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Abstract

In the past few years, Deep Learning (DL), a subset within the broader field of Artificial
Intelligence (Al), has achieved remarkable success across a wide spectrum of
applications, such as computer vision and autonomous systems. It has emerged as one of
the most powerful and accurate techniques, often employing Deep Neural Networks
(DNNs) that frequently surpass human performance. However, the ongoing Al research,
heavily relies on high-performance systems to handle the vast amounts of computations
and data involved. Advancements in technology and architecture have led to the
integration of co-processors like Graphics Processing Units (GPUs) or Field
Programmable Gate Arrays (FPGASs). These devices are types of hardware accelerators
that play crucial roles in accelerating Al workloads and have facilitated the deployment
but also the development of increasingly sophisticated Al models. To address the
substantial computational demands of Al algorithms, such specialized hardware requires
significant engineering effort to achieve optimal performance and efficiency. Moreover,
the current state-of-the-art leverages approximate computing, an approach that permits
computations to be less precise, trading off some precision for additional efficiency gains.
However, evaluating the accuracy of approximate DNNs is cumbersome due to the lack
of adequate support for approximate arithmetic in Deep Learning frameworks, such as
PyTorch or Tensorflow.

In this dissertation, we first employ FPGAs as accelerators for a wide range of Al
applications and present various strategies and techniques to improve the efficiency and
performance for such applications. We also examine automated frameworks to convert
trained neural network models into optimized FPGA firmware, alleviating the hardware
development challenges faced by engineers in the process. Additionally, we investigate
the use of approximate computing to leverage the intrinsic error resilience of DNN
models. We address the challenge of evaluating approximate DNNs by introducing two
frameworks, AdaPT and TransAxx. These frameworks, built on PyTorch and optimized
using CPU and GPU hardware acceleration respectively, facilitate approximate inference
and approximation-aware retraining for various DNN models, Last, we propose a
hardware-driven Monte Carlo Tree Search (MCTS) algorithm to efficiently search the
space of possible approximate configurations on Vision Transformer (ViT) models and
achieve significant trade-offs between accuracy and power.

Keywords: Al, DNNs, PyTorch, Hardware Accelerator, Approximate Computing
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Iepltinyn

Ta televtaio gpdvia, n Babud MdaOnon (Deep Learning), £éva vmochvoro 6To €upvTEPO
nedio g Teyvntig Nompoouvng (Al), £xel onueidoetl a&loonpeimtn emtvyia o€ éva gvpd
QACLO. EPAPUOYADV, OT®G 1 OpPACN VTOAOYICTAOV KOl TO OTOVOHO cvotiuato. Eyet
avadelyBel og por omd TIC MO 1oYVPES Kol aKPPBEIS TEXVIKES, XPNOULOTOLUDVTIONG CLYVA
Babid Nevpovikd Aiktva (DNNs) mov ToAAEG popég Eemepvodv TV avOpOTIVN ardd00T).
Qo61660, 1| cuveylopevn £pgvuva TG TEXVNTNG vonpoosvvng Paciletar oe peydio Babuod oe
VTOAOYIGTIKG GLOTAUOTO LYNANG amddoons Yo T dwyeipon tov 1epdotiov OyK®v
vToAoylopOV Kot dedopevav mov gpmiékovrat. Ot eEeMEelg oty tevoAOYin Kol TNV
OPYLTEKTOVIKT 00N YNoaV GTNV EVOOUATOoT cuveneepyactav onwc Graphics Processing
Units (GPUs) 11 Field Programmable Gate Arrays (FPGAs). Avtég o1 cuokevég elvar
TOMOl EMTOYLVIOV VAKOD 7oL Toilovv KpIiGo poOAO GTNV EMTAYLVON TOL EOPTOL
gpyaciog TG TEXVNTNG VONUOGHVNG KOl £X0VV SIELVKOAVVEL TNV avATTTLEN OAOEVOL KO TTLO
eCeMypévov HoVTEA®V TEXYNTNG VONUOGUVNG. [a TV avTIHeTdOMIoN TOV GNUAVIIKOV
VTOAOYIGTIKOV omantNoe®v TV oAyopiBumv Al této10 efedikevpévo vVAKO omortel
ONUOVTIKN TPOYPOUUUOTIOTIK TPOooTdOela yioo v emitevén PEATIOTNG amddooNS Kot
arodotikdtrag. EmumAiéov, n televtaio AEEn tng teyvoroyiag afomotel v pébodo
TPOGEYYIGTIKOV VTOAOYIGUAOV (approximate computing), (o péBodo mov EMTPETEL GTOVG
VTOAOYIoHOVS Vo etvan Mydtepo akpifeic, aviarlidooovtog kdmowo akpifela yioo k€pon
amodoTIKOTNTOC. 26T000, N AS10AOYN o™ TG AKPIPENG TOV TPOCEYYICTIKMOV VEVPOVIKDOV
SKTO®V gival 0VGKOAN AOY® TG EAAEWYNG EMAPKOVS VITOGTNPIENG Y10 TNV TPOGEYYIGTIKY|
apBuntikn oe mepPdrriovia Babidg Mabnong, 6nwg 1o PyTorch 1) Tensorflow.

210)0¢ ™G mapovoas daTpPng stvar, apykd, n xpron tov FPGAs wg emtayuviég yuo
éva. gupl QAGHO. EQUPUOYDV TEXVNTNAG VOMUOGUVNG, €VA TapoLctaloviol O1dpopeg
OTPOTNYIKES Kol TEXVIKEG Yol T PEATI®OON TNG OMOTEAEGUATIKOTNTOG KOl TNG OTOd00TNG
v  tétoleg  epoppoyéc. Ilpoteivovtar emiong Odpopeg  PeAticTOMOMGES Yo
OLTOUATOTOMUEVO TTEPIPAALOVTO PE OTOYO TNV HETOTPOMY| EKTAOEVUEVAOV LOVTEA®V
VEVPOVIK®OV SIKTO®V o€ Pertiotomompévo vakoroyiopkd yoo FPGA, peidvovtog Tig
TPOKANGES avATTUENG VAKOD 7OV OVTILETOTILOVY Ol UNYXOVIKOL GTNV GUYKEKPIUEVT
Jwdwkacio. EmmAéov, efetdletor m ypnomn TPOGEYYICTIKOV VTOAOYICUMV Yol Vo
alomomBel n eyyeving avBektikdtmra cedipatog tov Babidv Nevpovikdv Atiov.
Avtipetoniletor 1 duckoAdio oTNV AlOAGYNOT TPOGEYYICTIKAOV SIKTVMV, EIGAYOVTOS Y10,
o0V 0KOTO avtd dvo mepdriovta, To AdaPT kot to TransAxx. Avtd ta mepipdirovia,
ov givon Paciopéva oto PyTorch kou eivon Beitiotomompéva pe ypnon emtdyvvong
CPU «xor GPU avtiotoyo, emitpénovv mpoceyylotikd inference kou retraining yuo
dtapopa Pabia vevpwvikd povtéda. Télog, mpoteivetar évag alyopiBpog Monte Carlo



Xiv

Tree Search (MCTS) mov odnyegitan amd VAIKO Y100 TNV OMOTEAEGLATIKY ova{ToN TOV
YDPOV TOV TPOGEYYICTIKOV TapopéTpev o€ poviéda Vision Transformer (ViT) pe otodyo
TNV EMITEVEN ONUAVTIK®OV avTioTadpicewv peta&d akpifelog kot 1y0og.

Aé€eig Khewdwa: Teyvnty Nonuoovvn, Babid Nevpwvikd Aiktva, PyTorch, Emtayvving
YAkov, [Ipoceyyiotikog Ymoroyiopog
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Chapter 1. Introduction = 1

Introduction

1.1 Motivation for the Research

The motivation for this research is rooted in the increasing demand for efficient
artificial intelligence (Al) processing. As the use of Al technologies continues to grow
across a wide range of industries, it has become increasingly important to develop
hardware and software solutions that can handle the computational demands of these
applications. This has led to a growing interest in the use of hardware accelerators, such
as graphics processing units (GPUs) and field-programmable gate arrays (FPGAS), which
can significantly improve the speed and energy efficiency of Al processing.

To gain a deeper understanding of the motivation behind this work, it is important to
trace its origins and foundational elements. Over the past six decades, Moore's Law has
played a pivotal role in driving the trajectory of computing. Throughout this extended
period, the industry's solid emphasis on transistor scaling, a key aspect of Moore's Law,
has consistently yielded increased transistor performance and density. While it might be
premature to definitively declare the demise of Moore's Law, there are indications
suggesting that we have encountered the physical constraints inherent in silicon-based
CPUs (Central Processing Units).

“Moore’s law is the observation that the number of transistors in a
dense integrated circuit doubles approximately every two years. The
period is often quoted as 18 months because of Intel executive David
House, who predicted that chip performance would double every 18
months. — G. E. Moore, 1965
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Figure 1-1. 50 years of microprocessor trend data [1].

As observed from the above figure, the exponential growth in computing power
predicted by Moore's Law is slowing down. This trend poses a challenge to the continued
advancement of Al, as the increased computational power is crucial for handling the
complex calculations and vast datasets, especially involved in Deep Learning tasks. The
traditional approach of relying solely on general-purpose CPUs for Al workloads has
become increasingly inefficient and unsustainable. CPUs, designed for a wide range of
tasks, are not optimized for the specific computational demands of Al algorithms, leading
to suboptimal performance and high energy consumption. In Figure 1-2, we show the
enormous computational demands needed for training recent Deep Learning models.

Shown on the vertical axis is the training computation
that was used to train the Al systems.
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Figure 1-2. Training computation for popular Deep Learning models [2].
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It is evident that CPUs cannot keep up with the pace of the computational demands
of Al and especially Deep Learning. Alternative computing architectures and specialized
processors for Al are being developed ensuring an uninterrupted progression of the Al
research. Despite the integration of Al accelerators to enhance computational
performance, there always remains a notable concern regarding increased power
consumption. The demand for substantial processing power in deep learning tasks,
coupled with the growing complexity of neural networks, has contributed to an increased
energy requirement, presenting a challenge in achieving optimal power efficiency even
with the deployment of specialized Al accelerators.

Consumption COze (Ibs)
Air travel, 1 passenger, NY<«<SF 1984
Human life, avg, 1 year 11.023
American life, avg, 1 year 36.156
Car, avg incl. fuel, 1 lifetime 126.000

Transformer (big) w/ neural architecture search | 626.155

Table 1-1. Estimated CO2 emissions from LLM training, compared to familiar consumption.

In Table 1-1 we present the estimated CO2 emissions from training large language
models (LLMs) in GPU accelerators. The consumption is compared to common human
activities highlighting the extreme power demands needed for Al processing. One of the
key challenges in Al processing is the development of algorithms that can run on fast and
power efficient hardware, especially for many computer vision algorithms where
response latency and energy consumption are crucial. Deep Neural Networks (DNNSs) for
example have emerged as a popular choice for the core algorithms of many computer
vision tasks due to their ability to learn complex features from raw image data. This has
led to a growing interest in the use of hardware accelerators, such as GPUs and FPGAs, to
speed up the computations of these algorithms and improve overall performance.
Programming such devices and developing software-hardware solutions that can handle
the computational demands of these algorithms in real time is not trivial and often
requires great programming effort from the engineer’s perspective.

Additionally, current state-of-the-art employs approximate multipliers to address the
highly increased power demands of DNN accelerators. Approximate computing refers to
the idea of sacrificing the accuracy of computation in favor of efficiency, often through
the use of reduced precision or simplified operations. Approximate multipliers can
significantly reduce the computational complexity of Al models, making them more
efficient and practical for real-world applications. Evaluating the accuracy of approximate
DNNs proves challenging due to the absence of dedicated approximate hardware.
Understanding how these DNNs behave on such hardware is crucial before constructing
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the hardware, making it a prerequisite for accurate assessment. When hardware is
unavailable, the only feasible option is to perform simulation of the approximate
multiplier arithmetic. This can be done by leveraging a deep learning framework capable
of supporting this functionality but common DNN frameworks lack built-in support.
Emulating the behavior of the approximate multiplier using these frameworks will be
cumbersome resulting in prolonged execution times. Unlike the optimized libraries
available for the standard versions of the frameworks across various DNN layers, there
are no equivalents for accelerating the simulation process of the approximate multiplier.

In addition, towards optimizing approximate computations in DNNs, a critical
consideration involves identifying the most suitable approximate multiplier for each DNN
layer, a concept referred to as cross-layer optimization. This aspect is particularly crucial
when the goal is to maximize power gains while adhering to constraints on acceptable
accuracy loss. While numerous studies have explored automated methods for determining
optimal per-layer quantization in quantized DNNSs, the field of approximate DNNs has
received comparatively less attention in terms of an automated search flow. In other
words, there's a gap in the existing research when it comes to systematically and
automatically optimizing the configuration of approximate computations within the entire
network. Also, determining the optimal configuration of approximate multipliers between
each layer of a DNN model in order to find the best trade-off between accuracy and
power is liable to cause a significant computational overhead. The design space becomes
large and measuring the accuracy of every configuration is impractical. Addressing these
challenges could pave the way for more widespread and practical adoption of
approximate DNNs, particularly in resource-intensive applications.
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1.2 Thesis Objectives

This thesis makes several significant contributions to the field of efficient computing
for deep learning. The objectives of our research can be summarized below:

b)

a) Acceleration of Al Applications: Our dissertation will involve accelerating
various Al applications by leveraging Field-Programmable Gate Arrays
(FPGAS), demonstrating enhanced computational efficiency and performance.
We will describe how we can apply various hardware/software optimization
techniques for deploying Al algorithms efficiently on FPGAs and compare the
execution and efficiency vs other high performance systems such as GPUSs.
This work aims to go beyond standard FPGA acceleration techniques (such as
pipelining or loop unrolling) by exploring advanced optimizations tailored to
FPGA architectures. We will apply various hardware/software co-
optimization techniques (e.g., SLR partitioning, memory access optimization,
Xilinx int8 DSP optimization) specifically tuned for Xilinx FPGA
architectures. We will also focus on cloud FPGAs, aiming to bridge the gap
between optimized edge Al solutions and cloud-based Al deployments by
creating a unified interface using OpenCL FPGA APIs. This approach enables
seamless integration and scalability across both edge and cloud environments.

Automatic FPGA firmware from trained CNN models: We will introduce
optimizations for an end-to-end framework towards generating FPGA
firmware from trained Convolutional Neural Networks (CNNSs). The ultimate
goal is to alleviate the engineering effort from optimizing a CNN for FPGA
hardware. This framework utilizes HLS4ML [3], enabling the seamless
conversion of trained CNN models into optimized FPGA firmware
specifically designed for cloud FPGA architectures. Our goal is to enhance the
framework by implementing additional optimization techniques, including
more FPGA-friendly layer implementations, to provide seamless support for
larger network topologies. Furthermore, we will leverage the Xilinx DSP's
packed int8 multiplier to improve computational efficiency and performance.
Last, as HLS4ML has been previously applied in smaller-scale Al
applications like particle physics, we aim to extend its use to large-scale cloud
FPGA architectures through a common OpenCL API for both edge and server
FPGAs.

c) Rapid approximate DNN emulation: In order to enable fast and seamless
support of approximate DNN evaluation we will propose two frameworks.
AdaPT and TransAxx, both based on PyTorch with CPU and GPU
acceleration respectively, will enable support of various DNNs and model
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d)

architectures. They will also support post-training quantization and
approximation-aware finetuning so as to recover the accuracy introduced by
approximation. Our objective is that our frameworks will allow developers to
test various DNN architectures and approximation levels seamlessly, a feature
lacking in most existing tools, which typically focus on static, non-adaptive
solutions. In addition to CNNs, which are commonly evaluated in previous
work, our frameworks will support a broader range of DNN topologies,
including LSTMs, GANs and Vision Transformers. This will expand the
applicability of our approach to diverse models, offering more comprehensive
support for various approximate neural network architectures.

Automatic Design Space Exploration: We will address the challenge of
finding optimal approximate configuration in-between the layers of a DNN
model. We will show we can leverage Monte Carlo Tree Search (MCTYS)
algorithm as a HW-driven automated search that can achieve significant trade-
offs in the power-accuracy space of an approximate DNN model. MCTS will
allow for intelligent exploration of the design space by balancing exploration
(trying new configurations) and exploitation (refining promising
configurations), making it more efficient than previous brute-force or heuristic
methods. Additionally, this will be one of the first applications of MCTS for
exploring the power-accuracy parameter space of approximate DNNS,
specifically for Vision transformer models.
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1.3 Overview of the Thesis
The rest of this thesis is organized as follows:

e Chapter 2 provides a background on the research area, specifically related to Al
and hardware acceleration, as well as a literature review that explores the key
concepts, theories, and methodologies that have shaped the field of this work.

e Chapter 3 presents a detailed analysis of software and hardware optimization
techniques applied to Deep Neural Networks for efficient inference along with the
demonstration on several real-world Al applications. Also, an end-to-end tool is
presented for automatic FPGA firmware generation from trained CNNs.

e Chapter 4 describes the two frameworks, AdaPT and TransAxx for rapid
approximate DNN simulation. It also demonstrates the use of an MCTS-based
algorithm for automated design space search towards achieving significant trade-
offs in the power-accuracy space of an approximate DNN model.

e Chapter 5 concludes this thesis by summarizing the presented results and
discusses the future directions of this work.

e The following chapter presents an extended abstract in Greek language.
e Appendix A, in Appendices, describes the SERRANO platform. Specifically it

presents a platform towards seamless application development & deployment in
the heterogeneous edge-cloud continuum.
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Background and Literature Review

In this chapter, we provide a concise summary of the previous work and
background that form the foundation of the present dissertation. The chapter provides a
detailed background on the research area, shedding light on the progression of Al and
hardware accelerators which the current study is situated. Additionally, in order to
provide a comprehensive understanding of the subject matter, a thorough examination of
existing research, theories, and studies has been conducted. The literature review explores
the key concepts, theories, and methodologies that have shaped the field, highlighting the
gaps, limitations, and unresolved questions that motivate the current study. By presenting
a comprehensive background and providing relevant literature, this chapter sets the stage
for the subsequent analysis and findings presented in the following chapters.

2.1 Computer Vision and Neural Networks

Computer vision encompasses a branch of Machine Learning dedicated to the
analysis and comprehension of images and videos. Its primary objective is to enable
computers to "see" by effectively interpreting visual information.

Within computer vision, models are specifically designed to decode visual data by
extracting relevant features and contextual information acquired during the training
process. This capability empowers these models to comprehend images and videos and
apply those interpretations to tasks involving prediction or decision making. However,
computer vision heavily relies on abundant data for its operations. Nowadays to
accomplish such tasks, neural networks which are a type of deep learning model are
needed to be trained to acquire knowledge and enhance their accuracy through iterative
learning processes. Once these algorithms are refined for optimal precision, they become
powerful tools for artificial intelligence. They enable rapid classification and clustering
of data, often surpassing the efficiency of manual identification by human experts.
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2.1.1 Historical Development and Milestones

This section will provide a comprehensive overview of the key advancements and
significant milestones in the field of neural networks. By exploring the historical context,
the reader can highlight the evolution of neural networks, which is essential for
understanding their current state and future potential. Besides the historical milestones
there were also “Al winters”, a term which was used as an analogy to show periods when
funding and interest for artificial intelligence was in decline, specifically around 1970s—
mid 1980s and mid-1990s — mid-2000s.

1940: Prehistory: Artificial Neurons

In the 1940s, Warren McCulloch, a neuroscientist, and Walter Pitts, a logician,
embarked on pioneering work in the field of artificial neurons. Their collaboration led to
the development of the first artificial neuron, which aimed to simulate the operations of
organic neurons found in biological systems. This groundbreaking achievement
demonstrated the potential of utilizing basic computational units to replicate logical
functions [4].

1950: Artificial Neural Networks

Frank Rosenblatt, a research psychologist who worked at Cornell Aeronautical
Laboratory, drew inspiration from the influential work of Warren McCulloch and Walter
Pitts. Building upon their contributions, Rosenblatt dedicated his efforts during the 1950s
to developing the perceptron which consisted of a single layer of neurons with the
capability to classify images composed of several hundred pixels. The perceptron can be
regarded as a significant precursor to the advanced neural networks we employ today [5].

1985: Backpropagation

In his 1974 doctoral thesis, Paul Werbos was the first to propose the utilization of
backpropagation as a means to optimize neural networks [6]. However, due to the
prevailing state of the initial neural network winter, his groundbreaking work went
largely unnoticed by the research community. It was only later, with the influential
research conducted by Rumelhart et al. in 1986, that backpropagation gained widespread
recognition as a powerful training technique for neural networks [7]. Equipped with the
capabilities of backpropagation, researchers could now explore numerous applications of
neural networks. Notably, Yann LeCun proposed a technique in 1989 for recognizing
handwritten digits using neural networks [8]. However, a new challenge emerged, leading
to slow and unstable training, posing further obstacles to overcome.
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2010: The Rise of Deep Learning

While the roots of deep learning can be traced back to the 1940s and 1950s with familiar
terms up until now, such as backpropagation, gradient descent, ReLU, etc., its true boom
occurred after 2010. In 2012, deep learning gained significant attention and popularity
due to a pivotal moment in the field: the ImageNet competition. The ImageNet Large
Scale Visual Recognition Challenge, initiated by Fei-Fei Li and her team at Stanford
University, provided a dataset of millions of labeled images for researchers to develop
algorithms that could accurately identify objects within images. It was during this
competition that a deep learning model called AlexNet [9], developed by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, outperformed other traditional
computer vision techniques by a significant margin. AlexNet's success demonstrated the
enormous potential of deep learning in computer vision tasks. Specifically Convolutional
Neural Networks (CNN) models with various architectures, such as AlexNet, begin to
gain traction achieving significant results in the competition year after year.

2014: Generative Adversarial Networks

In 1991, Juergen Schmidhuber introduced the concept of adversarial neural networks,
wherein two neural networks engage in a zero-sum game, with one network's gain
equating to the other network's loss. In 2014, lan Goodfellow et al. applied the adversarial
principle to develop a generative adversarial network (GAN) [10]. Basically, Goodfellow
and his colleagues employed a sophisticated statistical analysis to detect the most
important features comprising a photograph with the aim to enable machines to generate
new realistic images automatically with similar features. In the next years, GANs have
found applications in image-to-image translation tasks, such as converting summer photos
to winter or altering day scenes into night scenes. Additionally, GANs exceled at
generating photorealistic images of objects, scenes, and people to such an extent that
humans cannot distinguish them as artificial. By setting neural networks against one
another, Goodfellow created a powerful Al tool that is now essential in many Al tasks.

2017: The Transformer model

Ashish Vaswani et al. in their 2017 paper titled "Attention Is All You Need," marked a
significant advancement in the field of deep learning and specifically natural language
processing [11]. Transformers introduced a novel architecture that revolutionized the way
information is processed from human text and represented in neural networks by using a
mechanism called self-attention. This attention mechanism allowed the model to focus on
different parts of the input sequence during processing, enabling better capturing of long-
range dependencies. Moreover, Transformers are increasingly being employed in
computer vision tasks, expanding their application beyond natural language processing.
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2.1.2 Key Components in Neural Networks

Traditionally, computer vision algorithms heavily relied on handcrafted features and
traditional machine learning techniques. However, the advent of deep learning has
revolutionized the field, leading to remarkable advancements in visual understanding.
Deep learning models, particularly convolutional neural networks (CNNSs), have emerged
as the backbone of computer vision tasks. These models are inspired by the structure and
functioning of the human visual cortex. CNNs excel at automatically learning hierarchical
representations and extracting discriminative features from raw image data, eliminating
the need for manual feature engineering. This paragraph discusses the importance of deep
learning models in computer vision and gives an overview of the key components
comprising such models.

Brain analogy Before proceeding with the fundamentals of neural networks we will
emphasize on the brain analogy that helps in understanding how Convolutional Neural
Networks (CNNs) work. CNNs draw inspiration from biological processes observed in
the animal visual cortex. Individual cortical neurons respond to stimuli only in a restricted
region of the visual field known as the receptive field. To cover the entire visual field, the
receptive fields of different neurons partially overlap. This concept mirrors the behavior
of the human brain, as CNNs simulate the densely interconnected brain cells using digital
neurons. These artificial neurons are designed to trigger or respond when they detect
certain features, irrespective of the features' positions in the visual field.
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Figure 2-1. A biological neuron (left) and its mathematic model (right)

Neural Network A neural network is created by connecting multiple artificial neurons
together. These neurons are organized in a feed-forward network, typically in a directed
acyclic graph, although some architectures employ multilayer perceptrons where neurons
are grouped into layers. This means that the output of certain neurons can serve as input
to other neurons. Neural networks consist of input and output layers, as well as hidden
layers that often increase the size and complexity of the network. Each neuron assigns a
weight to its input, indicating its degree of correctness or incorrectness with respect to the
task at hand. The final output is determined by the sum of these weightings.
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Figure 2-2. The organization of multiple layers of neurons

Layer Types Neural Networks use many different interconnected layers, as shown in
the previous figure, specifically designed among other tasks to recognize or detect 2-
dimensional image data. A Neural Network can have different layers performing unique
tasks aiming to give a specific output that is passed through the other layers.

Some of the fundamental layers found in many models are:

e Convolutional Layer applies a convolution operation to the input, passing
the result to the next layer. The convolution emulates the response of an
individual neuron to visual stimuli. Each convolutional neuron processes
data only for its receptive field. Convolutional layers take several feature
maps as input and using convolution with the filter weights k x k acquired
from the training process they produce feature maps as output. For filters
larger than 1 x 1, border effects reduce the output dimensions. To avoid
this effect, the input image is typically padded with zeros on each side thus
reducing the output dimensions.

e Activation Layer applies a non-linear activation function to each input
pixel. The most popular activation function is the Rectified Linear Unit
(ReLU) which computes f(x) = max (0, x) and clips all negative elements
to zero. Other networks use sigmoidal functions such as f(x) =1/(1 +
e ) or f(x) = tanh (x).

e Pooling Layer combines the outputs of neuron clusters at one layer into a
single neuron in the next layer by summarizing multiple input pixels into
one output pixel. For example, max pooling uses the maximum value from
each of a cluster of neurons at the prior layer. Another example is average
pooling, which uses the average value from each of a cluster of neurons at
the prior layer. They are usually applied to a patch of 2x2 or 3x3 input
pixels, but can also be applied as global pooling to the whole input image.

e Fully Connected Layer connects every neuron in one layer to every neuron
in another layer. Each output value of a Fully Connected layer looks at
every value in the input layer, multiplies them all by the corresponding
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weight it has for that input index, and sums the results to get its output.
They can be visualized as one dimensional and perform the high level
reasoning in the neural network.

e Dropout Layer is a popular method to combat overfitting in large CNNs.
These layers randomly drop a selectable percentage of their connections
during training which prevents the network from learning very precise
mappings and forces some abstraction and redundancy into the weights.

e Softmax Layer are often used in the final layer of a neural network-based
classifier. It converts the raw class scores z; into class probabilities P;
according to P; = e?/ ., e“k, which result in a vector P that sums to 1.

e Transformer-Encoder Layer is found in Transformer models, for example
in Vision Transformers (ViT) models which are used in computer vision.
This layer is responsible for capturing the spatial relationships and
dependencies between different parts of the image. It uses self-attention
mechanisms to focus on relevant image regions and extract meaningful
features. The Transformer encoder layer plays a crucial role in processing
the input image and producing high-level representations that can be
further utilized for classification or other tasks.

Training a Neural Network involves the learning of its parameters through a process of
optimization. By defining a loss function and employing the backpropagation algorithm,
the network can discover the optimal weights. The commonly used approach is
supervised training, which requires a set of labeled examples. Initially, the network
begins with small or random weights, and each example is repeatedly fed through the
network to improve performance (feed-forward pass). Training is considered complete
when the network achieves the desired performance on the training data. The
backpropagation algorithm calculates the loss between the current network output and the
ground truth, then propagates the error backward through the network to compute weight
updates (backward-pass). The objective of the learning process is to minimize this loss by
adjusting the training weights. The learning rate determines the magnitude of these
updates. An example of a basic optimization algorithm called Stochastic Gradient
Descent is provided below. It utilizes a subset of examples to compute the parameter
gradients relative to the loss function.
Ops1 =6 — 2+ Vo, L(fo,(x:), ¥:)

The convergence of this algorithm lacks formal proof, but in practice, it often converges
to good local minima, even with random parameter initialization. One reason for this
could be the stochastic nature of the algorithm, which enables it to optimize various loss
functions and escape unfavorable minima. Another reason could be that many local
minima are nearly as accurate as the global minimum. Ongoing research continues to
explore these questions.
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Image Classification Once training is complete, the neural network is prepared for image
recognition on new data, which is accomplished through the process of inference. In this
context, the objective is to compute the network's output. The image's colors are
represented as RGB values, which range from 0 to 255 and combine red, green, and blue
components. Computers can extract the RGB value of each pixel and organize the results
into an array for interpretation, which is then fed through all the network layers. The input
image is then scanned for features using small filters. Feature extraction begins with the
input image, where each pixel serves as input for neurons grouped into features. The
neurons in the feature maps are arranged in two-dimensional grids.
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The input enters alternating layers of convolution, pooling and others. Numerous
hidden layers can be involved where data is fed through. After passing all layers, the
network produces a final vector with a possibility P; for each category of our model.
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2.1.3 The Challenges of Neural Network Inference

Neural networks can address intricate problems across various domains, such as computer
vision or natural language processing as we already mentioned. Nonetheless, these
approaches encounter challenges and constraints that impede their complete potential and
widespread application. Below, we summarize the main existing challenges and
limitations associated with neural networks inference.

1. Computational Complexity: Neural networks can be computationally intensive,
especially deep neural networks with a large number of layers and parameters.
Inference requires performing extensive matrix multiplication operations and
activation function evaluations, which can be time-consuming and resource-
intensive, particularly on devices with limited computational power.

2. Memory Requirements: Neural networks often require significant memory to store
the model parameters and intermediate activations during inference. This can be
problematic on resource-constrained devices, such as mobile phones or embedded
systems, where memory capacity is limited.

3. Energy Efficiency: Inference on power-limited devices, such as mobile devices or
edge devices, requires careful optimization for energy efficiency. Running
complex neural networks can quickly drain the device's battery. Therefore,
minimizing the energy consumption of the inference process is crucial for real-
world deployment.

4. Latency: Many applications demand low-latency predictions. However, neural
network inference can introduce delays due to the computational requirements
involved. Reducing the inference time to achieve near-instantaneous predictions is
a significant challenge, especially when dealing with large and complex models.

5. Model Size: Deep neural networks can be quite large in terms of the number of
parameters they possess. This poses challenges in terms of storage, transmission,
and memory requirements during inference. Reducing the model size without
significant loss in accuracy is a research area of ongoing interest.

6. Edge Deployment: Deploying neural networks on edge devices, such as
smartphones, loT devices, or embedded systems, presents unique challenges.
These devices typically have limited computational resources, power constraints,
and intermittent connectivity. Efficiently adapting neural networks to operate
effectively under such constraints is essential for edge deployment.

7. Privacy and Security: Neural networks trained on sensitive data can raise concerns
regarding privacy and security during inference. Protecting the privacy of user
data and preventing malicious attacks, such as adversarial examples or model
stealing, are significant challenges that need to be addressed.
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2.2 Hardware Acceleration for Al

In this section, we will explore the role and significance of leveraging specialized
hardware for accelerating Al computations, such as neural network inference. In
summary, we will focus on the following key aspects:

e What is Al Acceleration and why we need it: We will provide an overview of
hardware acceleration and its relevance in the context of Al. This will involve
discussing the need for dedicated hardware to enhance the computational
efficiency and performance of Al algorithms.

e Types of Hardware Accelerators: We will explore various types of hardware
accelerators commonly employed for Al tasks. This includes Central Processing
Units (CPUs), Graphics Processing Units (GPUs), Field-Programmable Gate
Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs). We will
examine their architectural characteristics, advantages, and limitations.

e Case Studies and Challenges: To illustrate the effectiveness of hardware
acceleration, we will present real-world case studies showcasing hardware
acceleration in Al. We will analyze the performance improvements achieved by
utilizing hardware accelerators and compare them with traditional computing
platforms. Also, we identify the challenges and limitations regarding current
implementations.

2.2.1 Whatis Al Acceleration and why we need it

Hardware acceleration in the context of Al refers to a specialized hardware device or
computer system designed explicitly to enhance the performance of artificial intelligence
(Al) and machine learning (ML) applications. It targets tasks involving artificial neural
networks, machine vision, and other data-intensive or sensor-driven applications. These
accelerators often adopt many-core designs and prioritize low-precision arithmetic, novel
dataflow architectures, and in-memory computing capabilities. Notably, as of 2018, Al
integrated circuit chips typically consist of billions of MOSFET transistors [12]. Within
this category, various vendor-specific terms exist to describe these devices, highlighting
an emerging technology landscape with no prevailing design standard.

To understand the parallelization of MAC (Multiply-Accumulate) operations in most
accelerators, which are common in neural network computations, Figure 2-5 presents an



18 <= 2.2 Hardware Acceleration for Al

illustration of a generic accelerator architecture. In this architecture, weights and inputs,
which can be inputs to the network or activation outputs from a previous layer, traverse
through a grid of processing elements (PEs) in a synchronized manner.

Win

Figure 2-5. Graph diagram of a single neuron in a traditional neural network. [13]

Specifically focusing on the fully connected (FC) layer in an artificial neural network
(ANN), each neuron is represented by a row (or column, depending on the
implementation) in this grid. The fundamental building block of most Al accelerators is
the systolic array, which comprises simple arithmetic logical units (ALUs) integrated
within each PE. The arrangement and utilization of buffers (such as input, weight, and
output buffers seen in Figure 2-6) may differ among accelerators, but the underlying
principle remains consistent: input data and weights are loaded into their respective
buffers and propagate through the systolic array. The array performs multiplication
operations and accumulates the results, either within the PEs themselves or at the end of a
lane of PEs, depending on the employed dataflow technique.
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Figure 2-6. Typical architecture of an ANN accelerator. Each PE has a local memory attached to

them (gray box) for storing partial sums. The structure of PEs varies depending on the dataflow.
[13]

The need for Al advancement To answer the question of why we need acceleration we
can observe Figure 2-7 below. It illustrates the progression since the introduction of
AlexNet [9] in 2012, which was evaluated in the ImageNet-1k dataset for a 1000-class
ImageNet Large-Scale Visual Recognition Competition. The research community has
since focused on designing more accurate but complex networks [14]. This progress has
been facilitated by the availability of fast hardware devices such as GPUs that can do
efficient Al computations and can handle the extensive memory bandwidth and
computational demands of large-scale DNNs. As a result, DNN architectures have
evolved to become wider and deeper, with models comprising hundreds of layers and
billions of parameters [15]. However, this poses a challenge when deploying DNNs on
resource-constrained edge devices (e.g., phones, embedded devices, robots) with limited
hardware resources such as memory, bandwidth, and energy. Consequently, there is an
urgent need to develop efficient methods for deploying and accelerating DNNs on such
devices without compromising their performance. Thus, Al acceleration is needed both
for the advancement of new novel Al models but also for the deployment and efficient
execution on devices with limited resources as we will discuss in the next paragraph.
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Figure 2-7. Ball chart reporting the Top-1 ImageNet accuracy vs. computational complexity. The
size of each ball corresponds to the model’s parameters. (Reprinted from [14])

The need for energy efficiency and performance As the size of Al models increases,
the number of memory access operations required also grows. Comparatively,
computation operations like matrix-matrix and matrix-vector computations are
significantly more energy-efficient than memory access operations. When considering the
energy consumption of read access from memory versus addition and multiplication
operations [16], it becomes evident that memory access requires several orders of
magnitude more energy than computation operations. Due to the inability of large
networks to fit into on-chip storage, the frequency of energy-intensive DRAM accesses
increases significantly. In contrast, Al accelerators can incorporate specific design
elements aimed at reducing the frequency of memory access, providing larger on-chip
cache, and integrating dedicated hardware features to enhance matrix-matrix
computations. By virtue of being purpose-built devices, Al accelerators are more specific
to the algorithms they execute, allowing them to leverage their dedicated features more
efficiently compared to general-purpose processors.
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Relative Energy Cost

Operation Energy [pJ] Relative Cost
32 bit int ADD 0.1 1

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit float MULT 3.7 37

32 bit SRAM Cache 5 50

32 bit DRAM Memory 640 6400

1 10 100 1000 10000
Figure 2-8. Energy metrics for 45nm CMOS process with each type of operation. [16]

Analyzing the provided data, we observe that the energy consumption per neural network
connection is predominantly influenced by memory access. The energy required varies,
ranging from 5pJ for 32-bit coefficients stored in on-chip SRAM to 640pJ for 32-bit
coefficients stored in off-chip DRAM. However, due to the limited capacity of on-chip
storage, large networks cannot be accommodated and therefore need more expensive
DRAM accesses. To illustrate the magnitude of this energy demand, let's consider the
scenario of running a 10 billion connection neural network. The calculation results in
10G - 640p] = 6.4W. This might seem low but we are not taking into account the large
number of computations which in total will often surpass the power limitations of a
typical mobile device. Consequently, accommodating such energy-intensive DRAM
access becomes impractical within the power envelope of common mobile devices. Al
accelerators need to address these issues while also providing high parallelism. The need
for real-world low-latency results becomes apparent, thus such hardware devices must
operate at high energy efficiency and surpass at the same time the performance of generic
hardware such as CPUs.

2.2.2 Tools and Technologies

Commonly, Al accelerators are coprocessors. Their purpose is to take Al-related
workloads from the central processor to improve the efficiency of the overall system.
Examples of these workloads include machine learning, deep learning, image processing,
and natural language processing, among others. Their purpose and advantages also rest on
the purpose and advantages of hardware accelerators. However, there is not a single type
of accelerator and there are several reasons why we have multiple technologies today:

e The field of Al is constantly evolving, and new algorithms and applications are
being developed all the time. This means that there is no single "best" Al
accelerator for all purposes. Different devices are better suited for different tasks,
and the best choice for a particular application will depend on a number of factors,
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such as the size and complexity of the model, the desired accuracy, and the power
and thermal constraints of the system.

« The different characteristics of Al acceleration devices are a result of the different
ways in which they are designed and implemented. Some devices, such as GPUSs,
are designed for general-purpose computing and can be used for a variety of tasks,
including Al. Other devices, such as ASICs and FPGAs, are specifically designed
for Al and can achieve higher performance for certain types of workloads.

o The diversity of Al acceleration devices is beneficial to the community, as it gives
developers a choice of different options to meet their specific needs. This diversity
is also likely to continue to grow as the field of Al continues to evolve.

In this subsection, we will analyze the most important hardware devices designed for Al
computations along with the tools they can be programmed. Most of these architectures
were used throughout the experiments of this dissertation.

CPU-based accelerators

While accelerators, which are mentioned next, excel in parallel processing of large-scale
data, in the 2000s specific CPU components were designed, driven by video and gaming
workloads. CPUs started to support vectorized instructions, such as SIMD (Single
Instruction, Multiple Data) extensions like Intel's AVX and ARM's Neon. These
instructions enable CPUs to perform parallel operations on multiple data elements
simultaneously. With suitable optimizations, CPUs can achieve reasonable performance
gains in certain Al workloads as well, especially when the computational demands are not
highly parallelizable. CPUs are very efficient for DNNs with small or medium-scale
parallelism, for sparse DNNs and in low-batch-size scenarios. It’s worth noting also that
the kind of Al acceleration we are referring to regarding CPU-based approaches is
typically inference. One other reason that CPU accelerators might be preferred is the host-
device latency which is more prominent in the other devices. Many CPU vendors provide
specific low level instructions to take advantage of the CPU parallelism. For instance,
Intel leverages Advanced Vector Extensions 512 (Intel® AV X-512) and several more Al
specific extensions such as DL Boost Vector Neural Network Instructions (VNNI), which
consolidates three instructions into one. In general, these optimization strategies
maximize the utilization of compute resources, improve cache utilization, and avoid
potential bandwidth limitations, resulting in a significant performance boost.

To conclude, CPU acceleration is based on SIMD acceleration which is applied when the
same value is being added to (or subtracted from) a large number of data points. This
utilization of SIMD instructions allows for efficient parallel processing and can greatly
enhance the performance of algorithms that exhibit data parallelism. However, it is
important to note that not all algorithms can easily benefit from SIMD, as certain tasks
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with complex flow control may pose challenges for vectorization. Nevertheless,
advancements in research and manual implementation techniques are paving the way for
better support and automatic vectorization in compilers, ensuring that the potential of
SIMD acceleration can be harnessed more effectively in a wider range of applications.
Below, we summarize the advantages/disadvantages of using CPUs for Al acceleration:

CPU advantages :

» They are more suitable for small data or small Al models as they provide ultra-
low latency in these scenarios.

» They eliminate the host to device data transfer time because the data is always
near the computation in contrast with other accelerators.

» They are affordable and widely available. This enables the use of Al
acceleration more easily applicable without requiring additional resources.

» Some algorithms are not easily adaptable for vectorization. Additional
complexity may arise in order to avoid data dependencies as data independence
is a requirement for vectorization.

+ Often the implementation of algorithms using SIMD instructions typically
involves manual effort, as most compilers do not generate SIMD instructions
automatically from typical C programs. For example, gathering data into SIMD
registers and scattering it to the correct destination locations is tricky.

« Different architectures provide different register sizes (e.g. 64, 128, 256 and
512 bits) and instruction sets, meaning that programmers must provide multiple
implementations of vectorized code to operate optimally on any given CPU.

» CPU acceleration is not suitable for medium to large workloads as they cannot
provide the massive parallelism other devices can.

GPU-based accelerators

A GPU is a computational processor that executes rapid calculations for image and
graphic rendering purposes. GPUs leverage parallel processing techniques to accelerate
their operations. In fact, some of the high end GPUs have a higher transistor count than
the average CPU. The principle behind their operation is breaking down tasks into smaller
segments and distributing them among numerous processor cores, often reaching
hundreds or thousands of cores, operating within the same GPU. Historically, GPUs
primarily handled the rendering of 2D and 3D images, videos, and animations but now
they include a broader array of applications, include DL and big data analytics.

The very large number of cores or threads these devices have often translates to a very
high parallelism which is particularly beneficial for Al tasks that involve complex
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mathematical operations, such as deep learning algorithms. For example, matrix
multiplication in neural network training or inference is common and GPUs can do this
kind of operation very efficiently. Furthermore, they often have a dedicated video
random-access memory (VRAM). The nature of the applications GPUs usually execute
require substantial memory bandwidth. Thus, VRAM is a very important component and
needs to be physically near the computations to provide data with high throughput to the
processing cores of the device. Besides its computational capabilities, a GPU employs
specialized programming to facilitate data analysis and utilization. Nvidia dominates the
GPU Al market, thus the following analysis will focus on this type of architecture.
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Figure 2-9. Nvidia Ampere SM block diagram [17]

GPU Microarchitecture — The fundamental unit in Nvidia GPUs is the Streaming
Multiprocessor, or SM. It comprises multiple compute engines positioned together,
operating in parallel while awaiting tasks to be assigned to them (Figure 2-9). SMs are
responsible for executing the instructions and performing computations such as floating-
point arithmetic, matrix operations, texture mapping, and others. Concerning the memory
access, GPUs fetch data from the memory hierarchy based on the instructions and store
the results back into the appropriate memory locations. Below, are the main memory
locations, each with distinct purpose and varying performance characteristics.

e Local registers per thread.
e A parallel data cache or shared memory that is shared by all the threads.
e A read-only constant cache that is shared by all the threads.
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e A read-only texture cache that is shared by all the processors.
e A local cached memory like registers.

Also, a very important component in GPUs is Tensor Cores, the heart of Deep Learning
processing. These cores are specialized hardware units found in almost any GPU today
designed to accelerate matrix and tensor operations, which are fundamental to deep
learning and other compute-intensive workloads. They perform matrix multiplications
using lower-precision data types instead of the typical floating point 32bit datatype (i.e.,
FP16, INT8, INT4) which significantly speeds up computation due to reduced memory
bandwidth requirements and increased parallelism. Developers also can easily utilize
tensor cores using specialized programming interfaces like Nvidia's CUDA and software
libraries such as cuBLAS and cuDNN or even more automated end-to-end tools for DNN
inference such as TensortRT [18]. The combination of lower precision with the utilization
of tensor cores has immensely enhanced the value of low precision in inference tasks as
well as training.
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Figure 2-10. Matrix processing operations on Nvidia Tensor Cores. [19]

With each generation of GPU microarchitecture, new techniques have been introduced to
enhance the performance of Tensor Core operations. These advancements have expanded
their functionalities, enabling them to handle a wider range of numerical formats. For
example, Tensor Cores available on Nvidia Volta and Turing GPUs operate on FP16
inputs in order to provide great speedup when performing convolutions or matrix multiply
operations (Figure 2-10. Matrix processing operations on Nvidia Tensor Cores. Figure
2-10). Newer architectures such as Nvidia Hopper provide a novel 8-bit floating point
format. FP8 reduces deviations from established IEEE 754 floating-point formats with a
good balance between hardware and software to leverage existing implementations and
enhance developer productivity. While these reduced precision formats can offer
improved performance, it is important to note that not all operations should be executed
using these data formats due to their limited dynamic range, which may lead to potential
overflows.
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Many Deep Learning frameworks such as Tensorflow [20] or PyTorch [21] provide GPU
support inherently. The integration with GPUs is seamless, allowing users to leverage the
computational power of GPUs for accelerated deep learning tasks. These ecosystems
continuously evolve, providing a rich set of tools, pre-trained models and libraries
advancing the Al development with their compute capabilities. Below, we summarize the
most important GPU advantages and disadvantages when considering Al acceleration.
Besides the great support and ecosystem of GPUs, it's important to carefully assess the
specific requirements of each application and workload to determine whether utilizing
GPUs will provide the desired benefits and outweigh any potential disadvantages.

GPU advantages :

 They offer high parallel processing power allowing them to perform multiple
computations simultaneously.

« They have become the go-to hardware for training and deploying deep learning
models and Nvidia ecosystem is already across various domains and industries.

 Their price-to-performance ratio makes them attractive for tasks requiring
massive parallelism.

» They can be easily scaled by adding multiple GPUs to a system, allowing for
increased performance and computational capabilities.

« They have increased power consumption which results in higher electricity
costs and may require additional cooling measures.

« They excel at executing a single task on a massive scale but are not well-suited
for general-purpose computing tasks or real-time serial tasks.

» They are currently more costly than CPUs especially compared
with large-scale GPU systems which can reach significantly high price points.

FPGA-based accelerators

A Field-Programmable Gate Array (FPGA) is an integrated circuit that can be configured
after manufacturing. The configuration is typically specified using a hardware description
language (HDL) or higher abstraction languages such as High Level Synthesis (HLS).
FPGAs consist of an array of programmable logic blocks and reconfigurable
interconnects, enabling the connection of these blocks (Figure 2-11). The logic blocks can
be set up to perform complex combinational functions or act as simple logic gates like
AND and XOR. Many FPGAs also include memory elements within the logic blocks,
ranging from basic flip-flops to more comprehensive memory units. This reconfigurable
nature allows FPGAs to be reprogrammed to implement different logic functions,
enabling flexible and adaptable computing akin to software programming.
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Figure 2-11. Internal structure of Xilinx FPGA [22]

More specifically, FPGAs, beyond being a mere array of gates, possess a sophisticated
network of interconnected digital subcircuits, designed with precision to efficiently
execute common functions and provide high flexibility. FPGAs mainly have 3 parts:

e Configurable Logic Blocks — At the heart of an FPGA's programmable-logic
capabilities lies a collection of configurable logic blocks (CLBs) that implement
logic functions.

e Programmable Interconnects — The CLBs within the FPGA need communication
with each other achieved through a matrix of programmable interconnects.

e Programmable I/0O Blocks — In order to connect with external circuitry FPGAS
have programmable 1/0 blocks.

FPGA programming — FPGA programming involves utilizing an HDL to tailor circuits
based on desired device capabilities. Unlike programming a GPU or CPU in a sequential
manner, the process entails creating circuits and physically modifying the hardware to
suit specific requirements. This process bears similarities to software programming, as the
code which is written is converted into a binary file and loaded onto the FPGA. However,
the distinction lies in the HDL's ability to perform physical changes to the hardware,
rather than merely optimizing the device for software execution.

Unified software platforms enable software developers to utilize their preferred languages
to program FPGAs from Xilinx or Intel without extensive knowledge of HDLs. These
platforms work by translating higher-level languages into lower-level ones, allowing
FPGAs to execute the desired functions. Languages compatible with unified software
platforms for FPGA programming include:
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e C and C++: High-level synthesis (HLS) now enables C-based languages for
FPGA design. The Vivado HLS compiler from AMD-Xilinx provides a
programming environment that optimizes C and C++ programs, allowing software
engineers to optimize code using specific directives or “pragmas”.

e Python: Designers can use the Python language and libraries to create high-
performance applications and program FPGAs. For example, Xilinx PYNQ, an
open-source project from AMD simplifies FPGA usage on Xilinx platforms.

e Al development frameworks: Al scientists can use FPGAs without hardware
knowledge. For example, with Vitis Al [23] engineers can directly apply their
trained deep learning models from TensorFlow or Pytorch and compile them for
FPGA acceleration. This eliminates the need for low-level hardware programming
and achieves fast compilation times, similar to the software experience of CPUs.
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Figure 2-12. Xilinx Al Development stack
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In Figure 2-12, the whole Xilinx Development stack is shown. As already mentioned,
engineers can use high level tools such as Vitis for synthesizing a C/C++ function into
RTL. This high-level code represents the desired functionality of the hardware module
that is going to be implemented. For optimization, HLS tools offer various optimization
options to fine-tune the code for better results. The generated RTL code is then subjected
to the synthesis process and then transformed into a gate-level representation, specifying
the actual logic gates and interconnections that make up the hardware design. Once
synthesis is complete, the tool performs the place-and-route process. During this step, the
gate-level netlist is mapped onto the FPGA's physical resources, such as lookup tables,
flip-flops, and interconnects. After this process, the FPGA bitstream is generated. The
bitstream contains the configuration data required to program the FPGA, defining the
connections and functionality of the hardware module.
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Additionally, Al engineers can take advantage of Al development stacks from FPGA
companies such as Xilinx Vitis Al. Vitis Al fully supports Al inference algorithms to be
accelerated in both edge and cloud environments. At the core of the Vitis Al stack lies the
Xilinx Deep Learning Processor Unit (DPU), a programmable logic-based unit optimized
for implementing Convolutional Neural Networks (as depicted in Figure 2-12). The DPU
takes advantage of the parallel nature of the FPGA's programmable logic to perform fast
and efficient computations required for neural network inference. The process of using
Vitis Al and DPUs typically involves 1) optimization, an optional process to reduce the
overall computational complexity of the model, 2) quantization, where the model is
quantized to a lower bit precision, 3) compilation, where the DPU is configured to
execute the specific model and the FPGA is programmed with the DPU's bitstream.

Below, we summarize the main advantages and disadvantages of using FPGAs for Al:

FPGA advantages :

» They are known for their power efficiency, as they can be optimized to
execute to reduce energy consumption compared to general-purpose hardware

» They can achieve extremely low latency in processing data, making them
ideal for real-time Al applications where quick responses are critical.

» They have high flexibility allowing them to fit to specific Al workloads

» The development and programming require specialized hardware engineering
skills, effort and time from the engineer perspective.

+ At the same performance level, FPGAs are generally more expensive than
GPUs, and the cost of hiring or training FPGA is significant.

« They have limited on-chip resources, such as logic cells and memory blocks,
thus complex Al models often cannot fit in the resources of a single device.

» The ecosystem is not as mature as the ecosystem for CPUs and GPUSs.

ASIC-based accelerators

An Application Specific Integrated Circuit (ASIs) is an integrated circuit (IC) chip
customized for a particular use, for example Al model acceleration. They typically
contain a systolic array which is composed of a large network of basic computing nodes,
which can be either hardwired or software configured for specific applications. These
nodes are usually fixed and identical, while the interconnect between them is
programmable. Unlike the conventional Von Neumann architecture, where program
execution follows a sequence of instructions stored in common memory, addressed and
sequenced under the CPU's program counter (PC), individual nodes within a systolic
array are triggered by the arrival of new data and process the data in a consistent manner.
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Due to its ability to handle multiple data streams through data counters, the systolic array
supports data parallelism. This enables the systolic array to efficiently process multiple
data streams simultaneously.

There are many devices developed by various companies and organizations that are
classified as ASIC Al accelerators. The most popular as of today is Google TPU (Tensor
Processing Unit) [24] which shares many common characteristics with many accelerators
of the same category. Google developed its custom ASIC Al accelerator, the TPU, to
accelerate machine learning workloads, particularly neural network inference (

Figure 2-13). TPUs are extensively used within Google's data centers to accelerate
various Al applications. They incorporate specialized features like the matrix multiply
unit (MXU), which optimizes complex matrix operations, and utilize optical circuit
switch (OCS) technology to achieve high-bandwidth memory (HBM). These TPUs can be
seamlessly grouped into clusters known as Pods, enabling scalable and accelerated
machine learning training and inference. Developers leverage cloud as well as edge TPUs
to benefit from high performance, seamless development processes, and cost efficiency.
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Figure 2-13. Google's TPU architecture and operation

TPUs, just like many Al accelerators, primarily focus on matrix processing combining
multiply and accumulate operations. They consist of numerous multiply-accumulators
directly interconnected to create a large physical matrix, utilizing a systolic array
architecture as shown in Figure 2-13. For example, in the case of Cloud TPU v3, two
systolic arrays with 128 x 128 ALUs each are present on a single processor. The TPU's
operation involves a stream of data into an infeed queue, where data is loaded into HBM
memory. After computation, the results are placed into an outfeed queue. The TPU host
then retrieves and stores the results in its memory. For matrix operations, the TPU fetches
parameters from HBM memory into the Matrix Multiplication Unit (MXU). Similarly,
data is loaded from HBM memory, and as each multiplication is executed, the result
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moves to the next multiply-accumulator. The output is the accumulation of all
multiplication results between data and parameters. This process requires no memory
access during matrix multiplication, leading to a high computational throughput.

Other ASIC-based Al accelerators utilize different kind of techniques to improve the
performance. Often, the multiplier circuit reduces its area and power consumption by
discarding certain partial products used in computing the final result [25]. These circuits
trade off precision and circuit complexity to enhance speed and power efficiency. This
approach is often referred to as the approximate computing paradigm, which allows for
design approximations with an acceptable loss of accuracy. In Al, many deep learning
models and algorithms can tolerate some loss of precision without significantly affecting
the final output or model accuracy. Thus, custom-designed hardware chips often integrate
these kinds of optimizations to efficiently perform neural network operations.

Through specialized design ASIC-based accelerators have achieved remarkable levels of
performance and energy efficiency. As the demand for Al accelerators grows, many
companies are investing in custom ASIC development to gain a competitive edge in the
Al market. This has led to a surge in the number of startups and established tech
companies specializing in Al accelerator chips, contributing to a vibrant ecosystem of Al
hardware innovation [26, 27, 28]. However, these devices have both pros and cons:

ASIC advantages :

» They are often designed specifically for tensor operations, resulting in faster
training and inference times for DNNs compared to other accelerators.

* Due to their specialized design, ASICs are very energy-efficient.

» ASIC-based accelerators such as TPUs can scale efficiently to handle large-
scale Al workloads and models.

» The design process can be time consuming and the development cost high.

» They have limited reusability as the Al landscape changes significantly fast.

2.2.3 The Role of Approximate Computing

The failure of Dennard scaling resulted in the emergence of the "dark silicon problem"
[29], compelling computer designers to explore innovative approaches to maintain and
enhance the efficiency of computing systems. Within the field of computing, several
groundbreaking paradigms emerged, and over the past decade, one of the most
remarkable developments has been in Approximate Computing (AxXC) research.
Approximate computing involves techniques that leverage the inherent error resilience of
various applications to achieve enhanced efficiency in terms of energy and performance
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at all levels of the computing stack. Al applications offer many opportunities for the
implementation of AXC techniques due to several factors:

e Inherent Error Resilience: Many Al tasks often involve handling large datasets
and complex models. These tasks exhibit a level of inherent error resilience,
meaning that small deviations in computation or approximations may not
significantly affect the overall quality of the results.

e Function Approximation: Al tasks frequently involve approximating complex
functions to model patterns and relationships within data. AXC techniques can be
applied to these approximations, optimizing the trade-off between accuracy and
computational resources.

e Computational Intensity of Al: Al applications, especially deep learning models,
can be computationally intensive, requiring substantial resources for inference and
training. AxC techniques can significantly reduce these computational demands
without compromising the quality of the results, making Al applications more
efficient and cost-effective.

e Parallelism and Hardware Acceleration: Al workloads often lend themselves well
to parallel processing and hardware acceleration. In specific parallel computing
systems and specialized hardware [24] AxC techniques can be efficiently
implemented, further enhancing their benefits in terms of performance or energy.

e Real-time and Embedded Systems: In certain Al applications, such as those in
real-time or embedded systems, power and resource constraints are critical
considerations. AxC techniques can address these limitations.

e Emergence of Low-Precision Hardware: AxXC aligns well with the trend of
developing specialized low-precision hardware for Al. AxC necessitates low-
precision hardware to fully realize its potential, leading to the creation of such
hardware that leveraged AxC for improved performance and energy efficiency.

e Trade-off Flexibility: AXC was developed to manage the complex trade-offs
between accuracy, performance, energy etc. AXC allows for flexible optimization
of these parameters, enabling more effective adjustments based on specific needs.

