodog pmopel va
VIOAOYIGEL EMTUYADG TIG HALEG TOV AYVOOTM®V COUATIOIWOV.

SOUTEPOCUOTIKG, 1] OVOAVTIKT AVCT UTOPEL VoL EQPUPUOCTEL KOl VO ¥pNOLoTonfel yio TNV avakatooke| paldv o
OACVOUUETPEG TOTMOAOYIES, OMMG KOl G€ GULUUETPKEG. Avth 1 péBodog eivor katdAAnAn yw v avalitmon vémv
copaTinv, Kabmg dev anattel Kapio ek T@V TPOTEPOV YVAOOoT TV Haldv Tovg kal gival aveEptnn amd BempnTikég
VoBEaELg, EKTOG OO TNV TOTOAOYIO TOL GLGTNHLATOG.
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Abstract— The two-dimensional mass reconstruction of an
asymmetric topology with two invisible particles from Beyond
the Standard Model (BSM) scenarios is presented. The method
has been used so far successfully in symmetric topologies and
allows in this case two-dimensional mass reconstruction of the
system.

I. INTRODUCTION

Missing energy final states are an interesting case as they
are predicted by well-motivated BSM theories. Exploring
final states with missing energy in pursuit of new physics
presents a formidable challenge, significantly more intricate
than the search for particles with established properties. This
missing energy arises from undetectable particles such as
SM neutrinos (e.g heavy top partners) or other hypothetical
particles such as WIMPs and other dark matter candidates.

Even though, in final states with invisible particles the
search is usually performed using the tail of a missing
energy related distribution, the background processes have a
similar shape, making it challenging to distinguish them
from signal. Also, the interpretation of results in the tail
region is usually based on the assumptions and limitations of
theoretical models leading to false conclusions. Even if a
discovery is confirmed, only a constrained amount of
supplementary information regarding the new physics would
be forthcoming. Ideally, the search performance remains
unaffected by the model or, realistically, exhibits as much
model independence as possible.

On the other hand, mass is one of the most significant
quantities in elementary particles since it is a natural
parameter for characterizing particle properties. Selecting
mass space for resonance searches might be a reasonable
path [2]. Peaks or excesses in the mass spectrum are
localized. Resonance signals, also, tend to be concentrated at
specific mass values, leading to enhanced sensitivity in the
mass space compared to other kinematic variables.
Moreover, in many cases, background processes exhibit
relatively smooth distributions in the mass space, allowing
resonant signals to stand out more prominently making their
extraction easier. Historically, also, many groundbreaking
discoveries in particle physics, such as the discovery of the
Higgs boson, have been made through bump hunting search.
The method proposed in [2] suggests employing a two-
dimensional mass reconstruction of the final states involving

two invisible particles, which allow bump-hunting search in
two dimensions.

The subsequent sections outline the procedure for
conducting a 2-Dimensional mass reconstruction in final
states characterized by two invisible particles. Section Il
presents the symmetric topology case using a dilepton top
pair system as a proof of principle and explains all the steps
necessary. Then in Section Ill, an asymmetric topology is
presented. The employment of two-dimensional mass
reconstruction facilitates these searches via bump hunting
giving a single entry per event, harnessing all the advantages
offered in terms of discovery. Finally, Section 1V is
dedicated to conclusions.

Il. The Method for Symmetric Topologies

Figure 1. Feynman diagram of the top pair dilepton decay.

In the benchmark top pair topology (Figure 1) for final
states with two invisible particles, an analytical solution of
the system of equations describing the top pair dilepton
kinematics exists [2]. Analytical Solution is an algorithm
that takes input the masses of top quarks, W bosons, b
quarks, the detector’s measured momenta of visible particles
as well as missing energy (Emissx, Emissy). The output
produced is the momenta of the two neutrinos. Each solution
allows complete reconstruction of the event kinematics,
meaning that the energy of the system E and the p;
component of momentum can be computed. Thus, the
fractions of beam energy of the two partons participating in
the scattering are calculable for every solvable event:

X, =(E RN

These fractions are incorporated into Parton Distribution
Functions (PDFs), assigning a weight to each mass pair of W
boson and top quark. The mass point and solution with the
highest weight is selected. Thus, for a single event one mass
point of top quark and W boson is estimated.

