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ABSTRACT 

 

This work focuses on investigating the use of machine learning models as rainfall-runoff 

models. For this purpose, the development of a Long Short-Term Memory, a Transformer, and 

a conceptual model was chosen. The Long Short-Term Memory model was selected due to its 

widespread use in numerous time series prediction problems and specifically runoff prediction. 

The Transformer model was chosen because, despite the extensive discussion around its 

capabilities as a natural language processing model, its use as a time series prediction model is 

still quite limited. For comparing the above models, the conceptual rainfall-runoff model Zygos 

was developed, which has been initially developed by the ITIA research team of National 

Technical University of Athens. 

The training and application of these models were carried out separately for 164 catchment 

basins from the CARAVAN dataset. These basins are located in the United States and were 

selected to cover a wide range of hydrological conditions. The analysis of the final models was 

performed at the catchment basin level, where the models were trained, calibrated, and tested 

for the same period of time. 

The results show that machine learning models can be effectively used as rainfall-runoff 

models, as they outperform traditional models in performance criteria. 
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ΠΕΡΙΛΗΨΗ 

 

Η παρούσα εργασία εστιάζει στη διερεύνηση της χρήσης μοντέλων μηχανικής μάθησης ως 

μοντέλων βροχής-απορροής. Για τον σκοπό αυτό επιλέχθηκε η ανάπτυξη ενός Long Short-

Term Memory, ενός Transformer και ενός εννοιολογικού μοντέλου. Η επιλογή του μοντέλου 

Long Short-Term Memory έγινε δεδομένης της ευρείας χρήσης του σε πλήθος προβλημάτων 

πρόβλεψης χρονοσειρών και συγκεκριμένα σε προβλήματα πρόβλεψης απορροής. Το μοντέλο 

Transformer επιλέχθηκε διότι, παρά την εκτενή χρήση ως μοντέλου επεξεργασίας φυσικής 

γλώσσας (Natural language processing), η χρήση του ως μοντέλου πρόβλεψης χρονοσειρών 

είναι ακόμα αρκετά περιορισμένη. Για τη σύγκριση των παραπάνω μοντέλων, εφαρμόστηκε 

το εννοιολογικό μοντέλο Zygos, που έχει αναπτυχθεί από την ερευνητική ομάδα ΙΤΙΑ του 

Εθνικού Μετσόβιου Πολυτεχνείου. 

Η ανάπτυξη και εφαρμογή αυτών των μοντέλων πραγματοποιήθηκε ξεχωριστά για 164 

λεκάνες απορροής που περιέχονται στο σετ δεδομένων του CARAVAN. Αυτές οι λεκάνες 

βρίσκονται στις Ηνωμένες Πολιτείες και επιλέχθηκαν για να καλύψουν ένα ευρύ φάσμα 

υδρολογικών συνθηκών. Η ανάλυση των τελικών μοντέλων έγινε σε επίπεδο λεκάνης 

απορροής, όπου τα μοντέλα εκπαιδεύτηκαν - βαθμονομήθηκαν και αξιολογήθηκαν για την ίδια 

χρονική περίοδο. 

Τα αποτελέσματα δείχνουν ότι τα μοντέλα μηχανικής μάθησης μπορούν να χρησιμοποιηθούν 

αποτελεσματικά ως μοντέλα βροχής-απορροής, καθώς υπερέχουν στα κριτήρια επίδοσης σε 

σύγκριση με τo παραδοσιακό εννοιολογικό μοντέλο. 
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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ 

 

Εισαγωγή 

Η αναπαράσταση των φυσικών διεργασιών που συμβαίνουν κατά τη διάρκεια μιας 

βροχόπτωσης σε μια υδρολογική λεκάνη αποτελεί την κύρια και πιο διαχρονική πρόκληση των 

υδρολόγων μηχανικών. Η προσομοίωση των υδρολογικών συνιστωσών κατά την διάρκεια 

εισροής νερού σε μια υδρολογική λεκάνη, υπό την μορφή κατακρημνισμάτων και ο 

υπολογισμός του νερού που απορρέει στα υδάτινα σώματα ονομάζεται προσομοίωση βροχής 

απορροής. Η μοντελοποίηση βροχής-απορροής είναι κρίσιμη για τη διαχείριση των υδατικών 

πόρων και για τη λήψη αποφάσεων (decision-making). Ακριβείς και προηγμένες προβλέψεις 

ροής από προσομοιώσεις βροχής-απορροής μπορούν να βοηθήσουν στην αντιμετώπιση 

ζητημάτων διαχείρισης υδατικών πόρων και στον μετριασμό των επιπτώσεων πλημμυρών και 

ξηρασιών (Beven 2012). 

Υπάρχουν διάφορες προσεγγίσεις για τη μοντελοποίηση βροχής-απορροής, που κυμαίνονται 

από φυσικά ή εννοιολογικά μοντέλα έως μοντέλα που βασίζονται στην μηχανική μάθηση. Τα 

φυσικά μοντέλα, τα οποία βασίζονται σε λεπτομερή κατανόηση των φυσικών διεργασιών, 

σπάνια χρησιμοποιούνται για προβλέψεις ροής λόγω της πολυπλοκότητάς τους. Αντίθετα, τα 

εννοιολογικά μοντέλα, που είναι γενικά απλούστερα και απαιτούν λιγότερα δεδομένα, 

χρησιμοποιούνται πιο συχνά για αυτό το σκοπό (Beven 2012). Στην εποχή των μεγάλων 

δεδομένων (big data), τα μοντέλα που μπορούν να αξιοποιήσουν μεγάλες ποσότητες 

δεδομένων διερευνώνται ευρέως σε διάφορα επιστημονικά πεδία. Αυτά τα μοντέλα 

χρησιμοποιούν τεχνικές μηχανικής μάθησης για να εξάγουν εξαρτήσεις και σχέσεις που 

προέχονται από τα δεδομένα εισόδου. Παρόλο που τα μοντέλα μηχανικής μάθησης για 

υδρολογικούς σκοπούς έχουν εξερευνηθεί αρκετά την τελευταία δεκαετία, εξακολουθεί να 

υπάρχει μια υστέρηση συγκριτικά με άλλα επιστημονικά πεδία. 

Ο σκοπός αυτής της μελέτης είναι να διερευνήσει την εφαρμοσιμότητα δύο μοντέλων 

μηχανικής μάθησης σε αντίθεση με ένα κλασικό εννοιολογικό μοντέλο βροχής-απορροής. 

Συγκεκριμένα, η μελέτη δοκιμάζει τα μοντέλα μηχανικής μάθησης Long Short-Term Memory 

(LSTM) και Transformer έναντι του εννοιολογικού μοντέλου Zygos. Η σύγκριση αξιολογεί 

όχι μόνο την αξιοπιστία των προβλέψεων κάθε μοντέλου, αλλά και την πολυπλοκότητα των 

αρχιτεκτονικών τους καθώς και τις απαιτήσεις που έχει το καθένα σε υπολογιστικούς πόρους. 

Τα μοντέλα εκπαιδεύτηκαν στο σετ δεδομένων Caravan (Kratzert et al. 2023), που 

περιλαμβάνει σαράντα έτη (1981-2020) ημερήσιων μετεωρολογικών δεδομένων και 
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τριανταπέντε έτη (1981-2015) ημερήσιων δεδομένων απορροής. Ενώ το σετ δεδομένων 

Caravan περιέχει δεδομένα από 6.830 λεκάνες παγκοσμίως, η παρούσα μελέτη εστιάζει σε 164 

λεκάνες από το υποσύνολο δεδομένων CAMELS (ΗΠΑ). Η επιλογή αυτών έγινε με κριτήρια 

τις διαφορετικές υδρολογικές συνθήκες και τους αντικειμενικούς υπολογιστικούς 

περιορισμούς. 

Συμπερασματικά, 164 μοντέλα LSTM, Transformer και Zygos αναπτύχθηκαν σε αντίστοιχο 

αριθμό λεκανών απορροής του Caravan. Αυτά τα μοντέλα προβλέπουν την ημερήσια απορροή 

χρησιμοποιώντας υδρομετεωρολογικά δεδομένα ως δεδομένα εισόδου. 

 Όλα τα μοντέλα αναπτύχθηκαν σε Python, χρησιμοποιώντας βασικές βιβλιοθήκες όπως οι 

Pandas, NumPy και TensorFlow για την επεξεργασία δεδομένων, αριθμητικούς υπολογισμούς 

και διαδικασίες βαθιάς μάθησης (deep learning). 

 

Περιοχή Μελέτης και Σετ Δεδομένων 

Το Caravan (Kratzert et al. 2023) είναι ένα ανοιχτό σετ δεδομένων που περιλαμβάνει 

μετεωρολογικά δεδομένα, χαρακτηριστικά λεκανών και δεδομένα απορροής για λεκάνες από 

όλο τον κόσμο. Τα μετεωρολογικά δεδομένα προήλθαν από το ERA5-Land (Muñoz-Sabater 

et al. 2021), τα χαρακτηριστικά των λεκανών ελήφθησαν από το ERA5-Land και το 

HydroATLAS (Linke et al. 2019), και τα δεδομένα απορροής προήλθαν από επτά ανοιχτά σετ 

δεδομένων. 

