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Abstract
The present thesis introduces the formulation of lattice gauge theories as originated by K.G.
Wilson[28]. Gauge theories play a crucial role in the modern understanding of elementary
particles and their interactions, with a significant application in describing the strong interac-
tions between quarks, mediated by gluons. While Quantum Electrodynamics has achieved
remarkable success using perturbation theory via Feynman diagrams, the strong interaction
cannot be studied using the same approach across its entire spectrum due to the lack of a
consistently small coupling constant. The strong interaction exhibits asymptotic freedom at
small quark separations, where perturbation theory holds, but at large separations, quarks
appear confined, indicating that the coupling constant becomes too large for perturbative
expansion. Lattice gauge theory provides a method for studying gauge theories in their
non-perturbative regime and offers a formulation that can be simulated computationally. This
thesis presents a review of gauge fields on a lattice and a Python implementation of lattice
gauge theory simulations using Metropolis Monte Carlo technique, following the pioneering
work of M. Creutz and others, to measure important physical observables [7].
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Chapter 1

Introduction

The present thesis is divided in three main chapters, in order to introduce gauge theories, and
especially non-Abelian gauge theories and their formulation on a discrete spacetime lattice.
The first chapter constitutes of two distinct parts. The first part is dedicated to introducing
the basic notions of differential geometry needed and used in modern theories of theoretical
physics. This section was inspired by some lectures on General Relativity organised by Prof.
George Savvidy during the time this thesis was still in preparation. Despite the fact that
General Relativity and non-Abelian gauge theories do not have a complete analogy, the ideas
presented in the first section of Chapter 2 are applicable in Yang-Mills theory after some
appropriate modifications. Another reason the framework of General Relativity is introduced
is that in that way it is clearer which quantities are Lorentz invariant and can be used in the
rest of the thesis, without the urge to explain their invariance.

In the second part of Chapter 2 some basic ideas of Group Theory are introduced in a
mathematically rigour way. Groups are used to express transformation of physical systems
and therefore their potential symmetries under such transformation. More specifically gauge
theories, which is the subject of the present thesis, are in fact theories that remain invariant
under a transformation g : R1,3 7→ G, where G is a Lie Group. In the context of Standard
Model, strong interactions are considered non-Abelian gauge theories with SU(3) as their
symmetry group. As a result, the purpose of this section is to describe the basic Lie Groups
used in Theoretical Physics and their connection to smooth manifolds and Lie Algebras.

Chapter 3 starts with an exploration of gauge invariance in Classical Electrodynamics. Maxwell’
s equations are naturally gauge and Lorentz invariant. This fact makes possible to formulate
a Lagrangian density in terms of the electromagnetic field strength tensor Fµν . With this
formulation an analogy between the concepts of differential geometry introduced in Chapter
2 and electromagnetism can be established.

The introduction of the field strength tensor makes it possible to expand the classical theory
of Maxwell to a general theory that is invariant after general gauge transformations. These
theories are known as Yang-Mills theories [31] and are presented in the second part of Chapter
3. The covariant derivative and the field strength tensor are introduced in these theories
using the parallel transporting field W (x, y), which will is the main quantity used to define
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lattice gauge theory. This field makes possible to connect the values of a matter field in two
different spacetime points, but most importantly can be used to construct the gauge invariant
quantity called the "Wilson loop", that can be connected with the electromagnetic tensor and
therefore the action of the system. The Wilson loops can be an indicator of confinement in
the sense that it must behave following an area law when a meson is confined and a perimeter
law when the quarks are free inside a meson.

Chapter 4 is the main work of this thesis. In the first sections pure Yang-Mills theory is
formulated on the lattice as introduced by Wilson [28]. More specifically it is proved that
the quantity named "Wilson loop (W )", introduced in the previous Chapter, is a measure
of the term FµνF

µν and therefore it can be used to construct the action of the theory. As a
result, the action on the lattice is expressed only as a sum over all the elementary plaquettes
of the discrete spacetime lattice. Observable can be calculated using the usual path integral
formulation, where now the integration is performed over W ∈ G. To this end, a section on
integrating over Lie group manifold is embedded in Chapter 4. Integration over the group
limits the observables that can be measured on the lattice and makes the usual procedure of
gauge fixing useless.

After having defined some of the most important observables that can be measured with lattice
gauge theory, in Section 4.6 the method of Renromalization and extraction of physical-real
results on the lattice is presented. by this section it becomes clear that the lattice is another
renormalization scheme and not a tool for computer simulations. To complete lattice gauge
theory the Hilbert space of states is defined in Section 4.7. Having the Hilbert space, the
transfer matrix and the Hamiltonian of the system are defined as well, without, though,
extensive details. More details can be found in [22]. For the Hamiltonian formulation of
lattice gauge theory, there is a clear connection between these theories and quantum statistical
systems. In Section 4.8 there are some details on the methods that can be used to define and
calculate thermodynamic observables of lattice gauge theories.

Simulations appear as side effect and are really important to study non-perturbative effects of
Yang-Mills theory. To this end some, of the basic algorithms that are used in the literature are
presented. The basic idea of these algorithms is to produce a Markov Chain of configurations
by sweeping the links on the lattice and changing their values. It can be shown that such a
Markov Chain converges. The two most famous algorithms used to change the value of a link
variable is the Metropolis Algorithm [16], according which every link variable is changes at
random with a criterion towards the minimization of the action.

Another famous and fast algorithm is the heatbath algorithm, which was formulated by Creutz
for SU(2) gauge theories [5]. This algorithm picks a new value from the group manifold. As
a result, there is no unacceptable picking. It has though the serious disadvantage that one
must know a parametrization of the group measure, in order to apply this method. Tries
have been made to extend these algorithm to larger matrix groups [3], but still remains an
open question, whose answer will seriously improve lattice simulations. For the purposes of
the present thesis a code was developed in python programming language. The main aim of
the program is to reproduce Creutz’s results from [5, 2] and to explore larger gauge groups
as SU(10), SU(20). The code outputs the expectation values of Wilson loops whose size is
defined by the user. It uses the Metropolis algorithm for updating the link variable and it
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can handles SU(N) groups of maximum size N = 20. The results, obtained from this code
appear reliable for groups of low dimension when the output is the plaquette variable.
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Chapter 2

Mathematical Background

2.1 Aspects of Differential Geometry
This section presents some general results of differential geometry, in a language that the

physicist is used to. There is no intention of mathematical rigour. The whole section is
presented in terms of the General Theory of Relativity, where the manifold is spacetime,
which is somehow easier to imagine and understand, because all vectors take values on the
tangent bundle. In Chapter 2 of the present thesis these results are converted to appropriate
quantities of Yang-Mills theory where the geometry is much more complicated, because of
the existence of the g-bundle, which is somekind of an internal space. It is emphasized that
the analogy between general relativity and Yang-Mills theory is presented naively and in an
intuitive manner.

2.1.1 Maps

A reason that set theory became quickly very important in mathematics is because one can
define a rule that takes elements from an input set M (often called domain) and match this
element to a value from another set N (often called target). If this rule satisfies the two
conditions given in the Definition 2.1.1 bellow then it is called a function or a map from the
domain set M to the target set N .

Definition 2.1.1 (Function/Map). A rule that assigns to each element of a domain set M
one and only one element of a target set N is called a function/map.
The notation:

f : M −→ N

means that f is a map that takes the elements of the domain set M and assigns to them one
value from the target set N .
The notation:

f : m 7−→ n

means that the element m ∈ M is mapped to the element n ∈ N .

5
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According to Definition 2.1.1 it is possible for two different elements of the domain set to be
mapped to the same element of the target set. It is also possible that some elements of the
target remain unmatched, as there is no restriction for the elements of the target set. The
subset of the target set N that contains all the matched elements of N is often called the
range of the function and is denoted with f(M), where M denotes, as usual, the domanin set
of the function f .

A consequence of the above is that some maps could match every different element of the
domain set M to a different element of the target set N . These special cases of maps are
called injective or one-to-one (1 − 1) maps.

Definition 2.1.2 (Injective/One-to-one map). A map f : M −→ N is called injective or
one-to-one (1 − 1) if:

∀m1,m2 ∈ M withm1 ̸= m2 :

f(m1) ̸= f(m2)

The Definition 2.1.2 states that every element from the range of an injective map f(M) is
matched to exactly one element of the domain set M . This means that a map f−1 : f(M) −→
M is well defined in the context of the Definition 2.1.1. This map is called the inverse1 map of
f and, of course, it can only be defined if f is an injective map. An obvious identity between
the map f and its inverse f−1 is2:

∀m ∈ M :
(
f−1 ◦ f

)
(m) = m

∀n ∈ N :
(
f ◦ f−1

)
(n) = n

A very usual proposition, which is practically the easiest and the most common way to
prove that a map is injective, follows directly from the Definition 2.1.2 when it is formulated
inversely. It is also commonly refered to as a Corollary of the Definition 2.1.2.

Corollary 2.1.1. A map f : M −→ N is called injective or one-to-one (1 − 1) if:

∀m1,m2 ∈ M with f(m1) = f(m2) :

m1 = m2

As stated above, the Definition 2.1.1 does not contain any restrictions for the target set N , as
long as every element of the domain M is mapped to exactly one element of the target. The

1That explains the use of the notation f−1
2The operator ◦ is used, as usual, to denote map composition: (f ◦ g)(m) ≡ f(g(m)), {m ∈ Dg|g(m) ∈ Df }
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Chapter 2. Mathematical Background

result of this remark is that there could be elements of the target N that are not linked with
any elements of the domain M through a map f , that is why the range f(M) was defined
and used above in the definition of the inverse. The special case of a map f , that links all
elements of the target N is the case of the surjective or onto map. An equivalent formulation
for the surjective map could be the condition f(M) = N .

Definition 2.1.3 (Surjective/onto map). A map f : M −→ N is called surjective or onto if:

∀n ∈ N ∃m ∈ M : f(m) = n

Definition 2.1.4 (Bijective map). A map f is called bijective if it is injective and surjective
simultaneously.

In this section there was no mention on the elements of the target set or the domain set. The
target and the domain can be chosen to be abstract and contain any possible mathematical
object that serves the desired application. In that way, maps are defined in a general way
preserving their applicability in many applications.

2.1.2 Vectors, Tensors and Invariants

The basic postulate of relativity is that physics should not be aware of the coordinate
system chosen to be described on. In other words, all laws of physics should hold in every
coordinate system. To formulate this postulate mathematically, let’ s state at first that
relativity give no distinction between space and time. Spacetime is described by 4 points in a
4 dimensional continuum forming a smooth manifold M of dimension dim {M} = 4. The
following discussion and results are adapted from [24].

Every open subset of the spacetime manifold is equipped with a coordinate system, which is
a homeomorphism x : M −→ R4. Laws of physics must remain the same by changing the
coordinate system in use. Equations that describe physical laws will change when passing
from a coordinate system x to a different coordinate system x′, but they will keep their
structure. This property is known as covariance.

Formally, the change between the coordinate systems x and x′ is a diffeomorphism expressed
as:

x′0 = x′0(x0, x1, x2, x3)
x′1 = x′1(x0, x1, x2, x3)
x′2 = x′2(x0, x1, x2, x3)
x′3 = x′3(x0, x1, x2, x3)

or in a more compact way:

x′µ = x′µ(xµ), µ ∈ {0, 1, 2, 3} (2.1)

7
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A common convention is that greek indices (µ, ν, ρ, σ, etc.) take values in the set {1, 2, 3, 4},
where 1 denotes the time dimension and {2, 3, 4} denote the three spatial dimensions. Latin
indices (i, j, k, etc.) run only in the three spatial dimensions.

Assume a theory that contains a scalar field ϕ(xµ). The exterior derivative of this field in a
new coordinate frame will be:

dϕ′(x′ν) = ∂ϕ′(x′ν)
∂x′µ dx′µ

where Einstein’ s summation convention is implied. To avoid confusion, we can drop the
arguments of the scalar function ϕ and let ϕ denote the scalar field in the old frame, while ϕ′

is the scalar field in the new frame.

dϕ′ = ∂ϕ′

∂x′µdx
′µ

dϕ′ = ∂ϕ′

∂x′µ
∂x′µ

∂xν
dxν

dϕ′ = ∂ϕ

∂xσ

∂xσ

∂x′µ
∂x′µ

∂xν
dxν

dϕ′ = ∂ϕ

∂xσ

∂xσ

∂xν
dxν

dϕ′ = ∂ϕ

∂xσ
δσ

ν dx
ν

dϕ′ = ∂ϕ

∂xν
dxν

dϕ′ = dϕ (2.2)

Equation 2.2 shows that the 1-form dϕ remains the same under the transformation of the
coordinates. The quantities with this property are called invariants.

In the derivation of Equation 2.2 it was obvious by the chain rule that the scalar field
transformed as:

∂ϕ′

∂x′µ = ∂xν

∂x′µ
∂ϕ

∂xν
(2.3)

The calculation of the exterior derivative dx′µ gave a different transformation law:

dx′µ = ∂x′µ

∂xν
dxν (2.4)

The quantities that transform according to the transformation law of equation of Equation 2.3
are called covariant vectors while the quantities that transform under the law of Equation 2.4
are called contravariant vectors. In order to distinguish the two different types of vectors,

8
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covariant vectors are often denoted with a lower index, while for contravariant vectors upper
indices are used.

A′µ = ∂x′µ

∂xν
Aν (2.5)

B′
µ = ∂xν

∂x′µBν (2.6)

It immediately follows that quantities of the form AµBµ = AµB
µ transform like the differential

dϕ, which means that they remain invariant in any coordinate frame of choice and are known
as scalar or inner products. Of course, the fact that they remain invariant does not mean
that they do not appear changed as functions. They just produce the same values for a
specific point on the manifold, independently of the coordinates used to describe this point.

A product of the form AµBνCρ . . .WρVκ . . . that contains covariant and contravariant com-
ponents is called a tensor and transforms kind of independently for each covariant and
contravariant component. For example, assume a tensor T µν

ρ . According to the diffeomor-
phism of Equation 2.1 the components of this tensor transform as:

T ′µν
ρ = ∂x′µ

∂xκ

∂x′ν

∂xλ

∂xσ

∂x′ρT
κλ
σ

A tensor is a generalized version of vectors. If a tensor contains only components that
transforms covariantly (lower indices) then it is called a covariant tensor and respectively
the term contravariant is used when it contains only contravariant components (upper indices).
The total number of indices (upper and lower) appearing in a tensor characterizes its rank. A
common convention is to call a scalar quantity a tensor of zero rank. Vectors are just tensors
of rank 1.

Having introduced tensors in such a way3, it immediately follows that the product TµνκT
µνκ

constitutes an invariant. Of course, it is generalized to tensors of any rank. Lastly, there exist
some specific tensors with the property:

Tµν = ±Tνµ (2.7)

The meaning of such equation is that some tensors remain unchanged (or appear multiplied
by a minus sign) after interchanging two of their indices. If Equation 2.7 holds with the plus
sign then the tensor is called symmetric. The tensor, which satisfies the previous equation
with a minus sign is called antisymmetric or skew-symmetric. Of course, these property holds
for tensors of higher rank, but for them the symmetry might not hold for all the components-
indices. Then the symmetric or antisymmetric indices must be pointed out explicitly. For
example one can say that a tensor Tµνρσ is antisymmetric in its first two covariant indices.
Then Tµνρσ = −Tνµρσ.

3which is not the most mathematically rigour way to do so.
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2.1.3 Integration and Densities

By definition, invariant quantities produce the same value in every possible coordinate frame
that can be described by the diffeomorphism of Equation 2.1. As a result, they can be
integrated in any frame. Trying to do such an integration for an invariant quantity A in a
spacetime region one observes the following 4:

∫
A′dx′4 =

∫
A

∣∣∣∣∣∂x′µ

∂xν

∣∣∣∣∣ dx4 ̸=
∫
Adx4

So, one needs to define a new object A , which transform as:

A ′ =
∣∣∣∣∣ ∂xν

∂x′µ

∣∣∣∣∣A (2.8)

such that:

∫
A ′dx′4 =

∫
A

∣∣∣∣∣ ∂xν

∂x′µ

∣∣∣∣∣
∣∣∣∣∣∂x′µ

∂xν

∣∣∣∣∣ d4x

∫
A ′dx′4 =

∫
A

∣∣∣∣∣ ∂xν

∂x′µ
∂x′µ

∂xν

∣∣∣∣∣ dx4

∫
A ′dx′4 =

∫
A dx4

The quantities that preserve integration and by definition transform with the law of Equa-
tion 2.8 are called scalar densities. But as mentioned in the previous section, scalar fields
are just special kind of tensors. So, one can define in general tensor densities. Inspired by
Equation 2.8, tensor densities can be defined as tensors whose transformation law has an
extra term, which is the Jacobian of the diffeomorphism 2.1. For example, a third rank tensor
density transforms as:

T ′µν
ρ =

∣∣∣∣∣ ∂xϵ

∂x′δ

∣∣∣∣∣ ∂x′µ

∂xκ

∂x′ν

∂xλ

∂xσ

∂x′ρ T κλ
σ

Densities do not appear only in integration. Consider an antisymmetric fourth rank tensor
Tµνρσ. In this context antisymmetry means that a mutual exchange of any two of its indices
yields a minus sign upfront. Consequently, the only value of this tensor that is not zero is
T1234, because if a same index appears twice the value is zero by antisymmetry. For example,
T1123 = −T1123 ⇒ T1123 = 0. Moreover, again by antisymmetry, all the values of Tµνρσ can be
expressed in terms of T1234. For example, T2314 = −T2134 = T1234. The transformation rule for
the element T1234 is:

4The notation
∣∣∣∂x′µ

∂xν

∣∣∣ is used for the Jacobian Determinant
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Chapter 2. Mathematical Background

T ′
1234 = ∂xµ

∂x′
1

∂xν

∂x′
2

∂xρ

∂x′
3

∂xσ

∂x′
4
Tµνρσ

Because of antisymmetry this calculation can be carried out, but it is quite long and cumber-
some that is why it is omitted. The result of this calculation is:

T ′
1234 =

∣∣∣∣∣ ∂xµ

∂x′ν

∣∣∣∣∣T1234 (2.9)

The essence of this result is that antisymmetric 4-rank tensors can be seen as one component
T1234 = T behaving like a scalar density. The inverse of this result is also true. Assume a
quantity5 G µνρσ, such that:

G µνρσ =


A, even permutation of {1, 2, 3, 4}
−A, odd permutation of {1, 2, 3, 4}
0, otherwise

(2.10)

where A is an invariant quantity. A correct way to express the invariant property of A is to
consider the following transformation rule for Gµνρσ.

G µνρσ =
∣∣∣∣∣∂xκ

∂xλ

∣∣∣∣∣ ∂x′µ

∂xα

∂x′ν

∂xβ

∂x′ρ

∂xγ

∂x′σ

∂xδ
G ′αβγδ (2.11)

In the above equation the summation implied by repeated indices give the inverse determinant,
which cancels out with the other determinant upfront. So, Equation 2.11 is another way of
expressing that A is a diffeomorphism invariant, but also, according to what described above,
says that G µνρσ is a contravariant completely antisymmetric tensor density of the fourth rank.
A special case, which is also very useful, is the case of ϵµνρσ, where A = 1. This is usually
referred to as the Levi-Civita tensor density.

ϵµνρσ =


1, even permutation of {1, 2, 3, 4}
−1, odd permutation of {1, 2, 3, 4}
0, otherwise

(2.12)

The Levi-Civita tensor is used to transform antisymmetric covariant tensors to antisymmetric
contravariant tensor densities. For example consider an antisymmetric tensor Tµν . Then,
using this tensor and the Levi-Civita tensor, two densities can be constructed.

5The calligraphic notation is used, because this quantity will later be identified as a density. For now it is
assumed as a random quite, meaning a quaintity without rejudice for its transformation rule.

11



Karydis Evangelos

A = 1
8ϵ

µνρσTµνTρσ = T12T34 + T23T14 + T31T24 (2.13)

U µν = 1
2ϵ

µνρσTρσ = ϵµν12T12 + ϵµν13T13 + ϵµν12T14 + ϵµν12T23 + ϵµν24T24 + ϵµν34T34 (2.14)

Equation 2.13 transforms as a scalar density, while Equation 2.14 transforms as a tensor
density of the second rank. The tensor density U µν is also antisymmetrical, as one can see
by exchanging indices µ and ν. The following equations show that A and U µν do indeed
transform as scalar and tensor densities accordingly.

A ′ = 1
8ϵ

′µνρσT ′
µνT

′
ρσ

A ′ = 1
8

∣∣∣∣∣ ∂xκ

∂x′λ

∣∣∣∣∣ ∂x′µ

∂xα

∂x′ν

∂xβ

∂x′ρ

∂xγ

∂x′σ

∂xδ
ϵαβγδ ∂x

α

∂x′µ
∂xβ

∂x′ν Tαβ
∂xγ

∂x′ρ
∂xδ

∂x′σTγδ

A ′ = 1
8

∣∣∣∣∣ ∂xκ

∂x′λ

∣∣∣∣∣
(
∂x′µ

∂xα

∂xα

∂x′µ

)(
∂x′ν

∂xβ

∂xβ

∂x′ν

)(
∂x′ρ

∂xγ

∂xγ

∂x′ρ

)(
∂x′σ

∂xδ

∂xδ

∂x′σ

)
ϵαβγδTαβTγδ

A ′ = 1
8

∣∣∣∣∣ ∂xκ

∂x′λ

∣∣∣∣∣ ϵαβγδTαβTγδ

A ′ = 1
8

∣∣∣∣∣ ∂xκ

∂x′λ

∣∣∣∣∣A

U ′µν = 1
2ϵ

′µνρσT ′
ρσ

U ′µν = 1
2

∣∣∣∣∣ ∂xκ

∂x′λ

∣∣∣∣∣ ∂x′µ

∂xα

∂x′ν

∂xβ

∂x′ρ

∂xγ

∂x′σ

∂xδ
ϵαβγδ ∂x

γ

∂x′ρ
∂xδ

∂x′σTγδ

U ′µν = 1
2

∣∣∣∣∣ ∂xκ

∂x′λ

∣∣∣∣∣ ∂x′µ

∂xα

∂x′ν

∂xβ

(
∂x′ρ

∂xγ

∂xγ

∂x′ρ

)(
∂x′σ

∂xδ

∂xδ

∂x′σ

)
ϵαβγδTγδ

U ′µν = 1
2

∣∣∣∣∣ ∂xκ

∂x′λ

∣∣∣∣∣ ∂x′µ

∂xα

∂x′ν

∂xβ
ϵαβγδTγδ

U ′µν = 1
2

∣∣∣∣∣ ∂xκ

∂x′λ

∣∣∣∣∣U µν

As illustrated with the above examples the Levi-Civita tensor density can be used to connect
antisymmetric contravariant densities with antisymmetric covariant tensors. This is a general
result. By multiplying a covariant antisymmetric tensor with the Levi-Civita tensor density
and doing the appropriate summations between the indices, the result is a contravariant
antisymmetric tensor density. Intuitively, we can think that by multiplying with ϵµνρσ we
can raise the index of an antisymmetric tensor. By multiplying with appropriate factors6,
the densities will have the same components as the tensors, but they will appear in different
indices. Table 2.1 summarizes the connection described above.

6Like the factors 1
2 and 1

8 in Equation 2.13 and 2.14.
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Chapter 2. Mathematical Background

Tensor Density Relation
T U µνρσ ϵµνρσA = U µνρσ

Tµ U µνρ ϵµνρσTσ = U µνρ

Tµν U µν 1
2ϵ

µνρσTρσ = U µν

Tµνρ U µ 1
6ϵ

µνρσTνρσ = U µ

Tµνρσ U 1
24ϵ

µνρσTµνρσ = U

Table 2.1: Relating antisymmetrical covariant tensors with antisymmetrical contravariant tensor
densities.

2.1.4 Differentiation

Integration of scalar quantities gave rise to the new definition of densities. It is rational, then,
to see what is happening when one tries to differentiate a scalar field ϕ over the transformed
frame x′ up to the second order.

∂ϕ

∂x′µ = ∂xκ

∂x′µ
∂ϕ

∂xκ

∂2ϕ

∂x′ν∂x′µ = ∂

∂x′ν

{
∂xκ

∂x′µ
∂ϕ

∂xκ

}
∂2ϕ

∂x′ν∂x′µ = ∂

∂x′ν

{
∂xκ

∂x′µ

}
∂ϕ

∂xκ
+ ∂xκ

∂x′µ
∂

∂x′ν

{
∂ϕ

∂xκ

}
∂2ϕ

∂x′ν∂x′µ = ∂2xκ

∂x′µ∂x′ν
∂ϕ

∂xκ
+ ∂xκ

∂x′µ
∂2ϕ

∂xκ∂x′ν

∂2ϕ

∂x′ν∂x′µ = ∂xκ

∂x′µ
∂xρ

∂x′ν
∂2ϕ

∂xκ∂xρ
+ ∂2xκ

∂x′µ∂x′ν
∂ϕ

∂xκ
(2.15)

It is obvious from the last equation that the second order derivative ruins the linear and
homogeneous characteristics endowed by the transformations 2.4 and 2.3. A similar result
can be obtained by differentiating Equation 2.3.

A′
µ = ∂xν

∂x′µAν

∂A′
µ

∂x′κ = ∂xν

∂x′µ
∂Aν

∂x′κ + ∂2xν

∂x′µ∂x′κAν

∂A′
µ

∂x′κ = ∂xν

∂x′µ
∂xρ

∂x′κ
∂Aν

∂xρ
+ ∂2xν

∂x′µ∂x′κAν (2.16)

From this equation it becomes clearer that the components of the derivative of a covariant
vector Aµ do not behave like a tensor because of the second non-homogeneous term appearing
on the right-hand side of the last equation. One can now think of a correspondence of our new
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derivatives on the manifold with the classic definitions of derivatives of vector calculus. Be
careful, though, because when differentiating on a manifold with respect to some coordinate
system, we are actually differentiating on a small region of the manifold, where the manifold
can be thought as locally Euclidean and taking differences (even infinitesimal) of fields has a
definite meaning. That being said, let’ s see this correspondence with classical vector calculus.

The gradient7 of a scalar field ϕ is:
∇ϕ = ∂ϕ

∂xµ
(2.17)

This is a covariant vector that is why it is common to write it using index notation as:

∇ϕ = ∂µϕ (2.18)

In Equation 2.15 we have calculated the derivative of this gradient, where one additional
non-homogeneous term has appeared. Because, the partial derivatives can commute the
following equation holds:

∂µ∂νϕ− ∂ν∂µϕ = 0 (2.19)

Inspired by the above equation one can try to evaluate a similar equation for a covariant
vector Aµ, in order to see whether the non-homogeneous terms of Equation 2.16 cancel out.

∂A′
ν

∂x′µ −
∂A′

µ

∂x′µ =

=
(

∂2xk

∂x′µ∂x′νAκ + ∂xk

∂x′µ
∂xρ

∂x′ν
∂Aκ

∂xρ

)
−
(

∂2xk

∂x′ν∂x′µAκ + ∂xk

∂x′ν
∂xρ

∂x′µ
∂Aκ

∂xρ

)
=

= ∂xk

∂x′µ
∂xρ

∂x′ν
∂Ak

∂xρ
− ∂xk

∂x′ν
∂xρ

∂x′µ
∂Aκ

∂xρ
=

= ∂xk

∂x′µ
∂xρ

∂x′ν
∂Ak

∂xρ
− ∂xρ

∂x′ν
∂xκ

∂x′µ
∂Aρ

∂xκ

In the last equality the dummy indices κ, ρ of the second term can be mutually exchanged as
κ ↔ ρ. The final result is:

∂A′
ν

∂x′µ −
∂A′

µ

∂x′ν = ∂xκ

∂x′µ
∂xρ

∂x′ν

(
∂Aκ

∂xρ
− ∂Aρ

∂xκ

)
(2.20)

This resulting equation shows that the quantity ∂µAν − ∂νAµ transforms as a second rank
tensor. This is the equivalent of the curl.