Taxonomy of AXC techniques for Al — In the past decade, there has been a focused
effort to develop Approximate Computing techniques for AI/ML applications, driven by
the prospect of achieving significant improvements in performance and computational
efficiency. These AxC techniques have been explored across the entire computing stack,
ranging from algorithms to circuits. Figure 2-14 illustrates a taxonomy of various
approximate computing techniques targeting AI/ML applications. Notably, the most
successful techniques are inherently cross-layered, wherein multiple layers of the
compute stack are jointly designed to maximize the benefits of approximations while
minimizing their impact on the quality of the final output of the applications.
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Figure 2-14. Taxonomy of Approximate Computing techniques

Delving into Figure 2-14, we can observe that there are several optimizations that can be
applied on the algorithm level. Most techniques concern the reduction of the
computations or memory of the model with the most popular being pruning or
quantization. Also, at the architectural level, hardware accelerators for Al/ML typically
consist of arrays of processing elements. AXC techniques leverage these processing
elements to perform neural network operations more efficiently, optimizing both
performance and energy consumption. Last but not least, circuits play a crucial role in the
implementation of approximate computing systems. Previous techniques such as
quantization heavily rely on efficient approximate circuit design to achieve maximum
benefits. These types of approximations are usually categorized as i) logic
approximations, which involve making slight modifications to the logic functionality of a
circuit, and ii) timing approximations, where the circuit is designed and operated at an
over-scaled voltage-frequency point.

2.2.4 Review of Relevant Studies and Research in the field

This subsection aims to offer a comprehensive review of the most influential architectures
used for accelerating Deep Learning (DL). It highlights various approaches that support
DL acceleration, including GPU-based accelerators, FPGA-based accelerators and ASIC-
based accelerators that we introduced in the previous subsection. In this study, we have
examined the research on DL accelerators over the past years that have influenced the
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ecosystem of Al hardware innovation. It is important to note that due to the prolific and
rapidly evolving nature of DL acceleration, we acknowledge that our review may not
encompass all research works to date. This survey can serve as a connecting point for the
next chapters which focus on specific aspects of hardware optimization, such as
reconfigurable hardware and approximate computing. To organize the subsection
effectively, we have structured it into different categories based on the area of computer
architecture and hardware design. Within each classification, we have cited research
papers that were significant for the community but also for our dissertation. Additionally,
we have selectively chosen the most notable and influential works under approximate
computing for Al which Chapter 4 centers on.

Our main interest was to mainly investigate the trends in performance over several
hardware accelerators along with how numerical precision (or other approximation
techniques) have impacted these trends. In Figure 2-15, we show a small group of
accelerators from [30] over the 10-year period plotted against their peak performance for
one or more precision formats. This plot highlights the substantial performance gains
achieved over the past decade by supporting lower precision formats.
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Review on GPU accelerators

Various vendors, including Nvidia, AMD and Intel, have ventured into the development
of GP-GPU architectures, primarily focusing on High-Performance Computing (HPC)
and, more recently, Artificial Intelligence (Al) computing. Despite their shared hardware
details, there is a lack of consistency in the terminology employed by these different
vendors. For instance, while AMD refers to it as "Compute Unit,” Nvidia calls it
"Streaming Multiprocessor,” and Intel uses "Compute Slice™ or "Execution Unit."
Furthermore, Nvidia refers to the set of instructions scheduled and executed at each cycle
as "Warp," while AMD adopts the term "Wavefront,” and Intel utilizes "EU-Thread." In
terms of the execution model, Nvidia employs the "Single Instruction Multiple Thread
(SIMT)" approach, while both AMD and Intel use "Single Instruction Multiple Data
(SIMD)". Table 3 presents the primary hardware characteristics of the three most recent
GP-GPU architectures, namely Nvidia H100 , AMD, and Intel. The comparison includes
the peak performance in Teraflops related to 32-bit single-precision (SP), 64-bit double-
precision (DP) and half-precision (FP16) along with Thermal Design Power (TDP).

Model (Vendor) H100 Instinct M1250X Arc 770
(Nvidia) (AMD) (Intel)
#physical-cores 132 220 32
#logical-cores 16896 14080 4096
Clock (GHz) 1.6 1.7 2.4
Peak perf. DP (TF) 30 47.9 4.9
Peak perf. SP (TF) 60 95.8 19.7
Peak perf. FP16 (TF) 120 383 39.3
Max Memory (GB) 80 HBM2e 128GB HBM2e 16GB GDDR6
Mem BW (TB/s) 2.0 3.2 0.56
TDP Power (Watt) 350 560 225

Table 2-1. Hardware characteristics of recent GPU systems developed by NVIDIA, AMD, and Intel

Nvidia GPUs have established their dominance in the Al market, positioning themselves
as the prevailing choice for artificial intelligence applications [31]. With their high
performance and specialized architecture tailored for parallel processing, Nvidia GPUs
have demonstrated superior capabilities in accelerating deep learning algorithms and
large-scale neural network training. The extensive support for Al frameworks and
libraries, such as PyTorch and Tensorflow coupled with advanced software optimizations,
further makes these GPUs as the go-to solution for Al researchers, data scientists, and
industries who aim to find seamless solutions for their Al tasks. Considering the above,
we examine the Nvidia architectures through the years and give a comprehensive review
on the related work and research, specifically for Al inference applications.
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Advancements in Nvidia GPU technologies — Considering each generation of Nvidia
architecture, some minor differences occurred. Through the years, Nvidia developed more
efficient architectures and Al-specific circuits to implement efficiently Al algorithms.

With the Kepler architecture, Nvidia introduced K20, K40, and K80 GPUs. The
K40 processor offers more global memory than the K20, leading to slight improvements
in memory bandwidth and floating-point throughput. On the other hand, the K80 features
two enhanced Kepler GPUs with additional registers and shared memory, along with
extended GPUBoost capabilities. The peak single-precision performance of the Kepler
K20 and K40 is approximately 5 Tflops, while the K80's aggregate performance from two
GPUs reaches around 5.6 Tflops. The peak memory bandwidth is 250 GB/s for the K20X,
288 GB/s for the K40, and a combined 480 GB/s for the K80.

Moving to the Pascal architecture, the P100 board was designed to address memory
challenges with stacked memory technology, integrating High Bandwidth Memory 2
(HBM2). This resulted in greater bandwidth, more than double the capacity, and higher
energy efficiency compared to previous generations using off-package GDDR5. The
P100 achieves peak performances of about 10.5 Tflops in single precision and 5.3 Tflops
in double precision. The peak memory bandwidth is increased to 732 GB/s.

The Volta architecture combined High-Performance Computing (HPC) and Al
capabilities, incorporating Tensor Cores optimized for deep learning and second-
generation NVLink with increased throughput. The Tesla V100 offers 7.5 Tflops of DP
computing throughput and 900 GB/s peak memory bandwidth, 1.4x and 1.2x
improvements over Pascal, respectively.

In the Ampere architecture, Tensor Cores have been significantly enhanced,
boosting deep learning throughput by 10 times compared to V100. The A100 GPU
delivers peak performances of 9.7 Tflops in DP and 19.5 Tflops with FP32.

Finally, the Hopper architecture represents Nvidia’s latest generation, introducing
new streaming multiprocessors with advanced features. With Tensor Cores that are 6x
faster than A100's chip-to-chip, a memory subsystem based on HBM3 modules providing
nearly a 2x bandwidth increase, and fourth-generation NVLink providing 3x bandwidth
increase, the Hopper achieves remarkable peak performances of 24 Tflops in DP and 48
Tflops using FP64 Tensor Core and FP32 operations. The Hopper's H100 SXM5 GPU
supports 80 GB of fast HBM3 memory, delivering over 3 TB/sec of memory bandwidth,
effectively doubling the memory bandwidth of the A100. Additionally, the H100
introduces DPX instructions to accelerate Dynamic Programming algorithms with support
for advanced fused operands. The PCle version of H100 provides 80 GB of fast HBM2e
with over 2 TB/sec of memory bandwidth.

It’s worth mentioning that Nvidia has established a list of key technologies to accelerate
workloads both in edge and cloud domains. Consequently, the availability of this
computing power and the novel compute capabilities of GPUs targeting Al workloads
facilitated the advancement of new DNN applications with higher computational needs.
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Related research on GPUs — Many research papers utilized GPU accelerators to
develop or deploy their applications. Specifically, research related to computer vision and
neural network inference and training started to grow with the influential paper of Alex
Krizhevsky et al. [9]. It introduced the AlexNet architecture, a deep convolutional neural
network that achieved a significant breakthrough in image classification accuracy on the
ImageNet dataset. The use of GPUs was instrumental in accelerating the training of deep
neural networks. After, several other works introduced new Al models that solved more
abstract tasks.

Obiject detection algorithms such as Faster R-CNN [32] or YOLO [33] proposed
new model architectures for object detection. They achieved state-of-the-art performance
in object detection and benefited from GPU acceleration during both training and
inference. However, real-time inference required efficient processing of the entire image
in a single pass, which can be computationally challenging for large images and complex
scenes. As Shi et al. [18] also suggested on the rationale for edge processing, the
tremendous data generated by loT nodes creates significant challenges in edge
applications. In their comprehensive analysis of edge processing applications, they
advocate the execution of video analytics close to the data source. Nvidia and other GPU
vendors introduced tensor mixed-precision computing, dynamically adapting calculations
to decrease latency. Several previous work took advantage of the computing capabilities
of the tensor cores to efficiently deploy Al algorithms [34] [35] [36] [37]. Tensor cores,
however, are optimized for typically for 16-bit or 8-bit arithmetic. While this is often
sufficient for training and inference in deep learning, it can lead to potential issues with
numerical stability or data format constraints. It also makes balancing accuracy and
power a difficult task as there is limited support for other precision datatypes in contrast
with other Al accelerators [38] [39] [40].

Another important work of the last years that influenced the Al ecosystem was
"Attention Is All You Need" (2017) by Vaswani et al [11] with the advent of the novel
Transformer Al model. The parallelizable nature of the transformer model made it
suitable for hardware acceleration. This paper inspired efforts to optimize and accelerate
these operations on specialized hardware but also other Al accelerators, to handle large-
scale language models efficiently. However, it is not trivial to handle the model's massive
data dependencies and memory bandwidth requirements. Researchers have addressed
these challenges through techniques like quantization, sparsity, and model distillation [41]
[42] [43] but this remains an open issue.
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Review on FPGA accelerators

FPGA-based acceleration, especially for neural network inference, has emerged as a
compelling area of research, presenting a promising alternative to GPUs in terms of speed
and energy efficiency. Researchers have been developing specialized hardware designs to
unlock the full potential of FPGA as a viable solution. Numerous FPGA-based
accelerator concepts have been proposed, incorporating both software and hardware
optimization techniques to achieve impressive levels of speed and energy efficiency. A
comprehensive investigation spanning from software to hardware, and from circuit to
system levels, has been conducted to provide a holistic analysis of FPGA-based neural
network inference accelerator designs. This study serves as a valuable reference and
guide for future research but also for comparison with the use-cases of the next chapters
which focus on reconfigurable computing.

According to market share research, AMD-Xilinx holds the dominant position as the
largest FPGA manufacturer with 3.06 billion in revenue as reported in the 2019 annual
reports. Following Xilinx is Intel, with 1.987 billion in revenue in the same year. Apart
from these major players in the FPGA market, there are also other FPGA manufacturers
such as Lattice Semiconductor and Archonix Semiconductor. Among the leading
companies, Xilinx, Intel, offer high-performance FPGA platforms that include the ARM
CPU processor but also PCI compatible cards that attach to servers. Intel focuses on GPU
and machine learning processor examples, with their VPU primarily targeting image
processing. Table 2-2 shows a summary of FPGA hardware platforms. It’s worth noting
that Xilinx offers a wide range of devices spanning from edge to cloud and hence, this
paragraph will primarily focus on examining Xilinx's technologies in this context.

FPGA Series Company | DSP Description
Slices
Agilex AGF027 Intel 8528 Quad core ARM Cortex-A53, PCle Gen5
Stratix 10 DX 2800 Intel 5760 Quad-core ARM Cortex-A53 HPS, HBM2
16G, Intel Optane DC
Stratix 10 GX 2800 Intel 3456 DDRA4
Arria 10 GT1150 Intel 1518 DDRA4
Virtex VU19P Xillinx 3840 DDR4, server Class DIMM
UltraScale+
Zyng UltraScale+ | ZU7EV Xillinx 1728 Quad-Core ARM Cortex-A53 MP Core,

Dual-core  ARM Cortex-R5 MPCore and
Mali 400, MP2 GPU, DDR4

Zyng UltraScale+ | ZU7CG Xillinx 1728 Dual-Core ARM Cortex-A53 MP Core and
ARM Cortex-R5 MPCore, DDR4
Alveo U200 XCU200 Xillinx 5867 Server Class, DDR4

Table 2-2. Summary Table of FPGA platforms for Xilinx and Intel
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Advancements in Xilinx FPGA technologies — Xilinx, one of the leading FPGA
manufacturers, has introduced several generations of FPGAs over the years, each
representing significant advancements in technology and capabilities. Below is an
overview of some key Xilinx FPGA generations and their evolution:

The Virtex series: The Virtex series, introduced in the 1990s, marked Xilinx's first
foray into high-end FPGAs. These devices offered higher logic density, improved
performance, and more resources compared to previous FPGA families. Virtex FPGAS
also included specialized features such as Block RAM (BRAM) and Digital Signal
Processing (DSP) slices, making them suitable for a wide range of applications. With the
Virtex-6 series years after, Xilinx moved to a 40nm process, further improving
performance and power efficiency. These FPGAs featured advanced DSP slices and on-
chip memory, making them suitable for applications in communications and signal
processing.

With the 7 series, including Artix-7, Kintex-7, and Virtex-7 families, Xilinx
brought significant improvements, such as the adoption of 28nm process technology. This
generation offered higher logic capacity, improved power efficiency, and higher-speed
serial transceivers.

The UltraScale series represented a major leap in FPGA technology, introducing
20nm process nodes. It brought massive increases in logic and memory capacity, as well
as advancements in high-speed serial transceivers and DSP resources. UltraScale FPGAs
offered a higher level of integration and performance for demanding applications.

The UltraScale+ series continued the evolution, incorporating 16nm process
technology. It further enhanced performance, power efficiency, and integration
capabilities. UltraScale+ devices included features like High Bandwidth Memory (HBM)
integration, versatile programmable 1/0 (P10) banks, and advanced system-level features.

The newer generation of devices was the Versal series built on the TSMC 7 nm
FINnFET process technology. These devices included a typical programmable logic with
some improvements in DSPs and other components, but also introduced the new Al
engines. These intelligent engines provided up to 5x higher compute density for vector-
based algorithms compared with previous approaches. They were optimized for real-time
DSP and AI/ML computation built from the ground up to be software programmable and
hardware adaptable. In particular, Al Engines are an array of very-long instruction word
(VLIW) processors with single instruction multiple data (SIMD) vector units that are
highly optimized for compute-intensive applications. With this new technology, AMD-
Xilinx introduced a new paradigm of Al acceleration.
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Related research on FPGAs — The versatility of FPGAs have made them particularly
attractive for research, development, and deployment in various applications, including
edge devices, data centers, and Internet of Things (1oT) devices. FPGA-based accelerators
have shown to significantly reduce power consumption, contributing to energy-efficient
and environmentally friendly computing solutions [44, 45].

One common method of achieving parallelization in FPGAs is by reducing the
computation's bit-width directly which consequently leads to a reduction in the size of
computation units. In state-of-the-art FPGA designs, 32-bit floating-point units are often
replaced with fixed-point units. For instance, Podili et al. [46] implemented 32-bit fixed-
point units for their proposed system, while other works like [47, 48, 49] widely adopted
16-bit fixed-point units. Notably, some works explore narrower bit-width designs. For
example, Guo et al. [50] employed 8-bit units for their embedded FPGA design.
Surprisingly, experiments with extremely narrow networks, such as Binarized Neural
Networks (BNN) that employ 1-bit weights/activations, have shown remarkable results,
exhibiting little accuracy loss [51, 52, 53]. Low bitwidth fixed-point arithmetic has been
appealing to the FPGA designers and the latest state-of-the-art designs have been
leveraging them to reduce latency and power. Often re-training or calibration is needed if
aggressive quantization is applied so as to optimize the weights or activations to the new
value distributions [54, 55].

Several prior works focused on optimizing convolution operations in
convolutional layers by adopting alternative mathematical functions. The convolutional
layer is the most common layer for acceleration in neural networks in computer vision.
For example, in [56] they used Discrete Fourier Transformation (DFT) from digital signal
processing for faster convolutions. Zhang et al. introduced a hardware design utilizing 2D
DFT. Also, according to Ding et al. [57], a block-wise circular constraint can be utilized
on the weight matrix. By doing so, the matrix-vector multiplication in Fully Connected
(FC) layers is transformed into a series of 1D convolutions, enabling acceleration in the
frequency domain. Last, several papers on neural network acceleration on FPGAs
proposed the fast Winograd algorithm to reduce the number of arithmetic operations
required for convolutions [58, 59].

Despite the efforts from the researchers to reduce memory or compute
requirements of neural networks to achieve acceleration, there are always design or
productivity limitations. High-level synthesis tools and design frameworks can help
improve design productivity, but they may still face limitations in handling complex CNN
architectures. Several previous works have proposed frameworks to automate the
optimization of CNN models for FPGAs [60, 61]. Another popular framework is FINN
[62], an end-to-end tool that enables design-space exploration on reduced precision neural
networks. HLSAML [3] is another widely adopted tool that automatically creates
firmware implementations of Al algorithms using high level synthesis language. In these
frameworks, however, the produced designs were not always optimal while there were
many limitations and partial support for neural networks layers or operations.
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Review on ASIC accelerators

ASIC accelerators play a crucial role in the acceleration of deep learning tasks, providing
highly efficient and powerful solutions for a wide range of applications. As the demand
for Al and deep learning grows, ASIC technology continues to advance further enhancing
the capabilities of these specialized accelerators. Google has been a major contributor to
Al hardware with its custom-designed Tensor Processing Units (TPUSs). Also, Intel's Al
hardware division, Habana, has been developing dedicated ASICs. These chips are
designed to deliver high performance and efficiency for deep learning workloads.
Graphcore has also gained attention for its Intelligence Processing Units (IPUs), custom-
designed ASICs for Al acceleration. IPUs focus on parallelism and use a novel graph-
based approach to accelerate neural network computations. Cerebras Systems has
developed the Wafer-Scale Engine, a revolutionary Al accelerator that covers an entire
silicon wafer with a massive number of cores and memory, providing exceptional
performance for deep learning. While there are many ASIC Al accelerators most of them
include some common characteristics such as customized instruction sets and data paths
tailored for Al or specialized tensor processing units. In Table 2-3 we summarize some
important Al accelerators.

Company Product Label Form Factor
Cerebras Cs-1 Cs-1 System
Cerebras CS-2 CS-2 System
Google TPU Edge TPU Edge System
Google TPUL TPUL Chip
Google TPU2 TPU2 Chip
Google TPU3 TPU3 Chip
Google TPU4 TPU4 Chip
Google TPUA4i TPUA4i Chip
GraphCore C2 GraphCore Chip
GraphCore C2 GraphCoreNode System
GraphCore Colossus Mk2 GraphCore2 Chip
GraphCore Bow-2000 GraphCoreBow Chip
Habana Gaudi Gaudi Card
Habana Goya HL-1000 Goya Card
Qualcomm Cloud Al 100 Qcomm Card

Table 2-3. List of ASIC Al accelerators

Many of these accelerators leverage dataflow processing, a unique computational model
that organizes computations based on the availability of data rather than control flow.
Neural network training and inference computations can be effectively mapped in a
deterministic manner, making them well-suited for dataflow processing. This kind of
architectures offers advantages in terms of flexibility, resource utilization, and parallelism
compared to traditional instruction-based architectures.
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Advancements in ASIC technologies — The first generation of ASICs dedicated to deep
learning emerged around 2015. Google's Tensor Processing Unit (TPU) was one of the
pioneering ASICs in this category, optimized for inference tasks. These ASICs
demonstrated significant performance improvements compared to GPUs and CPUs for
deep learning workloads.

In the following years, second-generation ASICs further improved upon the
performance and efficiency of early Al chips. These chips incorporated more advanced
architectures and optimizations, enabling better parallelism, support for better
quantization techniques, and memory management. NVIDIA's Volta and Xavier GPUs,
equipped with Tensor Cores, were notable examples of this generation which can be
characterized as Al chips.

With large-Scale and wafer-scale ASICs, later generations pushed the boundaries
of scale and size. Cerebras Systems introduced the Wafer-Scale Engine (WSE), an
innovative Al accelerator that spans an entire silicon wafer, featuring thousands of cores
and a large-size memory. Such large-scale ASICs provided unparalleled performance for
both training and inference tasks and addressed the problem of on-chip memory
limitations which is a common challenge faced in the design of Al accelerators. Cerebras
tried to overcome the on-chip memory limitation which arises due to the physical
constraints of the chip's size by creating a large amount of memory that could fit into their
custom chip. Thus neural network memory such as intermediate data, activations, and
model parameters could be successfully processed on-chip during computation.

Next generations focused on high-efficiency training ASICs. While early ASICs
focused primarily on inference, later generations addressed the demands of Al training
workloads. Companies like Habana Labs or Graphcore developed ASICs optimized for
Al training tasks, with features such as large memory bandwidth, higher precision
arithmetic, and sophisticated communication mechanisms between chips.

It’s worth mentioning that due to the substantial number of Al accelerators
available, efforts have been made to establish a standardized benchmark that facilitates
fair comparisons among these devices. An initiative with the name MLPerf aimed to
provide an impartial and objective performance standard for software frameworks,
hardware platforms, and cloud solutions involved in machine learning. A diverse
consortium of Al community researchers and developers from over 30 organizations
collaboratively designed and continually enhanced these benchmarks. VVarious companies
uploaded their device benchmarks over MLPerf which through the years made MLPerf to
become a widely recognized and respected benchmarking suite. Now it is an industry
standard as it has independent and objective evaluations, recognition and wide adoption
over many major companies in the field.
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Related research on ASICs — ASIC Al architectures often incorporate innovative
approaches, such as dataflow processing, systolic arrays, and specialized units for matrix
multiplication and tensor operations. There are also heterogeneous approaches exploring
hybrid architectures [24, 28, 27] that combine different processing units (e.g., scalar
processors, tensor processors, vector units) to achieve a balance between flexibility and
efficiency .

Reduced precision (e.g., 16-bit, 8-bit) continues to be the default numerical precision
for these devices whether targeting embedded, autonomous or data center applications.
The precision provided by these formats is generally sufficient for most AI/ML
applications that involve a reasonable number of classes [63, 64]. It is also very common
for Al chips to appear in embedded system-on-chip (SoC) solutions, which often include
low-power CPU cores, audio and video analog-to-digital converters (ADCs), encryption
engines, network interfaces, etc. Also, most Al-chip companies like Cerebras or
GraphCore have highly scalable inter-networking technologies that allow thousands of
cards to be interconnected. This scalability is particularly crucial for dataflow accelerators
and facilitates the networking of multiple cards, effectively handling even extremely large
models like transformers [65]. Nevertheless, the ever-increasing computational demands
of modern complex DNNs cannot be met by these devices alone and often more
aggressive optimizations are needed.

While some approaches like the previous have reduced precision arithmetic, a large
number of state-of-the-art works employ approximate multipliers to address the highly
increased compute demands of DNN accelerators. Approximate computing techniques are
based on the intuitive observation that achieving exact computation (for example exact
multiplication) is not often needed. [66] employed approximate multipliers to different
convolution layers and [67] proposed a compact and energy-efficient multiplier-less
artificial neuron. Most of previous works focus on layer-wise approximation [68] where
each layer has a different multiplier. Extensive search although is needed to find the
optimal approximation per layer. Also, usually additional finetuning or retraining is
required to mitigate the error induced by the approximate multipliers.

Evaluating the accuracy on approximate DNNs is cumbersome due to the limited
support from DL frameworks which do not have optimized approximate mathematical
operations. Thus, there have been many works that proposed approximate DNN
frameworks [69, 70, 71] but there are still open challenges such as overcoming the slow
inference time due to limited approximate arithmetic support from DL frameworks, re-
training on approximate operations or finding optimal approximation per layer using
search algorithms.
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Optimization of Deep Learning
Accelerators

In this section, we present a detailed analysis of software and hardware optimization
techniques applied to Deep Neural Networks for efficient inference. The first section
describes several optimizations that were explored throughout this thesis with a particular
focus on their use and impact on computer vision tasks such as image classification. In
the next three subsections, three distinct Al tasks are examined with implementation
details regarding acceleration using reconfigurable hardware. The last section presents a
comprehensive end-to-end framework for automatic acceleration of Convolutional Neural
Networks on FPGAs and shows its performance through different experiments.

3.1 Overview

We begin this chapter by discussing various strategies and techniques to improve the
efficiency and performance of neural networks for both software and hardware
implementations. From the software perspective, we discuss the optimization techniques
of quantization and pruning to reduce the precision of weights and activations, along with
layer fusing to overcome the overhead due to memory access and intermediate data
storage. From the hardware perspective, we cover the most important optimizations,
which are universal for many hardware platforms, but with a focus on reconfigurable
hardware. These include the parallelization strategies, data movement and precision
scaling techniques. Next, we give three real world use-cases where various ML/AI
algorithms were accelerated using FPGA platforms, along with in-depth explanations of
the implementation process and the outcomes obtained. Last, we present our end-to-end
tool for automatic FPGA firmware generation from CNNs, which is based on HLS4ML
[3] tailored for cloud FPGA architectures.
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3.2 Common Techniques for Efficient Inference

In scenarios requiring the execution of Al algorithms with constrained energy and low
latency, there arises a demand for achieving energy-efficient deep learning execution.
Numerous techniques can be employed to streamline the DNN inference process and
improve its efficiency, making it more feasible to deploy on various hardware platforms
with constrained resources such as FPGAs. However, we focus on the most important
ones, namely quantization, pruning, and layer fusion.

3.2.1 Software: Quantization, Pruning and Layer Fusion
Quantization

The main challenge occurs when running on smaller, less powerful devices, but often on
cloud devices as well, where there is high memory and computational demand. It involves
adapting a relatively large neural network to operate efficiently. To this end, the most
effective technique is known as quantization. To understand the concept of quantization,
it's crucial to first examine why neural networks, in general, require substantial memory.

As we described in 2.1.2, a neural network comprises interconnected neurons organized
into layers. Each layer involves a set of interconnected neurons, each having its weight,
bias, and associated activation function. During training, the weights, biases, and
activations are adjusted to optimize the neural network's performance. These values
represent the majority of data stored in memory by the network. Typically, they are
represented as 32-bit floating-point values to ensure high precision and accuracy. This
precision comes at the cost of memory usage, especially for large networks with millions
of parameters and activations. For instance, the 50-layer ResNet architecture includes
approximately 26 million weights and 16 million activations. When stored as 32-bit
floating-point values, the entire architecture requires around 168 MB of storage.
Consequently, this is why neural networks tend to consume significant memory
resources.

Quantization, however, is important not only for reducing memory requirements but also
for optimizing computations in hardware accelerators. It plays a crucial role in improving
the overall efficiency and performance of DNNs on hardware devices such as GPUSs,
FPGAs and other specialized accelerators. Generally, quantized neural networks use
integer arithmetic format as we will see next, although new FP8 datatypes have been
recently proposed and adopted by various companies [72]. Integer operations are
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generally faster and require less power than floating-point operations. This allows the
accelerator to process more data in parallel and achieve higher throughput.

Quantization concept — Quantization involves reducing the precision of neural network
parameters, including weights, biases, and activations, to decrease their memory
consumption. For example, 32-bit floating-point values which are used to represent
parameters are converted into a more compact representation, such as 8-bit integers. int8
quantization has become a popular approach for such optimizations not only for deep
learning frameworks like TensorFlow and PyTorch but also for hardware toolchains like
NVIDIA TensorRT and Xilinx Vitis Al framework.

To transition from floating-point to more efficient fixed-point operations, we require a
method to convert floating-point vectors into integers. This conversion can be achieved
by expressing a floating-point vector x as an approximate scalar multiplied by a vector of
integer values:

R = Sy * Xjnt ® X

We use a floating-point scale factor, sy, and an integer vector (e.g., INT8) denoted as X;,¢
to quantize the vector x. The quantized version of the vector is represented as X. By
applying quantization to both the weights and activations, we can express the quantized
version of the accumulation equation:
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Often, separate scale factors are used for weights (s,,) and activations (sy) as they offer
increased flexibility and reduce quantization errors. By applying each scale factor to the
entire tensor, we can factor them out of the summation in the previous equation, allowing
for fixed-point format MAC operations. Bias quantization is currently omitted, as biases
are typically stored with a higher bit-width (32-bits), and their scale factor depends on
that of the weights and activations [63]. Maintaining a higher bit-width for the
accumulators, is crucial to prevent potential loss due to overflow during the computation.

The quantization scheme referred to as uniform affine is widely used because it allows for
an efficient implementation of fixed-point arithmetic. Uniform affine quantization, also
known as asymmetric quantization, is characterized by three quantization parameters: the
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scale factor (s), the zero-point (z), and the bit-width (b). These parameters work together
to map a floating-point value to the integer grid, whose size is determined by bit-width.
Once the three quantization parameters are defined, we can proceed with the quantization
operation. Beginning with a real-valued vector x, we map it to the unsigned integer grid
{0, ..., 20 —1}:

Xj = clamp (E] + 20,20 — 1),

where |.] is the round-to-nearest operator and clamping is defined as:

a, x<a
clamp (x;a,¢c) ={x, a<x<c
c, x>c.

To approximate the real-valued input x we perform a de-quantization step:
X~ R = 5(Xjpt — 2)

By combining the two steps mentioned earlier, we can present a comprehensive definition
for the quantization function, denoted as q(.):

R=q(x;s,2,b) =5 [clamp (E] + 20,20 — 1) — Z]

Through the de-quantization step, we can determine the quantization grid limits
(Tmins Gmax), WNEIe Guin = —sz and qpq = S(22 — 1 — 2). Values of x outside this
range will be clipped to these limits, resulting in a clipping error. To reduce the clipping
error, we can expand the quantization range by increasing the scale factor. However, this

also leads to increased rounding error, as it falls within the range [—%s, %s].

Quantization techniques — Normally, the quantization type can be Post-training
quantization (PTQ) or Quantization-aware training (QAT). In the first, the model is
quantized after it has been trained while on the latter the model is further trained with
quantization in mind. PTQ can be data free or require a small calibration dataset while
QAT will often require data. While PTQ is more straightforward to implement as it
doesn't require retraining, QAT can often result in more accurate quantized models due to
its training-awareness. However, finding optimal quantization ranges is critical for
minimizing quantization errors in PTQ, whereas QAT needs to handle the complexities of
training with quantization constraints. Last, quantization may need to be tailored to match
the capabilities and preferences of the target hardware, ensuring the best performance and
accuracy.
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Pruning

Considering the redundancy in neural network parameters, network pruning involves the
elimination of certain parameters, specifically setting them to zero, that have no
significant impact on the model's performance (i.e., its accuracy). The concept of pruning
was initially explored in Optimal Brain Damage [73], where weights with minimal
influence on the loss function during training were pruned. A simpler approach [74]
involves pruning weights with small magnitudes after training, followed by fine-tuning
the remaining weights to recover any potential accuracy loss. This straightforward and
linear method allows for a substantial reduction in the number of parameters in models
such as the well-known AlexNet model, achieving up to a 10x reduction [74].

Pruning concept — There are various methods for pruning a neural network. One
approach involves pruning weights, which entails setting specific parameters to zero,
effectively making the network sparse. This results in a reduction of parameters in the
model while maintaining the original architecture intact. Another method involves
eliminating entire nodes from the network. By doing so, the overall architecture of the
network becomes smaller, with the goal of preserving the accuracy achieved by the initial
larger network.

Weight-based pruning is more popular due to its ease of implementation without
compromising the network's performance. However, for it to be effective, sparse
computations are necessary, which demands hardware support and a certain level of
sparsity to achieve efficiency. On the other hand, node pruning enables dense
computation, which is highly optimized and allows the network to run normally without
relying on sparse computation. Dense computation is generally better supported by
hardware. Nevertheless, the removal of entire neurons can more readily impact the
accuracy of the neural network. Below is the visualization of pruning weights/synapses:

before pruning after pruning

pruning
synapses

-—>

pruning
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Figure 3-1. Visualization of pruning weights/synapses vs nodes/neurons
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Pruning techniques — A significant challenge in the pruning process lies in deciding
what to remove. When eliminating weights or nodes from a model, the objective is to
target parameters that are less valuable. There exist various heuristics and methods for
identifying less important nodes to be pruned while preserving accuracy to the maximum
extent possible. These heuristics often rely on analyzing weights or activations of neurons
to assess their significance in the model's performance. The ultimate goal is to eliminate a
greater proportion of the less crucial parameters.

One of the simplest pruning techniques is based on the magnitude of the weight.
Removing a weight essentially involves setting it to zero. To minimize the impact on the
network, it is prudent to remove weights that are already close to zero, indicating low
magnitudes. This can be practically achieved by discarding all weights below a certain
threshold. When pruning a neuron based on weight magnitude, the L2 norm of the
neuron's weights can be utilized as a helpful criterion.

Rather than relying solely on weights, the activations from training data can serve as a
criterion for pruning. During the dataset's pass through the network, certain statistics of
the activations can be observed. For instance, some neurons may consistently produce
near-zero output values, suggesting that these neurons can likely be removed with
minimal impact on the model. The underlying intuition is that if a neuron rarely activates
with a high value, it is also rarely involved in the model's task.

It's worth noting that activation-based pruning can be more aggressive compared to
weight-based pruning since it directly considers the importance of neurons based on their
behavior with the training data. However, the effectiveness of activation-based pruning
may vary depending on the specific dataset, architecture, and task. As with any pruning
method, it's essential to evaluate the pruned network's performance and, if necessary,
apply additional techniques to maintain or enhance its accuracy and capabilities. Ideally,
in a neural network, all neurons should possess unique parameters and output activations
of significant magnitude, without redundancy. The goal is to ensure that each neuron
contributes something distinct, while removing those that fail to do so.

Last, when evaluating a pruning method, several metrics come into play besides accuracy
such as size and computation time. Accuracy is crucial for assessing the model's
performance on its task. Model size refers to the amount of storage required to store the
model's parameters. Computation time can be measured using FLOPs (Floating Point
Operations), providing a consistent metric that is independent of the system on which the
model runs. Pruning involves a tradeoff between model performance and efficiency.
Conversely, lighter pruning may yield a highly performant network, but it could be larger
and more expensive to operate. Different applications of neural networks require careful
consideration of this trade-off especially when considering resource constrained devices.
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Layer Fusion

Layer fusion, also known as kernel/operator fusion, stands as a crucial optimization in
numerous cutting-edge DNN execution frameworks like TensorFlow or Pytorch. The
primary objective of this optimization is to enhance the efficiency of DNN inference
especially when targeting hardware accelerators. This can be described as a software
optimization that has a direct impact on hardware computations.

Fusion concept — The fundamental concept behind this fusion technique aligns with
traditional loop fusion performed by optimizing compilers [75], resulting in the following
advantages:

e Eliminating the need for unnecessary intermediate result storage.
e Reducing unnecessary input scans.
e Enabling additional opportunities for optimization on hardware compilers.

In particular, in traditional deep learning models, each operation generates intermediate
results that are stored in memory before being passed to the next operation. With operator
fusion, these intermediate results are eliminated, and computations are performed on the
fly as data flows through the fused layer. This reduces the memory footprint and the
overhead associated with intermediate storage. Also, when operations are fused,
redundant computations on the same input data are avoided. Last, by fusing operations,
the resulting composite operation can offer new optimization opportunities. For example,
the fused operation may allow for better utilization of hardware-specific features, such as
specialized instruction sets or tensor cores, which can lead to further acceleration.

Fusion techniques — Generally, the deep learning model is represented as a
computational graph or a sequence of operations. Each layer in the model is typically
represented as a node in the graph. The fusion process begins by analyzing the
computational graph to identify fusion opportunities, that is consecutive operations that
can be efficiently combined into a single fused operation. After fusion, the computational
graph is updated to reflect the changes. The nodes representing the individual operations
are replaced with a single node representing the fused operation. During inference, the
fused layer is executed instead of the individual operations, leading to reduced memory
transfers and improved execution speed.

By combining multiple operations into a single fused layer, redundant computations and
memory accesses are minimized, leading to faster and more memory-efficient execution
of DNN models. These advantages are significant in accelerating the deployment of DNN
models on various hardware platforms, including CPUs, GPUs, and FPGAs.
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3.2.2 Hardware: Parallelism, Data Movement and Precision Scaling

In this section, we delve into the most important aspects of leveraging hardware resources
to optimize neural networks. By utilizing parallel processing, optimizing data movement,
and exploring precision scaling, researchers and engineers can accelerate the execution
DNNs. These techniques serve as a standard for neural network optimization and often
apply to different hardware architectures. This exploration of hardware-oriented
optimization techniques focuses on spatial architectures. Spatial architectures are
designed to process data in parallel, making them well-suited for tasks that require
simultaneous computations on large datasets. It does not cover, however, other popular
architectures which include more specialized optimizations such as neuromorphic or
Processing-in-Memory (PIM) architectures as they are beyond the scope of this thesis.

Parallelism

Various techniques and hardware architectures have been developed to exploit parallelism
effectively in DNNs. Below are the common categories of parallelism in DNNs from the
level of the algorithm:

e Data Parallelism: Data parallelism involves distributing the training data across
multiple processing units (e.g., GPUs or CPUs) and processing different data
batches simultaneously. Each processing unit performs the same set of operations
on its assigned data batch, and the gradients are aggregated and updated
synchronously or asynchronously. This approach allows for faster training by
parallelizing the computation across multiple examples.

e Model Parallelism: In model parallelism, different parts or layers of the neural
network are distributed across multiple processing units. This is particularly useful
when a DNN is too large to fit entirely in the memory of a single device. Each
processing unit handles the computations for its allocated portion of the model,
and data is communicated between the units as needed.

o Pipeline Parallelism: Pipeline parallelism splits the computation of a DNN into
stages, and each stage is processed independently by different processing units.
The output from one stage is passed to the next stage for further processing. This
approach can reduce the memory requirements for intermediate data, allowing for
larger models to be trained.

o Layer-Level Parallelism: Layer-level parallelism involves parallelizing the
computation of individual layers within a DNN. GPUs or FPGAs for example,
are well-suited for this type of parallelism, as they can efficiently handle
computations for multiple layers simultaneously due to their massively parallel
architecture.
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DNNs’ compute intensive part — In DNNs, the most important operation which is
usually responsible for the most computations in the model is the matrix multiplication. In
fact, GEMM (General Matrix Multiply) plays a crucial role in Deep Neural Networks as it
is a fundamental operation used in many layers of neural network models, particularly in
fully connected layers and convolutional layers. GEMM can be highly optimized and
parallelizable, and its efficient implementation is essential for accelerating DNN training
and inference. The most important optimizations commonly used for many accelerators in
parallelizing GEMM operations include:

Tiling/Blocking: Tiling or blocking the input matrices into smaller submatrices
allows for efficient use of cache memory. By breaking down the large matrices
into smaller tiles, the data can fit into the limited cache memory of the processing
units, reducing the need for frequent data access to main memory. When using the
blocking technique in a GPU, the submatrices or tiles of the input matrices in a
GEMM operation are stored in the local memory of each SM. The smaller tiles
can fit entirely within the local memory, allowing the GPU to perform
computations on these smaller data chunks without the need to fetch data from the
slower global memory repeatedly. When using the blocking technique in an
FPGA, the tiling of matrices enables the data to be stored on the on-chip memory
of the device, which is usually BRAMSs or LUTSs, minimizing data transfer latency
and enhancing performance.

Parallel Processing: Utilizing multiple processing cores or computing units to
perform GEMM computations in parallel significantly speeds up the matrix
multiplication. GPUs, for example, with the massive number of CUDA cores or
with the most specialized Tensor cores distribute the workload of the matrix
multiplication which can be computed independently by the rows or columns.
Similarly, FPGAs can expose parallelism using multiple DSPs that operate in
parallel or they can be partitioned into multiple computation units which can
operate simultaneously at the task level. FPGAs can also implement pipelining,
where the computation is divided into multiple stages, and each stage processes
different data points reducing the critical path delay.

Vectorization: Vectorization involves transforming scalar operations into vector
operations, where a single instruction operates on multiple elements of a vector.
This optimization is especially effective on SIMD-capable processors. GPUSs,
have SIMD units capable of executing the same instruction on multiple data
elements (vectors) in parallel. FPGA also provide SIMD-like parallelism. FPGA
vendors provide libraries and tools that allow developers to create SIMD-based
designs to take advantage of parallelism in various applications.
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Data movement

In neural network inference, the process of moving data between memory and the
processing units can often become a bottleneck, limiting the overall throughput and
energy efficiency of the system. To address this issue, hardware vendors and researchers
have been working on various techniques to optimize data movement in neural network
inference on different hardware accelerators. Several techniques we have already
mentioned involve optimizing data such as quantization or layer fusion. In this paragraph,
however, we focus on three major techniques regarding data optimization from a
hardware perspective. The techniques are described below:

Data Reuse: In neural networks, some data elements, such as weights and
activations, are used multiple times during the computation. Exploiting data reuse
can lead to significant reductions in data movement overhead. There are several
techniques to achieve data reuse optimization:

o Activation Reuse: In CNNs, the same activation maps are reused for

multiple filter convolutions across different spatial locations. By reusing
activations, hardware accelerators can avoid transferring the same data
multiple times, reducing memory access and bandwidth requirements.
Weight Reuse: In convolutional or fully connected layers, the same weight
values are reused across different input neurons. Similarly, in CNNs,
weights are reused for different input channels. Hardware accelerators can
take advantage of this property to minimize data transfers and improve
inference speed.

Buffering: By buffering intermediate results and reusing them when
necessary, data movement can be minimized. Hardware accelerators can
store and reuse the outputs of certain layers to avoid recalculating them
during subsequent operations.

Data Layout Optimization: Data layout refers to how tensors (activations, weights
etc.) are organized in memory. Optimizing data layout is crucial for maximizing
data locality and minimizing data movement overhead. Some key techniques
include:

o Weight and Activation Tiling: Breaking down the weight and activation

tensors into smaller tiles allows hardware accelerators to load only the
relevant data needed for a computation, reducing unnecessary data
transfers.

Blocked Data Formats: Using blocked or tiled data formats improves data
locality, as the data is organized in blocks with contiguous elements. This
reduces cache thrashing and enhances the efficiency of memory accesses.
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o Transpose and Data Reordering: For certain operations or hardware
architectures, reordering data elements can lead to more efficient memory
access patterns, reducing data movement overhead. For instance, in the
BLAS (Basic Linear Algebra Subprograms) library, which is widely used
for efficient GEMM computations, data reordering techniques such as
column-major ordering are commonly employed. Column-major ordering
involves organizing the elements of a matrix in memory by storing the
columns of the matrix in contiguous blocks, allowing for optimized data
access patterns during matrix operations. This approach ensures better data
locality and reduces data movement overhead, thereby enhancing the
overall performance of GEMM operations on various hardware
accelerators.

e Memory Hierarchy Utilization: Modern hardware accelerators often have multiple
levels of on-chip memory hierarchy, such as registers, cache, etc. Efficiently
utilizing these memory levels is crucial to minimize data movement between on-
chip and off-chip memory. Some techniques include:

o Data Prefetching: Prefetching data from off-chip memory to on-chip memory
in advance of their actual usage can hide data transfer latencies and ensure
data is readily available when needed.

o Cache Blocking: Dividing the data into smaller blocks that fit into the cache
can improve data locality and reduce cache misses, enhancing data reuse and
minimizing data movement.
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Figure 3-2. Data-reuse opportunities in DNNs
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Precision Scaling

Precision scaling in hardware, especially in the context of neural networks, refers to the
process of using reduced numerical precision to represent and compute values during
various operations within a neural network model. We have covered reduced numerical
precision optimization, namely quantization, from the software perspective. However, in
this paragraph we focus on hardware-related techniques regarding precision optimization.
This is typically done to achieve a balance between computational efficiency and model
accuracy. As we have seen, in DNNs, many computations involve large matrices and
tensors. The precision of these numerical values significantly impacts the computational
requirements and memory usage of the hardware. Higher precision (e.g., 32-bit floating-
point numbers) provides more accurate results but requires more memory and
computational power. Lower precision (e.g., 8-bit fixed-point numbers or even 1-bit) uses
less memory and computational resources but might lead to some loss of accuracy.

e Exploiting 8-bit precision in hardware: Using 8-bit for weights in a DNN is a
common practice nowadays in computer vision applications. It often provides
good tradeoff of performance and accuracy while having a broad support in many
hardware accelerators.

o GPUs: Modern GPUs, such as NVIDIA's VVolta and Ampere architectures,
come equipped with the specialized Tensor Cores that are designed to
accelerate matrix multiplication operations. Tensor Cores can perform
mixed-precision (FP16 and INT8) computations with significantly higher
throughput compared to traditional floating-point units. Also, memory
bandwidth often becomes a bottleneck in deep learning tasks, as fetching
data from memory consumes time and energy. With 8-bit computations,
more data can be loaded into the GPU's cache, reducing the need for
frequent data fetches and optimizing memory utilization.

o FPGAs: These devices inherently operate on fixed-point arithmetic, which
is well-suited for implementing lower precision computations. Models
need to be quantized and weights transformed to fixed-point formats
before deployment on FPGAs. Dedicated processing pipelines can be
designed for convolution, pooling, and other operations to achieve high
throughput and low latency. Pipelining techniques can be applied more
efficiently by reducing the overall critical path as FPGAs can handle more
input samples in a given time frame. Techniques like loop unrolling and
data reuse are commonly employed in these scenarios and DSP-specific
optimizations can be tailored to provide more parallelism using 8-bit data.
Last, with 8-bit fixed-point arithmetic, fewer FPGA resources are required
such as LUT, BRAMS, etc. allowing more on-chip memory bandwidth.
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e Exploiting very low-bit precision in hardware: Sub-8-bit DNN inference has been
widely investigated from the research community, especially on customized
hardware devices like FPGAs. It includes a range of numerical formats, such as 4-
bit down to 1-bit representations. These formats use a reduced number of bits to
represent the values of weights, activations, and intermediate computations within
neural network layers. The most common very-low bit-width representation
names are ternary and binary. Ternary weights can be -1, 0 or +1 but are less
common in comparison to binary or higher-bit representations due to their limited
range and the challenges they can pose in terms of training and computation. In
contrast, binary weights or binary neural networks (BNNs) have been explored as
a way to create highly efficient and low-power neural network models.

o GPUs: Some GPUs, such as Nvidia T4 or A100 have support for 4-bit data
formats. Several DNN frameworks have tried to incorporate the tensor
core 4-bit inference scheme as an alternative in order to further reduce the
computations and memory requirement for inference tasks. Naturally,
however, Nvidia Tensor Cores have been designed for 8-bit inference,
hence the reason for 4-bit format not being widely applicable.

o FPGAs: In contrast to GPUs, FPGAs have greater flexibility in terms of
customizing the design. Designers can use arbitrary bit-width from 1-bit to
even 512-bit in a given register. This however comes with the cost of
additional design time as careful calibration is needed to find the optimal
ranges for these datatypes. For example, BNNs often involve XOR
operations instead of the typical multiply and accumulate operation
(MAC). FPGAs allow to design and implement custom XOR computation
circuits tailored to the network's needs. This level of customization can
lead to optimized hardware for XOR-related computations achieving very
high parallelism from a single XOR instruction as it packs multiple data.
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Figure 3-3. Binary Matrix Multiplication in Neural Networks
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3.3 Accelerated Similarity Search using Vector Indexing

This section contains the first of the three scenarios in which we utilized FPGAs for Al
acceleration. In particular, it concerns a novel integration of FPGAS into the popular
FAISS (Facebook Al Similarity Search) framework [76] in order to accelerate the
algorithm of similarity search. One of the most significant algorithms in ML employed
for conducting similarity searches is referred to as the K-Nearest Neighbor algorithm
(KNN). It finds extensive use in tasks such as predictive analysis, text categorization, and
image recognition. However, this algorithm comes with a trade-off, often requiring
substantial computational resources. To tackle this challenge, large companies dealing
with large-scale datasets in modern data centers combine the KNN technique with
algorithmic approximations, enabling the computation of crucial workloads on a real-time
basis. Nevertheless, the computation demands and energy consumption escalate further
when dealing with high-dimensional nearest neighbor queries. In this study, we introduce
an innovative approach: a hardware-accelerated approximate KNN algorithm integrated
into the FAISS framework through FPGA-OpenCL platforms. The FPGA architecture in
this framework effectively addresses the intricacies of vector indexing during training and
the incorporation of large-scale, high-dimensional data. The proposed solution leverages
an FPGA-based in-memory format, which surpasses multi-core high-performance
systems in terms of both speed and energy efficiency. Empirical experiments performed
on the Xilinx Alveo U200 FPGA revealed significant results. The acceleration achieved is
up to 98 times faster than a single-core CPU when utilizing only the accelerator, and the
end-to-end system speed is improved by 2.1 times compared to a 36-thread Xeon CPU.
Additionally, the design's performance per watt exhibits a notable boost of 3.5x compared
to the same CPU, and 1.2x compared to a Kepler-class GPU.

3.3.1 Introduction and Related Work

In the era characterized by the immense expanse of big data, the operational requirements
of modern data centers entail the processing of substantial workloads, often exceeding
several terabytes of data daily. Notably, emerging machine learning applications deployed
on the cloud have made remarkable strides, continually learning from large real-world
datasets. Responding to the escalating computational complexities of these tasks, recent
efforts have been directed towards augmenting their performance through specialized
hardware. This is achieved by leveraging diverse heterogeneous architectures, including
central CPUs, GPUs and FPGA:s.

Addressing the surging demand for efficient and real-world execution of the latest-
generation algorithms, the FPGA has emerged as potential platform. This architecture is
distinguished by its high parallelization capabilities and adaptability, making it
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particularly suited for tasks characterized by repetition, such as the K-Nearest Neighbor
(KNN) algorithm. Remarkably, numerous companies seek optimized solutions for
achieving high performance while minimizing energy consumption costs, with FPGAS
taking center stage in this transformative evolution [77, 78]. The field of KNN search
within data centers is marked by the presence of big datasets and frequently high-
dimensional inputs. Even state-of-the-art high-performance computers often struggle with
these demanding requests, a phenomenon termed the "curse of dimensionality” [79]. To
address the resource-intensive nature of standard KNN, the Approximate Nearest
Neighbor (ANN) algorithm emerges as a solution, strategically managing computational
complexity and data bandwidth through partial query searches [80].

However, the optimizations do not focus only on optimizing the query time even though
it has a major importance. Novel data structures and algorithms that speed up KNN
queries center around data point training, often employing specialized indexing
techniques to enable efficient search of thousands of vectors without necessitating
complete dataset access. Given the impracticality of exact results in vast databases,
innovative techniques involving vector indexing or compression using gquantization
methods have been introduced [81]. The algorithms employed for constructing KNN
graphs require substantial time effort, rendering them energy-inefficient and often ill-
suited for the substantial scale of input vectors. Particularly when faced with statistically
different data requiring frequent retraining, scalability becomes a significant challenge.

FAISS is an optimized library tailored for similarity searches of this nature, developed by
Facebook [76]. FAISS includes approximate algorithms capable at managing big-scale
inputs, effectively addressing the complexities of large datasets. Leveraging FPGA as a
parallel platform presents an opportunity to alleviate this computational challenge through
a specialized hardware-based solution, thereby elevating performance in these complex
tasks. Implementing a finely-grained approach can leverage FPGA's hardware resources
for superior performance, coupled with markedly reduced energy consumption — an
attribute of utmost importance in modern data centers which try to operate on a lower
energy footprint. Within this paper, we introduce an innovative implementation of the
FAISS framework using FPGA technology, achieving a notable acceleration in contrast to
alternative CPU multi-core solutions. More specifically, our contributions are as follows:

e We speed-up the index creation and addition of data points for the approximate
KNN search by implementing an FPGA accelerator for Xilinx Alveo U200.

e We introduce an efficient FPGA integration for FAISS framework that can benefit
directly from our hardware seamlessly.

e We successfully integrated and ran the full hardware accelerated framework on a
Alveo U200 OpenCL-FPGA achieving superior performance and power
efficiency compared with a CPU multi-core system.
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Related Work — Numerous researchers have examined various KNN algorithms,
particularly in the field of software and hardware optimizations tailored for this specific
task. Moreover, large companies are actively exploring novel power-efficient
computation methods, an aspect that held minimal significance in the past. Given the
surge in processing large-scale data on cloud platforms, developers are compelled to
devise ingenious heterogeneous architectures to facilitate the migration of these
applications. Yuliang Pu et al. [82] introduced an enhanced KNN algorithm employing
bubble sort within an FPGA-based computing framework. While their focus lies on query
searches, their algorithm rests upon an exhaustive naive KNN implementation, which
falls short in terms of performance when compared with an approximate solution. Even
their proposed FPGA-accelerated approach fails to outperform the performance of FAISS
executed on a conventional CPU. This is due to the fact that FAISS represents a
CPU/GPU-optimized library designed for approximate similarity searches, delivering fast
query results while maintaining generally negligible reduction in accuracy. Jialiang
Zhang et al. [83] presented a technique for PQ-based approximated nearest neighbor
search utilizing OpenCL FPGAs. Their focus lies in diminishing the codebook size to
mitigate memory overhead while performing query searches. Yet, the computation cost of
training/clustering, a crucial part of approximate KNN graph construction, is not reflected
in the measurements. Furthermore, they provide only a partial implementation of the
algorithm in pseudocode, without a detailed explanation of the hardware
implementation/architecture of the accelerator. Notably, their proposed solution does not
extend to FPGA implementation in cloud environments. Last, Hanaa M. Hussain et al.
[84] introduced a K-means clustering methodology in FPGASs, tailored for processing
large datasets. However, their implementation falls short when compared to the partition-
based accelerator presented in this study, primarily concerning performance metrics. They
report achieving a time of 0.0042 seconds per iteration for a dataset with N = 65500, K =
4 clusters, and D = 9 dimensions. K-means, characterized by its algorithmic complexity
of O(n-d-i-k), translates to approximately 0.56 GFLOPs which is proportionately (of
our FPGA resources) smaller than the performance we achieve in this work as we will see
in the next paragraph.

Background

The FAISS framework employs an inverted indexing technique (IVF) as a preliminary
step prior to conducting similarity searches through the clustering of dense vectors. In the
ensuing section, we describe the operation of a conventional KNN algorithm and an
approximate KNN approach within the FAISS framework. Subsequently, we present our
FPGA implementation and the tools leveraged to develop the environment required for
hosting the reconfigurable architecture of FPGA and application dataflow.



Chapter 3. Optimization of Deep Learning Accelerators = 61

KNN [84, 85] stands as one of the most extensively employed machine learning
techniques in scenarios including classification, recommender systems, and even financial
research. This algorithm, when applied, returns the K-nearest neighboring points in
relation to a designated object (referred to as a "query") within a given dataset. Each
object's unique attributes, encapsulated within a data dimension D, define its distinct
"weights™ or "attributes” in the form of a specific vector. The decision-making process of
this algorithm is frequently defined by the distances between the query points. In this
context, the Euclidean distance prevails as the preferred distance metric due to its often-
intuitive interpretation [86] and its computational scalability. Furthermore, the Hamming
distance is commonly adopted when the input consists of discrete variables. In the field of
Cartesian coordinates, the Euclidean n-space is described as follows:

dist(x;, y;) =

Employing the aforementioned algorithm for exhaustive query searches, particularly with
large datasets, results in a substantial number of operations. This is due to the necessity of
computing distances between each point within the sample, leading to a considerable
computational load. Consequently, the integration of approximate solutions becomes
imperative to efficiently identify the K most probable nearest neighbors.

Approximate KNN — Practice says that an approximate nearest neighbor approach is
almost as good as the accuracy of the exact solution, given that discrepancies in distance
calculations are frequently insignificant. Consequently, KNN search becomes
computationally viable even when dealing with extensive datasets and high-dimensional
spaces. This feasibility is attributed to the substantial reduction in the total number of
distance evaluations due to the implementation of approximation techniques. In the
domain of approximate nearest neighbor search, two primary methods emerge, each
emphasizing either on data reduction, dimension reduction, or a combination of both for
query searches. One category revolves around spatial clustering-based techniques, with
some approaches being K-means clustering [87] or hierarchical KD-trees [88]. These
methodologies adopt a partitioning algorithm, constructing a k-nearest neighbor graph
through the segmentation and clustering of samples into distinct regions. An alternative
approach in the field of approximate nearest neighbor search entails hashing-based
techniques like Locality Sensitive Hashing (LSH) [89]. Such methods group data points
into "buckets" according to the distance metric. Near vectors are assigned to the same
bucket, facilitating the algorithm's retrieval of the nearest neighbors to the target vector.
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FAISS framework operation — Faiss leverages a variety of methods designed for
performing similarity searches on dense vectors containing real or integer values. These
methods identify vectors that are near a given query vector, which is achieved by
minimizing the L2 distance or maximizing the dot product between the vectors. The
underlying structure of Faiss involves employing diverse indexing approaches to store
vectors, and the computation of distance involves multiple metrics, as mentioned earlier.
The indexing methods within Faiss exhibit diversity, ranging from exact search methods
to techniques like product quantization, which have demonstrated superior effectiveness
compared to binary codes. This efficacy, however, is accompanied by a trade-off
involving factors such as accuracy, search speed, training time, and memory
consumption. Within this section, we will look into an exploration of fundamental
indexing techniques employed within the Faiss framework. This exploration aims to
provide a comprehensive understanding of the architecture before delving into the
optimizing process via FPGA hardware. Our subsequent implementation, detailed in the
following paragraph, focuses on utilizing IVFFlat indexing as a representative use case
(best for high-accuracy regimes) but the design can be easily applied to other indexes
such as IndexIVFPQ. Both approaches, particularly the latter one, exhibit slightly lower
precision compared to exhaustive search. However, they have been demonstrated to
effectively handle billions of vectors given ample memory resources on a single server.

