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Abstract

Previous research has convincingly demonstrated that in organizational settings, teams
characterized by a diverse range of information and perspectives tend to outperform their
homogeneous counterparts. Despite this evidence, why do we frequently observe pre-
dominantly homogeneous teams in practice? One prevailing explanation posits that the
advantages of informational diversity are in tension with affinity bias. To delve deeper into
the implications of this conflict on team composition, we study a sequential model of team
formation. In this model, individuals prioritize their team’s performance, as measured by
its ability to accurately predict future outcomes based on various features, while also
considering the potential costs associated with interacting with teammates who employ
different approaches to the prediction task. Our work extends this initial team formation
model by adding an underlying graph structure that changes how both the accuracy of the
team and the disagreement between team members are calculated. We study two different
graph structures. The first is a random undirected graph for which we have the freedom
of changing and adjusting the edges in order to reach the optimal cost, while the second
is a rigid hierarchical pyramid structure in which the edges are fixed in place, allowing
us only the freedom to optimally position the agents within the pyramid. These exten-
sions keep the tension between informational diversity and affinity bias, which we aim to
optimize either by ensuring the optimal connections within the team or by strategically

positioning the team members.
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IlepiAnypn

[Tponyoupeveg £peuveg £X0UV BeICel OTL EVIOG OPYAVATIKGOV MAAL0I®V, 01 opddeg rou Hia-
9étouv oA ia MANPOPOPIOV KAl OITIK®V £1VAL IO AMTOTEAEOPATIKEG ATTO TI§ OPLAdeg rTou Sev
KAt€Xouv avtiotolxo eUpog. Eav autd 1o £i6og mAnpodoplakng noikidopopeiag (informatio-
nal diversity) mpoobibetl mAeovektjpata anddoorng, ylati BAEnoupe cuyva otny rpdgn eviova
opotloyeveig opddeg; 'Eva ermyeipnpa eivat ot ta opEAn g ANPOPOPIAKES TTOIKIAOPopPiag
Bpiokoviat oe evaviimoon pe v pepoAnyia anévavtt o opolopopdpia andyenv (affinity bias).
IMa va Katavorooupe TOV AVIIKTUTIO aUuTrg NG tp18rg ot ouvleon T®V opadav, PeAetape eva
61adox1k6 poviédo oxnpatiopou opddag oto oroio ta pEAn voldadovial yid v anodoon mg
opadag Toug, aAAd UTIApXEL €MioNG £va KOOTOg 0tav aAAnAeruidpouv e oupnaikieg diagope-
TIKOV ATIOYERV. L€ AUTH TV SIMAOPATIKY epyacia da emeKTeivoupe AUTO TO APXIKO HOVIEAO
oxnpatiopou opadag rpoobEtoviag pia vnokeipevn dopr) ypadou n oroia adAdadet tov tpomo
rou urodoyiletal ] ouvoAKY) Arowr], Onwg Kal 1 dagevia petal tov PeAov g opadag.
MeAetape o dapopetikeg dopég ypapnuatev. H pua eival éva tuxaio pn kateubuvopevo
ypadnpa ya 1o oroio £€xoupe v eAeubepia g MPOCAPPOYNS TOV KOV TPOKEIPEVOU va
ermteuxOel 0 BEATIOTO KOOTOG, v TO HeUTEPO €ival pia PoraBoplopévn) 1EpapXiKy] dour
nupapidag oty oroia o1 akpeg sival otabepég, ermrpénoviag €101 povo v eAeubepia va
TOrOHETOUE TOUG MMAIKTIEG PE TOV KaAutepo Suvatd Tporo mave oty mupapiba. Auteg ot
enektdoelg Sratnpouv v 1p18r) petady g rminpodoplakrg roikidopopdiag (informational
diversity) kat tng pepoAnyiag anévavtt oe opoopopdia andyenv (affinity bias), v oroia
1p181) otoxevoupe va elaxilotonoirjooupe eite draopadioviag tig PEATIoTEG OUVOEDELS EVIOG

10U Ypdgou eite Tortobetmviag otig PEATioteg Yéoeig ta péAn g opadag.
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our goal should be the right questions, not the answers
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Chapter ﬂ

Introduction

1.1 English

Extensive research in the social sciences has consistently highlighted the benefits
of perspective diversity within organizational contexts. Groups comprising individuals
with varied perspectives tend to outperform largely homogeneous groups. This diversity
fosters the availability of a broader range of insights, facilitating constructive synergies
among these diverse viewpoints. As a result, team performance is enhanced [1] [2].
In the literature, this form of diversity is occasionally labeled as cognitive diversity [3].
However, we prefer the term informational diversity to underscore the idea that team
members contribute novel informational resources to the problem-solving efforts. In ad-
dition to empirical observations of this phenomenon in real-world scenarios, a series of
mathematical models have attempted to formalize these informational advantages. These
models operate within abstract contexts where groups of agents collaborate on collective
problem-solving tasks [4].

If informational diversity indeed provides performance benefits to organizational teams,
why do we frequently observe predominantly homogeneous teams in practice? A prevail-
ing argument suggests that the advantages of informational diversity clash with affinity
bias, a human behavioral tendency wherein individuals gravitate towards interacting with
others who share similar perspectives. This inclination is extensively documented in prior
research within organizational psychology [5] [6]. Affinity bias is an aggregate effect that
can result from various underlying mechanisms. For instance, individuals may exhibit
a natural preference for those who share similar perspectives, struggle to evaluate those
with differing viewpoints, or favor teams with fewer disagreements or whose overall stance
aligns closely with their own. Each of these scenarios manifests as a form of affinity bias.
In our discussion, we will concentrate on the observable outcomes of these mechanisms,
encapsulated in the concept of affinity bias, without confining ourselves to a particular
underlying mechanism.

The tension between informational diversity and affinity bias underlies several empir-
ical findings, which demonstrate that teams characterized by informational diversity can
produce both higher-quality solutions and lower group cohesion simultaneously [7] [8].
These findings underscore the challenge of building informationally diverse teams: while

restructuring a team to include members with diverse perspectives has the potential to

Diploma Thesis m



Chapter 1. Introduction

boost performance, it may also decrease subjective satisfaction among participants due
to affinity bias. Thus, the question arises: what is the optimal team structure? We are
interested in answering this question by understanding the fundamental phenomena that
emerges from this conflict between informational diversity and affinity bias.

In this thesis, we further build upon a model proposed for team formation in the
presence of both informational diversity and affinity bias [9]. In particular for this model,
agents forming a team are faced with a prediction task: they see instances of a predic-
tion problem encoded by features, and they must make a prediction about some future
outcome for each instance. Consider various teams engaged in different prediction tasks
such as policymakers aiming to forecast policy outcomes, investors seeking to identify
promising start-ups, or doctors grappling with intricate medical diagnoses. These sce-
narios fall under the scope of our framework. Each team member operates with an
objective function comprising two key components: one evaluates the team’s accuracy,
while the other measures their divergence from fellow members. The balance between
these components is controlled by a single parameter, enabling examination of scenarios
where emphasis is placed either on team performance or team cohesion.

While the original work [9] mainly studied the process by which teams grow over time,
as they decide sequentially which new members to add, we choose to focus more on the
optimal connectivity of such teams by introducing an underlying graph structure. We
study two different graph structures. The first is a random undirected graph for which
we have the freedom of changing and adjusting the edges in order to reach the optimal
cost, while the second is a rigid hierarchical pyramid structure in which the edges are
fixed in place, allowing us only the freedom to optimally position the players within the
pyramid. These extensions keep the tension between informational diversity and affinity
bias, which we aim to optimize either by ensuring the optimal connections within the

team or by strategically positioning the team members.

1.2 EAAnpvikra

Extetapévn épeuva ot KOWMVIKEG eruotrpueg £xet avadeiel emaveldnppéva ta odpEAn
G H1aPoPETKOTNTAG TOV OTTTIKOV EVIOG OPYAVOTIKGOV IMAAloiov. Opadeg rmou reptdapBavouv
datopa pe molkiAeg OMMUKEG KAl andyelg teivouv va §erepvouv oe peyado Pabuod tg opoto-
yevelg opddeg. Autr) n nmowkidopopdia @aivetdal va evioXUel T0 €UPUTEPO PACHUA YVOOERDV,
B1euKoAUVOVTAG £T01 OV OUVEPYELA PETASU AUTOV TRV S1aPOPETIKGOV artowenv. Qg arotéde-
opa, n anodoorn g opadag Bedtdverat [1] [2]. Ly BBAoypadia, autt) n popon dradope-
TIKOTNTAG IEPLOTAOIAKA XapaKipiletal g nowkilopopdia avildnyenv (cognitive diversity)
[3]. Qotdoo, mpotpovue tov 6po mAnpodoplaky) nowkidopopdia (informational diversity)
yla va tovicoupe v 18€a 0Tl Ta PEAN g opddag OUVEICPEPOUV VEOUSG TTANPOPOPIAKOUG
TOPOUG KAl OITTIKEG OTIS Ipoortdbeieg emiduong mpoBAnpdtov. EKTog amod 11§ epreipikeg
MAPATPHOEIS AUTOU TOU PAIVOUEVOU O O£vAPld TOU MPAYHATIKOU KOOHOU, Hld OElpd ard
pabnpatikd povieda £€xouv rpoortabrjostl va MO0 00UV autd ta rmAsovektpata. Ta
poviéda mou €xouv mpotabel Aettoupyouv pEéoa oe apnpnpéva repiBaliovia onou opdadesg

TMIAIKTIOV ouvepyalovial o€ CUAAOYIKEG epyaoieg emiAuong nipoBAnpatev [4].

m Diploma Thesis



1.2 EAAnvika

Edv n mAnpogopiakr nowkidopopdia (informational diversity) mapéyxet mpaypatt opeAn
arodoong otig 0PyaveTikeg o1adeg, ylati rmapatnpoupe ouxvd oty npdsn Kuping ojiotoye-
veilg opdadeg; To emkpatéotepo emiyeipnpa UodnAwvel Ot ta MAEOVEKTHIATA TG ITATNPO-
(POP1aKNG TTOIKIAOPOPPiag ival 0e CUYKPOUOT] HE TNV HEPOANYPIAG ATEVavil o op10l0popdia
andyenv (affinity bias), pia avBporiivn taon cupnepipopdg OIoU Ta Atopia EAKOVIAL IIPOG TV
ouvavaotpodr] pe avhpmdIoug ou polpadovial mapopoleg anoyelg pe toug idoug. Autr 1
TAOT £XE1 TEKPNPIOOETL EKTEVOG O€ TIPONYOUIEVEG EPEUVEG OTNV OPYAVOTIKI] Yuxodoyia [5] [6].
H pepoAnyia amévavit oe opolopopdia andyemv eival £va YEVIKO ATOTEAECHA TTOU PITOPET
va IPoKUYel aro S1apopoug uroKeipievoug pnxaviopous. I'a napadetypa, ta dropa prnopet
va €mdeIKVUOUV PUOIKY IIPOTIPNOon yla eKelvoug 1mou potpadoviatl mapopoleg anoyelg, va
SuokoAevovial va aglodoyriocouv dtopa pe S1aPopetikéG AMOWYELS, va IPOTILOUV opdadeg pe
Awyotepeg Sapmvieg 1) opadeg TV Omoi®v 1 OUVOAIKY otdon eubuypappidetal oteva pe
O1kr) toug. Kdabe éva amo autd ta oevdpla ekdnAwvetal og pia popdr) autng tmg pepoAnyiag.
Ye autn v epyaoia, 9a ermkevipeBoUpe ota IAPATNPOA ATOTEAEOHATA AUTOV TRV PNXa-
VIOP®V, TIOU EVOXOUATOVOVIAL 0TV £Vvold TG HEPOANYPIAg ATrEvVavtl O Op010p0pdia AroYemv
(affinity bias), x®pig va meploplotovie o€ £€vav CUYKEKPIPEVO UTIOKENPIEVO PNXAVIOHO.

H tp18r] petadu g mAnpodoplakrg rokidopopdiag (informational diversity) kat tng
pepoAnyiag amévavit oe opolopopdia anoyewv (affinity bias) Paciletal oe moAAa epmeipt-
K4 eupnuata, ta oroia Seixvouv o1l o1 opadeg mou xapaktnpidoviat and mAnPopoplakt)
moKIAOpopdia PImopouv va mapdyouv Auoelg uPnAou ermmedou eve OP®G 1 OUVOXH TG O-
padag pewwvetat [7] [8]. Autd ta euprjpata uroypappiouv v mpoxkAnorn wmg dnpiouvpyiag
TANPOPOPIAKA TTOKIAOHOPP®V OPAd®V: eved 1 avadiapOpwon piag opddag wote va mept-
AapBavetl p€An pe S1adopetikeg OMUIKEG £Xel T HuvatdInta va evioxuoel tv anodoorn tng,
UIopEl €ITiong va PEIDOoEL TV OadiKr) CUVoXT] PETagU TV CUPHETEXOVIOV AOY® NG PEPOAN-
Yiag anévavil oe opolopopdia anoyenv. 'Etot, tibetat 1o epdtnpa: mowa sivat n BEAtion
doun g opadag; Mag evilagépel va AMAvVIOOUHE O€ AUTO TO £PWINHIA KATAVOOVIAG Td
OepeAiddn @awvopeva 1mou rPoKUITIOUV Ao aUTE| 1) CUYKPOUOH HETASU TG IANPOPOPLIAKEG
noKlAopopdiag Kat tng PepOoAnyiag amevavil o opolopopdia anoyewmv.

Ze autr ) S1atpiBr], €MEKIEIVOUPE TEPAIEP® £va POVIEAO TOU €Xel mpotabei yla 1o
OXNUATIORO 0pAdag mapoucia T000 TANPOPOPIAKLS MOIKIAOPoPPIag 000 KAl HEPOANYiag
arnévavtt oe opolopopdia armoyeswv [9]. Edwkotepa yia autd to Poviedo, 01 TIAIKIEG TTOU
oxnpatidouv v opada mpémnel va exktedécouv pia poBAsyrn: PALMIOUV TEPUTIVOEIS EVOG
MPOBANIATOG TIOU KOO1KOTIOIEITAL A0 XAPAKINPIOTIKA KAl MIPETIEL va KAVOUV J1a IpoBAey
yla Karoto peAdovuko anotédeopa. Ta apdderypa priopovpe va dewpriooupie, pia opada
UTeUOUVGOV 110G TIOATTIKNAG ITOU rpoottadel va mpoBAEWel 10 anotéAeopia TV rapepBacemv
T0Ug, pa opada emevdutav ou ripoortadel va poBAEWet TTo1eg veoouotateg etailpeieg Sa sivat
ETMITUXNPEVEG 1] P1a opdda ylatp®v ImoU aVIIHEI®IOUV pia MePIMAOKY 1aTtpiKy d1ayveon.
'‘OAa autd sival gevapia 1mou Kataypadovial péoa o auto 1o miaioto. Kabe naiking €xetl piia
AVTIKEHEVIKT] OUVAPTNON TIOU arnoteleitat amod 1o abpotopa §Uo opmv: 0 €vag 0pog eivat 1o
T0000T0 0PAApatog g opadag Kat o AAAog 0pog eivat 1o ermiredo opo1dTTag ToU He Ta dAAa
BEAN g opdadag. ErurmAéov pia povodiaotatn mapdperpog EAEYXEL TO0 OXETIKO BAPOG aUut®Vv
1OV 6U0 Op@V OTNV AVIIKEIHEVIKI] OUVAPTNOT. AUTH 1] YEVIKI] HOP®I] V1A TNV AVIIKEHEVIKN

OUVAPTNOL 1A EMITPETIEL VA PEAETNIOOULIE TA AKPA Ota ortoia ot maiktieg evdladépovrat ite

Diploma Thesis m



Chapter 1. Introduction

KUpieg yia v anodoon g opdadag eite Kuping yia v oprooyévela g opadag.

Evo n apxikn epyaoia [9] peAémoe kuping ) Stadikaoia pe tyv onoia auteg ot opddeg
avantuooovidl PE Vv apodo tou Xpovou, kKabwg anodaci{ouv Siadoxikd mola véa PEAn
9a npoobécouv, epelg EMAEYOUE VA £0TIACOUE TIEPIOOOTEPO 0T BEATIO OUVOEDT] TETOIV
opadev slodyoviag pa unokeipevn dopr ypagou. Aiwadéyoupe va pedetrjooupe duvo dia-
@opeTikéGg dopég ypagpou. H mpotn eivat évag tuxaiog pn kateubuvopevog ypddog yia tov
oroio éxoupe v edeubepia va addagoupe KAl va MmPOcAPPOCOULE TG AKUIEG TIPOKETIEVOU
va @racoupe oto PBEATioto KOoTog, eve 1 Sevtepr eivatl pua otabepr) epapyikrn dopr| mu-
papidag otnv omoia o1 akpég eivatl otabepég otn 9€0r TOUG, EIMTPEMOVIAS HaAG HPOVO TNV
eAeuBepia ®G TIPOG TNV TOTIOOETNON TOV MAIKIOV €VIOG TG rTupapibag. AUTEG Ol EMEKTACELS
dlatpouv v tp18r] petady g rminpogoplakrg rnokidopopdiag (informational diversity)
Kat g pepoAnyiag anévavil oe opolopopdia anoyenv (affinity bias), tv onoia otoxevou-
e va BeAtiotoroirjooupe eite Staopadidoviag tig BEATioteg ouvdéoelg eviog g opadag eite

torofetviag orpatyikd Kabe pédog tng opddag.

m Diploma Thesis



Chapter g

Background

2.1 Base Model

The ideas presented in this thesis are extensions of a model proposed for team forma-
tion in the presence of both informational diversity and affinity bias [9]. In this section,
we will introduce the foundational model along with some key results. While we will not
reproduce the proofs, which can be found in the original paper, we will highlight the most
relevant findings that will serve as crucial building blocks in the subsequent chapters of
this thesis.

Let X denote the set of all possible states of the world distributed according to a
probability distribution . We assume each state of the world is described by a feature
vector X = (x1,...,x;) € X, consisting of uncorrelated attributes xi, . ... x;, i.e., cov(x;, xj) =
0 for all j # i. Each state of the world, x, leads to an outcome y € Y. We assume there
exists a true outcome function f*, such that for any x € X, y = f*(x) is the true outcome
of the world sate x.

Imagine a group of agents, each equipped with the ability to forecast the actual out-
come given the state of the world.. An agent i has a fixed predictive model of the world,
denoted by f; : X — Y, which maps each possible state of the world, x € X, to a predicted
outcome, {j; = fi(x). We will use L; to denote the accuracy loss of agent i’s predictions
using the loss function ¢ : ¥ X Y — R. Also for any two predictive models f;, f;, we define

the level of disagreement d;; between them through a distance metric, § : Y XY — R*.

L; = Ex-p[ (i, Y)] = Ex-p[(3: — ).
dij = Ex-p[8(fi(20), ()] = Ex-pl(fi(%) = £(x))*].