Σε αυτή τη μελέτη χρησιμοποιήθηκαν 164 λεκάνες από το υποσύνολο των δεδομένων 

CAMELS (US) (Newman et al. 2015) του Caravan. Η παρούσα εργασία ακολούθησε τη 

μεθοδολογία που προτάθηκε από τους Kratzert et al. 2018, η οποία προτείνει τη χρήση 4 από 

τις συνολικά 18 υδρολογικές μονάδες, που οριοθετούνται από τον χάρτη της U.S. Geological 

Survey (Seaber, Kapinos, and Knapp 1987) για κάθε υδρολογική μονάδα (Hydrological Unit 

Map), για την κάλυψη ενός μεγάλου φάσματος υδρολογικών συνθηκών και τη μείωση του 

υπολογιστικού κόστους. Συγκεκριμένα εξετάστηκαν, οι υδρολογικές μονάδες:  (01) New 

England, (03) South Atlantic-Gulf, (11) Arkansas-White-Red και (17) Pacific Northwest, όπως 

φαίνεται και στην παρακάτω εικόνα. 
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Εικόνα 1. Οι 164 υδρολογικές λεκάνες του CARAVAN. 

 

Αυτές οι τέσσερις υδρολογικές μονάδες περιέχουν 172 λεκάνες, αλλά 8 από αυτές έχουν 

ελλιπή δεδομένα που δεν μπορούσαν να συμπληρωθούν. Επομένως, αναπτύχθηκαν 164 

μοντέλα ως μοντέλα βροχής-απορροής. 

 

Μέθοδοι & Εργαλεία 

Το μοντέλο LSTM, που αρχικά αναπτύχθηκε από τους Hochreiter and Schmidhuber το 1997, 

είναι ένας τύπος αναδρομικού νευρωνικού δικτύου με ειδική αρχιτεκτονική σχεδιασμένη να 

ξεπερνά την αδυναμία του παραδοσιακού Recurrent Neural Network (RNN) να εξάγει 

μακροχρόνιες εξαρτήσεις (Goodfellow, Bengio, and Courville 2016). Τα βασικά στοιχεία ενός 

LSTM κυττάρου (LSTM cell) είναι η κατάσταση του κυττάρου (Cell State), οι πύλες λήθης 

(Forget Gate), οι πύλες εισόδου (Input Gate) και οι πύλες εξόδου (Output Gate). Η κατάσταση 

του κυττάρου (Cell State) λειτουργεί ως η μνήμη του δικτύου, μεταφέροντας πληροφορίες στο 

επόμενο χρονικό βήμα. Η πύλη λήθης (Forget Gate) ελέγχει τις πληροφορίες που θα 

απορριφθούν από την κατάσταση του κυττάρου (Cell State). Η πύλη εισόδου (Input Gate) 

ελέγχει τις νέες πληροφορίες που θα προστεθούν στην κατάσταση του κυττάρου (Cell State), 

ενώ η πύλη εξόδου (Output Gate) ελέγχει τις πληροφορίες που περνούν από την κατάσταση 

του κυττάρου (Cell State) στην επόμενη κρυφή κατάσταση (Hidden State).  
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Η αρχιτεκτονική του δικτύου LSTM, όπως σχεδιάστηκε και χρησιμοποιήθηκε από τους 

Kratzert et al. 2018, έχει αποδειχθεί αποτελεσματική, οδηγώντας στην υιοθέτησή της σε αυτή 

τη μελέτη. 

Το μοντέλο Transformers, έχει αναδειχθεί πρόσφατα από τους Vaswani et al. 2017, και 

πραγματοποιείται εκτεταμένη έρευνα γύρω από την δυναμική και τις δυνατότητες του τα 

τελευταία χρόνια. Το μοντέλο αυτό χρησιμοποιεί έναν μηχανισμό που ονομάζεται scaled dot-

product attention, ο οποίος επιτρέπει στο μοντέλο να εντοπίζει και να καταγράφει 

μακροχρόνιες εξαρτήσεις. Το μοντέλο χρησιμοποιεί μια δομή κωδικοποιητή-

αποκωδικοποιητή (Encoder - Decoder) όπου ο κωδικοποιητής (Encoder) επεξεργάζεται τα 

δεδομένα εισόδου ενώ ο αποκωδικοποιητής (Decoder) χρησιμοποιεί τα δεδομένα εξόδου του 

κωδικοποιητή (Encoder) για να δημιουργήσει τη σειρά εξόδου. Οι Yin et al. 2022 πρότειναν 

το RR-Former το οποίο έχει αποδειχθεί αρκετά αποτελεσματικό ως μοντέλο βροχής-απορροής 

και επομένως στην παρούσα μελέτη χρησιμοποιήθηκε παρόμοια αρχιτεκτονική. 

Τέλος, το μοντέλο Zygos είναι ένα ντετερμινιστικό εννοιολογικό μοντέλο που αρχικά 

αναπτύχθηκε από ερευνητές της ομάδας ITIA στο Εθνικό Μετσόβιο Πολυτεχνείο. Εφαρμόζει 

ένα εννοιολογικό σχήμα λογιστικής υγρασίας εδάφους, βασισμένο σε μια γενίκευση του 

τυπικού μοντέλου Thornthwaite, επεκτεινόμενο με μία δεξαμενή υπόγειων υδάτων (Kozanis 

and Efstratiadis 2006). Για την προσαρμογή μιας απαραίτητης ρουτίνας χιονοκάλυψης, 

αναπτύχθηκε σε αυτή τη μελέτη μια ενημερωμένη έκδοση του αρχικού μοντέλου Zygos, 

προτεινόμενη από τους Efstratiadis, Nalbantis, and Koutsoyiannis 2015. 

Η καταλληλότητα των μοντέλων αξιολογήθηκε χρησιμοποιώντας το κριτήριο επίδοσης Nash-

Sutcliffe (NSE) (Nash and Sutcliffe 1970) καθώς και το κριτήριο Kling-Gupta (KGE) (Hoshin 

Vijai Gupta and Kling 2011). Επιπλέον, η μεροληψία (BIAS), το μέσο απόλυτο ποσοστιαίο 

σφάλμα (Mean Absolute Percentage Error) και το ριζικό μέσο τετραγωνικό σφάλμα (Rout 

Mean Squared Error) χρησιμοποιήθηκαν για να αξιολογήσουν την επίδοση των μοντέλων στις  

5% παρατηρούμενες μέγιστες τιμές απορροής. 

 

Αποτελέσματα 

Τα αποτελέσματα των μέτρων επίδοσης NSE και KGE για τα 164 μοντέλα βροχής-απορροής 

LSTM, Transformer και Zygos απεικονίζονται στον ακόλουθο πίνακα (Πίνακας 1). 

Σημειώνεται, ότι τόσο τα μοντέλα LSTM όσο και τα Transformer παρουσιάζουν καλύτερη 

απόδοση σε σύγκριση με το μοντέλο Zygos. Συγκεκριμένα, οι μέσες τιμές NSE στο σύνολο 

των λεκανών είναι 0.50 για το LSTM, 0.71 για το Transformer και 0.37 για το Zygo, τονίζοντας 

την αποτελεσματικότητα των αρχιτεκτονικών LSTM και Transformer στην πρόβλεψη της 
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απορροής. Ο δείκτης KGE ακολουθεί τη λογική του NSE όσον αφορά την απόδοση των 

μοντέλων. Και τα δύο μοντέλα μηχανικής μάθησης υπερτερούν του πρότυπου μοντέλου με 

μέσες τιμές KGE 0.23, 0.69 και 0.07 για τα μοντέλα LSTM, Transformer και Zygos, 

αντίστοιχα. 

 
Πίνακας 1. Μέτρα επίδοσης των μοντέλων LSTM, Transformer και Zygos. 

Model Dataset 
Max 

NSE 

Max 

KGE 

Mean 

NSE 

Mean 

KGE 

Median 

NSE 

Median 

KGE 

Min 

NSE 

Min 

KGE 

LSTM 

training 0.957 0.875 0.635 0.364 0.650 0.524 0.067 -3.574 

validation 0.927 0.955 0.571 0.379 0.571 0.492 -0.119 -2.928 

testing 0.880 0.910 0.501 0.234 0.449 0.403 -0.053 -2.924 

Transformer 

training 0.993 0.994 0.843 0.795 0.908 0.892 0.353 -0.761 

validation 0.989 0.987 0.777 0.761 0.829 0.832 0.278 -0.223 

testing 0.987 0.990 0.712 0.690 0.786 0.813 -0.418 -1.141 

Zygos 
training 0.884 0.905 0.415 0.122 0.373 0.269 -0.024 -2.612 

testing 0.844 0.851 0.374 0.075 0.354 0.234 -0.184 -3.071 

Επιπλέον, για την διερεύνηση της απόδοσης των μοντέλων κατά τη διάρκεια των μέγιστων 

απορροών, υπολογίστηκαν τα κριτήρια μεροληψίας (BIAS), μέσου απόλυτου ποσοστιαίου 

σφάλματος (MAPE) και ριζικού μέσου τετραγωνικού σφάλματος (RMSE) για το 5% των 

μεγίστων ροών. Ο ακόλουθος πίνακας (Πίνακας 2) δείχνει ότι το μοντέλο Transformer 

επιτυγχάνει καλύτερη απόδοση σε σύγκριση με τα μοντέλα LSTM και Zygos. 

 
Πίνακας 2. Τιμές των μέτρων επίδοσης BIAS, MAPE και RMSE για το 5% των μεγίστων απορροών. 

