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ABSTRACT

This work focuses on investigating the use of machine learning models as rainfall-runoff
models. For this purpose, the development of a Long Short-Term Memory, a Transformer, and
a conceptual model was chosen. The Long Short-Term Memory model was selected due to its
widespread use in numerous time series prediction problems and specifically runoff prediction.
The Transformer model was chosen because, despite the extensive discussion around its
capabilities as a natural language processing model, its use as a time series prediction model is
still quite limited. For comparing the above models, the conceptual rainfall-runoff model Zygos
was developed, which has been initially developed by the ITIA research team of National
Technical University of Athens.

The training and application of these models were carried out separately for 164 catchment
basins from the CARAVAN dataset. These basins are located in the United States and were
selected to cover a wide range of hydrological conditions. The analysis of the final models was
performed at the catchment basin level, where the models were trained, calibrated, and tested
for the same period of time.

The results show that machine learning models can be effectively used as rainfall-runoff

models, as they outperform traditional models in performance criteria.



HNEPIAHYH

H mapovoa epyacio eotidalel otn depehvnon e ypNoNg LOVIEADV UNXOVIKNG HABNong mg
povtédwv PBpoyns-amoppons. o tov okomd avtd emléydnke N avdntuén evog Long Short-
Term Memory, evog Transformer kot evdg evvotodoyukod povtélov. H emioyn tov povtéiov
Long Short-Term Memory £ywve dedopévng g evpeiag xpnong tov oe mAnog TpofAnudtov
TPOPAEYNG YPOVOCEIPOV KOl GUYKEKPIUEVA G€ TPOoPANpata TpdPAeyng amoppongs. To poviéro
Transformer emAéyOnke 61011, TOPAE TV EKTEVN YPNOTN O LOVIELOV €MeePyYAiog PUOIKNG
yAoooag (Natural language processing), 1 ¥p1jon TOLV ®G HOVIELOL TPOPAEYNS YPOVOCEPDV
etvar axopa apketd meploptopév. o  ovyKpion TV Topandve HOVIEA®Y, EPUPUOCTNKE
TO €VVOLOAOYIKO HovTéLD Zygos, mov £xel avamtuyBel amd v epsuvntiky opddo ITIA tov
EBvikod MetadBiov TTohvteyveiov.

H avéntoén kot gpappoyq ovtdv tov poviéhov mpaypoatomombnke Eeywpiotd yio 164
Aekdveg amoppong mov mepiEyovtal 610 oeT dedopuévav Tov CARAVAN. Avtég ot Aekdveg
Bpiokovion otig Hvopéveg TMolteieg kot emAéynkav yio vo KaAOWouv &va gupy QACLO
VIPOAOYIKOV cvvOnkadv. H avdivon tov teMKkdv poviédmv £ylve og eminedo AeKOvng
AToPPONG, OOV Ta LOVTEAD EKTOOEVTNKAY - fadpovounnkay Kot atoloynoniay yio v ot
YPOVIKT TEPT0O0.

Ta anoteAéopata deiyvouv OTL To LOVTEAD UNYXOVIKNG HABNONG HITopoV va Xp1oLomom oy
OTOTEAECUATIKG MG LOVTEAL BPOYNG-ATOPPONGS, KAODS VIEPEYOVV GTO KPLTNPLOL EMIOOCNG OE

oVYKPLON LE TO TAPOIOCLOKO EVVOLOAOYIKO HOVTENO.



EKTENHX ITEPIAHYH

Ewayoyn

H avamopdotaon tov @Quokdv dlepyasidv mov ocvuPaivouv katd tn Oldpkelo g
Bpoydmtwong og pio VOPOAOYIKT AeKdvT ATOTEAEL TV KUPLOL KOIL TTLO S10LYPOVIKT TPOKAN O™ TV
VIPOAGY®V unyovik®v. H mpocopoiwon twv vdpoAoYIKOV GLUVIGTOCOV KOTE TNV dldpKela
EIGPONG VEPOD OE O VOPOAOYIKN AEKAVYN, VIO TNV HOPON KOTOUKPMUVIGUATOV Kol O
VTOAOYIOUOG TOL VEPOV TTOL ATOPPEEL GTO VATV GMOUATO ovoudeTon Tposopoiman Bpoxng
aroppons. H poviehonoinomn Ppoync-amoppong eivar kpiciun yio m Stoyeipion TV LOATIKMOV
TOpV Kol Yo TN Ay amopdoemv (decision-making). Axpifeic kot Tponypéves mpoPAréyelg
ponNG amd TPOGOUOLDCELS PBPOoYNS-amoppons UIopovv va Bondnocovv 6TV OVIILETOTION
nudtov dtoelptong LOUTIKOV TOP®V Kl GTOV HETPLUGUO TV ENUTTOCEDV TANUUVPOV Kol
Enpaciov (Beven 2012).

Yndpyovv 014popeg TPOGEYYIOELS Y10 TY] LOVTEAOTOINGN PPOYNS-0mOpPONG, TOV KLHAIVOVTOL
Ao PUGIKA 1) EVVOL0A0YIKE HOVTELD £mG HovTéAa Tov Pacilovtal otnv unyovikn paonon. Ta
QLOIKA HoVTEéAQ, To. omoia Pacilovial 6 AETTOUEPT] KOTAVONOT TOV PUGIKAOV JEPYACIAOV,
OTAVLOL YPNGILOTOLOVVTOL Y10 TPOPAEWELS pONG AOY® TNG TOALTAOKOTNTAG TOVG. Avtifeta, Ta
EVVOLOAOYIKO HOVTEAQ, 7OV &ivol Yevikd OmAOVCTEPO KOl OOITOVV ALYOTEPO OEOOUEVO,
YPNOLOTOOVVTOL T GLYVE Yoo avtd 10 okomd (Beven 2012). Xnv emoy] tov HEYGA®V
dedopévov (big data), to pOVIEAD 7OV UTOPOLV VO OEOTONGOLV UEYOAEG TOGOTNTES
OEOOUEVDV  OlEPELVOVTAL EVPEWS GE OAPOpa eMOTNUOVIKG 7edia. Avtd to HOVTEAM
YPNOWOTOOVV TEXVIKEG UNYOVIKNG Habnong yio va e€dyovv €£aptnoelg Kol GYECELS TOV
npoéyoviorl amd ta dedopéva €166d0v. Tlaporo mov ta pOvVTELD pNYOVIKAG Habnong yuo
VIPOAOYIKOVG oKomovG Exovv e&epevvnbel apketd v televtain dexaetio, eEakolovbel va
VILAPYEL 0L VOTEPTOT GUYKPLTIKE e GAAQ EMLOTNLOVIKE TTESTCL.

O okomdg avtg ™G HEAETNG €ivol Vo JEPELVIGEL TNV EPOPUOCIUOTNTO dVO HOVIEA®V
UNYOVIKNIG nabnong o avtifeorn pe €va KAOGIKO €VVOLOAOYIKO HOVTELO BpoyNG-0moppon|s.
YuyKekpéva, 1 perétn dokipdalet ta povtéda unyovikng pabnong Long Short-Term Memory
(LSTM) ko Transformer évavtt Tov evvotoloykod povtélov Zygos. H cbykpion a&lohoyel
Oyt pévo v aglomiotio TV TPoPAEYe®V KAOE LOVTELOVL, OALG KOL TNV TOALTAOKOTNTO TMV
APYLTEKTOVIKAOV TOVG KAOMG KOl TIC OTOLTHGELS TOL £XEL TO KOOEVA GE VITOAOYIGTIKOVG TOPOLG,.
Ta povtéha exmadedtnkav oto oet dedopévev Caravan (Kratzert et al. 2023), mov

nepopupdver capdavta €t (1981-2020) nuepiouwV UHETEOPOAOYIKMOV OSOUEVOV KoL



tprovtanévte €t (1981-2015) nuepnowwv dedopévov amoppone. Evd 1o oet dedopévav
Caravan nepi€yet oedopéva omd 6.830 Aekaves Taykoopimg, 1 Tapodoo peAétn eotidlel o 164
Aekdveg amd to vroovvoro dedopévov CAMELS (HITA). H eriloyn avtdv €ytve pe kpreiplo
TIG  OLPOPETIKEG VOPOAOYIKEG GLVONKEG KOL TOVG  OVTIKEWWEVIKOVS VITOAOYIGTIKOVG
TEPLOPIGUOVE.

Yvunepacpatikd, 164 povtéda LSTM, Transformer kot Zygos avoamntoydnkov o€ aviictolyo
apOpd Aekovav amoppong tov Caravan. Avtd ta LovTéEAN TPOPAETOVV TNV NUEPNGLOL OTOPPON
YPNOULOTOIDVTAG VOPOUETEMPOLOYIKA dEGOUEVOH G O£dOUEVA E1IGOOOV.

Ola o povtéra avamtoydnkov oe Python, ypnoyonoidvtag Pacikég PipAiodnies 6mmg ot
Pandas, NumPy ka1 TensorFlow ywa v enelepyacio dedopévav, aptOuntikohc VToAoyYIGHOVG

Kot dradkocieg Padidg padnong (deep learning).