I. IVFFlat Indexing: Several previous research works have exploited the
characteristics of Voronoi diagrams to enhance variations of the nearest neighbor
search [90]. A Voronoi diagram partitions a plane into distinct regions based on
distances from points within a designated subset of the plane [91]. FAISS
constructs the IndexIVFFlat index by establishing Voronoi cells through a
codebook C.,4se iN the d-dimensional space; each database vector is assigned to
one of these cells. During the search process, only the database vectors y situated
within the same cell as the query x, along with a few neighboring ones, are
compared against the query vector. Consequently, two critical parameters govern
the query process: ncells, representing the number of cells, and nprobe, denoting
the count of cells (out of ncells) that are explored during a search. The concept of
the number of cells aligns with the quantity of inverted lists, which could also be
referred to as nlist. This probing mechanism operates as a partition-oriented
approach rooted in Multi-probing (reminiscent of a variant of the best-bin KD-
tree) [92]. The assignment of database vectors to cells is facilitated by a hashing
function, notably K-means (closest query to centroids), and these vectors are
stored within an inverted file structure. As a result, IVFFlat efficiently reduces the
search space and significantly accelerates the search process compared to
exhaustive search methods. However, to ensure result accuracy, it is imperative
that the outcomes align with the Voronoi cells being visited during the search
operation.
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IVFPQ Indexing: This approach extends the concept of inverted indices by
integrating them with product quantization, thereby circumventing the need for
exhaustive search. The conventional product quantization method is referred to as
PQ, and its non-exhaustive variant is termed IVFPQ [93]. Vectors continue to be
stored within Voronoi cells, but their dimensions are reduced to a configurable
byte count, denoted as 'm' (with the vector's dimension being a multiple of 'm’).
The compression step introduces an additional layer of quantization, focusing on
encoding sub-vectors of the original vectors. Since the vectors are not stored
exactly in this scenario, the distances returned by the search method represent
approximations and may exhibit somewhat lower accuracy compared to methods
like IVFFlat. Additionally, when dealing with uniform data, this indexing
approach encounters challenges due to the absence of inherent regularity that
could be leveraged for clustering or dimensionality reduction. Nevertheless, the
IndexIVFPQ structure proves highly valuable for conducting large-scale searches
and holds potential for integration within our FPGA design. This indexing strategy
offers a pragmatic solution for efficient search operations, making it well-suited
for deployment in FPGA-based systems.

LSH Technique: Another widely recognized cell-probe approach is likely the
original method of Locality Sensitive Hashing (LSH). This method aims to
diminish the dimensionality of high-dimensional data by employing hashing to
assign input items into akin buckets. Points that are in proximity to one another
according to a specific distance metric (such as the Euclidean distance) are
assigned to the same bucket with a high likelihood. While Faiss incorporates this
algorithm, it does lack certain attributes present in other algorithms, including
memory optimization. The incorporation of numerous hash functions introduces
additional memory requirements, a factor that becomes impractical for extensive
datasets hosted on cloud platforms. As a result, this approach is not particularly
well-suited for the scope of this work due to the limitations posed by memory.

IV. FPGA OpenCL framework: The OpenCL specification within FPGAs comprises

both host code and kernels. In this setup, the host is situated on an x86-64 CPU
and manages the dataflow of the application. Our FAISS application, running on
the host, takes advantage of the hardware kernels responsible for translating the
OpenCL hardware abstraction into an FPGA implementation within the device
fabric. For this task, we utilized the SDAccel environment [94], which provides
both software and hardware emulation capabilities. Through careful examination
of system reports and checking the device data tracing and application's timeline,
we identified potential bottlenecks within our design down to the granularity of
clock cycles. Thus, this analysis allowed us to finalize the optimized application,
seamlessly integrating the hardware into the FAISS framework.
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3.3.2 Implementation and Results

To determine which components of Faiss should be prioritized for hardware
implementation, a comprehensive framework profiling was conducted. This section
begins by detailing the process involved in this profiling, during which the I\VVFFlat index
was chosen as a representative use-case. Subsequently, the hardware algorithm is
specified, along with optimizations executed on both the host and kernel sides to optimize
throughput and minimize overall design latency. The final portion of this section delves
into the novel custom framework. This framework employs an FPGA with optimized
memory transfer scheme which seamlessly integrates our designed accelerators to ensure
minimal latency overhead during memory transactions.

Framework Profiling — Both prior research and our own practical experience have
demonstrated that IVF indices generally exhibit substantial speed and accuracy. Notably,
among the various indexing techniques employed in Faiss for typical scenarios, IVFFlat
stands out as the most proficient technique. Subsequently, we employed call-graph
techniques offered by profiling tools such as valgrind/callgrind to identify memory and
computational bottlenecks. Functions consuming the majority of execution time present
suitable candidates for offloading and acceleration onto FPGAs (see Figure 3-4). Profiling
outcomes revealed that the most substantial computational workload arises during index
creation and data addition to the index. This holds true even when considering modest
query searches encompassing thousands of vectors. This phenomenon stems from the fact
that while approximate nearest neighbor search is highly efficient, it incurs extended
training times, especially when numerous cluster points are required to sample the
dataset. Notably, the training algorithm incorporates numerous Multiply-Accumulate
operations (MAC), which Faiss presently executes using CPU-optimized BLAS routines
by default. Given the prevalent characteristics of these algorithms, it's very common to
map them for hardware, owing to their high operations-to-bytes transferred ratio.

m Train = Query Add_List = Other

Figure 3-4. IVF indexing (Flat) workload distribution
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Optimization schemes — Consideration of specific hardware design principles was
imperative to ensure an efficient FPGA implementation of the accelerator. As an initial
step, these principles include the thoughtful design of both the x86 host and kernel
aspects of the accelerator function. This dual-pronged approach was aimed at effective
alignment with Faiss operation while maintaining application correctness. Moreover, due
to the significant importance of memory optimization, we dedicated efforts to streamline
data movement between the Linux host and global memory, as well as between global
memory and kernels. Furthermore, careful attention was directed toward designing the
FPGA kernels in a manner that minimizes latency within our custom logic. To elaborate
on the specifics:

1. Defining the accelerator: The key transformations of high-level synthesis lie in
the host code. To establish a scalable function for acceleration, we devised a
bespoke column-major General Matrix Multiplication (GEMM) routine, where
the first matrix is transposed:

C = alpha * T(A) * B + beta * C
This approach optimizes hardware efficiency by accessing both arrays with
consecutive elements along the second dimension, in line with the data storage
format. Subsequently, we determined the matrix dimensions for our function's
application, particularly during index creation and data addition phases. Within
Faiss, the GEMM's first input is characterized by an nlist X vector dimension
matrix, while the second input comprises a vector dimension X
centroid points matrix. Notably, the integer nlist, often small compared to the
database, signifies the number of inverted lists, as previously described. This

value, generally a multiple of vVdataset, (e.g., IVFFIat4096), informs the number
of lists. Additionally, the vector dimension (vector_dim), representing the
dimension of the vectors, typically remains modest (below a thousand) due to
data dimension compression. The larger matrix dimension pertains to centroid
points (centroid_points), denoting the points sampled for clustering in each
iteration. Our algorithmic design and data flow are intricately constructed around
these facts, ensuring maximum optimization aligned with these guidelines.

2. Optimizing data movement: A pivotal observation we made was that GEMM is
executed multiple times within each iteration of the training process, accessing
segments of the B matrix. This realization underpins our strategy, which hinges
on a blocking technique. Moreover, our theoretical understanding confirms that
each iteration employs consistent clustering data (total centroid points), leading
us to infer that the B matrix remains constant across iterations. To obviate
redundant data transfers to global memory during each iteration, we made a one-
time transfer of the aggregate centroid points to DDR once in the initial iteration.
This approach not only eliminates memory requests for the same data but also
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facilitates accelerated burst data transfers to global memory, benefiting from
larger memory chunks being transferred at higher rates. To further enhance data
throughput, we implemented a 512-bit user interface on each kernel side, aligned
with the maximum memory bandwidth supported by our FPGA through OpenCL
vector datatypes. By employing the floatl6 datatype, we maintained peak
accuracy for the dataset while abstaining from introducing further layers of
approximation into the Approximate Nearest Neighbor (ANN) search process. By
leveraging all four DDRs of the device for read-write operations, we achieved
optimal memory transfer rates spanning between host-DDRs and DDRs-kernels.
It's worth mentioning that careful allocation of kernels to Super Logic Regions
(SLRs) was undertaken. Our design placement was strategically arranged to
ensure that SLR resource limits were not surpassed, and kernels were matched
with the memory banks to which they exhibited the most connections according
to their respective SLRs. This deliberate placement strategy avoids SLR crossings
and mitigates critical path complexities, which often translates to inefficient
synthesis outcomes and unnecessary power consumption. Lastly, for improved
communication efficiency, we allocated matrix blocks within physically
contiguous memory utilizing on-chip Block RAMs (BRAMs), strategically
positioned near kernel computations. This arrangement ensured high speed
communication, enabling one-cycle read-write operations of 512-bit data,
optimizing the performance using the most efficient data movers.

. Optimizing kernel: To achieve substantial throughput, our focus centered on

introducing a significant level of finely-tuned parallelism in application execution
within the Programmable Logic (PL) fabric. This entailed mitigating data
dependencies. Employing appropriate OpenCL directives like ‘pipeline' or
‘unroll,’ we formulated a highly parallel and pipelined architecture characterized
by minimal latency. This architecture exhibited exceptional efficiency in
executing Multiply-Accumulate (MAC) operations. By ensuring an initiation
interval (I1) of 1 for each loop and utilizing the dataflow directive, the kernel
operated optimally, rapidly consuming incoming data from memory interfaces
and rapidly writing results back to DDRs. Moreover, we identified that creating
larger and fewer Compute Units (CUs) to access global memory chunks yielded
increased efficiency compared to generating multiple smaller CUs. This strategic
choice averted excessive FPGA resource utilization and area consumption,
mitigating timing failures. Furthermore, we generalized our implementation to
host multiple FPGAs. This entailed an even distribution of the workload and
automatic synchronization of the dataflow across any number of kernels. Our
design, tailored for a single kernel parallelizes up to 192 output data achieving the
maximum of 300 Mhz, thus in every cycle 192 output elements are produced,
translating into 2 - 192 - 300 MHz = 115 GFLOPS for a single kernel.
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Final system design — In order to integrate the hardware accelerator into Faiss and
transfer it to the FPGA, a necessary step was to export it as a shared library. This library
was then connected to the rest of Faiss framework through library linking during
compilation. To ensure seamless compilation of the entire framework using the SDAccel
compiler and loading successfully the required OpenCL runtime libraries, we performed
targeted adjustments to the framework Makefile. The FPGA API operates underneath the
Faiss framework, and enabling it involves a simple switch from the 'SW' to '"HW' build
target option. Within the FPGA memory model of Faiss, relevant Faiss functions are
mapped onto FPGA memory, granting access to device specifications across all
framework source files. This setup enables any function to execute in HW mode
immediately and seamlessly. Moreover, all cluster points resided in the FPGA global
memory throughout the application execution, with hardware accelerators in Faiss
accessing the necessary memory segments as required. The optimized CPU BLAS
function, "sgemm" was replaced with a customized function in our implementation. This
custom function meticulously handles input data manipulation and utilizes OpenCL task
synchronization through command queues on the host side. A representative hardware
dataflow is depicted in Figure 3-5, showcasing the concurrency achieved via OpenCL
Command Queues, as well as the synchronization established between the host and
kernels. These elements were carefully implemented to operate concurrently in alignment
with FPGA design principles, thus achieving elevated performance levels.

|
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Figure 3-5. Kernel Synchronization

Also, on the following Figure 3-6, we show the illustration of the end-to-end application
from SW to HW. Host code optimization (concurrency from OpenCL Command Queue),
buffer management regarding data exchange between the host and kernels, general
pipelining on the FPGA, and synchronization between host and kernels were all precisely
constructed according to FPGA design principles for high performance. As depicted in
the figure, the query vectors are loaded from the host x86 CPU and communicate with the
dynamic library of Faiss which we have linked with the rest of the framework. Also, the
inverted index is loaded in order to fetch the results according to the clusters.
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Figure 3-6. Software and hardware dataflow

Evaluation and Results

To assess the design, we verified the accuracy of the accelerator and quantified its
performance. Subsequently, following the integration with Faiss, we conducted
assessments of the final system's precision and efficiency using real-world data.
Additionally, we measured power efficiency in comparison to alternative systems like
CPU and GPU setups. The configuration of the system was done on OpenCL-FPGAs,
specifically employing an Xilinx Alveo U200 datacenter card equipped with four DDR4
channels. This was coupled with a host system utilizing a Xeon CPU. For a
comprehensive like-for-like comparison against a high-performance CPU, we selected a
c4.8xlarge instance from AWS Cloud, equipped with a Xeon CPU with 36 vCPUs and 60
GiB of RAM. Remarkably, this instance bears an equivalent cost (per hour) to an
fl.2xlarge instance featuring a similar FPGA, the VU9P. Moreover, for the conclusive
evaluation of the final system's performance, we assessed the efficiency in terms of
performance per watt against both the same CPU and a Kepler-class K40 GPU. Our
FPGA hardware design maximizes the utilization of all DDRs and optimally leverages the
resources within each SLR. However, the primary limitation to further scalability resides
in the routing across the three SLRs. The resource utilization of a single kernel on the
FPGA device is outlined in

Table 3-1 for reference.

Utilization summary

Name BRAM DSP FF LUT
Total 502 1036 156137 89206
Percentage (%) | 11 15 6 7

Table 3-1. FPGA resource utilization per kernel
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Accelerator performance — To assess the design's effectiveness, our initial step involved
validating the accelerator's accuracy and quantifying its performance on the Alveo FPGA.
To thoroughly test the hardware functionality, we simulated Faiss inputs across diverse
dataset scenarios. This involved generating random cluster data across various list sizes.
Figure 3-7 illustrates the notable speed-up achieved exclusively by the FPGA accelerator,
with enhancements reaching approximately 98x for larger list sizes. The arrow shows the
maximum speed-up achieved when compared with a single-core CPU. This comes from
the fact that for more cells the impact of data transfer is less evident. It’s worth
mentioning here that the lower efficiency value which happens to be from ~500 cells and
below does not impact the overall performance of the algorithm. Usually in real-world
datasets, especially in larger ones used in data centers, the VVoronoi cells are multiples of
thousands for satisfactory clustering, even for a modest 1-million dataset.
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Figure 3-7. Hardware accelerator efficiency

Final system and evaluation — In the final evaluation of the system's performance, our
initial comparison involved measuring the end-to-end execution against the previously
mentioned 36-thread Xeon CPU, resulting in an approximate 2.1x speed-up. To provide a
demonstrative scenario, we employed a million-scale dataset, specifically the SIFT 1M
dataset, a very popular dataset that comfortably fits within available RAM. In Figure 3-8,
we perform an accuracy assessment on this dataset using our FPGA design to evaluate the
algorithm's efficacy with real-world data. The evaluation of KNN models generally
employs the recall measure, which calculates the ratio of correctly predicted positive
observations to all observations in the actual class. However, we use the more appropriate
"R — recall at R" also known as intersection, to assess the effectiveness of our custom
Inverted Index method. This measure quantifies the fraction of the R nearest neighbors
found by the model that are within the ground-truth R nearest neighbors, with R set to
100 in our case.
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In the provided figure, we analyze the accuracy of two Inverted Index (Flat) methods
using varying probe values. Notably, constructing the 1VF4096 index consumes more
time due to a larger number of cells to train (4096 compared to 256). However, even
while maintaining the same accuracy values (y-axis), the query search on IVF4096 is
considerably faster. This efficiency is attributed to a smaller fraction of the database being
compared to the query (nprobe/ncells). For instance, to sustain 0.6 accuracy, probing

involves zZE cells of the dataset on IVF256, whereas IVF4096 requires only 40% cells

from the dataset, as illustrated in Figure 3-8. From these observations, we conclude that
investing computational time in a robust index-building process yields more efficient
query results. Consequently, by adopting this approach, users can achieve faster similarity
search outcomes. As a result, the index-building algorithm, which was a focal point of
acceleration in our FPGA design, plays an undeniable and pivotal role in enabling more
efficient search capabilities.
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Figure 3-8. Inverted index accuracy for different probe values on SIFT 1M

Subsequently, we advanced to conducting actual real-world measurements of our FPGA
board within a live environment, utilizing AWS metric tools to encompass data transfers.
Following this, we engaged in a comparison of the measured performance per watt from
our hardware design with the theoretical maximum performance per watt attainable by the
Xeon CPU and a K40 GPU. The outcomes, as depicted in Figure 5, exhibit a distinct
advantage for our FPGA architecture. For the other devices, we employed the following
equation to facilitate a comparison of their potential maximum power efficiency against
our FPGA design. This equation was utilized to determine how efficiently those devices
could perform in relation to our FPGA architecture.
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Figure 3-9. Power efficiency comparison

Conclusion — Hardware accelerators have the potential to significantly enhance the
performance of ML applications. However, numerous frameworks, including Faiss, lack
transparent support for effectively incorporating such acceleration modules. This study
introduced an innovative approach that seamlessly integrates FPGA hardware into the
popular Faiss framework for large-scale similarity searches, a vital component of cloud
computing. Our findings demonstrate that our hardware accelerator surpasses the
capabilities of a 36-thread Xeon CPU. Furthermore, it exhibits superior performance per
watt in comparison to both the same CPU and a Kepler-class GPU. This underscores the
effectiveness of a software/hardware codesign approach for addressing the demands of
cloud computing workloads, specifically in scenarios like persistent indexing times for
approximated KNN algorithms. The increased performance and efficiency of our design
hold the potential to revolutionize the utilization of FPGA hardware in cloud
environments and expansive data centers, given the growing significance of power
efficiency amidst escalating workload requirements. Looking ahead, in order to solve the
memory issue of billion-scale datasets which was our only restriction, the distributing of
the application to a number of FPGAs is needed. Our algorithm was designed in such a
way that the host application can easily distribute the dataset and thus the workload on a
number of FPGAs on the cloud which due to limited infrastructure at that time we could

not accomplish. Despite the limitations imposed by the available infrastructure at the time
of this study, this distributed approach remains a promising avenue for future exploration.
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3.4 Accelerated Image Reconstruction using GANs

This section contains the second of the four scenarios in which we utilized FPGA
acceleration for Al execution. Precise and efficient ML algorithms hold immense
significance across various challenges, particularly in tasks involving classification or
clustering. In recent times, a novel category of Machine Learning known as Generative
Adversarial Networks (GANSs) has emerged. GANSs operate using two neural networks: a
generative network (generator) and a discriminative network (discriminator). These
networks engage in a competitive process with the objective of generating new unseen
data, such as images. For instance, a GAN can reconstruct an image that is corrupted by
noise or contains damaged segments. This image reconstruction concept has diverse
applications in computer vision, augmented reality, human-computer interaction,
animation, and medical imaging. Nonetheless, this algorithmic approach demands a
substantial number of MAC (multiply-accumulate) operations and consumes considerable
power to function. In this section, we describe the implementation of an image
reconstruction algorithm utilizing GANs. Specifically, we focus on training a model to
restore images of clothing utilizing the fashion-MNIST dataset as a case study.
Furthermore, we deploy and optimize this algorithm on a Xilinx FPGA SoC. These
platforms have demonstrated notable proficiency in effectively addressing such
challenges in terms of performance and power management. The designed approach also
outperforms CPU and GPU setups, achieving an average reconstruction time of 0.013
milliseconds per image and a peak signal-to-noise ratio (PSNR) of 43 dB on the FPGA's
quantized configuration.

3.4.1 Introduction and Related Work

In the era characterized by the prevalence of big datasets, modern applications spanning
from edge computing to cloud-based solutions confront the substantial challenge of
processing several terabytes of data on a daily basis. Emerging machine learning
algorithms, notably Neural Networks (NNs), which continuously learn from real-world
large-scale data, have exhibited remarkable progress, largely attributed to their ability to
achieve high levels of accuracy. Recently, a fresh category of Machine Learning, named
as Generative Adversarial Networks (GANS) , was introduced by lan Goodfellow and his
collaborators [10]. Within this framework, two neural networks engage in a competitive
game resembling a zero-sum scenario, where gains for one agent are losses for the other.
Essentially an unsupervised learning task, GANs employ provided training data to acquire
the skill of generating novel samples mirroring the statistical properties of the training
dataset. This includes the capacity to reconstruct incomplete data, such as partial images.
The setup involves a generator model trained to create new instances, and a discriminator
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model tasked with categorizing instances as genuine (pertaining to the domain) or
counterfeit (generated). The applications of GANs have rapidly gained substantial
traction, particularly in domains like science, video games, and computer vision, owing to
their versatile capabilities [95].

More specifically, the focal point of our work is image reconstruction, a domain that has
found application across multiple sectors. Notably, it is utilized in computer vision and
image processing, including tasks like resolution upscaling. Moreover, it plays a pivotal
role in human-computer interaction, including tasks such as face reconstruction, and
extends its utility to medical imaging where it aids in the early diagnosis of incomplete
medical images [96]. For these challenges, the utilization of cutting-edge models such as
GAN:Ss presents a marked improvement in accuracy and output quality compared to older
techniques. However, the surge in demand for efficient and rapid processing of the latest
generation algorithms, like CNNs (or GANs in our context), has spurred efforts to
optimize their performance through hardware-specific enhancements. This involves
harnessing the potential of heterogeneous architectures, including CPUs, GPUs, and
FPGAs [97]. FPGA implementations have made remarkable strides, proven to be
exceptionally effective in tasks involving CNNs due to their inherent parallelism and
configurable nature at the bit level [98, 99]. This architecture aligns well with tasks
characterized by repetition, such as the computations within GANs. As demonstrated in
our work, the incorporation of hardware accelerators enables us to achieve low latency
and substantial overall throughput. Notably, these high-performance platforms also excel
in power efficiency, a critical factor for both edge and cloud-based workloads [100, 96].

However, GANs represent a relatively recent yet highly significant area within this
domain, and scant prior research has combined GANs with hardware acceleration. As a
result, this study introduces an innovative approach: the deployment of GANs on a small
embedded Xilinx FPGA SoC, which not only achieves high-quality image restoration but
also operates within a short timeframe. To summarize, the primary contributions of this
work are as follows:

e Development and Training of GAN Model: We construct and train a GAN model
with the ability to generate novel, previously unseen images, employing clothing
images as a practical use case. Through a series of key modifications, we adapt
this model to excel at reconstructing images with an impressive degree of
precision.

e Hardware Architecture Implementation: A hardware architecture is devised for the
Generator model, specifically tailored for a Xilinx Zyng 7000 FPGA. This
architecture is optimized to accelerate the image reconstruction algorithm,
involving enhancements in host processing, memory management, and kernel
operations.
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e Performance and Quality Evaluation: The restored images are subjected to
comprehensive evaluation in terms of both performance and quality. This
evaluation encompasses varying bit precisions within the hardware configuration.
Furthermore, the outcomes are compared against alternative platforms, such as
CPUs and GPUs.

Related Work — Significant prior research within the domain GANSs, especially in
conjunction with FPGAs, is relatively scarce due to its novelty within the research
community. Nevertheless, a number of earlier studies have tackled image reconstruction
algorithms by leveraging hardware acceleration. In this paragraph the related work will
include a very similar problem domain and compare our contributions with previous work
in terms of quality of results and acceleration speed. In a study by Ghasemzadeh et al.
[101], they introduce a reconfigurable design for tomographic image reconstruction,
aimed at a Xilinx Virtex 2 Pro FPGA. Their focus centers on a reconfigurable design of
filtered backprojection (FBP) for parallel beam imaging, achieving an operational
frequency of 144MHz while utilizing nearly 14% of FPGA resources. However, the
reconstructed image presented in their paper exhibits a comparatively more pronounced
reduction in quality when contrasted with images generated using GANS, as demonstrated
in this study. S.O. Memik et al. [102] explored FPGA implementation of an iterative
image restoration technique. Their investigation includes various metrics like result
quality and speed, concentrating on a Xilinx FPGA platform. Specifically, their highest
reported speed for a single image restoration, with kernel execution only, using their
largest FPGA, stands at 0.28 seconds for a 256x256 image. Even if we extrapolate this
acceleration to our image size (28%28), our design showcases relatively higher speed. S.
Kumar [103] developed a noise reduction algorithm tailored to eliminating diverse types
of noise, particularly from digital images, with remarkable accuracy. Employing an
approximated fractional integrator (AFI) on grayscale images, they propose a hardware
implementation on an Artix-7 FPGA. Although they validate accuracy, no explicit
performance outcomes are provided. There have been some earlier examples of
combining GANs with FPGAs, such as in works like [104] and [105]. These works
present memory-efficient architectures to accelerate the generator and/or discriminative
network of GANs. Although this aligns closely with our problem domain, they showcase
performance results on significantly larger FPGAs, with no explicit application testing or
mention. While these studies meticulously outline FPGA architecture designs, they lack
details concerning application outcomes or the quality of GAN-generated content. To
summarize, some preceding research has addressed image restoration algorithms through
FPGA implementations but falls short in matching the quality and/or speed of outcomes
achieved through our GAN-related work. Others have delved into GAN-related concepts
on FPGAs but omit application-specific details or insights into the quality of generated
outputs. In subsequent sections, we will introduce a unique FPGA task that hasn't been
previously explored, a GAN generative model designed for partial image restoration.
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3.4.2 Implementation and Results

In the following paragraph we describe the optimization aspects of the software and then
the hardware design of our GAN-related application for image restoration.

Software Implementation — We are going to outline the software-level design of the
application. As previously indicated, we have conducted training on two custom MLP
(multilayer perceptron) networks — one for the generator model and another for the
discriminator model. The training was performed on the fashion-MNIST dataset, which
poses a slightly greater challenge than the standard MNIST dataset. The primary
generative model produces novel image samples, and by implementing several
adjustments, we have configured the GAN model to reconstruct partial images.
Furthermore, we have optimized the model parameters in a memory-efficient manner to
ensure they can be accommodated within the FPGA on-chip BRAMs (Block RAMs)
without causing any substantial loss in quality.

e Model Parameters: The discriminator is composed of an MLP featuring a 4-layer
architecture. Each layer consists of a Dense layer, a LeakyReLU activation
function, and a dropout layer. The final layer employs a Sigmoid activation
function, featuring in a total of 1.5 million parameters. Similarly, the generator
model, which excels in generating synthetic images, also adopts a 4-layer
configuration. However, it incorporates a Tanh output layer and contains a total of
1.1 million parameters. It's important to note that these parameters have been
notably reduced for deployment on hardware, which will be elaborated upon in
the subsequent sections.

e Data Reconstruction Technique: During the training of the GAN, the generator
tries to approximate a particular distribution, while the discriminator evaluates its
performance, resulting in mutual iterative enhancements. The generator is
supplied with random noise during each iteration to create random samples
adhering to the distribution. However, in the context of image reconstruction,
instead of random noise, we feed the generator with half of an image from the
dataset as input, expecting it to generate an approximation of the missing half. For
the generator model, both the training and test sets have been modified to only
include the top half of the images. Ultimately, the outputted half-image is
combined with the original counterpart to create a complete image, which is then
used to train the discriminator model. The training process for the generator model
is in line with the fundamental principles of the typical discriminator model,
utilizing binary cross-entropy loss (as indicated in the next equation). The primary
objective here is to devise a model that maximizes the likelihood of the training
data.
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Hy,(y) = — Z(y’i log(y;) + (1 —y"log (1 —yy))

HW-aware training: To adapt the neural network model for FPGA synthesis, we
undertook several hardware-friendly adjustments within the model architecture
itself. Firstly, the substantial parameter count of the generative model (1.1 million)
necessitated reduction to ensure compatibility with the FPGA's on-chip memory,
thus maximizing data bandwidth. To achieve this, we downsized the network from
four layers to three, as well as reducing the number of neurons. Despite these
modifications, we retained the ReLU activation function, which is generally
suitable for hardware implementation. Consequently, this yielded a mere 32,000
parameters, demonstrating exceptional memory efficiency without significant
compromising of outcomes. Additionally, it's important to highlight our
application of a MinMax constraint during the Keras training phase. This
constraint limits weight values to a narrow range, specifically within the interval
of (-2, 2) (as depicted in Figure 3-10). By doing so, the necessity for extensive
bitwidth in multipliers is obviated, leading to a reduction in overall resource
usage. Lastly, for the final output layer, we employed a Tanh function. While this
poses slightly more intricacy in hardware implementation compared to ReLU, we
successfully implemented it on the FPGA through the use of a pre-computed value

table. The Tanh function's output neuron count, totaling 392, is derived from the
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efficient hardware compatibility while achieving the desired functionality.

dimensions of the predicted half-image ( ). This design approach ensures

In the following Figure, we can observe the loss achieved for discriminator and new
generator model. Also, at the bottom of the Figure we can see the parameter range for
each layer as acquired from the MinMax constraint we already mentioned.
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Figure 3-10. Training Results (top: Loss for Discriminator and Generator model, bottom: illustration
of parameter range in each layer)
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Figure 3-11 displays a collection of diverse images captured during both the initial and
final epochs of training. Evidently, in the initial epoch, the lower halves of the images
(which constitute the output generated by the generator model) appear as if they consist of
random noise. However, in the concluding epoch (on the right), the showcased images
constitute a compilation of complete clothing ensembles, bearing a strong resemblance to
actual clothing.

Figure 3-11. Generator results for image reconstruction from first (left) and last

Hardware Implementation — The primary objective behind FPGA acceleration was to
enhance the speed of the generator model responsible for image synthesis and
reconstruction. To ensure the creation of a fast reconfigurable design, we executed the
implementation of a memory-efficient neural network, as explained in the preceding
paragraph. This network's layers were then synthesized onto the hardware, employing a
pipelined approach. The optimization of the host code, efficient management of buffers
for enabling data exchange between the host and kernels, general FPGA pipelining
strategies, and specific synchronization mechanisms between the host and kernels were
all meticulously orchestrated in according to FPGA design principles for high
performance. The final configuration of the system is presented in Figure 3-12.

e Host optimizations: The initial phase involves refining the design of the host
component of the accelerator function to align effectively with the requirements of
the application. The accelerator takes in a 14x28 image, which is then processed.
The input image is stored in contiguous memory using C++ vectors, facilitating
the utilization of the most efficient data transfer mechanisms for the accelerator.
The outcome produced by the accelerator is the projected 14x28 image that was
previously absent. This result is subsequently transferred back to the host system,
where it's combined with the input image to yield the final reconstructed 28x28
image.
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e Memory optimizations: Enhancing the data movement and the organization of
memory is pivotal to achieving high performance levels. Through the strategic
partitioning of BRAMs (Block RAMS) within the fabric, we attained optimal data
bandwidth. This enabled the instantiation of a greater number of DSPs (Digital
Signal Processors) capable of parallel operation, with simultaneous access to the
model's weights. Additionally, we adopted fixed-point arithmetic for the MAC
operations during model quantization. This switch from floating-point arithmetic
ensured more efficient hardware synthesis for our design.

e Kernel optimizations: For the purpose of achieving substantial throughput, it was
necessary to activate a high degree of finely-grained parallelism during
application execution within the Programmable Logic (PL) fabric. This was
achieved by strategically circumventing data dependencies. By utilizing
appropriate pragma directives, we constructed an architecture for the Generator
model that was entirely parallel and pipelined, minimizing latency. Furthermore,
each layer's execution overlaps with the subsequent layer's operation in a dataflow
manner. Intermediate results are transferred downstream without needing
additional memory.
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Evaluation and Results

In this paragraph, we assess and analyze our application. Our evaluation will initiate with
an examination of the reconstructed images yielded by the GAN model in hardware,
involving a comparative study of errors across various bit precisions. Furthermore, we
will provide an evaluation of the hardware accelerator's performance, resource utilization,
and power efficiency. This assessment will be compared against other platforms.

I.  Assessment of the Model: Our evaluation strategy advances to the model
examination phase. Figure 3-13 presents a visual representation of the image
quality generated by the Generator model through diverse fixed-point precisions
in the hardware setting. The perceptible outcome is the variation in the quality of
the lower portion of the image, which is subject to approximation, dependent on
the bitwidths of the multipliers in the FPGA. After careful consideration, we opt
to retain an 8-bit precision approach, as it yields the most optimal results without
imposing a significant overhead on resources.

Input half image

FPGA output

Software output 4-bit output 6-bit output 8-bit output

Figure 3-13. Image reconstruction quality for different bit precision in the FPGA

Furthermore, Figure 3-14 presents the distribution of pixel errors obtained from
the complete set of test images (normalized on a scale of -1 to 1) across varying
bitwidths on the FPGA hardware. The error values are compared against the
software-based execution of the generator using 32-bit floating-point
representation. This depiction also clarifies that the 8-bit configuration
consistently yields the most favorable outcomes, achieving a Peak Signal-to-Noise
Ratio (PSNR) of 43.14 dB (scaled from 0 to 255 pixels). Notably, within the
context of 8-bit normalized images, the maximum error remains under 0.1. In
contrast, configurations with fewer bits witness the maximum error rising to
approximately 2. This escalation in error magnitude can potentially lead to
complete pixel inversion, shifting from white to black or vice versa. This
outcome, in turn, contributes to a discernible decline in output quality.
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Pixel Error Distribution
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Figure 3-14. Pixel error distribution for different FPGA bitwidths

Regarding the system configuration, we employed a Xilinx ZC702, which is
equipped with a Zyng-7000 System on Chip (SoC) featuring a Dual-core ARM
Cortex-A9 processor and 512 MB of DDR3 memory. The resource allocation of
our FPGA-based hardware accelerator, coupled with latency timings and the
attained frames per second (FPS), is detailed in Table 3-2.

Utilization Summary Timing
Name BRAM DSP FF LUT Latency FPS
Used 54 110 18907 9855 - -

Percentage | 38.57% 50% 11.77% 18.52% | 0.013(ms) | 77K

Table 3-2. Resource utilization and latency per kernel

To comprehensively assess our system's performance, including memory
transfers, we implemented the identical generator model on alternative systems
(CPU, GPU). This was carried out to facilitate a fair performance and
performance per watt (PPW) comparison. The acceleration achieved is evaluated
against the baseline of the single-core testing on the ARM Cortex-A9 CPU within
the FPGA SoC. The relatively modest scale of the problem rendered an embedded
FPGA SoC advantageous compared to a GPU, considering the device overheads.
Remarkably, this approach yielded favorable outcomes across all platforms, both
in terms of performance and the performance-to-power ratio (PPW) metric as seen
from the metrics in Table 3-3.
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Device Information | Evaluation
System Model Time/lmg Speed-up Power PPW
CPU ARM A9 2.06ms 1x 3.2W 1x
GPU Nvidia K80 0.033ms 62% 74W 2.7%
FPGA ZC702 0.013ms 158x 3.6W 140x
Table 3-3. Performance and power evaluation vs other systems.
Conclusion — In this study, we examined the utilization of a highly promising Deep

Learning technique known as GAN (Generative Adversarial Network) for the purpose of
image reconstruction on an FPGA. This particular application domain had yet remained
unexplored in the context of FPGA implementation. Our investigation unveiled the
supremacy of GANs over conventional algorithms in terms of image restoration quality.
Concurrently, we demonstrated a successful proof-of-concept, showcasing the efficacy of
employing FPGAs for such tasks, yielding substantial gains in accuracy, speed, and
power efficiency. The generator model, meticulously trained with optimizations tailored
for hardware, displayed exceptional performance in reconstructing high-quality images. It
not only minimized latency but also operated with remarkable power efficiency,
outperforming equivalent CPU and GPU platforms. While the potential trade-offs within
the design space are expansive, our study has illuminated a path within this field, yielding
prosperous outcomes. The overall objective is to establish FPGAs as major contributors
to the open software-hardware landscape, and this research takes a significant stride
towards realizing that vision.
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Acceleration of Machine Learning Applications in the Cloud.
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3.5 Hardware Accelerated Al for Covid detection

Within this section, we explore the third scenario out of the four in which we employed
FPGA acceleration to enhance the execution of Al applications. The scenario we
investigated here is a medical application aimed at combating the Covid-19 pandemic.
The Covid-19 pandemic had devastated both social life and the global economy, causing
a relentless surge in daily cases and fatalities. While chest X-Rays serve as a widely
accessible and cost-effective screening method, the sheer volume of respiratory illness
cases impedes rapid testing and timely quarantine for every patient. Consequently, there
IS a pressing need for an automated solution, driven by the research community's
dedication. In response to this demand, we present a Deep Neural Network (DNN)
topology designed to categorize chest X-Ray images into three classes: Covid-19, Viral
Pneumonia, and Normal. The accurate identification of Covid-19 infections through X-
Rays holds utmost significance, supporting medical professionals in their diagnostic
tasks. Nonetheless, the substantial amount of data to be processed consumes valuable
time and computational resources. Taking a significant stride forward, we implement and
deploy this Neural Network on a Xilinx Cloud FPGA platform. These devices are known
for their remarkable speed and power efficiency. The ultimate goal is to provide a cloud-
based medical solution for hospitals, streamlining medical diagnoses with precision,
speed, and low energy efficiency. To the best of our knowledge, this application has not
been explored for FPGASs previously. Notably, the achieved accuracy and speed surpass
any known implementations of Neural Networks for X-Ray Covid detection. Specifically,
our system classifies X-Ray images at an impressive rate of 3600 frames per second
(FPS) with an accuracy of 96.2%. Furthermore, it outperforms GPUs with a speed-up of
3.1x and surpasses CPUs with a remarkable 17.6x in terms of performance. In terms of
power efficiency, the FPGA platform excels, demonstrating a 4.6x improvement over
GPUs and an impressive 13.1x over CPUSs.

3.5.1 Introduction and Related work

The abrupt surge in COVID-19 cases, stemming from a novel respiratory virus, has
imposed an unprecedented burden on healthcare systems globally. The pandemic's
profound impact on both the health and economy of the worldwide population is
undeniable. A crucial aspect of the battle against COVID-19 involves the efficient
screening of infected individuals. This is vital to ensure that those diagnosed can
promptly receive treatment and be quarantined, particularly those at elevated risk. The
conventional method for detecting the disease involves a manual examination of chest X-
Ray radiographs (CXRs) by highly trained specialists. While widely adopted, this
approach is inherently time-consuming and intricate, adding strain to healthcare systems.
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Moreover, X-Ray images of pneumonia associated with COVID-19 are often indistinct,
leading to potential misclassification and subsequent errors in medication or delayed
quarantine [106, 107, 108]. Recognizing the urgency to address these challenges, there is
a pressing need for an automated method to categorize chest X-rays and identify specific
diseases. In response to the collaborative efforts of the research community and the
imperative to combat the COVID-19 pandemic, we propose the development of a Deep
Learning application for the automatic detection of COVID-19 through chest X-Rays.
The ultimate goal is to deploy this tool in the Cloud, providing doctors and clinics
worldwide with remote access to a Cloud Medical Al Assistance.

While Cloud Computing facilitates on-demand access to computing resources, it is
acknowledged that CNN models, due to their computational intensity, pose significant
demands on compute power. This is particularly related in the current pandemic era,
where vast amounts of patient data need processing daily. Addressing this modern
challenge, our project introduces a novel solution leveraging hardware-specific
optimizations through Field-Programmable Gate Array (FPGA) architecture. FPGA-
based acceleration has exhibited substantial promise by offloading specific tasks from the
CPU, enhancing system performance, and reducing dynamic power consumption. This
section marks a significant advancement in Deep Learning, especially in CNN tasks,
benefiting from FPGA's parallelism and reconfigurability at the bit level. Deploying our
CNN model on FPGA platforms accelerates the Image Recognition process, ensuring
both speed and power efficiency, crucial in datacenter workloads.

In this project, we will describe several highly accurate Deep Learning models using
custom and novel Convolutional Neural Network topologies that can detect Covid-19
disease in chest X-Ray images. The application is also accelerated through a Xilinx Cloud
FPGA platform using the latest Xilinx's development stack for Al inference. Furthermore,
we investigate how our model makes predictions in an attempt to gain deeper insights into
critical factors associated with Covid cases but also make the proposed testing technology
scalable on the Cloud to be available globally with support for massive input data.

In summary, the main contributions of the paper are as follows:

e We expand upon three efficient CNN model architectures with a focus on memory
and size efficiency, aimed at classifying chest X-Rays into three categories
(Covid, Viral Pneumonia, Normal). Trained on the Tensorflow Deep Learning
framework, we attain a maximum accuracy of approximately 97%, surpassing the
performance of previous CNNs designed for chest X-Ray Covid detection.

e We introduce FPGA-specific optimizations to the model topologies, employing 8-
bit quantization for arithmetic precision. The most efficient model is selected and
accelerated on a Xilinx Alveo U50 FPGA using a heterogeneous architecture that
is both scalable and seamlessly portable to data centers for cloud workloads.
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e The FPGA application is executed in a containerized environment, and results are
quantified in terms of accuracy, speed, and power efficiency. Our performance
surpasses other high-performance devices (Xeon CPU, V100 GPU), excelling in
both performance and performance per watt. Additionally, we evaluate the
model's classification ability using heatmaps on X-Rays and present other
important classification metrics.

It is imperative to mention once more that the models presented are not intended for self-
diagnosis. Individuals should seek assistance from local health authorities if needed. The
tool is designed as an assistant resource for healthcare systems, offering highly accurate
identification of the type of disease, whether it is Covid-19, Viral Pneumonia, or a
Normal chest image. The rapid and accurate detection of COVID-19 infections in chest
X-Rays is of paramount importance as it facilitates the rapid diagnosis and quarantine of
high-risk patients.

Related Work — X-Ray detection algorithms have been explored by many researchers
especially in the past, usually for lung diseases such as Viral Pneumonia. In the recent
year of 2020, the global Covid-19 pandemic has sparked an increasing interest within the
research community regarding the development of Al models tailored for the
identification of Covid-19. The pressing demand to support healthcare professionals in
their medical diagnoses through automated tools, particularly leveraging Deep Learning,
is evident. However, given the substantial computational complexity of these Al models
and the exponential growth of laboratory data from new patients, there is an immediate
need for a robust platform capable of handling these requests with both high speed and
efficiency. The subsequent literature review encompasses comparable design approaches
addressing analogous issues or presenting related problems within our specific problem
domain.

Several studies have investigated the use of Neural Networks towards Covid detetion
through chest X-Rays. Mangal et al. [109] presented CovidAID, a deep neural network
based model to triage patients for appropriate testing. On the publicly available covid-
chestxray dataset their model gave 90.5% accuracy for the COVID-19 infection. On the
same scheme, Wang et al. introduced CovidNet [110], a deep convolutional neural
network design tailored for the detection of COVID-19 cases from CXR images. They
showed a classification report with 93.3% achieved accuracy. Although, these projects
were some of the early work towards the fight against Covid and were very useful for the
community, they lack the performance of our CNN model which achieves an accuracy of
96.2%.

Furthermore, several deep learning approaches have been devised for the identification of
Covid-19, as documented in [111, 112, 113]. However, these models often fall short in
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terms of accuracy or precision when compared to our proposed model. For instance, Jain
et al. introduced an Xception model topology for the same problem domain, achieving
slightly higher accuracy (97.9%) than our model. Nonetheless, their approach lacks a
method for accelerating or enhancing the efficiency of the inference procedure.
Additionally, numerous studies have focused on a binary classification scenario,
distinguishing between Covid and non-Covid images [114, 115]. In contrast, our model
incorporates a third classification category, Viral Pneumonia, which holds significance in
treatment strategies, as patients with Viral Pneumonia require distinct treatment plans.

It is noteworthy that, to the best of our knowledge, there is no existing research on Covid
detection utilizing Field-Programmable Gate Arrays (FPGAs). Consequently, we will
compare our work with related projects in the same problem domain, particularly those
involving hardware acceleration of Convolutional Neural Networks (CNNs) for
Pneumonia detection. For example, Chouhan et al. [116] developed a CNN model using
transfer learning from ImageNet models, reporting an average inference computation time
of 0.043s on an Nvidia GTX 1070 GPU card. Similarly, Azemin et al. [117] implemented
a ResNet-101 CNN model architecture for Covid-19 detection, achieving a speed of 453
images/min on CPU. In conclusion, while various CNN-based approaches for Covid-19
detection exist, our project introduces a novel CNN with superior accuracy compared to
prior work. Moreover, we propose an acceleration method suitable for deployment on
cloud FPGAs, a domain that has not been explored extensively in previous research.

3.5.2 Implementation and Results

We will divide this paragraph into two parts; the software and hardware implementation
of our proposed solution. These are two separate flows that are needed before deploying
the model to the actual hardware. The software flow is related to the training and
finetuning of the CNN model using a deep learning framework while the hardware flow is
the optimization and deployment procedure regarding the FPGA execution.

Software Implementation

In this part, we formulated multiple Convolutional Neural Network (CNN) architectures
for the classification of Chest X-Ray (CXR) images within the dataset. The selection of
the optimal Al model was based on considerations of both accuracy and efficiency, with
the intention of deploying it on an FPGA, as elucidated in the subsequent section. This
section is dedicated to delving into the problem formulation, the dataset utilized, the
training process, and the hardware-centric optimizations implemented on the models to
facilitate their efficient deployment on the FPGA device.
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1. Dataset: The Covid-19 X-Ray image database utilized in this study was curated

from the Italian Society of Medical and Interventional Radiology (SIRM)
COVID-19 DATABASE [118] . The dataset comprises a total of 2,905 CXR
images, categorized into 219 for Covid, 1,345 for Viral Pneumonia, and 1,341 for
the Normal class, used for training and evaluating the Al models. Despite the
relatively modest size and irregularity of the dataset, we employed various
techniques to address these challenges, as elaborated in the following sections.
The selection of this dataset was driven by its open-source nature and full
accessibility to the research community and the general public. As datasets
expand, we remain committed to refining and adapting the models accordingly.
The bar chart below illustrates the distribution of CXR images for each infection
type, segmented into training and test sets, with the test dataset accounting for
25% of the total dataset.

Model Topology: We propose three different topologies for this problem in order
to have a better evaluation on the dataset and select the most suitable model for
acceleration on the FPGA afterwards. We developed separate models that each
has different prediction accuracy, architectural complexity (in terms of number of
parameters) and computational complexity (in terms of number of MAC
operations). A CustomCNN which is a classic convolution neural network, a
lightResNet which is a ResNet50 variant and DenseNetX which is based on
DenseNet architecture but it also includes the Bottleneck layers and Compression
factor.

. Training: Last we will analyze several techniques that we applied on the training

procedure. These optimizations mainly had to do with the specific dataset
characteristics but also include several hardware-aware optimizations on the
model that helped us deploy and accelerate the CNNs in the FPGA more
efficiently. The first is related to Class weighting. Training with a dataset like
ours with very few Covid-19 images as opposed to Normal or Viral Pneumonia
images constitutes a class-imbalanced problem. This is a complexity that poses
significant challenge to the converging of our models as CNNs are normally
assume to be trained on identical distribution datasets. To overcome the class
variance we imposed specific class weights (i.e., 6x on Covid class) which
applied to the model's loss for each sample and eventually helped the model learn
from the imbalanced data. Next we apply HW-aware optimizations to the model
compilation. The CNNs' topology needed some minor modifications in order to
be compatible and efficient with Vitis Al quantizer and compiler. In particular,
the order of the Batch Normalization (BN), Rectified Linear Unit (ReLU)
activation and Convolution layers has been altered from BN — ReL.U — Conv to
Conv — BN — ReLU. This order of layers is ambiguous from the research
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community, however it ensures that for any parameter values the network always
produces activations with the desired distribution. Also, another optimization that
we did is in the case of GlobalAveragePooling2D, which we needed for example
in DenseNetX and we replaced it with AveragePooling2D plus a Flatten layer.
Last, softmax was implemented in the DPU and not in SW (proved to be more
than 100x times faster) using an AXI master interface named sfm_interrupt.
The softmax module used m_axi_dpu_aclk as the AXI clock for SFM_M_AXI as
well as for computation.

Hardware Implementation

In this segment, we will describe the sequence of steps encompassing quantization,
evaluation, compilation, and ultimately, the execution of Al models on the Alveo FPGA
platform. Additionally, we will examine the comprehensive architecture of the FPGA
design, functioning within a heterogeneous system that facilitates efficient
communication with the host processor. Finally, we will establish a complete end-to-end
environment accessible for seamless testing and utilization of our project through an
FPGA-containerized application.

Acceleration Approach — Given the potential utilization of our application by many
users globally, an efficient and expeditious solution is imperative. Consequently, we
opted to leverage the Vitis Al environment to deploy our Convolutional Neural Network
(CNN) models on an Xilinx Alveo U50 FPGA. This strategic decision aims to yield an
application with high inference throughput and a compact memory footprint—critical
factors for optimal performance in cloud workloads. Further exploration of the steps
involved in model quantization, evaluation, and the subsequent compilation will be
discussed. This compilation process generates DPU (Deep Learning Processing Unit)
instructions, facilitating the effective utilization of the FPGA's compute units (CUs).

1. Quantization: Initially, we converted our models into a Tensorflow-
compatible floating-point frozen graph as a prerequisite for the quantization
process. Subsequently, we opted for the quantization of the trained weights of
our Convolutional Neural Networks (CNNs) using 8-bit precision. This
choice, widely acknowledged in similar CNN applications, has demonstrated
the ability to maintain acceptable accuracy levels. Finally, we supplied a
representative sample set of the training data to calibrate the quantization
process. The data underwent a complete forward pass through the model, and
the weights were adjusted based on the data range required for inference by
the application.
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2. Evaluation of Quantized Model: The transformation from a floating-
point model, where values can exhibit a broad dynamic range, to an 8-bit
model, limiting values to one of 256 possibilities, inherently introduces a
slight loss of accuracy. Therefore, it was crucial to evaluate the quantized
graph on Tensorflow before proceeding with the model compilation. Notably,
this technique generally vyielded nearly identical accuracy results when
compared with the actual application tested on the board. Moreover, the
quantized graph on the FPGA, in contrast to the floating-point graph on the
CPU, had a minimal impact on the final accuracy (less than 0.5%).

3. Model Compilation: In the final phase, we compiled the graph into a set
of micro-instructions encapsulated in a “.xmodel" file format. The Vitis Al
compiler undertook the conversion and optimization of the quantized
deployment model, resulting in the generation of the final "executable™ for
CNN inference. The generated instructions were tailored to the specific
configuration of our Deep Learning Processing Unit (DPU). In our case, the
DPUCAHX8H DPU IP was selected. To specify the parameters of the DPU for
the target Alveo U50 board, we provided these parameters in a ".dcf file.
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Figure 3-15. CNN graph quantization and compilation for the FPGA DPU

Evaluation and Results

In this segment, we will assess and profile our application comprehensively. Initially, we
will analyze the model performance, considering factors such as validation loss, accuracy,
and various classification metrics for the neural networks. Subsequently, we will delve
into the evaluation of the hardware accelerator's performance, exploring aspects such as
resource utilization, acceleration, and power efficiency in comparison to the CPU and
GPU. Finally, we will showcase qualitative results, shedding light on areas within the X-
Ray images that are particularly indicative of Covid or Viral Pneumonia.



Chapter 3. Optimization of Deep Learning Accelerators = 89

Model evaluation — In this study, experiments were conducted using Tensorflow and
Keras, employing the common 224 x 224 image dimensions typical in many
Convolutional Neural Networks (CNNs). All models underwent training with the Adam
optimizer, accompanied by EarlyStopping and best model callbacks. The optimization of
classification models was achieved through the minimization of the cross-entropy loss
function. Additionally, various parameters and hyperparameters for each model
underwent tuning during training, including Learning Rate (LR) and epochs. Table 3-4
provides an overview of the key characteristics of each model, encompassing training
hyperparameters, model specifications, and model evaluation metrics.

Hypermarameters Model Specs Evaluation
Model LR Epochs Params = FLOPs | Accuracy Loss
CustomCNN 0.0001 | 70 2.033G 1.025G | 96.2% 0.16
lightResNet 0.001 60 2.697G 2.814G | 96.5% 0.408
DenseNetX 0.005 80 0.758G 1.722G | 94.9% 0.264

Table 3-4. CNN model characteristics and performance

Qualitative analysis — In the preceding tables, we presented various performance criteria
to assess the effectiveness of our classification models. Depending on specific
requirements, one can opt for a model with distinct characteristics that align with the
desired balance between performance efficiency (FLOPs) and accuracy. For the purpose
of demonstration and the FPGA implementation, we chose the CustomCNN model. This
selection is based on its efficient performance, achieving a high level of accuracy
comparable to that of lightResNet while maintaining minimal computational requirements
— a crucial factor for compute-intensive workloads. Furthermore, we provide several
insightful activation maps derived from the last convolutional layer of the CustomCNN
network. These maps play a significant role by offering an understanding of the model's
classification capability and validating the regions of attention regarding the disease.

Covid Normal Viral Pneumonia

Figure 3-16. X-Ray visualizations using attention heatmaps
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System performance — In assessing the system design, we initially verified the resource
utilization of the FPGA's Deep Learning Processing Unit (DPU). The hardware
configuration for deployment comprised a Xilinx Alveo U50 Cloud FPGA featuring an
8GB High Bandwidth Memory (HBM) capacity and a total bandwidth of 316 GB/s. The
device was integrated into a Gen4x8 PCIl Express setup, operating at a kernel clock
frequency of 300MHz. Table 3-5 provides an overview of the resource utilization for a
DPUV3E kernel equipped with five batch engines (our design employed two kernels).

Utilization Summary

Name BRAM URAM DSP FF LUT
Used 628 320 2600 310752 250290
Percentage 46.7% 50% 43.6% 21.2% 28.7%

Table 3-5. Resource utilization of a single DPU kernel

Subsequently, we conducted an assessment of inference using the CustomCNN model on
alternative high-performance systems, specifically an Nvidia V100 GPU and a 10-core
Intel Xeon Silver 4210. The inference on these alternate devices was carried out using
Tensorflow with default settings and suitable batch sizes. The left side of Figure 3-17
illustrates the maximum throughput achieved by each device, measured in X-Rays per
second (FPGA: 3600, GPU: 1157, CPU: 204). Additionally, we annotated the latency,
measured in milliseconds, for single X-Ray image inference on each device. Furthermore,
the right side of Figure 3-17 depicts the power efficiency measurement for each device in
X-Rays/Sec/Watt (FPGA: 51.3, GPU: 11.1, CPU: 3.9).
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Figure 3-17. Performance and Performance/Watt metrics across different architectures

The throughput metric holds significant importance for cloud workloads dealing with
extensive patient data, while the latency metric becomes crucial in edge scenarios, such as
mobile phones, where time sensitivity demands an immediate response.
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A quantitative comparison reveals that, in large batch size scenarios in the cloud, the
FPGA achieves the highest inference speed, demonstrating a 3.1x speed-up from the GPU
and a remarkable 17.6x speed-up from the CPU in terms of throughput. It is noteworthy
that the 8-bit quantized CNN employed on the FPGA incurred less than a 0.5% accuracy
loss, a trade-off deemed acceptable for the gains in performance and power efficiency.
Furthermore, the FPGA outperforms the other two devices in the power efficiency metric,
measured in X-Rays/Sec/Watt. Specifically, it attains a 4.6x speed-up from the GPU and
an impressive 13.1x speed-up from the CPU. The FPGA's metric of 51.3 X-Ray/Sec/Watt
implies that to identify a disease in a single chest X-Ray image, only 0.019 seconds and 1
Watt of compute power would be required. This efficiency is particularly crucial for
cloud providers aiming to minimize energy consumption in data centers while meeting
the performance demands of various applications.

Conclusion — In this study, we introduced multiple Al models, each possessing distinct
characteristics, designed for the detection of COVID-19 cases from CXR images. These
models are open source and available to the general public. Notably, our study showcased
substantial enhancements in both accuracy and performance when compared to previous
related work. Additionally, we delved into the interpretability of our model's predictions
by employing an attention heatmap method, seeking deeper insights into critical factors
associated with COVID-19 cases. This not only aids clinicians in refining screening
processes but also enhances trust and transparency when utilizing our Convolutional
Neural Network (CNN). Furthermore, we quantized, compiled, and accelerated the Al
model for deployment on an Alveo U50 FPGA, aiming to accelerate computer-aided
screening. The application was containerized, allowing seamless portability to a cluster of
FPGAs operating in the cloud, exhibiting high performance and energy efficiency in
comparison to other architectures. It's essential to note that this is not a production-ready
solution intended for self-diagnosis. From a research standpoint, our focus remains on
enhancing performance and introducing additional features within our Al Health
framework, particularly as new data is collected. This may involve areas such as risk
stratification for survival analysis or predicting hospitalization durations. While the realm
of Al automated systems is vast, this work sheds light on the potential contributions of
FPGAs in fundamentally shaping computer-aided Medical Diagnosis.
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Acceleration of Machine Learning Applications in the Cloud.
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3.6 Creating Optimized Firmware from CNNs for FPGAs

This section contains the forth of the four scenarios in which we utilized FPGAs for
Al acceleration. In particular, this section does not present a specific Al application but
entails a more generalized way for accelerating Al applications for FPGAs. Specifically,
it describes on efficient framework to convert trained CNN models into optimized FPGA
firmware. Effective Al algorithms hold immense significance across numerous
challenges, particularly in tasks involving classification or clustering. However, a
standardized universal Al model and seamless optimization is necessary. Consolidating
various machine learning models into a shared ecosystem can substantially reduce
development time and enhance compatibility within frameworks. The Open Neural
Network Exchange Format (ONNX) stands as a widely recognized open format for
representing deep learning models. Its purpose is to enable smoother transitions of models
among cutting-edge tools for Al developers. Notably, hardware companies like Nvidia
and Intel are striving to stay aligned with this trend. They are producing hardware
runtimes optimized for CPUs and GPUs that proficiently manage these open format Al
models like ONNX. This empowers developers to harness an assorted range of hardware
and utilize their preferred Al frameworks. Yet, FPGAs pose a more intricate challenge.
However, they are a proven platform for effectively addressing such challenges
concerning performance and power efficiency. Our study is based on an early-stage
development project known as HLS4ML [3], initially designed for particle physics
applications. The project's core innovation involves the automatic generation of neural
networks (NNs) for embedded Xilinx FPGAs. Our work takes this a step further by
incorporating hardware-aware NN training and a comprehensive optimization strategy on
top of HLS4AML. This extension significantly enhances the library’s performance and
power efficiency. Additionally, it introduces functionality for cloud FPGA firmware
deployment from any NN model. Our methodology begins with FPGA-aware training of
a model in Keras, tailored for image recognition. The model is then converted into the
ONNX open format before being adapted and fine-tuned for cloud FPGAS. This process
employs a novel scheme that optimizes various aspects, including the host environment,
memory management, and kernel operations. Multiple levels of network precision are
also leveraged. To the best of our knowledge, this approach stands as an unique
innovation. It leads to a remarkable speed-up, achieving performance gains of up to 102x
compared to a single CPU, and up to 5.5% improvements in performance per watt
compared to GPUs.