Fµν = ∂µAν − ∂νAµ (2.21)

If the curl of a vector happens to be zero then ∂µAν − ∂νAµ = 0, which is true if, according
to Equation 2.19, the vector field shall be replaced by the gradient of a scalar field. This is a

7with 4 components, because we are working on a 4-dimensional manifold
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well known result from vector calculus and its retrieval with our new way of expressing curl
increases its validity.

Last but not least, by exchanging the indices µ and ν the tensor becomes:

Fνµ = ∂νAµ − ∂µAν

Fνµ = − (∂µAν − ∂νAµ)
Fνµ = −Fµν

which shows that the tensor Fµν is antisymmetrical. Now, having defined the tensorial
character of Fµν , one could try to differentiate this new tensor.

F ′
µν = ∂xκ

∂x′µ
∂xρ

∂x′νFκρ (2.22)

∂F ′
µν

∂x′σ = ∂2xκ

∂x′σ∂x′µ
∂xρ

∂x′νFκρ + ∂xκ

∂x′µ
∂2xρ

∂x′σ∂x′νFκρ + ∂xκ

∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σ
∂Fκρ

∂xλ
(2.23)

As in the case of vectors, just by differentiating the antisymmetric tensor, the result is
not a tensor, which means that it does not transform homogeneously. More specifically,
the homogeneous part is the last term of Equation 2.23. So, the goal is to form a proper
differentiation procedure that will make the other two terms cancel, as it happened in the
case of vectors with Equation 2.20. As in the case of vectors, a good idea is to permute the
indices in Equation 2.23.

∂F ′
µν

∂x′σ = ∂2xκ

∂x′σ∂x′µ
∂xρ

∂x′νFκρ + ∂xκ

∂x′µ
∂2xρ

∂x′σ∂x′νFκρ + ∂xκ

∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σ
∂Fκρ

∂xλ

∂F ′
σµ

∂x′ν = ∂2xκ

∂x′ν∂x′σ
∂xρ

∂x′µFκρ + ∂xκ

∂x′σ
∂2xρ

∂x′ν∂x′µFκρ + ∂xκ

∂x′σ
∂xρ

∂x′µ
∂xλ

∂x′ν
∂Fκρ

∂xλ

∂F ′
νσ

∂x′µ = ∂2xκ

∂x′µ∂x′ν
∂xρ

∂x′σFκρ + ∂xκ

∂x′ν
∂2xρ

∂x′µ∂x′σFκρ + ∂xκ

∂x′ν
∂xρ

∂x′σ
∂xλ

∂x′µ
∂Fκρ

∂xλ

The terms appearing in the above equations are similar, except for the indices κ, ρ. But,
taking advantage of the antisymmetric character of Fµν , this can be fixed by doing the change
κ ↔ ρ in the second equation. So, the three of them now read:

∂F ′
µν

∂x′σ = ∂2xκ

∂x′σ∂x′µ
∂xρ

∂x′νFκρ + ∂xκ

∂x′µ
∂2xρ

∂x′σ∂x′νFκρ + ∂xκ

∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σ
∂Fκρ

∂xλ

∂F ′
σµ

∂x′ν = − ∂2xρ

∂x′ν∂x′σ
∂xκ

∂x′µFκρ − ∂xρ

∂x′σ
∂2xκ

∂x′ν∂x′µFκρ − ∂xρ

∂x′σ
∂xκ

∂x′µ
∂xλ

∂x′ν
∂Fκρ

∂xλ

∂F ′
νσ

∂x′µ = ∂2xκ

∂x′µ∂x′ν
∂xρ

∂x′σFκρ + ∂xκ

∂x′ν
∂2xρ

∂x′µ∂x′σFκρ + ∂xκ

∂x′ν
∂xρ

∂x′σ
∂xλ

∂x′µ
∂Fκρ

∂xλ
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Adding them altogether, the first term of the second equation cancels with the second term
of the first, while its second term cancels with the first term of the third equation. At the
moment the terms containing the differentiated tensor all stay.

∂F ′
µν

∂x′σ +
∂F ′

σµ

∂x′ν + ∂F ′
νσ

∂x′µ = ∂2xκ

∂x′σ∂x′µ
∂xρ

∂x′νFκρ + ∂xκ

∂x′ν
∂2xρ

∂x′µ∂x′σFκρ+

+ ∂xκ

∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σ
∂Fκρ

∂xλ
− ∂xρ

∂x′σ
∂xκ

∂x′µ
∂xλ

∂x′ν
∂Fκρ

∂xλ
+ ∂xκ

∂x′ν
∂xρ

∂x′σ
∂xλ

∂x′µ
∂Fκρ

∂xλ

The first two terms can easily mutually cancel by doing again the change κ ↔ ρ and using
the antisymmetry Fκρ = −Fρκ, meaning that the only surviving terms are the ones containing
the derivative of Fµν . The main goal of this calculation is to show that the the sum of these
derivatives transforms tensorially. So, in order to see whether the remaining three terms
reduce to one it is wise to rename the sum of partial derivatives to Tµνσ, without prejudice to
its tensorial nature.

Tµνσ = ∂Fµν

∂xσ
+ ∂Fσµ

∂xν
+ ∂Fνσ

∂xµ
(2.24)

T ′
µνσ =

∂F ′
µν

∂x′σ +
∂F ′

σµ

∂x′ν + ∂F ′
νσ

∂x′µ (2.25)

T ′
µνσ = ∂xκ

∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σ
∂Fκρ

∂xλ
+ ∂xκ

∂x′σ
∂xρ

∂x′µ
∂xλ

∂x′ν
∂Fκρ

∂xλ
+ ∂xκ

∂x′ν
∂xρ

∂x′σ
∂xλ

∂x′µ
∂Fκρ

∂xλ
(2.26)

The goal is to show that Tµνσ, defined in Equation 2.24, transforms as a third rank covariant
tensor. That would be the transformation described by Equations 2.27 and 2.28 bellow.

T ′
µνσ = ∂xκ

∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σTκρλ (2.27)

T ′
µνσ = ∂xκ

∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σ

(
∂Fκρ

∂xλ
+ ∂Fλκ

∂xρ
+ ∂Fρλ

∂xκ

)
(2.28)

To show that Tµνσ does indeed transforms as such, Equation 2.26 can be rewritten by renaming
the dummy indices leading, at fist, to Equation 2.29 and lastly to Equation 2.30, which, in a
closer look, is the same with Equation 2.28 and that proves that the quantity of Equation 2.24,
where Fµν is any covariant antisymmetric tensor8 of rank 2, transforms as a third rank
covariant tensor.

T ′
µνσ = ∂xκ

∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σ
∂Fκρ

∂xλ
+ ∂xρ

∂x′σ
∂xκ

∂x′µ
∂xλ

∂x′ν
∂Fρκ

∂xλ
+ ∂xρ

∂x′ν
∂xκ

∂x′σ
∂xλ

∂x′µ
∂Fρκ

∂xλ
(2.29)

T ′
µνσ = ∂xκ

∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σ
∂Fκρ

∂xλ
+ ∂xλ

∂x′σ
∂xκ

∂x′µ
∂xρ

∂x′ν
∂Fλκ

∂xρ
+ ∂xρ

∂x′ν
∂xλ

∂x′σ
∂xκ

∂x′µ
∂Fρλ

∂xκ
(2.30)

8Note that Equation 2.21 was not used in this proof.
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The object Tµνσ is also fully antisymmetrical in its indices as it can be seen by exchanging
the indices µ ↔ ν and ν ↔ σ.

T ′
νµσ = ∂xκ

∂x′ν
∂xρ

∂x′µ
∂xλ

∂x′σ
∂Fκρ

∂xλ
+ ∂xκ

∂x′σ
∂xρ

∂x′ν
∂xλ

∂x′µ
∂Fκρ

∂xλ
+ ∂xκ

∂x′µ
∂xρ

∂x′σ
∂xλ

∂x′ν
∂Fκρ

∂xλ

T ′
νµσ = − ∂xρ

∂x′ν
∂xκ

∂x′µ
∂xλ

∂x′σ
∂Fκρ

∂xλ
− ∂xρ

∂x′µ
∂xκ

∂x′σ
∂xλ

∂x′ν
∂Fκρ

∂xλ
− ∂xκ

∂x′σ
∂xρ

∂x′ν
∂xλ

∂x′µ
∂Fκρ

∂xλ

T ′
νµσ = −T ′

µνσ

T ′
µσν = ∂xκ

∂x′µ
∂xρ

∂x′σ
∂xλ

∂x′ν
∂Fκρ

∂xλ
+ ∂xκ

∂x′ν
∂xρ

∂x′µ
∂xλ

∂x′σ
∂Fκρ

∂xλ
+ ∂xκ

∂x′σ
∂xρ

∂x′ν
∂xλ

∂x′µ
∂Fκρ

∂xλ

T ′
µσν = − ∂xρ

∂x′ν
∂xκ

∂x′µ
∂xλ

∂x′σ
∂Fκρ

∂xλ
− ∂xρ

∂x′µ
∂xκ

∂x′σ
∂xλ

∂x′ν
∂Fκρ

∂xλ
− ∂xρ

∂x′σ
∂xκ

∂x′ν
∂xλ

∂x′µ
∂Fκρ

∂xλ

T ′
µσν = −T ′

µνσ

Now is the turn for tensors of the fourth rank Aµνστ , formed as derivatives of third rank
antisymmetric covariant tensors. The derivative of the last transforms as follows:

∂T ′
µνσ

∂x′τ = ∂2xκ

∂x′σ∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σTκρλ + ∂xκ

∂x′µ
∂2xρ

∂x′ν∂x′τ
∂xλ

∂x′σTκρλ

+ ∂xκ

∂x′µ
∂xρ

∂x′ν
∂2xλ

∂x′σ∂x′τ Tκρλ + ∂xκ

∂x′µ
∂xρ

∂x′ν
∂xλ

∂x′σ
∂xα

∂x′τ
∂Tκρλ

∂xα
(2.31)

Following the same recipe as in tensors of the third rank, one can form the following derivatives
by permuting the indices of the previous equation.

∂T ′
τµν

∂x′σ = ∂2xκ

∂x′σ∂x′τ
∂xρ

∂x′µ
∂xλ

∂x′ν Tκρλ + ∂xκ

∂x′τ
∂2xρ

∂x′µ∂x′σ
∂xλ

∂x′ν Tκρλ

+ ∂xκ

∂x′τ
∂xρ

∂x′µ
∂2xλ

∂x′σ∂x′ν Tκρλ + ∂xκ

∂x′τ
∂xρ

∂x′µ
∂xλ

∂x′ν
∂xα

∂x′σ
∂Tκρλ

∂xα
(2.32)

∂T ′
στµ

∂x′ν = ∂2xκ

∂x′σ∂x′ν
∂xρ

∂x′τ
∂xλ

∂x′µTκρλ + ∂xκ

∂x′σ
∂2xρ

∂x′ν∂x′τ
∂xλ

∂x′µTκρλ

+ ∂xκ

∂x′σ
∂xρ

∂x′τ
∂2xλ

∂x′µ∂x′ν Tκρλ + ∂xκ

∂x′σ
∂xρ

∂x′τ
∂xλ

∂x′µ
∂xα

∂x′ν
∂Tκρλ

∂xα
(2.33)

∂T ′
νστ

∂x′µ = ∂2xκ

∂x′ν∂x′µ
∂xρ

∂x′σ
∂xλ

∂x′τ Tκρλ + ∂xκ

∂x′ν
∂2xρ

∂x′µ∂x′σ
∂xλ

∂x′τ Tκρλ

+ ∂xκ

∂x′ν
∂xρ

∂x′σ
∂2xλ

∂x′µ∂x′τ Tκρλ + ∂xκ

∂x′ν
∂xρ

∂x′σ
∂xλ

∂x′τ
∂xα

∂x′µ
∂Tκρλ

∂xα
(2.34)
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But, because there are three derivatives before each tensor term in each equation, adding the
four equations altogether will not lead to cancelling all the non-homogeneous terms. Instead,
one can observe that, in order to cancel the first term of Equation 2.31 with the third term of
the fourth equation, the last must appear with a minus sign. The same is true for the third
term of Equation 2.31, which will cancel with the first term of the second equation, if the last
is multiplied with a minus sign. As for the second term of the first equation, this will cancel
by addition with the second term of the third equation. These observations do give the correct
formula for forming a derivative that will actually transform as a covariant four rank tensor.
The correct way to form this derivative, is to add all the possible permutations, but multiply
with a minus sign when the permutation is odd. So, the following derivative transforms as a
4-rank covariant tensor, where the symbol (−1)† is used to encode the previous remark about
the sign.

Aµνστ =
∑

(−1)†∂Tµνσ

∂xτ
= ∂Tµνσ

∂xτ
− ∂Tτµν

∂xσ
+ ∂Tστµ

∂xν
− ∂Tνστ

∂xµ
(2.35)

2.1.5 Connection and Covariant Derivatives

There are two famous ways to introduce the notion of covariant derivatives. The first one is
more suitable for algebraic thinkers and has its roots on Equation 2.16, where it is shown that
the derivative of a vector does not transform as a vector itself. In order to achieve such a
homogeneous transformation, the derivative9 should absorb in some way the non-homogeneous
term.

At first, a very common convention in the literature is the following, concerning the derivative
of a covariant vector.

Aµ,ν = ∂Aµ

∂xν
(2.36)

Of course, this convention also works for covariant tensors, for example:

Tµν,σ = ∂Tµν

∂xσ
(2.37)

Following the same notation, the new derivative that absorbs the non-homogeneous term
would be:

Aµ;ν = Aµ,ν − AκΓκ
µν (2.38)

The term denoted by Γ above is responsible for absorbing the non-homogeneous term that
appears in the derivative of a covariant vector. The demand for this derivative is to transform
homogeneously, meaning as a second rank tensor. Demanding this rule of transformation, the
transformation formula for the Γ-term will arise naturally.

9We are actually looking for such a derivative.
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A′
µ;ν = ∂xκ

∂x′µ
∂xλ

∂x′νAκ;λ (2.39)

A′
µ,ν − A′

ρΓ′ρ
µν = ∂xκ

∂x′µ
∂xλ

∂x′νAκ,λ − ∂xκ

∂x′µ
∂xλ

∂x′νAρΓρ
κλ (2.40)

Substituting the transformation of simple derivatives (A′
µ,ν) from Equation 2.16 and the

transformation of the covariant vectors (A′
ρ) from Equation 2.6, Equation 2.40 becomes:

∂xκ

∂x′µ
∂xλ

∂x′νAκ,λ + ∂2xκ

∂x′µ∂x′νAκ − ∂xκ

∂x′ρAκΓ′ρ
µν = ∂xκ

∂x′µ
∂xλ

∂x′νAκ,λ − ∂xκ

∂x′µ
∂xλ

∂x′νAρΓρ
κλ (2.41)(

∂xκ

∂x′ρ Γ′ρ
µν − ∂xρ

∂x′µ
∂xλ

∂x′ν Γκ
ρλ − ∂2xκ

∂x′µ∂x′ν

)
Aκ = 0 (2.42)

For the last equation to be true for every covariant vector Aκ, the first factor must be equal
to zero. After some displacements and a multiplication by the inverse Jacobian matrix, the
transformation law of the Γ-term arises.

Γ′σ
µν = ∂x′σ

∂xκ

∂2xκ

∂x′µ∂x′ν + ∂x′σ

∂xκ

∂xρ

∂x′µ
∂xλ

∂x′ν Γκ
ρλ (2.43)

Equation 2.43 is really important because it shows how the Γ- term should transform, in
order for the new derivative of Equation 2.38 to transform as a second rank tensor.

Equation 2.38 is known as the Covariant Derivative of a covariant vector. The second
way of introducing the covariant derivative might be more appropriate for a physical thinker,
because it requires to visualize how would a vector move if it were restricted to a curved
space.

The easiest way to visualize this is, as always, to consider the simplest case. In this situation,
the simplest curved background is a curved line. First, consider two points, A,B, linked with
a straight line. Then, consider a vector anchored at the point A. If one wants to transfer this
vector to the point B, but simultaneously the vector has to move through the straight line,
then it means that the angle of the vector with the line must remain the same, through all
the positions the vector shall take during this transfer.

On the other hand consider that the points A,B are lying on a (non-straight) curve. Then, to
transfer a vector from A to B the angle that needs to stay intact is that between the vector
at each point of the transfer and the tangent line of the curve at this point. Figure 2.1 might
help in visualization.

Therefore, in the case of the straight line, the vector remains unchanged when comparing the
original vector, attached to the point A, with the final vector in the point B. In contrast,
in the case of the curved line, the vector changes just by "following" the line. There is no
external force that changes the vector; only the geometry of its underline space is responsible
for its change.
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Figure 2.1: Visualization of Parallel Transport for a vector. The first case considers transporting
through a straight line, which corresponds to the Euclidean space, while in the second
case the vector is transfer through a curved line. In the second case, the vector points
in a different direction after being transfered.

The job of the derivative is to quantify the change of functions between two points. But, in
the case of curved backgrounds there will be two different kinds of changes. One coming
from external forces/effects and another one only because the function is defined on a curved
manifold.

It is a good idea, to define a new type of derivative that will absorb the change of the
underlying geometry of the manifold and consider only the changes accounted to external
parameters. This is important for physics where the physicist wants to distinguish the changes
causes by "forces" to describe physical laws. That is exactly the job of the covariant derivative
defined previously.

The difference between two vectors Aµ, Aµ + dAµ defined in two infinitesimally close points
xρ, xρ + dxρ is:

dAµ = ∂Aµ

∂xν
dxν (2.44)

This difference contains the total change of the vector, in the sense that was discussed above.
In that change there exist the change due to geometry, for which the symbol δAµ is used. In
other words, δAµ is the change that is considered as no-change when transferring the vector
from one point to another. This new quantity can only depend on the original vector δAµ and
the coordinates’ one-form dxν . The simplest and most compact way to write this dependence
is:

δAµ = −Γµ
κνA

κdxν (2.45)

To prove that this Γ-term used here is the same as the one introduced for the covariant
derivative, Equation 2.43 must be reproduced using the notion of parallel transport. As
mentioned above, the change δAµ measures only the original change of the vector, without
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taking into account the properties of the underlying manifold. As a result, this change must
be the same if the local coordinate system changes, by the diffeomorphism 2.1.

δA′µ = (δAµ)

δ

(
∂x′µ

∂xν
Aν

)
= (−Γµ

κνA
κdxν)′

δ

(
∂x′µ

∂xν

)
Aν + ∂x′µ

∂xν
δAν = −Γ′µ

κνA
′κdx′ν

∂2x′µ

∂xν∂xκ
Aνdxκ − ∂x′µ

∂xν
Γν

κσA
κdxσ = −Γ′µ

κν

∂x′κ

∂xρ
Aρ∂x

′ν

∂xσ
dxσ(

Γ′µ
κν

∂x′κ

∂xρ

∂x′ν

∂xσ
− ∂x′µ

∂xν
Γν

ρσ − ∂2x′µ

∂xρ∂xσ

)
Aρdxσ = 0

The vector Aρ was chosen arbitrarily, meaning that the last equation must hold for every pos-
sible vector Aρ. After changing some dummy indices and doing a little algebraic manipulation
the resulting equation is the following.

Γ′σ
µν = ∂x′σ

∂xκ

∂xρ

∂x′µ
∂xλ

∂x′ν Γκ
ρλ − ∂xρ

∂x′µ
∂xκ

∂x′ν
∂2x′σ

∂xρ∂xκ
(2.46)

Equation 2.46 only differs with Equation 2.43 in the non-homogeneous term, but as one can
see from the calculations following this paragraph there is no actual difference. Equation 2.46
is just another way of expressing Equation 2.43. It is obvious from this rule of transformation,
that the Γ-term is not a tensor.

∂xρ

∂x′µ
∂xκ

∂x′ν
∂2x′σ

∂xρ∂xκ
= ∂xκ

∂x′ν
∂xρ

∂x′µ
∂

∂xρ

{
∂x′σ

∂xκ

}

= ∂xκ

∂x′ν
∂

∂x′µ

{
∂x′σ

∂xκ

}

= ∂

∂x′µ

{
∂xκ

∂x′ν
∂x′σ

∂xκ

}
− ∂x′σ

∂xκ

∂

∂x′µ

{
∂xκ

∂x′ν

}

= ∂

∂x′µ {δσ
ν } − ∂x′σ

∂xκ

∂

∂x′µ

{
∂xκ

∂x′ν

}
∂xρ

∂x′µ
∂xκ

∂x′ν
∂2x′σ

∂xρ∂xκ
= −∂x′σ

∂xκ

∂xκ

∂x′µx′ν

In conclusion, in order to compare a vector in two different points on a manifold, one needs
to calculate its covariant derivative, which only takes into consideration the "true" change
of the vector. The covariant derivative is given by Equation 2.38. In this relation, the term
labeled with the letter Γ is responsible for compensating the inhomogeneous transformation of
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a simple derivative 10 This term is often referred to as affine connection. The connection is
also used to allow the parallel transport of a vector from one point of the manifold to another.
This is done by using Equation 2.45, which is the original change of the vector.

Aµ + δAµ = Aµ − Γµ
κνA

κdxν (2.47)

Equation 2.47 shows the parallel transported vector Aµ, can be used to define the covariant
derivative as the following limit.

Aµ
;ν = (Aµ + dAµ) − (Aµ + δAµ)

dxν

= dAµ − δAµ

dxν

=
dAµ + Γµ

κρA
κdxρ

dxν

= dAµ

dxν
+ Γµ

κρA
κδρ

ν

Aµ
;ν = Aµ,ν +Γµ

κνA
κ (2.48)

Equation 2.48 is the covariant derivative of a contravariant vector, which differs from the
covariant derivative of a covariant vector only by the plus sign appearing in front of the
connection. This relation will be validated in the next section, where it will be derived only
by the covariant derivative of the covariant vector and some of its consequences.

Of course, the combinations defined as frame invariant in Section 2.1.4 are the covariant
derivatives of themselves. This is easily shown by just replacing the ordinary derivative with
a covariant one. As a matter of fact, one shall not forget that they were initially defined to
absorb the non-homogeneous term of the derivative.

2.1.6 Covariant Derivative of Tensors

First of all, Equation 2.38 was given the name derivative in a naive way. More specifically, to
characterize an operation with the name derivative, this operation must be linear in terms of
itself and of its input. It should also have a Leibniz rule for an input product. Therefore, the
appropriate first step, in order to generalize this new derivative, is to show that it is actually
a derivative. A derivative is linear with respect to the field of real numbers and also possess a
Leibniz rule for the product of two functions.

10see the second term of Equation 2.16.
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Consider two covariant vectors Aµ, Bµ and two real numbers a, b.

(aAµ + bBµ);ν = (aAµ + bBµ),ν − Γκ
µν (aAκ + bBκ)

= aAµ,ν + bBµ,ν − aΓκ
µνAκ − bΓκ

µνBκ

=
(
aAµ,ν − Γκ

µνaAκ

)
+
(
bBµ,ν − Γκ

µνbBκ

)
(aAµ + bBµ);ν = aAµ;ν + bBµ;ν

This proves the linear property of the derivative. As for the Leibniz rule, it will be imposed
as a first step and then it will be proved acceptable by its results. More specifically, it will be
used to calculate the covariant derivative of a contravariant vector. If this calculation matches
Equation 2.48 then the Leibniz rule is accepted as correct.

The proof starts from the fact that AµB
µ is a scalar, meaning that its covariant derivative

must be the same to its ordinary derivative.

(AµB
µ);ν = (AµB

µ),ν

Aµ;νB
µ + AµB

µ
;ν = Aµ,νB

µ + AµB
µ
,ν

Aµ,νB
µ − AκΓκ

µνB
µ + AµB

µ
;ν = Aµ,νB

µ + AµB
µ
,ν

Aκ

(
Bκ

;ν − Γκ
µνB

µ −Bκ
,ν

)
= 0

Bκ
;ν = Bκ

,ν + Γκ
µνB

µ

This last equation is exactly the same with Equation 2.48. This concludes the proof that the
covariant derivative does indeed posses a Leibniz rule.

A very important aspect of this new derivative that allows it to be defined for all the
objects introduced in section 2.1.2 is that if a covariant derivative is equal to zero in a
certain frame then it would remain zero for every possible choice of frame. Of course, the
tensorial/homogeneous kind of transformation appearing in Equation 2.39 is responsible for
this fact. So, to show that a quantity is invariant over a manifold, one shall just demand that
its covariant derivative is zero.

The previous procedure used to validate Leibniz rule can be generalized to define the covariant
derivative of every tensor. More specifically, an invariant product is constructed by multiplying
the tensor with the appropriate number of covariant and contravariant vectors and then the
derivative of this invariant must be equal to its covariant derivative. As an example the
derivative of a mixed tensor will be calculated.

(T µ
ν AµB

ν);ρ = (T µ
ν AµB

ν),ρ

T µ
ν;ρAµB

ν + T µ
ν A;µB

ν + T µ
ν AµB

ν
;ρ = T µ

ν,ρAµB
ν + T µ

ν A,µB
ν + T µ

ν AµB
ν
,ρ

T µ
ν;ρAµB

ν + T µ
ν A,µB

ν − T µ
ν Γκ

µρAκB
ν + T µ

ν AµB
ν
,ρ + T µ

ν AµΓν
κρB

κ = T µ
ν,ρAµB

ν + T µ
ν A,µB

ν + T µ
ν AµB

ν
,ρ

AκB
ρ
(
T κ

ν;ρ − T µ
ν Γκ

µρ − T κ
σ Γσ

νρ − T κ
ν,ρ

)
= 0
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The last equation gives the covariant derivative of the mixed tensor T µ
ν .

T µ
ν;ρ = T µ

ν,ρ + T κ
ν Γµ

κρ − T µ
κ Γκ

νρ (2.49)

2.1.7 Geodesics and the Metric Tensor
The purpose of this subsection is to investigate if there is a natural way to compare lengths
on a manifold, having only introduced the connection Γ. That is without any reference to a
metric tensor.

To investigate this, assume a curve on the spacetime manifold γ = γµ ∈ M11, which is
described by a real parameter λ ∈ I ⊂ R. The derivative of this curve is the velocity at every
point on the curve, or more rigorously a vector that lies on the tangent plane at every point
on the curve. Of course, the curve lies entirely on the manifold, therefore to compare the
velocity vector the notion of parallel transport of section 2.1.5 is needed.

The idea is to assume that by transferring the velocity vector between two neighboring points
on the curve the vector will remain on the tangent plane. The same will happen if the vector
is parallel transported to the neighboring point. So, the parallel transported vector would be
parallel to the regular transported one. This is desrcibed by the following equation.