We assume the true function f* is linear in the feature vector x. Therefore, it can

be decomposed into two components, corresponding to the two types’ feature sets. In

particular, VX = (x1,...,x) € X:
FfxX)=98 x=81x1+...+ XK+ Ok 1Xc41 + - .. + 1 (2.1)
=81 oG, xa0) + 8y (K1 X0) (2.2)

.....

We will refer to a*‘;mk as 8 (since it’s the accuracy-optimal weights on A’s features) and
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Chapter 2. Background

Oy1.. ras 8B, so that: f*(x) = 8-x+8P-x. Additionally, for simplicity, we assume E[x] =

This may seem arbitrary but we can ensure this condition by standardizing all features.
As such given an instance X, individuals of each type can produce a noisy prediction
fA,fB given ¢4, eg are i.i.d. noise sampled from a mean-zero Gaussian distribution with

variance oy, 0a.

FAx) =8 Xx+ea=8X)+eq (2.3)
fBx) =8P -x+e5=8P(x) + ep (2.4)

We will also use L#, LP to refer to the (noise-less) accuracy loss of each type’s predictive
model (i.e., L* = By p[2(8* - X, y)] and LB = By p[#(8® - X, y)]). A key formula, which is not
shown or proven in the original paper [9], that connects the noise-less accuracy losses

with the 8 values is the following:

Lemma 1 (Noise-Less Losses: L%, LP and &%, 8P). By initializing the parameters 8%
and 8P, we gain the ability to tailor the values of L* and LP to align with our specific

requirements, since:

A _ (8B)2
B _ (aA)2

Proof. We will write the proof for L? and the same holds for L:

LP = Exp[2(8” - X, y)] = Ex-p[(8” - x = 8" - %)*] = Ex-p[(8" - x)°]

= Expl(8}x1 + ... + 8}xk)?] (Using 2.2)
0
= E[(8;x1)%] + ... + E[(8;1x1)*] + 2E[(

= (&%) M L+ (8)) M 8% 9% = (82 (Using P = N(0.1))

(Using E[x] = 0, cov(x;, x;) = 0)

O

A team, denoted as T, consists of a collection of agents who merge their predictions
using a specified aggregation function, represented by Gr. For any x € X, the aggregation
function Gr receives the predictions made for input x by all members of T, and outputs a
team prediction for x. Given the team T, we use Gr(X) to refer to the aggregated prediction
of team members for state x. In the original work [9] a general class of aggregation
functions inspired by Tullock’s contest success function [10] [11] is used, defined as
follows: Given a team consisting of n, individuals of type A and ng individuals of type B,

we define the following parametric class of aggregation functions:

24n 24n

Va € [0,00): nAnB(X)—( " )f()+( 5 )f() (2.6)

Note that when a = 1, the expression simplifies to a straightforward average. Moreover,

as a — oo, then G¢

na.ng(X) tends towards resembling the median.
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2.1.1 Minimum A value (1 = 0)

Adding individual agents to a team can help alleviate the team’s overall disutility or
cost. The cost an agent i incurs as a member of team T is defined as a combination of (a)
their level of disagreement with other team members, and (b) the team’s overall accuracy

loss. More precisely,

c(T) = Ax # ; Ex-p[6(fi(x). fi(x)] + (1 — ) X Ex-p[U(GT(X). Y)]
J
The parameter 8 € [0, 1] specifies how individual i’s perception of disagreement is in-
fluenced by the team’s size. Specifically, it indicates the extent to which perceptions of
disagreement are influenced by the absolute versus relative size of opposing viewpoints
within the team. To elucidate, consider a hypothetical scenario where Ex.p[6(fj(X), fi(X))]
is held constant at a value 6 for all j # i. When 8 = 0, i perceives disagreement with team
members as (|T—1|6), and this perception scales linearly with team size |T|. In other words,
a larger team amplifies i’s sense of discord with teammates. Conversely, when 8 = 1, i’s

perception of disagreement level remains approximately constant at (|T — 1|6/|T)).

We assume a team T would be willing to accept a new member if it reduces the team’s

average cost/disutility across its current members:

A% i 3 Bepl 800 H00)] + (1= 1) X Bxpl G0, ) 2.7)

ijeT
The team growth dynamics unfold in the following manner: Initially, Team T comprises
ny individuals of type A and np individuals of type B. New potential team members arrive
sequentially over steps t = 1,2,.... Let’s denote the t’th individual as i;, with their type
indicated by s; € A, B. The team incorporates i; only if it diminishes the current team’s

cost as per Equation (2.7).

2.1.1 Minimum ;7 value (A = 0)

When A = 0, the team adds new members if and only if the new member reduces the
team’s mean squared error without considering the team’s disagreement. We will now

write the main results that can be derived in this case from [9].

Lemma 2 (Team’s Error Decomposition). Consider a team with a composition of n, type
A members and of ng type B members where the expectation is with respect to (x,y) ~ P
and e ~ N(0, 0?) for c € {A, B}. Then:

2a 2a 2a.2 , 2a.2
By p[(Gr(x) - )] = — A _gAy B g5, T %At %
X~ =

ng + ng)? (ng + nj)? (ng + ng)?

Proposition 1 (Accuracy-optimal composition). Consider a team with an initial composi-

tion of ny > 0 members of type A and no member of type B. The optimal number of type
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Chapter 2. Background

B members whose addition minimizes the team’s accuracy loss in (2.7) is equal to:

LA+ g2\'/°
A) (2.9)

ng = na (—2

LB + of
Remark 1 Note that due to the symmetry of Equation (2.7) in A and B, the partial
derivatives of the team’s accuracy with respect to ny and np always have opposing signs,
therefore, at any na, ng > 0, it is either beneficial to add a new member of type A or a new
member of type B, but never both. These trends remain unchanged even if the agents

predictions are noisy or not.

2.1.2 Maximum /A value (1= 1)

When A = 1, the team adds new members if and only if the new member reduces the
team’s disagreement without considering the team’s overall accuracy. We will now write

the main results that can be derived in this case from [9].

Lemma 3 (Team’s Disagreement Decomposition). Consider a team with a composition of
na type A members and of ng type B members, |T| = ny + ng, where the expectation is
with respect to (x,y) ~ P and ¢, ~ N(O, 062) for c € {A, B}. Then:

2

= e (nans(L* + LP + 0 + 0p) + na(na — 1)0} + np(ng — 1)o3) (2.10)

1
G PR

ijeT

Proposition 2 Consider a team with an initial composition of ng > 0 members of type A
and ng members of type B. Suppose og > 0 and 8 < 1. Then there exist ng’wer,ngp P e R
such that adding a type B member reduces the team’s disagreement in (2.10) if and only

; lower upper
if ng <ng<ng .

2.2 DeGroot Learning

The DeGroot learning model, stated in its general form by the American statistician
Morris H. DeGroot [12], is a simple and important model of how people in a network
update their opinions over time and eventually reach a group consensus. Antecedents of
this model were articulated by John R. P. French [13] and Frank Harary [14]. The model
has been extensively used in physics, computer science and most widely in the theory of
social networks.

In the DeGroot model links between agents and the weight they put on each other’s
opinions is represented by a trust matrix T where Ty is the weight that agent i puts on
agent j’s opinion. The trust matrix is thus in a one-to-one relationship with a weighted,
directed graph where there is an edge between i and j if and only if T; > 0. The trust
matrix is stochastic, meaning that its rows consists of non-negative real numbers, with

each row summing up to 1. Each agent starts with an initial belief b;(0) and all the beliefs
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2.2 DeGroot Learning

t=0 t=1
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Figure 2.1. Example of DeGroot Learning. Orange and Purple nodes represent the initial
beliefs and as the rounds progress their opinions converge.

are being updated as:
bi(t) = )" Tyby(t - 1)
J

An important question is whether beliefs converge to a limit and to each other in the long
run. As the trust matrix is stochastic, standard results in Markov chain theory [15] can

be used to state conditions under which the limit exists for any initial beliefs.

Theorem 1 (DeGroot Network Convergence). If the social network graph (represented by
the trust matrix T) is strongly connected (every node is reachable from every other node),

convergence of beliefs is equivalent to each of the following properties:

e T is Convergent & T is aperiodic.
e T is Convergent & limy_,o, Tt =[1,...,1]Ts

Where s is the unique left eigenvector of T with eigenvalue 1 whose entries sum up to 1.
Moreover aperiodicity is easy to satisfy by simply adding a value in the diagonal of matrix

T so that even one agent takes into account his own opinion during updates.
Proof. Suppose matrix T is strongly connected.
Definition: Matrix A is primitive if and only if ¢, : Ag. > 0,Vt > tp.

=

Given T is aperiodic, using [16] we know that if matrix A is strongly connected and
stochastic (true for matrix T) then aperiodicity & primitive. Moreover from [17] we know
that if matrix A is strongly connected and primitive then: lim;,. T¢ = [1,..., 1]Ts, where
s is the unique left hand side eigenvector with eigenvalue 1 and all positive entries, giving

us this way convergence.
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=
Let S = limje T by convergence. Then ST = lim¢_,« T!T = S. From the Perron-Frobenius
theorem: An eigenvector of an irreducible (i.e. strongly connected) non-negative matrix
is strictly positive if and only if it is associated with its largest eigenvalue. This vector is
unique if the matrix is primitive. So since S is all positive = T is primitive which from
[16] gives us aperiodicity.

O
Lemma 4 (DeGroot Network Consensus). With a strongly connected and aperiodic net-
work the whole group reaches a consensus. This means that each agent’s final belief will
be the same. Defining b as the vector of all the initial opinions b;(0), the final beliefs of

all the agents in the network will be equal to:
tlim bi(t)=s-b (2.11)

A very simple version of the DeGroot model that we will implement makes the following
assumptions. Firstly, to make sure that the network converges we make sure that all
agents listen to themselves while updating, ensuring aperiodicity by making the diagonal
values of the transition matrix T; = €. This hyperparameter ¢ can be though of as the
stubbornness of the agents. Also we assume that T; > O if and only if T;; > 0. This makes
sense in the frame of mutual friendships or workplace relationships. Note here that Ty
does not have to be equal to Tj; thus the matrix T is not necessarily symmetric. Now also
suppose that the agents equally weight their connections so that Ty = (1 — €)/d;, where d;
is the agents outward degree. Finally lets define the total number of outward degrees as:

D = Y. di. Assuming all of the above we can claim the following.

Theorem 2 (DeGroot Network Influence). Each agent’s influence, defined as their corre-
sponding element in the eigenvector s, for the above simplified version, is just proportional

to their degree:
s;=d;/D (2.12)

Proof. Note that in the DeGroot Model because of convergence: s-b = (sT)-b = s = sT.
Now lets verify this for our version of the model using the fact that T; > 0 & T; > O,
Tii = e¢and Ty = (1 - €)/di :

oR

l1-¢€ j di di di
Si—Z'I}iSj—SiS'FZ }lj/ : —B-€+B(l—e)_5
J i#
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Chapter E

Graph Models

In this chapter, we expand upon the findings of the base model by incorporating an
underlying graph structure into the team dynamics. Each team member is conceptual-
ized as a node within a graph, with the edges representing the interconnected network
of workplace relationships and communication channels. The motivation behind this ex-
tension is to generalize the team’s opinion formation process beyond the simple Tullock’s

aggregate function (2.6) to a more realistic framework under the DeGroot learning model.

3.1 Undirected Graph

The DeGroot model, as discussed in Chapter 2, serves as the foundation for our
analysis. We implement a version of the DeGroot model outlined in the previous chapter,
allowing us to apply the result stated in Equation (2.12), which asserts that the influence
of a team member is proportionate to the corresponding node’s degree. To facilitate this
analysis, we construct a random undirected graph denoted as G(na, ng, p, q), where edges
occur independently with probabilities O < p < 1 between nodes of the same type and
0 < g < 1 between nodes of different types. This enables us to adjust the connectivity
between agents of the same and different types. Each node or agent initially holds an
opinion b;(0) = f4B(x) based on their type, and they converge to a final consensus opinion,
as determined by Equation (2.11). Moving forward it will be helpful to analyze the two
parts of the total Cost function (2.7) separately as:

Cost! = A x Cost” + (1 — A) x Cost? (3.1)

where the Accuracy Cost is represented by: Cost? = Ex.p[2(Gr(X),y)] and the Disagree-
ment Cost by: CostP = m++ﬂ 2ijer Bx~p[6(fj(%), fi(X))].

3.1.1 Accuracy

Let’s begin by analyzing how the Accuracy Cost changes with the addition of the
underlying graph. In order to calculate the Accuracy Cost: Cost? = Ex.p[2(G1(X), y)] we
must first calculate how the aggregate opinion function changes compared to the initial

Tullock aggregation function (2.6).
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Chapter 3. Graph Models

Lemma 5 (Undirected Graph Aggregation Function). Consider a team of ny members of

type A and ng members of type B connected on a specific graph G(na, ng). Then:
d d
G = () A0+ ()80 8.2)

Where da = Y ey, di and dp = Y en, di» with Na, Np being the sets of agents A, B.

Proof. All the agents will converge to the same final opinion according to (2.11) and as

such we define this final opinion to be the aggregate:

GZ™Mx) =s-b

_ [dl dnA dnA+1 nA+nB

D' p T p 1 A, . ... fAx),Px), ... fP®)] (Using 2.12)

(zleNA Yo (ZleNB )f()—( )70+ (S2) 700

This new Aggregation function has a lot of resemblance with the original Tullock Aggregate
(2.6) used in [9] with the changes being: nf — da = XYy, di » N — dB = Yien, dis
ng + nj — D. Using this Aggregation function now lets see how the Accuracy Cost

changes compared to its initial form (2.8).

Lemma 6 (Undirected Graph Accuracy Cost). Consider a team of ny members of type A
and ng members of type B connected on a specific graph G(ng, ng). The Accuracy Cost of

the network according to (2.7) will be:

5 (daoa)® + (dpop)?
+
D2

Cost? = By pl(Gr(0 ~ "1 = () 14 + (%)L 3.9

Proof. We can write:

E[(Gr(x) - v)*] = E[(Gr(X) — f *(X))2]
= E[(d_gA( )+ — 33( )+ w

-d —-d, d + d, 2
E [(?Ba“‘(x) + —ASB(x) + W) ] (Using 2.1)

—f (x))2

(Using 2.3, 2.4)

(% )E[aA()] (% )E[aB<x>2]
(26113513) ERCELIE ( ) [(daca + dpen)’]
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3.1.1 Accuracy

Next, using the fact that the two types don’t have access to common features, and the fact
that cov(x;, xj) = 0, Vj # i, we know E[84(x)8p(x)] = 0. Additionally, E[eaeg] = O due to the
assumption of independent noises. Therefore, the above equation can be simplified to:

) E[(rm -2 0) |+ (%) 8|0 - o)’

dp

D

da\? o1 2], (9B\ & .2
B) E [SA] + (3) E [GB]
dp )2 LB ( da )2 1A, (daow)” + (dsop)”
D D D?

m}
Where the expectation is with respect to (x,y) ~ P and ¢ ~ N(O, 002) for ¢ € {A, B}
Again we can see that this new Accuracy Cost function has a lot of resemblance with
the decomposed one in the case of A = 0 (2.8) used in [9] with the changes again being:

a — a — a a
ng — da = Yen, di » N — dp = Xen, di » Ny + 5 — D.

Now let’s examine the behavior of the network G(na, ng, p, q) in its two limit cases and
compare them to the original results presented in Proposition 1 (2.9) and Remark 1. It’s
important to note that even for random graphs G with identical values of ng, ng, p, and
g, the randomness associated with the creation of edges can result in different values for
da, dp, and D. Consequently, this variability affects the values of the Aggregate function
(3.2) and of the Accuracy Cost (3.3). Explicit calculation of the Aggregate function and

the Accuracy Cost is feasible only in two limit cases: p=g=1and p=1, g=0.

Lemma 7 (Complete Undirected Graph Accuracy). Consider a team of ny members of type
A and ng members of type B connected based on the graph G(na, ng, q, p) with p=q = 1.
The Aggregate function of this network as well as the Cost function will be the same with

the Tullock Aggregate (2.6) for a = 1, and it’s corresponding Cost (2.8).