Subsequent paragraphs will provide an initial overview and contextual insights
into frameworks designed for the automated acceleration of Al hardware. Our
implementation and integration within the HLS4ML framework will be detailed, followed
by evaluation metrics concerning the acceleration of two popular Al models.
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3.6.1 Introduction and Related work

Recently, ML techniques have achieved remarkable success across many applications and
have emerged as pivotal tools, particularly in fields like image and speech recognition.
Convolutional Neural Networks (CNNs) have gained substantial traction due to their
exceptional accuracy and performance in visual recognition tasks [119]. These deep
learning models have proven to be revolutionary, permeating numerous industries and
finding their way into an increasing array of commercial products, thereby significantly
impacting people's daily lives.

Nonetheless, the demands of contemporary companies necessitate the processing of
massive volumes of data, often in the order of terabytes or more each day, owing to the
prevalence of these algorithms. As machine learning applications continually learn from
extensive real-world datasets [120], the requirement for faster processing speeds becomes
ever more pressing. This computational complexity has spurred initiatives to enhance
these tasks through hardware-specific optimizations, making use of diverse heterogeneous
architectures that combine platforms such as CPUs, GPUs, and FPGAs [121]. While the
utilization of multicore systems holds promise [122], the challenge of mitigating the
considerable energy costs and processing times persists [123]. Notably, FPGA
implementations have progressed significantly, showcasing their exceptional
effectiveness in CNN-related tasks due to their remarkable parallelism and
reconfigurability at the bit level. Leveraging hardware accelerators contributes to an
increased overall throughput, stemming from the highly parallelizable nature of the
numerous multiply-accumulate operations (MACS) inherent to these algorithms.

Within the field of CNN hardware acceleration, a notable challenge is the interoperability
of deep learning frameworks. The task of moving models seamlessly between cutting-
edge tools while selecting the optimal configuration remains a challenge for Al
developers. As a response to this, there has been a shift towards adopting open format Al
models such as ONNX, which fosters an ecosystem with standardized representations
[98]. ONNX offers an open-source format for Al models, including both deep learning
and traditional machine learning paradigms. Offering an adaptable computation graph
model and definitions of pre-built operators and standard data types, ONNX gathers
significant support from prominent corporations like Alibaba, ARM, AWS, IBM,
Huawei, Intel, Nvidia, and others [124]. However, adapting Al models to run efficiently
on platforms like FPGAs can be exceptionally demanding, prompting developers to
explore ways to circumvent code rewriting and overcome code optimization challenges.
The process of hardware acceleration for varying neural network architectures on FPGAs
is far from straightforward.

In this paper, we present an innovative approach for seamlessly translating Convolutional
Neural Networks (CNNs) into OpenCL FPGA devices within cloud environments. We
extend the capabilities of an early-stage open-source project known as HLS4ML [125, 3],
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which involves a compiler for high-level language code tailored for embedded Xilinx
FPGAs, thereby enabling neural network model implementation. Our contribution
introduces novel architectures and optimization methodologies for automating the
translation of neural networks onto cloud-based FPGAs, enabling full execution within
FPGA hardware and taking advantage of the server class FPGAs. As a result, the
development process for ONNX-based deep learning applications on FPGAs gains speed
and power efficiency, simplifying neural network compilation and acceleration overall in
the cloud as well. To sum up, the primary contributions of this paper include the
following:

e Introduction of a novel optimization scheme for automatically generating cloud
FPGA firmware from ONNX models, around a generalized approach adaptable to
various neural network types with the capacity for design space exploration.

e Introduction of a new template for additional optimizations at the kernel, memory,
and host levels for FPGAs, such as the Xilinx Alveo U200. These optimizations
are applied on top of HLS4AML library utilizing a flexible heterogeneous
streaming architecture, involving different precision configurations between
neural network layers.

e Proposition of a hardware-specific training method for neural networks,
demonstrated using a small MNIST-based model and a larger CIFAR-based
model. We port ONNX-converted models for automatic High-Level Synthesis
(HLS) translation for the Alveo board. In performance and performance per watt,
we achieve superior results compared to other high-performance devices like a
Xeon CPU and P100 GPU.

Related Work — Numerous researchers have experimented with CNN algorithms,
particularly focusing on optimizing both software and hardware aspects. These
optimizations are applicable across various domains, including image recognition and
object detection. In the following overview of related work, similar design approaches are
presented, addressing analogous problems within our problem domain. Weijie You et al.
[126] introduced a design for a DNN pipeline accelerator based on grouping techniques,
tailored for FPGAs. Their evaluation uses AlexNet and VGG16 networks using Xilinx
ZC706, an embedded FPGA SoC. In contrast, our paper utilizes a cloud FPGA instead of
the embedded counterpart. In a similar vein, Hao [127] proposed an FPGA/DNN co-
design method facilitated by an Auto-HLS engine to generate FPGA-synthesizable C
code. Their work also centers on an embedded FPGA, the Xilinx PYNQ-Z1. Furthermore,
Sitao Huang [128] demonstrated a versatile sparse DNN inference accelerator on FPGA,
adaptable for both mobile and high-performance computing scenarios. Notably, they
omitted a GPU comparison from their study. Ghasemzadeh et al. [96] showcased
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ReBNet, a Residual Binarized Neural Network running on Xilinx FPGAs. This
implementation employs 1-bit precision per neural network layer, utilizing Xnor
Popcount-style computations. However, their approach's performance falls short when
compared to our solution. Despite running at a slightly different kernel frequency, their
hardware accelerator's CNN model is also based on the MNIST dataset. Their reported
peak throughput is 64000 Images/s, whereas our MNIST model achieves a maximum of
158000 Images/s. This performance advantage is achieved by using 8-bit and higher
precision weights while utilizing only half of the available resources. Jiong Si et al. [129]
conducted testing on an FPGA platform for inference using various precisions, including
8-bit, on the MNIST dataset. Despite their FPGA operating at a lower frequency, their
performance with 8-bit data is proportionally lower than ours. They indicate the use of a
25 MHz clock, while our FPGA reaches the maximum device frequency of 300 MHz.
Notably, our clock speed is 12 times faster, leading to a significant performance
advantage of 60 times compared to their proposed solution. This implies an overall 5-fold
performance enhancement from our system. Alemdar et al. [99] implemented fully-
connected ternary-weight neural networks on FPGAs, reporting a latency of 20.5 ps for
the MNIST dataset. Their ternary networks inherently achieve sparsity through pruning
smaller weights to zero during training, enhancing energy efficiency. It's noteworthy that
their work utilized a custom Xilinx Kintex 7 FPGA board named Sakura-X, operating at
200 MHz. In contrast, our FPGA board, utilizing similar resources, operates at 300 MHz
and achieves a latency of 6.3 pus while employing higher precision weights and
activations. Lastly, Makrani et al. [130] introduced a model to optimize the
performance/cost ratio of scale-out applications in cloud environments across varying
memory configurations. Their methodology, called Mena, focuses on tuning memory and
processor parameters to match system configurations with application requirements and
budget constraints, although it does not extend to the realm of FPGAs.

In conclusion, extensive research has explored the use of lower precision neural networks
on FPGAs. However, in the subsequent paragraphs, we will present a novel approach for
deploying CNNs on FPGAs automatically. This approach boasts the advantage of
seamlessly and efficiently generating FPGA code from ONNX models, offering low
latency and high power efficiency.

Preliminaries — In this work, we focused on utilizing an open neural network format
that can be beneficial for our framework as it promotes interoperability. The Open Neural
Network Exchange (ONNX) serves as an open ecosystm, empowering Al developers to
streamline the Al model development process. ONNX offers an open-source format for
Al models, encompassing both deep learning and traditional machine learning. It employs
an adaptable computation graph model and defines a range of built-in operators and
standard data types for seamless deployment in inference tasks. ONNX has broad support
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across numerous frameworks such as Tensorflow, Caffe, Pytorch, MxNet, Matlab, and is
compatible with various hardware runtimes, including Nvidia's and Qualcomm's. Javier
Duarte et al [3] explored the utilization of FPGAs for rapid inference within particle
physics applications. They identified a distinctive requirement in particle physics for
FPGA-based trigger and data acquisition systems, demanding exceptionally low, sub-
microsecond latency. Consequently, they introduced a package designed to automate the
creation of machine learning models for FPGAs through High-Level Synthesis (HLS).
This compiler autonomously translates pre-trained neural networks into HLS code,
relying on the model's architecture, weights, and biases. It extends support to models
trained in Keras, PyTorch, and even ONNX. However, it's important to note that this tool
is still in its early stages and offers limited support for certain layers. In our specific case,
the model tailored for FPGA hardware initially encountered compilation challenges when
used with hls4ml. It necessitated several modifications to address memory issues, but this
marked the inception of our solution approach.

3.6.2 Integration with Existing Tools and Evaluation

Exporting machine learning models from frameworks like TensorFlow or PyTorch
necessitates robust hardware with substantial computational capabilities, highlighting the
importance of a well-defined design flow. To gain a clearer insight into our design
strategy, Figure 3-18 provides an overview of the proposed design flow. As depicted, the
process begins with the training and optimization of an Al model using Keras,
incorporating hardware-aware optimizations. Subsequently, the model is converted into
the ONNX format. Next, the open-format neural network model undergoes conversion
into FPGA HLS code, facilitated by the HLS4ML package, complemented by our neural
network and FPGA optimizations tailored for cloud deployment. Finally, the image
recognition application is executed on board with meticulous synthesis for high-frequency
performance and adequate hardware exploration. Performance, modularity, and re-
configurability serve as pivotal sides of a high-performance and adaptable design.

e Performance: To enhance design efficiency and reduce latency, we employ a
streaming dataflow approach. Each layer operates in parallel as an independent
module, transmitting its output directly to the subsequent layer, which takes the
previous output layout as input, thereby overlapping operations and obviating the
need to store intermediate results in off-chip memory. This results in a faster and
more power-efficient design. Additionally, we consider calculation precision,
optimizing multiplier usage while minimizing accuracy errors.

e Modularity: Our design accommodates varying precision levels among layers,
creating a heterogeneous neural network with accuracy tailored to each layer's
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activation requirements. Precision settings for weights, biases, and activations can
be seamlessly adjusted to align with application needs. Furthermore, each layer
functions as a standalone accelerated module, offering independent control.

e Re-configurability: Our framework is configured to generate custom FPGA
firmware compatible with a wide array of OpenCL FPGA devices, including
multiple copies of the same kernel for batch processing.

Keras Optimize
Framework precision,memory,etc.
7y
L 2
FPGA
Al model I;?rr::’,;n HLS4ML synthesis
! (PAR)

Figure 3-18. Design steps for ONNX model deployment to FPGAs. (Blue tasks indicate our work
while red are taken from previous work. The HLS4ML python API was modified to support the
new optimizations and changes.
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Architecture Design

We adhere to FPGA design principles towards optimizing high performance and power
efficiency, accompanied by the development of a custom OpenCL host API designed to
accommodate cloud FPGAs for data centers. Our semi-automated OpenCL-centric tool
flow methodology for deploying neural networks on FPGAS supports various software
and hardware optimizations. We commence with hardware-specific training of a neural
network, applicable to a wide range of neural network models. This approach offers
substantial flexibility in parallelization, particularly beneficial when working with
unsigned neural network weights. Furthermore, the translation of the generalized ONNX
model format into a fused hardware model with independent modules for each layer
provides opportunities for further parameterization and optimization of the neural
network. Lastly, through the OpenCL host API, we enhance memory access to kernels,
maximizing device data bandwidth. Utilizing OpenCL command queues and precise host-
kernel synchronization enables substantial parallelization at a coarse-grained level.

I.  Hardware Accelerator. Our hardware accelerator, as previously mentioned,
comprises several accelerated modules derived from the ONNX model, which are
pipelined with an initiation interval (1) of 1 and interconnected sequentially in a
streaming fashion. Of particular significance are the dense/convolution layers,
primarily due to their substantial computational demands, accounting for nearly
90% of the total network execution time. To optimize the performance, we have
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implemented a layer fusion technique specifically targeting Convolution-ReLU
layers. This optimization combines the convolution and ReLU activation
operations into a single, streamlined processing step. By fusing these layers, we
eliminate redundant data movements and reduce the overall computation time,
leading to significant improvements in both latency and throughput.

Multiplier Optimization. We aimed to maintain 8-bit precision for all weights and
biases, as this typically vyields satisfactory inference accuracy [131, 132].
However, we employed mixed-precision data types for the inner activations. To
determine the minimal required precision for each layer in the network, a
statistical analysis was conducted on the weight and activation parameters.An
innovative approach to multiplier design involved efficiently performing two
multiplication operations within a single clock cycle using Xilinx's DSP48E2. Our
objective was to devise an efficient method for encoding inputs a, b, and c in a
way that the multiplication (a + b) x ¢ could be easily separated into a x ¢ and b x
c. We achieved this by packing the two 8-bit inputs, a and b, into the 27-bit port of
the DSP48E2 multiplier via the pre-adder, ensuring that the vectors were as far
apart as possible, as illustrated in Figure 3-19.
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Figure 3-19. Packing two INT8 multiplications with a single DSP Slice.

As observed, the product of the packed port and an 8-bit coefficient produced the
result without the bits of each vector influencing the computation of the other. To
prevent any interference between the upper and lower bits, our 8-bit input required
a minimum total input size of 24 bits (16 bits + 8 bits).

Memory Optimization: In neural networks, the same set of inputs or weights is
often heavily reused in convolutional or dense layers. We opted for input sharing,
as depicted in Figure 3-20, which involved parallel MAC operations of the type ai
x w;j and a; x wj. By left-shifting the values using the discussed INT8 optimization
technique, each DSP slice contributed to a partial and independent portion of the
final output values.
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Figure 3-20. lllustration of input sharing technique

The common coefficient "c" in the multiplication a x ¢ + b % ¢ corresponds to the
input ai of the partial sum of products 0, = Z?’:l axw;  in a convolutional layer.

Additionally, we configured the neural network weights to be stored in the fast
BRAMs of the FPGA device, allocating weights into matrix blocks within
physically contiguous memory, situated near the computation of kernels. This
ensured rapid communication, allowing one-cycle read-writes of vectorized data
using the most efficient data movers. Furthermore, the blocks were fully
partitioned (or partially for larger networks), enabling the FPGA device to
simultaneously access multiple weight values and facilitate extensive parallelism.

Dataflow Optimization: Following the optimization of multipliers and memory,
we proceeded with the final integration of the acceleration modules by executing
all layers in a unified kernel with a streaming architecture. We established
channels based on FIFOs, enabling consumer layers to initiate operations before
producer layers had completed, as illustrated in Figure 3-21. Each layer
transmitted its output to the next layer using similar datatype layouts, allowing
them to overlap their operations once sufficient data had accumulated in the
previous layer. This increased the concurrency of the RTL design. Moreover, in
the streaming architecture, there was no need to store intermediate results of each
layer in off-chip memory since they were promptly passed downstream. This
resulted in significant resource reduction and enhanced power efficiency,
employing only the minimal resources required for our design. We also enabled
batch processing for the forward operation, allowing users to input a packed array
of N images for batch processing and receive results in an N x classes array
containing classification probabilities. The softmax layer generated this array and
provided all classification results after processing all images.
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| void forward(img, res) {
> save_weights_onchip();
Layer 1 \ layer1(img, out1);
—_— ) layer2(out1, out2);
Layer 2 layer3(out2, res);
return;
[ Layer 3 }

Figure 3-21. Task level pipelining between layers

VI.

Model and parameters: Initially, we normalized the image values within a range
of 0 to 1 by dividing them by 255 before inputting them into the neural network
model. Subsequently, we divided the dataset into two parts: 60,000 images for
training and 10,000 images for the test set. The MNIST model primarily
comprises two dense layers, encompassing over 200,000 synapses, with activation
layers interspersed. In contrast, the other model, designed for the CIFAR-10
dataset, is a variant of VGG-16, featuring three convolutional and pooling layers
with activation layers in between. We opted for the ReLU activation function for
both models due to its stability, speed, and efficiency, particularly when deployed
on FPGA hardware.

The sign extension issue: As previously explained, we've implemented an INT8
optimization for the multiplier in our hardware accelerator, which utilizes a
packed port to perform two multiplications in a single DSP operation. However,
the original neural network computations in both dense and convolutional layers
involve signed-by-unsigned multiplications. This arises from the fact that the
activations, stemming from ReLU or input layers, are consistently positive
numbers, while the weights may include negative values. When multiplying these
types of numbers, it becomes imperative to sign-extend the inputs, as illustrated
below. This sign extension is necessary to execute the multiplications in an
unsigned format and subsequently obtain the correct result in two's complement
form; otherwise, the outcome may prove invalid. For instance, when we multiply
two 8-bit numbers with one of them being signed, the sign extension process
results in a 16 by 8-bit multiplication, ensuring that the outcome is represented in
the appropriate two's complement format. This principle applies not only to
integers but also to fixed-point numbers, as demonstrated in Figure 3-22, since we
treat them as integers and subsequently ascertain their binary point position.
Consequently, the INT8 optimization cannot be efficiently applied by default, as
the packed port designed for single DSP multiplication cannot accommodate two
16-bit numbers simultaneously.
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Figure 3-22. Sign extension for an 8-bit fixed point number

VIl.  The weight regulation: To address the aforementioned issue, we devised a strategy
within the Tensorflow/Keras framework, which we employ for training our
models. This strategy involves imposing specific constraints during the training
process, akin to employing L2 regularization techniques to direct the growth of
model weights. We opted for a per-layer non-negativity constraint on both weights
and biases. Initially, this approach yielded suboptimal results, with some weights
becoming excessively large positive values due to overfitting. To rectify this, we
introduced additional guiding mechanisms, such as weight and bias initialization,
as well as extending the number of training epochs. Ultimately, a combination of
iterative retraining steps and pruning was instrumental in achieving a weight
distribution within the [0, 2.5] range, with the majority of weights concentrated in
the [0, 0.05] interval. In the final stages of post-training refinement, we reduced
the integer width of the 8-bit fixed-point values, retaining only 1 bit for the integer
component of the weights, since only a small fraction of values necessitated 2
integer bits.

Final system design using OpenCL — Following the successful implementation of a
low-latency design, which leveraged fine-grain parallelism at the kernel level within the
PL fabric, we proceeded to create an efficient OpenCL host API using standard OpenCL
API calls. Specifically, we allocated image inputs using C++ vectors, with each vector
sized at 28 * 28 * N, where N represents the number of images when batch processing is
preferred. This allocation method ensured that the image matrix occupied physically
contiguous memory, enabling the utilization of the most efficient data transfer
mechanisms to and from DDRs. To optimize data throughput, we implemented a 512-bit
user interface on each kernel side, leveraging the maximum memory bandwidth supported
by Xilinx OpenCL FPGAs. Simultaneously, we made use of all available DDRs on the
device, achieving peak data transfer rates. Additionally, we carefully crafted concurrency
within OpenCL command queues for kernel initiation and synchronized interactions
between the host and kernels, ensuring smooth operation within a constant dataflow
paradigm.
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Moreover, we took measures to minimize SLR crossing whenever feasible, as this tends
to result in less efficient designs in terms of latency and power due to the creation of
longer critical paths. Fortunately, our kernels generally remained within the resource
boundaries of each SLR. Figure 3-23 provides an overview of the entire system, starting
from the host CPU, traversing through the FPGA, and finishing in the calculations
performed at the multiplier level in each Processing Element (PE). Notably, the final
system, complete with all the optimizations described, was integrated into the HLS4ML
package, accessible through the Python API, thereby implementing our custom
architecture.
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Figure 3-23. Final system dataflow

Evaluation and Results

In this section, we will conduct an assessment and profiling of our application. We
will start by examining the hardware-aware training of a neural network, which serves as
a test case, and assess its accuracy. It's worth noting that post-training quantization was
employed prior to determining the ultimate inference accuracy. Following that, we will
proceed with the performance evaluation of both the hardware accelerator and the fully
operational system, assessing their performance on both the compact MNIST model and
the larger CIFAR-10 model.

To illustrate our approach, we implemented two customized neural networks, as
previously described, utilizing the Keras library. These models were specifically chosen
because they are commonly used in cloud industry applications, addressing clothing
classification and object recognition tasks, respectively. Figure 3-24 displays the
validation accuracy of the first model across various training steps, comparing the default
model with the regulated one. The slightly lower accuracy observed in the hardware-
optimized model can be attributed to the weight initialization and constraints we
introduced to fully leverage our proposed multiplier unit, enabling double packed MAC
(Multiply-Accumulate) operations. The difference in validation accuracy between the two
models is approximately 4%.
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Figure 3-24. Accuracy comparison between neural network models

However, when evaluating the inference accuracy on the final system (which
predominantly utilizes 8-bit weights and activations), we note only a 6% reduction in
accuracy compared to the original model on average. This trade-off is quite reasonable,
considering the substantial increase in performance achieved using the same
computational resources, along with the advantages of 8-bit precision, such as reduced
resource usage, lower latency, and power efficiency. In our specific case, we opted to
visualize the classification accuracy through a confusion matrix (as depicted in Figure
3-25). This choice was made because conventional accuracy metrics often conceal the
details of the classification model's performance. A confusion matrix provides a
breakdown of correct and incorrect predictions for each class, offering insights not only
into the classifier's errors but also into the impact of our hardware optimizations.
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Figure 3-25. Heatmap on the confusion matrix of the classification model

Accelerator performance — To evaluate the design, our initial focus was on verifying the
correctness of the accelerator, particularly our custom multiplier, as incorrect DSP
outputs could potentially disrupt the entire convolutional neural network. We conducted
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the hardware evaluation on a Xilinx Alveo U200 FPGA. This system boasts 64GB of off-
chip RAM with a bandwidth of 77 GB/s and operates on a Gen3x16 PCIl Express
interface, running at a kernel clock speed of 300MHz. Table 3-6 provides detailed
resource utilization and timing data for each neural network layer, categorized by layer
type, in the case of the MNIST model.

Utilization summary Timing
Layer BRAM DSP FF LUT | Latency (cycles) @ FPS
Dense 192 64 2449 | 12656 1709 -
Relu 0 0 16 127 130 -
Softmax 7 0 985 | 2401 51 -
Total 199 64 3450 15184 1890 158K

Table 3-6. FPGA resource utilization and latency per layer

Our streaming architecture exhibits a total latency that closely approximates the sum of
initiation intervals for each layer, amounting to 1890 kernel cycles. The kernel also
achieved the maximum device frequency of 300MHz, with the theoretical potential to
reach up to 400MHz, as evident from the Worst Negative Slack (WNS) of 0.8ns.
Consequently, our neural network accelerator can complete a full forward pass in 1890
kernel cycles or 6.3 microseconds, which translates to an impressive 158,000 frames per
second (FPS). For instance, consider the scenario of processing a full HD 1920 x 1080
video stream at 30 FPS, where the video is segmented into 28 x 28 tiles for neural
network inference. To handle this task in real-time, a neural network inference rate of
80,000 FPS would be required, a demand that our system successfully meets. Lastly,
Figure 3-26 provides a visualization of coarse-grained concurrency at the task level,
highlighting the parallelism achieved by employing four kernels simultaneously, with
data computation and transfer occurring concurrently. This illustration was directly
generated from the SDAccel framework.

clWaitFarEvents clwaitFaorEvents

o -
|
| kernel2 ] { kernel2 i

B kernels BN kernels [
Sl kemeld T kerneld

Figure 3-26. Task level parallelism with concurrent kernel execution
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Final system performance — In the final evaluation of our system, we initiated tests to
determine the end-to-end execution time required for a single forward pass through our
two neural networks, namely MNIST and CIFAR, encompassing memory transfers within
the process. Subsequently, we compared these results with the execution times achieved
on a single-core Xeon CPU and an Nvidia Tesla P100 GPU, with the observation that the
timings for the two neural networks might appear similar due to device overhead
considerations. As indicated in Table 3-7, our final FPGA system excels in terms of
performance and demonstrates lower average power consumption, especially for the
smaller MNIST model. This superiority in performance and efficiency can be attributed
to several factors. Firstly, our system employs reduced-precision weights and activations,
as opposed to the default 32-bit floating-point representations. Combined with the
utilization of a packed multiplier, our system achieves minimal latency, a crucial attribute
for applications demanding rapid processing. Furthermore, it's worth noting that our
design utilizes only a small fraction of the available device resources, rendering it highly
power-efficient. Consequently, it can be deployed not only in data centers but also in
smaller embedded FPGA SoCs, catering to critical applications that necessitate low
latency and energy efficiency.

Device Performance Power Evaluation
Information Evaluation
System | Model | Architecture | CIFAR | Speed-up | MNIST | Speed-up | Watt(avg) @ Perf./Watt
(max)
Xeon
CPU 2.4 22-nm 58 ms 1X 43 ms 1X I9W* 1Xx
GHz
GPU '\;,"1'3(')"" 16-nm 11ms 527X | 075ms = 57X 95 W 5.4 X
Alveo
FPGA U200 16-nm 2.7 ms 215X 0.42 ms 102.3 X 31W 29.7 X

Table 3-7. Evaluation vs other architectures * Scaled to single-core
To measure the performance of our systems in comparison to other projects sharing a
similar architectural context, we conducted a meticulous examination of related projects
involving FPGA designs aimed at addressing comparable problems or domains (for
further details, refer to the Related Work section). Among these projects, one of the
closest in resemblance was an 8-bit accelerator developed by . Jiong Si et al. [129] for
MNIST , which our design significantly outperformed, achieving a fivefold increase in
performance.When comparing our design with systems utilizing different architectures,
we executed identical benchmarks on both a CPU and a GPU system, with the baseline
reference being the Xeon CPU. Notably, our FPGA design excels in terms of
performance on the MNIST model, outpacing both CPU and GPU systems. It attains a
remarkable 102.3x% speed-up over the CPU and a substantial 1.8x improvement over the
GPU.
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Furthermore, the power efficiency of our FPGA architecture excels, particularly evident
in the Performance/Watt metric. Here, our FPGA achieves a substantial 29.7-fold speed-
up compared to the CPU and a 5.5-fold improvement compared to the GPU. It's
noteworthy that the FPGA exhibits superior power efficiency in both the CIFAR and
MNIST model cases.

Conclusion — In this study, we introduced a novel and revamped framework designed to
autonomously generate FPGA firmware using High-Level Synthesis (HLS) based on
neural network models. We implemented various optimizations and extended the
functionality of the existing hls4ml package, enhancing its speed and efficiency. For
illustrative purposes, we meticulously trained and fine-tuned two customized neural
networks, one smaller and one larger in size, with optimizations tailored for hardware
acceleration. These networks were specifically designed for image classification tasks,
such as recognizing clothing or objects, which are common applications in the cloud
computing industry. Our research findings demonstrated that the proposed architecture
can surpass the performance and power efficiency of other high-end platforms like CPUs
or GPUs. Additionally, we compared the performance of our accelerator with other FPGA
designs mentioned in the Related Work section, including those utilizing reduced-
precision neural networks, and consistently showcased its superiority. From a research
perspective, we are actively working on further enhancing performance and incorporating
additional features into the package. One such feature under consideration is the
integration of hardware-aware training, as discussed in this work. The area of potential
design space trade-offs is extensive, and our research contributes valuable insights to this
domain, achieving successful results and aiming to establish FPGAs as fundamental
contributors to the evolving open software-hardware ecosystem.
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Simulation of Approximate Deep
Neural Networks

On the previous chapter we saw how we can optimize Al/ML applications for hardware
accelerators such as FPGAs. Approximate hardware, on the other hand, involves trading
off some level of precision in calculations to gain performance or energy-efficiency
benefits. Al workloads, particularly deep learning, are often tolerant of minor errors or
approximations in calculations. Approximate hardware designs can exploit this tolerance
by using reduced-precision arithmetic or other approximation techniques to speed up Al
computations while sacrificing minimal accuracy. Computing in these architectures is
called approximate computing and can help reduce latency, power consumption or area,
which are critical considerations in Al, especially for edge devices with limited power
budgets. Nevertheless, the development period for these hardware devices is lengthy, thus
determining the error or the impact of approximate hardware on an Al model without
having the hardware yet can be challenging. One method is to use simulation tools and
software libraries that allow to apply approximate computing techniques to an Al model's
computations. However, popular DNN frameworks do not support approximate
arithmetic because only libraries of accurate mathematical functions are inherently
supported, thus emulation becomes extremely slow. In this chapter, we formulate,
validate, and assess a framework for emulating approximate DNNs to address this
challenge. This enabled us to estimate the impact of approximation on accuracy and
power for several approximate multipliers on the popular Pytorch framework. We
describe how our framework was built to provide acceleration support for both CPU but
also for GPU for arbitrary approximate multipliers and neural network models in a
seamless flow in order to perform fast approximate inference. Last, we introduce a Monte
Carlo Tree Search (MCTS) algorithm to efficiently search the space of possible
configurations using a hardware-driven hand-crafted policy, allowing us to derive close to
pareto-optimal solutions.
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4.1 Motivation and Challenges in Simulating Approximate

DNNs

Deep learning methods, which are based on neural networks, have demonstrated
remarkable success in various applications like image processing due to their high
effectiveness and precision. Deep Neural Networks (DNNs), for instance, excel in
achieving exceptional accuracy and performance in tasks like visual recognition and
complex regression algorithms. Nevertheless, when it comes to neural networks, the
inference process of the model demands a substantial number of multiply-accumulate
operations (MACs) and memory accesses, resulting in significant energy consumption
and time overhead [133]. The computational intricacy associated with this, along with the
inherent error resilience of deep learning, has spurred significant research into the
development of approximate DNN accelerators [38].

The primary objective of approximate computing is to realize substantial reductions in
computational resource and memory usage. This approach entails the reduction of model
parameters or activations to a lower numerical precision through the use of fixed-point
arithmetic, as opposed to the conventional 32-bit floating-point precision. Prior research
has demonstrated that selecting an optimal bitwidth for the model's multiply-accumulate
(MAC) operations can result in negligible errors [134]. Many accelerators employ integer
guantization, such as INT8. Consequently, implementing approximate MAC operations,
which predominantly rely on integer arithmetic, can yield significant enhancements in
performance, power efficiency, and energy efficiency on the hardware side [135]. For
instance, energy savings ranging from 35% to 81% have been reported, with less than a
1% loss in accuracy [136].

The vast and diverse landscape of approximate arithmetic units (e.g., [137, 68] ) and their
intricate impact on DNN accuracy increase the complexity of design, underscoring the
need for an approximate emulation framework. Furthermore, as DNNs increase in depth,
they become more sensitive to approximation [138]. Consequently, fine-tuning DNNs
with approximation awareness is essential to mitigate the errors introduced by naive
approximation methods (e.g., replacing exact multipliers with approximate ones) and
attain high inference accuracy [136]. Mainstream DNN frameworks lack support for
approximate arithmetic, as they inherently prioritize libraries of accurate mathematical
functions, leading to slow emulation.

This chapter introduces two high-speed emulation frameworks for approximate DNN
accelerators developed in PyTorch: AdaPT, which leverages AVX intrinsics and
multithreading for CPU acceleration, and TransAxx, which utilizes GPU acceleration
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with CUDA. The frameworks’ primary goal is to accelerate and facilitate the simulation
of Al models on approximate hardware. They function as an integrated PyTorch plugin
that seamlessly integrate with most Al models, including Convolutional Neural Networks
(CNNSs), Variational Autoencoders (VAESs), Long Short-Term Memories (LSTMs) and
Generative Adversarial Networks (GANs) for AdaPT and even Vision Transformers
(ViT) for TransAxx. They represent innovative emulation platforms, enabled first time
for PyTorch which is a popular ecosystem within the Al research community [139]. They
are also capable of performing approximate inference across a wide range of bitwidth
representations, including mixed precision. State-of-the-art techniques are employed for
model quantization and approximate retraining, enabling further accuracy enhancements.

4.2 AdaPT: Operation and Optimization Techniques

We conceived the AdaPT framework as a rapid cross-layer DNN approximation
emulation tool, presented as a PyTorch plugin. Users have the flexibility to enable or
disable it, reverting to the PyTorch default flow when needed. The framework seamlessly
supports a wide array of layers and model architectures. We offer support for two key
techniques to enhance accuracy: post-training quantization, employing cutting-edge
calibration, and approximate-aware retraining. Users have the freedom to select an
approximate compute unit (ACU) for integration into AdaPT as a self-contained
component or to stick with the default precise flow. Furthermore, AdaPT is equipped to
handle mixed precision and mixed approximation, allowing the use of different ACUs
between layers. However, it's important to note that fine-grained approximation, such as
per-filter approximation, is not currently supported. To accelerate the approximate DNN
emulation, AdaPT leverages the power of OpenMP threads and Intel AV X2 intrinsics for
advanced vectorization.

Related Work — Popular deep learning frameworks like Caffe and TensorFlow have
undergone extensive examination within the research community when it comes to
simulating approximate convolutional neural networks (CNNs) for image recognition [68,
70]. However, in recent years, PyTorch has emerged as the standard for both DNN
training and inference. To the best of our knowledge, no prior work has demonstrated
support for approximate DNN emulation within the PyTorch framework. Furthermore,
most previous studies have primarily concentrated on 8-bit quantized CNNs exclusively
for image recognition simulations. In contrast, AdaPT offers a broader spectrum of
support, accommodating various bitwidths (e.g., 4-bit, 8-bit, 12-bit, and so on) for diverse
types of DNNs and applications. This includes CNNs for image recognition, LSTMs for
text classification, and VAEs and GANs for image reconstruction, with built-in support
for approximation-aware retraining. Several pre-RTL simulation frameworks have been
developed for approximate DNNSs, including AXDNN [140] and TypeCNN [141].



110 = 4.2 AdaPT: Operation and Optimization Techniques

TypeCNN's evaluation focused on two Neural Networks (NNs) based on the Lenet
architecture, utilizing a custom C++ framework without CPU optimizations. AXDNN, on
the other hand, combines precision-scaling and pruning techniques with the simulation of
approximate hardware, resulting in approximately a 20-fold simulation speedup compared
to default RTL simulation, primarily for power analysis purposes. Other frameworks like
Ristretto [142] can assess various bitwidth representations but lack support for
approximate arithmetic. In contrast, ALWANN [68] and TFApprox [70] implemented
different variations of ResNets using approximate units with 8-bit weights. Notably,
ALWANN reported extended simulation times (approximately 1 hour for ResNet50).
Meanwhile, TFApprox, along with ProxSiM [143] performed emulation and evaluation
on a GPU, achieving low inference times on the Tensorflow framework, although limited
to 8-bit inference. ProxSiM also featured re-training capabilities for 8-bit multipliers but
did not present results for popular DNNs.

Quantization optimization — To effectively simulate approximate compute units, it is
essential to implement an efficient quantization scheme that minimizes the impact of
errors. Previous research has predominantly concentrated on 8-bit quantization [70, 143].
However, in AdaPT, we have integrated a versatile bitwidth quantizer based on Nvidia's
TensorRT toolkit [144], which offers support for both lower and higher precision levels.
This flexibility is particularly valuable when simulating higher precision ACUs for
various DNNs that exhibit limited error tolerance, such as compact CNNs [145, 146]. We
opted for this approach due to its open-source nature and its state-of-the-art capabilities.
The development of a new quantization method falls outside the scope of this paper. Our
quantizer is built for mapping real numbers to integers and can be applied to both weights
and activations, typically found within Convolutional or Linear layers. This mapping
involves an affine relationship, which means that the real value is calculated as the
product of a scale factor (A) and the quantized value, with an offset (B), which is often
set to zero, expressed by the equation: real_value = A x quantized_value + B.

To determine the optimal quantization parameters for the scale values, we employed the
calibrator class from TensorRT to collect data statistics. In our quantization modules, we
implemented the histogram calibrator, specifically targeting the 99.9th percentile, as it
demonstrated the best overall performance. However, it's worth noting that other
methods, such as Mean Squared Error (MSE) or entropy, can be used seamlessly. Instead
of simply identifying the maximum absolute value in our dataset, our calibrator learns the
offline calib_max, which represents the absolute maximum input value that can be
represented in the quantized space at the 99.9th percentile. Weight ranges are determined
on a per-channel basis, while activation ranges are calculated per tensor, a strategy
supported by previous research, and known for its efficacy [146]. By processing just a
single batch of images, our learnable calib_max can be optimally configured for most
DNNs, resulting in approximately 0.1% error for the majority of 8-bit CNNs. Optionally,
following post-training quantization, we can enable Quantization Aware Training (QAT)
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by continuing to train the calibrated model based on the Straight Through Estimator
(STE) derivative approximation. The process is visually depicted in Figure 4-1. AdaPT
mitigates the impact of approximation during training by incorporating fake quantization
modules, which operate with quantized floating-point values to mimic the rounding
effects associated with true integer quantization. This approach effectively computes the
layer gradients. During QAT, the model performs propagation through our ACUs,
typically for 10% of the default training schedule, ensuring that retraining is aware of the
approximation.
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Figure 4-1. Quantization & approximation-aware retraining flow before inference

Approximate units — In AdaPT, users have the flexibility to specify whether each DNN
layer should be considered as accurate or approximate during its definition. It is possible
to designate any desired ACU for each layer (or for all layers), provided that the output of
the multiplier remains deterministic. This section highlights the most commonly
encountered layers that we have re-engineered and adapted for approximation.

1. Convolution Layer: Typically applied in 2D convolution scenarios, commonly
found in CNNs, this layer takes an input tensor X with (N, Ci,, Hin, Wi,), Where N
represents the batch size, C;, is the number of channels, , H;, is the height, and
Wi, is the width. The output is represented by a tensor Y with dimensions (N,
Coutr Hout» Wout)- We transformed the filters into a 2-D matrix and the input
matrix into another matrix, ensuring that the product of these two matrices
computes the same dot product as the original 2D convolution. This
transformation aims to facilitate a more efficient implementation for accelerating
AdaPT's emulation by simplifying the computation through matrix multiplication.
Our convolution layer accommodates various input dimensions, kernel sizes,
padding, striding, and groups, making it capable of simulating a wide range of
DNN configurations.

2. Separable Convolution: In the case of separable convolution, the core idea
involves breaking it down into a two-step computation: depthwise and pointwise
2D convolutions, as expressed in the equations:
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y = COHVZD(Cin' Cin' Hin'Wirl' groups = Cin) (X)

out = Conv2D(Cip, Couts H'in, W'in, groups = 1) (y)
The first equation comprises the depthwise convolution which is equivalent to a
Conv2D with groups equal to C;,channels. Next the output is fed to the pointwise
convolution which is same as Conv2D with 1 x 1 kernel size.

3. Linear Layer: The Linear Layer is commonly used in Multi-Layer Perceptrons
(MLPs), often appearing in the final layers of DNNSs, as well as in models like
GANs and VAEs. Similar to 2D convolution, the equivalent PyTorch layer
performs a matrix multiplication, expressed as y = XAT + b, where the input
matrix is multiplied by the weight matrix and an optional bias vector is added.

4. RNN Layer: Recurrent Neural Network (RNN) layers are typically employed for
tasks involving temporal relationships, such as text classification or speech
recognition. We have incorporated the feedback loop within the recurrent layer to
enable it to retain information over time, following a mathematical approach
equivalent to the vanilla PyTorch RNN layer. It also utilizes our custom Linear
layer, rendering it compatible with approximation. Likewise, for Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) layers, we have included the
'memory cell," which can store information over extended time intervals.

Framework operation — The operation of the AdaPT framework is illustrated in Figure
4-2. Initially, the user configures the desired DNN model, specifying quantization
parameters such as precision and the calibrator to be used. Additionally, the user defines
the approximate module to be utilized from the library, along with the dataset for the
DNN models. It's important to note that for the training dataset, only a representative
subset is required, which typically constitutes around 10% of the original training set,
primarily for calibration purposes. Subsequently, AdaPT identifies the supported layers
within the DNN and retrieves the appropriate layer class from its layer library. For the
approximate multiplier, the corresponding Look-up Table (LUT) is generated from
AdaPT's LUT generator, organized as a cache-line aligned C-array. This design allows
CPU cores to efficiently access data from the same cache segment. Furthermore, an
additional tool is employed to translate a hardware description into a C function. In cases
where larger bitwidths may substantially increase LUT sizes, AdaPT can replace LUT-
based multiplication with function-based multiplication, where the approximate multiplier
is represented in C-code. While this approach can mitigate memory-related challenges
associated with large LUTs (greater than 15 bits), it may introduce overhead in DNN
execution time. Importantly, both approaches provide an equivalent high-level
representation of the ACU, ensuring consistent results during quantization or retraining.
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AdaPT aims to populate the CPU cores' cache with LUTs as much as possible to
minimize cache misses. Finally, just-in-time (JIT) compilation dynamically loads the
layer extension using the Ninja build system. The produced inference and retrain engines
are then linked with the final approximate DNN layers, which replace the corresponding
vanilla PyTorch layers through a graph re-transform tool. This tool analyzes the layers
and recursively substitutes PyTorch layers with their approximate equivalents.
Ultimately, users have the option to fine-tune the model using the provided training
subset to achieve even higher accuracy or proceed with approximate evaluation.
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Figure 4-2. AdaPT framework operation

Acceleration approach — The most demanding computational task within the
implemented layers revolves around matrix multiplications. For instance, the original 2D
convolution is reconfigured into a matrix multiplication. To accommodate approximate
units, we devised a solution by implementing LUT-based multiplications between
individual input and filter values. This approach allows us to compute any approximate
unit without the necessity of directly implementing its corresponding function, except in
cases where the LUT sizes are exceptionally large, as previously mentioned.
Subsequently, the table look-ups are executed in parallel using a hybrid model of parallel
programming, which leverages OpenMP threads and CPU vectorization.
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e Thread Parallelism: In AdaPT, we have developed an efficient batched Conv2D
implementation that seamlessly scales with input size, avoiding memory errors by
leveraging the thread parallelism provided by OpenMP. This approach allows us
to implement loop-based parallelism shared across batches, achieving nearly
linear scaling as the input data size increases. The primary objective of this
approach is to unify the utilization of incremental parallelism through a common
interface, simplifying the application development process.

e Vector Parallelism: The second layer of parallelism is introduced during the
execution of each thread, which pertains to the implementation of parallel table
lookup using Single Instruction Multiple Data (SIMD) instructions. The goal here
is to accelerate the gather operation for the lookup table data, a process involving
data retrieval from disparate memory locations and its consolidation into a
continuous memory space. To facilitate efficient memory access, all values of the
SIMD are organized in contiguous memory, which aligns with the structure of our
AdaPT tensors. The indices, comprising activations and weights, are packed into
vector registers. The AV X2 instruction set is then employed to execute the gather
instruction and vectorize the task, collecting memory locations from the lookup
table into the destination vector register. We have chosen to use AVX2 intrinsics
because of their wide support in Intel CPUs manufactured from 2013 onward and
their compatibility with AMD CPUs. Figure 4-3 illustrates the process of utilizing
vectorized loads in a 2D convolution scenario.
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Figure 4-3. 2D convolution to matrix multiplication
with LUT override
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4.3 TransAxx: Operation and Optimization Techniques

Previously, we have described a framework for emulation of approximate DNNs using
CPUs. Now, we introduce a novel platform that harnesses the power of GPU acceleration
through CUDA cores and the CUDA programming model. This tool named TransAxx
encompasses all the key features of AdaPT, including approximate-aware retraining,
support for arbitrary multipliers, various precision levels, and diverse model architectures.
Notably, it was built with the aim to emulate Vision Transformers (hence the name), a
first in the field of DNN simulation frameworks, but can also be used with various CNN
models as well. Furthermore, it boasts a more streamlined design, enabling the automatic
use of pretrained models without requiring manual intervention in the model's code from
the user’s perspective. Its execution on GPUs results in increased speed enabling to
emulate large Al models if needed without significant execution time while keeping a
very user-friendly interface. Using TransAxx, we were able to analyze the sensitivity of
transformer models on the ImageNet dataset to approximate multiplications and perform
approximate-aware finetuning to regain accuracy as we will show in the experimental
evaluation.

Motivation behind TransAxx — CNNs demonstrate the capability to achieve impressive
accuracy and performance in visual recognition and complex regression algorithms.
Beyond CNNs, recent advancements in deep learning have given rise to Vision
Transformer (ViT) models. These models, based on the self-attention mechanism of
transformers, have achieved state-of-the-art performance in various computer vision
tasks. However, VIiT models are computationally expensive due to their numerous
parameters and the self-attention mechanism, limiting their use on resource-constrained
devices. The application of approximate computing has shown potential in enhancing the
efficiency of deep learning models by reducing computational complexity and memory
requirements [147]. This involves sacrificing a small amount of accuracy for significant
gains in speed and power efficiency through the use of inexact arithmetic components
instead of accurate counterparts [136, 148]. While approximate computing is promising
for improving DNN efficiency, prior research has not explored its application to
transformers. The broad domain of approximate compute units (ACUs) and their non-
trivial impact on DNN accuracy complicates the design of such hardware. Therefore,
there is a need for an approximate emulation framework to address this complexity. As
DNNs become deeper, they become more sensitive to approximation [138], necessitating
approximation-aware retraining to correct errors introduced by approximation [138, 70].
In the case of VIiT models, the distortion of the self-attention map, involving a large
number of operations, may lead to even greater errors with lower precision [149].
Moreover, determining the appropriate approximate multiplier for each DNN layer is
crucial when aiming to maximize power gains under accuracy loss constraints [70]. While
many works have explored automated methods for determining optimal per-layer
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quantization in quantized DNNs [150, 151, 152], few have focused on an automatic
search flow in approximate DNNs [137]. If VIT models are intended for use, especially
on large datasets like ImageNet, the computational cost poses a significant design
challenge.

Related Work — Taking cue from the remarkable achievements of transformer models in
the domain of natural language processing (NLP), scientists have recently utilized
transformer models to address computer vision (CV) challenges. However, just like
CNNs, VIiT models are troubled with heavy computational cost, thus applying
quantization techniques, which is lowering the bit-width of the weights or activations can
often address the memory requirement and computational cost of the model. Despite the
recent progress made in developing quantized ViT models, approximate ViT models and
their behavior remains an open issue. Also, automated mixed precision techniques for
quantized CNNs have been already investigated by the community to strike a balance
between the computational efficiency and the numerical stability but there is no research
for approximate ViT models.

Li et al. proposed Q-ViT [149], a fully differentiable quantization technique for ViT
models that focuses on a head-wise bit-width and switchable scale. Ding et al. [153]
proposed APQ-ViT which introduced a unified bottom-elimination blockwise calibration
scheme to surpasses the typical post-training quantization which causes significant
performance drops. Last, Liu et al. [42] presented an effective post-training quantization
algorithm that finds the optimal low-bit quantization intervals for weights and inputs and
introduced a ranking loss to keep the relative order of the attention layer values.

Approximate computing takes a different approach, on top of quantization, by
intentionally introducing errors into computations in exchange for reduced computational
cost. Several previous works have presented custom DNN frameworks to simulate the
accuracy of approximate CNNs. For example, TFapprox [70] or ProxSim [143], are
frameworks built on top of TensorFlow to emulate approximate circuits in CNNs using
GPU accelerators. Mrazek et al. proposed ALWANN [68], a methodology to apply layer-
wise approximation on 8bit ACUs with finetuning capabilities. The experimental results
of these works, however, are limited mainly to ResNet CNN models for small datasets
like Cifar-10. Other frameworks, such as AdaPT [147] and ApproxTrain [154]
experimented on a wide range of DNNs but did not propose a design space exploration
strategy while posing difficulties for the users to test their custom models.

Support for the transformer architecture — The transformer layer stands as the
foundational element within the vision transformer architecture. Its primary role involves
taking a sequence of image patches as input, leveraging the self-attention mechanism to
establish long-range relationships, and generating a new feature sequence. Additionally,
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there are supplementary blocks positioned at the start or end of a ViT model, such as
patch embedding or a classification head. In patch embedding, the input image undergoes
division into fixed-size, non-overlapping patches, with each patch linearly embedded into
a flat vector. These patch embeddings subsequently serve as input tokens for the
transformer model. Toward the conclusion of the VIiT model, a classification head is
typically present, tasked with making predictions based on the learned features. Our
approach focuses on applying approximation exclusively to the core transformer blocks
that involve the self-attention mechanism, which significantly dominate the execution
time (usually exceeding 98%). These blocks are frequently expanded into multiple
transformer encoder blocks, each primarily comprising normalization, multi-head self-
attention, and a feed-forward layer. Towards incorporating approximate arithmetic, we
concentrate on the latter two, which entail the majority of mathematical operations.

The attention mechanism can be precisely defined through the following equation, where
the softmax function is employed to compute weights determining the significance of
each element in the input. In this context, Q represents the query vector, K is the key

vector, and V is the value vector:
T

Jax

In summary, it computes the correlation between the Query vector and the Key vector,
followed by multiplying the corresponding Value for each Key. The division by the
square root of d;, (dimensionality of the KK vector) is carried out to ensure an appropriate
variance of attention values.

Attention(Q,K,V) = softmax( 14

e Multi-head Attention: The multi-head attention technique involves employing
multiple sets of (Q, K, V) triplets instead of just a single set. This approach
addresses scenarios where an element in a sequence relies on dependencies with
more than one other element. The utilization of multiple weights associated with
the same element facilitates a more comprehensive weighting of the sequence.
The multi-head attention mechanism is explained further below. Each head has its
own set of learned parameters and performs the scaled dot-product attention
operation separately.

MultiHead(Q,K,V) = Concat(head,, ..., head,)W?°
where head; = Attention(QWiQ,KWiK, vw).

e Feed-Forward Network: The Feed-Forward Network (FFN) is a two-layer
classification network featuring a GELU (Gaussian Error Linear Unit) activation
layer. Its purpose is to facilitate non-linear interactions among patches or tokens in
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the input feature map, enabling the model to grasp intricate patterns and
relationships. Given the substantial computational requirements of the FFN layer,
there is often a need to apply approximate computing methods to enhance
efficiency. The formulation of the FFN layer is as follows:

FFN (X) = GeLU (XW, + by ) W, + b,

where W, € R%*%, b, € R% and W, € R¥*4,b, € R
df is the inner hidden size of the Feed — Forward Network.

Quantization and fine-tuning strategies — To simulate approximate computing units
effectively, it is crucial to implement an efficient quantization scheme that minimizes the
impact of quantization errors. It's worth noting that the majority of approximate
multipliers, especially those designed for Deep Neural Networks (DNNSs), support low
bit-width integer (fixed-point) arithmetic [136]. Previous efforts in approximate CNN
simulators have predominantly focused on standard 8-bit quantization [70, 143].
However, in TransAxx, we employ a versatile bitwidth quantizer, similar to AdaPT’s
quantizer. As our paper does not aim to propose a new quantization method, we utilized a
state-of-the-art open-source quantizer based on Nvidia's TensorRT toolkit, offering
flexibility for both lower and higher precisions. This adaptability becomes crucial when
simulating higher precision Arithmetic Computing Units (ACUs) for deep neural
networks that may lack error resilience [145, 146].

The mapping between real and quantized values must be affine, following the equation
Real_value = A X Quantized_value + B,, where A represents the scale and B is the zero
point (often set to zero). To determine suitable quantization parameters for the scale
values, we employed a calibration technique to gather data statistics. Our quantization
modules were implemented with the histogram calibrator, targeting a 99.9% percentile, as
it consistently delivered optimal performance. However, alternative methods like Mean
Squared Error (MSE) or entropy can be seamlessly applied in our framework if desired.
Moreover, optionally after post-training quantization, we can perform Quantization
Aware Training (QAT) by continuing to train the calibrated model based on the Straight
Through Estimator (STE) derivative approximation. Notably, in TransAxx, QAT is
approximation-aware as it simulates the approximate noise of ACUs during the fine-
tuning stage, eventually demonstrating increased robustness to the applied multipliers.
During approximate-aware retraining, TransAxx propagates computations through our
ACUs (typically for 2.5% of the default training schedule), effectively computing layer
gradients using STE, and ultimately enhancing the final accuracy of the approximate ViT
model at the end.
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Toy experiment — A toy experiment was conducted to test the effectiveness of
backpropagation on a simple attention layer that used an 8-bit approximate multiplier
instead of the default FP32 arithmetic of PyTorch. The core attention mechanism works
by focusing on specific parts of the input sequence based on their relevance to the current
output. The goal of this experiment is to see if a simple layer with the core attention
mechanism can backpropagate correctly and ensure, thus, that its functionality is not
compromised by the approximate hardware emulation.

To perform the experiment, the attention layer was modified to use a mul8s_1L2H
approximate multiplier from the Evoapprox lib [137] for the forward and backward
passes. The modified layer was then trained using a standard Stochastic Gradient Descent
(SGD) algorithm for 500 iterations on data taken from V' (0,1).The results presented in
Figure 4-4 showed that backpropagation on our framework works as expected minimizing
the MSE while the target values in the layer exhibit similarity with the accurate layer.
Mathematically, the output data Y converges in probability to the target data X because as
the number of samples (n) approaches infinity, the probability that the difference between
Y,, and X being greater than some small value epsilon
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Figure 4-4. Preliminary testing with an approximate attention layer. Left: MSE loss per training
iteration. Right: Histograms of target data (using FP32) and output data (using approx.
multiplier) distributions from the layer’s inference.

Framework operation — TransAxx framework, developed for the rapid emulation of
cross-layer DNN approximation, is accessible as a PyTorch plugin. Users have the
flexibility to activate or deactivate this plugin as needed, allowing the utilization of the
PyTorch default flow when required. TransAxx seamlessly supports a broad spectrum of
layer and model architectures without necessitating user intervention. In this work, our
focus centers on ViT models, as there has been no prior exploration of approximations for
such models. Additionally, we introduce two key techniques to enhance accuracy: post-
training quantization with advanced calibration and approximate-aware retraining.
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Furthermore, TransAxx accommodates mixed approximation, involving different
multipliers between layers. One of the primary challenges associated with incorporating
approximate components in DNNs is the imperative to emulate approximate operations
swiftly. This is particularly crucial as existing DNN GPU-based accelerators do not
inherently support such computations. To address this challenge, we implement a
universal GPU accelerator designed to operate across all Nvidia GPU architectures,
thereby accelerating the emulation of approximate ViT models.

Designing the framework — Our framework, shown in Figure 4-5, offers an orthogonal
approach to simulating approximate ViT models. The primary functionalities are outlined
below:

- Extension of default PyTorch modules: TransAxx aims to handle computations within
approximate VIiT models that involve non-differentiable operations or dependencies on
non-PyTorch libraries. To achieve this, it extends the default PyTorch modules, allowing
our custom functions to seamlessly integrate with the existing computational graph.
During the model compilation, our framework automatically swaps the vanilla PyTorch
layers with the custom layers, converting the default model to the desired approximate
equivalent. These layers are instantiated on-the-fly using just-in-time (JIT) compilation,
ensuring efficient integration with the model's computational graph. JIT also makes the
model flexible and easy to modify during runtime. This method supports incremental
compilation, which means that only the parts of the code that have changed are
recompiled. This significantly reduces the overhead of repeatedly compiling and loading
TransAxx's layer extensions during experimentation.

- Layer initialization and kernel dispatching: Regular Tensor objects within PyTorch are
leveraged to handle the initialization of weights or biases for the custom kernels. This
ensures consistency with PyTorch's initialization mechanisms, maintaining compatibility
and ease of use within the framework. Then the weights/activations are quantized based
on the layer's multiplier bitwidth and calibrated using the statistics of the layer's
activations. Last, our framework utilizes C++ macros to dispatch the appropriate GPU
kernel per layer.

- Generation of Look-up Tables (LUTS): For each approximate multiplier, a
corresponding LUT is generated from its high-level description (e.g., in C, Matlab, or
behavioral HDL). We have an integrated tool within TransAxx that can generate this LUT
for any arbitrary approximate multiplier, whose behavior is described in C or HDL. This
is facilitated by running all possible hardware multiplications xxy (e.g., using an RTL
simulation) for the given approximate multiplier and then storing the results in a LUT.
Hence, LUT[x][y] gives the approximate product of x and y. During the forward pass,
TransAxx uses these LUTs and substitutes the default (exact) multiplication operator with
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the approximate product (i.e., loading the value LUTI[X][y]). The LUT was a design
choice to help reduce the emulation time of TransAxx. Initially, LUTs are stored in the
global memory as it has a large size and it's the most appropriate option for the random
access patterns of the LUTs. However, next, we show how we improved these memory
accesses.

- GPU kernel optimization: It is crucial to carefully consider memory transfers, as
operations involving LUTs can quickly become memory-bound. Notably, the cache
behavior of the GPU is influenced by both hardware specifications and the specific
memory access patterns of the ViT model. However, given that LUT data is read-only,
we can guide the Nvidia compiler to maximize memory access throughput (i.e., by using
CUDA intrinsics and compiler flags). Using this approach, the LUT array will be
typically cached through the L1 GPU cache, which offers low latency and can be shared
among all threads within a CUDA core. This facilitates efficient caching and access to
LUT data across multiple threads.

- Handling large bitwidths: For scenarios where LUTs may grow substantially in size,
particularly with large bitwidths (> 12 bits), our framework provides a flexible solution.
TransAxx can dynamically substitute LUT-based multiplication with functional-based
multiplication (in which the approximate multiplier is alternatively described in C-code).
This process can introduce computational overhead in the DNN execution time but
ensures that our framework remains efficient and scalable. It's worth mentioning that both
approaches provide a 1-1 representation of the multiplier at high-level thus the results
would be the same in inference or retraining. Also, it is important to note that
transformers work well with low precision values [149], and higher bit-width, which
might hinder TransAxx emulation time performance, is often not required.
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Figure 4-5. TransAxx framework operation
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4.4 Automated Design Space Exploration

Automated Design Space Exploration plays a pivotal role in the field of optimizing Deep
Neural Networks (DNNSs), particularly when addressing the delicate balance between
model accuracy and computational efficiency. This field becomes especially crucial in
scenarios where deploying large and intricate models may be impractical due to resource
constraints or real-time requirements. In the context of optimal approximation within
DNNs, researchers aim to systematically explore the vast design space, encompassing
hyperparameters, architectural choices, and optimization techniques. The objective is to
discover configurations that strike an optimal trade-off, leveraging techniques like
quantization, pruning, knowledge distillation, and algorithmic approximations. In our
work, we focused on quantization/approximation optimization, that is applying specific
approximate multipliers in each DNN layer in order to achieve an optimal balance
between accuracy and power consumption. Specifically the method is applied for ViT
models which pose a challenge for their complexity. The synthesis of approximate
accelerators can be described as a multi-objective optimization problem. Let A denote the
synthesized approximate accelerator. The search process can be modeled as an
optimization problem below:

A = argxCost (X)

where X is a vector representing the design parameters and characteristics of the
accelerator, and Cost(X) is a cost function that captures the trade-offs between factors
such as accuracy, resource utilization, and energy efficiency.