K

[
dγµ

dλ + d

(
dγµ

dλ

)]
= dγµ

dλ + δ

(
dγµ

dλ

)

K
dγµ

dλ +K
d2γµ

dλ2 dλ = dγµ

dλ − Γµ
κν

dγκ

dλ
dγν

dλ dλ

(1 −K)dγµ

dλ = K
d2γµ

dλ2 dλ+ Γµ
κν

dγκ

dλ
dγν

dλ dλ

Taking a look at this equation, the right hand side is an one-form with respect to the differential
dλ, while the left hand side is just a derivative. To fix this inconsistency the term 1 −K must
be also an one-form, which generally can be written as 1 −K = ϕ(λ)dλ. Substituting in the
last equation, the result is:

ϕ(λ)dγµ

dλ dλ = d2γµ

dλ2 dλ− ϕ(λ)dγµ

dλ dλ
2 + Γµ

κν

dγκ

dλ
dγν

dλ dλ

First, by doing a first order approximation the middle term of the right hand side vanishes.
After that, the equation is just an equality between one-forms. The condition that must hold
is the following:

ϕ(λ)dγµ

dλ = d2γµ

dλ2 + Γµ
κν

dγκ

dλ
dγν

dλ (2.50)

11Mathematically the correct expression is γµ = xµ ◦ γ, where xµ is the local coordinate system, near each
point of the curve.
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Equation 2.50 is the general form of the geodesics equation. A simpler and more intuitive
way of expressing the above equation is by changing the parametrization of the curve γµ for
λ to s(λ). Using the chain rule the geodescis equation can be written as:

(s′(λ))2 d2γµ

ds(λ)2 + (s′(λ))2 Γµ
κν

dγκ

ds(λ)
dγν

ds(λ) = (ϕ(λ)s′(λ) − s′′(λ)) dγµ

ds(λ)

By demanding for the new parametrization to fulfill the equation ϕs′ = s′′ the geodesics
equation takes the form:

d2γµ

ds2 + Γµ
κν

dγκ

ds
dγν

ds = 0 (2.51)

The deeper meaning of this equation is that it is derived only by using the connection Γ and,
as any curve, can be used to measure distances by integrating the velocity. This remark
gives rise to the idea that the connection must have a relation with the metric tensor of the
manifold. Of course, this last sentence does not imply that every connection can be written
in terms of a metric tensor.

A very basic introduction of the metric tensor is given bellow. The reason that there are no
details on this subject, is that the purposes of this chapter is to give a basic introduction of
differential geometry, in order to relate its ideas to the Yang-Mills theory over the Minkowski
spacetime, where the metric tensor is only used in basic calculations.

As stated above, the idea arises from the need to measure the distance of two arbitrary points
on a manifold. The metric is introduced as:

ds2 = gµνdx
µdxν (2.52)

This equation an be used to prove that the metric transforms as a second rank covariant
tensor. The distance of two arbitrary points on the manifold must remain the same under the
diffeomorphic transformation of Equation 2.1.

(ds′)2 = (ds)2

g′
κλdx

′κdx′λ = gµνdx
µdxν

g′
κλ

∂x′κ

∂xµ
dxµ∂x

′λ

∂xν
dxν = gµνdx

µdxν

g′
κλ

∂x′κ

∂xµ

∂x′λ

∂xν
= gµν

∂xµ

∂x′κ
∂xν

∂x′λ gµν = g′
κλ (2.53)

The last equation is exactly the rule of transformation a covariant second rank tensor should
follow, so it concludes the proof. Now that the tensorial character of the metric is established,
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an obvious result is that the product gµνA
µBν is an invariant quantity. This result is often

used to convert a contravariant vector to a corresponding covariant one.

gµνA
µBν = AνB

ν

The meaning of the above equation is that the contravariant vector Aµ can be replace by the
covariant vector gµνA

µ.

Aν = gµνA
µ (2.54)

It can be proved that the inverse of the metric tensor exists and in any frame they are related
as:

gµκgµλ = δκ
λ (2.55)

The inverse metric gµκ transforms as a contravariant second rank rank and using the same
arguments as before, it can be used to transform a covariant vector into a contravariant one.

Aν = gµνAµ (2.56)

Another important property of the metric tensor is its relation with the Jacobian defined by
the diffeomorphism 2.1. Starting from the transformation of the metric, implied by Equation
2.53 and the determinants g and g′ of the tensors gµν and g′

κλ respectively one gets the
following formula.

g′ =
∣∣∣∣∣ ∂xµ

∂x′κ

∣∣∣∣∣
2

g

The middle term of this equation is the Jacobian determinant of the frame transformation,
which gives the final result, that relates the metric tensor between two frames with the
Jacobian.

J =
√
g′

g
(2.57)

This result is really important for the subject of this thesis, because the Yang-Mills equations
are studied in a Minkowski spacetime background, where the determinant of the metric is
g = 1 and as a result the Jacobian is also J = 1. Consequently, in the background of special
relativity, the relation between tensors and tensor densities described in Section 2.1.3 is trivial,
meaning there is no distinction between tensor and densities.
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Figure 2.2: Enter Caption

2.1.8 Curvature and Torsion Tensors

In section 2.1.5 the notion of parallel transfer was introduced. An interesting conclusion is
that when parallel transporting a vector over a closed path the final vector does not coincides
with the initial vector, because of the underlying structure of the manifold.

The appropriate measure of this result is, of course, the covariant derivative. For this section,
a different and more famous notation for the covariant is used. Specifically, the covariant
derivative of a contravariant vector is denoted as12:

∇µA
ν = ∂µA

ν + Γν
κµA

κ

Going back to measuring the effect of the underlying geometry of the spacetime manifold
M, when parallel transporting a vector Aµ from a point A ∈ M the same point using two
different closed paths, as shown in Figure 2.2. The difference between the initial vector at
A and the parallel transferred vector at A is measured by the commutator of the covariant
derivatives in the µ and ν directions.

12The symbol ∂µ is just shorthand notation for the usual derivative operator ∂
∂xµ
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[∇µ,∇ν ]Aρ = ∇µ(∇νA
ρ) − ∇ν(∇µA

ρ)
= ∂µ(∇νA

ρ) − Γσ
νµ(∇σA

ρ) + Γρ
κµ(∇νA

κ)−
− ∂ν(∇µA

ρ) − Γσ
µν(∇σA

ρ) + Γρ
κν(∇µA

κ)
= (∂µΓρ

κν − ∂νΓρ
κµ)Aκ + (Γσ

µν − Γσ
νµ)∇σA

ρ+
+ Γρ

κν(∂µA
κ − ∇µA

κ) + Γρ
κµ(∂νA

κ − ∇νA
κ)

[∇µ,∇ν ]Aρ = (∂µΓρ
κν − ∂ν + Γρ

κµΓρ
σµΓσ

κν − Γρ
σνΓσ

κµ)Aκ + (Γσ
µν − Γσ

νµ)∇σA
ρ

From the last equation the two following two tensors can be defined:

Rρ
κµν = ∂µΓρ

κν − ∂ν + Γρ
κµΓρ

σµΓσ
κν − Γρ

σνΓσ
κµ (2.58)

T σ
µν = Γσ

µν − Γσ
νµ (2.59)

The tensor Rρ
κµν is called the Riemann curvature tensor or just curvature of the manifold.

The tensor T σ
µν is the torsion tensor. The important fact is that even in flat manifolds

where all the components of the curvature are equal to zero, covariant derivatives may not
commute, meaning that there is an urge for a connection. In classical general relativity the
spacetime manifold is considered torsion-free, which is achieved by assuming symmetric affine
connections. This kind of connections are often called Christoffel symbols.

2.2 Group Theory

2.2.1 General Definitions

Group theory is the mathematical theory that studies sets equipped with some special
properties. The first important thing to do is to define what are these properties a set must
have to be promoted into a group.

Definition 2.2.1 (Group). A group is a set G = {g} equipped with a binary operation ⊙,
which is actually a map:

⊙ : G×G −→ G

(g1, g2) 7−→ g1 ⊙ g2

The binary operation must fulfill the following properties:

(i) Closure: ∀ g1, g2 ∈ G, g1 ⊙ g2 ∈ G
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(ii) Associativity: ∀g1, g2, g3 ∈ G, g1 ⊙ (g2 ⊙ g3) = (g1 ⊙ g2) ⊙ g3

(iii) Identity: ∃e ∈ G such that : ∀g ∈ G, e⊙ g = g ⊙ e = g

(iv) Inverse: ∃g−1 ∈ G ∀g ∈ G such that : g−1 ⊙ g = g ⊙ g−1 = e

If the set G equipped with the operation ⊙ form a group the notation (G,⊙) is widely used.

The term binary operation in the above Definition 2.2.1 is used as a fancy term to describe
a map that takes two elements of a group G and maps them to another element of the
group. The exact form of the operation should be chosen according to the properties of
Definition 2.2.1 and, of course, it depends on the elements of the group. For example, the
set of integer numbers Z = {. . . ,−2,−1, 0, 1, 2, . . .} equipped with addition forms a group,
because:

(i) The sum of two integers is an integer.

(ii) Addition is associative.

(iii) The number 0 ∈ Z is the identity element of the addition 0 + a = a+ 0 = a ∀a ∈ Z

(iv) The inverse element is just the opposite number, which belongs in the group: ∀a ∈ Z :
∃ (−a) ∈ Z such that a+ (−a) = −a+ a = 0

The above example is very illustrative, because it practically emphasizes the fact that when
defining a group two things must be defined: the set and the operation. If multiplication were
chosen as the binary operation instead of the addition, then the combination (Z, ·) would not
form a group, because the inverse of an integer number is not an integer itself. Moreover, the
combination (N,+) do not form a group, because the opposite number of a natural number
(that would be the inverse in terms of group theory) is not a natural number.

Two important properties of a group (G,⊙) are the uniqueness of the identity element e ∈ G
and the uniqueness of the inverse g−1 ∈ G of every element g ∈ G.

Uniqueness of the identity. Suppose that in a group (G,⊙) exist two different identity
elements e1, e2 ∈ G, e1 ̸= e2.
From the identity property defined in Definition 2.2.1 ∀g ∈ G:

e1 ⊙ g = g ⊙ e1 = g

e2 ⊙ g = g ⊙ e2 = g

Because the above equations are true ∀g ∈ G, then for g = e2 the first equation gives:

e1 ⊙ e2 = e2

and the second equation for g = e1 gives:
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e1 ⊙ e2 = e1

Combining the last two results:

e1 = e2

which is a contradiction according to the original hypothesis e1 ̸= e2, which means that
e1 = e2. This procedure can be followed in a similar manner to prove that e1 = e2 = . . . = en,
which means that the identity element of a group is unique.

Uniqueness of the inverse. Suppose that in a group (G,⊙) exist two different inverse elements
a, b ∈ G, a ̸= b for each element of the group g ∈ G.
From the inverse property defined by the Definition 2.2.1:

a⊙ g = g ⊙ a = e

b⊙ g = g ⊙ b = e

So, using the identity element e ∈ G and the associativity of the group’ s binary operation:

a = a⊙ e = a⊙ (b⊙ a) = (a⊙ b) ⊙ a = e⊙ b = b

The last, statement is a contradiction, because in the original hypothesis it was a ̸= b. This
shall prove that the inverse g−1 ∈ G is unique for each g ∈ G.

Definition 2.2.2 (Subgroup). Let (G,⊙) and (H,⊙) be groups equipped with the same
binary operation ⊙ and underlying sets G = {g}, H = {h}. If H ⊆ G then (H,⊙) is called a
subgroup of (G,⊙).

Note that by the uniqueness of the identity proven above, the identity element e ∈ G should
also be an element of the set H, in order for the set H to be considered a group. This means,
that if H is a subgroup of G then, these two groups have the same identity element e.

Definition 2.2.3 (Abelian Group). Let (G,⊙) be a group. The group G is called Abelian if:

∀g1, g2 ∈ G, g1 ⊙ g2 = g2 ⊙ g1

In other words, if a group’ s binary operation is commutative then the group is called Abelian.
For example, the set of integers equipped with addition form an Abelian group. Of course,
even if g1 ⊙ g2 ̸= g2 ⊙ g1 for two specific g1, g2 ∈ G then the group is called non-Abelian.
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At this point, it should not be forgotten that groups are sets with some special properties,
which means that maps can be defined with groups playing the role of the domain and the
target set. Some special cases of such maps are given by the definitions bellow.

Definition 2.2.4 (Homomorphism). Given two groups (G,⊙) and (H, •), a group homomor-
phism is a map ϕ : G −→ H such that ∀g1, g2 ∈ G:

ϕ(g1 ⊙ g2) = ϕ(g1) • ϕ(g2)

Definition 2.2.5 (Isomorphism). Let ϕ : G −→ H be a group homomorphism. If the map ϕ
is a bijective map then the map ϕ is called isomorphism and the groups (G,⊙), (H, •) are
called isomorphic groups if such map exists. The notations (G,⊙) ∼= (H, •) and G ∼= H are
equivalently used.

The isomorphism map is really important, because it is what a mathematician would call the
"structure preserving map".

2.2.2 Matrix Groups

From the era of classical physics it has been known that matrices play a very important role
in transformations and, as a result, in symmetries of a system. To be exact, every matrix
express a linear transformation. 13 For this reason, the most important matrix sets are defined
in this section. It has to be clear that the following definitions define the matrices as sets and
not groups. Although, each definition is accompanied with a proof that shows it also forms a
group with binary operation the matrix multiplication. So, the term matrix set or matrix
group is used equivalently when referring to one of the following definitions.

Definition 2.2.6 (General Linear Group). The General Linear Group over R is the set of
all invertible square n× n matrices of real values (MR

n×n), with binary operation the matrix
multiplication.

GL(n,R) = {A ∈ MR
n×n | det(A) ̸= 0}

Proof. (i) Closure: Assume two matrices An×n, Bn×n ∈ GL(n,R). It is known from linear
algebra that the result of the multiplication of two square n× n matrices is an n× n
square matrix.14

An×n ·Bn×n = Cn×n (2.60)

So, for Cn×n to belong in the set GL(n,R), it needs to have det(C) ̸= 0.

Again from linear algebra:15

13The inverse of this statement is not true.
14The symbol "·" denotes ordinary matrix multiplication
15The subscript n × n denoting the dimensions of each matrix is omitted, because all matrices mentioned in

the present section are n × n square matrices
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det(A ·B) = det(A) det(B) (2.61)

The result of these two equations is:

det(C) = det(A) det(B)

Because, A,B ∈ GL(n,R), det(A) ̸= 0 and det(B) ̸= 0. What follows from the last
equations is that det(C) ̸= 0. As a consequence, ∀A,B ∈ GL(n,R), A · B = C ∈
GL(n,R).

(ii) Associativity: From basic linear algebra it is known that matrix multiplication between
square matrices of the same dimensionality is an associative operation. ∀A,B,C ∈
GL(n,R), (A ·B) · C = A · (B · C).

(iii) Identity: The identity element is the identity n× n square matrix (1n×n ≡ 1), because
∀A ∈ GL(n,R), A · 1 = 1 · A = A . Of course, det(1) ̸= 0, so 1 ∈ Gl(n,R).

(iv) Inverse: Every square matrix A ∈ GL(n,R) is an invertible matrix, because det(A) ≠ 0,
which means that ∃A−1, A−1 · A = A · A−1 = 1. The inverse matrix A−1 must be an
element of GL(n,R). Again, from basic linear algebra:

det
(
A · A−1

)
= det(A) det

(
A−1

)
but A · A−1 = 1, det(1) = 1 and det(A) ̸= 0, so:

det
(
A−1

)
= 1

det(A) ̸= 0 (2.62)

The last equation proves that A−1 ∈ GL(n,R)

Definition 2.2.7 (Special Linear Group). The Special Linear Group over R is the set of all
square n× n matrices with real values and determinant equal to one, with binary operation
the matrix multiplication.

SL(n,R) = {A ∈ GL(n,R) | det(A) = 1}

Consequently, according to the Definition 2.2.2, SL(n,R) ⊆ GL(n,R)

Proof. One can prove that the Special Linear Group is indeed a group by following the same
steps presented above, where it was shown that the General Linear Group is indeed a group.

(i) Closure: ∀A,B ∈ SL(n,R) and C defined as C = A ·B, one should prove that C belongs
in the set SL(n,R). So, it should be proven that C is a square matrix with det(C) = 1.
As implied in the previous proof (see Equation 2.60) C is a square n× n matrix. As for
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the determinant: det(A) = 1, det(B) = 1 and using Equation 2.61 det(C) = 1, which
means that C ∈ SL(n,R).

(ii) Associativity: Multiplication of square matrices is an associative operation

(iii) Identity: It must be proven that the identity matrix 1 belongs in SL(n,R), which is
true because every identity matrix has det(1) = 1.

(iv) Inverse: It can be proven, following the same steps presented in the same section of
the previous proof, that the inverse matrix A−1 exists ∀A ∈ SL(n,R). Last but not
least, using Equation 2.62 and substituting the det(A) = 1, the result is det(A−1) = 1,
which proves that every inverse A−1 of every element A ∈ SL(n,R) belongs in the set
SL(n,R).

Sets of Definition 2.2.6 and Definition 2.2.7 are defined as sets of matrices, whose elements are
real numbers. They can be extended to the groups GL(n,C) and SL(n,C) respectively, so
that matrices can contain complex numbers as well. These expansions do not change anything
in the proofs provided above.

Definition 2.2.8 (Orthogonal Group). The set of the Orthogonal Group is:

O(n) = {A ∈ GL(n,R) |ATA = AAT = 1n×n}

where the condition:

ATA = AAT = 1 (2.63)

is known as the orthogonality condition.

Directly by the definition, it should be clear that O(n) ⊆ GL(n,R).

Proof. (i) Closure: According to the Equation 2.60, if a matrix C is defined as A ·B = C,
with A,B ∈ O(n), then C is a square matrix. Moreover, it must be proven that
C · CT = CT · C = 1. Using the property:

(M ·N)T = NT ·MT (2.64)

and the associativity of matrix multiplication between square matrices of the same
dimension:

C · CT = (A ·B) · (A ·B)T = (A ·B) · (BT · AT ) = A · (B ·BT ) · AT (2.65)

Now, knowing that A,B ∈ O(n) means that the orthogonality condition 2.63 holds for
the matrices A,B and Equation 2.65 gives:
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C · CT = A · 1 · AT = A · AT = 1

Following exactly the same steps one can prove that CT · C = 1. This means that
C ∈ O(n).

(ii) Associativity: As mentioned before matrix multiplication between square matrices of
the same dimensions is associative.

(iii) Identity: the identity element is the identity matrix 1. For this to be true, the identity
matrix must be an element of the group O(n). This is true, because 1T = 1 and
consequently 1 · 1T = 1.

(iv) Inverse: Because O(n) ⊆ GL(n,R), the inverse A−1 of every element A ∈ O(n) exists
and is A−1 ∈ GL(n,R), but this inverse element should also be an element of the group
O(n). So, the following Equation 2.66 must be proven.

A−1 ·
(
A−1

)T
=
(
A−1

)T
· A−1 = 1 (2.66)

To prove this equation Property 2.64 combined with the following Property 2.67 will be
useful.

(M ·N)−1 = N−1 ·M−1 (2.67)

Starting from the equation A · AT = 1, which is true ∀A ∈ O(n) and substituting
A = A−1, the equation (A−1)T ·A−1 = 1−1 = 1 is obtained. The last equation concludes
the proof that ∀A ∈ O(n)∃A−1 ∈ O(n)

The significance of orthogonal matrices is already known from linear algebra. Two matrices
are called orthogonal if their rows and columns are orthonormal vectors.16 Mathematically
this is expressed with the orthogonality condition 2.63. Column matrices of n values can
represent a vector in an n-dimensional vector space. When an orthogonal matrix On×n acts on
a column matrix An×1, which represents an n-component vector, a new n-component vector
is produced which is rotated in the basis formed by the orthonormal vectors, appearing as
the rows and columns of the orthogonal matrix O. As a general statement it can be said that
rotations of real vectors are represented by orthogonal matrices.

Another important property of orthogonal matrices can be proved after having established
that they form a group. The fact that the inverse element of a group is unique means that
the inverse O−1 of an orthogonal matrix O is unique. In a more mathematical language
this translates as: "There exists exactly one matrix O−1 ∈ O(n), that satisfies the equations
O ·O−1 = O−1· = 1." Combining the previous statement with the orthogonality condition of
Equation 2.63, it can be concluded that for every orthognal matrix:

16That is why orthogonal matrices are also referred to as orthonormal matrices
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O−1 = OT (2.68)

An important property that should be taken into consideration is that for every matrix A,
the following equation holds.

det
(
AT
)

= det(A) (2.69)

So, for two orthogonal matrices, taking the determinant on both sides of the Equation 2.63
results in:

det
(
O ·OT

)
= det(O) det

(
OT

)
= det(O)2 = det(1) = 1

which is:

det(O)2 = 1 ⇒ det(O) = ±1 (2.70)

This result is very important, because it restricts the determinant of an orthogonal matrix to
the values ±1. The special case of det(O) = 1 is the case of the Special Orthogonal Group
described in Definition 2.2.9 right bellow.

Definition 2.2.9 (Special Orthogonal Group). Following the same pattern as in Defini-
tion 2.2.7, the set of the Special Orthogonal Group is defined as:

SO(n) = {A ∈ O(n) | det(A) = 1}

Of course, SO(n) ⊆ O(n)

Proof. The proof that the Special Orthogonal Group does indeed form a group is trivial
combining the proofs provided for the Orthogonal Group and the Special Linear Group.

Notice that when defining the Orthogonal and the Special Orthogonal groups there is no
parameter R inside O(n) and SO(n), as there was in GL(n,R) and in SL(n,R). This is
happening, because we need orthogonal matrices to represent rotations, which are expressed
by the condition 2.63, only in real vector spaces Rn. The analogue in complex vector spaces is
expressed by the unitary matrices defined bellow.

Definition 2.2.10 (Unitary Group). The Unitary Group is a matrix group with set:17

U(n) = {A ∈ GL(n,C) |A · A† = A† · A = 1n×n}

The condition:
17A† is used to denote the Hermitian conjugate of the matrix A, which is A† ≡

(
AT
)⋆ = (A⋆)T

35



Karydis Evangelos

A · A† = A† · A = 1 (2.71)

is known as the unitarity condition

Proof. The proof is actually very similar to that provided for the group O(n), but there are
some differences arising from the use of the Hermitian conjugate.

(i) Closure: Let’ s define again the matrix C = A ·B, with A,B ∈ C. As described many
times above, C is a square matrix with the same dimensions as the matrices A,B. As a
second step to prove closure, the unitarity condition 2.71 must be proven. This goes as
follows:

C · C† = (A ·B) · (A ·B)† (2.72)

Now using the property:

(M ·N)† = N †M † (2.73)

and the associativity of matrix multiplication the equation 2.72 is continued as:

C · C† = A · (B ·B†) · A†

Now, remembering that A,B ∈ U(n), A,B fulfill the unitarity condition 2.71. Using
this condition the last equation becomes:

C · C† = A · 1 · A† = A · A† = 1

One can start from the side C† · C, follow the exact same steps and finally prove the
closure property of the group.

(ii) Associativity: Matrix multiplication is an associative operation

(iii) Identity: The Hermitian conjugate of the unitary matrix is the unitary matrix itself
1† = 1 ⇒ 1 ∈ U(n).

(iv) Inverse: Again, U(n) ⊆ GL(n,C), so ∀A ∈ U(n), det(A) ̸= 0 ⇒ ∃A−1 |A−1 · A =
A · A−1 = 1. This inverse matrix should be an element of the group U(n), meaning
that it must have the property (A−1)† · A−1 = A−1 · (A−1)† = 1. To prove this, linear
algebra is needed again. Starting from the term A · A† and using the fact that if two
invertible matrices are equal then their inverse matrices must be equal combined with
the properties 2.73, 2.67 and 1−1 = 1, the equation takes the form:

(
A · A†

)
=
(
A†
)−1

· A−1 =
(
A−1

)†
· A−1 = 1

By this last equation the proof that the set U(n) does indeed form a group is finished.
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Unitary matrices have a similar property to that of orthogonal matrices concerning their
determinant. In fact, taking into consideration the property:

det
(
U †
)

= det(U)⋆ (2.74)

and then taking the determinant of U † · U = 1:

det
(
U † · U

)
= det

(
U †
)

det(U) = det(U)⋆ det(U) = |det(U)|2 = 1

The last equation means that the determinant of a unitary matrix has the the form:

det(U) = eia, a ∈ [0, 2π) (2.75)

Definition 2.2.11 (Special Unitary Group). The Special Unitary Group is a subgroup of the
group U(n) defined in Definition 2.2.10, with set:

SU(n) = {A ∈ U(n) | det(A) = 1}

Proof. Proof is again trivial if one combines the techniques used for proving that U(n) and
SL(n,R) form groups.

2.2.3 Free Parameters of Matrix Groups

An important feature of the matrix groups defined in Section 2.2.2 is the free parameters
of each group. This term refers to the number of matrix elements in each matrix of a
matrix group, that are not fixed by any condition. First of all, it should be noted that
SL(n,R), O(n), SO(n) are subgroups of the GL(n,R) group, while U(n), SU(n) are subgroups
of GL(n,C). As a result, each subgroup will have less free parameters than GL(n,R) and
GL(n,C) respectively.

The group GL(n,R) contains all invertible n× n square matrices, so its free parameters are
the n2 elements contained in each matrix. The condition det(A) ̸= 0 does not fix a parameter,
it just rejects specific simultaneous values of the free parameters. In that sense, each matrix
of GL(n,R) can describe a point in a vector space Rn2 , but every point of Rn2 could not be
described as a matrix of GL(n,R), because Rn2 also contains the points (a, b, c, d) that lie on
the surface ac− bd = 1. These points correspond to non-invertible n× n square matrices.18

To calculate the number of free parameters needed to fully define each matrix of the SL(n,R)
group, one should start from the n2 free parameters of a matrix of the GL(n,R) group. The

18This is a first try to connect the idea of matrix groups and the idea of surfaces of Rn2
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condition for the determinant is one equation. As a result, it fixes only one parameter, so the
number of free parameters of SL(n,R) is n2 − 1.

The same procedure can be followed to define the number of free parameters for the groups
O(n) and SO(n). Although, the conditions of these groups are a little more complicated,
it should be helpful to see explicitly what is happening for the matrices O ∈ O(n) and
SO ∈ SO(n). One can start from 2 × 2 and 3 × 3 matrices and then generalize the result for
arbitrary n× n square matrices.

O =
(
a b
c d

)
OT =

(
a c
b d

)

The orthogonality condition 2.63 then gives:

O ·OT =
(
a2 + b2 ac+ bd
ac+ bd c2 + d2

)
=
(

1 0
0 1

)

Notice that the off-diagonal elements of this last equation give only one equation for the free
parameters. In the case of 2 × 2 matrices the free parameters started from 22 = 4 and reduced
to 1, by the orthogonality condition. To generalize this result, let’ s see what happens in 3 × 3
matrices.

O =

a b c
e f g
h i j

 OT =

a e h
b f i
c g j


Applying the orthogonality condition:

O ·OT =

 a
2 + b2 + c2 ae+ bf + cg ah+ bi+ cj

ae+ bf + cg e2 + f 2 + g2 eh+ fi+ gj
ah+ bi+ cj eh+ fi+ gj c2 + g2 + j2

 =

1 0 0
0 1 0
0 0 1


By increasing the dimension of the matrix it becomes clear that the orthogonality condition
gives one symmetric matrix, which must be equal to the identity matrix. For an arbitrary
n × n matrix n equations arise from the diagonal. The off-diagonal elements of an n × n
square matrix count n(n − 1). But, because the matrix is symmetrical, only half of those
elements give different equations. In total the different equations are:

n+ n(n− 1)
2 = n(n+ 1)

2

The free parameters were n2 at first, so after fixing they are:

n2 − n(n+ 1)
2 = n(n− 1)

2
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Now, according to the Equation 2.70 the determinant of an orthogonal matrix has two possible
values: ±1. If an orthogonal matrix has its determinant equal to 1 then it is called special
orthogonal matrix and it is an element of SO(n). That being said, the condition det(A) = 1
in the Definition 2.2.9 does not fix any free parameters, because there are infinite sets of free
parameters that satisfy this condition. As a result, the number of free parameters of SO(n)
is also n(n−1)

2 .