Model 
Mean 

BIAS 

Median 

BIAS 

Mean 

MAPE 

Median 

MAPE 

Mean 

RMSE 

Median 

RMSE 

LSTM -0.33 -0.34 0.47 0.40 6.02 5.31 

Transformer -0.11 -0.09 0.29 0.24 4.75 4.08 

Zygos -0.42 -0.40 0.52 0.46 7.22 5.91 

 

Συμπεράσματα & Συζήτηση 

Ο κύριος στόχος αυτής της μελέτης είναι να διερευνήσει τις δυνατότητες δύο πρωτοποριακών 

μοντέλων μηχανικής μάθησης, των LSTM (Long Short-Term Memory) και Transformer, ως 

μοντέλων βροχής-απορροής. Αναπτύχθηκαν 164 μοντέλα LSTM και 164 μοντέλα 

Transformer και η απόδοση αυτών συγκρίθηκε με τα αντίστοιχα εννοιολογικά μοντέλα Zygos. 

Συγκεκριμένα, οι διαφορές στις μέσες τιμές των κριτηρίων επίδοσης Nash-Sutcliffe (NSE) και 
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Kling-Gupta (KGE) μεταξύ των μοντέλων Transformer και Zygos είναι 0.338 και 0.615, 

αντίστοιχα ενώ οι διαφορές για τα μοντέλα LSTM και Zygos είναι 0.127 και 0.159, αντίστοιχα. 

Αυτό υποδεικνύει ότι, τα μοντέλα Transformer υπερέχουν των μοντέλων LSTM και του 

μοντέλου Zygos ως μοντέλων βροχής-απορροής. Επιπλέον, τα κριτήρια επίδοσης για την 

πρόβλεψη μέγιστων απορροών, όπως η μεροληψία (BIAS), το μέσο απόλυτο ποσοστιαίο 

σφάλμα (MAPE) και το ριζικό μέσο τετραγωνικό σφάλμα (RMSE), που παρουσιάζονται στον 

Πίνακα 2, δείχνουν ότι το μοντέλο Transformer επιτυγχάνει καλύτερη απόδοση στην 

πρόβλεψη των μέγιστων ροών.  

 

Τα κύρια συμπεράσματα αυτής της μελέτης είναι τα εξής: 

• Τα μοντέλα μηχανικής μάθησης μπορούν να χρησιμοποιηθούν ως μοντέλα βροχής-

απορροής. 

• Τα μοντέλα μηχανικής μάθησης είναι ικανά να προβλέψουν την απορροή σε λεκάνες 

για διάφορες υδρολογικές συνθήκες, γεγονός που σημαίνει ότι μπορούν να “μάθουν” 

εξαρτήσεις που συσχετίζονται με ποικίλες υδρολογικές διεργασίες. 

• Οι υπολογιστικοί πόροι σε όρους χρόνου είναι ουσιώδεις τόσο για την βαθμονόμηση 

των κλασικών εννοιολογικών μοντέλων όσο και για την εκπαίδευση των μοντέλων 

μηχανικής μάθησης.
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1 INTRODUCTION 

 

1.1 Research scope 

Hydrologists and engineers have long sought to represent the physical processes occurring 

during rainfall events due to the significant importance of water in human life over the 

centuries. These processes are described within a framework known as the water cycle, which 

encompasses many diverse and complex interactions. Because of this complexity, it is almost 

infeasible to represent water cycle processes in a purely physically based manner. 

Consequently, water engineers have developed alternative methods to model the water cycle 

system. 

One key component of the water cycle that is crucial to define, due to its significant impact on 

social and economic life and the environment, is runoff. The runoff variable plays an important 

role in water resource management, flood and drought mitigation, and environmental 

protection. Rainfall-runoff relationships describe how basin discharge responds to mass inputs 

like precipitation and energy inputs like radiation. A hydrological model is defined as a set of 

mathematical transformations that use field data and reasonable assumptions about the 

processes of the hydrological cycle and their interactions, with the aim of quantitatively 

estimating the variables of interest (A. Efstratiadis 2008).  

Hydrologist have developed various approaches in rainfall-runoff modeling in order to predict 

runoff. The most common approach among them, is the rainfall-runoff conceptual modeling, 

translating complex non-linear processes of the water cycle in a simple and understandable 

way. The conceptual model may be more or less complex, ranging from the use of simple mass 

balance equations for components representing storage in the catchment to coupled nonlinear 

partial differential equations (Beven 2012).  

Another approach that has recently emerged for rainfall-runoff modeling is data-driven 

modeling utilizing artificial intelligence (AI) techniques. Machine learning (ML), a subset of 

artificial intelligence, tries to mimic the functioning of the human brain by acquiring 

knowledge through a learning process. Machine learning models have the ability to learn and 

generalize 'knowledge' from data pairs, enabling them to solve large-scale, complex problems 

(ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000). 

Many machine learning models have been developed in recent decades, with Recurrent Neural 

Networks (RNNs) being among the most common for addressing regression problems. A 

special type of RNN is the Long Short-Term Memory (LSTM) network, which proposed by 



 8 

Hochreiter and Schmidhuber 1997. Recently, (Vaswani et al. 2017), in their work 'Attention is 

All You Need,' proposed a highly promising model called Transformer and has been gaining a 

lot of attention since its release. 

The purpose of this research is to investigate the applicability of two machine learning models 

compared to a classical conceptual model for rainfall-runoff modeling. This investigation is 

motivated by the ongoing discussion among scientists about the potential capabilities of data-

driven models. Specifically, 164 rainfall-runoff LSTMs, Transformers and Zygos models were 

trained – calibrated and tested utilizing catchments from the Caravan dataset. The comparison 

evaluates not only the reliability of each model's predictions but also the complexity of their 

architectures and their computational cost demands.    

The main four research questions that this study tries to answer are as follows: 

• Can machine learning models be used as rainfall-runoff models? 

• Can machine learning models outperform the classical conceptual one? 

• Do machine learning models are more complex in terms of its architecture? 

• Do machine learning models need more computational resources to be trained? 

 

 

1.2 Work structure 

The study is organized as follows: 

• Chapter 1 introduces the subject of the thesis and its research objectives. 

• Chapter 2 presents the advances in hydrology and specifically in rainfall-runoff 

modeling utilizing machine learning methods. Moreover, introduces the subject of 

Large-sample hydrology.  

• Chapter 3 provides a detailed overview of the Caravan dataset and the catchments 

utilized in this thesis. 

• Chapter 4 presents the model architectures used in this thesis as well as the model 

evaluation protocols. 

• Chapter 5 presents the experimental results and provides a comparison of the models. 

• Chapter 6 gives conclusion and discusses further future work.   
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2 ADVANCES IN HYDROLOGICAL MODELING 

 

2.1 Introduction 

In general, a model is a simplified representation of real-world system which means that the 

best model is the one that gives results close to reality with the use of least parameters and 

model complexity. Models are mainly used for predicting system behavior and understanding 

various hydrological processes and can be classified into two main categories. The first one is 

whether the model is deterministic or stochastic. Deterministic models produce a single output 

for each iteration given a specific set of inputs and parameter values. In contrast, stochastic 

models account for uncertainty in input variables, boundary conditions, or model parameters, 

allowing for some randomness in the outcomes (Beven 2012). The second one is whether the 

models would be physically-based, conceptual, statistical-stochastic or data-driven (A. 

Efstratiadis 2008). The first one is based on theoretical equations or semi-empirical equations 

from experimental data. Conceptual models are based on parametric relationships that 

represent the basic processes of the system. Furthermore, statistical or stochastic models 

reproduce the basic statistical structure of the observed samples. Finally, data-driven models 

transform the input data to derive complex cause-and-effect relationships. 

The most common approach among hydrologist to represent the complex system of water cycle 

is the conceptual modeling. Many studies have been carried out using different conceptual 

approaches for rainfall-runoff modeling. Among the most prominent and widely used models 

among else are the TOPMODEL (Beven and Kirkby 1979), MIKESHE (www.dhigroup.com), 

Soil and Water Assessment Tool (SWAT) (Arnold et al. 1998) and Sacramento Soil Moisture 

Accounting model (SAC-SMA) (Burnash 1973). Models are typically created to address 

specific questions and therefore, they cannot be compared in a general way (Gehlert and 

Pfeiffer 2005). However, many studies have been undertaken comparing the performance of 

them. For example, the study conducted by the Word Meteorological Organization (1975) 

applied 10 rainfall–runoff models to six different catchments, and compared them in terms of 

the physical concepts used, data and computer requirements, and level of accuracy under 

different hydro-climatic conditions.  

In general, conceptual models are based on two criteria: firstly, the structure of the model is 

specified prior to any modeling being undertaken, and secondly not all of the model parameters 

have a direct physical interpretation. Therefore at least some conceptual model parameters have 

to be estimated through calibration against observed data. The calibration problem for 
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hydrological modeling, despite being widely studied for over thirty years, has not yet been fully 

addressed and remains topical due to the complexity of modern models. Moreover, this issue 

is common across all types of models due to the necessity of adjusting the modeled data to 

match the ground truth (A. Efstratiadis 2008). 

The common calibration approach for a conceptual rainfall-runoff model involves using an 

automatic optimization technique, where an objective function evaluates how well the modeled 

data matches the observed data.  

The automatic calibration of a hydrological model can be mathematically addressed as an 

optimization problem of the form: 

𝑚𝑎𝑥𝑔(𝑒) = 𝑔[𝑦 − ℎ(𝑠!, 𝑥, 𝜃)],			𝑠. 𝑡. 𝜃 ∈ 𝛩	 (2.1) 

 

where g(.) is a set of goodness-of-fit measures, Θ⊂Rp is the feasible space, and e is the error 

vector or residual of the model, defined as the difference between observed and simulated 

responses, specifically: 

𝑒 = 𝑦 − 𝑦"	 (2.2) 
 
Typically, the feasible space is defined by two vectors of extreme values θmin and θmax, which 

expresses the allowable range of parameter value. 