Ieproyq Merétng kon Xet Agdopévev

To Caravan (Kratzert et al. 2023) eivar éva avoytd cet dedopéveov mov mePAapPavel
LETEMPOLOYIKA SEGOUEVA, YOPUAKTNPIOTIKE AEKOVMV KOl SEGOUEVO OTOPPONG Y10 AEKAVES QO
6A0 Tov KOGpo. Ta petewporoyikd dedopéva mponibav and to ERAS-Land (Mufioz-Sabater
et al. 2021), to yopakTNPoTIKG TOV Ackovav eAnedncov and 1o ERAS5-Land kot 10
HydroATLAS (Linke et al. 2019), kot To dedopéva amoppong TpoAboy amd EXTA avoryTd GET
JedOUEVDV.

Ye ovt) ™ peAétn ypnowomomnkav 164 Aexdveg amd 10 VWOGHVOAD TV dedopévav
CAMELS (US) (Newman et al. 2015) tov Caravan. H napobdoa epyacio akorovOnoce
peBodoroyia mov mpotabnke amd tovg Kratzert et al. 2018, n onoia mpoteivel ™ ypnon 4 and
T1G cuvolkd 18 VOporoYIKES HOVEdES, TOL oplobetovvtal amd Tov yaptn ¢ U.S. Geological
Survey (Seaber, Kapinos, and Knapp 1987) yia ka6e vdporoyikr povada (Hydrological Unit
Map), v TV KaAvyn evog PHeYOAOL QAGHOTOG VOPOLOYIKMOV GLVONKAOV Kot TN peimon tov
VTOAOYIOTIKOD KOGTOVG. XVYKEKPIUEVO eEETAoTNKAY, Ol VOPOLOYIKES povades: (01) New
England, (03) South Atlantic-Gulf, (11) Arkansas-White-Red kot (17) Pacific Northwest, 6mmg

(QOIVETOL KOL GTNV TOPAKAT® EKOVOL.
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Eiwxova 1. O1 164 vopoloyixés rexaves tov CARAVAN.

Avtéc o1 téaaeplg VOPOrOYIKEG Hovades mepiEyovy 172 Aekdvec, aAld 8 amd avtég Exouvv
eAmn dedopéva Tov dgv UTopovSaV Vo, cLUTANpwBoby. Emopévmg, avamtoydnkov 164

LOVTEAL MG LOVTEAX BPOYNG-OmopPONS.

Mé£06ooor & Epyadeia

To povtého LSTM, mov apykd avantdydnke and tovg Hochreiter and Schmidhuber 1o 1997,
etvar évag TOmog avadpoKoD VEVP®VIKOD SIKTVOV LE EIOIKT OPYLITEKTOVIKT GYESICUEVT VO
Eemepva v advvopio Tov mopadocstokov Recurrent Neural Network (RNN) va e&dyet
nakpoypovieg eaptmoetg (Goodfellow, Bengio, and Courville 2016). Ta Bacikd otoyeio evog
LSTM xvttapov (LSTM cell) givon n katdotaon tov kuttdpov (Cell State), ot mbieg Anong
(Forget Gate), o1 moAeg e16000v (Input Gate) kot ot moreg eEd6dov (Output Gate). H katdotoon
tov KutTdpov (Cell State) Aettovpyel ®g M LVUN TOL SIKTVLOL, HETAPEPOVTOS TANPOPOPIES GTO
emopevo ypovikd Pruno. H woAn Anbng (Forget Gate) eléyyet tic mAnpogopieg mov Oa
amoppefovv amd v kotdotacn tov kuttapov (Cell State). H moAn eicddov (Input Gate)
eAEYYEL TIG VEEG TANPOPOpiec OV Ba TpooTeBovv oty Katdotaot Tov kuttapov (Cell State),
eva M mOAN €£600v (Output Gate) edéyyel TIg TANPOPopieg TOV TEPVOHV Amd TNV KATAGTOON

tov kvttapov (Cell State) otnv endpevn kpven| katdotaon (Hidden State).



H apytektovikny tov diktvov LSTM, 6mwg oyedidomnke Kot ¥pnoylorondnke amd Tovg
Kratzert et al. 2018, éyet amoderyBel amoterecpatikn, 00MNyOVTOS TNV LVIOBETNON TG O VTN
™ HEAET.

To povtého Transformers, €xst avaderyBel npocepata amd tovg Vaswani et al. 2017, wou
TPOYUOTOTOEITOL EKTETAUEVT] £pEuVa YOP® Oomd TNV SLVOLIKY KOl TIS OLVOTOTNTEG TOV TO.
tehevtaio xpovia. To poviého avtd ypnoonotel Evov unyovicpd tov ovopdaletal scaled dot-
product attention, o omoiog emTPENEL OTO HOVIEAO Vo €VIOMILEL KOU VO KOTAYPAQEL
pnokpoypévieg  eEoptnoelg. To  poviého  ypnoipomotel g Sopn  KOSKOTOINTH-
arokmdtkonomt| (Encoder - Decoder) 6mov o kwowonromtig (Encoder) enelepydletor ta
dedopéva 16600V evd o amokwoworon s (Decoder) ypnotiponotei ta dedopéva e£6d0v Tov
kodwomomrtr (Encoder) yio va onpiovpynocet m oepd €£6dov. Ot Yin et al. 2022 wpdtevov
10 RR-Former 1o onoio €yet1 amodetyfel apkeTd amoteAeGUATIKO MG LOVTELO BPOYNS-OTOPPONG
KO ETOUEVAOS GTNV TAPOVSO LEAETT XPTOLOTOMONKE TOPOLOL0 OPYLTEKTOVIKT).

Téhog, 10 poviélo Zygos eivol €va VIETEPUIVIOTIKO EVVOLOAOYIKO HOVTEAD TOL OpYIKE
avantoyonke and epguvntég g opddag ITIA oto EBvikd Metadfio [Torvteyveio. Epapuolet
£VoL EVVOL0AOYIKO GYNUOL AOYIGTIKNG VYpaciog €06govs, PACICUEVO GE Lo YEVIKELGT TOV
tomikoV povtédov Thornthwaite, emektevopevo pe pio degapevi) vroyelmv vodtwv (Kozanis
and Efstratiadis 2006). o v zmpocappoyn Mo amapoitntng PovTivog YLoVOKAALYNG,
avamtOYONKe o€ aLT TN HEAETN (ol EvUEPOUEVT €KOOGT TOL apyIKoD HOVTELOL Zygos,
npotevopevn amod tovg Efstratiadis, Nalbantis, and Koutsoyiannis 2015.

H koataAAnAdmra tov povtéAwv a&loAoynonke ¥pnooTotdVTaS T Kpitiplo exidoong Nash-
Sutcliffe (NSE) (Nash and Sutcliffe 1970) kaBdg xat to kprrrpro Kling-Gupta (KGE) (Hoshin
Vijai Gupta and Kling 2011). EmutAéov, n pepoinyio (BIAS), 1o péco andéivto mocooTtiaio
o@dipo (Mean Absolute Percentage Error) kot 1o pilikd péco tetpayovikd opdipo (Rout
Mean Squared Error) ypnotpomomOnkay yio va aEl0A0YNGOVV TNV X000 TOV HOVIEA®V OTIG

5% mapoTNPOVUEVES LEYIOTEG TIUEG ATOPPOTIC.

Amnoteiéopata

Ta anoteréopata tov pétpov enidoong NSE kot KGE yia ta 164 poviédha Bpoyns-amoppong
LSTM, Transformer kot Zygos oamewkoviCovtalr otov axkdAovBo mivaka (ITivakag 1).
Inuewwvetat, 0tL 10660 to. povtéda LSTM 6co kot ta Transformer mapovoidlovv kalvtepn
amOd00T GE GUYKPIOT UE TO HOVTEAO Zygos. Zuykekpuéva, ot péoec Tinéc NSE oto chvoro
TV Aekavav givar 0.50 yio to LSTM, 0.71 ywa to Transformer ko 0.37 yio to Zygo, toviovtag

TNV OMOTEAEGHOTIKOTNTO TV apyltektovik®v LSTM kot Transformer otnv mpdPreymn g
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amoppong. O deiktng KGE akoiovfel tn Aoy tov NSE 6cov agopd v amddoon Tmv
povtédwv. Kot ta 600 povtéda punyovikng nabnong vreptepovy Tov TPOTLITOL HOVTEAOL LE
pnéoeg tipnég KGE 0.23, 0.69 ko 0.07 yia to povtéda LSTM, Transformer xot Zygos,

avticTorya.

IHivaxag 1. Mérpa enidoons twv poviédwv LSTM, Transformer kou Zygos.