As mentioned above all the elements of a unitary matrix U ∈ U(n) are complex num-
bers, because U(n) is a subgroup of GL(n,C). A matrix of GL(n,C) has n2 free com-
plex parameters. Each complex number is composed by two real numbers, meaning that
each matrix of GL(n,C) consists of 2n2 free real parameters. Again, one can think of
each matrix of GL(n,C) as a point in Cn2 . The vector space Cn2 without all the points
x = (a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . an1, an2, . . . , ann) ∈ Cn2

, a11, a12, . . . , ann ∈ C, that
satisfy the condition det(A) ̸= 1, A = [aij] , i, j = 1, 2, . . . , n.19

At first, let’ s calculate the free parameters of the unitary 2 × 2 square matrix. A general
complex 2 × 2 square matrix and its hermitian conjugate can be seen bellow:

U =
(
ar + iai br + ibi

cr + ici dr + idi

)
U † =

(
ar − iai cr − ici

br − ibi dr − idi

)

Now, using the condition, which appeared in Definition 2.2.10:

U · U † =
(

a2
r + a2

i + b2
r + b2

i (arcr + aici + brdr + bidi) + i(aicr − arci + bidr − brdi)
(arcr + aici + brdr + bidi) − i(aicr − arci + bidr − brdi) c2

r + c2
i + d2

r + d2
i

)
=
(

1 0
0 1

)

From the last equation it is quite obvious that the resulting matrix is not symmetrical. The
off-diagonal elements are complex conjugate numbers. Because of this relation between
the off-diagonal elements the last equation gives four separate equations between the free
parameters of the unitary matrix. Two of them originate from the diagonal, while the other
two come from the real and the imaginary part of the off-diagonal elements, that must be
both equal to zero.

For a general n × n unitary matrix the equation U · U † = 1n×n gives n equations from the
diagonal elements and two equations from half of the off-diagonal elements. The equations
that arise in total are:

n+ 2n(n− 1)
2 = n2

Initially, the real parameters were 2n2. Subtracting the n2 fixed parameters, the result is n2

and this is the final number for the free real parameters for a unitary matrix of the group
U(n).

19The notation A = [aij ] is used to denote the square matrix: A =

a11 . . . a1n

...
. . .

an1 ann
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Group No of Free Parameters
GL(n,R) n2

GL(n,C) 2n2

SL(n,R) n2 − 1

SL(n,C) 2n2 − 1

O(n) n(n−1)
2

SO(n) n(n−1)
2

U(n) n2

SU(n) n2 − 1

Table 2.2: The number of free real parameters for each matrix group, that was mentioned in
Section 2.2.2.

Here, the special case of the group SU(n) is different than the special case SO(n). According
to the Equation 2.75 the determinant of a unitary matrix can be any complex number of
norm equal to 1, and that exactly is the difference with the orthogonal matrices, where the
determinant can only take two values. That being said, the condition det(U) = 1, U ∈ SU(n),
actually fixes a free parameter. As a result, the number of free parameters of the group SU(n)
is n2 − 1, where n2 are the free real parameters of U(n) calculated above and 1 parameter is
fixed from the determinant condition. The same is true for the group SL(n,C), where the
free parameters where 2n2 at first and after the determinant condition they are 2n2 − 1.

All the above calculations of the free parameters of each matrix group are summarized in
Table 2.2.

2.2.4 Lie Groups, Lie Algebras and Representations

Lie groups are a special type of groups that connect the idea of a smooth manifold with group
theory.

Definition 2.2.12 (Lie Group). A group (G,⊙) is a Lie Group if the underlying set G is a
smooth manifold and the maps:

⊙ : G×G −→ G

(g1, g2) 7−→ g1 ⊙ g2

i : G −→ G

g 7−→ g−1
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are smooth maps.

Of course, by the definition of manifolds the set must be continuous, meaning that a group
has to be continuous in order to be a Lie Group. The term continuous when used for a set is
a little controversial and is strictly defined in Topology. Intuitively a continuous set20 can
be thought as a set, where it is possible to "travel" from one element of the set to another
without leaving the set.

Using more simple words, for a group G to be characterized as a Lie Group, two conditions
must be fulfilled. First, each one of its elements gi ∈ G must be described with some map
g : Rn −→ G, such that (θ1, θ2, . . . , θn) 7−→ gi ∈ G. The dimension n is the number equal to
the number of free real parameters of each group presented in Table 2.2.

All matrix groups studied in Section 2.2.2 are proven to be Lie Groups. As an example
consider the group SL(2,R). Every matrix A ∈ SL(2,R) has 4 entries, say (a, b, c, d). These
entries can be thought as a point in R4. Now, according to Definition 2.2.7 the entries must
satisfy the equation ad− bc = 1, which according to the implicit function theorem describe a
surface of R4. So, a manifold is associated with the elements of the group SL(2,R). The rest
of the groups can be also associated with manifolds following the same thinking procedure.
Of course, the groups of complex entries can be thought as complex manifolds as well.

Definition 2.2.13 (Dimension of a Lie Group). The dimension of a Lie Group is the dimension
of the manifold.

It can be proven that the dimension of all matrix Lie Groups is the number of the free real
parameters of each group given in Table 2.2. For example, SU(n) is a n2 − 1 Lie Group. A
very useful property of Lie Groups is that they can be associated with a corresponding Lie
Algebra, which is nothing but a vector space equipped with a special map defined bellow.

Definition 2.2.14 (Lie Algebra). A Lie Algebra g21 is a vector space over some field F22

equipped with a map:

[, ] : g × g −→ g

which possesses the following properties:

(i) Bilinearity: ∀g1, g2, g3 ∈ g and ∀a, b ∈ F:

[ag1 + bg2, g3] = a[g1, g2] + b[g2, g3] (2.76)

(ii) Antisymmetry: ∀g1, g2 ∈ g:

[g1, g2] = −[g2, g1] (2.77)
20When referring to the continuity of a group we are actually referring to the continuity of its underlying

set.
21When referring to a Lie Algebra the "mathfrak" notation will be used
22The term field here is used with its mathematical meaning. For our purposes of studying the matrix

groups of Section 2.2 the field will be either C or R
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(iii) Jacobi Identity: ∀g1, g2, g3 ∈ g:

[g1, [g2, g3]] + [g3, [g1, g2]] + [g2, [g3, g1]] = 0 (2.78)

The map of Definition 2.2.14 is called Lie Bracket and by definition it closes the algebra,
meaning that every element of the target set of this map belongs to the Lie Algebra itself.
The dimension of the Lie Algebra is equal to the dimension of the underlying vector space.
Note that in Mathematics the term "algebra" is used to describe a vector space which is
equipped with a map that closes the algebra. The difference between an algebra and a group
is that groups do not have the structure of a vector space, they are just sets, that are equipped
with the properties of Definition 2.2.1. Closure is included in those properties but it is not
the only one. The importance and elegance of Lie Groups and Lie Algebras comes from the
fact that they are connected in a way that is going to be described bellow, achieving in this
way a connection between two different mathematical concepts.

As every vector space a Lie Algebra can be spanned by a basis. Also, the target set of the Lie
Bracket is the Lie Algebra itself, meaning that the result of every Lie Bracket can be expanded
in a basis of the Lie Algebra. Suppose a basis T = {Ta} = {T1, T2, . . . , Td}, a = 1, 2, . . . , d of
a Lie Algebra g of dimension dim (g) = d. The Lie Bracket between two elements of the basis
is [Ta, Tb] = go, where go ∈ g. Therefore, go can be expanded as go = f cTc

23. This remark
encouraged the following definition for the structure constants of a Lie Algebra, which proved
to be very useful for the connection between a Lie Algebra with a Lie Group and vice versa.

Definition 2.2.15 (Structure Constants). Assume a Lie Algebra g of dimension dim (g) = d
and a basis T = {Ta}, a = 1, 2, . . . , d of this algebra. The structure constants of the Lie
Algebra are defined via the Lie Bracket as:

[Ta, Tb] =
d∑

c=1
fab cTc = f c

abTc (2.79)

where a, b, c ∈ {1, 2, . . . , d}

It should be noted that structure constants are the coefficients of an orthonormal expansion on
the basis T = {Ta}, meaning that they are just complex numbers24. Applying the properties of
the Lie Bracket from Definition 2.2.14 on the structure constants one can derive the properties
that the structure constants must fulfill themselves. Firstly, from the antisymmetry property
of the Lie Bracket follows:

23Einstein’ s summation convention is implied
24Complex numbers are the most general case for the purposes of this thesis. The indices a, b are there to

remind that the structure constants do relate to the elements Ta, Tb appearing in the Lie Brackets. Generally,
the structure constants are elements of the field F appearing in Definition 2.2.14
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[Ta, Tb] = −[Tb, Ta]
f c

abTc = −f c
baTc

f c
ab = −f c

ba (2.80)

where the last line follows from the fact that T = {Tc}, so for two expansions on the same
basis to equal, the coefficients of every respective elements Tc must be equal. Equation 2.80
shows that the structure constants of every Lie Algebra are totally antisymmetric in their
two bottom indices.

From the Jacobi identity of the Lie Bracket follows a kind of Jacobi identity for the structure
constants. Applying the Jacobi identity on the basis T = {Ta} and working term by term:

[Ta, [Tb, Tc]] =
[
Ta, f

d
bcTd

]
= fd

bc [Ta, Td] = fd
bcf

e
adTe

[Tc, [Ta, Tb]] =
[
Tc, f

d
abTd

]
= fd

ab [Tc, Td] = fd
abf

e
cdTe

[Tb, [Tc, Ta]] =
[
Tb, f

d
caTd

]
= fd

ca [Tb, Td] = fd
caf

e
bdTe

[Ta, [Tb, Tc]] + [Tc, [Ta, Tb]] + [Tb, [Tc, Ta]] = 0
fd

bcf
e
adTe + fd

abf
e
cdTe + fd

caf
e
bdTe = 0[

fd
bcf

e
ad + fd

abf
e
cd + fd

caf
e
bd

]
Te = 0 (2.81)

Because T = {Tc} is a basis of the Lie Algebra, all elements of the basis are linearly
independent:

d∑
i=1

λiTi = 0 ⇒ λi = 0 ∀ i ∈ {1, 2, . . . , dim(g)} (2.82)

As a result, the only solution for Equation 2.79 is the following Equation 2.83, which is usually
referring to as a Jacobi identity for the structure constants of a Lie Algebra.

fd
bcf

e
ad + fd

abf
e
cd + fd

caf
e
bd = 0 (2.83)

At this point, having defined Lie Groups and Lie Algebras it should be wise to understand the
connection between them, implied by their common name. In terms of Differential Geometry
a Lie Group G has a corresponding Lie Algebra g, which is the tangent space Te(G) to the
identity element of the group e ∈ G. It is a mathematical result that the exponential map is
"responsible" for this connection. In fact, the exponential map is defined as exp : g −→ G,
via the Taylor expansion:
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exp{iX} = 1 + iX + i2
X2

2! + i3
X3

3! + . . . , X ∈ g (2.84)

The exponential map connects every gi = gi(θ1, θ2, . . . , θn) ∈ G with an element X ∈ g in the
following way:

gi = gi(θ1, θ2, . . . , θn) = exp{iθaTa} = 1 + iθaTa + i2
(θaTa)2

2! + i3
(θaTa)3

3! + . . . (2.85)

A very important remark on the above equation is that the real parameters (θ1, θ2, . . . , θn)
that describe (smoothly) a group element are the coefficients of the orthonormal expansion
X = θaTa describing the corresponding element X ∈ g of the group element gi ∈ G. Another
important remark is that the identity element 1 appearing in the right hand side of Equation
2.85 could not in the general case be the identity element of the group, because in the general
mathematical concept of an algebra there is no obligation for an identity to exist. Being more
specific, if 1 is the identity element of the group how could it be possible to add this element
with the polynomials that follow, which contain only elements of the Lie Algebra?

In fact, the Taylor expansion of Equation 2.85 only makes sense when one refers to a matrix
representation of a Group. It can be mathematically proven that every compact group can be
represented with elements in a matrix group. Every Lie Group is compact and the connection
between a Lie Algebra and a Lie Group requires that every Lie Algebra has a representation
on a matrix group.

Last but not least, according to Equation 2.85 if one knows a basis T = {Ta} of the Lie
Algebra (s)he can generate every element gi = gi(θ1, θ2, . . . , θn) ∈ G. That is why the elements
Ta are usually referred to as generators of the group.

A very important property of Lie Groups is that they can be represented as set of n×n square
matrices. Knowing how to do this representation is really important for physics, because all
Lie Groups that express symmetries of the physical systems can be thought as appropriate
subsets square matrices. But first we need to define mathematically what a representation is.

Definition 2.2.16 (Representation). A representation R of a group G is a map:

R : G 7−→ GL(n,C)
25 For which group axioms require the following properties:

• if gi ∈ G 7−→ Mj ∈ GL(n,C) then g−1
i ∈ G 7−→ M−1

j ∈ GL(n,C)

• e ∈ G 7−→ 1n×n ∈ GL(n,C)

• g1 ⊙ g2 = g3 7−→ M1M2 = M3 where g1, g2, g3 ∈ G and M1,M2,M3 ∈ GL(n,C)

The bullet points in the above definition are the conditions needed to show that a map
R : G 7−→ GL(n,C) is a representation of the group G. Note, also, that by definition the
map R is not necessarily invertible. Two arbitrary group elements can be represented by the

25or GL(n, R)
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same matrix element of GL(n,C). If the map R is injective then the representation is called
faithful.

Another important aspect of representations is that for a specific group G there exist an
infinite number of representations R. More particularly, consider a representation R of a
group G. We shall prove that the representation R̃ = SRS−1 where S is a constant invertible
matrix, is also a representation.The representations R̃ and R are often called equivalent
representations. Moreover, if S happens to be a unitary matrix the term unitarily equivalent
is used to describe the representations R̃ and R.

Proof. Because R is a representation of a group G, Definition 2.2.16 requires:

(i) R(e) = 1

(ii) R(g−1
i ) = R−1(gi), ∀gi ∈ G

(iii) if g3 = g1 ⊙ g2, then R(g3) = R(g1)R(g2)

To prove that R̃ = SRS−1 is also a representation of G, one has to prove that it holds similar
properties with the representation R.

(i) R̃(e) = SR(e)S−1 = S1S−1 = 1

(ii) R̃(gi) = SR−1(gi)S−1 = R̃−1(gi)

(iii) R̃(g3) = SR(g3)S−1 = SR(g1)S−1SR(g2)S−1 = R̃(g1)R̃(g2)

The above proposition leads to the result that every group can have infinitely many represen-
tations, which brings on the obvious question regarding which representation contains all the
information needed by a physicist to study a physical system.

Definition 2.2.17 (Completely Reducible Representation). A representation R of a group G
is called completely reducible if it is equivalent to the form:

SR(gi)S−1 =
(
A(gi) 0

0 B(gi)

)
, ∀gi ∈ G (2.86)

Opposing to the above definition a representation is called irreducible (irrep) if the matrices
representing each gi ∈ G cannot be simultaneously written in the block-diagonal form of
Equation 2.86.

All the above are basic definitions for representations of groups. To study a physical system,
physicists are concerned with two main issues. Fist of all, they need to find which group
expresses the symmetry of the system. After that, all the irreps of the group must be found.
Thus, finding irreps is an aspect of great interest in physics. As a consequence, there are some
representations that play a much greater role in representation theory than others.

Definition 2.2.18 (Trivial Representation). Let G be a Lie Group. The trivial representation
is just the mapping:

R(gi) = 1, ∀gi ∈ G (2.87)
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Definition 2.2.19 (Fundamental Representation). The fundamental representation of a
matrix Lie Group is the map:

R(gi) = gi, ∀gi ∈ G (2.88)

It is more practical, from a physical point of view, to define these representations via their
act on vector spaces. For example, consider a scalar field ϕ = ϕ(xµ) = (ϕ1(xµ), . . . ϕN(xµ))
living in an N-dimensional vector space. This field can be transformed only by N × N
matrices, because that is what is allowed by matrix multiplication. So, if we need to transform
it by a specific group we must choose a representation of dimension N. The fundamental
representation of the group SU(N) is an accepted choice, because in matrix notation an
element U ∈ SU(N) acts on the scalar vector field ϕ as:


ϕ′

1
...
ϕ′

N

 =


u11 . . . u1N
... . . .
un1 uNN



ϕ1
...
ϕN


This notation is time and space consuming, so the index notation ϕ′i = U i

jϕ
j is always

preferred.

The idea of representations also applies to Lie Algebras, as expected from Equation 2.85.
Because, a Lie Algebra is a vector space, it is sufficient to define a representation for its basis,
the generators. The fundamental representation of a Lie Algebra is the set of N ×N matrices
that fulfill the conditions presented in Table 2.3 discussed in the next Section.

There is one more very important irreducible representation, which is really important for
physics. It is easier to define this representation for a Lie Algebra and then translate the
results for the corresponding Lie Group.

Definition 2.2.20 (Adjoint Representation). The adjoint representation of a Lie Algebra g
with generators T = {T a}, a = 1, . . . , dim(g) is the map:

R(T a) =
(
T a

adj

)bc
= −ifabc, ∀T a ∈ T (2.89)

where fabc are the structure constants of the Lie Algebra.

The indices a, b, c in the above definition run in the set {1, 2, . . . , dim(g)}, where dim(g) is the
dimension of the group manifold (see Table 2.2), meaning that this representation makes it
possible for the group and the algebra to act on fields "living" on vector spaces with dimension
equal to dim(g).

Last but not least, when transforming a vector v under a Lie Group G the following transfor-
mation law is implied:

v′ i = U i
jv

j

where the element U of the group G is represented in the appropriate representation of the
group that can act on v. The above equation can be also expressed in terms of Lie Algebra
with the substitution U = exp{iθaTa}.

v′ i =
(
eiθaTa

)i

j
vj (2.90)
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Using a Taylor expansion U = 1 + iθaT a + O(θ2), which in index notation is Uij = δij +
iθa(T a)ij + O(θ2), the above expression can be written in an infinitesimal form:

v′ i = (δij + iθa(T a)ij)i
j v

j, |θa| << 1 (2.91)

where i, j ∈ {1, . . . , dim(R)} 26 and a ∈ {1, . . . , dim(g)}.

So, when physicists say that a field transform in the fundamental representation what
they mean is that the generators (T a)ij appearing in Equation 2.91 are in the fundamental
representation. Of course, if the (T a)ij are in the adjoint then the filed transforms in the
adjoint.

2.2.5 Lie Algebras of Matrix Groups

In the previous Section, the main points of the connection between a Lie Algebra and a Lie
Group were presented. The aim of this section is to collocate what is exactly the connection
between the Matrix Lie Groups presented in Section 2.2.2 and their corresponding Lie Algebras.
Actually, by knowing what the corresponding Lie Algebra of a Lie Group is, studying Lie
Groups becomes a lot more easier because, all the elements of the group can be studied only
by a finite set T = {Ta} of generators.

First of all, in the previous section, two main properties for the structure constants of a
Lie Algebra were proven only by using the definitive properties of the Lie Bracket included
in Definition 2.2.14. More explicitly, Equation 2.80 shows that structure constants have
to be antisymmetric and Equation 2.83 is a kind of Jacobi identity. The use of the word
"antisymmetric" is kind of confusing, because structure constants f c

ab are just numbers, not
matrices. The antisymmetry here refers to their to lower indices as Equation 2.80 implies. A
spot that is left unanswered till this section is understanding and connecting to an actual
operation between matrices the Lie Bracket.

So, to find what operation the Lie Bracket is in terms of matrices one should start by
writing two different group elements g1, g2 ∈ G as exponentials of elements of a Lie Algebra
g1 = g1(θ1, . . . , θn) = exp{iθaTa} and g2 = g1(ω1, . . . , ωn) = exp

{
iωbTb

}
. Then, by demanding

closure of the group, the element g3 = g1g2 = exp{iθaTa} exp
{
iωbTb

}
should be in the group.

From this last statement follows that the element g3 ∈ G should also be expressed as an
exponential g3 = exp{iλcTc}, where the parameters λc will be expressed as functions of the
parameters θa and ωb. The key to connect these three exponentials is the following proposition,
broadly known as the Baker-Campbell-Hausdorff (BCH) formula.

Proposition 2.2.1 (Baker-Campbell-Hausdorff (BCH) Formula). For any square n × n
matrices A,B the following equation holds:

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]− 1
12 [B,[A,B]]+... (2.92)

26dim(R) is the dimension of the chosen representation for the Lie Group G or the Lie Algebra g.
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where the notation [A,B] is the commutator between the matrices A,B defined as:

[A,B] = AB −BA (2.93)

The omitted terms in Equation 2.92 are higher order commutators, that can always be expressed
as function of the commutator [A,B]

As mentioned several times above, the interest of this thesis restricts to matrix Lie Groups
and their corresponding matrix Lie Algebras. Using the BCH formula for the group elements
g1, g2, g3 ∈ G one gets:

eiθaTaeiωbTb = ei(θaTa+ωbTb)+ i2
2 θaωb[Ta,Tb] (2.94)

The right hand side of the above equation must be a group element because of closure, which
leads to the conclusion that the commutator [Ta, Tb] = TaTb − TbTa must be the Lie Bracket
of the Lie Algebra.

In conclusion, every Lie Group has a corresponding Lie Algebra. The difference between the
corresponding Lie Algebras of different Lie Groups, should originate from the definition of
every Lie Group. The main purpose of this section is to analyze how the definitive conditions
of every Matrix Lie Group presented in Section 2.2.2 are "translated" in conditions for the
generators of the corresponding Lie Algebras.

The method for this "translation" begins by expressing arbitrary elements gi of every group in
terms of the corresponding Lie Algebra via the exponential map of Equation 2.85 and then
imposing the definitive condition of the Lie Group.

We will start from the GL(n,R). Consider an element A = A(θ1, . . . , θn2) ∈ GL(n,R), where
by Definition 2.2.6 det(A) ̸= 0. Now, according to Equation 2.94, the element A can be
written as A = exp{iθaTa}, where Ta are the generators of the corresponding Lie Algebra
gl(n,R). The condition for the determinant is:

det(A) = det
(
eiθaTa

)
̸= 0

A very useful property of linear algebra states that for every n× n (real or complex) square
matrix the following equation holds:

det
(
eA
)

= eTr(A), ∀A ∈ Mn×n (2.95)

This property is the key identity to finish the calculation for det(A):

det(A) = eTr(iθaTa) = eiθa Tr(Ta) ̸= 0 (2.96)

Of course, Equation 2.96 holds for every Ta ∈ Mn×n, leading to the very interesting result that
the corresponding Lie Algebra gl(n,R) of the Lie Group GL(n,R) is the set of n× n square
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matrices. This set also possesses a vector space structure as is required from the definition of
an algebra.

In the case of an element A = A(θ1, . . . , θn2−1) ∈ SL(n,R) the condition of Definition 2.2.7
can be expressed as:

det(A) = eTr(iθaTa) = eiθa Tr(Ta) = 1

The last equality is fulfilled only if:

iθa Tr(Ta) = i
(
θ1 Tr

(
T 1
)

+ · · · + θn2−1 Tr
(
T n2−1

))
= 0

The last equation must be true for every (θ1, . . . , θn2−1) ∈ Rn2−1, because every element
A ∈ SL(n,R) must be described by the Lie Algebra. This means that the generators of the
algebra sl(n,R) are traceless matrices: Tr(T i) = 0 ∀ i ∈ 1, 2, . . . , n2 − 1.

Considering, now, the orthogonal group O(n). According to Definition 2.2.8 an element
A ∈ O(n) always fulfills the orthogonal condition AAT = A⊤A = 1. Rewriting this property
using the fact that A⊤ = A−1 and then applying the BCH formula (Equation 2.94) one gets:

AAT = 1

eiθaTae(iθbTb)⊤

= 1

eiθaTaeiθbT ⊤
b = 1

ei(θaTa+θbT ⊤
b )− 1

2 [θaTa,θbT ⊤
b ] = 1

eiθa(Ta+T ⊤
a )− 1

2 [θaTa,θbT ⊤
b ] = 1 (2.97)

In order for Equation 2.97 to hold for every value the parameters θ = {θa}, a = 1, 2, . . . , n(n−1)
2

can take, the generators can be chosen to be be antisymmetric:

Ta = −T⊤
a , ∀a ∈ {1, 2, . . . , n(n− 1)

2 } (2.98)

With that choice Equation 2.97 is written:

e
1
2 [θaTa,θbTb] = 1

By writing explicitly the sums of the above equation it can be easily seen that the equation
holds for all antisymmetric matrices Ta.
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[
θaTa, θ

bTb

]
=
[
θ1T1 + θ2T2 + · · · + θkTk , θ

1T1 + θ2T2 + · · · + θkTk

]
[
θaTa, θ

bTb

]
=
[
θ1T1, θ

1T1
]

+
[
θ1T1, θ

2T2
]

+
[
θ1T1, θ

3T3
]

+ · · · +
[
θ1T1, θ

kTk

]
+

+
[
θ2T2, θ

1T1
]

+
[
θ2T2, θ

2T2
]

+
[
θ2T2, θ

3T3
]

+ · · · +
[
θ2T2, θ

kTk

]
+ · · · +

+
[
θkTk, θ

1T1
]

+
[
θkTk, θ

2T2
]

+
[
θkTk, θ

3T3
]

+ · · · +
[
θkTk, θ

kTk

]

The cross terms [θiTi, θ
jTj] i ̸= j cancel out, because of the antisymmetry of the Lie Bracket:

[θiTi, θ
jTj] = − [θjTj, θ

iTi] i ̸= j, meaning that
[
θaTa, θ

bTb

]
= (θa)2 [Ta, Ta] = 0, which is

true for every set of parameters θ = {θa}, a = 1, 2, . . . , n(n−1)
2 , because [Ta, Ta] = 0. This last

equation validates that the generators of o(n) algebra must be antisymmetric n× n square
matrices.

The Lie Algebra o(n) serves also as the corresponding Lie Algebra of the group SO(n),
because the condition det(A) = 1, ∀A ∈ SO(n) of Definition 2.2.9 translates to the condition
Tr(Ti) = 0 ∀ i ∈ 1, 2, . . . , n2 − 1 for the generators, according to Equation 2.95. But,
antisymmetric matrices are already traceless, meaning that no extra condition is introduced
for the generators.

The condition referring to the generators of the algebras u(n) and su(n) are calculated following
the same recipe. Using the equation of Definition 2.2.10 for an arbitrary element U ∈ U(n):

AA† = 1

eiθaTae−iθbT †
b = 1

eiθa(Ta−T †
a)+ 1

2 [θaTa,θbT †
b ] = 1 (2.99)

From Equation 2.99 follows that the generators of the Lie Algebra u(n) are Hermitian matrices
Ta = T †

a . Same as before, u(n) coincides with the Lie Algebra su(n). The conditions for the
elements of each Lie Algebra presented above is summarized in Table 2.3.
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Lie Group Lie Algebra Condition for Ti

GL(n,R) gl(n,R) Ti ∈ Mn×n

SL(n,R) sl(n,R) Tr(Ti) = 0
O(n) o(n) Ti = −T⊤

i

SO(n) so(n) Ti = −T⊤
i

U(n) u(n) Ti = T †
i

SU(n) su(n) Ti = T †
i

Table 2.3: The corresponding Lie Algebras of the Lie Groups defined in Section 2.2.2. Ti refers to
the elements of the algebra.
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Gauge Theories

3.1 Abelian Gauge Theory

3.1.1 Gauge Invariance in Classical Electrodynamics

Gauge theories started from a simple property of Maxwell’s equations for classical electrody-
namics. In this section, we are going to illustrate this property and construct the first gauge
theory, which possesses the famous U(1) symmetry. The followung discussion is adapted from
[13].