The goodness-of-fit g(.) function is a numerical measure of the difference between the model 

simulated output and the observed output (Schaefli and Gupta 2007). There are many objective 

functions that can be found in the literature with the most common ones based on the standard 

least squares methods and maximum likelihood methods (Pechlivanidis et al. 2011). 

Calibration techniques relying on a single objective function often fail to capture all key 

characteristics of the modeled system. The need for multi-objective calibration stems from the 

limitations of single objective calibration in accurately characterizing and constraining model 

behaviors, as well as advancements in optimization technology (Khu and Madsen 2005). 

It should be noted that the optimization problem, as formulated in equation 2.2, is a multi-

objective one since the function g is vector-valued. To reduce it to a single-objective problem, 

so that it can be tackled with standard extremum search methods, a unified numerical 

expression must be formulated in terms of the errors e, which describes an overall criterion of 

the model’s goodness-of-fit to the measured responses y.  

The process of estimating the parameters of a hydrological model (known as the inverse 

hydrological problem) can be automated as follows (A. Efstratiadis 2008): 

• A sample of measured (observed) responses is selected. 
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• A measure of the model's fit to the observations is chosen. 

• The problem of global optimization is formulated (stochastic function, control variables, 

feasible parameter limits). 

• A suitable algorithm is selected to search for the most appropriate parameter values, 

with a reasonable number of trials. 

The calibration problem is resource-intensive, requiring significant computational power to 

determine the most suitable parameters. 

In recent years, a lot of research has been devoted to developing automated calibration routines 

or procedures based on numerical optimization techniques such as genetic algorithms 

(Goldberg and Holland 1988) and the shuffled complex evolution (SCE) algorithm (Duan, 

Gupta, and Sorooshian 1993). The need for automatic calibration routines in hydrologic models 

has also been widely recognized over many years as demonstrated by the amount of work done 

in this area. A comprehensive study about multi-objective calibration approaches was 

conducted by Andreas Efstratiadis and Koutsoyiannis 2010.  

After calibration, the performance of the optimized model parameters is always checked 

against an independent time period. This process evaluates the predictive capacity of the model. 

Regardless of the strategy adopted, the calibration of a hydrological, model is considered 

reliable if: 

• The model has sufficient predictive capability, meaning it can reproduce the entire 

range of responses of a basin with satisfactory accuracy. 

• The optimized parameters of the model can be attributed some physical meaning, so 

they are considered compatible with the characteristics of the natural system. 

 

 

2.2 Machine learning approaches in Rainfall-Runoff modeling  

Artificial intelligence (AI) based models have recently emerged as powerful tools to enhance 

hydrological modeling, offering new approaches to handle large datasets, capture non-linear 

relationships, and improve predictive accuracy. Many machine learning techniques have been 

applied for addressing various regression and classification problems. Popular algorithms 

include linear regression, logistic regression, classification and regression tree (CART), naive 

Bayes model (NB), support vector machine (SVM), K-nearest neighbor (KNN), random forest 

(RF), and artificial neural networks (ANN). 
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Support vector machines for regression were first introduced by Cortes and Vapnik 1995, and 

the first applications were reported in the late 1990s. A comprehensive review by Raghavendra. 

N and Deka 2014 highlights the application of SVMs in the field of hydrology. In their paper 

the authors list nearly 40 SVMs models developed for various hydrological application. SVMs 

have been successfully applied for rainfall-runoff modeling as evidenced by studies such as 

Dibike et al. 2001; Bray and Han 2004; Asefa et al. 2006; Ch et al. 2013.  

Random forest is a supervised machine learning algorithm which use decision trees as base 

learners. Random forests introduced by Breiman 2001, have been applied to several scientific 

fields and associated research areas such as agriculture, land cover classification, remote 

sensing, wetland classification and ecology. Tyralis, Papacharalampous, and Langousis 2019 

highlight that although the practical value of random forest, it remains obscure with limited use 

in hydrological applications. Iorgulescu and Beven 2004 are perhaps the first authors to cite 

Breiman 2001 in a water resources journal for rainfall-runoff application. Several comparative 

studies with a hydrological focus have shown that random forest can outperform to other 

machine learning techniques such as artificial neural networks, support vector machines, and 

regression models (Erdal and Karakurt 2013; Li et al. 2016; Bachmair et al. 2017). Many 

studies have been conducted using random forest for rainfall-runoff modeling (see Galelli and 

Castelletti 2013; Gudmundsson and Seneviratne 2016; Shortridge, Guikema, and Zaitchik 

2016; Worland, Farmer, and Kiang 2018; Chang and Chen 2018). 

ANNs are a fundamental and essential component of many deep learning architectures, also 

known as dense layers or Multilayer Percepton or fully connected network. In the early 1990s, 

researchers began investigating the potential of neural networks for modeling watershed runoff 

based on rainfall inputs (see French, Krajewski, and Cuykendall 1992). In the first year of this 

century a task committee of American Society of Civil Engineers (ASCE) has discussed 

thoroughly and established the role of ANN in hydrology and also compared it with the other 

modelling methods (ASCE Task Committee on Application of Artificial Neural Networks in 

Hydrology 2000). Rakesh Tanty, Tanweer S. Desmukh, and Manit Bhopal 2015 conducted a 

review on the application of ANN to hydrological related problems. Their review highlights 

the development of ANN models in various areas, including rainfall-runoff modeling, 

streamflow modeling, water quality modeling and groundwater modeling applications (see 

Kalteh 2008; Goyal and Ojha 2010; Chen, Wang, and Tsou 2013). 
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Figure 2. Diagram of an artificial network architecture (Goodfellow, Bengio, and Courville 2016). 

However, a drawback of feed-forward ANNs is that any information about the sequential order 

of the inputs is lost. Recurrent neural networks (RNNs) are a special type of neural network 

architecture that have been specifically designed to understand temporal dynamics by 

processing the input in its sequential order (Rumelhart, Hintont, and Williams 1986). Although, 

RNNs can detect patterns in sequential data they face difficulties when the sequence of data is 

long enough. The Long Short Term Memory (LSTM) models have been developed by 

Hochreiter and Schmidhuber 1997, as a type of RNN to address the vanishing gradient and 

exploding challenges in long sequences of data (Goodfellow, Bengio, and Courville 2016). The 

use of LSTM for modeling runoff has recently increased and more studies have been immersed 

over the last years (see Kratzert et al. 2018; 2019; Frame et al. 2021; Sanjay Potdar et al. 2021; 

Yin et al. 2021; Nevo et al. 2022; Yin, Wang, et al. 2022; Shrestha and Pradhanang 2023). 

Moreover, LSTM has shown great ability to handle long dependencies which is desirable for 

modeling processes like snow accumulation, seasonal vegetation patterns or other processes 

that have long timescales (Kratzert et al. 2018) and play significant role in rainfall-runoff 

modeling.    
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Figure 3. Diagram of LSTM unit architecture (Calzone, 2022). 

Another machine learning model, proposed by Vaswani et al. 2017, is the Transformer model. 

This model utilizes the attention mechanism, instead of recurrency to capture relationships and 

patterns in the input data. Originally Transformer was designed for language processing, 

particularly for language translation tasks. Since then, there has been widespread 

implementation of Transformer models, with the most prominent applications being Chatbots 

like Chat-GPT. Despite the extensive research focusing on natural language processing (NLP) 

a significant research have been recently applied for various timeseries tasks. Wen et al. 2023 

have summarized the recent studies being applied for in forecasting, anomaly detection and 

classification problems. Although, Transformers are increasingly explored in timeseries (see 

Kitaev, Kaiser, and Levskaya 2020; H. Zhou et al. 2021; Liu et al. 2022; T. Zhou et al. 2022; 

Wu et al. 2022; Shen and Wang 2022; Zhang and Yan 2023) the implementation of them in 

hydrology is scares. Yin et al. 2022 investigate the use of Transformer model for rainfall-runoff 

modeling and Amanambu, Mossa, and Chen 2022 for hydrological drought forecasting prepose.  
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Figure 4. Transformer architecture (Vaswani et al., 2017). 

 

 

2.3 Large-sample hydrology  

Gridded meteorological data sets have become increasingly prevalent, and with the availability 

of streamflow records and computing resources, large-sample hydrology (LSH) studies have 

been gaining significant traction over the past decade (Newman et al. 2015). Furthermore, to 

achieve better hydrological modeling across a variety of hydrological settings at multiple 

spatiotemporal scales and under changing environmental conditions, it is crucial to fully understand 

catchment processes and that cannot be achieved only through placed-based investigation or heavily 

instrumented catchments. To that extend, the use of LSH has been actively promoted for rainfall-runoff 

modeling (H. V. Gupta et al. 2014).  

H. V. Gupta et al. 2014, provide a comprehensive list of studies with a focus on rainfall-runoff 

modeling in more than 30 catchments and summarized the reasons for using LSH as follows: 

• To draw conclusions that require data from more than one catchment. 

• To establish the range of applicability or the expected level of efficiency of 

methods/models. 
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• To ensure sufficient information to enable statistically significant relationships to be 

established. 