Proof. Since the Graph is Complete, which means that every node is connected with every
other node it is true that: d; = np + ng — 1,Vi. As such da = } ey, di = na(na + ng — 1),

dp = Ylieny di = np(na + np — 1) and D = (na + np)(na + ng — 1). So we can write:

na(na+ng—1) ng(ng + ng—1)

fAx) + £B(x)

(TlA + np)(na + ng — 1) (na + np)(na + ng — 1)

G g?gfq= 1)(X) -

= —f (x )+ f x) = nA nB(X) (Using 2.6)
na + np

O
Using the Tullock’s Aggregate function with a = 1, which is reproduced in the case of the
Complete graph, we can show that the results of Lemma 2 (2.8), Proposition 1 (2.9) and
Remark 1 still hold in the case of the complete undirected Graph. This result is expected
since in the base model proposed in [9] there is no underlying graph and as such every
team member is connected with every other team member. Let us now study the second
limit case of the undirected graph, where type A and type B nodes are fully connected

among themselves but do not listen to nodes of the different type.
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Lemma 8 (Disconnected Undirected Graph Accuracy). Consider a team of ny members
of type A and ng members of type B connected based on the graph G(na, ng, q, p) with
p=1,q=0. The Aggregate function as well as the Accuracy Cost function will be:

na(na — 1) A ng(ng — 1) B
na(na — 1) + np(ng — 1)f @+ na(ng — 1) + np(ng — 1)f ®

EX%D[(gnA'nB (X) _ y)2] — ( na(na—1) )2 (LA + oi) + ( ng(ng—1) )2 (LB + 0123)

G(p=1,q=0) na(na—1)+ng(ng—1) na(na—1)+ng(ng—1)

na,n _
G G/ijl,q=0)(x) -

Proof. Since p = 1 and q = O, the nodes that are connected are only of the same type. An
important note here is that in this case, the DeGroot model does not converge because the
graph is not strongly connected, as is required in Theorem 1. We can solve this by adding
just one edge between two different types of nodes, changing this way the Trust matrix T
as well as the final opinion (2.11) by a small margin. This change, however, is minuscule,
and for large networks, it adds up almost to zero while saving the convergence of the
DeGroot network. As such, for p = 1 and g = O, we now have that: d; = nag — 1,Vi € N
and d; = ng — 1,Yi € Ng. As such: da = Y ey, di = na(na — 1), dp = Yen, di = np(ng — 1),
and D = na(ng — 1) + ng(ng — 1). So we can calculate the value for the Aggregate function

as:

d d
G 4o ® = (2 ) 400 + (2 )P0
B na(ng — 1) A ng(ng — 1) B
~ na(na — 1) + ng(ng — 1)f () + na(na — 1) + ng(ng — 1)f ®

Using now this new Aggregate function we can calculate the Accuracy Cost function

following similar steps as before:

ElGg ) 4moy® = U)°1 = E[(Gr(x) — [ ())*] =

_ —-ng(ng—1) —na(na—1) B na(na—1)ea+np(ng—1)g 2 .
- [( nA(nA_IIS)+le(nB_1)8A(X) + rlA(nA—/li)JrlfqlB(le—1)8 (x) + AHA?HA—l/;+Hz(H§—1) B) ] (Using 2.1, 2.3, 2.4)

na(na — 1) + ng(ng — 1) na(na — 1) + ng(ng — 1)
2na(na — Dng(ng — 1)
(na(na — 1) + ng(ng — 1))?
1

T (a(na— 1) + np(ng — D)2

- ( np(ng — 1) )2 E [SA(X)Z] + ( Ma(ma = 1) )2 E [8B(x)2] +

E [aA(x)aB(x)] +

E [(na(na = Dea + n(ng — 1ep)’|

Next, using the fact that the two types don’t have access to common features, and the fact
that cov(x;, xj) = 0, Vj # i, we know E[84(x)8p(x)] = 0. Additionally, E[eaeg] = O due to the

assumption of independent noises. Therefore, the above equation can be simplified to:

_ ( ng(ng — 1) )2 LB+ ( na(ng — 1) )2 1AL
(g — 1) + np(ng — 1) na(na — 1) + ng(ng — 1)

N ( np(ng — 1) )2 E[2] + ( na(na — 1) )2 E[2]
na(na — 1) + np(ng — 1) B na(na — 1) + ng(ng — 1) 4

_ na(na — 1) 2 (LA + 02) + np(ng — 1) 2 (LB + 02)
~ \na(na — 1) + ng(ng — 1) 4 na(na — 1)+ ng(ng — 1) B
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3.1.2 Disagreement

Where the expectation is with respect to (x,y) ~ P and ¢, ~ N(O, 002) for c € {A, B}. Again
we can see that this new Cost function has a lot of resemblance with the one in the case of
A= 0(2.8) used in [9] with the changes this time being: n§ — na(na—1), nj — np(ng—1).
O

Proposition 3 (Disconnected Undirected Graph Accuracy-optimal composition). Consider
a Disconnected team with an initial composition of ny > 0 members of type A and no
member of type B. The optimal number of type B members whose addition minimizes the

team’s Accuracy Cost is equal to:

A 2
L + o0y

11
Ny == +—4/1+4na(ny— 1)——A4
B~ g 2\/ a(ma )LB+o,§

Proof. According to Lemma 8 the Disconnected team’s accuracy can be written as:

Ex~p[(gnA,nB (x) — y)2] — ( na(na—-1) )2 (LA + oi) + ( ng(ng—1) )2 (LB + 0123)

G(p=1.g=0) na(na—1)+ng(ng—1) na(na—1)+np(ng—1)
Taking the derivative of the right hand side with respect to ng, we obtain:

2n5(na — 1)*>(2ng — 1)

(na(na — 1) + ng(ng — 1))3
2na(ng — H(2ng — 1)

" (ma(na— 1) + np(ng — 1))3

2nang(ng — 1)(2ng — 1)(na — 1)
(na(na — 1) + ng(ng — 1))3

(natna = DL + 03) = np(ng = DL® + 0}))

(LA + o) - (LB + d}) =

To obtain the zero of the derivative, we can write:

) L+ o2 1 1 LA+ o2

ng — ng — na(na — 1)LB—+0§ =09 ng= §+§\/1+4nA(nA— 1)LB—+0§
|
We must note here that this value of ng from Proposition 3 (3.4) is the same as the value
of n; from Proposition 1 (2.9) only in the case of: L + aﬁ =LB+ 0123, where for the complete
and for the disconnected graph the optimal team composition is: nj = n,. It is also
interesting to point out the different team growth dynamics for these two nj, values. We

will make this comparison along with some simulated results in Chapter 4.

3.1.2 Disagreement

Let’s continue by analyzing how the Disagreement Cost changes with the addition
of the underlying graph. By using the DeGroot learning process all agents reach the
same final opinion and that can be thought of as canceling out the teams’ disagreement.
However we want to preserve the tension between Accuracy and Disagreement Costs just
as in the base model [9]. One approach to accomplish this is by stipulating that, in
our extended model, disagreement occurs solely between agents directly connected in the
underlying graph—meaning their nodes are directly linked by an edge. By adopting this

criterion, we can reintroduce the Disagreement Cost term:
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Lemma 9 (Undirected Graph Disagreement Cost). Consider a team of ny members of type

A and ng members of type B connected on a specific graph G(na, ng, p, q). Then:
COStD |T|1+JB ZIJGT E[(f(X) ﬁ(X))Z] = |T|1+ﬁ (dAB(LA + LB + OA + OB) + dAAOA + dBBOB) (3 5)

Where dy = daa+dap and dp = dpg+dap and daa, dpp represent the edges between nodes
of the same type (i.e. A to A or B to B) and dp represent the edges between nodes of
different type (i.e. A to B). The expectation is with respect to (x,y) ~ P and e.,e. ~ N(0, 02)
for c € {A, B}

Proof. We can write the left hand side of (3.5) as follows:

DBl — fix))*] =

ijeT

D Bl@(x) + & — 8() — )]

1+j3
|T| ijeT

|T|1+j3

|T|1+ —5 (2daBI(*(x) + ¢! — 8°(%) — €%)%] + danEl(ea — €3)*] + dipEl(ep - €))*)

|T|1+ﬂ(2dABE[<8A<x> 8%(x))°] + 2dasEl(e” - )]

+ daa(E[€5] + E[€}]) + dpp(Eleg] + Ele5 1)

ITl“ 5 ———(2dap(L* + LP) + 2dap(E[€5] + E[€2]) + 2dan0> + 2dppoR)

A B 2 2 2 2
= |T|—1+JB(dAB(L +L° + O, t+ OB) + dAAOA + dBBOB)

O
Again we can see that this new Disagreement Cost function has a lot of resemblance with
the base model’s decomposed one in the case of A =1 (2.10) used in [9] with the changes
being: nang — dag , na(na — 1) — daa , ng(ng — 1) — dpp.

Now lets see how the two limit cases of the network G(na, ng, p, q) behave in the case
of the Disagreement Cost and also compare them to the original results of [9]. We must
note again that even for random graphs G with the same na, ng, p, q values because of
the randomness associated with the creation of the edges in the network the daa, dgg and
dap values will be different and as such the values of the Disagreement Cost (3.5) will also
be different. The only 2 limit cases where we can explicitly calculate the Disagreement

Costareforp=g=1landforp=1,q=0.

Lemma 10 (Complete Undirected Graph Disagreement). Consider a team of ny members
of type A and ng members of type B connected based on the graph G(na, ng, q, p) with
p = q = 1. The teams Disagreement Cost (2.10) as well as Proposition 2 still hold just as
in the base model.

Proof. Since the Graph is Complete, which means that every agent/node is connected
with every other agent/node it is true that: d; = ny + ng— 1, Vi. As such das = na(ng — 1),

dpg = ng(ng — 1) and dag = nang. So (3.5) becomes:

2

—(nA T (nAnB(LA + LB + 05 + 02) + na(na — 1)03 + ng(ng — 1)013)

D —
COSt(p=q:1) -
O
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3.1.2 Disagreement

Lemma 11 (Disconnected Undirected Graph Disagreement). Consider a team of ny mem-
bers of type A and ng members of type B connected based on the graph G(na, ng, g, p)
with p = 1, g = 0, where g = O implies that we let only 1 edge to connect type A and type
B agents in order to keep the graph strongly connected. The teams Disagreement Cost

decomposition for this limit case becomes:

2

— = (LA+ LB+ 02+ 02+ na(na — 1)o2 + ng(ng — 1)o>
(nA+nB)1+ﬁ( A B A( A ) A B( B ) B)

D —
COSt(p= 1,g~0) —

Proof. Since the Graph is Disconnected we now have that: das = na(ng — 1), dgg =
ng(ng—1), and dag = 1, for the 1 edge that keeps the graph strongly connected. Replacing
these values to (3.5) we get the above formula.

O

Proposition 4 Consider a team with an initial composition of ny > 0 members of type A
and np member of type B. Suppose o > 0 and 8 < 1. Then there exist ng’wer, ngp P e R
such that adding a type B member reduces the team’s Disagreement Cost (3.5) if and only

: lower upper
if ng Sng<ng .

Proof. Taking the derivative with respect to ng of the Disconnected Disagreement Cost of
Lemma 11 we obtain:

201 —a
% (COStg,qu:o)) = —(nAinj@ (—ni:rf;) (LA + LB + 02 + 0f + na(na — 1)03 + np(ng — 1)02) + (2ng — 1)0}%)

Setting the derivative to zero, is equivalent to solving the roots of the following equation:
n123(1 —ﬂ)oﬁ + nB(_Bo% + 2nAo§) —const =0
where:
const = (1 + B)(LA + LB + of‘ + o,% + na(ng — l)of‘) + nAo,%

Note that since o > 0 and (1 — 8) > 0, the above is a quadratic polynomial in ng
with a positive leading coefficient (i.e., (1 — ﬂ)og). Let nll;’wer, ngp P€T denote the roots of
this polynomial. Since the leading coefficient is positive, for any ng € [, 7],
the derivative of the disagreement term is negative, indicating that adding new members
of type B will reduce the disagreement. Similarly, outside this range, the derivative is
positive indicating that new type B members will only worsen the team’s disagreement.
This is the same mathematical behaviour with the complete graph case just with different

lower upper
ng", ng values.

[m}

A discussion must be made here for the normalization factor |T|'*2 in the new Dis-
agreement Cost function (3.5). Unlike the base model [9], where it is intuitive to normalize
the Disagreement Cost by the total number of agents to the power of 1 + 3 (8 € [0, 1]),
our generalized framework now bases the Disagreement Cost on the connections between

directly linked agents (daa, dpp, dap). In this context, one might propose normalizing by
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the sum of these connections, represented by D = ds + dg = daa + dpg + 2dap. However,
this approach poses a challenge. While replacing |T|'*# with D restores the base model
Disagreement Cost in the complete network, where p = q = 1, it does not hold univer-
sally across all values of 8. Specifically, Lemma 10 remains applicable only for a specific
value of 3: 8 = % This discrepancy is notable, particularly as it pertains to the
Disagreement Cost. While the Accuracy Cost consistently reverts to the base model’s
cost in the complete network scenario (as demonstrated in Lemma 7), the Disagreement
Cost does not exhibit such consistency. Given these considerations, we opt to retain the
original normalization factor |T|'*# rather than transitioning to D. This decision ensures

the best consistency and coherence within our extended model.

3.2 Pyramid Graph

In the previous section we applied a very simple version of DeGroot learning that
extended the base model’s Cost function (2.7) into including the degree’s (daa, dgp, dap)
of the underlying graph. In that case the team member with the most influence was
simply the one with the highest number of connection as shown in Theorem 2 (2.12). In
this section we want to make this difference in influence more explicit by introducing a
rigid hierarchical structure in which our team operates. Our graph now will be defined
not by the p, g connection probability parameters but instead with the parameters Ik, £.
The parameter k defines the maximum number of "subordinates" that each node in the

pyramid has, while ? the number of layers of the pyramid. In Figure 3.2 is an example.

Figure 3.1. Example of Pyramid graph with =3 and k=4

To incorporate the hierarchical influence dynamics within the pyramid structure, we
introduce the hyperparameter y. Unlike the previous undirected graph, where each node
equally considered inputs from all connected nodes, the hierarchical framework assigns
varying degrees of influence based on the node’s position within the pyramid. So for ex-
ample in Figure 3.2 the nodes of the 2nd level will listen to their 4 subordinates equally, to
their top node y times higher and to themselfs in order to maintain aperiodicity. Formally,
this hierarchical influence structure is encoded within a Trust matrix T, from which the

corresponding influence vector s can be derived.
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3.2 Pyramid Graph

Theorem 3 (Pyramid Graph Influence). In a pyramid hierarchical structure with ¢ layers
and k subordinates each agent’s influence, defined as their corresponding element in the
eigenvector s, remains constant for agents within the same layer. However, the influence

increases progressively as we ascend to higher layers of the pyramid following the formula:

o- - -
s=lky'™  yP0+k) YTkl vyl R 1 s
—— | —— —_——
Top Node 2" Layer k nodes 3™ Layer k? nodes K3 nodes  k!"2 nodes Kk'"! nodes (3.6)
=[ s S2 3 s Spa Se-1 st ]

where s = 1/));s; is a normalization factor so that the sum of all the terms inside the

vector s adds up to 1.

Proof. Note that in the DeGroot Model because of convergence: s-b = (sT)-b = s = sT.
For our pyramid graph structure the conditions for convergence hold since the graph is
strongly connected and also aperiodic. Now let us verify s = sT = s; = }; Ty;s;. For this
proof to be straightforward we must have a clear image of the matrix T. The diagonal
values of the matrix are T; = € and under the diagonal there are alternating columns of k
length, filed with the values Tj, = % For the last half of the matrix, which corresponds
to the nodes of the base of the pyramid, the values become Ty, = 1— €. Above the diagonal
€

there are alternating rows of k length with values T; = ﬁ Only the 1st row which
corresponds to the top node has k values of Ty = %e Lets write a simple example of a

full pyramid with ¢ = 3 layers and k = 2. In this case we have 7 nodes and the 7 by 7

Trust Matrix is:

€ e L5200 0 0 0 |
W e o L2 4o o o
Wy o e o o G2 L
T= 0 1-¢ 0 € 0 0 0
0 1-¢ 0 0 € 0 0
0 0 l—-¢ 0 € 0
0 0] l1-¢ 0 0 €

So in the general case that the pyramid has £ layers and k subordinates we can write for
the top node that:

s) = Z Tj1s; = Tysy + kTpss
J
1 —
= (ekye_2 + k—y( ) ye_s(y + k)) s
y+k

= (ekylz_2 + Iyt 2(1 - e)) s=ky2s=s
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For the nodes in the second layer we have that:

So = Z ’1}23_,' = Tysy + TiSo + kTpSs
J

1-¢€

1 —
= (—kye_z + ey[_s(k +v)+ k—y( 2 ye_4(y + k)) s
k y+k

= ((1 - e)y‘L2 + eyzf?’(k +v) + k(1 - e)yif?’) s

=y -ey+elk+y)+(1-ek)s=y(y+k)s=s

Similar proofs hold for the rest of the middle layers of the pyramid that have agents both

above and bellow them. For the 3rd layer for example we have that:
S3 = Z I}st = TSy + Tyis3 + kTps,
J

l1-¢€ -3 -4 Y(l — 6) -5
=|— + k) + k+y) + k—— +k
(Y+kv y+hk)+ey “(k+y) vk y C(y+k)|s

(1- e)yp_3 + ey£_4(k +vy)+ k(1 - e)y2_4) s

=y -ey+ek+y+(1-ek)s=y  y+k)s=s;

We can keep moving down the layers of the pyramid using the same method until we

reach the semi-final layer for which we can write that:

Sp-1 = Z Tio-1)Sj = TtSp—2 + TyiSe—1 + kTpp Sy
J

:(¢;Zy(y+ k)+e(k+y)+k(1—e))s

=((1-¢ey+eytk+ty +k(l-¢)s
=(y+k)s=spm1

And for the nodes at the base of the pyramid it is easy to show that:
Sy = Z Tjesj = Tise-1 + Tuse
J

1-
:(mi(k+y)+e)s

=(l—-€e+e)s=s=s

O

So now based on the result of Theorem 3 (3.6), for the pyramid graph which node has
the most influence? Defining for the parameters that: y > 1 and for the integer k that:
kk > 2 it easy to see that the top node has the most influence followed by the nodes of the
second layer, then the third layer and so forth until we reach the nodes on the base of the
pyramid which have the least influence. Also very interesting is to define the influence

that each layer has as a whole.
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3.2 Pyramid Graph

Definition (Pyramid Graph Layer Influence). Consider a team of members connected on
a pyramid graph with parameters k, /. We define the influence of layer n € N in this
pyramid as:

inflin) = K" s, (3.7)

Where k™! is the number of nodes in the layer and s, their corresponding influence. For
example: infl(1) = sy, infl(2) = ksy, infl(3) = k2ss, ... , infl(d) = k! 's,.

Lemma 12 (Top and Base Layer Influence). Consider a team of members connected on a

pyramid graph with parameters k, £. It is true for their layer influence that:

infl(1) < infl(2)
infl(?) < infl(f—-1)

Proof. Solving the inequalities by using the results of Theorem 3 (3.6) we get:

infl(1) < infl(2) & ky'? <y 3(y+k) e y<y+ke k>0
infl)) <inflt-1) e K<k 2(y+k e k<y+ke y>0

O
Lemma 13 (Middle Layer Influence). Consider a team of members connected on a pyramid

graph with parameters Ik, . For their layer influence in layer n € [2, £ — 2]:

y >k & inflin) > inflln+ 1)
Yy < k& inflln) <inflin+ 1)

Proof. Solving the first inequality by using the results of Theorem 3 (3.6) we get:

inflin) > inflin+1) & KWl y+k) > kKW " 2(y+k) e y>k

O
v>k
R ) L
vy<k
inf() | infz) | inf@) | ------- [ infe) [inne)
0 1

Figure 3.2. The results of Lemma 12 and 13 expressed visually. The total influence is
Jixed and the layer with the most influence is underlined with red.
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3.2.1 Accuracy

Let’s analyze now how the Accuracy Cost changes in the frame of the pyramid graph.
In order to calculate the Accuracy Cost: Cost? = Ey_p[l(Gr(X), y)] we must first calculate

how the aggregate opinion function changes compared to the undirected graph (3.2).

Lemma 14 (Pyramid Graph Aggregation Function). Consider a team of ny members of

type A and ng members of type B connected on a pyramid graph. Then:

. . . . A
G(X) = (i1s1 +igsg + -+ - + {p_1Sp—1 + 1psp) f7(X)

+(fs1+ thsg -+ 1y sp1 + ip50) FP(X)

Where i, i/, € N with n € N representing the layer. It must hold that: i; +i] = 1, iy +1i;, = k,

i3+ 1 = I, + i, = K2 0+ i, = k!~1. Where the parameters i, show the number

of type A agents in each layer and i}, the number of type B agents.

Proof. All the agents will converge to the same final opinion according to (2.11) and as

such we define this final opinion to be the aggregate:

Gx)=s-b
=y Y+l YT+l o yy+ k) (4 k) 1_Is-b
—— [ —— [ — N— N—— —
Top Node 2" Layer k nodes 3™ Layer k2 nodes k'3 nodes  k'2 nodes k'~ nodes
=[ s S S3 - Spo Sp-1 s; ]-b

Where b is the vector of the initial beliefs:

b = [FAx), 7). . ... fA®). X))

As such based on the positioning of f4(x) and fB(x) in the vector of the initial beliefs b
aka the positioning of the agents of type A and type B at the pyramid we get the values of
in, i, € N in order to calculate G(x).