First of all, Maxwell’s equations in natural units (ℏ = c = 1) are:

∇ · B⃗ = 0 (3.1)

∇ × E⃗ + ∂B⃗

∂t
= 0 (3.2)

∇ · E⃗ = ϱ (3.3)

∇ × B⃗ − ∂E⃗

∂t
= j⃗ (3.4)

Equation 3.1 allows to write the magnetic field B⃗ as a function of a vector potential A⃗.

B⃗ = ∇ × A⃗ (3.5)

Substituting this new way of expressing the magnetic field in Equation 3.2 one gets the
following result.

∇ ×

E⃗ + ∂A⃗

∂t

 = 0 (3.6)
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Now, we have found a quantity with zero curl. According to basic vector caclulus this quantity
can be expressed as a function of a scalar potential.

E⃗ + ∂A⃗

∂t
= −∇V (3.7)

Of course, the negative sign is just a common convention in classical electrodynamics. At
this point the electric field E⃗ and the magnetic field B⃗ are both expressed as functions of the
vector and scalar potential A⃗ and V . Substituting the electric field in Equation 3.3, we get
an equation for the potentials V, A⃗.

∇ ·

−∇V − ∂A⃗

∂t

 = ϱ

∇2V + ∂

∂t
(∇ · A⃗) = −ϱ (3.8)

Rewriting Equation 3.4 according to the potentials of Equations 3.5 and 3.7 we obtain another
equation for the potentials:

∇ × (∇ × A⃗) − ∂

∂t

−∇V − ∂A⃗

∂t

 = j⃗

∇(∇ · A⃗) − ∇2A⃗+ ∇
(
∂V

∂t

)
+ ∂2A⃗

∂t2
= j⃗(

∂2

∂t2
− ∇2

)
A⃗+ ∇

(
∇ · A⃗+ ∂V

∂t

)
= j⃗ (3.9)

The resulting Equations 3.8 and 3.9 form a system of partial differential equations with
four degrees of freedom. The three coming from the components of the vector potential
A⃗ = (A1, A2, A3) and the fourth is just the scalar potential V . As a matter of fact, these two
equations contain all the information of the full Maxwell’ s equations, and simultaneously
the number of degrees of freedom is reduced from six to four. So, a rational question should
be "where did these extra two degrees of freedom go?". The answer to this question is the
beginning of gauge theories.

The system of Equations 3.8 and 3.9 does not uniquely specify the potentials A⃗ and V as
they have four degrees of freedom specified only by two equations. So, let’ s assume that we
can substitute the potentials as:

A⃗′ = A⃗+ c⃗A

V ′ = V + cV
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where c⃗A = c⃗A(t, x⃗) and cV = cV (t, x⃗). In our assumption the new potentials should give the
same electromagnetic field, meaning that:

B⃗′ = B⃗

∇ × A⃗′ = ∇ × A⃗

∇ × A⃗+ ∇ × c⃗A = ∇ × A⃗

∇ × c⃗A = 0

Again from basic vector calculus cA can be written as:

c⃗A = ∇λ

At this point the four degrees of freedom (c⃗A, cV ) in our initial assumption have been reduced
to two (λ, cV ). Demanding now, that the new potential must also give the same electric field
and using Equation 3.7

E⃗ ′ = E⃗

∇V ′ + ∂A⃗′

∂t
= ∇V + ∂A⃗

∂t

∇V + ∇cV + ∂A⃗

∂t
+ ∂

∂t
(∇λ) = ∇V + ∂A⃗

∂t

∇
(
cV + ∂λ

∂t

)
= 0

The last equation means that the function cV + ∂λ
∂t

must be independent of the space coordinates:

cV + ∂λ(t)
∂t

= c(t)

cV = c(t) − ∂λ

∂t

It is more delicate to define a new function λ′, such that ∂λ′

∂t
= cV , which according to the

last equation is:
∂λ′

∂t
= c(t) − ∂λ

∂t

λ′ =
∫ t

0
c(t)dt− λ

Of course, we can at last just do a renaming λ′ 7→ λ. Finally, the new potentials A⃗′, V can be
written as:
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A⃗′ = A⃗+ ∇λ (3.10)

V ′ = V + ∂λ

∂t
(3.11)

This is exactly what is referred to as gauge symmetry. Maxwell’ s equations remain invariant
by the change instructed by Equations 3.10 and 3.11. So, the two degrees of freedom that
disappeared are appearing again as the derivatives of the scalar function λ. By choosing
appropriately this function λ we can make Equations 3.8 and 3.9 easier to solve. The function
λ is called gauge and the process of choosing such a function is called gauge fixing. Of course,
the solutions after gauge fixing are still valid in the general case because, as mentioned above,
Maxwell’ s equations are gauge invariant.

3.1.2 Lorentz Invariance of Classical Electrodynamics

Classical electrodynamics is the ancestor of modern gauge theories. As every physical theory
it should be Lorentz invariant, or more generally frame invariant. So, it must be formulated
using the notions of Section 2.1. Maxwell’ s equations consist of two pairs of equations.
Equations 3.3 and 3.4, which are inhomogeneous and the homogeneous pair 3.1, 3.2.

The purpose of this section is to rewrite Maxwell equations using a field that will transform
homogeneously when passing from one frame to another. The first, critical observation is
that the charge of a particle remains invariant when the frame of reference transforms or in
plain words a moving particle will have the same charge as it would have whether considered
stationary.

Secondly, Maxwell equations contain the continuity equation of charge. More specifically, the
continuity equation appears by taking the divergence of Equation 3.4 and then substituting
the charge density from Equation 3.3.

∇ · (∇ × B⃗) − ∂

∂t

{
∇ · E⃗

}
= ∇ · j⃗

∂ϱ

∂t
+ ∇ · j⃗ = 0 (3.12)

The physical meaning of this equation is that the electric charge cannot be lost. As a result,
any change of the electrical charge in a specific volume of space should be compensated by
currents leaving or entering the volume. A more intuitive way to understand this physical
interpretation is the integral form of Equation 3.12. The easiest way to obtain this form is by
integrating the continuity equation over a 3-volume V and then applying Gauss’ theorem in
the term containing the divergence of the current j⃗.
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∫
V

∂ϱ

∂t
dx3 +

∫
V

∇ · j⃗dx3 = 0
∂

∂t

∫
V
ϱdx3 +

∫
∂V
j⃗ · n̂Sdx

2 = 0 (3.13)

The physical interpretation of continuity equation, in combination with its integral form,
which contains the integral of charge density, is a very strong argument to assume that the
tuple (ϱ, j⃗) should be considered as a vector density in terms of tensor calculus of Section
2.1.3. If considered so, then the continuity equation can easily be derived by the divergence of
this vector density, which, as proved in Section 2.1.4, is an invariant density. So, the first clue
to rewrite Maxwell equations in terms of tensors is to consider the contrvariant vector density
J µ = (ϱ, j⃗). This fact oblige someone to look upon the inhomogeneous pair of Maxwell
equations 3.4 and 3.3 as equations between vector densities.

The right hand side of Equations 3.4 and 3.3 contains the derivatives of the fields E⃗ and J⃗ ,
but as mentioned, these derivatives should behave like a vector density as is J µ. As proved in
Section 2.1.4 the divergence of a contravariant scalar tensor density of rank-2, transforms as a
scalar vector density. As a result, a logical assumption should be that the two inhomogeneous
Maxwell equations can be written in the following form:

∂F µν

∂xν
= J µ (3.14)

Equation 3.14 contains one free index, which means that it is a system of 4 equations. By
expanding this equation one gets the following 4 equations1.

∂F 11

∂t
+ ∂F 12

∂x
+ ∂F 13

∂y
+ ∂F 14

∂z
= ϱ (3.15)

∂F 21

∂t
+ ∂F 22

∂x
+ ∂F 23

∂y
+ ∂F 24

∂z
= jx (3.16)

∂F 31

∂t
+ ∂F 32

∂x
+ ∂F 33

∂y
+ ∂F 34

∂z
= jy (3.17)

∂F 41

∂t
+ ∂F 42

∂x
+ ∂F 43

∂y
+ ∂F 44

∂z
= jz (3.18)

Appropriate components of the tensor density F µν must be chosen, in order for the above
equations to produce the following 4 equations, which are the inhomogeneous Maxwell’s
equations expanded.

1Greek indices run in {1, 2, 3, 4}, where 1 corresponds to the times component t, and therefore 2, 3, 4
correspond to the spatial components x, y, z.

57



Karydis Evangelos

∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z
= ϱ (3.19)

−∂Ex

∂t
+ ∂Bz

∂y
− ∂By

∂z
= jx (3.20)

−∂Ey

∂t
+ ∂Bx

∂z
− ∂Bz

∂x
= jy (3.21)

−∂Ez

∂t
+ ∂By

∂x
− ∂Bx

∂y
= jz (3.22)

By demanding, one to one correspondence between the previous equations, one can identify
the components of F µν . A more convenient way to see these components is to represent this
tensor on the group GL(n,R). The matrix form also makes it easier to observe that F µν is
an antisymmetrical tensor density. Last but not least, as stated at the end of the previous
chapter, in Minkowski spacetime there is no difference between tensor and tensor densities.
So, from now on, there will be given no distinction between those two quantities and the
symbol F µν replaces the old F µν .

F µν =


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 (3.23)

Of course, the job is not finished, because Equation 3.14 combined with 3.23 only produces
one pair of Maxwell equations. The homogeneous pair must be derived too and, of course, it
cannot be derived by F µν . So, we need a new tensorial quantity to derive this other pair. An
easy guess is to use Equation 2.14 introduced in Section 2.1.3. According to this equation, a
covariant tensor can be constructed from a tensor density, which in the present case is the
same as the tensor F µν . The newly constructed tensor is F̃µν , which in matrix representation
is the following.

F̃µν = 1
2ϵµνρσF

ρσ =


0 Bx By Bz

−Bx 0 −Ez Ey

−By Ez 0 −Ex

−Bz −Ey Ex 0

 (3.24)

The new tensor can be extracted by the old one by replacing B⃗ → −E⃗ and E⃗ → B⃗.
Mathematically speaking there is a great amount of details left. The new tensor is actually
the hodge star dual of the first one. In terms of differential geometry the electromagnetic field
tensor F µν is a 2-form, and so is the new dual tensor F̃µν , but these details far outrun the
purposes of this thesis. There are some nice references for them in the Bibliography section
([19], [1]).

Differentiating the dual tensor F̃µν the homogeneous pair of Maxwell’ s equations appears.
Moreover, the construction of these tensors, serves another really important cause. According

58



Chapter 3. Gauge Theories

to Section 2.1.2 the products FµνF
µν , F̃µνF̃

µν are invariant quantities under frame transfor-
mations of the underlying spacetime manifold. As a result, the previous products are Lorentz
invariant products, a remark that will be quite useful for the next section of this chapter.

According to all the above, the full set of Maxwell’ s equations are equivalent to Equations
3.25 and 3.26.

∂F µν

∂xµ
= Jµ (3.25)

∂F̃ µν

∂xµ
= 0 (3.26)

Last but not least, a very important comment about this section concerns why the mathemat-
ical object of the tensor was chosen to describe the electromagnetic field. The electromagnetic
tensor F µν contains all the information about the electromagnetic field, which is a measurable
quantity. According to the principle of covariance every measurable quantity in physics should
transform covariantly under the frame transformation, in order to avoid any ambiguity when
measuring its numerical values.

Finally, closing this section, it should be mentioned that in Section 2.1.4 a way to construct a
second rank tensor Fµν was presented. This can be achieved by taking a certain combination
of derivatives of a covariant vector Aµ, as shown in the following equation.

Fµν = ∂µAν − ∂νAµ (3.27)

3.1.3 The Lagrangian of Classical Electrodynamics

According to the Lagrangian Formalism of Classical Mechanics, the equations of motion for a
field theory should arise by minimizing the action S of the theory.

S =
∫
d4xL (3.28)

where L = L(qi, q̇i,∇qi) is a function depending only on the fields and their (time and spatial)
derivatives, called the Lagrangian Density. The notation qi is used for the physical degrees of
freedom. For a field theory qis are fields, which depend only on spacetime qi = qi(xµ). That is
why the integration of the Lagrangian density is performed in spacetime (d4x) and not only
in the time component dt as in classical mechanics.

According to subsection 3.1.1, the physical fields of electrodynamics are the potentials V, A⃗.
It is convenient to define a 4-potential:

Aµ = (A1, A2, A3, A4) = (V, A⃗) (3.29)

or converting this contravariant vector to its dual covariant, using the Minkowski metric:
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Aµ = ηµνA
ν = (A1, A2, A3, A4) = (−A1, A2, A3, A4) (3.30)

Therefore the Lagrangian density L, must be a function L = L(Aµ, Ȧµ,∇Aµ) or in short-hand
notation L = L(Aµ, Ȧµ, ∂νA

µ). As mentioned, the purpose of this subsection is to define
the proper action S that will produce the equations of motion for classical electrodynamics.
Taking the variation of the action and demanding it to go to zero one gets2:

δS = 0

δ
∫

Ω
d4xL(Aµ, ∂νA

µ) = 0∫
Ω
d4xδL(Aµ, ∂νA

µ) = 0∫
Ω
d4x

[
∂L
∂Aµ

δAµ + ∂L
∂(∂νAµ)δ(∂νA

µ)
]

= 0∫
Ω
d4x

∂L
∂Aµ

δAµ +
∫

Ω
d4x

∂L
∂(∂νAµ)∂ν(δAµ) = 0

Integrating by parts the second integral of the last equation:

∫
Ω
d4x

∂L
∂Aµ

δAµ +
∫

Ω
d4x∂ν

{
∂L

∂(∂νAµ)δA
µ

}
−
∫

Ω
d4x∂ν

{
∂L

∂(∂νAµ)

}
δAµ = 0

The middle term according to the generalized Stokes’ Theorem is the integral over the
boundary ∂Ω, where one can assume that this boundary is the time and spatial infinity where
the fields go to zero.

∫
Ω
d4x

[
∂L
∂Aµ

− ∂ν

{
∂L

∂(∂νAµ)

}]
δAµ = 0 (3.31)

The last term must be independent of the way the fields Aµ are varied, which can be achieved
if the following equation holds.

∂L
∂Aµ

− ∂ν

{
∂L

∂(∂νAµ)

}
= 0 (3.32)

Equation 3.32 is actually a set of equations (one for each value of µ = 0, 1, 2, 3) known as
Euler-Lagrange equations for classical electrodynamics. Note that the derivatives in these

2Einstein’s summation convention is applied
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equations are functional derivatives, where the functions Aµ and ∂νA
µ are considered the

independent variables of the theory.

As stated many times above Euler-Lagrange should produce the Equations of Motion of the
classical theory of electromagnetism for every spacetime manifold, or limiting to the purposes
of this thesis, the Lagrangian must be Lorentz invariant. The easiest way to achieve this is by
using the invariant products FµνF

µν , F̃µνF̃
µν presented in Section 3.1.2.

In Minkowski spacetime structure, described by the metric ηµν , the tensors F µν and F̃ µν can
be transformed to covariant tensors, using the procedure bellow, where one can think of as
each index transforms separately.

Fµν = ηµσηνκF
σκ

The previous conversion only changes the following components of the electromagnetic tensor.

F12 = −F 12 F13 = −F 13 F14 = −F 14

F21 = −F 21 F31 = −F 31 F41 = −F 41

Because this transformation does not make any difference whether the tensors are used with
lower or upper indices, it is usual to give no interest in the distinction between covariant and
contravariant quantities when referring to Minksowski spacetime. This remark makes the
calculations a lot simpler, and of course much more complicated if one wants to formulate the
theory over curved spacetime manifolds.

At first let’ s make the ansatz that the Lagrangian is:

L = FµνF
µν = (∂µAν − ∂νAµ)(∂µAν − ∂νAµ) = 2(∂µAν∂

µAν − ∂µAν∂
νAµ)

or making no distinctions between covariant and contravariant vectors according to the above
remark the Lagrangian density takes the following simpler form:

L = 2[(∂µAν)2 − ∂µAν∂νAµ] (3.33)

then the terms appearing in the Euler-Lagrange equations 3.32 give:
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∂L
∂Aµ

= 0

∂L
∂(∂νAµ) = 2

[
2(∂κAλ)∂(∂κAλ)

∂(∂νAµ) − ∂(∂κAλ)
∂(∂νAµ) − (∂κAλ)∂(∂λAκ)

∂(∂νAµ)

]
=

= 2 [2(∂κAλ)δν
κδ

µ
λ − (∂λAκ)δν

κδ
µ
λ − (∂κAλ)δν

λδ
µ
κ ] =

= 2[2∂νAµ − ∂µAν − ∂µAν ] =
= 4Fνµ

∂L
∂(∂κAλ) = −4Fµν

where the antisymmetric property of the electromagnetic tensor was used in the last line.

The resulting Equations of Motion are:

∂L
∂Aµ

− ∂ν

{
∂L

∂(∂νAµ)

}
= 0

∂ν{−4Fµν} = 0

This is exactly the derivative introduced in the right hand side of Equation 3.25. So, the
invariant product FµνF

µν is correct but except for a factor −4 appearing upfront, which can
easily be eliminated by reforming the Lagrangian as L = −1

4FµνF
µν . This term is known as

the kinetic term of Maxwell’s Lagrangian. Now, in order to produce the full Equation 3.25,
an additional term must added to the Lagrangian, that will derive the term Jµ of the right
hand side. The easiest way of adding this term is with the invariant product AµJ

µ

∂

∂Aµ

{AµJ
µ} = Jµ

∂

∂(∂νAµ){AµJ
µ} = 0

Combining these two terms to correctly produce the inhomogeneous pair of Maxwell’ s
equations, represented by Equation 3.25, one gets the Lagrangian:

L = −1
4FµνF

µν − AµJ
µ (3.34)

Last but not least, the homogeneous pair of Maxwell’ s equation should be derived from
the Lagrangian, but a really extraordinary result is that the electromagnetic tensor already
contains the homogeneous equations, hidden in its antisymmetric properties. One can from
Equation 3.26 substitute the definition of the dual tensor F̃ µν = 1

2ϵ
µνρσFρσ. This results in a

nice Bianchi identity.

62



Chapter 3. Gauge Theories

∂µFνρ + ∂ρFµν + ∂νFρµ = 0 (3.35)

As a result the Lagrangian 3.34 is the full Lagrangian needed to derive the Equations of
Motion for the classical theory of Electromagnetism, which, as it should, is a Lorentz invariant
quantity, because of the invariant products.

The gauge invariance of this theory demands that the electromagnetic potential 4-vector Aµ

transforms in shorthand covariant notation as:

Aµ → Aµ + ∂µλ (3.36)

where the function λ is a smooth function of the spacetime coordinates.

3.1.4 Gauge Theories

Gauge theory originate from the classical theory of electrodynamics as shown in Section
3.1.1, but its great significance is observed when the electromagnetic theory is coupled with
a spinor field. The physical meaning of this coupling is the description of the motion of a
charged fermion (as is the electron) in an electromagnetic field. This is the Lagrangian of
Quantum Electrodynamics constructed using the kinetic term of Maxwell’s theory with a
Dirac Lagrangian for a spin-1/2 particle, which takes the place of the electromagnetic current.

L = −1
4FµνF

µν + iψ̄γµ∂µψ −mψ̄ψ (3.37)

The terms ψ, ψ̄ are Dirac’ s spinor fields, of in more mathematical terminology they are
Grassman fields, describing the relativistic behaviour of the fermion, through spacetime. The
term γµ represent the Dirac’ s matrices, which obey the Clifford’ s algebra and transform as
a 4-vector.

The previous equation, does not contain any interaction between the electromagnetic field
and the fermionic component, meaning there is no term containing simultaneously ψ and Aµ.
This interaction, which is a physical demand for the system, will arise naturally from the
gauge invariance of the system.

To introduce this gauge invariance a general result from Quantum Mechanics can be used. If
one wants to use this Lagrangian to describe quantum mechanical effects of a fermion inside
an electromagnetic field, the fermion should obey the quantum mechanical laws. This is
implied by saying that it is represented by a Dirac’ s spinor, because Dirac’ s equation is the
relativistic analogue of Schrodinger’ s equation.

That being said, in quantum mechanics the complex phase appearing in front of a wave
function of particle is insignificant. Meaning, that for an arbitrary real parameter θ ∈ R, the
spinor field ψ transforms as:
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ψ → eiqθψ (3.38)

and the dual field ψ̄ = ψ†γ0, where ψ† is the Hermitian conjugate of ψ, must transform as:

ψ̄ → ψ̄e−iqθ (3.39)

These transformations leave the Lagrangian 3.37 untouched, which is a nice property but it
does not serve the initial physical demand to provide the coupling between electromagnetism
and fermions. The parameter q is just a real number. Its physical significance will become
clear at the end of this Section.

It is another quantum mechanical result, that the parameter θ shall not be restricted to be a
global parameter, where the term global parameter is being used to describe a real number
independent of the point of spacetime the fermion field is evaluated. The above transformation
rules must hold and keep the Lagrangian invariant even if the parameter theta is a smooth
real function θ = θ(x) = θ(xµ),∀xµ ∈ R1,33. In bibliography, the use of the function g(x) is
often called a local transformation.

What is implied in the above paragraph is that the transformation of the field ψ, that should
leave the Lagrangian 3.37 is given by a function g(x) = exp{iqθ(x)}. Observing this function,
is can be seen that is a special case of the exponential map, described in Section 2.2.4, that
connects each element of a Lie Group with an element of a corresponding Lie Algebra. In
this specific case the function g maps an arbitrary point of spacetime with an element of the
group U(1). Therefore it is:

g : R1,3 −→ U(1) (3.40)
g(x) = eiqθ(x) (3.41)

It is obvious that the mass term of the Lagrangian 3.37 remains the same after the local
transformation. The kinetic term, though, transforms explicitly as:

iψ̄′γµ∂µψ
′ = iψ̄e−iqθ(x)γµ∂µ(eiqθ(x)ψ)
= iψ̄e−iqθ(x)γµ∂µ(eiqθ(x))ψ + iψ̄e−iqθ(x)γµeiqθ(x)(∂µψ)
= −qψ̄e−iqθ(x)eiqθ(x)γµ∂µ(θ(x))ψ + iψ̄γµ∂µψ

iψ̄′γµ∂µψ
′ = iψ̄γµ∂µψ − qψ̄γµ∂µ(θ(x))ψ

The transformation implied gave an extra term in the Lagrangian that has to be eliminated.
The easiest way to eliminate this term is by adding the extra term qψ̄γµ∂µ(θ(x))ψ to the

3The notation R1,3 is used for a Minkowksi spacetime manifold with metric (−, +, +, +).
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Lagrangian. But, of course, this term is not physical. The big idea is tha this term can be
introduced naturally by the transformation implied in equations 3.40, 3.41.

The idea lies on the gauge invariance of classical electrodynamics. Specifically, the kinetic
term of Maxwell’ s Lagrangian remains intact if the derivative of a real valued function θ(x),
is added to the potential Aµ. This is exactly what is written in Equation 3.36 of the previous
section.

Thus, the Lagrangian need to be modified, in order to contain a term that will be linear in
the potential Aµ. Of course, the extra term must remain Lorentz invariant, which implies the
obligatory use of the invariant product γµAµ.

The necessary term is:

Vint = qψ̄γµAµψ (3.42)

This term, has the physical meaning of the interaction4 between the fermion and the electro-
magnetic field, which was one of the basic requirements of the theory.

If, under the transformation g the potential Aµ transforms as:

Aµ → Aµ + ∂µθ(x) (3.43)

then the transformation of the extra term Vint reads:

V ′
int = qψ̄e−iqθ(x)γµ[Aµ + ∂µθ(x)]eiqθ(x)ψ

= qψ̄γµAµψ + qψ̄γµ∂µθ(x)ψ
V ′

int = Vint + qψ̄γµ(∂µθ(x))ψ

This concludes that the following Lagrangian, which is the Lagrangian of Quantum Electrody-
namics (QED) is invariant under the transformation implied by the map g and also Lorentz
invariant. The extra term not only serves mathematical purposes, but also physical, because
it models the interaction between the two fields, implying that physical fields are the gauge
invariant ones.

LQED = −1
4FµνF

µν + iψ̄γµ(∂µ − iqAµ)ψ −mψ̄ψ (3.44)

In the above Lagrangian the use of the parentheses to group the kinetic term for the fermion
with Vint is not by chance. There is a very deep geometrical meaning here. The field ψ = ψ(x)
is a function defined on Minkowski spacetime R1,3, which takes values on C4. After the
transformation dictated by the function g the field ψ takes the new value gψ ∈ C4.

4That explains the index "int" in Equation 3.42.
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This reminds the concepts of differential geometry introduced in Chapter 2, with the use of
diffeomorphisms x′ : R1,3 → R1,3. In the present case the transformation is still a diffeormor-
phism but between different manifolds as one can see in Equation 3.40. So, if one considers
the field ψ as a vector then the derivative of this field ∂µψ does not transform the same way
as the vector. This was the reason the initial Lagrangian 3.37, did not remain invariant after
the transformation g. This is a very rational result, the map g takes a different value for every
point in spacetime. As a result the transformed field gψ changes by a different factor. So, the
ordinary derivative is not enough to compare the real change of the field ψ.

In more mathematical thinking the ordinary derivative of the field transforms inhomogeneously
and this, as explained in Chapter 2 is not a correct behaviour for a derivative. The essence of
the previous sentence is that when a derivative of a field is zero, the field is constant. But with
the presence of the inhomogeneous term the derivative can go to zero with a non-constant field.
With the addition of the new term Vint in the Lagrangian, the functional remains invariant
after the transformation, because the term appearing in the parentheses of 3.44 transforms
homogeneously with the transformation g, hence the term in the parentheses is the definition
for the covariant derivative. In more formal notation the covariant derivative is defined as:

∇µ = ∂µ − iqAµ (3.45)

and when acting on a fermionic field ψ, it transforms homogeneously under the gauge
transformation g as shown bellow. According to Chapter 2.1.4 and especially Equation 2.6
the electromagnetic potential Aµ plays the role of connection and because it is the connection
of gauge transformation it is commonly referred to as gauge field. The physical meaning of
seeing the 4-vector potential as a connection is that when a fermion moves through spacetime
with the presence of electromagnetic field, it interacts differently in every point. Of course, the
parameter q that appears in front of the connection in Equation 3.45 and on the exponential of
the gauge transformation dictates how strongly the fermion interacts with the electromagnetic
field. Therefore, q is the electric charge.