Max Max Mean Mean Median Median Min Min

Model Dataset NSE KGE NSE KGE NSE KGE NSE KGE
training  0.957  0.875 0.635 0.364 0.650 0.524 0.067 -3.574

LSTM validation 0.927  0.955 0.571 0.379 0.571 0.492 -0.119 -2.928
testing 0.880 0910 0.501 0.234 0.449 0.403 -0.053 -2.924

training  0.993  0.994 0.843 0.795 0.908 0.892 0.353 -0.761

Transformer validation 0.989  0.987 0.777 0.761 0.829 0.832 0.278 -0.223
testing 0.987  0.990 0.712 0.690 0.786 0.813 -0.418 -1.141

Zygos training  0.884  0.905 0.415 0.122 0.373 0.269 -0.024 -2.612
testing 0.844  0.851 0.374 0.075 0.354 0.234 -0.184 -3.071

Emumiéov, yuo v diepgvvnon g anddoons TV LOVIEA®V KT TN JpKELN TOV HUEYIGTOV
amoppodV, vVIoroyiotnkav ta Kprtpla peponyiog (BIAS), péocov amdivtov mococtiaiov
opdipatog (MAPE) kot pilikod pécov tetpaymvikov cedaipatog (RMSE) yia 10 5% tov
peyiotov podv. O akdiovbog mivakag ([Tivakag 2) deiyver 61t 10 poviédo Transformer

EMTLYYAVEL KAAVTEPT AOd00T 6€ cUYKpLon pe Tao poviéda LSTM kot Zygos.

Hivarag 2. Tiuéc twv uétpwv exivoons BIAS, MAPE kar RMSE yia 1o 5% twv ueyiotwv oamoppoav.
Mean Median Mean Median Mean Median
BIAS BIAS MAPE MAPE RMSE RMSE

Model

LSTM -0.33 -0.34 0.47 0.40 6.02 5.31
Transformer -0.11 -0.09 0.29 0.24 4.75 4.08
Zygos -0.42 -0.40 0.52 0.46 7.22 5.91

Yoprepaopota & Xovlntnon

O KVpLog 6TOYOG AVTNG TNG LEAETNG fval va d1EPEVVICEL TIG SOLVATOTNTEG OVO TPOTOTOPLAKMDY
HOVTEA®V pnyovikig pabnong, tov LSTM (Long Short-Term Memory) kot Transformer, wg
povtéAwv Ppoyng-amoppons. Avamtdoybnkav 164 povtého LSTM kar 164 povtéia
Transformer kot 1 amdd00™ ALTOV GLYKPIONKE LE TA AVTIGTOLYO EVVOIOAOYIKA LOVTEAL ZYZOs.

YUYKEKPIUEVA, O1 SPOPES OTIG LEGES TYEG TV Kpumpiwv emidoong Nash-Sutcliffe (NSE) kot
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Kling-Gupta (KGE) peta&d tov poviélwv Transformer ko Zygos eivon 0.338 kou 0.615,
avtiotoro evd ot dtapopég Yo ta poviéha LSTM kot Zygos givai 0.127 kan 0.159, avtictoryo.
Avt6 vmodewkvoetl 0Tt ta poviéha Transformer vrmepéyovv tv poviédhwv LSTM kot tov
HOVTEAOL Zygos ®G HOVTEA®V Ppoyns-amoppons. EmmAéov, ta kpuriplo emidoong yio tnv
TPOPAEYN LEYIOTOV amoppomv, Ommg M pepoAnyia (BIAS), to péco amdAvto mocootioio
opdipa (MAPE) kot o prlikd péco tetpaymvikd opdipa (RMSE), mov tapovoidlovtol otov
[Tivoxa 2, deiyvouv 6t t0 poviélo Transformer emitvyydver koaAdtepn amddoon otnv

TPOPAEYN TOV HEYIGTOV PODV.

Ta kbpla cvumepdopata aVTNG TG LEAETNG etvar Ta €ENG:

e To povtélo pnyavikng pdnong pmopovv va ypnoyorombodv g poviéda Bpoyns-
OTOPPONG.

o To povtéla punyavikng pddnong eivat tkava vo tpoPAEYOLY TNV Amoppon 6& AEKAVES
Yo O16.9opeg VOIPOAOYIKES GUVONKEG, YEYOVOS TTOL oTUaivel OTL umopovv va “udbovv”
e€apoelg Tov cuoyetilovtot e TOKIAEG VOPOAOYIKES dlepYaTieS.

e Ot vroAoytotikol THpot o Hpovg YPOVOL elvarl ovoidIEIS TOGO Yo TV Pabuovounon

TOV KAOCIKOV EVVOIOLOYIK®OV HOVTEA®V OGO KOl Y10 TNV EKTAIOELOT TOV HOVIEA®V

HMYaVIKAg pdbnong.



1 INTRODUCTION

1.1 Research scope

Hydrologists and engineers have long sought to represent the physical processes occurring
during rainfall events due to the significant importance of water in human life over the
centuries. These processes are described within a framework known as the water cycle, which
encompasses many diverse and complex interactions. Because of this complexity, it is almost
infeasible to represent water cycle processes in a purely physically based manner.
Consequently, water engineers have developed alternative methods to model the water cycle
system.

One key component of the water cycle that is crucial to define, due to its significant impact on
social and economic life and the environment, is runoff. The runoff variable plays an important
role in water resource management, flood and drought mitigation, and environmental
protection. Rainfall-runoff relationships describe how basin discharge responds to mass inputs
like precipitation and energy inputs like radiation. A hydrological model is defined as a set of
mathematical transformations that use field data and reasonable assumptions about the
processes of the hydrological cycle and their interactions, with the aim of quantitatively
estimating the variables of interest (A. Efstratiadis 2008).

Hydrologist have developed various approaches in rainfall-runoff modeling in order to predict
runoff. The most common approach among them, is the rainfall-runoff conceptual modeling,
translating complex non-linear processes of the water cycle in a simple and understandable
way. The conceptual model may be more or less complex, ranging from the use of simple mass
balance equations for components representing storage in the catchment to coupled nonlinear
partial differential equations (Beven 2012).

Another approach that has recently emerged for rainfall-runoff modeling is data-driven
modeling utilizing artificial intelligence (Al) techniques. Machine learning (ML), a subset of
artificial intelligence, tries to mimic the functioning of the human brain by acquiring
knowledge through a learning process. Machine learning models have the ability to learn and
generalize 'knowledge' from data pairs, enabling them to solve large-scale, complex problems
(ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000).
Many machine learning models have been developed in recent decades, with Recurrent Neural
Networks (RNNs) being among the most common for addressing regression problems. A

special type of RNN is the Long Short-Term Memory (LSTM) network, which proposed by
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Hochreiter and Schmidhuber 1997. Recently, (Vaswani et al. 2017), in their work 'Attention is
All You Need,' proposed a highly promising model called Transformer and has been gaining a
lot of attention since its release.
The purpose of this research is to investigate the applicability of two machine learning models
compared to a classical conceptual model for rainfall-runoff modeling. This investigation is
motivated by the ongoing discussion among scientists about the potential capabilities of data-
driven models. Specifically, 164 rainfall-runoff LSTMs, Transformers and Zygos models were
trained — calibrated and tested utilizing catchments from the Caravan dataset. The comparison
evaluates not only the reliability of each model's predictions but also the complexity of their
architectures and their computational cost demands.
The main four research questions that this study tries to answer are as follows:

e (Can machine learning models be used as rainfall-runoff models?

e Can machine learning models outperform the classical conceptual one?

e Do machine learning models are more complex in terms of its architecture?

e Do machine learning models need more computational resources to be trained?

1.2  Work structure

The study is organized as follows:

e Chapter 1 introduces the subject of the thesis and its research objectives.

e Chapter 2 presents the advances in hydrology and specifically in rainfall-runoff
modeling utilizing machine learning methods. Moreover, introduces the subject of
Large-sample hydrology.

e Chapter 3 provides a detailed overview of the Caravan dataset and the catchments
utilized in this thesis.

e Chapter 4 presents the model architectures used in this thesis as well as the model
evaluation protocols.

e Chapter 5 presents the experimental results and provides a comparison of the models.

e Chapter 6 gives conclusion and discusses further future work.



2 ADVANCES IN HYDROLOGICAL MODELING

2.1 Introduction

In general, a model is a simplified representation of real-world system which means that the
best model is the one that gives results close to reality with the use of least parameters and
model complexity. Models are mainly used for predicting system behavior and understanding
various hydrological processes and can be classified into two main categories. The first one is
whether the model is deterministic or stochastic. Deterministic models produce a single output
for each iteration given a specific set of inputs and parameter values. In contrast, stochastic
models account for uncertainty in input variables, boundary conditions, or model parameters,
allowing for some randomness in the outcomes (Beven 2012). The second one is whether the
models would be physically-based, conceptual, statistical-stochastic or data-driven (A.
Efstratiadis 2008). The first one is based on theoretical equations or semi-empirical equations
from experimental data. Conceptual models are based on parametric relationships that
represent the basic processes of the system. Furthermore, statistical or stochastic models
reproduce the basic statistical structure of the observed samples. Finally, data-driven models
transform the input data to derive complex cause-and-effect relationships.