Lemma 15 (Pyramid Network Accuracy Cost). Consider a team of ng members of type A
and np members of type B connected on a full pyramid graph. The Accuracy cost of the

network will be:
Cost® = (iys1 + -+ + ips))*(L* + 02) + (i} s + - -+ + i;sé))Z(LB + o2) (3.9)
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Proof. We can write:

!

? 2
Ex-pl(G1(X) = y)’] = Exp [(8A (X) + €a) Z inSn + (8°(X) + ep) ) insn—f *(X)] }

n=1 n=1
0 0 0 0 2
=E [—8B(x) Z insn — (x) Z i'Sn + €a Z inSn + €B Z i;lsn] (Using 2.1)
n=1 e n:l2 n=1 n=1 Z ,
_ (e[o"?] + B[<2) {Z ] ¢ (E[oh?] + B[<2)) [Z an
n=1 n=1

= (LA + o)(irs1 + - + s)® + (LB + 02) (@51 + -+ + iy5p)°

3.2.2 Disagreement

Let’s continue by analyzing how we can introduce the Disagreement Cost with the
addition of the pyramid graph. By using the DeGroot learning process all agents reach the
same final opinion and that can be thought of as canceling out the teams’ disagreement.
However again we want to preserve the tension between Accuracy and Disagreement Costs
just as in the base model [9]. We will again apply the same approach as in the undirected
graph in order to accomplish this. As such in our extended model, disagreement occurs
solely between agents directly connected in the underlying graph—meaning their nodes
are directly linked by an edge. By adopting this criterion for the pyramid graph the results

of Lemma 9 still hold and we can write that the Disagreement Cost again is:

1

D _
Cost™ = T

DB - i) = miw(dAB(LA + L7 + 0} + 0f) + daacy + dppop)
ijeT

We must note that, unlike the undirected graph analyzed in the previous section,
the pyramid graph does not allow for the definition of complete and disconnected cases.
This is due to the fixed edge connections inherent in the structure of the pyramid graph.
Therefore, our scope for adjustments is limited to the positioning of agent types A or B
within the network. Understanding the optimal placement of team members is crucial
for maximizing the efficiency and effectiveness of the team dynamics within this hierar-
chical structure. In the following chapter, Chapter 4, we delve deeper into the optimal

positioning of team members within the pyramid graph and present simulated results.
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Chapter ﬂ

Results and Analysis

In this chapter, we present the outcomes of simulations and algorithmic analyses
aimed at elucidating the dynamics of our extended model proposed in previous chapters.
We explore the interplay between team structures and decision-making processes, focus-
ing on two fundamental aspects: the connectivity of the network and the positioning of
team members within it. Through a series of experiments, we investigate the implica-
tions of the complete versus the disconnected undirected graph, examining how different
network configurations influence the team’s performance and decision outcomes. Addi-
tionally, we delve into the optimization of edge connections, exploring various approaches
to minimize the cost function for both the undirected and the pyramid graph. Further-
more, we scrutinize the optimal positioning of team members within the pyramid graph,
shedding light on strategies to enhance team cohesion and efficiency. By synthesizing
simulation results and algorithmic insights, this chapter offers valuable insights into the

dynamics of team decision-making in complex network structures.

4.1 Undirected Graph: Complete vs Disconnected

Let’s begin by confirming the results of Propositions 1 (2.9) and 3 (3.4) through team
growth simulations. The results presented in Figures 4.1 and 4.2 were created using
the following conditions: Each world state x comprises 10 features x;, each drawn from
a standard normal distribution with mean = O and standard deviation = 0.1, so that
cov(x;, x)) = O for all j # i. With a total of 10,000 world states and 10 features each,
this yields a 10 by 10,000 matrix describing the world. After creating the world states,
in order to reach the desirable L* and LP we generate appropriate values of 8* and 8°
each targeting half of the features, following the equations of Lemma 1 (2.5). As such by
concatenating the created 8, and 8 we get the vector §*.

With the foundational elements of our simulation in place, we proceed to construct
the undirected graph. Leveraging the capabilities of the NetworkX package [18], we create
an undirected graph with n, nodes of type A and ng nodes of type B connected with edges
based on the probabilities p and q. It is paramount to ensure that the graph remains
strongly connected for any possible p and g value, guaranteeing this way convergence
for the DeGroot learning process, as stated in Theorem 1. From the constructed graph

we derive the corresponding trust matrix T, enabling us to compute the influence vector
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s (2.12), the dot product of which with the initial opinions b results into the networks

Aggregate opinion Gr(X).

Expected Cost for DeGroot Network Aggregate Expected Cost for Tullock Aggregate

LA=01,lBE=02,p=1,gq=1 LA=01,LBE=02

a0 40 7
5 016 35 016

£ £
n1s n1s

5 5

FE) mi 20 mi

T 012 T 012

15 5
o 010 o 010

5 5
5 0 1’5 2 0B ;W B4 0.08 5 10 15 2 3 1 3 4 0.08

A A

Figure 4.1. Simulation of the Team Growth Dynamics with the Base model Tullock Aggre-
gate on the right and the Undirected graph with DeGroot Aggregate on the left. Here the
graph is Complete, p = q = 1 and the green cells represent the 50 (na, ng) points with the
lowest values.

020

Expected Cost for DeGroot Network Aggregate Expected Cost for Tullock Aggregate
LA=01,LB=02,p=1,q=0.001 LA=01,LB=02 018
40 - a0 -
0.18
s s
016
0 016 0
= = 014
014
E] 220
T
012
15 012 15
10 10
010 0.10
5 5
0.08 5 10 15 20 5 30 I 40 0.08
A &

Figure 4.2. Simulation of the Team Growth Dynamics with the Base model Tullock Aggre-
gate on the right and the Undirected graph with DeGroot Aggregate on the left. Here the
graph is Disconnected, p = 1, q = 0 and the green cells represent the 50 (na, ng) points
with the lowest values.

Thus, by calculating the Accuracy Cost, which represents the expected squared dif-
ference between the Aggregate Gr(x) and the true outcome function f*(x) across all world
states x in a given network G(na, ng, p, q), we can validate the results of Propositions 1
and 3. We compute Accuracy Cost values for various combinations of ny and ng (ranging
from 1 to 40) and visualize them in heat maps shown in Figures 4.1 and 4.2. Additionally,
we plot the Accuracy Cost values that would result from using the Base Model’s Tullock
Aggregate function instead of the DeGroot learning Aggregate, providing further insight.

As depicted in Figure 4.1, the complete network maintains the results of the base model,
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4.1 Undirected Graph: Complete vs Disconnected

while the Disconnected network in Figure 4.2 deviates and follows the Accuracy-optimal
composition outlined in Equation (3.4). Furthermore, for intermediate values of g € (0, 1),
we observe the minimum line shifting between these two extremes, indicating how the
value of q influences the teams optimal composition. Despite this observation however,
we are unable to derive closed-form equations for g € (0, 1), like the ones for the Com-
plete (Equation (2.9)) or Disconnected (Equation (3.4)) cases due to the randomness of the
graph G(mu, ng, p. q).

It’s noteworthy to consider the theoretical disparity between the nj, values for complete
and disconnected graphs. Proposition 1 establishes an Accuracy-optimal Composition for

A 2
ng; with a clear linear relationship with ny4, characterized by the slope II:B:‘; Similarly,
B

Proposition 2 indicates a nearly linear relationship between nj; and ns. However, upon

A 2
comparison across various values of % we observe that the disconnected graph tends
B

to adhere more closely to the line n; = ny than the complete graph. This tendency of

the disconnected graph can be attributed to the absence of across the aisle dap edges,
necessitating either more ‘bad’ agents (with higher Loss) or fewer ’good’ agents (with lower
Loss) to reach the Cost minimum. This is because information propagation within the

disconnected network is suboptimal.

Ay g2
L toy

B o2
LP + o5

5 1+1 1+ 4ny( 1LA+U’§
ng=—+- na(ng = 1)——=
279 A )LB+0§

241
. (LA+0§) iz
ng=na
B 2
LP + og

*
TLB—HA

N
7
A 2
Figure 4.3. Theoretical Accuracy-optimal Team Compositions for different values of II:B:‘Q .
B

Green represents the optimal composition for the Disconnected network, Red for the Com-
plete and Black is the composition with the same number of agents in each type.

Let’s analyze, for example, Figure 4.3, considering the case where II::%:Z‘; = % Here,
agents of type B experience twice the Loss compared to agents of type A. In the Complete
model’s Accuracy-optimal composition, this leads to the requirement for double the num-
ber of type A agents compared to type B agents to minimize the Cost. For instance, in
Figure 4.3, if ny = 40, the minimum Cost occurs when ng = 20 (red line). However, in
the Disconnected network, achieving the minimum Cost necessitates more type B agents.
With ny = 40, we find that ng = 29 (green line). Therefore, in this case, the Disconnected

graph requires more type B agents, which are the agents with the higher Loss.
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4.2 Undirected Graph: Optimal Edges

Let’s now consider a new problem that arises from the introduction of the undirected
graph in the base model. As mentioned before, for random graphs G with the same ny4,
ng, p, q values because of the randomness associated with the creation of the edges the
da, dg and D values can vary and as such the values of the Aggregate function (3.2) and
of the Accuracy Cost (3.3) can also vary. So a natural question to ask here is: given a
network G of ny and ng agents how can we change the edge connections between them in
order to minimize the Accuracy Cost? Let’s start answering this question by first finding
when the Accuracy Cost is minimized and under which condition.

Lemma 16 (Undirected Graph Minimum Accuracy Cost). Consider a team of ny members
of type A and ng members of type B connected based on the graph G(na, ng, q, p). The
Accuracy Cost function will be minimized when da(L* + 02) = dp(L® + 02) and will be

equal to:

Cost’ (LA + 02)(LP + 03)
oSt =
(LA + 02) + (LB + 02)

Proof. According to Lemma 6 (3.3) the team’s Accuracy Cost can be written as:

da\2 dr\2
Bepl@r0) - 9% = (2] @A+ oD+ () @+ o)

Taking the derivative of the right hand side with respect to dp, we obtain:

i o) 2d,dp A 2
S (Ex-pl(Gr(x) - y) ])——( Taayp Lt

2d2
—— B (1B +d)
(da + dp)?
To obtain the zero of the derivative, we can write:

2d,sdp
(da + dp)®

2
2d2

A+o)- ——B
L+ o)~ (v dpy?

(LP + 0p) = 0 © da(L* + 03) = dp(LP + 02)

Ay 2
dg _ L +oy

ap _ ___ ~ TPA
D 7 (LA+02)+(LB+02) and

. . LA+0?
Now replacing the value of dg with dy = daTs 2 We can see than
B
da _ LB+o2
D 2 2y -
D (LA+0y)+(LB+0p)
as:

Applying these values to (3.3) we can find the minimum Cost value

LA + 02)(LP + o2
Cost”" = (A 2A)( = 3)2
(LA + 0y) + (LP + op)

O

We can use now the fact that the minimum for any given graph G is reached when
da(LA + oﬁ) = dg(LB + 0123) to find which "moves" can be made in order to minimize the
Accuracy Cost. All the possible types of edge additions and removals in a graph are a lot
but in our case every possible move can be boiled down to only 6 categories each affecting
the Accuracy Cost in the same way: Add/Remove Edge between A types, Add/Remove
Edge between B types, Add/Remove Edge between A and B types. Because of the way
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4.2 Undirected Graph: Optimal Edges

the undirected network calculates the Accuracy Cost (3.3) each of these 6 "moves" affects
the network in the same way independently of which type A or type B nodes are affected.
An important note here is that these moves must be made with respect to the Boundary

Conditions which are:
e The Graph G must be kept strongly connected (applied during removals)
e No new edges can be added when the category is full (applied during additions)

Respecting these boundary conditions we can see that the minimum is reached when:

B 2

Where C = % is a constant since L4, LB, 04, o are all fixed values defined at the start
A

of the simulation process. As such for any initial d,, dg values after k € N "moves" of

adding or subtracting edges from the graph we are trying to reach the value:

_ da + 2(I; — ko) + (ks — ke)
dp + 2(ks — ks) + (ks — ke)

(4.2)

Where Ik = kj + g + ks + kg + ks + g with k; o = Add/Remove Edge between A types, ks 4 =
Add/Remove Edge between B types, kss = Add/Remove Edge between A and B types.
The above expression can be simplified after the observation that we can use only half of
the k; moves and still reach the same value, since the moves ko , ksa , ks g mutually

exclude each other.

Lemma 17 (Adding/Removing same Types of Edges). Through the process of trying to
reach the value C through the addition or removal of a particular type of edge, each move
is counteracted when its opposite action is taken. This means that (4.2) can be simplified

to:

_da+2u+¢

= (4.3)
dg+2v+¢

Where p,v,§ € Z and when p, v, § > O only the moves ki, ks, ks are used and when

. v, € < 0 only the moves ks, ks, kg are used, with all 22 = 8 combinations between them.

Proof. Lets write how k; and ky cancel each other out and the same holds for ks 4 and

ks,6. For any given graph initially we start with:
L da\2 dr\2
t A A, 2 B B, 2
Cost™ = (3) (L + oy) + (3) (L” + op)
Let’s start with an example: After k = 3 steps lets assume k; — ks — kg the Cost will be:

dg+2-1
k=3 _ A

oSt S = (m
_ (dA +1
"\D+2

dg+2-1
D+2+2-2

2
) (LB + o2)

)2 (LA + o3) + ( )2 (LP + o2)

2 dg+1
LA+ o2 +( B
)< ) D+2
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Now making the kg move the Cost will become:

da+1-2
k=4 A
COStk1—>k3—>k6—>k2 = ( D + 2 _ 2

da—1)\2 dg + 1\2
:( AD ) (LA+o§)+( BD ) (LB + 6d)

dg+1

2
— ) (LB+ 2
D+2—2) ( b)

)2 (LA + 03) +(

And we can see that by making the move ky the move k; has been canceled since:
k=4 _ )
COSt iy ks, = COSl, 51

This can be generalized for any possible number of k steps thus the moves k; cancel the
effect of the moves Iy and vice versa. As a result at the end only k; or ks moves remain
and can be expressed through the integer 1 = k; — Ik which is positive when k; > ks and
negative when k; < ky. Following the same logic we can introduce the integers v = k3 — ks
and ¢ = ks — kg for the moves ks, ky and ks, kg respectively.

O

Now a fair question to ask is if the ratio in (4.3) can produce any possible rational num-
ber C. Lets start answering this question by first setting aside the consideration of the
Boundary Conditions.

Lemma 18 (Ratio % € Q). For any initial da, dg € N with both da, dg being even or

both dja, dg being odd, the ratio:

da+2u+¢
dg+2v+¢

Can reach any possible C € Q*, where pu, v, § € Z.

Proof. Lets start by writing down that since C € Q© = C = p/q, where p,q € N. As
such whether p, g are odd or even they can be both turned even by simply multiplying the
nominator and the denominator with an even number for example lets say 2. As such
C = p/q = 2p/2q, where both 2p and 2q are even numbers. Now lets think about the two
cases: First case is that both dy and dg are even. In that case we can use the fact that
every even number is reachable from every other even number by adding or subtracting
2 so that:

da dA+2ﬂ 2p
_— - — = — =
dp dg+ 2v 2q

Now for the second case that both d4 and dp are odd we can start by turning ds and
dp even by adding an odd ¢ at the nominator and the denominator. This will give us as

before a ratio of even numbers and now as before we can reach C:

dA_)dA+§_>dA+§+2y__2p_
dg dg+¢& dg+&+2v 2q

O

At this point a good question to ask is how can we find the values of y, v, {. The first
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and simplest solution is an exhaustive search of all the possible p, v, € Z combinations
based on the Boundary Conditions of the graph. In order to do that we must "break down"

again the dg and dp values:
dA:dAA+dAB , dB:dBB"'dAB

As mentioned in Chapter 3 daas and dpp represent the edges between nodes of the same
type (i.e. A to A or B to B) and dup represent the edges between nodes of different type
(i.e. A to B). By doing that we can now write the Boundary Conditions as:

o 1<dil+ &< nang
e 2(ny— 1) < di¥ +2u < na(na— 1)

e 2(ng—1) < dil +2v < ng(ng— 1)

A comment needs to be made here about the lower limits of these inequalities. Firstly
the upper limits are applied while adding edges to the graph. It is easy to see the upper
limits of dap, dasa and dpg as the values they would have if the graph was complete (aka
every node is connected with every other node). It is also easy to find the lowest value for
dap as equal to 1 since we want the graph to be strongly connected. The same is not so
obvious however for the lowest values of dgg and da,a. It is theoretically possible for large
enough graphs to get daa and dpp as low as O while still being strongly connected. This
however requires a large enough value of dag. So in order to keep the boundary conditions
as simple as possible we choose to keep the lowest values of das and dgg at 2(ny — 1) and
2(ng— 1). These lower bounds for da4 and dgg make sure that the nodes of the same type
are all reachable among themselves ensuring this way a level of connectivity between the
agents of the same type. As such by using the 3 boundary condition inequalities for any
initial graph G(na, ng, q, p) we can find all the possible values of i, v, £ € Z that respect
the Boundary Conditions and try their combinations in order to reach C.

However this can be very computationally expensive especially for large graphs. Can
we apply another approach? One other approach can be a greedy algorithm which given
a graph G(na, ng, q, p) tries out iteratively the 6 possible "moves" of addition/removal of
edges and applies the one which lowers the Cost the most. This greedy algorithm will
terminate when no "move" can be applied which lowers the Cost any further. A first
observation that we can make is that the Greedy Algorithm is not Optimal since it can be

trapped close to unreachable solutions due to the boundary conditions.

Lemma 19 (Greedy Search Algorithm is Not Optimal). In order to find the steps p, v, £
that minimize the Accuracy Cost (3.3) the Greedy search Algorithm is not Optimal since it
can be trapped close to an optimal solution without ever reaching it due to the boundary

conditions of the problem.