∇′
µψ

′ = ∇′
µ(gψ)

= (∂µ − iqA′
µ)(eiqθ(x)ψ)

= ∂µ(eiqθ(x)ψ) − iq(Aµ + ∂µθ(x))(eiqθ(x)ψ)
= eiqθ(x)(∂µψ) + iqeiqθ(x)(∂µθ(x))ψ − iqAµe

iqθ(x)ψ − iqeiqθ(x)(∂µθ(x))ψ
= eiqθ(x)(∂µψ − iqAµψ)

∇′
µψ

′ = g∇µψ

Following the geometrical point of view and having defined the covariant derivative, it is
straightforward to define the curvature as the commutator of the covariant derivatives. As
shown bellow, the curvature is proportionate to the electromagnetic field tensor Fµν .
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[∇µ,∇ν ]ψ = ∇µ(∇νψ) − ∇ν(∇µψ)
= ∂µ(∇νψ) − iqAµ∇νψ − ∂ν(∇µψ) + iqAν∇µψ

= ∂µ(∂νψ − iqAνψ) − iqAµ(∂νψ − iqAνψ)−
− ∂ν(∂µψ − iqAµψ) + iqAν(∂µψ − iqAµψ)
= −iq(∂µAνψ) − iqAµ∂νψ + iq(∂νAµψ) + iqAν∂µψ

= −iq(∂µAν)ψ + iq(∂νAµ)ψ
[∇µ,∇ν ]ψ = −iqFµνψ (3.46)

The previous discussion refers to the U(1) gauge theory, which is the symmetry behind QED.
QED is a really important, elegant and successful theory of modern physics. Its success made
it a model theory, that inspired a lot of new modifications. A very simple one is to change
the target of the transformation g, to be an arbitrary Lie Group and not specifically U(1).
This change is the beginning of Yang-Mills theory and it truly contains a lot of deep physical
and mathematical results [31].

3.2 Classical Yang-Mills Theory

3.2.1 The Covariant Derivative and the Connection of Yang-Mills
Theory

Yang-Mills theory stands on the modification of the U(1) theory. The change Yang and
Mills investigated is altering the gauge transformation g, by changing the target set to be
an arbitrary Lie Group G, with Lie Algebra g. The map U(x) takes each point x ∈ R1,3 and
match it with an element g ∈ G, which as explained in Chapter 2.2.4, can be written as an
exponential map of its Lie Algebra with generators Ta. The coefficients θa(x) are responsible
for mapping the different points x ∈ R1,3 to different elements of the group U ∈ G.

U : R1,3 −→ G (3.47)
U(x) = eigθα(x)T α (3.48)

More concretely, in Yang-Mills theory the group G can be an arbitrary Lie Group, which
in the general case can be a non-Abelian group. The group G is often called the structure
or the gauge group of the theory. The appropriate mathematical theory that studies Yang-
Mills equations is the theory of principal bundles. The following results are not extremely
mathematically rigour, but they do remain correct.

Following the same reasoning as in Chapter 2.1.4, the covariant derivative of Yang-Mills
theory can be established in two ways. Firstly, the effect of the local gauge transformation U
on a field ψ is:
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ψ → Uψ = eigθα(x)T α

ψ (3.49)

This transformation is not as simple as it was for the Abelian U(1) case. As established,
the exponential is equal to a different group element in every spacetime point and of course
this cannot in general "multiply" the map ψ. For example, if the group G is chosen to be
the group SU(3), how these 3x3 would act on the map ψ that creates values that live on
C4. The answer is that the group and the map ψ are represented on a representation of the
same dimension. The representation is realised from the generators Ta of the Lie Algebra, so
what should actually be written Equation 3.49 is R(T a), but this is always omitted in the
bibliography.

The transformation 3.49 can also be written in its infinitesimal version, using the Taylor
expansion around infinitesimal functions θa(x) with ∥θ∥ → 0+.

U = exp{igθa(x)Ta} = 1 + igθaTa + O(g2, θ2) (3.50)
ψ → Uψ = ψ + igθaTaψ (3.51)

The covariant derivative ∇µ must transform in the same way when it acts on a field ψ,
meaning that it has to absorb the extra terms arising from ordinary differentiation. As
described in Chapter 2.1.4 the covariant derivative has to contain an extra field that does not
transform homogeneously5, and its role is to absorb the non-homogeneous terms appearing in
the ordinary derivative.

Let Aµ be the field that will compensate the non-homogeneous terms. Then the covariant
derivative can be defined analogously to the Abelian gauge theory as:

∇µ = ∂µ − igAµ (3.52)

The covariant derivative of Equation 3.52 will act on the field ψ, which as explained above is
represented in an appropriate representation, such that each group element U can act on. As
a result, the field Aµ must be represented in this representation, and because the generators
Ta are a basis of this representation, the compensating field Aµ can be expanded on that basis
as Aµ = Aµ · T = Aα

µT
α.6 Rigorously speaking, the field Aµ is a map from Minkowski space

R1,3 to the Lie Algebra of the underlying group. The covariant derivative can be written as:

∇µ = ∂µ1 − igAa
µTa (3.53)

Again, the correct notation is R(Aµ) instead of just Aµ, where the representation depends
on the object that the derivative acts on. The coefficient g, which has taken the place of
the electric charge q, is often referred to as the coupling constant. It is just a real number

5This result will be reproduced for the covariant derivative of Yang-Mills theory.
6The repeated index a implies summation.
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that describes how strong is the interaction of the field ψ with the compensating field Aµ.
This last remark will be clear by the end of the present section. Using this definition the
transformed covariant derivative acting on the transformed field is:

∇′
µψ

′ = U∇µψ

(∂µ − igA′
µ)ψ′ = U∇µψ

(∂µUψ) − igA′
µUψ = U∇µψ

(∂µU)ψ + U∂µψ − igA′
µUψ = U∂µψ − igUAµψ (3.54)

After some simple algebra and demanding that the last equation should hold independently
of the chosen field ψ the result is Equation 3.55.

A′
µU = UAµ − i

g
∂µU

A′
µUU

−1 = UAµU
−1 − i

g
(∂µU)U−1

A′
µ = UAµU

−1 − i

g
(∂µU)U−1 (3.55)

The last equation, shows how the field Aµ should transform in order for the covariant derivative,
acting on a field ψ, to transform as the field ψ itself. Using the Taylor expansion around the
identity element 1 ∈ G, one can find how the components Aa

µ transform.

Taking the first order approximation exp{igθa(x)Ta} = 1 + igθaTa + O(g2, θ2) with ∥θ∥ → 0+

Equation 3.55 becomes:

Aa′

µ Ta = (1 + igθaTa)Aa
µTa(1 − igθaTa) − i

g
∂µ(1 + igθaTa)(1 − igθaTa)

= (Aa
µTa + igθaTaA

b
µTb)(1 − igθaTa) + (∂µθ

aTa)(1 − igθaTa)
= Aa

µTa − igAa
µTaθ

bTb + igθaTaA
b
µTb + g2θaTaA

b
µTbθ

cTc︸ ︷︷ ︸
O(θ2)

+

+ ∂µθ
aTa − ig(∂µθ

aTa)θbTb︸ ︷︷ ︸
O(θ2)

= ∂µθ
aTa + ig[θaTa, A

b
µTb] + Aa

µTa

= ∂µθ
aTa + igθa[Ta, Tb]Ab

µ + Aa
µTa

Aa′

µ Ta = ∂µθ
aTa − gθaAb

µf
abcTc + Aa

µTa (3.56)

In the last equation the formula [Ta, Tb] = ifabcTc was used, which differs from Equation
2.79 presented in Chapter 2.2.5 only by the i factor extracted upfront, which is common in
theoretical physics.
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Another important form of the infinitesimal transformation of the connection can be formed
from Equation 3.56. The advantage of the following equation is its independence on the
generators Ta.

δAa
µ = Aa′

µ − Aa
µ = ∂µθ

a − gθcAb
µf

cba (3.57)

3.2.2 The Curvature of Yang-Mills Theory

The next step to formulate properly the non-Abelian theory, is to compute the commutator
of the covariant derivatives, which according to Equation 3.46 is proportional to the field
strength tensor of the theory.

[∇µ,∇ν ]ψ = (∂µ − igAµ)(∂νψ − igAνψ) − (∂ν − igAν)(∂µψ − igAµψ)
= ∂µ∂νψ − ig(∂µAνψ) − igAµ∂νψ − g2AµAνψ−
− ∂ν∂µψ + ig(∂νAµψ) + igAν∂µψ + g2AνAµψ

= −ig(∂µAν)ψ − igAν∂µψ − igAµ∂νψ − g2AµAνψ+
+ ig(∂νAµ)ψ + igAµ∂νψ + igAν∂µψ + g2AνAµψ

=
{
−ig(∂µAν − ∂νAµ) − g2[Aµ, Aν ]

}
ψ

= −ig {(∂µAν − ∂νAµ) − ig[Aµ, Aν ]}ψ
[∇µ,∇ν ]ψ = −igFµνψ (3.58)

As expected from the comparison with the Abelian gauge theory the term inside the curly
brackets, named Fµν , is just a function of the connection Aµ and not an operator as was
the covariant derivative at first. This is the curvature or the field strength tensor of the
non-Abelian gauge theory. Again the coupling constant g appears in front of Fµν , which
shows that the curvature of the field is dependent on this constant. If this constant takes
bigger values then the covariant derivatives fail even more to commute, which results in bigger
curvature.

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (3.59)

An easily seen fact for the curvature in the view of relativity is that the first two terms
constitute the covariant curl of a four vector, which, as stated many times, is Lorentz covariant.
The commutator of the connection with itself is just a product of two covariant 4-vectors,
meaning that transforms as a covariant tensor of the second rank. As a wholesome the tensor
Fµν is indeed a covariant 2-tensor.

Yet, in the point of view of gauge theories the transformation law of the curvature must be
investigated under the gauge transformation. For this investigation the rule of transformation
for the covariant derivatie will be used as ∇′

µ = U∇µU
−1
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Fµν = i

g
[∇µ,∇ν ] (3.60)

F ′
µν = i

g
(∇′

µ∇′
ν − ∇′

ν∇′
µ)

= i

g
(U∇µ U

−1U︸ ︷︷ ︸
1

∇νU
−1 − U∇ν U

−1U︸ ︷︷ ︸
1

∇µU
−1)

= i

g
U(∇µ∇ν − ∇ν∇µ)U−1

F ′
µν = i

g
U [∇µ,∇ν ]U−1 = UFµνU

−1 (3.61)

The last equation shows that the curvature transforms homogeneously under the gauge
transformation. In fact, the transformation dictated by Equation 3.61 is the analogue of the
homogeneous transformation for the second rank mixed tensor of general relativity.

The tensor Fµν depends on the connection Aµ, which is Lie Algebra valued, therefore the
tensor takes values on the Lie Algebra as well and has its own components F a

µν for expansion
on the basis T a. The transformation formula for these components can be obtained by
Equation 3.61. First the components can be calculated as follows.

F a
µνTa = ∂µA

a
νTa − ∂νA

a
µTa − ig[Aa

µTa, A
b
νTb]

= ∂µA
a
νTa − ∂νA

a
µTa − igAa

µA
b
ν [Ta, Tb]

= ∂µA
a
νTa − ∂νA

a
µTa + gAc

µA
b
νf

cbaTa

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (3.62)

The infinitesimal rule of transformation can be obtained as before using a Taylor’ s expansion
around some small parameters θa(x). Using Equation 3.61:

F ′
µν = (1 + igθaTa)Fµν(1 − igθbTb)

= (Fµν + igθaTaFµν)(1 − igθbTb)
= Fµν − igFµνθ

bTb + igθaTaFµν + g2θaTaFµνθ
bTb︸ ︷︷ ︸

O(θ2)

= Fµν + ig(θaTaF
b
µνTb − F a

µνTaθ
bTb)

= Fµν + ig(F a
µνθ

bTbTa − F a
µνθ

bTaTb)
F ′a

µνTa = F a
µνTa − igF a

µνθ
b[Ta, Tb]

F ′a
µνTa = F a

µνTa + gF a
µνθ

bfabcTc

F ′a
µν = F a

µν − gθbfabcF c
µν (3.63)
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Equation 3.63 shows a really important result for the curvature tensor Fµν . To make this result
visible one should rewrite Equation 3.51 for a general field ψ in an arbitrary representation
using all the indices.

(ψ′)i = (ψ)i + igθa(Ta)ij(ψ)j (3.64)

This equation can coincide with the transformation rule for the curvature appearing in
Equation 3.63 if the generators are given by (Ta)ij = −i(fa)bc or in the usual notation
Ta = −ifabc, which is exactly the definition of the adjoint representation presented in Chapter
2.2.4.

In conclusion, the really important result from the transformation rule of the curvature is that
its rule of transformation was instructed by the transformation of the connection Aµ and it
naturally became clear that the curvature behaves like a field that transforms (and therefore
represented) in the adjoint representation of the group. Therefore, whenever an operator (as
the covariant derivative) has to act on the curvature, the adjoint representation in implied.

3.2.3 Lagrangian and Equations Of Motion

The next expected step to properly formalize Yang-Mills theory is to build the action functional,
from which the equations of motion can be derived. The action is the spacetime integral of
the Lagrangian density, as described in section 3.1.

The action should be Lorentz invariant as well as gauge invariant. The Lorentz invariant
product is the analogously to the Abelian theory FµνF

µν , where in the present case the field
strength tensor takes values on the Lie Algebra of the group. Under gauge transformation
the Lorentz invariant product transforms homogeneously, as one can see from the following
equation.

F ′
µνF

′µν = UFµνU
−1UF µνU−1 = UFµνF

µνU−1

Of course, homogeneous transformations are a good result, but as mentioned the action should
be a gauge invariant scalar quantity. The only possible way to make this product invariant is
to use its trace Tr{FµνF

µν}. There is another more elegant form of this trace, in terms of the
components of the tensor Fµν .

Tr{FµνF
µν} = Tr

{
F a

µνT
aF b µνT b

}
= F a

µνF
b µν Tr

{
T aT b

}
In theoretical physics the generators are normalized as:

Tr
{
T aT b

}
= 1

2δ
ab (3.65)

Meaning that the invariant trace can be used as the Lagrangian density of the theory in the
following form:
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L = Tr{FµνF
µν} = 1

2F
a
µνF

a µν (3.66)

The action is the spacetime integral of this product and taking the variation of this action
equal to zero the Equations Of Motion should arise naturally.

δ
∫
d4xL =

∫
d4xδL

=
∫
d4xδ(1

2F
a
µνF

a µν)

= 1
2

∫
d4x2F a

µνδF
a µν

=
∫
d4xF a

µνδ(∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν)

=
∫
d4xF a

µν [∂µδA
a
ν − ∂νδA

a
µ + gfabc(Ab

µ(δAc
ν) + (δAb

µ)Ac
ν)]

=
∫
d4x[F a

µν∂µδA
a
ν − F a

µν∂νδA
a
µ + g(F a

µνf
abcAb

µ(δAc
ν) + F a

µνf
abc(δAb

µ)Ac
ν)]

The first two terms can be integrated my parts. The index b, appearing bellow, stands for
boundary. The antisymmetric property F a

µν = −F a
νµ is also used.

∫
d4xF a

µν∂µδA
a
ν = F a

µνδA
a
ν

∣∣∣
b

−
∫
d4x(∂µF

a
µν)δAa

ν∫
d4xF a

µν∂νδA
a
µ = F a

µνδA
a
µ

∣∣∣
b

−
∫
d4x(∂νF

a
µν)δAa

µ

= F a
νµδA

a
ν

∣∣∣
b

−
∫
d4x(∂µF

a
νµ)δAa

ν

= − F a
µνδA

a
ν

∣∣∣
b

+
∫
d4x(∂µF

a
µν)δAa

ν∫
d4xF a

µν∂µδA
a
ν = −

∫
d4xF a

µν∂νδA
a
µ

Changing the indices in the second part of the remaining term one has:

F a
µνf

abcAb
µ(δAc

ν) + F a
νµf

abc(δAb
ν)Ac

µ = F a
µνf

abcAb
µ(δAc

ν) − F a
µνf

abc(δAb
ν)Ac

µ

= F a
µνf

abcAb
µ(δAc

ν) − F a
µνf

acb(δAc
ν)Ab

µ

= F a
µνf

abcAb
µ(δAc

ν) + F a
µνf

abc(δAc
ν)Ab

µ

= 2F a
µνf

abcAb
µ(δAc

ν)
= 2F c

µνf
cbaAb

µ(δAa
ν)

= −2F c
µνf

abcAb
µ(δAa

ν)
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These changes make it easier to calculate the variation of the action.

δS = 0

2 F a
µνδA

a
ν

∣∣∣
b

− 2
∫
d4x(∂µF

a
µν + gF c

µνf
abcAb

µ)δAa
ν = 0

The boundary terms cancel out, because a common convention is that fields tend to go to
zero in spatial and time infinity. For the last equation to be true independently of the chosen
connection, the equation of motion are:

∂µF
a
µν + gF c

µνf
abcAb

µ = 0 (3.67)

One can rewrite these equations without the components. The first step is to multiply by a
generator of the Lie algebra T a from the left.

∂µF
a
µνT

a + gF c
µνf

abcT aAb
µ = 0

The term fabcT a after some index manipulation and using the antisymmetric property of the
structure constants fabc can be rewritten as:

fabcT a = f cbaT c = facbT c = −fabcT c = −i[T a, T b]

The equations of motion are:

∂µF
a
µνT

a + gF c
µνf

abcT aAb
µ = 0

∂µF
a
µνT

a + gF a
µνf

cbaT cAb
µ = 0

∂µF
a
µνT

a + igF a
µν [T a, T b]Ab

µ = 0
∂µF

a
µνT

a + ig[F a
µνT

a, Ab
µT

b] = 0
∂µFµν − ig[Aµ, Fµν ] = 0 (3.68)

∇µFµν = 0 (3.69)

Note that Equation 3.68 is exactly how the covariant should act on the curvature Fµν , because
as explained in the previous section the curvature transforms in the adjoint representation,
therefore the gauge field Aµ should be in the adjoint representation as well. This means that
the term AµF

µν that appears in covariant differentiation of Fµν implies the map adA[F ] =
[Aµ, F

µν ].

The equations of motion for the Yang-Mills connection field Aµ are given compactly in
Equation 3.69. As a result the Lagrangian density used to define these equations is correct
and usually it is written with an extra factor of −1/4, in order to absorb the extra factors
appearing when varying the action. The final lagrangian density is:
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LY M = −1
2 Tr{FµνF

µν} = −1
4F

a
µνF

a µν (3.70)

Finally, it should be mentioned that these equations are homogeneous, because in the
Lagrangian density there is no matter fields (fermions). The purpose of this thesis is to study
pure Yang-Mills action, the only remark stated here is that if one needs to add matter to this
action the ordinary derivative has to be replaced with the gauge covariant derivative in the
Dirac’s Lagrangian density.

3.2.4 Wilson Lines

Another way of introducing the covariant derivative is through the notion of parallel transfer.
The field ψ acquires a different phase when moving through the spacetime manifold, making
it impossible to compare concretely two different values of the field. For example, think of
the difference ψ(y) − ψ(x). After the gauge transformation this difference will be U(y)ψ(y) −
U(x)ψ(x), which has a dependence on both phases on points x, y ∈ R1,3.

What is needed is some kind of field that will make possible to transfer the field ψ(x) to ψ(y)
and then the comparison will be valid. More precisely, the above difference should transform
covariantly under the gauge transformation U . In other words the new field should make the
difference transform as the field ψ(x) This condition is:

ψ(y) − ψ(x) → U(x)[W (x, y)ψ(y) − ψ(x)] (3.71)

This can be achieved by demanding that the new field W (x, y), follow the transformation
rule:

W (x, y) → U(x)W (x, y)U−1(y) (3.72)

The field W (x, y) is actually the parallel transporter of the theory, and can be used to define
the covariant derivative, because the derivative itself is a difference between two infinitesimally
neighboring points.

∇µψ(x) = lim
dxµ→0

W (x, x+ dx)ψ(x+ dx) − ψ(x)
dxµ

(3.73)

Equation 3.72 meas that the covariant derivative transforms as ∇µψ(x) → U(x)∇µψ(x),
which was the basic requirement of the previous section. The field W (x, y) depends on two
points and it acts on the field ψ and produces another new field of the same nature with ψ.
This is true because this new field W (x, y)ψ(y) is then subtracted from ψ(x). Therefore, it
acts on the field the same way as the group element U(y), meaning that W (x, y), takes values
on the Lie Group.

A very important property is that the parallel transporter should not have any effect when
there is no parallel transfer.
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W (x, x) = 1 (3.74)

This equation may seem quite simple, but the true underlying meaning is that the neutral
element of the group 1 ∈ G is a value of W (x, y). As a result the values of the field W (x, y)
form a new group, which is a subgroup of G, according to Definition 2.2.2. An expansion
around the identity element can be performed. In the following expansion the field Aµ is just
an arbitrary field.

W (x, x+ dx) = 1 − igAµdx
µ + O(dx2) (3.75)

As mentioned, the field W (x, y) takes values on the Lie Group. In order for this to happen
in Equation 3.75 the field Aµ must take values on the Lie Algebra, in order for this Taylor
expansion around the identity element to map to the Lie Group. The real number g has been
extracted from the above product, in order to reproduce the same formulas for the covariant
derivative as in Section 3.2.

Substituting the Taylor expansion of Equation 3.75 in the limit 3.73 and derive Equation 3.52
introduced in Section 3.2.

∇µψ(x) = lim
dxµ→0

(1 − igAµdx
µ)ψ(x+ dx) − ψ(x)
dxµ

= lim
dxµ→0

ψ(x+ dx) − ψ(x)
dxµ

− igAµ lim
dxµ→0

(ψ(x+ dx))

∇µψ(x) = (∂µ − igAµ)ψ(x)

The last equation is the same as that of the previous Section, concluding that the field Aµ

is the gauge connection. Having defined the covariant derivative, a field ψ can be parallel
transferred from a point x ∈ R1,3 to a point y ∈ R1,3 along a curve γ : λ ∈ R 7→ xµ(λ) ∈ R1,3.
The equation of this parallel transfer is analogous to the directional derivative of a scalar
function.

dxµ

dλ ∇µψ(x) = 0 (3.76)

The solution of the above equation can be decomposed on a product of the following form.

ψ(x) = W (x, y)ψ(y) (3.77)

The meaning of this decomposition is that having defined the field at a initial point y, one is
looking for a way to transfer this field along any point x on the curve γ, such that Equation
3.76. The field W (x, y) is the propagator and of course it depends on the form of the chosen
curve γ.
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Substituting Equation 3.77 into the differential equation 3.76 the result is:

dxµ

dλ ψ(x) = 0

dψ(x)
dλ − ig

dxµ

dλ Aµψ(x) = 0

dW (x, y)ψ(y)
dλ − ig

dxµ

dλ AµW (x, y)ψ(y) = 0

dW (x, y)
dλ ψ(y) − ig

dxµ

dλ AµW (x, y)ψ(y) = 0

dW (x, y)
dλ − ig

dxµ

dλ AµW (x, y) = 0 (3.78)

The last equation is really important, because it shows that the W (x, y), which in this context
is named the parallel propagator satisfies the same differential equation with the field ψ(x).

The solution of this equation is known and the program to solve it consists of two main steps.
The first step to solve this differential equation is to integrate both sides in terms of the
parameter λ. The integral of the right-hand side would still contain the unknown propagator
W (x, y). The next step, is to plug the resulting integral in W (x, y) of the right-hand side.
This will lead to an infinite series of integrals, which after manipulation they can be written
in a closed form using the path-ordering operator P. This procedure is actually the same
with the one usually performed to obtain the Dyson’ s formula in Quantum Field Theories.

W (x, y) = P
{

− exp
[
ig
∫ y

x
Aµdz

µ
]}

(3.79)

This field can be found in the bibliography with a lot of different names. The most famous
ones are parallel transporting field and Wilson line. Its role is to parallel transfer any field
ψ(y) it acts from the point y to the point x, making the difference W (x, y)ψ(y) − ψ(x) to
transform covariantly under the gauge transformation.

Because it acts on the fields in the same manner as the gauge transformation itself, the field
must take group values, meaning that it can also be expanded on the Lie Algebra of the
group, because as seen from Equation 3.74 the neutral element of the group is mapped to
with the Wilson Line.

Last but not least, a really important property that is actually the beginning of Lattice Gauge
theory is the parallel transport of a field to itself through a closed path. For such a loop,
Equation 3.79 gives the following contour integral, which can be expressed in terms of the
field strength tensor using the generalized Stokes’ Theorem, which is no trivial result. .

Wloop = P
{

− exp
[
ig
∮
Aµdz

µ
]}

(3.80)

In the next Chapter, the connection between the tensor Fµν and the Wilson loop will be
derived using lattice gauge theory. For now, the important remark is that the Wilson loop
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transforms homogeneously, because the starting point of the loop has no relevant effect on its
transformation.

W ′
loop = UWloopU

−1 (3.81)

Finally, taking the trace of the previous equation 7 and using its cyclic property, one can see
that the trace of the Wilson loop is a gauge invariant quantity, therefore it can be used to
construct the action of the theory.

Tr
{
W ′

loop

}
= Tr

{
UWloopU

−1
}

= Tr
{
U−1UWloop

}
= Tr{Wloop} (3.82)

3.3 Quark Confinement

At the time being, non-Abelian gauge theories are believed to be behind the gauge interaction
of the strong nuclear force between quarks and antiquarks. In the Standard Model the gauge
group that describes these strong interactions is SU(3). Quarks and antiquarks are realised
as constituents of hadrons and mesons. They are massive electrically charged fermions that
also carry the color charge. This new charge takes three different values, often referred to
as red, green and blue, and, of course, for every value, the anticharge exists as well (antire,
antigreen, antiblue). Every quark can be understood as the source of a chromomagnetic field,
which, as the electromagnetic field, can be visualize as a set of field lines. Chromoelectric
field lines emerge from quarks and end up in antiquarks.

There is commonly acceptable experimental evidence that quarks are the contituents of
hadrons and mesons, with the first consisting of three quarks or antiquarks and the second
consinsting of just a quark-antiquark pair. The experimental evidence does not consist of
direct observations of free quarks in nature. The quarks are held together by strong nuclear
forces inside the mesons and hadrons and are theoretically are understood only as bound
states of such particles. The name of the phenomenon commonly accepted as the cause is
quark confinement and it is believed that it is based on the non-Abelian nature of gauge
theories. Although, still today there is no theoretical proof of confinement, making it an open
problem for theoretical physics.

Moreover, a really important property of quarks in large energy scales, meaning in short
distances is that they behave as free particles with no interaction in-between. Mathematically
speaking the coupling constant, which encodes how strong is the interaction of quarks by the
intermediate vector gluon field Aµ goes to zero in short distances, meaning when quarks are
bound inside hadrons or mesons. This phenomenon is proved analytically and is known as
asymptotical freedom [14, 21].

A consequence of confinement is that static quark-antiquark pairs are bound together by a
string of constant chromoelectric flux, formed by their chromoelectric field lines, as visualized

7Remember that the Wilson line integrals take values on the Lie Group. As such, the trace value have a
meaning on the chosen representation.
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Figure 3.1: A quark-antiquark pair with the corresponding chromoelectric field lines, which con-
centrate in a string/tube of fixed chromoelectric flux [8].

in Figure 3.1. The energy of this string grows linearly with the separation of the pair. After
a certain point it is cheaper in energy for a quark-antiquark pair to be created from the
vacuum, than to extend more the string. This picture can be seen clearly by caclulating the
quark-antiquark potential. This potential turns out to be linear in the separation r of the
quarks [27, 22, 7]:

V (r) = Kr (3.83)

The coefficient K is known as the string tension and in terms of dimensions it has to be
[K] = [ΛQCD]2. This potential, as every potential in a quantum mechanical theory, can be
interpreted as the ground state energy.

As mentioned this potential is expected only in non-Abelian theories, while in Abelian theories
(as QED), the potential must be the Coulomb’ s law. Therefore, a quantity that measures the
existence of this linear potential is needed. Using path integral arguments for Abelian and
non-Abelian theories it can be proven that an appropriate measure of the confinement effect
is the expectation value of a Wilson loop. For non-confining theories this expectation value
should obey a perimeter law, while for theories, where confinement exists, the expectation
value should obey what is known as an area law.