LSH datasets can provide data classified into three categories: streamflow observations, 

hydrometeorological timeseries and landscape and hydroclimatic attributes. Addor et al. 2020, 

have summarized key LSH datasets that are available and cover different parts of the world, 

ranging from basins within a single country to those across the entire globe. The Catchment 

Attributes and MEteorology for Large-sample Studies (CAMELS) dataset (Newman et al. 

2015; Addor et al. 2017) uses recent datasets to provide up-to-date hydrometeorological 

variables and a variety of landscape attributes for 671 catchments across the United States of 

America. CARAVAN (a series of CAMELS) dataset (Kratzert et al. 2023) standardizes and 

aggregates seven existing LSH datasets. CARAVAN is both a dataset, containing 6830 

catchments, and open-source software that allows members of the hydrology community to 

extend the dataset to new location (see also Chapter-3).  

Large-sample hydrology has become an indispensable tool in modern hydrology, offering 

comprehensive insights into water-related processes and their management on a global scale. 

LSH has significantly applied in applications in flood and drought prediction, climate change 

impact assessment and water resources management. Many studies have applied LSH for 

rainfall-runoff modeling especially nowadays with the exploitation of data-driven model 

(Addor et al. 2017; Kratzert et al. 2018; 2019; Flamig, Vergara, and Gourley 2020; Frame et 

al. 2021; Yin, Guo, et al. 2022).   
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3 STUDY AREA AND DATASET 

 

Caravan (Kratzert et al. 2023) is an open community dataset of meteorological forcing data, 

catchment attributes and discharge data for catchments around the world (Figure 5). 

 

 
Figure 5. Caravan basins distribution (Kratzert et al. 2023). 

The meteorological forcing data was derived from the ERA5-Land product (Muñoz-Sabater et 

al. 2021), the basin attributes were taken from ERA5-Land and HydroATLAS (Linke et al. 

2019), and the discharge data was sourced from seven open datasets: 

• 482 basins from CAMELS (US) 
• 150 basins from CAMELS-AUS 
• 376 basins from CAMELS-BR 
• 314 basins from CAMELS-CL 
• 408 basins from CAMELS-GB 
• 4621 basins from HYSETS 
• 479 basins from LamaH-CE 

In this study 164 basins were utilized from the CAMELS (US) (Newman et al. 2015) sub-

dataset in Caravan. Following the methodology proposed by (Kratzert et al. 2018), which 

suggest using 4 out of the 18 hydrological units, delineated by the U.S. Geological Survey’s 

HUC map (Seaber, Kapinos, and Knapp 1987), to cover a wide range of hydrological conditions 

and to reduce computational costs, a similar approach was adopted. Specifically, the 

hydrological units (01) New England, (03) South Atlantic-Gulf, (11) Arkansas-White-Red and 

(17) Pacific Northwest were considered in this study (Figure 6). 
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Figure 6. The 164 Basins in the 4 hydrological units. 

The New England region in the northeast comprises 16 basins that are relatively homogeneous, 

particularly in terms of snow influence and aridity. Arkansas-White-Red region, located 

centrally in the United States, has 20 basins with significantly different characteristics. This 

region exhibits a substantial variance in aridity and mean annual precipitation, with a 

pronounced gradient from east to west. Similarly sized but with diverse hydro-climatic 

conditions are the South Atlantic-Gulf region, containing 70 basins, and the Pacific Northwest 

region, with 58 basins. The Pacific Northwest stretches from the Pacific coast to the Rocky 

Mountains and shows a wide range of attributes across its basins, much like the Arkansas-

White-Red region. For instance, some catchments near the Pacific coast receive over 3000 mm 

of precipitation annually, while areas in the southeast are extremely arid. In contrast, the 

relatively flat South Atlantic-Gulf region has more uniform basins. Unlike New England, this 

region is not affected by snow. Additionally, the South Atlantic-Gulf has a higher mean aridity 

(5.08 ± 1.2) compared to New England (3.69 ± 0.43), and its mean altitude (189 ± 179 m) is 

lower than that of New England (316 ± 182 m). 
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Table 3. 1PET/P, see Addor et al. 2017. 2Fraction of precipitation failing on days with temperature below 00C. 3Positive 

values indicate that precipitation peaks in summer, negative values that precipitation peaks in the winter month and 

values close to 0 that the precipitation is uniform throughout the year, see Addor et al. 2017. 

HUC Region name  No. of 
basins 

Mean 
precipitation 
(mm day -1) 

Mean 
aridity1 (-) 

Mean snow 
frac.2 (-) 

Mean 
seasonality3 (-) 

Mean 
altitude (m) 

01 New England 16 3.39 ± 0.21 3.69 ± 0.43 0.31 ± 0.04 0.63 ± 0.17 316 ± 182 

03 South Atlantic-
Gulf 70 3.36 ± 0.31 5.08 ± 1.2 0.00 ± 0.00 0.25 ± 0.15 189 ± 179 

11 Arkansas-White-
Red 20 2.88 ± 0.61 4.74 ± 1.89 0.01 ± 0.05 0.27 ± 0.11 613 ± 713 

17 Pacific Northwest 58 4.46 ± 1.55 3.09 ± 1.51 0.28 ± 0.26 1.6 ± 0.14 1077 ± 589 

 

 

These four hydrological units contain 172 basins, but 8 of them have missing streamflow values 

that could not be infilled. Therefore, 164 models were trained and tested for rainfall-runoff 

modeling. 

 
Table 4. Basins with more than 10 missing values. 

Basin_id Missing values 

02178400 365 

02202600 92 

02231342 48 

02235200 746 

02310947 365 

12025000 365 

12141300 366 

13310700 1767 

Streamflow timeseries having less than 10 missing values were filled using the linear 

interpolation method. 
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4 MATERIALS AND METHODS 

 

All models described below were developed in Python programming language using libraries 

such as NymPy, Pandas, TensorFlow, Matplotlib, Seaborn and GeoPandas for data 

manipulation, numerical computation, deep learning techniques and visualization.  

 

 

4.1 Long Short – Term Memory 

LSTMs models are a type of recurrent neural network with a special architecture designed to 

overcome the weakness of the traditional RNN to learn long dependencies. The clever idea of 

introducing self-loops to produce paths where the gradient can flow for long durations is a core 

contribution of the initial long short-term memory model (Goodfellow, Bengio, and Courville 

2016). LSTMs has a chain structure with four interacting neural network layers.  

The LSTM have the ability to remove or add information to the cell state, carefully regulated 

by structures called gates. Gates are a way to optionally let information through. They are 

composed out of a sigmoid neural net layer and a pointwise multiplication operation. 

 

 
Figure 7. Visualization of the LSTM cell (Kratzert et al. 2019). 

In the above diagram, each line carries an entire vector, from the output of one node to the 

inputs of others. The cell state (c) is the memory component of the LSTM cell. It allows 

information to flow along the cells unchanged. It considers to be the key component in an 

LSTM cell due to the ability to retain information over long sequences. The forget gate (f) takes 

the input data from the current timestep and decides what information should be discarded from 

the cell state. The input gate (i) takes the input data from the current timestep and the previous 

hidden and decides what information is going to be stored in the cell state. The cell input (g) is 

a vector of new candidate values that should be added to the state. The output gate (o) takes 

input from the current input data, the previous hidden state and the updated cell state and 
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determines the information to be the output of the LSTM cell. The hidden state is the output of 

the LSTM.  

The LSTM network is described by the following equations: 

 

𝑥[𝑡] + 𝑈!ℎ[𝑡 − 1] + 𝑏! 	 

𝑓[𝑡] = 𝜎(𝑊"𝑥[𝑡] + 𝑈"ℎ[𝑡 − 1] + 𝑏" 

𝑔[𝑡] = tanh	(𝑊#𝑥[𝑡] + 𝑈#ℎ[𝑡 − 1] + 𝑏# 

𝑜[𝑡] = 𝜎	(𝑊$𝑥[𝑡] + 𝑈$ + 𝑏$) 

𝑐[𝑡] = 𝑓[𝑡] ∘ 𝑐[𝑡 − 1] + 𝑖[𝑡] ∘ 𝑔[𝑡] 

ℎ[𝑡] = 𝑜[𝑡] ∘ tanh	(𝑐[𝑡]) 

 where, 𝑥 is network input, 

 𝑓 is the forget gate,  

 𝑔 is the cell input, 

 𝑜 is the output gate,  

 𝑐 is the cell state, 

 𝑖	is the input gate, 

 ℎ is the hidden state, 

 𝑊, 𝑈 and 𝑏 are calibrated parameters and 

 𝑡𝑎𝑛ℎ	(∙) and 𝜎(∙) are the hyberparabolic tangent and the sigmoid activation functions  

 

The LSTM network architecture, as designed by Kratzert et al. 2018, has been proven effective, 

leading to its adoption in this study. Table 5 shows the values of the hyperparameters for the 

LSTM model. 
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Table 5. LSTM model hyperparameters. 

Hyperparameters Value 

Sequence Length 365 

Batch Size (train) 256 

Batch Size (val) 2048 

LSTM Units 20 

Number of Layers 2 

Dropout Rate 0.1 

Epochs (Patience) 50 (5) 

Loss MSE 

Optimizer Adam 

 

 

4.2 Transformer  

Transformers models have shown superior performance in capturing long-range dependency 

than RNN models (H. Zhou et al. 2021). As depicted in Figure 4, the Transformer utilizes an 

encoder-decoder structure. The encoder processes the input sequence through multiple layers 

of multi – head attention and fully connected feed-forward network. The final output of the 

encoder is a set of vectors that captures the relevant information from the input sequence. This 

output is then passed to the decoder for generating the output sequence. The decoder processes 

the input sequence in a non-autoregressive manner which is different by the originally decoder 

block suggested by Vaswani et al. 2017. A key distinction in the decoder block is the 

incorporation of a masked self-attention layer, which prevents information leakage from future 

values during training.  