The most common approach among hydrologist to represent the complex system of water cycle
is the conceptual modeling. Many studies have been carried out using different conceptual
approaches for rainfall-runoff modeling. Among the most prominent and widely used models
among else are the TOPMODEL (Beven and Kirkby 1979), MIKESHE (www.dhigroup.com),
Soil and Water Assessment Tool (SWAT) (Arnold et al. 1998) and Sacramento Soil Moisture
Accounting model (SAC-SMA) (Burnash 1973). Models are typically created to address
specific questions and therefore, they cannot be compared in a general way (Gehlert and
Pfeiffer 2005). However, many studies have been undertaken comparing the performance of
them. For example, the study conducted by the Word Meteorological Organization (1975)
applied 10 rainfall-runoff models to six different catchments, and compared them in terms of
the physical concepts used, data and computer requirements, and level of accuracy under
different hydro-climatic conditions.

In general, conceptual models are based on two criteria: firstly, the structure of the model is
specified prior to any modeling being undertaken, and secondly not all of the model parameters
have a direct physical interpretation. Therefore at least some conceptual model parameters have

to be estimated through calibration against observed data. The calibration problem for
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hydrological modeling, despite being widely studied for over thirty years, has not yet been fully
addressed and remains topical due to the complexity of modern models. Moreover, this issue
is common across all types of models due to the necessity of adjusting the modeled data to
match the ground truth (A. Efstratiadis 2008).

The common calibration approach for a conceptual rainfall-runoff model involves using an
automatic optimization technique, where an objective function evaluates how well the modeled
data matches the observed data.

The automatic calibration of a hydrological model can be mathematically addressed as an
optimization problem of the form:

maxg(e) = gly — h(sy, x,0)], s.t.60 €60 (2.1)

where g(.) is a set of goodness-of-fit measures, @CRp is the feasible space, and e is the error
vector or residual of the model, defined as the difference between observed and simulated
responses, specifically:

e=y—y (2.2)

Typically, the feasible space is defined by two vectors of extreme values Omin and Omax, which
expresses the allowable range of parameter value.

The goodness-of-fit g(.) function is a numerical measure of the difference between the model
simulated output and the observed output (Schaefli and Gupta 2007). There are many objective
functions that can be found in the literature with the most common ones based on the standard
least squares methods and maximum likelihood methods (Pechlivanidis et al. 2011).
Calibration techniques relying on a single objective function often fail to capture all key
characteristics of the modeled system. The need for multi-objective calibration stems from the
limitations of single objective calibration in accurately characterizing and constraining model
behaviors, as well as advancements in optimization technology (Khu and Madsen 2005).

It should be noted that the optimization problem, as formulated in equation 2.2, is a multi-
objective one since the function g is vector-valued. To reduce it to a single-objective problem,
so that it can be tackled with standard extremum search methods, a unified numerical
expression must be formulated in terms of the errors e, which describes an overall criterion of
the model’s goodness-of-fit to the measured responses y.

The process of estimating the parameters of a hydrological model (known as the inverse
hydrological problem) can be automated as follows (A. Efstratiadis 2008):

e A sample of measured (observed) responses is selected.
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e A measure of the model's fit to the observations is chosen.

e The problem of global optimization is formulated (stochastic function, control variables,
feasible parameter limits).

e A suitable algorithm is selected to search for the most appropriate parameter values,

with a reasonable number of trials.

The calibration problem is resource-intensive, requiring significant computational power to
determine the most suitable parameters.
In recent years, a lot of research has been devoted to developing automated calibration routines
or procedures based on numerical optimization techniques such as genetic algorithms
(Goldberg and Holland 1988) and the shuffled complex evolution (SCE) algorithm (Duan,
Gupta, and Sorooshian 1993). The need for automatic calibration routines in hydrologic models
has also been widely recognized over many years as demonstrated by the amount of work done
in this area. A comprehensive study about multi-objective calibration approaches was
conducted by Andreas Efstratiadis and Koutsoyiannis 2010.
After calibration, the performance of the optimized model parameters is always checked
against an independent time period. This process evaluates the predictive capacity of the model.
Regardless of the strategy adopted, the calibration of a hydrological, model is considered
reliable if:

e The model has sufficient predictive capability, meaning it can reproduce the entire

range of responses of a basin with satisfactory accuracy.
e The optimized parameters of the model can be attributed some physical meaning, so

they are considered compatible with the characteristics of the natural system.

2.2 Machine learning approaches in Rainfall-Runoff modeling

Artificial intelligence (AI) based models have recently emerged as powerful tools to enhance
hydrological modeling, offering new approaches to handle large datasets, capture non-linear
relationships, and improve predictive accuracy. Many machine learning techniques have been
applied for addressing various regression and classification problems. Popular algorithms
include linear regression, logistic regression, classification and regression tree (CART), naive
Bayes model (NB), support vector machine (SVM), K-nearest neighbor (KNN), random forest
(RF), and artificial neural networks (ANN).
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Support vector machines for regression were first introduced by Cortes and Vapnik 1995, and
the first applications were reported in the late 1990s. A comprehensive review by Raghavendra.
N and Deka 2014 highlights the application of SVMs in the field of hydrology. In their paper
the authors list nearly 40 SVMs models developed for various hydrological application. SVMs
have been successfully applied for rainfall-runoff modeling as evidenced by studies such as
Dibike et al. 2001; Bray and Han 2004; Asefa et al. 2006; Ch et al. 2013.

Random forest is a supervised machine learning algorithm which use decision trees as base
learners. Random forests introduced by Breiman 2001, have been applied to several scientific
fields and associated research areas such as agriculture, land cover classification, remote
sensing, wetland classification and ecology. Tyralis, Papacharalampous, and Langousis 2019
highlight that although the practical value of random forest, it remains obscure with limited use
in hydrological applications. Iorgulescu and Beven 2004 are perhaps the first authors to cite
Breiman 2001 in a water resources journal for rainfall-runoff application. Several comparative
studies with a hydrological focus have shown that random forest can outperform to other
machine learning techniques such as artificial neural networks, support vector machines, and
regression models (Erdal and Karakurt 2013; Li et al. 2016; Bachmair et al. 2017). Many
studies have been conducted using random forest for rainfall-runoff modeling (see Galelli and
Castelletti 2013; Gudmundsson and Seneviratne 2016; Shortridge, Guikema, and Zaitchik
2016; Worland, Farmer, and Kiang 2018; Chang and Chen 2018).

ANNSs are a fundamental and essential component of many deep learning architectures, also
known as dense layers or Multilayer Percepton or fully connected network. In the early 1990s,
researchers began investigating the potential of neural networks for modeling watershed runoff
based on rainfall inputs (see French, Krajewski, and Cuykendall 1992). In the first year of this
century a task committee of American Society of Civil Engineers (ASCE) has discussed
thoroughly and established the role of ANN in hydrology and also compared it with the other
modelling methods (ASCE Task Committee on Application of Artificial Neural Networks in
Hydrology 2000). Rakesh Tanty, Tanweer S. Desmukh, and Manit Bhopal 2015 conducted a
review on the application of ANN to hydrological related problems. Their review highlights
the development of ANN models in various areas, including rainfall-runoff modeling,
streamflow modeling, water quality modeling and groundwater modeling applications (see

Kalteh 2008; Goyal and Ojha 2010; Chen, Wang, and Tsou 2013).
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@ Input Layer @ Hidden Layer @ Output Layer

Figure 2. Diagram of an artificial network architecture (Goodfellow, Bengio, and Courville 2016).

However, a drawback of feed-forward ANNSs is that any information about the sequential order
of the inputs is lost. Recurrent neural networks (RNNs) are a special type of neural network
architecture that have been specifically designed to understand temporal dynamics by
processing the input in its sequential order (Rumelhart, Hintont, and Williams 1986). Although,
RNNSs can detect patterns in sequential data they face difficulties when the sequence of data is
long enough. The Long Short Term Memory (LSTM) models have been developed by
Hochreiter and Schmidhuber 1997, as a type of RNN to address the vanishing gradient and
exploding challenges in long sequences of data (Goodfellow, Bengio, and Courville 2016). The
use of LSTM for modeling runoff has recently increased and more studies have been immersed
over the last years (see Kratzert et al. 2018; 2019; Frame et al. 2021; Sanjay Potdar et al. 2021;
Yin et al. 2021; Nevo et al. 2022; Yin, Wang, et al. 2022; Shrestha and Pradhanang 2023).
Moreover, LSTM has shown great ability to handle long dependencies which is desirable for
modeling processes like snow accumulation, seasonal vegetation patterns or other processes
that have long timescales (Kratzert et al. 2018) and play significant role in rainfall-runoff

modeling.
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Figure 3. Diagram of LSTM unit architecture (Calzone, 2022).

Another machine learning model, proposed by Vaswani et al. 2017, is the Transformer model.
This model utilizes the attention mechanism, instead of recurrency to capture relationships and
patterns in the input data. Originally Transformer was designed for language processing,
particularly for language translation tasks. Since then, there has been widespread
implementation of Transformer models, with the most prominent applications being Chatbots
like Chat-GPT. Despite the extensive research focusing on natural language processing (NLP)
a significant research have been recently applied for various timeseries tasks. Wen et al. 2023
have summarized the recent studies being applied for in forecasting, anomaly detection and
classification problems. Although, Transformers are increasingly explored in timeseries (see
Kitaev, Kaiser, and Levskaya 2020; H. Zhou et al. 2021; Liu et al. 2022; T. Zhou et al. 2022;
Wu et al. 2022; Shen and Wang 2022; Zhang and Yan 2023) the implementation of them in
hydrology is scares. Yin et al. 2022 investigate the use of Transformer model for rainfall-runoff

modeling and Amanambu, Mossa, and Chen 2022 for hydrological drought forecasting prepose.
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Figure 4. Transformer architecture (Vaswani et al., 2017).