4.4.1 Literature Review

For automatic exploration of the design space for accelerators usually machine learning
techniques are used. In the context of hardware design, the design space refers to the set
of possible configurations and parameters that can be chosen to meet specific
performance or efficiency criteria. Accelerators, in this case, typically refer to specialized
hardware components designed to accelerate specific computational tasks, often used in
the context of deep learning or other compute-intensive applications. The automatic
design space exploration for approximate VIiT models in our case is accomplished by
simulating the approximate multipliers used in the model. It’s a systematic approach
towards finding optimal configurations for neural network models by considering
different levels of precision/approximation in arithmetic operations, particularly in the
multiplication operations performed within the network. With the use of our proposed
frameworks, AdaPT and TransAxx, instead of implementing each potential multiplier
configuration in hardware and measuring its impact through physical synthesis, the
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methodology becomes seamless by employing their simulation capabilities. Due to the
extensive range of approximate implementations within libraries such as EvoAapprox
[137], users gain access to a diverse set of implementation options. This diversity allows
them to effectively navigate the tradeoff between Quality of Results (QoR) and energy
consumption (or other hardware parameters) at the accelerator level. However, even for
accelerators involving only a few operations, determining the optimal combination of
approximate compute units (ACUs) becomes an intractable task. There are several
previous works that addressed the challenge of identifying the most suitable replacements
for arithmetic operations within a target accelerator, drawing from the available
approximate circuits in such libraries. Given that this is a multi-objective optimization
problem, there isn't a singular optimal solution; rather, multiple solutions typically exist.
The focus is on pinpointing approximate circuits within the Pareto frontier, which
encompasses the non-dominated solutions.

There have been many works, especially in the recent years, that involve the automation
of the end-to-end process of optimizing DNNs. Automated Machine Learning (AutoML)
is a field that includes a wvariety of tasks, and optimizing neural network
quantization/approximation is a part of it in which we focus on this work. Algorithms and
methods such as Neural Architecture Search (NAS) or genetic algorithms have been
employed to automatically discover the optimal architecture or configurations for neural
networks. This includes exploring different quantization and approximation schemes to
find the right balance between accuracy and computational efficiency. Also,
Reinforcement Learning (RL) - based approaches can also guide the search process,
where the model learns from its past experiences to make decisions on the quantization
and approximation strategies for DNN layers.

For example, mixed-precision quantization shows promise in providing an extra boost in
speed and reducing model size by taking advantage of model redundancy and assigning
lower bit-width to less sensitive or less useful layers in the model. However, the challenge
lies in accurately measuring each layer's sensitivity score and mapping it to the
appropriate bit-width. A lot of techniques have been proposed such as HAWQV3 [152], a
hardware-aware mixed-precision quantization formulation that uses Integer Linear
Programming (ILP), or deep reinforcement learning (DRL) based quantization methods
such as AutoQ [151] and HAQ [150]. While training RL agents for common hardware
might be feasible, training such algorithms for simulated approximate DNNSs, especially
ViTs, would immensely exceed the computational and timing constraints. Approximate
DNN frameworks run much slower than the default DL frameworks (i.e., [70, 68]) due to
the lack of adequate support for approximate arithmetic. Additionally, the learned policies
of RL agents to find optimal approximation per layer would degrade when evaluated on
new ACUs or models as each ACU may behave very differently on layers with different
data distributions.
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4.4.2 Overview of Monte Carlo Tree Search (MCTS) Algorithm

This paragraph will present a comprehensive background of Monte Carlo Tree Search
(MCTS) algorithm. MCTS is a proven intelligent stochastic search algorithm particularly
effective in handling problems characterized by large branching factors, such as in the
domain of games. Grounded in the search for optimal hardware configurations that
balance accuracy and performance, our research navigates the intricate field of
approximate accelerator design, leveraging the heuristic search algorithm of MCTS to
efficiently traverse the vast space of hardware solutions. Before we proceed with our
proposed algorithm implementation, in this paragraph we will analyze the fundamentals
of the classic MCTS algorithm. Our novel method for this problem will enable to deal
with the large Design Space Exploration, which unveils a broad range of potential
approximations through lightweight random simulations as we will discuss in the
following paragraphs.

Principle of operation — Monte Carlo Tree Search centers its attention on evaluating the
most promising moves by systematically expanding the search tree through random
sampling of the search space. In the context of game applications, MCTS relies on
numerous playouts, commonly referred to as roll-outs. In each playout, the game unfolds
to its conclusion by randomly selecting moves. The outcome of each playout serves as a
basis for weighting the nodes within the game tree, favoring superior nodes for future
playouts. A fundamental approach to employing playouts involves applying an identical
number of them after each legal move by the current player. The selection of the move
that led to the most victories in these playouts characterizes this method, known as Pure
Monte Carlo Game Search. The effectiveness of this strategy typically improves over
time as more playouts are assigned to moves that have demonstrated success for the
current player. The iterative process of Monte Carlo tree search encompasses four key
steps:

1. Selection: Commencing from the root R, successive child nodes are chosen until a leaf
node L is reached. The root represents the current game state, and a leaf node is any
node with a potential child from which no simulation (playout) has been initiated.

2. Expansion: Unless L concludes the game definitively (e.g., win/loss/draw), one or
more child nodes are created, and node C is chosen from them. Child nodes
encompass any valid moves from the game position defined by L.

3. Simulation: A single random playout is conducted from node C, also referred to as a
playout or rollout. This process can be as straightforward as selecting uniformly
random moves until the game reaches a resolution (e.g., victory, defeat, or draw), as
observed in chess.
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4. Backpropagation: The result of the playout is utilized to update information in the
nodes along the path from C to R. This step, often termed backpropagation, ensures
that the knowledge gained from the simulated playout influences the evaluation of
subsequent moves in the search tree.

The above steps can be visualized as in the following figure.

Repeated X times

Selection }—>[ Expansion }—)( Simulation }—a{ Backpropagation

Figure 4-6. Steps of Monte Carlo tree search.

Exploration and exploitation — The primary challenge in selecting child nodes lies in
achieving a delicate balance between exploiting deep variants following moves with a
high average win rate and exploring moves with limited simulations. The initial
formulation addressing this balance, known as UCT (Upper Confidence Bound 1 applied
to trees), was pioneered by Levente Kocsis and Csaba Szepesvari. UCT builds upon the
UCB1 formula developed by Auer, Cesa-Bianchi, and Fischer, incorporating the probably
convergent Adaptive Multi-stage Sampling (AMS) algorithm initially employed in multi-
stage decision-making models, particularly Markov Decision Processes, by Chang, Fu,
Hu, and Marcus. Kocsis and Szepesvari advocate the selection of moves within each node
of the game tree based on the expression:

w; In N;

n; n;

In this formula:
e w; stands for the number of wins for the node considered after the i-th move.
e n;stands for the number of simulations for the node considered after the i-th move.
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e N; stands for the total number of simulations after the i-th move run by the parent
node of the one considered.
e c is the exploration parameter—theoretically equal to V2; in practice usually
chosen empirically.
The first component of the formula above corresponds to exploitation; it is high for
moves with high average win ratio. The second component corresponds to exploration; it
is high for moves with few simulations. We will take advantage of these characteristics in
our MCTS-based design space search as we will discuss next.

Below, we summarize the main advantages and disadvantages of using MCTS:

MCTS advantages :

* Implementation of MCTS proves straightforward, rendering it user-friendly.

« As a heuristic approach, Monte Carlo Tree Search (MCTS) demonstrates its
efficacy in the absence of specific domain knowledge, relying solely on the
understanding of rules and end conditions. Through the exploration of random
playouts, MCTS autonomously identifies optimal moves and learns from them.

« MCTS allows for the preservation of its state at any intermediate point,
facilitating future utilization as needed.

 The versatility of MCTS extends to supporting asymmetric expansion of the
search tree, adapting dynamically to the operational circumstances it encounters

 The rapid growth of the tree structure after a few iterations demands a
substantial amount of memory, posing a resource challenge.

« Monte Carlo Tree Search exhibits a reliability issue in certain circumstances,
particularly in turn-based games, where a single branch or path might lead to a
disadvantageous outcome against the opponent. This challenge arises from the
vast number of possible combinations, with some nodes not being visited
frequently enough to discern their long-term results.

 The effectiveness of the MCTS algorithm is often contingent on a large

number of iterations, introducing a speed issue as it requires significant
computational effort to determine the most efficient path.
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4.4.3 MCTS-Based Automated Search for Optimal Approximation

In this part of our work, we will propose the use of Monte Carlo Tree Search for
approximate accelerator design space exploration. However, recognizing the inherent
dissimilarities between the two domains, that is game theory and approximate computing,
substantial modifications were essential to seamlessly tailor MCTS for approximate
accelerator simulation. To the best of our knowledge, this is the first work that adapts
MCTS for approximate DNN simulation, specifically for Vision Transformer models.

Design Space Size — The exploration-oriented design space exploration process heavily
relies on an extensive search to discover and validate potential solutions. However, the
overall size of the search space, indicating the total number of conceivable solutions,
becomes exceedingly vast and expands exponentially, particularly for medium-sized
DNNs as the number of candidates and approximate transformations increases. Given that
many existing MCTS-related works depict the search space as a tree, in our case tree
nodes signify distinct approximate DNN variants generated during the DSE. Assuming
the total number of combinations (or approximate variants) achievable for an DNN
accelerator, denoted as N, with the number of candidates as C (which is the number of
model layers in our case) and the total possible approximations applicable to a candidate
represented as A, the growth of N follows an arithmetic progression, expressed as A0 *
Al * A2 * ... * AC as the tree deepens. For example, for a DNN with 10 layers, the
number of possible hardware configurations, that is applying in each layer an
approximate multiplier from a set of 4 multipliers/ACUs equals 41° = 1048576.
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Figure 4-7. Visualization of the tree expansion in DNN layers when 4 ACUs are used.
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As the number of candidates, along with their associated transformations, increases, the
assessment of all potential combinations or nodes within the search tree becomes
unfeasible due to the exponential expansion of the tree's size. The previous figure
illustrates the total number of combinations (or nodes within a tree) in relation to the
escalating number of candidates (assuming only four possible transformations for each
candidate). In practical terms, considering the average time taken for an approximate
DNN inference simulation (considering medium-size CNNs using GPU acceleration) —
approximately 3 minutes — it translates to a simulation time of 3min*1048576 ~ 6 years.
In some applications commonly found in AutoML, where the number of candidates and
approximate transformations tends to be even higher than the aforementioned example,
thoroughly exploring such an extensive search space is impractical within a reasonable
timeframe. To efficiently explore the approximate design space we will use a hardware-
driven version of Monte Carlo tree search to narrow down the architecture space for the
approximate ViT models, maximizing accuracy while still meeting our given power
constraints. To further reduce feedback time, we also developed an accuracy predictor for
the inference and reach a near Pareto-optimal curve of power and accuracy.

Rationale for employing MCTS — Monte Carlo Tree Search is an Al search technique,
often used in board games, that uses probabilistic and heuristic-driven algorithms to
combine the classic implementation of tree search with principles from machine learning
and particularly reinforcement learning. There has been only a few previous works that
utilized MCTS on the AutoML domain, however it is a different domain than ours.
Specifically some previous works have investigated the use of MCTS-based methods for
hyperparameter tuning regarding CNNs [155, 156]. Also, regarding the design of
electronic circuits there are also a few number of works but they focus on solving the
routing problem [157, 158, 159]. Now, in our research area regarding approximate
simulation frameworks, MCTS has not been investigated for finding optimal approximate
configurations in DNNs, specifically ViTs.

MCTS has the ability to dynamically balance exploration and exploitation, making it less
susceptible to getting stuck in local optima compared with other methods such as greedy
algorithms which are often used for quantization precision search [160, 161]. Specifically,
the case of using inexact arithmetic can introduce additional sources of error that can
make the optimization problem more complex to solve as it requires a greater degree of
exploration than the greedy methods. In addition to these methods, RL agents and genetic
algorithms have also been used for finding optimal hardware configurations in CNNs
[150], though applying them for our case would be unrealistic. The reason over not
training an RL agent is twofold. Training and converging an agent would require a lot of
data which would greatly exceed the computational and timing constraints by simulating
a vast number of ViT models. Also, the effectiveness of the learned policies of the agent
for determining the optimal approximation per layer may deteriorate when assessed on
new ACUs or models, given that different ACUs exhibit significant variability in their
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behavior across layers with distinct data distributions. Besides RL approaches, comparing
with the use of genetic algorithms, MCTS has the potential to find a good solution faster
and more reliably by balancing exploitation and exploration, which is crucial for this
computationally expensive design space. Also, the effort required to optimize the
parameters of the MCTS algorithm (e.g. exploration coefficient) is lower than the effort
required for the genetic algorithms [162]. Thus it would be problematic to apply genetic
algorithms towards this complex problem which inhibits high variability across different
ACUs.

Operation of MCTS-based search — Exposing the optimal configuration of approximate
multipliers between each layer of a DNN model in order to find the best trade-off
between performance and power is liable to cause a significant computational overhead.
The design space becomes large as mentioned earlier and measuring the accuracy of
every configuration is not feasible even when using our GPU-based acceleration,
particularly in our case, where the ViT simulation increases further the execution time. In
order to systematically navigate the space of approximate design solutions, we employ a
Monte Carlo tree search (MCTYS) that is specifically tailored to be hardware-driven. This
approach helps accelerate the exploration of architectural configurations for approximate
Vision Transformer (ViT) models, striking a balance between maximizing accuracy and
adhering to predefined power constraints. Additionally, to expedite the feedback loop, we
have devised an accuracy predictor for estimating inference accuracy. As a result, our
methodology achieves a nearly Pareto-optimal curve, effectively balancing power
consumption and accuracy.

In MCTS, nodes are the building blocks of the search tree. The high level description of
our approach (also shown as pseudocode in Algorithm 1) is as follows:
1. Create a root node with an initial state of the model.
2. Traverse the tree selecting the node with the best Upper Confidence Bound (UCB)
value according to UCB equation until a leaf node is reached.
3. If the leaf node is not terminal, expand it by creating child nodes for all possible
actions from that state.
4. Simulate a rollout from the selected child node based on the input policy P until a
terminal state is reached. Here, we take actions by choosing a potential ACU for
the layer 1; of the ViT model. We followed a head-wise approach similar to [149],
making decisions for individual heads within the multi-head attention layers of the
VIiT. The terminal state is defined as the point when all layers 1; of the L layers in
the model have been assigned an ACU A;. This can be expressed as
Model(A;)L ,, indicating the model's configuration at the terminal state. Then, we
compute the reward of the current approximate configuration of this rollout.
5. Backpropagate the reward obtained from the rollout up to root and update all
UCB values of visited nodes.
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UCB equation: Si=x;+c¢ 111%

where S; the value of node i, x; the empirical mean of node i, c the exploration constant,
N; the total number of simulations up to i and n; the number of visits of the node.

Algorithm 1 Pseudocode for our hw-driven MCTS

Input: 1) Model M, 2) Ground truth batch By, 3) Selected ACUs A,
4) Exploration constant ¢, 5) Rollout policy P, 6) No. of Simulations N
Output: 1) Optimal Approx. Configs Cpyt

1: rootNode <— Node(M)

2: fori+ 1to N do

3: node < rootN ode|

4 while not node.isTerminal() do

5 if node.isFullyExzpanded() then
6: node < node.get BestChild(c)
7 else

8: node < expand(node)

9: break

10: end if

11: end while

12: state < node.state

13: while not state.isTerminal() do

14: a +— chooseAction(state, P, A)

15: state — state.takeAction(a),a € A

16: end while
17: Y; ¢+ AzxzConfig(state)

18: accuracy;, power; < evaluate(M,Y;, By)
19: reward <— accuracy; — A X power;

20: backprop(node, reward)

21: end for

22: Cout + pareto(accuracy;, power;,Y;), Vi € [1, N]

The cycle of selection, expansion, simulation and backpropagation continues until it
reaches the user-defined time limits. Every terminal state is expressed as S =
(A1, 4,,...,A;) and all the environment-specific information that is relevant for the
decision-making process has been included, specifically the power consumption of the
current configuration and the output from the accuracy predictor. Also, the exploration-
exploitation ratio can be tuned using c¢ variable from the UCB formula. The accuracy
from the predictor is computed in each rollout of the MCTS tree as evaluating the real
accuracy on the whole dataset (ImageNet in our case) would be impractical. Root Mean
Square Error (RMSE) was used as a metric to reflect the magnitude of the error of the
target models. The output was compared with the ground truth using the square root of
the typical MSE formula: Y, (x; — y;)? for 128 input samples which was proven to
suffice the majority of our scenarios. In general, determining where to allocate the right
multiplier is not straightforward. The aim of MCTS is to explore alternative paths which
might be perceived as sub-optimal so that the system can avoid getting stuck in local
optima. Figure 4-8 represents the normalized true and predicted accuracy (red and blue
bars respectively) after applying the mul8s_1L2H ACU in the first 5 layers individually
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for every target ViT model of our study. Through these ablation studies we show our
primary objective, which is not to achieve precise predictions of the accuracy, but rather
to produce estimations that capture the general trend of the actual accuracy. Also, upon
observation of the figure, it is evident that each layer block has a different sensitivity
towards the perturbation of the final accuracy. This sensitivity list is beneficial for
producing a better policy during the rollout phase of MCTS as we discuss next.
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Figure 4-8. Comparison of actual (red) and predicted (blue) accuracy after applying approximation
to each layer individually (from layer 1 to 5) across different ViT models.

Defining a better policy — Rollout policy is usually a simple heuristic to estimate the
reward of a given state by randomly choosing actions until the terminal state is reached
[163]. It is often implemented as a random policy, where actions are selected uniformly at
random without any particular strategy but with the aim to explore a wider range of states.
Using domain-specific knowledge of the sensitivity of each layer to approximation, we
implemented a more sophisticated policy. Let S = (sj4,5j2,..,5;,) be the layer
sensitivity list of an ACU A4;. s;; is the normalized accuracy of the model when ACU 4;
with j € [1, k] is applied only on layer i. Similarly, we can represent the total returned
power of the approximate model when A4; is applied on layer i as p; ;. Conclusively, we
can now express the probability of taking a specific action in the rollout policy, that is to
select an A; out of k available ACUs for layer i as:

e (5ji=AXpji)

Zk o (52,i=AXD3)
z=1

P(4)); =
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We incorporated expert knowledge to our problem by producing a better-informed rollout
than the default heuristic. We took feedback from each layer but also incorporated
randomness as well. This approach reflects optimism in the face of uncertainty which as a
mathematical concept has underpinned many decision-making algorithms [164, 165].

4.5 Experimental Evaluation

In this section we present the evaluation of AdaPT and TransAxx frameworks regarding
several DNN networks with their respective quantization calibration, approximation-
aware training and simulation time. Also, the specifications regarding each model's
parameters, number of MAC operations (OPs) and dataset used will be shown. The
experiments were conducted on Intel Xeon Gold 6138 CPU at 2.00GHz and 64GB RAM
for AdaPT CPU experiments while for TransAxx experiments the same system was used
along with an Nvidia Tesla V100 GPU. Furthermore, we will show the effectiveness of
our MCTS algorithm for efficiently searching the space of approximate DNN designs.

4.5.1 Experiments with AdaPT Framework

First, each target model (Table 4-1) undergoes assessment based on five metrics:
accuracy in FP32, quantized (with and without calibration), approximate, and models
subjected to approximate-aware re-training. Post-quantization calibration involves the
utilization of two batches of images, each set at 128, for histogram collection using a
99.9% percentile method. For the retraining of the DNNs we employed Stochastic
Gradient Descent (SGD) with a learning rate of le-4 and a batch size of 128, utilizing
10% of the corresponding training datasets as retrain subset. We showcase five DNNs
across various tasks, including image recognition (ResNet50, VGG19, SqueezeNet), text
classification (LSTM-IMDB), and image reconstruction (VAE-MNIST).

DNN Type Dataset Params OPs

ResNet50 CNN CIFAR10 23.52M 0.33G
DenseNet121 CNN CIFAR10 6.96M 0.23G
VGG19 CNN CIFAR10 38.86M 0.42G
Fashion-GAN GAN Fashion MNIST | 0.28M 0.29M
VAE-MNIST VAE MNIST 0.65M 0.66M
LSTM-IMDB LSTM IMDB 0.58M 0.55G
Inceptionv3 CNN ImageNet 27.16M 2.85G
SqueezeNet CNN ImageNet 1.24M 0.36G
ShuffleNet CNN ImageNet 2.28M 0.15G

Table 4-1. Specifications for each DNN used in AdaPT’s experiments
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For retraining demonstration purposes, two approximate multipliers, implemented as
Look-Up Tables (LUTS), are used with distinct Mean Relative Error (MRE) and Mean
Absolute Error (MAE) values from the EvoApprox library [137]. One has 8-bit precision
and low power consumption but higher MRE, while the other has 12-bit precision with
lower MRE but higher power consumption. The top-1 accuracy metric is generally
employed, except for ImageNet models, which use top-5. The results presented in Table
Table 4-2 indicate that post-training quantization achieves low accuracy error compared
to the original FP32 models (approximately 0.1%), primarily due to calibration.
Calibration proves to be crucial for modern neural networks, especially larger ones, as
emphasized in [166]. Through our approximate-aware retraining, DNNs can be adapted to
the approximate backward engine, resulting in increased accuracy for the target DNN.

mul8s_1L2H MAE: 0.081 %, MRE: 4.41 %, power: 0.301mW!
DNN FP32 8bit 8bit calib. 8bit retrain® time
approx.
ResNet50 93.65% 93.55% 93.59% 82.69 % 93.44% 763s
VGG19 93.95% 93.80% 93.82% 90.7% 93.56% 318s
VAE- 99.99% 99.95% 99.96% 93.12% 99.88% 9.28s
MNIST
LSTM- 83.10% 82.90% 82.95% 79.9% 82.63% 710s
IMDB
SqueezeNet 80.6% 79.01% 80.16% 62.01% 76.21% 620s
mull2s 2KM MAE: 1.2e-6 %, MRE: 4.7e-4 %, power: 1.205mW?
DNN FP32 12bit 12bit 12bit retrain® time
calib. approx.

ResNet50 93.65% 93.60% 93.61% 93.52% 90.54% 798s

VGG19 93.95% 93.80% 93.81% 93.81% 93.71% 350s

VAE- 99.99% 99.98% 99.98% 99.98% 99.99% 10.11s
MNIST

LSTM- 83.10% 82.94% 82.96% 82.96% 83.12% 1040s
IMDB

SqueezeNet 80.6% 80.11% 80.3% 80.35% 80.50% 623s

Table 4-2. Accuracy and retrain time evaluation for AdaPT on various DNNs

tpower of 8bit exact: 0.425mW. 2power of 12bit exact: 1.210mW.
3approx. multiplier & approximation-aware retrain.
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In line with prior research [167] most models are retrained for a single epoch, achieving
significant performance improvements. The effectiveness of AdaPT's retrain engine is
evident in substantial error recovery of approximation, particularly in the 8-bit ACU
(approximately 7.5% increase on average). Further fine-tuning with learning rate
annealing marginally reduces the error.

Furthermore, we provide a summary of the emulation time for each approximate DNN, as
presented in Table 4-3. Moreover, the incorporation of quantization and dequantization in
each layer introduces an overhead of approximately 10% for the optimized approximate
solution. The comparison of inference is conducted using 8-bit precision to align with
related work, ensuring an unbiased assessment (the specific approximate module can be
arbitrary, given their implementation as LUTSs). Notably, the emulation time experiences
a linear increase when different ACUs are utilized within the same DNN, occurring in-
between the layers. It is worth mentioning that employing smaller LUTSs results in lower
inference times due to improved cache utilization. Additionally, an observed average
increase of approximately 2.1 times in time occurs when expanding the LUT bitwidth by
two.

DNN Native CPU Baseline AdaPT AdaPT AdaPT vs
Approx (w/ func) (w/ LUT) Baseline
ResNet50 0.5 min 76.5 min 104 min 1.7 min 45x
DenseNet12 0.48 min 53.2 min 72 min 1.6 min 33.2x
VGG19 0.2 min 91.7 min 125 min 1.7 min 53.9%
Fashion-GAN 0.003 min 0.02 min 1.1 min 0.012 min 1.7x
VAE-MNIST 0.015 min 0.1 min 1.2 min 0.02 min 5%
LSTM-IMDB 1.36 min 48.5 min 449 min 7.6 min 6.4%
Inceptionv3 22.1 min 2909 min 4560 min 83 min 35.1x
SqueezeNet 11.6 min 443 min 576 min 20.6 min 21.5%
ShuffleNet 11.4 min 163 min 251 min 22.4 min 7.3%

Table 4-3. Inference emulation time in AdaPT for various DNNs

Specifically, in Table 4-3, we compare AdaPT with PyTorch's native FP32 optimized
implementation, the baseline unoptimized approximate simulation (which utilizes LUTs
but excludes our optimizations), and the functional C-implementation of the ACU
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(mul8s_1L2H). It is evident that the computation time for AdaPT has been significantly
reduced in comparison to the baseline approach. When benchmarked against the state-of-
the-art, AdaPT outperforms ALWANN [68], which also operates on a Xeon CPU, with a
notable margin (1.7 minutes vs. 54.5 minutes on ResNet50). TypeCNN [141], running on
a CPU and employing a custom C++ framework, does not provide inference results.
Moving on to ProxSim [143], despite running on a GPU, AdaPT demonstrates very
similar execution times (20.6 minutes vs. 17.5 minutes on SqueezeNet). TFApprox [70]
exhibits faster execution on a GPU with ResNet50 (1.7 minutes vs. 0.26 minutes), but it's
essential to note that the authors exclusively assess ResNets for 8-bit inference in image
recognition.

AdaPT's strength lies in its diverse features, supporting various model architectures,
application domains, and approximation techniques, along with approximation-aware
retraining. This versatility contributes to the creation of a robust framework. A
comprehensive comparison of AdaPT's functionalities with the state-of-the-art is
presented in Table 4-4.

Tool Support AdaPT = [70] [143] [68] [141]
Framework PyTorch | TF' | TF TF | C++
Backend CPU GPU | GPU | CPU | CPU
Varying DNN types? J X X X X
Arbitrary ACU V4 X X X V4
Quantization calibration V4 X X V4 X
Approximate-aware v X v v v
retraining

ITF: Tensorflow. 2For example: CNN, LSTM, GAN, etc.

Table 4-4. Qualitative comparison of AdaPT with state-of-the-art

To conclude, AdaPT is an end-to-end framework for fast cross-layer evaluation and re-
training of approximate DNNs based on the popular PyTorch library. We showed how
AdaPT simplifies and accelerates the process of DNN simulation using multi-threading
and vectorization while at the same time it can support a wide range of DNN topologies
and paved the way to new approximate DNN accelerators first time for PyTorch.
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4.5.2 Experiments with TransAxx Framework

In this section, we conduct experiments to evaluate the performance of the TransAxx
framework, focusing on the accuracy and execution time of popular Vision Transformer
(VIT) models across various approximate multipliers. In terms of software versions,
TransAxx was developed on PyTorch 1.13 with CUDA Version 11.7. The hardware setup
employed for the experiments consisted of the same CPU as AdaPT’s experiments, a 20-
core Intel Xeon Gold 5218R server with 64GB of RAM, along with an Nvidia Tesla
V100 GPU as the hardware accelerator of TransAXxx.

Our framework prioritizes speed while maintaining flexibility, allowing users to
efficiently test their custom Approximate Computing Units (ACUs). As mentioned
earlier, two emulation methods are supported: the LUT-based and the functional-based
approaches. In Table 4-5, we present inference times using both approaches and the
retraining time for an epoch for each model. Our experiments involve four popular Vision
Transformer models — ViT [168], DeiT [169], Swin [170], and GCVIiT [171] — on the
ImageNet2012 dataset with batch sizes of 128 or 64. For retraining, we employ the Adam
optimizer with a learning rate of 5e~> for 2.5% of the ImageNet train dataset. In Table
4-5 the 8-bit mul8s_1KV9w [137] is used, but the execution time remains similar for any
ACU of the same size. The LUT-based approach is generally unaffected by the type of
ACU and is notably faster than the functional-based approach. The latter serves as a
backup method in TransAxx to address unforeseen memory issues.

DNN FLOPs Params Inference Inference | Retraining
(w/ func.) (w/ LUT) (w/ LUT)
ViT-S 4.2G 22.1M 121 min 6 min 5.5 min
DeiT-S 4.2G 22.1M 122 min 6.1 min 5.8 min
Swin-S 8.5G 49.6M 242 min 13.1 min 13 min
GCVIT-XXT 1.9G 12M 43.5 min 3 min 3.5min

Table 4-5. Emulation time in TransAxx for different ViTs

We further investigated the performance of LUT-based multiplication in our study, as
depicted in Figure 4-9. On the left side of the figure, we can observe the inference time
for each ViT model using different bitwidths of the LUT. As it is evident, the emulatiom
time increases as the memory requirements increase because it takes more time to fetch
the LUT from the GPU memory. Also, larger LUTs may not fit entirely into cache,
leading to increased cache misses and longer memory access times. In contrast, smaller
LUTs are more likely to fit into cache, resulting in better cache utilization and lower
memory access latency. Now, on the right side of the figure, we show the caching effect
on the LUT performance across the first batches of the inference.
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Figure 4-9. LUT-based multiplication performance. Left: LUT bitwidth impact on inference
emulation time. Right: Caching effect on LUT performance during the first batches of inference.

As processing progresses through subsequent batches, the LUT caching mechanisms we
introduced within TransAxx effectively come into play. These mechanisms allow for
faster access to frequently used data, such as the LUT memory in our case, thereby
reducing the computation time. As aforementioned, for > 12 bits where LUT memory
might increase substantially TransAxx can always subsitute the LUT-based with
functional based approach. We report that for a 12-bit multiplier mull12s_2PP from
[137]) the inference emulation time using its C functional description can be ~5x slower
than the LUT-based approach. Generally, the LUT-based execution times are deemed
satisfactory and sufficiently fast, especially when considering that there is no other
alternative for approximate ViT emulation. It is important to note that these performance
metrics pertain to the complex and large ImageNet dataset. When compared to other
frameworks for approximate simulation and taking into account the utilization of the large
ImageNet dataset and complex VIiT architectures, TransAxx proves to be faster.
Additionally, TransAxx outperforms similar frameworks that lack support for ViT
models.To facilitate a comparison with previous research, our focus can be directed
towards the execution time of ViT-S, which closely aligns with ResNet50 in terms of
FLOPs (4.2G vs. 3.87G). TransAxx demonstrates quicker inference times when
contrasted with other GPU simulation frameworks such as ProxSim [143] (6min vs.
107min) and ApproxTrain [154] (6min vs. 10.4min).

Tool Support TransAxx [147] [154] [70] | [143] [68] [141]
Framework PyTorch PyTorch TF TF TF TF C++
Backend GPU CPU GPU | GPU | GPU | CPU CPU
ViT model support v X X X X X X
Automatic layer v X X X X X X
swapping

Quantization v v X X X v X
calibration

HW-aware retraining V4 v v v v X v
Design space search v X X X X v X

Table 4-6. Qualitative comparison of TransAxx with state-of-the-art
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We also perform a systematic analysis on the top-1 accuracy achieved on ImageNet-1K
dataset for each of the four aforementioned ViT models on the default FP32, 8-bit
quantized, approximate and retrained versions, as seen in Table 4-7. Apart from
performing successful finetuning after approximation, we considered significantly the
quantization part, as also described in previous paragraphs. In particular, prior to the
approximation of the models, we performed a calibrated quantization scheme since
finding a scale parameter correctly is known to have a large impact on the network’s
performance [172]. Regarding the approximate multipliers used for the experiments, we
chose three distinct ACUs with different Mean Relative Error (MRE) and power
characteristics obtained from the open-source EvoApprox [137], and an accurate ACU
which corresponds to mul8s_1KVe.

Model specifications

ACU 1: mul8s_1KV9 ACU 2: mul8s_1L2H ACU 3: mul8s_1L2L
MRE 0.90%, power: 0.410mW MRE 4.41%, power: 0.301mW MRE 12.26%, power: 0.200mW

Name MACs FP32 Sb.'t Initial | Retrained Power | Initial | Retrained | Power | Initial | Retrained | Power |
approx. (calib.)

ViT-S 98.54 74.64 71.86 34.95 67.31 3.45 1.264 66.74 28.75 0.090 0.15 52.18

DeiT-S | 98.54 81.34 79.34 0.96 70.16 3.45 0.10 67.01 28.75 0.10 0.11 52.18

Swin-S 99.7 82.89 81.83 79.56 79.25 3.49 64.30 76.64 29.09 0.41 67.87 52.79

GCViIT 75.5 79.72 78.91 73.50 | 78.346 2.64 51.56 76.93 22.03 0.26 63.01 39.98

Table 4-7. Accuracy and power benchmark [%] per multiplier and model

Table 4-7 summarizes our accuracy results obtained before and after retraining.
Generally, we see that approximate-aware retraining reduces the accuracy gap
successfully on the majority of approximate models, as the weights of the network can
adapt to the distributions the ACUs represent. Additionally, we report the total MAC
(multiply-and-accumulate) power reduction as it will be important for experiments of the
design space exploration in the next paragraph. Clearly the actual power reduction would
be influenced by numerous factors but the reduction from MAC operations usually has a
cascading effect on the total consumption. The reduction percentage is in relation to the
total MACs approximated in each model in order to have more precise measurements.
The baseline is the power consumption of the accurate mul8s_1KV6 multiplier
(0.425mW).

4.5.3 Explored Design Space

The manual and simple method of performing approximation, that is to apply the same
multiplier to all layers in the model gave us substantial power gains with the cost of some
accuracy drop as seen from Table 4-7. However, in some cases, it is not possible to
recover the large impact that approximate multiplications had on accuracy. Moreover, in
many cases there might be a more power efficient solution that achieves similar accuracy.
In this subsection, we conduct a comprehensive analysis of our automated search
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algorithm based on MCTS. The results of our automated search reveal a nuanced
understanding of the trade-offs inherent in the power-accuracy space. We show that we
can automatically find better solutions that are closer to the Pareto-front and thus offer
better trade-off between power consumption and accuracy. For our experiment the four
ACUs (mul8s_1KV9, mul8s_1L2H, mul8s_1L2L, mul8s_1KV6) are considered as
possible candidates for each layer of every target model.

Policy Evaluation — Before proceeding with the Monte Carlo simulations it is essential
to exhibit the stability of the algorithm and its ability to converge after some iterations.
Naturally, our agent's performance is optimal when the rollout policy we used to estimate
the expected rewards of each possible action is more likely to choose the best action. This
is the reason we injected knowledge from the hardware configurations into the system
using UCBL1 formula so as to guide the search process towards the Pareto-optimal points.
In Figure 4-10, for the case of ViT-S model, we measure the normalized reward on each
simulation of the four possible starting paths/actions from the root node of the MCTS
tree. In this way, we demonstrate the ability of our custom hardware-driven policy to
converge to more stable rewards faster than the random policy.

mul8s 1KV6 + mul8s_1KV9 ¢ mul8s_1L2H ¢ mul8s_1L2L
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Figure 4-10. Rewards of each action from the MCTS root node using the random policy (left) and hw-
driven policy (right).

Another valuable insight we can obtain from this figure is that the hardware-driven policy
manages to find faster what might be a good or bad action to take according to the
algorithm. For example, it prefers choosing mul8s_1L2H multiplier at the first layer as it
might give an "appealing” accuracy-power tradeoff which is also indicated by our
measurements in Table 4-7. In contrary, the lower power mul8s_1L2L multiplier is not
often preferred as it significantly compromises the accuracy. We should note however,
that intuitively these outcomes would vary across models, layers or multipliers.
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Additionally, to demonstrate the convergence of our hw-driven MCTS-based search, we
plot the reward values and their rolling mean (with a window of 50) targeting ViT-S
model, over multiple simulations, as shown in Figure 4-11. As more simulations are
performed, the MCTS tree is refined, and the algorithm converges towards optimal
decisions or solutions. With each simulation, the search algorithm converges towards the
approximate configurations that yield the best performance for the ViT model in terms of
accuracy/power. The average reward stabilizes or reaches a plateau as the number of
simulations increases. This means that our algorithm has explored the search space
sufficiently enough and has found a solution or set of solutions that consistently achieve a
certain level of performance.
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Figure 4-11. Convergence of the MCTS rewards.

MCTS simulations — Finally, we evaluate the use of our hardware-driven MCTS
algorithms towards finding the Pareto-optimal curve for accuracy and power. In Figure
4-12, we illustrate the scatter plots from MCTS for every target ViT model using 2000
simulations (power consumption is normalized). On average, the exploration time on
most models for this setup was about 35mins which is considered very acceptable,
especially when compared with previous work ( [152, 68] ). The user has the flexibility to
tune it according to their requirements; however, further exploration yielded minimal
results on the accuracy-power trade-off. Each acquired Pareto (in red) represents the
knowledge learned by the system towards finding the optimal multiplier configuration
and it's basically the output of the search algorithm. To provide further comparisons, we
experiment for two distinct A parameters for the power bias, as described in Algorithm 1
and MCTS policy equation. For a state in the tree to be evaluated accurately, it must be
visited a sufficient number of times (to gain the confidence about the statistics). Thus, the
number of simulations clearly affects the quality of solutions, but we saw that around
2000 simulations were enough for most models to derive successful results in a
reasonable time. Additionally, experimenting with different A parameters or even
exploration-exploitation ratios could potentially yield marginally improved results;
however, our experiments served as a strong indication of the successful application of
the proposed search algorithm and parameters.
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Figure 4-12. Scatter plots of hw-driven MCTS using 2000 simulations for A=1.5 (top) and A=0.5
(bottom) parameter.

In Figure 4-13, we summarize the solutions found with the baseline approximation of the
models (in yellow), obtained from Table 4-7, along with the proposed optimal solutions
obtained by our MCTS-based approach (in green). As baseline solutions we define the
accuracy/power data points from Table 4-7 in which approximation is uniformly applied
to all layers of the model without much customization. The corresponding scatter plots of
Figure 4-13 illustrate the practical observation of the accuracy/power trade-off, with
normalized power consumption along the x-axis and actual measured accuracy along the
y axis. Notably, the study highlights the superior performance of our hardware-driven
Monte Carlo tree search algorithm, particularly in achieving a more advantageous balance
between power consumption and accuracy, as well as giving an increased flexibility from
the designer's perspective in choosing a wider range of approximate solutions.

The green data points of Figure 4-13 are derived from the large exploration of the
parameter space using MCTS, depicted in Figure 4-12, focusing only on the optimal
solutions achieved through this algorithm (red points in Figure 4-12). These data points
are evaluated on the whole ImageNet validation dataset and the Pareto points are depicted
in the corresponding scatter plots of

Figure 4-13 as green triangular markers. The baseline solutions from Table 4-7, for each
approximate multiplier, are deliberately included to provide a benchmark for evaluating
the effectiveness of the proposed solutions using the MCTS search algorithm.
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Figure 4-13. MCTS-optimal solutions based on real accuracy (green) and
baseline approximate solutions (yellow).

The scatter plots of

Figure 4-13 visually highlight the trade-offs between power consumption and accuracy.
Our solutions (green points) mainly form the Pareto-front in each subplot (i.e., deliver the
best possible compromise between the two objectives, accuracy and power). For similar
accuracy as the baseline approximate solutions (within ~1% maximum difference),
MCTS delivers on average solutions with ~21% lower power. Additionally, our approach
yields a considerable number of Pareto solutions in all models, providing the designer
with a fine-grained set of choices. These choices aim to deliver the most effective balance
between the two objectives, power and accuracy, while minimizing exploration time. In
contrast, the baseline approximation offers a more limited selection.

In general, our MCTS search enables obtaining results from the Pareto-curve customized
to fulfill the designer's requirements and eventually give a more fine-grained trade-off
between accuracy and power with respect to the baseline approximation. Our
requirements, relevant to the specific application, included constraints on power
consumption, accuracy thresholds and exploration time of MCTS algorithm, but
additional criteria can be involved for the system under consideration. Note that, to the
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best of our knowledge, our work is the first to analyze the impact of approximate
multipliers on ViT models and deliver a framework for a) evaluating the inference
accuracy with reasonable speed, b) performing approximation-aware ViT re-training, and
c) delivering a fine-grained accuracy-power trade-off when exploring the design space of
VIiT to approximation mapping. Despite the considerable savings reported in

Figure 4-13, higher power savings for similar accuracy loss have often been reported in
approximate CNNs [136]. Hence, additional research is required for ViT models and/or
dedicated approximate multipliers/approximation techniques are needed. Our work lays
the groundwork for exploring this challenging domain and greatly facilitates designers in
identifying solutions fast enough that align more closely with the desired balance of
power and accuracy in ViT models.
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Conclusion

This Ph.D. thesis has investigated the intricate field of efficient computing for Deep
Learning (DL), with a primary focus on optimizing deep neural network accelerators for
custom hardware. Through a comprehensive exploration of various software and
hardware optimization strategies this research has contributed to our understanding of the
underlying hardware mechanisms towards optimal Al model execution. Additionally, this
thesis explored the use of approximate computing to exploit the capabilities of such
hardware in inference speed and energy efficiency of DNNs. By proposing two custom
emulation frameworks, AdaPT and TransAxx, it addresses the challenge of approximate
DNN simulation. Specifically, it enables researchers and practitioners to rapidly prototype
and evaluate approximate DNNs, fostering a more accessible and iterative approach to
model development. Last, this thesis proposed an MCTS (Monte Carlo Tree Search)
based method for rapid design space exploration towards find an optimal tradeoff
between power consumption and accuracy in approximate DNNs, showing its efficacy on
vision transformer models. As the field of deep learning continues to evolve, the findings
of this thesis contribute to the ongoing discussion on efficient computing for Al inference.
The insights gained from optimizing neural network inference on custom hardware,
coupled with the emulation framework for approximate computing, signify a substantial
step towards bridging the gap between software and hardware in the field of DL.

5.1 Summary of findings

Below is the summary of the main findings and contributions:

e Optimization of novel Al applications: Three distinct Al tasks were optimized for
reconfigurable hardware. First, the popular FAISS (Facebook Al Similarity Search)
framework [70] was optimized for FPGAs in order to accelerate the algorithm of
similarity search. Second, a Generative Adversarial Network (GAN) was developed
and deployed on an FPGA SoC with the aim to restore images of clothing. Third,
towards combating the Covid-19 pandemic, a CNN was developed and accelerated for
reconfigurable hardware with the ability to categorize chest X-Ray images into three
classes: Covid-19, Viral Pneumonia, and Normal.
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e Automatic FPGA firmware from CNNs: We proposed an end-to-end framework,
based on HLS4ML [56]. Through this tool we convert trained CNN models into
optimized FPGA firmware tailored for cloud FPGA architectures.

e AdaPT Framework: We created the AdaPT framework as a rapid DNN approximation
emulation tool, presented as a PyTorch plugin. The framework leverages CPU
acceleration and seamlessly supports a wide range of layers and model architectures
along with post-training quantization and approximate-aware retraining.

e TransAxx Framework: We created TransAxx with the aim to emulate approximate
Vision Transformers. It accommodates all the major features of AdaPT such as post-
training quantization and approximate-aware retraining. Also, it has a more
streamlined and seamless design and leverages GPU acceleration for the emulation of
approximate Al models.

e MCTS-based Design Space Exploration: We proposed a novel method based on
Monte Carlo Tree Search (MCTS) for a hw-driven automated search that can find
near-optimal trade-offs in the power-accuracy space. With this method, we
demonstrate that we can automatically find better solutions fast, which are closer to
the Pareto front than the simple approximation method. In the latter, the
approximation is uniformly applied to all layers of the model without much
customization, while in our solution we achieve a better trade-off between power
consumption and accuracy using mixed approximation between layers.

5.2 Future Directions

The research presented demonstrates that custom hardware for Deep Learning holds great
promise in enhancing performance and energy efficiency. Nevertheless, with the rapid
growth and expansion of next-generation Al models and the continuous emergence of
new hardware architectures, new innovative challenges always arise that need attention in
future applications. Given the rapid growth and expansion of next-generation Al such as
generative Al and the emergence of new requirements from both technical and societal
perspectives, there remain open and novel issues to be addressed in future efforts. Major
technology companies, European networks of researchers, and Europe itself have already
paved the way for the design and implementation of future computing systems. Recent
years have witnessed a surge in the demand for computing systems capable of supporting
large language models and other extensive Al applications. This has brought hardware
accelerators to the forefront as promising solutions for optimizing resource efficiency and
performance in datacenter and edge infrastructures. Future research will focus on
enhancing the scalability and adaptability of accelerators to accommodate the evolving
complexity of Al models, while also innovating new Al algorithms that can understand,
interpret, and generate complex, context-aware responses, mimicking humans.
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Future work should focus on next-generation computing systems and Al, specifically on
several key technical areas to advance their capabilities and address emerging challenges:

1. Scalability and Adaptability of Accelerators:

e Develop FPGA-based Al accelerators that can dynamically reconfigure to
support various Al workloads, ensuring efficient resource utilization and
performance optimization.

e Enhance the scalability of these accelerators to handle the growing size and
complexity of Al models, including large language models and deep neural
networks.

2. Energy-Efficient Computing:
e Implement Al/ML-based resource management policies that optimize energy
consumption while maintaining system performance and reliability.
e Integrate renewable energy sources with traditional power supplies, using Al
to predict and manage energy demand, ensuring a sustainable and cost-
effective energy mix.

3. Approximate Computing:

e Explore approximate computing techniques for new novel architectures or
material that allow for controlled trade-offs between computational accuracy
and efficiency, reducing power consumption and processing time without
significantly impacting the quality of results.

e Develop algorithms that can leverage these techniques for various Al
applications, such as natural language processing or generative Al.

4. Edge and Cloud Integration:

e Design systems that seamlessly integrate edge computing with cloud
infrastructures, leveraging the strengths of both to provide low-latency, high-
performance computing for Al applications.

e Focus on the development of distributed Al models that can operate
efficiently across these integrated environments.
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Extetopévn Hepiinyn ota EAlnvika

To xivntpo avtg g £pevvoc TpoNABe amd v avéavouevn {RTNON Y10 ATOTEAEGILATIKN
eneEepyaocia teyvnmg vonuoovvng (Al). Kobodg n ypnon texvoroyidv texvntng
vonuoovuvng cuveyilel va avédvetar oe Eva upy edopa Propmyovidv, £xel yivet OAo Kot
0 ONUAVTIKO Vo avarmtuyfohv ADGELG VAIKOD Kot AOYIGUIKOD TOV UITOPOVV VO XEPIGTOVV
TIG VTTOAOYIOTIKEG OOLTHOELS OVTMOV TOV EQPAPUOYDOV. Avtd odnynce o€ av&avouevo
EVOLLPEPOV YOl TN YPNON EMTOYLVTIAOV VAIKOV, Omwg povades emelepyasiog ypapikav
(GPU) kot ovotoyio emtdma tpoypappatiiopevov todov (FPGA), ot onoieg pmopodv
vo BEATIOCOVY GNUAVTIKAE TV ToOTNTO Kot TNV €vepyelokn anddoon g eneepyaciog
Al.

[Na va amoxtnoovpe po Babotepn kotavoénon tov KvTpov Ticw ond avtd 10 £pyo,
elval onuovtikd vo. gvtomicovpe tnv mpoéhevon kot to Oepelmon ototyeio tov. Tig
tehevtaieg €& dekaetieg, 0 vouog tov Movp énaiée KaboploTikd poLo Gty 001 ynon g
nopeiag TV vToAoylotdv. Katd tn didpkela autng g EKTETAREVNS TTEPLOSOVL, 1] GTAOEPT|
éupaon g Prounyavicg oty peimon tov peyébovg tov tpaviictop, (o Pacikn mToyn
T0V VOpov Tov Moore, &xel otabepd amoEEPEL ALENUEVN AmTOS0CT Kol TLKVOTNTO
tpaviictop. Av Kou pmopel va givar mpdwpo va dnAwbel oplotikd 1n Katdppeuorn Tov
vopov Tov Moore, vtdpyovv evOeiEElg TOV VTTOINAMVOLY OTL £YOVUE OVTIUETOTIGEL TOVG
(QLOIKOVG TEPLOPIGHOVG oL Pacilovtal oe yevikoh oKomov povadeg emeepyaocies (my.
CPU) nov BaoiCovtar o mopito (Kevrpikéc Movadeg Eneéepyaoiag).

“Moore’s law is the observation that the number of transistors in a
dense integrated circuit doubles approximately every two years. The
period is often quoted as 18 months because of Intel executive David
House, who predicted that chip performance would double every 18
months. — G. E. Moore, 1965

Onwg mapatnpeital and 10 TApakdT® oynua, 1 eKOETIK) avENon TG LITOAOYIGTIKNG
16Y00¢ Tov poPAémeTon omd To vopo tov Moore emiPpadvvetar. Avti 1 tdon omoterel
TPOKANGN YW TN GvveYN TPOOOO TNG TEXVNTNG VONUOoLYNG, KaODS 1 avénuévn
VTOAOYIOTIKY oY0G &tvor (oTiKNg onuociog Yo Tov YEPoHd TV TOAOTAOK®V
VTOAOYICUAV KOl TOV TEPACTIOV GUVOAWMV OeOUEVOV, EOIKG TOL EUTAEKOVIOL GE
epyacieg Bobiag Mabnong (Deep Learning). H mapadociaxn mpocéyylon g
Bacilopevng amoxkieiotikd o CPU yevikig ypfiong Yo @OPTOVG €pyaciog TEXVNTNG



150 %

vonuoouvng yivetoar OA0 Kol TO OvVOTOTEAESUHOTIKY Kol pn Puoowun. Otv CPU,
OYEOGUEVEG YlOo. €va €VPV PACUO €PYOCLOV, OV egival PeATioTOmOmUEVES Yo TIG
GUYKEKPIUEVES VTOAOYIOTIKEG OMOITNCELS TOV OoAyopiBumv TeYVNTIG VONUOoHVNG,
00N YOVTOG 6€ U PEATIOT ardS00N KOt VYNAN KATOVAA®GT EVEPYELOC.

50 Years of Microprocessor Trend Data
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Yynpo 1. Asdopéva taong pikpoeretepyosti 50 etov [1].

Eivar mpopoavég o6tt or CPU dev pmopodv va ocvpPadicovv pe 10 pubud tov
VIOAOYIGTIKOV OTOITHGEMY TNG TEXVNTNG Vonuoovuvng kat Waitepo Tov Deep Learning.
AvonthcoovTal  EVOAMOKTIKEG — OPYITEKTOVIKEG VTOAOYIOT®V Kol  €EEOIKELUEVOL
EMEEEPYOOTES YO0 TV TEXVNTA vonuooHvn, dacearilovtag v adidAewmtn Tpoodo g
épevvag yoo v texvn vonuoovvn. Iapd v evoopdtomon emitayvviov TeEXVNING
vonpoovvng yw ™ PeAtioon g VTOAOYISTIKNG OmOO00NG, MOPAUEVEL TAVTO Lo
afloonpeiom avnovyia oyeTikd e v avénuévn kotavailoon evépyelas. H {fmmon yu
oVCl0oTIKY oYV enelepyaciog oe epyaciec Pabiac pdbnong, oe cvvdvacud pe v
aLEAVOLEVT] TOADTAOKOTNTO TWV VELPOVIK®OV OIKTV®V, &€xel cLUPAAEL o owénuéveg
EVEPYEWNKEG OAMOLTNOELS, AMOTEADMVTOG TPOKANGN Yoo TNV emitevén PBEATIOTG amdd00NG
1GYV0G AKOUN KO [LE TNV VATTLEN EEEIOIKEVUEVMV ETITAYVVIAOV TEYVNTNG VONUOGHVNG.

Consumption CO2e (Ibs)
Air travel, 1 passenger, NY<«<SF 1984
Human life, avg, 1 year 11.023
American life, avg, 1 year 36.156
Car, avg incl. fuel, 1 lifetime 126.000

Transformer (big) w/ neural architecture search | 626.155

Mivoxkog 1. Extipopeveg ekmopnés CO2 amé v ekmaidevon LLM, oe olykpion pe diheg
OPaoTNPLOTNTES UE YVAOOTN KATOVAAWOGT).
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Ytov mapomdve mivako mopovctdlovpe TG ektyuopeveg exkmounég CO2 amd v
ekmaidevon peydiov yrmwoowov poviédwv (LLM) oe emttayvviéc GPU. H katavéimon
ovykpivetol pE KOWEG avBpamiveg Opactnplotnteg vmoypoupiloviag Tic oakpoieg
OTOLTAOELS 1OYVOC TOV OTOUTOVVTOL Yo TNV emeepyacia TexvnTG vonuoovvne. Mia omd
11§ Pacikég mpokANnoelg oty emneepyacio TG TEYVNTAS VONUOGUVNG €ivar 1 avamTuén
oaAyopiBumv mov umopovV va AEITovPYOVV GE YPNYOPO Kol OOS0TIKO VAIKO, €101KA Yol
TOALOVG OAYOPIOOVG VTTOAOYIGTIKNG Opac™g OTOL 1 KaBvoTéEPNoN OmOKPIoNG KOl 1
KaTovaiwon evépyelag etvar kpioung onuaciog. Ta Babid vevpovikd diktva (DNN) v
TopAdeLypo £xovv avadeldel g ONUOPIANG emAoyn Yo Tovg Pactkods adydpidpovg
TOAADV  €PYACIOV OPOCNG VTOAOYIOTH] AOY® 1TNG wKovoTnTds Tovg vo  padaivouv
TOAOTAOKO YOPOKTNPIOTIKA OO aKATEPYOOTA OEOOUEVOH EIKOVAG. AVTO 00N ynoe og €va
ALEAVOLEVO EVOLAPEPOV V1O T XPNOT| ETLTOYLVTOV VAoV, 6ntewg GPU ko FPGA, yio tnv
EMTAYVVOT TOV VIOAOYIGUOV OVTOV TOV aAyopiOumv kat ) Beltioon g cLVOAKNG
ar6doons. O TPOYPOUHATIGUOC TETOLMV GLUOKEVMV Kol 1 avATTLEN AVCEDY AOYIGHIKOV-
VMOUKOD TOV  UTOPOLV VO YEWPLGTOVV TIG VTOAOYIOTIKEG OMOALTHGES OVTOV TMOV
alyopiBumv og mpaypatiko xpovo dev givor 0KOAN dtaditkacio Kol cLYVA omottel peydin
TPOCTAOELD TPOYPOLUATIGUOD GO TNV TAEVPA TOV UNYOVIKOV.