As mentioned, there is an analytical solution of the
system of equations describing the top pair dilepton
kinematics. The topology of such a system is presented in
Figure 1. The system of equations describing the kinematics
of top-pair dilepton events can be expressed by two linear
and six nonlinear equations (Appendix). From the system of
these equations arises a quartic polynomial representing the
z component of neutrino's momentum [1]. In order for this
polynomial to be solved the masses of top quarks, W bosons,
b quarks must be given as an input. Analytical solutions,
also, requires the momenta of visible particles and the



missing energy components. The algorithm has as an output
the neutrino's momentum. The number of real solutions can
be either 0, 2, or 4. However, a combinatorial problem
occurs since it is unknown which lepton corresponds to each
bottom quark for the event. So, two combinations of final
states need to be considered, leading to two sets of solutions,
each providing a maximum of four solutions. Each event can
have up to 8 solutions for neutrino’s momentum. Each
solution allows the full reconstruction of the top pair system
kinematics.
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Figure 2. Solvability distribution in the Mz and My plane
for one of the possible solutions for a single dilepton top
pair event.

Searching configurations involving two invisible
particles doesn't necessitate in symmetric topologies prior
knowledge of their masses, such information emerges as an
outcome. Since the algorithm of analytical solution allows to
enter any pair of masses for top quark and W boson, each
combination of them can be examined for potential
solutions. So, the mass plane of top quark and W boson was
scanned in steps of 5 GeV, for every single solution, to
locate the area where the event can be solved. An example
of solvability (solution area) for a single event for one
solution is presented in Figure 2. The area provides a
boundary in the lower mass region for the possible masses of
top quark and W boson, as below these masses the event is
not solvable [2].

Each solution provided by the algorithm allows complete
reconstruction of the kinematics of the event, meaning that
the energy E and the p, component top pair system are
computable. These quantities carry high importance since
they can be used for the estimation of fractions of beam
energy of the two partons participating in the hard scattering
Xi, i =1,2. This further allows a weight per mass point and
solution to be estimated. By utilizing fractions Xi, X, a PDF
associated with each parton can be calculated [7]. Then the
two probability densities are multiplied to give an event
weight per mass point per solution for a single event. The
PDFs impose an energy restriction, setting an upper limit on
the masses produced due to the finite collision energy, as the
center of mass energy of the partons involved in the hard
scattering must be lower than the LHC collision energy [2].
For the estimation of the PDF values the LHAPDF-6.1.2
interface was used and the PDF set CT10 [2],[3].[7]. For
each solution, a weighted two-dimensional mass distribution
is obtained for a single event. An example of such

distribution is presented in Figure 3. Thus, for a single event
8 weighted two-dimensional distributions are created, one
for each solution. The mass point with the highest weight
from all 8 distributions is selected. The algorithm gives a
single pair of masses of top quark and W boson for a single
event.

The top pair dilepton decay (Figure 1) can be used as a
proof of principle for the proposed method since it is a well-
established process.
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Figure 3. PDF weighted solvability distribution in the Mr
and My plane for one of the possible solutions for a single
dilepton top pair event.
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Initially, events were generated using Madgraph5 at a
collision energy of 13 TeV, followed by hadronization
implemented via Pythia8 [8]. These events were further
processed through Delphes [9] software for a CMS like
detector simulation and reconstruction. Finally, an event
selection was applied, requiring 2 leptons, 2 jets and large
missing transverse energy. The dilepton top pair events
applied for this topology were fully simulated.
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Figure 4. Two-dimensional reconstructed mass distribution
for the symmetric topology of simulated top pair events.

Applying the above method in a dilepton top pair sample
the two-dimensional reconstructed mass distribution formed
is presented in Figure 4. The masses of W boson and top
quark lie close to their generated values.



The main conclusion is that the method is effective for a
known process of the Standard Model and most important
does not require prior knowledge of the particles’ masses.

I1l. ASYMMETRIC TOPOLOGIES

The algorithm of analytical solution itself does not
assume that the masses of the particles of the two branches
are necessarily symmetric. Therefore, it seems reasonable to
test the possible application of the method to asymmetric
topologies predicted by BSM theories.

Initially, the analytical solution for asymmetric
topologies was tested with a toy monte carlo. The toy monte
carlo events were solved successfully at per mill level for the
symmetric topology. The toy monte carlo works by creating
a top quark with specific energy with random angles thita,
phi in a back-to-back configuration with the antitop quark in
the lab frame. Then, the top quark decays in its rest frame
isotropically to W boson and b quark and boosted in the lab
frame. The identical procedure was followed for the decay
of W bosons to leptons and neutrinos. Tests of the algorithm
for asymmetric topologies using this toy monte carlo were
successful at per mill precision similar to symmetric
topology. These results indicate that the analytical solution
works for both symmetric and asymmetric topologies.

2 4

Figure 5. Feynman diagram of an asymmetric topology with
one unknown particle.