2.3 Large-sample hydrology

Gridded meteorological data sets have become increasingly prevalent, and with the availability
of streamflow records and computing resources, large-sample hydrology (LSH) studies have
been gaining significant traction over the past decade (Newman et al. 2015). Furthermore, to
achieve better hydrological modeling across a variety of hydrological settings at multiple
spatiotemporal scales and under changing environmental conditions, it is crucial to fully understand
catchment processes and that cannot be achieved only through placed-based investigation or heavily

instrumented catchments. To that extend, the use of LSH has been actively promoted for rainfall-runoff

modeling (H. V. Gupta et al. 2014).
H. V. Gupta et al. 2014, provide a comprehensive list of studies with a focus on rainfall-runoff
modeling in more than 30 catchments and summarized the reasons for using LSH as follows:

e To draw conclusions that require data from more than one catchment.

e To establish the range of applicability or the expected level of efficiency of

methods/models.
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e To ensure sufficient information to enable statistically significant relationships to be

established.

LSH datasets can provide data classified into three categories: streamflow observations,
hydrometeorological timeseries and landscape and hydroclimatic attributes. Addor et al. 2020,
have summarized key LSH datasets that are available and cover different parts of the world,
ranging from basins within a single country to those across the entire globe. The Catchment
Attributes and MEteorology for Large-sample Studies (CAMELS) dataset (Newman et al.
2015; Addor et al. 2017) uses recent datasets to provide up-to-date hydrometeorological
variables and a variety of landscape attributes for 671 catchments across the United States of
America. CARAVAN (a series of CAMELS) dataset (Kratzert et al. 2023) standardizes and
aggregates seven existing LSH datasets. CARAVAN is both a dataset, containing 6830
catchments, and open-source software that allows members of the hydrology community to
extend the dataset to new location (see also Chapter-3).

Large-sample hydrology has become an indispensable tool in modern hydrology, offering
comprehensive insights into water-related processes and their management on a global scale.
LSH has significantly applied in applications in flood and drought prediction, climate change
impact assessment and water resources management. Many studies have applied LSH for
rainfall-runoff modeling especially nowadays with the exploitation of data-driven model
(Addor et al. 2017; Kratzert et al. 2018; 2019; Flamig, Vergara, and Gourley 2020; Frame et
al. 2021; Yin, Guo, et al. 2022).
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3 STUDY AREA AND DATASET

Caravan (Kratzert et al. 2023) is an open community dataset of meteorological forcing data,

catchment attributes and discharge data for catchments around the world (Figure 5).

Figure 5. Caravan basins distribution (Kratzert et al. 2023).

The meteorological forcing data was derived from the ERAS5-Land product (Mufioz-Sabater et
al. 2021), the basin attributes were taken from ERAS5-Land and HydroATLAS (Linke et al.
2019), and the discharge data was sourced from seven open datasets:

482 basins from CAMELS (US)
150 basins from CAMELS-AUS
376 basins from CAMELS-BR
314 basins from CAMELS-CL
408 basins from CAMELS-GB
4621 basins from HYSETS

479 basins from LamaH-CE

In this study 164 basins were utilized from the CAMELS (US) (Newman et al. 2015) sub-
dataset in Caravan. Following the methodology proposed by (Kratzert et al. 2018), which
suggest using 4 out of the 18 hydrological units, delineated by the U.S. Geological Survey’s
HUC map (Seaber, Kapinos, and Knapp 1987), to cover a wide range of hydrological conditions
and to reduce computational costs, a similar approach was adopted. Specifically, the
hydrological units (01) New England, (03) South Atlantic-Gulf, (11) Arkansas-White-Red and
(17) Pacific Northwest were considered in this study (Figure 6).
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Figure 6. The 164 Basins in the 4 hydrological units.

The New England region in the northeast comprises 16 basins that are relatively homogeneous,
particularly in terms of snow influence and aridity. Arkansas-White-Red region, located
centrally in the United States, has 20 basins with significantly different characteristics. This
region exhibits a substantial variance in aridity and mean annual precipitation, with a
pronounced gradient from east to west. Similarly sized but with diverse hydro-climatic
conditions are the South Atlantic-Gulf region, containing 70 basins, and the Pacific Northwest
region, with 58 basins. The Pacific Northwest stretches from the Pacific coast to the Rocky
Mountains and shows a wide range of attributes across its basins, much like the Arkansas-
White-Red region. For instance, some catchments near the Pacific coast receive over 3000 mm
of precipitation annually, while areas in the southeast are extremely arid. In contrast, the
relatively flat South Atlantic-Gulf region has more uniform basins. Unlike New England, this
region is not affected by snow. Additionally, the South Atlantic-Gulf has a higher mean aridity
(5.08 + 1.2) compared to New England (3.69 + 0.43), and its mean altitude (189 + 179 m) is
lower than that of New England (316 = 182 m).
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Table 3. 'PET/P, see Addor et al. 2017. *Fraction of precipitation failing on days with temperature below 0°C. *Positive
values indicate that precipitation peaks in summer, negative values that precipitation peaks in the winter month and

values close to 0 that the precipitation is uniform throughout the year, see Addor et al. 2017.

HUC Region name No. of preieietl;[ion Mean Mean snow Mean Mean
. STV 2 3 1
basins (mm day ) aridity” (-) frac.” (-) seasonality” (-)  altitude (m)
01 New England 16 3394021 3.69+043 031+004 063+017 316+ 182
03 S"“thGitllfam“" 70 3364031  508+12 000+£000 025+015 189179
1 Arkansf{;;iwmte' 20 2884061 4744189 001+£005 0274011  613+713
17 Pacific Northwest 58 4464155 3.09+151 028026  1.6+0.14 1077 +589

These four hydrological units contain 172 basins, but 8 of them have missing streamflow values

that could not be infilled. Therefore, 164 models were trained and tested for rainfall-runoff

modeling.

Table 4. Basins with more than 10 missing values.

Basin_id Missing values

02178400 365
02202600 92

02231342 48

02235200 746
02310947 365
12025000 365
12141300 366
13310700 1767

Streamflow timeseries having less than 10 missing values were filled using the linear

interpolation method.
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4 MATERIALS AND METHODS

All models described below were developed in Python programming language using libraries
such as NymPy, Pandas, TensorFlow, Matplotlib, Seaborn and GeoPandas for data

manipulation, numerical computation, deep learning techniques and visualization.

4.1 Long Short— Term Memory

LSTMs models are a type of recurrent neural network with a special architecture designed to
overcome the weakness of the traditional RNN to learn long dependencies. The clever idea of
introducing self-loops to produce paths where the gradient can flow for long durations is a core
contribution of the initial long short-term memory model (Goodfellow, Bengio, and Courville
2016). LSTMs has a chain structure with four interacting neural network layers.

The LSTM have the ability to remove or add information to the cell state, carefully regulated
by structures called gates. Gates are a way to optionally let information through. They are

composed out of a sigmoid neural net layer and a pointwise multiplication operation.

t+1

c[t-1] clt]

t
©
() (@ [tenn ]
h(t-1) 0)->®—{—-hl[t]

x[t)

Figure 7. Visualization of the LSTM cell (Kratzert et al. 2019).

In the above diagram, each line carries an entire vector, from the output of one node to the
inputs of others. The cell state (c) is the memory component of the LSTM cell. It allows
information to flow along the cells unchanged. It considers to be the key component in an
LSTM cell due to the ability to retain information over long sequences. The forget gate (f) takes
the input data from the current timestep and decides what information should be discarded from
the cell state. The input gate (i) takes the input data from the current timestep and the previous
hidden and decides what information is going to be stored in the cell state. The cell input (g) is
a vector of new candidate values that should be added to the state. The output gate (o) takes

input from the current input data, the previous hidden state and the updated cell state and
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determines the information to be the output of the LSTM cell. The hidden state is the output of
the LSTM.

The LSTM network is described by the following equations:

x[t] + U;h[t — 1] + b;
flt] = o(Wex[t] + Ugh[t — 1] + b
glt] = tanh (W, x[t] + Ugh[t — 1] + by
o[t] = o (W,x[t] + U, + bo)
c[t] = flt] e c[t — 1] + i[t] o g[t]
h[t] = o[t] o tanh (c[t])
where, x is network input,
f is the forget gate,
g is the cell input,
0 is the output gate,
c is the cell state,
i is the input gate,
h is the hidden state,
W, U and b are calibrated parameters and

tanh () and a(*) are the hyberparabolic tangent and the sigmoid activation functions
The LSTM network architecture, as designed by Kratzert et al. 2018, has been proven effective,

leading to its adoption in this study. Table 5 shows the values of the hyperparameters for the
LSTM model.
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Table 5. LSTM model hyperparameters.