Emniéov, n tpéyovca terevtaio AEEN TG TEYVOLOYIOG YPNOLOTOEL KATO TPOGEYYIoN
nolManloolaotés (approximate multipliers) ywoo v avtipetdnion tov  eEapeTikd
avénuévoy amotoemv 1oyvog Tov emtoyvvt®v DNN. O kotd tpocéyyion vroAoyiopdg
avapépetor oty 1Wéa ™ Ovoilag g axpifelag TOL VWOAOYIOUOD VTEP NG
amodoTIKOTNTAG, CLYVA HEGH TNG YPNONS MHEWHEVNG axpifelog 7 amhomompuévev
Aertovpyumdv. Ot Kot TpocEyylon TOALUTAACIOUGTEG LTOPOVV VO LELOWGOVY GTLOVTIKG TNV
VTOAOYIGTIKY] TOAVTAOKOTNTO T®V HOVIEAWDV TEYVITNG VONUOGUVIG, KOOIGTMOVTAG TO O
OTOTEAEGLOTIKG KOl TPOKTIKA Y10 EPAPLOYES TOV TPpayHoTikoy kOcpov. H a&oidynon
g okpifelog Tov xkatd tpocEyyion DNN amodsikvietar TpokAnon Adym g amovciog
OMOKAEIOTIKOV KOTA 7POcEyylon LVAwkov. H xoatavémon tov tpdéHmov pe tov omoio
ovuneprpépovror avtd to. DNN og tétolo vakd eivor (otikng onuociog mpv amd v
KOTOGKELT TOL LAIKOV, KOO1GTMOVTOG TO amapaitntn tpobmodeon yio akpipn aordynon.
Otav 10 LAKO dgv glvarl 0100éc1n0, N LOVY EQIKTN €mMAOYN €ivol 1 Tpocopoimon g
apOUNTIKNG TOV KATA TPOGEYYIoT TOALATANGIOOT. AvTd umopet va yivel aglomoumvtog
éva mepPairov Pabuag nabnong (mwy. PyTorch, Tensorflow) kavo va vrootnpi&el avtyv
™ Agrtovpywkdtnta, oaArd to Kowvd mepiaiiovta DNN dev dabétouv evompoatopévn
vrootpign. H eopoimon tg cuumeppopdc Tov Katd TPOGEYYIoT TOAAATAAGIUCTH UE
YPNOTM OVTAOV TOV TPOYPappdtov Bo givor 0OGKOAN HE OMOTEAEGUO TOPATETAUEVOLG
xpoévoug extéleonc. Xe avtiBeon pe Tic Pertioromomuéves PiArodnkeg mov eivan
dwbéoeg yoo T tomikég ekdooelg Twv DNN, dev vmdapyovv 1coddvouo yuoo v
EMTAYLVOT) TNG O10OTKAGIOG TPOGOUOIMGNE TOV KATH TPOGEYYIOT TOALUTANGLOGTY.
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EminpocOétmc, yio m Pedtictonoinon tov Katd tpociyyion vroroyicpudv oe DNN, pa
Kpiown dtodikacio TEPIAAUPAVEL TOV EVIOTIGHO TOL KOTOAANAOTEPOL KOTA TPOCEYYIoN
noAlomhactaot) yuo ke eninedo DNN, o évvola mov avaeépetal og Beltictonoinon
oA OTA®V emmédV. Avti M TTuy eivor Wiaitepo kpioyun Otav 0 oTOYOS vl va
peytotomomBovv ta kEPOT 1oxHOG Le TOVTOHYPOVN THPNOT TOV TEPIOPICUMV CYETIKA LE
v amodekty omoieln okpifelag. Evo molvdpiBueg peréteg €xovv  efepevvioet
OLTOUATOTOMUEVEG LEBOSOVG Yo TOV TTPOGOOPIoUO TG PEATIOTC KPavTomoinong ava
otpouo o KPavtiouéva DNN, to medio tov xoatd mpocséyyion DNN €xst AdPet
GUYKPLTIKA AlYOTEPN TPOGOYN OGOV APOPE TNV OWTOUATOTOUEVT pon avalntnong. Me
GAAa AOYLO, VITAPYEL £VOL KEVO GTNV LIAPYOVGO EPELVA OGOV QPOPA T CLGTNUOTIKY Kot
avtopotn Pertictomoinon ¢ SUOPE®ONG TOV KATO TPOCEYYIoT VTOAOYICUMV GE
oAOKANpo 10 diktvo. Emiong, o xabopiopdg g PEATIOTC SopdOpe®ONS TOV KATH
TPOGEYYION TOALOTAACIOGTOV HETAED KAOE emumédon evdg poviéhov DNN mpokepévov
va Bpebel n kaAvtepn avtiotdOuion peta&d axpifelog Kot 100G umopel vo TpoKaAEGEL
ONUAVTIKY] VTOAOYIOTIKY emiPdpuveon. O ydpog oyedocpol yivetor peydlog kot m
pétpnon g okpifelag Kabe OPOPETIKNG OlapdpPwons dev eivar mpaxtiky. H
QVTILETMOMICT] OVTAOV TOV TPOKANGE®MV O pmopovoe va avoifel To dpopo Yo mo gvpeio
Kot TpakTikn vwoBétnon katd tpocéyyion DNN, wdaitepa og epapproyég évraong topwv.
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AvooKOTN 61 16TOPLKOV VTofadpov kot Brfpiroypagiog

Ye ouTtd TO KEPOANO, TOPEYOVUE W10 GUVOMTIKY TEPIANYN NG €pYOciog Kol TOL
16T0pIKoy VIOPabdpov mov amotehovv T Pdon g mapovoag dwutpPng. To kepdiaio
napéxel €va Aemtopepés voPadpo Yo TNV EPELVNTIKY TEPLOYY], PIYVOVIONS OMOG TNV
eEEMEN NG TEYVINTNAG VONUOGUVIG KOl TV EMLTAYLVTMOV DAKOD 6TOVLG 0oiovg Bpioketorn
mopovoa, PeAETN. EmmpocOeta, TpoKeEVOL Vo TOPEYETAL L0 OAOKANPOUEVT] KATOVOTOM
TOV OVTIKEWEVOL, &xel OeCaybel por O01egodikn €E€taom TG LIAPYOVOOS EPELVAG,
Oeoplov kol peretov. H avaokoémnon e Piproypagiag diepeuvd Tig Pacikéc Evvoleg,
Oewpieg kot pebodoroyieg mov €yovv SOHOPPDOGEL TO TpEYOV Tedio, emonuaivovtog o
KEVA, TOLG TEPLOPICUOVS KO TO AAVTO EPOTILLATO TOV TOPAKIVOVV TNV TPEYOVGO LEAETT).
[Mopovcialovtag £va Teplektikd vIOPabpo Kol moapéyovtag oyetikn PifAoypapio, avtd
10 KePdlawo Oéter Tig Paocelc ywoo MV emokOAoLON OVOALGN KOl TO ELPNUOTO TOV
TAPOLGLALOVTOL GTO ETOUEVO KEPAAOLAL.

H 6paon vroroyiotdv meptlapfdaver Evav kKAdoo g Mnyavikng Mdbnong mov eivon
APIEPMUEVOS OTNV aVAALOT Kol Katavomon ewkovov kot PBivieo. O mpotopykds Tov
otOY0¢ elvol  vo  EMTPEYEL OTOVG VTOAOYIOTEG VO, «PAETOLVY  EPUNVEVOVTOG
OMOTEAECUOTIKA TIC OMTIKEG TANpoPopieg. Evidg tg Opaong vmoloyiot|, to HOVTEAQ
EYOUV OYEOTEL E01KA Y10 TV OTOKMOIKOTOINGT] OTTIKAOV EO0UEVDV EEAYOVTOG GYETIKA
YOPOKTNPIOTIKG KOl TANPOPOPIEC TOV ATOKTMOVTOL KOTE Tr SLAPKELD TNG EKTALOEVTIKTG
dwdwaciog. Avti N KavotnTa divel T OLVATOTNTA GE AVTE TO LOVTEAN VO, KATOVOOUV
ewoveg Kor Pivteo kot va epapuolovv avtéc TG epunveleg o€ epyaciec mov
nepthappdvouv mpdPreyn N AMyn anoedcewv. Qotdco, N 0pacn vroroylot Pacileton
oe peydro Pabud oe apbova dedoUEVO Yo TIG AELTOVPYIES TNG. XTI UEPES MOG Yol VO
emtevyBohv 1€101EG EpyaTies, Ta veEupmVIKA dikTua OV givar £vag TOTOG poviélov Pabidg
péOnong ypetdlovtar yio vo EKTuOEVTOVY MOTE VA OTOKTGOLY YVAOGCT KOl VO EVIGYVGOVV
mv axpifeld tovg pEow emavoANTTIKOV dodkactdv pabnong. Moig teletomombovy
avtol ot aAyopiBuol yw Pértiomn axpifela, yivovior 1oyvpd epyoareia TEXVNTNG
vonuoovvng. Emitpémovv v toyeio taivounomn kot opodomoinor  dedouévev,
EEMEPVAOVTOS CLYVO TNV OMOTEAECUOTIKOTNTO TNG WU OLTOHOTNG OvVOyvVAOPIoNg omd
€101KOVG.

Ta vevpovikd diktvo amotelohv €vo TOAD CNUAVTIKO TTESIO OTN UNXOVIKY Hadnon kot
mv teyynt) vonuoovvn. H avémtuén tovg €xer pileg oe Obpopeg €vvoleg Kot
alyopiBuovg mov efelicoovtor pe TV TAPOSO TOL YPOVOL. XVLVOMTIKY OoKOAoLOel 1
LOTOPIKY| TOVG EEEMEN:
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e 1940: Teyvntoi Nevpmveg

e 1950: Texyvmtd Nevpaovika Aiktoa

e 1985: Omsbod1adoon

e 2010: H &vodog g Pabidg pédnong

o 2014: AnpovpyiKa ovToy®VIeTIKE diKTVLO
e 2017: Transformer model

Ta vevpovikd diktoa £govv d1dpopa enimeda, T omoio EELTNPETOVY JAPOPOVE CKOTOVG
kot Aettovpyieg. Kdmown and ta PBoacikd emimedo mov ypnoYLOTO00VIOL GE VELPOVIKA
dtktva givan ta e&ng:

o [Ermimedo Eisooov (Input Layer): Avtd 1o eminedo Aopfdver to €ioepyopeva
dedopéva kar mpowbel TIg €16000VG o010 emOpevo eminedo. O apOudc v
VELPOVOV GE OVTO TO EMIMESO AVTIGTOLKEL GTOV aPlBUO TOV YOPAKTNPICTIKMOV
(features) TV dedOUEVOV.

o  Kpvpo Emimedo (Hidden Layer): Avtd ta eninedo emeepydloviol TIC €16030VC
amod 10 eninedo £16000v. 'Eva vevpwvikd 6iktvo pe éva kpu@o eminedo ovopdaleton
diktvo pe éva kKpueod emimedo (single-layer perceptron), evd av €xel mepiocdTEPQL
and €vo kpved emimedo, TO OvouALovUE TOAVLEMIMEOD VEVPOVIKO OIKTVLO
(multilayer perceptron).

o FEminedo ESooov (Output Layer): To eninedo avtd mapdyel v TeAKY] £€£000 TOL
owtvov. O aplBuoc Tov vevpdvev ce avtd 10 eninedo e&aptdtal omd Tov TOTO
oV TpoPAfuartog (m.y., pa kKAdon oe Eva mpdPAnua tastvounong, £vog aptiuog
o€ éva TpOPANUa ToAMvIPOUNONG).

o Jvvelikuka Emimedo (Convolutional Layers): Xpnotipomolovvtolr cuvinbmg oe
oLVEMKTIKA vevpwvikKd oiktva (CNNSs) yio v e€aywyn YOPAKTNPIOTIKOV OO
ewkovec. Emutpémovv v avoyvopion YopoKINpoTIKOV € Sdeopo HEPT NG
€KOVOC.

e FEminedo. Kavovikomoinons (Normalization Layers): Xpnoylomolovvtatl yo tnv
KavoviKomoinom tov ££00mv TV TponyoOUEVOVY EMTEdMV Kot TN PeAtimon g
GUYKAMONG TOV LOVTEAOL.

Avtd elvar pepikd amd to PaciKd ENIMESD TOV ¥PNOLUOTOLOVVTIOL GE VEVPMVIKA diKTLA,
Kot To. dikTva cLVNOMG TEPIAAUPAVOVY SLUPOPETIKOVS GLVOLAGHOVS CVTMV TV EMTESOV
avéloyo HE TOV OKOTO TOLG Kol TN @UoN TV ocdopévov. [lapakdtom ommv ewkova
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QOIVETAL TOG 1 €16000C EICEPYETOL GE EVOAAACTOUEVA EMIMESN GUVEMENG, GVYKEVTIPOONG
Kot GAA@V Yo va ektedecTtel péoa omd 1o VELPOVIKO Yia avayvapion ewovag. TToAdd
KPUQQ ETIMESU UTOPOVV VO, EUTAEKOVTOL OOV TPOPOdOTOLVTAL dedopéva. Apol Tepdoet
oA to emineda, 1O dikTLO TOPAYEL Eval TEMKO dtdvuopo pe mlavotnta P i yio k4be
Katnyopia kKAdong tov poviélov pag (inference).

o | Pace
-} et
-
e -
— ] A0 e
1 ° o Paog
1 ° °
o -]
2 \s
convolution + max pooling vec : \E
nonlinearity L]
convolution + pooling layers fully connected la‘,rcrs. Nx binary classification
Tyfpa 2. Alodikacio EKTEAESNS EVOG VEVPOVIKOD SIKTVOV Y10 AVAYVAPLGT| EIKOVAG
Ilpokinoeis oty ektéleon vevpovikwy — To vevpovikd OiKTvo HTOPOLV Vo

AVTILETOTIGOVV TEPITAOKA TPOPANUHOTA GE S1APOPOVS TOUELS, OTTMG 1) OPAUGCT] VTOAOYIOTN
N M enelepyacio PLGIKNG YADOGGAS, OT®S avapEpape 101. QoTdG0, AVTEG 01 TPOCEYYIoELS
AVTILETOTILOVY TPOKANGELS KO TEPLOPIGUOVS OV EUTOSILOVY TNV TAN PN duvaTdTNTA KOt
v evpeia epappoyn tovg. Hopakdto, cuvoyilovue Tig KOPLES VILAPYOVOES TPOKANGELS
KoL TEPLOPIGLOVE OV GYETILOVTAL LE TNV £E0YYT CUUTEPACUATOV VEVPOVIKDV SIKTVMV.

1. Yroloyotikn) molvmhokdtnta: Ta vevpovikd diktva pmopel va glvar vToloylotikd

d0oKoAa, €0KA T Babid vevpwvikd dikTva pe HeyaAo aplBpd emmES®V Kot TOPOUETPOV.
H odwdwacia tov inference omottel tnv  eKTEAEOT EKTETAUEVOV — AEITOVPYIDV
TOALOTAQGIAGHOD TIVOKOV KOl 0EIOAOYNCEDV GLVOPTNCEMY EVEPYOTOINGNG, Ol OTOiEg
umopel va eivar ypovoPopeg Kol eVTOTIKEG ©€ TOPOLG, OOATEPO OE GULOKEVEG WE
TEPLOPICUEVT] VTTOALOYICTIKY| 1GYV.

2. Anoutioeic Mviung: Ta vevpovikd diktua Guyva amattody GNUOVTIKE VALY Yol TV
ATOONKEVOT TOV TAPOUETPOV TOV HOVIEAOV KOl TIG EVOIIUEGES EVEPYOTOMGELS KOTA TNV
eCayoyn ovumepacpdtov. Avtd pmopel va givor TPoPANUATIKO GE CLGKELEG e
TEPLOPICUEVOVS TOPOVG, OTMOG KIVNTE TNAEPOVO 1| EVOOUATOUEVO GLUGTNUATO, OTOV 1
YOPNTIKOTNTO UVIUNG EIVOL TEPLOPIGUEVT.

3. Evepyeloxn amddoon: H e€aymyn cUTEPACUATOV GYETIKA L€ CLOKEVEC TEPLOPIGUEVIG
000G, OTMG KIVITEC GLOKEVEG 1] GLOKEVEG ALYUNG, amoutel TPOoEKTIKY PEATIoTOMOINON
Yo TNV gvepyetokn amddoor. H Aettovpyla moAOTAOK®V VELPOVIKGOV SIKTO®V UTopel va.
eCavtinoel ypriyopa v umoatopio g ovokevns. Emopévmg, m elayiotomoinon tng
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KOTOVAA®ONG EVEPYELOG TNG OLOIKACTOG CUUTEPAGUATOV Elvar (OTIKNG onUaciag yio TNV
avATTLEN GE TPOYUATIKO KOGLO.

4. Latency: TToAAéC epappoyég amattovy TpoPAdyels yaunAng kabvotépnong. Qotodco, N
e€aymY] CUUTEPUGUATMOV VELPOVIKOV SIKTV®OV UTOPeEl Vo TPOKOAECEL KabvoTEPNOELS
AOY® TV OYETIKOV VTOAOYIOTIKOV omoutioewv. H peiwon tov ypdvov e&oywyng
GUUTEPACUATOV Y10 TV EMITEVEN GYEdOV OTIyoimV TPOPAEYEMY Elval L0 GNUOVTIKY
TPOKANGT, E0IKA OTAV EXOVUE VO KAVOLLLE LE LEYAAQ KO TOAVTAOKO LLOVTEAQL.

5. MéyeBog poviéhov: Ta Babid vevpwvikd diktvo umopel va givor apketd peydio 6Gov
a@opd Tov aplipd TV TOPAUETPOV TOL dtobETovY. AVTd dNUIOLPYEL TPOKANGES OGOV

aPopd TIC OmOUTAGES omobfKeLONS, HETAdOONG KOl UVAUNG kotd TNV e&oywyn
ocvunepacpdtov. H peioon tov peyébouvg tov poviéAov ympic onUAvVTIKY OTOAER TNV
axpifela etvorl évag Topéag £pEuvag GLVEXOVG EVOLPEPOVTOG.

6. Avantuén oto Gkpo: H avamntuén vevpoviKOv SIKTO®OV GE GUOKEVEG GTO GKPO, OTMG
smartphone, ocvokevéc loT 1 evoopotOUéEve CLGTHMOTO, TOAPOVCIALEL HOVOIIKES
TPOKANGCELS. AVTEC 01 GUGKEVES £X0VV GLVIBWE TEPLOPIGUEVOVS VITOAOYIGTIKOVG TOPOLG,
TEPLOPIGHOVS 16Y00G Kot dtokomTopevn cuvdeoipudtta. H anotelecpatikn npocappoyn
TOV VELPOVIKOV OIKTO®V (DOOTE VO, AEITOVPYOLV OTOTEAECUATIKA KAT® amd TETOL0VG
TEPLOPIGHOVGS glvar amapaitnTn Yoo TV avamTuén ayung.

7. Amoppnto kor acedieta: Ta vevpovikd diktva mov ekmondevoviol o€ gvaicOnta

dedopéva UTOPOVV va EYEIPOLV OVIGLYIEG GYETIKA [E TO AmOPPNTO KOl TNV OCPAAELN
Katd TN dwpKew g eEoymyng ocvumepacudtov. H mpootacio tov amopprntov TV
OedopEVOV XpNoTN Kot 1 amoTpom] KoKOBovA®V emBécemvy, Ommg 1 KAOTY HOVTEL®VY 1)
TOV BapdV TOVG, £IvVOL OTUAVTIKES TPOKATGELS TOL TPEMEL VO, AVTILETOTIGTOVV.

H avaykn yw evepyewokn amédoon kor oamodotikétntae: Kobng 1o péyeboc tov
HOVTEA®V TEYVNTNG VONUOGUVNG avEAvVETOL, avEdveTal kKol 0 apliudg TV omattoOUEVOV
AETOVPYUOV TTPOGPACNS GTN UVAUN. ZVYKPLTIKE, Ol VTOAOYIOTIKEG AELTOVPYIES OTMG Ot
VTOAOYIOUOL Tivoka Kot Tivoka-01vOoUaTog €ivol ONUOVTIKG TO  amodoTIKol amod
TAEVPAG eVEPYELOG O TIG AgrTovpyieg mpooPaocng ot uvhAun [16]. Otav eEetalovpe v
KOTOVAA®ON EVEPYEWS TNG TPOGPAcNS avAyvmoNng amd T Uviun &vavit Tov Tpacemv
npdcbeomng Kot TOAAATAAGIAGHOD, YiveTol TPoQaveG 0Tl 1 TpdSPacn otn wvnun omoutel
apKeTEC TAEELG PEYEBOVG TEPIOGOTEPT EVEPYELD OO TIC TTPAEELS VITOAOYIGHOV. Ady®m TG
adLVVANING TOV HEYAA®V OIKTO®V Vo yopéoovv oe amodnkevon oto chip, n cuyvotta
TV gvepyoPBopov tpocPacewv DRAM av&dveton onuoavtikd. Avtifeta, ot emtayvvtég
TEYVNTAG VONUOGHVNG UTOPOVV VO EVEOUATMOGOLV GUYKEKPUEVE GYESOOGTIKO GTOUKELN
OV OTOXEVOLVV ©TN MHelwon ™G ovyvdTTag TPOCPAoNS GTNH UVAUN, TNV TOPOYN
HEYOADTEPNG KPLONG UVAUNG OTO TOUWT KOl OTNV  EVOOUATOOY OTOKAEIGTIKOV
YOPOAKTNPIOTIKOV VAKOD Yio TN BEATI®OON TOV LIOAOYIGU®OV Tivaka-Ttivaka. Adywm Tov
OTL €lval €101KE KOTOOKEVOGUEVEG GUGKEVES, Ol EMTAYLVTEG TEXVNTNG VONLOGHVNG lval
O GLYKEKPIUEVOL GTOVG AAYOPIOLOVG TTOV EKTEAOVV, EMTPETOVTAS TOVS VA 0&L0TO0VV TIG
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OTTOKAEIOTIKEG AELTOVPYIEG TOVG MO OMOTEAECUATIKG GE CUYKPION UE TOVG EMEEEPYAOTEG
YEVIKIG XpNonG.

Relative Energy Cost

Operation Energy [pJ] Relative Cost
32 bit int ADD 0.1 1

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit loat MULT 3.7 37

32 bit SRAM Cache 5 50

32 bit DRAM Memory 640 6400

1 10 100 1000 10000
Yynpe 3. Metpiioels evépysiag yo texvoroyia 45nm CMOS ava npaén. [16]

Emtoyvvtéc CPU

Evo ou emtayvuvtég, ol omoiol avapEPOVTOL GTN GLVEXELX, VIEPEXOVY GTNV TOAPAAANAN
eneEepyacia dedopévov peyding kAipoaxog, otn Oekaetic tov 2000 oyedidotnKov
ovykekpipéva eEaptuata CPU, Bacilopeva otov popTo epyaciog Pivieo Kot maryvioimy.
Ot CPU dpyoav va vector extensions, onmg emektdoelg SIMD (Single Instruction,
Multiple Data), énwg to AVX g Intel kot to Neon g ARM. Avtéc ot odnyieg
enmutpénovv otic CPU va ektehobdv mopdAinies Aettovpyiec o€ moOAAAmAd oTovyeio
dedopévmv tavtdypova. Me katdAinieg Bektictonomoetg, ot CPU pmopodv va emtdyovv
OCLYKEKPLUEVOLG POPTOVG epyaciag Al edud 6TV 01 VTOAOYIGTIKES AMOITNGELS OEV gfvat
waitepa mapaiinAioes. Ot CPU givoan moAd amodotikég yioo DNN pe mopoaAinAiopo
piKpng M peocaiog kiipoakog, yo apotrd DNN kot og oevdpila pukpod pey€8ovg d0edopévoy.
A&ilel emiong va onuewwBel 0tL 10 €id0g TG emtdyvvong Al oto omoio avapepduacte
o6cov apopd tic Tpoceyyioelg mov Pacilovron oe CPU givan cuvnbmg cvpnépacua. "Evog
dAhoc AOyog v tov omoio umopel va mpotiudvtor ot emroyvviés CPU givor m
KaOLGTEPNOT TNG GLGKEVNG KEVIPIKOD VTOAOYIGTN OV €ivol MO EUEOVNG OTIS GALEG
ovokevég. [ToArol mpounBevtéc CPU mapéyovv cuykekpuéveg odnyieg youniod emumédov
Y v er@eAnBodv and tov maporiniiopo g CPU. T'a mapddstypa, n Intel a&romotel
10 Advanced Vector Extensions 512 (Intel® AVX-512) kot moAAEC oKOUN EMEKTAGELS
E01KEG Y10 TNV TEYVNTH VONUOGUVT, Ontwg Tig oonyieg DL Boost Vector Neural Network
Instructions (VNNI), ot omoieg evomoioOv tpelg eviorég oe pio. I'evikd, avtég ot
oTpoTNYIKES  PeEATioTOMOINONG  UEYIOTOTMOOVV TN XPNON] VTOAOYISTIKOV —TOP®YV,
BeAtidvouv ™ xpnom ™S KPLENG UVAUNG ME OTMOTEAEGUO OMUAVTIKY EVIGYLON TNG
amod0oNG. Zuumepacpatikd, 1 emtayvvon g CPU Baciletor oty emtdyvvon SIMD, 1
omoia. epopudletar otov M O T mwpootibetor (| agaipeiton amd) peydio apOpd
onueiov dedopévov. Avti n yprion twv odnyuwv SIMD emttpénetl v omoTEAEGLOTIKN
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TopAAANAN emeepyoacio kot umopel vo PEATIOOEL ONUAVIIKG TNV amdO00 T®V
aAyopiBumv mov mapovcstalovy TapaAinAiopd dedopévov. Qotdco, gival onuaviikd vo
onuelmdel 6t dev UmopovV VKoL Vo ETMPEANB0HV OAol ot adkydpiBuotl and to SIMD,
KoODC oplopéveg epyacieg pe TOALTAOKY pon UTOpel vo BETOLV TPOKANGELS Yo TN
napoAiiniomoinon. Qotdco, ot eeAilelg oV €pevva Kot TIC TEXVIKES YEWPOKIVITNG
vhomoinong avoiyouv 10 OpOUO Yl KOADTEPY, VLWOCTNPIEN KOl  OQLTOUATN
OlOVUGLOTOTOINOT)  OTOVG  UETAYAMTTIOTES, OoQUAIlovVTaG OTL 1 dLVATOTNTA TNG
emrdyvvong SIMD pmopel va aglomombei mo anoteAecuaTIKO 6€ £va EDPVTEPO PACLOL

EQUPLOYDV.

Emtoyvveéc GPU

H GPU cs&ivor évoc vmoloylotikdg emefepyootng TOv  €KTEAEL  yYpIyOpoOvG
VIOAOYIOHOVG Y10t 6KOTOVS amdd00NS £1KOVAG Kat Ypaptk®v. Ot GPU a&lomotovv teyvikeég
TOPAAANANG  emefepyaciag Yy Vo EMTOYOVOLV  TIG AELTOLPYIEC TOVLG. XTNV
TpaypaTikodtTnTo, optopéves and tic GPU vyming teyvoroyiog £xovv vymidtepo aplfuod
tpoviiotop and ™ péon CPU. H apyn micw amd t Aettovpyia Tovg givat o dtoywpiopoc
TOV EPYOCLOV GE WKPOTEPO TUNUOTO KOL 1 OOVOUN TOLG GE TOALAPIOLOVS TUPNVES
EMEEEPYOOTMOV, TOL GLYVE POEVOLY GE EKATOVTADES 1| YIAAOEG TVPTVES, TTOV AELTOVPYOLV
evtog g idwag GPU (CUDA cores). Iotopikd, ot GPU yepilovrav kuping tnv anddoon
2D xor 3D ewovov, Pivieo kot KIVOOPEVOV €IKOVOV, 0AAL TOPA TEPIAAUPAVOLY €vol
EVPUTEPO PAGHO EPAPUOYDV, TEplapfdvouy avdivon DL ko big data.

O moA0 peydhog aplfpog Tupvev N VILAT®V oL £X0VV QVTEG 01 GUCKEVESG PETAPPAleETal
oLYVvh o€ TOAD LYNAS TOPAAANMGIE OV glvat 1010HTEPA MPEALO Y10 EPYOCIES TEXVNTNG
VONUOoLYNG oL TTEPAapPavouy moAvTAokeg pabnuatikés mpdaéels, ommwg alyopiduovg
Babibg pabnong. o mwopddetypo, 0 TOAAOTAAGIOGUOS TIVAK®OV GTNV EKTOIOELON 1 TO
inference vevpovikdv diktdmv givar cuvnbiopéveg dadikacieg kar ot GPU umopodv va
Kévouv owtd 10 €1d0G Agttovpyiag moAd amotelecpatikd. EmimAéov, cuyvd dwbétovv
€10tk pvnun tyaiog tpocPfaong Bivieo (VRAM). H pdon tov epappoydv mov cuvimg
ektelobv ot GPU amaitovv onuavtikdé bandwidt pviunc. ‘Etor, 1 VRAM egivon éva mohd
ONUAVTIKO GTOYEL0 Kot TPEMEL VAL VAL QLGIKA KOVTA GTOVG VITOAOYIGLOVG Y10 VOL TOPEYEL
ogdopéva e vynAn amddooon otovg Tupnveg enegepyaciog g cvokevng. Extdg amd tig
VTOAOYIOTIKEG TG dvvatotnteg, ua GPU ypnoyomotel €£e101KELUEVO TPOYPAUUATIOUO
Y10 VO SIELVKOADVEL TNV 0VAALGN Kl T (P10 OEOOUEVMV.
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uler (32 thread/cik) (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispateh Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32INT3S2 FP32 FP32  FPos INT32INT3S2 FP32 FP32  FPea
INT32INTS2 FPS2 FPS2  FPss INT32INT32 FP32 P32 Frea
INT3ZINT32 FP32 P32 FPea INT32INT32 FP32 FP32  FPea
INT32INT3S2 FP32 FP32  FPes INTS2INTS2 FP32 FP32  Fred
TENSOR CORE TENSOR CORE
INT32INT32 FP32 P32 FPea INTSZINT32 FP32 FP32  FPea
INT32INTS2 FP32 FP32  FPes INT32INT3S2 FP32 FP32  FPea
INT32INT32 FP32 FP32  FPes INT32INT32 FP32 FP32  FPea

INT32INTS2 FP32 FP32  Fred INT32INT32 FP32 FP32  FPea

Lo/
s

- Warp Scheduler (32 thread/clk) a -heduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32INT32 FPS2 FP32  Fres INT32INTS2 FPS2 FPS2  FPe4
INT32INTS2 FPS32 P32  FPos INT32INT3S2 FP32 FP32  Frea
INT3ZINTS2 FP32 P32 FPss INT32INT32 FP32 FP32  FPea
INT32INTS2 FP32 FP32  FPes INT32INT32 FP32 P32  FPea
TENSOR CORE TENSOR CORE
INT32INTS2 FPS2 FP32  FPes INT32INT32 FP32 FP32  FPe4
INT32INT32 FP32 P32 FPea INT32INTS2 FP32 FP32  FPea
INT32INT32 FP32 FP32  FPea INT32INT32 FP32 FP32  FPe4

INT32INTS2 FP32 P32 FPea INTS2INTS2 EP32 FP32

Yynpe 4. Nvidia Ampere SM pmhok dvaypppa [17]

Emrayvviéc FPGA

Mw  ovotoyio emrtoémo  mpoypoppatiiopevav  moidv  (FPGA)  elvar  éva
OAOKANPOUEVO  KUKA®PO 7ov umopel v dwupopembel petd v kataokevn. H
Swpopemon Tumkd kabopiletar YPNOLOTOIDVING MU0 YADCOH TEPLYPAPNS LAKOV
(HDL) 1 yYA®ooeg vyniotepng apaipeons, 0mwe 1 ovvheon vyniod enumédov (HLS). Ta
FPGA amotelobvtalr amd pio GEPE  TPOYPOUUOTICOMEV®DY  AOYIKOV UTAOK KOl
EMOVASIOUOPPDOCIUOV S0GVVIECEMY, EMTPENMOVTAS TN oLVOESN TV TV UrAok Ta
AOYIKA UTAOK UmOpoOV vo. puOUIcTOOV Yyl Vo €KTEAOLV oUVOETEG GUVOVLOGTIKEG
Aertovpyiec N va Aettovpyovv g amiéc Aoyikég moreg dmwe AND kar XOR (Zynua 5).
[ToAré FPGA mepihappdvovv emiong ototyeio pviung péEGH 0TO AOYIKA UTAOK, TOL
kopaivovior and Pacwa flip-flops éwg mo olokAnpopévec povadeg uvqung. Avti
avadlopopeocun eovon emupénet oto FPGA va emavampoypoppotiovior yio v
VAOTOINOT  JPOPETIKOY  AOYIKOV  GUVOPTAGE®Y, EMITPEMOVIONS EVLEMKTOVG Kot
TPOGOAPHOGILOVS VITOAOYICTES TOPOLOLOVS LE TOV TPOYPOUUUATIOUO AOYIGUIKOV.

[T ovykekpyéva, ta FPGAs, mépa and 10 va givorl oamddg po oepd omd TOAEG,
dwbétovv éva  efeAyuévo  SIKTLO  OLUGLVOEOEUEVOV  YNOPLOKADV  LITOKLVKAMUATOV,
oxeOOGUEVO e akpifelo Yoo Vo eKTEAEl OOTEAECUATIKA KOWES AELTOLPYIEG KOl VO
napéxet vynAn eveléio. Ta FPGAs amotelobvtan kupimg amd 3 pépn:
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* Awpopeaactpo. Aoykd Mok — Emv Kapotd TV SUVOTOTITMV TPOYPOULOTICOMEVIG AOYIKNG
evoc FPGA Bpioketon o cudoyn omd dopopeaactpe Aoywd pmok (CLBs) mov viomotoby

Aoyikég Aettovpyieg.

* Tpoypappomilopeves Awouvdéoel; — Ta CLBs péca oto FPGA ypeidlovton emukovavio
UETAED TOVG, 1 OTTOL0L EMITVYYAVETOL LEG® EVOS TALYUOTOS TPOYPOLUOTICOUEVDY OLIGVUVOEGEDV.

* [Tpoypappoatilopeva Mmhok Eio660v/EE6600 — Mo va cuvdeBoiv pe eEmtepikd KukAdpoTo, To
FPGAS dwBétovv poypoppomilopevo Lok e160000/e£000v.

Programmable
Interconnect

Yympo 5. Ecotepucn dopn evég Xilink FPGA [22]

Emwwoyvvtéc ASIC

‘Eva EEedwcevpévo OlokAnpopévo Kokhopa (ASIC) etvar éva ohokAnpopévo kdximpa
(IC) tout TPOGAPHOGHEVO Y10, L0 GUYKEKPLUEVT XPNOT, Y10 TOPASELYUO TNV EMLTAYLVOT
HOVTEA®V TEXVNTNG VONUOGHVNG. ZuvN0mg TTEPEYOLV VOV GLUGTOAIKO TivaKa, O 0moiog
amoteleitan omd Eva peydrlo dikTvo PaciK®V VITOAOYICTIKGOV KOUPwV, TOL pmopel va eivot
glte evolpuatol gite SopopeoUEVOL PECH AOYICUIKOD Y10 GUYKEKPIUEVES EQAPUOYES.
Avtoi o1 kopPor givor cuvnBmg otabepoi kot wovopoldTLmol, evd 1 dacvvoeon HeTalh
Tovg glvol mpoypoppoTiCopevn. Xe avtifeon pe v TopadocloKy apyLteKTovikny Von
Neumann, omov m &kTéAEcT] TOL TPOYPAUHOTOS OakoAovOel HwL GEPE  EVIOADV
amofnKevpéveVY Gg Kowvn pvnun, dtevbuvopeves vd Tov petpnty poypdppatog (PC) g
CPU, ot pepovopévotl koppot pésa oe £vav GuGTOAMKO Tivaka £vepyoTolovvToL amd TNV
4piEn véov dedopévov kot emeEepydlovior ta dedopéva e cvvemn Tpomo. Adym g
KOVOTNTAG TOL VO YEPILETOL TOAMATAEG POEG OEDOUEVOV HECH PETPNTAOV JEQOUEV®V, O
GLOTOMKOC Tivakag vrootnpilel mapdAAnAn enelepyacia dedopévey. Avtd emTpénel
OTOV OLOTOMKO Tivako vo emeEepydleton amodOTIKA TOAAUTAEG POEG OEOOUEVMV
TOVTOYPOVOL.



Extended Abstract in Greek = 161

Yndpyovv mOAAEG ovokeLECG mov €yovv  avamTvyBel omd dudpopec etorpeieg Kot
opyavicpovg kat ta&tvopovvral wg emtayvuvtég Al ASIC. O o onpo@iing péypt onuepa
eivan o TPU (Tensor Processing Unit) tng Google, o omoiog popdletor moAhd Kowvd
YOPOKTNPIOTIKA [E TOAAOVG EMITOYLVTEG TG 1010¢ Katnyopiac. H Google avéntvée tov
oo ¢ e€artopkevpévo emtayvvti Al ASIC, tov TPU, yia va emtoyvvel ta goprtio
gpyaciog unyovikng padnong, wiaitepa v ektéreon vevpovikdv otktowv. Ot TPUS
YPNOUOTOOVVTIOL EKTEVAOG o010 KEvipo dedouévov g Google ywo va emttoybvouvv
duapopeg epappoyéc Al. Evoouatdvouv e£101KeLIEVA YOPOKTNPIOTIKA OTWG 1| LOVAdaL
noAlamAactacpoy mvakeov (MXU), mov Beltictomolel ocvuvbeteg Aettovpyieg mvaKmv
ovyvé pe v ypnomn uvnung vymang toyvmtoag (HBM). Avtol ot TPUS pmopodv va
opadomombobv oe cvumAéypoto yvootd o¢ Pods, emttpémovtag klyuaxoduevn Kot
EMITAYVVOLEVT] EKTOIOELON Kol €KTEAEON HUNYOVIKNG udOnong. Ot TpoypopHOTIoTEG
a&lomotovv TPUs oto cloud xabd¢ kot oto edge yioa vo emoeeAnbovv omd vymin
amOd00T, ATPOCKONTESG OUOIKAGIES OVATTLENG KOl OTKOVOULLKT OtOd0TIKOTNTA.

14 GIBI ' MGIB’. 30 G!Bls
> -
Interfaces (Wolght Fetcher)
- g il
—] = —>

Matrix ,‘;llllply —_— L
Unit
14GiBls 14GiBls %','f."c S8, (64K ponrcyclo) ¢ l

=D | = S
-y

tup
- ] [ Partial Sums
167 GiBls
— 3] 1Pool
[] oscnipro Done
=l ie—a

[ computation
Ceetrol

PClo Gon3 x16
Interface

Host Interface

L

Systolic matrix multiply

Not 1o Scale

Yynpe 6. O emrayvvtiic TPU g Google kar n Asttovpyia Tov.
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O poroc Tov Approximate Computing

H amotvuyia g kApdkwong Dennard odnynce oty eugdvion tov "mpoPApatog Tov
oKkoteoL Tupttiov” [29], avaykaloviog Toug oxedIoTEG VITOAOYIGTAOV Vo, EEEPEVVIIGOVY
KOWVOTOUEG TPOGEYYIGELS Y10, VO S10TPTICOVV KOl VO BEATIOCOVV TNV a0d0TIKOTNTO TOV
VTOAOYIOTIK®Y CLGTNUATOV. XTOV TOUEN TMOV VTOAOYIGT®V, OovVadelyOnkav apketd
TPOTOTOPLOK( TOPASETYHATO KOl TNV TEAEVTAi dekaeTio, (o amd TG o aElooUEIWTESG
eEeMéelc éxer mpaypatorombel oty €pesvva yuoo v Ilpoceyylotiky] YmoAoylotikn
(Approximate Computing). H mpoceyylotiki vroloyiotikny meptAapuPavel Texvikég mov
EKUETOAAEDOVTOL TNV €YYEVI] OVOEKTIKOTNTA COOAUATOV OAPOP®V EPAPLOYADV YO, VO
EMTOHYOLY AVENUEVT OTTOSOTIKOTNTO GE OPOLG EVEPYELNG KO OTOS00NG G€ OAOL TOL EMITES QL
TV vroAoyiopav. Ot gpapproyés Al mpoceépovv mTOAAEG gvukapleg Yoo TNV €QPAPUOYN
teyvikmv Approximate Computing A6y® Slapop®v TopayovVTImV:

* Eyyeviig AvBekticomnto Zeoipdtov: TloAdég epyacieg Al ovyvd meptlapfdvovv
owyelpon peydAwv cuvolmv dedopévev Kot chHvOeTv HoviEA®Y. AVTéG ol epyacieg
Tapovctalovy éva eminedo £yyevois avOEKTIKOTNTOS COOAUATOV, TOV GNUOIVEL OTL LKPES
AMOKAIGELS GTOV VITOAOYIGUO N TPOGEYYIOELS EVOEXETOL VO UMV EXNPEACOVY CNUAVTIKE TN
GUVOAIKT] TTOLOTNTO TOV OTOTEAEGUATOV.

* IIpocéyyion Acurtovpyiwv: Ouv gpyacieg Al ovyvd meprihapfdvovv v mpocéyyion
GUVOETOV AEITOLPYLDOV Y10 TN LOVIEAOTOINGT TPOTOTTWV KOl GYECEWV LEGH GTO dEGOUEVOL.
Ot 1eYVIKEG TPOGEYYIOTIKAOV VLTOAOYICU®OV UTOPOHV VO, EPUPUOCTOVV GE OVTEC TIG
TPOCEYYIGES, PEATIGTOMOUOVTOS TV OVTOAAQYY] HETOED OKPIBENG KOl VTOAOYIGTIKOV
TOPOV.

* Yroroyiotikn ‘Evtaon g Al: Ot epappoyéc Al wwitepa ta povtéda Padidg pédnong,
pmopet vo eivor VTOAOYIGTIKG EVTOVES, ATOLTMOVTOG GNUAVTIIKOVS TOPOLS YO TNV EKTEAECT
Kol TV ekmaidgvon. Ot TeQVIKEG TPOGEYYIGTIKAOV VTOAOYICUDV UTOPOVV VO LEUDGOVY
ONUOVTIKA OVTEG TIG VTOAOYIOTIKEG OOLTIOELS Y®Pig va vtofaduicovy v moldtnta TV
amoteAecudTOV, KooTOvVTag TG €Poppoyéc Al mo amodoTikéG KOl OUKOVOULKA
OTTOOOTIKEC.

* [Tapaiinhouog kow Emrdayvvon Yiwko0: Ta goptia epyacioc Al cvyvd mpocpépovral
KOAG Yoo TopAAANAN emeepyacio Kot emttdyvvon vVAKov. Ot TEYVIKES TPOCEYYIGTIKOV
VTOAOYICUADV UTOPOVV VA €POPUOGTOVV OMOJOTIKG O TOAPAAANAO VTOAOYIGTIKA
GLGTNUATO KOl EEEOIKEVUEVO DAIKO, EVIGYVOVTOG TEPULTEP® TO OPEAT TOLG GE OPOVG
AmOO0CNG KOl EVEPYELNKNG OITOOOTIKOTNTOG,

* Yvomuata Ilpaypatikod Xpovov kot Evoopoatopéve Xvotiuoto: Xe oploHEVES
epapuoyés Al, 6mwg avtég G€ GLOTHUOTO TPOYHOTIKOD YPOVOL 1 EVOOUATOUEVO
GUOTNHLOTO, Ol TEPLOPIGHOL 10YVOC Ko TOpwv eivan kpioyes mapapetpol. Ot texviKég
TPOGEYYIOTIKAOV VITOAOYIGUAOV UTOPOVV VO OVTILETOTIGOVY AVTOVS TOVS TEPLOPITUOVG,.
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* Enpdvion YAkov Xauning Axpipelag: H mpooeyyiotikol vrodoyiopol evbuypappiletan
KoAG pe v tdon avamtuéng e&edikevpévov vAkoD yapnAng axpifetog yio to Al Té€toto
VMKO pmopel v EKUETAALEVTEL TNV TPOCEYYIOTIKN oplOUNTIKY Yol VoL EMLTOHYEL LYNADTEPT
aOd00T KOl EVEPYELNKT ATOJOTIKOTNTA GE CUYKPLON UE TIG TOPAUSOGLUKEG TPOGEYYIoELS
VYNNG akpifetoc.

* BveMéia Avtoarlayov: Ot epapuoyég Al cvyvd meptlapfdvouv moAdTAOKES avTOAAOYES
peTaEy akpifetog, amdooong Kol KOTOVIAMONG EVEPYELNS, EMOUEVMOG 1| TPOCEYYICTIKN
aplOuNTIKN umopel va, eMTPEYEL TNV EEEPEVVIOT ALTOV TOV OVTUALAYDV.

Yyeolaon Emrayvvrav Yakoo BaOwac MaOnong

Ye outn TNV €vOTNTO, TOPOLGLALOLUE ML AETTOUEPY] OVAALGON TAOV TEYVIKOV
BeAtioTonoinong Aoyiopkoy kot vAkov mov gpapuolovror oe Babid Nevpovicd Alktva
v amodotikn ektédeot. [lapovoidlovpe Tpelg eQopuroyES, TPELS SlaKPLTES epyacieg Al,
He  AemTOUEPEIEC  VAOTOINOMNG OYETIKA HE TNV  EMTOYVVON  (PNOCLUOTOIDOVTOG
emavadlopopemdcio VAko (FPGA). Akduo mpoteivovue S10popeg PEATIGTOTONOELS YL
éva. ohokAnNpouévo mEPIPAALOV yloo TNV OLTOMOTN EMITAYLVON TOV GLVEAMKTIKOV
vevpovik®v Owktoov oe FPGAS kot defyvovpe v amddocn Tov HECH Ol0pOpmV
TEPALATOV.

Emtoryvvouevn ovalnmnomn opotdtnToc SIVuGUATOV LEGH ELPETNPIOV

AVt M EVOTNTA TEPLEXEL TO TPOTO OO TO TPIOL GEVAPLN GTO OTOI0 YPNOUOTOMGOUUE
FPGAS yia emtdyvvon Al. Zvykekpyéva, apopd pia véa evoopdtoon tov FPGAS 6to
dnuoeréc mhaioto FAISS (Facebook Al Similarity Search) [76] yio tqv emttdyvvon tov
alyopiBuov avalntmong opototntag. ‘Evoc and tovg mo onupaviikodg aryopifuovg ot
Mnyaviki Mdbnon mov ypnoomoteitan yio v eKtédeon ovalnTioemy opodTTag etvot
o olyopiBuog K-Nearest Neighbor (KNN). O aAdyopiOuoc ovtdc Ppiokel ektetapévn
YPNON OE €PYACIEG OMMOC 1 TPOYVAOGTIKY OVAAVLGT), 1 KOTNYOPLOTOINoT KEYWEVOL KOl M
avayvoplon eovag. Qotdco, autodg 0 aAyopdpog Epyetat pe évav copfipacud, cuyva
OTOLTMOVTOS CNUOVTIKOUG VLTOAOYIOTIKOVG 7Opovs. [ va  aviipetomotel ovty 1
TPOKANON, HeYAAES eToupeieg oL dlayelpilovtor peydio cOVOAL SESOUEVMV GE GLYYPOVOL
kévipa dedopévov ovvovalovv v texviky KNN pe aAdyopilBuikég mpooeyyioelg,
EMTPEMOVTOG TOV LITOAOYICUO KPioU®V QopTivv epyaciag oe mpaypatikd ypovo. Ilap'
OA0L 0T, Ol OMOLTNAGELS VLTOAOYIGHOL KOl 1) KOTavAA®on evépyelag av&avovtol
TEPOLTEP® OTAV TPOKELTOL Y10, EPMTNUATO VYNANG SLAGTACNG Y0 TOVG TANGIEGTEPOLS
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yeitovec. Ze avtn TN HEAETN, TOPOVCIALOVUE U0 KOVOTOUO TTPOGEYYIoN: £VOV DAKO-
emtayvvopevo Katd mpocéyylon adyopidpo KNN evoopoatopévo oto mepipdirov FAISS
péco miateoppuov FPGA-OpenCL. H apyitektoviky FPGA oe avtd 10 mAaictlo
VTILETOTICEL ATOTEAEGUATIKA TIG TOAVTAOKOTNTEG TNG EVPETNPIOCTG SIUVVUGUATOV KATH
TNV EKMOIOELON KOl TNV EVOOUATOOTN OEOOUEVOV HEYAANG KAIHOKOS Kol VYNANG
owdotaone. H mpotewvopevn Abon oalomotel por HOPPN) EVOOUOTOUEVIG  HVIAUNG
Baciouévn oe FPGA, n omola Eemepvd To TOALTUPNVO GUGTHUATO VYNANG amddooNg
TOG0 GE TOYVTNTA OGO KOl GE EVEPYENKT AmOSOTIKOTNTO. T EUTEIPIKE TEPALATA TOV
npaypatonomdnkay  oto FPGA  Xilinx Alveo U200 omokGAvyav onUovIIKA
aroteAéopata. H emtdyvvon mov emtevydnke sivon £mg kot 98 popég tayvtepn and Evav
HOVOTTOPNVO EMEEEPYAGTI] OTOAV YPNOLUOTOIEITOL LOVO O ETITAYVVING, KOl 1] TAXOTNTO TOV
GLOTAHOTOG amd Akpn o€ akpn PeAtiddnke katd 2,1 @opég oe ocvykplon pe &vav
eneEepyaotn Xeon pe 36 vipata. Emmiéov, n anddoon avd fat tov vAkol mapovctalet
afloonueiom avénon katd 3.5% ce ocOykpion pe tov 0o emefepyaoty ko 1.2x og
obykpion pe po GPU katnyopiag Kepler.

Agrrovpyia Tov FAISS

To FAISS a&omotet o mowihio pefddmv oxedlacuévemy yio Ty eKTELECT] avalnTnoE®V
OHOOTNTOG G€ TUVKVE OVOGHOTO TOL TEPLEYOLV TPUYHOTIKEG M axépateg TéS. H
vrokeipevn doun tov FAISS meplopPdver ™ ypnon Seopwv  TPOGEYYIcEMV
gupenpiaong yw v amobnkevon OVLUGUAT®V, KOl O VTOAOYIGUOG TG OmOCTUONG
nepriopPavel moAlamdég petpikéc. H emdpevn viomoinon pag, m omola mweptypdoetot
otV akolovdn mopdypapo, eotidlel ot ypnon g evpetnpiaong IVFFlat og pa
AVTITPOCHOTEVTIKT TEPITTMOON ¥PNoNG (KOTAAANAN Yo cevdpla vynAng axpifelog), aAld
0 oyedloopoOg Pmopel evKOAOL v EQOPUOGTEL 68 GAL0 eupeTNpla OTtmwg To IndexIVFPQ.
o va kaBopiotel mown otoyeion Tov Faiss mpémer va d00ovv mpotepatdOTNTA Y1o
VAOTTOINON G€ VAKO, TPAYUATOTOMONKE Lol OAOKANPOUEVT] TPOPIA TOV TTEPPAAAOVTOC.
Avt N evotnrTa EeKval pe TV TTEPLYpapn NG O10IKAGING TOV EUTAEKETOL GTO AEYOUEVO
profiling, xatéd tnv omoia emAéybnke 1o evpetnpro IVFFlat o¢ avimpocmmevtikn
TEPIMTOON YPNONG. XTN GLVEYELD, TPocsdlopiletan o alyopiBuog viwkov, poali pe Tig
BeltioTonomoelg mov mpaypotomromnkay TOG0 GTNV TAEVPA TOV KEVIPIKOL VITOAOYICTH
0G0 Kot TNV TAELPE TOov VPNV Yo TN PeATIoTOmOINGN NG SOMEPATATNTAS KOL TNV
gloloTomoinoT TG cLVOAKNG KaBLoTEPNOTG oYXedaGHOV. To TedevTaio HEPOG AVTNG TG
evomrag e€etdlel 10 véo Tpocapprocévo TepPaAlov. Avtd 10 TAAIGL0 PN GIULOTOLEL Eva
FPGA pe PeAtictomompuévo oynuo HETOPOPAS UVIUNG OV EVOMUATMOVEL OmpOGKOTTO
TOVG GYESUGUEVOLG EMITUYVVTESG LOG Y10 VO eEacPaAoEL EAdyIoTN KabvoTEPT O KATA TN
OLAPKELN TOV GUVOAAAYDV LVAUNG.
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Agrtovpyleg OV KATOVOADVOLV TO HEYOADTEPO UEPOC TOL YPOVOL EKTEAECTC OITOTEAOVV
KatdAAnAovg vroyneiovg v ekeoptwon kot emtdyvvon oe FPGAs (BAéme Zynuo
Figure 3-4). Ta amoteAéopato tov profiling amoxdAvyov o611 T0 pEyoAVTEPO
VTOAOYIGTIKO (POPTO TPOKVMTEL KATH Tr ONUIOVPYIQ TOL ELPETNPIOL Kot TNV TPOGHNKN
dedopévev oe owtd. Avtd oydel akopo kot Otav egetdlovpe pétpleg avalntnoelg
EPOTNUATOV 7OV TEPIAAUPAVOLY HEPIKEG YIMAOEG StovOoUOTO. AVTO TO QUIVOUEVO
opeileTal 6TO YEYOVOG OTL, EVD 1 KATO TPOGEYYIoN avalnTnon TANGLEGTEP®Y YEITOVMV
elval 10witepa. amOdOTIKY, OMOLTEL EKTETAUEVOVG YPOVOVG EKTOIOEVONG, €101KE OTOV
OmoLToHVTOL TOAAOMAG ONUEI CLGCOUATOONG YO TN OEYUATOANYIO TOL GLVOAOL
dedouéVmY. ZNUEIOVETOL OTL O OAYOPIOUOG EKTAIOELONG EVOMOUATMOVEL TOALAPIOUES
Aertovpyieg TToAhamhactacpob-IIpdcbeong (MAC), 11 omoieg To Faiss exteAel avti
oTiyun ypnotponmolwvtog Pertiotonomuéveg povtiveg BLAS yia CPU amd mpoemidoyn.
AgdopEVOV TOV KLPlOPY®V YOPOKTNPIGTIKOV oUTOV TV oAyopiBuwv, eivor mwoAd
ocvvnbispévo va avtiotoryilovial o€ VAKO, AOY® TOL VYNAOD AOYOL TV aPOUNTIKOV
AELTOLPYLOV TPOG T, bytes Tov HETOPEPOVTAL.

m Train = Query Add_List = Other

Yynpe 7. Katavop vroloyistikov géptov oto svpetiipro IVF (Flat)

Amoteréopato

INa va aglohoynoovpe tov oyedlacud, emaindedoape v akpifela Tov emttayvvT Kot
TOGOTIKOTOMGAE TNV ATOO00T TOV. XTN GLVEYXELD, LETA TV evomudtwon pe to Faiss,
TPUYUOTOTOMOAUE OEWOAOYNGELS TNG aKPIPelog Kol TG omodoTIKOTNTOS TOV TEALKOV
GLGTNUOTOG YPNOLUOTOOVTOS OEO0UEVE. amd TOV  TPAYHOTIKO koOcpo. Emmiéov,
LETPNOOLE TNV EVEPYEWNKN OMOOOTIKOTNTO GE CUYKPLON HE EVOAAOKTIKA GLOTNUOTO,
omwg ot dapoppwcel CPU kot GPU. H dapdpomon tov cvotiuatog £yve oe OpenCL-
FPGAs, ypnowonmoidvtag cvykekpipuéva o kapta Xilink Alveo U200 vy xévipa
dedopévav, eEomAopuévn pe téocepa kovaio DDR4. Avtd cuvovdaotnke pe Eva KEVIPIKO
ocvotnua wov ypnoonoovce o CPU Xeon. T puo ohokAnpopévn cOykpion He o
vynAng amddoong CPU, emhé€ope o mepintmon c4.8xlarge and 1o AWS Cloud,
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eEomiiopévn pe o CPU Xeon pe 36 vCPUs kon 60 GiB RAM. A&oonueiota, avt) 1
nepintmon €xel 16odVVapo KOoTOS (avd mpa) pe po tepintoon fl.2xlarge mov Sabétet
napopowo FPGA, to VUIP. Erumdéov, yuo v ek agloddynon g amddoons Tov
TEAIKOD GLGTNUATOG, OELOAOYNGALE TNV OTOSOTIKOTNTO GE OPOVG ATOS0oNG oVl watt 6g
ovykpion 1660 pe v 101 CPU 660 kan pe o GPU kldong Kepler K40. O oyedioopog
tov vAMKoV FPGA peyiotomotei t yprion 6Awv tov DDRs kot a&lomotetl BéEATioTa TOVG
mopovg evtdg kdbe SLR. Qot6c0, 0 KUPLOC TEPOPIGUOC Y10 TEPOUITEP® KAUAKWOGON
gykertal omn dpopordynomn petosy tov piwv SLRs. H yprion moépwv evdg pdévo mopnva
ot cvokev] FPGA meprypdoeton 6T0o mapokatm mivaka.

2Ovoyn YpNoNs TOPpmV

Name BRAM DSP FF LUT
Total 502 1036 156137 89206
Percentage (%) | 11 15 6 7

MMivakag 2. ITépor ava wupiiva oto FPGA

To mopaxdteo oynuo omewovilel TN  ONUOVTIKY —EMTAYLVON TOL  EMTEV)ONKe
amoKAESTIKA amd Tov emtayvvt) FPGA, pe Bedtuvoelg mov gtdvouv mepinov 98 @opég
v peyoAdvtepa peyeédn kelwv. To BELog delyvel Tn HEYIGTN EMTAYLVON TOL EMTEHYONKE
o€ ovyKkplon pe évav povorvpnvo eneepyact) CPU. Avtd mpoxidntel omd to yeyovog 0Tt
Y TEPLOCOTEPO KEAMA, M EMIOPOAOT TNG HETAPOPAS dedOUEVDV Elvar MYOTEPO EUPOVTG.
A&iler va onuewmBel 6t  yapunAotepn TN 0mod0TIKOTNTAS, 1 Oomoio cvpPaivel yia
nepimov 500 keMd kol kdtw, dgv emnpedlel ™MV CLVOAIKY] amdOOGT TOL aAyopifuov.
>uvnbwg, og mpaypatikd datasets, £101kd o€ peyaAHTEPA TOL YPNGUYLOTOLOVVTOL GE KEVTPO
dedopévary, too kutTapo Voronoi givor mOAAOTAGGIOL TV YAAO®MV Y10l TKOVOTOWTIKT
GLGGMPELON, AKOUA Kot Yo Eva PETplo dataset Tov £vog exatoppvpiov.
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Yynpo 8. AToteleopoTikoTTO TUPT VA OVE KOTTAPO VOronoi
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Axoua, mopovotdlovpe kot v amotedecpotikotnto o GFLOPs/Watt oe oyéon pe
GALES OPYLTEKTOVIKEG,.

21.8 loFPGA
0o gru
20 0o cpu

GFLOPs/Watt

10

6.2

ot

Yyqpa 9. Amr6d0on KATOVAAMONG EVEPYELXG.

Ta gvpuatd pog deiyvouv 0TL 0 emToyLVTNG Kag vepPaivel Tig duvatdtteg woag CPU
Xeon pe 36 vipdrov. Emmiéov, emdeikviel avateprn amddoon ava watt oe chykpion Kot
pe v 0w CPU kot pe wo GPU «hdong Kepler. Avtd vmoypoupiler v
OTOTEAECUOTIKOTNTO  HOG TPOCEYYIONG KOIKOTOINGNG AOYIGUIKOV/VAKOD Yoo TNV
OVTILETMOTIGT TOV OTOLTICEDV TOV POPTIOV EPYAGING GTO VTOAOYIGTIKO VEPOGS, EOIKA GE
oevlplo Omwg ot ypovol deiktn v mpooeyyiopévoug aryopifuovg KNN. H avénuévn
amdO0on Kol OmOOOTIKOTNTO TOV  OYESWIGUOV  HOG  KPOTd TO  OLVOUKO  va
emovanpocdlopioel ™ ypron tov vVAkov FPGA oe mepidAiovta vEQovg kot PEYAAQ
KEVTPO OEOOUEVOVY, AAUPEvovTag LTOYN TN GNUOGI0 TNG EVEPYELNKNG AMOOOTIKOTNTOS GE
ALENUEVES ATOUTNOELS POPTIOV EPYOGTOG. XV LEALOVTIKOC GTOYOG, TPOKEUEVOL VO AVOEl
10 TPOPANUe uvAung yio datasets oe Sioekatoppdplo Katoywpnoels, 0o omortnOei n
dtovopun g epaproyns o€ évav aptBpd moilov FPGA. O adyopBuog pog oxedtdotnke
LE TPOTTO MOTE 1) KEVIPIKT EQAPLOYY| VO Uopel EDKOAN VoL SLOVEULEL TOL OEQOUEVO Kot £TOL
10 @optio gpyaciog o évav aplBud FPGA oto vépog 10 omoio Adym meplopiopévng
VTOOOUNG TNV TTEPIOAO TNG LEAETNG OEV UTTOPOVCALE VO ETLTUYOVLLE.