Proof. Lets prove this with an example: Lets assume we have a network of ny = ng =5
type A and type B agents with each having Losses: L = 0.1 and L? = 0.2 with no noise

oa = op = 0. The optimal ratio that needs to be reached in order to minimize the Cost is:
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C = da/dg = Lg/La = 2. In the case that the network is complete (p = q = 1) aka every
node is connected with every other node directly then the steps that the Greedy Algorithm
takes are the following:

;' _(a+np)(u+ng—1)/2 45 10k 45 5k 40 _

it = — = — —=2=C
dB (nA+ nB)(nA+ ng — 1)/2 45 25 20

In the case however that the network is disconnected (p = 1, g  0) aka every node of the
same type is connected but the two different types of nodes are connected only with 1
edge so that the network is strongly connected, the steps that the Greedy Algorithm takes
are the following:

di"  (n)(na-1+1)/2 21 sk 21

dit ~ (ng)(ng— )+ 1)/2 21 — T r2FC

As can be seen in this case the Greedy Algorithm is trying to reach the ratio 20/10.
However when it reaches the ratio 21/11 it cannot do the move kg because removing
the connection between the type A and the type B agents will disconnect the network
(boundary condition). As a result it terminates in a sub optimal solution since from the
ratio 21/11 no moves are beneficial, from it’s myopic point of view, in lowering the Cost.
However if the algorithm was able to add edges in the graph it would be able to reach the
ratio 40/20 which, as we saw from the case that the initial graph was complete, is an

optimal solution.
O
For small graphs where the boundary conditions are very restrictive or for irrational
values of C (might happen if we choose irrational LA LB, 0a, 0g) the minimum value cannot

be reached. However this does not pose a problem because we can show that the closer

we are at the minimum (4.1) the less is the values of the Accuracy Cost.

Lemma 20 (Accuracy Cost Proximity). For the Accuracy Cost function of the Undirected
Graph (3.3) with da,dg > 0 as the Euclidean distance of a point (d4, dg) to the line

da(L? + oﬁ) =dg(LB + oﬁ) decreases, the value of the Cost function Cost” also decreases.

Proof. The Accuracy Cost of the network can be written as:

da\2 dg\2
Cost = Bxpl(@r(x) - 1 = () @t + o) + (L) @ + )

Given now that d,, dg > O and also that o4, o > O, by considering d,, dg as continues
and not integer values we introduce the Euclidean distance d from a point (da, dg) to the
line d(L? + oﬁ) = ds(LB + 0123):

| |da(L? + 02) — dp(LE + 02)|

A 2 B 2
\/L +0A+L + og

As d decreases, it indicates that the point (da, dp) is getting closer to the line da(LA+ aﬁ) =

da(LB + 0123). When d = 0 we have shown in Lemma 16 that the Accuracy Cost function
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is minimized. As such when d decreases, the numerator |dA(LA + oﬁ) —dg(LB + 0123)| de-
creases. Consequently, Cost? decreases because the ratios da/D and dg/D deviate less

form their optimal values, which are attained at da(L* + 02) = da(L? + 63).
[}

Based now on Lemma 20 we can posit that the closer we are to the C value the closer
we are at the minimum. Because of this even when the C value cannot be reached we
know that the Accuracy Cost minimum corresponds to the ratio da /dp that is the closest
to C. This can be seen visually by plotting the graph of the Accuracy Cost function in
Figure 4.4. Moreover from our simulation results we can see that for reasonably large
graphs most of the time even the Greedy search Algorithm can reach values very close
to the minimum, while the method of exhaustive search can tell us if the minimum is

achievable and exactly under which steps.

dB

Figure 4.4. Accuracy Cost function for the undirected graph with L* = LP = 1 and
oa = og = 0. We see that the minimum values are in the line dy = dg since: C = LA/LB =1

We can also answer this question from the point of view of the Disagreement Cost (3.5).
So now given a network G of ny and ng agents how can we change the edge connections
between the nodes in order to minimize the Disagreement Cost? The answer turns out to

be much simpler compared to the Accuracy:

Lemma 21 (Undirected Graph Minimum Disagreement Cost). Consider a team of ng
members of type A and ng members of type B connected based on the graph G(na, ng, g, p).

The Disagreement Cost is minimized by removing as many of the graph’s edges as possible.

Proof. According to Lemma 9 the team’s Disagreement Cost can be written as:

Cost? =

A B 2 2 2 2
= s (dAB(L +L” + 04 + 0g) + daaoy + dBBoB)
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Taking the derivatives with respect to daa, dgp and dsp, we obtain:

0 202
9 (cost?)= — 2% ¢
ddaa (na + ng) B

) D 203
s )= Gy s~

9 (cost 2(LA + LB + 02 + 02)
ddap ( o2 ) - (na + np)'*4

As such removing edges of any type always reduces the value of the Disagreement Cost.
O
As expected adding edge connection in the graph, based on how we defined the Disagree-
ment Cost, will make CostP get higher. We must however keep in mind that for our
analysis to work the graph must be kept strongly connected. So there is a lower limit
to the amount of edges that can be removed in order to reach the minimum value of the

Disagreement Cost.

So what occurs when we combine the Disagreement with the Accuracy Cost? The total

Cost, denoted as CostT can be written as:

Cost! = A x Cost” + (1 — A) x Cost?

2
=AX (|T|—1+ﬁ (dAB(LA + LB + O’i + 0123) + dAAGi + dBBOI%))

2 2
daa + dap dpg + dap
+(1-A)x (LA + 02) + BB (LE + o?)
daa + daa + 2dap daa + daa + 2dap

For this more complicated case we choose to study the model without any noise on the
outcome functions (04 = og = 0). As such from now on we will study CostT in it’s

simplified form as:

2(LA + LB)
|T|1+ﬁ

dan + d 2 dpp + d 2
- it i)

daa + daa + 2dap daa + daa + 2dap

dAB)+(1—ﬂ)><(LA(

Let’s begin by taking the derivatives of Cost? with respect to daa, dpp and dag:

2(dp + daB)

9 (CostT) =(1-)X (LA(dAA + dap) — LP(dpp + dAB))

odaa (daa + dpg + 2dap)3
2(daa + dap) B A
CostT) = (1 - A) x LB(dgg + dap) — LA(daa + d
adBB( os ) (1-7 (dAA+dBB+2dAB)3< (dpg + dap) (daa AB))
2(dpp — daa) A B 2(L* + LP)
CostT) = (1 - A) x LA(dpa + dag) — LB(dgp + dap)) + Ax —u—"~
adAB( 0s ) (1-7) (dAA+dBB+2dAB)3( (daa + dap) (des AB)) A s

We can observe from these results that for non-limit values of A, i.e. A € (0,1), the
above three derivatives cannot be equal to zero at the same time. This it true because
the derivatives of das and dgg are zeroed out only when: LA(daa + dag) = LB(dgg + dap).
However when this happens the derivative of dp is strictly positive since it is equal to:

A B
AX 2(|LT|1++§ ) > 0. We remind the fact that: o4, o5, ||, daa, dpg, dag > O.
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Based on this observation we can deduce that the minimum for the Total Cost function
will be at the bounds of the daa, dgg and dp values. In order to make clear where those
minimums are, lets run some simulations. We will start on Figure 4.5 by plotting on 3D
space with (x, y, z) coordinates being the values of (daa, dgg, dag), the 150 points where
Cost” has the lowest value. Let’s begin with the case where A = 0, i.e. there is no
Disagreement Cost and also: LA = 0.1,LF =0.2,|T| = 14, 8= 1.

Figure 4.5. CostT(daa, dgp. dag) plot with red colored points where the Total Cost function
is minimized. LA =0.1,LB=0.2,|T| = 14,8=1 and A = 0.

Figure 4.6. CostT(daa, dpp. dag) plot with red colored points where the Total Cost function
is minimized. L* = 0.1,LP =0.2,|T| = 14,8=1 and A = 0.001.
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From Figure 4.5 we can clearly see that all the minimum points of just the Accuracy
Cost function fall on the plane L*(daa + dag) = LB(dgg + dag). This plane is equivalent
with Figures 4.4 line: (L* + 02)da = (L® + 02)dg. Now what will occur if we introduce
Disagreement in the model, i.e. a small A > 0 value? While keeping L4, LB, |T|, 8 the same
and changing /1 from: A = 0 to 7 = 0.001, we can see in Figure 4.6 that the 18 points
where CostT has the lowest value stay on the plain LA(das + dag) = LB(dpp + dap) but
move to where the value of dag = 1. We can show that this result holds theoretically

using the Karush-Kuhn-Tucker conditions:

Definition (KKT Conditions). Consider a nonlinear optimization problem with differen-

tiable objective function and functional constraints in the form:

min_f(x)
h(x)=0, i€{l,...,r}
gi(x) <0, je{l,...,s}

The KKT conditions at point x are given by:

-Vfx) = Z A Vhi(x) + Z uiVgi(x) ("Stationarity")
i=1 J=1

AeR, =0, Vi j ("Dual feasibility")
K- gi(x) = 0, Vj ("Complementary slackness")

We can draw an intuative understanding of how the KKT conditions generalize the method

of Lagrange multipliers by allowing for inequality constraints from Figure (4.7).

Figure 4.7. KKT Condition Inequality constraint diagram for optimization problems
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Applying the KKT condition in our case we have that:

minxf(x) = COStT(dAA, dBB’ dAB)
g1 = 1- dAB < 0
go =dap—nang <0
g3 =2(ng—1)—das <0
s.t.
gs =daa—ma(na—1)<0

gs =2(ng—1)—dpg <0

g6 = dpp—np(ng—1) <0
From Stationarity we get the following 3 equations:
e
ai (CostT)] o= pa

ﬁ (CostT) = |Us — Us
adiB (COStT) 1 — M2

Also from Dual feasibility we know that all y; values are non-negative while from the 6
Complementary slackness equations, we can choose whether p; or g; equals zero. We
can make two observations using the Complementary slackness equations. Firstly all
the Lagrange multipliers y; cannot equal to zero since in that case we get the equation:
VCostT = 0, which as we have discussed before does not have a solution. As such at
least one p; must stay positive. Furthermore the pairs of Lagrange multipliers: (i, u2) or
(ps, Ha) or (us, us) cannot both be equal to zero at the same time. This is true because for
example when: ps = pug = O then from the Complementary slackness equations we get
that: daa = 2(ny — 1) and das = na(na — 1). In order for this to hold ny must be equal to
2 which restrains a parameter we want to be freely adjustable (the number of type A or B
agents). Similar restraining results hold for the other two pairs (u;, p2) and (s, ps), which
shows that these pairs of Lagrange multipliers cannot both be positive at the same time.
This now leaves us with a specific number of y; combinations that are applicable, one of

which is:

Hs = s = ps = e = 0 = L*(daa + dap) = LP(dpp + dap)
9 2(LA + LB)
s COStT = X———m—— = -
adAB ( ) ﬂ |T|1+ﬂ 251 Ho
2(LA+LB)
T

where the value A X is positive and since both y;, po are non negative and at least

one of the two Lagrange multipliers must be equal to zero then:
H2=0=pu >0=>dap=1

As such for this case of the Lagrange multipliers we get the result hinted by the simulation
of Figure (4.6) where the minimum is on the plane L*(das + dag) = LB(dpp + dap) where

dap is minimized i.e. dag = 1. We can check one by one the other combinations of
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u; and find more points (daa, dpp, dap) that satisfy the KKT conditions, however this is
not necessary since we know that this combination is the one that minimizes the Cost”
function. We can conclude this because: Cost’ = A x CostP + (1 — A) X Cost? and it is
true that: min(CostP) = dag = 1 and min(Cost?) = LA(daa + dag) = LB(dgg + dag). Thus

while respecting the KKT condition this result gives us the true minimum.

4.3 Pyramid Graph: Optimal Positioning

Let’s now consider a new problem that arises from the introduction of the pyramid
graph in the base model. Unlike the undirected graph analyzed in the previous section,
the pyramid graph does not allow the altering of the edges due to it’s rigid structure.
Therefore, our scope for adjustments is limited to the positioning of agent types A or B
within the network. So a natural question to ask is: given a pyramid graph G of ny and
np agents what is the optimal way to position them in the pyramid in order to minimize
the Accuracy Cost? Let’s start answering this question by first finding when the Pyramid

graph Accuracy Cost is minimized and under which condition.

Lemma 22 (Pyramid Graph Minimum Accuracy Cost). Consider a team of ngy members of

type A and ng members of type B connected on a full pyramid graph. The Cost function
? Y
i

will be minimized when Y._, insn = (LB+02)/(LA+ 0% +LP + 02) or equivalently ! _, i’s, =
(LA + of\)/(LA + oﬁ + LB+ oé) and will be equal to:
(LA + 02)(LB + ¢2)
Cost* = a)( B 4.4)

(LA + 02+ (LB + oD
Proof. According to Lemma 15 (3.9) the team’s Accuracy Cost can be rewritten as:

? 2 ? 2
Cost? = Z insn| (LA + oﬁ) + (Z Qﬁsn] (LB + 02)
n=1

2 ?

2
(L + oﬁ) + (1 - Z insn) (LB + og)
n=1

2 0

(LA +os+LP+0p)-2 [Z insn] (LB + 02) + (Lg + 0})

n=1

Note that since LA, LB, 04, og > 0, the above is an always positive quadratic polynomial in
Zflzl insp With a positive leading coefficient. Taking the derivative of the right hand side

with respect to Zfl:l inSn, we can find the minimum:

el (CostA)

n=1

i
——— =2 [Z insn) (LA + 02 + LB + 03) — 2(LB + 02)
8( n=1 lnsn)
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To obtain the zero of the derivative, we can write:

?
2 [Z inan LA+ +LP+03)-2(LP+02) =0
n=1
0

Z insn = (LP + 03)/(L* + 05 + LP + o2)

n=1
Following the same steps but solving for Zfl:l i/ s instead of Zflzl inSn, we can find that
the minimum is reached when: 3./, /s, = (L* + 02) /(LA + 02 + LP + 02). Now replacing

these values to (3.9) we can find the minimum Cost as:

. (LA + oi)(LB + oé)
Cost’ = ——— B, 2
(LA + 03) + (LP + o)

O

Lets now consider what this result tells us for the optimal distribution of type A and
type B agents into our hierarchical structure from an Accuracy point of view. Lemma 22

shows that in order to reach the Accuracy Cost minimum we must solve the equation:
i1S] +igSy + -+ + i1 Sp_1 + ipsp = (LB + 02) /(L* + 0> + LB + 02)

where LA, LB, g4, o are known constants initialized at the start of the simulation and the
values of s, can be found using Theorem 3 based on the k, ? values of the pyramid and the
parameter y. As such this equation has ? unknowns which are the values of i, € N. The
i, are bounded and can take the values: i, = {0, 1}, iy = {0,1,...,k}, i3 = {0,1,..., K>},
-1 ={0,1,..., K2}, p,={0,1,...,kI"1}. Also it must hold that: ij + iy + -+ i = na
as well as that: ij + i + -+ + i, = ng. Because of these constraints this equation can
have many or no solutions. There can be no solutions in the case that the parameters
LA, LB, 04, og and s,, cannot produce any combinations of i, which can reach the target, as
well as many solutions in cases where different combinations of i, can solve the equation.
For example in the case of a pyramid with hyperparameters: k = 3, = 3,y = 2 and
Losses: L2 = LB, while 0, = og = 0, there are 4 combinations of i, values that fulfill the
requirements of equation: Zﬁ:l insn = (LB+ og) J(LA+ o§+LB + o%) and these combinations
are: (ij =0,ip =2,i3=5),({; =0,ip =3,i3=0), (i1 =1,ip =0,i3=9), (i = 1,ip = 1,i3 = 4).
Now a good question to ask is how can we find these i, optimal values that minimize
the Accuracy Cost. To help us answer this question we must first observe that for the
pyramid graph occurs something similar with the result of Lemma 20 of the undirected
graph. That is the fact that the closer the prl insn gets to the new target value: C =
(LB + o]%) /(LA + 03\ + LB+ og), the closer we are at the Accuracy Cost minimum. This can
be easily seen from Lemma 22 (4.4) where the form of Cost” can be written as an always
positive parabola. As such even if the target C value cannot be reached from the sum:
Zflzl inSn, we know that the best combination of i, values is the one that reaches the

closest to it.

Based on this observation we can again propose, as in the previous subsection, one
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exhaustive and one greedy algorithm in order to find the i, values. The exhaustive search
algorithm simply checks all the possible combinations of i,, which are bounded and can
take the values: i; ={0.1}, ip = {0.1.....k}, i3 = {0, 1,.... K%}, ... . i1 ={0.1,.... k"2,
iy ={0,1,..., k! !}. By knowing the s, values from the pyramid’s hyperparameters we can
check all the i,, combinations in the sum: Zf;zl inSn, and simply choose the one that is the
closest to the target C. Again however we can see that this method is very computationally
expensive especially in the case of pyramids with large values of ¢, because for the last
layers the values of i,, get exponentially large.

To address this we can propose a greedy algorithm which is different from the one
used in the previous subsection. This time we can use the fact that the influence of the

agents in the top layers is bigger than the influence of the agents in the bottom layers:
S] >S9 >S83>:*>S8p9>8-1>8p

The greedy algorithm designed for approximating the target sum C works by iteratively
selecting integer coefficients i, for a series of known values s, such that Zfl: 1 inSn is
as close to C as possible without exceeding it. The algorithm begins by initializing the
sum S to zero. It then processes each coeflicient i, starting from i{; and ending with i,.
For each i,, it increments i, from zero, adding it’s corresponding s, to S as long as the
resulting sum does not exceed C and i, remains within its bounded range. If the sum
S surpasses C after an increment, the algorithm decrements i, by one and adjusts S
accordingly. This process ensures that the sum S approaches C as closely as possible
without overshooting. Finally, the algorithm returns the set of coefficients ij,i,..., 1
which represent the closest possible approximation to the target sum C using the given
values s,. This approach leverages the properties of greedy algorithms by making locally
optimal choices at each step. We can think of this approach as beginning with large steps

when using s;, s2 and as we get closer to the target C, we use smaller and smaller steps.

s1=1/5
c=1/2

s3=1/30
A

s2=1/6

Figure 4.8. Example of applying the Greedy Algorithm in the case of the pyramid graph
with hyperparameters: k = £ = 3,y = 2 and L* = LB, 04 = og = 0. In this case we can see
that greedy does find one of the four optimal solutions

Conjecture 1 (Greedy Algorithm is Optimal). In order to find the steps i, that minimize
the Pyramid graph’s Accuracy Cost (3.9) the proposed Greedy Algorithm is Optimal and
does find one correct set of i, values if and only if C is reachable. C is defined as reachable

when there exists at least one combination of i, that satisfy: Zf;zl insn =C.
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Intuition It is easy see from Theorem 3 (3.6) that the step sizes: ss,S3...S)-1,S; are
perfect divisors of one another. To be exact: s;,_; contains y + k steps of size s;, sp_o
contains y steps of size s)_;, s;_3 contains y steps of size s;_5. This pattern continues
up to: sy which contains y steps of size s3. The only step which breaks this pattern
is s;, which can easily be written as an linear combination of the next £ — 1 steps, i.e.
S} = asg + bsg + -+ + cs;. These observations give us an intuitive understanding of why
when we choose the target to be reached with a combination of sy, s3 and s5 steps, the

greedy algorithm is able to reach it with a combination of s;, sy and sg steps.

The following pseudocode describes the greedy algorithm for approximating the target sum
C using the provided values s, and integer coefficients i,. Running many simulations with
many different pyramid hyperparameters Ik, £,y and many different reachable targets C

we have consistently confirmed Conjecture 1.