Hyperparameters Value
Sequence Length 365
Batch Size (train) 256
Batch Size (val) 2048

LSTM Units 20

Number of Layers 2

Dropout Rate 0.1
Epochs (Patience) 50 (5)
Loss MSE
Optimizer Adam

4.2 Transformer

Transformers models have shown superior performance in capturing long-range dependency
than RNN models (H. Zhou et al. 2021). As depicted in Figure 4, the Transformer utilizes an
encoder-decoder structure. The encoder processes the input sequence through multiple layers
of multi — head attention and fully connected feed-forward network. The final output of the
encoder is a set of vectors that captures the relevant information from the input sequence. This
output is then passed to the decoder for generating the output sequence. The decoder processes
the input sequence in a non-autoregressive manner which is different by the originally decoder
block suggested by Vaswani et al. 2017. A key distinction in the decoder block is the
incorporation of a masked self-attention layer, which prevents information leakage from future
values during training.

Transformer models lack recurrence and instead of processing the input sequentially, they
handle the entire sequence simultaneously using the scaled dot-product attention mechanism.
An attention function can be described as mapping a query and a set of key-value pairs to an
output, where the query, keys, values and outputs are all vectors. The output is computed as a
weighted sum of the values, where the weight assigned to each value is computed by a
compatibility function of the query layers running in parallel.

The scaled dot-product attention mechanism combines the query and key vectors to determine

how well they match, the “attention score” as described in the following equation.
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. QK™
Attention (Q,K,V) = softmax 14

N

where, Q is the query vectors,
K is the key vectors,
V is the value vectors and

dy, is the dimensionality of the key vectors.

The scaling factor \/d_k prevents the dot products to grow large in magnitude.

Instead of performing a single attention function with d,,,q4.;-dimensional keys, values and
queries Vaswani et al. 2017 found it beneficial to linearly project the queries, keys and values
h times with different learned linear projections to dy, d; and d,, dimensions, respectively. On
each of these projected versions of queries, keys and values the attention function can be
performed in parallel. Multi-head attention allows the model to jointly attend to information

from different representation subspaces at different positions.

MultiHead(Q,K,V) = Concat(head,, head,, ..., heady,) - weo
Where, head; = Attention(QW,%, KWK, vw})
Where the projections are parameter matrices W% € Rmoder¥dk WK € Rmoderxdk, YV €

Rdmodelx‘ik and VVL'O € ]Rdmodel’“ik_

Scaled Dot-Product Attention Multi-Head Attention

Linear

Concat

it

L
Scaled Dot-Product JA h

Attention &
| 1l tl
[ Linear]_][ Linear],][ Linear]J
¥ ¥ ¥
V K Q

Figure 8. Scaled Dot-Product Attention (left) - Multi-Head Attention (right) (Vaswani et al. 2017).
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The Transformer uses multi-head attention in both the encoder and decoder blocks. In the
encoder block, all of the keys, values and queries come from the same place and therefore it is
called self-attention layer.

Since transformer has neither recurrence nor convolution, in order for the model to make use
of the order of the sequence, some information about the relative and absolute position must
be injected to the model. This is done by using sine and cosine functions of different

frequencies:

PE(pos2i) = Sin (pos/10000%/@modet)
PE(pos2i+1) = €0S (pos/10000%/dmodet)
where, pos is the position and

i is the dimension.

This process is called positional embedding and it is implemented right after the linear
transformation with a fully connected layer both in the encoder and decoder block.

Yin et al. 2022 proposed the RR-Former which has been proven quite effective in rainfall-
runoff modeling and therefore the same model architecture was used. The architecture of the

model is depicted in Figure 9.
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Figure 9. Architecture of the transformer model.

In order to fit the inputs to the models dimension a linear operation with a dense layer is applied
converting the inputs to vectors with a dimension of the model. Then the output is added with
the output of a learnable embedding which is implemented to give relative position information
to the model. The final output is the same dimension with the model dimension and is passed
to the encoder and decoder.

Each encoder layer has self-attention layers and position-wise fully connected networks.
Residual connection and layer normalization are employed sequentially around each of the sub-
layers. The encoder output is then passed to the decoder. Each decoder layer has masked self-
attention layers, encoder-decoder attention layers and position-wise fully connected networks.
Just like the encoder, residual connection and layer normalization are employed sequentially
around each of the sub-layers.

It is worth mentioning, that due to the quadratic structure of the attention mechanism the

sequence length could not be the same with that in the LSTM and thus was kept to three weeks.
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The values of the Transformer model hyperparameters are shown in table 6.

Table 6. Transformer model hyperparameters.

Hyperparameters Value
Sequence length 21
Batch Size 256
Number of heads in multi-head
attention ‘
Number of encoder/decoder layers 4
Dropout rate 0.1
Model dimension 256
Dimension of the Position-wise fully 256
connected layer
Learning Rate 0.0001
Optimizer Adam
Loss Function MSE
Epochs (Patience) 200 (10)

4.3 Zygos

The Zygos lumped conceptual model was selected as the benchmark model. Several variants
of the Zygos model have been implemented for rainfall-runoff modeling. The scheme used in
this study is based on the scheme introduced by Efstratiadis, Nalbantis, and Koutsoyiannis
2015. The model uses 11 parameters and the model inputs are the precipitation, the mean
temperature and the potential evapotranspiration. Despite that Caravan dataset provides the
mean daily potential evapotranspiration, it has been identified as not applicable for
hydrological application due to the systematically overestimation of it (Clerc-Schwarzenbach
et al. 2024). Hence, potential evapotranspiration is computed with Hargreaves method using
the maximum and minimum daily temperature derived from the Caravan dataset.

As depicted in Figure 10, the basin is vertically subdivided into three storage elements or tanks

that represent the snowpack, soil water and groundwater.
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Figure 10. Sketch of the Zygos model, illustrating the modeled processes and associated parameters.

First, precipitation is considered as snowfall if temperature is below a certain threshold. In that
case, precipitation is added to snowpack tank, otherwise precipitation is considered as liquid
and fulfils, by priority the potential evapotranspiration. Snowfall and sublimation allow to
update the water equivalent of the snowpack tank via the snowpack water balance. Then, the

snowmelt (SM) is estimated through the degree-day factor.

SM = DDF(T — Ty,)
where, SM, is the snowmelt (mm)
DDF, is the degree-day factor (mm/d/ °C)
T,, is the temperature threshold (°C).

The snowmelt is added to the available liquid precipitation and the sum is contributed to direct
runoff (QD).
QD = DP%/(DP — SW +K)
where, QD, is the direct runoff (mm)
DP, is the available liquid precipitation (mm)

SW, is the current soil water storage (mm)
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K, is the capacity of the soil water storage (mm).

The rest of available liquid fulfils the soil moisture tank. The soil water tank loses water through
actual evapotranspiration, percolation and saturation excess runoff. The soil evapotranspiration
(ES) is calculated as,
ES =SW (2 — SW/K)/(1 + ¢(1 — SW/K))
where, ES, is the actual evapotranspiration (mm)

@, is calculated as tanh((PETi — sublimationi — Etdi)/K)

The percolation quantity to groundwater is defined as a fraction of the current soil water

storage.

PERC = A+ SW

where, A, is the recession rate for percolation.

After the actual evapotranspiration and percolation losses, if the remaining quantity exceeds

the soil moisture capacity, overland flow is occurring.

QS = max (0,SW — K)

The percolation quantity is added to the ground water tank that loses water through baseflow
and deep percolation. Baseflow (QB) is defined as a fraction of the overflow if the current water
quantity exceeds the ground water capacity.
QB = max [0,m(Y — G)]
where, (B, is the baseflow (mm)
Y, is the current groundwater storage (mm)
G, is the capacity of groundwater tank (mm)

m, is the recession rate parameter for baseflow

The new water quantity of the groundwater storage contributes to the deep percolation process.
Similarly to percolation, deep percolation is obtained as a fraction of the current groundwater
storage.

DPERC = a x SW

where, a, is the recession rate parameter for deep percolation.
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The saturation runoff is combined with direct runoff, with a portion directed to the routing
process and the remainder carried over to the next time step. The total runoff is computed as
the sum of baseflow and a contribution from the routing runoff over the past four days. More
precisely, the daily contribution comprises 3.52% from the runoff of the fourth day prior,
5.54% from the third day, 12.3% from the second day, and 87.11% from the current day.

For example, let’s assume that at time step J, Qo represent the sum of saturation runoff, direct
runoff and remaining runoff of the routing process in the previous timestep, j — 1. The runoff
goes for routing is Q, * R and the Q, * (1 — R) will contribute to the Q as the remainder runoff

at the j + 1 timestep.

4.4 The evaluation protocols

The model performances were evaluated using the Nash-Sutcliffe efficiency (NSE) (Nash and
Sutcliffe 1970), and the Kling—Gupta efficiency (Hoshin V. Gupta et al. 2009). The NSE and
KGE metrics are widely used among modelers to evaluate rainfall-runoff model performance.
These metrics provide valuable information on the accuracy and reliability of the models'
discharge predictions and can be used to compare different models or determine the most

suitable model for a specific application.