Emtayvvousvn avoxkortooksun swovoc o GANs

Avt| 1 evotmro meptapPdvel 1o devTEPO OO TO TECGEPO GEVAPLOL OTO. OTOio
ypnowonomoope emtdyvvon FPGA yia v extéleon g te)vnIG VONUOGLVIG.
AxpPeig ka1 amodotikoi aryopiOuot Mnyavikng Mdabnong éxovv peydin onupocio ce
Olapopeg TPOKANGELS, 10img o gpyacieg mov agopovv tasvounon. To teievtaio
dotno, £xel epeavioTel pa véa kotnyopio Mnyavikng Madnong yvoot og I'evvntcd
Avtayoviotikd Alktva (GANs). Ta GANs Asttovpyohv ypnoILoToldvTos 600 VEVPOVIKA
diktua: éva dnuovpyikd diktvo (yevvhtopag) Kot €vo Olakpltikd SikTvo (O1aKPLTNG).
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AvTd To OTKTLO, CLUUETEXOVY GE LU0 OVTAYOVIGTIKN O1001Kacio e 6TOYO0 TN onpovpyio
véwv dedopévav, onwg eikoves. o mapdoetypa, éva GAN umopel vo avaKoToOoKEVACEL
pio eiéva Tov €ival TOPOUOPPOUEVT amd BOpVPo 1N TEPLEYEL KATEGTPAUUEVE TUNLOTO.
Avtl M évvoln  OVOKOTOOKELNG EKOVOG €YEl TOKIAEG e@apuoyéC otnv  Opaon
VTOAOYIOT®V, TNV emawénuévn mpoyuatikdtto, TNV  oAANAenidpoocn avOpdmov-
VTOAOYIOTH, TNV KIVOVUEVT] EKOVO KOl TNV 0TPIKN EIKOVIKT TPOAYUATIKOTNTO. 26TOGO,
vt M OAYOPOIKY TPOGEYYIoN oamottel Evav onuovtikd oapldud Aettovpyiwv MAC
(TOAOTAOGIOGLOC-TPOGOEST]) KOl KATOVOAMDVEL CTILOVTIKT EVEPYELD Y10 VO AELTOVPYNOEL.
Xe oAV TV €VOTNTO, TEPLYPAPOVIE TNV VAOTOINGN €VOC OAYopiOLOV avVOKOTOGKEVTG
ewovag pe ypnon GANs. E1d1kotepa, ETIKEVIPOVOLOGTE GTNV EKTOIOEVOT) EVOG LOVTELOL
Y10 TV OTOKOTAGTACT] EIKOVOV POVY®V YPNCULOTOIMVTAG TO GOVOAO dedopévmy fashion-
MNIST g nepintwon perétng. EmmAéov, spapuodlovpe kot ferticTonotodpe ovtodv TOV
aryopOpo oe éva Xilinx FPGA SoC. Avutég ot mhat@opueg £xovv emdeifel onuavTikn
KOVOTNTO GTNV OVIHETOMTION TETOLMV TPOKANGE®V OGOV a@opd TNV amdd0cN Kot T
owyeipron g evépyeng. H oyedacuévn mpocéyyion vreptepel eniong o oyéon He TIG
puOuicerc CPU kot GPU, emtuyydvovtag éva HEGO XpOVO OVOKATACKEVTG TV EIKOVOV
0.013 ytiootd T0L OVLTEPOAENTOL OvhL €OV Kot €va HEYIGTO AOYO GNUOTOS TTPOG
8opvPo (PSNR) towv 43 dB omv kBavtikn pubuion tov FPGA.

210 axoAovfo Zynuo, UTopOVUE VO TOPATPCOVUE TNV ATMOAELD TOV ETITVYYAVETOL Y10
TOV JLOKPITH Kol TO VEO HoviéAo yevwntplag. Emiong, oto kdtom pépog touv Xynuatog
UTOPOVUE VO SOVUE TNV €VPOG TOPAUETP®V Y10 KABE oTpOU OT®G amokTHONKe and TovV
mepopopd MinMax.
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Xypo 10. Amotehéopoto Exmaidgvong (smavo: Amdieio yio 1o Atokprtiy kor 70 Movtého g
Tevtprog, KATM: €KV TOV €0POVS TaPANETPMV 6¢ KAOE eminedo)
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H mopokdto exdva mapovotdler pioe GLAAOYY Omd  SLOQOPETIKEG EIKOVEG TOV
KOTOYPAQNKAY KOTA TN OIIPKELN KOl TOV OPYIKOV Kol TOV TEMK®OV EMOYDOV EKTOAIOEVLONC.
Eppovog, Katd v apyikn enoyn, To KATo HEPN TOV EIKOVOV (TOV amoTEAOVY TNV ££000
OV ONUOVPYELTAL ATO TO HOVTEAO TNG YEVVITPLOG) QOIVETOL GOV VO ATOTEAOVVTOL 0o
tuyaio B0pvPo. Qotdc0, KaTd TNV 0AOKAP®SN TG emoyng (0e&1d), ot TapoLGLalOUEVEG
EIKOVEC OTOTEAOVV 0L GUAAOYY] OAOKANPOUEVEOV GOVOA®DV povY®V, LE LEYAAT OLOLOTNTO
LE TTPOLYLLATIKA POVY QL.
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Yypo 11. Arotedéopotao TNG YEVVIITPLOS Y10, TV OVOKOTOOKEVT] EIKOVOS amté TV TpAOTn (0.pLoTtepd)
KoL TV TerevTaia (0e1a) emoyn.

> ovvéyela, aglohoyovpe kot avardovpe v epapuoyn pog. H a&oldoynon pog Oa
EeKvhoel Pe pio €£€TOON TOV OVOKOTOOKEVOGUEVOV EIKOVAOV TOV TPOKVTTOLV OO TO
povtého GAN 010 LMKO, GULUTEPIAOUPAVOLEVIC HOG GLYKPITIKNG HEAETNG TOV
ocQoApdtov o Owdpopeg axpifeleg bit. Emummdéov, Ba mapéyovpe oaoAdynon g
AOd00NG TOV EMTOYVVTN LAKOD, TG ¥PNONS TOP®V Kol TNG OTOOOTIKOTNTOS EVEPYELNG.
Avt 1 a&ordynon Ba cuykpBel pe dAleg TAATPOPLLES.

Input half image

" FPGA output
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"
=
Software output 4-hit output 6-hit output 8-hit output

Yyqpo 12. IMowdtnTa avoKeTacKeVS Yo d1dpopes aptOuntikég axpipeieg oto FPGA

Oocov apopd 11 SUOPP®CT TOV GLOTHHOTOS, Ypnolponomoape éva Xilinx ZC702, to
omoio eivanr efomMopévo pe éva ovotnua tou (SoC) Zyng-7000 mwov owbéter Evav
dutopnvo enelepyooty ARM Cortex-A9 ko 512 MB pviung DDR3. H katoavoun ndépwv
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oL emToLVTY LVAKOV oG Poaciopévov oe FPGA, oe ouvovooud HE TOLG YpOVOLS
KaBvotépnong kot TG ewkoveg ava devtepdiento (FPS) mov emitedybnkav, avaideton
AEMTOUEPMG GTOV TIVOKO TOPOUKAT.

XHvoyn yprong TOpwv Xpoviouog
Name BRAM DSP FF LUT Latency FPS
Used 54 110 18907 9855 - -
Percentage = 38.57% 50% 11.77% 18.52% | 0.013(ms) 77K

IMivaxag 3. Xpiion wopmv Kol ypovog ava Topive.

["a va aglohoynoovpe TANPOS TV 0mdO0GT TOL GLGTNUATOS LG, CLUTEPIAAUPBOVOUEVEOY
TOV HETAPOPOV UVAUNG, VAOTOWOOAUE TO 1010 HOVTEAO YEVVITPLOG GE EVOAAOKTIKA
ocvotiuata (CPU, GPU). Avtd £yve yia va dtevkoAvvOel pia dikoun oOykpion amddoong
kot amodoong ové Pat (PPW). Eviumwoiokd, avt 1 Tpoceyylon emEQepe €VVOIKd
AMOTEAECUATO O OAEC TIG TAATQOPUES, TOGO GE OPOLS AMOS0CGNC OCO KOl GE UETPIKY
anddoonc-ce-1oyv (PPW), 0nwc gaivetar omd Tig LETPNGELS TOPAKATO.

Device Information \ Evaluation
System Model Time/lmg Speed-up Power PPW
CPU ARM A9 2.06ms 1x 3.2W 1x
GPU Nvidia K80 0.033ms 62x 74W 2.7x
FPGA ZC702 0.013ms 158x% 3.6W 140x

Mivakag 4. MéTpnomn xpovov Kot EVEPYELOKIG UMOS06NS UVE COGTI LA,

H peiémm e&étace 1 ypnon tov GAN yuw avokatookevr] ewovov oe FPGA,
QITOOEIKVOOVTAG TNV LIEPOYN TOL GE aKPiPeld, ToYLTNTO KO EVEPYEWNKN amOOOGT GE
oxéon ue CPU kot GPU. To povtédo g yevvitplog (GAN) mapiyaye vynAng motdtnrag
ewoveg e e&oupetikn amddoot. O atoyog ivan va evioyvbet n tapovsio twv FPGA oto
AOYIGLUKO-VAIKO TTepBAAAOV Kot LEGO Amd QTN TNV EQPAPLOYN emtevyOnKe TO Pripo cvTd
o€ éva onuoavtikd Baduo.
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Emtoryvvouevoc evtomicudc tov Covid 6€ akTivoypapiec

Méoca og avt v evotnta, €£etdlovpe T0 TPito GEVAPLO A TO TEGGEPO GTO OTOia
ypnoporomoope emtdyvvon FPGA vy va BeAtidcovpe v eKTéAECT €QOPLOYDV
TEYVNTNG vonuoovvng. To cevdplo mov gpevvicape €0M ival o 1OTPIKN EQOPUOYN UE
otoyo ™V KatomoAéunon g mavonuiog Covid-19. H moavonuio Covid-19 e&iye
KOTOOGTPENTIKEG CLVETELEG TOCO GTNV KOW®VIKY (N 060 Kot GTNV ToyKOGUL0, OIKOVOLLia,
TPOKOADVTOG OOIAKOT avénoTn Tov Kadnuepvav kpovcpdtov kot Bavatov. Evad ot
axTvoypagieg Ompaka AEITOLPYOVV ®OC €VPEMS OBEGIUN Kol OKOVOUIKY] HEB0DOG
OAOYNG, 0 TEPAOTIOE OYKOG TV TEPIMTMOENMV AVOUTVEVSTIKOV aceveldv eumodilet Tig
YPNYOPES SOKIUES Kat TV €ykotpn Kapavtiva kabe acBevovg. Katd cuvéneia, vrdpyet
EMITOKTIKY OVAYKY] Y10, (0L QUTOUOTOTOMUEVT ADoT), KaBodnyodpevn and TV apocinon
™G €PELVNTIKNG KOWOTNTOG. Z€ Oamdvinon ovtng g Cnmong, mapovctdlovpe pio
tonoAoyio Babiov Nevpovukod Awtdov (DNN) oyedwopévn va  katnyoplomotet
axtvoypapies Odpaxa oe tpelg wamnyopies: Covid-19, loyevng Ilvevpovia kot
dvcoroyukr. H axpiprig avayvopion tov poidveewv amd Covid-19 péow tov
AKTIVOYPOPI®OV £YEL VYIOTN oNUaGia, VTosTNPILovTag TOVG WTPOVS GTU JAYVOCTIKA TOVG
kaOnKovta. Q6T060, 0 ONUAVTIKOG OYKOG O£d0UEVOV PO EMEEEPYOTIN KATOVAAMVEL
TOAVTIO YPOVO KOl VTOAOYLOTIKOUS TOpovs. Kévovtag éva onuoviikd Prjpua pumpootd,
VAOTOOVUE KO OVOTTUGGOVHE aVTO To Nevpwvikd Ailktvo og o mhateoppo Xilinx
Cloud FPGA. Avtég o1 cuoKevEg eivat YvooTég Yo v a&loonpeimt toybTnTo Kot Ty
EVEPYELOKT] TOVG aod0TIKOTNTA. O TEAKOG GTOY0G £ival VO TOPEYOVLLE [0l LTPIKT ADom
Y10 VOGOKOUEILDL, OTAOTOIDVTOG TIG LUTPIKEG SLYVAGELS e akpifeta, TaydTNTa KoL YOUNAN
EVEPYELOKT] KatavaAwon. Méypt 6co yvaopilovpe, avt n epapproyn dev €xel eEepevvndel
yio FPGAs mponyovpévms. A&oonueiota, n emtevydeica oxpifeia kot toydnTa
Eemepvolv OmOLOONTOTE YVOTH VAOToinon Nevpovikdv Awtdov yioo TV oviyvevon
Covid péo®m oxkTVOYpOQLOV. XUYKEKPIUEVA, TO GUOCTNUE HOG KOTNYOPLOTMOlEl TIg
aktvoypaieg pe evivrootokd pviud 3600 kapé avd devtepdriento (FPS) pe axpifela
96.2%. EmmAéov, Eemepva 1ig GPU pe avénon taydmrog katd 3.1x ko Egmepvd tig CPU
pe wo a&oonueimtn amddoorn kotd 17.6x. Ocov agopd v evepyslokn amddoon, M
mhoteopua FPGA vrepéyet, dsiyvovrog Pertioon katd 4.6x ce oyéon pe tig GPU ko
evrunmaotokn Beltioon kotd 13.1% og oyéon pe tig CPU.

Awpopemcape ToAAEG apyrtekTovikEG ZuveAkTikoh Nevpovikov Atktoov (CNN) yuo v
talvounon ewkoévov oktivov X Bopako (CXR) evidg tov cvuvorov dedouévav. H
EMA0YT] TOL BEATIOTOV HOVTEAOL TEXVNTNG VONUOCSVVTG PacioTnKE 0 EKTIUNGELS TOGO NG
axpifelog 660 Kol TNG OMOTEAEGULATIKOTNTOG, He TNV mpdBeon va avamtuybel oe éva
FPGA, 6nmg devkpviotnke otnv endpevn evotnta. Avtiy n evotnta givol aplepopévn
omv euPdbvvon ot SUOPE®OT, TOL TPOPANUATOS, GTO GUVOAO OEOOUEVOV OV
xpnoonoteital, otn dtodtkacio EKToidELoNS Kol 0TI PEATICTOTOMGELS [UE EMIKEVTPO TO



172 %

VAMKO mov epapuoloviol ot HOVIEAM Yio TN OlEVKOALVOY TNG OMOTEAEGHOTIKNG
avanTuENG TOVG 0T cvokevn FPGA.

1. Zovoro odedopévav: H Pdon odedopévov swodvov pe oktiveg X Covid-19 mov
ypnoorombnke oe avtv T peAétn emuendnke and v Itaiwkn Etapesio latpikng
kot Emeppatikne Axtivoloyiag (SIRM) COVID-19 DATABASE [118]. To ocbvoAo
dedopévov mepthapupavel cuvoitkd 2.905 eikovec CXR, katnyopromomuéveg o 219 v
Covid, 1.345 yw loyevqy Ilvevpovio kou 1.341 yuo v 14N Puvciloroyiky, mov
YPNOLOTOOvVTAL Yo TNV ekmaidevon Kot Ty a&loAdynon tov poviédov Al Tlapd to
OYETIKA UETPLO PéEYENOG KOl TNV TTAPOTLTIO TOL GLVOAOL OEOUEVMV, YPNCULOTOUGOLE
OLAPOPES TEYVIKEG YLOL VO OVTILETOTICOVUE OVTEC TIG TPOKANCELS, OTMG OVOAVETOL GTIG
EMOEVES EVOTNTEG.

2. Tomoloyia Movtélov: Ilpoteivovpe Tpelg O10POPETIKEG TOTOAOYIEG Y OVTO TO
TPOPAN LA TPOKEUEVOL VO EYOVE KOADTEPT] AELOAOYNOT GTO GUVOAO JESOUEVMV KoL VOl
emAégoope 10 KataAAnAOtepo povtédo yuo emtdyvvon oto FPGA ot ocuvvéyeuw.
Avoantogape Eexoplotd HOVIEAQ TTOL TO KaBEva €xel daupopeTikny akpifeia TpoPAeync,
OPYLTEKTOVIKT] TOAVTTAOKOTNTA (0O dmoyr oplOpod moPApETPOV) KOl VTOAOYIGTIKY|
molvmAokotnta (amd dmoyn apBuod Aesttovpyiwv MAC). 'Eva CustomCNN mov givan
éva. KAaowO veupmvikd diktvo cuvéMéng, éva lightResNet mov eivol o mopoiioyn
ResNet50 kor to DenseNetX mov Poaciletor otnv apytektovikry DenseNet oAdd
neplhapPdvet eriong ta enineda Bottleneck kot tov mapdyovta copmieong.

3. Exmaidevon: Televtaio Oo oavoldoovpe apKeTES TEXVIKEG TOV EQPUPUOCOLE OTY
owdwkacio ekmaidevonc. To mpdTo oyetileton pe ) otdOuion g taEng. H ekmaidgvon
pe éva GUVOAD dedOUEVOV OTTMG TO O1KO pag pe ToAD Alyeg ewkoveg Covid-19 og avtifeon
HE TG €WKOVEG (QULGIOAOYIKNG 1] 10YEVOLG Tvevpoviog omotehel &éva mpOPAnua pe
avicoppomia otnv téén. ' va Eemepaotel | amdrkion KAAoNGS, ETPAAOLIE CLYKEKPIUEVQ
Bapn Khdoewv (dnAaodn, 6% otnv katnyopia Covid) TOv EPAPUOGTNKAV GTNV ATMOAELD TOV
povtédov yw kaBe oetypo kot teMkd PBondnoov to povtélo vo pdbst amd ta un
ooppomnpéva dedopéva. X1 cuveyela epappolovpe Pertiotonomoelg e entyvoon HW
o™ ovALOYN poviédwv. H tomoAoyio tov CNN ypetaldTov KAToleg KpES TPOTOTOMGELG
TPOKEWEVOL Vo givar cupPart) Kol OTOTEAEGUOTIKY) HE TOV KPOVTIOT) KOl TOV
petayhottiot) Vitis Al Xvykexkpyévo, 1 cepd tov emmédmv evepyomoinong Batch
Normalization (BN), Rectified Linear Unit (ReLU) kot Convolution éxet ahraéer ond BN
— ReLLU — Conv o Conv — BN — ReLU. Emiong, o GAAn Peitiotomoinon mov
Kévape etvar oty mepintwon tov GlobalAveragePooling2D, to omoio ypsraldpactay yio
nmopdaodetypa oto DenseNetX kot to aviikataotinoope pe 1o AveragePooling2D cuv éva
eninedo Flatten. Téhog, To softmax pnrke oto DPU kot oyt pésm SW kabdg rav toy.
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Ilpocéyyion emrayvvens — Aedouévng g mBovNAg ¥pNoNg TG EQPOPUOYNG HaG omd
TOALOVG YPNOTES TAYKOCUIMG, 0L OMOTEAEGUOTIKY KOl Yp1yopn AOoN €lvol EMTOKTIKY.
Q¢ ek tovTOL, emAéEape va aélomomcovpe to mepPaiiov Al tov Vitis yu vo
avamtOEOVE TA LOVTELD GLVEAKTIKOD veupmVvikoD diktvov (CNN) oe éva Xilinx Alveo
U50 FPGA. Avti 1 dwdikacio petayidttiong onpovpyet odnyieg DPU (Deep Learning
Processing Unit), 01e0KOAOVOVTOG TNV OTOTEAEGUOTIKY] ¥PNON TOV VLTOAOYICTIKOV
povadwv (CUs) tov FPGA.

1. Quantization: ApyiKd, HETOTPEYOUE TO. LOVIEAD HOG OE £VOL TOYOUEVO YPAOMLOL
Kivntng vrodotol g ocvppatd pe Tensorflow wg mpobimdOBeon yoo 1 dadikacio
kBavtonoinong. Xt cvvéyela, emlé€ape v Kpavtomoinon tov ekmoudevuéveov Bapov
TOV ZoveMKTik®v Nevpovikov Awtoov pag (CNN) ypnoponowdvtag akpipeto 8-bit.
Téhog, TaPACYOLE £V AVTITPOGOTEVTIKO GUVOAO OELYLATOV TV O£S0UEVOV EKTOIOEVOTG
v ™ Babpovounon g dadikaciog kBavtornoinong.

2. A&oloynon tov KPavticpévov poviédov: O UHETOOYNUHOTIGHOS Omd £va LOVTEAO
KIVNTNG LTOOLOGTOANG, OMOV Ol TIUEG UTOPOLV VO TAPOLGLIGOLV EVa VPV SLVOULKO
€0pog, o€ éva povtélo 8-bit, mov meplopiler tig Tég og pio amd Tig 256 mbavoTnTEg,
EI0AYEL €YYEVAC oL UIKPN omdAewn axpifelac. Q¢ €k tovTOL, NTOV KPIGHO Vo
a&loloynOei to kPavticpévo ypdonuo oto Tensorflow mpwv tpoywpricovpe otn GuALOYN
Tov povtédov. To kPavticuévo ypaonua oto FPGA, og avtifeon pe to ypaenuo Kivntg
vrodiuotolg oty CPU, eilxe ehdyiotn emidpaon otnv tedkn akpifea (Aydtepo amd
0,5%).

3. ZOvTo&n HOVTEAOL: XTNV TEAIKN OACT), LETOYAMTTICAUE TO YpAPNUO GE £ve GUVOAO
LKPOEVTOA®V TTOL givarl evOLAaK®UEVEG GE popon apyeiov «.xmodel». O petayAotTiotg
Vitis Al avélafe tn petotpony| Ko ) PeATioTONOINoN TOL KPAVIOTOMUEVOL LOVTEAOL
avATTUENG, LE ATOTEAECHA T ONUOVPYIN TOV TEAIKOU KEKTEAEGILOVY Y10 TO GUUTEPACLLOL
tov CNN.
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Iyqpa 13. Kpavtiopog ypoaenpotos CNN kot petayhdTTion Yo to FPGA DPU
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A&roloynon povrélov — e oot ) PUEAETN, deénydnoay TEPANATO XPNCULOTOLDOVTOS
Tensorflow kot Keras, ypnotplomoidvtog Tic Koweég SlaoTAGELS EKOVOG 224 X 224 TumIKEG
oe moALG Xuvvelktikd Nevpovikd Aiktva (CNN). Oka to poviého vmoPfAndnkov og
exmaioevon pe o Adam optimizer, cuvodevopevn and EarlyStopping. H BeAtictomoinon
TOV HOVTEA®V TaEvOUNoNG emTELYONKE HEG® TNG €AN)LOTOMOINONG TNG CLVAPTNONG
ATOAEWG  OloTavpovuevnG  eviporiag. EmmAéov, O1dpopeg  moapdueTpol Ko
VIEPTOPAUETPOL Y10, KAOE HOVTEAD VITOPANONKAV GE GUVIOVIGUO KOTA TN OLAPKELN TNG
ekmaidevong, ovumeprappovouévov tov PvBuod Mdabnong (LR) ko twv emoymv. O
TOPOKATO TIVOKOG TOPEYEL MWL EMOKOTNON TOV POCIKOV YOPOKTNPLOTIKOV KO
HOVTEAOV, TEPILOUPAVOVTOC VITEPTAPAUETPOVS EKTOUOEVOTG, TPOIAYPUPES LOVTEAOL KOl
UETPNOELS OEOAOYNONG LOVTEAOVD.

Hypermarameters Model Specs Evaluation
Model LR Epochs Params | FLOPs | Accuracy Loss
CustomCNN 0.0001 70 2.033G 1.025G | 96.2% 0.16
lightResNet 0.001 60 2.697G 2.814G | 96.5% 0.408
DenseNetX 0.005 80 0.758G 1.722G | 94.9% 0.264

MMivaxag 5. Xopaxktnpilotikd povréhov Kol okpifeio

Amdéooon ocvetijuaros — Kotd v afloAdynorn 1ov GYeSGHOD TOV GULGTNHUOTOC,
emoAnfevoape apyikd tn xpnon moépwv g povadag emefepyasiog Pabidag pdOnong
(DPU) tov FPGA. H diapoppmon vikod yo avamtuoén neperdupave éva Xilinx Alveo
U50 Cloud FPGA pe yopntikotnto 8 GB High Bandwidth Memory (HBM) kot cuvoAiko
evpog Lovng 316 GB/s. H cvokevn evoouatdbnke oe o gykotaotoon Gendx8 PCI
Express, mov Asttovpyet og cuyvotnTa poroyrod tupnva 300 MHz. O mopaxdto mivakog
TapEXEL oL EMOKOTNON TG XPNoNg Topwv yia Evay moprve. DPUV3E.

Utilization Summary

Name BRAM URAM DSP FF LUT
Used 628 320 2600 310752 250290
Percentage 46.7% 50% 43.6% 21.2% 28.7%

MMivakag 6. Xp1jon Tépov o éva Topiiva DPU

211 OCULVEYXELD, TPOYUATOTOMCAUE Lo 0ELOAOYNON GUUTEPUGLATOV YPTCLLOTOIDOVTOS TO
povtédo CustomCNN ce eVOALOKTIKA GUGTALOTO VYNANG omdO0CNG, GUYKEKPLULEVO Lol
GPU Nvidia V100 kot pio 10mopnvn Intel Xeon Silver 4210. To inference oe avtég T1g
EVOMOKTIKEG  GLOKEVEG  mpaypatomomOnke ypnoyomowwvtag to Tensorflow pe
npoemileyuéveg pvbuicels. H apiotepn mievpd tov mopakdt® oynuotog amekovilel
péylom omdooon mov emrvyydveTal and Kabe cuokevn, peTtpnuévn oe aktiveg X ava
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devteporento (FPGA: 3600, GPU: 1157, CPU: 204). EmnAéov, oyoMdcapue tov xpovo,
LETPOVLEVO GE YIALOGTA TOV SEVTEPOLETTOV, Y1 E0YWYT LELOVOUEVOV EIKOVOV OKTIVOV
X og kéBe ovokev. EmmAéov, n 6e&1d mhevpd Tov GYNUOTOG amekovilel T pétpnon

amddoong 1oybog Yo KaBe cuokevn| oe aktiveg X/dgvteporenta/Watt (FPGA: 51.3, GPU:
11.1, CPU: 3.9).
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Yyqpo 14. Emayovon kKou 0w68001 RETOED S1GQOPOV UPYLTEKTOVIKOV

Journépacpuo — Xe avt) TN HEALTN, Elo0ydyopEe TOAAATAG pOVTEAQ TEXVNTNG
vonuoovvng, kabéva amd to omoio Sabétel EeYmPIoTA YAUPOUKTNPIOTIKA, GYESOUGUEVA Y10,
mv aviyvevon neputtdcemv COVID-19 and ewkdveg CXR. KPavricaue, petayrotticope
Kot emraydvope to povrédo Al yuo avantuén oe éva Alveo US0 FPGA, pe otoyo va
gmtayvvovpe tov édeyyo pe tn Ponbelo vmoroyiotmy. H epoppoyn frav oe docker
KOVTEWVEP, EMITPEMOVTIOG OampOSKONTN @opntoTNTa. o¢ €va. cvumieypo FPGA  movu
Aertovpyel o010 cloud, moapovoidloviog VYNAN amdd00T KOl EVEPYELNKT OMOSO0T GE
ovyKplon pe dAdeg apyrtektovikés. Etvar onpavtko va onpelndet 6t avt dev givor pua
gtoun yw mopaywyn Avon mov mpoopiletal Yoo avTOOAYVEOOT. ATO EPEVVNTIKNG
OKOTIG, M €0Tioon pHog moapapével otn PeAtioon g amddoons Kol GTNnV E160YmYN
npdchetowv Asttovpyudv oto mAaicto g Al Health, wiaitepa kabbdg cviiéyovror véa
dedopéva. Avtd umopet vo meptapPavel Topeic OTMS 1 SCTPOUATMOGCN KIVOHVOL Yl
avéivon emPioong M N wPoOPAeyn g Odpkewng voonieiog. Eved m ocoeaipa tov
OVTOUATOTOMUEVOV GUGTNUATOV TEXVNTNG VONUOGUVNG €ival TEPACTLO, QLT 1) EPYacia
pixver owg otig mBavég ocvvelspopés twv FPGA ot Oepehiddn dwpdpemon g
latpikng Atdyvmong pe ™ Ponfeta voroyiot.
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Hopdywvrac ovtouoto VAKoAoYiowkoO Yo FPGA artd CNN

Avm 1 evoTIToL TEPIEYEL TO TETAPTO OO T TEGGEPQL GEVAPLXL 6T0, Omtoial ypnoomomoope FPGA
v emrdyvvon Al Zvykekpyéva, ot 1) EVOTITOL 08V TUPOLCIALEL 0L GUYKEKPILEVT EPAPLLOYY|
TEQVITNG VONUOGUVIG, 0AAL E10AYEL VOV TTO YEVIKELUEVO TPOMO Kol PEATIGTOMONGELS Y10 TV
EMTAYLVOT TV EPAPLOYDV TEYYNTNG Vonpoovvng yo. FPGA. Zvykekpéva, meptypdpel Evo
OMOTEAECUATIKO  EPPOAAOY Yoo TN pETOTPOm]  ekmoudevpévey  poviedwv CNN - og
Bertiotomompévo vakohoyiopkd FPGA. Ot amotedeopotikol olyopiBpot TexvinTig VOnOoHVIG
€YOUV TEPACTIOL OMUOGCIO. GE TOAMEC €POPUOYES, dwiTePO O epyocieg Tov mepapPdvouy
ta&vounon 1| opadonoinon. Qotdco, givor amapoitnto Eva TuronomueEVo Kololkd poviého Al
Ko o e0koAn PBeAtiotomoinom. H evomoinon dwpdpwv povtédwv pumyoavikng pdbnong oe éva
KOWO OKOGUGTNO, UTOPEL VO LEWDGEL GNUOVTIKA TOV ¥POVO avarTuéng kou vo PEATidcer
ovpParomro petacd dpdpwv frameworks. To Open Neural Network Exchange Format (ONNX)
amOTEAEL 0L EVPEMG AVOLYVOPIGLEVI] OVOTXTH LOPOT Y10 TNV OVOTTopAoTaoT] HOVTEA®Y Bobidg
pafnong. Zikomds Tov givar vo. emTpéyel opoAdTEPT LETAPOIOT) LOVTEA®Y PETAED EPYOAEI®V onyLg
Y10l TTPOYPOYLLATIOTEG TEXVNTIG VOTLLOCUVIG. ZUYKEKPYLEVO, O £Toupeieg VAKoL omme 1 Nvidia kot
1 Intel Tpoonabodv va Topapeivouy gvbuypopyopéves pe vty myv tdon. Toapdyovv ypdvoug
ektédeotg vAKoL Pedtictomompévoug Yoo CPU ko GPU mov dwyepilovton emoesor antd ta
povtéha Al avorymg popeng omwg 10 ONNX. Avto Sivel T SuvatdTTO GTOVG TPOYPOLUOTIOTEG
VoL 0ELOTTOMCOLY Lo, TTOWKIAMOL 0Utd VAIKO Kol VOL (PTGLLLOTONCOLY ToL TPOTIH®pEVH Thoicto Al
Qotoco, 10 FPGA amotedobv o mo mepimhokn mpOKANGT. ATOTEAOVV 0L OITOOEdEYLEV
TAQTOOPLLOL Y10, TNV OTTOTEAEGUOTIKY] OVTILETOMON TETOWWV TPOKATCEMY CGYETIKA LE TNV ortdd0om
Ko v oddoom wyvoc. H pedém pog Booileton og éva £pyo avamtuéng mpdiov 6tadiov yvmotd
og HLSAML [3], mov apyikd oyedidotnKe Y10, EQOPUOYES SOUOTOWKNG Quotkng H Paowm
KOUVOTOWIO, TOL €pYoL TTEPAOUPAVEL TNV CLTOMATN dNpovpyio. vevpvikav oktomv (NN) yio
evoopotopéva Xilink FPGA. H dovAsld pog wdver éva Prjua mopomépo EVOOUOTMOVOVTOG
exmaidevon NN e yvdGT TOL VAIKOD Kot 1o, OAOKANPOUEVT OTPOTYIKY BeATIoTomoinong méve
oto HLS4AML. Avt 1 enéktaom PBEATIOVEL GNUOVTIKA TV ortOO00T) KO TV EVEPYEINKT otdd00T)
™g Pprobnime. EnutAfov, iobyel Asttovpywdmmra yio avémroén vakoroyispuod Cloud FPGA
and onoodnrote povtédo NN. H pebodoroyia pog Eexvd pe exmaidgvon povtédov otov Keras pe
entyvoon FPGA, mpocoppocévn) yor avoyvaplon €KOVOS. XTn CUVEYEWN, TO HOVTEAO
petatpéneton og avorym poper) ONNX mpv mpocappootel kon tedetomomOei yio T Cloud FPGA.
Avt n dwdwoaocio ypnowonowel €var véo oyfuo mov Peltictomolel  SdPopes  TTVXES,
ovpmepopPovopévon Tov CPU, g dtoyeiptong uviung Kot tmv Asttovpyidv tov Toprva. Emiong,
a&lomoovvton TOAMTAG emimeda akpiPelog SikTvov. ATO 660 YvmPILovLE, 0TI 1 TPOGEYYIoN
omotehel povadkn kowvotopio. Odnyel oe afloonueiom emrdyvvon, emruyydvovtag KEPON
amddoong £wg kar 102x o ovykpiomn pe pio povo CPU ko émg ko 5,5% BEATUDGEL 6TV amrddoom
avé watt oe cOykpion pe tig GPU.

Tnpovpe tic apyés oyedaopod FPGA ywo ™ Bedtictonoinon g vymAng omddoons Kot g
amdA0oNG 16)(00G, TOV GLVOIEVETAL OO TNV avamTLEN evOg Tpocappociévov API OpenCL mov
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&xer oyedootel Yo va riogevel Cloud FPGA yo kévtpa dedopévav. H npu-ovtopatomompévn
pebodoroyio porg epyadeicv e emikevrpo T0 OpenCL yio TV avamTuEN VELPOVIKGY SIKTO®V GE
FPGA vroompiler obipopeg PEATIGTOMOMOES AOYIGIKOD KOL VAMKOV. ZEKVAUE HE TNV
EKTTOUOEVOT) EVOG VELPMVIKOD SIKTHOL EIOIKE Y10 TO VAIKO, IOV EPOPUOCETAL GE Eval uPL PAGHLL
HOVTEA®V VELPOVIKMV OWKTOOV. ALTH 1) TPOGEYYIOT] TPOGPEPEL OLCLIOTIKY gveMEion otV
nopodAnionoinon, Wioitepa enmeelnc ywo. unsigned PBapn vevpovikov diktdwv. Emmiéov, M
HETAPPOOT TNG YEVIKELUEVNG LopPNG LovTEAOL ONNX o€ £val LOVTEAD GUYYMVELLEVOL DAIKOV LIE
oveEApTNTEG LOVAJES Y101 KAOE EMIMEOD TOPEYEL EVKOUPIES Y10l TEPAITEP® TOPUUETPOTOMNOT| Kol
BeAtioTomoinon tov vevpwvikov diktoov. Térog, péow tov OpenCL host APIL, evioybovpe mv
TPOGPOCT OTN VAN GTOVG TTUPNVES, LEYIGTOTOIDOVTOS TO £0POG LDVNG OESOUEVOV TG GLOKEVTG,
H yprion ovpddv evtodmv OpenCL kot 0 axpirc GuYYPOVIGHOG KEVTPIKOD TUPTVOL ETITPETEL TNV
OVLGLOGTIKY| TTOPOAANAOTONGT) G YOVOPOKOKKO ETITESO.

Telikos oyeoacuos ovotquaros pe ypyon OpenCL — Metd v emruyn €QopUoyr| €vog
oYESOOHOV YapNANG KaBLGTEPN OGS, 0 OMOI0g (EL0TTOINGE TOV TAPOAANMOUO O ETMESO TLPTVAL
evtdg ov PL, mpoympnoope ot dnuovpyio evoc amotedeopotikod OpenCL kevipikod API
xpnopomowwvtas tomikés kAnoelg OpenCL APL Zuykekpyéva, kataveipope e160000G EWOVaS
xpnopomowwvtag dwvospoto CH, pe kdbe dvoopa va Exet péyebog 28 * 28 * N, dmov 10 N
OVTUTPOCMTEVEL TOV APBLO TV EIKOVOV OTav TpoTdron 1) opadikn enetepyocio. Avt 1 pébodog
Kotovopng e£0opdMcE OTL 1 EIKOVAL KATOAGLPOVE GUVEXOLEVT LVILIN, ETTPETOVTOS T1| XPOT TMV
O  OMOTEAECLOTIKMV LNYOVICUOV  UETAPOPUS Oedopévay mpog ko omd DDR. Ta
BeAtiotomoinon g ammdd0omg OEO0UEVMY, EPaPUOCOUE ol demapn xprotn S12-bit oe kdbe
TAELPA TOV TVPNVO, AEIOTOIDVTOS TO UEYIGTO €0pOg (VNG UVIAUNG oV LItooTpileTan ommd To
Xilinx OpenCL FPGA. Tavtoypova, ypnoomomcope oA to. dwbéowa DDR o1 cuokeun,
EMTUYYAVOVTOG UEYIOTES TOYVTNTES LETAPOPAS dedopEvmy. Erutiéov, onovpynoope mpoceKTikd
™mv Towtoypovn Asttovpyion ot evtoAég OpenCL yioo v ekkivion Tov Tuprve. Kot TG
OLYXPOVICHEVEG  OAANAETIOPACELS LETOED TOV KEVIPWKOD VIOAOYIOTH] KOl TMV  TTUPIVOV,
SGPOALOVTAS TNV OLLOAN AEtTovpYio: LEGE GE EVOL TOPASELYLLOL GTABEPTIG POTIS OEOOUEVMV.

Emum\éov, AdPape pétpa yioo myv glayiotonoinon g dédevong SLR omote etvon e@iktod, kabmg
owtd Tefvel va €El G OMOTEAECUO AYOTEPO OITOOOTIKOVG CYEOWICUOVG OOOV Opopd TNV
KoBuotépnon Kot TV 11 AOY® TG ONLOLPYINS HaKpOTEPOV KPIGIwY dwdpopdv. Evtuyde, ot
TUPNVESG LLOG TIOPEUEVOV YEVIKAL €VTOG TV opicv Topwv kKiBe SLR. To oyfa mopakdto mopEyet
Lot EMOKOTNOT OAOKATPOV TOL GUGTHLOTOC, EEKIVMVTOG 0O TOV KeVTPIKO vroAoyiot CPU, mov
dwoyilet o FPGA kot teleidvel OTOVG VLOAOYIOHOUS TIOL  EKTEAOVVIOL OF  EMMEDO
noMamAacwoot o KOs Zroyyeio Enelepyaciog (PE). Xvykexpyéva, 10 TEMKO GUGTNLO, TATPES
He OAeC TG PEATIOTOMOMOCELS TOVL TEPYPAPNKAY, evoopatoinke oto mokéto HLSAML,
npooPdoipo pécm tov Python AP, vAomoidhvtog £T61 TV TPOGOPLOGUEVT| OPYITEKTOVIKN LG,
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Yyqpoe 15, Temkoé orokinpopévo cOoTnpa

Améooon smrayvvrip — o v aloAdynomn Tov GYESIAGUOV, 1| OPYIKN LOG £0TiooM
Ntav omv gnainbevon e opOBITNTAG TOV EMITOYLVTY, WOHTEPO TOV TPOCAPUOGUEVOL
TOAMOTAOCIILOTY] HOC, KOG ecpaipéves €Eodot DSP Ba pmopovcav evoeyopéveos vo
owtapdouy OAOKANPO TO GLUVEMKTIKO VeLpwvikd diktvo. I[lpaypotomomoape v
agloroynomn viwov o éva FPGA Xilinx Alveo U200. Avtd 1o cvotnpo dwbétel 64 GB
pvnung RAM ektog toum pe e0pog Covng 77 GB/s ko Aettovpyel oe demapn Gen3x16
PCI Express, mov Aertovpyel pe toyvnta poroyod mupnva 300 MHz. O wivokag
TOPOKATO TOPEXEL AETTOUEPT OEOOUEVA XPNONG TOPOV KOl YPOVIGLOD Yo KAOE emimedo
VELPOVIKOD SIKTVOV, KOTNYOPLOTOMUEVE OVl TOTO GTPMOUATOG, OTNV TEPITTM®ON TOV
povtélov MNIST.

Utilization summary Timing
Layer BRAM DSP FF LUT | Latency (cycles) | FPS
Dense 192 64 2449 | 12656 1709 -
RelLu 0 0 16 127 130 -
Softmax 7 0 985 | 2401 51 -
Total 199 64 3450 | 15184 1890 158K

Mivakag 7. Xp1jon Tépov Kot povol amdKPLens ava enimedo.

Teliky) amodoon Tov GLGTHHATOS — LIV TEMKN 0EWOAOYNGN TOV GULOTHUOTOS LG,
Eexvnoape SOKIIES Y10l TOV TPOGOLOPICUO TOV YPOVOL EKTEAECTG OO (AKPO GE (KPO TOL
amouteiton yio £vo, LELOVMOUEVO TEPACLLO TPOG T, EUTPOC HECH TMOV OVO VEVPOVIKDOV LG
dwtvmv, omradn tov MNIST kot tov CIFAR, mov mepihapfdver petapopéc pviung ot
oladKacio. XN GVVEXELD, CLYKPIVOLE OVTE TO OTOTEAEGLOTO LE TOVG YPOVOVG EKTEAEONG
mov emtevyOnkav oe o CPU Xeon povod muprva kot pioe GPU Nvidia Tesla P100, pe
MV mopatipnon Ot ot ypovicpoi yu ta 000 vevpwvikd diktvo pmopel va @aivovton
Tapopool Adym tov emiPoapbvoewv e cvokevnc. Ommg vmodekvdeTon 6Tov mivaka
TOPoKAT®, To TeEMKO pog cvotnua FPGA vrepéyet 66ov apopd v amddoomn kot delyvel
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YOUNAOTEPN HEOT KOTAVAAMOT €VEPYELNS, €10IKA Yoo TO Mkpdtepo povtélo MNIST.
Avt) M vepoyn oV amdOOOCN Kol TNV OTOTEAECUATIKOTNTA Umopel va amodobel oe
dtpopovg mapayovtes. [Ipdtov, To cOoTNUE Hag xpNoLonotel BApn Kot EVEPYOTOINCELG
petopévne axpifelag, oe avtiBeon HE TIG TPOETIAEYUEVES OVOTOPUCTAGES KIVNTAG
vtodlotolg  32-bit. Xe  ouvovaopd pe T XPNON  €VOG  TPOGUPLOGUEVOD
TOALOTAQGLOOTH, TO GUOTNUG HOG EMTLYYAVEL eAdylotn Kabvotépnon, €vo Kpicio
YOPOKTNPLIOTIKO Y10l EPAPUOYEG TTOV amotovv ypnyopn enelepyacio. EmmAéov, alilel va
onNUeIwOEel OTL 0 OYESIOGUOC LG YPNOUOTOIEL HOVO EVal UIKPO KAAGUO TV J100EGILMV
TOP®V NG GLOKELVNG, KAMGTOVTAG TO €SAIPETIKA OMOOOTIKO Omd TAELPAG EVEPYELQG.
Kotd ovvénewn, pmopeil va avomtoyfel oyt poévo oe KéEvipo dedOUEVOV OAAG Kol o€
pikpotepa evoopatopéve FPGA SoC, kaidntoviag KpioULES EQUPUOYES TOV ATOLTOVV
YOUNAO 1POVO Kot EVEPYELOKT) aOO0GT).

Device Performance Power Evaluation
Information Evaluation
System | Model | Architecture | CIFAR | Speed-up | MNIST | Speed-up | Watt(avg) | Perf./Watt
(max)
Xeon
CPU 2.4 22-nm 58 ms 1X 43 ms 1X 9W* 1X
GHz
GPU '\;,"1'3(')"" 16-nm 1ims 527X | 0.75ms = 57X 95 W 5.4 X
Alveo
FPGA U200 16-nm 2.7ms 21.5 X 042ms | 102.3 X 31W 29.7 X

Mivoxog 8. XOykpion pe GALeS apLTEKTOVIKEG.

2ounépacua — Le vty T UeAETN, PeAtidoape €va VEO Kot ovavempEvo TAaicto
oxedlGUEVO Y va. dnuovpyel avtovopo viAkoAroywopkd FPGA  ypnoylomoumvrag
XHvOeon vyniov emmédov (HLS) mov Paciletor o poviéda vevpovikdv OktH®V.
YAomomoope O1Qopeg PEATIOCTOTOMGES KO EMEKTEIVOUE TN AEITOLPYIKOTNTO TOL
vrdpyovtog mokéTov hlsdml, evieydovtag v tayhtnTa Kot TNV OTOTEAEGLATIKOTNTA TOV.
Mo eme&nynuoatikodc okomovg, EKTAOEVCAUE CYOANCTIKA Kol TEAEOMOMCAUE OVO
TPOGUPUOCUEVE VEVPOVIKA diKTLA, Eva HKPOTEPO KOl &va peyordtepo oe péyebog, pe
BEATIOTONOMGELS TPOGAPUOCUEVEG OTNV EMLTAYLVOT VAKOV. Ta gvprjuata g €peuvag
pog £€0e1Eav OTL 1) TPOTEWOUEVT] aPYITEKTOVIKY Umopel va Eemepdoel TNV andd0c Kot TV
amodooT 16Y00G GAA®V TAATEOpU®V VYNNG Texvoroyiag, 6mwg CPU v GPU. And
gpevvnTIky dmow, epyaldpacte evepyd yio v mepartépw PeAtimon tng amddoong Kot
mv evoopdtowon npochetov Astrtovpyiwv oto makéto. O topéag TV mTOAVOV
OYESOCUMVY Elvar EKTETAUEVOG KOt 1 EPEVVA LOC GUVEIGPEPEL TOADTIUEG YVMDGELS GE ALTOV
ToV Topéa, EmTVYYavovTog a&loonueimTo aroteAéouaTa.
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IIpocopoimon Al yio Katd TPOGEYYLEN VAMKO

210 TPONYOVUEVO KEPAAMIO €ldapE TTAOC UTOPOVUE VO PEATIGTOTOCOVUE EPAPUOYES
AI/ML yia emroyvvtég vAkov 6mwg ta FPGA. To katd mpocséyyion vAKo, amd tnv GAAN
TAELPE, TEPIAAUPAVEL OVTOAAOYT| OO KATOL0 EMIMEDO AKPIPELOS GTOVG VITOAOYIGHOVS Yol
va EQovpe 0QEAT amdOooNC 1 evepPYELOKNG amddoons. Ot pOpTog £pyaciag TG TEXVNTNG
vonuoovvng, wiaitepa ot Pabdid pabnomn, sivoar cvyvd avektikoi o pikpd AdON M
TPoceyyioelg 6Tovg LVIOAOYIoHOVC. Ta Kotd TPocEyylion ox€do LAIKOD UTOPovV Vo
EKUETAAAELTOOV OLTAV TNV OVOYN YPNOLOTOIOVTIOS OPOUNTIKES TEYVIKEC UEIOUEVNG
axkpifelag N GAAEG TEYVIKEG TPOGEYYIONG YO VO ETLTAYVVOLV TOVG VITOAOYIGHOVG TEXVNTIG
vonpoovvng Bvoidloviag tv eAddylotn axpifeio. O vVEOAOYIGUOC ©E OUVTEG TIG
OPYLTEKTOVIKES OVOUALETOL KATO TPOGEYYIOT] LIOAOYIGHOG Ko umopel va Ponbncel ot
peiwon tov ypdvov, TG KOTAVAA®ONG eVEPYELDG M mOpwV, T omoia gival kpioiua
{nmuata. otV TEYVNT VONUOGUVI, €OKA Y10, CLOKEVEG OLYUNG LE TEPLOPICUEVOVG
mOpove. Qo1060, N MEPLOOOG AVATTLENG YO AVTEG TIC CLOKEVEG VAKOV gival pokpd,
EMOUEVOS O TPOGOLOPICUAS TOV COAAUOTOS 1| TOV OVTIKTUTOL TOV KOTQ TPOCEYYLoN
VA0V € €va LOVTEAD TEXVNTIG VONLOGLVNG XOPIG VO EYOVLE OKOUN TO VAIKO pmopel va
elvar dvokorog. Mo péBodog givar n ypnomn epyareiov mpocopoimong Kot BifAtodnkmv
AOYIGUIKOV TTOL EMTPETOLV TNV EQOPUOYN KOTA TPOGEYYIOT] LVITOAOYICTIKMOV TEXVIKMOV
6TOVG LIOAOYIoUOVG €vOg poviédov Al Qotodco, to dnuoeidny mhaicioe DNN dev
vrnootpilovv xoatd mpocéyyion aplBuntiky, emewdr] vmootnpilovtal €yyevag HOVO
BpAodNkeg oakpiPodv pOOMUOTIKOV GLVOPTNCE®Y, EMOUEVDS M eEopoimon  yiveton
eEapetikd apyn. Xe avtd T0 KEPAANO, OOTVTMOVOLLLE, ETKVPMOVOVUE KOl OEIOAOYOVLLE
éva mhaico yuo v e€opoimon katd tpoceyyion DNN yuo TV avTipet®dmon avtg g
TPOKANONG. AVTO HOG EMETPEYE VO EKTIUNGOVUE TOV OVTIKTUTO TNG TPOCEYYIGNS GTNV
axpifela kot ™V 16Y0 Yo TOAALODS KATO TPOGEYYIOT, TOALUTANGIACTEG GTO OMLOPIAES
mhaiclo Pytorch. Tleprypdoovpe Td¢ 10 TAOIGIO HOG KATOGKELAGTNKE Y10 VO TAPEYEL
vrootpi&n emtdyvvong toco yioo CPU 6co ko yio GPU vy avBaipetovg kortd
TPOGEYYION TOAAOTANGIOOTEG KOL HOVIEAN VELPOVIKOV JSIKTO®V, TPOKEUEVOL VO
exktelovVTONL Ypryopa mpooeyylotikd inference. Télog, ewodyovue évav adydpiBuo Monte
Carlo Tree Search (MCTS) ywo v anotedecpatiky avalnnon Tov xO®PoLv TOV THUVOV
SLHOPPAOCEMY YPNOLUOTOLOVTOS o XEpokivtn moAtiky mov Paciletoar 610 LVAKO,
EMTPENOVTAG LLOG VO OVTANGOVUE BEATIOTEG ADGEIS TOVL TANGLALOVY TN KaUmTOAN pareto.

AdaPT: Asttovpyia kot teYVIKEC PEATIOTOTOINGNC

Eunvevompiayie o mhaioto AdaPT wg éva gpyodeio eEopoimong mpocéyyiong DNN og moAdomAd
eminedo, mov mopovotdletor wg mpdobeto oto PyTorch. O yprioteg éyovv v eveléio va to
EVEPYOTOMCOLV 1] VO, TO OTEVEPYOTIOUCOVV, EMGTPEPOVTOS GTNV TPOETAEYUEVT por) Tov PyTorch
otav ypewdletar. To mhoicio vmoompilelr oampockomta. €va €VPO  PACHO. ETUTEO®MV KoL
apYITEKTOVIKGV HovTéhmy. TIpoopépovpe vmoompiEn o dbo Poaoikég texvikes Yo ) PeAticooon



Extended Abstract in Greek = 181

™G akpifelog: kPovromoinon HETE TNV EKMOIOELOT HE TEYVIKN] KOAUTPOPICUOTOS KO
emavekmaidoevon Kotd mpoogyyon. Ot ypnoteg €xovv v ehevbepior vo emALEOUV o KoTd
TPocEyyion vroAoyloTik| povada (ACU) yio eveopdtmon oto AdaPT mg avtotedég otoryeio 1) val
pNioovY TV Tpoemeyuév akpiPr] por tov PyTorch. ExutAfov, 1o AdaPT eivon e€omhopévo yio
vo, yepileton pukt akpifeo Kou KT TPOGEyyIon, EmTpémovtas T ypnon dwpopetikav ACU
HeTaED Tov emmédwv. 261000, gtvon GNUOVTIKO Vo onueiwdel 6Tt 1 akpPig TpooEyyion, Ommg M
TPocEYylon avd @iltpo, dev vrootpileton €mi Tov TOPOVTOC. ['ol vou emToyvVEL TV KOTd
npoceyyon e€opoiwon DNN, to AdaPT a&omoel ) dOvopn tov OpenMP threads kou twv
gyyevov evtoAmv Intel AVX2 yo tponypévn dovosporonoinon.

Aerrovpyio. Mauciov — H Aertovpyio tov mauciov AdaPT ameikovileton 610 TOPOKATD Gy
Apywcd, o ypomg Sopopeavel to emBopntd poviédo DNN, kaBopilovtog mapopétpoug
KPavtomoinong, omwg n axpifet kor o Pabuovounmg mov Ba ypnowonombel. Enutiéov, o
xPomg opilel ™V KaTd TPOGEYYIOT AETOLPYIK| Hovado mov Ba ypnowonomBel amd ™
BBArobnim, podl pe o chivoro dedopévav i ta povtéda DNN. Eivon onpovticd vo onpeiodet ot
Y10 TO GUVOAO OEOOUEVMV EKTAUOEVONG, OTOUTEITOL UOVO £VOL OVTUTPOCMITEVTIKO VITOGUVOAO, TO
onoio cuvnBwg amoteAel mepimov o 10% ToL APYIKOD GUVOAOL EKTTAIdEVOTC, KUPIMS Yo AGYOLG
BaBpovopmonc. Xt ovvéyeta, To AdaPT npocdiopilet to vrootpilopeva enimeda vtog oo DNN
KOIL OVOKTOL TV KATOAANAT KAGom emtutédou oo T BiAto6nKm TV TpoceyyIoTIK®V ETTTESMY TOV.
INo tov katd Tpocéyyion moAkamAoctooth, to avtictoyo Look Up Table (LUT) dnuovpyeiton
amd ) yewnrpwe LUT tov AdaPT, opyavopévn og mivaxag C. Avtdg 0 Gedloopos emTpénet
otovg mupnveg g CPU va £xovv anotedeopaticy tpdcPoon o dedopéva amd To 110 T TG
Kpoeng pvhAung. Emudéov, ypnowomoteiton éva mpdcheto epyodeio yioo ™ HETAQPOOT) oG
TEPLYpaenSg VAKOD et cuviptmon C. Xe mepumtdocelg omov peyodvtepa b bit puropet vo
avénoovy onuovtikd ta peyédn LUT, 1o AdaPT pmopet var avTikotaoTioeL Tov TOAAOTANCIOGUO
nmov Poocileton oe LUT pe moAloamhoocwoud Pdost cuvapmong, Omov 0 Kotd TPocEyylon
TOAMTANGLOGTNG avamapioTtotal otov Kodwa C. Evd ot 1) mpocéyyion pwopel va LeTptiicel Tig
TPOKANGELS TTOL APOPOLV TN HviAUN oL oyetilovton pe peydho LUT (ueyolvtepa omd 15 bit),
umopet vor e1odyet emPapuvon oto xpovo ektéreong tov DNN. Etvon onpovtud ot kon ot dbo
TPOGEYYIGEIS TOPEYOLY LUI0L IGOOVVALN OVOTTOPAGTACT) YNAOD emutédov g ACU, dwepaiilovtog
otafepd amotedéoporta Katd v kPavtomoinon N v emaveknoidevon. To AdaPT ctoyedel va
ovpTANPAOGEL TNV KpLeET P tev Tuprveov g CPU pe LUT 660 1o duvatdy mepiocdtepo yio
VO, EAOYIGTOTOMOEL TIG AOTOYIES ™G KPLeNg pwiung. Télog, n petayAmtrion just-in-time (JIT)
(POPTAOVEL SLVOLKAL TOL LETOYAMTTIGIEVOL ETITTESN YPNGULOTOUDVTOS TO CUGTNLLO KoTooKeLg Ninja.
Ot ToporyOUEVES UNYOVES CLUITEPOCUATMV KO ETOVEKTOIOEVONG GUVOEOVTOL GTI| GUVEYELDL LIE TOL
TEMKA kotd Tpooeyylon emimedor DNN, ta omoio avtikafiotodv ta avtictoyo apyikd emnimedo
PyTorch péom evog epyodeiov EmTOVOLETOCYNULOTIGUOD YPOPHLOTOS TOL VELPOVIKOD. AvTO TO
epyoieio avodel to emimeda Kon avtikaBotd ovadpopud to emimedo PyTorch pe to xotd
TPOGEYYION 16000VO Toug. Tehucd, ot YpoTEG £XOVV TNV ETAOYT VA TPOGAPHOCOVY TO LOVTEAO
YPNOYOTOIDVTOS TO TOPEXOLEVO VITOGUVOAO EKTOHOEVOTS Y10l VOL EMTTUYOLY OKO LEYOADTEPN
aKPiPELn 1) VO TTPOY®PNCOVV GE KOTd TPOGEyyion 0SloAdyn o).
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Yyna 16. Astrtovpyia Tov AdaPT.