Since the method is effective to any topology like the
dilepton top decay, for the asymmetric case the following
process was examined:

pp — Z/Pa = tT' = WbWB = it (1)

where T' is a new hypothetical heavy top partner. The
process (Figure 5) is predicted by the Rho model [5][6]. This
model provides a description for spin-1 resonances (P,
particle). The P, particle is represented by a fourplet and
transforms as vector triplets [(3,1) and (1,3)] under the
SO(4) ~ SU(2)L x SU(2)r symmetry, or as a singlet (1,1)
under the abelian group U(1)x. The Rho model, also, predicts
the (T, B) doublet with the same quantum numbers as top
and bottom quarks and the Xs;s, X235 doublet with an exotic
particle of charge 5/3 and a second top-like resonance,
Xars[5][6].

Figure 6. Feynman diagram of an asymmetric mass dilepton
decay with two unknown paricles.

A sample of events was generated with Madgraph5 at a
collision energy of 13 TeV importing of Rho Model
[4],[5].[6]. Events were generated with T' mass set at 700
GeV and W mass set at 80 GeV. Initially, only particles of
the hard process were examined.
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Figure 7. Solvability distribution in the My and Mw plane
for one of the possible solutions of a single event for the
asymmetric topology.

These events were used to evaluate where the analytical
solution algorithm successfully solves top quarks and the
hypothetical new T' quark with varying masses. The fraction
of events where no solution was found, or no solution
coincides with the generated neutrino-antineutrino momenta
to real precision is at per mill level as in the symmetric case
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and My plane for one of the possible solutions of a single
event for the asymmetric topology.



First results refer to the solvability of a single event. It’s
worth mentioning that due to the combinatorics of
asymmetric case four sets of solutions had to be computed
instead of two. In this case, the maximum number of
solutions was 16 since each set can give up to 4 solutions.
For every event, 16 different two-dimensional solvability
distributions were produced. Similar to the symmetric case,
for each solution a weighted two-dimensional mass
distribution is obtained for a single event. So, solvability per
solution and solvability per solution weighted with PDF are
demonstrated in Figures 6 and 7, respectively. For a single
event from all the 16 distributions, one mass point was
selected, the one with the highest PDF weight. Since for
each event a single mass point is produced the final two-
dimensional reconstructed mass distribution is presented in
Figure 8. The mass plane aligns with the expectations,
meaning that T' and W masses lie close to their generated
values.
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Figure 9. Two-dimensional reconstructed mass distribution
for the asymmetric (1) topology for generated events (hard
process particles).

Another process based on the same model was also
studied:

pp =B =TEt=EBWE (2

again, the events were generated using Madgraph5 at a
collision energy of 13 TeV. Masses of T' and P* were
generated to 700 GeV and 300 GeV, respectively (Figure 6).
The two-dimensional mass reconstruction distribution for
this process can be seen in Figure 9. The mass ranges for the
particles of interest are compatible with their generated
values.
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Figure 10. Two-dimensional reconstructed mass distribution

for the asymmetric (2) mass topology for generated events
(hard process particles).

Another study for both asymmetric topologies was
performed using fully simulated events. The generated
events were hadronized via Pythia8, simulation and
reconstruction through Delphes. The simulated events were
selected based on the properties of the topologies. The
number of leptons (muons or electrons) in the final state
must be two and their transverse momentum has to be
greater than 30 GeV. Also, two jets are required, and their
transverse momentum must be greater than 30 GeV.
Moreover, Figures 10 and 11 for the asymmetric topologies
(1) and (2) respectively represent the mass distribution of
fully simulated events. In both cases, the masses of unknown
particles lie close to their generated values.
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Figure 11. Two-dimensional reconstructed mass distribution
for the asymmetric (1) topology for fully simulated events.

In conclusion, the method is effective for topologies with
asymmetric branches, yielding the expected mass values for
the particles involved in the process.
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Figure 12. Two-dimensional reconstructed mass distribution
for the asymmetric (2) topology for fully simulated events.

IV. Conclusion
Analytical solutions for the dilepton top pair dilepton
decay are also applicable to asymmetric mass topologies.
These solutions can then be employed for reconstructing the
masses of asymmetric topologies similarly to symmetric
topologies.



It is worth mentioning that the method is suitable for
searching for new particles, since it does not necessitate any
a-prior knowledge of their masses. Mass plane, also, allows
bump hunting and provides much more information about
the new particles. Finally, the method is as model
independent as possible.

V. APPENDIX
Kinematics of the top pair dilepton decay:

Eﬂ;l'.s.s x = Pu, + Pr,
Emizzy = Pe, + Pr,
Ej =pi, +Pi, + P,
EZ =pg +p5 +pg

3

miy- = (E- + Eg)’ —Z{P;; +PEL-}:

=1
3
mfb" = {Ef' + Eu]: - (J‘-".‘L-' + Pu;)-
" Ig=L "
mg = (E5 + Ei-+ Eg) - (PEL- +pr +PEL-)
I;L "
m; = (B, + E+ + E,)° — (Pal- + i +Pu[)-
=1
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