Transformer models lack recurrence and instead of processing the input sequentially, they 

handle the entire sequence simultaneously using the scaled dot-product attention mechanism. 

An attention function can be described as mapping a query and a set of key-value pairs to an 

output, where the query, keys, values and outputs are all vectors. The output is computed as a 

weighted sum of the values, where the weight assigned to each value is computed by a 

compatibility function of the query layers running in parallel. 

The scaled dot-product attention mechanism combines the query and key vectors to determine 

how well they match, the “attention score” as described in the following equation.  
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 E
𝑄𝐾%

F𝑑&
H𝑉 

 

where, 𝑄 is the query vectors, 

  𝐾 is the key vectors,  

  𝑉 is the value vectors and 

  𝑑# is the dimensionality of the key vectors. 

 

The scaling factor G𝑑# prevents the dot products to grow large in magnitude. 

Instead of performing a single attention function with 𝑑$%&'(-dimensional keys, values and 

queries Vaswani et al. 2017 found it beneficial to linearly project the queries, keys and values 

ℎ times with different learned linear projections to 𝑑#, 𝑑# and 𝑑) dimensions, respectively. On 

each of these projected versions of queries, keys and values the attention function can be 

performed in parallel. Multi-head attention allows the model to jointly attend to information 

from different representation subspaces at different positions.  

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑', ℎ𝑒𝑎𝑑(, … , ℎ𝑒𝑎𝑑)) ⋅ 𝑊* 

Where, ℎ𝑒𝑎𝑑! = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊!
+ , 𝐾𝑊!

, , 𝑉𝑊!
-) 

Where the projections are parameter matrices 𝑊*
+ ∈ ℝ&!"#$%,&& ,𝑊*

- ∈ ℝ&!"#$%,&& ,𝑊*
. ∈

ℝ&!"#$%,&& 	𝑎𝑛𝑑	𝑊*
! ∈ ℝ&!"#$%,&& . 

 

 
Figure 8. Scaled Dot-Product Attention (left) - Multi-Head Attention (right) (Vaswani et al. 2017). 
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The Transformer uses multi-head attention in both the encoder and decoder blocks. In the 

encoder block, all of the keys, values and queries come from the same place and therefore it is 

called self-attention layer. 

Since transformer has neither recurrence nor convolution, in order for the model to make use 

of the order of the sequence, some information about the relative and absolute position must 

be injected to the model. This is done by using sine and cosine functions of different 

frequencies: 

 

𝑃𝐸(/$0,(!) = sin	(𝑝𝑜𝑠/10000(!/4!"#$%) 

𝑃𝐸(/$0,(!5') = cos	(𝑝𝑜𝑠/10000(!/4!"#$%) 

where,  𝑝𝑜𝑠 is the position and 

 𝑖 is the dimension. 

 

This process is called positional embedding and it is implemented right after the linear 

transformation with a fully connected layer both in the encoder and decoder block. 

Yin et al. 2022 proposed the RR-Former which has been proven quite effective in rainfall-

runoff modeling and therefore the same model architecture was used. The architecture of the 

model is depicted in Figure 9. 
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Figure 9. Architecture of the transformer model. 

In order to fit the inputs to the models dimension a linear operation with a dense layer is applied 

converting the inputs to vectors with a dimension of the model. Then the output is added with 

the output of a learnable embedding which is implemented to give relative position information 

to the model. The final output is the same dimension with the model dimension and is passed 

to the encoder and decoder.  

Each encoder layer has self-attention layers and position-wise fully connected networks. 

Residual connection and layer normalization are employed sequentially around each of the sub-

layers. The encoder output is then passed to the decoder. Each decoder layer has masked self-

attention layers, encoder-decoder attention layers and position-wise fully connected networks. 

Just like the encoder, residual connection and layer normalization are employed sequentially 

around each of the sub-layers.  

It is worth mentioning, that due to the quadratic structure of the attention mechanism the 

sequence length could not be the same with that in the LSTM and thus was kept to three weeks.  
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The values of the Transformer model hyperparameters are shown in table 6.  
 

Table 6. Transformer model hyperparameters. 

Hyperparameters Value 

Sequence length 21 

Batch Size  256 

Number of heads in multi-head 

attention 
4 

Number of encoder/decoder layers 4 

Dropout rate 0.1 

Model dimension 256 

Dimension of the Position-wise fully 

connected layer 
256 

Learning Rate 0.0001 

Optimizer Adam  

Loss Function  MSE 

Epochs (Patience) 200 (10) 

 

 

4.3 Zygos  

The Zygos lumped conceptual model was selected as the benchmark model. Several variants 

of the Zygos model have been implemented for rainfall-runoff modeling. The scheme used in 

this study is based on the scheme introduced by Efstratiadis, Nalbantis, and Koutsoyiannis 

2015. The model uses 11 parameters and the model inputs are the precipitation, the mean 

temperature and the potential evapotranspiration. Despite that Caravan dataset provides the 

mean daily potential evapotranspiration, it has been identified as not applicable for 

hydrological application due to the systematically overestimation of it (Clerc-Schwarzenbach 

et al. 2024). Hence, potential evapotranspiration is computed with Hargreaves method using 

the maximum and minimum daily temperature derived from the Caravan dataset.  

As depicted in Figure 10, the basin is vertically subdivided into three storage elements or tanks 

that represent the snowpack, soil water and groundwater. 
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Figure 10.  Sketch of the Zygos model, illustrating the modeled processes and associated parameters. 

First, precipitation is considered as snowfall if temperature is below a certain threshold. In that 

case, precipitation is added to snowpack tank, otherwise precipitation is considered as liquid 

and fulfils, by priority the potential evapotranspiration. Snowfall and sublimation allow to 

update the water equivalent of the snowpack tank via the snowpack water balance. Then, the 

snowmelt (𝑆𝑀) is estimated through the degree-day factor. 

  

𝑆𝑀 = 𝐷𝐷𝐹(𝑇 − 𝑇6) 

 where, 𝑆𝑀, is the snowmelt (mm) 

                        𝐷𝐷𝐹, is the degree-day factor (mm/d/ ℃)  

             𝑇$, is the temperature threshold (℃). 

 

The snowmelt is added to the available liquid precipitation and the sum is contributed to direct 

runoff (𝑄𝐷).  

𝑄𝐷 = 𝐷𝑃(/(𝐷𝑃 − 𝑆𝑊 +𝐾) 

 where, 𝑄𝐷, is the direct runoff (mm) 

                        𝐷𝑃, is the available liquid precipitation (mm)  

             𝑆𝑊, is the current soil water storage (mm) 



 28 

                        𝐾, is the capacity of the soil water storage (mm). 

 

The rest of available liquid fulfils the soil moisture tank. The soil water tank loses water through 

actual evapotranspiration, percolation and saturation excess runoff. The soil evapotranspiration 

(𝐸𝑆) is calculated as, 

𝐸𝑆 = 𝑆𝑊 ∗ 𝜑(2 − 𝑆𝑊/𝐾)/(1 + 𝜑(1 − 𝑆𝑊/𝐾)) 

 where, 𝐸𝑆, is the actual evapotranspiration (mm) 

                        𝜑, is calculated as 𝑡𝑎𝑛ℎ((𝑃𝐸𝑇𝑖	 − 𝑠𝑢𝑏𝑙𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑖 − 𝐸𝑡𝑑𝑖)/𝐾) 
 

The percolation quantity to groundwater is defined as a fraction of the current soil water 

storage.  
 

𝑃𝐸𝑅𝐶 = 𝜆 ∗ 𝑆𝑊 

 where, 𝜆, is the recession rate for percolation. 

 

After the actual evapotranspiration and percolation losses, if the remaining quantity exceeds 

the soil moisture capacity, overland flow is occurring.  

 

𝑄𝑆 = max	(0, 𝑆𝑊 − 𝐾) 

 

The percolation quantity is added to the ground water tank that loses water through baseflow 

and deep percolation. Baseflow (𝑄𝐵) is defined as a fraction of the overflow if the current water 

quantity exceeds the ground water capacity.  

𝑄𝐵 = max	[0,𝑚(𝑌 − 𝐺)] 

 where, 𝑄𝐵, is the baseflow (mm) 

                    𝛶, is the current groundwater storage (mm) 

                    𝐺, is the capacity of groundwater tank (mm)  

                   	𝑚, is the recession rate parameter for baseflow 

 

The new water quantity of the groundwater storage contributes to the deep percolation process. 

Similarly to percolation, deep percolation is obtained as a fraction of the current groundwater 

storage. 

𝐷𝑃𝐸𝑅𝐶 = 𝛼 ∗ 𝑆𝑊 

 where, 𝑎, is the recession rate parameter for deep percolation. 
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The saturation runoff is combined with direct runoff, with a portion directed to the routing 

process and the remainder carried over to the next time step. The total runoff is computed as 

the sum of baseflow and a contribution from the routing runoff over the past four days. More 

precisely, the daily contribution comprises 3.52% from the runoff of the fourth day prior, 

5.54% from the third day, 12.3% from the second day, and 87.11% from the current day. 