More specifically in a theory, where charges confine, the Wilson loop will follow the area law
presented bellow. A is the area enclosed by the loop and K is the string tension [27].

⟨0|Wloop|0⟩ ∼ e−KA (3.84)

For a theory containing unconfined charges the expectation value of the Wilson loop depends
only on the perimeter of the loop. The constant C is parameter depending on the loop
shape, the details of regularization used to cutoff the divergences of the path integral and the
coupling constant g [27].
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⟨0|Wloop|0⟩ ∼ e−CP (3.85)

The above results were calculated for pure Abelian and non-Abelian theories. In theories
containing matter, where the effect of charge screening is there, the Wilson loop depends on
the area as well as the perimeter with a weighting towards one, depending on the size of the
loop.
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Chapter 4

Pure Yang-Mills Theory on the Lattice

4.1 Lattice Formulation of Pure Yang-Mills Theory

The purpose of this section is to formulate gauge theories on a discrete spacetime lattice. The
term discrete spacetime is used to describe the approximation of the Minkowski spacetime
manifold R1,3 with discrete points. This can be achieved by defining n sites in each one of the
four dimensions, meaning n4 sites in total, and demanding periodic boundary conditions on
the last site in each dimension. A periodic 2-dimensional lattice can be seen in Figure 4.1.

The idea is that by assuming spacing a between each site the continuum can be derived by
taking the limit a → 0+. So, according to renormalization (see Section 4.6), every quantity H
defined on the lattice should have an appropriate dependency on the spacing a, such that
when taking the limit a → 0+ H has to approach its real physical value.

The basic quantity in theoretical physics and mathematics is the functional that gives the
equations of motion, or in simpler terms the action S. For the lattice, the action was first
pioneered by Wilson and the idea is that when defining a field on the n4 sites the Wilson line

Figure 4.1: A 6 × 3 (2-dimensional) lattice with periodic boundary conditions.

81



Karydis Evangelos

is the appropriate field to use in order to compare these values gauge invariantly.

According to Equation 3.72 of the previous Chapter, the Wilson line must transform as
U(x)W (x, y)U−1(y). With the discretization imposed the group elements U can only be
defined on the sites of the lattice and the most elementary Wilson line of this model can be
thought as field that "lives" on the link between two neighboring sites. Therefore, on the
lattice the field transforms as:

Wµ(ν) → U(n)Wµ(ν)U−1(n+ µ) (4.1)

where n denotes a lattice site and n+µ the next lattice site in the µ direction. A more formal
notation could be W (n, n+ µ) instead of Wµ(ν), but it is not a common notation, so it will
not be used.

The field Wµ(ν) can be thought of as taking the value of a field at a lattice site n and
transferring this value on the site n + µ. So, to compare the values of a field between two
points on the lattice, the only requirement is a discrete path connecting neighboring sites and
the field W on this path that is actually a product of elementary fields Wµ(ν) between all the
sites of the lattice.

As stated in the previous chapter the Wilson line takes values on the group manifold. As a
result the inverse field W−1

µ (ν) exists on every link and intuitively what it does on the lattice
is to connect field values in the opposite way, meaning from a site n to its neighbor n− µ in
the µ direction or in the notation used so far W−1

µ (n) = W−µ(n)

To construct the action the trace of a Wilson loop must be used, because it is a gauge invariant
quantity. The simpler loop on the lattice consists of two neighboring sites n, n+ µ. The loop
on this link would be:

Wloop = Wµ(ν)W−1
µ (ν) = 1

The simplest path gives the identity element of the group, so it there is no information that
can be extracted from this path. The next simplest loop is a square lying on a two dimensional
plane. This loop form an elementary square on the lattice and in Lattice QCD is referred to
as "plaquette". The Wilson loop on an arbitrary plaquette laying on the µν plane connects
four lattice sites as shown in Figure 4.2:

W□ = Wµ(x)Wν(x+ µ)W−1
µ (x+ ν)W−1

ν (x)

According to Equation 3.79 of the previous Chapter the parallel transporter W can be
expressed in terms of the gauge field Aµ as path order exponential of a contour integral.
Considering a link on the lattice the aforementioned exponential takes the following form:

Wµ(x) = P exp
{

−ig
∫

C
Aµd

µz
}

= e−igaAµ(x)
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Figure 4.2: Elementary plaquette lying on the µν plane on the lattice.

The essence of the lattice is that lattice spacing a is a small parameter, meaning that the
gauge field Aµ can be expanded around this parameter as:

Aµ(x+ ν) = Aµ + a∂νAµ + O
(
a2
)

(4.2)

Aν(x+ µ) = Aν + a∂µAν + O
(
a2
)

(4.3)

The product presented above can be written as:

W□ = e−igaAµ(x)e−iga(Aν(x)+a∂µAν(x))eiga(Aµ(x)+a∂νAµ(x))eigaAν(x)

Using BCH formula the above equation takes the following form:

W□(x) = e−iga(Aµ(x)+Aν(x)+a∂µAν(x)− iga
2 [Aµ(x),Aν(x)])+O(a3)

eiga(Aµ(x)+Aν(x)+a∂νAµ(x)+ iga
2 [Aµ(x),Aν(x)])+O(a3)

Finally, using one more time the BCH formula the product can be written as:

W□ = e−iga2Fµν(x)+O(a4) (4.4)

Therefore, a Wilson loop around a plaquette is a sort of measure for the curvature of the
theory, which is intuitively expected, because on the lattice the elementary squares are used to
measure the curl and the curvature is defined as a generalised curl. Moreover, the curvature is
Lie algebra valued, which makes possible for W□ to be expanded around the identity element.

W□(x) = 1 − iga2Fµν(x) − g2a4

2 FµνFµν + O
(
a6
)

The gauge invariant quantity is the trace of the above expression.
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Tr{W□(x)} = Tr{1} − iga2 Tr{Fµν(x)} − g2a4

2 Tr{Fµν(x)Fµν(x)} (4.5)

The trace of the identity matrix depends, of course, on the representation chosen for the
gauge group G. In the Standard Model, the symmetry used for QCD is SU(3). In the present
thesis, the general group SU(N), will be used. For SU(N) the trace of the identity matrix
is the dimension N of the group matrices. Moreover, the curvature Fµν can be expanded as
F a

µνT
a, but the generators of SU(N) are Hermitian, therefore traceless matrices.

Taking into consideration the above remarks the Wilson loop on an elementary plaquette 1

becomes proportional to the trace Tr{FµνFµν}, which is exactly the term that appeared in
the action of the Yang-Mills theory.

Wloop(x) = N − g2a4

2 Tr{Fµν(x)Fµν(x)} (4.6)

After some rescaling the action can be written as in Equation 4.7. The rescaling involves
taking a = 1, which is equivalent to say, that on the lattice the dimenions are measured in
lattice units, where the fundamental dimension is [a] = [L].

S = β
∑
□

(
1 − 1

N
Re{Tr{W□}}

)
= β

∑
□

(
1 − 1

N
Tr
{
W□ +W−1

□

})
(4.7)

where the constant β contains the number N , which is useful when calculating and comparing
differences between different gauge groups of the Yang-Mills theory. Of course, the action can
be formulated for any representation of the gauge group, but in theories without fermions as
considered in the present thesis, the fundamental representation is an easy choice.

β = 2N
g2 (4.8)

Now, with the help of the path integral formulation the partition function can be calculated.
The formulation used in the context of this thesis is different with the one introduced by
Feynman [11], only by the use of the imaginary time τ = −it. With this "rotation" from
Minkowski to Euclidean space the action transforms as SE → iS, where the index E stands
for Euclidean, and for notation simplicity it will not be used from now on. One can question
whether the use of Euclidean spacetime over Minkowski can cause a problem with the
predictions of such a theory. The naive answer is that on the lattice the system can be studied
in the confined region in low velocities, where Minkowski and Euclidean metric give the same
results.

Z =
∫

DWe−S[W ]

1That is what the value x denotes in the above calculation according to Figure 4.2
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The measure of the path integral is in terms of the parallel transportersW , between neighboring
sites of the lattice, because that is the dependence of the action defined in Equation 4.7.
Meaning that this integral is d-dimensional, where d is the number of links. These parallel
transporters are elements of the Lie Group G, which means that some extra attention must be
given to the integration measure DW , because the partition function must be gauge invariant,
resulting in the obligatory use of an invariant measure as well. This will be discussed in the
next section.

Last but not least, the expectation value of an arbitrary operator H = H(W ) can be calculated
as usual from the path integral. The important fact here is that the operator has to be
described as a gauge invariant function of W .

⟨H⟩ =
∫

DWH(W )e−S[W ]∫
DWe−S[W ] (4.9)

4.2 Dimensional Analysis

Throughout the present thesis natural units (ℏ = c = 1) were implied. It is important though
to know what implications this use has in the physical dimensions of the quantities involved
in the field theory and moreover what happens with the dimensions of these quantities on the
lattice, when the lattice spacing a does not appear explicitly in the action.

Starting from Einstein’ s famous formula E = mc2 and setting the speed of light equal to 1,
this formula reduces to E = m. Therefore, mass dimensions also describe energy [E] = [M ].
The next step is to use Planck’ s law E = ℏf . Setting ℏ = 1, energy dimension become also
equal to the inverse time [E] = [T ]−1. Obviously, then, [T ] = [M ]−1. Considering, the relation
between a wavelength and its frequency λ = cf−1, then the length dimension in natural units
is [L] = [T ] = [M ]−1. As a result, every physical quantity has mass or equivalently length
dimension in an appropriate power, when the natural units system is in use.

As one can see from Equation 4.9 the action appears in a exponent, which means that it must
be a dimensionless quantity. The action is given as an integral of the Lagrangian density.

[d4x] = [L]4 = [M ]−4

[L] = [L]−4 = [M ]4

The Lagrangian density of a pure Yang-Mills theory is:

L = −1
4F

a
µνF

aµν = −1
4(∂µA

a
ν − ∂νA

a
µ + gfabcAa

µA
a
ν)2

A dimensional analysis on the first term gives:
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[∂µ]2[Aa
ν ]2 =

(
[M ]4

)2

(
1

[L]

)2

[A]2 = M ]4

[M ]2[A]2 = [M ]4

[A] = [M ]

Finally, the interaction term gives the dimension of the coupling constant [g].

(
[g][A]2

)2
= [M ]4

[g]2[A]4 = [M ]4

[g]2[M ]4 = [M ]4

[g] = 1

This is a very important result for Yang-Mills theory. The only external parameter of the
theory is the coupling constant g, which is dimensionless. In terms of renormalization this
means that the theory is exactly renormalizable.

On the lattice the position vector xµ is discrete. It can only take values on the lattice sites,
so it can be written as xµ = n̂a, where a is the lattice spacing and n̂ is a 4-tuple of integers
n̂ = (n1, n2, n3, n4), that encodes how many lattice spacings in each of the four dimensions a
particle must hop to arrive at a lattice site. Therefore, the physical dimensions are hidden on
the lattice spacing, which is [a] = [L] = [M ]−1.

As one can see form Equation 4.7 the lattice spacing does not appear explicitly in the action.
The action is calculated only by summing the values of elementary plaquettes W□, which are
group elements, therefore dimensionless quantities. When measuring observables H on the
lattice, they appear as dimensionless quantities. As a result, to extract a physical value for
these quantities their physical dimensionality must be fixed as:

H = Ĥa−d (4.10)

where d is the exponent of the mass dimension (in natural units) of the observable and Ĥ is
the dimensionless quantity measured from the lattice.

4.3 Group Integration

According to the transformation rule for the parallel transporter W , presented in Equation
3.72, in order to define a gauge invariant path integral, the integration measure DW must
invariant under the left and right action of the group elements U ∈ G.
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The purpose of this section is to define an integration measure over the group manifold that
is invariant under gauge transformations. Only compact Lie Groups will be considered. As
an ordinary integral, this should also be bilinear and positive definite. Rigorously, consider
two functions f, h : G → G and two complex numbers a, b ∈ C. The basic properties of the
integral over the Lie Group G are:

∫
dg (af(g) + bh(g))) = a

∫
dgf(g) + b

∫
dgh(g), ∀g ∈ G∫

dgf(g) > 0, if f(g) > 0 ∀g ∈ G

An additional property corresponds to the shift invariance of an one dimensional real integral∫
dxf(x+ a) =

∫
dxf(x), ∀a ∈ R. In the group this shift will be g′ ⊙ g, where as usual, ” ⊙ ”

denotes the binary operation between the group elements. The group element g′ is just an
arbitrary but fixed element of the group G and, of course g′ ⊙ g ≠ g ⊙ g′ for a general group.

So, as an analogue to the shift of regular integrals one can take the invariant measure to be
left or right invariant under the action of the arbitrary element g′. Here, left invariance will
be imposed as a condition and but it can be proven that for compact groups the measure is
also right-invariant.

∫
dgf(g) =

∫
dgf(g′ ⊙ g) (4.11)

The integral over the group is actually a volume over the group manifold, which in our case
is a compact group. This means that this integral can be finite. Therefore, the following
condition for the normalization of the measure has a reasoning.

∫
dg = 1 (4.12)

The first task is to find an expression for the measure dg. The manifold of the Lie Group can
be parametrized as surface of RN , where N is the dimension of the group manifold2

G = {g(a)|a ∈ I ⊆ RN}

The volume I in the above equation is the largest possible volume that can be chosen such
that when the parameter a runs once over the volume the group elements g(a) are produced
one time. This measure exists and is known as the Haar measure. The way to transform the
integration from the group manifold to the set I ⊆ RN is known from the Chapter 2.1.3.

∫
dgf(g) =

∫
I
daN

√
det{M}f(g(a)) (4.13)

where M denotes the metric on the group manifold given by the following formula for a general
compact Lie Group.

2see Table 2.3 for the dimensions of common Lie Groups used in theoretical physics.
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Mij = Tr
{
∂g(a)
∂ai

∂g−1(a)
∂aj

}
(4.14)

By differentiating over a the relation gg−1 = 1 a different form of Equation 4.14 can be
derived. Note that the identity element 1 can be obtained from the parametrization function
g(a) for a specific value of a.

g(a)g−1(a) = 1

∂g(a)
∂a

g−1(a) + g(a)∂g
−1

∂a
= 0

∂g−1(a)
∂a

= −g−1(a)∂g(a)
∂a

g−1(a)

Using the cyclic property of the trace operator the metric tensor Mij can be written as:

Mij = Tr
{

−g−1(a)∂g(a)
∂ai

g−1(a)∂g(a)
∂aj

}
(4.15)

The existence of the Haar measure has a very important result on gauge theories. That is
the integral over the group of every gauge dependent element will always be zero. Therefore,
for an observable H(g) all its gauge dependent parts vanish. An intuitive example is the
integral of f(g) = g. By appropriate elements U,U ′ ∈ G this function can transformed to
−f(g) = −g. Then by left and right invariance the integral equals to zero.

∫
G
dgg =

∫
G
dgUgU ′∫

G
dgg =

∫
G
dg(−g)∫

G
dgg = −

∫
G
dgg∫

G
dgg = 0

The Haar measure has a really important consequence for gauge theories, which is known
as Elitzur’ s theorem. The theorem states that only gauge invariant functions can have a
non-vanishing expectation value. This can be seen from Equation 4.9, where the path integral
measure is actually a product of Haar measures on the group manifold DW = ∏

dW . More
specifically, an observable acquires a non zero value only if every variable Wij is multiplied by
its inverse W−1

ij . So, in order to measure an observable on the lattice one needs to construct a
gauge invariant operator (in the continuum) and then the exponential of the action will make
this operator also gauge invariant on the lattice.

Last but not least, some important integrals, that will be used on the lattice are presented
bellow. The notation Wij means that W is a Wilson line (parallel transporter) from point i
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to point j, or from site i to site j, for a spacetime lattice. It is mentioned once more that W
takes values on the group.

∫
G
dWWij = 0 (4.16)∫

G
dWWijW

−1
kl = 1

N
δikδjl (4.17)

4.4 Order Parameters and Phase Transitions

Phase transitions are a quite known subject from statistical mechanics. A famous phase
transition occurs in ferromagnetic materials. Considering the Ising model where spins are
considered as a scalar quantity on the sites of a lattice and can only take a value from the
group Z2 = {+1,−1}. Spin-up is a spin that has the value +1, and correspondingly spin-down
is the spin with the value −1. The basic postulate of the Ising model is that a particular spin
can only interact with its nearest neighboring spins and no other.

Above a specific temperature, which is called critical temperature Tc the spins are arranged
randomly on the lattice, which results in ⟨σ⟩ = 0. Bellow the critical temperature spins can
be aligned in a certain direction causing ⟨σ⟩ = 1 or ⟨σ⟩ = −1. This is phenomenon is known
as spontaneous symmetry breaking.

The importance of this preliminary from statistical mechanics is that ⟨σ⟩ can be used to
determine whether a system is in the ferromagnetic state or not. That is the definition of
an order parameter. An order parameter is a number that becomes trivial in one phase and
remains always non-trivial for the other phase of the system.

Pursuing this analogy, one should look for different phases in a lattice gauge theory, where
the interaction are not between spins, but between the link variables Wµ(n). The parameter
β plays the role of the Boltzmann factor. Therefore, when one talks about phase transitions
in lattice gauge theories, what it means is that a certain number vanishes beyond (or bellow)
a critical value βc and remains non-zero in the other region of βc.

This behaviour was expected in a theory that pursues confinement. More specifically, in a
confined phase the coupling constant g is large, while in the unconfined phase of the theory g
vanishes asymptotically. In terms of β, which relates to g via Equation 4.8, the confined phase
appears in small β, while the asymptotically free/unconfined phase makes its appearance in
large values of β.

Having established that a phase transition between confined and unconfined phases might
appear in lattice gauge theories, an order parameter must be found, in order to distinguish
these two phases. In analogy with the Ising model of ferromagnets, one can think that the
expectation value Wij is an appropriate parameter. This expectation value is calculated
analytically using the path integral formulation as follows:

⟨Wµ(n)⟩ = 1
Z

∫
DWWµ(n)e−S[W ] = 0
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where the measure of the integration is DW = ∏
Wµ(n). As explained in the previous section

all integrals on a compact group manifold are zero, when integrating gauge non-invariant
quantities as Wµ(n) (see Equation 4.16). As a result this expectation is always ⟨Wµ(n)⟩ = 0
and cannot serve as an order parameter.

The previous result is also really important because it encodes the fact that no gauge fixing
is needed in lattice gauge theory. When the measure of the path integral is over the gauge
fields, then integration is carried out through all the functions Aµ, including those that do not
respect gauge symmetry. That is why gauge fixing is needed. On the lattice, the integration
measure is the Haar measure as stated in the previous section, that sends to zero all the non
gauge invariant functions.

The simplest non-trivial gauge invariant operator that can be constructed from the links Wij

is the plaquette W□ used to define the action, or more specifically the trace of this function
Tr{W□}. On the lattice a plaquette connecting the sites ijkl transforms as follows:

Tr{W ′
□} = Tr

{
W ′

ijW
′
jkW

′−1
lk W ′−1

il

}
= Tr

{
giWijg

−1
j gjWjkg

−1
k gkW

−1
lk g−1

l glW
−1
il g

−1
i

}
= Tr{W□}

As a result, the first parameter that can be measured on the lattice, without giving a non-zero
expectation value, is the average plaquette, which represents the internal energy of the system.

P =
〈 1
N

Tr{W□}
〉

=
1
N

∫
DW Tr{W□}e−S[W ]∫

DWe−S[W ] (4.18)

The average plaquette does not have the vanishing properties of magnetization, but as one
can see from simulations it can exhibit singularities when plotted as a function of β, in the
region where the phase transition is expected. In the case of the groups SU(2) and SU(3),
Monte Carlo results are presented in Figures 4.3, 4.4. The average plaquette seems to change
behavior when β is in the interval (2, 2.5) for SU(2) and (5, 6) for SU(3), which correspond
to g ∈ (1, 2). This change of behavior is not singular, therefore no phase transition can be
seen in non-Abelian SU(2) and SU(3) gauge theories. The system continuously pass from
the unconfined phase to the confined one. The fitted curves appearing in these figures will be
explained in the next section. Briefly, they correspond to the theoretically predicted curves
expected in the weak and the strong coupling regimes.

The next order parameter that is usually measured on the lattice is the expectation value of
the Wilson loop. As mentioned in Section 3.3 the Wilson loop is expected to follow an area
law in the strong coupling regime and a perimeter law for weak couplings. It does not have
the vanishing properties, but it does behave differently. The expectation value for a Wilson
loop around a path C is:
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Figure 4.3: Monte Carlo results for the average plaquette P as a function of the parameter β for
the gauge group SU(2) on a 84 lattice [5].

Figure 4.4: Monte Carlo results for the average plaquette P as a function of the parameter β for
the gauge group SU(3) on a 84 lattice [2].
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Figure 4.5: A timelike rectangular Wilson loop on the lattice.

⟨Tr{Wloop}⟩ =
∫

DW Tr
{∏

ij∈C Wij

}
e−S[W ]∫

DWe−S[W ] (4.19)

In order to give some physical intuition for the Wilson loop one can take a timelike rectangular
loop on the lattice, as the one presented in Figure 4.5. According to Wilson’ s string model
for confinement this loop can be interpreted as a test pair qq̄ (meson) that is created on the
lattice separated by distance R. The pair is steadily displaced for time T , when it annihilates.
3 For large times the Wilson loop must give the energy of separation of the pair.

⟨W (R, T )⟩ T →∞−−−→ e−E(R)T (4.20)

If the confinement picture the energy of the pair is considered linear when the pair is largely
separated:

E(R) R→∞−−−→ KR (4.21)

So, for a large enough Wilson loop on the lattice an expectation value that respects the above
physical arguments is expected. The following area law will be confirmed on the lattice with
the strong coupling expansion in the next section.

⟨W (R, T )⟩ T →∞−−−→
R→∞

e−KRT = e−KA(C) (4.22)

Gluons carry color charge. This property make possible for gluons to self-interact. This
self-interaction can lead to producing massive colorless particles constituting only from gluons.
These particles are called glueballs. The lowest possible mass of such a particle is referred to
as mass gap.4 The lattice has provided proof that this mass gap exist for non-Abelian gauge
theories.

3According to Feynman-Stuckelberg interpretation antiparticles travel backwards in time.
4The theoretical proof of the existence of the aforementioned mass gap is a Millenium Prize Problem.
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Figure 4.6: Two separated plaquettes (red) on the lattice.

It is not in the purposes of the present thesis to measure the mass gap on the lattice with
Monte Carlo simulations, that is why the following discussion appears only for completeness
purposes.

The mass gap is the best order parameter, because it is the only one so far that does indeed
vanish in the weak coupling regime and takes a specific value in the confined phase. On
the lattice the mass gap can be extracted by studying the correlation function between two
spatially separated plaquettes. This function decays with a decay rate depending on the mass
gap when separated by distance R.

⟨Tr{Wp1} Tr{Wp2}⟩ = Ce−mgR (4.23)

4.5 Strong Coupling Expansion

When the coupling constant g is small enough the action can be expanded around it. But,
that is what is known already from perturbation theory with Feynman’ s diagrams. One
of the main purposes of using the lattice though, is to produce results in a region, where
perturbation theory cannot be applied, meaning in large separations (confined phase), where
the coupling constant takes large values.

In the confined region g is large, but the parameter β appearing in the Wilson action is
proportional to g−2, which makes it rather small. An expansion around β is known as the
strong coupling expansion.

This expansion is needed in order to predict the behavior of physical values in the strong
coupling limit. The physical quantities are expressed as gauge invariant functionals of Wij.
For example, the expectation value of a Wilson loop is given by Equation 4.19. Expanding
the action 4.7 around β one gets:
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Figure 4.7: A Wilson loop on the lattice tiled with plaquettes.

e−βS[W ] = 1 + β
∑
□

(
1 − 1

N
Tr{Re(W□)}

)
+ O

(
β2
)

(4.24)

As a result, when β → 0+, the Wilson loop will "decrease" to an infinite integration with
integrals of the form 4.16, which are zero. The simplest way for the Wilson loop to give a
non-vanishing integral is by multiplying every Wij with its inverse W−1

ij . Then the integral
4.17 can be used. The inverse link variables for each link in the functional will be provided by
the action.

The simplest way to achieve a non-vanishing expectation value of the Wilson loop in the
strong coupling expansion is to tile the loop with plaquettes. The plaquettes must provide the
inverse link variable for every link variable of the Wilson loop and of course, the appropriate
link variable for the other plaquettes. The method can be seen visually in Figure 4.7. Of
course, the appropriate link variables can be provided to the loop and to the other plaquettes
by a lot different ways, for example by using plaquettes belonging to another plane. These
are higher order expansions.

For a rectangular Wilson loop with dimensions R, T , as the one shown in Figure 4.8, the
expectation value using the expanded action is:

⟨W (C)⟩ = Z−1
∫

DW
[
1 + β

∑
□

(
1 − 1

N
Tr{Re(W□)}

)] 1
N
Tr

 ∏
i<j∈C

Wij

 (4.25)

After the loop is tiled with plaquettes the order of this expectation value can be calulated as
follows.

• A factor β/(2N) will come from each plaquette.

• A factor 1/N will come from each link that is integrated according to the integral 4.17.

• A factor of N will come for each site of the lattice, because of the δ matrices of the
integral 4.17.

The final result is:
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Figure 4.8: A rectangular Wilson loop tiled with plaquettes. These are the Wilson loops calculated
from the Monte Carlo simulations.

⟨W (C)⟩ ∝
(
β

2N

)#plaquettes ( 1
N

)#links

N#sites

=
(
β

2N

)RT ( 1
N

)T (R+1)+R(T +1)
N (R+1)(T +1)

=
(

β

2N2

)RT

(4.26)

This result already reproduces the area law that is expected for the Wilson loop in the strong
coupling limit. The same procedure can be performed for the mass gap, where the "tube" that
connects the plaquettes (see Figure 4.6 must be tiled with elementary plaquettes on every
plane.

4.6 Renormalization Using the Lattice

The term renormalization is used in quantum field theories to describe the process, in which
divergent integrals describing physical quantities are turned into finite integrals. The program
to renormalize such a theory consists of two steps.

The first step is to introduce an external parameter in the theory, such that all the divergent
integrations are carried out in a finite domain. The results of the integrals become dependent
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on this external parameter, that is why is known in the bibliography as a cutoff. There
are many available regularization procedures, such as the Pauli-Villars regularization or
the dimensional regularization. Imposing a lattice structure on spacetime is just another
regularization scheme. Note that the physical results should be independent of the chosen
regularization scheme.

After the cutoff is introduced the observable, in which the divergent integrals appeared,
has acquired a dependency on the cutoff. The next step is to absorb this dependency by
some of the free parameters of the theory. At this point, it should be stated that, as far as
quantum filed theories concern, masses, charges and coupling constants of particles are free
parameters. Stated differently, every Lagrangian describing a quantum field theory contains
masses, charges and coupling constants that are not predicted by the theory itself. This
makes them the perfect candidates to absorb the dependence on the cutoff and rescale to a
new value without altering the form of the Lagrangian. This step is the renormalization. A
theory where this program can run succefully is called renormalizable.

As mentioned the lattice spacing a plays the role of the cutoff. Real physics must appear
in the continuum limit a → 0+. In section 4.1, Wilson’ s action was introduced and it was
mentioned that when a → 0+ then this action reduces to the classical Yang-Mills action5.
This is not enough when one considers the quantum theory. Independently of this succession,
the Wilson’ s action must be able to reproduce quantum amplitudes, where divergences are
present. Hence, when removing the cutoff a, this divergences must disappear and give their
place to finite quantities.