Input: target C, values s, parameter k, length ?
Output: coeflicients iy, iy, . .., iy or None if no solution is found
Initialize solution < [0, 0, ..., 0] (length £)
Initialize current_sum < O
Initialize € « 1 x 107°
fori=0tof—-1do
forj=0to ki— 1 do
if current_sum + s; < C + ¢ then
solution[i] « solution[i] + 1
current_sum <« current_sum + s;
if |current_sum — C| < € then
return solution
end if
end if
end for
: end for
. if |current_sum — C| < ¢ then
return solution
: else
return None
: end if

© ® N o gk W
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2o 9 ® N o gk 2o

We can also answer this question from the point of view of the Disagreement Cost
(3.5). Again we keep the definition that in our network model, Disagreement happens
only between the agents that are directly connected in the graph i.e. they have an edge
that connects them directly. As such the results of Lemma 9 hold for the pyramid network

and the Disagreement Cost can be written as:

2
D _
Cost™ = T

(dAB(LA + LB + O'i + OI_%) + dAAO'i + dBBO'IQ—),)

Now in the pyramid network structure we must remind again that we do not have the

freedom to directly change the edges by connecting or disconnecting specific nodes since
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the network structure is rigid and predetermined. We have the power however to choose
in which positions agents of type A and type B go to. As such by optimally choosing the
positioning of the agents in the pyramid we can adjust the values of daa, dpg and dag.
Let’s think of the case where there is no noise in the predictions of the agents and as
such: 04 = og = 0. In this simplified case only connections between nodes of type A and
type B create Disagreement Cost and as such we must minimize the value of dag. The
obvious solution that minimizes the Disagreement Cost in this case is when there are
only type A or only type B agents in the pyramid, however what happens when we must
position ng > O type A and ng > O type B nodes in the pyramid? The answer is that in
order to keep the Disagreement Cost at a minimum we must position the agents of the
same type at sub-pyramids, thus minimizing the value of dsg. This can be seen visually

for different values of ny and ng in Figure 4.9

0.000000 0.002367 0.004734 0.004734

M A4

0002367 0.004734 0007101 0.007101

Figure 4.9. Optimal Positioning of type A, B agents in k=0=3 pyramid with only Disagree-
ment Cost (A1 = 1). New na agents position themselves inside a sub-pyramid

So now for the pyramid graph what occurs when we combine the Disagreement with

the Accuracy Cost? The total Cost, denoted as Cost! can be written as:

Cost? = A x Cost? + (1 — A) x Cost?

2
=X (|T|—1+ﬁ (dAB(LA + LB + Oi + 01%) + dAAO'i + dBBO']_%;))

4

2 ? 2
+(1-A)x [Z insn] (LA + 02) + [Z i;sn) (LP + o)

n=1 n=1

For this more complicated case again we choose to study the model without any noise on

the outcome functions (04 = og = 0). As such from now on we will study CostT in it’s
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simplified form as:

2 2
2(LA + LB L .
Cost” = A x (%dﬁ) +(1-A)X Lt [Z insn] + LB( i;zsn
n=1

n=1

Right away it is clear that for the pyramid graph we cannot try to find a theoretical solution
as we did in the previous sub-section for the undirected graph. This is because we are
not able to take derivatives of Cost! with respect to daa, dpp, dap since now the Accuracy
Cost term only considers the layer positioning of the agent types (i,) and not their edge
connections. So we choose to deploy a pure algorithmic approach for the pyramid graph’s
Total Cost. We will deploy 3 algorithms: an Exhaustive, a Greedy and a Local Search.
The Exhaustive algorithm explores all possible 2" type combinations, where n is the
number of nodes in the k, £ pyramid. For each combination, it calculates the correspond-
ing CostT and selects the one with the lowest value. As expected, this approach becomes
very computationally expensive as the pyramid graph grows larger. The Greedy algorithm
is the least computationally demanding. It starts by assigning the same type to all nodes
in the pyramid. Then, from top to bottom, it attempts to change the type of each node
one by one. Each change is kept only if it reduces the CostT. It is important to note that
this greedy algorithm differs from the one described for the Accuracy Cost and shown in
Figure (4.8). In this case, we do not have a target value C to indicate when we overshoot,
so this greedy algorithm is not optimal, even when /1 = O (i.e., when only the Accuracy
Cost is considered). The Local Search/Swaps algorithm begins by randomly assigning
types to all nodes in the pyramid graph. It then iteratively improves the assignment by
considering pairs of nodes with different types. For each pair, the algorithm swaps their
types and calculates the new cost. If the swap results in a lower cost, the change is kept;
otherwise, it is reverted. This process continues until no further improvements can be
found. The swaps algorithm is more computationally expensive compared to the greedy

algorithm but less so compared to the exhaustive search.

Cost vs Lambda for Exhaustive, Greedy, and Swaps Algorithms Cost Ratio vs Lambda for Greedy and Swaps Algorithms
Pyramid: k=3, 1=3, y=2 Pyramid: k=3, =3, y=2

0.07

=~ Exhaustive =~ Greedy/Exhaustive
== Greedy —#- Swaps/Exhaustive
0.06 =& Swaps === Qptimal {Ratio=1}

0.05

0.04

Cost Ratio

Cost

0.03

002

001

0.00

00 02 04 06 08 10 00 0z 04 06 08
Lambda Lambda

Figure 4.10. Cost comparison and cost ratio for Exhaustive, Greedy and Swaps algorithms
Jfor different values of A. Pyramid parameters: k=3,0=3,y=2
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Cost vs Lambda for Exhaustive, Greedy, and Swaps Algorithms
Pyramid: k=2, |=4, y=2

Cost Ratio vs Lambda for Greedy and Swaps Algorithms
Pyramid: k=2, |=4, y=2

007

0.06

0.05

0.04

—&— Exhaustive
== Greedy
—& Swaps

120

o

—&— Greedy/Exhaustive
-~ Swaps/Exhaustive
=== Optimal (Ratio=1}

Cost

Cost Ratio

003

=

0.02
105
001

000 100

00 02 04 06 08 10 00 02 04 06 08
Lambda Lambda

Figure 4.11. Cost comparison and cost ratio for Exhaustive, Greedy and Swaps algorithms
Jor different values of A. Pyramid parameters: k=2,0=4,y=2

The performance of the three algorithms is illustrated in Figures (4.10) and (4.11). These
figures compare the cost values obtained by the Exhaustive, Greedy, and Swaps algo-
rithms across a range of /1 values. In both figures, the Greedy algorithm demonstrates its
effectiveness particularly for /1 values close to O or 1, where it closely approximates the re-
sults of the Exhaustive algorithm. This suggests that the Greedy algorithm is well-suited
for scenarios where either the Accuracy Cost or the Disagreement Cost predominates.
Conversely, the Swaps algorithm often outperforms the Greedy algorithm at intermediate
A values, showcasing its strength in balancing both costs. However, it is crucial to note
that the performance of the Swaps algorithm is highly sensitive to the initial random as-
signment of node types in the pyramid. Different random initializations can lead to varying

results, which highlights the algorithm’s dependence on its starting configuration.

007

Cost vs Lambda for Greedy and Swaps Algorithms
Pyramid: k=3, 1=5, y=2
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Cost Difference vs Lambda for Greedy vs Swaps
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Figure 4.12. Cost comparison and cost difference for Greedy and Swaps algorithms for
different values of A. Pyramid parameters: k=3, =5,y =2

Figure (4.12) focuses on a larger pyramid structure with k = 3, # = 5, resulting in 121

nodes. Due to the significant computational demands, the Exhaustive algorithm was not
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feasible for this case, and thus, only the results from the Greedy and Swaps algorithms
are presented. Remarkably, both algorithms yield very similar results, as evidenced by the
left plot where their lines almost overlap. The right plot, which shows the cost difference
between the two algorithms, indicates that their differences are on the order of 107, This
negligible difference underscores the efficiency of both algorithms in approximating the
minimal CostT. For example, at A = 1, where only the Disagreement Cost is considered,
both algorithms achieve values close to zero. The Greedy algorithm, in particular, reaches
exactly Cost” = O since it starts with all nodes assigned the same type, reflecting its

effectiveness in this limit case.
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Chapter E

Discussion

5.1 Future Work & Limitations

Building on the research presented in this thesis, several avenues for future work can
be suggested to enhance and expand these findings. Firstly, the algorithms proposed,
although generally effective for large graphs, can perform poorly for specific hyperparam-
eter values, deviating significantly from the optimal value. Future work should focus on
developing more sophisticated algorithms to achieve optimal positioning in the pyramid
and optimal edge selection in the undirected graph. Additionally, proving Conjecture 1
remains a critical task for future research.

Moreover, our current models use fixed values for the weights in the edge connec-
tions between nodes, with the transition matrix T being constant in both cases. Future
research should explore integrating learning algorithms that allow the weights to adjust
dynamically as rounds of DeGroot or other learning processes occur. This approach would
result in a more dynamic graph, better reflecting the evolving relationships and interac-
tion dynamics within teams. Beyond the simplistic DeGroot learning process, where all
nodes converge to the same final opinion, future work could investigate other learning al-
gorithms. For instance, applying the Friedkin-Johnsen (FJ) model, where nodes converge
to different opinions, could provide a more generalized approach to the Disagreement
Cost term in the Total Cost function compared to our current model. This would enable
a richer understanding of opinion dynamics within teams.

Despite the advancements and findings presented in this thesis, several limitations
should be acknowledged. One critical limitation is the fundamental assumptions of the
base model presented in [9]. The base model assumes distinct features of a prediction
task that are uncorrelated, so that each type of agent (A, B, or potentially more types)
considers a specific subset of these features. However, in reality, it is more plausible
that there is some mixture of knowledge between different types of agents. This raises
questions about the realism of the model, as it may not fully capture the complexity and
interdependence of features in actual prediction tasks.

Another significant limitation lies in the intrinsic nature of modeling social environ-
ments. Unlike physical or biological sciences, which are deterministic, social sciences
involve human behavior, making them more stochastic and probabilistic. This intro-

duces a fundamental question: how do we know if teams actually operate in the manner
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our model suggests? Proving the validity of our model requires empirical experiments,
which present their own set of challenges. Determining which teams to study, the size of
these teams, and the appropriate methods for experimentation are complex issues that
must be addressed to validate the mathematical models beyond their theoretical elegance.

In summary, this thesis has provided significant insights into network team growth
dynamics through the development and analysis of various algorithms and models. How-
ever, the limitations discussed highlight the need for caution in interpreting the results
and underscore the importance of further empirical validation. Future work should aim
to address these limitations by developing more robust algorithms, incorporating dynamic
and adaptive modeling techniques, and exploring a broader range of learning processes.
Only through such continued efforts can we hope to fully understand the complex and
nuanced nature of team dynamics and opinion formation. By advancing the research
in these directions, we can move closer to models that not only exhibit mathematical
rigor but also capture the intricate realities of social interactions and team behaviors.
This ongoing quest for understanding will undoubtedly contribute to more effective team

management and optimization strategies in various organizational settings.
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Kegpalatro E

Extetapévn IepiAnyn

Y& auto 10 KepdAailo S9a mapoucidcoulie ota eAANVIKA td PACiKA ArOTEAEoRATA TOV KE-
@alaiov 3 kat 4, IoU AnoteAovUV Ta KAVOoTONd AMoTEAéopata auUtng TS SUTAOPATIKAG £pya-
olag. X16X0g pag eival va cuvoyicoupe ta KuUpla supnpata, Anppata Kat de@prjpata mou
avartuyxOnkav kat anodeixdnkav ota nponyovupeva Kepaiaia, Xepig va enavalaBoupe 1o
Baowkoé poviédo [9] to omoio rapoucitacape ouviopa oto KepdAaio 2. ITapdéro rou Sa ava-
pepBovpe ota Baoikd onpeia kat ota anotedéopard OV Pabnpatikov pag npooeyyioenyv,
bev 9a favaypdwoupe tg arodeifelg, kabwg autég sival (6N Katayeypappéveg avalutika
ota mponyoupeva kKepddaia. Me autdv tov TpOIIo, MPOoHEPOUNE Pid CUPRITUKVOUEVT EITL-
OKOINOT TOV VEQV YVOOEDV 0Td EAANVIKA, §1atnpoviag v AR P EMIOTHOVIKI] TEKPNPIO0T)

010 KUP10 oOPa tng d1atpibrg.

6.1 Oswpntuirég Enckrraosig

Znv Baon twv 9empnTIKOV 1ag EMEKTACERV £§eTdoape Kat avarrtusape §Uo dlapopetikég
dopég ypapnuatmv, Tov tuxaio pn Kateubuvopevo ypdgo katl tov rmupaptdiko ypago. Et-
OAyoviag autd td ypadriata oto ap)XKo PoVIEAO oXNIATIopoU opddag, to oroio apyikd dev
neplAapBave kapia t€tola dopr|, PIopEcape va yevikeuooupe tn diadikacia oxnuatiopou
anoyng pEow g ekpadnong DeGroot [12]. ErmmAéov n £10ay®yr) AUTOV TOV UTOKEIIEVOV
yPadnpatewyv oto Baciko poviedo alAddetl tov Tporno uroAoyiopou g diapeviag petady tov
MAKIOV NG 0Padag, 0TS KAt TV OUVOAIKN daroyn g opadag. 'E1ol 1o ouvoAikd Kootog
(CostT) piag opdadag yevikeverte.

To ouvoAik6 kootog (Cost?) armotedeital and 6Yo Baoikd pépn: T0 KOOTOg Slapeviag
(CostP) ka1 1o kdotog axpiBelag (Cost?). Autd ta 6o pépn ocuvbudioviatl e £vav mapdyovia
A, o oroiog Kupaivetat petady O kat 1, kat opidet tn Xtk faputnta KABe KOOTOUG ©G ITIPOG

10 0UVOAKO. O GUVOAIKOG TUTIOG TOU KOOTOUG Sivetal amo tr) oXEor) :
Cost! = A x Cost” + (1 — A) x Cost?
Ag peletfjooupe twpa neg aAAddel Kabe epEPOUG 0POG Yia TIG TIEPUTIOOELS TV dUO0 ypadn-

HAT®V I[TOU TIPOTEivape, SEKIVOVIAG arod tov Tuxaio pn kateubuvopevo ypdgo.
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O tuxaiog pn kateubBuvopevog ypadog, rou da tov cupBoldicoupe wg G(ng, ng, p, q),
dnuoupyel g akpég petady v KopBwv tou avefdaptta pe mbavomta 0 < p < 1 yua
KopBoug 1d1ou turou kat 0 < g < 1 yta kopBoug dragdopetikoy turou. AAAddoviag Tig
THEG TV P KAl g UITOPOUHE vd MPOCAPHOC0ULE T ouvbeopotnta petaiy kopbwv id1ou kat
Slapopetikou UMY, Kabe xopBog apyikda éxet pia amoyn by(0) = fAB(x) Bdon tou tirou
10U Kal péow g dadikaoiag expdOnong DeGroot Aot o1 KOpBo1 CUYKAIVOUV OE Pla TeEAKD
KO1vI] aroyr) 1ou 9a opiooUpE ®G T OUYKEVIPATIKI] ATIOWT) QZA’”B (x). Kavovtag xpnon piag
OUYKeKPIEVNG ekBOXTG ekpaOnong DeGroot propoupie va arodei§oupe 0T 1 CUYKEVIPWTIKY)

aroyn g opadag yla tov pn kateubuvopevo ypdgo eivat:
da dp
2= (e (T
e = (2 )00+ (S0

orou da = X ien, dis dB = Xjen, di ka1 D = da +dp, pe Na, Np va eivat ta oUvoda 1oV KopBmv
tuniou A,B kat d; ot Babpoi tov kopBav autev. Aneubeiag Propoue va mapatPrO0UE TG
1] EMEKTAOY] Pag aAAAddel Tov armAo UTIOAOY100 OUYKEVIP®IIKIG YVOHNG TTIOU XPNOTHOIIOEL TO
Baowko poviedo. YmevBupidoupe €d® nwg oto PBacikd poviédo [9] 1 CUYKEVIPOTIKY YVOUD
g opadag unoAdoyiletat Baon tou Tullock Aggregate [10] kat 6ivetal and v oxéon:

na ng
2 (x)=|—2—|x+|[—— | P
nans(X) (anrng)f (x) a4 S x)
OTIOU Ny, N 0 ApP1ONOg TV KOPBwv TUrou A kat B kat a € [0, 0). Zinv mepinmtaor) tou
tuxaiou P Kateubuvopevou ypdgou Aotrov £xouv avuikataotadel ta ny, ng pe toug fabpovg
1OV KOPBmV dy, dg. Xproponoi®viag autr)V T OUVAPTIOT) UITOAOY10H0U NG OUYKEVIPWTIKIG

YVOUNG, NITOpoUE T)pa va urtodoyicoupe to véo Kootog AkpiBelag to oroio givat:
da\2 dg\2
Cost” = (BA) (LA +02) + (BB) (LE + o2)

Ag ouveyiocoupe avadvoviag rwg aAAddel 10 KOotog Aladpeviag pe v €10ay®yn Tou U-
nokeipevou ypagou. Xpnowporowviag ) Stadikaoia ekpadnong DeGroot, 6Aot o1 maikteg
@Tavouv oty 161a TeAKY) Ao Katl auto apy1kda propet va dewpndel nog akupmvet ) Sa-
eovia eviog g opadag. Qotdoo, Yéhoupe va datnpriooupe v 1p1Br) PeTaiy T0U KOOTOUG
AxpiBelag Kat tou Kootoug Atadprviag oneg Kat oto Paociko poviédo [9]. Mia mpoogyyion
yla va erteuxBel auto eival va opiooupe OtTL, yla 10 EKIETAPEVO POVIEAO pag, 1 dado-
via epgavidetal povo petadl nMaKi®v mou eImMKOVEVOUV Ajeod, TO OI0i0 OTOV UTTOKEIIEVO
ypado onpaivetl ot ot KopBot toug ouvdéovial aneubeiag pe pla akpr. Yiobetoviag autod to
KP1IP10, PUITOPOULE VA EI0AYOUHE TOV 0pO0 TOU KOOoToug Aladmviag og:

Cost? =

2
= |T|—l+j3(dAB(LA + LB + O% + O%) + dAAO% + dBBOg)

orou dy = daa + dag Kat dg = dpg + dap pe daa, dgg va oupBoAiouv TG akpég petagu

KOpBev 161ou turou (6ndadr A pe A 1 B pe B) kat dag va oupBoAilel tig akpég petadu

KOpBwv dlapopetikoy turou (6nAadn aro A oe B 11 aviiotpodeg).
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6.1 @swpnukég Enexkraoelg

Ag e€etdo0UE TOPA 1) CUPTEPIPOPA TOU SIKTUOU G(Mna, Np. P, q) @S Tipog 1o Cost? kat to
CostP otig U0 optlakég Tou meptuTtooelg. AUtég etvat yia: p = g = 1 (mAfpng ypddog) érou
0lo1 o1 kopBot eivat ouvdedepévor pe vAoug kat p = 1, g = 0 (aroouvdedepévog ypagpog) orou
o1 k6pBot i61o0u turou eival MArpwg ouvdedepévol petagu toug aAdd ot KOpBot S1aPopPeTIKOU
TUIIOU ouvdéovtal petady toug povo pe pia akpn (dag = 1).