NSE evaluation metric ranges from minus infinity to 1.0 and 1.0 is the best agreement and

mathematically is calculated as:

L1 (0; — P)?

NSE =1 — —
§V=1 (Oi - Oi)z

where, Pi is the calculated flow,
0i is the observed flow,
0; is the mean observed flow and

N is the length of the timeseries.

KGE evaluates the hydrological model performance like NSE does and it was developed based
on the limitation of NSE. Hoshin V. Gupta et al. 2009 decomposed NSE into three distinct
components, the correlation, the bias and a measure of relative variability in the simulated and

observed values. KGE is formulated by computing the Euclidian distances of the components
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from the ideal point. KGE ranges from minus infinity to 1.0 and 1.0 indicates the best

performance. KGE is described as:
KGE =1 r 12+< 1)2+ — —1)?

Where 7 is the Pearson correlation between simulation and observation runoff and

P; is the mean calculated flow.

Moreover bias, mean absolute percentage error (MAPE) and the root mean square error
(RMSE) evaluate the performance of the 5% peak flows. The mathematical expression of those

metrics is:
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5 RESULTS

5.1 Input data and model training/calibration

The calibration classical procedure for models is to subdivide the data into three parts, referred
to as training, validation and test data (Goodfellow, Bengio, and Courville 2016). The first two
splits are used to derive the parametrization of the network and the remainder of the data to
diagnose the actual performance of the model. Table 7, shows the periods of the data splitting

used in this study.

Table 7. Time period for each sud-dataset.

Dataset Period Per?f/?)t age

Training 01/10/1981 - 30/09/1996 45
Validation 01/10/1996 - 30/09/2001 15

Testing 01/10/2001 - end date 40

For the calibration of parameters in the Zygos model, the differential evolutionary optimization
algorithm (Storn and Price, 1997) was employed, with the Nash-Sutcliffe Efficiency as the
objective function. For the LSTM and Transformer models, the Adam (Kingma and Ba 2017)
optimization algorithm, a commonly used approach in machine learning regression problems,
was utilized alongside the Mean Squared Error as the loss function. Details regarding the
number of parameters for each model are presented in Table 8.

To ensure consistent computational time for training the Zygos model, the following technique
was employed. First, the maximum number of iterations and the population size were
determined using a trial-and-error method, based on the time consumption and NSE values
achieved for 10 basins. After this, the 164 Zygos models were trained. The models that

achieved an NSE value below 0.1 were retrained following the same procedure.

Table 8. Number of parameters for LSTM, Transformer and Zygos models.

Model Number of Parameters

LSTM 5,381
Transformer 1,052,672

Zygos 11
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LSTM and Transformer, as machine learning models, undergo training in epochs. An epoch
signifies a complete pass through the entire dataset during the training phase. During this
process, the model forwards the input data through the network to compute the error, followed
by backward propagation to update the network's parameters. For instance, the LSTM model
underwent 50 epochs using the training data, meaning the model iteratively adjusted its
parameters based on the entire training dataset for 50 cycles. Subsequently, the validation
dataset was utilized to assess the performance of these parameters. The best parameter set was
then evaluated using the testing dataset. To mitigate computational costs and prevent
overfitting, the early stopping technique was employed. This technique halts the training
process if the model's performance on the validation dataset does not improve for a specified
consecutive epoch.

The input features for each model are detailed in Table 9. The transformer model requires
absolute positional information to be explicitly conveyed to the model. Consequently, the input
feature structure slightly differs from that of the LSTM model. It includes a fixed time series

incorporating the month of the year, as the month significantly influences runoff variance.

Table 9. Input data for LSTM, Transformer and Zygos models.

Model input Feature

Average daily precipitation
Surface-incident solar radiation
LSTM 2 m daily maximum air temperature
2 m daily minimum air temperature

Near-surface daily average vapor pressure

Average daily precipitation
Surface-incident solar radiation

2 m daily maximum air temperature

Transformer
2 m daily minimum air temperature
Near-surface daily average vapor pressure
Month of the year
Average daily precipitation
Zygos 2 m daily mean air temperature

Potential evapotranspiration™®

*Potential evapotranspiration is computed using the Hargreaves method.
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For efficient learning in machine learning models, all input and output features are normalized
and serialized. The goal of normalization is to transform features to be on a similar scale. This
improves the performance and training stability of the model (Bishop 2006). The z-score
technique was employed, involving the normalization of data by subtracting the mean and
dividing by the standard deviation. Serialization is essential for preparing the input data in a

suitable format for learning purpose (Figure 11).

I | | [T | I
...... -1
I I HEEE | |
Source data (t days) 37 )
Serialize
IIIIIIIIIIIlI : II||||I|I tn+t1
LT 2345 6 veeeeeeeeees (Window length: n) 34 5 eeeees ntln+2 [ sequences
LITT I
t-nt1 |t-nt+3eeeeee t-1t
t-nt+2 J

Figure 11. An illustration of data serialization (Yin, Guo, et al. 2022).

5.2 Results

The model performances were evaluated using the Nash-Sutcliffe efficiency (NSE), and the
Kling—Gupta efficiency (KGE). Moreover bias, mean absolute percentage error and the root
mean square error evaluate the performance of the 5% peak flows (Chapter 4.4).

Because LSTM modeling approach needs 365 days of meteorological data as input for
predicting one time step, while Transformer needs 20 the evaluation period is shifted by one
year. Moreover, the Zygos model does not use the validation dataset because of the different
calibration-training approach.

The NSE and KGE results for 164 LSTM, Transformer, and Zygos rainfall-runoff models are
shown in Figures 12-14. Both the LSTM and Transformer models demonstrate superior
performance compared to the benchmark Zygos models. Specifically, the mean NSE values on
the testing dataset are 0.50 for LSTM, 0.71 for Transformer, and 0.37 for Zygos, underscoring

the efficacy of the LSTM and Transformer architectures in runoff predicting.
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Figure 12. Boxplot of the NSE for LSTM models.

training 1 "o }—.
F: I
® validation 1 L1 |
o
a
0.4 -0.2 0.0 02 04 06 08 10
NSE

Figure 13. . Boxplot of the NSE for Transformer models.
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Figure 14. . Boxplot of the NSE for Zygos model.

The KGE follows the logic of the NSE as far as models’ performance is concerned. Both of the
machine learning models outperform the benchmark model with a mean KGE values 0.23, 0.69

and 0.07 for the LSTM, the Transformer and the Zygos models, respectively (Figures 15-17).
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Figure 17. Boxplot of the KGE for Zygos models.
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Table 10. NSE and KGE evaluation metrics for LSTM, Transformer and Zygos models

Max Max Mean Mean Median Median Min Min

Model Dataset sk KGE NSE KGE NSE KGE NSE  KGE
training ~ 0.957  0.875 0.635 0.364 0.650 0.524 0.067  -3.574

LSTM  validation 0927  0.955 0.571 0.379 0.571 0.492 0119 -2.928
tesing ~ 0.880  0.910 0.501 0.234 0.449 0.403 0.053  -2.924

training _ 0.993  0.994 0.843 0.795 0.908 0.892 0353 0.761

Transformer validation ~ 0.989  0.987 0.777 0.761 0.829 0.832 0278  -0.223
tesing ~ 0.987  0.990 0.712 0.690 0.786 0.813 0418 -1.141

training __ 0.884 _ 0.905 0415 0.122 0.373 0.269 0.024 2612

Zygos testing 0.844  0.851 0.374 0.075 0.354 0.234 0.184  -3.071

Transformer models exhibit consistent performance across all datasets, showcasing high values
for both NSE and KGE. However, in only four basins, the NSE values for Transformer models
are inferior to the benchmark Zygos model, while the corresponding number of basins for KGE
evaluation metrics is five. Despite LSTM models performing better than the benchmark
models, they do not surpass Transformer models. Additionally, 36 Zygos models exhibit
superior NSE values compared to LSTM models, while 66 models demonstrate better KGE

values. The comparison of the NSE and KGE metrics among the models are visualized in

Figure 18.
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Figure 18. NSE & KGE comparison for LSTM, Transformer and Zygos models.
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To analyze the behavior of each model in more detail, a number of evaluation metrics were
measured. Specifically, the evaluation metrics Root Mean Squared Error (RMSE), the
coefficient of determination R?, Mean Absolute Error, Max Absolute Error were used to further
evaluate the models. As illustrated in Figure 19, the Transformer models outperform in all these

metrics, while the performance of the Zygos model is inferior to the others.
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Figure 19. Cumulative density functions for various metrics of the testing period.

Figures 20 and 21 depict the NSE and KGE values, respectively, for all models across the
operational basins within the four hydrological units in the United States of America. The
markers on the figures represent the centroids of the basins along with their corresponding area

sizes.
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Figure 20. (a)-(b)-(c) NSE evaluation metrics of the testing period for LSTM, Transformer and LSTM
model. (d) Difference of the NSE between Transformer and LSTM models (red color >0 indicates that

the Transformer performs better).
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Figure 21. (a)-(b)-(c) KGE evaluation metrics of the testing period for LSTM, Transformer and LSTM
model. (d) Difference of the KGE between Transformer and LSTM models (red color >0 indicates that

the Transformer performs better).
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To analyze how machine learning models capture dependencies on different hydrological
conditions, the mean and median NSE values were computed separately for each of the four
hydrological units. Table11 shows that the Transformer model consistently outperforms both
Zygos and LSTM models across all four hydrological units in terms of mean and median NSE
values. Additionally, there's a clear variation in model performance across different
hydrological units, with some units exhibiting higher mean NSE and KGE values compared to
others.