TransAxx: Agrtovpyio Ko TEYVIKEC BEATIOTOTOIMONG

[Tponyovpévag, meprypayope éva mAaiclo ywoo v efopoimon katd mpocéyyion DNN
ypnoomowwvrag CPU. Todpo, mopovustdalove ol vEa TAATPOPLO. oV aElomotel T dbvaun g
emrdyovong g GPU péow tov mupivav CUDA ko tov povtédov mpoypoppoaticpod CUDA.
Avtd 10 gpyoreio mov ovopdleton TransAxx mepilopBavel OAo Ta Pactcd yopoKTPIGTUE TOV
AdaPT, ocvumepapfovopévig g Kotd TPOCEYYIoN  EMAVEKTOUOELONG, TNG VLIOGTNPLENG
avBaipeT®V TOATAAGLOOTOV, OPOPOV ETUTESMV OKPIBEINS Kot SIOPOPETIKAOV APYITEKTOVIKDV
HOVTEAV. ZUYKEKPYLEVO, KOTOOKEVACTNKE e 6TOX0 vo. eEopouvoetl Vision Transformers (€5 ov
Ko 70 GVOUQL), TO TTPATO GTOV TOEN T®V TAoUGIwV Ttpocopoinong DNN, aAhd pmopel eriong va
ypnoomomBel kon pe ddpopa poviéda CNN. Emutdéov, dwbétel mo PeATiopévo Gredaeuo,
EMTPEMOVTOS TIV CVTOUOTI XPTON TPOEKTOUOEVUEVAV LOVTEAWDY YMPIG VOL OTTORTEITOL YEPOKIVITT
ToPEUPaoT GTOV KMSIKO TOV LOVTEAOL amtd TV OTTTIKY Ymvio Tov xpriot. H extédeon tov og GPU
EYEL G OmOTELEGLLOL LENLLEVT ToOTITOL TTOVL EMITPENEL TV EE0UOIMON HEYOAWDV LOVTEAWDV TEXVINTIG
VONUOGUVING, EAV YPEWICTEL, YOPIG GNUAVTIKO YPOVO EKTEAECTIC, OLTNPMVTOS TOPOAANAQL LU0 TTOAD
QUIKY| TPOG TO YPNOTN SETOPY]. XPNOOTOUmvTag TO TransAXx, UTOPEGOLLE VO OVOADGOVUE TV
evootnoion twv poviéhwv Vision Transformer oto ovvoro dedopévov ImageNet yo va
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TPOCEYYIGOVLE TOVE TTOAAOTTANGLOGLLOVG KO VO, EKTEAEGOVLE EMAVEKTTOIGEVLOT) KATA TTPOGEYYIGT] Y10,
VO, (VOKTHGOVLE TNV aKpifeta, Omwmg Bo SeIE0VLE GTNV TEPOLLOTIKY AEIOAGYTON.

Yrootipilny yia tyv apyrrextovikij tov transformer — To eninedo transformer amoteAei
10 Oepelddeg otoryeio otnv apyrrektovikn Tov Vision Transformer. O mpwtopykdc Tov
pOAOG mepAauPdvel ™ ANYN oG 0KOoAOLOIOG KOUUOTIOV €KOVaG ®¢ €16000,
uoyAevon tov punyavicpov attention yio tn dnpovpyio oxéoemv HEYAANG euPELELNG KoL T
onuovpyie  pwg  véag  axkolovbiog  yapaxktnplotikdv.  EmumAéov,  vmdpyovv
CUUTANPOUOTIKG PTAOK ToToBeTNUEVE OTNV 0Py 1| 6TO TEAOG €vOg povtéhov ViT, 6mmg
N evoopdtoon patch | po kepaAn ta&vounone. v evoopdtoon patch, n ewova
€16000v voeiotatal Olaipeon o€ evnuepmpévec €kOOcEC oTabepod peyébovg, un
EMKAAVTTONEVES, e KAOe patch va evoopotdvetol YpoppiKa o £vo eninedo SIvuGHLa.
Avta to patch embeddings ypnotpuebovv otn cuvéyslo ®g SlokpLTikd 16630V Yo TO
povtélo tov transformer. Ipog to cuumépacpa tov poviédov ViT, cuvibwog vadpyet po
KEPUAN TOEvOUNONG, M omolo €€l G OMOGTOAN va kével mpoPAéyelg pe Pdon ta
ponuévo yopokmnplotikd. H mpocéyylon oG EMKEVIPOVETOL GTNV EQPAPUOYT| TNG
TPOGEYYIOTIKNG OpOUNTIKNG amOoKAEIGTIKA 0Tl umAok transformer mwov mephappdavouvv
Tov unyavioud attention, mov kvplopyodv onuavtikd 6to ypovo ektéleons (cvvibmg
vrepPaivel o 98%). Avtd To UTAOK GLYVA EMEKTEIVOVTOL GE UTAOK KOIIKOTOUTAOV
nolamhmv transformer, to kaféva amd ta omoio mephapPavel Kupimg Kovovikonoinon,
attention moAAGV ke@oAdV Kot €va eminedo TPoPodociog mpog T gumpog. Ilpog v
EVOOUATMOON NG KATO TPOGEYYIOT APOUNTIKNG, EMKEVIPOVOLOOTE OTIS OV0 TEAEVTOEG,
01 OTtO{EG GLVETAYOVTOL TNV TAELOYNOIN TOV HLOOUATIKOV TPAEE®V.

O unyaviopog mpocsoyng pmopet vo oprotel pe akpifero péow g akdAovdng eicwong,
omov M ovvaptnon softmax ypnowomoleitol Yy TOV LIOAOYIGHO TV PBOpdV TOL
kaBopilovv ™ onuocia kaBe otoreiov omv €icodo. Xe avtd to TANiclo, to Q
AVTITPOCMOTEVEL TO dLAVVCUO EpMTHHATOS, TO K glvar To didvuoua kAeld1o0 kot to V givan

70 O1BVLGHOL TIUNG:
T

Jax

Attention(Q,K,V) = softmax( 14

Aerrovpyia miaiciov — To mhaiclo pog, Tov eaivetoar 610 oyfua Xynuo 17, Tpoceépet
po opfoydvia. TPOGEYYIoN Yo TNV TPOGOUOIMOT| TPOSEYYISTIK®V povtéAwv ViT. Ot
KOPLEg AetTovpYyieg meEPLypAPOVTOL TOPAKAT®.

1)  Emnéxtaon tov mpoesmideyuévov povadwmv PyTorch: To TransAxx oToyevel o1
dwyeipion vworloylop®mv evtog TpoceyyloTiKav poviédwv ViT. IMa va to emtdyet oo,
enekteivel TIc mpoemdeypéveg povadeg PyTorch, emitpémoviag otic mpocoprocuéveg
AELTOVPYIEC VO EVOOUOTMOVOVTOL AUECH LLE TO VTAPYOV VTOAOYIOTIKO Ypdonuo PyTorch.
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Kotd ™ dudpkeln g HETAYAMTTIONG TOV HOVIEAOV, TO TAOICLO HOG OVTOAAAGOEL
avtopoto to. mpoemideypévo emineda PyTorch pe ta mpooappocpéve Emineda,
LETATPEMOVTOG TO TPOEMAEYUEVO HOVTELO OTNV EMBLUNTY TPOGEYYIOTIKY €KO0YT. AVTA
To eMimeda ONUIOVPYOLVTAL KOTA TN S1APKELD TNG EKTEAECTG YPTCLLOTOUDVTAG TV GUECT
petayiwttion JIT, eEacpoarilovtog 0modoTIKn EVEOUATMOON LLE TO VTOAOYLIOTIKO YPAQNLLOL
tov povtédov. H JIT kdvel emiong to HoviéAo gVEMKTO Kot E0KOAO GTNV TPOTOMOINoM
KaTd TN odpKeln TG ektédeons. Avti 1 néB0d0g VTooTNPilel OTAdIOKN HETAYADTTION,
OV CNUOIVEL OTL POVO T PEPT TOV KOOIKO TTOL £Y0ovV 0ALAEEL emavapeTayhoTTtilovTal.
AVTO HELOVEL CNUOVTIKA TO QOPTO EMAVOAUUPBOVOUEVNG UETOYADTTIONG KOl GpOPTMONG
TV eneKTdoe®mv Tov TransAXx Katd Tn S1GpKELD TOV TEPOUATOV.

2)  Apywomoinon emumédov kot ektéleon mupnvov: Ta kavovikd aviikeipeva Tensor
evtog Tov PyTorch ypnoiponolovvral yio m dtoyeipion g apylkomoinong Tov fopadv yio
TOVG TTPOGOPUOCUEVOVS TTVUPNVES. AVTO €£acPOMIEL CLVEREID LE TOVG UNYOVIGHOVG
apywkonoinong tov PyTorch, dtatnpodvtog ) copfatdtnta kot v evkora yprong evrog
TOV mAouGiov. XTn ovvéxewn, Ta PApN/evePYOTOmCELS TOCOTIKOTOWVVIOL BAceEl TOL
TAQTOVG TeV bit TOL TOAAATANGIOCTH TOL €KAGTOTE E€MmEdOL kot Pobpovopodvron
YPTCLOTOUDVTOAG TO GTOTIOTIKA TV EVEPYOTOCEMY TOV €MEdoV. TELOG, T0 mAaiclo
pag ypnotpomnotetl poakpoeviorés C++ yuo va exkterel tov KatdAinio mopriva GPU avd
GTPMLLOL.

3) Anpovpyio LUTs: T'a kd0e mpooceyylotikd moAlomAlootaoty, Snpovpyeitol £vog
avtiototyog mivaxag LUT and v meprypagn tov vyniob emmédov (n.y., o C, Matlab, 1
HDL ocvunepipopds). ‘Exovpe éva evoopatmopévo epyaieio oto TransAxx mov umopel va
onuwovpynoet  avtév  tov  LUT ywo omowdnmote  awBaipeto  mpoceyyloTikd
TOALOTTAOCIOGTY), TOL omoiov 1 ovumeppopd meprypdpeton oe C 1 HDL. Avtd
OLELKOAVVETOL EKTEAMVTAG OAEG TIC OLVATEG TOAAOTANGLOOTIKEG TTPAEES X X Y (T.).,
ypnowonowwvtag o mpocoopoimwon RTL) vy tov  dedopévo  mpoceyyloTikd
TOAAATANCIOOTH KOl 6T GLuvEXELd amofnkevovtag to arnotedéspata o€ Evav LUT. 'Etot,
to LUT[x][y] divel to mpoceyytiotikd amotéhecpa Tov X kot tov y. Katd ) odpkeia g
eUTPOC mepAcatog, 1o TransAxx ypnoyonotel avtovg tovg LUTs ko avtikabiotd tov
TPoeMAeYUEVO (aKkpIP]) TOAAATAQGIACTN LE TO TPOGEYYIOTIKO OamoTEAESHA (OMAadn,
eoptovovtag v tun LUT[x][y]). O LUT 7rav po emioyn oyediaong yia va Bondnocet
ot peiwon tov ypoévov eEopoimong tov TransAxx. Apykd, ot LUTs amofnkedovtor ot
pvnun RAM, xobmg €xel peyddo péyebog wan eivor m kataAAnAdtepn €mAoyn Yo To
toyoia wpdtuvma mpooméhaons towv LUTs. Qotdéco, o1 cuvvéyeln, Oelyvovue madg
BeATidoOUE AVTEG TIG TPOOTEAACELG LVIUNG.

4) BeAtiotonoinon mupniveov GPU: Eivar kpiocipo va An@Bovv vtdym ot pHeTapopEc
pvnung, kabmg ot Asttovpyieg mov mepthapfdvovv LUTs pmopovv ypryopa va yivouv
memory bound. Zvykexpiéva, N cvumepipopd ¢ cache e GPU ennpedletol 1060 amd
TIC TTPOJYPOPEG TOL VAIKOV OGO KOU OO TO GLYKEKPIUEVO TPOTLTOL TPOCTEANCTG
pvnung tov povtédov ViT. Qotdc0, dedopévov 6tt ta dedopéva tov LUTSs givar povo yuo
avéyvoon, pmopodue vo  kabodnynoovpe tov  petayrottiory ¢ Nvidia  vo
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LEYIGTOTOMGEL TNV 0amOd00T TPOSTELAGNG MUVAUNG (ONAadT, YPNOILOTOIDOVTAS TIG
eyyevelg evtorég g CUDA kot Tig onpoiec PETOyA®TTIONG). XPNGOTOIDVTOS OVTHV
™V Tpoc€yyion, o mivakag LUT Ba amobnkedeton cuvnbwg pécsm g cache L1 g GPU,
OV TPOGPEPEL YOUNAN KaBvoTtépnon kot pmopel va Slopolpactel HeETaED OAMV TV
vuatov evtog evog mopnve CUDA. Avtd O1eVKOADVEL TNV OIOJOTIKY] TPOSMPIVY
amofnevon kot tpoonédacn TV dedouévav LUT oe moAomAd vijpotoL.

5) Awyeipion peydhov mAdtov bit: o oevapia 6mov ot LUTs umopel va owvénbotv
onuovtika oe péyebog, waitepa pe peydhao mAdtn bit (>12 bits), to mAaiclo pog mapéyet
poe  evélktn Avorn. To TransAxx pmopel OSvvoulkd Vo, OVTIKOTOGTNGEL  TOV
noAlomAaclocpud Paoer LUT pe moAdamhiacioopd Pdacer ocvvaptnong (6mov o
TPOCEYYIOTIKOG TOALATANGIOOTNG TEPLYPAPETOL EVOAAAKTIKG o€ KOdka C). Avti 1
dtodkacion Umopel v €LGAYEL VITOAOYIGTIKY] LTEPPOPTMOT GTOV XPOVO EKTEAEGNC TOL
DNN, oAré eoocearilel 6Tt TO TAOICIO HOG TOPOUEVEL ATOJOTIKO Kol KALUOUKOVUEVO.
A&ilel va onuewwbet 011 Ko ot dvo mpoceyyioelg mapéyovy pa 1-1 avarapdotacrn tov
TOALOTAQCLOGTH GE VYNAO enimedo, enopuévag ta amoteAéspata Oa ivar ta 101 kaTd TV
npoPreyn | v enoveknaidevon. Emiong, sivar onuavtikd vo onueiwbdei 6tL ot vision
transformers Asttovpyodv koAd pe TiéEG yaunAng axpipelog kot ot vynAdtepeg bit-width,
nov umopet vo emnpedoovy v anddocn ypdvov eEopoimong tov TransAxx, cuyvd oev
QTOLTOVVTOL.

! .
User ViT model [—> Graph re-transform *‘*’}H ytorch model TransAxx O
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Avtouamn EEgpehvnon 1ou oyeQGTIKOD YHPOL

H Avtopotomompévn eepediviion TOL GYEOGTIKOD YDOPOL SodpapatiCel KEVIPIKO pOLO GTOV
Topéo ™G Pertiotonoinong twv BobBéwv Nevpovikov Awtowv (DNN), dwitepo  6tov
OVTILETOTICETON 1 AEMT 160PPOTTiOL LETOED TG OKPIPBENG TOV LOVTEAOL KO TNG LITOAOYIGTIKNG
amdooonc. Avtod to medio Kabiotoron 1HTEPE KPIGO G GEVAPI OTTOL 1) OVATTTVEN LEYEA®Y Kot
TEPITAOK®MV LOVTEAMV UIOPEL VoL Eival [N TPOKTIKN AOY® TEPLOPIGUMV TOPMV 1| ITOUTCEDY GE
TPOYHATIKO YPpdvo. 1o TAIGI0 G PEATIOTG Tpooyyiong ota. DNN, ot epguvntég aToyebouvy va
€EEPELVINCOLY GLGTNUOTIKA TOV TEPAGTIO YDPO CYESOGHOD, TTOV TEPIAOLPAVEL VITEPTIOPAULUETPOVG,
OPYITEKTOVIKEG  EMAOYEG Kot TEYVIKEG Pedtiotomoinong O otdyog eivor vor avoKoAOYoLLE
SOOPPMCE; 7OV emTVYYAvovy  PéATIoTOo  GLUPIPBOcHO, OSIOMOIDVTOS TEYVIKEG OmMG M
KkPavronoinomn, ot oAyoplBlukéG mpooeyyicel ko GAAM. XtV €PYOGio. OGS, E£0TIOICOLE OTN
Bektiotonoinon  kPavtomoinong/mpocéyyiong, MAad OV EQAPLOYT]  GUYKEKPIEVV
TPOGEYYICTIKMOV TOAMOTANCIGTOV o€ KdBe emimedo DNN mpokeiévov va emtevydet 1 PéATIom
oopporion Hetad akpiPelas Kon KatoviAmong evépyelos. Zuykekpyéva 1 pnéBodog epoppoleton
v povtéda ViT mov amrotehovv mpokAnom yio v moAvmAokdmd tovs. Epmvevomuapie omd to
Monte Carlo Tree Search, o teyvich] avalTmong teyvmg VONUOoHVIG, OV ¥PNCLLOMTOLETTOL
oLyva o€ emTportelloL Ty viow, 1 0moio YPNOYLOTOlEl aAYOPIBLLOLS TOOVOTHTWY KO EVPETIKAOV Y10L
VO, GLVOVAGEL TNV KAOGIKT] EQOPLLOYT TNG avalNTNong OEVIP@VY LE apyEg outd T Unyaviky patnon
Ko wwoitepo. v evicyutiky péonom. To MCTS €yet ™ duvatomra vo e§160pportel SUVOLIKA TV
€Eepelivion KoL TNV EKUETOAAELON, KAOIGTMOVTOS TO AyOTEPO EMPPENES GTO VoL KOMAGEL GTOL
tomkd PéAtioto oe oOykpon pe GAkeg peBddovg Ommg ot GmAnotor oAydplpol mov
xpnoyonodvTon Guyva Yo kBavtomoinon akpiPeiog avalimong [160, 161].

Aerrovpyio. avadijtons mov Pacicerar oe MCTS — H éxbeon g PEATIOTNG SloptdppmoNg Twv
KOTO TPOGEYYIoT TOAMUTANGIOGTAOV UETOED KdOe emumédov evog povtédov DNN mpokeyévon va
Bpebel n koOtepn avTioTdfon HETaED cutdO0GTG Kot 1I5Y00C EVOEXETAL VO, TPOKOAEGEL GTLOVTIKY|
vroloyoTiky enPapuveon. O xdpog oyedacHOD yiveton LeYEAog Ommg ovapEpONKE TPOTYOLLEVMS
Ko 1 pétpnomn g oxpiBetog kdbe SopOpPmONMG OgV £fvor EQUCTY| AKOUN Kot OTOV XPNCILOTTOLELTOL
n emrdyvvon mov Pocileton oe GPU, wbaitepa oty mepintwon pog, 6mov 1 mpocopoiwon ViT
av&dver mepautépm tov ypdvo ektédeons. [pokeylévou va mepnynBovpe GUGTIUOTIKA GTO XMDPO
TOV KOTh TPOGEYYIoN AGEDV GYEOWGLOD, YPNGILOTOLOVHE Lo, avalnmon 0évtpov Monte Carlo
(MCTS) mov &ivan €101k TPOGOPHOGHEVT] Yo va Bacileton 6to LAIKS. Avti 1 Tpoogyyion Pondd
OTNV EMTAYVVOT| TNG EEEPEVIVIIONG TOV UPYITEKTOVIKAV OLOLLOPPADCEMV Y10l TO, KATO TPOCEYYION
povtéda Vision Transformer (ViT), emttuyydvovtog Lo 1coppormior LETaED ™G LEYIOTOTOMoNS TG
aKPIPEWS Kot TG THPNONG TPOKABOPISUEVMV TEPIOPICUMV 15YV0G. EmtAfov, yio va emayhvovpe
oV Bpdyo avadpOsTS, £XOVLLE EMVONGEL VOV TPOYVMOGTIKO TTOPEyovTo. akpiBetog yioL Ty extitmon
™mg oxpifeng ovpmepacudrov. Q¢ amotéiecpa, 1 pebodoroyior Hog emTuYYGVEL oL GYEOOV
Béhtiom kapmdAn Pareto, e£160pponmVTOC OTOTEASOUATICG TV KOTOVOAWGT) EVEPYEWS KOL TNV
axpifeto.
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Algorithm 1 Pseudocode for our hw-driven MCTS

Input: 1) Model M, 2) Ground truth batch By, 3) Selected ACUs A,
4) Exploration constant ¢, 5) Rollout policy P, 6) No. of Simulations N
Output: 1) Optimal Approx. Configs Cout

l: rootNode < Node(M)

2: fori+ 1to N do

3: node < rootNode|

4 while not node.isTerminal() do

5 if node.isFullyExpanded() then
6: node +— node.get BestChild(c)
7 else

8: node +— expand(node)

9: break

10: end if

11: end while

12: state +— node.state

13: while not state.isTerminal() do

14: a + chooseAction(state, P, A)

15: state < state.takeAction(a).a € A

16: end while
17: Y + AzxzConfig(state)

18: accuracy;, power; +— evaluate(M,Y;, By)
19: reward < accuracy; — A X power;

20: backprop(node, reward)

21: end for

22: Cout + pareto(accuracy;, power;, Y;), Vi € [1, N]|

KabOopiouoc kalvrepnys molrtikic — H molrtikn rollout eivon cuvifwg o ok evpetin yio, thv
EKTIUNGT ™G OVTOUONG oG OEdOUEVNG KOTAGTAOTG EMALYOVTOS TUYOiOL EVEPYEIEG LEXPL VO
emtevybel M xardotaon teppatikod [163]. Zvyva epapuoleton wg Tuyaion TOMTIKTY, OOV Ot
evépyelec ETAEYOVTOL OLOIOLOPPOL TUYOEL, YWPIG KATTOW GUYKEKPYLEVT GTPOTIYIKT], OAAG LE GTOYO
™mv e€epedvnon evog eupOTEPOL PACLATOS KOTAGTAGEWY. XPNOWOTOUDVTOS TH YVAOGCT TOV
OLYKEKPYEVOD TOUED GYETIKGL e TV gvouctncio kdbe enutédov oty TPOGEYYIOT), EPUPUOCOLE
wa mo mepindokn modrtikh. ‘Eotw S = (sj 1, Sj2, -+, Sj,.) M Moto evoustnciag emumédon evog
ACU 4;. s;; eivan m xavovikomompévn axpifeta tov povréhov dtav 10 ACU A; ue j €
[1, k] epopuoletan povo oto otpdpa. i. OUoimg, UTOPOVLE VoL OVOTUPUCTHCOVLE TH GUVOAIKY
EMGTPEPOUEVT 10YD TOV KOt TTPocéyyion povréhov otav 10 A;  epapudletor oTo eminedo i wg
Dj,i- ZOUTEPOCUOTIKG, UTOPOOUE TMPO. VO, EKOPAcOvUE TNV mOovOTNTO. Vo, KAVOLUE  uio;
ouyKekpyévn evépyeta oy ohrct] rollout, Sniadn vo emdéEovpe éval A; amd k Swbéowa ACU
Y10L TO EMTEDO 1 O

e (5ji=AXpjii)

T elnimAxp)
z=1

P(4p); =
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[ewpopotikn A&oAdynon

Ye ot TV evoTTo, Topovctaovpe v o&lohdymon v mhauciov AdaPT kot TransAXX oyetikd
pe wolhd dtctva DNN pe v avtiotoym Babpovopnon kovromoinonc, ekmoidgvon pe entyvoon
TPOGEYYIoNG Ko Ypovo Tpocopoimonc. Emiong, poll pe tic petproeig amddoons, Bo eppaviCovron
Ol TLPOSLOLYPOPES TYETIKA LE TIC TOPAETPOVS KAOE povtélov, Tov aptipd tov Asttovpyiwv MAC
(OPs) koi 10 o©OVOAO dedouévmv mov ypnotomoovvial. To zmepduota Sielyybnoav oe
enekepyoot Intel Xeon Gold 6138 ota 2,00 GHz ko 64 GB RAM vy weypdpora CPU AdaPT
evo Yo telpapato. TransAXX ypnotpomombnke to oo ovotua poali pe o GPU Nvidia Tesla
V100. Erutdéov, Bo deiovpe v omoteleopatikotnto ov odyopibpov MCTS yo Béhtiom
aval{1TIGT GTOV KOTA TTPOGEYYIOT YMDPO AVGEMV Y10L TV EDPECT] TNG KOATEPTS 1IGOPPOTTIOS LETAED
aKPIPELS Kol KOTOVOAWGTG EVEPYELC,

Amnoteléouara oro AdaPT — T okomovg emideing emavekmaidoevong, o600
TPOCEYYIGTIKOL TOAAATANGLOGTES, TOV VAOTOVVIUL ®¢ mivakes ovalntmong (LUTSs),
ypNoonoovvTar pe oakpttésg tinég Méoov yetkov Xodipotog (MRE) kot Mécov
Amolvtov Xoedipatog (MAE) omd ™ Pifhodnkn EvoApprox [137]. H pétpnon
axpifewag top-1 ypnoomoteitan yevikd, exktdg amd to povtédo ImageNet, ta omoia
y¥pNoonoovy to top-5.. Méow ¢ katd mpocéyylon emaveknaidevong pag, too DNN
umopohv  vo, TPOGUPUOGTOVV GTOV TPOCHPUOCUEVO KATO TPOCGEYYIST] VMKO, UE
amotédecpo oavEnpévn axpifeta yio to katd tpocéyyion DNN. EmmAéov, mapéyovpe o
cuvoy Tov ¥pdvou eopoimwong yia kb Katd tpocéyyion DNN.

mul8s_1L2H MAE: 0.081 %, MRE: 4.41 %, power: 0.301mW!
DNN FP32 8bit 8bit calib. 8bit retrain® time
approx.

ResNet50 93.65% 93.55% 93.59% 82.69 % 93.44% 763s

VGG19 93.95% 93.80% 93.82% 90.7% 93.56% 318s
VAE- 99.99% 99.95% 99.96% 93.12% 99.88% 9.28s

MNIST

LSTM- 83.10% 82.90% 82.95% 79.9% 82.63% 710s
IMDB

SqueezeNet 80.6% 79.01% 80.16% 62.01% 76.21% 620s
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mull2s_2KM MAE: 1.2e-6 %, MRE: 4.7e-4 %, power: 1.205m\W?
DNN FP32 12bit 12bit 12bit retrain® time
calib. approx.

ResNet50 93.65% 93.60% 93.61% 93.52% 90.54% 798s

VGG19 93.95% 93.80% 93.81% 93.81% 93.71% 359s

VAE- 99.99% 99.98% 99.98% 99.98% 99.99% 10.11s
MNIST
LSTM- 83.10% 82.94% 82.96% 82.96% 83.12% 1040s
IMDB

SqueezeNet |  80.6% 80.11% 80.3% 80.35% 80.50% 623s

Iivokog 9. Akpipero kot xpovog emavekmaidsvong 6to AdaPT ywa drapopa DNN.

DNN Native CPU Baseline AdaPT AdaPT AdaPT vs
Approx (w/ func) (w/ LUT) Baseline
ResNet50 0.5 min 76.5 min 104 min 1.7 min 45x%
DenseNet12 0.48 min 53.2 min 72 min 1.6 min 33.2x
VGG19 0.2 min 91.7 min 125 min 1.7 min 53.9%
Fashion-GAN 0.003 min 0.02 min 1.1 min 0.012 min 1.7%
VAE-MNIST 0.015 min 0.1 min 1.2 min 0.02 min 5x
LSTM-IMDB 1.36 min 48.5 min 449 min 7.6 min 6.4%
Inceptionv3 22.1 min 2909 min 4560 min 83 min 35.1x
SqueezeNet 11.6 min 443 min 576 min 20.6 min 21.5%
ShuffleNet 11.4 min 163 min 251 min 22.4 min 7.3%

ivoxog 10. Xpovog mpocopoimeng Y10 KAOE TPOGEYYIGTIKG VEVPMVIKO JIKTVO.

Amoteléopata oto TransAXX — Xe autiv TV evotnta, OeEAyovpe TEPALATA YLoL VoL
a&lohoynoovpe v anddoon Tov mhatsiov TransAXxX, estidloviag otnv akpifelo Kot Tov
YPOVO EKTELECTG TV dNUOPIAGV povTélmv Vision Transformer (ViT) g didpopovg Kotd
npocéyylon moAlomAaclaotés. Ocov agopd Tig €KOOGELS AOYIOCUIKOV, TO TransAXx
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avomtoybnke oto PyTorch 1.13 pe v ékdoon CUDA 11.7. H gykotdotoon vAKoD mov
YPNOLOTOMONKE Yo To TEWPApaTo amoterovvTay amd Vv idte CPU pe ta mepdpato tou
AdaPT, évav eneepyaotn Intel Xeon Gold 5218R 20 mopivev pe 64 GB pviung RAM,
pali pe o GPU Nvidia Tesla V100 o¢ tov exttoyvuvti vAkod tov TransAxx. [opoakdtom
mapovcstalovtal ot ypovol EKTEAECNC, Ol OMOiol KPIvOVTOLl 1KOVOTONTIKOL KOl OpKETE
YPNYopol, €WK Otav AneBel vwoOY”M OTL dev VTAPYEL GAAN EVOAMOKTIKY YO KOTA
npocéyylon mpooopoimon ViT. Axkdupa cvvoyilovpe to amoteAécpato akpifelog mwov
emoednocav mpvy kot PETA TNV emavekmaidoevon yw kdbe moAlamhaciact. [evikd,
PAEémovpe OTL M KATA TPOGEYYION EMOVEKTOIOEVLON UEIDVEL TO Yhouo okpifelag pe
emttuyio 6TV TAEOVOTNTO TOV KOTA TPOGEYYIoT LOVIEA®VY, KaOdS Ta Bapn Tov dikTtHov
Umopohv Vo TPOCAPUOGTOVV GOTIC KATavoprES Tov avtimpoownevovy to. ACU. Emmdéov,
ava@EPOVUE TN OLVOMKY peiwon toxybog MAC, kabdg Oa eivor onpavtikd yw to
epapato g e&epedvnong Tov yMPov oxXeSOGHOD otV emouevn moapdypago. Eival
GOQEG OTL M TPaAyHaTIKn peimon g woyvog Ba emnpealodtav amd moALoOS TapdyovTEg,
aAld M petoon and g Asrtovpyiec MAC €yl ouvnBog o KApaxkot| enidpacn ot
oLVOAKN Kotavaiwon. To mocootd pelwong eivar oe oyéomn pe ta cvvoiikd MAC mov
npooceyyilovtal og kébe poviého TPoKeWEVOL va £xovpe o akpPeic peTproels. Zav
oNUeEl0 ava@opds €YOoLUE TNV KATOVOA®MON 10YVOS TOL OKPPOVG TOAAATANGLOGTH
mul8s_1KV6 (0,425 mW).

DNN FLOPs Params Inference Inference | Retraining
(w/ func.) (w/ LUT) (w/ LUT)
ViT-S 4.2G 22.1M 121 min 6 min 5.5 min
DeiT-S 4.2G 22.1M 122 min 6.1 min 5.8 min
Swin-S 8.5G 49.6M 242 min 13.1 min 13 min
GCVIT-XXT 1.9G 12M 43.5 min 3 min 3.5 min

IMivakog 11. Xpovor Tpocopoimong yia kGO tpoceyyiotiké poviého ViT oto TransAxx.

Model specifications ACU 1: mul8s_1KV9 ACU 2: mul8s_1L2H ACU 3: mul8s_1L2L
MRE 0.90%, power: 0.410mW MRE 4.41%, power: 0.301mW MRE 12.26%, power: 0.200mW
MACs Sbi.t . . . . -, .

Name approx. FP32 (ca)llb. Initial Retrained Power | Initial Retrained | Power | Initial Retrained | Power |
ViT-S 98.54 74.64 71.86 34.95 67.31 3.45 1.264 66.74 28.75 0.090 0.15 52.18
DeiT-S 98.54 81.34 79.34 0.96 70.16 3.45 0.10 67.01 28.75 0.10 0.11 52.18
Swin-S 99.7 82.89 81.83 79.56 79.25 3.49 64.30 76.64 29.09 0.41 67.87 52.79
GCVIiT 75.5 79.72 78.91 73.50 78.346 2.64 51.56 76.93 22.03 0.26 63.01 39.98

IMivaxog 12. Merpikés okpiferog ko Kotavaloong ioyvos [%] Yo wabe povrého ko
TOALOTAOGLOCTT].
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Amoteiéopara too MCTS — Téhog, a&loloyovpe ) ypnon tov aiyopifuwv MCTS
nov PBacilovtal og LAKO yia v €hpeon g PEATIOTNG KapumvAng Pareto yio akpifela kot
woyv. AnewoviCovpe ta daypappota dtacmopds amd o MCTS yia kdbe poviého otdyov
ViT ypnoponoidvtog tpocopoldcelg 2000 (n KoTavaAmor eVEPYELNS KOVOVIKOTOLEITAL).
Kabe amoxtnuévo Pareto (pe KOKKIVO) OVIUTPOGMTEVEL TN YVAOON TOL £xel pdbel to
CUOTNUO YO TV €VPECT TNG PEATIOTNG SIOUOPP®ONG TOALUTANGLOGTY Ko Eivot Bactkd 1
€€0dog tov aAyopiBuov avalnmong. T va map€yovpe TMEPATEP® GLYKPICELS,
TEPOUATICONOOTE YIoL OVO SLOKPITEG TOPOUETPOLS A Yo TV TOA®GY 16YV0G, OTWG
neprypdoetar otov AhyopiBuo 1 kot omv efiowon moltwkg MCTS. Axduao,
ocvvoyilovpe TiIc Aoelg mov Ppédnkav pe v Pacikn TPOcEyylon TV HOVIEA®V (ue
kitpvo), mov eExnedncav and tov [ivakag 12, pall pe tig mpotevopeveg PEATIOTEG ADGELS
oL AapPdvovtal amd v mpocéyylon pag mov Paciletor oto MCTS (pe mpdowvo). Qg
Baokég Avoelg opilovpe to onueia dedopévov akpifetag/ioyvg and tov Ilivaxag 12 ota
omoia M mpocEyylomn epappdletal opodpopea ce OAo To €mimEdN TOL HOVTELOL YWPIG
peyain mpocapuoyn. Ta mpdoiva onpeio ded0UEVOV TOV GYNUOTOS TPOEPXOVTOL OO TN
peydn e€epevvnomn tov yopov mapapeTpov ypnoporowdvrag MCTS, nov ansuwcovileton
oto Zynua Zynua 18, eotidalovtag povo otic PEATIOTEG AVGELG TOL EMTLYYAVOVTAL HECH
avtoy TOL OaAYOpIOUoL (KOKKveL onueioa oto Zynuo Xynuo 18). Avtd to onueia
dedopévmv agloloyodviar 6 0AOKANPO T0 chvoro dedopévev ImageNet kot ta onueio
Pareto amewcovioviot ota avtioToryo Stoypapupioto S1emopdc Tov Zynuatog Zyfquo 19
¢ mpdovol Tprymvikol deiktec. Ot Pacikéc Avoelg and tov Ilivaxkog 12, yio kdbe kotd
TPOCEYYION TOAAATANGLOCTY, TEPIAAUPAVOVTOL GKOTIUA Y10, VO TOPEYOVY €vo. OTUELD
ava@opds Y TV aSoAGYNoN NG OMOTEAECUATIKOTNTOG TOV TPOTEWVOUEVOV AVCEDV
YPNOLOTOI®VTAG TOV 0AYOp1Bo avalytnong MCTS.
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Yyqpo 18. Awypapporto owoemopds MCTS mov oonyeitor amé hw ypnowpomowwvrag 2000
TPOCONOLMOELS YL TapdpeTpo A=1.5 (mdvw) kot A=0.5 (kdTo).
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Yypa 19. MCTS-Béhtioteg Mcelg mov Pacilovior o€ mpoypatiki okpifela (mpaocivo) Kol opytkég
KaTd TPpocéyyion Moels (Kitpvo).

e yevikeg Ypapupés, n avoalmon pog MCTS emitpénet ™ AMyn anotedecpdtov and v
KoumOAn Pareto mpocappoopévn Yoo vo IKOVOTTOLEL TIG OOLTNGES TOV GYEOLNOTH Kol
TeMKE divel po To Aemtopepn ovtiotaduion petasy axpifelag Kot 1ox0og 6 oYEoN UE
NV oA TPOGEYYIOTIKN LVAOTOINGT. Ot amautnoelg Hog, GYETIKEG LE TN GUYKEKPIUEVT
EQOPULOYN, TEPILAUPOVOAV TEPLOPIGUOVS OTNV KATAVAA®GON EVEPYEWNG, TO KATOOALO
axpiferag kot tov xpovo eEepedhivnong tov adydpBpov MCTS, adrdd pmopodv va Anebdovdv
voyn mpdcobeta kpuripa ywo 0 vd e€€tacn cHotTUa. XnUeldvovpe 0T, €& OGmV
yvopiloope, M epyacio poag elvar 1 mPOTN MOV AVOAVEL TOV OVTIKTUTO TMOV KOTH
TPocEyylon moAlomAaclootdv oto poviéda ViT kot mapéyet éva mlaiclo yoo o) tnv
aSloAoynon g oakpifelog cvumepacudTOV pe AOYIKY ToyvtnTo, ) TNV €KTEAEOM
enaveknaidevong ViT pe emtyvoon tg mpocéyyiong , Kot y) mopoyn MG AETTOUEPOVS
avTioTadong akpifelag-toyvg Katd v e&gpevvnon tov yopov Avcewv towv ViT. Ta
mapopoln akpifeta pe Tig katd tpocéyyion Pacikég Avoelg (eviog ~1% péyiot dapopd),
10 MCTS mapéyet koatd péco opo Avoels pe ~21 % youniotepn oyv. Ilopd Tig
ONUAVTIKEG EEOIKOVOUNGELS OV avopEPONKaY, VYNAOTEPN ££0IKOVOUNGT) EVEPYELNG YO
napdpola ammAELo akpifelog £xovv cuyva avoeepbei oe kKatd tpocéyyion CNN [136]. Q¢
€K ToUTOV, amorteital mpodcetn Epevva yio povtéda ViT f/kon amoutodvraol g01Kol Kot
TPOGEYYLON TOAMATAAGIACTES/ TEYVIKEG TPOGEYYIone. To €pyo pog B€tet Tig facel yia v
e€epevvnon avtod TOL TPOKANTIKOD TOUEN Kol SIEVKOADVEL CTUOVTIKE TOVS OYESIUOTES
OTOV &VTOMICUO AVGE®V apketd ypryopa mov gvBuypappilovior mo otevd pe v
emBoun ooppomia 1oyvog kot akpifeag ota povtéda ViT.
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Eniloyog

Avt 1 SatpPn £xel SlEPEVVNGEL TO TEPITAOKO TTEGIO TOV ATOSOTIKOV VITOAOYIGUOD Yol
™ Padid pabnon (DL), pe xopuo eotioon otn Peitiotonoinon emtoyuviov Padiodv
VEVPOVIK®OV  OIKTO®V Y100 TPOGUPUOCUEVO  VAIKO. Méom pog  oAOKANpOUEVIG
e€epevuvnong O1POPMV GTPATNYIKOV PEATIGTOTOINCNG AOYICUIKOD KOl DAKOV, OUTH M
épeuva. GLVEBOAE OTNV KATOVONOT TOV VLITOKEIUEVOV UNYOVIOU®V VAKOD 7POg TN
Bédtiotn extéleon poviélmv teyvnThg vomupoovvne. EmumAéov, avty m Swrpipn
OlEpELYNGE TN YXPNON TPOGEYYICTIKMOV TOAAATAAGIOCTOV Yol TNV EKUETAAAELON TV
SLVATOTHTO®V TPOGEYYIGTIKOD VAIKOV Yo YPIyopn ToydTnTe ££0y®YNG CUUTEPACUATOV
kot evepyelokn omddoon twv DNN. Ilpoteivoviag 600 mpocappocuéve mAaiclo
eEopoimong, to AdaPT xou 1o TransAxx, oavtpetoniloope v mPOKANOM NG
npocopoiwong mpooeyyotik®v DNN. Zvykekpyéva, Oivoope tn odvvatdtra oe
EPELVNTEG KOl  EMAYYEALOTIEC VO  ONUOLPYNGOLY  YPNYOPA TPOTOTLTO. Kol Vo
a&lohoynoovv katd mpocéyyion DNN, tpowbdvtag (o mo Tpootty Kol EXOVOANTTIK
TPOCEYYIoN Yo TNV avATTLEN HoviéAmy. Téhog, avtn n datpPn mpdtewve po péBodo
Bacwopévn otov akydpilpo MCTS yia tayeio e€epedvnon tov YOPOL TOPOUETPOV LE
otoy0 TV evpeon pwog PBEATIOT G avtioTdOuiong petald KatavaAmong evéPYElOg Ko
akpifeloag oe kotd mpooéyyion DNN, kot ovykekpyéva VITs, deiyvovrag v
ATOTEAECUOTIKOTNTA Kol ¥pnootnTo. Tov odyopibuov. Kabog 1o medio g Pabidg
uébnong ovveyiler va eEelMooetar, tor gvprpate avTig ™S dtpPng cvuPdiiovy o
ocuveylopevn culntnon GYeTIKd pe Tov amoteAespatTikd vrorloyioud yuoo Al epappoyéc.
Ot yvdoelg mov mpoékvyay amd T PEATICTONOINCT CUUTEPACUATOV VELPOVIKDOV SIKTV®OV
O€ TPOGUPUOGUEVO VAIKO, GE GLVOLACUO LE TO TAAICLI0 ££0HOIMONG Yo KATA TPOGEYYIoN
VTOAOYIGTES, GNUATOO0TOVV £VOL OLGLOCTIKO PrUo TPOg TN YEPLUP®GN TOL YAGHOTOS
HETOED AOYIOUIKOV Kot VAKOD 6Tov Topéa g Pabdiiac padnong.
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I'hwooapro

Al Teyvnm NonpootHvn

ANN Texvnto Nevpovikod Aiktvo

ASIC Kvihopata Ewdine Eeappoync

CNN SuveMkTikd Nevpovikd Alktvo

CPU Movaoda Kevipikng Enegepyaciog

DDR Mviun Auwing Toydtntog Asdopévov

DNN Ba6iéd Nevpwvikd Aiktovo

DRAM Avvopikn Mvnun Toyaiog [Tpoonéhaong

DSP Y1owokn EneEepyacio Xnpatog

FLOPs [Tpda&erg Kivntg Yrodaotohng Ava Agutepdrento
FPGA Yvorotyio Emtoma [poypappatilopevov Ivanv
FPS Koapé Ava Asvteporento

GAN 'evymrtikd Avtayovietikd Aiktoa

GPU Movada Eneéepyaciog I'pagpikdv

HBM Mviun Yyning Evpulovucomrag

HPC Ymoloyiotég Yyning Anddoong

loT Awdikrvo tov [Hpaypdtov

MLP [ToAverinedo Avtiinmtpo

MSB [T Enpoavtikdé Mmt

MSE Méoo Tetpaymvikd Zedaipa

NN Nevpaoviko Alktvo

OpenCL Avoym I'hdooa Ymoloytotikig (Yo TapdAANAeS e@aproYES)
OPS [Ipa&eic Ava Asvtepdriento

PCle Oupida Awacvvdeong [eprpeperaxav EEaptmudtwov Express
RAM Mviun Toyaiog ITpoomélaong

ReLU I'pappkn Xvvaptnon Evepyomoinong

RL Evioyvtikn pe Mdabnon

RMSE Terpaywvikn Pia tov Mécov Tetpaymvikod ZeAaApnotog
SGD 2royaotikn Andtoun Kébodog

SIMD Pon povng evtoAng TOAATADY dEGOUEVDV

SoC XHoTNHO GE TOT

SoTA Terevtaio AéEN g Teyvoroyiag

TPU Movdéda EneEepyaciog Tevoopikmv Ilpoypappdtmv

ViT Ontikog Metaoympuatiotg (100G VELP®VIKOV S1KTVOV)
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Appendix A.

The SERRANO platform: Stepping towards
seamless application development & deployment
In the heterogeneous edge-cloud continuum.

The need for real-time analytics and faster decision-making mechanisms has led to
the adoption of hardware accelerators such as GPUs and FPGAs within the edge cloud
computing continuum. However, their programmability and lack of orchestration
mechanisms for seamless deployment make them difficult to use efficiently. We address
these challenges by presenting SERRANO, a project for transparent application
deployment in a secure, accelerated, and cognitive cloud continuum. In this work, we
introduce the SERRANO platform and its software, orchestration, and deployment
services, focusing on its methods for automated GPU/FPGA acceleration and efficient,
isolated, and secure deployments. By evaluating these services against representative use
cases, we highlight SERRANO 's ability to simplify the development and deployment
process without sacrificing performance.
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A.l. Introduction

The explosive growth and increasing power of 10T devices, along with the emergence of
5G networks, has led to unprecedented data volumes. Emerging use cases around smart
homes, autonomous vehicles, and smart factories require edge processing due to critical
real-time requirements. To this end, multi-layered computing architectures are emerging
where compute resources and applications are distributed from the edge of the network,
closer to the point of data collection, to the cloud, realizing the edge-cloud computing
continuum [173].

Even though edge-cloud architectures extend the compute capacity of the traditional
cloud paradigm, the excessive compute demands of modern use-cases require the
introduction of hardware accelerators in the computing stack. Specialized hardware
acceleration platforms (e.g., GPUs, FPGAS) can achieve higher performance than typical
processing systems for the same power envelope [147, 120]. Typical examples of
accelerators include resource-constrained devices at the edge to high-performance,
massively parallel devices at the cloud.

While such hardware platforms offer performance gains, these benefits do not come for
free, as they typically require hardware knowledge to program. From the developer's
perspective, a trade-off arises between performance and programmability. To relieve the
developer of the programming burden, tools are needed for seamless development. In
addition, the introduction of these devices into the edge-cloud computing continuum
underscores the need for orchestration and deployment tools to ensure efficient and secure
executions.

To this end, we present the H2020 project SERRANO, which provides a new ecosystem
of technologies to address the challenges of introducing heterogeneity in the edge- cloud
computing continuum. Specifically, the contributions of SERRANO are:

e Software Services for automatic optimization of applications targeting GPU and
FPGA devices.
e Orchestration Services for end-to-end cognitive orchestration along with closed-
loop control.
e Deployment Services for isolated and private execution of the heterogeneous
compute units.
We evaluate the software and deployment services against a set of representative use
cases. The experimental results highlight the ability of SERRANO to simplify the
development and deployment of applications without sacrificing performance.
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A.2. SERRANO Platform Overview

The SERRANO platform combines (a) a set of tools that simplify the
development/deployment process of accelerated applications and (b) runtime mechanisms
that ensure that the quality of service (QoS) requirements of deployed applications are
met while efficiently leveraging the underlying heterogeneous infrastructure. These
technologies and services are abstracted through APIs and SDKs to simplify their use
(e.g., Plug&Chip [174]). Figure below shows an overview of the platform.

e O 2 A

| APIs & SDK for seamless application development and deployment |

| ll

| ll

1 Services <>, Application [+ ] :

. Library : Services !
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Figure A.2-1. The SERRANO platform

Service Development Kit: SERRANO contributes to the development and deployment
of applications that leverage heterogeneous resources by providing a Service
Development Kit (SDK) to increase developer productivity in building, deploying, and
managing novel applications while having better control over compute, storage, and
network infrastructure. In addition to increasing developer productivity and thus reducing
time-to-market, the proposed toolkit provides mechanisms that can provide solutions for
an application, i.e., different application versions, that compromise between performance,
energy efficiency, and accuracy. Finally, the development services of SERRANO are
used to optimize the computationally intensive parts of the applications of UC and to
create a database of application versions with different trade-offs targeting the different
resources available on the platform.

Orchestration Approach: SERRANO proposes an orchestration system that manages
the underlying infrastructure in an abstract and disaggregated manner. This is achieved
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through a hierarchical architecture consisting of three components: i) the central resource
orchestrator, ii) the local resource orchestrators, and iii) the telemetry framework.

In this context, submitting an application to the SERRANO platform requires providing a
set of QoS metrics (e.g., QPS, maximum error) that describe the desired state of the
application. The central orchestrator, a mechanism that knows the current state of the
underline resources, decides on the optimal placement, i.e., the edge, cloud, and HPC
resources that can ensure that the application's requirements are met while minimizing
resource consumption and hence energy consumption of the entire infrastructure. Once
the optimal placement is decided, the central resource orchestrator assigns the workload
to the selected resources along with the desired QoS metrics and coordinates the
necessary data movement. Then, the local orchestrators are responsible for actually
deploying the application using the appropriate application versions provided by the
SDK. Finally, the proper functioning of the SERRANO orchestrator would not be
possible without the telemetry framework, which captures information about the current
infrastructure and application status.

Use Case Scenarios: The SERRANO platform is evaluated using three use-cases from
different scientific domains that illustrate the platform's ability to solve multiple
computationally intensive problems with different requirements.

Secure Data Storage: This use case focuses on security and distributed data storage.
Protecting files from malicious third parties is done through encryption and novel erasure
coding. Therefore, SERRANO will explore acceleration solutions for encoding and
decoding tasks that fragment the encoded data into multiple pieces so that the encoded
pieces can be stored in distributed locations, providing a secure storage solution.

High-Performance Fintech Analysis: The second use case comes from the field of
financial technology, more specifically from the field of portfolio management and
analysis. It deals with various Al algorithms accelerated by the heterogeneous computing
resources of SERRANO to automatically manage multiple personalized portfolios
simultaneously.

Machine Anomaly Detection in Manufacturing Environments: The third use-case belongs
to the field of machine anomaly detection. In particular, high-frequency sensors generate
large amounts of data that are processed in real time to automatically detect anomalies in
machines. SERRANO will analyze the collected data and accelerate its processing.
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A.3. SERRANO technologies and resources

SERRANO's hardware infrastructure

The SERRANO platform encapsulates hardware and HPC platforms both at the edge and
in the cloud. The cloud infrastructure is coupled with both programmable FPGA
accelerators and GPU devices. Accelerators are used to increase the performance and
energy efficiency of the workloads being executed.

The cloud FPGAs and GPUs connected to the cloud side of SERRANO are: (i) a Xilinx
Alveo U200 accelerator card, (ii) a Xilinx Alveo U50 accelerator card, and (iii) two
NVIDIA Tesla T4 GPUs. In addition, NVIDIA BlueField-2 data processing units (DPUSs)
are used. System on a Chip (SoC) devices are used in the edge infrastructure. The edge
FPGA and GPU devices in the infrastructure are: (i) a Xilinx MPSoC ZCU102 device, (ii)
a Xilinx MPSoC ZCU104 device, (iii) an NVIDIA Xavier AGX, and (iv) an NVIDIA
Xavier NX. In addition, the SmartBox, an industrial-ready box for data acquisition at the
edge of the network with a 60 GB hard disk, is used for edge processing. Among the
many HPC resources available on the SERRANO platform is the HPE Apollo 9000
Hawk.

SERRANOQ's Software Services

SERRANO provides a unified framework consisting of three tools for HLS and CUDA
accelerator development and optimization.

Automatic HLS Optimization: SERRANO offers a tool that automatically optimizes
synthesizable C/C++ kernels for Xilinx FPGAs through High-Level Synthesis. This
optimization scheme identifies points of interest, i.e., loops and arrays, applies directives
(e.g., loop unrolling, array partition), and performs synthesis to get the latency and
resource utilization. By applying different combinations of directives, the optimizer
proposes an approximation to the Pareto-optimal designs with respect to the underline
architecture of the target device.

Due to the large design space, the DSE is performed using the algorithm NSGA-II. The
exploration phase consists of the following steps: a) the configuration population is
initialized, b) each configuration of the current population is applied to the source code
using a source-to-source compiler and the output is synthesized using the Xilinx Vitis tool
chain, and c) the synthesis outputs of the population are passed to NSGA-II to build the
next generation configurations. Steps b) and c) are executed iteratively until the
termination criterion is reached.
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Automatic CUDA Optimization: A CUDA auto-tuning framework for kernel source codes
targeting Nvidia GPUs has also been developed. This framework is based on block
coarsening, a kernel transformation that merges the workload of 2 or more thread blocks
while keeping the number of threads per block the same. Consequently, multiple adjacent
blocks are merged to deal with the issues associated with extensive fine-grained
parallelism. The proposed framework is based on two components: a) a regression model
trained on a representative source code dataset, and b) the source-to-source compiler. The
regressor predicts the optimal block coarsening factors for different applications,
workload inputs, and GPU architectures, while the source-to-source compiler applies the
predicted source code transformations.

Dynamic Memory Management in HLS: A tool has been developed that allows multiple
FPGA-implemented HLS accelerators to share and reuse on-chip memory resources at
execution time with minimal external fragmentation \cite{DMM}, \cite{Defrag}. This
tool groups portions of on-chip memory into structures comparable to those of traditional
computer architectures, forming a shared memory area consisting of the local memories
of the reconfigurable platform. Dynamic memory allocation is performed by the HLS
accelerators through a first-fit allocator implemented on-chip.

To minimize external fragmentation of the heaps and thus increase memory efficiency, an
HLS on-chip garbage collector is implemented to compact the fragmented memory
regions of the heaps. To reduce the performance overhead of executing the garbage
collector, an offline stochastic analysis of the accelerators' memory patterns is performed
to determine when (i.e., at the time when the heaps' fragmentation percentage exceeds a
user-defined fragmentation threshold called ® the compaction algorithm should be
executed. This analysis is based on a Monte-Carlo model that pseudo-randomly emulates
the memory patterns created by running many accelerators in parallel for different ®
thresholds.

The Al orchestration services of SERRANO follow a hierarchical architecture that
provides end-to-end closed-loop orchestration of running workloads. At the top is the Al-
assisted service orchestrator (AISO), which works in conjunction with the resource
orchestrators responsible for the application deployments.

Al-enhanced service orchestrator: The AISO is the central orchestrator of the platform
and is responsible for translating the parameters specified by the end user into the
appropriate deployment constraints. The output of this component is a list of possible
deployment scenarios (edge, cloud). The input of the AISO is a JSON file containing
various constraints related to the application and its execution. The main component of
the AISO is the Requests Manager, which is responsible for processing the data provided
by the end user regarding the execution of an application, as well as the telemetry data
collected by the telemetry framework. The other components of the AISO are the
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translation mechanism and the prediction mechanism. These two mechanisms make
decisions about deployment scenarios after analyzing the telemetry data (e.g., compute,
memory, disk, network, and hardware information) and user parameters based on
machine learning models (ML).

SERRANO contributes to application deployment providing services that target trusted
execution, workload isolation, and lightweight virtualization.

vAccel framework: To achieve isolated and private execution of the hardware accelerators
on the platform's disaggregated infrastructure, the vAccel framework is used to virtualize
and deploy the hardware accelerators in multi-tenant environments. vAccel decouples the
user application from the HLS and CUDA kernels. The actual hardware-specific code that
implements these functions for a given hardware device is provided in the form of plugins
that are loaded at runtime. Consequently, the deployed applications can be migrated from
one host to another without the need to modify or recompile the code. At the same time,
its modular nature prevents user code from running on shared accelerators. Only the code
contained in the plugin is executed on the hardware accelerator, which enables secure
hardware execution.

A.4. Experimental Results

Automatic HLS Optimization: The automatic HLS optimization scheme was used to
optimize the Kalman filter algorithm provided by the high-performance fintech analysis
use case. The proposed methodology is compared to a) the HLS optimizations performed
by the Vitis Unified Software platform (version 2021.1), b) a human expert, and c¢) an
automated optimizer that randomly navigates the design space of directives. The proposed
NSGA-II based (GenOpt) and the random (RandOpt) optimizers operate for 12 hours.
The optimization process targets the Xilinx MPSoC ZCU104 FPGA available on the
SERRANO platform. We synthesized the input source code using the HLS optimizations
performed by Vitis and determined the latency and resources of the output design. This
optimization scheme results in an infeasible design (BRAM>100%), showing that it
cannot always account for the architecture of the target device. GenOpt achieves 40% and
27% lower latency compared to RandOpt (1.023 ms) and human expert (1.009 ms),
respectively, with no significant difference in resource usage. Consequently, the proposed
optimization method outperforms both the naive automatic DSE approach and the human
expert in terms of latency and yields designs that take into account the available resources
without human intervention.
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Automatic CUDA Optimization: The automatic CUDA optimization method was
evaluated using PolyBench-ACC, an open-source benchmark suite that includes CUDA
kernels from data mining, linear algebra, and stencils. The proposed scheme also targets
various edge-cloud GPUs from Nvidia (e.g., Xavier NX, T4) available on the SERRANO
platform. To determine the best predictor for the block coarsening factor, several
regression models were evaluated using MSE and the R”2 metric. For the model
evaluation phase, the 10% of PolyBench-ACC suite was used. XGBoost has the highest
prediction accuracy with an MSE of 0.02 and R”2 metric of 0.88. Figure below shows the
speedup of the optimized source code targeted to the Nvidia T4 GPU for the evaluation
dataset applications. As shown, the automatic CUDA optimizer achieves an average
speedup of 3.1x compared to the native implementations.

n_10*
3
T
9
g 2]
n

0.

Mg
é\/ ‘5/ es/ é\/ 4\/ o\/ o\/ 0\/ 0\./ 0\/ +/ +-

Figure A.4-1. CUDA automatic optimizer evaluation

Dynamic Memory Management in HLS: The implemented garbage collector and
defragmentation methodology were evaluated on the Alveo U200 FPGA of the
SERRANO platform to highlight their effectiveness in improving the memory efficiency
of the platform under different threshold ® and for different number of running
accelerators. Figure below shows the percentage of fragmentation-induced memory
allocation errors at different thresholds ® when a different number (from 1 to 10) of
accelerators run in parallel on the same platform and share a single heap. Note that the
HLS accelerators K-means and moving average were run 10,000 times and statistical
analysis was performed. The black reference lines correspond to HLS accelerators that do
not use the garbage collector. At lower ® values, the garbage collector is activated more
frequently, leading to a significant reduction in fragmentation levels and, consequently,
fragmentation-related allocation failures. However, frequent execution of the garbage
collector introduces latency in the execution of the accelerators.
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Figure A.4-2. Percentage of the fragmentation induced allocation failures of the overall 10,000
parallel executions of the (a) K-means HLS accelerators and (b) moving average HLS
accelerators.

The vAccel framework was evaluated using two applications from the high-
performance fintech analysis use-case: (i) the Savitzky-Golay filter and (ii) the Black-
Scholes algorithm. These applications were virtualized via the vAccel framework, ported
via the vsock socket, and executed on the Alveo U50 FPGA. Figure below shows the
energy consumption and execution time speedup of the two HLS accelerators when
running on the selected platform (patterned in green) and when running the same designs
after they are virtualized by vAccel (blue). Virtualizing the designs results in negligible
degradation in the energy consumption and speedup of the accelerators, ranging between
2% and 4% compared to the non-virtualized designs.
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Figure A.4-3. Accelerator energy consumption (a) and execution time speedup (b) on the Alveo U50
for the virtualized/non-virtualized designs.

In this paper, we introduce the SERRANO platform and its software, orchestration,
and deployment services, focusing on its methods for automated GPU/FPGA acceleration
and efficient, isolated, and secure deployments. By evaluating these services against
representative use cases, we highlight SERRANO 's ability to simplify the development
and deployment process without sacrificing performance, underscoring its importance for
heterogeneous resource adoption in the edge-cloud computing continuum.
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