For example, let’s assume that at time step 𝑗, 𝑄! represent the sum of saturation runoff, direct 

runoff and remaining runoff of the routing process in the previous timestep, 𝑗 − 1. The runoff 

goes for routing is 𝑄! ∗ 𝑅 and the 𝑄! ∗ (1 − 𝑅) will contribute to the 𝑄! as the remainder runoff 

at the 𝑗 + 1 timestep.  

 

 

4.4 The evaluation protocols  

The model performances were evaluated using the Nash-Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe 1970), and the Kling–Gupta efficiency (Hoshin V. Gupta et al. 2009).  The NSE and 

KGE metrics are widely used among modelers to evaluate rainfall-runoff model performance. 

These metrics provide valuable information on the accuracy and reliability of the models' 

discharge predictions and can be used to compare different models or determine the most 

suitable model for a specific application. 

NSE evaluation metric ranges from minus infinity to 1.0 and 1.0 is the best agreement and 

mathematically is calculated as: 

𝑁𝑆𝐸 = 1 −
∑ 	(𝑂* − 𝑃*)/0
*12

∑ 	(𝑂* − 𝑂̀*)/0
*12

 

 

where, 𝑃𝑖	is the calculated flow,  

            𝑂𝑖	is the observed flow, 

    𝑂̀* is the mean observed flow and 

            𝑁 is the length of the timeseries. 

 

KGE evaluates the hydrological model performance like NSE does and it was developed based 

on the limitation of NSE. Hoshin V. Gupta et al. 2009 decomposed NSE into three distinct 

components, the correlation, the bias and a measure of relative variability in the simulated and 

observed values. KGE is formulated by computing the Euclidian distances of the components 
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from the ideal point. KGE ranges from minus infinity to 1.0 and 1.0 indicates the best 

performance. KGE is described as: 

𝐾𝐺𝐸 = 1 − ab𝑟 − 1)/ + d
𝑃
𝑂 − 1e

/

+ (
𝑃̀
𝑂̀
− 1)/f 

 

Where 𝑟 is the Pearson correlation between simulation and observation runoff and 

𝑃̀* is the mean calculated flow. 

 

Moreover bias, mean absolute percentage error (MAPE) and the root mean square error 

(RMSE) evaluate the performance of the 5% peak flows. The mathematical expression of those 

metrics is: 

 

𝐵𝑖𝑎𝑠 = 	
(𝑃	i −	𝑂̀)

𝑂̀
 

 

𝑀𝐴𝑃𝐸 =
1
𝑁	k

|𝑃* − 𝑂*|
𝑂*

0

*12
 

 

𝑅𝑀𝑆𝐸 = 	a
1
𝑁k (𝑂* − 𝑃*)/

0

*12
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5 RESULTS 

 

5.1 Input data and model training/calibration 

The calibration classical procedure for models is to subdivide the data into three parts, referred 

to as training, validation and test data (Goodfellow, Bengio, and Courville 2016). The first two 

splits are used to derive the parametrization of the network and the remainder of the data to 

diagnose the actual performance of the model. Table 7, shows the periods of the data splitting 

used in this study.  

 

Table 7. Time period for each sud-dataset. 

Dataset  Period Percentage 
(%) 

Training 01/10/1981 - 30/09/1996 45 
Validation 01/10/1996 - 30/09/2001 15 

Testing 01/10/2001 - end date 40 

 

 

For the calibration of parameters in the Zygos model, the differential evolutionary optimization 

algorithm (Storn and Price, 1997) was employed, with the Nash-Sutcliffe Efficiency as the 

objective function. For the LSTM and Transformer models, the Adam (Kingma and Ba 2017) 

optimization algorithm, a commonly used approach in machine learning regression problems, 

was utilized alongside the Mean Squared Error as the loss function. Details regarding the 

number of parameters for each model are presented in Table 8.  

To ensure consistent computational time for training the Zygos model, the following technique 

was employed. First, the maximum number of iterations and the population size were 

determined using a trial-and-error method, based on the time consumption and NSE values 

achieved for 10 basins. After this, the 164 Zygos models were trained. The models that 

achieved an NSE value below 0.1 were retrained following the same procedure. 

 
Table 8.Number of parameters for LSTM, Transformer and Zygos models. 

Model Number of Parameters 

LSTM 5,381 

Transformer 1,052,672 
Zygos 11 
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LSTM and Transformer, as machine learning models, undergo training in epochs. An epoch 

signifies a complete pass through the entire dataset during the training phase. During this 

process, the model forwards the input data through the network to compute the error, followed 

by backward propagation to update the network's parameters. For instance, the LSTM model 

underwent 50 epochs using the training data, meaning the model iteratively adjusted its 

parameters based on the entire training dataset for 50 cycles. Subsequently, the validation 

dataset was utilized to assess the performance of these parameters. The best parameter set was 

then evaluated using the testing dataset. To mitigate computational costs and prevent 

overfitting, the early stopping technique was employed. This technique halts the training 

process if the model's performance on the validation dataset does not improve for a specified 

consecutive epoch.  

The input features for each model are detailed in Table 9. The transformer model requires 

absolute positional information to be explicitly conveyed to the model. Consequently, the input 

feature structure slightly differs from that of the LSTM model. It includes a fixed time series 

incorporating the month of the year, as the month significantly influences runoff variance. 

 

Table 9. Input data for LSTM, Transformer and Zygos models. 

Model input Feature 

LSTM 

Average daily precipitation 

Surface-incident solar radiation 

2 m daily maximum air temperature 

2 m daily minimum air temperature 

Near-surface daily average vapor pressure 

Transformer 

Average daily precipitation 

Surface-incident solar radiation 

2 m daily maximum air temperature 

2 m daily minimum air temperature 

Near-surface daily average vapor pressure 

Month of the year 

Zygos 

Average daily precipitation 

2 m daily mean air temperature 

Potential evapotranspiration* 

*Potential evapotranspiration is computed using the Hargreaves method. 
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For efficient learning in machine learning models, all input and output features are normalized 

and serialized. The goal of normalization is to transform features to be on a similar scale. This 

improves the performance and training stability of the model (Bishop 2006). The z-score 

technique was employed, involving the normalization of data by subtracting the mean and 

dividing by the standard deviation. Serialization is essential for preparing the input data in a 

suitable format for learning purpose (Figure 11). 
 

 
Figure 11. An illustration of data serialization (Yin, Guo, et al. 2022). 

 

 

5.2 Results 

The model performances were evaluated using the Nash-Sutcliffe efficiency (NSE), and the 

Kling–Gupta efficiency (KGE). Moreover bias, mean absolute percentage error and the root 

mean square error evaluate the performance of the 5% peak flows (Chapter 4.4).  

Because LSTM modeling approach needs 365 days of meteorological data as input for 

predicting one time step, while Transformer needs 20 the evaluation period is shifted by one 

year. Moreover, the Zygos model does not use the validation dataset because of the different 

calibration-training approach. 

The NSE and KGE results for 164 LSTM, Transformer, and Zygos rainfall-runoff models are 

shown in Figures 12-14. Both the LSTM and Transformer models demonstrate superior 

performance compared to the benchmark Zygos models. Specifically, the mean NSE values on 

the testing dataset are 0.50 for LSTM, 0.71 for Transformer, and 0.37 for Zygos, underscoring 

the efficacy of the LSTM and Transformer architectures in runoff predicting.  
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Figure 12. Boxplot of the NSE for LSTM models. 

 

 
Figure 13. . Boxplot of the NSE for Transformer models. 

 

 
Figure 14. . Boxplot of the NSE for Zygos model. 

The KGE follows the logic of the NSE as far as models’ performance is concerned. Both of the 

machine learning models outperform the benchmark model with a mean KGE values 0.23, 0.69 

and 0.07 for the LSTM, the Transformer and the Zygos models, respectively (Figures 15-17). 
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Figure 15. Boxplot of the KGE for LSTM models. 

 
Figure 16. Boxplot of the KGE for Transformer models. 

 
Figure 17. Boxplot of the KGE for Zygos models. 
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Table 10. NSE and KGE evaluation metrics for LSTM, Transformer and Zygos models 

Model Dataset 
Max 

NSE 

Max 

KGE 

Mean 

NSE 

Mean 

KGE 

Median 

NSE 

Median 

KGE 

Min 

NSE 

Min 

KGE 

LSTM 

training 0.957 0.875 0.635 0.364 0.650 0.524 0.067 -3.574 

validation 0.927 0.955 0.571 0.379 0.571 0.492 -0.119 -2.928 

testing 0.880 0.910 0.501 0.234 0.449 0.403 -0.053 -2.924 

Transformer 

training 0.993 0.994 0.843 0.795 0.908 0.892 0.353 -0.761 

validation 0.989 0.987 0.777 0.761 0.829 0.832 0.278 -0.223 

testing 0.987 0.990 0.712 0.690 0.786 0.813 -0.418 -1.141 

Zygos 
training 0.884 0.905 0.415 0.122 0.373 0.269 -0.024 -2.612 

testing 0.844 0.851 0.374 0.075 0.354 0.234 -0.184 -3.071 

 
Transformer models exhibit consistent performance across all datasets, showcasing high values 

for both NSE and KGE. However, in only four basins, the NSE values for Transformer models 

are inferior to the benchmark Zygos model, while the corresponding number of basins for KGE 

evaluation metrics is five. Despite LSTM models performing better than the benchmark 

models, they do not surpass Transformer models. Additionally, 36 Zygos models exhibit 

superior NSE values compared to LSTM models, while 66 models demonstrate better KGE 

values. The comparison of the NSE and KGE metrics among the models are visualized in 

Figure 18. 
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Figure 18. NSE & KGE comparison for LSTM, Transformer and Zygos models. 
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To analyze the behavior of each model in more detail, a number of evaluation metrics were 

measured. Specifically, the evaluation metrics Root Mean Squared Error (RMSE), the 

coefficient of determination R2, Mean Absolute Error, Max Absolute Error were used to further 

evaluate the models. As illustrated in Figure 19, the Transformer models outperform in all these 

metrics, while the performance of the Zygos model is inferior to the others. 