Table 11. Evaluation metrics NSE and KGE for the four hydrological units.

HUC Model = Mean NSE Mean KGE
Zygos 0.381 0.348
New England LSTM 0.579 0.477
Transformer  0.751 0.817
Zygos 0.297 0.011
South Atlantic-Gulf LSTM 0.358 0.061
Transformer  0.647 0.610
Zygos 0.199 -0.499
Arkansas-White-Red LSTM 0.226 -0.617
Transformer  0.418 0.300
Zygos 0.526 0.274
Pacific Northwest LSTM 0.746 0.668
Transformer  0.880 0.886

The comparison across hydrological units reveals that static attributes such as precipitation,
aridity, snow fraction, seasonality, and altitude significantly influence the performance of
hydrological models. The Transformer model consistently outperforms the LSTM and Zygos
models across all regions, particularly excelling in areas with high precipitation and seasonality
such as the Pacific Northwest. Conversely, regions like the Arkansas-White-Red with lower
precipitation and high-altitude variability present greater challenges for accurate modeling.

The best and worst benchmark Zygos models for each hydrological unit were chosen for an
illustrative comparison for the hydrological year 2009-2010. As seen in Figure 22, all three
models perform well, with the Transformer model being the best. On the other hand, in Figure
23, although the Zygos models are not able to accurately represent the system, the LSTM and
Transformer models perform fairly well. For the catchment 07315200, none of the models can

achieve good performance.

40



Cachment: 01031500

= —— LSTM: NSE = 0.63
—— Tansformer: NSE = 0.88
20 - —— Zygos: NSE = 0.58
~—— Observed
3
815
£
E
£ 10 -
s
2
5
0 4
2009-11 2010-01 2010-03 2010-05 2010-07 2010-09
Time (Daily)

Cachment: 02481510

30 1 LSTM: NSE = 0.37
Tansformer: NSE = 0.7
Zygos: NSE = 0.53
Observed

Runoff (mm/day)
&

10 -
5
0 4
2009-11 2010-01 2010-03 2010-05 2010-07 2010-09
Time (Daily)
Cachment: 07261000
—— LSTM: NSE = 0.45
50 —— Tansformer: NSE = 0.7
- Zygos: NSE = 0.53
a0 ~— QObserved
>
o
2
€ 39|
S
b=
o
g
2
10
0 A 2 k
2009-11 2010-01 2010-03 2010-05 2010-07 2010-09
Time (Daily)
Cachment: 14301000
- —— LSTM: NSE = 0.87
—— Transformer: NSE = 0.94
- Zygos: NSE = 0.81
20 ~—— Observed
=
3
215
E
=
210
3
(=4
5
0
2009-11 2010-01 2010-03 2010-05 2010-07 2010-09
Time (Daily)

Figure 22. An illustration comparing of LSTM, Transformer and Zygos models for basins where

Zygos achieve the best performance.
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Zygos achieve the worst performance.
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Furthermore, to explore the performance of the models during peak flows, the bias (BIAS),
mean absolute percentage error (MAPE), and root mean square error (RMSE) criteria were
calculated for the top 5% peak flows. The following figures indicate that the Transformer

model achieves better performance on predicting peak flows compared to the LSTM and Zygos
models.
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Figure 24. Boxplot of the BIAS of the testing period for the 5% peak flows.
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Figure 25. Boxplot of the mean absolute percentage error for the 5% peak flows.
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Figure 26. Boxplot of the root mean square error for the 5% peak flows.

Table 12 shows that all the models are negatively biased, which means that they underestimate
the peak flows. Transformer models perform the best for all metrics with the smallest mean
bias -0.11, mean absolute percentage error 0.29 and rout mean square error 4.75. Zygos models
demonstrate the highest errors and bias, indicating it is the least accurate among the three

models for peak flow prediction.

Table 12. Mean and Median BIAS, MAPE and RMSE values for the 5% peak flows.
Mean Median Mean Median Mean Median
BIAS BIAS MAPE MAPE RMSE RMSE
LSTM -033 -0.34 0.47 0.40 6.02 5.31
Transformer -0.11 -0.09 0.29 0.24 4.75 4.08
Zygos -0.42  -0.40 0.52 0.46 7.22 591

Model
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6 CONCLUSIONS

6.1 Thesis conclusions

The primary objective of this study is to investigate the potential of two state-of-the-art
machine learning models, Long Short-Term Memory (LSTM) and Transformer, in rainfall-
runoff modeling. The performance of each model is compared with the Zygos conceptual
rainfall-runoff model across 164 basins. Specifically, the differences in the Nash-Sutcliffe
Efficiency (NSE) and Kling-Gupta Efficiency (KGE) evaluation metrics between the
Transformer and Zygos models are 0.338 and 0.615, respectively. In comparison, the
differences for LSTM and Zygos are 0.127 and 0.159, respectively. This indicates that
Transformer models outperform LSTM models and the Zygos model in rainfall-runoff
modeling. Furthermore, evaluation metrics for peak flow predictions, such as bias, mean
absolute percentage error (MAPE), and root mean squared error (RMSE show that both of
machine learning models achieve better performance in predicting peak flows than the
conceptual one.

The variation in evaluation metrics across the four hydrological units highlights that machine
learning models can effectively capture a range of dependencies under diverse hydrological
conditions. For instance, in the Pacific Northwest hydrological unit, which includes 58 basins,
the LSTM and Transformer models achieve mean NSE values of 0.75 and 0.88, respectively.
This high performance suggests that both machine learning models can "learn" complex
hydrological relationships of a region with high precipitation, significant portion of which falls
as snow, along with high aridity and seasonality. The varied performance also highlights the
importance of considering regional characteristics when selecting and applying hydrological
models for predictive purposes.

Despite the Transformer models outperforming the others, there is a significant drawback in
their architecture. This drawback is that the decoder component functions in a non-
autoregressive manner, meaning that the ground truth values are used as inputs for the decoder
block, and errors do not accumulate as the output moves to the next timesteps. This indicates
that machine learning models lack of interpretability and therefore cannot be implemented
without considerations about their reliability.

It is worth mentioning that the architecture of the Transformer model is far more complex than
that of the LSTM, as it utilizes a more sophisticated learning method. However, this complexity

comes at the cost of increased training time and memory usage. Transformers utilize self-
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attention mechanisms that scale quadratically with input length, making them computationally
intensive. To ensure a fair comparison among the models, the computational time for training
each model was kept within comparable limits. The results indicate that, even with the same
computational cost, both of the machine learning models can achieve superior performance
compared to Zygos traditional models. This underscores the potential of advanced machine
learning techniques to enhance hydrological predictions, provided that sufficient computational

resources are available.

In summary the main conclusions of this study are as follows:

1. Machine learning models can be used as rainfall-runoff models.

2. Although machine learning models can achieve sufficient performance and outperforms
the traditional conceptual models it is still not clear whether conceptual models can fully
be replaced by machine learning models.

3. Machine learning models are able to predict the runoff in basins with diverse
hydrological conditions meaning that they can “learn” dependencies associated with
various hydrological processes.

4. Computational resources in terms of time are essential for training both to classical

conceptual models and to machine learning models.

6.2 Future research

The Transformer architecture developed in this study has demonstrated superior performance
compared to LSTM and Zygos models. However, it should not be considered the definitive
superior model. Instead, it should be viewed as a highly promising architecture with significant
potential. Zhou et al. 2021 mention that vanilla Transformer architecture cannot be directly
applicable for long sequence timeseries forecasting due to its quadratic time complexity and
high memory usage. This comes in contradiction to the Transformer model implemented in
this study. Therefore, while the Transformer model shows great promise as a rainfall-runoff
machine learning model, much research is still needed to refine its architecture.

Moreover, both LSTM and Transformer hyperparameters were pre-defined, and no
hyperparameter tuning was done. Hence, a systematic sensitivity analysis of the effects of

different hyperparameters would boost the performance and reliability of these models.
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Although identifying machine learning models as black-box models is considered a myth by
Maier et al. 2023 because the mathematical relationship between the model's input and output
is known, it is still not feasible to fully analyze the behavior of such complex models. This
suggests that a systematic interpretation of the network's internals would enhance our
understanding on those models leading to error diagnosis and model improvement. Hence,
comprehensive research utilizing explainable Al techniques to dress model outcomes with
interpretability, expandability and transparency is a well promising field of study.

Finally, LSTM and Transformer models have only been applied on limited large-scale datasets
and the majority of them in the CAMELS dataset. To expand our understanding of the
uncertainty associated with input data, further research should focus on testing rainfall-runoff

machine learning models utilizing other datasets.
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