ApY1Ka otnv MePIM®Oorn 10U TANPES OUVOEDEPEVOU YPAPOU TTAPATPOUE OTL TO KOOTOG
axkpiBelag OMKG Kal 10 KOOTog Stapoveiag emavépyxoviatl otV popdr 10U Bacikoy PovieAou.

Zuykekpieva otav p = q = 1 ta 6o koot eivat:

2 2

na A 2 B B 2

COStA_ = L+ o0y)+|—— L°+ o
(p=l.g=1) (TlA+TlB) ( A) (nA+ nB) ( B)

2
D _ A, (B, 2, 2 2 2
Costi,,-1 4=1) = |T|—1+ﬁ (nAnB(L + L7 + 0, + 0g) + na(na — 1)oy + np(ng — I)OB)
Auto amodeikvuel OTL 1] YEVIKEUOT] 1A Yla TOV TUXAio P KAateubuvopevo Ypddo eVO@PATOVeEL
0Aa ta amnotedéopata Tou BaciKoU POVIEAOU OtV MEPIMT®Oor Tou Anpoug ypadou [9]. Emt-
MA£0V, PE TV evadAayr] TOV TIHOV TV IAPAPETIPOV P Kal ¢, IIIOPOUE VA EMEKIEIVOUE TO

Baowko poviedo, avoilyoviag tov §poio yla VEEG EPEUVNTIKEG SUVATOTTES.

p:q:1

Base Model

Ewova 6.1. Awdypaupa Ven mou oupfoAilel o1t 10 Bactkd UOVTEAD EUTEPIEXETE OTOV TUX Al
un Karev9uvopEVo ypdeo ot Tepintwon p = q = 1

Zuveyidovtag otV Mmepini®or ToU anoouvdedeleévou ypdpou mapatpoupe 0Tt 10 KOOTOG
akpiBelag Orwg KAt 10 KOotog drapoveiag addalouv. Zuykekpipéva otav p = 1 kat g = 0 ta

800 koot yivovrat:

Cost? na(na — 1) > (LA + 2) + ng(ng — 1) 2 (LB + 2)
ost: . = o o
P=1.a~0) =\ ny(na — 1) + ng(ng — 1) A na(na — 1) + ng(ng — 1) B
2
D _ A, B, 2, 2 _ 2 2
COSt(p:quo) = —(HA T (L +L” + o, + o + na(na — 1)o; + ng(ng l)aB)

Autd ta véa arotedéopata HeiXvouv 0Tl 1] YEVIKEUOT] 1A yla Tov tuxaio pn Kateubuvopevo
YPAPO EIMEKTEIVEL TO PAOCIKOU HOVIEAOU, TAPEXOVIAG ONUAVIIKA S1aPOPeTKES £61000E1G TOOO

yla 10 Kootog AxkpiBeiag 600 Kat yia 1o K6otog Atapaviag.
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Zuveyidovtag e Vv £10ay®yn ToU TUPApPSikou ypdgpou, S¢Aoupe va €10ayayoupe pia
lEpapx1Kn dopr) eviog g oroiag va Asttoupyeti n opada pag. Ilponyoupéveg, otov tuxaio
un kateubuvopevo ypddo, T PeEYaAuTeprn) EMPPOr €1Xe 0 KOPBoG pe to peyaiutepo Babpo.
Topa 10 ypddnud pag 9a opidetal ox1 pe 11§ Mapap€Tpoug mbavotntag p KAt g, addd pe
g tapapérpoug k, £ kat pe tov ypagdo va ocupBoditete wg G(ng, np, k, 2, y). H mapdaperpog
Ik opiletl tov ap1Bpo v uplotapévev rou Ja €xel kabe KOPBog armod KAT® 10U, eve 1o £ tov

ap1po 1ev emnedev g rmupapibag. Zinv mapakAatem e1kova divete eva tapadeiypa.

Ewodva 6.2. [Tapaderyua nupaurdikov yodeou ue =3 kat k=4

Ia va evoepat®ooupe ) Suvapikn g IEPAPXIKIG EMMPPONG péoa otr dopr) tng mupapidag,
€10AYOUHE TV UMEPTIAPANETPO Y. Xe aviibeon pe 1o TuXaio pn kateubuvopevo ypapnua,
orou KdaBe kOpBog akovel oadla v aroyn KAbe KOPBOU pe TOvV Oroio ouvdEiete, TwpPa 1)
erppon kabe kopBou egaptdatat anod ) 9éon tou oV tepapyia. 'Etol yia apadetypa oty
MAPAIIAVe £1KOVA 01 KOPB01 ToU 20U eruredou da akouoouv e§100U Toug 4 UP1oTapEvoug toug,
TOV TIPOTOTAPEVO TOUG KOPBO Y (POPEG TIEPIOOOTEPO, OTIRG EITIONG KAl TOV £AUTO TOUG KATA €
MPOKEPEVOU va SatnpnBel n aneplodikotta ou ypagou. Bdon autdv tov mapapérpov

propet va urodoyiotet 1o véo Sidvuopa emppor|g s ou divetat aro v oxeon :

-2 -3 -4
s=[ ky y “(y+h) y v+l ... yy+k)  (y+h) 1 _Is
~—— | S — | S g — —_——— ——— . \/“1
log Kopbog 20 Eminedo k kopot 30 Eninedo k? xopbot K3 xopBot k2 képBor K& KOpbo
=[ s S S3 e Sp-2 Sp-1 s ]

Ag avaduocoupe topa 10 g addalel to Kootog AkpiBelag oto mAaiolo tou mupapidikou
vypagou. Ta va unodoyicoupe to Kéotog AxpiBeiag (Cost?) mpémet mpdta va uroAoyicoupe

TV OUYKEVIPOTIKL] Ao TV KOPBev g rupapidag n onoia divetatl anod v oxEorn :

. . . . A
G(X) = (i1s1 +igSg + -+ - + {p_1Sp-1 + ipsp) f7(X)

+(tis1+ Bsa+ -+ s+ se) fOX)

‘Onov iy, i, € N pe 1o n € N va avurnpooernevet 1o eninedo. Ipénet va woxvet 6t: i +i; = 1,
ip+iy, =k, ig+1i;= K2, + i, = K2, 0+ i, = k!~1. 'Orou ot apdapetpot i, Seixvouv
0V ap1Opod twv Turou A kopbev o KaOe erminedo kat i, tov apdpod v turou B kopBev.

Bdon autng g CUYKEVIP®TIIKAG ATIOWPNG AOUTOV HUITOPOUNE va UMOAOYIoOUME TO VEO
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6.2 AnoteAéopata [Ipocopoioenmv

KOotog AkpiBelag yla tov mupapidiko ypdago mou ivetal and v oxéon:
Cost® = (iy81 + -+ + ipsp)* (LA + 03) + (i} s1 + - -+ + i;59)*(LP + 03)

Ermurméov 10 kootog Aladpwviag rdAt opidetal onwg KAl otov TuXaio pr Kateubuvopevo
ypago. Andadr) opioupe Savd nwg 1o @awvopevo tng dSapwviag epdavidetal povo petagu
TIAIKTIOV IIOU EMKOIVAOVOUV dPecd, TO OMoio otov umokeipevo ypdgo onpaivel o1t ot Kop-
Bot toug ouvdeovtal ameubeiag pe pla akpn. YioBetdviag auto 10 KPurplo, PIiopoupe va
gloayoupe Eavd tov 6po tou KOotoug Alapeviag og:

CostP =

2
= |T|—l+ﬂ(dAB(LA + LB + 0% + 02) + dano> + dppoz)

[Ipénetl va onpeldoouie €66 Ot oe aviibeon pe tov un Kateubuvopevo ypdgo, o rmupapit-
O1KOG Oev ETTPETIEL TOV OPLOPO TIANPEG OUVOESEPEVOV KAl AMTOOUVOESEPEVROV TIEPUTINOERDV.
Auto ogeidetat ot otabepry dopr) KAl TG MIPOKABOPIOPEVEG AKIEG TTOU €ival EYYEVEIG Ot
dourn tou upapdikou ypagdou. Emnopéveg, 10 PovVo ITou PImopoupe va IIPOCAPH®OOUNE O
autn v mePIm®on eivat 1 TorobEtnon 1OV NAKIev Tunou A n B evidg tng dopng tou 61-
Ktuou. H katavonon g BEAtiotng tortobetnong tov pedov g opadag eviog g 1EpAPXIKAS
doung sivat éva moAv eviiagpépov rpoBAnpa BeAtiotonoinong ou Sa avalubel otny eMOPEVD

evotnta.

6.2 AnoteAéopata IIpocopoimocwv

Ye autr) v tedeutaia evotnta da rnmapouctdocoue Td ATOTEAE0OIATA TOV MTPOCO01WOEWY
KAl TV aAYoplOpIKOV avaAUoemVv IoU epappooalie e otoX0 va anocadnviotel 11 SUvapikr)
TOU EKTETAPEVOU POVIEAOU TI0U Tipoteivape. @a Siepeuvrjooupe v aAAnAemnibpaon petady
v dopmv g opadag Kal TV H1ad1kacidv ANYng anopace®v, £0TlAdoviag o€ TPelg ITTu-
X€g: 1 BéAtiotn ouvBeon g opadag, T oUVEECTROTNTA TOU S1KTUOU NG opadag kat v
TOroHETNON TV PeEA®V TUIToU A 1) B evtog tng opddag.

Ag Eexvrjooupe avaduovtag ) BEATiotn oUvBeon g opadag wg rpog 1o Kootog AkpiBelag
yla tov Baoclko Om®g KAl yld TOV EMEKIETAHIEVO HOVIEAO OV IMEPIMtRon Tou tuxaiou pn
KateuBuvopevou ypagou. Qg 1pog 1o faociko poviédo yvepidoupe nog to Kootog AkpiBelag

elayiotornoieital 6tav 10XUeL 1] OXEoT :

1
. LA+O§ /a
Np=NA|\Tp 5

L + og

Ia v enéktaon 10U tuxaiou pn kateuBuvopevou ypdagou yvepi{oupe niwg n idia oxéon
10xXUEL Kal yld Tov TIATpeg ypadou (p = g = 1) piag kat og autn v nepinoor diatnpeitat 1o
Baowko poviedo. Emumdéov €xel empnuiko evdiadepov va doupe nwg addadel autn 1 oxEon

yla v repintoorn tou anoocuvdedepévou ypadou (p = 1, g = 0), i onoia yivete:

A 2
L + oy

1 1
ns=—+—4|1+4na(ny - 1)———=
B2 2\/ Al )LB+a,§
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Me otoxo v emiBeBaimon kat availuon autov 1OV 6Uo denpnuKkov anotedeopdiav 9a
EKTEAEOOUIE MTPOCOUOIWOEIG avartuing opddag. Ta armotedéopata mou rnapouotadovidal otig
Ewoveg 6.3 kat 6.4 dnuioupynOnkav xprnoponoioviag 11§ akoAoubeg ouvOrnkeg: Kabe ka-
taotaon X rieptdapBavet 10 xapaktnpilotika X;, 10 KabBéva aro {yia TUITKT KAVOVIKT) KATtavo-
pn pe péon upn 0 kat turukn anoxAton 0.1 €tot wote cov(x;, X)) = 0 yia 6Aa ta i, j. ZuvoAika
dnpioupyoupe 10.000 kataotaocelg X arto 10 xapakinplotkd 1 kabe pia rmov pag divet évav
nivaka 10 emi 10.000. Eruméov, yia va €xoupe ta embupntd LA kat LB Snuioupyoupe

KatdAAnAeg tipég tov & kat 8P pie 1o kAPe éva va embpd oTa P10d XAPAKINPIOTIKA.

Expected Cost for DeGroot Network Aggregate Expected Cost for Tullock Aggregate 018
LA=01,lB=02,p=1,g=1 LA=01,LB=02

a0 a0
5 016 35 016

£ B
D14 n1s

5 5

FE) m @20 m

T 012 T 012

15 15
o 010 10 010

5 5
5 0 1’5 2 X ;W B/ 4 0.08 5 10 15 2 3 1 3 40 008

na Iy

Ewkova 6.3. Tpooopuoiwon g BeAtiotng auvdeong g ouadag pe 1o Baotko puoviéo ota deia
Kat tov un katev9uvouevo ypdaeo ota aplotepd. Eéw to ypaenua sivat minpeg, p = q = 1 kat
1a mpaotwa keAia avunpoownevovy ta 50 (ny, np) onueia pe tig xaunAoTtepeg TEG.

0.20

Expected Cost for DeGroot Network Aggregate Expected Cost for Tullock Aggregate
LA=01,lLB=02,p=1,q=0001 LA=01,lB=02 018

Ewkova 6.4. IIpooopoiwon BéAtiotng ovvdeong ouddag ue o Baotkd puovieio ota Seid kat tov
un katev9uuUouevo ypdeo ota aptotepd. Edw® 1o ypaenua ivat aroouvdedbeucvo, p = 1,q = 0
Kat ta mpaowa keAid avumpooenevovy 1a 50 (N, ng) onueia pe 1g Y aunAotepes TYUES.

'Exovtag opioel ta SepeAd1ddn otoixeia g nmpooopoimong, MpoX®PAe OtV KATAOKEUT
TOU 1N KAteubuvopevou ypagpou. Xpnoworoiovrag 1o rmaketo NetworkX [18], Snpioupyoupe

éva ) kateubuvopevo ypagnpa pe ny kopBoug turou A Kat ng KopBoug turnou B, ot oroiot
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6.2 AnoteAéopata [Ipocopoioenmv

ouvbéovtat pe akpég Bdoetl twv mbavo)tov p kat q. Eilvatr kpiown n Staopdlion ot 10
ypaonpa napapévetl 1oxupd ouvdedepévo yla oroladnrote mbavr) T eV p Kal g, WoTE va

eCaopaliotei ) oUyKAlon g dradikaociag ekpabnong DeGroot.

YroAoyidoupe TG TiHEG TOU KOoTOUg akpiBelag yia Siapopoug cuvduaoloug TV Ny Kat ng
(rtou kupatvovrat ano 1 émg 40) Kat T1§ OMUKOIIOI0UE OTOUS depIKOoUG XApteg 1oV Ewkdvev
6.3 kat 6.4. Enutdéov, oe kaBe e1kova, napouoiddoupe Katl Tov JepPIKO XAPT TRV TIHOV
KOoToUg akpiBelag rmou Ya rpogkurttav ano 10 Baciko poviédo. Tupgava pe v Ewkova 6.3,
10 TIAT|peg Hiktuo dlatnpel Ta anotedéopata 1ou Pacikoy PoVIEAOU, EVE TO Artoouvdebepévo
biktuo oy Ewkova 6.4 @aivetatl va anokiivel. Ermmiéov, yia evdiapeoeg tpég tou g € (0, 1),
MapPATNEOUHE Tr HETATOion g MPAdoivng YPARUng tou elaxiotou petaiy autov tov §Uo
arpaiev onpeiv, urmodsikvuoviag Mg 1 TP ToU g ernpeddel Kat autn ) fEATotn ouvOeon

TV opadov.

Eivat a§loonpeioto va e8etaotel n Sewpnuikn drapopd petady tov POV Ny yia mAnpn Kat

arnoouvbedepéva ypapnpata. I'vopidoupe nog yia 1o Bacikd poviédo n BéAtiotn akpiBela
LA+O§

LB+G§ :
Opoiwg, yia tov arnocuvdedepévo ypago £xoupe pia oxedov Ypapuikr) oxéon petadu mny; Kat
La+02 ,
L;U% , TAPATNPOUE
011 T0 arnoouvdedeévo ypadpnpa Teivel epioodTepo TIPOG 1) YPAPPN Ny = Ny 08 OUYKP101 1

oUVOeONG WG TIPOG TO T Biveral HEow Plag YPAapHUIKiG 0X£0NG @G ITPOG TO 1y, P KAion

na. Katd ) ouykpion 6peg petady S1adpopetikav TRV TG avaloyiag

10 TIAN)PES ypadnpa. Autn 1 Taon tou anoocuvdedepévou ypadou propet va arodobei otnv
anouoia akKpev dap, Anart®viag €10t lte EPLO0OTEPOUS «KAKOUG» TaiKteg (pe peyaiutepo
L) eite Atyotepoug «kaAoug» naikteg (pe xapndotepo L) yia va ermteuyBel 1o eAax10to KOOToG.
Auto oupBaivet ene1dr) n 616001 MANPOPOPIOV EVIOG TOU ArTOcUVSedeEvou Siktuou dev eivat

BeAtiorn.

Ag TIPOX®PHOOUNE TOPA OTNV IMEPIMI®Or TOU MUPAPIOIKOU ypddou KAl CUYKEKPIPIEVA
otnv BEATio ToroBETN o TV PEAGOV TUTOU A 1] B evidg tng opddag. O mupapidikog ypadog
bev emtpémel v aAAayr) IOV AKPOV Aoy g akaprng doprg tou. Emopéveg, to nedio
1OV pubpicewv pag meplopidetat ot 9€on 1OV MAKIOV TUTIOU A 11 B eviog tou Siktvou.
'E101, éva QUOIKO ep@INPa MOU IIPOKUITIEL eivat: dedopévou evog ypaprpatog rmupapidag
G(nya, ng, k, £,y), mo1og eivat o BEATIOTOG TPOITOG VA TOTOOETNO)COUHE TOUG TTAIKIEG TUTTOU A
kat B evidg ng rupapidag mpoxketpévou va gdayiotoroin et to Kootog. Ag apyicoupe va
ATaviape o€ auto 10 epatnpa divotag v ouvlnkn kKAt amno v ornoia 1o Kootog AkpiBeiag

10U ypadnpatog nmupapidag eAayiotomnoieitat:

0

Z insn = (LP + 0p) /(L* + 05 + LP + o2)

n=1
H efiowon autr éxetl ¢ ayvootoug, ot oroieg eivat ot tpég wv i, € N, YmevOupiloupe
£dw neg ta i, eivat puokoi apiBpoi kat priopouv va AdBouv tg e8ng tpég: i = {0, 1},
ip ={0,1,....k},i3=1{0,1,....K?}, ..., 1 =1{0,1,....k"2}, i, = {0, 1,..., k" !}. Eniong,
MPETEL Va 10XVEL OTL: 1] + fp + -+« + § = Ny KaBwg kat otL: if + i + -+ + i, = ng. A6ye autev
TV MEPIOPIONAV, 1) e§iowor) propel va £xet moAdég 1 kapia Avor. Mropei va pnv urdapxouv
AUoeig oty mepimmon nou ot napdpetpotl LA, LB, 04, 0p xat s, Sev propouv va napdyouv

oUVBUAOHOUG TRV iy TIOU va @Tavouv tov owxo: C = (LP + o2)/(L* + o3 + LP + 03). énwg
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ermiong propet va urdapxet peyddog apbpog Avcenv otav apketol Siapopetikoi ouvduaopotl
IOV i, IKAVOTTIO0UV TNV £§i0600T).