 

 
Figure 19. Cumulative density functions for various metrics of the testing period. 

Figures 20 and 21 depict the NSE and KGE values, respectively, for all models across the 

operational basins within the four hydrological units in the United States of America. The 

markers on the figures represent the centroids of the basins along with their corresponding area 

sizes.  
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Figure 20. (a)-(b)-(c) NSE evaluation metrics of the testing period for LSTM, Transformer and LSTM 

model. (d) Difference of the NSE between Transformer and LSTM models (red color >0 indicates that 

the Transformer performs better). 

 
Figure 21. (a)-(b)-(c) KGE evaluation metrics of the testing period for LSTM, Transformer and LSTM 

model. (d) Difference of the KGE between Transformer and LSTM models (red color >0 indicates that 

the Transformer performs better). 
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To analyze how machine learning models capture dependencies on different hydrological 

conditions, the mean and median NSE values were computed separately for each of the four 

hydrological units. Table11 shows that the Transformer model consistently outperforms both 

Zygos and LSTM models across all four hydrological units in terms of mean and median NSE 

values. Additionally, there's a clear variation in model performance across different 

hydrological units, with some units exhibiting higher mean NSE and KGE values compared to 

others.  

Table 11. Evaluation metrics NSE and KGE for the four hydrological units. 

HUC Model Mean NSE Mean KGE 

New England 

Zygos 0.381 0.348 

LSTM 0.579 0.477 

Transformer 0.751 0.817 

South Atlantic-Gulf 

Zygos 0.297 0.011 

LSTM 0.358 0.061 

Transformer 0.647 0.610 

Arkansas-White-Red 

Zygos 0.199 -0.499 

LSTM 0.226 -0.617 

Transformer 0.418 0.300 

Pacific Northwest 

Zygos 0.526 0.274 

LSTM 0.746 0.668 

Transformer 0.880 0.886 

  

The comparison across hydrological units reveals that static attributes such as precipitation, 

aridity, snow fraction, seasonality, and altitude significantly influence the performance of 

hydrological models. The Transformer model consistently outperforms the LSTM and Zygos 

models across all regions, particularly excelling in areas with high precipitation and seasonality 

such as the Pacific Northwest. Conversely, regions like the Arkansas-White-Red with lower 

precipitation and high-altitude variability present greater challenges for accurate modeling.  

The best and worst benchmark Zygos models for each hydrological unit were chosen for an 

illustrative comparison for the hydrological year 2009-2010. As seen in Figure 22, all three 

models perform well, with the Transformer model being the best. On the other hand, in Figure 

23, although the Zygos models are not able to accurately represent the system, the LSTM and 

Transformer models perform fairly well. For the catchment 07315200, none of the models can 

achieve good performance. 
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Figure 22. An illustration comparing of LSTM, Transformer and Zygos models for basins where 

Zygos achieve the best performance. 
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Figure 23. An illustration comparing of LSTM, Transformer and Zygos models for basins where 

Zygos achieve the worst performance. 
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Furthermore, to explore the performance of the models during peak flows, the bias (BIAS), 

mean absolute percentage error (MAPE), and root mean square error (RMSE) criteria were 

calculated for the top 5% peak flows. The following figures indicate that the Transformer 

model achieves better performance on predicting peak flows compared to the LSTM and Zygos 

models. 
 

 
Figure 24. Boxplot of the BIAS of the testing period for the 5% peak flows. 

 

 
Figure 25. Boxplot of the mean absolute percentage error for the 5% peak flows. 
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Figure 26. Boxplot of the root mean square error for the 5% peak flows. 

 

Table 12 shows that all the models are negatively biased, which means that they underestimate 

the peak flows. Transformer models perform the best for all metrics with the smallest mean 

bias -0.11, mean absolute percentage error 0.29 and rout mean square error 4.75. Zygos models 

demonstrate the highest errors and bias, indicating it is the least accurate among the three 

models for peak flow prediction. 

 
Table 12. Mean and Median BIAS, MAPE and RMSE values for the 5% peak flows. 

Model 
Mean 

BIAS 

Median 

BIAS 

Mean 

MAPE 

Median 

MAPE 

Mean 

RMSE 

Median 

RMSE 

LSTM -0.33 -0.34 0.47 0.40 6.02 5.31 

Transformer -0.11 -0.09 0.29 0.24 4.75 4.08 

Zygos -0.42 -0.40 0.52 0.46 7.22 5.91 
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6 CONCLUSIONS 

 

6.1 Thesis conclusions 

The primary objective of this study is to investigate the potential of two state-of-the-art 

machine learning models, Long Short-Term Memory (LSTM) and Transformer, in rainfall-

runoff modeling. The performance of each model is compared with the Zygos conceptual 

rainfall-runoff model across 164 basins. Specifically, the differences in the Nash-Sutcliffe 

Efficiency (NSE) and Kling-Gupta Efficiency (KGE) evaluation metrics between the 

Transformer and Zygos models are 0.338 and 0.615, respectively. In comparison, the 

differences for LSTM and Zygos are 0.127 and 0.159, respectively. This indicates that 

Transformer models outperform LSTM models and the Zygos model in rainfall-runoff 

modeling. Furthermore, evaluation metrics for peak flow predictions, such as bias, mean 

absolute percentage error (MAPE), and root mean squared error (RMSE show that both of 

machine learning models achieve better performance in predicting peak flows than the 

conceptual one. 

The variation in evaluation metrics across the four hydrological units highlights that machine 

learning models can effectively capture a range of dependencies under diverse hydrological 

conditions. For instance, in the Pacific Northwest hydrological unit, which includes 58 basins, 

the LSTM and Transformer models achieve mean NSE values of 0.75 and 0.88, respectively. 

This high performance suggests that both machine learning models can "learn" complex 

hydrological relationships of a region with high precipitation, significant portion of which falls 

as snow, along with high aridity and seasonality. The varied performance also highlights the 

importance of considering regional characteristics when selecting and applying hydrological 

models for predictive purposes. 

Despite the Transformer models outperforming the others, there is a significant drawback in 

their architecture. This drawback is that the decoder component functions in a non-

autoregressive manner, meaning that the ground truth values are used as inputs for the decoder 

block, and errors do not accumulate as the output moves to the next timesteps. This indicates 

that machine learning models lack of interpretability and therefore cannot be implemented 

without considerations about their reliability. 

It is worth mentioning that the architecture of the Transformer model is far more complex than 

that of the LSTM, as it utilizes a more sophisticated learning method. However, this complexity 

comes at the cost of increased training time and memory usage. Transformers utilize self-
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attention mechanisms that scale quadratically with input length, making them computationally 

intensive. To ensure a fair comparison among the models, the computational time for training 

each model was kept within comparable limits. The results indicate that, even with the same 

computational cost, both of the machine learning models can achieve superior performance 

compared to Zygos traditional models. This underscores the potential of advanced machine 

learning techniques to enhance hydrological predictions, provided that sufficient computational 

resources are available.  

 

In summary the main conclusions of this study are as follows: 

1. Machine learning models can be used as rainfall-runoff models.  

2. Although machine learning models can achieve sufficient performance and outperforms 

the traditional conceptual models it is still not clear whether conceptual models can fully 

be replaced by machine learning models.  

3. Machine learning models are able to predict the runoff in basins with diverse 

hydrological conditions meaning that they can “learn” dependencies associated with 

various hydrological processes. 

4. Computational resources in terms of time are essential for training both to classical 

conceptual models and to machine learning models. 

 

 

6.2 Future research 

The Transformer architecture developed in this study has demonstrated superior performance 

compared to LSTM and Zygos models. However, it should not be considered the definitive 

superior model. Instead, it should be viewed as a highly promising architecture with significant 

potential. Zhou et al. 2021 mention that vanilla Transformer architecture cannot be directly 

applicable for long sequence timeseries forecasting due to its quadratic time complexity and 

high memory usage. This comes in contradiction to the Transformer model implemented in 

this study. Therefore, while the Transformer model shows great promise as a rainfall-runoff 

machine learning model, much research is still needed to refine its architecture.  

Moreover, both LSTM and Transformer hyperparameters were pre-defined, and no 

hyperparameter tuning was done. Hence, a systematic sensitivity analysis of the effects of 

different hyperparameters would boost the performance and reliability of these models. 
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Although identifying machine learning models as black-box models is considered a myth by 

Maier et al. 2023 because the mathematical relationship between the model's input and output 

is known, it is still not feasible to fully analyze the behavior of such complex models. This 

suggests that a systematic interpretation of the network's internals would enhance our 

understanding on those models leading to error diagnosis and model improvement. Hence, 

comprehensive research utilizing explainable AI techniques to dress model outcomes with 

interpretability, expandability and transparency is a well promising field of study. 

Finally, LSTM and Transformer models have only been applied on limited large-scale datasets 

and the majority of them in the CAMELS dataset. To expand our understanding of the 

uncertainty associated with input data, further research should focus on testing rainfall-runoff 

machine learning models utilizing other datasets. 
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