Consider a general observable H. The first step is to define the dependencies of this function.
As stated, the only free parameter of the theory is the coupling constant g0. The general
idea of renormalization is to make the observables acquire an explicit dependency on the free
parameters in a certain scale. The index 0 on g0 is used to emphasize that g depends on the
scale. As explained in Section 4.2 every observable has dimensions [H] = [M ]d, where the
dimensions in lattice units are understood as dependency on the lattice spacing a. As a result,
H depends on g0 and a and can be decomposed as:

H(a, g0) =
(1
a

)d

Ĥ(g0) (4.27)

In the continuum limit, the observable H must remain finite in order to describe real physics.

lim
a→0+

H(a, g0) = Hphys ∈ R (4.28)

But, the factor including the a diverges:

lim
a→0+

(1
a

)d

= ∞ (4.29)

5This can be seen from the Taylor expansion of Equation 4.5 around the lattice spacing a
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These equations imply that the function Ĥ, whose values is what are actually measured from
the lattice must diverge. If one takes the observable to be a mass m, then:

m(a, g0) = 1
aξ(g0)

ξ(g0) = (ma)−1 (4.30)

where ξ is known from statistical mechanics as the correlation length. According to all the
above ξ must diverge. In the language of statistical mechanics this is the definition of a second
order phase transition. In statistical mechanics phase transitions appear bellow a critical
temperature. The role of temperature is taken by the free parameter β, so one expects a that
there exists a certain critical value of β. Bellow this value the system must behave differently,
or in the language of the strong interaction, the system confines.

Using the general idea of renormalization the free parameter g0 must obtain a dependency on
the cutoff a. Therefore, in all the above equations g0 = g0(a). The important result comes
from Equation 4.28. According to this limit, in order for Ĥ(g0(a)) ∈ R when a → 0+ this can
happen only if g0 acquires a specific value gcr at this limit.

lim
a→0

g0(a) = gcr

An important remark is that this value gcr must be chosen in a way that all observables lose
their divergences simultaneously and in the continuum limit they acquire their physical value.

Therefore the first question that arises is to calculate this critical value of g0. This can be
calculated from the renormalization group equation for the pure Yang-Mills theory if one
identifies the lattice spacing a as a cutoff. The beta function is6 [17]:

γ(g0) = a
dg0(a)

da = γ0g
3
0 + γ1g

5
0 + O

(
g7

0

)
(4.31)

where the coefficients γ0, γ1 are independent of the renormalization scheme and for a theory
without fermions as considered here are:

γ0 = 11N
48π2 γ1 = 17N2

384π4 (4.32)

Equation 4.31 is a simple first order differential equation that can be solved by separating the
variables and partial fractions decomposition. For g0 ̸= 0

1
γ0g3

0 + γ1g5
0

= −γ1

γ2
0

1
g0

+ 1
γ0

1
g3

0
+
(
γ1

γ0

)2
g0

γ1g2
0 + γ0

6The letter γ is preferred for the beta function in order to avoid any confusion with the parameter β that
appears in the action.
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The solution of the differential equation can be expressed after integration as:

ln(Λa) = −γ1

γ2
0

ln(g0) − 1
2γ0

1
g0

+ γ1

2γ2
0

ln
(
γ1g

2
0 + γ0

)
where Λ is the integration constant. In physical terms Λ is there to preserve the non-existence
of dimensions in the second part. Therefore [Λ] = [L]−1 = [M ]. The Λ term can be interpreted
as the scale of the theory where g0 takes a specific value, always near g0 → 0, because these
are perturbative results.

With some simple algebra the solution can be expressed as:

Λa(g0) =
(
γ1 + 1

γ0g2
0

) γ1
2γ2

0 exp
{

− 1
2γ0g2

0

}

where the leading term near g0 → 0+ is 1/g2
0:

a(g0) = Λ−1
(

1
γ0g2

0

) γ1
2γ2

0 exp
{

− 1
2γ0g2

0

}
= Λ−1f(g0) (4.33)

The last function has a singular point as g0 → 0+. This is the desired divergence of the lattice
spacing in order for the limit of 4.28 to be finite. So, the perturbative arguments above lead
to the conclusion that g0 = 0 is a possible critical point in order for observables to acquire a
physical value in the continuum limit.

The important remark comes from Equation 4.27. In order for the continuum limit of this
observable to exist and be finite the dimensionless function Ĥ must diverge as Ĥ ∝ f(g)d. As
a result the observable will acquire a physical value in the continuum.

H(a, g0) = a−dCfd(g) = CΛd (4.34)

The importance of the scale Λ can be clearly seen. Every observable in the continuum limit can
be expressed as a power of this scale. This is named dimensional transmutation, because after
renormalization every observable depends on the parameter Λ, which has mass dimensions,
rather than the dimensionless parameter g0.

The really important result here stands on the remark that in order to take the continuum
limit of a lattice gauge theory to describe real physics, perturbative results are needed. If
the results from a simulation validate the divergence of the form fd(g) in the weak coupling
regime then results in the strong-coupling regime can be reliable. More details on how the
renormalization is performed using results from the lattice will be given in Section 4.10.

4.7 Transfer Matrix and Hamiltonian

Having defined the Wilson action on the discrete spacetime lattice it is time to retrieve the
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transfer matrix formalism known from the path integral formulation of Quantum Mechanics
[11, 9]. According, to Wilson’ s idea, spacetime is Euclidean and constitutes of N4 sites.
There are N in each of the 4 dimensions. One of them can be chosen arbitrarily to be the
time dimension, because the spacetime is considered Euclidean, therefore there is no sign
difference in the diagonal matrix elements of the metric tensor.

In Wilson’ s lattice formalism the parallel transporters Wij between two neighboring sites ij
can be thought of as group elements that "lie" on the link that connects the sites. In path
integral formulation the partition function of a quantum mechanical system can be expressed
in terms of its transfer matrix operator as:

Z =
∫

D[x(t)]e−S = Tr
{
T̂N

}
(4.35)

where the operator T̂ is the transfer matrix operator, acting on the Hilbert space of states.

⟨x′| T̂ |x⟩ = Tx′,x (4.36)

and N is the number of timelike lattice sites. The states |x⟩ , ⟨x′| refer to two different time
at time t and t′ respectively with t′ > t.

The purpose of this section is to define the transfer matrix operator in Yang-Mills theory and
to retrieve a similar result for the partition function. Specifically, the form of the transfer
matrix will be defined such that the following equation holds.

Z =
∫ ∏

x,µ

dWxµe
S[W ] = Tr

{
T̂N

}
(4.37)

where the product is performed in each lattice site x, in all the four dimensions µ ∈ {1, 2, 3, 4}.

The first step is to define the Hilbert space of states. The action is defined as a functional of
the group variables W , which means that these variables should be "promoted" to operators
that act on a Hilbert space. In the Schrodinger picture the states are time dependent, which
means that on the lattice the states must only depend on the spacelike links and their time
evolution is expressed by spacelike links on the next time-layer.

From every site of the lattice 4 links (therefore 4 links variables W ) emerge.7 Three of them are
spacelike and one is timelike. The three spacelike link variables at every site Wxm,m ∈ 2, 3, 4
take the role of the coordinate space of quantum mechanics. As a result, they form a basis
for the Hilbert space with the following properties:

(Ŵxm)ab |W ⟩ = (Wxm)ab |W ⟩ (4.38)

where the indices a, b are the explicit matrix indices of every group element Wxm. So, the
basis |W ⟩ is the set of eigenvectors of the operators (Ŵxm)ab. The basis is orthonormal and

7Of course, there are other 4 links in the opprosite direction.
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complete.

⟨W ′|W ⟩ =
∏
x,m

δ(W ′
xm,Wxm) (4.39)

1 =
∫ ∏

x,m

dWxm |W ⟩ ⟨W | (4.40)

The first step is to rewrite the r.h.s of Equation 4.37, starting from the definition of the trace
for an operator.

Tr
{
T̂N

}
=
∫ ∏

x,m

dWxmN ⟨WxmN | T̂N |WxmN⟩ =
∫ ∏

x,m

dWxmN ⟨WxmN | T̂ · T̂ . . . T̂ |WxmN⟩

The next step is to insert the completeness relation of Equation 4.40 between each pair of
T̂ · T̂ , which results in the following formula.

Tr
{
TN

}
=
∫ N−1∏

n=1

∏
x,m

dWxmn ⟨Wn+1| T̂ |Wn⟩ (4.41)

The number n in the above equation is the number of time slice. Therefore the integration
measure is not the same with the one appearing in the partition function. In Equation 4.41
the link variables are integrated over a whole time slice. The timelike link variables that
connect one time slice with its next do not appear in the measure. So, this integration must
occur from the matrix elements of the operator T̂ .

Because the transfer matrix is in principle a Green’s function that propagates the system
from a Hilbert space to the another Hilbert space in the next time slice, the action on the
lattice must be re-expressed in a form where time and space are separated.

To re-express the action one can start from Equation 4.6 and separate the term to the spacelike
and timelike plaquettes. Timelike are considered the plaquettes that have two links in the
time direction and two links on a space direction. In contrary, spacelike plaquettes have all
four links lying on space directions.

For timelike plaquettes denoted by □t: 8

Tr{W□t} = N − g2a2
sa

2
t

2 Tr
{
F 2

tx

}
= N − Vc

g2 at

as

2 Tr
{
F 2

tx

}
and for spacelike plaquettes denoted by □s:

Tr{W□s} = N − g2a4
s

2 Tr
{
F 2

xx

}
= N − Vc

g2 as

at

2 Tr
{
F 2

xx

}
8N in the following formula is the dimension of gauge matrices, not the number of sites.
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as is the lattice spacing between two sites lying on a space direction, and accordingly at is the
lattice spacing in the temporal direction. Vc = a3

sat is the volume of an elementary hypercube
of the lattice. The action on this anisotropic lattice shifted by N is:

1
Vc

S = −βs

∑
s

Tr{W□s} − βt

∑
t

Tr{W□t} (4.42)

The timelike and spacelike terms in the above action are multiplied by a different coupling
constant defined as follows with the aid of the anistropy parameter ξ.

ξ = as

at

βs = 2N
g2

1
ξ

βt = 2N
g2 ξ (4.43)

Therefore, the matrix elements ⟨Wn+1| T̂ |Wn⟩ appearing in Equation 4.41, must reproduce
the exponential of the action. As mentioned before, an integration over the time like is missing
from this formula in order to agree with the partition function. This integration must come
from the matrix elements of the timelike plaquettes.9

⟨Wn+1| T̂ |Wn⟩ = exp
{
βs

∑
s

Tr{W□s}
}∏

x,m

∫
dW1x exp

{
βt

∑
t

Tr
{
WxmWx+m̂1W

′−1
mx W

−1
1x

}}
(4.44)

The final result is that the transfer matrix can be written as an exponential of the operator
which is equivalent to the system’ s Hamiltonian.

T̂ = Ke−atĤ (4.45)
Z = Tr

{
Ke−NatĤ

}
(4.46)

This result can one more time be seen as an equivalence between statistical quantum system
and lattice gauge theories. Ĥ is the systems Hamiltonian and Nat can be seen as the inverse
temperature of the system.

4.8 Thermodynamics on the Lattice

In Section 4.7 a formula that connects the partition function of gauge theories with the
transfer matrix was presented. According to this formula the Euclidean path integral can be
interpreted as a quantum statistical system in three space dimensions and finite temperature
T . The time dimension becomes the temperature of the statistical system.

9The number 1 denotes the time direction and W ′ is the link variables in the next time slice.
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In order to study the properties of pure Yang-Mills theory the expectation values of statistical
variables must be defined. The energy density given in Equation 4.47 is such a variable. As
mentioned in section 4.3 this expectation value must be expressed as a functional of gauge
invariant quantities in order to achieve a non-zero expectation value.

⟨ϵ⟩ = − 1
Vs

∂(ln(Z))Vs

∂(1/T ) (4.47)

where Vs = n3
sa

3
s is the spatial volume of the lattice. The temperature depends on the time

direction of the lattice, as mentioned in section 4.7, with T = (ntat)−1. Because the above
relation demands the spatial volume to be held fixed, then to perform the differentiation the
action on an anisotropic lattice is needed, in order to be able to change as and at independently.
This action is given in Equation 4.42 with its parameter from Equation 4.43. The temperature
can be then expressed as a function of the anisotropy parameter ξ.

T = 1
ntat

= ξ

Ntas

(4.48)

d
( 1
T

)
= −Ntas

ξ2 dξ (4.49)

The partition function as well as the temperature are expressed as functions of ξ. Therefore,
the differentiation to obtain the energy density can be expressed as:

ϵ = 1
NtNsa2

sa
2
t

Z−1 dZ
dξ (4.50)

The dependence of the partition function on the anisotropy parameter ξ comes from the
coefficients βs and βt of Equation 4.42.

ϵ ∝ Z−1
∫ ∏

ij

Wij

[
−dβs

dξ
∑

s

Tr{W□s} − dβt

dξ Tr{W□t}
]
e−S = −dβs

dξ ⟨W□s⟩ − dβt

dξ ⟨W□t⟩

where the derivatives are:

dβs

dξ = 2N d

dξ

{
1
ξg2

}
dβt

dξ = 2N d

dξ

{
ξ

g2

}

The coupling constant g depends on the anisotropy parameter, because according to the idea
of renormalization it must depend on the lattice spacing. As a result its dependence can be
expressed as follows.
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1
g2(as, ξ)

= 1
g2(as)

+ Cs(ξ) (4.51)

1
g2(at, ξ)

= 1
g2(at)

+ Ct(ξ) (4.52)

g(a) = g(as, 1) = g(at, 1) (4.53)

The derivatives become:

dβs

dξ = 2N
(

− 1
ξ2g2(a) + Cs(ξ)

ξ2 + C ′
s(ξ)
ξ

)
(4.54)

dβt

dξ = 2N
(

− 1
g2(a) + Ct(ξ) + ξC ′

tξ

)
(4.55)

The isotropic lattice can be reestablished by taking ξ = 1 after any differentiation. The
above formulas allow the calculation of the energy density of a system put in a heatbath of
finite temperature. A similar procedure can be followed to measure different thermodynamic
observables.

4.9 Simulation Algorithms

Observables on the lattice are calculated by Equation 4.9. The path integral measure is
a multi-dimensional group integral over all link variables. Therefore the dimension of this
integral is the number of links contained in the 4-dimensional lattice used. Computers offer
a much more affordable method to calculate those integrals via methods using the idea of
important sampling. The idea is the same with statistical physics, where one does not need
the data for all molecules contained in a glass of water to study its microscopical properties.

The multidimensional integral of Equation 4.9 can be interpreted in terms of probability
theory as the mean value of the functional H[W ] with probability distribution exp{−S[W ]}.
The basic idea of the Monte Carlo method is to find all the sets {Wxµ}, which from now on
will be called configurations C, that contribute more in the averaging of the functional H[W ].
To be more specific, every link contains a link variable Wxµ the set {Wxµ}, which contains all
the link variables is a configuration of the lattice system. Even one different value for a link
variable cahnges the configuration.

After finding the important configurations, the integral can be approximated according to the
following formula, where it was assumed that the number of the important configurations is n:

⟨H⟩ = 1
n

n∑
i=1

H(Ci) (4.56)
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4.9.1 Markov Chains

One of the most famous methods to generate the important configurations is the Markov
Process or Markov Chain. According to this method, configurations are generated randomly.
The probability to generate a new configuration C ′ depends only on the previous configuration.
More specifically, every configuration C can have access to every other configuration C ′ with
probability P (C,C ′). This can be thought of as matrix, where every element Pij denotes the
probability for the system to pass from the configuration Ci to the configuration Cj with
probability Pij. The function P (C,C ′) is called "transition probability" for obvious reasons.

Every element of Pij are probabilities, meaning that the usual two conditions must hold:

0 ≤P (C,C ′) ≤ 1, ∀C,C ′ (4.57)∑
C′
P (C,C ′) = 1 (4.58)

On the lattice the idea is that with subsequent changes of configurations new configurations
with higher values of the Boltzmann factor exp{−S[W ]} will be produced. Beyond a configu-
ration the system will not be able to produce a configuration with higher Boltzmann factor.
At this point the system has achieved its equilibrium configuration Ceq. It can be mathe-
matically proven that Markov Chains can always converge to an equilibrium configuration
Ceq, independently of the starting configuration when the probability matrix obeys certain
conditions. When simulating lattice gauge systems the conditions are obeyed. For further
details see [22].

Let V (n)(C) denote the so called state/configuration vector of the Markov Chain. This can
be thought of as a column matrix, whose entries are the probability for the system to be in
the each configuration C after n steps. As soon as the system has reached its equilibrium
state it must remain in that state. This condition is expressed as:

V eq(C) =
∑
C′
P (C,C ′)V eq(C ′) (4.59)

Therefore the state vector of the equilibrium state must be an eigenvector of the transition
probability. For lattice gauge theories Markov Chains must be able to sample the probability
exp{−S[W ]}. A condition that gives this distribution and simultaneously satisfies 4.59 is the
detailed balance condition:

e−S(C)P (C,C ′) = e−S(C′)P (C ′, C) (4.60)

The detailed balance condition is enough for the system to converge to the equilibrium
configuration. Although Markov Chains give a condition for convergence they do not specify
the transition probabilities P (C,C ′), for each step in order to achieve the equilibrium. These
probabilities are specified by the chosen algorithm.
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Figure 4.9: Four of the six plaquettes containing the link ij.The remaining two utilize the fourth
dimension.[7]

4.9.2 Metropolis Algorithm

The Metropolis algorithm describes a method to advance a system from a configuration C to
a new configuration C ′, that will have less distance from the equilibrium configuration.

The first step is to choose an initial configuration for the system. There are two such
configurations that are commonly used. The first is referred to as cold or ordered start. All
the variables Wxµ are chosen equal to the identity element of the group, which makes the
Wilson’ s action minimal, that is why is called cold start. The second commonly used initial
configuration is the opposite. The action must be maximal, which can be achieved by giving
to the link variables Wxµ completely random values.

The next step is to alter the configuration. As mentioned, a configuration C consists of all
the link variables of the lattice. This configuration is changed when even one link variable is
changed. That is how the Metropolis algorithm changes the configuration. A candidate Wij

is chosen and is altered by being multiplied by an appropriate random matrix T ∈ SU(N)
which has a weight towards the identity element 1 ∈ SU(N).

The change of a single link variable Wij is then accepted or rejected. First, it has to be
mentioned that the change of Wij alters the action of the system, therefore the Boltzmann
factor and the purpose of the algorithm is to minimize the action. The action is the sum of
all elementary plaquettes. As a result, in a 4D lattice the change of one single link will affect
only 6 plaquettes. A 3D sketch of this fact is given in Figure 4.9.

Considering the above the change of the action when only a single link is altered can be
computed only by changing the link variable and multiplying it with its 6 surrounding
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staples.10

∆S = β Tr
{

Re
{

∆Wij

6∑
i=1

Vi

}}
(4.61)

where ∆Wij = W ′
ij −Wij and Vi is the product of link variables for the six surrounding staples.

After calculating ∆S the change of the link variable Wij is accepted if ∆S ≤ 0. Otherwise,
a random number r ∈ [0, 1] is generated and the change is accepted only if r ≤ exp{−∆S}.
This step gives the chance for new configurations with higher action to be accepted. This is
desirable, because in that way the algorithm can escape for loops of metastable states.

The whole idea behind the Metropolis algorithm is to maximize the rate of accept for changes
that minimize the action. In order to further maximize this rate one can repeat the change
of a particular link several times, or as commonly said "hits". Physically, this correspond to
submerging every link in a heatbath.

After the change of a single link is accepted or rejected another link variable is chosen. The
choice of the new link can be made randomly or systematically. The change of a single variable
is often called Monte Carlo step. After all the link variables of the lattice are changed 11 a
Monte Carlo step is finished and the whole procedure is repeated.

When the configurations of several Monte Carlo steps do not appear to change significantly
the system is considered to be in equilibrium state. The expectation value of an observable
can be calculated by retrieving from the computer memory several configurations, after the
equilibrium is reached, and applying Equation 4.56.

4.9.3 Heatbath Algorithm

The heatbath algorithm is another method to choose the new candidate for every link variable
Wij. In the case of Metropolis the new value W ′

ij is calculated by multiplication with an
arbitrarily/empirically chosen matrix. This can lead to W ′

ij which does not belong in the
desired Boltzmann distribution.

The heatbath algorithm considers new candidates W ′
ij that are selected among all possible

values the follow the desired probability distribution e−S(W ′
ij). As a result, this algorithm

makes no selection that will be rejected. In term of the variable Wij that is about to be
changed in each step the probability distribution is:12

P (W ) = e−S(W ) = e− β
N

Tr{Re{W V }}

dP (W ) ∝ e− β
N

Tr{Re{W V }}dW

10Staple is the term used in the bibliography for a plaquette without one link.
11Independently of whether the change was accepted or rejected.
12The indices ij of the sites are omitted for simplicity
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where V is the sum over the staples containing the link ij and dW is the Haar measure. In
order to generate group elements W that follow the above probability distribution an explicit
formula for the Haar measure must be known. This is the most serious disadvantage of this
algorithm. In order to have a formula for the Haar measure a parametrization for the group
manifold must be known, which is really difficult for complex manifolds. For example, a
parametrization is known for SU(2) but not for SU(3), which is the group of interest for the
Standard Model.

The following calculation is for the group SU(2). The manifold of this group can be parametrize
as a surface of a 4D of unit radius.

SU(2) = {a0 + i⃗a · σ⃗|a2
0 + a⃗2 = 1}, a = (a0, a⃗) ∈ R4 (4.62)

As a result the Haar measure of SU(2) can be expressed as:

dW = 1
2π2 δ(a

2 − 1)d4a (4.63)

The factor (2π2)−1 comes from the normalization condition 4.12 after taking into consideration
that the surface area of a 4D sphere of unit radius is 2π2.

SU(2) has another important property. The sum of any two of its elements is proportional to
another element of the group. Therefore, the sum over the 6 staples can be written as:

V =
6∑

i=1
Vi = kŪ , Ū ∈ SU(2) (4.64)

k =
√

det{V } (4.65)

For SU(2) (N = 2) and the trace of SU(2) matrices is a real number. The probability
distribution is:

dP (W ) ∝ e− kβ
2 Tr{W Ū}dW

The measure is right invariant, so one can redefine is through a matrix X = WŪ .

dP (X) ∝ e− kβ
2 Tr{X}dW

After substituting the Haar measure for the matrix X from Equation 4.63 the probability
distribution becomes:

dP (X) ∝ 1
2π2 e

−kβx0δ(a2 − 1)d4a

The measure on the 4D sphere can be expressed with the 3D solid angle as:
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d4a = ∥a∥2dΩd∥a∥da0 = ∥a∥2 sin(θ)dθdϕd∥a∥da0, θ ∈ [0, 2π), ϕ ∈ [0, π) (4.66)

The δ function has the following useful property:

δ(a2 − 1) = δ(∥a∥2 − (1 − a2
0)) = δ

(
∥a∥ −

√
1 − a2

0

)
+ δ

(
∥a∥ +

√
1 − a2

0

)
(4.67)

Substituting these equations to the probability distribution and using the delta function to
"kill" the measure d∥x∥ one gets:

dP (X) ∝ 1
2π2

√
1 − a2

0e
−kβx0 sin(θ)dθdϕda0 (4.68)

In the above distribution the variables factorize, therefore the distributions can be generated
independently. First one generates random variables that follow the Gaussian distribution
exp{−kβx0} and accept or reject with probability

√
1 − a2

0. The variables θ, ϕ show the
direction of the vector a⃗ and can be chosen at arbitrarily.

After generating the matrix X through the vector a following the precedent procedure, the
matrix W ′ is calculated by X = WŪ .

Although this algorithm has an elegant formulation for the group SU(2) there are no known
extensions for groups of bigger matrices. The reason is that parametrizations of the group
manifold are not as elegant as in the case of SU(2). A way to generalize this algorithm for
SU(3) using its SU(2) subgroups can be seen in [3].

4.10 Results from Simulations and Discussion

For the purposes of this thesis a Monte Carlo code was developed. The code is written
in python and is based on open source code developed by Michael Creutz.13 The code
uses an isotropic lattice of N4 sites and updates the link variables using the Metropolis
algorithm described in Section 4.9.2 with 5 hits per link. Moreover the code can handle
SU(N) matrices up to N = 20. These matrices are saved using the parameters and the
fundamental representation of the Lie Algebra. The purpose of the code is to measure Wilson
loops in order to determine the parameter Λ introduced in Section 4.6.

The plot of Figure presents the plaquette mean value as a function of β for the group SU(2).
It is clear that the developed code is in well agreement with Creutz’ s results in Figure 4.10.
The agreement holds also for the groups SU(3) (Figures 4.13 and 4.12), but for higher groups
the results do not seem reliable as it is obvious from plots in Figures 4.14 and 4.15.

The last part of this thesis was to measure rectangular Wilson loops of higher dimensions on
the lattice in order to calculate the Λ parameter. To this end, the procedure introduced from

13The code can be downloaded for free from the official website https://latticeguy.net of Michael
Creutz.
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Figure 4.10: SU(2) simulation of the mean pla-
quette as a function of β from [5]

Figure 4.11: SU(2) simulation of the mean pla-
quette as a function of β from the
code developed for this thesis.

Figure 4.12: SU(3) simulation of the mean pla-
quette as a function of β from [2]

Figure 4.13: SU(3) simulation of the mean pla-
quette as a function of β from the
code developed for this thesis.
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Figure 4.14: SU(10) simulation of the mean pla-
quette as a function of β from the
code developed for this thesis.

Figure 4.15: SU(10) simulation of the mean pla-
quette as a function of β from the
code developed for this thesis.

Creutz in [5] was followed. Creutz emphasized that the Wilson loop will always possess a
perimeter and a Coulomb behavior. So, in order to minimize the error coming from these
terms, he proposed the alternative observable χ(I, J) presented bellow, which is often called
Creutz’ s ratio. The advantage of this observable is that it is directly proportional to the
string tension in physical units χ ∝ a2K.

χ(I, J) = − ln
(
W (I, J)W (I − 1, J − 1)
W (I, J − 1)W (I − 1, J)

)
(4.69)

According to Section 4.6 χ(I, J) must behave as a2K, which in the weak coupling regime its
behavior must follow that of Equation 4.33.

χ ∝ a2K = KΛ−2
(

1
γ0g2

0

) γ1
γ2

0
e

− 1
γ0g2

0 (4.70)

Creutz plot this observable in a logarithmic scale as one can see in Figure 4.17. As mentioned
in Section 4.2 every observable on the lattice is measured in dimensionless lattice units. Then
to calculate real physical observables the dimensions are fixed by Equation 4.34. As a result,
Creutz calculates the ratio KΛ−2. After that, he ignores the asymptotic behavior of the
curves and plots a band of straight lines to predict the interval where the observable χ would
become zero. The parameter Λ can be determined as the slope of the tangent lines. The
plotted curves converge to a behavior in the strong coupling regime. As far as they agree
with the expected weak coupling behavior and agree with each other for strong couplings, the
strong coupling results are reliable.

Tries were made to reproduce this procedure with the code developed in python. The results
are plotted in Figure 4.17. The result seems in good agreement with that of Figure ?? and
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Figure 4.16: Calculation of the string tension K from Creutz’s ratios χ(I, J) [? ].

the string tension K is determined from the slope of the tangent straight line appearing in
the plot. The determined value is Λ ≈ 0.004

√
K.
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Figure 4.17: Data from simulating Creutz’s ration. The behavior seems reliable for the plaquette
but for bigger Wilson loops the behavior is not correct for weak couplings.
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