Topa, éva KaAo ep@OIPA TOU MPOKUITIEL €ival T0 TG PITOPOUNE va BpouUpe autég Tig
BéATioteg TIpEG i TIOU €Aayiotortolouv 1o Kootog AkpiBelag. T'a va pag BonOroet va ana-

VI)OOUHE O€ AUTO TO £PATNLA, TPETIEL IIPAOTA VA TIAPATNPCOUNE OTL OT0 ypadnpa riupapibag
LB+o?
LA+02+LB+o}’
1000 10 Kovid Bplokopacte oto eddayioto tou Kootoug AkpiBelag. 'Etotl, akopn kat av n Tipm

oupBaivetl €€ng: ‘Oco 1110 Kovtd IMANo1adet 1o Zflzl inSn otV Tan otoxou: C =

otoxog C Sev propet va ermteuyBei anod 1o abpoopa: Zflzl inSn, YVv@pioupe 0Tl 0 KaAUTeEPOG
ouviuaopog TV TPV i €ival autog IToU MANOC1Alel EPIOOOTEPO OE AUTH)V.

Bdosgt autdv v mapatnpros®yv, PIopoUlle va IIPOTeivOUPe apXiKd évav e§aviAntuko
alyopiBuo mpokepévou va Bpoupe tg BéAtioteg TIREG TV ip. O edaviAnukog adyopidpog
eAéyxel 6Aoug Toug Suvatoug ocuvduacpoug T®V iy, 01 OITOi0l £ival ITEPIOPIOHREVOL KA PITOPOUV
va AdBouv Tig £§ng Tpég: i = {0,1}, i = {0,1,...,k}, i3 = {0,1,.... K%}, ..., i) =
{0.1,...,k"2}, i, = {0, 1,..., kK" '}. Tvepiloviag Tig Tipég TOV S, AMO TI UMEPIIAPAPETPOUG
g rupapibag, propoupe va eléyfoupie GAOUG TOUg OUVOUAOHOUS TV i, oto ABpolopa:
Zflzl inSn, KAl ariog va ermAégouie autdv mou eivat mo Kovid otnv tpn otoxou C. Qotdoo,
propoupe va Soupe nwg auvty n péBodog eival urtoAoylotikd axkpibr, e91Kd otV Mepineon
rupapidev pe peydeg Tipeg tou L.

IMa va aviperenicovpe auto 1o mpoBAnpa, PIopoupe va IPoteivoupe €vav ArAnoto
aAyopiOpo. MmopoUpe va XPn OO |00UHE TO YEYOVOG OTL 1] EITIPPON TOV IIPAKIOPROV oTa

avotepa emineda eival peyaAutepn Ao Vv €MPEOL TOV IIPAKIOP®V OTd KATHTEPA £ITireda :
S] >S9 >S83 > "">8p_9>S8_1>S8p

O armAnotog aAyopiOpog C Aettoupyel emAEyovVIag EMAVAANIIIIKA AKEPAIOUG OUVIEAEOTES ip
yla pla og1pd YVOOTOV TIHQV S, €101 OOTE Zflzl i, Sn va etvat 6co 1o duvatdv mo kovra oto C
Xwpig va 1o urnepBaivel. O adyopiOpog Eekvd pe v apxikoroinon tou abpoiopatog S oto
undév. Zin ouvéxela, enegepyddetal kaOe ouviedeotr) i SeKvmVIAG Ao 1O i; KAl KATAARyo-
vtag oto ip. Ta xkabe iy, au§davet 1o i, Eekvoviag arod to pndev, pocbetoviag v avtiotoin
Tn s, 010 S epOcoVv 1o TIpoKUTIIoV ABpotlopa dev urtepBaivel 1o C Kat 10 i, TIAPAPEVEL EVIOG
TV opiv tou. Av 1o aBpotopa S urepBei to C petd amnod pia avgnor, o aAyopiOpog PeIOVeEL To
in KAtd €va Kat IPooappodel 1o S avadoyes. Autt) n Stadikacia Siacpadidel ot 10 abpolopa
S mAnoaet 600 10 Suvatov 1o kovid oto C xwpig va 1o unepBaivel. Tedikd, o adyopiBpog
ETOTPEPEL TO OUVOAO T®V OUVIEAECTOV ip, ig, ..., i) TIOU AVIUIPOOX®IIEVOUV TNV MANCIECTEPT)
duvatn nipoogyyion oto abpotopa otoxo C xpnotporomviag tg dedopéveg Tipég sy Aut 1)
TMIPOOEYY101 EKPETAAAEUETAL TIG 1810TNTEG TOV ATIANOTOV AAYopiOPmV KAvVovTag TOrmKA PURIIL-
KEG BeATioteg ermAoyEg oe KAOe Bripa. Mmopoupe va oKePTOUHE AUTH) THV IIPOCEYY10T Oav va
Sekva pe peyalda Prpata dtav Xpnotpornolovlie d Sy, Sy Kal Kabwg rmAnotadoupie otov otdXo
C, Xpnotporotloujie 6A0 Kal Pikpotepa Prpatd.

Ewkaoia I'a va Bpoupe ta iy iou elayiotorioouv to Kootog AkpiBetag tou ypagou IMupa-
nidag, o mpotevopevog ‘AriAnotog AAyop1Bpog sival BéAtiotog kat Bpioketl mavia éva omoto
OUVOAO i, av Kat povo av to C eival eruteudipo. To C opidetatl wg ermtevdipo otav undpxet

TOUAdx1oToVv €évag ouvduaopog TV i, IIOU 1KAVOTIOLEL : Z,ﬂzl insn = C.
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MriopouUpie emiong va aAnaviriooupe autod 10 epetnpa Kottadoviag povo to Kootoug Awa-
paviag. Opidoupe oto poviédo tou S1KTUou pag neg n Alagevia oupbaivel povo Petady tov
MPAKTIOP®V TMOU €ival apeoa ouvdedepévol oto ypadnpa, dndadr €xouv pia akpr rmou toug

ouvbéel apeoa. 'Etot, yia 1o Siktuo rupapidag 1o Kootog Atapaviag propet va ypadtel og:

CostP =

2
= T (da(L® + LP + 0} + 03) + dano} + dppop)

Me tnv katdAAnAn ermdoyn g TonobEInong TV MAKIeV tunou A 1) B otnv nupapiba, prno-
POULIE VA MIPOCAPIOCOULE TIG TIHES TV daga, dpg Kal dap. Ag e§eTA00UNE TV MEPITIOOT] OTTOU
bev untapyet YopuBog otig IPOBAEYELS T®V MTPAKTOPWV: 04 = o = 0. Le autf|v v amiou-
OTEUPEVT TIEPITI®OT)], POVO 01 OUVOEDELS petaiy KOpBmy TUrou A kat turiou B dnuioupyouv
Kootog Aladpoviag Kat €101 mPEMel va €Aa)10TOTIO|00OUHE v TIpn tou dyp. H mpogavrg
AUon mnou eAayiotonotel to Kootog Alapmviag oe autr) thyv MEPITI®OON €ivatl 0Tav Urapxouv
B6vo TIPAKTOPEG TUTIOU A 1] LOVO TIPAKTopeg TUTou B otnv nupapiba. Qotoco, 1t oupbaivet
otav mpénet va tonobetrjooupe nyg > 0 kopBoug turou A kat ng > 0 kopBoug turou B otnv
161a mupapida: H anidvinon eivat ot yua va Suatnprjocoupe 1o Kootog Atapeviag oto eddyioro,
TIPETIEL VA TOTIOOETH|COUIE TOUG TIPAKTIOPEG TOU 1610U TUIou oe unornupapideg, eAaxiotornot-
WVIAG €101 TV TIUN ToU dap. AUTO PITOpel va (avel KAt OMTKA yia §1adopeg TIHES TV Ny Kat

ng ouv Ewova 6.5.

0.000000 0.002367 0.004734 0004734

M A

0002367 0004734 0007101 0.007101

Ewodva 6.5. BéAtom tonodénon ntaikiov twnov A kat B oe mupauiba ue k = £ = 3 omouv
urapyet povo Kootog Aragaviag (A = 1). Ot véotr maikteg ny tomoderovvial VIO UTOTUPAULOAg.

Tt oupBaivel Aowrtov otov mupapdiko ypagdo otav ouvdualoupe 1o Kootog Atapwviag pie
10 Kéotog AxkpiBelag' Ta autfjv v o MePIMAOKL MEPIMTIOON EMAEYOUHE VA PEAETIOOUNE

10 poviédo xwpig kavéva d6puBo (04 = o = 0). Qg ek ToUTOU, ard €8¢ kat oto &&§ng Sa
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pedetape 1o CostT oty amloucteupévn 10U PopPPr| ©G:

] 2 ) 2

dAB)+(1—ﬂ)>< LA Zinsn + LB Ziﬁsn

n=1 n=1

Cost™ = Ax (%
Apéomg yivetat capEg 0Tt yia TV CUYKEKPIIEVT OUVAPTH 0T KOOToug Hev eival epikto va Bpo-
Upe pa Sewpnuikn Avor. Auto ocupBaivel 610t dev elpacte 1kavol va TAPOUE IAPAYDYOUS
tou CostT wg nipog ta daa, dps. dag KaBOS tOpa o dpog Kootog AkpiBeiag AapBdavet unoyn
HOVo Vv ToroB£tnon Ttou TUTIOU IAKTIOV ota ertirneda i, Kat 0x1 tig petaiu toug ouvbéoeig.
'Etol, erudéyoupe va avarugoupe pia kabapd aAyoplOpikr] mpooéyyion yia 10 ZUVOAIKO
Kdotog tou nupapidikou ypdagou. Ba avarttugoupe 3 adyopiOpoug: évav E§avidnuko, évav

‘ArtAnoto kat évav Tormkng Avadninong.

Cost vs Lambda for Exhaustive, Greedy, and Swaps Algorithms Cost Ratio vs Lambda for Greedy and Swaps Algorithms
Pyramid: k=3, I=3, y=2 Pyramid: k=3, I=3, y=2
007
—& Exhaustive —& Greedy/Exhaustive
== Greedy ~#~ Swaps/Exhaustive
006 —#& Swaps === Optimal (Ratio=1)

005

004

Cost

Cost Ratio

003

002

001

0.00

00 02 04 06 08 10 00 02 04 06 08
Lambda Lambda

Ewkova 6.6. Zuykpion kootoug kar Adyou kootoug yia toug aidyopduoug: Efaviintucrg,
‘Anfnomg kar Tomkng avalnmong ya diagopetikés tueg ov A. Ilapauetpor mupauidag:
k=3,0=3,y=2.

Cost vs Lambda for Exhaustive, Greedy, and Swaps Algorithms Cost Ratio vs Lambda for Greedy and Swaps Algorithms
Pyramid: k=2, |=4, y=2 Pyramid: k=2, =4, y=2

007
—4 Exhaustive —4 Greedy/Exhaustive

== Greedy =8~ Swaps/Exhaustive
0.06 -8~ Swaps === Dptimal (Ratio=1}
120

005

0.04

Cost

003

Cost Ratio

0.02
105
001

0.00 100

Lambda Lambda

Ewkova 6.7. Zuykpion kootoug kar Adyou kootoug yia toug aidyopduoug: Efaviintucrg,
‘Anfnomg xkar Tomkng avalnmong ya diagopetikés tueg ov A. Ilapaustpor mupauidag:
k=2,0=4,y=2.
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O ESaviAnukog adyopibpog e€etdlel 6Aoug toug 2™ Suvatoug cuvbuaopoug turnou A 1) B
£VIOG g rupapidag, ornou n givat o aplBpog v kopBwv otnv G(na, ng, k, £, y) upapida.
Ia kdOe cuvduaopod, utoAoyilet 1o aviiototxo Cost! kat emotpéel oTo TEAE0G TO CUVOLAOHO
He 10 XapnAotepo Kootog. 'Onwg avapévetdl, autr) 1 TPOCEYYIOT YIVETAl QPKETA UTIOAOY1-
ouka daravnpn kabog o ypapog g rupapidag peyadovel. O ‘AriAnotog aiyopidpog arnod
Vv dAAn eivat o Atyotepo anattiikog uroloylotikd. Eerkiwvd avabétoviag tov 1610 tumo (A
1) B) oe 0Aoug toug kOpBoug g rmupapibag. Xt CUVEXELA, ATIO TNV KOPUPI] P0G Td KATW,
ripoortadet va aAddadet tov tumo kabe kopBou évav rpog evav. Kabe addayr) Siatnpeitat povo
av pewovet 1o Cost’. Eivatl onuaviiké va onpetodet 6t autdg o dmnotog adyoépibpog dia-
@EPeL and autov Iou IEPLYPAPNKE MPONYOUHEVRG AOKAEIoTIKA yia to Kootog AkpiBelag.
Auto oupBaivel 51011 yia ) yevikr) mepimteor], dev éxoupe tprn otoxou C yla va urodeiget
otTe UrePBAiVOUE TO 0P10, OTIOTE AUTOG O ATANOTOg aAyopldpog dev eival BEATiotog, akoun
kat otav 1 = 0 (6nAadn, otav AapBavetatl unioyn povo 1o Kootog AxkpiBerag). O aAyopiBpog
Torukng Avalrnong §exiva avadbétovrag tuxaia tUnoug oe 6Aoug Toug KOPBoug oTov Ypado
g rupapidag. Tt ouvéxela, Bedtidvel emavaAnmukd v avabeorn) egetadoviag (euyn KO-
Bav pe Stapopetikoug tunoug. Ma kabe {evyog, 0 aAyopiBpiog avtaAAdooet Toug TUIoUS TV
800 kOPBwV KAl UTTOAOYidel T0 VEO KOOTOG. Av 1 avtaddayr) €Xel wg anotédeopa Xapniote-
po KoOotog, 1 addayn Satnpeitat. AladopeTikd, EMAVEPXETAL OV APXIKI Katdotaorn. AUt
n dwadikaoia ouvexidetal pExpt va pnv propouv va Ppebouv nepattepe Pedtiwoslg. O aA-
YOP1O10G ToITIKNG avadtnong £ival Imo UMoAoY10TIKA akplBog 0 OUYKPILOT] 1€ TOV AANOTO
aAyop1Bpo, aAdd Atyotepo akpiBOg oe CUYKPLON Pe TV eEaVIANTIKLY avaldftor).

H andboon tev tpiev adyopibpev answkovidetat ouig Ewkoveg 6.6. kat 6.7. Ze autd
1a oYnpata ouykpivovial ot Tipég KOotoug rmou AapBdvovial aro toug 3 aiyopibpoug yua
éva eupog Tipav tou jl. Kat ota vo oxrjpata, o arAnotog alyopiBpog deiyvel v arnote-
Aeopatkotnta tou dlaitepa yia tpég tou A kovid oto 0 1) 1, omou mpooeyyidel apketd ta
arotedéopata tou aiyopibpou ESavidnukng Avaliinong. Autd unodndmvet 611 0 AnAnotog
aAyop1Bpog eival katdAAndog yia oevaptla omnou eite 1o Kdotog AxkpiBeilag eite 10 Kootog Ala-
pwviag emkpatel. AvtiBeta, o aAyop18pog Tormikng avaditnong ouxva UEPEXEL TOU ATIATN|OTOU
aAyopiBpou yia evbiapeosg tpég tou A, erubekvioviag try dUuvapr tou oty e§100pPOIoT)
Kat v §Uo KOotwv. Qotdoo, eival onuaviko va onpelwdet ot n arodoon tou adyopid-
pou Torukng avalninong €ivail apketd uaiodntn otnv apyKr tuxaia Katavopr tou Turou
1OV KOpBwv g rmupapidag. AladopeTiKEG TUXAIEG APXIKOIIO)OELS PITOPOUV va 0d1yroouv
ot MoKiAa anotedéopata, yeyovog mou avadelkvuel v e§Aptnon tou aiyopibpou anod v
apxkn dtapopdpworn g rrupapidag.

H Ewodva 6.8. srukevipoveral oe pia peyadutepn mupapida pe k = 3, £ = 5, n ortoia €xet
121 k6pBoug. AOY® TOV ONIAVIIKOV UTTIOAOYIOTIKGV ATTAITOE®V, 0 aAyopiOpog EEaviAnukng
Avalnnong dev eival epikiog yla auty] v MePIM®Oorn, Kat €101 mapouaciadoviat povo ta
aroteAéopata v adyopibuev Amninotng kat Torukng avadnong. Eival a§loonpeinto nwog
Kat ot 8U0 aAyopiOpol mapdyouv rmapdpola anoteAéopard, Oneg @Atvetal amnod 10 aplotepd
Sraypappa orou ot ypappiég toug oxedov erukadurtoviat. To §e€16 Siaypappa, mou deiyxvet
1 81apopd KOOToUg HeTady tewv U0 alyopifuav, urodeikvuet o1t o1 Siapopég toug eivat tng
téd€ng tou 1074, Autr) n apeAntéa Sradopd unoypappidel TV anoteAeouatikOTNTIa Kat 1oV SUo

aAyopiBuev otnv mpoogyyion tou eddyiotou Cost!. Tia mapddetypa, 6tav A = 1, émou pdvo
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KepdAao 6. Extetapévn [epiAnyn

10 Kootog Alapeviag AapBavetal uroyrn, kat ot §Uo aAyoptdpotl emrtuyxavouy TiHEG Kovid
oto pndév. O AnAnotog aAyoptdpog, e181kéTEpa, QTavet akpiBog oto CostT = 0 kabog Eexvd
e 0Aoug Toug KOpBoug va £€xouv Tov 1610 TUIOo, AvViavaKA®VIAg TNV AroTeAEoPATIKOTTA TOU

yld aut Vv OplaKY| EPINI®OT).

Cost vs Lambda for Greedy and Swaps Algorithms Cost Difference vs Lambda for Greedy vs Swaps

Pyramid: k=3, 1=5, y=2

007 == Greedy - Swaps
— Greedy 00002
—& Swaps

006
0.0001
005
7 -

0.0000

004

-0.0001

Cost

003

Cost Difference

002 -0.0002

o0 -0.0003

0.00

Lmbia Lambda

Ewkova 6.8. Zuykpion kootoug kat iaeopdg KOOToug yia toug ailyoptduovs ‘Aninotng kat
Tomkric avadtnng yia diagopeg tueg tov . Iapapetpor tupauidag: k=3,L=5,y =2
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